xref: /linux/fs/namei.c (revision b246a9d2671f4f6cfab3f98199568e0b3028f6e5)
1  /*
2   *  linux/fs/namei.c
3   *
4   *  Copyright (C) 1991, 1992  Linus Torvalds
5   */
6  
7  /*
8   * Some corrections by tytso.
9   */
10  
11  /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12   * lookup logic.
13   */
14  /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15   */
16  
17  #include <linux/init.h>
18  #include <linux/export.h>
19  #include <linux/kernel.h>
20  #include <linux/slab.h>
21  #include <linux/fs.h>
22  #include <linux/namei.h>
23  #include <linux/pagemap.h>
24  #include <linux/fsnotify.h>
25  #include <linux/personality.h>
26  #include <linux/security.h>
27  #include <linux/ima.h>
28  #include <linux/syscalls.h>
29  #include <linux/mount.h>
30  #include <linux/audit.h>
31  #include <linux/capability.h>
32  #include <linux/file.h>
33  #include <linux/fcntl.h>
34  #include <linux/device_cgroup.h>
35  #include <linux/fs_struct.h>
36  #include <linux/posix_acl.h>
37  #include <linux/hash.h>
38  #include <linux/bitops.h>
39  #include <linux/init_task.h>
40  #include <linux/uaccess.h>
41  
42  #include "internal.h"
43  #include "mount.h"
44  
45  /* [Feb-1997 T. Schoebel-Theuer]
46   * Fundamental changes in the pathname lookup mechanisms (namei)
47   * were necessary because of omirr.  The reason is that omirr needs
48   * to know the _real_ pathname, not the user-supplied one, in case
49   * of symlinks (and also when transname replacements occur).
50   *
51   * The new code replaces the old recursive symlink resolution with
52   * an iterative one (in case of non-nested symlink chains).  It does
53   * this with calls to <fs>_follow_link().
54   * As a side effect, dir_namei(), _namei() and follow_link() are now
55   * replaced with a single function lookup_dentry() that can handle all
56   * the special cases of the former code.
57   *
58   * With the new dcache, the pathname is stored at each inode, at least as
59   * long as the refcount of the inode is positive.  As a side effect, the
60   * size of the dcache depends on the inode cache and thus is dynamic.
61   *
62   * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
63   * resolution to correspond with current state of the code.
64   *
65   * Note that the symlink resolution is not *completely* iterative.
66   * There is still a significant amount of tail- and mid- recursion in
67   * the algorithm.  Also, note that <fs>_readlink() is not used in
68   * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
69   * may return different results than <fs>_follow_link().  Many virtual
70   * filesystems (including /proc) exhibit this behavior.
71   */
72  
73  /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
74   * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
75   * and the name already exists in form of a symlink, try to create the new
76   * name indicated by the symlink. The old code always complained that the
77   * name already exists, due to not following the symlink even if its target
78   * is nonexistent.  The new semantics affects also mknod() and link() when
79   * the name is a symlink pointing to a non-existent name.
80   *
81   * I don't know which semantics is the right one, since I have no access
82   * to standards. But I found by trial that HP-UX 9.0 has the full "new"
83   * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
84   * "old" one. Personally, I think the new semantics is much more logical.
85   * Note that "ln old new" where "new" is a symlink pointing to a non-existing
86   * file does succeed in both HP-UX and SunOs, but not in Solaris
87   * and in the old Linux semantics.
88   */
89  
90  /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
91   * semantics.  See the comments in "open_namei" and "do_link" below.
92   *
93   * [10-Sep-98 Alan Modra] Another symlink change.
94   */
95  
96  /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
97   *	inside the path - always follow.
98   *	in the last component in creation/removal/renaming - never follow.
99   *	if LOOKUP_FOLLOW passed - follow.
100   *	if the pathname has trailing slashes - follow.
101   *	otherwise - don't follow.
102   * (applied in that order).
103   *
104   * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
105   * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
106   * During the 2.4 we need to fix the userland stuff depending on it -
107   * hopefully we will be able to get rid of that wart in 2.5. So far only
108   * XEmacs seems to be relying on it...
109   */
110  /*
111   * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
112   * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
113   * any extra contention...
114   */
115  
116  /* In order to reduce some races, while at the same time doing additional
117   * checking and hopefully speeding things up, we copy filenames to the
118   * kernel data space before using them..
119   *
120   * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
121   * PATH_MAX includes the nul terminator --RR.
122   */
123  
124  #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
125  
126  struct filename *
127  getname_flags(const char __user *filename, int flags, int *empty)
128  {
129  	struct filename *result;
130  	char *kname;
131  	int len;
132  
133  	result = audit_reusename(filename);
134  	if (result)
135  		return result;
136  
137  	result = __getname();
138  	if (unlikely(!result))
139  		return ERR_PTR(-ENOMEM);
140  
141  	/*
142  	 * First, try to embed the struct filename inside the names_cache
143  	 * allocation
144  	 */
145  	kname = (char *)result->iname;
146  	result->name = kname;
147  
148  	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
149  	if (unlikely(len < 0)) {
150  		__putname(result);
151  		return ERR_PTR(len);
152  	}
153  
154  	/*
155  	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
156  	 * separate struct filename so we can dedicate the entire
157  	 * names_cache allocation for the pathname, and re-do the copy from
158  	 * userland.
159  	 */
160  	if (unlikely(len == EMBEDDED_NAME_MAX)) {
161  		const size_t size = offsetof(struct filename, iname[1]);
162  		kname = (char *)result;
163  
164  		/*
165  		 * size is chosen that way we to guarantee that
166  		 * result->iname[0] is within the same object and that
167  		 * kname can't be equal to result->iname, no matter what.
168  		 */
169  		result = kzalloc(size, GFP_KERNEL);
170  		if (unlikely(!result)) {
171  			__putname(kname);
172  			return ERR_PTR(-ENOMEM);
173  		}
174  		result->name = kname;
175  		len = strncpy_from_user(kname, filename, PATH_MAX);
176  		if (unlikely(len < 0)) {
177  			__putname(kname);
178  			kfree(result);
179  			return ERR_PTR(len);
180  		}
181  		if (unlikely(len == PATH_MAX)) {
182  			__putname(kname);
183  			kfree(result);
184  			return ERR_PTR(-ENAMETOOLONG);
185  		}
186  	}
187  
188  	result->refcnt = 1;
189  	/* The empty path is special. */
190  	if (unlikely(!len)) {
191  		if (empty)
192  			*empty = 1;
193  		if (!(flags & LOOKUP_EMPTY)) {
194  			putname(result);
195  			return ERR_PTR(-ENOENT);
196  		}
197  	}
198  
199  	result->uptr = filename;
200  	result->aname = NULL;
201  	audit_getname(result);
202  	return result;
203  }
204  
205  struct filename *
206  getname(const char __user * filename)
207  {
208  	return getname_flags(filename, 0, NULL);
209  }
210  
211  struct filename *
212  getname_kernel(const char * filename)
213  {
214  	struct filename *result;
215  	int len = strlen(filename) + 1;
216  
217  	result = __getname();
218  	if (unlikely(!result))
219  		return ERR_PTR(-ENOMEM);
220  
221  	if (len <= EMBEDDED_NAME_MAX) {
222  		result->name = (char *)result->iname;
223  	} else if (len <= PATH_MAX) {
224  		struct filename *tmp;
225  
226  		tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
227  		if (unlikely(!tmp)) {
228  			__putname(result);
229  			return ERR_PTR(-ENOMEM);
230  		}
231  		tmp->name = (char *)result;
232  		result = tmp;
233  	} else {
234  		__putname(result);
235  		return ERR_PTR(-ENAMETOOLONG);
236  	}
237  	memcpy((char *)result->name, filename, len);
238  	result->uptr = NULL;
239  	result->aname = NULL;
240  	result->refcnt = 1;
241  	audit_getname(result);
242  
243  	return result;
244  }
245  
246  void putname(struct filename *name)
247  {
248  	BUG_ON(name->refcnt <= 0);
249  
250  	if (--name->refcnt > 0)
251  		return;
252  
253  	if (name->name != name->iname) {
254  		__putname(name->name);
255  		kfree(name);
256  	} else
257  		__putname(name);
258  }
259  
260  static int check_acl(struct inode *inode, int mask)
261  {
262  #ifdef CONFIG_FS_POSIX_ACL
263  	struct posix_acl *acl;
264  
265  	if (mask & MAY_NOT_BLOCK) {
266  		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
267  	        if (!acl)
268  	                return -EAGAIN;
269  		/* no ->get_acl() calls in RCU mode... */
270  		if (is_uncached_acl(acl))
271  			return -ECHILD;
272  	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
273  	}
274  
275  	acl = get_acl(inode, ACL_TYPE_ACCESS);
276  	if (IS_ERR(acl))
277  		return PTR_ERR(acl);
278  	if (acl) {
279  	        int error = posix_acl_permission(inode, acl, mask);
280  	        posix_acl_release(acl);
281  	        return error;
282  	}
283  #endif
284  
285  	return -EAGAIN;
286  }
287  
288  /*
289   * This does the basic permission checking
290   */
291  static int acl_permission_check(struct inode *inode, int mask)
292  {
293  	unsigned int mode = inode->i_mode;
294  
295  	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
296  		mode >>= 6;
297  	else {
298  		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
299  			int error = check_acl(inode, mask);
300  			if (error != -EAGAIN)
301  				return error;
302  		}
303  
304  		if (in_group_p(inode->i_gid))
305  			mode >>= 3;
306  	}
307  
308  	/*
309  	 * If the DACs are ok we don't need any capability check.
310  	 */
311  	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
312  		return 0;
313  	return -EACCES;
314  }
315  
316  /**
317   * generic_permission -  check for access rights on a Posix-like filesystem
318   * @inode:	inode to check access rights for
319   * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
320   *
321   * Used to check for read/write/execute permissions on a file.
322   * We use "fsuid" for this, letting us set arbitrary permissions
323   * for filesystem access without changing the "normal" uids which
324   * are used for other things.
325   *
326   * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
327   * request cannot be satisfied (eg. requires blocking or too much complexity).
328   * It would then be called again in ref-walk mode.
329   */
330  int generic_permission(struct inode *inode, int mask)
331  {
332  	int ret;
333  
334  	/*
335  	 * Do the basic permission checks.
336  	 */
337  	ret = acl_permission_check(inode, mask);
338  	if (ret != -EACCES)
339  		return ret;
340  
341  	if (S_ISDIR(inode->i_mode)) {
342  		/* DACs are overridable for directories */
343  		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
344  			return 0;
345  		if (!(mask & MAY_WRITE))
346  			if (capable_wrt_inode_uidgid(inode,
347  						     CAP_DAC_READ_SEARCH))
348  				return 0;
349  		return -EACCES;
350  	}
351  	/*
352  	 * Read/write DACs are always overridable.
353  	 * Executable DACs are overridable when there is
354  	 * at least one exec bit set.
355  	 */
356  	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
357  		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
358  			return 0;
359  
360  	/*
361  	 * Searching includes executable on directories, else just read.
362  	 */
363  	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
364  	if (mask == MAY_READ)
365  		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
366  			return 0;
367  
368  	return -EACCES;
369  }
370  EXPORT_SYMBOL(generic_permission);
371  
372  /*
373   * We _really_ want to just do "generic_permission()" without
374   * even looking at the inode->i_op values. So we keep a cache
375   * flag in inode->i_opflags, that says "this has not special
376   * permission function, use the fast case".
377   */
378  static inline int do_inode_permission(struct inode *inode, int mask)
379  {
380  	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
381  		if (likely(inode->i_op->permission))
382  			return inode->i_op->permission(inode, mask);
383  
384  		/* This gets set once for the inode lifetime */
385  		spin_lock(&inode->i_lock);
386  		inode->i_opflags |= IOP_FASTPERM;
387  		spin_unlock(&inode->i_lock);
388  	}
389  	return generic_permission(inode, mask);
390  }
391  
392  /**
393   * __inode_permission - Check for access rights to a given inode
394   * @inode: Inode to check permission on
395   * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
396   *
397   * Check for read/write/execute permissions on an inode.
398   *
399   * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
400   *
401   * This does not check for a read-only file system.  You probably want
402   * inode_permission().
403   */
404  int __inode_permission(struct inode *inode, int mask)
405  {
406  	int retval;
407  
408  	if (unlikely(mask & MAY_WRITE)) {
409  		/*
410  		 * Nobody gets write access to an immutable file.
411  		 */
412  		if (IS_IMMUTABLE(inode))
413  			return -EPERM;
414  
415  		/*
416  		 * Updating mtime will likely cause i_uid and i_gid to be
417  		 * written back improperly if their true value is unknown
418  		 * to the vfs.
419  		 */
420  		if (HAS_UNMAPPED_ID(inode))
421  			return -EACCES;
422  	}
423  
424  	retval = do_inode_permission(inode, mask);
425  	if (retval)
426  		return retval;
427  
428  	retval = devcgroup_inode_permission(inode, mask);
429  	if (retval)
430  		return retval;
431  
432  	return security_inode_permission(inode, mask);
433  }
434  EXPORT_SYMBOL(__inode_permission);
435  
436  /**
437   * sb_permission - Check superblock-level permissions
438   * @sb: Superblock of inode to check permission on
439   * @inode: Inode to check permission on
440   * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
441   *
442   * Separate out file-system wide checks from inode-specific permission checks.
443   */
444  static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
445  {
446  	if (unlikely(mask & MAY_WRITE)) {
447  		umode_t mode = inode->i_mode;
448  
449  		/* Nobody gets write access to a read-only fs. */
450  		if ((sb->s_flags & MS_RDONLY) &&
451  		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
452  			return -EROFS;
453  	}
454  	return 0;
455  }
456  
457  /**
458   * inode_permission - Check for access rights to a given inode
459   * @inode: Inode to check permission on
460   * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
461   *
462   * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
463   * this, letting us set arbitrary permissions for filesystem access without
464   * changing the "normal" UIDs which are used for other things.
465   *
466   * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
467   */
468  int inode_permission(struct inode *inode, int mask)
469  {
470  	int retval;
471  
472  	retval = sb_permission(inode->i_sb, inode, mask);
473  	if (retval)
474  		return retval;
475  	return __inode_permission(inode, mask);
476  }
477  EXPORT_SYMBOL(inode_permission);
478  
479  /**
480   * path_get - get a reference to a path
481   * @path: path to get the reference to
482   *
483   * Given a path increment the reference count to the dentry and the vfsmount.
484   */
485  void path_get(const struct path *path)
486  {
487  	mntget(path->mnt);
488  	dget(path->dentry);
489  }
490  EXPORT_SYMBOL(path_get);
491  
492  /**
493   * path_put - put a reference to a path
494   * @path: path to put the reference to
495   *
496   * Given a path decrement the reference count to the dentry and the vfsmount.
497   */
498  void path_put(const struct path *path)
499  {
500  	dput(path->dentry);
501  	mntput(path->mnt);
502  }
503  EXPORT_SYMBOL(path_put);
504  
505  #define EMBEDDED_LEVELS 2
506  struct nameidata {
507  	struct path	path;
508  	struct qstr	last;
509  	struct path	root;
510  	struct inode	*inode; /* path.dentry.d_inode */
511  	unsigned int	flags;
512  	unsigned	seq, m_seq;
513  	int		last_type;
514  	unsigned	depth;
515  	int		total_link_count;
516  	struct saved {
517  		struct path link;
518  		struct delayed_call done;
519  		const char *name;
520  		unsigned seq;
521  	} *stack, internal[EMBEDDED_LEVELS];
522  	struct filename	*name;
523  	struct nameidata *saved;
524  	struct inode	*link_inode;
525  	unsigned	root_seq;
526  	int		dfd;
527  };
528  
529  static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
530  {
531  	struct nameidata *old = current->nameidata;
532  	p->stack = p->internal;
533  	p->dfd = dfd;
534  	p->name = name;
535  	p->total_link_count = old ? old->total_link_count : 0;
536  	p->saved = old;
537  	current->nameidata = p;
538  }
539  
540  static void restore_nameidata(void)
541  {
542  	struct nameidata *now = current->nameidata, *old = now->saved;
543  
544  	current->nameidata = old;
545  	if (old)
546  		old->total_link_count = now->total_link_count;
547  	if (now->stack != now->internal)
548  		kfree(now->stack);
549  }
550  
551  static int __nd_alloc_stack(struct nameidata *nd)
552  {
553  	struct saved *p;
554  
555  	if (nd->flags & LOOKUP_RCU) {
556  		p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
557  				  GFP_ATOMIC);
558  		if (unlikely(!p))
559  			return -ECHILD;
560  	} else {
561  		p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
562  				  GFP_KERNEL);
563  		if (unlikely(!p))
564  			return -ENOMEM;
565  	}
566  	memcpy(p, nd->internal, sizeof(nd->internal));
567  	nd->stack = p;
568  	return 0;
569  }
570  
571  /**
572   * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
573   * @path: nameidate to verify
574   *
575   * Rename can sometimes move a file or directory outside of a bind
576   * mount, path_connected allows those cases to be detected.
577   */
578  static bool path_connected(const struct path *path)
579  {
580  	struct vfsmount *mnt = path->mnt;
581  
582  	/* Only bind mounts can have disconnected paths */
583  	if (mnt->mnt_root == mnt->mnt_sb->s_root)
584  		return true;
585  
586  	return is_subdir(path->dentry, mnt->mnt_root);
587  }
588  
589  static inline int nd_alloc_stack(struct nameidata *nd)
590  {
591  	if (likely(nd->depth != EMBEDDED_LEVELS))
592  		return 0;
593  	if (likely(nd->stack != nd->internal))
594  		return 0;
595  	return __nd_alloc_stack(nd);
596  }
597  
598  static void drop_links(struct nameidata *nd)
599  {
600  	int i = nd->depth;
601  	while (i--) {
602  		struct saved *last = nd->stack + i;
603  		do_delayed_call(&last->done);
604  		clear_delayed_call(&last->done);
605  	}
606  }
607  
608  static void terminate_walk(struct nameidata *nd)
609  {
610  	drop_links(nd);
611  	if (!(nd->flags & LOOKUP_RCU)) {
612  		int i;
613  		path_put(&nd->path);
614  		for (i = 0; i < nd->depth; i++)
615  			path_put(&nd->stack[i].link);
616  		if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
617  			path_put(&nd->root);
618  			nd->root.mnt = NULL;
619  		}
620  	} else {
621  		nd->flags &= ~LOOKUP_RCU;
622  		if (!(nd->flags & LOOKUP_ROOT))
623  			nd->root.mnt = NULL;
624  		rcu_read_unlock();
625  	}
626  	nd->depth = 0;
627  }
628  
629  /* path_put is needed afterwards regardless of success or failure */
630  static bool legitimize_path(struct nameidata *nd,
631  			    struct path *path, unsigned seq)
632  {
633  	int res = __legitimize_mnt(path->mnt, nd->m_seq);
634  	if (unlikely(res)) {
635  		if (res > 0)
636  			path->mnt = NULL;
637  		path->dentry = NULL;
638  		return false;
639  	}
640  	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
641  		path->dentry = NULL;
642  		return false;
643  	}
644  	return !read_seqcount_retry(&path->dentry->d_seq, seq);
645  }
646  
647  static bool legitimize_links(struct nameidata *nd)
648  {
649  	int i;
650  	for (i = 0; i < nd->depth; i++) {
651  		struct saved *last = nd->stack + i;
652  		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
653  			drop_links(nd);
654  			nd->depth = i + 1;
655  			return false;
656  		}
657  	}
658  	return true;
659  }
660  
661  /*
662   * Path walking has 2 modes, rcu-walk and ref-walk (see
663   * Documentation/filesystems/path-lookup.txt).  In situations when we can't
664   * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
665   * normal reference counts on dentries and vfsmounts to transition to ref-walk
666   * mode.  Refcounts are grabbed at the last known good point before rcu-walk
667   * got stuck, so ref-walk may continue from there. If this is not successful
668   * (eg. a seqcount has changed), then failure is returned and it's up to caller
669   * to restart the path walk from the beginning in ref-walk mode.
