1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/namei.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * Some corrections by tytso. 10 */ 11 12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 13 * lookup logic. 14 */ 15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 16 */ 17 18 #include <linux/init.h> 19 #include <linux/export.h> 20 #include <linux/kernel.h> 21 #include <linux/slab.h> 22 #include <linux/fs.h> 23 #include <linux/namei.h> 24 #include <linux/pagemap.h> 25 #include <linux/fsnotify.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/ima.h> 29 #include <linux/syscalls.h> 30 #include <linux/mount.h> 31 #include <linux/audit.h> 32 #include <linux/capability.h> 33 #include <linux/file.h> 34 #include <linux/fcntl.h> 35 #include <linux/device_cgroup.h> 36 #include <linux/fs_struct.h> 37 #include <linux/posix_acl.h> 38 #include <linux/hash.h> 39 #include <linux/bitops.h> 40 #include <linux/init_task.h> 41 #include <linux/uaccess.h> 42 43 #include "internal.h" 44 #include "mount.h" 45 46 /* [Feb-1997 T. Schoebel-Theuer] 47 * Fundamental changes in the pathname lookup mechanisms (namei) 48 * were necessary because of omirr. The reason is that omirr needs 49 * to know the _real_ pathname, not the user-supplied one, in case 50 * of symlinks (and also when transname replacements occur). 51 * 52 * The new code replaces the old recursive symlink resolution with 53 * an iterative one (in case of non-nested symlink chains). It does 54 * this with calls to <fs>_follow_link(). 55 * As a side effect, dir_namei(), _namei() and follow_link() are now 56 * replaced with a single function lookup_dentry() that can handle all 57 * the special cases of the former code. 58 * 59 * With the new dcache, the pathname is stored at each inode, at least as 60 * long as the refcount of the inode is positive. As a side effect, the 61 * size of the dcache depends on the inode cache and thus is dynamic. 62 * 63 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 64 * resolution to correspond with current state of the code. 65 * 66 * Note that the symlink resolution is not *completely* iterative. 67 * There is still a significant amount of tail- and mid- recursion in 68 * the algorithm. Also, note that <fs>_readlink() is not used in 69 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 70 * may return different results than <fs>_follow_link(). Many virtual 71 * filesystems (including /proc) exhibit this behavior. 72 */ 73 74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 75 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 76 * and the name already exists in form of a symlink, try to create the new 77 * name indicated by the symlink. The old code always complained that the 78 * name already exists, due to not following the symlink even if its target 79 * is nonexistent. The new semantics affects also mknod() and link() when 80 * the name is a symlink pointing to a non-existent name. 81 * 82 * I don't know which semantics is the right one, since I have no access 83 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 84 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 85 * "old" one. Personally, I think the new semantics is much more logical. 86 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 87 * file does succeed in both HP-UX and SunOs, but not in Solaris 88 * and in the old Linux semantics. 89 */ 90 91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 92 * semantics. See the comments in "open_namei" and "do_link" below. 93 * 94 * [10-Sep-98 Alan Modra] Another symlink change. 95 */ 96 97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 98 * inside the path - always follow. 99 * in the last component in creation/removal/renaming - never follow. 100 * if LOOKUP_FOLLOW passed - follow. 101 * if the pathname has trailing slashes - follow. 102 * otherwise - don't follow. 103 * (applied in that order). 104 * 105 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 106 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 107 * During the 2.4 we need to fix the userland stuff depending on it - 108 * hopefully we will be able to get rid of that wart in 2.5. So far only 109 * XEmacs seems to be relying on it... 110 */ 111 /* 112 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 113 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 114 * any extra contention... 115 */ 116 117 /* In order to reduce some races, while at the same time doing additional 118 * checking and hopefully speeding things up, we copy filenames to the 119 * kernel data space before using them.. 120 * 121 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 122 * PATH_MAX includes the nul terminator --RR. 123 */ 124 125 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) 126 127 struct filename * 128 getname_flags(const char __user *filename, int flags, int *empty) 129 { 130 struct filename *result; 131 char *kname; 132 int len; 133 134 result = audit_reusename(filename); 135 if (result) 136 return result; 137 138 result = __getname(); 139 if (unlikely(!result)) 140 return ERR_PTR(-ENOMEM); 141 142 /* 143 * First, try to embed the struct filename inside the names_cache 144 * allocation 145 */ 146 kname = (char *)result->iname; 147 result->name = kname; 148 149 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); 150 if (unlikely(len < 0)) { 151 __putname(result); 152 return ERR_PTR(len); 153 } 154 155 /* 156 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 157 * separate struct filename so we can dedicate the entire 158 * names_cache allocation for the pathname, and re-do the copy from 159 * userland. 160 */ 161 if (unlikely(len == EMBEDDED_NAME_MAX)) { 162 const size_t size = offsetof(struct filename, iname[1]); 163 kname = (char *)result; 164 165 /* 166 * size is chosen that way we to guarantee that 167 * result->iname[0] is within the same object and that 168 * kname can't be equal to result->iname, no matter what. 169 */ 170 result = kzalloc(size, GFP_KERNEL); 171 if (unlikely(!result)) { 172 __putname(kname); 173 return ERR_PTR(-ENOMEM); 174 } 175 result->name = kname; 176 len = strncpy_from_user(kname, filename, PATH_MAX); 177 if (unlikely(len < 0)) { 178 __putname(kname); 179 kfree(result); 180 return ERR_PTR(len); 181 } 182 if (unlikely(len == PATH_MAX)) { 183 __putname(kname); 184 kfree(result); 185 return ERR_PTR(-ENAMETOOLONG); 186 } 187 } 188 189 result->refcnt = 1; 190 /* The empty path is special. */ 191 if (unlikely(!len)) { 192 if (empty) 193 *empty = 1; 194 if (!(flags & LOOKUP_EMPTY)) { 195 putname(result); 196 return ERR_PTR(-ENOENT); 197 } 198 } 199 200 result->uptr = filename; 201 result->aname = NULL; 202 audit_getname(result); 203 return result; 204 } 205 206 struct filename * 207 getname_uflags(const char __user *filename, int uflags) 208 { 209 int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 210 211 return getname_flags(filename, flags, NULL); 212 } 213 214 struct filename * 215 getname(const char __user * filename) 216 { 217 return getname_flags(filename, 0, NULL); 218 } 219 220 struct filename * 221 getname_kernel(const char * filename) 222 { 223 struct filename *result; 224 int len = strlen(filename) + 1; 225 226 result = __getname(); 227 if (unlikely(!result)) 228 return ERR_PTR(-ENOMEM); 229 230 if (len <= EMBEDDED_NAME_MAX) { 231 result->name = (char *)result->iname; 232 } else if (len <= PATH_MAX) { 233 const size_t size = offsetof(struct filename, iname[1]); 234 struct filename *tmp; 235 236 tmp = kmalloc(size, GFP_KERNEL); 237 if (unlikely(!tmp)) { 238 __putname(result); 239 return ERR_PTR(-ENOMEM); 240 } 241 tmp->name = (char *)result; 242 result = tmp; 243 } else { 244 __putname(result); 245 return ERR_PTR(-ENAMETOOLONG); 246 } 247 memcpy((char *)result->name, filename, len); 248 result->uptr = NULL; 249 result->aname = NULL; 250 result->refcnt = 1; 251 audit_getname(result); 252 253 return result; 254 } 255 256 void putname(struct filename *name) 257 { 258 if (IS_ERR(name)) 259 return; 260 261 BUG_ON(name->refcnt <= 0); 262 263 if (--name->refcnt > 0) 264 return; 265 266 if (name->name != name->iname) { 267 __putname(name->name); 268 kfree(name); 269 } else 270 __putname(name); 271 } 272 273 /** 274 * check_acl - perform ACL permission checking 275 * @mnt_userns: user namespace of the mount the inode was found from 276 * @inode: inode to check permissions on 277 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 278 * 279 * This function performs the ACL permission checking. Since this function 280 * retrieve POSIX acls it needs to know whether it is called from a blocking or 281 * non-blocking context and thus cares about the MAY_NOT_BLOCK bit. 282 * 283 * If the inode has been found through an idmapped mount the user namespace of 284 * the vfsmount must be passed through @mnt_userns. This function will then take 285 * care to map the inode according to @mnt_userns before checking permissions. 286 * On non-idmapped mounts or if permission checking is to be performed on the 287 * raw inode simply passs init_user_ns. 288 */ 289 static int check_acl(struct user_namespace *mnt_userns, 290 struct inode *inode, int mask) 291 { 292 #ifdef CONFIG_FS_POSIX_ACL 293 struct posix_acl *acl; 294 295 if (mask & MAY_NOT_BLOCK) { 296 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 297 if (!acl) 298 return -EAGAIN; 299 /* no ->get_acl() calls in RCU mode... */ 300 if (is_uncached_acl(acl)) 301 return -ECHILD; 302 return posix_acl_permission(mnt_userns, inode, acl, mask); 303 } 304 305 acl = get_acl(inode, ACL_TYPE_ACCESS); 306 if (IS_ERR(acl)) 307 return PTR_ERR(acl); 308 if (acl) { 309 int error = posix_acl_permission(mnt_userns, inode, acl, mask); 310 posix_acl_release(acl); 311 return error; 312 } 313 #endif 314 315 return -EAGAIN; 316 } 317 318 /** 319 * acl_permission_check - perform basic UNIX permission checking 320 * @mnt_userns: user namespace of the mount the inode was found from 321 * @inode: inode to check permissions on 322 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 323 * 324 * This function performs the basic UNIX permission checking. Since this 325 * function may retrieve POSIX acls it needs to know whether it is called from a 326 * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit. 327 * 328 * If the inode has been found through an idmapped mount the user namespace of 329 * the vfsmount must be passed through @mnt_userns. This function will then take 330 * care to map the inode according to @mnt_userns before checking permissions. 331 * On non-idmapped mounts or if permission checking is to be performed on the 332 * raw inode simply passs init_user_ns. 333 */ 334 static int acl_permission_check(struct user_namespace *mnt_userns, 335 struct inode *inode, int mask) 336 { 337 unsigned int mode = inode->i_mode; 338 kuid_t i_uid; 339 340 /* Are we the owner? If so, ACL's don't matter */ 341 i_uid = i_uid_into_mnt(mnt_userns, inode); 342 if (likely(uid_eq(current_fsuid(), i_uid))) { 343 mask &= 7; 344 mode >>= 6; 345 return (mask & ~mode) ? -EACCES : 0; 346 } 347 348 /* Do we have ACL's? */ 349 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 350 int error = check_acl(mnt_userns, inode, mask); 351 if (error != -EAGAIN) 352 return error; 353 } 354 355 /* Only RWX matters for group/other mode bits */ 356 mask &= 7; 357 358 /* 359 * Are the group permissions different from 360 * the other permissions in the bits we care 361 * about? Need to check group ownership if so. 362 */ 363 if (mask & (mode ^ (mode >> 3))) { 364 kgid_t kgid = i_gid_into_mnt(mnt_userns, inode); 365 if (in_group_p(kgid)) 366 mode >>= 3; 367 } 368 369 /* Bits in 'mode' clear that we require? */ 370 return (mask & ~mode) ? -EACCES : 0; 371 } 372 373 /** 374 * generic_permission - check for access rights on a Posix-like filesystem 375 * @mnt_userns: user namespace of the mount the inode was found from 376 * @inode: inode to check access rights for 377 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, 378 * %MAY_NOT_BLOCK ...) 379 * 380 * Used to check for read/write/execute permissions on a file. 381 * We use "fsuid" for this, letting us set arbitrary permissions 382 * for filesystem access without changing the "normal" uids which 383 * are used for other things. 384 * 385 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 386 * request cannot be satisfied (eg. requires blocking or too much complexity). 387 * It would then be called again in ref-walk mode. 388 * 389 * If the inode has been found through an idmapped mount the user namespace of 390 * the vfsmount must be passed through @mnt_userns. This function will then take 391 * care to map the inode according to @mnt_userns before checking permissions. 392 * On non-idmapped mounts or if permission checking is to be performed on the 393 * raw inode simply passs init_user_ns. 394 */ 395 int generic_permission(struct user_namespace *mnt_userns, struct inode *inode, 396 int mask) 397 { 398 int ret; 399 400 /* 401 * Do the basic permission checks. 402 */ 403 ret = acl_permission_check(mnt_userns, inode, mask); 404 if (ret != -EACCES) 405 return ret; 406 407 if (S_ISDIR(inode->i_mode)) { 408 /* DACs are overridable for directories */ 409 if (!(mask & MAY_WRITE)) 410 if (capable_wrt_inode_uidgid(mnt_userns, inode, 411 CAP_DAC_READ_SEARCH)) 412 return 0; 413 if (capable_wrt_inode_uidgid(mnt_userns, inode, 414 CAP_DAC_OVERRIDE)) 415 return 0; 416 return -EACCES; 417 } 418 419 /* 420 * Searching includes executable on directories, else just read. 421 */ 422 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 423 if (mask == MAY_READ) 424 if (capable_wrt_inode_uidgid(mnt_userns, inode, 425 CAP_DAC_READ_SEARCH)) 426 return 0; 427 /* 428 * Read/write DACs are always overridable. 429 * Executable DACs are overridable when there is 430 * at least one exec bit set. 431 */ 432 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 433 if (capable_wrt_inode_uidgid(mnt_userns, inode, 434 CAP_DAC_OVERRIDE)) 435 return 0; 436 437 return -EACCES; 438 } 439 EXPORT_SYMBOL(generic_permission); 440 441 /** 442 * do_inode_permission - UNIX permission checking 443 * @mnt_userns: user namespace of the mount the inode was found from 444 * @inode: inode to check permissions on 445 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 446 * 447 * We _really_ want to just do "generic_permission()" without 448 * even looking at the inode->i_op values. So we keep a cache 449 * flag in inode->i_opflags, that says "this has not special 450 * permission function, use the fast case". 451 */ 452 static inline int do_inode_permission(struct user_namespace *mnt_userns, 453 struct inode *inode, int mask) 454 { 455 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 456 if (likely(inode->i_op->permission)) 457 return inode->i_op->permission(mnt_userns, inode, mask); 458 459 /* This gets set once for the inode lifetime */ 460 spin_lock(&inode->i_lock); 461 inode->i_opflags |= IOP_FASTPERM; 462 spin_unlock(&inode->i_lock); 463 } 464 return generic_permission(mnt_userns, inode, mask); 465 } 466 467 /** 468 * sb_permission - Check superblock-level permissions 469 * @sb: Superblock of inode to check permission on 470 * @inode: Inode to check permission on 471 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 472 * 473 * Separate out file-system wide checks from inode-specific permission checks. 474 */ 475 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 476 { 477 if (unlikely(mask & MAY_WRITE)) { 478 umode_t mode = inode->i_mode; 479 480 /* Nobody gets write access to a read-only fs. */ 481 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 482 return -EROFS; 483 } 484 return 0; 485 } 486 487 /** 488 * inode_permission - Check for access rights to a given inode 489 * @mnt_userns: User namespace of the mount the inode was found from 490 * @inode: Inode to check permission on 491 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 492 * 493 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 494 * this, letting us set arbitrary permissions for filesystem access without 495 * changing the "normal" UIDs which are used for other things. 496 * 497 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 498 */ 499 int inode_permission(struct user_namespace *mnt_userns, 500 struct inode *inode, int mask) 501 { 502 int retval; 503 504 retval = sb_permission(inode->i_sb, inode, mask); 505 if (retval) 506 return retval; 507 508 if (unlikely(mask & MAY_WRITE)) { 509 /* 510 * Nobody gets write access to an immutable file. 511 */ 512 if (IS_IMMUTABLE(inode)) 513 return -EPERM; 514 515 /* 516 * Updating mtime will likely cause i_uid and i_gid to be 517 * written back improperly if their true value is unknown 518 * to the vfs. 519 */ 520 if (HAS_UNMAPPED_ID(mnt_userns, inode)) 521 return -EACCES; 522 } 523 524 retval = do_inode_permission(mnt_userns, inode, mask); 525 if (retval) 526 return retval; 527 528 retval = devcgroup_inode_permission(inode, mask); 529 if (retval) 530 return retval; 531 532 return security_inode_permission(inode, mask); 533 } 534 EXPORT_SYMBOL(inode_permission); 535 536 /** 537 * path_get - get a reference to a path 538 * @path: path to get the reference to 539 * 540 * Given a path increment the reference count to the dentry and the vfsmount. 541 */ 542 void path_get(const struct path *path) 543 { 544 mntget(path->mnt); 545 dget(path->dentry); 546 } 547 EXPORT_SYMBOL(path_get); 548 549 /** 550 * path_put - put a reference to a path 551 * @path: path to put the reference to 552 * 553 * Given a path decrement the reference count to the dentry and the vfsmount. 554 */ 555 void path_put(const struct path *path) 556 { 557 dput(path->dentry); 558 mntput(path->mnt); 559 } 560 EXPORT_SYMBOL(path_put); 561 562 #define EMBEDDED_LEVELS 2 563 struct nameidata { 564 struct path path; 565 struct qstr last; 566 struct path root; 567 struct inode *inode; /* path.dentry.d_inode */ 568 unsigned int flags, state; 569 unsigned seq, m_seq, r_seq; 570 int last_type; 571 unsigned depth; 572 int total_link_count; 573 struct saved { 574 struct path link; 575 struct delayed_call done; 576 const char *name; 577 unsigned seq; 578 } *stack, internal[EMBEDDED_LEVELS]; 579 struct filename *name; 580 struct nameidata *saved; 581 unsigned root_seq; 582 int dfd; 583 kuid_t dir_uid; 584 umode_t dir_mode; 585 } __randomize_layout; 586 587 #define ND_ROOT_PRESET 1 588 #define ND_ROOT_GRABBED 2 589 #define ND_JUMPED 4 590 591 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name) 592 { 593 struct nameidata *old = current->nameidata; 594 p->stack = p->internal; 595 p->depth = 0; 596 p->dfd = dfd; 597 p->name = name; 598 p->path.mnt = NULL; 599 p->path.dentry = NULL; 600 p->total_link_count = old ? old->total_link_count : 0; 601 p->saved = old; 602 current->nameidata = p; 603 } 604 605 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name, 606 const struct path *root) 607 { 608 __set_nameidata(p, dfd, name); 609 p->state = 0; 610 if (unlikely(root)) { 611 p->state = ND_ROOT_PRESET; 612 p->root = *root; 613 } 614 } 615 616 static void restore_nameidata(void) 617 { 618 struct nameidata *now = current->nameidata, *old = now->saved; 619 620 current->nameidata = old; 621 if (old) 622 old->total_link_count = now->total_link_count; 623 if (now->stack != now->internal) 624 kfree(now->stack); 625 } 626 627 static bool nd_alloc_stack(struct nameidata *nd) 628 { 629 struct saved *p; 630 631 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved), 632 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL); 633 if (unlikely(!p)) 634 return false; 635 memcpy(p, nd->internal, sizeof(nd->internal)); 636 nd->stack = p; 637 return true; 638 } 639 640 /** 641 * path_connected - Verify that a dentry is below mnt.mnt_root 642 * 643 * Rename can sometimes move a file or directory outside of a bind 644 * mount, path_connected allows those cases to be detected. 