xref: /linux/fs/namei.c (revision cf2f33a4e54096f90652cca3511fd6a456ea5abe)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39 
40 #include "internal.h"
41 #include "mount.h"
42 
43 /* [Feb-1997 T. Schoebel-Theuer]
44  * Fundamental changes in the pathname lookup mechanisms (namei)
45  * were necessary because of omirr.  The reason is that omirr needs
46  * to know the _real_ pathname, not the user-supplied one, in case
47  * of symlinks (and also when transname replacements occur).
48  *
49  * The new code replaces the old recursive symlink resolution with
50  * an iterative one (in case of non-nested symlink chains).  It does
51  * this with calls to <fs>_follow_link().
52  * As a side effect, dir_namei(), _namei() and follow_link() are now
53  * replaced with a single function lookup_dentry() that can handle all
54  * the special cases of the former code.
55  *
56  * With the new dcache, the pathname is stored at each inode, at least as
57  * long as the refcount of the inode is positive.  As a side effect, the
58  * size of the dcache depends on the inode cache and thus is dynamic.
59  *
60  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61  * resolution to correspond with current state of the code.
62  *
63  * Note that the symlink resolution is not *completely* iterative.
64  * There is still a significant amount of tail- and mid- recursion in
65  * the algorithm.  Also, note that <fs>_readlink() is not used in
66  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67  * may return different results than <fs>_follow_link().  Many virtual
68  * filesystems (including /proc) exhibit this behavior.
69  */
70 
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73  * and the name already exists in form of a symlink, try to create the new
74  * name indicated by the symlink. The old code always complained that the
75  * name already exists, due to not following the symlink even if its target
76  * is nonexistent.  The new semantics affects also mknod() and link() when
77  * the name is a symlink pointing to a non-existent name.
78  *
79  * I don't know which semantics is the right one, since I have no access
80  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82  * "old" one. Personally, I think the new semantics is much more logical.
83  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84  * file does succeed in both HP-UX and SunOs, but not in Solaris
85  * and in the old Linux semantics.
86  */
87 
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89  * semantics.  See the comments in "open_namei" and "do_link" below.
90  *
91  * [10-Sep-98 Alan Modra] Another symlink change.
92  */
93 
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95  *	inside the path - always follow.
96  *	in the last component in creation/removal/renaming - never follow.
97  *	if LOOKUP_FOLLOW passed - follow.
98  *	if the pathname has trailing slashes - follow.
99  *	otherwise - don't follow.
100  * (applied in that order).
101  *
102  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104  * During the 2.4 we need to fix the userland stuff depending on it -
105  * hopefully we will be able to get rid of that wart in 2.5. So far only
106  * XEmacs seems to be relying on it...
107  */
108 /*
109  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
111  * any extra contention...
112  */
113 
114 /* In order to reduce some races, while at the same time doing additional
115  * checking and hopefully speeding things up, we copy filenames to the
116  * kernel data space before using them..
117  *
118  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119  * PATH_MAX includes the nul terminator --RR.
120  */
121 
122 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
123 
124 struct filename *
125 getname_flags(const char __user *filename, int flags, int *empty)
126 {
127 	struct filename *result;
128 	char *kname;
129 	int len;
130 
131 	result = audit_reusename(filename);
132 	if (result)
133 		return result;
134 
135 	result = __getname();
136 	if (unlikely(!result))
137 		return ERR_PTR(-ENOMEM);
138 
139 	/*
140 	 * First, try to embed the struct filename inside the names_cache
141 	 * allocation
142 	 */
143 	kname = (char *)result->iname;
144 	result->name = kname;
145 
146 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
147 	if (unlikely(len < 0)) {
148 		__putname(result);
149 		return ERR_PTR(len);
150 	}
151 
152 	/*
153 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
154 	 * separate struct filename so we can dedicate the entire
155 	 * names_cache allocation for the pathname, and re-do the copy from
156 	 * userland.
157 	 */
158 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
159 		const size_t size = offsetof(struct filename, iname[1]);
160 		kname = (char *)result;
161 
162 		/*
163 		 * size is chosen that way we to guarantee that
164 		 * result->iname[0] is within the same object and that
165 		 * kname can't be equal to result->iname, no matter what.
166 		 */
167 		result = kzalloc(size, GFP_KERNEL);
168 		if (unlikely(!result)) {
169 			__putname(kname);
170 			return ERR_PTR(-ENOMEM);
171 		}
172 		result->name = kname;
173 		len = strncpy_from_user(kname, filename, PATH_MAX);
174 		if (unlikely(len < 0)) {
175 			__putname(kname);
176 			kfree(result);
177 			return ERR_PTR(len);
178 		}
179 		if (unlikely(len == PATH_MAX)) {
180 			__putname(kname);
181 			kfree(result);
182 			return ERR_PTR(-ENAMETOOLONG);
183 		}
184 	}
185 
186 	result->refcnt = 1;
187 	/* The empty path is special. */
188 	if (unlikely(!len)) {
189 		if (empty)
190 			*empty = 1;
191 		if (!(flags & LOOKUP_EMPTY)) {
192 			putname(result);
193 			return ERR_PTR(-ENOENT);
194 		}
195 	}
196 
197 	result->uptr = filename;
198 	result->aname = NULL;
199 	audit_getname(result);
200 	return result;
201 }
202 
203 struct filename *
204 getname(const char __user * filename)
205 {
206 	return getname_flags(filename, 0, NULL);
207 }
208 
209 struct filename *
210 getname_kernel(const char * filename)
211 {
212 	struct filename *result;
213 	int len = strlen(filename) + 1;
214 
215 	result = __getname();
216 	if (unlikely(!result))
217 		return ERR_PTR(-ENOMEM);
218 
219 	if (len <= EMBEDDED_NAME_MAX) {
220 		result->name = (char *)result->iname;
221 	} else if (len <= PATH_MAX) {
222 		struct filename *tmp;
223 
224 		tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
225 		if (unlikely(!tmp)) {
226 			__putname(result);
227 			return ERR_PTR(-ENOMEM);
228 		}
229 		tmp->name = (char *)result;
230 		result = tmp;
231 	} else {
232 		__putname(result);
233 		return ERR_PTR(-ENAMETOOLONG);
234 	}
235 	memcpy((char *)result->name, filename, len);
236 	result->uptr = NULL;
237 	result->aname = NULL;
238 	result->refcnt = 1;
239 	audit_getname(result);
240 
241 	return result;
242 }
243 
244 void putname(struct filename *name)
245 {
246 	BUG_ON(name->refcnt <= 0);
247 
248 	if (--name->refcnt > 0)
249 		return;
250 
251 	if (name->name != name->iname) {
252 		__putname(name->name);
253 		kfree(name);
254 	} else
255 		__putname(name);
256 }
257 
258 static int check_acl(struct inode *inode, int mask)
259 {
260 #ifdef CONFIG_FS_POSIX_ACL
261 	struct posix_acl *acl;
262 
263 	if (mask & MAY_NOT_BLOCK) {
264 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
265 	        if (!acl)
266 	                return -EAGAIN;
267 		/* no ->get_acl() calls in RCU mode... */
268 		if (acl == ACL_NOT_CACHED)
269 			return -ECHILD;
270 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
271 	}
272 
273 	acl = get_acl(inode, ACL_TYPE_ACCESS);
274 	if (IS_ERR(acl))
275 		return PTR_ERR(acl);
276 	if (acl) {
277 	        int error = posix_acl_permission(inode, acl, mask);
278 	        posix_acl_release(acl);
279 	        return error;
280 	}
281 #endif
282 
283 	return -EAGAIN;
284 }
285 
286 /*
287  * This does the basic permission checking
288  */
289 static int acl_permission_check(struct inode *inode, int mask)
290 {
291 	unsigned int mode = inode->i_mode;
292 
293 	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
294 		mode >>= 6;
295 	else {
296 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
297 			int error = check_acl(inode, mask);
298 			if (error != -EAGAIN)
299 				return error;
300 		}
301 
302 		if (in_group_p(inode->i_gid))
303 			mode >>= 3;
304 	}
305 
306 	/*
307 	 * If the DACs are ok we don't need any capability check.
308 	 */
309 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
310 		return 0;
311 	return -EACCES;
312 }
313 
314 /**
315  * generic_permission -  check for access rights on a Posix-like filesystem
316  * @inode:	inode to check access rights for
317  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
318  *
319  * Used to check for read/write/execute permissions on a file.
320  * We use "fsuid" for this, letting us set arbitrary permissions
321  * for filesystem access without changing the "normal" uids which
322  * are used for other things.
323  *
324  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
325  * request cannot be satisfied (eg. requires blocking or too much complexity).
326  * It would then be called again in ref-walk mode.
327  */
328 int generic_permission(struct inode *inode, int mask)
329 {
330 	int ret;
331 
332 	/*
333 	 * Do the basic permission checks.
334 	 */
335 	ret = acl_permission_check(inode, mask);
336 	if (ret != -EACCES)
337 		return ret;
338 
339 	if (S_ISDIR(inode->i_mode)) {
340 		/* DACs are overridable for directories */
341 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
342 			return 0;
343 		if (!(mask & MAY_WRITE))
344 			if (capable_wrt_inode_uidgid(inode,
345 						     CAP_DAC_READ_SEARCH))
346 				return 0;
347 		return -EACCES;
348 	}
349 	/*
350 	 * Read/write DACs are always overridable.
351 	 * Executable DACs are overridable when there is
352 	 * at least one exec bit set.
353 	 */
354 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
355 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
356 			return 0;
357 
358 	/*
359 	 * Searching includes executable on directories, else just read.
360 	 */
361 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
362 	if (mask == MAY_READ)
363 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
364 			return 0;
365 
366 	return -EACCES;
367 }
368 EXPORT_SYMBOL(generic_permission);
369 
370 /*
371  * We _really_ want to just do "generic_permission()" without
372  * even looking at the inode->i_op values. So we keep a cache
373  * flag in inode->i_opflags, that says "this has not special
374  * permission function, use the fast case".
375  */
376 static inline int do_inode_permission(struct inode *inode, int mask)
377 {
378 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
379 		if (likely(inode->i_op->permission))
380 			return inode->i_op->permission(inode, mask);
381 
382 		/* This gets set once for the inode lifetime */
383 		spin_lock(&inode->i_lock);
384 		inode->i_opflags |= IOP_FASTPERM;
385 		spin_unlock(&inode->i_lock);
386 	}
387 	return generic_permission(inode, mask);
388 }
389 
390 /**
391  * __inode_permission - Check for access rights to a given inode
392  * @inode: Inode to check permission on
393  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
394  *
395  * Check for read/write/execute permissions on an inode.
396  *
397  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
398  *
399  * This does not check for a read-only file system.  You probably want
400  * inode_permission().
401  */
402 int __inode_permission(struct inode *inode, int mask)
403 {
404 	int retval;
405 
406 	if (unlikely(mask & MAY_WRITE)) {
407 		/*
408 		 * Nobody gets write access to an immutable file.
409 		 */
410 		if (IS_IMMUTABLE(inode))
411 			return -EACCES;
412 	}
413 
414 	retval = do_inode_permission(inode, mask);
415 	if (retval)
416 		return retval;
417 
418 	retval = devcgroup_inode_permission(inode, mask);
419 	if (retval)
420 		return retval;
421 
422 	return security_inode_permission(inode, mask);
423 }
424 EXPORT_SYMBOL(__inode_permission);
425 
426 /**
427  * sb_permission - Check superblock-level permissions
428  * @sb: Superblock of inode to check permission on
429  * @inode: Inode to check permission on
430  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431  *
432  * Separate out file-system wide checks from inode-specific permission checks.
433  */
434 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
435 {
436 	if (unlikely(mask & MAY_WRITE)) {
437 		umode_t mode = inode->i_mode;
438 
439 		/* Nobody gets write access to a read-only fs. */
440 		if ((sb->s_flags & MS_RDONLY) &&
441 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
442 			return -EROFS;
443 	}
444 	return 0;
445 }
446 
447 /**
448  * inode_permission - Check for access rights to a given inode
449  * @inode: Inode to check permission on
450  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
451  *
452  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
453  * this, letting us set arbitrary permissions for filesystem access without
454  * changing the "normal" UIDs which are used for other things.
455  *
456  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
457  */
458 int inode_permission(struct inode *inode, int mask)
459 {
460 	int retval;
461 
462 	retval = sb_permission(inode->i_sb, inode, mask);
463 	if (retval)
464 		return retval;
465 	return __inode_permission(inode, mask);
466 }
467 EXPORT_SYMBOL(inode_permission);
468 
469 /**
470  * path_get - get a reference to a path
471  * @path: path to get the reference to
472  *
473  * Given a path increment the reference count to the dentry and the vfsmount.
474  */
475 void path_get(const struct path *path)
476 {
477 	mntget(path->mnt);
478 	dget(path->dentry);
479 }
480 EXPORT_SYMBOL(path_get);
481 
482 /**
483  * path_put - put a reference to a path
484  * @path: path to put the reference to
485  *
486  * Given a path decrement the reference count to the dentry and the vfsmount.
487  */
488 void path_put(const struct path *path)
489 {
490 	dput(path->dentry);
491 	mntput(path->mnt);
492 }
493 EXPORT_SYMBOL(path_put);
494 
495 #define EMBEDDED_LEVELS 2
496 struct nameidata {
497 	struct path	path;
498 	struct qstr	last;
499 	struct path	root;
500 	struct inode	*inode; /* path.dentry.d_inode */
501 	unsigned int	flags;
502 	unsigned	seq, m_seq;
503 	int		last_type;
504 	unsigned	depth;
505 	int		total_link_count;
506 	struct saved {
507 		struct path link;
508 		void *cookie;
509 		const char *name;
510 		struct inode *inode;
511 		unsigned seq;
512 	} *stack, internal[EMBEDDED_LEVELS];
513 	struct filename	*name;
514 	struct nameidata *saved;
515 	unsigned	root_seq;
516 	int		dfd;
517 };
518 
519 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
520 {
521 	struct nameidata *old = current->nameidata;
522 	p->stack = p->internal;
523 	p->dfd = dfd;
524 	p->name = name;
525 	p->total_link_count = old ? old->total_link_count : 0;
526 	p->saved = old;
527 	current->nameidata = p;
528 }
529 
530 static void restore_nameidata(void)
531 {
532 	struct nameidata *now = current->nameidata, *old = now->saved;
533 
534 	current->nameidata = old;
535 	if (old)
536 		old->total_link_count = now->total_link_count;
537 	if (now->stack != now->internal) {
538 		kfree(now->stack);
539 		now->stack = now->internal;
540 	}
541 }
542 
543 static int __nd_alloc_stack(struct nameidata *nd)
544 {
545 	struct saved *p;
546 
547 	if (nd->flags & LOOKUP_RCU) {
548 		p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
549 				  GFP_ATOMIC);
550 		if (unlikely(!p))
551 			return -ECHILD;
552 	} else {
553 		p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
554 				  GFP_KERNEL);
555 		if (unlikely(!p))
556 			return -ENOMEM;
557 	}
558 	memcpy(p, nd->internal, sizeof(nd->internal));
559 	nd->stack = p;
560 	return 0;
561 }
562 
563 static inline int nd_alloc_stack(struct nameidata *nd)
564 {
565 	if (likely(nd->depth != EMBEDDED_LEVELS))
566 		return 0;
567 	if (likely(nd->stack != nd->internal))
568 		return 0;
569 	return __nd_alloc_stack(nd);
570 }
571 
572 static void drop_links(struct nameidata *nd)
573 {
574 	int i = nd->depth;
575 	while (i--) {
576 		struct saved *last = nd->stack + i;
577 		struct inode *inode = last->inode;
578 		if (last->cookie && inode->i_op->put_link) {
579 			inode->i_op->put_link(inode, last->cookie);
580 			last->cookie = NULL;
581 		}
582 	}
583 }
584 
585 static void terminate_walk(struct nameidata *nd)
586 {
587 	drop_links(nd);
588 	if (!(nd->flags & LOOKUP_RCU)) {
589 		int i;
590 		path_put(&nd->path);
591 		for (i = 0; i < nd->depth; i++)
592 			path_put(&nd->stack[i].link);
593 		if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
594 			path_put(&nd->root);
595 			nd->root.mnt = NULL;
596 		}
597 	} else {
598 		nd->flags &= ~LOOKUP_RCU;
599 		if (!(nd->flags & LOOKUP_ROOT))
600 			nd->root.mnt = NULL;
601 		rcu_read_unlock();
602 	}
603 	nd->depth = 0;
604 }
605 
606 /* path_put is needed afterwards regardless of success or failure */
607 static bool legitimize_path(struct nameidata *nd,
608 			    struct path *path, unsigned seq)
609 {
610 	int res = __legitimize_mnt(path->mnt, nd->m_seq);
611 	if (unlikely(res)) {
612 		if (res > 0)
613 			path->mnt = NULL;
614 		path->dentry = NULL;
615 		return false;
616 	}
617 	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
618 		path->dentry = NULL;
619 		return false;
620 	}
621 	return !read_seqcount_retry(&path->dentry->d_seq, seq);
622 }
623 
624 static bool legitimize_links(struct nameidata *nd)
625 {
626 	int i;
627 	for (i = 0; i < nd->depth; i++) {
628 		struct saved *last = nd->stack + i;
629 		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
630 			drop_links(nd);
631 			nd->depth = i + 1;
632 			return false;
633 		}
634 	}
635 	return true;
636 }
637 
638 /*
639  * Path walking has 2 modes, rcu-walk and ref-walk (see
640  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
641  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
642  * normal reference counts on dentries and vfsmounts to transition to rcu-walk
643  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
644  * got stuck, so ref-walk may continue from there. If this is not successful
645  * (eg. a seqcount has changed), then failure is returned and it's up to caller
646  * to restart the path walk from the beginning in ref-walk mode.
647  */
648 
649 /**
650  * unlazy_walk - try to switch to ref-walk mode.
651  * @nd: nameidata pathwalk data
652  * @dentry: child of nd->path.dentry or NULL
653  * @seq: seq number to check dentry against
654  * Returns: 0 on success, -ECHILD on failure
655  *
656  * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
657  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
658  * @nd or NULL.  Must be called from rcu-walk context.
