xref: /linux/fs/namei.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39 
40 #include "internal.h"
41 #include "mount.h"
42 
43 /* [Feb-1997 T. Schoebel-Theuer]
44  * Fundamental changes in the pathname lookup mechanisms (namei)
45  * were necessary because of omirr.  The reason is that omirr needs
46  * to know the _real_ pathname, not the user-supplied one, in case
47  * of symlinks (and also when transname replacements occur).
48  *
49  * The new code replaces the old recursive symlink resolution with
50  * an iterative one (in case of non-nested symlink chains).  It does
51  * this with calls to <fs>_follow_link().
52  * As a side effect, dir_namei(), _namei() and follow_link() are now
53  * replaced with a single function lookup_dentry() that can handle all
54  * the special cases of the former code.
55  *
56  * With the new dcache, the pathname is stored at each inode, at least as
57  * long as the refcount of the inode is positive.  As a side effect, the
58  * size of the dcache depends on the inode cache and thus is dynamic.
59  *
60  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61  * resolution to correspond with current state of the code.
62  *
63  * Note that the symlink resolution is not *completely* iterative.
64  * There is still a significant amount of tail- and mid- recursion in
65  * the algorithm.  Also, note that <fs>_readlink() is not used in
66  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67  * may return different results than <fs>_follow_link().  Many virtual
68  * filesystems (including /proc) exhibit this behavior.
69  */
70 
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73  * and the name already exists in form of a symlink, try to create the new
74  * name indicated by the symlink. The old code always complained that the
75  * name already exists, due to not following the symlink even if its target
76  * is nonexistent.  The new semantics affects also mknod() and link() when
77  * the name is a symlink pointing to a non-existent name.
78  *
79  * I don't know which semantics is the right one, since I have no access
80  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82  * "old" one. Personally, I think the new semantics is much more logical.
83  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84  * file does succeed in both HP-UX and SunOs, but not in Solaris
85  * and in the old Linux semantics.
86  */
87 
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89  * semantics.  See the comments in "open_namei" and "do_link" below.
90  *
91  * [10-Sep-98 Alan Modra] Another symlink change.
92  */
93 
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95  *	inside the path - always follow.
96  *	in the last component in creation/removal/renaming - never follow.
97  *	if LOOKUP_FOLLOW passed - follow.
98  *	if the pathname has trailing slashes - follow.
99  *	otherwise - don't follow.
100  * (applied in that order).
101  *
102  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104  * During the 2.4 we need to fix the userland stuff depending on it -
105  * hopefully we will be able to get rid of that wart in 2.5. So far only
106  * XEmacs seems to be relying on it...
107  */
108 /*
109  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
111  * any extra contention...
112  */
113 
114 /* In order to reduce some races, while at the same time doing additional
115  * checking and hopefully speeding things up, we copy filenames to the
116  * kernel data space before using them..
117  *
118  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119  * PATH_MAX includes the nul terminator --RR.
120  */
121 
122 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
123 
124 struct filename *
125 getname_flags(const char __user *filename, int flags, int *empty)
126 {
127 	struct filename *result;
128 	char *kname;
129 	int len;
130 
131 	result = audit_reusename(filename);
132 	if (result)
133 		return result;
134 
135 	result = __getname();
136 	if (unlikely(!result))
137 		return ERR_PTR(-ENOMEM);
138 
139 	/*
140 	 * First, try to embed the struct filename inside the names_cache
141 	 * allocation
142 	 */
143 	kname = (char *)result->iname;
144 	result->name = kname;
145 
146 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
147 	if (unlikely(len < 0)) {
148 		__putname(result);
149 		return ERR_PTR(len);
150 	}
151 
152 	/*
153 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
154 	 * separate struct filename so we can dedicate the entire
155 	 * names_cache allocation for the pathname, and re-do the copy from
156 	 * userland.
157 	 */
158 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
159 		const size_t size = offsetof(struct filename, iname[1]);
160 		kname = (char *)result;
161 
162 		/*
163 		 * size is chosen that way we to guarantee that
164 		 * result->iname[0] is within the same object and that
165 		 * kname can't be equal to result->iname, no matter what.
166 		 */
167 		result = kzalloc(size, GFP_KERNEL);
168 		if (unlikely(!result)) {
169 			__putname(kname);
170 			return ERR_PTR(-ENOMEM);
171 		}
172 		result->name = kname;
173 		len = strncpy_from_user(kname, filename, PATH_MAX);
174 		if (unlikely(len < 0)) {
175 			__putname(kname);
176 			kfree(result);
177 			return ERR_PTR(len);
178 		}
179 		if (unlikely(len == PATH_MAX)) {
180 			__putname(kname);
181 			kfree(result);
182 			return ERR_PTR(-ENAMETOOLONG);
183 		}
184 	}
185 
186 	result->refcnt = 1;
187 	/* The empty path is special. */
188 	if (unlikely(!len)) {
189 		if (empty)
190 			*empty = 1;
191 		if (!(flags & LOOKUP_EMPTY)) {
192 			putname(result);
193 			return ERR_PTR(-ENOENT);
194 		}
195 	}
196 
197 	result->uptr = filename;
198 	result->aname = NULL;
199 	audit_getname(result);
200 	return result;
201 }
202 
203 struct filename *
204 getname(const char __user * filename)
205 {
206 	return getname_flags(filename, 0, NULL);
207 }
208 
209 struct filename *
210 getname_kernel(const char * filename)
211 {
212 	struct filename *result;
213 	int len = strlen(filename) + 1;
214 
215 	result = __getname();
216 	if (unlikely(!result))
217 		return ERR_PTR(-ENOMEM);
218 
219 	if (len <= EMBEDDED_NAME_MAX) {
220 		result->name = (char *)result->iname;
221 	} else if (len <= PATH_MAX) {
222 		struct filename *tmp;
223 
224 		tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
225 		if (unlikely(!tmp)) {
226 			__putname(result);
227 			return ERR_PTR(-ENOMEM);
228 		}
229 		tmp->name = (char *)result;
230 		result = tmp;
231 	} else {
232 		__putname(result);
233 		return ERR_PTR(-ENAMETOOLONG);
234 	}
235 	memcpy((char *)result->name, filename, len);
236 	result->uptr = NULL;
237 	result->aname = NULL;
238 	result->refcnt = 1;
239 	audit_getname(result);
240 
241 	return result;
242 }
243 
244 void putname(struct filename *name)
245 {
246 	BUG_ON(name->refcnt <= 0);
247 
248 	if (--name->refcnt > 0)
249 		return;
250 
251 	if (name->name != name->iname) {
252 		__putname(name->name);
253 		kfree(name);
254 	} else
255 		__putname(name);
256 }
257 
258 static int check_acl(struct inode *inode, int mask)
259 {
260 #ifdef CONFIG_FS_POSIX_ACL
261 	struct posix_acl *acl;
262 
263 	if (mask & MAY_NOT_BLOCK) {
264 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
265 	        if (!acl)
266 	                return -EAGAIN;
267 		/* no ->get_acl() calls in RCU mode... */
268 		if (acl == ACL_NOT_CACHED)
269 			return -ECHILD;
270 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
271 	}
272 
273 	acl = get_acl(inode, ACL_TYPE_ACCESS);
274 	if (IS_ERR(acl))
275 		return PTR_ERR(acl);
276 	if (acl) {
277 	        int error = posix_acl_permission(inode, acl, mask);
278 	        posix_acl_release(acl);
279 	        return error;
280 	}
281 #endif
282 
283 	return -EAGAIN;
284 }
285 
286 /*
287  * This does the basic permission checking
288  */
289 static int acl_permission_check(struct inode *inode, int mask)
290 {
291 	unsigned int mode = inode->i_mode;
292 
293 	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
294 		mode >>= 6;
295 	else {
296 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
297 			int error = check_acl(inode, mask);
298 			if (error != -EAGAIN)
299 				return error;
300 		}
301 
302 		if (in_group_p(inode->i_gid))
303 			mode >>= 3;
304 	}
305 
306 	/*
307 	 * If the DACs are ok we don't need any capability check.
308 	 */
309 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
310 		return 0;
311 	return -EACCES;
312 }
313 
314 /**
315  * generic_permission -  check for access rights on a Posix-like filesystem
316  * @inode:	inode to check access rights for
317  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
318  *
319  * Used to check for read/write/execute permissions on a file.
320  * We use "fsuid" for this, letting us set arbitrary permissions
321  * for filesystem access without changing the "normal" uids which
322  * are used for other things.
323  *
324  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
325  * request cannot be satisfied (eg. requires blocking or too much complexity).
326  * It would then be called again in ref-walk mode.
327  */
328 int generic_permission(struct inode *inode, int mask)
329 {
330 	int ret;
331 
332 	/*
333 	 * Do the basic permission checks.
334 	 */
335 	ret = acl_permission_check(inode, mask);
336 	if (ret != -EACCES)
337 		return ret;
338 
339 	if (S_ISDIR(inode->i_mode)) {
340 		/* DACs are overridable for directories */
341 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
342 			return 0;
343 		if (!(mask & MAY_WRITE))
344 			if (capable_wrt_inode_uidgid(inode,
345 						     CAP_DAC_READ_SEARCH))
346 				return 0;
347 		return -EACCES;
348 	}
349 	/*
350 	 * Read/write DACs are always overridable.
351 	 * Executable DACs are overridable when there is
352 	 * at least one exec bit set.
353 	 */
354 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
355 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
356 			return 0;
357 
358 	/*
359 	 * Searching includes executable on directories, else just read.
360 	 */
361 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
362 	if (mask == MAY_READ)
363 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
364 			return 0;
365 
366 	return -EACCES;
367 }
368 EXPORT_SYMBOL(generic_permission);
369 
370 /*
371  * We _really_ want to just do "generic_permission()" without
372  * even looking at the inode->i_op values. So we keep a cache
373  * flag in inode->i_opflags, that says "this has not special
374  * permission function, use the fast case".
375  */
376 static inline int do_inode_permission(struct inode *inode, int mask)
377 {
378 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
379 		if (likely(inode->i_op->permission))
380 			return inode->i_op->permission(inode, mask);
381 
382 		/* This gets set once for the inode lifetime */
383 		spin_lock(&inode->i_lock);
384 		inode->i_opflags |= IOP_FASTPERM;
385 		spin_unlock(&inode->i_lock);
386 	}
387 	return generic_permission(inode, mask);
388 }
389 
390 /**
391  * __inode_permission - Check for access rights to a given inode
392  * @inode: Inode to check permission on
393  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
394  *
395  * Check for read/write/execute permissions on an inode.
396  *
397  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
398  *
399  * This does not check for a read-only file system.  You probably want
400  * inode_permission().
401  */
402 int __inode_permission(struct inode *inode, int mask)
403 {
404 	int retval;
405 
406 	if (unlikely(mask & MAY_WRITE)) {
407 		/*
408 		 * Nobody gets write access to an immutable file.
409 		 */
410 		if (IS_IMMUTABLE(inode))
411 			return -EACCES;
412 	}
413 
414 	retval = do_inode_permission(inode, mask);
415 	if (retval)
416 		return retval;
417 
418 	retval = devcgroup_inode_permission(inode, mask);
419 	if (retval)
420 		return retval;
421 
422 	return security_inode_permission(inode, mask);
423 }
424 EXPORT_SYMBOL(__inode_permission);
425 
426 /**
427  * sb_permission - Check superblock-level permissions
428  * @sb: Superblock of inode to check permission on
429  * @inode: Inode to check permission on
430  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431  *
432  * Separate out file-system wide checks from inode-specific permission checks.
433  */
434 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
435 {
436 	if (unlikely(mask & MAY_WRITE)) {
437 		umode_t mode = inode->i_mode;
438 
439 		/* Nobody gets write access to a read-only fs. */
440 		if ((sb->s_flags & MS_RDONLY) &&
441 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
442 			return -EROFS;
443 	}
444 	return 0;
445 }
446 
447 /**
448  * inode_permission - Check for access rights to a given inode
449  * @inode: Inode to check permission on
450  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
451  *
452  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
453  * this, letting us set arbitrary permissions for filesystem access without
454  * changing the "normal" UIDs which are used for other things.
455  *
456  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
457  */
458 int inode_permission(struct inode *inode, int mask)
459 {
460 	int retval;
461 
462 	retval = sb_permission(inode->i_sb, inode, mask);
463 	if (retval)
464 		return retval;
465 	return __inode_permission(inode, mask);
466 }
467 EXPORT_SYMBOL(inode_permission);
468 
469 /**
470  * path_get - get a reference to a path
471  * @path: path to get the reference to
472  *
473  * Given a path increment the reference count to the dentry and the vfsmount.
474  */
475 void path_get(const struct path *path)
476 {
477 	mntget(path->mnt);
478 	dget(path->dentry);
479 }
480 EXPORT_SYMBOL(path_get);
481 
482 /**
483  * path_put - put a reference to a path
484  * @path: path to put the reference to
485  *
486  * Given a path decrement the reference count to the dentry and the vfsmount.
487  */
488 void path_put(const struct path *path)
489 {
490 	dput(path->dentry);
491 	mntput(path->mnt);
492 }
493 EXPORT_SYMBOL(path_put);
494 
495 #define EMBEDDED_LEVELS 2
496 struct nameidata {
497 	struct path	path;
498 	struct qstr	last;
499 	struct path	root;
500 	struct inode	*inode; /* path.dentry.d_inode */
501 	unsigned int	flags;
502 	unsigned	seq, m_seq;
503 	int		last_type;
504 	unsigned	depth;
505 	int		total_link_count;
506 	struct saved {
507 		struct path link;
508 		void *cookie;
509 		const char *name;
510 		struct inode *inode;
511 		unsigned seq;
512 	} *stack, internal[EMBEDDED_LEVELS];
513 	struct filename	*name;
514 	struct nameidata *saved;
515 	unsigned	root_seq;
516 	int		dfd;
517 };
518 
519 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
520 {
521 	struct nameidata *old = current->nameidata;
522 	p->stack = p->internal;
523 	p->dfd = dfd;
524 	p->name = name;
525 	p->total_link_count = old ? old->total_link_count : 0;
526 	p->saved = old;
527 	current->nameidata = p;
528 }
529 
530 static void restore_nameidata(void)
531 {
532 	struct nameidata *now = current->nameidata, *old = now->saved;
533 
534 	current->nameidata = old;
535 	if (old)
536 		old->total_link_count = now->total_link_count;
537 	if (now->stack != now->internal) {
538 		kfree(now->stack);
539 		now->stack = now->internal;
540 	}
541 }
542 
543 static int __nd_alloc_stack(struct nameidata *nd)
544 {
545 	struct saved *p;
546 
547 	if (nd->flags & LOOKUP_RCU) {
548 		p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
549 				  GFP_ATOMIC);
550 		if (unlikely(!p))
551 			return -ECHILD;
552 	} else {
553 		p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
554 				  GFP_KERNEL);
555 		if (unlikely(!p))
556 			return -ENOMEM;
557 	}
558 	memcpy(p, nd->internal, sizeof(nd->internal));
559 	nd->stack = p;
560 	return 0;
561 }
562 
563 /**
564  * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
565  * @path: nameidate to verify
566  *
567  * Rename can sometimes move a file or directory outside of a bind
568  * mount, path_connected allows those cases to be detected.
569  */
570 static bool path_connected(const struct path *path)
571 {
572 	struct vfsmount *mnt = path->mnt;
573 
574 	/* Only bind mounts can have disconnected paths */
575 	if (mnt->mnt_root == mnt->mnt_sb->s_root)
576 		return true;
577 
578 	return is_subdir(path->dentry, mnt->mnt_root);
579 }
580 
581 static inline int nd_alloc_stack(struct nameidata *nd)
582 {
583 	if (likely(nd->depth != EMBEDDED_LEVELS))
584 		return 0;
585 	if (likely(nd->stack != nd->internal))
586 		return 0;
587 	return __nd_alloc_stack(nd);
588 }
589 
590 static void drop_links(struct nameidata *nd)
591 {
592 	int i = nd->depth;
593 	while (i--) {
594 		struct saved *last = nd->stack + i;
595 		struct inode *inode = last->inode;
596 		if (last->cookie && inode->i_op->put_link) {
597 			inode->i_op->put_link(inode, last->cookie);
598 			last->cookie = NULL;
599 		}
600 	}
601 }
602 
603 static void terminate_walk(struct nameidata *nd)
604 {
605 	drop_links(nd);
606 	if (!(nd->flags & LOOKUP_RCU)) {
607 		int i;
608 		path_put(&nd->path);
609 		for (i = 0; i < nd->depth; i++)
610 			path_put(&nd->stack[i].link);
611 		if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
612 			path_put(&nd->root);
613 			nd->root.mnt = NULL;
614 		}
615 	} else {
616 		nd->flags &= ~LOOKUP_RCU;
617 		if (!(nd->flags & LOOKUP_ROOT))
618 			nd->root.mnt = NULL;
619 		rcu_read_unlock();
620 	}
621 	nd->depth = 0;
622 }
623 
624 /* path_put is needed afterwards regardless of success or failure */
625 static bool legitimize_path(struct nameidata *nd,
626 			    struct path *path, unsigned seq)
627 {
628 	int res = __legitimize_mnt(path->mnt, nd->m_seq);
629 	if (unlikely(res)) {
630 		if (res > 0)
631 			path->mnt = NULL;
632 		path->dentry = NULL;
633 		return false;
634 	}
635 	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
636 		path->dentry = NULL;
637 		return false;
638 	}
639 	return !read_seqcount_retry(&path->dentry->d_seq, seq);
640 }
641 
642 static bool legitimize_links(struct nameidata *nd)
643 {
644 	int i;
645 	for (i = 0; i < nd->depth; i++) {
646 		struct saved *last = nd->stack + i;
647 		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
648 			drop_links(nd);
649 			nd->depth = i + 1;
650 			return false;
651 		}
652 	}
653 	return true;
654 }
655 
656 /*
657  * Path walking has 2 modes, rcu-walk and ref-walk (see
658  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
659  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
660  * normal reference counts on dentries and vfsmounts to transition to rcu-walk
661  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
662  * got stuck, so ref-walk may continue from there. If this is not successful
663  * (eg. a seqcount has changed), then failure is returned and it's up to caller
664  * to restart the path walk from the beginning in ref-walk mode.