645 */ 646 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry) 647 { 648 struct super_block *sb = mnt->mnt_sb; 649 650 /* Bind mounts can have disconnected paths */ 651 if (mnt->mnt_root == sb->s_root) 652 return true; 653 654 return is_subdir(dentry, mnt->mnt_root); 655 } 656 657 static void drop_links(struct nameidata *nd) 658 { 659 int i = nd->depth; 660 while (i--) { 661 struct saved *last = nd->stack + i; 662 do_delayed_call(&last->done); 663 clear_delayed_call(&last->done); 664 } 665 } 666 667 static void terminate_walk(struct nameidata *nd) 668 { 669 drop_links(nd); 670 if (!(nd->flags & LOOKUP_RCU)) { 671 int i; 672 path_put(&nd->path); 673 for (i = 0; i < nd->depth; i++) 674 path_put(&nd->stack[i].link); 675 if (nd->state & ND_ROOT_GRABBED) { 676 path_put(&nd->root); 677 nd->state &= ~ND_ROOT_GRABBED; 678 } 679 } else { 680 nd->flags &= ~LOOKUP_RCU; 681 rcu_read_unlock(); 682 } 683 nd->depth = 0; 684 nd->path.mnt = NULL; 685 nd->path.dentry = NULL; 686 } 687 688 /* path_put is needed afterwards regardless of success or failure */ 689 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq) 690 { 691 int res = __legitimize_mnt(path->mnt, mseq); 692 if (unlikely(res)) { 693 if (res > 0) 694 path->mnt = NULL; 695 path->dentry = NULL; 696 return false; 697 } 698 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) { 699 path->dentry = NULL; 700 return false; 701 } 702 return !read_seqcount_retry(&path->dentry->d_seq, seq); 703 } 704 705 static inline bool legitimize_path(struct nameidata *nd, 706 struct path *path, unsigned seq) 707 { 708 return __legitimize_path(path, seq, nd->m_seq); 709 } 710 711 static bool legitimize_links(struct nameidata *nd) 712 { 713 int i; 714 if (unlikely(nd->flags & LOOKUP_CACHED)) { 715 drop_links(nd); 716 nd->depth = 0; 717 return false; 718 } 719 for (i = 0; i < nd->depth; i++) { 720 struct saved *last = nd->stack + i; 721 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) { 722 drop_links(nd); 723 nd->depth = i + 1; 724 return false; 725 } 726 } 727 return true; 728 } 729 730 static bool legitimize_root(struct nameidata *nd) 731 { 732 /* 733 * For scoped-lookups (where nd->root has been zeroed), we need to 734 * restart the whole lookup from scratch -- because set_root() is wrong 735 * for these lookups (nd->dfd is the root, not the filesystem root). 736 */ 737 if (!nd->root.mnt && (nd->flags & LOOKUP_IS_SCOPED)) 738 return false; 739 /* Nothing to do if nd->root is zero or is managed by the VFS user. */ 740 if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET)) 741 return true; 742 nd->state |= ND_ROOT_GRABBED; 743 return legitimize_path(nd, &nd->root, nd->root_seq); 744 } 745 746 /* 747 * Path walking has 2 modes, rcu-walk and ref-walk (see 748 * Documentation/filesystems/path-lookup.txt). In situations when we can't 749 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 750 * normal reference counts on dentries and vfsmounts to transition to ref-walk 751 * mode. Refcounts are grabbed at the last known good point before rcu-walk 752 * got stuck, so ref-walk may continue from there. If this is not successful 753 * (eg. a seqcount has changed), then failure is returned and it's up to caller 754 * to restart the path walk from the beginning in ref-walk mode. 755 */ 756 757 /** 758 * try_to_unlazy - try to switch to ref-walk mode. 759 * @nd: nameidata pathwalk data 760 * Returns: true on success, false on failure 761 * 762 * try_to_unlazy attempts to legitimize the current nd->path and nd->root 763 * for ref-walk mode. 764 * Must be called from rcu-walk context. 765 * Nothing should touch nameidata between try_to_unlazy() failure and 766 * terminate_walk(). 767 */ 768 static bool try_to_unlazy(struct nameidata *nd) 769 { 770 struct dentry *parent = nd->path.dentry; 771 772 BUG_ON(!(nd->flags & LOOKUP_RCU)); 773 774 nd->flags &= ~LOOKUP_RCU; 775 if (unlikely(!legitimize_links(nd))) 776 goto out1; 777 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq))) 778 goto out; 779 if (unlikely(!legitimize_root(nd))) 780 goto out; 781 rcu_read_unlock(); 782 BUG_ON(nd->inode != parent->d_inode); 783 return true; 784 785 out1: 786 nd->path.mnt = NULL; 787 nd->path.dentry = NULL; 788 out: 789 rcu_read_unlock(); 790 return false; 791 } 792 793 /** 794 * try_to_unlazy_next - try to switch to ref-walk mode. 795 * @nd: nameidata pathwalk data 796 * @dentry: next dentry to step into 797 * @seq: seq number to check @dentry against 798 * Returns: true on success, false on failure 799 * 800 * Similar to to try_to_unlazy(), but here we have the next dentry already 801 * picked by rcu-walk and want to legitimize that in addition to the current 802 * nd->path and nd->root for ref-walk mode. Must be called from rcu-walk context. 803 * Nothing should touch nameidata between try_to_unlazy_next() failure and 804 * terminate_walk(). 805 */ 806 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry, unsigned seq) 807 { 808 BUG_ON(!(nd->flags & LOOKUP_RCU)); 809 810 nd->flags &= ~LOOKUP_RCU; 811 if (unlikely(!legitimize_links(nd))) 812 goto out2; 813 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq))) 814 goto out2; 815 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref))) 816 goto out1; 817 818 /* 819 * We need to move both the parent and the dentry from the RCU domain 820 * to be properly refcounted. And the sequence number in the dentry 821 * validates *both* dentry counters, since we checked the sequence 822 * number of the parent after we got the child sequence number. So we 823 * know the parent must still be valid if the child sequence number is 824 */ 825 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) 826 goto out; 827 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) 828 goto out_dput; 829 /* 830 * Sequence counts matched. Now make sure that the root is 831 * still valid and get it if required. 832 */ 833 if (unlikely(!legitimize_root(nd))) 834 goto out_dput; 835 rcu_read_unlock(); 836 return true; 837 838 out2: 839 nd->path.mnt = NULL; 840 out1: 841 nd->path.dentry = NULL; 842 out: 843 rcu_read_unlock(); 844 return false; 845 out_dput: 846 rcu_read_unlock(); 847 dput(dentry); 848 return false; 849 } 850 851 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 852 { 853 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) 854 return dentry->d_op->d_revalidate(dentry, flags); 855 else 856 return 1; 857 } 858 859 /** 860 * complete_walk - successful completion of path walk 861 * @nd: pointer nameidata 862 * 863 * If we had been in RCU mode, drop out of it and legitimize nd->path. 864 * Revalidate the final result, unless we'd already done that during 865 * the path walk or the filesystem doesn't ask for it. Return 0 on 866 * success, -error on failure. In case of failure caller does not 867 * need to drop nd->path. 868 */ 869 static int complete_walk(struct nameidata *nd) 870 { 871 struct dentry *dentry = nd->path.dentry; 872 int status; 873 874 if (nd->flags & LOOKUP_RCU) { 875 /* 876 * We don't want to zero nd->root for scoped-lookups or 877 * externally-managed nd->root. 878 */ 879 if (!(nd->state & ND_ROOT_PRESET)) 880 if (!(nd->flags & LOOKUP_IS_SCOPED)) 881 nd->root.mnt = NULL; 882 nd->flags &= ~LOOKUP_CACHED; 883 if (!try_to_unlazy(nd)) 884 return -ECHILD; 885 } 886 887 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { 888 /* 889 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't 890 * ever step outside the root during lookup" and should already 891 * be guaranteed by the rest of namei, we want to avoid a namei 892 * BUG resulting in userspace being given a path that was not 893 * scoped within the root at some point during the lookup. 894 * 895 * So, do a final sanity-check to make sure that in the 896 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED) 897 * we won't silently return an fd completely outside of the 898 * requested root to userspace. 899 * 900 * Userspace could move the path outside the root after this 901 * check, but as discussed elsewhere this is not a concern (the 902 * resolved file was inside the root at some point). 903 */ 904 if (!path_is_under(&nd->path, &nd->root)) 905 return -EXDEV; 906 } 907 908 if (likely(!(nd->state & ND_JUMPED))) 909 return 0; 910 911 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 912 return 0; 913 914 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 915 if (status > 0) 916 return 0; 917 918 if (!status) 919 status = -ESTALE; 920 921 return status; 922 } 923 924 static int set_root(struct nameidata *nd) 925 { 926 struct fs_struct *fs = current->fs; 927 928 /* 929 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we 930 * still have to ensure it doesn't happen because it will cause a breakout 931 * from the dirfd. 932 */ 933 if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED)) 934 return -ENOTRECOVERABLE; 935 936 if (nd->flags & LOOKUP_RCU) { 937 unsigned seq; 938 939 do { 940 seq = read_seqcount_begin(&fs->seq); 941 nd->root = fs->root; 942 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 943 } while (read_seqcount_retry(&fs->seq, seq)); 944 } else { 945 get_fs_root(fs, &nd->root); 946 nd->state |= ND_ROOT_GRABBED; 947 } 948 return 0; 949 } 950 951 static int nd_jump_root(struct nameidata *nd) 952 { 953 if (unlikely(nd->flags & LOOKUP_BENEATH)) 954 return -EXDEV; 955 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { 956 /* Absolute path arguments to path_init() are allowed. */ 957 if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt) 958 return -EXDEV; 959 } 960 if (!nd->root.mnt) { 961 int error = set_root(nd); 962 if (error) 963 return error; 964 } 965 if (nd->flags & LOOKUP_RCU) { 966 struct dentry *d; 967 nd->path = nd->root; 968 d = nd->path.dentry; 969 nd->inode = d->d_inode; 970 nd->seq = nd->root_seq; 971 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq))) 972 return -ECHILD; 973 } else { 974 path_put(&nd->path); 975 nd->path = nd->root; 976 path_get(&nd->path); 977 nd->inode = nd->path.dentry->d_inode; 978 } 979 nd->state |= ND_JUMPED; 980 return 0; 981 } 982 983 /* 984 * Helper to directly jump to a known parsed path from ->get_link, 985 * caller must have taken a reference to path beforehand. 986 */ 987 int nd_jump_link(struct path *path) 988 { 989 int error = -ELOOP; 990 struct nameidata *nd = current->nameidata; 991 992 if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS)) 993 goto err; 994 995 error = -EXDEV; 996 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { 997 if (nd->path.mnt != path->mnt) 998 goto err; 999 } 1000 /* Not currently safe for scoped-lookups. */ 1001 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) 1002 goto err; 1003 1004 path_put(&nd->path); 1005 nd->path = *path; 1006 nd->inode = nd->path.dentry->d_inode; 1007 nd->state |= ND_JUMPED; 1008 return 0; 1009 1010 err: 1011 path_put(path); 1012 return error; 1013 } 1014 1015 static inline void put_link(struct nameidata *nd) 1016 { 1017 struct saved *last = nd->stack + --nd->depth; 1018 do_delayed_call(&last->done); 1019 if (!(nd->flags & LOOKUP_RCU)) 1020 path_put(&last->link); 1021 } 1022 1023 static int sysctl_protected_symlinks __read_mostly; 1024 static int sysctl_protected_hardlinks __read_mostly; 1025 static int sysctl_protected_fifos __read_mostly; 1026 static int sysctl_protected_regular __read_mostly; 1027 1028 #ifdef CONFIG_SYSCTL 1029 static struct ctl_table namei_sysctls[] = { 1030 { 1031 .procname = "protected_symlinks", 1032 .data = &sysctl_protected_symlinks, 1033 .maxlen = sizeof(int), 1034 .mode = 0600, 1035 .proc_handler = proc_dointvec_minmax, 1036 .extra1 = SYSCTL_ZERO, 1037 .extra2 = SYSCTL_ONE, 1038 }, 1039 { 1040 .procname = "protected_hardlinks", 1041 .data = &sysctl_protected_hardlinks, 1042 .maxlen = sizeof(int), 1043 .mode = 0600, 1044 .proc_handler = proc_dointvec_minmax, 1045 .extra1 = SYSCTL_ZERO, 1046 .extra2 = SYSCTL_ONE, 1047 }, 1048 { 1049 .procname = "protected_fifos", 1050 .data = &sysctl_protected_fifos, 1051 .maxlen = sizeof(int), 1052 .mode = 0600, 1053 .proc_handler = proc_dointvec_minmax, 1054 .extra1 = SYSCTL_ZERO, 1055 .extra2 = SYSCTL_TWO, 1056 }, 1057 { 1058 .procname = "protected_regular", 1059 .data = &sysctl_protected_regular, 1060 .maxlen = sizeof(int), 1061 .mode = 0600, 1062 .proc_handler = proc_dointvec_minmax, 1063 .extra1 = SYSCTL_ZERO, 1064 .extra2 = SYSCTL_TWO, 1065 }, 1066 { } 1067 }; 1068 1069 static int __init init_fs_namei_sysctls(void) 1070 { 1071 register_sysctl_init("fs", namei_sysctls); 1072 return 0; 1073 } 1074 fs_initcall(init_fs_namei_sysctls); 1075 1076 #endif /* CONFIG_SYSCTL */ 1077 1078 /** 1079 * may_follow_link - Check symlink following for unsafe situations 1080 * @nd: nameidata pathwalk data 1081 * 1082 * In the case of the sysctl_protected_symlinks sysctl being enabled, 1083 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 1084 * in a sticky world-writable directory. This is to protect privileged 1085 * processes from failing races against path names that may change out 1086 * from under them by way of other users creating malicious symlinks. 1087 * It will permit symlinks to be followed only when outside a sticky 1088 * world-writable directory, or when the uid of the symlink and follower 1089 * match, or when the directory owner matches the symlink's owner. 1090 * 1091 * Returns 0 if following the symlink is allowed, -ve on error. 1092 */ 1093 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode) 1094 { 1095 struct user_namespace *mnt_userns; 1096 kuid_t i_uid; 1097 1098 if (!sysctl_protected_symlinks) 1099 return 0; 1100 1101 mnt_userns = mnt_user_ns(nd->path.mnt); 1102 i_uid = i_uid_into_mnt(mnt_userns, inode); 1103 /* Allowed if owner and follower match. */ 1104 if (uid_eq(current_cred()->fsuid, i_uid)) 1105 return 0; 1106 1107 /* Allowed if parent directory not sticky and world-writable. */ 1108 if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 1109 return 0; 1110 1111 /* Allowed if parent directory and link owner match. */ 1112 if (uid_valid(nd->dir_uid) && uid_eq(nd->dir_uid, i_uid)) 1113 return 0; 1114 1115 if (nd->flags & LOOKUP_RCU) 1116 return -ECHILD; 1117 1118 audit_inode(nd->name, nd->stack[0].link.dentry, 0); 1119 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link"); 1120 return -EACCES; 1121 } 1122 1123 /** 1124 * safe_hardlink_source - Check for safe hardlink conditions 1125 * @mnt_userns: user namespace of the mount the inode was found from 1126 * @inode: the source inode to hardlink from 1127 * 1128 * Return false if at least one of the following conditions: 1129 * - inode is not a regular file 1130 * - inode is setuid 1131 * - inode is setgid and group-exec 1132 * - access failure for read and write 1133 * 1134 * Otherwise returns true. 1135 */ 1136 static bool safe_hardlink_source(struct user_namespace *mnt_userns, 1137 struct inode *inode) 1138 { 1139 umode_t mode = inode->i_mode; 1140 1141 /* Special files should not get pinned to the filesystem. */ 1142 if (!S_ISREG(mode)) 1143 return false; 1144 1145 /* Setuid files should not get pinned to the filesystem. */ 1146 if (mode & S_ISUID) 1147 return false; 1148 1149 /* Executable setgid files should not get pinned to the filesystem. */ 1150 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 1151 return false; 1152 1153 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 1154 if (inode_permission(mnt_userns, inode, MAY_READ | MAY_WRITE)) 1155 return false; 1156 1157 return true; 1158 } 1159 1160 /** 1161 * may_linkat - Check permissions for creating a hardlink 1162 * @mnt_userns: user namespace of the mount the inode was found from 1163 * @link: the source to hardlink from 1164 * 1165 * Block hardlink when all of: 1166 * - sysctl_protected_hardlinks enabled 1167 * - fsuid does not match inode 1168 * - hardlink source is unsafe (see safe_hardlink_source() above) 1169 * - not CAP_FOWNER in a namespace with the inode owner uid mapped 1170 * 1171 * If the inode has been found through an idmapped mount the user namespace of 1172 * the vfsmount must be passed through @mnt_userns. This function will then take 1173 * care to map the inode according to @mnt_userns before checking permissions. 1174 * On non-idmapped mounts or if permission checking is to be performed on the 1175 * raw inode simply passs init_user_ns. 1176 * 1177 * Returns 0 if successful, -ve on error. 1178 */ 1179 int may_linkat(struct user_namespace *mnt_userns, struct path *link) 1180 { 1181 struct inode *inode = link->dentry->d_inode; 1182 1183 /* Inode writeback is not safe when the uid or gid are invalid. */ 1184 if (!uid_valid(i_uid_into_mnt(mnt_userns, inode)) || 1185 !gid_valid(i_gid_into_mnt(mnt_userns, inode))) 1186 return -EOVERFLOW; 1187 1188 if (!sysctl_protected_hardlinks) 1189 return 0; 1190 1191 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 1192 * otherwise, it must be a safe source. 1193 */ 1194 if (safe_hardlink_source(mnt_userns, inode) || 1195 inode_owner_or_capable(mnt_userns, inode)) 1196 return 0; 1197 1198 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat"); 1199 return -EPERM; 1200 } 1201 1202 /** 1203 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory 1204 * should be allowed, or not, on files that already 1205 * exist. 1206 * @mnt_userns: user namespace of the mount the inode was found from 1207 * @nd: nameidata pathwalk data 1208 * @inode: the inode of the file to open 1209 * 1210 * Block an O_CREAT open of a FIFO (or a regular file) when: 1211 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled 1212 * - the file already exists 1213 * - we are in a sticky directory 1214 * - we don't own the file 1215 * - the owner of the directory doesn't own the file 1216 * - the directory is world writable 1217 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2 1218 * the directory doesn't have to be world writable: being group writable will 1219 * be enough. 1220 * 1221 * If the inode has been found through an idmapped mount the user namespace of 1222 * the vfsmount must be passed through @mnt_userns. This function will then take 1223 * care to map the inode according to @mnt_userns before checking permissions. 