xref: /linux/fs/namei.c (revision b0d5c81e872ed21de1e56feb0fa6e4161da7be61)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/namei.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * Some corrections by tytso.
10  */
11 
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13  * lookup logic.
14  */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16  */
17 
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/fsnotify.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/ima.h>
29 #include <linux/syscalls.h>
30 #include <linux/mount.h>
31 #include <linux/audit.h>
32 #include <linux/capability.h>
33 #include <linux/file.h>
34 #include <linux/fcntl.h>
35 #include <linux/device_cgroup.h>
36 #include <linux/fs_struct.h>
37 #include <linux/posix_acl.h>
38 #include <linux/hash.h>
39 #include <linux/bitops.h>
40 #include <linux/init_task.h>
41 #include <linux/uaccess.h>
42 
43 #include "internal.h"
44 #include "mount.h"
45 
46 /* [Feb-1997 T. Schoebel-Theuer]
47  * Fundamental changes in the pathname lookup mechanisms (namei)
48  * were necessary because of omirr.  The reason is that omirr needs
49  * to know the _real_ pathname, not the user-supplied one, in case
50  * of symlinks (and also when transname replacements occur).
51  *
52  * The new code replaces the old recursive symlink resolution with
53  * an iterative one (in case of non-nested symlink chains).  It does
54  * this with calls to <fs>_follow_link().
55  * As a side effect, dir_namei(), _namei() and follow_link() are now
56  * replaced with a single function lookup_dentry() that can handle all
57  * the special cases of the former code.
58  *
59  * With the new dcache, the pathname is stored at each inode, at least as
60  * long as the refcount of the inode is positive.  As a side effect, the
61  * size of the dcache depends on the inode cache and thus is dynamic.
62  *
63  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
64  * resolution to correspond with current state of the code.
65  *
66  * Note that the symlink resolution is not *completely* iterative.
67  * There is still a significant amount of tail- and mid- recursion in
68  * the algorithm.  Also, note that <fs>_readlink() is not used in
69  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
70  * may return different results than <fs>_follow_link().  Many virtual
71  * filesystems (including /proc) exhibit this behavior.
72  */
73 
74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
75  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
76  * and the name already exists in form of a symlink, try to create the new
77  * name indicated by the symlink. The old code always complained that the
78  * name already exists, due to not following the symlink even if its target
79  * is nonexistent.  The new semantics affects also mknod() and link() when
80  * the name is a symlink pointing to a non-existent name.
81  *
82  * I don't know which semantics is the right one, since I have no access
83  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
84  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
85  * "old" one. Personally, I think the new semantics is much more logical.
86  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
87  * file does succeed in both HP-UX and SunOs, but not in Solaris
88  * and in the old Linux semantics.
89  */
90 
91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
92  * semantics.  See the comments in "open_namei" and "do_link" below.
93  *
94  * [10-Sep-98 Alan Modra] Another symlink change.
95  */
96 
97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
98  *	inside the path - always follow.
99  *	in the last component in creation/removal/renaming - never follow.
100  *	if LOOKUP_FOLLOW passed - follow.
101  *	if the pathname has trailing slashes - follow.
102  *	otherwise - don't follow.
103  * (applied in that order).
104  *
105  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
106  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
107  * During the 2.4 we need to fix the userland stuff depending on it -
108  * hopefully we will be able to get rid of that wart in 2.5. So far only
109  * XEmacs seems to be relying on it...
110  */
111 /*
112  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
113  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
114  * any extra contention...
115  */
116 
117 /* In order to reduce some races, while at the same time doing additional
118  * checking and hopefully speeding things up, we copy filenames to the
119  * kernel data space before using them..
120  *
121  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
122  * PATH_MAX includes the nul terminator --RR.
123  */
124 
125 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
126 
127 struct filename *
128 getname_flags(const char __user *filename, int flags, int *empty)
129 {
130 	struct filename *result;
131 	char *kname;
132 	int len;
133 
134 	result = audit_reusename(filename);
135 	if (result)
136 		return result;
137 
138 	result = __getname();
139 	if (unlikely(!result))
140 		return ERR_PTR(-ENOMEM);
141 
142 	/*
143 	 * First, try to embed the struct filename inside the names_cache
144 	 * allocation
145 	 */
146 	kname = (char *)result->iname;
147 	result->name = kname;
148 
149 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
150 	if (unlikely(len < 0)) {
151 		__putname(result);
152 		return ERR_PTR(len);
153 	}
154 
155 	/*
156 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
157 	 * separate struct filename so we can dedicate the entire
158 	 * names_cache allocation for the pathname, and re-do the copy from
159 	 * userland.
160 	 */
161 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
162 		const size_t size = offsetof(struct filename, iname[1]);
163 		kname = (char *)result;
164 
165 		/*
166 		 * size is chosen that way we to guarantee that
167 		 * result->iname[0] is within the same object and that
168 		 * kname can't be equal to result->iname, no matter what.
169 		 */
170 		result = kzalloc(size, GFP_KERNEL);
171 		if (unlikely(!result)) {
172 			__putname(kname);
173 			return ERR_PTR(-ENOMEM);
174 		}
175 		result->name = kname;
176 		len = strncpy_from_user(kname, filename, PATH_MAX);
177 		if (unlikely(len < 0)) {
178 			__putname(kname);
179 			kfree(result);
180 			return ERR_PTR(len);
181 		}
182 		if (unlikely(len == PATH_MAX)) {
183 			__putname(kname);
184 			kfree(result);
185 			return ERR_PTR(-ENAMETOOLONG);
186 		}
187 	}
188 
189 	result->refcnt = 1;
190 	/* The empty path is special. */
191 	if (unlikely(!len)) {
192 		if (empty)
193 			*empty = 1;
194 		if (!(flags & LOOKUP_EMPTY)) {
195 			putname(result);
196 			return ERR_PTR(-ENOENT);
197 		}
198 	}
199 
200 	result->uptr = filename;
201 	result->aname = NULL;
202 	audit_getname(result);
203 	return result;
204 }
205 
206 struct filename *
207 getname(const char __user * filename)
208 {
209 	return getname_flags(filename, 0, NULL);
210 }
211 
212 struct filename *
213 getname_kernel(const char * filename)
214 {
215 	struct filename *result;
216 	int len = strlen(filename) + 1;
217 
218 	result = __getname();
219 	if (unlikely(!result))
220 		return ERR_PTR(-ENOMEM);
221 
222 	if (len <= EMBEDDED_NAME_MAX) {
223 		result->name = (char *)result->iname;
224 	} else if (len <= PATH_MAX) {
225 		struct filename *tmp;
226 
227 		tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
228 		if (unlikely(!tmp)) {
229 			__putname(result);
230 			return ERR_PTR(-ENOMEM);
231 		}
232 		tmp->name = (char *)result;
233 		result = tmp;
234 	} else {
235 		__putname(result);
236 		return ERR_PTR(-ENAMETOOLONG);
237 	}
238 	memcpy((char *)result->name, filename, len);
239 	result->uptr = NULL;
240 	result->aname = NULL;
241 	result->refcnt = 1;
242 	audit_getname(result);
243 
244 	return result;
245 }
246 
247 void putname(struct filename *name)
248 {
249 	BUG_ON(name->refcnt <= 0);
250 
251 	if (--name->refcnt > 0)
252 		return;
253 
254 	if (name->name != name->iname) {
255 		__putname(name->name);
256 		kfree(name);
257 	} else
258 		__putname(name);
259 }
260 
261 static int check_acl(struct inode *inode, int mask)
262 {
263 #ifdef CONFIG_FS_POSIX_ACL
264 	struct posix_acl *acl;
265 
266 	if (mask & MAY_NOT_BLOCK) {
267 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
268 	        if (!acl)
269 	                return -EAGAIN;
270 		/* no ->get_acl() calls in RCU mode... */
271 		if (is_uncached_acl(acl))
272 			return -ECHILD;
273 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
274 	}
275 
276 	acl = get_acl(inode, ACL_TYPE_ACCESS);
277 	if (IS_ERR(acl))
278 		return PTR_ERR(acl);
279 	if (acl) {
280 	        int error = posix_acl_permission(inode, acl, mask);
281 	        posix_acl_release(acl);
282 	        return error;
283 	}
284 #endif
285 
286 	return -EAGAIN;
287 }
288 
289 /*
290  * This does the basic permission checking
291  */
292 static int acl_permission_check(struct inode *inode, int mask)
293 {
294 	unsigned int mode = inode->i_mode;
295 
296 	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
297 		mode >>= 6;
298 	else {
299 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
300 			int error = check_acl(inode, mask);
301 			if (error != -EAGAIN)
302 				return error;
303 		}
304 
305 		if (in_group_p(inode->i_gid))
306 			mode >>= 3;
307 	}
308 
309 	/*
310 	 * If the DACs are ok we don't need any capability check.
311 	 */
312 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
313 		return 0;
314 	return -EACCES;
315 }
316 
317 /**
318  * generic_permission -  check for access rights on a Posix-like filesystem
319  * @inode:	inode to check access rights for
320  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
321  *
322  * Used to check for read/write/execute permissions on a file.
323  * We use "fsuid" for this, letting us set arbitrary permissions
324  * for filesystem access without changing the "normal" uids which
325  * are used for other things.
326  *
327  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
328  * request cannot be satisfied (eg. requires blocking or too much complexity).
329  * It would then be called again in ref-walk mode.
330  */
331 int generic_permission(struct inode *inode, int mask)
332 {
333 	int ret;
334 
335 	/*
336 	 * Do the basic permission checks.
337 	 */
338 	ret = acl_permission_check(inode, mask);
339 	if (ret != -EACCES)
340 		return ret;
341 
342 	if (S_ISDIR(inode->i_mode)) {
343 		/* DACs are overridable for directories */
344 		if (!(mask & MAY_WRITE))
345 			if (capable_wrt_inode_uidgid(inode,
346 						     CAP_DAC_READ_SEARCH))
347 				return 0;
348 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
349 			return 0;
350 		return -EACCES;
351 	}
352 
353 	/*
354 	 * Searching includes executable on directories, else just read.
355 	 */
356 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
357 	if (mask == MAY_READ)
358 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
359 			return 0;
360 	/*
361 	 * Read/write DACs are always overridable.
362 	 * Executable DACs are overridable when there is
363 	 * at least one exec bit set.
364 	 */
365 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
366 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
367 			return 0;
368 
369 	return -EACCES;
370 }
371 EXPORT_SYMBOL(generic_permission);
372 
373 /*
374  * We _really_ want to just do "generic_permission()" without
375  * even looking at the inode->i_op values. So we keep a cache
376  * flag in inode->i_opflags, that says "this has not special
377  * permission function, use the fast case".
378  */
379 static inline int do_inode_permission(struct inode *inode, int mask)
380 {
381 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
382 		if (likely(inode->i_op->permission))
383 			return inode->i_op->permission(inode, mask);
384 
385 		/* This gets set once for the inode lifetime */
386 		spin_lock(&inode->i_lock);
387 		inode->i_opflags |= IOP_FASTPERM;
388 		spin_unlock(&inode->i_lock);
389 	}
390 	return generic_permission(inode, mask);
391 }
392 
393 /**
394  * sb_permission - Check superblock-level permissions
395  * @sb: Superblock of inode to check permission on
396  * @inode: Inode to check permission on
397  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
398  *
399  * Separate out file-system wide checks from inode-specific permission checks.
400  */
401 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
402 {
403 	if (unlikely(mask & MAY_WRITE)) {
404 		umode_t mode = inode->i_mode;
405 
406 		/* Nobody gets write access to a read-only fs. */
407 		if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
408 			return -EROFS;
409 	}
410 	return 0;
411 }
412 
413 /**
414  * inode_permission - Check for access rights to a given inode
415  * @inode: Inode to check permission on
416  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
417  *
418  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
419  * this, letting us set arbitrary permissions for filesystem access without
420  * changing the "normal" UIDs which are used for other things.
421  *
422  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
423  */
424 int inode_permission(struct inode *inode, int mask)
425 {
426 	int retval;
427 
428 	retval = sb_permission(inode->i_sb, inode, mask);
429 	if (retval)
430 		return retval;
431 
432 	if (unlikely(mask & MAY_WRITE)) {
433 		/*
434 		 * Nobody gets write access to an immutable file.
435 		 */
436 		if (IS_IMMUTABLE(inode))
437 			return -EPERM;
438 
439 		/*
440 		 * Updating mtime will likely cause i_uid and i_gid to be
441 		 * written back improperly if their true value is unknown
442 		 * to the vfs.
443 		 */
444 		if (HAS_UNMAPPED_ID(inode))
445 			return -EACCES;
446 	}
447 
448 	retval = do_inode_permission(inode, mask);
449 	if (retval)
450 		return retval;
451 
452 	retval = devcgroup_inode_permission(inode, mask);
453 	if (retval)
454 		return retval;
455 
456 	return security_inode_permission(inode, mask);
457 }
458 EXPORT_SYMBOL(inode_permission);
459 
460 /**
461  * path_get - get a reference to a path
462  * @path: path to get the reference to
463  *
464  * Given a path increment the reference count to the dentry and the vfsmount.
465  */
466 void path_get(const struct path *path)
467 {
468 	mntget(path->mnt);
469 	dget(path->dentry);
470 }
471 EXPORT_SYMBOL(path_get);
472 
473 /**
474  * path_put - put a reference to a path
475  * @path: path to put the reference to
476  *
477  * Given a path decrement the reference count to the dentry and the vfsmount.
478  */
479 void path_put(const struct path *path)
480 {
481 	dput(path->dentry);
482 	mntput(path->mnt);
483 }
484 EXPORT_SYMBOL(path_put);
485 
486 #define EMBEDDED_LEVELS 2
487 struct nameidata {
488 	struct path	path;
489 	struct qstr	last;
490 	struct path	root;
491 	struct inode	*inode; /* path.dentry.d_inode */
492 	unsigned int	flags;
493 	unsigned	seq, m_seq;
494 	int		last_type;
495 	unsigned	depth;
496 	int		total_link_count;
497 	struct saved {
498 		struct path link;
499 		struct delayed_call done;
500 		const char *name;
501 		unsigned seq;
502 	} *stack, internal[EMBEDDED_LEVELS];
503 	struct filename	*name;
504 	struct nameidata *saved;
505 	struct inode	*link_inode;
506 	unsigned	root_seq;
507 	int		dfd;
508 } __randomize_layout;
509 
510 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
511 {
512 	struct nameidata *old = current->nameidata;
513 	p->stack = p->internal;
514 	p->dfd = dfd;
515 	p->name = name;
516 	p->total_link_count = old ? old->total_link_count : 0;
517 	p->saved = old;
518 	current->nameidata = p;
519 }
520 
521 static void restore_nameidata(void)
522 {
523 	struct nameidata *now = current->nameidata, *old = now->saved;
524 
525 	current->nameidata = old;
526 	if (old)
527 		old->total_link_count = now->total_link_count;
528 	if (now->stack != now->internal)
529 		kfree(now->stack);
530 }
531 
532 static int __nd_alloc_stack(struct nameidata *nd)
533 {
534 	struct saved *p;
535 
536 	if (nd->flags & LOOKUP_RCU) {
537 		p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
538 				  GFP_ATOMIC);
539 		if (unlikely(!p))
540 			return -ECHILD;
541 	} else {
542 		p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
543 				  GFP_KERNEL);
544 		if (unlikely(!p))
545 			return -ENOMEM;
546 	}
547 	memcpy(p, nd->internal, sizeof(nd->internal));
548 	nd->stack = p;
549 	return 0;
550 }
551 
552 /**
553  * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
554  * @path: nameidate to verify
555  *
556  * Rename can sometimes move a file or directory outside of a bind
557  * mount, path_connected allows those cases to be detected.
558  */
559 static bool path_connected(const struct path *path)
560 {
561 	struct vfsmount *mnt = path->mnt;
562 	struct super_block *sb = mnt->mnt_sb;
563 
564 	/* Bind mounts and multi-root filesystems can have disconnected paths */
565 	if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root))
566 		return true;
567 
568 	return is_subdir(path->dentry, mnt->mnt_root);
569 }
570 
571 static inline int nd_alloc_stack(struct nameidata *nd)
572 {
573 	if (likely(nd->depth != EMBEDDED_LEVELS))
574 		return 0;
575 	if (likely(nd->stack != nd->internal))
576 		return 0;
577 	return __nd_alloc_stack(nd);
578 }
579 
580 static void drop_links(struct nameidata *nd)
581 {
582 	int i = nd->depth;
583 	while (i--) {
584 		struct saved *last = nd->stack + i;
585 		do_delayed_call(&last->done);
586 		clear_delayed_call(&last->done);
587 	}
588 }
589 
590 static void terminate_walk(struct nameidata *nd)
591 {
592 	drop_links(nd);
593 	if (!(nd->flags & LOOKUP_RCU)) {
594 		int i;
595 		path_put(&nd->path);
596 		for (i = 0; i < nd->depth; i++)
597 			path_put(&nd->stack[i].link);
598 		if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
599 			path_put(&nd->root);
600 			nd->root.mnt = NULL;
601 		}
602 	} else {
603 		nd->flags &= ~LOOKUP_RCU;
604 		if (!(nd->flags & LOOKUP_ROOT))
605 			nd->root.mnt = NULL;
606 		rcu_read_unlock();
607 	}
608 	nd->depth = 0;
609 }
610 
611 /* path_put is needed afterwards regardless of success or failure */
612 static bool legitimize_path(struct nameidata *nd,
613 			    struct path *path, unsigned seq)
614 {
615 	int res = __legitimize_mnt(path->mnt, nd->m_seq);
616 	if (unlikely(res)) {
617 		if (res > 0)
618 			path->mnt = NULL;
619 		path->dentry = NULL;
620 		return false;
621 	}
622 	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
623 		path->dentry = NULL;
624 		return false;
625 	}
626 	return !read_seqcount_retry(&path->dentry->d_seq, seq);
627 }
628 
629 static bool legitimize_links(struct nameidata *nd)
630 {
631 	int i;
632 	for (i = 0; i < nd->depth; i++) {
633 		struct saved *last = nd->stack + i;
634 		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
635 			drop_links(nd);
636 			nd->depth = i + 1;
637 			return false;
638 		}
639 	}
640 	return true;
641 }
642 
643 /*
644  * Path walking has 2 modes, rcu-walk and ref-walk (see
645  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
646  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
647  * normal reference counts on dentries and vfsmounts to transition to ref-walk
648  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
649  * got stuck, so ref-walk may continue from there. If this is not successful
650  * (eg. a seqcount has changed), then failure is returned and it's up to caller
651  * to restart the path walk from the beginning in ref-walk mode.
652  */
653 
654 /**
655  * unlazy_walk - try to switch to ref-walk mode.
656  * @nd: nameidata pathwalk data
657  * Returns: 0 on success, -ECHILD on failure
658  *
659  * unlazy_walk attempts to legitimize the current nd->path and nd->root
660  * for ref-walk mode.
661  * Must be called from rcu-walk context.
662  * Nothing should touch nameidata between unlazy_walk() failure and
663  * terminate_walk().