665  */
666 
667 /**
668  * unlazy_walk - try to switch to ref-walk mode.
669  * @nd: nameidata pathwalk data
670  * @dentry: child of nd->path.dentry or NULL
671  * @seq: seq number to check dentry against
672  * Returns: 0 on success, -ECHILD on failure
673  *
674  * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
675  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
676  * @nd or NULL.  Must be called from rcu-walk context.
677  * Nothing should touch nameidata between unlazy_walk() failure and
678  * terminate_walk().
679  */
680 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq)
681 {
682 	struct dentry *parent = nd->path.dentry;
683 
684 	BUG_ON(!(nd->flags & LOOKUP_RCU));
685 
686 	nd->flags &= ~LOOKUP_RCU;
687 	if (unlikely(!legitimize_links(nd)))
688 		goto out2;
689 	if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
690 		goto out2;
691 	if (unlikely(!lockref_get_not_dead(&parent->d_lockref)))
692 		goto out1;
693 
694 	/*
695 	 * For a negative lookup, the lookup sequence point is the parents
696 	 * sequence point, and it only needs to revalidate the parent dentry.
697 	 *
698 	 * For a positive lookup, we need to move both the parent and the
699 	 * dentry from the RCU domain to be properly refcounted. And the
700 	 * sequence number in the dentry validates *both* dentry counters,
701 	 * since we checked the sequence number of the parent after we got
702 	 * the child sequence number. So we know the parent must still
703 	 * be valid if the child sequence number is still valid.
704 	 */
705 	if (!dentry) {
706 		if (read_seqcount_retry(&parent->d_seq, nd->seq))
707 			goto out;
708 		BUG_ON(nd->inode != parent->d_inode);
709 	} else {
710 		if (!lockref_get_not_dead(&dentry->d_lockref))
711 			goto out;
712 		if (read_seqcount_retry(&dentry->d_seq, seq))
713 			goto drop_dentry;
714 	}
715 
716 	/*
717 	 * Sequence counts matched. Now make sure that the root is
718 	 * still valid and get it if required.
719 	 */
720 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
721 		if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
722 			rcu_read_unlock();
723 			dput(dentry);
724 			return -ECHILD;
725 		}
726 	}
727 
728 	rcu_read_unlock();
729 	return 0;
730 
731 drop_dentry:
732 	rcu_read_unlock();
733 	dput(dentry);
734 	goto drop_root_mnt;
735 out2:
736 	nd->path.mnt = NULL;
737 out1:
738 	nd->path.dentry = NULL;
739 out:
740 	rcu_read_unlock();
741 drop_root_mnt:
742 	if (!(nd->flags & LOOKUP_ROOT))
743 		nd->root.mnt = NULL;
744 	return -ECHILD;
745 }
746 
747 static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq)
748 {
749 	if (unlikely(!legitimize_path(nd, link, seq))) {
750 		drop_links(nd);
751 		nd->depth = 0;
752 		nd->flags &= ~LOOKUP_RCU;
753 		nd->path.mnt = NULL;
754 		nd->path.dentry = NULL;
755 		if (!(nd->flags & LOOKUP_ROOT))
756 			nd->root.mnt = NULL;
757 		rcu_read_unlock();
758 	} else if (likely(unlazy_walk(nd, NULL, 0)) == 0) {
759 		return 0;
760 	}
761 	path_put(link);
762 	return -ECHILD;
763 }
764 
765 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
766 {
767 	return dentry->d_op->d_revalidate(dentry, flags);
768 }
769 
770 /**
771  * complete_walk - successful completion of path walk
772  * @nd:  pointer nameidata
773  *
774  * If we had been in RCU mode, drop out of it and legitimize nd->path.
775  * Revalidate the final result, unless we'd already done that during
776  * the path walk or the filesystem doesn't ask for it.  Return 0 on
777  * success, -error on failure.  In case of failure caller does not
778  * need to drop nd->path.
779  */
780 static int complete_walk(struct nameidata *nd)
781 {
782 	struct dentry *dentry = nd->path.dentry;
783 	int status;
784 
785 	if (nd->flags & LOOKUP_RCU) {
786 		if (!(nd->flags & LOOKUP_ROOT))
787 			nd->root.mnt = NULL;
788 		if (unlikely(unlazy_walk(nd, NULL, 0)))
789 			return -ECHILD;
790 	}
791 
792 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
793 		return 0;
794 
795 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
796 		return 0;
797 
798 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
799 	if (status > 0)
800 		return 0;
801 
802 	if (!status)
803 		status = -ESTALE;
804 
805 	return status;
806 }
807 
808 static void set_root(struct nameidata *nd)
809 {
810 	get_fs_root(current->fs, &nd->root);
811 }
812 
813 static void set_root_rcu(struct nameidata *nd)
814 {
815 	struct fs_struct *fs = current->fs;
816 	unsigned seq;
817 
818 	do {
819 		seq = read_seqcount_begin(&fs->seq);
820 		nd->root = fs->root;
821 		nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
822 	} while (read_seqcount_retry(&fs->seq, seq));
823 }
824 
825 static void path_put_conditional(struct path *path, struct nameidata *nd)
826 {
827 	dput(path->dentry);
828 	if (path->mnt != nd->path.mnt)
829 		mntput(path->mnt);
830 }
831 
832 static inline void path_to_nameidata(const struct path *path,
833 					struct nameidata *nd)
834 {
835 	if (!(nd->flags & LOOKUP_RCU)) {
836 		dput(nd->path.dentry);
837 		if (nd->path.mnt != path->mnt)
838 			mntput(nd->path.mnt);
839 	}
840 	nd->path.mnt = path->mnt;
841 	nd->path.dentry = path->dentry;
842 }
843 
844 /*
845  * Helper to directly jump to a known parsed path from ->follow_link,
846  * caller must have taken a reference to path beforehand.
847  */
848 void nd_jump_link(struct path *path)
849 {
850 	struct nameidata *nd = current->nameidata;
851 	path_put(&nd->path);
852 
853 	nd->path = *path;
854 	nd->inode = nd->path.dentry->d_inode;
855 	nd->flags |= LOOKUP_JUMPED;
856 }
857 
858 static inline void put_link(struct nameidata *nd)
859 {
860 	struct saved *last = nd->stack + --nd->depth;
861 	struct inode *inode = last->inode;
862 	if (last->cookie && inode->i_op->put_link)
863 		inode->i_op->put_link(inode, last->cookie);
864 	if (!(nd->flags & LOOKUP_RCU))
865 		path_put(&last->link);
866 }
867 
868 int sysctl_protected_symlinks __read_mostly = 0;
869 int sysctl_protected_hardlinks __read_mostly = 0;
870 
871 /**
872  * may_follow_link - Check symlink following for unsafe situations
873  * @nd: nameidata pathwalk data
874  *
875  * In the case of the sysctl_protected_symlinks sysctl being enabled,
876  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
877  * in a sticky world-writable directory. This is to protect privileged
878  * processes from failing races against path names that may change out
879  * from under them by way of other users creating malicious symlinks.
880  * It will permit symlinks to be followed only when outside a sticky
881  * world-writable directory, or when the uid of the symlink and follower
882  * match, or when the directory owner matches the symlink's owner.
883  *
884  * Returns 0 if following the symlink is allowed, -ve on error.
885  */
886 static inline int may_follow_link(struct nameidata *nd)
887 {
888 	const struct inode *inode;
889 	const struct inode *parent;
890 
891 	if (!sysctl_protected_symlinks)
892 		return 0;
893 
894 	/* Allowed if owner and follower match. */
895 	inode = nd->stack[0].inode;
896 	if (uid_eq(current_cred()->fsuid, inode->i_uid))
897 		return 0;
898 
899 	/* Allowed if parent directory not sticky and world-writable. */
900 	parent = nd->inode;
901 	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
902 		return 0;
903 
904 	/* Allowed if parent directory and link owner match. */
905 	if (uid_eq(parent->i_uid, inode->i_uid))
906 		return 0;
907 
908 	if (nd->flags & LOOKUP_RCU)
909 		return -ECHILD;
910 
911 	audit_log_link_denied("follow_link", &nd->stack[0].link);
912 	return -EACCES;
913 }
914 
915 /**
916  * safe_hardlink_source - Check for safe hardlink conditions
917  * @inode: the source inode to hardlink from
918  *
919  * Return false if at least one of the following conditions:
920  *    - inode is not a regular file
921  *    - inode is setuid
922  *    - inode is setgid and group-exec
923  *    - access failure for read and write
924  *
925  * Otherwise returns true.
926  */
927 static bool safe_hardlink_source(struct inode *inode)
928 {
929 	umode_t mode = inode->i_mode;
930 
931 	/* Special files should not get pinned to the filesystem. */
932 	if (!S_ISREG(mode))
933 		return false;
934 
935 	/* Setuid files should not get pinned to the filesystem. */
936 	if (mode & S_ISUID)
937 		return false;
938 
939 	/* Executable setgid files should not get pinned to the filesystem. */
940 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
941 		return false;
942 
943 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
944 	if (inode_permission(inode, MAY_READ | MAY_WRITE))
945 		return false;
946 
947 	return true;
948 }
949 
950 /**
951  * may_linkat - Check permissions for creating a hardlink
952  * @link: the source to hardlink from
953  *
954  * Block hardlink when all of:
955  *  - sysctl_protected_hardlinks enabled
956  *  - fsuid does not match inode
957  *  - hardlink source is unsafe (see safe_hardlink_source() above)
958  *  - not CAP_FOWNER
959  *
960  * Returns 0 if successful, -ve on error.
961  */
962 static int may_linkat(struct path *link)
963 {
964 	const struct cred *cred;
965 	struct inode *inode;
966 
967 	if (!sysctl_protected_hardlinks)
968 		return 0;
969 
970 	cred = current_cred();
971 	inode = link->dentry->d_inode;
972 
973 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
974 	 * otherwise, it must be a safe source.
975 	 */
976 	if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
977 	    capable(CAP_FOWNER))
978 		return 0;
979 
980 	audit_log_link_denied("linkat", link);
981 	return -EPERM;
982 }
983 
984 static __always_inline
985 const char *get_link(struct nameidata *nd)
986 {
987 	struct saved *last = nd->stack + nd->depth - 1;
988 	struct dentry *dentry = last->link.dentry;
989 	struct inode *inode = last->inode;
990 	int error;
991 	const char *res;
992 
993 	if (!(nd->flags & LOOKUP_RCU)) {
994 		touch_atime(&last->link);
995 		cond_resched();
996 	} else if (atime_needs_update(&last->link, inode)) {
997 		if (unlikely(unlazy_walk(nd, NULL, 0)))
998 			return ERR_PTR(-ECHILD);
999 		touch_atime(&last->link);
1000 	}
1001 
1002 	error = security_inode_follow_link(dentry, inode,
1003 					   nd->flags & LOOKUP_RCU);
1004 	if (unlikely(error))
1005 		return ERR_PTR(error);
1006 
1007 	nd->last_type = LAST_BIND;
1008 	res = inode->i_link;
1009 	if (!res) {
1010 		if (nd->flags & LOOKUP_RCU) {
1011 			if (unlikely(unlazy_walk(nd, NULL, 0)))
1012 				return ERR_PTR(-ECHILD);
1013 		}
1014 		res = inode->i_op->follow_link(dentry, &last->cookie);
1015 		if (IS_ERR_OR_NULL(res)) {
1016 			last->cookie = NULL;
1017 			return res;
1018 		}
1019 	}
1020 	if (*res == '/') {
1021 		if (nd->flags & LOOKUP_RCU) {
1022 			struct dentry *d;
1023 			if (!nd->root.mnt)
1024 				set_root_rcu(nd);
1025 			nd->path = nd->root;
1026 			d = nd->path.dentry;
1027 			nd->inode = d->d_inode;
1028 			nd->seq = nd->root_seq;
1029 			if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
1030 				return ERR_PTR(-ECHILD);
1031 		} else {
1032 			if (!nd->root.mnt)
1033 				set_root(nd);
1034 			path_put(&nd->path);
1035 			nd->path = nd->root;
1036 			path_get(&nd->root);
1037 			nd->inode = nd->path.dentry->d_inode;
1038 		}
1039 		nd->flags |= LOOKUP_JUMPED;
1040 		while (unlikely(*++res == '/'))
1041 			;
1042 	}
1043 	if (!*res)
1044 		res = NULL;
1045 	return res;
1046 }
1047 
1048 /*
1049  * follow_up - Find the mountpoint of path's vfsmount
1050  *
1051  * Given a path, find the mountpoint of its source file system.
1052  * Replace @path with the path of the mountpoint in the parent mount.
1053  * Up is towards /.
1054  *
1055  * Return 1 if we went up a level and 0 if we were already at the
1056  * root.
1057  */
1058 int follow_up(struct path *path)
1059 {
1060 	struct mount *mnt = real_mount(path->mnt);
1061 	struct mount *parent;
1062 	struct dentry *mountpoint;
1063 
1064 	read_seqlock_excl(&mount_lock);
1065 	parent = mnt->mnt_parent;
1066 	if (parent == mnt) {
1067 		read_sequnlock_excl(&mount_lock);
1068 		return 0;
1069 	}
1070 	mntget(&parent->mnt);
1071 	mountpoint = dget(mnt->mnt_mountpoint);
1072 	read_sequnlock_excl(&mount_lock);
1073 	dput(path->dentry);
1074 	path->dentry = mountpoint;
1075 	mntput(path->mnt);
1076 	path->mnt = &parent->mnt;
1077 	return 1;
1078 }
1079 EXPORT_SYMBOL(follow_up);
1080 
1081 /*
1082  * Perform an automount
1083  * - return -EISDIR to tell follow_managed() to stop and return the path we
1084  *   were called with.
1085  */
1086 static int follow_automount(struct path *path, struct nameidata *nd,
1087 			    bool *need_mntput)
1088 {
1089 	struct vfsmount *mnt;
1090 	int err;
1091 
1092 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1093 		return -EREMOTE;
1094 
1095 	/* We don't want to mount if someone's just doing a stat -
1096 	 * unless they're stat'ing a directory and appended a '/' to
1097 	 * the name.
1098 	 *
1099 	 * We do, however, want to mount if someone wants to open or
1100 	 * create a file of any type under the mountpoint, wants to
1101 	 * traverse through the mountpoint or wants to open the
1102 	 * mounted directory.  Also, autofs may mark negative dentries
1103 	 * as being automount points.  These will need the attentions
1104 	 * of the daemon to instantiate them before they can be used.
1105 	 */
1106 	if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1107 			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1108 	    path->dentry->d_inode)
1109 		return -EISDIR;
1110 
1111 	nd->total_link_count++;
1112 	if (nd->total_link_count >= 40)
1113 		return -ELOOP;
1114 
1115 	mnt = path->dentry->d_op->d_automount(path);
1116 	if (IS_ERR(mnt)) {
1117 		/*
1118 		 * The filesystem is allowed to return -EISDIR here to indicate
1119 		 * it doesn't want to automount.  For instance, autofs would do
1120 		 * this so that its userspace daemon can mount on this dentry.
1121 		 *
1122 		 * However, we can only permit this if it's a terminal point in
1123 		 * the path being looked up; if it wasn't then the remainder of
1124 		 * the path is inaccessible and we should say so.
1125 		 */
1126 		if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1127 			return -EREMOTE;
1128 		return PTR_ERR(mnt);
1129 	}
1130 
1131 	if (!mnt) /* mount collision */
1132 		return 0;
1133 
1134 	if (!*need_mntput) {
1135 		/* lock_mount() may release path->mnt on error */
1136 		mntget(path->mnt);
1137 		*need_mntput = true;
1138 	}
1139 	err = finish_automount(mnt, path);
1140 
1141 	switch (err) {
1142 	case -EBUSY:
1143 		/* Someone else made a mount here whilst we were busy */
1144 		return 0;
1145 	case 0:
1146 		path_put(path);
1147 		path->mnt = mnt;
1148 		path->dentry = dget(mnt->mnt_root);
1149 		return 0;
1150 	default:
1151 		return err;
1152 	}
1153 
1154 }
1155 
1156 /*
1157  * Handle a dentry that is managed in some way.
1158  * - Flagged for transit management (autofs)
1159  * - Flagged as mountpoint
1160  * - Flagged as automount point
1161  *
1162  * This may only be called in refwalk mode.
1163  *
1164  * Serialization is taken care of in namespace.c
1165  */
1166 static int follow_managed(struct path *path, struct nameidata *nd)
1167 {
1168 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1169 	unsigned managed;
1170 	bool need_mntput = false;
1171 	int ret = 0;
1172 
1173 	/* Given that we're not holding a lock here, we retain the value in a
1174 	 * local variable for each dentry as we look at it so that we don't see
1175 	 * the components of that value change under us */
1176 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1177 	       managed &= DCACHE_MANAGED_DENTRY,
1178 	       unlikely(managed != 0)) {
1179 		/* Allow the filesystem to manage the transit without i_mutex
1180 		 * being held. */
1181 		if (managed & DCACHE_MANAGE_TRANSIT) {
1182 			BUG_ON(!path->dentry->d_op);
1183 			BUG_ON(!path->dentry->d_op->d_manage);
1184 			ret = path->dentry->d_op->d_manage(path->dentry, false);
1185 			if (ret < 0)
1186 				break;
1187 		}
1188 
1189 		/* Transit to a mounted filesystem. */
1190 		if (managed & DCACHE_MOUNTED) {
1191 			struct vfsmount *mounted = lookup_mnt(path);
1192 			if (mounted) {
1193 				dput(path->dentry);
1194 				if (need_mntput)
1195 					mntput(path->mnt);
1196 				path->mnt = mounted;
1197 				path->dentry = dget(mounted->mnt_root);
1198 				need_mntput = true;
1199 				continue;
1200 			}
1201 
1202 			/* Something is mounted on this dentry in another
1203 			 * namespace and/or whatever was mounted there in this
1204 			 * namespace got unmounted before lookup_mnt() could
1205 			 * get it */
1206 		}
1207 
1208 		/* Handle an automount point */
1209 		if (managed & DCACHE_NEED_AUTOMOUNT) {
1210 			ret = follow_automount(path, nd, &need_mntput);
1211 			if (ret < 0)
1212 				break;
1213 			continue;
1214 		}
1215 
1216 		/* We didn't change the current path point */
1217 		break;
1218 	}
1219 
1220 	if (need_mntput && path->mnt == mnt)
1221 		mntput(path->mnt);
1222 	if (ret == -EISDIR)
1223 		ret = 0;
1224 	if (need_mntput)
1225 		nd->flags |= LOOKUP_JUMPED;
1226 	if (unlikely(ret < 0))
1227 		path_put_conditional(path, nd);
1228 	return ret;
1229 }
1230 
1231 int follow_down_one(struct path *path)
1232 {
1233 	struct vfsmount *mounted;
1234 
1235 	mounted = lookup_mnt(path);
1236 	if (mounted) {
1237 		dput(path->dentry);
1238 		mntput(path->mnt);
1239 		path->mnt = mounted;
1240 		path->dentry = dget(mounted->mnt_root);
1241 		return 1;
1242 	}
1243 	return 0;
1244 }
1245 EXPORT_SYMBOL(follow_down_one);
1246 
1247 static inline int managed_dentry_rcu(struct dentry *dentry)
1248 {
1249 	return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1250 		dentry->d_op->d_manage(dentry, true) : 0;
1251 }
1252 
1253 /*
1254  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1255  * we meet a managed dentry that would need blocking.
