1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/namei.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * Some corrections by tytso. 10 */ 11 12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 13 * lookup logic. 14 */ 15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 16 */ 17 18 #include <linux/init.h> 19 #include <linux/export.h> 20 #include <linux/kernel.h> 21 #include <linux/slab.h> 22 #include <linux/fs.h> 23 #include <linux/namei.h> 24 #include <linux/pagemap.h> 25 #include <linux/fsnotify.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/ima.h> 29 #include <linux/syscalls.h> 30 #include <linux/mount.h> 31 #include <linux/audit.h> 32 #include <linux/capability.h> 33 #include <linux/file.h> 34 #include <linux/fcntl.h> 35 #include <linux/device_cgroup.h> 36 #include <linux/fs_struct.h> 37 #include <linux/posix_acl.h> 38 #include <linux/hash.h> 39 #include <linux/bitops.h> 40 #include <linux/init_task.h> 41 #include <linux/uaccess.h> 42 43 #include "internal.h" 44 #include "mount.h" 45 46 /* [Feb-1997 T. Schoebel-Theuer] 47 * Fundamental changes in the pathname lookup mechanisms (namei) 48 * were necessary because of omirr. The reason is that omirr needs 49 * to know the _real_ pathname, not the user-supplied one, in case 50 * of symlinks (and also when transname replacements occur). 51 * 52 * The new code replaces the old recursive symlink resolution with 53 * an iterative one (in case of non-nested symlink chains). It does 54 * this with calls to <fs>_follow_link(). 55 * As a side effect, dir_namei(), _namei() and follow_link() are now 56 * replaced with a single function lookup_dentry() that can handle all 57 * the special cases of the former code. 58 * 59 * With the new dcache, the pathname is stored at each inode, at least as 60 * long as the refcount of the inode is positive. As a side effect, the 61 * size of the dcache depends on the inode cache and thus is dynamic. 62 * 63 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 64 * resolution to correspond with current state of the code. 65 * 66 * Note that the symlink resolution is not *completely* iterative. 67 * There is still a significant amount of tail- and mid- recursion in 68 * the algorithm. Also, note that <fs>_readlink() is not used in 69 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 70 * may return different results than <fs>_follow_link(). Many virtual 71 * filesystems (including /proc) exhibit this behavior. 72 */ 73 74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 75 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 76 * and the name already exists in form of a symlink, try to create the new 77 * name indicated by the symlink. The old code always complained that the 78 * name already exists, due to not following the symlink even if its target 79 * is nonexistent. The new semantics affects also mknod() and link() when 80 * the name is a symlink pointing to a non-existent name. 81 * 82 * I don't know which semantics is the right one, since I have no access 83 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 84 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 85 * "old" one. Personally, I think the new semantics is much more logical. 86 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 87 * file does succeed in both HP-UX and SunOs, but not in Solaris 88 * and in the old Linux semantics. 89 */ 90 91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 92 * semantics. See the comments in "open_namei" and "do_link" below. 93 * 94 * [10-Sep-98 Alan Modra] Another symlink change. 95 */ 96 97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 98 * inside the path - always follow. 99 * in the last component in creation/removal/renaming - never follow. 100 * if LOOKUP_FOLLOW passed - follow. 101 * if the pathname has trailing slashes - follow. 102 * otherwise - don't follow. 103 * (applied in that order). 104 * 105 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 106 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 107 * During the 2.4 we need to fix the userland stuff depending on it - 108 * hopefully we will be able to get rid of that wart in 2.5. So far only 109 * XEmacs seems to be relying on it... 110 */ 111 /* 112 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 113 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 114 * any extra contention... 115 */ 116 117 /* In order to reduce some races, while at the same time doing additional 118 * checking and hopefully speeding things up, we copy filenames to the 119 * kernel data space before using them.. 120 * 121 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 122 * PATH_MAX includes the nul terminator --RR. 123 */ 124 125 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) 126 127 struct filename * 128 getname_flags(const char __user *filename, int flags, int *empty) 129 { 130 struct filename *result; 131 char *kname; 132 int len; 133 134 result = audit_reusename(filename); 135 if (result) 136 return result; 137 138 result = __getname(); 139 if (unlikely(!result)) 140 return ERR_PTR(-ENOMEM); 141 142 /* 143 * First, try to embed the struct filename inside the names_cache 144 * allocation 145 */ 146 kname = (char *)result->iname; 147 result->name = kname; 148 149 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); 150 if (unlikely(len < 0)) { 151 __putname(result); 152 return ERR_PTR(len); 153 } 154 155 /* 156 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 157 * separate struct filename so we can dedicate the entire 158 * names_cache allocation for the pathname, and re-do the copy from 159 * userland. 160 */ 161 if (unlikely(len == EMBEDDED_NAME_MAX)) { 162 const size_t size = offsetof(struct filename, iname[1]); 163 kname = (char *)result; 164 165 /* 166 * size is chosen that way we to guarantee that 167 * result->iname[0] is within the same object and that 168 * kname can't be equal to result->iname, no matter what. 169 */ 170 result = kzalloc(size, GFP_KERNEL); 171 if (unlikely(!result)) { 172 __putname(kname); 173 return ERR_PTR(-ENOMEM); 174 } 175 result->name = kname; 176 len = strncpy_from_user(kname, filename, PATH_MAX); 177 if (unlikely(len < 0)) { 178 __putname(kname); 179 kfree(result); 180 return ERR_PTR(len); 181 } 182 if (unlikely(len == PATH_MAX)) { 183 __putname(kname); 184 kfree(result); 185 return ERR_PTR(-ENAMETOOLONG); 186 } 187 } 188 189 result->refcnt = 1; 190 /* The empty path is special. */ 191 if (unlikely(!len)) { 192 if (empty) 193 *empty = 1; 194 if (!(flags & LOOKUP_EMPTY)) { 195 putname(result); 196 return ERR_PTR(-ENOENT); 197 } 198 } 199 200 result->uptr = filename; 201 result->aname = NULL; 202 audit_getname(result); 203 return result; 204 } 205 206 struct filename * 207 getname(const char __user * filename) 208 { 209 return getname_flags(filename, 0, NULL); 210 } 211 212 struct filename * 213 getname_kernel(const char * filename) 214 { 215 struct filename *result; 216 int len = strlen(filename) + 1; 217 218 result = __getname(); 219 if (unlikely(!result)) 220 return ERR_PTR(-ENOMEM); 221 222 if (len <= EMBEDDED_NAME_MAX) { 223 result->name = (char *)result->iname; 224 } else if (len <= PATH_MAX) { 225 struct filename *tmp; 226 227 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL); 228 if (unlikely(!tmp)) { 229 __putname(result); 230 return ERR_PTR(-ENOMEM); 231 } 232 tmp->name = (char *)result; 233 result = tmp; 234 } else { 235 __putname(result); 236 return ERR_PTR(-ENAMETOOLONG); 237 } 238 memcpy((char *)result->name, filename, len); 239 result->uptr = NULL; 240 result->aname = NULL; 241 result->refcnt = 1; 242 audit_getname(result); 243 244 return result; 245 } 246 247 void putname(struct filename *name) 248 { 249 BUG_ON(name->refcnt <= 0); 250 251 if (--name->refcnt > 0) 252 return; 253 254 if (name->name != name->iname) { 255 __putname(name->name); 256 kfree(name); 257 } else 258 __putname(name); 259 } 260 261 static int check_acl(struct inode *inode, int mask) 262 { 263 #ifdef CONFIG_FS_POSIX_ACL 264 struct posix_acl *acl; 265 266 if (mask & MAY_NOT_BLOCK) { 267 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 268 if (!acl) 269 return -EAGAIN; 270 /* no ->get_acl() calls in RCU mode... */ 271 if (is_uncached_acl(acl)) 272 return -ECHILD; 273 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK); 274 } 275 276 acl = get_acl(inode, ACL_TYPE_ACCESS); 277 if (IS_ERR(acl)) 278 return PTR_ERR(acl); 279 if (acl) { 280 int error = posix_acl_permission(inode, acl, mask); 281 posix_acl_release(acl); 282 return error; 283 } 284 #endif 285 286 return -EAGAIN; 287 } 288 289 /* 290 * This does the basic permission checking 291 */ 292 static int acl_permission_check(struct inode *inode, int mask) 293 { 294 unsigned int mode = inode->i_mode; 295 296 if (likely(uid_eq(current_fsuid(), inode->i_uid))) 297 mode >>= 6; 298 else { 299 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 300 int error = check_acl(inode, mask); 301 if (error != -EAGAIN) 302 return error; 303 } 304 305 if (in_group_p(inode->i_gid)) 306 mode >>= 3; 307 } 308 309 /* 310 * If the DACs are ok we don't need any capability check. 311 */ 312 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 313 return 0; 314 return -EACCES; 315 } 316 317 /** 318 * generic_permission - check for access rights on a Posix-like filesystem 319 * @inode: inode to check access rights for 320 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...) 321 * 322 * Used to check for read/write/execute permissions on a file. 323 * We use "fsuid" for this, letting us set arbitrary permissions 324 * for filesystem access without changing the "normal" uids which 325 * are used for other things. 326 * 327 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 328 * request cannot be satisfied (eg. requires blocking or too much complexity). 329 * It would then be called again in ref-walk mode. 330 */ 331 int generic_permission(struct inode *inode, int mask) 332 { 333 int ret; 334 335 /* 336 * Do the basic permission checks. 337 */ 338 ret = acl_permission_check(inode, mask); 339 if (ret != -EACCES) 340 return ret; 341 342 if (S_ISDIR(inode->i_mode)) { 343 /* DACs are overridable for directories */ 344 if (!(mask & MAY_WRITE)) 345 if (capable_wrt_inode_uidgid(inode, 346 CAP_DAC_READ_SEARCH)) 347 return 0; 348 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 349 return 0; 350 return -EACCES; 351 } 352 353 /* 354 * Searching includes executable on directories, else just read. 355 */ 356 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 357 if (mask == MAY_READ) 358 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH)) 359 return 0; 360 /* 361 * Read/write DACs are always overridable. 362 * Executable DACs are overridable when there is 363 * at least one exec bit set. 364 */ 365 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 366 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 367 return 0; 368 369 return -EACCES; 370 } 371 EXPORT_SYMBOL(generic_permission); 372 373 /* 374 * We _really_ want to just do "generic_permission()" without 375 * even looking at the inode->i_op values. So we keep a cache 376 * flag in inode->i_opflags, that says "this has not special 377 * permission function, use the fast case". 378 */ 379 static inline int do_inode_permission(struct inode *inode, int mask) 380 { 381 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 382 if (likely(inode->i_op->permission)) 383 return inode->i_op->permission(inode, mask); 384 385 /* This gets set once for the inode lifetime */ 386 spin_lock(&inode->i_lock); 387 inode->i_opflags |= IOP_FASTPERM; 388 spin_unlock(&inode->i_lock); 389 } 390 return generic_permission(inode, mask); 391 } 392 393 /** 394 * sb_permission - Check superblock-level permissions 395 * @sb: Superblock of inode to check permission on 396 * @inode: Inode to check permission on 397 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 398 * 399 * Separate out file-system wide checks from inode-specific permission checks. 400 */ 401 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 402 { 403 if (unlikely(mask & MAY_WRITE)) { 404 umode_t mode = inode->i_mode; 405 406 /* Nobody gets write access to a read-only fs. */ 407 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 408 return -EROFS; 409 } 410 return 0; 411 } 412 413 /** 414 * inode_permission - Check for access rights to a given inode 415 * @inode: Inode to check permission on 416 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 417 * 418 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 419 * this, letting us set arbitrary permissions for filesystem access without 420 * changing the "normal" UIDs which are used for other things. 421 * 422 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 423 */ 424 int inode_permission(struct inode *inode, int mask) 425 { 426 int retval; 427 428 retval = sb_permission(inode->i_sb, inode, mask); 429 if (retval) 430 return retval; 431 432 if (unlikely(mask & MAY_WRITE)) { 433 /* 434 * Nobody gets write access to an immutable file. 435 */ 436 if (IS_IMMUTABLE(inode)) 437 return -EPERM; 438 439 /* 440 * Updating mtime will likely cause i_uid and i_gid to be 441 * written back improperly if their true value is unknown 442 * to the vfs. 443 */ 444 if (HAS_UNMAPPED_ID(inode)) 445 return -EACCES; 446 } 447 448 retval = do_inode_permission(inode, mask); 449 if (retval) 450 return retval; 451 452 retval = devcgroup_inode_permission(inode, mask); 453 if (retval) 454 return retval; 455 456 return security_inode_permission(inode, mask); 457 } 458 EXPORT_SYMBOL(inode_permission); 459 460 /** 461 * path_get - get a reference to a path 462 * @path: path to get the reference to 463 * 464 * Given a path increment the reference count to the dentry and the vfsmount. 465 */ 466 void path_get(const struct path *path) 467 { 468 mntget(path->mnt); 469 dget(path->dentry); 470 } 471 EXPORT_SYMBOL(path_get); 472 473 /** 474 * path_put - put a reference to a path 475 * @path: path to put the reference to 476 * 477 * Given a path decrement the reference count to the dentry and the vfsmount. 478 */ 479 void path_put(const struct path *path) 480 { 481 dput(path->dentry); 482 mntput(path->mnt); 483 } 484 EXPORT_SYMBOL(path_put); 485 486 #define EMBEDDED_LEVELS 2 487 struct nameidata { 488 struct path path; 489 struct qstr last; 490 struct path root; 491 struct inode *inode; /* path.dentry.d_inode */ 492 unsigned int flags; 493 unsigned seq, m_seq; 494 int last_type; 495 unsigned depth; 496 int total_link_count; 497 struct saved { 498 struct path link; 499 struct delayed_call done; 500 const char *name; 501 unsigned seq; 502 } *stack, internal[EMBEDDED_LEVELS]; 503 struct filename *name; 504 struct nameidata *saved; 505 struct inode *link_inode; 506 unsigned root_seq; 507 int dfd; 508 } __randomize_layout; 509 510 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name) 511 { 512 struct nameidata *old = current->nameidata; 513 p->stack = p->internal; 514 p->dfd = dfd; 515 p->name = name; 516 p->total_link_count = old ? old->total_link_count : 0; 517 p->saved = old; 518 current->nameidata = p; 519 } 520 521 static void restore_nameidata(void) 522 { 523 struct nameidata *now = current->nameidata, *old = now->saved; 524 525 current->nameidata = old; 526 if (old) 527 old->total_link_count = now->total_link_count; 528 if (now->stack != now->internal) 529 kfree(now->stack); 530 } 531 532 static int __nd_alloc_stack(struct nameidata *nd) 533 { 534 struct saved *p; 535 536 if (nd->flags & LOOKUP_RCU) { 537 p= kmalloc(MAXSYMLINKS * sizeof(struct saved), 538 GFP_ATOMIC); 539 if (unlikely(!p)) 540 return -ECHILD; 541 } else { 542 p= kmalloc(MAXSYMLINKS * sizeof(struct saved), 543 GFP_KERNEL); 544 if (unlikely(!p)) 545 return -ENOMEM; 546 } 547 memcpy(p, nd->internal, sizeof(nd->internal)); 548 nd->stack = p; 549 return 0; 550 } 551 552 /** 553 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root 554 * @path: nameidate to verify 555 * 556 * Rename can sometimes move a file or directory outside of a bind 557 * mount, path_connected allows those cases to be detected. 558 */ 559 static bool path_connected(const struct path *path) 560 { 561 struct vfsmount *mnt = path->mnt; 562 struct super_block *sb = mnt->mnt_sb; 563 564 /* Bind mounts and multi-root filesystems can have disconnected paths */ 565 if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root)) 566 return true; 567 568 return is_subdir(path->dentry, mnt->mnt_root); 569 } 570 571 static inline int nd_alloc_stack(struct nameidata *nd) 572 { 573 if (likely(nd->depth != EMBEDDED_LEVELS)) 574 return 0; 575 if (likely(nd->stack != nd->internal)) 576 return 0; 577 return __nd_alloc_stack(nd); 578 } 579 580 static void drop_links(struct nameidata *nd) 581 { 582 int i = nd->depth; 583 while (i--) { 584 struct saved *last = nd->stack + i; 585 do_delayed_call(&last->done); 586 clear_delayed_call(&last->done); 587 } 588 } 589 590 static void terminate_walk(struct nameidata *nd) 591 { 592 drop_links(nd); 593 if (!(nd->flags & LOOKUP_RCU)) { 594 int i; 595 path_put(&nd->path); 596 for (i = 0; i < nd->depth; i++) 597 path_put(&nd->stack[i].link); 598 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 599 path_put(&nd->root); 600 nd->root.mnt = NULL; 601 } 602 } else { 603 nd->flags &= ~LOOKUP_RCU; 604 if (!