xref: /linux/fs/namei.c (revision c6ed444fd6fffaaf2e3857d926ed18bf3df81e8e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/namei.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * Some corrections by tytso.
10  */
11 
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13  * lookup logic.
14  */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16  */
17 
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/fsnotify.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/ima.h>
29 #include <linux/syscalls.h>
30 #include <linux/mount.h>
31 #include <linux/audit.h>
32 #include <linux/capability.h>
33 #include <linux/file.h>
34 #include <linux/fcntl.h>
35 #include <linux/device_cgroup.h>
36 #include <linux/fs_struct.h>
37 #include <linux/posix_acl.h>
38 #include <linux/hash.h>
39 #include <linux/bitops.h>
40 #include <linux/init_task.h>
41 #include <linux/uaccess.h>
42 #include <linux/build_bug.h>
43 
44 #include "internal.h"
45 #include "mount.h"
46 
47 /* [Feb-1997 T. Schoebel-Theuer]
48  * Fundamental changes in the pathname lookup mechanisms (namei)
49  * were necessary because of omirr.  The reason is that omirr needs
50  * to know the _real_ pathname, not the user-supplied one, in case
51  * of symlinks (and also when transname replacements occur).
52  *
53  * The new code replaces the old recursive symlink resolution with
54  * an iterative one (in case of non-nested symlink chains).  It does
55  * this with calls to <fs>_follow_link().
56  * As a side effect, dir_namei(), _namei() and follow_link() are now
57  * replaced with a single function lookup_dentry() that can handle all
58  * the special cases of the former code.
59  *
60  * With the new dcache, the pathname is stored at each inode, at least as
61  * long as the refcount of the inode is positive.  As a side effect, the
62  * size of the dcache depends on the inode cache and thus is dynamic.
63  *
64  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
65  * resolution to correspond with current state of the code.
66  *
67  * Note that the symlink resolution is not *completely* iterative.
68  * There is still a significant amount of tail- and mid- recursion in
69  * the algorithm.  Also, note that <fs>_readlink() is not used in
70  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
71  * may return different results than <fs>_follow_link().  Many virtual
72  * filesystems (including /proc) exhibit this behavior.
73  */
74 
75 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
76  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
77  * and the name already exists in form of a symlink, try to create the new
78  * name indicated by the symlink. The old code always complained that the
79  * name already exists, due to not following the symlink even if its target
80  * is nonexistent.  The new semantics affects also mknod() and link() when
81  * the name is a symlink pointing to a non-existent name.
82  *
83  * I don't know which semantics is the right one, since I have no access
84  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
85  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
86  * "old" one. Personally, I think the new semantics is much more logical.
87  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
88  * file does succeed in both HP-UX and SunOs, but not in Solaris
89  * and in the old Linux semantics.
90  */
91 
92 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
93  * semantics.  See the comments in "open_namei" and "do_link" below.
94  *
95  * [10-Sep-98 Alan Modra] Another symlink change.
96  */
97 
98 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
99  *	inside the path - always follow.
100  *	in the last component in creation/removal/renaming - never follow.
101  *	if LOOKUP_FOLLOW passed - follow.
102  *	if the pathname has trailing slashes - follow.
103  *	otherwise - don't follow.
104  * (applied in that order).
105  *
106  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
107  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
108  * During the 2.4 we need to fix the userland stuff depending on it -
109  * hopefully we will be able to get rid of that wart in 2.5. So far only
110  * XEmacs seems to be relying on it...
111  */
112 /*
113  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
114  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
115  * any extra contention...
116  */
117 
118 /* In order to reduce some races, while at the same time doing additional
119  * checking and hopefully speeding things up, we copy filenames to the
120  * kernel data space before using them..
121  *
122  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
123  * PATH_MAX includes the nul terminator --RR.
124  */
125 
126 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
127 
128 struct filename *
129 getname_flags(const char __user *filename, int flags, int *empty)
130 {
131 	struct filename *result;
132 	char *kname;
133 	int len;
134 	BUILD_BUG_ON(offsetof(struct filename, iname) % sizeof(long) != 0);
135 
136 	result = audit_reusename(filename);
137 	if (result)
138 		return result;
139 
140 	result = __getname();
141 	if (unlikely(!result))
142 		return ERR_PTR(-ENOMEM);
143 
144 	/*
145 	 * First, try to embed the struct filename inside the names_cache
146 	 * allocation
147 	 */
148 	kname = (char *)result->iname;
149 	result->name = kname;
150 
151 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
152 	if (unlikely(len < 0)) {
153 		__putname(result);
154 		return ERR_PTR(len);
155 	}
156 
157 	/*
158 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
159 	 * separate struct filename so we can dedicate the entire
160 	 * names_cache allocation for the pathname, and re-do the copy from
161 	 * userland.
162 	 */
163 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
164 		const size_t size = offsetof(struct filename, iname[1]);
165 		kname = (char *)result;
166 
167 		/*
168 		 * size is chosen that way we to guarantee that
169 		 * result->iname[0] is within the same object and that
170 		 * kname can't be equal to result->iname, no matter what.
171 		 */
172 		result = kzalloc(size, GFP_KERNEL);
173 		if (unlikely(!result)) {
174 			__putname(kname);
175 			return ERR_PTR(-ENOMEM);
176 		}
177 		result->name = kname;
178 		len = strncpy_from_user(kname, filename, PATH_MAX);
179 		if (unlikely(len < 0)) {
180 			__putname(kname);
181 			kfree(result);
182 			return ERR_PTR(len);
183 		}
184 		if (unlikely(len == PATH_MAX)) {
185 			__putname(kname);
186 			kfree(result);
187 			return ERR_PTR(-ENAMETOOLONG);
188 		}
189 	}
190 
191 	result->refcnt = 1;
192 	/* The empty path is special. */
193 	if (unlikely(!len)) {
194 		if (empty)
195 			*empty = 1;
196 		if (!(flags & LOOKUP_EMPTY)) {
197 			putname(result);
198 			return ERR_PTR(-ENOENT);
199 		}
200 	}
201 
202 	result->uptr = filename;
203 	result->aname = NULL;
204 	audit_getname(result);
205 	return result;
206 }
207 
208 struct filename *
209 getname(const char __user * filename)
210 {
211 	return getname_flags(filename, 0, NULL);
212 }
213 
214 struct filename *
215 getname_kernel(const char * filename)
216 {
217 	struct filename *result;
218 	int len = strlen(filename) + 1;
219 
220 	result = __getname();
221 	if (unlikely(!result))
222 		return ERR_PTR(-ENOMEM);
223 
224 	if (len <= EMBEDDED_NAME_MAX) {
225 		result->name = (char *)result->iname;
226 	} else if (len <= PATH_MAX) {
227 		const size_t size = offsetof(struct filename, iname[1]);
228 		struct filename *tmp;
229 
230 		tmp = kmalloc(size, GFP_KERNEL);
231 		if (unlikely(!tmp)) {
232 			__putname(result);
233 			return ERR_PTR(-ENOMEM);
234 		}
235 		tmp->name = (char *)result;
236 		result = tmp;
237 	} else {
238 		__putname(result);
239 		return ERR_PTR(-ENAMETOOLONG);
240 	}
241 	memcpy((char *)result->name, filename, len);
242 	result->uptr = NULL;
243 	result->aname = NULL;
244 	result->refcnt = 1;
245 	audit_getname(result);
246 
247 	return result;
248 }
249 
250 void putname(struct filename *name)
251 {
252 	BUG_ON(name->refcnt <= 0);
253 
254 	if (--name->refcnt > 0)
255 		return;
256 
257 	if (name->name != name->iname) {
258 		__putname(name->name);
259 		kfree(name);
260 	} else
261 		__putname(name);
262 }
263 
264 static int check_acl(struct inode *inode, int mask)
265 {
266 #ifdef CONFIG_FS_POSIX_ACL
267 	struct posix_acl *acl;
268 
269 	if (mask & MAY_NOT_BLOCK) {
270 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
271 	        if (!acl)
272 	                return -EAGAIN;
273 		/* no ->get_acl() calls in RCU mode... */
274 		if (is_uncached_acl(acl))
275 			return -ECHILD;
276 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
277 	}
278 
279 	acl = get_acl(inode, ACL_TYPE_ACCESS);
280 	if (IS_ERR(acl))
281 		return PTR_ERR(acl);
282 	if (acl) {
283 	        int error = posix_acl_permission(inode, acl, mask);
284 	        posix_acl_release(acl);
285 	        return error;
286 	}
287 #endif
288 
289 	return -EAGAIN;
290 }
291 
292 /*
293  * This does the basic permission checking
294  */
295 static int acl_permission_check(struct inode *inode, int mask)
296 {
297 	unsigned int mode = inode->i_mode;
298 
299 	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
300 		mode >>= 6;
301 	else {
302 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
303 			int error = check_acl(inode, mask);
304 			if (error != -EAGAIN)
305 				return error;
306 		}
307 
308 		if (in_group_p(inode->i_gid))
309 			mode >>= 3;
310 	}
311 
312 	/*
313 	 * If the DACs are ok we don't need any capability check.
314 	 */
315 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
316 		return 0;
317 	return -EACCES;
318 }
319 
320 /**
321  * generic_permission -  check for access rights on a Posix-like filesystem
322  * @inode:	inode to check access rights for
323  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
324  *
325  * Used to check for read/write/execute permissions on a file.
326  * We use "fsuid" for this, letting us set arbitrary permissions
327  * for filesystem access without changing the "normal" uids which
328  * are used for other things.
329  *
330  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
331  * request cannot be satisfied (eg. requires blocking or too much complexity).
332  * It would then be called again in ref-walk mode.
333  */
334 int generic_permission(struct inode *inode, int mask)
335 {
336 	int ret;
337 
338 	/*
339 	 * Do the basic permission checks.
340 	 */
341 	ret = acl_permission_check(inode, mask);
342 	if (ret != -EACCES)
343 		return ret;
344 
345 	if (S_ISDIR(inode->i_mode)) {
346 		/* DACs are overridable for directories */
347 		if (!(mask & MAY_WRITE))
348 			if (capable_wrt_inode_uidgid(inode,
349 						     CAP_DAC_READ_SEARCH))
350 				return 0;
351 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
352 			return 0;
353 		return -EACCES;
354 	}
355 
356 	/*
357 	 * Searching includes executable on directories, else just read.
358 	 */
359 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
360 	if (mask == MAY_READ)
361 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
362 			return 0;
363 	/*
364 	 * Read/write DACs are always overridable.
365 	 * Executable DACs are overridable when there is
366 	 * at least one exec bit set.
367 	 */
368 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
369 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
370 			return 0;
371 
372 	return -EACCES;
373 }
374 EXPORT_SYMBOL(generic_permission);
375 
376 /*
377  * We _really_ want to just do "generic_permission()" without
378  * even looking at the inode->i_op values. So we keep a cache
379  * flag in inode->i_opflags, that says "this has not special
380  * permission function, use the fast case".
381  */
382 static inline int do_inode_permission(struct inode *inode, int mask)
383 {
384 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
385 		if (likely(inode->i_op->permission))
386 			return inode->i_op->permission(inode, mask);
387 
388 		/* This gets set once for the inode lifetime */
389 		spin_lock(&inode->i_lock);
390 		inode->i_opflags |= IOP_FASTPERM;
391 		spin_unlock(&inode->i_lock);
392 	}
393 	return generic_permission(inode, mask);
394 }
395 
396 /**
397  * sb_permission - Check superblock-level permissions
398  * @sb: Superblock of inode to check permission on
399  * @inode: Inode to check permission on
400  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
401  *
402  * Separate out file-system wide checks from inode-specific permission checks.
403  */
404 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
405 {
406 	if (unlikely(mask & MAY_WRITE)) {
407 		umode_t mode = inode->i_mode;
408 
409 		/* Nobody gets write access to a read-only fs. */
410 		if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
411 			return -EROFS;
412 	}
413 	return 0;
414 }
415 
416 /**
417  * inode_permission - Check for access rights to a given inode
418  * @inode: Inode to check permission on
419  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
420  *
421  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
422  * this, letting us set arbitrary permissions for filesystem access without
423  * changing the "normal" UIDs which are used for other things.
424  *
425  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
426  */
427 int inode_permission(struct inode *inode, int mask)
428 {
429 	int retval;
430 
431 	retval = sb_permission(inode->i_sb, inode, mask);
432 	if (retval)
433 		return retval;
434 
435 	if (unlikely(mask & MAY_WRITE)) {
436 		/*
437 		 * Nobody gets write access to an immutable file.
438 		 */
439 		if (IS_IMMUTABLE(inode))
440 			return -EPERM;
441 
442 		/*
443 		 * Updating mtime will likely cause i_uid and i_gid to be
444 		 * written back improperly if their true value is unknown
445 		 * to the vfs.
446 		 */
447 		if (HAS_UNMAPPED_ID(inode))
448 			return -EACCES;
449 	}
450 
451 	retval = do_inode_permission(inode, mask);
452 	if (retval)
453 		return retval;
454 
455 	retval = devcgroup_inode_permission(inode, mask);
456 	if (retval)
457 		return retval;
458 
459 	return security_inode_permission(inode, mask);
460 }
461 EXPORT_SYMBOL(inode_permission);
462 
463 /**
464  * path_get - get a reference to a path
465  * @path: path to get the reference to
466  *
467  * Given a path increment the reference count to the dentry and the vfsmount.
468  */
469 void path_get(const struct path *path)
470 {
471 	mntget(path->mnt);
472 	dget(path->dentry);
473 }
474 EXPORT_SYMBOL(path_get);
475 
476 /**
477  * path_put - put a reference to a path
478  * @path: path to put the reference to
479  *
480  * Given a path decrement the reference count to the dentry and the vfsmount.
481  */
482 void path_put(const struct path *path)
483 {
484 	dput(path->dentry);
485 	mntput(path->mnt);
486 }
487 EXPORT_SYMBOL(path_put);
488 
489 #define EMBEDDED_LEVELS 2
490 struct nameidata {
491 	struct path	path;
492 	struct qstr	last;
493 	struct path	root;
494 	struct inode	*inode; /* path.dentry.d_inode */
495 	unsigned int	flags;
496 	unsigned	seq, m_seq;
497 	int		last_type;
498 	unsigned	depth;
499 	int		total_link_count;
500 	struct saved {
501 		struct path link;
502 		struct delayed_call done;
503 		const char *name;
504 		unsigned seq;
505 	} *stack, internal[EMBEDDED_LEVELS];
506 	struct filename	*name;
507 	struct nameidata *saved;
508 	struct inode	*link_inode;
509 	unsigned	root_seq;
510 	int		dfd;
511 } __randomize_layout;
512 
513 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
514 {
515 	struct nameidata *old = current->nameidata;
516 	p->stack = p->internal;
517 	p->dfd = dfd;
518 	p->name = name;
519 	p->total_link_count = old ? old->total_link_count : 0;
520 	p->saved = old;
521 	current->nameidata = p;
522 }
523 
524 static void restore_nameidata(void)
525 {
526 	struct nameidata *now = current->nameidata, *old = now->saved;
527 
528 	current->nameidata = old;
529 	if (old)
530 		old->total_link_count = now->total_link_count;
531 	if (now->stack != now->internal)
532 		kfree(now->stack);
533 }
534 
535 static int __nd_alloc_stack(struct nameidata *nd)
536 {
537 	struct saved *p;
538 
539 	if (nd->flags & LOOKUP_RCU) {
540 		p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
541 				  GFP_ATOMIC);
542 		if (unlikely(!p))
543 			return -ECHILD;
544 	} else {
545 		p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
546 				  GFP_KERNEL);
547 		if (unlikely(!p))
548 			return -ENOMEM;
549 	}
550 	memcpy(p, nd->internal, sizeof(nd->internal));
551 	nd->stack = p;
552 	return 0;
553 }
554 
555 /**
556  * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
557  * @path: nameidate to verify
558  *
559  * Rename can sometimes move a file or directory outside of a bind
560  * mount, path_connected allows those cases to be detected.
561  */
562 static bool path_connected(const struct path *path)
563 {
564 	struct vfsmount *mnt = path->mnt;
565 	struct super_block *sb = mnt->mnt_sb;
566 
567 	/* Bind mounts and multi-root filesystems can have disconnected paths */
568 	if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root))
569 		return true;
570 
571 	return is_subdir(path->dentry, mnt->mnt_root);
572 }
573 
574 static inline int nd_alloc_stack(struct nameidata *nd)
575 {
576 	if (likely(nd->depth != EMBEDDED_LEVELS))
577 		return 0;
578 	if (likely(nd->stack != nd->internal))
579 		return 0;
580 	return __nd_alloc_stack(nd);
581 }
582 
583 static void drop_links(struct nameidata *nd)
584 {
585 	int i = nd->depth;
586 	while (i--) {
587 		struct saved *last = nd->stack + i;
588 		do_delayed_call(&last->done);
589 		clear_delayed_call(&last->done);
590 	}
591 }
592 
593 static void terminate_walk(struct nameidata *nd)
594 {
595 	drop_links(nd);
596 	if (!(nd->flags & LOOKUP_RCU)) {
597 		int i;
598 		path_put(&nd->path);
599 		for (i = 0; i < nd->depth; i++)
600 			path_put(&nd->stack[i].link);
601 		if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
602 			path_put(&nd->root);
603 			nd->root.mnt = NULL;
604 		}
605 	} else {
606 		nd->flags &= ~LOOKUP_RCU;
607 		if (!(nd->flags & LOOKUP_ROOT))
608 			nd->root.mnt = NULL;
609 		rcu_read_unlock();
610 	}
611 	nd->depth = 0;
612 }
613 
614 /* path_put is needed afterwards regardless of success or failure */
615 static bool legitimize_path(struct nameidata *nd,
616 			    struct path *path, unsigned seq)
617 {
618 	int res = __legitimize_mnt(path->mnt, nd->m_seq);
619 	if (unlikely(res)) {
620 		if (res > 0)
621 			path->mnt = NULL;
622 		path->dentry = NULL;
623 		return false;
624 	}
625 	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
626 		path->dentry = NULL;
627 		return false;
628 	}
629 	return !read_seqcount_retry(&path->dentry->d_seq, seq);
630 }
631 
632 static bool legitimize_links(struct nameidata *nd)
633 {
634 	int i;
635 	for (i = 0; i < nd->depth; i++) {
636 		struct saved *last = nd->stack + i;
637 		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
638 			drop_links(nd);
639 			nd->depth = i + 1;
640 			return false;
641 		}
642 	}
643 	return true;
644 }
645 
646 /*
647  * Path walking has 2 modes, rcu-walk and ref-walk (see
648  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
649  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
650  * normal reference counts on dentries and vfsmounts to transition to ref-walk
651  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
652  * got stuck, so ref-walk may continue from there. If this is not successful
653  * (eg. a seqcount has changed), then failure is returned and it's up to caller
654  * to restart the path walk from the beginning in ref-walk mode.
655  */
656 
657 /**
658  * unlazy_walk - try to switch to ref-walk mode.
659  * @nd: nameidata pathwalk data
660  * Returns: 0 on success, -ECHILD on failure
661  *
662  * unlazy_walk attempts to legitimize the current nd->path and nd->root
663  * for ref-walk mode.
664  * Must be called from rcu-walk context.
665  * Nothing should touch nameidata between unlazy_walk() failure and
666  * terminate_walk().
