1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/namei.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * Some corrections by tytso. 10 */ 11 12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 13 * lookup logic. 14 */ 15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 16 */ 17 18 #include <linux/init.h> 19 #include <linux/export.h> 20 #include <linux/kernel.h> 21 #include <linux/slab.h> 22 #include <linux/fs.h> 23 #include <linux/filelock.h> 24 #include <linux/namei.h> 25 #include <linux/pagemap.h> 26 #include <linux/sched/mm.h> 27 #include <linux/fsnotify.h> 28 #include <linux/personality.h> 29 #include <linux/security.h> 30 #include <linux/syscalls.h> 31 #include <linux/mount.h> 32 #include <linux/audit.h> 33 #include <linux/capability.h> 34 #include <linux/file.h> 35 #include <linux/fcntl.h> 36 #include <linux/device_cgroup.h> 37 #include <linux/fs_struct.h> 38 #include <linux/posix_acl.h> 39 #include <linux/hash.h> 40 #include <linux/bitops.h> 41 #include <linux/init_task.h> 42 #include <linux/uaccess.h> 43 44 #include "internal.h" 45 #include "mount.h" 46 47 /* [Feb-1997 T. Schoebel-Theuer] 48 * Fundamental changes in the pathname lookup mechanisms (namei) 49 * were necessary because of omirr. The reason is that omirr needs 50 * to know the _real_ pathname, not the user-supplied one, in case 51 * of symlinks (and also when transname replacements occur). 52 * 53 * The new code replaces the old recursive symlink resolution with 54 * an iterative one (in case of non-nested symlink chains). It does 55 * this with calls to <fs>_follow_link(). 56 * As a side effect, dir_namei(), _namei() and follow_link() are now 57 * replaced with a single function lookup_dentry() that can handle all 58 * the special cases of the former code. 59 * 60 * With the new dcache, the pathname is stored at each inode, at least as 61 * long as the refcount of the inode is positive. As a side effect, the 62 * size of the dcache depends on the inode cache and thus is dynamic. 63 * 64 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 65 * resolution to correspond with current state of the code. 66 * 67 * Note that the symlink resolution is not *completely* iterative. 68 * There is still a significant amount of tail- and mid- recursion in 69 * the algorithm. Also, note that <fs>_readlink() is not used in 70 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 71 * may return different results than <fs>_follow_link(). Many virtual 72 * filesystems (including /proc) exhibit this behavior. 73 */ 74 75 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 76 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 77 * and the name already exists in form of a symlink, try to create the new 78 * name indicated by the symlink. The old code always complained that the 79 * name already exists, due to not following the symlink even if its target 80 * is nonexistent. The new semantics affects also mknod() and link() when 81 * the name is a symlink pointing to a non-existent name. 82 * 83 * I don't know which semantics is the right one, since I have no access 84 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 85 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 86 * "old" one. Personally, I think the new semantics is much more logical. 87 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 88 * file does succeed in both HP-UX and SunOs, but not in Solaris 89 * and in the old Linux semantics. 90 */ 91 92 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 93 * semantics. See the comments in "open_namei" and "do_link" below. 94 * 95 * [10-Sep-98 Alan Modra] Another symlink change. 96 */ 97 98 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 99 * inside the path - always follow. 100 * in the last component in creation/removal/renaming - never follow. 101 * if LOOKUP_FOLLOW passed - follow. 102 * if the pathname has trailing slashes - follow. 103 * otherwise - don't follow. 104 * (applied in that order). 105 * 106 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 107 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 108 * During the 2.4 we need to fix the userland stuff depending on it - 109 * hopefully we will be able to get rid of that wart in 2.5. So far only 110 * XEmacs seems to be relying on it... 111 */ 112 /* 113 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 114 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 115 * any extra contention... 116 */ 117 118 /* In order to reduce some races, while at the same time doing additional 119 * checking and hopefully speeding things up, we copy filenames to the 120 * kernel data space before using them.. 121 * 122 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 123 * PATH_MAX includes the nul terminator --RR. 124 */ 125 126 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) 127 128 struct filename * 129 getname_flags(const char __user *filename, int flags, int *empty) 130 { 131 struct filename *result; 132 char *kname; 133 int len; 134 135 result = audit_reusename(filename); 136 if (result) 137 return result; 138 139 result = __getname(); 140 if (unlikely(!result)) 141 return ERR_PTR(-ENOMEM); 142 143 /* 144 * First, try to embed the struct filename inside the names_cache 145 * allocation 146 */ 147 kname = (char *)result->iname; 148 result->name = kname; 149 150 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); 151 if (unlikely(len < 0)) { 152 __putname(result); 153 return ERR_PTR(len); 154 } 155 156 /* 157 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 158 * separate struct filename so we can dedicate the entire 159 * names_cache allocation for the pathname, and re-do the copy from 160 * userland. 161 */ 162 if (unlikely(len == EMBEDDED_NAME_MAX)) { 163 const size_t size = offsetof(struct filename, iname[1]); 164 kname = (char *)result; 165 166 /* 167 * size is chosen that way we to guarantee that 168 * result->iname[0] is within the same object and that 169 * kname can't be equal to result->iname, no matter what. 170 */ 171 result = kzalloc(size, GFP_KERNEL); 172 if (unlikely(!result)) { 173 __putname(kname); 174 return ERR_PTR(-ENOMEM); 175 } 176 result->name = kname; 177 len = strncpy_from_user(kname, filename, PATH_MAX); 178 if (unlikely(len < 0)) { 179 __putname(kname); 180 kfree(result); 181 return ERR_PTR(len); 182 } 183 if (unlikely(len == PATH_MAX)) { 184 __putname(kname); 185 kfree(result); 186 return ERR_PTR(-ENAMETOOLONG); 187 } 188 } 189 190 atomic_set(&result->refcnt, 1); 191 /* The empty path is special. */ 192 if (unlikely(!len)) { 193 if (empty) 194 *empty = 1; 195 if (!(flags & LOOKUP_EMPTY)) { 196 putname(result); 197 return ERR_PTR(-ENOENT); 198 } 199 } 200 201 result->uptr = filename; 202 result->aname = NULL; 203 audit_getname(result); 204 return result; 205 } 206 207 struct filename * 208 getname_uflags(const char __user *filename, int uflags) 209 { 210 int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 211 212 return getname_flags(filename, flags, NULL); 213 } 214 215 struct filename * 216 getname(const char __user * filename) 217 { 218 return getname_flags(filename, 0, NULL); 219 } 220 221 struct filename * 222 getname_kernel(const char * filename) 223 { 224 struct filename *result; 225 int len = strlen(filename) + 1; 226 227 result = __getname(); 228 if (unlikely(!result)) 229 return ERR_PTR(-ENOMEM); 230 231 if (len <= EMBEDDED_NAME_MAX) { 232 result->name = (char *)result->iname; 233 } else if (len <= PATH_MAX) { 234 const size_t size = offsetof(struct filename, iname[1]); 235 struct filename *tmp; 236 237 tmp = kmalloc(size, GFP_KERNEL); 238 if (unlikely(!tmp)) { 239 __putname(result); 240 return ERR_PTR(-ENOMEM); 241 } 242 tmp->name = (char *)result; 243 result = tmp; 244 } else { 245 __putname(result); 246 return ERR_PTR(-ENAMETOOLONG); 247 } 248 memcpy((char *)result->name, filename, len); 249 result->uptr = NULL; 250 result->aname = NULL; 251 atomic_set(&result->refcnt, 1); 252 audit_getname(result); 253 254 return result; 255 } 256 EXPORT_SYMBOL(getname_kernel); 257 258 void putname(struct filename *name) 259 { 260 if (IS_ERR(name)) 261 return; 262 263 if (WARN_ON_ONCE(!atomic_read(&name->refcnt))) 264 return; 265 266 if (!atomic_dec_and_test(&name->refcnt)) 267 return; 268 269 if (name->name != name->iname) { 270 __putname(name->name); 271 kfree(name); 272 } else 273 __putname(name); 274 } 275 EXPORT_SYMBOL(putname); 276 277 /** 278 * check_acl - perform ACL permission checking 279 * @idmap: idmap of the mount the inode was found from 280 * @inode: inode to check permissions on 281 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 282 * 283 * This function performs the ACL permission checking. Since this function 284 * retrieve POSIX acls it needs to know whether it is called from a blocking or 285 * non-blocking context and thus cares about the MAY_NOT_BLOCK bit. 286 * 287 * If the inode has been found through an idmapped mount the idmap of 288 * the vfsmount must be passed through @idmap. This function will then take 289 * care to map the inode according to @idmap before checking permissions. 290 * On non-idmapped mounts or if permission checking is to be performed on the 291 * raw inode simply pass @nop_mnt_idmap. 292 */ 293 static int check_acl(struct mnt_idmap *idmap, 294 struct inode *inode, int mask) 295 { 296 #ifdef CONFIG_FS_POSIX_ACL 297 struct posix_acl *acl; 298 299 if (mask & MAY_NOT_BLOCK) { 300 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 301 if (!acl) 302 return -EAGAIN; 303 /* no ->get_inode_acl() calls in RCU mode... */ 304 if (is_uncached_acl(acl)) 305 return -ECHILD; 306 return posix_acl_permission(idmap, inode, acl, mask); 307 } 308 309 acl = get_inode_acl(inode, ACL_TYPE_ACCESS); 310 if (IS_ERR(acl)) 311 return PTR_ERR(acl); 312 if (acl) { 313 int error = posix_acl_permission(idmap, inode, acl, mask); 314 posix_acl_release(acl); 315 return error; 316 } 317 #endif 318 319 return -EAGAIN; 320 } 321 322 /** 323 * acl_permission_check - perform basic UNIX permission checking 324 * @idmap: idmap of the mount the inode was found from 325 * @inode: inode to check permissions on 326 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 327 * 328 * This function performs the basic UNIX permission checking. Since this 329 * function may retrieve POSIX acls it needs to know whether it is called from a 330 * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit. 331 * 332 * If the inode has been found through an idmapped mount the idmap of 333 * the vfsmount must be passed through @idmap. This function will then take 334 * care to map the inode according to @idmap before checking permissions. 335 * On non-idmapped mounts or if permission checking is to be performed on the 336 * raw inode simply pass @nop_mnt_idmap. 337 */ 338 static int acl_permission_check(struct mnt_idmap *idmap, 339 struct inode *inode, int mask) 340 { 341 unsigned int mode = inode->i_mode; 342 vfsuid_t vfsuid; 343 344 /* Are we the owner? If so, ACL's don't matter */ 345 vfsuid = i_uid_into_vfsuid(idmap, inode); 346 if (likely(vfsuid_eq_kuid(vfsuid, current_fsuid()))) { 347 mask &= 7; 348 mode >>= 6; 349 return (mask & ~mode) ? -EACCES : 0; 350 } 351 352 /* Do we have ACL's? */ 353 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 354 int error = check_acl(idmap, inode, mask); 355 if (error != -EAGAIN) 356 return error; 357 } 358 359 /* Only RWX matters for group/other mode bits */ 360 mask &= 7; 361 362 /* 363 * Are the group permissions different from 364 * the other permissions in the bits we care 365 * about? Need to check group ownership if so. 366 */ 367 if (mask & (mode ^ (mode >> 3))) { 368 vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode); 369 if (vfsgid_in_group_p(vfsgid)) 370 mode >>= 3; 371 } 372 373 /* Bits in 'mode' clear that we require? */ 374 return (mask & ~mode) ? -EACCES : 0; 375 } 376 377 /** 378 * generic_permission - check for access rights on a Posix-like filesystem 379 * @idmap: idmap of the mount the inode was found from 380 * @inode: inode to check access rights for 381 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, 382 * %MAY_NOT_BLOCK ...) 383 * 384 * Used to check for read/write/execute permissions on a file. 385 * We use "fsuid" for this, letting us set arbitrary permissions 386 * for filesystem access without changing the "normal" uids which 387 * are used for other things. 388 * 389 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 390 * request cannot be satisfied (eg. requires blocking or too much complexity). 391 * It would then be called again in ref-walk mode. 392 * 393 * If the inode has been found through an idmapped mount the idmap of 394 * the vfsmount must be passed through @idmap. This function will then take 395 * care to map the inode according to @idmap before checking permissions. 396 * On non-idmapped mounts or if permission checking is to be performed on the 397 * raw inode simply pass @nop_mnt_idmap. 398 */ 399 int generic_permission(struct mnt_idmap *idmap, struct inode *inode, 400 int mask) 401 { 402 int ret; 403 404 /* 405 * Do the basic permission checks. 406 */ 407 ret = acl_permission_check(idmap, inode, mask); 408 if (ret != -EACCES) 409 return ret; 410 411 if (S_ISDIR(inode->i_mode)) { 412 /* DACs are overridable for directories */ 413 if (!(mask & MAY_WRITE)) 414 if (capable_wrt_inode_uidgid(idmap, inode, 415 CAP_DAC_READ_SEARCH)) 416 return 0; 417 if (capable_wrt_inode_uidgid(idmap, inode, 418 CAP_DAC_OVERRIDE)) 419 return 0; 420 return -EACCES; 421 } 422 423 /* 424 * Searching includes executable on directories, else just read. 425 */ 426 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 427 if (mask == MAY_READ) 428 if (capable_wrt_inode_uidgid(idmap, inode, 429 CAP_DAC_READ_SEARCH)) 430 return 0; 431 /* 432 * Read/write DACs are always overridable. 433 * Executable DACs are overridable when there is 434 * at least one exec bit set. 435 */ 436 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 437 if (capable_wrt_inode_uidgid(idmap, inode, 438 CAP_DAC_OVERRIDE)) 439 return 0; 440 441 return -EACCES; 442 } 443 EXPORT_SYMBOL(generic_permission); 444 445 /** 446 * do_inode_permission - UNIX permission checking 447 * @idmap: idmap of the mount the inode was found from 448 * @inode: inode to check permissions on 449 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 450 * 451 * We _really_ want to just do "generic_permission()" without 452 * even looking at the inode->i_op values. So we keep a cache 453 * flag in inode->i_opflags, that says "this has not special 454 * permission function, use the fast case". 455 */ 456 static inline int do_inode_permission(struct mnt_idmap *idmap, 457 struct inode *inode, int mask) 458 { 459 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 460 if (likely(inode->i_op->permission)) 461 return inode->i_op->permission(idmap, inode, mask); 462 463 /* This gets set once for the inode lifetime */ 464 spin_lock(&inode->i_lock); 465 inode->i_opflags |= IOP_FASTPERM; 466 spin_unlock(&inode->i_lock); 467 } 468 return generic_permission(idmap, inode, mask); 469 } 470 471 /** 472 * sb_permission - Check superblock-level permissions 473 * @sb: Superblock of inode to check permission on 474 * @inode: Inode to check permission on 475 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 476 * 477 * Separate out file-system wide checks from inode-specific permission checks. 478 */ 479 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 480 { 481 if (unlikely(mask & MAY_WRITE)) { 482 umode_t mode = inode->i_mode; 483 484 /* Nobody gets write access to a read-only fs. */ 485 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 486 return -EROFS; 487 } 488 return 0; 489 } 490 491 /** 492 * inode_permission - Check for access rights to a given inode 493 * @idmap: idmap of the mount the inode was found from 494 * @inode: Inode to check permission on 495 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 496 * 497 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 498 * this, letting us set arbitrary permissions for filesystem access without 499 * changing the "normal" UIDs which are used for other things. 500 * 501 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 502 */ 503 int inode_permission(struct mnt_idmap *idmap, 504 struct inode *inode, int mask) 505 { 506 int retval; 507 508 retval = sb_permission(inode->i_sb, inode, mask); 509 if (retval) 510 return retval; 511 512 if (unlikely(mask & MAY_WRITE)) { 513 /* 514 * Nobody gets write access to an immutable file. 515 */ 516 if (IS_IMMUTABLE(inode)) 517 return -EPERM; 518 519 /* 520 * Updating mtime will likely cause i_uid and i_gid to be 521 * written back improperly if their true value is unknown 522 * to the vfs. 523 */ 524 if (HAS_UNMAPPED_ID(idmap, inode)) 525 return -EACCES; 526 } 527 528 retval = do_inode_permission(idmap, inode, mask); 529 if (retval) 530 return retval; 531 532 retval = devcgroup_inode_permission(inode, mask); 533 if (retval) 534 return retval; 535 536 return security_inode_permission(inode, mask); 537 } 538 EXPORT_SYMBOL(inode_permission); 539 540 /** 541 * path_get - get a reference to a path 542 * @path: path to get the reference to 543 * 544 * Given a path increment the reference count to the dentry and the vfsmount. 545 */ 546 void path_get(const struct path *path) 547 { 548 mntget(path->mnt); 549 dget(path->dentry); 550 } 551 EXPORT_SYMBOL(path_get); 552 553 /** 554 * path_put - put a reference to a path 555 * @path: path to put the reference to 556 * 557 * Given a path decrement the reference count to the dentry and the vfsmount. 558 */ 559 void path_put(const struct path *path) 560 { 561 dput(path->dentry); 562 mntput(path->mnt); 563 } 564 EXPORT_SYMBOL(path_put); 565 566 #define EMBEDDED_LEVELS 2 567 struct nameidata { 568 struct path path; 569 struct qstr last; 570 struct path root; 571 struct inode *inode; /* path.dentry.d_inode */ 572 unsigned int flags, state; 573 unsigned seq, next_seq, m_seq, r_seq; 574 int last_type; 575 unsigned depth; 576 int total_link_count; 577 struct saved { 578 struct path link; 579 struct delayed_call done; 580 const char *name; 581 unsigned seq; 582 } *stack, internal[EMBEDDED_LEVELS]; 583 struct filename *name; 584 struct nameidata *saved; 585 unsigned root_seq; 586 int dfd; 587 vfsuid_t dir_vfsuid; 588 umode_t dir_mode; 589 } __randomize_layout; 590 591 #define ND_ROOT_PRESET 1 592 #define ND_ROOT_GRABBED 2 593 #define ND_JUMPED 4 594 595 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name) 596 { 597 struct nameidata *old = current->nameidata; 598 p->stack = p->internal; 599 p->depth = 0; 600 p->dfd = dfd; 601 p->name = name; 602 p->path.mnt = NULL; 603 p->path.dentry = NULL; 604 p->total_link_count = old ? old->total_link_count : 0; 605 p->saved = old; 606 current->nameidata = p; 607 } 608 609 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name, 610 const struct path *root) 611 { 612 __set_nameidata(p, dfd, name); 613 p->state = 0; 614 if (unlikely(root)) { 615 p->state = ND_ROOT_PRESET; 616 p->root = *root; 617 } 618 } 619 620 static void restore_nameidata(void) 621 { 622 struct nameidata *now = current->nameidata, *old = now->saved; 623 624 current->nameidata = old; 625 if (old) 626 old->total_link_count = now->total_link_count; 627 if (now->stack != now->internal) 628 kfree(now->stack); 629 } 630 631 static bool nd_alloc_stack(struct nameidata *nd) 632 { 633 struct saved *p; 634 635 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved), 636 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL); 637 if (unlikely(!p)) 638 return false; 639 memcpy(p, nd->internal, sizeof(nd->internal)); 640 nd->stack = p; 641 return true; 642 } 643 644 /** 645 * path_connected - Verify that a dentry is below mnt.mnt_root 646 * @mnt: The mountpoint to check. 647 * @dentry: The dentry to check. 