1256  */
1257 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1258 			       struct inode **inode, unsigned *seqp)
1259 {
1260 	for (;;) {
1261 		struct mount *mounted;
1262 		/*
1263 		 * Don't forget we might have a non-mountpoint managed dentry
1264 		 * that wants to block transit.
1265 		 */
1266 		switch (managed_dentry_rcu(path->dentry)) {
1267 		case -ECHILD:
1268 		default:
1269 			return false;
1270 		case -EISDIR:
1271 			return true;
1272 		case 0:
1273 			break;
1274 		}
1275 
1276 		if (!d_mountpoint(path->dentry))
1277 			return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1278 
1279 		mounted = __lookup_mnt(path->mnt, path->dentry);
1280 		if (!mounted)
1281 			break;
1282 		path->mnt = &mounted->mnt;
1283 		path->dentry = mounted->mnt.mnt_root;
1284 		nd->flags |= LOOKUP_JUMPED;
1285 		*seqp = read_seqcount_begin(&path->dentry->d_seq);
1286 		/*
1287 		 * Update the inode too. We don't need to re-check the
1288 		 * dentry sequence number here after this d_inode read,
1289 		 * because a mount-point is always pinned.
1290 		 */
1291 		*inode = path->dentry->d_inode;
1292 	}
1293 	return !read_seqretry(&mount_lock, nd->m_seq) &&
1294 		!(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1295 }
1296 
1297 static int follow_dotdot_rcu(struct nameidata *nd)
1298 {
1299 	struct inode *inode = nd->inode;
1300 	if (!nd->root.mnt)
1301 		set_root_rcu(nd);
1302 
1303 	while (1) {
1304 		if (path_equal(&nd->path, &nd->root))
1305 			break;
1306 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1307 			struct dentry *old = nd->path.dentry;
1308 			struct dentry *parent = old->d_parent;
1309 			unsigned seq;
1310 
1311 			inode = parent->d_inode;
1312 			seq = read_seqcount_begin(&parent->d_seq);
1313 			if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1314 				return -ECHILD;
1315 			nd->path.dentry = parent;
1316 			nd->seq = seq;
1317 			if (unlikely(!path_connected(&nd->path)))
1318 				return -ENOENT;
1319 			break;
1320 		} else {
1321 			struct mount *mnt = real_mount(nd->path.mnt);
1322 			struct mount *mparent = mnt->mnt_parent;
1323 			struct dentry *mountpoint = mnt->mnt_mountpoint;
1324 			struct inode *inode2 = mountpoint->d_inode;
1325 			unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1326 			if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1327 				return -ECHILD;
1328 			if (&mparent->mnt == nd->path.mnt)
1329 				break;
1330 			/* we know that mountpoint was pinned */
1331 			nd->path.dentry = mountpoint;
1332 			nd->path.mnt = &mparent->mnt;
1333 			inode = inode2;
1334 			nd->seq = seq;
1335 		}
1336 	}
1337 	while (unlikely(d_mountpoint(nd->path.dentry))) {
1338 		struct mount *mounted;
1339 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1340 		if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1341 			return -ECHILD;
1342 		if (!mounted)
1343 			break;
1344 		nd->path.mnt = &mounted->mnt;
1345 		nd->path.dentry = mounted->mnt.mnt_root;
1346 		inode = nd->path.dentry->d_inode;
1347 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1348 	}
1349 	nd->inode = inode;
1350 	return 0;
1351 }
1352 
1353 /*
1354  * Follow down to the covering mount currently visible to userspace.  At each
1355  * point, the filesystem owning that dentry may be queried as to whether the
1356  * caller is permitted to proceed or not.
1357  */
1358 int follow_down(struct path *path)
1359 {
1360 	unsigned managed;
1361 	int ret;
1362 
1363 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1364 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1365 		/* Allow the filesystem to manage the transit without i_mutex
1366 		 * being held.
1367 		 *
1368 		 * We indicate to the filesystem if someone is trying to mount
1369 		 * something here.  This gives autofs the chance to deny anyone
1370 		 * other than its daemon the right to mount on its
1371 		 * superstructure.
1372 		 *
1373 		 * The filesystem may sleep at this point.
1374 		 */
1375 		if (managed & DCACHE_MANAGE_TRANSIT) {
1376 			BUG_ON(!path->dentry->d_op);
1377 			BUG_ON(!path->dentry->d_op->d_manage);
1378 			ret = path->dentry->d_op->d_manage(
1379 				path->dentry, false);
1380 			if (ret < 0)
1381 				return ret == -EISDIR ? 0 : ret;
1382 		}
1383 
1384 		/* Transit to a mounted filesystem. */
1385 		if (managed & DCACHE_MOUNTED) {
1386 			struct vfsmount *mounted = lookup_mnt(path);
1387 			if (!mounted)
1388 				break;
1389 			dput(path->dentry);
1390 			mntput(path->mnt);
1391 			path->mnt = mounted;
1392 			path->dentry = dget(mounted->mnt_root);
1393 			continue;
1394 		}
1395 
1396 		/* Don't handle automount points here */
1397 		break;
1398 	}
1399 	return 0;
1400 }
1401 EXPORT_SYMBOL(follow_down);
1402 
1403 /*
1404  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1405  */
1406 static void follow_mount(struct path *path)
1407 {
1408 	while (d_mountpoint(path->dentry)) {
1409 		struct vfsmount *mounted = lookup_mnt(path);
1410 		if (!mounted)
1411 			break;
1412 		dput(path->dentry);
1413 		mntput(path->mnt);
1414 		path->mnt = mounted;
1415 		path->dentry = dget(mounted->mnt_root);
1416 	}
1417 }
1418 
1419 static int follow_dotdot(struct nameidata *nd)
1420 {
1421 	if (!nd->root.mnt)
1422 		set_root(nd);
1423 
1424 	while(1) {
1425 		struct dentry *old = nd->path.dentry;
1426 
1427 		if (nd->path.dentry == nd->root.dentry &&
1428 		    nd->path.mnt == nd->root.mnt) {
1429 			break;
1430 		}
1431 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1432 			/* rare case of legitimate dget_parent()... */
1433 			nd->path.dentry = dget_parent(nd->path.dentry);
1434 			dput(old);
1435 			if (unlikely(!path_connected(&nd->path)))
1436 				return -ENOENT;
1437 			break;
1438 		}
1439 		if (!follow_up(&nd->path))
1440 			break;
1441 	}
1442 	follow_mount(&nd->path);
1443 	nd->inode = nd->path.dentry->d_inode;
1444 	return 0;
1445 }
1446 
1447 /*
1448  * This looks up the name in dcache, possibly revalidates the old dentry and
1449  * allocates a new one if not found or not valid.  In the need_lookup argument
1450  * returns whether i_op->lookup is necessary.
1451  *
1452  * dir->d_inode->i_mutex must be held
1453  */
1454 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1455 				    unsigned int flags, bool *need_lookup)
1456 {
1457 	struct dentry *dentry;
1458 	int error;
1459 
1460 	*need_lookup = false;
1461 	dentry = d_lookup(dir, name);
1462 	if (dentry) {
1463 		if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1464 			error = d_revalidate(dentry, flags);
1465 			if (unlikely(error <= 0)) {
1466 				if (error < 0) {
1467 					dput(dentry);
1468 					return ERR_PTR(error);
1469 				} else {
1470 					d_invalidate(dentry);
1471 					dput(dentry);
1472 					dentry = NULL;
1473 				}
1474 			}
1475 		}
1476 	}
1477 
1478 	if (!dentry) {
1479 		dentry = d_alloc(dir, name);
1480 		if (unlikely(!dentry))
1481 			return ERR_PTR(-ENOMEM);
1482 
1483 		*need_lookup = true;
1484 	}
1485 	return dentry;
1486 }
1487 
1488 /*
1489  * Call i_op->lookup on the dentry.  The dentry must be negative and
1490  * unhashed.
1491  *
1492  * dir->d_inode->i_mutex must be held
1493  */
1494 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1495 				  unsigned int flags)
1496 {
1497 	struct dentry *old;
1498 
1499 	/* Don't create child dentry for a dead directory. */
1500 	if (unlikely(IS_DEADDIR(dir))) {
1501 		dput(dentry);
1502 		return ERR_PTR(-ENOENT);
1503 	}
1504 
1505 	old = dir->i_op->lookup(dir, dentry, flags);
1506 	if (unlikely(old)) {
1507 		dput(dentry);
1508 		dentry = old;
1509 	}
1510 	return dentry;
1511 }
1512 
1513 static struct dentry *__lookup_hash(struct qstr *name,
1514 		struct dentry *base, unsigned int flags)
1515 {
1516 	bool need_lookup;
1517 	struct dentry *dentry;
1518 
1519 	dentry = lookup_dcache(name, base, flags, &need_lookup);
1520 	if (!need_lookup)
1521 		return dentry;
1522 
1523 	return lookup_real(base->d_inode, dentry, flags);
1524 }
1525 
1526 /*
1527  *  It's more convoluted than I'd like it to be, but... it's still fairly
1528  *  small and for now I'd prefer to have fast path as straight as possible.
1529  *  It _is_ time-critical.
1530  */
1531 static int lookup_fast(struct nameidata *nd,
1532 		       struct path *path, struct inode **inode,
1533 		       unsigned *seqp)
1534 {
1535 	struct vfsmount *mnt = nd->path.mnt;
1536 	struct dentry *dentry, *parent = nd->path.dentry;
1537 	int need_reval = 1;
1538 	int status = 1;
1539 	int err;
1540 
1541 	/*
1542 	 * Rename seqlock is not required here because in the off chance
1543 	 * of a false negative due to a concurrent rename, we're going to
1544 	 * do the non-racy lookup, below.
1545 	 */
1546 	if (nd->flags & LOOKUP_RCU) {
1547 		unsigned seq;
1548 		bool negative;
1549 		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1550 		if (!dentry)
1551 			goto unlazy;
1552 
1553 		/*
1554 		 * This sequence count validates that the inode matches
1555 		 * the dentry name information from lookup.
1556 		 */
1557 		*inode = d_backing_inode(dentry);
1558 		negative = d_is_negative(dentry);
1559 		if (read_seqcount_retry(&dentry->d_seq, seq))
1560 			return -ECHILD;
1561 
1562 		/*
1563 		 * This sequence count validates that the parent had no
1564 		 * changes while we did the lookup of the dentry above.
1565 		 *
1566 		 * The memory barrier in read_seqcount_begin of child is
1567 		 *  enough, we can use __read_seqcount_retry here.
1568 		 */
1569 		if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1570 			return -ECHILD;
1571 
1572 		*seqp = seq;
1573 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1574 			status = d_revalidate(dentry, nd->flags);
1575 			if (unlikely(status <= 0)) {
1576 				if (status != -ECHILD)
1577 					need_reval = 0;
1578 				goto unlazy;
1579 			}
1580 		}
1581 		/*
1582 		 * Note: do negative dentry check after revalidation in
1583 		 * case that drops it.
1584 		 */
1585 		if (negative)
1586 			return -ENOENT;
1587 		path->mnt = mnt;
1588 		path->dentry = dentry;
1589 		if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1590 			return 0;
1591 unlazy:
1592 		if (unlazy_walk(nd, dentry, seq))
1593 			return -ECHILD;
1594 	} else {
1595 		dentry = __d_lookup(parent, &nd->last);
1596 	}
1597 
1598 	if (unlikely(!dentry))
1599 		goto need_lookup;
1600 
1601 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1602 		status = d_revalidate(dentry, nd->flags);
1603 	if (unlikely(status <= 0)) {
1604 		if (status < 0) {
1605 			dput(dentry);
1606 			return status;
1607 		}
1608 		d_invalidate(dentry);
1609 		dput(dentry);
1610 		goto need_lookup;
1611 	}
1612 
1613 	if (unlikely(d_is_negative(dentry))) {
1614 		dput(dentry);
1615 		return -ENOENT;
1616 	}
1617 	path->mnt = mnt;
1618 	path->dentry = dentry;
1619 	err = follow_managed(path, nd);
1620 	if (likely(!err))
1621 		*inode = d_backing_inode(path->dentry);
1622 	return err;
1623 
1624 need_lookup:
1625 	return 1;
1626 }
1627 
1628 /* Fast lookup failed, do it the slow way */
1629 static int lookup_slow(struct nameidata *nd, struct path *path)
1630 {
1631 	struct dentry *dentry, *parent;
1632 
1633 	parent = nd->path.dentry;
1634 	BUG_ON(nd->inode != parent->d_inode);
1635 
1636 	mutex_lock(&parent->d_inode->i_mutex);
1637 	dentry = __lookup_hash(&nd->last, parent, nd->flags);
1638 	mutex_unlock(&parent->d_inode->i_mutex);
1639 	if (IS_ERR(dentry))
1640 		return PTR_ERR(dentry);
1641 	path->mnt = nd->path.mnt;
1642 	path->dentry = dentry;
1643 	return follow_managed(path, nd);
1644 }
1645 
1646 static inline int may_lookup(struct nameidata *nd)
1647 {
1648 	if (nd->flags & LOOKUP_RCU) {
1649 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1650 		if (err != -ECHILD)
1651 			return err;
1652 		if (unlazy_walk(nd, NULL, 0))
1653 			return -ECHILD;
1654 	}
1655 	return inode_permission(nd->inode, MAY_EXEC);
1656 }
1657 
1658 static inline int handle_dots(struct nameidata *nd, int type)
1659 {
1660 	if (type == LAST_DOTDOT) {
1661 		if (nd->flags & LOOKUP_RCU) {
1662 			return follow_dotdot_rcu(nd);
1663 		} else
1664 			return follow_dotdot(nd);
1665 	}
1666 	return 0;
1667 }
1668 
1669 static int pick_link(struct nameidata *nd, struct path *link,
1670 		     struct inode *inode, unsigned seq)
1671 {
1672 	int error;
1673 	struct saved *last;
1674 	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1675 		path_to_nameidata(link, nd);
1676 		return -ELOOP;
1677 	}
1678 	if (!(nd->flags & LOOKUP_RCU)) {
1679 		if (link->mnt == nd->path.mnt)
1680 			mntget(link->mnt);
1681 	}
1682 	error = nd_alloc_stack(nd);
1683 	if (unlikely(error)) {
1684 		if (error == -ECHILD) {
1685 			if (unlikely(unlazy_link(nd, link, seq)))
1686 				return -ECHILD;
1687 			error = nd_alloc_stack(nd);
1688 		}
1689 		if (error) {
1690 			path_put(link);
1691 			return error;
1692 		}
1693 	}
1694 
1695 	last = nd->stack + nd->depth++;
1696 	last->link = *link;
1697 	last->cookie = NULL;
1698 	last->inode = inode;
1699 	last->seq = seq;
1700 	return 1;
1701 }
1702 
1703 /*
1704  * Do we need to follow links? We _really_ want to be able
1705  * to do this check without having to look at inode->i_op,
1706  * so we keep a cache of "no, this doesn't need follow_link"
1707  * for the common case.
1708  */
1709 static inline int should_follow_link(struct nameidata *nd, struct path *link,
1710 				     int follow,
1711 				     struct inode *inode, unsigned seq)
1712 {
1713 	if (likely(!d_is_symlink(link->dentry)))
1714 		return 0;
1715 	if (!follow)
1716 		return 0;
1717 	return pick_link(nd, link, inode, seq);
1718 }
1719 
1720 enum {WALK_GET = 1, WALK_PUT = 2};
1721 
1722 static int walk_component(struct nameidata *nd, int flags)
1723 {
1724 	struct path path;
1725 	struct inode *inode;
1726 	unsigned seq;
1727 	int err;
1728 	/*
1729 	 * "." and ".." are special - ".." especially so because it has
1730 	 * to be able to know about the current root directory and
1731 	 * parent relationships.
1732 	 */
1733 	if (unlikely(nd->last_type != LAST_NORM)) {
1734 		err = handle_dots(nd, nd->last_type);
1735 		if (flags & WALK_PUT)
1736 			put_link(nd);
1737 		return err;
1738 	}
1739 	err = lookup_fast(nd, &path, &inode, &seq);
1740 	if (unlikely(err)) {
1741 		if (err < 0)
1742 			return err;
1743 
1744 		err = lookup_slow(nd, &path);
1745 		if (err < 0)
1746 			return err;
1747 
1748 		inode = d_backing_inode(path.dentry);
1749 		seq = 0;	/* we are already out of RCU mode */
1750 		err = -ENOENT;
1751 		if (d_is_negative(path.dentry))
1752 			goto out_path_put;
1753 	}
1754 
1755 	if (flags & WALK_PUT)
1756 		put_link(nd);
1757 	err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq);
1758 	if (unlikely(err))
1759 		return err;
1760 	path_to_nameidata(&path, nd);
1761 	nd->inode = inode;
1762 	nd->seq = seq;
1763 	return 0;
1764 
1765 out_path_put:
1766 	path_to_nameidata(&path, nd);
1767 	return err;
1768 }
1769 
1770 /*
1771  * We can do the critical dentry name comparison and hashing
1772  * operations one word at a time, but we are limited to:
1773  *
1774  * - Architectures with fast unaligned word accesses. We could
1775  *   do a "get_unaligned()" if this helps and is sufficiently
1776  *   fast.