670   */
671  
672  /**
673   * unlazy_walk - try to switch to ref-walk mode.
674   * @nd: nameidata pathwalk data
675   * @dentry: child of nd->path.dentry or NULL
676   * @seq: seq number to check dentry against
677   * Returns: 0 on success, -ECHILD on failure
678   *
679   * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
680   * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
681   * @nd or NULL.  Must be called from rcu-walk context.
682   * Nothing should touch nameidata between unlazy_walk() failure and
683   * terminate_walk().
684   */
685  static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq)
686  {
687  	struct dentry *parent = nd->path.dentry;
688  
689  	BUG_ON(!(nd->flags & LOOKUP_RCU));
690  
691  	nd->flags &= ~LOOKUP_RCU;
692  	if (unlikely(!legitimize_links(nd)))
693  		goto out2;
694  	if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
695  		goto out2;
696  	if (unlikely(!lockref_get_not_dead(&parent->d_lockref)))
697  		goto out1;
698  
699  	/*
700  	 * For a negative lookup, the lookup sequence point is the parents
701  	 * sequence point, and it only needs to revalidate the parent dentry.
702  	 *
703  	 * For a positive lookup, we need to move both the parent and the
704  	 * dentry from the RCU domain to be properly refcounted. And the
705  	 * sequence number in the dentry validates *both* dentry counters,
706  	 * since we checked the sequence number of the parent after we got
707  	 * the child sequence number. So we know the parent must still
708  	 * be valid if the child sequence number is still valid.
709  	 */
710  	if (!dentry) {
711  		if (read_seqcount_retry(&parent->d_seq, nd->seq))
712  			goto out;
713  		BUG_ON(nd->inode != parent->d_inode);
714  	} else {
715  		if (!lockref_get_not_dead(&dentry->d_lockref))
716  			goto out;
717  		if (read_seqcount_retry(&dentry->d_seq, seq))
718  			goto drop_dentry;
719  	}
720  
721  	/*
722  	 * Sequence counts matched. Now make sure that the root is
723  	 * still valid and get it if required.
724  	 */
725  	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
726  		if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
727  			rcu_read_unlock();
728  			dput(dentry);
729  			return -ECHILD;
730  		}
731  	}
732  
733  	rcu_read_unlock();
734  	return 0;
735  
736  drop_dentry:
737  	rcu_read_unlock();
738  	dput(dentry);
739  	goto drop_root_mnt;
740  out2:
741  	nd->path.mnt = NULL;
742  out1:
743  	nd->path.dentry = NULL;
744  out:
745  	rcu_read_unlock();
746  drop_root_mnt:
747  	if (!(nd->flags & LOOKUP_ROOT))
748  		nd->root.mnt = NULL;
749  	return -ECHILD;
750  }
751  
752  static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq)
753  {
754  	if (unlikely(!legitimize_path(nd, link, seq))) {
755  		drop_links(nd);
756  		nd->depth = 0;
757  		nd->flags &= ~LOOKUP_RCU;
758  		nd->path.mnt = NULL;
759  		nd->path.dentry = NULL;
760  		if (!(nd->flags & LOOKUP_ROOT))
761  			nd->root.mnt = NULL;
762  		rcu_read_unlock();
763  	} else if (likely(unlazy_walk(nd, NULL, 0)) == 0) {
764  		return 0;
765  	}
766  	path_put(link);
767  	return -ECHILD;
768  }
769  
770  static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
771  {
772  	return dentry->d_op->d_revalidate(dentry, flags);
773  }
774  
775  /**
776   * complete_walk - successful completion of path walk
777   * @nd:  pointer nameidata
778   *
779   * If we had been in RCU mode, drop out of it and legitimize nd->path.
780   * Revalidate the final result, unless we'd already done that during
781   * the path walk or the filesystem doesn't ask for it.  Return 0 on
782   * success, -error on failure.  In case of failure caller does not
783   * need to drop nd->path.
784   */
785  static int complete_walk(struct nameidata *nd)
786  {
787  	struct dentry *dentry = nd->path.dentry;
788  	int status;
789  
790  	if (nd->flags & LOOKUP_RCU) {
791  		if (!(nd->flags & LOOKUP_ROOT))
792  			nd->root.mnt = NULL;
793  		if (unlikely(unlazy_walk(nd, NULL, 0)))
794  			return -ECHILD;
795  	}
796  
797  	if (likely(!(nd->flags & LOOKUP_JUMPED)))
798  		return 0;
799  
800  	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
801  		return 0;
802  
803  	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
804  	if (status > 0)
805  		return 0;
806  
807  	if (!status)
808  		status = -ESTALE;
809  
810  	return status;
811  }
812  
813  static void set_root(struct nameidata *nd)
814  {
815  	struct fs_struct *fs = current->fs;
816  
817  	if (nd->flags & LOOKUP_RCU) {
818  		unsigned seq;
819  
820  		do {
821  			seq = read_seqcount_begin(&fs->seq);
822  			nd->root = fs->root;
823  			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
824  		} while (read_seqcount_retry(&fs->seq, seq));
825  	} else {
826  		get_fs_root(fs, &nd->root);
827  	}
828  }
829  
830  static void path_put_conditional(struct path *path, struct nameidata *nd)
831  {
832  	dput(path->dentry);
833  	if (path->mnt != nd->path.mnt)
834  		mntput(path->mnt);
835  }
836  
837  static inline void path_to_nameidata(const struct path *path,
838  					struct nameidata *nd)
839  {
840  	if (!(nd->flags & LOOKUP_RCU)) {
841  		dput(nd->path.dentry);
842  		if (nd->path.mnt != path->mnt)
843  			mntput(nd->path.mnt);
844  	}
845  	nd->path.mnt = path->mnt;
846  	nd->path.dentry = path->dentry;
847  }
848  
849  static int nd_jump_root(struct nameidata *nd)
850  {
851  	if (nd->flags & LOOKUP_RCU) {
852  		struct dentry *d;
853  		nd->path = nd->root;
854  		d = nd->path.dentry;
855  		nd->inode = d->d_inode;
856  		nd->seq = nd->root_seq;
857  		if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
858  			return -ECHILD;
859  	} else {
860  		path_put(&nd->path);
861  		nd->path = nd->root;
862  		path_get(&nd->path);
863  		nd->inode = nd->path.dentry->d_inode;
864  	}
865  	nd->flags |= LOOKUP_JUMPED;
866  	return 0;
867  }
868  
869  /*
870   * Helper to directly jump to a known parsed path from ->get_link,
871   * caller must have taken a reference to path beforehand.
872   */
873  void nd_jump_link(struct path *path)
874  {
875  	struct nameidata *nd = current->nameidata;
876  	path_put(&nd->path);
877  
878  	nd->path = *path;
879  	nd->inode = nd->path.dentry->d_inode;
880  	nd->flags |= LOOKUP_JUMPED;
881  }
882  
883  static inline void put_link(struct nameidata *nd)
884  {
885  	struct saved *last = nd->stack + --nd->depth;
886  	do_delayed_call(&last->done);
887  	if (!(nd->flags & LOOKUP_RCU))
888  		path_put(&last->link);
889  }
890  
891  int sysctl_protected_symlinks __read_mostly = 0;
892  int sysctl_protected_hardlinks __read_mostly = 0;
893  
894  /**
895   * may_follow_link - Check symlink following for unsafe situations
896   * @nd: nameidata pathwalk data
897   *
898   * In the case of the sysctl_protected_symlinks sysctl being enabled,
899   * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
900   * in a sticky world-writable directory. This is to protect privileged
901   * processes from failing races against path names that may change out
902   * from under them by way of other users creating malicious symlinks.
903   * It will permit symlinks to be followed only when outside a sticky
904   * world-writable directory, or when the uid of the symlink and follower
905   * match, or when the directory owner matches the symlink's owner.
906   *
907   * Returns 0 if following the symlink is allowed, -ve on error.
908   */
909  static inline int may_follow_link(struct nameidata *nd)
910  {
911  	const struct inode *inode;
912  	const struct inode *parent;
913  	kuid_t puid;
914  
915  	if (!sysctl_protected_symlinks)
916  		return 0;
917  
918  	/* Allowed if owner and follower match. */
919  	inode = nd->link_inode;
920  	if (uid_eq(current_cred()->fsuid, inode->i_uid))
921  		return 0;
922  
923  	/* Allowed if parent directory not sticky and world-writable. */
924  	parent = nd->inode;
925  	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
926  		return 0;
927  
928  	/* Allowed if parent directory and link owner match. */
929  	puid = parent->i_uid;
930  	if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
931  		return 0;
932  
933  	if (nd->flags & LOOKUP_RCU)
934  		return -ECHILD;
935  
936  	audit_log_link_denied("follow_link", &nd->stack[0].link);
937  	return -EACCES;
938  }
939  
940  /**
941   * safe_hardlink_source - Check for safe hardlink conditions
942   * @inode: the source inode to hardlink from
943   *
944   * Return false if at least one of the following conditions:
945   *    - inode is not a regular file
946   *    - inode is setuid
947   *    - inode is setgid and group-exec
948   *    - access failure for read and write
949   *
950   * Otherwise returns true.
951   */
952  static bool safe_hardlink_source(struct inode *inode)
953  {
954  	umode_t mode = inode->i_mode;
955  
956  	/* Special files should not get pinned to the filesystem. */
957  	if (!S_ISREG(mode))
958  		return false;
959  
960  	/* Setuid files should not get pinned to the filesystem. */
961  	if (mode & S_ISUID)
962  		return false;
963  
964  	/* Executable setgid files should not get pinned to the filesystem. */
965  	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
966  		return false;
967  
968  	/* Hardlinking to unreadable or unwritable sources is dangerous. */
969  	if (inode_permission(inode, MAY_READ | MAY_WRITE))
970  		return false;
971  
972  	return true;
973  }
974  
975  /**
976   * may_linkat - Check permissions for creating a hardlink
977   * @link: the source to hardlink from
978   *
979   * Block hardlink when all of:
980   *  - sysctl_protected_hardlinks enabled
981   *  - fsuid does not match inode
982   *  - hardlink source is unsafe (see safe_hardlink_source() above)
983   *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
984   *
985   * Returns 0 if successful, -ve on error.
986   */
987  static int may_linkat(struct path *link)
988  {
989  	struct inode *inode;
990  
991  	if (!sysctl_protected_hardlinks)
992  		return 0;
993  
994  	inode = link->dentry->d_inode;
995  
996  	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
997  	 * otherwise, it must be a safe source.
998  	 */
999  	if (inode_owner_or_capable(inode) || safe_hardlink_source(inode))
1000  		return 0;
1001  
1002  	audit_log_link_denied("linkat", link);
1003  	return -EPERM;
1004  }
1005  
1006  static __always_inline
1007  const char *get_link(struct nameidata *nd)
1008  {
1009  	struct saved *last = nd->stack + nd->depth - 1;
1010  	struct dentry *dentry = last->link.dentry;
1011  	struct inode *inode = nd->link_inode;
1012  	int error;
1013  	const char *res;
1014  
1015  	if (!(nd->flags & LOOKUP_RCU)) {
1016  		touch_atime(&last->link);
1017  		cond_resched();
1018  	} else if (atime_needs_update_rcu(&last->link, inode)) {
1019  		if (unlikely(unlazy_walk(nd, NULL, 0)))
1020  			return ERR_PTR(-ECHILD);
1021  		touch_atime(&last->link);
1022  	}
1023  
1024  	error = security_inode_follow_link(dentry, inode,
1025  					   nd->flags & LOOKUP_RCU);
1026  	if (unlikely(error))
1027  		return ERR_PTR(error);
1028  
1029  	nd->last_type = LAST_BIND;
1030  	res = inode->i_link;
1031  	if (!res) {
1032  		const char * (*get)(struct dentry *, struct inode *,
1033  				struct delayed_call *);
1034  		get = inode->i_op->get_link;
1035  		if (nd->flags & LOOKUP_RCU) {
1036  			res = get(NULL, inode, &last->done);
1037  			if (res == ERR_PTR(-ECHILD)) {
1038  				if (unlikely(unlazy_walk(nd, NULL, 0)))
1039  					return ERR_PTR(-ECHILD);
1040  				res = get(dentry, inode, &last->done);
1041  			}
1042  		} else {
1043  			res = get(dentry, inode, &last->done);
1044  		}
1045  		if (IS_ERR_OR_NULL(res))
1046  			return res;
1047  	}
1048  	if (*res == '/') {
1049  		if (!nd->root.mnt)
1050  			set_root(nd);
1051  		if (unlikely(nd_jump_root(nd)))
1052  			return ERR_PTR(-ECHILD);
1053  		while (unlikely(*++res == '/'))
1054  			;
1055  	}
1056  	if (!*res)
1057  		res = NULL;
1058  	return res;
1059  }
1060  
1061  /*
1062   * follow_up - Find the mountpoint of path's vfsmount
1063   *
1064   * Given a path, find the mountpoint of its source file system.
1065   * Replace @path with the path of the mountpoint in the parent mount.
1066   * Up is towards /.
1067   *
1068   * Return 1 if we went up a level and 0 if we were already at the
1069   * root.
1070   */
1071  int follow_up(struct path *path)
1072  {
1073  	struct mount *mnt = real_mount(path->mnt);
1074  	struct mount *parent;
1075  	struct dentry *mountpoint;
1076  
1077  	read_seqlock_excl(&mount_lock);
1078  	parent = mnt->mnt_parent;
1079  	if (parent == mnt) {
1080  		read_sequnlock_excl(&mount_lock);
1081  		return 0;
1082  	}
1083  	mntget(&parent->mnt);
1084  	mountpoint = dget(mnt->mnt_mountpoint);
1085  	read_sequnlock_excl(&mount_lock);
1086  	dput(path->dentry);
1087  	path->dentry = mountpoint;
1088  	mntput(path->mnt);
1089  	path->mnt = &parent->mnt;
1090  	return 1;
1091  }
1092  EXPORT_SYMBOL(follow_up);
1093  
1094  /*
1095   * Perform an automount
1096   * - return -EISDIR to tell follow_managed() to stop and return the path we
1097   *   were called with.
1098   */
1099  static int follow_automount(struct path *path, struct nameidata *nd,
1100  			    bool *need_mntput)
1101  {
1102  	struct vfsmount *mnt;
1103  	const struct cred *old_cred;
1104  	int err;
1105  
1106  	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1107  		return -EREMOTE;
1108  
1109  	/* We don't want to mount if someone's just doing a stat -
1110  	 * unless they're stat'ing a directory and appended a '/' to
1111  	 * the name.
1112  	 *
1113  	 * We do, however, want to mount if someone wants to open or
1114  	 * create a file of any type under the mountpoint, wants to
1115  	 * traverse through the mountpoint or wants to open the
1116  	 * mounted directory.  Also, autofs may mark negative dentries
1117  	 * as being automount points.  These will need the attentions
1118  	 * of the daemon to instantiate them before they can be used.
1119  	 */
1120  	if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1121  			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1122  	    path->dentry->d_inode)
1123  		return -EISDIR;
1124  
1125  	if (path->dentry->d_sb->s_user_ns != &init_user_ns)
1126  		return -EACCES;
1127  
1128  	nd->total_link_count++;
1129  	if (nd->total_link_count >= 40)
1130  		return -ELOOP;
1131  
1132  	old_cred = override_creds(&init_cred);
1133  	mnt = path->dentry->d_op->d_automount(path);
1134  	revert_creds(old_cred);
1135  	if (IS_ERR(mnt)) {
1136  		/*
1137  		 * The filesystem is allowed to return -EISDIR here to indicate
1138  		 * it doesn't want to automount.  For instance, autofs would do
1139  		 * this so that its userspace daemon can mount on this dentry.
1140  		 *
1141  		 * However, we can only permit this if it's a terminal point in
1142  		 * the path being looked up; if it wasn't then the remainder of
1143  		 * the path is inaccessible and we should say so.
1144  		 */
1145  		if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1146  			return -EREMOTE;
1147  		return PTR_ERR(mnt);
1148  	}
1149  
1150  	if (!mnt) /* mount collision */
1151  		return 0;
1152  
1153  	if (!*need_mntput) {
1154  		/* lock_mount() may release path->mnt on error */
1155  		mntget(path->mnt);
1156  		*need_mntput = true;
1157  	}
1158  	err = finish_automount(mnt, path);
1159  
1160  	switch (err) {
1161  	case -EBUSY:
1162  		/* Someone else made a mount here whilst we were busy */
1163  		return 0;
1164  	case 0:
1165  		path_put(path);
1166  		path->mnt = mnt;
1167  		path->dentry = dget(mnt->mnt_root);
1168  		return 0;
1169  	default:
1170  		return err;
1171  	}
1172  
1173  }
1174  
1175  /*
1176   * Handle a dentry that is managed in some way.
1177   * - Flagged for transit management (autofs)
1178   * - Flagged as mountpoint
1179   * - Flagged as automount point
1180   *
1181   * This may only be called in refwalk mode.
1182   *
1183   * Serialization is taken care of in namespace.c
1184   */
1185  static int follow_managed(struct path *path, struct nameidata *nd)
1186  {
1187  	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1188  	unsigned managed;
1189  	bool need_mntput = false;
1190  	int ret = 0;
1191  
1192  	/* Given that we're not holding a lock here, we retain the value in a
1193  	 * local variable for each dentry as we look at it so that we don't see
1194  	 * the components of that value change under us */
1195  	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1196  	       managed &= DCACHE_MANAGED_DENTRY,
1197  	       unlikely(managed != 0)) {
1198  		/* Allow the filesystem to manage the transit without i_mutex
1199  		 * being held. */
1200  		if (managed & DCACHE_MANAGE_TRANSIT) {
1201  			BUG_ON(!path->dentry->d_op);
1202  			BUG_ON(!path->dentry->d_op->d_manage);
1203  			ret = path->dentry->d_op->d_manage(path, false);
1204  			if (ret < 0)
1205  				break;
1206  		}
1207  
1208  		/* Transit to a mounted filesystem. */
1209  		if (managed & DCACHE_MOUNTED) {
1210  			struct vfsmount *mounted = lookup_mnt(path);
1211  			if (mounted) {
1212  				dput(path->dentry);
1213  				if (need_mntput)
1214  					mntput(path->mnt);
1215  				path->mnt = mounted;
1216  				path->dentry = dget(mounted->mnt_root);
1217  				need_mntput = true;
1218  				continue;
1219  			}
1220  
1221  			/* Something is mounted on this dentry in another
1222  			 * namespace and/or whatever was mounted there in this
1223  			 * namespace got unmounted before lookup_mnt() could
1224  			 * get it */
1225  		}
1226  
1227  		/* Handle an automount point */
1228  		if (managed & DCACHE_NEED_AUTOMOUNT) {
1229  			ret = follow_automount(path, nd, &need_mntput);
1230  			if (ret < 0)
1231  				break;
1232  			continue;
1233  		}
1234  
1235  		/* We didn't change the current path point */
1236  		break;
1237  	}
1238  
1239  	if (need_mntput && path->mnt == mnt)
1240  		mntput(path->mnt);
1241  	if (ret == -EISDIR || !ret)
1242  		ret = 1;
1243  	if (need_mntput)
1244  		nd->flags |= LOOKUP_JUMPED;
1245  	if (unlikely(ret < 0))
1246  		path_put_conditional(path, nd);
1247  	return ret;
1248  }
1249  
1250  int follow_down_one(struct path *path)
1251  {
1252  	struct vfsmount *mounted;
1253  
1254  	mounted = lookup_mnt(path);
1255  	if (mounted) {
1256  		dput(path->dentry);
1257  		mntput(path->mnt);
1258  		path->mnt = mounted;
1259  		path->dentry = dget(mounted->mnt_root);
1260  		return 1;
1261  	}
1262  	return 0;
1263  }
1264  EXPORT_SYMBOL(follow_down_one);
1265  
1266  static inline int managed_dentry_rcu(const struct path *path)
1267  {
1268  	return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1269  		path->dentry->d_op->d_manage(path, true) : 0;
1270  }
1271  
1272  /*
1273   * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1274   * we meet a managed dentry that would need blocking.