1224 * On non-idmapped mounts or if permission checking is to be performed on the 1225 * raw inode simply passs init_user_ns. 1226 * 1227 * Returns 0 if the open is allowed, -ve on error. 1228 */ 1229 static int may_create_in_sticky(struct user_namespace *mnt_userns, 1230 struct nameidata *nd, struct inode *const inode) 1231 { 1232 umode_t dir_mode = nd->dir_mode; 1233 kuid_t dir_uid = nd->dir_uid; 1234 1235 if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) || 1236 (!sysctl_protected_regular && S_ISREG(inode->i_mode)) || 1237 likely(!(dir_mode & S_ISVTX)) || 1238 uid_eq(i_uid_into_mnt(mnt_userns, inode), dir_uid) || 1239 uid_eq(current_fsuid(), i_uid_into_mnt(mnt_userns, inode))) 1240 return 0; 1241 1242 if (likely(dir_mode & 0002) || 1243 (dir_mode & 0020 && 1244 ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) || 1245 (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) { 1246 const char *operation = S_ISFIFO(inode->i_mode) ? 1247 "sticky_create_fifo" : 1248 "sticky_create_regular"; 1249 audit_log_path_denied(AUDIT_ANOM_CREAT, operation); 1250 return -EACCES; 1251 } 1252 return 0; 1253 } 1254 1255 /* 1256 * follow_up - Find the mountpoint of path's vfsmount 1257 * 1258 * Given a path, find the mountpoint of its source file system. 1259 * Replace @path with the path of the mountpoint in the parent mount. 1260 * Up is towards /. 1261 * 1262 * Return 1 if we went up a level and 0 if we were already at the 1263 * root. 1264 */ 1265 int follow_up(struct path *path) 1266 { 1267 struct mount *mnt = real_mount(path->mnt); 1268 struct mount *parent; 1269 struct dentry *mountpoint; 1270 1271 read_seqlock_excl(&mount_lock); 1272 parent = mnt->mnt_parent; 1273 if (parent == mnt) { 1274 read_sequnlock_excl(&mount_lock); 1275 return 0; 1276 } 1277 mntget(&parent->mnt); 1278 mountpoint = dget(mnt->mnt_mountpoint); 1279 read_sequnlock_excl(&mount_lock); 1280 dput(path->dentry); 1281 path->dentry = mountpoint; 1282 mntput(path->mnt); 1283 path->mnt = &parent->mnt; 1284 return 1; 1285 } 1286 EXPORT_SYMBOL(follow_up); 1287 1288 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root, 1289 struct path *path, unsigned *seqp) 1290 { 1291 while (mnt_has_parent(m)) { 1292 struct dentry *mountpoint = m->mnt_mountpoint; 1293 1294 m = m->mnt_parent; 1295 if (unlikely(root->dentry == mountpoint && 1296 root->mnt == &m->mnt)) 1297 break; 1298 if (mountpoint != m->mnt.mnt_root) { 1299 path->mnt = &m->mnt; 1300 path->dentry = mountpoint; 1301 *seqp = read_seqcount_begin(&mountpoint->d_seq); 1302 return true; 1303 } 1304 } 1305 return false; 1306 } 1307 1308 static bool choose_mountpoint(struct mount *m, const struct path *root, 1309 struct path *path) 1310 { 1311 bool found; 1312 1313 rcu_read_lock(); 1314 while (1) { 1315 unsigned seq, mseq = read_seqbegin(&mount_lock); 1316 1317 found = choose_mountpoint_rcu(m, root, path, &seq); 1318 if (unlikely(!found)) { 1319 if (!read_seqretry(&mount_lock, mseq)) 1320 break; 1321 } else { 1322 if (likely(__legitimize_path(path, seq, mseq))) 1323 break; 1324 rcu_read_unlock(); 1325 path_put(path); 1326 rcu_read_lock(); 1327 } 1328 } 1329 rcu_read_unlock(); 1330 return found; 1331 } 1332 1333 /* 1334 * Perform an automount 1335 * - return -EISDIR to tell follow_managed() to stop and return the path we 1336 * were called with. 1337 */ 1338 static int follow_automount(struct path *path, int *count, unsigned lookup_flags) 1339 { 1340 struct dentry *dentry = path->dentry; 1341 1342 /* We don't want to mount if someone's just doing a stat - 1343 * unless they're stat'ing a directory and appended a '/' to 1344 * the name. 1345 * 1346 * We do, however, want to mount if someone wants to open or 1347 * create a file of any type under the mountpoint, wants to 1348 * traverse through the mountpoint or wants to open the 1349 * mounted directory. Also, autofs may mark negative dentries 1350 * as being automount points. These will need the attentions 1351 * of the daemon to instantiate them before they can be used. 1352 */ 1353 if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 1354 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 1355 dentry->d_inode) 1356 return -EISDIR; 1357 1358 if (count && (*count)++ >= MAXSYMLINKS) 1359 return -ELOOP; 1360 1361 return finish_automount(dentry->d_op->d_automount(path), path); 1362 } 1363 1364 /* 1365 * mount traversal - out-of-line part. One note on ->d_flags accesses - 1366 * dentries are pinned but not locked here, so negative dentry can go 1367 * positive right under us. Use of smp_load_acquire() provides a barrier 1368 * sufficient for ->d_inode and ->d_flags consistency. 1369 */ 1370 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped, 1371 int *count, unsigned lookup_flags) 1372 { 1373 struct vfsmount *mnt = path->mnt; 1374 bool need_mntput = false; 1375 int ret = 0; 1376 1377 while (flags & DCACHE_MANAGED_DENTRY) { 1378 /* Allow the filesystem to manage the transit without i_mutex 1379 * being held. */ 1380 if (flags & DCACHE_MANAGE_TRANSIT) { 1381 ret = path->dentry->d_op->d_manage(path, false); 1382 flags = smp_load_acquire(&path->dentry->d_flags); 1383 if (ret < 0) 1384 break; 1385 } 1386 1387 if (flags & DCACHE_MOUNTED) { // something's mounted on it.. 1388 struct vfsmount *mounted = lookup_mnt(path); 1389 if (mounted) { // ... in our namespace 1390 dput(path->dentry); 1391 if (need_mntput) 1392 mntput(path->mnt); 1393 path->mnt = mounted; 1394 path->dentry = dget(mounted->mnt_root); 1395 // here we know it's positive 1396 flags = path->dentry->d_flags; 1397 need_mntput = true; 1398 continue; 1399 } 1400 } 1401 1402 if (!(flags & DCACHE_NEED_AUTOMOUNT)) 1403 break; 1404 1405 // uncovered automount point 1406 ret = follow_automount(path, count, lookup_flags); 1407 flags = smp_load_acquire(&path->dentry->d_flags); 1408 if (ret < 0) 1409 break; 1410 } 1411 1412 if (ret == -EISDIR) 1413 ret = 0; 1414 // possible if you race with several mount --move 1415 if (need_mntput && path->mnt == mnt) 1416 mntput(path->mnt); 1417 if (!ret && unlikely(d_flags_negative(flags))) 1418 ret = -ENOENT; 1419 *jumped = need_mntput; 1420 return ret; 1421 } 1422 1423 static inline int traverse_mounts(struct path *path, bool *jumped, 1424 int *count, unsigned lookup_flags) 1425 { 1426 unsigned flags = smp_load_acquire(&path->dentry->d_flags); 1427 1428 /* fastpath */ 1429 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) { 1430 *jumped = false; 1431 if (unlikely(d_flags_negative(flags))) 1432 return -ENOENT; 1433 return 0; 1434 } 1435 return __traverse_mounts(path, flags, jumped, count, lookup_flags); 1436 } 1437 1438 int follow_down_one(struct path *path) 1439 { 1440 struct vfsmount *mounted; 1441 1442 mounted = lookup_mnt(path); 1443 if (mounted) { 1444 dput(path->dentry); 1445 mntput(path->mnt); 1446 path->mnt = mounted; 1447 path->dentry = dget(mounted->mnt_root); 1448 return 1; 1449 } 1450 return 0; 1451 } 1452 EXPORT_SYMBOL(follow_down_one); 1453 1454 /* 1455 * Follow down to the covering mount currently visible to userspace. At each 1456 * point, the filesystem owning that dentry may be queried as to whether the 1457 * caller is permitted to proceed or not. 1458 */ 1459 int follow_down(struct path *path) 1460 { 1461 struct vfsmount *mnt = path->mnt; 1462 bool jumped; 1463 int ret = traverse_mounts(path, &jumped, NULL, 0); 1464 1465 if (path->mnt != mnt) 1466 mntput(mnt); 1467 return ret; 1468 } 1469 EXPORT_SYMBOL(follow_down); 1470 1471 /* 1472 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1473 * we meet a managed dentry that would need blocking. 1474 */ 1475 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1476 struct inode **inode, unsigned *seqp) 1477 { 1478 struct dentry *dentry = path->dentry; 1479 unsigned int flags = dentry->d_flags; 1480 1481 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) 1482 return true; 1483 1484 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1485 return false; 1486 1487 for (;;) { 1488 /* 1489 * Don't forget we might have a non-mountpoint managed dentry 1490 * that wants to block transit. 1491 */ 1492 if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) { 1493 int res = dentry->d_op->d_manage(path, true); 1494 if (res) 1495 return res == -EISDIR; 1496 flags = dentry->d_flags; 1497 } 1498 1499 if (flags & DCACHE_MOUNTED) { 1500 struct mount *mounted = __lookup_mnt(path->mnt, dentry); 1501 if (mounted) { 1502 path->mnt = &mounted->mnt; 1503 dentry = path->dentry = mounted->mnt.mnt_root; 1504 nd->state |= ND_JUMPED; 1505 *seqp = read_seqcount_begin(&dentry->d_seq); 1506 *inode = dentry->d_inode; 1507 /* 1508 * We don't need to re-check ->d_seq after this 1509 * ->d_inode read - there will be an RCU delay 1510 * between mount hash removal and ->mnt_root 1511 * becoming unpinned. 1512 */ 1513 flags = dentry->d_flags; 1514 continue; 1515 } 1516 if (read_seqretry(&mount_lock, nd->m_seq)) 1517 return false; 1518 } 1519 return !(flags & DCACHE_NEED_AUTOMOUNT); 1520 } 1521 } 1522 1523 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry, 1524 struct path *path, struct inode **inode, 1525 unsigned int *seqp) 1526 { 1527 bool jumped; 1528 int ret; 1529 1530 path->mnt = nd->path.mnt; 1531 path->dentry = dentry; 1532 if (nd->flags & LOOKUP_RCU) { 1533 unsigned int seq = *seqp; 1534 if (unlikely(!*inode)) 1535 return -ENOENT; 1536 if (likely(__follow_mount_rcu(nd, path, inode, seqp))) 1537 return 0; 1538 if (!try_to_unlazy_next(nd, dentry, seq)) 1539 return -ECHILD; 1540 // *path might've been clobbered by __follow_mount_rcu() 1541 path->mnt = nd->path.mnt; 1542 path->dentry = dentry; 1543 } 1544 ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags); 1545 if (jumped) { 1546 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1547 ret = -EXDEV; 1548 else 1549 nd->state |= ND_JUMPED; 1550 } 1551 if (unlikely(ret)) { 1552 dput(path->dentry); 1553 if (path->mnt != nd->path.mnt) 1554 mntput(path->mnt); 1555 } else { 1556 *inode = d_backing_inode(path->dentry); 1557 *seqp = 0; /* out of RCU mode, so the value doesn't matter */ 1558 } 1559 return ret; 1560 } 1561 1562 /* 1563 * This looks up the name in dcache and possibly revalidates the found dentry. 1564 * NULL is returned if the dentry does not exist in the cache. 1565 */ 1566 static struct dentry *lookup_dcache(const struct qstr *name, 1567 struct dentry *dir, 1568 unsigned int flags) 1569 { 1570 struct dentry *dentry = d_lookup(dir, name); 1571 if (dentry) { 1572 int error = d_revalidate(dentry, flags); 1573 if (unlikely(error <= 0)) { 1574 if (!error) 1575 d_invalidate(dentry); 1576 dput(dentry); 1577 return ERR_PTR(error); 1578 } 1579 } 1580 return dentry; 1581 } 1582 1583 /* 1584 * Parent directory has inode locked exclusive. This is one 1585 * and only case when ->lookup() gets called on non in-lookup 1586 * dentries - as the matter of fact, this only gets called 1587 * when directory is guaranteed to have no in-lookup children 1588 * at all. 1589 */ 1590 static struct dentry *__lookup_hash(const struct qstr *name, 1591 struct dentry *base, unsigned int flags) 1592 { 1593 struct dentry *dentry = lookup_dcache(name, base, flags); 1594 struct dentry *old; 1595 struct inode *dir = base->d_inode; 1596 1597 if (dentry) 1598 return dentry; 1599 1600 /* Don't create child dentry for a dead directory. */ 1601 if (unlikely(IS_DEADDIR(dir))) 1602 return ERR_PTR(-ENOENT); 1603 1604 dentry = d_alloc(base, name); 1605 if (unlikely(!dentry)) 1606 return ERR_PTR(-ENOMEM); 1607 1608 old = dir->i_op->lookup(dir, dentry, flags); 1609 if (unlikely(old)) { 1610 dput(dentry); 1611 dentry = old; 1612 } 1613 return dentry; 1614 } 1615 1616 static struct dentry *lookup_fast(struct nameidata *nd, 1617 struct inode **inode, 1618 unsigned *seqp) 1619 { 1620 struct dentry *dentry, *parent = nd->path.dentry; 1621 int status = 1; 1622 1623 /* 1624 * Rename seqlock is not required here because in the off chance 1625 * of a false negative due to a concurrent rename, the caller is 1626 * going to fall back to non-racy lookup. 1627 */ 1628 if (nd->flags & LOOKUP_RCU) { 1629 unsigned seq; 1630 dentry = __d_lookup_rcu(parent, &nd->last, &seq); 1631 if (unlikely(!dentry)) { 1632 if (!try_to_unlazy(nd)) 1633 return ERR_PTR(-ECHILD); 1634 return NULL; 1635 } 1636 1637 /* 1638 * This sequence count validates that the inode matches 1639 * the dentry name information from lookup. 1640 */ 1641 *inode = d_backing_inode(dentry); 1642 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) 1643 return ERR_PTR(-ECHILD); 1644 1645 /* 1646 * This sequence count validates that the parent had no 1647 * changes while we did the lookup of the dentry above. 1648 * 1649 * The memory barrier in read_seqcount_begin of child is 1650 * enough, we can use __read_seqcount_retry here. 1651 */ 1652 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq))) 1653 return ERR_PTR(-ECHILD); 1654 1655 *seqp = seq; 1656 status = d_revalidate(dentry, nd->flags); 1657 if (likely(status > 0)) 1658 return dentry; 1659 if (!try_to_unlazy_next(nd, dentry, seq)) 1660 return ERR_PTR(-ECHILD); 1661 if (status == -ECHILD) 1662 /* we'd been told to redo it in non-rcu mode */ 1663 status = d_revalidate(dentry, nd->flags); 1664 } else { 1665 dentry = __d_lookup(parent, &nd->last); 1666 if (unlikely(!dentry)) 1667 return NULL; 1668 status = d_revalidate(dentry, nd->flags); 1669 } 1670 if (unlikely(status <= 0)) { 1671 if (!status) 1672 d_invalidate(dentry); 1673 dput(dentry); 1674 return ERR_PTR(status); 1675 } 1676 return dentry; 1677 } 1678 1679 /* Fast lookup failed, do it the slow way */ 1680 static struct dentry *__lookup_slow(const struct qstr *name, 1681 struct dentry *dir, 1682 unsigned int flags) 1683 { 1684 struct dentry *dentry, *old; 1685 struct inode *inode = dir->d_inode; 1686 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1687 1688 /* Don't go there if it's already dead */ 1689 if (unlikely(IS_DEADDIR(inode))) 1690 return ERR_PTR(-ENOENT); 1691 again: 1692 dentry = d_alloc_parallel(dir, name, &wq); 1693 if (IS_ERR(dentry)) 1694 return dentry; 1695 if (unlikely(!d_in_lookup(dentry))) { 1696 int error = d_revalidate(dentry, flags); 1697 if (unlikely(error <= 0)) { 1698 if (!error) { 1699 d_invalidate(dentry); 1700 dput(dentry); 1701 goto again; 1702 } 1703 dput(dentry); 1704 dentry = ERR_PTR(error); 1705 } 1706 } else { 1707 old = inode->i_op->lookup(inode, dentry, flags); 1708 d_lookup_done(dentry); 1709 if (unlikely(old)) { 1710 dput(dentry); 1711 dentry = old; 1712 } 1713 } 1714 return dentry; 1715 } 1716 1717 static struct dentry *lookup_slow(const struct qstr *name, 1718 struct dentry *dir, 1719 unsigned int flags) 1720 { 1721 struct inode *inode = dir->d_inode; 1722 struct dentry *res; 1723 inode_lock_shared(inode); 1724 res = __lookup_slow(name, dir, flags); 1725 inode_unlock_shared(inode); 1726 return res; 1727 } 1728 1729 static inline int may_lookup(struct user_namespace *mnt_userns, 1730 struct nameidata *nd) 1731 { 1732 if (nd->flags & LOOKUP_RCU) { 1733 int err = inode_permission(mnt_userns, nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1734 if (err != -ECHILD || !try_to_unlazy(nd)) 1735 return err; 1736 } 1737 return inode_permission(mnt_userns, nd->inode, MAY_EXEC); 1738 } 1739 1740 static int reserve_stack(struct nameidata *nd, struct path *link, unsigned seq) 1741 { 1742 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) 1743 return -ELOOP; 1744 1745 if (likely(nd->depth != EMBEDDED_LEVELS)) 1746 return 0; 1747 if (likely(nd->stack != nd->internal)) 1748 return 0; 1749 if (likely(nd_alloc_stack(nd))) 1750 return 0; 1751 1752 if (nd->flags & LOOKUP_RCU) { 1753 // we need to grab link before we do unlazy. And we can't skip 1754 // unlazy even if we fail to grab the link - cleanup needs it 1755 bool grabbed_link = legitimize_path(nd, link, seq); 1756 1757 if (!try_to_unlazy(nd) != 0 || !grabbed_link) 1758 return -ECHILD; 1759 1760 if (nd_alloc_stack(nd)) 1761 return 0; 1762 } 1763 return -ENOMEM; 1764 } 1765 1766 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4}; 1767 1768 static const char *pick_link(struct nameidata *nd, struct path *link, 1769 struct inode *inode, unsigned seq, int flags) 1770 { 1771 struct saved *last; 1772 const char *res; 1773 int error = reserve_stack(nd, link, seq); 1774 1775 if (unlikely(error)) { 1776 if (!(nd->flags & LOOKUP_RCU)) 1777 path_put(link); 1778 return ERR_PTR(error); 1779 } 1780 last = nd->stack + nd->depth++; 1781 last->link = *link; 1782 clear_delayed_call(&last->done); 1783 last->seq = seq; 1784 1785 if (flags & WALK_TRAILING) { 1786 error = may_follow_link(nd, inode); 1787 if (unlikely(error)) 1788 return ERR_PTR(error); 1789 } 1790 1791 if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) || 1792 unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW)) 1793 return ERR_PTR(-ELOOP); 1794 1795 if (!(nd->flags & LOOKUP_RCU)) { 1796 touch_atime(&last->link); 1797 cond_resched(); 1798 } else if (atime_needs_update(&last->link, inode)) { 1799 if (!try_to_unlazy(nd)) 1800 return ERR_PTR(-ECHILD); 1801 touch_atime(&last->link); 1802 } 1803 1804 error = security_inode_follow_link(link->dentry, inode, 1805 nd->flags & LOOKUP_RCU); 1806 if (unlikely(error)) 1807 return ERR_PTR(error); 1808 1809 res = READ_ONCE(inode->i_link); 1810 if (!res) { 1811 const char * (*get)(struct dentry *, struct inode *, 1812 struct delayed_call *); 1813 get = inode->i_op->get_link; 1814 if (nd->flags & LOOKUP_RCU) { 1815 res = get(NULL, inode, &last->done); 1816 if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd)) 1817 res = get(link->dentry, inode, &last->done); 1818 } else { 1819 res = get(link->dentry, inode, &last->done); 1820 } 1821 if (!res) 1822 goto all_done; 1823 if (IS_ERR(res)) 1824 return res; 1825 } 1826 if (*res == '/') { 1827 error = nd_jump_root(nd); 1828 if (unlikely(error)) 1829 return ERR_PTR(error); 1830 while (unlikely(*++res == '/')) 1831 ; 1832 } 1833 if (*res) 1834 return res; 1835 all_done: // pure jump 1836 put_link(nd); 1837 return NULL; 1838 } 1839 1840 /* 1841 * Do we need to follow links? We _really_ want to be able 1842 * to do this check without having to look at inode->i_op, 1843 * so we keep a cache of "no, this doesn't need follow_link" 1844 * for the common case. 1845 */ 1846 static const char *step_into(struct nameidata *nd, int flags, 1847 struct dentry *dentry, struct inode *inode, unsigned seq) 1848 { 1849 struct path path; 1850 int err = handle_mounts(nd, dentry, &path, &inode, &seq); 1851 1852 if (err < 0) 1853 return ERR_PTR(err); 1854 if (likely(!d_is_symlink(path.dentry)) || 1855 ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) || 1856 (flags & WALK_NOFOLLOW)) { 1857 /* not a symlink or should not follow */ 1858 if (!