(nd->flags & LOOKUP_ROOT)) 605 nd->root.mnt = NULL; 606 rcu_read_unlock(); 607 } 608 nd->depth = 0; 609 } 610 611 /* path_put is needed afterwards regardless of success or failure */ 612 static bool legitimize_path(struct nameidata *nd, 613 struct path *path, unsigned seq) 614 { 615 int res = __legitimize_mnt(path->mnt, nd->m_seq); 616 if (unlikely(res)) { 617 if (res > 0) 618 path->mnt = NULL; 619 path->dentry = NULL; 620 return false; 621 } 622 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) { 623 path->dentry = NULL; 624 return false; 625 } 626 return !read_seqcount_retry(&path->dentry->d_seq, seq); 627 } 628 629 static bool legitimize_links(struct nameidata *nd) 630 { 631 int i; 632 for (i = 0; i < nd->depth; i++) { 633 struct saved *last = nd->stack + i; 634 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) { 635 drop_links(nd); 636 nd->depth = i + 1; 637 return false; 638 } 639 } 640 return true; 641 } 642 643 /* 644 * Path walking has 2 modes, rcu-walk and ref-walk (see 645 * Documentation/filesystems/path-lookup.txt). In situations when we can't 646 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 647 * normal reference counts on dentries and vfsmounts to transition to ref-walk 648 * mode. Refcounts are grabbed at the last known good point before rcu-walk 649 * got stuck, so ref-walk may continue from there. If this is not successful 650 * (eg. a seqcount has changed), then failure is returned and it's up to caller 651 * to restart the path walk from the beginning in ref-walk mode. 652 */ 653 654 /** 655 * unlazy_walk - try to switch to ref-walk mode. 656 * @nd: nameidata pathwalk data 657 * Returns: 0 on success, -ECHILD on failure 658 * 659 * unlazy_walk attempts to legitimize the current nd->path and nd->root 660 * for ref-walk mode. 661 * Must be called from rcu-walk context. 662 * Nothing should touch nameidata between unlazy_walk() failure and 663 * terminate_walk(). 664 */ 665 static int unlazy_walk(struct nameidata *nd) 666 { 667 struct dentry *parent = nd->path.dentry; 668 669 BUG_ON(!(nd->flags & LOOKUP_RCU)); 670 671 nd->flags &= ~LOOKUP_RCU; 672 if (unlikely(!legitimize_links(nd))) 673 goto out2; 674 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq))) 675 goto out1; 676 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 677 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) 678 goto out; 679 } 680 rcu_read_unlock(); 681 BUG_ON(nd->inode != parent->d_inode); 682 return 0; 683 684 out2: 685 nd->path.mnt = NULL; 686 nd->path.dentry = NULL; 687 out1: 688 if (!(nd->flags & LOOKUP_ROOT)) 689 nd->root.mnt = NULL; 690 out: 691 rcu_read_unlock(); 692 return -ECHILD; 693 } 694 695 /** 696 * unlazy_child - try to switch to ref-walk mode. 697 * @nd: nameidata pathwalk data 698 * @dentry: child of nd->path.dentry 699 * @seq: seq number to check dentry against 700 * Returns: 0 on success, -ECHILD on failure 701 * 702 * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry 703 * for ref-walk mode. @dentry must be a path found by a do_lookup call on 704 * @nd. Must be called from rcu-walk context. 705 * Nothing should touch nameidata between unlazy_child() failure and 706 * terminate_walk(). 707 */ 708 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq) 709 { 710 BUG_ON(!(nd->flags & LOOKUP_RCU)); 711 712 nd->flags &= ~LOOKUP_RCU; 713 if (unlikely(!legitimize_links(nd))) 714 goto out2; 715 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq))) 716 goto out2; 717 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref))) 718 goto out1; 719 720 /* 721 * We need to move both the parent and the dentry from the RCU domain 722 * to be properly refcounted. And the sequence number in the dentry 723 * validates *both* dentry counters, since we checked the sequence 724 * number of the parent after we got the child sequence number. So we 725 * know the parent must still be valid if the child sequence number is 726 */ 727 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) 728 goto out; 729 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) { 730 rcu_read_unlock(); 731 dput(dentry); 732 goto drop_root_mnt; 733 } 734 /* 735 * Sequence counts matched. Now make sure that the root is 736 * still valid and get it if required. 737 */ 738 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 739 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) { 740 rcu_read_unlock(); 741 dput(dentry); 742 return -ECHILD; 743 } 744 } 745 746 rcu_read_unlock(); 747 return 0; 748 749 out2: 750 nd->path.mnt = NULL; 751 out1: 752 nd->path.dentry = NULL; 753 out: 754 rcu_read_unlock(); 755 drop_root_mnt: 756 if (!(nd->flags & LOOKUP_ROOT)) 757 nd->root.mnt = NULL; 758 return -ECHILD; 759 } 760 761 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 762 { 763 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) 764 return dentry->d_op->d_revalidate(dentry, flags); 765 else 766 return 1; 767 } 768 769 /** 770 * complete_walk - successful completion of path walk 771 * @nd: pointer nameidata 772 * 773 * If we had been in RCU mode, drop out of it and legitimize nd->path. 774 * Revalidate the final result, unless we'd already done that during 775 * the path walk or the filesystem doesn't ask for it. Return 0 on 776 * success, -error on failure. In case of failure caller does not 777 * need to drop nd->path. 778 */ 779 static int complete_walk(struct nameidata *nd) 780 { 781 struct dentry *dentry = nd->path.dentry; 782 int status; 783 784 if (nd->flags & LOOKUP_RCU) { 785 if (!(nd->flags & LOOKUP_ROOT)) 786 nd->root.mnt = NULL; 787 if (unlikely(unlazy_walk(nd))) 788 return -ECHILD; 789 } 790 791 if (likely(!(nd->flags & LOOKUP_JUMPED))) 792 return 0; 793 794 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 795 return 0; 796 797 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 798 if (status > 0) 799 return 0; 800 801 if (!status) 802 status = -ESTALE; 803 804 return status; 805 } 806 807 static void set_root(struct nameidata *nd) 808 { 809 struct fs_struct *fs = current->fs; 810 811 if (nd->flags & LOOKUP_RCU) { 812 unsigned seq; 813 814 do { 815 seq = read_seqcount_begin(&fs->seq); 816 nd->root = fs->root; 817 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 818 } while (read_seqcount_retry(&fs->seq, seq)); 819 } else { 820 get_fs_root(fs, &nd->root); 821 } 822 } 823 824 static void path_put_conditional(struct path *path, struct nameidata *nd) 825 { 826 dput(path->dentry); 827 if (path->mnt != nd->path.mnt) 828 mntput(path->mnt); 829 } 830 831 static inline void path_to_nameidata(const struct path *path, 832 struct nameidata *nd) 833 { 834 if (!(nd->flags & LOOKUP_RCU)) { 835 dput(nd->path.dentry); 836 if (nd->path.mnt != path->mnt) 837 mntput(nd->path.mnt); 838 } 839 nd->path.mnt = path->mnt; 840 nd->path.dentry = path->dentry; 841 } 842 843 static int nd_jump_root(struct nameidata *nd) 844 { 845 if (nd->flags & LOOKUP_RCU) { 846 struct dentry *d; 847 nd->path = nd->root; 848 d = nd->path.dentry; 849 nd->inode = d->d_inode; 850 nd->seq = nd->root_seq; 851 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq))) 852 return -ECHILD; 853 } else { 854 path_put(&nd->path); 855 nd->path = nd->root; 856 path_get(&nd->path); 857 nd->inode = nd->path.dentry->d_inode; 858 } 859 nd->flags |= LOOKUP_JUMPED; 860 return 0; 861 } 862 863 /* 864 * Helper to directly jump to a known parsed path from ->get_link, 865 * caller must have taken a reference to path beforehand. 866 */ 867 void nd_jump_link(struct path *path) 868 { 869 struct nameidata *nd = current->nameidata; 870 path_put(&nd->path); 871 872 nd->path = *path; 873 nd->inode = nd->path.dentry->d_inode; 874 nd->flags |= LOOKUP_JUMPED; 875 } 876 877 static inline void put_link(struct nameidata *nd) 878 { 879 struct saved *last = nd->stack + --nd->depth; 880 do_delayed_call(&last->done); 881 if (!(nd->flags & LOOKUP_RCU)) 882 path_put(&last->link); 883 } 884 885 int sysctl_protected_symlinks __read_mostly = 0; 886 int sysctl_protected_hardlinks __read_mostly = 0; 887 888 /** 889 * may_follow_link - Check symlink following for unsafe situations 890 * @nd: nameidata pathwalk data 891 * 892 * In the case of the sysctl_protected_symlinks sysctl being enabled, 893 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 894 * in a sticky world-writable directory. This is to protect privileged 895 * processes from failing races against path names that may change out 896 * from under them by way of other users creating malicious symlinks. 897 * It will permit symlinks to be followed only when outside a sticky 898 * world-writable directory, or when the uid of the symlink and follower 899 * match, or when the directory owner matches the symlink's owner. 900 * 901 * Returns 0 if following the symlink is allowed, -ve on error. 902 */ 903 static inline int may_follow_link(struct nameidata *nd) 904 { 905 const struct inode *inode; 906 const struct inode *parent; 907 kuid_t puid; 908 909 if (!sysctl_protected_symlinks) 910 return 0; 911 912 /* Allowed if owner and follower match. */ 913 inode = nd->link_inode; 914 if (uid_eq(current_cred()->fsuid, inode->i_uid)) 915 return 0; 916 917 /* Allowed if parent directory not sticky and world-writable. */ 918 parent = nd->inode; 919 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 920 return 0; 921 922 /* Allowed if parent directory and link owner match. */ 923 puid = parent->i_uid; 924 if (uid_valid(puid) && uid_eq(puid, inode->i_uid)) 925 return 0; 926 927 if (nd->flags & LOOKUP_RCU) 928 return -ECHILD; 929 930 audit_log_link_denied("follow_link", &nd->stack[0].link); 931 return -EACCES; 932 } 933 934 /** 935 * safe_hardlink_source - Check for safe hardlink conditions 936 * @inode: the source inode to hardlink from 937 * 938 * Return false if at least one of the following conditions: 939 * - inode is not a regular file 940 * - inode is setuid 941 * - inode is setgid and group-exec 942 * - access failure for read and write 943 * 944 * Otherwise returns true. 945 */ 946 static bool safe_hardlink_source(struct inode *inode) 947 { 948 umode_t mode = inode->i_mode; 949 950 /* Special files should not get pinned to the filesystem. */ 951 if (!S_ISREG(mode)) 952 return false; 953 954 /* Setuid files should not get pinned to the filesystem. */ 955 if (mode & S_ISUID) 956 return false; 957 958 /* Executable setgid files should not get pinned to the filesystem. */ 959 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 960 return false; 961 962 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 963 if (inode_permission(inode, MAY_READ | MAY_WRITE)) 964 return false; 965 966 return true; 967 } 968 969 /** 970 * may_linkat - Check permissions for creating a hardlink 971 * @link: the source to hardlink from 972 * 973 * Block hardlink when all of: 974 * - sysctl_protected_hardlinks enabled 975 * - fsuid does not match inode 976 * - hardlink source is unsafe (see safe_hardlink_source() above) 977 * - not CAP_FOWNER in a namespace with the inode owner uid mapped 978 * 979 * Returns 0 if successful, -ve on error. 980 */ 981 static int may_linkat(struct path *link) 982 { 983 struct inode *inode; 984 985 if (!sysctl_protected_hardlinks) 986 return 0; 987 988 inode = link->dentry->d_inode; 989 990 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 991 * otherwise, it must be a safe source. 992 */ 993 if (safe_hardlink_source(inode) || inode_owner_or_capable(inode)) 994 return 0; 995 996 audit_log_link_denied("linkat", link); 997 return -EPERM; 998 } 999 1000 static __always_inline 1001 const char *get_link(struct nameidata *nd) 1002 { 1003 struct saved *last = nd->stack + nd->depth - 1; 1004 struct dentry *dentry = last->link.dentry; 1005 struct inode *inode = nd->link_inode; 1006 int error; 1007 const char *res; 1008 1009 if (!(nd->flags & LOOKUP_RCU)) { 1010 touch_atime(&last->link); 1011 cond_resched(); 1012 } else if (atime_needs_update_rcu(&last->link, inode)) { 1013 if (unlikely(unlazy_walk(nd))) 1014 return ERR_PTR(-ECHILD); 1015 touch_atime(&last->link); 1016 } 1017 1018 error = security_inode_follow_link(dentry, inode, 1019 nd->flags & LOOKUP_RCU); 1020 if (unlikely(error)) 1021 return ERR_PTR(error); 1022 1023 nd->last_type = LAST_BIND; 1024 res = inode->i_link; 1025 if (!res) { 1026 const char * (*get)(struct dentry *, struct inode *, 1027 struct delayed_call *); 1028 get = inode->i_op->get_link; 1029 if (nd->flags & LOOKUP_RCU) { 1030 res = get(NULL, inode, &last->done); 1031 if (res == ERR_PTR(-ECHILD)) { 1032 if (unlikely(unlazy_walk(nd))) 1033 return ERR_PTR(-ECHILD); 1034 res = get(dentry, inode, &last->done); 1035 } 1036 } else { 1037 res = get(dentry, inode, &last->done); 1038 } 1039 if (IS_ERR_OR_NULL(res)) 1040 return res; 1041 } 1042 if (*res == '/') { 1043 if (!nd->root.mnt) 1044 set_root(nd); 1045 if (unlikely(nd_jump_root(nd))) 1046 return ERR_PTR(-ECHILD); 1047 while (unlikely(*++res == '/')) 1048 ; 1049 } 1050 if (!*res) 1051 res = NULL; 1052 return res; 1053 } 1054 1055 /* 1056 * follow_up - Find the mountpoint of path's vfsmount 1057 * 1058 * Given a path, find the mountpoint of its source file system. 1059 * Replace @path with the path of the mountpoint in the parent mount. 1060 * Up is towards /. 1061 * 1062 * Return 1 if we went up a level and 0 if we were already at the 1063 * root. 1064 */ 1065 int follow_up(struct path *path) 1066 { 1067 struct mount *mnt = real_mount(path->mnt); 1068 struct mount *parent; 1069 struct dentry *mountpoint; 1070 1071 read_seqlock_excl(&mount_lock); 1072 parent = mnt->mnt_parent; 1073 if (parent == mnt) { 1074 read_sequnlock_excl(&mount_lock); 1075 return 0; 1076 } 1077 mntget(&parent->mnt); 1078 mountpoint = dget(mnt->mnt_mountpoint); 1079 read_sequnlock_excl(&mount_lock); 1080 dput(path->dentry); 1081 path->dentry = mountpoint; 1082 mntput(path->mnt); 1083 path->mnt = &parent->mnt; 1084 return 1; 1085 } 1086 EXPORT_SYMBOL(follow_up); 1087 1088 /* 1089 * Perform an automount 1090 * - return -EISDIR to tell follow_managed() to stop and return the path we 1091 * were called with. 1092 */ 1093 static int follow_automount(struct path *path, struct nameidata *nd, 1094 bool *need_mntput) 1095 { 1096 struct vfsmount *mnt; 1097 int err; 1098 1099 if (!path->dentry->d_op || !path->dentry->d_op->d_automount) 1100 return -EREMOTE; 1101 1102 /* We don't want to mount if someone's just doing a stat - 1103 * unless they're stat'ing a directory and appended a '/' to 1104 * the name. 1105 * 1106 * We do, however, want to mount if someone wants to open or 1107 * create a file of any type under the mountpoint, wants to 1108 * traverse through the mountpoint or wants to open the 1109 * mounted directory. Also, autofs may mark negative dentries 1110 * as being automount points. These will need the attentions 1111 * of the daemon to instantiate them before they can be used. 1112 */ 1113 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 1114 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 1115 path->dentry->d_inode) 1116 return -EISDIR; 1117 1118 nd->total_link_count++; 1119 if (nd->total_link_count >= 40) 1120 return -ELOOP; 1121 1122 mnt = path->dentry->d_op->d_automount(path); 1123 if (IS_ERR(mnt)) { 1124 /* 1125 * The filesystem is allowed to return -EISDIR here to indicate 1126 * it doesn't want to automount. For instance, autofs would do 1127 * this so that its userspace daemon can mount on this dentry. 1128 * 1129 * However, we can only permit this if it's a terminal point in 1130 * the path being looked up; if it wasn't then the remainder of 1131 * the path is inaccessible and we should say so. 1132 */ 1133 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT)) 1134 return -EREMOTE; 1135 return PTR_ERR(mnt); 1136 } 1137 1138 if (!mnt) /* mount collision */ 1139 return 0; 1140 1141 if (!