659  * Nothing should touch nameidata between unlazy_walk() failure and
660  * terminate_walk().
661  */
662 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq)
663 {
664 	struct dentry *parent = nd->path.dentry;
665 
666 	BUG_ON(!(nd->flags & LOOKUP_RCU));
667 
668 	nd->flags &= ~LOOKUP_RCU;
669 	if (unlikely(!legitimize_links(nd)))
670 		goto out2;
671 	if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
672 		goto out2;
673 	if (unlikely(!lockref_get_not_dead(&parent->d_lockref)))
674 		goto out1;
675 
676 	/*
677 	 * For a negative lookup, the lookup sequence point is the parents
678 	 * sequence point, and it only needs to revalidate the parent dentry.
679 	 *
680 	 * For a positive lookup, we need to move both the parent and the
681 	 * dentry from the RCU domain to be properly refcounted. And the
682 	 * sequence number in the dentry validates *both* dentry counters,
683 	 * since we checked the sequence number of the parent after we got
684 	 * the child sequence number. So we know the parent must still
685 	 * be valid if the child sequence number is still valid.
686 	 */
687 	if (!dentry) {
688 		if (read_seqcount_retry(&parent->d_seq, nd->seq))
689 			goto out;
690 		BUG_ON(nd->inode != parent->d_inode);
691 	} else {
692 		if (!lockref_get_not_dead(&dentry->d_lockref))
693 			goto out;
694 		if (read_seqcount_retry(&dentry->d_seq, seq))
695 			goto drop_dentry;
696 	}
697 
698 	/*
699 	 * Sequence counts matched. Now make sure that the root is
700 	 * still valid and get it if required.
701 	 */
702 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
703 		if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
704 			rcu_read_unlock();
705 			dput(dentry);
706 			return -ECHILD;
707 		}
708 	}
709 
710 	rcu_read_unlock();
711 	return 0;
712 
713 drop_dentry:
714 	rcu_read_unlock();
715 	dput(dentry);
716 	goto drop_root_mnt;
717 out2:
718 	nd->path.mnt = NULL;
719 out1:
720 	nd->path.dentry = NULL;
721 out:
722 	rcu_read_unlock();
723 drop_root_mnt:
724 	if (!(nd->flags & LOOKUP_ROOT))
725 		nd->root.mnt = NULL;
726 	return -ECHILD;
727 }
728 
729 static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq)
730 {
731 	if (unlikely(!legitimize_path(nd, link, seq))) {
732 		drop_links(nd);
733 		nd->depth = 0;
734 		nd->flags &= ~LOOKUP_RCU;
735 		nd->path.mnt = NULL;
736 		nd->path.dentry = NULL;
737 		if (!(nd->flags & LOOKUP_ROOT))
738 			nd->root.mnt = NULL;
739 		rcu_read_unlock();
740 	} else if (likely(unlazy_walk(nd, NULL, 0)) == 0) {
741 		return 0;
742 	}
743 	path_put(link);
744 	return -ECHILD;
745 }
746 
747 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
748 {
749 	return dentry->d_op->d_revalidate(dentry, flags);
750 }
751 
752 /**
753  * complete_walk - successful completion of path walk
754  * @nd:  pointer nameidata
755  *
756  * If we had been in RCU mode, drop out of it and legitimize nd->path.
757  * Revalidate the final result, unless we'd already done that during
758  * the path walk or the filesystem doesn't ask for it.  Return 0 on
759  * success, -error on failure.  In case of failure caller does not
760  * need to drop nd->path.
761  */
762 static int complete_walk(struct nameidata *nd)
763 {
764 	struct dentry *dentry = nd->path.dentry;
765 	int status;
766 
767 	if (nd->flags & LOOKUP_RCU) {
768 		if (!(nd->flags & LOOKUP_ROOT))
769 			nd->root.mnt = NULL;
770 		if (unlikely(unlazy_walk(nd, NULL, 0)))
771 			return -ECHILD;
772 	}
773 
774 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
775 		return 0;
776 
777 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
778 		return 0;
779 
780 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
781 	if (status > 0)
782 		return 0;
783 
784 	if (!status)
785 		status = -ESTALE;
786 
787 	return status;
788 }
789 
790 static void set_root(struct nameidata *nd)
791 {
792 	get_fs_root(current->fs, &nd->root);
793 }
794 
795 static void set_root_rcu(struct nameidata *nd)
796 {
797 	struct fs_struct *fs = current->fs;
798 	unsigned seq;
799 
800 	do {
801 		seq = read_seqcount_begin(&fs->seq);
802 		nd->root = fs->root;
803 		nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
804 	} while (read_seqcount_retry(&fs->seq, seq));
805 }
806 
807 static void path_put_conditional(struct path *path, struct nameidata *nd)
808 {
809 	dput(path->dentry);
810 	if (path->mnt != nd->path.mnt)
811 		mntput(path->mnt);
812 }
813 
814 static inline void path_to_nameidata(const struct path *path,
815 					struct nameidata *nd)
816 {
817 	if (!(nd->flags & LOOKUP_RCU)) {
818 		dput(nd->path.dentry);
819 		if (nd->path.mnt != path->mnt)
820 			mntput(nd->path.mnt);
821 	}
822 	nd->path.mnt = path->mnt;
823 	nd->path.dentry = path->dentry;
824 }
825 
826 /*
827  * Helper to directly jump to a known parsed path from ->follow_link,
828  * caller must have taken a reference to path beforehand.
829  */
830 void nd_jump_link(struct path *path)
831 {
832 	struct nameidata *nd = current->nameidata;
833 	path_put(&nd->path);
834 
835 	nd->path = *path;
836 	nd->inode = nd->path.dentry->d_inode;
837 	nd->flags |= LOOKUP_JUMPED;
838 }
839 
840 static inline void put_link(struct nameidata *nd)
841 {
842 	struct saved *last = nd->stack + --nd->depth;
843 	struct inode *inode = last->inode;
844 	if (last->cookie && inode->i_op->put_link)
845 		inode->i_op->put_link(inode, last->cookie);
846 	if (!(nd->flags & LOOKUP_RCU))
847 		path_put(&last->link);
848 }
849 
850 int sysctl_protected_symlinks __read_mostly = 0;
851 int sysctl_protected_hardlinks __read_mostly = 0;
852 
853 /**
854  * may_follow_link - Check symlink following for unsafe situations
855  * @nd: nameidata pathwalk data
856  *
857  * In the case of the sysctl_protected_symlinks sysctl being enabled,
858  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
859  * in a sticky world-writable directory. This is to protect privileged
860  * processes from failing races against path names that may change out
861  * from under them by way of other users creating malicious symlinks.
862  * It will permit symlinks to be followed only when outside a sticky
863  * world-writable directory, or when the uid of the symlink and follower
864  * match, or when the directory owner matches the symlink's owner.
865  *
866  * Returns 0 if following the symlink is allowed, -ve on error.
867  */
868 static inline int may_follow_link(struct nameidata *nd)
869 {
870 	const struct inode *inode;
871 	const struct inode *parent;
872 
873 	if (!sysctl_protected_symlinks)
874 		return 0;
875 
876 	/* Allowed if owner and follower match. */
877 	inode = nd->stack[0].inode;
878 	if (uid_eq(current_cred()->fsuid, inode->i_uid))
879 		return 0;
880 
881 	/* Allowed if parent directory not sticky and world-writable. */
882 	parent = nd->inode;
883 	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
884 		return 0;
885 
886 	/* Allowed if parent directory and link owner match. */
887 	if (uid_eq(parent->i_uid, inode->i_uid))
888 		return 0;
889 
890 	if (nd->flags & LOOKUP_RCU)
891 		return -ECHILD;
892 
893 	audit_log_link_denied("follow_link", &nd->stack[0].link);
894 	return -EACCES;
895 }
896 
897 /**
898  * safe_hardlink_source - Check for safe hardlink conditions
899  * @inode: the source inode to hardlink from
900  *
901  * Return false if at least one of the following conditions:
902  *    - inode is not a regular file
903  *    - inode is setuid
904  *    - inode is setgid and group-exec
905  *    - access failure for read and write
906  *
907  * Otherwise returns true.
908  */
909 static bool safe_hardlink_source(struct inode *inode)
910 {
911 	umode_t mode = inode->i_mode;
912 
913 	/* Special files should not get pinned to the filesystem. */
914 	if (!S_ISREG(mode))
915 		return false;
916 
917 	/* Setuid files should not get pinned to the filesystem. */
918 	if (mode & S_ISUID)
919 		return false;
920 
921 	/* Executable setgid files should not get pinned to the filesystem. */
922 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
923 		return false;
924 
925 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
926 	if (inode_permission(inode, MAY_READ | MAY_WRITE))
927 		return false;
928 
929 	return true;
930 }
931 
932 /**
933  * may_linkat - Check permissions for creating a hardlink
934  * @link: the source to hardlink from
935  *
936  * Block hardlink when all of:
937  *  - sysctl_protected_hardlinks enabled
938  *  - fsuid does not match inode
939  *  - hardlink source is unsafe (see safe_hardlink_source() above)
940  *  - not CAP_FOWNER
941  *
942  * Returns 0 if successful, -ve on error.
943  */
944 static int may_linkat(struct path *link)
945 {
946 	const struct cred *cred;
947 	struct inode *inode;
948 
949 	if (!sysctl_protected_hardlinks)
950 		return 0;
951 
952 	cred = current_cred();
953 	inode = link->dentry->d_inode;
954 
955 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
956 	 * otherwise, it must be a safe source.
957 	 */
958 	if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
959 	    capable(CAP_FOWNER))
960 		return 0;
961 
962 	audit_log_link_denied("linkat", link);
963 	return -EPERM;
964 }
965 
966 static __always_inline
967 const char *get_link(struct nameidata *nd)
968 {
969 	struct saved *last = nd->stack + nd->depth - 1;
970 	struct dentry *dentry = last->link.dentry;
971 	struct inode *inode = last->inode;
972 	int error;
973 	const char *res;
974 
975 	if (!(nd->flags & LOOKUP_RCU)) {
976 		touch_atime(&last->link);
977 		cond_resched();
978 	} else if (atime_needs_update(&last->link, inode)) {
979 		if (unlikely(unlazy_walk(nd, NULL, 0)))
980 			return ERR_PTR(-ECHILD);
981 		touch_atime(&last->link);
982 	}
983 
984 	error = security_inode_follow_link(dentry, inode,
985 					   nd->flags & LOOKUP_RCU);
986 	if (unlikely(error))
987 		return ERR_PTR(error);
988 
989 	nd->last_type = LAST_BIND;
990 	res = inode->i_link;
991 	if (!res) {
992 		if (nd->flags & LOOKUP_RCU) {
993 			if (unlikely(unlazy_walk(nd, NULL, 0)))
994 				return ERR_PTR(-ECHILD);
995 		}
996 		res = inode->i_op->follow_link(dentry, &last->cookie);
997 		if (IS_ERR_OR_NULL(res)) {
998 			last->cookie = NULL;
999 			return res;
1000 		}
1001 	}
1002 	if (*res == '/') {
1003 		if (nd->flags & LOOKUP_RCU) {
1004 			struct dentry *d;
1005 			if (!nd->root.mnt)
1006 				set_root_rcu(nd);
1007 			nd->path = nd->root;
1008 			d = nd->path.dentry;
1009 			nd->inode = d->d_inode;
1010 			nd->seq = nd->root_seq;
1011 			if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
1012 				return ERR_PTR(-ECHILD);
1013 		} else {
1014 			if (!nd->root.mnt)
1015 				set_root(nd);
1016 			path_put(&nd->path);
1017 			nd->path = nd->root;
1018 			path_get(&nd->root);
1019 			nd->inode = nd->path.dentry->d_inode;
1020 		}
1021 		nd->flags |= LOOKUP_JUMPED;
1022 		while (unlikely(*++res == '/'))
1023 			;
1024 	}
1025 	if (!*res)
1026 		res = NULL;
1027 	return res;
1028 }
1029 
1030 /*
1031  * follow_up - Find the mountpoint of path's vfsmount
1032  *
1033  * Given a path, find the mountpoint of its source file system.
1034  * Replace @path with the path of the mountpoint in the parent mount.
1035  * Up is towards /.
1036  *
1037  * Return 1 if we went up a level and 0 if we were already at the
1038  * root.
1039  */
1040 int follow_up(struct path *path)
1041 {
1042 	struct mount *mnt = real_mount(path->mnt);
1043 	struct mount *parent;
1044 	struct dentry *mountpoint;
1045 
1046 	read_seqlock_excl(&mount_lock);
1047 	parent = mnt->mnt_parent;
1048 	if (parent == mnt) {
1049 		read_sequnlock_excl(&mount_lock);
1050 		return 0;
1051 	}
1052 	mntget(&parent->mnt);
1053 	mountpoint = dget(mnt->mnt_mountpoint);
1054 	read_sequnlock_excl(&mount_lock);
1055 	dput(path->dentry);
1056 	path->dentry = mountpoint;
1057 	mntput(path->mnt);
1058 	path->mnt = &parent->mnt;
1059 	return 1;
1060 }
1061 EXPORT_SYMBOL(follow_up);
1062 
1063 /*
1064  * Perform an automount
1065  * - return -EISDIR to tell follow_managed() to stop and return the path we
1066  *   were called with.
1067  */
1068 static int follow_automount(struct path *path, struct nameidata *nd,
1069 			    bool *need_mntput)
1070 {
1071 	struct vfsmount *mnt;
1072 	int err;
1073 
1074 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1075 		return -EREMOTE;
1076 
1077 	/* We don't want to mount if someone's just doing a stat -
1078 	 * unless they're stat'ing a directory and appended a '/' to
1079 	 * the name.
1080 	 *
1081 	 * We do, however, want to mount if someone wants to open or
1082 	 * create a file of any type under the mountpoint, wants to
1083 	 * traverse through the mountpoint or wants to open the
1084 	 * mounted directory.  Also, autofs may mark negative dentries
1085 	 * as being automount points.  These will need the attentions
1086 	 * of the daemon to instantiate them before they can be used.
1087 	 */
1088 	if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1089 			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1090 	    path->dentry->d_inode)
1091 		return -EISDIR;
1092 
1093 	nd->total_link_count++;
1094 	if (nd->total_link_count >= 40)
1095 		return -ELOOP;
1096 
1097 	mnt = path->dentry->d_op->d_automount(path);
1098 	if (IS_ERR(mnt)) {
1099 		/*
1100 		 * The filesystem is allowed to return -EISDIR here to indicate
1101 		 * it doesn't want to automount.  For instance, autofs would do
1102 		 * this so that its userspace daemon can mount on this dentry.
1103 		 *
1104 		 * However, we can only permit this if it's a terminal point in
1105 		 * the path being looked up; if it wasn't then the remainder of
1106 		 * the path is inaccessible and we should say so.
1107 		 */
1108 		if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1109 			return -EREMOTE;
1110 		return PTR_ERR(mnt);
1111 	}
1112 
1113 	if (!mnt) /* mount collision */
1114 		return 0;
1115 
1116 	if (!*need_mntput) {
1117 		/* lock_mount() may release path->mnt on error */
1118 		mntget(path->mnt);
1119 		*need_mntput = true;
1120 	}
1121 	err = finish_automount(mnt, path);
1122 
1123 	switch (err) {
1124 	case -EBUSY:
1125 		/* Someone else made a mount here whilst we were busy */
1126 		return 0;
1127 	case 0:
1128 		path_put(path);
1129 		path->mnt = mnt;
1130 		path->dentry = dget(mnt->mnt_root);
1131 		return 0;
1132 	default:
1133 		return err;
1134 	}
1135 
1136 }
1137 
1138 /*
1139  * Handle a dentry that is managed in some way.
1140  * - Flagged for transit management (autofs)
1141  * - Flagged as mountpoint
1142  * - Flagged as automount point
1143  *
1144  * This may only be called in refwalk mode.
1145  *
1146  * Serialization is taken care of in namespace.c
1147  */
1148 static int follow_managed(struct path *path, struct nameidata *nd)
1149 {
1150 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1151 	unsigned managed;
1152 	bool need_mntput = false;
1153 	int ret = 0;
1154 
1155 	/* Given that we're not holding a lock here, we retain the value in a
1156 	 * local variable for each dentry as we look at it so that we don't see
1157 	 * the components of that value change under us */
1158 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1159 	       managed &= DCACHE_MANAGED_DENTRY,
1160 	       unlikely(managed != 0)) {
1161 		/* Allow the filesystem to manage the transit without i_mutex
1162 		 * being held. */
1163 		if (managed & DCACHE_MANAGE_TRANSIT) {
1164 			BUG_ON(!path->dentry->d_op);
1165 			BUG_ON(!path->dentry->d_op->d_manage);
1166 			ret = path->dentry->d_op->d_manage(path->dentry, false);
1167 			if (ret < 0)
1168 				break;
1169 		}
1170 
1171 		/* Transit to a mounted filesystem. */
1172 		if (managed & DCACHE_MOUNTED) {
1173 			struct vfsmount *mounted = lookup_mnt(path);
1174 			if (mounted) {
1175 				dput(path->dentry);
1176 				if (need_mntput)
1177 					mntput(path->mnt);
1178 				path->mnt = mounted;
1179 				path->dentry = dget(mounted->mnt_root);
1180 				need_mntput = true;
1181 				continue;
1182 			}
1183 
1184 			/* Something is mounted on this dentry in another
1185 			 * namespace and/or whatever was mounted there in this
1186 			 * namespace got unmounted before lookup_mnt() could
1187 			 * get it */
1188 		}
1189 
1190 		/* Handle an automount point */
1191 		if (managed & DCACHE_NEED_AUTOMOUNT) {
1192 			ret = follow_automount(path, nd, &need_mntput);
1193 			if (ret < 0)
1194 				break;
1195 			continue;
1196 		}
1197 
1198 		/* We didn't change the current path point */
1199 		break;
1200 	}
1201 
1202 	if (need_mntput && path->mnt == mnt)
1203 		mntput(path->mnt);
1204 	if (ret == -EISDIR)
1205 		ret = 0;
1206 	if (need_mntput)
1207 		nd->flags |= LOOKUP_JUMPED;
1208 	if (unlikely(ret < 0))
1209 		path_put_conditional(path, nd);
1210 	return ret;
1211 }
1212 
1213 int follow_down_one(struct path *path)
1214 {
1215 	struct vfsmount *mounted;
1216 
1217 	mounted = lookup_mnt(path);
1218 	if (mounted) {
1219 		dput(path->dentry);
1220 		mntput(path->mnt);
1221 		path->mnt = mounted;
1222 		path->dentry = dget(mounted->mnt_root);
1223 		return 1;
1224 	}
1225 	return 0;
1226 }
1227 EXPORT_SYMBOL(follow_down_one);
1228 
1229 static inline int managed_dentry_rcu(struct dentry *dentry)
1230 {
1231 	return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1232 		dentry->d_op->d_manage(dentry, true) : 0;
1233 }
1234 
1235 /*
1236  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1237  * we meet a managed dentry that would need blocking.