667  */
668 static int unlazy_walk(struct nameidata *nd)
669 {
670 	struct dentry *parent = nd->path.dentry;
671 
672 	BUG_ON(!(nd->flags & LOOKUP_RCU));
673 
674 	nd->flags &= ~LOOKUP_RCU;
675 	if (unlikely(!legitimize_links(nd)))
676 		goto out2;
677 	if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
678 		goto out1;
679 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
680 		if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq)))
681 			goto out;
682 	}
683 	rcu_read_unlock();
684 	BUG_ON(nd->inode != parent->d_inode);
685 	return 0;
686 
687 out2:
688 	nd->path.mnt = NULL;
689 	nd->path.dentry = NULL;
690 out1:
691 	if (!(nd->flags & LOOKUP_ROOT))
692 		nd->root.mnt = NULL;
693 out:
694 	rcu_read_unlock();
695 	return -ECHILD;
696 }
697 
698 /**
699  * unlazy_child - try to switch to ref-walk mode.
700  * @nd: nameidata pathwalk data
701  * @dentry: child of nd->path.dentry
702  * @seq: seq number to check dentry against
703  * Returns: 0 on success, -ECHILD on failure
704  *
705  * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
706  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
707  * @nd.  Must be called from rcu-walk context.
708  * Nothing should touch nameidata between unlazy_child() failure and
709  * terminate_walk().
710  */
711 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
712 {
713 	BUG_ON(!(nd->flags & LOOKUP_RCU));
714 
715 	nd->flags &= ~LOOKUP_RCU;
716 	if (unlikely(!legitimize_links(nd)))
717 		goto out2;
718 	if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
719 		goto out2;
720 	if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
721 		goto out1;
722 
723 	/*
724 	 * We need to move both the parent and the dentry from the RCU domain
725 	 * to be properly refcounted. And the sequence number in the dentry
726 	 * validates *both* dentry counters, since we checked the sequence
727 	 * number of the parent after we got the child sequence number. So we
728 	 * know the parent must still be valid if the child sequence number is
729 	 */
730 	if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
731 		goto out;
732 	if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) {
733 		rcu_read_unlock();
734 		dput(dentry);
735 		goto drop_root_mnt;
736 	}
737 	/*
738 	 * Sequence counts matched. Now make sure that the root is
739 	 * still valid and get it if required.
740 	 */
741 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
742 		if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
743 			rcu_read_unlock();
744 			dput(dentry);
745 			return -ECHILD;
746 		}
747 	}
748 
749 	rcu_read_unlock();
750 	return 0;
751 
752 out2:
753 	nd->path.mnt = NULL;
754 out1:
755 	nd->path.dentry = NULL;
756 out:
757 	rcu_read_unlock();
758 drop_root_mnt:
759 	if (!(nd->flags & LOOKUP_ROOT))
760 		nd->root.mnt = NULL;
761 	return -ECHILD;
762 }
763 
764 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
765 {
766 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
767 		return dentry->d_op->d_revalidate(dentry, flags);
768 	else
769 		return 1;
770 }
771 
772 /**
773  * complete_walk - successful completion of path walk
774  * @nd:  pointer nameidata
775  *
776  * If we had been in RCU mode, drop out of it and legitimize nd->path.
777  * Revalidate the final result, unless we'd already done that during
778  * the path walk or the filesystem doesn't ask for it.  Return 0 on
779  * success, -error on failure.  In case of failure caller does not
780  * need to drop nd->path.
781  */
782 static int complete_walk(struct nameidata *nd)
783 {
784 	struct dentry *dentry = nd->path.dentry;
785 	int status;
786 
787 	if (nd->flags & LOOKUP_RCU) {
788 		if (!(nd->flags & LOOKUP_ROOT))
789 			nd->root.mnt = NULL;
790 		if (unlikely(unlazy_walk(nd)))
791 			return -ECHILD;
792 	}
793 
794 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
795 		return 0;
796 
797 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
798 		return 0;
799 
800 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
801 	if (status > 0)
802 		return 0;
803 
804 	if (!status)
805 		status = -ESTALE;
806 
807 	return status;
808 }
809 
810 static void set_root(struct nameidata *nd)
811 {
812 	struct fs_struct *fs = current->fs;
813 
814 	if (nd->flags & LOOKUP_RCU) {
815 		unsigned seq;
816 
817 		do {
818 			seq = read_seqcount_begin(&fs->seq);
819 			nd->root = fs->root;
820 			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
821 		} while (read_seqcount_retry(&fs->seq, seq));
822 	} else {
823 		get_fs_root(fs, &nd->root);
824 	}
825 }
826 
827 static void path_put_conditional(struct path *path, struct nameidata *nd)
828 {
829 	dput(path->dentry);
830 	if (path->mnt != nd->path.mnt)
831 		mntput(path->mnt);
832 }
833 
834 static inline void path_to_nameidata(const struct path *path,
835 					struct nameidata *nd)
836 {
837 	if (!(nd->flags & LOOKUP_RCU)) {
838 		dput(nd->path.dentry);
839 		if (nd->path.mnt != path->mnt)
840 			mntput(nd->path.mnt);
841 	}
842 	nd->path.mnt = path->mnt;
843 	nd->path.dentry = path->dentry;
844 }
845 
846 static int nd_jump_root(struct nameidata *nd)
847 {
848 	if (nd->flags & LOOKUP_RCU) {
849 		struct dentry *d;
850 		nd->path = nd->root;
851 		d = nd->path.dentry;
852 		nd->inode = d->d_inode;
853 		nd->seq = nd->root_seq;
854 		if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
855 			return -ECHILD;
856 	} else {
857 		path_put(&nd->path);
858 		nd->path = nd->root;
859 		path_get(&nd->path);
860 		nd->inode = nd->path.dentry->d_inode;
861 	}
862 	nd->flags |= LOOKUP_JUMPED;
863 	return 0;
864 }
865 
866 /*
867  * Helper to directly jump to a known parsed path from ->get_link,
868  * caller must have taken a reference to path beforehand.
869  */
870 void nd_jump_link(struct path *path)
871 {
872 	struct nameidata *nd = current->nameidata;
873 	path_put(&nd->path);
874 
875 	nd->path = *path;
876 	nd->inode = nd->path.dentry->d_inode;
877 	nd->flags |= LOOKUP_JUMPED;
878 }
879 
880 static inline void put_link(struct nameidata *nd)
881 {
882 	struct saved *last = nd->stack + --nd->depth;
883 	do_delayed_call(&last->done);
884 	if (!(nd->flags & LOOKUP_RCU))
885 		path_put(&last->link);
886 }
887 
888 int sysctl_protected_symlinks __read_mostly = 0;
889 int sysctl_protected_hardlinks __read_mostly = 0;
890 
891 /**
892  * may_follow_link - Check symlink following for unsafe situations
893  * @nd: nameidata pathwalk data
894  *
895  * In the case of the sysctl_protected_symlinks sysctl being enabled,
896  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
897  * in a sticky world-writable directory. This is to protect privileged
898  * processes from failing races against path names that may change out
899  * from under them by way of other users creating malicious symlinks.
900  * It will permit symlinks to be followed only when outside a sticky
901  * world-writable directory, or when the uid of the symlink and follower
902  * match, or when the directory owner matches the symlink's owner.
903  *
904  * Returns 0 if following the symlink is allowed, -ve on error.
905  */
906 static inline int may_follow_link(struct nameidata *nd)
907 {
908 	const struct inode *inode;
909 	const struct inode *parent;
910 	kuid_t puid;
911 
912 	if (!sysctl_protected_symlinks)
913 		return 0;
914 
915 	/* Allowed if owner and follower match. */
916 	inode = nd->link_inode;
917 	if (uid_eq(current_cred()->fsuid, inode->i_uid))
918 		return 0;
919 
920 	/* Allowed if parent directory not sticky and world-writable. */
921 	parent = nd->inode;
922 	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
923 		return 0;
924 
925 	/* Allowed if parent directory and link owner match. */
926 	puid = parent->i_uid;
927 	if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
928 		return 0;
929 
930 	if (nd->flags & LOOKUP_RCU)
931 		return -ECHILD;
932 
933 	audit_inode(nd->name, nd->stack[0].link.dentry, 0);
934 	audit_log_link_denied("follow_link");
935 	return -EACCES;
936 }
937 
938 /**
939  * safe_hardlink_source - Check for safe hardlink conditions
940  * @inode: the source inode to hardlink from
941  *
942  * Return false if at least one of the following conditions:
943  *    - inode is not a regular file
944  *    - inode is setuid
945  *    - inode is setgid and group-exec
946  *    - access failure for read and write
947  *
948  * Otherwise returns true.
949  */
950 static bool safe_hardlink_source(struct inode *inode)
951 {
952 	umode_t mode = inode->i_mode;
953 
954 	/* Special files should not get pinned to the filesystem. */
955 	if (!S_ISREG(mode))
956 		return false;
957 
958 	/* Setuid files should not get pinned to the filesystem. */
959 	if (mode & S_ISUID)
960 		return false;
961 
962 	/* Executable setgid files should not get pinned to the filesystem. */
963 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
964 		return false;
965 
966 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
967 	if (inode_permission(inode, MAY_READ | MAY_WRITE))
968 		return false;
969 
970 	return true;
971 }
972 
973 /**
974  * may_linkat - Check permissions for creating a hardlink
975  * @link: the source to hardlink from
976  *
977  * Block hardlink when all of:
978  *  - sysctl_protected_hardlinks enabled
979  *  - fsuid does not match inode
980  *  - hardlink source is unsafe (see safe_hardlink_source() above)
981  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
982  *
983  * Returns 0 if successful, -ve on error.
984  */
985 static int may_linkat(struct path *link)
986 {
987 	struct inode *inode = link->dentry->d_inode;
988 
989 	/* Inode writeback is not safe when the uid or gid are invalid. */
990 	if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
991 		return -EOVERFLOW;
992 
993 	if (!sysctl_protected_hardlinks)
994 		return 0;
995 
996 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
997 	 * otherwise, it must be a safe source.
998 	 */
999 	if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
1000 		return 0;
1001 
1002 	audit_log_link_denied("linkat");
1003 	return -EPERM;
1004 }
1005 
1006 static __always_inline
1007 const char *get_link(struct nameidata *nd)
1008 {
1009 	struct saved *last = nd->stack + nd->depth - 1;
1010 	struct dentry *dentry = last->link.dentry;
1011 	struct inode *inode = nd->link_inode;
1012 	int error;
1013 	const char *res;
1014 
1015 	if (!(nd->flags & LOOKUP_RCU)) {
1016 		touch_atime(&last->link);
1017 		cond_resched();
1018 	} else if (atime_needs_update_rcu(&last->link, inode)) {
1019 		if (unlikely(unlazy_walk(nd)))
1020 			return ERR_PTR(-ECHILD);
1021 		touch_atime(&last->link);
1022 	}
1023 
1024 	error = security_inode_follow_link(dentry, inode,
1025 					   nd->flags & LOOKUP_RCU);
1026 	if (unlikely(error))
1027 		return ERR_PTR(error);
1028 
1029 	nd->last_type = LAST_BIND;
1030 	res = inode->i_link;
1031 	if (!res) {
1032 		const char * (*get)(struct dentry *, struct inode *,
1033 				struct delayed_call *);
1034 		get = inode->i_op->get_link;
1035 		if (nd->flags & LOOKUP_RCU) {
1036 			res = get(NULL, inode, &last->done);
1037 			if (res == ERR_PTR(-ECHILD)) {
1038 				if (unlikely(unlazy_walk(nd)))
1039 					return ERR_PTR(-ECHILD);
1040 				res = get(dentry, inode, &last->done);
1041 			}
1042 		} else {
1043 			res = get(dentry, inode, &last->done);
1044 		}
1045 		if (IS_ERR_OR_NULL(res))
1046 			return res;
1047 	}
1048 	if (*res == '/') {
1049 		if (!nd->root.mnt)
1050 			set_root(nd);
1051 		if (unlikely(nd_jump_root(nd)))
1052 			return ERR_PTR(-ECHILD);
1053 		while (unlikely(*++res == '/'))
1054 			;
1055 	}
1056 	if (!*res)
1057 		res = NULL;
1058 	return res;
1059 }
1060 
1061 /*
1062  * follow_up - Find the mountpoint of path's vfsmount
1063  *
1064  * Given a path, find the mountpoint of its source file system.
1065  * Replace @path with the path of the mountpoint in the parent mount.
1066  * Up is towards /.
1067  *
1068  * Return 1 if we went up a level and 0 if we were already at the
1069  * root.
1070  */
1071 int follow_up(struct path *path)
1072 {
1073 	struct mount *mnt = real_mount(path->mnt);
1074 	struct mount *parent;
1075 	struct dentry *mountpoint;
1076 
1077 	read_seqlock_excl(&mount_lock);
1078 	parent = mnt->mnt_parent;
1079 	if (parent == mnt) {
1080 		read_sequnlock_excl(&mount_lock);
1081 		return 0;
1082 	}
1083 	mntget(&parent->mnt);
1084 	mountpoint = dget(mnt->mnt_mountpoint);
1085 	read_sequnlock_excl(&mount_lock);
1086 	dput(path->dentry);
1087 	path->dentry = mountpoint;
1088 	mntput(path->mnt);
1089 	path->mnt = &parent->mnt;
1090 	return 1;
1091 }
1092 EXPORT_SYMBOL(follow_up);
1093 
1094 /*
1095  * Perform an automount
1096  * - return -EISDIR to tell follow_managed() to stop and return the path we
1097  *   were called with.
1098  */
1099 static int follow_automount(struct path *path, struct nameidata *nd,
1100 			    bool *need_mntput)
1101 {
1102 	struct vfsmount *mnt;
1103 	int err;
1104 
1105 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1106 		return -EREMOTE;
1107 
1108 	/* We don't want to mount if someone's just doing a stat -
1109 	 * unless they're stat'ing a directory and appended a '/' to
1110 	 * the name.
1111 	 *
1112 	 * We do, however, want to mount if someone wants to open or
1113 	 * create a file of any type under the mountpoint, wants to
1114 	 * traverse through the mountpoint or wants to open the
1115 	 * mounted directory.  Also, autofs may mark negative dentries
1116 	 * as being automount points.  These will need the attentions
1117 	 * of the daemon to instantiate them before they can be used.
1118 	 */
1119 	if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1120 			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1121 	    path->dentry->d_inode)
1122 		return -EISDIR;
1123 
1124 	nd->total_link_count++;
1125 	if (nd->total_link_count >= 40)
1126 		return -ELOOP;
1127 
1128 	mnt = path->dentry->d_op->d_automount(path);
1129 	if (IS_ERR(mnt)) {
1130 		/*
1131 		 * The filesystem is allowed to return -EISDIR here to indicate
1132 		 * it doesn't want to automount.  For instance, autofs would do
1133 		 * this so that its userspace daemon can mount on this dentry.
1134 		 *
1135 		 * However, we can only permit this if it's a terminal point in
1136 		 * the path being looked up; if it wasn't then the remainder of
1137 		 * the path is inaccessible and we should say so.
1138 		 */
1139 		if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1140 			return -EREMOTE;
1141 		return PTR_ERR(mnt);
1142 	}
1143 
1144 	if (!mnt) /* mount collision */
1145 		return 0;
1146 
1147 	if (!*need_mntput) {
1148 		/* lock_mount() may release path->mnt on error */
1149 		mntget(path->mnt);
1150 		*need_mntput = true;
1151 	}
1152 	err = finish_automount(mnt, path);
1153 
1154 	switch (err) {
1155 	case -EBUSY:
1156 		/* Someone else made a mount here whilst we were busy */
1157 		return 0;
1158 	case 0:
1159 		path_put(path);
1160 		path->mnt = mnt;
1161 		path->dentry = dget(mnt->mnt_root);
1162 		return 0;
1163 	default:
1164 		return err;
1165 	}
1166 
1167 }
1168 
1169 /*
1170  * Handle a dentry that is managed in some way.
1171  * - Flagged for transit management (autofs)
1172  * - Flagged as mountpoint
1173  * - Flagged as automount point
1174  *
1175  * This may only be called in refwalk mode.
1176  *
1177  * Serialization is taken care of in namespace.c
1178  */
1179 static int follow_managed(struct path *path, struct nameidata *nd)
1180 {
1181 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1182 	unsigned managed;
1183 	bool need_mntput = false;
1184 	int ret = 0;
1185 
1186 	/* Given that we're not holding a lock here, we retain the value in a
1187 	 * local variable for each dentry as we look at it so that we don't see
1188 	 * the components of that value change under us */
1189 	while (managed = READ_ONCE(path->dentry->d_flags),
1190 	       managed &= DCACHE_MANAGED_DENTRY,
1191 	       unlikely(managed != 0)) {
1192 		/* Allow the filesystem to manage the transit without i_mutex
1193 		 * being held. */
1194 		if (managed & DCACHE_MANAGE_TRANSIT) {
1195 			BUG_ON(!path->dentry->d_op);
1196 			BUG_ON(!path->dentry->d_op->d_manage);
1197 			ret = path->dentry->d_op->d_manage(path, false);
1198 			if (ret < 0)
1199 				break;
1200 		}
1201 
1202 		/* Transit to a mounted filesystem. */
1203 		if (managed & DCACHE_MOUNTED) {
1204 			struct vfsmount *mounted = lookup_mnt(path);
1205 			if (mounted) {
1206 				dput(path->dentry);
1207 				if (need_mntput)
1208 					mntput(path->mnt);
1209 				path->mnt = mounted;
1210 				path->dentry = dget(mounted->mnt_root);
1211 				need_mntput = true;
1212 				continue;
1213 			}
1214 
1215 			/* Something is mounted on this dentry in another
1216 			 * namespace and/or whatever was mounted there in this
1217 			 * namespace got unmounted before lookup_mnt() could
1218 			 * get it */
1219 		}
1220 
1221 		/* Handle an automount point */
1222 		if (managed & DCACHE_NEED_AUTOMOUNT) {
1223 			ret = follow_automount(path, nd, &need_mntput);
1224 			if (ret < 0)
1225 				break;
1226 			continue;
1227 		}
1228 
1229 		/* We didn't change the current path point */
1230 		break;
1231 	}
1232 
1233 	if (need_mntput && path->mnt == mnt)
1234 		mntput(path->mnt);
1235 	if (ret == -EISDIR || !ret)
1236 		ret = 1;
1237 	if (need_mntput)
1238 		nd->flags |= LOOKUP_JUMPED;
1239 	if (unlikely(ret < 0))
1240 		path_put_conditional(path, nd);
1241 	return ret;
1242 }
1243 
1244 int follow_down_one(struct path *path)
1245 {
1246 	struct vfsmount *mounted;
1247 
1248 	mounted = lookup_mnt(path);
1249 	if (mounted) {
1250 		dput(path->dentry);
1251 		mntput(path->mnt);
1252 		path->mnt = mounted;
1253 		path->dentry = dget(mounted->mnt_root);
1254 		return 1;
1255 	}
1256 	return 0;
1257 }
1258 EXPORT_SYMBOL(follow_down_one);
1259 
1260 static inline int managed_dentry_rcu(const struct path *path)
1261 {
1262 	return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1263 		path->dentry->d_op->d_manage(path, true) : 0;
1264 }
1265 
1266 /*
1267  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1268  * we meet a managed dentry that would need blocking.