(nd->flags & LOOKUP_RCU)) { 1859 dput(nd->path.dentry); 1860 if (nd->path.mnt != path.mnt) 1861 mntput(nd->path.mnt); 1862 } 1863 nd->path = path; 1864 nd->inode = inode; 1865 nd->seq = seq; 1866 return NULL; 1867 } 1868 if (nd->flags & LOOKUP_RCU) { 1869 /* make sure that d_is_symlink above matches inode */ 1870 if (read_seqcount_retry(&path.dentry->d_seq, seq)) 1871 return ERR_PTR(-ECHILD); 1872 } else { 1873 if (path.mnt == nd->path.mnt) 1874 mntget(path.mnt); 1875 } 1876 return pick_link(nd, &path, inode, seq, flags); 1877 } 1878 1879 static struct dentry *follow_dotdot_rcu(struct nameidata *nd, 1880 struct inode **inodep, 1881 unsigned *seqp) 1882 { 1883 struct dentry *parent, *old; 1884 1885 if (path_equal(&nd->path, &nd->root)) 1886 goto in_root; 1887 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { 1888 struct path path; 1889 unsigned seq; 1890 if (!choose_mountpoint_rcu(real_mount(nd->path.mnt), 1891 &nd->root, &path, &seq)) 1892 goto in_root; 1893 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1894 return ERR_PTR(-ECHILD); 1895 nd->path = path; 1896 nd->inode = path.dentry->d_inode; 1897 nd->seq = seq; 1898 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1899 return ERR_PTR(-ECHILD); 1900 /* we know that mountpoint was pinned */ 1901 } 1902 old = nd->path.dentry; 1903 parent = old->d_parent; 1904 *inodep = parent->d_inode; 1905 *seqp = read_seqcount_begin(&parent->d_seq); 1906 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq))) 1907 return ERR_PTR(-ECHILD); 1908 if (unlikely(!path_connected(nd->path.mnt, parent))) 1909 return ERR_PTR(-ECHILD); 1910 return parent; 1911 in_root: 1912 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1913 return ERR_PTR(-ECHILD); 1914 if (unlikely(nd->flags & LOOKUP_BENEATH)) 1915 return ERR_PTR(-ECHILD); 1916 return NULL; 1917 } 1918 1919 static struct dentry *follow_dotdot(struct nameidata *nd, 1920 struct inode **inodep, 1921 unsigned *seqp) 1922 { 1923 struct dentry *parent; 1924 1925 if (path_equal(&nd->path, &nd->root)) 1926 goto in_root; 1927 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { 1928 struct path path; 1929 1930 if (!choose_mountpoint(real_mount(nd->path.mnt), 1931 &nd->root, &path)) 1932 goto in_root; 1933 path_put(&nd->path); 1934 nd->path = path; 1935 nd->inode = path.dentry->d_inode; 1936 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1937 return ERR_PTR(-EXDEV); 1938 } 1939 /* rare case of legitimate dget_parent()... */ 1940 parent = dget_parent(nd->path.dentry); 1941 if (unlikely(!path_connected(nd->path.mnt, parent))) { 1942 dput(parent); 1943 return ERR_PTR(-ENOENT); 1944 } 1945 *seqp = 0; 1946 *inodep = parent->d_inode; 1947 return parent; 1948 1949 in_root: 1950 if (unlikely(nd->flags & LOOKUP_BENEATH)) 1951 return ERR_PTR(-EXDEV); 1952 dget(nd->path.dentry); 1953 return NULL; 1954 } 1955 1956 static const char *handle_dots(struct nameidata *nd, int type) 1957 { 1958 if (type == LAST_DOTDOT) { 1959 const char *error = NULL; 1960 struct dentry *parent; 1961 struct inode *inode; 1962 unsigned seq; 1963 1964 if (!nd->root.mnt) { 1965 error = ERR_PTR(set_root(nd)); 1966 if (error) 1967 return error; 1968 } 1969 if (nd->flags & LOOKUP_RCU) 1970 parent = follow_dotdot_rcu(nd, &inode, &seq); 1971 else 1972 parent = follow_dotdot(nd, &inode, &seq); 1973 if (IS_ERR(parent)) 1974 return ERR_CAST(parent); 1975 if (unlikely(!parent)) 1976 error = step_into(nd, WALK_NOFOLLOW, 1977 nd->path.dentry, nd->inode, nd->seq); 1978 else 1979 error = step_into(nd, WALK_NOFOLLOW, 1980 parent, inode, seq); 1981 if (unlikely(error)) 1982 return error; 1983 1984 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { 1985 /* 1986 * If there was a racing rename or mount along our 1987 * path, then we can't be sure that ".." hasn't jumped 1988 * above nd->root (and so userspace should retry or use 1989 * some fallback). 1990 */ 1991 smp_rmb(); 1992 if (unlikely(__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq))) 1993 return ERR_PTR(-EAGAIN); 1994 if (unlikely(__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq))) 1995 return ERR_PTR(-EAGAIN); 1996 } 1997 } 1998 return NULL; 1999 } 2000 2001 static const char *walk_component(struct nameidata *nd, int flags) 2002 { 2003 struct dentry *dentry; 2004 struct inode *inode; 2005 unsigned seq; 2006 /* 2007 * "." and ".." are special - ".." especially so because it has 2008 * to be able to know about the current root directory and 2009 * parent relationships. 2010 */ 2011 if (unlikely(nd->last_type != LAST_NORM)) { 2012 if (!(flags & WALK_MORE) && nd->depth) 2013 put_link(nd); 2014 return handle_dots(nd, nd->last_type); 2015 } 2016 dentry = lookup_fast(nd, &inode, &seq); 2017 if (IS_ERR(dentry)) 2018 return ERR_CAST(dentry); 2019 if (unlikely(!dentry)) { 2020 dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags); 2021 if (IS_ERR(dentry)) 2022 return ERR_CAST(dentry); 2023 } 2024 if (!(flags & WALK_MORE) && nd->depth) 2025 put_link(nd); 2026 return step_into(nd, flags, dentry, inode, seq); 2027 } 2028 2029 /* 2030 * We can do the critical dentry name comparison and hashing 2031 * operations one word at a time, but we are limited to: 2032 * 2033 * - Architectures with fast unaligned word accesses. We could 2034 * do a "get_unaligned()" if this helps and is sufficiently 2035 * fast. 2036 * 2037 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 2038 * do not trap on the (extremely unlikely) case of a page 2039 * crossing operation. 2040 * 2041 * - Furthermore, we need an efficient 64-bit compile for the 2042 * 64-bit case in order to generate the "number of bytes in 2043 * the final mask". Again, that could be replaced with a 2044 * efficient population count instruction or similar. 2045 */ 2046 #ifdef CONFIG_DCACHE_WORD_ACCESS 2047 2048 #include <asm/word-at-a-time.h> 2049 2050 #ifdef HASH_MIX 2051 2052 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */ 2053 2054 #elif defined(CONFIG_64BIT) 2055 /* 2056 * Register pressure in the mixing function is an issue, particularly 2057 * on 32-bit x86, but almost any function requires one state value and 2058 * one temporary. Instead, use a function designed for two state values 2059 * and no temporaries. 2060 * 2061 * This function cannot create a collision in only two iterations, so 2062 * we have two iterations to achieve avalanche. In those two iterations, 2063 * we have six layers of mixing, which is enough to spread one bit's 2064 * influence out to 2^6 = 64 state bits. 2065 * 2066 * Rotate constants are scored by considering either 64 one-bit input 2067 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the 2068 * probability of that delta causing a change to each of the 128 output 2069 * bits, using a sample of random initial states. 2070 * 2071 * The Shannon entropy of the computed probabilities is then summed 2072 * to produce a score. Ideally, any input change has a 50% chance of 2073 * toggling any given output bit. 2074 * 2075 * Mixing scores (in bits) for (12,45): 2076 * Input delta: 1-bit 2-bit 2077 * 1 round: 713.3 42542.6 2078 * 2 rounds: 2753.7 140389.8 2079 * 3 rounds: 5954.1 233458.2 2080 * 4 rounds: 7862.6 256672.2 2081 * Perfect: 8192 258048 2082 * (64*128) (64*63/2 * 128) 2083 */ 2084 #define HASH_MIX(x, y, a) \ 2085 ( x ^= (a), \ 2086 y ^= x, x = rol64(x,12),\ 2087 x += y, y = rol64(y,45),\ 2088 y *= 9 ) 2089 2090 /* 2091 * Fold two longs into one 32-bit hash value. This must be fast, but 2092 * latency isn't quite as critical, as there is a fair bit of additional 2093 * work done before the hash value is used. 2094 */ 2095 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 2096 { 2097 y ^= x * GOLDEN_RATIO_64; 2098 y *= GOLDEN_RATIO_64; 2099 return y >> 32; 2100 } 2101 2102 #else /* 32-bit case */ 2103 2104 /* 2105 * Mixing scores (in bits) for (7,20): 2106 * Input delta: 1-bit 2-bit 2107 * 1 round: 330.3 9201.6 2108 * 2 rounds: 1246.4 25475.4 2109 * 3 rounds: 1907.1 31295.1 2110 * 4 rounds: 2042.3 31718.6 2111 * Perfect: 2048 31744 2112 * (32*64) (32*31/2 * 64) 2113 */ 2114 #define HASH_MIX(x, y, a) \ 2115 ( x ^= (a), \ 2116 y ^= x, x = rol32(x, 7),\ 2117 x += y, y = rol32(y,20),\ 2118 y *= 9 ) 2119 2120 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 2121 { 2122 /* Use arch-optimized multiply if one exists */ 2123 return __hash_32(y ^ __hash_32(x)); 2124 } 2125 2126 #endif 2127 2128 /* 2129 * Return the hash of a string of known length. This is carfully 2130 * designed to match hash_name(), which is the more critical function. 2131 * In particular, we must end by hashing a final word containing 0..7 2132 * payload bytes, to match the way that hash_name() iterates until it 2133 * finds the delimiter after the name. 2134 */ 2135 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2136 { 2137 unsigned long a, x = 0, y = (unsigned long)salt; 2138 2139 for (;;) { 2140 if (!len) 2141 goto done; 2142 a = load_unaligned_zeropad(name); 2143 if (len < sizeof(unsigned long)) 2144 break; 2145 HASH_MIX(x, y, a); 2146 name += sizeof(unsigned long); 2147 len -= sizeof(unsigned long); 2148 } 2149 x ^= a & bytemask_from_count(len); 2150 done: 2151 return fold_hash(x, y); 2152 } 2153 EXPORT_SYMBOL(full_name_hash); 2154 2155 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2156 u64 hashlen_string(const void *salt, const char *name) 2157 { 2158 unsigned long a = 0, x = 0, y = (unsigned long)salt; 2159 unsigned long adata, mask, len; 2160 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 2161 2162 len = 0; 2163 goto inside; 2164 2165 do { 2166 HASH_MIX(x, y, a); 2167 len += sizeof(unsigned long); 2168 inside: 2169 a = load_unaligned_zeropad(name+len); 2170 } while (!has_zero(a, &adata, &constants)); 2171 2172 adata = prep_zero_mask(a, adata, &constants); 2173 mask = create_zero_mask(adata); 2174 x ^= a & zero_bytemask(mask); 2175 2176 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 2177 } 2178 EXPORT_SYMBOL(hashlen_string); 2179 2180 /* 2181 * Calculate the length and hash of the path component, and 2182 * return the "hash_len" as the result. 2183 */ 2184 static inline u64 hash_name(const void *salt, const char *name) 2185 { 2186 unsigned long a = 0, b, x = 0, y = (unsigned long)salt; 2187 unsigned long adata, bdata, mask, len; 2188 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 2189 2190 len = 0; 2191 goto inside; 2192 2193 do { 2194 HASH_MIX(x, y, a); 2195 len += sizeof(unsigned long); 2196 inside: 2197 a = load_unaligned_zeropad(name+len); 2198 b = a ^ REPEAT_BYTE('/'); 2199 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 2200 2201 adata = prep_zero_mask(a, adata, &constants); 2202 bdata = prep_zero_mask(b, bdata, &constants); 2203 mask = create_zero_mask(adata | bdata); 2204 x ^= a & zero_bytemask(mask); 2205 2206 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 2207 } 2208 2209 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */ 2210 2211 /* Return the hash of a string of known length */ 2212 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2213 { 2214 unsigned long hash = init_name_hash(salt); 2215 while (len--) 2216 hash = partial_name_hash((unsigned char)*name++, hash); 2217 return end_name_hash(hash); 2218 } 2219 EXPORT_SYMBOL(full_name_hash); 2220 2221 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2222 u64 hashlen_string(const void *salt, const char *name) 2223 { 2224 unsigned long hash = init_name_hash(salt); 2225 unsigned long len = 0, c; 2226 2227 c = (unsigned char)*name; 2228 while (c) { 2229 len++; 2230 hash = partial_name_hash(c, hash); 2231 c = (unsigned char)name[len]; 2232 } 2233 return hashlen_create(end_name_hash(hash), len); 2234 } 2235 EXPORT_SYMBOL(hashlen_string); 2236 2237 /* 2238 * We know there's a real path component here of at least 2239 * one character. 2240 */ 2241 static inline u64 hash_name(const void *salt, const char *name) 2242 { 2243 unsigned long hash = init_name_hash(salt); 2244 unsigned long len = 0, c; 2245 2246 c = (unsigned char)*name; 2247 do { 2248 len++; 2249 hash = partial_name_hash(c, hash); 2250 c = (unsigned char)name[len]; 2251 } while (c && c != '/'); 2252 return hashlen_create(end_name_hash(hash), len); 2253 } 2254 2255 #endif 2256 2257 /* 2258 * Name resolution. 2259 * This is the basic name resolution function, turning a pathname into 2260 * the final dentry. We expect 'base' to be positive and a directory. 2261 * 2262 * Returns 0 and nd will have valid dentry and mnt on success. 2263 * Returns error and drops reference to input namei data on failure. 2264 */ 2265 static int link_path_walk(const char *name, struct nameidata *nd) 2266 { 2267 int depth = 0; // depth <= nd->depth 2268 int err; 2269 2270 nd->last_type = LAST_ROOT; 2271 nd->flags |= LOOKUP_PARENT; 2272 if (IS_ERR(name)) 2273 return PTR_ERR(name); 2274 while (*name=='/') 2275 name++; 2276 if (!*name) { 2277 nd->dir_mode = 0; // short-circuit the 'hardening' idiocy 2278 return 0; 2279 } 2280 2281 /* At this point we know we have a real path component. */ 2282 for(;;) { 2283 struct user_namespace *mnt_userns; 2284 const char *link; 2285 u64 hash_len; 2286 int type; 2287 2288 mnt_userns = mnt_user_ns(nd->path.mnt); 2289 err = may_lookup(mnt_userns, nd); 2290 if (err) 2291 return err; 2292 2293 hash_len = hash_name(nd->path.dentry, name); 2294 2295 type = LAST_NORM; 2296 if (name[0] == '.') switch (hashlen_len(hash_len)) { 2297 case 2: 2298 if (name[1] == '.') { 2299 type = LAST_DOTDOT; 2300 nd->state |= ND_JUMPED; 2301 } 2302 break; 2303 case 1: 2304 type = LAST_DOT; 2305 } 2306 if (likely(type == LAST_NORM)) { 2307 struct dentry *parent = nd->path.dentry; 2308 nd->state &= ~ND_JUMPED; 2309 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 2310 struct qstr this = { { .hash_len = hash_len }, .name = name }; 2311 err = parent->d_op->d_hash(parent, &this); 2312 if (err < 0) 2313 return err; 2314 hash_len = this.hash_len; 2315 name = this.name; 2316 } 2317 } 2318 2319 nd->last.hash_len = hash_len; 2320 nd->last.name = name; 2321 nd->last_type = type; 2322 2323 name += hashlen_len(hash_len); 2324 if (!*name) 2325 goto OK; 2326 /* 2327 * If it wasn't NUL, we know it was '/'. Skip that 2328 * slash, and continue until no more slashes. 2329 */ 2330 do { 2331 name++; 2332 } while (unlikely(*name == '/')); 2333 if (unlikely(!*name)) { 2334 OK: 2335 /* pathname or trailing symlink, done */ 2336 if (!depth) { 2337 nd->dir_uid = i_uid_into_mnt(mnt_userns, nd->inode); 2338 nd->dir_mode = nd->inode->i_mode; 2339 nd->flags &= ~LOOKUP_PARENT; 2340 return 0; 2341 } 2342 /* last component of nested symlink */ 2343 name = nd->stack[--depth].name; 2344 link = walk_component(nd, 0); 2345 } else { 2346 /* not the last component */ 2347 link = walk_component(nd, WALK_MORE); 2348 } 2349 if (unlikely(link)) { 2350 if (IS_ERR(link)) 2351 return PTR_ERR(link); 2352 /* a symlink to follow */ 2353 nd->stack[depth++].name = name; 2354 name = link; 2355 continue; 2356 } 2357 if (unlikely(!d_can_lookup(nd->path.dentry))) { 2358 if (nd->flags & LOOKUP_RCU) { 2359 if (!try_to_unlazy(nd)) 2360 return -ECHILD; 2361 } 2362 return -ENOTDIR; 2363 } 2364 } 2365 } 2366 2367 /* must be paired with terminate_walk() */ 2368 static const char *path_init(struct nameidata *nd, unsigned flags) 2369 { 2370 int error; 2371 const char *s = nd->name->name; 2372 2373 /* LOOKUP_CACHED requires RCU, ask caller to retry */ 2374 if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED) 2375 return ERR_PTR(-EAGAIN); 2376 2377 if (!*s) 2378 flags &= ~LOOKUP_RCU; 2379 if (flags & LOOKUP_RCU) 2380 rcu_read_lock(); 2381 2382 nd->flags = flags; 2383 nd->state |= ND_JUMPED; 2384 2385 nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount); 2386 nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount); 2387 smp_rmb(); 2388 2389 if (nd->state & ND_ROOT_PRESET) { 2390 struct dentry *root = nd->root.dentry; 2391 struct inode *inode = root->d_inode; 2392 if (*s && unlikely(!d_can_lookup(root))) 2393 return ERR_PTR(-ENOTDIR); 2394 nd->path = nd->root; 2395 nd->inode = inode; 2396 if (flags & LOOKUP_RCU) { 2397 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2398 nd->root_seq = nd->seq; 2399 } else { 2400 path_get(&nd->path); 2401 } 2402 return s; 2403 } 2404 2405 nd->root.mnt = NULL; 2406 2407 /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */ 2408 if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) { 2409 error = nd_jump_root(nd); 2410 if (unlikely(error)) 2411 return ERR_PTR(error); 2412 return s; 2413 } 2414 2415 /* Relative pathname -- get the starting-point it is relative to. */ 2416 if (nd->dfd == AT_FDCWD) { 2417 if (flags & LOOKUP_RCU) { 2418 struct fs_struct *fs = current->fs; 2419 unsigned seq; 2420 2421 do { 2422 seq = read_seqcount_begin(&fs->seq); 2423 nd->path = fs->pwd; 2424 nd->inode = nd->path.dentry->d_inode; 2425 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2426 } while (read_seqcount_retry(&fs->seq, seq)); 2427 } else { 2428 get_fs_pwd(current->fs, &nd->path); 2429 nd->inode = nd->path.dentry->d_inode; 2430 } 2431 } else { 2432 /* Caller must check execute permissions on the starting path component */ 2433 struct fd f = fdget_raw(nd->dfd); 2434 struct dentry *dentry; 2435 2436 if (!f.file) 2437 return ERR_PTR(-EBADF); 2438 2439 dentry = f.file->f_path.dentry; 2440 2441 if (*s && unlikely(!d_can_lookup(dentry))) { 2442 fdput(f); 2443 return ERR_PTR(-ENOTDIR); 2444 } 2445 2446 nd->path = f.file->f_path; 2447 if (flags & LOOKUP_RCU) { 2448 nd->inode = nd->path.dentry->d_inode; 2449 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2450 } else { 2451 path_get(&nd->path); 2452 nd->inode = nd->path.dentry->d_inode; 2453 } 2454 fdput(f); 2455 } 2456 2457 /* For scoped-lookups we need to set the root to the dirfd as well. */ 2458 if (flags & LOOKUP_IS_SCOPED) { 2459 nd->root = nd->path; 2460 if (flags & LOOKUP_RCU) { 2461 nd->root_seq = nd->seq; 2462 } else { 2463 path_get(&nd->root); 2464 nd->state |= ND_ROOT_GRABBED; 2465 } 2466 } 2467 return s; 2468 } 2469 2470 static inline const char *lookup_last(struct nameidata *nd) 2471 { 2472 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 2473 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2474 2475 return walk_component(nd, WALK_TRAILING); 2476 } 2477 2478 static int handle_lookup_down(struct nameidata *nd) 2479 { 2480 if (!(nd->flags & LOOKUP_RCU)) 2481 dget(nd->path.dentry); 2482 return PTR_ERR(step_into(nd, WALK_NOFOLLOW, 2483 nd->path.dentry, nd->inode, nd->seq)); 2484 } 2485 2486 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2487 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path) 2488 { 2489 const char *s = path_init(nd, flags); 2490 int err; 2491 2492 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) { 2493 err = handle_lookup_down(nd); 2494 if (unlikely(err < 0)) 2495 s = ERR_PTR(err); 2496 } 2497 2498 while (!(err = link_path_walk(s, nd)) && 2499 (s = lookup_last(nd)) != NULL) 2500 ; 2501 if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) { 2502 err = handle_lookup_down(nd); 2503 nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please... 