xref: /linux/fs/namei.c (revision c537b994505099b7197e7d3125b942ecbcc51eb6)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/quotaops.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/smp_lock.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/namei.h>
35 #include <asm/namei.h>
36 #include <asm/uaccess.h>
37 
38 #define ACC_MODE(x) ("\000\004\002\006"[(x)&O_ACCMODE])
39 
40 /* [Feb-1997 T. Schoebel-Theuer]
41  * Fundamental changes in the pathname lookup mechanisms (namei)
42  * were necessary because of omirr.  The reason is that omirr needs
43  * to know the _real_ pathname, not the user-supplied one, in case
44  * of symlinks (and also when transname replacements occur).
45  *
46  * The new code replaces the old recursive symlink resolution with
47  * an iterative one (in case of non-nested symlink chains).  It does
48  * this with calls to <fs>_follow_link().
49  * As a side effect, dir_namei(), _namei() and follow_link() are now
50  * replaced with a single function lookup_dentry() that can handle all
51  * the special cases of the former code.
52  *
53  * With the new dcache, the pathname is stored at each inode, at least as
54  * long as the refcount of the inode is positive.  As a side effect, the
55  * size of the dcache depends on the inode cache and thus is dynamic.
56  *
57  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
58  * resolution to correspond with current state of the code.
59  *
60  * Note that the symlink resolution is not *completely* iterative.
61  * There is still a significant amount of tail- and mid- recursion in
62  * the algorithm.  Also, note that <fs>_readlink() is not used in
63  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
64  * may return different results than <fs>_follow_link().  Many virtual
65  * filesystems (including /proc) exhibit this behavior.
66  */
67 
68 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
69  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
70  * and the name already exists in form of a symlink, try to create the new
71  * name indicated by the symlink. The old code always complained that the
72  * name already exists, due to not following the symlink even if its target
73  * is nonexistent.  The new semantics affects also mknod() and link() when
74  * the name is a symlink pointing to a non-existant name.
75  *
76  * I don't know which semantics is the right one, since I have no access
77  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
78  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
79  * "old" one. Personally, I think the new semantics is much more logical.
80  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
81  * file does succeed in both HP-UX and SunOs, but not in Solaris
82  * and in the old Linux semantics.
83  */
84 
85 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
86  * semantics.  See the comments in "open_namei" and "do_link" below.
87  *
88  * [10-Sep-98 Alan Modra] Another symlink change.
89  */
90 
91 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
92  *	inside the path - always follow.
93  *	in the last component in creation/removal/renaming - never follow.
94  *	if LOOKUP_FOLLOW passed - follow.
95  *	if the pathname has trailing slashes - follow.
96  *	otherwise - don't follow.
97  * (applied in that order).
98  *
99  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
100  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
101  * During the 2.4 we need to fix the userland stuff depending on it -
102  * hopefully we will be able to get rid of that wart in 2.5. So far only
103  * XEmacs seems to be relying on it...
104  */
105 /*
106  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
107  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
108  * any extra contention...
109  */
110 
111 /* In order to reduce some races, while at the same time doing additional
112  * checking and hopefully speeding things up, we copy filenames to the
113  * kernel data space before using them..
114  *
115  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
116  * PATH_MAX includes the nul terminator --RR.
117  */
118 static int do_getname(const char __user *filename, char *page)
119 {
120 	int retval;
121 	unsigned long len = PATH_MAX;
122 
123 	if (!segment_eq(get_fs(), KERNEL_DS)) {
124 		if ((unsigned long) filename >= TASK_SIZE)
125 			return -EFAULT;
126 		if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
127 			len = TASK_SIZE - (unsigned long) filename;
128 	}
129 
130 	retval = strncpy_from_user(page, filename, len);
131 	if (retval > 0) {
132 		if (retval < len)
133 			return 0;
134 		return -ENAMETOOLONG;
135 	} else if (!retval)
136 		retval = -ENOENT;
137 	return retval;
138 }
139 
140 char * getname(const char __user * filename)
141 {
142 	char *tmp, *result;
143 
144 	result = ERR_PTR(-ENOMEM);
145 	tmp = __getname();
146 	if (tmp)  {
147 		int retval = do_getname(filename, tmp);
148 
149 		result = tmp;
150 		if (retval < 0) {
151 			__putname(tmp);
152 			result = ERR_PTR(retval);
153 		}
154 	}
155 	audit_getname(result);
156 	return result;
157 }
158 
159 #ifdef CONFIG_AUDITSYSCALL
160 void putname(const char *name)
161 {
162 	if (unlikely(!audit_dummy_context()))
163 		audit_putname(name);
164 	else
165 		__putname(name);
166 }
167 EXPORT_SYMBOL(putname);
168 #endif
169 
170 
171 /**
172  * generic_permission  -  check for access rights on a Posix-like filesystem
173  * @inode:	inode to check access rights for
174  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
175  * @check_acl:	optional callback to check for Posix ACLs
176  *
177  * Used to check for read/write/execute permissions on a file.
178  * We use "fsuid" for this, letting us set arbitrary permissions
179  * for filesystem access without changing the "normal" uids which
180  * are used for other things..
181  */
182 int generic_permission(struct inode *inode, int mask,
183 		int (*check_acl)(struct inode *inode, int mask))
184 {
185 	umode_t			mode = inode->i_mode;
186 
187 	if (current->fsuid == inode->i_uid)
188 		mode >>= 6;
189 	else {
190 		if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
191 			int error = check_acl(inode, mask);
192 			if (error == -EACCES)
193 				goto check_capabilities;
194 			else if (error != -EAGAIN)
195 				return error;
196 		}
197 
198 		if (in_group_p(inode->i_gid))
199 			mode >>= 3;
200 	}
201 
202 	/*
203 	 * If the DACs are ok we don't need any capability check.
204 	 */
205 	if (((mode & mask & (MAY_READ|MAY_WRITE|MAY_EXEC)) == mask))
206 		return 0;
207 
208  check_capabilities:
209 	/*
210 	 * Read/write DACs are always overridable.
211 	 * Executable DACs are overridable if at least one exec bit is set.
212 	 */
213 	if (!(mask & MAY_EXEC) ||
214 	    (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
215 		if (capable(CAP_DAC_OVERRIDE))
216 			return 0;
217 
218 	/*
219 	 * Searching includes executable on directories, else just read.
220 	 */
221 	if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
222 		if (capable(CAP_DAC_READ_SEARCH))
223 			return 0;
224 
225 	return -EACCES;
226 }
227 
228 int permission(struct inode *inode, int mask, struct nameidata *nd)
229 {
230 	umode_t mode = inode->i_mode;
231 	int retval, submask;
232 
233 	if (mask & MAY_WRITE) {
234 
235 		/*
236 		 * Nobody gets write access to a read-only fs.
237 		 */
238 		if (IS_RDONLY(inode) &&
239 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
240 			return -EROFS;
241 
242 		/*
243 		 * Nobody gets write access to an immutable file.
244 		 */
245 		if (IS_IMMUTABLE(inode))
246 			return -EACCES;
247 	}
248 
249 
250 	/*
251 	 * MAY_EXEC on regular files requires special handling: We override
252 	 * filesystem execute permissions if the mode bits aren't set or
253 	 * the fs is mounted with the "noexec" flag.
254 	 */
255 	if ((mask & MAY_EXEC) && S_ISREG(mode) && (!(mode & S_IXUGO) ||
256 			(nd && nd->mnt && (nd->mnt->mnt_flags & MNT_NOEXEC))))
257 		return -EACCES;
258 
259 	/* Ordinary permission routines do not understand MAY_APPEND. */
260 	submask = mask & ~MAY_APPEND;
261 	if (inode->i_op && inode->i_op->permission)
262 		retval = inode->i_op->permission(inode, submask, nd);
263 	else
264 		retval = generic_permission(inode, submask, NULL);
265 	if (retval)
266 		return retval;
267 
268 	return security_inode_permission(inode, mask, nd);
269 }
270 
271 /**
272  * vfs_permission  -  check for access rights to a given path
273  * @nd:		lookup result that describes the path
274  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
275  *
276  * Used to check for read/write/execute permissions on a path.
277  * We use "fsuid" for this, letting us set arbitrary permissions
278  * for filesystem access without changing the "normal" uids which
279  * are used for other things.
280  */
281 int vfs_permission(struct nameidata *nd, int mask)
282 {
283 	return permission(nd->dentry->d_inode, mask, nd);
284 }
285 
286 /**
287  * file_permission  -  check for additional access rights to a given file
288  * @file:	file to check access rights for
289  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
290  *
291  * Used to check for read/write/execute permissions on an already opened
292  * file.
293  *
294  * Note:
295  *	Do not use this function in new code.  All access checks should
296  *	be done using vfs_permission().
297  */
298 int file_permission(struct file *file, int mask)
299 {
300 	return permission(file->f_path.dentry->d_inode, mask, NULL);
301 }
302 
303 /*
304  * get_write_access() gets write permission for a file.
305  * put_write_access() releases this write permission.
306  * This is used for regular files.
307  * We cannot support write (and maybe mmap read-write shared) accesses and
308  * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
309  * can have the following values:
310  * 0: no writers, no VM_DENYWRITE mappings
311  * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
312  * > 0: (i_writecount) users are writing to the file.
313  *
314  * Normally we operate on that counter with atomic_{inc,dec} and it's safe
315  * except for the cases where we don't hold i_writecount yet. Then we need to
316  * use {get,deny}_write_access() - these functions check the sign and refuse
317  * to do the change if sign is wrong. Exclusion between them is provided by
318  * the inode->i_lock spinlock.
319  */
320 
321 int get_write_access(struct inode * inode)
322 {
323 	spin_lock(&inode->i_lock);
324 	if (atomic_read(&inode->i_writecount) < 0) {
325 		spin_unlock(&inode->i_lock);
326 		return -ETXTBSY;
327 	}
328 	atomic_inc(&inode->i_writecount);
329 	spin_unlock(&inode->i_lock);
330 
331 	return 0;
332 }
333 
334 int deny_write_access(struct file * file)
335 {
336 	struct inode *inode = file->f_path.dentry->d_inode;
337 
338 	spin_lock(&inode->i_lock);
339 	if (atomic_read(&inode->i_writecount) > 0) {
340 		spin_unlock(&inode->i_lock);
341 		return -ETXTBSY;
342 	}
343 	atomic_dec(&inode->i_writecount);
344 	spin_unlock(&inode->i_lock);
345 
346 	return 0;
347 }
348 
349 void path_release(struct nameidata *nd)
350 {
351 	dput(nd->dentry);
352 	mntput(nd->mnt);
353 }
354 
355 /*
356  * umount() mustn't call path_release()/mntput() as that would clear
357  * mnt_expiry_mark
358  */
359 void path_release_on_umount(struct nameidata *nd)
360 {
361 	dput(nd->dentry);
362 	mntput_no_expire(nd->mnt);
363 }
364 
365 /**
366  * release_open_intent - free up open intent resources
367  * @nd: pointer to nameidata
368  */
369 void release_open_intent(struct nameidata *nd)
370 {
371 	if (nd->intent.open.file->f_path.dentry == NULL)
372 		put_filp(nd->intent.open.file);
373 	else
374 		fput(nd->intent.open.file);
375 }
376 
377 static inline struct dentry *
378 do_revalidate(struct dentry *dentry, struct nameidata *nd)
379 {
380 	int status = dentry->d_op->d_revalidate(dentry, nd);
381 	if (unlikely(status <= 0)) {
382 		/*
383 		 * The dentry failed validation.
384 		 * If d_revalidate returned 0 attempt to invalidate
385 		 * the dentry otherwise d_revalidate is asking us
386 		 * to return a fail status.
