xref: /linux/fs/namei.c (revision b50ecc5aca4d18f1f0c4942f5c797bc85edef144)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/namei.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * Some corrections by tytso.
10  */
11 
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13  * lookup logic.
14  */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16  */
17 
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/slab.h>
21 #include <linux/wordpart.h>
22 #include <linux/fs.h>
23 #include <linux/filelock.h>
24 #include <linux/namei.h>
25 #include <linux/pagemap.h>
26 #include <linux/sched/mm.h>
27 #include <linux/fsnotify.h>
28 #include <linux/personality.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/mount.h>
32 #include <linux/audit.h>
33 #include <linux/capability.h>
34 #include <linux/file.h>
35 #include <linux/fcntl.h>
36 #include <linux/device_cgroup.h>
37 #include <linux/fs_struct.h>
38 #include <linux/posix_acl.h>
39 #include <linux/hash.h>
40 #include <linux/bitops.h>
41 #include <linux/init_task.h>
42 #include <linux/uaccess.h>
43 
44 #include "internal.h"
45 #include "mount.h"
46 
47 /* [Feb-1997 T. Schoebel-Theuer]
48  * Fundamental changes in the pathname lookup mechanisms (namei)
49  * were necessary because of omirr.  The reason is that omirr needs
50  * to know the _real_ pathname, not the user-supplied one, in case
51  * of symlinks (and also when transname replacements occur).
52  *
53  * The new code replaces the old recursive symlink resolution with
54  * an iterative one (in case of non-nested symlink chains).  It does
55  * this with calls to <fs>_follow_link().
56  * As a side effect, dir_namei(), _namei() and follow_link() are now
57  * replaced with a single function lookup_dentry() that can handle all
58  * the special cases of the former code.
59  *
60  * With the new dcache, the pathname is stored at each inode, at least as
61  * long as the refcount of the inode is positive.  As a side effect, the
62  * size of the dcache depends on the inode cache and thus is dynamic.
63  *
64  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
65  * resolution to correspond with current state of the code.
66  *
67  * Note that the symlink resolution is not *completely* iterative.
68  * There is still a significant amount of tail- and mid- recursion in
69  * the algorithm.  Also, note that <fs>_readlink() is not used in
70  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
71  * may return different results than <fs>_follow_link().  Many virtual
72  * filesystems (including /proc) exhibit this behavior.
73  */
74 
75 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
76  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
77  * and the name already exists in form of a symlink, try to create the new
78  * name indicated by the symlink. The old code always complained that the
79  * name already exists, due to not following the symlink even if its target
80  * is nonexistent.  The new semantics affects also mknod() and link() when
81  * the name is a symlink pointing to a non-existent name.
82  *
83  * I don't know which semantics is the right one, since I have no access
84  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
85  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
86  * "old" one. Personally, I think the new semantics is much more logical.
87  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
88  * file does succeed in both HP-UX and SunOs, but not in Solaris
89  * and in the old Linux semantics.
90  */
91 
92 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
93  * semantics.  See the comments in "open_namei" and "do_link" below.
94  *
95  * [10-Sep-98 Alan Modra] Another symlink change.
96  */
97 
98 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
99  *	inside the path - always follow.
100  *	in the last component in creation/removal/renaming - never follow.
101  *	if LOOKUP_FOLLOW passed - follow.
102  *	if the pathname has trailing slashes - follow.
103  *	otherwise - don't follow.
104  * (applied in that order).
105  *
106  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
107  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
108  * During the 2.4 we need to fix the userland stuff depending on it -
109  * hopefully we will be able to get rid of that wart in 2.5. So far only
110  * XEmacs seems to be relying on it...
111  */
112 /*
113  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
114  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
115  * any extra contention...
116  */
117 
118 /* In order to reduce some races, while at the same time doing additional
119  * checking and hopefully speeding things up, we copy filenames to the
120  * kernel data space before using them..
121  *
122  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
123  * PATH_MAX includes the nul terminator --RR.
124  */
125 
126 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
127 
128 struct filename *
129 getname_flags(const char __user *filename, int flags)
130 {
131 	struct filename *result;
132 	char *kname;
133 	int len;
134 
135 	result = audit_reusename(filename);
136 	if (result)
137 		return result;
138 
139 	result = __getname();
140 	if (unlikely(!result))
141 		return ERR_PTR(-ENOMEM);
142 
143 	/*
144 	 * First, try to embed the struct filename inside the names_cache
145 	 * allocation
146 	 */
147 	kname = (char *)result->iname;
148 	result->name = kname;
149 
150 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
151 	/*
152 	 * Handle both empty path and copy failure in one go.
153 	 */
154 	if (unlikely(len <= 0)) {
155 		if (unlikely(len < 0)) {
156 			__putname(result);
157 			return ERR_PTR(len);
158 		}
159 
160 		/* The empty path is special. */
161 		if (!(flags & LOOKUP_EMPTY)) {
162 			__putname(result);
163 			return ERR_PTR(-ENOENT);
164 		}
165 	}
166 
167 	/*
168 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
169 	 * separate struct filename so we can dedicate the entire
170 	 * names_cache allocation for the pathname, and re-do the copy from
171 	 * userland.
172 	 */
173 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
174 		const size_t size = offsetof(struct filename, iname[1]);
175 		kname = (char *)result;
176 
177 		/*
178 		 * size is chosen that way we to guarantee that
179 		 * result->iname[0] is within the same object and that
180 		 * kname can't be equal to result->iname, no matter what.
181 		 */
182 		result = kzalloc(size, GFP_KERNEL);
183 		if (unlikely(!result)) {
184 			__putname(kname);
185 			return ERR_PTR(-ENOMEM);
186 		}
187 		result->name = kname;
188 		len = strncpy_from_user(kname, filename, PATH_MAX);
189 		if (unlikely(len < 0)) {
190 			__putname(kname);
191 			kfree(result);
192 			return ERR_PTR(len);
193 		}
194 		/* The empty path is special. */
195 		if (unlikely(!len) && !(flags & LOOKUP_EMPTY)) {
196 			__putname(kname);
197 			kfree(result);
198 			return ERR_PTR(-ENOENT);
199 		}
200 		if (unlikely(len == PATH_MAX)) {
201 			__putname(kname);
202 			kfree(result);
203 			return ERR_PTR(-ENAMETOOLONG);
204 		}
205 	}
206 
207 	atomic_set(&result->refcnt, 1);
208 	result->uptr = filename;
209 	result->aname = NULL;
210 	audit_getname(result);
211 	return result;
212 }
213 
214 struct filename *getname_uflags(const char __user *filename, int uflags)
215 {
216 	int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
217 
218 	return getname_flags(filename, flags);
219 }
220 
221 struct filename *getname(const char __user * filename)
222 {
223 	return getname_flags(filename, 0);
224 }
225 
226 struct filename *__getname_maybe_null(const char __user *pathname)
227 {
228 	struct filename *name;
229 	char c;
230 
231 	/* try to save on allocations; loss on um, though */
232 	if (get_user(c, pathname))
233 		return ERR_PTR(-EFAULT);
234 	if (!c)
235 		return NULL;
236 
237 	name = getname_flags(pathname, LOOKUP_EMPTY);
238 	if (!IS_ERR(name) && !(name->name[0])) {
239 		putname(name);
240 		name = NULL;
241 	}
242 	return name;
243 }
244 
245 struct filename *getname_kernel(const char * filename)
246 {
247 	struct filename *result;
248 	int len = strlen(filename) + 1;
249 
250 	result = __getname();
251 	if (unlikely(!result))
252 		return ERR_PTR(-ENOMEM);
253 
254 	if (len <= EMBEDDED_NAME_MAX) {
255 		result->name = (char *)result->iname;
256 	} else if (len <= PATH_MAX) {
257 		const size_t size = offsetof(struct filename, iname[1]);
258 		struct filename *tmp;
259 
260 		tmp = kmalloc(size, GFP_KERNEL);
261 		if (unlikely(!tmp)) {
262 			__putname(result);
263 			return ERR_PTR(-ENOMEM);
264 		}
265 		tmp->name = (char *)result;
266 		result = tmp;
267 	} else {
268 		__putname(result);
269 		return ERR_PTR(-ENAMETOOLONG);
270 	}
271 	memcpy((char *)result->name, filename, len);
272 	result->uptr = NULL;
273 	result->aname = NULL;
274 	atomic_set(&result->refcnt, 1);
275 	audit_getname(result);
276 
277 	return result;
278 }
279 EXPORT_SYMBOL(getname_kernel);
280 
281 void putname(struct filename *name)
282 {
283 	if (IS_ERR_OR_NULL(name))
284 		return;
285 
286 	if (WARN_ON_ONCE(!atomic_read(&name->refcnt)))
287 		return;
288 
289 	if (!atomic_dec_and_test(&name->refcnt))
290 		return;
291 
292 	if (name->name != name->iname) {
293 		__putname(name->name);
294 		kfree(name);
295 	} else
296 		__putname(name);
297 }
298 EXPORT_SYMBOL(putname);
299 
300 /**
301  * check_acl - perform ACL permission checking
302  * @idmap:	idmap of the mount the inode was found from
303  * @inode:	inode to check permissions on
304  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
305  *
306  * This function performs the ACL permission checking. Since this function
307  * retrieve POSIX acls it needs to know whether it is called from a blocking or
308  * non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
309  *
310  * If the inode has been found through an idmapped mount the idmap of
311  * the vfsmount must be passed through @idmap. This function will then take
312  * care to map the inode according to @idmap before checking permissions.
313  * On non-idmapped mounts or if permission checking is to be performed on the
314  * raw inode simply pass @nop_mnt_idmap.
315  */
316 static int check_acl(struct mnt_idmap *idmap,
317 		     struct inode *inode, int mask)
318 {
319 #ifdef CONFIG_FS_POSIX_ACL
320 	struct posix_acl *acl;
321 
322 	if (mask & MAY_NOT_BLOCK) {
323 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
324 	        if (!acl)
325 	                return -EAGAIN;
326 		/* no ->get_inode_acl() calls in RCU mode... */
327 		if (is_uncached_acl(acl))
328 			return -ECHILD;
329 	        return posix_acl_permission(idmap, inode, acl, mask);
330 	}
331 
332 	acl = get_inode_acl(inode, ACL_TYPE_ACCESS);
333 	if (IS_ERR(acl))
334 		return PTR_ERR(acl);
335 	if (acl) {
336 	        int error = posix_acl_permission(idmap, inode, acl, mask);
337 	        posix_acl_release(acl);
338 	        return error;
339 	}
340 #endif
341 
342 	return -EAGAIN;
343 }
344 
345 /*
346  * Very quick optimistic "we know we have no ACL's" check.
347  *
348  * Note that this is purely for ACL_TYPE_ACCESS, and purely
349  * for the "we have cached that there are no ACLs" case.
350  *
351  * If this returns true, we know there are no ACLs. But if
352  * it returns false, we might still not have ACLs (it could
353  * be the is_uncached_acl() case).
354  */
355 static inline bool no_acl_inode(struct inode *inode)
356 {
357 #ifdef CONFIG_FS_POSIX_ACL
358 	return likely(!READ_ONCE(inode->i_acl));
359 #else
360 	return true;
361 #endif
362 }
363 
364 /**
365  * acl_permission_check - perform basic UNIX permission checking
366  * @idmap:	idmap of the mount the inode was found from
367  * @inode:	inode to check permissions on
368  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
369  *
370  * This function performs the basic UNIX permission checking. Since this
371  * function may retrieve POSIX acls it needs to know whether it is called from a
372  * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
373  *
374  * If the inode has been found through an idmapped mount the idmap of
375  * the vfsmount must be passed through @idmap. This function will then take
376  * care to map the inode according to @idmap before checking permissions.
377  * On non-idmapped mounts or if permission checking is to be performed on the
378  * raw inode simply pass @nop_mnt_idmap.
379  */
380 static int acl_permission_check(struct mnt_idmap *idmap,
381 				struct inode *inode, int mask)
382 {
383 	unsigned int mode = inode->i_mode;
384 	vfsuid_t vfsuid;
385 
386 	/*
387 	 * Common cheap case: everybody has the requested
388 	 * rights, and there are no ACLs to check. No need
389 	 * to do any owner/group checks in that case.
390 	 *
391 	 *  - 'mask&7' is the requested permission bit set
392 	 *  - multiplying by 0111 spreads them out to all of ugo
393 	 *  - '& ~mode' looks for missing inode permission bits
394 	 *  - the '!' is for "no missing permissions"
395 	 *
396 	 * After that, we just need to check that there are no
397 	 * ACL's on the inode - do the 'IS_POSIXACL()' check last
398 	 * because it will dereference the ->i_sb pointer and we
399 	 * want to avoid that if at all possible.
400 	 */
401 	if (!((mask & 7) * 0111 & ~mode)) {
402 		if (no_acl_inode(inode))
403 			return 0;
404 		if (!IS_POSIXACL(inode))
405 			return 0;
406 	}
407 
408 	/* Are we the owner? If so, ACL's don't matter */
409 	vfsuid = i_uid_into_vfsuid(idmap, inode);
410 	if (likely(vfsuid_eq_kuid(vfsuid, current_fsuid()))) {
411 		mask &= 7;
412 		mode >>= 6;
413 		return (mask & ~mode) ? -EACCES : 0;
414 	}
415 
416 	/* Do we have ACL's? */
417 	if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
418 		int error = check_acl(idmap, inode, mask);
419 		if (error != -EAGAIN)
420 			return error;
421 	}
422 
423 	/* Only RWX matters for group/other mode bits */
424 	mask &= 7;
425 
426 	/*
427 	 * Are the group permissions different from
428 	 * the other permissions in the bits we care
429 	 * about? Need to check group ownership if so.
430 	 */
431 	if (mask & (mode ^ (mode >> 3))) {
432 		vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
433 		if (vfsgid_in_group_p(vfsgid))
434 			mode >>= 3;
435 	}
436 
437 	/* Bits in 'mode' clear that we require? */
438 	return (mask & ~mode) ? -EACCES : 0;
439 }
440 
441 /**
442  * generic_permission -  check for access rights on a Posix-like filesystem
443  * @idmap:	idmap of the mount the inode was found from
444  * @inode:	inode to check access rights for
445  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
446  *		%MAY_NOT_BLOCK ...)
447  *
448  * Used to check for read/write/execute permissions on a file.
449  * We use "fsuid" for this, letting us set arbitrary permissions
450  * for filesystem access without changing the "normal" uids which
451  * are used for other things.
452  *
453  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
454  * request cannot be satisfied (eg. requires blocking or too much complexity).
455  * It would then be called again in ref-walk mode.
456  *
457  * If the inode has been found through an idmapped mount the idmap of
458  * the vfsmount must be passed through @idmap. This function will then take
459  * care to map the inode according to @idmap before checking permissions.
460  * On non-idmapped mounts or if permission checking is to be performed on the
461  * raw inode simply pass @nop_mnt_idmap.
462  */
463 int generic_permission(struct mnt_idmap *idmap, struct inode *inode,
464 		       int mask)
465 {
466 	int ret;
467 
468 	/*
469 	 * Do the basic permission checks.
470 	 */
471 	ret = acl_permission_check(idmap, inode, mask);
472 	if (ret != -EACCES)
473 		return ret;
474 
475 	if (S_ISDIR(inode->i_mode)) {
476 		/* DACs are overridable for directories */
477 		if (!(mask & MAY_WRITE))
478 			if (capable_wrt_inode_uidgid(idmap, inode,
479 						     CAP_DAC_READ_SEARCH))
480 				return 0;
481 		if (capable_wrt_inode_uidgid(idmap, inode,
482 					     CAP_DAC_OVERRIDE))
483 			return 0;
484 		return -EACCES;
485 	}
486 
487 	/*
488 	 * Searching includes executable on directories, else just read.
489 	 */
490 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
491 	if (mask == MAY_READ)
492 		if (capable_wrt_inode_uidgid(idmap, inode,
493 					     CAP_DAC_READ_SEARCH))
494 			return 0;
495 	/*
496 	 * Read/write DACs are always overridable.
497 	 * Executable DACs are overridable when there is
498 	 * at least one exec bit set.
499 	 */
500 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
501 		if (capable_wrt_inode_uidgid(idmap, inode,
502 					     CAP_DAC_OVERRIDE))
503 			return 0;
504 
505 	return -EACCES;
506 }
507 EXPORT_SYMBOL(generic_permission);
508 
509 /**
510  * do_inode_permission - UNIX permission checking
511  * @idmap:	idmap of the mount the inode was found from
512  * @inode:	inode to check permissions on
513  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
514  *
515  * We _really_ want to just do "generic_permission()" without
516  * even looking at the inode->i_op values. So we keep a cache
517  * flag in inode->i_opflags, that says "this has not special
518  * permission function, use the fast case".
519  */
520 static inline int do_inode_permission(struct mnt_idmap *idmap,
521 				      struct inode *inode, int mask)
522 {
523 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
524 		if (likely(inode->i_op->permission))
525 			return inode->i_op->permission(idmap, inode, mask);
526 
527 		/* This gets set once for the inode lifetime */
528 		spin_lock(&inode->i_lock);
529 		inode->i_opflags |= IOP_FASTPERM;
530 		spin_unlock(&inode->i_lock);
531 	}
532 	return generic_permission(idmap, inode, mask);
533 }
534 
535 /**
536  * sb_permission - Check superblock-level permissions
537  * @sb: Superblock of inode to check permission on
538  * @inode: Inode to check permission on
539  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
540  *
541  * Separate out file-system wide checks from inode-specific permission checks.
542  */
543 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
544 {
545 	if (unlikely(mask & MAY_WRITE)) {
546 		umode_t mode = inode->i_mode;
547 
548 		/* Nobody gets write access to a read-only fs. */
549 		if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
550 			return -EROFS;
551 	}
552 	return 0;
553 }
554 
555 /**
556  * inode_permission - Check for access rights to a given inode
557  * @idmap:	idmap of the mount the inode was found from
558  * @inode:	Inode to check permission on
559  * @mask:	Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
560  *
561  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
562  * this, letting us set arbitrary permissions for filesystem access without
563  * changing the "normal" UIDs which are used for other things.
564  *
565  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
566  */
567 int inode_permission(struct mnt_idmap *idmap,
568 		     struct inode *inode, int mask)
569 {
570 	int retval;
571 
572 	retval = sb_permission(inode->i_sb, inode, mask);
573 	if (retval)
574 		return retval;
575 
576 	if (unlikely(mask & MAY_WRITE)) {
577 		/*
578 		 * Nobody gets write access to an immutable file.
579 		 */
580 		if (IS_IMMUTABLE(inode))
581 			return -EPERM;
582 
583 		/*
584 		 * Updating mtime will likely cause i_uid and i_gid to be
585 		 * written back improperly if their true value is unknown
586 		 * to the vfs.
587 		 */
588 		if (HAS_UNMAPPED_ID(idmap, inode))
589 			return -EACCES;
590 	}
591 
592 	retval = do_inode_permission(idmap, inode, mask);
593 	if (retval)
594 		return retval;
595 
596 	retval = devcgroup_inode_permission(inode, mask);
597 	if (retval)
598 		return retval;
599 
600 	return security_inode_permission(inode, mask);
601 }
602 EXPORT_SYMBOL(inode_permission);
603 
604 /**
605  * path_get - get a reference to a path
606  * @path: path to get the reference to
607  *
608  * Given a path increment the reference count to the dentry and the vfsmount.
609  */
610 void path_get(const struct path *path)
611 {
612 	mntget(path->mnt);
613 	dget(path->dentry);
614 }
615 EXPORT_SYMBOL(path_get);
616 
617 /**
618  * path_put - put a reference to a path
619  * @path: path to put the reference to
620  *
621  * Given a path decrement the reference count to the dentry and the vfsmount.
622  */
623 void path_put(const struct path *path)
624 {
625 	dput(path->dentry);
626 	mntput(path->mnt);
627 }
628 EXPORT_SYMBOL(path_put);
629 
630 #define EMBEDDED_LEVELS 2
631 struct nameidata {
632 	struct path	path;
633 	struct qstr	last;
634 	struct path	root;
635 	struct inode	*inode; /* path.dentry.d_inode */
636 	unsigned int	flags, state;
637 	unsigned	seq, next_seq, m_seq, r_seq;
638 	int		last_type;
639 	unsigned	depth;
640 	int		total_link_count;
641 	struct saved {
642 		struct path link;
643 		struct delayed_call done;
644 		const char *name;
645 		unsigned seq;
646 	} *stack, internal[EMBEDDED_LEVELS];
647 	struct filename	*name;
648 	const char *pathname;
649 	struct nameidata *saved;
650 	unsigned	root_seq;
651 	int		dfd;
652 	vfsuid_t	dir_vfsuid;
653 	umode_t		dir_mode;
654 } __randomize_layout;
655 
656 #define ND_ROOT_PRESET 1
657 #define ND_ROOT_GRABBED 2
658 #define ND_JUMPED 4
659 
660 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name)
661 {
662 	struct nameidata *old = current->nameidata;
663 	p->stack = p->internal;
664 	p->depth = 0;
665 	p->dfd = dfd;
666 	p->name = name;
667 	p->pathname = likely(name) ? name->name : "";
668 	p->path.mnt = NULL;
669 	p->path.dentry = NULL;
670 	p->total_link_count = old ? old->total_link_count : 0;
671 	p->saved = old;
672 	current->nameidata = p;
673 }
674 
675 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name,
676 			  const struct path *root)
677 {
678 	__set_nameidata(p, dfd, name);
679 	p->state = 0;
680 	if (unlikely(root)) {
681 		p->state = ND_ROOT_PRESET;
682 		p->root = *root;
683 	}
684 }
685 
686 static void restore_nameidata(void)
687 {
688 	struct nameidata *now = current->nameidata, *old = now->saved;
689 
690 	current->nameidata = old;
691 	if (old)
692 		old->total_link_count = now->total_link_count;
693 	if (now->stack != now->internal)
694 		kfree(now->stack);
695 }
696 
697 static bool nd_alloc_stack(struct nameidata *nd)
698 {
699 	struct saved *p;
700 
701 	p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
702 			 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
703 	if (unlikely(!p))
704 		return false;
705 	memcpy(p, nd->internal, sizeof(nd->internal));
706 	nd->stack = p;
707 	return true;
708 }
709 
710 /**
711  * path_connected - Verify that a dentry is below mnt.mnt_root
712  * @mnt: The mountpoint to check.
713  * @dentry: The dentry to check.
714  *
715  * Rename can sometimes move a file or directory outside of a bind
716  * mount, path_connected allows those cases to be detected.