2504 } 2505 if (!err) 2506 err = complete_walk(nd); 2507 2508 if (!err && nd->flags & LOOKUP_DIRECTORY) 2509 if (!d_can_lookup(nd->path.dentry)) 2510 err = -ENOTDIR; 2511 if (!err) { 2512 *path = nd->path; 2513 nd->path.mnt = NULL; 2514 nd->path.dentry = NULL; 2515 } 2516 terminate_walk(nd); 2517 return err; 2518 } 2519 2520 int filename_lookup(int dfd, struct filename *name, unsigned flags, 2521 struct path *path, struct path *root) 2522 { 2523 int retval; 2524 struct nameidata nd; 2525 if (IS_ERR(name)) 2526 return PTR_ERR(name); 2527 set_nameidata(&nd, dfd, name, root); 2528 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path); 2529 if (unlikely(retval == -ECHILD)) 2530 retval = path_lookupat(&nd, flags, path); 2531 if (unlikely(retval == -ESTALE)) 2532 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path); 2533 2534 if (likely(!retval)) 2535 audit_inode(name, path->dentry, 2536 flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0); 2537 restore_nameidata(); 2538 return retval; 2539 } 2540 2541 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2542 static int path_parentat(struct nameidata *nd, unsigned flags, 2543 struct path *parent) 2544 { 2545 const char *s = path_init(nd, flags); 2546 int err = link_path_walk(s, nd); 2547 if (!err) 2548 err = complete_walk(nd); 2549 if (!err) { 2550 *parent = nd->path; 2551 nd->path.mnt = NULL; 2552 nd->path.dentry = NULL; 2553 } 2554 terminate_walk(nd); 2555 return err; 2556 } 2557 2558 /* Note: this does not consume "name" */ 2559 static int filename_parentat(int dfd, struct filename *name, 2560 unsigned int flags, struct path *parent, 2561 struct qstr *last, int *type) 2562 { 2563 int retval; 2564 struct nameidata nd; 2565 2566 if (IS_ERR(name)) 2567 return PTR_ERR(name); 2568 set_nameidata(&nd, dfd, name, NULL); 2569 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent); 2570 if (unlikely(retval == -ECHILD)) 2571 retval = path_parentat(&nd, flags, parent); 2572 if (unlikely(retval == -ESTALE)) 2573 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent); 2574 if (likely(!retval)) { 2575 *last = nd.last; 2576 *type = nd.last_type; 2577 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT); 2578 } 2579 restore_nameidata(); 2580 return retval; 2581 } 2582 2583 /* does lookup, returns the object with parent locked */ 2584 static struct dentry *__kern_path_locked(struct filename *name, struct path *path) 2585 { 2586 struct dentry *d; 2587 struct qstr last; 2588 int type, error; 2589 2590 error = filename_parentat(AT_FDCWD, name, 0, path, &last, &type); 2591 if (error) 2592 return ERR_PTR(error); 2593 if (unlikely(type != LAST_NORM)) { 2594 path_put(path); 2595 return ERR_PTR(-EINVAL); 2596 } 2597 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 2598 d = __lookup_hash(&last, path->dentry, 0); 2599 if (IS_ERR(d)) { 2600 inode_unlock(path->dentry->d_inode); 2601 path_put(path); 2602 } 2603 return d; 2604 } 2605 2606 struct dentry *kern_path_locked(const char *name, struct path *path) 2607 { 2608 struct filename *filename = getname_kernel(name); 2609 struct dentry *res = __kern_path_locked(filename, path); 2610 2611 putname(filename); 2612 return res; 2613 } 2614 2615 int kern_path(const char *name, unsigned int flags, struct path *path) 2616 { 2617 struct filename *filename = getname_kernel(name); 2618 int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL); 2619 2620 putname(filename); 2621 return ret; 2622 2623 } 2624 EXPORT_SYMBOL(kern_path); 2625 2626 /** 2627 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2628 * @dentry: pointer to dentry of the base directory 2629 * @mnt: pointer to vfs mount of the base directory 2630 * @name: pointer to file name 2631 * @flags: lookup flags 2632 * @path: pointer to struct path to fill 2633 */ 2634 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2635 const char *name, unsigned int flags, 2636 struct path *path) 2637 { 2638 struct filename *filename; 2639 struct path root = {.mnt = mnt, .dentry = dentry}; 2640 int ret; 2641 2642 filename = getname_kernel(name); 2643 /* the first argument of filename_lookup() is ignored with root */ 2644 ret = filename_lookup(AT_FDCWD, filename, flags, path, &root); 2645 putname(filename); 2646 return ret; 2647 } 2648 EXPORT_SYMBOL(vfs_path_lookup); 2649 2650 static int lookup_one_common(struct user_namespace *mnt_userns, 2651 const char *name, struct dentry *base, int len, 2652 struct qstr *this) 2653 { 2654 this->name = name; 2655 this->len = len; 2656 this->hash = full_name_hash(base, name, len); 2657 if (!len) 2658 return -EACCES; 2659 2660 if (unlikely(name[0] == '.')) { 2661 if (len < 2 || (len == 2 && name[1] == '.')) 2662 return -EACCES; 2663 } 2664 2665 while (len--) { 2666 unsigned int c = *(const unsigned char *)name++; 2667 if (c == '/' || c == '\0') 2668 return -EACCES; 2669 } 2670 /* 2671 * See if the low-level filesystem might want 2672 * to use its own hash.. 2673 */ 2674 if (base->d_flags & DCACHE_OP_HASH) { 2675 int err = base->d_op->d_hash(base, this); 2676 if (err < 0) 2677 return err; 2678 } 2679 2680 return inode_permission(mnt_userns, base->d_inode, MAY_EXEC); 2681 } 2682 2683 /** 2684 * try_lookup_one_len - filesystem helper to lookup single pathname component 2685 * @name: pathname component to lookup 2686 * @base: base directory to lookup from 2687 * @len: maximum length @len should be interpreted to 2688 * 2689 * Look up a dentry by name in the dcache, returning NULL if it does not 2690 * currently exist. The function does not try to create a dentry. 2691 * 2692 * Note that this routine is purely a helper for filesystem usage and should 2693 * not be called by generic code. 2694 * 2695 * The caller must hold base->i_mutex. 2696 */ 2697 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len) 2698 { 2699 struct qstr this; 2700 int err; 2701 2702 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2703 2704 err = lookup_one_common(&init_user_ns, name, base, len, &this); 2705 if (err) 2706 return ERR_PTR(err); 2707 2708 return lookup_dcache(&this, base, 0); 2709 } 2710 EXPORT_SYMBOL(try_lookup_one_len); 2711 2712 /** 2713 * lookup_one_len - filesystem helper to lookup single pathname component 2714 * @name: pathname component to lookup 2715 * @base: base directory to lookup from 2716 * @len: maximum length @len should be interpreted to 2717 * 2718 * Note that this routine is purely a helper for filesystem usage and should 2719 * not be called by generic code. 2720 * 2721 * The caller must hold base->i_mutex. 2722 */ 2723 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2724 { 2725 struct dentry *dentry; 2726 struct qstr this; 2727 int err; 2728 2729 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2730 2731 err = lookup_one_common(&init_user_ns, name, base, len, &this); 2732 if (err) 2733 return ERR_PTR(err); 2734 2735 dentry = lookup_dcache(&this, base, 0); 2736 return dentry ? dentry : __lookup_slow(&this, base, 0); 2737 } 2738 EXPORT_SYMBOL(lookup_one_len); 2739 2740 /** 2741 * lookup_one - filesystem helper to lookup single pathname component 2742 * @mnt_userns: user namespace of the mount the lookup is performed from 2743 * @name: pathname component to lookup 2744 * @base: base directory to lookup from 2745 * @len: maximum length @len should be interpreted to 2746 * 2747 * Note that this routine is purely a helper for filesystem usage and should 2748 * not be called by generic code. 2749 * 2750 * The caller must hold base->i_mutex. 2751 */ 2752 struct dentry *lookup_one(struct user_namespace *mnt_userns, const char *name, 2753 struct dentry *base, int len) 2754 { 2755 struct dentry *dentry; 2756 struct qstr this; 2757 int err; 2758 2759 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2760 2761 err = lookup_one_common(mnt_userns, name, base, len, &this); 2762 if (err) 2763 return ERR_PTR(err); 2764 2765 dentry = lookup_dcache(&this, base, 0); 2766 return dentry ? dentry : __lookup_slow(&this, base, 0); 2767 } 2768 EXPORT_SYMBOL(lookup_one); 2769 2770 /** 2771 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component 2772 * @name: pathname component to lookup 2773 * @base: base directory to lookup from 2774 * @len: maximum length @len should be interpreted to 2775 * 2776 * Note that this routine is purely a helper for filesystem usage and should 2777 * not be called by generic code. 2778 * 2779 * Unlike lookup_one_len, it should be called without the parent 2780 * i_mutex held, and will take the i_mutex itself if necessary. 2781 */ 2782 struct dentry *lookup_one_len_unlocked(const char *name, 2783 struct dentry *base, int len) 2784 { 2785 struct qstr this; 2786 int err; 2787 struct dentry *ret; 2788 2789 err = lookup_one_common(&init_user_ns, name, base, len, &this); 2790 if (err) 2791 return ERR_PTR(err); 2792 2793 ret = lookup_dcache(&this, base, 0); 2794 if (!ret) 2795 ret = lookup_slow(&this, base, 0); 2796 return ret; 2797 } 2798 EXPORT_SYMBOL(lookup_one_len_unlocked); 2799 2800 /* 2801 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT) 2802 * on negatives. Returns known positive or ERR_PTR(); that's what 2803 * most of the users want. Note that pinned negative with unlocked parent 2804 * _can_ become positive at any time, so callers of lookup_one_len_unlocked() 2805 * need to be very careful; pinned positives have ->d_inode stable, so 2806 * this one avoids such problems. 2807 */ 2808 struct dentry *lookup_positive_unlocked(const char *name, 2809 struct dentry *base, int len) 2810 { 2811 struct dentry *ret = lookup_one_len_unlocked(name, base, len); 2812 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) { 2813 dput(ret); 2814 ret = ERR_PTR(-ENOENT); 2815 } 2816 return ret; 2817 } 2818 EXPORT_SYMBOL(lookup_positive_unlocked); 2819 2820 #ifdef CONFIG_UNIX98_PTYS 2821 int path_pts(struct path *path) 2822 { 2823 /* Find something mounted on "pts" in the same directory as 2824 * the input path. 2825 */ 2826 struct dentry *parent = dget_parent(path->dentry); 2827 struct dentry *child; 2828 struct qstr this = QSTR_INIT("pts", 3); 2829 2830 if (unlikely(!path_connected(path->mnt, parent))) { 2831 dput(parent); 2832 return -ENOENT; 2833 } 2834 dput(path->dentry); 2835 path->dentry = parent; 2836 child = d_hash_and_lookup(parent, &this); 2837 if (!child) 2838 return -ENOENT; 2839 2840 path->dentry = child; 2841 dput(parent); 2842 follow_down(path); 2843 return 0; 2844 } 2845 #endif 2846 2847 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2848 struct path *path, int *empty) 2849 { 2850 struct filename *filename = getname_flags(name, flags, empty); 2851 int ret = filename_lookup(dfd, filename, flags, path, NULL); 2852 2853 putname(filename); 2854 return ret; 2855 } 2856 EXPORT_SYMBOL(user_path_at_empty); 2857 2858 int __check_sticky(struct user_namespace *mnt_userns, struct inode *dir, 2859 struct inode *inode) 2860 { 2861 kuid_t fsuid = current_fsuid(); 2862 2863 if (uid_eq(i_uid_into_mnt(mnt_userns, inode), fsuid)) 2864 return 0; 2865 if (uid_eq(i_uid_into_mnt(mnt_userns, dir), fsuid)) 2866 return 0; 2867 return !capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FOWNER); 2868 } 2869 EXPORT_SYMBOL(__check_sticky); 2870 2871 /* 2872 * Check whether we can remove a link victim from directory dir, check 2873 * whether the type of victim is right. 2874 * 1. We can't do it if dir is read-only (done in permission()) 2875 * 2. We should have write and exec permissions on dir 2876 * 3. We can't remove anything from append-only dir 2877 * 4. We can't do anything with immutable dir (done in permission()) 2878 * 5. If the sticky bit on dir is set we should either 2879 * a. be owner of dir, or 2880 * b. be owner of victim, or 2881 * c. have CAP_FOWNER capability 2882 * 6. If the victim is append-only or immutable we can't do antyhing with 2883 * links pointing to it. 2884 * 7. If the victim has an unknown uid or gid we can't change the inode. 2885 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2886 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2887 * 10. We can't remove a root or mountpoint. 2888 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by 2889 * nfs_async_unlink(). 2890 */ 2891 static int may_delete(struct user_namespace *mnt_userns, struct inode *dir, 2892 struct dentry *victim, bool isdir) 2893 { 2894 struct inode *inode = d_backing_inode(victim); 2895 int error; 2896 2897 if (d_is_negative(victim)) 2898 return -ENOENT; 2899 BUG_ON(!inode); 2900 2901 BUG_ON(victim->d_parent->d_inode != dir); 2902 2903 /* Inode writeback is not safe when the uid or gid are invalid. */ 2904 if (!uid_valid(i_uid_into_mnt(mnt_userns, inode)) || 2905 !gid_valid(i_gid_into_mnt(mnt_userns, inode))) 2906 return -EOVERFLOW; 2907 2908 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2909 2910 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); 2911 if (error) 2912 return error; 2913 if (IS_APPEND(dir)) 2914 return -EPERM; 2915 2916 if (check_sticky(mnt_userns, dir, inode) || IS_APPEND(inode) || 2917 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || 2918 HAS_UNMAPPED_ID(mnt_userns, inode)) 2919 return -EPERM; 2920 if (isdir) { 2921 if (!d_is_dir(victim)) 2922 return -ENOTDIR; 2923 if (IS_ROOT(victim)) 2924 return -EBUSY; 2925 } else if (d_is_dir(victim)) 2926 return -EISDIR; 2927 if (IS_DEADDIR(dir)) 2928 return -ENOENT; 2929 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2930 return -EBUSY; 2931 return 0; 2932 } 2933 2934 /* Check whether we can create an object with dentry child in directory 2935 * dir. 2936 * 1. We can't do it if child already exists (open has special treatment for 2937 * this case, but since we are inlined it's OK) 2938 * 2. We can't do it if dir is read-only (done in permission()) 2939 * 3. We can't do it if the fs can't represent the fsuid or fsgid. 2940 * 4. We should have write and exec permissions on dir 2941 * 5. We can't do it if dir is immutable (done in permission()) 2942 */ 2943 static inline int may_create(struct user_namespace *mnt_userns, 2944 struct inode *dir, struct dentry *child) 2945 { 2946 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 2947 if (child->d_inode) 2948 return -EEXIST; 2949 if (IS_DEADDIR(dir)) 2950 return -ENOENT; 2951 if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns)) 2952 return -EOVERFLOW; 2953 2954 return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); 2955 } 2956 2957 /* 2958 * p1 and p2 should be directories on the same fs. 2959 */ 2960 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2961 { 2962 struct dentry *p; 2963 2964 if (p1 == p2) { 2965 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2966 return NULL; 2967 } 2968 2969 mutex_lock(&p1->d_sb->s_vfs_rename_mutex); 2970 2971 p = d_ancestor(p2, p1); 2972 if (p) { 2973 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 2974 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD); 2975 return p; 2976 } 2977 2978 p = d_ancestor(p1, p2); 2979 if (p) { 2980 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2981 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD); 2982 return p; 2983 } 2984 2985 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2986 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 2987 return NULL; 2988 } 2989 EXPORT_SYMBOL(lock_rename); 2990 2991 void unlock_rename(struct dentry *p1, struct dentry *p2) 2992 { 2993 inode_unlock(p1->d_inode); 2994 if (p1 != p2) { 2995 inode_unlock(p2->d_inode); 2996 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 2997 } 2998 } 2999 EXPORT_SYMBOL(unlock_rename); 3000 3001 /** 3002 * vfs_create - create new file 3003 * @mnt_userns: user namespace of the mount the inode was found from 3004 * @dir: inode of @dentry 3005 * @dentry: pointer to dentry of the base directory 3006 * @mode: mode of the new file 3007 * @want_excl: whether the file must not yet exist 3008 * 3009 * Create a new file. 3010 * 3011 * If the inode has been found through an idmapped mount the user namespace of 3012 * the vfsmount must be passed through @mnt_userns. This function will then take 3013 * care to map the inode according to @mnt_userns before checking permissions. 3014 * On non-idmapped mounts or if permission checking is to be performed on the 3015 * raw inode simply passs init_user_ns. 3016 */ 3017 int vfs_create(struct user_namespace *mnt_userns, struct inode *dir, 3018 struct dentry *dentry, umode_t mode, bool want_excl) 3019 { 3020 int error = may_create(mnt_userns, dir, dentry); 3021 if (error) 3022 return error; 3023 3024 if (!dir->i_op->create) 3025 return -EACCES; /* shouldn't it be ENOSYS? */ 3026 mode &= S_IALLUGO; 3027 mode |= S_IFREG; 3028 error = security_inode_create(dir, dentry, mode); 3029 if (error) 3030 return error; 3031 error = dir->i_op->create(mnt_userns, dir, dentry, mode, want_excl); 3032 if (!error) 3033 fsnotify_create(dir, dentry); 3034 return error; 3035 } 3036 EXPORT_SYMBOL(vfs_create); 3037 3038 int vfs_mkobj(struct dentry *dentry, umode_t mode, 3039 int (*f)(struct dentry *, umode_t, void *), 3040 void *arg) 3041 { 3042 struct inode *dir = dentry->d_parent->d_inode; 3043 int error = may_create(&init_user_ns, dir, dentry); 3044 if (error) 3045 return error; 3046 3047 mode &= S_IALLUGO; 3048 mode |= S_IFREG; 3049 error = security_inode_create(dir, dentry, mode); 3050 if (error) 3051 return error; 3052 error = f(dentry, mode, arg); 3053 if (!error) 3054 fsnotify_create(dir, dentry); 3055 return error; 3056 } 3057 EXPORT_SYMBOL(vfs_mkobj); 3058 3059 bool may_open_dev(const struct path *path) 3060 { 3061 return !(path->mnt->mnt_flags & MNT_NODEV) && 3062 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV); 3063 } 3064 3065 static int may_open(struct user_namespace *mnt_userns, const struct path *path, 3066 int acc_mode, int flag) 3067 { 3068 struct dentry *dentry = path->dentry; 3069 struct inode *inode = dentry->d_inode; 3070 int error; 3071 3072 if (!inode) 3073 return -ENOENT; 3074 3075 switch (inode->i_mode & S_IFMT) { 3076 case S_IFLNK: 3077 return -ELOOP; 3078 case S_IFDIR: 3079 if (acc_mode & MAY_WRITE) 3080 return -EISDIR; 3081 if (acc_mode & MAY_EXEC) 3082 return -EACCES; 3083 break; 3084 case S_IFBLK: 3085 case S_IFCHR: 3086 if (!may_open_dev(path)) 3087 return -EACCES; 3088 fallthrough; 3089 case S_IFIFO: 3090 case S_IFSOCK: 3091 if (acc_mode & MAY_EXEC) 3092 return -EACCES; 3093 flag &= ~O_TRUNC; 3094 break; 3095 case S_IFREG: 3096 if ((acc_mode & MAY_EXEC) && path_noexec(path)) 3097 return -EACCES; 3098 break; 3099 } 3100 3101 error = inode_permission(mnt_userns, inode, MAY_OPEN | acc_mode); 3102 if (error) 3103 return error; 3104 3105 /* 3106 * An append-only file must be opened in append mode for writing. 