1269  */
1270 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1271 			       struct inode **inode, unsigned *seqp)
1272 {
1273 	for (;;) {
1274 		struct mount *mounted;
1275 		/*
1276 		 * Don't forget we might have a non-mountpoint managed dentry
1277 		 * that wants to block transit.
1278 		 */
1279 		switch (managed_dentry_rcu(path)) {
1280 		case -ECHILD:
1281 		default:
1282 			return false;
1283 		case -EISDIR:
1284 			return true;
1285 		case 0:
1286 			break;
1287 		}
1288 
1289 		if (!d_mountpoint(path->dentry))
1290 			return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1291 
1292 		mounted = __lookup_mnt(path->mnt, path->dentry);
1293 		if (!mounted)
1294 			break;
1295 		path->mnt = &mounted->mnt;
1296 		path->dentry = mounted->mnt.mnt_root;
1297 		nd->flags |= LOOKUP_JUMPED;
1298 		*seqp = read_seqcount_begin(&path->dentry->d_seq);
1299 		/*
1300 		 * Update the inode too. We don't need to re-check the
1301 		 * dentry sequence number here after this d_inode read,
1302 		 * because a mount-point is always pinned.
1303 		 */
1304 		*inode = path->dentry->d_inode;
1305 	}
1306 	return !read_seqretry(&mount_lock, nd->m_seq) &&
1307 		!(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1308 }
1309 
1310 static int follow_dotdot_rcu(struct nameidata *nd)
1311 {
1312 	struct inode *inode = nd->inode;
1313 
1314 	while (1) {
1315 		if (path_equal(&nd->path, &nd->root))
1316 			break;
1317 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1318 			struct dentry *old = nd->path.dentry;
1319 			struct dentry *parent = old->d_parent;
1320 			unsigned seq;
1321 
1322 			inode = parent->d_inode;
1323 			seq = read_seqcount_begin(&parent->d_seq);
1324 			if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1325 				return -ECHILD;
1326 			nd->path.dentry = parent;
1327 			nd->seq = seq;
1328 			if (unlikely(!path_connected(&nd->path)))
1329 				return -ENOENT;
1330 			break;
1331 		} else {
1332 			struct mount *mnt = real_mount(nd->path.mnt);
1333 			struct mount *mparent = mnt->mnt_parent;
1334 			struct dentry *mountpoint = mnt->mnt_mountpoint;
1335 			struct inode *inode2 = mountpoint->d_inode;
1336 			unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1337 			if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1338 				return -ECHILD;
1339 			if (&mparent->mnt == nd->path.mnt)
1340 				break;
1341 			/* we know that mountpoint was pinned */
1342 			nd->path.dentry = mountpoint;
1343 			nd->path.mnt = &mparent->mnt;
1344 			inode = inode2;
1345 			nd->seq = seq;
1346 		}
1347 	}
1348 	while (unlikely(d_mountpoint(nd->path.dentry))) {
1349 		struct mount *mounted;
1350 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1351 		if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1352 			return -ECHILD;
1353 		if (!mounted)
1354 			break;
1355 		nd->path.mnt = &mounted->mnt;
1356 		nd->path.dentry = mounted->mnt.mnt_root;
1357 		inode = nd->path.dentry->d_inode;
1358 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1359 	}
1360 	nd->inode = inode;
1361 	return 0;
1362 }
1363 
1364 /*
1365  * Follow down to the covering mount currently visible to userspace.  At each
1366  * point, the filesystem owning that dentry may be queried as to whether the
1367  * caller is permitted to proceed or not.
1368  */
1369 int follow_down(struct path *path)
1370 {
1371 	unsigned managed;
1372 	int ret;
1373 
1374 	while (managed = READ_ONCE(path->dentry->d_flags),
1375 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1376 		/* Allow the filesystem to manage the transit without i_mutex
1377 		 * being held.
1378 		 *
1379 		 * We indicate to the filesystem if someone is trying to mount
1380 		 * something here.  This gives autofs the chance to deny anyone
1381 		 * other than its daemon the right to mount on its
1382 		 * superstructure.
1383 		 *
1384 		 * The filesystem may sleep at this point.
1385 		 */
1386 		if (managed & DCACHE_MANAGE_TRANSIT) {
1387 			BUG_ON(!path->dentry->d_op);
1388 			BUG_ON(!path->dentry->d_op->d_manage);
1389 			ret = path->dentry->d_op->d_manage(path, false);
1390 			if (ret < 0)
1391 				return ret == -EISDIR ? 0 : ret;
1392 		}
1393 
1394 		/* Transit to a mounted filesystem. */
1395 		if (managed & DCACHE_MOUNTED) {
1396 			struct vfsmount *mounted = lookup_mnt(path);
1397 			if (!mounted)
1398 				break;
1399 			dput(path->dentry);
1400 			mntput(path->mnt);
1401 			path->mnt = mounted;
1402 			path->dentry = dget(mounted->mnt_root);
1403 			continue;
1404 		}
1405 
1406 		/* Don't handle automount points here */
1407 		break;
1408 	}
1409 	return 0;
1410 }
1411 EXPORT_SYMBOL(follow_down);
1412 
1413 /*
1414  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1415  */
1416 static void follow_mount(struct path *path)
1417 {
1418 	while (d_mountpoint(path->dentry)) {
1419 		struct vfsmount *mounted = lookup_mnt(path);
1420 		if (!mounted)
1421 			break;
1422 		dput(path->dentry);
1423 		mntput(path->mnt);
1424 		path->mnt = mounted;
1425 		path->dentry = dget(mounted->mnt_root);
1426 	}
1427 }
1428 
1429 static int path_parent_directory(struct path *path)
1430 {
1431 	struct dentry *old = path->dentry;
1432 	/* rare case of legitimate dget_parent()... */
1433 	path->dentry = dget_parent(path->dentry);
1434 	dput(old);
1435 	if (unlikely(!path_connected(path)))
1436 		return -ENOENT;
1437 	return 0;
1438 }
1439 
1440 static int follow_dotdot(struct nameidata *nd)
1441 {
1442 	while(1) {
1443 		if (path_equal(&nd->path, &nd->root))
1444 			break;
1445 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1446 			int ret = path_parent_directory(&nd->path);
1447 			if (ret)
1448 				return ret;
1449 			break;
1450 		}
1451 		if (!follow_up(&nd->path))
1452 			break;
1453 	}
1454 	follow_mount(&nd->path);
1455 	nd->inode = nd->path.dentry->d_inode;
1456 	return 0;
1457 }
1458 
1459 /*
1460  * This looks up the name in dcache and possibly revalidates the found dentry.
1461  * NULL is returned if the dentry does not exist in the cache.
1462  */
1463 static struct dentry *lookup_dcache(const struct qstr *name,
1464 				    struct dentry *dir,
1465 				    unsigned int flags)
1466 {
1467 	struct dentry *dentry = d_lookup(dir, name);
1468 	if (dentry) {
1469 		int error = d_revalidate(dentry, flags);
1470 		if (unlikely(error <= 0)) {
1471 			if (!error)
1472 				d_invalidate(dentry);
1473 			dput(dentry);
1474 			return ERR_PTR(error);
1475 		}
1476 	}
1477 	return dentry;
1478 }
1479 
1480 /*
1481  * Parent directory has inode locked exclusive.  This is one
1482  * and only case when ->lookup() gets called on non in-lookup
1483  * dentries - as the matter of fact, this only gets called
1484  * when directory is guaranteed to have no in-lookup children
1485  * at all.
1486  */
1487 static struct dentry *__lookup_hash(const struct qstr *name,
1488 		struct dentry *base, unsigned int flags)
1489 {
1490 	struct dentry *dentry = lookup_dcache(name, base, flags);
1491 	struct dentry *old;
1492 	struct inode *dir = base->d_inode;
1493 
1494 	if (dentry)
1495 		return dentry;
1496 
1497 	/* Don't create child dentry for a dead directory. */
1498 	if (unlikely(IS_DEADDIR(dir)))
1499 		return ERR_PTR(-ENOENT);
1500 
1501 	dentry = d_alloc(base, name);
1502 	if (unlikely(!dentry))
1503 		return ERR_PTR(-ENOMEM);
1504 
1505 	old = dir->i_op->lookup(dir, dentry, flags);
1506 	if (unlikely(old)) {
1507 		dput(dentry);
1508 		dentry = old;
1509 	}
1510 	return dentry;
1511 }
1512 
1513 static int lookup_fast(struct nameidata *nd,
1514 		       struct path *path, struct inode **inode,
1515 		       unsigned *seqp)
1516 {
1517 	struct vfsmount *mnt = nd->path.mnt;
1518 	struct dentry *dentry, *parent = nd->path.dentry;
1519 	int status = 1;
1520 	int err;
1521 
1522 	/*
1523 	 * Rename seqlock is not required here because in the off chance
1524 	 * of a false negative due to a concurrent rename, the caller is
1525 	 * going to fall back to non-racy lookup.
1526 	 */
1527 	if (nd->flags & LOOKUP_RCU) {
1528 		unsigned seq;
1529 		bool negative;
1530 		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1531 		if (unlikely(!dentry)) {
1532 			if (unlazy_walk(nd))
1533 				return -ECHILD;
1534 			return 0;
1535 		}
1536 
1537 		/*
1538 		 * This sequence count validates that the inode matches
1539 		 * the dentry name information from lookup.
1540 		 */
1541 		*inode = d_backing_inode(dentry);
1542 		negative = d_is_negative(dentry);
1543 		if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1544 			return -ECHILD;
1545 
1546 		/*
1547 		 * This sequence count validates that the parent had no
1548 		 * changes while we did the lookup of the dentry above.
1549 		 *
1550 		 * The memory barrier in read_seqcount_begin of child is
1551 		 *  enough, we can use __read_seqcount_retry here.
1552 		 */
1553 		if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1554 			return -ECHILD;
1555 
1556 		*seqp = seq;
1557 		status = d_revalidate(dentry, nd->flags);
1558 		if (likely(status > 0)) {
1559 			/*
1560 			 * Note: do negative dentry check after revalidation in
1561 			 * case that drops it.
1562 			 */
1563 			if (unlikely(negative))
1564 				return -ENOENT;
1565 			path->mnt = mnt;
1566 			path->dentry = dentry;
1567 			if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1568 				return 1;
1569 		}
1570 		if (unlazy_child(nd, dentry, seq))
1571 			return -ECHILD;
1572 		if (unlikely(status == -ECHILD))
1573 			/* we'd been told to redo it in non-rcu mode */
1574 			status = d_revalidate(dentry, nd->flags);
1575 	} else {
1576 		dentry = __d_lookup(parent, &nd->last);
1577 		if (unlikely(!dentry))
1578 			return 0;
1579 		status = d_revalidate(dentry, nd->flags);
1580 	}
1581 	if (unlikely(status <= 0)) {
1582 		if (!status)
1583 			d_invalidate(dentry);
1584 		dput(dentry);
1585 		return status;
1586 	}
1587 	if (unlikely(d_is_negative(dentry))) {
1588 		dput(dentry);
1589 		return -ENOENT;
1590 	}
1591 
1592 	path->mnt = mnt;
1593 	path->dentry = dentry;
1594 	err = follow_managed(path, nd);
1595 	if (likely(err > 0))
1596 		*inode = d_backing_inode(path->dentry);
1597 	return err;
1598 }
1599 
1600 /* Fast lookup failed, do it the slow way */
1601 static struct dentry *__lookup_slow(const struct qstr *name,
1602 				    struct dentry *dir,
1603 				    unsigned int flags)
1604 {
1605 	struct dentry *dentry, *old;
1606 	struct inode *inode = dir->d_inode;
1607 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1608 
1609 	/* Don't go there if it's already dead */
1610 	if (unlikely(IS_DEADDIR(inode)))
1611 		return ERR_PTR(-ENOENT);
1612 again:
1613 	dentry = d_alloc_parallel(dir, name, &wq);
1614 	if (IS_ERR(dentry))
1615 		return dentry;
1616 	if (unlikely(!d_in_lookup(dentry))) {
1617 		if (!(flags & LOOKUP_NO_REVAL)) {
1618 			int error = d_revalidate(dentry, flags);
1619 			if (unlikely(error <= 0)) {
1620 				if (!error) {
1621 					d_invalidate(dentry);
1622 					dput(dentry);
1623 					goto again;
1624 				}
1625 				dput(dentry);
1626 				dentry = ERR_PTR(error);
1627 			}
1628 		}
1629 	} else {
1630 		old = inode->i_op->lookup(inode, dentry, flags);
1631 		d_lookup_done(dentry);
1632 		if (unlikely(old)) {
1633 			dput(dentry);
1634 			dentry = old;
1635 		}
1636 	}
1637 	return dentry;
1638 }
1639 
1640 static struct dentry *lookup_slow(const struct qstr *name,
1641 				  struct dentry *dir,
1642 				  unsigned int flags)
1643 {
1644 	struct inode *inode = dir->d_inode;
1645 	struct dentry *res;
1646 	inode_lock_shared(inode);
1647 	res = __lookup_slow(name, dir, flags);
1648 	inode_unlock_shared(inode);
1649 	return res;
1650 }
1651 
1652 static inline int may_lookup(struct nameidata *nd)
1653 {
1654 	if (nd->flags & LOOKUP_RCU) {
1655 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1656 		if (err != -ECHILD)
1657 			return err;
1658 		if (unlazy_walk(nd))
1659 			return -ECHILD;
1660 	}
1661 	return inode_permission(nd->inode, MAY_EXEC);
1662 }
1663 
1664 static inline int handle_dots(struct nameidata *nd, int type)
1665 {
1666 	if (type == LAST_DOTDOT) {
1667 		if (!nd->root.mnt)
1668 			set_root(nd);
1669 		if (nd->flags & LOOKUP_RCU) {
1670 			return follow_dotdot_rcu(nd);
1671 		} else
1672 			return follow_dotdot(nd);
1673 	}
1674 	return 0;
1675 }
1676 
1677 static int pick_link(struct nameidata *nd, struct path *link,
1678 		     struct inode *inode, unsigned seq)
1679 {
1680 	int error;
1681 	struct saved *last;
1682 	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1683 		path_to_nameidata(link, nd);
1684 		return -ELOOP;
1685 	}
1686 	if (!(nd->flags & LOOKUP_RCU)) {
1687 		if (link->mnt == nd->path.mnt)
1688 			mntget(link->mnt);
1689 	}
1690 	error = nd_alloc_stack(nd);
1691 	if (unlikely(error)) {
1692 		if (error == -ECHILD) {
1693 			if (unlikely(!legitimize_path(nd, link, seq))) {
1694 				drop_links(nd);
1695 				nd->depth = 0;
1696 				nd->flags &= ~LOOKUP_RCU;
1697 				nd->path.mnt = NULL;
1698 				nd->path.dentry = NULL;
1699 				if (!(nd->flags & LOOKUP_ROOT))
1700 					nd->root.mnt = NULL;
1701 				rcu_read_unlock();
1702 			} else if (likely(unlazy_walk(nd)) == 0)
1703 				error = nd_alloc_stack(nd);
1704 		}
1705 		if (error) {
1706 			path_put(link);
1707 			return error;
1708 		}
1709 	}
1710 
1711 	last = nd->stack + nd->depth++;
1712 	last->link = *link;
1713 	clear_delayed_call(&last->done);
1714 	nd->link_inode = inode;
1715 	last->seq = seq;
1716 	return 1;
1717 }
1718 
1719 enum {WALK_FOLLOW = 1, WALK_MORE = 2};
1720 
1721 /*
1722  * Do we need to follow links? We _really_ want to be able
1723  * to do this check without having to look at inode->i_op,
1724  * so we keep a cache of "no, this doesn't need follow_link"
1725  * for the common case.
1726  */
1727 static inline int step_into(struct nameidata *nd, struct path *path,
1728 			    int flags, struct inode *inode, unsigned seq)
1729 {
1730 	if (!(flags & WALK_MORE) && nd->depth)
1731 		put_link(nd);
1732 	if (likely(!d_is_symlink(path->dentry)) ||
1733 	   !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) {
1734 		/* not a symlink or should not follow */
1735 		path_to_nameidata(path, nd);
1736 		nd->inode = inode;
1737 		nd->seq = seq;
1738 		return 0;
1739 	}
1740 	/* make sure that d_is_symlink above matches inode */
1741 	if (nd->flags & LOOKUP_RCU) {
1742 		if (read_seqcount_retry(&path->dentry->d_seq, seq))
1743 			return -ECHILD;
1744 	}
1745 	return pick_link(nd, path, inode, seq);
1746 }
1747 
1748 static int walk_component(struct nameidata *nd, int flags)
1749 {
1750 	struct path path;
1751 	struct inode *inode;
1752 	unsigned seq;
1753 	int err;
1754 	/*
1755 	 * "." and ".." are special - ".." especially so because it has
1756 	 * to be able to know about the current root directory and
1757 	 * parent relationships.
1758 	 */
1759 	if (unlikely(nd->last_type != LAST_NORM)) {
1760 		err = handle_dots(nd, nd->last_type);
1761 		if (!(flags & WALK_MORE) && nd->depth)
1762 			put_link(nd);
1763 		return err;
1764 	}
1765 	err = lookup_fast(nd, &path, &inode, &seq);
1766 	if (unlikely(err <= 0)) {
1767 		if (err < 0)
1768 			return err;
1769 		path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1770 					  nd->flags);
1771 		if (IS_ERR(path.dentry))
1772 			return PTR_ERR(path.dentry);
1773 
1774 		path.mnt = nd->path.mnt;
1775 		err = follow_managed(&path, nd);
1776 		if (unlikely(err < 0))
1777 			return err;
1778 
1779 		if (unlikely(d_is_negative(path.dentry))) {
1780 			path_to_nameidata(&path, nd);
1781 			return -ENOENT;
1782 		}
1783 
1784 		seq = 0;	/* we are already out of RCU mode */
1785 		inode = d_backing_inode(path.dentry);
1786 	}
1787 
1788 	return step_into(nd, &path, flags, inode, seq);
1789 }
1790 
1791 /*
1792  * We can do the critical dentry name comparison and hashing
1793  * operations one word at a time, but we are limited to:
1794  *
1795  * - Architectures with fast unaligned word accesses. We could
1796  *   do a "get_unaligned()" if this helps and is sufficiently
1797  *   fast.
1798  *
1799  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1800  *   do not trap on the (extremely unlikely) case of a page
1801  *   crossing operation.
1802  *
1803  * - Furthermore, we need an efficient 64-bit compile for the
1804  *   64-bit case in order to generate the "number of bytes in
1805  *   the final mask". Again, that could be replaced with a
1806  *   efficient population count instruction or similar.
1807  */
1808 #ifdef CONFIG_DCACHE_WORD_ACCESS
1809 
1810 #include <asm/word-at-a-time.h>
1811 
1812 #ifdef HASH_MIX
1813 
1814 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1815 
1816 #elif defined(CONFIG_64BIT)
1817 /*
1818  * Register pressure in the mixing function is an issue, particularly
1819  * on 32-bit x86, but almost any function requires one state value and
1820  * one temporary.  Instead, use a function designed for two state values
1821  * and no temporaries.