1777  *
1778  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1779  *   do not trap on the (extremely unlikely) case of a page
1780  *   crossing operation.
1781  *
1782  * - Furthermore, we need an efficient 64-bit compile for the
1783  *   64-bit case in order to generate the "number of bytes in
1784  *   the final mask". Again, that could be replaced with a
1785  *   efficient population count instruction or similar.
1786  */
1787 #ifdef CONFIG_DCACHE_WORD_ACCESS
1788 
1789 #include <asm/word-at-a-time.h>
1790 
1791 #ifdef CONFIG_64BIT
1792 
1793 static inline unsigned int fold_hash(unsigned long hash)
1794 {
1795 	return hash_64(hash, 32);
1796 }
1797 
1798 #else	/* 32-bit case */
1799 
1800 #define fold_hash(x) (x)
1801 
1802 #endif
1803 
1804 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1805 {
1806 	unsigned long a, mask;
1807 	unsigned long hash = 0;
1808 
1809 	for (;;) {
1810 		a = load_unaligned_zeropad(name);
1811 		if (len < sizeof(unsigned long))
1812 			break;
1813 		hash += a;
1814 		hash *= 9;
1815 		name += sizeof(unsigned long);
1816 		len -= sizeof(unsigned long);
1817 		if (!len)
1818 			goto done;
1819 	}
1820 	mask = bytemask_from_count(len);
1821 	hash += mask & a;
1822 done:
1823 	return fold_hash(hash);
1824 }
1825 EXPORT_SYMBOL(full_name_hash);
1826 
1827 /*
1828  * Calculate the length and hash of the path component, and
1829  * return the "hash_len" as the result.
1830  */
1831 static inline u64 hash_name(const char *name)
1832 {
1833 	unsigned long a, b, adata, bdata, mask, hash, len;
1834 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1835 
1836 	hash = a = 0;
1837 	len = -sizeof(unsigned long);
1838 	do {
1839 		hash = (hash + a) * 9;
1840 		len += sizeof(unsigned long);
1841 		a = load_unaligned_zeropad(name+len);
1842 		b = a ^ REPEAT_BYTE('/');
1843 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1844 
1845 	adata = prep_zero_mask(a, adata, &constants);
1846 	bdata = prep_zero_mask(b, bdata, &constants);
1847 
1848 	mask = create_zero_mask(adata | bdata);
1849 
1850 	hash += a & zero_bytemask(mask);
1851 	len += find_zero(mask);
1852 	return hashlen_create(fold_hash(hash), len);
1853 }
1854 
1855 #else
1856 
1857 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1858 {
1859 	unsigned long hash = init_name_hash();
1860 	while (len--)
1861 		hash = partial_name_hash(*name++, hash);
1862 	return end_name_hash(hash);
1863 }
1864 EXPORT_SYMBOL(full_name_hash);
1865 
1866 /*
1867  * We know there's a real path component here of at least
1868  * one character.
1869  */
1870 static inline u64 hash_name(const char *name)
1871 {
1872 	unsigned long hash = init_name_hash();
1873 	unsigned long len = 0, c;
1874 
1875 	c = (unsigned char)*name;
1876 	do {
1877 		len++;
1878 		hash = partial_name_hash(c, hash);
1879 		c = (unsigned char)name[len];
1880 	} while (c && c != '/');
1881 	return hashlen_create(end_name_hash(hash), len);
1882 }
1883 
1884 #endif
1885 
1886 /*
1887  * Name resolution.
1888  * This is the basic name resolution function, turning a pathname into
1889  * the final dentry. We expect 'base' to be positive and a directory.
1890  *
1891  * Returns 0 and nd will have valid dentry and mnt on success.
1892  * Returns error and drops reference to input namei data on failure.
1893  */
1894 static int link_path_walk(const char *name, struct nameidata *nd)
1895 {
1896 	int err;
1897 
1898 	while (*name=='/')
1899 		name++;
1900 	if (!*name)
1901 		return 0;
1902 
1903 	/* At this point we know we have a real path component. */
1904 	for(;;) {
1905 		u64 hash_len;
1906 		int type;
1907 
1908 		err = may_lookup(nd);
1909  		if (err)
1910 			return err;
1911 
1912 		hash_len = hash_name(name);
1913 
1914 		type = LAST_NORM;
1915 		if (name[0] == '.') switch (hashlen_len(hash_len)) {
1916 			case 2:
1917 				if (name[1] == '.') {
1918 					type = LAST_DOTDOT;
1919 					nd->flags |= LOOKUP_JUMPED;
1920 				}
1921 				break;
1922 			case 1:
1923 				type = LAST_DOT;
1924 		}
1925 		if (likely(type == LAST_NORM)) {
1926 			struct dentry *parent = nd->path.dentry;
1927 			nd->flags &= ~LOOKUP_JUMPED;
1928 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1929 				struct qstr this = { { .hash_len = hash_len }, .name = name };
1930 				err = parent->d_op->d_hash(parent, &this);
1931 				if (err < 0)
1932 					return err;
1933 				hash_len = this.hash_len;
1934 				name = this.name;
1935 			}
1936 		}
1937 
1938 		nd->last.hash_len = hash_len;
1939 		nd->last.name = name;
1940 		nd->last_type = type;
1941 
1942 		name += hashlen_len(hash_len);
1943 		if (!*name)
1944 			goto OK;
1945 		/*
1946 		 * If it wasn't NUL, we know it was '/'. Skip that
1947 		 * slash, and continue until no more slashes.
1948 		 */
1949 		do {
1950 			name++;
1951 		} while (unlikely(*name == '/'));
1952 		if (unlikely(!*name)) {
1953 OK:
1954 			/* pathname body, done */
1955 			if (!nd->depth)
1956 				return 0;
1957 			name = nd->stack[nd->depth - 1].name;
1958 			/* trailing symlink, done */
1959 			if (!name)
1960 				return 0;
1961 			/* last component of nested symlink */
1962 			err = walk_component(nd, WALK_GET | WALK_PUT);
1963 		} else {
1964 			err = walk_component(nd, WALK_GET);
1965 		}
1966 		if (err < 0)
1967 			return err;
1968 
1969 		if (err) {
1970 			const char *s = get_link(nd);
1971 
1972 			if (unlikely(IS_ERR(s)))
1973 				return PTR_ERR(s);
1974 			err = 0;
1975 			if (unlikely(!s)) {
1976 				/* jumped */
1977 				put_link(nd);
1978 			} else {
1979 				nd->stack[nd->depth - 1].name = name;
1980 				name = s;
1981 				continue;
1982 			}
1983 		}
1984 		if (unlikely(!d_can_lookup(nd->path.dentry))) {
1985 			if (nd->flags & LOOKUP_RCU) {
1986 				if (unlazy_walk(nd, NULL, 0))
1987 					return -ECHILD;
1988 			}
1989 			return -ENOTDIR;
1990 		}
1991 	}
1992 }
1993 
1994 static const char *path_init(struct nameidata *nd, unsigned flags)
1995 {
1996 	int retval = 0;
1997 	const char *s = nd->name->name;
1998 
1999 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
2000 	nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2001 	nd->depth = 0;
2002 	nd->total_link_count = 0;
2003 	if (flags & LOOKUP_ROOT) {
2004 		struct dentry *root = nd->root.dentry;
2005 		struct inode *inode = root->d_inode;
2006 		if (*s) {
2007 			if (!d_can_lookup(root))
2008 				return ERR_PTR(-ENOTDIR);
2009 			retval = inode_permission(inode, MAY_EXEC);
2010 			if (retval)
2011 				return ERR_PTR(retval);
2012 		}
2013 		nd->path = nd->root;
2014 		nd->inode = inode;
2015 		if (flags & LOOKUP_RCU) {
2016 			rcu_read_lock();
2017 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2018 			nd->root_seq = nd->seq;
2019 			nd->m_seq = read_seqbegin(&mount_lock);
2020 		} else {
2021 			path_get(&nd->path);
2022 		}
2023 		return s;
2024 	}
2025 
2026 	nd->root.mnt = NULL;
2027 
2028 	nd->m_seq = read_seqbegin(&mount_lock);
2029 	if (*s == '/') {
2030 		if (flags & LOOKUP_RCU) {
2031 			rcu_read_lock();
2032 			set_root_rcu(nd);
2033 			nd->seq = nd->root_seq;
2034 		} else {
2035 			set_root(nd);
2036 			path_get(&nd->root);
2037 		}
2038 		nd->path = nd->root;
2039 	} else if (nd->dfd == AT_FDCWD) {
2040 		if (flags & LOOKUP_RCU) {
2041 			struct fs_struct *fs = current->fs;
2042 			unsigned seq;
2043 
2044 			rcu_read_lock();
2045 
2046 			do {
2047 				seq = read_seqcount_begin(&fs->seq);
2048 				nd->path = fs->pwd;
2049 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2050 			} while (read_seqcount_retry(&fs->seq, seq));
2051 		} else {
2052 			get_fs_pwd(current->fs, &nd->path);
2053 		}
2054 	} else {
2055 		/* Caller must check execute permissions on the starting path component */
2056 		struct fd f = fdget_raw(nd->dfd);
2057 		struct dentry *dentry;
2058 
2059 		if (!f.file)
2060 			return ERR_PTR(-EBADF);
2061 
2062 		dentry = f.file->f_path.dentry;
2063 
2064 		if (*s) {
2065 			if (!d_can_lookup(dentry)) {
2066 				fdput(f);
2067 				return ERR_PTR(-ENOTDIR);
2068 			}
2069 		}
2070 
2071 		nd->path = f.file->f_path;
2072 		if (flags & LOOKUP_RCU) {
2073 			rcu_read_lock();
2074 			nd->inode = nd->path.dentry->d_inode;
2075 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2076 		} else {
2077 			path_get(&nd->path);
2078 			nd->inode = nd->path.dentry->d_inode;
2079 		}
2080 		fdput(f);
2081 		return s;
2082 	}
2083 
2084 	nd->inode = nd->path.dentry->d_inode;
2085 	if (!(flags & LOOKUP_RCU))
2086 		return s;
2087 	if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq)))
2088 		return s;
2089 	if (!(nd->flags & LOOKUP_ROOT))
2090 		nd->root.mnt = NULL;
2091 	rcu_read_unlock();
2092 	return ERR_PTR(-ECHILD);
2093 }
2094 
2095 static const char *trailing_symlink(struct nameidata *nd)
2096 {
2097 	const char *s;
2098 	int error = may_follow_link(nd);
2099 	if (unlikely(error))
2100 		return ERR_PTR(error);
2101 	nd->flags |= LOOKUP_PARENT;
2102 	nd->stack[0].name = NULL;
2103 	s = get_link(nd);
2104 	return s ? s : "";
2105 }
2106 
2107 static inline int lookup_last(struct nameidata *nd)
2108 {
2109 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2110 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2111 
2112 	nd->flags &= ~LOOKUP_PARENT;
2113 	return walk_component(nd,
2114 			nd->flags & LOOKUP_FOLLOW
2115 				? nd->depth
2116 					? WALK_PUT | WALK_GET
2117 					: WALK_GET
2118 				: 0);
2119 }
2120 
2121 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2122 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2123 {
2124 	const char *s = path_init(nd, flags);
2125 	int err;
2126 
2127 	if (IS_ERR(s))
2128 		return PTR_ERR(s);
2129 	while (!(err = link_path_walk(s, nd))
2130 		&& ((err = lookup_last(nd)) > 0)) {
2131 		s = trailing_symlink(nd);
2132 		if (IS_ERR(s)) {
2133 			err = PTR_ERR(s);
2134 			break;
2135 		}
2136 	}
2137 	if (!err)
2138 		err = complete_walk(nd);
2139 
2140 	if (!err && nd->flags & LOOKUP_DIRECTORY)
2141 		if (!d_can_lookup(nd->path.dentry))
2142 			err = -ENOTDIR;
2143 	if (!err) {
2144 		*path = nd->path;
2145 		nd->path.mnt = NULL;
2146 		nd->path.dentry = NULL;
2147 	}
2148 	terminate_walk(nd);
2149 	return err;
2150 }
2151 
2152 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2153 			   struct path *path, struct path *root)
2154 {
2155 	int retval;
2156 	struct nameidata nd;
2157 	if (IS_ERR(name))
2158 		return PTR_ERR(name);
2159 	if (unlikely(root)) {
2160 		nd.root = *root;
2161 		flags |= LOOKUP_ROOT;
2162 	}
2163 	set_nameidata(&nd, dfd, name);
2164 	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2165 	if (unlikely(retval == -ECHILD))
2166 		retval = path_lookupat(&nd, flags, path);
2167 	if (unlikely(retval == -ESTALE))
2168 		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2169 
2170 	if (likely(!retval))
2171 		audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2172 	restore_nameidata();
2173 	putname(name);
2174 	return retval;
2175 }
2176 
2177 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2178 static int path_parentat(struct nameidata *nd, unsigned flags,
2179 				struct path *parent)
2180 {
2181 	const char *s = path_init(nd, flags);
2182 	int err;
2183 	if (IS_ERR(s))
2184 		return PTR_ERR(s);
2185 	err = link_path_walk(s, nd);
2186 	if (!err)
2187 		err = complete_walk(nd);
2188 	if (!err) {
2189 		*parent = nd->path;
2190 		nd->path.mnt = NULL;
2191 		nd->path.dentry = NULL;
2192 	}
2193 	terminate_walk(nd);
2194 	return err;
2195 }
2196 
2197 static struct filename *filename_parentat(int dfd, struct filename *name,
2198 				unsigned int flags, struct path *parent,
2199 				struct qstr *last, int *type)
2200 {
2201 	int retval;
2202 	struct nameidata nd;
2203 
2204 	if (IS_ERR(name))
2205 		return name;
2206 	set_nameidata(&nd, dfd, name);
2207 	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2208 	if (unlikely(retval == -ECHILD))
2209 		retval = path_parentat(&nd, flags, parent);
2210 	if (unlikely(retval == -ESTALE))
2211 		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2212 	if (likely(!retval)) {
2213 		*last = nd.last;
2214 		*type = nd.last_type;
2215 		audit_inode(name, parent->dentry, LOOKUP_PARENT);
2216 	} else {
2217 		putname(name);
2218 		name = ERR_PTR(retval);
2219 	}
2220 	restore_nameidata();
2221 	return name;
2222 }
2223 
2224 /* does lookup, returns the object with parent locked */
2225 struct dentry *kern_path_locked(const char *name, struct path *path)
2226 {
2227 	struct filename *filename;
2228 	struct dentry *d;
2229 	struct qstr last;
2230 	int type;
2231 
2232 	filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2233 				    &last, &type);
2234 	if (IS_ERR(filename))
2235 		return ERR_CAST(filename);
2236 	if (unlikely(type != LAST_NORM)) {
2237 		path_put(path);
2238 		putname(filename);
2239 		return ERR_PTR(-EINVAL);
2240 	}
2241 	mutex_lock_nested(&path->dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2242 	d = __lookup_hash(&last, path->dentry, 0);
2243 	if (IS_ERR(d)) {
2244 		mutex_unlock(&path->dentry->d_inode->i_mutex);
2245 		path_put(path);
2246 	}
2247 	putname(filename);
2248 	return d;
2249 }
2250 
2251 int kern_path(const char *name, unsigned int flags, struct path *path)
2252 {
2253 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2254 			       flags, path, NULL);
2255 }
2256 EXPORT_SYMBOL(kern_path);
2257 
2258 /**
2259  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2260  * @dentry:  pointer to dentry of the base directory
2261  * @mnt: pointer to vfs mount of the base directory
2262  * @name: pointer to file name
2263  * @flags: lookup flags
2264  * @path: pointer to struct path to fill
2265  */
2266 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2267 		    const char *name, unsigned int flags,
2268 		    struct path *path)
2269 {
2270 	struct path root = {.mnt = mnt, .dentry = dentry};
2271 	/* the first argument of filename_lookup() is ignored with root */
2272 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2273 			       flags , path, &root);
2274 }
2275 EXPORT_SYMBOL(vfs_path_lookup);
2276 
2277 /**
2278  * lookup_one_len - filesystem helper to lookup single pathname component
2279  * @name:	pathname component to lookup
2280  * @base:	base directory to lookup from
2281  * @len:	maximum length @len should be interpreted to
2282  *
2283  * Note that this routine is purely a helper for filesystem usage and should
2284  * not be called by generic code.
2285  */
2286 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2287 {
2288 	struct qstr this;
2289 	unsigned int c;
2290 	int err;
2291 
2292 	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2293 
2294 	this.name = name;
2295 	this.len = len;
2296 	this.hash = full_name_hash(name, len);
2297 	if (!len)
2298 		return ERR_PTR(-EACCES);
2299 
2300 	if (unlikely(name[0] == '.')) {
2301 		if (len < 2 || (len == 2 && name[1] == '.'))
2302 			return ERR_PTR(-EACCES);
2303 	}
2304 
2305 	while (len--) {
2306 		c = *(const unsigned char *)name++;
2307 		if (c == '/' || c == '\0')
2308 			return ERR_PTR(-EACCES);
2309 	}
2310 	/*
2311 	 * See if the low-level filesystem might want
2312 	 * to use its own hash..
2313 	 */
2314 	if (base->d_flags & DCACHE_OP_HASH) {
2315 		int err = base->d_op->d_hash(base, &this);
2316 		if (err < 0)
2317 			return ERR_PTR(err);
2318 	}
2319 
2320 	err = inode_permission(base->d_inode, MAY_EXEC);
2321 	if (err)
2322 		return ERR_PTR(err);
2323 
2324 	return __lookup_hash(&this, base, 0);
2325 }
2326 EXPORT_SYMBOL(lookup_one_len);
2327 
2328 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2329 		 struct path *path, int *empty)
2330 {
2331 	return filename_lookup(dfd, getname_flags(name, flags, empty),
2332 			       flags, path, NULL);
2333 }
2334 EXPORT_SYMBOL(user_path_at_empty);
2335 
2336 /*
2337  * NB: most callers don't do anything directly with the reference to the
2338  *     to struct filename, but the nd->last pointer points into the name string
2339  *     allocated by getname. So we must hold the reference to it until all
2340  *     path-walking is complete.