717  */
718 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
719 {
720 	struct super_block *sb = mnt->mnt_sb;
721 
722 	/* Bind mounts can have disconnected paths */
723 	if (mnt->mnt_root == sb->s_root)
724 		return true;
725 
726 	return is_subdir(dentry, mnt->mnt_root);
727 }
728 
729 static void drop_links(struct nameidata *nd)
730 {
731 	int i = nd->depth;
732 	while (i--) {
733 		struct saved *last = nd->stack + i;
734 		do_delayed_call(&last->done);
735 		clear_delayed_call(&last->done);
736 	}
737 }
738 
739 static void leave_rcu(struct nameidata *nd)
740 {
741 	nd->flags &= ~LOOKUP_RCU;
742 	nd->seq = nd->next_seq = 0;
743 	rcu_read_unlock();
744 }
745 
746 static void terminate_walk(struct nameidata *nd)
747 {
748 	drop_links(nd);
749 	if (!(nd->flags & LOOKUP_RCU)) {
750 		int i;
751 		path_put(&nd->path);
752 		for (i = 0; i < nd->depth; i++)
753 			path_put(&nd->stack[i].link);
754 		if (nd->state & ND_ROOT_GRABBED) {
755 			path_put(&nd->root);
756 			nd->state &= ~ND_ROOT_GRABBED;
757 		}
758 	} else {
759 		leave_rcu(nd);
760 	}
761 	nd->depth = 0;
762 	nd->path.mnt = NULL;
763 	nd->path.dentry = NULL;
764 }
765 
766 /* path_put is needed afterwards regardless of success or failure */
767 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
768 {
769 	int res = __legitimize_mnt(path->mnt, mseq);
770 	if (unlikely(res)) {
771 		if (res > 0)
772 			path->mnt = NULL;
773 		path->dentry = NULL;
774 		return false;
775 	}
776 	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
777 		path->dentry = NULL;
778 		return false;
779 	}
780 	return !read_seqcount_retry(&path->dentry->d_seq, seq);
781 }
782 
783 static inline bool legitimize_path(struct nameidata *nd,
784 			    struct path *path, unsigned seq)
785 {
786 	return __legitimize_path(path, seq, nd->m_seq);
787 }
788 
789 static bool legitimize_links(struct nameidata *nd)
790 {
791 	int i;
792 	if (unlikely(nd->flags & LOOKUP_CACHED)) {
793 		drop_links(nd);
794 		nd->depth = 0;
795 		return false;
796 	}
797 	for (i = 0; i < nd->depth; i++) {
798 		struct saved *last = nd->stack + i;
799 		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
800 			drop_links(nd);
801 			nd->depth = i + 1;
802 			return false;
803 		}
804 	}
805 	return true;
806 }
807 
808 static bool legitimize_root(struct nameidata *nd)
809 {
810 	/* Nothing to do if nd->root is zero or is managed by the VFS user. */
811 	if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET))
812 		return true;
813 	nd->state |= ND_ROOT_GRABBED;
814 	return legitimize_path(nd, &nd->root, nd->root_seq);
815 }
816 
817 /*
818  * Path walking has 2 modes, rcu-walk and ref-walk (see
819  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
820  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
821  * normal reference counts on dentries and vfsmounts to transition to ref-walk
822  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
823  * got stuck, so ref-walk may continue from there. If this is not successful
824  * (eg. a seqcount has changed), then failure is returned and it's up to caller
825  * to restart the path walk from the beginning in ref-walk mode.
826  */
827 
828 /**
829  * try_to_unlazy - try to switch to ref-walk mode.
830  * @nd: nameidata pathwalk data
831  * Returns: true on success, false on failure
832  *
833  * try_to_unlazy attempts to legitimize the current nd->path and nd->root
834  * for ref-walk mode.
835  * Must be called from rcu-walk context.
836  * Nothing should touch nameidata between try_to_unlazy() failure and
837  * terminate_walk().
838  */
839 static bool try_to_unlazy(struct nameidata *nd)
840 {
841 	struct dentry *parent = nd->path.dentry;
842 
843 	BUG_ON(!(nd->flags & LOOKUP_RCU));
844 
845 	if (unlikely(!legitimize_links(nd)))
846 		goto out1;
847 	if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
848 		goto out;
849 	if (unlikely(!legitimize_root(nd)))
850 		goto out;
851 	leave_rcu(nd);
852 	BUG_ON(nd->inode != parent->d_inode);
853 	return true;
854 
855 out1:
856 	nd->path.mnt = NULL;
857 	nd->path.dentry = NULL;
858 out:
859 	leave_rcu(nd);
860 	return false;
861 }
862 
863 /**
864  * try_to_unlazy_next - try to switch to ref-walk mode.
865  * @nd: nameidata pathwalk data
866  * @dentry: next dentry to step into
867  * Returns: true on success, false on failure
868  *
869  * Similar to try_to_unlazy(), but here we have the next dentry already
870  * picked by rcu-walk and want to legitimize that in addition to the current
871  * nd->path and nd->root for ref-walk mode.  Must be called from rcu-walk context.
872  * Nothing should touch nameidata between try_to_unlazy_next() failure and
873  * terminate_walk().
874  */
875 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry)
876 {
877 	int res;
878 	BUG_ON(!(nd->flags & LOOKUP_RCU));
879 
880 	if (unlikely(!legitimize_links(nd)))
881 		goto out2;
882 	res = __legitimize_mnt(nd->path.mnt, nd->m_seq);
883 	if (unlikely(res)) {
884 		if (res > 0)
885 			goto out2;
886 		goto out1;
887 	}
888 	if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
889 		goto out1;
890 
891 	/*
892 	 * We need to move both the parent and the dentry from the RCU domain
893 	 * to be properly refcounted. And the sequence number in the dentry
894 	 * validates *both* dentry counters, since we checked the sequence
895 	 * number of the parent after we got the child sequence number. So we
896 	 * know the parent must still be valid if the child sequence number is
897 	 */
898 	if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
899 		goto out;
900 	if (read_seqcount_retry(&dentry->d_seq, nd->next_seq))
901 		goto out_dput;
902 	/*
903 	 * Sequence counts matched. Now make sure that the root is
904 	 * still valid and get it if required.
905 	 */
906 	if (unlikely(!legitimize_root(nd)))
907 		goto out_dput;
908 	leave_rcu(nd);
909 	return true;
910 
911 out2:
912 	nd->path.mnt = NULL;
913 out1:
914 	nd->path.dentry = NULL;
915 out:
916 	leave_rcu(nd);
917 	return false;
918 out_dput:
919 	leave_rcu(nd);
920 	dput(dentry);
921 	return false;
922 }
923 
924 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
925 {
926 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
927 		return dentry->d_op->d_revalidate(dentry, flags);
928 	else
929 		return 1;
930 }
931 
932 /**
933  * complete_walk - successful completion of path walk
934  * @nd:  pointer nameidata
935  *
936  * If we had been in RCU mode, drop out of it and legitimize nd->path.
937  * Revalidate the final result, unless we'd already done that during
938  * the path walk or the filesystem doesn't ask for it.  Return 0 on
939  * success, -error on failure.  In case of failure caller does not
940  * need to drop nd->path.
941  */
942 static int complete_walk(struct nameidata *nd)
943 {
944 	struct dentry *dentry = nd->path.dentry;
945 	int status;
946 
947 	if (nd->flags & LOOKUP_RCU) {
948 		/*
949 		 * We don't want to zero nd->root for scoped-lookups or
950 		 * externally-managed nd->root.
951 		 */
952 		if (!(nd->state & ND_ROOT_PRESET))
953 			if (!(nd->flags & LOOKUP_IS_SCOPED))
954 				nd->root.mnt = NULL;
955 		nd->flags &= ~LOOKUP_CACHED;
956 		if (!try_to_unlazy(nd))
957 			return -ECHILD;
958 	}
959 
960 	if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
961 		/*
962 		 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
963 		 * ever step outside the root during lookup" and should already
964 		 * be guaranteed by the rest of namei, we want to avoid a namei
965 		 * BUG resulting in userspace being given a path that was not
966 		 * scoped within the root at some point during the lookup.
967 		 *
968 		 * So, do a final sanity-check to make sure that in the
969 		 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
970 		 * we won't silently return an fd completely outside of the
971 		 * requested root to userspace.
972 		 *
973 		 * Userspace could move the path outside the root after this
974 		 * check, but as discussed elsewhere this is not a concern (the
975 		 * resolved file was inside the root at some point).
976 		 */
977 		if (!path_is_under(&nd->path, &nd->root))
978 			return -EXDEV;
979 	}
980 
981 	if (likely(!(nd->state & ND_JUMPED)))
982 		return 0;
983 
984 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
985 		return 0;
986 
987 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
988 	if (status > 0)
989 		return 0;
990 
991 	if (!status)
992 		status = -ESTALE;
993 
994 	return status;
995 }
996 
997 static int set_root(struct nameidata *nd)
998 {
999 	struct fs_struct *fs = current->fs;
1000 
1001 	/*
1002 	 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
1003 	 * still have to ensure it doesn't happen because it will cause a breakout
1004 	 * from the dirfd.
1005 	 */
1006 	if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
1007 		return -ENOTRECOVERABLE;
1008 
1009 	if (nd->flags & LOOKUP_RCU) {
1010 		unsigned seq;
1011 
1012 		do {
1013 			seq = read_seqcount_begin(&fs->seq);
1014 			nd->root = fs->root;
1015 			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
1016 		} while (read_seqcount_retry(&fs->seq, seq));
1017 	} else {
1018 		get_fs_root(fs, &nd->root);
1019 		nd->state |= ND_ROOT_GRABBED;
1020 	}
1021 	return 0;
1022 }
1023 
1024 static int nd_jump_root(struct nameidata *nd)
1025 {
1026 	if (unlikely(nd->flags & LOOKUP_BENEATH))
1027 		return -EXDEV;
1028 	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
1029 		/* Absolute path arguments to path_init() are allowed. */
1030 		if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
1031 			return -EXDEV;
1032 	}
1033 	if (!nd->root.mnt) {
1034 		int error = set_root(nd);
1035 		if (error)
1036 			return error;
1037 	}
1038 	if (nd->flags & LOOKUP_RCU) {
1039 		struct dentry *d;
1040 		nd->path = nd->root;
1041 		d = nd->path.dentry;
1042 		nd->inode = d->d_inode;
1043 		nd->seq = nd->root_seq;
1044 		if (read_seqcount_retry(&d->d_seq, nd->seq))
1045 			return -ECHILD;
1046 	} else {
1047 		path_put(&nd->path);
1048 		nd->path = nd->root;
1049 		path_get(&nd->path);
1050 		nd->inode = nd->path.dentry->d_inode;
1051 	}
1052 	nd->state |= ND_JUMPED;
1053 	return 0;
1054 }
1055 
1056 /*
1057  * Helper to directly jump to a known parsed path from ->get_link,
1058  * caller must have taken a reference to path beforehand.
1059  */
1060 int nd_jump_link(const struct path *path)
1061 {
1062 	int error = -ELOOP;
1063 	struct nameidata *nd = current->nameidata;
1064 
1065 	if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
1066 		goto err;
1067 
1068 	error = -EXDEV;
1069 	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
1070 		if (nd->path.mnt != path->mnt)
1071 			goto err;
1072 	}
1073 	/* Not currently safe for scoped-lookups. */
1074 	if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
1075 		goto err;
1076 
1077 	path_put(&nd->path);
1078 	nd->path = *path;
1079 	nd->inode = nd->path.dentry->d_inode;
1080 	nd->state |= ND_JUMPED;
1081 	return 0;
1082 
1083 err:
1084 	path_put(path);
1085 	return error;
1086 }
1087 
1088 static inline void put_link(struct nameidata *nd)
1089 {
1090 	struct saved *last = nd->stack + --nd->depth;
1091 	do_delayed_call(&last->done);
1092 	if (!(nd->flags & LOOKUP_RCU))
1093 		path_put(&last->link);
1094 }
1095 
1096 static int sysctl_protected_symlinks __read_mostly;
1097 static int sysctl_protected_hardlinks __read_mostly;
1098 static int sysctl_protected_fifos __read_mostly;
1099 static int sysctl_protected_regular __read_mostly;
1100 
1101 #ifdef CONFIG_SYSCTL
1102 static struct ctl_table namei_sysctls[] = {
1103 	{
1104 		.procname	= "protected_symlinks",
1105 		.data		= &sysctl_protected_symlinks,
1106 		.maxlen		= sizeof(int),
1107 		.mode		= 0644,
1108 		.proc_handler	= proc_dointvec_minmax,
1109 		.extra1		= SYSCTL_ZERO,
1110 		.extra2		= SYSCTL_ONE,
1111 	},
1112 	{
1113 		.procname	= "protected_hardlinks",
1114 		.data		= &sysctl_protected_hardlinks,
1115 		.maxlen		= sizeof(int),
1116 		.mode		= 0644,
1117 		.proc_handler	= proc_dointvec_minmax,
1118 		.extra1		= SYSCTL_ZERO,
1119 		.extra2		= SYSCTL_ONE,
1120 	},
1121 	{
1122 		.procname	= "protected_fifos",
1123 		.data		= &sysctl_protected_fifos,
1124 		.maxlen		= sizeof(int),
1125 		.mode		= 0644,
1126 		.proc_handler	= proc_dointvec_minmax,
1127 		.extra1		= SYSCTL_ZERO,
1128 		.extra2		= SYSCTL_TWO,
1129 	},
1130 	{
1131 		.procname	= "protected_regular",
1132 		.data		= &sysctl_protected_regular,
1133 		.maxlen		= sizeof(int),
1134 		.mode		= 0644,
1135 		.proc_handler	= proc_dointvec_minmax,
1136 		.extra1		= SYSCTL_ZERO,
1137 		.extra2		= SYSCTL_TWO,
1138 	},
1139 };
1140 
1141 static int __init init_fs_namei_sysctls(void)
1142 {
1143 	register_sysctl_init("fs", namei_sysctls);
1144 	return 0;
1145 }
1146 fs_initcall(init_fs_namei_sysctls);
1147 
1148 #endif /* CONFIG_SYSCTL */
1149 
1150 /**
1151  * may_follow_link - Check symlink following for unsafe situations
1152  * @nd: nameidata pathwalk data
1153  * @inode: Used for idmapping.
1154  *
1155  * In the case of the sysctl_protected_symlinks sysctl being enabled,
1156  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
1157  * in a sticky world-writable directory. This is to protect privileged
1158  * processes from failing races against path names that may change out
1159  * from under them by way of other users creating malicious symlinks.
1160  * It will permit symlinks to be followed only when outside a sticky
1161  * world-writable directory, or when the uid of the symlink and follower
1162  * match, or when the directory owner matches the symlink's owner.
1163  *
1164  * Returns 0 if following the symlink is allowed, -ve on error.
1165  */
1166 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
1167 {
1168 	struct mnt_idmap *idmap;
1169 	vfsuid_t vfsuid;
1170 
1171 	if (!sysctl_protected_symlinks)
1172 		return 0;
1173 
1174 	idmap = mnt_idmap(nd->path.mnt);
1175 	vfsuid = i_uid_into_vfsuid(idmap, inode);
1176 	/* Allowed if owner and follower match. */
1177 	if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
1178 		return 0;
1179 
1180 	/* Allowed if parent directory not sticky and world-writable. */
1181 	if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
1182 		return 0;
1183 
1184 	/* Allowed if parent directory and link owner match. */
1185 	if (vfsuid_valid(nd->dir_vfsuid) && vfsuid_eq(nd->dir_vfsuid, vfsuid))
1186 		return 0;
1187 
1188 	if (nd->flags & LOOKUP_RCU)
1189 		return -ECHILD;
1190 
1191 	audit_inode(nd->name, nd->stack[0].link.dentry, 0);
1192 	audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
1193 	return -EACCES;
1194 }
1195 
1196 /**
1197  * safe_hardlink_source - Check for safe hardlink conditions
1198  * @idmap: idmap of the mount the inode was found from
1199  * @inode: the source inode to hardlink from
1200  *
1201  * Return false if at least one of the following conditions:
1202  *    - inode is not a regular file
1203  *    - inode is setuid
1204  *    - inode is setgid and group-exec
1205  *    - access failure for read and write
1206  *
1207  * Otherwise returns true.
1208  */
1209 static bool safe_hardlink_source(struct mnt_idmap *idmap,
1210 				 struct inode *inode)
1211 {
1212 	umode_t mode = inode->i_mode;
1213 
1214 	/* Special files should not get pinned to the filesystem. */
1215 	if (!S_ISREG(mode))
1216 		return false;
1217 
1218 	/* Setuid files should not get pinned to the filesystem. */
1219 	if (mode & S_ISUID)
1220 		return false;
1221 
1222 	/* Executable setgid files should not get pinned to the filesystem. */
1223 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1224 		return false;
1225 
1226 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
1227 	if (inode_permission(idmap, inode, MAY_READ | MAY_WRITE))
1228 		return false;
1229 
1230 	return true;
1231 }
1232 
1233 /**
1234  * may_linkat - Check permissions for creating a hardlink
1235  * @idmap: idmap of the mount the inode was found from
1236  * @link:  the source to hardlink from
1237  *
1238  * Block hardlink when all of:
1239  *  - sysctl_protected_hardlinks enabled
1240  *  - fsuid does not match inode
1241  *  - hardlink source is unsafe (see safe_hardlink_source() above)
1242  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
1243  *
1244  * If the inode has been found through an idmapped mount the idmap of
1245  * the vfsmount must be passed through @idmap. This function will then take
1246  * care to map the inode according to @idmap before checking permissions.
1247  * On non-idmapped mounts or if permission checking is to be performed on the
1248  * raw inode simply pass @nop_mnt_idmap.
1249  *
1250  * Returns 0 if successful, -ve on error.
1251  */
1252 int may_linkat(struct mnt_idmap *idmap, const struct path *link)
1253 {
1254 	struct inode *inode = link->dentry->d_inode;
1255 
1256 	/* Inode writeback is not safe when the uid or gid are invalid. */
1257 	if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
1258 	    !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
1259 		return -EOVERFLOW;
1260 
1261 	if (!sysctl_protected_hardlinks)
1262 		return 0;
1263 
1264 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1265 	 * otherwise, it must be a safe source.
1266 	 */
1267 	if (safe_hardlink_source(idmap, inode) ||
1268 	    inode_owner_or_capable(idmap, inode))
1269 		return 0;
1270 
1271 	audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1272 	return -EPERM;
1273 }
1274 
1275 /**
1276  * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1277  *			  should be allowed, or not, on files that already
1278  *			  exist.
1279  * @idmap: idmap of the mount the inode was found from
1280  * @nd: nameidata pathwalk data
1281  * @inode: the inode of the file to open
1282  *
1283  * Block an O_CREAT open of a FIFO (or a regular file) when:
1284  *   - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1285  *   - the file already exists
1286  *   - we are in a sticky directory
1287  *   - we don't own the file
1288  *   - the owner of the directory doesn't own the file
1289  *   - the directory is world writable
1290  * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1291  * the directory doesn't have to be world writable: being group writable will
1292  * be enough.
1293  *
1294  * If the inode has been found through an idmapped mount the idmap of
1295  * the vfsmount must be passed through @idmap. This function will then take
1296  * care to map the inode according to @idmap before checking permissions.
1297  * On non-idmapped mounts or if permission checking is to be performed on the
1298  * raw inode simply pass @nop_mnt_idmap.
1299  *
1300  * Returns 0 if the open is allowed, -ve on error.
1301  */
1302 static int may_create_in_sticky(struct mnt_idmap *idmap, struct nameidata *nd,
1303 				struct inode *const inode)
1304 {
1305 	umode_t dir_mode = nd->dir_mode;
1306 	vfsuid_t dir_vfsuid = nd->dir_vfsuid, i_vfsuid;
1307 
1308 	if (likely(!(dir_mode & S_ISVTX)))
1309 		return 0;
1310 
1311 	if (S_ISREG(inode->i_mode) && !sysctl_protected_regular)
1312 		return 0;
1313 
1314 	if (S_ISFIFO(inode->i_mode) && !sysctl_protected_fifos)
1315 		return 0;
1316 
1317 	i_vfsuid = i_uid_into_vfsuid(idmap, inode);
1318 
1319 	if (vfsuid_eq(i_vfsuid, dir_vfsuid))
1320 		return 0;
1321 
1322 	if (vfsuid_eq_kuid(i_vfsuid, current_fsuid()))
1323 		return 0;
1324 
1325 	if (likely(dir_mode & 0002)) {
1326 		audit_log_path_denied(AUDIT_ANOM_CREAT, "sticky_create");
1327 		return -EACCES;
1328 	}
1329 
1330 	if (dir_mode & 0020) {
1331 		if (sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) {
1332 			audit_log_path_denied(AUDIT_ANOM_CREAT,
1333 					      "sticky_create_fifo");
1334 			return -EACCES;
1335 		}
1336 
1337 		if (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode)) {
1338 			audit_log_path_denied(AUDIT_ANOM_CREAT,
1339 					      "sticky_create_regular");
1340 			return -EACCES;
1341 		}
1342 	}
1343 
1344 	return 0;
1345 }
1346 
1347 /*
1348  * follow_up - Find the mountpoint of path's vfsmount
1349  *
1350  * Given a path, find the mountpoint of its source file system.
1351  * Replace @path with the path of the mountpoint in the parent mount.
1352  * Up is towards /.
1353  *
1354  * Return 1 if we went up a level and 0 if we were already at the
1355  * root.
1356  */
1357 int follow_up(struct path *path)
1358 {
1359 	struct mount *mnt = real_mount(path->mnt);
1360 	struct mount *parent;
1361 	struct dentry *mountpoint;
1362 
1363 	read_seqlock_excl(&mount_lock);
1364 	parent = mnt->mnt_parent;
1365 	if (parent == mnt) {
1366 		read_sequnlock_excl(&mount_lock);
1367 		return 0;
1368 	}
1369 	mntget(&parent->mnt);
1370 	mountpoint = dget(mnt->mnt_mountpoint);
1371 	read_sequnlock_excl(&mount_lock);
1372 	dput(path->dentry);
1373 	path->dentry = mountpoint;
1374 	mntput(path->mnt);
1375 	path->mnt = &parent->mnt;
1376 	return 1;
1377 }
1378 EXPORT_SYMBOL(follow_up);
1379 
1380 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1381 				  struct path *path, unsigned *seqp)
1382 {
1383 	while (mnt_has_parent(m)) {
1384 		struct dentry *mountpoint = m->mnt_mountpoint;
1385 
1386 		m = m->mnt_parent;
1387 		if (unlikely(root->dentry == mountpoint &&
1388 			     root->mnt == &m->mnt))
1389 			break;
1390 		if (mountpoint != m->mnt.mnt_root) {
1391 			path->mnt = &m->mnt;
1392 			path->dentry = mountpoint;
1393 			*seqp = read_seqcount_begin(&mountpoint->d_seq);
1394 			return true;
1395 		}
1396 	}
1397 	return false;
1398 }
1399 
1400 static bool choose_mountpoint(struct mount *m, const struct path *root,
1401 			      struct path *path)
1402 {
1403 	bool found;
1404 
1405 	rcu_read_lock();
1406 	while (1) {
1407 		unsigned seq, mseq = read_seqbegin(&mount_lock);
1408 
1409 		found = choose_mountpoint_rcu(m, root, path, &seq);
1410 		if (unlikely(!found)) {
1411 			if (!read_seqretry(&mount_lock, mseq))
1412 				break;
1413 		} else {
1414 			if (likely(__legitimize_path(path, seq, mseq)))
1415 				break;
1416 			rcu_read_unlock();
1417 			path_put(path);
1418 			rcu_read_lock();
1419 		}
1420 	}
1421 	rcu_read_unlock();
1422 	return found;
1423 }
1424 
1425 /*
1426  * Perform an automount
1427  * - return -EISDIR to tell follow_managed() to stop and return the path we
1428  *   were called with.