1822  *
1823  * This function cannot create a collision in only two iterations, so
1824  * we have two iterations to achieve avalanche.  In those two iterations,
1825  * we have six layers of mixing, which is enough to spread one bit's
1826  * influence out to 2^6 = 64 state bits.
1827  *
1828  * Rotate constants are scored by considering either 64 one-bit input
1829  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1830  * probability of that delta causing a change to each of the 128 output
1831  * bits, using a sample of random initial states.
1832  *
1833  * The Shannon entropy of the computed probabilities is then summed
1834  * to produce a score.  Ideally, any input change has a 50% chance of
1835  * toggling any given output bit.
1836  *
1837  * Mixing scores (in bits) for (12,45):
1838  * Input delta: 1-bit      2-bit
1839  * 1 round:     713.3    42542.6
1840  * 2 rounds:   2753.7   140389.8
1841  * 3 rounds:   5954.1   233458.2
1842  * 4 rounds:   7862.6   256672.2
1843  * Perfect:    8192     258048
1844  *            (64*128) (64*63/2 * 128)
1845  */
1846 #define HASH_MIX(x, y, a)	\
1847 	(	x ^= (a),	\
1848 	y ^= x,	x = rol64(x,12),\
1849 	x += y,	y = rol64(y,45),\
1850 	y *= 9			)
1851 
1852 /*
1853  * Fold two longs into one 32-bit hash value.  This must be fast, but
1854  * latency isn't quite as critical, as there is a fair bit of additional
1855  * work done before the hash value is used.
1856  */
1857 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1858 {
1859 	y ^= x * GOLDEN_RATIO_64;
1860 	y *= GOLDEN_RATIO_64;
1861 	return y >> 32;
1862 }
1863 
1864 #else	/* 32-bit case */
1865 
1866 /*
1867  * Mixing scores (in bits) for (7,20):
1868  * Input delta: 1-bit      2-bit
1869  * 1 round:     330.3     9201.6
1870  * 2 rounds:   1246.4    25475.4
1871  * 3 rounds:   1907.1    31295.1
1872  * 4 rounds:   2042.3    31718.6
1873  * Perfect:    2048      31744
1874  *            (32*64)   (32*31/2 * 64)
1875  */
1876 #define HASH_MIX(x, y, a)	\
1877 	(	x ^= (a),	\
1878 	y ^= x,	x = rol32(x, 7),\
1879 	x += y,	y = rol32(y,20),\
1880 	y *= 9			)
1881 
1882 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1883 {
1884 	/* Use arch-optimized multiply if one exists */
1885 	return __hash_32(y ^ __hash_32(x));
1886 }
1887 
1888 #endif
1889 
1890 /*
1891  * Return the hash of a string of known length.  This is carfully
1892  * designed to match hash_name(), which is the more critical function.
1893  * In particular, we must end by hashing a final word containing 0..7
1894  * payload bytes, to match the way that hash_name() iterates until it
1895  * finds the delimiter after the name.
1896  */
1897 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1898 {
1899 	unsigned long a, x = 0, y = (unsigned long)salt;
1900 
1901 	for (;;) {
1902 		if (!len)
1903 			goto done;
1904 		a = load_unaligned_zeropad(name);
1905 		if (len < sizeof(unsigned long))
1906 			break;
1907 		HASH_MIX(x, y, a);
1908 		name += sizeof(unsigned long);
1909 		len -= sizeof(unsigned long);
1910 	}
1911 	x ^= a & bytemask_from_count(len);
1912 done:
1913 	return fold_hash(x, y);
1914 }
1915 EXPORT_SYMBOL(full_name_hash);
1916 
1917 /* Return the "hash_len" (hash and length) of a null-terminated string */
1918 u64 hashlen_string(const void *salt, const char *name)
1919 {
1920 	unsigned long a = 0, x = 0, y = (unsigned long)salt;
1921 	unsigned long adata, mask, len;
1922 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1923 
1924 	len = 0;
1925 	goto inside;
1926 
1927 	do {
1928 		HASH_MIX(x, y, a);
1929 		len += sizeof(unsigned long);
1930 inside:
1931 		a = load_unaligned_zeropad(name+len);
1932 	} while (!has_zero(a, &adata, &constants));
1933 
1934 	adata = prep_zero_mask(a, adata, &constants);
1935 	mask = create_zero_mask(adata);
1936 	x ^= a & zero_bytemask(mask);
1937 
1938 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1939 }
1940 EXPORT_SYMBOL(hashlen_string);
1941 
1942 /*
1943  * Calculate the length and hash of the path component, and
1944  * return the "hash_len" as the result.
1945  */
1946 static inline u64 hash_name(const void *salt, const char *name)
1947 {
1948 	unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
1949 	unsigned long adata, bdata, mask, len;
1950 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1951 
1952 	len = 0;
1953 	goto inside;
1954 
1955 	do {
1956 		HASH_MIX(x, y, a);
1957 		len += sizeof(unsigned long);
1958 inside:
1959 		a = load_unaligned_zeropad(name+len);
1960 		b = a ^ REPEAT_BYTE('/');
1961 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1962 
1963 	adata = prep_zero_mask(a, adata, &constants);
1964 	bdata = prep_zero_mask(b, bdata, &constants);
1965 	mask = create_zero_mask(adata | bdata);
1966 	x ^= a & zero_bytemask(mask);
1967 
1968 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1969 }
1970 
1971 #else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
1972 
1973 /* Return the hash of a string of known length */
1974 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1975 {
1976 	unsigned long hash = init_name_hash(salt);
1977 	while (len--)
1978 		hash = partial_name_hash((unsigned char)*name++, hash);
1979 	return end_name_hash(hash);
1980 }
1981 EXPORT_SYMBOL(full_name_hash);
1982 
1983 /* Return the "hash_len" (hash and length) of a null-terminated string */
1984 u64 hashlen_string(const void *salt, const char *name)
1985 {
1986 	unsigned long hash = init_name_hash(salt);
1987 	unsigned long len = 0, c;
1988 
1989 	c = (unsigned char)*name;
1990 	while (c) {
1991 		len++;
1992 		hash = partial_name_hash(c, hash);
1993 		c = (unsigned char)name[len];
1994 	}
1995 	return hashlen_create(end_name_hash(hash), len);
1996 }
1997 EXPORT_SYMBOL(hashlen_string);
1998 
1999 /*
2000  * We know there's a real path component here of at least
2001  * one character.
2002  */
2003 static inline u64 hash_name(const void *salt, const char *name)
2004 {
2005 	unsigned long hash = init_name_hash(salt);
2006 	unsigned long len = 0, c;
2007 
2008 	c = (unsigned char)*name;
2009 	do {
2010 		len++;
2011 		hash = partial_name_hash(c, hash);
2012 		c = (unsigned char)name[len];
2013 	} while (c && c != '/');
2014 	return hashlen_create(end_name_hash(hash), len);
2015 }
2016 
2017 #endif
2018 
2019 /*
2020  * Name resolution.
2021  * This is the basic name resolution function, turning a pathname into
2022  * the final dentry. We expect 'base' to be positive and a directory.
2023  *
2024  * Returns 0 and nd will have valid dentry and mnt on success.
2025  * Returns error and drops reference to input namei data on failure.
2026  */
2027 static int link_path_walk(const char *name, struct nameidata *nd)
2028 {
2029 	int err;
2030 
2031 	if (IS_ERR(name))
2032 		return PTR_ERR(name);
2033 	while (*name=='/')
2034 		name++;
2035 	if (!*name)
2036 		return 0;
2037 
2038 	/* At this point we know we have a real path component. */
2039 	for(;;) {
2040 		u64 hash_len;
2041 		int type;
2042 
2043 		err = may_lookup(nd);
2044 		if (err)
2045 			return err;
2046 
2047 		hash_len = hash_name(nd->path.dentry, name);
2048 
2049 		type = LAST_NORM;
2050 		if (name[0] == '.') switch (hashlen_len(hash_len)) {
2051 			case 2:
2052 				if (name[1] == '.') {
2053 					type = LAST_DOTDOT;
2054 					nd->flags |= LOOKUP_JUMPED;
2055 				}
2056 				break;
2057 			case 1:
2058 				type = LAST_DOT;
2059 		}
2060 		if (likely(type == LAST_NORM)) {
2061 			struct dentry *parent = nd->path.dentry;
2062 			nd->flags &= ~LOOKUP_JUMPED;
2063 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2064 				struct qstr this = { { .hash_len = hash_len }, .name = name };
2065 				err = parent->d_op->d_hash(parent, &this);
2066 				if (err < 0)
2067 					return err;
2068 				hash_len = this.hash_len;
2069 				name = this.name;
2070 			}
2071 		}
2072 
2073 		nd->last.hash_len = hash_len;
2074 		nd->last.name = name;
2075 		nd->last_type = type;
2076 
2077 		name += hashlen_len(hash_len);
2078 		if (!*name)
2079 			goto OK;
2080 		/*
2081 		 * If it wasn't NUL, we know it was '/'. Skip that
2082 		 * slash, and continue until no more slashes.
2083 		 */
2084 		do {
2085 			name++;
2086 		} while (unlikely(*name == '/'));
2087 		if (unlikely(!*name)) {
2088 OK:
2089 			/* pathname body, done */
2090 			if (!nd->depth)
2091 				return 0;
2092 			name = nd->stack[nd->depth - 1].name;
2093 			/* trailing symlink, done */
2094 			if (!name)
2095 				return 0;
2096 			/* last component of nested symlink */
2097 			err = walk_component(nd, WALK_FOLLOW);
2098 		} else {
2099 			/* not the last component */
2100 			err = walk_component(nd, WALK_FOLLOW | WALK_MORE);
2101 		}
2102 		if (err < 0)
2103 			return err;
2104 
2105 		if (err) {
2106 			const char *s = get_link(nd);
2107 
2108 			if (IS_ERR(s))
2109 				return PTR_ERR(s);
2110 			err = 0;
2111 			if (unlikely(!s)) {
2112 				/* jumped */
2113 				put_link(nd);
2114 			} else {
2115 				nd->stack[nd->depth - 1].name = name;
2116 				name = s;
2117 				continue;
2118 			}
2119 		}
2120 		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2121 			if (nd->flags & LOOKUP_RCU) {
2122 				if (unlazy_walk(nd))
2123 					return -ECHILD;
2124 			}
2125 			return -ENOTDIR;
2126 		}
2127 	}
2128 }
2129 
2130 /* must be paired with terminate_walk() */
2131 static const char *path_init(struct nameidata *nd, unsigned flags)
2132 {
2133 	const char *s = nd->name->name;
2134 
2135 	if (!*s)
2136 		flags &= ~LOOKUP_RCU;
2137 	if (flags & LOOKUP_RCU)
2138 		rcu_read_lock();
2139 
2140 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
2141 	nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2142 	nd->depth = 0;
2143 	if (flags & LOOKUP_ROOT) {
2144 		struct dentry *root = nd->root.dentry;
2145 		struct inode *inode = root->d_inode;
2146 		if (*s && unlikely(!d_can_lookup(root)))
2147 			return ERR_PTR(-ENOTDIR);
2148 		nd->path = nd->root;
2149 		nd->inode = inode;
2150 		if (flags & LOOKUP_RCU) {
2151 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2152 			nd->root_seq = nd->seq;
2153 			nd->m_seq = read_seqbegin(&mount_lock);
2154 		} else {
2155 			path_get(&nd->path);
2156 		}
2157 		return s;
2158 	}
2159 
2160 	nd->root.mnt = NULL;
2161 	nd->path.mnt = NULL;
2162 	nd->path.dentry = NULL;
2163 
2164 	nd->m_seq = read_seqbegin(&mount_lock);
2165 	if (*s == '/') {
2166 		set_root(nd);
2167 		if (likely(!nd_jump_root(nd)))
2168 			return s;
2169 		return ERR_PTR(-ECHILD);
2170 	} else if (nd->dfd == AT_FDCWD) {
2171 		if (flags & LOOKUP_RCU) {
2172 			struct fs_struct *fs = current->fs;
2173 			unsigned seq;
2174 
2175 			do {
2176 				seq = read_seqcount_begin(&fs->seq);
2177 				nd->path = fs->pwd;
2178 				nd->inode = nd->path.dentry->d_inode;
2179 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2180 			} while (read_seqcount_retry(&fs->seq, seq));
2181 		} else {
2182 			get_fs_pwd(current->fs, &nd->path);
2183 			nd->inode = nd->path.dentry->d_inode;
2184 		}
2185 		return s;
2186 	} else {
2187 		/* Caller must check execute permissions on the starting path component */
2188 		struct fd f = fdget_raw(nd->dfd);
2189 		struct dentry *dentry;
2190 
2191 		if (!f.file)
2192 			return ERR_PTR(-EBADF);
2193 
2194 		dentry = f.file->f_path.dentry;
2195 
2196 		if (*s && unlikely(!d_can_lookup(dentry))) {
2197 			fdput(f);
2198 			return ERR_PTR(-ENOTDIR);
2199 		}
2200 
2201 		nd->path = f.file->f_path;
2202 		if (flags & LOOKUP_RCU) {
2203 			nd->inode = nd->path.dentry->d_inode;
2204 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2205 		} else {
2206 			path_get(&nd->path);
2207 			nd->inode = nd->path.dentry->d_inode;
2208 		}
2209 		fdput(f);
2210 		return s;
2211 	}
2212 }
2213 
2214 static const char *trailing_symlink(struct nameidata *nd)
2215 {
2216 	const char *s;
2217 	int error = may_follow_link(nd);
2218 	if (unlikely(error))
2219 		return ERR_PTR(error);
2220 	nd->flags |= LOOKUP_PARENT;
2221 	nd->stack[0].name = NULL;
2222 	s = get_link(nd);
2223 	return s ? s : "";
2224 }
2225 
2226 static inline int lookup_last(struct nameidata *nd)
2227 {
2228 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2229 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2230 
2231 	nd->flags &= ~LOOKUP_PARENT;
2232 	return walk_component(nd, 0);
2233 }
2234 
2235 static int handle_lookup_down(struct nameidata *nd)
2236 {
2237 	struct path path = nd->path;
2238 	struct inode *inode = nd->inode;
2239 	unsigned seq = nd->seq;
2240 	int err;
2241 
2242 	if (nd->flags & LOOKUP_RCU) {
2243 		/*
2244 		 * don't bother with unlazy_walk on failure - we are
2245 		 * at the very beginning of walk, so we lose nothing
2246 		 * if we simply redo everything in non-RCU mode
2247 		 */
2248 		if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq)))
2249 			return -ECHILD;
2250 	} else {
2251 		dget(path.dentry);
2252 		err = follow_managed(&path, nd);
2253 		if (unlikely(err < 0))
2254 			return err;
2255 		inode = d_backing_inode(path.dentry);
2256 		seq = 0;
2257 	}
2258 	path_to_nameidata(&path, nd);
2259 	nd->inode = inode;
2260 	nd->seq = seq;
2261 	return 0;
2262 }
2263 
2264 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2265 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2266 {
2267 	const char *s = path_init(nd, flags);
2268 	int err;
2269 
2270 	if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2271 		err = handle_lookup_down(nd);
2272 		if (unlikely(err < 0))
2273 			s = ERR_PTR(err);
2274 	}
2275 
2276 	while (!(err = link_path_walk(s, nd))
2277 		&& ((err = lookup_last(nd)) > 0)) {
2278 		s = trailing_symlink(nd);
2279 	}
2280 	if (!err)
2281 		err = complete_walk(nd);
2282 
2283 	if (!err && nd->flags & LOOKUP_DIRECTORY)
2284 		if (!d_can_lookup(nd->path.dentry))
2285 			err = -ENOTDIR;
2286 	if (!err) {
2287 		*path = nd->path;
2288 		nd->path.mnt = NULL;
2289 		nd->path.dentry = NULL;
2290 	}
2291 	terminate_walk(nd);
2292 	return err;
2293 }
2294 
2295 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2296 			   struct path *path, struct path *root)
2297 {
2298 	int retval;
2299 	struct nameidata nd;
2300 	if (IS_ERR(name))
2301 		return PTR_ERR(name);
2302 	if (unlikely(root)) {
2303 		nd.root = *root;
2304 		flags |= LOOKUP_ROOT;
2305 	}
2306 	set_nameidata(&nd, dfd, name);
2307 	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2308 	if (unlikely(retval == -ECHILD))
2309 		retval = path_lookupat(&nd, flags, path);
2310 	if (unlikely(retval == -ESTALE))
2311 		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2312 
2313 	if (likely(!retval))
2314 		audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2315 	restore_nameidata();
2316 	putname(name);
2317 	return retval;
2318 }
2319 
2320 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2321 static int path_parentat(struct nameidata *nd, unsigned flags,
2322 				struct path *parent)
2323 {
2324 	const char *s = path_init(nd, flags);
2325 	int err = link_path_walk(s, nd);
2326 	if (!err)
2327 		err = complete_walk(nd);
2328 	if (!err) {
2329 		*parent = nd->path;
2330 		nd->path.mnt = NULL;
2331 		nd->path.dentry = NULL;
2332 	}
2333 	terminate_walk(nd);
2334 	return err;
2335 }
2336 
2337 static struct filename *filename_parentat(int dfd, struct filename *name,
2338 				unsigned int flags, struct path *parent,
2339 				struct qstr *last, int *type)
2340 {
2341 	int retval;
2342 	struct nameidata nd;
2343 
2344 	if (IS_ERR(name))
2345 		return name;
2346 	set_nameidata(&nd, dfd, name);
2347 	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2348 	if (unlikely(retval == -ECHILD))
2349 		retval = path_parentat(&nd, flags, parent);
2350 	if (unlikely(retval == -ESTALE))
2351 		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2352 	if (likely(!retval)) {
2353 		*last = nd.last;
2354 		*type = nd.last_type;
2355 		audit_inode(name, parent->dentry, LOOKUP_PARENT);
2356 	} else {
2357 		putname(name);
2358 		name = ERR_PTR(retval);
2359 	}
2360 	restore_nameidata();
2361 	return name;
2362 }
2363 
2364 /* does lookup, returns the object with parent locked */
2365 struct dentry *kern_path_locked(const char *name, struct path *path)
2366 {
2367 	struct filename *filename;
2368 	struct dentry *d;
2369 	struct qstr last;
2370 	int type;
2371 
2372 	filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2373 				    &last, &type);
2374 	if (IS_ERR(filename))
2375 		return ERR_CAST(filename);
2376 	if (unlikely(type != LAST_NORM)) {
2377 		path_put(path);
2378 		putname(filename);
2379 		return ERR_PTR(-EINVAL);
2380 	}
2381 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2382 	d = __lookup_hash(&last, path->dentry, 0);
2383 	if (IS_ERR(d)) {
2384 		inode_unlock(path->dentry->d_inode);
2385 		path_put(path);
2386 	}
2387 	putname(filename);
2388 	return d;
2389 }
2390 
2391 int kern_path(const char *name, unsigned int flags, struct path *path)
2392 {
2393 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2394 			       flags, path, NULL);
2395 }
2396 EXPORT_SYMBOL(kern_path);
2397 
2398 /**
2399  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2400  * @dentry:  pointer to dentry of the base directory
2401  * @mnt: pointer to vfs mount of the base directory
2402  * @name: pointer to file name
2403  * @flags: lookup flags
2404  * @path: pointer to struct path to fill
2405  */
2406 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2407 		    const char *name, unsigned int flags,
2408 		    struct path *path)
2409 {
2410 	struct path root = {.mnt = mnt, .dentry = dentry};
2411 	/* the first argument of filename_lookup() is ignored with root */
2412 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2413 			       flags , path, &root);
2414 }
2415 EXPORT_SYMBOL(vfs_path_lookup);
2416 
2417 static int lookup_one_len_common(const char *name, struct dentry *base,
2418 				 int len, struct qstr *this)
2419 {
2420 	this->name = name;
2421 	this->len = len;
2422 	this->hash = full_name_hash(base, name, len);
2423 	if (!len)
2424 		return -EACCES;
2425 
2426 	if (unlikely(name[0] == '.')) {
2427 		if (len < 2 || (len == 2 && name[1] == '.'))