1275   */
1276  static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1277  			       struct inode **inode, unsigned *seqp)
1278  {
1279  	for (;;) {
1280  		struct mount *mounted;
1281  		/*
1282  		 * Don't forget we might have a non-mountpoint managed dentry
1283  		 * that wants to block transit.
1284  		 */
1285  		switch (managed_dentry_rcu(path)) {
1286  		case -ECHILD:
1287  		default:
1288  			return false;
1289  		case -EISDIR:
1290  			return true;
1291  		case 0:
1292  			break;
1293  		}
1294  
1295  		if (!d_mountpoint(path->dentry))
1296  			return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1297  
1298  		mounted = __lookup_mnt(path->mnt, path->dentry);
1299  		if (!mounted)
1300  			break;
1301  		path->mnt = &mounted->mnt;
1302  		path->dentry = mounted->mnt.mnt_root;
1303  		nd->flags |= LOOKUP_JUMPED;
1304  		*seqp = read_seqcount_begin(&path->dentry->d_seq);
1305  		/*
1306  		 * Update the inode too. We don't need to re-check the
1307  		 * dentry sequence number here after this d_inode read,
1308  		 * because a mount-point is always pinned.
1309  		 */
1310  		*inode = path->dentry->d_inode;
1311  	}
1312  	return !read_seqretry(&mount_lock, nd->m_seq) &&
1313  		!(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1314  }
1315  
1316  static int follow_dotdot_rcu(struct nameidata *nd)
1317  {
1318  	struct inode *inode = nd->inode;
1319  
1320  	while (1) {
1321  		if (path_equal(&nd->path, &nd->root))
1322  			break;
1323  		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1324  			struct dentry *old = nd->path.dentry;
1325  			struct dentry *parent = old->d_parent;
1326  			unsigned seq;
1327  
1328  			inode = parent->d_inode;
1329  			seq = read_seqcount_begin(&parent->d_seq);
1330  			if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1331  				return -ECHILD;
1332  			nd->path.dentry = parent;
1333  			nd->seq = seq;
1334  			if (unlikely(!path_connected(&nd->path)))
1335  				return -ENOENT;
1336  			break;
1337  		} else {
1338  			struct mount *mnt = real_mount(nd->path.mnt);
1339  			struct mount *mparent = mnt->mnt_parent;
1340  			struct dentry *mountpoint = mnt->mnt_mountpoint;
1341  			struct inode *inode2 = mountpoint->d_inode;
1342  			unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1343  			if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1344  				return -ECHILD;
1345  			if (&mparent->mnt == nd->path.mnt)
1346  				break;
1347  			/* we know that mountpoint was pinned */
1348  			nd->path.dentry = mountpoint;
1349  			nd->path.mnt = &mparent->mnt;
1350  			inode = inode2;
1351  			nd->seq = seq;
1352  		}
1353  	}
1354  	while (unlikely(d_mountpoint(nd->path.dentry))) {
1355  		struct mount *mounted;
1356  		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1357  		if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1358  			return -ECHILD;
1359  		if (!mounted)
1360  			break;
1361  		nd->path.mnt = &mounted->mnt;
1362  		nd->path.dentry = mounted->mnt.mnt_root;
1363  		inode = nd->path.dentry->d_inode;
1364  		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1365  	}
1366  	nd->inode = inode;
1367  	return 0;
1368  }
1369  
1370  /*
1371   * Follow down to the covering mount currently visible to userspace.  At each
1372   * point, the filesystem owning that dentry may be queried as to whether the
1373   * caller is permitted to proceed or not.
1374   */
1375  int follow_down(struct path *path)
1376  {
1377  	unsigned managed;
1378  	int ret;
1379  
1380  	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1381  	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1382  		/* Allow the filesystem to manage the transit without i_mutex
1383  		 * being held.
1384  		 *
1385  		 * We indicate to the filesystem if someone is trying to mount
1386  		 * something here.  This gives autofs the chance to deny anyone
1387  		 * other than its daemon the right to mount on its
1388  		 * superstructure.
1389  		 *
1390  		 * The filesystem may sleep at this point.
1391  		 */
1392  		if (managed & DCACHE_MANAGE_TRANSIT) {
1393  			BUG_ON(!path->dentry->d_op);
1394  			BUG_ON(!path->dentry->d_op->d_manage);
1395  			ret = path->dentry->d_op->d_manage(path, false);
1396  			if (ret < 0)
1397  				return ret == -EISDIR ? 0 : ret;
1398  		}
1399  
1400  		/* Transit to a mounted filesystem. */
1401  		if (managed & DCACHE_MOUNTED) {
1402  			struct vfsmount *mounted = lookup_mnt(path);
1403  			if (!mounted)
1404  				break;
1405  			dput(path->dentry);
1406  			mntput(path->mnt);
1407  			path->mnt = mounted;
1408  			path->dentry = dget(mounted->mnt_root);
1409  			continue;
1410  		}
1411  
1412  		/* Don't handle automount points here */
1413  		break;
1414  	}
1415  	return 0;
1416  }
1417  EXPORT_SYMBOL(follow_down);
1418  
1419  /*
1420   * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1421   */
1422  static void follow_mount(struct path *path)
1423  {
1424  	while (d_mountpoint(path->dentry)) {
1425  		struct vfsmount *mounted = lookup_mnt(path);
1426  		if (!mounted)
1427  			break;
1428  		dput(path->dentry);
1429  		mntput(path->mnt);
1430  		path->mnt = mounted;
1431  		path->dentry = dget(mounted->mnt_root);
1432  	}
1433  }
1434  
1435  static int path_parent_directory(struct path *path)
1436  {
1437  	struct dentry *old = path->dentry;
1438  	/* rare case of legitimate dget_parent()... */
1439  	path->dentry = dget_parent(path->dentry);
1440  	dput(old);
1441  	if (unlikely(!path_connected(path)))
1442  		return -ENOENT;
1443  	return 0;
1444  }
1445  
1446  static int follow_dotdot(struct nameidata *nd)
1447  {
1448  	while(1) {
1449  		if (nd->path.dentry == nd->root.dentry &&
1450  		    nd->path.mnt == nd->root.mnt) {
1451  			break;
1452  		}
1453  		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1454  			int ret = path_parent_directory(&nd->path);
1455  			if (ret)
1456  				return ret;
1457  			break;
1458  		}
1459  		if (!follow_up(&nd->path))
1460  			break;
1461  	}
1462  	follow_mount(&nd->path);
1463  	nd->inode = nd->path.dentry->d_inode;
1464  	return 0;
1465  }
1466  
1467  /*
1468   * This looks up the name in dcache and possibly revalidates the found dentry.
1469   * NULL is returned if the dentry does not exist in the cache.
1470   */
1471  static struct dentry *lookup_dcache(const struct qstr *name,
1472  				    struct dentry *dir,
1473  				    unsigned int flags)
1474  {
1475  	struct dentry *dentry;
1476  	int error;
1477  
1478  	dentry = d_lookup(dir, name);
1479  	if (dentry) {
1480  		if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1481  			error = d_revalidate(dentry, flags);
1482  			if (unlikely(error <= 0)) {
1483  				if (!error)
1484  					d_invalidate(dentry);
1485  				dput(dentry);
1486  				return ERR_PTR(error);
1487  			}
1488  		}
1489  	}
1490  	return dentry;
1491  }
1492  
1493  /*
1494   * Call i_op->lookup on the dentry.  The dentry must be negative and
1495   * unhashed.
1496   *
1497   * dir->d_inode->i_mutex must be held
1498   */
1499  static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1500  				  unsigned int flags)
1501  {
1502  	struct dentry *old;
1503  
1504  	/* Don't create child dentry for a dead directory. */
1505  	if (unlikely(IS_DEADDIR(dir))) {
1506  		dput(dentry);
1507  		return ERR_PTR(-ENOENT);
1508  	}
1509  
1510  	old = dir->i_op->lookup(dir, dentry, flags);
1511  	if (unlikely(old)) {
1512  		dput(dentry);
1513  		dentry = old;
1514  	}
1515  	return dentry;
1516  }
1517  
1518  static struct dentry *__lookup_hash(const struct qstr *name,
1519  		struct dentry *base, unsigned int flags)
1520  {
1521  	struct dentry *dentry = lookup_dcache(name, base, flags);
1522  
1523  	if (dentry)
1524  		return dentry;
1525  
1526  	dentry = d_alloc(base, name);
1527  	if (unlikely(!dentry))
1528  		return ERR_PTR(-ENOMEM);
1529  
1530  	return lookup_real(base->d_inode, dentry, flags);
1531  }
1532  
1533  static int lookup_fast(struct nameidata *nd,
1534  		       struct path *path, struct inode **inode,
1535  		       unsigned *seqp)
1536  {
1537  	struct vfsmount *mnt = nd->path.mnt;
1538  	struct dentry *dentry, *parent = nd->path.dentry;
1539  	int status = 1;
1540  	int err;
1541  
1542  	/*
1543  	 * Rename seqlock is not required here because in the off chance
1544  	 * of a false negative due to a concurrent rename, the caller is
1545  	 * going to fall back to non-racy lookup.
1546  	 */
1547  	if (nd->flags & LOOKUP_RCU) {
1548  		unsigned seq;
1549  		bool negative;
1550  		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1551  		if (unlikely(!dentry)) {
1552  			if (unlazy_walk(nd, NULL, 0))
1553  				return -ECHILD;
1554  			return 0;
1555  		}
1556  
1557  		/*
1558  		 * This sequence count validates that the inode matches
1559  		 * the dentry name information from lookup.
1560  		 */
1561  		*inode = d_backing_inode(dentry);
1562  		negative = d_is_negative(dentry);
1563  		if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1564  			return -ECHILD;
1565  
1566  		/*
1567  		 * This sequence count validates that the parent had no
1568  		 * changes while we did the lookup of the dentry above.
1569  		 *
1570  		 * The memory barrier in read_seqcount_begin of child is
1571  		 *  enough, we can use __read_seqcount_retry here.
1572  		 */
1573  		if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1574  			return -ECHILD;
1575  
1576  		*seqp = seq;
1577  		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1578  			status = d_revalidate(dentry, nd->flags);
1579  		if (unlikely(status <= 0)) {
1580  			if (unlazy_walk(nd, dentry, seq))
1581  				return -ECHILD;
1582  			if (status == -ECHILD)
1583  				status = d_revalidate(dentry, nd->flags);
1584  		} else {
1585  			/*
1586  			 * Note: do negative dentry check after revalidation in
1587  			 * case that drops it.
1588  			 */
1589  			if (unlikely(negative))
1590  				return -ENOENT;
1591  			path->mnt = mnt;
1592  			path->dentry = dentry;
1593  			if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1594  				return 1;
1595  			if (unlazy_walk(nd, dentry, seq))
1596  				return -ECHILD;
1597  		}
1598  	} else {
1599  		dentry = __d_lookup(parent, &nd->last);
1600  		if (unlikely(!dentry))
1601  			return 0;
1602  		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1603  			status = d_revalidate(dentry, nd->flags);
1604  	}
1605  	if (unlikely(status <= 0)) {
1606  		if (!status)
1607  			d_invalidate(dentry);
1608  		dput(dentry);
1609  		return status;
1610  	}
1611  	if (unlikely(d_is_negative(dentry))) {
1612  		dput(dentry);
1613  		return -ENOENT;
1614  	}
1615  
1616  	path->mnt = mnt;
1617  	path->dentry = dentry;
1618  	err = follow_managed(path, nd);
1619  	if (likely(err > 0))
1620  		*inode = d_backing_inode(path->dentry);
1621  	return err;
1622  }
1623  
1624  /* Fast lookup failed, do it the slow way */
1625  static struct dentry *lookup_slow(const struct qstr *name,
1626  				  struct dentry *dir,
1627  				  unsigned int flags)
1628  {
1629  	struct dentry *dentry = ERR_PTR(-ENOENT), *old;
1630  	struct inode *inode = dir->d_inode;
1631  	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1632  
1633  	inode_lock_shared(inode);
1634  	/* Don't go there if it's already dead */
1635  	if (unlikely(IS_DEADDIR(inode)))
1636  		goto out;
1637  again:
1638  	dentry = d_alloc_parallel(dir, name, &wq);
1639  	if (IS_ERR(dentry))
1640  		goto out;
1641  	if (unlikely(!d_in_lookup(dentry))) {
1642  		if ((dentry->d_flags & DCACHE_OP_REVALIDATE) &&
1643  		    !(flags & LOOKUP_NO_REVAL)) {
1644  			int error = d_revalidate(dentry, flags);
1645  			if (unlikely(error <= 0)) {
1646  				if (!error) {
1647  					d_invalidate(dentry);
1648  					dput(dentry);
1649  					goto again;
1650  				}
1651  				dput(dentry);
1652  				dentry = ERR_PTR(error);
1653  			}
1654  		}
1655  	} else {
1656  		old = inode->i_op->lookup(inode, dentry, flags);
1657  		d_lookup_done(dentry);
1658  		if (unlikely(old)) {
1659  			dput(dentry);
1660  			dentry = old;
1661  		}
1662  	}
1663  out:
1664  	inode_unlock_shared(inode);
1665  	return dentry;
1666  }
1667  
1668  static inline int may_lookup(struct nameidata *nd)
1669  {
1670  	if (nd->flags & LOOKUP_RCU) {
1671  		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1672  		if (err != -ECHILD)
1673  			return err;
1674  		if (unlazy_walk(nd, NULL, 0))
1675  			return -ECHILD;
1676  	}
1677  	return inode_permission(nd->inode, MAY_EXEC);
1678  }
1679  
1680  static inline int handle_dots(struct nameidata *nd, int type)
1681  {
1682  	if (type == LAST_DOTDOT) {
1683  		if (!nd->root.mnt)
1684  			set_root(nd);
1685  		if (nd->flags & LOOKUP_RCU) {
1686  			return follow_dotdot_rcu(nd);
1687  		} else
1688  			return follow_dotdot(nd);
1689  	}
1690  	return 0;
1691  }
1692  
1693  static int pick_link(struct nameidata *nd, struct path *link,
1694  		     struct inode *inode, unsigned seq)
1695  {
1696  	int error;
1697  	struct saved *last;
1698  	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1699  		path_to_nameidata(link, nd);
1700  		return -ELOOP;
1701  	}
1702  	if (!(nd->flags & LOOKUP_RCU)) {
1703  		if (link->mnt == nd->path.mnt)
1704  			mntget(link->mnt);
1705  	}
1706  	error = nd_alloc_stack(nd);
1707  	if (unlikely(error)) {
1708  		if (error == -ECHILD) {
1709  			if (unlikely(unlazy_link(nd, link, seq)))
1710  				return -ECHILD;
1711  			error = nd_alloc_stack(nd);
1712  		}
1713  		if (error) {
1714  			path_put(link);
1715  			return error;
1716  		}
1717  	}
1718  
1719  	last = nd->stack + nd->depth++;
1720  	last->link = *link;
1721  	clear_delayed_call(&last->done);
1722  	nd->link_inode = inode;
1723  	last->seq = seq;
1724  	return 1;
1725  }
1726  
1727  enum {WALK_FOLLOW = 1, WALK_MORE = 2};
1728  
1729  /*
1730   * Do we need to follow links? We _really_ want to be able
1731   * to do this check without having to look at inode->i_op,
1732   * so we keep a cache of "no, this doesn't need follow_link"
1733   * for the common case.
1734   */
1735  static inline int step_into(struct nameidata *nd, struct path *path,
1736  			    int flags, struct inode *inode, unsigned seq)
1737  {
1738  	if (!(flags & WALK_MORE) && nd->depth)
1739  		put_link(nd);
1740  	if (likely(!d_is_symlink(path->dentry)) ||
1741  	   !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) {
1742  		/* not a symlink or should not follow */
1743  		path_to_nameidata(path, nd);
1744  		nd->inode = inode;
1745  		nd->seq = seq;
1746  		return 0;
1747  	}
1748  	/* make sure that d_is_symlink above matches inode */
1749  	if (nd->flags & LOOKUP_RCU) {
1750  		if (read_seqcount_retry(&path->dentry->d_seq, seq))
1751  			return -ECHILD;
1752  	}
1753  	return pick_link(nd, path, inode, seq);
1754  }
1755  
1756  static int walk_component(struct nameidata *nd, int flags)
1757  {
1758  	struct path path;
1759  	struct inode *inode;
1760  	unsigned seq;
1761  	int err;
1762  	/*
1763  	 * "." and ".." are special - ".." especially so because it has
1764  	 * to be able to know about the current root directory and
1765  	 * parent relationships.
1766  	 */
1767  	if (unlikely(nd->last_type != LAST_NORM)) {
1768  		err = handle_dots(nd, nd->last_type);
1769  		if (!(flags & WALK_MORE) && nd->depth)
1770  			put_link(nd);
1771  		return err;
1772  	}
1773  	err = lookup_fast(nd, &path, &inode, &seq);
1774  	if (unlikely(err <= 0)) {
1775  		if (err < 0)
1776  			return err;
1777  		path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1778  					  nd->flags);
1779  		if (IS_ERR(path.dentry))
1780  			return PTR_ERR(path.dentry);
1781  
1782  		path.mnt = nd->path.mnt;
1783  		err = follow_managed(&path, nd);
1784  		if (unlikely(err < 0))
1785  			return err;
1786  
1787  		if (unlikely(d_is_negative(path.dentry))) {
1788  			path_to_nameidata(&path, nd);
1789  			return -ENOENT;
1790  		}
1791  
1792  		seq = 0;	/* we are already out of RCU mode */
1793  		inode = d_backing_inode(path.dentry);
1794  	}
1795  
1796  	return step_into(nd, &path, flags, inode, seq);
1797  }
1798  
1799  /*
1800   * We can do the critical dentry name comparison and hashing
1801   * operations one word at a time, but we are limited to:
1802   *
1803   * - Architectures with fast unaligned word accesses. We could
1804   *   do a "get_unaligned()" if this helps and is sufficiently
1805   *   fast.