1238  */
1239 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1240 			       struct inode **inode, unsigned *seqp)
1241 {
1242 	for (;;) {
1243 		struct mount *mounted;
1244 		/*
1245 		 * Don't forget we might have a non-mountpoint managed dentry
1246 		 * that wants to block transit.
1247 		 */
1248 		switch (managed_dentry_rcu(path->dentry)) {
1249 		case -ECHILD:
1250 		default:
1251 			return false;
1252 		case -EISDIR:
1253 			return true;
1254 		case 0:
1255 			break;
1256 		}
1257 
1258 		if (!d_mountpoint(path->dentry))
1259 			return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1260 
1261 		mounted = __lookup_mnt(path->mnt, path->dentry);
1262 		if (!mounted)
1263 			break;
1264 		path->mnt = &mounted->mnt;
1265 		path->dentry = mounted->mnt.mnt_root;
1266 		nd->flags |= LOOKUP_JUMPED;
1267 		*seqp = read_seqcount_begin(&path->dentry->d_seq);
1268 		/*
1269 		 * Update the inode too. We don't need to re-check the
1270 		 * dentry sequence number here after this d_inode read,
1271 		 * because a mount-point is always pinned.
1272 		 */
1273 		*inode = path->dentry->d_inode;
1274 	}
1275 	return !read_seqretry(&mount_lock, nd->m_seq) &&
1276 		!(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1277 }
1278 
1279 static int follow_dotdot_rcu(struct nameidata *nd)
1280 {
1281 	struct inode *inode = nd->inode;
1282 	if (!nd->root.mnt)
1283 		set_root_rcu(nd);
1284 
1285 	while (1) {
1286 		if (path_equal(&nd->path, &nd->root))
1287 			break;
1288 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1289 			struct dentry *old = nd->path.dentry;
1290 			struct dentry *parent = old->d_parent;
1291 			unsigned seq;
1292 
1293 			inode = parent->d_inode;
1294 			seq = read_seqcount_begin(&parent->d_seq);
1295 			if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1296 				return -ECHILD;
1297 			nd->path.dentry = parent;
1298 			nd->seq = seq;
1299 			break;
1300 		} else {
1301 			struct mount *mnt = real_mount(nd->path.mnt);
1302 			struct mount *mparent = mnt->mnt_parent;
1303 			struct dentry *mountpoint = mnt->mnt_mountpoint;
1304 			struct inode *inode2 = mountpoint->d_inode;
1305 			unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1306 			if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1307 				return -ECHILD;
1308 			if (&mparent->mnt == nd->path.mnt)
1309 				break;
1310 			/* we know that mountpoint was pinned */
1311 			nd->path.dentry = mountpoint;
1312 			nd->path.mnt = &mparent->mnt;
1313 			inode = inode2;
1314 			nd->seq = seq;
1315 		}
1316 	}
1317 	while (unlikely(d_mountpoint(nd->path.dentry))) {
1318 		struct mount *mounted;
1319 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1320 		if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1321 			return -ECHILD;
1322 		if (!mounted)
1323 			break;
1324 		nd->path.mnt = &mounted->mnt;
1325 		nd->path.dentry = mounted->mnt.mnt_root;
1326 		inode = nd->path.dentry->d_inode;
1327 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1328 	}
1329 	nd->inode = inode;
1330 	return 0;
1331 }
1332 
1333 /*
1334  * Follow down to the covering mount currently visible to userspace.  At each
1335  * point, the filesystem owning that dentry may be queried as to whether the
1336  * caller is permitted to proceed or not.
1337  */
1338 int follow_down(struct path *path)
1339 {
1340 	unsigned managed;
1341 	int ret;
1342 
1343 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1344 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1345 		/* Allow the filesystem to manage the transit without i_mutex
1346 		 * being held.
1347 		 *
1348 		 * We indicate to the filesystem if someone is trying to mount
1349 		 * something here.  This gives autofs the chance to deny anyone
1350 		 * other than its daemon the right to mount on its
1351 		 * superstructure.
1352 		 *
1353 		 * The filesystem may sleep at this point.
1354 		 */
1355 		if (managed & DCACHE_MANAGE_TRANSIT) {
1356 			BUG_ON(!path->dentry->d_op);
1357 			BUG_ON(!path->dentry->d_op->d_manage);
1358 			ret = path->dentry->d_op->d_manage(
1359 				path->dentry, false);
1360 			if (ret < 0)
1361 				return ret == -EISDIR ? 0 : ret;
1362 		}
1363 
1364 		/* Transit to a mounted filesystem. */
1365 		if (managed & DCACHE_MOUNTED) {
1366 			struct vfsmount *mounted = lookup_mnt(path);
1367 			if (!mounted)
1368 				break;
1369 			dput(path->dentry);
1370 			mntput(path->mnt);
1371 			path->mnt = mounted;
1372 			path->dentry = dget(mounted->mnt_root);
1373 			continue;
1374 		}
1375 
1376 		/* Don't handle automount points here */
1377 		break;
1378 	}
1379 	return 0;
1380 }
1381 EXPORT_SYMBOL(follow_down);
1382 
1383 /*
1384  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1385  */
1386 static void follow_mount(struct path *path)
1387 {
1388 	while (d_mountpoint(path->dentry)) {
1389 		struct vfsmount *mounted = lookup_mnt(path);
1390 		if (!mounted)
1391 			break;
1392 		dput(path->dentry);
1393 		mntput(path->mnt);
1394 		path->mnt = mounted;
1395 		path->dentry = dget(mounted->mnt_root);
1396 	}
1397 }
1398 
1399 static void follow_dotdot(struct nameidata *nd)
1400 {
1401 	if (!nd->root.mnt)
1402 		set_root(nd);
1403 
1404 	while(1) {
1405 		struct dentry *old = nd->path.dentry;
1406 
1407 		if (nd->path.dentry == nd->root.dentry &&
1408 		    nd->path.mnt == nd->root.mnt) {
1409 			break;
1410 		}
1411 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1412 			/* rare case of legitimate dget_parent()... */
1413 			nd->path.dentry = dget_parent(nd->path.dentry);
1414 			dput(old);
1415 			break;
1416 		}
1417 		if (!follow_up(&nd->path))
1418 			break;
1419 	}
1420 	follow_mount(&nd->path);
1421 	nd->inode = nd->path.dentry->d_inode;
1422 }
1423 
1424 /*
1425  * This looks up the name in dcache, possibly revalidates the old dentry and
1426  * allocates a new one if not found or not valid.  In the need_lookup argument
1427  * returns whether i_op->lookup is necessary.
1428  *
1429  * dir->d_inode->i_mutex must be held
1430  */
1431 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1432 				    unsigned int flags, bool *need_lookup)
1433 {
1434 	struct dentry *dentry;
1435 	int error;
1436 
1437 	*need_lookup = false;
1438 	dentry = d_lookup(dir, name);
1439 	if (dentry) {
1440 		if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1441 			error = d_revalidate(dentry, flags);
1442 			if (unlikely(error <= 0)) {
1443 				if (error < 0) {
1444 					dput(dentry);
1445 					return ERR_PTR(error);
1446 				} else {
1447 					d_invalidate(dentry);
1448 					dput(dentry);
1449 					dentry = NULL;
1450 				}
1451 			}
1452 		}
1453 	}
1454 
1455 	if (!dentry) {
1456 		dentry = d_alloc(dir, name);
1457 		if (unlikely(!dentry))
1458 			return ERR_PTR(-ENOMEM);
1459 
1460 		*need_lookup = true;
1461 	}
1462 	return dentry;
1463 }
1464 
1465 /*
1466  * Call i_op->lookup on the dentry.  The dentry must be negative and
1467  * unhashed.
1468  *
1469  * dir->d_inode->i_mutex must be held
1470  */
1471 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1472 				  unsigned int flags)
1473 {
1474 	struct dentry *old;
1475 
1476 	/* Don't create child dentry for a dead directory. */
1477 	if (unlikely(IS_DEADDIR(dir))) {
1478 		dput(dentry);
1479 		return ERR_PTR(-ENOENT);
1480 	}
1481 
1482 	old = dir->i_op->lookup(dir, dentry, flags);
1483 	if (unlikely(old)) {
1484 		dput(dentry);
1485 		dentry = old;
1486 	}
1487 	return dentry;
1488 }
1489 
1490 static struct dentry *__lookup_hash(struct qstr *name,
1491 		struct dentry *base, unsigned int flags)
1492 {
1493 	bool need_lookup;
1494 	struct dentry *dentry;
1495 
1496 	dentry = lookup_dcache(name, base, flags, &need_lookup);
1497 	if (!need_lookup)
1498 		return dentry;
1499 
1500 	return lookup_real(base->d_inode, dentry, flags);
1501 }
1502 
1503 /*
1504  *  It's more convoluted than I'd like it to be, but... it's still fairly
1505  *  small and for now I'd prefer to have fast path as straight as possible.
1506  *  It _is_ time-critical.
1507  */
1508 static int lookup_fast(struct nameidata *nd,
1509 		       struct path *path, struct inode **inode,
1510 		       unsigned *seqp)
1511 {
1512 	struct vfsmount *mnt = nd->path.mnt;
1513 	struct dentry *dentry, *parent = nd->path.dentry;
1514 	int need_reval = 1;
1515 	int status = 1;
1516 	int err;
1517 
1518 	/*
1519 	 * Rename seqlock is not required here because in the off chance
1520 	 * of a false negative due to a concurrent rename, we're going to
1521 	 * do the non-racy lookup, below.
1522 	 */
1523 	if (nd->flags & LOOKUP_RCU) {
1524 		unsigned seq;
1525 		bool negative;
1526 		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1527 		if (!dentry)
1528 			goto unlazy;
1529 
1530 		/*
1531 		 * This sequence count validates that the inode matches
1532 		 * the dentry name information from lookup.
1533 		 */
1534 		*inode = d_backing_inode(dentry);
1535 		negative = d_is_negative(dentry);
1536 		if (read_seqcount_retry(&dentry->d_seq, seq))
1537 			return -ECHILD;
1538 		if (negative)
1539 			return -ENOENT;
1540 
1541 		/*
1542 		 * This sequence count validates that the parent had no
1543 		 * changes while we did the lookup of the dentry above.
1544 		 *
1545 		 * The memory barrier in read_seqcount_begin of child is
1546 		 *  enough, we can use __read_seqcount_retry here.
1547 		 */
1548 		if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1549 			return -ECHILD;
1550 
1551 		*seqp = seq;
1552 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1553 			status = d_revalidate(dentry, nd->flags);
1554 			if (unlikely(status <= 0)) {
1555 				if (status != -ECHILD)
1556 					need_reval = 0;
1557 				goto unlazy;
1558 			}
1559 		}
1560 		path->mnt = mnt;
1561 		path->dentry = dentry;
1562 		if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1563 			return 0;
1564 unlazy:
1565 		if (unlazy_walk(nd, dentry, seq))
1566 			return -ECHILD;
1567 	} else {
1568 		dentry = __d_lookup(parent, &nd->last);
1569 	}
1570 
1571 	if (unlikely(!dentry))
1572 		goto need_lookup;
1573 
1574 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1575 		status = d_revalidate(dentry, nd->flags);
1576 	if (unlikely(status <= 0)) {
1577 		if (status < 0) {
1578 			dput(dentry);
1579 			return status;
1580 		}
1581 		d_invalidate(dentry);
1582 		dput(dentry);
1583 		goto need_lookup;
1584 	}
1585 
1586 	if (unlikely(d_is_negative(dentry))) {
1587 		dput(dentry);
1588 		return -ENOENT;
1589 	}
1590 	path->mnt = mnt;
1591 	path->dentry = dentry;
1592 	err = follow_managed(path, nd);
1593 	if (likely(!err))
1594 		*inode = d_backing_inode(path->dentry);
1595 	return err;
1596 
1597 need_lookup:
1598 	return 1;
1599 }
1600 
1601 /* Fast lookup failed, do it the slow way */
1602 static int lookup_slow(struct nameidata *nd, struct path *path)
1603 {
1604 	struct dentry *dentry, *parent;
1605 
1606 	parent = nd->path.dentry;
1607 	BUG_ON(nd->inode != parent->d_inode);
1608 
1609 	mutex_lock(&parent->d_inode->i_mutex);
1610 	dentry = __lookup_hash(&nd->last, parent, nd->flags);
1611 	mutex_unlock(&parent->d_inode->i_mutex);
1612 	if (IS_ERR(dentry))
1613 		return PTR_ERR(dentry);
1614 	path->mnt = nd->path.mnt;
1615 	path->dentry = dentry;
1616 	return follow_managed(path, nd);
1617 }
1618 
1619 static inline int may_lookup(struct nameidata *nd)
1620 {
1621 	if (nd->flags & LOOKUP_RCU) {
1622 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1623 		if (err != -ECHILD)
1624 			return err;
1625 		if (unlazy_walk(nd, NULL, 0))
1626 			return -ECHILD;
1627 	}
1628 	return inode_permission(nd->inode, MAY_EXEC);
1629 }
1630 
1631 static inline int handle_dots(struct nameidata *nd, int type)
1632 {
1633 	if (type == LAST_DOTDOT) {
1634 		if (nd->flags & LOOKUP_RCU) {
1635 			return follow_dotdot_rcu(nd);
1636 		} else
1637 			follow_dotdot(nd);
1638 	}
1639 	return 0;
1640 }
1641 
1642 static int pick_link(struct nameidata *nd, struct path *link,
1643 		     struct inode *inode, unsigned seq)
1644 {
1645 	int error;
1646 	struct saved *last;
1647 	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1648 		path_to_nameidata(link, nd);
1649 		return -ELOOP;
1650 	}
1651 	if (!(nd->flags & LOOKUP_RCU)) {
1652 		if (link->mnt == nd->path.mnt)
1653 			mntget(link->mnt);
1654 	}
1655 	error = nd_alloc_stack(nd);
1656 	if (unlikely(error)) {
1657 		if (error == -ECHILD) {
1658 			if (unlikely(unlazy_link(nd, link, seq)))
1659 				return -ECHILD;
1660 			error = nd_alloc_stack(nd);
1661 		}
1662 		if (error) {
1663 			path_put(link);
1664 			return error;
1665 		}
1666 	}
1667 
1668 	last = nd->stack + nd->depth++;
1669 	last->link = *link;
1670 	last->cookie = NULL;
1671 	last->inode = inode;
1672 	last->seq = seq;
1673 	return 1;
1674 }
1675 
1676 /*
1677  * Do we need to follow links? We _really_ want to be able
1678  * to do this check without having to look at inode->i_op,
1679  * so we keep a cache of "no, this doesn't need follow_link"
1680  * for the common case.
1681  */
1682 static inline int should_follow_link(struct nameidata *nd, struct path *link,
1683 				     int follow,
1684 				     struct inode *inode, unsigned seq)
1685 {
1686 	if (likely(!d_is_symlink(link->dentry)))
1687 		return 0;
1688 	if (!follow)
1689 		return 0;
1690 	return pick_link(nd, link, inode, seq);
1691 }
1692 
1693 enum {WALK_GET = 1, WALK_PUT = 2};
1694 
1695 static int walk_component(struct nameidata *nd, int flags)
1696 {
1697 	struct path path;
1698 	struct inode *inode;
1699 	unsigned seq;
1700 	int err;
1701 	/*
1702 	 * "." and ".." are special - ".." especially so because it has
1703 	 * to be able to know about the current root directory and
1704 	 * parent relationships.
1705 	 */
1706 	if (unlikely(nd->last_type != LAST_NORM)) {
1707 		err = handle_dots(nd, nd->last_type);
1708 		if (flags & WALK_PUT)
1709 			put_link(nd);
1710 		return err;
1711 	}
1712 	err = lookup_fast(nd, &path, &inode, &seq);
1713 	if (unlikely(err)) {
1714 		if (err < 0)
1715 			return err;
1716 
1717 		err = lookup_slow(nd, &path);
1718 		if (err < 0)
1719 			return err;
1720 
1721 		inode = d_backing_inode(path.dentry);
1722 		seq = 0;	/* we are already out of RCU mode */
1723 		err = -ENOENT;
1724 		if (d_is_negative(path.dentry))
1725 			goto out_path_put;
1726 	}
1727 
1728 	if (flags & WALK_PUT)
1729 		put_link(nd);
1730 	err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq);
1731 	if (unlikely(err))
1732 		return err;
1733 	path_to_nameidata(&path, nd);
1734 	nd->inode = inode;
1735 	nd->seq = seq;
1736 	return 0;
1737 
1738 out_path_put:
1739 	path_to_nameidata(&path, nd);
1740 	return err;
1741 }
1742 
1743 /*
1744  * We can do the critical dentry name comparison and hashing
1745  * operations one word at a time, but we are limited to:
1746  *
1747  * - Architectures with fast unaligned word accesses. We could
1748  *   do a "get_unaligned()" if this helps and is sufficiently
1749  *   fast.
1750  *
1751  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1752  *   do not trap on the (extremely unlikely) case of a page
1753  *   crossing operation.
