xref: /linux/fs/namei.c (revision cd3cec0a02c7338ce2901c574f3935b8f6984aab)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/namei.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * Some corrections by tytso.
10  */
11 
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13  * lookup logic.
14  */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16  */
17 
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/filelock.h>
24 #include <linux/namei.h>
25 #include <linux/pagemap.h>
26 #include <linux/sched/mm.h>
27 #include <linux/fsnotify.h>
28 #include <linux/personality.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/mount.h>
32 #include <linux/audit.h>
33 #include <linux/capability.h>
34 #include <linux/file.h>
35 #include <linux/fcntl.h>
36 #include <linux/device_cgroup.h>
37 #include <linux/fs_struct.h>
38 #include <linux/posix_acl.h>
39 #include <linux/hash.h>
40 #include <linux/bitops.h>
41 #include <linux/init_task.h>
42 #include <linux/uaccess.h>
43 
44 #include "internal.h"
45 #include "mount.h"
46 
47 /* [Feb-1997 T. Schoebel-Theuer]
48  * Fundamental changes in the pathname lookup mechanisms (namei)
49  * were necessary because of omirr.  The reason is that omirr needs
50  * to know the _real_ pathname, not the user-supplied one, in case
51  * of symlinks (and also when transname replacements occur).
52  *
53  * The new code replaces the old recursive symlink resolution with
54  * an iterative one (in case of non-nested symlink chains).  It does
55  * this with calls to <fs>_follow_link().
56  * As a side effect, dir_namei(), _namei() and follow_link() are now
57  * replaced with a single function lookup_dentry() that can handle all
58  * the special cases of the former code.
59  *
60  * With the new dcache, the pathname is stored at each inode, at least as
61  * long as the refcount of the inode is positive.  As a side effect, the
62  * size of the dcache depends on the inode cache and thus is dynamic.
63  *
64  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
65  * resolution to correspond with current state of the code.
66  *
67  * Note that the symlink resolution is not *completely* iterative.
68  * There is still a significant amount of tail- and mid- recursion in
69  * the algorithm.  Also, note that <fs>_readlink() is not used in
70  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
71  * may return different results than <fs>_follow_link().  Many virtual
72  * filesystems (including /proc) exhibit this behavior.
73  */
74 
75 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
76  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
77  * and the name already exists in form of a symlink, try to create the new
78  * name indicated by the symlink. The old code always complained that the
79  * name already exists, due to not following the symlink even if its target
80  * is nonexistent.  The new semantics affects also mknod() and link() when
81  * the name is a symlink pointing to a non-existent name.
82  *
83  * I don't know which semantics is the right one, since I have no access
84  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
85  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
86  * "old" one. Personally, I think the new semantics is much more logical.
87  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
88  * file does succeed in both HP-UX and SunOs, but not in Solaris
89  * and in the old Linux semantics.
90  */
91 
92 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
93  * semantics.  See the comments in "open_namei" and "do_link" below.
94  *
95  * [10-Sep-98 Alan Modra] Another symlink change.
96  */
97 
98 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
99  *	inside the path - always follow.
100  *	in the last component in creation/removal/renaming - never follow.
101  *	if LOOKUP_FOLLOW passed - follow.
102  *	if the pathname has trailing slashes - follow.
103  *	otherwise - don't follow.
104  * (applied in that order).
105  *
106  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
107  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
108  * During the 2.4 we need to fix the userland stuff depending on it -
109  * hopefully we will be able to get rid of that wart in 2.5. So far only
110  * XEmacs seems to be relying on it...
111  */
112 /*
113  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
114  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
115  * any extra contention...
116  */
117 
118 /* In order to reduce some races, while at the same time doing additional
119  * checking and hopefully speeding things up, we copy filenames to the
120  * kernel data space before using them..
121  *
122  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
123  * PATH_MAX includes the nul terminator --RR.
124  */
125 
126 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
127 
128 struct filename *
129 getname_flags(const char __user *filename, int flags, int *empty)
130 {
131 	struct filename *result;
132 	char *kname;
133 	int len;
134 
135 	result = audit_reusename(filename);
136 	if (result)
137 		return result;
138 
139 	result = __getname();
140 	if (unlikely(!result))
141 		return ERR_PTR(-ENOMEM);
142 
143 	/*
144 	 * First, try to embed the struct filename inside the names_cache
145 	 * allocation
146 	 */
147 	kname = (char *)result->iname;
148 	result->name = kname;
149 
150 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
151 	if (unlikely(len < 0)) {
152 		__putname(result);
153 		return ERR_PTR(len);
154 	}
155 
156 	/*
157 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
158 	 * separate struct filename so we can dedicate the entire
159 	 * names_cache allocation for the pathname, and re-do the copy from
160 	 * userland.
161 	 */
162 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
163 		const size_t size = offsetof(struct filename, iname[1]);
164 		kname = (char *)result;
165 
166 		/*
167 		 * size is chosen that way we to guarantee that
168 		 * result->iname[0] is within the same object and that
169 		 * kname can't be equal to result->iname, no matter what.
170 		 */
171 		result = kzalloc(size, GFP_KERNEL);
172 		if (unlikely(!result)) {
173 			__putname(kname);
174 			return ERR_PTR(-ENOMEM);
175 		}
176 		result->name = kname;
177 		len = strncpy_from_user(kname, filename, PATH_MAX);
178 		if (unlikely(len < 0)) {
179 			__putname(kname);
180 			kfree(result);
181 			return ERR_PTR(len);
182 		}
183 		if (unlikely(len == PATH_MAX)) {
184 			__putname(kname);
185 			kfree(result);
186 			return ERR_PTR(-ENAMETOOLONG);
187 		}
188 	}
189 
190 	atomic_set(&result->refcnt, 1);
191 	/* The empty path is special. */
192 	if (unlikely(!len)) {
193 		if (empty)
194 			*empty = 1;
195 		if (!(flags & LOOKUP_EMPTY)) {
196 			putname(result);
197 			return ERR_PTR(-ENOENT);
198 		}
199 	}
200 
201 	result->uptr = filename;
202 	result->aname = NULL;
203 	audit_getname(result);
204 	return result;
205 }
206 
207 struct filename *
208 getname_uflags(const char __user *filename, int uflags)
209 {
210 	int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
211 
212 	return getname_flags(filename, flags, NULL);
213 }
214 
215 struct filename *
216 getname(const char __user * filename)
217 {
218 	return getname_flags(filename, 0, NULL);
219 }
220 
221 struct filename *
222 getname_kernel(const char * filename)
223 {
224 	struct filename *result;
225 	int len = strlen(filename) + 1;
226 
227 	result = __getname();
228 	if (unlikely(!result))
229 		return ERR_PTR(-ENOMEM);
230 
231 	if (len <= EMBEDDED_NAME_MAX) {
232 		result->name = (char *)result->iname;
233 	} else if (len <= PATH_MAX) {
234 		const size_t size = offsetof(struct filename, iname[1]);
235 		struct filename *tmp;
236 
237 		tmp = kmalloc(size, GFP_KERNEL);
238 		if (unlikely(!tmp)) {
239 			__putname(result);
240 			return ERR_PTR(-ENOMEM);
241 		}
242 		tmp->name = (char *)result;
243 		result = tmp;
244 	} else {
245 		__putname(result);
246 		return ERR_PTR(-ENAMETOOLONG);
247 	}
248 	memcpy((char *)result->name, filename, len);
249 	result->uptr = NULL;
250 	result->aname = NULL;
251 	atomic_set(&result->refcnt, 1);
252 	audit_getname(result);
253 
254 	return result;
255 }
256 EXPORT_SYMBOL(getname_kernel);
257 
258 void putname(struct filename *name)
259 {
260 	if (IS_ERR(name))
261 		return;
262 
263 	if (WARN_ON_ONCE(!atomic_read(&name->refcnt)))
264 		return;
265 
266 	if (!atomic_dec_and_test(&name->refcnt))
267 		return;
268 
269 	if (name->name != name->iname) {
270 		__putname(name->name);
271 		kfree(name);
272 	} else
273 		__putname(name);
274 }
275 EXPORT_SYMBOL(putname);
276 
277 /**
278  * check_acl - perform ACL permission checking
279  * @idmap:	idmap of the mount the inode was found from
280  * @inode:	inode to check permissions on
281  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
282  *
283  * This function performs the ACL permission checking. Since this function
284  * retrieve POSIX acls it needs to know whether it is called from a blocking or
285  * non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
286  *
287  * If the inode has been found through an idmapped mount the idmap of
288  * the vfsmount must be passed through @idmap. This function will then take
289  * care to map the inode according to @idmap before checking permissions.
290  * On non-idmapped mounts or if permission checking is to be performed on the
291  * raw inode simply pass @nop_mnt_idmap.
292  */
293 static int check_acl(struct mnt_idmap *idmap,
294 		     struct inode *inode, int mask)
295 {
296 #ifdef CONFIG_FS_POSIX_ACL
297 	struct posix_acl *acl;
298 
299 	if (mask & MAY_NOT_BLOCK) {
300 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
301 	        if (!acl)
302 	                return -EAGAIN;
303 		/* no ->get_inode_acl() calls in RCU mode... */
304 		if (is_uncached_acl(acl))
305 			return -ECHILD;
306 	        return posix_acl_permission(idmap, inode, acl, mask);
307 	}
308 
309 	acl = get_inode_acl(inode, ACL_TYPE_ACCESS);
310 	if (IS_ERR(acl))
311 		return PTR_ERR(acl);
312 	if (acl) {
313 	        int error = posix_acl_permission(idmap, inode, acl, mask);
314 	        posix_acl_release(acl);
315 	        return error;
316 	}
317 #endif
318 
319 	return -EAGAIN;
320 }
321 
322 /**
323  * acl_permission_check - perform basic UNIX permission checking
324  * @idmap:	idmap of the mount the inode was found from
325  * @inode:	inode to check permissions on
326  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
327  *
328  * This function performs the basic UNIX permission checking. Since this
329  * function may retrieve POSIX acls it needs to know whether it is called from a
330  * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
331  *
332  * If the inode has been found through an idmapped mount the idmap of
333  * the vfsmount must be passed through @idmap. This function will then take
334  * care to map the inode according to @idmap before checking permissions.
335  * On non-idmapped mounts or if permission checking is to be performed on the
336  * raw inode simply pass @nop_mnt_idmap.
337  */
338 static int acl_permission_check(struct mnt_idmap *idmap,
339 				struct inode *inode, int mask)
340 {
341 	unsigned int mode = inode->i_mode;
342 	vfsuid_t vfsuid;
343 
344 	/* Are we the owner? If so, ACL's don't matter */
345 	vfsuid = i_uid_into_vfsuid(idmap, inode);
346 	if (likely(vfsuid_eq_kuid(vfsuid, current_fsuid()))) {
347 		mask &= 7;
348 		mode >>= 6;
349 		return (mask & ~mode) ? -EACCES : 0;
350 	}
351 
352 	/* Do we have ACL's? */
353 	if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
354 		int error = check_acl(idmap, inode, mask);
355 		if (error != -EAGAIN)
356 			return error;
357 	}
358 
359 	/* Only RWX matters for group/other mode bits */
360 	mask &= 7;
361 
362 	/*
363 	 * Are the group permissions different from
364 	 * the other permissions in the bits we care
365 	 * about? Need to check group ownership if so.
366 	 */
367 	if (mask & (mode ^ (mode >> 3))) {
368 		vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
369 		if (vfsgid_in_group_p(vfsgid))
370 			mode >>= 3;
371 	}
372 
373 	/* Bits in 'mode' clear that we require? */
374 	return (mask & ~mode) ? -EACCES : 0;
375 }
376 
377 /**
378  * generic_permission -  check for access rights on a Posix-like filesystem
379  * @idmap:	idmap of the mount the inode was found from
380  * @inode:	inode to check access rights for
381  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
382  *		%MAY_NOT_BLOCK ...)
383  *
384  * Used to check for read/write/execute permissions on a file.
385  * We use "fsuid" for this, letting us set arbitrary permissions
386  * for filesystem access without changing the "normal" uids which
387  * are used for other things.
388  *
389  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
390  * request cannot be satisfied (eg. requires blocking or too much complexity).
391  * It would then be called again in ref-walk mode.
392  *
393  * If the inode has been found through an idmapped mount the idmap of
394  * the vfsmount must be passed through @idmap. This function will then take
395  * care to map the inode according to @idmap before checking permissions.
396  * On non-idmapped mounts or if permission checking is to be performed on the
397  * raw inode simply pass @nop_mnt_idmap.
398  */
399 int generic_permission(struct mnt_idmap *idmap, struct inode *inode,
400 		       int mask)
401 {
402 	int ret;
403 
404 	/*
405 	 * Do the basic permission checks.
406 	 */
407 	ret = acl_permission_check(idmap, inode, mask);
408 	if (ret != -EACCES)
409 		return ret;
410 
411 	if (S_ISDIR(inode->i_mode)) {
412 		/* DACs are overridable for directories */
413 		if (!(mask & MAY_WRITE))
414 			if (capable_wrt_inode_uidgid(idmap, inode,
415 						     CAP_DAC_READ_SEARCH))
416 				return 0;
417 		if (capable_wrt_inode_uidgid(idmap, inode,
418 					     CAP_DAC_OVERRIDE))
419 			return 0;
420 		return -EACCES;
421 	}
422 
423 	/*
424 	 * Searching includes executable on directories, else just read.
425 	 */
426 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
427 	if (mask == MAY_READ)
428 		if (capable_wrt_inode_uidgid(idmap, inode,
429 					     CAP_DAC_READ_SEARCH))
430 			return 0;
431 	/*
432 	 * Read/write DACs are always overridable.
433 	 * Executable DACs are overridable when there is
434 	 * at least one exec bit set.
435 	 */
436 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
437 		if (capable_wrt_inode_uidgid(idmap, inode,
438 					     CAP_DAC_OVERRIDE))
439 			return 0;
440 
441 	return -EACCES;
442 }
443 EXPORT_SYMBOL(generic_permission);
444 
445 /**
446  * do_inode_permission - UNIX permission checking
447  * @idmap:	idmap of the mount the inode was found from
448  * @inode:	inode to check permissions on
449  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
450  *
451  * We _really_ want to just do "generic_permission()" without
452  * even looking at the inode->i_op values. So we keep a cache
453  * flag in inode->i_opflags, that says "this has not special
454  * permission function, use the fast case".
455  */
456 static inline int do_inode_permission(struct mnt_idmap *idmap,
457 				      struct inode *inode, int mask)
458 {
459 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
460 		if (likely(inode->i_op->permission))
461 			return inode->i_op->permission(idmap, inode, mask);
462 
463 		/* This gets set once for the inode lifetime */
464 		spin_lock(&inode->i_lock);
465 		inode->i_opflags |= IOP_FASTPERM;
466 		spin_unlock(&inode->i_lock);
467 	}
468 	return generic_permission(idmap, inode, mask);
469 }
470 
471 /**
472  * sb_permission - Check superblock-level permissions
473  * @sb: Superblock of inode to check permission on
474  * @inode: Inode to check permission on
475  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
476  *
477  * Separate out file-system wide checks from inode-specific permission checks.
478  */
479 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
480 {
481 	if (unlikely(mask & MAY_WRITE)) {
482 		umode_t mode = inode->i_mode;
483 
484 		/* Nobody gets write access to a read-only fs. */
485 		if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
486 			return -EROFS;
487 	}
488 	return 0;
489 }
490 
491 /**
492  * inode_permission - Check for access rights to a given inode
493  * @idmap:	idmap of the mount the inode was found from
494  * @inode:	Inode to check permission on
495  * @mask:	Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
496  *
497  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
498  * this, letting us set arbitrary permissions for filesystem access without
499  * changing the "normal" UIDs which are used for other things.
500  *
501  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
502  */
503 int inode_permission(struct mnt_idmap *idmap,
504 		     struct inode *inode, int mask)
505 {
506 	int retval;
507 
508 	retval = sb_permission(inode->i_sb, inode, mask);
509 	if (retval)
510 		return retval;
511 
512 	if (unlikely(mask & MAY_WRITE)) {
513 		/*
514 		 * Nobody gets write access to an immutable file.
515 		 */
516 		if (IS_IMMUTABLE(inode))
517 			return -EPERM;
518 
519 		/*
520 		 * Updating mtime will likely cause i_uid and i_gid to be
521 		 * written back improperly if their true value is unknown
522 		 * to the vfs.
523 		 */
524 		if (HAS_UNMAPPED_ID(idmap, inode))
525 			return -EACCES;
526 	}
527 
528 	retval = do_inode_permission(idmap, inode, mask);
529 	if (retval)
530 		return retval;
531 
532 	retval = devcgroup_inode_permission(inode, mask);
533 	if (retval)
534 		return retval;
535 
536 	return security_inode_permission(inode, mask);
537 }
538 EXPORT_SYMBOL(inode_permission);
539 
540 /**
541  * path_get - get a reference to a path
542  * @path: path to get the reference to
543  *
544  * Given a path increment the reference count to the dentry and the vfsmount.
545  */
546 void path_get(const struct path *path)
547 {
548 	mntget(path->mnt);
549 	dget(path->dentry);
550 }
551 EXPORT_SYMBOL(path_get);
552 
553 /**
554  * path_put - put a reference to a path
555  * @path: path to put the reference to
556  *
557  * Given a path decrement the reference count to the dentry and the vfsmount.
558  */
559 void path_put(const struct path *path)
560 {
561 	dput(path->dentry);
562 	mntput(path->mnt);
563 }
564 EXPORT_SYMBOL(path_put);
565 
566 #define EMBEDDED_LEVELS 2
567 struct nameidata {
568 	struct path	path;
569 	struct qstr	last;
570 	struct path	root;
571 	struct inode	*inode; /* path.dentry.d_inode */
572 	unsigned int	flags, state;
573 	unsigned	seq, next_seq, m_seq, r_seq;
574 	int		last_type;
575 	unsigned	depth;
576 	int		total_link_count;
577 	struct saved {
578 		struct path link;
579 		struct delayed_call done;
580 		const char *name;
581 		unsigned seq;
582 	} *stack, internal[EMBEDDED_LEVELS];
583 	struct filename	*name;
584 	struct nameidata *saved;
585 	unsigned	root_seq;
586 	int		dfd;
587 	vfsuid_t	dir_vfsuid;
588 	umode_t		dir_mode;
589 } __randomize_layout;
590 
591 #define ND_ROOT_PRESET 1
592 #define ND_ROOT_GRABBED 2
593 #define ND_JUMPED 4
594 
595 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name)
596 {
597 	struct nameidata *old = current->nameidata;
598 	p->stack = p->internal;
599 	p->depth = 0;
600 	p->dfd = dfd;
601 	p->name = name;
602 	p->path.mnt = NULL;
603 	p->path.dentry = NULL;
604 	p->total_link_count = old ? old->total_link_count : 0;
605 	p->saved = old;
606 	current->nameidata = p;
607 }
608 
609 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name,
610 			  const struct path *root)
611 {
612 	__set_nameidata(p, dfd, name);
613 	p->state = 0;
614 	if (unlikely(root)) {
615 		p->state = ND_ROOT_PRESET;
616 		p->root = *root;
617 	}
618 }
619 
620 static void restore_nameidata(void)
621 {
622 	struct nameidata *now = current->nameidata, *old = now->saved;
623 
624 	current->nameidata = old;
625 	if (old)
626 		old->total_link_count = now->total_link_count;
627 	if (now->stack != now->internal)
628 		kfree(now->stack);
629 }
630 
631 static bool nd_alloc_stack(struct nameidata *nd)
632 {
633 	struct saved *p;
634 
635 	p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
636 			 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
637 	if (unlikely(!p))
638 		return false;
639 	memcpy(p, nd->internal, sizeof(nd->internal));
640 	nd->stack = p;
641 	return true;
642 }
643 
644 /**
645  * path_connected - Verify that a dentry is below mnt.mnt_root
646  * @mnt: The mountpoint to check.
647  * @dentry: The dentry to check.
648  *
649  * Rename can sometimes move a file or directory outside of a bind
650  * mount, path_connected allows those cases to be detected.
651  */
652 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
653 {
654 	struct super_block *sb = mnt->mnt_sb;
655 
656 	/* Bind mounts can have disconnected paths */
657 	if (mnt->mnt_root == sb->s_root)
658 		return true;
659 
660 	return is_subdir(dentry, mnt->mnt_root);
661 }
662 
663 static void drop_links(struct nameidata *nd)
664 {
665 	int i = nd->depth;
666 	while (i--) {
667 		struct saved *last = nd->stack + i;
668 		do_delayed_call(&last->done);
669 		clear_delayed_call(&last->done);
670 	}
671 }
672 
673 static void leave_rcu(struct nameidata *nd)
674 {
675 	nd->flags &= ~LOOKUP_RCU;
676 	nd->seq = nd->next_seq = 0;
677 	rcu_read_unlock();
678 }
679 
680 static void terminate_walk(struct nameidata *nd)
681 {
682 	drop_links(nd);
683 	if (!(nd->flags & LOOKUP_RCU)) {
684 		int i;
685 		path_put(&nd->path);
686 		for (i = 0; i < nd->depth; i++)
687 			path_put(&nd->stack[i].link);
688 		if (nd->state & ND_ROOT_GRABBED) {
689 			path_put(&nd->root);
690 			nd->state &= ~ND_ROOT_GRABBED;
691 		}
692 	} else {
693 		leave_rcu(nd);
694 	}
695 	nd->depth = 0;
696 	nd->path.mnt = NULL;
697 	nd->path.dentry = NULL;
698 }
699 
700 /* path_put is needed afterwards regardless of success or failure */
701 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
702 {
703 	int res = __legitimize_mnt(path->mnt, mseq);
704 	if (unlikely(res)) {
705 		if (res > 0)
706 			path->mnt = NULL;
707 		path->dentry = NULL;
708 		return false;
709 	}
710 	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
711 		path->dentry = NULL;
712 		return false;
713 	}
714 	return !read_seqcount_retry(&path->dentry->d_seq, seq);
715 }
716 
717 static inline bool legitimize_path(struct nameidata *nd,
718 			    struct path *path, unsigned seq)
719 {
720 	return __legitimize_path(path, seq, nd->m_seq);
721 }
722 
723 static bool legitimize_links(struct nameidata *nd)
724 {
725 	int i;
726 	if (unlikely(nd->flags & LOOKUP_CACHED)) {
727 		drop_links(nd);
728 		nd->depth = 0;
729 		return false;
730 	}
731 	for (i = 0; i < nd->depth; i++) {
732 		struct saved *last = nd->stack + i;
733 		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
734 			drop_links(nd);
735 			nd->depth = i + 1;
736 			return false;
737 		}
738 	}
739 	return true;
740 }
741 
742 static bool legitimize_root(struct nameidata *nd)
743 {
744 	/* Nothing to do if nd->root is zero or is managed by the VFS user. */
745 	if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET))
746 		return true;
747 	nd->state |= ND_ROOT_GRABBED;
748 	return legitimize_path(nd, &nd->root, nd->root_seq);
749 }
750 
751 /*
752  * Path walking has 2 modes, rcu-walk and ref-walk (see
753  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
754  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
755  * normal reference counts on dentries and vfsmounts to transition to ref-walk
756  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
757  * got stuck, so ref-walk may continue from there. If this is not successful
758  * (eg. a seqcount has changed), then failure is returned and it's up to caller
759  * to restart the path walk from the beginning in ref-walk mode.