1429  */
1430 static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1431 {
1432 	struct dentry *dentry = path->dentry;
1433 
1434 	/* We don't want to mount if someone's just doing a stat -
1435 	 * unless they're stat'ing a directory and appended a '/' to
1436 	 * the name.
1437 	 *
1438 	 * We do, however, want to mount if someone wants to open or
1439 	 * create a file of any type under the mountpoint, wants to
1440 	 * traverse through the mountpoint or wants to open the
1441 	 * mounted directory.  Also, autofs may mark negative dentries
1442 	 * as being automount points.  These will need the attentions
1443 	 * of the daemon to instantiate them before they can be used.
1444 	 */
1445 	if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1446 			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1447 	    dentry->d_inode)
1448 		return -EISDIR;
1449 
1450 	if (count && (*count)++ >= MAXSYMLINKS)
1451 		return -ELOOP;
1452 
1453 	return finish_automount(dentry->d_op->d_automount(path), path);
1454 }
1455 
1456 /*
1457  * mount traversal - out-of-line part.  One note on ->d_flags accesses -
1458  * dentries are pinned but not locked here, so negative dentry can go
1459  * positive right under us.  Use of smp_load_acquire() provides a barrier
1460  * sufficient for ->d_inode and ->d_flags consistency.
1461  */
1462 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1463 			     int *count, unsigned lookup_flags)
1464 {
1465 	struct vfsmount *mnt = path->mnt;
1466 	bool need_mntput = false;
1467 	int ret = 0;
1468 
1469 	while (flags & DCACHE_MANAGED_DENTRY) {
1470 		/* Allow the filesystem to manage the transit without i_mutex
1471 		 * being held. */
1472 		if (flags & DCACHE_MANAGE_TRANSIT) {
1473 			ret = path->dentry->d_op->d_manage(path, false);
1474 			flags = smp_load_acquire(&path->dentry->d_flags);
1475 			if (ret < 0)
1476 				break;
1477 		}
1478 
1479 		if (flags & DCACHE_MOUNTED) {	// something's mounted on it..
1480 			struct vfsmount *mounted = lookup_mnt(path);
1481 			if (mounted) {		// ... in our namespace
1482 				dput(path->dentry);
1483 				if (need_mntput)
1484 					mntput(path->mnt);
1485 				path->mnt = mounted;
1486 				path->dentry = dget(mounted->mnt_root);
1487 				// here we know it's positive
1488 				flags = path->dentry->d_flags;
1489 				need_mntput = true;
1490 				continue;
1491 			}
1492 		}
1493 
1494 		if (!(flags & DCACHE_NEED_AUTOMOUNT))
1495 			break;
1496 
1497 		// uncovered automount point
1498 		ret = follow_automount(path, count, lookup_flags);
1499 		flags = smp_load_acquire(&path->dentry->d_flags);
1500 		if (ret < 0)
1501 			break;
1502 	}
1503 
1504 	if (ret == -EISDIR)
1505 		ret = 0;
1506 	// possible if you race with several mount --move
1507 	if (need_mntput && path->mnt == mnt)
1508 		mntput(path->mnt);
1509 	if (!ret && unlikely(d_flags_negative(flags)))
1510 		ret = -ENOENT;
1511 	*jumped = need_mntput;
1512 	return ret;
1513 }
1514 
1515 static inline int traverse_mounts(struct path *path, bool *jumped,
1516 				  int *count, unsigned lookup_flags)
1517 {
1518 	unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1519 
1520 	/* fastpath */
1521 	if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1522 		*jumped = false;
1523 		if (unlikely(d_flags_negative(flags)))
1524 			return -ENOENT;
1525 		return 0;
1526 	}
1527 	return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1528 }
1529 
1530 int follow_down_one(struct path *path)
1531 {
1532 	struct vfsmount *mounted;
1533 
1534 	mounted = lookup_mnt(path);
1535 	if (mounted) {
1536 		dput(path->dentry);
1537 		mntput(path->mnt);
1538 		path->mnt = mounted;
1539 		path->dentry = dget(mounted->mnt_root);
1540 		return 1;
1541 	}
1542 	return 0;
1543 }
1544 EXPORT_SYMBOL(follow_down_one);
1545 
1546 /*
1547  * Follow down to the covering mount currently visible to userspace.  At each
1548  * point, the filesystem owning that dentry may be queried as to whether the
1549  * caller is permitted to proceed or not.
1550  */
1551 int follow_down(struct path *path, unsigned int flags)
1552 {
1553 	struct vfsmount *mnt = path->mnt;
1554 	bool jumped;
1555 	int ret = traverse_mounts(path, &jumped, NULL, flags);
1556 
1557 	if (path->mnt != mnt)
1558 		mntput(mnt);
1559 	return ret;
1560 }
1561 EXPORT_SYMBOL(follow_down);
1562 
1563 /*
1564  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1565  * we meet a managed dentry that would need blocking.
1566  */
1567 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path)
1568 {
1569 	struct dentry *dentry = path->dentry;
1570 	unsigned int flags = dentry->d_flags;
1571 
1572 	if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1573 		return true;
1574 
1575 	if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1576 		return false;
1577 
1578 	for (;;) {
1579 		/*
1580 		 * Don't forget we might have a non-mountpoint managed dentry
1581 		 * that wants to block transit.
1582 		 */
1583 		if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1584 			int res = dentry->d_op->d_manage(path, true);
1585 			if (res)
1586 				return res == -EISDIR;
1587 			flags = dentry->d_flags;
1588 		}
1589 
1590 		if (flags & DCACHE_MOUNTED) {
1591 			struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1592 			if (mounted) {
1593 				path->mnt = &mounted->mnt;
1594 				dentry = path->dentry = mounted->mnt.mnt_root;
1595 				nd->state |= ND_JUMPED;
1596 				nd->next_seq = read_seqcount_begin(&dentry->d_seq);
1597 				flags = dentry->d_flags;
1598 				// makes sure that non-RCU pathwalk could reach
1599 				// this state.
1600 				if (read_seqretry(&mount_lock, nd->m_seq))
1601 					return false;
1602 				continue;
1603 			}
1604 			if (read_seqretry(&mount_lock, nd->m_seq))
1605 				return false;
1606 		}
1607 		return !(flags & DCACHE_NEED_AUTOMOUNT);
1608 	}
1609 }
1610 
1611 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1612 			  struct path *path)
1613 {
1614 	bool jumped;
1615 	int ret;
1616 
1617 	path->mnt = nd->path.mnt;
1618 	path->dentry = dentry;
1619 	if (nd->flags & LOOKUP_RCU) {
1620 		unsigned int seq = nd->next_seq;
1621 		if (likely(__follow_mount_rcu(nd, path)))
1622 			return 0;
1623 		// *path and nd->next_seq might've been clobbered
1624 		path->mnt = nd->path.mnt;
1625 		path->dentry = dentry;
1626 		nd->next_seq = seq;
1627 		if (!try_to_unlazy_next(nd, dentry))
1628 			return -ECHILD;
1629 	}
1630 	ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1631 	if (jumped) {
1632 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1633 			ret = -EXDEV;
1634 		else
1635 			nd->state |= ND_JUMPED;
1636 	}
1637 	if (unlikely(ret)) {
1638 		dput(path->dentry);
1639 		if (path->mnt != nd->path.mnt)
1640 			mntput(path->mnt);
1641 	}
1642 	return ret;
1643 }
1644 
1645 /*
1646  * This looks up the name in dcache and possibly revalidates the found dentry.
1647  * NULL is returned if the dentry does not exist in the cache.
1648  */
1649 static struct dentry *lookup_dcache(const struct qstr *name,
1650 				    struct dentry *dir,
1651 				    unsigned int flags)
1652 {
1653 	struct dentry *dentry = d_lookup(dir, name);
1654 	if (dentry) {
1655 		int error = d_revalidate(dentry, flags);
1656 		if (unlikely(error <= 0)) {
1657 			if (!error)
1658 				d_invalidate(dentry);
1659 			dput(dentry);
1660 			return ERR_PTR(error);
1661 		}
1662 	}
1663 	return dentry;
1664 }
1665 
1666 /*
1667  * Parent directory has inode locked exclusive.  This is one
1668  * and only case when ->lookup() gets called on non in-lookup
1669  * dentries - as the matter of fact, this only gets called
1670  * when directory is guaranteed to have no in-lookup children
1671  * at all.
1672  */
1673 struct dentry *lookup_one_qstr_excl(const struct qstr *name,
1674 				    struct dentry *base,
1675 				    unsigned int flags)
1676 {
1677 	struct dentry *dentry = lookup_dcache(name, base, flags);
1678 	struct dentry *old;
1679 	struct inode *dir = base->d_inode;
1680 
1681 	if (dentry)
1682 		return dentry;
1683 
1684 	/* Don't create child dentry for a dead directory. */
1685 	if (unlikely(IS_DEADDIR(dir)))
1686 		return ERR_PTR(-ENOENT);
1687 
1688 	dentry = d_alloc(base, name);
1689 	if (unlikely(!dentry))
1690 		return ERR_PTR(-ENOMEM);
1691 
1692 	old = dir->i_op->lookup(dir, dentry, flags);
1693 	if (unlikely(old)) {
1694 		dput(dentry);
1695 		dentry = old;
1696 	}
1697 	return dentry;
1698 }
1699 EXPORT_SYMBOL(lookup_one_qstr_excl);
1700 
1701 /**
1702  * lookup_fast - do fast lockless (but racy) lookup of a dentry
1703  * @nd: current nameidata
1704  *
1705  * Do a fast, but racy lookup in the dcache for the given dentry, and
1706  * revalidate it. Returns a valid dentry pointer or NULL if one wasn't
1707  * found. On error, an ERR_PTR will be returned.
1708  *
1709  * If this function returns a valid dentry and the walk is no longer
1710  * lazy, the dentry will carry a reference that must later be put. If
1711  * RCU mode is still in force, then this is not the case and the dentry
1712  * must be legitimized before use. If this returns NULL, then the walk
1713  * will no longer be in RCU mode.
1714  */
1715 static struct dentry *lookup_fast(struct nameidata *nd)
1716 {
1717 	struct dentry *dentry, *parent = nd->path.dentry;
1718 	int status = 1;
1719 
1720 	/*
1721 	 * Rename seqlock is not required here because in the off chance
1722 	 * of a false negative due to a concurrent rename, the caller is
1723 	 * going to fall back to non-racy lookup.
1724 	 */
1725 	if (nd->flags & LOOKUP_RCU) {
1726 		dentry = __d_lookup_rcu(parent, &nd->last, &nd->next_seq);
1727 		if (unlikely(!dentry)) {
1728 			if (!try_to_unlazy(nd))
1729 				return ERR_PTR(-ECHILD);
1730 			return NULL;
1731 		}
1732 
1733 		/*
1734 		 * This sequence count validates that the parent had no
1735 		 * changes while we did the lookup of the dentry above.
1736 		 */
1737 		if (read_seqcount_retry(&parent->d_seq, nd->seq))
1738 			return ERR_PTR(-ECHILD);
1739 
1740 		status = d_revalidate(dentry, nd->flags);
1741 		if (likely(status > 0))
1742 			return dentry;
1743 		if (!try_to_unlazy_next(nd, dentry))
1744 			return ERR_PTR(-ECHILD);
1745 		if (status == -ECHILD)
1746 			/* we'd been told to redo it in non-rcu mode */
1747 			status = d_revalidate(dentry, nd->flags);
1748 	} else {
1749 		dentry = __d_lookup(parent, &nd->last);
1750 		if (unlikely(!dentry))
1751 			return NULL;
1752 		status = d_revalidate(dentry, nd->flags);
1753 	}
1754 	if (unlikely(status <= 0)) {
1755 		if (!status)
1756 			d_invalidate(dentry);
1757 		dput(dentry);
1758 		return ERR_PTR(status);
1759 	}
1760 	return dentry;
1761 }
1762 
1763 /* Fast lookup failed, do it the slow way */
1764 static struct dentry *__lookup_slow(const struct qstr *name,
1765 				    struct dentry *dir,
1766 				    unsigned int flags)
1767 {
1768 	struct dentry *dentry, *old;
1769 	struct inode *inode = dir->d_inode;
1770 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1771 
1772 	/* Don't go there if it's already dead */
1773 	if (unlikely(IS_DEADDIR(inode)))
1774 		return ERR_PTR(-ENOENT);
1775 again:
1776 	dentry = d_alloc_parallel(dir, name, &wq);
1777 	if (IS_ERR(dentry))
1778 		return dentry;
1779 	if (unlikely(!d_in_lookup(dentry))) {
1780 		int error = d_revalidate(dentry, flags);
1781 		if (unlikely(error <= 0)) {
1782 			if (!error) {
1783 				d_invalidate(dentry);
1784 				dput(dentry);
1785 				goto again;
1786 			}
1787 			dput(dentry);
1788 			dentry = ERR_PTR(error);
1789 		}
1790 	} else {
1791 		old = inode->i_op->lookup(inode, dentry, flags);
1792 		d_lookup_done(dentry);
1793 		if (unlikely(old)) {
1794 			dput(dentry);
1795 			dentry = old;
1796 		}
1797 	}
1798 	return dentry;
1799 }
1800 
1801 static struct dentry *lookup_slow(const struct qstr *name,
1802 				  struct dentry *dir,
1803 				  unsigned int flags)
1804 {
1805 	struct inode *inode = dir->d_inode;
1806 	struct dentry *res;
1807 	inode_lock_shared(inode);
1808 	res = __lookup_slow(name, dir, flags);
1809 	inode_unlock_shared(inode);
1810 	return res;
1811 }
1812 
1813 static inline int may_lookup(struct mnt_idmap *idmap,
1814 			     struct nameidata *restrict nd)
1815 {
1816 	int err, mask;
1817 
1818 	mask = nd->flags & LOOKUP_RCU ? MAY_NOT_BLOCK : 0;
1819 	err = inode_permission(idmap, nd->inode, mask | MAY_EXEC);
1820 	if (likely(!err))
1821 		return 0;
1822 
1823 	// If we failed, and we weren't in LOOKUP_RCU, it's final
1824 	if (!(nd->flags & LOOKUP_RCU))
1825 		return err;
1826 
1827 	// Drop out of RCU mode to make sure it wasn't transient
1828 	if (!try_to_unlazy(nd))
1829 		return -ECHILD;	// redo it all non-lazy
1830 
1831 	if (err != -ECHILD)	// hard error
1832 		return err;
1833 
1834 	return inode_permission(idmap, nd->inode, MAY_EXEC);
1835 }
1836 
1837 static int reserve_stack(struct nameidata *nd, struct path *link)
1838 {
1839 	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1840 		return -ELOOP;
1841 
1842 	if (likely(nd->depth != EMBEDDED_LEVELS))
1843 		return 0;
1844 	if (likely(nd->stack != nd->internal))
1845 		return 0;
1846 	if (likely(nd_alloc_stack(nd)))
1847 		return 0;
1848 
1849 	if (nd->flags & LOOKUP_RCU) {
1850 		// we need to grab link before we do unlazy.  And we can't skip
1851 		// unlazy even if we fail to grab the link - cleanup needs it
1852 		bool grabbed_link = legitimize_path(nd, link, nd->next_seq);
1853 
1854 		if (!try_to_unlazy(nd) || !grabbed_link)
1855 			return -ECHILD;
1856 
1857 		if (nd_alloc_stack(nd))
1858 			return 0;
1859 	}
1860 	return -ENOMEM;
1861 }
1862 
1863 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1864 
1865 static const char *pick_link(struct nameidata *nd, struct path *link,
1866 		     struct inode *inode, int flags)
1867 {
1868 	struct saved *last;
1869 	const char *res;
1870 	int error = reserve_stack(nd, link);
1871 
1872 	if (unlikely(error)) {
1873 		if (!(nd->flags & LOOKUP_RCU))
1874 			path_put(link);
1875 		return ERR_PTR(error);
1876 	}
1877 	last = nd->stack + nd->depth++;
1878 	last->link = *link;
1879 	clear_delayed_call(&last->done);
1880 	last->seq = nd->next_seq;
1881 
1882 	if (flags & WALK_TRAILING) {
1883 		error = may_follow_link(nd, inode);
1884 		if (unlikely(error))
1885 			return ERR_PTR(error);
1886 	}
1887 
1888 	if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1889 			unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1890 		return ERR_PTR(-ELOOP);
1891 
1892 	if (!(nd->flags & LOOKUP_RCU)) {
1893 		touch_atime(&last->link);
1894 		cond_resched();
1895 	} else if (atime_needs_update(&last->link, inode)) {
1896 		if (!try_to_unlazy(nd))
1897 			return ERR_PTR(-ECHILD);
1898 		touch_atime(&last->link);
1899 	}
1900 
1901 	error = security_inode_follow_link(link->dentry, inode,
1902 					   nd->flags & LOOKUP_RCU);
1903 	if (unlikely(error))
1904 		return ERR_PTR(error);
1905 
1906 	res = READ_ONCE(inode->i_link);
1907 	if (!res) {
1908 		const char * (*get)(struct dentry *, struct inode *,
1909 				struct delayed_call *);
1910 		get = inode->i_op->get_link;
1911 		if (nd->flags & LOOKUP_RCU) {
1912 			res = get(NULL, inode, &last->done);
1913 			if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd))
1914 				res = get(link->dentry, inode, &last->done);
1915 		} else {
1916 			res = get(link->dentry, inode, &last->done);
1917 		}
1918 		if (!res)
1919 			goto all_done;
1920 		if (IS_ERR(res))
1921 			return res;
1922 	}
1923 	if (*res == '/') {
1924 		error = nd_jump_root(nd);
1925 		if (unlikely(error))
1926 			return ERR_PTR(error);
1927 		while (unlikely(*++res == '/'))
1928 			;
1929 	}
1930 	if (*res)
1931 		return res;
1932 all_done: // pure jump
1933 	put_link(nd);
1934 	return NULL;
1935 }
1936 
1937 /*
1938  * Do we need to follow links? We _really_ want to be able
1939  * to do this check without having to look at inode->i_op,
1940  * so we keep a cache of "no, this doesn't need follow_link"
1941  * for the common case.
1942  *
1943  * NOTE: dentry must be what nd->next_seq had been sampled from.
1944  */
1945 static const char *step_into(struct nameidata *nd, int flags,
1946 		     struct dentry *dentry)
1947 {
1948 	struct path path;
1949 	struct inode *inode;
1950 	int err = handle_mounts(nd, dentry, &path);
1951 
1952 	if (err < 0)
1953 		return ERR_PTR(err);
1954 	inode = path.dentry->d_inode;
1955 	if (likely(!d_is_symlink(path.dentry)) ||
1956 	   ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1957 	   (flags & WALK_NOFOLLOW)) {
1958 		/* not a symlink or should not follow */
1959 		if (nd->flags & LOOKUP_RCU) {
1960 			if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1961 				return ERR_PTR(-ECHILD);
1962 			if (unlikely(!inode))
1963 				return ERR_PTR(-ENOENT);
1964 		} else {
1965 			dput(nd->path.dentry);
1966 			if (nd->path.mnt != path.mnt)
1967 				mntput(nd->path.mnt);
1968 		}
1969 		nd->path = path;
1970 		nd->inode = inode;
1971 		nd->seq = nd->next_seq;
1972 		return NULL;
1973 	}
1974 	if (nd->flags & LOOKUP_RCU) {
1975 		/* make sure that d_is_symlink above matches inode */
1976 		if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1977 			return ERR_PTR(-ECHILD);
1978 	} else {
1979 		if (path.mnt == nd->path.mnt)
1980 			mntget(path.mnt);
1981 	}
1982 	return pick_link(nd, &path, inode, flags);
1983 }
1984 
1985 static struct dentry *follow_dotdot_rcu(struct nameidata *nd)
1986 {
1987 	struct dentry *parent, *old;
1988 
1989 	if (path_equal(&nd->path, &nd->root))
1990 		goto in_root;
1991 	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1992 		struct path path;
1993 		unsigned seq;
1994 		if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
1995 					   &nd->root, &path, &seq))
1996 			goto in_root;
1997 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1998 			return ERR_PTR(-ECHILD);
1999 		nd->path = path;
2000 		nd->inode = path.dentry->d_inode;
2001 		nd->seq = seq;
2002 		// makes sure that non-RCU pathwalk could reach this state
2003 		if (read_seqretry(&mount_lock, nd->m_seq))
2004 			return ERR_PTR(-ECHILD);
2005 		/* we know that mountpoint was pinned */
2006 	}
2007 	old = nd->path.dentry;
2008 	parent = old->d_parent;
2009 	nd->next_seq = read_seqcount_begin(&parent->d_seq);
2010 	// makes sure that non-RCU pathwalk could reach this state
2011 	if (read_seqcount_retry(&old->d_seq, nd->seq))
2012 		return ERR_PTR(-ECHILD);
2013 	if (unlikely(!path_connected(nd->path.mnt, parent)))
2014 		return ERR_PTR(-ECHILD);
2015 	return parent;
2016 in_root:
2017 	if (read_seqretry(&mount_lock, nd->m_seq))
2018 		return ERR_PTR(-ECHILD);
2019 	if (unlikely(nd->flags & LOOKUP_BENEATH))
2020 		return ERR_PTR(-ECHILD);
2021 	nd->next_seq = nd->seq;
2022 	return nd->path.dentry;
2023 }
2024 
2025 static struct dentry *follow_dotdot(struct nameidata *nd)
2026 {
2027 	struct dentry *parent;
2028 
2029 	if (path_equal(&nd->path, &nd->root))
2030 		goto in_root;
2031 	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
2032 		struct path path;
2033 
2034 		if (!choose_mountpoint(real_mount(nd->path.mnt),
2035 				       &nd->root, &path))
2036 			goto in_root;
2037 		path_put(&nd->path);
2038 		nd->path = path;
2039 		nd->inode = path.dentry->d_inode;
2040 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
2041 			return ERR_PTR(-EXDEV);
2042 	}
2043 	/* rare case of legitimate dget_parent()... */
2044 	parent = dget_parent(nd->path.dentry);
2045 	if (unlikely(!path_connected(nd->path.mnt, parent))) {
2046 		dput(parent);
2047 		return ERR_PTR(-ENOENT);
2048 	}
2049 	return parent;
2050 
2051 in_root:
2052 	if (unlikely(nd->flags & LOOKUP_BENEATH))
2053 		return ERR_PTR(-EXDEV);
2054 	return dget(nd->path.dentry);
2055 }
2056 
2057 static const char *handle_dots(struct nameidata *nd, int type)
2058 {
2059 	if (type == LAST_DOTDOT) {
2060 		const char *error = NULL;
2061 		struct dentry *parent;
2062 
2063 		if (!nd->root.mnt) {
2064 			error = ERR_PTR(set_root(nd));
2065 			if (error)
2066 				return error;
2067 		}
2068 		if (nd->flags & LOOKUP_RCU)
2069 			parent = follow_dotdot_rcu(nd);
2070 		else
2071 			parent = follow_dotdot(nd);
2072 		if (IS_ERR(parent))
2073 			return ERR_CAST(parent);
2074 		error = step_into(nd, WALK_NOFOLLOW, parent);
2075 		if (unlikely(error))
2076 			return error;
2077 
2078 		if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
2079 			/*
2080 			 * If there was a racing rename or mount along our
2081 			 * path, then we can't be sure that ".." hasn't jumped
2082 			 * above nd->root (and so userspace should retry or use
2083 			 * some fallback).
