1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/export.h> 19 #include <linux/kernel.h> 20 #include <linux/slab.h> 21 #include <linux/fs.h> 22 #include <linux/namei.h> 23 #include <linux/pagemap.h> 24 #include <linux/fsnotify.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/ima.h> 28 #include <linux/syscalls.h> 29 #include <linux/mount.h> 30 #include <linux/audit.h> 31 #include <linux/capability.h> 32 #include <linux/file.h> 33 #include <linux/fcntl.h> 34 #include <linux/device_cgroup.h> 35 #include <linux/fs_struct.h> 36 #include <linux/posix_acl.h> 37 #include <linux/hash.h> 38 #include <asm/uaccess.h> 39 40 #include "internal.h" 41 #include "mount.h" 42 43 /* [Feb-1997 T. Schoebel-Theuer] 44 * Fundamental changes in the pathname lookup mechanisms (namei) 45 * were necessary because of omirr. The reason is that omirr needs 46 * to know the _real_ pathname, not the user-supplied one, in case 47 * of symlinks (and also when transname replacements occur). 48 * 49 * The new code replaces the old recursive symlink resolution with 50 * an iterative one (in case of non-nested symlink chains). It does 51 * this with calls to <fs>_follow_link(). 52 * As a side effect, dir_namei(), _namei() and follow_link() are now 53 * replaced with a single function lookup_dentry() that can handle all 54 * the special cases of the former code. 55 * 56 * With the new dcache, the pathname is stored at each inode, at least as 57 * long as the refcount of the inode is positive. As a side effect, the 58 * size of the dcache depends on the inode cache and thus is dynamic. 59 * 60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 61 * resolution to correspond with current state of the code. 62 * 63 * Note that the symlink resolution is not *completely* iterative. 64 * There is still a significant amount of tail- and mid- recursion in 65 * the algorithm. Also, note that <fs>_readlink() is not used in 66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 67 * may return different results than <fs>_follow_link(). Many virtual 68 * filesystems (including /proc) exhibit this behavior. 69 */ 70 71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 73 * and the name already exists in form of a symlink, try to create the new 74 * name indicated by the symlink. The old code always complained that the 75 * name already exists, due to not following the symlink even if its target 76 * is nonexistent. The new semantics affects also mknod() and link() when 77 * the name is a symlink pointing to a non-existent name. 78 * 79 * I don't know which semantics is the right one, since I have no access 80 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 82 * "old" one. Personally, I think the new semantics is much more logical. 83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 84 * file does succeed in both HP-UX and SunOs, but not in Solaris 85 * and in the old Linux semantics. 86 */ 87 88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 89 * semantics. See the comments in "open_namei" and "do_link" below. 90 * 91 * [10-Sep-98 Alan Modra] Another symlink change. 92 */ 93 94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 95 * inside the path - always follow. 96 * in the last component in creation/removal/renaming - never follow. 97 * if LOOKUP_FOLLOW passed - follow. 98 * if the pathname has trailing slashes - follow. 99 * otherwise - don't follow. 100 * (applied in that order). 101 * 102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 104 * During the 2.4 we need to fix the userland stuff depending on it - 105 * hopefully we will be able to get rid of that wart in 2.5. So far only 106 * XEmacs seems to be relying on it... 107 */ 108 /* 109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 111 * any extra contention... 112 */ 113 114 /* In order to reduce some races, while at the same time doing additional 115 * checking and hopefully speeding things up, we copy filenames to the 116 * kernel data space before using them.. 117 * 118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 119 * PATH_MAX includes the nul terminator --RR. 120 */ 121 122 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) 123 124 struct filename * 125 getname_flags(const char __user *filename, int flags, int *empty) 126 { 127 struct filename *result; 128 char *kname; 129 int len; 130 131 result = audit_reusename(filename); 132 if (result) 133 return result; 134 135 result = __getname(); 136 if (unlikely(!result)) 137 return ERR_PTR(-ENOMEM); 138 139 /* 140 * First, try to embed the struct filename inside the names_cache 141 * allocation 142 */ 143 kname = (char *)result->iname; 144 result->name = kname; 145 146 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); 147 if (unlikely(len < 0)) { 148 __putname(result); 149 return ERR_PTR(len); 150 } 151 152 /* 153 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 154 * separate struct filename so we can dedicate the entire 155 * names_cache allocation for the pathname, and re-do the copy from 156 * userland. 157 */ 158 if (unlikely(len == EMBEDDED_NAME_MAX)) { 159 const size_t size = offsetof(struct filename, iname[1]); 160 kname = (char *)result; 161 162 /* 163 * size is chosen that way we to guarantee that 164 * result->iname[0] is within the same object and that 165 * kname can't be equal to result->iname, no matter what. 166 */ 167 result = kzalloc(size, GFP_KERNEL); 168 if (unlikely(!result)) { 169 __putname(kname); 170 return ERR_PTR(-ENOMEM); 171 } 172 result->name = kname; 173 len = strncpy_from_user(kname, filename, PATH_MAX); 174 if (unlikely(len < 0)) { 175 __putname(kname); 176 kfree(result); 177 return ERR_PTR(len); 178 } 179 if (unlikely(len == PATH_MAX)) { 180 __putname(kname); 181 kfree(result); 182 return ERR_PTR(-ENAMETOOLONG); 183 } 184 } 185 186 result->refcnt = 1; 187 /* The empty path is special. */ 188 if (unlikely(!len)) { 189 if (empty) 190 *empty = 1; 191 if (!(flags & LOOKUP_EMPTY)) { 192 putname(result); 193 return ERR_PTR(-ENOENT); 194 } 195 } 196 197 result->uptr = filename; 198 result->aname = NULL; 199 audit_getname(result); 200 return result; 201 } 202 203 struct filename * 204 getname(const char __user * filename) 205 { 206 return getname_flags(filename, 0, NULL); 207 } 208 209 struct filename * 210 getname_kernel(const char * filename) 211 { 212 struct filename *result; 213 int len = strlen(filename) + 1; 214 215 result = __getname(); 216 if (unlikely(!result)) 217 return ERR_PTR(-ENOMEM); 218 219 if (len <= EMBEDDED_NAME_MAX) { 220 result->name = (char *)result->iname; 221 } else if (len <= PATH_MAX) { 222 struct filename *tmp; 223 224 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL); 225 if (unlikely(!tmp)) { 226 __putname(result); 227 return ERR_PTR(-ENOMEM); 228 } 229 tmp->name = (char *)result; 230 result = tmp; 231 } else { 232 __putname(result); 233 return ERR_PTR(-ENAMETOOLONG); 234 } 235 memcpy((char *)result->name, filename, len); 236 result->uptr = NULL; 237 result->aname = NULL; 238 result->refcnt = 1; 239 audit_getname(result); 240 241 return result; 242 } 243 244 void putname(struct filename *name) 245 { 246 BUG_ON(name->refcnt <= 0); 247 248 if (--name->refcnt > 0) 249 return; 250 251 if (name->name != name->iname) { 252 __putname(name->name); 253 kfree(name); 254 } else 255 __putname(name); 256 } 257 258 static int check_acl(struct inode *inode, int mask) 259 { 260 #ifdef CONFIG_FS_POSIX_ACL 261 struct posix_acl *acl; 262 263 if (mask & MAY_NOT_BLOCK) { 264 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 265 if (!acl) 266 return -EAGAIN; 267 /* no ->get_acl() calls in RCU mode... */ 268 if (acl == ACL_NOT_CACHED) 269 return -ECHILD; 270 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK); 271 } 272 273 acl = get_acl(inode, ACL_TYPE_ACCESS); 274 if (IS_ERR(acl)) 275 return PTR_ERR(acl); 276 if (acl) { 277 int error = posix_acl_permission(inode, acl, mask); 278 posix_acl_release(acl); 279 return error; 280 } 281 #endif 282 283 return -EAGAIN; 284 } 285 286 /* 287 * This does the basic permission checking 288 */ 289 static int acl_permission_check(struct inode *inode, int mask) 290 { 291 unsigned int mode = inode->i_mode; 292 293 if (likely(uid_eq(current_fsuid(), inode->i_uid))) 294 mode >>= 6; 295 else { 296 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 297 int error = check_acl(inode, mask); 298 if (error != -EAGAIN) 299 return error; 300 } 301 302 if (in_group_p(inode->i_gid)) 303 mode >>= 3; 304 } 305 306 /* 307 * If the DACs are ok we don't need any capability check. 308 */ 309 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 310 return 0; 311 return -EACCES; 312 } 313 314 /** 315 * generic_permission - check for access rights on a Posix-like filesystem 316 * @inode: inode to check access rights for 317 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...) 318 * 319 * Used to check for read/write/execute permissions on a file. 320 * We use "fsuid" for this, letting us set arbitrary permissions 321 * for filesystem access without changing the "normal" uids which 322 * are used for other things. 323 * 324 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 325 * request cannot be satisfied (eg. requires blocking or too much complexity). 326 * It would then be called again in ref-walk mode. 327 */ 328 int generic_permission(struct inode *inode, int mask) 329 { 330 int ret; 331 332 /* 333 * Do the basic permission checks. 334 */ 335 ret = acl_permission_check(inode, mask); 336 if (ret != -EACCES) 337 return ret; 338 339 if (S_ISDIR(inode->i_mode)) { 340 /* DACs are overridable for directories */ 341 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 342 return 0; 343 if (!(mask & MAY_WRITE)) 344 if (capable_wrt_inode_uidgid(inode, 345 CAP_DAC_READ_SEARCH)) 346 return 0; 347 return -EACCES; 348 } 349 /* 350 * Read/write DACs are always overridable. 351 * Executable DACs are overridable when there is 352 * at least one exec bit set. 353 */ 354 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 355 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 356 return 0; 357 358 /* 359 * Searching includes executable on directories, else just read. 360 */ 361 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 362 if (mask == MAY_READ) 363 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH)) 364 return 0; 365 366 return -EACCES; 367 } 368 EXPORT_SYMBOL(generic_permission); 369 370 /* 371 * We _really_ want to just do "generic_permission()" without 372 * even looking at the inode->i_op values. So we keep a cache 373 * flag in inode->i_opflags, that says "this has not special 374 * permission function, use the fast case". 375 */ 376 static inline int do_inode_permission(struct inode *inode, int mask) 377 { 378 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 379 if (likely(inode->i_op->permission)) 380 return inode->i_op->permission(inode, mask); 381 382 /* This gets set once for the inode lifetime */ 383 spin_lock(&inode->i_lock); 384 inode->i_opflags |= IOP_FASTPERM; 385 spin_unlock(&inode->i_lock); 386 } 387 return generic_permission(inode, mask); 388 } 389 390 /** 391 * __inode_permission - Check for access rights to a given inode 392 * @inode: Inode to check permission on 393 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 394 * 395 * Check for read/write/execute permissions on an inode. 396 * 397 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 398 * 399 * This does not check for a read-only file system. You probably want 400 * inode_permission(). 401 */ 402 int __inode_permission(struct inode *inode, int mask) 403 { 404 int retval; 405 406 if (unlikely(mask & MAY_WRITE)) { 407 /* 408 * Nobody gets write access to an immutable file. 409 */ 410 if (IS_IMMUTABLE(inode)) 411 return -EACCES; 412 } 413 414 retval = do_inode_permission(inode, mask); 415 if (retval) 416 return retval; 417 418 retval = devcgroup_inode_permission(inode, mask); 419 if (retval) 420 return retval; 421 422 return security_inode_permission(inode, mask); 423 } 424 EXPORT_SYMBOL(__inode_permission); 425 426 /** 427 * sb_permission - Check superblock-level permissions 428 * @sb: Superblock of inode to check permission on 429 * @inode: Inode to check permission on 430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 431 * 432 * Separate out file-system wide checks from inode-specific permission checks. 433 */ 434 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 435 { 436 if (unlikely(mask & MAY_WRITE)) { 437 umode_t mode = inode->i_mode; 438 439 /* Nobody gets write access to a read-only fs. */ 440 if ((sb->s_flags & MS_RDONLY) && 441 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 442 return -EROFS; 443 } 444 return 0; 445 } 446 447 /** 448 * inode_permission - Check for access rights to a given inode 449 * @inode: Inode to check permission on 450 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 451 * 452 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 453 * this, letting us set arbitrary permissions for filesystem access without 454 * changing the "normal" UIDs which are used for other things. 455 * 456 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 457 */ 458 int inode_permission(struct inode *inode, int mask) 459 { 460 int retval; 461 462 retval = sb_permission(inode->i_sb, inode, mask); 463 if (retval) 464 return retval; 465 return __inode_permission(inode, mask); 466 } 467 EXPORT_SYMBOL(inode_permission); 468 469 /** 470 * path_get - get a reference to a path 471 * @path: path to get the reference to 472 * 473 * Given a path increment the reference count to the dentry and the vfsmount. 474 */ 475 void path_get(const struct path *path) 476 { 477 mntget(path->mnt); 478 dget(path->dentry); 479 } 480 EXPORT_SYMBOL(path_get); 481 482 /** 483 * path_put - put a reference to a path 484 * @path: path to put the reference to 485 * 486 * Given a path decrement the reference count to the dentry and the vfsmount. 487 */ 488 void path_put(const struct path *path) 489 { 490 dput(path->dentry); 491 mntput(path->mnt); 492 } 493 EXPORT_SYMBOL(path_put); 494 495 #define EMBEDDED_LEVELS 2 496 struct nameidata { 497 struct path path; 498 struct qstr last; 499 struct path root; 500 struct inode *inode; /* path.dentry.d_inode */ 501 unsigned int flags; 502 unsigned seq, m_seq; 503 int last_type; 504 unsigned depth; 505 int total_link_count; 506 struct saved { 507 struct path link; 508 void *cookie; 509 const char *name; 510 struct inode *inode; 511 unsigned seq; 512 } *stack, internal[EMBEDDED_LEVELS]; 513 struct filename *name; 514 struct nameidata *saved; 515 unsigned root_seq; 516 int dfd; 517 }; 518 519 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name) 520 { 521 struct nameidata *old = current->nameidata; 522 p->stack = p->internal; 523 p->dfd = dfd; 524 p->name = name; 525 p->total_link_count = old ? old->total_link_count : 0; 526 p->saved = old; 527 current->nameidata = p; 528 } 529 530 static void restore_nameidata(void) 531 { 532 struct nameidata *now = current->nameidata, *old = now->saved; 533 534 current->nameidata = old; 535 if (old) 536 old->total_link_count = now->total_link_count; 537 if (now->stack != now->internal) { 538 kfree(now->stack); 539 now->stack = now->internal; 540 } 541 } 542 543 static int __nd_alloc_stack(struct nameidata *nd) 544 { 545 struct saved *p; 546 547 if (nd->flags & LOOKUP_RCU) { 548 p= kmalloc(MAXSYMLINKS * sizeof(struct saved), 549 GFP_ATOMIC); 550 if (unlikely(!p)) 551 return -ECHILD; 552 } else { 553 p= kmalloc(MAXSYMLINKS * sizeof(struct saved), 554 GFP_KERNEL); 555 if (unlikely(!p)) 556 return -ENOMEM; 557 } 558 memcpy(p, nd->internal, sizeof(nd->internal)); 559 nd->stack = p; 560 return 0; 561 } 562 563 static inline int nd_alloc_stack(struct nameidata *nd) 564 { 565 if (likely(nd->depth != EMBEDDED_LEVELS)) 566 return 0; 567 if (likely(nd->stack != nd->internal)) 568 return 0; 569 return __nd_alloc_stack(nd); 570 } 571 572 static void drop_links(struct nameidata *nd) 573 { 574 int i = nd->depth; 575 while (i--) { 576 struct saved *last = nd->stack + i; 577 struct inode *inode = last->inode; 578 if (last->cookie && inode->i_op->put_link) { 579 inode->i_op->put_link(inode, last->cookie); 580 last->cookie = NULL; 581 } 582 } 583 } 584 585 static void terminate_walk(struct nameidata *nd) 586 { 587 drop_links(nd); 588 if (!