387 		 */
388 		if (!status) {
389 			if (!d_invalidate(dentry)) {
390 				dput(dentry);
391 				dentry = NULL;
392 			}
393 		} else {
394 			dput(dentry);
395 			dentry = ERR_PTR(status);
396 		}
397 	}
398 	return dentry;
399 }
400 
401 /*
402  * Internal lookup() using the new generic dcache.
403  * SMP-safe
404  */
405 static struct dentry * cached_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
406 {
407 	struct dentry * dentry = __d_lookup(parent, name);
408 
409 	/* lockess __d_lookup may fail due to concurrent d_move()
410 	 * in some unrelated directory, so try with d_lookup
411 	 */
412 	if (!dentry)
413 		dentry = d_lookup(parent, name);
414 
415 	if (dentry && dentry->d_op && dentry->d_op->d_revalidate)
416 		dentry = do_revalidate(dentry, nd);
417 
418 	return dentry;
419 }
420 
421 /*
422  * Short-cut version of permission(), for calling by
423  * path_walk(), when dcache lock is held.  Combines parts
424  * of permission() and generic_permission(), and tests ONLY for
425  * MAY_EXEC permission.
426  *
427  * If appropriate, check DAC only.  If not appropriate, or
428  * short-cut DAC fails, then call permission() to do more
429  * complete permission check.
430  */
431 static int exec_permission_lite(struct inode *inode,
432 				       struct nameidata *nd)
433 {
434 	umode_t	mode = inode->i_mode;
435 
436 	if (inode->i_op && inode->i_op->permission)
437 		return -EAGAIN;
438 
439 	if (current->fsuid == inode->i_uid)
440 		mode >>= 6;
441 	else if (in_group_p(inode->i_gid))
442 		mode >>= 3;
443 
444 	if (mode & MAY_EXEC)
445 		goto ok;
446 
447 	if ((inode->i_mode & S_IXUGO) && capable(CAP_DAC_OVERRIDE))
448 		goto ok;
449 
450 	if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_OVERRIDE))
451 		goto ok;
452 
453 	if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_READ_SEARCH))
454 		goto ok;
455 
456 	return -EACCES;
457 ok:
458 	return security_inode_permission(inode, MAY_EXEC, nd);
459 }
460 
461 /*
462  * This is called when everything else fails, and we actually have
463  * to go to the low-level filesystem to find out what we should do..
464  *
465  * We get the directory semaphore, and after getting that we also
466  * make sure that nobody added the entry to the dcache in the meantime..
467  * SMP-safe
468  */
469 static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
470 {
471 	struct dentry * result;
472 	struct inode *dir = parent->d_inode;
473 
474 	mutex_lock(&dir->i_mutex);
475 	/*
476 	 * First re-do the cached lookup just in case it was created
477 	 * while we waited for the directory semaphore..
478 	 *
479 	 * FIXME! This could use version numbering or similar to
480 	 * avoid unnecessary cache lookups.
481 	 *
482 	 * The "dcache_lock" is purely to protect the RCU list walker
483 	 * from concurrent renames at this point (we mustn't get false
484 	 * negatives from the RCU list walk here, unlike the optimistic
485 	 * fast walk).
486 	 *
487 	 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup
488 	 */
489 	result = d_lookup(parent, name);
490 	if (!result) {
491 		struct dentry * dentry = d_alloc(parent, name);
492 		result = ERR_PTR(-ENOMEM);
493 		if (dentry) {
494 			result = dir->i_op->lookup(dir, dentry, nd);
495 			if (result)
496 				dput(dentry);
497 			else
498 				result = dentry;
499 		}
500 		mutex_unlock(&dir->i_mutex);
501 		return result;
502 	}
503 
504 	/*
505 	 * Uhhuh! Nasty case: the cache was re-populated while
506 	 * we waited on the semaphore. Need to revalidate.
507 	 */
508 	mutex_unlock(&dir->i_mutex);
509 	if (result->d_op && result->d_op->d_revalidate) {
510 		result = do_revalidate(result, nd);
511 		if (!result)
512 			result = ERR_PTR(-ENOENT);
513 	}
514 	return result;
515 }
516 
517 static int __emul_lookup_dentry(const char *, struct nameidata *);
518 
519 /* SMP-safe */
520 static __always_inline int
521 walk_init_root(const char *name, struct nameidata *nd)
522 {
523 	struct fs_struct *fs = current->fs;
524 
525 	read_lock(&fs->lock);
526 	if (fs->altroot && !(nd->flags & LOOKUP_NOALT)) {
527 		nd->mnt = mntget(fs->altrootmnt);
528 		nd->dentry = dget(fs->altroot);
529 		read_unlock(&fs->lock);
530 		if (__emul_lookup_dentry(name,nd))
531 			return 0;
532 		read_lock(&fs->lock);
533 	}
534 	nd->mnt = mntget(fs->rootmnt);
535 	nd->dentry = dget(fs->root);
536 	read_unlock(&fs->lock);
537 	return 1;
538 }
539 
540 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
541 {
542 	int res = 0;
543 	char *name;
544 	if (IS_ERR(link))
545 		goto fail;
546 
547 	if (*link == '/') {
548 		path_release(nd);
549 		if (!walk_init_root(link, nd))
550 			/* weird __emul_prefix() stuff did it */
551 			goto out;
552 	}
553 	res = link_path_walk(link, nd);
554 out:
555 	if (nd->depth || res || nd->last_type!=LAST_NORM)
556 		return res;
557 	/*
558 	 * If it is an iterative symlinks resolution in open_namei() we
559 	 * have to copy the last component. And all that crap because of
560 	 * bloody create() on broken symlinks. Furrfu...
561 	 */
562 	name = __getname();
563 	if (unlikely(!name)) {
564 		path_release(nd);
565 		return -ENOMEM;
566 	}
567 	strcpy(name, nd->last.name);
568 	nd->last.name = name;
569 	return 0;
570 fail:
571 	path_release(nd);
572 	return PTR_ERR(link);
573 }
574 
575 static inline void dput_path(struct path *path, struct nameidata *nd)
576 {
577 	dput(path->dentry);
578 	if (path->mnt != nd->mnt)
579 		mntput(path->mnt);
580 }
581 
582 static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
583 {
584 	dput(nd->dentry);
585 	if (nd->mnt != path->mnt)
586 		mntput(nd->mnt);
587 	nd->mnt = path->mnt;
588 	nd->dentry = path->dentry;
589 }
590 
591 static __always_inline int __do_follow_link(struct path *path, struct nameidata *nd)
592 {
593 	int error;
594 	void *cookie;
595 	struct dentry *dentry = path->dentry;
596 
597 	touch_atime(path->mnt, dentry);
598 	nd_set_link(nd, NULL);
599 
600 	if (path->mnt != nd->mnt) {
601 		path_to_nameidata(path, nd);
602 		dget(dentry);
603 	}
604 	mntget(path->mnt);
605 	cookie = dentry->d_inode->i_op->follow_link(dentry, nd);
606 	error = PTR_ERR(cookie);
607 	if (!IS_ERR(cookie)) {
608 		char *s = nd_get_link(nd);
609 		error = 0;
610 		if (s)
611 			error = __vfs_follow_link(nd, s);
612 		if (dentry->d_inode->i_op->put_link)
613 			dentry->d_inode->i_op->put_link(dentry, nd, cookie);
614 	}
615 	dput(dentry);
616 	mntput(path->mnt);
617 
618 	return error;
619 }
620 
621 /*
622  * This limits recursive symlink follows to 8, while
623  * limiting consecutive symlinks to 40.
624  *
625  * Without that kind of total limit, nasty chains of consecutive
626  * symlinks can cause almost arbitrarily long lookups.
627  */
628 static inline int do_follow_link(struct path *path, struct nameidata *nd)
629 {
630 	int err = -ELOOP;
631 	if (current->link_count >= MAX_NESTED_LINKS)
632 		goto loop;
633 	if (current->total_link_count >= 40)
634 		goto loop;
635 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
636 	cond_resched();
637 	err = security_inode_follow_link(path->dentry, nd);
638 	if (err)
639 		goto loop;
640 	current->link_count++;
641 	current->total_link_count++;
642 	nd->depth++;
643 	err = __do_follow_link(path, nd);
644 	current->link_count--;
645 	nd->depth--;
646 	return err;
647 loop:
648 	dput_path(path, nd);
649 	path_release(nd);
650 	return err;
651 }
652 
653 int follow_up(struct vfsmount **mnt, struct dentry **dentry)
654 {
655 	struct vfsmount *parent;
656 	struct dentry *mountpoint;
657 	spin_lock(&vfsmount_lock);
658 	parent=(*mnt)->mnt_parent;
659 	if (parent == *mnt) {
660 		spin_unlock(&vfsmount_lock);
661 		return 0;
662 	}
663 	mntget(parent);
664 	mountpoint=dget((*mnt)->mnt_mountpoint);
665 	spin_unlock(&vfsmount_lock);
666 	dput(*dentry);
667 	*dentry = mountpoint;
668 	mntput(*mnt);
669 	*mnt = parent;
670 	return 1;
671 }
672 
673 /* no need for dcache_lock, as serialization is taken care in
674  * namespace.c
675  */
676 static int __follow_mount(struct path *path)
677 {
678 	int res = 0;
679 	while (d_mountpoint(path->dentry)) {
680 		struct vfsmount *mounted = lookup_mnt(path->mnt, path->dentry);
681 		if (!mounted)
682 			break;
683 		dput(path->dentry);
684 		if (res)
685 			mntput(path->mnt);
686 		path->mnt = mounted;
687 		path->dentry = dget(mounted->mnt_root);
688 		res = 1;
689 	}
690 	return res;
691 }
692 
693 static void follow_mount(struct vfsmount **mnt, struct dentry **dentry)
694 {
695 	while (d_mountpoint(*dentry)) {
696 		struct vfsmount *mounted = lookup_mnt(*mnt, *dentry);
697 		if (!mounted)
698 			break;
699 		dput(*dentry);
700 		mntput(*mnt);
701 		*mnt = mounted;
702 		*dentry = dget(mounted->mnt_root);
703 	}
704 }
705 
706 /* no need for dcache_lock, as serialization is taken care in
707  * namespace.c
708  */
709 int follow_down(struct vfsmount **mnt, struct dentry **dentry)
710 {
711 	struct vfsmount *mounted;
712 
713 	mounted = lookup_mnt(*mnt, *dentry);
714 	if (mounted) {
715 		dput(*dentry);
716 		mntput(*mnt);
717 		*mnt = mounted;
718 		*dentry = dget(mounted->mnt_root);
719 		return 1;
720 	}
721 	return 0;
722 }
723 
724 static __always_inline void follow_dotdot(struct nameidata *nd)
725 {
726 	struct fs_struct *fs = current->fs;
727 
728 	while(1) {
729 		struct vfsmount *parent;
730 		struct dentry *old = nd->dentry;
731 
732                 read_lock(&fs->lock);
733 		if (nd->dentry == fs->root &&
734 		    nd->mnt == fs->rootmnt) {
735                         read_unlock(&fs->lock);
736 			break;
737 		}
738                 read_unlock(&fs->lock);
739 		spin_lock(&dcache_lock);
740 		if (nd->dentry != nd->mnt->mnt_root) {
741 			nd->dentry = dget(nd->dentry->d_parent);
742 			spin_unlock(&dcache_lock);
743 			dput(old);
744 			break;
745 		}
746 		spin_unlock(&dcache_lock);
747 		spin_lock(&vfsmount_lock);
748 		parent = nd->mnt->mnt_parent;
749 		if (parent == nd->mnt) {
750 			spin_unlock(&vfsmount_lock);
751 			break;
752 		}
753 		mntget(parent);
754 		nd->dentry = dget(nd->mnt->mnt_mountpoint);
755 		spin_unlock(&vfsmount_lock);
756 		dput(old);
757 		mntput(nd->mnt);
758 		nd->mnt = parent;
759 	}
760 	follow_mount(&nd->mnt, &nd->dentry);
761 }
762 
763 /*
764  *  It's more convoluted than I'd like it to be, but... it's still fairly
765  *  small and for now I'd prefer to have fast path as straight as possible.