1806   *
1807   * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1808   *   do not trap on the (extremely unlikely) case of a page
1809   *   crossing operation.
1810   *
1811   * - Furthermore, we need an efficient 64-bit compile for the
1812   *   64-bit case in order to generate the "number of bytes in
1813   *   the final mask". Again, that could be replaced with a
1814   *   efficient population count instruction or similar.
1815   */
1816  #ifdef CONFIG_DCACHE_WORD_ACCESS
1817  
1818  #include <asm/word-at-a-time.h>
1819  
1820  #ifdef HASH_MIX
1821  
1822  /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1823  
1824  #elif defined(CONFIG_64BIT)
1825  /*
1826   * Register pressure in the mixing function is an issue, particularly
1827   * on 32-bit x86, but almost any function requires one state value and
1828   * one temporary.  Instead, use a function designed for two state values
1829   * and no temporaries.
1830   *
1831   * This function cannot create a collision in only two iterations, so
1832   * we have two iterations to achieve avalanche.  In those two iterations,
1833   * we have six layers of mixing, which is enough to spread one bit's
1834   * influence out to 2^6 = 64 state bits.
1835   *
1836   * Rotate constants are scored by considering either 64 one-bit input
1837   * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1838   * probability of that delta causing a change to each of the 128 output
1839   * bits, using a sample of random initial states.
1840   *
1841   * The Shannon entropy of the computed probabilities is then summed
1842   * to produce a score.  Ideally, any input change has a 50% chance of
1843   * toggling any given output bit.
1844   *
1845   * Mixing scores (in bits) for (12,45):
1846   * Input delta: 1-bit      2-bit
1847   * 1 round:     713.3    42542.6
1848   * 2 rounds:   2753.7   140389.8
1849   * 3 rounds:   5954.1   233458.2
1850   * 4 rounds:   7862.6   256672.2
1851   * Perfect:    8192     258048
1852   *            (64*128) (64*63/2 * 128)
1853   */
1854  #define HASH_MIX(x, y, a)	\
1855  	(	x ^= (a),	\
1856  	y ^= x,	x = rol64(x,12),\
1857  	x += y,	y = rol64(y,45),\
1858  	y *= 9			)
1859  
1860  /*
1861   * Fold two longs into one 32-bit hash value.  This must be fast, but
1862   * latency isn't quite as critical, as there is a fair bit of additional
1863   * work done before the hash value is used.
1864   */
1865  static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1866  {
1867  	y ^= x * GOLDEN_RATIO_64;
1868  	y *= GOLDEN_RATIO_64;
1869  	return y >> 32;
1870  }
1871  
1872  #else	/* 32-bit case */
1873  
1874  /*
1875   * Mixing scores (in bits) for (7,20):
1876   * Input delta: 1-bit      2-bit
1877   * 1 round:     330.3     9201.6
1878   * 2 rounds:   1246.4    25475.4
1879   * 3 rounds:   1907.1    31295.1
1880   * 4 rounds:   2042.3    31718.6
1881   * Perfect:    2048      31744
1882   *            (32*64)   (32*31/2 * 64)
1883   */
1884  #define HASH_MIX(x, y, a)	\
1885  	(	x ^= (a),	\
1886  	y ^= x,	x = rol32(x, 7),\
1887  	x += y,	y = rol32(y,20),\
1888  	y *= 9			)
1889  
1890  static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1891  {
1892  	/* Use arch-optimized multiply if one exists */
1893  	return __hash_32(y ^ __hash_32(x));
1894  }
1895  
1896  #endif
1897  
1898  /*
1899   * Return the hash of a string of known length.  This is carfully
1900   * designed to match hash_name(), which is the more critical function.
1901   * In particular, we must end by hashing a final word containing 0..7
1902   * payload bytes, to match the way that hash_name() iterates until it
1903   * finds the delimiter after the name.
1904   */
1905  unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1906  {
1907  	unsigned long a, x = 0, y = (unsigned long)salt;
1908  
1909  	for (;;) {
1910  		if (!len)
1911  			goto done;
1912  		a = load_unaligned_zeropad(name);
1913  		if (len < sizeof(unsigned long))
1914  			break;
1915  		HASH_MIX(x, y, a);
1916  		name += sizeof(unsigned long);
1917  		len -= sizeof(unsigned long);
1918  	}
1919  	x ^= a & bytemask_from_count(len);
1920  done:
1921  	return fold_hash(x, y);
1922  }
1923  EXPORT_SYMBOL(full_name_hash);
1924  
1925  /* Return the "hash_len" (hash and length) of a null-terminated string */
1926  u64 hashlen_string(const void *salt, const char *name)
1927  {
1928  	unsigned long a = 0, x = 0, y = (unsigned long)salt;
1929  	unsigned long adata, mask, len;
1930  	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1931  
1932  	len = 0;
1933  	goto inside;
1934  
1935  	do {
1936  		HASH_MIX(x, y, a);
1937  		len += sizeof(unsigned long);
1938  inside:
1939  		a = load_unaligned_zeropad(name+len);
1940  	} while (!has_zero(a, &adata, &constants));
1941  
1942  	adata = prep_zero_mask(a, adata, &constants);
1943  	mask = create_zero_mask(adata);
1944  	x ^= a & zero_bytemask(mask);
1945  
1946  	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1947  }
1948  EXPORT_SYMBOL(hashlen_string);
1949  
1950  /*
1951   * Calculate the length and hash of the path component, and
1952   * return the "hash_len" as the result.
1953   */
1954  static inline u64 hash_name(const void *salt, const char *name)
1955  {
1956  	unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
1957  	unsigned long adata, bdata, mask, len;
1958  	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1959  
1960  	len = 0;
1961  	goto inside;
1962  
1963  	do {
1964  		HASH_MIX(x, y, a);
1965  		len += sizeof(unsigned long);
1966  inside:
1967  		a = load_unaligned_zeropad(name+len);
1968  		b = a ^ REPEAT_BYTE('/');
1969  	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1970  
1971  	adata = prep_zero_mask(a, adata, &constants);
1972  	bdata = prep_zero_mask(b, bdata, &constants);
1973  	mask = create_zero_mask(adata | bdata);
1974  	x ^= a & zero_bytemask(mask);
1975  
1976  	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1977  }
1978  
1979  #else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
1980  
1981  /* Return the hash of a string of known length */
1982  unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1983  {
1984  	unsigned long hash = init_name_hash(salt);
1985  	while (len--)
1986  		hash = partial_name_hash((unsigned char)*name++, hash);
1987  	return end_name_hash(hash);
1988  }
1989  EXPORT_SYMBOL(full_name_hash);
1990  
1991  /* Return the "hash_len" (hash and length) of a null-terminated string */
1992  u64 hashlen_string(const void *salt, const char *name)
1993  {
1994  	unsigned long hash = init_name_hash(salt);
1995  	unsigned long len = 0, c;
1996  
1997  	c = (unsigned char)*name;
1998  	while (c) {
1999  		len++;
2000  		hash = partial_name_hash(c, hash);
2001  		c = (unsigned char)name[len];
2002  	}
2003  	return hashlen_create(end_name_hash(hash), len);
2004  }
2005  EXPORT_SYMBOL(hashlen_string);
2006  
2007  /*
2008   * We know there's a real path component here of at least
2009   * one character.
2010   */
2011  static inline u64 hash_name(const void *salt, const char *name)
2012  {
2013  	unsigned long hash = init_name_hash(salt);
2014  	unsigned long len = 0, c;
2015  
2016  	c = (unsigned char)*name;
2017  	do {
2018  		len++;
2019  		hash = partial_name_hash(c, hash);
2020  		c = (unsigned char)name[len];
2021  	} while (c && c != '/');
2022  	return hashlen_create(end_name_hash(hash), len);
2023  }
2024  
2025  #endif
2026  
2027  /*
2028   * Name resolution.
2029   * This is the basic name resolution function, turning a pathname into
2030   * the final dentry. We expect 'base' to be positive and a directory.
2031   *
2032   * Returns 0 and nd will have valid dentry and mnt on success.
2033   * Returns error and drops reference to input namei data on failure.
2034   */
2035  static int link_path_walk(const char *name, struct nameidata *nd)
2036  {
2037  	int err;
2038  
2039  	while (*name=='/')
2040  		name++;
2041  	if (!*name)
2042  		return 0;
2043  
2044  	/* At this point we know we have a real path component. */
2045  	for(;;) {
2046  		u64 hash_len;
2047  		int type;
2048  
2049  		err = may_lookup(nd);
2050  		if (err)
2051  			return err;
2052  
2053  		hash_len = hash_name(nd->path.dentry, name);
2054  
2055  		type = LAST_NORM;
2056  		if (name[0] == '.') switch (hashlen_len(hash_len)) {
2057  			case 2:
2058  				if (name[1] == '.') {
2059  					type = LAST_DOTDOT;
2060  					nd->flags |= LOOKUP_JUMPED;
2061  				}
2062  				break;
2063  			case 1:
2064  				type = LAST_DOT;
2065  		}
2066  		if (likely(type == LAST_NORM)) {
2067  			struct dentry *parent = nd->path.dentry;
2068  			nd->flags &= ~LOOKUP_JUMPED;
2069  			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2070  				struct qstr this = { { .hash_len = hash_len }, .name = name };
2071  				err = parent->d_op->d_hash(parent, &this);
2072  				if (err < 0)
2073  					return err;
2074  				hash_len = this.hash_len;
2075  				name = this.name;
2076  			}
2077  		}
2078  
2079  		nd->last.hash_len = hash_len;
2080  		nd->last.name = name;
2081  		nd->last_type = type;
2082  
2083  		name += hashlen_len(hash_len);
2084  		if (!*name)
2085  			goto OK;
2086  		/*
2087  		 * If it wasn't NUL, we know it was '/'. Skip that
2088  		 * slash, and continue until no more slashes.
2089  		 */
2090  		do {
2091  			name++;
2092  		} while (unlikely(*name == '/'));
2093  		if (unlikely(!*name)) {
2094  OK:
2095  			/* pathname body, done */
2096  			if (!nd->depth)
2097  				return 0;
2098  			name = nd->stack[nd->depth - 1].name;
2099  			/* trailing symlink, done */
2100  			if (!name)
2101  				return 0;
2102  			/* last component of nested symlink */
2103  			err = walk_component(nd, WALK_FOLLOW);
2104  		} else {
2105  			/* not the last component */
2106  			err = walk_component(nd, WALK_FOLLOW | WALK_MORE);
2107  		}
2108  		if (err < 0)
2109  			return err;
2110  
2111  		if (err) {
2112  			const char *s = get_link(nd);
2113  
2114  			if (IS_ERR(s))
2115  				return PTR_ERR(s);
2116  			err = 0;
2117  			if (unlikely(!s)) {
2118  				/* jumped */
2119  				put_link(nd);
2120  			} else {
2121  				nd->stack[nd->depth - 1].name = name;
2122  				name = s;
2123  				continue;
2124  			}
2125  		}
2126  		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2127  			if (nd->flags & LOOKUP_RCU) {
2128  				if (unlazy_walk(nd, NULL, 0))
2129  					return -ECHILD;
2130  			}
2131  			return -ENOTDIR;
2132  		}
2133  	}
2134  }
2135  
2136  static const char *path_init(struct nameidata *nd, unsigned flags)
2137  {
2138  	int retval = 0;
2139  	const char *s = nd->name->name;
2140  
2141  	nd->last_type = LAST_ROOT; /* if there are only slashes... */
2142  	nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2143  	nd->depth = 0;
2144  	if (flags & LOOKUP_ROOT) {
2145  		struct dentry *root = nd->root.dentry;
2146  		struct inode *inode = root->d_inode;
2147  		if (*s) {
2148  			if (!d_can_lookup(root))
2149  				return ERR_PTR(-ENOTDIR);
2150  			retval = inode_permission(inode, MAY_EXEC);
2151  			if (retval)
2152  				return ERR_PTR(retval);
2153  		}
2154  		nd->path = nd->root;
2155  		nd->inode = inode;
2156  		if (flags & LOOKUP_RCU) {
2157  			rcu_read_lock();
2158  			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2159  			nd->root_seq = nd->seq;
2160  			nd->m_seq = read_seqbegin(&mount_lock);
2161  		} else {
2162  			path_get(&nd->path);
2163  		}
2164  		return s;
2165  	}
2166  
2167  	nd->root.mnt = NULL;
2168  	nd->path.mnt = NULL;
2169  	nd->path.dentry = NULL;
2170  
2171  	nd->m_seq = read_seqbegin(&mount_lock);
2172  	if (*s == '/') {
2173  		if (flags & LOOKUP_RCU)
2174  			rcu_read_lock();
2175  		set_root(nd);
2176  		if (likely(!nd_jump_root(nd)))
2177  			return s;
2178  		nd->root.mnt = NULL;
2179  		rcu_read_unlock();
2180  		return ERR_PTR(-ECHILD);
2181  	} else if (nd->dfd == AT_FDCWD) {
2182  		if (flags & LOOKUP_RCU) {
2183  			struct fs_struct *fs = current->fs;
2184  			unsigned seq;
2185  
2186  			rcu_read_lock();
2187  
2188  			do {
2189  				seq = read_seqcount_begin(&fs->seq);
2190  				nd->path = fs->pwd;
2191  				nd->inode = nd->path.dentry->d_inode;
2192  				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2193  			} while (read_seqcount_retry(&fs->seq, seq));
2194  		} else {
2195  			get_fs_pwd(current->fs, &nd->path);
2196  			nd->inode = nd->path.dentry->d_inode;
2197  		}
2198  		return s;
2199  	} else {
2200  		/* Caller must check execute permissions on the starting path component */
2201  		struct fd f = fdget_raw(nd->dfd);
2202  		struct dentry *dentry;
2203  
2204  		if (!f.file)
2205  			return ERR_PTR(-EBADF);
2206  
2207  		dentry = f.file->f_path.dentry;
2208  
2209  		if (*s) {
2210  			if (!d_can_lookup(dentry)) {
2211  				fdput(f);
2212  				return ERR_PTR(-ENOTDIR);
2213  			}
2214  		}
2215  
2216  		nd->path = f.file->f_path;
2217  		if (flags & LOOKUP_RCU) {
2218  			rcu_read_lock();
2219  			nd->inode = nd->path.dentry->d_inode;
2220  			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2221  		} else {
2222  			path_get(&nd->path);
2223  			nd->inode = nd->path.dentry->d_inode;
2224  		}
2225  		fdput(f);
2226  		return s;
2227  	}
2228  }
2229  
2230  static const char *trailing_symlink(struct nameidata *nd)
2231  {
2232  	const char *s;
2233  	int error = may_follow_link(nd);
2234  	if (unlikely(error))
2235  		return ERR_PTR(error);
2236  	nd->flags |= LOOKUP_PARENT;
2237  	nd->stack[0].name = NULL;
2238  	s = get_link(nd);
2239  	return s ? s : "";
2240  }
2241  
2242  static inline int lookup_last(struct nameidata *nd)
2243  {
2244  	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2245  		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2246  
2247  	nd->flags &= ~LOOKUP_PARENT;
2248  	return walk_component(nd, 0);
2249  }
2250  
2251  /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2252  static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2253  {
2254  	const char *s = path_init(nd, flags);
2255  	int err;
2256  
2257  	if (IS_ERR(s))
2258  		return PTR_ERR(s);
2259  	while (!(err = link_path_walk(s, nd))
2260  		&& ((err = lookup_last(nd)) > 0)) {
2261  		s = trailing_symlink(nd);
2262  		if (IS_ERR(s)) {
2263  			err = PTR_ERR(s);
2264  			break;
2265  		}
2266  	}
2267  	if (!err)
2268  		err = complete_walk(nd);
2269  
2270  	if (!err && nd->flags & LOOKUP_DIRECTORY)
2271  		if (!d_can_lookup(nd->path.dentry))
2272  			err = -ENOTDIR;
2273  	if (!err) {
2274  		*path = nd->path;
2275  		nd->path.mnt = NULL;
2276  		nd->path.dentry = NULL;
2277  	}
2278  	terminate_walk(nd);
2279  	return err;
2280  }
2281  
2282  static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2283  			   struct path *path, struct path *root)
2284  {
2285  	int retval;
2286  	struct nameidata nd;
2287  	if (IS_ERR(name))
2288  		return PTR_ERR(name);
2289  	if (unlikely(root)) {
2290  		nd.root = *root;
2291  		flags |= LOOKUP_ROOT;
2292  	}
2293  	set_nameidata(&nd, dfd, name);
2294  	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2295  	if (unlikely(retval == -ECHILD))
2296  		retval = path_lookupat(&nd, flags, path);
2297  	if (unlikely(retval == -ESTALE))
2298  		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2299  
2300  	if (likely(!retval))
2301  		audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2302  	restore_nameidata();
2303  	putname(name);
2304  	return retval;
2305  }
2306  
2307  /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2308  static int path_parentat(struct nameidata *nd, unsigned flags,
2309  				struct path *parent)
2310  {
2311  	const char *s = path_init(nd, flags);
2312  	int err;
2313  	if (IS_ERR(s))
2314  		return PTR_ERR(s);
2315  	err = link_path_walk(s, nd);
2316  	if (!err)
2317  		err = complete_walk(nd);
2318  	if (!err) {
2319  		*parent = nd->path;
2320  		nd->path.mnt = NULL;
2321  		nd->path.dentry = NULL;
2322  	}
2323  	terminate_walk(nd);
2324  	return err;
2325  }
2326  
2327  static struct filename *filename_parentat(int dfd, struct filename *name,
2328  				unsigned int flags, struct path *parent,
2329  				struct qstr *last, int *type)
2330  {
2331  	int retval;
2332  	struct nameidata nd;
2333  
2334  	if (IS_ERR(name))
2335  		return name;
2336  	set_nameidata(&nd, dfd, name);
2337  	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2338  	if (unlikely(retval == -ECHILD))
2339  		retval = path_parentat(&nd, flags, parent);
2340  	if (unlikely(retval == -ESTALE))
2341  		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2342  	if (likely(!retval)) {
2343  		*last = nd.last;
2344  		*type = nd.last_type;
2345  		audit_inode(name, parent->dentry, LOOKUP_PARENT);
2346  	} else {
2347  		putname(name);
2348  		name = ERR_PTR(retval);
2349  	}
2350  	restore_nameidata();
2351  	return name;
2352  }
2353  
2354  /* does lookup, returns the object with parent locked */
2355  struct dentry *kern_path_locked(const char *name, struct path *path)
2356  {
2357  	struct filename *filename;
2358  	struct dentry *d;
2359  	struct qstr last;
2360  	int type;
2361  
2362  	filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2363  				    &last, &type);
2364  	if (IS_ERR(filename))
2365  		return ERR_CAST(filename);
2366  	if (unlikely(type != LAST_NORM)) {
2367  		path_put(path);
2368  		putname(filename);
2369  		return ERR_PTR(-EINVAL);
2370  	}
2371  	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2372  	d = __lookup_hash(&last, path->dentry, 0);
2373  	if (IS_ERR(d)) {
2374  		inode_unlock(path->dentry->d_inode);
2375  		path_put(path);
2376  	}
2377  	putname(filename);
2378  	return d;
2379  }
2380  
2381  int kern_path(const char *name, unsigned int flags, struct path *path)
2382  {
2383  	return filename_lookup(AT_FDCWD, getname_kernel(name),
2384  			       flags, path, NULL);
2385  }
2386  EXPORT_SYMBOL(kern_path);
2387  
2388  /**
2389   * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2390   * @dentry:  pointer to dentry of the base directory
2391   * @mnt: pointer to vfs mount of the base directory
2392   * @name: pointer to file name
2393   * @flags: lookup flags
2394   * @path: pointer to struct path to fill
2395   */
2396  int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2397  		    const char *name, unsigned int flags,
2398  		    struct path *path)
2399  {
2400  	struct path root = {.mnt = mnt, .dentry = dentry};
2401  	/* the first argument of filename_lookup() is ignored with root */
2402  	return filename_lookup(AT_FDCWD, getname_kernel(name),
2403  			       flags , path, &root);
2404  }
2405  EXPORT_SYMBOL(vfs_path_lookup);
2406  
2407  /**
2408   * lookup_one_len - filesystem helper to lookup single pathname component
2409   * @name:	pathname component to lookup
2410   * @base:	base directory to lookup from
2411   * @len:	maximum length @len should be interpreted to
2412   *
2413   * Note that this routine is purely a helper for filesystem usage and should
2414   * not be called by generic code.