(nd->flags & LOOKUP_RCU)) { 589 int i; 590 path_put(&nd->path); 591 for (i = 0; i < nd->depth; i++) 592 path_put(&nd->stack[i].link); 593 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 594 path_put(&nd->root); 595 nd->root.mnt = NULL; 596 } 597 } else { 598 nd->flags &= ~LOOKUP_RCU; 599 if (!(nd->flags & LOOKUP_ROOT)) 600 nd->root.mnt = NULL; 601 rcu_read_unlock(); 602 } 603 nd->depth = 0; 604 } 605 606 /* path_put is needed afterwards regardless of success or failure */ 607 static bool legitimize_path(struct nameidata *nd, 608 struct path *path, unsigned seq) 609 { 610 int res = __legitimize_mnt(path->mnt, nd->m_seq); 611 if (unlikely(res)) { 612 if (res > 0) 613 path->mnt = NULL; 614 path->dentry = NULL; 615 return false; 616 } 617 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) { 618 path->dentry = NULL; 619 return false; 620 } 621 return !read_seqcount_retry(&path->dentry->d_seq, seq); 622 } 623 624 static bool legitimize_links(struct nameidata *nd) 625 { 626 int i; 627 for (i = 0; i < nd->depth; i++) { 628 struct saved *last = nd->stack + i; 629 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) { 630 drop_links(nd); 631 nd->depth = i + 1; 632 return false; 633 } 634 } 635 return true; 636 } 637 638 /* 639 * Path walking has 2 modes, rcu-walk and ref-walk (see 640 * Documentation/filesystems/path-lookup.txt). In situations when we can't 641 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 642 * normal reference counts on dentries and vfsmounts to transition to rcu-walk 643 * mode. Refcounts are grabbed at the last known good point before rcu-walk 644 * got stuck, so ref-walk may continue from there. If this is not successful 645 * (eg. a seqcount has changed), then failure is returned and it's up to caller 646 * to restart the path walk from the beginning in ref-walk mode. 647 */ 648 649 /** 650 * unlazy_walk - try to switch to ref-walk mode. 651 * @nd: nameidata pathwalk data 652 * @dentry: child of nd->path.dentry or NULL 653 * @seq: seq number to check dentry against 654 * Returns: 0 on success, -ECHILD on failure 655 * 656 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry 657 * for ref-walk mode. @dentry must be a path found by a do_lookup call on 658 * @nd or NULL. Must be called from rcu-walk context. 659 * Nothing should touch nameidata between unlazy_walk() failure and 660 * terminate_walk(). 661 */ 662 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq) 663 { 664 struct dentry *parent = nd->path.dentry; 665 666 BUG_ON(!(nd->flags & LOOKUP_RCU)); 667 668 nd->flags &= ~LOOKUP_RCU; 669 if (unlikely(!legitimize_links(nd))) 670 goto out2; 671 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq))) 672 goto out2; 673 if (unlikely(!lockref_get_not_dead(&parent->d_lockref))) 674 goto out1; 675 676 /* 677 * For a negative lookup, the lookup sequence point is the parents 678 * sequence point, and it only needs to revalidate the parent dentry. 679 * 680 * For a positive lookup, we need to move both the parent and the 681 * dentry from the RCU domain to be properly refcounted. And the 682 * sequence number in the dentry validates *both* dentry counters, 683 * since we checked the sequence number of the parent after we got 684 * the child sequence number. So we know the parent must still 685 * be valid if the child sequence number is still valid. 686 */ 687 if (!dentry) { 688 if (read_seqcount_retry(&parent->d_seq, nd->seq)) 689 goto out; 690 BUG_ON(nd->inode != parent->d_inode); 691 } else { 692 if (!lockref_get_not_dead(&dentry->d_lockref)) 693 goto out; 694 if (read_seqcount_retry(&dentry->d_seq, seq)) 695 goto drop_dentry; 696 } 697 698 /* 699 * Sequence counts matched. Now make sure that the root is 700 * still valid and get it if required. 701 */ 702 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 703 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) { 704 rcu_read_unlock(); 705 dput(dentry); 706 return -ECHILD; 707 } 708 } 709 710 rcu_read_unlock(); 711 return 0; 712 713 drop_dentry: 714 rcu_read_unlock(); 715 dput(dentry); 716 goto drop_root_mnt; 717 out2: 718 nd->path.mnt = NULL; 719 out1: 720 nd->path.dentry = NULL; 721 out: 722 rcu_read_unlock(); 723 drop_root_mnt: 724 if (!(nd->flags & LOOKUP_ROOT)) 725 nd->root.mnt = NULL; 726 return -ECHILD; 727 } 728 729 static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq) 730 { 731 if (unlikely(!legitimize_path(nd, link, seq))) { 732 drop_links(nd); 733 nd->depth = 0; 734 nd->flags &= ~LOOKUP_RCU; 735 nd->path.mnt = NULL; 736 nd->path.dentry = NULL; 737 if (!(nd->flags & LOOKUP_ROOT)) 738 nd->root.mnt = NULL; 739 rcu_read_unlock(); 740 } else if (likely(unlazy_walk(nd, NULL, 0)) == 0) { 741 return 0; 742 } 743 path_put(link); 744 return -ECHILD; 745 } 746 747 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 748 { 749 return dentry->d_op->d_revalidate(dentry, flags); 750 } 751 752 /** 753 * complete_walk - successful completion of path walk 754 * @nd: pointer nameidata 755 * 756 * If we had been in RCU mode, drop out of it and legitimize nd->path. 757 * Revalidate the final result, unless we'd already done that during 758 * the path walk or the filesystem doesn't ask for it. Return 0 on 759 * success, -error on failure. In case of failure caller does not 760 * need to drop nd->path. 761 */ 762 static int complete_walk(struct nameidata *nd) 763 { 764 struct dentry *dentry = nd->path.dentry; 765 int status; 766 767 if (nd->flags & LOOKUP_RCU) { 768 if (!(nd->flags & LOOKUP_ROOT)) 769 nd->root.mnt = NULL; 770 if (unlikely(unlazy_walk(nd, NULL, 0))) 771 return -ECHILD; 772 } 773 774 if (likely(!(nd->flags & LOOKUP_JUMPED))) 775 return 0; 776 777 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 778 return 0; 779 780 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 781 if (status > 0) 782 return 0; 783 784 if (!status) 785 status = -ESTALE; 786 787 return status; 788 } 789 790 static void set_root(struct nameidata *nd) 791 { 792 get_fs_root(current->fs, &nd->root); 793 } 794 795 static void set_root_rcu(struct nameidata *nd) 796 { 797 struct fs_struct *fs = current->fs; 798 unsigned seq; 799 800 do { 801 seq = read_seqcount_begin(&fs->seq); 802 nd->root = fs->root; 803 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 804 } while (read_seqcount_retry(&fs->seq, seq)); 805 } 806 807 static void path_put_conditional(struct path *path, struct nameidata *nd) 808 { 809 dput(path->dentry); 810 if (path->mnt != nd->path.mnt) 811 mntput(path->mnt); 812 } 813 814 static inline void path_to_nameidata(const struct path *path, 815 struct nameidata *nd) 816 { 817 if (!(nd->flags & LOOKUP_RCU)) { 818 dput(nd->path.dentry); 819 if (nd->path.mnt != path->mnt) 820 mntput(nd->path.mnt); 821 } 822 nd->path.mnt = path->mnt; 823 nd->path.dentry = path->dentry; 824 } 825 826 /* 827 * Helper to directly jump to a known parsed path from ->follow_link, 828 * caller must have taken a reference to path beforehand. 829 */ 830 void nd_jump_link(struct path *path) 831 { 832 struct nameidata *nd = current->nameidata; 833 path_put(&nd->path); 834 835 nd->path = *path; 836 nd->inode = nd->path.dentry->d_inode; 837 nd->flags |= LOOKUP_JUMPED; 838 } 839 840 static inline void put_link(struct nameidata *nd) 841 { 842 struct saved *last = nd->stack + --nd->depth; 843 struct inode *inode = last->inode; 844 if (last->cookie && inode->i_op->put_link) 845 inode->i_op->put_link(inode, last->cookie); 846 if (!(nd->flags & LOOKUP_RCU)) 847 path_put(&last->link); 848 } 849 850 int sysctl_protected_symlinks __read_mostly = 0; 851 int sysctl_protected_hardlinks __read_mostly = 0; 852 853 /** 854 * may_follow_link - Check symlink following for unsafe situations 855 * @nd: nameidata pathwalk data 856 * 857 * In the case of the sysctl_protected_symlinks sysctl being enabled, 858 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 859 * in a sticky world-writable directory. This is to protect privileged 860 * processes from failing races against path names that may change out 861 * from under them by way of other users creating malicious symlinks. 862 * It will permit symlinks to be followed only when outside a sticky 863 * world-writable directory, or when the uid of the symlink and follower 864 * match, or when the directory owner matches the symlink's owner. 865 * 866 * Returns 0 if following the symlink is allowed, -ve on error. 867 */ 868 static inline int may_follow_link(struct nameidata *nd) 869 { 870 const struct inode *inode; 871 const struct inode *parent; 872 873 if (!sysctl_protected_symlinks) 874 return 0; 875 876 /* Allowed if owner and follower match. */ 877 inode = nd->stack[0].inode; 878 if (uid_eq(current_cred()->fsuid, inode->i_uid)) 879 return 0; 880 881 /* Allowed if parent directory not sticky and world-writable. */ 882 parent = nd->inode; 883 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 884 return 0; 885 886 /* Allowed if parent directory and link owner match. */ 887 if (uid_eq(parent->i_uid, inode->i_uid)) 888 return 0; 889 890 if (nd->flags & LOOKUP_RCU) 891 return -ECHILD; 892 893 audit_log_link_denied("follow_link", &nd->stack[0].link); 894 return -EACCES; 895 } 896 897 /** 898 * safe_hardlink_source - Check for safe hardlink conditions 899 * @inode: the source inode to hardlink from 900 * 901 * Return false if at least one of the following conditions: 902 * - inode is not a regular file 903 * - inode is setuid 904 * - inode is setgid and group-exec 905 * - access failure for read and write 906 * 907 * Otherwise returns true. 908 */ 909 static bool safe_hardlink_source(struct inode *inode) 910 { 911 umode_t mode = inode->i_mode; 912 913 /* Special files should not get pinned to the filesystem. */ 914 if (!S_ISREG(mode)) 915 return false; 916 917 /* Setuid files should not get pinned to the filesystem. */ 918 if (mode & S_ISUID) 919 return false; 920 921 /* Executable setgid files should not get pinned to the filesystem. */ 922 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 923 return false; 924 925 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 926 if (inode_permission(inode, MAY_READ | MAY_WRITE)) 927 return false; 928 929 return true; 930 } 931 932 /** 933 * may_linkat - Check permissions for creating a hardlink 934 * @link: the source to hardlink from 935 * 936 * Block hardlink when all of: 937 * - sysctl_protected_hardlinks enabled 938 * - fsuid does not match inode 939 * - hardlink source is unsafe (see safe_hardlink_source() above) 940 * - not CAP_FOWNER 941 * 942 * Returns 0 if successful, -ve on error. 943 */ 944 static int may_linkat(struct path *link) 945 { 946 const struct cred *cred; 947 struct inode *inode; 948 949 if (!sysctl_protected_hardlinks) 950 return 0; 951 952 cred = current_cred(); 953 inode = link->dentry->d_inode; 954 955 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 956 * otherwise, it must be a safe source. 957 */ 958 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) || 959 capable(CAP_FOWNER)) 960 return 0; 961 962 audit_log_link_denied("linkat", link); 963 return -EPERM; 964 } 965 966 static __always_inline 967 const char *get_link(struct nameidata *nd) 968 { 969 struct saved *last = nd->stack + nd->depth - 1; 970 struct dentry *dentry = last->link.dentry; 971 struct inode *inode = last->inode; 972 int error; 973 const char *res; 974 975 if (!(nd->flags & LOOKUP_RCU)) { 976 touch_atime(&last->link); 977 cond_resched(); 978 } else if (atime_needs_update(&last->link, inode)) { 979 if (unlikely(unlazy_walk(nd, NULL, 0))) 980 return ERR_PTR(-ECHILD); 981 touch_atime(&last->link); 982 } 983 984 error = security_inode_follow_link(dentry, inode, 985 nd->flags & LOOKUP_RCU); 986 if (unlikely(error)) 987 return ERR_PTR(error); 988 989 nd->last_type = LAST_BIND; 990 res = inode->i_link; 991 if (!res) { 992 if (nd->flags & LOOKUP_RCU) { 993 if (unlikely(unlazy_walk(nd, NULL, 0))) 994 return ERR_PTR(-ECHILD); 995 } 996 res = inode->i_op->follow_link(dentry, &last->cookie); 997 if (IS_ERR_OR_NULL(res)) { 998 last->cookie = NULL; 999 return res; 1000 } 1001 } 1002 if (*res == '/') { 1003 if (nd->flags & LOOKUP_RCU) { 1004 struct dentry *d; 1005 if (!nd->root.mnt) 1006 set_root_rcu(nd); 1007 nd->path = nd->root; 1008 d = nd->path.dentry; 1009 nd->inode = d->d_inode; 1010 nd->seq = nd->root_seq; 1011 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq))) 1012 return ERR_PTR(-ECHILD); 1013 } else { 1014 if (!nd->root.mnt) 1015 set_root(nd); 1016 path_put(&nd->path); 1017 nd->path = nd->root; 1018 path_get(&nd->root); 1019 nd->inode = nd->path.dentry->d_inode; 1020 } 1021 nd->flags |= LOOKUP_JUMPED; 1022 while (unlikely(*++res == '/')) 1023 ; 1024 } 1025 if (!*res) 1026 res = NULL; 1027 return res; 1028 } 1029 1030 /* 1031 * follow_up - Find the mountpoint of path's vfsmount 1032 * 1033 * Given a path, find the mountpoint of its source file system. 1034 * Replace @path with the path of the mountpoint in the parent mount. 1035 * Up is towards /. 1036 * 1037 * Return 1 if we went up a level and 0 if we were already at the 1038 * root. 1039 */ 1040 int follow_up(struct path *path) 1041 { 1042 struct mount *mnt = real_mount(path->mnt); 1043 struct mount *parent; 1044 struct dentry *mountpoint; 1045 1046 read_seqlock_excl(&mount_lock); 1047 parent = mnt->mnt_parent; 1048 if (parent == mnt) { 1049 read_sequnlock_excl(&mount_lock); 1050 return 0; 1051 } 1052 mntget(&parent->mnt); 1053 mountpoint = dget(mnt->mnt_mountpoint); 1054 read_sequnlock_excl(&mount_lock); 1055 dput(path->dentry); 1056 path->dentry = mountpoint; 1057 mntput(path->mnt); 1058 path->mnt = &parent->mnt; 1059 return 1; 1060 } 1061 EXPORT_SYMBOL(follow_up); 1062 1063 /* 1064 * Perform an automount 1065 * - return -EISDIR to tell follow_managed() to stop and return the path we 1066 * were called with. 1067 */ 1068 static int follow_automount(struct path *path, struct nameidata *nd, 1069 bool *need_mntput) 1070 { 1071 struct vfsmount *mnt; 1072 int err; 1073 1074 if (!path->dentry->d_op || !path->dentry->d_op->d_automount) 1075 return -EREMOTE; 1076 1077 /* We don't want to mount if someone's just doing a stat - 1078 * unless they're stat'ing a directory and appended a '/' to 1079 * the name. 1080 * 1081 * We do, however, want to mount if someone wants to open or 1082 * create a file of any type under the mountpoint, wants to 1083 * traverse through the mountpoint or wants to open the 1084 * mounted directory. Also, autofs may mark negative dentries 1085 * as being automount points. These will need the attentions 1086 * of the daemon to instantiate them before they can be used. 1087 */ 1088 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 1089 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 1090 path->dentry->d_inode) 1091 return -EISDIR; 1092 1093 nd->total_link_count++; 1094 if (nd->total_link_count >= 40) 1095 return -ELOOP; 1096 1097 mnt = path->dentry->d_op->d_automount(path); 1098 if (IS_ERR(mnt)) { 1099 /* 1100 * The filesystem is allowed to return -EISDIR here to indicate 1101 * it doesn't want to automount. For instance, autofs would do 1102 * this so that its userspace daemon can mount on this dentry. 1103 * 1104 * However, we can only permit this if it's a terminal point in 1105 * the path being looked up; if it wasn't then the remainder of 1106 * the path is inaccessible and we should say so. 1107 */ 1108 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT)) 1109 return -EREMOTE; 1110 return PTR_ERR(mnt); 1111 } 1112 1113 if (!mnt) /* mount collision */ 1114 return 0; 1115 1116 if (!