766  *  It _is_ time-critical.
767  */
768 static int do_lookup(struct nameidata *nd, struct qstr *name,
769 		     struct path *path)
770 {
771 	struct vfsmount *mnt = nd->mnt;
772 	struct dentry *dentry = __d_lookup(nd->dentry, name);
773 
774 	if (!dentry)
775 		goto need_lookup;
776 	if (dentry->d_op && dentry->d_op->d_revalidate)
777 		goto need_revalidate;
778 done:
779 	path->mnt = mnt;
780 	path->dentry = dentry;
781 	__follow_mount(path);
782 	return 0;
783 
784 need_lookup:
785 	dentry = real_lookup(nd->dentry, name, nd);
786 	if (IS_ERR(dentry))
787 		goto fail;
788 	goto done;
789 
790 need_revalidate:
791 	dentry = do_revalidate(dentry, nd);
792 	if (!dentry)
793 		goto need_lookup;
794 	if (IS_ERR(dentry))
795 		goto fail;
796 	goto done;
797 
798 fail:
799 	return PTR_ERR(dentry);
800 }
801 
802 /*
803  * Name resolution.
804  * This is the basic name resolution function, turning a pathname into
805  * the final dentry. We expect 'base' to be positive and a directory.
806  *
807  * Returns 0 and nd will have valid dentry and mnt on success.
808  * Returns error and drops reference to input namei data on failure.
809  */
810 static fastcall int __link_path_walk(const char * name, struct nameidata *nd)
811 {
812 	struct path next;
813 	struct inode *inode;
814 	int err;
815 	unsigned int lookup_flags = nd->flags;
816 
817 	while (*name=='/')
818 		name++;
819 	if (!*name)
820 		goto return_reval;
821 
822 	inode = nd->dentry->d_inode;
823 	if (nd->depth)
824 		lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
825 
826 	/* At this point we know we have a real path component. */
827 	for(;;) {
828 		unsigned long hash;
829 		struct qstr this;
830 		unsigned int c;
831 
832 		nd->flags |= LOOKUP_CONTINUE;
833 		err = exec_permission_lite(inode, nd);
834 		if (err == -EAGAIN)
835 			err = vfs_permission(nd, MAY_EXEC);
836  		if (err)
837 			break;
838 
839 		this.name = name;
840 		c = *(const unsigned char *)name;
841 
842 		hash = init_name_hash();
843 		do {
844 			name++;
845 			hash = partial_name_hash(c, hash);
846 			c = *(const unsigned char *)name;
847 		} while (c && (c != '/'));
848 		this.len = name - (const char *) this.name;
849 		this.hash = end_name_hash(hash);
850 
851 		/* remove trailing slashes? */
852 		if (!c)
853 			goto last_component;
854 		while (*++name == '/');
855 		if (!*name)
856 			goto last_with_slashes;
857 
858 		/*
859 		 * "." and ".." are special - ".." especially so because it has
860 		 * to be able to know about the current root directory and
861 		 * parent relationships.
862 		 */
863 		if (this.name[0] == '.') switch (this.len) {
864 			default:
865 				break;
866 			case 2:
867 				if (this.name[1] != '.')
868 					break;
869 				follow_dotdot(nd);
870 				inode = nd->dentry->d_inode;
871 				/* fallthrough */
872 			case 1:
873 				continue;
874 		}
875 		/*
876 		 * See if the low-level filesystem might want
877 		 * to use its own hash..
878 		 */
879 		if (nd->dentry->d_op && nd->dentry->d_op->d_hash) {
880 			err = nd->dentry->d_op->d_hash(nd->dentry, &this);
881 			if (err < 0)
882 				break;
883 		}
884 		/* This does the actual lookups.. */
885 		err = do_lookup(nd, &this, &next);
886 		if (err)
887 			break;
888 
889 		err = -ENOENT;
890 		inode = next.dentry->d_inode;
891 		if (!inode)
892 			goto out_dput;
893 		err = -ENOTDIR;
894 		if (!inode->i_op)
895 			goto out_dput;
896 
897 		if (inode->i_op->follow_link) {
898 			err = do_follow_link(&next, nd);
899 			if (err)
900 				goto return_err;
901 			err = -ENOENT;
902 			inode = nd->dentry->d_inode;
903 			if (!inode)
904 				break;
905 			err = -ENOTDIR;
906 			if (!inode->i_op)
907 				break;
908 		} else
909 			path_to_nameidata(&next, nd);
910 		err = -ENOTDIR;
911 		if (!inode->i_op->lookup)
912 			break;
913 		continue;
914 		/* here ends the main loop */
915 
916 last_with_slashes:
917 		lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
918 last_component:
919 		/* Clear LOOKUP_CONTINUE iff it was previously unset */
920 		nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
921 		if (lookup_flags & LOOKUP_PARENT)
922 			goto lookup_parent;
923 		if (this.name[0] == '.') switch (this.len) {
924 			default:
925 				break;
926 			case 2:
927 				if (this.name[1] != '.')
928 					break;
929 				follow_dotdot(nd);
930 				inode = nd->dentry->d_inode;
931 				/* fallthrough */
932 			case 1:
933 				goto return_reval;
934 		}
935 		if (nd->dentry->d_op && nd->dentry->d_op->d_hash) {
936 			err = nd->dentry->d_op->d_hash(nd->dentry, &this);
937 			if (err < 0)
938 				break;
939 		}
940 		err = do_lookup(nd, &this, &next);
941 		if (err)
942 			break;
943 		inode = next.dentry->d_inode;
944 		if ((lookup_flags & LOOKUP_FOLLOW)
945 		    && inode && inode->i_op && inode->i_op->follow_link) {
946 			err = do_follow_link(&next, nd);
947 			if (err)
948 				goto return_err;
949 			inode = nd->dentry->d_inode;
950 		} else
951 			path_to_nameidata(&next, nd);
952 		err = -ENOENT;
953 		if (!inode)
954 			break;
955 		if (lookup_flags & LOOKUP_DIRECTORY) {
956 			err = -ENOTDIR;
957 			if (!inode->i_op || !inode->i_op->lookup)
958 				break;
959 		}
960 		goto return_base;
961 lookup_parent:
962 		nd->last = this;
963 		nd->last_type = LAST_NORM;
964 		if (this.name[0] != '.')
965 			goto return_base;
966 		if (this.len == 1)
967 			nd->last_type = LAST_DOT;
968 		else if (this.len == 2 && this.name[1] == '.')
969 			nd->last_type = LAST_DOTDOT;
970 		else
971 			goto return_base;
972 return_reval:
973 		/*
974 		 * We bypassed the ordinary revalidation routines.
975 		 * We may need to check the cached dentry for staleness.
976 		 */
977 		if (nd->dentry && nd->dentry->d_sb &&
978 		    (nd->dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
979 			err = -ESTALE;
980 			/* Note: we do not d_invalidate() */
981 			if (!nd->dentry->d_op->d_revalidate(nd->dentry, nd))
982 				break;
983 		}
984 return_base:
985 		return 0;
986 out_dput:
987 		dput_path(&next, nd);
988 		break;
989 	}
990 	path_release(nd);
991 return_err:
992 	return err;
993 }
994 
995 /*
996  * Wrapper to retry pathname resolution whenever the underlying
997  * file system returns an ESTALE.
998  *
999  * Retry the whole path once, forcing real lookup requests
1000  * instead of relying on the dcache.
1001  */
1002 int fastcall link_path_walk(const char *name, struct nameidata *nd)
1003 {
1004 	struct nameidata save = *nd;
1005 	int result;
1006 
1007 	/* make sure the stuff we saved doesn't go away */
1008 	dget(save.dentry);
1009 	mntget(save.mnt);
1010 
1011 	result = __link_path_walk(name, nd);
1012 	if (result == -ESTALE) {
1013 		*nd = save;
1014 		dget(nd->dentry);
1015 		mntget(nd->mnt);
1016 		nd->flags |= LOOKUP_REVAL;
1017 		result = __link_path_walk(name, nd);
1018 	}
1019 
1020 	dput(save.dentry);
1021 	mntput(save.mnt);
1022 
1023 	return result;
1024 }
1025 
1026 int fastcall path_walk(const char * name, struct nameidata *nd)
1027 {
1028 	current->total_link_count = 0;
1029 	return link_path_walk(name, nd);
1030 }
1031 
1032 /*
1033  * SMP-safe: Returns 1 and nd will have valid dentry and mnt, if
1034  * everything is done. Returns 0 and drops input nd, if lookup failed;
1035  */
1036 static int __emul_lookup_dentry(const char *name, struct nameidata *nd)
1037 {
1038 	if (path_walk(name, nd))
1039 		return 0;		/* something went wrong... */
1040 
1041 	if (!nd->dentry->d_inode || S_ISDIR(nd->dentry->d_inode->i_mode)) {
1042 		struct dentry *old_dentry = nd->dentry;
1043 		struct vfsmount *old_mnt = nd->mnt;
1044 		struct qstr last = nd->last;
1045 		int last_type = nd->last_type;
1046 		struct fs_struct *fs = current->fs;
1047 
1048 		/*
1049 		 * NAME was not found in alternate root or it's a directory.