760  */
761 
762 /**
763  * try_to_unlazy - try to switch to ref-walk mode.
764  * @nd: nameidata pathwalk data
765  * Returns: true on success, false on failure
766  *
767  * try_to_unlazy attempts to legitimize the current nd->path and nd->root
768  * for ref-walk mode.
769  * Must be called from rcu-walk context.
770  * Nothing should touch nameidata between try_to_unlazy() failure and
771  * terminate_walk().
772  */
773 static bool try_to_unlazy(struct nameidata *nd)
774 {
775 	struct dentry *parent = nd->path.dentry;
776 
777 	BUG_ON(!(nd->flags & LOOKUP_RCU));
778 
779 	if (unlikely(!legitimize_links(nd)))
780 		goto out1;
781 	if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
782 		goto out;
783 	if (unlikely(!legitimize_root(nd)))
784 		goto out;
785 	leave_rcu(nd);
786 	BUG_ON(nd->inode != parent->d_inode);
787 	return true;
788 
789 out1:
790 	nd->path.mnt = NULL;
791 	nd->path.dentry = NULL;
792 out:
793 	leave_rcu(nd);
794 	return false;
795 }
796 
797 /**
798  * try_to_unlazy_next - try to switch to ref-walk mode.
799  * @nd: nameidata pathwalk data
800  * @dentry: next dentry to step into
801  * Returns: true on success, false on failure
802  *
803  * Similar to try_to_unlazy(), but here we have the next dentry already
804  * picked by rcu-walk and want to legitimize that in addition to the current
805  * nd->path and nd->root for ref-walk mode.  Must be called from rcu-walk context.
806  * Nothing should touch nameidata between try_to_unlazy_next() failure and
807  * terminate_walk().
808  */
809 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry)
810 {
811 	int res;
812 	BUG_ON(!(nd->flags & LOOKUP_RCU));
813 
814 	if (unlikely(!legitimize_links(nd)))
815 		goto out2;
816 	res = __legitimize_mnt(nd->path.mnt, nd->m_seq);
817 	if (unlikely(res)) {
818 		if (res > 0)
819 			goto out2;
820 		goto out1;
821 	}
822 	if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
823 		goto out1;
824 
825 	/*
826 	 * We need to move both the parent and the dentry from the RCU domain
827 	 * to be properly refcounted. And the sequence number in the dentry
828 	 * validates *both* dentry counters, since we checked the sequence
829 	 * number of the parent after we got the child sequence number. So we
830 	 * know the parent must still be valid if the child sequence number is
831 	 */
832 	if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
833 		goto out;
834 	if (read_seqcount_retry(&dentry->d_seq, nd->next_seq))
835 		goto out_dput;
836 	/*
837 	 * Sequence counts matched. Now make sure that the root is
838 	 * still valid and get it if required.
839 	 */
840 	if (unlikely(!legitimize_root(nd)))
841 		goto out_dput;
842 	leave_rcu(nd);
843 	return true;
844 
845 out2:
846 	nd->path.mnt = NULL;
847 out1:
848 	nd->path.dentry = NULL;
849 out:
850 	leave_rcu(nd);
851 	return false;
852 out_dput:
853 	leave_rcu(nd);
854 	dput(dentry);
855 	return false;
856 }
857 
858 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
859 {
860 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
861 		return dentry->d_op->d_revalidate(dentry, flags);
862 	else
863 		return 1;
864 }
865 
866 /**
867  * complete_walk - successful completion of path walk
868  * @nd:  pointer nameidata
869  *
870  * If we had been in RCU mode, drop out of it and legitimize nd->path.
871  * Revalidate the final result, unless we'd already done that during
872  * the path walk or the filesystem doesn't ask for it.  Return 0 on
873  * success, -error on failure.  In case of failure caller does not
874  * need to drop nd->path.
875  */
876 static int complete_walk(struct nameidata *nd)
877 {
878 	struct dentry *dentry = nd->path.dentry;
879 	int status;
880 
881 	if (nd->flags & LOOKUP_RCU) {
882 		/*
883 		 * We don't want to zero nd->root for scoped-lookups or
884 		 * externally-managed nd->root.
885 		 */
886 		if (!(nd->state & ND_ROOT_PRESET))
887 			if (!(nd->flags & LOOKUP_IS_SCOPED))
888 				nd->root.mnt = NULL;
889 		nd->flags &= ~LOOKUP_CACHED;
890 		if (!try_to_unlazy(nd))
891 			return -ECHILD;
892 	}
893 
894 	if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
895 		/*
896 		 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
897 		 * ever step outside the root during lookup" and should already
898 		 * be guaranteed by the rest of namei, we want to avoid a namei
899 		 * BUG resulting in userspace being given a path that was not
900 		 * scoped within the root at some point during the lookup.
901 		 *
902 		 * So, do a final sanity-check to make sure that in the
903 		 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
904 		 * we won't silently return an fd completely outside of the
905 		 * requested root to userspace.
906 		 *
907 		 * Userspace could move the path outside the root after this
908 		 * check, but as discussed elsewhere this is not a concern (the
909 		 * resolved file was inside the root at some point).
910 		 */
911 		if (!path_is_under(&nd->path, &nd->root))
912 			return -EXDEV;
913 	}
914 
915 	if (likely(!(nd->state & ND_JUMPED)))
916 		return 0;
917 
918 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
919 		return 0;
920 
921 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
922 	if (status > 0)
923 		return 0;
924 
925 	if (!status)
926 		status = -ESTALE;
927 
928 	return status;
929 }
930 
931 static int set_root(struct nameidata *nd)
932 {
933 	struct fs_struct *fs = current->fs;
934 
935 	/*
936 	 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
937 	 * still have to ensure it doesn't happen because it will cause a breakout
938 	 * from the dirfd.
939 	 */
940 	if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
941 		return -ENOTRECOVERABLE;
942 
943 	if (nd->flags & LOOKUP_RCU) {
944 		unsigned seq;
945 
946 		do {
947 			seq = read_seqcount_begin(&fs->seq);
948 			nd->root = fs->root;
949 			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
950 		} while (read_seqcount_retry(&fs->seq, seq));
951 	} else {
952 		get_fs_root(fs, &nd->root);
953 		nd->state |= ND_ROOT_GRABBED;
954 	}
955 	return 0;
956 }
957 
958 static int nd_jump_root(struct nameidata *nd)
959 {
960 	if (unlikely(nd->flags & LOOKUP_BENEATH))
961 		return -EXDEV;
962 	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
963 		/* Absolute path arguments to path_init() are allowed. */
964 		if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
965 			return -EXDEV;
966 	}
967 	if (!nd->root.mnt) {
968 		int error = set_root(nd);
969 		if (error)
970 			return error;
971 	}
972 	if (nd->flags & LOOKUP_RCU) {
973 		struct dentry *d;
974 		nd->path = nd->root;
975 		d = nd->path.dentry;
976 		nd->inode = d->d_inode;
977 		nd->seq = nd->root_seq;
978 		if (read_seqcount_retry(&d->d_seq, nd->seq))
979 			return -ECHILD;
980 	} else {
981 		path_put(&nd->path);
982 		nd->path = nd->root;
983 		path_get(&nd->path);
984 		nd->inode = nd->path.dentry->d_inode;
985 	}
986 	nd->state |= ND_JUMPED;
987 	return 0;
988 }
989 
990 /*
991  * Helper to directly jump to a known parsed path from ->get_link,
992  * caller must have taken a reference to path beforehand.
993  */
994 int nd_jump_link(const struct path *path)
995 {
996 	int error = -ELOOP;
997 	struct nameidata *nd = current->nameidata;
998 
999 	if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
1000 		goto err;
1001 
1002 	error = -EXDEV;
1003 	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
1004 		if (nd->path.mnt != path->mnt)
1005 			goto err;
1006 	}
1007 	/* Not currently safe for scoped-lookups. */
1008 	if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
1009 		goto err;
1010 
1011 	path_put(&nd->path);
1012 	nd->path = *path;
1013 	nd->inode = nd->path.dentry->d_inode;
1014 	nd->state |= ND_JUMPED;
1015 	return 0;
1016 
1017 err:
1018 	path_put(path);
1019 	return error;
1020 }
1021 
1022 static inline void put_link(struct nameidata *nd)
1023 {
1024 	struct saved *last = nd->stack + --nd->depth;
1025 	do_delayed_call(&last->done);
1026 	if (!(nd->flags & LOOKUP_RCU))
1027 		path_put(&last->link);
1028 }
1029 
1030 static int sysctl_protected_symlinks __read_mostly;
1031 static int sysctl_protected_hardlinks __read_mostly;
1032 static int sysctl_protected_fifos __read_mostly;
1033 static int sysctl_protected_regular __read_mostly;
1034 
1035 #ifdef CONFIG_SYSCTL
1036 static struct ctl_table namei_sysctls[] = {
1037 	{
1038 		.procname	= "protected_symlinks",
1039 		.data		= &sysctl_protected_symlinks,
1040 		.maxlen		= sizeof(int),
1041 		.mode		= 0644,
1042 		.proc_handler	= proc_dointvec_minmax,
1043 		.extra1		= SYSCTL_ZERO,
1044 		.extra2		= SYSCTL_ONE,
1045 	},
1046 	{
1047 		.procname	= "protected_hardlinks",
1048 		.data		= &sysctl_protected_hardlinks,
1049 		.maxlen		= sizeof(int),
1050 		.mode		= 0644,
1051 		.proc_handler	= proc_dointvec_minmax,
1052 		.extra1		= SYSCTL_ZERO,
1053 		.extra2		= SYSCTL_ONE,
1054 	},
1055 	{
1056 		.procname	= "protected_fifos",
1057 		.data		= &sysctl_protected_fifos,
1058 		.maxlen		= sizeof(int),
1059 		.mode		= 0644,
1060 		.proc_handler	= proc_dointvec_minmax,
1061 		.extra1		= SYSCTL_ZERO,
1062 		.extra2		= SYSCTL_TWO,
1063 	},
1064 	{
1065 		.procname	= "protected_regular",
1066 		.data		= &sysctl_protected_regular,
1067 		.maxlen		= sizeof(int),
1068 		.mode		= 0644,
1069 		.proc_handler	= proc_dointvec_minmax,
1070 		.extra1		= SYSCTL_ZERO,
1071 		.extra2		= SYSCTL_TWO,
1072 	},
1073 };
1074 
1075 static int __init init_fs_namei_sysctls(void)
1076 {
1077 	register_sysctl_init("fs", namei_sysctls);
1078 	return 0;
1079 }
1080 fs_initcall(init_fs_namei_sysctls);
1081 
1082 #endif /* CONFIG_SYSCTL */
1083 
1084 /**
1085  * may_follow_link - Check symlink following for unsafe situations
1086  * @nd: nameidata pathwalk data
1087  * @inode: Used for idmapping.
1088  *
1089  * In the case of the sysctl_protected_symlinks sysctl being enabled,
1090  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
1091  * in a sticky world-writable directory. This is to protect privileged
1092  * processes from failing races against path names that may change out
1093  * from under them by way of other users creating malicious symlinks.
1094  * It will permit symlinks to be followed only when outside a sticky
1095  * world-writable directory, or when the uid of the symlink and follower
1096  * match, or when the directory owner matches the symlink's owner.
1097  *
1098  * Returns 0 if following the symlink is allowed, -ve on error.
1099  */
1100 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
1101 {
1102 	struct mnt_idmap *idmap;
1103 	vfsuid_t vfsuid;
1104 
1105 	if (!sysctl_protected_symlinks)
1106 		return 0;
1107 
1108 	idmap = mnt_idmap(nd->path.mnt);
1109 	vfsuid = i_uid_into_vfsuid(idmap, inode);
1110 	/* Allowed if owner and follower match. */
1111 	if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
1112 		return 0;
1113 
1114 	/* Allowed if parent directory not sticky and world-writable. */
1115 	if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
1116 		return 0;
1117 
1118 	/* Allowed if parent directory and link owner match. */
1119 	if (vfsuid_valid(nd->dir_vfsuid) && vfsuid_eq(nd->dir_vfsuid, vfsuid))
1120 		return 0;
1121 
1122 	if (nd->flags & LOOKUP_RCU)
1123 		return -ECHILD;
1124 
1125 	audit_inode(nd->name, nd->stack[0].link.dentry, 0);
1126 	audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
1127 	return -EACCES;
1128 }
1129 
1130 /**
1131  * safe_hardlink_source - Check for safe hardlink conditions
1132  * @idmap: idmap of the mount the inode was found from
1133  * @inode: the source inode to hardlink from
1134  *
1135  * Return false if at least one of the following conditions:
1136  *    - inode is not a regular file
1137  *    - inode is setuid
1138  *    - inode is setgid and group-exec
1139  *    - access failure for read and write
1140  *
1141  * Otherwise returns true.
1142  */
1143 static bool safe_hardlink_source(struct mnt_idmap *idmap,
1144 				 struct inode *inode)
1145 {
1146 	umode_t mode = inode->i_mode;
1147 
1148 	/* Special files should not get pinned to the filesystem. */
1149 	if (!S_ISREG(mode))
1150 		return false;
1151 
1152 	/* Setuid files should not get pinned to the filesystem. */
1153 	if (mode & S_ISUID)
1154 		return false;
1155 
1156 	/* Executable setgid files should not get pinned to the filesystem. */
1157 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1158 		return false;
1159 
1160 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
1161 	if (inode_permission(idmap, inode, MAY_READ | MAY_WRITE))
1162 		return false;
1163 
1164 	return true;
1165 }
1166 
1167 /**
1168  * may_linkat - Check permissions for creating a hardlink
1169  * @idmap: idmap of the mount the inode was found from
1170  * @link:  the source to hardlink from
1171  *
1172  * Block hardlink when all of:
1173  *  - sysctl_protected_hardlinks enabled
1174  *  - fsuid does not match inode
1175  *  - hardlink source is unsafe (see safe_hardlink_source() above)
1176  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
1177  *
1178  * If the inode has been found through an idmapped mount the idmap of
1179  * the vfsmount must be passed through @idmap. This function will then take
1180  * care to map the inode according to @idmap before checking permissions.
1181  * On non-idmapped mounts or if permission checking is to be performed on the
1182  * raw inode simply pass @nop_mnt_idmap.
1183  *
1184  * Returns 0 if successful, -ve on error.
1185  */
1186 int may_linkat(struct mnt_idmap *idmap, const struct path *link)
1187 {
1188 	struct inode *inode = link->dentry->d_inode;
1189 
1190 	/* Inode writeback is not safe when the uid or gid are invalid. */
1191 	if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
1192 	    !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
1193 		return -EOVERFLOW;
1194 
1195 	if (!sysctl_protected_hardlinks)
1196 		return 0;
1197 
1198 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1199 	 * otherwise, it must be a safe source.
1200 	 */
1201 	if (safe_hardlink_source(idmap, inode) ||
1202 	    inode_owner_or_capable(idmap, inode))
1203 		return 0;
1204 
1205 	audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1206 	return -EPERM;
1207 }
1208 
1209 /**
1210  * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1211  *			  should be allowed, or not, on files that already
1212  *			  exist.
1213  * @idmap: idmap of the mount the inode was found from
1214  * @nd: nameidata pathwalk data
1215  * @inode: the inode of the file to open
1216  *
1217  * Block an O_CREAT open of a FIFO (or a regular file) when:
1218  *   - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1219  *   - the file already exists
1220  *   - we are in a sticky directory
1221  *   - we don't own the file
1222  *   - the owner of the directory doesn't own the file
1223  *   - the directory is world writable
1224  * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1225  * the directory doesn't have to be world writable: being group writable will
1226  * be enough.
1227  *
1228  * If the inode has been found through an idmapped mount the idmap of
1229  * the vfsmount must be passed through @idmap. This function will then take
1230  * care to map the inode according to @idmap before checking permissions.
1231  * On non-idmapped mounts or if permission checking is to be performed on the
1232  * raw inode simply pass @nop_mnt_idmap.
1233  *
1234  * Returns 0 if the open is allowed, -ve on error.
1235  */
1236 static int may_create_in_sticky(struct mnt_idmap *idmap,
1237 				struct nameidata *nd, struct inode *const inode)
1238 {
1239 	umode_t dir_mode = nd->dir_mode;
1240 	vfsuid_t dir_vfsuid = nd->dir_vfsuid;
1241 
1242 	if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1243 	    (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1244 	    likely(!(dir_mode & S_ISVTX)) ||
1245 	    vfsuid_eq(i_uid_into_vfsuid(idmap, inode), dir_vfsuid) ||
1246 	    vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), current_fsuid()))
1247 		return 0;
1248 
1249 	if (likely(dir_mode & 0002) ||
1250 	    (dir_mode & 0020 &&
1251 	     ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1252 	      (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1253 		const char *operation = S_ISFIFO(inode->i_mode) ?
1254 					"sticky_create_fifo" :
1255 					"sticky_create_regular";
1256 		audit_log_path_denied(AUDIT_ANOM_CREAT, operation);
1257 		return -EACCES;
1258 	}
1259 	return 0;
1260 }
1261 
1262 /*
1263  * follow_up - Find the mountpoint of path's vfsmount
1264  *
1265  * Given a path, find the mountpoint of its source file system.
1266  * Replace @path with the path of the mountpoint in the parent mount.
1267  * Up is towards /.
1268  *
1269  * Return 1 if we went up a level and 0 if we were already at the
1270  * root.
1271  */
1272 int follow_up(struct path *path)
1273 {
1274 	struct mount *mnt = real_mount(path->mnt);
1275 	struct mount *parent;
1276 	struct dentry *mountpoint;
1277 
1278 	read_seqlock_excl(&mount_lock);
1279 	parent = mnt->mnt_parent;
1280 	if (parent == mnt) {
1281 		read_sequnlock_excl(&mount_lock);
1282 		return 0;
1283 	}
1284 	mntget(&parent->mnt);
1285 	mountpoint = dget(mnt->mnt_mountpoint);
1286 	read_sequnlock_excl(&mount_lock);
1287 	dput(path->dentry);
1288 	path->dentry = mountpoint;
1289 	mntput(path->mnt);
1290 	path->mnt = &parent->mnt;
1291 	return 1;
1292 }
1293 EXPORT_SYMBOL(follow_up);
1294 
1295 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1296 				  struct path *path, unsigned *seqp)
1297 {
1298 	while (mnt_has_parent(m)) {
1299 		struct dentry *mountpoint = m->mnt_mountpoint;
1300 
1301 		m = m->mnt_parent;
1302 		if (unlikely(root->dentry == mountpoint &&
1303 			     root->mnt == &m->mnt))
1304 			break;
1305 		if (mountpoint != m->mnt.mnt_root) {
1306 			path->mnt = &m->mnt;
1307 			path->dentry = mountpoint;
1308 			*seqp = read_seqcount_begin(&mountpoint->d_seq);
1309 			return true;
1310 		}
1311 	}
1312 	return false;
1313 }
1314 
1315 static bool choose_mountpoint(struct mount *m, const struct path *root,
1316 			      struct path *path)
1317 {
1318 	bool found;
1319 
1320 	rcu_read_lock();
1321 	while (1) {
1322 		unsigned seq, mseq = read_seqbegin(&mount_lock);
1323 
1324 		found = choose_mountpoint_rcu(m, root, path, &seq);
1325 		if (unlikely(!found)) {
1326 			if (!read_seqretry(&mount_lock, mseq))
1327 				break;
1328 		} else {
1329 			if (likely(__legitimize_path(path, seq, mseq)))
1330 				break;
1331 			rcu_read_unlock();
1332 			path_put(path);
1333 			rcu_read_lock();
1334 		}
1335 	}
1336 	rcu_read_unlock();
1337 	return found;
1338 }
1339 
1340 /*
1341  * Perform an automount
1342  * - return -EISDIR to tell follow_managed() to stop and return the path we
1343  *   were called with.
1344  */
1345 static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1346 {
1347 	struct dentry *dentry = path->dentry;
1348 
1349 	/* We don't want to mount if someone's just doing a stat -
1350 	 * unless they're stat'ing a directory and appended a '/' to
1351 	 * the name.
1352 	 *
1353 	 * We do, however, want to mount if someone wants to open or
1354 	 * create a file of any type under the mountpoint, wants to
1355 	 * traverse through the mountpoint or wants to open the
1356 	 * mounted directory.  Also, autofs may mark negative dentries
1357 	 * as being automount points.  These will need the attentions
1358 	 * of the daemon to instantiate them before they can be used.
1359 	 */
1360 	if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1361 			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1362 	    dentry->d_inode)
1363 		return -EISDIR;
1364 
1365 	if (count && (*count)++ >= MAXSYMLINKS)
1366 		return -ELOOP;
1367 
1368 	return finish_automount(dentry->d_op->d_automount(path), path);
1369 }
1370 
1371 /*
1372  * mount traversal - out-of-line part.  One note on ->d_flags accesses -
1373  * dentries are pinned but not locked here, so negative dentry can go
1374  * positive right under us.  Use of smp_load_acquire() provides a barrier
1375  * sufficient for ->d_inode and ->d_flags consistency.