*need_mntput) { 1117 /* lock_mount() may release path->mnt on error */ 1118 mntget(path->mnt); 1119 *need_mntput = true; 1120 } 1121 err = finish_automount(mnt, path); 1122 1123 switch (err) { 1124 case -EBUSY: 1125 /* Someone else made a mount here whilst we were busy */ 1126 return 0; 1127 case 0: 1128 path_put(path); 1129 path->mnt = mnt; 1130 path->dentry = dget(mnt->mnt_root); 1131 return 0; 1132 default: 1133 return err; 1134 } 1135 1136 } 1137 1138 /* 1139 * Handle a dentry that is managed in some way. 1140 * - Flagged for transit management (autofs) 1141 * - Flagged as mountpoint 1142 * - Flagged as automount point 1143 * 1144 * This may only be called in refwalk mode. 1145 * 1146 * Serialization is taken care of in namespace.c 1147 */ 1148 static int follow_managed(struct path *path, struct nameidata *nd) 1149 { 1150 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */ 1151 unsigned managed; 1152 bool need_mntput = false; 1153 int ret = 0; 1154 1155 /* Given that we're not holding a lock here, we retain the value in a 1156 * local variable for each dentry as we look at it so that we don't see 1157 * the components of that value change under us */ 1158 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1159 managed &= DCACHE_MANAGED_DENTRY, 1160 unlikely(managed != 0)) { 1161 /* Allow the filesystem to manage the transit without i_mutex 1162 * being held. */ 1163 if (managed & DCACHE_MANAGE_TRANSIT) { 1164 BUG_ON(!path->dentry->d_op); 1165 BUG_ON(!path->dentry->d_op->d_manage); 1166 ret = path->dentry->d_op->d_manage(path->dentry, false); 1167 if (ret < 0) 1168 break; 1169 } 1170 1171 /* Transit to a mounted filesystem. */ 1172 if (managed & DCACHE_MOUNTED) { 1173 struct vfsmount *mounted = lookup_mnt(path); 1174 if (mounted) { 1175 dput(path->dentry); 1176 if (need_mntput) 1177 mntput(path->mnt); 1178 path->mnt = mounted; 1179 path->dentry = dget(mounted->mnt_root); 1180 need_mntput = true; 1181 continue; 1182 } 1183 1184 /* Something is mounted on this dentry in another 1185 * namespace and/or whatever was mounted there in this 1186 * namespace got unmounted before lookup_mnt() could 1187 * get it */ 1188 } 1189 1190 /* Handle an automount point */ 1191 if (managed & DCACHE_NEED_AUTOMOUNT) { 1192 ret = follow_automount(path, nd, &need_mntput); 1193 if (ret < 0) 1194 break; 1195 continue; 1196 } 1197 1198 /* We didn't change the current path point */ 1199 break; 1200 } 1201 1202 if (need_mntput && path->mnt == mnt) 1203 mntput(path->mnt); 1204 if (ret == -EISDIR) 1205 ret = 0; 1206 if (need_mntput) 1207 nd->flags |= LOOKUP_JUMPED; 1208 if (unlikely(ret < 0)) 1209 path_put_conditional(path, nd); 1210 return ret; 1211 } 1212 1213 int follow_down_one(struct path *path) 1214 { 1215 struct vfsmount *mounted; 1216 1217 mounted = lookup_mnt(path); 1218 if (mounted) { 1219 dput(path->dentry); 1220 mntput(path->mnt); 1221 path->mnt = mounted; 1222 path->dentry = dget(mounted->mnt_root); 1223 return 1; 1224 } 1225 return 0; 1226 } 1227 EXPORT_SYMBOL(follow_down_one); 1228 1229 static inline int managed_dentry_rcu(struct dentry *dentry) 1230 { 1231 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ? 1232 dentry->d_op->d_manage(dentry, true) : 0; 1233 } 1234 1235 /* 1236 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1237 * we meet a managed dentry that would need blocking. 1238 */ 1239 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1240 struct inode **inode, unsigned *seqp) 1241 { 1242 for (;;) { 1243 struct mount *mounted; 1244 /* 1245 * Don't forget we might have a non-mountpoint managed dentry 1246 * that wants to block transit. 1247 */ 1248 switch (managed_dentry_rcu(path->dentry)) { 1249 case -ECHILD: 1250 default: 1251 return false; 1252 case -EISDIR: 1253 return true; 1254 case 0: 1255 break; 1256 } 1257 1258 if (!d_mountpoint(path->dentry)) 1259 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1260 1261 mounted = __lookup_mnt(path->mnt, path->dentry); 1262 if (!mounted) 1263 break; 1264 path->mnt = &mounted->mnt; 1265 path->dentry = mounted->mnt.mnt_root; 1266 nd->flags |= LOOKUP_JUMPED; 1267 *seqp = read_seqcount_begin(&path->dentry->d_seq); 1268 /* 1269 * Update the inode too. We don't need to re-check the 1270 * dentry sequence number here after this d_inode read, 1271 * because a mount-point is always pinned. 1272 */ 1273 *inode = path->dentry->d_inode; 1274 } 1275 return !read_seqretry(&mount_lock, nd->m_seq) && 1276 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1277 } 1278 1279 static int follow_dotdot_rcu(struct nameidata *nd) 1280 { 1281 struct inode *inode = nd->inode; 1282 if (!nd->root.mnt) 1283 set_root_rcu(nd); 1284 1285 while (1) { 1286 if (path_equal(&nd->path, &nd->root)) 1287 break; 1288 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1289 struct dentry *old = nd->path.dentry; 1290 struct dentry *parent = old->d_parent; 1291 unsigned seq; 1292 1293 inode = parent->d_inode; 1294 seq = read_seqcount_begin(&parent->d_seq); 1295 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq))) 1296 return -ECHILD; 1297 nd->path.dentry = parent; 1298 nd->seq = seq; 1299 break; 1300 } else { 1301 struct mount *mnt = real_mount(nd->path.mnt); 1302 struct mount *mparent = mnt->mnt_parent; 1303 struct dentry *mountpoint = mnt->mnt_mountpoint; 1304 struct inode *inode2 = mountpoint->d_inode; 1305 unsigned seq = read_seqcount_begin(&mountpoint->d_seq); 1306 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1307 return -ECHILD; 1308 if (&mparent->mnt == nd->path.mnt) 1309 break; 1310 /* we know that mountpoint was pinned */ 1311 nd->path.dentry = mountpoint; 1312 nd->path.mnt = &mparent->mnt; 1313 inode = inode2; 1314 nd->seq = seq; 1315 } 1316 } 1317 while (unlikely(d_mountpoint(nd->path.dentry))) { 1318 struct mount *mounted; 1319 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry); 1320 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1321 return -ECHILD; 1322 if (!mounted) 1323 break; 1324 nd->path.mnt = &mounted->mnt; 1325 nd->path.dentry = mounted->mnt.mnt_root; 1326 inode = nd->path.dentry->d_inode; 1327 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1328 } 1329 nd->inode = inode; 1330 return 0; 1331 } 1332 1333 /* 1334 * Follow down to the covering mount currently visible to userspace. At each 1335 * point, the filesystem owning that dentry may be queried as to whether the 1336 * caller is permitted to proceed or not. 1337 */ 1338 int follow_down(struct path *path) 1339 { 1340 unsigned managed; 1341 int ret; 1342 1343 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1344 unlikely(managed & DCACHE_MANAGED_DENTRY)) { 1345 /* Allow the filesystem to manage the transit without i_mutex 1346 * being held. 1347 * 1348 * We indicate to the filesystem if someone is trying to mount 1349 * something here. This gives autofs the chance to deny anyone 1350 * other than its daemon the right to mount on its 1351 * superstructure. 1352 * 1353 * The filesystem may sleep at this point. 1354 */ 1355 if (managed & DCACHE_MANAGE_TRANSIT) { 1356 BUG_ON(!path->dentry->d_op); 1357 BUG_ON(!path->dentry->d_op->d_manage); 1358 ret = path->dentry->d_op->d_manage( 1359 path->dentry, false); 1360 if (ret < 0) 1361 return ret == -EISDIR ? 0 : ret; 1362 } 1363 1364 /* Transit to a mounted filesystem. */ 1365 if (managed & DCACHE_MOUNTED) { 1366 struct vfsmount *mounted = lookup_mnt(path); 1367 if (!mounted) 1368 break; 1369 dput(path->dentry); 1370 mntput(path->mnt); 1371 path->mnt = mounted; 1372 path->dentry = dget(mounted->mnt_root); 1373 continue; 1374 } 1375 1376 /* Don't handle automount points here */ 1377 break; 1378 } 1379 return 0; 1380 } 1381 EXPORT_SYMBOL(follow_down); 1382 1383 /* 1384 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() 1385 */ 1386 static void follow_mount(struct path *path) 1387 { 1388 while (d_mountpoint(path->dentry)) { 1389 struct vfsmount *mounted = lookup_mnt(path); 1390 if (!mounted) 1391 break; 1392 dput(path->dentry); 1393 mntput(path->mnt); 1394 path->mnt = mounted; 1395 path->dentry = dget(mounted->mnt_root); 1396 } 1397 } 1398 1399 static void follow_dotdot(struct nameidata *nd) 1400 { 1401 if (!nd->root.mnt) 1402 set_root(nd); 1403 1404 while(1) { 1405 struct dentry *old = nd->path.dentry; 1406 1407 if (nd->path.dentry == nd->root.dentry && 1408 nd->path.mnt == nd->root.mnt) { 1409 break; 1410 } 1411 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1412 /* rare case of legitimate dget_parent()... */ 1413 nd->path.dentry = dget_parent(nd->path.dentry); 1414 dput(old); 1415 break; 1416 } 1417 if (!follow_up(&nd->path)) 1418 break; 1419 } 1420 follow_mount(&nd->path); 1421 nd->inode = nd->path.dentry->d_inode; 1422 } 1423 1424 /* 1425 * This looks up the name in dcache, possibly revalidates the old dentry and 1426 * allocates a new one if not found or not valid. In the need_lookup argument 1427 * returns whether i_op->lookup is necessary. 1428 * 1429 * dir->d_inode->i_mutex must be held 1430 */ 1431 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir, 1432 unsigned int flags, bool *need_lookup) 1433 { 1434 struct dentry *dentry; 1435 int error; 1436 1437 *need_lookup = false; 1438 dentry = d_lookup(dir, name); 1439 if (dentry) { 1440 if (dentry->d_flags & DCACHE_OP_REVALIDATE) { 1441 error = d_revalidate(dentry, flags); 1442 if (unlikely(error <= 0)) { 1443 if (error < 0) { 1444 dput(dentry); 1445 return ERR_PTR(error); 1446 } else { 1447 d_invalidate(dentry); 1448 dput(dentry); 1449 dentry = NULL; 1450 } 1451 } 1452 } 1453 } 1454 1455 if (!dentry) { 1456 dentry = d_alloc(dir, name); 1457 if (unlikely(!dentry)) 1458 return ERR_PTR(-ENOMEM); 1459 1460 *need_lookup = true; 1461 } 1462 return dentry; 1463 } 1464 1465 /* 1466 * Call i_op->lookup on the dentry. The dentry must be negative and 1467 * unhashed. 1468 * 1469 * dir->d_inode->i_mutex must be held 1470 */ 1471 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry, 1472 unsigned int flags) 1473 { 1474 struct dentry *old; 1475 1476 /* Don't create child dentry for a dead directory. */ 1477 if (unlikely(IS_DEADDIR(dir))) { 1478 dput(dentry); 1479 return ERR_PTR(-ENOENT); 1480 } 1481 1482 old = dir->i_op->lookup(dir, dentry, flags); 1483 if (unlikely(old)) { 1484 dput(dentry); 1485 dentry = old; 1486 } 1487 return dentry; 1488 } 1489 1490 static struct dentry *__lookup_hash(struct qstr *name, 1491 struct dentry *base, unsigned int flags) 1492 { 1493 bool need_lookup; 1494 struct dentry *dentry; 1495 1496 dentry = lookup_dcache(name, base, flags, &need_lookup); 1497 if (!need_lookup) 1498 return dentry; 1499 1500 return lookup_real(base->d_inode, dentry, flags); 1501 } 1502 1503 /* 1504 * It's more convoluted than I'd like it to be, but... it's still fairly 1505 * small and for now I'd prefer to have fast path as straight as possible. 1506 * It _is_ time-critical. 1507 */ 1508 static int lookup_fast(struct nameidata *nd, 1509 struct path *path, struct inode **inode, 1510 unsigned *seqp) 1511 { 1512 struct vfsmount *mnt = nd->path.mnt; 1513 struct dentry *dentry, *parent = nd->path.dentry; 1514 int need_reval = 1; 1515 int status = 1; 1516 int err; 1517 1518 /* 1519 * Rename seqlock is not required here because in the off chance 1520 * of a false negative due to a concurrent rename, we're going to 1521 * do the non-racy lookup, below. 1522 */ 1523 if (nd->flags & LOOKUP_RCU) { 1524 unsigned seq; 1525 bool negative; 1526 dentry = __d_lookup_rcu(parent, &nd->last, &seq); 1527 if (!dentry) 1528 goto unlazy; 1529 1530 /* 1531 * This sequence count validates that the inode matches 1532 * the dentry name information from lookup. 1533 */ 1534 *inode = d_backing_inode(dentry); 1535 negative = d_is_negative(dentry); 1536 if (read_seqcount_retry(&dentry->d_seq, seq)) 1537 return -ECHILD; 1538 if (negative) 1539 return -ENOENT; 1540 1541 /* 1542 * This sequence count validates that the parent had no 1543 * changes while we did the lookup of the dentry above. 1544 * 1545 * The memory barrier in read_seqcount_begin of child is 1546 * enough, we can use __read_seqcount_retry here. 1547 */ 1548 if (__read_seqcount_retry(&parent->d_seq, nd->seq)) 1549 return -ECHILD; 1550 1551 *seqp = seq; 1552 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) { 1553 status = d_revalidate(dentry, nd->flags); 1554 if (unlikely(status <= 0)) { 1555 if (status != -ECHILD) 1556 need_reval = 0; 1557 goto unlazy; 1558 } 1559 } 1560 path->mnt = mnt; 1561 path->dentry = dentry; 1562 if (likely(__follow_mount_rcu(nd, path, inode, seqp))) 1563 return 0; 1564 unlazy: 1565 if (unlazy_walk(nd, dentry, seq)) 1566 return -ECHILD; 1567 } else { 1568 dentry = __d_lookup(parent, &nd->last); 1569 } 1570 1571 if (unlikely(!dentry)) 1572 goto need_lookup; 1573 1574 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval) 1575 status = d_revalidate(dentry, nd->flags); 1576 if (unlikely(status <= 0)) { 1577 if (status < 0) { 1578 dput(dentry); 1579 return status; 1580 } 1581 d_invalidate(dentry); 1582 dput(dentry); 1583 goto need_lookup; 1584 } 1585 1586 if (unlikely(d_is_negative(dentry))) { 1587 dput(dentry); 1588 return -ENOENT; 1589 } 1590 path->mnt = mnt; 1591 path->dentry = dentry; 1592 err = follow_managed(path, nd); 1593 if (likely(!err)) 1594 *inode = d_backing_inode(path->dentry); 1595 return err; 1596 1597 need_lookup: 1598 return 1; 1599 } 1600 1601 /* Fast lookup failed, do it the slow way */ 1602 static int lookup_slow(struct nameidata *nd, struct path *path) 1603 { 1604 struct dentry *dentry, *parent; 1605 1606 parent = nd->path.dentry; 1607 BUG_ON(nd->inode != parent->d_inode); 1608 1609 mutex_lock(&parent->d_inode->i_mutex); 1610 dentry = __lookup_hash(&nd->last, parent, nd->flags); 1611 mutex_unlock(&parent->d_inode->i_mutex); 1612 if (IS_ERR(dentry)) 1613 return PTR_ERR(dentry); 1614 path->mnt = nd->path.mnt; 1615 path->dentry = dentry; 1616 return follow_managed(path, nd); 1617 } 1618 1619 static inline int may_lookup(struct nameidata *nd) 1620 { 1621 if (nd->flags & LOOKUP_RCU) { 1622 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1623 if (err != -ECHILD) 1624 return err; 1625 if (unlazy_walk(nd, NULL, 0)) 1626 return -ECHILD; 1627 } 1628 return inode_permission(nd->inode, MAY_EXEC); 1629 } 1630 1631 static inline int handle_dots(struct nameidata *nd, int type) 1632 { 1633 if (type == LAST_DOTDOT) { 1634 if (nd->flags & LOOKUP_RCU) { 1635 return follow_dotdot_rcu(nd); 1636 } else 1637 follow_dotdot(nd); 1638 } 1639 return 0; 1640 } 1641 1642 static int pick_link(struct nameidata *nd, struct path *link, 1643 struct inode *inode, unsigned seq) 1644 { 1645 int error; 1646 struct saved *last; 1647 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) { 1648 path_to_nameidata(link, nd); 1649 return -ELOOP; 1650 } 1651 if (!(nd->flags & LOOKUP_RCU)) { 1652 if (link->mnt == nd->path.mnt) 1653 mntget(link->mnt); 1654 } 1655 error = nd_alloc_stack(nd); 1656 if (unlikely(error)) { 1657 if (error == -ECHILD) { 1658 if (unlikely(unlazy_link(nd, link, seq))) 1659 return -ECHILD; 1660 error = nd_alloc_stack(nd); 1661 } 1662 if (error) { 1663 path_put(link); 1664 return error; 1665 } 1666 } 1667 1668 last = nd->stack + nd->depth++; 1669 last->link = *link; 1670 last->cookie = NULL; 1671 last->inode = inode; 1672 last->seq = seq; 1673 return 1; 1674 } 1675 1676 /* 1677 * Do we need to follow links? We _really_ want to be able 1678 * to do this check without having to look at inode->i_op, 1679 * so we keep a cache of "no, this doesn't need follow_link" 1680 * for the common case. 1681 */ 1682 static inline int should_follow_link(struct nameidata *nd, struct path *link, 1683 int follow, 1684 struct inode *inode, unsigned seq) 1685 { 1686 if (likely(!d_is_symlink(link->dentry))) 1687 return 0; 1688 if (!follow) 1689 return 0; 1690 return pick_link(nd, link, inode, seq); 1691 } 1692 1693 enum {WALK_GET = 1, WALK_PUT = 2}; 1694 1695 static int walk_component(struct nameidata *nd, int flags) 1696 { 1697 struct path path; 1698 struct inode *inode; 1699 unsigned seq; 1700 int err; 1701 /* 1702 * "." and ".." are special - ".." especially so because it has 1703 * to be able to know about the current root directory and 1704 * parent relationships. 