1754  *
1755  * - Furthermore, we need an efficient 64-bit compile for the
1756  *   64-bit case in order to generate the "number of bytes in
1757  *   the final mask". Again, that could be replaced with a
1758  *   efficient population count instruction or similar.
1759  */
1760 #ifdef CONFIG_DCACHE_WORD_ACCESS
1761 
1762 #include <asm/word-at-a-time.h>
1763 
1764 #ifdef CONFIG_64BIT
1765 
1766 static inline unsigned int fold_hash(unsigned long hash)
1767 {
1768 	return hash_64(hash, 32);
1769 }
1770 
1771 #else	/* 32-bit case */
1772 
1773 #define fold_hash(x) (x)
1774 
1775 #endif
1776 
1777 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1778 {
1779 	unsigned long a, mask;
1780 	unsigned long hash = 0;
1781 
1782 	for (;;) {
1783 		a = load_unaligned_zeropad(name);
1784 		if (len < sizeof(unsigned long))
1785 			break;
1786 		hash += a;
1787 		hash *= 9;
1788 		name += sizeof(unsigned long);
1789 		len -= sizeof(unsigned long);
1790 		if (!len)
1791 			goto done;
1792 	}
1793 	mask = bytemask_from_count(len);
1794 	hash += mask & a;
1795 done:
1796 	return fold_hash(hash);
1797 }
1798 EXPORT_SYMBOL(full_name_hash);
1799 
1800 /*
1801  * Calculate the length and hash of the path component, and
1802  * return the "hash_len" as the result.
1803  */
1804 static inline u64 hash_name(const char *name)
1805 {
1806 	unsigned long a, b, adata, bdata, mask, hash, len;
1807 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1808 
1809 	hash = a = 0;
1810 	len = -sizeof(unsigned long);
1811 	do {
1812 		hash = (hash + a) * 9;
1813 		len += sizeof(unsigned long);
1814 		a = load_unaligned_zeropad(name+len);
1815 		b = a ^ REPEAT_BYTE('/');
1816 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1817 
1818 	adata = prep_zero_mask(a, adata, &constants);
1819 	bdata = prep_zero_mask(b, bdata, &constants);
1820 
1821 	mask = create_zero_mask(adata | bdata);
1822 
1823 	hash += a & zero_bytemask(mask);
1824 	len += find_zero(mask);
1825 	return hashlen_create(fold_hash(hash), len);
1826 }
1827 
1828 #else
1829 
1830 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1831 {
1832 	unsigned long hash = init_name_hash();
1833 	while (len--)
1834 		hash = partial_name_hash(*name++, hash);
1835 	return end_name_hash(hash);
1836 }
1837 EXPORT_SYMBOL(full_name_hash);
1838 
1839 /*
1840  * We know there's a real path component here of at least
1841  * one character.
1842  */
1843 static inline u64 hash_name(const char *name)
1844 {
1845 	unsigned long hash = init_name_hash();
1846 	unsigned long len = 0, c;
1847 
1848 	c = (unsigned char)*name;
1849 	do {
1850 		len++;
1851 		hash = partial_name_hash(c, hash);
1852 		c = (unsigned char)name[len];
1853 	} while (c && c != '/');
1854 	return hashlen_create(end_name_hash(hash), len);
1855 }
1856 
1857 #endif
1858 
1859 /*
1860  * Name resolution.
1861  * This is the basic name resolution function, turning a pathname into
1862  * the final dentry. We expect 'base' to be positive and a directory.
1863  *
1864  * Returns 0 and nd will have valid dentry and mnt on success.
1865  * Returns error and drops reference to input namei data on failure.
1866  */
1867 static int link_path_walk(const char *name, struct nameidata *nd)
1868 {
1869 	int err;
1870 
1871 	while (*name=='/')
1872 		name++;
1873 	if (!*name)
1874 		return 0;
1875 
1876 	/* At this point we know we have a real path component. */
1877 	for(;;) {
1878 		u64 hash_len;
1879 		int type;
1880 
1881 		err = may_lookup(nd);
1882  		if (err)
1883 			return err;
1884 
1885 		hash_len = hash_name(name);
1886 
1887 		type = LAST_NORM;
1888 		if (name[0] == '.') switch (hashlen_len(hash_len)) {
1889 			case 2:
1890 				if (name[1] == '.') {
1891 					type = LAST_DOTDOT;
1892 					nd->flags |= LOOKUP_JUMPED;
1893 				}
1894 				break;
1895 			case 1:
1896 				type = LAST_DOT;
1897 		}
1898 		if (likely(type == LAST_NORM)) {
1899 			struct dentry *parent = nd->path.dentry;
1900 			nd->flags &= ~LOOKUP_JUMPED;
1901 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1902 				struct qstr this = { { .hash_len = hash_len }, .name = name };
1903 				err = parent->d_op->d_hash(parent, &this);
1904 				if (err < 0)
1905 					return err;
1906 				hash_len = this.hash_len;
1907 				name = this.name;
1908 			}
1909 		}
1910 
1911 		nd->last.hash_len = hash_len;
1912 		nd->last.name = name;
1913 		nd->last_type = type;
1914 
1915 		name += hashlen_len(hash_len);
1916 		if (!*name)
1917 			goto OK;
1918 		/*
1919 		 * If it wasn't NUL, we know it was '/'. Skip that
1920 		 * slash, and continue until no more slashes.
1921 		 */
1922 		do {
1923 			name++;
1924 		} while (unlikely(*name == '/'));
1925 		if (unlikely(!*name)) {
1926 OK:
1927 			/* pathname body, done */
1928 			if (!nd->depth)
1929 				return 0;
1930 			name = nd->stack[nd->depth - 1].name;
1931 			/* trailing symlink, done */
1932 			if (!name)
1933 				return 0;
1934 			/* last component of nested symlink */
1935 			err = walk_component(nd, WALK_GET | WALK_PUT);
1936 		} else {
1937 			err = walk_component(nd, WALK_GET);
1938 		}
1939 		if (err < 0)
1940 			return err;
1941 
1942 		if (err) {
1943 			const char *s = get_link(nd);
1944 
1945 			if (unlikely(IS_ERR(s)))
1946 				return PTR_ERR(s);
1947 			err = 0;
1948 			if (unlikely(!s)) {
1949 				/* jumped */
1950 				put_link(nd);
1951 			} else {
1952 				nd->stack[nd->depth - 1].name = name;
1953 				name = s;
1954 				continue;
1955 			}
1956 		}
1957 		if (unlikely(!d_can_lookup(nd->path.dentry))) {
1958 			if (nd->flags & LOOKUP_RCU) {
1959 				if (unlazy_walk(nd, NULL, 0))
1960 					return -ECHILD;
1961 			}
1962 			return -ENOTDIR;
1963 		}
1964 	}
1965 }
1966 
1967 static const char *path_init(struct nameidata *nd, unsigned flags)
1968 {
1969 	int retval = 0;
1970 	const char *s = nd->name->name;
1971 
1972 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1973 	nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
1974 	nd->depth = 0;
1975 	nd->total_link_count = 0;
1976 	if (flags & LOOKUP_ROOT) {
1977 		struct dentry *root = nd->root.dentry;
1978 		struct inode *inode = root->d_inode;
1979 		if (*s) {
1980 			if (!d_can_lookup(root))
1981 				return ERR_PTR(-ENOTDIR);
1982 			retval = inode_permission(inode, MAY_EXEC);
1983 			if (retval)
1984 				return ERR_PTR(retval);
1985 		}
1986 		nd->path = nd->root;
1987 		nd->inode = inode;
1988 		if (flags & LOOKUP_RCU) {
1989 			rcu_read_lock();
1990 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1991 			nd->root_seq = nd->seq;
1992 			nd->m_seq = read_seqbegin(&mount_lock);
1993 		} else {
1994 			path_get(&nd->path);
1995 		}
1996 		return s;
1997 	}
1998 
1999 	nd->root.mnt = NULL;
2000 
2001 	nd->m_seq = read_seqbegin(&mount_lock);
2002 	if (*s == '/') {
2003 		if (flags & LOOKUP_RCU) {
2004 			rcu_read_lock();
2005 			set_root_rcu(nd);
2006 			nd->seq = nd->root_seq;
2007 		} else {
2008 			set_root(nd);
2009 			path_get(&nd->root);
2010 		}
2011 		nd->path = nd->root;
2012 	} else if (nd->dfd == AT_FDCWD) {
2013 		if (flags & LOOKUP_RCU) {
2014 			struct fs_struct *fs = current->fs;
2015 			unsigned seq;
2016 
2017 			rcu_read_lock();
2018 
2019 			do {
2020 				seq = read_seqcount_begin(&fs->seq);
2021 				nd->path = fs->pwd;
2022 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2023 			} while (read_seqcount_retry(&fs->seq, seq));
2024 		} else {
2025 			get_fs_pwd(current->fs, &nd->path);
2026 		}
2027 	} else {
2028 		/* Caller must check execute permissions on the starting path component */
2029 		struct fd f = fdget_raw(nd->dfd);
2030 		struct dentry *dentry;
2031 
2032 		if (!f.file)
2033 			return ERR_PTR(-EBADF);
2034 
2035 		dentry = f.file->f_path.dentry;
2036 
2037 		if (*s) {
2038 			if (!d_can_lookup(dentry)) {
2039 				fdput(f);
2040 				return ERR_PTR(-ENOTDIR);
2041 			}
2042 		}
2043 
2044 		nd->path = f.file->f_path;
2045 		if (flags & LOOKUP_RCU) {
2046 			rcu_read_lock();
2047 			nd->inode = nd->path.dentry->d_inode;
2048 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2049 		} else {
2050 			path_get(&nd->path);
2051 			nd->inode = nd->path.dentry->d_inode;
2052 		}
2053 		fdput(f);
2054 		return s;
2055 	}
2056 
2057 	nd->inode = nd->path.dentry->d_inode;
2058 	if (!(flags & LOOKUP_RCU))
2059 		return s;
2060 	if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq)))
2061 		return s;
2062 	if (!(nd->flags & LOOKUP_ROOT))
2063 		nd->root.mnt = NULL;
2064 	rcu_read_unlock();
2065 	return ERR_PTR(-ECHILD);
2066 }
2067 
2068 static const char *trailing_symlink(struct nameidata *nd)
2069 {
2070 	const char *s;
2071 	int error = may_follow_link(nd);
2072 	if (unlikely(error))
2073 		return ERR_PTR(error);
2074 	nd->flags |= LOOKUP_PARENT;
2075 	nd->stack[0].name = NULL;
2076 	s = get_link(nd);
2077 	return s ? s : "";
2078 }
2079 
2080 static inline int lookup_last(struct nameidata *nd)
2081 {
2082 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2083 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2084 
2085 	nd->flags &= ~LOOKUP_PARENT;
2086 	return walk_component(nd,
2087 			nd->flags & LOOKUP_FOLLOW
2088 				? nd->depth
2089 					? WALK_PUT | WALK_GET
2090 					: WALK_GET
2091 				: 0);
2092 }
2093 
2094 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2095 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2096 {
2097 	const char *s = path_init(nd, flags);
2098 	int err;
2099 
2100 	if (IS_ERR(s))
2101 		return PTR_ERR(s);
2102 	while (!(err = link_path_walk(s, nd))
2103 		&& ((err = lookup_last(nd)) > 0)) {
2104 		s = trailing_symlink(nd);
2105 		if (IS_ERR(s)) {
2106 			err = PTR_ERR(s);
2107 			break;
2108 		}
2109 	}
2110 	if (!err)
2111 		err = complete_walk(nd);
2112 
2113 	if (!err && nd->flags & LOOKUP_DIRECTORY)
2114 		if (!d_can_lookup(nd->path.dentry))
2115 			err = -ENOTDIR;
2116 	if (!err) {
2117 		*path = nd->path;
2118 		nd->path.mnt = NULL;
2119 		nd->path.dentry = NULL;
2120 	}
2121 	terminate_walk(nd);
2122 	return err;
2123 }
2124 
2125 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2126 			   struct path *path, struct path *root)
2127 {
2128 	int retval;
2129 	struct nameidata nd;
2130 	if (IS_ERR(name))
2131 		return PTR_ERR(name);
2132 	if (unlikely(root)) {
2133 		nd.root = *root;
2134 		flags |= LOOKUP_ROOT;
2135 	}
2136 	set_nameidata(&nd, dfd, name);
2137 	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2138 	if (unlikely(retval == -ECHILD))
2139 		retval = path_lookupat(&nd, flags, path);
2140 	if (unlikely(retval == -ESTALE))
2141 		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2142 
2143 	if (likely(!retval))
2144 		audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2145 	restore_nameidata();
2146 	putname(name);
2147 	return retval;
2148 }
2149 
2150 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2151 static int path_parentat(struct nameidata *nd, unsigned flags,
2152 				struct path *parent)
2153 {
2154 	const char *s = path_init(nd, flags);
2155 	int err;
2156 	if (IS_ERR(s))
2157 		return PTR_ERR(s);
2158 	err = link_path_walk(s, nd);
2159 	if (!err)
2160 		err = complete_walk(nd);
2161 	if (!err) {
2162 		*parent = nd->path;
2163 		nd->path.mnt = NULL;
2164 		nd->path.dentry = NULL;
2165 	}
2166 	terminate_walk(nd);
2167 	return err;
2168 }
2169 
2170 static struct filename *filename_parentat(int dfd, struct filename *name,
2171 				unsigned int flags, struct path *parent,
2172 				struct qstr *last, int *type)
2173 {
2174 	int retval;
2175 	struct nameidata nd;
2176 
2177 	if (IS_ERR(name))
2178 		return name;
2179 	set_nameidata(&nd, dfd, name);
2180 	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2181 	if (unlikely(retval == -ECHILD))
2182 		retval = path_parentat(&nd, flags, parent);
2183 	if (unlikely(retval == -ESTALE))
2184 		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2185 	if (likely(!retval)) {
2186 		*last = nd.last;
2187 		*type = nd.last_type;
2188 		audit_inode(name, parent->dentry, LOOKUP_PARENT);
2189 	} else {
2190 		putname(name);
2191 		name = ERR_PTR(retval);
2192 	}
2193 	restore_nameidata();
2194 	return name;
2195 }
2196 
2197 /* does lookup, returns the object with parent locked */
2198 struct dentry *kern_path_locked(const char *name, struct path *path)
2199 {
2200 	struct filename *filename;
2201 	struct dentry *d;
2202 	struct qstr last;
2203 	int type;
2204 
2205 	filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2206 				    &last, &type);
2207 	if (IS_ERR(filename))
2208 		return ERR_CAST(filename);
2209 	if (unlikely(type != LAST_NORM)) {
2210 		path_put(path);
2211 		putname(filename);
2212 		return ERR_PTR(-EINVAL);
2213 	}
2214 	mutex_lock_nested(&path->dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2215 	d = __lookup_hash(&last, path->dentry, 0);
2216 	if (IS_ERR(d)) {
2217 		mutex_unlock(&path->dentry->d_inode->i_mutex);
2218 		path_put(path);
2219 	}
2220 	putname(filename);
2221 	return d;
2222 }
2223 
2224 int kern_path(const char *name, unsigned int flags, struct path *path)
2225 {
2226 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2227 			       flags, path, NULL);
2228 }
2229 EXPORT_SYMBOL(kern_path);
2230 
2231 /**
2232  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2233  * @dentry:  pointer to dentry of the base directory
2234  * @mnt: pointer to vfs mount of the base directory
2235  * @name: pointer to file name
2236  * @flags: lookup flags
2237  * @path: pointer to struct path to fill
2238  */
2239 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2240 		    const char *name, unsigned int flags,
2241 		    struct path *path)
2242 {
2243 	struct path root = {.mnt = mnt, .dentry = dentry};
2244 	/* the first argument of filename_lookup() is ignored with root */
2245 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2246 			       flags , path, &root);
2247 }
2248 EXPORT_SYMBOL(vfs_path_lookup);
2249 
2250 /**
2251  * lookup_one_len - filesystem helper to lookup single pathname component
2252  * @name:	pathname component to lookup
2253  * @base:	base directory to lookup from
2254  * @len:	maximum length @len should be interpreted to
2255  *
2256  * Note that this routine is purely a helper for filesystem usage and should
2257  * not be called by generic code.
2258  */
2259 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2260 {
2261 	struct qstr this;
2262 	unsigned int c;
2263 	int err;
2264 
2265 	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2266 
2267 	this.name = name;
2268 	this.len = len;
2269 	this.hash = full_name_hash(name, len);
2270 	if (!len)
2271 		return ERR_PTR(-EACCES);
2272 
2273 	if (unlikely(name[0] == '.')) {
2274 		if (len < 2 || (len == 2 && name[1] == '.'))
2275 			return ERR_PTR(-EACCES);
2276 	}
2277 
2278 	while (len--) {
2279 		c = *(const unsigned char *)name++;
2280 		if (c == '/' || c == '\0')
2281 			return ERR_PTR(-EACCES);
2282 	}
2283 	/*
2284 	 * See if the low-level filesystem might want
2285 	 * to use its own hash..
2286 	 */
2287 	if (base->d_flags & DCACHE_OP_HASH) {
2288 		int err = base->d_op->d_hash(base, &this);
2289 		if (err < 0)
2290 			return ERR_PTR(err);
2291 	}
2292 
2293 	err = inode_permission(base->d_inode, MAY_EXEC);
2294 	if (err)
2295 		return ERR_PTR(err);
2296 
2297 	return __lookup_hash(&this, base, 0);
2298 }
2299 EXPORT_SYMBOL(lookup_one_len);
2300 
2301 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2302 		 struct path *path, int *empty)
2303 {
2304 	return filename_lookup(dfd, getname_flags(name, flags, empty),
2305 			       flags, path, NULL);
2306 }
2307 EXPORT_SYMBOL(user_path_at_empty);
2308 
2309 /*
2310  * NB: most callers don't do anything directly with the reference to the
2311  *     to struct filename, but the nd->last pointer points into the name string
2312  *     allocated by getname. So we must hold the reference to it until all
2313  *     path-walking is complete.