1376  */
1377 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1378 			     int *count, unsigned lookup_flags)
1379 {
1380 	struct vfsmount *mnt = path->mnt;
1381 	bool need_mntput = false;
1382 	int ret = 0;
1383 
1384 	while (flags & DCACHE_MANAGED_DENTRY) {
1385 		/* Allow the filesystem to manage the transit without i_mutex
1386 		 * being held. */
1387 		if (flags & DCACHE_MANAGE_TRANSIT) {
1388 			ret = path->dentry->d_op->d_manage(path, false);
1389 			flags = smp_load_acquire(&path->dentry->d_flags);
1390 			if (ret < 0)
1391 				break;
1392 		}
1393 
1394 		if (flags & DCACHE_MOUNTED) {	// something's mounted on it..
1395 			struct vfsmount *mounted = lookup_mnt(path);
1396 			if (mounted) {		// ... in our namespace
1397 				dput(path->dentry);
1398 				if (need_mntput)
1399 					mntput(path->mnt);
1400 				path->mnt = mounted;
1401 				path->dentry = dget(mounted->mnt_root);
1402 				// here we know it's positive
1403 				flags = path->dentry->d_flags;
1404 				need_mntput = true;
1405 				continue;
1406 			}
1407 		}
1408 
1409 		if (!(flags & DCACHE_NEED_AUTOMOUNT))
1410 			break;
1411 
1412 		// uncovered automount point
1413 		ret = follow_automount(path, count, lookup_flags);
1414 		flags = smp_load_acquire(&path->dentry->d_flags);
1415 		if (ret < 0)
1416 			break;
1417 	}
1418 
1419 	if (ret == -EISDIR)
1420 		ret = 0;
1421 	// possible if you race with several mount --move
1422 	if (need_mntput && path->mnt == mnt)
1423 		mntput(path->mnt);
1424 	if (!ret && unlikely(d_flags_negative(flags)))
1425 		ret = -ENOENT;
1426 	*jumped = need_mntput;
1427 	return ret;
1428 }
1429 
1430 static inline int traverse_mounts(struct path *path, bool *jumped,
1431 				  int *count, unsigned lookup_flags)
1432 {
1433 	unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1434 
1435 	/* fastpath */
1436 	if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1437 		*jumped = false;
1438 		if (unlikely(d_flags_negative(flags)))
1439 			return -ENOENT;
1440 		return 0;
1441 	}
1442 	return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1443 }
1444 
1445 int follow_down_one(struct path *path)
1446 {
1447 	struct vfsmount *mounted;
1448 
1449 	mounted = lookup_mnt(path);
1450 	if (mounted) {
1451 		dput(path->dentry);
1452 		mntput(path->mnt);
1453 		path->mnt = mounted;
1454 		path->dentry = dget(mounted->mnt_root);
1455 		return 1;
1456 	}
1457 	return 0;
1458 }
1459 EXPORT_SYMBOL(follow_down_one);
1460 
1461 /*
1462  * Follow down to the covering mount currently visible to userspace.  At each
1463  * point, the filesystem owning that dentry may be queried as to whether the
1464  * caller is permitted to proceed or not.
1465  */
1466 int follow_down(struct path *path, unsigned int flags)
1467 {
1468 	struct vfsmount *mnt = path->mnt;
1469 	bool jumped;
1470 	int ret = traverse_mounts(path, &jumped, NULL, flags);
1471 
1472 	if (path->mnt != mnt)
1473 		mntput(mnt);
1474 	return ret;
1475 }
1476 EXPORT_SYMBOL(follow_down);
1477 
1478 /*
1479  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1480  * we meet a managed dentry that would need blocking.
1481  */
1482 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path)
1483 {
1484 	struct dentry *dentry = path->dentry;
1485 	unsigned int flags = dentry->d_flags;
1486 
1487 	if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1488 		return true;
1489 
1490 	if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1491 		return false;
1492 
1493 	for (;;) {
1494 		/*
1495 		 * Don't forget we might have a non-mountpoint managed dentry
1496 		 * that wants to block transit.
1497 		 */
1498 		if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1499 			int res = dentry->d_op->d_manage(path, true);
1500 			if (res)
1501 				return res == -EISDIR;
1502 			flags = dentry->d_flags;
1503 		}
1504 
1505 		if (flags & DCACHE_MOUNTED) {
1506 			struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1507 			if (mounted) {
1508 				path->mnt = &mounted->mnt;
1509 				dentry = path->dentry = mounted->mnt.mnt_root;
1510 				nd->state |= ND_JUMPED;
1511 				nd->next_seq = read_seqcount_begin(&dentry->d_seq);
1512 				flags = dentry->d_flags;
1513 				// makes sure that non-RCU pathwalk could reach
1514 				// this state.
1515 				if (read_seqretry(&mount_lock, nd->m_seq))
1516 					return false;
1517 				continue;
1518 			}
1519 			if (read_seqretry(&mount_lock, nd->m_seq))
1520 				return false;
1521 		}
1522 		return !(flags & DCACHE_NEED_AUTOMOUNT);
1523 	}
1524 }
1525 
1526 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1527 			  struct path *path)
1528 {
1529 	bool jumped;
1530 	int ret;
1531 
1532 	path->mnt = nd->path.mnt;
1533 	path->dentry = dentry;
1534 	if (nd->flags & LOOKUP_RCU) {
1535 		unsigned int seq = nd->next_seq;
1536 		if (likely(__follow_mount_rcu(nd, path)))
1537 			return 0;
1538 		// *path and nd->next_seq might've been clobbered
1539 		path->mnt = nd->path.mnt;
1540 		path->dentry = dentry;
1541 		nd->next_seq = seq;
1542 		if (!try_to_unlazy_next(nd, dentry))
1543 			return -ECHILD;
1544 	}
1545 	ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1546 	if (jumped) {
1547 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1548 			ret = -EXDEV;
1549 		else
1550 			nd->state |= ND_JUMPED;
1551 	}
1552 	if (unlikely(ret)) {
1553 		dput(path->dentry);
1554 		if (path->mnt != nd->path.mnt)
1555 			mntput(path->mnt);
1556 	}
1557 	return ret;
1558 }
1559 
1560 /*
1561  * This looks up the name in dcache and possibly revalidates the found dentry.
1562  * NULL is returned if the dentry does not exist in the cache.
1563  */
1564 static struct dentry *lookup_dcache(const struct qstr *name,
1565 				    struct dentry *dir,
1566 				    unsigned int flags)
1567 {
1568 	struct dentry *dentry = d_lookup(dir, name);
1569 	if (dentry) {
1570 		int error = d_revalidate(dentry, flags);
1571 		if (unlikely(error <= 0)) {
1572 			if (!error)
1573 				d_invalidate(dentry);
1574 			dput(dentry);
1575 			return ERR_PTR(error);
1576 		}
1577 	}
1578 	return dentry;
1579 }
1580 
1581 /*
1582  * Parent directory has inode locked exclusive.  This is one
1583  * and only case when ->lookup() gets called on non in-lookup
1584  * dentries - as the matter of fact, this only gets called
1585  * when directory is guaranteed to have no in-lookup children
1586  * at all.
1587  */
1588 struct dentry *lookup_one_qstr_excl(const struct qstr *name,
1589 				    struct dentry *base,
1590 				    unsigned int flags)
1591 {
1592 	struct dentry *dentry = lookup_dcache(name, base, flags);
1593 	struct dentry *old;
1594 	struct inode *dir = base->d_inode;
1595 
1596 	if (dentry)
1597 		return dentry;
1598 
1599 	/* Don't create child dentry for a dead directory. */
1600 	if (unlikely(IS_DEADDIR(dir)))
1601 		return ERR_PTR(-ENOENT);
1602 
1603 	dentry = d_alloc(base, name);
1604 	if (unlikely(!dentry))
1605 		return ERR_PTR(-ENOMEM);
1606 
1607 	old = dir->i_op->lookup(dir, dentry, flags);
1608 	if (unlikely(old)) {
1609 		dput(dentry);
1610 		dentry = old;
1611 	}
1612 	return dentry;
1613 }
1614 EXPORT_SYMBOL(lookup_one_qstr_excl);
1615 
1616 static struct dentry *lookup_fast(struct nameidata *nd)
1617 {
1618 	struct dentry *dentry, *parent = nd->path.dentry;
1619 	int status = 1;
1620 
1621 	/*
1622 	 * Rename seqlock is not required here because in the off chance
1623 	 * of a false negative due to a concurrent rename, the caller is
1624 	 * going to fall back to non-racy lookup.
1625 	 */
1626 	if (nd->flags & LOOKUP_RCU) {
1627 		dentry = __d_lookup_rcu(parent, &nd->last, &nd->next_seq);
1628 		if (unlikely(!dentry)) {
1629 			if (!try_to_unlazy(nd))
1630 				return ERR_PTR(-ECHILD);
1631 			return NULL;
1632 		}
1633 
1634 		/*
1635 		 * This sequence count validates that the parent had no
1636 		 * changes while we did the lookup of the dentry above.
1637 		 */
1638 		if (read_seqcount_retry(&parent->d_seq, nd->seq))
1639 			return ERR_PTR(-ECHILD);
1640 
1641 		status = d_revalidate(dentry, nd->flags);
1642 		if (likely(status > 0))
1643 			return dentry;
1644 		if (!try_to_unlazy_next(nd, dentry))
1645 			return ERR_PTR(-ECHILD);
1646 		if (status == -ECHILD)
1647 			/* we'd been told to redo it in non-rcu mode */
1648 			status = d_revalidate(dentry, nd->flags);
1649 	} else {
1650 		dentry = __d_lookup(parent, &nd->last);
1651 		if (unlikely(!dentry))
1652 			return NULL;
1653 		status = d_revalidate(dentry, nd->flags);
1654 	}
1655 	if (unlikely(status <= 0)) {
1656 		if (!status)
1657 			d_invalidate(dentry);
1658 		dput(dentry);
1659 		return ERR_PTR(status);
1660 	}
1661 	return dentry;
1662 }
1663 
1664 /* Fast lookup failed, do it the slow way */
1665 static struct dentry *__lookup_slow(const struct qstr *name,
1666 				    struct dentry *dir,
1667 				    unsigned int flags)
1668 {
1669 	struct dentry *dentry, *old;
1670 	struct inode *inode = dir->d_inode;
1671 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1672 
1673 	/* Don't go there if it's already dead */
1674 	if (unlikely(IS_DEADDIR(inode)))
1675 		return ERR_PTR(-ENOENT);
1676 again:
1677 	dentry = d_alloc_parallel(dir, name, &wq);
1678 	if (IS_ERR(dentry))
1679 		return dentry;
1680 	if (unlikely(!d_in_lookup(dentry))) {
1681 		int error = d_revalidate(dentry, flags);
1682 		if (unlikely(error <= 0)) {
1683 			if (!error) {
1684 				d_invalidate(dentry);
1685 				dput(dentry);
1686 				goto again;
1687 			}
1688 			dput(dentry);
1689 			dentry = ERR_PTR(error);
1690 		}
1691 	} else {
1692 		old = inode->i_op->lookup(inode, dentry, flags);
1693 		d_lookup_done(dentry);
1694 		if (unlikely(old)) {
1695 			dput(dentry);
1696 			dentry = old;
1697 		}
1698 	}
1699 	return dentry;
1700 }
1701 
1702 static struct dentry *lookup_slow(const struct qstr *name,
1703 				  struct dentry *dir,
1704 				  unsigned int flags)
1705 {
1706 	struct inode *inode = dir->d_inode;
1707 	struct dentry *res;
1708 	inode_lock_shared(inode);
1709 	res = __lookup_slow(name, dir, flags);
1710 	inode_unlock_shared(inode);
1711 	return res;
1712 }
1713 
1714 static inline int may_lookup(struct mnt_idmap *idmap,
1715 			     struct nameidata *nd)
1716 {
1717 	if (nd->flags & LOOKUP_RCU) {
1718 		int err = inode_permission(idmap, nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1719 		if (err != -ECHILD || !try_to_unlazy(nd))
1720 			return err;
1721 	}
1722 	return inode_permission(idmap, nd->inode, MAY_EXEC);
1723 }
1724 
1725 static int reserve_stack(struct nameidata *nd, struct path *link)
1726 {
1727 	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1728 		return -ELOOP;
1729 
1730 	if (likely(nd->depth != EMBEDDED_LEVELS))
1731 		return 0;
1732 	if (likely(nd->stack != nd->internal))
1733 		return 0;
1734 	if (likely(nd_alloc_stack(nd)))
1735 		return 0;
1736 
1737 	if (nd->flags & LOOKUP_RCU) {
1738 		// we need to grab link before we do unlazy.  And we can't skip
1739 		// unlazy even if we fail to grab the link - cleanup needs it
1740 		bool grabbed_link = legitimize_path(nd, link, nd->next_seq);
1741 
1742 		if (!try_to_unlazy(nd) || !grabbed_link)
1743 			return -ECHILD;
1744 
1745 		if (nd_alloc_stack(nd))
1746 			return 0;
1747 	}
1748 	return -ENOMEM;
1749 }
1750 
1751 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1752 
1753 static const char *pick_link(struct nameidata *nd, struct path *link,
1754 		     struct inode *inode, int flags)
1755 {
1756 	struct saved *last;
1757 	const char *res;
1758 	int error = reserve_stack(nd, link);
1759 
1760 	if (unlikely(error)) {
1761 		if (!(nd->flags & LOOKUP_RCU))
1762 			path_put(link);
1763 		return ERR_PTR(error);
1764 	}
1765 	last = nd->stack + nd->depth++;
1766 	last->link = *link;
1767 	clear_delayed_call(&last->done);
1768 	last->seq = nd->next_seq;
1769 
1770 	if (flags & WALK_TRAILING) {
1771 		error = may_follow_link(nd, inode);
1772 		if (unlikely(error))
1773 			return ERR_PTR(error);
1774 	}
1775 
1776 	if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1777 			unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1778 		return ERR_PTR(-ELOOP);
1779 
1780 	if (!(nd->flags & LOOKUP_RCU)) {
1781 		touch_atime(&last->link);
1782 		cond_resched();
1783 	} else if (atime_needs_update(&last->link, inode)) {
1784 		if (!try_to_unlazy(nd))
1785 			return ERR_PTR(-ECHILD);
1786 		touch_atime(&last->link);
1787 	}
1788 
1789 	error = security_inode_follow_link(link->dentry, inode,
1790 					   nd->flags & LOOKUP_RCU);
1791 	if (unlikely(error))
1792 		return ERR_PTR(error);
1793 
1794 	res = READ_ONCE(inode->i_link);
1795 	if (!res) {
1796 		const char * (*get)(struct dentry *, struct inode *,
1797 				struct delayed_call *);
1798 		get = inode->i_op->get_link;
1799 		if (nd->flags & LOOKUP_RCU) {
1800 			res = get(NULL, inode, &last->done);
1801 			if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd))
1802 				res = get(link->dentry, inode, &last->done);
1803 		} else {
1804 			res = get(link->dentry, inode, &last->done);
1805 		}
1806 		if (!res)
1807 			goto all_done;
1808 		if (IS_ERR(res))
1809 			return res;
1810 	}
1811 	if (*res == '/') {
1812 		error = nd_jump_root(nd);
1813 		if (unlikely(error))
1814 			return ERR_PTR(error);
1815 		while (unlikely(*++res == '/'))
1816 			;
1817 	}
1818 	if (*res)
1819 		return res;
1820 all_done: // pure jump
1821 	put_link(nd);
1822 	return NULL;
1823 }
1824 
1825 /*
1826  * Do we need to follow links? We _really_ want to be able
1827  * to do this check without having to look at inode->i_op,
1828  * so we keep a cache of "no, this doesn't need follow_link"
1829  * for the common case.
1830  *
1831  * NOTE: dentry must be what nd->next_seq had been sampled from.
1832  */
1833 static const char *step_into(struct nameidata *nd, int flags,
1834 		     struct dentry *dentry)
1835 {
1836 	struct path path;
1837 	struct inode *inode;
1838 	int err = handle_mounts(nd, dentry, &path);
1839 
1840 	if (err < 0)
1841 		return ERR_PTR(err);
1842 	inode = path.dentry->d_inode;
1843 	if (likely(!d_is_symlink(path.dentry)) ||
1844 	   ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1845 	   (flags & WALK_NOFOLLOW)) {
1846 		/* not a symlink or should not follow */
1847 		if (nd->flags & LOOKUP_RCU) {
1848 			if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1849 				return ERR_PTR(-ECHILD);
1850 			if (unlikely(!inode))
1851 				return ERR_PTR(-ENOENT);
1852 		} else {
1853 			dput(nd->path.dentry);
1854 			if (nd->path.mnt != path.mnt)
1855 				mntput(nd->path.mnt);
1856 		}
1857 		nd->path = path;
1858 		nd->inode = inode;
1859 		nd->seq = nd->next_seq;
1860 		return NULL;
1861 	}
1862 	if (nd->flags & LOOKUP_RCU) {
1863 		/* make sure that d_is_symlink above matches inode */
1864 		if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1865 			return ERR_PTR(-ECHILD);
1866 	} else {
1867 		if (path.mnt == nd->path.mnt)
1868 			mntget(path.mnt);
1869 	}
1870 	return pick_link(nd, &path, inode, flags);
1871 }
1872 
1873 static struct dentry *follow_dotdot_rcu(struct nameidata *nd)
1874 {
1875 	struct dentry *parent, *old;
1876 
1877 	if (path_equal(&nd->path, &nd->root))
1878 		goto in_root;
1879 	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1880 		struct path path;
1881 		unsigned seq;
1882 		if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
1883 					   &nd->root, &path, &seq))
1884 			goto in_root;
1885 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1886 			return ERR_PTR(-ECHILD);
1887 		nd->path = path;
1888 		nd->inode = path.dentry->d_inode;
1889 		nd->seq = seq;
1890 		// makes sure that non-RCU pathwalk could reach this state
1891 		if (read_seqretry(&mount_lock, nd->m_seq))
1892 			return ERR_PTR(-ECHILD);
1893 		/* we know that mountpoint was pinned */
1894 	}
1895 	old = nd->path.dentry;
1896 	parent = old->d_parent;
1897 	nd->next_seq = read_seqcount_begin(&parent->d_seq);
1898 	// makes sure that non-RCU pathwalk could reach this state
1899 	if (read_seqcount_retry(&old->d_seq, nd->seq))
1900 		return ERR_PTR(-ECHILD);
1901 	if (unlikely(!path_connected(nd->path.mnt, parent)))
1902 		return ERR_PTR(-ECHILD);
1903 	return parent;
1904 in_root:
1905 	if (read_seqretry(&mount_lock, nd->m_seq))
1906 		return ERR_PTR(-ECHILD);
1907 	if (unlikely(nd->flags & LOOKUP_BENEATH))
1908 		return ERR_PTR(-ECHILD);
1909 	nd->next_seq = nd->seq;
1910 	return nd->path.dentry;
1911 }
1912 
1913 static struct dentry *follow_dotdot(struct nameidata *nd)
1914 {
1915 	struct dentry *parent;
1916 
1917 	if (path_equal(&nd->path, &nd->root))
1918 		goto in_root;
1919 	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1920 		struct path path;
1921 
1922 		if (!choose_mountpoint(real_mount(nd->path.mnt),
1923 				       &nd->root, &path))
1924 			goto in_root;
1925 		path_put(&nd->path);
1926 		nd->path = path;
1927 		nd->inode = path.dentry->d_inode;
1928 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1929 			return ERR_PTR(-EXDEV);
1930 	}
1931 	/* rare case of legitimate dget_parent()... */
1932 	parent = dget_parent(nd->path.dentry);
1933 	if (unlikely(!path_connected(nd->path.mnt, parent))) {
1934 		dput(parent);
1935 		return ERR_PTR(-ENOENT);
1936 	}
1937 	return parent;
1938 
1939 in_root:
1940 	if (unlikely(nd->flags & LOOKUP_BENEATH))
1941 		return ERR_PTR(-EXDEV);
1942 	return dget(nd->path.dentry);
1943 }
1944 
1945 static const char *handle_dots(struct nameidata *nd, int type)
1946 {
1947 	if (type == LAST_DOTDOT) {
1948 		const char *error = NULL;
1949 		struct dentry *parent;
1950 
1951 		if (!nd->root.mnt) {
1952 			error = ERR_PTR(set_root(nd));
1953 			if (error)
1954 				return error;
1955 		}
1956 		if (nd->flags & LOOKUP_RCU)
1957 			parent = follow_dotdot_rcu(nd);
1958 		else
1959 			parent = follow_dotdot(nd);
1960 		if (IS_ERR(parent))
1961 			return ERR_CAST(parent);
1962 		error = step_into(nd, WALK_NOFOLLOW, parent);
1963 		if (unlikely(error))
1964 			return error;
1965 
1966 		if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
1967 			/*
1968 			 * If there was a racing rename or mount along our
1969 			 * path, then we can't be sure that ".." hasn't jumped
1970 			 * above nd->root (and so userspace should retry or use
1971 			 * some fallback).
1972 			 */
1973 			smp_rmb();
1974 			if (__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq))
1975 				return ERR_PTR(-EAGAIN);
1976 			if (__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq))
1977 				return ERR_PTR(-EAGAIN);
1978 		}
1979 	}
1980 	return NULL;
1981 }
1982 
1983 static const char *walk_component(struct nameidata *nd, int flags)
1984 {
1985 	struct dentry *dentry;
1986 	/*
1987 	 * "." and ".." are special - ".." especially so because it has
1988 	 * to be able to know about the current root directory and
1989 	 * parent relationships.
1990 	 */
1991 	if (unlikely(nd->last_type != LAST_NORM)) {
1992 		if (!(flags & WALK_MORE) && nd->depth)
1993 			put_link(nd);
1994 		return handle_dots(nd, nd->last_type);
1995 	}
1996 	dentry = lookup_fast(nd);
1997 	if (IS_ERR(dentry))
1998 		return ERR_CAST(dentry);
1999 	if (unlikely(!dentry)) {
2000 		dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
2001 		if (IS_ERR(dentry))
2002 			return ERR_CAST(dentry);
2003 	}
2004 	if (!(flags & WALK_MORE) && nd->depth)
2005 		put_link(nd);
2006 	return step_into(nd, flags, dentry);
2007 }
2008 
2009 /*
2010  * We can do the critical dentry name comparison and hashing
2011  * operations one word at a time, but we are limited to:
2012  *
2013  * - Architectures with fast unaligned word accesses. We could
2014  *   do a "get_unaligned()" if this helps and is sufficiently
2015  *   fast.