*need_mntput) { 1142 /* lock_mount() may release path->mnt on error */ 1143 mntget(path->mnt); 1144 *need_mntput = true; 1145 } 1146 err = finish_automount(mnt, path); 1147 1148 switch (err) { 1149 case -EBUSY: 1150 /* Someone else made a mount here whilst we were busy */ 1151 return 0; 1152 case 0: 1153 path_put(path); 1154 path->mnt = mnt; 1155 path->dentry = dget(mnt->mnt_root); 1156 return 0; 1157 default: 1158 return err; 1159 } 1160 1161 } 1162 1163 /* 1164 * Handle a dentry that is managed in some way. 1165 * - Flagged for transit management (autofs) 1166 * - Flagged as mountpoint 1167 * - Flagged as automount point 1168 * 1169 * This may only be called in refwalk mode. 1170 * 1171 * Serialization is taken care of in namespace.c 1172 */ 1173 static int follow_managed(struct path *path, struct nameidata *nd) 1174 { 1175 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */ 1176 unsigned managed; 1177 bool need_mntput = false; 1178 int ret = 0; 1179 1180 /* Given that we're not holding a lock here, we retain the value in a 1181 * local variable for each dentry as we look at it so that we don't see 1182 * the components of that value change under us */ 1183 while (managed = READ_ONCE(path->dentry->d_flags), 1184 managed &= DCACHE_MANAGED_DENTRY, 1185 unlikely(managed != 0)) { 1186 /* Allow the filesystem to manage the transit without i_mutex 1187 * being held. */ 1188 if (managed & DCACHE_MANAGE_TRANSIT) { 1189 BUG_ON(!path->dentry->d_op); 1190 BUG_ON(!path->dentry->d_op->d_manage); 1191 ret = path->dentry->d_op->d_manage(path, false); 1192 if (ret < 0) 1193 break; 1194 } 1195 1196 /* Transit to a mounted filesystem. */ 1197 if (managed & DCACHE_MOUNTED) { 1198 struct vfsmount *mounted = lookup_mnt(path); 1199 if (mounted) { 1200 dput(path->dentry); 1201 if (need_mntput) 1202 mntput(path->mnt); 1203 path->mnt = mounted; 1204 path->dentry = dget(mounted->mnt_root); 1205 need_mntput = true; 1206 continue; 1207 } 1208 1209 /* Something is mounted on this dentry in another 1210 * namespace and/or whatever was mounted there in this 1211 * namespace got unmounted before lookup_mnt() could 1212 * get it */ 1213 } 1214 1215 /* Handle an automount point */ 1216 if (managed & DCACHE_NEED_AUTOMOUNT) { 1217 ret = follow_automount(path, nd, &need_mntput); 1218 if (ret < 0) 1219 break; 1220 continue; 1221 } 1222 1223 /* We didn't change the current path point */ 1224 break; 1225 } 1226 1227 if (need_mntput && path->mnt == mnt) 1228 mntput(path->mnt); 1229 if (ret == -EISDIR || !ret) 1230 ret = 1; 1231 if (need_mntput) 1232 nd->flags |= LOOKUP_JUMPED; 1233 if (unlikely(ret < 0)) 1234 path_put_conditional(path, nd); 1235 return ret; 1236 } 1237 1238 int follow_down_one(struct path *path) 1239 { 1240 struct vfsmount *mounted; 1241 1242 mounted = lookup_mnt(path); 1243 if (mounted) { 1244 dput(path->dentry); 1245 mntput(path->mnt); 1246 path->mnt = mounted; 1247 path->dentry = dget(mounted->mnt_root); 1248 return 1; 1249 } 1250 return 0; 1251 } 1252 EXPORT_SYMBOL(follow_down_one); 1253 1254 static inline int managed_dentry_rcu(const struct path *path) 1255 { 1256 return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ? 1257 path->dentry->d_op->d_manage(path, true) : 0; 1258 } 1259 1260 /* 1261 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1262 * we meet a managed dentry that would need blocking. 1263 */ 1264 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1265 struct inode **inode, unsigned *seqp) 1266 { 1267 for (;;) { 1268 struct mount *mounted; 1269 /* 1270 * Don't forget we might have a non-mountpoint managed dentry 1271 * that wants to block transit. 1272 */ 1273 switch (managed_dentry_rcu(path)) { 1274 case -ECHILD: 1275 default: 1276 return false; 1277 case -EISDIR: 1278 return true; 1279 case 0: 1280 break; 1281 } 1282 1283 if (!d_mountpoint(path->dentry)) 1284 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1285 1286 mounted = __lookup_mnt(path->mnt, path->dentry); 1287 if (!mounted) 1288 break; 1289 path->mnt = &mounted->mnt; 1290 path->dentry = mounted->mnt.mnt_root; 1291 nd->flags |= LOOKUP_JUMPED; 1292 *seqp = read_seqcount_begin(&path->dentry->d_seq); 1293 /* 1294 * Update the inode too. We don't need to re-check the 1295 * dentry sequence number here after this d_inode read, 1296 * because a mount-point is always pinned. 1297 */ 1298 *inode = path->dentry->d_inode; 1299 } 1300 return !read_seqretry(&mount_lock, nd->m_seq) && 1301 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1302 } 1303 1304 static int follow_dotdot_rcu(struct nameidata *nd) 1305 { 1306 struct inode *inode = nd->inode; 1307 1308 while (1) { 1309 if (path_equal(&nd->path, &nd->root)) 1310 break; 1311 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1312 struct dentry *old = nd->path.dentry; 1313 struct dentry *parent = old->d_parent; 1314 unsigned seq; 1315 1316 inode = parent->d_inode; 1317 seq = read_seqcount_begin(&parent->d_seq); 1318 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq))) 1319 return -ECHILD; 1320 nd->path.dentry = parent; 1321 nd->seq = seq; 1322 if (unlikely(!path_connected(&nd->path))) 1323 return -ENOENT; 1324 break; 1325 } else { 1326 struct mount *mnt = real_mount(nd->path.mnt); 1327 struct mount *mparent = mnt->mnt_parent; 1328 struct dentry *mountpoint = mnt->mnt_mountpoint; 1329 struct inode *inode2 = mountpoint->d_inode; 1330 unsigned seq = read_seqcount_begin(&mountpoint->d_seq); 1331 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1332 return -ECHILD; 1333 if (&mparent->mnt == nd->path.mnt) 1334 break; 1335 /* we know that mountpoint was pinned */ 1336 nd->path.dentry = mountpoint; 1337 nd->path.mnt = &mparent->mnt; 1338 inode = inode2; 1339 nd->seq = seq; 1340 } 1341 } 1342 while (unlikely(d_mountpoint(nd->path.dentry))) { 1343 struct mount *mounted; 1344 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry); 1345 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1346 return -ECHILD; 1347 if (!mounted) 1348 break; 1349 nd->path.mnt = &mounted->mnt; 1350 nd->path.dentry = mounted->mnt.mnt_root; 1351 inode = nd->path.dentry->d_inode; 1352 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1353 } 1354 nd->inode = inode; 1355 return 0; 1356 } 1357 1358 /* 1359 * Follow down to the covering mount currently visible to userspace. At each 1360 * point, the filesystem owning that dentry may be queried as to whether the 1361 * caller is permitted to proceed or not. 1362 */ 1363 int follow_down(struct path *path) 1364 { 1365 unsigned managed; 1366 int ret; 1367 1368 while (managed = READ_ONCE(path->dentry->d_flags), 1369 unlikely(managed & DCACHE_MANAGED_DENTRY)) { 1370 /* Allow the filesystem to manage the transit without i_mutex 1371 * being held. 1372 * 1373 * We indicate to the filesystem if someone is trying to mount 1374 * something here. This gives autofs the chance to deny anyone 1375 * other than its daemon the right to mount on its 1376 * superstructure. 1377 * 1378 * The filesystem may sleep at this point. 1379 */ 1380 if (managed & DCACHE_MANAGE_TRANSIT) { 1381 BUG_ON(!path->dentry->d_op); 1382 BUG_ON(!path->dentry->d_op->d_manage); 1383 ret = path->dentry->d_op->d_manage(path, false); 1384 if (ret < 0) 1385 return ret == -EISDIR ? 0 : ret; 1386 } 1387 1388 /* Transit to a mounted filesystem. */ 1389 if (managed & DCACHE_MOUNTED) { 1390 struct vfsmount *mounted = lookup_mnt(path); 1391 if (!mounted) 1392 break; 1393 dput(path->dentry); 1394 mntput(path->mnt); 1395 path->mnt = mounted; 1396 path->dentry = dget(mounted->mnt_root); 1397 continue; 1398 } 1399 1400 /* Don't handle automount points here */ 1401 break; 1402 } 1403 return 0; 1404 } 1405 EXPORT_SYMBOL(follow_down); 1406 1407 /* 1408 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() 1409 */ 1410 static void follow_mount(struct path *path) 1411 { 1412 while (d_mountpoint(path->dentry)) { 1413 struct vfsmount *mounted = lookup_mnt(path); 1414 if (!mounted) 1415 break; 1416 dput(path->dentry); 1417 mntput(path->mnt); 1418 path->mnt = mounted; 1419 path->dentry = dget(mounted->mnt_root); 1420 } 1421 } 1422 1423 static int path_parent_directory(struct path *path) 1424 { 1425 struct dentry *old = path->dentry; 1426 /* rare case of legitimate dget_parent()... */ 1427 path->dentry = dget_parent(path->dentry); 1428 dput(old); 1429 if (unlikely(!path_connected(path))) 1430 return -ENOENT; 1431 return 0; 1432 } 1433 1434 static int follow_dotdot(struct nameidata *nd) 1435 { 1436 while(1) { 1437 if (nd->path.dentry == nd->root.dentry && 1438 nd->path.mnt == nd->root.mnt) { 1439 break; 1440 } 1441 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1442 int ret = path_parent_directory(&nd->path); 1443 if (ret) 1444 return ret; 1445 break; 1446 } 1447 if (!follow_up(&nd->path)) 1448 break; 1449 } 1450 follow_mount(&nd->path); 1451 nd->inode = nd->path.dentry->d_inode; 1452 return 0; 1453 } 1454 1455 /* 1456 * This looks up the name in dcache and possibly revalidates the found dentry. 1457 * NULL is returned if the dentry does not exist in the cache. 1458 */ 1459 static struct dentry *lookup_dcache(const struct qstr *name, 1460 struct dentry *dir, 1461 unsigned int flags) 1462 { 1463 struct dentry *dentry = d_lookup(dir, name); 1464 if (dentry) { 1465 int error = d_revalidate(dentry, flags); 1466 if (unlikely(error <= 0)) { 1467 if (!error) 1468 d_invalidate(dentry); 1469 dput(dentry); 1470 return ERR_PTR(error); 1471 } 1472 } 1473 return dentry; 1474 } 1475 1476 /* 1477 * Call i_op->lookup on the dentry. The dentry must be negative and 1478 * unhashed. 1479 * 1480 * dir->d_inode->i_mutex must be held 1481 */ 1482 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry, 1483 unsigned int flags) 1484 { 1485 struct dentry *old; 1486 1487 /* Don't create child dentry for a dead directory. */ 1488 if (unlikely(IS_DEADDIR(dir))) { 1489 dput(dentry); 1490 return ERR_PTR(-ENOENT); 1491 } 1492 1493 old = dir->i_op->lookup(dir, dentry, flags); 1494 if (unlikely(old)) { 1495 dput(dentry); 1496 dentry = old; 1497 } 1498 return dentry; 1499 } 1500 1501 static struct dentry *__lookup_hash(const struct qstr *name, 1502 struct dentry *base, unsigned int flags) 1503 { 1504 struct dentry *dentry = lookup_dcache(name, base, flags); 1505 1506 if (dentry) 1507 return dentry; 1508 1509 dentry = d_alloc(base, name); 1510 if (unlikely(!dentry)) 1511 return ERR_PTR(-ENOMEM); 1512 1513 return lookup_real(base->d_inode, dentry, flags); 1514 } 1515 1516 static int lookup_fast(struct nameidata *nd, 1517 struct path *path, struct inode **inode, 1518 unsigned *seqp) 1519 { 1520 struct vfsmount *mnt = nd->path.mnt; 1521 struct dentry *dentry, *parent = nd->path.dentry; 1522 int status = 1; 1523 int err; 1524 1525 /* 1526 * Rename seqlock is not required here because in the off chance 1527 * of a false negative due to a concurrent rename, the caller is 1528 * going to fall back to non-racy lookup. 1529 */ 1530 if (nd->flags & LOOKUP_RCU) { 1531 unsigned seq; 1532 bool negative; 1533 dentry = __d_lookup_rcu(parent, &nd->last, &seq); 1534 if (unlikely(!dentry)) { 1535 if (unlazy_walk(nd)) 1536 return -ECHILD; 1537 return 0; 1538 } 1539 1540 /* 1541 * This sequence count validates that the inode matches 1542 * the dentry name information from lookup. 1543 */ 1544 *inode = d_backing_inode(dentry); 1545 negative = d_is_negative(dentry); 1546 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) 1547 return -ECHILD; 1548 1549 /* 1550 * This sequence count validates that the parent had no 1551 * changes while we did the lookup of the dentry above. 1552 * 1553 * The memory barrier in read_seqcount_begin of child is 1554 * enough, we can use __read_seqcount_retry here. 1555 */ 1556 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq))) 1557 return -ECHILD; 1558 1559 *seqp = seq; 1560 status = d_revalidate(dentry, nd->flags); 1561 if (likely(status > 0)) { 1562 /* 1563 * Note: do negative dentry check after revalidation in 1564 * case that drops it. 1565 */ 1566 if (unlikely(negative)) 1567 return -ENOENT; 1568 path->mnt = mnt; 1569 path->dentry = dentry; 1570 if (likely(__follow_mount_rcu(nd, path, inode, seqp))) 1571 return 1; 1572 } 1573 if (unlazy_child(nd, dentry, seq)) 1574 return -ECHILD; 1575 if (unlikely(status == -ECHILD)) 1576 /* we'd been told to redo it in non-rcu mode */ 1577 status = d_revalidate(dentry, nd->flags); 1578 } else { 1579 dentry = __d_lookup(parent, &nd->last); 1580 if (unlikely(!dentry)) 1581 return 0; 1582 status = d_revalidate(dentry, nd->flags); 1583 } 1584 if (unlikely(status <= 0)) { 1585 if (!status) 1586 d_invalidate(dentry); 1587 dput(dentry); 1588 return status; 1589 } 1590 if (unlikely(d_is_negative(dentry))) { 1591 dput(dentry); 1592 return -ENOENT; 1593 } 1594 1595 path->mnt = mnt; 1596 path->dentry = dentry; 1597 err = follow_managed(path, nd); 1598 if (likely(err > 0)) 1599 *inode = d_backing_inode(path->dentry); 1600 return err; 1601 } 1602 1603 /* Fast lookup failed, do it the slow way */ 1604 static struct dentry *lookup_slow(const struct qstr *name, 1605 struct dentry *dir, 1606 unsigned int flags) 1607 { 1608 struct dentry *dentry = ERR_PTR(-ENOENT), *old; 1609 struct inode *inode = dir->d_inode; 1610 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1611 1612 inode_lock_shared(inode); 1613 /* Don't go there if it's already dead */ 1614 if (unlikely(IS_DEADDIR(inode))) 1615 goto out; 1616 again: 1617 dentry = d_alloc_parallel(dir, name, &wq); 1618 if (IS_ERR(dentry)) 1619 goto out; 1620 if (unlikely(!d_in_lookup(dentry))) { 1621 if (!(flags & LOOKUP_NO_REVAL)) { 1622 int error = d_revalidate(dentry, flags); 1623 if (unlikely(error <= 0)) { 1624 if (!error) { 1625 d_invalidate(dentry); 1626 dput(dentry); 1627 goto again; 1628 } 1629 dput(dentry); 1630 dentry = ERR_PTR(error); 1631 } 1632 } 1633 } else { 1634 old = inode->i_op->lookup(inode, dentry, flags); 1635 d_lookup_done(dentry); 1636 if (unlikely(old)) { 1637 dput(dentry); 1638 dentry = old; 1639 } 1640 } 1641 out: 1642 inode_unlock_shared(inode); 1643 return dentry; 1644 } 1645 1646 static inline int may_lookup(struct nameidata *nd) 1647 { 1648 if (nd->flags & LOOKUP_RCU) { 1649 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1650 if (err != -ECHILD) 1651 return err; 1652 if (unlazy_walk(nd)) 1653 return -ECHILD; 1654 } 1655 return inode_permission(nd->inode, MAY_EXEC); 1656 } 1657 1658 static inline int handle_dots(struct nameidata *nd, int type) 1659 { 1660 if (type == LAST_DOTDOT) { 1661 if (!nd->root.mnt) 1662 set_root(nd); 1663 if (nd->flags & LOOKUP_RCU) { 1664 return follow_dotdot_rcu(nd); 1665 } else 1666 return follow_dotdot(nd); 1667 } 1668 return 0; 1669 } 1670 1671 static int pick_link(struct nameidata *nd, struct path *link, 1672 struct inode *inode, unsigned seq) 1673 { 1674 int error; 1675 struct saved *last; 1676 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) { 1677 path_to_nameidata(link, nd); 1678 return -ELOOP; 1679 } 1680 if (!(nd->flags & LOOKUP_RCU)) { 1681 if (link->mnt == nd->path.mnt) 1682 mntget(link->mnt); 1683 } 1684 error = nd_alloc_stack(nd); 1685 if (unlikely(error)) { 1686 if (error == -ECHILD) { 1687 if (unlikely(!legitimize_path(nd, link, seq))) { 1688 drop_links(nd); 1689 nd->depth = 0; 1690 nd->flags &= ~LOOKUP_RCU; 1691 nd->path.mnt = NULL; 1692 nd->path.dentry = NULL; 1693 if (!(nd->flags & LOOKUP_ROOT)) 1694 nd->root.mnt = NULL; 1695 rcu_read_unlock(); 1696 } else if (likely(unlazy_walk(nd)) == 0) 1697 error = nd_alloc_stack(nd); 1698 } 1699 if (error) { 1700 path_put(link); 1701 return error; 1702 } 1703 } 1704 1705 last = nd->stack + nd->depth++; 1706 last->link = *link; 1707 clear_delayed_call(&last->done); 1708 nd->link_inode = inode; 1709 last->seq = seq; 1710 return 1; 1711 } 1712 1713 enum {WALK_FOLLOW = 1, WALK_MORE = 2}; 1714 1715 /* 1716 * Do we need to follow links? We _really_ want to be able 1717 * to do this check without having to look at inode->i_op, 1718 * so we keep a cache of "no, this doesn't need follow_link" 1719 * for the common case. 1720 */ 1721 static inline int step_into(struct nameidata *nd, struct path *path, 1722 int flags, struct inode *inode, unsigned seq) 1723 { 1724 if (!(flags & WALK_MORE) && nd->depth) 1725 put_link(nd); 1726 if (likely(!d_is_symlink(path->dentry)) || 1727 !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) { 1728 /* not a symlink or should not follow */ 1729 path_to_nameidata(path, nd); 1730 nd->inode = inode; 1731 nd->seq = seq; 1732 return 0; 1733 } 1734 /* make sure that d_is_symlink above matches inode */ 1735 if (nd->flags & LOOKUP_RCU) { 1736 if (read_seqcount_retry(&path->dentry->d_seq, seq)) 1737 return -ECHILD; 1738 } 1739 return pick_link(nd, path, inode, seq); 1740 } 1741 1742 static int walk_component(struct nameidata *nd, int flags) 1743 { 1744 struct path path; 1745 struct inode *inode; 1746 unsigned seq; 1747 int err; 1748 /* 1749 * "." and ".." are special - ".." especially so because it has 1750 * to be able to know about the current root directory and 1751 * parent relationships. 1752 */ 1753 if (unlikely(nd->last_type != LAST_NORM)) { 1754 err = handle_dots(nd, nd->last_type); 1755 if (!(flags & WALK_MORE) && nd->depth) 1756 put_link(nd); 1757 return err; 1758 } 1759 err = lookup_fast(nd, &path, &inode, &seq); 1760 if (unlikely(err <= 0)) { 1761 if (err < 0) 1762 return err; 1763 path.dentry = lookup_slow(&nd->last, nd->path.dentry, 1764 nd->flags); 1765 if (IS_ERR(path.dentry)) 1766 return PTR_ERR(path.dentry); 1767 1768 path.mnt = nd->path.mnt; 1769 err = follow_managed(&path, nd); 1770 if (unlikely(err < 0)) 1771 return err; 1772 1773 if (unlikely(d_is_negative(path.dentry))) { 1774 path_to_nameidata(&path, nd); 1775 return -ENOENT; 1776 } 1777 1778 seq = 0; /* we are already out of RCU mode */ 1779 inode = d_backing_inode(path.dentry); 1780 } 1781 1782 return step_into(nd, &path, flags, inode, seq); 1783 } 1784 1785 /* 1786 * We can do the critical dentry name comparison and hashing 1787 * operations one word at a time, but we are limited to: 1788 * 1789 * - Architectures with fast unaligned word accesses. We could 1790 * do a "get_unaligned()" if this helps and is sufficiently 1791 * fast. 1792 * 1793 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 1794 * do not trap on the (extremely unlikely) case of a page 1795 * crossing operation. 1796 * 1797 * - Furthermore, we need an efficient 64-bit compile for the 1798 * 64-bit case in order to generate the "number of bytes in 1799 * the final mask". Again, that could be replaced with a 1800 * efficient population count instruction or similar. 1801 */ 1802 #ifdef CONFIG_DCACHE_WORD_ACCESS 1803 1804 #include <asm/word-at-a-time.h> 1805 1806 #ifdef HASH_MIX 1807 1808 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */ 1809 1810 #elif defined(CONFIG_64BIT) 1811 /* 1812 * Register pressure in the mixing function is an issue, particularly 1813 * on 32-bit x86, but almost any function requires one state value and 1814 * one temporary. Instead, use a function designed for two state values 1815 * and no temporaries. 