2314  */
2315 static inline struct filename *
2316 user_path_parent(int dfd, const char __user *path,
2317 		 struct path *parent,
2318 		 struct qstr *last,
2319 		 int *type,
2320 		 unsigned int flags)
2321 {
2322 	/* only LOOKUP_REVAL is allowed in extra flags */
2323 	return filename_parentat(dfd, getname(path), flags & LOOKUP_REVAL,
2324 				 parent, last, type);
2325 }
2326 
2327 /**
2328  * mountpoint_last - look up last component for umount
2329  * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2330  * @path: pointer to container for result
2331  *
2332  * This is a special lookup_last function just for umount. In this case, we
2333  * need to resolve the path without doing any revalidation.
2334  *
2335  * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2336  * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2337  * in almost all cases, this lookup will be served out of the dcache. The only
2338  * cases where it won't are if nd->last refers to a symlink or the path is
2339  * bogus and it doesn't exist.
2340  *
2341  * Returns:
2342  * -error: if there was an error during lookup. This includes -ENOENT if the
2343  *         lookup found a negative dentry. The nd->path reference will also be
2344  *         put in this case.
2345  *
2346  * 0:      if we successfully resolved nd->path and found it to not to be a
2347  *         symlink that needs to be followed. "path" will also be populated.
2348  *         The nd->path reference will also be put.
2349  *
2350  * 1:      if we successfully resolved nd->last and found it to be a symlink
2351  *         that needs to be followed. "path" will be populated with the path
2352  *         to the link, and nd->path will *not* be put.
2353  */
2354 static int
2355 mountpoint_last(struct nameidata *nd, struct path *path)
2356 {
2357 	int error = 0;
2358 	struct dentry *dentry;
2359 	struct dentry *dir = nd->path.dentry;
2360 
2361 	/* If we're in rcuwalk, drop out of it to handle last component */
2362 	if (nd->flags & LOOKUP_RCU) {
2363 		if (unlazy_walk(nd, NULL, 0))
2364 			return -ECHILD;
2365 	}
2366 
2367 	nd->flags &= ~LOOKUP_PARENT;
2368 
2369 	if (unlikely(nd->last_type != LAST_NORM)) {
2370 		error = handle_dots(nd, nd->last_type);
2371 		if (error)
2372 			return error;
2373 		dentry = dget(nd->path.dentry);
2374 		goto done;
2375 	}
2376 
2377 	mutex_lock(&dir->d_inode->i_mutex);
2378 	dentry = d_lookup(dir, &nd->last);
2379 	if (!dentry) {
2380 		/*
2381 		 * No cached dentry. Mounted dentries are pinned in the cache,
2382 		 * so that means that this dentry is probably a symlink or the
2383 		 * path doesn't actually point to a mounted dentry.
2384 		 */
2385 		dentry = d_alloc(dir, &nd->last);
2386 		if (!dentry) {
2387 			mutex_unlock(&dir->d_inode->i_mutex);
2388 			return -ENOMEM;
2389 		}
2390 		dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2391 		if (IS_ERR(dentry)) {
2392 			mutex_unlock(&dir->d_inode->i_mutex);
2393 			return PTR_ERR(dentry);
2394 		}
2395 	}
2396 	mutex_unlock(&dir->d_inode->i_mutex);
2397 
2398 done:
2399 	if (d_is_negative(dentry)) {
2400 		dput(dentry);
2401 		return -ENOENT;
2402 	}
2403 	if (nd->depth)
2404 		put_link(nd);
2405 	path->dentry = dentry;
2406 	path->mnt = nd->path.mnt;
2407 	error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW,
2408 				   d_backing_inode(dentry), 0);
2409 	if (unlikely(error))
2410 		return error;
2411 	mntget(path->mnt);
2412 	follow_mount(path);
2413 	return 0;
2414 }
2415 
2416 /**
2417  * path_mountpoint - look up a path to be umounted
2418  * @nameidata:	lookup context
2419  * @flags:	lookup flags
2420  * @path:	pointer to container for result
2421  *
2422  * Look up the given name, but don't attempt to revalidate the last component.
2423  * Returns 0 and "path" will be valid on success; Returns error otherwise.
2424  */
2425 static int
2426 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2427 {
2428 	const char *s = path_init(nd, flags);
2429 	int err;
2430 	if (IS_ERR(s))
2431 		return PTR_ERR(s);
2432 	while (!(err = link_path_walk(s, nd)) &&
2433 		(err = mountpoint_last(nd, path)) > 0) {
2434 		s = trailing_symlink(nd);
2435 		if (IS_ERR(s)) {
2436 			err = PTR_ERR(s);
2437 			break;
2438 		}
2439 	}
2440 	terminate_walk(nd);
2441 	return err;
2442 }
2443 
2444 static int
2445 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2446 			unsigned int flags)
2447 {
2448 	struct nameidata nd;
2449 	int error;
2450 	if (IS_ERR(name))
2451 		return PTR_ERR(name);
2452 	set_nameidata(&nd, dfd, name);
2453 	error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2454 	if (unlikely(error == -ECHILD))
2455 		error = path_mountpoint(&nd, flags, path);
2456 	if (unlikely(error == -ESTALE))
2457 		error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2458 	if (likely(!error))
2459 		audit_inode(name, path->dentry, 0);
2460 	restore_nameidata();
2461 	putname(name);
2462 	return error;
2463 }
2464 
2465 /**
2466  * user_path_mountpoint_at - lookup a path from userland in order to umount it
2467  * @dfd:	directory file descriptor
2468  * @name:	pathname from userland
2469  * @flags:	lookup flags
2470  * @path:	pointer to container to hold result
2471  *
2472  * A umount is a special case for path walking. We're not actually interested
2473  * in the inode in this situation, and ESTALE errors can be a problem. We
2474  * simply want track down the dentry and vfsmount attached at the mountpoint
2475  * and avoid revalidating the last component.
2476  *
2477  * Returns 0 and populates "path" on success.
2478  */
2479 int
2480 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2481 			struct path *path)
2482 {
2483 	return filename_mountpoint(dfd, getname(name), path, flags);
2484 }
2485 
2486 int
2487 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2488 			unsigned int flags)
2489 {
2490 	return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2491 }
2492 EXPORT_SYMBOL(kern_path_mountpoint);
2493 
2494 int __check_sticky(struct inode *dir, struct inode *inode)
2495 {
2496 	kuid_t fsuid = current_fsuid();
2497 
2498 	if (uid_eq(inode->i_uid, fsuid))
2499 		return 0;
2500 	if (uid_eq(dir->i_uid, fsuid))
2501 		return 0;
2502 	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2503 }
2504 EXPORT_SYMBOL(__check_sticky);
2505 
2506 /*
2507  *	Check whether we can remove a link victim from directory dir, check
2508  *  whether the type of victim is right.
2509  *  1. We can't do it if dir is read-only (done in permission())
2510  *  2. We should have write and exec permissions on dir
2511  *  3. We can't remove anything from append-only dir
2512  *  4. We can't do anything with immutable dir (done in permission())
2513  *  5. If the sticky bit on dir is set we should either
2514  *	a. be owner of dir, or
2515  *	b. be owner of victim, or
2516  *	c. have CAP_FOWNER capability
2517  *  6. If the victim is append-only or immutable we can't do antyhing with
2518  *     links pointing to it.
2519  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2520  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2521  *  9. We can't remove a root or mountpoint.
2522  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2523  *     nfs_async_unlink().
2524  */
2525 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2526 {
2527 	struct inode *inode = d_backing_inode(victim);
2528 	int error;
2529 
2530 	if (d_is_negative(victim))
2531 		return -ENOENT;
2532 	BUG_ON(!inode);
2533 
2534 	BUG_ON(victim->d_parent->d_inode != dir);
2535 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2536 
2537 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2538 	if (error)
2539 		return error;
2540 	if (IS_APPEND(dir))
2541 		return -EPERM;
2542 
2543 	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2544 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2545 		return -EPERM;
2546 	if (isdir) {
2547 		if (!d_is_dir(victim))
2548 			return -ENOTDIR;
2549 		if (IS_ROOT(victim))
2550 			return -EBUSY;
2551 	} else if (d_is_dir(victim))
2552 		return -EISDIR;
2553 	if (IS_DEADDIR(dir))
2554 		return -ENOENT;
2555 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2556 		return -EBUSY;
2557 	return 0;
2558 }
2559 
2560 /*	Check whether we can create an object with dentry child in directory
2561  *  dir.
2562  *  1. We can't do it if child already exists (open has special treatment for
2563  *     this case, but since we are inlined it's OK)
2564  *  2. We can't do it if dir is read-only (done in permission())
2565  *  3. We should have write and exec permissions on dir
2566  *  4. We can't do it if dir is immutable (done in permission())
2567  */
2568 static inline int may_create(struct inode *dir, struct dentry *child)
2569 {
2570 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2571 	if (child->d_inode)
2572 		return -EEXIST;
2573 	if (IS_DEADDIR(dir))
2574 		return -ENOENT;
2575 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2576 }
2577 
2578 /*
2579  * p1 and p2 should be directories on the same fs.
2580  */
2581 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2582 {
2583 	struct dentry *p;
2584 
2585 	if (p1 == p2) {
2586 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2587 		return NULL;
2588 	}
2589 
2590 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2591 
2592 	p = d_ancestor(p2, p1);
2593 	if (p) {
2594 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2595 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2596 		return p;
2597 	}
2598 
2599 	p = d_ancestor(p1, p2);
2600 	if (p) {
2601 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2602 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2603 		return p;
2604 	}
2605 
2606 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2607 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT2);
2608 	return NULL;
2609 }
2610 EXPORT_SYMBOL(lock_rename);
2611 
2612 void unlock_rename(struct dentry *p1, struct dentry *p2)
2613 {
2614 	mutex_unlock(&p1->d_inode->i_mutex);
2615 	if (p1 != p2) {
2616 		mutex_unlock(&p2->d_inode->i_mutex);
2617 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2618 	}
2619 }
2620 EXPORT_SYMBOL(unlock_rename);
2621 
2622 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2623 		bool want_excl)
2624 {
2625 	int error = may_create(dir, dentry);
2626 	if (error)
2627 		return error;
2628 
2629 	if (!dir->i_op->create)
2630 		return -EACCES;	/* shouldn't it be ENOSYS? */
2631 	mode &= S_IALLUGO;
2632 	mode |= S_IFREG;
2633 	error = security_inode_create(dir, dentry, mode);
2634 	if (error)
2635 		return error;
2636 	error = dir->i_op->create(dir, dentry, mode, want_excl);
2637 	if (!error)
2638 		fsnotify_create(dir, dentry);
2639 	return error;
2640 }
2641 EXPORT_SYMBOL(vfs_create);
2642 
2643 static int may_open(struct path *path, int acc_mode, int flag)
2644 {
2645 	struct dentry *dentry = path->dentry;
2646 	struct inode *inode = dentry->d_inode;
2647 	int error;
2648 
2649 	/* O_PATH? */
2650 	if (!acc_mode)
2651 		return 0;
2652 
2653 	if (!inode)
2654 		return -ENOENT;
2655 
2656 	switch (inode->i_mode & S_IFMT) {
2657 	case S_IFLNK:
2658 		return -ELOOP;
2659 	case S_IFDIR:
2660 		if (acc_mode & MAY_WRITE)
2661 			return -EISDIR;
2662 		break;
2663 	case S_IFBLK:
2664 	case S_IFCHR:
2665 		if (path->mnt->mnt_flags & MNT_NODEV)
2666 			return -EACCES;
2667 		/*FALLTHRU*/
2668 	case S_IFIFO:
2669 	case S_IFSOCK:
2670 		flag &= ~O_TRUNC;
2671 		break;
2672 	}
2673 
2674 	error = inode_permission(inode, acc_mode);
2675 	if (error)
2676 		return error;
2677 
2678 	/*
2679 	 * An append-only file must be opened in append mode for writing.
2680 	 */
2681 	if (IS_APPEND(inode)) {
2682 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2683 			return -EPERM;
2684 		if (flag & O_TRUNC)
2685 			return -EPERM;
2686 	}
2687 
2688 	/* O_NOATIME can only be set by the owner or superuser */
2689 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2690 		return -EPERM;
2691 
2692 	return 0;
2693 }
2694 
2695 static int handle_truncate(struct file *filp)
2696 {
2697 	struct path *path = &filp->f_path;
2698 	struct inode *inode = path->dentry->d_inode;
2699 	int error = get_write_access(inode);
2700 	if (error)
2701 		return error;
2702 	/*
2703 	 * Refuse to truncate files with mandatory locks held on them.
2704 	 */
2705 	error = locks_verify_locked(filp);
2706 	if (!error)
2707 		error = security_path_truncate(path);
2708 	if (!error) {
2709 		error = do_truncate(path->dentry, 0,
2710 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2711 				    filp);
2712 	}
2713 	put_write_access(inode);
2714 	return error;
2715 }
2716 
2717 static inline int open_to_namei_flags(int flag)
2718 {
2719 	if ((flag & O_ACCMODE) == 3)
2720 		flag--;
2721 	return flag;
2722 }
2723 
2724 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2725 {
2726 	int error = security_path_mknod(dir, dentry, mode, 0);
2727 	if (error)
2728 		return error;
2729 
2730 	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2731 	if (error)
2732 		return error;
2733 
2734 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
2735 }
2736 
2737 /*
2738  * Attempt to atomically look up, create and open a file from a negative
2739  * dentry.
2740  *
2741  * Returns 0 if successful.  The file will have been created and attached to
2742  * @file by the filesystem calling finish_open().
2743  *
2744  * Returns 1 if the file was looked up only or didn't need creating.  The
2745  * caller will need to perform the open themselves.  @path will have been
2746  * updated to point to the new dentry.  This may be negative.
2747  *
2748  * Returns an error code otherwise.
2749  */
2750 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2751 			struct path *path, struct file *file,
2752 			const struct open_flags *op,
2753 			bool got_write, bool need_lookup,
2754 			int *opened)
2755 {
2756 	struct inode *dir =  nd->path.dentry->d_inode;
2757 	unsigned open_flag = open_to_namei_flags(op->open_flag);
2758 	umode_t mode;
2759 	int error;
2760 	int acc_mode;
2761 	int create_error = 0;
2762 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2763 	bool excl;
2764 
2765 	BUG_ON(dentry->d_inode);
2766 
2767 	/* Don't create child dentry for a dead directory. */
2768 	if (unlikely(IS_DEADDIR(dir))) {
2769 		error = -ENOENT;
2770 		goto out;
2771 	}
2772 
2773 	mode = op->mode;
2774 	if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2775 		mode &= ~current_umask();
2776 
2777 	excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2778 	if (excl)
2779 		open_flag &= ~O_TRUNC;
2780 
2781 	/*
2782 	 * Checking write permission is tricky, bacuse we don't know if we are
2783 	 * going to actually need it: O_CREAT opens should work as long as the
2784 	 * file exists.  But checking existence breaks atomicity.  The trick is
2785 	 * to check access and if not granted clear O_CREAT from the flags.
2786 	 *
2787 	 * Another problem is returing the "right" error value (e.g. for an
2788 	 * O_EXCL open we want to return EEXIST not EROFS).
2789 	 */
2790 	if (((open_flag & (O_CREAT | O_TRUNC)) ||
2791 	    (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2792 		if (!(open_flag & O_CREAT)) {
2793 			/*
2794 			 * No O_CREATE -> atomicity not a requirement -> fall
2795 			 * back to lookup + open
2796 			 */
2797 			goto no_open;
2798 		} else if (open_flag & (O_EXCL | O_TRUNC)) {
2799 			/* Fall back and fail with the right error */
2800 			create_error = -EROFS;
2801 			goto no_open;
2802 		} else {
2803 			/* No side effects, safe to clear O_CREAT */
2804 			create_error = -EROFS;
2805 			open_flag &= ~O_CREAT;
2806 		}
2807 	}
2808 
2809 	if (open_flag & O_CREAT) {
2810 		error = may_o_create(&nd->path, dentry, mode);
2811 		if (error) {
2812 			create_error = error;
2813 			if (open_flag & O_EXCL)
2814 				goto no_open;
2815 			open_flag &= ~O_CREAT;
2816 		}
2817 	}
2818 
2819 	if (nd->flags & LOOKUP_DIRECTORY)
2820 		open_flag |= O_DIRECTORY;
2821 
2822 	file->f_path.dentry = DENTRY_NOT_SET;
2823 	file->f_path.mnt = nd->path.mnt;
2824 	error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2825 				      opened);
2826 	if (error < 0) {
2827 		if (create_error && error == -ENOENT)
2828 			error = create_error;
2829 		goto out;
2830 	}
2831 
2832 	if (error) {	/* returned 1, that is */
2833 		if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2834 			error = -EIO;
2835 			goto out;
2836 		}
2837 		if (file->f_path.dentry) {
2838 			dput(dentry);
2839 			dentry = file->f_path.dentry;
2840 		}
2841 		if (*opened & FILE_CREATED)
2842 			fsnotify_create(dir, dentry);
2843 		if (!dentry->d_inode) {
2844 			WARN_ON(*opened & FILE_CREATED);
2845 			if (create_error) {
2846 				error = create_error;
2847 				goto out;
2848 			}
2849 		} else {
2850 			if (excl && !(*opened & FILE_CREATED)) {
2851 				error = -EEXIST;
2852 				goto out;
2853 			}
2854 		}
2855 		goto looked_up;
2856 	}
2857 
2858 	/*
2859 	 * We didn't have the inode before the open, so check open permission
2860 	 * here.
