1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/namei.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * Some corrections by tytso. 10 */ 11 12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 13 * lookup logic. 14 */ 15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 16 */ 17 18 #include <linux/init.h> 19 #include <linux/export.h> 20 #include <linux/kernel.h> 21 #include <linux/slab.h> 22 #include <linux/fs.h> 23 #include <linux/namei.h> 24 #include <linux/pagemap.h> 25 #include <linux/sched/mm.h> 26 #include <linux/fsnotify.h> 27 #include <linux/personality.h> 28 #include <linux/security.h> 29 #include <linux/ima.h> 30 #include <linux/syscalls.h> 31 #include <linux/mount.h> 32 #include <linux/audit.h> 33 #include <linux/capability.h> 34 #include <linux/file.h> 35 #include <linux/fcntl.h> 36 #include <linux/device_cgroup.h> 37 #include <linux/fs_struct.h> 38 #include <linux/posix_acl.h> 39 #include <linux/hash.h> 40 #include <linux/bitops.h> 41 #include <linux/init_task.h> 42 #include <linux/uaccess.h> 43 44 #include "internal.h" 45 #include "mount.h" 46 47 /* [Feb-1997 T. Schoebel-Theuer] 48 * Fundamental changes in the pathname lookup mechanisms (namei) 49 * were necessary because of omirr. The reason is that omirr needs 50 * to know the _real_ pathname, not the user-supplied one, in case 51 * of symlinks (and also when transname replacements occur). 52 * 53 * The new code replaces the old recursive symlink resolution with 54 * an iterative one (in case of non-nested symlink chains). It does 55 * this with calls to <fs>_follow_link(). 56 * As a side effect, dir_namei(), _namei() and follow_link() are now 57 * replaced with a single function lookup_dentry() that can handle all 58 * the special cases of the former code. 59 * 60 * With the new dcache, the pathname is stored at each inode, at least as 61 * long as the refcount of the inode is positive. As a side effect, the 62 * size of the dcache depends on the inode cache and thus is dynamic. 63 * 64 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 65 * resolution to correspond with current state of the code. 66 * 67 * Note that the symlink resolution is not *completely* iterative. 68 * There is still a significant amount of tail- and mid- recursion in 69 * the algorithm. Also, note that <fs>_readlink() is not used in 70 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 71 * may return different results than <fs>_follow_link(). Many virtual 72 * filesystems (including /proc) exhibit this behavior. 73 */ 74 75 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 76 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 77 * and the name already exists in form of a symlink, try to create the new 78 * name indicated by the symlink. The old code always complained that the 79 * name already exists, due to not following the symlink even if its target 80 * is nonexistent. The new semantics affects also mknod() and link() when 81 * the name is a symlink pointing to a non-existent name. 82 * 83 * I don't know which semantics is the right one, since I have no access 84 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 85 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 86 * "old" one. Personally, I think the new semantics is much more logical. 87 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 88 * file does succeed in both HP-UX and SunOs, but not in Solaris 89 * and in the old Linux semantics. 90 */ 91 92 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 93 * semantics. See the comments in "open_namei" and "do_link" below. 94 * 95 * [10-Sep-98 Alan Modra] Another symlink change. 96 */ 97 98 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 99 * inside the path - always follow. 100 * in the last component in creation/removal/renaming - never follow. 101 * if LOOKUP_FOLLOW passed - follow. 102 * if the pathname has trailing slashes - follow. 103 * otherwise - don't follow. 104 * (applied in that order). 105 * 106 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 107 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 108 * During the 2.4 we need to fix the userland stuff depending on it - 109 * hopefully we will be able to get rid of that wart in 2.5. So far only 110 * XEmacs seems to be relying on it... 111 */ 112 /* 113 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 114 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 115 * any extra contention... 116 */ 117 118 /* In order to reduce some races, while at the same time doing additional 119 * checking and hopefully speeding things up, we copy filenames to the 120 * kernel data space before using them.. 121 * 122 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 123 * PATH_MAX includes the nul terminator --RR. 124 */ 125 126 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) 127 128 struct filename * 129 getname_flags(const char __user *filename, int flags, int *empty) 130 { 131 struct filename *result; 132 char *kname; 133 int len; 134 135 result = audit_reusename(filename); 136 if (result) 137 return result; 138 139 result = __getname(); 140 if (unlikely(!result)) 141 return ERR_PTR(-ENOMEM); 142 143 /* 144 * First, try to embed the struct filename inside the names_cache 145 * allocation 146 */ 147 kname = (char *)result->iname; 148 result->name = kname; 149 150 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); 151 if (unlikely(len < 0)) { 152 __putname(result); 153 return ERR_PTR(len); 154 } 155 156 /* 157 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 158 * separate struct filename so we can dedicate the entire 159 * names_cache allocation for the pathname, and re-do the copy from 160 * userland. 