2341  */
2342 static inline struct filename *
2343 user_path_parent(int dfd, const char __user *path,
2344 		 struct path *parent,
2345 		 struct qstr *last,
2346 		 int *type,
2347 		 unsigned int flags)
2348 {
2349 	/* only LOOKUP_REVAL is allowed in extra flags */
2350 	return filename_parentat(dfd, getname(path), flags & LOOKUP_REVAL,
2351 				 parent, last, type);
2352 }
2353 
2354 /**
2355  * mountpoint_last - look up last component for umount
2356  * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2357  * @path: pointer to container for result
2358  *
2359  * This is a special lookup_last function just for umount. In this case, we
2360  * need to resolve the path without doing any revalidation.
2361  *
2362  * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2363  * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2364  * in almost all cases, this lookup will be served out of the dcache. The only
2365  * cases where it won't are if nd->last refers to a symlink or the path is
2366  * bogus and it doesn't exist.
2367  *
2368  * Returns:
2369  * -error: if there was an error during lookup. This includes -ENOENT if the
2370  *         lookup found a negative dentry. The nd->path reference will also be
2371  *         put in this case.
2372  *
2373  * 0:      if we successfully resolved nd->path and found it to not to be a
2374  *         symlink that needs to be followed. "path" will also be populated.
2375  *         The nd->path reference will also be put.
2376  *
2377  * 1:      if we successfully resolved nd->last and found it to be a symlink
2378  *         that needs to be followed. "path" will be populated with the path
2379  *         to the link, and nd->path will *not* be put.
2380  */
2381 static int
2382 mountpoint_last(struct nameidata *nd, struct path *path)
2383 {
2384 	int error = 0;
2385 	struct dentry *dentry;
2386 	struct dentry *dir = nd->path.dentry;
2387 
2388 	/* If we're in rcuwalk, drop out of it to handle last component */
2389 	if (nd->flags & LOOKUP_RCU) {
2390 		if (unlazy_walk(nd, NULL, 0))
2391 			return -ECHILD;
2392 	}
2393 
2394 	nd->flags &= ~LOOKUP_PARENT;
2395 
2396 	if (unlikely(nd->last_type != LAST_NORM)) {
2397 		error = handle_dots(nd, nd->last_type);
2398 		if (error)
2399 			return error;
2400 		dentry = dget(nd->path.dentry);
2401 		goto done;
2402 	}
2403 
2404 	mutex_lock(&dir->d_inode->i_mutex);
2405 	dentry = d_lookup(dir, &nd->last);
2406 	if (!dentry) {
2407 		/*
2408 		 * No cached dentry. Mounted dentries are pinned in the cache,
2409 		 * so that means that this dentry is probably a symlink or the
2410 		 * path doesn't actually point to a mounted dentry.
2411 		 */
2412 		dentry = d_alloc(dir, &nd->last);
2413 		if (!dentry) {
2414 			mutex_unlock(&dir->d_inode->i_mutex);
2415 			return -ENOMEM;
2416 		}
2417 		dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2418 		if (IS_ERR(dentry)) {
2419 			mutex_unlock(&dir->d_inode->i_mutex);
2420 			return PTR_ERR(dentry);
2421 		}
2422 	}
2423 	mutex_unlock(&dir->d_inode->i_mutex);
2424 
2425 done:
2426 	if (d_is_negative(dentry)) {
2427 		dput(dentry);
2428 		return -ENOENT;
2429 	}
2430 	if (nd->depth)
2431 		put_link(nd);
2432 	path->dentry = dentry;
2433 	path->mnt = nd->path.mnt;
2434 	error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW,
2435 				   d_backing_inode(dentry), 0);
2436 	if (unlikely(error))
2437 		return error;
2438 	mntget(path->mnt);
2439 	follow_mount(path);
2440 	return 0;
2441 }
2442 
2443 /**
2444  * path_mountpoint - look up a path to be umounted
2445  * @nd:		lookup context
2446  * @flags:	lookup flags
2447  * @path:	pointer to container for result
2448  *
2449  * Look up the given name, but don't attempt to revalidate the last component.
2450  * Returns 0 and "path" will be valid on success; Returns error otherwise.
2451  */
2452 static int
2453 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2454 {
2455 	const char *s = path_init(nd, flags);
2456 	int err;
2457 	if (IS_ERR(s))
2458 		return PTR_ERR(s);
2459 	while (!(err = link_path_walk(s, nd)) &&
2460 		(err = mountpoint_last(nd, path)) > 0) {
2461 		s = trailing_symlink(nd);
2462 		if (IS_ERR(s)) {
2463 			err = PTR_ERR(s);
2464 			break;
2465 		}
2466 	}
2467 	terminate_walk(nd);
2468 	return err;
2469 }
2470 
2471 static int
2472 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2473 			unsigned int flags)
2474 {
2475 	struct nameidata nd;
2476 	int error;
2477 	if (IS_ERR(name))
2478 		return PTR_ERR(name);
2479 	set_nameidata(&nd, dfd, name);
2480 	error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2481 	if (unlikely(error == -ECHILD))
2482 		error = path_mountpoint(&nd, flags, path);
2483 	if (unlikely(error == -ESTALE))
2484 		error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2485 	if (likely(!error))
2486 		audit_inode(name, path->dentry, 0);
2487 	restore_nameidata();
2488 	putname(name);
2489 	return error;
2490 }
2491 
2492 /**
2493  * user_path_mountpoint_at - lookup a path from userland in order to umount it
2494  * @dfd:	directory file descriptor
2495  * @name:	pathname from userland
2496  * @flags:	lookup flags
2497  * @path:	pointer to container to hold result
2498  *
2499  * A umount is a special case for path walking. We're not actually interested
2500  * in the inode in this situation, and ESTALE errors can be a problem. We
2501  * simply want track down the dentry and vfsmount attached at the mountpoint
2502  * and avoid revalidating the last component.
2503  *
2504  * Returns 0 and populates "path" on success.
2505  */
2506 int
2507 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2508 			struct path *path)
2509 {
2510 	return filename_mountpoint(dfd, getname(name), path, flags);
2511 }
2512 
2513 int
2514 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2515 			unsigned int flags)
2516 {
2517 	return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2518 }
2519 EXPORT_SYMBOL(kern_path_mountpoint);
2520 
2521 int __check_sticky(struct inode *dir, struct inode *inode)
2522 {
2523 	kuid_t fsuid = current_fsuid();
2524 
2525 	if (uid_eq(inode->i_uid, fsuid))
2526 		return 0;
2527 	if (uid_eq(dir->i_uid, fsuid))
2528 		return 0;
2529 	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2530 }
2531 EXPORT_SYMBOL(__check_sticky);
2532 
2533 /*
2534  *	Check whether we can remove a link victim from directory dir, check
2535  *  whether the type of victim is right.
2536  *  1. We can't do it if dir is read-only (done in permission())
2537  *  2. We should have write and exec permissions on dir
2538  *  3. We can't remove anything from append-only dir
2539  *  4. We can't do anything with immutable dir (done in permission())
2540  *  5. If the sticky bit on dir is set we should either
2541  *	a. be owner of dir, or
2542  *	b. be owner of victim, or
2543  *	c. have CAP_FOWNER capability
2544  *  6. If the victim is append-only or immutable we can't do antyhing with
2545  *     links pointing to it.
2546  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2547  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2548  *  9. We can't remove a root or mountpoint.
2549  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2550  *     nfs_async_unlink().
2551  */
2552 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2553 {
2554 	struct inode *inode = d_backing_inode(victim);
2555 	int error;
2556 
2557 	if (d_is_negative(victim))
2558 		return -ENOENT;
2559 	BUG_ON(!inode);
2560 
2561 	BUG_ON(victim->d_parent->d_inode != dir);
2562 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2563 
2564 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2565 	if (error)
2566 		return error;
2567 	if (IS_APPEND(dir))
2568 		return -EPERM;
2569 
2570 	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2571 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2572 		return -EPERM;
2573 	if (isdir) {
2574 		if (!d_is_dir(victim))
2575 			return -ENOTDIR;
2576 		if (IS_ROOT(victim))
2577 			return -EBUSY;
2578 	} else if (d_is_dir(victim))
2579 		return -EISDIR;
2580 	if (IS_DEADDIR(dir))
2581 		return -ENOENT;
2582 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2583 		return -EBUSY;
2584 	return 0;
2585 }
2586 
2587 /*	Check whether we can create an object with dentry child in directory
2588  *  dir.
2589  *  1. We can't do it if child already exists (open has special treatment for
2590  *     this case, but since we are inlined it's OK)
2591  *  2. We can't do it if dir is read-only (done in permission())
2592  *  3. We should have write and exec permissions on dir
2593  *  4. We can't do it if dir is immutable (done in permission())
2594  */
2595 static inline int may_create(struct inode *dir, struct dentry *child)
2596 {
2597 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2598 	if (child->d_inode)
2599 		return -EEXIST;
2600 	if (IS_DEADDIR(dir))
2601 		return -ENOENT;
2602 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2603 }
2604 
2605 /*
2606  * p1 and p2 should be directories on the same fs.
2607  */
2608 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2609 {
2610 	struct dentry *p;
2611 
2612 	if (p1 == p2) {
2613 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2614 		return NULL;
2615 	}
2616 
2617 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2618 
2619 	p = d_ancestor(p2, p1);
2620 	if (p) {
2621 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2622 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2623 		return p;
2624 	}
2625 
2626 	p = d_ancestor(p1, p2);
2627 	if (p) {
2628 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2629 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2630 		return p;
2631 	}
2632 
2633 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2634 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT2);
2635 	return NULL;
2636 }
2637 EXPORT_SYMBOL(lock_rename);
2638 
2639 void unlock_rename(struct dentry *p1, struct dentry *p2)
2640 {
2641 	mutex_unlock(&p1->d_inode->i_mutex);
2642 	if (p1 != p2) {
2643 		mutex_unlock(&p2->d_inode->i_mutex);
2644 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2645 	}
2646 }
2647 EXPORT_SYMBOL(unlock_rename);
2648 
2649 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2650 		bool want_excl)
2651 {
2652 	int error = may_create(dir, dentry);
2653 	if (error)
2654 		return error;
2655 
2656 	if (!dir->i_op->create)
2657 		return -EACCES;	/* shouldn't it be ENOSYS? */
2658 	mode &= S_IALLUGO;
2659 	mode |= S_IFREG;
2660 	error = security_inode_create(dir, dentry, mode);
2661 	if (error)
2662 		return error;
2663 	error = dir->i_op->create(dir, dentry, mode, want_excl);
2664 	if (!error)
2665 		fsnotify_create(dir, dentry);
2666 	return error;
2667 }
2668 EXPORT_SYMBOL(vfs_create);
2669 
2670 static int may_open(struct path *path, int acc_mode, int flag)
2671 {
2672 	struct dentry *dentry = path->dentry;
2673 	struct inode *inode = dentry->d_inode;
2674 	int error;
2675 
2676 	/* O_PATH? */
2677 	if (!acc_mode)
2678 		return 0;
2679 
2680 	if (!inode)
2681 		return -ENOENT;
2682 
2683 	switch (inode->i_mode & S_IFMT) {
2684 	case S_IFLNK:
2685 		return -ELOOP;
2686 	case S_IFDIR:
2687 		if (acc_mode & MAY_WRITE)
2688 			return -EISDIR;
2689 		break;
2690 	case S_IFBLK:
2691 	case S_IFCHR:
2692 		if (path->mnt->mnt_flags & MNT_NODEV)
2693 			return -EACCES;
2694 		/*FALLTHRU*/
2695 	case S_IFIFO:
2696 	case S_IFSOCK:
2697 		flag &= ~O_TRUNC;
2698 		break;
2699 	}
2700 
2701 	error = inode_permission(inode, acc_mode);
2702 	if (error)
2703 		return error;
2704 
2705 	/*
2706 	 * An append-only file must be opened in append mode for writing.
2707 	 */
2708 	if (IS_APPEND(inode)) {
2709 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2710 			return -EPERM;
2711 		if (flag & O_TRUNC)
2712 			return -EPERM;
2713 	}
2714 
2715 	/* O_NOATIME can only be set by the owner or superuser */
2716 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2717 		return -EPERM;
2718 
2719 	return 0;
2720 }
2721 
2722 static int handle_truncate(struct file *filp)
2723 {
2724 	struct path *path = &filp->f_path;
2725 	struct inode *inode = path->dentry->d_inode;
2726 	int error = get_write_access(inode);
2727 	if (error)
2728 		return error;
2729 	/*
2730 	 * Refuse to truncate files with mandatory locks held on them.
2731 	 */
2732 	error = locks_verify_locked(filp);
2733 	if (!error)
2734 		error = security_path_truncate(path);
2735 	if (!error) {
2736 		error = do_truncate(path->dentry, 0,
2737 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2738 				    filp);
2739 	}
2740 	put_write_access(inode);
2741 	return error;
2742 }
2743 
2744 static inline int open_to_namei_flags(int flag)
2745 {
2746 	if ((flag & O_ACCMODE) == 3)
2747 		flag--;
2748 	return flag;
2749 }
2750 
2751 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2752 {
2753 	int error = security_path_mknod(dir, dentry, mode, 0);
2754 	if (error)
2755 		return error;
2756 
2757 	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2758 	if (error)
2759 		return error;
2760 
2761 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
2762 }
2763 
2764 /*
2765  * Attempt to atomically look up, create and open a file from a negative
2766  * dentry.
2767  *
2768  * Returns 0 if successful.  The file will have been created and attached to
2769  * @file by the filesystem calling finish_open().
2770  *
2771  * Returns 1 if the file was looked up only or didn't need creating.  The
2772  * caller will need to perform the open themselves.  @path will have been
2773  * updated to point to the new dentry.  This may be negative.
2774  *
2775  * Returns an error code otherwise.
2776  */
2777 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2778 			struct path *path, struct file *file,
2779 			const struct open_flags *op,
2780 			bool got_write, bool need_lookup,
2781 			int *opened)
2782 {
2783 	struct inode *dir =  nd->path.dentry->d_inode;
2784 	unsigned open_flag = open_to_namei_flags(op->open_flag);
2785 	umode_t mode;
2786 	int error;
2787 	int acc_mode;
2788 	int create_error = 0;
2789 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2790 	bool excl;
2791 
2792 	BUG_ON(dentry->d_inode);
2793 
2794 	/* Don't create child dentry for a dead directory. */
2795 	if (unlikely(IS_DEADDIR(dir))) {
2796 		error = -ENOENT;
2797 		goto out;
2798 	}
2799 
2800 	mode = op->mode;
2801 	if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2802 		mode &= ~current_umask();
2803 
2804 	excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2805 	if (excl)
2806 		open_flag &= ~O_TRUNC;
2807 
2808 	/*
2809 	 * Checking write permission is tricky, bacuse we don't know if we are
2810 	 * going to actually need it: O_CREAT opens should work as long as the
2811 	 * file exists.  But checking existence breaks atomicity.  The trick is
2812 	 * to check access and if not granted clear O_CREAT from the flags.
2813 	 *
2814 	 * Another problem is returing the "right" error value (e.g. for an
2815 	 * O_EXCL open we want to return EEXIST not EROFS).
2816 	 */
2817 	if (((open_flag & (O_CREAT | O_TRUNC)) ||
2818 	    (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2819 		if (!(open_flag & O_CREAT)) {
2820 			/*
2821 			 * No O_CREATE -> atomicity not a requirement -> fall
2822 			 * back to lookup + open
2823 			 */
2824 			goto no_open;
2825 		} else if (open_flag & (O_EXCL | O_TRUNC)) {
2826 			/* Fall back and fail with the right error */
2827 			create_error = -EROFS;
2828 			goto no_open;
2829 		} else {
2830 			/* No side effects, safe to clear O_CREAT */
2831 			create_error = -EROFS;
2832 			open_flag &= ~O_CREAT;
2833 		}
2834 	}
2835 
2836 	if (open_flag & O_CREAT) {
2837 		error = may_o_create(&nd->path, dentry, mode);
2838 		if (error) {
2839 			create_error = error;
2840 			if (open_flag & O_EXCL)
2841 				goto no_open;
2842 			open_flag &= ~O_CREAT;
2843 		}
2844 	}
2845 
2846 	if (nd->flags & LOOKUP_DIRECTORY)
2847 		open_flag |= O_DIRECTORY;
2848 
2849 	file->f_path.dentry = DENTRY_NOT_SET;
2850 	file->f_path.mnt = nd->path.mnt;
2851 	error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2852 				      opened);
2853 	if (error < 0) {
2854 		if (create_error && error == -ENOENT)
2855 			error = create_error;
2856 		goto out;
2857 	}
2858 
2859 	if (error) {	/* returned 1, that is */
2860 		if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2861 			error = -EIO;
2862 			goto out;
2863 		}
2864 		if (file->f_path.dentry) {
2865 			dput(dentry);
2866 			dentry = file->f_path.dentry;
2867 		}
2868 		if (*opened & FILE_CREATED)
2869 			fsnotify_create(dir, dentry);
2870 		if (!dentry->d_inode) {
2871 			WARN_ON(*opened & FILE_CREATED);
2872 			if (create_error) {
2873 				error = create_error;
2874 				goto out;
2875 			}
2876 		} else {
2877 			if (excl && !(*opened & FILE_CREATED)) {
2878 				error = -EEXIST;
2879 				goto out;
2880 			}
2881 		}
2882 		goto looked_up;
2883 	}
2884 
2885 	/*
2886 	 * We didn't have the inode before the open, so check open permission
2887 	 * here.