664  */
665 static int unlazy_walk(struct nameidata *nd)
666 {
667 	struct dentry *parent = nd->path.dentry;
668 
669 	BUG_ON(!(nd->flags & LOOKUP_RCU));
670 
671 	nd->flags &= ~LOOKUP_RCU;
672 	if (unlikely(!legitimize_links(nd)))
673 		goto out2;
674 	if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
675 		goto out1;
676 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
677 		if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq)))
678 			goto out;
679 	}
680 	rcu_read_unlock();
681 	BUG_ON(nd->inode != parent->d_inode);
682 	return 0;
683 
684 out2:
685 	nd->path.mnt = NULL;
686 	nd->path.dentry = NULL;
687 out1:
688 	if (!(nd->flags & LOOKUP_ROOT))
689 		nd->root.mnt = NULL;
690 out:
691 	rcu_read_unlock();
692 	return -ECHILD;
693 }
694 
695 /**
696  * unlazy_child - try to switch to ref-walk mode.
697  * @nd: nameidata pathwalk data
698  * @dentry: child of nd->path.dentry
699  * @seq: seq number to check dentry against
700  * Returns: 0 on success, -ECHILD on failure
701  *
702  * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
703  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
704  * @nd.  Must be called from rcu-walk context.
705  * Nothing should touch nameidata between unlazy_child() failure and
706  * terminate_walk().
707  */
708 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
709 {
710 	BUG_ON(!(nd->flags & LOOKUP_RCU));
711 
712 	nd->flags &= ~LOOKUP_RCU;
713 	if (unlikely(!legitimize_links(nd)))
714 		goto out2;
715 	if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
716 		goto out2;
717 	if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
718 		goto out1;
719 
720 	/*
721 	 * We need to move both the parent and the dentry from the RCU domain
722 	 * to be properly refcounted. And the sequence number in the dentry
723 	 * validates *both* dentry counters, since we checked the sequence
724 	 * number of the parent after we got the child sequence number. So we
725 	 * know the parent must still be valid if the child sequence number is
726 	 */
727 	if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
728 		goto out;
729 	if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) {
730 		rcu_read_unlock();
731 		dput(dentry);
732 		goto drop_root_mnt;
733 	}
734 	/*
735 	 * Sequence counts matched. Now make sure that the root is
736 	 * still valid and get it if required.
737 	 */
738 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
739 		if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
740 			rcu_read_unlock();
741 			dput(dentry);
742 			return -ECHILD;
743 		}
744 	}
745 
746 	rcu_read_unlock();
747 	return 0;
748 
749 out2:
750 	nd->path.mnt = NULL;
751 out1:
752 	nd->path.dentry = NULL;
753 out:
754 	rcu_read_unlock();
755 drop_root_mnt:
756 	if (!(nd->flags & LOOKUP_ROOT))
757 		nd->root.mnt = NULL;
758 	return -ECHILD;
759 }
760 
761 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
762 {
763 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
764 		return dentry->d_op->d_revalidate(dentry, flags);
765 	else
766 		return 1;
767 }
768 
769 /**
770  * complete_walk - successful completion of path walk
771  * @nd:  pointer nameidata
772  *
773  * If we had been in RCU mode, drop out of it and legitimize nd->path.
774  * Revalidate the final result, unless we'd already done that during
775  * the path walk or the filesystem doesn't ask for it.  Return 0 on
776  * success, -error on failure.  In case of failure caller does not
777  * need to drop nd->path.
778  */
779 static int complete_walk(struct nameidata *nd)
780 {
781 	struct dentry *dentry = nd->path.dentry;
782 	int status;
783 
784 	if (nd->flags & LOOKUP_RCU) {
785 		if (!(nd->flags & LOOKUP_ROOT))
786 			nd->root.mnt = NULL;
787 		if (unlikely(unlazy_walk(nd)))
788 			return -ECHILD;
789 	}
790 
791 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
792 		return 0;
793 
794 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
795 		return 0;
796 
797 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
798 	if (status > 0)
799 		return 0;
800 
801 	if (!status)
802 		status = -ESTALE;
803 
804 	return status;
805 }
806 
807 static void set_root(struct nameidata *nd)
808 {
809 	struct fs_struct *fs = current->fs;
810 
811 	if (nd->flags & LOOKUP_RCU) {
812 		unsigned seq;
813 
814 		do {
815 			seq = read_seqcount_begin(&fs->seq);
816 			nd->root = fs->root;
817 			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
818 		} while (read_seqcount_retry(&fs->seq, seq));
819 	} else {
820 		get_fs_root(fs, &nd->root);
821 	}
822 }
823 
824 static void path_put_conditional(struct path *path, struct nameidata *nd)
825 {
826 	dput(path->dentry);
827 	if (path->mnt != nd->path.mnt)
828 		mntput(path->mnt);
829 }
830 
831 static inline void path_to_nameidata(const struct path *path,
832 					struct nameidata *nd)
833 {
834 	if (!(nd->flags & LOOKUP_RCU)) {
835 		dput(nd->path.dentry);
836 		if (nd->path.mnt != path->mnt)
837 			mntput(nd->path.mnt);
838 	}
839 	nd->path.mnt = path->mnt;
840 	nd->path.dentry = path->dentry;
841 }
842 
843 static int nd_jump_root(struct nameidata *nd)
844 {
845 	if (nd->flags & LOOKUP_RCU) {
846 		struct dentry *d;
847 		nd->path = nd->root;
848 		d = nd->path.dentry;
849 		nd->inode = d->d_inode;
850 		nd->seq = nd->root_seq;
851 		if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
852 			return -ECHILD;
853 	} else {
854 		path_put(&nd->path);
855 		nd->path = nd->root;
856 		path_get(&nd->path);
857 		nd->inode = nd->path.dentry->d_inode;
858 	}
859 	nd->flags |= LOOKUP_JUMPED;
860 	return 0;
861 }
862 
863 /*
864  * Helper to directly jump to a known parsed path from ->get_link,
865  * caller must have taken a reference to path beforehand.
866  */
867 void nd_jump_link(struct path *path)
868 {
869 	struct nameidata *nd = current->nameidata;
870 	path_put(&nd->path);
871 
872 	nd->path = *path;
873 	nd->inode = nd->path.dentry->d_inode;
874 	nd->flags |= LOOKUP_JUMPED;
875 }
876 
877 static inline void put_link(struct nameidata *nd)
878 {
879 	struct saved *last = nd->stack + --nd->depth;
880 	do_delayed_call(&last->done);
881 	if (!(nd->flags & LOOKUP_RCU))
882 		path_put(&last->link);
883 }
884 
885 int sysctl_protected_symlinks __read_mostly = 0;
886 int sysctl_protected_hardlinks __read_mostly = 0;
887 
888 /**
889  * may_follow_link - Check symlink following for unsafe situations
890  * @nd: nameidata pathwalk data
891  *
892  * In the case of the sysctl_protected_symlinks sysctl being enabled,
893  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
894  * in a sticky world-writable directory. This is to protect privileged
895  * processes from failing races against path names that may change out
896  * from under them by way of other users creating malicious symlinks.
897  * It will permit symlinks to be followed only when outside a sticky
898  * world-writable directory, or when the uid of the symlink and follower
899  * match, or when the directory owner matches the symlink's owner.
900  *
901  * Returns 0 if following the symlink is allowed, -ve on error.
902  */
903 static inline int may_follow_link(struct nameidata *nd)
904 {
905 	const struct inode *inode;
906 	const struct inode *parent;
907 	kuid_t puid;
908 
909 	if (!sysctl_protected_symlinks)
910 		return 0;
911 
912 	/* Allowed if owner and follower match. */
913 	inode = nd->link_inode;
914 	if (uid_eq(current_cred()->fsuid, inode->i_uid))
915 		return 0;
916 
917 	/* Allowed if parent directory not sticky and world-writable. */
918 	parent = nd->inode;
919 	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
920 		return 0;
921 
922 	/* Allowed if parent directory and link owner match. */
923 	puid = parent->i_uid;
924 	if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
925 		return 0;
926 
927 	if (nd->flags & LOOKUP_RCU)
928 		return -ECHILD;
929 
930 	audit_log_link_denied("follow_link", &nd->stack[0].link);
931 	return -EACCES;
932 }
933 
934 /**
935  * safe_hardlink_source - Check for safe hardlink conditions
936  * @inode: the source inode to hardlink from
937  *
938  * Return false if at least one of the following conditions:
939  *    - inode is not a regular file
940  *    - inode is setuid
941  *    - inode is setgid and group-exec
942  *    - access failure for read and write
943  *
944  * Otherwise returns true.
945  */
946 static bool safe_hardlink_source(struct inode *inode)
947 {
948 	umode_t mode = inode->i_mode;
949 
950 	/* Special files should not get pinned to the filesystem. */
951 	if (!S_ISREG(mode))
952 		return false;
953 
954 	/* Setuid files should not get pinned to the filesystem. */
955 	if (mode & S_ISUID)
956 		return false;
957 
958 	/* Executable setgid files should not get pinned to the filesystem. */
959 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
960 		return false;
961 
962 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
963 	if (inode_permission(inode, MAY_READ | MAY_WRITE))
964 		return false;
965 
966 	return true;
967 }
968 
969 /**
970  * may_linkat - Check permissions for creating a hardlink
971  * @link: the source to hardlink from
972  *
973  * Block hardlink when all of:
974  *  - sysctl_protected_hardlinks enabled
975  *  - fsuid does not match inode
976  *  - hardlink source is unsafe (see safe_hardlink_source() above)
977  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
978  *
979  * Returns 0 if successful, -ve on error.
980  */
981 static int may_linkat(struct path *link)
982 {
983 	struct inode *inode;
984 
985 	if (!sysctl_protected_hardlinks)
986 		return 0;
987 
988 	inode = link->dentry->d_inode;
989 
990 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
991 	 * otherwise, it must be a safe source.
992 	 */
993 	if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
994 		return 0;
995 
996 	audit_log_link_denied("linkat", link);
997 	return -EPERM;
998 }
999 
1000 static __always_inline
1001 const char *get_link(struct nameidata *nd)
1002 {
1003 	struct saved *last = nd->stack + nd->depth - 1;
1004 	struct dentry *dentry = last->link.dentry;
1005 	struct inode *inode = nd->link_inode;
1006 	int error;
1007 	const char *res;
1008 
1009 	if (!(nd->flags & LOOKUP_RCU)) {
1010 		touch_atime(&last->link);
1011 		cond_resched();
1012 	} else if (atime_needs_update_rcu(&last->link, inode)) {
1013 		if (unlikely(unlazy_walk(nd)))
1014 			return ERR_PTR(-ECHILD);
1015 		touch_atime(&last->link);
1016 	}
1017 
1018 	error = security_inode_follow_link(dentry, inode,
1019 					   nd->flags & LOOKUP_RCU);
1020 	if (unlikely(error))
1021 		return ERR_PTR(error);
1022 
1023 	nd->last_type = LAST_BIND;
1024 	res = inode->i_link;
1025 	if (!res) {
1026 		const char * (*get)(struct dentry *, struct inode *,
1027 				struct delayed_call *);
1028 		get = inode->i_op->get_link;
1029 		if (nd->flags & LOOKUP_RCU) {
1030 			res = get(NULL, inode, &last->done);
1031 			if (res == ERR_PTR(-ECHILD)) {
1032 				if (unlikely(unlazy_walk(nd)))
1033 					return ERR_PTR(-ECHILD);
1034 				res = get(dentry, inode, &last->done);
1035 			}
1036 		} else {
1037 			res = get(dentry, inode, &last->done);
1038 		}
1039 		if (IS_ERR_OR_NULL(res))
1040 			return res;
1041 	}
1042 	if (*res == '/') {
1043 		if (!nd->root.mnt)
1044 			set_root(nd);
1045 		if (unlikely(nd_jump_root(nd)))
1046 			return ERR_PTR(-ECHILD);
1047 		while (unlikely(*++res == '/'))
1048 			;
1049 	}
1050 	if (!*res)
1051 		res = NULL;
1052 	return res;
1053 }
1054 
1055 /*
1056  * follow_up - Find the mountpoint of path's vfsmount
1057  *
1058  * Given a path, find the mountpoint of its source file system.
1059  * Replace @path with the path of the mountpoint in the parent mount.
1060  * Up is towards /.
1061  *
1062  * Return 1 if we went up a level and 0 if we were already at the
1063  * root.
1064  */
1065 int follow_up(struct path *path)
1066 {
1067 	struct mount *mnt = real_mount(path->mnt);
1068 	struct mount *parent;
1069 	struct dentry *mountpoint;
1070 
1071 	read_seqlock_excl(&mount_lock);
1072 	parent = mnt->mnt_parent;
1073 	if (parent == mnt) {
1074 		read_sequnlock_excl(&mount_lock);
1075 		return 0;
1076 	}
1077 	mntget(&parent->mnt);
1078 	mountpoint = dget(mnt->mnt_mountpoint);
1079 	read_sequnlock_excl(&mount_lock);
1080 	dput(path->dentry);
1081 	path->dentry = mountpoint;
1082 	mntput(path->mnt);
1083 	path->mnt = &parent->mnt;
1084 	return 1;
1085 }
1086 EXPORT_SYMBOL(follow_up);
1087 
1088 /*
1089  * Perform an automount
1090  * - return -EISDIR to tell follow_managed() to stop and return the path we
1091  *   were called with.
1092  */
1093 static int follow_automount(struct path *path, struct nameidata *nd,
1094 			    bool *need_mntput)
1095 {
1096 	struct vfsmount *mnt;
1097 	int err;
1098 
1099 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1100 		return -EREMOTE;
1101 
1102 	/* We don't want to mount if someone's just doing a stat -
1103 	 * unless they're stat'ing a directory and appended a '/' to
1104 	 * the name.
1105 	 *
1106 	 * We do, however, want to mount if someone wants to open or
1107 	 * create a file of any type under the mountpoint, wants to
1108 	 * traverse through the mountpoint or wants to open the
1109 	 * mounted directory.  Also, autofs may mark negative dentries
1110 	 * as being automount points.  These will need the attentions
1111 	 * of the daemon to instantiate them before they can be used.
1112 	 */
1113 	if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1114 			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1115 	    path->dentry->d_inode)
1116 		return -EISDIR;
1117 
1118 	nd->total_link_count++;
1119 	if (nd->total_link_count >= 40)
1120 		return -ELOOP;
1121 
1122 	mnt = path->dentry->d_op->d_automount(path);
1123 	if (IS_ERR(mnt)) {
1124 		/*
1125 		 * The filesystem is allowed to return -EISDIR here to indicate
1126 		 * it doesn't want to automount.  For instance, autofs would do
1127 		 * this so that its userspace daemon can mount on this dentry.
1128 		 *
1129 		 * However, we can only permit this if it's a terminal point in
1130 		 * the path being looked up; if it wasn't then the remainder of
1131 		 * the path is inaccessible and we should say so.
1132 		 */
1133 		if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1134 			return -EREMOTE;
1135 		return PTR_ERR(mnt);
1136 	}
1137 
1138 	if (!mnt) /* mount collision */
1139 		return 0;
1140 
1141 	if (!*need_mntput) {
1142 		/* lock_mount() may release path->mnt on error */
1143 		mntget(path->mnt);
1144 		*need_mntput = true;
1145 	}
1146 	err = finish_automount(mnt, path);
1147 
1148 	switch (err) {
1149 	case -EBUSY:
1150 		/* Someone else made a mount here whilst we were busy */
1151 		return 0;
1152 	case 0:
1153 		path_put(path);
1154 		path->mnt = mnt;
1155 		path->dentry = dget(mnt->mnt_root);
1156 		return 0;
1157 	default:
1158 		return err;
1159 	}
1160 
1161 }
1162 
1163 /*
1164  * Handle a dentry that is managed in some way.
1165  * - Flagged for transit management (autofs)
1166  * - Flagged as mountpoint
1167  * - Flagged as automount point
1168  *
1169  * This may only be called in refwalk mode.
1170  *
1171  * Serialization is taken care of in namespace.c
1172  */
1173 static int follow_managed(struct path *path, struct nameidata *nd)
1174 {
1175 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1176 	unsigned managed;
1177 	bool need_mntput = false;
1178 	int ret = 0;
1179 
1180 	/* Given that we're not holding a lock here, we retain the value in a
1181 	 * local variable for each dentry as we look at it so that we don't see
1182 	 * the components of that value change under us */
1183 	while (managed = READ_ONCE(path->dentry->d_flags),
1184 	       managed &= DCACHE_MANAGED_DENTRY,
1185 	       unlikely(managed != 0)) {
1186 		/* Allow the filesystem to manage the transit without i_mutex
1187 		 * being held. */
1188 		if (managed & DCACHE_MANAGE_TRANSIT) {
1189 			BUG_ON(!path->dentry->d_op);
1190 			BUG_ON(!path->dentry->d_op->d_manage);
1191 			ret = path->dentry->d_op->d_manage(path, false);
1192 			if (ret < 0)
1193 				break;
1194 		}
1195 
1196 		/* Transit to a mounted filesystem. */
1197 		if (managed & DCACHE_MOUNTED) {
1198 			struct vfsmount *mounted = lookup_mnt(path);
1199 			if (mounted) {
1200 				dput(path->dentry);
1201 				if (need_mntput)
1202 					mntput(path->mnt);
1203 				path->mnt = mounted;
1204 				path->dentry = dget(mounted->mnt_root);
1205 				need_mntput = true;
1206 				continue;
1207 			}
1208 
1209 			/* Something is mounted on this dentry in another
1210 			 * namespace and/or whatever was mounted there in this
1211 			 * namespace got unmounted before lookup_mnt() could
1212 			 * get it */
1213 		}
1214 
1215 		/* Handle an automount point */
1216 		if (managed & DCACHE_NEED_AUTOMOUNT) {
1217 			ret = follow_automount(path, nd, &need_mntput);
1218 			if (ret < 0)
1219 				break;
1220 			continue;
1221 		}
1222 
1223 		/* We didn't change the current path point */
1224 		break;
1225 	}
1226 
1227 	if (need_mntput && path->mnt == mnt)
1228 		mntput(path->mnt);
1229 	if (ret == -EISDIR || !ret)
1230 		ret = 1;
1231 	if (need_mntput)
1232 		nd->flags |= LOOKUP_JUMPED;
1233 	if (unlikely(ret < 0))
1234 		path_put_conditional(path, nd);
1235 	return ret;
1236 }
1237 
1238 int follow_down_one(struct path *path)
1239 {
1240 	struct vfsmount *mounted;
1241 
1242 	mounted = lookup_mnt(path);
1243 	if (mounted) {
1244 		dput(path->dentry);
1245 		mntput(path->mnt);
1246 		path->mnt = mounted;
1247 		path->dentry = dget(mounted->mnt_root);
1248 		return 1;
1249 	}
1250 	return 0;
1251 }
1252 EXPORT_SYMBOL(follow_down_one);
1253 
1254 static inline int managed_dentry_rcu(const struct path *path)
1255 {
1256 	return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1257 		path->dentry->d_op->d_manage(path, true) : 0;
1258 }
1259 
1260 /*
1261  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1262  * we meet a managed dentry that would need blocking.
1263  */
1264 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1265 			       struct inode **inode, unsigned *seqp)
1266 {
1267 	for (;;) {
1268 		struct mount *mounted;
1269 		/*
1270 		 * Don't forget we might have a non-mountpoint managed dentry
1271 		 * that wants to block transit.