2016  *
2017  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
2018  *   do not trap on the (extremely unlikely) case of a page
2019  *   crossing operation.
2020  *
2021  * - Furthermore, we need an efficient 64-bit compile for the
2022  *   64-bit case in order to generate the "number of bytes in
2023  *   the final mask". Again, that could be replaced with a
2024  *   efficient population count instruction or similar.
2025  */
2026 #ifdef CONFIG_DCACHE_WORD_ACCESS
2027 
2028 #include <asm/word-at-a-time.h>
2029 
2030 #ifdef HASH_MIX
2031 
2032 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
2033 
2034 #elif defined(CONFIG_64BIT)
2035 /*
2036  * Register pressure in the mixing function is an issue, particularly
2037  * on 32-bit x86, but almost any function requires one state value and
2038  * one temporary.  Instead, use a function designed for two state values
2039  * and no temporaries.
2040  *
2041  * This function cannot create a collision in only two iterations, so
2042  * we have two iterations to achieve avalanche.  In those two iterations,
2043  * we have six layers of mixing, which is enough to spread one bit's
2044  * influence out to 2^6 = 64 state bits.
2045  *
2046  * Rotate constants are scored by considering either 64 one-bit input
2047  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
2048  * probability of that delta causing a change to each of the 128 output
2049  * bits, using a sample of random initial states.
2050  *
2051  * The Shannon entropy of the computed probabilities is then summed
2052  * to produce a score.  Ideally, any input change has a 50% chance of
2053  * toggling any given output bit.
2054  *
2055  * Mixing scores (in bits) for (12,45):
2056  * Input delta: 1-bit      2-bit
2057  * 1 round:     713.3    42542.6
2058  * 2 rounds:   2753.7   140389.8
2059  * 3 rounds:   5954.1   233458.2
2060  * 4 rounds:   7862.6   256672.2
2061  * Perfect:    8192     258048
2062  *            (64*128) (64*63/2 * 128)
2063  */
2064 #define HASH_MIX(x, y, a)	\
2065 	(	x ^= (a),	\
2066 	y ^= x,	x = rol64(x,12),\
2067 	x += y,	y = rol64(y,45),\
2068 	y *= 9			)
2069 
2070 /*
2071  * Fold two longs into one 32-bit hash value.  This must be fast, but
2072  * latency isn't quite as critical, as there is a fair bit of additional
2073  * work done before the hash value is used.
2074  */
2075 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2076 {
2077 	y ^= x * GOLDEN_RATIO_64;
2078 	y *= GOLDEN_RATIO_64;
2079 	return y >> 32;
2080 }
2081 
2082 #else	/* 32-bit case */
2083 
2084 /*
2085  * Mixing scores (in bits) for (7,20):
2086  * Input delta: 1-bit      2-bit
2087  * 1 round:     330.3     9201.6
2088  * 2 rounds:   1246.4    25475.4
2089  * 3 rounds:   1907.1    31295.1
2090  * 4 rounds:   2042.3    31718.6
2091  * Perfect:    2048      31744
2092  *            (32*64)   (32*31/2 * 64)
2093  */
2094 #define HASH_MIX(x, y, a)	\
2095 	(	x ^= (a),	\
2096 	y ^= x,	x = rol32(x, 7),\
2097 	x += y,	y = rol32(y,20),\
2098 	y *= 9			)
2099 
2100 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2101 {
2102 	/* Use arch-optimized multiply if one exists */
2103 	return __hash_32(y ^ __hash_32(x));
2104 }
2105 
2106 #endif
2107 
2108 /*
2109  * Return the hash of a string of known length.  This is carfully
2110  * designed to match hash_name(), which is the more critical function.
2111  * In particular, we must end by hashing a final word containing 0..7
2112  * payload bytes, to match the way that hash_name() iterates until it
2113  * finds the delimiter after the name.
2114  */
2115 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2116 {
2117 	unsigned long a, x = 0, y = (unsigned long)salt;
2118 
2119 	for (;;) {
2120 		if (!len)
2121 			goto done;
2122 		a = load_unaligned_zeropad(name);
2123 		if (len < sizeof(unsigned long))
2124 			break;
2125 		HASH_MIX(x, y, a);
2126 		name += sizeof(unsigned long);
2127 		len -= sizeof(unsigned long);
2128 	}
2129 	x ^= a & bytemask_from_count(len);
2130 done:
2131 	return fold_hash(x, y);
2132 }
2133 EXPORT_SYMBOL(full_name_hash);
2134 
2135 /* Return the "hash_len" (hash and length) of a null-terminated string */
2136 u64 hashlen_string(const void *salt, const char *name)
2137 {
2138 	unsigned long a = 0, x = 0, y = (unsigned long)salt;
2139 	unsigned long adata, mask, len;
2140 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2141 
2142 	len = 0;
2143 	goto inside;
2144 
2145 	do {
2146 		HASH_MIX(x, y, a);
2147 		len += sizeof(unsigned long);
2148 inside:
2149 		a = load_unaligned_zeropad(name+len);
2150 	} while (!has_zero(a, &adata, &constants));
2151 
2152 	adata = prep_zero_mask(a, adata, &constants);
2153 	mask = create_zero_mask(adata);
2154 	x ^= a & zero_bytemask(mask);
2155 
2156 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2157 }
2158 EXPORT_SYMBOL(hashlen_string);
2159 
2160 /*
2161  * Calculate the length and hash of the path component, and
2162  * return the "hash_len" as the result.
2163  */
2164 static inline u64 hash_name(const void *salt, const char *name)
2165 {
2166 	unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
2167 	unsigned long adata, bdata, mask, len;
2168 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2169 
2170 	len = 0;
2171 	goto inside;
2172 
2173 	do {
2174 		HASH_MIX(x, y, a);
2175 		len += sizeof(unsigned long);
2176 inside:
2177 		a = load_unaligned_zeropad(name+len);
2178 		b = a ^ REPEAT_BYTE('/');
2179 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2180 
2181 	adata = prep_zero_mask(a, adata, &constants);
2182 	bdata = prep_zero_mask(b, bdata, &constants);
2183 	mask = create_zero_mask(adata | bdata);
2184 	x ^= a & zero_bytemask(mask);
2185 
2186 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2187 }
2188 
2189 #else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2190 
2191 /* Return the hash of a string of known length */
2192 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2193 {
2194 	unsigned long hash = init_name_hash(salt);
2195 	while (len--)
2196 		hash = partial_name_hash((unsigned char)*name++, hash);
2197 	return end_name_hash(hash);
2198 }
2199 EXPORT_SYMBOL(full_name_hash);
2200 
2201 /* Return the "hash_len" (hash and length) of a null-terminated string */
2202 u64 hashlen_string(const void *salt, const char *name)
2203 {
2204 	unsigned long hash = init_name_hash(salt);
2205 	unsigned long len = 0, c;
2206 
2207 	c = (unsigned char)*name;
2208 	while (c) {
2209 		len++;
2210 		hash = partial_name_hash(c, hash);
2211 		c = (unsigned char)name[len];
2212 	}
2213 	return hashlen_create(end_name_hash(hash), len);
2214 }
2215 EXPORT_SYMBOL(hashlen_string);
2216 
2217 /*
2218  * We know there's a real path component here of at least
2219  * one character.
2220  */
2221 static inline u64 hash_name(const void *salt, const char *name)
2222 {
2223 	unsigned long hash = init_name_hash(salt);
2224 	unsigned long len = 0, c;
2225 
2226 	c = (unsigned char)*name;
2227 	do {
2228 		len++;
2229 		hash = partial_name_hash(c, hash);
2230 		c = (unsigned char)name[len];
2231 	} while (c && c != '/');
2232 	return hashlen_create(end_name_hash(hash), len);
2233 }
2234 
2235 #endif
2236 
2237 /*
2238  * Name resolution.
2239  * This is the basic name resolution function, turning a pathname into
2240  * the final dentry. We expect 'base' to be positive and a directory.
2241  *
2242  * Returns 0 and nd will have valid dentry and mnt on success.
2243  * Returns error and drops reference to input namei data on failure.
2244  */
2245 static int link_path_walk(const char *name, struct nameidata *nd)
2246 {
2247 	int depth = 0; // depth <= nd->depth
2248 	int err;
2249 
2250 	nd->last_type = LAST_ROOT;
2251 	nd->flags |= LOOKUP_PARENT;
2252 	if (IS_ERR(name))
2253 		return PTR_ERR(name);
2254 	while (*name=='/')
2255 		name++;
2256 	if (!*name) {
2257 		nd->dir_mode = 0; // short-circuit the 'hardening' idiocy
2258 		return 0;
2259 	}
2260 
2261 	/* At this point we know we have a real path component. */
2262 	for(;;) {
2263 		struct mnt_idmap *idmap;
2264 		const char *link;
2265 		u64 hash_len;
2266 		int type;
2267 
2268 		idmap = mnt_idmap(nd->path.mnt);
2269 		err = may_lookup(idmap, nd);
2270 		if (err)
2271 			return err;
2272 
2273 		hash_len = hash_name(nd->path.dentry, name);
2274 
2275 		type = LAST_NORM;
2276 		if (name[0] == '.') switch (hashlen_len(hash_len)) {
2277 			case 2:
2278 				if (name[1] == '.') {
2279 					type = LAST_DOTDOT;
2280 					nd->state |= ND_JUMPED;
2281 				}
2282 				break;
2283 			case 1:
2284 				type = LAST_DOT;
2285 		}
2286 		if (likely(type == LAST_NORM)) {
2287 			struct dentry *parent = nd->path.dentry;
2288 			nd->state &= ~ND_JUMPED;
2289 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2290 				struct qstr this = { { .hash_len = hash_len }, .name = name };
2291 				err = parent->d_op->d_hash(parent, &this);
2292 				if (err < 0)
2293 					return err;
2294 				hash_len = this.hash_len;
2295 				name = this.name;
2296 			}
2297 		}
2298 
2299 		nd->last.hash_len = hash_len;
2300 		nd->last.name = name;
2301 		nd->last_type = type;
2302 
2303 		name += hashlen_len(hash_len);
2304 		if (!*name)
2305 			goto OK;
2306 		/*
2307 		 * If it wasn't NUL, we know it was '/'. Skip that
2308 		 * slash, and continue until no more slashes.
2309 		 */
2310 		do {
2311 			name++;
2312 		} while (unlikely(*name == '/'));
2313 		if (unlikely(!*name)) {
2314 OK:
2315 			/* pathname or trailing symlink, done */
2316 			if (!depth) {
2317 				nd->dir_vfsuid = i_uid_into_vfsuid(idmap, nd->inode);
2318 				nd->dir_mode = nd->inode->i_mode;
2319 				nd->flags &= ~LOOKUP_PARENT;
2320 				return 0;
2321 			}
2322 			/* last component of nested symlink */
2323 			name = nd->stack[--depth].name;
2324 			link = walk_component(nd, 0);
2325 		} else {
2326 			/* not the last component */
2327 			link = walk_component(nd, WALK_MORE);
2328 		}
2329 		if (unlikely(link)) {
2330 			if (IS_ERR(link))
2331 				return PTR_ERR(link);
2332 			/* a symlink to follow */
2333 			nd->stack[depth++].name = name;
2334 			name = link;
2335 			continue;
2336 		}
2337 		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2338 			if (nd->flags & LOOKUP_RCU) {
2339 				if (!try_to_unlazy(nd))
2340 					return -ECHILD;
2341 			}
2342 			return -ENOTDIR;
2343 		}
2344 	}
2345 }
2346 
2347 /* must be paired with terminate_walk() */
2348 static const char *path_init(struct nameidata *nd, unsigned flags)
2349 {
2350 	int error;
2351 	const char *s = nd->name->name;
2352 
2353 	/* LOOKUP_CACHED requires RCU, ask caller to retry */
2354 	if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED)
2355 		return ERR_PTR(-EAGAIN);
2356 
2357 	if (!*s)
2358 		flags &= ~LOOKUP_RCU;
2359 	if (flags & LOOKUP_RCU)
2360 		rcu_read_lock();
2361 	else
2362 		nd->seq = nd->next_seq = 0;
2363 
2364 	nd->flags = flags;
2365 	nd->state |= ND_JUMPED;
2366 
2367 	nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2368 	nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2369 	smp_rmb();
2370 
2371 	if (nd->state & ND_ROOT_PRESET) {
2372 		struct dentry *root = nd->root.dentry;
2373 		struct inode *inode = root->d_inode;
2374 		if (*s && unlikely(!d_can_lookup(root)))
2375 			return ERR_PTR(-ENOTDIR);
2376 		nd->path = nd->root;
2377 		nd->inode = inode;
2378 		if (flags & LOOKUP_RCU) {
2379 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2380 			nd->root_seq = nd->seq;
2381 		} else {
2382 			path_get(&nd->path);
2383 		}
2384 		return s;
2385 	}
2386 
2387 	nd->root.mnt = NULL;
2388 
2389 	/* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2390 	if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2391 		error = nd_jump_root(nd);
2392 		if (unlikely(error))
2393 			return ERR_PTR(error);
2394 		return s;
2395 	}
2396 
2397 	/* Relative pathname -- get the starting-point it is relative to. */
2398 	if (nd->dfd == AT_FDCWD) {
2399 		if (flags & LOOKUP_RCU) {
2400 			struct fs_struct *fs = current->fs;
2401 			unsigned seq;
2402 
2403 			do {
2404 				seq = read_seqcount_begin(&fs->seq);
2405 				nd->path = fs->pwd;
2406 				nd->inode = nd->path.dentry->d_inode;
2407 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2408 			} while (read_seqcount_retry(&fs->seq, seq));
2409 		} else {
2410 			get_fs_pwd(current->fs, &nd->path);
2411 			nd->inode = nd->path.dentry->d_inode;
2412 		}
2413 	} else {
2414 		/* Caller must check execute permissions on the starting path component */
2415 		struct fd f = fdget_raw(nd->dfd);
2416 		struct dentry *dentry;
2417 
2418 		if (!f.file)
2419 			return ERR_PTR(-EBADF);
2420 
2421 		dentry = f.file->f_path.dentry;
2422 
2423 		if (*s && unlikely(!d_can_lookup(dentry))) {
2424 			fdput(f);
2425 			return ERR_PTR(-ENOTDIR);
2426 		}
2427 
2428 		nd->path = f.file->f_path;
2429 		if (flags & LOOKUP_RCU) {
2430 			nd->inode = nd->path.dentry->d_inode;
2431 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2432 		} else {
2433 			path_get(&nd->path);
2434 			nd->inode = nd->path.dentry->d_inode;
2435 		}
2436 		fdput(f);
2437 	}
2438 
2439 	/* For scoped-lookups we need to set the root to the dirfd as well. */
2440 	if (flags & LOOKUP_IS_SCOPED) {
2441 		nd->root = nd->path;
2442 		if (flags & LOOKUP_RCU) {
2443 			nd->root_seq = nd->seq;
2444 		} else {
2445 			path_get(&nd->root);
2446 			nd->state |= ND_ROOT_GRABBED;
2447 		}
2448 	}
2449 	return s;
2450 }
2451 
2452 static inline const char *lookup_last(struct nameidata *nd)
2453 {
2454 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2455 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2456 
2457 	return walk_component(nd, WALK_TRAILING);
2458 }
2459 
2460 static int handle_lookup_down(struct nameidata *nd)
2461 {
2462 	if (!(nd->flags & LOOKUP_RCU))
2463 		dget(nd->path.dentry);
2464 	nd->next_seq = nd->seq;
2465 	return PTR_ERR(step_into(nd, WALK_NOFOLLOW, nd->path.dentry));
2466 }
2467 
2468 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */
2469 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2470 {
2471 	const char *s = path_init(nd, flags);
2472 	int err;
2473 
2474 	if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2475 		err = handle_lookup_down(nd);
2476 		if (unlikely(err < 0))
2477 			s = ERR_PTR(err);
2478 	}
2479 
2480 	while (!(err = link_path_walk(s, nd)) &&
2481 	       (s = lookup_last(nd)) != NULL)
2482 		;
2483 	if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2484 		err = handle_lookup_down(nd);
2485 		nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please...
2486 	}
2487 	if (!err)
2488 		err = complete_walk(nd);
2489 
2490 	if (!err && nd->flags & LOOKUP_DIRECTORY)
2491 		if (!d_can_lookup(nd->path.dentry))
2492 			err = -ENOTDIR;
2493 	if (!err) {
2494 		*path = nd->path;
2495 		nd->path.mnt = NULL;
2496 		nd->path.dentry = NULL;
2497 	}
2498 	terminate_walk(nd);
2499 	return err;
2500 }
2501 
2502 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2503 		    struct path *path, struct path *root)
2504 {
2505 	int retval;
2506 	struct nameidata nd;
2507 	if (IS_ERR(name))
2508 		return PTR_ERR(name);
2509 	set_nameidata(&nd, dfd, name, root);
2510 	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2511 	if (unlikely(retval == -ECHILD))
2512 		retval = path_lookupat(&nd, flags, path);
2513 	if (unlikely(retval == -ESTALE))
2514 		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2515 
2516 	if (likely(!retval))
2517 		audit_inode(name, path->dentry,
2518 			    flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2519 	restore_nameidata();
2520 	return retval;
2521 }
2522 
2523 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */
2524 static int path_parentat(struct nameidata *nd, unsigned flags,
2525 				struct path *parent)
2526 {
2527 	const char *s = path_init(nd, flags);
2528 	int err = link_path_walk(s, nd);
2529 	if (!err)
2530 		err = complete_walk(nd);
2531 	if (!err) {
2532 		*parent = nd->path;
2533 		nd->path.mnt = NULL;
2534 		nd->path.dentry = NULL;
2535 	}
2536 	terminate_walk(nd);
2537 	return err;
2538 }
2539 
2540 /* Note: this does not consume "name" */
2541 static int __filename_parentat(int dfd, struct filename *name,
2542 			       unsigned int flags, struct path *parent,
2543 			       struct qstr *last, int *type,
2544 			       const struct path *root)
2545 {
2546 	int retval;
2547 	struct nameidata nd;
2548 
2549 	if (IS_ERR(name))
2550 		return PTR_ERR(name);
2551 	set_nameidata(&nd, dfd, name, root);
2552 	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2553 	if (unlikely(retval == -ECHILD))
2554 		retval = path_parentat(&nd, flags, parent);
2555 	if (unlikely(retval == -ESTALE))
2556 		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2557 	if (likely(!retval)) {
2558 		*last = nd.last;
2559 		*type = nd.last_type;
2560 		audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2561 	}
2562 	restore_nameidata();
2563 	return retval;
2564 }
2565 
2566 static int filename_parentat(int dfd, struct filename *name,
2567 			     unsigned int flags, struct path *parent,
2568 			     struct qstr *last, int *type)
2569 {
2570 	return __filename_parentat(dfd, name, flags, parent, last, type, NULL);
2571 }
2572 
2573 /* does lookup, returns the object with parent locked */
2574 static struct dentry *__kern_path_locked(int dfd, struct filename *name, struct path *path)
2575 {
2576 	struct dentry *d;
2577 	struct qstr last;
2578 	int type, error;
2579 
2580 	error = filename_parentat(dfd, name, 0, path, &last, &type);
2581 	if (error)
2582 		return ERR_PTR(error);
2583 	if (unlikely(type != LAST_NORM)) {
2584 		path_put(path);
2585 		return ERR_PTR(-EINVAL);
2586 	}
2587 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2588 	d = lookup_one_qstr_excl(&last, path->dentry, 0);
2589 	if (IS_ERR(d)) {
2590 		inode_unlock(path->dentry->d_inode);
2591 		path_put(path);
2592 	}
2593 	return d;
2594 }
2595 
2596 struct dentry *kern_path_locked(const char *name, struct path *path)
2597 {
2598 	struct filename *filename = getname_kernel(name);
2599 	struct dentry *res = __kern_path_locked(AT_FDCWD, filename, path);
2600 
2601 	putname(filename);
2602 	return res;
2603 }
2604 
2605 struct dentry *user_path_locked_at(int dfd, const char __user *name, struct path *path)
2606 {
2607 	struct filename *filename = getname(name);
2608 	struct dentry *res = __kern_path_locked(dfd, filename, path);
2609 
2610 	putname(filename);
2611 	return res;
2612 }
2613 EXPORT_SYMBOL(user_path_locked_at);
2614 
2615 int kern_path(const char *name, unsigned int flags, struct path *path)
2616 {
2617 	struct filename *filename = getname_kernel(name);
2618 	int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL);
2619 
2620 	putname(filename);
2621 	return ret;
2622 
2623 }
2624 EXPORT_SYMBOL(kern_path);
2625 
2626 /**
2627  * vfs_path_parent_lookup - lookup a parent path relative to a dentry-vfsmount pair
2628  * @filename: filename structure
2629  * @flags: lookup flags
2630  * @parent: pointer to struct path to fill
2631  * @last: last component
2632  * @type: type of the last component
2633  * @root: pointer to struct path of the base directory
2634  */
2635 int vfs_path_parent_lookup(struct filename *filename, unsigned int flags,
2636 			   struct path *parent, struct qstr *last, int *type,
2637 			   const struct path *root)
2638 {
2639 	return  __filename_parentat(AT_FDCWD, filename, flags, parent, last,
2640 				    type, root);
2641 }
2642 EXPORT_SYMBOL(vfs_path_parent_lookup);
2643 
2644 /**
2645  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2646  * @dentry:  pointer to dentry of the base directory
2647  * @mnt: pointer to vfs mount of the base directory
2648  * @name: pointer to file name
2649  * @flags: lookup flags
2650  * @path: pointer to struct path to fill
2651  */
2652 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2653 		    const char *name, unsigned int flags,
2654 		    struct path *path)
2655 {
2656 	struct filename *filename;
2657 	struct path root = {.mnt = mnt, .dentry = dentry};
2658 	int ret;
2659 
2660 	filename = getname_kernel(name);
2661 	/* the first argument of filename_lookup() is ignored with root */
2662 	ret = filename_lookup(AT_FDCWD, filename, flags, path, &root);
2663 	putname(filename);
2664 	return ret;
2665 }
2666 EXPORT_SYMBOL(vfs_path_lookup);
2667 
2668 static int lookup_one_common(struct mnt_idmap *idmap,
2669 			     const char *name, struct dentry *base, int len,
2670 			     struct qstr *this)
2671 {
2672 	this->name = name;
2673 	this->len = len;
2674 	this->hash = full_name_hash(base, name, len);
2675 	if (!len)
2676 		return -EACCES;
2677 
2678 	if (unlikely(name[0] == '.')) {
2679 		if (len < 2 || (len == 2 && name[1] == '.'))