2084 			 */
2085 			smp_rmb();
2086 			if (__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq))
2087 				return ERR_PTR(-EAGAIN);
2088 			if (__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq))
2089 				return ERR_PTR(-EAGAIN);
2090 		}
2091 	}
2092 	return NULL;
2093 }
2094 
2095 static const char *walk_component(struct nameidata *nd, int flags)
2096 {
2097 	struct dentry *dentry;
2098 	/*
2099 	 * "." and ".." are special - ".." especially so because it has
2100 	 * to be able to know about the current root directory and
2101 	 * parent relationships.
2102 	 */
2103 	if (unlikely(nd->last_type != LAST_NORM)) {
2104 		if (!(flags & WALK_MORE) && nd->depth)
2105 			put_link(nd);
2106 		return handle_dots(nd, nd->last_type);
2107 	}
2108 	dentry = lookup_fast(nd);
2109 	if (IS_ERR(dentry))
2110 		return ERR_CAST(dentry);
2111 	if (unlikely(!dentry)) {
2112 		dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
2113 		if (IS_ERR(dentry))
2114 			return ERR_CAST(dentry);
2115 	}
2116 	if (!(flags & WALK_MORE) && nd->depth)
2117 		put_link(nd);
2118 	return step_into(nd, flags, dentry);
2119 }
2120 
2121 /*
2122  * We can do the critical dentry name comparison and hashing
2123  * operations one word at a time, but we are limited to:
2124  *
2125  * - Architectures with fast unaligned word accesses. We could
2126  *   do a "get_unaligned()" if this helps and is sufficiently
2127  *   fast.
2128  *
2129  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
2130  *   do not trap on the (extremely unlikely) case of a page
2131  *   crossing operation.
2132  *
2133  * - Furthermore, we need an efficient 64-bit compile for the
2134  *   64-bit case in order to generate the "number of bytes in
2135  *   the final mask". Again, that could be replaced with a
2136  *   efficient population count instruction or similar.
2137  */
2138 #ifdef CONFIG_DCACHE_WORD_ACCESS
2139 
2140 #include <asm/word-at-a-time.h>
2141 
2142 #ifdef HASH_MIX
2143 
2144 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
2145 
2146 #elif defined(CONFIG_64BIT)
2147 /*
2148  * Register pressure in the mixing function is an issue, particularly
2149  * on 32-bit x86, but almost any function requires one state value and
2150  * one temporary.  Instead, use a function designed for two state values
2151  * and no temporaries.
2152  *
2153  * This function cannot create a collision in only two iterations, so
2154  * we have two iterations to achieve avalanche.  In those two iterations,
2155  * we have six layers of mixing, which is enough to spread one bit's
2156  * influence out to 2^6 = 64 state bits.
2157  *
2158  * Rotate constants are scored by considering either 64 one-bit input
2159  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
2160  * probability of that delta causing a change to each of the 128 output
2161  * bits, using a sample of random initial states.
2162  *
2163  * The Shannon entropy of the computed probabilities is then summed
2164  * to produce a score.  Ideally, any input change has a 50% chance of
2165  * toggling any given output bit.
2166  *
2167  * Mixing scores (in bits) for (12,45):
2168  * Input delta: 1-bit      2-bit
2169  * 1 round:     713.3    42542.6
2170  * 2 rounds:   2753.7   140389.8
2171  * 3 rounds:   5954.1   233458.2
2172  * 4 rounds:   7862.6   256672.2
2173  * Perfect:    8192     258048
2174  *            (64*128) (64*63/2 * 128)
2175  */
2176 #define HASH_MIX(x, y, a)	\
2177 	(	x ^= (a),	\
2178 	y ^= x,	x = rol64(x,12),\
2179 	x += y,	y = rol64(y,45),\
2180 	y *= 9			)
2181 
2182 /*
2183  * Fold two longs into one 32-bit hash value.  This must be fast, but
2184  * latency isn't quite as critical, as there is a fair bit of additional
2185  * work done before the hash value is used.
2186  */
2187 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2188 {
2189 	y ^= x * GOLDEN_RATIO_64;
2190 	y *= GOLDEN_RATIO_64;
2191 	return y >> 32;
2192 }
2193 
2194 #else	/* 32-bit case */
2195 
2196 /*
2197  * Mixing scores (in bits) for (7,20):
2198  * Input delta: 1-bit      2-bit
2199  * 1 round:     330.3     9201.6
2200  * 2 rounds:   1246.4    25475.4
2201  * 3 rounds:   1907.1    31295.1
2202  * 4 rounds:   2042.3    31718.6
2203  * Perfect:    2048      31744
2204  *            (32*64)   (32*31/2 * 64)
2205  */
2206 #define HASH_MIX(x, y, a)	\
2207 	(	x ^= (a),	\
2208 	y ^= x,	x = rol32(x, 7),\
2209 	x += y,	y = rol32(y,20),\
2210 	y *= 9			)
2211 
2212 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2213 {
2214 	/* Use arch-optimized multiply if one exists */
2215 	return __hash_32(y ^ __hash_32(x));
2216 }
2217 
2218 #endif
2219 
2220 /*
2221  * Return the hash of a string of known length.  This is carfully
2222  * designed to match hash_name(), which is the more critical function.
2223  * In particular, we must end by hashing a final word containing 0..7
2224  * payload bytes, to match the way that hash_name() iterates until it
2225  * finds the delimiter after the name.
2226  */
2227 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2228 {
2229 	unsigned long a, x = 0, y = (unsigned long)salt;
2230 
2231 	for (;;) {
2232 		if (!len)
2233 			goto done;
2234 		a = load_unaligned_zeropad(name);
2235 		if (len < sizeof(unsigned long))
2236 			break;
2237 		HASH_MIX(x, y, a);
2238 		name += sizeof(unsigned long);
2239 		len -= sizeof(unsigned long);
2240 	}
2241 	x ^= a & bytemask_from_count(len);
2242 done:
2243 	return fold_hash(x, y);
2244 }
2245 EXPORT_SYMBOL(full_name_hash);
2246 
2247 /* Return the "hash_len" (hash and length) of a null-terminated string */
2248 u64 hashlen_string(const void *salt, const char *name)
2249 {
2250 	unsigned long a = 0, x = 0, y = (unsigned long)salt;
2251 	unsigned long adata, mask, len;
2252 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2253 
2254 	len = 0;
2255 	goto inside;
2256 
2257 	do {
2258 		HASH_MIX(x, y, a);
2259 		len += sizeof(unsigned long);
2260 inside:
2261 		a = load_unaligned_zeropad(name+len);
2262 	} while (!has_zero(a, &adata, &constants));
2263 
2264 	adata = prep_zero_mask(a, adata, &constants);
2265 	mask = create_zero_mask(adata);
2266 	x ^= a & zero_bytemask(mask);
2267 
2268 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2269 }
2270 EXPORT_SYMBOL(hashlen_string);
2271 
2272 /*
2273  * Calculate the length and hash of the path component, and
2274  * return the length as the result.
2275  */
2276 static inline const char *hash_name(struct nameidata *nd,
2277 				    const char *name,
2278 				    unsigned long *lastword)
2279 {
2280 	unsigned long a, b, x, y = (unsigned long)nd->path.dentry;
2281 	unsigned long adata, bdata, mask, len;
2282 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2283 
2284 	/*
2285 	 * The first iteration is special, because it can result in
2286 	 * '.' and '..' and has no mixing other than the final fold.
2287 	 */
2288 	a = load_unaligned_zeropad(name);
2289 	b = a ^ REPEAT_BYTE('/');
2290 	if (has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)) {
2291 		adata = prep_zero_mask(a, adata, &constants);
2292 		bdata = prep_zero_mask(b, bdata, &constants);
2293 		mask = create_zero_mask(adata | bdata);
2294 		a &= zero_bytemask(mask);
2295 		*lastword = a;
2296 		len = find_zero(mask);
2297 		nd->last.hash = fold_hash(a, y);
2298 		nd->last.len = len;
2299 		return name + len;
2300 	}
2301 
2302 	len = 0;
2303 	x = 0;
2304 	do {
2305 		HASH_MIX(x, y, a);
2306 		len += sizeof(unsigned long);
2307 		a = load_unaligned_zeropad(name+len);
2308 		b = a ^ REPEAT_BYTE('/');
2309 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2310 
2311 	adata = prep_zero_mask(a, adata, &constants);
2312 	bdata = prep_zero_mask(b, bdata, &constants);
2313 	mask = create_zero_mask(adata | bdata);
2314 	a &= zero_bytemask(mask);
2315 	x ^= a;
2316 	len += find_zero(mask);
2317 	*lastword = 0;		// Multi-word components cannot be DOT or DOTDOT
2318 
2319 	nd->last.hash = fold_hash(x, y);
2320 	nd->last.len = len;
2321 	return name + len;
2322 }
2323 
2324 /*
2325  * Note that the 'last' word is always zero-masked, but
2326  * was loaded as a possibly big-endian word.
2327  */
2328 #ifdef __BIG_ENDIAN
2329   #define LAST_WORD_IS_DOT	(0x2eul << (BITS_PER_LONG-8))
2330   #define LAST_WORD_IS_DOTDOT	(0x2e2eul << (BITS_PER_LONG-16))
2331 #endif
2332 
2333 #else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2334 
2335 /* Return the hash of a string of known length */
2336 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2337 {
2338 	unsigned long hash = init_name_hash(salt);
2339 	while (len--)
2340 		hash = partial_name_hash((unsigned char)*name++, hash);
2341 	return end_name_hash(hash);
2342 }
2343 EXPORT_SYMBOL(full_name_hash);
2344 
2345 /* Return the "hash_len" (hash and length) of a null-terminated string */
2346 u64 hashlen_string(const void *salt, const char *name)
2347 {
2348 	unsigned long hash = init_name_hash(salt);
2349 	unsigned long len = 0, c;
2350 
2351 	c = (unsigned char)*name;
2352 	while (c) {
2353 		len++;
2354 		hash = partial_name_hash(c, hash);
2355 		c = (unsigned char)name[len];
2356 	}
2357 	return hashlen_create(end_name_hash(hash), len);
2358 }
2359 EXPORT_SYMBOL(hashlen_string);
2360 
2361 /*
2362  * We know there's a real path component here of at least
2363  * one character.
2364  */
2365 static inline const char *hash_name(struct nameidata *nd, const char *name, unsigned long *lastword)
2366 {
2367 	unsigned long hash = init_name_hash(nd->path.dentry);
2368 	unsigned long len = 0, c, last = 0;
2369 
2370 	c = (unsigned char)*name;
2371 	do {
2372 		last = (last << 8) + c;
2373 		len++;
2374 		hash = partial_name_hash(c, hash);
2375 		c = (unsigned char)name[len];
2376 	} while (c && c != '/');
2377 
2378 	// This is reliable for DOT or DOTDOT, since the component
2379 	// cannot contain NUL characters - top bits being zero means
2380 	// we cannot have had any other pathnames.
2381 	*lastword = last;
2382 	nd->last.hash = end_name_hash(hash);
2383 	nd->last.len = len;
2384 	return name + len;
2385 }
2386 
2387 #endif
2388 
2389 #ifndef LAST_WORD_IS_DOT
2390   #define LAST_WORD_IS_DOT	0x2e
2391   #define LAST_WORD_IS_DOTDOT	0x2e2e
2392 #endif
2393 
2394 /*
2395  * Name resolution.
2396  * This is the basic name resolution function, turning a pathname into
2397  * the final dentry. We expect 'base' to be positive and a directory.
2398  *
2399  * Returns 0 and nd will have valid dentry and mnt on success.
2400  * Returns error and drops reference to input namei data on failure.
2401  */
2402 static int link_path_walk(const char *name, struct nameidata *nd)
2403 {
2404 	int depth = 0; // depth <= nd->depth
2405 	int err;
2406 
2407 	nd->last_type = LAST_ROOT;
2408 	nd->flags |= LOOKUP_PARENT;
2409 	if (IS_ERR(name))
2410 		return PTR_ERR(name);
2411 	while (*name=='/')
2412 		name++;
2413 	if (!*name) {
2414 		nd->dir_mode = 0; // short-circuit the 'hardening' idiocy
2415 		return 0;
2416 	}
2417 
2418 	/* At this point we know we have a real path component. */
2419 	for(;;) {
2420 		struct mnt_idmap *idmap;
2421 		const char *link;
2422 		unsigned long lastword;
2423 
2424 		idmap = mnt_idmap(nd->path.mnt);
2425 		err = may_lookup(idmap, nd);
2426 		if (err)
2427 			return err;
2428 
2429 		nd->last.name = name;
2430 		name = hash_name(nd, name, &lastword);
2431 
2432 		switch(lastword) {
2433 		case LAST_WORD_IS_DOTDOT:
2434 			nd->last_type = LAST_DOTDOT;
2435 			nd->state |= ND_JUMPED;
2436 			break;
2437 
2438 		case LAST_WORD_IS_DOT:
2439 			nd->last_type = LAST_DOT;
2440 			break;
2441 
2442 		default:
2443 			nd->last_type = LAST_NORM;
2444 			nd->state &= ~ND_JUMPED;
2445 
2446 			struct dentry *parent = nd->path.dentry;
2447 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2448 				err = parent->d_op->d_hash(parent, &nd->last);
2449 				if (err < 0)
2450 					return err;
2451 			}
2452 		}
2453 
2454 		if (!*name)
2455 			goto OK;
2456 		/*
2457 		 * If it wasn't NUL, we know it was '/'. Skip that
2458 		 * slash, and continue until no more slashes.
2459 		 */
2460 		do {
2461 			name++;
2462 		} while (unlikely(*name == '/'));
2463 		if (unlikely(!*name)) {
2464 OK:
2465 			/* pathname or trailing symlink, done */
2466 			if (!depth) {
2467 				nd->dir_vfsuid = i_uid_into_vfsuid(idmap, nd->inode);
2468 				nd->dir_mode = nd->inode->i_mode;
2469 				nd->flags &= ~LOOKUP_PARENT;
2470 				return 0;
2471 			}
2472 			/* last component of nested symlink */
2473 			name = nd->stack[--depth].name;
2474 			link = walk_component(nd, 0);
2475 		} else {
2476 			/* not the last component */
2477 			link = walk_component(nd, WALK_MORE);
2478 		}
2479 		if (unlikely(link)) {
2480 			if (IS_ERR(link))
2481 				return PTR_ERR(link);
2482 			/* a symlink to follow */
2483 			nd->stack[depth++].name = name;
2484 			name = link;
2485 			continue;
2486 		}
2487 		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2488 			if (nd->flags & LOOKUP_RCU) {
2489 				if (!try_to_unlazy(nd))
2490 					return -ECHILD;
2491 			}
2492 			return -ENOTDIR;
2493 		}
2494 	}
2495 }
2496 
2497 /* must be paired with terminate_walk() */
2498 static const char *path_init(struct nameidata *nd, unsigned flags)
2499 {
2500 	int error;
2501 	const char *s = nd->pathname;
2502 
2503 	/* LOOKUP_CACHED requires RCU, ask caller to retry */
2504 	if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED)
2505 		return ERR_PTR(-EAGAIN);
2506 
2507 	if (!*s)
2508 		flags &= ~LOOKUP_RCU;
2509 	if (flags & LOOKUP_RCU)
2510 		rcu_read_lock();
2511 	else
2512 		nd->seq = nd->next_seq = 0;
2513 
2514 	nd->flags = flags;
2515 	nd->state |= ND_JUMPED;
2516 
2517 	nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2518 	nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2519 	smp_rmb();
2520 
2521 	if (nd->state & ND_ROOT_PRESET) {
2522 		struct dentry *root = nd->root.dentry;
2523 		struct inode *inode = root->d_inode;
2524 		if (*s && unlikely(!d_can_lookup(root)))
2525 			return ERR_PTR(-ENOTDIR);
2526 		nd->path = nd->root;
2527 		nd->inode = inode;
2528 		if (flags & LOOKUP_RCU) {
2529 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2530 			nd->root_seq = nd->seq;
2531 		} else {
2532 			path_get(&nd->path);
2533 		}
2534 		return s;
2535 	}
2536 
2537 	nd->root.mnt = NULL;
2538 
2539 	/* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2540 	if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2541 		error = nd_jump_root(nd);
2542 		if (unlikely(error))
2543 			return ERR_PTR(error);
2544 		return s;
2545 	}
2546 
2547 	/* Relative pathname -- get the starting-point it is relative to. */
2548 	if (nd->dfd == AT_FDCWD) {
2549 		if (flags & LOOKUP_RCU) {
2550 			struct fs_struct *fs = current->fs;
2551 			unsigned seq;
2552 
2553 			do {
2554 				seq = read_seqcount_begin(&fs->seq);
2555 				nd->path = fs->pwd;
2556 				nd->inode = nd->path.dentry->d_inode;
2557 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2558 			} while (read_seqcount_retry(&fs->seq, seq));
2559 		} else {
2560 			get_fs_pwd(current->fs, &nd->path);
2561 			nd->inode = nd->path.dentry->d_inode;
2562 		}
2563 	} else {
2564 		/* Caller must check execute permissions on the starting path component */
2565 		CLASS(fd_raw, f)(nd->dfd);
2566 		struct dentry *dentry;
2567 
2568 		if (fd_empty(f))
2569 			return ERR_PTR(-EBADF);
2570 
2571 		if (flags & LOOKUP_LINKAT_EMPTY) {
2572 			if (fd_file(f)->f_cred != current_cred() &&
2573 			    !ns_capable(fd_file(f)->f_cred->user_ns, CAP_DAC_READ_SEARCH))
2574 				return ERR_PTR(-ENOENT);
2575 		}
2576 
2577 		dentry = fd_file(f)->f_path.dentry;
2578 
2579 		if (*s && unlikely(!d_can_lookup(dentry)))
2580 			return ERR_PTR(-ENOTDIR);
2581 
2582 		nd->path = fd_file(f)->f_path;
2583 		if (flags & LOOKUP_RCU) {
2584 			nd->inode = nd->path.dentry->d_inode;
2585 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2586 		} else {
2587 			path_get(&nd->path);
2588 			nd->inode = nd->path.dentry->d_inode;
2589 		}
2590 	}
2591 
2592 	/* For scoped-lookups we need to set the root to the dirfd as well. */
2593 	if (flags & LOOKUP_IS_SCOPED) {
2594 		nd->root = nd->path;
2595 		if (flags & LOOKUP_RCU) {
2596 			nd->root_seq = nd->seq;
2597 		} else {
2598 			path_get(&nd->root);
2599 			nd->state |= ND_ROOT_GRABBED;
2600 		}
2601 	}
2602 	return s;
2603 }
2604 
2605 static inline const char *lookup_last(struct nameidata *nd)
2606 {
2607 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2608 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2609 
2610 	return walk_component(nd, WALK_TRAILING);
2611 }
2612 
2613 static int handle_lookup_down(struct nameidata *nd)
2614 {
2615 	if (!(nd->flags & LOOKUP_RCU))
2616 		dget(nd->path.dentry);
2617 	nd->next_seq = nd->seq;
2618 	return PTR_ERR(step_into(nd, WALK_NOFOLLOW, nd->path.dentry));
2619 }
2620 
2621 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */
2622 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2623 {
2624 	const char *s = path_init(nd, flags);
2625 	int err;
2626 
2627 	if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2628 		err = handle_lookup_down(nd);
2629 		if (unlikely(err < 0))
2630 			s = ERR_PTR(err);
2631 	}
2632 
2633 	while (!(err = link_path_walk(s, nd)) &&
2634 	       (s = lookup_last(nd)) != NULL)
2635 		;
2636 	if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2637 		err = handle_lookup_down(nd);
2638 		nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please...
2639 	}
2640 	if (!err)
2641 		err = complete_walk(nd);
2642 
2643 	if (!err && nd->flags & LOOKUP_DIRECTORY)
2644 		if (!d_can_lookup(nd->path.dentry))
2645 			err = -ENOTDIR;
2646 	if (!err) {
2647 		*path = nd->path;
2648 		nd->path.mnt = NULL;
2649 		nd->path.dentry = NULL;
2650 	}
2651 	terminate_walk(nd);
2652 	return err;
2653 }
2654 
2655 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2656 		    struct path *path, struct path *root)
2657 {
2658 	int retval;
2659 	struct nameidata nd;
2660 	if (IS_ERR(name))
2661 		return PTR_ERR(name);
2662 	set_nameidata(&nd, dfd, name, root);
2663 	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2664 	if (unlikely(retval == -ECHILD))
2665 		retval = path_lookupat(&nd, flags, path);
2666 	if (unlikely(retval == -ESTALE))
2667 		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2668 
2669 	if (likely(!retval))
2670 		audit_inode(name, path->dentry,
2671 			    flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2672 	restore_nameidata();
2673 	return retval;
2674 }
2675 
2676 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */
2677 static int path_parentat(struct nameidata *nd, unsigned flags,
2678 				struct path *parent)
2679 {
2680 	const char *s = path_init(nd, flags);
2681 	int err = link_path_walk(s, nd);
2682 	if (!err)
2683 		err = complete_walk(nd);
2684 	if (!err) {
2685 		*parent = nd->path;
2686 		nd->path.mnt = NULL;
2687 		nd->path.dentry = NULL;
2688 	}
2689 	terminate_walk(nd);
2690 	return err;
2691 }
2692 
2693 /* Note: this does not consume "name" */
2694 static int __filename_parentat(int dfd, struct filename *name,
2695 			       unsigned int flags, struct path *parent,
2696 			       struct qstr *last, int *type,
2697 			       const struct path *root)
2698 {
2699 	int retval;
2700 	struct nameidata nd;
2701 
2702 	if (IS_ERR(name))
2703 		return PTR_ERR(name);
2704 	set_nameidata(&nd, dfd, name, root);
2705 	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2706 	if (unlikely(retval == -ECHILD))
2707 		retval = path_parentat(&nd, flags, parent);
2708 	if (unlikely(retval == -ESTALE))
2709 		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2710 	if (likely(!retval)) {
2711 		*last = nd.last;
2712 		*type = nd.last_type;
2713 		audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2714 	}
2715 	restore_nameidata();
2716 	return retval;
2717 }
2718 
2719 static int filename_parentat(int dfd, struct filename *name,
2720 			     unsigned int flags, struct path *parent,
2721 			     struct qstr *last, int *type)
2722 {
2723 	return __filename_parentat(dfd, name, flags, parent, last, type, NULL);
2724 }
2725 
2726 /* does lookup, returns the object with parent locked */
2727 static struct dentry *__kern_path_locked(int dfd, struct filename *name, struct path *path)
2728 {
2729 	struct dentry *d;
2730 	struct qstr last;
2731 	int type, error;
2732 
2733 	error = filename_parentat(dfd, name, 0, path, &last, &type);
2734 	if (error)
2735 		return ERR_PTR(error);
2736 	if (unlikely(type != LAST_NORM)) {
2737 		path_put(path);
2738 		return ERR_PTR(-EINVAL);
2739 	}
2740 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2741 	d = lookup_one_qstr_excl(&last, path->dentry, 0);
2742 	if (IS_ERR(d)) {
2743 		inode_unlock(path->dentry->d_inode);
2744 		path_put(path);
2745 	}
2746 	return d;
2747 }
2748 
2749 struct dentry *kern_path_locked(const char *name, struct path *path)
2750 {
2751 	struct filename *filename = getname_kernel(name);
2752 	struct dentry *res = __kern_path_locked(AT_FDCWD, filename, path);
2753 
2754 	putname(filename);
2755 	return res;
2756 }
2757 
2758 struct dentry *user_path_locked_at(int dfd, const char __user *name, struct path *path)
2759 {
2760 	struct filename *filename = getname(name);
2761 	struct dentry *res = __kern_path_locked(dfd, filename, path);
2762 
2763 	putname(filename);
2764 	return res;
2765 }
2766 EXPORT_SYMBOL(user_path_locked_at);
2767 
2768 int kern_path(const char *name, unsigned int flags, struct path *path)
2769 {
2770 	struct filename *filename = getname_kernel(name);
2771 	int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL);
2772 
2773 	putname(filename);
2774 	return ret;
2775 
2776 }
2777 EXPORT_SYMBOL(kern_path);
2778 
2779 /**
2780  * vfs_path_parent_lookup - lookup a parent path relative to a dentry-vfsmount pair
2781  * @filename: filename structure
2782  * @flags: lookup flags
2783  * @parent: pointer to struct path to fill
2784  * @last: last component
2785  * @type: type of the last component
2786  * @root: pointer to struct path of the base directory
2787  */
2788 int vfs_path_parent_lookup(struct filename *filename, unsigned int flags,
2789 			   struct path *parent, struct qstr *last, int *type,
2790 			   const struct path *root)
2791 {
2792 	return  __filename_parentat(AT_FDCWD, filename, flags, parent, last,
2793 				    type, root);
2794 }
2795 EXPORT_SYMBOL(vfs_path_parent_lookup);
2796 
2797 /**
2798  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2799  * @dentry:  pointer to dentry of the base directory
2800  * @mnt: pointer to vfs mount of the base directory
2801  * @name: pointer to file name
2802  * @flags: lookup flags
2803  * @path: pointer to struct path to fill
2804  */
2805 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2806 		    const char *name, unsigned int flags,
2807 		    struct path *path)
2808 {
2809 	struct filename *filename;
2810 	struct path root = {.mnt = mnt, .dentry = dentry};
2811 	int ret;
2812 
2813 	filename = getname_kernel(name);
2814 	/* the first argument of filename_lookup() is ignored with root */
2815 	ret = filename_lookup(AT_FDCWD, filename, flags, path, &root);
2816 	putname(filename);
2817 	return ret;
2818 }
2819 EXPORT_SYMBOL(vfs_path_lookup);
2820 
2821 static int lookup_one_common(struct mnt_idmap *idmap,
2822 			     const char *name, struct dentry *base, int len,
2823 			     struct qstr *this)
2824 {
2825 	this->name = name;
2826 	this->len = len;
2827 	this->hash = full_name_hash(base, name, len);
2828 	if (!len)
2829 		return -EACCES;
2830 
2831 	if (is_dot_dotdot(name, len))
2832 		return -EACCES;
2833 
2834 	while (len--) {
2835 		unsigned int c = *(const unsigned char *)name++;
2836 		if (c == '/' || c == '\0')
2837 			return -EACCES;
2838 	}
2839 	/*
2840 	 * See if the low-level filesystem might want
2841 	 * to use its own hash..
