1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/namei.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * Some corrections by tytso. 10 */ 11 12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 13 * lookup logic. 14 */ 15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 16 */ 17 18 #include <linux/init.h> 19 #include <linux/export.h> 20 #include <linux/kernel.h> 21 #include <linux/slab.h> 22 #include <linux/fs.h> 23 #include <linux/namei.h> 24 #include <linux/pagemap.h> 25 #include <linux/fsnotify.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/ima.h> 29 #include <linux/syscalls.h> 30 #include <linux/mount.h> 31 #include <linux/audit.h> 32 #include <linux/capability.h> 33 #include <linux/file.h> 34 #include <linux/fcntl.h> 35 #include <linux/device_cgroup.h> 36 #include <linux/fs_struct.h> 37 #include <linux/posix_acl.h> 38 #include <linux/hash.h> 39 #include <linux/bitops.h> 40 #include <linux/init_task.h> 41 #include <linux/uaccess.h> 42 #include <linux/build_bug.h> 43 44 #include "internal.h" 45 #include "mount.h" 46 47 /* [Feb-1997 T. Schoebel-Theuer] 48 * Fundamental changes in the pathname lookup mechanisms (namei) 49 * were necessary because of omirr. The reason is that omirr needs 50 * to know the _real_ pathname, not the user-supplied one, in case 51 * of symlinks (and also when transname replacements occur). 52 * 53 * The new code replaces the old recursive symlink resolution with 54 * an iterative one (in case of non-nested symlink chains). It does 55 * this with calls to <fs>_follow_link(). 56 * As a side effect, dir_namei(), _namei() and follow_link() are now 57 * replaced with a single function lookup_dentry() that can handle all 58 * the special cases of the former code. 59 * 60 * With the new dcache, the pathname is stored at each inode, at least as 61 * long as the refcount of the inode is positive. As a side effect, the 62 * size of the dcache depends on the inode cache and thus is dynamic. 63 * 64 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 65 * resolution to correspond with current state of the code. 66 * 67 * Note that the symlink resolution is not *completely* iterative. 68 * There is still a significant amount of tail- and mid- recursion in 69 * the algorithm. Also, note that <fs>_readlink() is not used in 70 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 71 * may return different results than <fs>_follow_link(). Many virtual 72 * filesystems (including /proc) exhibit this behavior. 73 */ 74 75 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 76 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 77 * and the name already exists in form of a symlink, try to create the new 78 * name indicated by the symlink. The old code always complained that the 79 * name already exists, due to not following the symlink even if its target 80 * is nonexistent. The new semantics affects also mknod() and link() when 81 * the name is a symlink pointing to a non-existent name. 82 * 83 * I don't know which semantics is the right one, since I have no access 84 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 85 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 86 * "old" one. Personally, I think the new semantics is much more logical. 87 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 88 * file does succeed in both HP-UX and SunOs, but not in Solaris 89 * and in the old Linux semantics. 90 */ 91 92 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 93 * semantics. See the comments in "open_namei" and "do_link" below. 94 * 95 * [10-Sep-98 Alan Modra] Another symlink change. 96 */ 97 98 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 99 * inside the path - always follow. 100 * in the last component in creation/removal/renaming - never follow. 101 * if LOOKUP_FOLLOW passed - follow. 102 * if the pathname has trailing slashes - follow. 103 * otherwise - don't follow. 104 * (applied in that order). 105 * 106 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 107 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 108 * During the 2.4 we need to fix the userland stuff depending on it - 109 * hopefully we will be able to get rid of that wart in 2.5. So far only 110 * XEmacs seems to be relying on it... 111 */ 112 /* 113 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 114 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 115 * any extra contention... 116 */ 117 118 /* In order to reduce some races, while at the same time doing additional 119 * checking and hopefully speeding things up, we copy filenames to the 120 * kernel data space before using them.. 121 * 122 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 123 * PATH_MAX includes the nul terminator --RR. 124 */ 125 126 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) 127 128 struct filename * 129 getname_flags(const char __user *filename, int flags, int *empty) 130 { 131 struct filename *result; 132 char *kname; 133 int len; 134 BUILD_BUG_ON(offsetof(struct filename, iname) % sizeof(long) != 0); 135 136 result = audit_reusename(filename); 137 if (result) 138 return result; 139 140 result = __getname(); 141 if (unlikely(!result)) 142 return ERR_PTR(-ENOMEM); 143 144 /* 145 * First, try to embed the struct filename inside the names_cache 146 * allocation 147 */ 148 kname = (char *)result->iname; 149 result->name = kname; 150 151 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); 152 if (unlikely(len < 0)) { 153 __putname(result); 154 return ERR_PTR(len); 155 } 156 157 /* 158 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 159 * separate struct filename so we can dedicate the entire 160 * names_cache allocation for the pathname, and re-do the copy from 161 * userland. 162 */ 163 if (unlikely(len == EMBEDDED_NAME_MAX)) { 164 const size_t size = offsetof(struct filename, iname[1]); 165 kname = (char *)result; 166 167 /* 168 * size is chosen that way we to guarantee that 169 * result->iname[0] is within the same object and that 170 * kname can't be equal to result->iname, no matter what. 171 */ 172 result = kzalloc(size, GFP_KERNEL); 173 if (unlikely(!result)) { 174 __putname(kname); 175 return ERR_PTR(-ENOMEM); 176 } 177 result->name = kname; 178 len = strncpy_from_user(kname, filename, PATH_MAX); 179 if (unlikely(len < 0)) { 180 __putname(kname); 181 kfree(result); 182 return ERR_PTR(len); 183 } 184 if (unlikely(len == PATH_MAX)) { 185 __putname(kname); 186 kfree(result); 187 return ERR_PTR(-ENAMETOOLONG); 188 } 189 } 190 191 result->refcnt = 1; 192 /* The empty path is special. */ 193 if (unlikely(!len)) { 194 if (empty) 195 *empty = 1; 196 if (!(flags & LOOKUP_EMPTY)) { 197 putname(result); 198 return ERR_PTR(-ENOENT); 199 } 200 } 201 202 result->uptr = filename; 203 result->aname = NULL; 204 audit_getname(result); 205 return result; 206 } 207 208 struct filename * 209 getname(const char __user * filename) 210 { 211 return getname_flags(filename, 0, NULL); 212 } 213 214 struct filename * 215 getname_kernel(const char * filename) 216 { 217 struct filename *result; 218 int len = strlen(filename) + 1; 219 220 result = __getname(); 221 if (unlikely(!result)) 222 return ERR_PTR(-ENOMEM); 223 224 if (len <= EMBEDDED_NAME_MAX) { 225 result->name = (char *)result->iname; 226 } else if (len <= PATH_MAX) { 227 const size_t size = offsetof(struct filename, iname[1]); 228 struct filename *tmp; 229 230 tmp = kmalloc(size, GFP_KERNEL); 231 if (unlikely(!tmp)) { 232 __putname(result); 233 return ERR_PTR(-ENOMEM); 234 } 235 tmp->name = (char *)result; 236 result = tmp; 237 } else { 238 __putname(result); 239 return ERR_PTR(-ENAMETOOLONG); 240 } 241 memcpy((char *)result->name, filename, len); 242 result->uptr = NULL; 243 result->aname = NULL; 244 result->refcnt = 1; 245 audit_getname(result); 246 247 return result; 248 } 249 250 void putname(struct filename *name) 251 { 252 BUG_ON(name->refcnt <= 0); 253 254 if (--name->refcnt > 0) 255 return; 256 257 if (name->name != name->iname) { 258 __putname(name->name); 259 kfree(name); 260 } else 261 __putname(name); 262 } 263 264 static int check_acl(struct inode *inode, int mask) 265 { 266 #ifdef CONFIG_FS_POSIX_ACL 267 struct posix_acl *acl; 268 269 if (mask & MAY_NOT_BLOCK) { 270 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 271 if (!acl) 272 return -EAGAIN; 273 /* no ->get_acl() calls in RCU mode... */ 274 if (is_uncached_acl(acl)) 275 return -ECHILD; 276 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK); 277 } 278 279 acl = get_acl(inode, ACL_TYPE_ACCESS); 280 if (IS_ERR(acl)) 281 return PTR_ERR(acl); 282 if (acl) { 283 int error = posix_acl_permission(inode, acl, mask); 284 posix_acl_release(acl); 285 return error; 286 } 287 #endif 288 289 return -EAGAIN; 290 } 291 292 /* 293 * This does the basic permission checking 294 */ 295 static int acl_permission_check(struct inode *inode, int mask) 296 { 297 unsigned int mode = inode->i_mode; 298 299 if (likely(uid_eq(current_fsuid(), inode->i_uid))) 300 mode >>= 6; 301 else { 302 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 303 int error = check_acl(inode, mask); 304 if (error != -EAGAIN) 305 return error; 306 } 307 308 if (in_group_p(inode->i_gid)) 309 mode >>= 3; 310 } 311 312 /* 313 * If the DACs are ok we don't need any capability check. 314 */ 315 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 316 return 0; 317 return -EACCES; 318 } 319 320 /** 321 * generic_permission - check for access rights on a Posix-like filesystem 322 * @inode: inode to check access rights for 323 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...) 324 * 325 * Used to check for read/write/execute permissions on a file. 326 * We use "fsuid" for this, letting us set arbitrary permissions 327 * for filesystem access without changing the "normal" uids which 328 * are used for other things. 329 * 330 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 331 * request cannot be satisfied (eg. requires blocking or too much complexity). 332 * It would then be called again in ref-walk mode. 333 */ 334 int generic_permission(struct inode *inode, int mask) 335 { 336 int ret; 337 338 /* 339 * Do the basic permission checks. 340 */ 341 ret = acl_permission_check(inode, mask); 342 if (ret != -EACCES) 343 return ret; 344 345 if (S_ISDIR(inode->i_mode)) { 346 /* DACs are overridable for directories */ 347 if (!(mask & MAY_WRITE)) 348 if (capable_wrt_inode_uidgid(inode, 349 CAP_DAC_READ_SEARCH)) 350 return 0; 351 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 352 return 0; 353 return -EACCES; 354 } 355 356 /* 357 * Searching includes executable on directories, else just read. 358 */ 359 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 360 if (mask == MAY_READ) 361 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH)) 362 return 0; 363 /* 364 * Read/write DACs are always overridable. 365 * Executable DACs are overridable when there is 366 * at least one exec bit set. 367 */ 368 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 369 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 370 return 0; 371 372 return -EACCES; 373 } 374 EXPORT_SYMBOL(generic_permission); 375 376 /* 377 * We _really_ want to just do "generic_permission()" without 378 * even looking at the inode->i_op values. So we keep a cache 379 * flag in inode->i_opflags, that says "this has not special 380 * permission function, use the fast case". 381 */ 382 static inline int do_inode_permission(struct inode *inode, int mask) 383 { 384 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 385 if (likely(inode->i_op->permission)) 386 return inode->i_op->permission(inode, mask); 387 388 /* This gets set once for the inode lifetime */ 389 spin_lock(&inode->i_lock); 390 inode->i_opflags |= IOP_FASTPERM; 391 spin_unlock(&inode->i_lock); 392 } 393 return generic_permission(inode, mask); 394 } 395 396 /** 397 * sb_permission - Check superblock-level permissions 398 * @sb: Superblock of inode to check permission on 399 * @inode: Inode to check permission on 400 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 401 * 402 * Separate out file-system wide checks from inode-specific permission checks. 403 */ 404 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 405 { 406 if (unlikely(mask & MAY_WRITE)) { 407 umode_t mode = inode->i_mode; 408 409 /* Nobody gets write access to a read-only fs. */ 410 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 411 return -EROFS; 412 } 413 return 0; 414 } 415 416 /** 417 * inode_permission - Check for access rights to a given inode 418 * @inode: Inode to check permission on 419 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 420 * 421 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 422 * this, letting us set arbitrary permissions for filesystem access without 423 * changing the "normal" UIDs which are used for other things. 424 * 425 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 426 */ 427 int inode_permission(struct inode *inode, int mask) 428 { 429 int retval; 430 431 retval = sb_permission(inode->i_sb, inode, mask); 432 if (retval) 433 return retval; 434 435 if (unlikely(mask & MAY_WRITE)) { 436 /* 437 * Nobody gets write access to an immutable file. 438 */ 439 if (IS_IMMUTABLE(inode)) 440 return -EPERM; 441 442 /* 443 * Updating mtime will likely cause i_uid and i_gid to be 444 * written back improperly if their true value is unknown 445 * to the vfs. 446 */ 447 if (HAS_UNMAPPED_ID(inode)) 448 return -EACCES; 449 } 450 451 retval = do_inode_permission(inode, mask); 452 if (retval) 453 return retval; 454 455 retval = devcgroup_inode_permission(inode, mask); 456 if (retval) 457 return retval; 458 459 return security_inode_permission(inode, mask); 460 } 461 EXPORT_SYMBOL(inode_permission); 462 463 /** 464 * path_get - get a reference to a path 465 * @path: path to get the reference to 466 * 467 * Given a path increment the reference count to the dentry and the vfsmount. 468 */ 469 void path_get(const struct path *path) 470 { 471 mntget(path->mnt); 472 dget(path->dentry); 473 } 474 EXPORT_SYMBOL(path_get); 475 476 /** 477 * path_put - put a reference to a path 478 * @path: path to put the reference to 479 * 480 * Given a path decrement the reference count to the dentry and the vfsmount. 481 */ 482 void path_put(const struct path *path) 483 { 484 dput(path->dentry); 485 mntput(path->mnt); 486 } 487 EXPORT_SYMBOL(path_put); 488 489 #define EMBEDDED_LEVELS 2 490 struct nameidata { 491 struct path path; 492 struct qstr last; 493 struct path root; 494 struct inode *inode; /* path.dentry.d_inode */ 495 unsigned int flags; 496 unsigned seq, m_seq; 497 int last_type; 498 unsigned depth; 499 int total_link_count; 500 struct saved { 501 struct path link; 502 struct delayed_call done; 503 const char *name; 504 unsigned seq; 505 } *stack, internal[EMBEDDED_LEVELS]; 506 struct filename *name; 507 struct nameidata *saved; 508 struct inode *link_inode; 509 unsigned root_seq; 510 int dfd; 511 } __randomize_layout; 512 513 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name) 514 { 515 struct nameidata *old = current->nameidata; 516 p->stack = p->internal; 517 p->dfd = dfd; 518 p->name = name; 519 p->total_link_count = old ? old->total_link_count : 0; 520 p->saved = old; 521 current->nameidata = p; 522 } 523 524 static void restore_nameidata(void) 525 { 526 struct nameidata *now = current->nameidata, *old = now->saved; 527 528 current->nameidata = old; 529 if (old) 530 old->total_link_count = now->total_link_count; 531 if (now->stack != now->internal) 532 kfree(now->stack); 533 } 534 535 static int __nd_alloc_stack(struct nameidata *nd) 536 { 537 struct saved *p; 538 539 if (nd->flags & LOOKUP_RCU) { 540 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved), 541 GFP_ATOMIC); 542 if (unlikely(!p)) 543 return -ECHILD; 544 } else { 545 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved), 546 GFP_KERNEL); 547 if (unlikely(!p)) 548 return -ENOMEM; 549 } 550 memcpy(p, nd->internal, sizeof(nd->internal)); 551 nd->stack = p; 552 return 0; 553 } 554 555 /** 556 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root 557 * @path: nameidate to verify 558 * 559 * Rename can sometimes move a file or directory outside of a bind 560 * mount, path_connected allows those cases to be detected. 561 */ 562 static bool path_connected(const struct path *path) 563 { 564 struct vfsmount *mnt = path->mnt; 565 struct super_block *sb = mnt->mnt_sb; 566 567 /* Bind mounts and multi-root filesystems can have disconnected paths */ 568 if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root)) 569 return true; 570 571 return is_subdir(path->dentry, mnt->mnt_root); 572 } 573 574 static inline int nd_alloc_stack(struct nameidata *nd) 575 { 576 if (likely(nd->depth != EMBEDDED_LEVELS)) 577 return 0; 578 if (likely(nd->stack != nd->internal)) 579 return 0; 580 return __nd_alloc_stack(nd); 581 } 582 583 static void drop_links(struct nameidata *nd) 584 { 585 int i = nd->depth; 586 while (i--) { 587 struct saved *last = nd->stack + i; 588 do_delayed_call(&last->done); 589 clear_delayed_call(&last->done); 590 } 591 } 592 593 static void terminate_walk(struct nameidata *nd) 594 { 595 drop_links(nd); 596 if (!