1705 */ 1706 if (unlikely(nd->last_type != LAST_NORM)) { 1707 err = handle_dots(nd, nd->last_type); 1708 if (flags & WALK_PUT) 1709 put_link(nd); 1710 return err; 1711 } 1712 err = lookup_fast(nd, &path, &inode, &seq); 1713 if (unlikely(err)) { 1714 if (err < 0) 1715 return err; 1716 1717 err = lookup_slow(nd, &path); 1718 if (err < 0) 1719 return err; 1720 1721 inode = d_backing_inode(path.dentry); 1722 seq = 0; /* we are already out of RCU mode */ 1723 err = -ENOENT; 1724 if (d_is_negative(path.dentry)) 1725 goto out_path_put; 1726 } 1727 1728 if (flags & WALK_PUT) 1729 put_link(nd); 1730 err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq); 1731 if (unlikely(err)) 1732 return err; 1733 path_to_nameidata(&path, nd); 1734 nd->inode = inode; 1735 nd->seq = seq; 1736 return 0; 1737 1738 out_path_put: 1739 path_to_nameidata(&path, nd); 1740 return err; 1741 } 1742 1743 /* 1744 * We can do the critical dentry name comparison and hashing 1745 * operations one word at a time, but we are limited to: 1746 * 1747 * - Architectures with fast unaligned word accesses. We could 1748 * do a "get_unaligned()" if this helps and is sufficiently 1749 * fast. 1750 * 1751 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 1752 * do not trap on the (extremely unlikely) case of a page 1753 * crossing operation. 1754 * 1755 * - Furthermore, we need an efficient 64-bit compile for the 1756 * 64-bit case in order to generate the "number of bytes in 1757 * the final mask". Again, that could be replaced with a 1758 * efficient population count instruction or similar. 1759 */ 1760 #ifdef CONFIG_DCACHE_WORD_ACCESS 1761 1762 #include <asm/word-at-a-time.h> 1763 1764 #ifdef CONFIG_64BIT 1765 1766 static inline unsigned int fold_hash(unsigned long hash) 1767 { 1768 return hash_64(hash, 32); 1769 } 1770 1771 #else /* 32-bit case */ 1772 1773 #define fold_hash(x) (x) 1774 1775 #endif 1776 1777 unsigned int full_name_hash(const unsigned char *name, unsigned int len) 1778 { 1779 unsigned long a, mask; 1780 unsigned long hash = 0; 1781 1782 for (;;) { 1783 a = load_unaligned_zeropad(name); 1784 if (len < sizeof(unsigned long)) 1785 break; 1786 hash += a; 1787 hash *= 9; 1788 name += sizeof(unsigned long); 1789 len -= sizeof(unsigned long); 1790 if (!len) 1791 goto done; 1792 } 1793 mask = bytemask_from_count(len); 1794 hash += mask & a; 1795 done: 1796 return fold_hash(hash); 1797 } 1798 EXPORT_SYMBOL(full_name_hash); 1799 1800 /* 1801 * Calculate the length and hash of the path component, and 1802 * return the "hash_len" as the result. 1803 */ 1804 static inline u64 hash_name(const char *name) 1805 { 1806 unsigned long a, b, adata, bdata, mask, hash, len; 1807 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1808 1809 hash = a = 0; 1810 len = -sizeof(unsigned long); 1811 do { 1812 hash = (hash + a) * 9; 1813 len += sizeof(unsigned long); 1814 a = load_unaligned_zeropad(name+len); 1815 b = a ^ REPEAT_BYTE('/'); 1816 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 1817 1818 adata = prep_zero_mask(a, adata, &constants); 1819 bdata = prep_zero_mask(b, bdata, &constants); 1820 1821 mask = create_zero_mask(adata | bdata); 1822 1823 hash += a & zero_bytemask(mask); 1824 len += find_zero(mask); 1825 return hashlen_create(fold_hash(hash), len); 1826 } 1827 1828 #else 1829 1830 unsigned int full_name_hash(const unsigned char *name, unsigned int len) 1831 { 1832 unsigned long hash = init_name_hash(); 1833 while (len--) 1834 hash = partial_name_hash(*name++, hash); 1835 return end_name_hash(hash); 1836 } 1837 EXPORT_SYMBOL(full_name_hash); 1838 1839 /* 1840 * We know there's a real path component here of at least 1841 * one character. 1842 */ 1843 static inline u64 hash_name(const char *name) 1844 { 1845 unsigned long hash = init_name_hash(); 1846 unsigned long len = 0, c; 1847 1848 c = (unsigned char)*name; 1849 do { 1850 len++; 1851 hash = partial_name_hash(c, hash); 1852 c = (unsigned char)name[len]; 1853 } while (c && c != '/'); 1854 return hashlen_create(end_name_hash(hash), len); 1855 } 1856 1857 #endif 1858 1859 /* 1860 * Name resolution. 1861 * This is the basic name resolution function, turning a pathname into 1862 * the final dentry. We expect 'base' to be positive and a directory. 1863 * 1864 * Returns 0 and nd will have valid dentry and mnt on success. 1865 * Returns error and drops reference to input namei data on failure. 1866 */ 1867 static int link_path_walk(const char *name, struct nameidata *nd) 1868 { 1869 int err; 1870 1871 while (*name=='/') 1872 name++; 1873 if (!*name) 1874 return 0; 1875 1876 /* At this point we know we have a real path component. */ 1877 for(;;) { 1878 u64 hash_len; 1879 int type; 1880 1881 err = may_lookup(nd); 1882 if (err) 1883 return err; 1884 1885 hash_len = hash_name(name); 1886 1887 type = LAST_NORM; 1888 if (name[0] == '.') switch (hashlen_len(hash_len)) { 1889 case 2: 1890 if (name[1] == '.') { 1891 type = LAST_DOTDOT; 1892 nd->flags |= LOOKUP_JUMPED; 1893 } 1894 break; 1895 case 1: 1896 type = LAST_DOT; 1897 } 1898 if (likely(type == LAST_NORM)) { 1899 struct dentry *parent = nd->path.dentry; 1900 nd->flags &= ~LOOKUP_JUMPED; 1901 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 1902 struct qstr this = { { .hash_len = hash_len }, .name = name }; 1903 err = parent->d_op->d_hash(parent, &this); 1904 if (err < 0) 1905 return err; 1906 hash_len = this.hash_len; 1907 name = this.name; 1908 } 1909 } 1910 1911 nd->last.hash_len = hash_len; 1912 nd->last.name = name; 1913 nd->last_type = type; 1914 1915 name += hashlen_len(hash_len); 1916 if (!*name) 1917 goto OK; 1918 /* 1919 * If it wasn't NUL, we know it was '/'. Skip that 1920 * slash, and continue until no more slashes. 1921 */ 1922 do { 1923 name++; 1924 } while (unlikely(*name == '/')); 1925 if (unlikely(!*name)) { 1926 OK: 1927 /* pathname body, done */ 1928 if (!nd->depth) 1929 return 0; 1930 name = nd->stack[nd->depth - 1].name; 1931 /* trailing symlink, done */ 1932 if (!name) 1933 return 0; 1934 /* last component of nested symlink */ 1935 err = walk_component(nd, WALK_GET | WALK_PUT); 1936 } else { 1937 err = walk_component(nd, WALK_GET); 1938 } 1939 if (err < 0) 1940 return err; 1941 1942 if (err) { 1943 const char *s = get_link(nd); 1944 1945 if (unlikely(IS_ERR(s))) 1946 return PTR_ERR(s); 1947 err = 0; 1948 if (unlikely(!s)) { 1949 /* jumped */ 1950 put_link(nd); 1951 } else { 1952 nd->stack[nd->depth - 1].name = name; 1953 name = s; 1954 continue; 1955 } 1956 } 1957 if (unlikely(!d_can_lookup(nd->path.dentry))) { 1958 if (nd->flags & LOOKUP_RCU) { 1959 if (unlazy_walk(nd, NULL, 0)) 1960 return -ECHILD; 1961 } 1962 return -ENOTDIR; 1963 } 1964 } 1965 } 1966 1967 static const char *path_init(struct nameidata *nd, unsigned flags) 1968 { 1969 int retval = 0; 1970 const char *s = nd->name->name; 1971 1972 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 1973 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT; 1974 nd->depth = 0; 1975 nd->total_link_count = 0; 1976 if (flags & LOOKUP_ROOT) { 1977 struct dentry *root = nd->root.dentry; 1978 struct inode *inode = root->d_inode; 1979 if (*s) { 1980 if (!d_can_lookup(root)) 1981 return ERR_PTR(-ENOTDIR); 1982 retval = inode_permission(inode, MAY_EXEC); 1983 if (retval) 1984 return ERR_PTR(retval); 1985 } 1986 nd->path = nd->root; 1987 nd->inode = inode; 1988 if (flags & LOOKUP_RCU) { 1989 rcu_read_lock(); 1990 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1991 nd->root_seq = nd->seq; 1992 nd->m_seq = read_seqbegin(&mount_lock); 1993 } else { 1994 path_get(&nd->path); 1995 } 1996 return s; 1997 } 1998 1999 nd->root.mnt = NULL; 2000 2001 nd->m_seq = read_seqbegin(&mount_lock); 2002 if (*s == '/') { 2003 if (flags & LOOKUP_RCU) { 2004 rcu_read_lock(); 2005 set_root_rcu(nd); 2006 nd->seq = nd->root_seq; 2007 } else { 2008 set_root(nd); 2009 path_get(&nd->root); 2010 } 2011 nd->path = nd->root; 2012 } else if (nd->dfd == AT_FDCWD) { 2013 if (flags & LOOKUP_RCU) { 2014 struct fs_struct *fs = current->fs; 2015 unsigned seq; 2016 2017 rcu_read_lock(); 2018 2019 do { 2020 seq = read_seqcount_begin(&fs->seq); 2021 nd->path = fs->pwd; 2022 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2023 } while (read_seqcount_retry(&fs->seq, seq)); 2024 } else { 2025 get_fs_pwd(current->fs, &nd->path); 2026 } 2027 } else { 2028 /* Caller must check execute permissions on the starting path component */ 2029 struct fd f = fdget_raw(nd->dfd); 2030 struct dentry *dentry; 2031 2032 if (!f.file) 2033 return ERR_PTR(-EBADF); 2034 2035 dentry = f.file->f_path.dentry; 2036 2037 if (*s) { 2038 if (!d_can_lookup(dentry)) { 2039 fdput(f); 2040 return ERR_PTR(-ENOTDIR); 2041 } 2042 } 2043 2044 nd->path = f.file->f_path; 2045 if (flags & LOOKUP_RCU) { 2046 rcu_read_lock(); 2047 nd->inode = nd->path.dentry->d_inode; 2048 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2049 } else { 2050 path_get(&nd->path); 2051 nd->inode = nd->path.dentry->d_inode; 2052 } 2053 fdput(f); 2054 return s; 2055 } 2056 2057 nd->inode = nd->path.dentry->d_inode; 2058 if (!(flags & LOOKUP_RCU)) 2059 return s; 2060 if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq))) 2061 return s; 2062 if (!(nd->flags & LOOKUP_ROOT)) 2063 nd->root.mnt = NULL; 2064 rcu_read_unlock(); 2065 return ERR_PTR(-ECHILD); 2066 } 2067 2068 static const char *trailing_symlink(struct nameidata *nd) 2069 { 2070 const char *s; 2071 int error = may_follow_link(nd); 2072 if (unlikely(error)) 2073 return ERR_PTR(error); 2074 nd->flags |= LOOKUP_PARENT; 2075 nd->stack[0].name = NULL; 2076 s = get_link(nd); 2077 return s ? s : ""; 2078 } 2079 2080 static inline int lookup_last(struct nameidata *nd) 2081 { 2082 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 2083 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2084 2085 nd->flags &= ~LOOKUP_PARENT; 2086 return walk_component(nd, 2087 nd->flags & LOOKUP_FOLLOW 2088 ? nd->depth 2089 ? WALK_PUT | WALK_GET 2090 : WALK_GET 2091 : 0); 2092 } 2093 2094 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2095 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path) 2096 { 2097 const char *s = path_init(nd, flags); 2098 int err; 2099 2100 if (IS_ERR(s)) 2101 return PTR_ERR(s); 2102 while (!(err = link_path_walk(s, nd)) 2103 && ((err = lookup_last(nd)) > 0)) { 2104 s = trailing_symlink(nd); 2105 if (IS_ERR(s)) { 2106 err = PTR_ERR(s); 2107 break; 2108 } 2109 } 2110 if (!err) 2111 err = complete_walk(nd); 2112 2113 if (!err && nd->flags & LOOKUP_DIRECTORY) 2114 if (!d_can_lookup(nd->path.dentry)) 2115 err = -ENOTDIR; 2116 if (!err) { 2117 *path = nd->path; 2118 nd->path.mnt = NULL; 2119 nd->path.dentry = NULL; 2120 } 2121 terminate_walk(nd); 2122 return err; 2123 } 2124 2125 static int filename_lookup(int dfd, struct filename *name, unsigned flags, 2126 struct path *path, struct path *root) 2127 { 2128 int retval; 2129 struct nameidata nd; 2130 if (IS_ERR(name)) 2131 return PTR_ERR(name); 2132 if (unlikely(root)) { 2133 nd.root = *root; 2134 flags |= LOOKUP_ROOT; 2135 } 2136 set_nameidata(&nd, dfd, name); 2137 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path); 2138 if (unlikely(retval == -ECHILD)) 2139 retval = path_lookupat(&nd, flags, path); 2140 if (unlikely(retval == -ESTALE)) 2141 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path); 2142 2143 if (likely(!retval)) 2144 audit_inode(name, path->dentry, flags & LOOKUP_PARENT); 2145 restore_nameidata(); 2146 putname(name); 2147 return retval; 2148 } 2149 2150 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2151 static int path_parentat(struct nameidata *nd, unsigned flags, 2152 struct path *parent) 2153 { 2154 const char *s = path_init(nd, flags); 2155 int err; 2156 if (IS_ERR(s)) 2157 return PTR_ERR(s); 2158 err = link_path_walk(s, nd); 2159 if (!err) 2160 err = complete_walk(nd); 2161 if (!err) { 2162 *parent = nd->path; 2163 nd->path.mnt = NULL; 2164 nd->path.dentry = NULL; 2165 } 2166 terminate_walk(nd); 2167 return err; 2168 } 2169 2170 static struct filename *filename_parentat(int dfd, struct filename *name, 2171 unsigned int flags, struct path *parent, 2172 struct qstr *last, int *type) 2173 { 2174 int retval; 2175 struct nameidata nd; 2176 2177 if (IS_ERR(name)) 2178 return name; 2179 set_nameidata(&nd, dfd, name); 2180 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent); 2181 if (unlikely(retval == -ECHILD)) 2182 retval = path_parentat(&nd, flags, parent); 2183 if (unlikely(retval == -ESTALE)) 2184 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent); 2185 if (likely(!retval)) { 2186 *last = nd.last; 2187 *type = nd.last_type; 2188 audit_inode(name, parent->dentry, LOOKUP_PARENT); 2189 } else { 2190 putname(name); 2191 name = ERR_PTR(retval); 2192 } 2193 restore_nameidata(); 2194 return name; 2195 } 2196 2197 /* does lookup, returns the object with parent locked */ 2198 struct dentry *kern_path_locked(const char *name, struct path *path) 2199 { 2200 struct filename *filename; 2201 struct dentry *d; 2202 struct qstr last; 2203 int type; 2204 2205 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path, 2206 &last, &type); 2207 if (IS_ERR(filename)) 2208 return ERR_CAST(filename); 2209 if (unlikely(type != LAST_NORM)) { 2210 path_put(path); 2211 putname(filename); 2212 return ERR_PTR(-EINVAL); 2213 } 2214 mutex_lock_nested(&path->dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2215 d = __lookup_hash(&last, path->dentry, 0); 2216 if (IS_ERR(d)) { 2217 mutex_unlock(&path->dentry->d_inode->i_mutex); 2218 path_put(path); 2219 } 2220 putname(filename); 2221 return d; 2222 } 2223 2224 int kern_path(const char *name, unsigned int flags, struct path *path) 2225 { 2226 return filename_lookup(AT_FDCWD, getname_kernel(name), 2227 flags, path, NULL); 2228 } 2229 EXPORT_SYMBOL(kern_path); 2230 2231 /** 2232 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2233 * @dentry: pointer to dentry of the base directory 2234 * @mnt: pointer to vfs mount of the base directory 2235 * @name: pointer to file name 2236 * @flags: lookup flags 2237 * @path: pointer to struct path to fill 2238 */ 2239 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2240 const char *name, unsigned int flags, 2241 struct path *path) 2242 { 2243 struct path root = {.mnt = mnt, .dentry = dentry}; 2244 /* the first argument of filename_lookup() is ignored with root */ 2245 return filename_lookup(AT_FDCWD, getname_kernel(name), 2246 flags , path, &root); 2247 } 2248 EXPORT_SYMBOL(vfs_path_lookup); 2249 2250 /** 2251 * lookup_one_len - filesystem helper to lookup single pathname component 2252 * @name: pathname component to lookup 2253 * @base: base directory to lookup from 2254 * @len: maximum length @len should be interpreted to 2255 * 2256 * Note that this routine is purely a helper for filesystem usage and should 2257 * not be called by generic code. 2258 */ 2259 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2260 { 2261 struct qstr this; 2262 unsigned int c; 2263 int err; 2264 2265 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex)); 2266 2267 this.name = name; 2268 this.len = len; 2269 this.hash = full_name_hash(name, len); 2270 if (!len) 2271 return ERR_PTR(-EACCES); 2272 2273 if (unlikely(name[0] == '.')) { 2274 if (len < 2 || (len == 2 && name[1] == '.')) 2275 return ERR_PTR(-EACCES); 2276 } 2277 2278 while (len--) { 2279 c = *(const unsigned char *)name++; 2280 if (c == '/' || c == '\0') 2281 return ERR_PTR(-EACCES); 2282 } 2283 /* 2284 * See if the low-level filesystem might want 2285 * to use its own hash.. 2286 */ 2287 if (base->d_flags & DCACHE_OP_HASH) { 2288 int err = base->d_op->d_hash(base, &this); 2289 if (err < 0) 2290 return ERR_PTR(err); 2291 } 2292 2293 err = inode_permission(base->d_inode, MAY_EXEC); 2294 if (err) 2295 return ERR_PTR(err); 2296 2297 return __lookup_hash(&this, base, 0); 2298 } 2299 EXPORT_SYMBOL(lookup_one_len); 2300 2301 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2302 struct path *path, int *empty) 2303 { 2304 return filename_lookup(dfd, getname_flags(name, flags, empty), 2305 flags, path, NULL); 2306 } 2307 EXPORT_SYMBOL(user_path_at_empty); 2308 2309 /* 2310 * NB: most callers don't do anything directly with the reference to the 2311 * to struct filename, but the nd->last pointer points into the name string 2312 * allocated by getname. So we must hold the reference to it until all 2313 * path-walking is complete. 