648 * 649 * Rename can sometimes move a file or directory outside of a bind 650 * mount, path_connected allows those cases to be detected. 651 */ 652 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry) 653 { 654 struct super_block *sb = mnt->mnt_sb; 655 656 /* Bind mounts can have disconnected paths */ 657 if (mnt->mnt_root == sb->s_root) 658 return true; 659 660 return is_subdir(dentry, mnt->mnt_root); 661 } 662 663 static void drop_links(struct nameidata *nd) 664 { 665 int i = nd->depth; 666 while (i--) { 667 struct saved *last = nd->stack + i; 668 do_delayed_call(&last->done); 669 clear_delayed_call(&last->done); 670 } 671 } 672 673 static void leave_rcu(struct nameidata *nd) 674 { 675 nd->flags &= ~LOOKUP_RCU; 676 nd->seq = nd->next_seq = 0; 677 rcu_read_unlock(); 678 } 679 680 static void terminate_walk(struct nameidata *nd) 681 { 682 drop_links(nd); 683 if (!(nd->flags & LOOKUP_RCU)) { 684 int i; 685 path_put(&nd->path); 686 for (i = 0; i < nd->depth; i++) 687 path_put(&nd->stack[i].link); 688 if (nd->state & ND_ROOT_GRABBED) { 689 path_put(&nd->root); 690 nd->state &= ~ND_ROOT_GRABBED; 691 } 692 } else { 693 leave_rcu(nd); 694 } 695 nd->depth = 0; 696 nd->path.mnt = NULL; 697 nd->path.dentry = NULL; 698 } 699 700 /* path_put is needed afterwards regardless of success or failure */ 701 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq) 702 { 703 int res = __legitimize_mnt(path->mnt, mseq); 704 if (unlikely(res)) { 705 if (res > 0) 706 path->mnt = NULL; 707 path->dentry = NULL; 708 return false; 709 } 710 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) { 711 path->dentry = NULL; 712 return false; 713 } 714 return !read_seqcount_retry(&path->dentry->d_seq, seq); 715 } 716 717 static inline bool legitimize_path(struct nameidata *nd, 718 struct path *path, unsigned seq) 719 { 720 return __legitimize_path(path, seq, nd->m_seq); 721 } 722 723 static bool legitimize_links(struct nameidata *nd) 724 { 725 int i; 726 if (unlikely(nd->flags & LOOKUP_CACHED)) { 727 drop_links(nd); 728 nd->depth = 0; 729 return false; 730 } 731 for (i = 0; i < nd->depth; i++) { 732 struct saved *last = nd->stack + i; 733 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) { 734 drop_links(nd); 735 nd->depth = i + 1; 736 return false; 737 } 738 } 739 return true; 740 } 741 742 static bool legitimize_root(struct nameidata *nd) 743 { 744 /* Nothing to do if nd->root is zero or is managed by the VFS user. */ 745 if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET)) 746 return true; 747 nd->state |= ND_ROOT_GRABBED; 748 return legitimize_path(nd, &nd->root, nd->root_seq); 749 } 750 751 /* 752 * Path walking has 2 modes, rcu-walk and ref-walk (see 753 * Documentation/filesystems/path-lookup.txt). In situations when we can't 754 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 755 * normal reference counts on dentries and vfsmounts to transition to ref-walk 756 * mode. Refcounts are grabbed at the last known good point before rcu-walk 757 * got stuck, so ref-walk may continue from there. If this is not successful 758 * (eg. a seqcount has changed), then failure is returned and it's up to caller 759 * to restart the path walk from the beginning in ref-walk mode. 760 */ 761 762 /** 763 * try_to_unlazy - try to switch to ref-walk mode. 764 * @nd: nameidata pathwalk data 765 * Returns: true on success, false on failure 766 * 767 * try_to_unlazy attempts to legitimize the current nd->path and nd->root 768 * for ref-walk mode. 769 * Must be called from rcu-walk context. 770 * Nothing should touch nameidata between try_to_unlazy() failure and 771 * terminate_walk(). 772 */ 773 static bool try_to_unlazy(struct nameidata *nd) 774 { 775 struct dentry *parent = nd->path.dentry; 776 777 BUG_ON(!(nd->flags & LOOKUP_RCU)); 778 779 if (unlikely(!legitimize_links(nd))) 780 goto out1; 781 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq))) 782 goto out; 783 if (unlikely(!legitimize_root(nd))) 784 goto out; 785 leave_rcu(nd); 786 BUG_ON(nd->inode != parent->d_inode); 787 return true; 788 789 out1: 790 nd->path.mnt = NULL; 791 nd->path.dentry = NULL; 792 out: 793 leave_rcu(nd); 794 return false; 795 } 796 797 /** 798 * try_to_unlazy_next - try to switch to ref-walk mode. 799 * @nd: nameidata pathwalk data 800 * @dentry: next dentry to step into 801 * Returns: true on success, false on failure 802 * 803 * Similar to try_to_unlazy(), but here we have the next dentry already 804 * picked by rcu-walk and want to legitimize that in addition to the current 805 * nd->path and nd->root for ref-walk mode. Must be called from rcu-walk context. 806 * Nothing should touch nameidata between try_to_unlazy_next() failure and 807 * terminate_walk(). 808 */ 809 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry) 810 { 811 int res; 812 BUG_ON(!(nd->flags & LOOKUP_RCU)); 813 814 if (unlikely(!legitimize_links(nd))) 815 goto out2; 816 res = __legitimize_mnt(nd->path.mnt, nd->m_seq); 817 if (unlikely(res)) { 818 if (res > 0) 819 goto out2; 820 goto out1; 821 } 822 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref))) 823 goto out1; 824 825 /* 826 * We need to move both the parent and the dentry from the RCU domain 827 * to be properly refcounted. And the sequence number in the dentry 828 * validates *both* dentry counters, since we checked the sequence 829 * number of the parent after we got the child sequence number. So we 830 * know the parent must still be valid if the child sequence number is 831 */ 832 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) 833 goto out; 834 if (read_seqcount_retry(&dentry->d_seq, nd->next_seq)) 835 goto out_dput; 836 /* 837 * Sequence counts matched. Now make sure that the root is 838 * still valid and get it if required. 839 */ 840 if (unlikely(!legitimize_root(nd))) 841 goto out_dput; 842 leave_rcu(nd); 843 return true; 844 845 out2: 846 nd->path.mnt = NULL; 847 out1: 848 nd->path.dentry = NULL; 849 out: 850 leave_rcu(nd); 851 return false; 852 out_dput: 853 leave_rcu(nd); 854 dput(dentry); 855 return false; 856 } 857 858 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 859 { 860 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) 861 return dentry->d_op->d_revalidate(dentry, flags); 862 else 863 return 1; 864 } 865 866 /** 867 * complete_walk - successful completion of path walk 868 * @nd: pointer nameidata 869 * 870 * If we had been in RCU mode, drop out of it and legitimize nd->path. 871 * Revalidate the final result, unless we'd already done that during 872 * the path walk or the filesystem doesn't ask for it. Return 0 on 873 * success, -error on failure. In case of failure caller does not 874 * need to drop nd->path. 875 */ 876 static int complete_walk(struct nameidata *nd) 877 { 878 struct dentry *dentry = nd->path.dentry; 879 int status; 880 881 if (nd->flags & LOOKUP_RCU) { 882 /* 883 * We don't want to zero nd->root for scoped-lookups or 884 * externally-managed nd->root. 885 */ 886 if (!(nd->state & ND_ROOT_PRESET)) 887 if (!(nd->flags & LOOKUP_IS_SCOPED)) 888 nd->root.mnt = NULL; 889 nd->flags &= ~LOOKUP_CACHED; 890 if (!try_to_unlazy(nd)) 891 return -ECHILD; 892 } 893 894 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { 895 /* 896 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't 897 * ever step outside the root during lookup" and should already 898 * be guaranteed by the rest of namei, we want to avoid a namei 899 * BUG resulting in userspace being given a path that was not 900 * scoped within the root at some point during the lookup. 901 * 902 * So, do a final sanity-check to make sure that in the 903 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED) 904 * we won't silently return an fd completely outside of the 905 * requested root to userspace. 906 * 907 * Userspace could move the path outside the root after this 908 * check, but as discussed elsewhere this is not a concern (the 909 * resolved file was inside the root at some point). 910 */ 911 if (!path_is_under(&nd->path, &nd->root)) 912 return -EXDEV; 913 } 914 915 if (likely(!(nd->state & ND_JUMPED))) 916 return 0; 917 918 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 919 return 0; 920 921 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 922 if (status > 0) 923 return 0; 924 925 if (!status) 926 status = -ESTALE; 927 928 return status; 929 } 930 931 static int set_root(struct nameidata *nd) 932 { 933 struct fs_struct *fs = current->fs; 934 935 /* 936 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we 937 * still have to ensure it doesn't happen because it will cause a breakout 938 * from the dirfd. 939 */ 940 if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED)) 941 return -ENOTRECOVERABLE; 942 943 if (nd->flags & LOOKUP_RCU) { 944 unsigned seq; 945 946 do { 947 seq = read_seqcount_begin(&fs->seq); 948 nd->root = fs->root; 949 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 950 } while (read_seqcount_retry(&fs->seq, seq)); 951 } else { 952 get_fs_root(fs, &nd->root); 953 nd->state |= ND_ROOT_GRABBED; 954 } 955 return 0; 956 } 957 958 static int nd_jump_root(struct nameidata *nd) 959 { 960 if (unlikely(nd->flags & LOOKUP_BENEATH)) 961 return -EXDEV; 962 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { 963 /* Absolute path arguments to path_init() are allowed. */ 964 if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt) 965 return -EXDEV; 966 } 967 if (!nd->root.mnt) { 968 int error = set_root(nd); 969 if (error) 970 return error; 971 } 972 if (nd->flags & LOOKUP_RCU) { 973 struct dentry *d; 974 nd->path = nd->root; 975 d = nd->path.dentry; 976 nd->inode = d->d_inode; 977 nd->seq = nd->root_seq; 978 if (read_seqcount_retry(&d->d_seq, nd->seq)) 979 return -ECHILD; 980 } else { 981 path_put(&nd->path); 982 nd->path = nd->root; 983 path_get(&nd->path); 984 nd->inode = nd->path.dentry->d_inode; 985 } 986 nd->state |= ND_JUMPED; 987 return 0; 988 } 989 990 /* 991 * Helper to directly jump to a known parsed path from ->get_link, 992 * caller must have taken a reference to path beforehand. 993 */ 994 int nd_jump_link(const struct path *path) 995 { 996 int error = -ELOOP; 997 struct nameidata *nd = current->nameidata; 998 999 if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS)) 1000 goto err; 1001 1002 error = -EXDEV; 1003 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { 1004 if (nd->path.mnt != path->mnt) 1005 goto err; 1006 } 1007 /* Not currently safe for scoped-lookups. */ 1008 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) 1009 goto err; 1010 1011 path_put(&nd->path); 1012 nd->path = *path; 1013 nd->inode = nd->path.dentry->d_inode; 1014 nd->state |= ND_JUMPED; 1015 return 0; 1016 1017 err: 1018 path_put(path); 1019 return error; 1020 } 1021 1022 static inline void put_link(struct nameidata *nd) 1023 { 1024 struct saved *last = nd->stack + --nd->depth; 1025 do_delayed_call(&last->done); 1026 if (!(nd->flags & LOOKUP_RCU)) 1027 path_put(&last->link); 1028 } 1029 1030 static int sysctl_protected_symlinks __read_mostly; 1031 static int sysctl_protected_hardlinks __read_mostly; 1032 static int sysctl_protected_fifos __read_mostly; 1033 static int sysctl_protected_regular __read_mostly; 1034 1035 #ifdef CONFIG_SYSCTL 1036 static struct ctl_table namei_sysctls[] = { 1037 { 1038 .procname = "protected_symlinks", 1039 .data = &sysctl_protected_symlinks, 1040 .maxlen = sizeof(int), 1041 .mode = 0644, 1042 .proc_handler = proc_dointvec_minmax, 1043 .extra1 = SYSCTL_ZERO, 1044 .extra2 = SYSCTL_ONE, 1045 }, 1046 { 1047 .procname = "protected_hardlinks", 1048 .data = &sysctl_protected_hardlinks, 1049 .maxlen = sizeof(int), 1050 .mode = 0644, 1051 .proc_handler = proc_dointvec_minmax, 1052 .extra1 = SYSCTL_ZERO, 1053 .extra2 = SYSCTL_ONE, 1054 }, 1055 { 1056 .procname = "protected_fifos", 1057 .data = &sysctl_protected_fifos, 1058 .maxlen = sizeof(int), 1059 .mode = 0644, 1060 .proc_handler = proc_dointvec_minmax, 1061 .extra1 = SYSCTL_ZERO, 1062 .extra2 = SYSCTL_TWO, 1063 }, 1064 { 1065 .procname = "protected_regular", 1066 .data = &sysctl_protected_regular, 1067 .maxlen = sizeof(int), 1068 .mode = 0644, 1069 .proc_handler = proc_dointvec_minmax, 1070 .extra1 = SYSCTL_ZERO, 1071 .extra2 = SYSCTL_TWO, 1072 }, 1073 }; 1074 1075 static int __init init_fs_namei_sysctls(void) 1076 { 1077 register_sysctl_init("fs", namei_sysctls); 1078 return 0; 1079 } 1080 fs_initcall(init_fs_namei_sysctls); 1081 1082 #endif /* CONFIG_SYSCTL */ 1083 1084 /** 1085 * may_follow_link - Check symlink following for unsafe situations 1086 * @nd: nameidata pathwalk data 1087 * @inode: Used for idmapping. 1088 * 1089 * In the case of the sysctl_protected_symlinks sysctl being enabled, 1090 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 1091 * in a sticky world-writable directory. This is to protect privileged 1092 * processes from failing races against path names that may change out 1093 * from under them by way of other users creating malicious symlinks. 1094 * It will permit symlinks to be followed only when outside a sticky 1095 * world-writable directory, or when the uid of the symlink and follower 1096 * match, or when the directory owner matches the symlink's owner. 1097 * 1098 * Returns 0 if following the symlink is allowed, -ve on error. 1099 */ 1100 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode) 1101 { 1102 struct mnt_idmap *idmap; 1103 vfsuid_t vfsuid; 1104 1105 if (!sysctl_protected_symlinks) 1106 return 0; 1107 1108 idmap = mnt_idmap(nd->path.mnt); 1109 vfsuid = i_uid_into_vfsuid(idmap, inode); 1110 /* Allowed if owner and follower match. */ 1111 if (vfsuid_eq_kuid(vfsuid, current_fsuid())) 1112 return 0; 1113 1114 /* Allowed if parent directory not sticky and world-writable. */ 1115 if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 1116 return 0; 1117 1118 /* Allowed if parent directory and link owner match. */ 1119 if (vfsuid_valid(nd->dir_vfsuid) && vfsuid_eq(nd->dir_vfsuid, vfsuid)) 1120 return 0; 1121 1122 if (nd->flags & LOOKUP_RCU) 1123 return -ECHILD; 1124 1125 audit_inode(nd->name, nd->stack[0].link.dentry, 0); 1126 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link"); 1127 return -EACCES; 1128 } 1129 1130 /** 1131 * safe_hardlink_source - Check for safe hardlink conditions 1132 * @idmap: idmap of the mount the inode was found from 1133 * @inode: the source inode to hardlink from 1134 * 1135 * Return false if at least one of the following conditions: 1136 * - inode is not a regular file 1137 * - inode is setuid 1138 * - inode is setgid and group-exec 1139 * - access failure for read and write 1140 * 1141 * Otherwise returns true. 1142 */ 1143 static bool safe_hardlink_source(struct mnt_idmap *idmap, 1144 struct inode *inode) 1145 { 1146 umode_t mode = inode->i_mode; 1147 1148 /* Special files should not get pinned to the filesystem. */ 1149 if (!S_ISREG(mode)) 1150 return false; 1151 1152 /* Setuid files should not get pinned to the filesystem. */ 1153 if (mode & S_ISUID) 1154 return false; 1155 1156 /* Executable setgid files should not get pinned to the filesystem. */ 1157 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 1158 return false; 1159 1160 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 1161 if (inode_permission(idmap, inode, MAY_READ | MAY_WRITE)) 1162 return false; 1163 1164 return true; 1165 } 1166 1167 /** 1168 * may_linkat - Check permissions for creating a hardlink 1169 * @idmap: idmap of the mount the inode was found from 1170 * @link: the source to hardlink from 1171 * 1172 * Block hardlink when all of: 1173 * - sysctl_protected_hardlinks enabled 1174 * - fsuid does not match inode 1175 * - hardlink source is unsafe (see safe_hardlink_source() above) 1176 * - not CAP_FOWNER in a namespace with the inode owner uid mapped 1177 * 1178 * If the inode has been found through an idmapped mount the idmap of 1179 * the vfsmount must be passed through @idmap. This function will then take 1180 * care to map the inode according to @idmap before checking permissions. 1181 * On non-idmapped mounts or if permission checking is to be performed on the 1182 * raw inode simply pass @nop_mnt_idmap. 1183 * 1184 * Returns 0 if successful, -ve on error. 1185 */ 1186 int may_linkat(struct mnt_idmap *idmap, const struct path *link) 1187 { 1188 struct inode *inode = link->dentry->d_inode; 1189 1190 /* Inode writeback is not safe when the uid or gid are invalid. */ 1191 if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) || 1192 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode))) 1193 return -EOVERFLOW; 1194 1195 if (!sysctl_protected_hardlinks) 1196 return 0; 1197 1198 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 1199 * otherwise, it must be a safe source. 1200 */ 1201 if (safe_hardlink_source(idmap, inode) || 1202 inode_owner_or_capable(idmap, inode)) 1203 return 0; 1204 1205 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat"); 1206 return -EPERM; 1207 } 1208 1209 /** 1210 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory 1211 * should be allowed, or not, on files that already 1212 * exist. 1213 * @idmap: idmap of the mount the inode was found from 1214 * @nd: nameidata pathwalk data 1215 * @inode: the inode of the file to open 1216 * 1217 * Block an O_CREAT open of a FIFO (or a regular file) when: 1218 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled 1219 * - the file already exists 1220 * - we are in a sticky directory 1221 * - we don't own the file 1222 * - the owner of the directory doesn't own the file 1223 * - the directory is world writable 1224 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2 1225 * the directory doesn't have to be world writable: being group writable will 1226 * be enough. 1227 * 1228 * If the inode has been found through an idmapped mount the idmap of 1229 * the vfsmount must be passed through @idmap. This function will then take 1230 * care to map the inode according to @idmap before checking permissions. 1231 * On non-idmapped mounts or if permission checking is to be performed on the 1232 * raw inode simply pass @nop_mnt_idmap. 1233 * 1234 * Returns 0 if the open is allowed, -ve on error. 1235 */ 1236 static int may_create_in_sticky(struct mnt_idmap *idmap, 1237 struct nameidata *nd, struct inode *const inode) 1238 { 1239 umode_t dir_mode = nd->dir_mode; 1240 vfsuid_t dir_vfsuid = nd->dir_vfsuid; 1241 1242 if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) || 1243 (!sysctl_protected_regular && S_ISREG(inode->i_mode)) || 1244 likely(!(dir_mode & S_ISVTX)) || 1245 vfsuid_eq(i_uid_into_vfsuid(idmap, inode), dir_vfsuid) || 1246 vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), current_fsuid())) 1247 return 0; 1248 1249 if (likely(dir_mode & 0002) || 1250 (dir_mode & 0020 && 1251 ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) || 1252 (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) { 1253 const char *operation = S_ISFIFO(inode->i_mode) ? 1254 "sticky_create_fifo" : 1255 "sticky_create_regular"; 1256 audit_log_path_denied(AUDIT_ANOM_CREAT, operation); 1257 return -EACCES; 1258 } 1259 return 0; 1260 } 1261 1262 /* 1263 * follow_up - Find the mountpoint of path's vfsmount 1264 * 1265 * Given a path, find the mountpoint of its source file system. 1266 * Replace @path with the path of the mountpoint in the parent mount. 1267 * Up is towards /. 