1816 * 1817 * This function cannot create a collision in only two iterations, so 1818 * we have two iterations to achieve avalanche. In those two iterations, 1819 * we have six layers of mixing, which is enough to spread one bit's 1820 * influence out to 2^6 = 64 state bits. 1821 * 1822 * Rotate constants are scored by considering either 64 one-bit input 1823 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the 1824 * probability of that delta causing a change to each of the 128 output 1825 * bits, using a sample of random initial states. 1826 * 1827 * The Shannon entropy of the computed probabilities is then summed 1828 * to produce a score. Ideally, any input change has a 50% chance of 1829 * toggling any given output bit. 1830 * 1831 * Mixing scores (in bits) for (12,45): 1832 * Input delta: 1-bit 2-bit 1833 * 1 round: 713.3 42542.6 1834 * 2 rounds: 2753.7 140389.8 1835 * 3 rounds: 5954.1 233458.2 1836 * 4 rounds: 7862.6 256672.2 1837 * Perfect: 8192 258048 1838 * (64*128) (64*63/2 * 128) 1839 */ 1840 #define HASH_MIX(x, y, a) \ 1841 ( x ^= (a), \ 1842 y ^= x, x = rol64(x,12),\ 1843 x += y, y = rol64(y,45),\ 1844 y *= 9 ) 1845 1846 /* 1847 * Fold two longs into one 32-bit hash value. This must be fast, but 1848 * latency isn't quite as critical, as there is a fair bit of additional 1849 * work done before the hash value is used. 1850 */ 1851 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 1852 { 1853 y ^= x * GOLDEN_RATIO_64; 1854 y *= GOLDEN_RATIO_64; 1855 return y >> 32; 1856 } 1857 1858 #else /* 32-bit case */ 1859 1860 /* 1861 * Mixing scores (in bits) for (7,20): 1862 * Input delta: 1-bit 2-bit 1863 * 1 round: 330.3 9201.6 1864 * 2 rounds: 1246.4 25475.4 1865 * 3 rounds: 1907.1 31295.1 1866 * 4 rounds: 2042.3 31718.6 1867 * Perfect: 2048 31744 1868 * (32*64) (32*31/2 * 64) 1869 */ 1870 #define HASH_MIX(x, y, a) \ 1871 ( x ^= (a), \ 1872 y ^= x, x = rol32(x, 7),\ 1873 x += y, y = rol32(y,20),\ 1874 y *= 9 ) 1875 1876 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 1877 { 1878 /* Use arch-optimized multiply if one exists */ 1879 return __hash_32(y ^ __hash_32(x)); 1880 } 1881 1882 #endif 1883 1884 /* 1885 * Return the hash of a string of known length. This is carfully 1886 * designed to match hash_name(), which is the more critical function. 1887 * In particular, we must end by hashing a final word containing 0..7 1888 * payload bytes, to match the way that hash_name() iterates until it 1889 * finds the delimiter after the name. 1890 */ 1891 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 1892 { 1893 unsigned long a, x = 0, y = (unsigned long)salt; 1894 1895 for (;;) { 1896 if (!len) 1897 goto done; 1898 a = load_unaligned_zeropad(name); 1899 if (len < sizeof(unsigned long)) 1900 break; 1901 HASH_MIX(x, y, a); 1902 name += sizeof(unsigned long); 1903 len -= sizeof(unsigned long); 1904 } 1905 x ^= a & bytemask_from_count(len); 1906 done: 1907 return fold_hash(x, y); 1908 } 1909 EXPORT_SYMBOL(full_name_hash); 1910 1911 /* Return the "hash_len" (hash and length) of a null-terminated string */ 1912 u64 hashlen_string(const void *salt, const char *name) 1913 { 1914 unsigned long a = 0, x = 0, y = (unsigned long)salt; 1915 unsigned long adata, mask, len; 1916 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1917 1918 len = 0; 1919 goto inside; 1920 1921 do { 1922 HASH_MIX(x, y, a); 1923 len += sizeof(unsigned long); 1924 inside: 1925 a = load_unaligned_zeropad(name+len); 1926 } while (!has_zero(a, &adata, &constants)); 1927 1928 adata = prep_zero_mask(a, adata, &constants); 1929 mask = create_zero_mask(adata); 1930 x ^= a & zero_bytemask(mask); 1931 1932 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 1933 } 1934 EXPORT_SYMBOL(hashlen_string); 1935 1936 /* 1937 * Calculate the length and hash of the path component, and 1938 * return the "hash_len" as the result. 1939 */ 1940 static inline u64 hash_name(const void *salt, const char *name) 1941 { 1942 unsigned long a = 0, b, x = 0, y = (unsigned long)salt; 1943 unsigned long adata, bdata, mask, len; 1944 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1945 1946 len = 0; 1947 goto inside; 1948 1949 do { 1950 HASH_MIX(x, y, a); 1951 len += sizeof(unsigned long); 1952 inside: 1953 a = load_unaligned_zeropad(name+len); 1954 b = a ^ REPEAT_BYTE('/'); 1955 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 1956 1957 adata = prep_zero_mask(a, adata, &constants); 1958 bdata = prep_zero_mask(b, bdata, &constants); 1959 mask = create_zero_mask(adata | bdata); 1960 x ^= a & zero_bytemask(mask); 1961 1962 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 1963 } 1964 1965 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */ 1966 1967 /* Return the hash of a string of known length */ 1968 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 1969 { 1970 unsigned long hash = init_name_hash(salt); 1971 while (len--) 1972 hash = partial_name_hash((unsigned char)*name++, hash); 1973 return end_name_hash(hash); 1974 } 1975 EXPORT_SYMBOL(full_name_hash); 1976 1977 /* Return the "hash_len" (hash and length) of a null-terminated string */ 1978 u64 hashlen_string(const void *salt, const char *name) 1979 { 1980 unsigned long hash = init_name_hash(salt); 1981 unsigned long len = 0, c; 1982 1983 c = (unsigned char)*name; 1984 while (c) { 1985 len++; 1986 hash = partial_name_hash(c, hash); 1987 c = (unsigned char)name[len]; 1988 } 1989 return hashlen_create(end_name_hash(hash), len); 1990 } 1991 EXPORT_SYMBOL(hashlen_string); 1992 1993 /* 1994 * We know there's a real path component here of at least 1995 * one character. 1996 */ 1997 static inline u64 hash_name(const void *salt, const char *name) 1998 { 1999 unsigned long hash = init_name_hash(salt); 2000 unsigned long len = 0, c; 2001 2002 c = (unsigned char)*name; 2003 do { 2004 len++; 2005 hash = partial_name_hash(c, hash); 2006 c = (unsigned char)name[len]; 2007 } while (c && c != '/'); 2008 return hashlen_create(end_name_hash(hash), len); 2009 } 2010 2011 #endif 2012 2013 /* 2014 * Name resolution. 2015 * This is the basic name resolution function, turning a pathname into 2016 * the final dentry. We expect 'base' to be positive and a directory. 2017 * 2018 * Returns 0 and nd will have valid dentry and mnt on success. 2019 * Returns error and drops reference to input namei data on failure. 2020 */ 2021 static int link_path_walk(const char *name, struct nameidata *nd) 2022 { 2023 int err; 2024 2025 while (*name=='/') 2026 name++; 2027 if (!*name) 2028 return 0; 2029 2030 /* At this point we know we have a real path component. */ 2031 for(;;) { 2032 u64 hash_len; 2033 int type; 2034 2035 err = may_lookup(nd); 2036 if (err) 2037 return err; 2038 2039 hash_len = hash_name(nd->path.dentry, name); 2040 2041 type = LAST_NORM; 2042 if (name[0] == '.') switch (hashlen_len(hash_len)) { 2043 case 2: 2044 if (name[1] == '.') { 2045 type = LAST_DOTDOT; 2046 nd->flags |= LOOKUP_JUMPED; 2047 } 2048 break; 2049 case 1: 2050 type = LAST_DOT; 2051 } 2052 if (likely(type == LAST_NORM)) { 2053 struct dentry *parent = nd->path.dentry; 2054 nd->flags &= ~LOOKUP_JUMPED; 2055 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 2056 struct qstr this = { { .hash_len = hash_len }, .name = name }; 2057 err = parent->d_op->d_hash(parent, &this); 2058 if (err < 0) 2059 return err; 2060 hash_len = this.hash_len; 2061 name = this.name; 2062 } 2063 } 2064 2065 nd->last.hash_len = hash_len; 2066 nd->last.name = name; 2067 nd->last_type = type; 2068 2069 name += hashlen_len(hash_len); 2070 if (!*name) 2071 goto OK; 2072 /* 2073 * If it wasn't NUL, we know it was '/'. Skip that 2074 * slash, and continue until no more slashes. 2075 */ 2076 do { 2077 name++; 2078 } while (unlikely(*name == '/')); 2079 if (unlikely(!*name)) { 2080 OK: 2081 /* pathname body, done */ 2082 if (!nd->depth) 2083 return 0; 2084 name = nd->stack[nd->depth - 1].name; 2085 /* trailing symlink, done */ 2086 if (!name) 2087 return 0; 2088 /* last component of nested symlink */ 2089 err = walk_component(nd, WALK_FOLLOW); 2090 } else { 2091 /* not the last component */ 2092 err = walk_component(nd, WALK_FOLLOW | WALK_MORE); 2093 } 2094 if (err < 0) 2095 return err; 2096 2097 if (err) { 2098 const char *s = get_link(nd); 2099 2100 if (IS_ERR(s)) 2101 return PTR_ERR(s); 2102 err = 0; 2103 if (unlikely(!s)) { 2104 /* jumped */ 2105 put_link(nd); 2106 } else { 2107 nd->stack[nd->depth - 1].name = name; 2108 name = s; 2109 continue; 2110 } 2111 } 2112 if (unlikely(!d_can_lookup(nd->path.dentry))) { 2113 if (nd->flags & LOOKUP_RCU) { 2114 if (unlazy_walk(nd)) 2115 return -ECHILD; 2116 } 2117 return -ENOTDIR; 2118 } 2119 } 2120 } 2121 2122 static const char *path_init(struct nameidata *nd, unsigned flags) 2123 { 2124 const char *s = nd->name->name; 2125 2126 if (!*s) 2127 flags &= ~LOOKUP_RCU; 2128 2129 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 2130 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT; 2131 nd->depth = 0; 2132 if (flags & LOOKUP_ROOT) { 2133 struct dentry *root = nd->root.dentry; 2134 struct inode *inode = root->d_inode; 2135 if (*s && unlikely(!d_can_lookup(root))) 2136 return ERR_PTR(-ENOTDIR); 2137 nd->path = nd->root; 2138 nd->inode = inode; 2139 if (flags & LOOKUP_RCU) { 2140 rcu_read_lock(); 2141 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2142 nd->root_seq = nd->seq; 2143 nd->m_seq = read_seqbegin(&mount_lock); 2144 } else { 2145 path_get(&nd->path); 2146 } 2147 return s; 2148 } 2149 2150 nd->root.mnt = NULL; 2151 nd->path.mnt = NULL; 2152 nd->path.dentry = NULL; 2153 2154 nd->m_seq = read_seqbegin(&mount_lock); 2155 if (*s == '/') { 2156 if (flags & LOOKUP_RCU) 2157 rcu_read_lock(); 2158 set_root(nd); 2159 if (likely(!nd_jump_root(nd))) 2160 return s; 2161 nd->root.mnt = NULL; 2162 rcu_read_unlock(); 2163 return ERR_PTR(-ECHILD); 2164 } else if (nd->dfd == AT_FDCWD) { 2165 if (flags & LOOKUP_RCU) { 2166 struct fs_struct *fs = current->fs; 2167 unsigned seq; 2168 2169 rcu_read_lock(); 2170 2171 do { 2172 seq = read_seqcount_begin(&fs->seq); 2173 nd->path = fs->pwd; 2174 nd->inode = nd->path.dentry->d_inode; 2175 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2176 } while (read_seqcount_retry(&fs->seq, seq)); 2177 } else { 2178 get_fs_pwd(current->fs, &nd->path); 2179 nd->inode = nd->path.dentry->d_inode; 2180 } 2181 return s; 2182 } else { 2183 /* Caller must check execute permissions on the starting path component */ 2184 struct fd f = fdget_raw(nd->dfd); 2185 struct dentry *dentry; 2186 2187 if (!f.file) 2188 return ERR_PTR(-EBADF); 2189 2190 dentry = f.file->f_path.dentry; 2191 2192 if (*s) { 2193 if (!d_can_lookup(dentry)) { 2194 fdput(f); 2195 return ERR_PTR(-ENOTDIR); 2196 } 2197 } 2198 2199 nd->path = f.file->f_path; 2200 if (flags & LOOKUP_RCU) { 2201 rcu_read_lock(); 2202 nd->inode = nd->path.dentry->d_inode; 2203 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2204 } else { 2205 path_get(&nd->path); 2206 nd->inode = nd->path.dentry->d_inode; 2207 } 2208 fdput(f); 2209 return s; 2210 } 2211 } 2212 2213 static const char *trailing_symlink(struct nameidata *nd) 2214 { 2215 const char *s; 2216 int error = may_follow_link(nd); 2217 if (unlikely(error)) 2218 return ERR_PTR(error); 2219 nd->flags |= LOOKUP_PARENT; 2220 nd->stack[0].name = NULL; 2221 s = get_link(nd); 2222 return s ? s : ""; 2223 } 2224 2225 static inline int lookup_last(struct nameidata *nd) 2226 { 2227 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 2228 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2229 2230 nd->flags &= ~LOOKUP_PARENT; 2231 return walk_component(nd, 0); 2232 } 2233 2234 static int handle_lookup_down(struct nameidata *nd) 2235 { 2236 struct path path = nd->path; 2237 struct inode *inode = nd->inode; 2238 unsigned seq = nd->seq; 2239 int err; 2240 2241 if (nd->flags & LOOKUP_RCU) { 2242 /* 2243 * don't bother with unlazy_walk on failure - we are 2244 * at the very beginning of walk, so we lose nothing 2245 * if we simply redo everything in non-RCU mode 2246 */ 2247 if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq))) 2248 return -ECHILD; 2249 } else { 2250 dget(path.dentry); 2251 err = follow_managed(&path, nd); 2252 if (unlikely(err < 0)) 2253 return err; 2254 inode = d_backing_inode(path.dentry); 2255 seq = 0; 2256 } 2257 path_to_nameidata(&path, nd); 2258 nd->inode = inode; 2259 nd->seq = seq; 2260 return 0; 2261 } 2262 2263 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2264 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path) 2265 { 2266 const char *s = path_init(nd, flags); 2267 int err; 2268 2269 if (IS_ERR(s)) 2270 return PTR_ERR(s); 2271 2272 if (unlikely(flags & LOOKUP_DOWN)) { 2273 err = handle_lookup_down(nd); 2274 if (unlikely(err < 0)) { 2275 terminate_walk(nd); 2276 return err; 2277 } 2278 } 2279 2280 while (!(err = link_path_walk(s, nd)) 2281 && ((err = lookup_last(nd)) > 0)) { 2282 s = trailing_symlink(nd); 2283 if (IS_ERR(s)) { 2284 err = PTR_ERR(s); 2285 break; 2286 } 2287 } 2288 if (!err) 2289 err = complete_walk(nd); 2290 2291 if (!err && nd->flags & LOOKUP_DIRECTORY) 2292 if (!d_can_lookup(nd->path.dentry)) 2293 err = -ENOTDIR; 2294 if (!err) { 2295 *path = nd->path; 2296 nd->path.mnt = NULL; 2297 nd->path.dentry = NULL; 2298 } 2299 terminate_walk(nd); 2300 return err; 2301 } 2302 2303 static int filename_lookup(int dfd, struct filename *name, unsigned flags, 2304 struct path *path, struct path *root) 2305 { 2306 int retval; 2307 struct nameidata nd; 2308 if (IS_ERR(name)) 2309 return PTR_ERR(name); 2310 if (unlikely(root)) { 2311 nd.root = *root; 2312 flags |= LOOKUP_ROOT; 2313 } 2314 set_nameidata(&nd, dfd, name); 2315 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path); 2316 if (unlikely(retval == -ECHILD)) 2317 retval = path_lookupat(&nd, flags, path); 2318 if (unlikely(retval == -ESTALE)) 2319 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path); 2320 2321 if (likely(!retval)) 2322 audit_inode(name, path->dentry, flags & LOOKUP_PARENT); 2323 restore_nameidata(); 2324 putname(name); 2325 return retval; 2326 } 2327 2328 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2329 static int path_parentat(struct nameidata *nd, unsigned flags, 2330 struct path *parent) 2331 { 2332 const char *s = path_init(nd, flags); 2333 int err; 2334 if (IS_ERR(s)) 2335 return PTR_ERR(s); 2336 err = link_path_walk(s, nd); 2337 if (!err) 2338 err = complete_walk(nd); 2339 if (!err) { 2340 *parent = nd->path; 2341 nd->path.mnt = NULL; 2342 nd->path.dentry = NULL; 2343 } 2344 terminate_walk(nd); 2345 return err; 2346 } 2347 2348 static struct filename *filename_parentat(int dfd, struct filename *name, 2349 unsigned int flags, struct path *parent, 2350 struct qstr *last, int *type) 2351 { 2352 int retval; 2353 struct nameidata nd; 2354 2355 if (IS_ERR(name)) 2356 return name; 2357 set_nameidata(&nd, dfd, name); 2358 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent); 2359 if (unlikely(retval == -ECHILD)) 2360 retval = path_parentat(&nd, flags, parent); 2361 if (unlikely(retval == -ESTALE)) 2362 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent); 2363 if (likely(!retval)) { 2364 *last = nd.last; 2365 *type = nd.last_type; 2366 audit_inode(name, parent->dentry, LOOKUP_PARENT); 2367 } else { 2368 putname(name); 2369 name = ERR_PTR(retval); 2370 } 2371 restore_nameidata(); 2372 return name; 2373 } 2374 2375 /* does lookup, returns the object with parent locked */ 2376 struct dentry *kern_path_locked(const char *name, struct path *path) 2377 { 2378 struct filename *filename; 2379 struct dentry *d; 2380 struct qstr last; 2381 int type; 2382 2383 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path, 2384 &last, &type); 2385 if (IS_ERR(filename)) 2386 return ERR_CAST(filename); 2387 if (unlikely(type != LAST_NORM)) { 2388 path_put(path); 2389 putname(filename); 2390 return ERR_PTR(-EINVAL); 2391 } 2392 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 2393 d = __lookup_hash(&last, path->dentry, 0); 2394 if (IS_ERR(d)) { 2395 inode_unlock(path->dentry->d_inode); 2396 path_put(path); 2397 } 2398 putname(filename); 2399 return d; 2400 } 2401 2402 int kern_path(const char *name, unsigned int flags, struct path *path) 2403 { 2404 return filename_lookup(AT_FDCWD, getname_kernel(name), 2405 flags, path, NULL); 2406 } 2407 EXPORT_SYMBOL(kern_path); 2408 2409 /** 2410 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2411 * @dentry: pointer to dentry of the base directory 2412 * @mnt: pointer to vfs mount of the base directory 2413 * @name: pointer to file name 2414 * @flags: lookup flags 2415 * @path: pointer to struct path to fill 2416 */ 2417 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2418 const char *name, unsigned int flags, 2419 struct path *path) 2420 { 2421 struct path root = {.mnt = mnt, .dentry = dentry}; 2422 /* the first argument of filename_lookup() is ignored with root */ 2423 return filename_lookup(AT_FDCWD, getname_kernel(name), 2424 flags , path, &root); 2425 } 2426 EXPORT_SYMBOL(vfs_path_lookup); 2427 2428 /** 2429 * lookup_one_len - filesystem helper to lookup single pathname component 2430 * @name: pathname component to lookup 2431 * @base: base directory to lookup from 2432 * @len: maximum length @len should be interpreted to 2433 * 2434 * Note that this routine is purely a helper for filesystem usage and should 2435 * not be called by generic code. 2436 * 2437 * The caller must hold base->i_mutex. 