3107 */ 3108 if (IS_APPEND(inode)) { 3109 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 3110 return -EPERM; 3111 if (flag & O_TRUNC) 3112 return -EPERM; 3113 } 3114 3115 /* O_NOATIME can only be set by the owner or superuser */ 3116 if (flag & O_NOATIME && !inode_owner_or_capable(mnt_userns, inode)) 3117 return -EPERM; 3118 3119 return 0; 3120 } 3121 3122 static int handle_truncate(struct user_namespace *mnt_userns, struct file *filp) 3123 { 3124 const struct path *path = &filp->f_path; 3125 struct inode *inode = path->dentry->d_inode; 3126 int error = get_write_access(inode); 3127 if (error) 3128 return error; 3129 3130 error = security_path_truncate(path); 3131 if (!error) { 3132 error = do_truncate(mnt_userns, path->dentry, 0, 3133 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 3134 filp); 3135 } 3136 put_write_access(inode); 3137 return error; 3138 } 3139 3140 static inline int open_to_namei_flags(int flag) 3141 { 3142 if ((flag & O_ACCMODE) == 3) 3143 flag--; 3144 return flag; 3145 } 3146 3147 static int may_o_create(struct user_namespace *mnt_userns, 3148 const struct path *dir, struct dentry *dentry, 3149 umode_t mode) 3150 { 3151 int error = security_path_mknod(dir, dentry, mode, 0); 3152 if (error) 3153 return error; 3154 3155 if (!fsuidgid_has_mapping(dir->dentry->d_sb, mnt_userns)) 3156 return -EOVERFLOW; 3157 3158 error = inode_permission(mnt_userns, dir->dentry->d_inode, 3159 MAY_WRITE | MAY_EXEC); 3160 if (error) 3161 return error; 3162 3163 return security_inode_create(dir->dentry->d_inode, dentry, mode); 3164 } 3165 3166 /* 3167 * Attempt to atomically look up, create and open a file from a negative 3168 * dentry. 3169 * 3170 * Returns 0 if successful. The file will have been created and attached to 3171 * @file by the filesystem calling finish_open(). 3172 * 3173 * If the file was looked up only or didn't need creating, FMODE_OPENED won't 3174 * be set. The caller will need to perform the open themselves. @path will 3175 * have been updated to point to the new dentry. This may be negative. 3176 * 3177 * Returns an error code otherwise. 3178 */ 3179 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry, 3180 struct file *file, 3181 int open_flag, umode_t mode) 3182 { 3183 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 3184 struct inode *dir = nd->path.dentry->d_inode; 3185 int error; 3186 3187 if (nd->flags & LOOKUP_DIRECTORY) 3188 open_flag |= O_DIRECTORY; 3189 3190 file->f_path.dentry = DENTRY_NOT_SET; 3191 file->f_path.mnt = nd->path.mnt; 3192 error = dir->i_op->atomic_open(dir, dentry, file, 3193 open_to_namei_flags(open_flag), mode); 3194 d_lookup_done(dentry); 3195 if (!error) { 3196 if (file->f_mode & FMODE_OPENED) { 3197 if (unlikely(dentry != file->f_path.dentry)) { 3198 dput(dentry); 3199 dentry = dget(file->f_path.dentry); 3200 } 3201 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 3202 error = -EIO; 3203 } else { 3204 if (file->f_path.dentry) { 3205 dput(dentry); 3206 dentry = file->f_path.dentry; 3207 } 3208 if (unlikely(d_is_negative(dentry))) 3209 error = -ENOENT; 3210 } 3211 } 3212 if (error) { 3213 dput(dentry); 3214 dentry = ERR_PTR(error); 3215 } 3216 return dentry; 3217 } 3218 3219 /* 3220 * Look up and maybe create and open the last component. 3221 * 3222 * Must be called with parent locked (exclusive in O_CREAT case). 3223 * 3224 * Returns 0 on success, that is, if 3225 * the file was successfully atomically created (if necessary) and opened, or 3226 * the file was not completely opened at this time, though lookups and 3227 * creations were performed. 3228 * These case are distinguished by presence of FMODE_OPENED on file->f_mode. 3229 * In the latter case dentry returned in @path might be negative if O_CREAT 3230 * hadn't been specified. 3231 * 3232 * An error code is returned on failure. 3233 */ 3234 static struct dentry *lookup_open(struct nameidata *nd, struct file *file, 3235 const struct open_flags *op, 3236 bool got_write) 3237 { 3238 struct user_namespace *mnt_userns; 3239 struct dentry *dir = nd->path.dentry; 3240 struct inode *dir_inode = dir->d_inode; 3241 int open_flag = op->open_flag; 3242 struct dentry *dentry; 3243 int error, create_error = 0; 3244 umode_t mode = op->mode; 3245 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 3246 3247 if (unlikely(IS_DEADDIR(dir_inode))) 3248 return ERR_PTR(-ENOENT); 3249 3250 file->f_mode &= ~FMODE_CREATED; 3251 dentry = d_lookup(dir, &nd->last); 3252 for (;;) { 3253 if (!dentry) { 3254 dentry = d_alloc_parallel(dir, &nd->last, &wq); 3255 if (IS_ERR(dentry)) 3256 return dentry; 3257 } 3258 if (d_in_lookup(dentry)) 3259 break; 3260 3261 error = d_revalidate(dentry, nd->flags); 3262 if (likely(error > 0)) 3263 break; 3264 if (error) 3265 goto out_dput; 3266 d_invalidate(dentry); 3267 dput(dentry); 3268 dentry = NULL; 3269 } 3270 if (dentry->d_inode) { 3271 /* Cached positive dentry: will open in f_op->open */ 3272 return dentry; 3273 } 3274 3275 /* 3276 * Checking write permission is tricky, bacuse we don't know if we are 3277 * going to actually need it: O_CREAT opens should work as long as the 3278 * file exists. But checking existence breaks atomicity. The trick is 3279 * to check access and if not granted clear O_CREAT from the flags. 3280 * 3281 * Another problem is returing the "right" error value (e.g. for an 3282 * O_EXCL open we want to return EEXIST not EROFS). 3283 */ 3284 if (unlikely(!got_write)) 3285 open_flag &= ~O_TRUNC; 3286 mnt_userns = mnt_user_ns(nd->path.mnt); 3287 if (open_flag & O_CREAT) { 3288 if (open_flag & O_EXCL) 3289 open_flag &= ~O_TRUNC; 3290 if (!IS_POSIXACL(dir->d_inode)) 3291 mode &= ~current_umask(); 3292 if (likely(got_write)) 3293 create_error = may_o_create(mnt_userns, &nd->path, 3294 dentry, mode); 3295 else 3296 create_error = -EROFS; 3297 } 3298 if (create_error) 3299 open_flag &= ~O_CREAT; 3300 if (dir_inode->i_op->atomic_open) { 3301 dentry = atomic_open(nd, dentry, file, open_flag, mode); 3302 if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT)) 3303 dentry = ERR_PTR(create_error); 3304 return dentry; 3305 } 3306 3307 if (d_in_lookup(dentry)) { 3308 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry, 3309 nd->flags); 3310 d_lookup_done(dentry); 3311 if (unlikely(res)) { 3312 if (IS_ERR(res)) { 3313 error = PTR_ERR(res); 3314 goto out_dput; 3315 } 3316 dput(dentry); 3317 dentry = res; 3318 } 3319 } 3320 3321 /* Negative dentry, just create the file */ 3322 if (!dentry->d_inode && (open_flag & O_CREAT)) { 3323 file->f_mode |= FMODE_CREATED; 3324 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE); 3325 if (!dir_inode->i_op->create) { 3326 error = -EACCES; 3327 goto out_dput; 3328 } 3329 3330 error = dir_inode->i_op->create(mnt_userns, dir_inode, dentry, 3331 mode, open_flag & O_EXCL); 3332 if (error) 3333 goto out_dput; 3334 } 3335 if (unlikely(create_error) && !dentry->d_inode) { 3336 error = create_error; 3337 goto out_dput; 3338 } 3339 return dentry; 3340 3341 out_dput: 3342 dput(dentry); 3343 return ERR_PTR(error); 3344 } 3345 3346 static const char *open_last_lookups(struct nameidata *nd, 3347 struct file *file, const struct open_flags *op) 3348 { 3349 struct dentry *dir = nd->path.dentry; 3350 int open_flag = op->open_flag; 3351 bool got_write = false; 3352 unsigned seq; 3353 struct inode *inode; 3354 struct dentry *dentry; 3355 const char *res; 3356 3357 nd->flags |= op->intent; 3358 3359 if (nd->last_type != LAST_NORM) { 3360 if (nd->depth) 3361 put_link(nd); 3362 return handle_dots(nd, nd->last_type); 3363 } 3364 3365 if (!(open_flag & O_CREAT)) { 3366 if (nd->last.name[nd->last.len]) 3367 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 3368 /* we _can_ be in RCU mode here */ 3369 dentry = lookup_fast(nd, &inode, &seq); 3370 if (IS_ERR(dentry)) 3371 return ERR_CAST(dentry); 3372 if (likely(dentry)) 3373 goto finish_lookup; 3374 3375 BUG_ON(nd->flags & LOOKUP_RCU); 3376 } else { 3377 /* create side of things */ 3378 if (nd->flags & LOOKUP_RCU) { 3379 if (!try_to_unlazy(nd)) 3380 return ERR_PTR(-ECHILD); 3381 } 3382 audit_inode(nd->name, dir, AUDIT_INODE_PARENT); 3383 /* trailing slashes? */ 3384 if (unlikely(nd->last.name[nd->last.len])) 3385 return ERR_PTR(-EISDIR); 3386 } 3387 3388 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 3389 got_write = !mnt_want_write(nd->path.mnt); 3390 /* 3391 * do _not_ fail yet - we might not need that or fail with 3392 * a different error; let lookup_open() decide; we'll be 3393 * dropping this one anyway. 3394 */ 3395 } 3396 if (open_flag & O_CREAT) 3397 inode_lock(dir->d_inode); 3398 else 3399 inode_lock_shared(dir->d_inode); 3400 dentry = lookup_open(nd, file, op, got_write); 3401 if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED)) 3402 fsnotify_create(dir->d_inode, dentry); 3403 if (open_flag & O_CREAT) 3404 inode_unlock(dir->d_inode); 3405 else 3406 inode_unlock_shared(dir->d_inode); 3407 3408 if (got_write) 3409 mnt_drop_write(nd->path.mnt); 3410 3411 if (IS_ERR(dentry)) 3412 return ERR_CAST(dentry); 3413 3414 if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) { 3415 dput(nd->path.dentry); 3416 nd->path.dentry = dentry; 3417 return NULL; 3418 } 3419 3420 finish_lookup: 3421 if (nd->depth) 3422 put_link(nd); 3423 res = step_into(nd, WALK_TRAILING, dentry, inode, seq); 3424 if (unlikely(res)) 3425 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3426 return res; 3427 } 3428 3429 /* 3430 * Handle the last step of open() 3431 */ 3432 static int do_open(struct nameidata *nd, 3433 struct file *file, const struct open_flags *op) 3434 { 3435 struct user_namespace *mnt_userns; 3436 int open_flag = op->open_flag; 3437 bool do_truncate; 3438 int acc_mode; 3439 int error; 3440 3441 if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) { 3442 error = complete_walk(nd); 3443 if (error) 3444 return error; 3445 } 3446 if (!(file->f_mode & FMODE_CREATED)) 3447 audit_inode(nd->name, nd->path.dentry, 0); 3448 mnt_userns = mnt_user_ns(nd->path.mnt); 3449 if (open_flag & O_CREAT) { 3450 if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED)) 3451 return -EEXIST; 3452 if (d_is_dir(nd->path.dentry)) 3453 return -EISDIR; 3454 error = may_create_in_sticky(mnt_userns, nd, 3455 d_backing_inode(nd->path.dentry)); 3456 if (unlikely(error)) 3457 return error; 3458 } 3459 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3460 return -ENOTDIR; 3461 3462 do_truncate = false; 3463 acc_mode = op->acc_mode; 3464 if (file->f_mode & FMODE_CREATED) { 3465 /* Don't check for write permission, don't truncate */ 3466 open_flag &= ~O_TRUNC; 3467 acc_mode = 0; 3468 } else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) { 3469 error = mnt_want_write(nd->path.mnt); 3470 if (error) 3471 return error; 3472 do_truncate = true; 3473 } 3474 error = may_open(mnt_userns, &nd->path, acc_mode, open_flag); 3475 if (!error && !(file->f_mode & FMODE_OPENED)) 3476 error = vfs_open(&nd->path, file); 3477 if (!error) 3478 error = ima_file_check(file, op->acc_mode); 3479 if (!error && do_truncate) 3480 error = handle_truncate(mnt_userns, file); 3481 if (unlikely(error > 0)) { 3482 WARN_ON(1); 3483 error = -EINVAL; 3484 } 3485 if (do_truncate) 3486 mnt_drop_write(nd->path.mnt); 3487 return error; 3488 } 3489 3490 /** 3491 * vfs_tmpfile - create tmpfile 3492 * @mnt_userns: user namespace of the mount the inode was found from 3493 * @dentry: pointer to dentry of the base directory 3494 * @mode: mode of the new tmpfile 3495 * @open_flag: flags 3496 * 3497 * Create a temporary file. 3498 * 3499 * If the inode has been found through an idmapped mount the user namespace of 3500 * the vfsmount must be passed through @mnt_userns. This function will then take 3501 * care to map the inode according to @mnt_userns before checking permissions. 3502 * On non-idmapped mounts or if permission checking is to be performed on the 3503 * raw inode simply passs init_user_ns. 3504 */ 3505 struct dentry *vfs_tmpfile(struct user_namespace *mnt_userns, 3506 struct dentry *dentry, umode_t mode, int open_flag) 3507 { 3508 struct dentry *child = NULL; 3509 struct inode *dir = dentry->d_inode; 3510 struct inode *inode; 3511 int error; 3512 3513 /* we want directory to be writable */ 3514 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); 3515 if (error) 3516 goto out_err; 3517 error = -EOPNOTSUPP; 3518 if (!dir->i_op->tmpfile) 3519 goto out_err; 3520 error = -ENOMEM; 3521 child = d_alloc(dentry, &slash_name); 3522 if (unlikely(!child)) 3523 goto out_err; 3524 error = dir->i_op->tmpfile(mnt_userns, dir, child, mode); 3525 if (error) 3526 goto out_err; 3527 error = -ENOENT; 3528 inode = child->d_inode; 3529 if (unlikely(!inode)) 3530 goto out_err; 3531 if (!(open_flag & O_EXCL)) { 3532 spin_lock(&inode->i_lock); 3533 inode->i_state |= I_LINKABLE; 3534 spin_unlock(&inode->i_lock); 3535 } 3536 ima_post_create_tmpfile(mnt_userns, inode); 3537 return child; 3538 3539 out_err: 3540 dput(child); 3541 return ERR_PTR(error); 3542 } 3543 EXPORT_SYMBOL(vfs_tmpfile); 3544 3545 static int do_tmpfile(struct nameidata *nd, unsigned flags, 3546 const struct open_flags *op, 3547 struct file *file) 3548 { 3549 struct user_namespace *mnt_userns; 3550 struct dentry *child; 3551 struct path path; 3552 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path); 3553 if (unlikely(error)) 3554 return error; 3555 error = mnt_want_write(path.mnt); 3556 if (unlikely(error)) 3557 goto out; 3558 mnt_userns = mnt_user_ns(path.mnt); 3559 child = vfs_tmpfile(mnt_userns, path.dentry, op->mode, op->open_flag); 3560 error = PTR_ERR(child); 3561 if (IS_ERR(child)) 3562 goto out2; 3563 dput(path.dentry); 3564 path.dentry = child; 3565 audit_inode(nd->name, child, 0); 3566 /* Don't check for other permissions, the inode was just created */ 3567 error = may_open(mnt_userns, &path, 0, op->open_flag); 3568 if (!error) 3569 error = vfs_open(&path, file); 3570 out2: 3571 mnt_drop_write(path.mnt); 3572 out: 3573 path_put(&path); 3574 return error; 3575 } 3576 3577 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file) 3578 { 3579 struct path path; 3580 int error = path_lookupat(nd, flags, &path); 3581 if (!error) { 3582 audit_inode(nd->name, path.dentry, 0); 3583 error = vfs_open(&path, file); 3584 path_put(&path); 3585 } 3586 return error; 3587 } 3588 3589 static struct file *path_openat(struct nameidata *nd, 3590 const struct open_flags *op, unsigned flags) 3591 { 3592 struct file *file; 3593 int error; 3594 3595 file = alloc_empty_file(op->open_flag, current_cred()); 3596 if (IS_ERR(file)) 3597 return file; 3598 3599 if (unlikely(file->f_flags & __O_TMPFILE)) { 3600 error = do_tmpfile(nd, flags, op, file); 3601 } else if (unlikely(file->f_flags & O_PATH)) { 3602 error = do_o_path(nd, flags, file); 3603 } else { 3604 const char *s = path_init(nd, flags); 3605 while (!(error = link_path_walk(s, nd)) && 3606 (s = open_last_lookups(nd, file, op)) != NULL) 3607 ; 3608 if (!error) 3609 error = do_open(nd, file, op); 3610 terminate_walk(nd); 3611 } 3612 if (likely(!error)) { 3613 if (likely(file->f_mode & FMODE_OPENED)) 3614 return file; 3615 WARN_ON(1); 3616 error = -EINVAL; 3617 } 3618 fput(file); 3619 if (error == -EOPENSTALE) { 3620 if (flags & LOOKUP_RCU) 3621 error = -ECHILD; 3622 else 3623 error = -ESTALE; 3624 } 3625 return ERR_PTR(error); 3626 } 3627 3628 struct file *do_filp_open(int dfd, struct filename *pathname, 3629 const struct open_flags *op) 3630 { 3631 struct nameidata nd; 3632 int flags = op->lookup_flags; 3633 struct file *filp; 3634 3635 set_nameidata(&nd, dfd, pathname, NULL); 3636 filp = path_openat(&nd, op, flags | LOOKUP_RCU); 3637 if (unlikely(filp == ERR_PTR(-ECHILD))) 3638 filp = path_openat(&nd, op, flags); 3639 if (unlikely(filp == ERR_PTR(-ESTALE))) 3640 filp = path_openat(&nd, op, flags | LOOKUP_REVAL); 3641 restore_nameidata(); 3642 return filp; 3643 } 3644 3645 struct file *do_file_open_root(const struct path *root, 3646 const char *name, const struct open_flags *op) 3647 { 3648 struct nameidata nd; 3649 struct file *file; 3650 struct filename *filename; 3651 int flags = op->lookup_flags; 3652 3653 if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN) 3654 return ERR_PTR(-ELOOP); 3655 3656 filename = getname_kernel(name); 3657 if (IS_ERR(filename)) 3658 return ERR_CAST(filename); 3659 3660 set_nameidata(&nd, -1, filename, root); 3661 file = path_openat(&nd, op, flags | LOOKUP_RCU); 3662 if (unlikely(file == ERR_PTR(-ECHILD))) 3663 file = path_openat(&nd, op, flags); 3664 if (unlikely(file == ERR_PTR(-ESTALE))) 3665 file = path_openat(&nd, op, flags | LOOKUP_REVAL); 3666 restore_nameidata(); 3667 putname(filename); 3668 return file; 3669 } 3670 3671 static struct dentry *filename_create(int dfd, struct filename *name, 3672 struct path *path, unsigned int lookup_flags) 3673 { 3674 struct dentry *dentry = ERR_PTR(-EEXIST); 3675 struct qstr last; 3676 int type; 3677 int err2; 3678 int error; 3679 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY); 3680 3681 /* 3682 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any 3683 * other flags passed in are ignored! 3684 */ 3685 lookup_flags &= LOOKUP_REVAL; 3686 3687 error = filename_parentat(dfd, name, lookup_flags, path, &last, &type); 3688 if (error) 3689 return ERR_PTR(error); 3690 3691 /* 3692 * Yucky last component or no last component at all? 3693 * (foo/., foo/.., /////) 3694 */ 3695 if (unlikely(type != LAST_NORM)) 3696 goto out; 3697 3698 /* don't fail immediately if it's r/o, at least try to report other errors */ 3699 err2 = mnt_want_write(path->mnt); 3700 /* 3701 * Do the final lookup. 3702 */ 3703 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL; 3704 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 3705 dentry = __lookup_hash(&last, path->dentry, lookup_flags); 3706 if (IS_ERR(dentry)) 3707 goto unlock; 3708 3709 error = -EEXIST; 3710 if (d_is_positive(dentry)) 3711 goto fail; 3712 3713 /* 3714 * Special case - lookup gave negative, but... we had foo/bar/ 3715 * From the vfs_mknod() POV we just have a negative dentry - 3716 * all is fine. Let's be bastards - you had / on the end, you've 3717 * been asking for (non-existent) directory. -ENOENT for you. 3718 */ 3719 if (unlikely(!is_dir && last.name[last.len])) { 3720 error = -ENOENT; 3721 goto fail; 3722 } 3723 if (unlikely(err2)) { 3724 error = err2; 3725 goto fail; 3726 } 3727 return dentry; 3728 fail: 3729 dput(dentry); 3730 dentry = ERR_PTR(error); 3731 unlock: 3732 inode_unlock(path->dentry->d_inode); 3733 if (!err2) 3734 mnt_drop_write(path->mnt); 3735 out: 3736 path_put(path); 3737 return dentry; 3738 } 3739 3740 struct dentry *kern_path_create(int dfd, const char *pathname, 3741 struct path *path, unsigned int lookup_flags) 3742 { 3743 struct filename *filename = getname_kernel(pathname); 3744 struct dentry *res = filename_create(dfd, filename, path, lookup_flags); 3745 3746 putname(filename); 3747 return res; 3748 } 3749 EXPORT_SYMBOL(kern_path_create); 3750 3751 void done_path_create(struct path *path, struct dentry *dentry) 3752 { 3753 dput(dentry); 3754 inode_unlock(path->dentry->d_inode); 3755 mnt_drop_write(path->mnt); 3756 path_put(path); 3757 } 3758 EXPORT_SYMBOL(done_path_create); 3759 3760 inline struct dentry *user_path_create(int dfd, const char __user *pathname, 3761 struct path *path, unsigned int lookup_flags) 3762 { 3763 struct filename *filename = getname(pathname); 3764 struct dentry *res = filename_create(dfd, filename, path, lookup_flags); 3765 3766 putname(filename); 3767 return res; 3768 } 3769 EXPORT_SYMBOL(user_path_create); 3770 3771 /** 3772 * vfs_mknod - create device node or file 3773 * @mnt_userns: user namespace of the mount the inode was found from 3774 * @dir: inode of @dentry 3775 * @dentry: pointer to dentry of the base directory 3776 * @mode: mode of the new device node or file 3777 * @dev: device number of device to create 3778 * 3779 * Create a device node or file. 3780 * 3781 * If the inode has been found through an idmapped mount the user namespace of 3782 * the vfsmount must be passed through @mnt_userns. This function will then take 3783 * care to map the inode according to @mnt_userns before checking permissions. 