2415   *
2416   * The caller must hold base->i_mutex.
2417   */
2418  struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2419  {
2420  	struct qstr this;
2421  	unsigned int c;
2422  	int err;
2423  
2424  	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2425  
2426  	this.name = name;
2427  	this.len = len;
2428  	this.hash = full_name_hash(base, name, len);
2429  	if (!len)
2430  		return ERR_PTR(-EACCES);
2431  
2432  	if (unlikely(name[0] == '.')) {
2433  		if (len < 2 || (len == 2 && name[1] == '.'))
2434  			return ERR_PTR(-EACCES);
2435  	}
2436  
2437  	while (len--) {
2438  		c = *(const unsigned char *)name++;
2439  		if (c == '/' || c == '\0')
2440  			return ERR_PTR(-EACCES);
2441  	}
2442  	/*
2443  	 * See if the low-level filesystem might want
2444  	 * to use its own hash..
2445  	 */
2446  	if (base->d_flags & DCACHE_OP_HASH) {
2447  		int err = base->d_op->d_hash(base, &this);
2448  		if (err < 0)
2449  			return ERR_PTR(err);
2450  	}
2451  
2452  	err = inode_permission(base->d_inode, MAY_EXEC);
2453  	if (err)
2454  		return ERR_PTR(err);
2455  
2456  	return __lookup_hash(&this, base, 0);
2457  }
2458  EXPORT_SYMBOL(lookup_one_len);
2459  
2460  /**
2461   * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2462   * @name:	pathname component to lookup
2463   * @base:	base directory to lookup from
2464   * @len:	maximum length @len should be interpreted to
2465   *
2466   * Note that this routine is purely a helper for filesystem usage and should
2467   * not be called by generic code.
2468   *
2469   * Unlike lookup_one_len, it should be called without the parent
2470   * i_mutex held, and will take the i_mutex itself if necessary.
2471   */
2472  struct dentry *lookup_one_len_unlocked(const char *name,
2473  				       struct dentry *base, int len)
2474  {
2475  	struct qstr this;
2476  	unsigned int c;
2477  	int err;
2478  	struct dentry *ret;
2479  
2480  	this.name = name;
2481  	this.len = len;
2482  	this.hash = full_name_hash(base, name, len);
2483  	if (!len)
2484  		return ERR_PTR(-EACCES);
2485  
2486  	if (unlikely(name[0] == '.')) {
2487  		if (len < 2 || (len == 2 && name[1] == '.'))
2488  			return ERR_PTR(-EACCES);
2489  	}
2490  
2491  	while (len--) {
2492  		c = *(const unsigned char *)name++;
2493  		if (c == '/' || c == '\0')
2494  			return ERR_PTR(-EACCES);
2495  	}
2496  	/*
2497  	 * See if the low-level filesystem might want
2498  	 * to use its own hash..
2499  	 */
2500  	if (base->d_flags & DCACHE_OP_HASH) {
2501  		int err = base->d_op->d_hash(base, &this);
2502  		if (err < 0)
2503  			return ERR_PTR(err);
2504  	}
2505  
2506  	err = inode_permission(base->d_inode, MAY_EXEC);
2507  	if (err)
2508  		return ERR_PTR(err);
2509  
2510  	ret = lookup_dcache(&this, base, 0);
2511  	if (!ret)
2512  		ret = lookup_slow(&this, base, 0);
2513  	return ret;
2514  }
2515  EXPORT_SYMBOL(lookup_one_len_unlocked);
2516  
2517  #ifdef CONFIG_UNIX98_PTYS
2518  int path_pts(struct path *path)
2519  {
2520  	/* Find something mounted on "pts" in the same directory as
2521  	 * the input path.
2522  	 */
2523  	struct dentry *child, *parent;
2524  	struct qstr this;
2525  	int ret;
2526  
2527  	ret = path_parent_directory(path);
2528  	if (ret)
2529  		return ret;
2530  
2531  	parent = path->dentry;
2532  	this.name = "pts";
2533  	this.len = 3;
2534  	child = d_hash_and_lookup(parent, &this);
2535  	if (!child)
2536  		return -ENOENT;
2537  
2538  	path->dentry = child;
2539  	dput(parent);
2540  	follow_mount(path);
2541  	return 0;
2542  }
2543  #endif
2544  
2545  int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2546  		 struct path *path, int *empty)
2547  {
2548  	return filename_lookup(dfd, getname_flags(name, flags, empty),
2549  			       flags, path, NULL);
2550  }
2551  EXPORT_SYMBOL(user_path_at_empty);
2552  
2553  /**
2554   * mountpoint_last - look up last component for umount
2555   * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2556   *
2557   * This is a special lookup_last function just for umount. In this case, we
2558   * need to resolve the path without doing any revalidation.
2559   *
2560   * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2561   * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2562   * in almost all cases, this lookup will be served out of the dcache. The only
2563   * cases where it won't are if nd->last refers to a symlink or the path is
2564   * bogus and it doesn't exist.
2565   *
2566   * Returns:
2567   * -error: if there was an error during lookup. This includes -ENOENT if the
2568   *         lookup found a negative dentry.
2569   *
2570   * 0:      if we successfully resolved nd->last and found it to not to be a
2571   *         symlink that needs to be followed.
2572   *
2573   * 1:      if we successfully resolved nd->last and found it to be a symlink
2574   *         that needs to be followed.
2575   */
2576  static int
2577  mountpoint_last(struct nameidata *nd)
2578  {
2579  	int error = 0;
2580  	struct dentry *dir = nd->path.dentry;
2581  	struct path path;
2582  
2583  	/* If we're in rcuwalk, drop out of it to handle last component */
2584  	if (nd->flags & LOOKUP_RCU) {
2585  		if (unlazy_walk(nd, NULL, 0))
2586  			return -ECHILD;
2587  	}
2588  
2589  	nd->flags &= ~LOOKUP_PARENT;
2590  
2591  	if (unlikely(nd->last_type != LAST_NORM)) {
2592  		error = handle_dots(nd, nd->last_type);
2593  		if (error)
2594  			return error;
2595  		path.dentry = dget(nd->path.dentry);
2596  	} else {
2597  		path.dentry = d_lookup(dir, &nd->last);
2598  		if (!path.dentry) {
2599  			/*
2600  			 * No cached dentry. Mounted dentries are pinned in the
2601  			 * cache, so that means that this dentry is probably
2602  			 * a symlink or the path doesn't actually point
2603  			 * to a mounted dentry.
2604  			 */
2605  			path.dentry = lookup_slow(&nd->last, dir,
2606  					     nd->flags | LOOKUP_NO_REVAL);
2607  			if (IS_ERR(path.dentry))
2608  				return PTR_ERR(path.dentry);
2609  		}
2610  	}
2611  	if (d_is_negative(path.dentry)) {
2612  		dput(path.dentry);
2613  		return -ENOENT;
2614  	}
2615  	path.mnt = nd->path.mnt;
2616  	return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0);
2617  }
2618  
2619  /**
2620   * path_mountpoint - look up a path to be umounted
2621   * @nd:		lookup context
2622   * @flags:	lookup flags
2623   * @path:	pointer to container for result
2624   *
2625   * Look up the given name, but don't attempt to revalidate the last component.
2626   * Returns 0 and "path" will be valid on success; Returns error otherwise.
2627   */
2628  static int
2629  path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2630  {
2631  	const char *s = path_init(nd, flags);
2632  	int err;
2633  	if (IS_ERR(s))
2634  		return PTR_ERR(s);
2635  	while (!(err = link_path_walk(s, nd)) &&
2636  		(err = mountpoint_last(nd)) > 0) {
2637  		s = trailing_symlink(nd);
2638  		if (IS_ERR(s)) {
2639  			err = PTR_ERR(s);
2640  			break;
2641  		}
2642  	}
2643  	if (!err) {
2644  		*path = nd->path;
2645  		nd->path.mnt = NULL;
2646  		nd->path.dentry = NULL;
2647  		follow_mount(path);
2648  	}
2649  	terminate_walk(nd);
2650  	return err;
2651  }
2652  
2653  static int
2654  filename_mountpoint(int dfd, struct filename *name, struct path *path,
2655  			unsigned int flags)
2656  {
2657  	struct nameidata nd;
2658  	int error;
2659  	if (IS_ERR(name))
2660  		return PTR_ERR(name);
2661  	set_nameidata(&nd, dfd, name);
2662  	error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2663  	if (unlikely(error == -ECHILD))
2664  		error = path_mountpoint(&nd, flags, path);
2665  	if (unlikely(error == -ESTALE))
2666  		error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2667  	if (likely(!error))
2668  		audit_inode(name, path->dentry, 0);
2669  	restore_nameidata();
2670  	putname(name);
2671  	return error;
2672  }
2673  
2674  /**
2675   * user_path_mountpoint_at - lookup a path from userland in order to umount it
2676   * @dfd:	directory file descriptor
2677   * @name:	pathname from userland
2678   * @flags:	lookup flags
2679   * @path:	pointer to container to hold result
2680   *
2681   * A umount is a special case for path walking. We're not actually interested
2682   * in the inode in this situation, and ESTALE errors can be a problem. We
2683   * simply want track down the dentry and vfsmount attached at the mountpoint
2684   * and avoid revalidating the last component.
2685   *
2686   * Returns 0 and populates "path" on success.
2687   */
2688  int
2689  user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2690  			struct path *path)
2691  {
2692  	return filename_mountpoint(dfd, getname(name), path, flags);
2693  }
2694  
2695  int
2696  kern_path_mountpoint(int dfd, const char *name, struct path *path,
2697  			unsigned int flags)
2698  {
2699  	return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2700  }
2701  EXPORT_SYMBOL(kern_path_mountpoint);
2702  
2703  int __check_sticky(struct inode *dir, struct inode *inode)
2704  {
2705  	kuid_t fsuid = current_fsuid();
2706  
2707  	if (uid_eq(inode->i_uid, fsuid))
2708  		return 0;
2709  	if (uid_eq(dir->i_uid, fsuid))
2710  		return 0;
2711  	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2712  }
2713  EXPORT_SYMBOL(__check_sticky);
2714  
2715  /*
2716   *	Check whether we can remove a link victim from directory dir, check
2717   *  whether the type of victim is right.
2718   *  1. We can't do it if dir is read-only (done in permission())
2719   *  2. We should have write and exec permissions on dir
2720   *  3. We can't remove anything from append-only dir
2721   *  4. We can't do anything with immutable dir (done in permission())
2722   *  5. If the sticky bit on dir is set we should either
2723   *	a. be owner of dir, or
2724   *	b. be owner of victim, or
2725   *	c. have CAP_FOWNER capability
2726   *  6. If the victim is append-only or immutable we can't do antyhing with
2727   *     links pointing to it.
2728   *  7. If the victim has an unknown uid or gid we can't change the inode.
2729   *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2730   *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2731   * 10. We can't remove a root or mountpoint.
2732   * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2733   *     nfs_async_unlink().
2734   */
2735  static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2736  {
2737  	struct inode *inode = d_backing_inode(victim);
2738  	int error;
2739  
2740  	if (d_is_negative(victim))
2741  		return -ENOENT;
2742  	BUG_ON(!inode);
2743  
2744  	BUG_ON(victim->d_parent->d_inode != dir);
2745  	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2746  
2747  	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2748  	if (error)
2749  		return error;
2750  	if (IS_APPEND(dir))
2751  		return -EPERM;
2752  
2753  	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2754  	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2755  		return -EPERM;
2756  	if (isdir) {
2757  		if (!d_is_dir(victim))
2758  			return -ENOTDIR;
2759  		if (IS_ROOT(victim))
2760  			return -EBUSY;
2761  	} else if (d_is_dir(victim))
2762  		return -EISDIR;
2763  	if (IS_DEADDIR(dir))
2764  		return -ENOENT;
2765  	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2766  		return -EBUSY;
2767  	return 0;
2768  }
2769  
2770  /*	Check whether we can create an object with dentry child in directory
2771   *  dir.
2772   *  1. We can't do it if child already exists (open has special treatment for
2773   *     this case, but since we are inlined it's OK)
2774   *  2. We can't do it if dir is read-only (done in permission())
2775   *  3. We can't do it if the fs can't represent the fsuid or fsgid.
2776   *  4. We should have write and exec permissions on dir
2777   *  5. We can't do it if dir is immutable (done in permission())
2778   */
2779  static inline int may_create(struct inode *dir, struct dentry *child)
2780  {
2781  	struct user_namespace *s_user_ns;
2782  	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2783  	if (child->d_inode)
2784  		return -EEXIST;
2785  	if (IS_DEADDIR(dir))
2786  		return -ENOENT;
2787  	s_user_ns = dir->i_sb->s_user_ns;
2788  	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2789  	    !kgid_has_mapping(s_user_ns, current_fsgid()))
2790  		return -EOVERFLOW;
2791  	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2792  }
2793  
2794  /*
2795   * p1 and p2 should be directories on the same fs.
2796   */
2797  struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2798  {
2799  	struct dentry *p;
2800  
2801  	if (p1 == p2) {
2802  		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2803  		return NULL;
2804  	}
2805  
2806  	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2807  
2808  	p = d_ancestor(p2, p1);
2809  	if (p) {
2810  		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2811  		inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2812  		return p;
2813  	}
2814  
2815  	p = d_ancestor(p1, p2);
2816  	if (p) {
2817  		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2818  		inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2819  		return p;
2820  	}
2821  
2822  	inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2823  	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2824  	return NULL;
2825  }
2826  EXPORT_SYMBOL(lock_rename);
2827  
2828  void unlock_rename(struct dentry *p1, struct dentry *p2)
2829  {
2830  	inode_unlock(p1->d_inode);
2831  	if (p1 != p2) {
2832  		inode_unlock(p2->d_inode);
2833  		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2834  	}
2835  }
2836  EXPORT_SYMBOL(unlock_rename);
2837  
2838  int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2839  		bool want_excl)
2840  {
2841  	int error = may_create(dir, dentry);
2842  	if (error)
2843  		return error;
2844  
2845  	if (!dir->i_op->create)
2846  		return -EACCES;	/* shouldn't it be ENOSYS? */
2847  	mode &= S_IALLUGO;
2848  	mode |= S_IFREG;
2849  	error = security_inode_create(dir, dentry, mode);
2850  	if (error)
2851  		return error;
2852  	error = dir->i_op->create(dir, dentry, mode, want_excl);
2853  	if (!error)
2854  		fsnotify_create(dir, dentry);
2855  	return error;
2856  }
2857  EXPORT_SYMBOL(vfs_create);
2858  
2859  bool may_open_dev(const struct path *path)
2860  {
2861  	return !(path->mnt->mnt_flags & MNT_NODEV) &&
2862  		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2863  }
2864  
2865  static int may_open(const struct path *path, int acc_mode, int flag)
2866  {
2867  	struct dentry *dentry = path->dentry;
2868  	struct inode *inode = dentry->d_inode;
2869  	int error;
2870  
2871  	if (!inode)
2872  		return -ENOENT;
2873  
2874  	switch (inode->i_mode & S_IFMT) {
2875  	case S_IFLNK:
2876  		return -ELOOP;
2877  	case S_IFDIR:
2878  		if (acc_mode & MAY_WRITE)
2879  			return -EISDIR;
2880  		break;
2881  	case S_IFBLK:
2882  	case S_IFCHR:
2883  		if (!may_open_dev(path))
2884  			return -EACCES;
2885  		/*FALLTHRU*/
2886  	case S_IFIFO:
2887  	case S_IFSOCK:
2888  		flag &= ~O_TRUNC;
2889  		break;
2890  	}
2891  
2892  	error = inode_permission(inode, MAY_OPEN | acc_mode);
2893  	if (error)
2894  		return error;
2895  
2896  	/*
2897  	 * An append-only file must be opened in append mode for writing.
2898  	 */
2899  	if (IS_APPEND(inode)) {
2900  		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2901  			return -EPERM;
2902  		if (flag & O_TRUNC)
2903  			return -EPERM;
2904  	}
2905  
2906  	/* O_NOATIME can only be set by the owner or superuser */
2907  	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2908  		return -EPERM;
2909  
2910  	return 0;
2911  }
2912  
2913  static int handle_truncate(struct file *filp)
2914  {
2915  	const struct path *path = &filp->f_path;
2916  	struct inode *inode = path->dentry->d_inode;
2917  	int error = get_write_access(inode);
2918  	if (error)
2919  		return error;
2920  	/*
2921  	 * Refuse to truncate files with mandatory locks held on them.
2922  	 */
2923  	error = locks_verify_locked(filp);
2924  	if (!error)
2925  		error = security_path_truncate(path);
2926  	if (!error) {
2927  		error = do_truncate(path->dentry, 0,
2928  				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2929  				    filp);
2930  	}
2931  	put_write_access(inode);
2932  	return error;
2933  }
2934  
2935  static inline int open_to_namei_flags(int flag)
2936  {
2937  	if ((flag & O_ACCMODE) == 3)
2938  		flag--;
2939  	return flag;
2940  }
2941  
2942  static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
2943  {
2944  	int error = security_path_mknod(dir, dentry, mode, 0);
2945  	if (error)
2946  		return error;
2947  
2948  	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2949  	if (error)
2950  		return error;
2951  
2952  	return security_inode_create(dir->dentry->d_inode, dentry, mode);
2953  }
2954  
2955  /*
2956   * Attempt to atomically look up, create and open a file from a negative
2957   * dentry.
2958   *
2959   * Returns 0 if successful.  The file will have been created and attached to
2960   * @file by the filesystem calling finish_open().
2961   *
2962   * Returns 1 if the file was looked up only or didn't need creating.  The
2963   * caller will need to perform the open themselves.  @path will have been
2964   * updated to point to the new dentry.  This may be negative.
2965   *
2966   * Returns an error code otherwise.
2967   */
2968  static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2969  			struct path *path, struct file *file,
2970  			const struct open_flags *op,
2971  			int open_flag, umode_t mode,
2972  			int *opened)
2973  {
2974  	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2975  	struct inode *dir =  nd->path.dentry->d_inode;
2976  	int error;
2977  
2978  	if (!(~open_flag & (O_EXCL | O_CREAT)))	/* both O_EXCL and O_CREAT */
2979  		open_flag &= ~O_TRUNC;
2980  
2981  	if (nd->flags & LOOKUP_DIRECTORY)
2982  		open_flag |= O_DIRECTORY;
2983  
2984  	file->f_path.dentry = DENTRY_NOT_SET;
2985  	file->f_path.mnt = nd->path.mnt;
2986  	error = dir->i_op->atomic_open(dir, dentry, file,
2987  				       open_to_namei_flags(open_flag),
2988  				       mode, opened);
2989  	d_lookup_done(dentry);
2990  	if (!error) {
2991  		/*
2992  		 * We didn't have the inode before the open, so check open
2993  		 * permission here.