2438 */ 2439 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2440 { 2441 struct qstr this; 2442 unsigned int c; 2443 int err; 2444 2445 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2446 2447 this.name = name; 2448 this.len = len; 2449 this.hash = full_name_hash(base, name, len); 2450 if (!len) 2451 return ERR_PTR(-EACCES); 2452 2453 if (unlikely(name[0] == '.')) { 2454 if (len < 2 || (len == 2 && name[1] == '.')) 2455 return ERR_PTR(-EACCES); 2456 } 2457 2458 while (len--) { 2459 c = *(const unsigned char *)name++; 2460 if (c == '/' || c == '\0') 2461 return ERR_PTR(-EACCES); 2462 } 2463 /* 2464 * See if the low-level filesystem might want 2465 * to use its own hash.. 2466 */ 2467 if (base->d_flags & DCACHE_OP_HASH) { 2468 int err = base->d_op->d_hash(base, &this); 2469 if (err < 0) 2470 return ERR_PTR(err); 2471 } 2472 2473 err = inode_permission(base->d_inode, MAY_EXEC); 2474 if (err) 2475 return ERR_PTR(err); 2476 2477 return __lookup_hash(&this, base, 0); 2478 } 2479 EXPORT_SYMBOL(lookup_one_len); 2480 2481 /** 2482 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component 2483 * @name: pathname component to lookup 2484 * @base: base directory to lookup from 2485 * @len: maximum length @len should be interpreted to 2486 * 2487 * Note that this routine is purely a helper for filesystem usage and should 2488 * not be called by generic code. 2489 * 2490 * Unlike lookup_one_len, it should be called without the parent 2491 * i_mutex held, and will take the i_mutex itself if necessary. 2492 */ 2493 struct dentry *lookup_one_len_unlocked(const char *name, 2494 struct dentry *base, int len) 2495 { 2496 struct qstr this; 2497 unsigned int c; 2498 int err; 2499 struct dentry *ret; 2500 2501 this.name = name; 2502 this.len = len; 2503 this.hash = full_name_hash(base, name, len); 2504 if (!len) 2505 return ERR_PTR(-EACCES); 2506 2507 if (unlikely(name[0] == '.')) { 2508 if (len < 2 || (len == 2 && name[1] == '.')) 2509 return ERR_PTR(-EACCES); 2510 } 2511 2512 while (len--) { 2513 c = *(const unsigned char *)name++; 2514 if (c == '/' || c == '\0') 2515 return ERR_PTR(-EACCES); 2516 } 2517 /* 2518 * See if the low-level filesystem might want 2519 * to use its own hash.. 2520 */ 2521 if (base->d_flags & DCACHE_OP_HASH) { 2522 int err = base->d_op->d_hash(base, &this); 2523 if (err < 0) 2524 return ERR_PTR(err); 2525 } 2526 2527 err = inode_permission(base->d_inode, MAY_EXEC); 2528 if (err) 2529 return ERR_PTR(err); 2530 2531 ret = lookup_dcache(&this, base, 0); 2532 if (!ret) 2533 ret = lookup_slow(&this, base, 0); 2534 return ret; 2535 } 2536 EXPORT_SYMBOL(lookup_one_len_unlocked); 2537 2538 #ifdef CONFIG_UNIX98_PTYS 2539 int path_pts(struct path *path) 2540 { 2541 /* Find something mounted on "pts" in the same directory as 2542 * the input path. 2543 */ 2544 struct dentry *child, *parent; 2545 struct qstr this; 2546 int ret; 2547 2548 ret = path_parent_directory(path); 2549 if (ret) 2550 return ret; 2551 2552 parent = path->dentry; 2553 this.name = "pts"; 2554 this.len = 3; 2555 child = d_hash_and_lookup(parent, &this); 2556 if (!child) 2557 return -ENOENT; 2558 2559 path->dentry = child; 2560 dput(parent); 2561 follow_mount(path); 2562 return 0; 2563 } 2564 #endif 2565 2566 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2567 struct path *path, int *empty) 2568 { 2569 return filename_lookup(dfd, getname_flags(name, flags, empty), 2570 flags, path, NULL); 2571 } 2572 EXPORT_SYMBOL(user_path_at_empty); 2573 2574 /** 2575 * mountpoint_last - look up last component for umount 2576 * @nd: pathwalk nameidata - currently pointing at parent directory of "last" 2577 * 2578 * This is a special lookup_last function just for umount. In this case, we 2579 * need to resolve the path without doing any revalidation. 2580 * 2581 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since 2582 * mountpoints are always pinned in the dcache, their ancestors are too. Thus, 2583 * in almost all cases, this lookup will be served out of the dcache. The only 2584 * cases where it won't are if nd->last refers to a symlink or the path is 2585 * bogus and it doesn't exist. 2586 * 2587 * Returns: 2588 * -error: if there was an error during lookup. This includes -ENOENT if the 2589 * lookup found a negative dentry. 2590 * 2591 * 0: if we successfully resolved nd->last and found it to not to be a 2592 * symlink that needs to be followed. 2593 * 2594 * 1: if we successfully resolved nd->last and found it to be a symlink 2595 * that needs to be followed. 2596 */ 2597 static int 2598 mountpoint_last(struct nameidata *nd) 2599 { 2600 int error = 0; 2601 struct dentry *dir = nd->path.dentry; 2602 struct path path; 2603 2604 /* If we're in rcuwalk, drop out of it to handle last component */ 2605 if (nd->flags & LOOKUP_RCU) { 2606 if (unlazy_walk(nd)) 2607 return -ECHILD; 2608 } 2609 2610 nd->flags &= ~LOOKUP_PARENT; 2611 2612 if (unlikely(nd->last_type != LAST_NORM)) { 2613 error = handle_dots(nd, nd->last_type); 2614 if (error) 2615 return error; 2616 path.dentry = dget(nd->path.dentry); 2617 } else { 2618 path.dentry = d_lookup(dir, &nd->last); 2619 if (!path.dentry) { 2620 /* 2621 * No cached dentry. Mounted dentries are pinned in the 2622 * cache, so that means that this dentry is probably 2623 * a symlink or the path doesn't actually point 2624 * to a mounted dentry. 2625 */ 2626 path.dentry = lookup_slow(&nd->last, dir, 2627 nd->flags | LOOKUP_NO_REVAL); 2628 if (IS_ERR(path.dentry)) 2629 return PTR_ERR(path.dentry); 2630 } 2631 } 2632 if (d_is_negative(path.dentry)) { 2633 dput(path.dentry); 2634 return -ENOENT; 2635 } 2636 path.mnt = nd->path.mnt; 2637 return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0); 2638 } 2639 2640 /** 2641 * path_mountpoint - look up a path to be umounted 2642 * @nd: lookup context 2643 * @flags: lookup flags 2644 * @path: pointer to container for result 2645 * 2646 * Look up the given name, but don't attempt to revalidate the last component. 2647 * Returns 0 and "path" will be valid on success; Returns error otherwise. 2648 */ 2649 static int 2650 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path) 2651 { 2652 const char *s = path_init(nd, flags); 2653 int err; 2654 if (IS_ERR(s)) 2655 return PTR_ERR(s); 2656 while (!(err = link_path_walk(s, nd)) && 2657 (err = mountpoint_last(nd)) > 0) { 2658 s = trailing_symlink(nd); 2659 if (IS_ERR(s)) { 2660 err = PTR_ERR(s); 2661 break; 2662 } 2663 } 2664 if (!err) { 2665 *path = nd->path; 2666 nd->path.mnt = NULL; 2667 nd->path.dentry = NULL; 2668 follow_mount(path); 2669 } 2670 terminate_walk(nd); 2671 return err; 2672 } 2673 2674 static int 2675 filename_mountpoint(int dfd, struct filename *name, struct path *path, 2676 unsigned int flags) 2677 { 2678 struct nameidata nd; 2679 int error; 2680 if (IS_ERR(name)) 2681 return PTR_ERR(name); 2682 set_nameidata(&nd, dfd, name); 2683 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path); 2684 if (unlikely(error == -ECHILD)) 2685 error = path_mountpoint(&nd, flags, path); 2686 if (unlikely(error == -ESTALE)) 2687 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path); 2688 if (likely(!error)) 2689 audit_inode(name, path->dentry, 0); 2690 restore_nameidata(); 2691 putname(name); 2692 return error; 2693 } 2694 2695 /** 2696 * user_path_mountpoint_at - lookup a path from userland in order to umount it 2697 * @dfd: directory file descriptor 2698 * @name: pathname from userland 2699 * @flags: lookup flags 2700 * @path: pointer to container to hold result 2701 * 2702 * A umount is a special case for path walking. We're not actually interested 2703 * in the inode in this situation, and ESTALE errors can be a problem. We 2704 * simply want track down the dentry and vfsmount attached at the mountpoint 2705 * and avoid revalidating the last component. 2706 * 2707 * Returns 0 and populates "path" on success. 2708 */ 2709 int 2710 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags, 2711 struct path *path) 2712 { 2713 return filename_mountpoint(dfd, getname(name), path, flags); 2714 } 2715 2716 int 2717 kern_path_mountpoint(int dfd, const char *name, struct path *path, 2718 unsigned int flags) 2719 { 2720 return filename_mountpoint(dfd, getname_kernel(name), path, flags); 2721 } 2722 EXPORT_SYMBOL(kern_path_mountpoint); 2723 2724 int __check_sticky(struct inode *dir, struct inode *inode) 2725 { 2726 kuid_t fsuid = current_fsuid(); 2727 2728 if (uid_eq(inode->i_uid, fsuid)) 2729 return 0; 2730 if (uid_eq(dir->i_uid, fsuid)) 2731 return 0; 2732 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER); 2733 } 2734 EXPORT_SYMBOL(__check_sticky); 2735 2736 /* 2737 * Check whether we can remove a link victim from directory dir, check 2738 * whether the type of victim is right. 2739 * 1. We can't do it if dir is read-only (done in permission()) 2740 * 2. We should have write and exec permissions on dir 2741 * 3. We can't remove anything from append-only dir 2742 * 4. We can't do anything with immutable dir (done in permission()) 2743 * 5. If the sticky bit on dir is set we should either 2744 * a. be owner of dir, or 2745 * b. be owner of victim, or 2746 * c. have CAP_FOWNER capability 2747 * 6. If the victim is append-only or immutable we can't do antyhing with 2748 * links pointing to it. 2749 * 7. If the victim has an unknown uid or gid we can't change the inode. 2750 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2751 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2752 * 10. We can't remove a root or mountpoint. 2753 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by 2754 * nfs_async_unlink(). 2755 */ 2756 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir) 2757 { 2758 struct inode *inode = d_backing_inode(victim); 2759 int error; 2760 2761 if (d_is_negative(victim)) 2762 return -ENOENT; 2763 BUG_ON(!inode); 2764 2765 BUG_ON(victim->d_parent->d_inode != dir); 2766 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2767 2768 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 2769 if (error) 2770 return error; 2771 if (IS_APPEND(dir)) 2772 return -EPERM; 2773 2774 if (check_sticky(dir, inode) || IS_APPEND(inode) || 2775 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode)) 2776 return -EPERM; 2777 if (isdir) { 2778 if (!d_is_dir(victim)) 2779 return -ENOTDIR; 2780 if (IS_ROOT(victim)) 2781 return -EBUSY; 2782 } else if (d_is_dir(victim)) 2783 return -EISDIR; 2784 if (IS_DEADDIR(dir)) 2785 return -ENOENT; 2786 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2787 return -EBUSY; 2788 return 0; 2789 } 2790 2791 /* Check whether we can create an object with dentry child in directory 2792 * dir. 2793 * 1. We can't do it if child already exists (open has special treatment for 2794 * this case, but since we are inlined it's OK) 2795 * 2. We can't do it if dir is read-only (done in permission()) 2796 * 3. We can't do it if the fs can't represent the fsuid or fsgid. 2797 * 4. We should have write and exec permissions on dir 2798 * 5. We can't do it if dir is immutable (done in permission()) 2799 */ 2800 static inline int may_create(struct inode *dir, struct dentry *child) 2801 { 2802 struct user_namespace *s_user_ns; 2803 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 2804 if (child->d_inode) 2805 return -EEXIST; 2806 if (IS_DEADDIR(dir)) 2807 return -ENOENT; 2808 s_user_ns = dir->i_sb->s_user_ns; 2809 if (!kuid_has_mapping(s_user_ns, current_fsuid()) || 2810 !kgid_has_mapping(s_user_ns, current_fsgid())) 2811 return -EOVERFLOW; 2812 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 2813 } 2814 2815 /* 2816 * p1 and p2 should be directories on the same fs. 2817 */ 2818 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2819 { 2820 struct dentry *p; 2821 2822 if (p1 == p2) { 2823 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2824 return NULL; 2825 } 2826 2827 mutex_lock(&p1->d_sb->s_vfs_rename_mutex); 2828 2829 p = d_ancestor(p2, p1); 2830 if (p) { 2831 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 2832 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD); 2833 return p; 2834 } 2835 2836 p = d_ancestor(p1, p2); 2837 if (p) { 2838 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2839 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD); 2840 return p; 2841 } 2842 2843 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2844 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 2845 return NULL; 2846 } 2847 EXPORT_SYMBOL(lock_rename); 2848 2849 void unlock_rename(struct dentry *p1, struct dentry *p2) 2850 { 2851 inode_unlock(p1->d_inode); 2852 if (p1 != p2) { 2853 inode_unlock(p2->d_inode); 2854 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 2855 } 2856 } 2857 EXPORT_SYMBOL(unlock_rename); 2858 2859 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2860 bool want_excl) 2861 { 2862 int error = may_create(dir, dentry); 2863 if (error) 2864 return error; 2865 2866 if (!dir->i_op->create) 2867 return -EACCES; /* shouldn't it be ENOSYS? */ 2868 mode &= S_IALLUGO; 2869 mode |= S_IFREG; 2870 error = security_inode_create(dir, dentry, mode); 2871 if (error) 2872 return error; 2873 error = dir->i_op->create(dir, dentry, mode, want_excl); 2874 if (!error) 2875 fsnotify_create(dir, dentry); 2876 return error; 2877 } 2878 EXPORT_SYMBOL(vfs_create); 2879 2880 int vfs_mkobj(struct dentry *dentry, umode_t mode, 2881 int (*f)(struct dentry *, umode_t, void *), 2882 void *arg) 2883 { 2884 struct inode *dir = dentry->d_parent->d_inode; 2885 int error = may_create(dir, dentry); 2886 if (error) 2887 return error; 2888 2889 mode &= S_IALLUGO; 2890 mode |= S_IFREG; 2891 error = security_inode_create(dir, dentry, mode); 2892 if (error) 2893 return error; 2894 error = f(dentry, mode, arg); 2895 if (!error) 2896 fsnotify_create(dir, dentry); 2897 return error; 2898 } 2899 EXPORT_SYMBOL(vfs_mkobj); 2900 2901 bool may_open_dev(const struct path *path) 2902 { 2903 return !(path->mnt->mnt_flags & MNT_NODEV) && 2904 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV); 2905 } 2906 2907 static int may_open(const struct path *path, int acc_mode, int flag) 2908 { 2909 struct dentry *dentry = path->dentry; 2910 struct inode *inode = dentry->d_inode; 2911 int error; 2912 2913 if (!inode) 2914 return -ENOENT; 2915 2916 switch (inode->i_mode & S_IFMT) { 2917 case S_IFLNK: 2918 return -ELOOP; 2919 case S_IFDIR: 2920 if (acc_mode & MAY_WRITE) 2921 return -EISDIR; 2922 break; 2923 case S_IFBLK: 2924 case S_IFCHR: 2925 if (!may_open_dev(path)) 2926 return -EACCES; 2927 /*FALLTHRU*/ 2928 case S_IFIFO: 2929 case S_IFSOCK: 2930 flag &= ~O_TRUNC; 2931 break; 2932 } 2933 2934 error = inode_permission(inode, MAY_OPEN | acc_mode); 2935 if (error) 2936 return error; 2937 2938 /* 2939 * An append-only file must be opened in append mode for writing. 2940 */ 2941 if (IS_APPEND(inode)) { 2942 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2943 return -EPERM; 2944 if (flag & O_TRUNC) 2945 return -EPERM; 2946 } 2947 2948 /* O_NOATIME can only be set by the owner or superuser */ 2949 if (flag & O_NOATIME && !inode_owner_or_capable(inode)) 2950 return -EPERM; 2951 2952 return 0; 2953 } 2954 2955 static int handle_truncate(struct file *filp) 2956 { 2957 const struct path *path = &filp->f_path; 2958 struct inode *inode = path->dentry->d_inode; 2959 int error = get_write_access(inode); 2960 if (error) 2961 return error; 2962 /* 2963 * Refuse to truncate files with mandatory locks held on them. 2964 */ 2965 error = locks_verify_locked(filp); 2966 if (!error) 2967 error = security_path_truncate(path); 2968 if (!error) { 2969 error = do_truncate(path->dentry, 0, 2970 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 2971 filp); 2972 } 2973 put_write_access(inode); 2974 return error; 2975 } 2976 2977 static inline int open_to_namei_flags(int flag) 2978 { 2979 if ((flag & O_ACCMODE) == 3) 2980 flag--; 2981 return flag; 2982 } 2983 2984 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode) 2985 { 2986 struct user_namespace *s_user_ns; 2987 int error = security_path_mknod(dir, dentry, mode, 0); 2988 if (error) 2989 return error; 2990 2991 s_user_ns = dir->dentry->d_sb->s_user_ns; 2992 if (!kuid_has_mapping(s_user_ns, current_fsuid()) || 2993 !kgid_has_mapping(s_user_ns, current_fsgid())) 2994 return -EOVERFLOW; 2995 2996 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC); 2997 if (error) 2998 return error; 2999 3000 return security_inode_create(dir->dentry->d_inode, dentry, mode); 3001 } 3002 3003 /* 3004 * Attempt to atomically look up, create and open a file from a negative 3005 * dentry. 3006 * 3007 * Returns 0 if successful. The file will have been created and attached to 3008 * @file by the filesystem calling finish_open(). 3009 * 3010 * Returns 1 if the file was looked up only or didn't need creating. The 3011 * caller will need to perform the open themselves. @path will have been 3012 * updated to point to the new dentry. This may be negative. 