1272 		 */
1273 		switch (managed_dentry_rcu(path)) {
1274 		case -ECHILD:
1275 		default:
1276 			return false;
1277 		case -EISDIR:
1278 			return true;
1279 		case 0:
1280 			break;
1281 		}
1282 
1283 		if (!d_mountpoint(path->dentry))
1284 			return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1285 
1286 		mounted = __lookup_mnt(path->mnt, path->dentry);
1287 		if (!mounted)
1288 			break;
1289 		path->mnt = &mounted->mnt;
1290 		path->dentry = mounted->mnt.mnt_root;
1291 		nd->flags |= LOOKUP_JUMPED;
1292 		*seqp = read_seqcount_begin(&path->dentry->d_seq);
1293 		/*
1294 		 * Update the inode too. We don't need to re-check the
1295 		 * dentry sequence number here after this d_inode read,
1296 		 * because a mount-point is always pinned.
1297 		 */
1298 		*inode = path->dentry->d_inode;
1299 	}
1300 	return !read_seqretry(&mount_lock, nd->m_seq) &&
1301 		!(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1302 }
1303 
1304 static int follow_dotdot_rcu(struct nameidata *nd)
1305 {
1306 	struct inode *inode = nd->inode;
1307 
1308 	while (1) {
1309 		if (path_equal(&nd->path, &nd->root))
1310 			break;
1311 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1312 			struct dentry *old = nd->path.dentry;
1313 			struct dentry *parent = old->d_parent;
1314 			unsigned seq;
1315 
1316 			inode = parent->d_inode;
1317 			seq = read_seqcount_begin(&parent->d_seq);
1318 			if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1319 				return -ECHILD;
1320 			nd->path.dentry = parent;
1321 			nd->seq = seq;
1322 			if (unlikely(!path_connected(&nd->path)))
1323 				return -ENOENT;
1324 			break;
1325 		} else {
1326 			struct mount *mnt = real_mount(nd->path.mnt);
1327 			struct mount *mparent = mnt->mnt_parent;
1328 			struct dentry *mountpoint = mnt->mnt_mountpoint;
1329 			struct inode *inode2 = mountpoint->d_inode;
1330 			unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1331 			if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1332 				return -ECHILD;
1333 			if (&mparent->mnt == nd->path.mnt)
1334 				break;
1335 			/* we know that mountpoint was pinned */
1336 			nd->path.dentry = mountpoint;
1337 			nd->path.mnt = &mparent->mnt;
1338 			inode = inode2;
1339 			nd->seq = seq;
1340 		}
1341 	}
1342 	while (unlikely(d_mountpoint(nd->path.dentry))) {
1343 		struct mount *mounted;
1344 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1345 		if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1346 			return -ECHILD;
1347 		if (!mounted)
1348 			break;
1349 		nd->path.mnt = &mounted->mnt;
1350 		nd->path.dentry = mounted->mnt.mnt_root;
1351 		inode = nd->path.dentry->d_inode;
1352 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1353 	}
1354 	nd->inode = inode;
1355 	return 0;
1356 }
1357 
1358 /*
1359  * Follow down to the covering mount currently visible to userspace.  At each
1360  * point, the filesystem owning that dentry may be queried as to whether the
1361  * caller is permitted to proceed or not.
1362  */
1363 int follow_down(struct path *path)
1364 {
1365 	unsigned managed;
1366 	int ret;
1367 
1368 	while (managed = READ_ONCE(path->dentry->d_flags),
1369 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1370 		/* Allow the filesystem to manage the transit without i_mutex
1371 		 * being held.
1372 		 *
1373 		 * We indicate to the filesystem if someone is trying to mount
1374 		 * something here.  This gives autofs the chance to deny anyone
1375 		 * other than its daemon the right to mount on its
1376 		 * superstructure.
1377 		 *
1378 		 * The filesystem may sleep at this point.
1379 		 */
1380 		if (managed & DCACHE_MANAGE_TRANSIT) {
1381 			BUG_ON(!path->dentry->d_op);
1382 			BUG_ON(!path->dentry->d_op->d_manage);
1383 			ret = path->dentry->d_op->d_manage(path, false);
1384 			if (ret < 0)
1385 				return ret == -EISDIR ? 0 : ret;
1386 		}
1387 
1388 		/* Transit to a mounted filesystem. */
1389 		if (managed & DCACHE_MOUNTED) {
1390 			struct vfsmount *mounted = lookup_mnt(path);
1391 			if (!mounted)
1392 				break;
1393 			dput(path->dentry);
1394 			mntput(path->mnt);
1395 			path->mnt = mounted;
1396 			path->dentry = dget(mounted->mnt_root);
1397 			continue;
1398 		}
1399 
1400 		/* Don't handle automount points here */
1401 		break;
1402 	}
1403 	return 0;
1404 }
1405 EXPORT_SYMBOL(follow_down);
1406 
1407 /*
1408  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1409  */
1410 static void follow_mount(struct path *path)
1411 {
1412 	while (d_mountpoint(path->dentry)) {
1413 		struct vfsmount *mounted = lookup_mnt(path);
1414 		if (!mounted)
1415 			break;
1416 		dput(path->dentry);
1417 		mntput(path->mnt);
1418 		path->mnt = mounted;
1419 		path->dentry = dget(mounted->mnt_root);
1420 	}
1421 }
1422 
1423 static int path_parent_directory(struct path *path)
1424 {
1425 	struct dentry *old = path->dentry;
1426 	/* rare case of legitimate dget_parent()... */
1427 	path->dentry = dget_parent(path->dentry);
1428 	dput(old);
1429 	if (unlikely(!path_connected(path)))
1430 		return -ENOENT;
1431 	return 0;
1432 }
1433 
1434 static int follow_dotdot(struct nameidata *nd)
1435 {
1436 	while(1) {
1437 		if (nd->path.dentry == nd->root.dentry &&
1438 		    nd->path.mnt == nd->root.mnt) {
1439 			break;
1440 		}
1441 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1442 			int ret = path_parent_directory(&nd->path);
1443 			if (ret)
1444 				return ret;
1445 			break;
1446 		}
1447 		if (!follow_up(&nd->path))
1448 			break;
1449 	}
1450 	follow_mount(&nd->path);
1451 	nd->inode = nd->path.dentry->d_inode;
1452 	return 0;
1453 }
1454 
1455 /*
1456  * This looks up the name in dcache and possibly revalidates the found dentry.
1457  * NULL is returned if the dentry does not exist in the cache.
1458  */
1459 static struct dentry *lookup_dcache(const struct qstr *name,
1460 				    struct dentry *dir,
1461 				    unsigned int flags)
1462 {
1463 	struct dentry *dentry = d_lookup(dir, name);
1464 	if (dentry) {
1465 		int error = d_revalidate(dentry, flags);
1466 		if (unlikely(error <= 0)) {
1467 			if (!error)
1468 				d_invalidate(dentry);
1469 			dput(dentry);
1470 			return ERR_PTR(error);
1471 		}
1472 	}
1473 	return dentry;
1474 }
1475 
1476 /*
1477  * Call i_op->lookup on the dentry.  The dentry must be negative and
1478  * unhashed.
1479  *
1480  * dir->d_inode->i_mutex must be held
1481  */
1482 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1483 				  unsigned int flags)
1484 {
1485 	struct dentry *old;
1486 
1487 	/* Don't create child dentry for a dead directory. */
1488 	if (unlikely(IS_DEADDIR(dir))) {
1489 		dput(dentry);
1490 		return ERR_PTR(-ENOENT);
1491 	}
1492 
1493 	old = dir->i_op->lookup(dir, dentry, flags);
1494 	if (unlikely(old)) {
1495 		dput(dentry);
1496 		dentry = old;
1497 	}
1498 	return dentry;
1499 }
1500 
1501 static struct dentry *__lookup_hash(const struct qstr *name,
1502 		struct dentry *base, unsigned int flags)
1503 {
1504 	struct dentry *dentry = lookup_dcache(name, base, flags);
1505 
1506 	if (dentry)
1507 		return dentry;
1508 
1509 	dentry = d_alloc(base, name);
1510 	if (unlikely(!dentry))
1511 		return ERR_PTR(-ENOMEM);
1512 
1513 	return lookup_real(base->d_inode, dentry, flags);
1514 }
1515 
1516 static int lookup_fast(struct nameidata *nd,
1517 		       struct path *path, struct inode **inode,
1518 		       unsigned *seqp)
1519 {
1520 	struct vfsmount *mnt = nd->path.mnt;
1521 	struct dentry *dentry, *parent = nd->path.dentry;
1522 	int status = 1;
1523 	int err;
1524 
1525 	/*
1526 	 * Rename seqlock is not required here because in the off chance
1527 	 * of a false negative due to a concurrent rename, the caller is
1528 	 * going to fall back to non-racy lookup.
1529 	 */
1530 	if (nd->flags & LOOKUP_RCU) {
1531 		unsigned seq;
1532 		bool negative;
1533 		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1534 		if (unlikely(!dentry)) {
1535 			if (unlazy_walk(nd))
1536 				return -ECHILD;
1537 			return 0;
1538 		}
1539 
1540 		/*
1541 		 * This sequence count validates that the inode matches
1542 		 * the dentry name information from lookup.
1543 		 */
1544 		*inode = d_backing_inode(dentry);
1545 		negative = d_is_negative(dentry);
1546 		if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1547 			return -ECHILD;
1548 
1549 		/*
1550 		 * This sequence count validates that the parent had no
1551 		 * changes while we did the lookup of the dentry above.
1552 		 *
1553 		 * The memory barrier in read_seqcount_begin of child is
1554 		 *  enough, we can use __read_seqcount_retry here.
1555 		 */
1556 		if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1557 			return -ECHILD;
1558 
1559 		*seqp = seq;
1560 		status = d_revalidate(dentry, nd->flags);
1561 		if (likely(status > 0)) {
1562 			/*
1563 			 * Note: do negative dentry check after revalidation in
1564 			 * case that drops it.
1565 			 */
1566 			if (unlikely(negative))
1567 				return -ENOENT;
1568 			path->mnt = mnt;
1569 			path->dentry = dentry;
1570 			if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1571 				return 1;
1572 		}
1573 		if (unlazy_child(nd, dentry, seq))
1574 			return -ECHILD;
1575 		if (unlikely(status == -ECHILD))
1576 			/* we'd been told to redo it in non-rcu mode */
1577 			status = d_revalidate(dentry, nd->flags);
1578 	} else {
1579 		dentry = __d_lookup(parent, &nd->last);
1580 		if (unlikely(!dentry))
1581 			return 0;
1582 		status = d_revalidate(dentry, nd->flags);
1583 	}
1584 	if (unlikely(status <= 0)) {
1585 		if (!status)
1586 			d_invalidate(dentry);
1587 		dput(dentry);
1588 		return status;
1589 	}
1590 	if (unlikely(d_is_negative(dentry))) {
1591 		dput(dentry);
1592 		return -ENOENT;
1593 	}
1594 
1595 	path->mnt = mnt;
1596 	path->dentry = dentry;
1597 	err = follow_managed(path, nd);
1598 	if (likely(err > 0))
1599 		*inode = d_backing_inode(path->dentry);
1600 	return err;
1601 }
1602 
1603 /* Fast lookup failed, do it the slow way */
1604 static struct dentry *lookup_slow(const struct qstr *name,
1605 				  struct dentry *dir,
1606 				  unsigned int flags)
1607 {
1608 	struct dentry *dentry = ERR_PTR(-ENOENT), *old;
1609 	struct inode *inode = dir->d_inode;
1610 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1611 
1612 	inode_lock_shared(inode);
1613 	/* Don't go there if it's already dead */
1614 	if (unlikely(IS_DEADDIR(inode)))
1615 		goto out;
1616 again:
1617 	dentry = d_alloc_parallel(dir, name, &wq);
1618 	if (IS_ERR(dentry))
1619 		goto out;
1620 	if (unlikely(!d_in_lookup(dentry))) {
1621 		if (!(flags & LOOKUP_NO_REVAL)) {
1622 			int error = d_revalidate(dentry, flags);
1623 			if (unlikely(error <= 0)) {
1624 				if (!error) {
1625 					d_invalidate(dentry);
1626 					dput(dentry);
1627 					goto again;
1628 				}
1629 				dput(dentry);
1630 				dentry = ERR_PTR(error);
1631 			}
1632 		}
1633 	} else {
1634 		old = inode->i_op->lookup(inode, dentry, flags);
1635 		d_lookup_done(dentry);
1636 		if (unlikely(old)) {
1637 			dput(dentry);
1638 			dentry = old;
1639 		}
1640 	}
1641 out:
1642 	inode_unlock_shared(inode);
1643 	return dentry;
1644 }
1645 
1646 static inline int may_lookup(struct nameidata *nd)
1647 {
1648 	if (nd->flags & LOOKUP_RCU) {
1649 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1650 		if (err != -ECHILD)
1651 			return err;
1652 		if (unlazy_walk(nd))
1653 			return -ECHILD;
1654 	}
1655 	return inode_permission(nd->inode, MAY_EXEC);
1656 }
1657 
1658 static inline int handle_dots(struct nameidata *nd, int type)
1659 {
1660 	if (type == LAST_DOTDOT) {
1661 		if (!nd->root.mnt)
1662 			set_root(nd);
1663 		if (nd->flags & LOOKUP_RCU) {
1664 			return follow_dotdot_rcu(nd);
1665 		} else
1666 			return follow_dotdot(nd);
1667 	}
1668 	return 0;
1669 }
1670 
1671 static int pick_link(struct nameidata *nd, struct path *link,
1672 		     struct inode *inode, unsigned seq)
1673 {
1674 	int error;
1675 	struct saved *last;
1676 	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1677 		path_to_nameidata(link, nd);
1678 		return -ELOOP;
1679 	}
1680 	if (!(nd->flags & LOOKUP_RCU)) {
1681 		if (link->mnt == nd->path.mnt)
1682 			mntget(link->mnt);
1683 	}
1684 	error = nd_alloc_stack(nd);
1685 	if (unlikely(error)) {
1686 		if (error == -ECHILD) {
1687 			if (unlikely(!legitimize_path(nd, link, seq))) {
1688 				drop_links(nd);
1689 				nd->depth = 0;
1690 				nd->flags &= ~LOOKUP_RCU;
1691 				nd->path.mnt = NULL;
1692 				nd->path.dentry = NULL;
1693 				if (!(nd->flags & LOOKUP_ROOT))
1694 					nd->root.mnt = NULL;
1695 				rcu_read_unlock();
1696 			} else if (likely(unlazy_walk(nd)) == 0)
1697 				error = nd_alloc_stack(nd);
1698 		}
1699 		if (error) {
1700 			path_put(link);
1701 			return error;
1702 		}
1703 	}
1704 
1705 	last = nd->stack + nd->depth++;
1706 	last->link = *link;
1707 	clear_delayed_call(&last->done);
1708 	nd->link_inode = inode;
1709 	last->seq = seq;
1710 	return 1;
1711 }
1712 
1713 enum {WALK_FOLLOW = 1, WALK_MORE = 2};
1714 
1715 /*
1716  * Do we need to follow links? We _really_ want to be able
1717  * to do this check without having to look at inode->i_op,
1718  * so we keep a cache of "no, this doesn't need follow_link"
1719  * for the common case.
1720  */
1721 static inline int step_into(struct nameidata *nd, struct path *path,
1722 			    int flags, struct inode *inode, unsigned seq)
1723 {
1724 	if (!(flags & WALK_MORE) && nd->depth)
1725 		put_link(nd);
1726 	if (likely(!d_is_symlink(path->dentry)) ||
1727 	   !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) {
1728 		/* not a symlink or should not follow */
1729 		path_to_nameidata(path, nd);
1730 		nd->inode = inode;
1731 		nd->seq = seq;
1732 		return 0;
1733 	}
1734 	/* make sure that d_is_symlink above matches inode */
1735 	if (nd->flags & LOOKUP_RCU) {
1736 		if (read_seqcount_retry(&path->dentry->d_seq, seq))
1737 			return -ECHILD;
1738 	}
1739 	return pick_link(nd, path, inode, seq);
1740 }
1741 
1742 static int walk_component(struct nameidata *nd, int flags)
1743 {
1744 	struct path path;
1745 	struct inode *inode;
1746 	unsigned seq;
1747 	int err;
1748 	/*
1749 	 * "." and ".." are special - ".." especially so because it has
1750 	 * to be able to know about the current root directory and
1751 	 * parent relationships.
1752 	 */
1753 	if (unlikely(nd->last_type != LAST_NORM)) {
1754 		err = handle_dots(nd, nd->last_type);
1755 		if (!(flags & WALK_MORE) && nd->depth)
1756 			put_link(nd);
1757 		return err;
1758 	}
1759 	err = lookup_fast(nd, &path, &inode, &seq);
1760 	if (unlikely(err <= 0)) {
1761 		if (err < 0)
1762 			return err;
1763 		path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1764 					  nd->flags);
1765 		if (IS_ERR(path.dentry))
1766 			return PTR_ERR(path.dentry);
1767 
1768 		path.mnt = nd->path.mnt;
1769 		err = follow_managed(&path, nd);
1770 		if (unlikely(err < 0))
1771 			return err;
1772 
1773 		if (unlikely(d_is_negative(path.dentry))) {
1774 			path_to_nameidata(&path, nd);
1775 			return -ENOENT;
1776 		}
1777 
1778 		seq = 0;	/* we are already out of RCU mode */
1779 		inode = d_backing_inode(path.dentry);
1780 	}
1781 
1782 	return step_into(nd, &path, flags, inode, seq);
1783 }
1784 
1785 /*
1786  * We can do the critical dentry name comparison and hashing
1787  * operations one word at a time, but we are limited to:
1788  *
1789  * - Architectures with fast unaligned word accesses. We could
1790  *   do a "get_unaligned()" if this helps and is sufficiently
1791  *   fast.
1792  *
1793  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1794  *   do not trap on the (extremely unlikely) case of a page
1795  *   crossing operation.
1796  *
1797  * - Furthermore, we need an efficient 64-bit compile for the
1798  *   64-bit case in order to generate the "number of bytes in
1799  *   the final mask". Again, that could be replaced with a
1800  *   efficient population count instruction or similar.
1801  */
1802 #ifdef CONFIG_DCACHE_WORD_ACCESS
1803 
1804 #include <asm/word-at-a-time.h>
1805 
1806 #ifdef HASH_MIX
1807 
1808 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1809 
1810 #elif defined(CONFIG_64BIT)
1811 /*
1812  * Register pressure in the mixing function is an issue, particularly
1813  * on 32-bit x86, but almost any function requires one state value and
1814  * one temporary.  Instead, use a function designed for two state values
1815  * and no temporaries.
1816  *
1817  * This function cannot create a collision in only two iterations, so
1818  * we have two iterations to achieve avalanche.  In those two iterations,
1819  * we have six layers of mixing, which is enough to spread one bit's
1820  * influence out to 2^6 = 64 state bits.
1821  *
1822  * Rotate constants are scored by considering either 64 one-bit input
1823  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1824  * probability of that delta causing a change to each of the 128 output
1825  * bits, using a sample of random initial states.
1826  *
1827  * The Shannon entropy of the computed probabilities is then summed
1828  * to produce a score.  Ideally, any input change has a 50% chance of
1829  * toggling any given output bit.