(nd->flags & LOOKUP_RCU)) { 597 int i; 598 path_put(&nd->path); 599 for (i = 0; i < nd->depth; i++) 600 path_put(&nd->stack[i].link); 601 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 602 path_put(&nd->root); 603 nd->root.mnt = NULL; 604 } 605 } else { 606 nd->flags &= ~LOOKUP_RCU; 607 if (!(nd->flags & LOOKUP_ROOT)) 608 nd->root.mnt = NULL; 609 rcu_read_unlock(); 610 } 611 nd->depth = 0; 612 } 613 614 /* path_put is needed afterwards regardless of success or failure */ 615 static bool legitimize_path(struct nameidata *nd, 616 struct path *path, unsigned seq) 617 { 618 int res = __legitimize_mnt(path->mnt, nd->m_seq); 619 if (unlikely(res)) { 620 if (res > 0) 621 path->mnt = NULL; 622 path->dentry = NULL; 623 return false; 624 } 625 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) { 626 path->dentry = NULL; 627 return false; 628 } 629 return !read_seqcount_retry(&path->dentry->d_seq, seq); 630 } 631 632 static bool legitimize_links(struct nameidata *nd) 633 { 634 int i; 635 for (i = 0; i < nd->depth; i++) { 636 struct saved *last = nd->stack + i; 637 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) { 638 drop_links(nd); 639 nd->depth = i + 1; 640 return false; 641 } 642 } 643 return true; 644 } 645 646 /* 647 * Path walking has 2 modes, rcu-walk and ref-walk (see 648 * Documentation/filesystems/path-lookup.txt). In situations when we can't 649 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 650 * normal reference counts on dentries and vfsmounts to transition to ref-walk 651 * mode. Refcounts are grabbed at the last known good point before rcu-walk 652 * got stuck, so ref-walk may continue from there. If this is not successful 653 * (eg. a seqcount has changed), then failure is returned and it's up to caller 654 * to restart the path walk from the beginning in ref-walk mode. 655 */ 656 657 /** 658 * unlazy_walk - try to switch to ref-walk mode. 659 * @nd: nameidata pathwalk data 660 * Returns: 0 on success, -ECHILD on failure 661 * 662 * unlazy_walk attempts to legitimize the current nd->path and nd->root 663 * for ref-walk mode. 664 * Must be called from rcu-walk context. 665 * Nothing should touch nameidata between unlazy_walk() failure and 666 * terminate_walk(). 667 */ 668 static int unlazy_walk(struct nameidata *nd) 669 { 670 struct dentry *parent = nd->path.dentry; 671 672 BUG_ON(!(nd->flags & LOOKUP_RCU)); 673 674 nd->flags &= ~LOOKUP_RCU; 675 if (unlikely(!legitimize_links(nd))) 676 goto out2; 677 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq))) 678 goto out1; 679 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 680 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) 681 goto out; 682 } 683 rcu_read_unlock(); 684 BUG_ON(nd->inode != parent->d_inode); 685 return 0; 686 687 out2: 688 nd->path.mnt = NULL; 689 nd->path.dentry = NULL; 690 out1: 691 if (!(nd->flags & LOOKUP_ROOT)) 692 nd->root.mnt = NULL; 693 out: 694 rcu_read_unlock(); 695 return -ECHILD; 696 } 697 698 /** 699 * unlazy_child - try to switch to ref-walk mode. 700 * @nd: nameidata pathwalk data 701 * @dentry: child of nd->path.dentry 702 * @seq: seq number to check dentry against 703 * Returns: 0 on success, -ECHILD on failure 704 * 705 * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry 706 * for ref-walk mode. @dentry must be a path found by a do_lookup call on 707 * @nd. Must be called from rcu-walk context. 708 * Nothing should touch nameidata between unlazy_child() failure and 709 * terminate_walk(). 710 */ 711 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq) 712 { 713 BUG_ON(!(nd->flags & LOOKUP_RCU)); 714 715 nd->flags &= ~LOOKUP_RCU; 716 if (unlikely(!legitimize_links(nd))) 717 goto out2; 718 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq))) 719 goto out2; 720 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref))) 721 goto out1; 722 723 /* 724 * We need to move both the parent and the dentry from the RCU domain 725 * to be properly refcounted. And the sequence number in the dentry 726 * validates *both* dentry counters, since we checked the sequence 727 * number of the parent after we got the child sequence number. So we 728 * know the parent must still be valid if the child sequence number is 729 */ 730 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) 731 goto out; 732 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) { 733 rcu_read_unlock(); 734 dput(dentry); 735 goto drop_root_mnt; 736 } 737 /* 738 * Sequence counts matched. Now make sure that the root is 739 * still valid and get it if required. 740 */ 741 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 742 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) { 743 rcu_read_unlock(); 744 dput(dentry); 745 return -ECHILD; 746 } 747 } 748 749 rcu_read_unlock(); 750 return 0; 751 752 out2: 753 nd->path.mnt = NULL; 754 out1: 755 nd->path.dentry = NULL; 756 out: 757 rcu_read_unlock(); 758 drop_root_mnt: 759 if (!(nd->flags & LOOKUP_ROOT)) 760 nd->root.mnt = NULL; 761 return -ECHILD; 762 } 763 764 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 765 { 766 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) 767 return dentry->d_op->d_revalidate(dentry, flags); 768 else 769 return 1; 770 } 771 772 /** 773 * complete_walk - successful completion of path walk 774 * @nd: pointer nameidata 775 * 776 * If we had been in RCU mode, drop out of it and legitimize nd->path. 777 * Revalidate the final result, unless we'd already done that during 778 * the path walk or the filesystem doesn't ask for it. Return 0 on 779 * success, -error on failure. In case of failure caller does not 780 * need to drop nd->path. 781 */ 782 static int complete_walk(struct nameidata *nd) 783 { 784 struct dentry *dentry = nd->path.dentry; 785 int status; 786 787 if (nd->flags & LOOKUP_RCU) { 788 if (!(nd->flags & LOOKUP_ROOT)) 789 nd->root.mnt = NULL; 790 if (unlikely(unlazy_walk(nd))) 791 return -ECHILD; 792 } 793 794 if (likely(!(nd->flags & LOOKUP_JUMPED))) 795 return 0; 796 797 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 798 return 0; 799 800 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 801 if (status > 0) 802 return 0; 803 804 if (!status) 805 status = -ESTALE; 806 807 return status; 808 } 809 810 static void set_root(struct nameidata *nd) 811 { 812 struct fs_struct *fs = current->fs; 813 814 if (nd->flags & LOOKUP_RCU) { 815 unsigned seq; 816 817 do { 818 seq = read_seqcount_begin(&fs->seq); 819 nd->root = fs->root; 820 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 821 } while (read_seqcount_retry(&fs->seq, seq)); 822 } else { 823 get_fs_root(fs, &nd->root); 824 } 825 } 826 827 static void path_put_conditional(struct path *path, struct nameidata *nd) 828 { 829 dput(path->dentry); 830 if (path->mnt != nd->path.mnt) 831 mntput(path->mnt); 832 } 833 834 static inline void path_to_nameidata(const struct path *path, 835 struct nameidata *nd) 836 { 837 if (!(nd->flags & LOOKUP_RCU)) { 838 dput(nd->path.dentry); 839 if (nd->path.mnt != path->mnt) 840 mntput(nd->path.mnt); 841 } 842 nd->path.mnt = path->mnt; 843 nd->path.dentry = path->dentry; 844 } 845 846 static int nd_jump_root(struct nameidata *nd) 847 { 848 if (nd->flags & LOOKUP_RCU) { 849 struct dentry *d; 850 nd->path = nd->root; 851 d = nd->path.dentry; 852 nd->inode = d->d_inode; 853 nd->seq = nd->root_seq; 854 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq))) 855 return -ECHILD; 856 } else { 857 path_put(&nd->path); 858 nd->path = nd->root; 859 path_get(&nd->path); 860 nd->inode = nd->path.dentry->d_inode; 861 } 862 nd->flags |= LOOKUP_JUMPED; 863 return 0; 864 } 865 866 /* 867 * Helper to directly jump to a known parsed path from ->get_link, 868 * caller must have taken a reference to path beforehand. 869 */ 870 void nd_jump_link(struct path *path) 871 { 872 struct nameidata *nd = current->nameidata; 873 path_put(&nd->path); 874 875 nd->path = *path; 876 nd->inode = nd->path.dentry->d_inode; 877 nd->flags |= LOOKUP_JUMPED; 878 } 879 880 static inline void put_link(struct nameidata *nd) 881 { 882 struct saved *last = nd->stack + --nd->depth; 883 do_delayed_call(&last->done); 884 if (!(nd->flags & LOOKUP_RCU)) 885 path_put(&last->link); 886 } 887 888 int sysctl_protected_symlinks __read_mostly = 0; 889 int sysctl_protected_hardlinks __read_mostly = 0; 890 891 /** 892 * may_follow_link - Check symlink following for unsafe situations 893 * @nd: nameidata pathwalk data 894 * 895 * In the case of the sysctl_protected_symlinks sysctl being enabled, 896 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 897 * in a sticky world-writable directory. This is to protect privileged 898 * processes from failing races against path names that may change out 899 * from under them by way of other users creating malicious symlinks. 900 * It will permit symlinks to be followed only when outside a sticky 901 * world-writable directory, or when the uid of the symlink and follower 902 * match, or when the directory owner matches the symlink's owner. 903 * 904 * Returns 0 if following the symlink is allowed, -ve on error. 905 */ 906 static inline int may_follow_link(struct nameidata *nd) 907 { 908 const struct inode *inode; 909 const struct inode *parent; 910 kuid_t puid; 911 912 if (!sysctl_protected_symlinks) 913 return 0; 914 915 /* Allowed if owner and follower match. */ 916 inode = nd->link_inode; 917 if (uid_eq(current_cred()->fsuid, inode->i_uid)) 918 return 0; 919 920 /* Allowed if parent directory not sticky and world-writable. */ 921 parent = nd->inode; 922 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 923 return 0; 924 925 /* Allowed if parent directory and link owner match. */ 926 puid = parent->i_uid; 927 if (uid_valid(puid) && uid_eq(puid, inode->i_uid)) 928 return 0; 929 930 if (nd->flags & LOOKUP_RCU) 931 return -ECHILD; 932 933 audit_inode(nd->name, nd->stack[0].link.dentry, 0); 934 audit_log_link_denied("follow_link"); 935 return -EACCES; 936 } 937 938 /** 939 * safe_hardlink_source - Check for safe hardlink conditions 940 * @inode: the source inode to hardlink from 941 * 942 * Return false if at least one of the following conditions: 943 * - inode is not a regular file 944 * - inode is setuid 945 * - inode is setgid and group-exec 946 * - access failure for read and write 947 * 948 * Otherwise returns true. 949 */ 950 static bool safe_hardlink_source(struct inode *inode) 951 { 952 umode_t mode = inode->i_mode; 953 954 /* Special files should not get pinned to the filesystem. */ 955 if (!S_ISREG(mode)) 956 return false; 957 958 /* Setuid files should not get pinned to the filesystem. */ 959 if (mode & S_ISUID) 960 return false; 961 962 /* Executable setgid files should not get pinned to the filesystem. */ 963 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 964 return false; 965 966 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 967 if (inode_permission(inode, MAY_READ | MAY_WRITE)) 968 return false; 969 970 return true; 971 } 972 973 /** 974 * may_linkat - Check permissions for creating a hardlink 975 * @link: the source to hardlink from 976 * 977 * Block hardlink when all of: 978 * - sysctl_protected_hardlinks enabled 979 * - fsuid does not match inode 980 * - hardlink source is unsafe (see safe_hardlink_source() above) 981 * - not CAP_FOWNER in a namespace with the inode owner uid mapped 982 * 983 * Returns 0 if successful, -ve on error. 984 */ 985 static int may_linkat(struct path *link) 986 { 987 struct inode *inode = link->dentry->d_inode; 988 989 /* Inode writeback is not safe when the uid or gid are invalid. */ 990 if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid)) 991 return -EOVERFLOW; 992 993 if (!sysctl_protected_hardlinks) 994 return 0; 995 996 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 997 * otherwise, it must be a safe source. 998 */ 999 if (safe_hardlink_source(inode) || inode_owner_or_capable(inode)) 1000 return 0; 1001 1002 audit_log_link_denied("linkat"); 1003 return -EPERM; 1004 } 1005 1006 static __always_inline 1007 const char *get_link(struct nameidata *nd) 1008 { 1009 struct saved *last = nd->stack + nd->depth - 1; 1010 struct dentry *dentry = last->link.dentry; 1011 struct inode *inode = nd->link_inode; 1012 int error; 1013 const char *res; 1014 1015 if (!(nd->flags & LOOKUP_RCU)) { 1016 touch_atime(&last->link); 1017 cond_resched(); 1018 } else if (atime_needs_update_rcu(&last->link, inode)) { 1019 if (unlikely(unlazy_walk(nd))) 1020 return ERR_PTR(-ECHILD); 1021 touch_atime(&last->link); 1022 } 1023 1024 error = security_inode_follow_link(dentry, inode, 1025 nd->flags & LOOKUP_RCU); 1026 if (unlikely(error)) 1027 return ERR_PTR(error); 1028 1029 nd->last_type = LAST_BIND; 1030 res = inode->i_link; 1031 if (!res) { 1032 const char * (*get)(struct dentry *, struct inode *, 1033 struct delayed_call *); 1034 get = inode->i_op->get_link; 1035 if (nd->flags & LOOKUP_RCU) { 1036 res = get(NULL, inode, &last->done); 1037 if (res == ERR_PTR(-ECHILD)) { 1038 if (unlikely(unlazy_walk(nd))) 1039 return ERR_PTR(-ECHILD); 1040 res = get(dentry, inode, &last->done); 1041 } 1042 } else { 1043 res = get(dentry, inode, &last->done); 1044 } 1045 if (IS_ERR_OR_NULL(res)) 1046 return res; 1047 } 1048 if (*res == '/') { 1049 if (!nd->root.mnt) 1050 set_root(nd); 1051 if (unlikely(nd_jump_root(nd))) 1052 return ERR_PTR(-ECHILD); 1053 while (unlikely(*++res == '/')) 1054 ; 1055 } 1056 if (!*res) 1057 res = NULL; 1058 return res; 1059 } 1060 1061 /* 1062 * follow_up - Find the mountpoint of path's vfsmount 1063 * 1064 * Given a path, find the mountpoint of its source file system. 1065 * Replace @path with the path of the mountpoint in the parent mount. 1066 * Up is towards /. 1067 * 1068 * Return 1 if we went up a level and 0 if we were already at the 1069 * root. 1070 */ 1071 int follow_up(struct path *path) 1072 { 1073 struct mount *mnt = real_mount(path->mnt); 1074 struct mount *parent; 1075 struct dentry *mountpoint; 1076 1077 read_seqlock_excl(&mount_lock); 1078 parent = mnt->mnt_parent; 1079 if (parent == mnt) { 1080 read_sequnlock_excl(&mount_lock); 1081 return 0; 1082 } 1083 mntget(&parent->mnt); 1084 mountpoint = dget(mnt->mnt_mountpoint); 1085 read_sequnlock_excl(&mount_lock); 1086 dput(path->dentry); 1087 path->dentry = mountpoint; 1088 mntput(path->mnt); 1089 path->mnt = &parent->mnt; 1090 return 1; 1091 } 1092 EXPORT_SYMBOL(follow_up); 1093 1094 /* 1095 * Perform an automount 1096 * - return -EISDIR to tell follow_managed() to stop and return the path we 1097 * were called with. 1098 */ 1099 static int follow_automount(struct path *path, struct nameidata *nd, 1100 bool *need_mntput) 1101 { 1102 struct vfsmount *mnt; 1103 int err; 1104 1105 if (!path->dentry->d_op || !path->dentry->d_op->d_automount) 1106 return -EREMOTE; 1107 1108 /* We don't want to mount if someone's just doing a stat - 1109 * unless they're stat'ing a directory and appended a '/' to 1110 * the name. 1111 * 1112 * We do, however, want to mount if someone wants to open or 1113 * create a file of any type under the mountpoint, wants to 1114 * traverse through the mountpoint or wants to open the 1115 * mounted directory. Also, autofs may mark negative dentries 1116 * as being automount points. These will need the attentions 1117 * of the daemon to instantiate them before they can be used. 1118 */ 1119 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 1120 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 1121 path->dentry->d_inode) 1122 return -EISDIR; 1123 1124 nd->total_link_count++; 1125 if (nd->total_link_count >= 40) 1126 return -ELOOP; 1127 1128 mnt = path->dentry->d_op->d_automount(path); 1129 if (IS_ERR(mnt)) { 1130 /* 1131 * The filesystem is allowed to return -EISDIR here to indicate 1132 * it doesn't want to automount. For instance, autofs would do 1133 * this so that its userspace daemon can mount on this dentry. 1134 * 1135 * However, we can only permit this if it's a terminal point in 1136 * the path being looked up; if it wasn't then the remainder of 1137 * the path is inaccessible and we should say so. 1138 */ 1139 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT)) 1140 return -EREMOTE; 1141 return PTR_ERR(mnt); 1142 } 1143 1144 if (!mnt) /* mount collision */ 1145 return 0; 1146 1147 if (!