3013 * 3014 * Returns an error code otherwise. 3015 */ 3016 static int atomic_open(struct nameidata *nd, struct dentry *dentry, 3017 struct path *path, struct file *file, 3018 const struct open_flags *op, 3019 int open_flag, umode_t mode, 3020 int *opened) 3021 { 3022 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 3023 struct inode *dir = nd->path.dentry->d_inode; 3024 int error; 3025 3026 if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */ 3027 open_flag &= ~O_TRUNC; 3028 3029 if (nd->flags & LOOKUP_DIRECTORY) 3030 open_flag |= O_DIRECTORY; 3031 3032 file->f_path.dentry = DENTRY_NOT_SET; 3033 file->f_path.mnt = nd->path.mnt; 3034 error = dir->i_op->atomic_open(dir, dentry, file, 3035 open_to_namei_flags(open_flag), 3036 mode, opened); 3037 d_lookup_done(dentry); 3038 if (!error) { 3039 /* 3040 * We didn't have the inode before the open, so check open 3041 * permission here. 3042 */ 3043 int acc_mode = op->acc_mode; 3044 if (*opened & FILE_CREATED) { 3045 WARN_ON(!(open_flag & O_CREAT)); 3046 fsnotify_create(dir, dentry); 3047 acc_mode = 0; 3048 } 3049 error = may_open(&file->f_path, acc_mode, open_flag); 3050 if (WARN_ON(error > 0)) 3051 error = -EINVAL; 3052 } else if (error > 0) { 3053 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 3054 error = -EIO; 3055 } else { 3056 if (file->f_path.dentry) { 3057 dput(dentry); 3058 dentry = file->f_path.dentry; 3059 } 3060 if (*opened & FILE_CREATED) 3061 fsnotify_create(dir, dentry); 3062 if (unlikely(d_is_negative(dentry))) { 3063 error = -ENOENT; 3064 } else { 3065 path->dentry = dentry; 3066 path->mnt = nd->path.mnt; 3067 return 1; 3068 } 3069 } 3070 } 3071 dput(dentry); 3072 return error; 3073 } 3074 3075 /* 3076 * Look up and maybe create and open the last component. 3077 * 3078 * Must be called with i_mutex held on parent. 3079 * 3080 * Returns 0 if the file was successfully atomically created (if necessary) and 3081 * opened. In this case the file will be returned attached to @file. 3082 * 3083 * Returns 1 if the file was not completely opened at this time, though lookups 3084 * and creations will have been performed and the dentry returned in @path will 3085 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't 3086 * specified then a negative dentry may be returned. 3087 * 3088 * An error code is returned otherwise. 3089 * 3090 * FILE_CREATE will be set in @*opened if the dentry was created and will be 3091 * cleared otherwise prior to returning. 3092 */ 3093 static int lookup_open(struct nameidata *nd, struct path *path, 3094 struct file *file, 3095 const struct open_flags *op, 3096 bool got_write, int *opened) 3097 { 3098 struct dentry *dir = nd->path.dentry; 3099 struct inode *dir_inode = dir->d_inode; 3100 int open_flag = op->open_flag; 3101 struct dentry *dentry; 3102 int error, create_error = 0; 3103 umode_t mode = op->mode; 3104 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 3105 3106 if (unlikely(IS_DEADDIR(dir_inode))) 3107 return -ENOENT; 3108 3109 *opened &= ~FILE_CREATED; 3110 dentry = d_lookup(dir, &nd->last); 3111 for (;;) { 3112 if (!dentry) { 3113 dentry = d_alloc_parallel(dir, &nd->last, &wq); 3114 if (IS_ERR(dentry)) 3115 return PTR_ERR(dentry); 3116 } 3117 if (d_in_lookup(dentry)) 3118 break; 3119 3120 error = d_revalidate(dentry, nd->flags); 3121 if (likely(error > 0)) 3122 break; 3123 if (error) 3124 goto out_dput; 3125 d_invalidate(dentry); 3126 dput(dentry); 3127 dentry = NULL; 3128 } 3129 if (dentry->d_inode) { 3130 /* Cached positive dentry: will open in f_op->open */ 3131 goto out_no_open; 3132 } 3133 3134 /* 3135 * Checking write permission is tricky, bacuse we don't know if we are 3136 * going to actually need it: O_CREAT opens should work as long as the 3137 * file exists. But checking existence breaks atomicity. The trick is 3138 * to check access and if not granted clear O_CREAT from the flags. 3139 * 3140 * Another problem is returing the "right" error value (e.g. for an 3141 * O_EXCL open we want to return EEXIST not EROFS). 3142 */ 3143 if (open_flag & O_CREAT) { 3144 if (!IS_POSIXACL(dir->d_inode)) 3145 mode &= ~current_umask(); 3146 if (unlikely(!got_write)) { 3147 create_error = -EROFS; 3148 open_flag &= ~O_CREAT; 3149 if (open_flag & (O_EXCL | O_TRUNC)) 3150 goto no_open; 3151 /* No side effects, safe to clear O_CREAT */ 3152 } else { 3153 create_error = may_o_create(&nd->path, dentry, mode); 3154 if (create_error) { 3155 open_flag &= ~O_CREAT; 3156 if (open_flag & O_EXCL) 3157 goto no_open; 3158 } 3159 } 3160 } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) && 3161 unlikely(!got_write)) { 3162 /* 3163 * No O_CREATE -> atomicity not a requirement -> fall 3164 * back to lookup + open 3165 */ 3166 goto no_open; 3167 } 3168 3169 if (dir_inode->i_op->atomic_open) { 3170 error = atomic_open(nd, dentry, path, file, op, open_flag, 3171 mode, opened); 3172 if (unlikely(error == -ENOENT) && create_error) 3173 error = create_error; 3174 return error; 3175 } 3176 3177 no_open: 3178 if (d_in_lookup(dentry)) { 3179 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry, 3180 nd->flags); 3181 d_lookup_done(dentry); 3182 if (unlikely(res)) { 3183 if (IS_ERR(res)) { 3184 error = PTR_ERR(res); 3185 goto out_dput; 3186 } 3187 dput(dentry); 3188 dentry = res; 3189 } 3190 } 3191 3192 /* Negative dentry, just create the file */ 3193 if (!dentry->d_inode && (open_flag & O_CREAT)) { 3194 *opened |= FILE_CREATED; 3195 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE); 3196 if (!dir_inode->i_op->create) { 3197 error = -EACCES; 3198 goto out_dput; 3199 } 3200 error = dir_inode->i_op->create(dir_inode, dentry, mode, 3201 open_flag & O_EXCL); 3202 if (error) 3203 goto out_dput; 3204 fsnotify_create(dir_inode, dentry); 3205 } 3206 if (unlikely(create_error) && !dentry->d_inode) { 3207 error = create_error; 3208 goto out_dput; 3209 } 3210 out_no_open: 3211 path->dentry = dentry; 3212 path->mnt = nd->path.mnt; 3213 return 1; 3214 3215 out_dput: 3216 dput(dentry); 3217 return error; 3218 } 3219 3220 /* 3221 * Handle the last step of open() 3222 */ 3223 static int do_last(struct nameidata *nd, 3224 struct file *file, const struct open_flags *op, 3225 int *opened) 3226 { 3227 struct dentry *dir = nd->path.dentry; 3228 int open_flag = op->open_flag; 3229 bool will_truncate = (open_flag & O_TRUNC) != 0; 3230 bool got_write = false; 3231 int acc_mode = op->acc_mode; 3232 unsigned seq; 3233 struct inode *inode; 3234 struct path path; 3235 int error; 3236 3237 nd->flags &= ~LOOKUP_PARENT; 3238 nd->flags |= op->intent; 3239 3240 if (nd->last_type != LAST_NORM) { 3241 error = handle_dots(nd, nd->last_type); 3242 if (unlikely(error)) 3243 return error; 3244 goto finish_open; 3245 } 3246 3247 if (!(open_flag & O_CREAT)) { 3248 if (nd->last.name[nd->last.len]) 3249 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 3250 /* we _can_ be in RCU mode here */ 3251 error = lookup_fast(nd, &path, &inode, &seq); 3252 if (likely(error > 0)) 3253 goto finish_lookup; 3254 3255 if (error < 0) 3256 return error; 3257 3258 BUG_ON(nd->inode != dir->d_inode); 3259 BUG_ON(nd->flags & LOOKUP_RCU); 3260 } else { 3261 /* create side of things */ 3262 /* 3263 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED 3264 * has been cleared when we got to the last component we are 3265 * about to look up 3266 */ 3267 error = complete_walk(nd); 3268 if (error) 3269 return error; 3270 3271 audit_inode(nd->name, dir, LOOKUP_PARENT); 3272 /* trailing slashes? */ 3273 if (unlikely(nd->last.name[nd->last.len])) 3274 return -EISDIR; 3275 } 3276 3277 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 3278 error = mnt_want_write(nd->path.mnt); 3279 if (!error) 3280 got_write = true; 3281 /* 3282 * do _not_ fail yet - we might not need that or fail with 3283 * a different error; let lookup_open() decide; we'll be 3284 * dropping this one anyway. 3285 */ 3286 } 3287 if (open_flag & O_CREAT) 3288 inode_lock(dir->d_inode); 3289 else 3290 inode_lock_shared(dir->d_inode); 3291 error = lookup_open(nd, &path, file, op, got_write, opened); 3292 if (open_flag & O_CREAT) 3293 inode_unlock(dir->d_inode); 3294 else 3295 inode_unlock_shared(dir->d_inode); 3296 3297 if (error <= 0) { 3298 if (error) 3299 goto out; 3300 3301 if ((*opened & FILE_CREATED) || 3302 !S_ISREG(file_inode(file)->i_mode)) 3303 will_truncate = false; 3304 3305 audit_inode(nd->name, file->f_path.dentry, 0); 3306 goto opened; 3307 } 3308 3309 if (*opened & FILE_CREATED) { 3310 /* Don't check for write permission, don't truncate */ 3311 open_flag &= ~O_TRUNC; 3312 will_truncate = false; 3313 acc_mode = 0; 3314 path_to_nameidata(&path, nd); 3315 goto finish_open_created; 3316 } 3317 3318 /* 3319 * If atomic_open() acquired write access it is dropped now due to 3320 * possible mount and symlink following (this might be optimized away if 3321 * necessary...) 3322 */ 3323 if (got_write) { 3324 mnt_drop_write(nd->path.mnt); 3325 got_write = false; 3326 } 3327 3328 error = follow_managed(&path, nd); 3329 if (unlikely(error < 0)) 3330 return error; 3331 3332 if (unlikely(d_is_negative(path.dentry))) { 3333 path_to_nameidata(&path, nd); 3334 return -ENOENT; 3335 } 3336 3337 /* 3338 * create/update audit record if it already exists. 3339 */ 3340 audit_inode(nd->name, path.dentry, 0); 3341 3342 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) { 3343 path_to_nameidata(&path, nd); 3344 return -EEXIST; 3345 } 3346 3347 seq = 0; /* out of RCU mode, so the value doesn't matter */ 3348 inode = d_backing_inode(path.dentry); 3349 finish_lookup: 3350 error = step_into(nd, &path, 0, inode, seq); 3351 if (unlikely(error)) 3352 return error; 3353 finish_open: 3354 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */ 3355 error = complete_walk(nd); 3356 if (error) 3357 return error; 3358 audit_inode(nd->name, nd->path.dentry, 0); 3359 error = -EISDIR; 3360 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry)) 3361 goto out; 3362 error = -ENOTDIR; 3363 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3364 goto out; 3365 if (!d_is_reg(nd->path.dentry)) 3366 will_truncate = false; 3367 3368 if (will_truncate) { 3369 error = mnt_want_write(nd->path.mnt); 3370 if (error) 3371 goto out; 3372 got_write = true; 3373 } 3374 finish_open_created: 3375 error = may_open(&nd->path, acc_mode, open_flag); 3376 if (error) 3377 goto out; 3378 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */ 3379 error = vfs_open(&nd->path, file, current_cred()); 3380 if (error) 3381 goto out; 3382 *opened |= FILE_OPENED; 3383 opened: 3384 error = open_check_o_direct(file); 3385 if (!error) 3386 error = ima_file_check(file, op->acc_mode, *opened); 3387 if (!error && will_truncate) 3388 error = handle_truncate(file); 3389 out: 3390 if (unlikely(error) && (*opened & FILE_OPENED)) 3391 fput(file); 3392 if (unlikely(error > 0)) { 3393 WARN_ON(1); 3394 error = -EINVAL; 3395 } 3396 if (got_write) 3397 mnt_drop_write(nd->path.mnt); 3398 return error; 3399 } 3400 3401 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag) 3402 { 3403 struct dentry *child = NULL; 3404 struct inode *dir = dentry->d_inode; 3405 struct inode *inode; 3406 int error; 3407 3408 /* we want directory to be writable */ 3409 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 3410 if (error) 3411 goto out_err; 3412 error = -EOPNOTSUPP; 3413 if (!dir->i_op->tmpfile) 3414 goto out_err; 3415 error = -ENOMEM; 3416 child = d_alloc(dentry, &slash_name); 3417 if (unlikely(!child)) 3418 goto out_err; 3419 error = dir->i_op->tmpfile(dir, child, mode); 3420 if (error) 3421 goto out_err; 3422 error = -ENOENT; 3423 inode = child->d_inode; 3424 if (unlikely(!inode)) 3425 goto out_err; 3426 if (!(open_flag & O_EXCL)) { 3427 spin_lock(&inode->i_lock); 3428 inode->i_state |= I_LINKABLE; 3429 spin_unlock(&inode->i_lock); 3430 } 3431 return child; 3432 3433 out_err: 3434 dput(child); 3435 return ERR_PTR(error); 3436 } 3437 EXPORT_SYMBOL(vfs_tmpfile); 3438 3439 static int do_tmpfile(struct nameidata *nd, unsigned flags, 3440 const struct open_flags *op, 3441 struct file *file, int *opened) 3442 { 3443 struct dentry *child; 3444 struct path path; 3445 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path); 3446 if (unlikely(error)) 3447 return error; 3448 error = mnt_want_write(path.mnt); 3449 if (unlikely(error)) 3450 goto out; 3451 child = vfs_tmpfile(path.dentry, op->mode, op->open_flag); 3452 error = PTR_ERR(child); 3453 if (IS_ERR(child)) 3454 goto out2; 3455 dput(path.dentry); 3456 path.dentry = child; 3457 audit_inode(nd->name, child, 0); 3458 /* Don't check for other permissions, the inode was just created */ 3459 error = may_open(&path, 0, op->open_flag); 3460 if (error) 3461 goto out2; 3462 file->f_path.mnt = path.mnt; 3463 error = finish_open(file, child, NULL, opened); 3464 if (error) 3465 goto out2; 3466 error = open_check_o_direct(file); 3467 if (error) 3468 fput(file); 3469 out2: 3470 mnt_drop_write(path.mnt); 3471 out: 3472 path_put(&path); 3473 return error; 3474 } 3475 3476 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file) 3477 { 3478 struct path path; 3479 int error = path_lookupat(nd, flags, &path); 3480 if (!error) { 3481 audit_inode(nd->name, path.dentry, 0); 3482 error = vfs_open(&path, file, current_cred()); 3483 path_put(&path); 3484 } 3485 return error; 3486 } 3487 3488 static struct file *path_openat(struct nameidata *nd, 3489 const struct open_flags *op, unsigned flags) 3490 { 3491 const char *s; 3492 struct file *file; 3493 int opened = 0; 3494 int error; 3495 3496 file = get_empty_filp(); 3497 if (IS_ERR(file)) 3498 return file; 3499 3500 file->f_flags = op->open_flag; 3501 3502 if (unlikely(file->f_flags & __O_TMPFILE)) { 3503 error = do_tmpfile(nd, flags, op, file, &opened); 3504 goto out2; 3505 } 3506 3507 if (unlikely(file->f_flags & O_PATH)) { 3508 error = do_o_path(nd, flags, file); 3509 if (!error) 3510 opened |= FILE_OPENED; 3511 goto out2; 3512 } 3513 3514 s = path_init(nd, flags); 3515 if (IS_ERR(s)) { 3516 put_filp(file); 3517 return ERR_CAST(s); 3518 } 3519 while (!(error = link_path_walk(s, nd)) && 3520 (error = do_last(nd, file, op, &opened)) > 0) { 3521 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3522 s = trailing_symlink(nd); 3523 if (IS_ERR(s)) { 3524 error = PTR_ERR(s); 3525 break; 3526 } 3527 } 3528 terminate_walk(nd); 3529 out2: 3530 if (!(opened & FILE_OPENED)) { 3531 BUG_ON(!error); 3532 put_filp(file); 3533 } 3534 if (unlikely(error)) { 3535 if (error == -EOPENSTALE) { 3536 if (flags & LOOKUP_RCU) 3537 error = -ECHILD; 3538 else 3539 error = -ESTALE; 3540 } 3541 file = ERR_PTR(error); 3542 } 3543 return file; 3544 } 3545 3546 struct file *do_filp_open(int dfd, struct filename *pathname, 3547 const struct open_flags *op) 3548 { 3549 struct nameidata nd; 3550 int flags = op->lookup_flags; 3551 struct file *filp; 3552 3553 set_nameidata(&nd, dfd, pathname); 3554 filp = path_openat(&nd, op, flags | LOOKUP_RCU); 3555 if (unlikely(filp == ERR_PTR(-ECHILD))) 3556 filp = path_openat(&nd, op, flags); 3557 if (unlikely(filp == ERR_PTR(-ESTALE))) 3558 filp = path_openat(&nd, op, flags | LOOKUP_REVAL); 3559 restore_nameidata(); 3560 return filp; 3561 } 3562 3563 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 3564 const char *name, const struct open_flags *op) 3565 { 3566 struct nameidata nd; 3567 struct file *file; 3568 struct filename *filename; 3569 int flags = op->lookup_flags | LOOKUP_ROOT; 3570 3571 nd.root.mnt = mnt; 3572 nd.root.dentry = dentry; 3573 3574 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN) 3575 return ERR_PTR(-ELOOP); 3576 3577 filename = getname_kernel(name); 3578 if (IS_ERR(filename)) 3579 return ERR_CAST(filename); 3580 3581 set_nameidata(&nd, -1, filename); 3582 file = path_openat(&nd, op, flags | LOOKUP_RCU); 3583 if (unlikely(file == ERR_PTR(-ECHILD))) 3584 file = path_openat(&nd, op, flags); 3585 if (unlikely(file == ERR_PTR(-ESTALE))) 3586 file = path_openat(&nd, op, flags | LOOKUP_REVAL); 3587 restore_nameidata(); 3588 putname(filename); 3589 return file; 3590 } 3591 3592 static struct dentry *filename_create(int dfd, struct filename *name, 3593 struct path *path, unsigned int lookup_flags) 3594 { 3595 struct dentry *dentry = ERR_PTR(-EEXIST); 3596 struct qstr last; 3597 int type; 3598 int err2; 3599 int error; 3600 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY); 3601 3602 /* 3603 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any 3604 * other flags passed in are ignored! 3605 */ 3606 lookup_flags &= LOOKUP_REVAL; 3607 3608 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type); 3609 if (IS_ERR(name)) 3610 return ERR_CAST(name); 3611 3612 /* 3613 * Yucky last component or no last component at all? 3614 * (foo/., foo/.., /////) 3615 */ 3616 if (unlikely(type != LAST_NORM)) 3617 goto out; 3618 3619 /* don't fail immediately if it's r/o, at least try to report other errors */ 3620 err2 = mnt_want_write(path->mnt); 3621 /* 3622 * Do the final lookup. 