2861 	 */
2862 	acc_mode = op->acc_mode;
2863 	if (*opened & FILE_CREATED) {
2864 		WARN_ON(!(open_flag & O_CREAT));
2865 		fsnotify_create(dir, dentry);
2866 		acc_mode = MAY_OPEN;
2867 	}
2868 	error = may_open(&file->f_path, acc_mode, open_flag);
2869 	if (error)
2870 		fput(file);
2871 
2872 out:
2873 	dput(dentry);
2874 	return error;
2875 
2876 no_open:
2877 	if (need_lookup) {
2878 		dentry = lookup_real(dir, dentry, nd->flags);
2879 		if (IS_ERR(dentry))
2880 			return PTR_ERR(dentry);
2881 
2882 		if (create_error) {
2883 			int open_flag = op->open_flag;
2884 
2885 			error = create_error;
2886 			if ((open_flag & O_EXCL)) {
2887 				if (!dentry->d_inode)
2888 					goto out;
2889 			} else if (!dentry->d_inode) {
2890 				goto out;
2891 			} else if ((open_flag & O_TRUNC) &&
2892 				   d_is_reg(dentry)) {
2893 				goto out;
2894 			}
2895 			/* will fail later, go on to get the right error */
2896 		}
2897 	}
2898 looked_up:
2899 	path->dentry = dentry;
2900 	path->mnt = nd->path.mnt;
2901 	return 1;
2902 }
2903 
2904 /*
2905  * Look up and maybe create and open the last component.
2906  *
2907  * Must be called with i_mutex held on parent.
2908  *
2909  * Returns 0 if the file was successfully atomically created (if necessary) and
2910  * opened.  In this case the file will be returned attached to @file.
2911  *
2912  * Returns 1 if the file was not completely opened at this time, though lookups
2913  * and creations will have been performed and the dentry returned in @path will
2914  * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
2915  * specified then a negative dentry may be returned.
2916  *
2917  * An error code is returned otherwise.
2918  *
2919  * FILE_CREATE will be set in @*opened if the dentry was created and will be
2920  * cleared otherwise prior to returning.
2921  */
2922 static int lookup_open(struct nameidata *nd, struct path *path,
2923 			struct file *file,
2924 			const struct open_flags *op,
2925 			bool got_write, int *opened)
2926 {
2927 	struct dentry *dir = nd->path.dentry;
2928 	struct inode *dir_inode = dir->d_inode;
2929 	struct dentry *dentry;
2930 	int error;
2931 	bool need_lookup;
2932 
2933 	*opened &= ~FILE_CREATED;
2934 	dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2935 	if (IS_ERR(dentry))
2936 		return PTR_ERR(dentry);
2937 
2938 	/* Cached positive dentry: will open in f_op->open */
2939 	if (!need_lookup && dentry->d_inode)
2940 		goto out_no_open;
2941 
2942 	if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2943 		return atomic_open(nd, dentry, path, file, op, got_write,
2944 				   need_lookup, opened);
2945 	}
2946 
2947 	if (need_lookup) {
2948 		BUG_ON(dentry->d_inode);
2949 
2950 		dentry = lookup_real(dir_inode, dentry, nd->flags);
2951 		if (IS_ERR(dentry))
2952 			return PTR_ERR(dentry);
2953 	}
2954 
2955 	/* Negative dentry, just create the file */
2956 	if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2957 		umode_t mode = op->mode;
2958 		if (!IS_POSIXACL(dir->d_inode))
2959 			mode &= ~current_umask();
2960 		/*
2961 		 * This write is needed to ensure that a
2962 		 * rw->ro transition does not occur between
2963 		 * the time when the file is created and when
2964 		 * a permanent write count is taken through
2965 		 * the 'struct file' in finish_open().
2966 		 */
2967 		if (!got_write) {
2968 			error = -EROFS;
2969 			goto out_dput;
2970 		}
2971 		*opened |= FILE_CREATED;
2972 		error = security_path_mknod(&nd->path, dentry, mode, 0);
2973 		if (error)
2974 			goto out_dput;
2975 		error = vfs_create(dir->d_inode, dentry, mode,
2976 				   nd->flags & LOOKUP_EXCL);
2977 		if (error)
2978 			goto out_dput;
2979 	}
2980 out_no_open:
2981 	path->dentry = dentry;
2982 	path->mnt = nd->path.mnt;
2983 	return 1;
2984 
2985 out_dput:
2986 	dput(dentry);
2987 	return error;
2988 }
2989 
2990 /*
2991  * Handle the last step of open()
2992  */
2993 static int do_last(struct nameidata *nd,
2994 		   struct file *file, const struct open_flags *op,
2995 		   int *opened)
2996 {
2997 	struct dentry *dir = nd->path.dentry;
2998 	int open_flag = op->open_flag;
2999 	bool will_truncate = (open_flag & O_TRUNC) != 0;
3000 	bool got_write = false;
3001 	int acc_mode = op->acc_mode;
3002 	unsigned seq;
3003 	struct inode *inode;
3004 	struct path save_parent = { .dentry = NULL, .mnt = NULL };
3005 	struct path path;
3006 	bool retried = false;
3007 	int error;
3008 
3009 	nd->flags &= ~LOOKUP_PARENT;
3010 	nd->flags |= op->intent;
3011 
3012 	if (nd->last_type != LAST_NORM) {
3013 		error = handle_dots(nd, nd->last_type);
3014 		if (unlikely(error))
3015 			return error;
3016 		goto finish_open;
3017 	}
3018 
3019 	if (!(open_flag & O_CREAT)) {
3020 		if (nd->last.name[nd->last.len])
3021 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3022 		/* we _can_ be in RCU mode here */
3023 		error = lookup_fast(nd, &path, &inode, &seq);
3024 		if (likely(!error))
3025 			goto finish_lookup;
3026 
3027 		if (error < 0)
3028 			return error;
3029 
3030 		BUG_ON(nd->inode != dir->d_inode);
3031 	} else {
3032 		/* create side of things */
3033 		/*
3034 		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3035 		 * has been cleared when we got to the last component we are
3036 		 * about to look up
3037 		 */
3038 		error = complete_walk(nd);
3039 		if (error)
3040 			return error;
3041 
3042 		audit_inode(nd->name, dir, LOOKUP_PARENT);
3043 		/* trailing slashes? */
3044 		if (unlikely(nd->last.name[nd->last.len]))
3045 			return -EISDIR;
3046 	}
3047 
3048 retry_lookup:
3049 	if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3050 		error = mnt_want_write(nd->path.mnt);
3051 		if (!error)
3052 			got_write = true;
3053 		/*
3054 		 * do _not_ fail yet - we might not need that or fail with
3055 		 * a different error; let lookup_open() decide; we'll be
3056 		 * dropping this one anyway.
3057 		 */
3058 	}
3059 	mutex_lock(&dir->d_inode->i_mutex);
3060 	error = lookup_open(nd, &path, file, op, got_write, opened);
3061 	mutex_unlock(&dir->d_inode->i_mutex);
3062 
3063 	if (error <= 0) {
3064 		if (error)
3065 			goto out;
3066 
3067 		if ((*opened & FILE_CREATED) ||
3068 		    !S_ISREG(file_inode(file)->i_mode))
3069 			will_truncate = false;
3070 
3071 		audit_inode(nd->name, file->f_path.dentry, 0);
3072 		goto opened;
3073 	}
3074 
3075 	if (*opened & FILE_CREATED) {
3076 		/* Don't check for write permission, don't truncate */
3077 		open_flag &= ~O_TRUNC;
3078 		will_truncate = false;
3079 		acc_mode = MAY_OPEN;
3080 		path_to_nameidata(&path, nd);
3081 		goto finish_open_created;
3082 	}
3083 
3084 	/*
3085 	 * create/update audit record if it already exists.
3086 	 */
3087 	if (d_is_positive(path.dentry))
3088 		audit_inode(nd->name, path.dentry, 0);
3089 
3090 	/*
3091 	 * If atomic_open() acquired write access it is dropped now due to
3092 	 * possible mount and symlink following (this might be optimized away if
3093 	 * necessary...)
3094 	 */
3095 	if (got_write) {
3096 		mnt_drop_write(nd->path.mnt);
3097 		got_write = false;
3098 	}
3099 
3100 	if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3101 		path_to_nameidata(&path, nd);
3102 		return -EEXIST;
3103 	}
3104 
3105 	error = follow_managed(&path, nd);
3106 	if (unlikely(error < 0))
3107 		return error;
3108 
3109 	BUG_ON(nd->flags & LOOKUP_RCU);
3110 	inode = d_backing_inode(path.dentry);
3111 	seq = 0;	/* out of RCU mode, so the value doesn't matter */
3112 	if (unlikely(d_is_negative(path.dentry))) {
3113 		path_to_nameidata(&path, nd);
3114 		return -ENOENT;
3115 	}
3116 finish_lookup:
3117 	if (nd->depth)
3118 		put_link(nd);
3119 	error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW,
3120 				   inode, seq);
3121 	if (unlikely(error))
3122 		return error;
3123 
3124 	if (unlikely(d_is_symlink(path.dentry)) && !(open_flag & O_PATH)) {
3125 		path_to_nameidata(&path, nd);
3126 		return -ELOOP;
3127 	}
3128 
3129 	if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) {
3130 		path_to_nameidata(&path, nd);
3131 	} else {
3132 		save_parent.dentry = nd->path.dentry;
3133 		save_parent.mnt = mntget(path.mnt);
3134 		nd->path.dentry = path.dentry;
3135 
3136 	}
3137 	nd->inode = inode;
3138 	nd->seq = seq;
3139 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3140 finish_open:
3141 	error = complete_walk(nd);
3142 	if (error) {
3143 		path_put(&save_parent);
3144 		return error;
3145 	}
3146 	audit_inode(nd->name, nd->path.dentry, 0);
3147 	error = -EISDIR;
3148 	if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3149 		goto out;
3150 	error = -ENOTDIR;
3151 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3152 		goto out;
3153 	if (!d_is_reg(nd->path.dentry))
3154 		will_truncate = false;
3155 
3156 	if (will_truncate) {
3157 		error = mnt_want_write(nd->path.mnt);
3158 		if (error)
3159 			goto out;
3160 		got_write = true;
3161 	}
3162 finish_open_created:
3163 	error = may_open(&nd->path, acc_mode, open_flag);
3164 	if (error)
3165 		goto out;
3166 
3167 	BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3168 	error = vfs_open(&nd->path, file, current_cred());
3169 	if (!error) {
3170 		*opened |= FILE_OPENED;
3171 	} else {
3172 		if (error == -EOPENSTALE)
3173 			goto stale_open;
3174 		goto out;
3175 	}
3176 opened:
3177 	error = open_check_o_direct(file);
3178 	if (error)
3179 		goto exit_fput;
3180 	error = ima_file_check(file, op->acc_mode, *opened);
3181 	if (error)
3182 		goto exit_fput;
3183 
3184 	if (will_truncate) {
3185 		error = handle_truncate(file);
3186 		if (error)
3187 			goto exit_fput;
3188 	}
3189 out:
3190 	if (got_write)
3191 		mnt_drop_write(nd->path.mnt);
3192 	path_put(&save_parent);
3193 	return error;
3194 
3195 exit_fput:
3196 	fput(file);
3197 	goto out;
3198 
3199 stale_open:
3200 	/* If no saved parent or already retried then can't retry */
3201 	if (!save_parent.dentry || retried)
3202 		goto out;
3203 
3204 	BUG_ON(save_parent.dentry != dir);
3205 	path_put(&nd->path);
3206 	nd->path = save_parent;
3207 	nd->inode = dir->d_inode;
3208 	save_parent.mnt = NULL;
3209 	save_parent.dentry = NULL;
3210 	if (got_write) {
3211 		mnt_drop_write(nd->path.mnt);
3212 		got_write = false;
3213 	}
3214 	retried = true;
3215 	goto retry_lookup;
3216 }
3217 
3218 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3219 		const struct open_flags *op,
3220 		struct file *file, int *opened)
3221 {
3222 	static const struct qstr name = QSTR_INIT("/", 1);
3223 	struct dentry *child;
3224 	struct inode *dir;
3225 	struct path path;
3226 	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3227 	if (unlikely(error))
3228 		return error;
3229 	error = mnt_want_write(path.mnt);
3230 	if (unlikely(error))
3231 		goto out;
3232 	dir = path.dentry->d_inode;
3233 	/* we want directory to be writable */
3234 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3235 	if (error)
3236 		goto out2;
3237 	if (!dir->i_op->tmpfile) {
3238 		error = -EOPNOTSUPP;
3239 		goto out2;
3240 	}
3241 	child = d_alloc(path.dentry, &name);
3242 	if (unlikely(!child)) {
3243 		error = -ENOMEM;
3244 		goto out2;
3245 	}
3246 	dput(path.dentry);
3247 	path.dentry = child;
3248 	error = dir->i_op->tmpfile(dir, child, op->mode);
3249 	if (error)
3250 		goto out2;
3251 	audit_inode(nd->name, child, 0);
3252 	/* Don't check for other permissions, the inode was just created */
3253 	error = may_open(&path, MAY_OPEN, op->open_flag);
3254 	if (error)
3255 		goto out2;
3256 	file->f_path.mnt = path.mnt;
3257 	error = finish_open(file, child, NULL, opened);
3258 	if (error)
3259 		goto out2;
3260 	error = open_check_o_direct(file);
3261 	if (error) {
3262 		fput(file);
3263 	} else if (!(op->open_flag & O_EXCL)) {
3264 		struct inode *inode = file_inode(file);
3265 		spin_lock(&inode->i_lock);
3266 		inode->i_state |= I_LINKABLE;
3267 		spin_unlock(&inode->i_lock);
3268 	}
3269 out2:
3270 	mnt_drop_write(path.mnt);
3271 out:
3272 	path_put(&path);
3273 	return error;
3274 }
3275 
3276 static struct file *path_openat(struct nameidata *nd,
3277 			const struct open_flags *op, unsigned flags)
3278 {
3279 	const char *s;
3280 	struct file *file;
3281 	int opened = 0;
3282 	int error;
3283 
3284 	file = get_empty_filp();
3285 	if (IS_ERR(file))
3286 		return file;
3287 
3288 	file->f_flags = op->open_flag;
3289 
3290 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3291 		error = do_tmpfile(nd, flags, op, file, &opened);
3292 		goto out2;
3293 	}
3294 
3295 	s = path_init(nd, flags);
3296 	if (IS_ERR(s)) {
3297 		put_filp(file);
3298 		return ERR_CAST(s);
3299 	}
3300 	while (!(error = link_path_walk(s, nd)) &&
3301 		(error = do_last(nd, file, op, &opened)) > 0) {
3302 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3303 		s = trailing_symlink(nd);
3304 		if (IS_ERR(s)) {
3305 			error = PTR_ERR(s);
3306 			break;
3307 		}
3308 	}
3309 	terminate_walk(nd);
3310 out2:
3311 	if (!(opened & FILE_OPENED)) {
3312 		BUG_ON(!error);
3313 		put_filp(file);
3314 	}
3315 	if (unlikely(error)) {
3316 		if (error == -EOPENSTALE) {
3317 			if (flags & LOOKUP_RCU)
3318 				error = -ECHILD;
3319 			else
3320 				error = -ESTALE;
3321 		}
3322 		file = ERR_PTR(error);
3323 	}
3324 	return file;
3325 }
3326 
3327 struct file *do_filp_open(int dfd, struct filename *pathname,
3328 		const struct open_flags *op)
3329 {
3330 	struct nameidata nd;
3331 	int flags = op->lookup_flags;
3332 	struct file *filp;
3333 
3334 	set_nameidata(&nd, dfd, pathname);
3335 	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3336 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3337 		filp = path_openat(&nd, op, flags);
3338 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3339 		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3340 	restore_nameidata();
3341 	return filp;
3342 }
3343 
3344 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3345 		const char *name, const struct open_flags *op)
3346 {
3347 	struct nameidata nd;
3348 	struct file *file;
3349 	struct filename *filename;
3350 	int flags = op->lookup_flags | LOOKUP_ROOT;
3351 
3352 	nd.root.mnt = mnt;
3353 	nd.root.dentry = dentry;
3354 
3355 	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3356 		return ERR_PTR(-ELOOP);
3357 
3358 	filename = getname_kernel(name);
3359 	if (unlikely(IS_ERR(filename)))
3360 		return ERR_CAST(filename);
3361 
3362 	set_nameidata(&nd, -1, filename);
3363 	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3364 	if (unlikely(file == ERR_PTR(-ECHILD)))
3365 		file = path_openat(&nd, op, flags);
3366 	if (unlikely(file == ERR_PTR(-ESTALE)))
3367 		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3368 	restore_nameidata();
3369 	putname(filename);
3370 	return file;
3371 }
3372 
3373 static struct dentry *filename_create(int dfd, struct filename *name,
3374 				struct path *path, unsigned int lookup_flags)
3375 {
3376 	struct dentry *dentry = ERR_PTR(-EEXIST);
3377 	struct qstr last;
3378 	int type;
3379 	int err2;
3380 	int error;
3381 	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3382 
3383 	/*
3384 	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3385 	 * other flags passed in are ignored!
3386 	 */
3387 	lookup_flags &= LOOKUP_REVAL;
3388 
3389 	name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3390 	if (IS_ERR(name))
3391 		return ERR_CAST(name);
3392 
3393 	/*
3394 	 * Yucky last component or no last component at all?
3395 	 * (foo/., foo/.., /////)
3396 	 */
3397 	if (unlikely(type != LAST_NORM))
3398 		goto out;
3399 
3400 	/* don't fail immediately if it's r/o, at least try to report other errors */
3401 	err2 = mnt_want_write(path->mnt);
3402 	/*
3403 	 * Do the final lookup.
3404 	 */
3405 	lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3406 	mutex_lock_nested(&path->dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3407 	dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3408 	if (IS_ERR(dentry))
3409 		goto unlock;
3410 
3411 	error = -EEXIST;
3412 	if (d_is_positive(dentry))
3413 		goto fail;
3414 
3415 	/*
3416 	 * Special case - lookup gave negative, but... we had foo/bar/
3417 	 * From the vfs_mknod() POV we just have a negative dentry -
3418 	 * all is fine. Let's be bastards - you had / on the end, you've
3419 	 * been asking for (non-existent) directory. -ENOENT for you.