2314 */ 2315 static inline struct filename * 2316 user_path_parent(int dfd, const char __user *path, 2317 struct path *parent, 2318 struct qstr *last, 2319 int *type, 2320 unsigned int flags) 2321 { 2322 /* only LOOKUP_REVAL is allowed in extra flags */ 2323 return filename_parentat(dfd, getname(path), flags & LOOKUP_REVAL, 2324 parent, last, type); 2325 } 2326 2327 /** 2328 * mountpoint_last - look up last component for umount 2329 * @nd: pathwalk nameidata - currently pointing at parent directory of "last" 2330 * @path: pointer to container for result 2331 * 2332 * This is a special lookup_last function just for umount. In this case, we 2333 * need to resolve the path without doing any revalidation. 2334 * 2335 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since 2336 * mountpoints are always pinned in the dcache, their ancestors are too. Thus, 2337 * in almost all cases, this lookup will be served out of the dcache. The only 2338 * cases where it won't are if nd->last refers to a symlink or the path is 2339 * bogus and it doesn't exist. 2340 * 2341 * Returns: 2342 * -error: if there was an error during lookup. This includes -ENOENT if the 2343 * lookup found a negative dentry. The nd->path reference will also be 2344 * put in this case. 2345 * 2346 * 0: if we successfully resolved nd->path and found it to not to be a 2347 * symlink that needs to be followed. "path" will also be populated. 2348 * The nd->path reference will also be put. 2349 * 2350 * 1: if we successfully resolved nd->last and found it to be a symlink 2351 * that needs to be followed. "path" will be populated with the path 2352 * to the link, and nd->path will *not* be put. 2353 */ 2354 static int 2355 mountpoint_last(struct nameidata *nd, struct path *path) 2356 { 2357 int error = 0; 2358 struct dentry *dentry; 2359 struct dentry *dir = nd->path.dentry; 2360 2361 /* If we're in rcuwalk, drop out of it to handle last component */ 2362 if (nd->flags & LOOKUP_RCU) { 2363 if (unlazy_walk(nd, NULL, 0)) 2364 return -ECHILD; 2365 } 2366 2367 nd->flags &= ~LOOKUP_PARENT; 2368 2369 if (unlikely(nd->last_type != LAST_NORM)) { 2370 error = handle_dots(nd, nd->last_type); 2371 if (error) 2372 return error; 2373 dentry = dget(nd->path.dentry); 2374 goto done; 2375 } 2376 2377 mutex_lock(&dir->d_inode->i_mutex); 2378 dentry = d_lookup(dir, &nd->last); 2379 if (!dentry) { 2380 /* 2381 * No cached dentry. Mounted dentries are pinned in the cache, 2382 * so that means that this dentry is probably a symlink or the 2383 * path doesn't actually point to a mounted dentry. 2384 */ 2385 dentry = d_alloc(dir, &nd->last); 2386 if (!dentry) { 2387 mutex_unlock(&dir->d_inode->i_mutex); 2388 return -ENOMEM; 2389 } 2390 dentry = lookup_real(dir->d_inode, dentry, nd->flags); 2391 if (IS_ERR(dentry)) { 2392 mutex_unlock(&dir->d_inode->i_mutex); 2393 return PTR_ERR(dentry); 2394 } 2395 } 2396 mutex_unlock(&dir->d_inode->i_mutex); 2397 2398 done: 2399 if (d_is_negative(dentry)) { 2400 dput(dentry); 2401 return -ENOENT; 2402 } 2403 if (nd->depth) 2404 put_link(nd); 2405 path->dentry = dentry; 2406 path->mnt = nd->path.mnt; 2407 error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW, 2408 d_backing_inode(dentry), 0); 2409 if (unlikely(error)) 2410 return error; 2411 mntget(path->mnt); 2412 follow_mount(path); 2413 return 0; 2414 } 2415 2416 /** 2417 * path_mountpoint - look up a path to be umounted 2418 * @nameidata: lookup context 2419 * @flags: lookup flags 2420 * @path: pointer to container for result 2421 * 2422 * Look up the given name, but don't attempt to revalidate the last component. 2423 * Returns 0 and "path" will be valid on success; Returns error otherwise. 2424 */ 2425 static int 2426 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path) 2427 { 2428 const char *s = path_init(nd, flags); 2429 int err; 2430 if (IS_ERR(s)) 2431 return PTR_ERR(s); 2432 while (!(err = link_path_walk(s, nd)) && 2433 (err = mountpoint_last(nd, path)) > 0) { 2434 s = trailing_symlink(nd); 2435 if (IS_ERR(s)) { 2436 err = PTR_ERR(s); 2437 break; 2438 } 2439 } 2440 terminate_walk(nd); 2441 return err; 2442 } 2443 2444 static int 2445 filename_mountpoint(int dfd, struct filename *name, struct path *path, 2446 unsigned int flags) 2447 { 2448 struct nameidata nd; 2449 int error; 2450 if (IS_ERR(name)) 2451 return PTR_ERR(name); 2452 set_nameidata(&nd, dfd, name); 2453 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path); 2454 if (unlikely(error == -ECHILD)) 2455 error = path_mountpoint(&nd, flags, path); 2456 if (unlikely(error == -ESTALE)) 2457 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path); 2458 if (likely(!error)) 2459 audit_inode(name, path->dentry, 0); 2460 restore_nameidata(); 2461 putname(name); 2462 return error; 2463 } 2464 2465 /** 2466 * user_path_mountpoint_at - lookup a path from userland in order to umount it 2467 * @dfd: directory file descriptor 2468 * @name: pathname from userland 2469 * @flags: lookup flags 2470 * @path: pointer to container to hold result 2471 * 2472 * A umount is a special case for path walking. We're not actually interested 2473 * in the inode in this situation, and ESTALE errors can be a problem. We 2474 * simply want track down the dentry and vfsmount attached at the mountpoint 2475 * and avoid revalidating the last component. 2476 * 2477 * Returns 0 and populates "path" on success. 2478 */ 2479 int 2480 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags, 2481 struct path *path) 2482 { 2483 return filename_mountpoint(dfd, getname(name), path, flags); 2484 } 2485 2486 int 2487 kern_path_mountpoint(int dfd, const char *name, struct path *path, 2488 unsigned int flags) 2489 { 2490 return filename_mountpoint(dfd, getname_kernel(name), path, flags); 2491 } 2492 EXPORT_SYMBOL(kern_path_mountpoint); 2493 2494 int __check_sticky(struct inode *dir, struct inode *inode) 2495 { 2496 kuid_t fsuid = current_fsuid(); 2497 2498 if (uid_eq(inode->i_uid, fsuid)) 2499 return 0; 2500 if (uid_eq(dir->i_uid, fsuid)) 2501 return 0; 2502 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER); 2503 } 2504 EXPORT_SYMBOL(__check_sticky); 2505 2506 /* 2507 * Check whether we can remove a link victim from directory dir, check 2508 * whether the type of victim is right. 2509 * 1. We can't do it if dir is read-only (done in permission()) 2510 * 2. We should have write and exec permissions on dir 2511 * 3. We can't remove anything from append-only dir 2512 * 4. We can't do anything with immutable dir (done in permission()) 2513 * 5. If the sticky bit on dir is set we should either 2514 * a. be owner of dir, or 2515 * b. be owner of victim, or 2516 * c. have CAP_FOWNER capability 2517 * 6. If the victim is append-only or immutable we can't do antyhing with 2518 * links pointing to it. 2519 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2520 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2521 * 9. We can't remove a root or mountpoint. 2522 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 2523 * nfs_async_unlink(). 2524 */ 2525 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir) 2526 { 2527 struct inode *inode = d_backing_inode(victim); 2528 int error; 2529 2530 if (d_is_negative(victim)) 2531 return -ENOENT; 2532 BUG_ON(!inode); 2533 2534 BUG_ON(victim->d_parent->d_inode != dir); 2535 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2536 2537 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 2538 if (error) 2539 return error; 2540 if (IS_APPEND(dir)) 2541 return -EPERM; 2542 2543 if (check_sticky(dir, inode) || IS_APPEND(inode) || 2544 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode)) 2545 return -EPERM; 2546 if (isdir) { 2547 if (!d_is_dir(victim)) 2548 return -ENOTDIR; 2549 if (IS_ROOT(victim)) 2550 return -EBUSY; 2551 } else if (d_is_dir(victim)) 2552 return -EISDIR; 2553 if (IS_DEADDIR(dir)) 2554 return -ENOENT; 2555 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2556 return -EBUSY; 2557 return 0; 2558 } 2559 2560 /* Check whether we can create an object with dentry child in directory 2561 * dir. 2562 * 1. We can't do it if child already exists (open has special treatment for 2563 * this case, but since we are inlined it's OK) 2564 * 2. We can't do it if dir is read-only (done in permission()) 2565 * 3. We should have write and exec permissions on dir 2566 * 4. We can't do it if dir is immutable (done in permission()) 2567 */ 2568 static inline int may_create(struct inode *dir, struct dentry *child) 2569 { 2570 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 2571 if (child->d_inode) 2572 return -EEXIST; 2573 if (IS_DEADDIR(dir)) 2574 return -ENOENT; 2575 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 2576 } 2577 2578 /* 2579 * p1 and p2 should be directories on the same fs. 2580 */ 2581 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2582 { 2583 struct dentry *p; 2584 2585 if (p1 == p2) { 2586 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2587 return NULL; 2588 } 2589 2590 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2591 2592 p = d_ancestor(p2, p1); 2593 if (p) { 2594 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT); 2595 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD); 2596 return p; 2597 } 2598 2599 p = d_ancestor(p1, p2); 2600 if (p) { 2601 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2602 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 2603 return p; 2604 } 2605 2606 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2607 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT2); 2608 return NULL; 2609 } 2610 EXPORT_SYMBOL(lock_rename); 2611 2612 void unlock_rename(struct dentry *p1, struct dentry *p2) 2613 { 2614 mutex_unlock(&p1->d_inode->i_mutex); 2615 if (p1 != p2) { 2616 mutex_unlock(&p2->d_inode->i_mutex); 2617 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2618 } 2619 } 2620 EXPORT_SYMBOL(unlock_rename); 2621 2622 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2623 bool want_excl) 2624 { 2625 int error = may_create(dir, dentry); 2626 if (error) 2627 return error; 2628 2629 if (!dir->i_op->create) 2630 return -EACCES; /* shouldn't it be ENOSYS? */ 2631 mode &= S_IALLUGO; 2632 mode |= S_IFREG; 2633 error = security_inode_create(dir, dentry, mode); 2634 if (error) 2635 return error; 2636 error = dir->i_op->create(dir, dentry, mode, want_excl); 2637 if (!error) 2638 fsnotify_create(dir, dentry); 2639 return error; 2640 } 2641 EXPORT_SYMBOL(vfs_create); 2642 2643 static int may_open(struct path *path, int acc_mode, int flag) 2644 { 2645 struct dentry *dentry = path->dentry; 2646 struct inode *inode = dentry->d_inode; 2647 int error; 2648 2649 /* O_PATH? */ 2650 if (!acc_mode) 2651 return 0; 2652 2653 if (!inode) 2654 return -ENOENT; 2655 2656 switch (inode->i_mode & S_IFMT) { 2657 case S_IFLNK: 2658 return -ELOOP; 2659 case S_IFDIR: 2660 if (acc_mode & MAY_WRITE) 2661 return -EISDIR; 2662 break; 2663 case S_IFBLK: 2664 case S_IFCHR: 2665 if (path->mnt->mnt_flags & MNT_NODEV) 2666 return -EACCES; 2667 /*FALLTHRU*/ 2668 case S_IFIFO: 2669 case S_IFSOCK: 2670 flag &= ~O_TRUNC; 2671 break; 2672 } 2673 2674 error = inode_permission(inode, acc_mode); 2675 if (error) 2676 return error; 2677 2678 /* 2679 * An append-only file must be opened in append mode for writing. 2680 */ 2681 if (IS_APPEND(inode)) { 2682 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2683 return -EPERM; 2684 if (flag & O_TRUNC) 2685 return -EPERM; 2686 } 2687 2688 /* O_NOATIME can only be set by the owner or superuser */ 2689 if (flag & O_NOATIME && !inode_owner_or_capable(inode)) 2690 return -EPERM; 2691 2692 return 0; 2693 } 2694 2695 static int handle_truncate(struct file *filp) 2696 { 2697 struct path *path = &filp->f_path; 2698 struct inode *inode = path->dentry->d_inode; 2699 int error = get_write_access(inode); 2700 if (error) 2701 return error; 2702 /* 2703 * Refuse to truncate files with mandatory locks held on them. 2704 */ 2705 error = locks_verify_locked(filp); 2706 if (!error) 2707 error = security_path_truncate(path); 2708 if (!error) { 2709 error = do_truncate(path->dentry, 0, 2710 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 2711 filp); 2712 } 2713 put_write_access(inode); 2714 return error; 2715 } 2716 2717 static inline int open_to_namei_flags(int flag) 2718 { 2719 if ((flag & O_ACCMODE) == 3) 2720 flag--; 2721 return flag; 2722 } 2723 2724 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode) 2725 { 2726 int error = security_path_mknod(dir, dentry, mode, 0); 2727 if (error) 2728 return error; 2729 2730 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC); 2731 if (error) 2732 return error; 2733 2734 return security_inode_create(dir->dentry->d_inode, dentry, mode); 2735 } 2736 2737 /* 2738 * Attempt to atomically look up, create and open a file from a negative 2739 * dentry. 2740 * 2741 * Returns 0 if successful. The file will have been created and attached to 2742 * @file by the filesystem calling finish_open(). 2743 * 2744 * Returns 1 if the file was looked up only or didn't need creating. The 2745 * caller will need to perform the open themselves. @path will have been 2746 * updated to point to the new dentry. This may be negative. 2747 * 2748 * Returns an error code otherwise. 2749 */ 2750 static int atomic_open(struct nameidata *nd, struct dentry *dentry, 2751 struct path *path, struct file *file, 2752 const struct open_flags *op, 2753 bool got_write, bool need_lookup, 2754 int *opened) 2755 { 2756 struct inode *dir = nd->path.dentry->d_inode; 2757 unsigned open_flag = open_to_namei_flags(op->open_flag); 2758 umode_t mode; 2759 int error; 2760 int acc_mode; 2761 int create_error = 0; 2762 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 2763 bool excl; 2764 2765 BUG_ON(dentry->d_inode); 2766 2767 /* Don't create child dentry for a dead directory. */ 2768 if (unlikely(IS_DEADDIR(dir))) { 2769 error = -ENOENT; 2770 goto out; 2771 } 2772 2773 mode = op->mode; 2774 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir)) 2775 mode &= ~current_umask(); 2776 2777 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT); 2778 if (excl) 2779 open_flag &= ~O_TRUNC; 2780 2781 /* 2782 * Checking write permission is tricky, bacuse we don't know if we are 2783 * going to actually need it: O_CREAT opens should work as long as the 2784 * file exists. But checking existence breaks atomicity. The trick is 2785 * to check access and if not granted clear O_CREAT from the flags. 2786 * 2787 * Another problem is returing the "right" error value (e.g. for an 2788 * O_EXCL open we want to return EEXIST not EROFS). 2789 */ 2790 if (((open_flag & (O_CREAT | O_TRUNC)) || 2791 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) { 2792 if (!(open_flag & O_CREAT)) { 2793 /* 2794 * No O_CREATE -> atomicity not a requirement -> fall 2795 * back to lookup + open 2796 */ 2797 goto no_open; 2798 } else if (open_flag & (O_EXCL | O_TRUNC)) { 2799 /* Fall back and fail with the right error */ 2800 create_error = -EROFS; 2801 goto no_open; 2802 } else { 2803 /* No side effects, safe to clear O_CREAT */ 2804 create_error = -EROFS; 2805 open_flag &= ~O_CREAT; 2806 } 2807 } 2808 2809 if (open_flag & O_CREAT) { 2810 error = may_o_create(&nd->path, dentry, mode); 2811 if (error) { 2812 create_error = error; 2813 if (open_flag & O_EXCL) 2814 goto no_open; 2815 open_flag &= ~O_CREAT; 2816 } 2817 } 2818 2819 if (nd->flags & LOOKUP_DIRECTORY) 2820 open_flag |= O_DIRECTORY; 2821 2822 file->f_path.dentry = DENTRY_NOT_SET; 2823 file->f_path.mnt = nd->path.mnt; 2824 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode, 2825 opened); 2826 if (error < 0) { 2827 if (create_error && error == -ENOENT) 2828 error = create_error; 2829 goto out; 2830 } 2831 2832 if (error) { /* returned 1, that is */ 2833 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 2834 error = -EIO; 2835 goto out; 2836 } 2837 if (file->f_path.dentry) { 2838 dput(dentry); 2839 dentry = file->f_path.dentry; 2840 } 2841 if (*opened & FILE_CREATED) 2842 fsnotify_create(dir, dentry); 2843 if (!dentry->d_inode) { 2844 WARN_ON(*opened & FILE_CREATED); 2845 if (create_error) { 2846 error = create_error; 2847 goto out; 2848 } 2849 } else { 2850 if (excl && !(*opened & FILE_CREATED)) { 2851 error = -EEXIST; 2852 goto out; 2853 } 2854 } 2855 goto looked_up; 2856 } 2857 2858 /* 2859 * We didn't have the inode before the open, so check open permission 2860 * here. 2861 */ 2862 acc_mode = op->acc_mode; 2863 if (*opened & FILE_CREATED) { 2864 WARN_ON(!