1050 		 * Try to find it in the normal root:
1051 		 */
1052 		nd->last_type = LAST_ROOT;
1053 		read_lock(&fs->lock);
1054 		nd->mnt = mntget(fs->rootmnt);
1055 		nd->dentry = dget(fs->root);
1056 		read_unlock(&fs->lock);
1057 		if (path_walk(name, nd) == 0) {
1058 			if (nd->dentry->d_inode) {
1059 				dput(old_dentry);
1060 				mntput(old_mnt);
1061 				return 1;
1062 			}
1063 			path_release(nd);
1064 		}
1065 		nd->dentry = old_dentry;
1066 		nd->mnt = old_mnt;
1067 		nd->last = last;
1068 		nd->last_type = last_type;
1069 	}
1070 	return 1;
1071 }
1072 
1073 void set_fs_altroot(void)
1074 {
1075 	char *emul = __emul_prefix();
1076 	struct nameidata nd;
1077 	struct vfsmount *mnt = NULL, *oldmnt;
1078 	struct dentry *dentry = NULL, *olddentry;
1079 	int err;
1080 	struct fs_struct *fs = current->fs;
1081 
1082 	if (!emul)
1083 		goto set_it;
1084 	err = path_lookup(emul, LOOKUP_FOLLOW|LOOKUP_DIRECTORY|LOOKUP_NOALT, &nd);
1085 	if (!err) {
1086 		mnt = nd.mnt;
1087 		dentry = nd.dentry;
1088 	}
1089 set_it:
1090 	write_lock(&fs->lock);
1091 	oldmnt = fs->altrootmnt;
1092 	olddentry = fs->altroot;
1093 	fs->altrootmnt = mnt;
1094 	fs->altroot = dentry;
1095 	write_unlock(&fs->lock);
1096 	if (olddentry) {
1097 		dput(olddentry);
1098 		mntput(oldmnt);
1099 	}
1100 }
1101 
1102 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1103 static int fastcall do_path_lookup(int dfd, const char *name,
1104 				unsigned int flags, struct nameidata *nd)
1105 {
1106 	int retval = 0;
1107 	int fput_needed;
1108 	struct file *file;
1109 	struct fs_struct *fs = current->fs;
1110 
1111 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1112 	nd->flags = flags;
1113 	nd->depth = 0;
1114 
1115 	if (*name=='/') {
1116 		read_lock(&fs->lock);
1117 		if (fs->altroot && !(nd->flags & LOOKUP_NOALT)) {
1118 			nd->mnt = mntget(fs->altrootmnt);
1119 			nd->dentry = dget(fs->altroot);
1120 			read_unlock(&fs->lock);
1121 			if (__emul_lookup_dentry(name,nd))
1122 				goto out; /* found in altroot */
1123 			read_lock(&fs->lock);
1124 		}
1125 		nd->mnt = mntget(fs->rootmnt);
1126 		nd->dentry = dget(fs->root);
1127 		read_unlock(&fs->lock);
1128 	} else if (dfd == AT_FDCWD) {
1129 		read_lock(&fs->lock);
1130 		nd->mnt = mntget(fs->pwdmnt);
1131 		nd->dentry = dget(fs->pwd);
1132 		read_unlock(&fs->lock);
1133 	} else {
1134 		struct dentry *dentry;
1135 
1136 		file = fget_light(dfd, &fput_needed);
1137 		retval = -EBADF;
1138 		if (!file)
1139 			goto out_fail;
1140 
1141 		dentry = file->f_path.dentry;
1142 
1143 		retval = -ENOTDIR;
1144 		if (!S_ISDIR(dentry->d_inode->i_mode))
1145 			goto fput_fail;
1146 
1147 		retval = file_permission(file, MAY_EXEC);
1148 		if (retval)
1149 			goto fput_fail;
1150 
1151 		nd->mnt = mntget(file->f_path.mnt);
1152 		nd->dentry = dget(dentry);
1153 
1154 		fput_light(file, fput_needed);
1155 	}
1156 	current->total_link_count = 0;
1157 	retval = link_path_walk(name, nd);
1158 out:
1159 	if (likely(retval == 0)) {
1160 		if (unlikely(!audit_dummy_context() && nd && nd->dentry &&
1161 				nd->dentry->d_inode))
1162 		audit_inode(name, nd->dentry->d_inode);
1163 	}
1164 out_fail:
1165 	return retval;
1166 
1167 fput_fail:
1168 	fput_light(file, fput_needed);
1169 	goto out_fail;
1170 }
1171 
1172 int fastcall path_lookup(const char *name, unsigned int flags,
1173 			struct nameidata *nd)
1174 {
1175 	return do_path_lookup(AT_FDCWD, name, flags, nd);
1176 }
1177 
1178 static int __path_lookup_intent_open(int dfd, const char *name,
1179 		unsigned int lookup_flags, struct nameidata *nd,
1180 		int open_flags, int create_mode)
1181 {
1182 	struct file *filp = get_empty_filp();
1183 	int err;
1184 
1185 	if (filp == NULL)
1186 		return -ENFILE;
1187 	nd->intent.open.file = filp;
1188 	nd->intent.open.flags = open_flags;
1189 	nd->intent.open.create_mode = create_mode;
1190 	err = do_path_lookup(dfd, name, lookup_flags|LOOKUP_OPEN, nd);
1191 	if (IS_ERR(nd->intent.open.file)) {
1192 		if (err == 0) {
1193 			err = PTR_ERR(nd->intent.open.file);
1194 			path_release(nd);
1195 		}
1196 	} else if (err != 0)
1197 		release_open_intent(nd);
1198 	return err;
1199 }
1200 
1201 /**
1202  * path_lookup_open - lookup a file path with open intent
1203  * @dfd: the directory to use as base, or AT_FDCWD
1204  * @name: pointer to file name
1205  * @lookup_flags: lookup intent flags
1206  * @nd: pointer to nameidata
1207  * @open_flags: open intent flags
1208  */
1209 int path_lookup_open(int dfd, const char *name, unsigned int lookup_flags,
1210 		struct nameidata *nd, int open_flags)
1211 {
1212 	return __path_lookup_intent_open(dfd, name, lookup_flags, nd,
1213 			open_flags, 0);
1214 }
1215 
1216 /**
1217  * path_lookup_create - lookup a file path with open + create intent
1218  * @dfd: the directory to use as base, or AT_FDCWD
1219  * @name: pointer to file name
1220  * @lookup_flags: lookup intent flags
1221  * @nd: pointer to nameidata
1222  * @open_flags: open intent flags
1223  * @create_mode: create intent flags
1224  */
1225 static int path_lookup_create(int dfd, const char *name,
1226 			      unsigned int lookup_flags, struct nameidata *nd,
1227 			      int open_flags, int create_mode)
1228 {
1229 	return __path_lookup_intent_open(dfd, name, lookup_flags|LOOKUP_CREATE,
1230 			nd, open_flags, create_mode);
1231 }
1232 
1233 int __user_path_lookup_open(const char __user *name, unsigned int lookup_flags,
1234 		struct nameidata *nd, int open_flags)
1235 {
1236 	char *tmp = getname(name);
1237 	int err = PTR_ERR(tmp);
1238 
1239 	if (!IS_ERR(tmp)) {
1240 		err = __path_lookup_intent_open(AT_FDCWD, tmp, lookup_flags, nd, open_flags, 0);
1241 		putname(tmp);
1242 	}
1243 	return err;
1244 }
1245 
1246 /*
1247  * Restricted form of lookup. Doesn't follow links, single-component only,
1248  * needs parent already locked. Doesn't follow mounts.
1249  * SMP-safe.
1250  */
1251 static struct dentry * __lookup_hash(struct qstr *name, struct dentry * base, struct nameidata *nd)
1252 {
1253 	struct dentry * dentry;
1254 	struct inode *inode;
1255 	int err;
1256 
1257 	inode = base->d_inode;
1258 	err = permission(inode, MAY_EXEC, nd);
1259 	dentry = ERR_PTR(err);
1260 	if (err)
1261 		goto out;
1262 
1263 	/*
1264 	 * See if the low-level filesystem might want
1265 	 * to use its own hash..
1266 	 */
1267 	if (base->d_op && base->d_op->d_hash) {
1268 		err = base->d_op->d_hash(base, name);
1269 		dentry = ERR_PTR(err);
1270 		if (err < 0)
1271 			goto out;
1272 	}
1273 
1274 	dentry = cached_lookup(base, name, nd);
1275 	if (!dentry) {
1276 		struct dentry *new = d_alloc(base, name);
1277 		dentry = ERR_PTR(-ENOMEM);
1278 		if (!new)
1279 			goto out;
1280 		dentry = inode->i_op->lookup(inode, new, nd);
1281 		if (!dentry)
1282 			dentry = new;
1283 		else
1284 			dput(new);
1285 	}
1286 out:
1287 	return dentry;
1288 }
1289 
1290 static struct dentry *lookup_hash(struct nameidata *nd)
1291 {
1292 	return __lookup_hash(&nd->last, nd->dentry, nd);
1293 }
1294 
1295 /* SMP-safe */
1296 struct dentry * lookup_one_len(const char * name, struct dentry * base, int len)
1297 {
1298 	unsigned long hash;
1299 	struct qstr this;
1300 	unsigned int c;
1301 
1302 	this.name = name;
1303 	this.len = len;
1304 	if (!len)
1305 		goto access;
1306 
1307 	hash = init_name_hash();
1308 	while (len--) {
1309 		c = *(const unsigned char *)name++;
1310 		if (c == '/' || c == '\0')
1311 			goto access;
1312 		hash = partial_name_hash(c, hash);
1313 	}
1314 	this.hash = end_name_hash(hash);
1315 
1316 	return __lookup_hash(&this, base, NULL);
1317 access:
1318 	return ERR_PTR(-EACCES);
1319 }
1320 
1321 /*
1322  *	namei()
1323  *
1324  * is used by most simple commands to get the inode of a specified name.
1325  * Open, link etc use their own routines, but this is enough for things
1326  * like 'chmod' etc.
1327  *
1328  * namei exists in two versions: namei/lnamei. The only difference is
1329  * that namei follows links, while lnamei does not.
1330  * SMP-safe
1331  */
1332 int fastcall __user_walk_fd(int dfd, const char __user *name, unsigned flags,
1333 			    struct nameidata *nd)
1334 {
1335 	char *tmp = getname(name);
1336 	int err = PTR_ERR(tmp);
1337 
1338 	if (!IS_ERR(tmp)) {
1339 		err = do_path_lookup(dfd, tmp, flags, nd);
1340 		putname(tmp);
1341 	}
1342 	return err;
1343 }
1344 
1345 int fastcall __user_walk(const char __user *name, unsigned flags, struct nameidata *nd)
1346 {
1347 	return __user_walk_fd(AT_FDCWD, name, flags, nd);
1348 }
1349 
1350 /*
1351  * It's inline, so penalty for filesystems that don't use sticky bit is
1352  * minimal.
1353  */
1354 static inline int check_sticky(struct inode *dir, struct inode *inode)
1355 {
1356 	if (!(dir->i_mode & S_ISVTX))
1357 		return 0;
1358 	if (inode->i_uid == current->fsuid)
1359 		return 0;
1360 	if (dir->i_uid == current->fsuid)
1361 		return 0;
1362 	return !capable(CAP_FOWNER);
1363 }
1364 
1365 /*
1366  *	Check whether we can remove a link victim from directory dir, check
1367  *  whether the type of victim is right.
1368  *  1. We can't do it if dir is read-only (done in permission())
1369  *  2. We should have write and exec permissions on dir
1370  *  3. We can't remove anything from append-only dir
1371  *  4. We can't do anything with immutable dir (done in permission())
1372  *  5. If the sticky bit on dir is set we should either
1373  *	a. be owner of dir, or
1374  *	b. be owner of victim, or
1375  *	c. have CAP_FOWNER capability
1376  *  6. If the victim is append-only or immutable we can't do antyhing with
1377  *     links pointing to it.
1378  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1379  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1380  *  9. We can't remove a root or mountpoint.
1381  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1382  *     nfs_async_unlink().
1383  */
1384 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1385 {
1386 	int error;
1387 
1388 	if (!victim->d_inode)
1389 		return -ENOENT;
1390 
1391 	BUG_ON(victim->d_parent->d_inode != dir);
1392 	audit_inode_child(victim->d_name.name, victim->d_inode, dir);
1393 
1394 	error = permission(dir,MAY_WRITE | MAY_EXEC, NULL);
1395 	if (error)
1396 		return error;
1397 	if (IS_APPEND(dir))
1398 		return -EPERM;
1399 	if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1400 	    IS_IMMUTABLE(victim->d_inode))
1401 		return -EPERM;
1402 	if (isdir) {
1403 		if (!S_ISDIR(victim->d_inode->i_mode))
1404 			return -ENOTDIR;
1405 		if (IS_ROOT(victim))
1406 			return -EBUSY;
1407 	} else if (S_ISDIR(victim->d_inode->i_mode))
1408 		return -EISDIR;
1409 	if (IS_DEADDIR(dir))
1410 		return -ENOENT;
1411 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1412 		return -EBUSY;
1413 	return 0;
1414 }
1415 
1416 /*	Check whether we can create an object with dentry child in directory
1417  *  dir.
1418  *  1. We can't do it if child already exists (open has special treatment for
1419  *     this case, but since we are inlined it's OK)
1420  *  2. We can't do it if dir is read-only (done in permission())
1421  *  3. We should have write and exec permissions on dir
1422  *  4. We can't do it if dir is immutable (done in permission())
1423  */
1424 static inline int may_create(struct inode *dir, struct dentry *child,
1425 			     struct nameidata *nd)
1426 {
1427 	if (child->d_inode)
1428 		return -EEXIST;
1429 	if (IS_DEADDIR(dir))
1430 		return -ENOENT;
1431 	return permission(dir,MAY_WRITE | MAY_EXEC, nd);
1432 }
1433 
1434 /*
1435  * O_DIRECTORY translates into forcing a directory lookup.