1268 * 1269 * Return 1 if we went up a level and 0 if we were already at the 1270 * root. 1271 */ 1272 int follow_up(struct path *path) 1273 { 1274 struct mount *mnt = real_mount(path->mnt); 1275 struct mount *parent; 1276 struct dentry *mountpoint; 1277 1278 read_seqlock_excl(&mount_lock); 1279 parent = mnt->mnt_parent; 1280 if (parent == mnt) { 1281 read_sequnlock_excl(&mount_lock); 1282 return 0; 1283 } 1284 mntget(&parent->mnt); 1285 mountpoint = dget(mnt->mnt_mountpoint); 1286 read_sequnlock_excl(&mount_lock); 1287 dput(path->dentry); 1288 path->dentry = mountpoint; 1289 mntput(path->mnt); 1290 path->mnt = &parent->mnt; 1291 return 1; 1292 } 1293 EXPORT_SYMBOL(follow_up); 1294 1295 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root, 1296 struct path *path, unsigned *seqp) 1297 { 1298 while (mnt_has_parent(m)) { 1299 struct dentry *mountpoint = m->mnt_mountpoint; 1300 1301 m = m->mnt_parent; 1302 if (unlikely(root->dentry == mountpoint && 1303 root->mnt == &m->mnt)) 1304 break; 1305 if (mountpoint != m->mnt.mnt_root) { 1306 path->mnt = &m->mnt; 1307 path->dentry = mountpoint; 1308 *seqp = read_seqcount_begin(&mountpoint->d_seq); 1309 return true; 1310 } 1311 } 1312 return false; 1313 } 1314 1315 static bool choose_mountpoint(struct mount *m, const struct path *root, 1316 struct path *path) 1317 { 1318 bool found; 1319 1320 rcu_read_lock(); 1321 while (1) { 1322 unsigned seq, mseq = read_seqbegin(&mount_lock); 1323 1324 found = choose_mountpoint_rcu(m, root, path, &seq); 1325 if (unlikely(!found)) { 1326 if (!read_seqretry(&mount_lock, mseq)) 1327 break; 1328 } else { 1329 if (likely(__legitimize_path(path, seq, mseq))) 1330 break; 1331 rcu_read_unlock(); 1332 path_put(path); 1333 rcu_read_lock(); 1334 } 1335 } 1336 rcu_read_unlock(); 1337 return found; 1338 } 1339 1340 /* 1341 * Perform an automount 1342 * - return -EISDIR to tell follow_managed() to stop and return the path we 1343 * were called with. 1344 */ 1345 static int follow_automount(struct path *path, int *count, unsigned lookup_flags) 1346 { 1347 struct dentry *dentry = path->dentry; 1348 1349 /* We don't want to mount if someone's just doing a stat - 1350 * unless they're stat'ing a directory and appended a '/' to 1351 * the name. 1352 * 1353 * We do, however, want to mount if someone wants to open or 1354 * create a file of any type under the mountpoint, wants to 1355 * traverse through the mountpoint or wants to open the 1356 * mounted directory. Also, autofs may mark negative dentries 1357 * as being automount points. These will need the attentions 1358 * of the daemon to instantiate them before they can be used. 1359 */ 1360 if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 1361 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 1362 dentry->d_inode) 1363 return -EISDIR; 1364 1365 if (count && (*count)++ >= MAXSYMLINKS) 1366 return -ELOOP; 1367 1368 return finish_automount(dentry->d_op->d_automount(path), path); 1369 } 1370 1371 /* 1372 * mount traversal - out-of-line part. One note on ->d_flags accesses - 1373 * dentries are pinned but not locked here, so negative dentry can go 1374 * positive right under us. Use of smp_load_acquire() provides a barrier 1375 * sufficient for ->d_inode and ->d_flags consistency. 1376 */ 1377 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped, 1378 int *count, unsigned lookup_flags) 1379 { 1380 struct vfsmount *mnt = path->mnt; 1381 bool need_mntput = false; 1382 int ret = 0; 1383 1384 while (flags & DCACHE_MANAGED_DENTRY) { 1385 /* Allow the filesystem to manage the transit without i_mutex 1386 * being held. */ 1387 if (flags & DCACHE_MANAGE_TRANSIT) { 1388 ret = path->dentry->d_op->d_manage(path, false); 1389 flags = smp_load_acquire(&path->dentry->d_flags); 1390 if (ret < 0) 1391 break; 1392 } 1393 1394 if (flags & DCACHE_MOUNTED) { // something's mounted on it.. 1395 struct vfsmount *mounted = lookup_mnt(path); 1396 if (mounted) { // ... in our namespace 1397 dput(path->dentry); 1398 if (need_mntput) 1399 mntput(path->mnt); 1400 path->mnt = mounted; 1401 path->dentry = dget(mounted->mnt_root); 1402 // here we know it's positive 1403 flags = path->dentry->d_flags; 1404 need_mntput = true; 1405 continue; 1406 } 1407 } 1408 1409 if (!(flags & DCACHE_NEED_AUTOMOUNT)) 1410 break; 1411 1412 // uncovered automount point 1413 ret = follow_automount(path, count, lookup_flags); 1414 flags = smp_load_acquire(&path->dentry->d_flags); 1415 if (ret < 0) 1416 break; 1417 } 1418 1419 if (ret == -EISDIR) 1420 ret = 0; 1421 // possible if you race with several mount --move 1422 if (need_mntput && path->mnt == mnt) 1423 mntput(path->mnt); 1424 if (!ret && unlikely(d_flags_negative(flags))) 1425 ret = -ENOENT; 1426 *jumped = need_mntput; 1427 return ret; 1428 } 1429 1430 static inline int traverse_mounts(struct path *path, bool *jumped, 1431 int *count, unsigned lookup_flags) 1432 { 1433 unsigned flags = smp_load_acquire(&path->dentry->d_flags); 1434 1435 /* fastpath */ 1436 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) { 1437 *jumped = false; 1438 if (unlikely(d_flags_negative(flags))) 1439 return -ENOENT; 1440 return 0; 1441 } 1442 return __traverse_mounts(path, flags, jumped, count, lookup_flags); 1443 } 1444 1445 int follow_down_one(struct path *path) 1446 { 1447 struct vfsmount *mounted; 1448 1449 mounted = lookup_mnt(path); 1450 if (mounted) { 1451 dput(path->dentry); 1452 mntput(path->mnt); 1453 path->mnt = mounted; 1454 path->dentry = dget(mounted->mnt_root); 1455 return 1; 1456 } 1457 return 0; 1458 } 1459 EXPORT_SYMBOL(follow_down_one); 1460 1461 /* 1462 * Follow down to the covering mount currently visible to userspace. At each 1463 * point, the filesystem owning that dentry may be queried as to whether the 1464 * caller is permitted to proceed or not. 1465 */ 1466 int follow_down(struct path *path, unsigned int flags) 1467 { 1468 struct vfsmount *mnt = path->mnt; 1469 bool jumped; 1470 int ret = traverse_mounts(path, &jumped, NULL, flags); 1471 1472 if (path->mnt != mnt) 1473 mntput(mnt); 1474 return ret; 1475 } 1476 EXPORT_SYMBOL(follow_down); 1477 1478 /* 1479 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1480 * we meet a managed dentry that would need blocking. 1481 */ 1482 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path) 1483 { 1484 struct dentry *dentry = path->dentry; 1485 unsigned int flags = dentry->d_flags; 1486 1487 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) 1488 return true; 1489 1490 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1491 return false; 1492 1493 for (;;) { 1494 /* 1495 * Don't forget we might have a non-mountpoint managed dentry 1496 * that wants to block transit. 1497 */ 1498 if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) { 1499 int res = dentry->d_op->d_manage(path, true); 1500 if (res) 1501 return res == -EISDIR; 1502 flags = dentry->d_flags; 1503 } 1504 1505 if (flags & DCACHE_MOUNTED) { 1506 struct mount *mounted = __lookup_mnt(path->mnt, dentry); 1507 if (mounted) { 1508 path->mnt = &mounted->mnt; 1509 dentry = path->dentry = mounted->mnt.mnt_root; 1510 nd->state |= ND_JUMPED; 1511 nd->next_seq = read_seqcount_begin(&dentry->d_seq); 1512 flags = dentry->d_flags; 1513 // makes sure that non-RCU pathwalk could reach 1514 // this state. 1515 if (read_seqretry(&mount_lock, nd->m_seq)) 1516 return false; 1517 continue; 1518 } 1519 if (read_seqretry(&mount_lock, nd->m_seq)) 1520 return false; 1521 } 1522 return !(flags & DCACHE_NEED_AUTOMOUNT); 1523 } 1524 } 1525 1526 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry, 1527 struct path *path) 1528 { 1529 bool jumped; 1530 int ret; 1531 1532 path->mnt = nd->path.mnt; 1533 path->dentry = dentry; 1534 if (nd->flags & LOOKUP_RCU) { 1535 unsigned int seq = nd->next_seq; 1536 if (likely(__follow_mount_rcu(nd, path))) 1537 return 0; 1538 // *path and nd->next_seq might've been clobbered 1539 path->mnt = nd->path.mnt; 1540 path->dentry = dentry; 1541 nd->next_seq = seq; 1542 if (!try_to_unlazy_next(nd, dentry)) 1543 return -ECHILD; 1544 } 1545 ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags); 1546 if (jumped) { 1547 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1548 ret = -EXDEV; 1549 else 1550 nd->state |= ND_JUMPED; 1551 } 1552 if (unlikely(ret)) { 1553 dput(path->dentry); 1554 if (path->mnt != nd->path.mnt) 1555 mntput(path->mnt); 1556 } 1557 return ret; 1558 } 1559 1560 /* 1561 * This looks up the name in dcache and possibly revalidates the found dentry. 1562 * NULL is returned if the dentry does not exist in the cache. 1563 */ 1564 static struct dentry *lookup_dcache(const struct qstr *name, 1565 struct dentry *dir, 1566 unsigned int flags) 1567 { 1568 struct dentry *dentry = d_lookup(dir, name); 1569 if (dentry) { 1570 int error = d_revalidate(dentry, flags); 1571 if (unlikely(error <= 0)) { 1572 if (!error) 1573 d_invalidate(dentry); 1574 dput(dentry); 1575 return ERR_PTR(error); 1576 } 1577 } 1578 return dentry; 1579 } 1580 1581 /* 1582 * Parent directory has inode locked exclusive. This is one 1583 * and only case when ->lookup() gets called on non in-lookup 1584 * dentries - as the matter of fact, this only gets called 1585 * when directory is guaranteed to have no in-lookup children 1586 * at all. 1587 */ 1588 struct dentry *lookup_one_qstr_excl(const struct qstr *name, 1589 struct dentry *base, 1590 unsigned int flags) 1591 { 1592 struct dentry *dentry = lookup_dcache(name, base, flags); 1593 struct dentry *old; 1594 struct inode *dir = base->d_inode; 1595 1596 if (dentry) 1597 return dentry; 1598 1599 /* Don't create child dentry for a dead directory. */ 1600 if (unlikely(IS_DEADDIR(dir))) 1601 return ERR_PTR(-ENOENT); 1602 1603 dentry = d_alloc(base, name); 1604 if (unlikely(!dentry)) 1605 return ERR_PTR(-ENOMEM); 1606 1607 old = dir->i_op->lookup(dir, dentry, flags); 1608 if (unlikely(old)) { 1609 dput(dentry); 1610 dentry = old; 1611 } 1612 return dentry; 1613 } 1614 EXPORT_SYMBOL(lookup_one_qstr_excl); 1615 1616 static struct dentry *lookup_fast(struct nameidata *nd) 1617 { 1618 struct dentry *dentry, *parent = nd->path.dentry; 1619 int status = 1; 1620 1621 /* 1622 * Rename seqlock is not required here because in the off chance 1623 * of a false negative due to a concurrent rename, the caller is 1624 * going to fall back to non-racy lookup. 1625 */ 1626 if (nd->flags & LOOKUP_RCU) { 1627 dentry = __d_lookup_rcu(parent, &nd->last, &nd->next_seq); 1628 if (unlikely(!dentry)) { 1629 if (!try_to_unlazy(nd)) 1630 return ERR_PTR(-ECHILD); 1631 return NULL; 1632 } 1633 1634 /* 1635 * This sequence count validates that the parent had no 1636 * changes while we did the lookup of the dentry above. 1637 */ 1638 if (read_seqcount_retry(&parent->d_seq, nd->seq)) 1639 return ERR_PTR(-ECHILD); 1640 1641 status = d_revalidate(dentry, nd->flags); 1642 if (likely(status > 0)) 1643 return dentry; 1644 if (!try_to_unlazy_next(nd, dentry)) 1645 return ERR_PTR(-ECHILD); 1646 if (status == -ECHILD) 1647 /* we'd been told to redo it in non-rcu mode */ 1648 status = d_revalidate(dentry, nd->flags); 1649 } else { 1650 dentry = __d_lookup(parent, &nd->last); 1651 if (unlikely(!dentry)) 1652 return NULL; 1653 status = d_revalidate(dentry, nd->flags); 1654 } 1655 if (unlikely(status <= 0)) { 1656 if (!status) 1657 d_invalidate(dentry); 1658 dput(dentry); 1659 return ERR_PTR(status); 1660 } 1661 return dentry; 1662 } 1663 1664 /* Fast lookup failed, do it the slow way */ 1665 static struct dentry *__lookup_slow(const struct qstr *name, 1666 struct dentry *dir, 1667 unsigned int flags) 1668 { 1669 struct dentry *dentry, *old; 1670 struct inode *inode = dir->d_inode; 1671 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1672 1673 /* Don't go there if it's already dead */ 1674 if (unlikely(IS_DEADDIR(inode))) 1675 return ERR_PTR(-ENOENT); 1676 again: 1677 dentry = d_alloc_parallel(dir, name, &wq); 1678 if (IS_ERR(dentry)) 1679 return dentry; 1680 if (unlikely(!d_in_lookup(dentry))) { 1681 int error = d_revalidate(dentry, flags); 1682 if (unlikely(error <= 0)) { 1683 if (!error) { 1684 d_invalidate(dentry); 1685 dput(dentry); 1686 goto again; 1687 } 1688 dput(dentry); 1689 dentry = ERR_PTR(error); 1690 } 1691 } else { 1692 old = inode->i_op->lookup(inode, dentry, flags); 1693 d_lookup_done(dentry); 1694 if (unlikely(old)) { 1695 dput(dentry); 1696 dentry = old; 1697 } 1698 } 1699 return dentry; 1700 } 1701 1702 static struct dentry *lookup_slow(const struct qstr *name, 1703 struct dentry *dir, 1704 unsigned int flags) 1705 { 1706 struct inode *inode = dir->d_inode; 1707 struct dentry *res; 1708 inode_lock_shared(inode); 1709 res = __lookup_slow(name, dir, flags); 1710 inode_unlock_shared(inode); 1711 return res; 1712 } 1713 1714 static inline int may_lookup(struct mnt_idmap *idmap, 1715 struct nameidata *nd) 1716 { 1717 if (nd->flags & LOOKUP_RCU) { 1718 int err = inode_permission(idmap, nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1719 if (err != -ECHILD || !try_to_unlazy(nd)) 1720 return err; 1721 } 1722 return inode_permission(idmap, nd->inode, MAY_EXEC); 1723 } 1724 1725 static int reserve_stack(struct nameidata *nd, struct path *link) 1726 { 1727 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) 1728 return -ELOOP; 1729 1730 if (likely(nd->depth != EMBEDDED_LEVELS)) 1731 return 0; 1732 if (likely(nd->stack != nd->internal)) 1733 return 0; 1734 if (likely(nd_alloc_stack(nd))) 1735 return 0; 1736 1737 if (nd->flags & LOOKUP_RCU) { 1738 // we need to grab link before we do unlazy. And we can't skip 1739 // unlazy even if we fail to grab the link - cleanup needs it 1740 bool grabbed_link = legitimize_path(nd, link, nd->next_seq); 1741 1742 if (!try_to_unlazy(nd) || !grabbed_link) 1743 return -ECHILD; 1744 1745 if (nd_alloc_stack(nd)) 1746 return 0; 1747 } 1748 return -ENOMEM; 1749 } 1750 1751 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4}; 1752 1753 static const char *pick_link(struct nameidata *nd, struct path *link, 1754 struct inode *inode, int flags) 1755 { 1756 struct saved *last; 1757 const char *res; 1758 int error = reserve_stack(nd, link); 1759 1760 if (unlikely(error)) { 1761 if (!(nd->flags & LOOKUP_RCU)) 1762 path_put(link); 1763 return ERR_PTR(error); 1764 } 1765 last = nd->stack + nd->depth++; 1766 last->link = *link; 1767 clear_delayed_call(&last->done); 1768 last->seq = nd->next_seq; 1769 1770 if (flags & WALK_TRAILING) { 1771 error = may_follow_link(nd, inode); 1772 if (unlikely(error)) 1773 return ERR_PTR(error); 1774 } 1775 1776 if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) || 1777 unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW)) 1778 return ERR_PTR(-ELOOP); 1779 1780 if (!(nd->flags & LOOKUP_RCU)) { 1781 touch_atime(&last->link); 1782 cond_resched(); 1783 } else if (atime_needs_update(&last->link, inode)) { 1784 if (!try_to_unlazy(nd)) 1785 return ERR_PTR(-ECHILD); 1786 touch_atime(&last->link); 1787 } 1788 1789 error = security_inode_follow_link(link->dentry, inode, 1790 nd->flags & LOOKUP_RCU); 1791 if (unlikely(error)) 1792 return ERR_PTR(error); 1793 1794 res = READ_ONCE(inode->i_link); 1795 if (!res) { 1796 const char * (*get)(struct dentry *, struct inode *, 1797 struct delayed_call *); 1798 get = inode->i_op->get_link; 1799 if (nd->flags & LOOKUP_RCU) { 1800 res = get(NULL, inode, &last->done); 1801 if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd)) 1802 res = get(link->dentry, inode, &last->done); 1803 } else { 1804 res = get(link->dentry, inode, &last->done); 1805 } 1806 if (!res) 1807 goto all_done; 1808 if (IS_ERR(res)) 1809 return res; 1810 } 1811 if (*res == '/') { 1812 error = nd_jump_root(nd); 1813 if (unlikely(error)) 1814 return ERR_PTR(error); 1815 while (unlikely(*++res == '/')) 1816 ; 1817 } 1818 if (*res) 1819 return res; 1820 all_done: // pure jump 1821 put_link(nd); 1822 return NULL; 1823 } 1824 1825 /* 1826 * Do we need to follow links? We _really_ want to be able 1827 * to do this check without having to look at inode->i_op, 1828 * so we keep a cache of "no, this doesn't need follow_link" 1829 * for the common case. 1830 * 1831 * NOTE: dentry must be what nd->next_seq had been sampled from. 1832 */ 1833 static const char *step_into(struct nameidata *nd, int flags, 1834 struct dentry *dentry) 1835 { 1836 struct path path; 1837 struct inode *inode; 1838 int err = handle_mounts(nd, dentry, &path); 1839 1840 if (err < 0) 1841 return ERR_PTR(err); 1842 inode = path.dentry->d_inode; 1843 if (likely(!d_is_symlink(path.dentry)) || 1844 ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) || 1845 (flags & WALK_NOFOLLOW)) { 1846 /* not a symlink or should not follow */ 1847 if (nd->flags & LOOKUP_RCU) { 1848 if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq)) 1849 return ERR_PTR(-ECHILD); 1850 if (unlikely(!inode)) 1851 return ERR_PTR(-ENOENT); 1852 } else { 1853 dput(nd->path.dentry); 1854 if (nd->path.mnt != path.mnt) 1855 mntput(nd->path.mnt); 1856 } 1857 nd->path = path; 1858 nd->inode = inode; 1859 nd->seq = nd->next_seq; 1860 return NULL; 1861 } 1862 if (nd->flags & LOOKUP_RCU) { 1863 /* make sure that d_is_symlink above matches inode */ 1864 if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq)) 1865 return ERR_PTR(-ECHILD); 1866 } else { 1867 if (path.mnt == nd->path.mnt) 1868 mntget(path.mnt); 1869 } 1870 return pick_link(nd, &path, inode, flags); 1871 } 1872 1873 static struct dentry *follow_dotdot_rcu(struct nameidata *nd) 1874 { 1875 struct dentry *parent, *old; 1876 1877 if (path_equal(&nd->path, &nd->root)) 1878 goto in_root; 1879 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { 1880 struct path path; 1881 unsigned seq; 1882 if (!choose_mountpoint_rcu(real_mount(nd->path.mnt), 1883 &nd->root, &path, &seq)) 1884 goto in_root; 1885 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1886 return ERR_PTR(-ECHILD); 1887 nd->path = path; 1888 nd->inode = path.dentry->d_inode; 1889 nd->seq = seq; 1890 // makes sure that non-RCU pathwalk could reach this state 1891 if (read_seqretry(&mount_lock, nd->m_seq)) 1892 return ERR_PTR(-ECHILD); 1893 /* we know that mountpoint was pinned */ 1894 } 1895 old = nd->path.dentry; 1896 parent = old->d_parent; 1897 nd->next_seq = read_seqcount_begin(&parent->d_seq); 1898 // makes sure that non-RCU pathwalk could reach this state 1899 if (read_seqcount_retry(&old->d_seq, nd->seq)) 1900 return ERR_PTR(-ECHILD); 1901 if (unlikely(!path_connected(nd->path.mnt, parent))) 1902 return ERR_PTR(-ECHILD); 1903 return parent; 1904 in_root: 1905 if (read_seqretry(&mount_lock, nd->m_seq)) 1906 return ERR_PTR(-ECHILD); 1907 if (unlikely(nd->flags & LOOKUP_BENEATH)) 1908 return ERR_PTR(-ECHILD); 1909 nd->next_seq = nd->seq; 1910 return nd->path.dentry; 1911 } 1912 1913 static struct dentry *follow_dotdot(struct nameidata *nd) 1914 { 1915 struct dentry *parent; 1916 1917 if (path_equal(&nd->path, &nd->root)) 1918 goto in_root; 1919 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { 1920 struct path path; 1921 1922 if (!choose_mountpoint(real_mount(nd->path.mnt), 1923 &nd->root, &path)) 1924 goto in_root; 1925 path_put(&nd->path); 1926 nd->path = path; 1927 nd->inode = path.dentry->d_inode; 1928 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1929 return ERR_PTR(-EXDEV); 1930 } 1931 /* rare case of legitimate dget_parent()... */ 1932 parent = dget_parent(nd->path.dentry); 1933 if (unlikely(!path_connected(nd->path.mnt, parent))) { 1934 dput(parent); 1935 return ERR_PTR(-ENOENT); 1936 } 1937 return parent; 1938 1939 in_root: 1940 if (unlikely(nd->flags & LOOKUP_BENEATH)) 1941 return ERR_PTR(-EXDEV); 1942 return dget(nd->path.dentry); 1943 } 1944 1945 static const char *handle_dots(struct nameidata *nd, int type) 1946 { 1947 if (type == LAST_DOTDOT) { 1948 const char *error = NULL; 1949 struct dentry *parent; 1950 1951 if (!nd->root.mnt) { 1952 error = ERR_PTR(set_root(nd)); 1953 if (error) 1954 return error; 1955 } 1956 if (nd->flags & LOOKUP_RCU) 1957 parent = follow_dotdot_rcu(nd); 1958 else 1959 parent = follow_dotdot(nd); 1960 if (IS_ERR(parent)) 1961 return ERR_CAST(parent); 1962 error = step_into(nd, WALK_NOFOLLOW, parent); 1963 if (unlikely(error)) 1964 return error; 1965 1966 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { 1967 /* 1968 * If there was a racing rename or mount along our 1969 * path, then we can't be sure that ".." hasn't jumped 1970 * above nd->root (and so userspace should retry or use 1971 * some fallback). 