3623 */ 3624 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL; 3625 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 3626 dentry = __lookup_hash(&last, path->dentry, lookup_flags); 3627 if (IS_ERR(dentry)) 3628 goto unlock; 3629 3630 error = -EEXIST; 3631 if (d_is_positive(dentry)) 3632 goto fail; 3633 3634 /* 3635 * Special case - lookup gave negative, but... we had foo/bar/ 3636 * From the vfs_mknod() POV we just have a negative dentry - 3637 * all is fine. Let's be bastards - you had / on the end, you've 3638 * been asking for (non-existent) directory. -ENOENT for you. 3639 */ 3640 if (unlikely(!is_dir && last.name[last.len])) { 3641 error = -ENOENT; 3642 goto fail; 3643 } 3644 if (unlikely(err2)) { 3645 error = err2; 3646 goto fail; 3647 } 3648 putname(name); 3649 return dentry; 3650 fail: 3651 dput(dentry); 3652 dentry = ERR_PTR(error); 3653 unlock: 3654 inode_unlock(path->dentry->d_inode); 3655 if (!err2) 3656 mnt_drop_write(path->mnt); 3657 out: 3658 path_put(path); 3659 putname(name); 3660 return dentry; 3661 } 3662 3663 struct dentry *kern_path_create(int dfd, const char *pathname, 3664 struct path *path, unsigned int lookup_flags) 3665 { 3666 return filename_create(dfd, getname_kernel(pathname), 3667 path, lookup_flags); 3668 } 3669 EXPORT_SYMBOL(kern_path_create); 3670 3671 void done_path_create(struct path *path, struct dentry *dentry) 3672 { 3673 dput(dentry); 3674 inode_unlock(path->dentry->d_inode); 3675 mnt_drop_write(path->mnt); 3676 path_put(path); 3677 } 3678 EXPORT_SYMBOL(done_path_create); 3679 3680 inline struct dentry *user_path_create(int dfd, const char __user *pathname, 3681 struct path *path, unsigned int lookup_flags) 3682 { 3683 return filename_create(dfd, getname(pathname), path, lookup_flags); 3684 } 3685 EXPORT_SYMBOL(user_path_create); 3686 3687 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 3688 { 3689 int error = may_create(dir, dentry); 3690 3691 if (error) 3692 return error; 3693 3694 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 3695 return -EPERM; 3696 3697 if (!dir->i_op->mknod) 3698 return -EPERM; 3699 3700 error = devcgroup_inode_mknod(mode, dev); 3701 if (error) 3702 return error; 3703 3704 error = security_inode_mknod(dir, dentry, mode, dev); 3705 if (error) 3706 return error; 3707 3708 error = dir->i_op->mknod(dir, dentry, mode, dev); 3709 if (!error) 3710 fsnotify_create(dir, dentry); 3711 return error; 3712 } 3713 EXPORT_SYMBOL(vfs_mknod); 3714 3715 static int may_mknod(umode_t mode) 3716 { 3717 switch (mode & S_IFMT) { 3718 case S_IFREG: 3719 case S_IFCHR: 3720 case S_IFBLK: 3721 case S_IFIFO: 3722 case S_IFSOCK: 3723 case 0: /* zero mode translates to S_IFREG */ 3724 return 0; 3725 case S_IFDIR: 3726 return -EPERM; 3727 default: 3728 return -EINVAL; 3729 } 3730 } 3731 3732 long do_mknodat(int dfd, const char __user *filename, umode_t mode, 3733 unsigned int dev) 3734 { 3735 struct dentry *dentry; 3736 struct path path; 3737 int error; 3738 unsigned int lookup_flags = 0; 3739 3740 error = may_mknod(mode); 3741 if (error) 3742 return error; 3743 retry: 3744 dentry = user_path_create(dfd, filename, &path, lookup_flags); 3745 if (IS_ERR(dentry)) 3746 return PTR_ERR(dentry); 3747 3748 if (!IS_POSIXACL(path.dentry->d_inode)) 3749 mode &= ~current_umask(); 3750 error = security_path_mknod(&path, dentry, mode, dev); 3751 if (error) 3752 goto out; 3753 switch (mode & S_IFMT) { 3754 case 0: case S_IFREG: 3755 error = vfs_create(path.dentry->d_inode,dentry,mode,true); 3756 if (!error) 3757 ima_post_path_mknod(dentry); 3758 break; 3759 case S_IFCHR: case S_IFBLK: 3760 error = vfs_mknod(path.dentry->d_inode,dentry,mode, 3761 new_decode_dev(dev)); 3762 break; 3763 case S_IFIFO: case S_IFSOCK: 3764 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0); 3765 break; 3766 } 3767 out: 3768 done_path_create(&path, dentry); 3769 if (retry_estale(error, lookup_flags)) { 3770 lookup_flags |= LOOKUP_REVAL; 3771 goto retry; 3772 } 3773 return error; 3774 } 3775 3776 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3777 unsigned int, dev) 3778 { 3779 return do_mknodat(dfd, filename, mode, dev); 3780 } 3781 3782 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3783 { 3784 return do_mknodat(AT_FDCWD, filename, mode, dev); 3785 } 3786 3787 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 3788 { 3789 int error = may_create(dir, dentry); 3790 unsigned max_links = dir->i_sb->s_max_links; 3791 3792 if (error) 3793 return error; 3794 3795 if (!dir->i_op->mkdir) 3796 return -EPERM; 3797 3798 mode &= (S_IRWXUGO|S_ISVTX); 3799 error = security_inode_mkdir(dir, dentry, mode); 3800 if (error) 3801 return error; 3802 3803 if (max_links && dir->i_nlink >= max_links) 3804 return -EMLINK; 3805 3806 error = dir->i_op->mkdir(dir, dentry, mode); 3807 if (!error) 3808 fsnotify_mkdir(dir, dentry); 3809 return error; 3810 } 3811 EXPORT_SYMBOL(vfs_mkdir); 3812 3813 long do_mkdirat(int dfd, const char __user *pathname, umode_t mode) 3814 { 3815 struct dentry *dentry; 3816 struct path path; 3817 int error; 3818 unsigned int lookup_flags = LOOKUP_DIRECTORY; 3819 3820 retry: 3821 dentry = user_path_create(dfd, pathname, &path, lookup_flags); 3822 if (IS_ERR(dentry)) 3823 return PTR_ERR(dentry); 3824 3825 if (!IS_POSIXACL(path.dentry->d_inode)) 3826 mode &= ~current_umask(); 3827 error = security_path_mkdir(&path, dentry, mode); 3828 if (!error) 3829 error = vfs_mkdir(path.dentry->d_inode, dentry, mode); 3830 done_path_create(&path, dentry); 3831 if (retry_estale(error, lookup_flags)) { 3832 lookup_flags |= LOOKUP_REVAL; 3833 goto retry; 3834 } 3835 return error; 3836 } 3837 3838 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 3839 { 3840 return do_mkdirat(dfd, pathname, mode); 3841 } 3842 3843 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 3844 { 3845 return do_mkdirat(AT_FDCWD, pathname, mode); 3846 } 3847 3848 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 3849 { 3850 int error = may_delete(dir, dentry, 1); 3851 3852 if (error) 3853 return error; 3854 3855 if (!dir->i_op->rmdir) 3856 return -EPERM; 3857 3858 dget(dentry); 3859 inode_lock(dentry->d_inode); 3860 3861 error = -EBUSY; 3862 if (is_local_mountpoint(dentry)) 3863 goto out; 3864 3865 error = security_inode_rmdir(dir, dentry); 3866 if (error) 3867 goto out; 3868 3869 shrink_dcache_parent(dentry); 3870 error = dir->i_op->rmdir(dir, dentry); 3871 if (error) 3872 goto out; 3873 3874 dentry->d_inode->i_flags |= S_DEAD; 3875 dont_mount(dentry); 3876 detach_mounts(dentry); 3877 3878 out: 3879 inode_unlock(dentry->d_inode); 3880 dput(dentry); 3881 if (!error) 3882 d_delete(dentry); 3883 return error; 3884 } 3885 EXPORT_SYMBOL(vfs_rmdir); 3886 3887 long do_rmdir(int dfd, const char __user *pathname) 3888 { 3889 int error = 0; 3890 struct filename *name; 3891 struct dentry *dentry; 3892 struct path path; 3893 struct qstr last; 3894 int type; 3895 unsigned int lookup_flags = 0; 3896 retry: 3897 name = filename_parentat(dfd, getname(pathname), lookup_flags, 3898 &path, &last, &type); 3899 if (IS_ERR(name)) 3900 return PTR_ERR(name); 3901 3902 switch (type) { 3903 case LAST_DOTDOT: 3904 error = -ENOTEMPTY; 3905 goto exit1; 3906 case LAST_DOT: 3907 error = -EINVAL; 3908 goto exit1; 3909 case LAST_ROOT: 3910 error = -EBUSY; 3911 goto exit1; 3912 } 3913 3914 error = mnt_want_write(path.mnt); 3915 if (error) 3916 goto exit1; 3917 3918 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 3919 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 3920 error = PTR_ERR(dentry); 3921 if (IS_ERR(dentry)) 3922 goto exit2; 3923 if (!dentry->d_inode) { 3924 error = -ENOENT; 3925 goto exit3; 3926 } 3927 error = security_path_rmdir(&path, dentry); 3928 if (error) 3929 goto exit3; 3930 error = vfs_rmdir(path.dentry->d_inode, dentry); 3931 exit3: 3932 dput(dentry); 3933 exit2: 3934 inode_unlock(path.dentry->d_inode); 3935 mnt_drop_write(path.mnt); 3936 exit1: 3937 path_put(&path); 3938 putname(name); 3939 if (retry_estale(error, lookup_flags)) { 3940 lookup_flags |= LOOKUP_REVAL; 3941 goto retry; 3942 } 3943 return error; 3944 } 3945 3946 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 3947 { 3948 return do_rmdir(AT_FDCWD, pathname); 3949 } 3950 3951 /** 3952 * vfs_unlink - unlink a filesystem object 3953 * @dir: parent directory 3954 * @dentry: victim 3955 * @delegated_inode: returns victim inode, if the inode is delegated. 3956 * 3957 * The caller must hold dir->i_mutex. 3958 * 3959 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 3960 * return a reference to the inode in delegated_inode. The caller 3961 * should then break the delegation on that inode and retry. Because 3962 * breaking a delegation may take a long time, the caller should drop 3963 * dir->i_mutex before doing so. 3964 * 3965 * Alternatively, a caller may pass NULL for delegated_inode. This may 3966 * be appropriate for callers that expect the underlying filesystem not 3967 * to be NFS exported. 3968 */ 3969 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode) 3970 { 3971 struct inode *target = dentry->d_inode; 3972 int error = may_delete(dir, dentry, 0); 3973 3974 if (error) 3975 return error; 3976 3977 if (!dir->i_op->unlink) 3978 return -EPERM; 3979 3980 inode_lock(target); 3981 if (is_local_mountpoint(dentry)) 3982 error = -EBUSY; 3983 else { 3984 error = security_inode_unlink(dir, dentry); 3985 if (!error) { 3986 error = try_break_deleg(target, delegated_inode); 3987 if (error) 3988 goto out; 3989 error = dir->i_op->unlink(dir, dentry); 3990 if (!error) { 3991 dont_mount(dentry); 3992 detach_mounts(dentry); 3993 } 3994 } 3995 } 3996 out: 3997 inode_unlock(target); 3998 3999 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 4000 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 4001 fsnotify_link_count(target); 4002 d_delete(dentry); 4003 } 4004 4005 return error; 4006 } 4007 EXPORT_SYMBOL(vfs_unlink); 4008 4009 /* 4010 * Make sure that the actual truncation of the file will occur outside its 4011 * directory's i_mutex. Truncate can take a long time if there is a lot of 4012 * writeout happening, and we don't want to prevent access to the directory 4013 * while waiting on the I/O. 4014 */ 4015 long do_unlinkat(int dfd, struct filename *name) 4016 { 4017 int error; 4018 struct dentry *dentry; 4019 struct path path; 4020 struct qstr last; 4021 int type; 4022 struct inode *inode = NULL; 4023 struct inode *delegated_inode = NULL; 4024 unsigned int lookup_flags = 0; 4025 retry: 4026 name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 4027 if (IS_ERR(name)) 4028 return PTR_ERR(name); 4029 4030 error = -EISDIR; 4031 if (type != LAST_NORM) 4032 goto exit1; 4033 4034 error = mnt_want_write(path.mnt); 4035 if (error) 4036 goto exit1; 4037 retry_deleg: 4038 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4039 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 4040 error = PTR_ERR(dentry); 4041 if (!IS_ERR(dentry)) { 4042 /* Why not before? Because we want correct error value */ 4043 if (last.name[last.len]) 4044 goto slashes; 4045 inode = dentry->d_inode; 4046 if (d_is_negative(dentry)) 4047 goto slashes; 4048 ihold(inode); 4049 error = security_path_unlink(&path, dentry); 4050 if (error) 4051 goto exit2; 4052 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode); 4053 exit2: 4054 dput(dentry); 4055 } 4056 inode_unlock(path.dentry->d_inode); 4057 if (inode) 4058 iput(inode); /* truncate the inode here */ 4059 inode = NULL; 4060 if (delegated_inode) { 4061 error = break_deleg_wait(&delegated_inode); 4062 if (!error) 4063 goto retry_deleg; 4064 } 4065 mnt_drop_write(path.mnt); 4066 exit1: 4067 path_put(&path); 4068 if (retry_estale(error, lookup_flags)) { 4069 lookup_flags |= LOOKUP_REVAL; 4070 inode = NULL; 4071 goto retry; 4072 } 4073 putname(name); 4074 return error; 4075 4076 slashes: 4077 if (d_is_negative(dentry)) 4078 error = -ENOENT; 4079 else if (d_is_dir(dentry)) 4080 error = -EISDIR; 4081 else 4082 error = -ENOTDIR; 4083 goto exit2; 4084 } 4085 4086 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 4087 { 4088 if ((flag & ~AT_REMOVEDIR) != 0) 4089 return -EINVAL; 4090 4091 if (flag & AT_REMOVEDIR) 4092 return do_rmdir(dfd, pathname); 4093 4094 return do_unlinkat(dfd, getname(pathname)); 4095 } 4096 4097 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 4098 { 4099 return do_unlinkat(AT_FDCWD, getname(pathname)); 4100 } 4101 4102 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 4103 { 4104 int error = may_create(dir, dentry); 4105 4106 if (error) 4107 return error; 4108 4109 if (!dir->i_op->symlink) 4110 return -EPERM; 4111 4112 error = security_inode_symlink(dir, dentry, oldname); 4113 if (error) 4114 return error; 4115 4116 error = dir->i_op->symlink(dir, dentry, oldname); 4117 if (!error) 4118 fsnotify_create(dir, dentry); 4119 return error; 4120 } 4121 EXPORT_SYMBOL(vfs_symlink); 4122 4123 long do_symlinkat(const char __user *oldname, int newdfd, 4124 const char __user *newname) 4125 { 4126 int error; 4127 struct filename *from; 4128 struct dentry *dentry; 4129 struct path path; 4130 unsigned int lookup_flags = 0; 4131 4132 from = getname(oldname); 4133 if (IS_ERR(from)) 4134 return PTR_ERR(from); 4135 retry: 4136 dentry = user_path_create(newdfd, newname, &path, lookup_flags); 4137 error = PTR_ERR(dentry); 4138 if (IS_ERR(dentry)) 4139 goto out_putname; 4140 4141 error = security_path_symlink(&path, dentry, from->name); 4142 if (!error) 4143 error = vfs_symlink(path.dentry->d_inode, dentry, from->name); 4144 done_path_create(&path, dentry); 4145 if (retry_estale(error, lookup_flags)) { 4146 lookup_flags |= LOOKUP_REVAL; 4147 goto retry; 4148 } 4149 out_putname: 4150 putname(from); 4151 return error; 4152 } 4153 4154 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 4155 int, newdfd, const char __user *, newname) 4156 { 4157 return do_symlinkat(oldname, newdfd, newname); 4158 } 4159 4160 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 4161 { 4162 return do_symlinkat(oldname, AT_FDCWD, newname); 4163 } 4164 4165 /** 4166 * vfs_link - create a new link 4167 * @old_dentry: object to be linked 4168 * @dir: new parent 4169 * @new_dentry: where to create the new link 4170 * @delegated_inode: returns inode needing a delegation break 4171 * 4172 * The caller must hold dir->i_mutex 4173 * 4174 * If vfs_link discovers a delegation on the to-be-linked file in need 4175 * of breaking, it will return -EWOULDBLOCK and return a reference to the 4176 * inode in delegated_inode. The caller should then break the delegation 4177 * and retry. Because breaking a delegation may take a long time, the 4178 * caller should drop the i_mutex before doing so. 4179 * 4180 * Alternatively, a caller may pass NULL for delegated_inode. This may 4181 * be appropriate for callers that expect the underlying filesystem not 4182 * to be NFS exported. 4183 */ 4184 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode) 4185 { 4186 struct inode *inode = old_dentry->d_inode; 4187 unsigned max_links = dir->i_sb->s_max_links; 4188 int error; 4189 4190 if (!inode) 4191 return -ENOENT; 4192 4193 error = may_create(dir, new_dentry); 4194 if (error) 4195 return error; 4196 4197 if (dir->i_sb != inode->i_sb) 4198 return -EXDEV; 4199 4200 /* 4201 * A link to an append-only or immutable file cannot be created. 4202 */ 4203 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4204 return -EPERM; 4205 /* 4206 * Updating the link count will likely cause i_uid and i_gid to 4207 * be writen back improperly if their true value is unknown to 4208 * the vfs. 4209 */ 4210 if (HAS_UNMAPPED_ID(inode)) 4211 return -EPERM; 4212 if (!dir->i_op->link) 4213 return -EPERM; 4214 if (S_ISDIR(inode->i_mode)) 4215 return -EPERM; 4216 4217 error = security_inode_link(old_dentry, dir, new_dentry); 4218 if (error) 4219 return error; 4220 4221 inode_lock(inode); 4222 /* Make sure we don't allow creating hardlink to an unlinked file */ 4223 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 4224 error = -ENOENT; 4225 else if (max_links && inode->i_nlink >= max_links) 4226 error = -EMLINK; 4227 else { 4228 error = try_break_deleg(inode, delegated_inode); 4229 if (!error) 4230 error = dir->i_op->link(old_dentry, dir, new_dentry); 4231 } 4232 4233 if (!error && (inode->i_state & I_LINKABLE)) { 4234 spin_lock(&inode->i_lock); 4235 inode->i_state &= ~I_LINKABLE; 4236 spin_unlock(&inode->i_lock); 4237 } 4238 inode_unlock(inode); 4239 if (!error) 4240 fsnotify_link(dir, inode, new_dentry); 4241 return error; 4242 } 4243 EXPORT_SYMBOL(vfs_link); 4244 4245 /* 4246 * Hardlinks are often used in delicate situations. We avoid 4247 * security-related surprises by not following symlinks on the 4248 * newname. --KAB 4249 * 4250 * We don't follow them on the oldname either to be compatible 4251 * with linux 2.0, and to avoid hard-linking to directories 4252 * and other special files. --ADM 4253 */ 4254 int do_linkat(int olddfd, const char __user *oldname, int newdfd, 4255 const char __user *newname, int flags) 4256 { 4257 struct dentry *new_dentry; 4258 struct path old_path, new_path; 4259 struct inode *delegated_inode = NULL; 4260 int how = 0; 4261 int error; 4262 4263 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 4264 return -EINVAL; 4265 /* 4266 * To use null names we require CAP_DAC_READ_SEARCH 4267 * This ensures that not everyone will be able to create 4268 * handlink using the passed filedescriptor. 