2428 			return -EACCES;
2429 	}
2430 
2431 	while (len--) {
2432 		unsigned int c = *(const unsigned char *)name++;
2433 		if (c == '/' || c == '\0')
2434 			return -EACCES;
2435 	}
2436 	/*
2437 	 * See if the low-level filesystem might want
2438 	 * to use its own hash..
2439 	 */
2440 	if (base->d_flags & DCACHE_OP_HASH) {
2441 		int err = base->d_op->d_hash(base, this);
2442 		if (err < 0)
2443 			return err;
2444 	}
2445 
2446 	return inode_permission(base->d_inode, MAY_EXEC);
2447 }
2448 
2449 /**
2450  * try_lookup_one_len - filesystem helper to lookup single pathname component
2451  * @name:	pathname component to lookup
2452  * @base:	base directory to lookup from
2453  * @len:	maximum length @len should be interpreted to
2454  *
2455  * Look up a dentry by name in the dcache, returning NULL if it does not
2456  * currently exist.  The function does not try to create a dentry.
2457  *
2458  * Note that this routine is purely a helper for filesystem usage and should
2459  * not be called by generic code.
2460  *
2461  * The caller must hold base->i_mutex.
2462  */
2463 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2464 {
2465 	struct qstr this;
2466 	int err;
2467 
2468 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2469 
2470 	err = lookup_one_len_common(name, base, len, &this);
2471 	if (err)
2472 		return ERR_PTR(err);
2473 
2474 	return lookup_dcache(&this, base, 0);
2475 }
2476 EXPORT_SYMBOL(try_lookup_one_len);
2477 
2478 /**
2479  * lookup_one_len - filesystem helper to lookup single pathname component
2480  * @name:	pathname component to lookup
2481  * @base:	base directory to lookup from
2482  * @len:	maximum length @len should be interpreted to
2483  *
2484  * Note that this routine is purely a helper for filesystem usage and should
2485  * not be called by generic code.
2486  *
2487  * The caller must hold base->i_mutex.
2488  */
2489 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2490 {
2491 	struct dentry *dentry;
2492 	struct qstr this;
2493 	int err;
2494 
2495 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2496 
2497 	err = lookup_one_len_common(name, base, len, &this);
2498 	if (err)
2499 		return ERR_PTR(err);
2500 
2501 	dentry = lookup_dcache(&this, base, 0);
2502 	return dentry ? dentry : __lookup_slow(&this, base, 0);
2503 }
2504 EXPORT_SYMBOL(lookup_one_len);
2505 
2506 /**
2507  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2508  * @name:	pathname component to lookup
2509  * @base:	base directory to lookup from
2510  * @len:	maximum length @len should be interpreted to
2511  *
2512  * Note that this routine is purely a helper for filesystem usage and should
2513  * not be called by generic code.
2514  *
2515  * Unlike lookup_one_len, it should be called without the parent
2516  * i_mutex held, and will take the i_mutex itself if necessary.
2517  */
2518 struct dentry *lookup_one_len_unlocked(const char *name,
2519 				       struct dentry *base, int len)
2520 {
2521 	struct qstr this;
2522 	int err;
2523 	struct dentry *ret;
2524 
2525 	err = lookup_one_len_common(name, base, len, &this);
2526 	if (err)
2527 		return ERR_PTR(err);
2528 
2529 	ret = lookup_dcache(&this, base, 0);
2530 	if (!ret)
2531 		ret = lookup_slow(&this, base, 0);
2532 	return ret;
2533 }
2534 EXPORT_SYMBOL(lookup_one_len_unlocked);
2535 
2536 #ifdef CONFIG_UNIX98_PTYS
2537 int path_pts(struct path *path)
2538 {
2539 	/* Find something mounted on "pts" in the same directory as
2540 	 * the input path.
2541 	 */
2542 	struct dentry *child, *parent;
2543 	struct qstr this;
2544 	int ret;
2545 
2546 	ret = path_parent_directory(path);
2547 	if (ret)
2548 		return ret;
2549 
2550 	parent = path->dentry;
2551 	this.name = "pts";
2552 	this.len = 3;
2553 	child = d_hash_and_lookup(parent, &this);
2554 	if (!child)
2555 		return -ENOENT;
2556 
2557 	path->dentry = child;
2558 	dput(parent);
2559 	follow_mount(path);
2560 	return 0;
2561 }
2562 #endif
2563 
2564 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2565 		 struct path *path, int *empty)
2566 {
2567 	return filename_lookup(dfd, getname_flags(name, flags, empty),
2568 			       flags, path, NULL);
2569 }
2570 EXPORT_SYMBOL(user_path_at_empty);
2571 
2572 /**
2573  * mountpoint_last - look up last component for umount
2574  * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2575  *
2576  * This is a special lookup_last function just for umount. In this case, we
2577  * need to resolve the path without doing any revalidation.
2578  *
2579  * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2580  * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2581  * in almost all cases, this lookup will be served out of the dcache. The only
2582  * cases where it won't are if nd->last refers to a symlink or the path is
2583  * bogus and it doesn't exist.
2584  *
2585  * Returns:
2586  * -error: if there was an error during lookup. This includes -ENOENT if the
2587  *         lookup found a negative dentry.
2588  *
2589  * 0:      if we successfully resolved nd->last and found it to not to be a
2590  *         symlink that needs to be followed.
2591  *
2592  * 1:      if we successfully resolved nd->last and found it to be a symlink
2593  *         that needs to be followed.
2594  */
2595 static int
2596 mountpoint_last(struct nameidata *nd)
2597 {
2598 	int error = 0;
2599 	struct dentry *dir = nd->path.dentry;
2600 	struct path path;
2601 
2602 	/* If we're in rcuwalk, drop out of it to handle last component */
2603 	if (nd->flags & LOOKUP_RCU) {
2604 		if (unlazy_walk(nd))
2605 			return -ECHILD;
2606 	}
2607 
2608 	nd->flags &= ~LOOKUP_PARENT;
2609 
2610 	if (unlikely(nd->last_type != LAST_NORM)) {
2611 		error = handle_dots(nd, nd->last_type);
2612 		if (error)
2613 			return error;
2614 		path.dentry = dget(nd->path.dentry);
2615 	} else {
2616 		path.dentry = d_lookup(dir, &nd->last);
2617 		if (!path.dentry) {
2618 			/*
2619 			 * No cached dentry. Mounted dentries are pinned in the
2620 			 * cache, so that means that this dentry is probably
2621 			 * a symlink or the path doesn't actually point
2622 			 * to a mounted dentry.
2623 			 */
2624 			path.dentry = lookup_slow(&nd->last, dir,
2625 					     nd->flags | LOOKUP_NO_REVAL);
2626 			if (IS_ERR(path.dentry))
2627 				return PTR_ERR(path.dentry);
2628 		}
2629 	}
2630 	if (d_is_negative(path.dentry)) {
2631 		dput(path.dentry);
2632 		return -ENOENT;
2633 	}
2634 	path.mnt = nd->path.mnt;
2635 	return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0);
2636 }
2637 
2638 /**
2639  * path_mountpoint - look up a path to be umounted
2640  * @nd:		lookup context
2641  * @flags:	lookup flags
2642  * @path:	pointer to container for result
2643  *
2644  * Look up the given name, but don't attempt to revalidate the last component.
2645  * Returns 0 and "path" will be valid on success; Returns error otherwise.
2646  */
2647 static int
2648 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2649 {
2650 	const char *s = path_init(nd, flags);
2651 	int err;
2652 
2653 	while (!(err = link_path_walk(s, nd)) &&
2654 		(err = mountpoint_last(nd)) > 0) {
2655 		s = trailing_symlink(nd);
2656 	}
2657 	if (!err) {
2658 		*path = nd->path;
2659 		nd->path.mnt = NULL;
2660 		nd->path.dentry = NULL;
2661 		follow_mount(path);
2662 	}
2663 	terminate_walk(nd);
2664 	return err;
2665 }
2666 
2667 static int
2668 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2669 			unsigned int flags)
2670 {
2671 	struct nameidata nd;
2672 	int error;
2673 	if (IS_ERR(name))
2674 		return PTR_ERR(name);
2675 	set_nameidata(&nd, dfd, name);
2676 	error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2677 	if (unlikely(error == -ECHILD))
2678 		error = path_mountpoint(&nd, flags, path);
2679 	if (unlikely(error == -ESTALE))
2680 		error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2681 	if (likely(!error))
2682 		audit_inode(name, path->dentry, 0);
2683 	restore_nameidata();
2684 	putname(name);
2685 	return error;
2686 }
2687 
2688 /**
2689  * user_path_mountpoint_at - lookup a path from userland in order to umount it
2690  * @dfd:	directory file descriptor
2691  * @name:	pathname from userland
2692  * @flags:	lookup flags
2693  * @path:	pointer to container to hold result
2694  *
2695  * A umount is a special case for path walking. We're not actually interested
2696  * in the inode in this situation, and ESTALE errors can be a problem. We
2697  * simply want track down the dentry and vfsmount attached at the mountpoint
2698  * and avoid revalidating the last component.
2699  *
2700  * Returns 0 and populates "path" on success.
2701  */
2702 int
2703 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2704 			struct path *path)
2705 {
2706 	return filename_mountpoint(dfd, getname(name), path, flags);
2707 }
2708 
2709 int
2710 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2711 			unsigned int flags)
2712 {
2713 	return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2714 }
2715 EXPORT_SYMBOL(kern_path_mountpoint);
2716 
2717 int __check_sticky(struct inode *dir, struct inode *inode)
2718 {
2719 	kuid_t fsuid = current_fsuid();
2720 
2721 	if (uid_eq(inode->i_uid, fsuid))
2722 		return 0;
2723 	if (uid_eq(dir->i_uid, fsuid))
2724 		return 0;
2725 	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2726 }
2727 EXPORT_SYMBOL(__check_sticky);
2728 
2729 /*
2730  *	Check whether we can remove a link victim from directory dir, check
2731  *  whether the type of victim is right.
2732  *  1. We can't do it if dir is read-only (done in permission())
2733  *  2. We should have write and exec permissions on dir
2734  *  3. We can't remove anything from append-only dir
2735  *  4. We can't do anything with immutable dir (done in permission())
2736  *  5. If the sticky bit on dir is set we should either
2737  *	a. be owner of dir, or
2738  *	b. be owner of victim, or
2739  *	c. have CAP_FOWNER capability
2740  *  6. If the victim is append-only or immutable we can't do antyhing with
2741  *     links pointing to it.
2742  *  7. If the victim has an unknown uid or gid we can't change the inode.
2743  *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2744  *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2745  * 10. We can't remove a root or mountpoint.
2746  * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2747  *     nfs_async_unlink().
2748  */
2749 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2750 {
2751 	struct inode *inode = d_backing_inode(victim);
2752 	int error;
2753 
2754 	if (d_is_negative(victim))
2755 		return -ENOENT;
2756 	BUG_ON(!inode);
2757 
2758 	BUG_ON(victim->d_parent->d_inode != dir);
2759 
2760 	/* Inode writeback is not safe when the uid or gid are invalid. */
2761 	if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
2762 		return -EOVERFLOW;
2763 
2764 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2765 
2766 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2767 	if (error)
2768 		return error;
2769 	if (IS_APPEND(dir))
2770 		return -EPERM;
2771 
2772 	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2773 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2774 		return -EPERM;
2775 	if (isdir) {
2776 		if (!d_is_dir(victim))
2777 			return -ENOTDIR;
2778 		if (IS_ROOT(victim))
2779 			return -EBUSY;
2780 	} else if (d_is_dir(victim))
2781 		return -EISDIR;
2782 	if (IS_DEADDIR(dir))
2783 		return -ENOENT;
2784 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2785 		return -EBUSY;
2786 	return 0;
2787 }
2788 
2789 /*	Check whether we can create an object with dentry child in directory
2790  *  dir.
2791  *  1. We can't do it if child already exists (open has special treatment for
2792  *     this case, but since we are inlined it's OK)
2793  *  2. We can't do it if dir is read-only (done in permission())
2794  *  3. We can't do it if the fs can't represent the fsuid or fsgid.
2795  *  4. We should have write and exec permissions on dir
2796  *  5. We can't do it if dir is immutable (done in permission())
2797  */
2798 static inline int may_create(struct inode *dir, struct dentry *child)
2799 {
2800 	struct user_namespace *s_user_ns;
2801 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2802 	if (child->d_inode)
2803 		return -EEXIST;
2804 	if (IS_DEADDIR(dir))
2805 		return -ENOENT;
2806 	s_user_ns = dir->i_sb->s_user_ns;
2807 	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2808 	    !kgid_has_mapping(s_user_ns, current_fsgid()))
2809 		return -EOVERFLOW;
2810 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2811 }
2812 
2813 /*
2814  * p1 and p2 should be directories on the same fs.
2815  */
2816 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2817 {
2818 	struct dentry *p;
2819 
2820 	if (p1 == p2) {
2821 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2822 		return NULL;
2823 	}
2824 
2825 	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2826 
2827 	p = d_ancestor(p2, p1);
2828 	if (p) {
2829 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2830 		inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2831 		return p;
2832 	}
2833 
2834 	p = d_ancestor(p1, p2);
2835 	if (p) {
2836 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2837 		inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2838 		return p;
2839 	}
2840 
2841 	inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2842 	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2843 	return NULL;
2844 }
2845 EXPORT_SYMBOL(lock_rename);
2846 
2847 void unlock_rename(struct dentry *p1, struct dentry *p2)
2848 {
2849 	inode_unlock(p1->d_inode);
2850 	if (p1 != p2) {
2851 		inode_unlock(p2->d_inode);
2852 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2853 	}
2854 }
2855 EXPORT_SYMBOL(unlock_rename);
2856 
2857 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2858 		bool want_excl)
2859 {
2860 	int error = may_create(dir, dentry);
2861 	if (error)
2862 		return error;
2863 
2864 	if (!dir->i_op->create)
2865 		return -EACCES;	/* shouldn't it be ENOSYS? */
2866 	mode &= S_IALLUGO;
2867 	mode |= S_IFREG;
2868 	error = security_inode_create(dir, dentry, mode);
2869 	if (error)
2870 		return error;
2871 	error = dir->i_op->create(dir, dentry, mode, want_excl);
2872 	if (!error)
2873 		fsnotify_create(dir, dentry);
2874 	return error;
2875 }
2876 EXPORT_SYMBOL(vfs_create);
2877 
2878 int vfs_mkobj(struct dentry *dentry, umode_t mode,
2879 		int (*f)(struct dentry *, umode_t, void *),
2880 		void *arg)
2881 {
2882 	struct inode *dir = dentry->d_parent->d_inode;
2883 	int error = may_create(dir, dentry);
2884 	if (error)
2885 		return error;
2886 
2887 	mode &= S_IALLUGO;
2888 	mode |= S_IFREG;
2889 	error = security_inode_create(dir, dentry, mode);
2890 	if (error)
2891 		return error;
2892 	error = f(dentry, mode, arg);
2893 	if (!error)
2894 		fsnotify_create(dir, dentry);
2895 	return error;
2896 }
2897 EXPORT_SYMBOL(vfs_mkobj);
2898 
2899 bool may_open_dev(const struct path *path)
2900 {
2901 	return !(path->mnt->mnt_flags & MNT_NODEV) &&
2902 		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2903 }
2904 
2905 static int may_open(const struct path *path, int acc_mode, int flag)
2906 {
2907 	struct dentry *dentry = path->dentry;
2908 	struct inode *inode = dentry->d_inode;
2909 	int error;
2910 
2911 	if (!inode)
2912 		return -ENOENT;
2913 
2914 	switch (inode->i_mode & S_IFMT) {
2915 	case S_IFLNK:
2916 		return -ELOOP;
2917 	case S_IFDIR:
2918 		if (acc_mode & MAY_WRITE)
2919 			return -EISDIR;
2920 		break;
2921 	case S_IFBLK:
2922 	case S_IFCHR:
2923 		if (!may_open_dev(path))
2924 			return -EACCES;
2925 		/*FALLTHRU*/
2926 	case S_IFIFO:
2927 	case S_IFSOCK:
2928 		flag &= ~O_TRUNC;
2929 		break;
2930 	}
2931 
2932 	error = inode_permission(inode, MAY_OPEN | acc_mode);
2933 	if (error)
2934 		return error;
2935 
2936 	/*
2937 	 * An append-only file must be opened in append mode for writing.
2938 	 */
2939 	if (IS_APPEND(inode)) {
2940 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2941 			return -EPERM;
2942 		if (flag & O_TRUNC)
2943 			return -EPERM;
2944 	}
2945 
2946 	/* O_NOATIME can only be set by the owner or superuser */
2947 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2948 		return -EPERM;
2949 
2950 	return 0;
2951 }
2952 
2953 static int handle_truncate(struct file *filp)
2954 {
2955 	const struct path *path = &filp->f_path;
2956 	struct inode *inode = path->dentry->d_inode;
2957 	int error = get_write_access(inode);
2958 	if (error)
2959 		return error;
2960 	/*
2961 	 * Refuse to truncate files with mandatory locks held on them.
2962 	 */
2963 	error = locks_verify_locked(filp);
2964 	if (!error)
2965 		error = security_path_truncate(path);
2966 	if (!error) {
2967 		error = do_truncate(path->dentry, 0,
2968 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2969 				    filp);
2970 	}
2971 	put_write_access(inode);
2972 	return error;
2973 }
2974 
2975 static inline int open_to_namei_flags(int flag)
2976 {
2977 	if ((flag & O_ACCMODE) == 3)
2978 		flag--;
2979 	return flag;
2980 }
2981 
2982 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
2983 {
2984 	struct user_namespace *s_user_ns;
2985 	int error = security_path_mknod(dir, dentry, mode, 0);
2986 	if (error)
2987 		return error;
2988 
2989 	s_user_ns = dir->dentry->d_sb->s_user_ns;
2990 	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2991 	    !kgid_has_mapping(s_user_ns, current_fsgid()))
2992 		return -EOVERFLOW;
2993 
2994 	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2995 	if (error)
2996 		return error;
2997 
2998 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
2999 }
3000 
3001 /*
3002  * Attempt to atomically look up, create and open a file from a negative
3003  * dentry.
3004  *
3005  * Returns 0 if successful.  The file will have been created and attached to
3006  * @file by the filesystem calling finish_open().
3007  *
3008  * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3009  * be set.  The caller will need to perform the open themselves.  @path will
3010  * have been updated to point to the new dentry.  This may be negative.
3011  *
3012  * Returns an error code otherwise.