3420 	 */
3421 	if (unlikely(!is_dir && last.name[last.len])) {
3422 		error = -ENOENT;
3423 		goto fail;
3424 	}
3425 	if (unlikely(err2)) {
3426 		error = err2;
3427 		goto fail;
3428 	}
3429 	putname(name);
3430 	return dentry;
3431 fail:
3432 	dput(dentry);
3433 	dentry = ERR_PTR(error);
3434 unlock:
3435 	mutex_unlock(&path->dentry->d_inode->i_mutex);
3436 	if (!err2)
3437 		mnt_drop_write(path->mnt);
3438 out:
3439 	path_put(path);
3440 	putname(name);
3441 	return dentry;
3442 }
3443 
3444 struct dentry *kern_path_create(int dfd, const char *pathname,
3445 				struct path *path, unsigned int lookup_flags)
3446 {
3447 	return filename_create(dfd, getname_kernel(pathname),
3448 				path, lookup_flags);
3449 }
3450 EXPORT_SYMBOL(kern_path_create);
3451 
3452 void done_path_create(struct path *path, struct dentry *dentry)
3453 {
3454 	dput(dentry);
3455 	mutex_unlock(&path->dentry->d_inode->i_mutex);
3456 	mnt_drop_write(path->mnt);
3457 	path_put(path);
3458 }
3459 EXPORT_SYMBOL(done_path_create);
3460 
3461 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3462 				struct path *path, unsigned int lookup_flags)
3463 {
3464 	return filename_create(dfd, getname(pathname), path, lookup_flags);
3465 }
3466 EXPORT_SYMBOL(user_path_create);
3467 
3468 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3469 {
3470 	int error = may_create(dir, dentry);
3471 
3472 	if (error)
3473 		return error;
3474 
3475 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3476 		return -EPERM;
3477 
3478 	if (!dir->i_op->mknod)
3479 		return -EPERM;
3480 
3481 	error = devcgroup_inode_mknod(mode, dev);
3482 	if (error)
3483 		return error;
3484 
3485 	error = security_inode_mknod(dir, dentry, mode, dev);
3486 	if (error)
3487 		return error;
3488 
3489 	error = dir->i_op->mknod(dir, dentry, mode, dev);
3490 	if (!error)
3491 		fsnotify_create(dir, dentry);
3492 	return error;
3493 }
3494 EXPORT_SYMBOL(vfs_mknod);
3495 
3496 static int may_mknod(umode_t mode)
3497 {
3498 	switch (mode & S_IFMT) {
3499 	case S_IFREG:
3500 	case S_IFCHR:
3501 	case S_IFBLK:
3502 	case S_IFIFO:
3503 	case S_IFSOCK:
3504 	case 0: /* zero mode translates to S_IFREG */
3505 		return 0;
3506 	case S_IFDIR:
3507 		return -EPERM;
3508 	default:
3509 		return -EINVAL;
3510 	}
3511 }
3512 
3513 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3514 		unsigned, dev)
3515 {
3516 	struct dentry *dentry;
3517 	struct path path;
3518 	int error;
3519 	unsigned int lookup_flags = 0;
3520 
3521 	error = may_mknod(mode);
3522 	if (error)
3523 		return error;
3524 retry:
3525 	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3526 	if (IS_ERR(dentry))
3527 		return PTR_ERR(dentry);
3528 
3529 	if (!IS_POSIXACL(path.dentry->d_inode))
3530 		mode &= ~current_umask();
3531 	error = security_path_mknod(&path, dentry, mode, dev);
3532 	if (error)
3533 		goto out;
3534 	switch (mode & S_IFMT) {
3535 		case 0: case S_IFREG:
3536 			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3537 			break;
3538 		case S_IFCHR: case S_IFBLK:
3539 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3540 					new_decode_dev(dev));
3541 			break;
3542 		case S_IFIFO: case S_IFSOCK:
3543 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3544 			break;
3545 	}
3546 out:
3547 	done_path_create(&path, dentry);
3548 	if (retry_estale(error, lookup_flags)) {
3549 		lookup_flags |= LOOKUP_REVAL;
3550 		goto retry;
3551 	}
3552 	return error;
3553 }
3554 
3555 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3556 {
3557 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
3558 }
3559 
3560 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3561 {
3562 	int error = may_create(dir, dentry);
3563 	unsigned max_links = dir->i_sb->s_max_links;
3564 
3565 	if (error)
3566 		return error;
3567 
3568 	if (!dir->i_op->mkdir)
3569 		return -EPERM;
3570 
3571 	mode &= (S_IRWXUGO|S_ISVTX);
3572 	error = security_inode_mkdir(dir, dentry, mode);
3573 	if (error)
3574 		return error;
3575 
3576 	if (max_links && dir->i_nlink >= max_links)
3577 		return -EMLINK;
3578 
3579 	error = dir->i_op->mkdir(dir, dentry, mode);
3580 	if (!error)
3581 		fsnotify_mkdir(dir, dentry);
3582 	return error;
3583 }
3584 EXPORT_SYMBOL(vfs_mkdir);
3585 
3586 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3587 {
3588 	struct dentry *dentry;
3589 	struct path path;
3590 	int error;
3591 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3592 
3593 retry:
3594 	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3595 	if (IS_ERR(dentry))
3596 		return PTR_ERR(dentry);
3597 
3598 	if (!IS_POSIXACL(path.dentry->d_inode))
3599 		mode &= ~current_umask();
3600 	error = security_path_mkdir(&path, dentry, mode);
3601 	if (!error)
3602 		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3603 	done_path_create(&path, dentry);
3604 	if (retry_estale(error, lookup_flags)) {
3605 		lookup_flags |= LOOKUP_REVAL;
3606 		goto retry;
3607 	}
3608 	return error;
3609 }
3610 
3611 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3612 {
3613 	return sys_mkdirat(AT_FDCWD, pathname, mode);
3614 }
3615 
3616 /*
3617  * The dentry_unhash() helper will try to drop the dentry early: we
3618  * should have a usage count of 1 if we're the only user of this
3619  * dentry, and if that is true (possibly after pruning the dcache),
3620  * then we drop the dentry now.
3621  *
3622  * A low-level filesystem can, if it choses, legally
3623  * do a
3624  *
3625  *	if (!d_unhashed(dentry))
3626  *		return -EBUSY;
3627  *
3628  * if it cannot handle the case of removing a directory
3629  * that is still in use by something else..
3630  */
3631 void dentry_unhash(struct dentry *dentry)
3632 {
3633 	shrink_dcache_parent(dentry);
3634 	spin_lock(&dentry->d_lock);
3635 	if (dentry->d_lockref.count == 1)
3636 		__d_drop(dentry);
3637 	spin_unlock(&dentry->d_lock);
3638 }
3639 EXPORT_SYMBOL(dentry_unhash);
3640 
3641 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3642 {
3643 	int error = may_delete(dir, dentry, 1);
3644 
3645 	if (error)
3646 		return error;
3647 
3648 	if (!dir->i_op->rmdir)
3649 		return -EPERM;
3650 
3651 	dget(dentry);
3652 	mutex_lock(&dentry->d_inode->i_mutex);
3653 
3654 	error = -EBUSY;
3655 	if (is_local_mountpoint(dentry))
3656 		goto out;
3657 
3658 	error = security_inode_rmdir(dir, dentry);
3659 	if (error)
3660 		goto out;
3661 
3662 	shrink_dcache_parent(dentry);
3663 	error = dir->i_op->rmdir(dir, dentry);
3664 	if (error)
3665 		goto out;
3666 
3667 	dentry->d_inode->i_flags |= S_DEAD;
3668 	dont_mount(dentry);
3669 	detach_mounts(dentry);
3670 
3671 out:
3672 	mutex_unlock(&dentry->d_inode->i_mutex);
3673 	dput(dentry);
3674 	if (!error)
3675 		d_delete(dentry);
3676 	return error;
3677 }
3678 EXPORT_SYMBOL(vfs_rmdir);
3679 
3680 static long do_rmdir(int dfd, const char __user *pathname)
3681 {
3682 	int error = 0;
3683 	struct filename *name;
3684 	struct dentry *dentry;
3685 	struct path path;
3686 	struct qstr last;
3687 	int type;
3688 	unsigned int lookup_flags = 0;
3689 retry:
3690 	name = user_path_parent(dfd, pathname,
3691 				&path, &last, &type, lookup_flags);
3692 	if (IS_ERR(name))
3693 		return PTR_ERR(name);
3694 
3695 	switch (type) {
3696 	case LAST_DOTDOT:
3697 		error = -ENOTEMPTY;
3698 		goto exit1;
3699 	case LAST_DOT:
3700 		error = -EINVAL;
3701 		goto exit1;
3702 	case LAST_ROOT:
3703 		error = -EBUSY;
3704 		goto exit1;
3705 	}
3706 
3707 	error = mnt_want_write(path.mnt);
3708 	if (error)
3709 		goto exit1;
3710 
3711 	mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3712 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3713 	error = PTR_ERR(dentry);
3714 	if (IS_ERR(dentry))
3715 		goto exit2;
3716 	if (!dentry->d_inode) {
3717 		error = -ENOENT;
3718 		goto exit3;
3719 	}
3720 	error = security_path_rmdir(&path, dentry);
3721 	if (error)
3722 		goto exit3;
3723 	error = vfs_rmdir(path.dentry->d_inode, dentry);
3724 exit3:
3725 	dput(dentry);
3726 exit2:
3727 	mutex_unlock(&path.dentry->d_inode->i_mutex);
3728 	mnt_drop_write(path.mnt);
3729 exit1:
3730 	path_put(&path);
3731 	putname(name);
3732 	if (retry_estale(error, lookup_flags)) {
3733 		lookup_flags |= LOOKUP_REVAL;
3734 		goto retry;
3735 	}
3736 	return error;
3737 }
3738 
3739 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3740 {
3741 	return do_rmdir(AT_FDCWD, pathname);
3742 }
3743 
3744 /**
3745  * vfs_unlink - unlink a filesystem object
3746  * @dir:	parent directory
3747  * @dentry:	victim
3748  * @delegated_inode: returns victim inode, if the inode is delegated.
3749  *
3750  * The caller must hold dir->i_mutex.
3751  *
3752  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3753  * return a reference to the inode in delegated_inode.  The caller
3754  * should then break the delegation on that inode and retry.  Because
3755  * breaking a delegation may take a long time, the caller should drop
3756  * dir->i_mutex before doing so.
3757  *
3758  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3759  * be appropriate for callers that expect the underlying filesystem not
3760  * to be NFS exported.
3761  */
3762 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3763 {
3764 	struct inode *target = dentry->d_inode;
3765 	int error = may_delete(dir, dentry, 0);
3766 
3767 	if (error)
3768 		return error;
3769 
3770 	if (!dir->i_op->unlink)
3771 		return -EPERM;
3772 
3773 	mutex_lock(&target->i_mutex);
3774 	if (is_local_mountpoint(dentry))
3775 		error = -EBUSY;
3776 	else {
3777 		error = security_inode_unlink(dir, dentry);
3778 		if (!error) {
3779 			error = try_break_deleg(target, delegated_inode);
3780 			if (error)
3781 				goto out;
3782 			error = dir->i_op->unlink(dir, dentry);
3783 			if (!error) {
3784 				dont_mount(dentry);
3785 				detach_mounts(dentry);
3786 			}
3787 		}
3788 	}
3789 out:
3790 	mutex_unlock(&target->i_mutex);
3791 
3792 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
3793 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3794 		fsnotify_link_count(target);
3795 		d_delete(dentry);
3796 	}
3797 
3798 	return error;
3799 }
3800 EXPORT_SYMBOL(vfs_unlink);
3801 
3802 /*
3803  * Make sure that the actual truncation of the file will occur outside its
3804  * directory's i_mutex.  Truncate can take a long time if there is a lot of
3805  * writeout happening, and we don't want to prevent access to the directory
3806  * while waiting on the I/O.
3807  */
3808 static long do_unlinkat(int dfd, const char __user *pathname)
3809 {
3810 	int error;
3811 	struct filename *name;
3812 	struct dentry *dentry;
3813 	struct path path;
3814 	struct qstr last;
3815 	int type;
3816 	struct inode *inode = NULL;
3817 	struct inode *delegated_inode = NULL;
3818 	unsigned int lookup_flags = 0;
3819 retry:
3820 	name = user_path_parent(dfd, pathname,
3821 				&path, &last, &type, lookup_flags);
3822 	if (IS_ERR(name))
3823 		return PTR_ERR(name);
3824 
3825 	error = -EISDIR;
3826 	if (type != LAST_NORM)
3827 		goto exit1;
3828 
3829 	error = mnt_want_write(path.mnt);
3830 	if (error)
3831 		goto exit1;
3832 retry_deleg:
3833 	mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3834 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3835 	error = PTR_ERR(dentry);
3836 	if (!IS_ERR(dentry)) {
3837 		/* Why not before? Because we want correct error value */
3838 		if (last.name[last.len])
3839 			goto slashes;
3840 		inode = dentry->d_inode;
3841 		if (d_is_negative(dentry))
3842 			goto slashes;
3843 		ihold(inode);
3844 		error = security_path_unlink(&path, dentry);
3845 		if (error)
3846 			goto exit2;
3847 		error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3848 exit2:
3849 		dput(dentry);
3850 	}
3851 	mutex_unlock(&path.dentry->d_inode->i_mutex);
3852 	if (inode)
3853 		iput(inode);	/* truncate the inode here */
3854 	inode = NULL;
3855 	if (delegated_inode) {
3856 		error = break_deleg_wait(&delegated_inode);
3857 		if (!error)
3858 			goto retry_deleg;
3859 	}
3860 	mnt_drop_write(path.mnt);
3861 exit1:
3862 	path_put(&path);
3863 	putname(name);
3864 	if (retry_estale(error, lookup_flags)) {
3865 		lookup_flags |= LOOKUP_REVAL;
3866 		inode = NULL;
3867 		goto retry;
3868 	}
3869 	return error;
3870 
3871 slashes:
3872 	if (d_is_negative(dentry))
3873 		error = -ENOENT;
3874 	else if (d_is_dir(dentry))
3875 		error = -EISDIR;
3876 	else
3877 		error = -ENOTDIR;
3878 	goto exit2;
3879 }
3880 
3881 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3882 {
3883 	if ((flag & ~AT_REMOVEDIR) != 0)
3884 		return -EINVAL;
3885 
3886 	if (flag & AT_REMOVEDIR)
3887 		return do_rmdir(dfd, pathname);
3888 
3889 	return do_unlinkat(dfd, pathname);
3890 }
3891 
3892 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3893 {
3894 	return do_unlinkat(AT_FDCWD, pathname);
3895 }
3896 
3897 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3898 {
3899 	int error = may_create(dir, dentry);
3900 
3901 	if (error)
3902 		return error;
3903 
3904 	if (!dir->i_op->symlink)
3905 		return -EPERM;
3906 
3907 	error = security_inode_symlink(dir, dentry, oldname);
3908 	if (error)
3909 		return error;
3910 
3911 	error = dir->i_op->symlink(dir, dentry, oldname);
3912 	if (!error)
3913 		fsnotify_create(dir, dentry);
3914 	return error;
3915 }
3916 EXPORT_SYMBOL(vfs_symlink);
3917 
3918 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3919 		int, newdfd, const char __user *, newname)
3920 {
3921 	int error;
3922 	struct filename *from;
3923 	struct dentry *dentry;
3924 	struct path path;
3925 	unsigned int lookup_flags = 0;
3926 
3927 	from = getname(oldname);
3928 	if (IS_ERR(from))
3929 		return PTR_ERR(from);
3930 retry:
3931 	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3932 	error = PTR_ERR(dentry);
3933 	if (IS_ERR(dentry))
3934 		goto out_putname;
3935 
3936 	error = security_path_symlink(&path, dentry, from->name);
3937 	if (!error)
3938 		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3939 	done_path_create(&path, dentry);
3940 	if (retry_estale(error, lookup_flags)) {
3941 		lookup_flags |= LOOKUP_REVAL;
3942 		goto retry;
3943 	}
3944 out_putname:
3945 	putname(from);
3946 	return error;
3947 }
3948 
3949 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3950 {
3951 	return sys_symlinkat(oldname, AT_FDCWD, newname);
3952 }
3953 
3954 /**
3955  * vfs_link - create a new link
3956  * @old_dentry:	object to be linked
3957  * @dir:	new parent
3958  * @new_dentry:	where to create the new link
3959  * @delegated_inode: returns inode needing a delegation break
3960  *
3961  * The caller must hold dir->i_mutex
3962  *
3963  * If vfs_link discovers a delegation on the to-be-linked file in need
3964  * of breaking, it will return -EWOULDBLOCK and return a reference to the
3965  * inode in delegated_inode.  The caller should then break the delegation
3966  * and retry.  Because breaking a delegation may take a long time, the
3967  * caller should drop the i_mutex before doing so.
3968  *
3969  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3970  * be appropriate for callers that expect the underlying filesystem not
3971  * to be NFS exported.
3972  */
3973 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3974 {
3975 	struct inode *inode = old_dentry->d_inode;
3976 	unsigned max_links = dir->i_sb->s_max_links;
3977 	int error;
3978 
3979 	if (!inode)
3980 		return -ENOENT;
3981 
3982 	error = may_create(dir, new_dentry);
3983 	if (error)
3984 		return error;
3985 
3986 	if (dir->i_sb != inode->i_sb)
3987 		return -EXDEV;
3988 
3989 	/*
3990 	 * A link to an append-only or immutable file cannot be created.
3991 	 */
3992 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3993 		return -EPERM;
3994 	if (!dir->i_op->link)
3995 		return -EPERM;
3996 	if (S_ISDIR(inode->i_mode))
3997 		return -EPERM;
3998 
3999 	error = security_inode_link(old_dentry, dir, new_dentry);
4000 	if (error)
4001 		return error;
4002 
4003 	mutex_lock(&inode->i_mutex);
4004 	/* Make sure we don't allow creating hardlink to an unlinked file */
4005 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4006 		error =  -ENOENT;
4007 	else if (max_links && inode->i_nlink >= max_links)
4008 		error = -EMLINK;
4009 	else {
4010 		error = try_break_deleg(inode, delegated_inode);
4011 		if (!error)
4012 			error = dir->i_op->link(old_dentry, dir, new_dentry);
4013 	}
4014 
4015 	if (!error && (inode->i_state & I_LINKABLE)) {
4016 		spin_lock(&inode->i_lock);
4017 		inode->i_state &= ~I_LINKABLE;
4018 		spin_unlock(&inode->i_lock);
4019 	}
4020 	mutex_unlock(&inode->i_mutex);
4021 	if (!error)
4022 		fsnotify_link(dir, inode, new_dentry);
4023 	return error;
4024 }
4025 EXPORT_SYMBOL(vfs_link);
4026 
4027 /*
4028  * Hardlinks are often used in delicate situations.  We avoid
4029  * security-related surprises by not following symlinks on the
4030  * newname.  --KAB
4031  *
4032  * We don't follow them on the oldname either to be compatible
4033  * with linux 2.0, and to avoid hard-linking to directories
4034  * and other special files.  --ADM
4035  */
4036 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4037 		int, newdfd, const char __user *, newname, int, flags)
4038 {
4039 	struct dentry *new_dentry;
4040 	struct path old_path, new_path;
4041 	struct inode *delegated_inode = NULL;
4042 	int how = 0;
4043 	int error;
4044 
4045 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4046 		return -EINVAL;
4047 	/*
4048 	 * To use null names we require CAP_DAC_READ_SEARCH
4049 	 * This ensures that not everyone will be able to create
4050 	 * handlink using the passed filedescriptor.