4269 */ 4270 if (flags & AT_EMPTY_PATH) { 4271 if (!capable(CAP_DAC_READ_SEARCH)) 4272 return -ENOENT; 4273 how = LOOKUP_EMPTY; 4274 } 4275 4276 if (flags & AT_SYMLINK_FOLLOW) 4277 how |= LOOKUP_FOLLOW; 4278 retry: 4279 error = user_path_at(olddfd, oldname, how, &old_path); 4280 if (error) 4281 return error; 4282 4283 new_dentry = user_path_create(newdfd, newname, &new_path, 4284 (how & LOOKUP_REVAL)); 4285 error = PTR_ERR(new_dentry); 4286 if (IS_ERR(new_dentry)) 4287 goto out; 4288 4289 error = -EXDEV; 4290 if (old_path.mnt != new_path.mnt) 4291 goto out_dput; 4292 error = may_linkat(&old_path); 4293 if (unlikely(error)) 4294 goto out_dput; 4295 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4296 if (error) 4297 goto out_dput; 4298 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode); 4299 out_dput: 4300 done_path_create(&new_path, new_dentry); 4301 if (delegated_inode) { 4302 error = break_deleg_wait(&delegated_inode); 4303 if (!error) { 4304 path_put(&old_path); 4305 goto retry; 4306 } 4307 } 4308 if (retry_estale(error, how)) { 4309 path_put(&old_path); 4310 how |= LOOKUP_REVAL; 4311 goto retry; 4312 } 4313 out: 4314 path_put(&old_path); 4315 4316 return error; 4317 } 4318 4319 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 4320 int, newdfd, const char __user *, newname, int, flags) 4321 { 4322 return do_linkat(olddfd, oldname, newdfd, newname, flags); 4323 } 4324 4325 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4326 { 4327 return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4328 } 4329 4330 /** 4331 * vfs_rename - rename a filesystem object 4332 * @old_dir: parent of source 4333 * @old_dentry: source 4334 * @new_dir: parent of destination 4335 * @new_dentry: destination 4336 * @delegated_inode: returns an inode needing a delegation break 4337 * @flags: rename flags 4338 * 4339 * The caller must hold multiple mutexes--see lock_rename()). 4340 * 4341 * If vfs_rename discovers a delegation in need of breaking at either 4342 * the source or destination, it will return -EWOULDBLOCK and return a 4343 * reference to the inode in delegated_inode. The caller should then 4344 * break the delegation and retry. Because breaking a delegation may 4345 * take a long time, the caller should drop all locks before doing 4346 * so. 4347 * 4348 * Alternatively, a caller may pass NULL for delegated_inode. This may 4349 * be appropriate for callers that expect the underlying filesystem not 4350 * to be NFS exported. 4351 * 4352 * The worst of all namespace operations - renaming directory. "Perverted" 4353 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4354 * Problems: 4355 * 4356 * a) we can get into loop creation. 4357 * b) race potential - two innocent renames can create a loop together. 4358 * That's where 4.4 screws up. Current fix: serialization on 4359 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4360 * story. 4361 * c) we have to lock _four_ objects - parents and victim (if it exists), 4362 * and source (if it is not a directory). 4363 * And that - after we got ->i_mutex on parents (until then we don't know 4364 * whether the target exists). Solution: try to be smart with locking 4365 * order for inodes. We rely on the fact that tree topology may change 4366 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4367 * move will be locked. Thus we can rank directories by the tree 4368 * (ancestors first) and rank all non-directories after them. 4369 * That works since everybody except rename does "lock parent, lookup, 4370 * lock child" and rename is under ->s_vfs_rename_mutex. 4371 * HOWEVER, it relies on the assumption that any object with ->lookup() 4372 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4373 * we'd better make sure that there's no link(2) for them. 4374 * d) conversion from fhandle to dentry may come in the wrong moment - when 4375 * we are removing the target. Solution: we will have to grab ->i_mutex 4376 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4377 * ->i_mutex on parents, which works but leads to some truly excessive 4378 * locking]. 4379 */ 4380 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 4381 struct inode *new_dir, struct dentry *new_dentry, 4382 struct inode **delegated_inode, unsigned int flags) 4383 { 4384 int error; 4385 bool is_dir = d_is_dir(old_dentry); 4386 struct inode *source = old_dentry->d_inode; 4387 struct inode *target = new_dentry->d_inode; 4388 bool new_is_dir = false; 4389 unsigned max_links = new_dir->i_sb->s_max_links; 4390 struct name_snapshot old_name; 4391 4392 if (source == target) 4393 return 0; 4394 4395 error = may_delete(old_dir, old_dentry, is_dir); 4396 if (error) 4397 return error; 4398 4399 if (!target) { 4400 error = may_create(new_dir, new_dentry); 4401 } else { 4402 new_is_dir = d_is_dir(new_dentry); 4403 4404 if (!(flags & RENAME_EXCHANGE)) 4405 error = may_delete(new_dir, new_dentry, is_dir); 4406 else 4407 error = may_delete(new_dir, new_dentry, new_is_dir); 4408 } 4409 if (error) 4410 return error; 4411 4412 if (!old_dir->i_op->rename) 4413 return -EPERM; 4414 4415 /* 4416 * If we are going to change the parent - check write permissions, 4417 * we'll need to flip '..'. 4418 */ 4419 if (new_dir != old_dir) { 4420 if (is_dir) { 4421 error = inode_permission(source, MAY_WRITE); 4422 if (error) 4423 return error; 4424 } 4425 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4426 error = inode_permission(target, MAY_WRITE); 4427 if (error) 4428 return error; 4429 } 4430 } 4431 4432 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 4433 flags); 4434 if (error) 4435 return error; 4436 4437 take_dentry_name_snapshot(&old_name, old_dentry); 4438 dget(new_dentry); 4439 if (!is_dir || (flags & RENAME_EXCHANGE)) 4440 lock_two_nondirectories(source, target); 4441 else if (target) 4442 inode_lock(target); 4443 4444 error = -EBUSY; 4445 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 4446 goto out; 4447 4448 if (max_links && new_dir != old_dir) { 4449 error = -EMLINK; 4450 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 4451 goto out; 4452 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 4453 old_dir->i_nlink >= max_links) 4454 goto out; 4455 } 4456 if (is_dir && !(flags & RENAME_EXCHANGE) && target) 4457 shrink_dcache_parent(new_dentry); 4458 if (!is_dir) { 4459 error = try_break_deleg(source, delegated_inode); 4460 if (error) 4461 goto out; 4462 } 4463 if (target && !new_is_dir) { 4464 error = try_break_deleg(target, delegated_inode); 4465 if (error) 4466 goto out; 4467 } 4468 error = old_dir->i_op->rename(old_dir, old_dentry, 4469 new_dir, new_dentry, flags); 4470 if (error) 4471 goto out; 4472 4473 if (!(flags & RENAME_EXCHANGE) && target) { 4474 if (is_dir) 4475 target->i_flags |= S_DEAD; 4476 dont_mount(new_dentry); 4477 detach_mounts(new_dentry); 4478 } 4479 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 4480 if (!(flags & RENAME_EXCHANGE)) 4481 d_move(old_dentry, new_dentry); 4482 else 4483 d_exchange(old_dentry, new_dentry); 4484 } 4485 out: 4486 if (!is_dir || (flags & RENAME_EXCHANGE)) 4487 unlock_two_nondirectories(source, target); 4488 else if (target) 4489 inode_unlock(target); 4490 dput(new_dentry); 4491 if (!error) { 4492 fsnotify_move(old_dir, new_dir, old_name.name, is_dir, 4493 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 4494 if (flags & RENAME_EXCHANGE) { 4495 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name, 4496 new_is_dir, NULL, new_dentry); 4497 } 4498 } 4499 release_dentry_name_snapshot(&old_name); 4500 4501 return error; 4502 } 4503 EXPORT_SYMBOL(vfs_rename); 4504 4505 static int do_renameat2(int olddfd, const char __user *oldname, int newdfd, 4506 const char __user *newname, unsigned int flags) 4507 { 4508 struct dentry *old_dentry, *new_dentry; 4509 struct dentry *trap; 4510 struct path old_path, new_path; 4511 struct qstr old_last, new_last; 4512 int old_type, new_type; 4513 struct inode *delegated_inode = NULL; 4514 struct filename *from; 4515 struct filename *to; 4516 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET; 4517 bool should_retry = false; 4518 int error; 4519 4520 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4521 return -EINVAL; 4522 4523 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 4524 (flags & RENAME_EXCHANGE)) 4525 return -EINVAL; 4526 4527 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD)) 4528 return -EPERM; 4529 4530 if (flags & RENAME_EXCHANGE) 4531 target_flags = 0; 4532 4533 retry: 4534 from = filename_parentat(olddfd, getname(oldname), lookup_flags, 4535 &old_path, &old_last, &old_type); 4536 if (IS_ERR(from)) { 4537 error = PTR_ERR(from); 4538 goto exit; 4539 } 4540 4541 to = filename_parentat(newdfd, getname(newname), lookup_flags, 4542 &new_path, &new_last, &new_type); 4543 if (IS_ERR(to)) { 4544 error = PTR_ERR(to); 4545 goto exit1; 4546 } 4547 4548 error = -EXDEV; 4549 if (old_path.mnt != new_path.mnt) 4550 goto exit2; 4551 4552 error = -EBUSY; 4553 if (old_type != LAST_NORM) 4554 goto exit2; 4555 4556 if (flags & RENAME_NOREPLACE) 4557 error = -EEXIST; 4558 if (new_type != LAST_NORM) 4559 goto exit2; 4560 4561 error = mnt_want_write(old_path.mnt); 4562 if (error) 4563 goto exit2; 4564 4565 retry_deleg: 4566 trap = lock_rename(new_path.dentry, old_path.dentry); 4567 4568 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags); 4569 error = PTR_ERR(old_dentry); 4570 if (IS_ERR(old_dentry)) 4571 goto exit3; 4572 /* source must exist */ 4573 error = -ENOENT; 4574 if (d_is_negative(old_dentry)) 4575 goto exit4; 4576 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags); 4577 error = PTR_ERR(new_dentry); 4578 if (IS_ERR(new_dentry)) 4579 goto exit4; 4580 error = -EEXIST; 4581 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 4582 goto exit5; 4583 if (flags & RENAME_EXCHANGE) { 4584 error = -ENOENT; 4585 if (d_is_negative(new_dentry)) 4586 goto exit5; 4587 4588 if (!d_is_dir(new_dentry)) { 4589 error = -ENOTDIR; 4590 if (new_last.name[new_last.len]) 4591 goto exit5; 4592 } 4593 } 4594 /* unless the source is a directory trailing slashes give -ENOTDIR */ 4595 if (!d_is_dir(old_dentry)) { 4596 error = -ENOTDIR; 4597 if (old_last.name[old_last.len]) 4598 goto exit5; 4599 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len]) 4600 goto exit5; 4601 } 4602 /* source should not be ancestor of target */ 4603 error = -EINVAL; 4604 if (old_dentry == trap) 4605 goto exit5; 4606 /* target should not be an ancestor of source */ 4607 if (!(flags & RENAME_EXCHANGE)) 4608 error = -ENOTEMPTY; 4609 if (new_dentry == trap) 4610 goto exit5; 4611 4612 error = security_path_rename(&old_path, old_dentry, 4613 &new_path, new_dentry, flags); 4614 if (error) 4615 goto exit5; 4616 error = vfs_rename(old_path.dentry->d_inode, old_dentry, 4617 new_path.dentry->d_inode, new_dentry, 4618 &delegated_inode, flags); 4619 exit5: 4620 dput(new_dentry); 4621 exit4: 4622 dput(old_dentry); 4623 exit3: 4624 unlock_rename(new_path.dentry, old_path.dentry); 4625 if (delegated_inode) { 4626 error = break_deleg_wait(&delegated_inode); 4627 if (!error) 4628 goto retry_deleg; 4629 } 4630 mnt_drop_write(old_path.mnt); 4631 exit2: 4632 if (retry_estale(error, lookup_flags)) 4633 should_retry = true; 4634 path_put(&new_path); 4635 putname(to); 4636 exit1: 4637 path_put(&old_path); 4638 putname(from); 4639 if (should_retry) { 4640 should_retry = false; 4641 lookup_flags |= LOOKUP_REVAL; 4642 goto retry; 4643 } 4644 exit: 4645 return error; 4646 } 4647 4648 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 4649 int, newdfd, const char __user *, newname, unsigned int, flags) 4650 { 4651 return do_renameat2(olddfd, oldname, newdfd, newname, flags); 4652 } 4653 4654 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 4655 int, newdfd, const char __user *, newname) 4656 { 4657 return do_renameat2(olddfd, oldname, newdfd, newname, 0); 4658 } 4659 4660 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 4661 { 4662 return do_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4663 } 4664 4665 int vfs_whiteout(struct inode *dir, struct dentry *dentry) 4666 { 4667 int error = may_create(dir, dentry); 4668 if (error) 4669 return error; 4670 4671 if (!dir->i_op->mknod) 4672 return -EPERM; 4673 4674 return dir->i_op->mknod(dir, dentry, 4675 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 4676 } 4677 EXPORT_SYMBOL(vfs_whiteout); 4678 4679 int readlink_copy(char __user *buffer, int buflen, const char *link) 4680 { 4681 int len = PTR_ERR(link); 4682 if (IS_ERR(link)) 4683 goto out; 4684 4685 len = strlen(link); 4686 if (len > (unsigned) buflen) 4687 len = buflen; 4688 if (copy_to_user(buffer, link, len)) 4689 len = -EFAULT; 4690 out: 4691 return len; 4692 } 4693 4694 /* 4695 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 4696 * have ->get_link() not calling nd_jump_link(). Using (or not using) it 4697 * for any given inode is up to filesystem. 4698 */ 4699 static int generic_readlink(struct dentry *dentry, char __user *buffer, 4700 int buflen) 4701 { 4702 DEFINE_DELAYED_CALL(done); 4703 struct inode *inode = d_inode(dentry); 4704 const char *link = inode->i_link; 4705 int res; 4706 4707 if (!link) { 4708 link = inode->i_op->get_link(dentry, inode, &done); 4709 if (IS_ERR(link)) 4710 return PTR_ERR(link); 4711 } 4712 res = readlink_copy(buffer, buflen, link); 4713 do_delayed_call(&done); 4714 return res; 4715 } 4716 4717 /** 4718 * vfs_readlink - copy symlink body into userspace buffer 4719 * @dentry: dentry on which to get symbolic link 4720 * @buffer: user memory pointer 4721 * @buflen: size of buffer 4722 * 4723 * Does not touch atime. That's up to the caller if necessary 4724 * 4725 * Does not call security hook. 4726 */ 4727 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4728 { 4729 struct inode *inode = d_inode(dentry); 4730 4731 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) { 4732 if (unlikely(inode->i_op->readlink)) 4733 return inode->i_op->readlink(dentry, buffer, buflen); 4734 4735 if (!d_is_symlink(dentry)) 4736 return -EINVAL; 4737 4738 spin_lock(&inode->i_lock); 4739 inode->i_opflags |= IOP_DEFAULT_READLINK; 4740 spin_unlock(&inode->i_lock); 4741 } 4742 4743 return generic_readlink(dentry, buffer, buflen); 4744 } 4745 EXPORT_SYMBOL(vfs_readlink); 4746 4747 /** 4748 * vfs_get_link - get symlink body 4749 * @dentry: dentry on which to get symbolic link 4750 * @done: caller needs to free returned data with this 4751 * 4752 * Calls security hook and i_op->get_link() on the supplied inode. 4753 * 4754 * It does not touch atime. That's up to the caller if necessary. 4755 * 4756 * Does not work on "special" symlinks like /proc/$$/fd/N 4757 */ 4758 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done) 4759 { 4760 const char *res = ERR_PTR(-EINVAL); 4761 struct inode *inode = d_inode(dentry); 4762 4763 if (d_is_symlink(dentry)) { 4764 res = ERR_PTR(security_inode_readlink(dentry)); 4765 if (!res) 4766 res = inode->i_op->get_link(dentry, inode, done); 4767 } 4768 return res; 4769 } 4770 EXPORT_SYMBOL(vfs_get_link); 4771 4772 /* get the link contents into pagecache */ 4773 const char *page_get_link(struct dentry *dentry, struct inode *inode, 4774 struct delayed_call *callback) 4775 { 4776 char *kaddr; 4777 struct page *page; 4778 struct address_space *mapping = inode->i_mapping; 4779 4780 if (!dentry) { 4781 page = find_get_page(mapping, 0); 4782 if (!page) 4783 return ERR_PTR(-ECHILD); 4784 if (!PageUptodate(page)) { 4785 put_page(page); 4786 return ERR_PTR(-ECHILD); 4787 } 4788 } else { 4789 page = read_mapping_page(mapping, 0, NULL); 4790 if (IS_ERR(page)) 4791 return (char*)page; 4792 } 4793 set_delayed_call(callback, page_put_link, page); 4794 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM); 4795 kaddr = page_address(page); 4796 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1); 4797 return kaddr; 4798 } 4799 4800 EXPORT_SYMBOL(page_get_link); 4801 4802 void page_put_link(void *arg) 4803 { 4804 put_page(arg); 4805 } 4806 EXPORT_SYMBOL(page_put_link); 4807 4808 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4809 { 4810 DEFINE_DELAYED_CALL(done); 4811 int res = readlink_copy(buffer, buflen, 4812 page_get_link(dentry, d_inode(dentry), 4813 &done)); 4814 do_delayed_call(&done); 4815 return res; 4816 } 4817 EXPORT_SYMBOL(page_readlink); 4818 4819 /* 4820 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 4821 */ 4822 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 4823 { 4824 struct address_space *mapping = inode->i_mapping; 4825 struct page *page; 4826 void *fsdata; 4827 int err; 4828 unsigned int flags = 0; 4829 if (nofs) 4830 flags |= AOP_FLAG_NOFS; 4831 4832 retry: 4833 err = pagecache_write_begin(NULL, mapping, 0, len-1, 4834 flags, &page, &fsdata); 4835 if (err) 4836 goto fail; 4837 4838 memcpy(page_address(page), symname, len-1); 4839 4840 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 4841 page, fsdata); 4842 if (err < 0) 4843 goto fail; 4844 if (err < len-1) 4845 goto retry; 4846 4847 mark_inode_dirty(inode); 4848 return 0; 4849 fail: 4850 return err; 4851 } 4852 EXPORT_SYMBOL(__page_symlink); 4853 4854 int page_symlink(struct inode *inode, const char *symname, int len) 4855 { 4856 return __page_symlink(inode, symname, len, 4857 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS)); 4858 } 4859 EXPORT_SYMBOL(page_symlink); 4860 4861 const struct inode_operations page_symlink_inode_operations = { 4862 .get_link = page_get_link, 4863 }; 4864 EXPORT_SYMBOL(page_symlink_inode_operations); 4865