1436  */
1437 static inline int lookup_flags(unsigned int f)
1438 {
1439 	unsigned long retval = LOOKUP_FOLLOW;
1440 
1441 	if (f & O_NOFOLLOW)
1442 		retval &= ~LOOKUP_FOLLOW;
1443 
1444 	if (f & O_DIRECTORY)
1445 		retval |= LOOKUP_DIRECTORY;
1446 
1447 	return retval;
1448 }
1449 
1450 /*
1451  * p1 and p2 should be directories on the same fs.
1452  */
1453 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1454 {
1455 	struct dentry *p;
1456 
1457 	if (p1 == p2) {
1458 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1459 		return NULL;
1460 	}
1461 
1462 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1463 
1464 	for (p = p1; p->d_parent != p; p = p->d_parent) {
1465 		if (p->d_parent == p2) {
1466 			mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1467 			mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1468 			return p;
1469 		}
1470 	}
1471 
1472 	for (p = p2; p->d_parent != p; p = p->d_parent) {
1473 		if (p->d_parent == p1) {
1474 			mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1475 			mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1476 			return p;
1477 		}
1478 	}
1479 
1480 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1481 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1482 	return NULL;
1483 }
1484 
1485 void unlock_rename(struct dentry *p1, struct dentry *p2)
1486 {
1487 	mutex_unlock(&p1->d_inode->i_mutex);
1488 	if (p1 != p2) {
1489 		mutex_unlock(&p2->d_inode->i_mutex);
1490 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1491 	}
1492 }
1493 
1494 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1495 		struct nameidata *nd)
1496 {
1497 	int error = may_create(dir, dentry, nd);
1498 
1499 	if (error)
1500 		return error;
1501 
1502 	if (!dir->i_op || !dir->i_op->create)
1503 		return -EACCES;	/* shouldn't it be ENOSYS? */
1504 	mode &= S_IALLUGO;
1505 	mode |= S_IFREG;
1506 	error = security_inode_create(dir, dentry, mode);
1507 	if (error)
1508 		return error;
1509 	DQUOT_INIT(dir);
1510 	error = dir->i_op->create(dir, dentry, mode, nd);
1511 	if (!error)
1512 		fsnotify_create(dir, dentry);
1513 	return error;
1514 }
1515 
1516 int may_open(struct nameidata *nd, int acc_mode, int flag)
1517 {
1518 	struct dentry *dentry = nd->dentry;
1519 	struct inode *inode = dentry->d_inode;
1520 	int error;
1521 
1522 	if (!inode)
1523 		return -ENOENT;
1524 
1525 	if (S_ISLNK(inode->i_mode))
1526 		return -ELOOP;
1527 
1528 	if (S_ISDIR(inode->i_mode) && (flag & FMODE_WRITE))
1529 		return -EISDIR;
1530 
1531 	error = vfs_permission(nd, acc_mode);
1532 	if (error)
1533 		return error;
1534 
1535 	/*
1536 	 * FIFO's, sockets and device files are special: they don't
1537 	 * actually live on the filesystem itself, and as such you
1538 	 * can write to them even if the filesystem is read-only.
1539 	 */
1540 	if (S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
1541 	    	flag &= ~O_TRUNC;
1542 	} else if (S_ISBLK(inode->i_mode) || S_ISCHR(inode->i_mode)) {
1543 		if (nd->mnt->mnt_flags & MNT_NODEV)
1544 			return -EACCES;
1545 
1546 		flag &= ~O_TRUNC;
1547 	} else if (IS_RDONLY(inode) && (flag & FMODE_WRITE))
1548 		return -EROFS;
1549 	/*
1550 	 * An append-only file must be opened in append mode for writing.
1551 	 */
1552 	if (IS_APPEND(inode)) {
1553 		if  ((flag & FMODE_WRITE) && !(flag & O_APPEND))
1554 			return -EPERM;
1555 		if (flag & O_TRUNC)
1556 			return -EPERM;
1557 	}
1558 
1559 	/* O_NOATIME can only be set by the owner or superuser */
1560 	if (flag & O_NOATIME)
1561 		if (current->fsuid != inode->i_uid && !capable(CAP_FOWNER))
1562 			return -EPERM;
1563 
1564 	/*
1565 	 * Ensure there are no outstanding leases on the file.
1566 	 */
1567 	error = break_lease(inode, flag);
1568 	if (error)
1569 		return error;
1570 
1571 	if (flag & O_TRUNC) {
1572 		error = get_write_access(inode);
1573 		if (error)
1574 			return error;
1575 
1576 		/*
1577 		 * Refuse to truncate files with mandatory locks held on them.
1578 		 */
1579 		error = locks_verify_locked(inode);
1580 		if (!error) {
1581 			DQUOT_INIT(inode);
1582 
1583 			error = do_truncate(dentry, 0, ATTR_MTIME|ATTR_CTIME, NULL);
1584 		}
1585 		put_write_access(inode);
1586 		if (error)
1587 			return error;
1588 	} else
1589 		if (flag & FMODE_WRITE)
1590 			DQUOT_INIT(inode);
1591 
1592 	return 0;
1593 }
1594 
1595 static int open_namei_create(struct nameidata *nd, struct path *path,
1596 				int flag, int mode)
1597 {
1598 	int error;
1599 	struct dentry *dir = nd->dentry;
1600 
1601 	if (!IS_POSIXACL(dir->d_inode))
1602 		mode &= ~current->fs->umask;
1603 	error = vfs_create(dir->d_inode, path->dentry, mode, nd);
1604 	mutex_unlock(&dir->d_inode->i_mutex);
1605 	dput(nd->dentry);
1606 	nd->dentry = path->dentry;
1607 	if (error)
1608 		return error;
1609 	/* Don't check for write permission, don't truncate */
1610 	return may_open(nd, 0, flag & ~O_TRUNC);
1611 }
1612 
1613 /*
1614  *	open_namei()
1615  *
1616  * namei for open - this is in fact almost the whole open-routine.
1617  *
1618  * Note that the low bits of "flag" aren't the same as in the open
1619  * system call - they are 00 - no permissions needed
1620  *			  01 - read permission needed
1621  *			  10 - write permission needed
1622  *			  11 - read/write permissions needed
1623  * which is a lot more logical, and also allows the "no perm" needed
1624  * for symlinks (where the permissions are checked later).
1625  * SMP-safe
1626  */
1627 int open_namei(int dfd, const char *pathname, int flag,
1628 		int mode, struct nameidata *nd)
1629 {
1630 	int acc_mode, error;
1631 	struct path path;
1632 	struct dentry *dir;
1633 	int count = 0;
1634 
1635 	acc_mode = ACC_MODE(flag);
1636 
1637 	/* O_TRUNC implies we need access checks for write permissions */
1638 	if (flag & O_TRUNC)
1639 		acc_mode |= MAY_WRITE;
1640 
1641 	/* Allow the LSM permission hook to distinguish append
1642 	   access from general write access. */
1643 	if (flag & O_APPEND)
1644 		acc_mode |= MAY_APPEND;
1645 
1646 	/*
1647 	 * The simplest case - just a plain lookup.
1648 	 */
1649 	if (!(flag & O_CREAT)) {
1650 		error = path_lookup_open(dfd, pathname, lookup_flags(flag),
1651 					 nd, flag);
1652 		if (error)
1653 			return error;
1654 		goto ok;
1655 	}
1656 
1657 	/*
1658 	 * Create - we need to know the parent.
1659 	 */
1660 	error = path_lookup_create(dfd,pathname,LOOKUP_PARENT,nd,flag,mode);
1661 	if (error)
1662 		return error;
1663 
1664 	/*
1665 	 * We have the parent and last component. First of all, check
1666 	 * that we are not asked to creat(2) an obvious directory - that
1667 	 * will not do.
1668 	 */
1669 	error = -EISDIR;
1670 	if (nd->last_type != LAST_NORM || nd->last.name[nd->last.len])
1671 		goto exit;
1672 
1673 	dir = nd->dentry;
1674 	nd->flags &= ~LOOKUP_PARENT;
1675 	mutex_lock(&dir->d_inode->i_mutex);
1676 	path.dentry = lookup_hash(nd);
1677 	path.mnt = nd->mnt;
1678 
1679 do_last:
1680 	error = PTR_ERR(path.dentry);
1681 	if (IS_ERR(path.dentry)) {
1682 		mutex_unlock(&dir->d_inode->i_mutex);
1683 		goto exit;
1684 	}
1685 
1686 	if (IS_ERR(nd->intent.open.file)) {
1687 		mutex_unlock(&dir->d_inode->i_mutex);
1688 		error = PTR_ERR(nd->intent.open.file);
1689 		goto exit_dput;
1690 	}
1691 
1692 	/* Negative dentry, just create the file */
1693 	if (!path.dentry->d_inode) {
1694 		error = open_namei_create(nd, &path, flag, mode);
1695 		if (error)
1696 			goto exit;
1697 		return 0;
1698 	}
1699 
1700 	/*
1701 	 * It already exists.
1702 	 */
1703 	mutex_unlock(&dir->d_inode->i_mutex);
1704 	audit_inode_update(path.dentry->d_inode);
1705 
1706 	error = -EEXIST;
1707 	if (flag & O_EXCL)
1708 		goto exit_dput;
1709 
1710 	if (__follow_mount(&path)) {
1711 		error = -ELOOP;
1712 		if (flag & O_NOFOLLOW)
1713 			goto exit_dput;
1714 	}
1715 
1716 	error = -ENOENT;
1717 	if (!path.dentry->d_inode)
1718 		goto exit_dput;
1719 	if (path.dentry->d_inode->i_op && path.dentry->d_inode->i_op->follow_link)
1720 		goto do_link;
1721 
1722 	path_to_nameidata(&path, nd);
1723 	error = -EISDIR;
1724 	if (path.dentry->d_inode && S_ISDIR(path.dentry->d_inode->i_mode))
1725 		goto exit;
1726 ok:
1727 	error = may_open(nd, acc_mode, flag);
1728 	if (error)
1729 		goto exit;
1730 	return 0;
1731 
1732 exit_dput:
1733 	dput_path(&path, nd);
1734 exit:
1735 	if (!IS_ERR(nd->intent.open.file))
1736 		release_open_intent(nd);
1737 	path_release(nd);
1738 	return error;
1739 
1740 do_link:
1741 	error = -ELOOP;
1742 	if (flag & O_NOFOLLOW)
1743 		goto exit_dput;
1744 	/*
1745 	 * This is subtle. Instead of calling do_follow_link() we do the
1746 	 * thing by hands. The reason is that this way we have zero link_count
1747 	 * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT.
1748 	 * After that we have the parent and last component, i.e.
1749 	 * we are in the same situation as after the first path_walk().
1750 	 * Well, almost - if the last component is normal we get its copy
1751 	 * stored in nd->last.name and we will have to putname() it when we
1752 	 * are done. Procfs-like symlinks just set LAST_BIND.
1753 	 */
1754 	nd->flags |= LOOKUP_PARENT;
1755 	error = security_inode_follow_link(path.dentry, nd);
1756 	if (error)
1757 		goto exit_dput;
1758 	error = __do_follow_link(&path, nd);
1759 	if (error) {
1760 		/* Does someone understand code flow here? Or it is only
1761 		 * me so stupid? Anathema to whoever designed this non-sense
1762 		 * with "intent.open".