2994  		 */
2995  		int acc_mode = op->acc_mode;
2996  		if (*opened & FILE_CREATED) {
2997  			WARN_ON(!(open_flag & O_CREAT));
2998  			fsnotify_create(dir, dentry);
2999  			acc_mode = 0;
3000  		}
3001  		error = may_open(&file->f_path, acc_mode, open_flag);
3002  		if (WARN_ON(error > 0))
3003  			error = -EINVAL;
3004  	} else if (error > 0) {
3005  		if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3006  			error = -EIO;
3007  		} else {
3008  			if (file->f_path.dentry) {
3009  				dput(dentry);
3010  				dentry = file->f_path.dentry;
3011  			}
3012  			if (*opened & FILE_CREATED)
3013  				fsnotify_create(dir, dentry);
3014  			if (unlikely(d_is_negative(dentry))) {
3015  				error = -ENOENT;
3016  			} else {
3017  				path->dentry = dentry;
3018  				path->mnt = nd->path.mnt;
3019  				return 1;
3020  			}
3021  		}
3022  	}
3023  	dput(dentry);
3024  	return error;
3025  }
3026  
3027  /*
3028   * Look up and maybe create and open the last component.
3029   *
3030   * Must be called with i_mutex held on parent.
3031   *
3032   * Returns 0 if the file was successfully atomically created (if necessary) and
3033   * opened.  In this case the file will be returned attached to @file.
3034   *
3035   * Returns 1 if the file was not completely opened at this time, though lookups
3036   * and creations will have been performed and the dentry returned in @path will
3037   * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
3038   * specified then a negative dentry may be returned.
3039   *
3040   * An error code is returned otherwise.
3041   *
3042   * FILE_CREATE will be set in @*opened if the dentry was created and will be
3043   * cleared otherwise prior to returning.
3044   */
3045  static int lookup_open(struct nameidata *nd, struct path *path,
3046  			struct file *file,
3047  			const struct open_flags *op,
3048  			bool got_write, int *opened)
3049  {
3050  	struct dentry *dir = nd->path.dentry;
3051  	struct inode *dir_inode = dir->d_inode;
3052  	int open_flag = op->open_flag;
3053  	struct dentry *dentry;
3054  	int error, create_error = 0;
3055  	umode_t mode = op->mode;
3056  	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3057  
3058  	if (unlikely(IS_DEADDIR(dir_inode)))
3059  		return -ENOENT;
3060  
3061  	*opened &= ~FILE_CREATED;
3062  	dentry = d_lookup(dir, &nd->last);
3063  	for (;;) {
3064  		if (!dentry) {
3065  			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3066  			if (IS_ERR(dentry))
3067  				return PTR_ERR(dentry);
3068  		}
3069  		if (d_in_lookup(dentry))
3070  			break;
3071  
3072  		if (!(dentry->d_flags & DCACHE_OP_REVALIDATE))
3073  			break;
3074  
3075  		error = d_revalidate(dentry, nd->flags);
3076  		if (likely(error > 0))
3077  			break;
3078  		if (error)
3079  			goto out_dput;
3080  		d_invalidate(dentry);
3081  		dput(dentry);
3082  		dentry = NULL;
3083  	}
3084  	if (dentry->d_inode) {
3085  		/* Cached positive dentry: will open in f_op->open */
3086  		goto out_no_open;
3087  	}
3088  
3089  	/*
3090  	 * Checking write permission is tricky, bacuse we don't know if we are
3091  	 * going to actually need it: O_CREAT opens should work as long as the
3092  	 * file exists.  But checking existence breaks atomicity.  The trick is
3093  	 * to check access and if not granted clear O_CREAT from the flags.
3094  	 *
3095  	 * Another problem is returing the "right" error value (e.g. for an
3096  	 * O_EXCL open we want to return EEXIST not EROFS).
3097  	 */
3098  	if (open_flag & O_CREAT) {
3099  		if (!IS_POSIXACL(dir->d_inode))
3100  			mode &= ~current_umask();
3101  		if (unlikely(!got_write)) {
3102  			create_error = -EROFS;
3103  			open_flag &= ~O_CREAT;
3104  			if (open_flag & (O_EXCL | O_TRUNC))
3105  				goto no_open;
3106  			/* No side effects, safe to clear O_CREAT */
3107  		} else {
3108  			create_error = may_o_create(&nd->path, dentry, mode);
3109  			if (create_error) {
3110  				open_flag &= ~O_CREAT;
3111  				if (open_flag & O_EXCL)
3112  					goto no_open;
3113  			}
3114  		}
3115  	} else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3116  		   unlikely(!got_write)) {
3117  		/*
3118  		 * No O_CREATE -> atomicity not a requirement -> fall
3119  		 * back to lookup + open
3120  		 */
3121  		goto no_open;
3122  	}
3123  
3124  	if (dir_inode->i_op->atomic_open) {
3125  		error = atomic_open(nd, dentry, path, file, op, open_flag,
3126  				    mode, opened);
3127  		if (unlikely(error == -ENOENT) && create_error)
3128  			error = create_error;
3129  		return error;
3130  	}
3131  
3132  no_open:
3133  	if (d_in_lookup(dentry)) {
3134  		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3135  							     nd->flags);
3136  		d_lookup_done(dentry);
3137  		if (unlikely(res)) {
3138  			if (IS_ERR(res)) {
3139  				error = PTR_ERR(res);
3140  				goto out_dput;
3141  			}
3142  			dput(dentry);
3143  			dentry = res;
3144  		}
3145  	}
3146  
3147  	/* Negative dentry, just create the file */
3148  	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3149  		*opened |= FILE_CREATED;
3150  		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3151  		if (!dir_inode->i_op->create) {
3152  			error = -EACCES;
3153  			goto out_dput;
3154  		}
3155  		error = dir_inode->i_op->create(dir_inode, dentry, mode,
3156  						open_flag & O_EXCL);
3157  		if (error)
3158  			goto out_dput;
3159  		fsnotify_create(dir_inode, dentry);
3160  	}
3161  	if (unlikely(create_error) && !dentry->d_inode) {
3162  		error = create_error;
3163  		goto out_dput;
3164  	}
3165  out_no_open:
3166  	path->dentry = dentry;
3167  	path->mnt = nd->path.mnt;
3168  	return 1;
3169  
3170  out_dput:
3171  	dput(dentry);
3172  	return error;
3173  }
3174  
3175  /*
3176   * Handle the last step of open()
3177   */
3178  static int do_last(struct nameidata *nd,
3179  		   struct file *file, const struct open_flags *op,
3180  		   int *opened)
3181  {
3182  	struct dentry *dir = nd->path.dentry;
3183  	int open_flag = op->open_flag;
3184  	bool will_truncate = (open_flag & O_TRUNC) != 0;
3185  	bool got_write = false;
3186  	int acc_mode = op->acc_mode;
3187  	unsigned seq;
3188  	struct inode *inode;
3189  	struct path path;
3190  	int error;
3191  
3192  	nd->flags &= ~LOOKUP_PARENT;
3193  	nd->flags |= op->intent;
3194  
3195  	if (nd->last_type != LAST_NORM) {
3196  		error = handle_dots(nd, nd->last_type);
3197  		if (unlikely(error))
3198  			return error;
3199  		goto finish_open;
3200  	}
3201  
3202  	if (!(open_flag & O_CREAT)) {
3203  		if (nd->last.name[nd->last.len])
3204  			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3205  		/* we _can_ be in RCU mode here */
3206  		error = lookup_fast(nd, &path, &inode, &seq);
3207  		if (likely(error > 0))
3208  			goto finish_lookup;
3209  
3210  		if (error < 0)
3211  			return error;
3212  
3213  		BUG_ON(nd->inode != dir->d_inode);
3214  		BUG_ON(nd->flags & LOOKUP_RCU);
3215  	} else {
3216  		/* create side of things */
3217  		/*
3218  		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3219  		 * has been cleared when we got to the last component we are
3220  		 * about to look up
3221  		 */
3222  		error = complete_walk(nd);
3223  		if (error)
3224  			return error;
3225  
3226  		audit_inode(nd->name, dir, LOOKUP_PARENT);
3227  		/* trailing slashes? */
3228  		if (unlikely(nd->last.name[nd->last.len]))
3229  			return -EISDIR;
3230  	}
3231  
3232  	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3233  		error = mnt_want_write(nd->path.mnt);
3234  		if (!error)
3235  			got_write = true;
3236  		/*
3237  		 * do _not_ fail yet - we might not need that or fail with
3238  		 * a different error; let lookup_open() decide; we'll be
3239  		 * dropping this one anyway.
3240  		 */
3241  	}
3242  	if (open_flag & O_CREAT)
3243  		inode_lock(dir->d_inode);
3244  	else
3245  		inode_lock_shared(dir->d_inode);
3246  	error = lookup_open(nd, &path, file, op, got_write, opened);
3247  	if (open_flag & O_CREAT)
3248  		inode_unlock(dir->d_inode);
3249  	else
3250  		inode_unlock_shared(dir->d_inode);
3251  
3252  	if (error <= 0) {
3253  		if (error)
3254  			goto out;
3255  
3256  		if ((*opened & FILE_CREATED) ||
3257  		    !S_ISREG(file_inode(file)->i_mode))
3258  			will_truncate = false;
3259  
3260  		audit_inode(nd->name, file->f_path.dentry, 0);
3261  		goto opened;
3262  	}
3263  
3264  	if (*opened & FILE_CREATED) {
3265  		/* Don't check for write permission, don't truncate */
3266  		open_flag &= ~O_TRUNC;
3267  		will_truncate = false;
3268  		acc_mode = 0;
3269  		path_to_nameidata(&path, nd);
3270  		goto finish_open_created;
3271  	}
3272  
3273  	/*
3274  	 * If atomic_open() acquired write access it is dropped now due to
3275  	 * possible mount and symlink following (this might be optimized away if
3276  	 * necessary...)
3277  	 */
3278  	if (got_write) {
3279  		mnt_drop_write(nd->path.mnt);
3280  		got_write = false;
3281  	}
3282  
3283  	error = follow_managed(&path, nd);
3284  	if (unlikely(error < 0))
3285  		return error;
3286  
3287  	if (unlikely(d_is_negative(path.dentry))) {
3288  		path_to_nameidata(&path, nd);
3289  		return -ENOENT;
3290  	}
3291  
3292  	/*
3293  	 * create/update audit record if it already exists.
3294  	 */
3295  	audit_inode(nd->name, path.dentry, 0);
3296  
3297  	if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3298  		path_to_nameidata(&path, nd);
3299  		return -EEXIST;
3300  	}
3301  
3302  	seq = 0;	/* out of RCU mode, so the value doesn't matter */
3303  	inode = d_backing_inode(path.dentry);
3304  finish_lookup:
3305  	error = step_into(nd, &path, 0, inode, seq);
3306  	if (unlikely(error))
3307  		return error;
3308  finish_open:
3309  	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3310  	error = complete_walk(nd);
3311  	if (error)
3312  		return error;
3313  	audit_inode(nd->name, nd->path.dentry, 0);
3314  	error = -EISDIR;
3315  	if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3316  		goto out;
3317  	error = -ENOTDIR;
3318  	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3319  		goto out;
3320  	if (!d_is_reg(nd->path.dentry))
3321  		will_truncate = false;
3322  
3323  	if (will_truncate) {
3324  		error = mnt_want_write(nd->path.mnt);
3325  		if (error)
3326  			goto out;
3327  		got_write = true;
3328  	}
3329  finish_open_created:
3330  	error = may_open(&nd->path, acc_mode, open_flag);
3331  	if (error)
3332  		goto out;
3333  	BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3334  	error = vfs_open(&nd->path, file, current_cred());
3335  	if (error)
3336  		goto out;
3337  	*opened |= FILE_OPENED;
3338  opened:
3339  	error = open_check_o_direct(file);
3340  	if (!error)
3341  		error = ima_file_check(file, op->acc_mode, *opened);
3342  	if (!error && will_truncate)
3343  		error = handle_truncate(file);
3344  out:
3345  	if (unlikely(error) && (*opened & FILE_OPENED))
3346  		fput(file);
3347  	if (unlikely(error > 0)) {
3348  		WARN_ON(1);
3349  		error = -EINVAL;
3350  	}
3351  	if (got_write)
3352  		mnt_drop_write(nd->path.mnt);
3353  	return error;
3354  }
3355  
3356  static int do_tmpfile(struct nameidata *nd, unsigned flags,
3357  		const struct open_flags *op,
3358  		struct file *file, int *opened)
3359  {
3360  	static const struct qstr name = QSTR_INIT("/", 1);
3361  	struct dentry *child;
3362  	struct inode *dir;
3363  	struct path path;
3364  	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3365  	if (unlikely(error))
3366  		return error;
3367  	error = mnt_want_write(path.mnt);
3368  	if (unlikely(error))
3369  		goto out;
3370  	dir = path.dentry->d_inode;
3371  	/* we want directory to be writable */
3372  	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3373  	if (error)
3374  		goto out2;
3375  	if (!dir->i_op->tmpfile) {
3376  		error = -EOPNOTSUPP;
3377  		goto out2;
3378  	}
3379  	child = d_alloc(path.dentry, &name);
3380  	if (unlikely(!child)) {
3381  		error = -ENOMEM;
3382  		goto out2;
3383  	}
3384  	dput(path.dentry);
3385  	path.dentry = child;
3386  	error = dir->i_op->tmpfile(dir, child, op->mode);
3387  	if (error)
3388  		goto out2;
3389  	audit_inode(nd->name, child, 0);
3390  	/* Don't check for other permissions, the inode was just created */
3391  	error = may_open(&path, 0, op->open_flag);
3392  	if (error)
3393  		goto out2;
3394  	file->f_path.mnt = path.mnt;
3395  	error = finish_open(file, child, NULL, opened);
3396  	if (error)
3397  		goto out2;
3398  	error = open_check_o_direct(file);
3399  	if (error) {
3400  		fput(file);
3401  	} else if (!(op->open_flag & O_EXCL)) {
3402  		struct inode *inode = file_inode(file);
3403  		spin_lock(&inode->i_lock);
3404  		inode->i_state |= I_LINKABLE;
3405  		spin_unlock(&inode->i_lock);
3406  	}
3407  out2:
3408  	mnt_drop_write(path.mnt);
3409  out:
3410  	path_put(&path);
3411  	return error;
3412  }
3413  
3414  static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3415  {
3416  	struct path path;
3417  	int error = path_lookupat(nd, flags, &path);
3418  	if (!error) {
3419  		audit_inode(nd->name, path.dentry, 0);
3420  		error = vfs_open(&path, file, current_cred());
3421  		path_put(&path);
3422  	}
3423  	return error;
3424  }
3425  
3426  static struct file *path_openat(struct nameidata *nd,
3427  			const struct open_flags *op, unsigned flags)
3428  {
3429  	const char *s;
3430  	struct file *file;
3431  	int opened = 0;
3432  	int error;
3433  
3434  	file = get_empty_filp();
3435  	if (IS_ERR(file))
3436  		return file;
3437  
3438  	file->f_flags = op->open_flag;
3439  
3440  	if (unlikely(file->f_flags & __O_TMPFILE)) {
3441  		error = do_tmpfile(nd, flags, op, file, &opened);
3442  		goto out2;
3443  	}
3444  
3445  	if (unlikely(file->f_flags & O_PATH)) {
3446  		error = do_o_path(nd, flags, file);
3447  		if (!error)
3448  			opened |= FILE_OPENED;
3449  		goto out2;
3450  	}
3451  
3452  	s = path_init(nd, flags);
3453  	if (IS_ERR(s)) {
3454  		put_filp(file);
3455  		return ERR_CAST(s);
3456  	}
3457  	while (!(error = link_path_walk(s, nd)) &&
3458  		(error = do_last(nd, file, op, &opened)) > 0) {
3459  		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3460  		s = trailing_symlink(nd);
3461  		if (IS_ERR(s)) {
3462  			error = PTR_ERR(s);
3463  			break;
3464  		}
3465  	}
3466  	terminate_walk(nd);
3467  out2:
3468  	if (!(opened & FILE_OPENED)) {
3469  		BUG_ON(!error);
3470  		put_filp(file);
3471  	}
3472  	if (unlikely(error)) {
3473  		if (error == -EOPENSTALE) {
3474  			if (flags & LOOKUP_RCU)
3475  				error = -ECHILD;
3476  			else
3477  				error = -ESTALE;
3478  		}
3479  		file = ERR_PTR(error);
3480  	}
3481  	return file;
3482  }
3483  
3484  struct file *do_filp_open(int dfd, struct filename *pathname,
3485  		const struct open_flags *op)
3486  {
3487  	struct nameidata nd;
3488  	int flags = op->lookup_flags;
3489  	struct file *filp;
3490  
3491  	set_nameidata(&nd, dfd, pathname);
3492  	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3493  	if (unlikely(filp == ERR_PTR(-ECHILD)))
3494  		filp = path_openat(&nd, op, flags);
3495  	if (unlikely(filp == ERR_PTR(-ESTALE)))
3496  		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3497  	restore_nameidata();
3498  	return filp;
3499  }
3500  
3501  struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3502  		const char *name, const struct open_flags *op)
3503  {
3504  	struct nameidata nd;
3505  	struct file *file;
3506  	struct filename *filename;
3507  	int flags = op->lookup_flags | LOOKUP_ROOT;
3508  
3509  	nd.root.mnt = mnt;
3510  	nd.root.dentry = dentry;
3511  
3512  	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3513  		return ERR_PTR(-ELOOP);
3514  
3515  	filename = getname_kernel(name);
3516  	if (IS_ERR(filename))
3517  		return ERR_CAST(filename);
3518  
3519  	set_nameidata(&nd, -1, filename);
3520  	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3521  	if (unlikely(file == ERR_PTR(-ECHILD)))
3522  		file = path_openat(&nd, op, flags);
3523  	if (unlikely(file == ERR_PTR(-ESTALE)))
3524  		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3525  	restore_nameidata();
3526  	putname(filename);
3527  	return file;
3528  }
3529  
3530  static struct dentry *filename_create(int dfd, struct filename *name,
3531  				struct path *path, unsigned int lookup_flags)
3532  {
3533  	struct dentry *dentry = ERR_PTR(-EEXIST);
3534  	struct qstr last;
3535  	int type;
3536  	int err2;
3537  	int error;
3538  	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3539  
3540  	/*
3541  	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3542  	 * other flags passed in are ignored!
3543  	 */
3544  	lookup_flags &= LOOKUP_REVAL;
3545  
3546  	name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3547  	if (IS_ERR(name))
3548  		return ERR_CAST(name);
3549  
3550  	/*
3551  	 * Yucky last component or no last component at all?
3552  	 * (foo/., foo/.., /////)
3553  	 */
3554  	if (unlikely(type != LAST_NORM))
3555  		goto out;
3556  
3557  	/* don't fail immediately if it's r/o, at least try to report other errors */
3558  	err2 = mnt_want_write(path->mnt);
3559  	/*
3560  	 * Do the final lookup.