(open_flag & O_CREAT)); 2865 fsnotify_create(dir, dentry); 2866 acc_mode = MAY_OPEN; 2867 } 2868 error = may_open(&file->f_path, acc_mode, open_flag); 2869 if (error) 2870 fput(file); 2871 2872 out: 2873 dput(dentry); 2874 return error; 2875 2876 no_open: 2877 if (need_lookup) { 2878 dentry = lookup_real(dir, dentry, nd->flags); 2879 if (IS_ERR(dentry)) 2880 return PTR_ERR(dentry); 2881 2882 if (create_error) { 2883 int open_flag = op->open_flag; 2884 2885 error = create_error; 2886 if ((open_flag & O_EXCL)) { 2887 if (!dentry->d_inode) 2888 goto out; 2889 } else if (!dentry->d_inode) { 2890 goto out; 2891 } else if ((open_flag & O_TRUNC) && 2892 d_is_reg(dentry)) { 2893 goto out; 2894 } 2895 /* will fail later, go on to get the right error */ 2896 } 2897 } 2898 looked_up: 2899 path->dentry = dentry; 2900 path->mnt = nd->path.mnt; 2901 return 1; 2902 } 2903 2904 /* 2905 * Look up and maybe create and open the last component. 2906 * 2907 * Must be called with i_mutex held on parent. 2908 * 2909 * Returns 0 if the file was successfully atomically created (if necessary) and 2910 * opened. In this case the file will be returned attached to @file. 2911 * 2912 * Returns 1 if the file was not completely opened at this time, though lookups 2913 * and creations will have been performed and the dentry returned in @path will 2914 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't 2915 * specified then a negative dentry may be returned. 2916 * 2917 * An error code is returned otherwise. 2918 * 2919 * FILE_CREATE will be set in @*opened if the dentry was created and will be 2920 * cleared otherwise prior to returning. 2921 */ 2922 static int lookup_open(struct nameidata *nd, struct path *path, 2923 struct file *file, 2924 const struct open_flags *op, 2925 bool got_write, int *opened) 2926 { 2927 struct dentry *dir = nd->path.dentry; 2928 struct inode *dir_inode = dir->d_inode; 2929 struct dentry *dentry; 2930 int error; 2931 bool need_lookup; 2932 2933 *opened &= ~FILE_CREATED; 2934 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup); 2935 if (IS_ERR(dentry)) 2936 return PTR_ERR(dentry); 2937 2938 /* Cached positive dentry: will open in f_op->open */ 2939 if (!need_lookup && dentry->d_inode) 2940 goto out_no_open; 2941 2942 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) { 2943 return atomic_open(nd, dentry, path, file, op, got_write, 2944 need_lookup, opened); 2945 } 2946 2947 if (need_lookup) { 2948 BUG_ON(dentry->d_inode); 2949 2950 dentry = lookup_real(dir_inode, dentry, nd->flags); 2951 if (IS_ERR(dentry)) 2952 return PTR_ERR(dentry); 2953 } 2954 2955 /* Negative dentry, just create the file */ 2956 if (!dentry->d_inode && (op->open_flag & O_CREAT)) { 2957 umode_t mode = op->mode; 2958 if (!IS_POSIXACL(dir->d_inode)) 2959 mode &= ~current_umask(); 2960 /* 2961 * This write is needed to ensure that a 2962 * rw->ro transition does not occur between 2963 * the time when the file is created and when 2964 * a permanent write count is taken through 2965 * the 'struct file' in finish_open(). 2966 */ 2967 if (!got_write) { 2968 error = -EROFS; 2969 goto out_dput; 2970 } 2971 *opened |= FILE_CREATED; 2972 error = security_path_mknod(&nd->path, dentry, mode, 0); 2973 if (error) 2974 goto out_dput; 2975 error = vfs_create(dir->d_inode, dentry, mode, 2976 nd->flags & LOOKUP_EXCL); 2977 if (error) 2978 goto out_dput; 2979 } 2980 out_no_open: 2981 path->dentry = dentry; 2982 path->mnt = nd->path.mnt; 2983 return 1; 2984 2985 out_dput: 2986 dput(dentry); 2987 return error; 2988 } 2989 2990 /* 2991 * Handle the last step of open() 2992 */ 2993 static int do_last(struct nameidata *nd, 2994 struct file *file, const struct open_flags *op, 2995 int *opened) 2996 { 2997 struct dentry *dir = nd->path.dentry; 2998 int open_flag = op->open_flag; 2999 bool will_truncate = (open_flag & O_TRUNC) != 0; 3000 bool got_write = false; 3001 int acc_mode = op->acc_mode; 3002 unsigned seq; 3003 struct inode *inode; 3004 struct path save_parent = { .dentry = NULL, .mnt = NULL }; 3005 struct path path; 3006 bool retried = false; 3007 int error; 3008 3009 nd->flags &= ~LOOKUP_PARENT; 3010 nd->flags |= op->intent; 3011 3012 if (nd->last_type != LAST_NORM) { 3013 error = handle_dots(nd, nd->last_type); 3014 if (unlikely(error)) 3015 return error; 3016 goto finish_open; 3017 } 3018 3019 if (!(open_flag & O_CREAT)) { 3020 if (nd->last.name[nd->last.len]) 3021 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 3022 /* we _can_ be in RCU mode here */ 3023 error = lookup_fast(nd, &path, &inode, &seq); 3024 if (likely(!error)) 3025 goto finish_lookup; 3026 3027 if (error < 0) 3028 return error; 3029 3030 BUG_ON(nd->inode != dir->d_inode); 3031 } else { 3032 /* create side of things */ 3033 /* 3034 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED 3035 * has been cleared when we got to the last component we are 3036 * about to look up 3037 */ 3038 error = complete_walk(nd); 3039 if (error) 3040 return error; 3041 3042 audit_inode(nd->name, dir, LOOKUP_PARENT); 3043 /* trailing slashes? */ 3044 if (unlikely(nd->last.name[nd->last.len])) 3045 return -EISDIR; 3046 } 3047 3048 retry_lookup: 3049 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 3050 error = mnt_want_write(nd->path.mnt); 3051 if (!error) 3052 got_write = true; 3053 /* 3054 * do _not_ fail yet - we might not need that or fail with 3055 * a different error; let lookup_open() decide; we'll be 3056 * dropping this one anyway. 3057 */ 3058 } 3059 mutex_lock(&dir->d_inode->i_mutex); 3060 error = lookup_open(nd, &path, file, op, got_write, opened); 3061 mutex_unlock(&dir->d_inode->i_mutex); 3062 3063 if (error <= 0) { 3064 if (error) 3065 goto out; 3066 3067 if ((*opened & FILE_CREATED) || 3068 !S_ISREG(file_inode(file)->i_mode)) 3069 will_truncate = false; 3070 3071 audit_inode(nd->name, file->f_path.dentry, 0); 3072 goto opened; 3073 } 3074 3075 if (*opened & FILE_CREATED) { 3076 /* Don't check for write permission, don't truncate */ 3077 open_flag &= ~O_TRUNC; 3078 will_truncate = false; 3079 acc_mode = MAY_OPEN; 3080 path_to_nameidata(&path, nd); 3081 goto finish_open_created; 3082 } 3083 3084 /* 3085 * create/update audit record if it already exists. 3086 */ 3087 if (d_is_positive(path.dentry)) 3088 audit_inode(nd->name, path.dentry, 0); 3089 3090 /* 3091 * If atomic_open() acquired write access it is dropped now due to 3092 * possible mount and symlink following (this might be optimized away if 3093 * necessary...) 3094 */ 3095 if (got_write) { 3096 mnt_drop_write(nd->path.mnt); 3097 got_write = false; 3098 } 3099 3100 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) { 3101 path_to_nameidata(&path, nd); 3102 return -EEXIST; 3103 } 3104 3105 error = follow_managed(&path, nd); 3106 if (unlikely(error < 0)) 3107 return error; 3108 3109 BUG_ON(nd->flags & LOOKUP_RCU); 3110 inode = d_backing_inode(path.dentry); 3111 seq = 0; /* out of RCU mode, so the value doesn't matter */ 3112 if (unlikely(d_is_negative(path.dentry))) { 3113 path_to_nameidata(&path, nd); 3114 return -ENOENT; 3115 } 3116 finish_lookup: 3117 if (nd->depth) 3118 put_link(nd); 3119 error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW, 3120 inode, seq); 3121 if (unlikely(error)) 3122 return error; 3123 3124 if (unlikely(d_is_symlink(path.dentry)) && !(open_flag & O_PATH)) { 3125 path_to_nameidata(&path, nd); 3126 return -ELOOP; 3127 } 3128 3129 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) { 3130 path_to_nameidata(&path, nd); 3131 } else { 3132 save_parent.dentry = nd->path.dentry; 3133 save_parent.mnt = mntget(path.mnt); 3134 nd->path.dentry = path.dentry; 3135 3136 } 3137 nd->inode = inode; 3138 nd->seq = seq; 3139 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */ 3140 finish_open: 3141 error = complete_walk(nd); 3142 if (error) { 3143 path_put(&save_parent); 3144 return error; 3145 } 3146 audit_inode(nd->name, nd->path.dentry, 0); 3147 error = -EISDIR; 3148 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry)) 3149 goto out; 3150 error = -ENOTDIR; 3151 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3152 goto out; 3153 if (!d_is_reg(nd->path.dentry)) 3154 will_truncate = false; 3155 3156 if (will_truncate) { 3157 error = mnt_want_write(nd->path.mnt); 3158 if (error) 3159 goto out; 3160 got_write = true; 3161 } 3162 finish_open_created: 3163 error = may_open(&nd->path, acc_mode, open_flag); 3164 if (error) 3165 goto out; 3166 3167 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */ 3168 error = vfs_open(&nd->path, file, current_cred()); 3169 if (!error) { 3170 *opened |= FILE_OPENED; 3171 } else { 3172 if (error == -EOPENSTALE) 3173 goto stale_open; 3174 goto out; 3175 } 3176 opened: 3177 error = open_check_o_direct(file); 3178 if (error) 3179 goto exit_fput; 3180 error = ima_file_check(file, op->acc_mode, *opened); 3181 if (error) 3182 goto exit_fput; 3183 3184 if (will_truncate) { 3185 error = handle_truncate(file); 3186 if (error) 3187 goto exit_fput; 3188 } 3189 out: 3190 if (got_write) 3191 mnt_drop_write(nd->path.mnt); 3192 path_put(&save_parent); 3193 return error; 3194 3195 exit_fput: 3196 fput(file); 3197 goto out; 3198 3199 stale_open: 3200 /* If no saved parent or already retried then can't retry */ 3201 if (!save_parent.dentry || retried) 3202 goto out; 3203 3204 BUG_ON(save_parent.dentry != dir); 3205 path_put(&nd->path); 3206 nd->path = save_parent; 3207 nd->inode = dir->d_inode; 3208 save_parent.mnt = NULL; 3209 save_parent.dentry = NULL; 3210 if (got_write) { 3211 mnt_drop_write(nd->path.mnt); 3212 got_write = false; 3213 } 3214 retried = true; 3215 goto retry_lookup; 3216 } 3217 3218 static int do_tmpfile(struct nameidata *nd, unsigned flags, 3219 const struct open_flags *op, 3220 struct file *file, int *opened) 3221 { 3222 static const struct qstr name = QSTR_INIT("/", 1); 3223 struct dentry *child; 3224 struct inode *dir; 3225 struct path path; 3226 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path); 3227 if (unlikely(error)) 3228 return error; 3229 error = mnt_want_write(path.mnt); 3230 if (unlikely(error)) 3231 goto out; 3232 dir = path.dentry->d_inode; 3233 /* we want directory to be writable */ 3234 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 3235 if (error) 3236 goto out2; 3237 if (!dir->i_op->tmpfile) { 3238 error = -EOPNOTSUPP; 3239 goto out2; 3240 } 3241 child = d_alloc(path.dentry, &name); 3242 if (unlikely(!child)) { 3243 error = -ENOMEM; 3244 goto out2; 3245 } 3246 dput(path.dentry); 3247 path.dentry = child; 3248 error = dir->i_op->tmpfile(dir, child, op->mode); 3249 if (error) 3250 goto out2; 3251 audit_inode(nd->name, child, 0); 3252 /* Don't check for other permissions, the inode was just created */ 3253 error = may_open(&path, MAY_OPEN, op->open_flag); 3254 if (error) 3255 goto out2; 3256 file->f_path.mnt = path.mnt; 3257 error = finish_open(file, child, NULL, opened); 3258 if (error) 3259 goto out2; 3260 error = open_check_o_direct(file); 3261 if (error) { 3262 fput(file); 3263 } else if (!(op->open_flag & O_EXCL)) { 3264 struct inode *inode = file_inode(file); 3265 spin_lock(&inode->i_lock); 3266 inode->i_state |= I_LINKABLE; 3267 spin_unlock(&inode->i_lock); 3268 } 3269 out2: 3270 mnt_drop_write(path.mnt); 3271 out: 3272 path_put(&path); 3273 return error; 3274 } 3275 3276 static struct file *path_openat(struct nameidata *nd, 3277 const struct open_flags *op, unsigned flags) 3278 { 3279 const char *s; 3280 struct file *file; 3281 int opened = 0; 3282 int error; 3283 3284 file = get_empty_filp(); 3285 if (IS_ERR(file)) 3286 return file; 3287 3288 file->f_flags = op->open_flag; 3289 3290 if (unlikely(file->f_flags & __O_TMPFILE)) { 3291 error = do_tmpfile(nd, flags, op, file, &opened); 3292 goto out2; 3293 } 3294 3295 s = path_init(nd, flags); 3296 if (IS_ERR(s)) { 3297 put_filp(file); 3298 return ERR_CAST(s); 3299 } 3300 while (!(error = link_path_walk(s, nd)) && 3301 (error = do_last(nd, file, op, &opened)) > 0) { 3302 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3303 s = trailing_symlink(nd); 3304 if (IS_ERR(s)) { 3305 error = PTR_ERR(s); 3306 break; 3307 } 3308 } 3309 terminate_walk(nd); 3310 out2: 3311 if (!(opened & FILE_OPENED)) { 3312 BUG_ON(!error); 3313 put_filp(file); 3314 } 3315 if (unlikely(error)) { 3316 if (error == -EOPENSTALE) { 3317 if (flags & LOOKUP_RCU) 3318 error = -ECHILD; 3319 else 3320 error = -ESTALE; 3321 } 3322 file = ERR_PTR(error); 3323 } 3324 return file; 3325 } 3326 3327 struct file *do_filp_open(int dfd, struct filename *pathname, 3328 const struct open_flags *op) 3329 { 3330 struct nameidata nd; 3331 int flags = op->lookup_flags; 3332 struct file *filp; 3333 3334 set_nameidata(&nd, dfd, pathname); 3335 filp = path_openat(&nd, op, flags | LOOKUP_RCU); 3336 if (unlikely(filp == ERR_PTR(-ECHILD))) 3337 filp = path_openat(&nd, op, flags); 3338 if (unlikely(filp == ERR_PTR(-ESTALE))) 3339 filp = path_openat(&nd, op, flags | LOOKUP_REVAL); 3340 restore_nameidata(); 3341 return filp; 3342 } 3343 3344 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 3345 const char *name, const struct open_flags *op) 3346 { 3347 struct nameidata nd; 3348 struct file *file; 3349 struct filename *filename; 3350 int flags = op->lookup_flags | LOOKUP_ROOT; 3351 3352 nd.root.mnt = mnt; 3353 nd.root.dentry = dentry; 3354 3355 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN) 3356 return ERR_PTR(-ELOOP); 3357 3358 filename = getname_kernel(name); 3359 if (unlikely(IS_ERR(filename))) 3360 return ERR_CAST(filename); 3361 3362 set_nameidata(&nd, -1, filename); 3363 file = path_openat(&nd, op, flags | LOOKUP_RCU); 3364 if (unlikely(file == ERR_PTR(-ECHILD))) 3365 file = path_openat(&nd, op, flags); 3366 if (unlikely(file == ERR_PTR(-ESTALE))) 3367 file = path_openat(&nd, op, flags | LOOKUP_REVAL); 3368 restore_nameidata(); 3369 putname(filename); 3370 return file; 3371 } 3372 3373 static struct dentry *filename_create(int dfd, struct filename *name, 3374 struct path *path, unsigned int lookup_flags) 3375 { 3376 struct dentry *dentry = ERR_PTR(-EEXIST); 3377 struct qstr last; 3378 int type; 3379 int err2; 3380 int error; 3381 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY); 3382 3383 /* 3384 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any 3385 * other flags passed in are ignored! 3386 */ 3387 lookup_flags &= LOOKUP_REVAL; 3388 3389 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type); 3390 if (IS_ERR(name)) 3391 return ERR_CAST(name); 3392 3393 /* 3394 * Yucky last component or no last component at all? 3395 * (foo/., foo/.., /////) 3396 */ 3397 if (unlikely(type != LAST_NORM)) 3398 goto out; 3399 3400 /* don't fail immediately if it's r/o, at least try to report other errors */ 3401 err2 = mnt_want_write(path->mnt); 3402 /* 3403 * Do the final lookup. 