*need_mntput) { 1148 /* lock_mount() may release path->mnt on error */ 1149 mntget(path->mnt); 1150 *need_mntput = true; 1151 } 1152 err = finish_automount(mnt, path); 1153 1154 switch (err) { 1155 case -EBUSY: 1156 /* Someone else made a mount here whilst we were busy */ 1157 return 0; 1158 case 0: 1159 path_put(path); 1160 path->mnt = mnt; 1161 path->dentry = dget(mnt->mnt_root); 1162 return 0; 1163 default: 1164 return err; 1165 } 1166 1167 } 1168 1169 /* 1170 * Handle a dentry that is managed in some way. 1171 * - Flagged for transit management (autofs) 1172 * - Flagged as mountpoint 1173 * - Flagged as automount point 1174 * 1175 * This may only be called in refwalk mode. 1176 * 1177 * Serialization is taken care of in namespace.c 1178 */ 1179 static int follow_managed(struct path *path, struct nameidata *nd) 1180 { 1181 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */ 1182 unsigned managed; 1183 bool need_mntput = false; 1184 int ret = 0; 1185 1186 /* Given that we're not holding a lock here, we retain the value in a 1187 * local variable for each dentry as we look at it so that we don't see 1188 * the components of that value change under us */ 1189 while (managed = READ_ONCE(path->dentry->d_flags), 1190 managed &= DCACHE_MANAGED_DENTRY, 1191 unlikely(managed != 0)) { 1192 /* Allow the filesystem to manage the transit without i_mutex 1193 * being held. */ 1194 if (managed & DCACHE_MANAGE_TRANSIT) { 1195 BUG_ON(!path->dentry->d_op); 1196 BUG_ON(!path->dentry->d_op->d_manage); 1197 ret = path->dentry->d_op->d_manage(path, false); 1198 if (ret < 0) 1199 break; 1200 } 1201 1202 /* Transit to a mounted filesystem. */ 1203 if (managed & DCACHE_MOUNTED) { 1204 struct vfsmount *mounted = lookup_mnt(path); 1205 if (mounted) { 1206 dput(path->dentry); 1207 if (need_mntput) 1208 mntput(path->mnt); 1209 path->mnt = mounted; 1210 path->dentry = dget(mounted->mnt_root); 1211 need_mntput = true; 1212 continue; 1213 } 1214 1215 /* Something is mounted on this dentry in another 1216 * namespace and/or whatever was mounted there in this 1217 * namespace got unmounted before lookup_mnt() could 1218 * get it */ 1219 } 1220 1221 /* Handle an automount point */ 1222 if (managed & DCACHE_NEED_AUTOMOUNT) { 1223 ret = follow_automount(path, nd, &need_mntput); 1224 if (ret < 0) 1225 break; 1226 continue; 1227 } 1228 1229 /* We didn't change the current path point */ 1230 break; 1231 } 1232 1233 if (need_mntput && path->mnt == mnt) 1234 mntput(path->mnt); 1235 if (ret == -EISDIR || !ret) 1236 ret = 1; 1237 if (need_mntput) 1238 nd->flags |= LOOKUP_JUMPED; 1239 if (unlikely(ret < 0)) 1240 path_put_conditional(path, nd); 1241 return ret; 1242 } 1243 1244 int follow_down_one(struct path *path) 1245 { 1246 struct vfsmount *mounted; 1247 1248 mounted = lookup_mnt(path); 1249 if (mounted) { 1250 dput(path->dentry); 1251 mntput(path->mnt); 1252 path->mnt = mounted; 1253 path->dentry = dget(mounted->mnt_root); 1254 return 1; 1255 } 1256 return 0; 1257 } 1258 EXPORT_SYMBOL(follow_down_one); 1259 1260 static inline int managed_dentry_rcu(const struct path *path) 1261 { 1262 return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ? 1263 path->dentry->d_op->d_manage(path, true) : 0; 1264 } 1265 1266 /* 1267 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1268 * we meet a managed dentry that would need blocking. 1269 */ 1270 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1271 struct inode **inode, unsigned *seqp) 1272 { 1273 for (;;) { 1274 struct mount *mounted; 1275 /* 1276 * Don't forget we might have a non-mountpoint managed dentry 1277 * that wants to block transit. 1278 */ 1279 switch (managed_dentry_rcu(path)) { 1280 case -ECHILD: 1281 default: 1282 return false; 1283 case -EISDIR: 1284 return true; 1285 case 0: 1286 break; 1287 } 1288 1289 if (!d_mountpoint(path->dentry)) 1290 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1291 1292 mounted = __lookup_mnt(path->mnt, path->dentry); 1293 if (!mounted) 1294 break; 1295 path->mnt = &mounted->mnt; 1296 path->dentry = mounted->mnt.mnt_root; 1297 nd->flags |= LOOKUP_JUMPED; 1298 *seqp = read_seqcount_begin(&path->dentry->d_seq); 1299 /* 1300 * Update the inode too. We don't need to re-check the 1301 * dentry sequence number here after this d_inode read, 1302 * because a mount-point is always pinned. 1303 */ 1304 *inode = path->dentry->d_inode; 1305 } 1306 return !read_seqretry(&mount_lock, nd->m_seq) && 1307 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1308 } 1309 1310 static int follow_dotdot_rcu(struct nameidata *nd) 1311 { 1312 struct inode *inode = nd->inode; 1313 1314 while (1) { 1315 if (path_equal(&nd->path, &nd->root)) 1316 break; 1317 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1318 struct dentry *old = nd->path.dentry; 1319 struct dentry *parent = old->d_parent; 1320 unsigned seq; 1321 1322 inode = parent->d_inode; 1323 seq = read_seqcount_begin(&parent->d_seq); 1324 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq))) 1325 return -ECHILD; 1326 nd->path.dentry = parent; 1327 nd->seq = seq; 1328 if (unlikely(!path_connected(&nd->path))) 1329 return -ENOENT; 1330 break; 1331 } else { 1332 struct mount *mnt = real_mount(nd->path.mnt); 1333 struct mount *mparent = mnt->mnt_parent; 1334 struct dentry *mountpoint = mnt->mnt_mountpoint; 1335 struct inode *inode2 = mountpoint->d_inode; 1336 unsigned seq = read_seqcount_begin(&mountpoint->d_seq); 1337 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1338 return -ECHILD; 1339 if (&mparent->mnt == nd->path.mnt) 1340 break; 1341 /* we know that mountpoint was pinned */ 1342 nd->path.dentry = mountpoint; 1343 nd->path.mnt = &mparent->mnt; 1344 inode = inode2; 1345 nd->seq = seq; 1346 } 1347 } 1348 while (unlikely(d_mountpoint(nd->path.dentry))) { 1349 struct mount *mounted; 1350 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry); 1351 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1352 return -ECHILD; 1353 if (!mounted) 1354 break; 1355 nd->path.mnt = &mounted->mnt; 1356 nd->path.dentry = mounted->mnt.mnt_root; 1357 inode = nd->path.dentry->d_inode; 1358 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1359 } 1360 nd->inode = inode; 1361 return 0; 1362 } 1363 1364 /* 1365 * Follow down to the covering mount currently visible to userspace. At each 1366 * point, the filesystem owning that dentry may be queried as to whether the 1367 * caller is permitted to proceed or not. 1368 */ 1369 int follow_down(struct path *path) 1370 { 1371 unsigned managed; 1372 int ret; 1373 1374 while (managed = READ_ONCE(path->dentry->d_flags), 1375 unlikely(managed & DCACHE_MANAGED_DENTRY)) { 1376 /* Allow the filesystem to manage the transit without i_mutex 1377 * being held. 1378 * 1379 * We indicate to the filesystem if someone is trying to mount 1380 * something here. This gives autofs the chance to deny anyone 1381 * other than its daemon the right to mount on its 1382 * superstructure. 1383 * 1384 * The filesystem may sleep at this point. 1385 */ 1386 if (managed & DCACHE_MANAGE_TRANSIT) { 1387 BUG_ON(!path->dentry->d_op); 1388 BUG_ON(!path->dentry->d_op->d_manage); 1389 ret = path->dentry->d_op->d_manage(path, false); 1390 if (ret < 0) 1391 return ret == -EISDIR ? 0 : ret; 1392 } 1393 1394 /* Transit to a mounted filesystem. */ 1395 if (managed & DCACHE_MOUNTED) { 1396 struct vfsmount *mounted = lookup_mnt(path); 1397 if (!mounted) 1398 break; 1399 dput(path->dentry); 1400 mntput(path->mnt); 1401 path->mnt = mounted; 1402 path->dentry = dget(mounted->mnt_root); 1403 continue; 1404 } 1405 1406 /* Don't handle automount points here */ 1407 break; 1408 } 1409 return 0; 1410 } 1411 EXPORT_SYMBOL(follow_down); 1412 1413 /* 1414 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() 1415 */ 1416 static void follow_mount(struct path *path) 1417 { 1418 while (d_mountpoint(path->dentry)) { 1419 struct vfsmount *mounted = lookup_mnt(path); 1420 if (!mounted) 1421 break; 1422 dput(path->dentry); 1423 mntput(path->mnt); 1424 path->mnt = mounted; 1425 path->dentry = dget(mounted->mnt_root); 1426 } 1427 } 1428 1429 static int path_parent_directory(struct path *path) 1430 { 1431 struct dentry *old = path->dentry; 1432 /* rare case of legitimate dget_parent()... */ 1433 path->dentry = dget_parent(path->dentry); 1434 dput(old); 1435 if (unlikely(!path_connected(path))) 1436 return -ENOENT; 1437 return 0; 1438 } 1439 1440 static int follow_dotdot(struct nameidata *nd) 1441 { 1442 while(1) { 1443 if (path_equal(&nd->path, &nd->root)) 1444 break; 1445 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1446 int ret = path_parent_directory(&nd->path); 1447 if (ret) 1448 return ret; 1449 break; 1450 } 1451 if (!follow_up(&nd->path)) 1452 break; 1453 } 1454 follow_mount(&nd->path); 1455 nd->inode = nd->path.dentry->d_inode; 1456 return 0; 1457 } 1458 1459 /* 1460 * This looks up the name in dcache and possibly revalidates the found dentry. 1461 * NULL is returned if the dentry does not exist in the cache. 1462 */ 1463 static struct dentry *lookup_dcache(const struct qstr *name, 1464 struct dentry *dir, 1465 unsigned int flags) 1466 { 1467 struct dentry *dentry = d_lookup(dir, name); 1468 if (dentry) { 1469 int error = d_revalidate(dentry, flags); 1470 if (unlikely(error <= 0)) { 1471 if (!error) 1472 d_invalidate(dentry); 1473 dput(dentry); 1474 return ERR_PTR(error); 1475 } 1476 } 1477 return dentry; 1478 } 1479 1480 /* 1481 * Parent directory has inode locked exclusive. This is one 1482 * and only case when ->lookup() gets called on non in-lookup 1483 * dentries - as the matter of fact, this only gets called 1484 * when directory is guaranteed to have no in-lookup children 1485 * at all. 1486 */ 1487 static struct dentry *__lookup_hash(const struct qstr *name, 1488 struct dentry *base, unsigned int flags) 1489 { 1490 struct dentry *dentry = lookup_dcache(name, base, flags); 1491 struct dentry *old; 1492 struct inode *dir = base->d_inode; 1493 1494 if (dentry) 1495 return dentry; 1496 1497 /* Don't create child dentry for a dead directory. */ 1498 if (unlikely(IS_DEADDIR(dir))) 1499 return ERR_PTR(-ENOENT); 1500 1501 dentry = d_alloc(base, name); 1502 if (unlikely(!dentry)) 1503 return ERR_PTR(-ENOMEM); 1504 1505 old = dir->i_op->lookup(dir, dentry, flags); 1506 if (unlikely(old)) { 1507 dput(dentry); 1508 dentry = old; 1509 } 1510 return dentry; 1511 } 1512 1513 static int lookup_fast(struct nameidata *nd, 1514 struct path *path, struct inode **inode, 1515 unsigned *seqp) 1516 { 1517 struct vfsmount *mnt = nd->path.mnt; 1518 struct dentry *dentry, *parent = nd->path.dentry; 1519 int status = 1; 1520 int err; 1521 1522 /* 1523 * Rename seqlock is not required here because in the off chance 1524 * of a false negative due to a concurrent rename, the caller is 1525 * going to fall back to non-racy lookup. 1526 */ 1527 if (nd->flags & LOOKUP_RCU) { 1528 unsigned seq; 1529 bool negative; 1530 dentry = __d_lookup_rcu(parent, &nd->last, &seq); 1531 if (unlikely(!dentry)) { 1532 if (unlazy_walk(nd)) 1533 return -ECHILD; 1534 return 0; 1535 } 1536 1537 /* 1538 * This sequence count validates that the inode matches 1539 * the dentry name information from lookup. 1540 */ 1541 *inode = d_backing_inode(dentry); 1542 negative = d_is_negative(dentry); 1543 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) 1544 return -ECHILD; 1545 1546 /* 1547 * This sequence count validates that the parent had no 1548 * changes while we did the lookup of the dentry above. 1549 * 1550 * The memory barrier in read_seqcount_begin of child is 1551 * enough, we can use __read_seqcount_retry here. 1552 */ 1553 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq))) 1554 return -ECHILD; 1555 1556 *seqp = seq; 1557 status = d_revalidate(dentry, nd->flags); 1558 if (likely(status > 0)) { 1559 /* 1560 * Note: do negative dentry check after revalidation in 1561 * case that drops it. 1562 */ 1563 if (unlikely(negative)) 1564 return -ENOENT; 1565 path->mnt = mnt; 1566 path->dentry = dentry; 1567 if (likely(__follow_mount_rcu(nd, path, inode, seqp))) 1568 return 1; 1569 } 1570 if (unlazy_child(nd, dentry, seq)) 1571 return -ECHILD; 1572 if (unlikely(status == -ECHILD)) 1573 /* we'd been told to redo it in non-rcu mode */ 1574 status = d_revalidate(dentry, nd->flags); 1575 } else { 1576 dentry = __d_lookup(parent, &nd->last); 1577 if (unlikely(!dentry)) 1578 return 0; 1579 status = d_revalidate(dentry, nd->flags); 1580 } 1581 if (unlikely(status <= 0)) { 1582 if (!status) 1583 d_invalidate(dentry); 1584 dput(dentry); 1585 return status; 1586 } 1587 if (unlikely(d_is_negative(dentry))) { 1588 dput(dentry); 1589 return -ENOENT; 1590 } 1591 1592 path->mnt = mnt; 1593 path->dentry = dentry; 1594 err = follow_managed(path, nd); 1595 if (likely(err > 0)) 1596 *inode = d_backing_inode(path->dentry); 1597 return err; 1598 } 1599 1600 /* Fast lookup failed, do it the slow way */ 1601 static struct dentry *__lookup_slow(const struct qstr *name, 1602 struct dentry *dir, 1603 unsigned int flags) 1604 { 1605 struct dentry *dentry, *old; 1606 struct inode *inode = dir->d_inode; 1607 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1608 1609 /* Don't go there if it's already dead */ 1610 if (unlikely(IS_DEADDIR(inode))) 1611 return ERR_PTR(-ENOENT); 1612 again: 1613 dentry = d_alloc_parallel(dir, name, &wq); 1614 if (IS_ERR(dentry)) 1615 return dentry; 1616 if (unlikely(!d_in_lookup(dentry))) { 1617 if (!(flags & LOOKUP_NO_REVAL)) { 1618 int error = d_revalidate(dentry, flags); 1619 if (unlikely(error <= 0)) { 1620 if (!error) { 1621 d_invalidate(dentry); 1622 dput(dentry); 1623 goto again; 1624 } 1625 dput(dentry); 1626 dentry = ERR_PTR(error); 1627 } 1628 } 1629 } else { 1630 old = inode->i_op->lookup(inode, dentry, flags); 1631 d_lookup_done(dentry); 1632 if (unlikely(old)) { 1633 dput(dentry); 1634 dentry = old; 1635 } 1636 } 1637 return dentry; 1638 } 1639 1640 static struct dentry *lookup_slow(const struct qstr *name, 1641 struct dentry *dir, 1642 unsigned int flags) 1643 { 1644 struct inode *inode = dir->d_inode; 1645 struct dentry *res; 1646 inode_lock_shared(inode); 1647 res = __lookup_slow(name, dir, flags); 1648 inode_unlock_shared(inode); 1649 return res; 1650 } 1651 1652 static inline int may_lookup(struct nameidata *nd) 1653 { 1654 if (nd->flags & LOOKUP_RCU) { 1655 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1656 if (err != -ECHILD) 1657 return err; 1658 if (unlazy_walk(nd)) 1659 return -ECHILD; 1660 } 1661 return inode_permission(nd->inode, MAY_EXEC); 1662 } 1663 1664 static inline int handle_dots(struct nameidata *nd, int type) 1665 { 1666 if (type == LAST_DOTDOT) { 1667 if (!nd->root.mnt) 1668 set_root(nd); 1669 if (nd->flags & LOOKUP_RCU) { 1670 return follow_dotdot_rcu(nd); 1671 } else 1672 return follow_dotdot(nd); 1673 } 1674 return 0; 1675 } 1676 1677 static int pick_link(struct nameidata *nd, struct path *link, 1678 struct inode *inode, unsigned seq) 1679 { 1680 int error; 1681 struct saved *last; 1682 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) { 1683 path_to_nameidata(link, nd); 1684 return -ELOOP; 1685 } 1686 if (!(nd->flags & LOOKUP_RCU)) { 1687 if (link->mnt == nd->path.mnt) 1688 mntget(link->mnt); 1689 } 1690 error = nd_alloc_stack(nd); 1691 if (unlikely(error)) { 1692 if (error == -ECHILD) { 1693 if (unlikely(!legitimize_path(nd, link, seq))) { 1694 drop_links(nd); 1695 nd->depth = 0; 1696 nd->flags &= ~LOOKUP_RCU; 1697 nd->path.mnt = NULL; 1698 nd->path.dentry = NULL; 1699 if (!(nd->flags & LOOKUP_ROOT)) 1700 nd->root.mnt = NULL; 1701 rcu_read_unlock(); 1702 } else if (likely(unlazy_walk(nd)) == 0) 1703 error = nd_alloc_stack(nd); 1704 } 1705 if (error) { 1706 path_put(link); 1707 return error; 1708 } 1709 } 1710 1711 last = nd->stack + nd->depth++; 1712 last->link = *link; 1713 clear_delayed_call(&last->done); 1714 nd->link_inode = inode; 1715 last->seq = seq; 1716 return 1; 1717 } 1718 1719 enum {WALK_FOLLOW = 1, WALK_MORE = 2}; 1720 1721 /* 1722 * Do we need to follow links? We _really_ want to be able 1723 * to do this check without having to look at inode->i_op, 1724 * so we keep a cache of "no, this doesn't need follow_link" 1725 * for the common case. 1726 */ 1727 static inline int step_into(struct nameidata *nd, struct path *path, 1728 int flags, struct inode *inode, unsigned seq) 1729 { 1730 if (!(flags & WALK_MORE) && nd->depth) 1731 put_link(nd); 1732 if (likely(!d_is_symlink(path->dentry)) || 1733 !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) { 1734 /* not a symlink or should not follow */ 1735 path_to_nameidata(path, nd); 1736 nd->inode = inode; 1737 nd->seq = seq; 1738 return 0; 1739 } 1740 /* make sure that d_is_symlink above matches inode */ 1741 if (nd->flags & LOOKUP_RCU) { 1742 if (read_seqcount_retry(&path->dentry->d_seq, seq)) 1743 return -ECHILD; 1744 } 1745 return pick_link(nd, path, inode, seq); 1746 } 1747 1748 static int walk_component(struct nameidata *nd, int flags) 1749 { 1750 struct path path; 1751 struct inode *inode; 1752 unsigned seq; 1753 int err; 1754 /* 1755 * "." and ".." are special - ".." especially so because it has 1756 * to be able to know about the current root directory and 1757 * parent relationships. 1758 */ 1759 if (unlikely(nd->last_type != LAST_NORM)) { 1760 err = handle_dots(nd, nd->last_type); 1761 if (!(flags & WALK_MORE) && nd->depth) 1762 put_link(nd); 1763 return err; 1764 } 1765 err = lookup_fast(nd, &path, &inode, &seq); 1766 if (unlikely(err <= 0)) { 1767 if (err < 0) 1768 return err; 1769 path.dentry = lookup_slow(&nd->last, nd->path.dentry, 1770 nd->flags); 1771 if (IS_ERR(path.dentry)) 1772 return PTR_ERR(path.dentry); 1773 1774 path.mnt = nd->path.mnt; 1775 err = follow_managed(&path, nd); 1776 if (unlikely(err < 0)) 1777 return err; 1778 1779 if (unlikely(d_is_negative(path.dentry))) { 1780 path_to_nameidata(&path, nd); 1781 return -ENOENT; 1782 } 1783 1784 seq = 0; /* we are already out of RCU mode */ 1785 inode = d_backing_inode(path.dentry); 1786 } 1787 1788 return step_into(nd, &path, flags, inode, seq); 1789 } 1790 1791 /* 1792 * We can do the critical dentry name comparison and hashing 1793 * operations one word at a time, but we are limited to: 1794 * 1795 * - Architectures with fast unaligned word accesses. We could 1796 * do a "get_unaligned()" if this helps and is sufficiently 1797 * fast. 1798 * 1799 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 1800 * do not trap on the (extremely unlikely) case of a page 1801 * crossing operation. 