1830  *
1831  * Mixing scores (in bits) for (12,45):
1832  * Input delta: 1-bit      2-bit
1833  * 1 round:     713.3    42542.6
1834  * 2 rounds:   2753.7   140389.8
1835  * 3 rounds:   5954.1   233458.2
1836  * 4 rounds:   7862.6   256672.2
1837  * Perfect:    8192     258048
1838  *            (64*128) (64*63/2 * 128)
1839  */
1840 #define HASH_MIX(x, y, a)	\
1841 	(	x ^= (a),	\
1842 	y ^= x,	x = rol64(x,12),\
1843 	x += y,	y = rol64(y,45),\
1844 	y *= 9			)
1845 
1846 /*
1847  * Fold two longs into one 32-bit hash value.  This must be fast, but
1848  * latency isn't quite as critical, as there is a fair bit of additional
1849  * work done before the hash value is used.
1850  */
1851 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1852 {
1853 	y ^= x * GOLDEN_RATIO_64;
1854 	y *= GOLDEN_RATIO_64;
1855 	return y >> 32;
1856 }
1857 
1858 #else	/* 32-bit case */
1859 
1860 /*
1861  * Mixing scores (in bits) for (7,20):
1862  * Input delta: 1-bit      2-bit
1863  * 1 round:     330.3     9201.6
1864  * 2 rounds:   1246.4    25475.4
1865  * 3 rounds:   1907.1    31295.1
1866  * 4 rounds:   2042.3    31718.6
1867  * Perfect:    2048      31744
1868  *            (32*64)   (32*31/2 * 64)
1869  */
1870 #define HASH_MIX(x, y, a)	\
1871 	(	x ^= (a),	\
1872 	y ^= x,	x = rol32(x, 7),\
1873 	x += y,	y = rol32(y,20),\
1874 	y *= 9			)
1875 
1876 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1877 {
1878 	/* Use arch-optimized multiply if one exists */
1879 	return __hash_32(y ^ __hash_32(x));
1880 }
1881 
1882 #endif
1883 
1884 /*
1885  * Return the hash of a string of known length.  This is carfully
1886  * designed to match hash_name(), which is the more critical function.
1887  * In particular, we must end by hashing a final word containing 0..7
1888  * payload bytes, to match the way that hash_name() iterates until it
1889  * finds the delimiter after the name.
1890  */
1891 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1892 {
1893 	unsigned long a, x = 0, y = (unsigned long)salt;
1894 
1895 	for (;;) {
1896 		if (!len)
1897 			goto done;
1898 		a = load_unaligned_zeropad(name);
1899 		if (len < sizeof(unsigned long))
1900 			break;
1901 		HASH_MIX(x, y, a);
1902 		name += sizeof(unsigned long);
1903 		len -= sizeof(unsigned long);
1904 	}
1905 	x ^= a & bytemask_from_count(len);
1906 done:
1907 	return fold_hash(x, y);
1908 }
1909 EXPORT_SYMBOL(full_name_hash);
1910 
1911 /* Return the "hash_len" (hash and length) of a null-terminated string */
1912 u64 hashlen_string(const void *salt, const char *name)
1913 {
1914 	unsigned long a = 0, x = 0, y = (unsigned long)salt;
1915 	unsigned long adata, mask, len;
1916 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1917 
1918 	len = 0;
1919 	goto inside;
1920 
1921 	do {
1922 		HASH_MIX(x, y, a);
1923 		len += sizeof(unsigned long);
1924 inside:
1925 		a = load_unaligned_zeropad(name+len);
1926 	} while (!has_zero(a, &adata, &constants));
1927 
1928 	adata = prep_zero_mask(a, adata, &constants);
1929 	mask = create_zero_mask(adata);
1930 	x ^= a & zero_bytemask(mask);
1931 
1932 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1933 }
1934 EXPORT_SYMBOL(hashlen_string);
1935 
1936 /*
1937  * Calculate the length and hash of the path component, and
1938  * return the "hash_len" as the result.
1939  */
1940 static inline u64 hash_name(const void *salt, const char *name)
1941 {
1942 	unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
1943 	unsigned long adata, bdata, mask, len;
1944 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1945 
1946 	len = 0;
1947 	goto inside;
1948 
1949 	do {
1950 		HASH_MIX(x, y, a);
1951 		len += sizeof(unsigned long);
1952 inside:
1953 		a = load_unaligned_zeropad(name+len);
1954 		b = a ^ REPEAT_BYTE('/');
1955 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1956 
1957 	adata = prep_zero_mask(a, adata, &constants);
1958 	bdata = prep_zero_mask(b, bdata, &constants);
1959 	mask = create_zero_mask(adata | bdata);
1960 	x ^= a & zero_bytemask(mask);
1961 
1962 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1963 }
1964 
1965 #else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
1966 
1967 /* Return the hash of a string of known length */
1968 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1969 {
1970 	unsigned long hash = init_name_hash(salt);
1971 	while (len--)
1972 		hash = partial_name_hash((unsigned char)*name++, hash);
1973 	return end_name_hash(hash);
1974 }
1975 EXPORT_SYMBOL(full_name_hash);
1976 
1977 /* Return the "hash_len" (hash and length) of a null-terminated string */
1978 u64 hashlen_string(const void *salt, const char *name)
1979 {
1980 	unsigned long hash = init_name_hash(salt);
1981 	unsigned long len = 0, c;
1982 
1983 	c = (unsigned char)*name;
1984 	while (c) {
1985 		len++;
1986 		hash = partial_name_hash(c, hash);
1987 		c = (unsigned char)name[len];
1988 	}
1989 	return hashlen_create(end_name_hash(hash), len);
1990 }
1991 EXPORT_SYMBOL(hashlen_string);
1992 
1993 /*
1994  * We know there's a real path component here of at least
1995  * one character.
1996  */
1997 static inline u64 hash_name(const void *salt, const char *name)
1998 {
1999 	unsigned long hash = init_name_hash(salt);
2000 	unsigned long len = 0, c;
2001 
2002 	c = (unsigned char)*name;
2003 	do {
2004 		len++;
2005 		hash = partial_name_hash(c, hash);
2006 		c = (unsigned char)name[len];
2007 	} while (c && c != '/');
2008 	return hashlen_create(end_name_hash(hash), len);
2009 }
2010 
2011 #endif
2012 
2013 /*
2014  * Name resolution.
2015  * This is the basic name resolution function, turning a pathname into
2016  * the final dentry. We expect 'base' to be positive and a directory.
2017  *
2018  * Returns 0 and nd will have valid dentry and mnt on success.
2019  * Returns error and drops reference to input namei data on failure.
2020  */
2021 static int link_path_walk(const char *name, struct nameidata *nd)
2022 {
2023 	int err;
2024 
2025 	while (*name=='/')
2026 		name++;
2027 	if (!*name)
2028 		return 0;
2029 
2030 	/* At this point we know we have a real path component. */
2031 	for(;;) {
2032 		u64 hash_len;
2033 		int type;
2034 
2035 		err = may_lookup(nd);
2036 		if (err)
2037 			return err;
2038 
2039 		hash_len = hash_name(nd->path.dentry, name);
2040 
2041 		type = LAST_NORM;
2042 		if (name[0] == '.') switch (hashlen_len(hash_len)) {
2043 			case 2:
2044 				if (name[1] == '.') {
2045 					type = LAST_DOTDOT;
2046 					nd->flags |= LOOKUP_JUMPED;
2047 				}
2048 				break;
2049 			case 1:
2050 				type = LAST_DOT;
2051 		}
2052 		if (likely(type == LAST_NORM)) {
2053 			struct dentry *parent = nd->path.dentry;
2054 			nd->flags &= ~LOOKUP_JUMPED;
2055 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2056 				struct qstr this = { { .hash_len = hash_len }, .name = name };
2057 				err = parent->d_op->d_hash(parent, &this);
2058 				if (err < 0)
2059 					return err;
2060 				hash_len = this.hash_len;
2061 				name = this.name;
2062 			}
2063 		}
2064 
2065 		nd->last.hash_len = hash_len;
2066 		nd->last.name = name;
2067 		nd->last_type = type;
2068 
2069 		name += hashlen_len(hash_len);
2070 		if (!*name)
2071 			goto OK;
2072 		/*
2073 		 * If it wasn't NUL, we know it was '/'. Skip that
2074 		 * slash, and continue until no more slashes.
2075 		 */
2076 		do {
2077 			name++;
2078 		} while (unlikely(*name == '/'));
2079 		if (unlikely(!*name)) {
2080 OK:
2081 			/* pathname body, done */
2082 			if (!nd->depth)
2083 				return 0;
2084 			name = nd->stack[nd->depth - 1].name;
2085 			/* trailing symlink, done */
2086 			if (!name)
2087 				return 0;
2088 			/* last component of nested symlink */
2089 			err = walk_component(nd, WALK_FOLLOW);
2090 		} else {
2091 			/* not the last component */
2092 			err = walk_component(nd, WALK_FOLLOW | WALK_MORE);
2093 		}
2094 		if (err < 0)
2095 			return err;
2096 
2097 		if (err) {
2098 			const char *s = get_link(nd);
2099 
2100 			if (IS_ERR(s))
2101 				return PTR_ERR(s);
2102 			err = 0;
2103 			if (unlikely(!s)) {
2104 				/* jumped */
2105 				put_link(nd);
2106 			} else {
2107 				nd->stack[nd->depth - 1].name = name;
2108 				name = s;
2109 				continue;
2110 			}
2111 		}
2112 		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2113 			if (nd->flags & LOOKUP_RCU) {
2114 				if (unlazy_walk(nd))
2115 					return -ECHILD;
2116 			}
2117 			return -ENOTDIR;
2118 		}
2119 	}
2120 }
2121 
2122 static const char *path_init(struct nameidata *nd, unsigned flags)
2123 {
2124 	const char *s = nd->name->name;
2125 
2126 	if (!*s)
2127 		flags &= ~LOOKUP_RCU;
2128 
2129 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
2130 	nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2131 	nd->depth = 0;
2132 	if (flags & LOOKUP_ROOT) {
2133 		struct dentry *root = nd->root.dentry;
2134 		struct inode *inode = root->d_inode;
2135 		if (*s && unlikely(!d_can_lookup(root)))
2136 			return ERR_PTR(-ENOTDIR);
2137 		nd->path = nd->root;
2138 		nd->inode = inode;
2139 		if (flags & LOOKUP_RCU) {
2140 			rcu_read_lock();
2141 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2142 			nd->root_seq = nd->seq;
2143 			nd->m_seq = read_seqbegin(&mount_lock);
2144 		} else {
2145 			path_get(&nd->path);
2146 		}
2147 		return s;
2148 	}
2149 
2150 	nd->root.mnt = NULL;
2151 	nd->path.mnt = NULL;
2152 	nd->path.dentry = NULL;
2153 
2154 	nd->m_seq = read_seqbegin(&mount_lock);
2155 	if (*s == '/') {
2156 		if (flags & LOOKUP_RCU)
2157 			rcu_read_lock();
2158 		set_root(nd);
2159 		if (likely(!nd_jump_root(nd)))
2160 			return s;
2161 		nd->root.mnt = NULL;
2162 		rcu_read_unlock();
2163 		return ERR_PTR(-ECHILD);
2164 	} else if (nd->dfd == AT_FDCWD) {
2165 		if (flags & LOOKUP_RCU) {
2166 			struct fs_struct *fs = current->fs;
2167 			unsigned seq;
2168 
2169 			rcu_read_lock();
2170 
2171 			do {
2172 				seq = read_seqcount_begin(&fs->seq);
2173 				nd->path = fs->pwd;
2174 				nd->inode = nd->path.dentry->d_inode;
2175 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2176 			} while (read_seqcount_retry(&fs->seq, seq));
2177 		} else {
2178 			get_fs_pwd(current->fs, &nd->path);
2179 			nd->inode = nd->path.dentry->d_inode;
2180 		}
2181 		return s;
2182 	} else {
2183 		/* Caller must check execute permissions on the starting path component */
2184 		struct fd f = fdget_raw(nd->dfd);
2185 		struct dentry *dentry;
2186 
2187 		if (!f.file)
2188 			return ERR_PTR(-EBADF);
2189 
2190 		dentry = f.file->f_path.dentry;
2191 
2192 		if (*s) {
2193 			if (!d_can_lookup(dentry)) {
2194 				fdput(f);
2195 				return ERR_PTR(-ENOTDIR);
2196 			}
2197 		}
2198 
2199 		nd->path = f.file->f_path;
2200 		if (flags & LOOKUP_RCU) {
2201 			rcu_read_lock();
2202 			nd->inode = nd->path.dentry->d_inode;
2203 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2204 		} else {
2205 			path_get(&nd->path);
2206 			nd->inode = nd->path.dentry->d_inode;
2207 		}
2208 		fdput(f);
2209 		return s;
2210 	}
2211 }
2212 
2213 static const char *trailing_symlink(struct nameidata *nd)
2214 {
2215 	const char *s;
2216 	int error = may_follow_link(nd);
2217 	if (unlikely(error))
2218 		return ERR_PTR(error);
2219 	nd->flags |= LOOKUP_PARENT;
2220 	nd->stack[0].name = NULL;
2221 	s = get_link(nd);
2222 	return s ? s : "";
2223 }
2224 
2225 static inline int lookup_last(struct nameidata *nd)
2226 {
2227 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2228 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2229 
2230 	nd->flags &= ~LOOKUP_PARENT;
2231 	return walk_component(nd, 0);
2232 }
2233 
2234 static int handle_lookup_down(struct nameidata *nd)
2235 {
2236 	struct path path = nd->path;
2237 	struct inode *inode = nd->inode;
2238 	unsigned seq = nd->seq;
2239 	int err;
2240 
2241 	if (nd->flags & LOOKUP_RCU) {
2242 		/*
2243 		 * don't bother with unlazy_walk on failure - we are
2244 		 * at the very beginning of walk, so we lose nothing
2245 		 * if we simply redo everything in non-RCU mode
2246 		 */
2247 		if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq)))
2248 			return -ECHILD;
2249 	} else {
2250 		dget(path.dentry);
2251 		err = follow_managed(&path, nd);
2252 		if (unlikely(err < 0))
2253 			return err;
2254 		inode = d_backing_inode(path.dentry);
2255 		seq = 0;
2256 	}
2257 	path_to_nameidata(&path, nd);
2258 	nd->inode = inode;
2259 	nd->seq = seq;
2260 	return 0;
2261 }
2262 
2263 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2264 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2265 {
2266 	const char *s = path_init(nd, flags);
2267 	int err;
2268 
2269 	if (IS_ERR(s))
2270 		return PTR_ERR(s);
2271 
2272 	if (unlikely(flags & LOOKUP_DOWN)) {
2273 		err = handle_lookup_down(nd);
2274 		if (unlikely(err < 0)) {
2275 			terminate_walk(nd);
2276 			return err;
2277 		}
2278 	}
2279 
2280 	while (!(err = link_path_walk(s, nd))
2281 		&& ((err = lookup_last(nd)) > 0)) {
2282 		s = trailing_symlink(nd);
2283 		if (IS_ERR(s)) {
2284 			err = PTR_ERR(s);
2285 			break;
2286 		}
2287 	}
2288 	if (!err)
2289 		err = complete_walk(nd);
2290 
2291 	if (!err && nd->flags & LOOKUP_DIRECTORY)
2292 		if (!d_can_lookup(nd->path.dentry))
2293 			err = -ENOTDIR;
2294 	if (!err) {
2295 		*path = nd->path;
2296 		nd->path.mnt = NULL;
2297 		nd->path.dentry = NULL;
2298 	}
2299 	terminate_walk(nd);
2300 	return err;
2301 }
2302 
2303 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2304 			   struct path *path, struct path *root)
2305 {
2306 	int retval;
2307 	struct nameidata nd;
2308 	if (IS_ERR(name))
2309 		return PTR_ERR(name);
2310 	if (unlikely(root)) {
2311 		nd.root = *root;
2312 		flags |= LOOKUP_ROOT;
2313 	}
2314 	set_nameidata(&nd, dfd, name);
2315 	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2316 	if (unlikely(retval == -ECHILD))
2317 		retval = path_lookupat(&nd, flags, path);
2318 	if (unlikely(retval == -ESTALE))
2319 		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2320 
2321 	if (likely(!retval))
2322 		audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2323 	restore_nameidata();
2324 	putname(name);
2325 	return retval;
2326 }
2327 
2328 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2329 static int path_parentat(struct nameidata *nd, unsigned flags,
2330 				struct path *parent)
2331 {
2332 	const char *s = path_init(nd, flags);
2333 	int err;
2334 	if (IS_ERR(s))
2335 		return PTR_ERR(s);
2336 	err = link_path_walk(s, nd);
2337 	if (!err)
2338 		err = complete_walk(nd);
2339 	if (!err) {
2340 		*parent = nd->path;
2341 		nd->path.mnt = NULL;
2342 		nd->path.dentry = NULL;
2343 	}
2344 	terminate_walk(nd);
2345 	return err;
2346 }
2347 
2348 static struct filename *filename_parentat(int dfd, struct filename *name,
2349 				unsigned int flags, struct path *parent,
2350 				struct qstr *last, int *type)
2351 {
2352 	int retval;
2353 	struct nameidata nd;
2354 
2355 	if (IS_ERR(name))
2356 		return name;
2357 	set_nameidata(&nd, dfd, name);
2358 	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2359 	if (unlikely(retval == -ECHILD))
2360 		retval = path_parentat(&nd, flags, parent);
2361 	if (unlikely(retval == -ESTALE))
2362 		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2363 	if (likely(!retval)) {
2364 		*last = nd.last;
2365 		*type = nd.last_type;
2366 		audit_inode(name, parent->dentry, LOOKUP_PARENT);
2367 	} else {
2368 		putname(name);
2369 		name = ERR_PTR(retval);
2370 	}
2371 	restore_nameidata();
2372 	return name;
2373 }
2374 
2375 /* does lookup, returns the object with parent locked */
2376 struct dentry *kern_path_locked(const char *name, struct path *path)
2377 {
2378 	struct filename *filename;
2379 	struct dentry *d;
2380 	struct qstr last;
2381 	int type;
2382 
2383 	filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2384 				    &last, &type);
2385 	if (IS_ERR(filename))
2386 		return ERR_CAST(filename);
2387 	if (unlikely(type != LAST_NORM)) {
2388 		path_put(path);
2389 		putname(filename);
2390 		return ERR_PTR(-EINVAL);
2391 	}
2392 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2393 	d = __lookup_hash(&last, path->dentry, 0);
2394 	if (IS_ERR(d)) {
2395 		inode_unlock(path->dentry->d_inode);
2396 		path_put(path);
2397 	}
2398 	putname(filename);
2399 	return d;
2400 }
2401 
2402 int kern_path(const char *name, unsigned int flags, struct path *path)
2403 {
2404 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2405 			       flags, path, NULL);
2406 }
2407 EXPORT_SYMBOL(kern_path);
2408 
2409 /**
2410  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2411  * @dentry:  pointer to dentry of the base directory
2412  * @mnt: pointer to vfs mount of the base directory
2413  * @name: pointer to file name
2414  * @flags: lookup flags
2415  * @path: pointer to struct path to fill
2416  */
2417 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2418 		    const char *name, unsigned int flags,
2419 		    struct path *path)
2420 {
2421 	struct path root = {.mnt = mnt, .dentry = dentry};
2422 	/* the first argument of filename_lookup() is ignored with root */
2423 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2424 			       flags , path, &root);
2425 }
2426 EXPORT_SYMBOL(vfs_path_lookup);
2427 
2428 /**
2429  * lookup_one_len - filesystem helper to lookup single pathname component
2430  * @name:	pathname component to lookup
2431  * @base:	base directory to lookup from
2432  * @len:	maximum length @len should be interpreted to
2433  *
2434  * Note that this routine is purely a helper for filesystem usage and should
2435  * not be called by generic code.