1763 		 */
1764 		release_open_intent(nd);
1765 		return error;
1766 	}
1767 	nd->flags &= ~LOOKUP_PARENT;
1768 	if (nd->last_type == LAST_BIND)
1769 		goto ok;
1770 	error = -EISDIR;
1771 	if (nd->last_type != LAST_NORM)
1772 		goto exit;
1773 	if (nd->last.name[nd->last.len]) {
1774 		__putname(nd->last.name);
1775 		goto exit;
1776 	}
1777 	error = -ELOOP;
1778 	if (count++==32) {
1779 		__putname(nd->last.name);
1780 		goto exit;
1781 	}
1782 	dir = nd->dentry;
1783 	mutex_lock(&dir->d_inode->i_mutex);
1784 	path.dentry = lookup_hash(nd);
1785 	path.mnt = nd->mnt;
1786 	__putname(nd->last.name);
1787 	goto do_last;
1788 }
1789 
1790 /**
1791  * lookup_create - lookup a dentry, creating it if it doesn't exist
1792  * @nd: nameidata info
1793  * @is_dir: directory flag
1794  *
1795  * Simple function to lookup and return a dentry and create it
1796  * if it doesn't exist.  Is SMP-safe.
1797  *
1798  * Returns with nd->dentry->d_inode->i_mutex locked.
1799  */
1800 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1801 {
1802 	struct dentry *dentry = ERR_PTR(-EEXIST);
1803 
1804 	mutex_lock_nested(&nd->dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1805 	/*
1806 	 * Yucky last component or no last component at all?
1807 	 * (foo/., foo/.., /////)
1808 	 */
1809 	if (nd->last_type != LAST_NORM)
1810 		goto fail;
1811 	nd->flags &= ~LOOKUP_PARENT;
1812 	nd->flags |= LOOKUP_CREATE;
1813 	nd->intent.open.flags = O_EXCL;
1814 
1815 	/*
1816 	 * Do the final lookup.
1817 	 */
1818 	dentry = lookup_hash(nd);
1819 	if (IS_ERR(dentry))
1820 		goto fail;
1821 
1822 	/*
1823 	 * Special case - lookup gave negative, but... we had foo/bar/
1824 	 * From the vfs_mknod() POV we just have a negative dentry -
1825 	 * all is fine. Let's be bastards - you had / on the end, you've
1826 	 * been asking for (non-existent) directory. -ENOENT for you.
1827 	 */
1828 	if (!is_dir && nd->last.name[nd->last.len] && !dentry->d_inode)
1829 		goto enoent;
1830 	return dentry;
1831 enoent:
1832 	dput(dentry);
1833 	dentry = ERR_PTR(-ENOENT);
1834 fail:
1835 	return dentry;
1836 }
1837 EXPORT_SYMBOL_GPL(lookup_create);
1838 
1839 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1840 {
1841 	int error = may_create(dir, dentry, NULL);
1842 
1843 	if (error)
1844 		return error;
1845 
1846 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
1847 		return -EPERM;
1848 
1849 	if (!dir->i_op || !dir->i_op->mknod)
1850 		return -EPERM;
1851 
1852 	error = security_inode_mknod(dir, dentry, mode, dev);
1853 	if (error)
1854 		return error;
1855 
1856 	DQUOT_INIT(dir);
1857 	error = dir->i_op->mknod(dir, dentry, mode, dev);
1858 	if (!error)
1859 		fsnotify_create(dir, dentry);
1860 	return error;
1861 }
1862 
1863 asmlinkage long sys_mknodat(int dfd, const char __user *filename, int mode,
1864 				unsigned dev)
1865 {
1866 	int error = 0;
1867 	char * tmp;
1868 	struct dentry * dentry;
1869 	struct nameidata nd;
1870 
1871 	if (S_ISDIR(mode))
1872 		return -EPERM;
1873 	tmp = getname(filename);
1874 	if (IS_ERR(tmp))
1875 		return PTR_ERR(tmp);
1876 
1877 	error = do_path_lookup(dfd, tmp, LOOKUP_PARENT, &nd);
1878 	if (error)
1879 		goto out;
1880 	dentry = lookup_create(&nd, 0);
1881 	error = PTR_ERR(dentry);
1882 
1883 	if (!IS_POSIXACL(nd.dentry->d_inode))
1884 		mode &= ~current->fs->umask;
1885 	if (!IS_ERR(dentry)) {
1886 		switch (mode & S_IFMT) {
1887 		case 0: case S_IFREG:
1888 			error = vfs_create(nd.dentry->d_inode,dentry,mode,&nd);
1889 			break;
1890 		case S_IFCHR: case S_IFBLK:
1891 			error = vfs_mknod(nd.dentry->d_inode,dentry,mode,
1892 					new_decode_dev(dev));
1893 			break;
1894 		case S_IFIFO: case S_IFSOCK:
1895 			error = vfs_mknod(nd.dentry->d_inode,dentry,mode,0);
1896 			break;
1897 		case S_IFDIR:
1898 			error = -EPERM;
1899 			break;
1900 		default:
1901 			error = -EINVAL;
1902 		}
1903 		dput(dentry);
1904 	}
1905 	mutex_unlock(&nd.dentry->d_inode->i_mutex);
1906 	path_release(&nd);
1907 out:
1908 	putname(tmp);
1909 
1910 	return error;
1911 }
1912 
1913 asmlinkage long sys_mknod(const char __user *filename, int mode, unsigned dev)
1914 {
1915 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
1916 }
1917 
1918 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1919 {
1920 	int error = may_create(dir, dentry, NULL);
1921 
1922 	if (error)
1923 		return error;
1924 
1925 	if (!dir->i_op || !dir->i_op->mkdir)
1926 		return -EPERM;
1927 
1928 	mode &= (S_IRWXUGO|S_ISVTX);
1929 	error = security_inode_mkdir(dir, dentry, mode);
1930 	if (error)
1931 		return error;
1932 
1933 	DQUOT_INIT(dir);
1934 	error = dir->i_op->mkdir(dir, dentry, mode);
1935 	if (!error)
1936 		fsnotify_mkdir(dir, dentry);
1937 	return error;
1938 }
1939 
1940 asmlinkage long sys_mkdirat(int dfd, const char __user *pathname, int mode)
1941 {
1942 	int error = 0;
1943 	char * tmp;
1944 	struct dentry *dentry;
1945 	struct nameidata nd;
1946 
1947 	tmp = getname(pathname);
1948 	error = PTR_ERR(tmp);
1949 	if (IS_ERR(tmp))
1950 		goto out_err;
1951 
1952 	error = do_path_lookup(dfd, tmp, LOOKUP_PARENT, &nd);
1953 	if (error)
1954 		goto out;
1955 	dentry = lookup_create(&nd, 1);
1956 	error = PTR_ERR(dentry);
1957 	if (IS_ERR(dentry))
1958 		goto out_unlock;
1959 
1960 	if (!IS_POSIXACL(nd.dentry->d_inode))
1961 		mode &= ~current->fs->umask;
1962 	error = vfs_mkdir(nd.dentry->d_inode, dentry, mode);
1963 	dput(dentry);
1964 out_unlock:
1965 	mutex_unlock(&nd.dentry->d_inode->i_mutex);
1966 	path_release(&nd);
1967 out:
1968 	putname(tmp);
1969 out_err:
1970 	return error;
1971 }
1972 
1973 asmlinkage long sys_mkdir(const char __user *pathname, int mode)
1974 {
1975 	return sys_mkdirat(AT_FDCWD, pathname, mode);
1976 }
1977 
1978 /*
1979  * We try to drop the dentry early: we should have
1980  * a usage count of 2 if we're the only user of this
1981  * dentry, and if that is true (possibly after pruning
1982  * the dcache), then we drop the dentry now.
1983  *
1984  * A low-level filesystem can, if it choses, legally
1985  * do a
1986  *
1987  *	if (!d_unhashed(dentry))
1988  *		return -EBUSY;
1989  *
1990  * if it cannot handle the case of removing a directory
1991  * that is still in use by something else..
1992  */
1993 void dentry_unhash(struct dentry *dentry)
1994 {
1995 	dget(dentry);
1996 	shrink_dcache_parent(dentry);
1997 	spin_lock(&dcache_lock);
1998 	spin_lock(&dentry->d_lock);
1999 	if (atomic_read(&dentry->d_count) == 2)
2000 		__d_drop(dentry);
2001 	spin_unlock(&dentry->d_lock);
2002 	spin_unlock(&dcache_lock);
2003 }
2004 
2005 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2006 {
2007 	int error = may_delete(dir, dentry, 1);
2008 
2009 	if (error)
2010 		return error;
2011 
2012 	if (!dir->i_op || !dir->i_op->rmdir)
2013 		return -EPERM;
2014 
2015 	DQUOT_INIT(dir);
2016 
2017 	mutex_lock(&dentry->d_inode->i_mutex);
2018 	dentry_unhash(dentry);
2019 	if (d_mountpoint(dentry))
2020 		error = -EBUSY;
2021 	else {
2022 		error = security_inode_rmdir(dir, dentry);
2023 		if (!error) {
2024 			error = dir->i_op->rmdir(dir, dentry);
2025 			if (!error)
2026 				dentry->d_inode->i_flags |= S_DEAD;
2027 		}
2028 	}
2029 	mutex_unlock(&dentry->d_inode->i_mutex);
2030 	if (!error) {
2031 		d_delete(dentry);
2032 	}
2033 	dput(dentry);
2034 
2035 	return error;
2036 }
2037 
2038 static long do_rmdir(int dfd, const char __user *pathname)
2039 {
2040 	int error = 0;
2041 	char * name;
2042 	struct dentry *dentry;
2043 	struct nameidata nd;
2044 
2045 	name = getname(pathname);
2046 	if(IS_ERR(name))
2047 		return PTR_ERR(name);
2048 
2049 	error = do_path_lookup(dfd, name, LOOKUP_PARENT, &nd);
2050 	if (error)
2051 		goto exit;
2052 
2053 	switch(nd.last_type) {
2054 		case LAST_DOTDOT:
2055 			error = -ENOTEMPTY;
2056 			goto exit1;
2057 		case LAST_DOT:
2058 			error = -EINVAL;
2059 			goto exit1;
2060 		case LAST_ROOT:
2061 			error = -EBUSY;
2062 			goto exit1;
2063 	}
2064 	mutex_lock_nested(&nd.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2065 	dentry = lookup_hash(&nd);
2066 	error = PTR_ERR(dentry);
2067 	if (IS_ERR(dentry))
2068 		goto exit2;
2069 	error = vfs_rmdir(nd.dentry->d_inode, dentry);
2070 	dput(dentry);
2071 exit2:
2072 	mutex_unlock(&nd.dentry->d_inode->i_mutex);
2073 exit1:
2074 	path_release(&nd);
2075 exit:
2076 	putname(name);
2077 	return error;
2078 }
2079 
2080 asmlinkage long sys_rmdir(const char __user *pathname)
2081 {
2082 	return do_rmdir(AT_FDCWD, pathname);
2083 }
2084 
2085 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2086 {
2087 	int error = may_delete(dir, dentry, 0);
2088 
2089 	if (error)
2090 		return error;
2091 
2092 	if (!dir->i_op || !dir->i_op->unlink)
2093 		return -EPERM;
2094 
2095 	DQUOT_INIT(dir);
2096 
2097 	mutex_lock(&dentry->d_inode->i_mutex);
2098 	if (d_mountpoint(dentry))
2099 		error = -EBUSY;
2100 	else {
2101 		error = security_inode_unlink(dir, dentry);
2102 		if (!error)
2103 			error = dir->i_op->unlink(dir, dentry);
2104 	}
2105 	mutex_unlock(&dentry->d_inode->i_mutex);
2106 
2107 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
2108 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2109 		d_delete(dentry);
2110 	}
2111 
2112 	return error;
2113 }
2114 
2115 /*
2116  * Make sure that the actual truncation of the file will occur outside its
2117  * directory's i_mutex.  Truncate can take a long time if there is a lot of
2118  * writeout happening, and we don't want to prevent access to the directory
2119  * while waiting on the I/O.