2842 	 */
2843 	if (base->d_flags & DCACHE_OP_HASH) {
2844 		int err = base->d_op->d_hash(base, this);
2845 		if (err < 0)
2846 			return err;
2847 	}
2848 
2849 	return inode_permission(idmap, base->d_inode, MAY_EXEC);
2850 }
2851 
2852 /**
2853  * try_lookup_one_len - filesystem helper to lookup single pathname component
2854  * @name:	pathname component to lookup
2855  * @base:	base directory to lookup from
2856  * @len:	maximum length @len should be interpreted to
2857  *
2858  * Look up a dentry by name in the dcache, returning NULL if it does not
2859  * currently exist.  The function does not try to create a dentry.
2860  *
2861  * Note that this routine is purely a helper for filesystem usage and should
2862  * not be called by generic code.
2863  *
2864  * The caller must hold base->i_mutex.
2865  */
2866 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2867 {
2868 	struct qstr this;
2869 	int err;
2870 
2871 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2872 
2873 	err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this);
2874 	if (err)
2875 		return ERR_PTR(err);
2876 
2877 	return lookup_dcache(&this, base, 0);
2878 }
2879 EXPORT_SYMBOL(try_lookup_one_len);
2880 
2881 /**
2882  * lookup_one_len - filesystem helper to lookup single pathname component
2883  * @name:	pathname component to lookup
2884  * @base:	base directory to lookup from
2885  * @len:	maximum length @len should be interpreted to
2886  *
2887  * Note that this routine is purely a helper for filesystem usage and should
2888  * not be called by generic code.
2889  *
2890  * The caller must hold base->i_mutex.
2891  */
2892 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2893 {
2894 	struct dentry *dentry;
2895 	struct qstr this;
2896 	int err;
2897 
2898 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2899 
2900 	err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this);
2901 	if (err)
2902 		return ERR_PTR(err);
2903 
2904 	dentry = lookup_dcache(&this, base, 0);
2905 	return dentry ? dentry : __lookup_slow(&this, base, 0);
2906 }
2907 EXPORT_SYMBOL(lookup_one_len);
2908 
2909 /**
2910  * lookup_one - filesystem helper to lookup single pathname component
2911  * @idmap:	idmap of the mount the lookup is performed from
2912  * @name:	pathname component to lookup
2913  * @base:	base directory to lookup from
2914  * @len:	maximum length @len should be interpreted to
2915  *
2916  * Note that this routine is purely a helper for filesystem usage and should
2917  * not be called by generic code.
2918  *
2919  * The caller must hold base->i_mutex.
2920  */
2921 struct dentry *lookup_one(struct mnt_idmap *idmap, const char *name,
2922 			  struct dentry *base, int len)
2923 {
2924 	struct dentry *dentry;
2925 	struct qstr this;
2926 	int err;
2927 
2928 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2929 
2930 	err = lookup_one_common(idmap, name, base, len, &this);
2931 	if (err)
2932 		return ERR_PTR(err);
2933 
2934 	dentry = lookup_dcache(&this, base, 0);
2935 	return dentry ? dentry : __lookup_slow(&this, base, 0);
2936 }
2937 EXPORT_SYMBOL(lookup_one);
2938 
2939 /**
2940  * lookup_one_unlocked - filesystem helper to lookup single pathname component
2941  * @idmap:	idmap of the mount the lookup is performed from
2942  * @name:	pathname component to lookup
2943  * @base:	base directory to lookup from
2944  * @len:	maximum length @len should be interpreted to
2945  *
2946  * Note that this routine is purely a helper for filesystem usage and should
2947  * not be called by generic code.
2948  *
2949  * Unlike lookup_one_len, it should be called without the parent
2950  * i_mutex held, and will take the i_mutex itself if necessary.
2951  */
2952 struct dentry *lookup_one_unlocked(struct mnt_idmap *idmap,
2953 				   const char *name, struct dentry *base,
2954 				   int len)
2955 {
2956 	struct qstr this;
2957 	int err;
2958 	struct dentry *ret;
2959 
2960 	err = lookup_one_common(idmap, name, base, len, &this);
2961 	if (err)
2962 		return ERR_PTR(err);
2963 
2964 	ret = lookup_dcache(&this, base, 0);
2965 	if (!ret)
2966 		ret = lookup_slow(&this, base, 0);
2967 	return ret;
2968 }
2969 EXPORT_SYMBOL(lookup_one_unlocked);
2970 
2971 /**
2972  * lookup_one_positive_unlocked - filesystem helper to lookup single
2973  *				  pathname component
2974  * @idmap:	idmap of the mount the lookup is performed from
2975  * @name:	pathname component to lookup
2976  * @base:	base directory to lookup from
2977  * @len:	maximum length @len should be interpreted to
2978  *
2979  * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns
2980  * known positive or ERR_PTR(). This is what most of the users want.
2981  *
2982  * Note that pinned negative with unlocked parent _can_ become positive at any
2983  * time, so callers of lookup_one_unlocked() need to be very careful; pinned
2984  * positives have >d_inode stable, so this one avoids such problems.
2985  *
2986  * Note that this routine is purely a helper for filesystem usage and should
2987  * not be called by generic code.
2988  *
2989  * The helper should be called without i_mutex held.
2990  */
2991 struct dentry *lookup_one_positive_unlocked(struct mnt_idmap *idmap,
2992 					    const char *name,
2993 					    struct dentry *base, int len)
2994 {
2995 	struct dentry *ret = lookup_one_unlocked(idmap, name, base, len);
2996 
2997 	if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
2998 		dput(ret);
2999 		ret = ERR_PTR(-ENOENT);
3000 	}
3001 	return ret;
3002 }
3003 EXPORT_SYMBOL(lookup_one_positive_unlocked);
3004 
3005 /**
3006  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
3007  * @name:	pathname component to lookup
3008  * @base:	base directory to lookup from
3009  * @len:	maximum length @len should be interpreted to
3010  *
3011  * Note that this routine is purely a helper for filesystem usage and should
3012  * not be called by generic code.
3013  *
3014  * Unlike lookup_one_len, it should be called without the parent
3015  * i_mutex held, and will take the i_mutex itself if necessary.
3016  */
3017 struct dentry *lookup_one_len_unlocked(const char *name,
3018 				       struct dentry *base, int len)
3019 {
3020 	return lookup_one_unlocked(&nop_mnt_idmap, name, base, len);
3021 }
3022 EXPORT_SYMBOL(lookup_one_len_unlocked);
3023 
3024 /*
3025  * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
3026  * on negatives.  Returns known positive or ERR_PTR(); that's what
3027  * most of the users want.  Note that pinned negative with unlocked parent
3028  * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
3029  * need to be very careful; pinned positives have ->d_inode stable, so
3030  * this one avoids such problems.
3031  */
3032 struct dentry *lookup_positive_unlocked(const char *name,
3033 				       struct dentry *base, int len)
3034 {
3035 	return lookup_one_positive_unlocked(&nop_mnt_idmap, name, base, len);
3036 }
3037 EXPORT_SYMBOL(lookup_positive_unlocked);
3038 
3039 #ifdef CONFIG_UNIX98_PTYS
3040 int path_pts(struct path *path)
3041 {
3042 	/* Find something mounted on "pts" in the same directory as
3043 	 * the input path.
3044 	 */
3045 	struct dentry *parent = dget_parent(path->dentry);
3046 	struct dentry *child;
3047 	struct qstr this = QSTR_INIT("pts", 3);
3048 
3049 	if (unlikely(!path_connected(path->mnt, parent))) {
3050 		dput(parent);
3051 		return -ENOENT;
3052 	}
3053 	dput(path->dentry);
3054 	path->dentry = parent;
3055 	child = d_hash_and_lookup(parent, &this);
3056 	if (IS_ERR_OR_NULL(child))
3057 		return -ENOENT;
3058 
3059 	path->dentry = child;
3060 	dput(parent);
3061 	follow_down(path, 0);
3062 	return 0;
3063 }
3064 #endif
3065 
3066 int user_path_at(int dfd, const char __user *name, unsigned flags,
3067 		 struct path *path)
3068 {
3069 	struct filename *filename = getname_flags(name, flags);
3070 	int ret = filename_lookup(dfd, filename, flags, path, NULL);
3071 
3072 	putname(filename);
3073 	return ret;
3074 }
3075 EXPORT_SYMBOL(user_path_at);
3076 
3077 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir,
3078 		   struct inode *inode)
3079 {
3080 	kuid_t fsuid = current_fsuid();
3081 
3082 	if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), fsuid))
3083 		return 0;
3084 	if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, dir), fsuid))
3085 		return 0;
3086 	return !capable_wrt_inode_uidgid(idmap, inode, CAP_FOWNER);
3087 }
3088 EXPORT_SYMBOL(__check_sticky);
3089 
3090 /*
3091  *	Check whether we can remove a link victim from directory dir, check
3092  *  whether the type of victim is right.
3093  *  1. We can't do it if dir is read-only (done in permission())
3094  *  2. We should have write and exec permissions on dir
3095  *  3. We can't remove anything from append-only dir
3096  *  4. We can't do anything with immutable dir (done in permission())
3097  *  5. If the sticky bit on dir is set we should either
3098  *	a. be owner of dir, or
3099  *	b. be owner of victim, or
3100  *	c. have CAP_FOWNER capability
3101  *  6. If the victim is append-only or immutable we can't do antyhing with
3102  *     links pointing to it.
3103  *  7. If the victim has an unknown uid or gid we can't change the inode.
3104  *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
3105  *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
3106  * 10. We can't remove a root or mountpoint.
3107  * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
3108  *     nfs_async_unlink().
3109  */
3110 static int may_delete(struct mnt_idmap *idmap, struct inode *dir,
3111 		      struct dentry *victim, bool isdir)
3112 {
3113 	struct inode *inode = d_backing_inode(victim);
3114 	int error;
3115 
3116 	if (d_is_negative(victim))
3117 		return -ENOENT;
3118 	BUG_ON(!inode);
3119 
3120 	BUG_ON(victim->d_parent->d_inode != dir);
3121 
3122 	/* Inode writeback is not safe when the uid or gid are invalid. */
3123 	if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
3124 	    !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
3125 		return -EOVERFLOW;
3126 
3127 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
3128 
3129 	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3130 	if (error)
3131 		return error;
3132 	if (IS_APPEND(dir))
3133 		return -EPERM;
3134 
3135 	if (check_sticky(idmap, dir, inode) || IS_APPEND(inode) ||
3136 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) ||
3137 	    HAS_UNMAPPED_ID(idmap, inode))
3138 		return -EPERM;
3139 	if (isdir) {
3140 		if (!d_is_dir(victim))
3141 			return -ENOTDIR;
3142 		if (IS_ROOT(victim))
3143 			return -EBUSY;
3144 	} else if (d_is_dir(victim))
3145 		return -EISDIR;
3146 	if (IS_DEADDIR(dir))
3147 		return -ENOENT;
3148 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
3149 		return -EBUSY;
3150 	return 0;
3151 }
3152 
3153 /*	Check whether we can create an object with dentry child in directory
3154  *  dir.
3155  *  1. We can't do it if child already exists (open has special treatment for
3156  *     this case, but since we are inlined it's OK)
3157  *  2. We can't do it if dir is read-only (done in permission())
3158  *  3. We can't do it if the fs can't represent the fsuid or fsgid.
3159  *  4. We should have write and exec permissions on dir
3160  *  5. We can't do it if dir is immutable (done in permission())
3161  */
3162 static inline int may_create(struct mnt_idmap *idmap,
3163 			     struct inode *dir, struct dentry *child)
3164 {
3165 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
3166 	if (child->d_inode)
3167 		return -EEXIST;
3168 	if (IS_DEADDIR(dir))
3169 		return -ENOENT;
3170 	if (!fsuidgid_has_mapping(dir->i_sb, idmap))
3171 		return -EOVERFLOW;
3172 
3173 	return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3174 }
3175 
3176 // p1 != p2, both are on the same filesystem, ->s_vfs_rename_mutex is held
3177 static struct dentry *lock_two_directories(struct dentry *p1, struct dentry *p2)
3178 {
3179 	struct dentry *p = p1, *q = p2, *r;
3180 
3181 	while ((r = p->d_parent) != p2 && r != p)
3182 		p = r;
3183 	if (r == p2) {
3184 		// p is a child of p2 and an ancestor of p1 or p1 itself
3185 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3186 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT2);
3187 		return p;
3188 	}
3189 	// p is the root of connected component that contains p1
3190 	// p2 does not occur on the path from p to p1
3191 	while ((r = q->d_parent) != p1 && r != p && r != q)
3192 		q = r;
3193 	if (r == p1) {
3194 		// q is a child of p1 and an ancestor of p2 or p2 itself
3195 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3196 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3197 		return q;
3198 	} else if (likely(r == p)) {
3199 		// both p2 and p1 are descendents of p
3200 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3201 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3202 		return NULL;
3203 	} else { // no common ancestor at the time we'd been called
3204 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3205 		return ERR_PTR(-EXDEV);
3206 	}
3207 }
3208 
3209 /*
3210  * p1 and p2 should be directories on the same fs.
3211  */
3212 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
3213 {
3214 	if (p1 == p2) {
3215 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3216 		return NULL;
3217 	}
3218 
3219 	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
3220 	return lock_two_directories(p1, p2);
3221 }
3222 EXPORT_SYMBOL(lock_rename);
3223 
3224 /*
3225  * c1 and p2 should be on the same fs.
3226  */
3227 struct dentry *lock_rename_child(struct dentry *c1, struct dentry *p2)
3228 {
3229 	if (READ_ONCE(c1->d_parent) == p2) {
3230 		/*
3231 		 * hopefully won't need to touch ->s_vfs_rename_mutex at all.
3232 		 */
3233 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3234 		/*
3235 		 * now that p2 is locked, nobody can move in or out of it,
3236 		 * so the test below is safe.
3237 		 */
3238 		if (likely(c1->d_parent == p2))
3239 			return NULL;
3240 
3241 		/*
3242 		 * c1 got moved out of p2 while we'd been taking locks;
3243 		 * unlock and fall back to slow case.
3244 		 */
3245 		inode_unlock(p2->d_inode);
3246 	}
3247 
3248 	mutex_lock(&c1->d_sb->s_vfs_rename_mutex);
3249 	/*
3250 	 * nobody can move out of any directories on this fs.
3251 	 */
3252 	if (likely(c1->d_parent != p2))
3253 		return lock_two_directories(c1->d_parent, p2);
3254 
3255 	/*
3256 	 * c1 got moved into p2 while we were taking locks;
3257 	 * we need p2 locked and ->s_vfs_rename_mutex unlocked,
3258 	 * for consistency with lock_rename().
3259 	 */
3260 	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3261 	mutex_unlock(&c1->d_sb->s_vfs_rename_mutex);
3262 	return NULL;
3263 }
3264 EXPORT_SYMBOL(lock_rename_child);
3265 
3266 void unlock_rename(struct dentry *p1, struct dentry *p2)
3267 {
3268 	inode_unlock(p1->d_inode);
3269 	if (p1 != p2) {
3270 		inode_unlock(p2->d_inode);
3271 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3272 	}
3273 }
3274 EXPORT_SYMBOL(unlock_rename);
3275 
3276 /**
3277  * vfs_prepare_mode - prepare the mode to be used for a new inode
3278  * @idmap:	idmap of the mount the inode was found from
3279  * @dir:	parent directory of the new inode
3280  * @mode:	mode of the new inode
3281  * @mask_perms:	allowed permission by the vfs
3282  * @type:	type of file to be created
3283  *
3284  * This helper consolidates and enforces vfs restrictions on the @mode of a new
3285  * object to be created.
3286  *
3287  * Umask stripping depends on whether the filesystem supports POSIX ACLs (see
3288  * the kernel documentation for mode_strip_umask()). Moving umask stripping
3289  * after setgid stripping allows the same ordering for both non-POSIX ACL and
3290  * POSIX ACL supporting filesystems.
3291  *
3292  * Note that it's currently valid for @type to be 0 if a directory is created.
3293  * Filesystems raise that flag individually and we need to check whether each
3294  * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a
3295  * non-zero type.
3296  *
3297  * Returns: mode to be passed to the filesystem
3298  */
3299 static inline umode_t vfs_prepare_mode(struct mnt_idmap *idmap,
3300 				       const struct inode *dir, umode_t mode,
3301 				       umode_t mask_perms, umode_t type)
3302 {
3303 	mode = mode_strip_sgid(idmap, dir, mode);
3304 	mode = mode_strip_umask(dir, mode);
3305 
3306 	/*
3307 	 * Apply the vfs mandated allowed permission mask and set the type of
3308 	 * file to be created before we call into the filesystem.
3309 	 */
3310 	mode &= (mask_perms & ~S_IFMT);
3311 	mode |= (type & S_IFMT);
3312 
3313 	return mode;
3314 }
3315 
3316 /**
3317  * vfs_create - create new file
3318  * @idmap:	idmap of the mount the inode was found from
3319  * @dir:	inode of the parent directory
3320  * @dentry:	dentry of the child file
3321  * @mode:	mode of the child file
3322  * @want_excl:	whether the file must not yet exist
3323  *
3324  * Create a new file.
3325  *
3326  * If the inode has been found through an idmapped mount the idmap of
3327  * the vfsmount must be passed through @idmap. This function will then take
3328  * care to map the inode according to @idmap before checking permissions.
3329  * On non-idmapped mounts or if permission checking is to be performed on the
3330  * raw inode simply pass @nop_mnt_idmap.
3331  */
3332 int vfs_create(struct mnt_idmap *idmap, struct inode *dir,
3333 	       struct dentry *dentry, umode_t mode, bool want_excl)
3334 {
3335 	int error;
3336 
3337 	error = may_create(idmap, dir, dentry);
3338 	if (error)
3339 		return error;
3340 
3341 	if (!dir->i_op->create)
3342 		return -EACCES;	/* shouldn't it be ENOSYS? */
3343 
3344 	mode = vfs_prepare_mode(idmap, dir, mode, S_IALLUGO, S_IFREG);
3345 	error = security_inode_create(dir, dentry, mode);
3346 	if (error)
3347 		return error;
3348 	error = dir->i_op->create(idmap, dir, dentry, mode, want_excl);
3349 	if (!error)
3350 		fsnotify_create(dir, dentry);
3351 	return error;
3352 }
3353 EXPORT_SYMBOL(vfs_create);
3354 
3355 int vfs_mkobj(struct dentry *dentry, umode_t mode,
3356 		int (*f)(struct dentry *, umode_t, void *),
3357 		void *arg)
3358 {
3359 	struct inode *dir = dentry->d_parent->d_inode;
3360 	int error = may_create(&nop_mnt_idmap, dir, dentry);
3361 	if (error)
3362 		return error;
3363 
3364 	mode &= S_IALLUGO;
3365 	mode |= S_IFREG;
3366 	error = security_inode_create(dir, dentry, mode);
3367 	if (error)
3368 		return error;
3369 	error = f(dentry, mode, arg);
3370 	if (!error)
3371 		fsnotify_create(dir, dentry);
3372 	return error;
3373 }
3374 EXPORT_SYMBOL(vfs_mkobj);
3375 
3376 bool may_open_dev(const struct path *path)
3377 {
3378 	return !(path->mnt->mnt_flags & MNT_NODEV) &&
3379 		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
3380 }
3381 
3382 static int may_open(struct mnt_idmap *idmap, const struct path *path,
3383 		    int acc_mode, int flag)
3384 {
3385 	struct dentry *dentry = path->dentry;
3386 	struct inode *inode = dentry->d_inode;
3387 	int error;
3388 
3389 	if (!inode)
3390 		return -ENOENT;
3391 
3392 	switch (inode->i_mode & S_IFMT) {
3393 	case S_IFLNK:
3394 		return -ELOOP;
3395 	case S_IFDIR:
3396 		if (acc_mode & MAY_WRITE)
3397 			return -EISDIR;
3398 		if (acc_mode & MAY_EXEC)
3399 			return -EACCES;
3400 		break;
3401 	case S_IFBLK:
3402 	case S_IFCHR:
3403 		if (!may_open_dev(path))
3404 			return -EACCES;
3405 		fallthrough;
3406 	case S_IFIFO:
3407 	case S_IFSOCK:
3408 		if (acc_mode & MAY_EXEC)
3409 			return -EACCES;
3410 		flag &= ~O_TRUNC;
3411 		break;
3412 	case S_IFREG:
3413 		if ((acc_mode & MAY_EXEC) && path_noexec(path))
3414 			return -EACCES;
3415 		break;
3416 	}
3417 
3418 	error = inode_permission(idmap, inode, MAY_OPEN | acc_mode);
3419 	if (error)
3420 		return error;
3421 
3422 	/*
3423 	 * An append-only file must be opened in append mode for writing.