1972 */ 1973 smp_rmb(); 1974 if (__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq)) 1975 return ERR_PTR(-EAGAIN); 1976 if (__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq)) 1977 return ERR_PTR(-EAGAIN); 1978 } 1979 } 1980 return NULL; 1981 } 1982 1983 static const char *walk_component(struct nameidata *nd, int flags) 1984 { 1985 struct dentry *dentry; 1986 /* 1987 * "." and ".." are special - ".." especially so because it has 1988 * to be able to know about the current root directory and 1989 * parent relationships. 1990 */ 1991 if (unlikely(nd->last_type != LAST_NORM)) { 1992 if (!(flags & WALK_MORE) && nd->depth) 1993 put_link(nd); 1994 return handle_dots(nd, nd->last_type); 1995 } 1996 dentry = lookup_fast(nd); 1997 if (IS_ERR(dentry)) 1998 return ERR_CAST(dentry); 1999 if (unlikely(!dentry)) { 2000 dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags); 2001 if (IS_ERR(dentry)) 2002 return ERR_CAST(dentry); 2003 } 2004 if (!(flags & WALK_MORE) && nd->depth) 2005 put_link(nd); 2006 return step_into(nd, flags, dentry); 2007 } 2008 2009 /* 2010 * We can do the critical dentry name comparison and hashing 2011 * operations one word at a time, but we are limited to: 2012 * 2013 * - Architectures with fast unaligned word accesses. We could 2014 * do a "get_unaligned()" if this helps and is sufficiently 2015 * fast. 2016 * 2017 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 2018 * do not trap on the (extremely unlikely) case of a page 2019 * crossing operation. 2020 * 2021 * - Furthermore, we need an efficient 64-bit compile for the 2022 * 64-bit case in order to generate the "number of bytes in 2023 * the final mask". Again, that could be replaced with a 2024 * efficient population count instruction or similar. 2025 */ 2026 #ifdef CONFIG_DCACHE_WORD_ACCESS 2027 2028 #include <asm/word-at-a-time.h> 2029 2030 #ifdef HASH_MIX 2031 2032 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */ 2033 2034 #elif defined(CONFIG_64BIT) 2035 /* 2036 * Register pressure in the mixing function is an issue, particularly 2037 * on 32-bit x86, but almost any function requires one state value and 2038 * one temporary. Instead, use a function designed for two state values 2039 * and no temporaries. 2040 * 2041 * This function cannot create a collision in only two iterations, so 2042 * we have two iterations to achieve avalanche. In those two iterations, 2043 * we have six layers of mixing, which is enough to spread one bit's 2044 * influence out to 2^6 = 64 state bits. 2045 * 2046 * Rotate constants are scored by considering either 64 one-bit input 2047 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the 2048 * probability of that delta causing a change to each of the 128 output 2049 * bits, using a sample of random initial states. 2050 * 2051 * The Shannon entropy of the computed probabilities is then summed 2052 * to produce a score. Ideally, any input change has a 50% chance of 2053 * toggling any given output bit. 2054 * 2055 * Mixing scores (in bits) for (12,45): 2056 * Input delta: 1-bit 2-bit 2057 * 1 round: 713.3 42542.6 2058 * 2 rounds: 2753.7 140389.8 2059 * 3 rounds: 5954.1 233458.2 2060 * 4 rounds: 7862.6 256672.2 2061 * Perfect: 8192 258048 2062 * (64*128) (64*63/2 * 128) 2063 */ 2064 #define HASH_MIX(x, y, a) \ 2065 ( x ^= (a), \ 2066 y ^= x, x = rol64(x,12),\ 2067 x += y, y = rol64(y,45),\ 2068 y *= 9 ) 2069 2070 /* 2071 * Fold two longs into one 32-bit hash value. This must be fast, but 2072 * latency isn't quite as critical, as there is a fair bit of additional 2073 * work done before the hash value is used. 2074 */ 2075 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 2076 { 2077 y ^= x * GOLDEN_RATIO_64; 2078 y *= GOLDEN_RATIO_64; 2079 return y >> 32; 2080 } 2081 2082 #else /* 32-bit case */ 2083 2084 /* 2085 * Mixing scores (in bits) for (7,20): 2086 * Input delta: 1-bit 2-bit 2087 * 1 round: 330.3 9201.6 2088 * 2 rounds: 1246.4 25475.4 2089 * 3 rounds: 1907.1 31295.1 2090 * 4 rounds: 2042.3 31718.6 2091 * Perfect: 2048 31744 2092 * (32*64) (32*31/2 * 64) 2093 */ 2094 #define HASH_MIX(x, y, a) \ 2095 ( x ^= (a), \ 2096 y ^= x, x = rol32(x, 7),\ 2097 x += y, y = rol32(y,20),\ 2098 y *= 9 ) 2099 2100 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 2101 { 2102 /* Use arch-optimized multiply if one exists */ 2103 return __hash_32(y ^ __hash_32(x)); 2104 } 2105 2106 #endif 2107 2108 /* 2109 * Return the hash of a string of known length. This is carfully 2110 * designed to match hash_name(), which is the more critical function. 2111 * In particular, we must end by hashing a final word containing 0..7 2112 * payload bytes, to match the way that hash_name() iterates until it 2113 * finds the delimiter after the name. 2114 */ 2115 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2116 { 2117 unsigned long a, x = 0, y = (unsigned long)salt; 2118 2119 for (;;) { 2120 if (!len) 2121 goto done; 2122 a = load_unaligned_zeropad(name); 2123 if (len < sizeof(unsigned long)) 2124 break; 2125 HASH_MIX(x, y, a); 2126 name += sizeof(unsigned long); 2127 len -= sizeof(unsigned long); 2128 } 2129 x ^= a & bytemask_from_count(len); 2130 done: 2131 return fold_hash(x, y); 2132 } 2133 EXPORT_SYMBOL(full_name_hash); 2134 2135 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2136 u64 hashlen_string(const void *salt, const char *name) 2137 { 2138 unsigned long a = 0, x = 0, y = (unsigned long)salt; 2139 unsigned long adata, mask, len; 2140 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 2141 2142 len = 0; 2143 goto inside; 2144 2145 do { 2146 HASH_MIX(x, y, a); 2147 len += sizeof(unsigned long); 2148 inside: 2149 a = load_unaligned_zeropad(name+len); 2150 } while (!has_zero(a, &adata, &constants)); 2151 2152 adata = prep_zero_mask(a, adata, &constants); 2153 mask = create_zero_mask(adata); 2154 x ^= a & zero_bytemask(mask); 2155 2156 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 2157 } 2158 EXPORT_SYMBOL(hashlen_string); 2159 2160 /* 2161 * Calculate the length and hash of the path component, and 2162 * return the "hash_len" as the result. 2163 */ 2164 static inline u64 hash_name(const void *salt, const char *name) 2165 { 2166 unsigned long a = 0, b, x = 0, y = (unsigned long)salt; 2167 unsigned long adata, bdata, mask, len; 2168 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 2169 2170 len = 0; 2171 goto inside; 2172 2173 do { 2174 HASH_MIX(x, y, a); 2175 len += sizeof(unsigned long); 2176 inside: 2177 a = load_unaligned_zeropad(name+len); 2178 b = a ^ REPEAT_BYTE('/'); 2179 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 2180 2181 adata = prep_zero_mask(a, adata, &constants); 2182 bdata = prep_zero_mask(b, bdata, &constants); 2183 mask = create_zero_mask(adata | bdata); 2184 x ^= a & zero_bytemask(mask); 2185 2186 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 2187 } 2188 2189 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */ 2190 2191 /* Return the hash of a string of known length */ 2192 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2193 { 2194 unsigned long hash = init_name_hash(salt); 2195 while (len--) 2196 hash = partial_name_hash((unsigned char)*name++, hash); 2197 return end_name_hash(hash); 2198 } 2199 EXPORT_SYMBOL(full_name_hash); 2200 2201 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2202 u64 hashlen_string(const void *salt, const char *name) 2203 { 2204 unsigned long hash = init_name_hash(salt); 2205 unsigned long len = 0, c; 2206 2207 c = (unsigned char)*name; 2208 while (c) { 2209 len++; 2210 hash = partial_name_hash(c, hash); 2211 c = (unsigned char)name[len]; 2212 } 2213 return hashlen_create(end_name_hash(hash), len); 2214 } 2215 EXPORT_SYMBOL(hashlen_string); 2216 2217 /* 2218 * We know there's a real path component here of at least 2219 * one character. 2220 */ 2221 static inline u64 hash_name(const void *salt, const char *name) 2222 { 2223 unsigned long hash = init_name_hash(salt); 2224 unsigned long len = 0, c; 2225 2226 c = (unsigned char)*name; 2227 do { 2228 len++; 2229 hash = partial_name_hash(c, hash); 2230 c = (unsigned char)name[len]; 2231 } while (c && c != '/'); 2232 return hashlen_create(end_name_hash(hash), len); 2233 } 2234 2235 #endif 2236 2237 /* 2238 * Name resolution. 2239 * This is the basic name resolution function, turning a pathname into 2240 * the final dentry. We expect 'base' to be positive and a directory. 2241 * 2242 * Returns 0 and nd will have valid dentry and mnt on success. 2243 * Returns error and drops reference to input namei data on failure. 2244 */ 2245 static int link_path_walk(const char *name, struct nameidata *nd) 2246 { 2247 int depth = 0; // depth <= nd->depth 2248 int err; 2249 2250 nd->last_type = LAST_ROOT; 2251 nd->flags |= LOOKUP_PARENT; 2252 if (IS_ERR(name)) 2253 return PTR_ERR(name); 2254 while (*name=='/') 2255 name++; 2256 if (!*name) { 2257 nd->dir_mode = 0; // short-circuit the 'hardening' idiocy 2258 return 0; 2259 } 2260 2261 /* At this point we know we have a real path component. */ 2262 for(;;) { 2263 struct mnt_idmap *idmap; 2264 const char *link; 2265 u64 hash_len; 2266 int type; 2267 2268 idmap = mnt_idmap(nd->path.mnt); 2269 err = may_lookup(idmap, nd); 2270 if (err) 2271 return err; 2272 2273 hash_len = hash_name(nd->path.dentry, name); 2274 2275 type = LAST_NORM; 2276 if (name[0] == '.') switch (hashlen_len(hash_len)) { 2277 case 2: 2278 if (name[1] == '.') { 2279 type = LAST_DOTDOT; 2280 nd->state |= ND_JUMPED; 2281 } 2282 break; 2283 case 1: 2284 type = LAST_DOT; 2285 } 2286 if (likely(type == LAST_NORM)) { 2287 struct dentry *parent = nd->path.dentry; 2288 nd->state &= ~ND_JUMPED; 2289 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 2290 struct qstr this = { { .hash_len = hash_len }, .name = name }; 2291 err = parent->d_op->d_hash(parent, &this); 2292 if (err < 0) 2293 return err; 2294 hash_len = this.hash_len; 2295 name = this.name; 2296 } 2297 } 2298 2299 nd->last.hash_len = hash_len; 2300 nd->last.name = name; 2301 nd->last_type = type; 2302 2303 name += hashlen_len(hash_len); 2304 if (!*name) 2305 goto OK; 2306 /* 2307 * If it wasn't NUL, we know it was '/'. Skip that 2308 * slash, and continue until no more slashes. 2309 */ 2310 do { 2311 name++; 2312 } while (unlikely(*name == '/')); 2313 if (unlikely(!*name)) { 2314 OK: 2315 /* pathname or trailing symlink, done */ 2316 if (!depth) { 2317 nd->dir_vfsuid = i_uid_into_vfsuid(idmap, nd->inode); 2318 nd->dir_mode = nd->inode->i_mode; 2319 nd->flags &= ~LOOKUP_PARENT; 2320 return 0; 2321 } 2322 /* last component of nested symlink */ 2323 name = nd->stack[--depth].name; 2324 link = walk_component(nd, 0); 2325 } else { 2326 /* not the last component */ 2327 link = walk_component(nd, WALK_MORE); 2328 } 2329 if (unlikely(link)) { 2330 if (IS_ERR(link)) 2331 return PTR_ERR(link); 2332 /* a symlink to follow */ 2333 nd->stack[depth++].name = name; 2334 name = link; 2335 continue; 2336 } 2337 if (unlikely(!d_can_lookup(nd->path.dentry))) { 2338 if (nd->flags & LOOKUP_RCU) { 2339 if (!try_to_unlazy(nd)) 2340 return -ECHILD; 2341 } 2342 return -ENOTDIR; 2343 } 2344 } 2345 } 2346 2347 /* must be paired with terminate_walk() */ 2348 static const char *path_init(struct nameidata *nd, unsigned flags) 2349 { 2350 int error; 2351 const char *s = nd->name->name; 2352 2353 /* LOOKUP_CACHED requires RCU, ask caller to retry */ 2354 if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED) 2355 return ERR_PTR(-EAGAIN); 2356 2357 if (!*s) 2358 flags &= ~LOOKUP_RCU; 2359 if (flags & LOOKUP_RCU) 2360 rcu_read_lock(); 2361 else 2362 nd->seq = nd->next_seq = 0; 2363 2364 nd->flags = flags; 2365 nd->state |= ND_JUMPED; 2366 2367 nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount); 2368 nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount); 2369 smp_rmb(); 2370 2371 if (nd->state & ND_ROOT_PRESET) { 2372 struct dentry *root = nd->root.dentry; 2373 struct inode *inode = root->d_inode; 2374 if (*s && unlikely(!d_can_lookup(root))) 2375 return ERR_PTR(-ENOTDIR); 2376 nd->path = nd->root; 2377 nd->inode = inode; 2378 if (flags & LOOKUP_RCU) { 2379 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2380 nd->root_seq = nd->seq; 2381 } else { 2382 path_get(&nd->path); 2383 } 2384 return s; 2385 } 2386 2387 nd->root.mnt = NULL; 2388 2389 /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */ 2390 if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) { 2391 error = nd_jump_root(nd); 2392 if (unlikely(error)) 2393 return ERR_PTR(error); 2394 return s; 2395 } 2396 2397 /* Relative pathname -- get the starting-point it is relative to. */ 2398 if (nd->dfd == AT_FDCWD) { 2399 if (flags & LOOKUP_RCU) { 2400 struct fs_struct *fs = current->fs; 2401 unsigned seq; 2402 2403 do { 2404 seq = read_seqcount_begin(&fs->seq); 2405 nd->path = fs->pwd; 2406 nd->inode = nd->path.dentry->d_inode; 2407 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2408 } while (read_seqcount_retry(&fs->seq, seq)); 2409 } else { 2410 get_fs_pwd(current->fs, &nd->path); 2411 nd->inode = nd->path.dentry->d_inode; 2412 } 2413 } else { 2414 /* Caller must check execute permissions on the starting path component */ 2415 struct fd f = fdget_raw(nd->dfd); 2416 struct dentry *dentry; 2417 2418 if (!f.file) 2419 return ERR_PTR(-EBADF); 2420 2421 dentry = f.file->f_path.dentry; 2422 2423 if (*s && unlikely(!d_can_lookup(dentry))) { 2424 fdput(f); 2425 return ERR_PTR(-ENOTDIR); 2426 } 2427 2428 nd->path = f.file->f_path; 2429 if (flags & LOOKUP_RCU) { 2430 nd->inode = nd->path.dentry->d_inode; 2431 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2432 } else { 2433 path_get(&nd->path); 2434 nd->inode = nd->path.dentry->d_inode; 2435 } 2436 fdput(f); 2437 } 2438 2439 /* For scoped-lookups we need to set the root to the dirfd as well. */ 2440 if (flags & LOOKUP_IS_SCOPED) { 2441 nd->root = nd->path; 2442 if (flags & LOOKUP_RCU) { 2443 nd->root_seq = nd->seq; 2444 } else { 2445 path_get(&nd->root); 2446 nd->state |= ND_ROOT_GRABBED; 2447 } 2448 } 2449 return s; 2450 } 2451 2452 static inline const char *lookup_last(struct nameidata *nd) 2453 { 2454 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 2455 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2456 2457 return walk_component(nd, WALK_TRAILING); 2458 } 2459 2460 static int handle_lookup_down(struct nameidata *nd) 2461 { 2462 if (!(nd->flags & LOOKUP_RCU)) 2463 dget(nd->path.dentry); 2464 nd->next_seq = nd->seq; 2465 return PTR_ERR(step_into(nd, WALK_NOFOLLOW, nd->path.dentry)); 2466 } 2467 2468 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */ 2469 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path) 2470 { 2471 const char *s = path_init(nd, flags); 2472 int err; 2473 2474 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) { 2475 err = handle_lookup_down(nd); 2476 if (unlikely(err < 0)) 2477 s = ERR_PTR(err); 2478 } 2479 2480 while (!(err = link_path_walk(s, nd)) && 2481 (s = lookup_last(nd)) != NULL) 2482 ; 2483 if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) { 2484 err = handle_lookup_down(nd); 2485 nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please... 2486 } 2487 if (!err) 2488 err = complete_walk(nd); 2489 2490 if (!err && nd->flags & LOOKUP_DIRECTORY) 2491 if (!d_can_lookup(nd->path.dentry)) 2492 err = -ENOTDIR; 2493 if (!err) { 2494 *path = nd->path; 2495 nd->path.mnt = NULL; 2496 nd->path.dentry = NULL; 2497 } 2498 terminate_walk(nd); 2499 return err; 2500 } 2501 2502 int filename_lookup(int dfd, struct filename *name, unsigned flags, 2503 struct path *path, struct path *root) 2504 { 2505 int retval; 2506 struct nameidata nd; 2507 if (IS_ERR(name)) 2508 return PTR_ERR(name); 2509 set_nameidata(&nd, dfd, name, root); 2510 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path); 2511 if (unlikely(retval == -ECHILD)) 2512 retval = path_lookupat(&nd, flags, path); 2513 if (unlikely(retval == -ESTALE)) 2514 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path); 2515 2516 if (likely(!retval)) 2517 audit_inode(name, path->dentry, 2518 flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0); 2519 restore_nameidata(); 2520 return retval; 2521 } 2522 2523 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */ 2524 static int path_parentat(struct nameidata *nd, unsigned flags, 2525 struct path *parent) 2526 { 2527 const char *s = path_init(nd, flags); 2528 int err = link_path_walk(s, nd); 2529 if (!err) 2530 err = complete_walk(nd); 2531 if (!err) { 2532 *parent = nd->path; 2533 nd->path.mnt = NULL; 2534 nd->path.dentry = NULL; 2535 } 2536 terminate_walk(nd); 2537 return err; 2538 } 2539 2540 /* Note: this does not consume "name" */ 2541 static int __filename_parentat(int dfd, struct filename *name, 2542 unsigned int flags, struct path *parent, 2543 struct qstr *last, int *type, 2544 const struct path *root) 2545 { 2546 int retval; 2547 struct nameidata nd; 2548 2549 if (IS_ERR(name)) 2550 return PTR_ERR(name); 2551 set_nameidata(&nd, dfd, name, root); 2552 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent); 2553 if (unlikely(retval == -ECHILD)) 2554 retval = path_parentat(&nd, flags, parent); 2555 if (unlikely(retval == -ESTALE)) 2556 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent); 2557 if (likely(!retval)) { 2558 *last = nd.last; 2559 *type = nd.last_type; 2560 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT); 2561 } 2562 restore_nameidata(); 2563 return retval; 2564 } 2565 2566 static int filename_parentat(int dfd, struct filename *name, 2567 unsigned int flags, struct path *parent, 2568 struct qstr *last, int *type) 2569 { 2570 return __filename_parentat(dfd, name, flags, parent, last, type, NULL); 2571 } 2572 2573 /* does lookup, returns the object with parent locked */ 2574 static struct dentry *__kern_path_locked(int dfd, struct filename *name, struct path *path) 2575 { 2576 struct dentry *d; 2577 struct qstr last; 2578 int type, error; 2579 2580 error = filename_parentat(dfd, name, 0, path, &last, &type); 2581 if (error) 2582 return ERR_PTR(error); 2583 if (unlikely(type != LAST_NORM)) { 2584 path_put(path); 2585 return ERR_PTR(-EINVAL); 2586 } 2587 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 2588 d = lookup_one_qstr_excl(&last, path->dentry, 0); 2589 if (IS_ERR(d)) { 2590 inode_unlock(path->dentry->d_inode); 2591 path_put(path); 2592 } 2593 return d; 2594 } 2595 2596 struct dentry *kern_path_locked(const char *name, struct path *path) 2597 { 2598 struct filename *filename = getname_kernel(name); 2599 struct dentry *res = __kern_path_locked(AT_FDCWD, filename, path); 2600 2601 putname(filename); 2602 return res; 2603 } 2604 2605 struct dentry *user_path_locked_at(int dfd, const char __user *name, struct path *path) 2606 { 2607 struct filename *filename = getname(name); 2608 struct dentry *res = __kern_path_locked(dfd, filename, path); 2609 2610 putname(filename); 2611 return res; 2612 } 2613 EXPORT_SYMBOL(user_path_locked_at); 2614 2615 int kern_path(const char *name, unsigned int flags, struct path *path) 2616 { 2617 struct filename *filename = getname_kernel(name); 2618 int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL); 2619 2620 putname(filename); 2621 return ret; 2622 2623 } 2624 EXPORT_SYMBOL(kern_path); 2625 2626 /** 2627 * vfs_path_parent_lookup - lookup a parent path relative to a dentry-vfsmount pair 2628 * @filename: filename structure 2629 * @flags: lookup flags 2630 * @parent: pointer to struct path to fill 2631 * @last: last component 2632 * @type: type of the last component 2633 * @root: pointer to struct path of the base directory 2634 */ 2635 int vfs_path_parent_lookup(struct filename *filename, unsigned int flags, 2636 struct path *parent, struct qstr *last, int *type, 2637 const struct path *root) 2638 { 2639 return __filename_parentat(AT_FDCWD, filename, flags, parent, last, 2640 type, root); 2641 } 2642 EXPORT_SYMBOL(vfs_path_parent_lookup); 2643 2644 /** 2645 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2646 * @dentry: pointer to dentry of the base directory 2647 * @mnt: pointer to vfs mount of the base directory 2648 * @name: pointer to file name 2649 * @flags: lookup flags 2650 * @path: pointer to struct path to fill 2651 */ 2652 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2653 const char *name, unsigned int flags, 2654 struct path *path) 2655 { 2656 struct filename *filename; 2657 struct path root = {.mnt = mnt, .dentry = dentry}; 2658 int ret; 2659 2660 filename = getname_kernel(name); 2661 /* the first argument of filename_lookup() is ignored with root */ 2662 ret = filename_lookup(AT_FDCWD, filename, flags, path, &root); 2663 putname(filename); 2664 return ret; 2665 } 2666 EXPORT_SYMBOL(vfs_path_lookup); 2667 2668 static int lookup_one_common(struct mnt_idmap *idmap, 2669 const char *name, struct dentry *base, int len, 2670 struct qstr *this) 2671 { 2672 this->name = name; 2673 this->len = len; 2674 this->hash = full_name_hash(base, name, len); 2675 if (!len) 2676 return -EACCES; 2677 2678 if (unlikely(name[0] == '.')) { 2679 if (len < 2 || (len == 2 && name[1] == '.')) 