3013  */
3014 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
3015 			struct path *path, struct file *file,
3016 			const struct open_flags *op,
3017 			int open_flag, umode_t mode)
3018 {
3019 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3020 	struct inode *dir =  nd->path.dentry->d_inode;
3021 	int error;
3022 
3023 	if (!(~open_flag & (O_EXCL | O_CREAT)))	/* both O_EXCL and O_CREAT */
3024 		open_flag &= ~O_TRUNC;
3025 
3026 	if (nd->flags & LOOKUP_DIRECTORY)
3027 		open_flag |= O_DIRECTORY;
3028 
3029 	file->f_path.dentry = DENTRY_NOT_SET;
3030 	file->f_path.mnt = nd->path.mnt;
3031 	error = dir->i_op->atomic_open(dir, dentry, file,
3032 				       open_to_namei_flags(open_flag), mode);
3033 	d_lookup_done(dentry);
3034 	if (!error) {
3035 		if (file->f_mode & FMODE_OPENED) {
3036 			/*
3037 			 * We didn't have the inode before the open, so check open
3038 			 * permission here.
3039 			 */
3040 			int acc_mode = op->acc_mode;
3041 			if (file->f_mode & FMODE_CREATED) {
3042 				WARN_ON(!(open_flag & O_CREAT));
3043 				fsnotify_create(dir, dentry);
3044 				acc_mode = 0;
3045 			}
3046 			error = may_open(&file->f_path, acc_mode, open_flag);
3047 			if (WARN_ON(error > 0))
3048 				error = -EINVAL;
3049 		} else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3050 			error = -EIO;
3051 		} else {
3052 			if (file->f_path.dentry) {
3053 				dput(dentry);
3054 				dentry = file->f_path.dentry;
3055 			}
3056 			if (file->f_mode & FMODE_CREATED)
3057 				fsnotify_create(dir, dentry);
3058 			if (unlikely(d_is_negative(dentry))) {
3059 				error = -ENOENT;
3060 			} else {
3061 				path->dentry = dentry;
3062 				path->mnt = nd->path.mnt;
3063 				return 0;
3064 			}
3065 		}
3066 	}
3067 	dput(dentry);
3068 	return error;
3069 }
3070 
3071 /*
3072  * Look up and maybe create and open the last component.
3073  *
3074  * Must be called with parent locked (exclusive in O_CREAT case).
3075  *
3076  * Returns 0 on success, that is, if
3077  *  the file was successfully atomically created (if necessary) and opened, or
3078  *  the file was not completely opened at this time, though lookups and
3079  *  creations were performed.
3080  * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3081  * In the latter case dentry returned in @path might be negative if O_CREAT
3082  * hadn't been specified.
3083  *
3084  * An error code is returned on failure.
3085  */
3086 static int lookup_open(struct nameidata *nd, struct path *path,
3087 			struct file *file,
3088 			const struct open_flags *op,
3089 			bool got_write)
3090 {
3091 	struct dentry *dir = nd->path.dentry;
3092 	struct inode *dir_inode = dir->d_inode;
3093 	int open_flag = op->open_flag;
3094 	struct dentry *dentry;
3095 	int error, create_error = 0;
3096 	umode_t mode = op->mode;
3097 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3098 
3099 	if (unlikely(IS_DEADDIR(dir_inode)))
3100 		return -ENOENT;
3101 
3102 	file->f_mode &= ~FMODE_CREATED;
3103 	dentry = d_lookup(dir, &nd->last);
3104 	for (;;) {
3105 		if (!dentry) {
3106 			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3107 			if (IS_ERR(dentry))
3108 				return PTR_ERR(dentry);
3109 		}
3110 		if (d_in_lookup(dentry))
3111 			break;
3112 
3113 		error = d_revalidate(dentry, nd->flags);
3114 		if (likely(error > 0))
3115 			break;
3116 		if (error)
3117 			goto out_dput;
3118 		d_invalidate(dentry);
3119 		dput(dentry);
3120 		dentry = NULL;
3121 	}
3122 	if (dentry->d_inode) {
3123 		/* Cached positive dentry: will open in f_op->open */
3124 		goto out_no_open;
3125 	}
3126 
3127 	/*
3128 	 * Checking write permission is tricky, bacuse we don't know if we are
3129 	 * going to actually need it: O_CREAT opens should work as long as the
3130 	 * file exists.  But checking existence breaks atomicity.  The trick is
3131 	 * to check access and if not granted clear O_CREAT from the flags.
3132 	 *
3133 	 * Another problem is returing the "right" error value (e.g. for an
3134 	 * O_EXCL open we want to return EEXIST not EROFS).
3135 	 */
3136 	if (open_flag & O_CREAT) {
3137 		if (!IS_POSIXACL(dir->d_inode))
3138 			mode &= ~current_umask();
3139 		if (unlikely(!got_write)) {
3140 			create_error = -EROFS;
3141 			open_flag &= ~O_CREAT;
3142 			if (open_flag & (O_EXCL | O_TRUNC))
3143 				goto no_open;
3144 			/* No side effects, safe to clear O_CREAT */
3145 		} else {
3146 			create_error = may_o_create(&nd->path, dentry, mode);
3147 			if (create_error) {
3148 				open_flag &= ~O_CREAT;
3149 				if (open_flag & O_EXCL)
3150 					goto no_open;
3151 			}
3152 		}
3153 	} else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3154 		   unlikely(!got_write)) {
3155 		/*
3156 		 * No O_CREATE -> atomicity not a requirement -> fall
3157 		 * back to lookup + open
3158 		 */
3159 		goto no_open;
3160 	}
3161 
3162 	if (dir_inode->i_op->atomic_open) {
3163 		error = atomic_open(nd, dentry, path, file, op, open_flag,
3164 				    mode);
3165 		if (unlikely(error == -ENOENT) && create_error)
3166 			error = create_error;
3167 		return error;
3168 	}
3169 
3170 no_open:
3171 	if (d_in_lookup(dentry)) {
3172 		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3173 							     nd->flags);
3174 		d_lookup_done(dentry);
3175 		if (unlikely(res)) {
3176 			if (IS_ERR(res)) {
3177 				error = PTR_ERR(res);
3178 				goto out_dput;
3179 			}
3180 			dput(dentry);
3181 			dentry = res;
3182 		}
3183 	}
3184 
3185 	/* Negative dentry, just create the file */
3186 	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3187 		file->f_mode |= FMODE_CREATED;
3188 		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3189 		if (!dir_inode->i_op->create) {
3190 			error = -EACCES;
3191 			goto out_dput;
3192 		}
3193 		error = dir_inode->i_op->create(dir_inode, dentry, mode,
3194 						open_flag & O_EXCL);
3195 		if (error)
3196 			goto out_dput;
3197 		fsnotify_create(dir_inode, dentry);
3198 	}
3199 	if (unlikely(create_error) && !dentry->d_inode) {
3200 		error = create_error;
3201 		goto out_dput;
3202 	}
3203 out_no_open:
3204 	path->dentry = dentry;
3205 	path->mnt = nd->path.mnt;
3206 	return 0;
3207 
3208 out_dput:
3209 	dput(dentry);
3210 	return error;
3211 }
3212 
3213 /*
3214  * Handle the last step of open()
3215  */
3216 static int do_last(struct nameidata *nd,
3217 		   struct file *file, const struct open_flags *op)
3218 {
3219 	struct dentry *dir = nd->path.dentry;
3220 	int open_flag = op->open_flag;
3221 	bool will_truncate = (open_flag & O_TRUNC) != 0;
3222 	bool got_write = false;
3223 	int acc_mode = op->acc_mode;
3224 	unsigned seq;
3225 	struct inode *inode;
3226 	struct path path;
3227 	int error;
3228 
3229 	nd->flags &= ~LOOKUP_PARENT;
3230 	nd->flags |= op->intent;
3231 
3232 	if (nd->last_type != LAST_NORM) {
3233 		error = handle_dots(nd, nd->last_type);
3234 		if (unlikely(error))
3235 			return error;
3236 		goto finish_open;
3237 	}
3238 
3239 	if (!(open_flag & O_CREAT)) {
3240 		if (nd->last.name[nd->last.len])
3241 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3242 		/* we _can_ be in RCU mode here */
3243 		error = lookup_fast(nd, &path, &inode, &seq);
3244 		if (likely(error > 0))
3245 			goto finish_lookup;
3246 
3247 		if (error < 0)
3248 			return error;
3249 
3250 		BUG_ON(nd->inode != dir->d_inode);
3251 		BUG_ON(nd->flags & LOOKUP_RCU);
3252 	} else {
3253 		/* create side of things */
3254 		/*
3255 		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3256 		 * has been cleared when we got to the last component we are
3257 		 * about to look up
3258 		 */
3259 		error = complete_walk(nd);
3260 		if (error)
3261 			return error;
3262 
3263 		audit_inode(nd->name, dir, LOOKUP_PARENT);
3264 		/* trailing slashes? */
3265 		if (unlikely(nd->last.name[nd->last.len]))
3266 			return -EISDIR;
3267 	}
3268 
3269 	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3270 		error = mnt_want_write(nd->path.mnt);
3271 		if (!error)
3272 			got_write = true;
3273 		/*
3274 		 * do _not_ fail yet - we might not need that or fail with
3275 		 * a different error; let lookup_open() decide; we'll be
3276 		 * dropping this one anyway.
3277 		 */
3278 	}
3279 	if (open_flag & O_CREAT)
3280 		inode_lock(dir->d_inode);
3281 	else
3282 		inode_lock_shared(dir->d_inode);
3283 	error = lookup_open(nd, &path, file, op, got_write);
3284 	if (open_flag & O_CREAT)
3285 		inode_unlock(dir->d_inode);
3286 	else
3287 		inode_unlock_shared(dir->d_inode);
3288 
3289 	if (error)
3290 		goto out;
3291 
3292 	if (file->f_mode & FMODE_OPENED) {
3293 		if ((file->f_mode & FMODE_CREATED) ||
3294 		    !S_ISREG(file_inode(file)->i_mode))
3295 			will_truncate = false;
3296 
3297 		audit_inode(nd->name, file->f_path.dentry, 0);
3298 		goto opened;
3299 	}
3300 
3301 	if (file->f_mode & FMODE_CREATED) {
3302 		/* Don't check for write permission, don't truncate */
3303 		open_flag &= ~O_TRUNC;
3304 		will_truncate = false;
3305 		acc_mode = 0;
3306 		path_to_nameidata(&path, nd);
3307 		goto finish_open_created;
3308 	}
3309 
3310 	/*
3311 	 * If atomic_open() acquired write access it is dropped now due to
3312 	 * possible mount and symlink following (this might be optimized away if
3313 	 * necessary...)
3314 	 */
3315 	if (got_write) {
3316 		mnt_drop_write(nd->path.mnt);
3317 		got_write = false;
3318 	}
3319 
3320 	error = follow_managed(&path, nd);
3321 	if (unlikely(error < 0))
3322 		return error;
3323 
3324 	if (unlikely(d_is_negative(path.dentry))) {
3325 		path_to_nameidata(&path, nd);
3326 		return -ENOENT;
3327 	}
3328 
3329 	/*
3330 	 * create/update audit record if it already exists.
3331 	 */
3332 	audit_inode(nd->name, path.dentry, 0);
3333 
3334 	if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3335 		path_to_nameidata(&path, nd);
3336 		return -EEXIST;
3337 	}
3338 
3339 	seq = 0;	/* out of RCU mode, so the value doesn't matter */
3340 	inode = d_backing_inode(path.dentry);
3341 finish_lookup:
3342 	error = step_into(nd, &path, 0, inode, seq);
3343 	if (unlikely(error))
3344 		return error;
3345 finish_open:
3346 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3347 	error = complete_walk(nd);
3348 	if (error)
3349 		return error;
3350 	audit_inode(nd->name, nd->path.dentry, 0);
3351 	error = -EISDIR;
3352 	if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3353 		goto out;
3354 	error = -ENOTDIR;
3355 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3356 		goto out;
3357 	if (!d_is_reg(nd->path.dentry))
3358 		will_truncate = false;
3359 
3360 	if (will_truncate) {
3361 		error = mnt_want_write(nd->path.mnt);
3362 		if (error)
3363 			goto out;
3364 		got_write = true;
3365 	}
3366 finish_open_created:
3367 	error = may_open(&nd->path, acc_mode, open_flag);
3368 	if (error)
3369 		goto out;
3370 	BUG_ON(file->f_mode & FMODE_OPENED); /* once it's opened, it's opened */
3371 	error = vfs_open(&nd->path, file);
3372 	if (error)
3373 		goto out;
3374 opened:
3375 	error = ima_file_check(file, op->acc_mode);
3376 	if (!error && will_truncate)
3377 		error = handle_truncate(file);
3378 out:
3379 	if (unlikely(error > 0)) {
3380 		WARN_ON(1);
3381 		error = -EINVAL;
3382 	}
3383 	if (got_write)
3384 		mnt_drop_write(nd->path.mnt);
3385 	return error;
3386 }
3387 
3388 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3389 {
3390 	struct dentry *child = NULL;
3391 	struct inode *dir = dentry->d_inode;
3392 	struct inode *inode;
3393 	int error;
3394 
3395 	/* we want directory to be writable */
3396 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3397 	if (error)
3398 		goto out_err;
3399 	error = -EOPNOTSUPP;
3400 	if (!dir->i_op->tmpfile)
3401 		goto out_err;
3402 	error = -ENOMEM;
3403 	child = d_alloc(dentry, &slash_name);
3404 	if (unlikely(!child))
3405 		goto out_err;
3406 	error = dir->i_op->tmpfile(dir, child, mode);
3407 	if (error)
3408 		goto out_err;
3409 	error = -ENOENT;
3410 	inode = child->d_inode;
3411 	if (unlikely(!inode))
3412 		goto out_err;
3413 	if (!(open_flag & O_EXCL)) {
3414 		spin_lock(&inode->i_lock);
3415 		inode->i_state |= I_LINKABLE;
3416 		spin_unlock(&inode->i_lock);
3417 	}
3418 	return child;
3419 
3420 out_err:
3421 	dput(child);
3422 	return ERR_PTR(error);
3423 }
3424 EXPORT_SYMBOL(vfs_tmpfile);
3425 
3426 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3427 		const struct open_flags *op,
3428 		struct file *file)
3429 {
3430 	struct dentry *child;
3431 	struct path path;
3432 	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3433 	if (unlikely(error))
3434 		return error;
3435 	error = mnt_want_write(path.mnt);
3436 	if (unlikely(error))
3437 		goto out;
3438 	child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3439 	error = PTR_ERR(child);
3440 	if (IS_ERR(child))
3441 		goto out2;
3442 	dput(path.dentry);
3443 	path.dentry = child;
3444 	audit_inode(nd->name, child, 0);
3445 	/* Don't check for other permissions, the inode was just created */
3446 	error = may_open(&path, 0, op->open_flag);
3447 	if (error)
3448 		goto out2;
3449 	file->f_path.mnt = path.mnt;
3450 	error = finish_open(file, child, NULL);
3451 out2:
3452 	mnt_drop_write(path.mnt);
3453 out:
3454 	path_put(&path);
3455 	return error;
3456 }
3457 
3458 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3459 {
3460 	struct path path;
3461 	int error = path_lookupat(nd, flags, &path);
3462 	if (!error) {
3463 		audit_inode(nd->name, path.dentry, 0);
3464 		error = vfs_open(&path, file);
3465 		path_put(&path);
3466 	}
3467 	return error;
3468 }
3469 
3470 static struct file *path_openat(struct nameidata *nd,
3471 			const struct open_flags *op, unsigned flags)
3472 {
3473 	struct file *file;
3474 	int error;
3475 
3476 	file = alloc_empty_file(op->open_flag, current_cred());
3477 	if (IS_ERR(file))
3478 		return file;
3479 
3480 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3481 		error = do_tmpfile(nd, flags, op, file);
3482 	} else if (unlikely(file->f_flags & O_PATH)) {
3483 		error = do_o_path(nd, flags, file);
3484 	} else {
3485 		const char *s = path_init(nd, flags);
3486 		while (!(error = link_path_walk(s, nd)) &&
3487 			(error = do_last(nd, file, op)) > 0) {
3488 			nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3489 			s = trailing_symlink(nd);
3490 		}
3491 		terminate_walk(nd);
3492 	}
3493 	if (likely(!error)) {
3494 		if (likely(file->f_mode & FMODE_OPENED))
3495 			return file;
3496 		WARN_ON(1);
3497 		error = -EINVAL;
3498 	}
3499 	fput(file);
3500 	if (error == -EOPENSTALE) {
3501 		if (flags & LOOKUP_RCU)
3502 			error = -ECHILD;
3503 		else
3504 			error = -ESTALE;
3505 	}
3506 	return ERR_PTR(error);
3507 }
3508 
3509 struct file *do_filp_open(int dfd, struct filename *pathname,
3510 		const struct open_flags *op)
3511 {
3512 	struct nameidata nd;
3513 	int flags = op->lookup_flags;
3514 	struct file *filp;
3515 
3516 	set_nameidata(&nd, dfd, pathname);
3517 	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3518 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3519 		filp = path_openat(&nd, op, flags);
3520 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3521 		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3522 	restore_nameidata();
3523 	return filp;
3524 }
3525 
3526 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3527 		const char *name, const struct open_flags *op)
3528 {
3529 	struct nameidata nd;
3530 	struct file *file;
3531 	struct filename *filename;
3532 	int flags = op->lookup_flags | LOOKUP_ROOT;
3533 
3534 	nd.root.mnt = mnt;
3535 	nd.root.dentry = dentry;
3536 
3537 	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3538 		return ERR_PTR(-ELOOP);
3539 
3540 	filename = getname_kernel(name);
3541 	if (IS_ERR(filename))
3542 		return ERR_CAST(filename);
3543 
3544 	set_nameidata(&nd, -1, filename);
3545 	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3546 	if (unlikely(file == ERR_PTR(-ECHILD)))
3547 		file = path_openat(&nd, op, flags);
3548 	if (unlikely(file == ERR_PTR(-ESTALE)))
3549 		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3550 	restore_nameidata();
3551 	putname(filename);
3552 	return file;
3553 }
3554 
3555 static struct dentry *filename_create(int dfd, struct filename *name,
3556 				struct path *path, unsigned int lookup_flags)
3557 {
3558 	struct dentry *dentry = ERR_PTR(-EEXIST);
3559 	struct qstr last;
3560 	int type;
3561 	int err2;
3562 	int error;
3563 	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3564 
3565 	/*
3566 	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3567 	 * other flags passed in are ignored!
3568 	 */
3569 	lookup_flags &= LOOKUP_REVAL;
3570 
3571 	name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3572 	if (IS_ERR(name))
3573 		return ERR_CAST(name);
3574 
3575 	/*
3576 	 * Yucky last component or no last component at all?
3577 	 * (foo/., foo/.., /////)
3578 	 */
3579 	if (unlikely(type != LAST_NORM))
3580 		goto out;
3581 
3582 	/* don't fail immediately if it's r/o, at least try to report other errors */
3583 	err2 = mnt_want_write(path->mnt);
3584 	/*
3585 	 * Do the final lookup.