3404 */ 3405 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL; 3406 mutex_lock_nested(&path->dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3407 dentry = __lookup_hash(&last, path->dentry, lookup_flags); 3408 if (IS_ERR(dentry)) 3409 goto unlock; 3410 3411 error = -EEXIST; 3412 if (d_is_positive(dentry)) 3413 goto fail; 3414 3415 /* 3416 * Special case - lookup gave negative, but... we had foo/bar/ 3417 * From the vfs_mknod() POV we just have a negative dentry - 3418 * all is fine. Let's be bastards - you had / on the end, you've 3419 * been asking for (non-existent) directory. -ENOENT for you. 3420 */ 3421 if (unlikely(!is_dir && last.name[last.len])) { 3422 error = -ENOENT; 3423 goto fail; 3424 } 3425 if (unlikely(err2)) { 3426 error = err2; 3427 goto fail; 3428 } 3429 putname(name); 3430 return dentry; 3431 fail: 3432 dput(dentry); 3433 dentry = ERR_PTR(error); 3434 unlock: 3435 mutex_unlock(&path->dentry->d_inode->i_mutex); 3436 if (!err2) 3437 mnt_drop_write(path->mnt); 3438 out: 3439 path_put(path); 3440 putname(name); 3441 return dentry; 3442 } 3443 3444 struct dentry *kern_path_create(int dfd, const char *pathname, 3445 struct path *path, unsigned int lookup_flags) 3446 { 3447 return filename_create(dfd, getname_kernel(pathname), 3448 path, lookup_flags); 3449 } 3450 EXPORT_SYMBOL(kern_path_create); 3451 3452 void done_path_create(struct path *path, struct dentry *dentry) 3453 { 3454 dput(dentry); 3455 mutex_unlock(&path->dentry->d_inode->i_mutex); 3456 mnt_drop_write(path->mnt); 3457 path_put(path); 3458 } 3459 EXPORT_SYMBOL(done_path_create); 3460 3461 inline struct dentry *user_path_create(int dfd, const char __user *pathname, 3462 struct path *path, unsigned int lookup_flags) 3463 { 3464 return filename_create(dfd, getname(pathname), path, lookup_flags); 3465 } 3466 EXPORT_SYMBOL(user_path_create); 3467 3468 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 3469 { 3470 int error = may_create(dir, dentry); 3471 3472 if (error) 3473 return error; 3474 3475 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 3476 return -EPERM; 3477 3478 if (!dir->i_op->mknod) 3479 return -EPERM; 3480 3481 error = devcgroup_inode_mknod(mode, dev); 3482 if (error) 3483 return error; 3484 3485 error = security_inode_mknod(dir, dentry, mode, dev); 3486 if (error) 3487 return error; 3488 3489 error = dir->i_op->mknod(dir, dentry, mode, dev); 3490 if (!error) 3491 fsnotify_create(dir, dentry); 3492 return error; 3493 } 3494 EXPORT_SYMBOL(vfs_mknod); 3495 3496 static int may_mknod(umode_t mode) 3497 { 3498 switch (mode & S_IFMT) { 3499 case S_IFREG: 3500 case S_IFCHR: 3501 case S_IFBLK: 3502 case S_IFIFO: 3503 case S_IFSOCK: 3504 case 0: /* zero mode translates to S_IFREG */ 3505 return 0; 3506 case S_IFDIR: 3507 return -EPERM; 3508 default: 3509 return -EINVAL; 3510 } 3511 } 3512 3513 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3514 unsigned, dev) 3515 { 3516 struct dentry *dentry; 3517 struct path path; 3518 int error; 3519 unsigned int lookup_flags = 0; 3520 3521 error = may_mknod(mode); 3522 if (error) 3523 return error; 3524 retry: 3525 dentry = user_path_create(dfd, filename, &path, lookup_flags); 3526 if (IS_ERR(dentry)) 3527 return PTR_ERR(dentry); 3528 3529 if (!IS_POSIXACL(path.dentry->d_inode)) 3530 mode &= ~current_umask(); 3531 error = security_path_mknod(&path, dentry, mode, dev); 3532 if (error) 3533 goto out; 3534 switch (mode & S_IFMT) { 3535 case 0: case S_IFREG: 3536 error = vfs_create(path.dentry->d_inode,dentry,mode,true); 3537 break; 3538 case S_IFCHR: case S_IFBLK: 3539 error = vfs_mknod(path.dentry->d_inode,dentry,mode, 3540 new_decode_dev(dev)); 3541 break; 3542 case S_IFIFO: case S_IFSOCK: 3543 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0); 3544 break; 3545 } 3546 out: 3547 done_path_create(&path, dentry); 3548 if (retry_estale(error, lookup_flags)) { 3549 lookup_flags |= LOOKUP_REVAL; 3550 goto retry; 3551 } 3552 return error; 3553 } 3554 3555 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3556 { 3557 return sys_mknodat(AT_FDCWD, filename, mode, dev); 3558 } 3559 3560 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 3561 { 3562 int error = may_create(dir, dentry); 3563 unsigned max_links = dir->i_sb->s_max_links; 3564 3565 if (error) 3566 return error; 3567 3568 if (!dir->i_op->mkdir) 3569 return -EPERM; 3570 3571 mode &= (S_IRWXUGO|S_ISVTX); 3572 error = security_inode_mkdir(dir, dentry, mode); 3573 if (error) 3574 return error; 3575 3576 if (max_links && dir->i_nlink >= max_links) 3577 return -EMLINK; 3578 3579 error = dir->i_op->mkdir(dir, dentry, mode); 3580 if (!error) 3581 fsnotify_mkdir(dir, dentry); 3582 return error; 3583 } 3584 EXPORT_SYMBOL(vfs_mkdir); 3585 3586 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 3587 { 3588 struct dentry *dentry; 3589 struct path path; 3590 int error; 3591 unsigned int lookup_flags = LOOKUP_DIRECTORY; 3592 3593 retry: 3594 dentry = user_path_create(dfd, pathname, &path, lookup_flags); 3595 if (IS_ERR(dentry)) 3596 return PTR_ERR(dentry); 3597 3598 if (!IS_POSIXACL(path.dentry->d_inode)) 3599 mode &= ~current_umask(); 3600 error = security_path_mkdir(&path, dentry, mode); 3601 if (!error) 3602 error = vfs_mkdir(path.dentry->d_inode, dentry, mode); 3603 done_path_create(&path, dentry); 3604 if (retry_estale(error, lookup_flags)) { 3605 lookup_flags |= LOOKUP_REVAL; 3606 goto retry; 3607 } 3608 return error; 3609 } 3610 3611 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 3612 { 3613 return sys_mkdirat(AT_FDCWD, pathname, mode); 3614 } 3615 3616 /* 3617 * The dentry_unhash() helper will try to drop the dentry early: we 3618 * should have a usage count of 1 if we're the only user of this 3619 * dentry, and if that is true (possibly after pruning the dcache), 3620 * then we drop the dentry now. 3621 * 3622 * A low-level filesystem can, if it choses, legally 3623 * do a 3624 * 3625 * if (!d_unhashed(dentry)) 3626 * return -EBUSY; 3627 * 3628 * if it cannot handle the case of removing a directory 3629 * that is still in use by something else.. 3630 */ 3631 void dentry_unhash(struct dentry *dentry) 3632 { 3633 shrink_dcache_parent(dentry); 3634 spin_lock(&dentry->d_lock); 3635 if (dentry->d_lockref.count == 1) 3636 __d_drop(dentry); 3637 spin_unlock(&dentry->d_lock); 3638 } 3639 EXPORT_SYMBOL(dentry_unhash); 3640 3641 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 3642 { 3643 int error = may_delete(dir, dentry, 1); 3644 3645 if (error) 3646 return error; 3647 3648 if (!dir->i_op->rmdir) 3649 return -EPERM; 3650 3651 dget(dentry); 3652 mutex_lock(&dentry->d_inode->i_mutex); 3653 3654 error = -EBUSY; 3655 if (is_local_mountpoint(dentry)) 3656 goto out; 3657 3658 error = security_inode_rmdir(dir, dentry); 3659 if (error) 3660 goto out; 3661 3662 shrink_dcache_parent(dentry); 3663 error = dir->i_op->rmdir(dir, dentry); 3664 if (error) 3665 goto out; 3666 3667 dentry->d_inode->i_flags |= S_DEAD; 3668 dont_mount(dentry); 3669 detach_mounts(dentry); 3670 3671 out: 3672 mutex_unlock(&dentry->d_inode->i_mutex); 3673 dput(dentry); 3674 if (!error) 3675 d_delete(dentry); 3676 return error; 3677 } 3678 EXPORT_SYMBOL(vfs_rmdir); 3679 3680 static long do_rmdir(int dfd, const char __user *pathname) 3681 { 3682 int error = 0; 3683 struct filename *name; 3684 struct dentry *dentry; 3685 struct path path; 3686 struct qstr last; 3687 int type; 3688 unsigned int lookup_flags = 0; 3689 retry: 3690 name = user_path_parent(dfd, pathname, 3691 &path, &last, &type, lookup_flags); 3692 if (IS_ERR(name)) 3693 return PTR_ERR(name); 3694 3695 switch (type) { 3696 case LAST_DOTDOT: 3697 error = -ENOTEMPTY; 3698 goto exit1; 3699 case LAST_DOT: 3700 error = -EINVAL; 3701 goto exit1; 3702 case LAST_ROOT: 3703 error = -EBUSY; 3704 goto exit1; 3705 } 3706 3707 error = mnt_want_write(path.mnt); 3708 if (error) 3709 goto exit1; 3710 3711 mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3712 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 3713 error = PTR_ERR(dentry); 3714 if (IS_ERR(dentry)) 3715 goto exit2; 3716 if (!dentry->d_inode) { 3717 error = -ENOENT; 3718 goto exit3; 3719 } 3720 error = security_path_rmdir(&path, dentry); 3721 if (error) 3722 goto exit3; 3723 error = vfs_rmdir(path.dentry->d_inode, dentry); 3724 exit3: 3725 dput(dentry); 3726 exit2: 3727 mutex_unlock(&path.dentry->d_inode->i_mutex); 3728 mnt_drop_write(path.mnt); 3729 exit1: 3730 path_put(&path); 3731 putname(name); 3732 if (retry_estale(error, lookup_flags)) { 3733 lookup_flags |= LOOKUP_REVAL; 3734 goto retry; 3735 } 3736 return error; 3737 } 3738 3739 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 3740 { 3741 return do_rmdir(AT_FDCWD, pathname); 3742 } 3743 3744 /** 3745 * vfs_unlink - unlink a filesystem object 3746 * @dir: parent directory 3747 * @dentry: victim 3748 * @delegated_inode: returns victim inode, if the inode is delegated. 3749 * 3750 * The caller must hold dir->i_mutex. 3751 * 3752 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 3753 * return a reference to the inode in delegated_inode. The caller 3754 * should then break the delegation on that inode and retry. Because 3755 * breaking a delegation may take a long time, the caller should drop 3756 * dir->i_mutex before doing so. 3757 * 3758 * Alternatively, a caller may pass NULL for delegated_inode. This may 3759 * be appropriate for callers that expect the underlying filesystem not 3760 * to be NFS exported. 3761 */ 3762 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode) 3763 { 3764 struct inode *target = dentry->d_inode; 3765 int error = may_delete(dir, dentry, 0); 3766 3767 if (error) 3768 return error; 3769 3770 if (!dir->i_op->unlink) 3771 return -EPERM; 3772 3773 mutex_lock(&target->i_mutex); 3774 if (is_local_mountpoint(dentry)) 3775 error = -EBUSY; 3776 else { 3777 error = security_inode_unlink(dir, dentry); 3778 if (!error) { 3779 error = try_break_deleg(target, delegated_inode); 3780 if (error) 3781 goto out; 3782 error = dir->i_op->unlink(dir, dentry); 3783 if (!error) { 3784 dont_mount(dentry); 3785 detach_mounts(dentry); 3786 } 3787 } 3788 } 3789 out: 3790 mutex_unlock(&target->i_mutex); 3791 3792 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 3793 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 3794 fsnotify_link_count(target); 3795 d_delete(dentry); 3796 } 3797 3798 return error; 3799 } 3800 EXPORT_SYMBOL(vfs_unlink); 3801 3802 /* 3803 * Make sure that the actual truncation of the file will occur outside its 3804 * directory's i_mutex. Truncate can take a long time if there is a lot of 3805 * writeout happening, and we don't want to prevent access to the directory 3806 * while waiting on the I/O. 3807 */ 3808 static long do_unlinkat(int dfd, const char __user *pathname) 3809 { 3810 int error; 3811 struct filename *name; 3812 struct dentry *dentry; 3813 struct path path; 3814 struct qstr last; 3815 int type; 3816 struct inode *inode = NULL; 3817 struct inode *delegated_inode = NULL; 3818 unsigned int lookup_flags = 0; 3819 retry: 3820 name = user_path_parent(dfd, pathname, 3821 &path, &last, &type, lookup_flags); 3822 if (IS_ERR(name)) 3823 return PTR_ERR(name); 3824 3825 error = -EISDIR; 3826 if (type != LAST_NORM) 3827 goto exit1; 3828 3829 error = mnt_want_write(path.mnt); 3830 if (error) 3831 goto exit1; 3832 retry_deleg: 3833 mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3834 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 3835 error = PTR_ERR(dentry); 3836 if (!IS_ERR(dentry)) { 3837 /* Why not before? Because we want correct error value */ 3838 if (last.name[last.len]) 3839 goto slashes; 3840 inode = dentry->d_inode; 3841 if (d_is_negative(dentry)) 3842 goto slashes; 3843 ihold(inode); 3844 error = security_path_unlink(&path, dentry); 3845 if (error) 3846 goto exit2; 3847 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode); 3848 exit2: 3849 dput(dentry); 3850 } 3851 mutex_unlock(&path.dentry->d_inode->i_mutex); 3852 if (inode) 3853 iput(inode); /* truncate the inode here */ 3854 inode = NULL; 3855 if (delegated_inode) { 3856 error = break_deleg_wait(&delegated_inode); 3857 if (!error) 3858 goto retry_deleg; 3859 } 3860 mnt_drop_write(path.mnt); 3861 exit1: 3862 path_put(&path); 3863 putname(name); 3864 if (retry_estale(error, lookup_flags)) { 3865 lookup_flags |= LOOKUP_REVAL; 3866 inode = NULL; 3867 goto retry; 3868 } 3869 return error; 3870 3871 slashes: 3872 if (d_is_negative(dentry)) 3873 error = -ENOENT; 3874 else if (d_is_dir(dentry)) 3875 error = -EISDIR; 3876 else 3877 error = -ENOTDIR; 3878 goto exit2; 3879 } 3880 3881 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 3882 { 3883 if ((flag & ~AT_REMOVEDIR) != 0) 3884 return -EINVAL; 3885 3886 if (flag & AT_REMOVEDIR) 3887 return do_rmdir(dfd, pathname); 3888 3889 return do_unlinkat(dfd, pathname); 3890 } 3891 3892 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 3893 { 3894 return do_unlinkat(AT_FDCWD, pathname); 3895 } 3896 3897 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 3898 { 3899 int error = may_create(dir, dentry); 3900 3901 if (error) 3902 return error; 3903 3904 if (!dir->i_op->symlink) 3905 return -EPERM; 3906 3907 error = security_inode_symlink(dir, dentry, oldname); 3908 if (error) 3909 return error; 3910 3911 error = dir->i_op->symlink(dir, dentry, oldname); 3912 if (!error) 3913 fsnotify_create(dir, dentry); 3914 return error; 3915 } 3916 EXPORT_SYMBOL(vfs_symlink); 3917 3918 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 3919 int, newdfd, const char __user *, newname) 3920 { 3921 int error; 3922 struct filename *from; 3923 struct dentry *dentry; 3924 struct path path; 3925 unsigned int lookup_flags = 0; 3926 3927 from = getname(oldname); 3928 if (IS_ERR(from)) 3929 return PTR_ERR(from); 3930 retry: 3931 dentry = user_path_create(newdfd, newname, &path, lookup_flags); 3932 error = PTR_ERR(dentry); 3933 if (IS_ERR(dentry)) 3934 goto out_putname; 3935 3936 error = security_path_symlink(&path, dentry, from->name); 3937 if (!error) 3938 error = vfs_symlink(path.dentry->d_inode, dentry, from->name); 3939 done_path_create(&path, dentry); 3940 if (retry_estale(error, lookup_flags)) { 3941 lookup_flags |= LOOKUP_REVAL; 3942 goto retry; 3943 } 3944 out_putname: 3945 putname(from); 3946 return error; 3947 } 3948 3949 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 3950 { 3951 return sys_symlinkat(oldname, AT_FDCWD, newname); 3952 } 3953 3954 /** 3955 * vfs_link - create a new link 3956 * @old_dentry: object to be linked 3957 * @dir: new parent 3958 * @new_dentry: where to create the new link 3959 * @delegated_inode: returns inode needing a delegation break 3960 * 3961 * The caller must hold dir->i_mutex 3962 * 3963 * If vfs_link discovers a delegation on the to-be-linked file in need 3964 * of breaking, it will return -EWOULDBLOCK and return a reference to the 3965 * inode in delegated_inode. The caller should then break the delegation 3966 * and retry. Because breaking a delegation may take a long time, the 3967 * caller should drop the i_mutex before doing so. 3968 * 3969 * Alternatively, a caller may pass NULL for delegated_inode. This may 3970 * be appropriate for callers that expect the underlying filesystem not 3971 * to be NFS exported. 3972 */ 3973 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode) 3974 { 3975 struct inode *inode = old_dentry->d_inode; 3976 unsigned max_links = dir->i_sb->s_max_links; 3977 int error; 3978 3979 if (!inode) 3980 return -ENOENT; 3981 3982 error = may_create(dir, new_dentry); 3983 if (error) 3984 return error; 3985 3986 if (dir->i_sb != inode->i_sb) 3987 return -EXDEV; 3988 3989 /* 3990 * A link to an append-only or immutable file cannot be created. 3991 */ 3992 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 3993 return -EPERM; 3994 if (!dir->i_op->link) 3995 return -EPERM; 3996 if (S_ISDIR(inode->i_mode)) 3997 return -EPERM; 3998 3999 error = security_inode_link(old_dentry, dir, new_dentry); 4000 if (error) 4001 return error; 4002 4003 mutex_lock(&inode->i_mutex); 4004 /* Make sure we don't allow creating hardlink to an unlinked file */ 4005 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 4006 error = -ENOENT; 4007 else if (max_links && inode->i_nlink >= max_links) 4008 error = -EMLINK; 4009 else { 4010 error = try_break_deleg(inode, delegated_inode); 4011 if (!error) 4012 error = dir->i_op->link(old_dentry, dir, new_dentry); 4013 } 4014 4015 if (!error && (inode->i_state & I_LINKABLE)) { 4016 spin_lock(&inode->i_lock); 4017 inode->i_state &= ~I_LINKABLE; 4018 spin_unlock(&inode->i_lock); 4019 } 4020 mutex_unlock(&inode->i_mutex); 4021 if (!error) 4022 fsnotify_link(dir, inode, new_dentry); 4023 return error; 4024 } 4025 EXPORT_SYMBOL(vfs_link); 4026 4027 /* 4028 * Hardlinks are often used in delicate situations. We avoid 4029 * security-related surprises by not following symlinks on the 4030 * newname. --KAB 4031 * 4032 * We don't follow them on the oldname either to be compatible 4033 * with linux 2.0, and to avoid hard-linking to directories 4034 * and other special files. --ADM 4035 */ 4036 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 4037 int, newdfd, const char __user *, newname, int, flags) 4038 { 4039 struct dentry *new_dentry; 4040 struct path old_path, new_path; 4041 struct inode *delegated_inode = NULL; 4042 int how = 0; 4043 int error; 4044 4045 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 4046 return -EINVAL; 4047 /* 4048 * To use null names we require CAP_DAC_READ_SEARCH 4049 * This ensures that not everyone will be able to create 4050 * handlink using the passed filedescriptor. 