2680 return -EACCES; 2681 } 2682 2683 while (len--) { 2684 unsigned int c = *(const unsigned char *)name++; 2685 if (c == '/' || c == '\0') 2686 return -EACCES; 2687 } 2688 /* 2689 * See if the low-level filesystem might want 2690 * to use its own hash.. 2691 */ 2692 if (base->d_flags & DCACHE_OP_HASH) { 2693 int err = base->d_op->d_hash(base, this); 2694 if (err < 0) 2695 return err; 2696 } 2697 2698 return inode_permission(idmap, base->d_inode, MAY_EXEC); 2699 } 2700 2701 /** 2702 * try_lookup_one_len - filesystem helper to lookup single pathname component 2703 * @name: pathname component to lookup 2704 * @base: base directory to lookup from 2705 * @len: maximum length @len should be interpreted to 2706 * 2707 * Look up a dentry by name in the dcache, returning NULL if it does not 2708 * currently exist. The function does not try to create a dentry. 2709 * 2710 * Note that this routine is purely a helper for filesystem usage and should 2711 * not be called by generic code. 2712 * 2713 * The caller must hold base->i_mutex. 2714 */ 2715 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len) 2716 { 2717 struct qstr this; 2718 int err; 2719 2720 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2721 2722 err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this); 2723 if (err) 2724 return ERR_PTR(err); 2725 2726 return lookup_dcache(&this, base, 0); 2727 } 2728 EXPORT_SYMBOL(try_lookup_one_len); 2729 2730 /** 2731 * lookup_one_len - filesystem helper to lookup single pathname component 2732 * @name: pathname component to lookup 2733 * @base: base directory to lookup from 2734 * @len: maximum length @len should be interpreted to 2735 * 2736 * Note that this routine is purely a helper for filesystem usage and should 2737 * not be called by generic code. 2738 * 2739 * The caller must hold base->i_mutex. 2740 */ 2741 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2742 { 2743 struct dentry *dentry; 2744 struct qstr this; 2745 int err; 2746 2747 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2748 2749 err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this); 2750 if (err) 2751 return ERR_PTR(err); 2752 2753 dentry = lookup_dcache(&this, base, 0); 2754 return dentry ? dentry : __lookup_slow(&this, base, 0); 2755 } 2756 EXPORT_SYMBOL(lookup_one_len); 2757 2758 /** 2759 * lookup_one - filesystem helper to lookup single pathname component 2760 * @idmap: idmap of the mount the lookup is performed from 2761 * @name: pathname component to lookup 2762 * @base: base directory to lookup from 2763 * @len: maximum length @len should be interpreted to 2764 * 2765 * Note that this routine is purely a helper for filesystem usage and should 2766 * not be called by generic code. 2767 * 2768 * The caller must hold base->i_mutex. 2769 */ 2770 struct dentry *lookup_one(struct mnt_idmap *idmap, const char *name, 2771 struct dentry *base, int len) 2772 { 2773 struct dentry *dentry; 2774 struct qstr this; 2775 int err; 2776 2777 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2778 2779 err = lookup_one_common(idmap, name, base, len, &this); 2780 if (err) 2781 return ERR_PTR(err); 2782 2783 dentry = lookup_dcache(&this, base, 0); 2784 return dentry ? dentry : __lookup_slow(&this, base, 0); 2785 } 2786 EXPORT_SYMBOL(lookup_one); 2787 2788 /** 2789 * lookup_one_unlocked - filesystem helper to lookup single pathname component 2790 * @idmap: idmap of the mount the lookup is performed from 2791 * @name: pathname component to lookup 2792 * @base: base directory to lookup from 2793 * @len: maximum length @len should be interpreted to 2794 * 2795 * Note that this routine is purely a helper for filesystem usage and should 2796 * not be called by generic code. 2797 * 2798 * Unlike lookup_one_len, it should be called without the parent 2799 * i_mutex held, and will take the i_mutex itself if necessary. 2800 */ 2801 struct dentry *lookup_one_unlocked(struct mnt_idmap *idmap, 2802 const char *name, struct dentry *base, 2803 int len) 2804 { 2805 struct qstr this; 2806 int err; 2807 struct dentry *ret; 2808 2809 err = lookup_one_common(idmap, name, base, len, &this); 2810 if (err) 2811 return ERR_PTR(err); 2812 2813 ret = lookup_dcache(&this, base, 0); 2814 if (!ret) 2815 ret = lookup_slow(&this, base, 0); 2816 return ret; 2817 } 2818 EXPORT_SYMBOL(lookup_one_unlocked); 2819 2820 /** 2821 * lookup_one_positive_unlocked - filesystem helper to lookup single 2822 * pathname component 2823 * @idmap: idmap of the mount the lookup is performed from 2824 * @name: pathname component to lookup 2825 * @base: base directory to lookup from 2826 * @len: maximum length @len should be interpreted to 2827 * 2828 * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns 2829 * known positive or ERR_PTR(). This is what most of the users want. 2830 * 2831 * Note that pinned negative with unlocked parent _can_ become positive at any 2832 * time, so callers of lookup_one_unlocked() need to be very careful; pinned 2833 * positives have >d_inode stable, so this one avoids such problems. 2834 * 2835 * Note that this routine is purely a helper for filesystem usage and should 2836 * not be called by generic code. 2837 * 2838 * The helper should be called without i_mutex held. 2839 */ 2840 struct dentry *lookup_one_positive_unlocked(struct mnt_idmap *idmap, 2841 const char *name, 2842 struct dentry *base, int len) 2843 { 2844 struct dentry *ret = lookup_one_unlocked(idmap, name, base, len); 2845 2846 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) { 2847 dput(ret); 2848 ret = ERR_PTR(-ENOENT); 2849 } 2850 return ret; 2851 } 2852 EXPORT_SYMBOL(lookup_one_positive_unlocked); 2853 2854 /** 2855 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component 2856 * @name: pathname component to lookup 2857 * @base: base directory to lookup from 2858 * @len: maximum length @len should be interpreted to 2859 * 2860 * Note that this routine is purely a helper for filesystem usage and should 2861 * not be called by generic code. 2862 * 2863 * Unlike lookup_one_len, it should be called without the parent 2864 * i_mutex held, and will take the i_mutex itself if necessary. 2865 */ 2866 struct dentry *lookup_one_len_unlocked(const char *name, 2867 struct dentry *base, int len) 2868 { 2869 return lookup_one_unlocked(&nop_mnt_idmap, name, base, len); 2870 } 2871 EXPORT_SYMBOL(lookup_one_len_unlocked); 2872 2873 /* 2874 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT) 2875 * on negatives. Returns known positive or ERR_PTR(); that's what 2876 * most of the users want. Note that pinned negative with unlocked parent 2877 * _can_ become positive at any time, so callers of lookup_one_len_unlocked() 2878 * need to be very careful; pinned positives have ->d_inode stable, so 2879 * this one avoids such problems. 2880 */ 2881 struct dentry *lookup_positive_unlocked(const char *name, 2882 struct dentry *base, int len) 2883 { 2884 return lookup_one_positive_unlocked(&nop_mnt_idmap, name, base, len); 2885 } 2886 EXPORT_SYMBOL(lookup_positive_unlocked); 2887 2888 #ifdef CONFIG_UNIX98_PTYS 2889 int path_pts(struct path *path) 2890 { 2891 /* Find something mounted on "pts" in the same directory as 2892 * the input path. 2893 */ 2894 struct dentry *parent = dget_parent(path->dentry); 2895 struct dentry *child; 2896 struct qstr this = QSTR_INIT("pts", 3); 2897 2898 if (unlikely(!path_connected(path->mnt, parent))) { 2899 dput(parent); 2900 return -ENOENT; 2901 } 2902 dput(path->dentry); 2903 path->dentry = parent; 2904 child = d_hash_and_lookup(parent, &this); 2905 if (IS_ERR_OR_NULL(child)) 2906 return -ENOENT; 2907 2908 path->dentry = child; 2909 dput(parent); 2910 follow_down(path, 0); 2911 return 0; 2912 } 2913 #endif 2914 2915 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2916 struct path *path, int *empty) 2917 { 2918 struct filename *filename = getname_flags(name, flags, empty); 2919 int ret = filename_lookup(dfd, filename, flags, path, NULL); 2920 2921 putname(filename); 2922 return ret; 2923 } 2924 EXPORT_SYMBOL(user_path_at_empty); 2925 2926 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir, 2927 struct inode *inode) 2928 { 2929 kuid_t fsuid = current_fsuid(); 2930 2931 if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), fsuid)) 2932 return 0; 2933 if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, dir), fsuid)) 2934 return 0; 2935 return !capable_wrt_inode_uidgid(idmap, inode, CAP_FOWNER); 2936 } 2937 EXPORT_SYMBOL(__check_sticky); 2938 2939 /* 2940 * Check whether we can remove a link victim from directory dir, check 2941 * whether the type of victim is right. 2942 * 1. We can't do it if dir is read-only (done in permission()) 2943 * 2. We should have write and exec permissions on dir 2944 * 3. We can't remove anything from append-only dir 2945 * 4. We can't do anything with immutable dir (done in permission()) 2946 * 5. If the sticky bit on dir is set we should either 2947 * a. be owner of dir, or 2948 * b. be owner of victim, or 2949 * c. have CAP_FOWNER capability 2950 * 6. If the victim is append-only or immutable we can't do antyhing with 2951 * links pointing to it. 2952 * 7. If the victim has an unknown uid or gid we can't change the inode. 2953 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2954 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2955 * 10. We can't remove a root or mountpoint. 2956 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by 2957 * nfs_async_unlink(). 2958 */ 2959 static int may_delete(struct mnt_idmap *idmap, struct inode *dir, 2960 struct dentry *victim, bool isdir) 2961 { 2962 struct inode *inode = d_backing_inode(victim); 2963 int error; 2964 2965 if (d_is_negative(victim)) 2966 return -ENOENT; 2967 BUG_ON(!inode); 2968 2969 BUG_ON(victim->d_parent->d_inode != dir); 2970 2971 /* Inode writeback is not safe when the uid or gid are invalid. */ 2972 if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) || 2973 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode))) 2974 return -EOVERFLOW; 2975 2976 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2977 2978 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 2979 if (error) 2980 return error; 2981 if (IS_APPEND(dir)) 2982 return -EPERM; 2983 2984 if (check_sticky(idmap, dir, inode) || IS_APPEND(inode) || 2985 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || 2986 HAS_UNMAPPED_ID(idmap, inode)) 2987 return -EPERM; 2988 if (isdir) { 2989 if (!d_is_dir(victim)) 2990 return -ENOTDIR; 2991 if (IS_ROOT(victim)) 2992 return -EBUSY; 2993 } else if (d_is_dir(victim)) 2994 return -EISDIR; 2995 if (IS_DEADDIR(dir)) 2996 return -ENOENT; 2997 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2998 return -EBUSY; 2999 return 0; 3000 } 3001 3002 /* Check whether we can create an object with dentry child in directory 3003 * dir. 3004 * 1. We can't do it if child already exists (open has special treatment for 3005 * this case, but since we are inlined it's OK) 3006 * 2. We can't do it if dir is read-only (done in permission()) 3007 * 3. We can't do it if the fs can't represent the fsuid or fsgid. 3008 * 4. We should have write and exec permissions on dir 3009 * 5. We can't do it if dir is immutable (done in permission()) 3010 */ 3011 static inline int may_create(struct mnt_idmap *idmap, 3012 struct inode *dir, struct dentry *child) 3013 { 3014 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 3015 if (child->d_inode) 3016 return -EEXIST; 3017 if (IS_DEADDIR(dir)) 3018 return -ENOENT; 3019 if (!fsuidgid_has_mapping(dir->i_sb, idmap)) 3020 return -EOVERFLOW; 3021 3022 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 3023 } 3024 3025 // p1 != p2, both are on the same filesystem, ->s_vfs_rename_mutex is held 3026 static struct dentry *lock_two_directories(struct dentry *p1, struct dentry *p2) 3027 { 3028 struct dentry *p = p1, *q = p2, *r; 3029 3030 while ((r = p->d_parent) != p2 && r != p) 3031 p = r; 3032 if (r == p2) { 3033 // p is a child of p2 and an ancestor of p1 or p1 itself 3034 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 3035 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT2); 3036 return p; 3037 } 3038 // p is the root of connected component that contains p1 3039 // p2 does not occur on the path from p to p1 3040 while ((r = q->d_parent) != p1 && r != p && r != q) 3041 q = r; 3042 if (r == p1) { 3043 // q is a child of p1 and an ancestor of p2 or p2 itself 3044 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 3045 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 3046 return q; 3047 } else if (likely(r == p)) { 3048 // both p2 and p1 are descendents of p 3049 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 3050 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 3051 return NULL; 3052 } else { // no common ancestor at the time we'd been called 3053 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 3054 return ERR_PTR(-EXDEV); 3055 } 3056 } 3057 3058 /* 3059 * p1 and p2 should be directories on the same fs. 3060 */ 3061 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 3062 { 3063 if (p1 == p2) { 3064 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 3065 return NULL; 3066 } 3067 3068 mutex_lock(&p1->d_sb->s_vfs_rename_mutex); 3069 return lock_two_directories(p1, p2); 3070 } 3071 EXPORT_SYMBOL(lock_rename); 3072 3073 /* 3074 * c1 and p2 should be on the same fs. 3075 */ 3076 struct dentry *lock_rename_child(struct dentry *c1, struct dentry *p2) 3077 { 3078 if (READ_ONCE(c1->d_parent) == p2) { 3079 /* 3080 * hopefully won't need to touch ->s_vfs_rename_mutex at all. 3081 */ 3082 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 3083 /* 3084 * now that p2 is locked, nobody can move in or out of it, 3085 * so the test below is safe. 3086 */ 3087 if (likely(c1->d_parent == p2)) 3088 return NULL; 3089 3090 /* 3091 * c1 got moved out of p2 while we'd been taking locks; 3092 * unlock and fall back to slow case. 3093 */ 3094 inode_unlock(p2->d_inode); 3095 } 3096 3097 mutex_lock(&c1->d_sb->s_vfs_rename_mutex); 3098 /* 3099 * nobody can move out of any directories on this fs. 3100 */ 3101 if (likely(c1->d_parent != p2)) 3102 return lock_two_directories(c1->d_parent, p2); 3103 3104 /* 3105 * c1 got moved into p2 while we were taking locks; 3106 * we need p2 locked and ->s_vfs_rename_mutex unlocked, 3107 * for consistency with lock_rename(). 3108 */ 3109 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 3110 mutex_unlock(&c1->d_sb->s_vfs_rename_mutex); 3111 return NULL; 3112 } 3113 EXPORT_SYMBOL(lock_rename_child); 3114 3115 void unlock_rename(struct dentry *p1, struct dentry *p2) 3116 { 3117 inode_unlock(p1->d_inode); 3118 if (p1 != p2) { 3119 inode_unlock(p2->d_inode); 3120 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 3121 } 3122 } 3123 EXPORT_SYMBOL(unlock_rename); 3124 3125 /** 3126 * vfs_prepare_mode - prepare the mode to be used for a new inode 3127 * @idmap: idmap of the mount the inode was found from 3128 * @dir: parent directory of the new inode 3129 * @mode: mode of the new inode 3130 * @mask_perms: allowed permission by the vfs 3131 * @type: type of file to be created 3132 * 3133 * This helper consolidates and enforces vfs restrictions on the @mode of a new 3134 * object to be created. 3135 * 3136 * Umask stripping depends on whether the filesystem supports POSIX ACLs (see 3137 * the kernel documentation for mode_strip_umask()). Moving umask stripping 3138 * after setgid stripping allows the same ordering for both non-POSIX ACL and 3139 * POSIX ACL supporting filesystems. 3140 * 3141 * Note that it's currently valid for @type to be 0 if a directory is created. 3142 * Filesystems raise that flag individually and we need to check whether each 3143 * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a 3144 * non-zero type. 3145 * 3146 * Returns: mode to be passed to the filesystem 3147 */ 3148 static inline umode_t vfs_prepare_mode(struct mnt_idmap *idmap, 3149 const struct inode *dir, umode_t mode, 3150 umode_t mask_perms, umode_t type) 3151 { 3152 mode = mode_strip_sgid(idmap, dir, mode); 3153 mode = mode_strip_umask(dir, mode); 3154 3155 /* 3156 * Apply the vfs mandated allowed permission mask and set the type of 3157 * file to be created before we call into the filesystem. 3158 */ 3159 mode &= (mask_perms & ~S_IFMT); 3160 mode |= (type & S_IFMT); 3161 3162 return mode; 3163 } 3164 3165 /** 3166 * vfs_create - create new file 3167 * @idmap: idmap of the mount the inode was found from 3168 * @dir: inode of @dentry 3169 * @dentry: pointer to dentry of the base directory 3170 * @mode: mode of the new file 3171 * @want_excl: whether the file must not yet exist 3172 * 3173 * Create a new file. 3174 * 3175 * If the inode has been found through an idmapped mount the idmap of 3176 * the vfsmount must be passed through @idmap. This function will then take 3177 * care to map the inode according to @idmap before checking permissions. 3178 * On non-idmapped mounts or if permission checking is to be performed on the 3179 * raw inode simply pass @nop_mnt_idmap. 3180 */ 3181 int vfs_create(struct mnt_idmap *idmap, struct inode *dir, 3182 struct dentry *dentry, umode_t mode, bool want_excl) 3183 { 3184 int error; 3185 3186 error = may_create(idmap, dir, dentry); 3187 if (error) 3188 return error; 3189 3190 if (!dir->i_op->create) 3191 return -EACCES; /* shouldn't it be ENOSYS? */ 3192 3193 mode = vfs_prepare_mode(idmap, dir, mode, S_IALLUGO, S_IFREG); 3194 error = security_inode_create(dir, dentry, mode); 3195 if (error) 3196 return error; 3197 error = dir->i_op->create(idmap, dir, dentry, mode, want_excl); 3198 if (!error) 3199 fsnotify_create(dir, dentry); 3200 return error; 3201 } 3202 EXPORT_SYMBOL(vfs_create); 3203 3204 int vfs_mkobj(struct dentry *dentry, umode_t mode, 3205 int (*f)(struct dentry *, umode_t, void *), 3206 void *arg) 3207 { 3208 struct inode *dir = dentry->d_parent->d_inode; 3209 int error = may_create(&nop_mnt_idmap, dir, dentry); 3210 if (error) 3211 return error; 3212 3213 mode &= S_IALLUGO; 3214 mode |= S_IFREG; 3215 error = security_inode_create(dir, dentry, mode); 3216 if (error) 3217 return error; 3218 error = f(dentry, mode, arg); 3219 if (!error) 3220 fsnotify_create(dir, dentry); 3221 return error; 3222 } 3223 EXPORT_SYMBOL(vfs_mkobj); 3224 3225 bool may_open_dev(const struct path *path) 3226 { 3227 return !