2436  *
2437  * The caller must hold base->i_mutex.
2438  */
2439 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2440 {
2441 	struct qstr this;
2442 	unsigned int c;
2443 	int err;
2444 
2445 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2446 
2447 	this.name = name;
2448 	this.len = len;
2449 	this.hash = full_name_hash(base, name, len);
2450 	if (!len)
2451 		return ERR_PTR(-EACCES);
2452 
2453 	if (unlikely(name[0] == '.')) {
2454 		if (len < 2 || (len == 2 && name[1] == '.'))
2455 			return ERR_PTR(-EACCES);
2456 	}
2457 
2458 	while (len--) {
2459 		c = *(const unsigned char *)name++;
2460 		if (c == '/' || c == '\0')
2461 			return ERR_PTR(-EACCES);
2462 	}
2463 	/*
2464 	 * See if the low-level filesystem might want
2465 	 * to use its own hash..
2466 	 */
2467 	if (base->d_flags & DCACHE_OP_HASH) {
2468 		int err = base->d_op->d_hash(base, &this);
2469 		if (err < 0)
2470 			return ERR_PTR(err);
2471 	}
2472 
2473 	err = inode_permission(base->d_inode, MAY_EXEC);
2474 	if (err)
2475 		return ERR_PTR(err);
2476 
2477 	return __lookup_hash(&this, base, 0);
2478 }
2479 EXPORT_SYMBOL(lookup_one_len);
2480 
2481 /**
2482  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2483  * @name:	pathname component to lookup
2484  * @base:	base directory to lookup from
2485  * @len:	maximum length @len should be interpreted to
2486  *
2487  * Note that this routine is purely a helper for filesystem usage and should
2488  * not be called by generic code.
2489  *
2490  * Unlike lookup_one_len, it should be called without the parent
2491  * i_mutex held, and will take the i_mutex itself if necessary.
2492  */
2493 struct dentry *lookup_one_len_unlocked(const char *name,
2494 				       struct dentry *base, int len)
2495 {
2496 	struct qstr this;
2497 	unsigned int c;
2498 	int err;
2499 	struct dentry *ret;
2500 
2501 	this.name = name;
2502 	this.len = len;
2503 	this.hash = full_name_hash(base, name, len);
2504 	if (!len)
2505 		return ERR_PTR(-EACCES);
2506 
2507 	if (unlikely(name[0] == '.')) {
2508 		if (len < 2 || (len == 2 && name[1] == '.'))
2509 			return ERR_PTR(-EACCES);
2510 	}
2511 
2512 	while (len--) {
2513 		c = *(const unsigned char *)name++;
2514 		if (c == '/' || c == '\0')
2515 			return ERR_PTR(-EACCES);
2516 	}
2517 	/*
2518 	 * See if the low-level filesystem might want
2519 	 * to use its own hash..
2520 	 */
2521 	if (base->d_flags & DCACHE_OP_HASH) {
2522 		int err = base->d_op->d_hash(base, &this);
2523 		if (err < 0)
2524 			return ERR_PTR(err);
2525 	}
2526 
2527 	err = inode_permission(base->d_inode, MAY_EXEC);
2528 	if (err)
2529 		return ERR_PTR(err);
2530 
2531 	ret = lookup_dcache(&this, base, 0);
2532 	if (!ret)
2533 		ret = lookup_slow(&this, base, 0);
2534 	return ret;
2535 }
2536 EXPORT_SYMBOL(lookup_one_len_unlocked);
2537 
2538 #ifdef CONFIG_UNIX98_PTYS
2539 int path_pts(struct path *path)
2540 {
2541 	/* Find something mounted on "pts" in the same directory as
2542 	 * the input path.
2543 	 */
2544 	struct dentry *child, *parent;
2545 	struct qstr this;
2546 	int ret;
2547 
2548 	ret = path_parent_directory(path);
2549 	if (ret)
2550 		return ret;
2551 
2552 	parent = path->dentry;
2553 	this.name = "pts";
2554 	this.len = 3;
2555 	child = d_hash_and_lookup(parent, &this);
2556 	if (!child)
2557 		return -ENOENT;
2558 
2559 	path->dentry = child;
2560 	dput(parent);
2561 	follow_mount(path);
2562 	return 0;
2563 }
2564 #endif
2565 
2566 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2567 		 struct path *path, int *empty)
2568 {
2569 	return filename_lookup(dfd, getname_flags(name, flags, empty),
2570 			       flags, path, NULL);
2571 }
2572 EXPORT_SYMBOL(user_path_at_empty);
2573 
2574 /**
2575  * mountpoint_last - look up last component for umount
2576  * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2577  *
2578  * This is a special lookup_last function just for umount. In this case, we
2579  * need to resolve the path without doing any revalidation.
2580  *
2581  * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2582  * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2583  * in almost all cases, this lookup will be served out of the dcache. The only
2584  * cases where it won't are if nd->last refers to a symlink or the path is
2585  * bogus and it doesn't exist.
2586  *
2587  * Returns:
2588  * -error: if there was an error during lookup. This includes -ENOENT if the
2589  *         lookup found a negative dentry.
2590  *
2591  * 0:      if we successfully resolved nd->last and found it to not to be a
2592  *         symlink that needs to be followed.
2593  *
2594  * 1:      if we successfully resolved nd->last and found it to be a symlink
2595  *         that needs to be followed.
2596  */
2597 static int
2598 mountpoint_last(struct nameidata *nd)
2599 {
2600 	int error = 0;
2601 	struct dentry *dir = nd->path.dentry;
2602 	struct path path;
2603 
2604 	/* If we're in rcuwalk, drop out of it to handle last component */
2605 	if (nd->flags & LOOKUP_RCU) {
2606 		if (unlazy_walk(nd))
2607 			return -ECHILD;
2608 	}
2609 
2610 	nd->flags &= ~LOOKUP_PARENT;
2611 
2612 	if (unlikely(nd->last_type != LAST_NORM)) {
2613 		error = handle_dots(nd, nd->last_type);
2614 		if (error)
2615 			return error;
2616 		path.dentry = dget(nd->path.dentry);
2617 	} else {
2618 		path.dentry = d_lookup(dir, &nd->last);
2619 		if (!path.dentry) {
2620 			/*
2621 			 * No cached dentry. Mounted dentries are pinned in the
2622 			 * cache, so that means that this dentry is probably
2623 			 * a symlink or the path doesn't actually point
2624 			 * to a mounted dentry.
2625 			 */
2626 			path.dentry = lookup_slow(&nd->last, dir,
2627 					     nd->flags | LOOKUP_NO_REVAL);
2628 			if (IS_ERR(path.dentry))
2629 				return PTR_ERR(path.dentry);
2630 		}
2631 	}
2632 	if (d_is_negative(path.dentry)) {
2633 		dput(path.dentry);
2634 		return -ENOENT;
2635 	}
2636 	path.mnt = nd->path.mnt;
2637 	return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0);
2638 }
2639 
2640 /**
2641  * path_mountpoint - look up a path to be umounted
2642  * @nd:		lookup context
2643  * @flags:	lookup flags
2644  * @path:	pointer to container for result
2645  *
2646  * Look up the given name, but don't attempt to revalidate the last component.
2647  * Returns 0 and "path" will be valid on success; Returns error otherwise.
2648  */
2649 static int
2650 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2651 {
2652 	const char *s = path_init(nd, flags);
2653 	int err;
2654 	if (IS_ERR(s))
2655 		return PTR_ERR(s);
2656 	while (!(err = link_path_walk(s, nd)) &&
2657 		(err = mountpoint_last(nd)) > 0) {
2658 		s = trailing_symlink(nd);
2659 		if (IS_ERR(s)) {
2660 			err = PTR_ERR(s);
2661 			break;
2662 		}
2663 	}
2664 	if (!err) {
2665 		*path = nd->path;
2666 		nd->path.mnt = NULL;
2667 		nd->path.dentry = NULL;
2668 		follow_mount(path);
2669 	}
2670 	terminate_walk(nd);
2671 	return err;
2672 }
2673 
2674 static int
2675 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2676 			unsigned int flags)
2677 {
2678 	struct nameidata nd;
2679 	int error;
2680 	if (IS_ERR(name))
2681 		return PTR_ERR(name);
2682 	set_nameidata(&nd, dfd, name);
2683 	error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2684 	if (unlikely(error == -ECHILD))
2685 		error = path_mountpoint(&nd, flags, path);
2686 	if (unlikely(error == -ESTALE))
2687 		error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2688 	if (likely(!error))
2689 		audit_inode(name, path->dentry, 0);
2690 	restore_nameidata();
2691 	putname(name);
2692 	return error;
2693 }
2694 
2695 /**
2696  * user_path_mountpoint_at - lookup a path from userland in order to umount it
2697  * @dfd:	directory file descriptor
2698  * @name:	pathname from userland
2699  * @flags:	lookup flags
2700  * @path:	pointer to container to hold result
2701  *
2702  * A umount is a special case for path walking. We're not actually interested
2703  * in the inode in this situation, and ESTALE errors can be a problem. We
2704  * simply want track down the dentry and vfsmount attached at the mountpoint
2705  * and avoid revalidating the last component.
2706  *
2707  * Returns 0 and populates "path" on success.
2708  */
2709 int
2710 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2711 			struct path *path)
2712 {
2713 	return filename_mountpoint(dfd, getname(name), path, flags);
2714 }
2715 
2716 int
2717 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2718 			unsigned int flags)
2719 {
2720 	return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2721 }
2722 EXPORT_SYMBOL(kern_path_mountpoint);
2723 
2724 int __check_sticky(struct inode *dir, struct inode *inode)
2725 {
2726 	kuid_t fsuid = current_fsuid();
2727 
2728 	if (uid_eq(inode->i_uid, fsuid))
2729 		return 0;
2730 	if (uid_eq(dir->i_uid, fsuid))
2731 		return 0;
2732 	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2733 }
2734 EXPORT_SYMBOL(__check_sticky);
2735 
2736 /*
2737  *	Check whether we can remove a link victim from directory dir, check
2738  *  whether the type of victim is right.
2739  *  1. We can't do it if dir is read-only (done in permission())
2740  *  2. We should have write and exec permissions on dir
2741  *  3. We can't remove anything from append-only dir
2742  *  4. We can't do anything with immutable dir (done in permission())
2743  *  5. If the sticky bit on dir is set we should either
2744  *	a. be owner of dir, or
2745  *	b. be owner of victim, or
2746  *	c. have CAP_FOWNER capability
2747  *  6. If the victim is append-only or immutable we can't do antyhing with
2748  *     links pointing to it.
2749  *  7. If the victim has an unknown uid or gid we can't change the inode.
2750  *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2751  *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2752  * 10. We can't remove a root or mountpoint.
2753  * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2754  *     nfs_async_unlink().
2755  */
2756 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2757 {
2758 	struct inode *inode = d_backing_inode(victim);
2759 	int error;
2760 
2761 	if (d_is_negative(victim))
2762 		return -ENOENT;
2763 	BUG_ON(!inode);
2764 
2765 	BUG_ON(victim->d_parent->d_inode != dir);
2766 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2767 
2768 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2769 	if (error)
2770 		return error;
2771 	if (IS_APPEND(dir))
2772 		return -EPERM;
2773 
2774 	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2775 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2776 		return -EPERM;
2777 	if (isdir) {
2778 		if (!d_is_dir(victim))
2779 			return -ENOTDIR;
2780 		if (IS_ROOT(victim))
2781 			return -EBUSY;
2782 	} else if (d_is_dir(victim))
2783 		return -EISDIR;
2784 	if (IS_DEADDIR(dir))
2785 		return -ENOENT;
2786 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2787 		return -EBUSY;
2788 	return 0;
2789 }
2790 
2791 /*	Check whether we can create an object with dentry child in directory
2792  *  dir.
2793  *  1. We can't do it if child already exists (open has special treatment for
2794  *     this case, but since we are inlined it's OK)
2795  *  2. We can't do it if dir is read-only (done in permission())
2796  *  3. We can't do it if the fs can't represent the fsuid or fsgid.
2797  *  4. We should have write and exec permissions on dir
2798  *  5. We can't do it if dir is immutable (done in permission())
2799  */
2800 static inline int may_create(struct inode *dir, struct dentry *child)
2801 {
2802 	struct user_namespace *s_user_ns;
2803 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2804 	if (child->d_inode)
2805 		return -EEXIST;
2806 	if (IS_DEADDIR(dir))
2807 		return -ENOENT;
2808 	s_user_ns = dir->i_sb->s_user_ns;
2809 	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2810 	    !kgid_has_mapping(s_user_ns, current_fsgid()))
2811 		return -EOVERFLOW;
2812 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2813 }
2814 
2815 /*
2816  * p1 and p2 should be directories on the same fs.
2817  */
2818 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2819 {
2820 	struct dentry *p;
2821 
2822 	if (p1 == p2) {
2823 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2824 		return NULL;
2825 	}
2826 
2827 	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2828 
2829 	p = d_ancestor(p2, p1);
2830 	if (p) {
2831 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2832 		inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2833 		return p;
2834 	}
2835 
2836 	p = d_ancestor(p1, p2);
2837 	if (p) {
2838 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2839 		inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2840 		return p;
2841 	}
2842 
2843 	inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2844 	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2845 	return NULL;
2846 }
2847 EXPORT_SYMBOL(lock_rename);
2848 
2849 void unlock_rename(struct dentry *p1, struct dentry *p2)
2850 {
2851 	inode_unlock(p1->d_inode);
2852 	if (p1 != p2) {
2853 		inode_unlock(p2->d_inode);
2854 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2855 	}
2856 }
2857 EXPORT_SYMBOL(unlock_rename);
2858 
2859 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2860 		bool want_excl)
2861 {
2862 	int error = may_create(dir, dentry);
2863 	if (error)
2864 		return error;
2865 
2866 	if (!dir->i_op->create)
2867 		return -EACCES;	/* shouldn't it be ENOSYS? */
2868 	mode &= S_IALLUGO;
2869 	mode |= S_IFREG;
2870 	error = security_inode_create(dir, dentry, mode);
2871 	if (error)
2872 		return error;
2873 	error = dir->i_op->create(dir, dentry, mode, want_excl);
2874 	if (!error)
2875 		fsnotify_create(dir, dentry);
2876 	return error;
2877 }
2878 EXPORT_SYMBOL(vfs_create);
2879 
2880 int vfs_mkobj(struct dentry *dentry, umode_t mode,
2881 		int (*f)(struct dentry *, umode_t, void *),
2882 		void *arg)
2883 {
2884 	struct inode *dir = dentry->d_parent->d_inode;
2885 	int error = may_create(dir, dentry);
2886 	if (error)
2887 		return error;
2888 
2889 	mode &= S_IALLUGO;
2890 	mode |= S_IFREG;
2891 	error = security_inode_create(dir, dentry, mode);
2892 	if (error)
2893 		return error;
2894 	error = f(dentry, mode, arg);
2895 	if (!error)
2896 		fsnotify_create(dir, dentry);
2897 	return error;
2898 }
2899 EXPORT_SYMBOL(vfs_mkobj);
2900 
2901 bool may_open_dev(const struct path *path)
2902 {
2903 	return !(path->mnt->mnt_flags & MNT_NODEV) &&
2904 		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2905 }
2906 
2907 static int may_open(const struct path *path, int acc_mode, int flag)
2908 {
2909 	struct dentry *dentry = path->dentry;
2910 	struct inode *inode = dentry->d_inode;
2911 	int error;
2912 
2913 	if (!inode)
2914 		return -ENOENT;
2915 
2916 	switch (inode->i_mode & S_IFMT) {
2917 	case S_IFLNK:
2918 		return -ELOOP;
2919 	case S_IFDIR:
2920 		if (acc_mode & MAY_WRITE)
2921 			return -EISDIR;
2922 		break;
2923 	case S_IFBLK:
2924 	case S_IFCHR:
2925 		if (!may_open_dev(path))
2926 			return -EACCES;
2927 		/*FALLTHRU*/
2928 	case S_IFIFO:
2929 	case S_IFSOCK:
2930 		flag &= ~O_TRUNC;
2931 		break;
2932 	}
2933 
2934 	error = inode_permission(inode, MAY_OPEN | acc_mode);
2935 	if (error)
2936 		return error;
2937 
2938 	/*
2939 	 * An append-only file must be opened in append mode for writing.
2940 	 */
2941 	if (IS_APPEND(inode)) {
2942 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2943 			return -EPERM;
2944 		if (flag & O_TRUNC)
2945 			return -EPERM;
2946 	}
2947 
2948 	/* O_NOATIME can only be set by the owner or superuser */
2949 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2950 		return -EPERM;
2951 
2952 	return 0;
2953 }
2954 
2955 static int handle_truncate(struct file *filp)
2956 {
2957 	const struct path *path = &filp->f_path;
2958 	struct inode *inode = path->dentry->d_inode;
2959 	int error = get_write_access(inode);
2960 	if (error)
2961 		return error;
2962 	/*
2963 	 * Refuse to truncate files with mandatory locks held on them.
2964 	 */
2965 	error = locks_verify_locked(filp);
2966 	if (!error)
2967 		error = security_path_truncate(path);
2968 	if (!error) {
2969 		error = do_truncate(path->dentry, 0,
2970 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2971 				    filp);
2972 	}
2973 	put_write_access(inode);
2974 	return error;
2975 }
2976 
2977 static inline int open_to_namei_flags(int flag)
2978 {
2979 	if ((flag & O_ACCMODE) == 3)
2980 		flag--;
2981 	return flag;
2982 }
2983 
2984 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
2985 {
2986 	struct user_namespace *s_user_ns;
2987 	int error = security_path_mknod(dir, dentry, mode, 0);
2988 	if (error)
2989 		return error;
2990 
2991 	s_user_ns = dir->dentry->d_sb->s_user_ns;
2992 	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2993 	    !kgid_has_mapping(s_user_ns, current_fsgid()))
2994 		return -EOVERFLOW;
2995 
2996 	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2997 	if (error)
2998 		return error;
2999 
3000 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
3001 }
3002 
3003 /*
3004  * Attempt to atomically look up, create and open a file from a negative
3005  * dentry.
3006  *
3007  * Returns 0 if successful.  The file will have been created and attached to
3008  * @file by the filesystem calling finish_open().
3009  *
3010  * Returns 1 if the file was looked up only or didn't need creating.  The
3011  * caller will need to perform the open themselves.  @path will have been
3012  * updated to point to the new dentry.  This may be negative.
3013  *
3014  * Returns an error code otherwise.
3015  */
3016 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
3017 			struct path *path, struct file *file,
3018 			const struct open_flags *op,
3019 			int open_flag, umode_t mode,
3020 			int *opened)
3021 {
3022 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3023 	struct inode *dir =  nd->path.dentry->d_inode;
3024 	int error;
3025 
3026 	if (!(~open_flag & (O_EXCL | O_CREAT)))	/* both O_EXCL and O_CREAT */
3027 		open_flag &= ~O_TRUNC;
3028 
3029 	if (nd->flags & LOOKUP_DIRECTORY)
3030 		open_flag |= O_DIRECTORY;
3031 
3032 	file->f_path.dentry = DENTRY_NOT_SET;
3033 	file->f_path.mnt = nd->path.mnt;
3034 	error = dir->i_op->atomic_open(dir, dentry, file,
3035 				       open_to_namei_flags(open_flag),
3036 				       mode, opened);
3037 	d_lookup_done(dentry);
3038 	if (!error) {
3039 		/*
3040 		 * We didn't have the inode before the open, so check open
3041 		 * permission here.