3424 	 */
3425 	if (IS_APPEND(inode)) {
3426 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
3427 			return -EPERM;
3428 		if (flag & O_TRUNC)
3429 			return -EPERM;
3430 	}
3431 
3432 	/* O_NOATIME can only be set by the owner or superuser */
3433 	if (flag & O_NOATIME && !inode_owner_or_capable(idmap, inode))
3434 		return -EPERM;
3435 
3436 	return 0;
3437 }
3438 
3439 static int handle_truncate(struct mnt_idmap *idmap, struct file *filp)
3440 {
3441 	const struct path *path = &filp->f_path;
3442 	struct inode *inode = path->dentry->d_inode;
3443 	int error = get_write_access(inode);
3444 	if (error)
3445 		return error;
3446 
3447 	error = security_file_truncate(filp);
3448 	if (!error) {
3449 		error = do_truncate(idmap, path->dentry, 0,
3450 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3451 				    filp);
3452 	}
3453 	put_write_access(inode);
3454 	return error;
3455 }
3456 
3457 static inline int open_to_namei_flags(int flag)
3458 {
3459 	if ((flag & O_ACCMODE) == 3)
3460 		flag--;
3461 	return flag;
3462 }
3463 
3464 static int may_o_create(struct mnt_idmap *idmap,
3465 			const struct path *dir, struct dentry *dentry,
3466 			umode_t mode)
3467 {
3468 	int error = security_path_mknod(dir, dentry, mode, 0);
3469 	if (error)
3470 		return error;
3471 
3472 	if (!fsuidgid_has_mapping(dir->dentry->d_sb, idmap))
3473 		return -EOVERFLOW;
3474 
3475 	error = inode_permission(idmap, dir->dentry->d_inode,
3476 				 MAY_WRITE | MAY_EXEC);
3477 	if (error)
3478 		return error;
3479 
3480 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
3481 }
3482 
3483 /*
3484  * Attempt to atomically look up, create and open a file from a negative
3485  * dentry.
3486  *
3487  * Returns 0 if successful.  The file will have been created and attached to
3488  * @file by the filesystem calling finish_open().
3489  *
3490  * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3491  * be set.  The caller will need to perform the open themselves.  @path will
3492  * have been updated to point to the new dentry.  This may be negative.
3493  *
3494  * Returns an error code otherwise.
3495  */
3496 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
3497 				  struct file *file,
3498 				  int open_flag, umode_t mode)
3499 {
3500 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3501 	struct inode *dir =  nd->path.dentry->d_inode;
3502 	int error;
3503 
3504 	if (nd->flags & LOOKUP_DIRECTORY)
3505 		open_flag |= O_DIRECTORY;
3506 
3507 	file->f_path.dentry = DENTRY_NOT_SET;
3508 	file->f_path.mnt = nd->path.mnt;
3509 	error = dir->i_op->atomic_open(dir, dentry, file,
3510 				       open_to_namei_flags(open_flag), mode);
3511 	d_lookup_done(dentry);
3512 	if (!error) {
3513 		if (file->f_mode & FMODE_OPENED) {
3514 			if (unlikely(dentry != file->f_path.dentry)) {
3515 				dput(dentry);
3516 				dentry = dget(file->f_path.dentry);
3517 			}
3518 		} else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3519 			error = -EIO;
3520 		} else {
3521 			if (file->f_path.dentry) {
3522 				dput(dentry);
3523 				dentry = file->f_path.dentry;
3524 			}
3525 			if (unlikely(d_is_negative(dentry)))
3526 				error = -ENOENT;
3527 		}
3528 	}
3529 	if (error) {
3530 		dput(dentry);
3531 		dentry = ERR_PTR(error);
3532 	}
3533 	return dentry;
3534 }
3535 
3536 /*
3537  * Look up and maybe create and open the last component.
3538  *
3539  * Must be called with parent locked (exclusive in O_CREAT case).
3540  *
3541  * Returns 0 on success, that is, if
3542  *  the file was successfully atomically created (if necessary) and opened, or
3543  *  the file was not completely opened at this time, though lookups and
3544  *  creations were performed.
3545  * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3546  * In the latter case dentry returned in @path might be negative if O_CREAT
3547  * hadn't been specified.
3548  *
3549  * An error code is returned on failure.
3550  */
3551 static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3552 				  const struct open_flags *op,
3553 				  bool got_write)
3554 {
3555 	struct mnt_idmap *idmap;
3556 	struct dentry *dir = nd->path.dentry;
3557 	struct inode *dir_inode = dir->d_inode;
3558 	int open_flag = op->open_flag;
3559 	struct dentry *dentry;
3560 	int error, create_error = 0;
3561 	umode_t mode = op->mode;
3562 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3563 
3564 	if (unlikely(IS_DEADDIR(dir_inode)))
3565 		return ERR_PTR(-ENOENT);
3566 
3567 	file->f_mode &= ~FMODE_CREATED;
3568 	dentry = d_lookup(dir, &nd->last);
3569 	for (;;) {
3570 		if (!dentry) {
3571 			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3572 			if (IS_ERR(dentry))
3573 				return dentry;
3574 		}
3575 		if (d_in_lookup(dentry))
3576 			break;
3577 
3578 		error = d_revalidate(dentry, nd->flags);
3579 		if (likely(error > 0))
3580 			break;
3581 		if (error)
3582 			goto out_dput;
3583 		d_invalidate(dentry);
3584 		dput(dentry);
3585 		dentry = NULL;
3586 	}
3587 	if (dentry->d_inode) {
3588 		/* Cached positive dentry: will open in f_op->open */
3589 		return dentry;
3590 	}
3591 
3592 	if (open_flag & O_CREAT)
3593 		audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3594 
3595 	/*
3596 	 * Checking write permission is tricky, bacuse we don't know if we are
3597 	 * going to actually need it: O_CREAT opens should work as long as the
3598 	 * file exists.  But checking existence breaks atomicity.  The trick is
3599 	 * to check access and if not granted clear O_CREAT from the flags.
3600 	 *
3601 	 * Another problem is returing the "right" error value (e.g. for an
3602 	 * O_EXCL open we want to return EEXIST not EROFS).
3603 	 */
3604 	if (unlikely(!got_write))
3605 		open_flag &= ~O_TRUNC;
3606 	idmap = mnt_idmap(nd->path.mnt);
3607 	if (open_flag & O_CREAT) {
3608 		if (open_flag & O_EXCL)
3609 			open_flag &= ~O_TRUNC;
3610 		mode = vfs_prepare_mode(idmap, dir->d_inode, mode, mode, mode);
3611 		if (likely(got_write))
3612 			create_error = may_o_create(idmap, &nd->path,
3613 						    dentry, mode);
3614 		else
3615 			create_error = -EROFS;
3616 	}
3617 	if (create_error)
3618 		open_flag &= ~O_CREAT;
3619 	if (dir_inode->i_op->atomic_open) {
3620 		dentry = atomic_open(nd, dentry, file, open_flag, mode);
3621 		if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3622 			dentry = ERR_PTR(create_error);
3623 		return dentry;
3624 	}
3625 
3626 	if (d_in_lookup(dentry)) {
3627 		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3628 							     nd->flags);
3629 		d_lookup_done(dentry);
3630 		if (unlikely(res)) {
3631 			if (IS_ERR(res)) {
3632 				error = PTR_ERR(res);
3633 				goto out_dput;
3634 			}
3635 			dput(dentry);
3636 			dentry = res;
3637 		}
3638 	}
3639 
3640 	/* Negative dentry, just create the file */
3641 	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3642 		file->f_mode |= FMODE_CREATED;
3643 		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3644 		if (!dir_inode->i_op->create) {
3645 			error = -EACCES;
3646 			goto out_dput;
3647 		}
3648 
3649 		error = dir_inode->i_op->create(idmap, dir_inode, dentry,
3650 						mode, open_flag & O_EXCL);
3651 		if (error)
3652 			goto out_dput;
3653 	}
3654 	if (unlikely(create_error) && !dentry->d_inode) {
3655 		error = create_error;
3656 		goto out_dput;
3657 	}
3658 	return dentry;
3659 
3660 out_dput:
3661 	dput(dentry);
3662 	return ERR_PTR(error);
3663 }
3664 
3665 static inline bool trailing_slashes(struct nameidata *nd)
3666 {
3667 	return (bool)nd->last.name[nd->last.len];
3668 }
3669 
3670 static struct dentry *lookup_fast_for_open(struct nameidata *nd, int open_flag)
3671 {
3672 	struct dentry *dentry;
3673 
3674 	if (open_flag & O_CREAT) {
3675 		if (trailing_slashes(nd))
3676 			return ERR_PTR(-EISDIR);
3677 
3678 		/* Don't bother on an O_EXCL create */
3679 		if (open_flag & O_EXCL)
3680 			return NULL;
3681 	}
3682 
3683 	if (trailing_slashes(nd))
3684 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3685 
3686 	dentry = lookup_fast(nd);
3687 	if (IS_ERR_OR_NULL(dentry))
3688 		return dentry;
3689 
3690 	if (open_flag & O_CREAT) {
3691 		/* Discard negative dentries. Need inode_lock to do the create */
3692 		if (!dentry->d_inode) {
3693 			if (!(nd->flags & LOOKUP_RCU))
3694 				dput(dentry);
3695 			dentry = NULL;
3696 		}
3697 	}
3698 	return dentry;
3699 }
3700 
3701 static const char *open_last_lookups(struct nameidata *nd,
3702 		   struct file *file, const struct open_flags *op)
3703 {
3704 	struct dentry *dir = nd->path.dentry;
3705 	int open_flag = op->open_flag;
3706 	bool got_write = false;
3707 	struct dentry *dentry;
3708 	const char *res;
3709 
3710 	nd->flags |= op->intent;
3711 
3712 	if (nd->last_type != LAST_NORM) {
3713 		if (nd->depth)
3714 			put_link(nd);
3715 		return handle_dots(nd, nd->last_type);
3716 	}
3717 
3718 	/* We _can_ be in RCU mode here */
3719 	dentry = lookup_fast_for_open(nd, open_flag);
3720 	if (IS_ERR(dentry))
3721 		return ERR_CAST(dentry);
3722 
3723 	if (likely(dentry))
3724 		goto finish_lookup;
3725 
3726 	if (!(open_flag & O_CREAT)) {
3727 		if (WARN_ON_ONCE(nd->flags & LOOKUP_RCU))
3728 			return ERR_PTR(-ECHILD);
3729 	} else {
3730 		if (nd->flags & LOOKUP_RCU) {
3731 			if (!try_to_unlazy(nd))
3732 				return ERR_PTR(-ECHILD);
3733 		}
3734 	}
3735 
3736 	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3737 		got_write = !mnt_want_write(nd->path.mnt);
3738 		/*
3739 		 * do _not_ fail yet - we might not need that or fail with
3740 		 * a different error; let lookup_open() decide; we'll be
3741 		 * dropping this one anyway.
3742 		 */
3743 	}
3744 	if (open_flag & O_CREAT)
3745 		inode_lock(dir->d_inode);
3746 	else
3747 		inode_lock_shared(dir->d_inode);
3748 	dentry = lookup_open(nd, file, op, got_write);
3749 	if (!IS_ERR(dentry)) {
3750 		if (file->f_mode & FMODE_CREATED)
3751 			fsnotify_create(dir->d_inode, dentry);
3752 		if (file->f_mode & FMODE_OPENED)
3753 			fsnotify_open(file);
3754 	}
3755 	if (open_flag & O_CREAT)
3756 		inode_unlock(dir->d_inode);
3757 	else
3758 		inode_unlock_shared(dir->d_inode);
3759 
3760 	if (got_write)
3761 		mnt_drop_write(nd->path.mnt);
3762 
3763 	if (IS_ERR(dentry))
3764 		return ERR_CAST(dentry);
3765 
3766 	if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3767 		dput(nd->path.dentry);
3768 		nd->path.dentry = dentry;
3769 		return NULL;
3770 	}
3771 
3772 finish_lookup:
3773 	if (nd->depth)
3774 		put_link(nd);
3775 	res = step_into(nd, WALK_TRAILING, dentry);
3776 	if (unlikely(res))
3777 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3778 	return res;
3779 }
3780 
3781 /*
3782  * Handle the last step of open()
3783  */
3784 static int do_open(struct nameidata *nd,
3785 		   struct file *file, const struct open_flags *op)
3786 {
3787 	struct mnt_idmap *idmap;
3788 	int open_flag = op->open_flag;
3789 	bool do_truncate;
3790 	int acc_mode;
3791 	int error;
3792 
3793 	if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3794 		error = complete_walk(nd);
3795 		if (error)
3796 			return error;
3797 	}
3798 	if (!(file->f_mode & FMODE_CREATED))
3799 		audit_inode(nd->name, nd->path.dentry, 0);
3800 	idmap = mnt_idmap(nd->path.mnt);
3801 	if (open_flag & O_CREAT) {
3802 		if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3803 			return -EEXIST;
3804 		if (d_is_dir(nd->path.dentry))
3805 			return -EISDIR;
3806 		error = may_create_in_sticky(idmap, nd,
3807 					     d_backing_inode(nd->path.dentry));
3808 		if (unlikely(error))
3809 			return error;
3810 	}
3811 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3812 		return -ENOTDIR;
3813 
3814 	do_truncate = false;
3815 	acc_mode = op->acc_mode;
3816 	if (file->f_mode & FMODE_CREATED) {
3817 		/* Don't check for write permission, don't truncate */
3818 		open_flag &= ~O_TRUNC;
3819 		acc_mode = 0;
3820 	} else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3821 		error = mnt_want_write(nd->path.mnt);
3822 		if (error)
3823 			return error;
3824 		do_truncate = true;
3825 	}
3826 	error = may_open(idmap, &nd->path, acc_mode, open_flag);
3827 	if (!error && !(file->f_mode & FMODE_OPENED))
3828 		error = vfs_open(&nd->path, file);
3829 	if (!error)
3830 		error = security_file_post_open(file, op->acc_mode);
3831 	if (!error && do_truncate)
3832 		error = handle_truncate(idmap, file);
3833 	if (unlikely(error > 0)) {
3834 		WARN_ON(1);
3835 		error = -EINVAL;
3836 	}
3837 	if (do_truncate)
3838 		mnt_drop_write(nd->path.mnt);
3839 	return error;
3840 }
3841 
3842 /**
3843  * vfs_tmpfile - create tmpfile
3844  * @idmap:	idmap of the mount the inode was found from
3845  * @parentpath:	pointer to the path of the base directory
3846  * @file:	file descriptor of the new tmpfile
3847  * @mode:	mode of the new tmpfile
3848  *
3849  * Create a temporary file.
3850  *
3851  * If the inode has been found through an idmapped mount the idmap of
3852  * the vfsmount must be passed through @idmap. This function will then take
3853  * care to map the inode according to @idmap before checking permissions.
3854  * On non-idmapped mounts or if permission checking is to be performed on the
3855  * raw inode simply pass @nop_mnt_idmap.
3856  */
3857 int vfs_tmpfile(struct mnt_idmap *idmap,
3858 		const struct path *parentpath,
3859 		struct file *file, umode_t mode)
3860 {
3861 	struct dentry *child;
3862 	struct inode *dir = d_inode(parentpath->dentry);
3863 	struct inode *inode;
3864 	int error;
3865 	int open_flag = file->f_flags;
3866 
3867 	/* we want directory to be writable */
3868 	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3869 	if (error)
3870 		return error;
3871 	if (!dir->i_op->tmpfile)
3872 		return -EOPNOTSUPP;
3873 	child = d_alloc(parentpath->dentry, &slash_name);
3874 	if (unlikely(!child))
3875 		return -ENOMEM;
3876 	file->f_path.mnt = parentpath->mnt;
3877 	file->f_path.dentry = child;
3878 	mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
3879 	error = dir->i_op->tmpfile(idmap, dir, file, mode);
3880 	dput(child);
3881 	if (file->f_mode & FMODE_OPENED)
3882 		fsnotify_open(file);
3883 	if (error)
3884 		return error;
3885 	/* Don't check for other permissions, the inode was just created */
3886 	error = may_open(idmap, &file->f_path, 0, file->f_flags);
3887 	if (error)
3888 		return error;
3889 	inode = file_inode(file);
3890 	if (!(open_flag & O_EXCL)) {
3891 		spin_lock(&inode->i_lock);
3892 		inode->i_state |= I_LINKABLE;
3893 		spin_unlock(&inode->i_lock);
3894 	}
3895 	security_inode_post_create_tmpfile(idmap, inode);
3896 	return 0;
3897 }
3898 
3899 /**
3900  * kernel_tmpfile_open - open a tmpfile for kernel internal use
3901  * @idmap:	idmap of the mount the inode was found from
3902  * @parentpath:	path of the base directory
3903  * @mode:	mode of the new tmpfile
3904  * @open_flag:	flags
3905  * @cred:	credentials for open
3906  *
3907  * Create and open a temporary file.  The file is not accounted in nr_files,
3908  * hence this is only for kernel internal use, and must not be installed into
3909  * file tables or such.
3910  */
3911 struct file *kernel_tmpfile_open(struct mnt_idmap *idmap,
3912 				 const struct path *parentpath,
3913 				 umode_t mode, int open_flag,
3914 				 const struct cred *cred)
3915 {
3916 	struct file *file;
3917 	int error;
3918 
3919 	file = alloc_empty_file_noaccount(open_flag, cred);
3920 	if (IS_ERR(file))
3921 		return file;
3922 
3923 	error = vfs_tmpfile(idmap, parentpath, file, mode);
3924 	if (error) {
3925 		fput(file);
3926 		file = ERR_PTR(error);
3927 	}
3928 	return file;
3929 }
3930 EXPORT_SYMBOL(kernel_tmpfile_open);
3931 
3932 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3933 		const struct open_flags *op,
3934 		struct file *file)
3935 {
3936 	struct path path;
3937 	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3938 
3939 	if (unlikely(error))
3940 		return error;
3941 	error = mnt_want_write(path.mnt);
3942 	if (unlikely(error))
3943 		goto out;
3944 	error = vfs_tmpfile(mnt_idmap(path.mnt), &path, file, op->mode);
3945 	if (error)
3946 		goto out2;
3947 	audit_inode(nd->name, file->f_path.dentry, 0);
3948 out2:
3949 	mnt_drop_write(path.mnt);
3950 out:
3951 	path_put(&path);
3952 	return error;
3953 }
3954 
3955 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3956 {
3957 	struct path path;
3958 	int error = path_lookupat(nd, flags, &path);
3959 	if (!error) {
3960 		audit_inode(nd->name, path.dentry, 0);
3961 		error = vfs_open(&path, file);
3962 		path_put(&path);
3963 	}
3964 	return error;
3965 }
3966 
3967 static struct file *path_openat(struct nameidata *nd,
3968 			const struct open_flags *op, unsigned flags)
3969 {
3970 	struct file *file;
3971 	int error;
3972 
3973 	file = alloc_empty_file(op->open_flag, current_cred());
3974 	if (IS_ERR(file))
3975 		return file;
3976 
3977 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3978 		error = do_tmpfile(nd, flags, op, file);
3979 	} else if (unlikely(file->f_flags & O_PATH)) {
3980 		error = do_o_path(nd, flags, file);
3981 	} else {
3982 		const char *s = path_init(nd, flags);
3983 		while (!(error = link_path_walk(s, nd)) &&
3984 		       (s = open_last_lookups(nd, file, op)) != NULL)
3985 			;
3986 		if (!error)
3987 			error = do_open(nd, file, op);
3988 		terminate_walk(nd);
3989 	}
3990 	if (likely(!error)) {
3991 		if (likely(file->f_mode & FMODE_OPENED))
3992 			return file;
3993 		WARN_ON(1);
3994 		error = -EINVAL;
3995 	}
3996 	fput(file);
3997 	if (error == -EOPENSTALE) {
3998 		if (flags & LOOKUP_RCU)
3999 			error = -ECHILD;
4000 		else
4001 			error = -ESTALE;
4002 	}
4003 	return ERR_PTR(error);
4004 }
4005 
4006 struct file *do_filp_open(int dfd, struct filename *pathname,
4007 		const struct open_flags *op)
4008 {
4009 	struct nameidata nd;
4010 	int flags = op->lookup_flags;
4011 	struct file *filp;
4012 
4013 	set_nameidata(&nd, dfd, pathname, NULL);
4014 	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
4015 	if (unlikely(filp == ERR_PTR(-ECHILD)))
4016 		filp = path_openat(&nd, op, flags);
4017 	if (unlikely(filp == ERR_PTR(-ESTALE)))
4018 		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
4019 	restore_nameidata();
4020 	return filp;
4021 }
4022 
4023 struct file *do_file_open_root(const struct path *root,
4024 		const char *name, const struct open_flags *op)
4025 {
4026 	struct nameidata nd;
4027 	struct file *file;
4028 	struct filename *filename;
4029 	int flags = op->lookup_flags;
4030 
4031 	if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN)
4032 		return ERR_PTR(-ELOOP);
4033 
4034 	filename = getname_kernel(name);
4035 	if (IS_ERR(filename))
4036 		return ERR_CAST(filename);
4037 
4038 	set_nameidata(&nd, -1, filename, root);
4039 	file = path_openat(&nd, op, flags | LOOKUP_RCU);
4040 	if (unlikely(file == ERR_PTR(-ECHILD)))
4041 		file = path_openat(&nd, op, flags);
4042 	if (unlikely(file == ERR_PTR(-ESTALE)))
4043 		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
4044 	restore_nameidata();
4045 	putname(filename);
4046 	return file;
4047 }
4048 
4049 static struct dentry *filename_create(int dfd, struct filename *name,
4050 				      struct path *path, unsigned int lookup_flags)
4051 {
4052 	struct dentry *dentry = ERR_PTR(-EEXIST);
4053 	struct qstr last;
4054 	bool want_dir = lookup_flags & LOOKUP_DIRECTORY;
4055 	unsigned int reval_flag = lookup_flags & LOOKUP_REVAL;
4056 	unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL;
4057 	int type;
4058 	int err2;
4059 	int error;
4060 
4061 	error = filename_parentat(dfd, name, reval_flag, path, &last, &type);
4062 	if (error)
4063 		return ERR_PTR(error);
4064 
4065 	/*
4066 	 * Yucky last component or no last component at all?
4067 	 * (foo/., foo/.., /////)
4068 	 */
4069 	if (unlikely(type != LAST_NORM))
4070 		goto out;
4071 
4072 	/* don't fail immediately if it's r/o, at least try to report other errors */
4073 	err2 = mnt_want_write(path->mnt);
4074 	/*
4075 	 * Do the final lookup.  Suppress 'create' if there is a trailing
4076 	 * '/', and a directory wasn't requested.