(path->mnt->mnt_flags & MNT_NODEV) && 3228 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV); 3229 } 3230 3231 static int may_open(struct mnt_idmap *idmap, const struct path *path, 3232 int acc_mode, int flag) 3233 { 3234 struct dentry *dentry = path->dentry; 3235 struct inode *inode = dentry->d_inode; 3236 int error; 3237 3238 if (!inode) 3239 return -ENOENT; 3240 3241 switch (inode->i_mode & S_IFMT) { 3242 case S_IFLNK: 3243 return -ELOOP; 3244 case S_IFDIR: 3245 if (acc_mode & MAY_WRITE) 3246 return -EISDIR; 3247 if (acc_mode & MAY_EXEC) 3248 return -EACCES; 3249 break; 3250 case S_IFBLK: 3251 case S_IFCHR: 3252 if (!may_open_dev(path)) 3253 return -EACCES; 3254 fallthrough; 3255 case S_IFIFO: 3256 case S_IFSOCK: 3257 if (acc_mode & MAY_EXEC) 3258 return -EACCES; 3259 flag &= ~O_TRUNC; 3260 break; 3261 case S_IFREG: 3262 if ((acc_mode & MAY_EXEC) && path_noexec(path)) 3263 return -EACCES; 3264 break; 3265 } 3266 3267 error = inode_permission(idmap, inode, MAY_OPEN | acc_mode); 3268 if (error) 3269 return error; 3270 3271 /* 3272 * An append-only file must be opened in append mode for writing. 3273 */ 3274 if (IS_APPEND(inode)) { 3275 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 3276 return -EPERM; 3277 if (flag & O_TRUNC) 3278 return -EPERM; 3279 } 3280 3281 /* O_NOATIME can only be set by the owner or superuser */ 3282 if (flag & O_NOATIME && !inode_owner_or_capable(idmap, inode)) 3283 return -EPERM; 3284 3285 return 0; 3286 } 3287 3288 static int handle_truncate(struct mnt_idmap *idmap, struct file *filp) 3289 { 3290 const struct path *path = &filp->f_path; 3291 struct inode *inode = path->dentry->d_inode; 3292 int error = get_write_access(inode); 3293 if (error) 3294 return error; 3295 3296 error = security_file_truncate(filp); 3297 if (!error) { 3298 error = do_truncate(idmap, path->dentry, 0, 3299 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 3300 filp); 3301 } 3302 put_write_access(inode); 3303 return error; 3304 } 3305 3306 static inline int open_to_namei_flags(int flag) 3307 { 3308 if ((flag & O_ACCMODE) == 3) 3309 flag--; 3310 return flag; 3311 } 3312 3313 static int may_o_create(struct mnt_idmap *idmap, 3314 const struct path *dir, struct dentry *dentry, 3315 umode_t mode) 3316 { 3317 int error = security_path_mknod(dir, dentry, mode, 0); 3318 if (error) 3319 return error; 3320 3321 if (!fsuidgid_has_mapping(dir->dentry->d_sb, idmap)) 3322 return -EOVERFLOW; 3323 3324 error = inode_permission(idmap, dir->dentry->d_inode, 3325 MAY_WRITE | MAY_EXEC); 3326 if (error) 3327 return error; 3328 3329 return security_inode_create(dir->dentry->d_inode, dentry, mode); 3330 } 3331 3332 /* 3333 * Attempt to atomically look up, create and open a file from a negative 3334 * dentry. 3335 * 3336 * Returns 0 if successful. The file will have been created and attached to 3337 * @file by the filesystem calling finish_open(). 3338 * 3339 * If the file was looked up only or didn't need creating, FMODE_OPENED won't 3340 * be set. The caller will need to perform the open themselves. @path will 3341 * have been updated to point to the new dentry. This may be negative. 3342 * 3343 * Returns an error code otherwise. 3344 */ 3345 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry, 3346 struct file *file, 3347 int open_flag, umode_t mode) 3348 { 3349 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 3350 struct inode *dir = nd->path.dentry->d_inode; 3351 int error; 3352 3353 if (nd->flags & LOOKUP_DIRECTORY) 3354 open_flag |= O_DIRECTORY; 3355 3356 file->f_path.dentry = DENTRY_NOT_SET; 3357 file->f_path.mnt = nd->path.mnt; 3358 error = dir->i_op->atomic_open(dir, dentry, file, 3359 open_to_namei_flags(open_flag), mode); 3360 d_lookup_done(dentry); 3361 if (!error) { 3362 if (file->f_mode & FMODE_OPENED) { 3363 if (unlikely(dentry != file->f_path.dentry)) { 3364 dput(dentry); 3365 dentry = dget(file->f_path.dentry); 3366 } 3367 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 3368 error = -EIO; 3369 } else { 3370 if (file->f_path.dentry) { 3371 dput(dentry); 3372 dentry = file->f_path.dentry; 3373 } 3374 if (unlikely(d_is_negative(dentry))) 3375 error = -ENOENT; 3376 } 3377 } 3378 if (error) { 3379 dput(dentry); 3380 dentry = ERR_PTR(error); 3381 } 3382 return dentry; 3383 } 3384 3385 /* 3386 * Look up and maybe create and open the last component. 3387 * 3388 * Must be called with parent locked (exclusive in O_CREAT case). 3389 * 3390 * Returns 0 on success, that is, if 3391 * the file was successfully atomically created (if necessary) and opened, or 3392 * the file was not completely opened at this time, though lookups and 3393 * creations were performed. 3394 * These case are distinguished by presence of FMODE_OPENED on file->f_mode. 3395 * In the latter case dentry returned in @path might be negative if O_CREAT 3396 * hadn't been specified. 3397 * 3398 * An error code is returned on failure. 3399 */ 3400 static struct dentry *lookup_open(struct nameidata *nd, struct file *file, 3401 const struct open_flags *op, 3402 bool got_write) 3403 { 3404 struct mnt_idmap *idmap; 3405 struct dentry *dir = nd->path.dentry; 3406 struct inode *dir_inode = dir->d_inode; 3407 int open_flag = op->open_flag; 3408 struct dentry *dentry; 3409 int error, create_error = 0; 3410 umode_t mode = op->mode; 3411 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 3412 3413 if (unlikely(IS_DEADDIR(dir_inode))) 3414 return ERR_PTR(-ENOENT); 3415 3416 file->f_mode &= ~FMODE_CREATED; 3417 dentry = d_lookup(dir, &nd->last); 3418 for (;;) { 3419 if (!dentry) { 3420 dentry = d_alloc_parallel(dir, &nd->last, &wq); 3421 if (IS_ERR(dentry)) 3422 return dentry; 3423 } 3424 if (d_in_lookup(dentry)) 3425 break; 3426 3427 error = d_revalidate(dentry, nd->flags); 3428 if (likely(error > 0)) 3429 break; 3430 if (error) 3431 goto out_dput; 3432 d_invalidate(dentry); 3433 dput(dentry); 3434 dentry = NULL; 3435 } 3436 if (dentry->d_inode) { 3437 /* Cached positive dentry: will open in f_op->open */ 3438 return dentry; 3439 } 3440 3441 /* 3442 * Checking write permission is tricky, bacuse we don't know if we are 3443 * going to actually need it: O_CREAT opens should work as long as the 3444 * file exists. But checking existence breaks atomicity. The trick is 3445 * to check access and if not granted clear O_CREAT from the flags. 3446 * 3447 * Another problem is returing the "right" error value (e.g. for an 3448 * O_EXCL open we want to return EEXIST not EROFS). 3449 */ 3450 if (unlikely(!got_write)) 3451 open_flag &= ~O_TRUNC; 3452 idmap = mnt_idmap(nd->path.mnt); 3453 if (open_flag & O_CREAT) { 3454 if (open_flag & O_EXCL) 3455 open_flag &= ~O_TRUNC; 3456 mode = vfs_prepare_mode(idmap, dir->d_inode, mode, mode, mode); 3457 if (likely(got_write)) 3458 create_error = may_o_create(idmap, &nd->path, 3459 dentry, mode); 3460 else 3461 create_error = -EROFS; 3462 } 3463 if (create_error) 3464 open_flag &= ~O_CREAT; 3465 if (dir_inode->i_op->atomic_open) { 3466 dentry = atomic_open(nd, dentry, file, open_flag, mode); 3467 if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT)) 3468 dentry = ERR_PTR(create_error); 3469 return dentry; 3470 } 3471 3472 if (d_in_lookup(dentry)) { 3473 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry, 3474 nd->flags); 3475 d_lookup_done(dentry); 3476 if (unlikely(res)) { 3477 if (IS_ERR(res)) { 3478 error = PTR_ERR(res); 3479 goto out_dput; 3480 } 3481 dput(dentry); 3482 dentry = res; 3483 } 3484 } 3485 3486 /* Negative dentry, just create the file */ 3487 if (!dentry->d_inode && (open_flag & O_CREAT)) { 3488 file->f_mode |= FMODE_CREATED; 3489 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE); 3490 if (!dir_inode->i_op->create) { 3491 error = -EACCES; 3492 goto out_dput; 3493 } 3494 3495 error = dir_inode->i_op->create(idmap, dir_inode, dentry, 3496 mode, open_flag & O_EXCL); 3497 if (error) 3498 goto out_dput; 3499 } 3500 if (unlikely(create_error) && !dentry->d_inode) { 3501 error = create_error; 3502 goto out_dput; 3503 } 3504 return dentry; 3505 3506 out_dput: 3507 dput(dentry); 3508 return ERR_PTR(error); 3509 } 3510 3511 static const char *open_last_lookups(struct nameidata *nd, 3512 struct file *file, const struct open_flags *op) 3513 { 3514 struct dentry *dir = nd->path.dentry; 3515 int open_flag = op->open_flag; 3516 bool got_write = false; 3517 struct dentry *dentry; 3518 const char *res; 3519 3520 nd->flags |= op->intent; 3521 3522 if (nd->last_type != LAST_NORM) { 3523 if (nd->depth) 3524 put_link(nd); 3525 return handle_dots(nd, nd->last_type); 3526 } 3527 3528 if (!(open_flag & O_CREAT)) { 3529 if (nd->last.name[nd->last.len]) 3530 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 3531 /* we _can_ be in RCU mode here */ 3532 dentry = lookup_fast(nd); 3533 if (IS_ERR(dentry)) 3534 return ERR_CAST(dentry); 3535 if (likely(dentry)) 3536 goto finish_lookup; 3537 3538 if (WARN_ON_ONCE(nd->flags & LOOKUP_RCU)) 3539 return ERR_PTR(-ECHILD); 3540 } else { 3541 /* create side of things */ 3542 if (nd->flags & LOOKUP_RCU) { 3543 if (!try_to_unlazy(nd)) 3544 return ERR_PTR(-ECHILD); 3545 } 3546 audit_inode(nd->name, dir, AUDIT_INODE_PARENT); 3547 /* trailing slashes? */ 3548 if (unlikely(nd->last.name[nd->last.len])) 3549 return ERR_PTR(-EISDIR); 3550 } 3551 3552 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 3553 got_write = !mnt_want_write(nd->path.mnt); 3554 /* 3555 * do _not_ fail yet - we might not need that or fail with 3556 * a different error; let lookup_open() decide; we'll be 3557 * dropping this one anyway. 3558 */ 3559 } 3560 if (open_flag & O_CREAT) 3561 inode_lock(dir->d_inode); 3562 else 3563 inode_lock_shared(dir->d_inode); 3564 dentry = lookup_open(nd, file, op, got_write); 3565 if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED)) 3566 fsnotify_create(dir->d_inode, dentry); 3567 if (open_flag & O_CREAT) 3568 inode_unlock(dir->d_inode); 3569 else 3570 inode_unlock_shared(dir->d_inode); 3571 3572 if (got_write) 3573 mnt_drop_write(nd->path.mnt); 3574 3575 if (IS_ERR(dentry)) 3576 return ERR_CAST(dentry); 3577 3578 if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) { 3579 dput(nd->path.dentry); 3580 nd->path.dentry = dentry; 3581 return NULL; 3582 } 3583 3584 finish_lookup: 3585 if (nd->depth) 3586 put_link(nd); 3587 res = step_into(nd, WALK_TRAILING, dentry); 3588 if (unlikely(res)) 3589 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3590 return res; 3591 } 3592 3593 /* 3594 * Handle the last step of open() 3595 */ 3596 static int do_open(struct nameidata *nd, 3597 struct file *file, const struct open_flags *op) 3598 { 3599 struct mnt_idmap *idmap; 3600 int open_flag = op->open_flag; 3601 bool do_truncate; 3602 int acc_mode; 3603 int error; 3604 3605 if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) { 3606 error = complete_walk(nd); 3607 if (error) 3608 return error; 3609 } 3610 if (!(file->f_mode & FMODE_CREATED)) 3611 audit_inode(nd->name, nd->path.dentry, 0); 3612 idmap = mnt_idmap(nd->path.mnt); 3613 if (open_flag & O_CREAT) { 3614 if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED)) 3615 return -EEXIST; 3616 if (d_is_dir(nd->path.dentry)) 3617 return -EISDIR; 3618 error = may_create_in_sticky(idmap, nd, 3619 d_backing_inode(nd->path.dentry)); 3620 if (unlikely(error)) 3621 return error; 3622 } 3623 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3624 return -ENOTDIR; 3625 3626 do_truncate = false; 3627 acc_mode = op->acc_mode; 3628 if (file->f_mode & FMODE_CREATED) { 3629 /* Don't check for write permission, don't truncate */ 3630 open_flag &= ~O_TRUNC; 3631 acc_mode = 0; 3632 } else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) { 3633 error = mnt_want_write(nd->path.mnt); 3634 if (error) 3635 return error; 3636 do_truncate = true; 3637 } 3638 error = may_open(idmap, &nd->path, acc_mode, open_flag); 3639 if (!error && !(file->f_mode & FMODE_OPENED)) 3640 error = vfs_open(&nd->path, file); 3641 if (!error) 3642 error = security_file_post_open(file, op->acc_mode); 3643 if (!error && do_truncate) 3644 error = handle_truncate(idmap, file); 3645 if (unlikely(error > 0)) { 3646 WARN_ON(1); 3647 error = -EINVAL; 3648 } 3649 if (do_truncate) 3650 mnt_drop_write(nd->path.mnt); 3651 return error; 3652 } 3653 3654 /** 3655 * vfs_tmpfile - create tmpfile 3656 * @idmap: idmap of the mount the inode was found from 3657 * @parentpath: pointer to the path of the base directory 3658 * @file: file descriptor of the new tmpfile 3659 * @mode: mode of the new tmpfile 3660 * 3661 * Create a temporary file. 3662 * 3663 * If the inode has been found through an idmapped mount the idmap of 3664 * the vfsmount must be passed through @idmap. This function will then take 3665 * care to map the inode according to @idmap before checking permissions. 3666 * On non-idmapped mounts or if permission checking is to be performed on the 3667 * raw inode simply pass @nop_mnt_idmap. 3668 */ 3669 static int vfs_tmpfile(struct mnt_idmap *idmap, 3670 const struct path *parentpath, 3671 struct file *file, umode_t mode) 3672 { 3673 struct dentry *child; 3674 struct inode *dir = d_inode(parentpath->dentry); 3675 struct inode *inode; 3676 int error; 3677 int open_flag = file->f_flags; 3678 3679 /* we want directory to be writable */ 3680 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 3681 if (error) 3682 return error; 3683 if (!dir->i_op->tmpfile) 3684 return -EOPNOTSUPP; 3685 child = d_alloc(parentpath->dentry, &slash_name); 3686 if (unlikely(!child)) 3687 return -ENOMEM; 3688 file->f_path.mnt = parentpath->mnt; 3689 file->f_path.dentry = child; 3690 mode = vfs_prepare_mode(idmap, dir, mode, mode, mode); 3691 error = dir->i_op->tmpfile(idmap, dir, file, mode); 3692 dput(child); 3693 if (error) 3694 return error; 3695 /* Don't check for other permissions, the inode was just created */ 3696 error = may_open(idmap, &file->f_path, 0, file->f_flags); 3697 if (error) 3698 return error; 3699 inode = file_inode(file); 3700 if (!(open_flag & O_EXCL)) { 3701 spin_lock(&inode->i_lock); 3702 inode->i_state |= I_LINKABLE; 3703 spin_unlock(&inode->i_lock); 3704 } 3705 security_inode_post_create_tmpfile(idmap, inode); 3706 return 0; 3707 } 3708 3709 /** 3710 * kernel_tmpfile_open - open a tmpfile for kernel internal use 3711 * @idmap: idmap of the mount the inode was found from 3712 * @parentpath: path of the base directory 3713 * @mode: mode of the new tmpfile 3714 * @open_flag: flags 3715 * @cred: credentials for open 3716 * 3717 * Create and open a temporary file. The file is not accounted in nr_files, 3718 * hence this is only for kernel internal use, and must not be installed into 3719 * file tables or such. 3720 */ 3721 struct file *kernel_tmpfile_open(struct mnt_idmap *idmap, 3722 const struct path *parentpath, 3723 umode_t mode, int open_flag, 3724 const struct cred *cred) 3725 { 3726 struct file *file; 3727 int error; 3728 3729 file = alloc_empty_file_noaccount(open_flag, cred); 3730 if (IS_ERR(file)) 3731 return file; 3732 3733 error = vfs_tmpfile(idmap, parentpath, file, mode); 3734 if (error) { 3735 fput(file); 3736 file = ERR_PTR(error); 3737 } 3738 return file; 3739 } 3740 EXPORT_SYMBOL(kernel_tmpfile_open); 3741 3742 static int do_tmpfile(struct nameidata *nd, unsigned flags, 3743 const struct open_flags *op, 3744 struct file *file) 3745 { 3746 struct path path; 3747 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path); 3748 3749 if (unlikely(error)) 3750 return error; 3751 error = mnt_want_write(path.mnt); 3752 if (unlikely(error)) 3753 goto out; 3754 error = vfs_tmpfile(mnt_idmap(path.mnt), &path, file, op->mode); 3755 if (error) 3756 goto out2; 3757 audit_inode(nd->name, file->f_path.dentry, 0); 3758 out2: 3759 mnt_drop_write(path.mnt); 3760 out: 3761 path_put(&path); 3762 return error; 3763 } 3764 3765 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file) 3766 { 3767 struct path path; 3768 int error = path_lookupat(nd, flags, &path); 3769 if (!error) { 3770 audit_inode(nd->name, path.dentry, 0); 3771 error = vfs_open(&path, file); 3772 path_put(&path); 3773 } 3774 return error; 3775 } 3776 3777 static struct file *path_openat(struct nameidata *nd, 3778 const struct open_flags *op, unsigned flags) 3779 { 3780 struct file *file; 3781 int error; 3782 3783 file = alloc_empty_file(op->open_flag, current_cred()); 3784 if (IS_ERR(file)) 3785 return file; 3786 3787 if (unlikely(file->f_flags & __O_TMPFILE)) { 3788 error = do_tmpfile(nd, flags, op, file); 3789 } else if (unlikely(file->f_flags & O_PATH)) { 3790 error = do_o_path(nd, flags, file); 3791 } else { 3792 const char *s = path_init(nd, flags); 3793 while (!(error = link_path_walk(s, nd)) && 3794 (s = open_last_lookups(nd, file, op)) != NULL) 3795 ; 3796 if (!error) 3797 error = do_open(nd, file, op); 3798 terminate_walk(nd); 3799 } 3800 if (likely(!error)) { 3801 if (likely(file->f_mode & FMODE_OPENED)) 3802 return file; 3803 WARN_ON(1); 3804 error = -EINVAL; 3805 } 3806 fput(file); 3807 if (error == -EOPENSTALE) { 3808 if (flags & LOOKUP_RCU) 3809 error = -ECHILD; 3810 else 3811 error = -ESTALE; 3812 } 3813 return ERR_PTR(error); 3814 } 3815 3816 struct file *do_filp_open(int dfd, struct filename *pathname, 3817 const struct open_flags *op) 3818 { 3819 struct nameidata nd; 3820 int flags = op->lookup_flags; 3821 struct file *filp; 3822 3823 set_nameidata(&nd, dfd, pathname, NULL); 3824 filp = path_openat(&nd, op, flags | LOOKUP_RCU); 3825 if (unlikely(filp == ERR_PTR(-ECHILD))) 3826 filp = path_openat(&nd, op, flags); 3827 if (unlikely(filp == ERR_PTR(-ESTALE))) 3828 filp = path_openat(&nd, op, flags | LOOKUP_REVAL); 3829 restore_nameidata(); 3830 return filp; 3831 } 3832 3833 struct file *do_file_open_root(const struct path *root, 3834 const char *name, const struct open_flags *op) 3835 { 3836 struct nameidata nd; 3837 struct file *file; 3838 struct filename *filename; 3839 int flags = op->lookup_flags; 3840 3841 if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN) 3842 return ERR_PTR(-ELOOP); 3843 3844 filename = getname_kernel(name); 3845 if (IS_ERR(filename)) 3846 return ERR_CAST(filename); 3847 3848 set_nameidata(&nd, -1, filename, root); 3849 file = path_openat(&nd, op, flags | LOOKUP_RCU); 3850 if (unlikely(file == ERR_PTR(-ECHILD))) 3851 file = path_openat(&nd, op, flags); 3852 if (unlikely(file == ERR_PTR(-ESTALE))) 3853 file = path_openat(&nd, op, flags | LOOKUP_REVAL); 3854 restore_nameidata(); 3855 putname(filename); 3856 return file; 3857 } 3858 3859 static struct dentry *filename_create(int dfd, struct filename *name, 3860 struct path *path, unsigned int lookup_flags) 3861 { 3862 struct dentry *dentry = ERR_PTR(-EEXIST); 3863 struct qstr last; 3864 bool want_dir = lookup_flags & LOOKUP_DIRECTORY; 3865 unsigned int reval_flag = lookup_flags & LOOKUP_REVAL; 3866 unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL; 3867 int type; 3868 int err2; 3869 int error; 3870 3871 error = filename_parentat(dfd, name, reval_flag, path, &last, &type); 3872 if (error) 3873 return ERR_PTR(error); 3874 3875 /* 3876 * Yucky last component or no last component at all? 3877 * (foo/., foo/.., /////) 3878 */ 3879 if (unlikely(type != LAST_NORM)) 3880 goto out; 3881 3882 /* don't fail immediately if it's r/o, at least try to report other errors */ 3883 err2 = mnt_want_write(path->mnt); 3884 /* 3885 * Do the final lookup. Suppress 'create' if there is a trailing 3886 * '/', and a directory wasn't requested. 