3042 		 */
3043 		int acc_mode = op->acc_mode;
3044 		if (*opened & FILE_CREATED) {
3045 			WARN_ON(!(open_flag & O_CREAT));
3046 			fsnotify_create(dir, dentry);
3047 			acc_mode = 0;
3048 		}
3049 		error = may_open(&file->f_path, acc_mode, open_flag);
3050 		if (WARN_ON(error > 0))
3051 			error = -EINVAL;
3052 	} else if (error > 0) {
3053 		if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3054 			error = -EIO;
3055 		} else {
3056 			if (file->f_path.dentry) {
3057 				dput(dentry);
3058 				dentry = file->f_path.dentry;
3059 			}
3060 			if (*opened & FILE_CREATED)
3061 				fsnotify_create(dir, dentry);
3062 			if (unlikely(d_is_negative(dentry))) {
3063 				error = -ENOENT;
3064 			} else {
3065 				path->dentry = dentry;
3066 				path->mnt = nd->path.mnt;
3067 				return 1;
3068 			}
3069 		}
3070 	}
3071 	dput(dentry);
3072 	return error;
3073 }
3074 
3075 /*
3076  * Look up and maybe create and open the last component.
3077  *
3078  * Must be called with i_mutex held on parent.
3079  *
3080  * Returns 0 if the file was successfully atomically created (if necessary) and
3081  * opened.  In this case the file will be returned attached to @file.
3082  *
3083  * Returns 1 if the file was not completely opened at this time, though lookups
3084  * and creations will have been performed and the dentry returned in @path will
3085  * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
3086  * specified then a negative dentry may be returned.
3087  *
3088  * An error code is returned otherwise.
3089  *
3090  * FILE_CREATE will be set in @*opened if the dentry was created and will be
3091  * cleared otherwise prior to returning.
3092  */
3093 static int lookup_open(struct nameidata *nd, struct path *path,
3094 			struct file *file,
3095 			const struct open_flags *op,
3096 			bool got_write, int *opened)
3097 {
3098 	struct dentry *dir = nd->path.dentry;
3099 	struct inode *dir_inode = dir->d_inode;
3100 	int open_flag = op->open_flag;
3101 	struct dentry *dentry;
3102 	int error, create_error = 0;
3103 	umode_t mode = op->mode;
3104 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3105 
3106 	if (unlikely(IS_DEADDIR(dir_inode)))
3107 		return -ENOENT;
3108 
3109 	*opened &= ~FILE_CREATED;
3110 	dentry = d_lookup(dir, &nd->last);
3111 	for (;;) {
3112 		if (!dentry) {
3113 			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3114 			if (IS_ERR(dentry))
3115 				return PTR_ERR(dentry);
3116 		}
3117 		if (d_in_lookup(dentry))
3118 			break;
3119 
3120 		error = d_revalidate(dentry, nd->flags);
3121 		if (likely(error > 0))
3122 			break;
3123 		if (error)
3124 			goto out_dput;
3125 		d_invalidate(dentry);
3126 		dput(dentry);
3127 		dentry = NULL;
3128 	}
3129 	if (dentry->d_inode) {
3130 		/* Cached positive dentry: will open in f_op->open */
3131 		goto out_no_open;
3132 	}
3133 
3134 	/*
3135 	 * Checking write permission is tricky, bacuse we don't know if we are
3136 	 * going to actually need it: O_CREAT opens should work as long as the
3137 	 * file exists.  But checking existence breaks atomicity.  The trick is
3138 	 * to check access and if not granted clear O_CREAT from the flags.
3139 	 *
3140 	 * Another problem is returing the "right" error value (e.g. for an
3141 	 * O_EXCL open we want to return EEXIST not EROFS).
3142 	 */
3143 	if (open_flag & O_CREAT) {
3144 		if (!IS_POSIXACL(dir->d_inode))
3145 			mode &= ~current_umask();
3146 		if (unlikely(!got_write)) {
3147 			create_error = -EROFS;
3148 			open_flag &= ~O_CREAT;
3149 			if (open_flag & (O_EXCL | O_TRUNC))
3150 				goto no_open;
3151 			/* No side effects, safe to clear O_CREAT */
3152 		} else {
3153 			create_error = may_o_create(&nd->path, dentry, mode);
3154 			if (create_error) {
3155 				open_flag &= ~O_CREAT;
3156 				if (open_flag & O_EXCL)
3157 					goto no_open;
3158 			}
3159 		}
3160 	} else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3161 		   unlikely(!got_write)) {
3162 		/*
3163 		 * No O_CREATE -> atomicity not a requirement -> fall
3164 		 * back to lookup + open
3165 		 */
3166 		goto no_open;
3167 	}
3168 
3169 	if (dir_inode->i_op->atomic_open) {
3170 		error = atomic_open(nd, dentry, path, file, op, open_flag,
3171 				    mode, opened);
3172 		if (unlikely(error == -ENOENT) && create_error)
3173 			error = create_error;
3174 		return error;
3175 	}
3176 
3177 no_open:
3178 	if (d_in_lookup(dentry)) {
3179 		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3180 							     nd->flags);
3181 		d_lookup_done(dentry);
3182 		if (unlikely(res)) {
3183 			if (IS_ERR(res)) {
3184 				error = PTR_ERR(res);
3185 				goto out_dput;
3186 			}
3187 			dput(dentry);
3188 			dentry = res;
3189 		}
3190 	}
3191 
3192 	/* Negative dentry, just create the file */
3193 	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3194 		*opened |= FILE_CREATED;
3195 		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3196 		if (!dir_inode->i_op->create) {
3197 			error = -EACCES;
3198 			goto out_dput;
3199 		}
3200 		error = dir_inode->i_op->create(dir_inode, dentry, mode,
3201 						open_flag & O_EXCL);
3202 		if (error)
3203 			goto out_dput;
3204 		fsnotify_create(dir_inode, dentry);
3205 	}
3206 	if (unlikely(create_error) && !dentry->d_inode) {
3207 		error = create_error;
3208 		goto out_dput;
3209 	}
3210 out_no_open:
3211 	path->dentry = dentry;
3212 	path->mnt = nd->path.mnt;
3213 	return 1;
3214 
3215 out_dput:
3216 	dput(dentry);
3217 	return error;
3218 }
3219 
3220 /*
3221  * Handle the last step of open()
3222  */
3223 static int do_last(struct nameidata *nd,
3224 		   struct file *file, const struct open_flags *op,
3225 		   int *opened)
3226 {
3227 	struct dentry *dir = nd->path.dentry;
3228 	int open_flag = op->open_flag;
3229 	bool will_truncate = (open_flag & O_TRUNC) != 0;
3230 	bool got_write = false;
3231 	int acc_mode = op->acc_mode;
3232 	unsigned seq;
3233 	struct inode *inode;
3234 	struct path path;
3235 	int error;
3236 
3237 	nd->flags &= ~LOOKUP_PARENT;
3238 	nd->flags |= op->intent;
3239 
3240 	if (nd->last_type != LAST_NORM) {
3241 		error = handle_dots(nd, nd->last_type);
3242 		if (unlikely(error))
3243 			return error;
3244 		goto finish_open;
3245 	}
3246 
3247 	if (!(open_flag & O_CREAT)) {
3248 		if (nd->last.name[nd->last.len])
3249 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3250 		/* we _can_ be in RCU mode here */
3251 		error = lookup_fast(nd, &path, &inode, &seq);
3252 		if (likely(error > 0))
3253 			goto finish_lookup;
3254 
3255 		if (error < 0)
3256 			return error;
3257 
3258 		BUG_ON(nd->inode != dir->d_inode);
3259 		BUG_ON(nd->flags & LOOKUP_RCU);
3260 	} else {
3261 		/* create side of things */
3262 		/*
3263 		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3264 		 * has been cleared when we got to the last component we are
3265 		 * about to look up
3266 		 */
3267 		error = complete_walk(nd);
3268 		if (error)
3269 			return error;
3270 
3271 		audit_inode(nd->name, dir, LOOKUP_PARENT);
3272 		/* trailing slashes? */
3273 		if (unlikely(nd->last.name[nd->last.len]))
3274 			return -EISDIR;
3275 	}
3276 
3277 	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3278 		error = mnt_want_write(nd->path.mnt);
3279 		if (!error)
3280 			got_write = true;
3281 		/*
3282 		 * do _not_ fail yet - we might not need that or fail with
3283 		 * a different error; let lookup_open() decide; we'll be
3284 		 * dropping this one anyway.
3285 		 */
3286 	}
3287 	if (open_flag & O_CREAT)
3288 		inode_lock(dir->d_inode);
3289 	else
3290 		inode_lock_shared(dir->d_inode);
3291 	error = lookup_open(nd, &path, file, op, got_write, opened);
3292 	if (open_flag & O_CREAT)
3293 		inode_unlock(dir->d_inode);
3294 	else
3295 		inode_unlock_shared(dir->d_inode);
3296 
3297 	if (error <= 0) {
3298 		if (error)
3299 			goto out;
3300 
3301 		if ((*opened & FILE_CREATED) ||
3302 		    !S_ISREG(file_inode(file)->i_mode))
3303 			will_truncate = false;
3304 
3305 		audit_inode(nd->name, file->f_path.dentry, 0);
3306 		goto opened;
3307 	}
3308 
3309 	if (*opened & FILE_CREATED) {
3310 		/* Don't check for write permission, don't truncate */
3311 		open_flag &= ~O_TRUNC;
3312 		will_truncate = false;
3313 		acc_mode = 0;
3314 		path_to_nameidata(&path, nd);
3315 		goto finish_open_created;
3316 	}
3317 
3318 	/*
3319 	 * If atomic_open() acquired write access it is dropped now due to
3320 	 * possible mount and symlink following (this might be optimized away if
3321 	 * necessary...)
3322 	 */
3323 	if (got_write) {
3324 		mnt_drop_write(nd->path.mnt);
3325 		got_write = false;
3326 	}
3327 
3328 	error = follow_managed(&path, nd);
3329 	if (unlikely(error < 0))
3330 		return error;
3331 
3332 	if (unlikely(d_is_negative(path.dentry))) {
3333 		path_to_nameidata(&path, nd);
3334 		return -ENOENT;
3335 	}
3336 
3337 	/*
3338 	 * create/update audit record if it already exists.
3339 	 */
3340 	audit_inode(nd->name, path.dentry, 0);
3341 
3342 	if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3343 		path_to_nameidata(&path, nd);
3344 		return -EEXIST;
3345 	}
3346 
3347 	seq = 0;	/* out of RCU mode, so the value doesn't matter */
3348 	inode = d_backing_inode(path.dentry);
3349 finish_lookup:
3350 	error = step_into(nd, &path, 0, inode, seq);
3351 	if (unlikely(error))
3352 		return error;
3353 finish_open:
3354 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3355 	error = complete_walk(nd);
3356 	if (error)
3357 		return error;
3358 	audit_inode(nd->name, nd->path.dentry, 0);
3359 	error = -EISDIR;
3360 	if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3361 		goto out;
3362 	error = -ENOTDIR;
3363 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3364 		goto out;
3365 	if (!d_is_reg(nd->path.dentry))
3366 		will_truncate = false;
3367 
3368 	if (will_truncate) {
3369 		error = mnt_want_write(nd->path.mnt);
3370 		if (error)
3371 			goto out;
3372 		got_write = true;
3373 	}
3374 finish_open_created:
3375 	error = may_open(&nd->path, acc_mode, open_flag);
3376 	if (error)
3377 		goto out;
3378 	BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3379 	error = vfs_open(&nd->path, file, current_cred());
3380 	if (error)
3381 		goto out;
3382 	*opened |= FILE_OPENED;
3383 opened:
3384 	error = open_check_o_direct(file);
3385 	if (!error)
3386 		error = ima_file_check(file, op->acc_mode, *opened);
3387 	if (!error && will_truncate)
3388 		error = handle_truncate(file);
3389 out:
3390 	if (unlikely(error) && (*opened & FILE_OPENED))
3391 		fput(file);
3392 	if (unlikely(error > 0)) {
3393 		WARN_ON(1);
3394 		error = -EINVAL;
3395 	}
3396 	if (got_write)
3397 		mnt_drop_write(nd->path.mnt);
3398 	return error;
3399 }
3400 
3401 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3402 {
3403 	struct dentry *child = NULL;
3404 	struct inode *dir = dentry->d_inode;
3405 	struct inode *inode;
3406 	int error;
3407 
3408 	/* we want directory to be writable */
3409 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3410 	if (error)
3411 		goto out_err;
3412 	error = -EOPNOTSUPP;
3413 	if (!dir->i_op->tmpfile)
3414 		goto out_err;
3415 	error = -ENOMEM;
3416 	child = d_alloc(dentry, &slash_name);
3417 	if (unlikely(!child))
3418 		goto out_err;
3419 	error = dir->i_op->tmpfile(dir, child, mode);
3420 	if (error)
3421 		goto out_err;
3422 	error = -ENOENT;
3423 	inode = child->d_inode;
3424 	if (unlikely(!inode))
3425 		goto out_err;
3426 	if (!(open_flag & O_EXCL)) {
3427 		spin_lock(&inode->i_lock);
3428 		inode->i_state |= I_LINKABLE;
3429 		spin_unlock(&inode->i_lock);
3430 	}
3431 	return child;
3432 
3433 out_err:
3434 	dput(child);
3435 	return ERR_PTR(error);
3436 }
3437 EXPORT_SYMBOL(vfs_tmpfile);
3438 
3439 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3440 		const struct open_flags *op,
3441 		struct file *file, int *opened)
3442 {
3443 	struct dentry *child;
3444 	struct path path;
3445 	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3446 	if (unlikely(error))
3447 		return error;
3448 	error = mnt_want_write(path.mnt);
3449 	if (unlikely(error))
3450 		goto out;
3451 	child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3452 	error = PTR_ERR(child);
3453 	if (IS_ERR(child))
3454 		goto out2;
3455 	dput(path.dentry);
3456 	path.dentry = child;
3457 	audit_inode(nd->name, child, 0);
3458 	/* Don't check for other permissions, the inode was just created */
3459 	error = may_open(&path, 0, op->open_flag);
3460 	if (error)
3461 		goto out2;
3462 	file->f_path.mnt = path.mnt;
3463 	error = finish_open(file, child, NULL, opened);
3464 	if (error)
3465 		goto out2;
3466 	error = open_check_o_direct(file);
3467 	if (error)
3468 		fput(file);
3469 out2:
3470 	mnt_drop_write(path.mnt);
3471 out:
3472 	path_put(&path);
3473 	return error;
3474 }
3475 
3476 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3477 {
3478 	struct path path;
3479 	int error = path_lookupat(nd, flags, &path);
3480 	if (!error) {
3481 		audit_inode(nd->name, path.dentry, 0);
3482 		error = vfs_open(&path, file, current_cred());
3483 		path_put(&path);
3484 	}
3485 	return error;
3486 }
3487 
3488 static struct file *path_openat(struct nameidata *nd,
3489 			const struct open_flags *op, unsigned flags)
3490 {
3491 	const char *s;
3492 	struct file *file;
3493 	int opened = 0;
3494 	int error;
3495 
3496 	file = get_empty_filp();
3497 	if (IS_ERR(file))
3498 		return file;
3499 
3500 	file->f_flags = op->open_flag;
3501 
3502 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3503 		error = do_tmpfile(nd, flags, op, file, &opened);
3504 		goto out2;
3505 	}
3506 
3507 	if (unlikely(file->f_flags & O_PATH)) {
3508 		error = do_o_path(nd, flags, file);
3509 		if (!error)
3510 			opened |= FILE_OPENED;
3511 		goto out2;
3512 	}
3513 
3514 	s = path_init(nd, flags);
3515 	if (IS_ERR(s)) {
3516 		put_filp(file);
3517 		return ERR_CAST(s);
3518 	}
3519 	while (!(error = link_path_walk(s, nd)) &&
3520 		(error = do_last(nd, file, op, &opened)) > 0) {
3521 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3522 		s = trailing_symlink(nd);
3523 		if (IS_ERR(s)) {
3524 			error = PTR_ERR(s);
3525 			break;
3526 		}
3527 	}
3528 	terminate_walk(nd);
3529 out2:
3530 	if (!(opened & FILE_OPENED)) {
3531 		BUG_ON(!error);
3532 		put_filp(file);
3533 	}
3534 	if (unlikely(error)) {
3535 		if (error == -EOPENSTALE) {
3536 			if (flags & LOOKUP_RCU)
3537 				error = -ECHILD;
3538 			else
3539 				error = -ESTALE;
3540 		}
3541 		file = ERR_PTR(error);
3542 	}
3543 	return file;
3544 }
3545 
3546 struct file *do_filp_open(int dfd, struct filename *pathname,
3547 		const struct open_flags *op)
3548 {
3549 	struct nameidata nd;
3550 	int flags = op->lookup_flags;
3551 	struct file *filp;
3552 
3553 	set_nameidata(&nd, dfd, pathname);
3554 	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3555 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3556 		filp = path_openat(&nd, op, flags);
3557 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3558 		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3559 	restore_nameidata();
3560 	return filp;
3561 }
3562 
3563 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3564 		const char *name, const struct open_flags *op)
3565 {
3566 	struct nameidata nd;
3567 	struct file *file;
3568 	struct filename *filename;
3569 	int flags = op->lookup_flags | LOOKUP_ROOT;
3570 
3571 	nd.root.mnt = mnt;
3572 	nd.root.dentry = dentry;
3573 
3574 	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3575 		return ERR_PTR(-ELOOP);
3576 
3577 	filename = getname_kernel(name);
3578 	if (IS_ERR(filename))
3579 		return ERR_CAST(filename);
3580 
3581 	set_nameidata(&nd, -1, filename);
3582 	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3583 	if (unlikely(file == ERR_PTR(-ECHILD)))
3584 		file = path_openat(&nd, op, flags);
3585 	if (unlikely(file == ERR_PTR(-ESTALE)))
3586 		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3587 	restore_nameidata();
3588 	putname(filename);
3589 	return file;
3590 }
3591 
3592 static struct dentry *filename_create(int dfd, struct filename *name,
3593 				struct path *path, unsigned int lookup_flags)
3594 {
3595 	struct dentry *dentry = ERR_PTR(-EEXIST);
3596 	struct qstr last;
3597 	int type;
3598 	int err2;
3599 	int error;
3600 	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3601 
3602 	/*
3603 	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3604 	 * other flags passed in are ignored!
3605 	 */
3606 	lookup_flags &= LOOKUP_REVAL;
3607 
3608 	name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3609 	if (IS_ERR(name))
3610 		return ERR_CAST(name);
3611 
3612 	/*
3613 	 * Yucky last component or no last component at all?
3614 	 * (foo/., foo/.., /////)
3615 	 */
3616 	if (unlikely(type != LAST_NORM))
3617 		goto out;
3618 
3619 	/* don't fail immediately if it's r/o, at least try to report other errors */
3620 	err2 = mnt_want_write(path->mnt);
3621 	/*
3622 	 * Do the final lookup.