4077 	 */
4078 	if (last.name[last.len] && !want_dir)
4079 		create_flags = 0;
4080 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
4081 	dentry = lookup_one_qstr_excl(&last, path->dentry,
4082 				      reval_flag | create_flags);
4083 	if (IS_ERR(dentry))
4084 		goto unlock;
4085 
4086 	error = -EEXIST;
4087 	if (d_is_positive(dentry))
4088 		goto fail;
4089 
4090 	/*
4091 	 * Special case - lookup gave negative, but... we had foo/bar/
4092 	 * From the vfs_mknod() POV we just have a negative dentry -
4093 	 * all is fine. Let's be bastards - you had / on the end, you've
4094 	 * been asking for (non-existent) directory. -ENOENT for you.
4095 	 */
4096 	if (unlikely(!create_flags)) {
4097 		error = -ENOENT;
4098 		goto fail;
4099 	}
4100 	if (unlikely(err2)) {
4101 		error = err2;
4102 		goto fail;
4103 	}
4104 	return dentry;
4105 fail:
4106 	dput(dentry);
4107 	dentry = ERR_PTR(error);
4108 unlock:
4109 	inode_unlock(path->dentry->d_inode);
4110 	if (!err2)
4111 		mnt_drop_write(path->mnt);
4112 out:
4113 	path_put(path);
4114 	return dentry;
4115 }
4116 
4117 struct dentry *kern_path_create(int dfd, const char *pathname,
4118 				struct path *path, unsigned int lookup_flags)
4119 {
4120 	struct filename *filename = getname_kernel(pathname);
4121 	struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
4122 
4123 	putname(filename);
4124 	return res;
4125 }
4126 EXPORT_SYMBOL(kern_path_create);
4127 
4128 void done_path_create(struct path *path, struct dentry *dentry)
4129 {
4130 	dput(dentry);
4131 	inode_unlock(path->dentry->d_inode);
4132 	mnt_drop_write(path->mnt);
4133 	path_put(path);
4134 }
4135 EXPORT_SYMBOL(done_path_create);
4136 
4137 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
4138 				struct path *path, unsigned int lookup_flags)
4139 {
4140 	struct filename *filename = getname(pathname);
4141 	struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
4142 
4143 	putname(filename);
4144 	return res;
4145 }
4146 EXPORT_SYMBOL(user_path_create);
4147 
4148 /**
4149  * vfs_mknod - create device node or file
4150  * @idmap:	idmap of the mount the inode was found from
4151  * @dir:	inode of the parent directory
4152  * @dentry:	dentry of the child device node
4153  * @mode:	mode of the child device node
4154  * @dev:	device number of device to create
4155  *
4156  * Create a device node or file.
4157  *
4158  * If the inode has been found through an idmapped mount the idmap of
4159  * the vfsmount must be passed through @idmap. This function will then take
4160  * care to map the inode according to @idmap before checking permissions.
4161  * On non-idmapped mounts or if permission checking is to be performed on the
4162  * raw inode simply pass @nop_mnt_idmap.
4163  */
4164 int vfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
4165 	      struct dentry *dentry, umode_t mode, dev_t dev)
4166 {
4167 	bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
4168 	int error = may_create(idmap, dir, dentry);
4169 
4170 	if (error)
4171 		return error;
4172 
4173 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
4174 	    !capable(CAP_MKNOD))
4175 		return -EPERM;
4176 
4177 	if (!dir->i_op->mknod)
4178 		return -EPERM;
4179 
4180 	mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
4181 	error = devcgroup_inode_mknod(mode, dev);
4182 	if (error)
4183 		return error;
4184 
4185 	error = security_inode_mknod(dir, dentry, mode, dev);
4186 	if (error)
4187 		return error;
4188 
4189 	error = dir->i_op->mknod(idmap, dir, dentry, mode, dev);
4190 	if (!error)
4191 		fsnotify_create(dir, dentry);
4192 	return error;
4193 }
4194 EXPORT_SYMBOL(vfs_mknod);
4195 
4196 static int may_mknod(umode_t mode)
4197 {
4198 	switch (mode & S_IFMT) {
4199 	case S_IFREG:
4200 	case S_IFCHR:
4201 	case S_IFBLK:
4202 	case S_IFIFO:
4203 	case S_IFSOCK:
4204 	case 0: /* zero mode translates to S_IFREG */
4205 		return 0;
4206 	case S_IFDIR:
4207 		return -EPERM;
4208 	default:
4209 		return -EINVAL;
4210 	}
4211 }
4212 
4213 static int do_mknodat(int dfd, struct filename *name, umode_t mode,
4214 		unsigned int dev)
4215 {
4216 	struct mnt_idmap *idmap;
4217 	struct dentry *dentry;
4218 	struct path path;
4219 	int error;
4220 	unsigned int lookup_flags = 0;
4221 
4222 	error = may_mknod(mode);
4223 	if (error)
4224 		goto out1;
4225 retry:
4226 	dentry = filename_create(dfd, name, &path, lookup_flags);
4227 	error = PTR_ERR(dentry);
4228 	if (IS_ERR(dentry))
4229 		goto out1;
4230 
4231 	error = security_path_mknod(&path, dentry,
4232 			mode_strip_umask(path.dentry->d_inode, mode), dev);
4233 	if (error)
4234 		goto out2;
4235 
4236 	idmap = mnt_idmap(path.mnt);
4237 	switch (mode & S_IFMT) {
4238 		case 0: case S_IFREG:
4239 			error = vfs_create(idmap, path.dentry->d_inode,
4240 					   dentry, mode, true);
4241 			if (!error)
4242 				security_path_post_mknod(idmap, dentry);
4243 			break;
4244 		case S_IFCHR: case S_IFBLK:
4245 			error = vfs_mknod(idmap, path.dentry->d_inode,
4246 					  dentry, mode, new_decode_dev(dev));
4247 			break;
4248 		case S_IFIFO: case S_IFSOCK:
4249 			error = vfs_mknod(idmap, path.dentry->d_inode,
4250 					  dentry, mode, 0);
4251 			break;
4252 	}
4253 out2:
4254 	done_path_create(&path, dentry);
4255 	if (retry_estale(error, lookup_flags)) {
4256 		lookup_flags |= LOOKUP_REVAL;
4257 		goto retry;
4258 	}
4259 out1:
4260 	putname(name);
4261 	return error;
4262 }
4263 
4264 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
4265 		unsigned int, dev)
4266 {
4267 	return do_mknodat(dfd, getname(filename), mode, dev);
4268 }
4269 
4270 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
4271 {
4272 	return do_mknodat(AT_FDCWD, getname(filename), mode, dev);
4273 }
4274 
4275 /**
4276  * vfs_mkdir - create directory
4277  * @idmap:	idmap of the mount the inode was found from
4278  * @dir:	inode of the parent directory
4279  * @dentry:	dentry of the child directory
4280  * @mode:	mode of the child directory
4281  *
4282  * Create a directory.
4283  *
4284  * If the inode has been found through an idmapped mount the idmap of
4285  * the vfsmount must be passed through @idmap. This function will then take
4286  * care to map the inode according to @idmap before checking permissions.
4287  * On non-idmapped mounts or if permission checking is to be performed on the
4288  * raw inode simply pass @nop_mnt_idmap.
4289  */
4290 int vfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
4291 	      struct dentry *dentry, umode_t mode)
4292 {
4293 	int error;
4294 	unsigned max_links = dir->i_sb->s_max_links;
4295 
4296 	error = may_create(idmap, dir, dentry);
4297 	if (error)
4298 		return error;
4299 
4300 	if (!dir->i_op->mkdir)
4301 		return -EPERM;
4302 
4303 	mode = vfs_prepare_mode(idmap, dir, mode, S_IRWXUGO | S_ISVTX, 0);
4304 	error = security_inode_mkdir(dir, dentry, mode);
4305 	if (error)
4306 		return error;
4307 
4308 	if (max_links && dir->i_nlink >= max_links)
4309 		return -EMLINK;
4310 
4311 	error = dir->i_op->mkdir(idmap, dir, dentry, mode);
4312 	if (!error)
4313 		fsnotify_mkdir(dir, dentry);
4314 	return error;
4315 }
4316 EXPORT_SYMBOL(vfs_mkdir);
4317 
4318 int do_mkdirat(int dfd, struct filename *name, umode_t mode)
4319 {
4320 	struct dentry *dentry;
4321 	struct path path;
4322 	int error;
4323 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
4324 
4325 retry:
4326 	dentry = filename_create(dfd, name, &path, lookup_flags);
4327 	error = PTR_ERR(dentry);
4328 	if (IS_ERR(dentry))
4329 		goto out_putname;
4330 
4331 	error = security_path_mkdir(&path, dentry,
4332 			mode_strip_umask(path.dentry->d_inode, mode));
4333 	if (!error) {
4334 		error = vfs_mkdir(mnt_idmap(path.mnt), path.dentry->d_inode,
4335 				  dentry, mode);
4336 	}
4337 	done_path_create(&path, dentry);
4338 	if (retry_estale(error, lookup_flags)) {
4339 		lookup_flags |= LOOKUP_REVAL;
4340 		goto retry;
4341 	}
4342 out_putname:
4343 	putname(name);
4344 	return error;
4345 }
4346 
4347 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
4348 {
4349 	return do_mkdirat(dfd, getname(pathname), mode);
4350 }
4351 
4352 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
4353 {
4354 	return do_mkdirat(AT_FDCWD, getname(pathname), mode);
4355 }
4356 
4357 /**
4358  * vfs_rmdir - remove directory
4359  * @idmap:	idmap of the mount the inode was found from
4360  * @dir:	inode of the parent directory
4361  * @dentry:	dentry of the child directory
4362  *
4363  * Remove a directory.
4364  *
4365  * If the inode has been found through an idmapped mount the idmap of
4366  * the vfsmount must be passed through @idmap. This function will then take
4367  * care to map the inode according to @idmap before checking permissions.
4368  * On non-idmapped mounts or if permission checking is to be performed on the
4369  * raw inode simply pass @nop_mnt_idmap.
4370  */
4371 int vfs_rmdir(struct mnt_idmap *idmap, struct inode *dir,
4372 		     struct dentry *dentry)
4373 {
4374 	int error = may_delete(idmap, dir, dentry, 1);
4375 
4376 	if (error)
4377 		return error;
4378 
4379 	if (!dir->i_op->rmdir)
4380 		return -EPERM;
4381 
4382 	dget(dentry);
4383 	inode_lock(dentry->d_inode);
4384 
4385 	error = -EBUSY;
4386 	if (is_local_mountpoint(dentry) ||
4387 	    (dentry->d_inode->i_flags & S_KERNEL_FILE))
4388 		goto out;
4389 
4390 	error = security_inode_rmdir(dir, dentry);
4391 	if (error)
4392 		goto out;
4393 
4394 	error = dir->i_op->rmdir(dir, dentry);
4395 	if (error)
4396 		goto out;
4397 
4398 	shrink_dcache_parent(dentry);
4399 	dentry->d_inode->i_flags |= S_DEAD;
4400 	dont_mount(dentry);
4401 	detach_mounts(dentry);
4402 
4403 out:
4404 	inode_unlock(dentry->d_inode);
4405 	dput(dentry);
4406 	if (!error)
4407 		d_delete_notify(dir, dentry);
4408 	return error;
4409 }
4410 EXPORT_SYMBOL(vfs_rmdir);
4411 
4412 int do_rmdir(int dfd, struct filename *name)
4413 {
4414 	int error;
4415 	struct dentry *dentry;
4416 	struct path path;
4417 	struct qstr last;
4418 	int type;
4419 	unsigned int lookup_flags = 0;
4420 retry:
4421 	error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4422 	if (error)
4423 		goto exit1;
4424 
4425 	switch (type) {
4426 	case LAST_DOTDOT:
4427 		error = -ENOTEMPTY;
4428 		goto exit2;
4429 	case LAST_DOT:
4430 		error = -EINVAL;
4431 		goto exit2;
4432 	case LAST_ROOT:
4433 		error = -EBUSY;
4434 		goto exit2;
4435 	}
4436 
4437 	error = mnt_want_write(path.mnt);
4438 	if (error)
4439 		goto exit2;
4440 
4441 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4442 	dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4443 	error = PTR_ERR(dentry);
4444 	if (IS_ERR(dentry))
4445 		goto exit3;
4446 	if (!dentry->d_inode) {
4447 		error = -ENOENT;
4448 		goto exit4;
4449 	}
4450 	error = security_path_rmdir(&path, dentry);
4451 	if (error)
4452 		goto exit4;
4453 	error = vfs_rmdir(mnt_idmap(path.mnt), path.dentry->d_inode, dentry);
4454 exit4:
4455 	dput(dentry);
4456 exit3:
4457 	inode_unlock(path.dentry->d_inode);
4458 	mnt_drop_write(path.mnt);
4459 exit2:
4460 	path_put(&path);
4461 	if (retry_estale(error, lookup_flags)) {
4462 		lookup_flags |= LOOKUP_REVAL;
4463 		goto retry;
4464 	}
4465 exit1:
4466 	putname(name);
4467 	return error;
4468 }
4469 
4470 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
4471 {
4472 	return do_rmdir(AT_FDCWD, getname(pathname));
4473 }
4474 
4475 /**
4476  * vfs_unlink - unlink a filesystem object
4477  * @idmap:	idmap of the mount the inode was found from
4478  * @dir:	parent directory
4479  * @dentry:	victim
4480  * @delegated_inode: returns victim inode, if the inode is delegated.
4481  *
4482  * The caller must hold dir->i_mutex.
4483  *
4484  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
4485  * return a reference to the inode in delegated_inode.  The caller
4486  * should then break the delegation on that inode and retry.  Because
4487  * breaking a delegation may take a long time, the caller should drop
4488  * dir->i_mutex before doing so.
4489  *
4490  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4491  * be appropriate for callers that expect the underlying filesystem not
4492  * to be NFS exported.
4493  *
4494  * If the inode has been found through an idmapped mount the idmap of
4495  * the vfsmount must be passed through @idmap. This function will then take
4496  * care to map the inode according to @idmap before checking permissions.
4497  * On non-idmapped mounts or if permission checking is to be performed on the
4498  * raw inode simply pass @nop_mnt_idmap.
4499  */
4500 int vfs_unlink(struct mnt_idmap *idmap, struct inode *dir,
4501 	       struct dentry *dentry, struct inode **delegated_inode)
4502 {
4503 	struct inode *target = dentry->d_inode;
4504 	int error = may_delete(idmap, dir, dentry, 0);
4505 
4506 	if (error)
4507 		return error;
4508 
4509 	if (!dir->i_op->unlink)
4510 		return -EPERM;
4511 
4512 	inode_lock(target);
4513 	if (IS_SWAPFILE(target))
4514 		error = -EPERM;
4515 	else if (is_local_mountpoint(dentry))
4516 		error = -EBUSY;
4517 	else {
4518 		error = security_inode_unlink(dir, dentry);
4519 		if (!error) {
4520 			error = try_break_deleg(target, delegated_inode);
4521 			if (error)
4522 				goto out;
4523 			error = dir->i_op->unlink(dir, dentry);
4524 			if (!error) {
4525 				dont_mount(dentry);
4526 				detach_mounts(dentry);
4527 			}
4528 		}
4529 	}
4530 out:
4531 	inode_unlock(target);
4532 
4533 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
4534 	if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) {
4535 		fsnotify_unlink(dir, dentry);
4536 	} else if (!error) {
4537 		fsnotify_link_count(target);
4538 		d_delete_notify(dir, dentry);
4539 	}
4540 
4541 	return error;
4542 }
4543 EXPORT_SYMBOL(vfs_unlink);
4544 
4545 /*
4546  * Make sure that the actual truncation of the file will occur outside its
4547  * directory's i_mutex.  Truncate can take a long time if there is a lot of
4548  * writeout happening, and we don't want to prevent access to the directory
4549  * while waiting on the I/O.
4550  */
4551 int do_unlinkat(int dfd, struct filename *name)
4552 {
4553 	int error;
4554 	struct dentry *dentry;
4555 	struct path path;
4556 	struct qstr last;
4557 	int type;
4558 	struct inode *inode = NULL;
4559 	struct inode *delegated_inode = NULL;
4560 	unsigned int lookup_flags = 0;
4561 retry:
4562 	error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4563 	if (error)
4564 		goto exit1;
4565 
4566 	error = -EISDIR;
4567 	if (type != LAST_NORM)
4568 		goto exit2;
4569 
4570 	error = mnt_want_write(path.mnt);
4571 	if (error)
4572 		goto exit2;
4573 retry_deleg:
4574 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4575 	dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4576 	error = PTR_ERR(dentry);
4577 	if (!IS_ERR(dentry)) {
4578 
4579 		/* Why not before? Because we want correct error value */
4580 		if (last.name[last.len] || d_is_negative(dentry))
4581 			goto slashes;
4582 		inode = dentry->d_inode;
4583 		ihold(inode);
4584 		error = security_path_unlink(&path, dentry);
4585 		if (error)
4586 			goto exit3;
4587 		error = vfs_unlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4588 				   dentry, &delegated_inode);
4589 exit3:
4590 		dput(dentry);
4591 	}
4592 	inode_unlock(path.dentry->d_inode);
4593 	if (inode)
4594 		iput(inode);	/* truncate the inode here */
4595 	inode = NULL;
4596 	if (delegated_inode) {
4597 		error = break_deleg_wait(&delegated_inode);
4598 		if (!error)
4599 			goto retry_deleg;
4600 	}
4601 	mnt_drop_write(path.mnt);
4602 exit2:
4603 	path_put(&path);
4604 	if (retry_estale(error, lookup_flags)) {
4605 		lookup_flags |= LOOKUP_REVAL;
4606 		inode = NULL;
4607 		goto retry;
4608 	}
4609 exit1:
4610 	putname(name);
4611 	return error;
4612 
4613 slashes:
4614 	if (d_is_negative(dentry))
4615 		error = -ENOENT;
4616 	else if (d_is_dir(dentry))
4617 		error = -EISDIR;
4618 	else
4619 		error = -ENOTDIR;
4620 	goto exit3;
4621 }
4622 
4623 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4624 {
4625 	if ((flag & ~AT_REMOVEDIR) != 0)
4626 		return -EINVAL;
4627 
4628 	if (flag & AT_REMOVEDIR)
4629 		return do_rmdir(dfd, getname(pathname));
4630 	return do_unlinkat(dfd, getname(pathname));
4631 }
4632 
4633 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4634 {
4635 	return do_unlinkat(AT_FDCWD, getname(pathname));
4636 }
4637 
4638 /**
4639  * vfs_symlink - create symlink
4640  * @idmap:	idmap of the mount the inode was found from
4641  * @dir:	inode of the parent directory
4642  * @dentry:	dentry of the child symlink file
4643  * @oldname:	name of the file to link to
4644  *
4645  * Create a symlink.
4646  *
4647  * If the inode has been found through an idmapped mount the idmap of
4648  * the vfsmount must be passed through @idmap. This function will then take
4649  * care to map the inode according to @idmap before checking permissions.
4650  * On non-idmapped mounts or if permission checking is to be performed on the
4651  * raw inode simply pass @nop_mnt_idmap.
4652  */
4653 int vfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
4654 		struct dentry *dentry, const char *oldname)
4655 {
4656 	int error;
4657 
4658 	error = may_create(idmap, dir, dentry);
4659 	if (error)
4660 		return error;
4661 
4662 	if (!dir->i_op->symlink)
4663 		return -EPERM;
4664 
4665 	error = security_inode_symlink(dir, dentry, oldname);
4666 	if (error)
4667 		return error;
4668 
4669 	error = dir->i_op->symlink(idmap, dir, dentry, oldname);
4670 	if (!error)
4671 		fsnotify_create(dir, dentry);
4672 	return error;
4673 }
4674 EXPORT_SYMBOL(vfs_symlink);
4675 
4676 int do_symlinkat(struct filename *from, int newdfd, struct filename *to)
4677 {
4678 	int error;
4679 	struct dentry *dentry;
4680 	struct path path;
4681 	unsigned int lookup_flags = 0;
4682 
4683 	if (IS_ERR(from)) {
4684 		error = PTR_ERR(from);
4685 		goto out_putnames;
4686 	}
4687 retry:
4688 	dentry = filename_create(newdfd, to, &path, lookup_flags);
4689 	error = PTR_ERR(dentry);
4690 	if (IS_ERR(dentry))
4691 		goto out_putnames;
4692 
4693 	error = security_path_symlink(&path, dentry, from->name);
4694 	if (!error)
4695 		error = vfs_symlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4696 				    dentry, from->name);
4697 	done_path_create(&path, dentry);
4698 	if (retry_estale(error, lookup_flags)) {
4699 		lookup_flags |= LOOKUP_REVAL;
4700 		goto retry;
4701 	}
4702 out_putnames:
4703 	putname(to);
4704 	putname(from);
4705 	return error;
4706 }
4707 
4708 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4709 		int, newdfd, const char __user *, newname)
4710 {
4711 	return do_symlinkat(getname(oldname), newdfd, getname(newname));
4712 }
4713 
4714 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4715 {
4716 	return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname));
4717 }
4718 
4719 /**
4720  * vfs_link - create a new link
4721  * @old_dentry:	object to be linked
4722  * @idmap:	idmap of the mount
4723  * @dir:	new parent
4724  * @new_dentry:	where to create the new link
4725  * @delegated_inode: returns inode needing a delegation break
4726  *
4727  * The caller must hold dir->i_mutex
4728  *
4729  * If vfs_link discovers a delegation on the to-be-linked file in need
4730  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4731  * inode in delegated_inode.  The caller should then break the delegation
4732  * and retry.  Because breaking a delegation may take a long time, the
4733  * caller should drop the i_mutex before doing so.
4734  *
4735  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4736  * be appropriate for callers that expect the underlying filesystem not
4737  * to be NFS exported.
4738  *
4739  * If the inode has been found through an idmapped mount the idmap of
4740  * the vfsmount must be passed through @idmap. This function will then take
4741  * care to map the inode according to @idmap before checking permissions.
4742  * On non-idmapped mounts or if permission checking is to be performed on the
4743  * raw inode simply pass @nop_mnt_idmap.
4744  */
4745 int vfs_link(struct dentry *old_dentry, struct mnt_idmap *idmap,
4746 	     struct inode *dir, struct dentry *new_dentry,
4747 	     struct inode **delegated_inode)
4748 {
4749 	struct inode *inode = old_dentry->d_inode;
4750 	unsigned max_links = dir->i_sb->s_max_links;
4751 	int error;
4752 
4753 	if (!inode)
4754 		return -ENOENT;
4755 
4756 	error = may_create(idmap, dir, new_dentry);
4757 	if (error)
4758 		return error;
4759 
4760 	if (dir->i_sb != inode->i_sb)
4761 		return -EXDEV;
4762 
4763 	/*
4764 	 * A link to an append-only or immutable file cannot be created.
4765 	 */
4766 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4767 		return -EPERM;
4768 	/*
4769 	 * Updating the link count will likely cause i_uid and i_gid to
4770 	 * be writen back improperly if their true value is unknown to
4771 	 * the vfs.