3887 */ 3888 if (last.name[last.len] && !want_dir) 3889 create_flags = 0; 3890 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 3891 dentry = lookup_one_qstr_excl(&last, path->dentry, 3892 reval_flag | create_flags); 3893 if (IS_ERR(dentry)) 3894 goto unlock; 3895 3896 error = -EEXIST; 3897 if (d_is_positive(dentry)) 3898 goto fail; 3899 3900 /* 3901 * Special case - lookup gave negative, but... we had foo/bar/ 3902 * From the vfs_mknod() POV we just have a negative dentry - 3903 * all is fine. Let's be bastards - you had / on the end, you've 3904 * been asking for (non-existent) directory. -ENOENT for you. 3905 */ 3906 if (unlikely(!create_flags)) { 3907 error = -ENOENT; 3908 goto fail; 3909 } 3910 if (unlikely(err2)) { 3911 error = err2; 3912 goto fail; 3913 } 3914 return dentry; 3915 fail: 3916 dput(dentry); 3917 dentry = ERR_PTR(error); 3918 unlock: 3919 inode_unlock(path->dentry->d_inode); 3920 if (!err2) 3921 mnt_drop_write(path->mnt); 3922 out: 3923 path_put(path); 3924 return dentry; 3925 } 3926 3927 struct dentry *kern_path_create(int dfd, const char *pathname, 3928 struct path *path, unsigned int lookup_flags) 3929 { 3930 struct filename *filename = getname_kernel(pathname); 3931 struct dentry *res = filename_create(dfd, filename, path, lookup_flags); 3932 3933 putname(filename); 3934 return res; 3935 } 3936 EXPORT_SYMBOL(kern_path_create); 3937 3938 void done_path_create(struct path *path, struct dentry *dentry) 3939 { 3940 dput(dentry); 3941 inode_unlock(path->dentry->d_inode); 3942 mnt_drop_write(path->mnt); 3943 path_put(path); 3944 } 3945 EXPORT_SYMBOL(done_path_create); 3946 3947 inline struct dentry *user_path_create(int dfd, const char __user *pathname, 3948 struct path *path, unsigned int lookup_flags) 3949 { 3950 struct filename *filename = getname(pathname); 3951 struct dentry *res = filename_create(dfd, filename, path, lookup_flags); 3952 3953 putname(filename); 3954 return res; 3955 } 3956 EXPORT_SYMBOL(user_path_create); 3957 3958 /** 3959 * vfs_mknod - create device node or file 3960 * @idmap: idmap of the mount the inode was found from 3961 * @dir: inode of @dentry 3962 * @dentry: pointer to dentry of the base directory 3963 * @mode: mode of the new device node or file 3964 * @dev: device number of device to create 3965 * 3966 * Create a device node or file. 3967 * 3968 * If the inode has been found through an idmapped mount the idmap of 3969 * the vfsmount must be passed through @idmap. This function will then take 3970 * care to map the inode according to @idmap before checking permissions. 3971 * On non-idmapped mounts or if permission checking is to be performed on the 3972 * raw inode simply pass @nop_mnt_idmap. 3973 */ 3974 int vfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 3975 struct dentry *dentry, umode_t mode, dev_t dev) 3976 { 3977 bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV; 3978 int error = may_create(idmap, dir, dentry); 3979 3980 if (error) 3981 return error; 3982 3983 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout && 3984 !capable(CAP_MKNOD)) 3985 return -EPERM; 3986 3987 if (!dir->i_op->mknod) 3988 return -EPERM; 3989 3990 mode = vfs_prepare_mode(idmap, dir, mode, mode, mode); 3991 error = devcgroup_inode_mknod(mode, dev); 3992 if (error) 3993 return error; 3994 3995 error = security_inode_mknod(dir, dentry, mode, dev); 3996 if (error) 3997 return error; 3998 3999 error = dir->i_op->mknod(idmap, dir, dentry, mode, dev); 4000 if (!error) 4001 fsnotify_create(dir, dentry); 4002 return error; 4003 } 4004 EXPORT_SYMBOL(vfs_mknod); 4005 4006 static int may_mknod(umode_t mode) 4007 { 4008 switch (mode & S_IFMT) { 4009 case S_IFREG: 4010 case S_IFCHR: 4011 case S_IFBLK: 4012 case S_IFIFO: 4013 case S_IFSOCK: 4014 case 0: /* zero mode translates to S_IFREG */ 4015 return 0; 4016 case S_IFDIR: 4017 return -EPERM; 4018 default: 4019 return -EINVAL; 4020 } 4021 } 4022 4023 static int do_mknodat(int dfd, struct filename *name, umode_t mode, 4024 unsigned int dev) 4025 { 4026 struct mnt_idmap *idmap; 4027 struct dentry *dentry; 4028 struct path path; 4029 int error; 4030 unsigned int lookup_flags = 0; 4031 4032 error = may_mknod(mode); 4033 if (error) 4034 goto out1; 4035 retry: 4036 dentry = filename_create(dfd, name, &path, lookup_flags); 4037 error = PTR_ERR(dentry); 4038 if (IS_ERR(dentry)) 4039 goto out1; 4040 4041 error = security_path_mknod(&path, dentry, 4042 mode_strip_umask(path.dentry->d_inode, mode), dev); 4043 if (error) 4044 goto out2; 4045 4046 idmap = mnt_idmap(path.mnt); 4047 switch (mode & S_IFMT) { 4048 case 0: case S_IFREG: 4049 error = vfs_create(idmap, path.dentry->d_inode, 4050 dentry, mode, true); 4051 break; 4052 case S_IFCHR: case S_IFBLK: 4053 error = vfs_mknod(idmap, path.dentry->d_inode, 4054 dentry, mode, new_decode_dev(dev)); 4055 break; 4056 case S_IFIFO: case S_IFSOCK: 4057 error = vfs_mknod(idmap, path.dentry->d_inode, 4058 dentry, mode, 0); 4059 break; 4060 } 4061 4062 if (error) 4063 goto out2; 4064 4065 security_path_post_mknod(idmap, dentry); 4066 out2: 4067 done_path_create(&path, dentry); 4068 if (retry_estale(error, lookup_flags)) { 4069 lookup_flags |= LOOKUP_REVAL; 4070 goto retry; 4071 } 4072 out1: 4073 putname(name); 4074 return error; 4075 } 4076 4077 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 4078 unsigned int, dev) 4079 { 4080 return do_mknodat(dfd, getname(filename), mode, dev); 4081 } 4082 4083 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 4084 { 4085 return do_mknodat(AT_FDCWD, getname(filename), mode, dev); 4086 } 4087 4088 /** 4089 * vfs_mkdir - create directory 4090 * @idmap: idmap of the mount the inode was found from 4091 * @dir: inode of @dentry 4092 * @dentry: pointer to dentry of the base directory 4093 * @mode: mode of the new directory 4094 * 4095 * Create a directory. 4096 * 4097 * If the inode has been found through an idmapped mount the idmap of 4098 * the vfsmount must be passed through @idmap. This function will then take 4099 * care to map the inode according to @idmap before checking permissions. 4100 * On non-idmapped mounts or if permission checking is to be performed on the 4101 * raw inode simply pass @nop_mnt_idmap. 4102 */ 4103 int vfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 4104 struct dentry *dentry, umode_t mode) 4105 { 4106 int error; 4107 unsigned max_links = dir->i_sb->s_max_links; 4108 4109 error = may_create(idmap, dir, dentry); 4110 if (error) 4111 return error; 4112 4113 if (!dir->i_op->mkdir) 4114 return -EPERM; 4115 4116 mode = vfs_prepare_mode(idmap, dir, mode, S_IRWXUGO | S_ISVTX, 0); 4117 error = security_inode_mkdir(dir, dentry, mode); 4118 if (error) 4119 return error; 4120 4121 if (max_links && dir->i_nlink >= max_links) 4122 return -EMLINK; 4123 4124 error = dir->i_op->mkdir(idmap, dir, dentry, mode); 4125 if (!error) 4126 fsnotify_mkdir(dir, dentry); 4127 return error; 4128 } 4129 EXPORT_SYMBOL(vfs_mkdir); 4130 4131 int do_mkdirat(int dfd, struct filename *name, umode_t mode) 4132 { 4133 struct dentry *dentry; 4134 struct path path; 4135 int error; 4136 unsigned int lookup_flags = LOOKUP_DIRECTORY; 4137 4138 retry: 4139 dentry = filename_create(dfd, name, &path, lookup_flags); 4140 error = PTR_ERR(dentry); 4141 if (IS_ERR(dentry)) 4142 goto out_putname; 4143 4144 error = security_path_mkdir(&path, dentry, 4145 mode_strip_umask(path.dentry->d_inode, mode)); 4146 if (!error) { 4147 error = vfs_mkdir(mnt_idmap(path.mnt), path.dentry->d_inode, 4148 dentry, mode); 4149 } 4150 done_path_create(&path, dentry); 4151 if (retry_estale(error, lookup_flags)) { 4152 lookup_flags |= LOOKUP_REVAL; 4153 goto retry; 4154 } 4155 out_putname: 4156 putname(name); 4157 return error; 4158 } 4159 4160 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 4161 { 4162 return do_mkdirat(dfd, getname(pathname), mode); 4163 } 4164 4165 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 4166 { 4167 return do_mkdirat(AT_FDCWD, getname(pathname), mode); 4168 } 4169 4170 /** 4171 * vfs_rmdir - remove directory 4172 * @idmap: idmap of the mount the inode was found from 4173 * @dir: inode of @dentry 4174 * @dentry: pointer to dentry of the base directory 4175 * 4176 * Remove a directory. 4177 * 4178 * If the inode has been found through an idmapped mount the idmap of 4179 * the vfsmount must be passed through @idmap. This function will then take 4180 * care to map the inode according to @idmap before checking permissions. 4181 * On non-idmapped mounts or if permission checking is to be performed on the 4182 * raw inode simply pass @nop_mnt_idmap. 4183 */ 4184 int vfs_rmdir(struct mnt_idmap *idmap, struct inode *dir, 4185 struct dentry *dentry) 4186 { 4187 int error = may_delete(idmap, dir, dentry, 1); 4188 4189 if (error) 4190 return error; 4191 4192 if (!dir->i_op->rmdir) 4193 return -EPERM; 4194 4195 dget(dentry); 4196 inode_lock(dentry->d_inode); 4197 4198 error = -EBUSY; 4199 if (is_local_mountpoint(dentry) || 4200 (dentry->d_inode->i_flags & S_KERNEL_FILE)) 4201 goto out; 4202 4203 error = security_inode_rmdir(dir, dentry); 4204 if (error) 4205 goto out; 4206 4207 error = dir->i_op->rmdir(dir, dentry); 4208 if (error) 4209 goto out; 4210 4211 shrink_dcache_parent(dentry); 4212 dentry->d_inode->i_flags |= S_DEAD; 4213 dont_mount(dentry); 4214 detach_mounts(dentry); 4215 4216 out: 4217 inode_unlock(dentry->d_inode); 4218 dput(dentry); 4219 if (!error) 4220 d_delete_notify(dir, dentry); 4221 return error; 4222 } 4223 EXPORT_SYMBOL(vfs_rmdir); 4224 4225 int do_rmdir(int dfd, struct filename *name) 4226 { 4227 int error; 4228 struct dentry *dentry; 4229 struct path path; 4230 struct qstr last; 4231 int type; 4232 unsigned int lookup_flags = 0; 4233 retry: 4234 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 4235 if (error) 4236 goto exit1; 4237 4238 switch (type) { 4239 case LAST_DOTDOT: 4240 error = -ENOTEMPTY; 4241 goto exit2; 4242 case LAST_DOT: 4243 error = -EINVAL; 4244 goto exit2; 4245 case LAST_ROOT: 4246 error = -EBUSY; 4247 goto exit2; 4248 } 4249 4250 error = mnt_want_write(path.mnt); 4251 if (error) 4252 goto exit2; 4253 4254 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4255 dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags); 4256 error = PTR_ERR(dentry); 4257 if (IS_ERR(dentry)) 4258 goto exit3; 4259 if (!dentry->d_inode) { 4260 error = -ENOENT; 4261 goto exit4; 4262 } 4263 error = security_path_rmdir(&path, dentry); 4264 if (error) 4265 goto exit4; 4266 error = vfs_rmdir(mnt_idmap(path.mnt), path.dentry->d_inode, dentry); 4267 exit4: 4268 dput(dentry); 4269 exit3: 4270 inode_unlock(path.dentry->d_inode); 4271 mnt_drop_write(path.mnt); 4272 exit2: 4273 path_put(&path); 4274 if (retry_estale(error, lookup_flags)) { 4275 lookup_flags |= LOOKUP_REVAL; 4276 goto retry; 4277 } 4278 exit1: 4279 putname(name); 4280 return error; 4281 } 4282 4283 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 4284 { 4285 return do_rmdir(AT_FDCWD, getname(pathname)); 4286 } 4287 4288 /** 4289 * vfs_unlink - unlink a filesystem object 4290 * @idmap: idmap of the mount the inode was found from 4291 * @dir: parent directory 4292 * @dentry: victim 4293 * @delegated_inode: returns victim inode, if the inode is delegated. 4294 * 4295 * The caller must hold dir->i_mutex. 4296 * 4297 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 4298 * return a reference to the inode in delegated_inode. The caller 4299 * should then break the delegation on that inode and retry. Because 4300 * breaking a delegation may take a long time, the caller should drop 4301 * dir->i_mutex before doing so. 4302 * 4303 * Alternatively, a caller may pass NULL for delegated_inode. This may 4304 * be appropriate for callers that expect the underlying filesystem not 4305 * to be NFS exported. 4306 * 4307 * If the inode has been found through an idmapped mount the idmap of 4308 * the vfsmount must be passed through @idmap. This function will then take 4309 * care to map the inode according to @idmap before checking permissions. 4310 * On non-idmapped mounts or if permission checking is to be performed on the 4311 * raw inode simply pass @nop_mnt_idmap. 4312 */ 4313 int vfs_unlink(struct mnt_idmap *idmap, struct inode *dir, 4314 struct dentry *dentry, struct inode **delegated_inode) 4315 { 4316 struct inode *target = dentry->d_inode; 4317 int error = may_delete(idmap, dir, dentry, 0); 4318 4319 if (error) 4320 return error; 4321 4322 if (!dir->i_op->unlink) 4323 return -EPERM; 4324 4325 inode_lock(target); 4326 if (IS_SWAPFILE(target)) 4327 error = -EPERM; 4328 else if (is_local_mountpoint(dentry)) 4329 error = -EBUSY; 4330 else { 4331 error = security_inode_unlink(dir, dentry); 4332 if (!error) { 4333 error = try_break_deleg(target, delegated_inode); 4334 if (error) 4335 goto out; 4336 error = dir->i_op->unlink(dir, dentry); 4337 if (!error) { 4338 dont_mount(dentry); 4339 detach_mounts(dentry); 4340 } 4341 } 4342 } 4343 out: 4344 inode_unlock(target); 4345 4346 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 4347 if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) { 4348 fsnotify_unlink(dir, dentry); 4349 } else if (!error) { 4350 fsnotify_link_count(target); 4351 d_delete_notify(dir, dentry); 4352 } 4353 4354 return error; 4355 } 4356 EXPORT_SYMBOL(vfs_unlink); 4357 4358 /* 4359 * Make sure that the actual truncation of the file will occur outside its 4360 * directory's i_mutex. Truncate can take a long time if there is a lot of 4361 * writeout happening, and we don't want to prevent access to the directory 4362 * while waiting on the I/O. 4363 */ 4364 int do_unlinkat(int dfd, struct filename *name) 4365 { 4366 int error; 4367 struct dentry *dentry; 4368 struct path path; 4369 struct qstr last; 4370 int type; 4371 struct inode *inode = NULL; 4372 struct inode *delegated_inode = NULL; 4373 unsigned int lookup_flags = 0; 4374 retry: 4375 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 4376 if (error) 4377 goto exit1; 4378 4379 error = -EISDIR; 4380 if (type != LAST_NORM) 4381 goto exit2; 4382 4383 error = mnt_want_write(path.mnt); 4384 if (error) 4385 goto exit2; 4386 retry_deleg: 4387 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4388 dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags); 4389 error = PTR_ERR(dentry); 4390 if (!IS_ERR(dentry)) { 4391 4392 /* Why not before? Because we want correct error value */ 4393 if (last.name[last.len] || d_is_negative(dentry)) 4394 goto slashes; 4395 inode = dentry->d_inode; 4396 ihold(inode); 4397 error = security_path_unlink(&path, dentry); 4398 if (error) 4399 goto exit3; 4400 error = vfs_unlink(mnt_idmap(path.mnt), path.dentry->d_inode, 4401 dentry, &delegated_inode); 4402 exit3: 4403 dput(dentry); 4404 } 4405 inode_unlock(path.dentry->d_inode); 4406 if (inode) 4407 iput(inode); /* truncate the inode here */ 4408 inode = NULL; 4409 if (delegated_inode) { 4410 error = break_deleg_wait(&delegated_inode); 4411 if (!error) 4412 goto retry_deleg; 4413 } 4414 mnt_drop_write(path.mnt); 4415 exit2: 4416 path_put(&path); 4417 if (retry_estale(error, lookup_flags)) { 4418 lookup_flags |= LOOKUP_REVAL; 4419 inode = NULL; 4420 goto retry; 4421 } 4422 exit1: 4423 putname(name); 4424 return error; 4425 4426 slashes: 4427 if (d_is_negative(dentry)) 4428 error = -ENOENT; 4429 else if (d_is_dir(dentry)) 4430 error = -EISDIR; 4431 else 4432 error = -ENOTDIR; 4433 goto exit3; 4434 } 4435 4436 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 4437 { 4438 if ((flag & ~AT_REMOVEDIR) != 0) 4439 return -EINVAL; 4440 4441 if (flag & AT_REMOVEDIR) 4442 return do_rmdir(dfd, getname(pathname)); 4443 return do_unlinkat(dfd, getname(pathname)); 4444 } 4445 4446 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 4447 { 4448 return do_unlinkat(AT_FDCWD, getname(pathname)); 4449 } 4450 4451 /** 4452 * vfs_symlink - create symlink 4453 * @idmap: idmap of the mount the inode was found from 4454 * @dir: inode of @dentry 4455 * @dentry: pointer to dentry of the base directory 4456 * @oldname: name of the file to link to 4457 * 4458 * Create a symlink. 4459 * 4460 * If the inode has been found through an idmapped mount the idmap of 4461 * the vfsmount must be passed through @idmap. This function will then take 4462 * care to map the inode according to @idmap before checking permissions. 4463 * On non-idmapped mounts or if permission checking is to be performed on the 4464 * raw inode simply pass @nop_mnt_idmap. 4465 */ 4466 int vfs_symlink(struct mnt_idmap *idmap, struct inode *dir, 4467 struct dentry *dentry, const char *oldname) 4468 { 4469 int error; 4470 4471 error = may_create(idmap, dir, dentry); 4472 if (error) 4473 return error; 4474 4475 if (!dir->i_op->symlink) 4476 return -EPERM; 4477 4478 error = security_inode_symlink(dir, dentry, oldname); 4479 if (error) 4480 return error; 4481 4482 error = dir->i_op->symlink(idmap, dir, dentry, oldname); 4483 if (!error) 4484 fsnotify_create(dir, dentry); 4485 return error; 4486 } 4487 EXPORT_SYMBOL(vfs_symlink); 4488 4489 int do_symlinkat(struct filename *from, int newdfd, struct filename *to) 4490 { 4491 int error; 4492 struct dentry *dentry; 4493 struct path path; 4494 unsigned int lookup_flags = 0; 4495 4496 if (IS_ERR(from)) { 4497 error = PTR_ERR(from); 4498 goto out_putnames; 4499 } 4500 retry: 4501 dentry = filename_create(newdfd, to, &path, lookup_flags); 4502 error = PTR_ERR(dentry); 4503 if (IS_ERR(dentry)) 4504 goto out_putnames; 4505 4506 error = security_path_symlink(&path, dentry, from->name); 4507 if (!error) 4508 error = vfs_symlink(mnt_idmap(path.mnt), path.dentry->d_inode, 4509 dentry, from->name); 4510 done_path_create(&path, dentry); 4511 if (retry_estale(error, lookup_flags)) { 4512 lookup_flags |= LOOKUP_REVAL; 4513 goto retry; 4514 } 4515 out_putnames: 4516 putname(to); 4517 putname(from); 4518 return error; 4519 } 4520 4521 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 4522 int, newdfd, const char __user *, newname) 4523 { 4524 return do_symlinkat(getname(oldname), newdfd, getname(newname)); 4525 } 4526 4527 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 4528 { 4529 return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname)); 4530 } 4531 4532 /** 4533 * vfs_link - create a new link 4534 * @old_dentry: object to be linked 4535 * @idmap: idmap of the mount 4536 * @dir: new parent 4537 * @new_dentry: where to create the new link 4538 * @delegated_inode: returns inode needing a delegation break 4539 * 4540 * The caller must hold dir->i_mutex 4541 * 4542 * If vfs_link discovers a delegation on the to-be-linked file in need 4543 * of breaking, it will return -EWOULDBLOCK and return a reference to the 4544 * inode in delegated_inode. The caller should then break the delegation 4545 * and retry. Because breaking a delegation may take a long time, the 4546 * caller should drop the i_mutex before doing so. 4547 * 4548 * Alternatively, a caller may pass NULL for delegated_inode. This may 4549 * be appropriate for callers that expect the underlying filesystem not 4550 * to be NFS exported. 4551 * 4552 * If the inode has been found through an idmapped mount the idmap of 4553 * the vfsmount must be passed through @idmap. This function will then take 4554 * care to map the inode according to @idmap before checking permissions. 4555 * On non-idmapped mounts or if permission checking is to be performed on the 4556 * raw inode simply pass @nop_mnt_idmap. 4557 */ 4558 int vfs_link(struct dentry *old_dentry, struct mnt_idmap *idmap, 4559 struct inode *dir, struct dentry *new_dentry, 4560 struct inode **delegated_inode) 4561 { 4562 struct inode *inode = old_dentry->d_inode; 4563 unsigned max_links = dir->i_sb->s_max_links; 4564 int error; 4565 4566 if (!inode) 4567 return -ENOENT; 4568 4569 error = may_create(idmap, dir, new_dentry); 4570 if (error) 4571 return error; 4572 4573 if (dir->i_sb != inode->i_sb) 4574 return -EXDEV; 4575 4576 /* 4577 * A link to an append-only or immutable file cannot be created. 