2888 	 */
2889 	acc_mode = op->acc_mode;
2890 	if (*opened & FILE_CREATED) {
2891 		WARN_ON(!(open_flag & O_CREAT));
2892 		fsnotify_create(dir, dentry);
2893 		acc_mode = MAY_OPEN;
2894 	}
2895 	error = may_open(&file->f_path, acc_mode, open_flag);
2896 	if (error)
2897 		fput(file);
2898 
2899 out:
2900 	dput(dentry);
2901 	return error;
2902 
2903 no_open:
2904 	if (need_lookup) {
2905 		dentry = lookup_real(dir, dentry, nd->flags);
2906 		if (IS_ERR(dentry))
2907 			return PTR_ERR(dentry);
2908 
2909 		if (create_error) {
2910 			int open_flag = op->open_flag;
2911 
2912 			error = create_error;
2913 			if ((open_flag & O_EXCL)) {
2914 				if (!dentry->d_inode)
2915 					goto out;
2916 			} else if (!dentry->d_inode) {
2917 				goto out;
2918 			} else if ((open_flag & O_TRUNC) &&
2919 				   d_is_reg(dentry)) {
2920 				goto out;
2921 			}
2922 			/* will fail later, go on to get the right error */
2923 		}
2924 	}
2925 looked_up:
2926 	path->dentry = dentry;
2927 	path->mnt = nd->path.mnt;
2928 	return 1;
2929 }
2930 
2931 /*
2932  * Look up and maybe create and open the last component.
2933  *
2934  * Must be called with i_mutex held on parent.
2935  *
2936  * Returns 0 if the file was successfully atomically created (if necessary) and
2937  * opened.  In this case the file will be returned attached to @file.
2938  *
2939  * Returns 1 if the file was not completely opened at this time, though lookups
2940  * and creations will have been performed and the dentry returned in @path will
2941  * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
2942  * specified then a negative dentry may be returned.
2943  *
2944  * An error code is returned otherwise.
2945  *
2946  * FILE_CREATE will be set in @*opened if the dentry was created and will be
2947  * cleared otherwise prior to returning.
2948  */
2949 static int lookup_open(struct nameidata *nd, struct path *path,
2950 			struct file *file,
2951 			const struct open_flags *op,
2952 			bool got_write, int *opened)
2953 {
2954 	struct dentry *dir = nd->path.dentry;
2955 	struct inode *dir_inode = dir->d_inode;
2956 	struct dentry *dentry;
2957 	int error;
2958 	bool need_lookup;
2959 
2960 	*opened &= ~FILE_CREATED;
2961 	dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2962 	if (IS_ERR(dentry))
2963 		return PTR_ERR(dentry);
2964 
2965 	/* Cached positive dentry: will open in f_op->open */
2966 	if (!need_lookup && dentry->d_inode)
2967 		goto out_no_open;
2968 
2969 	if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2970 		return atomic_open(nd, dentry, path, file, op, got_write,
2971 				   need_lookup, opened);
2972 	}
2973 
2974 	if (need_lookup) {
2975 		BUG_ON(dentry->d_inode);
2976 
2977 		dentry = lookup_real(dir_inode, dentry, nd->flags);
2978 		if (IS_ERR(dentry))
2979 			return PTR_ERR(dentry);
2980 	}
2981 
2982 	/* Negative dentry, just create the file */
2983 	if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2984 		umode_t mode = op->mode;
2985 		if (!IS_POSIXACL(dir->d_inode))
2986 			mode &= ~current_umask();
2987 		/*
2988 		 * This write is needed to ensure that a
2989 		 * rw->ro transition does not occur between
2990 		 * the time when the file is created and when
2991 		 * a permanent write count is taken through
2992 		 * the 'struct file' in finish_open().
2993 		 */
2994 		if (!got_write) {
2995 			error = -EROFS;
2996 			goto out_dput;
2997 		}
2998 		*opened |= FILE_CREATED;
2999 		error = security_path_mknod(&nd->path, dentry, mode, 0);
3000 		if (error)
3001 			goto out_dput;
3002 		error = vfs_create(dir->d_inode, dentry, mode,
3003 				   nd->flags & LOOKUP_EXCL);
3004 		if (error)
3005 			goto out_dput;
3006 	}
3007 out_no_open:
3008 	path->dentry = dentry;
3009 	path->mnt = nd->path.mnt;
3010 	return 1;
3011 
3012 out_dput:
3013 	dput(dentry);
3014 	return error;
3015 }
3016 
3017 /*
3018  * Handle the last step of open()
3019  */
3020 static int do_last(struct nameidata *nd,
3021 		   struct file *file, const struct open_flags *op,
3022 		   int *opened)
3023 {
3024 	struct dentry *dir = nd->path.dentry;
3025 	int open_flag = op->open_flag;
3026 	bool will_truncate = (open_flag & O_TRUNC) != 0;
3027 	bool got_write = false;
3028 	int acc_mode = op->acc_mode;
3029 	unsigned seq;
3030 	struct inode *inode;
3031 	struct path save_parent = { .dentry = NULL, .mnt = NULL };
3032 	struct path path;
3033 	bool retried = false;
3034 	int error;
3035 
3036 	nd->flags &= ~LOOKUP_PARENT;
3037 	nd->flags |= op->intent;
3038 
3039 	if (nd->last_type != LAST_NORM) {
3040 		error = handle_dots(nd, nd->last_type);
3041 		if (unlikely(error))
3042 			return error;
3043 		goto finish_open;
3044 	}
3045 
3046 	if (!(open_flag & O_CREAT)) {
3047 		if (nd->last.name[nd->last.len])
3048 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3049 		/* we _can_ be in RCU mode here */
3050 		error = lookup_fast(nd, &path, &inode, &seq);
3051 		if (likely(!error))
3052 			goto finish_lookup;
3053 
3054 		if (error < 0)
3055 			return error;
3056 
3057 		BUG_ON(nd->inode != dir->d_inode);
3058 	} else {
3059 		/* create side of things */
3060 		/*
3061 		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3062 		 * has been cleared when we got to the last component we are
3063 		 * about to look up
3064 		 */
3065 		error = complete_walk(nd);
3066 		if (error)
3067 			return error;
3068 
3069 		audit_inode(nd->name, dir, LOOKUP_PARENT);
3070 		/* trailing slashes? */
3071 		if (unlikely(nd->last.name[nd->last.len]))
3072 			return -EISDIR;
3073 	}
3074 
3075 retry_lookup:
3076 	if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3077 		error = mnt_want_write(nd->path.mnt);
3078 		if (!error)
3079 			got_write = true;
3080 		/*
3081 		 * do _not_ fail yet - we might not need that or fail with
3082 		 * a different error; let lookup_open() decide; we'll be
3083 		 * dropping this one anyway.
3084 		 */
3085 	}
3086 	mutex_lock(&dir->d_inode->i_mutex);
3087 	error = lookup_open(nd, &path, file, op, got_write, opened);
3088 	mutex_unlock(&dir->d_inode->i_mutex);
3089 
3090 	if (error <= 0) {
3091 		if (error)
3092 			goto out;
3093 
3094 		if ((*opened & FILE_CREATED) ||
3095 		    !S_ISREG(file_inode(file)->i_mode))
3096 			will_truncate = false;
3097 
3098 		audit_inode(nd->name, file->f_path.dentry, 0);
3099 		goto opened;
3100 	}
3101 
3102 	if (*opened & FILE_CREATED) {
3103 		/* Don't check for write permission, don't truncate */
3104 		open_flag &= ~O_TRUNC;
3105 		will_truncate = false;
3106 		acc_mode = MAY_OPEN;
3107 		path_to_nameidata(&path, nd);
3108 		goto finish_open_created;
3109 	}
3110 
3111 	/*
3112 	 * create/update audit record if it already exists.
3113 	 */
3114 	if (d_is_positive(path.dentry))
3115 		audit_inode(nd->name, path.dentry, 0);
3116 
3117 	/*
3118 	 * If atomic_open() acquired write access it is dropped now due to
3119 	 * possible mount and symlink following (this might be optimized away if
3120 	 * necessary...)
3121 	 */
3122 	if (got_write) {
3123 		mnt_drop_write(nd->path.mnt);
3124 		got_write = false;
3125 	}
3126 
3127 	if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3128 		path_to_nameidata(&path, nd);
3129 		return -EEXIST;
3130 	}
3131 
3132 	error = follow_managed(&path, nd);
3133 	if (unlikely(error < 0))
3134 		return error;
3135 
3136 	BUG_ON(nd->flags & LOOKUP_RCU);
3137 	inode = d_backing_inode(path.dentry);
3138 	seq = 0;	/* out of RCU mode, so the value doesn't matter */
3139 	if (unlikely(d_is_negative(path.dentry))) {
3140 		path_to_nameidata(&path, nd);
3141 		return -ENOENT;
3142 	}
3143 finish_lookup:
3144 	if (nd->depth)
3145 		put_link(nd);
3146 	error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW,
3147 				   inode, seq);
3148 	if (unlikely(error))
3149 		return error;
3150 
3151 	if (unlikely(d_is_symlink(path.dentry)) && !(open_flag & O_PATH)) {
3152 		path_to_nameidata(&path, nd);
3153 		return -ELOOP;
3154 	}
3155 
3156 	if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) {
3157 		path_to_nameidata(&path, nd);
3158 	} else {
3159 		save_parent.dentry = nd->path.dentry;
3160 		save_parent.mnt = mntget(path.mnt);
3161 		nd->path.dentry = path.dentry;
3162 
3163 	}
3164 	nd->inode = inode;
3165 	nd->seq = seq;
3166 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3167 finish_open:
3168 	error = complete_walk(nd);
3169 	if (error) {
3170 		path_put(&save_parent);
3171 		return error;
3172 	}
3173 	audit_inode(nd->name, nd->path.dentry, 0);
3174 	error = -EISDIR;
3175 	if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3176 		goto out;
3177 	error = -ENOTDIR;
3178 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3179 		goto out;
3180 	if (!d_is_reg(nd->path.dentry))
3181 		will_truncate = false;
3182 
3183 	if (will_truncate) {
3184 		error = mnt_want_write(nd->path.mnt);
3185 		if (error)
3186 			goto out;
3187 		got_write = true;
3188 	}
3189 finish_open_created:
3190 	error = may_open(&nd->path, acc_mode, open_flag);
3191 	if (error)
3192 		goto out;
3193 
3194 	BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3195 	error = vfs_open(&nd->path, file, current_cred());
3196 	if (!error) {
3197 		*opened |= FILE_OPENED;
3198 	} else {
3199 		if (error == -EOPENSTALE)
3200 			goto stale_open;
3201 		goto out;
3202 	}
3203 opened:
3204 	error = open_check_o_direct(file);
3205 	if (error)
3206 		goto exit_fput;
3207 	error = ima_file_check(file, op->acc_mode, *opened);
3208 	if (error)
3209 		goto exit_fput;
3210 
3211 	if (will_truncate) {
3212 		error = handle_truncate(file);
3213 		if (error)
3214 			goto exit_fput;
3215 	}
3216 out:
3217 	if (got_write)
3218 		mnt_drop_write(nd->path.mnt);
3219 	path_put(&save_parent);
3220 	return error;
3221 
3222 exit_fput:
3223 	fput(file);
3224 	goto out;
3225 
3226 stale_open:
3227 	/* If no saved parent or already retried then can't retry */
3228 	if (!save_parent.dentry || retried)
3229 		goto out;
3230 
3231 	BUG_ON(save_parent.dentry != dir);
3232 	path_put(&nd->path);
3233 	nd->path = save_parent;
3234 	nd->inode = dir->d_inode;
3235 	save_parent.mnt = NULL;
3236 	save_parent.dentry = NULL;
3237 	if (got_write) {
3238 		mnt_drop_write(nd->path.mnt);
3239 		got_write = false;
3240 	}
3241 	retried = true;
3242 	goto retry_lookup;
3243 }
3244 
3245 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3246 		const struct open_flags *op,
3247 		struct file *file, int *opened)
3248 {
3249 	static const struct qstr name = QSTR_INIT("/", 1);
3250 	struct dentry *child;
3251 	struct inode *dir;
3252 	struct path path;
3253 	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3254 	if (unlikely(error))
3255 		return error;
3256 	error = mnt_want_write(path.mnt);
3257 	if (unlikely(error))
3258 		goto out;
3259 	dir = path.dentry->d_inode;
3260 	/* we want directory to be writable */
3261 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3262 	if (error)
3263 		goto out2;
3264 	if (!dir->i_op->tmpfile) {
3265 		error = -EOPNOTSUPP;
3266 		goto out2;
3267 	}
3268 	child = d_alloc(path.dentry, &name);
3269 	if (unlikely(!child)) {
3270 		error = -ENOMEM;
3271 		goto out2;
3272 	}
3273 	dput(path.dentry);
3274 	path.dentry = child;
3275 	error = dir->i_op->tmpfile(dir, child, op->mode);
3276 	if (error)
3277 		goto out2;
3278 	audit_inode(nd->name, child, 0);
3279 	/* Don't check for other permissions, the inode was just created */
3280 	error = may_open(&path, MAY_OPEN, op->open_flag);
3281 	if (error)
3282 		goto out2;
3283 	file->f_path.mnt = path.mnt;
3284 	error = finish_open(file, child, NULL, opened);
3285 	if (error)
3286 		goto out2;
3287 	error = open_check_o_direct(file);
3288 	if (error) {
3289 		fput(file);
3290 	} else if (!(op->open_flag & O_EXCL)) {
3291 		struct inode *inode = file_inode(file);
3292 		spin_lock(&inode->i_lock);
3293 		inode->i_state |= I_LINKABLE;
3294 		spin_unlock(&inode->i_lock);
3295 	}
3296 out2:
3297 	mnt_drop_write(path.mnt);
3298 out:
3299 	path_put(&path);
3300 	return error;
3301 }
3302 
3303 static struct file *path_openat(struct nameidata *nd,
3304 			const struct open_flags *op, unsigned flags)
3305 {
3306 	const char *s;
3307 	struct file *file;
3308 	int opened = 0;
3309 	int error;
3310 
3311 	file = get_empty_filp();
3312 	if (IS_ERR(file))
3313 		return file;
3314 
3315 	file->f_flags = op->open_flag;
3316 
3317 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3318 		error = do_tmpfile(nd, flags, op, file, &opened);
3319 		goto out2;
3320 	}
3321 
3322 	s = path_init(nd, flags);
3323 	if (IS_ERR(s)) {
3324 		put_filp(file);
3325 		return ERR_CAST(s);
3326 	}
3327 	while (!(error = link_path_walk(s, nd)) &&
3328 		(error = do_last(nd, file, op, &opened)) > 0) {
3329 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3330 		s = trailing_symlink(nd);
3331 		if (IS_ERR(s)) {
3332 			error = PTR_ERR(s);
3333 			break;
3334 		}
3335 	}
3336 	terminate_walk(nd);
3337 out2:
3338 	if (!(opened & FILE_OPENED)) {
3339 		BUG_ON(!error);
3340 		put_filp(file);
3341 	}
3342 	if (unlikely(error)) {
3343 		if (error == -EOPENSTALE) {
3344 			if (flags & LOOKUP_RCU)
3345 				error = -ECHILD;
3346 			else
3347 				error = -ESTALE;
3348 		}
3349 		file = ERR_PTR(error);
3350 	}
3351 	return file;
3352 }
3353 
3354 struct file *do_filp_open(int dfd, struct filename *pathname,
3355 		const struct open_flags *op)
3356 {
3357 	struct nameidata nd;
3358 	int flags = op->lookup_flags;
3359 	struct file *filp;
3360 
3361 	set_nameidata(&nd, dfd, pathname);
3362 	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3363 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3364 		filp = path_openat(&nd, op, flags);
3365 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3366 		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3367 	restore_nameidata();
3368 	return filp;
3369 }
3370 
3371 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3372 		const char *name, const struct open_flags *op)
3373 {
3374 	struct nameidata nd;
3375 	struct file *file;
3376 	struct filename *filename;
3377 	int flags = op->lookup_flags | LOOKUP_ROOT;
3378 
3379 	nd.root.mnt = mnt;
3380 	nd.root.dentry = dentry;
3381 
3382 	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3383 		return ERR_PTR(-ELOOP);
3384 
3385 	filename = getname_kernel(name);
3386 	if (unlikely(IS_ERR(filename)))
3387 		return ERR_CAST(filename);
3388 
3389 	set_nameidata(&nd, -1, filename);
3390 	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3391 	if (unlikely(file == ERR_PTR(-ECHILD)))
3392 		file = path_openat(&nd, op, flags);
3393 	if (unlikely(file == ERR_PTR(-ESTALE)))
3394 		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3395 	restore_nameidata();
3396 	putname(filename);
3397 	return file;
3398 }
3399 
3400 static struct dentry *filename_create(int dfd, struct filename *name,
3401 				struct path *path, unsigned int lookup_flags)
3402 {
3403 	struct dentry *dentry = ERR_PTR(-EEXIST);
3404 	struct qstr last;
3405 	int type;
3406 	int err2;
3407 	int error;
3408 	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3409 
3410 	/*
3411 	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3412 	 * other flags passed in are ignored!
3413 	 */
3414 	lookup_flags &= LOOKUP_REVAL;
3415 
3416 	name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3417 	if (IS_ERR(name))
3418 		return ERR_CAST(name);
3419 
3420 	/*
3421 	 * Yucky last component or no last component at all?
3422 	 * (foo/., foo/.., /////)
3423 	 */
3424 	if (unlikely(type != LAST_NORM))
3425 		goto out;
3426 
3427 	/* don't fail immediately if it's r/o, at least try to report other errors */
3428 	err2 = mnt_want_write(path->mnt);
3429 	/*
3430 	 * Do the final lookup.
3431 	 */
3432 	lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3433 	mutex_lock_nested(&path->dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3434 	dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3435 	if (IS_ERR(dentry))
3436 		goto unlock;
3437 
3438 	error = -EEXIST;
3439 	if (d_is_positive(dentry))
3440 		goto fail;
3441 
3442 	/*
3443 	 * Special case - lookup gave negative, but... we had foo/bar/
3444 	 * From the vfs_mknod() POV we just have a negative dentry -
3445 	 * all is fine. Let's be bastards - you had / on the end, you've
3446 	 * been asking for (non-existent) directory. -ENOENT for you.