4051 */ 4052 if (flags & AT_EMPTY_PATH) { 4053 if (!capable(CAP_DAC_READ_SEARCH)) 4054 return -ENOENT; 4055 how = LOOKUP_EMPTY; 4056 } 4057 4058 if (flags & AT_SYMLINK_FOLLOW) 4059 how |= LOOKUP_FOLLOW; 4060 retry: 4061 error = user_path_at(olddfd, oldname, how, &old_path); 4062 if (error) 4063 return error; 4064 4065 new_dentry = user_path_create(newdfd, newname, &new_path, 4066 (how & LOOKUP_REVAL)); 4067 error = PTR_ERR(new_dentry); 4068 if (IS_ERR(new_dentry)) 4069 goto out; 4070 4071 error = -EXDEV; 4072 if (old_path.mnt != new_path.mnt) 4073 goto out_dput; 4074 error = may_linkat(&old_path); 4075 if (unlikely(error)) 4076 goto out_dput; 4077 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4078 if (error) 4079 goto out_dput; 4080 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode); 4081 out_dput: 4082 done_path_create(&new_path, new_dentry); 4083 if (delegated_inode) { 4084 error = break_deleg_wait(&delegated_inode); 4085 if (!error) { 4086 path_put(&old_path); 4087 goto retry; 4088 } 4089 } 4090 if (retry_estale(error, how)) { 4091 path_put(&old_path); 4092 how |= LOOKUP_REVAL; 4093 goto retry; 4094 } 4095 out: 4096 path_put(&old_path); 4097 4098 return error; 4099 } 4100 4101 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4102 { 4103 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4104 } 4105 4106 /** 4107 * vfs_rename - rename a filesystem object 4108 * @old_dir: parent of source 4109 * @old_dentry: source 4110 * @new_dir: parent of destination 4111 * @new_dentry: destination 4112 * @delegated_inode: returns an inode needing a delegation break 4113 * @flags: rename flags 4114 * 4115 * The caller must hold multiple mutexes--see lock_rename()). 4116 * 4117 * If vfs_rename discovers a delegation in need of breaking at either 4118 * the source or destination, it will return -EWOULDBLOCK and return a 4119 * reference to the inode in delegated_inode. The caller should then 4120 * break the delegation and retry. Because breaking a delegation may 4121 * take a long time, the caller should drop all locks before doing 4122 * so. 4123 * 4124 * Alternatively, a caller may pass NULL for delegated_inode. This may 4125 * be appropriate for callers that expect the underlying filesystem not 4126 * to be NFS exported. 4127 * 4128 * The worst of all namespace operations - renaming directory. "Perverted" 4129 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4130 * Problems: 4131 * a) we can get into loop creation. 4132 * b) race potential - two innocent renames can create a loop together. 4133 * That's where 4.4 screws up. Current fix: serialization on 4134 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4135 * story. 4136 * c) we have to lock _four_ objects - parents and victim (if it exists), 4137 * and source (if it is not a directory). 4138 * And that - after we got ->i_mutex on parents (until then we don't know 4139 * whether the target exists). Solution: try to be smart with locking 4140 * order for inodes. We rely on the fact that tree topology may change 4141 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4142 * move will be locked. Thus we can rank directories by the tree 4143 * (ancestors first) and rank all non-directories after them. 4144 * That works since everybody except rename does "lock parent, lookup, 4145 * lock child" and rename is under ->s_vfs_rename_mutex. 4146 * HOWEVER, it relies on the assumption that any object with ->lookup() 4147 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4148 * we'd better make sure that there's no link(2) for them. 4149 * d) conversion from fhandle to dentry may come in the wrong moment - when 4150 * we are removing the target. Solution: we will have to grab ->i_mutex 4151 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4152 * ->i_mutex on parents, which works but leads to some truly excessive 4153 * locking]. 4154 */ 4155 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 4156 struct inode *new_dir, struct dentry *new_dentry, 4157 struct inode **delegated_inode, unsigned int flags) 4158 { 4159 int error; 4160 bool is_dir = d_is_dir(old_dentry); 4161 const unsigned char *old_name; 4162 struct inode *source = old_dentry->d_inode; 4163 struct inode *target = new_dentry->d_inode; 4164 bool new_is_dir = false; 4165 unsigned max_links = new_dir->i_sb->s_max_links; 4166 4167 if (source == target) 4168 return 0; 4169 4170 error = may_delete(old_dir, old_dentry, is_dir); 4171 if (error) 4172 return error; 4173 4174 if (!target) { 4175 error = may_create(new_dir, new_dentry); 4176 } else { 4177 new_is_dir = d_is_dir(new_dentry); 4178 4179 if (!(flags & RENAME_EXCHANGE)) 4180 error = may_delete(new_dir, new_dentry, is_dir); 4181 else 4182 error = may_delete(new_dir, new_dentry, new_is_dir); 4183 } 4184 if (error) 4185 return error; 4186 4187 if (!old_dir->i_op->rename && !old_dir->i_op->rename2) 4188 return -EPERM; 4189 4190 if (flags && !old_dir->i_op->rename2) 4191 return -EINVAL; 4192 4193 /* 4194 * If we are going to change the parent - check write permissions, 4195 * we'll need to flip '..'. 4196 */ 4197 if (new_dir != old_dir) { 4198 if (is_dir) { 4199 error = inode_permission(source, MAY_WRITE); 4200 if (error) 4201 return error; 4202 } 4203 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4204 error = inode_permission(target, MAY_WRITE); 4205 if (error) 4206 return error; 4207 } 4208 } 4209 4210 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 4211 flags); 4212 if (error) 4213 return error; 4214 4215 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 4216 dget(new_dentry); 4217 if (!is_dir || (flags & RENAME_EXCHANGE)) 4218 lock_two_nondirectories(source, target); 4219 else if (target) 4220 mutex_lock(&target->i_mutex); 4221 4222 error = -EBUSY; 4223 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 4224 goto out; 4225 4226 if (max_links && new_dir != old_dir) { 4227 error = -EMLINK; 4228 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 4229 goto out; 4230 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 4231 old_dir->i_nlink >= max_links) 4232 goto out; 4233 } 4234 if (is_dir && !(flags & RENAME_EXCHANGE) && target) 4235 shrink_dcache_parent(new_dentry); 4236 if (!is_dir) { 4237 error = try_break_deleg(source, delegated_inode); 4238 if (error) 4239 goto out; 4240 } 4241 if (target && !new_is_dir) { 4242 error = try_break_deleg(target, delegated_inode); 4243 if (error) 4244 goto out; 4245 } 4246 if (!old_dir->i_op->rename2) { 4247 error = old_dir->i_op->rename(old_dir, old_dentry, 4248 new_dir, new_dentry); 4249 } else { 4250 WARN_ON(old_dir->i_op->rename != NULL); 4251 error = old_dir->i_op->rename2(old_dir, old_dentry, 4252 new_dir, new_dentry, flags); 4253 } 4254 if (error) 4255 goto out; 4256 4257 if (!(flags & RENAME_EXCHANGE) && target) { 4258 if (is_dir) 4259 target->i_flags |= S_DEAD; 4260 dont_mount(new_dentry); 4261 detach_mounts(new_dentry); 4262 } 4263 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 4264 if (!(flags & RENAME_EXCHANGE)) 4265 d_move(old_dentry, new_dentry); 4266 else 4267 d_exchange(old_dentry, new_dentry); 4268 } 4269 out: 4270 if (!is_dir || (flags & RENAME_EXCHANGE)) 4271 unlock_two_nondirectories(source, target); 4272 else if (target) 4273 mutex_unlock(&target->i_mutex); 4274 dput(new_dentry); 4275 if (!error) { 4276 fsnotify_move(old_dir, new_dir, old_name, is_dir, 4277 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 4278 if (flags & RENAME_EXCHANGE) { 4279 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name, 4280 new_is_dir, NULL, new_dentry); 4281 } 4282 } 4283 fsnotify_oldname_free(old_name); 4284 4285 return error; 4286 } 4287 EXPORT_SYMBOL(vfs_rename); 4288 4289 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 4290 int, newdfd, const char __user *, newname, unsigned int, flags) 4291 { 4292 struct dentry *old_dentry, *new_dentry; 4293 struct dentry *trap; 4294 struct path old_path, new_path; 4295 struct qstr old_last, new_last; 4296 int old_type, new_type; 4297 struct inode *delegated_inode = NULL; 4298 struct filename *from; 4299 struct filename *to; 4300 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET; 4301 bool should_retry = false; 4302 int error; 4303 4304 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4305 return -EINVAL; 4306 4307 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 4308 (flags & RENAME_EXCHANGE)) 4309 return -EINVAL; 4310 4311 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD)) 4312 return -EPERM; 4313 4314 if (flags & RENAME_EXCHANGE) 4315 target_flags = 0; 4316 4317 retry: 4318 from = user_path_parent(olddfd, oldname, 4319 &old_path, &old_last, &old_type, lookup_flags); 4320 if (IS_ERR(from)) { 4321 error = PTR_ERR(from); 4322 goto exit; 4323 } 4324 4325 to = user_path_parent(newdfd, newname, 4326 &new_path, &new_last, &new_type, lookup_flags); 4327 if (IS_ERR(to)) { 4328 error = PTR_ERR(to); 4329 goto exit1; 4330 } 4331 4332 error = -EXDEV; 4333 if (old_path.mnt != new_path.mnt) 4334 goto exit2; 4335 4336 error = -EBUSY; 4337 if (old_type != LAST_NORM) 4338 goto exit2; 4339 4340 if (flags & RENAME_NOREPLACE) 4341 error = -EEXIST; 4342 if (new_type != LAST_NORM) 4343 goto exit2; 4344 4345 error = mnt_want_write(old_path.mnt); 4346 if (error) 4347 goto exit2; 4348 4349 retry_deleg: 4350 trap = lock_rename(new_path.dentry, old_path.dentry); 4351 4352 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags); 4353 error = PTR_ERR(old_dentry); 4354 if (IS_ERR(old_dentry)) 4355 goto exit3; 4356 /* source must exist */ 4357 error = -ENOENT; 4358 if (d_is_negative(old_dentry)) 4359 goto exit4; 4360 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags); 4361 error = PTR_ERR(new_dentry); 4362 if (IS_ERR(new_dentry)) 4363 goto exit4; 4364 error = -EEXIST; 4365 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 4366 goto exit5; 4367 if (flags & RENAME_EXCHANGE) { 4368 error = -ENOENT; 4369 if (d_is_negative(new_dentry)) 4370 goto exit5; 4371 4372 if (!d_is_dir(new_dentry)) { 4373 error = -ENOTDIR; 4374 if (new_last.name[new_last.len]) 4375 goto exit5; 4376 } 4377 } 4378 /* unless the source is a directory trailing slashes give -ENOTDIR */ 4379 if (!d_is_dir(old_dentry)) { 4380 error = -ENOTDIR; 4381 if (old_last.name[old_last.len]) 4382 goto exit5; 4383 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len]) 4384 goto exit5; 4385 } 4386 /* source should not be ancestor of target */ 4387 error = -EINVAL; 4388 if (old_dentry == trap) 4389 goto exit5; 4390 /* target should not be an ancestor of source */ 4391 if (!(flags & RENAME_EXCHANGE)) 4392 error = -ENOTEMPTY; 4393 if (new_dentry == trap) 4394 goto exit5; 4395 4396 error = security_path_rename(&old_path, old_dentry, 4397 &new_path, new_dentry, flags); 4398 if (error) 4399 goto exit5; 4400 error = vfs_rename(old_path.dentry->d_inode, old_dentry, 4401 new_path.dentry->d_inode, new_dentry, 4402 &delegated_inode, flags); 4403 exit5: 4404 dput(new_dentry); 4405 exit4: 4406 dput(old_dentry); 4407 exit3: 4408 unlock_rename(new_path.dentry, old_path.dentry); 4409 if (delegated_inode) { 4410 error = break_deleg_wait(&delegated_inode); 4411 if (!error) 4412 goto retry_deleg; 4413 } 4414 mnt_drop_write(old_path.mnt); 4415 exit2: 4416 if (retry_estale(error, lookup_flags)) 4417 should_retry = true; 4418 path_put(&new_path); 4419 putname(to); 4420 exit1: 4421 path_put(&old_path); 4422 putname(from); 4423 if (should_retry) { 4424 should_retry = false; 4425 lookup_flags |= LOOKUP_REVAL; 4426 goto retry; 4427 } 4428 exit: 4429 return error; 4430 } 4431 4432 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 4433 int, newdfd, const char __user *, newname) 4434 { 4435 return sys_renameat2(olddfd, oldname, newdfd, newname, 0); 4436 } 4437 4438 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 4439 { 4440 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4441 } 4442 4443 int vfs_whiteout(struct inode *dir, struct dentry *dentry) 4444 { 4445 int error = may_create(dir, dentry); 4446 if (error) 4447 return error; 4448 4449 if (!dir->i_op->mknod) 4450 return -EPERM; 4451 4452 return dir->i_op->mknod(dir, dentry, 4453 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 4454 } 4455 EXPORT_SYMBOL(vfs_whiteout); 4456 4457 int readlink_copy(char __user *buffer, int buflen, const char *link) 4458 { 4459 int len = PTR_ERR(link); 4460 if (IS_ERR(link)) 4461 goto out; 4462 4463 len = strlen(link); 4464 if (len > (unsigned) buflen) 4465 len = buflen; 4466 if (copy_to_user(buffer, link, len)) 4467 len = -EFAULT; 4468 out: 4469 return len; 4470 } 4471 EXPORT_SYMBOL(readlink_copy); 4472 4473 /* 4474 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 4475 * have ->follow_link() touching nd only in nd_set_link(). Using (or not 4476 * using) it for any given inode is up to filesystem. 4477 */ 4478 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4479 { 4480 void *cookie; 4481 struct inode *inode = d_inode(dentry); 4482 const char *link = inode->i_link; 4483 int res; 4484 4485 if (!link) { 4486 link = inode->i_op->follow_link(dentry, &cookie); 4487 if (IS_ERR(link)) 4488 return PTR_ERR(link); 4489 } 4490 res = readlink_copy(buffer, buflen, link); 4491 if (inode->i_op->put_link) 4492 inode->i_op->put_link(inode, cookie); 4493 return res; 4494 } 4495 EXPORT_SYMBOL(generic_readlink); 4496 4497 /* get the link contents into pagecache */ 4498 static char *page_getlink(struct dentry * dentry, struct page **ppage) 4499 { 4500 char *kaddr; 4501 struct page *page; 4502 struct address_space *mapping = dentry->d_inode->i_mapping; 4503 page = read_mapping_page(mapping, 0, NULL); 4504 if (IS_ERR(page)) 4505 return (char*)page; 4506 *ppage = page; 4507 kaddr = kmap(page); 4508 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1); 4509 return kaddr; 4510 } 4511 4512 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4513 { 4514 struct page *page = NULL; 4515 int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page)); 4516 if (page) { 4517 kunmap(page); 4518 page_cache_release(page); 4519 } 4520 return res; 4521 } 4522 EXPORT_SYMBOL(page_readlink); 4523 4524 const char *page_follow_link_light(struct dentry *dentry, void **cookie) 4525 { 4526 struct page *page = NULL; 4527 char *res = page_getlink(dentry, &page); 4528 if (!IS_ERR(res)) 4529 *cookie = page; 4530 return res; 4531 } 4532 EXPORT_SYMBOL(page_follow_link_light); 4533 4534 void page_put_link(struct inode *unused, void *cookie) 4535 { 4536 struct page *page = cookie; 4537 kunmap(page); 4538 page_cache_release(page); 4539 } 4540 EXPORT_SYMBOL(page_put_link); 4541 4542 /* 4543 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 4544 */ 4545 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 4546 { 4547 struct address_space *mapping = inode->i_mapping; 4548 struct page *page; 4549 void *fsdata; 4550 int err; 4551 char *kaddr; 4552 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE; 4553 if (nofs) 4554 flags |= AOP_FLAG_NOFS; 4555 4556 retry: 4557 err = pagecache_write_begin(NULL, mapping, 0, len-1, 4558 flags, &page, &fsdata); 4559 if (err) 4560 goto fail; 4561 4562 kaddr = kmap_atomic(page); 4563 memcpy(kaddr, symname, len-1); 4564 kunmap_atomic(kaddr); 4565 4566 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 4567 page, fsdata); 4568 if (err < 0) 4569 goto fail; 4570 if (err < len-1) 4571 goto retry; 4572 4573 mark_inode_dirty(inode); 4574 return 0; 4575 fail: 4576 return err; 4577 } 4578 EXPORT_SYMBOL(__page_symlink); 4579 4580 int page_symlink(struct inode *inode, const char *symname, int len) 4581 { 4582 return __page_symlink(inode, symname, len, 4583 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS)); 4584 } 4585 EXPORT_SYMBOL(page_symlink); 4586 4587 const struct inode_operations page_symlink_inode_operations = { 4588 .readlink = generic_readlink, 4589 .follow_link = page_follow_link_light, 4590 .put_link = page_put_link, 4591 }; 4592 EXPORT_SYMBOL(page_symlink_inode_operations); 4593