4578 */ 4579 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4580 return -EPERM; 4581 /* 4582 * Updating the link count will likely cause i_uid and i_gid to 4583 * be writen back improperly if their true value is unknown to 4584 * the vfs. 4585 */ 4586 if (HAS_UNMAPPED_ID(idmap, inode)) 4587 return -EPERM; 4588 if (!dir->i_op->link) 4589 return -EPERM; 4590 if (S_ISDIR(inode->i_mode)) 4591 return -EPERM; 4592 4593 error = security_inode_link(old_dentry, dir, new_dentry); 4594 if (error) 4595 return error; 4596 4597 inode_lock(inode); 4598 /* Make sure we don't allow creating hardlink to an unlinked file */ 4599 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 4600 error = -ENOENT; 4601 else if (max_links && inode->i_nlink >= max_links) 4602 error = -EMLINK; 4603 else { 4604 error = try_break_deleg(inode, delegated_inode); 4605 if (!error) 4606 error = dir->i_op->link(old_dentry, dir, new_dentry); 4607 } 4608 4609 if (!error && (inode->i_state & I_LINKABLE)) { 4610 spin_lock(&inode->i_lock); 4611 inode->i_state &= ~I_LINKABLE; 4612 spin_unlock(&inode->i_lock); 4613 } 4614 inode_unlock(inode); 4615 if (!error) 4616 fsnotify_link(dir, inode, new_dentry); 4617 return error; 4618 } 4619 EXPORT_SYMBOL(vfs_link); 4620 4621 /* 4622 * Hardlinks are often used in delicate situations. We avoid 4623 * security-related surprises by not following symlinks on the 4624 * newname. --KAB 4625 * 4626 * We don't follow them on the oldname either to be compatible 4627 * with linux 2.0, and to avoid hard-linking to directories 4628 * and other special files. --ADM 4629 */ 4630 int do_linkat(int olddfd, struct filename *old, int newdfd, 4631 struct filename *new, int flags) 4632 { 4633 struct mnt_idmap *idmap; 4634 struct dentry *new_dentry; 4635 struct path old_path, new_path; 4636 struct inode *delegated_inode = NULL; 4637 int how = 0; 4638 int error; 4639 4640 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) { 4641 error = -EINVAL; 4642 goto out_putnames; 4643 } 4644 /* 4645 * To use null names we require CAP_DAC_READ_SEARCH 4646 * This ensures that not everyone will be able to create 4647 * handlink using the passed filedescriptor. 4648 */ 4649 if (flags & AT_EMPTY_PATH && !capable(CAP_DAC_READ_SEARCH)) { 4650 error = -ENOENT; 4651 goto out_putnames; 4652 } 4653 4654 if (flags & AT_SYMLINK_FOLLOW) 4655 how |= LOOKUP_FOLLOW; 4656 retry: 4657 error = filename_lookup(olddfd, old, how, &old_path, NULL); 4658 if (error) 4659 goto out_putnames; 4660 4661 new_dentry = filename_create(newdfd, new, &new_path, 4662 (how & LOOKUP_REVAL)); 4663 error = PTR_ERR(new_dentry); 4664 if (IS_ERR(new_dentry)) 4665 goto out_putpath; 4666 4667 error = -EXDEV; 4668 if (old_path.mnt != new_path.mnt) 4669 goto out_dput; 4670 idmap = mnt_idmap(new_path.mnt); 4671 error = may_linkat(idmap, &old_path); 4672 if (unlikely(error)) 4673 goto out_dput; 4674 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4675 if (error) 4676 goto out_dput; 4677 error = vfs_link(old_path.dentry, idmap, new_path.dentry->d_inode, 4678 new_dentry, &delegated_inode); 4679 out_dput: 4680 done_path_create(&new_path, new_dentry); 4681 if (delegated_inode) { 4682 error = break_deleg_wait(&delegated_inode); 4683 if (!error) { 4684 path_put(&old_path); 4685 goto retry; 4686 } 4687 } 4688 if (retry_estale(error, how)) { 4689 path_put(&old_path); 4690 how |= LOOKUP_REVAL; 4691 goto retry; 4692 } 4693 out_putpath: 4694 path_put(&old_path); 4695 out_putnames: 4696 putname(old); 4697 putname(new); 4698 4699 return error; 4700 } 4701 4702 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 4703 int, newdfd, const char __user *, newname, int, flags) 4704 { 4705 return do_linkat(olddfd, getname_uflags(oldname, flags), 4706 newdfd, getname(newname), flags); 4707 } 4708 4709 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4710 { 4711 return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0); 4712 } 4713 4714 /** 4715 * vfs_rename - rename a filesystem object 4716 * @rd: pointer to &struct renamedata info 4717 * 4718 * The caller must hold multiple mutexes--see lock_rename()). 4719 * 4720 * If vfs_rename discovers a delegation in need of breaking at either 4721 * the source or destination, it will return -EWOULDBLOCK and return a 4722 * reference to the inode in delegated_inode. The caller should then 4723 * break the delegation and retry. Because breaking a delegation may 4724 * take a long time, the caller should drop all locks before doing 4725 * so. 4726 * 4727 * Alternatively, a caller may pass NULL for delegated_inode. This may 4728 * be appropriate for callers that expect the underlying filesystem not 4729 * to be NFS exported. 4730 * 4731 * The worst of all namespace operations - renaming directory. "Perverted" 4732 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4733 * Problems: 4734 * 4735 * a) we can get into loop creation. 4736 * b) race potential - two innocent renames can create a loop together. 4737 * That's where 4.4BSD screws up. Current fix: serialization on 4738 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4739 * story. 4740 * c) we may have to lock up to _four_ objects - parents and victim (if it exists), 4741 * and source (if it's a non-directory or a subdirectory that moves to 4742 * different parent). 4743 * And that - after we got ->i_mutex on parents (until then we don't know 4744 * whether the target exists). Solution: try to be smart with locking 4745 * order for inodes. We rely on the fact that tree topology may change 4746 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4747 * move will be locked. Thus we can rank directories by the tree 4748 * (ancestors first) and rank all non-directories after them. 4749 * That works since everybody except rename does "lock parent, lookup, 4750 * lock child" and rename is under ->s_vfs_rename_mutex. 4751 * HOWEVER, it relies on the assumption that any object with ->lookup() 4752 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4753 * we'd better make sure that there's no link(2) for them. 4754 * d) conversion from fhandle to dentry may come in the wrong moment - when 4755 * we are removing the target. Solution: we will have to grab ->i_mutex 4756 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4757 * ->i_mutex on parents, which works but leads to some truly excessive 4758 * locking]. 4759 */ 4760 int vfs_rename(struct renamedata *rd) 4761 { 4762 int error; 4763 struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir; 4764 struct dentry *old_dentry = rd->old_dentry; 4765 struct dentry *new_dentry = rd->new_dentry; 4766 struct inode **delegated_inode = rd->delegated_inode; 4767 unsigned int flags = rd->flags; 4768 bool is_dir = d_is_dir(old_dentry); 4769 struct inode *source = old_dentry->d_inode; 4770 struct inode *target = new_dentry->d_inode; 4771 bool new_is_dir = false; 4772 unsigned max_links = new_dir->i_sb->s_max_links; 4773 struct name_snapshot old_name; 4774 bool lock_old_subdir, lock_new_subdir; 4775 4776 if (source == target) 4777 return 0; 4778 4779 error = may_delete(rd->old_mnt_idmap, old_dir, old_dentry, is_dir); 4780 if (error) 4781 return error; 4782 4783 if (!target) { 4784 error = may_create(rd->new_mnt_idmap, new_dir, new_dentry); 4785 } else { 4786 new_is_dir = d_is_dir(new_dentry); 4787 4788 if (!(flags & RENAME_EXCHANGE)) 4789 error = may_delete(rd->new_mnt_idmap, new_dir, 4790 new_dentry, is_dir); 4791 else 4792 error = may_delete(rd->new_mnt_idmap, new_dir, 4793 new_dentry, new_is_dir); 4794 } 4795 if (error) 4796 return error; 4797 4798 if (!old_dir->i_op->rename) 4799 return -EPERM; 4800 4801 /* 4802 * If we are going to change the parent - check write permissions, 4803 * we'll need to flip '..'. 4804 */ 4805 if (new_dir != old_dir) { 4806 if (is_dir) { 4807 error = inode_permission(rd->old_mnt_idmap, source, 4808 MAY_WRITE); 4809 if (error) 4810 return error; 4811 } 4812 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4813 error = inode_permission(rd->new_mnt_idmap, target, 4814 MAY_WRITE); 4815 if (error) 4816 return error; 4817 } 4818 } 4819 4820 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 4821 flags); 4822 if (error) 4823 return error; 4824 4825 take_dentry_name_snapshot(&old_name, old_dentry); 4826 dget(new_dentry); 4827 /* 4828 * Lock children. 4829 * The source subdirectory needs to be locked on cross-directory 4830 * rename or cross-directory exchange since its parent changes. 4831 * The target subdirectory needs to be locked on cross-directory 4832 * exchange due to parent change and on any rename due to becoming 4833 * a victim. 4834 * Non-directories need locking in all cases (for NFS reasons); 4835 * they get locked after any subdirectories (in inode address order). 4836 * 4837 * NOTE: WE ONLY LOCK UNRELATED DIRECTORIES IN CROSS-DIRECTORY CASE. 4838 * NEVER, EVER DO THAT WITHOUT ->s_vfs_rename_mutex. 4839 */ 4840 lock_old_subdir = new_dir != old_dir; 4841 lock_new_subdir = new_dir != old_dir || !(flags & RENAME_EXCHANGE); 4842 if (is_dir) { 4843 if (lock_old_subdir) 4844 inode_lock_nested(source, I_MUTEX_CHILD); 4845 if (target && (!new_is_dir || lock_new_subdir)) 4846 inode_lock(target); 4847 } else if (new_is_dir) { 4848 if (lock_new_subdir) 4849 inode_lock_nested(target, I_MUTEX_CHILD); 4850 inode_lock(source); 4851 } else { 4852 lock_two_nondirectories(source, target); 4853 } 4854 4855 error = -EPERM; 4856 if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target))) 4857 goto out; 4858 4859 error = -EBUSY; 4860 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 4861 goto out; 4862 4863 if (max_links && new_dir != old_dir) { 4864 error = -EMLINK; 4865 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 4866 goto out; 4867 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 4868 old_dir->i_nlink >= max_links) 4869 goto out; 4870 } 4871 if (!is_dir) { 4872 error = try_break_deleg(source, delegated_inode); 4873 if (error) 4874 goto out; 4875 } 4876 if (target && !new_is_dir) { 4877 error = try_break_deleg(target, delegated_inode); 4878 if (error) 4879 goto out; 4880 } 4881 error = old_dir->i_op->rename(rd->new_mnt_idmap, old_dir, old_dentry, 4882 new_dir, new_dentry, flags); 4883 if (error) 4884 goto out; 4885 4886 if (!(flags & RENAME_EXCHANGE) && target) { 4887 if (is_dir) { 4888 shrink_dcache_parent(new_dentry); 4889 target->i_flags |= S_DEAD; 4890 } 4891 dont_mount(new_dentry); 4892 detach_mounts(new_dentry); 4893 } 4894 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 4895 if (!(flags & RENAME_EXCHANGE)) 4896 d_move(old_dentry, new_dentry); 4897 else 4898 d_exchange(old_dentry, new_dentry); 4899 } 4900 out: 4901 if (!is_dir || lock_old_subdir) 4902 inode_unlock(source); 4903 if (target && (!new_is_dir || lock_new_subdir)) 4904 inode_unlock(target); 4905 dput(new_dentry); 4906 if (!error) { 4907 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir, 4908 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 4909 if (flags & RENAME_EXCHANGE) { 4910 fsnotify_move(new_dir, old_dir, &old_dentry->d_name, 4911 new_is_dir, NULL, new_dentry); 4912 } 4913 } 4914 release_dentry_name_snapshot(&old_name); 4915 4916 return error; 4917 } 4918 EXPORT_SYMBOL(vfs_rename); 4919 4920 int do_renameat2(int olddfd, struct filename *from, int newdfd, 4921 struct filename *to, unsigned int flags) 4922 { 4923 struct renamedata rd; 4924 struct dentry *old_dentry, *new_dentry; 4925 struct dentry *trap; 4926 struct path old_path, new_path; 4927 struct qstr old_last, new_last; 4928 int old_type, new_type; 4929 struct inode *delegated_inode = NULL; 4930 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET; 4931 bool should_retry = false; 4932 int error = -EINVAL; 4933 4934 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4935 goto put_names; 4936 4937 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 4938 (flags & RENAME_EXCHANGE)) 4939 goto put_names; 4940 4941 if (flags & RENAME_EXCHANGE) 4942 target_flags = 0; 4943 4944 retry: 4945 error = filename_parentat(olddfd, from, lookup_flags, &old_path, 4946 &old_last, &old_type); 4947 if (error) 4948 goto put_names; 4949 4950 error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last, 4951 &new_type); 4952 if (error) 4953 goto exit1; 4954 4955 error = -EXDEV; 4956 if (old_path.mnt != new_path.mnt) 4957 goto exit2; 4958 4959 error = -EBUSY; 4960 if (old_type != LAST_NORM) 4961 goto exit2; 4962 4963 if (flags & RENAME_NOREPLACE) 4964 error = -EEXIST; 4965 if (new_type != LAST_NORM) 4966 goto exit2; 4967 4968 error = mnt_want_write(old_path.mnt); 4969 if (error) 4970 goto exit2; 4971 4972 retry_deleg: 4973 trap = lock_rename(new_path.dentry, old_path.dentry); 4974 if (IS_ERR(trap)) { 4975 error = PTR_ERR(trap); 4976 goto exit_lock_rename; 4977 } 4978 4979 old_dentry = lookup_one_qstr_excl(&old_last, old_path.dentry, 4980 lookup_flags); 4981 error = PTR_ERR(old_dentry); 4982 if (IS_ERR(old_dentry)) 4983 goto exit3; 4984 /* source must exist */ 4985 error = -ENOENT; 4986 if (d_is_negative(old_dentry)) 4987 goto exit4; 4988 new_dentry = lookup_one_qstr_excl(&new_last, new_path.dentry, 4989 lookup_flags | target_flags); 4990 error = PTR_ERR(new_dentry); 4991 if (IS_ERR(new_dentry)) 4992 goto exit4; 4993 error = -EEXIST; 4994 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 4995 goto exit5; 4996 if (flags & RENAME_EXCHANGE) { 4997 error = -ENOENT; 4998 if (d_is_negative(new_dentry)) 4999 goto exit5; 5000 5001 if (!d_is_dir(new_dentry)) { 5002 error = -ENOTDIR; 5003 if (new_last.name[new_last.len]) 5004 goto exit5; 5005 } 5006 } 5007 /* unless the source is a directory trailing slashes give -ENOTDIR */ 5008 if (!d_is_dir(old_dentry)) { 5009 error = -ENOTDIR; 5010 if (old_last.name[old_last.len]) 5011 goto exit5; 5012 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len]) 5013 goto exit5; 5014 } 5015 /* source should not be ancestor of target */ 5016 error = -EINVAL; 5017 if (old_dentry == trap) 5018 goto exit5; 5019 /* target should not be an ancestor of source */ 5020 if (!(flags & RENAME_EXCHANGE)) 5021 error = -ENOTEMPTY; 5022 if (new_dentry == trap) 5023 goto exit5; 5024 5025 error = security_path_rename(&old_path, old_dentry, 5026 &new_path, new_dentry, flags); 5027 if (error) 5028 goto exit5; 5029 5030 rd.old_dir = old_path.dentry->d_inode; 5031 rd.old_dentry = old_dentry; 5032 rd.old_mnt_idmap = mnt_idmap(old_path.mnt); 5033 rd.new_dir = new_path.dentry->d_inode; 5034 rd.new_dentry = new_dentry; 5035 rd.new_mnt_idmap = mnt_idmap(new_path.mnt); 5036 rd.delegated_inode = &delegated_inode; 5037 rd.flags = flags; 5038 error = vfs_rename(&rd); 5039 exit5: 5040 dput(new_dentry); 5041 exit4: 5042 dput(old_dentry); 5043 exit3: 5044 unlock_rename(new_path.dentry, old_path.dentry); 5045 exit_lock_rename: 5046 if (delegated_inode) { 5047 error = break_deleg_wait(&delegated_inode); 5048 if (!error) 5049 goto retry_deleg; 5050 } 5051 mnt_drop_write(old_path.mnt); 5052 exit2: 5053 if (retry_estale(error, lookup_flags)) 5054 should_retry = true; 5055 path_put(&new_path); 5056 exit1: 5057 path_put(&old_path); 5058 if (should_retry) { 5059 should_retry = false; 5060 lookup_flags |= LOOKUP_REVAL; 5061 goto retry; 5062 } 5063 put_names: 5064 putname(from); 5065 putname(to); 5066 return error; 5067 } 5068 5069 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 5070 int, newdfd, const char __user *, newname, unsigned int, flags) 5071 { 5072 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname), 5073 flags); 5074 } 5075 5076 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 5077 int, newdfd, const char __user *, newname) 5078 { 5079 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname), 5080 0); 5081 } 5082 5083 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 5084 { 5085 return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD, 5086 getname(newname), 0); 5087 } 5088 5089 int readlink_copy(char __user *buffer, int buflen, const char *link) 5090 { 5091 int len = PTR_ERR(link); 5092 if (IS_ERR(link)) 5093 goto out; 5094 5095 len = strlen(link); 5096 if (len > (unsigned) buflen) 5097 len = buflen; 5098 if (copy_to_user(buffer, link, len)) 5099 len = -EFAULT; 5100 out: 5101 return len; 5102 } 5103 5104 /** 5105 * vfs_readlink - copy symlink body into userspace buffer 5106 * @dentry: dentry on which to get symbolic link 5107 * @buffer: user memory pointer 5108 * @buflen: size of buffer 5109 * 5110 * Does not touch atime. That's up to the caller if necessary 5111 * 5112 * Does not call security hook. 5113 */ 5114 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen) 5115 { 5116 struct inode *inode = d_inode(dentry); 5117 DEFINE_DELAYED_CALL(done); 5118 const char *link; 5119 int res; 5120 5121 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) { 5122 if (unlikely(inode->i_op->readlink)) 5123 return inode->i_op->readlink(dentry, buffer, buflen); 5124 5125 if (!d_is_symlink(dentry)) 5126 return -EINVAL; 5127 5128 spin_lock(&inode->i_lock); 5129 inode->i_opflags |= IOP_DEFAULT_READLINK; 5130 spin_unlock(&inode->i_lock); 5131 } 5132 5133 link = READ_ONCE(inode->i_link); 5134 if (!link) { 5135 link = inode->i_op->get_link(dentry, inode, &done); 5136 if (IS_ERR(link)) 5137 return PTR_ERR(link); 5138 } 5139 res = readlink_copy(buffer, buflen, link); 5140 do_delayed_call(&done); 5141 return res; 5142 } 5143 EXPORT_SYMBOL(vfs_readlink); 5144 5145 /** 5146 * vfs_get_link - get symlink body 5147 * @dentry: dentry on which to get symbolic link 5148 * @done: caller needs to free returned data with this 5149 * 5150 * Calls security hook and i_op->get_link() on the supplied inode. 5151 * 5152 * It does not touch atime. That's up to the caller if necessary. 5153 * 5154 * Does not work on "special" symlinks like /proc/$$/fd/N 5155 */ 5156 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done) 5157 { 5158 const char *res = ERR_PTR(-EINVAL); 5159 struct inode *inode = d_inode(dentry); 5160 5161 if (d_is_symlink(dentry)) { 5162 res = ERR_PTR(security_inode_readlink(dentry)); 5163 if (!res) 5164 res = inode->i_op->get_link(dentry, inode, done); 5165 } 5166 return res; 5167 } 5168 EXPORT_SYMBOL(vfs_get_link); 5169 5170 /* get the link contents into pagecache */ 5171 const char *page_get_link(struct dentry *dentry, struct inode *inode, 5172 struct delayed_call *callback) 5173 { 5174 char *kaddr; 5175 struct page *page; 5176 struct address_space *mapping = inode->i_mapping; 5177 5178 if (!dentry) { 5179 page = find_get_page(mapping, 0); 5180 if (!page) 5181 return ERR_PTR(-ECHILD); 5182 if (!PageUptodate(page)) { 5183 put_page(page); 5184 return ERR_PTR(-ECHILD); 5185 } 5186 } else { 5187 page = read_mapping_page(mapping, 0, NULL); 5188 if (IS_ERR(page)) 5189 return (char*)page; 5190 } 5191 set_delayed_call(callback, page_put_link, page); 5192 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM); 5193 kaddr = page_address(page); 5194 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1); 5195 return kaddr; 5196 } 5197 5198 EXPORT_SYMBOL(page_get_link); 5199 5200 void page_put_link(void *arg) 5201 { 5202 put_page(arg); 5203 } 5204 EXPORT_SYMBOL(page_put_link); 5205 5206 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 5207 { 5208 DEFINE_DELAYED_CALL(done); 5209 int res = readlink_copy(buffer, buflen, 5210 page_get_link(dentry, d_inode(dentry), 5211 &done)); 5212 do_delayed_call(&done); 5213 return res; 5214 } 5215 EXPORT_SYMBOL(page_readlink); 5216 5217 int page_symlink(struct inode *inode, const char *symname, int len) 5218 { 5219 struct address_space *mapping = inode->i_mapping; 5220 const struct address_space_operations *aops = mapping->a_ops; 5221 bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS); 5222 struct page *page; 5223 void *fsdata = NULL; 5224 int err; 5225 unsigned int flags; 5226 5227 retry: 5228 if (nofs) 5229 flags = memalloc_nofs_save(); 5230 err = aops->write_begin(NULL, mapping, 0, len-1, &page, &fsdata); 5231 if (nofs) 5232 memalloc_nofs_restore(flags); 5233 if (err) 5234 goto fail; 5235 5236 memcpy(page_address(page), symname, len-1); 5237 5238 err = aops->write_end(NULL, mapping, 0, len-1, len-1, 5239 page, fsdata); 5240 if (err < 0) 5241 goto fail; 5242 if (err < len-1) 5243 goto retry; 5244 5245 mark_inode_dirty(inode); 5246 return 0; 5247 fail: 5248 return err; 5249 } 5250 EXPORT_SYMBOL(page_symlink); 5251 5252 const struct inode_operations page_symlink_inode_operations = { 5253 .get_link = page_get_link, 5254 }; 5255 EXPORT_SYMBOL(page_symlink_inode_operations); 5256