3447 	 */
3448 	if (unlikely(!is_dir && last.name[last.len])) {
3449 		error = -ENOENT;
3450 		goto fail;
3451 	}
3452 	if (unlikely(err2)) {
3453 		error = err2;
3454 		goto fail;
3455 	}
3456 	putname(name);
3457 	return dentry;
3458 fail:
3459 	dput(dentry);
3460 	dentry = ERR_PTR(error);
3461 unlock:
3462 	mutex_unlock(&path->dentry->d_inode->i_mutex);
3463 	if (!err2)
3464 		mnt_drop_write(path->mnt);
3465 out:
3466 	path_put(path);
3467 	putname(name);
3468 	return dentry;
3469 }
3470 
3471 struct dentry *kern_path_create(int dfd, const char *pathname,
3472 				struct path *path, unsigned int lookup_flags)
3473 {
3474 	return filename_create(dfd, getname_kernel(pathname),
3475 				path, lookup_flags);
3476 }
3477 EXPORT_SYMBOL(kern_path_create);
3478 
3479 void done_path_create(struct path *path, struct dentry *dentry)
3480 {
3481 	dput(dentry);
3482 	mutex_unlock(&path->dentry->d_inode->i_mutex);
3483 	mnt_drop_write(path->mnt);
3484 	path_put(path);
3485 }
3486 EXPORT_SYMBOL(done_path_create);
3487 
3488 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3489 				struct path *path, unsigned int lookup_flags)
3490 {
3491 	return filename_create(dfd, getname(pathname), path, lookup_flags);
3492 }
3493 EXPORT_SYMBOL(user_path_create);
3494 
3495 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3496 {
3497 	int error = may_create(dir, dentry);
3498 
3499 	if (error)
3500 		return error;
3501 
3502 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3503 		return -EPERM;
3504 
3505 	if (!dir->i_op->mknod)
3506 		return -EPERM;
3507 
3508 	error = devcgroup_inode_mknod(mode, dev);
3509 	if (error)
3510 		return error;
3511 
3512 	error = security_inode_mknod(dir, dentry, mode, dev);
3513 	if (error)
3514 		return error;
3515 
3516 	error = dir->i_op->mknod(dir, dentry, mode, dev);
3517 	if (!error)
3518 		fsnotify_create(dir, dentry);
3519 	return error;
3520 }
3521 EXPORT_SYMBOL(vfs_mknod);
3522 
3523 static int may_mknod(umode_t mode)
3524 {
3525 	switch (mode & S_IFMT) {
3526 	case S_IFREG:
3527 	case S_IFCHR:
3528 	case S_IFBLK:
3529 	case S_IFIFO:
3530 	case S_IFSOCK:
3531 	case 0: /* zero mode translates to S_IFREG */
3532 		return 0;
3533 	case S_IFDIR:
3534 		return -EPERM;
3535 	default:
3536 		return -EINVAL;
3537 	}
3538 }
3539 
3540 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3541 		unsigned, dev)
3542 {
3543 	struct dentry *dentry;
3544 	struct path path;
3545 	int error;
3546 	unsigned int lookup_flags = 0;
3547 
3548 	error = may_mknod(mode);
3549 	if (error)
3550 		return error;
3551 retry:
3552 	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3553 	if (IS_ERR(dentry))
3554 		return PTR_ERR(dentry);
3555 
3556 	if (!IS_POSIXACL(path.dentry->d_inode))
3557 		mode &= ~current_umask();
3558 	error = security_path_mknod(&path, dentry, mode, dev);
3559 	if (error)
3560 		goto out;
3561 	switch (mode & S_IFMT) {
3562 		case 0: case S_IFREG:
3563 			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3564 			break;
3565 		case S_IFCHR: case S_IFBLK:
3566 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3567 					new_decode_dev(dev));
3568 			break;
3569 		case S_IFIFO: case S_IFSOCK:
3570 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3571 			break;
3572 	}
3573 out:
3574 	done_path_create(&path, dentry);
3575 	if (retry_estale(error, lookup_flags)) {
3576 		lookup_flags |= LOOKUP_REVAL;
3577 		goto retry;
3578 	}
3579 	return error;
3580 }
3581 
3582 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3583 {
3584 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
3585 }
3586 
3587 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3588 {
3589 	int error = may_create(dir, dentry);
3590 	unsigned max_links = dir->i_sb->s_max_links;
3591 
3592 	if (error)
3593 		return error;
3594 
3595 	if (!dir->i_op->mkdir)
3596 		return -EPERM;
3597 
3598 	mode &= (S_IRWXUGO|S_ISVTX);
3599 	error = security_inode_mkdir(dir, dentry, mode);
3600 	if (error)
3601 		return error;
3602 
3603 	if (max_links && dir->i_nlink >= max_links)
3604 		return -EMLINK;
3605 
3606 	error = dir->i_op->mkdir(dir, dentry, mode);
3607 	if (!error)
3608 		fsnotify_mkdir(dir, dentry);
3609 	return error;
3610 }
3611 EXPORT_SYMBOL(vfs_mkdir);
3612 
3613 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3614 {
3615 	struct dentry *dentry;
3616 	struct path path;
3617 	int error;
3618 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3619 
3620 retry:
3621 	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3622 	if (IS_ERR(dentry))
3623 		return PTR_ERR(dentry);
3624 
3625 	if (!IS_POSIXACL(path.dentry->d_inode))
3626 		mode &= ~current_umask();
3627 	error = security_path_mkdir(&path, dentry, mode);
3628 	if (!error)
3629 		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3630 	done_path_create(&path, dentry);
3631 	if (retry_estale(error, lookup_flags)) {
3632 		lookup_flags |= LOOKUP_REVAL;
3633 		goto retry;
3634 	}
3635 	return error;
3636 }
3637 
3638 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3639 {
3640 	return sys_mkdirat(AT_FDCWD, pathname, mode);
3641 }
3642 
3643 /*
3644  * The dentry_unhash() helper will try to drop the dentry early: we
3645  * should have a usage count of 1 if we're the only user of this
3646  * dentry, and if that is true (possibly after pruning the dcache),
3647  * then we drop the dentry now.
3648  *
3649  * A low-level filesystem can, if it choses, legally
3650  * do a
3651  *
3652  *	if (!d_unhashed(dentry))
3653  *		return -EBUSY;
3654  *
3655  * if it cannot handle the case of removing a directory
3656  * that is still in use by something else..
3657  */
3658 void dentry_unhash(struct dentry *dentry)
3659 {
3660 	shrink_dcache_parent(dentry);
3661 	spin_lock(&dentry->d_lock);
3662 	if (dentry->d_lockref.count == 1)
3663 		__d_drop(dentry);
3664 	spin_unlock(&dentry->d_lock);
3665 }
3666 EXPORT_SYMBOL(dentry_unhash);
3667 
3668 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3669 {
3670 	int error = may_delete(dir, dentry, 1);
3671 
3672 	if (error)
3673 		return error;
3674 
3675 	if (!dir->i_op->rmdir)
3676 		return -EPERM;
3677 
3678 	dget(dentry);
3679 	mutex_lock(&dentry->d_inode->i_mutex);
3680 
3681 	error = -EBUSY;
3682 	if (is_local_mountpoint(dentry))
3683 		goto out;
3684 
3685 	error = security_inode_rmdir(dir, dentry);
3686 	if (error)
3687 		goto out;
3688 
3689 	shrink_dcache_parent(dentry);
3690 	error = dir->i_op->rmdir(dir, dentry);
3691 	if (error)
3692 		goto out;
3693 
3694 	dentry->d_inode->i_flags |= S_DEAD;
3695 	dont_mount(dentry);
3696 	detach_mounts(dentry);
3697 
3698 out:
3699 	mutex_unlock(&dentry->d_inode->i_mutex);
3700 	dput(dentry);
3701 	if (!error)
3702 		d_delete(dentry);
3703 	return error;
3704 }
3705 EXPORT_SYMBOL(vfs_rmdir);
3706 
3707 static long do_rmdir(int dfd, const char __user *pathname)
3708 {
3709 	int error = 0;
3710 	struct filename *name;
3711 	struct dentry *dentry;
3712 	struct path path;
3713 	struct qstr last;
3714 	int type;
3715 	unsigned int lookup_flags = 0;
3716 retry:
3717 	name = user_path_parent(dfd, pathname,
3718 				&path, &last, &type, lookup_flags);
3719 	if (IS_ERR(name))
3720 		return PTR_ERR(name);
3721 
3722 	switch (type) {
3723 	case LAST_DOTDOT:
3724 		error = -ENOTEMPTY;
3725 		goto exit1;
3726 	case LAST_DOT:
3727 		error = -EINVAL;
3728 		goto exit1;
3729 	case LAST_ROOT:
3730 		error = -EBUSY;
3731 		goto exit1;
3732 	}
3733 
3734 	error = mnt_want_write(path.mnt);
3735 	if (error)
3736 		goto exit1;
3737 
3738 	mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3739 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3740 	error = PTR_ERR(dentry);
3741 	if (IS_ERR(dentry))
3742 		goto exit2;
3743 	if (!dentry->d_inode) {
3744 		error = -ENOENT;
3745 		goto exit3;
3746 	}
3747 	error = security_path_rmdir(&path, dentry);
3748 	if (error)
3749 		goto exit3;
3750 	error = vfs_rmdir(path.dentry->d_inode, dentry);
3751 exit3:
3752 	dput(dentry);
3753 exit2:
3754 	mutex_unlock(&path.dentry->d_inode->i_mutex);
3755 	mnt_drop_write(path.mnt);
3756 exit1:
3757 	path_put(&path);
3758 	putname(name);
3759 	if (retry_estale(error, lookup_flags)) {
3760 		lookup_flags |= LOOKUP_REVAL;
3761 		goto retry;
3762 	}
3763 	return error;
3764 }
3765 
3766 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3767 {
3768 	return do_rmdir(AT_FDCWD, pathname);
3769 }
3770 
3771 /**
3772  * vfs_unlink - unlink a filesystem object
3773  * @dir:	parent directory
3774  * @dentry:	victim
3775  * @delegated_inode: returns victim inode, if the inode is delegated.
3776  *
3777  * The caller must hold dir->i_mutex.
3778  *
3779  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3780  * return a reference to the inode in delegated_inode.  The caller
3781  * should then break the delegation on that inode and retry.  Because
3782  * breaking a delegation may take a long time, the caller should drop
3783  * dir->i_mutex before doing so.
3784  *
3785  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3786  * be appropriate for callers that expect the underlying filesystem not
3787  * to be NFS exported.
3788  */
3789 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3790 {
3791 	struct inode *target = dentry->d_inode;
3792 	int error = may_delete(dir, dentry, 0);
3793 
3794 	if (error)
3795 		return error;
3796 
3797 	if (!dir->i_op->unlink)
3798 		return -EPERM;
3799 
3800 	mutex_lock(&target->i_mutex);
3801 	if (is_local_mountpoint(dentry))
3802 		error = -EBUSY;
3803 	else {
3804 		error = security_inode_unlink(dir, dentry);
3805 		if (!error) {
3806 			error = try_break_deleg(target, delegated_inode);
3807 			if (error)
3808 				goto out;
3809 			error = dir->i_op->unlink(dir, dentry);
3810 			if (!error) {
3811 				dont_mount(dentry);
3812 				detach_mounts(dentry);
3813 			}
3814 		}
3815 	}
3816 out:
3817 	mutex_unlock(&target->i_mutex);
3818 
3819 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
3820 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3821 		fsnotify_link_count(target);
3822 		d_delete(dentry);
3823 	}
3824 
3825 	return error;
3826 }
3827 EXPORT_SYMBOL(vfs_unlink);
3828 
3829 /*
3830  * Make sure that the actual truncation of the file will occur outside its
3831  * directory's i_mutex.  Truncate can take a long time if there is a lot of
3832  * writeout happening, and we don't want to prevent access to the directory
3833  * while waiting on the I/O.
3834  */
3835 static long do_unlinkat(int dfd, const char __user *pathname)
3836 {
3837 	int error;
3838 	struct filename *name;
3839 	struct dentry *dentry;
3840 	struct path path;
3841 	struct qstr last;
3842 	int type;
3843 	struct inode *inode = NULL;
3844 	struct inode *delegated_inode = NULL;
3845 	unsigned int lookup_flags = 0;
3846 retry:
3847 	name = user_path_parent(dfd, pathname,
3848 				&path, &last, &type, lookup_flags);
3849 	if (IS_ERR(name))
3850 		return PTR_ERR(name);
3851 
3852 	error = -EISDIR;
3853 	if (type != LAST_NORM)
3854 		goto exit1;
3855 
3856 	error = mnt_want_write(path.mnt);
3857 	if (error)
3858 		goto exit1;
3859 retry_deleg:
3860 	mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3861 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3862 	error = PTR_ERR(dentry);
3863 	if (!IS_ERR(dentry)) {
3864 		/* Why not before? Because we want correct error value */
3865 		if (last.name[last.len])
3866 			goto slashes;
3867 		inode = dentry->d_inode;
3868 		if (d_is_negative(dentry))
3869 			goto slashes;
3870 		ihold(inode);
3871 		error = security_path_unlink(&path, dentry);
3872 		if (error)
3873 			goto exit2;
3874 		error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3875 exit2:
3876 		dput(dentry);
3877 	}
3878 	mutex_unlock(&path.dentry->d_inode->i_mutex);
3879 	if (inode)
3880 		iput(inode);	/* truncate the inode here */
3881 	inode = NULL;
3882 	if (delegated_inode) {
3883 		error = break_deleg_wait(&delegated_inode);
3884 		if (!error)
3885 			goto retry_deleg;
3886 	}
3887 	mnt_drop_write(path.mnt);
3888 exit1:
3889 	path_put(&path);
3890 	putname(name);
3891 	if (retry_estale(error, lookup_flags)) {
3892 		lookup_flags |= LOOKUP_REVAL;
3893 		inode = NULL;
3894 		goto retry;
3895 	}
3896 	return error;
3897 
3898 slashes:
3899 	if (d_is_negative(dentry))
3900 		error = -ENOENT;
3901 	else if (d_is_dir(dentry))
3902 		error = -EISDIR;
3903 	else
3904 		error = -ENOTDIR;
3905 	goto exit2;
3906 }
3907 
3908 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3909 {
3910 	if ((flag & ~AT_REMOVEDIR) != 0)
3911 		return -EINVAL;
3912 
3913 	if (flag & AT_REMOVEDIR)
3914 		return do_rmdir(dfd, pathname);
3915 
3916 	return do_unlinkat(dfd, pathname);
3917 }
3918 
3919 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3920 {
3921 	return do_unlinkat(AT_FDCWD, pathname);
3922 }
3923 
3924 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3925 {
3926 	int error = may_create(dir, dentry);
3927 
3928 	if (error)
3929 		return error;
3930 
3931 	if (!dir->i_op->symlink)
3932 		return -EPERM;
3933 
3934 	error = security_inode_symlink(dir, dentry, oldname);
3935 	if (error)
3936 		return error;
3937 
3938 	error = dir->i_op->symlink(dir, dentry, oldname);
3939 	if (!error)
3940 		fsnotify_create(dir, dentry);
3941 	return error;
3942 }
3943 EXPORT_SYMBOL(vfs_symlink);
3944 
3945 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3946 		int, newdfd, const char __user *, newname)
3947 {
3948 	int error;
3949 	struct filename *from;
3950 	struct dentry *dentry;
3951 	struct path path;
3952 	unsigned int lookup_flags = 0;
3953 
3954 	from = getname(oldname);
3955 	if (IS_ERR(from))
3956 		return PTR_ERR(from);
3957 retry:
3958 	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3959 	error = PTR_ERR(dentry);
3960 	if (IS_ERR(dentry))
3961 		goto out_putname;
3962 
3963 	error = security_path_symlink(&path, dentry, from->name);
3964 	if (!error)
3965 		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3966 	done_path_create(&path, dentry);
3967 	if (retry_estale(error, lookup_flags)) {
3968 		lookup_flags |= LOOKUP_REVAL;
3969 		goto retry;
3970 	}
3971 out_putname:
3972 	putname(from);
3973 	return error;
3974 }
3975 
3976 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3977 {
3978 	return sys_symlinkat(oldname, AT_FDCWD, newname);
3979 }
3980 
3981 /**
3982  * vfs_link - create a new link
3983  * @old_dentry:	object to be linked
3984  * @dir:	new parent
3985  * @new_dentry:	where to create the new link
3986  * @delegated_inode: returns inode needing a delegation break
3987  *
3988  * The caller must hold dir->i_mutex
3989  *
3990  * If vfs_link discovers a delegation on the to-be-linked file in need
3991  * of breaking, it will return -EWOULDBLOCK and return a reference to the
3992  * inode in delegated_inode.  The caller should then break the delegation
3993  * and retry.  Because breaking a delegation may take a long time, the
3994  * caller should drop the i_mutex before doing so.
3995  *
3996  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3997  * be appropriate for callers that expect the underlying filesystem not
3998  * to be NFS exported.
3999  */
4000 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4001 {
4002 	struct inode *inode = old_dentry->d_inode;
4003 	unsigned max_links = dir->i_sb->s_max_links;
4004 	int error;
4005 
4006 	if (!inode)
4007 		return -ENOENT;
4008 
4009 	error = may_create(dir, new_dentry);
4010 	if (error)
4011 		return error;
4012 
4013 	if (dir->i_sb != inode->i_sb)
4014 		return -EXDEV;
4015 
4016 	/*
4017 	 * A link to an append-only or immutable file cannot be created.