4051 	 */
4052 	if (flags & AT_EMPTY_PATH) {
4053 		if (!capable(CAP_DAC_READ_SEARCH))
4054 			return -ENOENT;
4055 		how = LOOKUP_EMPTY;
4056 	}
4057 
4058 	if (flags & AT_SYMLINK_FOLLOW)
4059 		how |= LOOKUP_FOLLOW;
4060 retry:
4061 	error = user_path_at(olddfd, oldname, how, &old_path);
4062 	if (error)
4063 		return error;
4064 
4065 	new_dentry = user_path_create(newdfd, newname, &new_path,
4066 					(how & LOOKUP_REVAL));
4067 	error = PTR_ERR(new_dentry);
4068 	if (IS_ERR(new_dentry))
4069 		goto out;
4070 
4071 	error = -EXDEV;
4072 	if (old_path.mnt != new_path.mnt)
4073 		goto out_dput;
4074 	error = may_linkat(&old_path);
4075 	if (unlikely(error))
4076 		goto out_dput;
4077 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4078 	if (error)
4079 		goto out_dput;
4080 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4081 out_dput:
4082 	done_path_create(&new_path, new_dentry);
4083 	if (delegated_inode) {
4084 		error = break_deleg_wait(&delegated_inode);
4085 		if (!error) {
4086 			path_put(&old_path);
4087 			goto retry;
4088 		}
4089 	}
4090 	if (retry_estale(error, how)) {
4091 		path_put(&old_path);
4092 		how |= LOOKUP_REVAL;
4093 		goto retry;
4094 	}
4095 out:
4096 	path_put(&old_path);
4097 
4098 	return error;
4099 }
4100 
4101 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4102 {
4103 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4104 }
4105 
4106 /**
4107  * vfs_rename - rename a filesystem object
4108  * @old_dir:	parent of source
4109  * @old_dentry:	source
4110  * @new_dir:	parent of destination
4111  * @new_dentry:	destination
4112  * @delegated_inode: returns an inode needing a delegation break
4113  * @flags:	rename flags
4114  *
4115  * The caller must hold multiple mutexes--see lock_rename()).
4116  *
4117  * If vfs_rename discovers a delegation in need of breaking at either
4118  * the source or destination, it will return -EWOULDBLOCK and return a
4119  * reference to the inode in delegated_inode.  The caller should then
4120  * break the delegation and retry.  Because breaking a delegation may
4121  * take a long time, the caller should drop all locks before doing
4122  * so.
4123  *
4124  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4125  * be appropriate for callers that expect the underlying filesystem not
4126  * to be NFS exported.
4127  *
4128  * The worst of all namespace operations - renaming directory. "Perverted"
4129  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4130  * Problems:
4131  *	a) we can get into loop creation.
4132  *	b) race potential - two innocent renames can create a loop together.
4133  *	   That's where 4.4 screws up. Current fix: serialization on
4134  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4135  *	   story.
4136  *	c) we have to lock _four_ objects - parents and victim (if it exists),
4137  *	   and source (if it is not a directory).
4138  *	   And that - after we got ->i_mutex on parents (until then we don't know
4139  *	   whether the target exists).  Solution: try to be smart with locking
4140  *	   order for inodes.  We rely on the fact that tree topology may change
4141  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4142  *	   move will be locked.  Thus we can rank directories by the tree
4143  *	   (ancestors first) and rank all non-directories after them.
4144  *	   That works since everybody except rename does "lock parent, lookup,
4145  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4146  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4147  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4148  *	   we'd better make sure that there's no link(2) for them.
4149  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4150  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4151  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4152  *	   ->i_mutex on parents, which works but leads to some truly excessive
4153  *	   locking].
4154  */
4155 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4156 	       struct inode *new_dir, struct dentry *new_dentry,
4157 	       struct inode **delegated_inode, unsigned int flags)
4158 {
4159 	int error;
4160 	bool is_dir = d_is_dir(old_dentry);
4161 	const unsigned char *old_name;
4162 	struct inode *source = old_dentry->d_inode;
4163 	struct inode *target = new_dentry->d_inode;
4164 	bool new_is_dir = false;
4165 	unsigned max_links = new_dir->i_sb->s_max_links;
4166 
4167 	if (source == target)
4168 		return 0;
4169 
4170 	error = may_delete(old_dir, old_dentry, is_dir);
4171 	if (error)
4172 		return error;
4173 
4174 	if (!target) {
4175 		error = may_create(new_dir, new_dentry);
4176 	} else {
4177 		new_is_dir = d_is_dir(new_dentry);
4178 
4179 		if (!(flags & RENAME_EXCHANGE))
4180 			error = may_delete(new_dir, new_dentry, is_dir);
4181 		else
4182 			error = may_delete(new_dir, new_dentry, new_is_dir);
4183 	}
4184 	if (error)
4185 		return error;
4186 
4187 	if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4188 		return -EPERM;
4189 
4190 	if (flags && !old_dir->i_op->rename2)
4191 		return -EINVAL;
4192 
4193 	/*
4194 	 * If we are going to change the parent - check write permissions,
4195 	 * we'll need to flip '..'.
4196 	 */
4197 	if (new_dir != old_dir) {
4198 		if (is_dir) {
4199 			error = inode_permission(source, MAY_WRITE);
4200 			if (error)
4201 				return error;
4202 		}
4203 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4204 			error = inode_permission(target, MAY_WRITE);
4205 			if (error)
4206 				return error;
4207 		}
4208 	}
4209 
4210 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4211 				      flags);
4212 	if (error)
4213 		return error;
4214 
4215 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4216 	dget(new_dentry);
4217 	if (!is_dir || (flags & RENAME_EXCHANGE))
4218 		lock_two_nondirectories(source, target);
4219 	else if (target)
4220 		mutex_lock(&target->i_mutex);
4221 
4222 	error = -EBUSY;
4223 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4224 		goto out;
4225 
4226 	if (max_links && new_dir != old_dir) {
4227 		error = -EMLINK;
4228 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4229 			goto out;
4230 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4231 		    old_dir->i_nlink >= max_links)
4232 			goto out;
4233 	}
4234 	if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4235 		shrink_dcache_parent(new_dentry);
4236 	if (!is_dir) {
4237 		error = try_break_deleg(source, delegated_inode);
4238 		if (error)
4239 			goto out;
4240 	}
4241 	if (target && !new_is_dir) {
4242 		error = try_break_deleg(target, delegated_inode);
4243 		if (error)
4244 			goto out;
4245 	}
4246 	if (!old_dir->i_op->rename2) {
4247 		error = old_dir->i_op->rename(old_dir, old_dentry,
4248 					      new_dir, new_dentry);
4249 	} else {
4250 		WARN_ON(old_dir->i_op->rename != NULL);
4251 		error = old_dir->i_op->rename2(old_dir, old_dentry,
4252 					       new_dir, new_dentry, flags);
4253 	}
4254 	if (error)
4255 		goto out;
4256 
4257 	if (!(flags & RENAME_EXCHANGE) && target) {
4258 		if (is_dir)
4259 			target->i_flags |= S_DEAD;
4260 		dont_mount(new_dentry);
4261 		detach_mounts(new_dentry);
4262 	}
4263 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4264 		if (!(flags & RENAME_EXCHANGE))
4265 			d_move(old_dentry, new_dentry);
4266 		else
4267 			d_exchange(old_dentry, new_dentry);
4268 	}
4269 out:
4270 	if (!is_dir || (flags & RENAME_EXCHANGE))
4271 		unlock_two_nondirectories(source, target);
4272 	else if (target)
4273 		mutex_unlock(&target->i_mutex);
4274 	dput(new_dentry);
4275 	if (!error) {
4276 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
4277 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4278 		if (flags & RENAME_EXCHANGE) {
4279 			fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4280 				      new_is_dir, NULL, new_dentry);
4281 		}
4282 	}
4283 	fsnotify_oldname_free(old_name);
4284 
4285 	return error;
4286 }
4287 EXPORT_SYMBOL(vfs_rename);
4288 
4289 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4290 		int, newdfd, const char __user *, newname, unsigned int, flags)
4291 {
4292 	struct dentry *old_dentry, *new_dentry;
4293 	struct dentry *trap;
4294 	struct path old_path, new_path;
4295 	struct qstr old_last, new_last;
4296 	int old_type, new_type;
4297 	struct inode *delegated_inode = NULL;
4298 	struct filename *from;
4299 	struct filename *to;
4300 	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4301 	bool should_retry = false;
4302 	int error;
4303 
4304 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4305 		return -EINVAL;
4306 
4307 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4308 	    (flags & RENAME_EXCHANGE))
4309 		return -EINVAL;
4310 
4311 	if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4312 		return -EPERM;
4313 
4314 	if (flags & RENAME_EXCHANGE)
4315 		target_flags = 0;
4316 
4317 retry:
4318 	from = user_path_parent(olddfd, oldname,
4319 				&old_path, &old_last, &old_type, lookup_flags);
4320 	if (IS_ERR(from)) {
4321 		error = PTR_ERR(from);
4322 		goto exit;
4323 	}
4324 
4325 	to = user_path_parent(newdfd, newname,
4326 				&new_path, &new_last, &new_type, lookup_flags);
4327 	if (IS_ERR(to)) {
4328 		error = PTR_ERR(to);
4329 		goto exit1;
4330 	}
4331 
4332 	error = -EXDEV;
4333 	if (old_path.mnt != new_path.mnt)
4334 		goto exit2;
4335 
4336 	error = -EBUSY;
4337 	if (old_type != LAST_NORM)
4338 		goto exit2;
4339 
4340 	if (flags & RENAME_NOREPLACE)
4341 		error = -EEXIST;
4342 	if (new_type != LAST_NORM)
4343 		goto exit2;
4344 
4345 	error = mnt_want_write(old_path.mnt);
4346 	if (error)
4347 		goto exit2;
4348 
4349 retry_deleg:
4350 	trap = lock_rename(new_path.dentry, old_path.dentry);
4351 
4352 	old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4353 	error = PTR_ERR(old_dentry);
4354 	if (IS_ERR(old_dentry))
4355 		goto exit3;
4356 	/* source must exist */
4357 	error = -ENOENT;
4358 	if (d_is_negative(old_dentry))
4359 		goto exit4;
4360 	new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4361 	error = PTR_ERR(new_dentry);
4362 	if (IS_ERR(new_dentry))
4363 		goto exit4;
4364 	error = -EEXIST;
4365 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4366 		goto exit5;
4367 	if (flags & RENAME_EXCHANGE) {
4368 		error = -ENOENT;
4369 		if (d_is_negative(new_dentry))
4370 			goto exit5;
4371 
4372 		if (!d_is_dir(new_dentry)) {
4373 			error = -ENOTDIR;
4374 			if (new_last.name[new_last.len])
4375 				goto exit5;
4376 		}
4377 	}
4378 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4379 	if (!d_is_dir(old_dentry)) {
4380 		error = -ENOTDIR;
4381 		if (old_last.name[old_last.len])
4382 			goto exit5;
4383 		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4384 			goto exit5;
4385 	}
4386 	/* source should not be ancestor of target */
4387 	error = -EINVAL;
4388 	if (old_dentry == trap)
4389 		goto exit5;
4390 	/* target should not be an ancestor of source */
4391 	if (!(flags & RENAME_EXCHANGE))
4392 		error = -ENOTEMPTY;
4393 	if (new_dentry == trap)
4394 		goto exit5;
4395 
4396 	error = security_path_rename(&old_path, old_dentry,
4397 				     &new_path, new_dentry, flags);
4398 	if (error)
4399 		goto exit5;
4400 	error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4401 			   new_path.dentry->d_inode, new_dentry,
4402 			   &delegated_inode, flags);
4403 exit5:
4404 	dput(new_dentry);
4405 exit4:
4406 	dput(old_dentry);
4407 exit3:
4408 	unlock_rename(new_path.dentry, old_path.dentry);
4409 	if (delegated_inode) {
4410 		error = break_deleg_wait(&delegated_inode);
4411 		if (!error)
4412 			goto retry_deleg;
4413 	}
4414 	mnt_drop_write(old_path.mnt);
4415 exit2:
4416 	if (retry_estale(error, lookup_flags))
4417 		should_retry = true;
4418 	path_put(&new_path);
4419 	putname(to);
4420 exit1:
4421 	path_put(&old_path);
4422 	putname(from);
4423 	if (should_retry) {
4424 		should_retry = false;
4425 		lookup_flags |= LOOKUP_REVAL;
4426 		goto retry;
4427 	}
4428 exit:
4429 	return error;
4430 }
4431 
4432 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4433 		int, newdfd, const char __user *, newname)
4434 {
4435 	return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4436 }
4437 
4438 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4439 {
4440 	return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4441 }
4442 
4443 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4444 {
4445 	int error = may_create(dir, dentry);
4446 	if (error)
4447 		return error;
4448 
4449 	if (!dir->i_op->mknod)
4450 		return -EPERM;
4451 
4452 	return dir->i_op->mknod(dir, dentry,
4453 				S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4454 }
4455 EXPORT_SYMBOL(vfs_whiteout);
4456 
4457 int readlink_copy(char __user *buffer, int buflen, const char *link)
4458 {
4459 	int len = PTR_ERR(link);
4460 	if (IS_ERR(link))
4461 		goto out;
4462 
4463 	len = strlen(link);
4464 	if (len > (unsigned) buflen)
4465 		len = buflen;
4466 	if (copy_to_user(buffer, link, len))
4467 		len = -EFAULT;
4468 out:
4469 	return len;
4470 }
4471 EXPORT_SYMBOL(readlink_copy);
4472 
4473 /*
4474  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
4475  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
4476  * using) it for any given inode is up to filesystem.
4477  */
4478 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4479 {
4480 	void *cookie;
4481 	struct inode *inode = d_inode(dentry);
4482 	const char *link = inode->i_link;
4483 	int res;
4484 
4485 	if (!link) {
4486 		link = inode->i_op->follow_link(dentry, &cookie);
4487 		if (IS_ERR(link))
4488 			return PTR_ERR(link);
4489 	}
4490 	res = readlink_copy(buffer, buflen, link);
4491 	if (inode->i_op->put_link)
4492 		inode->i_op->put_link(inode, cookie);
4493 	return res;
4494 }
4495 EXPORT_SYMBOL(generic_readlink);
4496 
4497 /* get the link contents into pagecache */
4498 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4499 {
4500 	char *kaddr;
4501 	struct page *page;
4502 	struct address_space *mapping = dentry->d_inode->i_mapping;
4503 	page = read_mapping_page(mapping, 0, NULL);
4504 	if (IS_ERR(page))
4505 		return (char*)page;
4506 	*ppage = page;
4507 	kaddr = kmap(page);
4508 	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4509 	return kaddr;
4510 }
4511 
4512 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4513 {
4514 	struct page *page = NULL;
4515 	int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4516 	if (page) {
4517 		kunmap(page);
4518 		page_cache_release(page);
4519 	}
4520 	return res;
4521 }
4522 EXPORT_SYMBOL(page_readlink);
4523 
4524 const char *page_follow_link_light(struct dentry *dentry, void **cookie)
4525 {
4526 	struct page *page = NULL;
4527 	char *res = page_getlink(dentry, &page);
4528 	if (!IS_ERR(res))
4529 		*cookie = page;
4530 	return res;
4531 }
4532 EXPORT_SYMBOL(page_follow_link_light);
4533 
4534 void page_put_link(struct inode *unused, void *cookie)
4535 {
4536 	struct page *page = cookie;
4537 	kunmap(page);
4538 	page_cache_release(page);
4539 }
4540 EXPORT_SYMBOL(page_put_link);
4541 
4542 /*
4543  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4544  */
4545 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4546 {
4547 	struct address_space *mapping = inode->i_mapping;
4548 	struct page *page;
4549 	void *fsdata;
4550 	int err;
4551 	char *kaddr;
4552 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4553 	if (nofs)
4554 		flags |= AOP_FLAG_NOFS;
4555 
4556 retry:
4557 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4558 				flags, &page, &fsdata);
4559 	if (err)
4560 		goto fail;
4561 
4562 	kaddr = kmap_atomic(page);
4563 	memcpy(kaddr, symname, len-1);
4564 	kunmap_atomic(kaddr);
4565 
4566 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4567 							page, fsdata);
4568 	if (err < 0)
4569 		goto fail;
4570 	if (err < len-1)
4571 		goto retry;
4572 
4573 	mark_inode_dirty(inode);
4574 	return 0;
4575 fail:
4576 	return err;
4577 }
4578 EXPORT_SYMBOL(__page_symlink);
4579 
4580 int page_symlink(struct inode *inode, const char *symname, int len)
4581 {
4582 	return __page_symlink(inode, symname, len,
4583 			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4584 }
4585 EXPORT_SYMBOL(page_symlink);
4586 
4587 const struct inode_operations page_symlink_inode_operations = {
4588 	.readlink	= generic_readlink,
4589 	.follow_link	= page_follow_link_light,
4590 	.put_link	= page_put_link,
4591 };
4592 EXPORT_SYMBOL(page_symlink_inode_operations);
4593