1802 * 1803 * - Furthermore, we need an efficient 64-bit compile for the 1804 * 64-bit case in order to generate the "number of bytes in 1805 * the final mask". Again, that could be replaced with a 1806 * efficient population count instruction or similar. 1807 */ 1808 #ifdef CONFIG_DCACHE_WORD_ACCESS 1809 1810 #include <asm/word-at-a-time.h> 1811 1812 #ifdef HASH_MIX 1813 1814 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */ 1815 1816 #elif defined(CONFIG_64BIT) 1817 /* 1818 * Register pressure in the mixing function is an issue, particularly 1819 * on 32-bit x86, but almost any function requires one state value and 1820 * one temporary. Instead, use a function designed for two state values 1821 * and no temporaries. 1822 * 1823 * This function cannot create a collision in only two iterations, so 1824 * we have two iterations to achieve avalanche. In those two iterations, 1825 * we have six layers of mixing, which is enough to spread one bit's 1826 * influence out to 2^6 = 64 state bits. 1827 * 1828 * Rotate constants are scored by considering either 64 one-bit input 1829 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the 1830 * probability of that delta causing a change to each of the 128 output 1831 * bits, using a sample of random initial states. 1832 * 1833 * The Shannon entropy of the computed probabilities is then summed 1834 * to produce a score. Ideally, any input change has a 50% chance of 1835 * toggling any given output bit. 1836 * 1837 * Mixing scores (in bits) for (12,45): 1838 * Input delta: 1-bit 2-bit 1839 * 1 round: 713.3 42542.6 1840 * 2 rounds: 2753.7 140389.8 1841 * 3 rounds: 5954.1 233458.2 1842 * 4 rounds: 7862.6 256672.2 1843 * Perfect: 8192 258048 1844 * (64*128) (64*63/2 * 128) 1845 */ 1846 #define HASH_MIX(x, y, a) \ 1847 ( x ^= (a), \ 1848 y ^= x, x = rol64(x,12),\ 1849 x += y, y = rol64(y,45),\ 1850 y *= 9 ) 1851 1852 /* 1853 * Fold two longs into one 32-bit hash value. This must be fast, but 1854 * latency isn't quite as critical, as there is a fair bit of additional 1855 * work done before the hash value is used. 1856 */ 1857 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 1858 { 1859 y ^= x * GOLDEN_RATIO_64; 1860 y *= GOLDEN_RATIO_64; 1861 return y >> 32; 1862 } 1863 1864 #else /* 32-bit case */ 1865 1866 /* 1867 * Mixing scores (in bits) for (7,20): 1868 * Input delta: 1-bit 2-bit 1869 * 1 round: 330.3 9201.6 1870 * 2 rounds: 1246.4 25475.4 1871 * 3 rounds: 1907.1 31295.1 1872 * 4 rounds: 2042.3 31718.6 1873 * Perfect: 2048 31744 1874 * (32*64) (32*31/2 * 64) 1875 */ 1876 #define HASH_MIX(x, y, a) \ 1877 ( x ^= (a), \ 1878 y ^= x, x = rol32(x, 7),\ 1879 x += y, y = rol32(y,20),\ 1880 y *= 9 ) 1881 1882 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 1883 { 1884 /* Use arch-optimized multiply if one exists */ 1885 return __hash_32(y ^ __hash_32(x)); 1886 } 1887 1888 #endif 1889 1890 /* 1891 * Return the hash of a string of known length. This is carfully 1892 * designed to match hash_name(), which is the more critical function. 1893 * In particular, we must end by hashing a final word containing 0..7 1894 * payload bytes, to match the way that hash_name() iterates until it 1895 * finds the delimiter after the name. 1896 */ 1897 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 1898 { 1899 unsigned long a, x = 0, y = (unsigned long)salt; 1900 1901 for (;;) { 1902 if (!len) 1903 goto done; 1904 a = load_unaligned_zeropad(name); 1905 if (len < sizeof(unsigned long)) 1906 break; 1907 HASH_MIX(x, y, a); 1908 name += sizeof(unsigned long); 1909 len -= sizeof(unsigned long); 1910 } 1911 x ^= a & bytemask_from_count(len); 1912 done: 1913 return fold_hash(x, y); 1914 } 1915 EXPORT_SYMBOL(full_name_hash); 1916 1917 /* Return the "hash_len" (hash and length) of a null-terminated string */ 1918 u64 hashlen_string(const void *salt, const char *name) 1919 { 1920 unsigned long a = 0, x = 0, y = (unsigned long)salt; 1921 unsigned long adata, mask, len; 1922 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1923 1924 len = 0; 1925 goto inside; 1926 1927 do { 1928 HASH_MIX(x, y, a); 1929 len += sizeof(unsigned long); 1930 inside: 1931 a = load_unaligned_zeropad(name+len); 1932 } while (!has_zero(a, &adata, &constants)); 1933 1934 adata = prep_zero_mask(a, adata, &constants); 1935 mask = create_zero_mask(adata); 1936 x ^= a & zero_bytemask(mask); 1937 1938 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 1939 } 1940 EXPORT_SYMBOL(hashlen_string); 1941 1942 /* 1943 * Calculate the length and hash of the path component, and 1944 * return the "hash_len" as the result. 1945 */ 1946 static inline u64 hash_name(const void *salt, const char *name) 1947 { 1948 unsigned long a = 0, b, x = 0, y = (unsigned long)salt; 1949 unsigned long adata, bdata, mask, len; 1950 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1951 1952 len = 0; 1953 goto inside; 1954 1955 do { 1956 HASH_MIX(x, y, a); 1957 len += sizeof(unsigned long); 1958 inside: 1959 a = load_unaligned_zeropad(name+len); 1960 b = a ^ REPEAT_BYTE('/'); 1961 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 1962 1963 adata = prep_zero_mask(a, adata, &constants); 1964 bdata = prep_zero_mask(b, bdata, &constants); 1965 mask = create_zero_mask(adata | bdata); 1966 x ^= a & zero_bytemask(mask); 1967 1968 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 1969 } 1970 1971 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */ 1972 1973 /* Return the hash of a string of known length */ 1974 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 1975 { 1976 unsigned long hash = init_name_hash(salt); 1977 while (len--) 1978 hash = partial_name_hash((unsigned char)*name++, hash); 1979 return end_name_hash(hash); 1980 } 1981 EXPORT_SYMBOL(full_name_hash); 1982 1983 /* Return the "hash_len" (hash and length) of a null-terminated string */ 1984 u64 hashlen_string(const void *salt, const char *name) 1985 { 1986 unsigned long hash = init_name_hash(salt); 1987 unsigned long len = 0, c; 1988 1989 c = (unsigned char)*name; 1990 while (c) { 1991 len++; 1992 hash = partial_name_hash(c, hash); 1993 c = (unsigned char)name[len]; 1994 } 1995 return hashlen_create(end_name_hash(hash), len); 1996 } 1997 EXPORT_SYMBOL(hashlen_string); 1998 1999 /* 2000 * We know there's a real path component here of at least 2001 * one character. 2002 */ 2003 static inline u64 hash_name(const void *salt, const char *name) 2004 { 2005 unsigned long hash = init_name_hash(salt); 2006 unsigned long len = 0, c; 2007 2008 c = (unsigned char)*name; 2009 do { 2010 len++; 2011 hash = partial_name_hash(c, hash); 2012 c = (unsigned char)name[len]; 2013 } while (c && c != '/'); 2014 return hashlen_create(end_name_hash(hash), len); 2015 } 2016 2017 #endif 2018 2019 /* 2020 * Name resolution. 2021 * This is the basic name resolution function, turning a pathname into 2022 * the final dentry. We expect 'base' to be positive and a directory. 2023 * 2024 * Returns 0 and nd will have valid dentry and mnt on success. 2025 * Returns error and drops reference to input namei data on failure. 2026 */ 2027 static int link_path_walk(const char *name, struct nameidata *nd) 2028 { 2029 int err; 2030 2031 if (IS_ERR(name)) 2032 return PTR_ERR(name); 2033 while (*name=='/') 2034 name++; 2035 if (!*name) 2036 return 0; 2037 2038 /* At this point we know we have a real path component. */ 2039 for(;;) { 2040 u64 hash_len; 2041 int type; 2042 2043 err = may_lookup(nd); 2044 if (err) 2045 return err; 2046 2047 hash_len = hash_name(nd->path.dentry, name); 2048 2049 type = LAST_NORM; 2050 if (name[0] == '.') switch (hashlen_len(hash_len)) { 2051 case 2: 2052 if (name[1] == '.') { 2053 type = LAST_DOTDOT; 2054 nd->flags |= LOOKUP_JUMPED; 2055 } 2056 break; 2057 case 1: 2058 type = LAST_DOT; 2059 } 2060 if (likely(type == LAST_NORM)) { 2061 struct dentry *parent = nd->path.dentry; 2062 nd->flags &= ~LOOKUP_JUMPED; 2063 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 2064 struct qstr this = { { .hash_len = hash_len }, .name = name }; 2065 err = parent->d_op->d_hash(parent, &this); 2066 if (err < 0) 2067 return err; 2068 hash_len = this.hash_len; 2069 name = this.name; 2070 } 2071 } 2072 2073 nd->last.hash_len = hash_len; 2074 nd->last.name = name; 2075 nd->last_type = type; 2076 2077 name += hashlen_len(hash_len); 2078 if (!*name) 2079 goto OK; 2080 /* 2081 * If it wasn't NUL, we know it was '/'. Skip that 2082 * slash, and continue until no more slashes. 2083 */ 2084 do { 2085 name++; 2086 } while (unlikely(*name == '/')); 2087 if (unlikely(!*name)) { 2088 OK: 2089 /* pathname body, done */ 2090 if (!nd->depth) 2091 return 0; 2092 name = nd->stack[nd->depth - 1].name; 2093 /* trailing symlink, done */ 2094 if (!name) 2095 return 0; 2096 /* last component of nested symlink */ 2097 err = walk_component(nd, WALK_FOLLOW); 2098 } else { 2099 /* not the last component */ 2100 err = walk_component(nd, WALK_FOLLOW | WALK_MORE); 2101 } 2102 if (err < 0) 2103 return err; 2104 2105 if (err) { 2106 const char *s = get_link(nd); 2107 2108 if (IS_ERR(s)) 2109 return PTR_ERR(s); 2110 err = 0; 2111 if (unlikely(!s)) { 2112 /* jumped */ 2113 put_link(nd); 2114 } else { 2115 nd->stack[nd->depth - 1].name = name; 2116 name = s; 2117 continue; 2118 } 2119 } 2120 if (unlikely(!d_can_lookup(nd->path.dentry))) { 2121 if (nd->flags & LOOKUP_RCU) { 2122 if (unlazy_walk(nd)) 2123 return -ECHILD; 2124 } 2125 return -ENOTDIR; 2126 } 2127 } 2128 } 2129 2130 /* must be paired with terminate_walk() */ 2131 static const char *path_init(struct nameidata *nd, unsigned flags) 2132 { 2133 const char *s = nd->name->name; 2134 2135 if (!*s) 2136 flags &= ~LOOKUP_RCU; 2137 if (flags & LOOKUP_RCU) 2138 rcu_read_lock(); 2139 2140 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 2141 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT; 2142 nd->depth = 0; 2143 if (flags & LOOKUP_ROOT) { 2144 struct dentry *root = nd->root.dentry; 2145 struct inode *inode = root->d_inode; 2146 if (*s && unlikely(!d_can_lookup(root))) 2147 return ERR_PTR(-ENOTDIR); 2148 nd->path = nd->root; 2149 nd->inode = inode; 2150 if (flags & LOOKUP_RCU) { 2151 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2152 nd->root_seq = nd->seq; 2153 nd->m_seq = read_seqbegin(&mount_lock); 2154 } else { 2155 path_get(&nd->path); 2156 } 2157 return s; 2158 } 2159 2160 nd->root.mnt = NULL; 2161 nd->path.mnt = NULL; 2162 nd->path.dentry = NULL; 2163 2164 nd->m_seq = read_seqbegin(&mount_lock); 2165 if (*s == '/') { 2166 set_root(nd); 2167 if (likely(!nd_jump_root(nd))) 2168 return s; 2169 return ERR_PTR(-ECHILD); 2170 } else if (nd->dfd == AT_FDCWD) { 2171 if (flags & LOOKUP_RCU) { 2172 struct fs_struct *fs = current->fs; 2173 unsigned seq; 2174 2175 do { 2176 seq = read_seqcount_begin(&fs->seq); 2177 nd->path = fs->pwd; 2178 nd->inode = nd->path.dentry->d_inode; 2179 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2180 } while (read_seqcount_retry(&fs->seq, seq)); 2181 } else { 2182 get_fs_pwd(current->fs, &nd->path); 2183 nd->inode = nd->path.dentry->d_inode; 2184 } 2185 return s; 2186 } else { 2187 /* Caller must check execute permissions on the starting path component */ 2188 struct fd f = fdget_raw(nd->dfd); 2189 struct dentry *dentry; 2190 2191 if (!f.file) 2192 return ERR_PTR(-EBADF); 2193 2194 dentry = f.file->f_path.dentry; 2195 2196 if (*s && unlikely(!d_can_lookup(dentry))) { 2197 fdput(f); 2198 return ERR_PTR(-ENOTDIR); 2199 } 2200 2201 nd->path = f.file->f_path; 2202 if (flags & LOOKUP_RCU) { 2203 nd->inode = nd->path.dentry->d_inode; 2204 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2205 } else { 2206 path_get(&nd->path); 2207 nd->inode = nd->path.dentry->d_inode; 2208 } 2209 fdput(f); 2210 return s; 2211 } 2212 } 2213 2214 static const char *trailing_symlink(struct nameidata *nd) 2215 { 2216 const char *s; 2217 int error = may_follow_link(nd); 2218 if (unlikely(error)) 2219 return ERR_PTR(error); 2220 nd->flags |= LOOKUP_PARENT; 2221 nd->stack[0].name = NULL; 2222 s = get_link(nd); 2223 return s ? s : ""; 2224 } 2225 2226 static inline int lookup_last(struct nameidata *nd) 2227 { 2228 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 2229 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2230 2231 nd->flags &= ~LOOKUP_PARENT; 2232 return walk_component(nd, 0); 2233 } 2234 2235 static int handle_lookup_down(struct nameidata *nd) 2236 { 2237 struct path path = nd->path; 2238 struct inode *inode = nd->inode; 2239 unsigned seq = nd->seq; 2240 int err; 2241 2242 if (nd->flags & LOOKUP_RCU) { 2243 /* 2244 * don't bother with unlazy_walk on failure - we are 2245 * at the very beginning of walk, so we lose nothing 2246 * if we simply redo everything in non-RCU mode 2247 */ 2248 if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq))) 2249 return -ECHILD; 2250 } else { 2251 dget(path.dentry); 2252 err = follow_managed(&path, nd); 2253 if (unlikely(err < 0)) 2254 return err; 2255 inode = d_backing_inode(path.dentry); 2256 seq = 0; 2257 } 2258 path_to_nameidata(&path, nd); 2259 nd->inode = inode; 2260 nd->seq = seq; 2261 return 0; 2262 } 2263 2264 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2265 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path) 2266 { 2267 const char *s = path_init(nd, flags); 2268 int err; 2269 2270 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) { 2271 err = handle_lookup_down(nd); 2272 if (unlikely(err < 0)) 2273 s = ERR_PTR(err); 2274 } 2275 2276 while (!(err = link_path_walk(s, nd)) 2277 && ((err = lookup_last(nd)) > 0)) { 2278 s = trailing_symlink(nd); 2279 } 2280 if (!err) 2281 err = complete_walk(nd); 2282 2283 if (!err && nd->flags & LOOKUP_DIRECTORY) 2284 if (!d_can_lookup(nd->path.dentry)) 2285 err = -ENOTDIR; 2286 if (!err) { 2287 *path = nd->path; 2288 nd->path.mnt = NULL; 2289 nd->path.dentry = NULL; 2290 } 2291 terminate_walk(nd); 2292 return err; 2293 } 2294 2295 static int filename_lookup(int dfd, struct filename *name, unsigned flags, 2296 struct path *path, struct path *root) 2297 { 2298 int retval; 2299 struct nameidata nd; 2300 if (IS_ERR(name)) 2301 return PTR_ERR(name); 2302 if (unlikely(root)) { 2303 nd.root = *root; 2304 flags |= LOOKUP_ROOT; 2305 } 2306 set_nameidata(&nd, dfd, name); 2307 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path); 2308 if (unlikely(retval == -ECHILD)) 2309 retval = path_lookupat(&nd, flags, path); 2310 if (unlikely(retval == -ESTALE)) 2311 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path); 2312 2313 if (likely(!retval)) 2314 audit_inode(name, path->dentry, flags & LOOKUP_PARENT); 2315 restore_nameidata(); 2316 putname(name); 2317 return retval; 2318 } 2319 2320 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2321 static int path_parentat(struct nameidata *nd, unsigned flags, 2322 struct path *parent) 2323 { 2324 const char *s = path_init(nd, flags); 2325 int err = link_path_walk(s, nd); 2326 if (!err) 2327 err = complete_walk(nd); 2328 if (!err) { 2329 *parent = nd->path; 2330 nd->path.mnt = NULL; 2331 nd->path.dentry = NULL; 2332 } 2333 terminate_walk(nd); 2334 return err; 2335 } 2336 2337 static struct filename *filename_parentat(int dfd, struct filename *name, 2338 unsigned int flags, struct path *parent, 2339 struct qstr *last, int *type) 2340 { 2341 int retval; 2342 struct nameidata nd; 2343 2344 if (IS_ERR(name)) 2345 return name; 2346 set_nameidata(&nd, dfd, name); 2347 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent); 2348 if (unlikely(retval == -ECHILD)) 2349 retval = path_parentat(&nd, flags, parent); 2350 if (unlikely(retval == -ESTALE)) 2351 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent); 2352 if (likely(!retval)) { 2353 *last = nd.last; 2354 *type = nd.last_type; 2355 audit_inode(name, parent->dentry, LOOKUP_PARENT); 2356 } else { 2357 putname(name); 2358 name = ERR_PTR(retval); 2359 } 2360 restore_nameidata(); 2361 return name; 2362 } 2363 2364 /* does lookup, returns the object with parent locked */ 2365 struct dentry *kern_path_locked(const char *name, struct path *path) 2366 { 2367 struct filename *filename; 2368 struct dentry *d; 2369 struct qstr last; 2370 int type; 2371 2372 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path, 2373 &last, &type); 2374 if (IS_ERR(filename)) 2375 return ERR_CAST(filename); 2376 if (unlikely(type != LAST_NORM)) { 2377 path_put(path); 2378 putname(filename); 2379 return ERR_PTR(-EINVAL); 2380 } 2381 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 2382 d = __lookup_hash(&last, path->dentry, 0); 2383 if (IS_ERR(d)) { 2384 inode_unlock(path->dentry->d_inode); 2385 path_put(path); 2386 } 2387 putname(filename); 2388 return d; 2389 } 2390 2391 int kern_path(const char *name, unsigned int flags, struct path *path) 2392 { 2393 return filename_lookup(AT_FDCWD, getname_kernel(name), 2394 flags, path, NULL); 2395 } 2396 EXPORT_SYMBOL(kern_path); 2397 2398 /** 2399 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2400 * @dentry: pointer to dentry of the base directory 2401 * @mnt: pointer to vfs mount of the base directory 2402 * @name: pointer to file name 2403 * @flags: lookup flags 2404 * @path: pointer to struct path to fill 2405 */ 2406 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2407 const char *name, unsigned int flags, 2408 struct path *path) 2409 { 2410 struct path root = {.mnt = mnt, .dentry = dentry}; 2411 /* the first argument of filename_lookup() is ignored with root */ 2412 return filename_lookup(AT_FDCWD, getname_kernel(name), 2413 flags , path, &root); 2414 } 2415 EXPORT_SYMBOL(vfs_path_lookup); 2416 2417 static int lookup_one_len_common(const char *name, struct dentry *base, 2418 int len, struct qstr *this) 2419 { 2420 this->name = name; 2421 this->len = len; 2422 this->hash = full_name_hash(base, name, len); 2423 if (!len) 2424 return -EACCES; 2425 2426 if (unlikely(name[0] == '.')) { 2427 if (len < 2 || (len == 2 && name[1] == '.')) 