3561  	 */
3562  	lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3563  	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3564  	dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3565  	if (IS_ERR(dentry))
3566  		goto unlock;
3567  
3568  	error = -EEXIST;
3569  	if (d_is_positive(dentry))
3570  		goto fail;
3571  
3572  	/*
3573  	 * Special case - lookup gave negative, but... we had foo/bar/
3574  	 * From the vfs_mknod() POV we just have a negative dentry -
3575  	 * all is fine. Let's be bastards - you had / on the end, you've
3576  	 * been asking for (non-existent) directory. -ENOENT for you.
3577  	 */
3578  	if (unlikely(!is_dir && last.name[last.len])) {
3579  		error = -ENOENT;
3580  		goto fail;
3581  	}
3582  	if (unlikely(err2)) {
3583  		error = err2;
3584  		goto fail;
3585  	}
3586  	putname(name);
3587  	return dentry;
3588  fail:
3589  	dput(dentry);
3590  	dentry = ERR_PTR(error);
3591  unlock:
3592  	inode_unlock(path->dentry->d_inode);
3593  	if (!err2)
3594  		mnt_drop_write(path->mnt);
3595  out:
3596  	path_put(path);
3597  	putname(name);
3598  	return dentry;
3599  }
3600  
3601  struct dentry *kern_path_create(int dfd, const char *pathname,
3602  				struct path *path, unsigned int lookup_flags)
3603  {
3604  	return filename_create(dfd, getname_kernel(pathname),
3605  				path, lookup_flags);
3606  }
3607  EXPORT_SYMBOL(kern_path_create);
3608  
3609  void done_path_create(struct path *path, struct dentry *dentry)
3610  {
3611  	dput(dentry);
3612  	inode_unlock(path->dentry->d_inode);
3613  	mnt_drop_write(path->mnt);
3614  	path_put(path);
3615  }
3616  EXPORT_SYMBOL(done_path_create);
3617  
3618  inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3619  				struct path *path, unsigned int lookup_flags)
3620  {
3621  	return filename_create(dfd, getname(pathname), path, lookup_flags);
3622  }
3623  EXPORT_SYMBOL(user_path_create);
3624  
3625  int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3626  {
3627  	int error = may_create(dir, dentry);
3628  
3629  	if (error)
3630  		return error;
3631  
3632  	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3633  		return -EPERM;
3634  
3635  	if (!dir->i_op->mknod)
3636  		return -EPERM;
3637  
3638  	error = devcgroup_inode_mknod(mode, dev);
3639  	if (error)
3640  		return error;
3641  
3642  	error = security_inode_mknod(dir, dentry, mode, dev);
3643  	if (error)
3644  		return error;
3645  
3646  	error = dir->i_op->mknod(dir, dentry, mode, dev);
3647  	if (!error)
3648  		fsnotify_create(dir, dentry);
3649  	return error;
3650  }
3651  EXPORT_SYMBOL(vfs_mknod);
3652  
3653  static int may_mknod(umode_t mode)
3654  {
3655  	switch (mode & S_IFMT) {
3656  	case S_IFREG:
3657  	case S_IFCHR:
3658  	case S_IFBLK:
3659  	case S_IFIFO:
3660  	case S_IFSOCK:
3661  	case 0: /* zero mode translates to S_IFREG */
3662  		return 0;
3663  	case S_IFDIR:
3664  		return -EPERM;
3665  	default:
3666  		return -EINVAL;
3667  	}
3668  }
3669  
3670  SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3671  		unsigned, dev)
3672  {
3673  	struct dentry *dentry;
3674  	struct path path;
3675  	int error;
3676  	unsigned int lookup_flags = 0;
3677  
3678  	error = may_mknod(mode);
3679  	if (error)
3680  		return error;
3681  retry:
3682  	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3683  	if (IS_ERR(dentry))
3684  		return PTR_ERR(dentry);
3685  
3686  	if (!IS_POSIXACL(path.dentry->d_inode))
3687  		mode &= ~current_umask();
3688  	error = security_path_mknod(&path, dentry, mode, dev);
3689  	if (error)
3690  		goto out;
3691  	switch (mode & S_IFMT) {
3692  		case 0: case S_IFREG:
3693  			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3694  			if (!error)
3695  				ima_post_path_mknod(dentry);
3696  			break;
3697  		case S_IFCHR: case S_IFBLK:
3698  			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3699  					new_decode_dev(dev));
3700  			break;
3701  		case S_IFIFO: case S_IFSOCK:
3702  			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3703  			break;
3704  	}
3705  out:
3706  	done_path_create(&path, dentry);
3707  	if (retry_estale(error, lookup_flags)) {
3708  		lookup_flags |= LOOKUP_REVAL;
3709  		goto retry;
3710  	}
3711  	return error;
3712  }
3713  
3714  SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3715  {
3716  	return sys_mknodat(AT_FDCWD, filename, mode, dev);
3717  }
3718  
3719  int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3720  {
3721  	int error = may_create(dir, dentry);
3722  	unsigned max_links = dir->i_sb->s_max_links;
3723  
3724  	if (error)
3725  		return error;
3726  
3727  	if (!dir->i_op->mkdir)
3728  		return -EPERM;
3729  
3730  	mode &= (S_IRWXUGO|S_ISVTX);
3731  	error = security_inode_mkdir(dir, dentry, mode);
3732  	if (error)
3733  		return error;
3734  
3735  	if (max_links && dir->i_nlink >= max_links)
3736  		return -EMLINK;
3737  
3738  	error = dir->i_op->mkdir(dir, dentry, mode);
3739  	if (!error)
3740  		fsnotify_mkdir(dir, dentry);
3741  	return error;
3742  }
3743  EXPORT_SYMBOL(vfs_mkdir);
3744  
3745  SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3746  {
3747  	struct dentry *dentry;
3748  	struct path path;
3749  	int error;
3750  	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3751  
3752  retry:
3753  	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3754  	if (IS_ERR(dentry))
3755  		return PTR_ERR(dentry);
3756  
3757  	if (!IS_POSIXACL(path.dentry->d_inode))
3758  		mode &= ~current_umask();
3759  	error = security_path_mkdir(&path, dentry, mode);
3760  	if (!error)
3761  		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3762  	done_path_create(&path, dentry);
3763  	if (retry_estale(error, lookup_flags)) {
3764  		lookup_flags |= LOOKUP_REVAL;
3765  		goto retry;
3766  	}
3767  	return error;
3768  }
3769  
3770  SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3771  {
3772  	return sys_mkdirat(AT_FDCWD, pathname, mode);
3773  }
3774  
3775  int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3776  {
3777  	int error = may_delete(dir, dentry, 1);
3778  
3779  	if (error)
3780  		return error;
3781  
3782  	if (!dir->i_op->rmdir)
3783  		return -EPERM;
3784  
3785  	dget(dentry);
3786  	inode_lock(dentry->d_inode);
3787  
3788  	error = -EBUSY;
3789  	if (is_local_mountpoint(dentry))
3790  		goto out;
3791  
3792  	error = security_inode_rmdir(dir, dentry);
3793  	if (error)
3794  		goto out;
3795  
3796  	shrink_dcache_parent(dentry);
3797  	error = dir->i_op->rmdir(dir, dentry);
3798  	if (error)
3799  		goto out;
3800  
3801  	dentry->d_inode->i_flags |= S_DEAD;
3802  	dont_mount(dentry);
3803  	detach_mounts(dentry);
3804  
3805  out:
3806  	inode_unlock(dentry->d_inode);
3807  	dput(dentry);
3808  	if (!error)
3809  		d_delete(dentry);
3810  	return error;
3811  }
3812  EXPORT_SYMBOL(vfs_rmdir);
3813  
3814  static long do_rmdir(int dfd, const char __user *pathname)
3815  {
3816  	int error = 0;
3817  	struct filename *name;
3818  	struct dentry *dentry;
3819  	struct path path;
3820  	struct qstr last;
3821  	int type;
3822  	unsigned int lookup_flags = 0;
3823  retry:
3824  	name = filename_parentat(dfd, getname(pathname), lookup_flags,
3825  				&path, &last, &type);
3826  	if (IS_ERR(name))
3827  		return PTR_ERR(name);
3828  
3829  	switch (type) {
3830  	case LAST_DOTDOT:
3831  		error = -ENOTEMPTY;
3832  		goto exit1;
3833  	case LAST_DOT:
3834  		error = -EINVAL;
3835  		goto exit1;
3836  	case LAST_ROOT:
3837  		error = -EBUSY;
3838  		goto exit1;
3839  	}
3840  
3841  	error = mnt_want_write(path.mnt);
3842  	if (error)
3843  		goto exit1;
3844  
3845  	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3846  	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3847  	error = PTR_ERR(dentry);
3848  	if (IS_ERR(dentry))
3849  		goto exit2;
3850  	if (!dentry->d_inode) {
3851  		error = -ENOENT;
3852  		goto exit3;
3853  	}
3854  	error = security_path_rmdir(&path, dentry);
3855  	if (error)
3856  		goto exit3;
3857  	error = vfs_rmdir(path.dentry->d_inode, dentry);
3858  exit3:
3859  	dput(dentry);
3860  exit2:
3861  	inode_unlock(path.dentry->d_inode);
3862  	mnt_drop_write(path.mnt);
3863  exit1:
3864  	path_put(&path);
3865  	putname(name);
3866  	if (retry_estale(error, lookup_flags)) {
3867  		lookup_flags |= LOOKUP_REVAL;
3868  		goto retry;
3869  	}
3870  	return error;
3871  }
3872  
3873  SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3874  {
3875  	return do_rmdir(AT_FDCWD, pathname);
3876  }
3877  
3878  /**
3879   * vfs_unlink - unlink a filesystem object
3880   * @dir:	parent directory
3881   * @dentry:	victim
3882   * @delegated_inode: returns victim inode, if the inode is delegated.
3883   *
3884   * The caller must hold dir->i_mutex.
3885   *
3886   * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3887   * return a reference to the inode in delegated_inode.  The caller
3888   * should then break the delegation on that inode and retry.  Because
3889   * breaking a delegation may take a long time, the caller should drop
3890   * dir->i_mutex before doing so.
3891   *
3892   * Alternatively, a caller may pass NULL for delegated_inode.  This may
3893   * be appropriate for callers that expect the underlying filesystem not
3894   * to be NFS exported.
3895   */
3896  int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3897  {
3898  	struct inode *target = dentry->d_inode;
3899  	int error = may_delete(dir, dentry, 0);
3900  
3901  	if (error)
3902  		return error;
3903  
3904  	if (!dir->i_op->unlink)
3905  		return -EPERM;
3906  
3907  	inode_lock(target);
3908  	if (is_local_mountpoint(dentry))
3909  		error = -EBUSY;
3910  	else {
3911  		error = security_inode_unlink(dir, dentry);
3912  		if (!error) {
3913  			error = try_break_deleg(target, delegated_inode);
3914  			if (error)
3915  				goto out;
3916  			error = dir->i_op->unlink(dir, dentry);
3917  			if (!error) {
3918  				dont_mount(dentry);
3919  				detach_mounts(dentry);
3920  			}
3921  		}
3922  	}
3923  out:
3924  	inode_unlock(target);
3925  
3926  	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
3927  	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3928  		fsnotify_link_count(target);
3929  		d_delete(dentry);
3930  	}
3931  
3932  	return error;
3933  }
3934  EXPORT_SYMBOL(vfs_unlink);
3935  
3936  /*
3937   * Make sure that the actual truncation of the file will occur outside its
3938   * directory's i_mutex.  Truncate can take a long time if there is a lot of
3939   * writeout happening, and we don't want to prevent access to the directory
3940   * while waiting on the I/O.
3941   */
3942  static long do_unlinkat(int dfd, const char __user *pathname)
3943  {
3944  	int error;
3945  	struct filename *name;
3946  	struct dentry *dentry;
3947  	struct path path;
3948  	struct qstr last;
3949  	int type;
3950  	struct inode *inode = NULL;
3951  	struct inode *delegated_inode = NULL;
3952  	unsigned int lookup_flags = 0;
3953  retry:
3954  	name = filename_parentat(dfd, getname(pathname), lookup_flags,
3955  				&path, &last, &type);
3956  	if (IS_ERR(name))
3957  		return PTR_ERR(name);
3958  
3959  	error = -EISDIR;
3960  	if (type != LAST_NORM)
3961  		goto exit1;
3962  
3963  	error = mnt_want_write(path.mnt);
3964  	if (error)
3965  		goto exit1;
3966  retry_deleg:
3967  	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3968  	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3969  	error = PTR_ERR(dentry);
3970  	if (!IS_ERR(dentry)) {
3971  		/* Why not before? Because we want correct error value */
3972  		if (last.name[last.len])
3973  			goto slashes;
3974  		inode = dentry->d_inode;
3975  		if (d_is_negative(dentry))
3976  			goto slashes;
3977  		ihold(inode);
3978  		error = security_path_unlink(&path, dentry);
3979  		if (error)
3980  			goto exit2;
3981  		error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3982  exit2:
3983  		dput(dentry);
3984  	}
3985  	inode_unlock(path.dentry->d_inode);
3986  	if (inode)
3987  		iput(inode);	/* truncate the inode here */
3988  	inode = NULL;
3989  	if (delegated_inode) {
3990  		error = break_deleg_wait(&delegated_inode);
3991  		if (!error)
3992  			goto retry_deleg;
3993  	}
3994  	mnt_drop_write(path.mnt);
3995  exit1:
3996  	path_put(&path);
3997  	putname(name);
3998  	if (retry_estale(error, lookup_flags)) {
3999  		lookup_flags |= LOOKUP_REVAL;
4000  		inode = NULL;
4001  		goto retry;
4002  	}
4003  	return error;
4004  
4005  slashes:
4006  	if (d_is_negative(dentry))
4007  		error = -ENOENT;
4008  	else if (d_is_dir(dentry))
4009  		error = -EISDIR;
4010  	else
4011  		error = -ENOTDIR;
4012  	goto exit2;
4013  }
4014  
4015  SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4016  {
4017  	if ((flag & ~AT_REMOVEDIR) != 0)
4018  		return -EINVAL;
4019  
4020  	if (flag & AT_REMOVEDIR)
4021  		return do_rmdir(dfd, pathname);
4022  
4023  	return do_unlinkat(dfd, pathname);
4024  }
4025  
4026  SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4027  {
4028  	return do_unlinkat(AT_FDCWD, pathname);
4029  }
4030  
4031  int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4032  {
4033  	int error = may_create(dir, dentry);
4034  
4035  	if (error)
4036  		return error;
4037  
4038  	if (!dir->i_op->symlink)
4039  		return -EPERM;
4040  
4041  	error = security_inode_symlink(dir, dentry, oldname);
4042  	if (error)
4043  		return error;
4044  
4045  	error = dir->i_op->symlink(dir, dentry, oldname);
4046  	if (!error)
4047  		fsnotify_create(dir, dentry);
4048  	return error;
4049  }
4050  EXPORT_SYMBOL(vfs_symlink);
4051  
4052  SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4053  		int, newdfd, const char __user *, newname)
4054  {
4055  	int error;
4056  	struct filename *from;
4057  	struct dentry *dentry;
4058  	struct path path;
4059  	unsigned int lookup_flags = 0;
4060  
4061  	from = getname(oldname);
4062  	if (IS_ERR(from))
4063  		return PTR_ERR(from);
4064  retry:
4065  	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4066  	error = PTR_ERR(dentry);
4067  	if (IS_ERR(dentry))
4068  		goto out_putname;
4069  
4070  	error = security_path_symlink(&path, dentry, from->name);
4071  	if (!error)
4072  		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4073  	done_path_create(&path, dentry);
4074  	if (retry_estale(error, lookup_flags)) {
4075  		lookup_flags |= LOOKUP_REVAL;
4076  		goto retry;
4077  	}
4078  out_putname:
4079  	putname(from);
4080  	return error;
4081  }
4082  
4083  SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4084  {
4085  	return sys_symlinkat(oldname, AT_FDCWD, newname);
4086  }
4087  
4088  /**
4089   * vfs_link - create a new link
4090   * @old_dentry:	object to be linked
4091   * @dir:	new parent
4092   * @new_dentry:	where to create the new link
4093   * @delegated_inode: returns inode needing a delegation break
4094   *
4095   * The caller must hold dir->i_mutex
4096   *
4097   * If vfs_link discovers a delegation on the to-be-linked file in need
4098   * of breaking, it will return -EWOULDBLOCK and return a reference to the
4099   * inode in delegated_inode.  The caller should then break the delegation
4100   * and retry.  Because breaking a delegation may take a long time, the
4101   * caller should drop the i_mutex before doing so.
4102   *
4103   * Alternatively, a caller may pass NULL for delegated_inode.  This may
4104   * be appropriate for callers that expect the underlying filesystem not
4105   * to be NFS exported.
4106   */
4107  int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4108  {
4109  	struct inode *inode = old_dentry->d_inode;
4110  	unsigned max_links = dir->i_sb->s_max_links;
4111  	int error;
4112  
4113  	if (!inode)
4114  		return -ENOENT;
4115  
4116  	error = may_create(dir, new_dentry);
4117  	if (error)
4118  		return error;
4119  
4120  	if (dir->i_sb != inode->i_sb)
4121  		return -EXDEV;
4122  
4123  	/*
4124  	 * A link to an append-only or immutable file cannot be created.
4125  	 */
4126  	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4127  		return -EPERM;
4128  	/*
4129  	 * Updating the link count will likely cause i_uid and i_gid to
4130  	 * be writen back improperly if their true value is unknown to
4131  	 * the vfs.
4132  	 */
4133  	if (HAS_UNMAPPED_ID(inode))
4134  		return -EPERM;
4135  	if (!dir->i_op->link)
4136  		return -EPERM;
4137  	if (S_ISDIR(inode->i_mode))
4138  		return -EPERM;
4139  
4140  	error = security_inode_link(old_dentry, dir, new_dentry);
4141  	if (error)
4142  		return error;
4143  
4144  	inode_lock(inode);
4145  	/* Make sure we don't allow creating hardlink to an unlinked file */
4146  	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4147  		error =  -ENOENT;
4148  	else if (max_links && inode->i_nlink >= max_links)
4149  		error = -EMLINK;
4150  	else {
4151  		error = try_break_deleg(inode, delegated_inode);
4152  		if (!error)
4153  			error = dir->i_op->link(old_dentry, dir, new_dentry);
4154  	}
4155  
4156  	if (!error && (inode->i_state & I_LINKABLE)) {
4157  		spin_lock(&inode->i_lock);
4158  		inode->i_state &= ~I_LINKABLE;
4159  		spin_unlock(&inode->i_lock);
4160  	}
4161  	inode_unlock(inode);
4162  	if (!error)
4163  		fsnotify_link(dir, inode, new_dentry);
4164  	return error;
4165  }
4166  EXPORT_SYMBOL(vfs_link);
4167  
4168  /*
4169   * Hardlinks are often used in delicate situations.  We avoid
4170   * security-related surprises by not following symlinks on the
4171   * newname.  --KAB
4172   *
4173   * We don't follow them on the oldname either to be compatible
4174   * with linux 2.0, and to avoid hard-linking to directories
4175   * and other special files.  --ADM
4176   */
4177  SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4178  		int, newdfd, const char __user *, newname, int, flags)
4179  {
4180  	struct dentry *new_dentry;
4181  	struct path old_path, new_path;
4182  	struct inode *delegated_inode = NULL;
4183  	int how = 0;
4184  	int error;
4185  
4186  	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4187  		return -EINVAL;
4188  	/*
4189  	 * To use null names we require CAP_DAC_READ_SEARCH
4190  	 * This ensures that not everyone will be able to create
4191  	 * handlink using the passed filedescriptor.