3623 	 */
3624 	lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3625 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3626 	dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3627 	if (IS_ERR(dentry))
3628 		goto unlock;
3629 
3630 	error = -EEXIST;
3631 	if (d_is_positive(dentry))
3632 		goto fail;
3633 
3634 	/*
3635 	 * Special case - lookup gave negative, but... we had foo/bar/
3636 	 * From the vfs_mknod() POV we just have a negative dentry -
3637 	 * all is fine. Let's be bastards - you had / on the end, you've
3638 	 * been asking for (non-existent) directory. -ENOENT for you.
3639 	 */
3640 	if (unlikely(!is_dir && last.name[last.len])) {
3641 		error = -ENOENT;
3642 		goto fail;
3643 	}
3644 	if (unlikely(err2)) {
3645 		error = err2;
3646 		goto fail;
3647 	}
3648 	putname(name);
3649 	return dentry;
3650 fail:
3651 	dput(dentry);
3652 	dentry = ERR_PTR(error);
3653 unlock:
3654 	inode_unlock(path->dentry->d_inode);
3655 	if (!err2)
3656 		mnt_drop_write(path->mnt);
3657 out:
3658 	path_put(path);
3659 	putname(name);
3660 	return dentry;
3661 }
3662 
3663 struct dentry *kern_path_create(int dfd, const char *pathname,
3664 				struct path *path, unsigned int lookup_flags)
3665 {
3666 	return filename_create(dfd, getname_kernel(pathname),
3667 				path, lookup_flags);
3668 }
3669 EXPORT_SYMBOL(kern_path_create);
3670 
3671 void done_path_create(struct path *path, struct dentry *dentry)
3672 {
3673 	dput(dentry);
3674 	inode_unlock(path->dentry->d_inode);
3675 	mnt_drop_write(path->mnt);
3676 	path_put(path);
3677 }
3678 EXPORT_SYMBOL(done_path_create);
3679 
3680 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3681 				struct path *path, unsigned int lookup_flags)
3682 {
3683 	return filename_create(dfd, getname(pathname), path, lookup_flags);
3684 }
3685 EXPORT_SYMBOL(user_path_create);
3686 
3687 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3688 {
3689 	int error = may_create(dir, dentry);
3690 
3691 	if (error)
3692 		return error;
3693 
3694 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3695 		return -EPERM;
3696 
3697 	if (!dir->i_op->mknod)
3698 		return -EPERM;
3699 
3700 	error = devcgroup_inode_mknod(mode, dev);
3701 	if (error)
3702 		return error;
3703 
3704 	error = security_inode_mknod(dir, dentry, mode, dev);
3705 	if (error)
3706 		return error;
3707 
3708 	error = dir->i_op->mknod(dir, dentry, mode, dev);
3709 	if (!error)
3710 		fsnotify_create(dir, dentry);
3711 	return error;
3712 }
3713 EXPORT_SYMBOL(vfs_mknod);
3714 
3715 static int may_mknod(umode_t mode)
3716 {
3717 	switch (mode & S_IFMT) {
3718 	case S_IFREG:
3719 	case S_IFCHR:
3720 	case S_IFBLK:
3721 	case S_IFIFO:
3722 	case S_IFSOCK:
3723 	case 0: /* zero mode translates to S_IFREG */
3724 		return 0;
3725 	case S_IFDIR:
3726 		return -EPERM;
3727 	default:
3728 		return -EINVAL;
3729 	}
3730 }
3731 
3732 long do_mknodat(int dfd, const char __user *filename, umode_t mode,
3733 		unsigned int dev)
3734 {
3735 	struct dentry *dentry;
3736 	struct path path;
3737 	int error;
3738 	unsigned int lookup_flags = 0;
3739 
3740 	error = may_mknod(mode);
3741 	if (error)
3742 		return error;
3743 retry:
3744 	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3745 	if (IS_ERR(dentry))
3746 		return PTR_ERR(dentry);
3747 
3748 	if (!IS_POSIXACL(path.dentry->d_inode))
3749 		mode &= ~current_umask();
3750 	error = security_path_mknod(&path, dentry, mode, dev);
3751 	if (error)
3752 		goto out;
3753 	switch (mode & S_IFMT) {
3754 		case 0: case S_IFREG:
3755 			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3756 			if (!error)
3757 				ima_post_path_mknod(dentry);
3758 			break;
3759 		case S_IFCHR: case S_IFBLK:
3760 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3761 					new_decode_dev(dev));
3762 			break;
3763 		case S_IFIFO: case S_IFSOCK:
3764 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3765 			break;
3766 	}
3767 out:
3768 	done_path_create(&path, dentry);
3769 	if (retry_estale(error, lookup_flags)) {
3770 		lookup_flags |= LOOKUP_REVAL;
3771 		goto retry;
3772 	}
3773 	return error;
3774 }
3775 
3776 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3777 		unsigned int, dev)
3778 {
3779 	return do_mknodat(dfd, filename, mode, dev);
3780 }
3781 
3782 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3783 {
3784 	return do_mknodat(AT_FDCWD, filename, mode, dev);
3785 }
3786 
3787 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3788 {
3789 	int error = may_create(dir, dentry);
3790 	unsigned max_links = dir->i_sb->s_max_links;
3791 
3792 	if (error)
3793 		return error;
3794 
3795 	if (!dir->i_op->mkdir)
3796 		return -EPERM;
3797 
3798 	mode &= (S_IRWXUGO|S_ISVTX);
3799 	error = security_inode_mkdir(dir, dentry, mode);
3800 	if (error)
3801 		return error;
3802 
3803 	if (max_links && dir->i_nlink >= max_links)
3804 		return -EMLINK;
3805 
3806 	error = dir->i_op->mkdir(dir, dentry, mode);
3807 	if (!error)
3808 		fsnotify_mkdir(dir, dentry);
3809 	return error;
3810 }
3811 EXPORT_SYMBOL(vfs_mkdir);
3812 
3813 long do_mkdirat(int dfd, const char __user *pathname, umode_t mode)
3814 {
3815 	struct dentry *dentry;
3816 	struct path path;
3817 	int error;
3818 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3819 
3820 retry:
3821 	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3822 	if (IS_ERR(dentry))
3823 		return PTR_ERR(dentry);
3824 
3825 	if (!IS_POSIXACL(path.dentry->d_inode))
3826 		mode &= ~current_umask();
3827 	error = security_path_mkdir(&path, dentry, mode);
3828 	if (!error)
3829 		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3830 	done_path_create(&path, dentry);
3831 	if (retry_estale(error, lookup_flags)) {
3832 		lookup_flags |= LOOKUP_REVAL;
3833 		goto retry;
3834 	}
3835 	return error;
3836 }
3837 
3838 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3839 {
3840 	return do_mkdirat(dfd, pathname, mode);
3841 }
3842 
3843 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3844 {
3845 	return do_mkdirat(AT_FDCWD, pathname, mode);
3846 }
3847 
3848 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3849 {
3850 	int error = may_delete(dir, dentry, 1);
3851 
3852 	if (error)
3853 		return error;
3854 
3855 	if (!dir->i_op->rmdir)
3856 		return -EPERM;
3857 
3858 	dget(dentry);
3859 	inode_lock(dentry->d_inode);
3860 
3861 	error = -EBUSY;
3862 	if (is_local_mountpoint(dentry))
3863 		goto out;
3864 
3865 	error = security_inode_rmdir(dir, dentry);
3866 	if (error)
3867 		goto out;
3868 
3869 	shrink_dcache_parent(dentry);
3870 	error = dir->i_op->rmdir(dir, dentry);
3871 	if (error)
3872 		goto out;
3873 
3874 	dentry->d_inode->i_flags |= S_DEAD;
3875 	dont_mount(dentry);
3876 	detach_mounts(dentry);
3877 
3878 out:
3879 	inode_unlock(dentry->d_inode);
3880 	dput(dentry);
3881 	if (!error)
3882 		d_delete(dentry);
3883 	return error;
3884 }
3885 EXPORT_SYMBOL(vfs_rmdir);
3886 
3887 long do_rmdir(int dfd, const char __user *pathname)
3888 {
3889 	int error = 0;
3890 	struct filename *name;
3891 	struct dentry *dentry;
3892 	struct path path;
3893 	struct qstr last;
3894 	int type;
3895 	unsigned int lookup_flags = 0;
3896 retry:
3897 	name = filename_parentat(dfd, getname(pathname), lookup_flags,
3898 				&path, &last, &type);
3899 	if (IS_ERR(name))
3900 		return PTR_ERR(name);
3901 
3902 	switch (type) {
3903 	case LAST_DOTDOT:
3904 		error = -ENOTEMPTY;
3905 		goto exit1;
3906 	case LAST_DOT:
3907 		error = -EINVAL;
3908 		goto exit1;
3909 	case LAST_ROOT:
3910 		error = -EBUSY;
3911 		goto exit1;
3912 	}
3913 
3914 	error = mnt_want_write(path.mnt);
3915 	if (error)
3916 		goto exit1;
3917 
3918 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3919 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3920 	error = PTR_ERR(dentry);
3921 	if (IS_ERR(dentry))
3922 		goto exit2;
3923 	if (!dentry->d_inode) {
3924 		error = -ENOENT;
3925 		goto exit3;
3926 	}
3927 	error = security_path_rmdir(&path, dentry);
3928 	if (error)
3929 		goto exit3;
3930 	error = vfs_rmdir(path.dentry->d_inode, dentry);
3931 exit3:
3932 	dput(dentry);
3933 exit2:
3934 	inode_unlock(path.dentry->d_inode);
3935 	mnt_drop_write(path.mnt);
3936 exit1:
3937 	path_put(&path);
3938 	putname(name);
3939 	if (retry_estale(error, lookup_flags)) {
3940 		lookup_flags |= LOOKUP_REVAL;
3941 		goto retry;
3942 	}
3943 	return error;
3944 }
3945 
3946 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3947 {
3948 	return do_rmdir(AT_FDCWD, pathname);
3949 }
3950 
3951 /**
3952  * vfs_unlink - unlink a filesystem object
3953  * @dir:	parent directory
3954  * @dentry:	victim
3955  * @delegated_inode: returns victim inode, if the inode is delegated.
3956  *
3957  * The caller must hold dir->i_mutex.
3958  *
3959  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3960  * return a reference to the inode in delegated_inode.  The caller
3961  * should then break the delegation on that inode and retry.  Because
3962  * breaking a delegation may take a long time, the caller should drop
3963  * dir->i_mutex before doing so.
3964  *
3965  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3966  * be appropriate for callers that expect the underlying filesystem not
3967  * to be NFS exported.
3968  */
3969 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3970 {
3971 	struct inode *target = dentry->d_inode;
3972 	int error = may_delete(dir, dentry, 0);
3973 
3974 	if (error)
3975 		return error;
3976 
3977 	if (!dir->i_op->unlink)
3978 		return -EPERM;
3979 
3980 	inode_lock(target);
3981 	if (is_local_mountpoint(dentry))
3982 		error = -EBUSY;
3983 	else {
3984 		error = security_inode_unlink(dir, dentry);
3985 		if (!error) {
3986 			error = try_break_deleg(target, delegated_inode);
3987 			if (error)
3988 				goto out;
3989 			error = dir->i_op->unlink(dir, dentry);
3990 			if (!error) {
3991 				dont_mount(dentry);
3992 				detach_mounts(dentry);
3993 			}
3994 		}
3995 	}
3996 out:
3997 	inode_unlock(target);
3998 
3999 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
4000 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
4001 		fsnotify_link_count(target);
4002 		d_delete(dentry);
4003 	}
4004 
4005 	return error;
4006 }
4007 EXPORT_SYMBOL(vfs_unlink);
4008 
4009 /*
4010  * Make sure that the actual truncation of the file will occur outside its
4011  * directory's i_mutex.  Truncate can take a long time if there is a lot of
4012  * writeout happening, and we don't want to prevent access to the directory
4013  * while waiting on the I/O.
4014  */
4015 long do_unlinkat(int dfd, struct filename *name)
4016 {
4017 	int error;
4018 	struct dentry *dentry;
4019 	struct path path;
4020 	struct qstr last;
4021 	int type;
4022 	struct inode *inode = NULL;
4023 	struct inode *delegated_inode = NULL;
4024 	unsigned int lookup_flags = 0;
4025 retry:
4026 	name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4027 	if (IS_ERR(name))
4028 		return PTR_ERR(name);
4029 
4030 	error = -EISDIR;
4031 	if (type != LAST_NORM)
4032 		goto exit1;
4033 
4034 	error = mnt_want_write(path.mnt);
4035 	if (error)
4036 		goto exit1;
4037 retry_deleg:
4038 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4039 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4040 	error = PTR_ERR(dentry);
4041 	if (!IS_ERR(dentry)) {
4042 		/* Why not before? Because we want correct error value */
4043 		if (last.name[last.len])
4044 			goto slashes;
4045 		inode = dentry->d_inode;
4046 		if (d_is_negative(dentry))
4047 			goto slashes;
4048 		ihold(inode);
4049 		error = security_path_unlink(&path, dentry);
4050 		if (error)
4051 			goto exit2;
4052 		error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4053 exit2:
4054 		dput(dentry);
4055 	}
4056 	inode_unlock(path.dentry->d_inode);
4057 	if (inode)
4058 		iput(inode);	/* truncate the inode here */
4059 	inode = NULL;
4060 	if (delegated_inode) {
4061 		error = break_deleg_wait(&delegated_inode);
4062 		if (!error)
4063 			goto retry_deleg;
4064 	}
4065 	mnt_drop_write(path.mnt);
4066 exit1:
4067 	path_put(&path);
4068 	if (retry_estale(error, lookup_flags)) {
4069 		lookup_flags |= LOOKUP_REVAL;
4070 		inode = NULL;
4071 		goto retry;
4072 	}
4073 	putname(name);
4074 	return error;
4075 
4076 slashes:
4077 	if (d_is_negative(dentry))
4078 		error = -ENOENT;
4079 	else if (d_is_dir(dentry))
4080 		error = -EISDIR;
4081 	else
4082 		error = -ENOTDIR;
4083 	goto exit2;
4084 }
4085 
4086 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4087 {
4088 	if ((flag & ~AT_REMOVEDIR) != 0)
4089 		return -EINVAL;
4090 
4091 	if (flag & AT_REMOVEDIR)
4092 		return do_rmdir(dfd, pathname);
4093 
4094 	return do_unlinkat(dfd, getname(pathname));
4095 }
4096 
4097 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4098 {
4099 	return do_unlinkat(AT_FDCWD, getname(pathname));
4100 }
4101 
4102 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4103 {
4104 	int error = may_create(dir, dentry);
4105 
4106 	if (error)
4107 		return error;
4108 
4109 	if (!dir->i_op->symlink)
4110 		return -EPERM;
4111 
4112 	error = security_inode_symlink(dir, dentry, oldname);
4113 	if (error)
4114 		return error;
4115 
4116 	error = dir->i_op->symlink(dir, dentry, oldname);
4117 	if (!error)
4118 		fsnotify_create(dir, dentry);
4119 	return error;
4120 }
4121 EXPORT_SYMBOL(vfs_symlink);
4122 
4123 long do_symlinkat(const char __user *oldname, int newdfd,
4124 		  const char __user *newname)
4125 {
4126 	int error;
4127 	struct filename *from;
4128 	struct dentry *dentry;
4129 	struct path path;
4130 	unsigned int lookup_flags = 0;
4131 
4132 	from = getname(oldname);
4133 	if (IS_ERR(from))
4134 		return PTR_ERR(from);
4135 retry:
4136 	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4137 	error = PTR_ERR(dentry);
4138 	if (IS_ERR(dentry))
4139 		goto out_putname;
4140 
4141 	error = security_path_symlink(&path, dentry, from->name);
4142 	if (!error)
4143 		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4144 	done_path_create(&path, dentry);
4145 	if (retry_estale(error, lookup_flags)) {
4146 		lookup_flags |= LOOKUP_REVAL;
4147 		goto retry;
4148 	}
4149 out_putname:
4150 	putname(from);
4151 	return error;
4152 }
4153 
4154 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4155 		int, newdfd, const char __user *, newname)
4156 {
4157 	return do_symlinkat(oldname, newdfd, newname);
4158 }
4159 
4160 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4161 {
4162 	return do_symlinkat(oldname, AT_FDCWD, newname);
4163 }
4164 
4165 /**
4166  * vfs_link - create a new link
4167  * @old_dentry:	object to be linked
4168  * @dir:	new parent
4169  * @new_dentry:	where to create the new link
4170  * @delegated_inode: returns inode needing a delegation break
4171  *
4172  * The caller must hold dir->i_mutex
4173  *
4174  * If vfs_link discovers a delegation on the to-be-linked file in need
4175  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4176  * inode in delegated_inode.  The caller should then break the delegation
4177  * and retry.  Because breaking a delegation may take a long time, the
4178  * caller should drop the i_mutex before doing so.
4179  *
4180  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4181  * be appropriate for callers that expect the underlying filesystem not
4182  * to be NFS exported.
4183  */
4184 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4185 {
4186 	struct inode *inode = old_dentry->d_inode;
4187 	unsigned max_links = dir->i_sb->s_max_links;
4188 	int error;
4189 
4190 	if (!inode)
4191 		return -ENOENT;
4192 
4193 	error = may_create(dir, new_dentry);
4194 	if (error)
4195 		return error;
4196 
4197 	if (dir->i_sb != inode->i_sb)
4198 		return -EXDEV;
4199 
4200 	/*
4201 	 * A link to an append-only or immutable file cannot be created.
4202 	 */
4203 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4204 		return -EPERM;
4205 	/*
4206 	 * Updating the link count will likely cause i_uid and i_gid to
4207 	 * be writen back improperly if their true value is unknown to
4208 	 * the vfs.
4209 	 */
4210 	if (HAS_UNMAPPED_ID(inode))
4211 		return -EPERM;
4212 	if (!dir->i_op->link)
4213 		return -EPERM;
4214 	if (S_ISDIR(inode->i_mode))
4215 		return -EPERM;
4216 
4217 	error = security_inode_link(old_dentry, dir, new_dentry);
4218 	if (error)
4219 		return error;
4220 
4221 	inode_lock(inode);
4222 	/* Make sure we don't allow creating hardlink to an unlinked file */
4223 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4224 		error =  -ENOENT;
4225 	else if (max_links && inode->i_nlink >= max_links)
4226 		error = -EMLINK;
4227 	else {
4228 		error = try_break_deleg(inode, delegated_inode);
4229 		if (!error)
4230 			error = dir->i_op->link(old_dentry, dir, new_dentry);
4231 	}
4232 
4233 	if (!error && (inode->i_state & I_LINKABLE)) {
4234 		spin_lock(&inode->i_lock);
4235 		inode->i_state &= ~I_LINKABLE;
4236 		spin_unlock(&inode->i_lock);
4237 	}
4238 	inode_unlock(inode);
4239 	if (!error)
4240 		fsnotify_link(dir, inode, new_dentry);
4241 	return error;
4242 }
4243 EXPORT_SYMBOL(vfs_link);
4244 
4245 /*
4246  * Hardlinks are often used in delicate situations.  We avoid
4247  * security-related surprises by not following symlinks on the
4248  * newname.  --KAB
4249  *
4250  * We don't follow them on the oldname either to be compatible
4251  * with linux 2.0, and to avoid hard-linking to directories
4252  * and other special files.  --ADM
4253  */
4254 int do_linkat(int olddfd, const char __user *oldname, int newdfd,
4255 	      const char __user *newname, int flags)
4256 {
4257 	struct dentry *new_dentry;
4258 	struct path old_path, new_path;
4259 	struct inode *delegated_inode = NULL;
4260 	int how = 0;
4261 	int error;
4262 
4263 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4264 		return -EINVAL;
4265 	/*
4266 	 * To use null names we require CAP_DAC_READ_SEARCH
4267 	 * This ensures that not everyone will be able to create
4268 	 * handlink using the passed filedescriptor.