2428 return -EACCES; 2429 } 2430 2431 while (len--) { 2432 unsigned int c = *(const unsigned char *)name++; 2433 if (c == '/' || c == '\0') 2434 return -EACCES; 2435 } 2436 /* 2437 * See if the low-level filesystem might want 2438 * to use its own hash.. 2439 */ 2440 if (base->d_flags & DCACHE_OP_HASH) { 2441 int err = base->d_op->d_hash(base, this); 2442 if (err < 0) 2443 return err; 2444 } 2445 2446 return inode_permission(base->d_inode, MAY_EXEC); 2447 } 2448 2449 /** 2450 * try_lookup_one_len - filesystem helper to lookup single pathname component 2451 * @name: pathname component to lookup 2452 * @base: base directory to lookup from 2453 * @len: maximum length @len should be interpreted to 2454 * 2455 * Look up a dentry by name in the dcache, returning NULL if it does not 2456 * currently exist. The function does not try to create a dentry. 2457 * 2458 * Note that this routine is purely a helper for filesystem usage and should 2459 * not be called by generic code. 2460 * 2461 * The caller must hold base->i_mutex. 2462 */ 2463 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len) 2464 { 2465 struct qstr this; 2466 int err; 2467 2468 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2469 2470 err = lookup_one_len_common(name, base, len, &this); 2471 if (err) 2472 return ERR_PTR(err); 2473 2474 return lookup_dcache(&this, base, 0); 2475 } 2476 EXPORT_SYMBOL(try_lookup_one_len); 2477 2478 /** 2479 * lookup_one_len - filesystem helper to lookup single pathname component 2480 * @name: pathname component to lookup 2481 * @base: base directory to lookup from 2482 * @len: maximum length @len should be interpreted to 2483 * 2484 * Note that this routine is purely a helper for filesystem usage and should 2485 * not be called by generic code. 2486 * 2487 * The caller must hold base->i_mutex. 2488 */ 2489 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2490 { 2491 struct dentry *dentry; 2492 struct qstr this; 2493 int err; 2494 2495 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2496 2497 err = lookup_one_len_common(name, base, len, &this); 2498 if (err) 2499 return ERR_PTR(err); 2500 2501 dentry = lookup_dcache(&this, base, 0); 2502 return dentry ? dentry : __lookup_slow(&this, base, 0); 2503 } 2504 EXPORT_SYMBOL(lookup_one_len); 2505 2506 /** 2507 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component 2508 * @name: pathname component to lookup 2509 * @base: base directory to lookup from 2510 * @len: maximum length @len should be interpreted to 2511 * 2512 * Note that this routine is purely a helper for filesystem usage and should 2513 * not be called by generic code. 2514 * 2515 * Unlike lookup_one_len, it should be called without the parent 2516 * i_mutex held, and will take the i_mutex itself if necessary. 2517 */ 2518 struct dentry *lookup_one_len_unlocked(const char *name, 2519 struct dentry *base, int len) 2520 { 2521 struct qstr this; 2522 int err; 2523 struct dentry *ret; 2524 2525 err = lookup_one_len_common(name, base, len, &this); 2526 if (err) 2527 return ERR_PTR(err); 2528 2529 ret = lookup_dcache(&this, base, 0); 2530 if (!ret) 2531 ret = lookup_slow(&this, base, 0); 2532 return ret; 2533 } 2534 EXPORT_SYMBOL(lookup_one_len_unlocked); 2535 2536 #ifdef CONFIG_UNIX98_PTYS 2537 int path_pts(struct path *path) 2538 { 2539 /* Find something mounted on "pts" in the same directory as 2540 * the input path. 2541 */ 2542 struct dentry *child, *parent; 2543 struct qstr this; 2544 int ret; 2545 2546 ret = path_parent_directory(path); 2547 if (ret) 2548 return ret; 2549 2550 parent = path->dentry; 2551 this.name = "pts"; 2552 this.len = 3; 2553 child = d_hash_and_lookup(parent, &this); 2554 if (!child) 2555 return -ENOENT; 2556 2557 path->dentry = child; 2558 dput(parent); 2559 follow_mount(path); 2560 return 0; 2561 } 2562 #endif 2563 2564 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2565 struct path *path, int *empty) 2566 { 2567 return filename_lookup(dfd, getname_flags(name, flags, empty), 2568 flags, path, NULL); 2569 } 2570 EXPORT_SYMBOL(user_path_at_empty); 2571 2572 /** 2573 * mountpoint_last - look up last component for umount 2574 * @nd: pathwalk nameidata - currently pointing at parent directory of "last" 2575 * 2576 * This is a special lookup_last function just for umount. In this case, we 2577 * need to resolve the path without doing any revalidation. 2578 * 2579 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since 2580 * mountpoints are always pinned in the dcache, their ancestors are too. Thus, 2581 * in almost all cases, this lookup will be served out of the dcache. The only 2582 * cases where it won't are if nd->last refers to a symlink or the path is 2583 * bogus and it doesn't exist. 2584 * 2585 * Returns: 2586 * -error: if there was an error during lookup. This includes -ENOENT if the 2587 * lookup found a negative dentry. 2588 * 2589 * 0: if we successfully resolved nd->last and found it to not to be a 2590 * symlink that needs to be followed. 2591 * 2592 * 1: if we successfully resolved nd->last and found it to be a symlink 2593 * that needs to be followed. 2594 */ 2595 static int 2596 mountpoint_last(struct nameidata *nd) 2597 { 2598 int error = 0; 2599 struct dentry *dir = nd->path.dentry; 2600 struct path path; 2601 2602 /* If we're in rcuwalk, drop out of it to handle last component */ 2603 if (nd->flags & LOOKUP_RCU) { 2604 if (unlazy_walk(nd)) 2605 return -ECHILD; 2606 } 2607 2608 nd->flags &= ~LOOKUP_PARENT; 2609 2610 if (unlikely(nd->last_type != LAST_NORM)) { 2611 error = handle_dots(nd, nd->last_type); 2612 if (error) 2613 return error; 2614 path.dentry = dget(nd->path.dentry); 2615 } else { 2616 path.dentry = d_lookup(dir, &nd->last); 2617 if (!path.dentry) { 2618 /* 2619 * No cached dentry. Mounted dentries are pinned in the 2620 * cache, so that means that this dentry is probably 2621 * a symlink or the path doesn't actually point 2622 * to a mounted dentry. 2623 */ 2624 path.dentry = lookup_slow(&nd->last, dir, 2625 nd->flags | LOOKUP_NO_REVAL); 2626 if (IS_ERR(path.dentry)) 2627 return PTR_ERR(path.dentry); 2628 } 2629 } 2630 if (d_is_negative(path.dentry)) { 2631 dput(path.dentry); 2632 return -ENOENT; 2633 } 2634 path.mnt = nd->path.mnt; 2635 return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0); 2636 } 2637 2638 /** 2639 * path_mountpoint - look up a path to be umounted 2640 * @nd: lookup context 2641 * @flags: lookup flags 2642 * @path: pointer to container for result 2643 * 2644 * Look up the given name, but don't attempt to revalidate the last component. 2645 * Returns 0 and "path" will be valid on success; Returns error otherwise. 2646 */ 2647 static int 2648 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path) 2649 { 2650 const char *s = path_init(nd, flags); 2651 int err; 2652 2653 while (!(err = link_path_walk(s, nd)) && 2654 (err = mountpoint_last(nd)) > 0) { 2655 s = trailing_symlink(nd); 2656 } 2657 if (!err) { 2658 *path = nd->path; 2659 nd->path.mnt = NULL; 2660 nd->path.dentry = NULL; 2661 follow_mount(path); 2662 } 2663 terminate_walk(nd); 2664 return err; 2665 } 2666 2667 static int 2668 filename_mountpoint(int dfd, struct filename *name, struct path *path, 2669 unsigned int flags) 2670 { 2671 struct nameidata nd; 2672 int error; 2673 if (IS_ERR(name)) 2674 return PTR_ERR(name); 2675 set_nameidata(&nd, dfd, name); 2676 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path); 2677 if (unlikely(error == -ECHILD)) 2678 error = path_mountpoint(&nd, flags, path); 2679 if (unlikely(error == -ESTALE)) 2680 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path); 2681 if (likely(!error)) 2682 audit_inode(name, path->dentry, 0); 2683 restore_nameidata(); 2684 putname(name); 2685 return error; 2686 } 2687 2688 /** 2689 * user_path_mountpoint_at - lookup a path from userland in order to umount it 2690 * @dfd: directory file descriptor 2691 * @name: pathname from userland 2692 * @flags: lookup flags 2693 * @path: pointer to container to hold result 2694 * 2695 * A umount is a special case for path walking. We're not actually interested 2696 * in the inode in this situation, and ESTALE errors can be a problem. We 2697 * simply want track down the dentry and vfsmount attached at the mountpoint 2698 * and avoid revalidating the last component. 2699 * 2700 * Returns 0 and populates "path" on success. 2701 */ 2702 int 2703 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags, 2704 struct path *path) 2705 { 2706 return filename_mountpoint(dfd, getname(name), path, flags); 2707 } 2708 2709 int 2710 kern_path_mountpoint(int dfd, const char *name, struct path *path, 2711 unsigned int flags) 2712 { 2713 return filename_mountpoint(dfd, getname_kernel(name), path, flags); 2714 } 2715 EXPORT_SYMBOL(kern_path_mountpoint); 2716 2717 int __check_sticky(struct inode *dir, struct inode *inode) 2718 { 2719 kuid_t fsuid = current_fsuid(); 2720 2721 if (uid_eq(inode->i_uid, fsuid)) 2722 return 0; 2723 if (uid_eq(dir->i_uid, fsuid)) 2724 return 0; 2725 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER); 2726 } 2727 EXPORT_SYMBOL(__check_sticky); 2728 2729 /* 2730 * Check whether we can remove a link victim from directory dir, check 2731 * whether the type of victim is right. 2732 * 1. We can't do it if dir is read-only (done in permission()) 2733 * 2. We should have write and exec permissions on dir 2734 * 3. We can't remove anything from append-only dir 2735 * 4. We can't do anything with immutable dir (done in permission()) 2736 * 5. If the sticky bit on dir is set we should either 2737 * a. be owner of dir, or 2738 * b. be owner of victim, or 2739 * c. have CAP_FOWNER capability 2740 * 6. If the victim is append-only or immutable we can't do antyhing with 2741 * links pointing to it. 2742 * 7. If the victim has an unknown uid or gid we can't change the inode. 2743 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2744 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2745 * 10. We can't remove a root or mountpoint. 2746 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by 2747 * nfs_async_unlink(). 2748 */ 2749 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir) 2750 { 2751 struct inode *inode = d_backing_inode(victim); 2752 int error; 2753 2754 if (d_is_negative(victim)) 2755 return -ENOENT; 2756 BUG_ON(!inode); 2757 2758 BUG_ON(victim->d_parent->d_inode != dir); 2759 2760 /* Inode writeback is not safe when the uid or gid are invalid. */ 2761 if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid)) 2762 return -EOVERFLOW; 2763 2764 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2765 2766 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 2767 if (error) 2768 return error; 2769 if (IS_APPEND(dir)) 2770 return -EPERM; 2771 2772 if (check_sticky(dir, inode) || IS_APPEND(inode) || 2773 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode)) 2774 return -EPERM; 2775 if (isdir) { 2776 if (!d_is_dir(victim)) 2777 return -ENOTDIR; 2778 if (IS_ROOT(victim)) 2779 return -EBUSY; 2780 } else if (d_is_dir(victim)) 2781 return -EISDIR; 2782 if (IS_DEADDIR(dir)) 2783 return -ENOENT; 2784 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2785 return -EBUSY; 2786 return 0; 2787 } 2788 2789 /* Check whether we can create an object with dentry child in directory 2790 * dir. 2791 * 1. We can't do it if child already exists (open has special treatment for 2792 * this case, but since we are inlined it's OK) 2793 * 2. We can't do it if dir is read-only (done in permission()) 2794 * 3. We can't do it if the fs can't represent the fsuid or fsgid. 2795 * 4. We should have write and exec permissions on dir 2796 * 5. We can't do it if dir is immutable (done in permission()) 2797 */ 2798 static inline int may_create(struct inode *dir, struct dentry *child) 2799 { 2800 struct user_namespace *s_user_ns; 2801 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 2802 if (child->d_inode) 2803 return -EEXIST; 2804 if (IS_DEADDIR(dir)) 2805 return -ENOENT; 2806 s_user_ns = dir->i_sb->s_user_ns; 2807 if (!kuid_has_mapping(s_user_ns, current_fsuid()) || 2808 !kgid_has_mapping(s_user_ns, current_fsgid())) 2809 return -EOVERFLOW; 2810 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 2811 } 2812 2813 /* 2814 * p1 and p2 should be directories on the same fs. 2815 */ 2816 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2817 { 2818 struct dentry *p; 2819 2820 if (p1 == p2) { 2821 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2822 return NULL; 2823 } 2824 2825 mutex_lock(&p1->d_sb->s_vfs_rename_mutex); 2826 2827 p = d_ancestor(p2, p1); 2828 if (p) { 2829 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 2830 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD); 2831 return p; 2832 } 2833 2834 p = d_ancestor(p1, p2); 2835 if (p) { 2836 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2837 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD); 2838 return p; 2839 } 2840 2841 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2842 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 2843 return NULL; 2844 } 2845 EXPORT_SYMBOL(lock_rename); 2846 2847 void unlock_rename(struct dentry *p1, struct dentry *p2) 2848 { 2849 inode_unlock(p1->d_inode); 2850 if (p1 != p2) { 2851 inode_unlock(p2->d_inode); 2852 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 2853 } 2854 } 2855 EXPORT_SYMBOL(unlock_rename); 2856 2857 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2858 bool want_excl) 2859 { 2860 int error = may_create(dir, dentry); 2861 if (error) 2862 return error; 2863 2864 if (!dir->i_op->create) 2865 return -EACCES; /* shouldn't it be ENOSYS? */ 2866 mode &= S_IALLUGO; 2867 mode |= S_IFREG; 2868 error = security_inode_create(dir, dentry, mode); 2869 if (error) 2870 return error; 2871 error = dir->i_op->create(dir, dentry, mode, want_excl); 2872 if (!error) 2873 fsnotify_create(dir, dentry); 2874 return error; 2875 } 2876 EXPORT_SYMBOL(vfs_create); 2877 2878 int vfs_mkobj(struct dentry *dentry, umode_t mode, 2879 int (*f)(struct dentry *, umode_t, void *), 2880 void *arg) 2881 { 2882 struct inode *dir = dentry->d_parent->d_inode; 2883 int error = may_create(dir, dentry); 2884 if (error) 2885 return error; 2886 2887 mode &= S_IALLUGO; 2888 mode |= S_IFREG; 2889 error = security_inode_create(dir, dentry, mode); 2890 if (error) 2891 return error; 2892 error = f(dentry, mode, arg); 2893 if (!error) 2894 fsnotify_create(dir, dentry); 2895 return error; 2896 } 2897 EXPORT_SYMBOL(vfs_mkobj); 2898 2899 bool may_open_dev(const struct path *path) 2900 { 2901 return !(path->mnt->mnt_flags & MNT_NODEV) && 2902 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV); 2903 } 2904 2905 static int may_open(const struct path *path, int acc_mode, int flag) 2906 { 2907 struct dentry *dentry = path->dentry; 2908 struct inode *inode = dentry->d_inode; 2909 int error; 2910 2911 if (!inode) 2912 return -ENOENT; 2913 2914 switch (inode->i_mode & S_IFMT) { 2915 case S_IFLNK: 2916 return -ELOOP; 2917 case S_IFDIR: 2918 if (acc_mode & MAY_WRITE) 2919 return -EISDIR; 2920 break; 2921 case S_IFBLK: 2922 case S_IFCHR: 2923 if (!may_open_dev(path)) 2924 return -EACCES; 2925 /*FALLTHRU*/ 2926 case S_IFIFO: 2927 case S_IFSOCK: 2928 flag &= ~O_TRUNC; 2929 break; 2930 } 2931 2932 error = inode_permission(inode, MAY_OPEN | acc_mode); 2933 if (error) 2934 return error; 2935 2936 /* 2937 * An append-only file must be opened in append mode for writing. 2938 */ 2939 if (IS_APPEND(inode)) { 2940 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2941 return -EPERM; 2942 if (flag & O_TRUNC) 2943 return -EPERM; 2944 } 2945 2946 /* O_NOATIME can only be set by the owner or superuser */ 2947 if (flag & O_NOATIME && !inode_owner_or_capable(inode)) 2948 return -EPERM; 2949 2950 return 0; 2951 } 2952 2953 static int handle_truncate(struct file *filp) 2954 { 2955 const struct path *path = &filp->f_path; 2956 struct inode *inode = path->dentry->d_inode; 2957 int error = get_write_access(inode); 2958 if (error) 2959 return error; 2960 /* 2961 * Refuse to truncate files with mandatory locks held on them. 2962 */ 2963 error = locks_verify_locked(filp); 2964 if (!error) 2965 error = security_path_truncate(path); 2966 if (!error) { 2967 error = do_truncate(path->dentry, 0, 2968 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 2969 filp); 2970 } 2971 put_write_access(inode); 2972 return error; 2973 } 2974 2975 static inline int open_to_namei_flags(int flag) 2976 { 2977 if ((flag & O_ACCMODE) == 3) 2978 flag--; 2979 return flag; 2980 } 2981 2982 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode) 2983 { 2984 struct user_namespace *s_user_ns; 2985 int error = security_path_mknod(dir, dentry, mode, 0); 2986 if (error) 2987 return error; 2988 2989 s_user_ns = dir->dentry->d_sb->s_user_ns; 2990 if (!kuid_has_mapping(s_user_ns, current_fsuid()) || 2991 !kgid_has_mapping(s_user_ns, current_fsgid())) 2992 return -EOVERFLOW; 2993 2994 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC); 2995 if (error) 2996 return error; 2997 2998 return security_inode_create(dir->dentry->d_inode, dentry, mode); 2999 } 3000 3001 /* 3002 * Attempt to atomically look up, create and open a file from a negative 3003 * dentry. 