4192  	 */
4193  	if (flags & AT_EMPTY_PATH) {
4194  		if (!capable(CAP_DAC_READ_SEARCH))
4195  			return -ENOENT;
4196  		how = LOOKUP_EMPTY;
4197  	}
4198  
4199  	if (flags & AT_SYMLINK_FOLLOW)
4200  		how |= LOOKUP_FOLLOW;
4201  retry:
4202  	error = user_path_at(olddfd, oldname, how, &old_path);
4203  	if (error)
4204  		return error;
4205  
4206  	new_dentry = user_path_create(newdfd, newname, &new_path,
4207  					(how & LOOKUP_REVAL));
4208  	error = PTR_ERR(new_dentry);
4209  	if (IS_ERR(new_dentry))
4210  		goto out;
4211  
4212  	error = -EXDEV;
4213  	if (old_path.mnt != new_path.mnt)
4214  		goto out_dput;
4215  	error = may_linkat(&old_path);
4216  	if (unlikely(error))
4217  		goto out_dput;
4218  	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4219  	if (error)
4220  		goto out_dput;
4221  	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4222  out_dput:
4223  	done_path_create(&new_path, new_dentry);
4224  	if (delegated_inode) {
4225  		error = break_deleg_wait(&delegated_inode);
4226  		if (!error) {
4227  			path_put(&old_path);
4228  			goto retry;
4229  		}
4230  	}
4231  	if (retry_estale(error, how)) {
4232  		path_put(&old_path);
4233  		how |= LOOKUP_REVAL;
4234  		goto retry;
4235  	}
4236  out:
4237  	path_put(&old_path);
4238  
4239  	return error;
4240  }
4241  
4242  SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4243  {
4244  	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4245  }
4246  
4247  /**
4248   * vfs_rename - rename a filesystem object
4249   * @old_dir:	parent of source
4250   * @old_dentry:	source
4251   * @new_dir:	parent of destination
4252   * @new_dentry:	destination
4253   * @delegated_inode: returns an inode needing a delegation break
4254   * @flags:	rename flags
4255   *
4256   * The caller must hold multiple mutexes--see lock_rename()).
4257   *
4258   * If vfs_rename discovers a delegation in need of breaking at either
4259   * the source or destination, it will return -EWOULDBLOCK and return a
4260   * reference to the inode in delegated_inode.  The caller should then
4261   * break the delegation and retry.  Because breaking a delegation may
4262   * take a long time, the caller should drop all locks before doing
4263   * so.
4264   *
4265   * Alternatively, a caller may pass NULL for delegated_inode.  This may
4266   * be appropriate for callers that expect the underlying filesystem not
4267   * to be NFS exported.
4268   *
4269   * The worst of all namespace operations - renaming directory. "Perverted"
4270   * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4271   * Problems:
4272   *	a) we can get into loop creation.
4273   *	b) race potential - two innocent renames can create a loop together.
4274   *	   That's where 4.4 screws up. Current fix: serialization on
4275   *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4276   *	   story.
4277   *	c) we have to lock _four_ objects - parents and victim (if it exists),
4278   *	   and source (if it is not a directory).
4279   *	   And that - after we got ->i_mutex on parents (until then we don't know
4280   *	   whether the target exists).  Solution: try to be smart with locking
4281   *	   order for inodes.  We rely on the fact that tree topology may change
4282   *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4283   *	   move will be locked.  Thus we can rank directories by the tree
4284   *	   (ancestors first) and rank all non-directories after them.
4285   *	   That works since everybody except rename does "lock parent, lookup,
4286   *	   lock child" and rename is under ->s_vfs_rename_mutex.
4287   *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4288   *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4289   *	   we'd better make sure that there's no link(2) for them.
4290   *	d) conversion from fhandle to dentry may come in the wrong moment - when
4291   *	   we are removing the target. Solution: we will have to grab ->i_mutex
4292   *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4293   *	   ->i_mutex on parents, which works but leads to some truly excessive
4294   *	   locking].
4295   */
4296  int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4297  	       struct inode *new_dir, struct dentry *new_dentry,
4298  	       struct inode **delegated_inode, unsigned int flags)
4299  {
4300  	int error;
4301  	bool is_dir = d_is_dir(old_dentry);
4302  	const unsigned char *old_name;
4303  	struct inode *source = old_dentry->d_inode;
4304  	struct inode *target = new_dentry->d_inode;
4305  	bool new_is_dir = false;
4306  	unsigned max_links = new_dir->i_sb->s_max_links;
4307  
4308  	if (source == target)
4309  		return 0;
4310  
4311  	error = may_delete(old_dir, old_dentry, is_dir);
4312  	if (error)
4313  		return error;
4314  
4315  	if (!target) {
4316  		error = may_create(new_dir, new_dentry);
4317  	} else {
4318  		new_is_dir = d_is_dir(new_dentry);
4319  
4320  		if (!(flags & RENAME_EXCHANGE))
4321  			error = may_delete(new_dir, new_dentry, is_dir);
4322  		else
4323  			error = may_delete(new_dir, new_dentry, new_is_dir);
4324  	}
4325  	if (error)
4326  		return error;
4327  
4328  	if (!old_dir->i_op->rename)
4329  		return -EPERM;
4330  
4331  	/*
4332  	 * If we are going to change the parent - check write permissions,
4333  	 * we'll need to flip '..'.
4334  	 */
4335  	if (new_dir != old_dir) {
4336  		if (is_dir) {
4337  			error = inode_permission(source, MAY_WRITE);
4338  			if (error)
4339  				return error;
4340  		}
4341  		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4342  			error = inode_permission(target, MAY_WRITE);
4343  			if (error)
4344  				return error;
4345  		}
4346  	}
4347  
4348  	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4349  				      flags);
4350  	if (error)
4351  		return error;
4352  
4353  	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4354  	dget(new_dentry);
4355  	if (!is_dir || (flags & RENAME_EXCHANGE))
4356  		lock_two_nondirectories(source, target);
4357  	else if (target)
4358  		inode_lock(target);
4359  
4360  	error = -EBUSY;
4361  	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4362  		goto out;
4363  
4364  	if (max_links && new_dir != old_dir) {
4365  		error = -EMLINK;
4366  		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4367  			goto out;
4368  		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4369  		    old_dir->i_nlink >= max_links)
4370  			goto out;
4371  	}
4372  	if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4373  		shrink_dcache_parent(new_dentry);
4374  	if (!is_dir) {
4375  		error = try_break_deleg(source, delegated_inode);
4376  		if (error)
4377  			goto out;
4378  	}
4379  	if (target && !new_is_dir) {
4380  		error = try_break_deleg(target, delegated_inode);
4381  		if (error)
4382  			goto out;
4383  	}
4384  	error = old_dir->i_op->rename(old_dir, old_dentry,
4385  				       new_dir, new_dentry, flags);
4386  	if (error)
4387  		goto out;
4388  
4389  	if (!(flags & RENAME_EXCHANGE) && target) {
4390  		if (is_dir)
4391  			target->i_flags |= S_DEAD;
4392  		dont_mount(new_dentry);
4393  		detach_mounts(new_dentry);
4394  	}
4395  	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4396  		if (!(flags & RENAME_EXCHANGE))
4397  			d_move(old_dentry, new_dentry);
4398  		else
4399  			d_exchange(old_dentry, new_dentry);
4400  	}
4401  out:
4402  	if (!is_dir || (flags & RENAME_EXCHANGE))
4403  		unlock_two_nondirectories(source, target);
4404  	else if (target)
4405  		inode_unlock(target);
4406  	dput(new_dentry);
4407  	if (!error) {
4408  		fsnotify_move(old_dir, new_dir, old_name, is_dir,
4409  			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4410  		if (flags & RENAME_EXCHANGE) {
4411  			fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4412  				      new_is_dir, NULL, new_dentry);
4413  		}
4414  	}
4415  	fsnotify_oldname_free(old_name);
4416  
4417  	return error;
4418  }
4419  EXPORT_SYMBOL(vfs_rename);
4420  
4421  SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4422  		int, newdfd, const char __user *, newname, unsigned int, flags)
4423  {
4424  	struct dentry *old_dentry, *new_dentry;
4425  	struct dentry *trap;
4426  	struct path old_path, new_path;
4427  	struct qstr old_last, new_last;
4428  	int old_type, new_type;
4429  	struct inode *delegated_inode = NULL;
4430  	struct filename *from;
4431  	struct filename *to;
4432  	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4433  	bool should_retry = false;
4434  	int error;
4435  
4436  	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4437  		return -EINVAL;
4438  
4439  	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4440  	    (flags & RENAME_EXCHANGE))
4441  		return -EINVAL;
4442  
4443  	if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4444  		return -EPERM;
4445  
4446  	if (flags & RENAME_EXCHANGE)
4447  		target_flags = 0;
4448  
4449  retry:
4450  	from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4451  				&old_path, &old_last, &old_type);
4452  	if (IS_ERR(from)) {
4453  		error = PTR_ERR(from);
4454  		goto exit;
4455  	}
4456  
4457  	to = filename_parentat(newdfd, getname(newname), lookup_flags,
4458  				&new_path, &new_last, &new_type);
4459  	if (IS_ERR(to)) {
4460  		error = PTR_ERR(to);
4461  		goto exit1;
4462  	}
4463  
4464  	error = -EXDEV;
4465  	if (old_path.mnt != new_path.mnt)
4466  		goto exit2;
4467  
4468  	error = -EBUSY;
4469  	if (old_type != LAST_NORM)
4470  		goto exit2;
4471  
4472  	if (flags & RENAME_NOREPLACE)
4473  		error = -EEXIST;
4474  	if (new_type != LAST_NORM)
4475  		goto exit2;
4476  
4477  	error = mnt_want_write(old_path.mnt);
4478  	if (error)
4479  		goto exit2;
4480  
4481  retry_deleg:
4482  	trap = lock_rename(new_path.dentry, old_path.dentry);
4483  
4484  	old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4485  	error = PTR_ERR(old_dentry);
4486  	if (IS_ERR(old_dentry))
4487  		goto exit3;
4488  	/* source must exist */
4489  	error = -ENOENT;
4490  	if (d_is_negative(old_dentry))
4491  		goto exit4;
4492  	new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4493  	error = PTR_ERR(new_dentry);
4494  	if (IS_ERR(new_dentry))
4495  		goto exit4;
4496  	error = -EEXIST;
4497  	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4498  		goto exit5;
4499  	if (flags & RENAME_EXCHANGE) {
4500  		error = -ENOENT;
4501  		if (d_is_negative(new_dentry))
4502  			goto exit5;
4503  
4504  		if (!d_is_dir(new_dentry)) {
4505  			error = -ENOTDIR;
4506  			if (new_last.name[new_last.len])
4507  				goto exit5;
4508  		}
4509  	}
4510  	/* unless the source is a directory trailing slashes give -ENOTDIR */
4511  	if (!d_is_dir(old_dentry)) {
4512  		error = -ENOTDIR;
4513  		if (old_last.name[old_last.len])
4514  			goto exit5;
4515  		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4516  			goto exit5;
4517  	}
4518  	/* source should not be ancestor of target */
4519  	error = -EINVAL;
4520  	if (old_dentry == trap)
4521  		goto exit5;
4522  	/* target should not be an ancestor of source */
4523  	if (!(flags & RENAME_EXCHANGE))
4524  		error = -ENOTEMPTY;
4525  	if (new_dentry == trap)
4526  		goto exit5;
4527  
4528  	error = security_path_rename(&old_path, old_dentry,
4529  				     &new_path, new_dentry, flags);
4530  	if (error)
4531  		goto exit5;
4532  	error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4533  			   new_path.dentry->d_inode, new_dentry,
4534  			   &delegated_inode, flags);
4535  exit5:
4536  	dput(new_dentry);
4537  exit4:
4538  	dput(old_dentry);
4539  exit3:
4540  	unlock_rename(new_path.dentry, old_path.dentry);
4541  	if (delegated_inode) {
4542  		error = break_deleg_wait(&delegated_inode);
4543  		if (!error)
4544  			goto retry_deleg;
4545  	}
4546  	mnt_drop_write(old_path.mnt);
4547  exit2:
4548  	if (retry_estale(error, lookup_flags))
4549  		should_retry = true;
4550  	path_put(&new_path);
4551  	putname(to);
4552  exit1:
4553  	path_put(&old_path);
4554  	putname(from);
4555  	if (should_retry) {
4556  		should_retry = false;
4557  		lookup_flags |= LOOKUP_REVAL;
4558  		goto retry;
4559  	}
4560  exit:
4561  	return error;
4562  }
4563  
4564  SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4565  		int, newdfd, const char __user *, newname)
4566  {
4567  	return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4568  }
4569  
4570  SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4571  {
4572  	return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4573  }
4574  
4575  int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4576  {
4577  	int error = may_create(dir, dentry);
4578  	if (error)
4579  		return error;
4580  
4581  	if (!dir->i_op->mknod)
4582  		return -EPERM;
4583  
4584  	return dir->i_op->mknod(dir, dentry,
4585  				S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4586  }
4587  EXPORT_SYMBOL(vfs_whiteout);
4588  
4589  int readlink_copy(char __user *buffer, int buflen, const char *link)
4590  {
4591  	int len = PTR_ERR(link);
4592  	if (IS_ERR(link))
4593  		goto out;
4594  
4595  	len = strlen(link);
4596  	if (len > (unsigned) buflen)
4597  		len = buflen;
4598  	if (copy_to_user(buffer, link, len))
4599  		len = -EFAULT;
4600  out:
4601  	return len;
4602  }
4603  
4604  /*
4605   * A helper for ->readlink().  This should be used *ONLY* for symlinks that
4606   * have ->get_link() not calling nd_jump_link().  Using (or not using) it
4607   * for any given inode is up to filesystem.
4608   */
4609  static int generic_readlink(struct dentry *dentry, char __user *buffer,
4610  			    int buflen)
4611  {
4612  	DEFINE_DELAYED_CALL(done);
4613  	struct inode *inode = d_inode(dentry);
4614  	const char *link = inode->i_link;
4615  	int res;
4616  
4617  	if (!link) {
4618  		link = inode->i_op->get_link(dentry, inode, &done);
4619  		if (IS_ERR(link))
4620  			return PTR_ERR(link);
4621  	}
4622  	res = readlink_copy(buffer, buflen, link);
4623  	do_delayed_call(&done);
4624  	return res;
4625  }
4626  
4627  /**
4628   * vfs_readlink - copy symlink body into userspace buffer
4629   * @dentry: dentry on which to get symbolic link
4630   * @buffer: user memory pointer
4631   * @buflen: size of buffer
4632   *
4633   * Does not touch atime.  That's up to the caller if necessary
4634   *
4635   * Does not call security hook.
4636   */
4637  int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4638  {
4639  	struct inode *inode = d_inode(dentry);
4640  
4641  	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4642  		if (unlikely(inode->i_op->readlink))
4643  			return inode->i_op->readlink(dentry, buffer, buflen);
4644  
4645  		if (!d_is_symlink(dentry))
4646  			return -EINVAL;
4647  
4648  		spin_lock(&inode->i_lock);
4649  		inode->i_opflags |= IOP_DEFAULT_READLINK;
4650  		spin_unlock(&inode->i_lock);
4651  	}
4652  
4653  	return generic_readlink(dentry, buffer, buflen);
4654  }
4655  EXPORT_SYMBOL(vfs_readlink);
4656  
4657  /**
4658   * vfs_get_link - get symlink body
4659   * @dentry: dentry on which to get symbolic link
4660   * @done: caller needs to free returned data with this
4661   *
4662   * Calls security hook and i_op->get_link() on the supplied inode.
4663   *
4664   * It does not touch atime.  That's up to the caller if necessary.
4665   *
4666   * Does not work on "special" symlinks like /proc/$$/fd/N
4667   */
4668  const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4669  {
4670  	const char *res = ERR_PTR(-EINVAL);
4671  	struct inode *inode = d_inode(dentry);
4672  
4673  	if (d_is_symlink(dentry)) {
4674  		res = ERR_PTR(security_inode_readlink(dentry));
4675  		if (!res)
4676  			res = inode->i_op->get_link(dentry, inode, done);
4677  	}
4678  	return res;
4679  }
4680  EXPORT_SYMBOL(vfs_get_link);
4681  
4682  /* get the link contents into pagecache */
4683  const char *page_get_link(struct dentry *dentry, struct inode *inode,
4684  			  struct delayed_call *callback)
4685  {
4686  	char *kaddr;
4687  	struct page *page;
4688  	struct address_space *mapping = inode->i_mapping;
4689  
4690  	if (!dentry) {
4691  		page = find_get_page(mapping, 0);
4692  		if (!page)
4693  			return ERR_PTR(-ECHILD);
4694  		if (!PageUptodate(page)) {
4695  			put_page(page);
4696  			return ERR_PTR(-ECHILD);
4697  		}
4698  	} else {
4699  		page = read_mapping_page(mapping, 0, NULL);
4700  		if (IS_ERR(page))
4701  			return (char*)page;
4702  	}
4703  	set_delayed_call(callback, page_put_link, page);
4704  	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4705  	kaddr = page_address(page);
4706  	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4707  	return kaddr;
4708  }
4709  
4710  EXPORT_SYMBOL(page_get_link);
4711  
4712  void page_put_link(void *arg)
4713  {
4714  	put_page(arg);
4715  }
4716  EXPORT_SYMBOL(page_put_link);
4717  
4718  int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4719  {
4720  	DEFINE_DELAYED_CALL(done);
4721  	int res = readlink_copy(buffer, buflen,
4722  				page_get_link(dentry, d_inode(dentry),
4723  					      &done));
4724  	do_delayed_call(&done);
4725  	return res;
4726  }
4727  EXPORT_SYMBOL(page_readlink);
4728  
4729  /*
4730   * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4731   */
4732  int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4733  {
4734  	struct address_space *mapping = inode->i_mapping;
4735  	struct page *page;
4736  	void *fsdata;
4737  	int err;
4738  	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4739  	if (nofs)
4740  		flags |= AOP_FLAG_NOFS;
4741  
4742  retry:
4743  	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4744  				flags, &page, &fsdata);
4745  	if (err)
4746  		goto fail;
4747  
4748  	memcpy(page_address(page), symname, len-1);
4749  
4750  	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4751  							page, fsdata);
4752  	if (err < 0)
4753  		goto fail;
4754  	if (err < len-1)
4755  		goto retry;
4756  
4757  	mark_inode_dirty(inode);
4758  	return 0;
4759  fail:
4760  	return err;
4761  }
4762  EXPORT_SYMBOL(__page_symlink);
4763  
4764  int page_symlink(struct inode *inode, const char *symname, int len)
4765  {
4766  	return __page_symlink(inode, symname, len,
4767  			!mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4768  }
4769  EXPORT_SYMBOL(page_symlink);
4770  
4771  const struct inode_operations page_symlink_inode_operations = {
4772  	.get_link	= page_get_link,
4773  };
4774  EXPORT_SYMBOL(page_symlink_inode_operations);
4775