2120  */
2121 static long do_unlinkat(int dfd, const char __user *pathname)
2122 {
2123 	int error = 0;
2124 	char * name;
2125 	struct dentry *dentry;
2126 	struct nameidata nd;
2127 	struct inode *inode = NULL;
2128 
2129 	name = getname(pathname);
2130 	if(IS_ERR(name))
2131 		return PTR_ERR(name);
2132 
2133 	error = do_path_lookup(dfd, name, LOOKUP_PARENT, &nd);
2134 	if (error)
2135 		goto exit;
2136 	error = -EISDIR;
2137 	if (nd.last_type != LAST_NORM)
2138 		goto exit1;
2139 	mutex_lock_nested(&nd.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2140 	dentry = lookup_hash(&nd);
2141 	error = PTR_ERR(dentry);
2142 	if (!IS_ERR(dentry)) {
2143 		/* Why not before? Because we want correct error value */
2144 		if (nd.last.name[nd.last.len])
2145 			goto slashes;
2146 		inode = dentry->d_inode;
2147 		if (inode)
2148 			atomic_inc(&inode->i_count);
2149 		error = vfs_unlink(nd.dentry->d_inode, dentry);
2150 	exit2:
2151 		dput(dentry);
2152 	}
2153 	mutex_unlock(&nd.dentry->d_inode->i_mutex);
2154 	if (inode)
2155 		iput(inode);	/* truncate the inode here */
2156 exit1:
2157 	path_release(&nd);
2158 exit:
2159 	putname(name);
2160 	return error;
2161 
2162 slashes:
2163 	error = !dentry->d_inode ? -ENOENT :
2164 		S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2165 	goto exit2;
2166 }
2167 
2168 asmlinkage long sys_unlinkat(int dfd, const char __user *pathname, int flag)
2169 {
2170 	if ((flag & ~AT_REMOVEDIR) != 0)
2171 		return -EINVAL;
2172 
2173 	if (flag & AT_REMOVEDIR)
2174 		return do_rmdir(dfd, pathname);
2175 
2176 	return do_unlinkat(dfd, pathname);
2177 }
2178 
2179 asmlinkage long sys_unlink(const char __user *pathname)
2180 {
2181 	return do_unlinkat(AT_FDCWD, pathname);
2182 }
2183 
2184 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname, int mode)
2185 {
2186 	int error = may_create(dir, dentry, NULL);
2187 
2188 	if (error)
2189 		return error;
2190 
2191 	if (!dir->i_op || !dir->i_op->symlink)
2192 		return -EPERM;
2193 
2194 	error = security_inode_symlink(dir, dentry, oldname);
2195 	if (error)
2196 		return error;
2197 
2198 	DQUOT_INIT(dir);
2199 	error = dir->i_op->symlink(dir, dentry, oldname);
2200 	if (!error)
2201 		fsnotify_create(dir, dentry);
2202 	return error;
2203 }
2204 
2205 asmlinkage long sys_symlinkat(const char __user *oldname,
2206 			      int newdfd, const char __user *newname)
2207 {
2208 	int error = 0;
2209 	char * from;
2210 	char * to;
2211 	struct dentry *dentry;
2212 	struct nameidata nd;
2213 
2214 	from = getname(oldname);
2215 	if(IS_ERR(from))
2216 		return PTR_ERR(from);
2217 	to = getname(newname);
2218 	error = PTR_ERR(to);
2219 	if (IS_ERR(to))
2220 		goto out_putname;
2221 
2222 	error = do_path_lookup(newdfd, to, LOOKUP_PARENT, &nd);
2223 	if (error)
2224 		goto out;
2225 	dentry = lookup_create(&nd, 0);
2226 	error = PTR_ERR(dentry);
2227 	if (IS_ERR(dentry))
2228 		goto out_unlock;
2229 
2230 	error = vfs_symlink(nd.dentry->d_inode, dentry, from, S_IALLUGO);
2231 	dput(dentry);
2232 out_unlock:
2233 	mutex_unlock(&nd.dentry->d_inode->i_mutex);
2234 	path_release(&nd);
2235 out:
2236 	putname(to);
2237 out_putname:
2238 	putname(from);
2239 	return error;
2240 }
2241 
2242 asmlinkage long sys_symlink(const char __user *oldname, const char __user *newname)
2243 {
2244 	return sys_symlinkat(oldname, AT_FDCWD, newname);
2245 }
2246 
2247 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2248 {
2249 	struct inode *inode = old_dentry->d_inode;
2250 	int error;
2251 
2252 	if (!inode)
2253 		return -ENOENT;
2254 
2255 	error = may_create(dir, new_dentry, NULL);
2256 	if (error)
2257 		return error;
2258 
2259 	if (dir->i_sb != inode->i_sb)
2260 		return -EXDEV;
2261 
2262 	/*
2263 	 * A link to an append-only or immutable file cannot be created.
2264 	 */
2265 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2266 		return -EPERM;
2267 	if (!dir->i_op || !dir->i_op->link)
2268 		return -EPERM;
2269 	if (S_ISDIR(old_dentry->d_inode->i_mode))
2270 		return -EPERM;
2271 
2272 	error = security_inode_link(old_dentry, dir, new_dentry);
2273 	if (error)
2274 		return error;
2275 
2276 	mutex_lock(&old_dentry->d_inode->i_mutex);
2277 	DQUOT_INIT(dir);
2278 	error = dir->i_op->link(old_dentry, dir, new_dentry);
2279 	mutex_unlock(&old_dentry->d_inode->i_mutex);
2280 	if (!error)
2281 		fsnotify_create(dir, new_dentry);
2282 	return error;
2283 }
2284 
2285 /*
2286  * Hardlinks are often used in delicate situations.  We avoid
2287  * security-related surprises by not following symlinks on the
2288  * newname.  --KAB
2289  *
2290  * We don't follow them on the oldname either to be compatible
2291  * with linux 2.0, and to avoid hard-linking to directories
2292  * and other special files.  --ADM
2293  */
2294 asmlinkage long sys_linkat(int olddfd, const char __user *oldname,
2295 			   int newdfd, const char __user *newname,
2296 			   int flags)
2297 {
2298 	struct dentry *new_dentry;
2299 	struct nameidata nd, old_nd;
2300 	int error;
2301 	char * to;
2302 
2303 	if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2304 		return -EINVAL;
2305 
2306 	to = getname(newname);
2307 	if (IS_ERR(to))
2308 		return PTR_ERR(to);
2309 
2310 	error = __user_walk_fd(olddfd, oldname,
2311 			       flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2312 			       &old_nd);
2313 	if (error)
2314 		goto exit;
2315 	error = do_path_lookup(newdfd, to, LOOKUP_PARENT, &nd);
2316 	if (error)
2317 		goto out;
2318 	error = -EXDEV;
2319 	if (old_nd.mnt != nd.mnt)
2320 		goto out_release;
2321 	new_dentry = lookup_create(&nd, 0);
2322 	error = PTR_ERR(new_dentry);
2323 	if (IS_ERR(new_dentry))
2324 		goto out_unlock;
2325 	error = vfs_link(old_nd.dentry, nd.dentry->d_inode, new_dentry);
2326 	dput(new_dentry);
2327 out_unlock:
2328 	mutex_unlock(&nd.dentry->d_inode->i_mutex);
2329 out_release:
2330 	path_release(&nd);
2331 out:
2332 	path_release(&old_nd);
2333 exit:
2334 	putname(to);
2335 
2336 	return error;
2337 }
2338 
2339 asmlinkage long sys_link(const char __user *oldname, const char __user *newname)
2340 {
2341 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2342 }
2343 
2344 /*
2345  * The worst of all namespace operations - renaming directory. "Perverted"
2346  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2347  * Problems:
2348  *	a) we can get into loop creation. Check is done in is_subdir().
2349  *	b) race potential - two innocent renames can create a loop together.
2350  *	   That's where 4.4 screws up. Current fix: serialization on
2351  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2352  *	   story.
2353  *	c) we have to lock _three_ objects - parents and victim (if it exists).
2354  *	   And that - after we got ->i_mutex on parents (until then we don't know
2355  *	   whether the target exists).  Solution: try to be smart with locking
2356  *	   order for inodes.  We rely on the fact that tree topology may change
2357  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
2358  *	   move will be locked.  Thus we can rank directories by the tree
2359  *	   (ancestors first) and rank all non-directories after them.
2360  *	   That works since everybody except rename does "lock parent, lookup,
2361  *	   lock child" and rename is under ->s_vfs_rename_mutex.
2362  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
2363  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
2364  *	   we'd better make sure that there's no link(2) for them.
2365  *	d) some filesystems don't support opened-but-unlinked directories,
2366  *	   either because of layout or because they are not ready to deal with
2367  *	   all cases correctly. The latter will be fixed (taking this sort of
2368  *	   stuff into VFS), but the former is not going away. Solution: the same
2369  *	   trick as in rmdir().
2370  *	e) conversion from fhandle to dentry may come in the wrong moment - when
2371  *	   we are removing the target. Solution: we will have to grab ->i_mutex
2372  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2373  *	   ->i_mutex on parents, which works but leads to some truely excessive
2374  *	   locking].
2375  */
2376 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2377 			  struct inode *new_dir, struct dentry *new_dentry)
2378 {
2379 	int error = 0;
2380 	struct inode *target;
2381 
2382 	/*
2383 	 * If we are going to change the parent - check write permissions,
2384 	 * we'll need to flip '..'.