3004 * 3005 * Returns 0 if successful. The file will have been created and attached to 3006 * @file by the filesystem calling finish_open(). 3007 * 3008 * If the file was looked up only or didn't need creating, FMODE_OPENED won't 3009 * be set. The caller will need to perform the open themselves. @path will 3010 * have been updated to point to the new dentry. This may be negative. 3011 * 3012 * Returns an error code otherwise. 3013 */ 3014 static int atomic_open(struct nameidata *nd, struct dentry *dentry, 3015 struct path *path, struct file *file, 3016 const struct open_flags *op, 3017 int open_flag, umode_t mode) 3018 { 3019 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 3020 struct inode *dir = nd->path.dentry->d_inode; 3021 int error; 3022 3023 if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */ 3024 open_flag &= ~O_TRUNC; 3025 3026 if (nd->flags & LOOKUP_DIRECTORY) 3027 open_flag |= O_DIRECTORY; 3028 3029 file->f_path.dentry = DENTRY_NOT_SET; 3030 file->f_path.mnt = nd->path.mnt; 3031 error = dir->i_op->atomic_open(dir, dentry, file, 3032 open_to_namei_flags(open_flag), mode); 3033 d_lookup_done(dentry); 3034 if (!error) { 3035 if (file->f_mode & FMODE_OPENED) { 3036 /* 3037 * We didn't have the inode before the open, so check open 3038 * permission here. 3039 */ 3040 int acc_mode = op->acc_mode; 3041 if (file->f_mode & FMODE_CREATED) { 3042 WARN_ON(!(open_flag & O_CREAT)); 3043 fsnotify_create(dir, dentry); 3044 acc_mode = 0; 3045 } 3046 error = may_open(&file->f_path, acc_mode, open_flag); 3047 if (WARN_ON(error > 0)) 3048 error = -EINVAL; 3049 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 3050 error = -EIO; 3051 } else { 3052 if (file->f_path.dentry) { 3053 dput(dentry); 3054 dentry = file->f_path.dentry; 3055 } 3056 if (file->f_mode & FMODE_CREATED) 3057 fsnotify_create(dir, dentry); 3058 if (unlikely(d_is_negative(dentry))) { 3059 error = -ENOENT; 3060 } else { 3061 path->dentry = dentry; 3062 path->mnt = nd->path.mnt; 3063 return 0; 3064 } 3065 } 3066 } 3067 dput(dentry); 3068 return error; 3069 } 3070 3071 /* 3072 * Look up and maybe create and open the last component. 3073 * 3074 * Must be called with parent locked (exclusive in O_CREAT case). 3075 * 3076 * Returns 0 on success, that is, if 3077 * the file was successfully atomically created (if necessary) and opened, or 3078 * the file was not completely opened at this time, though lookups and 3079 * creations were performed. 3080 * These case are distinguished by presence of FMODE_OPENED on file->f_mode. 3081 * In the latter case dentry returned in @path might be negative if O_CREAT 3082 * hadn't been specified. 3083 * 3084 * An error code is returned on failure. 3085 */ 3086 static int lookup_open(struct nameidata *nd, struct path *path, 3087 struct file *file, 3088 const struct open_flags *op, 3089 bool got_write) 3090 { 3091 struct dentry *dir = nd->path.dentry; 3092 struct inode *dir_inode = dir->d_inode; 3093 int open_flag = op->open_flag; 3094 struct dentry *dentry; 3095 int error, create_error = 0; 3096 umode_t mode = op->mode; 3097 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 3098 3099 if (unlikely(IS_DEADDIR(dir_inode))) 3100 return -ENOENT; 3101 3102 file->f_mode &= ~FMODE_CREATED; 3103 dentry = d_lookup(dir, &nd->last); 3104 for (;;) { 3105 if (!dentry) { 3106 dentry = d_alloc_parallel(dir, &nd->last, &wq); 3107 if (IS_ERR(dentry)) 3108 return PTR_ERR(dentry); 3109 } 3110 if (d_in_lookup(dentry)) 3111 break; 3112 3113 error = d_revalidate(dentry, nd->flags); 3114 if (likely(error > 0)) 3115 break; 3116 if (error) 3117 goto out_dput; 3118 d_invalidate(dentry); 3119 dput(dentry); 3120 dentry = NULL; 3121 } 3122 if (dentry->d_inode) { 3123 /* Cached positive dentry: will open in f_op->open */ 3124 goto out_no_open; 3125 } 3126 3127 /* 3128 * Checking write permission is tricky, bacuse we don't know if we are 3129 * going to actually need it: O_CREAT opens should work as long as the 3130 * file exists. But checking existence breaks atomicity. The trick is 3131 * to check access and if not granted clear O_CREAT from the flags. 3132 * 3133 * Another problem is returing the "right" error value (e.g. for an 3134 * O_EXCL open we want to return EEXIST not EROFS). 3135 */ 3136 if (open_flag & O_CREAT) { 3137 if (!IS_POSIXACL(dir->d_inode)) 3138 mode &= ~current_umask(); 3139 if (unlikely(!got_write)) { 3140 create_error = -EROFS; 3141 open_flag &= ~O_CREAT; 3142 if (open_flag & (O_EXCL | O_TRUNC)) 3143 goto no_open; 3144 /* No side effects, safe to clear O_CREAT */ 3145 } else { 3146 create_error = may_o_create(&nd->path, dentry, mode); 3147 if (create_error) { 3148 open_flag &= ~O_CREAT; 3149 if (open_flag & O_EXCL) 3150 goto no_open; 3151 } 3152 } 3153 } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) && 3154 unlikely(!got_write)) { 3155 /* 3156 * No O_CREATE -> atomicity not a requirement -> fall 3157 * back to lookup + open 3158 */ 3159 goto no_open; 3160 } 3161 3162 if (dir_inode->i_op->atomic_open) { 3163 error = atomic_open(nd, dentry, path, file, op, open_flag, 3164 mode); 3165 if (unlikely(error == -ENOENT) && create_error) 3166 error = create_error; 3167 return error; 3168 } 3169 3170 no_open: 3171 if (d_in_lookup(dentry)) { 3172 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry, 3173 nd->flags); 3174 d_lookup_done(dentry); 3175 if (unlikely(res)) { 3176 if (IS_ERR(res)) { 3177 error = PTR_ERR(res); 3178 goto out_dput; 3179 } 3180 dput(dentry); 3181 dentry = res; 3182 } 3183 } 3184 3185 /* Negative dentry, just create the file */ 3186 if (!dentry->d_inode && (open_flag & O_CREAT)) { 3187 file->f_mode |= FMODE_CREATED; 3188 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE); 3189 if (!dir_inode->i_op->create) { 3190 error = -EACCES; 3191 goto out_dput; 3192 } 3193 error = dir_inode->i_op->create(dir_inode, dentry, mode, 3194 open_flag & O_EXCL); 3195 if (error) 3196 goto out_dput; 3197 fsnotify_create(dir_inode, dentry); 3198 } 3199 if (unlikely(create_error) && !dentry->d_inode) { 3200 error = create_error; 3201 goto out_dput; 3202 } 3203 out_no_open: 3204 path->dentry = dentry; 3205 path->mnt = nd->path.mnt; 3206 return 0; 3207 3208 out_dput: 3209 dput(dentry); 3210 return error; 3211 } 3212 3213 /* 3214 * Handle the last step of open() 3215 */ 3216 static int do_last(struct nameidata *nd, 3217 struct file *file, const struct open_flags *op) 3218 { 3219 struct dentry *dir = nd->path.dentry; 3220 int open_flag = op->open_flag; 3221 bool will_truncate = (open_flag & O_TRUNC) != 0; 3222 bool got_write = false; 3223 int acc_mode = op->acc_mode; 3224 unsigned seq; 3225 struct inode *inode; 3226 struct path path; 3227 int error; 3228 3229 nd->flags &= ~LOOKUP_PARENT; 3230 nd->flags |= op->intent; 3231 3232 if (nd->last_type != LAST_NORM) { 3233 error = handle_dots(nd, nd->last_type); 3234 if (unlikely(error)) 3235 return error; 3236 goto finish_open; 3237 } 3238 3239 if (!(open_flag & O_CREAT)) { 3240 if (nd->last.name[nd->last.len]) 3241 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 3242 /* we _can_ be in RCU mode here */ 3243 error = lookup_fast(nd, &path, &inode, &seq); 3244 if (likely(error > 0)) 3245 goto finish_lookup; 3246 3247 if (error < 0) 3248 return error; 3249 3250 BUG_ON(nd->inode != dir->d_inode); 3251 BUG_ON(nd->flags & LOOKUP_RCU); 3252 } else { 3253 /* create side of things */ 3254 /* 3255 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED 3256 * has been cleared when we got to the last component we are 3257 * about to look up 3258 */ 3259 error = complete_walk(nd); 3260 if (error) 3261 return error; 3262 3263 audit_inode(nd->name, dir, LOOKUP_PARENT); 3264 /* trailing slashes? */ 3265 if (unlikely(nd->last.name[nd->last.len])) 3266 return -EISDIR; 3267 } 3268 3269 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 3270 error = mnt_want_write(nd->path.mnt); 3271 if (!error) 3272 got_write = true; 3273 /* 3274 * do _not_ fail yet - we might not need that or fail with 3275 * a different error; let lookup_open() decide; we'll be 3276 * dropping this one anyway. 3277 */ 3278 } 3279 if (open_flag & O_CREAT) 3280 inode_lock(dir->d_inode); 3281 else 3282 inode_lock_shared(dir->d_inode); 3283 error = lookup_open(nd, &path, file, op, got_write); 3284 if (open_flag & O_CREAT) 3285 inode_unlock(dir->d_inode); 3286 else 3287 inode_unlock_shared(dir->d_inode); 3288 3289 if (error) 3290 goto out; 3291 3292 if (file->f_mode & FMODE_OPENED) { 3293 if ((file->f_mode & FMODE_CREATED) || 3294 !S_ISREG(file_inode(file)->i_mode)) 3295 will_truncate = false; 3296 3297 audit_inode(nd->name, file->f_path.dentry, 0); 3298 goto opened; 3299 } 3300 3301 if (file->f_mode & FMODE_CREATED) { 3302 /* Don't check for write permission, don't truncate */ 3303 open_flag &= ~O_TRUNC; 3304 will_truncate = false; 3305 acc_mode = 0; 3306 path_to_nameidata(&path, nd); 3307 goto finish_open_created; 3308 } 3309 3310 /* 3311 * If atomic_open() acquired write access it is dropped now due to 3312 * possible mount and symlink following (this might be optimized away if 3313 * necessary...) 3314 */ 3315 if (got_write) { 3316 mnt_drop_write(nd->path.mnt); 3317 got_write = false; 3318 } 3319 3320 error = follow_managed(&path, nd); 3321 if (unlikely(error < 0)) 3322 return error; 3323 3324 if (unlikely(d_is_negative(path.dentry))) { 3325 path_to_nameidata(&path, nd); 3326 return -ENOENT; 3327 } 3328 3329 /* 3330 * create/update audit record if it already exists. 3331 */ 3332 audit_inode(nd->name, path.dentry, 0); 3333 3334 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) { 3335 path_to_nameidata(&path, nd); 3336 return -EEXIST; 3337 } 3338 3339 seq = 0; /* out of RCU mode, so the value doesn't matter */ 3340 inode = d_backing_inode(path.dentry); 3341 finish_lookup: 3342 error = step_into(nd, &path, 0, inode, seq); 3343 if (unlikely(error)) 3344 return error; 3345 finish_open: 3346 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */ 3347 error = complete_walk(nd); 3348 if (error) 3349 return error; 3350 audit_inode(nd->name, nd->path.dentry, 0); 3351 error = -EISDIR; 3352 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry)) 3353 goto out; 3354 error = -ENOTDIR; 3355 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3356 goto out; 3357 if (!d_is_reg(nd->path.dentry)) 3358 will_truncate = false; 3359 3360 if (will_truncate) { 3361 error = mnt_want_write(nd->path.mnt); 3362 if (error) 3363 goto out; 3364 got_write = true; 3365 } 3366 finish_open_created: 3367 error = may_open(&nd->path, acc_mode, open_flag); 3368 if (error) 3369 goto out; 3370 BUG_ON(file->f_mode & FMODE_OPENED); /* once it's opened, it's opened */ 3371 error = vfs_open(&nd->path, file); 3372 if (error) 3373 goto out; 3374 opened: 3375 error = ima_file_check(file, op->acc_mode); 3376 if (!error && will_truncate) 3377 error = handle_truncate(file); 3378 out: 3379 if (unlikely(error > 0)) { 3380 WARN_ON(1); 3381 error = -EINVAL; 3382 } 3383 if (got_write) 3384 mnt_drop_write(nd->path.mnt); 3385 return error; 3386 } 3387 3388 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag) 3389 { 3390 struct dentry *child = NULL; 3391 struct inode *dir = dentry->d_inode; 3392 struct inode *inode; 3393 int error; 3394 3395 /* we want directory to be writable */ 3396 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 3397 if (error) 3398 goto out_err; 3399 error = -EOPNOTSUPP; 3400 if (!dir->i_op->tmpfile) 3401 goto out_err; 3402 error = -ENOMEM; 3403 child = d_alloc(dentry, &slash_name); 3404 if (unlikely(!child)) 3405 goto out_err; 3406 error = dir->i_op->tmpfile(dir, child, mode); 3407 if (error) 3408 goto out_err; 3409 error = -ENOENT; 3410 inode = child->d_inode; 3411 if (unlikely(!inode)) 3412 goto out_err; 3413 if (!(open_flag & O_EXCL)) { 3414 spin_lock(&inode->i_lock); 3415 inode->i_state |= I_LINKABLE; 3416 spin_unlock(&inode->i_lock); 3417 } 3418 return child; 3419 3420 out_err: 3421 dput(child); 3422 return ERR_PTR(error); 3423 } 3424 EXPORT_SYMBOL(vfs_tmpfile); 3425 3426 static int do_tmpfile(struct nameidata *nd, unsigned flags, 3427 const struct open_flags *op, 3428 struct file *file) 3429 { 3430 struct dentry *child; 3431 struct path path; 3432 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path); 3433 if (unlikely(error)) 3434 return error; 3435 error = mnt_want_write(path.mnt); 3436 if (unlikely(error)) 3437 goto out; 3438 child = vfs_tmpfile(path.dentry, op->mode, op->open_flag); 3439 error = PTR_ERR(child); 3440 if (IS_ERR(child)) 3441 goto out2; 3442 dput(path.dentry); 3443 path.dentry = child; 3444 audit_inode(nd->name, child, 0); 3445 /* Don't check for other permissions, the inode was just created */ 3446 error = may_open(&path, 0, op->open_flag); 3447 if (error) 3448 goto out2; 3449 file->f_path.mnt = path.mnt; 3450 error = finish_open(file, child, NULL); 3451 out2: 3452 mnt_drop_write(path.mnt); 3453 out: 3454 path_put(&path); 3455 return error; 3456 } 3457 3458 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file) 3459 { 3460 struct path path; 3461 int error = path_lookupat(nd, flags, &path); 3462 if (!error) { 3463 audit_inode(nd->name, path.dentry, 0); 3464 error = vfs_open(&path, file); 3465 path_put(&path); 3466 } 3467 return error; 3468 } 3469 3470 static struct file *path_openat(struct nameidata *nd, 3471 const struct open_flags *op, unsigned flags) 3472 { 3473 struct file *file; 3474 int error; 3475 3476 file = alloc_empty_file(op->open_flag, current_cred()); 3477 if (IS_ERR(file)) 3478 return file; 3479 3480 if (unlikely(file->f_flags & __O_TMPFILE)) { 3481 error = do_tmpfile(nd, flags, op, file); 3482 } else if (unlikely(file->f_flags & O_PATH)) { 3483 error = do_o_path(nd, flags, file); 3484 } else { 3485 const char *s = path_init(nd, flags); 3486 while (!(error = link_path_walk(s, nd)) && 3487 (error = do_last(nd, file, op)) > 0) { 3488 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3489 s = trailing_symlink(nd); 3490 } 3491 terminate_walk(nd); 3492 } 3493 if (likely(!error)) { 3494 if (likely(file->f_mode & FMODE_OPENED)) 3495 return file; 3496 WARN_ON(1); 3497 error = -EINVAL; 3498 } 3499 fput(file); 3500 if (error == -EOPENSTALE) { 3501 if (flags & LOOKUP_RCU) 3502 error = -ECHILD; 3503 else 3504 error = -ESTALE; 3505 } 3506 return ERR_PTR(error); 3507 } 3508 3509 struct file *do_filp_open(int dfd, struct filename *pathname, 3510 const struct open_flags *op) 3511 { 3512 struct nameidata nd; 3513 int flags = op->lookup_flags; 3514 struct file *filp; 3515 3516 set_nameidata(&nd, dfd, pathname); 3517 filp = path_openat(&nd, op, flags | LOOKUP_RCU); 3518 if (unlikely(filp == ERR_PTR(-ECHILD))) 3519 filp = path_openat(&nd, op, flags); 3520 if (unlikely(filp == ERR_PTR(-ESTALE))) 3521 filp = path_openat(&nd, op, flags | LOOKUP_REVAL); 3522 restore_nameidata(); 3523 return filp; 3524 } 3525 3526 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 3527 const char *name, const struct open_flags *op) 3528 { 3529 struct nameidata nd; 3530 struct file *file; 3531 struct filename *filename; 3532 int flags = op->lookup_flags | LOOKUP_ROOT; 3533 3534 nd.root.mnt = mnt; 3535 nd.root.dentry = dentry; 3536 3537 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN) 3538 return ERR_PTR(-ELOOP); 3539 3540 filename = getname_kernel(name); 3541 if (IS_ERR(filename)) 3542 return ERR_CAST(filename); 3543 3544 set_nameidata(&nd, -1, filename); 3545 file = path_openat(&nd, op, flags | LOOKUP_RCU); 3546 if (unlikely(file == ERR_PTR(-ECHILD))) 3547 file = path_openat(&nd, op, flags); 3548 if (unlikely(file == ERR_PTR(-ESTALE))) 3549 file = path_openat(&nd, op, flags | LOOKUP_REVAL); 3550 restore_nameidata(); 3551 putname(filename); 3552 return file; 3553 } 3554 3555 static struct dentry *filename_create(int dfd, struct filename *name, 3556 struct path *path, unsigned int lookup_flags) 3557 { 3558 struct dentry *dentry = ERR_PTR(-EEXIST); 3559 struct qstr last; 3560 int type; 3561 int err2; 3562 int error; 3563 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY); 3564 3565 /* 3566 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any 3567 * other flags passed in are ignored! 3568 */ 3569 lookup_flags &= LOOKUP_REVAL; 3570 3571 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type); 3572 if (IS_ERR(name)) 3573 return ERR_CAST(name); 3574 3575 /* 3576 * Yucky last component or no last component at all? 3577 * (foo/., foo/.., /////) 3578 */ 3579 if (unlikely(type != LAST_NORM)) 3580 goto out; 3581 3582 /* don't fail immediately if it's r/o, at least try to report other errors */ 3583 err2 = mnt_want_write(path->mnt); 3584 /* 3585 * Do the final lookup. 