2680 			return -EACCES;
2681 	}
2682 
2683 	while (len--) {
2684 		unsigned int c = *(const unsigned char *)name++;
2685 		if (c == '/' || c == '\0')
2686 			return -EACCES;
2687 	}
2688 	/*
2689 	 * See if the low-level filesystem might want
2690 	 * to use its own hash..
2691 	 */
2692 	if (base->d_flags & DCACHE_OP_HASH) {
2693 		int err = base->d_op->d_hash(base, this);
2694 		if (err < 0)
2695 			return err;
2696 	}
2697 
2698 	return inode_permission(idmap, base->d_inode, MAY_EXEC);
2699 }
2700 
2701 /**
2702  * try_lookup_one_len - filesystem helper to lookup single pathname component
2703  * @name:	pathname component to lookup
2704  * @base:	base directory to lookup from
2705  * @len:	maximum length @len should be interpreted to
2706  *
2707  * Look up a dentry by name in the dcache, returning NULL if it does not
2708  * currently exist.  The function does not try to create a dentry.
2709  *
2710  * Note that this routine is purely a helper for filesystem usage and should
2711  * not be called by generic code.
2712  *
2713  * The caller must hold base->i_mutex.
2714  */
2715 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2716 {
2717 	struct qstr this;
2718 	int err;
2719 
2720 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2721 
2722 	err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this);
2723 	if (err)
2724 		return ERR_PTR(err);
2725 
2726 	return lookup_dcache(&this, base, 0);
2727 }
2728 EXPORT_SYMBOL(try_lookup_one_len);
2729 
2730 /**
2731  * lookup_one_len - filesystem helper to lookup single pathname component
2732  * @name:	pathname component to lookup
2733  * @base:	base directory to lookup from
2734  * @len:	maximum length @len should be interpreted to
2735  *
2736  * Note that this routine is purely a helper for filesystem usage and should
2737  * not be called by generic code.
2738  *
2739  * The caller must hold base->i_mutex.
2740  */
2741 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2742 {
2743 	struct dentry *dentry;
2744 	struct qstr this;
2745 	int err;
2746 
2747 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2748 
2749 	err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this);
2750 	if (err)
2751 		return ERR_PTR(err);
2752 
2753 	dentry = lookup_dcache(&this, base, 0);
2754 	return dentry ? dentry : __lookup_slow(&this, base, 0);
2755 }
2756 EXPORT_SYMBOL(lookup_one_len);
2757 
2758 /**
2759  * lookup_one - filesystem helper to lookup single pathname component
2760  * @idmap:	idmap of the mount the lookup is performed from
2761  * @name:	pathname component to lookup
2762  * @base:	base directory to lookup from
2763  * @len:	maximum length @len should be interpreted to
2764  *
2765  * Note that this routine is purely a helper for filesystem usage and should
2766  * not be called by generic code.
2767  *
2768  * The caller must hold base->i_mutex.
2769  */
2770 struct dentry *lookup_one(struct mnt_idmap *idmap, const char *name,
2771 			  struct dentry *base, int len)
2772 {
2773 	struct dentry *dentry;
2774 	struct qstr this;
2775 	int err;
2776 
2777 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2778 
2779 	err = lookup_one_common(idmap, name, base, len, &this);
2780 	if (err)
2781 		return ERR_PTR(err);
2782 
2783 	dentry = lookup_dcache(&this, base, 0);
2784 	return dentry ? dentry : __lookup_slow(&this, base, 0);
2785 }
2786 EXPORT_SYMBOL(lookup_one);
2787 
2788 /**
2789  * lookup_one_unlocked - filesystem helper to lookup single pathname component
2790  * @idmap:	idmap of the mount the lookup is performed from
2791  * @name:	pathname component to lookup
2792  * @base:	base directory to lookup from
2793  * @len:	maximum length @len should be interpreted to
2794  *
2795  * Note that this routine is purely a helper for filesystem usage and should
2796  * not be called by generic code.
2797  *
2798  * Unlike lookup_one_len, it should be called without the parent
2799  * i_mutex held, and will take the i_mutex itself if necessary.
2800  */
2801 struct dentry *lookup_one_unlocked(struct mnt_idmap *idmap,
2802 				   const char *name, struct dentry *base,
2803 				   int len)
2804 {
2805 	struct qstr this;
2806 	int err;
2807 	struct dentry *ret;
2808 
2809 	err = lookup_one_common(idmap, name, base, len, &this);
2810 	if (err)
2811 		return ERR_PTR(err);
2812 
2813 	ret = lookup_dcache(&this, base, 0);
2814 	if (!ret)
2815 		ret = lookup_slow(&this, base, 0);
2816 	return ret;
2817 }
2818 EXPORT_SYMBOL(lookup_one_unlocked);
2819 
2820 /**
2821  * lookup_one_positive_unlocked - filesystem helper to lookup single
2822  *				  pathname component
2823  * @idmap:	idmap of the mount the lookup is performed from
2824  * @name:	pathname component to lookup
2825  * @base:	base directory to lookup from
2826  * @len:	maximum length @len should be interpreted to
2827  *
2828  * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns
2829  * known positive or ERR_PTR(). This is what most of the users want.
2830  *
2831  * Note that pinned negative with unlocked parent _can_ become positive at any
2832  * time, so callers of lookup_one_unlocked() need to be very careful; pinned
2833  * positives have >d_inode stable, so this one avoids such problems.
2834  *
2835  * Note that this routine is purely a helper for filesystem usage and should
2836  * not be called by generic code.
2837  *
2838  * The helper should be called without i_mutex held.
2839  */
2840 struct dentry *lookup_one_positive_unlocked(struct mnt_idmap *idmap,
2841 					    const char *name,
2842 					    struct dentry *base, int len)
2843 {
2844 	struct dentry *ret = lookup_one_unlocked(idmap, name, base, len);
2845 
2846 	if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
2847 		dput(ret);
2848 		ret = ERR_PTR(-ENOENT);
2849 	}
2850 	return ret;
2851 }
2852 EXPORT_SYMBOL(lookup_one_positive_unlocked);
2853 
2854 /**
2855  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2856  * @name:	pathname component to lookup
2857  * @base:	base directory to lookup from
2858  * @len:	maximum length @len should be interpreted to
2859  *
2860  * Note that this routine is purely a helper for filesystem usage and should
2861  * not be called by generic code.
2862  *
2863  * Unlike lookup_one_len, it should be called without the parent
2864  * i_mutex held, and will take the i_mutex itself if necessary.
2865  */
2866 struct dentry *lookup_one_len_unlocked(const char *name,
2867 				       struct dentry *base, int len)
2868 {
2869 	return lookup_one_unlocked(&nop_mnt_idmap, name, base, len);
2870 }
2871 EXPORT_SYMBOL(lookup_one_len_unlocked);
2872 
2873 /*
2874  * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2875  * on negatives.  Returns known positive or ERR_PTR(); that's what
2876  * most of the users want.  Note that pinned negative with unlocked parent
2877  * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2878  * need to be very careful; pinned positives have ->d_inode stable, so
2879  * this one avoids such problems.
2880  */
2881 struct dentry *lookup_positive_unlocked(const char *name,
2882 				       struct dentry *base, int len)
2883 {
2884 	return lookup_one_positive_unlocked(&nop_mnt_idmap, name, base, len);
2885 }
2886 EXPORT_SYMBOL(lookup_positive_unlocked);
2887 
2888 #ifdef CONFIG_UNIX98_PTYS
2889 int path_pts(struct path *path)
2890 {
2891 	/* Find something mounted on "pts" in the same directory as
2892 	 * the input path.
2893 	 */
2894 	struct dentry *parent = dget_parent(path->dentry);
2895 	struct dentry *child;
2896 	struct qstr this = QSTR_INIT("pts", 3);
2897 
2898 	if (unlikely(!path_connected(path->mnt, parent))) {
2899 		dput(parent);
2900 		return -ENOENT;
2901 	}
2902 	dput(path->dentry);
2903 	path->dentry = parent;
2904 	child = d_hash_and_lookup(parent, &this);
2905 	if (IS_ERR_OR_NULL(child))
2906 		return -ENOENT;
2907 
2908 	path->dentry = child;
2909 	dput(parent);
2910 	follow_down(path, 0);
2911 	return 0;
2912 }
2913 #endif
2914 
2915 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2916 		 struct path *path, int *empty)
2917 {
2918 	struct filename *filename = getname_flags(name, flags, empty);
2919 	int ret = filename_lookup(dfd, filename, flags, path, NULL);
2920 
2921 	putname(filename);
2922 	return ret;
2923 }
2924 EXPORT_SYMBOL(user_path_at_empty);
2925 
2926 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir,
2927 		   struct inode *inode)
2928 {
2929 	kuid_t fsuid = current_fsuid();
2930 
2931 	if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), fsuid))
2932 		return 0;
2933 	if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, dir), fsuid))
2934 		return 0;
2935 	return !capable_wrt_inode_uidgid(idmap, inode, CAP_FOWNER);
2936 }
2937 EXPORT_SYMBOL(__check_sticky);
2938 
2939 /*
2940  *	Check whether we can remove a link victim from directory dir, check
2941  *  whether the type of victim is right.
2942  *  1. We can't do it if dir is read-only (done in permission())
2943  *  2. We should have write and exec permissions on dir
2944  *  3. We can't remove anything from append-only dir
2945  *  4. We can't do anything with immutable dir (done in permission())
2946  *  5. If the sticky bit on dir is set we should either
2947  *	a. be owner of dir, or
2948  *	b. be owner of victim, or
2949  *	c. have CAP_FOWNER capability
2950  *  6. If the victim is append-only or immutable we can't do antyhing with
2951  *     links pointing to it.
2952  *  7. If the victim has an unknown uid or gid we can't change the inode.
2953  *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2954  *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2955  * 10. We can't remove a root or mountpoint.
2956  * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2957  *     nfs_async_unlink().
2958  */
2959 static int may_delete(struct mnt_idmap *idmap, struct inode *dir,
2960 		      struct dentry *victim, bool isdir)
2961 {
2962 	struct inode *inode = d_backing_inode(victim);
2963 	int error;
2964 
2965 	if (d_is_negative(victim))
2966 		return -ENOENT;
2967 	BUG_ON(!inode);
2968 
2969 	BUG_ON(victim->d_parent->d_inode != dir);
2970 
2971 	/* Inode writeback is not safe when the uid or gid are invalid. */
2972 	if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
2973 	    !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
2974 		return -EOVERFLOW;
2975 
2976 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2977 
2978 	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
2979 	if (error)
2980 		return error;
2981 	if (IS_APPEND(dir))
2982 		return -EPERM;
2983 
2984 	if (check_sticky(idmap, dir, inode) || IS_APPEND(inode) ||
2985 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) ||
2986 	    HAS_UNMAPPED_ID(idmap, inode))
2987 		return -EPERM;
2988 	if (isdir) {
2989 		if (!d_is_dir(victim))
2990 			return -ENOTDIR;
2991 		if (IS_ROOT(victim))
2992 			return -EBUSY;
2993 	} else if (d_is_dir(victim))
2994 		return -EISDIR;
2995 	if (IS_DEADDIR(dir))
2996 		return -ENOENT;
2997 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2998 		return -EBUSY;
2999 	return 0;
3000 }
3001 
3002 /*	Check whether we can create an object with dentry child in directory
3003  *  dir.
3004  *  1. We can't do it if child already exists (open has special treatment for
3005  *     this case, but since we are inlined it's OK)
3006  *  2. We can't do it if dir is read-only (done in permission())
3007  *  3. We can't do it if the fs can't represent the fsuid or fsgid.
3008  *  4. We should have write and exec permissions on dir
3009  *  5. We can't do it if dir is immutable (done in permission())
3010  */
3011 static inline int may_create(struct mnt_idmap *idmap,
3012 			     struct inode *dir, struct dentry *child)
3013 {
3014 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
3015 	if (child->d_inode)
3016 		return -EEXIST;
3017 	if (IS_DEADDIR(dir))
3018 		return -ENOENT;
3019 	if (!fsuidgid_has_mapping(dir->i_sb, idmap))
3020 		return -EOVERFLOW;
3021 
3022 	return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3023 }
3024 
3025 // p1 != p2, both are on the same filesystem, ->s_vfs_rename_mutex is held
3026 static struct dentry *lock_two_directories(struct dentry *p1, struct dentry *p2)
3027 {
3028 	struct dentry *p = p1, *q = p2, *r;
3029 
3030 	while ((r = p->d_parent) != p2 && r != p)
3031 		p = r;
3032 	if (r == p2) {
3033 		// p is a child of p2 and an ancestor of p1 or p1 itself
3034 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3035 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT2);
3036 		return p;
3037 	}
3038 	// p is the root of connected component that contains p1
3039 	// p2 does not occur on the path from p to p1
3040 	while ((r = q->d_parent) != p1 && r != p && r != q)
3041 		q = r;
3042 	if (r == p1) {
3043 		// q is a child of p1 and an ancestor of p2 or p2 itself
3044 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3045 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3046 		return q;
3047 	} else if (likely(r == p)) {
3048 		// both p2 and p1 are descendents of p
3049 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3050 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3051 		return NULL;
3052 	} else { // no common ancestor at the time we'd been called
3053 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3054 		return ERR_PTR(-EXDEV);
3055 	}
3056 }
3057 
3058 /*
3059  * p1 and p2 should be directories on the same fs.
3060  */
3061 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
3062 {
3063 	if (p1 == p2) {
3064 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3065 		return NULL;
3066 	}
3067 
3068 	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
3069 	return lock_two_directories(p1, p2);
3070 }
3071 EXPORT_SYMBOL(lock_rename);
3072 
3073 /*
3074  * c1 and p2 should be on the same fs.
3075  */
3076 struct dentry *lock_rename_child(struct dentry *c1, struct dentry *p2)
3077 {
3078 	if (READ_ONCE(c1->d_parent) == p2) {
3079 		/*
3080 		 * hopefully won't need to touch ->s_vfs_rename_mutex at all.
3081 		 */
3082 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3083 		/*
3084 		 * now that p2 is locked, nobody can move in or out of it,
3085 		 * so the test below is safe.
3086 		 */
3087 		if (likely(c1->d_parent == p2))
3088 			return NULL;
3089 
3090 		/*
3091 		 * c1 got moved out of p2 while we'd been taking locks;
3092 		 * unlock and fall back to slow case.
3093 		 */
3094 		inode_unlock(p2->d_inode);
3095 	}
3096 
3097 	mutex_lock(&c1->d_sb->s_vfs_rename_mutex);
3098 	/*
3099 	 * nobody can move out of any directories on this fs.
3100 	 */
3101 	if (likely(c1->d_parent != p2))
3102 		return lock_two_directories(c1->d_parent, p2);
3103 
3104 	/*
3105 	 * c1 got moved into p2 while we were taking locks;
3106 	 * we need p2 locked and ->s_vfs_rename_mutex unlocked,
3107 	 * for consistency with lock_rename().
3108 	 */
3109 	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3110 	mutex_unlock(&c1->d_sb->s_vfs_rename_mutex);
3111 	return NULL;
3112 }
3113 EXPORT_SYMBOL(lock_rename_child);
3114 
3115 void unlock_rename(struct dentry *p1, struct dentry *p2)
3116 {
3117 	inode_unlock(p1->d_inode);
3118 	if (p1 != p2) {
3119 		inode_unlock(p2->d_inode);
3120 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3121 	}
3122 }
3123 EXPORT_SYMBOL(unlock_rename);
3124 
3125 /**
3126  * vfs_prepare_mode - prepare the mode to be used for a new inode
3127  * @idmap:	idmap of the mount the inode was found from
3128  * @dir:	parent directory of the new inode
3129  * @mode:	mode of the new inode
3130  * @mask_perms:	allowed permission by the vfs
3131  * @type:	type of file to be created
3132  *
3133  * This helper consolidates and enforces vfs restrictions on the @mode of a new
3134  * object to be created.
3135  *
3136  * Umask stripping depends on whether the filesystem supports POSIX ACLs (see
3137  * the kernel documentation for mode_strip_umask()). Moving umask stripping
3138  * after setgid stripping allows the same ordering for both non-POSIX ACL and
3139  * POSIX ACL supporting filesystems.
3140  *
3141  * Note that it's currently valid for @type to be 0 if a directory is created.
3142  * Filesystems raise that flag individually and we need to check whether each
3143  * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a
3144  * non-zero type.
3145  *
3146  * Returns: mode to be passed to the filesystem
3147  */
3148 static inline umode_t vfs_prepare_mode(struct mnt_idmap *idmap,
3149 				       const struct inode *dir, umode_t mode,
3150 				       umode_t mask_perms, umode_t type)
3151 {
3152 	mode = mode_strip_sgid(idmap, dir, mode);
3153 	mode = mode_strip_umask(dir, mode);
3154 
3155 	/*
3156 	 * Apply the vfs mandated allowed permission mask and set the type of
3157 	 * file to be created before we call into the filesystem.
3158 	 */
3159 	mode &= (mask_perms & ~S_IFMT);
3160 	mode |= (type & S_IFMT);
3161 
3162 	return mode;
3163 }
3164 
3165 /**
3166  * vfs_create - create new file
3167  * @idmap:	idmap of the mount the inode was found from
3168  * @dir:	inode of @dentry
3169  * @dentry:	pointer to dentry of the base directory
3170  * @mode:	mode of the new file
3171  * @want_excl:	whether the file must not yet exist
3172  *
3173  * Create a new file.
3174  *
3175  * If the inode has been found through an idmapped mount the idmap of
3176  * the vfsmount must be passed through @idmap. This function will then take
3177  * care to map the inode according to @idmap before checking permissions.
3178  * On non-idmapped mounts or if permission checking is to be performed on the
3179  * raw inode simply pass @nop_mnt_idmap.
3180  */
3181 int vfs_create(struct mnt_idmap *idmap, struct inode *dir,
3182 	       struct dentry *dentry, umode_t mode, bool want_excl)
3183 {
3184 	int error;
3185 
3186 	error = may_create(idmap, dir, dentry);
3187 	if (error)
3188 		return error;
3189 
3190 	if (!dir->i_op->create)
3191 		return -EACCES;	/* shouldn't it be ENOSYS? */
3192 
3193 	mode = vfs_prepare_mode(idmap, dir, mode, S_IALLUGO, S_IFREG);
3194 	error = security_inode_create(dir, dentry, mode);
3195 	if (error)
3196 		return error;
3197 	error = dir->i_op->create(idmap, dir, dentry, mode, want_excl);
3198 	if (!error)
3199 		fsnotify_create(dir, dentry);
3200 	return error;
3201 }
3202 EXPORT_SYMBOL(vfs_create);
3203 
3204 int vfs_mkobj(struct dentry *dentry, umode_t mode,
3205 		int (*f)(struct dentry *, umode_t, void *),
3206 		void *arg)
3207 {
3208 	struct inode *dir = dentry->d_parent->d_inode;
3209 	int error = may_create(&nop_mnt_idmap, dir, dentry);
3210 	if (error)
3211 		return error;
3212 
3213 	mode &= S_IALLUGO;
3214 	mode |= S_IFREG;
3215 	error = security_inode_create(dir, dentry, mode);
3216 	if (error)
3217 		return error;
3218 	error = f(dentry, mode, arg);
3219 	if (!error)
3220 		fsnotify_create(dir, dentry);
3221 	return error;
3222 }
3223 EXPORT_SYMBOL(vfs_mkobj);
3224 
3225 bool may_open_dev(const struct path *path)
3226 {
3227 	return !(path->mnt->mnt_flags & MNT_NODEV) &&
3228 		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
3229 }
3230 
3231 static int may_open(struct mnt_idmap *idmap, const struct path *path,
3232 		    int acc_mode, int flag)
3233 {
3234 	struct dentry *dentry = path->dentry;
3235 	struct inode *inode = dentry->d_inode;
3236 	int error;
3237 
3238 	if (!inode)
3239 		return -ENOENT;
3240 
3241 	switch (inode->i_mode & S_IFMT) {
3242 	case S_IFLNK:
3243 		return -ELOOP;
3244 	case S_IFDIR:
3245 		if (acc_mode & MAY_WRITE)
3246 			return -EISDIR;
3247 		if (acc_mode & MAY_EXEC)
3248 			return -EACCES;
3249 		break;
3250 	case S_IFBLK:
3251 	case S_IFCHR:
3252 		if (!may_open_dev(path))
3253 			return -EACCES;
3254 		fallthrough;
3255 	case S_IFIFO:
3256 	case S_IFSOCK:
3257 		if (acc_mode & MAY_EXEC)
3258 			return -EACCES;
3259 		flag &= ~O_TRUNC;
3260 		break;
3261 	case S_IFREG:
3262 		if ((acc_mode & MAY_EXEC) && path_noexec(path))
3263 			return -EACCES;
3264 		break;
3265 	}
3266 
3267 	error = inode_permission(idmap, inode, MAY_OPEN | acc_mode);
3268 	if (error)
3269 		return error;
3270 
3271 	/*
3272 	 * An append-only file must be opened in append mode for writing.