4772 	 */
4773 	if (HAS_UNMAPPED_ID(idmap, inode))
4774 		return -EPERM;
4775 	if (!dir->i_op->link)
4776 		return -EPERM;
4777 	if (S_ISDIR(inode->i_mode))
4778 		return -EPERM;
4779 
4780 	error = security_inode_link(old_dentry, dir, new_dentry);
4781 	if (error)
4782 		return error;
4783 
4784 	inode_lock(inode);
4785 	/* Make sure we don't allow creating hardlink to an unlinked file */
4786 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4787 		error =  -ENOENT;
4788 	else if (max_links && inode->i_nlink >= max_links)
4789 		error = -EMLINK;
4790 	else {
4791 		error = try_break_deleg(inode, delegated_inode);
4792 		if (!error)
4793 			error = dir->i_op->link(old_dentry, dir, new_dentry);
4794 	}
4795 
4796 	if (!error && (inode->i_state & I_LINKABLE)) {
4797 		spin_lock(&inode->i_lock);
4798 		inode->i_state &= ~I_LINKABLE;
4799 		spin_unlock(&inode->i_lock);
4800 	}
4801 	inode_unlock(inode);
4802 	if (!error)
4803 		fsnotify_link(dir, inode, new_dentry);
4804 	return error;
4805 }
4806 EXPORT_SYMBOL(vfs_link);
4807 
4808 /*
4809  * Hardlinks are often used in delicate situations.  We avoid
4810  * security-related surprises by not following symlinks on the
4811  * newname.  --KAB
4812  *
4813  * We don't follow them on the oldname either to be compatible
4814  * with linux 2.0, and to avoid hard-linking to directories
4815  * and other special files.  --ADM
4816  */
4817 int do_linkat(int olddfd, struct filename *old, int newdfd,
4818 	      struct filename *new, int flags)
4819 {
4820 	struct mnt_idmap *idmap;
4821 	struct dentry *new_dentry;
4822 	struct path old_path, new_path;
4823 	struct inode *delegated_inode = NULL;
4824 	int how = 0;
4825 	int error;
4826 
4827 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) {
4828 		error = -EINVAL;
4829 		goto out_putnames;
4830 	}
4831 	/*
4832 	 * To use null names we require CAP_DAC_READ_SEARCH or
4833 	 * that the open-time creds of the dfd matches current.
4834 	 * This ensures that not everyone will be able to create
4835 	 * a hardlink using the passed file descriptor.
4836 	 */
4837 	if (flags & AT_EMPTY_PATH)
4838 		how |= LOOKUP_LINKAT_EMPTY;
4839 
4840 	if (flags & AT_SYMLINK_FOLLOW)
4841 		how |= LOOKUP_FOLLOW;
4842 retry:
4843 	error = filename_lookup(olddfd, old, how, &old_path, NULL);
4844 	if (error)
4845 		goto out_putnames;
4846 
4847 	new_dentry = filename_create(newdfd, new, &new_path,
4848 					(how & LOOKUP_REVAL));
4849 	error = PTR_ERR(new_dentry);
4850 	if (IS_ERR(new_dentry))
4851 		goto out_putpath;
4852 
4853 	error = -EXDEV;
4854 	if (old_path.mnt != new_path.mnt)
4855 		goto out_dput;
4856 	idmap = mnt_idmap(new_path.mnt);
4857 	error = may_linkat(idmap, &old_path);
4858 	if (unlikely(error))
4859 		goto out_dput;
4860 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4861 	if (error)
4862 		goto out_dput;
4863 	error = vfs_link(old_path.dentry, idmap, new_path.dentry->d_inode,
4864 			 new_dentry, &delegated_inode);
4865 out_dput:
4866 	done_path_create(&new_path, new_dentry);
4867 	if (delegated_inode) {
4868 		error = break_deleg_wait(&delegated_inode);
4869 		if (!error) {
4870 			path_put(&old_path);
4871 			goto retry;
4872 		}
4873 	}
4874 	if (retry_estale(error, how)) {
4875 		path_put(&old_path);
4876 		how |= LOOKUP_REVAL;
4877 		goto retry;
4878 	}
4879 out_putpath:
4880 	path_put(&old_path);
4881 out_putnames:
4882 	putname(old);
4883 	putname(new);
4884 
4885 	return error;
4886 }
4887 
4888 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4889 		int, newdfd, const char __user *, newname, int, flags)
4890 {
4891 	return do_linkat(olddfd, getname_uflags(oldname, flags),
4892 		newdfd, getname(newname), flags);
4893 }
4894 
4895 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4896 {
4897 	return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0);
4898 }
4899 
4900 /**
4901  * vfs_rename - rename a filesystem object
4902  * @rd:		pointer to &struct renamedata info
4903  *
4904  * The caller must hold multiple mutexes--see lock_rename()).
4905  *
4906  * If vfs_rename discovers a delegation in need of breaking at either
4907  * the source or destination, it will return -EWOULDBLOCK and return a
4908  * reference to the inode in delegated_inode.  The caller should then
4909  * break the delegation and retry.  Because breaking a delegation may
4910  * take a long time, the caller should drop all locks before doing
4911  * so.
4912  *
4913  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4914  * be appropriate for callers that expect the underlying filesystem not
4915  * to be NFS exported.
4916  *
4917  * The worst of all namespace operations - renaming directory. "Perverted"
4918  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4919  * Problems:
4920  *
4921  *	a) we can get into loop creation.
4922  *	b) race potential - two innocent renames can create a loop together.
4923  *	   That's where 4.4BSD screws up. Current fix: serialization on
4924  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4925  *	   story.
4926  *	c) we may have to lock up to _four_ objects - parents and victim (if it exists),
4927  *	   and source (if it's a non-directory or a subdirectory that moves to
4928  *	   different parent).
4929  *	   And that - after we got ->i_mutex on parents (until then we don't know
4930  *	   whether the target exists).  Solution: try to be smart with locking
4931  *	   order for inodes.  We rely on the fact that tree topology may change
4932  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4933  *	   move will be locked.  Thus we can rank directories by the tree
4934  *	   (ancestors first) and rank all non-directories after them.
4935  *	   That works since everybody except rename does "lock parent, lookup,
4936  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4937  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4938  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4939  *	   we'd better make sure that there's no link(2) for them.
4940  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4941  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4942  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4943  *	   ->i_mutex on parents, which works but leads to some truly excessive
4944  *	   locking].
4945  */
4946 int vfs_rename(struct renamedata *rd)
4947 {
4948 	int error;
4949 	struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir;
4950 	struct dentry *old_dentry = rd->old_dentry;
4951 	struct dentry *new_dentry = rd->new_dentry;
4952 	struct inode **delegated_inode = rd->delegated_inode;
4953 	unsigned int flags = rd->flags;
4954 	bool is_dir = d_is_dir(old_dentry);
4955 	struct inode *source = old_dentry->d_inode;
4956 	struct inode *target = new_dentry->d_inode;
4957 	bool new_is_dir = false;
4958 	unsigned max_links = new_dir->i_sb->s_max_links;
4959 	struct name_snapshot old_name;
4960 	bool lock_old_subdir, lock_new_subdir;
4961 
4962 	if (source == target)
4963 		return 0;
4964 
4965 	error = may_delete(rd->old_mnt_idmap, old_dir, old_dentry, is_dir);
4966 	if (error)
4967 		return error;
4968 
4969 	if (!target) {
4970 		error = may_create(rd->new_mnt_idmap, new_dir, new_dentry);
4971 	} else {
4972 		new_is_dir = d_is_dir(new_dentry);
4973 
4974 		if (!(flags & RENAME_EXCHANGE))
4975 			error = may_delete(rd->new_mnt_idmap, new_dir,
4976 					   new_dentry, is_dir);
4977 		else
4978 			error = may_delete(rd->new_mnt_idmap, new_dir,
4979 					   new_dentry, new_is_dir);
4980 	}
4981 	if (error)
4982 		return error;
4983 
4984 	if (!old_dir->i_op->rename)
4985 		return -EPERM;
4986 
4987 	/*
4988 	 * If we are going to change the parent - check write permissions,
4989 	 * we'll need to flip '..'.
4990 	 */
4991 	if (new_dir != old_dir) {
4992 		if (is_dir) {
4993 			error = inode_permission(rd->old_mnt_idmap, source,
4994 						 MAY_WRITE);
4995 			if (error)
4996 				return error;
4997 		}
4998 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4999 			error = inode_permission(rd->new_mnt_idmap, target,
5000 						 MAY_WRITE);
5001 			if (error)
5002 				return error;
5003 		}
5004 	}
5005 
5006 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
5007 				      flags);
5008 	if (error)
5009 		return error;
5010 
5011 	take_dentry_name_snapshot(&old_name, old_dentry);
5012 	dget(new_dentry);
5013 	/*
5014 	 * Lock children.
5015 	 * The source subdirectory needs to be locked on cross-directory
5016 	 * rename or cross-directory exchange since its parent changes.
5017 	 * The target subdirectory needs to be locked on cross-directory
5018 	 * exchange due to parent change and on any rename due to becoming
5019 	 * a victim.
5020 	 * Non-directories need locking in all cases (for NFS reasons);
5021 	 * they get locked after any subdirectories (in inode address order).
5022 	 *
5023 	 * NOTE: WE ONLY LOCK UNRELATED DIRECTORIES IN CROSS-DIRECTORY CASE.
5024 	 * NEVER, EVER DO THAT WITHOUT ->s_vfs_rename_mutex.
5025 	 */
5026 	lock_old_subdir = new_dir != old_dir;
5027 	lock_new_subdir = new_dir != old_dir || !(flags & RENAME_EXCHANGE);
5028 	if (is_dir) {
5029 		if (lock_old_subdir)
5030 			inode_lock_nested(source, I_MUTEX_CHILD);
5031 		if (target && (!new_is_dir || lock_new_subdir))
5032 			inode_lock(target);
5033 	} else if (new_is_dir) {
5034 		if (lock_new_subdir)
5035 			inode_lock_nested(target, I_MUTEX_CHILD);
5036 		inode_lock(source);
5037 	} else {
5038 		lock_two_nondirectories(source, target);
5039 	}
5040 
5041 	error = -EPERM;
5042 	if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target)))
5043 		goto out;
5044 
5045 	error = -EBUSY;
5046 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
5047 		goto out;
5048 
5049 	if (max_links && new_dir != old_dir) {
5050 		error = -EMLINK;
5051 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
5052 			goto out;
5053 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
5054 		    old_dir->i_nlink >= max_links)
5055 			goto out;
5056 	}
5057 	if (!is_dir) {
5058 		error = try_break_deleg(source, delegated_inode);
5059 		if (error)
5060 			goto out;
5061 	}
5062 	if (target && !new_is_dir) {
5063 		error = try_break_deleg(target, delegated_inode);
5064 		if (error)
5065 			goto out;
5066 	}
5067 	error = old_dir->i_op->rename(rd->new_mnt_idmap, old_dir, old_dentry,
5068 				      new_dir, new_dentry, flags);
5069 	if (error)
5070 		goto out;
5071 
5072 	if (!(flags & RENAME_EXCHANGE) && target) {
5073 		if (is_dir) {
5074 			shrink_dcache_parent(new_dentry);
5075 			target->i_flags |= S_DEAD;
5076 		}
5077 		dont_mount(new_dentry);
5078 		detach_mounts(new_dentry);
5079 	}
5080 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
5081 		if (!(flags & RENAME_EXCHANGE))
5082 			d_move(old_dentry, new_dentry);
5083 		else
5084 			d_exchange(old_dentry, new_dentry);
5085 	}
5086 out:
5087 	if (!is_dir || lock_old_subdir)
5088 		inode_unlock(source);
5089 	if (target && (!new_is_dir || lock_new_subdir))
5090 		inode_unlock(target);
5091 	dput(new_dentry);
5092 	if (!error) {
5093 		fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
5094 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
5095 		if (flags & RENAME_EXCHANGE) {
5096 			fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
5097 				      new_is_dir, NULL, new_dentry);
5098 		}
5099 	}
5100 	release_dentry_name_snapshot(&old_name);
5101 
5102 	return error;
5103 }
5104 EXPORT_SYMBOL(vfs_rename);
5105 
5106 int do_renameat2(int olddfd, struct filename *from, int newdfd,
5107 		 struct filename *to, unsigned int flags)
5108 {
5109 	struct renamedata rd;
5110 	struct dentry *old_dentry, *new_dentry;
5111 	struct dentry *trap;
5112 	struct path old_path, new_path;
5113 	struct qstr old_last, new_last;
5114 	int old_type, new_type;
5115 	struct inode *delegated_inode = NULL;
5116 	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
5117 	bool should_retry = false;
5118 	int error = -EINVAL;
5119 
5120 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
5121 		goto put_names;
5122 
5123 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
5124 	    (flags & RENAME_EXCHANGE))
5125 		goto put_names;
5126 
5127 	if (flags & RENAME_EXCHANGE)
5128 		target_flags = 0;
5129 
5130 retry:
5131 	error = filename_parentat(olddfd, from, lookup_flags, &old_path,
5132 				  &old_last, &old_type);
5133 	if (error)
5134 		goto put_names;
5135 
5136 	error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
5137 				  &new_type);
5138 	if (error)
5139 		goto exit1;
5140 
5141 	error = -EXDEV;
5142 	if (old_path.mnt != new_path.mnt)
5143 		goto exit2;
5144 
5145 	error = -EBUSY;
5146 	if (old_type != LAST_NORM)
5147 		goto exit2;
5148 
5149 	if (flags & RENAME_NOREPLACE)
5150 		error = -EEXIST;
5151 	if (new_type != LAST_NORM)
5152 		goto exit2;
5153 
5154 	error = mnt_want_write(old_path.mnt);
5155 	if (error)
5156 		goto exit2;
5157 
5158 retry_deleg:
5159 	trap = lock_rename(new_path.dentry, old_path.dentry);
5160 	if (IS_ERR(trap)) {
5161 		error = PTR_ERR(trap);
5162 		goto exit_lock_rename;
5163 	}
5164 
5165 	old_dentry = lookup_one_qstr_excl(&old_last, old_path.dentry,
5166 					  lookup_flags);
5167 	error = PTR_ERR(old_dentry);
5168 	if (IS_ERR(old_dentry))
5169 		goto exit3;
5170 	/* source must exist */
5171 	error = -ENOENT;
5172 	if (d_is_negative(old_dentry))
5173 		goto exit4;
5174 	new_dentry = lookup_one_qstr_excl(&new_last, new_path.dentry,
5175 					  lookup_flags | target_flags);
5176 	error = PTR_ERR(new_dentry);
5177 	if (IS_ERR(new_dentry))
5178 		goto exit4;
5179 	error = -EEXIST;
5180 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
5181 		goto exit5;
5182 	if (flags & RENAME_EXCHANGE) {
5183 		error = -ENOENT;
5184 		if (d_is_negative(new_dentry))
5185 			goto exit5;
5186 
5187 		if (!d_is_dir(new_dentry)) {
5188 			error = -ENOTDIR;
5189 			if (new_last.name[new_last.len])
5190 				goto exit5;
5191 		}
5192 	}
5193 	/* unless the source is a directory trailing slashes give -ENOTDIR */
5194 	if (!d_is_dir(old_dentry)) {
5195 		error = -ENOTDIR;
5196 		if (old_last.name[old_last.len])
5197 			goto exit5;
5198 		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
5199 			goto exit5;
5200 	}
5201 	/* source should not be ancestor of target */
5202 	error = -EINVAL;
5203 	if (old_dentry == trap)
5204 		goto exit5;
5205 	/* target should not be an ancestor of source */
5206 	if (!(flags & RENAME_EXCHANGE))
5207 		error = -ENOTEMPTY;
5208 	if (new_dentry == trap)
5209 		goto exit5;
5210 
5211 	error = security_path_rename(&old_path, old_dentry,
5212 				     &new_path, new_dentry, flags);
5213 	if (error)
5214 		goto exit5;
5215 
5216 	rd.old_dir	   = old_path.dentry->d_inode;
5217 	rd.old_dentry	   = old_dentry;
5218 	rd.old_mnt_idmap   = mnt_idmap(old_path.mnt);
5219 	rd.new_dir	   = new_path.dentry->d_inode;
5220 	rd.new_dentry	   = new_dentry;
5221 	rd.new_mnt_idmap   = mnt_idmap(new_path.mnt);
5222 	rd.delegated_inode = &delegated_inode;
5223 	rd.flags	   = flags;
5224 	error = vfs_rename(&rd);
5225 exit5:
5226 	dput(new_dentry);
5227 exit4:
5228 	dput(old_dentry);
5229 exit3:
5230 	unlock_rename(new_path.dentry, old_path.dentry);
5231 exit_lock_rename:
5232 	if (delegated_inode) {
5233 		error = break_deleg_wait(&delegated_inode);
5234 		if (!error)
5235 			goto retry_deleg;
5236 	}
5237 	mnt_drop_write(old_path.mnt);
5238 exit2:
5239 	if (retry_estale(error, lookup_flags))
5240 		should_retry = true;
5241 	path_put(&new_path);
5242 exit1:
5243 	path_put(&old_path);
5244 	if (should_retry) {
5245 		should_retry = false;
5246 		lookup_flags |= LOOKUP_REVAL;
5247 		goto retry;
5248 	}
5249 put_names:
5250 	putname(from);
5251 	putname(to);
5252 	return error;
5253 }
5254 
5255 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
5256 		int, newdfd, const char __user *, newname, unsigned int, flags)
5257 {
5258 	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5259 				flags);
5260 }
5261 
5262 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
5263 		int, newdfd, const char __user *, newname)
5264 {
5265 	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5266 				0);
5267 }
5268 
5269 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
5270 {
5271 	return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
5272 				getname(newname), 0);
5273 }
5274 
5275 int readlink_copy(char __user *buffer, int buflen, const char *link)
5276 {
5277 	int len = PTR_ERR(link);
5278 	if (IS_ERR(link))
5279 		goto out;
5280 
5281 	len = strlen(link);
5282 	if (len > (unsigned) buflen)
5283 		len = buflen;
5284 	if (copy_to_user(buffer, link, len))
5285 		len = -EFAULT;
5286 out:
5287 	return len;
5288 }
5289 
5290 /**
5291  * vfs_readlink - copy symlink body into userspace buffer
5292  * @dentry: dentry on which to get symbolic link
5293  * @buffer: user memory pointer
5294  * @buflen: size of buffer
5295  *
5296  * Does not touch atime.  That's up to the caller if necessary
5297  *
5298  * Does not call security hook.
5299  */
5300 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5301 {
5302 	struct inode *inode = d_inode(dentry);
5303 	DEFINE_DELAYED_CALL(done);
5304 	const char *link;
5305 	int res;
5306 
5307 	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
5308 		if (unlikely(inode->i_op->readlink))
5309 			return inode->i_op->readlink(dentry, buffer, buflen);
5310 
5311 		if (!d_is_symlink(dentry))
5312 			return -EINVAL;
5313 
5314 		spin_lock(&inode->i_lock);
5315 		inode->i_opflags |= IOP_DEFAULT_READLINK;
5316 		spin_unlock(&inode->i_lock);
5317 	}
5318 
5319 	link = READ_ONCE(inode->i_link);
5320 	if (!link) {
5321 		link = inode->i_op->get_link(dentry, inode, &done);
5322 		if (IS_ERR(link))
5323 			return PTR_ERR(link);
5324 	}
5325 	res = readlink_copy(buffer, buflen, link);
5326 	do_delayed_call(&done);
5327 	return res;
5328 }
5329 EXPORT_SYMBOL(vfs_readlink);
5330 
5331 /**
5332  * vfs_get_link - get symlink body
5333  * @dentry: dentry on which to get symbolic link
5334  * @done: caller needs to free returned data with this
5335  *
5336  * Calls security hook and i_op->get_link() on the supplied inode.
5337  *
5338  * It does not touch atime.  That's up to the caller if necessary.
5339  *
5340  * Does not work on "special" symlinks like /proc/$$/fd/N
5341  */
5342 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
5343 {
5344 	const char *res = ERR_PTR(-EINVAL);
5345 	struct inode *inode = d_inode(dentry);
5346 
5347 	if (d_is_symlink(dentry)) {
5348 		res = ERR_PTR(security_inode_readlink(dentry));
5349 		if (!res)
5350 			res = inode->i_op->get_link(dentry, inode, done);
5351 	}
5352 	return res;
5353 }
5354 EXPORT_SYMBOL(vfs_get_link);
5355 
5356 /* get the link contents into pagecache */
5357 const char *page_get_link(struct dentry *dentry, struct inode *inode,
5358 			  struct delayed_call *callback)
5359 {
5360 	char *kaddr;
5361 	struct page *page;
5362 	struct address_space *mapping = inode->i_mapping;
5363 
5364 	if (!dentry) {
5365 		page = find_get_page(mapping, 0);
5366 		if (!page)
5367 			return ERR_PTR(-ECHILD);
5368 		if (!PageUptodate(page)) {
5369 			put_page(page);
5370 			return ERR_PTR(-ECHILD);
5371 		}
5372 	} else {
5373 		page = read_mapping_page(mapping, 0, NULL);
5374 		if (IS_ERR(page))
5375 			return (char*)page;
5376 	}
5377 	set_delayed_call(callback, page_put_link, page);
5378 	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
5379 	kaddr = page_address(page);
5380 	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
5381 	return kaddr;
5382 }
5383 
5384 EXPORT_SYMBOL(page_get_link);
5385 
5386 void page_put_link(void *arg)
5387 {
5388 	put_page(arg);
5389 }
5390 EXPORT_SYMBOL(page_put_link);
5391 
5392 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5393 {
5394 	DEFINE_DELAYED_CALL(done);
5395 	int res = readlink_copy(buffer, buflen,
5396 				page_get_link(dentry, d_inode(dentry),
5397 					      &done));
5398 	do_delayed_call(&done);
5399 	return res;
5400 }
5401 EXPORT_SYMBOL(page_readlink);
5402 
5403 int page_symlink(struct inode *inode, const char *symname, int len)
5404 {
5405 	struct address_space *mapping = inode->i_mapping;
5406 	const struct address_space_operations *aops = mapping->a_ops;
5407 	bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS);
5408 	struct folio *folio;
5409 	void *fsdata = NULL;
5410 	int err;
5411 	unsigned int flags;
5412 
5413 retry:
5414 	if (nofs)
5415 		flags = memalloc_nofs_save();
5416 	err = aops->write_begin(NULL, mapping, 0, len-1, &folio, &fsdata);
5417 	if (nofs)
5418 		memalloc_nofs_restore(flags);
5419 	if (err)
5420 		goto fail;
5421 
5422 	memcpy(folio_address(folio), symname, len - 1);
5423 
5424 	err = aops->write_end(NULL, mapping, 0, len - 1, len - 1,
5425 						folio, fsdata);
5426 	if (err < 0)
5427 		goto fail;
5428 	if (err < len-1)
5429 		goto retry;
5430 
5431 	mark_inode_dirty(inode);
5432 	return 0;
5433 fail:
5434 	return err;
5435 }
5436 EXPORT_SYMBOL(page_symlink);
5437 
5438 const struct inode_operations page_symlink_inode_operations = {
5439 	.get_link	= page_get_link,
5440 };
5441 EXPORT_SYMBOL(page_symlink_inode_operations);
5442