4269 	 */
4270 	if (flags & AT_EMPTY_PATH) {
4271 		if (!capable(CAP_DAC_READ_SEARCH))
4272 			return -ENOENT;
4273 		how = LOOKUP_EMPTY;
4274 	}
4275 
4276 	if (flags & AT_SYMLINK_FOLLOW)
4277 		how |= LOOKUP_FOLLOW;
4278 retry:
4279 	error = user_path_at(olddfd, oldname, how, &old_path);
4280 	if (error)
4281 		return error;
4282 
4283 	new_dentry = user_path_create(newdfd, newname, &new_path,
4284 					(how & LOOKUP_REVAL));
4285 	error = PTR_ERR(new_dentry);
4286 	if (IS_ERR(new_dentry))
4287 		goto out;
4288 
4289 	error = -EXDEV;
4290 	if (old_path.mnt != new_path.mnt)
4291 		goto out_dput;
4292 	error = may_linkat(&old_path);
4293 	if (unlikely(error))
4294 		goto out_dput;
4295 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4296 	if (error)
4297 		goto out_dput;
4298 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4299 out_dput:
4300 	done_path_create(&new_path, new_dentry);
4301 	if (delegated_inode) {
4302 		error = break_deleg_wait(&delegated_inode);
4303 		if (!error) {
4304 			path_put(&old_path);
4305 			goto retry;
4306 		}
4307 	}
4308 	if (retry_estale(error, how)) {
4309 		path_put(&old_path);
4310 		how |= LOOKUP_REVAL;
4311 		goto retry;
4312 	}
4313 out:
4314 	path_put(&old_path);
4315 
4316 	return error;
4317 }
4318 
4319 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4320 		int, newdfd, const char __user *, newname, int, flags)
4321 {
4322 	return do_linkat(olddfd, oldname, newdfd, newname, flags);
4323 }
4324 
4325 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4326 {
4327 	return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4328 }
4329 
4330 /**
4331  * vfs_rename - rename a filesystem object
4332  * @old_dir:	parent of source
4333  * @old_dentry:	source
4334  * @new_dir:	parent of destination
4335  * @new_dentry:	destination
4336  * @delegated_inode: returns an inode needing a delegation break
4337  * @flags:	rename flags
4338  *
4339  * The caller must hold multiple mutexes--see lock_rename()).
4340  *
4341  * If vfs_rename discovers a delegation in need of breaking at either
4342  * the source or destination, it will return -EWOULDBLOCK and return a
4343  * reference to the inode in delegated_inode.  The caller should then
4344  * break the delegation and retry.  Because breaking a delegation may
4345  * take a long time, the caller should drop all locks before doing
4346  * so.
4347  *
4348  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4349  * be appropriate for callers that expect the underlying filesystem not
4350  * to be NFS exported.
4351  *
4352  * The worst of all namespace operations - renaming directory. "Perverted"
4353  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4354  * Problems:
4355  *
4356  *	a) we can get into loop creation.
4357  *	b) race potential - two innocent renames can create a loop together.
4358  *	   That's where 4.4 screws up. Current fix: serialization on
4359  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4360  *	   story.
4361  *	c) we have to lock _four_ objects - parents and victim (if it exists),
4362  *	   and source (if it is not a directory).
4363  *	   And that - after we got ->i_mutex on parents (until then we don't know
4364  *	   whether the target exists).  Solution: try to be smart with locking
4365  *	   order for inodes.  We rely on the fact that tree topology may change
4366  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4367  *	   move will be locked.  Thus we can rank directories by the tree
4368  *	   (ancestors first) and rank all non-directories after them.
4369  *	   That works since everybody except rename does "lock parent, lookup,
4370  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4371  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4372  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4373  *	   we'd better make sure that there's no link(2) for them.
4374  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4375  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4376  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4377  *	   ->i_mutex on parents, which works but leads to some truly excessive
4378  *	   locking].
4379  */
4380 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4381 	       struct inode *new_dir, struct dentry *new_dentry,
4382 	       struct inode **delegated_inode, unsigned int flags)
4383 {
4384 	int error;
4385 	bool is_dir = d_is_dir(old_dentry);
4386 	struct inode *source = old_dentry->d_inode;
4387 	struct inode *target = new_dentry->d_inode;
4388 	bool new_is_dir = false;
4389 	unsigned max_links = new_dir->i_sb->s_max_links;
4390 	struct name_snapshot old_name;
4391 
4392 	if (source == target)
4393 		return 0;
4394 
4395 	error = may_delete(old_dir, old_dentry, is_dir);
4396 	if (error)
4397 		return error;
4398 
4399 	if (!target) {
4400 		error = may_create(new_dir, new_dentry);
4401 	} else {
4402 		new_is_dir = d_is_dir(new_dentry);
4403 
4404 		if (!(flags & RENAME_EXCHANGE))
4405 			error = may_delete(new_dir, new_dentry, is_dir);
4406 		else
4407 			error = may_delete(new_dir, new_dentry, new_is_dir);
4408 	}
4409 	if (error)
4410 		return error;
4411 
4412 	if (!old_dir->i_op->rename)
4413 		return -EPERM;
4414 
4415 	/*
4416 	 * If we are going to change the parent - check write permissions,
4417 	 * we'll need to flip '..'.
4418 	 */
4419 	if (new_dir != old_dir) {
4420 		if (is_dir) {
4421 			error = inode_permission(source, MAY_WRITE);
4422 			if (error)
4423 				return error;
4424 		}
4425 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4426 			error = inode_permission(target, MAY_WRITE);
4427 			if (error)
4428 				return error;
4429 		}
4430 	}
4431 
4432 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4433 				      flags);
4434 	if (error)
4435 		return error;
4436 
4437 	take_dentry_name_snapshot(&old_name, old_dentry);
4438 	dget(new_dentry);
4439 	if (!is_dir || (flags & RENAME_EXCHANGE))
4440 		lock_two_nondirectories(source, target);
4441 	else if (target)
4442 		inode_lock(target);
4443 
4444 	error = -EBUSY;
4445 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4446 		goto out;
4447 
4448 	if (max_links && new_dir != old_dir) {
4449 		error = -EMLINK;
4450 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4451 			goto out;
4452 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4453 		    old_dir->i_nlink >= max_links)
4454 			goto out;
4455 	}
4456 	if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4457 		shrink_dcache_parent(new_dentry);
4458 	if (!is_dir) {
4459 		error = try_break_deleg(source, delegated_inode);
4460 		if (error)
4461 			goto out;
4462 	}
4463 	if (target && !new_is_dir) {
4464 		error = try_break_deleg(target, delegated_inode);
4465 		if (error)
4466 			goto out;
4467 	}
4468 	error = old_dir->i_op->rename(old_dir, old_dentry,
4469 				       new_dir, new_dentry, flags);
4470 	if (error)
4471 		goto out;
4472 
4473 	if (!(flags & RENAME_EXCHANGE) && target) {
4474 		if (is_dir)
4475 			target->i_flags |= S_DEAD;
4476 		dont_mount(new_dentry);
4477 		detach_mounts(new_dentry);
4478 	}
4479 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4480 		if (!(flags & RENAME_EXCHANGE))
4481 			d_move(old_dentry, new_dentry);
4482 		else
4483 			d_exchange(old_dentry, new_dentry);
4484 	}
4485 out:
4486 	if (!is_dir || (flags & RENAME_EXCHANGE))
4487 		unlock_two_nondirectories(source, target);
4488 	else if (target)
4489 		inode_unlock(target);
4490 	dput(new_dentry);
4491 	if (!error) {
4492 		fsnotify_move(old_dir, new_dir, old_name.name, is_dir,
4493 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4494 		if (flags & RENAME_EXCHANGE) {
4495 			fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4496 				      new_is_dir, NULL, new_dentry);
4497 		}
4498 	}
4499 	release_dentry_name_snapshot(&old_name);
4500 
4501 	return error;
4502 }
4503 EXPORT_SYMBOL(vfs_rename);
4504 
4505 static int do_renameat2(int olddfd, const char __user *oldname, int newdfd,
4506 			const char __user *newname, unsigned int flags)
4507 {
4508 	struct dentry *old_dentry, *new_dentry;
4509 	struct dentry *trap;
4510 	struct path old_path, new_path;
4511 	struct qstr old_last, new_last;
4512 	int old_type, new_type;
4513 	struct inode *delegated_inode = NULL;
4514 	struct filename *from;
4515 	struct filename *to;
4516 	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4517 	bool should_retry = false;
4518 	int error;
4519 
4520 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4521 		return -EINVAL;
4522 
4523 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4524 	    (flags & RENAME_EXCHANGE))
4525 		return -EINVAL;
4526 
4527 	if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4528 		return -EPERM;
4529 
4530 	if (flags & RENAME_EXCHANGE)
4531 		target_flags = 0;
4532 
4533 retry:
4534 	from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4535 				&old_path, &old_last, &old_type);
4536 	if (IS_ERR(from)) {
4537 		error = PTR_ERR(from);
4538 		goto exit;
4539 	}
4540 
4541 	to = filename_parentat(newdfd, getname(newname), lookup_flags,
4542 				&new_path, &new_last, &new_type);
4543 	if (IS_ERR(to)) {
4544 		error = PTR_ERR(to);
4545 		goto exit1;
4546 	}
4547 
4548 	error = -EXDEV;
4549 	if (old_path.mnt != new_path.mnt)
4550 		goto exit2;
4551 
4552 	error = -EBUSY;
4553 	if (old_type != LAST_NORM)
4554 		goto exit2;
4555 
4556 	if (flags & RENAME_NOREPLACE)
4557 		error = -EEXIST;
4558 	if (new_type != LAST_NORM)
4559 		goto exit2;
4560 
4561 	error = mnt_want_write(old_path.mnt);
4562 	if (error)
4563 		goto exit2;
4564 
4565 retry_deleg:
4566 	trap = lock_rename(new_path.dentry, old_path.dentry);
4567 
4568 	old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4569 	error = PTR_ERR(old_dentry);
4570 	if (IS_ERR(old_dentry))
4571 		goto exit3;
4572 	/* source must exist */
4573 	error = -ENOENT;
4574 	if (d_is_negative(old_dentry))
4575 		goto exit4;
4576 	new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4577 	error = PTR_ERR(new_dentry);
4578 	if (IS_ERR(new_dentry))
4579 		goto exit4;
4580 	error = -EEXIST;
4581 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4582 		goto exit5;
4583 	if (flags & RENAME_EXCHANGE) {
4584 		error = -ENOENT;
4585 		if (d_is_negative(new_dentry))
4586 			goto exit5;
4587 
4588 		if (!d_is_dir(new_dentry)) {
4589 			error = -ENOTDIR;
4590 			if (new_last.name[new_last.len])
4591 				goto exit5;
4592 		}
4593 	}
4594 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4595 	if (!d_is_dir(old_dentry)) {
4596 		error = -ENOTDIR;
4597 		if (old_last.name[old_last.len])
4598 			goto exit5;
4599 		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4600 			goto exit5;
4601 	}
4602 	/* source should not be ancestor of target */
4603 	error = -EINVAL;
4604 	if (old_dentry == trap)
4605 		goto exit5;
4606 	/* target should not be an ancestor of source */
4607 	if (!(flags & RENAME_EXCHANGE))
4608 		error = -ENOTEMPTY;
4609 	if (new_dentry == trap)
4610 		goto exit5;
4611 
4612 	error = security_path_rename(&old_path, old_dentry,
4613 				     &new_path, new_dentry, flags);
4614 	if (error)
4615 		goto exit5;
4616 	error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4617 			   new_path.dentry->d_inode, new_dentry,
4618 			   &delegated_inode, flags);
4619 exit5:
4620 	dput(new_dentry);
4621 exit4:
4622 	dput(old_dentry);
4623 exit3:
4624 	unlock_rename(new_path.dentry, old_path.dentry);
4625 	if (delegated_inode) {
4626 		error = break_deleg_wait(&delegated_inode);
4627 		if (!error)
4628 			goto retry_deleg;
4629 	}
4630 	mnt_drop_write(old_path.mnt);
4631 exit2:
4632 	if (retry_estale(error, lookup_flags))
4633 		should_retry = true;
4634 	path_put(&new_path);
4635 	putname(to);
4636 exit1:
4637 	path_put(&old_path);
4638 	putname(from);
4639 	if (should_retry) {
4640 		should_retry = false;
4641 		lookup_flags |= LOOKUP_REVAL;
4642 		goto retry;
4643 	}
4644 exit:
4645 	return error;
4646 }
4647 
4648 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4649 		int, newdfd, const char __user *, newname, unsigned int, flags)
4650 {
4651 	return do_renameat2(olddfd, oldname, newdfd, newname, flags);
4652 }
4653 
4654 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4655 		int, newdfd, const char __user *, newname)
4656 {
4657 	return do_renameat2(olddfd, oldname, newdfd, newname, 0);
4658 }
4659 
4660 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4661 {
4662 	return do_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4663 }
4664 
4665 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4666 {
4667 	int error = may_create(dir, dentry);
4668 	if (error)
4669 		return error;
4670 
4671 	if (!dir->i_op->mknod)
4672 		return -EPERM;
4673 
4674 	return dir->i_op->mknod(dir, dentry,
4675 				S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4676 }
4677 EXPORT_SYMBOL(vfs_whiteout);
4678 
4679 int readlink_copy(char __user *buffer, int buflen, const char *link)
4680 {
4681 	int len = PTR_ERR(link);
4682 	if (IS_ERR(link))
4683 		goto out;
4684 
4685 	len = strlen(link);
4686 	if (len > (unsigned) buflen)
4687 		len = buflen;
4688 	if (copy_to_user(buffer, link, len))
4689 		len = -EFAULT;
4690 out:
4691 	return len;
4692 }
4693 
4694 /*
4695  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
4696  * have ->get_link() not calling nd_jump_link().  Using (or not using) it
4697  * for any given inode is up to filesystem.
4698  */
4699 static int generic_readlink(struct dentry *dentry, char __user *buffer,
4700 			    int buflen)
4701 {
4702 	DEFINE_DELAYED_CALL(done);
4703 	struct inode *inode = d_inode(dentry);
4704 	const char *link = inode->i_link;
4705 	int res;
4706 
4707 	if (!link) {
4708 		link = inode->i_op->get_link(dentry, inode, &done);
4709 		if (IS_ERR(link))
4710 			return PTR_ERR(link);
4711 	}
4712 	res = readlink_copy(buffer, buflen, link);
4713 	do_delayed_call(&done);
4714 	return res;
4715 }
4716 
4717 /**
4718  * vfs_readlink - copy symlink body into userspace buffer
4719  * @dentry: dentry on which to get symbolic link
4720  * @buffer: user memory pointer
4721  * @buflen: size of buffer
4722  *
4723  * Does not touch atime.  That's up to the caller if necessary
4724  *
4725  * Does not call security hook.
4726  */
4727 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4728 {
4729 	struct inode *inode = d_inode(dentry);
4730 
4731 	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4732 		if (unlikely(inode->i_op->readlink))
4733 			return inode->i_op->readlink(dentry, buffer, buflen);
4734 
4735 		if (!d_is_symlink(dentry))
4736 			return -EINVAL;
4737 
4738 		spin_lock(&inode->i_lock);
4739 		inode->i_opflags |= IOP_DEFAULT_READLINK;
4740 		spin_unlock(&inode->i_lock);
4741 	}
4742 
4743 	return generic_readlink(dentry, buffer, buflen);
4744 }
4745 EXPORT_SYMBOL(vfs_readlink);
4746 
4747 /**
4748  * vfs_get_link - get symlink body
4749  * @dentry: dentry on which to get symbolic link
4750  * @done: caller needs to free returned data with this
4751  *
4752  * Calls security hook and i_op->get_link() on the supplied inode.
4753  *
4754  * It does not touch atime.  That's up to the caller if necessary.
4755  *
4756  * Does not work on "special" symlinks like /proc/$$/fd/N
4757  */
4758 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4759 {
4760 	const char *res = ERR_PTR(-EINVAL);
4761 	struct inode *inode = d_inode(dentry);
4762 
4763 	if (d_is_symlink(dentry)) {
4764 		res = ERR_PTR(security_inode_readlink(dentry));
4765 		if (!res)
4766 			res = inode->i_op->get_link(dentry, inode, done);
4767 	}
4768 	return res;
4769 }
4770 EXPORT_SYMBOL(vfs_get_link);
4771 
4772 /* get the link contents into pagecache */
4773 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4774 			  struct delayed_call *callback)
4775 {
4776 	char *kaddr;
4777 	struct page *page;
4778 	struct address_space *mapping = inode->i_mapping;
4779 
4780 	if (!dentry) {
4781 		page = find_get_page(mapping, 0);
4782 		if (!page)
4783 			return ERR_PTR(-ECHILD);
4784 		if (!PageUptodate(page)) {
4785 			put_page(page);
4786 			return ERR_PTR(-ECHILD);
4787 		}
4788 	} else {
4789 		page = read_mapping_page(mapping, 0, NULL);
4790 		if (IS_ERR(page))
4791 			return (char*)page;
4792 	}
4793 	set_delayed_call(callback, page_put_link, page);
4794 	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4795 	kaddr = page_address(page);
4796 	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4797 	return kaddr;
4798 }
4799 
4800 EXPORT_SYMBOL(page_get_link);
4801 
4802 void page_put_link(void *arg)
4803 {
4804 	put_page(arg);
4805 }
4806 EXPORT_SYMBOL(page_put_link);
4807 
4808 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4809 {
4810 	DEFINE_DELAYED_CALL(done);
4811 	int res = readlink_copy(buffer, buflen,
4812 				page_get_link(dentry, d_inode(dentry),
4813 					      &done));
4814 	do_delayed_call(&done);
4815 	return res;
4816 }
4817 EXPORT_SYMBOL(page_readlink);
4818 
4819 /*
4820  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4821  */
4822 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4823 {
4824 	struct address_space *mapping = inode->i_mapping;
4825 	struct page *page;
4826 	void *fsdata;
4827 	int err;
4828 	unsigned int flags = 0;
4829 	if (nofs)
4830 		flags |= AOP_FLAG_NOFS;
4831 
4832 retry:
4833 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4834 				flags, &page, &fsdata);
4835 	if (err)
4836 		goto fail;
4837 
4838 	memcpy(page_address(page), symname, len-1);
4839 
4840 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4841 							page, fsdata);
4842 	if (err < 0)
4843 		goto fail;
4844 	if (err < len-1)
4845 		goto retry;
4846 
4847 	mark_inode_dirty(inode);
4848 	return 0;
4849 fail:
4850 	return err;
4851 }
4852 EXPORT_SYMBOL(__page_symlink);
4853 
4854 int page_symlink(struct inode *inode, const char *symname, int len)
4855 {
4856 	return __page_symlink(inode, symname, len,
4857 			!mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4858 }
4859 EXPORT_SYMBOL(page_symlink);
4860 
4861 const struct inode_operations page_symlink_inode_operations = {
4862 	.get_link	= page_get_link,
4863 };
4864 EXPORT_SYMBOL(page_symlink_inode_operations);
4865