3273 	 */
3274 	if (IS_APPEND(inode)) {
3275 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
3276 			return -EPERM;
3277 		if (flag & O_TRUNC)
3278 			return -EPERM;
3279 	}
3280 
3281 	/* O_NOATIME can only be set by the owner or superuser */
3282 	if (flag & O_NOATIME && !inode_owner_or_capable(idmap, inode))
3283 		return -EPERM;
3284 
3285 	return 0;
3286 }
3287 
3288 static int handle_truncate(struct mnt_idmap *idmap, struct file *filp)
3289 {
3290 	const struct path *path = &filp->f_path;
3291 	struct inode *inode = path->dentry->d_inode;
3292 	int error = get_write_access(inode);
3293 	if (error)
3294 		return error;
3295 
3296 	error = security_file_truncate(filp);
3297 	if (!error) {
3298 		error = do_truncate(idmap, path->dentry, 0,
3299 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3300 				    filp);
3301 	}
3302 	put_write_access(inode);
3303 	return error;
3304 }
3305 
3306 static inline int open_to_namei_flags(int flag)
3307 {
3308 	if ((flag & O_ACCMODE) == 3)
3309 		flag--;
3310 	return flag;
3311 }
3312 
3313 static int may_o_create(struct mnt_idmap *idmap,
3314 			const struct path *dir, struct dentry *dentry,
3315 			umode_t mode)
3316 {
3317 	int error = security_path_mknod(dir, dentry, mode, 0);
3318 	if (error)
3319 		return error;
3320 
3321 	if (!fsuidgid_has_mapping(dir->dentry->d_sb, idmap))
3322 		return -EOVERFLOW;
3323 
3324 	error = inode_permission(idmap, dir->dentry->d_inode,
3325 				 MAY_WRITE | MAY_EXEC);
3326 	if (error)
3327 		return error;
3328 
3329 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
3330 }
3331 
3332 /*
3333  * Attempt to atomically look up, create and open a file from a negative
3334  * dentry.
3335  *
3336  * Returns 0 if successful.  The file will have been created and attached to
3337  * @file by the filesystem calling finish_open().
3338  *
3339  * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3340  * be set.  The caller will need to perform the open themselves.  @path will
3341  * have been updated to point to the new dentry.  This may be negative.
3342  *
3343  * Returns an error code otherwise.
3344  */
3345 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
3346 				  struct file *file,
3347 				  int open_flag, umode_t mode)
3348 {
3349 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3350 	struct inode *dir =  nd->path.dentry->d_inode;
3351 	int error;
3352 
3353 	if (nd->flags & LOOKUP_DIRECTORY)
3354 		open_flag |= O_DIRECTORY;
3355 
3356 	file->f_path.dentry = DENTRY_NOT_SET;
3357 	file->f_path.mnt = nd->path.mnt;
3358 	error = dir->i_op->atomic_open(dir, dentry, file,
3359 				       open_to_namei_flags(open_flag), mode);
3360 	d_lookup_done(dentry);
3361 	if (!error) {
3362 		if (file->f_mode & FMODE_OPENED) {
3363 			if (unlikely(dentry != file->f_path.dentry)) {
3364 				dput(dentry);
3365 				dentry = dget(file->f_path.dentry);
3366 			}
3367 		} else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3368 			error = -EIO;
3369 		} else {
3370 			if (file->f_path.dentry) {
3371 				dput(dentry);
3372 				dentry = file->f_path.dentry;
3373 			}
3374 			if (unlikely(d_is_negative(dentry)))
3375 				error = -ENOENT;
3376 		}
3377 	}
3378 	if (error) {
3379 		dput(dentry);
3380 		dentry = ERR_PTR(error);
3381 	}
3382 	return dentry;
3383 }
3384 
3385 /*
3386  * Look up and maybe create and open the last component.
3387  *
3388  * Must be called with parent locked (exclusive in O_CREAT case).
3389  *
3390  * Returns 0 on success, that is, if
3391  *  the file was successfully atomically created (if necessary) and opened, or
3392  *  the file was not completely opened at this time, though lookups and
3393  *  creations were performed.
3394  * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3395  * In the latter case dentry returned in @path might be negative if O_CREAT
3396  * hadn't been specified.
3397  *
3398  * An error code is returned on failure.
3399  */
3400 static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3401 				  const struct open_flags *op,
3402 				  bool got_write)
3403 {
3404 	struct mnt_idmap *idmap;
3405 	struct dentry *dir = nd->path.dentry;
3406 	struct inode *dir_inode = dir->d_inode;
3407 	int open_flag = op->open_flag;
3408 	struct dentry *dentry;
3409 	int error, create_error = 0;
3410 	umode_t mode = op->mode;
3411 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3412 
3413 	if (unlikely(IS_DEADDIR(dir_inode)))
3414 		return ERR_PTR(-ENOENT);
3415 
3416 	file->f_mode &= ~FMODE_CREATED;
3417 	dentry = d_lookup(dir, &nd->last);
3418 	for (;;) {
3419 		if (!dentry) {
3420 			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3421 			if (IS_ERR(dentry))
3422 				return dentry;
3423 		}
3424 		if (d_in_lookup(dentry))
3425 			break;
3426 
3427 		error = d_revalidate(dentry, nd->flags);
3428 		if (likely(error > 0))
3429 			break;
3430 		if (error)
3431 			goto out_dput;
3432 		d_invalidate(dentry);
3433 		dput(dentry);
3434 		dentry = NULL;
3435 	}
3436 	if (dentry->d_inode) {
3437 		/* Cached positive dentry: will open in f_op->open */
3438 		return dentry;
3439 	}
3440 
3441 	/*
3442 	 * Checking write permission is tricky, bacuse we don't know if we are
3443 	 * going to actually need it: O_CREAT opens should work as long as the
3444 	 * file exists.  But checking existence breaks atomicity.  The trick is
3445 	 * to check access and if not granted clear O_CREAT from the flags.
3446 	 *
3447 	 * Another problem is returing the "right" error value (e.g. for an
3448 	 * O_EXCL open we want to return EEXIST not EROFS).
3449 	 */
3450 	if (unlikely(!got_write))
3451 		open_flag &= ~O_TRUNC;
3452 	idmap = mnt_idmap(nd->path.mnt);
3453 	if (open_flag & O_CREAT) {
3454 		if (open_flag & O_EXCL)
3455 			open_flag &= ~O_TRUNC;
3456 		mode = vfs_prepare_mode(idmap, dir->d_inode, mode, mode, mode);
3457 		if (likely(got_write))
3458 			create_error = may_o_create(idmap, &nd->path,
3459 						    dentry, mode);
3460 		else
3461 			create_error = -EROFS;
3462 	}
3463 	if (create_error)
3464 		open_flag &= ~O_CREAT;
3465 	if (dir_inode->i_op->atomic_open) {
3466 		dentry = atomic_open(nd, dentry, file, open_flag, mode);
3467 		if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3468 			dentry = ERR_PTR(create_error);
3469 		return dentry;
3470 	}
3471 
3472 	if (d_in_lookup(dentry)) {
3473 		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3474 							     nd->flags);
3475 		d_lookup_done(dentry);
3476 		if (unlikely(res)) {
3477 			if (IS_ERR(res)) {
3478 				error = PTR_ERR(res);
3479 				goto out_dput;
3480 			}
3481 			dput(dentry);
3482 			dentry = res;
3483 		}
3484 	}
3485 
3486 	/* Negative dentry, just create the file */
3487 	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3488 		file->f_mode |= FMODE_CREATED;
3489 		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3490 		if (!dir_inode->i_op->create) {
3491 			error = -EACCES;
3492 			goto out_dput;
3493 		}
3494 
3495 		error = dir_inode->i_op->create(idmap, dir_inode, dentry,
3496 						mode, open_flag & O_EXCL);
3497 		if (error)
3498 			goto out_dput;
3499 	}
3500 	if (unlikely(create_error) && !dentry->d_inode) {
3501 		error = create_error;
3502 		goto out_dput;
3503 	}
3504 	return dentry;
3505 
3506 out_dput:
3507 	dput(dentry);
3508 	return ERR_PTR(error);
3509 }
3510 
3511 static const char *open_last_lookups(struct nameidata *nd,
3512 		   struct file *file, const struct open_flags *op)
3513 {
3514 	struct dentry *dir = nd->path.dentry;
3515 	int open_flag = op->open_flag;
3516 	bool got_write = false;
3517 	struct dentry *dentry;
3518 	const char *res;
3519 
3520 	nd->flags |= op->intent;
3521 
3522 	if (nd->last_type != LAST_NORM) {
3523 		if (nd->depth)
3524 			put_link(nd);
3525 		return handle_dots(nd, nd->last_type);
3526 	}
3527 
3528 	if (!(open_flag & O_CREAT)) {
3529 		if (nd->last.name[nd->last.len])
3530 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3531 		/* we _can_ be in RCU mode here */
3532 		dentry = lookup_fast(nd);
3533 		if (IS_ERR(dentry))
3534 			return ERR_CAST(dentry);
3535 		if (likely(dentry))
3536 			goto finish_lookup;
3537 
3538 		if (WARN_ON_ONCE(nd->flags & LOOKUP_RCU))
3539 			return ERR_PTR(-ECHILD);
3540 	} else {
3541 		/* create side of things */
3542 		if (nd->flags & LOOKUP_RCU) {
3543 			if (!try_to_unlazy(nd))
3544 				return ERR_PTR(-ECHILD);
3545 		}
3546 		audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3547 		/* trailing slashes? */
3548 		if (unlikely(nd->last.name[nd->last.len]))
3549 			return ERR_PTR(-EISDIR);
3550 	}
3551 
3552 	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3553 		got_write = !mnt_want_write(nd->path.mnt);
3554 		/*
3555 		 * do _not_ fail yet - we might not need that or fail with
3556 		 * a different error; let lookup_open() decide; we'll be
3557 		 * dropping this one anyway.
3558 		 */
3559 	}
3560 	if (open_flag & O_CREAT)
3561 		inode_lock(dir->d_inode);
3562 	else
3563 		inode_lock_shared(dir->d_inode);
3564 	dentry = lookup_open(nd, file, op, got_write);
3565 	if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED))
3566 		fsnotify_create(dir->d_inode, dentry);
3567 	if (open_flag & O_CREAT)
3568 		inode_unlock(dir->d_inode);
3569 	else
3570 		inode_unlock_shared(dir->d_inode);
3571 
3572 	if (got_write)
3573 		mnt_drop_write(nd->path.mnt);
3574 
3575 	if (IS_ERR(dentry))
3576 		return ERR_CAST(dentry);
3577 
3578 	if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3579 		dput(nd->path.dentry);
3580 		nd->path.dentry = dentry;
3581 		return NULL;
3582 	}
3583 
3584 finish_lookup:
3585 	if (nd->depth)
3586 		put_link(nd);
3587 	res = step_into(nd, WALK_TRAILING, dentry);
3588 	if (unlikely(res))
3589 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3590 	return res;
3591 }
3592 
3593 /*
3594  * Handle the last step of open()
3595  */
3596 static int do_open(struct nameidata *nd,
3597 		   struct file *file, const struct open_flags *op)
3598 {
3599 	struct mnt_idmap *idmap;
3600 	int open_flag = op->open_flag;
3601 	bool do_truncate;
3602 	int acc_mode;
3603 	int error;
3604 
3605 	if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3606 		error = complete_walk(nd);
3607 		if (error)
3608 			return error;
3609 	}
3610 	if (!(file->f_mode & FMODE_CREATED))
3611 		audit_inode(nd->name, nd->path.dentry, 0);
3612 	idmap = mnt_idmap(nd->path.mnt);
3613 	if (open_flag & O_CREAT) {
3614 		if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3615 			return -EEXIST;
3616 		if (d_is_dir(nd->path.dentry))
3617 			return -EISDIR;
3618 		error = may_create_in_sticky(idmap, nd,
3619 					     d_backing_inode(nd->path.dentry));
3620 		if (unlikely(error))
3621 			return error;
3622 	}
3623 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3624 		return -ENOTDIR;
3625 
3626 	do_truncate = false;
3627 	acc_mode = op->acc_mode;
3628 	if (file->f_mode & FMODE_CREATED) {
3629 		/* Don't check for write permission, don't truncate */
3630 		open_flag &= ~O_TRUNC;
3631 		acc_mode = 0;
3632 	} else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3633 		error = mnt_want_write(nd->path.mnt);
3634 		if (error)
3635 			return error;
3636 		do_truncate = true;
3637 	}
3638 	error = may_open(idmap, &nd->path, acc_mode, open_flag);
3639 	if (!error && !(file->f_mode & FMODE_OPENED))
3640 		error = vfs_open(&nd->path, file);
3641 	if (!error)
3642 		error = security_file_post_open(file, op->acc_mode);
3643 	if (!error && do_truncate)
3644 		error = handle_truncate(idmap, file);
3645 	if (unlikely(error > 0)) {
3646 		WARN_ON(1);
3647 		error = -EINVAL;
3648 	}
3649 	if (do_truncate)
3650 		mnt_drop_write(nd->path.mnt);
3651 	return error;
3652 }
3653 
3654 /**
3655  * vfs_tmpfile - create tmpfile
3656  * @idmap:	idmap of the mount the inode was found from
3657  * @parentpath:	pointer to the path of the base directory
3658  * @file:	file descriptor of the new tmpfile
3659  * @mode:	mode of the new tmpfile
3660  *
3661  * Create a temporary file.
3662  *
3663  * If the inode has been found through an idmapped mount the idmap of
3664  * the vfsmount must be passed through @idmap. This function will then take
3665  * care to map the inode according to @idmap before checking permissions.
3666  * On non-idmapped mounts or if permission checking is to be performed on the
3667  * raw inode simply pass @nop_mnt_idmap.
3668  */
3669 static int vfs_tmpfile(struct mnt_idmap *idmap,
3670 		       const struct path *parentpath,
3671 		       struct file *file, umode_t mode)
3672 {
3673 	struct dentry *child;
3674 	struct inode *dir = d_inode(parentpath->dentry);
3675 	struct inode *inode;
3676 	int error;
3677 	int open_flag = file->f_flags;
3678 
3679 	/* we want directory to be writable */
3680 	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3681 	if (error)
3682 		return error;
3683 	if (!dir->i_op->tmpfile)
3684 		return -EOPNOTSUPP;
3685 	child = d_alloc(parentpath->dentry, &slash_name);
3686 	if (unlikely(!child))
3687 		return -ENOMEM;
3688 	file->f_path.mnt = parentpath->mnt;
3689 	file->f_path.dentry = child;
3690 	mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
3691 	error = dir->i_op->tmpfile(idmap, dir, file, mode);
3692 	dput(child);
3693 	if (error)
3694 		return error;
3695 	/* Don't check for other permissions, the inode was just created */
3696 	error = may_open(idmap, &file->f_path, 0, file->f_flags);
3697 	if (error)
3698 		return error;
3699 	inode = file_inode(file);
3700 	if (!(open_flag & O_EXCL)) {
3701 		spin_lock(&inode->i_lock);
3702 		inode->i_state |= I_LINKABLE;
3703 		spin_unlock(&inode->i_lock);
3704 	}
3705 	security_inode_post_create_tmpfile(idmap, inode);
3706 	return 0;
3707 }
3708 
3709 /**
3710  * kernel_tmpfile_open - open a tmpfile for kernel internal use
3711  * @idmap:	idmap of the mount the inode was found from
3712  * @parentpath:	path of the base directory
3713  * @mode:	mode of the new tmpfile
3714  * @open_flag:	flags
3715  * @cred:	credentials for open
3716  *
3717  * Create and open a temporary file.  The file is not accounted in nr_files,
3718  * hence this is only for kernel internal use, and must not be installed into
3719  * file tables or such.
3720  */
3721 struct file *kernel_tmpfile_open(struct mnt_idmap *idmap,
3722 				 const struct path *parentpath,
3723 				 umode_t mode, int open_flag,
3724 				 const struct cred *cred)
3725 {
3726 	struct file *file;
3727 	int error;
3728 
3729 	file = alloc_empty_file_noaccount(open_flag, cred);
3730 	if (IS_ERR(file))
3731 		return file;
3732 
3733 	error = vfs_tmpfile(idmap, parentpath, file, mode);
3734 	if (error) {
3735 		fput(file);
3736 		file = ERR_PTR(error);
3737 	}
3738 	return file;
3739 }
3740 EXPORT_SYMBOL(kernel_tmpfile_open);
3741 
3742 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3743 		const struct open_flags *op,
3744 		struct file *file)
3745 {
3746 	struct path path;
3747 	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3748 
3749 	if (unlikely(error))
3750 		return error;
3751 	error = mnt_want_write(path.mnt);
3752 	if (unlikely(error))
3753 		goto out;
3754 	error = vfs_tmpfile(mnt_idmap(path.mnt), &path, file, op->mode);
3755 	if (error)
3756 		goto out2;
3757 	audit_inode(nd->name, file->f_path.dentry, 0);
3758 out2:
3759 	mnt_drop_write(path.mnt);
3760 out:
3761 	path_put(&path);
3762 	return error;
3763 }
3764 
3765 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3766 {
3767 	struct path path;
3768 	int error = path_lookupat(nd, flags, &path);
3769 	if (!error) {
3770 		audit_inode(nd->name, path.dentry, 0);
3771 		error = vfs_open(&path, file);
3772 		path_put(&path);
3773 	}
3774 	return error;
3775 }
3776 
3777 static struct file *path_openat(struct nameidata *nd,
3778 			const struct open_flags *op, unsigned flags)
3779 {
3780 	struct file *file;
3781 	int error;
3782 
3783 	file = alloc_empty_file(op->open_flag, current_cred());
3784 	if (IS_ERR(file))
3785 		return file;
3786 
3787 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3788 		error = do_tmpfile(nd, flags, op, file);
3789 	} else if (unlikely(file->f_flags & O_PATH)) {
3790 		error = do_o_path(nd, flags, file);
3791 	} else {
3792 		const char *s = path_init(nd, flags);
3793 		while (!(error = link_path_walk(s, nd)) &&
3794 		       (s = open_last_lookups(nd, file, op)) != NULL)
3795 			;
3796 		if (!error)
3797 			error = do_open(nd, file, op);
3798 		terminate_walk(nd);
3799 	}
3800 	if (likely(!error)) {
3801 		if (likely(file->f_mode & FMODE_OPENED))
3802 			return file;
3803 		WARN_ON(1);
3804 		error = -EINVAL;
3805 	}
3806 	fput(file);
3807 	if (error == -EOPENSTALE) {
3808 		if (flags & LOOKUP_RCU)
3809 			error = -ECHILD;
3810 		else
3811 			error = -ESTALE;
3812 	}
3813 	return ERR_PTR(error);
3814 }
3815 
3816 struct file *do_filp_open(int dfd, struct filename *pathname,
3817 		const struct open_flags *op)
3818 {
3819 	struct nameidata nd;
3820 	int flags = op->lookup_flags;
3821 	struct file *filp;
3822 
3823 	set_nameidata(&nd, dfd, pathname, NULL);
3824 	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3825 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3826 		filp = path_openat(&nd, op, flags);
3827 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3828 		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3829 	restore_nameidata();
3830 	return filp;
3831 }
3832 
3833 struct file *do_file_open_root(const struct path *root,
3834 		const char *name, const struct open_flags *op)
3835 {
3836 	struct nameidata nd;
3837 	struct file *file;
3838 	struct filename *filename;
3839 	int flags = op->lookup_flags;
3840 
3841 	if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN)
3842 		return ERR_PTR(-ELOOP);
3843 
3844 	filename = getname_kernel(name);
3845 	if (IS_ERR(filename))
3846 		return ERR_CAST(filename);
3847 
3848 	set_nameidata(&nd, -1, filename, root);
3849 	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3850 	if (unlikely(file == ERR_PTR(-ECHILD)))
3851 		file = path_openat(&nd, op, flags);
3852 	if (unlikely(file == ERR_PTR(-ESTALE)))
3853 		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3854 	restore_nameidata();
3855 	putname(filename);
3856 	return file;
3857 }
3858 
3859 static struct dentry *filename_create(int dfd, struct filename *name,
3860 				      struct path *path, unsigned int lookup_flags)
3861 {
3862 	struct dentry *dentry = ERR_PTR(-EEXIST);
3863 	struct qstr last;
3864 	bool want_dir = lookup_flags & LOOKUP_DIRECTORY;
3865 	unsigned int reval_flag = lookup_flags & LOOKUP_REVAL;
3866 	unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL;
3867 	int type;
3868 	int err2;
3869 	int error;
3870 
3871 	error = filename_parentat(dfd, name, reval_flag, path, &last, &type);
3872 	if (error)
3873 		return ERR_PTR(error);
3874 
3875 	/*
3876 	 * Yucky last component or no last component at all?
3877 	 * (foo/., foo/.., /////)
3878 	 */
3879 	if (unlikely(type != LAST_NORM))
3880 		goto out;
3881 
3882 	/* don't fail immediately if it's r/o, at least try to report other errors */
3883 	err2 = mnt_want_write(path->mnt);
3884 	/*
3885 	 * Do the final lookup.  Suppress 'create' if there is a trailing
3886 	 * '/', and a directory wasn't requested.
3887 	 */
3888 	if (last.name[last.len] && !want_dir)
3889 		create_flags = 0;
3890 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3891 	dentry = lookup_one_qstr_excl(&last, path->dentry,
3892 				      reval_flag | create_flags);
3893 	if (IS_ERR(dentry))
3894 		goto unlock;
3895 
3896 	error = -EEXIST;
3897 	if (d_is_positive(dentry))
3898 		goto fail;
3899 
3900 	/*
3901 	 * Special case - lookup gave negative, but... we had foo/bar/
3902 	 * From the vfs_mknod() POV we just have a negative dentry -
3903 	 * all is fine. Let's be bastards - you had / on the end, you've
3904 	 * been asking for (non-existent) directory. -ENOENT for you.
3905 	 */
3906 	if (unlikely(!create_flags)) {
3907 		error = -ENOENT;
3908 		goto fail;
3909 	}
3910 	if (unlikely(err2)) {
3911 		error = err2;
3912 		goto fail;
3913 	}
3914 	return dentry;
3915 fail:
3916 	dput(dentry);
3917 	dentry = ERR_PTR(error);
3918 unlock:
3919 	inode_unlock(path->dentry->d_inode);
3920 	if (!err2)
3921 		mnt_drop_write(path->mnt);
3922 out:
3923 	path_put(path);
3924 	return dentry;
3925 }
3926 
3927 struct dentry *kern_path_create(int dfd, const char *pathname,
3928 				struct path *path, unsigned int lookup_flags)
3929 {
3930 	struct filename *filename = getname_kernel(pathname);
3931 	struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
3932 
3933 	putname(filename);
3934 	return res;
3935 }
3936 EXPORT_SYMBOL(kern_path_create);
3937 
3938 void done_path_create(struct path *path, struct dentry *dentry)
3939 {
3940 	dput(dentry);
3941 	inode_unlock(path->dentry->d_inode);
3942 	mnt_drop_write(path->mnt);
3943 	path_put(path);
3944 }
3945 EXPORT_SYMBOL(done_path_create);
3946 
3947 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3948 				struct path *path, unsigned int lookup_flags)
3949 {
3950 	struct filename *filename = getname(pathname);
3951 	struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
3952 
3953 	putname(filename);
3954 	return res;
3955 }
3956 EXPORT_SYMBOL(user_path_create);
3957 
3958 /**
3959  * vfs_mknod - create device node or file
3960  * @idmap:	idmap of the mount the inode was found from
3961  * @dir:	inode of @dentry
3962  * @dentry:	pointer to dentry of the base directory
3963  * @mode:	mode of the new device node or file
3964  * @dev:	device number of device to create
3965  *
3966  * Create a device node or file.