3784 * On non-idmapped mounts or if permission checking is to be performed on the 3785 * raw inode simply passs init_user_ns. 3786 */ 3787 int vfs_mknod(struct user_namespace *mnt_userns, struct inode *dir, 3788 struct dentry *dentry, umode_t mode, dev_t dev) 3789 { 3790 bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV; 3791 int error = may_create(mnt_userns, dir, dentry); 3792 3793 if (error) 3794 return error; 3795 3796 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout && 3797 !capable(CAP_MKNOD)) 3798 return -EPERM; 3799 3800 if (!dir->i_op->mknod) 3801 return -EPERM; 3802 3803 error = devcgroup_inode_mknod(mode, dev); 3804 if (error) 3805 return error; 3806 3807 error = security_inode_mknod(dir, dentry, mode, dev); 3808 if (error) 3809 return error; 3810 3811 error = dir->i_op->mknod(mnt_userns, dir, dentry, mode, dev); 3812 if (!error) 3813 fsnotify_create(dir, dentry); 3814 return error; 3815 } 3816 EXPORT_SYMBOL(vfs_mknod); 3817 3818 static int may_mknod(umode_t mode) 3819 { 3820 switch (mode & S_IFMT) { 3821 case S_IFREG: 3822 case S_IFCHR: 3823 case S_IFBLK: 3824 case S_IFIFO: 3825 case S_IFSOCK: 3826 case 0: /* zero mode translates to S_IFREG */ 3827 return 0; 3828 case S_IFDIR: 3829 return -EPERM; 3830 default: 3831 return -EINVAL; 3832 } 3833 } 3834 3835 static int do_mknodat(int dfd, struct filename *name, umode_t mode, 3836 unsigned int dev) 3837 { 3838 struct user_namespace *mnt_userns; 3839 struct dentry *dentry; 3840 struct path path; 3841 int error; 3842 unsigned int lookup_flags = 0; 3843 3844 error = may_mknod(mode); 3845 if (error) 3846 goto out1; 3847 retry: 3848 dentry = filename_create(dfd, name, &path, lookup_flags); 3849 error = PTR_ERR(dentry); 3850 if (IS_ERR(dentry)) 3851 goto out1; 3852 3853 if (!IS_POSIXACL(path.dentry->d_inode)) 3854 mode &= ~current_umask(); 3855 error = security_path_mknod(&path, dentry, mode, dev); 3856 if (error) 3857 goto out2; 3858 3859 mnt_userns = mnt_user_ns(path.mnt); 3860 switch (mode & S_IFMT) { 3861 case 0: case S_IFREG: 3862 error = vfs_create(mnt_userns, path.dentry->d_inode, 3863 dentry, mode, true); 3864 if (!error) 3865 ima_post_path_mknod(mnt_userns, dentry); 3866 break; 3867 case S_IFCHR: case S_IFBLK: 3868 error = vfs_mknod(mnt_userns, path.dentry->d_inode, 3869 dentry, mode, new_decode_dev(dev)); 3870 break; 3871 case S_IFIFO: case S_IFSOCK: 3872 error = vfs_mknod(mnt_userns, path.dentry->d_inode, 3873 dentry, mode, 0); 3874 break; 3875 } 3876 out2: 3877 done_path_create(&path, dentry); 3878 if (retry_estale(error, lookup_flags)) { 3879 lookup_flags |= LOOKUP_REVAL; 3880 goto retry; 3881 } 3882 out1: 3883 putname(name); 3884 return error; 3885 } 3886 3887 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3888 unsigned int, dev) 3889 { 3890 return do_mknodat(dfd, getname(filename), mode, dev); 3891 } 3892 3893 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3894 { 3895 return do_mknodat(AT_FDCWD, getname(filename), mode, dev); 3896 } 3897 3898 /** 3899 * vfs_mkdir - create directory 3900 * @mnt_userns: user namespace of the mount the inode was found from 3901 * @dir: inode of @dentry 3902 * @dentry: pointer to dentry of the base directory 3903 * @mode: mode of the new directory 3904 * 3905 * Create a directory. 3906 * 3907 * If the inode has been found through an idmapped mount the user namespace of 3908 * the vfsmount must be passed through @mnt_userns. This function will then take 3909 * care to map the inode according to @mnt_userns before checking permissions. 3910 * On non-idmapped mounts or if permission checking is to be performed on the 3911 * raw inode simply passs init_user_ns. 3912 */ 3913 int vfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 3914 struct dentry *dentry, umode_t mode) 3915 { 3916 int error = may_create(mnt_userns, dir, dentry); 3917 unsigned max_links = dir->i_sb->s_max_links; 3918 3919 if (error) 3920 return error; 3921 3922 if (!dir->i_op->mkdir) 3923 return -EPERM; 3924 3925 mode &= (S_IRWXUGO|S_ISVTX); 3926 error = security_inode_mkdir(dir, dentry, mode); 3927 if (error) 3928 return error; 3929 3930 if (max_links && dir->i_nlink >= max_links) 3931 return -EMLINK; 3932 3933 error = dir->i_op->mkdir(mnt_userns, dir, dentry, mode); 3934 if (!error) 3935 fsnotify_mkdir(dir, dentry); 3936 return error; 3937 } 3938 EXPORT_SYMBOL(vfs_mkdir); 3939 3940 int do_mkdirat(int dfd, struct filename *name, umode_t mode) 3941 { 3942 struct dentry *dentry; 3943 struct path path; 3944 int error; 3945 unsigned int lookup_flags = LOOKUP_DIRECTORY; 3946 3947 retry: 3948 dentry = filename_create(dfd, name, &path, lookup_flags); 3949 error = PTR_ERR(dentry); 3950 if (IS_ERR(dentry)) 3951 goto out_putname; 3952 3953 if (!IS_POSIXACL(path.dentry->d_inode)) 3954 mode &= ~current_umask(); 3955 error = security_path_mkdir(&path, dentry, mode); 3956 if (!error) { 3957 struct user_namespace *mnt_userns; 3958 mnt_userns = mnt_user_ns(path.mnt); 3959 error = vfs_mkdir(mnt_userns, path.dentry->d_inode, dentry, 3960 mode); 3961 } 3962 done_path_create(&path, dentry); 3963 if (retry_estale(error, lookup_flags)) { 3964 lookup_flags |= LOOKUP_REVAL; 3965 goto retry; 3966 } 3967 out_putname: 3968 putname(name); 3969 return error; 3970 } 3971 3972 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 3973 { 3974 return do_mkdirat(dfd, getname(pathname), mode); 3975 } 3976 3977 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 3978 { 3979 return do_mkdirat(AT_FDCWD, getname(pathname), mode); 3980 } 3981 3982 /** 3983 * vfs_rmdir - remove directory 3984 * @mnt_userns: user namespace of the mount the inode was found from 3985 * @dir: inode of @dentry 3986 * @dentry: pointer to dentry of the base directory 3987 * 3988 * Remove a directory. 3989 * 3990 * If the inode has been found through an idmapped mount the user namespace of 3991 * the vfsmount must be passed through @mnt_userns. This function will then take 3992 * care to map the inode according to @mnt_userns before checking permissions. 3993 * On non-idmapped mounts or if permission checking is to be performed on the 3994 * raw inode simply passs init_user_ns. 3995 */ 3996 int vfs_rmdir(struct user_namespace *mnt_userns, struct inode *dir, 3997 struct dentry *dentry) 3998 { 3999 int error = may_delete(mnt_userns, dir, dentry, 1); 4000 4001 if (error) 4002 return error; 4003 4004 if (!dir->i_op->rmdir) 4005 return -EPERM; 4006 4007 dget(dentry); 4008 inode_lock(dentry->d_inode); 4009 4010 error = -EBUSY; 4011 if (is_local_mountpoint(dentry) || 4012 (dentry->d_inode->i_flags & S_KERNEL_FILE)) 4013 goto out; 4014 4015 error = security_inode_rmdir(dir, dentry); 4016 if (error) 4017 goto out; 4018 4019 error = dir->i_op->rmdir(dir, dentry); 4020 if (error) 4021 goto out; 4022 4023 shrink_dcache_parent(dentry); 4024 dentry->d_inode->i_flags |= S_DEAD; 4025 dont_mount(dentry); 4026 detach_mounts(dentry); 4027 fsnotify_rmdir(dir, dentry); 4028 4029 out: 4030 inode_unlock(dentry->d_inode); 4031 dput(dentry); 4032 if (!error) 4033 d_delete(dentry); 4034 return error; 4035 } 4036 EXPORT_SYMBOL(vfs_rmdir); 4037 4038 int do_rmdir(int dfd, struct filename *name) 4039 { 4040 struct user_namespace *mnt_userns; 4041 int error; 4042 struct dentry *dentry; 4043 struct path path; 4044 struct qstr last; 4045 int type; 4046 unsigned int lookup_flags = 0; 4047 retry: 4048 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 4049 if (error) 4050 goto exit1; 4051 4052 switch (type) { 4053 case LAST_DOTDOT: 4054 error = -ENOTEMPTY; 4055 goto exit2; 4056 case LAST_DOT: 4057 error = -EINVAL; 4058 goto exit2; 4059 case LAST_ROOT: 4060 error = -EBUSY; 4061 goto exit2; 4062 } 4063 4064 error = mnt_want_write(path.mnt); 4065 if (error) 4066 goto exit2; 4067 4068 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4069 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 4070 error = PTR_ERR(dentry); 4071 if (IS_ERR(dentry)) 4072 goto exit3; 4073 if (!dentry->d_inode) { 4074 error = -ENOENT; 4075 goto exit4; 4076 } 4077 error = security_path_rmdir(&path, dentry); 4078 if (error) 4079 goto exit4; 4080 mnt_userns = mnt_user_ns(path.mnt); 4081 error = vfs_rmdir(mnt_userns, path.dentry->d_inode, dentry); 4082 exit4: 4083 dput(dentry); 4084 exit3: 4085 inode_unlock(path.dentry->d_inode); 4086 mnt_drop_write(path.mnt); 4087 exit2: 4088 path_put(&path); 4089 if (retry_estale(error, lookup_flags)) { 4090 lookup_flags |= LOOKUP_REVAL; 4091 goto retry; 4092 } 4093 exit1: 4094 putname(name); 4095 return error; 4096 } 4097 4098 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 4099 { 4100 return do_rmdir(AT_FDCWD, getname(pathname)); 4101 } 4102 4103 /** 4104 * vfs_unlink - unlink a filesystem object 4105 * @mnt_userns: user namespace of the mount the inode was found from 4106 * @dir: parent directory 4107 * @dentry: victim 4108 * @delegated_inode: returns victim inode, if the inode is delegated. 4109 * 4110 * The caller must hold dir->i_mutex. 4111 * 4112 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 4113 * return a reference to the inode in delegated_inode. The caller 4114 * should then break the delegation on that inode and retry. Because 4115 * breaking a delegation may take a long time, the caller should drop 4116 * dir->i_mutex before doing so. 4117 * 4118 * Alternatively, a caller may pass NULL for delegated_inode. This may 4119 * be appropriate for callers that expect the underlying filesystem not 4120 * to be NFS exported. 4121 * 4122 * If the inode has been found through an idmapped mount the user namespace of 4123 * the vfsmount must be passed through @mnt_userns. This function will then take 4124 * care to map the inode according to @mnt_userns before checking permissions. 4125 * On non-idmapped mounts or if permission checking is to be performed on the 4126 * raw inode simply passs init_user_ns. 4127 */ 4128 int vfs_unlink(struct user_namespace *mnt_userns, struct inode *dir, 4129 struct dentry *dentry, struct inode **delegated_inode) 4130 { 4131 struct inode *target = dentry->d_inode; 4132 int error = may_delete(mnt_userns, dir, dentry, 0); 4133 4134 if (error) 4135 return error; 4136 4137 if (!dir->i_op->unlink) 4138 return -EPERM; 4139 4140 inode_lock(target); 4141 if (IS_SWAPFILE(target)) 4142 error = -EPERM; 4143 else if (is_local_mountpoint(dentry)) 4144 error = -EBUSY; 4145 else { 4146 error = security_inode_unlink(dir, dentry); 4147 if (!error) { 4148 error = try_break_deleg(target, delegated_inode); 4149 if (error) 4150 goto out; 4151 error = dir->i_op->unlink(dir, dentry); 4152 if (!error) { 4153 dont_mount(dentry); 4154 detach_mounts(dentry); 4155 fsnotify_unlink(dir, dentry); 4156 } 4157 } 4158 } 4159 out: 4160 inode_unlock(target); 4161 4162 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 4163 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 4164 fsnotify_link_count(target); 4165 d_delete(dentry); 4166 } 4167 4168 return error; 4169 } 4170 EXPORT_SYMBOL(vfs_unlink); 4171 4172 /* 4173 * Make sure that the actual truncation of the file will occur outside its 4174 * directory's i_mutex. Truncate can take a long time if there is a lot of 4175 * writeout happening, and we don't want to prevent access to the directory 4176 * while waiting on the I/O. 4177 */ 4178 int do_unlinkat(int dfd, struct filename *name) 4179 { 4180 int error; 4181 struct dentry *dentry; 4182 struct path path; 4183 struct qstr last; 4184 int type; 4185 struct inode *inode = NULL; 4186 struct inode *delegated_inode = NULL; 4187 unsigned int lookup_flags = 0; 4188 retry: 4189 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 4190 if (error) 4191 goto exit1; 4192 4193 error = -EISDIR; 4194 if (type != LAST_NORM) 4195 goto exit2; 4196 4197 error = mnt_want_write(path.mnt); 4198 if (error) 4199 goto exit2; 4200 retry_deleg: 4201 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4202 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 4203 error = PTR_ERR(dentry); 4204 if (!IS_ERR(dentry)) { 4205 struct user_namespace *mnt_userns; 4206 4207 /* Why not before? Because we want correct error value */ 4208 if (last.name[last.len]) 4209 goto slashes; 4210 inode = dentry->d_inode; 4211 if (d_is_negative(dentry)) 4212 goto slashes; 4213 ihold(inode); 4214 error = security_path_unlink(&path, dentry); 4215 if (error) 4216 goto exit3; 4217 mnt_userns = mnt_user_ns(path.mnt); 4218 error = vfs_unlink(mnt_userns, path.dentry->d_inode, dentry, 4219 &delegated_inode); 4220 exit3: 4221 dput(dentry); 4222 } 4223 inode_unlock(path.dentry->d_inode); 4224 if (inode) 4225 iput(inode); /* truncate the inode here */ 4226 inode = NULL; 4227 if (delegated_inode) { 4228 error = break_deleg_wait(&delegated_inode); 4229 if (!error) 4230 goto retry_deleg; 4231 } 4232 mnt_drop_write(path.mnt); 4233 exit2: 4234 path_put(&path); 4235 if (retry_estale(error, lookup_flags)) { 4236 lookup_flags |= LOOKUP_REVAL; 4237 inode = NULL; 4238 goto retry; 4239 } 4240 exit1: 4241 putname(name); 4242 return error; 4243 4244 slashes: 4245 if (d_is_negative(dentry)) 4246 error = -ENOENT; 4247 else if (d_is_dir(dentry)) 4248 error = -EISDIR; 4249 else 4250 error = -ENOTDIR; 4251 goto exit3; 4252 } 4253 4254 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 4255 { 4256 if ((flag & ~AT_REMOVEDIR) != 0) 4257 return -EINVAL; 4258 4259 if (flag & AT_REMOVEDIR) 4260 return do_rmdir(dfd, getname(pathname)); 4261 return do_unlinkat(dfd, getname(pathname)); 4262 } 4263 4264 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 4265 { 4266 return do_unlinkat(AT_FDCWD, getname(pathname)); 4267 } 4268 4269 /** 4270 * vfs_symlink - create symlink 4271 * @mnt_userns: user namespace of the mount the inode was found from 4272 * @dir: inode of @dentry 4273 * @dentry: pointer to dentry of the base directory 4274 * @oldname: name of the file to link to 4275 * 4276 * Create a symlink. 4277 * 4278 * If the inode has been found through an idmapped mount the user namespace of 4279 * the vfsmount must be passed through @mnt_userns. This function will then take 4280 * care to map the inode according to @mnt_userns before checking permissions. 4281 * On non-idmapped mounts or if permission checking is to be performed on the 4282 * raw inode simply passs init_user_ns. 4283 */ 4284 int vfs_symlink(struct user_namespace *mnt_userns, struct inode *dir, 4285 struct dentry *dentry, const char *oldname) 4286 { 4287 int error = may_create(mnt_userns, dir, dentry); 4288 4289 if (error) 4290 return error; 4291 4292 if (!dir->i_op->symlink) 4293 return -EPERM; 4294 4295 error = security_inode_symlink(dir, dentry, oldname); 4296 if (error) 4297 return error; 4298 4299 error = dir->i_op->symlink(mnt_userns, dir, dentry, oldname); 4300 if (!error) 4301 fsnotify_create(dir, dentry); 4302 return error; 4303 } 4304 EXPORT_SYMBOL(vfs_symlink); 4305 4306 int do_symlinkat(struct filename *from, int newdfd, struct filename *to) 4307 { 4308 int error; 4309 struct dentry *dentry; 4310 struct path path; 4311 unsigned int lookup_flags = 0; 4312 4313 if (IS_ERR(from)) { 4314 error = PTR_ERR(from); 4315 goto out_putnames; 4316 } 4317 retry: 4318 dentry = filename_create(newdfd, to, &path, lookup_flags); 4319 error = PTR_ERR(dentry); 4320 if (IS_ERR(dentry)) 4321 goto out_putnames; 4322 4323 error = security_path_symlink(&path, dentry, from->name); 4324 if (!error) { 4325 struct user_namespace *mnt_userns; 4326 4327 mnt_userns = mnt_user_ns(path.mnt); 4328 error = vfs_symlink(mnt_userns, path.dentry->d_inode, dentry, 4329 from->name); 4330 } 4331 done_path_create(&path, dentry); 4332 if (retry_estale(error, lookup_flags)) { 4333 lookup_flags |= LOOKUP_REVAL; 4334 goto retry; 4335 } 4336 out_putnames: 4337 putname(to); 4338 putname(from); 4339 return error; 4340 } 4341 4342 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 4343 int, newdfd, const char __user *, newname) 4344 { 4345 return do_symlinkat(getname(oldname), newdfd, getname(newname)); 4346 } 4347 4348 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 4349 { 4350 return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname)); 4351 } 4352 4353 /** 4354 * vfs_link - create a new link 4355 * @old_dentry: object to be linked 4356 * @mnt_userns: the user namespace of the mount 4357 * @dir: new parent 4358 * @new_dentry: where to create the new link 4359 * @delegated_inode: returns inode needing a delegation break 4360 * 4361 * The caller must hold dir->i_mutex 4362 * 4363 * If vfs_link discovers a delegation on the to-be-linked file in need 4364 * of breaking, it will return -EWOULDBLOCK and return a reference to the 4365 * inode in delegated_inode. The caller should then break the delegation 4366 * and retry. Because breaking a delegation may take a long time, the 4367 * caller should drop the i_mutex before doing so. 4368 * 4369 * Alternatively, a caller may pass NULL for delegated_inode. This may 4370 * be appropriate for callers that expect the underlying filesystem not 4371 * to be NFS exported. 4372 * 4373 * If the inode has been found through an idmapped mount the user namespace of 4374 * the vfsmount must be passed through @mnt_userns. This function will then take 4375 * care to map the inode according to @mnt_userns before checking permissions. 4376 * On non-idmapped mounts or if permission checking is to be performed on the 4377 * raw inode simply passs init_user_ns. 4378 */ 4379 int vfs_link(struct dentry *old_dentry, struct user_namespace *mnt_userns, 4380 struct inode *dir, struct dentry *new_dentry, 4381 struct inode **delegated_inode) 4382 { 4383 struct inode *inode = old_dentry->d_inode; 4384 unsigned max_links = dir->i_sb->s_max_links; 4385 int error; 4386 4387 if (!inode) 4388 return -ENOENT; 4389 4390 error = may_create(mnt_userns, dir, new_dentry); 4391 if (error) 4392 return error; 4393 4394 if (dir->i_sb != inode->i_sb) 4395 return -EXDEV; 4396 4397 /* 4398 * A link to an append-only or immutable file cannot be created. 