3586 */ 3587 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL; 3588 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 3589 dentry = __lookup_hash(&last, path->dentry, lookup_flags); 3590 if (IS_ERR(dentry)) 3591 goto unlock; 3592 3593 error = -EEXIST; 3594 if (d_is_positive(dentry)) 3595 goto fail; 3596 3597 /* 3598 * Special case - lookup gave negative, but... we had foo/bar/ 3599 * From the vfs_mknod() POV we just have a negative dentry - 3600 * all is fine. Let's be bastards - you had / on the end, you've 3601 * been asking for (non-existent) directory. -ENOENT for you. 3602 */ 3603 if (unlikely(!is_dir && last.name[last.len])) { 3604 error = -ENOENT; 3605 goto fail; 3606 } 3607 if (unlikely(err2)) { 3608 error = err2; 3609 goto fail; 3610 } 3611 putname(name); 3612 return dentry; 3613 fail: 3614 dput(dentry); 3615 dentry = ERR_PTR(error); 3616 unlock: 3617 inode_unlock(path->dentry->d_inode); 3618 if (!err2) 3619 mnt_drop_write(path->mnt); 3620 out: 3621 path_put(path); 3622 putname(name); 3623 return dentry; 3624 } 3625 3626 struct dentry *kern_path_create(int dfd, const char *pathname, 3627 struct path *path, unsigned int lookup_flags) 3628 { 3629 return filename_create(dfd, getname_kernel(pathname), 3630 path, lookup_flags); 3631 } 3632 EXPORT_SYMBOL(kern_path_create); 3633 3634 void done_path_create(struct path *path, struct dentry *dentry) 3635 { 3636 dput(dentry); 3637 inode_unlock(path->dentry->d_inode); 3638 mnt_drop_write(path->mnt); 3639 path_put(path); 3640 } 3641 EXPORT_SYMBOL(done_path_create); 3642 3643 inline struct dentry *user_path_create(int dfd, const char __user *pathname, 3644 struct path *path, unsigned int lookup_flags) 3645 { 3646 return filename_create(dfd, getname(pathname), path, lookup_flags); 3647 } 3648 EXPORT_SYMBOL(user_path_create); 3649 3650 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 3651 { 3652 int error = may_create(dir, dentry); 3653 3654 if (error) 3655 return error; 3656 3657 if ((S_ISCHR(mode) || S_ISBLK(mode)) && 3658 !ns_capable(dentry->d_sb->s_user_ns, CAP_MKNOD)) 3659 return -EPERM; 3660 3661 if (!dir->i_op->mknod) 3662 return -EPERM; 3663 3664 error = devcgroup_inode_mknod(mode, dev); 3665 if (error) 3666 return error; 3667 3668 error = security_inode_mknod(dir, dentry, mode, dev); 3669 if (error) 3670 return error; 3671 3672 error = dir->i_op->mknod(dir, dentry, mode, dev); 3673 if (!error) 3674 fsnotify_create(dir, dentry); 3675 return error; 3676 } 3677 EXPORT_SYMBOL(vfs_mknod); 3678 3679 static int may_mknod(umode_t mode) 3680 { 3681 switch (mode & S_IFMT) { 3682 case S_IFREG: 3683 case S_IFCHR: 3684 case S_IFBLK: 3685 case S_IFIFO: 3686 case S_IFSOCK: 3687 case 0: /* zero mode translates to S_IFREG */ 3688 return 0; 3689 case S_IFDIR: 3690 return -EPERM; 3691 default: 3692 return -EINVAL; 3693 } 3694 } 3695 3696 long do_mknodat(int dfd, const char __user *filename, umode_t mode, 3697 unsigned int dev) 3698 { 3699 struct dentry *dentry; 3700 struct path path; 3701 int error; 3702 unsigned int lookup_flags = 0; 3703 3704 error = may_mknod(mode); 3705 if (error) 3706 return error; 3707 retry: 3708 dentry = user_path_create(dfd, filename, &path, lookup_flags); 3709 if (IS_ERR(dentry)) 3710 return PTR_ERR(dentry); 3711 3712 if (!IS_POSIXACL(path.dentry->d_inode)) 3713 mode &= ~current_umask(); 3714 error = security_path_mknod(&path, dentry, mode, dev); 3715 if (error) 3716 goto out; 3717 switch (mode & S_IFMT) { 3718 case 0: case S_IFREG: 3719 error = vfs_create(path.dentry->d_inode,dentry,mode,true); 3720 if (!error) 3721 ima_post_path_mknod(dentry); 3722 break; 3723 case S_IFCHR: case S_IFBLK: 3724 error = vfs_mknod(path.dentry->d_inode,dentry,mode, 3725 new_decode_dev(dev)); 3726 break; 3727 case S_IFIFO: case S_IFSOCK: 3728 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0); 3729 break; 3730 } 3731 out: 3732 done_path_create(&path, dentry); 3733 if (retry_estale(error, lookup_flags)) { 3734 lookup_flags |= LOOKUP_REVAL; 3735 goto retry; 3736 } 3737 return error; 3738 } 3739 3740 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3741 unsigned int, dev) 3742 { 3743 return do_mknodat(dfd, filename, mode, dev); 3744 } 3745 3746 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3747 { 3748 return do_mknodat(AT_FDCWD, filename, mode, dev); 3749 } 3750 3751 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 3752 { 3753 int error = may_create(dir, dentry); 3754 unsigned max_links = dir->i_sb->s_max_links; 3755 3756 if (error) 3757 return error; 3758 3759 if (!dir->i_op->mkdir) 3760 return -EPERM; 3761 3762 mode &= (S_IRWXUGO|S_ISVTX); 3763 error = security_inode_mkdir(dir, dentry, mode); 3764 if (error) 3765 return error; 3766 3767 if (max_links && dir->i_nlink >= max_links) 3768 return -EMLINK; 3769 3770 error = dir->i_op->mkdir(dir, dentry, mode); 3771 if (!error) 3772 fsnotify_mkdir(dir, dentry); 3773 return error; 3774 } 3775 EXPORT_SYMBOL(vfs_mkdir); 3776 3777 long do_mkdirat(int dfd, const char __user *pathname, umode_t mode) 3778 { 3779 struct dentry *dentry; 3780 struct path path; 3781 int error; 3782 unsigned int lookup_flags = LOOKUP_DIRECTORY; 3783 3784 retry: 3785 dentry = user_path_create(dfd, pathname, &path, lookup_flags); 3786 if (IS_ERR(dentry)) 3787 return PTR_ERR(dentry); 3788 3789 if (!IS_POSIXACL(path.dentry->d_inode)) 3790 mode &= ~current_umask(); 3791 error = security_path_mkdir(&path, dentry, mode); 3792 if (!error) 3793 error = vfs_mkdir(path.dentry->d_inode, dentry, mode); 3794 done_path_create(&path, dentry); 3795 if (retry_estale(error, lookup_flags)) { 3796 lookup_flags |= LOOKUP_REVAL; 3797 goto retry; 3798 } 3799 return error; 3800 } 3801 3802 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 3803 { 3804 return do_mkdirat(dfd, pathname, mode); 3805 } 3806 3807 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 3808 { 3809 return do_mkdirat(AT_FDCWD, pathname, mode); 3810 } 3811 3812 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 3813 { 3814 int error = may_delete(dir, dentry, 1); 3815 3816 if (error) 3817 return error; 3818 3819 if (!dir->i_op->rmdir) 3820 return -EPERM; 3821 3822 dget(dentry); 3823 inode_lock(dentry->d_inode); 3824 3825 error = -EBUSY; 3826 if (is_local_mountpoint(dentry)) 3827 goto out; 3828 3829 error = security_inode_rmdir(dir, dentry); 3830 if (error) 3831 goto out; 3832 3833 error = dir->i_op->rmdir(dir, dentry); 3834 if (error) 3835 goto out; 3836 3837 shrink_dcache_parent(dentry); 3838 dentry->d_inode->i_flags |= S_DEAD; 3839 dont_mount(dentry); 3840 detach_mounts(dentry); 3841 3842 out: 3843 inode_unlock(dentry->d_inode); 3844 dput(dentry); 3845 if (!error) 3846 d_delete(dentry); 3847 return error; 3848 } 3849 EXPORT_SYMBOL(vfs_rmdir); 3850 3851 long do_rmdir(int dfd, const char __user *pathname) 3852 { 3853 int error = 0; 3854 struct filename *name; 3855 struct dentry *dentry; 3856 struct path path; 3857 struct qstr last; 3858 int type; 3859 unsigned int lookup_flags = 0; 3860 retry: 3861 name = filename_parentat(dfd, getname(pathname), lookup_flags, 3862 &path, &last, &type); 3863 if (IS_ERR(name)) 3864 return PTR_ERR(name); 3865 3866 switch (type) { 3867 case LAST_DOTDOT: 3868 error = -ENOTEMPTY; 3869 goto exit1; 3870 case LAST_DOT: 3871 error = -EINVAL; 3872 goto exit1; 3873 case LAST_ROOT: 3874 error = -EBUSY; 3875 goto exit1; 3876 } 3877 3878 error = mnt_want_write(path.mnt); 3879 if (error) 3880 goto exit1; 3881 3882 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 3883 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 3884 error = PTR_ERR(dentry); 3885 if (IS_ERR(dentry)) 3886 goto exit2; 3887 if (!dentry->d_inode) { 3888 error = -ENOENT; 3889 goto exit3; 3890 } 3891 error = security_path_rmdir(&path, dentry); 3892 if (error) 3893 goto exit3; 3894 error = vfs_rmdir(path.dentry->d_inode, dentry); 3895 exit3: 3896 dput(dentry); 3897 exit2: 3898 inode_unlock(path.dentry->d_inode); 3899 mnt_drop_write(path.mnt); 3900 exit1: 3901 path_put(&path); 3902 putname(name); 3903 if (retry_estale(error, lookup_flags)) { 3904 lookup_flags |= LOOKUP_REVAL; 3905 goto retry; 3906 } 3907 return error; 3908 } 3909 3910 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 3911 { 3912 return do_rmdir(AT_FDCWD, pathname); 3913 } 3914 3915 /** 3916 * vfs_unlink - unlink a filesystem object 3917 * @dir: parent directory 3918 * @dentry: victim 3919 * @delegated_inode: returns victim inode, if the inode is delegated. 3920 * 3921 * The caller must hold dir->i_mutex. 3922 * 3923 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 3924 * return a reference to the inode in delegated_inode. The caller 3925 * should then break the delegation on that inode and retry. Because 3926 * breaking a delegation may take a long time, the caller should drop 3927 * dir->i_mutex before doing so. 3928 * 3929 * Alternatively, a caller may pass NULL for delegated_inode. This may 3930 * be appropriate for callers that expect the underlying filesystem not 3931 * to be NFS exported. 3932 */ 3933 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode) 3934 { 3935 struct inode *target = dentry->d_inode; 3936 int error = may_delete(dir, dentry, 0); 3937 3938 if (error) 3939 return error; 3940 3941 if (!dir->i_op->unlink) 3942 return -EPERM; 3943 3944 inode_lock(target); 3945 if (is_local_mountpoint(dentry)) 3946 error = -EBUSY; 3947 else { 3948 error = security_inode_unlink(dir, dentry); 3949 if (!error) { 3950 error = try_break_deleg(target, delegated_inode); 3951 if (error) 3952 goto out; 3953 error = dir->i_op->unlink(dir, dentry); 3954 if (!error) { 3955 dont_mount(dentry); 3956 detach_mounts(dentry); 3957 } 3958 } 3959 } 3960 out: 3961 inode_unlock(target); 3962 3963 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 3964 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 3965 fsnotify_link_count(target); 3966 d_delete(dentry); 3967 } 3968 3969 return error; 3970 } 3971 EXPORT_SYMBOL(vfs_unlink); 3972 3973 /* 3974 * Make sure that the actual truncation of the file will occur outside its 3975 * directory's i_mutex. Truncate can take a long time if there is a lot of 3976 * writeout happening, and we don't want to prevent access to the directory 3977 * while waiting on the I/O. 3978 */ 3979 long do_unlinkat(int dfd, struct filename *name) 3980 { 3981 int error; 3982 struct dentry *dentry; 3983 struct path path; 3984 struct qstr last; 3985 int type; 3986 struct inode *inode = NULL; 3987 struct inode *delegated_inode = NULL; 3988 unsigned int lookup_flags = 0; 3989 retry: 3990 name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 3991 if (IS_ERR(name)) 3992 return PTR_ERR(name); 3993 3994 error = -EISDIR; 3995 if (type != LAST_NORM) 3996 goto exit1; 3997 3998 error = mnt_want_write(path.mnt); 3999 if (error) 4000 goto exit1; 4001 retry_deleg: 4002 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4003 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 4004 error = PTR_ERR(dentry); 4005 if (!IS_ERR(dentry)) { 4006 /* Why not before? Because we want correct error value */ 4007 if (last.name[last.len]) 4008 goto slashes; 4009 inode = dentry->d_inode; 4010 if (d_is_negative(dentry)) 4011 goto slashes; 4012 ihold(inode); 4013 error = security_path_unlink(&path, dentry); 4014 if (error) 4015 goto exit2; 4016 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode); 4017 exit2: 4018 dput(dentry); 4019 } 4020 inode_unlock(path.dentry->d_inode); 4021 if (inode) 4022 iput(inode); /* truncate the inode here */ 4023 inode = NULL; 4024 if (delegated_inode) { 4025 error = break_deleg_wait(&delegated_inode); 4026 if (!error) 4027 goto retry_deleg; 4028 } 4029 mnt_drop_write(path.mnt); 4030 exit1: 4031 path_put(&path); 4032 if (retry_estale(error, lookup_flags)) { 4033 lookup_flags |= LOOKUP_REVAL; 4034 inode = NULL; 4035 goto retry; 4036 } 4037 putname(name); 4038 return error; 4039 4040 slashes: 4041 if (d_is_negative(dentry)) 4042 error = -ENOENT; 4043 else if (d_is_dir(dentry)) 4044 error = -EISDIR; 4045 else 4046 error = -ENOTDIR; 4047 goto exit2; 4048 } 4049 4050 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 4051 { 4052 if ((flag & ~AT_REMOVEDIR) != 0) 4053 return -EINVAL; 4054 4055 if (flag & AT_REMOVEDIR) 4056 return do_rmdir(dfd, pathname); 4057 4058 return do_unlinkat(dfd, getname(pathname)); 4059 } 4060 4061 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 4062 { 4063 return do_unlinkat(AT_FDCWD, getname(pathname)); 4064 } 4065 4066 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 4067 { 4068 int error = may_create(dir, dentry); 4069 4070 if (error) 4071 return error; 4072 4073 if (!dir->i_op->symlink) 4074 return -EPERM; 4075 4076 error = security_inode_symlink(dir, dentry, oldname); 4077 if (error) 4078 return error; 4079 4080 error = dir->i_op->symlink(dir, dentry, oldname); 4081 if (!error) 4082 fsnotify_create(dir, dentry); 4083 return error; 4084 } 4085 EXPORT_SYMBOL(vfs_symlink); 4086 4087 long do_symlinkat(const char __user *oldname, int newdfd, 4088 const char __user *newname) 4089 { 4090 int error; 4091 struct filename *from; 4092 struct dentry *dentry; 4093 struct path path; 4094 unsigned int lookup_flags = 0; 4095 4096 from = getname(oldname); 4097 if (IS_ERR(from)) 4098 return PTR_ERR(from); 4099 retry: 4100 dentry = user_path_create(newdfd, newname, &path, lookup_flags); 4101 error = PTR_ERR(dentry); 4102 if (IS_ERR(dentry)) 4103 goto out_putname; 4104 4105 error = security_path_symlink(&path, dentry, from->name); 4106 if (!error) 4107 error = vfs_symlink(path.dentry->d_inode, dentry, from->name); 4108 done_path_create(&path, dentry); 4109 if (retry_estale(error, lookup_flags)) { 4110 lookup_flags |= LOOKUP_REVAL; 4111 goto retry; 4112 } 4113 out_putname: 4114 putname(from); 4115 return error; 4116 } 4117 4118 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 4119 int, newdfd, const char __user *, newname) 4120 { 4121 return do_symlinkat(oldname, newdfd, newname); 4122 } 4123 4124 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 4125 { 4126 return do_symlinkat(oldname, AT_FDCWD, newname); 4127 } 4128 4129 /** 4130 * vfs_link - create a new link 4131 * @old_dentry: object to be linked 4132 * @dir: new parent 4133 * @new_dentry: where to create the new link 4134 * @delegated_inode: returns inode needing a delegation break 4135 * 4136 * The caller must hold dir->i_mutex 4137 * 4138 * If vfs_link discovers a delegation on the to-be-linked file in need 4139 * of breaking, it will return -EWOULDBLOCK and return a reference to the 4140 * inode in delegated_inode. The caller should then break the delegation 4141 * and retry. Because breaking a delegation may take a long time, the 4142 * caller should drop the i_mutex before doing so. 4143 * 4144 * Alternatively, a caller may pass NULL for delegated_inode. This may 4145 * be appropriate for callers that expect the underlying filesystem not 4146 * to be NFS exported. 4147 */ 4148 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode) 4149 { 4150 struct inode *inode = old_dentry->d_inode; 4151 unsigned max_links = dir->i_sb->s_max_links; 4152 int error; 4153 4154 if (!inode) 4155 return -ENOENT; 4156 4157 error = may_create(dir, new_dentry); 4158 if (error) 4159 return error; 4160 4161 if (dir->i_sb != inode->i_sb) 4162 return -EXDEV; 4163 4164 /* 4165 * A link to an append-only or immutable file cannot be created. 4166 */ 4167 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4168 return -EPERM; 4169 /* 4170 * Updating the link count will likely cause i_uid and i_gid to 4171 * be writen back improperly if their true value is unknown to 4172 * the vfs. 4173 */ 4174 if (HAS_UNMAPPED_ID(inode)) 4175 return -EPERM; 4176 if (!dir->i_op->link) 4177 return -EPERM; 4178 if (S_ISDIR(inode->i_mode)) 4179 return -EPERM; 4180 4181 error = security_inode_link(old_dentry, dir, new_dentry); 4182 if (error) 4183 return error; 4184 4185 inode_lock(inode); 4186 /* Make sure we don't allow creating hardlink to an unlinked file */ 4187 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 4188 error = -ENOENT; 4189 else if (max_links && inode->i_nlink >= max_links) 4190 error = -EMLINK; 4191 else { 4192 error = try_break_deleg(inode, delegated_inode); 4193 if (!error) 4194 error = dir->i_op->link(old_dentry, dir, new_dentry); 4195 } 4196 4197 if (!error && (inode->i_state & I_LINKABLE)) { 4198 spin_lock(&inode->i_lock); 4199 inode->i_state &= ~I_LINKABLE; 4200 spin_unlock(&inode->i_lock); 4201 } 4202 inode_unlock(inode); 4203 if (!error) 4204 fsnotify_link(dir, inode, new_dentry); 4205 return error; 4206 } 4207 EXPORT_SYMBOL(vfs_link); 4208 4209 /* 4210 * Hardlinks are often used in delicate situations. We avoid 4211 * security-related surprises by not following symlinks on the 4212 * newname. --KAB 4213 * 4214 * We don't follow them on the oldname either to be compatible 4215 * with linux 2.0, and to avoid hard-linking to directories 4216 * and other special files. --ADM 4217 */ 4218 int do_linkat(int olddfd, const char __user *oldname, int newdfd, 4219 const char __user *newname, int flags) 4220 { 4221 struct dentry *new_dentry; 4222 struct path old_path, new_path; 4223 struct inode *delegated_inode = NULL; 4224 int how = 0; 4225 int error; 4226 4227 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 4228 return -EINVAL; 4229 /* 4230 * To use null names we require CAP_DAC_READ_SEARCH 4231 * This ensures that not everyone will be able to create 4232 * handlink using the passed filedescriptor. 