3586 	 */
3587 	lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3588 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3589 	dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3590 	if (IS_ERR(dentry))
3591 		goto unlock;
3592 
3593 	error = -EEXIST;
3594 	if (d_is_positive(dentry))
3595 		goto fail;
3596 
3597 	/*
3598 	 * Special case - lookup gave negative, but... we had foo/bar/
3599 	 * From the vfs_mknod() POV we just have a negative dentry -
3600 	 * all is fine. Let's be bastards - you had / on the end, you've
3601 	 * been asking for (non-existent) directory. -ENOENT for you.
3602 	 */
3603 	if (unlikely(!is_dir && last.name[last.len])) {
3604 		error = -ENOENT;
3605 		goto fail;
3606 	}
3607 	if (unlikely(err2)) {
3608 		error = err2;
3609 		goto fail;
3610 	}
3611 	putname(name);
3612 	return dentry;
3613 fail:
3614 	dput(dentry);
3615 	dentry = ERR_PTR(error);
3616 unlock:
3617 	inode_unlock(path->dentry->d_inode);
3618 	if (!err2)
3619 		mnt_drop_write(path->mnt);
3620 out:
3621 	path_put(path);
3622 	putname(name);
3623 	return dentry;
3624 }
3625 
3626 struct dentry *kern_path_create(int dfd, const char *pathname,
3627 				struct path *path, unsigned int lookup_flags)
3628 {
3629 	return filename_create(dfd, getname_kernel(pathname),
3630 				path, lookup_flags);
3631 }
3632 EXPORT_SYMBOL(kern_path_create);
3633 
3634 void done_path_create(struct path *path, struct dentry *dentry)
3635 {
3636 	dput(dentry);
3637 	inode_unlock(path->dentry->d_inode);
3638 	mnt_drop_write(path->mnt);
3639 	path_put(path);
3640 }
3641 EXPORT_SYMBOL(done_path_create);
3642 
3643 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3644 				struct path *path, unsigned int lookup_flags)
3645 {
3646 	return filename_create(dfd, getname(pathname), path, lookup_flags);
3647 }
3648 EXPORT_SYMBOL(user_path_create);
3649 
3650 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3651 {
3652 	int error = may_create(dir, dentry);
3653 
3654 	if (error)
3655 		return error;
3656 
3657 	if ((S_ISCHR(mode) || S_ISBLK(mode)) &&
3658 	    !ns_capable(dentry->d_sb->s_user_ns, CAP_MKNOD))
3659 		return -EPERM;
3660 
3661 	if (!dir->i_op->mknod)
3662 		return -EPERM;
3663 
3664 	error = devcgroup_inode_mknod(mode, dev);
3665 	if (error)
3666 		return error;
3667 
3668 	error = security_inode_mknod(dir, dentry, mode, dev);
3669 	if (error)
3670 		return error;
3671 
3672 	error = dir->i_op->mknod(dir, dentry, mode, dev);
3673 	if (!error)
3674 		fsnotify_create(dir, dentry);
3675 	return error;
3676 }
3677 EXPORT_SYMBOL(vfs_mknod);
3678 
3679 static int may_mknod(umode_t mode)
3680 {
3681 	switch (mode & S_IFMT) {
3682 	case S_IFREG:
3683 	case S_IFCHR:
3684 	case S_IFBLK:
3685 	case S_IFIFO:
3686 	case S_IFSOCK:
3687 	case 0: /* zero mode translates to S_IFREG */
3688 		return 0;
3689 	case S_IFDIR:
3690 		return -EPERM;
3691 	default:
3692 		return -EINVAL;
3693 	}
3694 }
3695 
3696 long do_mknodat(int dfd, const char __user *filename, umode_t mode,
3697 		unsigned int dev)
3698 {
3699 	struct dentry *dentry;
3700 	struct path path;
3701 	int error;
3702 	unsigned int lookup_flags = 0;
3703 
3704 	error = may_mknod(mode);
3705 	if (error)
3706 		return error;
3707 retry:
3708 	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3709 	if (IS_ERR(dentry))
3710 		return PTR_ERR(dentry);
3711 
3712 	if (!IS_POSIXACL(path.dentry->d_inode))
3713 		mode &= ~current_umask();
3714 	error = security_path_mknod(&path, dentry, mode, dev);
3715 	if (error)
3716 		goto out;
3717 	switch (mode & S_IFMT) {
3718 		case 0: case S_IFREG:
3719 			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3720 			if (!error)
3721 				ima_post_path_mknod(dentry);
3722 			break;
3723 		case S_IFCHR: case S_IFBLK:
3724 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3725 					new_decode_dev(dev));
3726 			break;
3727 		case S_IFIFO: case S_IFSOCK:
3728 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3729 			break;
3730 	}
3731 out:
3732 	done_path_create(&path, dentry);
3733 	if (retry_estale(error, lookup_flags)) {
3734 		lookup_flags |= LOOKUP_REVAL;
3735 		goto retry;
3736 	}
3737 	return error;
3738 }
3739 
3740 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3741 		unsigned int, dev)
3742 {
3743 	return do_mknodat(dfd, filename, mode, dev);
3744 }
3745 
3746 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3747 {
3748 	return do_mknodat(AT_FDCWD, filename, mode, dev);
3749 }
3750 
3751 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3752 {
3753 	int error = may_create(dir, dentry);
3754 	unsigned max_links = dir->i_sb->s_max_links;
3755 
3756 	if (error)
3757 		return error;
3758 
3759 	if (!dir->i_op->mkdir)
3760 		return -EPERM;
3761 
3762 	mode &= (S_IRWXUGO|S_ISVTX);
3763 	error = security_inode_mkdir(dir, dentry, mode);
3764 	if (error)
3765 		return error;
3766 
3767 	if (max_links && dir->i_nlink >= max_links)
3768 		return -EMLINK;
3769 
3770 	error = dir->i_op->mkdir(dir, dentry, mode);
3771 	if (!error)
3772 		fsnotify_mkdir(dir, dentry);
3773 	return error;
3774 }
3775 EXPORT_SYMBOL(vfs_mkdir);
3776 
3777 long do_mkdirat(int dfd, const char __user *pathname, umode_t mode)
3778 {
3779 	struct dentry *dentry;
3780 	struct path path;
3781 	int error;
3782 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3783 
3784 retry:
3785 	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3786 	if (IS_ERR(dentry))
3787 		return PTR_ERR(dentry);
3788 
3789 	if (!IS_POSIXACL(path.dentry->d_inode))
3790 		mode &= ~current_umask();
3791 	error = security_path_mkdir(&path, dentry, mode);
3792 	if (!error)
3793 		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3794 	done_path_create(&path, dentry);
3795 	if (retry_estale(error, lookup_flags)) {
3796 		lookup_flags |= LOOKUP_REVAL;
3797 		goto retry;
3798 	}
3799 	return error;
3800 }
3801 
3802 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3803 {
3804 	return do_mkdirat(dfd, pathname, mode);
3805 }
3806 
3807 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3808 {
3809 	return do_mkdirat(AT_FDCWD, pathname, mode);
3810 }
3811 
3812 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3813 {
3814 	int error = may_delete(dir, dentry, 1);
3815 
3816 	if (error)
3817 		return error;
3818 
3819 	if (!dir->i_op->rmdir)
3820 		return -EPERM;
3821 
3822 	dget(dentry);
3823 	inode_lock(dentry->d_inode);
3824 
3825 	error = -EBUSY;
3826 	if (is_local_mountpoint(dentry))
3827 		goto out;
3828 
3829 	error = security_inode_rmdir(dir, dentry);
3830 	if (error)
3831 		goto out;
3832 
3833 	error = dir->i_op->rmdir(dir, dentry);
3834 	if (error)
3835 		goto out;
3836 
3837 	shrink_dcache_parent(dentry);
3838 	dentry->d_inode->i_flags |= S_DEAD;
3839 	dont_mount(dentry);
3840 	detach_mounts(dentry);
3841 
3842 out:
3843 	inode_unlock(dentry->d_inode);
3844 	dput(dentry);
3845 	if (!error)
3846 		d_delete(dentry);
3847 	return error;
3848 }
3849 EXPORT_SYMBOL(vfs_rmdir);
3850 
3851 long do_rmdir(int dfd, const char __user *pathname)
3852 {
3853 	int error = 0;
3854 	struct filename *name;
3855 	struct dentry *dentry;
3856 	struct path path;
3857 	struct qstr last;
3858 	int type;
3859 	unsigned int lookup_flags = 0;
3860 retry:
3861 	name = filename_parentat(dfd, getname(pathname), lookup_flags,
3862 				&path, &last, &type);
3863 	if (IS_ERR(name))
3864 		return PTR_ERR(name);
3865 
3866 	switch (type) {
3867 	case LAST_DOTDOT:
3868 		error = -ENOTEMPTY;
3869 		goto exit1;
3870 	case LAST_DOT:
3871 		error = -EINVAL;
3872 		goto exit1;
3873 	case LAST_ROOT:
3874 		error = -EBUSY;
3875 		goto exit1;
3876 	}
3877 
3878 	error = mnt_want_write(path.mnt);
3879 	if (error)
3880 		goto exit1;
3881 
3882 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3883 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3884 	error = PTR_ERR(dentry);
3885 	if (IS_ERR(dentry))
3886 		goto exit2;
3887 	if (!dentry->d_inode) {
3888 		error = -ENOENT;
3889 		goto exit3;
3890 	}
3891 	error = security_path_rmdir(&path, dentry);
3892 	if (error)
3893 		goto exit3;
3894 	error = vfs_rmdir(path.dentry->d_inode, dentry);
3895 exit3:
3896 	dput(dentry);
3897 exit2:
3898 	inode_unlock(path.dentry->d_inode);
3899 	mnt_drop_write(path.mnt);
3900 exit1:
3901 	path_put(&path);
3902 	putname(name);
3903 	if (retry_estale(error, lookup_flags)) {
3904 		lookup_flags |= LOOKUP_REVAL;
3905 		goto retry;
3906 	}
3907 	return error;
3908 }
3909 
3910 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3911 {
3912 	return do_rmdir(AT_FDCWD, pathname);
3913 }
3914 
3915 /**
3916  * vfs_unlink - unlink a filesystem object
3917  * @dir:	parent directory
3918  * @dentry:	victim
3919  * @delegated_inode: returns victim inode, if the inode is delegated.
3920  *
3921  * The caller must hold dir->i_mutex.
3922  *
3923  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3924  * return a reference to the inode in delegated_inode.  The caller
3925  * should then break the delegation on that inode and retry.  Because
3926  * breaking a delegation may take a long time, the caller should drop
3927  * dir->i_mutex before doing so.
3928  *
3929  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3930  * be appropriate for callers that expect the underlying filesystem not
3931  * to be NFS exported.
3932  */
3933 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3934 {
3935 	struct inode *target = dentry->d_inode;
3936 	int error = may_delete(dir, dentry, 0);
3937 
3938 	if (error)
3939 		return error;
3940 
3941 	if (!dir->i_op->unlink)
3942 		return -EPERM;
3943 
3944 	inode_lock(target);
3945 	if (is_local_mountpoint(dentry))
3946 		error = -EBUSY;
3947 	else {
3948 		error = security_inode_unlink(dir, dentry);
3949 		if (!error) {
3950 			error = try_break_deleg(target, delegated_inode);
3951 			if (error)
3952 				goto out;
3953 			error = dir->i_op->unlink(dir, dentry);
3954 			if (!error) {
3955 				dont_mount(dentry);
3956 				detach_mounts(dentry);
3957 			}
3958 		}
3959 	}
3960 out:
3961 	inode_unlock(target);
3962 
3963 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
3964 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3965 		fsnotify_link_count(target);
3966 		d_delete(dentry);
3967 	}
3968 
3969 	return error;
3970 }
3971 EXPORT_SYMBOL(vfs_unlink);
3972 
3973 /*
3974  * Make sure that the actual truncation of the file will occur outside its
3975  * directory's i_mutex.  Truncate can take a long time if there is a lot of
3976  * writeout happening, and we don't want to prevent access to the directory
3977  * while waiting on the I/O.
3978  */
3979 long do_unlinkat(int dfd, struct filename *name)
3980 {
3981 	int error;
3982 	struct dentry *dentry;
3983 	struct path path;
3984 	struct qstr last;
3985 	int type;
3986 	struct inode *inode = NULL;
3987 	struct inode *delegated_inode = NULL;
3988 	unsigned int lookup_flags = 0;
3989 retry:
3990 	name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
3991 	if (IS_ERR(name))
3992 		return PTR_ERR(name);
3993 
3994 	error = -EISDIR;
3995 	if (type != LAST_NORM)
3996 		goto exit1;
3997 
3998 	error = mnt_want_write(path.mnt);
3999 	if (error)
4000 		goto exit1;
4001 retry_deleg:
4002 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4003 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4004 	error = PTR_ERR(dentry);
4005 	if (!IS_ERR(dentry)) {
4006 		/* Why not before? Because we want correct error value */
4007 		if (last.name[last.len])
4008 			goto slashes;
4009 		inode = dentry->d_inode;
4010 		if (d_is_negative(dentry))
4011 			goto slashes;
4012 		ihold(inode);
4013 		error = security_path_unlink(&path, dentry);
4014 		if (error)
4015 			goto exit2;
4016 		error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4017 exit2:
4018 		dput(dentry);
4019 	}
4020 	inode_unlock(path.dentry->d_inode);
4021 	if (inode)
4022 		iput(inode);	/* truncate the inode here */
4023 	inode = NULL;
4024 	if (delegated_inode) {
4025 		error = break_deleg_wait(&delegated_inode);
4026 		if (!error)
4027 			goto retry_deleg;
4028 	}
4029 	mnt_drop_write(path.mnt);
4030 exit1:
4031 	path_put(&path);
4032 	if (retry_estale(error, lookup_flags)) {
4033 		lookup_flags |= LOOKUP_REVAL;
4034 		inode = NULL;
4035 		goto retry;
4036 	}
4037 	putname(name);
4038 	return error;
4039 
4040 slashes:
4041 	if (d_is_negative(dentry))
4042 		error = -ENOENT;
4043 	else if (d_is_dir(dentry))
4044 		error = -EISDIR;
4045 	else
4046 		error = -ENOTDIR;
4047 	goto exit2;
4048 }
4049 
4050 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4051 {
4052 	if ((flag & ~AT_REMOVEDIR) != 0)
4053 		return -EINVAL;
4054 
4055 	if (flag & AT_REMOVEDIR)
4056 		return do_rmdir(dfd, pathname);
4057 
4058 	return do_unlinkat(dfd, getname(pathname));
4059 }
4060 
4061 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4062 {
4063 	return do_unlinkat(AT_FDCWD, getname(pathname));
4064 }
4065 
4066 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4067 {
4068 	int error = may_create(dir, dentry);
4069 
4070 	if (error)
4071 		return error;
4072 
4073 	if (!dir->i_op->symlink)
4074 		return -EPERM;
4075 
4076 	error = security_inode_symlink(dir, dentry, oldname);
4077 	if (error)
4078 		return error;
4079 
4080 	error = dir->i_op->symlink(dir, dentry, oldname);
4081 	if (!error)
4082 		fsnotify_create(dir, dentry);
4083 	return error;
4084 }
4085 EXPORT_SYMBOL(vfs_symlink);
4086 
4087 long do_symlinkat(const char __user *oldname, int newdfd,
4088 		  const char __user *newname)
4089 {
4090 	int error;
4091 	struct filename *from;
4092 	struct dentry *dentry;
4093 	struct path path;
4094 	unsigned int lookup_flags = 0;
4095 
4096 	from = getname(oldname);
4097 	if (IS_ERR(from))
4098 		return PTR_ERR(from);
4099 retry:
4100 	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4101 	error = PTR_ERR(dentry);
4102 	if (IS_ERR(dentry))
4103 		goto out_putname;
4104 
4105 	error = security_path_symlink(&path, dentry, from->name);
4106 	if (!error)
4107 		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4108 	done_path_create(&path, dentry);
4109 	if (retry_estale(error, lookup_flags)) {
4110 		lookup_flags |= LOOKUP_REVAL;
4111 		goto retry;
4112 	}
4113 out_putname:
4114 	putname(from);
4115 	return error;
4116 }
4117 
4118 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4119 		int, newdfd, const char __user *, newname)
4120 {
4121 	return do_symlinkat(oldname, newdfd, newname);
4122 }
4123 
4124 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4125 {
4126 	return do_symlinkat(oldname, AT_FDCWD, newname);
4127 }
4128 
4129 /**
4130  * vfs_link - create a new link
4131  * @old_dentry:	object to be linked
4132  * @dir:	new parent
4133  * @new_dentry:	where to create the new link
4134  * @delegated_inode: returns inode needing a delegation break
4135  *
4136  * The caller must hold dir->i_mutex
4137  *
4138  * If vfs_link discovers a delegation on the to-be-linked file in need
4139  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4140  * inode in delegated_inode.  The caller should then break the delegation
4141  * and retry.  Because breaking a delegation may take a long time, the
4142  * caller should drop the i_mutex before doing so.
4143  *
4144  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4145  * be appropriate for callers that expect the underlying filesystem not
4146  * to be NFS exported.
4147  */
4148 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4149 {
4150 	struct inode *inode = old_dentry->d_inode;
4151 	unsigned max_links = dir->i_sb->s_max_links;
4152 	int error;
4153 
4154 	if (!inode)
4155 		return -ENOENT;
4156 
4157 	error = may_create(dir, new_dentry);
4158 	if (error)
4159 		return error;
4160 
4161 	if (dir->i_sb != inode->i_sb)
4162 		return -EXDEV;
4163 
4164 	/*
4165 	 * A link to an append-only or immutable file cannot be created.
4166 	 */
4167 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4168 		return -EPERM;
4169 	/*
4170 	 * Updating the link count will likely cause i_uid and i_gid to
4171 	 * be writen back improperly if their true value is unknown to
4172 	 * the vfs.
4173 	 */
4174 	if (HAS_UNMAPPED_ID(inode))
4175 		return -EPERM;
4176 	if (!dir->i_op->link)
4177 		return -EPERM;
4178 	if (S_ISDIR(inode->i_mode))
4179 		return -EPERM;
4180 
4181 	error = security_inode_link(old_dentry, dir, new_dentry);
4182 	if (error)
4183 		return error;
4184 
4185 	inode_lock(inode);
4186 	/* Make sure we don't allow creating hardlink to an unlinked file */
4187 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4188 		error =  -ENOENT;
4189 	else if (max_links && inode->i_nlink >= max_links)
4190 		error = -EMLINK;
4191 	else {
4192 		error = try_break_deleg(inode, delegated_inode);
4193 		if (!error)
4194 			error = dir->i_op->link(old_dentry, dir, new_dentry);
4195 	}
4196 
4197 	if (!error && (inode->i_state & I_LINKABLE)) {
4198 		spin_lock(&inode->i_lock);
4199 		inode->i_state &= ~I_LINKABLE;
4200 		spin_unlock(&inode->i_lock);
4201 	}
4202 	inode_unlock(inode);
4203 	if (!error)
4204 		fsnotify_link(dir, inode, new_dentry);
4205 	return error;
4206 }
4207 EXPORT_SYMBOL(vfs_link);
4208 
4209 /*
4210  * Hardlinks are often used in delicate situations.  We avoid
4211  * security-related surprises by not following symlinks on the
4212  * newname.  --KAB
4213  *
4214  * We don't follow them on the oldname either to be compatible
4215  * with linux 2.0, and to avoid hard-linking to directories
4216  * and other special files.  --ADM
4217  */
4218 int do_linkat(int olddfd, const char __user *oldname, int newdfd,
4219 	      const char __user *newname, int flags)
4220 {
4221 	struct dentry *new_dentry;
4222 	struct path old_path, new_path;
4223 	struct inode *delegated_inode = NULL;
4224 	int how = 0;
4225 	int error;
4226 
4227 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4228 		return -EINVAL;
4229 	/*
4230 	 * To use null names we require CAP_DAC_READ_SEARCH
4231 	 * This ensures that not everyone will be able to create
4232 	 * handlink using the passed filedescriptor.