4399 */ 4400 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4401 return -EPERM; 4402 /* 4403 * Updating the link count will likely cause i_uid and i_gid to 4404 * be writen back improperly if their true value is unknown to 4405 * the vfs. 4406 */ 4407 if (HAS_UNMAPPED_ID(mnt_userns, inode)) 4408 return -EPERM; 4409 if (!dir->i_op->link) 4410 return -EPERM; 4411 if (S_ISDIR(inode->i_mode)) 4412 return -EPERM; 4413 4414 error = security_inode_link(old_dentry, dir, new_dentry); 4415 if (error) 4416 return error; 4417 4418 inode_lock(inode); 4419 /* Make sure we don't allow creating hardlink to an unlinked file */ 4420 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 4421 error = -ENOENT; 4422 else if (max_links && inode->i_nlink >= max_links) 4423 error = -EMLINK; 4424 else { 4425 error = try_break_deleg(inode, delegated_inode); 4426 if (!error) 4427 error = dir->i_op->link(old_dentry, dir, new_dentry); 4428 } 4429 4430 if (!error && (inode->i_state & I_LINKABLE)) { 4431 spin_lock(&inode->i_lock); 4432 inode->i_state &= ~I_LINKABLE; 4433 spin_unlock(&inode->i_lock); 4434 } 4435 inode_unlock(inode); 4436 if (!error) 4437 fsnotify_link(dir, inode, new_dentry); 4438 return error; 4439 } 4440 EXPORT_SYMBOL(vfs_link); 4441 4442 /* 4443 * Hardlinks are often used in delicate situations. We avoid 4444 * security-related surprises by not following symlinks on the 4445 * newname. --KAB 4446 * 4447 * We don't follow them on the oldname either to be compatible 4448 * with linux 2.0, and to avoid hard-linking to directories 4449 * and other special files. --ADM 4450 */ 4451 int do_linkat(int olddfd, struct filename *old, int newdfd, 4452 struct filename *new, int flags) 4453 { 4454 struct user_namespace *mnt_userns; 4455 struct dentry *new_dentry; 4456 struct path old_path, new_path; 4457 struct inode *delegated_inode = NULL; 4458 int how = 0; 4459 int error; 4460 4461 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) { 4462 error = -EINVAL; 4463 goto out_putnames; 4464 } 4465 /* 4466 * To use null names we require CAP_DAC_READ_SEARCH 4467 * This ensures that not everyone will be able to create 4468 * handlink using the passed filedescriptor. 4469 */ 4470 if (flags & AT_EMPTY_PATH && !capable(CAP_DAC_READ_SEARCH)) { 4471 error = -ENOENT; 4472 goto out_putnames; 4473 } 4474 4475 if (flags & AT_SYMLINK_FOLLOW) 4476 how |= LOOKUP_FOLLOW; 4477 retry: 4478 error = filename_lookup(olddfd, old, how, &old_path, NULL); 4479 if (error) 4480 goto out_putnames; 4481 4482 new_dentry = filename_create(newdfd, new, &new_path, 4483 (how & LOOKUP_REVAL)); 4484 error = PTR_ERR(new_dentry); 4485 if (IS_ERR(new_dentry)) 4486 goto out_putpath; 4487 4488 error = -EXDEV; 4489 if (old_path.mnt != new_path.mnt) 4490 goto out_dput; 4491 mnt_userns = mnt_user_ns(new_path.mnt); 4492 error = may_linkat(mnt_userns, &old_path); 4493 if (unlikely(error)) 4494 goto out_dput; 4495 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4496 if (error) 4497 goto out_dput; 4498 error = vfs_link(old_path.dentry, mnt_userns, new_path.dentry->d_inode, 4499 new_dentry, &delegated_inode); 4500 out_dput: 4501 done_path_create(&new_path, new_dentry); 4502 if (delegated_inode) { 4503 error = break_deleg_wait(&delegated_inode); 4504 if (!error) { 4505 path_put(&old_path); 4506 goto retry; 4507 } 4508 } 4509 if (retry_estale(error, how)) { 4510 path_put(&old_path); 4511 how |= LOOKUP_REVAL; 4512 goto retry; 4513 } 4514 out_putpath: 4515 path_put(&old_path); 4516 out_putnames: 4517 putname(old); 4518 putname(new); 4519 4520 return error; 4521 } 4522 4523 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 4524 int, newdfd, const char __user *, newname, int, flags) 4525 { 4526 return do_linkat(olddfd, getname_uflags(oldname, flags), 4527 newdfd, getname(newname), flags); 4528 } 4529 4530 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4531 { 4532 return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0); 4533 } 4534 4535 /** 4536 * vfs_rename - rename a filesystem object 4537 * @rd: pointer to &struct renamedata info 4538 * 4539 * The caller must hold multiple mutexes--see lock_rename()). 4540 * 4541 * If vfs_rename discovers a delegation in need of breaking at either 4542 * the source or destination, it will return -EWOULDBLOCK and return a 4543 * reference to the inode in delegated_inode. The caller should then 4544 * break the delegation and retry. Because breaking a delegation may 4545 * take a long time, the caller should drop all locks before doing 4546 * so. 4547 * 4548 * Alternatively, a caller may pass NULL for delegated_inode. This may 4549 * be appropriate for callers that expect the underlying filesystem not 4550 * to be NFS exported. 4551 * 4552 * The worst of all namespace operations - renaming directory. "Perverted" 4553 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4554 * Problems: 4555 * 4556 * a) we can get into loop creation. 4557 * b) race potential - two innocent renames can create a loop together. 4558 * That's where 4.4 screws up. Current fix: serialization on 4559 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4560 * story. 4561 * c) we have to lock _four_ objects - parents and victim (if it exists), 4562 * and source (if it is not a directory). 4563 * And that - after we got ->i_mutex on parents (until then we don't know 4564 * whether the target exists). Solution: try to be smart with locking 4565 * order for inodes. We rely on the fact that tree topology may change 4566 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4567 * move will be locked. Thus we can rank directories by the tree 4568 * (ancestors first) and rank all non-directories after them. 4569 * That works since everybody except rename does "lock parent, lookup, 4570 * lock child" and rename is under ->s_vfs_rename_mutex. 4571 * HOWEVER, it relies on the assumption that any object with ->lookup() 4572 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4573 * we'd better make sure that there's no link(2) for them. 4574 * d) conversion from fhandle to dentry may come in the wrong moment - when 4575 * we are removing the target. Solution: we will have to grab ->i_mutex 4576 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4577 * ->i_mutex on parents, which works but leads to some truly excessive 4578 * locking]. 4579 */ 4580 int vfs_rename(struct renamedata *rd) 4581 { 4582 int error; 4583 struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir; 4584 struct dentry *old_dentry = rd->old_dentry; 4585 struct dentry *new_dentry = rd->new_dentry; 4586 struct inode **delegated_inode = rd->delegated_inode; 4587 unsigned int flags = rd->flags; 4588 bool is_dir = d_is_dir(old_dentry); 4589 struct inode *source = old_dentry->d_inode; 4590 struct inode *target = new_dentry->d_inode; 4591 bool new_is_dir = false; 4592 unsigned max_links = new_dir->i_sb->s_max_links; 4593 struct name_snapshot old_name; 4594 4595 if (source == target) 4596 return 0; 4597 4598 error = may_delete(rd->old_mnt_userns, old_dir, old_dentry, is_dir); 4599 if (error) 4600 return error; 4601 4602 if (!target) { 4603 error = may_create(rd->new_mnt_userns, new_dir, new_dentry); 4604 } else { 4605 new_is_dir = d_is_dir(new_dentry); 4606 4607 if (!(flags & RENAME_EXCHANGE)) 4608 error = may_delete(rd->new_mnt_userns, new_dir, 4609 new_dentry, is_dir); 4610 else 4611 error = may_delete(rd->new_mnt_userns, new_dir, 4612 new_dentry, new_is_dir); 4613 } 4614 if (error) 4615 return error; 4616 4617 if (!old_dir->i_op->rename) 4618 return -EPERM; 4619 4620 /* 4621 * If we are going to change the parent - check write permissions, 4622 * we'll need to flip '..'. 4623 */ 4624 if (new_dir != old_dir) { 4625 if (is_dir) { 4626 error = inode_permission(rd->old_mnt_userns, source, 4627 MAY_WRITE); 4628 if (error) 4629 return error; 4630 } 4631 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4632 error = inode_permission(rd->new_mnt_userns, target, 4633 MAY_WRITE); 4634 if (error) 4635 return error; 4636 } 4637 } 4638 4639 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 4640 flags); 4641 if (error) 4642 return error; 4643 4644 take_dentry_name_snapshot(&old_name, old_dentry); 4645 dget(new_dentry); 4646 if (!is_dir || (flags & RENAME_EXCHANGE)) 4647 lock_two_nondirectories(source, target); 4648 else if (target) 4649 inode_lock(target); 4650 4651 error = -EPERM; 4652 if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target))) 4653 goto out; 4654 4655 error = -EBUSY; 4656 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 4657 goto out; 4658 4659 if (max_links && new_dir != old_dir) { 4660 error = -EMLINK; 4661 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 4662 goto out; 4663 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 4664 old_dir->i_nlink >= max_links) 4665 goto out; 4666 } 4667 if (!is_dir) { 4668 error = try_break_deleg(source, delegated_inode); 4669 if (error) 4670 goto out; 4671 } 4672 if (target && !new_is_dir) { 4673 error = try_break_deleg(target, delegated_inode); 4674 if (error) 4675 goto out; 4676 } 4677 error = old_dir->i_op->rename(rd->new_mnt_userns, old_dir, old_dentry, 4678 new_dir, new_dentry, flags); 4679 if (error) 4680 goto out; 4681 4682 if (!(flags & RENAME_EXCHANGE) && target) { 4683 if (is_dir) { 4684 shrink_dcache_parent(new_dentry); 4685 target->i_flags |= S_DEAD; 4686 } 4687 dont_mount(new_dentry); 4688 detach_mounts(new_dentry); 4689 } 4690 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 4691 if (!(flags & RENAME_EXCHANGE)) 4692 d_move(old_dentry, new_dentry); 4693 else 4694 d_exchange(old_dentry, new_dentry); 4695 } 4696 out: 4697 if (!is_dir || (flags & RENAME_EXCHANGE)) 4698 unlock_two_nondirectories(source, target); 4699 else if (target) 4700 inode_unlock(target); 4701 dput(new_dentry); 4702 if (!error) { 4703 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir, 4704 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 4705 if (flags & RENAME_EXCHANGE) { 4706 fsnotify_move(new_dir, old_dir, &old_dentry->d_name, 4707 new_is_dir, NULL, new_dentry); 4708 } 4709 } 4710 release_dentry_name_snapshot(&old_name); 4711 4712 return error; 4713 } 4714 EXPORT_SYMBOL(vfs_rename); 4715 4716 int do_renameat2(int olddfd, struct filename *from, int newdfd, 4717 struct filename *to, unsigned int flags) 4718 { 4719 struct renamedata rd; 4720 struct dentry *old_dentry, *new_dentry; 4721 struct dentry *trap; 4722 struct path old_path, new_path; 4723 struct qstr old_last, new_last; 4724 int old_type, new_type; 4725 struct inode *delegated_inode = NULL; 4726 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET; 4727 bool should_retry = false; 4728 int error = -EINVAL; 4729 4730 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4731 goto put_names; 4732 4733 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 4734 (flags & RENAME_EXCHANGE)) 4735 goto put_names; 4736 4737 if (flags & RENAME_EXCHANGE) 4738 target_flags = 0; 4739 4740 retry: 4741 error = filename_parentat(olddfd, from, lookup_flags, &old_path, 4742 &old_last, &old_type); 4743 if (error) 4744 goto put_names; 4745 4746 error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last, 4747 &new_type); 4748 if (error) 4749 goto exit1; 4750 4751 error = -EXDEV; 4752 if (old_path.mnt != new_path.mnt) 4753 goto exit2; 4754 4755 error = -EBUSY; 4756 if (old_type != LAST_NORM) 4757 goto exit2; 4758 4759 if (flags & RENAME_NOREPLACE) 4760 error = -EEXIST; 4761 if (new_type != LAST_NORM) 4762 goto exit2; 4763 4764 error = mnt_want_write(old_path.mnt); 4765 if (error) 4766 goto exit2; 4767 4768 retry_deleg: 4769 trap = lock_rename(new_path.dentry, old_path.dentry); 4770 4771 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags); 4772 error = PTR_ERR(old_dentry); 4773 if (IS_ERR(old_dentry)) 4774 goto exit3; 4775 /* source must exist */ 4776 error = -ENOENT; 4777 if (d_is_negative(old_dentry)) 4778 goto exit4; 4779 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags); 4780 error = PTR_ERR(new_dentry); 4781 if (IS_ERR(new_dentry)) 4782 goto exit4; 4783 error = -EEXIST; 4784 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 4785 goto exit5; 4786 if (flags & RENAME_EXCHANGE) { 4787 error = -ENOENT; 4788 if (d_is_negative(new_dentry)) 4789 goto exit5; 4790 4791 if (!d_is_dir(new_dentry)) { 4792 error = -ENOTDIR; 4793 if (new_last.name[new_last.len]) 4794 goto exit5; 4795 } 4796 } 4797 /* unless the source is a directory trailing slashes give -ENOTDIR */ 4798 if (!d_is_dir(old_dentry)) { 4799 error = -ENOTDIR; 4800 if (old_last.name[old_last.len]) 4801 goto exit5; 4802 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len]) 4803 goto exit5; 4804 } 4805 /* source should not be ancestor of target */ 4806 error = -EINVAL; 4807 if (old_dentry == trap) 4808 goto exit5; 4809 /* target should not be an ancestor of source */ 4810 if (!(flags & RENAME_EXCHANGE)) 4811 error = -ENOTEMPTY; 4812 if (new_dentry == trap) 4813 goto exit5; 4814 4815 error = security_path_rename(&old_path, old_dentry, 4816 &new_path, new_dentry, flags); 4817 if (error) 4818 goto exit5; 4819 4820 rd.old_dir = old_path.dentry->d_inode; 4821 rd.old_dentry = old_dentry; 4822 rd.old_mnt_userns = mnt_user_ns(old_path.mnt); 4823 rd.new_dir = new_path.dentry->d_inode; 4824 rd.new_dentry = new_dentry; 4825 rd.new_mnt_userns = mnt_user_ns(new_path.mnt); 4826 rd.delegated_inode = &delegated_inode; 4827 rd.flags = flags; 4828 error = vfs_rename(&rd); 4829 exit5: 4830 dput(new_dentry); 4831 exit4: 4832 dput(old_dentry); 4833 exit3: 4834 unlock_rename(new_path.dentry, old_path.dentry); 4835 if (delegated_inode) { 4836 error = break_deleg_wait(&delegated_inode); 4837 if (!error) 4838 goto retry_deleg; 4839 } 4840 mnt_drop_write(old_path.mnt); 4841 exit2: 4842 if (retry_estale(error, lookup_flags)) 4843 should_retry = true; 4844 path_put(&new_path); 4845 exit1: 4846 path_put(&old_path); 4847 if (should_retry) { 4848 should_retry = false; 4849 lookup_flags |= LOOKUP_REVAL; 4850 goto retry; 4851 } 4852 put_names: 4853 putname(from); 4854 putname(to); 4855 return error; 4856 } 4857 4858 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 4859 int, newdfd, const char __user *, newname, unsigned int, flags) 4860 { 4861 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname), 4862 flags); 4863 } 4864 4865 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 4866 int, newdfd, const char __user *, newname) 4867 { 4868 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname), 4869 0); 4870 } 4871 4872 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 4873 { 4874 return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD, 4875 getname(newname), 0); 4876 } 4877 4878 int readlink_copy(char __user *buffer, int buflen, const char *link) 4879 { 4880 int len = PTR_ERR(link); 4881 if (IS_ERR(link)) 4882 goto out; 4883 4884 len = strlen(link); 4885 if (len > (unsigned) buflen) 4886 len = buflen; 4887 if (copy_to_user(buffer, link, len)) 4888 len = -EFAULT; 4889 out: 4890 return len; 4891 } 4892 4893 /** 4894 * vfs_readlink - copy symlink body into userspace buffer 4895 * @dentry: dentry on which to get symbolic link 4896 * @buffer: user memory pointer 4897 * @buflen: size of buffer 4898 * 4899 * Does not touch atime. That's up to the caller if necessary 4900 * 4901 * Does not call security hook. 4902 */ 4903 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4904 { 4905 struct inode *inode = d_inode(dentry); 4906 DEFINE_DELAYED_CALL(done); 4907 const char *link; 4908 int res; 4909 4910 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) { 4911 if (unlikely(inode->i_op->readlink)) 4912 return inode->i_op->readlink(dentry, buffer, buflen); 4913 4914 if (!d_is_symlink(dentry)) 4915 return -EINVAL; 4916 4917 spin_lock(&inode->i_lock); 4918 inode->i_opflags |= IOP_DEFAULT_READLINK; 4919 spin_unlock(&inode->i_lock); 4920 } 4921 4922 link = READ_ONCE(inode->i_link); 4923 if (!link) { 4924 link = inode->i_op->get_link(dentry, inode, &done); 4925 if (IS_ERR(link)) 4926 return PTR_ERR(link); 4927 } 4928 res = readlink_copy(buffer, buflen, link); 4929 do_delayed_call(&done); 4930 return res; 4931 } 4932 EXPORT_SYMBOL(vfs_readlink); 4933 4934 /** 4935 * vfs_get_link - get symlink body 4936 * @dentry: dentry on which to get symbolic link 4937 * @done: caller needs to free returned data with this 4938 * 4939 * Calls security hook and i_op->get_link() on the supplied inode. 4940 * 4941 * It does not touch atime. That's up to the caller if necessary. 4942 * 4943 * Does not work on "special" symlinks like /proc/$$/fd/N 4944 */ 4945 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done) 4946 { 4947 const char *res = ERR_PTR(-EINVAL); 4948 struct inode *inode = d_inode(dentry); 4949 4950 if (d_is_symlink(dentry)) { 4951 res = ERR_PTR(security_inode_readlink(dentry)); 4952 if (!res) 4953 res = inode->i_op->get_link(dentry, inode, done); 4954 } 4955 return res; 4956 } 4957 EXPORT_SYMBOL(vfs_get_link); 4958 4959 /* get the link contents into pagecache */ 4960 const char *page_get_link(struct dentry *dentry, struct inode *inode, 4961 struct delayed_call *callback) 4962 { 4963 char *kaddr; 4964 struct page *page; 4965 struct address_space *mapping = inode->i_mapping; 4966 4967 if (!dentry) { 4968 page = find_get_page(mapping, 0); 4969 if (!page) 4970 return ERR_PTR(-ECHILD); 4971 if (!PageUptodate(page)) { 4972 put_page(page); 4973 return ERR_PTR(-ECHILD); 4974 } 4975 } else { 4976 page = read_mapping_page(mapping, 0, NULL); 4977 if (IS_ERR(page)) 4978 return (char*)page; 4979 } 4980 set_delayed_call(callback, page_put_link, page); 4981 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM); 4982 kaddr = page_address(page); 4983 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1); 4984 return kaddr; 4985 } 4986 4987 EXPORT_SYMBOL(page_get_link); 4988 4989 void page_put_link(void *arg) 4990 { 4991 put_page(arg); 4992 } 4993 EXPORT_SYMBOL(page_put_link); 4994 4995 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4996 { 4997 DEFINE_DELAYED_CALL(done); 4998 int res = readlink_copy(buffer, buflen, 4999 page_get_link(dentry, d_inode(dentry), 5000 &done)); 5001 do_delayed_call(&done); 5002 return res; 5003 } 5004 EXPORT_SYMBOL(page_readlink); 5005 5006 /* 5007 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 5008 */ 5009 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 5010 { 5011 struct address_space *mapping = inode->i_mapping; 5012 struct page *page; 5013 void *fsdata; 5014 int err; 5015 unsigned int flags = 0; 5016 if (nofs) 5017 flags |= AOP_FLAG_NOFS; 5018 5019 retry: 5020 err = pagecache_write_begin(NULL, mapping, 0, len-1, 5021 flags, &page, &fsdata); 5022 if (err) 5023 goto fail; 5024 5025 memcpy(page_address(page), symname, len-1); 5026 5027 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 5028 page, fsdata); 5029 if (err < 0) 5030 goto fail; 5031 if (err < len-1) 5032 goto retry; 5033 5034 mark_inode_dirty(inode); 5035 return 0; 5036 fail: 5037 return err; 5038 } 5039 EXPORT_SYMBOL(__page_symlink); 5040 5041 int page_symlink(struct inode *inode, const char *symname, int len) 5042 { 5043 return __page_symlink(inode, symname, len, 5044 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS)); 5045 } 5046 EXPORT_SYMBOL(page_symlink); 5047 5048 const struct inode_operations page_symlink_inode_operations = { 5049 .get_link = page_get_link, 5050 }; 5051 EXPORT_SYMBOL(page_symlink_inode_operations); 5052