4233 */ 4234 if (flags & AT_EMPTY_PATH) { 4235 if (!capable(CAP_DAC_READ_SEARCH)) 4236 return -ENOENT; 4237 how = LOOKUP_EMPTY; 4238 } 4239 4240 if (flags & AT_SYMLINK_FOLLOW) 4241 how |= LOOKUP_FOLLOW; 4242 retry: 4243 error = user_path_at(olddfd, oldname, how, &old_path); 4244 if (error) 4245 return error; 4246 4247 new_dentry = user_path_create(newdfd, newname, &new_path, 4248 (how & LOOKUP_REVAL)); 4249 error = PTR_ERR(new_dentry); 4250 if (IS_ERR(new_dentry)) 4251 goto out; 4252 4253 error = -EXDEV; 4254 if (old_path.mnt != new_path.mnt) 4255 goto out_dput; 4256 error = may_linkat(&old_path); 4257 if (unlikely(error)) 4258 goto out_dput; 4259 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4260 if (error) 4261 goto out_dput; 4262 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode); 4263 out_dput: 4264 done_path_create(&new_path, new_dentry); 4265 if (delegated_inode) { 4266 error = break_deleg_wait(&delegated_inode); 4267 if (!error) { 4268 path_put(&old_path); 4269 goto retry; 4270 } 4271 } 4272 if (retry_estale(error, how)) { 4273 path_put(&old_path); 4274 how |= LOOKUP_REVAL; 4275 goto retry; 4276 } 4277 out: 4278 path_put(&old_path); 4279 4280 return error; 4281 } 4282 4283 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 4284 int, newdfd, const char __user *, newname, int, flags) 4285 { 4286 return do_linkat(olddfd, oldname, newdfd, newname, flags); 4287 } 4288 4289 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4290 { 4291 return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4292 } 4293 4294 /** 4295 * vfs_rename - rename a filesystem object 4296 * @old_dir: parent of source 4297 * @old_dentry: source 4298 * @new_dir: parent of destination 4299 * @new_dentry: destination 4300 * @delegated_inode: returns an inode needing a delegation break 4301 * @flags: rename flags 4302 * 4303 * The caller must hold multiple mutexes--see lock_rename()). 4304 * 4305 * If vfs_rename discovers a delegation in need of breaking at either 4306 * the source or destination, it will return -EWOULDBLOCK and return a 4307 * reference to the inode in delegated_inode. The caller should then 4308 * break the delegation and retry. Because breaking a delegation may 4309 * take a long time, the caller should drop all locks before doing 4310 * so. 4311 * 4312 * Alternatively, a caller may pass NULL for delegated_inode. This may 4313 * be appropriate for callers that expect the underlying filesystem not 4314 * to be NFS exported. 4315 * 4316 * The worst of all namespace operations - renaming directory. "Perverted" 4317 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4318 * Problems: 4319 * 4320 * a) we can get into loop creation. 4321 * b) race potential - two innocent renames can create a loop together. 4322 * That's where 4.4 screws up. Current fix: serialization on 4323 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4324 * story. 4325 * c) we have to lock _four_ objects - parents and victim (if it exists), 4326 * and source (if it is not a directory). 4327 * And that - after we got ->i_mutex on parents (until then we don't know 4328 * whether the target exists). Solution: try to be smart with locking 4329 * order for inodes. We rely on the fact that tree topology may change 4330 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4331 * move will be locked. Thus we can rank directories by the tree 4332 * (ancestors first) and rank all non-directories after them. 4333 * That works since everybody except rename does "lock parent, lookup, 4334 * lock child" and rename is under ->s_vfs_rename_mutex. 4335 * HOWEVER, it relies on the assumption that any object with ->lookup() 4336 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4337 * we'd better make sure that there's no link(2) for them. 4338 * d) conversion from fhandle to dentry may come in the wrong moment - when 4339 * we are removing the target. Solution: we will have to grab ->i_mutex 4340 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4341 * ->i_mutex on parents, which works but leads to some truly excessive 4342 * locking]. 4343 */ 4344 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 4345 struct inode *new_dir, struct dentry *new_dentry, 4346 struct inode **delegated_inode, unsigned int flags) 4347 { 4348 int error; 4349 bool is_dir = d_is_dir(old_dentry); 4350 struct inode *source = old_dentry->d_inode; 4351 struct inode *target = new_dentry->d_inode; 4352 bool new_is_dir = false; 4353 unsigned max_links = new_dir->i_sb->s_max_links; 4354 struct name_snapshot old_name; 4355 4356 if (source == target) 4357 return 0; 4358 4359 error = may_delete(old_dir, old_dentry, is_dir); 4360 if (error) 4361 return error; 4362 4363 if (!target) { 4364 error = may_create(new_dir, new_dentry); 4365 } else { 4366 new_is_dir = d_is_dir(new_dentry); 4367 4368 if (!(flags & RENAME_EXCHANGE)) 4369 error = may_delete(new_dir, new_dentry, is_dir); 4370 else 4371 error = may_delete(new_dir, new_dentry, new_is_dir); 4372 } 4373 if (error) 4374 return error; 4375 4376 if (!old_dir->i_op->rename) 4377 return -EPERM; 4378 4379 /* 4380 * If we are going to change the parent - check write permissions, 4381 * we'll need to flip '..'. 4382 */ 4383 if (new_dir != old_dir) { 4384 if (is_dir) { 4385 error = inode_permission(source, MAY_WRITE); 4386 if (error) 4387 return error; 4388 } 4389 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4390 error = inode_permission(target, MAY_WRITE); 4391 if (error) 4392 return error; 4393 } 4394 } 4395 4396 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 4397 flags); 4398 if (error) 4399 return error; 4400 4401 take_dentry_name_snapshot(&old_name, old_dentry); 4402 dget(new_dentry); 4403 if (!is_dir || (flags & RENAME_EXCHANGE)) 4404 lock_two_nondirectories(source, target); 4405 else if (target) 4406 inode_lock(target); 4407 4408 error = -EBUSY; 4409 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 4410 goto out; 4411 4412 if (max_links && new_dir != old_dir) { 4413 error = -EMLINK; 4414 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 4415 goto out; 4416 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 4417 old_dir->i_nlink >= max_links) 4418 goto out; 4419 } 4420 if (!is_dir) { 4421 error = try_break_deleg(source, delegated_inode); 4422 if (error) 4423 goto out; 4424 } 4425 if (target && !new_is_dir) { 4426 error = try_break_deleg(target, delegated_inode); 4427 if (error) 4428 goto out; 4429 } 4430 error = old_dir->i_op->rename(old_dir, old_dentry, 4431 new_dir, new_dentry, flags); 4432 if (error) 4433 goto out; 4434 4435 if (!(flags & RENAME_EXCHANGE) && target) { 4436 if (is_dir) { 4437 shrink_dcache_parent(new_dentry); 4438 target->i_flags |= S_DEAD; 4439 } 4440 dont_mount(new_dentry); 4441 detach_mounts(new_dentry); 4442 } 4443 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 4444 if (!(flags & RENAME_EXCHANGE)) 4445 d_move(old_dentry, new_dentry); 4446 else 4447 d_exchange(old_dentry, new_dentry); 4448 } 4449 out: 4450 if (!is_dir || (flags & RENAME_EXCHANGE)) 4451 unlock_two_nondirectories(source, target); 4452 else if (target) 4453 inode_unlock(target); 4454 dput(new_dentry); 4455 if (!error) { 4456 fsnotify_move(old_dir, new_dir, old_name.name, is_dir, 4457 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 4458 if (flags & RENAME_EXCHANGE) { 4459 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name, 4460 new_is_dir, NULL, new_dentry); 4461 } 4462 } 4463 release_dentry_name_snapshot(&old_name); 4464 4465 return error; 4466 } 4467 EXPORT_SYMBOL(vfs_rename); 4468 4469 static int do_renameat2(int olddfd, const char __user *oldname, int newdfd, 4470 const char __user *newname, unsigned int flags) 4471 { 4472 struct dentry *old_dentry, *new_dentry; 4473 struct dentry *trap; 4474 struct path old_path, new_path; 4475 struct qstr old_last, new_last; 4476 int old_type, new_type; 4477 struct inode *delegated_inode = NULL; 4478 struct filename *from; 4479 struct filename *to; 4480 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET; 4481 bool should_retry = false; 4482 int error; 4483 4484 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4485 return -EINVAL; 4486 4487 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 4488 (flags & RENAME_EXCHANGE)) 4489 return -EINVAL; 4490 4491 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD)) 4492 return -EPERM; 4493 4494 if (flags & RENAME_EXCHANGE) 4495 target_flags = 0; 4496 4497 retry: 4498 from = filename_parentat(olddfd, getname(oldname), lookup_flags, 4499 &old_path, &old_last, &old_type); 4500 if (IS_ERR(from)) { 4501 error = PTR_ERR(from); 4502 goto exit; 4503 } 4504 4505 to = filename_parentat(newdfd, getname(newname), lookup_flags, 4506 &new_path, &new_last, &new_type); 4507 if (IS_ERR(to)) { 4508 error = PTR_ERR(to); 4509 goto exit1; 4510 } 4511 4512 error = -EXDEV; 4513 if (old_path.mnt != new_path.mnt) 4514 goto exit2; 4515 4516 error = -EBUSY; 4517 if (old_type != LAST_NORM) 4518 goto exit2; 4519 4520 if (flags & RENAME_NOREPLACE) 4521 error = -EEXIST; 4522 if (new_type != LAST_NORM) 4523 goto exit2; 4524 4525 error = mnt_want_write(old_path.mnt); 4526 if (error) 4527 goto exit2; 4528 4529 retry_deleg: 4530 trap = lock_rename(new_path.dentry, old_path.dentry); 4531 4532 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags); 4533 error = PTR_ERR(old_dentry); 4534 if (IS_ERR(old_dentry)) 4535 goto exit3; 4536 /* source must exist */ 4537 error = -ENOENT; 4538 if (d_is_negative(old_dentry)) 4539 goto exit4; 4540 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags); 4541 error = PTR_ERR(new_dentry); 4542 if (IS_ERR(new_dentry)) 4543 goto exit4; 4544 error = -EEXIST; 4545 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 4546 goto exit5; 4547 if (flags & RENAME_EXCHANGE) { 4548 error = -ENOENT; 4549 if (d_is_negative(new_dentry)) 4550 goto exit5; 4551 4552 if (!d_is_dir(new_dentry)) { 4553 error = -ENOTDIR; 4554 if (new_last.name[new_last.len]) 4555 goto exit5; 4556 } 4557 } 4558 /* unless the source is a directory trailing slashes give -ENOTDIR */ 4559 if (!d_is_dir(old_dentry)) { 4560 error = -ENOTDIR; 4561 if (old_last.name[old_last.len]) 4562 goto exit5; 4563 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len]) 4564 goto exit5; 4565 } 4566 /* source should not be ancestor of target */ 4567 error = -EINVAL; 4568 if (old_dentry == trap) 4569 goto exit5; 4570 /* target should not be an ancestor of source */ 4571 if (!(flags & RENAME_EXCHANGE)) 4572 error = -ENOTEMPTY; 4573 if (new_dentry == trap) 4574 goto exit5; 4575 4576 error = security_path_rename(&old_path, old_dentry, 4577 &new_path, new_dentry, flags); 4578 if (error) 4579 goto exit5; 4580 error = vfs_rename(old_path.dentry->d_inode, old_dentry, 4581 new_path.dentry->d_inode, new_dentry, 4582 &delegated_inode, flags); 4583 exit5: 4584 dput(new_dentry); 4585 exit4: 4586 dput(old_dentry); 4587 exit3: 4588 unlock_rename(new_path.dentry, old_path.dentry); 4589 if (delegated_inode) { 4590 error = break_deleg_wait(&delegated_inode); 4591 if (!error) 4592 goto retry_deleg; 4593 } 4594 mnt_drop_write(old_path.mnt); 4595 exit2: 4596 if (retry_estale(error, lookup_flags)) 4597 should_retry = true; 4598 path_put(&new_path); 4599 putname(to); 4600 exit1: 4601 path_put(&old_path); 4602 putname(from); 4603 if (should_retry) { 4604 should_retry = false; 4605 lookup_flags |= LOOKUP_REVAL; 4606 goto retry; 4607 } 4608 exit: 4609 return error; 4610 } 4611 4612 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 4613 int, newdfd, const char __user *, newname, unsigned int, flags) 4614 { 4615 return do_renameat2(olddfd, oldname, newdfd, newname, flags); 4616 } 4617 4618 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 4619 int, newdfd, const char __user *, newname) 4620 { 4621 return do_renameat2(olddfd, oldname, newdfd, newname, 0); 4622 } 4623 4624 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 4625 { 4626 return do_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4627 } 4628 4629 int vfs_whiteout(struct inode *dir, struct dentry *dentry) 4630 { 4631 int error = may_create(dir, dentry); 4632 if (error) 4633 return error; 4634 4635 if (!dir->i_op->mknod) 4636 return -EPERM; 4637 4638 return dir->i_op->mknod(dir, dentry, 4639 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 4640 } 4641 EXPORT_SYMBOL(vfs_whiteout); 4642 4643 int readlink_copy(char __user *buffer, int buflen, const char *link) 4644 { 4645 int len = PTR_ERR(link); 4646 if (IS_ERR(link)) 4647 goto out; 4648 4649 len = strlen(link); 4650 if (len > (unsigned) buflen) 4651 len = buflen; 4652 if (copy_to_user(buffer, link, len)) 4653 len = -EFAULT; 4654 out: 4655 return len; 4656 } 4657 4658 /** 4659 * vfs_readlink - copy symlink body into userspace buffer 4660 * @dentry: dentry on which to get symbolic link 4661 * @buffer: user memory pointer 4662 * @buflen: size of buffer 4663 * 4664 * Does not touch atime. That's up to the caller if necessary 4665 * 4666 * Does not call security hook. 4667 */ 4668 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4669 { 4670 struct inode *inode = d_inode(dentry); 4671 DEFINE_DELAYED_CALL(done); 4672 const char *link; 4673 int res; 4674 4675 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) { 4676 if (unlikely(inode->i_op->readlink)) 4677 return inode->i_op->readlink(dentry, buffer, buflen); 4678 4679 if (!d_is_symlink(dentry)) 4680 return -EINVAL; 4681 4682 spin_lock(&inode->i_lock); 4683 inode->i_opflags |= IOP_DEFAULT_READLINK; 4684 spin_unlock(&inode->i_lock); 4685 } 4686 4687 link = inode->i_link; 4688 if (!link) { 4689 link = inode->i_op->get_link(dentry, inode, &done); 4690 if (IS_ERR(link)) 4691 return PTR_ERR(link); 4692 } 4693 res = readlink_copy(buffer, buflen, link); 4694 do_delayed_call(&done); 4695 return res; 4696 } 4697 EXPORT_SYMBOL(vfs_readlink); 4698 4699 /** 4700 * vfs_get_link - get symlink body 4701 * @dentry: dentry on which to get symbolic link 4702 * @done: caller needs to free returned data with this 4703 * 4704 * Calls security hook and i_op->get_link() on the supplied inode. 4705 * 4706 * It does not touch atime. That's up to the caller if necessary. 4707 * 4708 * Does not work on "special" symlinks like /proc/$$/fd/N 4709 */ 4710 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done) 4711 { 4712 const char *res = ERR_PTR(-EINVAL); 4713 struct inode *inode = d_inode(dentry); 4714 4715 if (d_is_symlink(dentry)) { 4716 res = ERR_PTR(security_inode_readlink(dentry)); 4717 if (!res) 4718 res = inode->i_op->get_link(dentry, inode, done); 4719 } 4720 return res; 4721 } 4722 EXPORT_SYMBOL(vfs_get_link); 4723 4724 /* get the link contents into pagecache */ 4725 const char *page_get_link(struct dentry *dentry, struct inode *inode, 4726 struct delayed_call *callback) 4727 { 4728 char *kaddr; 4729 struct page *page; 4730 struct address_space *mapping = inode->i_mapping; 4731 4732 if (!dentry) { 4733 page = find_get_page(mapping, 0); 4734 if (!page) 4735 return ERR_PTR(-ECHILD); 4736 if (!PageUptodate(page)) { 4737 put_page(page); 4738 return ERR_PTR(-ECHILD); 4739 } 4740 } else { 4741 page = read_mapping_page(mapping, 0, NULL); 4742 if (IS_ERR(page)) 4743 return (char*)page; 4744 } 4745 set_delayed_call(callback, page_put_link, page); 4746 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM); 4747 kaddr = page_address(page); 4748 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1); 4749 return kaddr; 4750 } 4751 4752 EXPORT_SYMBOL(page_get_link); 4753 4754 void page_put_link(void *arg) 4755 { 4756 put_page(arg); 4757 } 4758 EXPORT_SYMBOL(page_put_link); 4759 4760 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4761 { 4762 DEFINE_DELAYED_CALL(done); 4763 int res = readlink_copy(buffer, buflen, 4764 page_get_link(dentry, d_inode(dentry), 4765 &done)); 4766 do_delayed_call(&done); 4767 return res; 4768 } 4769 EXPORT_SYMBOL(page_readlink); 4770 4771 /* 4772 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 4773 */ 4774 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 4775 { 4776 struct address_space *mapping = inode->i_mapping; 4777 struct page *page; 4778 void *fsdata; 4779 int err; 4780 unsigned int flags = 0; 4781 if (nofs) 4782 flags |= AOP_FLAG_NOFS; 4783 4784 retry: 4785 err = pagecache_write_begin(NULL, mapping, 0, len-1, 4786 flags, &page, &fsdata); 4787 if (err) 4788 goto fail; 4789 4790 memcpy(page_address(page), symname, len-1); 4791 4792 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 4793 page, fsdata); 4794 if (err < 0) 4795 goto fail; 4796 if (err < len-1) 4797 goto retry; 4798 4799 mark_inode_dirty(inode); 4800 return 0; 4801 fail: 4802 return err; 4803 } 4804 EXPORT_SYMBOL(__page_symlink); 4805 4806 int page_symlink(struct inode *inode, const char *symname, int len) 4807 { 4808 return __page_symlink(inode, symname, len, 4809 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS)); 4810 } 4811 EXPORT_SYMBOL(page_symlink); 4812 4813 const struct inode_operations page_symlink_inode_operations = { 4814 .get_link = page_get_link, 4815 }; 4816 EXPORT_SYMBOL(page_symlink_inode_operations); 4817