3967  *
3968  * If the inode has been found through an idmapped mount the idmap of
3969  * the vfsmount must be passed through @idmap. This function will then take
3970  * care to map the inode according to @idmap before checking permissions.
3971  * On non-idmapped mounts or if permission checking is to be performed on the
3972  * raw inode simply pass @nop_mnt_idmap.
3973  */
3974 int vfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
3975 	      struct dentry *dentry, umode_t mode, dev_t dev)
3976 {
3977 	bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
3978 	int error = may_create(idmap, dir, dentry);
3979 
3980 	if (error)
3981 		return error;
3982 
3983 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
3984 	    !capable(CAP_MKNOD))
3985 		return -EPERM;
3986 
3987 	if (!dir->i_op->mknod)
3988 		return -EPERM;
3989 
3990 	mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
3991 	error = devcgroup_inode_mknod(mode, dev);
3992 	if (error)
3993 		return error;
3994 
3995 	error = security_inode_mknod(dir, dentry, mode, dev);
3996 	if (error)
3997 		return error;
3998 
3999 	error = dir->i_op->mknod(idmap, dir, dentry, mode, dev);
4000 	if (!error)
4001 		fsnotify_create(dir, dentry);
4002 	return error;
4003 }
4004 EXPORT_SYMBOL(vfs_mknod);
4005 
4006 static int may_mknod(umode_t mode)
4007 {
4008 	switch (mode & S_IFMT) {
4009 	case S_IFREG:
4010 	case S_IFCHR:
4011 	case S_IFBLK:
4012 	case S_IFIFO:
4013 	case S_IFSOCK:
4014 	case 0: /* zero mode translates to S_IFREG */
4015 		return 0;
4016 	case S_IFDIR:
4017 		return -EPERM;
4018 	default:
4019 		return -EINVAL;
4020 	}
4021 }
4022 
4023 static int do_mknodat(int dfd, struct filename *name, umode_t mode,
4024 		unsigned int dev)
4025 {
4026 	struct mnt_idmap *idmap;
4027 	struct dentry *dentry;
4028 	struct path path;
4029 	int error;
4030 	unsigned int lookup_flags = 0;
4031 
4032 	error = may_mknod(mode);
4033 	if (error)
4034 		goto out1;
4035 retry:
4036 	dentry = filename_create(dfd, name, &path, lookup_flags);
4037 	error = PTR_ERR(dentry);
4038 	if (IS_ERR(dentry))
4039 		goto out1;
4040 
4041 	error = security_path_mknod(&path, dentry,
4042 			mode_strip_umask(path.dentry->d_inode, mode), dev);
4043 	if (error)
4044 		goto out2;
4045 
4046 	idmap = mnt_idmap(path.mnt);
4047 	switch (mode & S_IFMT) {
4048 		case 0: case S_IFREG:
4049 			error = vfs_create(idmap, path.dentry->d_inode,
4050 					   dentry, mode, true);
4051 			break;
4052 		case S_IFCHR: case S_IFBLK:
4053 			error = vfs_mknod(idmap, path.dentry->d_inode,
4054 					  dentry, mode, new_decode_dev(dev));
4055 			break;
4056 		case S_IFIFO: case S_IFSOCK:
4057 			error = vfs_mknod(idmap, path.dentry->d_inode,
4058 					  dentry, mode, 0);
4059 			break;
4060 	}
4061 
4062 	if (error)
4063 		goto out2;
4064 
4065 	security_path_post_mknod(idmap, dentry);
4066 out2:
4067 	done_path_create(&path, dentry);
4068 	if (retry_estale(error, lookup_flags)) {
4069 		lookup_flags |= LOOKUP_REVAL;
4070 		goto retry;
4071 	}
4072 out1:
4073 	putname(name);
4074 	return error;
4075 }
4076 
4077 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
4078 		unsigned int, dev)
4079 {
4080 	return do_mknodat(dfd, getname(filename), mode, dev);
4081 }
4082 
4083 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
4084 {
4085 	return do_mknodat(AT_FDCWD, getname(filename), mode, dev);
4086 }
4087 
4088 /**
4089  * vfs_mkdir - create directory
4090  * @idmap:	idmap of the mount the inode was found from
4091  * @dir:	inode of @dentry
4092  * @dentry:	pointer to dentry of the base directory
4093  * @mode:	mode of the new directory
4094  *
4095  * Create a directory.
4096  *
4097  * If the inode has been found through an idmapped mount the idmap of
4098  * the vfsmount must be passed through @idmap. This function will then take
4099  * care to map the inode according to @idmap before checking permissions.
4100  * On non-idmapped mounts or if permission checking is to be performed on the
4101  * raw inode simply pass @nop_mnt_idmap.
4102  */
4103 int vfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
4104 	      struct dentry *dentry, umode_t mode)
4105 {
4106 	int error;
4107 	unsigned max_links = dir->i_sb->s_max_links;
4108 
4109 	error = may_create(idmap, dir, dentry);
4110 	if (error)
4111 		return error;
4112 
4113 	if (!dir->i_op->mkdir)
4114 		return -EPERM;
4115 
4116 	mode = vfs_prepare_mode(idmap, dir, mode, S_IRWXUGO | S_ISVTX, 0);
4117 	error = security_inode_mkdir(dir, dentry, mode);
4118 	if (error)
4119 		return error;
4120 
4121 	if (max_links && dir->i_nlink >= max_links)
4122 		return -EMLINK;
4123 
4124 	error = dir->i_op->mkdir(idmap, dir, dentry, mode);
4125 	if (!error)
4126 		fsnotify_mkdir(dir, dentry);
4127 	return error;
4128 }
4129 EXPORT_SYMBOL(vfs_mkdir);
4130 
4131 int do_mkdirat(int dfd, struct filename *name, umode_t mode)
4132 {
4133 	struct dentry *dentry;
4134 	struct path path;
4135 	int error;
4136 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
4137 
4138 retry:
4139 	dentry = filename_create(dfd, name, &path, lookup_flags);
4140 	error = PTR_ERR(dentry);
4141 	if (IS_ERR(dentry))
4142 		goto out_putname;
4143 
4144 	error = security_path_mkdir(&path, dentry,
4145 			mode_strip_umask(path.dentry->d_inode, mode));
4146 	if (!error) {
4147 		error = vfs_mkdir(mnt_idmap(path.mnt), path.dentry->d_inode,
4148 				  dentry, mode);
4149 	}
4150 	done_path_create(&path, dentry);
4151 	if (retry_estale(error, lookup_flags)) {
4152 		lookup_flags |= LOOKUP_REVAL;
4153 		goto retry;
4154 	}
4155 out_putname:
4156 	putname(name);
4157 	return error;
4158 }
4159 
4160 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
4161 {
4162 	return do_mkdirat(dfd, getname(pathname), mode);
4163 }
4164 
4165 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
4166 {
4167 	return do_mkdirat(AT_FDCWD, getname(pathname), mode);
4168 }
4169 
4170 /**
4171  * vfs_rmdir - remove directory
4172  * @idmap:	idmap of the mount the inode was found from
4173  * @dir:	inode of @dentry
4174  * @dentry:	pointer to dentry of the base directory
4175  *
4176  * Remove a directory.
4177  *
4178  * If the inode has been found through an idmapped mount the idmap of
4179  * the vfsmount must be passed through @idmap. This function will then take
4180  * care to map the inode according to @idmap before checking permissions.
4181  * On non-idmapped mounts or if permission checking is to be performed on the
4182  * raw inode simply pass @nop_mnt_idmap.
4183  */
4184 int vfs_rmdir(struct mnt_idmap *idmap, struct inode *dir,
4185 		     struct dentry *dentry)
4186 {
4187 	int error = may_delete(idmap, dir, dentry, 1);
4188 
4189 	if (error)
4190 		return error;
4191 
4192 	if (!dir->i_op->rmdir)
4193 		return -EPERM;
4194 
4195 	dget(dentry);
4196 	inode_lock(dentry->d_inode);
4197 
4198 	error = -EBUSY;
4199 	if (is_local_mountpoint(dentry) ||
4200 	    (dentry->d_inode->i_flags & S_KERNEL_FILE))
4201 		goto out;
4202 
4203 	error = security_inode_rmdir(dir, dentry);
4204 	if (error)
4205 		goto out;
4206 
4207 	error = dir->i_op->rmdir(dir, dentry);
4208 	if (error)
4209 		goto out;
4210 
4211 	shrink_dcache_parent(dentry);
4212 	dentry->d_inode->i_flags |= S_DEAD;
4213 	dont_mount(dentry);
4214 	detach_mounts(dentry);
4215 
4216 out:
4217 	inode_unlock(dentry->d_inode);
4218 	dput(dentry);
4219 	if (!error)
4220 		d_delete_notify(dir, dentry);
4221 	return error;
4222 }
4223 EXPORT_SYMBOL(vfs_rmdir);
4224 
4225 int do_rmdir(int dfd, struct filename *name)
4226 {
4227 	int error;
4228 	struct dentry *dentry;
4229 	struct path path;
4230 	struct qstr last;
4231 	int type;
4232 	unsigned int lookup_flags = 0;
4233 retry:
4234 	error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4235 	if (error)
4236 		goto exit1;
4237 
4238 	switch (type) {
4239 	case LAST_DOTDOT:
4240 		error = -ENOTEMPTY;
4241 		goto exit2;
4242 	case LAST_DOT:
4243 		error = -EINVAL;
4244 		goto exit2;
4245 	case LAST_ROOT:
4246 		error = -EBUSY;
4247 		goto exit2;
4248 	}
4249 
4250 	error = mnt_want_write(path.mnt);
4251 	if (error)
4252 		goto exit2;
4253 
4254 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4255 	dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4256 	error = PTR_ERR(dentry);
4257 	if (IS_ERR(dentry))
4258 		goto exit3;
4259 	if (!dentry->d_inode) {
4260 		error = -ENOENT;
4261 		goto exit4;
4262 	}
4263 	error = security_path_rmdir(&path, dentry);
4264 	if (error)
4265 		goto exit4;
4266 	error = vfs_rmdir(mnt_idmap(path.mnt), path.dentry->d_inode, dentry);
4267 exit4:
4268 	dput(dentry);
4269 exit3:
4270 	inode_unlock(path.dentry->d_inode);
4271 	mnt_drop_write(path.mnt);
4272 exit2:
4273 	path_put(&path);
4274 	if (retry_estale(error, lookup_flags)) {
4275 		lookup_flags |= LOOKUP_REVAL;
4276 		goto retry;
4277 	}
4278 exit1:
4279 	putname(name);
4280 	return error;
4281 }
4282 
4283 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
4284 {
4285 	return do_rmdir(AT_FDCWD, getname(pathname));
4286 }
4287 
4288 /**
4289  * vfs_unlink - unlink a filesystem object
4290  * @idmap:	idmap of the mount the inode was found from
4291  * @dir:	parent directory
4292  * @dentry:	victim
4293  * @delegated_inode: returns victim inode, if the inode is delegated.
4294  *
4295  * The caller must hold dir->i_mutex.
4296  *
4297  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
4298  * return a reference to the inode in delegated_inode.  The caller
4299  * should then break the delegation on that inode and retry.  Because
4300  * breaking a delegation may take a long time, the caller should drop
4301  * dir->i_mutex before doing so.
4302  *
4303  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4304  * be appropriate for callers that expect the underlying filesystem not
4305  * to be NFS exported.
4306  *
4307  * If the inode has been found through an idmapped mount the idmap of
4308  * the vfsmount must be passed through @idmap. This function will then take
4309  * care to map the inode according to @idmap before checking permissions.
4310  * On non-idmapped mounts or if permission checking is to be performed on the
4311  * raw inode simply pass @nop_mnt_idmap.
4312  */
4313 int vfs_unlink(struct mnt_idmap *idmap, struct inode *dir,
4314 	       struct dentry *dentry, struct inode **delegated_inode)
4315 {
4316 	struct inode *target = dentry->d_inode;
4317 	int error = may_delete(idmap, dir, dentry, 0);
4318 
4319 	if (error)
4320 		return error;
4321 
4322 	if (!dir->i_op->unlink)
4323 		return -EPERM;
4324 
4325 	inode_lock(target);
4326 	if (IS_SWAPFILE(target))
4327 		error = -EPERM;
4328 	else if (is_local_mountpoint(dentry))
4329 		error = -EBUSY;
4330 	else {
4331 		error = security_inode_unlink(dir, dentry);
4332 		if (!error) {
4333 			error = try_break_deleg(target, delegated_inode);
4334 			if (error)
4335 				goto out;
4336 			error = dir->i_op->unlink(dir, dentry);
4337 			if (!error) {
4338 				dont_mount(dentry);
4339 				detach_mounts(dentry);
4340 			}
4341 		}
4342 	}
4343 out:
4344 	inode_unlock(target);
4345 
4346 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
4347 	if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) {
4348 		fsnotify_unlink(dir, dentry);
4349 	} else if (!error) {
4350 		fsnotify_link_count(target);
4351 		d_delete_notify(dir, dentry);
4352 	}
4353 
4354 	return error;
4355 }
4356 EXPORT_SYMBOL(vfs_unlink);
4357 
4358 /*
4359  * Make sure that the actual truncation of the file will occur outside its
4360  * directory's i_mutex.  Truncate can take a long time if there is a lot of
4361  * writeout happening, and we don't want to prevent access to the directory
4362  * while waiting on the I/O.
4363  */
4364 int do_unlinkat(int dfd, struct filename *name)
4365 {
4366 	int error;
4367 	struct dentry *dentry;
4368 	struct path path;
4369 	struct qstr last;
4370 	int type;
4371 	struct inode *inode = NULL;
4372 	struct inode *delegated_inode = NULL;
4373 	unsigned int lookup_flags = 0;
4374 retry:
4375 	error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4376 	if (error)
4377 		goto exit1;
4378 
4379 	error = -EISDIR;
4380 	if (type != LAST_NORM)
4381 		goto exit2;
4382 
4383 	error = mnt_want_write(path.mnt);
4384 	if (error)
4385 		goto exit2;
4386 retry_deleg:
4387 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4388 	dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4389 	error = PTR_ERR(dentry);
4390 	if (!IS_ERR(dentry)) {
4391 
4392 		/* Why not before? Because we want correct error value */
4393 		if (last.name[last.len] || d_is_negative(dentry))
4394 			goto slashes;
4395 		inode = dentry->d_inode;
4396 		ihold(inode);
4397 		error = security_path_unlink(&path, dentry);
4398 		if (error)
4399 			goto exit3;
4400 		error = vfs_unlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4401 				   dentry, &delegated_inode);
4402 exit3:
4403 		dput(dentry);
4404 	}
4405 	inode_unlock(path.dentry->d_inode);
4406 	if (inode)
4407 		iput(inode);	/* truncate the inode here */
4408 	inode = NULL;
4409 	if (delegated_inode) {
4410 		error = break_deleg_wait(&delegated_inode);
4411 		if (!error)
4412 			goto retry_deleg;
4413 	}
4414 	mnt_drop_write(path.mnt);
4415 exit2:
4416 	path_put(&path);
4417 	if (retry_estale(error, lookup_flags)) {
4418 		lookup_flags |= LOOKUP_REVAL;
4419 		inode = NULL;
4420 		goto retry;
4421 	}
4422 exit1:
4423 	putname(name);
4424 	return error;
4425 
4426 slashes:
4427 	if (d_is_negative(dentry))
4428 		error = -ENOENT;
4429 	else if (d_is_dir(dentry))
4430 		error = -EISDIR;
4431 	else
4432 		error = -ENOTDIR;
4433 	goto exit3;
4434 }
4435 
4436 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4437 {
4438 	if ((flag & ~AT_REMOVEDIR) != 0)
4439 		return -EINVAL;
4440 
4441 	if (flag & AT_REMOVEDIR)
4442 		return do_rmdir(dfd, getname(pathname));
4443 	return do_unlinkat(dfd, getname(pathname));
4444 }
4445 
4446 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4447 {
4448 	return do_unlinkat(AT_FDCWD, getname(pathname));
4449 }
4450 
4451 /**
4452  * vfs_symlink - create symlink
4453  * @idmap:	idmap of the mount the inode was found from
4454  * @dir:	inode of @dentry
4455  * @dentry:	pointer to dentry of the base directory
4456  * @oldname:	name of the file to link to
4457  *
4458  * Create a symlink.
4459  *
4460  * If the inode has been found through an idmapped mount the idmap of
4461  * the vfsmount must be passed through @idmap. This function will then take
4462  * care to map the inode according to @idmap before checking permissions.
4463  * On non-idmapped mounts or if permission checking is to be performed on the
4464  * raw inode simply pass @nop_mnt_idmap.
4465  */
4466 int vfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
4467 		struct dentry *dentry, const char *oldname)
4468 {
4469 	int error;
4470 
4471 	error = may_create(idmap, dir, dentry);
4472 	if (error)
4473 		return error;
4474 
4475 	if (!dir->i_op->symlink)
4476 		return -EPERM;
4477 
4478 	error = security_inode_symlink(dir, dentry, oldname);
4479 	if (error)
4480 		return error;
4481 
4482 	error = dir->i_op->symlink(idmap, dir, dentry, oldname);
4483 	if (!error)
4484 		fsnotify_create(dir, dentry);
4485 	return error;
4486 }
4487 EXPORT_SYMBOL(vfs_symlink);
4488 
4489 int do_symlinkat(struct filename *from, int newdfd, struct filename *to)
4490 {
4491 	int error;
4492 	struct dentry *dentry;
4493 	struct path path;
4494 	unsigned int lookup_flags = 0;
4495 
4496 	if (IS_ERR(from)) {
4497 		error = PTR_ERR(from);
4498 		goto out_putnames;
4499 	}
4500 retry:
4501 	dentry = filename_create(newdfd, to, &path, lookup_flags);
4502 	error = PTR_ERR(dentry);
4503 	if (IS_ERR(dentry))
4504 		goto out_putnames;
4505 
4506 	error = security_path_symlink(&path, dentry, from->name);
4507 	if (!error)
4508 		error = vfs_symlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4509 				    dentry, from->name);
4510 	done_path_create(&path, dentry);
4511 	if (retry_estale(error, lookup_flags)) {
4512 		lookup_flags |= LOOKUP_REVAL;
4513 		goto retry;
4514 	}
4515 out_putnames:
4516 	putname(to);
4517 	putname(from);
4518 	return error;
4519 }
4520 
4521 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4522 		int, newdfd, const char __user *, newname)
4523 {
4524 	return do_symlinkat(getname(oldname), newdfd, getname(newname));
4525 }
4526 
4527 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4528 {
4529 	return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname));
4530 }
4531 
4532 /**
4533  * vfs_link - create a new link
4534  * @old_dentry:	object to be linked
4535  * @idmap:	idmap of the mount
4536  * @dir:	new parent
4537  * @new_dentry:	where to create the new link
4538  * @delegated_inode: returns inode needing a delegation break
4539  *
4540  * The caller must hold dir->i_mutex
4541  *
4542  * If vfs_link discovers a delegation on the to-be-linked file in need
4543  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4544  * inode in delegated_inode.  The caller should then break the delegation
4545  * and retry.  Because breaking a delegation may take a long time, the
4546  * caller should drop the i_mutex before doing so.
4547  *
4548  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4549  * be appropriate for callers that expect the underlying filesystem not
4550  * to be NFS exported.
4551  *
4552  * If the inode has been found through an idmapped mount the idmap of
4553  * the vfsmount must be passed through @idmap. This function will then take
4554  * care to map the inode according to @idmap before checking permissions.
4555  * On non-idmapped mounts or if permission checking is to be performed on the
4556  * raw inode simply pass @nop_mnt_idmap.
4557  */
4558 int vfs_link(struct dentry *old_dentry, struct mnt_idmap *idmap,
4559 	     struct inode *dir, struct dentry *new_dentry,
4560 	     struct inode **delegated_inode)
4561 {
4562 	struct inode *inode = old_dentry->d_inode;
4563 	unsigned max_links = dir->i_sb->s_max_links;
4564 	int error;
4565 
4566 	if (!inode)
4567 		return -ENOENT;
4568 
4569 	error = may_create(idmap, dir, new_dentry);
4570 	if (error)
4571 		return error;
4572 
4573 	if (dir->i_sb != inode->i_sb)
4574 		return -EXDEV;
4575 
4576 	/*
4577 	 * A link to an append-only or immutable file cannot be created.
4578 	 */
4579 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4580 		return -EPERM;
4581 	/*
4582 	 * Updating the link count will likely cause i_uid and i_gid to
4583 	 * be writen back improperly if their true value is unknown to
4584 	 * the vfs.