2385 	 */
2386 	if (new_dir != old_dir) {
2387 		error = permission(old_dentry->d_inode, MAY_WRITE, NULL);
2388 		if (error)
2389 			return error;
2390 	}
2391 
2392 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2393 	if (error)
2394 		return error;
2395 
2396 	target = new_dentry->d_inode;
2397 	if (target) {
2398 		mutex_lock(&target->i_mutex);
2399 		dentry_unhash(new_dentry);
2400 	}
2401 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2402 		error = -EBUSY;
2403 	else
2404 		error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2405 	if (target) {
2406 		if (!error)
2407 			target->i_flags |= S_DEAD;
2408 		mutex_unlock(&target->i_mutex);
2409 		if (d_unhashed(new_dentry))
2410 			d_rehash(new_dentry);
2411 		dput(new_dentry);
2412 	}
2413 	if (!error)
2414 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2415 			d_move(old_dentry,new_dentry);
2416 	return error;
2417 }
2418 
2419 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2420 			    struct inode *new_dir, struct dentry *new_dentry)
2421 {
2422 	struct inode *target;
2423 	int error;
2424 
2425 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2426 	if (error)
2427 		return error;
2428 
2429 	dget(new_dentry);
2430 	target = new_dentry->d_inode;
2431 	if (target)
2432 		mutex_lock(&target->i_mutex);
2433 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2434 		error = -EBUSY;
2435 	else
2436 		error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2437 	if (!error) {
2438 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2439 			d_move(old_dentry, new_dentry);
2440 	}
2441 	if (target)
2442 		mutex_unlock(&target->i_mutex);
2443 	dput(new_dentry);
2444 	return error;
2445 }
2446 
2447 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2448 	       struct inode *new_dir, struct dentry *new_dentry)
2449 {
2450 	int error;
2451 	int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2452 	const char *old_name;
2453 
2454 	if (old_dentry->d_inode == new_dentry->d_inode)
2455  		return 0;
2456 
2457 	error = may_delete(old_dir, old_dentry, is_dir);
2458 	if (error)
2459 		return error;
2460 
2461 	if (!new_dentry->d_inode)
2462 		error = may_create(new_dir, new_dentry, NULL);
2463 	else
2464 		error = may_delete(new_dir, new_dentry, is_dir);
2465 	if (error)
2466 		return error;
2467 
2468 	if (!old_dir->i_op || !old_dir->i_op->rename)
2469 		return -EPERM;
2470 
2471 	DQUOT_INIT(old_dir);
2472 	DQUOT_INIT(new_dir);
2473 
2474 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2475 
2476 	if (is_dir)
2477 		error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2478 	else
2479 		error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2480 	if (!error) {
2481 		const char *new_name = old_dentry->d_name.name;
2482 		fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir,
2483 			      new_dentry->d_inode, old_dentry->d_inode);
2484 	}
2485 	fsnotify_oldname_free(old_name);
2486 
2487 	return error;
2488 }
2489 
2490 static int do_rename(int olddfd, const char *oldname,
2491 			int newdfd, const char *newname)
2492 {
2493 	int error = 0;
2494 	struct dentry * old_dir, * new_dir;
2495 	struct dentry * old_dentry, *new_dentry;
2496 	struct dentry * trap;
2497 	struct nameidata oldnd, newnd;
2498 
2499 	error = do_path_lookup(olddfd, oldname, LOOKUP_PARENT, &oldnd);
2500 	if (error)
2501 		goto exit;
2502 
2503 	error = do_path_lookup(newdfd, newname, LOOKUP_PARENT, &newnd);
2504 	if (error)
2505 		goto exit1;
2506 
2507 	error = -EXDEV;
2508 	if (oldnd.mnt != newnd.mnt)
2509 		goto exit2;
2510 
2511 	old_dir = oldnd.dentry;
2512 	error = -EBUSY;
2513 	if (oldnd.last_type != LAST_NORM)
2514 		goto exit2;
2515 
2516 	new_dir = newnd.dentry;
2517 	if (newnd.last_type != LAST_NORM)
2518 		goto exit2;
2519 
2520 	trap = lock_rename(new_dir, old_dir);
2521 
2522 	old_dentry = lookup_hash(&oldnd);
2523 	error = PTR_ERR(old_dentry);
2524 	if (IS_ERR(old_dentry))
2525 		goto exit3;
2526 	/* source must exist */
2527 	error = -ENOENT;
2528 	if (!old_dentry->d_inode)
2529 		goto exit4;
2530 	/* unless the source is a directory trailing slashes give -ENOTDIR */
2531 	if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2532 		error = -ENOTDIR;
2533 		if (oldnd.last.name[oldnd.last.len])
2534 			goto exit4;
2535 		if (newnd.last.name[newnd.last.len])
2536 			goto exit4;
2537 	}
2538 	/* source should not be ancestor of target */
2539 	error = -EINVAL;
2540 	if (old_dentry == trap)
2541 		goto exit4;
2542 	new_dentry = lookup_hash(&newnd);
2543 	error = PTR_ERR(new_dentry);
2544 	if (IS_ERR(new_dentry))
2545 		goto exit4;
2546 	/* target should not be an ancestor of source */
2547 	error = -ENOTEMPTY;
2548 	if (new_dentry == trap)
2549 		goto exit5;
2550 
2551 	error = vfs_rename(old_dir->d_inode, old_dentry,
2552 				   new_dir->d_inode, new_dentry);
2553 exit5:
2554 	dput(new_dentry);
2555 exit4:
2556 	dput(old_dentry);
2557 exit3:
2558 	unlock_rename(new_dir, old_dir);
2559 exit2:
2560 	path_release(&newnd);
2561 exit1:
2562 	path_release(&oldnd);
2563 exit:
2564 	return error;
2565 }
2566 
2567 asmlinkage long sys_renameat(int olddfd, const char __user *oldname,
2568 			     int newdfd, const char __user *newname)
2569 {
2570 	int error;
2571 	char * from;
2572 	char * to;
2573 
2574 	from = getname(oldname);
2575 	if(IS_ERR(from))
2576 		return PTR_ERR(from);
2577 	to = getname(newname);
2578 	error = PTR_ERR(to);
2579 	if (!IS_ERR(to)) {
2580 		error = do_rename(olddfd, from, newdfd, to);
2581 		putname(to);
2582 	}
2583 	putname(from);
2584 	return error;
2585 }
2586 
2587 asmlinkage long sys_rename(const char __user *oldname, const char __user *newname)
2588 {
2589 	return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2590 }
2591 
2592 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2593 {
2594 	int len;
2595 
2596 	len = PTR_ERR(link);
2597 	if (IS_ERR(link))
2598 		goto out;
2599 
2600 	len = strlen(link);
2601 	if (len > (unsigned) buflen)
2602 		len = buflen;
2603 	if (copy_to_user(buffer, link, len))
2604 		len = -EFAULT;
2605 out:
2606 	return len;
2607 }
2608 
2609 /*
2610  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
2611  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
2612  * using) it for any given inode is up to filesystem.
2613  */
2614 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2615 {
2616 	struct nameidata nd;
2617 	void *cookie;
2618 
2619 	nd.depth = 0;
2620 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2621 	if (!IS_ERR(cookie)) {
2622 		int res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2623 		if (dentry->d_inode->i_op->put_link)
2624 			dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2625 		cookie = ERR_PTR(res);
2626 	}
2627 	return PTR_ERR(cookie);
2628 }
2629 
2630 int vfs_follow_link(struct nameidata *nd, const char *link)
2631 {
2632 	return __vfs_follow_link(nd, link);
2633 }
2634 
2635 /* get the link contents into pagecache */
2636 static char *page_getlink(struct dentry * dentry, struct page **ppage)
2637 {
2638 	struct page * page;
2639 	struct address_space *mapping = dentry->d_inode->i_mapping;
2640 	page = read_mapping_page(mapping, 0, NULL);
2641 	if (IS_ERR(page))
2642 		goto sync_fail;
2643 	wait_on_page_locked(page);
2644 	if (!PageUptodate(page))
2645 		goto async_fail;
2646 	*ppage = page;
2647 	return kmap(page);
2648 
2649 async_fail:
2650 	page_cache_release(page);
2651 	return ERR_PTR(-EIO);
2652 
2653 sync_fail:
2654 	return (char*)page;
2655 }
2656 
2657 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2658 {
2659 	struct page *page = NULL;
2660 	char *s = page_getlink(dentry, &page);
2661 	int res = vfs_readlink(dentry,buffer,buflen,s);
2662 	if (page) {
2663 		kunmap(page);
2664 		page_cache_release(page);
2665 	}
2666 	return res;
2667 }
2668 
2669 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2670 {
2671 	struct page *page = NULL;
2672 	nd_set_link(nd, page_getlink(dentry, &page));
2673 	return page;
2674 }
2675 
2676 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2677 {
2678 	struct page *page = cookie;
2679 
2680 	if (page) {
2681 		kunmap(page);
2682 		page_cache_release(page);
2683 	}
2684 }
2685 
2686 int __page_symlink(struct inode *inode, const char *symname, int len,
2687 		gfp_t gfp_mask)
2688 {
2689 	struct address_space *mapping = inode->i_mapping;
2690 	struct page *page;
2691 	int err;
2692 	char *kaddr;
2693 
2694 retry:
2695 	err = -ENOMEM;
2696 	page = find_or_create_page(mapping, 0, gfp_mask);
2697 	if (!page)
2698 		goto fail;
2699 	err = mapping->a_ops->prepare_write(NULL, page, 0, len-1);
2700 	if (err == AOP_TRUNCATED_PAGE) {
2701 		page_cache_release(page);
2702 		goto retry;
2703 	}
2704 	if (err)
2705 		goto fail_map;
2706 	kaddr = kmap_atomic(page, KM_USER0);
2707 	memcpy(kaddr, symname, len-1);
2708 	kunmap_atomic(kaddr, KM_USER0);
2709 	err = mapping->a_ops->commit_write(NULL, page, 0, len-1);
2710 	if (err == AOP_TRUNCATED_PAGE) {
2711 		page_cache_release(page);
2712 		goto retry;
2713 	}
2714 	if (err)
2715 		goto fail_map;
2716 	/*
2717 	 * Notice that we are _not_ going to block here - end of page is
2718 	 * unmapped, so this will only try to map the rest of page, see
2719 	 * that it is unmapped (typically even will not look into inode -
2720 	 * ->i_size will be enough for everything) and zero it out.
2721 	 * OTOH it's obviously correct and should make the page up-to-date.
2722 	 */
2723 	if (!PageUptodate(page)) {
2724 		err = mapping->a_ops->readpage(NULL, page);
2725 		if (err != AOP_TRUNCATED_PAGE)
2726 			wait_on_page_locked(page);
2727 	} else {
2728 		unlock_page(page);
2729 	}
2730 	page_cache_release(page);
2731 	if (err < 0)
2732 		goto fail;
2733 	mark_inode_dirty(inode);
2734 	return 0;
2735 fail_map:
2736 	unlock_page(page);
2737 	page_cache_release(page);
2738 fail:
2739 	return err;
2740 }
2741 
2742 int page_symlink(struct inode *inode, const char *symname, int len)
2743 {
2744 	return __page_symlink(inode, symname, len,
2745 			mapping_gfp_mask(inode->i_mapping));
2746 }
2747 
2748 const struct inode_operations page_symlink_inode_operations = {
2749 	.readlink	= generic_readlink,
2750 	.follow_link	= page_follow_link_light,
2751 	.put_link	= page_put_link,
2752 };
2753 
2754 EXPORT_SYMBOL(__user_walk);
2755 EXPORT_SYMBOL(__user_walk_fd);
2756 EXPORT_SYMBOL(follow_down);
2757 EXPORT_SYMBOL(follow_up);
2758 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2759 EXPORT_SYMBOL(getname);
2760 EXPORT_SYMBOL(lock_rename);
2761 EXPORT_SYMBOL(lookup_one_len);
2762 EXPORT_SYMBOL(page_follow_link_light);
2763 EXPORT_SYMBOL(page_put_link);
2764 EXPORT_SYMBOL(page_readlink);
2765 EXPORT_SYMBOL(__page_symlink);
2766 EXPORT_SYMBOL(page_symlink);
2767 EXPORT_SYMBOL(page_symlink_inode_operations);
2768 EXPORT_SYMBOL(path_lookup);
2769 EXPORT_SYMBOL(path_release);
2770 EXPORT_SYMBOL(path_walk);
2771 EXPORT_SYMBOL(permission);
2772 EXPORT_SYMBOL(vfs_permission);
2773 EXPORT_SYMBOL(file_permission);
2774 EXPORT_SYMBOL(unlock_rename);
2775 EXPORT_SYMBOL(vfs_create);
2776 EXPORT_SYMBOL(vfs_follow_link);
2777 EXPORT_SYMBOL(vfs_link);
2778 EXPORT_SYMBOL(vfs_mkdir);
2779 EXPORT_SYMBOL(vfs_mknod);
2780 EXPORT_SYMBOL(generic_permission);
2781 EXPORT_SYMBOL(vfs_readlink);
2782 EXPORT_SYMBOL(vfs_rename);
2783 EXPORT_SYMBOL(vfs_rmdir);
2784 EXPORT_SYMBOL(vfs_symlink);
2785 EXPORT_SYMBOL(vfs_unlink);
2786 EXPORT_SYMBOL(dentry_unhash);
2787 EXPORT_SYMBOL(generic_readlink);
2788