4018 	 */
4019 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4020 		return -EPERM;
4021 	if (!dir->i_op->link)
4022 		return -EPERM;
4023 	if (S_ISDIR(inode->i_mode))
4024 		return -EPERM;
4025 
4026 	error = security_inode_link(old_dentry, dir, new_dentry);
4027 	if (error)
4028 		return error;
4029 
4030 	mutex_lock(&inode->i_mutex);
4031 	/* Make sure we don't allow creating hardlink to an unlinked file */
4032 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4033 		error =  -ENOENT;
4034 	else if (max_links && inode->i_nlink >= max_links)
4035 		error = -EMLINK;
4036 	else {
4037 		error = try_break_deleg(inode, delegated_inode);
4038 		if (!error)
4039 			error = dir->i_op->link(old_dentry, dir, new_dentry);
4040 	}
4041 
4042 	if (!error && (inode->i_state & I_LINKABLE)) {
4043 		spin_lock(&inode->i_lock);
4044 		inode->i_state &= ~I_LINKABLE;
4045 		spin_unlock(&inode->i_lock);
4046 	}
4047 	mutex_unlock(&inode->i_mutex);
4048 	if (!error)
4049 		fsnotify_link(dir, inode, new_dentry);
4050 	return error;
4051 }
4052 EXPORT_SYMBOL(vfs_link);
4053 
4054 /*
4055  * Hardlinks are often used in delicate situations.  We avoid
4056  * security-related surprises by not following symlinks on the
4057  * newname.  --KAB
4058  *
4059  * We don't follow them on the oldname either to be compatible
4060  * with linux 2.0, and to avoid hard-linking to directories
4061  * and other special files.  --ADM
4062  */
4063 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4064 		int, newdfd, const char __user *, newname, int, flags)
4065 {
4066 	struct dentry *new_dentry;
4067 	struct path old_path, new_path;
4068 	struct inode *delegated_inode = NULL;
4069 	int how = 0;
4070 	int error;
4071 
4072 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4073 		return -EINVAL;
4074 	/*
4075 	 * To use null names we require CAP_DAC_READ_SEARCH
4076 	 * This ensures that not everyone will be able to create
4077 	 * handlink using the passed filedescriptor.
4078 	 */
4079 	if (flags & AT_EMPTY_PATH) {
4080 		if (!capable(CAP_DAC_READ_SEARCH))
4081 			return -ENOENT;
4082 		how = LOOKUP_EMPTY;
4083 	}
4084 
4085 	if (flags & AT_SYMLINK_FOLLOW)
4086 		how |= LOOKUP_FOLLOW;
4087 retry:
4088 	error = user_path_at(olddfd, oldname, how, &old_path);
4089 	if (error)
4090 		return error;
4091 
4092 	new_dentry = user_path_create(newdfd, newname, &new_path,
4093 					(how & LOOKUP_REVAL));
4094 	error = PTR_ERR(new_dentry);
4095 	if (IS_ERR(new_dentry))
4096 		goto out;
4097 
4098 	error = -EXDEV;
4099 	if (old_path.mnt != new_path.mnt)
4100 		goto out_dput;
4101 	error = may_linkat(&old_path);
4102 	if (unlikely(error))
4103 		goto out_dput;
4104 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4105 	if (error)
4106 		goto out_dput;
4107 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4108 out_dput:
4109 	done_path_create(&new_path, new_dentry);
4110 	if (delegated_inode) {
4111 		error = break_deleg_wait(&delegated_inode);
4112 		if (!error) {
4113 			path_put(&old_path);
4114 			goto retry;
4115 		}
4116 	}
4117 	if (retry_estale(error, how)) {
4118 		path_put(&old_path);
4119 		how |= LOOKUP_REVAL;
4120 		goto retry;
4121 	}
4122 out:
4123 	path_put(&old_path);
4124 
4125 	return error;
4126 }
4127 
4128 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4129 {
4130 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4131 }
4132 
4133 /**
4134  * vfs_rename - rename a filesystem object
4135  * @old_dir:	parent of source
4136  * @old_dentry:	source
4137  * @new_dir:	parent of destination
4138  * @new_dentry:	destination
4139  * @delegated_inode: returns an inode needing a delegation break
4140  * @flags:	rename flags
4141  *
4142  * The caller must hold multiple mutexes--see lock_rename()).
4143  *
4144  * If vfs_rename discovers a delegation in need of breaking at either
4145  * the source or destination, it will return -EWOULDBLOCK and return a
4146  * reference to the inode in delegated_inode.  The caller should then
4147  * break the delegation and retry.  Because breaking a delegation may
4148  * take a long time, the caller should drop all locks before doing
4149  * so.
4150  *
4151  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4152  * be appropriate for callers that expect the underlying filesystem not
4153  * to be NFS exported.
4154  *
4155  * The worst of all namespace operations - renaming directory. "Perverted"
4156  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4157  * Problems:
4158  *	a) we can get into loop creation.
4159  *	b) race potential - two innocent renames can create a loop together.
4160  *	   That's where 4.4 screws up. Current fix: serialization on
4161  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4162  *	   story.
4163  *	c) we have to lock _four_ objects - parents and victim (if it exists),
4164  *	   and source (if it is not a directory).
4165  *	   And that - after we got ->i_mutex on parents (until then we don't know
4166  *	   whether the target exists).  Solution: try to be smart with locking
4167  *	   order for inodes.  We rely on the fact that tree topology may change
4168  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4169  *	   move will be locked.  Thus we can rank directories by the tree
4170  *	   (ancestors first) and rank all non-directories after them.
4171  *	   That works since everybody except rename does "lock parent, lookup,
4172  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4173  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4174  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4175  *	   we'd better make sure that there's no link(2) for them.
4176  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4177  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4178  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4179  *	   ->i_mutex on parents, which works but leads to some truly excessive
4180  *	   locking].
4181  */
4182 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4183 	       struct inode *new_dir, struct dentry *new_dentry,
4184 	       struct inode **delegated_inode, unsigned int flags)
4185 {
4186 	int error;
4187 	bool is_dir = d_is_dir(old_dentry);
4188 	const unsigned char *old_name;
4189 	struct inode *source = old_dentry->d_inode;
4190 	struct inode *target = new_dentry->d_inode;
4191 	bool new_is_dir = false;
4192 	unsigned max_links = new_dir->i_sb->s_max_links;
4193 
4194 	if (source == target)
4195 		return 0;
4196 
4197 	error = may_delete(old_dir, old_dentry, is_dir);
4198 	if (error)
4199 		return error;
4200 
4201 	if (!target) {
4202 		error = may_create(new_dir, new_dentry);
4203 	} else {
4204 		new_is_dir = d_is_dir(new_dentry);
4205 
4206 		if (!(flags & RENAME_EXCHANGE))
4207 			error = may_delete(new_dir, new_dentry, is_dir);
4208 		else
4209 			error = may_delete(new_dir, new_dentry, new_is_dir);
4210 	}
4211 	if (error)
4212 		return error;
4213 
4214 	if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4215 		return -EPERM;
4216 
4217 	if (flags && !old_dir->i_op->rename2)
4218 		return -EINVAL;
4219 
4220 	/*
4221 	 * If we are going to change the parent - check write permissions,
4222 	 * we'll need to flip '..'.
4223 	 */
4224 	if (new_dir != old_dir) {
4225 		if (is_dir) {
4226 			error = inode_permission(source, MAY_WRITE);
4227 			if (error)
4228 				return error;
4229 		}
4230 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4231 			error = inode_permission(target, MAY_WRITE);
4232 			if (error)
4233 				return error;
4234 		}
4235 	}
4236 
4237 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4238 				      flags);
4239 	if (error)
4240 		return error;
4241 
4242 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4243 	dget(new_dentry);
4244 	if (!is_dir || (flags & RENAME_EXCHANGE))
4245 		lock_two_nondirectories(source, target);
4246 	else if (target)
4247 		mutex_lock(&target->i_mutex);
4248 
4249 	error = -EBUSY;
4250 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4251 		goto out;
4252 
4253 	if (max_links && new_dir != old_dir) {
4254 		error = -EMLINK;
4255 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4256 			goto out;
4257 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4258 		    old_dir->i_nlink >= max_links)
4259 			goto out;
4260 	}
4261 	if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4262 		shrink_dcache_parent(new_dentry);
4263 	if (!is_dir) {
4264 		error = try_break_deleg(source, delegated_inode);
4265 		if (error)
4266 			goto out;
4267 	}
4268 	if (target && !new_is_dir) {
4269 		error = try_break_deleg(target, delegated_inode);
4270 		if (error)
4271 			goto out;
4272 	}
4273 	if (!old_dir->i_op->rename2) {
4274 		error = old_dir->i_op->rename(old_dir, old_dentry,
4275 					      new_dir, new_dentry);
4276 	} else {
4277 		WARN_ON(old_dir->i_op->rename != NULL);
4278 		error = old_dir->i_op->rename2(old_dir, old_dentry,
4279 					       new_dir, new_dentry, flags);
4280 	}
4281 	if (error)
4282 		goto out;
4283 
4284 	if (!(flags & RENAME_EXCHANGE) && target) {
4285 		if (is_dir)
4286 			target->i_flags |= S_DEAD;
4287 		dont_mount(new_dentry);
4288 		detach_mounts(new_dentry);
4289 	}
4290 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4291 		if (!(flags & RENAME_EXCHANGE))
4292 			d_move(old_dentry, new_dentry);
4293 		else
4294 			d_exchange(old_dentry, new_dentry);
4295 	}
4296 out:
4297 	if (!is_dir || (flags & RENAME_EXCHANGE))
4298 		unlock_two_nondirectories(source, target);
4299 	else if (target)
4300 		mutex_unlock(&target->i_mutex);
4301 	dput(new_dentry);
4302 	if (!error) {
4303 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
4304 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4305 		if (flags & RENAME_EXCHANGE) {
4306 			fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4307 				      new_is_dir, NULL, new_dentry);
4308 		}
4309 	}
4310 	fsnotify_oldname_free(old_name);
4311 
4312 	return error;
4313 }
4314 EXPORT_SYMBOL(vfs_rename);
4315 
4316 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4317 		int, newdfd, const char __user *, newname, unsigned int, flags)
4318 {
4319 	struct dentry *old_dentry, *new_dentry;
4320 	struct dentry *trap;
4321 	struct path old_path, new_path;
4322 	struct qstr old_last, new_last;
4323 	int old_type, new_type;
4324 	struct inode *delegated_inode = NULL;
4325 	struct filename *from;
4326 	struct filename *to;
4327 	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4328 	bool should_retry = false;
4329 	int error;
4330 
4331 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4332 		return -EINVAL;
4333 
4334 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4335 	    (flags & RENAME_EXCHANGE))
4336 		return -EINVAL;
4337 
4338 	if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4339 		return -EPERM;
4340 
4341 	if (flags & RENAME_EXCHANGE)
4342 		target_flags = 0;
4343 
4344 retry:
4345 	from = user_path_parent(olddfd, oldname,
4346 				&old_path, &old_last, &old_type, lookup_flags);
4347 	if (IS_ERR(from)) {
4348 		error = PTR_ERR(from);
4349 		goto exit;
4350 	}
4351 
4352 	to = user_path_parent(newdfd, newname,
4353 				&new_path, &new_last, &new_type, lookup_flags);
4354 	if (IS_ERR(to)) {
4355 		error = PTR_ERR(to);
4356 		goto exit1;
4357 	}
4358 
4359 	error = -EXDEV;
4360 	if (old_path.mnt != new_path.mnt)
4361 		goto exit2;
4362 
4363 	error = -EBUSY;
4364 	if (old_type != LAST_NORM)
4365 		goto exit2;
4366 
4367 	if (flags & RENAME_NOREPLACE)
4368 		error = -EEXIST;
4369 	if (new_type != LAST_NORM)
4370 		goto exit2;
4371 
4372 	error = mnt_want_write(old_path.mnt);
4373 	if (error)
4374 		goto exit2;
4375 
4376 retry_deleg:
4377 	trap = lock_rename(new_path.dentry, old_path.dentry);
4378 
4379 	old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4380 	error = PTR_ERR(old_dentry);
4381 	if (IS_ERR(old_dentry))
4382 		goto exit3;
4383 	/* source must exist */
4384 	error = -ENOENT;
4385 	if (d_is_negative(old_dentry))
4386 		goto exit4;
4387 	new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4388 	error = PTR_ERR(new_dentry);
4389 	if (IS_ERR(new_dentry))
4390 		goto exit4;
4391 	error = -EEXIST;
4392 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4393 		goto exit5;
4394 	if (flags & RENAME_EXCHANGE) {
4395 		error = -ENOENT;
4396 		if (d_is_negative(new_dentry))
4397 			goto exit5;
4398 
4399 		if (!d_is_dir(new_dentry)) {
4400 			error = -ENOTDIR;
4401 			if (new_last.name[new_last.len])
4402 				goto exit5;
4403 		}
4404 	}
4405 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4406 	if (!d_is_dir(old_dentry)) {
4407 		error = -ENOTDIR;
4408 		if (old_last.name[old_last.len])
4409 			goto exit5;
4410 		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4411 			goto exit5;
4412 	}
4413 	/* source should not be ancestor of target */
4414 	error = -EINVAL;
4415 	if (old_dentry == trap)
4416 		goto exit5;
4417 	/* target should not be an ancestor of source */
4418 	if (!(flags & RENAME_EXCHANGE))
4419 		error = -ENOTEMPTY;
4420 	if (new_dentry == trap)
4421 		goto exit5;
4422 
4423 	error = security_path_rename(&old_path, old_dentry,
4424 				     &new_path, new_dentry, flags);
4425 	if (error)
4426 		goto exit5;
4427 	error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4428 			   new_path.dentry->d_inode, new_dentry,
4429 			   &delegated_inode, flags);
4430 exit5:
4431 	dput(new_dentry);
4432 exit4:
4433 	dput(old_dentry);
4434 exit3:
4435 	unlock_rename(new_path.dentry, old_path.dentry);
4436 	if (delegated_inode) {
4437 		error = break_deleg_wait(&delegated_inode);
4438 		if (!error)
4439 			goto retry_deleg;
4440 	}
4441 	mnt_drop_write(old_path.mnt);
4442 exit2:
4443 	if (retry_estale(error, lookup_flags))
4444 		should_retry = true;
4445 	path_put(&new_path);
4446 	putname(to);
4447 exit1:
4448 	path_put(&old_path);
4449 	putname(from);
4450 	if (should_retry) {
4451 		should_retry = false;
4452 		lookup_flags |= LOOKUP_REVAL;
4453 		goto retry;
4454 	}
4455 exit:
4456 	return error;
4457 }
4458 
4459 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4460 		int, newdfd, const char __user *, newname)
4461 {
4462 	return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4463 }
4464 
4465 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4466 {
4467 	return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4468 }
4469 
4470 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4471 {
4472 	int error = may_create(dir, dentry);
4473 	if (error)
4474 		return error;
4475 
4476 	if (!dir->i_op->mknod)
4477 		return -EPERM;
4478 
4479 	return dir->i_op->mknod(dir, dentry,
4480 				S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4481 }
4482 EXPORT_SYMBOL(vfs_whiteout);
4483 
4484 int readlink_copy(char __user *buffer, int buflen, const char *link)
4485 {
4486 	int len = PTR_ERR(link);
4487 	if (IS_ERR(link))
4488 		goto out;
4489 
4490 	len = strlen(link);
4491 	if (len > (unsigned) buflen)
4492 		len = buflen;
4493 	if (copy_to_user(buffer, link, len))
4494 		len = -EFAULT;
4495 out:
4496 	return len;
4497 }
4498 EXPORT_SYMBOL(readlink_copy);
4499 
4500 /*
4501  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
4502  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
4503  * using) it for any given inode is up to filesystem.
4504  */
4505 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4506 {
4507 	void *cookie;
4508 	struct inode *inode = d_inode(dentry);
4509 	const char *link = inode->i_link;
4510 	int res;
4511 
4512 	if (!link) {
4513 		link = inode->i_op->follow_link(dentry, &cookie);
4514 		if (IS_ERR(link))
4515 			return PTR_ERR(link);
4516 	}
4517 	res = readlink_copy(buffer, buflen, link);
4518 	if (inode->i_op->put_link)
4519 		inode->i_op->put_link(inode, cookie);
4520 	return res;
4521 }
4522 EXPORT_SYMBOL(generic_readlink);
4523 
4524 /* get the link contents into pagecache */
4525 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4526 {
4527 	char *kaddr;
4528 	struct page *page;
4529 	struct address_space *mapping = dentry->d_inode->i_mapping;
4530 	page = read_mapping_page(mapping, 0, NULL);
4531 	if (IS_ERR(page))
4532 		return (char*)page;
4533 	*ppage = page;
4534 	kaddr = kmap(page);
4535 	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4536 	return kaddr;
4537 }
4538 
4539 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4540 {
4541 	struct page *page = NULL;
4542 	int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4543 	if (page) {
4544 		kunmap(page);
4545 		page_cache_release(page);
4546 	}
4547 	return res;
4548 }
4549 EXPORT_SYMBOL(page_readlink);
4550 
4551 const char *page_follow_link_light(struct dentry *dentry, void **cookie)
4552 {
4553 	struct page *page = NULL;
4554 	char *res = page_getlink(dentry, &page);
4555 	if (!IS_ERR(res))
4556 		*cookie = page;
4557 	return res;
4558 }
4559 EXPORT_SYMBOL(page_follow_link_light);
4560 
4561 void page_put_link(struct inode *unused, void *cookie)
4562 {
4563 	struct page *page = cookie;
4564 	kunmap(page);
4565 	page_cache_release(page);
4566 }
4567 EXPORT_SYMBOL(page_put_link);
4568 
4569 /*
4570  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4571  */
4572 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4573 {
4574 	struct address_space *mapping = inode->i_mapping;
4575 	struct page *page;
4576 	void *fsdata;
4577 	int err;
4578 	char *kaddr;
4579 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4580 	if (nofs)
4581 		flags |= AOP_FLAG_NOFS;
4582 
4583 retry:
4584 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4585 				flags, &page, &fsdata);
4586 	if (err)
4587 		goto fail;
4588 
4589 	kaddr = kmap_atomic(page);
4590 	memcpy(kaddr, symname, len-1);
4591 	kunmap_atomic(kaddr);
4592 
4593 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4594 							page, fsdata);
4595 	if (err < 0)
4596 		goto fail;
4597 	if (err < len-1)
4598 		goto retry;
4599 
4600 	mark_inode_dirty(inode);
4601 	return 0;
4602 fail:
4603 	return err;
4604 }
4605 EXPORT_SYMBOL(__page_symlink);
4606 
4607 int page_symlink(struct inode *inode, const char *symname, int len)
4608 {
4609 	return __page_symlink(inode, symname, len,
4610 			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4611 }
4612 EXPORT_SYMBOL(page_symlink);
4613 
4614 const struct inode_operations page_symlink_inode_operations = {
4615 	.readlink	= generic_readlink,
4616 	.follow_link	= page_follow_link_light,
4617 	.put_link	= page_put_link,
4618 };
4619 EXPORT_SYMBOL(page_symlink_inode_operations);
4620