4585 	 */
4586 	if (HAS_UNMAPPED_ID(idmap, inode))
4587 		return -EPERM;
4588 	if (!dir->i_op->link)
4589 		return -EPERM;
4590 	if (S_ISDIR(inode->i_mode))
4591 		return -EPERM;
4592 
4593 	error = security_inode_link(old_dentry, dir, new_dentry);
4594 	if (error)
4595 		return error;
4596 
4597 	inode_lock(inode);
4598 	/* Make sure we don't allow creating hardlink to an unlinked file */
4599 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4600 		error =  -ENOENT;
4601 	else if (max_links && inode->i_nlink >= max_links)
4602 		error = -EMLINK;
4603 	else {
4604 		error = try_break_deleg(inode, delegated_inode);
4605 		if (!error)
4606 			error = dir->i_op->link(old_dentry, dir, new_dentry);
4607 	}
4608 
4609 	if (!error && (inode->i_state & I_LINKABLE)) {
4610 		spin_lock(&inode->i_lock);
4611 		inode->i_state &= ~I_LINKABLE;
4612 		spin_unlock(&inode->i_lock);
4613 	}
4614 	inode_unlock(inode);
4615 	if (!error)
4616 		fsnotify_link(dir, inode, new_dentry);
4617 	return error;
4618 }
4619 EXPORT_SYMBOL(vfs_link);
4620 
4621 /*
4622  * Hardlinks are often used in delicate situations.  We avoid
4623  * security-related surprises by not following symlinks on the
4624  * newname.  --KAB
4625  *
4626  * We don't follow them on the oldname either to be compatible
4627  * with linux 2.0, and to avoid hard-linking to directories
4628  * and other special files.  --ADM
4629  */
4630 int do_linkat(int olddfd, struct filename *old, int newdfd,
4631 	      struct filename *new, int flags)
4632 {
4633 	struct mnt_idmap *idmap;
4634 	struct dentry *new_dentry;
4635 	struct path old_path, new_path;
4636 	struct inode *delegated_inode = NULL;
4637 	int how = 0;
4638 	int error;
4639 
4640 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) {
4641 		error = -EINVAL;
4642 		goto out_putnames;
4643 	}
4644 	/*
4645 	 * To use null names we require CAP_DAC_READ_SEARCH
4646 	 * This ensures that not everyone will be able to create
4647 	 * handlink using the passed filedescriptor.
4648 	 */
4649 	if (flags & AT_EMPTY_PATH && !capable(CAP_DAC_READ_SEARCH)) {
4650 		error = -ENOENT;
4651 		goto out_putnames;
4652 	}
4653 
4654 	if (flags & AT_SYMLINK_FOLLOW)
4655 		how |= LOOKUP_FOLLOW;
4656 retry:
4657 	error = filename_lookup(olddfd, old, how, &old_path, NULL);
4658 	if (error)
4659 		goto out_putnames;
4660 
4661 	new_dentry = filename_create(newdfd, new, &new_path,
4662 					(how & LOOKUP_REVAL));
4663 	error = PTR_ERR(new_dentry);
4664 	if (IS_ERR(new_dentry))
4665 		goto out_putpath;
4666 
4667 	error = -EXDEV;
4668 	if (old_path.mnt != new_path.mnt)
4669 		goto out_dput;
4670 	idmap = mnt_idmap(new_path.mnt);
4671 	error = may_linkat(idmap, &old_path);
4672 	if (unlikely(error))
4673 		goto out_dput;
4674 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4675 	if (error)
4676 		goto out_dput;
4677 	error = vfs_link(old_path.dentry, idmap, new_path.dentry->d_inode,
4678 			 new_dentry, &delegated_inode);
4679 out_dput:
4680 	done_path_create(&new_path, new_dentry);
4681 	if (delegated_inode) {
4682 		error = break_deleg_wait(&delegated_inode);
4683 		if (!error) {
4684 			path_put(&old_path);
4685 			goto retry;
4686 		}
4687 	}
4688 	if (retry_estale(error, how)) {
4689 		path_put(&old_path);
4690 		how |= LOOKUP_REVAL;
4691 		goto retry;
4692 	}
4693 out_putpath:
4694 	path_put(&old_path);
4695 out_putnames:
4696 	putname(old);
4697 	putname(new);
4698 
4699 	return error;
4700 }
4701 
4702 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4703 		int, newdfd, const char __user *, newname, int, flags)
4704 {
4705 	return do_linkat(olddfd, getname_uflags(oldname, flags),
4706 		newdfd, getname(newname), flags);
4707 }
4708 
4709 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4710 {
4711 	return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0);
4712 }
4713 
4714 /**
4715  * vfs_rename - rename a filesystem object
4716  * @rd:		pointer to &struct renamedata info
4717  *
4718  * The caller must hold multiple mutexes--see lock_rename()).
4719  *
4720  * If vfs_rename discovers a delegation in need of breaking at either
4721  * the source or destination, it will return -EWOULDBLOCK and return a
4722  * reference to the inode in delegated_inode.  The caller should then
4723  * break the delegation and retry.  Because breaking a delegation may
4724  * take a long time, the caller should drop all locks before doing
4725  * so.
4726  *
4727  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4728  * be appropriate for callers that expect the underlying filesystem not
4729  * to be NFS exported.
4730  *
4731  * The worst of all namespace operations - renaming directory. "Perverted"
4732  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4733  * Problems:
4734  *
4735  *	a) we can get into loop creation.
4736  *	b) race potential - two innocent renames can create a loop together.
4737  *	   That's where 4.4BSD screws up. Current fix: serialization on
4738  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4739  *	   story.
4740  *	c) we may have to lock up to _four_ objects - parents and victim (if it exists),
4741  *	   and source (if it's a non-directory or a subdirectory that moves to
4742  *	   different parent).
4743  *	   And that - after we got ->i_mutex on parents (until then we don't know
4744  *	   whether the target exists).  Solution: try to be smart with locking
4745  *	   order for inodes.  We rely on the fact that tree topology may change
4746  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4747  *	   move will be locked.  Thus we can rank directories by the tree
4748  *	   (ancestors first) and rank all non-directories after them.
4749  *	   That works since everybody except rename does "lock parent, lookup,
4750  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4751  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4752  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4753  *	   we'd better make sure that there's no link(2) for them.
4754  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4755  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4756  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4757  *	   ->i_mutex on parents, which works but leads to some truly excessive
4758  *	   locking].
4759  */
4760 int vfs_rename(struct renamedata *rd)
4761 {
4762 	int error;
4763 	struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir;
4764 	struct dentry *old_dentry = rd->old_dentry;
4765 	struct dentry *new_dentry = rd->new_dentry;
4766 	struct inode **delegated_inode = rd->delegated_inode;
4767 	unsigned int flags = rd->flags;
4768 	bool is_dir = d_is_dir(old_dentry);
4769 	struct inode *source = old_dentry->d_inode;
4770 	struct inode *target = new_dentry->d_inode;
4771 	bool new_is_dir = false;
4772 	unsigned max_links = new_dir->i_sb->s_max_links;
4773 	struct name_snapshot old_name;
4774 	bool lock_old_subdir, lock_new_subdir;
4775 
4776 	if (source == target)
4777 		return 0;
4778 
4779 	error = may_delete(rd->old_mnt_idmap, old_dir, old_dentry, is_dir);
4780 	if (error)
4781 		return error;
4782 
4783 	if (!target) {
4784 		error = may_create(rd->new_mnt_idmap, new_dir, new_dentry);
4785 	} else {
4786 		new_is_dir = d_is_dir(new_dentry);
4787 
4788 		if (!(flags & RENAME_EXCHANGE))
4789 			error = may_delete(rd->new_mnt_idmap, new_dir,
4790 					   new_dentry, is_dir);
4791 		else
4792 			error = may_delete(rd->new_mnt_idmap, new_dir,
4793 					   new_dentry, new_is_dir);
4794 	}
4795 	if (error)
4796 		return error;
4797 
4798 	if (!old_dir->i_op->rename)
4799 		return -EPERM;
4800 
4801 	/*
4802 	 * If we are going to change the parent - check write permissions,
4803 	 * we'll need to flip '..'.
4804 	 */
4805 	if (new_dir != old_dir) {
4806 		if (is_dir) {
4807 			error = inode_permission(rd->old_mnt_idmap, source,
4808 						 MAY_WRITE);
4809 			if (error)
4810 				return error;
4811 		}
4812 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4813 			error = inode_permission(rd->new_mnt_idmap, target,
4814 						 MAY_WRITE);
4815 			if (error)
4816 				return error;
4817 		}
4818 	}
4819 
4820 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4821 				      flags);
4822 	if (error)
4823 		return error;
4824 
4825 	take_dentry_name_snapshot(&old_name, old_dentry);
4826 	dget(new_dentry);
4827 	/*
4828 	 * Lock children.
4829 	 * The source subdirectory needs to be locked on cross-directory
4830 	 * rename or cross-directory exchange since its parent changes.
4831 	 * The target subdirectory needs to be locked on cross-directory
4832 	 * exchange due to parent change and on any rename due to becoming
4833 	 * a victim.
4834 	 * Non-directories need locking in all cases (for NFS reasons);
4835 	 * they get locked after any subdirectories (in inode address order).
4836 	 *
4837 	 * NOTE: WE ONLY LOCK UNRELATED DIRECTORIES IN CROSS-DIRECTORY CASE.
4838 	 * NEVER, EVER DO THAT WITHOUT ->s_vfs_rename_mutex.
4839 	 */
4840 	lock_old_subdir = new_dir != old_dir;
4841 	lock_new_subdir = new_dir != old_dir || !(flags & RENAME_EXCHANGE);
4842 	if (is_dir) {
4843 		if (lock_old_subdir)
4844 			inode_lock_nested(source, I_MUTEX_CHILD);
4845 		if (target && (!new_is_dir || lock_new_subdir))
4846 			inode_lock(target);
4847 	} else if (new_is_dir) {
4848 		if (lock_new_subdir)
4849 			inode_lock_nested(target, I_MUTEX_CHILD);
4850 		inode_lock(source);
4851 	} else {
4852 		lock_two_nondirectories(source, target);
4853 	}
4854 
4855 	error = -EPERM;
4856 	if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target)))
4857 		goto out;
4858 
4859 	error = -EBUSY;
4860 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4861 		goto out;
4862 
4863 	if (max_links && new_dir != old_dir) {
4864 		error = -EMLINK;
4865 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4866 			goto out;
4867 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4868 		    old_dir->i_nlink >= max_links)
4869 			goto out;
4870 	}
4871 	if (!is_dir) {
4872 		error = try_break_deleg(source, delegated_inode);
4873 		if (error)
4874 			goto out;
4875 	}
4876 	if (target && !new_is_dir) {
4877 		error = try_break_deleg(target, delegated_inode);
4878 		if (error)
4879 			goto out;
4880 	}
4881 	error = old_dir->i_op->rename(rd->new_mnt_idmap, old_dir, old_dentry,
4882 				      new_dir, new_dentry, flags);
4883 	if (error)
4884 		goto out;
4885 
4886 	if (!(flags & RENAME_EXCHANGE) && target) {
4887 		if (is_dir) {
4888 			shrink_dcache_parent(new_dentry);
4889 			target->i_flags |= S_DEAD;
4890 		}
4891 		dont_mount(new_dentry);
4892 		detach_mounts(new_dentry);
4893 	}
4894 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4895 		if (!(flags & RENAME_EXCHANGE))
4896 			d_move(old_dentry, new_dentry);
4897 		else
4898 			d_exchange(old_dentry, new_dentry);
4899 	}
4900 out:
4901 	if (!is_dir || lock_old_subdir)
4902 		inode_unlock(source);
4903 	if (target && (!new_is_dir || lock_new_subdir))
4904 		inode_unlock(target);
4905 	dput(new_dentry);
4906 	if (!error) {
4907 		fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4908 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4909 		if (flags & RENAME_EXCHANGE) {
4910 			fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4911 				      new_is_dir, NULL, new_dentry);
4912 		}
4913 	}
4914 	release_dentry_name_snapshot(&old_name);
4915 
4916 	return error;
4917 }
4918 EXPORT_SYMBOL(vfs_rename);
4919 
4920 int do_renameat2(int olddfd, struct filename *from, int newdfd,
4921 		 struct filename *to, unsigned int flags)
4922 {
4923 	struct renamedata rd;
4924 	struct dentry *old_dentry, *new_dentry;
4925 	struct dentry *trap;
4926 	struct path old_path, new_path;
4927 	struct qstr old_last, new_last;
4928 	int old_type, new_type;
4929 	struct inode *delegated_inode = NULL;
4930 	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4931 	bool should_retry = false;
4932 	int error = -EINVAL;
4933 
4934 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4935 		goto put_names;
4936 
4937 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4938 	    (flags & RENAME_EXCHANGE))
4939 		goto put_names;
4940 
4941 	if (flags & RENAME_EXCHANGE)
4942 		target_flags = 0;
4943 
4944 retry:
4945 	error = filename_parentat(olddfd, from, lookup_flags, &old_path,
4946 				  &old_last, &old_type);
4947 	if (error)
4948 		goto put_names;
4949 
4950 	error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
4951 				  &new_type);
4952 	if (error)
4953 		goto exit1;
4954 
4955 	error = -EXDEV;
4956 	if (old_path.mnt != new_path.mnt)
4957 		goto exit2;
4958 
4959 	error = -EBUSY;
4960 	if (old_type != LAST_NORM)
4961 		goto exit2;
4962 
4963 	if (flags & RENAME_NOREPLACE)
4964 		error = -EEXIST;
4965 	if (new_type != LAST_NORM)
4966 		goto exit2;
4967 
4968 	error = mnt_want_write(old_path.mnt);
4969 	if (error)
4970 		goto exit2;
4971 
4972 retry_deleg:
4973 	trap = lock_rename(new_path.dentry, old_path.dentry);
4974 	if (IS_ERR(trap)) {
4975 		error = PTR_ERR(trap);
4976 		goto exit_lock_rename;
4977 	}
4978 
4979 	old_dentry = lookup_one_qstr_excl(&old_last, old_path.dentry,
4980 					  lookup_flags);
4981 	error = PTR_ERR(old_dentry);
4982 	if (IS_ERR(old_dentry))
4983 		goto exit3;
4984 	/* source must exist */
4985 	error = -ENOENT;
4986 	if (d_is_negative(old_dentry))
4987 		goto exit4;
4988 	new_dentry = lookup_one_qstr_excl(&new_last, new_path.dentry,
4989 					  lookup_flags | target_flags);
4990 	error = PTR_ERR(new_dentry);
4991 	if (IS_ERR(new_dentry))
4992 		goto exit4;
4993 	error = -EEXIST;
4994 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4995 		goto exit5;
4996 	if (flags & RENAME_EXCHANGE) {
4997 		error = -ENOENT;
4998 		if (d_is_negative(new_dentry))
4999 			goto exit5;
5000 
5001 		if (!d_is_dir(new_dentry)) {
5002 			error = -ENOTDIR;
5003 			if (new_last.name[new_last.len])
5004 				goto exit5;
5005 		}
5006 	}
5007 	/* unless the source is a directory trailing slashes give -ENOTDIR */
5008 	if (!d_is_dir(old_dentry)) {
5009 		error = -ENOTDIR;
5010 		if (old_last.name[old_last.len])
5011 			goto exit5;
5012 		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
5013 			goto exit5;
5014 	}
5015 	/* source should not be ancestor of target */
5016 	error = -EINVAL;
5017 	if (old_dentry == trap)
5018 		goto exit5;
5019 	/* target should not be an ancestor of source */
5020 	if (!(flags & RENAME_EXCHANGE))
5021 		error = -ENOTEMPTY;
5022 	if (new_dentry == trap)
5023 		goto exit5;
5024 
5025 	error = security_path_rename(&old_path, old_dentry,
5026 				     &new_path, new_dentry, flags);
5027 	if (error)
5028 		goto exit5;
5029 
5030 	rd.old_dir	   = old_path.dentry->d_inode;
5031 	rd.old_dentry	   = old_dentry;
5032 	rd.old_mnt_idmap   = mnt_idmap(old_path.mnt);
5033 	rd.new_dir	   = new_path.dentry->d_inode;
5034 	rd.new_dentry	   = new_dentry;
5035 	rd.new_mnt_idmap   = mnt_idmap(new_path.mnt);
5036 	rd.delegated_inode = &delegated_inode;
5037 	rd.flags	   = flags;
5038 	error = vfs_rename(&rd);
5039 exit5:
5040 	dput(new_dentry);
5041 exit4:
5042 	dput(old_dentry);
5043 exit3:
5044 	unlock_rename(new_path.dentry, old_path.dentry);
5045 exit_lock_rename:
5046 	if (delegated_inode) {
5047 		error = break_deleg_wait(&delegated_inode);
5048 		if (!error)
5049 			goto retry_deleg;
5050 	}
5051 	mnt_drop_write(old_path.mnt);
5052 exit2:
5053 	if (retry_estale(error, lookup_flags))
5054 		should_retry = true;
5055 	path_put(&new_path);
5056 exit1:
5057 	path_put(&old_path);
5058 	if (should_retry) {
5059 		should_retry = false;
5060 		lookup_flags |= LOOKUP_REVAL;
5061 		goto retry;
5062 	}
5063 put_names:
5064 	putname(from);
5065 	putname(to);
5066 	return error;
5067 }
5068 
5069 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
5070 		int, newdfd, const char __user *, newname, unsigned int, flags)
5071 {
5072 	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5073 				flags);
5074 }
5075 
5076 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
5077 		int, newdfd, const char __user *, newname)
5078 {
5079 	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5080 				0);
5081 }
5082 
5083 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
5084 {
5085 	return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
5086 				getname(newname), 0);
5087 }
5088 
5089 int readlink_copy(char __user *buffer, int buflen, const char *link)
5090 {
5091 	int len = PTR_ERR(link);
5092 	if (IS_ERR(link))
5093 		goto out;
5094 
5095 	len = strlen(link);
5096 	if (len > (unsigned) buflen)
5097 		len = buflen;
5098 	if (copy_to_user(buffer, link, len))
5099 		len = -EFAULT;
5100 out:
5101 	return len;
5102 }
5103 
5104 /**
5105  * vfs_readlink - copy symlink body into userspace buffer
5106  * @dentry: dentry on which to get symbolic link
5107  * @buffer: user memory pointer
5108  * @buflen: size of buffer
5109  *
5110  * Does not touch atime.  That's up to the caller if necessary
5111  *
5112  * Does not call security hook.
5113  */
5114 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5115 {
5116 	struct inode *inode = d_inode(dentry);
5117 	DEFINE_DELAYED_CALL(done);
5118 	const char *link;
5119 	int res;
5120 
5121 	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
5122 		if (unlikely(inode->i_op->readlink))
5123 			return inode->i_op->readlink(dentry, buffer, buflen);
5124 
5125 		if (!d_is_symlink(dentry))
5126 			return -EINVAL;
5127 
5128 		spin_lock(&inode->i_lock);
5129 		inode->i_opflags |= IOP_DEFAULT_READLINK;
5130 		spin_unlock(&inode->i_lock);
5131 	}
5132 
5133 	link = READ_ONCE(inode->i_link);
5134 	if (!link) {
5135 		link = inode->i_op->get_link(dentry, inode, &done);
5136 		if (IS_ERR(link))
5137 			return PTR_ERR(link);
5138 	}
5139 	res = readlink_copy(buffer, buflen, link);
5140 	do_delayed_call(&done);
5141 	return res;
5142 }
5143 EXPORT_SYMBOL(vfs_readlink);
5144 
5145 /**
5146  * vfs_get_link - get symlink body
5147  * @dentry: dentry on which to get symbolic link
5148  * @done: caller needs to free returned data with this
5149  *
5150  * Calls security hook and i_op->get_link() on the supplied inode.
5151  *
5152  * It does not touch atime.  That's up to the caller if necessary.
5153  *
5154  * Does not work on "special" symlinks like /proc/$$/fd/N
5155  */
5156 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
5157 {
5158 	const char *res = ERR_PTR(-EINVAL);
5159 	struct inode *inode = d_inode(dentry);
5160 
5161 	if (d_is_symlink(dentry)) {
5162 		res = ERR_PTR(security_inode_readlink(dentry));
5163 		if (!res)
5164 			res = inode->i_op->get_link(dentry, inode, done);
5165 	}
5166 	return res;
5167 }
5168 EXPORT_SYMBOL(vfs_get_link);
5169 
5170 /* get the link contents into pagecache */
5171 const char *page_get_link(struct dentry *dentry, struct inode *inode,
5172 			  struct delayed_call *callback)
5173 {
5174 	char *kaddr;
5175 	struct page *page;
5176 	struct address_space *mapping = inode->i_mapping;
5177 
5178 	if (!dentry) {
5179 		page = find_get_page(mapping, 0);
5180 		if (!page)
5181 			return ERR_PTR(-ECHILD);
5182 		if (!PageUptodate(page)) {
5183 			put_page(page);
5184 			return ERR_PTR(-ECHILD);
5185 		}
5186 	} else {
5187 		page = read_mapping_page(mapping, 0, NULL);
5188 		if (IS_ERR(page))
5189 			return (char*)page;
5190 	}
5191 	set_delayed_call(callback, page_put_link, page);
5192 	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
5193 	kaddr = page_address(page);
5194 	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
5195 	return kaddr;
5196 }
5197 
5198 EXPORT_SYMBOL(page_get_link);
5199 
5200 void page_put_link(void *arg)
5201 {
5202 	put_page(arg);
5203 }
5204 EXPORT_SYMBOL(page_put_link);
5205 
5206 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5207 {
5208 	DEFINE_DELAYED_CALL(done);
5209 	int res = readlink_copy(buffer, buflen,
5210 				page_get_link(dentry, d_inode(dentry),
5211 					      &done));
5212 	do_delayed_call(&done);
5213 	return res;
5214 }
5215 EXPORT_SYMBOL(page_readlink);
5216 
5217 int page_symlink(struct inode *inode, const char *symname, int len)
5218 {
5219 	struct address_space *mapping = inode->i_mapping;
5220 	const struct address_space_operations *aops = mapping->a_ops;
5221 	bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS);
5222 	struct page *page;
5223 	void *fsdata = NULL;
5224 	int err;
5225 	unsigned int flags;
5226 
5227 retry:
5228 	if (nofs)
5229 		flags = memalloc_nofs_save();
5230 	err = aops->write_begin(NULL, mapping, 0, len-1, &page, &fsdata);
5231 	if (nofs)
5232 		memalloc_nofs_restore(flags);
5233 	if (err)
5234 		goto fail;
5235 
5236 	memcpy(page_address(page), symname, len-1);
5237 
5238 	err = aops->write_end(NULL, mapping, 0, len-1, len-1,
5239 							page, fsdata);
5240 	if (err < 0)
5241 		goto fail;
5242 	if (err < len-1)
5243 		goto retry;
5244 
5245 	mark_inode_dirty(inode);
5246 	return 0;
5247 fail:
5248 	return err;
5249 }
5250 EXPORT_SYMBOL(page_symlink);
5251 
5252 const struct inode_operations page_symlink_inode_operations = {
5253 	.get_link	= page_get_link,
5254 };
5255 EXPORT_SYMBOL(page_symlink_inode_operations);
5256