4233 	 */
4234 	if (flags & AT_EMPTY_PATH) {
4235 		if (!capable(CAP_DAC_READ_SEARCH))
4236 			return -ENOENT;
4237 		how = LOOKUP_EMPTY;
4238 	}
4239 
4240 	if (flags & AT_SYMLINK_FOLLOW)
4241 		how |= LOOKUP_FOLLOW;
4242 retry:
4243 	error = user_path_at(olddfd, oldname, how, &old_path);
4244 	if (error)
4245 		return error;
4246 
4247 	new_dentry = user_path_create(newdfd, newname, &new_path,
4248 					(how & LOOKUP_REVAL));
4249 	error = PTR_ERR(new_dentry);
4250 	if (IS_ERR(new_dentry))
4251 		goto out;
4252 
4253 	error = -EXDEV;
4254 	if (old_path.mnt != new_path.mnt)
4255 		goto out_dput;
4256 	error = may_linkat(&old_path);
4257 	if (unlikely(error))
4258 		goto out_dput;
4259 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4260 	if (error)
4261 		goto out_dput;
4262 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4263 out_dput:
4264 	done_path_create(&new_path, new_dentry);
4265 	if (delegated_inode) {
4266 		error = break_deleg_wait(&delegated_inode);
4267 		if (!error) {
4268 			path_put(&old_path);
4269 			goto retry;
4270 		}
4271 	}
4272 	if (retry_estale(error, how)) {
4273 		path_put(&old_path);
4274 		how |= LOOKUP_REVAL;
4275 		goto retry;
4276 	}
4277 out:
4278 	path_put(&old_path);
4279 
4280 	return error;
4281 }
4282 
4283 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4284 		int, newdfd, const char __user *, newname, int, flags)
4285 {
4286 	return do_linkat(olddfd, oldname, newdfd, newname, flags);
4287 }
4288 
4289 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4290 {
4291 	return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4292 }
4293 
4294 /**
4295  * vfs_rename - rename a filesystem object
4296  * @old_dir:	parent of source
4297  * @old_dentry:	source
4298  * @new_dir:	parent of destination
4299  * @new_dentry:	destination
4300  * @delegated_inode: returns an inode needing a delegation break
4301  * @flags:	rename flags
4302  *
4303  * The caller must hold multiple mutexes--see lock_rename()).
4304  *
4305  * If vfs_rename discovers a delegation in need of breaking at either
4306  * the source or destination, it will return -EWOULDBLOCK and return a
4307  * reference to the inode in delegated_inode.  The caller should then
4308  * break the delegation and retry.  Because breaking a delegation may
4309  * take a long time, the caller should drop all locks before doing
4310  * so.
4311  *
4312  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4313  * be appropriate for callers that expect the underlying filesystem not
4314  * to be NFS exported.
4315  *
4316  * The worst of all namespace operations - renaming directory. "Perverted"
4317  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4318  * Problems:
4319  *
4320  *	a) we can get into loop creation.
4321  *	b) race potential - two innocent renames can create a loop together.
4322  *	   That's where 4.4 screws up. Current fix: serialization on
4323  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4324  *	   story.
4325  *	c) we have to lock _four_ objects - parents and victim (if it exists),
4326  *	   and source (if it is not a directory).
4327  *	   And that - after we got ->i_mutex on parents (until then we don't know
4328  *	   whether the target exists).  Solution: try to be smart with locking
4329  *	   order for inodes.  We rely on the fact that tree topology may change
4330  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4331  *	   move will be locked.  Thus we can rank directories by the tree
4332  *	   (ancestors first) and rank all non-directories after them.
4333  *	   That works since everybody except rename does "lock parent, lookup,
4334  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4335  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4336  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4337  *	   we'd better make sure that there's no link(2) for them.
4338  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4339  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4340  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4341  *	   ->i_mutex on parents, which works but leads to some truly excessive
4342  *	   locking].
4343  */
4344 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4345 	       struct inode *new_dir, struct dentry *new_dentry,
4346 	       struct inode **delegated_inode, unsigned int flags)
4347 {
4348 	int error;
4349 	bool is_dir = d_is_dir(old_dentry);
4350 	struct inode *source = old_dentry->d_inode;
4351 	struct inode *target = new_dentry->d_inode;
4352 	bool new_is_dir = false;
4353 	unsigned max_links = new_dir->i_sb->s_max_links;
4354 	struct name_snapshot old_name;
4355 
4356 	if (source == target)
4357 		return 0;
4358 
4359 	error = may_delete(old_dir, old_dentry, is_dir);
4360 	if (error)
4361 		return error;
4362 
4363 	if (!target) {
4364 		error = may_create(new_dir, new_dentry);
4365 	} else {
4366 		new_is_dir = d_is_dir(new_dentry);
4367 
4368 		if (!(flags & RENAME_EXCHANGE))
4369 			error = may_delete(new_dir, new_dentry, is_dir);
4370 		else
4371 			error = may_delete(new_dir, new_dentry, new_is_dir);
4372 	}
4373 	if (error)
4374 		return error;
4375 
4376 	if (!old_dir->i_op->rename)
4377 		return -EPERM;
4378 
4379 	/*
4380 	 * If we are going to change the parent - check write permissions,
4381 	 * we'll need to flip '..'.
4382 	 */
4383 	if (new_dir != old_dir) {
4384 		if (is_dir) {
4385 			error = inode_permission(source, MAY_WRITE);
4386 			if (error)
4387 				return error;
4388 		}
4389 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4390 			error = inode_permission(target, MAY_WRITE);
4391 			if (error)
4392 				return error;
4393 		}
4394 	}
4395 
4396 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4397 				      flags);
4398 	if (error)
4399 		return error;
4400 
4401 	take_dentry_name_snapshot(&old_name, old_dentry);
4402 	dget(new_dentry);
4403 	if (!is_dir || (flags & RENAME_EXCHANGE))
4404 		lock_two_nondirectories(source, target);
4405 	else if (target)
4406 		inode_lock(target);
4407 
4408 	error = -EBUSY;
4409 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4410 		goto out;
4411 
4412 	if (max_links && new_dir != old_dir) {
4413 		error = -EMLINK;
4414 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4415 			goto out;
4416 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4417 		    old_dir->i_nlink >= max_links)
4418 			goto out;
4419 	}
4420 	if (!is_dir) {
4421 		error = try_break_deleg(source, delegated_inode);
4422 		if (error)
4423 			goto out;
4424 	}
4425 	if (target && !new_is_dir) {
4426 		error = try_break_deleg(target, delegated_inode);
4427 		if (error)
4428 			goto out;
4429 	}
4430 	error = old_dir->i_op->rename(old_dir, old_dentry,
4431 				       new_dir, new_dentry, flags);
4432 	if (error)
4433 		goto out;
4434 
4435 	if (!(flags & RENAME_EXCHANGE) && target) {
4436 		if (is_dir) {
4437 			shrink_dcache_parent(new_dentry);
4438 			target->i_flags |= S_DEAD;
4439 		}
4440 		dont_mount(new_dentry);
4441 		detach_mounts(new_dentry);
4442 	}
4443 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4444 		if (!(flags & RENAME_EXCHANGE))
4445 			d_move(old_dentry, new_dentry);
4446 		else
4447 			d_exchange(old_dentry, new_dentry);
4448 	}
4449 out:
4450 	if (!is_dir || (flags & RENAME_EXCHANGE))
4451 		unlock_two_nondirectories(source, target);
4452 	else if (target)
4453 		inode_unlock(target);
4454 	dput(new_dentry);
4455 	if (!error) {
4456 		fsnotify_move(old_dir, new_dir, old_name.name, is_dir,
4457 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4458 		if (flags & RENAME_EXCHANGE) {
4459 			fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4460 				      new_is_dir, NULL, new_dentry);
4461 		}
4462 	}
4463 	release_dentry_name_snapshot(&old_name);
4464 
4465 	return error;
4466 }
4467 EXPORT_SYMBOL(vfs_rename);
4468 
4469 static int do_renameat2(int olddfd, const char __user *oldname, int newdfd,
4470 			const char __user *newname, unsigned int flags)
4471 {
4472 	struct dentry *old_dentry, *new_dentry;
4473 	struct dentry *trap;
4474 	struct path old_path, new_path;
4475 	struct qstr old_last, new_last;
4476 	int old_type, new_type;
4477 	struct inode *delegated_inode = NULL;
4478 	struct filename *from;
4479 	struct filename *to;
4480 	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4481 	bool should_retry = false;
4482 	int error;
4483 
4484 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4485 		return -EINVAL;
4486 
4487 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4488 	    (flags & RENAME_EXCHANGE))
4489 		return -EINVAL;
4490 
4491 	if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4492 		return -EPERM;
4493 
4494 	if (flags & RENAME_EXCHANGE)
4495 		target_flags = 0;
4496 
4497 retry:
4498 	from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4499 				&old_path, &old_last, &old_type);
4500 	if (IS_ERR(from)) {
4501 		error = PTR_ERR(from);
4502 		goto exit;
4503 	}
4504 
4505 	to = filename_parentat(newdfd, getname(newname), lookup_flags,
4506 				&new_path, &new_last, &new_type);
4507 	if (IS_ERR(to)) {
4508 		error = PTR_ERR(to);
4509 		goto exit1;
4510 	}
4511 
4512 	error = -EXDEV;
4513 	if (old_path.mnt != new_path.mnt)
4514 		goto exit2;
4515 
4516 	error = -EBUSY;
4517 	if (old_type != LAST_NORM)
4518 		goto exit2;
4519 
4520 	if (flags & RENAME_NOREPLACE)
4521 		error = -EEXIST;
4522 	if (new_type != LAST_NORM)
4523 		goto exit2;
4524 
4525 	error = mnt_want_write(old_path.mnt);
4526 	if (error)
4527 		goto exit2;
4528 
4529 retry_deleg:
4530 	trap = lock_rename(new_path.dentry, old_path.dentry);
4531 
4532 	old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4533 	error = PTR_ERR(old_dentry);
4534 	if (IS_ERR(old_dentry))
4535 		goto exit3;
4536 	/* source must exist */
4537 	error = -ENOENT;
4538 	if (d_is_negative(old_dentry))
4539 		goto exit4;
4540 	new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4541 	error = PTR_ERR(new_dentry);
4542 	if (IS_ERR(new_dentry))
4543 		goto exit4;
4544 	error = -EEXIST;
4545 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4546 		goto exit5;
4547 	if (flags & RENAME_EXCHANGE) {
4548 		error = -ENOENT;
4549 		if (d_is_negative(new_dentry))
4550 			goto exit5;
4551 
4552 		if (!d_is_dir(new_dentry)) {
4553 			error = -ENOTDIR;
4554 			if (new_last.name[new_last.len])
4555 				goto exit5;
4556 		}
4557 	}
4558 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4559 	if (!d_is_dir(old_dentry)) {
4560 		error = -ENOTDIR;
4561 		if (old_last.name[old_last.len])
4562 			goto exit5;
4563 		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4564 			goto exit5;
4565 	}
4566 	/* source should not be ancestor of target */
4567 	error = -EINVAL;
4568 	if (old_dentry == trap)
4569 		goto exit5;
4570 	/* target should not be an ancestor of source */
4571 	if (!(flags & RENAME_EXCHANGE))
4572 		error = -ENOTEMPTY;
4573 	if (new_dentry == trap)
4574 		goto exit5;
4575 
4576 	error = security_path_rename(&old_path, old_dentry,
4577 				     &new_path, new_dentry, flags);
4578 	if (error)
4579 		goto exit5;
4580 	error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4581 			   new_path.dentry->d_inode, new_dentry,
4582 			   &delegated_inode, flags);
4583 exit5:
4584 	dput(new_dentry);
4585 exit4:
4586 	dput(old_dentry);
4587 exit3:
4588 	unlock_rename(new_path.dentry, old_path.dentry);
4589 	if (delegated_inode) {
4590 		error = break_deleg_wait(&delegated_inode);
4591 		if (!error)
4592 			goto retry_deleg;
4593 	}
4594 	mnt_drop_write(old_path.mnt);
4595 exit2:
4596 	if (retry_estale(error, lookup_flags))
4597 		should_retry = true;
4598 	path_put(&new_path);
4599 	putname(to);
4600 exit1:
4601 	path_put(&old_path);
4602 	putname(from);
4603 	if (should_retry) {
4604 		should_retry = false;
4605 		lookup_flags |= LOOKUP_REVAL;
4606 		goto retry;
4607 	}
4608 exit:
4609 	return error;
4610 }
4611 
4612 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4613 		int, newdfd, const char __user *, newname, unsigned int, flags)
4614 {
4615 	return do_renameat2(olddfd, oldname, newdfd, newname, flags);
4616 }
4617 
4618 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4619 		int, newdfd, const char __user *, newname)
4620 {
4621 	return do_renameat2(olddfd, oldname, newdfd, newname, 0);
4622 }
4623 
4624 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4625 {
4626 	return do_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4627 }
4628 
4629 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4630 {
4631 	int error = may_create(dir, dentry);
4632 	if (error)
4633 		return error;
4634 
4635 	if (!dir->i_op->mknod)
4636 		return -EPERM;
4637 
4638 	return dir->i_op->mknod(dir, dentry,
4639 				S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4640 }
4641 EXPORT_SYMBOL(vfs_whiteout);
4642 
4643 int readlink_copy(char __user *buffer, int buflen, const char *link)
4644 {
4645 	int len = PTR_ERR(link);
4646 	if (IS_ERR(link))
4647 		goto out;
4648 
4649 	len = strlen(link);
4650 	if (len > (unsigned) buflen)
4651 		len = buflen;
4652 	if (copy_to_user(buffer, link, len))
4653 		len = -EFAULT;
4654 out:
4655 	return len;
4656 }
4657 
4658 /**
4659  * vfs_readlink - copy symlink body into userspace buffer
4660  * @dentry: dentry on which to get symbolic link
4661  * @buffer: user memory pointer
4662  * @buflen: size of buffer
4663  *
4664  * Does not touch atime.  That's up to the caller if necessary
4665  *
4666  * Does not call security hook.
4667  */
4668 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4669 {
4670 	struct inode *inode = d_inode(dentry);
4671 	DEFINE_DELAYED_CALL(done);
4672 	const char *link;
4673 	int res;
4674 
4675 	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4676 		if (unlikely(inode->i_op->readlink))
4677 			return inode->i_op->readlink(dentry, buffer, buflen);
4678 
4679 		if (!d_is_symlink(dentry))
4680 			return -EINVAL;
4681 
4682 		spin_lock(&inode->i_lock);
4683 		inode->i_opflags |= IOP_DEFAULT_READLINK;
4684 		spin_unlock(&inode->i_lock);
4685 	}
4686 
4687 	link = inode->i_link;
4688 	if (!link) {
4689 		link = inode->i_op->get_link(dentry, inode, &done);
4690 		if (IS_ERR(link))
4691 			return PTR_ERR(link);
4692 	}
4693 	res = readlink_copy(buffer, buflen, link);
4694 	do_delayed_call(&done);
4695 	return res;
4696 }
4697 EXPORT_SYMBOL(vfs_readlink);
4698 
4699 /**
4700  * vfs_get_link - get symlink body
4701  * @dentry: dentry on which to get symbolic link
4702  * @done: caller needs to free returned data with this
4703  *
4704  * Calls security hook and i_op->get_link() on the supplied inode.
4705  *
4706  * It does not touch atime.  That's up to the caller if necessary.
4707  *
4708  * Does not work on "special" symlinks like /proc/$$/fd/N
4709  */
4710 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4711 {
4712 	const char *res = ERR_PTR(-EINVAL);
4713 	struct inode *inode = d_inode(dentry);
4714 
4715 	if (d_is_symlink(dentry)) {
4716 		res = ERR_PTR(security_inode_readlink(dentry));
4717 		if (!res)
4718 			res = inode->i_op->get_link(dentry, inode, done);
4719 	}
4720 	return res;
4721 }
4722 EXPORT_SYMBOL(vfs_get_link);
4723 
4724 /* get the link contents into pagecache */
4725 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4726 			  struct delayed_call *callback)
4727 {
4728 	char *kaddr;
4729 	struct page *page;
4730 	struct address_space *mapping = inode->i_mapping;
4731 
4732 	if (!dentry) {
4733 		page = find_get_page(mapping, 0);
4734 		if (!page)
4735 			return ERR_PTR(-ECHILD);
4736 		if (!PageUptodate(page)) {
4737 			put_page(page);
4738 			return ERR_PTR(-ECHILD);
4739 		}
4740 	} else {
4741 		page = read_mapping_page(mapping, 0, NULL);
4742 		if (IS_ERR(page))
4743 			return (char*)page;
4744 	}
4745 	set_delayed_call(callback, page_put_link, page);
4746 	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4747 	kaddr = page_address(page);
4748 	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4749 	return kaddr;
4750 }
4751 
4752 EXPORT_SYMBOL(page_get_link);
4753 
4754 void page_put_link(void *arg)
4755 {
4756 	put_page(arg);
4757 }
4758 EXPORT_SYMBOL(page_put_link);
4759 
4760 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4761 {
4762 	DEFINE_DELAYED_CALL(done);
4763 	int res = readlink_copy(buffer, buflen,
4764 				page_get_link(dentry, d_inode(dentry),
4765 					      &done));
4766 	do_delayed_call(&done);
4767 	return res;
4768 }
4769 EXPORT_SYMBOL(page_readlink);
4770 
4771 /*
4772  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4773  */
4774 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4775 {
4776 	struct address_space *mapping = inode->i_mapping;
4777 	struct page *page;
4778 	void *fsdata;
4779 	int err;
4780 	unsigned int flags = 0;
4781 	if (nofs)
4782 		flags |= AOP_FLAG_NOFS;
4783 
4784 retry:
4785 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4786 				flags, &page, &fsdata);
4787 	if (err)
4788 		goto fail;
4789 
4790 	memcpy(page_address(page), symname, len-1);
4791 
4792 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4793 							page, fsdata);
4794 	if (err < 0)
4795 		goto fail;
4796 	if (err < len-1)
4797 		goto retry;
4798 
4799 	mark_inode_dirty(inode);
4800 	return 0;
4801 fail:
4802 	return err;
4803 }
4804 EXPORT_SYMBOL(__page_symlink);
4805 
4806 int page_symlink(struct inode *inode, const char *symname, int len)
4807 {
4808 	return __page_symlink(inode, symname, len,
4809 			!mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4810 }
4811 EXPORT_SYMBOL(page_symlink);
4812 
4813 const struct inode_operations page_symlink_inode_operations = {
4814 	.get_link	= page_get_link,
4815 };
4816 EXPORT_SYMBOL(page_symlink_inode_operations);
4817