161 */ 162 if (unlikely(len == EMBEDDED_NAME_MAX)) { 163 const size_t size = offsetof(struct filename, iname[1]); 164 kname = (char *)result; 165 166 /* 167 * size is chosen that way we to guarantee that 168 * result->iname[0] is within the same object and that 169 * kname can't be equal to result->iname, no matter what. 170 */ 171 result = kzalloc(size, GFP_KERNEL); 172 if (unlikely(!result)) { 173 __putname(kname); 174 return ERR_PTR(-ENOMEM); 175 } 176 result->name = kname; 177 len = strncpy_from_user(kname, filename, PATH_MAX); 178 if (unlikely(len < 0)) { 179 __putname(kname); 180 kfree(result); 181 return ERR_PTR(len); 182 } 183 if (unlikely(len == PATH_MAX)) { 184 __putname(kname); 185 kfree(result); 186 return ERR_PTR(-ENAMETOOLONG); 187 } 188 } 189 190 result->refcnt = 1; 191 /* The empty path is special. */ 192 if (unlikely(!len)) { 193 if (empty) 194 *empty = 1; 195 if (!(flags & LOOKUP_EMPTY)) { 196 putname(result); 197 return ERR_PTR(-ENOENT); 198 } 199 } 200 201 result->uptr = filename; 202 result->aname = NULL; 203 audit_getname(result); 204 return result; 205 } 206 207 struct filename * 208 getname_uflags(const char __user *filename, int uflags) 209 { 210 int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 211 212 return getname_flags(filename, flags, NULL); 213 } 214 215 struct filename * 216 getname(const char __user * filename) 217 { 218 return getname_flags(filename, 0, NULL); 219 } 220 221 struct filename * 222 getname_kernel(const char * filename) 223 { 224 struct filename *result; 225 int len = strlen(filename) + 1; 226 227 result = __getname(); 228 if (unlikely(!result)) 229 return ERR_PTR(-ENOMEM); 230 231 if (len <= EMBEDDED_NAME_MAX) { 232 result->name = (char *)result->iname; 233 } else if (len <= PATH_MAX) { 234 const size_t size = offsetof(struct filename, iname[1]); 235 struct filename *tmp; 236 237 tmp = kmalloc(size, GFP_KERNEL); 238 if (unlikely(!tmp)) { 239 __putname(result); 240 return ERR_PTR(-ENOMEM); 241 } 242 tmp->name = (char *)result; 243 result = tmp; 244 } else { 245 __putname(result); 246 return ERR_PTR(-ENAMETOOLONG); 247 } 248 memcpy((char *)result->name, filename, len); 249 result->uptr = NULL; 250 result->aname = NULL; 251 result->refcnt = 1; 252 audit_getname(result); 253 254 return result; 255 } 256 257 void putname(struct filename *name) 258 { 259 if (IS_ERR(name)) 260 return; 261 262 BUG_ON(name->refcnt <= 0); 263 264 if (--name->refcnt > 0) 265 return; 266 267 if (name->name != name->iname) { 268 __putname(name->name); 269 kfree(name); 270 } else 271 __putname(name); 272 } 273 274 /** 275 * check_acl - perform ACL permission checking 276 * @mnt_userns: user namespace of the mount the inode was found from 277 * @inode: inode to check permissions on 278 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 279 * 280 * This function performs the ACL permission checking. Since this function 281 * retrieve POSIX acls it needs to know whether it is called from a blocking or 282 * non-blocking context and thus cares about the MAY_NOT_BLOCK bit. 283 * 284 * If the inode has been found through an idmapped mount the user namespace of 285 * the vfsmount must be passed through @mnt_userns. This function will then take 286 * care to map the inode according to @mnt_userns before checking permissions. 287 * On non-idmapped mounts or if permission checking is to be performed on the 288 * raw inode simply passs init_user_ns. 289 */ 290 static int check_acl(struct user_namespace *mnt_userns, 291 struct inode *inode, int mask) 292 { 293 #ifdef CONFIG_FS_POSIX_ACL 294 struct posix_acl *acl; 295 296 if (mask & MAY_NOT_BLOCK) { 297 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 298 if (!acl) 299 return -EAGAIN; 300 /* no ->get_acl() calls in RCU mode... */ 301 if (is_uncached_acl(acl)) 302 return -ECHILD; 303 return posix_acl_permission(mnt_userns, inode, acl, mask); 304 } 305 306 acl = get_acl(inode, ACL_TYPE_ACCESS); 307 if (IS_ERR(acl)) 308 return PTR_ERR(acl); 309 if (acl) { 310 int error = posix_acl_permission(mnt_userns, inode, acl, mask); 311 posix_acl_release(acl); 312 return error; 313 } 314 #endif 315 316 return -EAGAIN; 317 } 318 319 /** 320 * acl_permission_check - perform basic UNIX permission checking 321 * @mnt_userns: user namespace of the mount the inode was found from 322 * @inode: inode to check permissions on 323 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 324 * 325 * This function performs the basic UNIX permission checking. Since this 326 * function may retrieve POSIX acls it needs to know whether it is called from a 327 * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit. 328 * 329 * If the inode has been found through an idmapped mount the user namespace of 330 * the vfsmount must be passed through @mnt_userns. This function will then take 331 * care to map the inode according to @mnt_userns before checking permissions. 332 * On non-idmapped mounts or if permission checking is to be performed on the 333 * raw inode simply passs init_user_ns. 334 */ 335 static int acl_permission_check(struct user_namespace *mnt_userns, 336 struct inode *inode, int mask) 337 { 338 unsigned int mode = inode->i_mode; 339 kuid_t i_uid; 340 341 /* Are we the owner? If so, ACL's don't matter */ 342 i_uid = i_uid_into_mnt(mnt_userns, inode); 343 if (likely(uid_eq(current_fsuid(), i_uid))) { 344 mask &= 7; 345 mode >>= 6; 346 return (mask & ~mode) ? -EACCES : 0; 347 } 348 349 /* Do we have ACL's? */ 350 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 351 int error = check_acl(mnt_userns, inode, mask); 352 if (error != -EAGAIN) 353 return error; 354 } 355 356 /* Only RWX matters for group/other mode bits */ 357 mask &= 7; 358 359 /* 360 * Are the group permissions different from 361 * the other permissions in the bits we care 362 * about? Need to check group ownership if so. 363 */ 364 if (mask & (mode ^ (mode >> 3))) { 365 kgid_t kgid = i_gid_into_mnt(mnt_userns, inode); 366 if (in_group_p(kgid)) 367 mode >>= 3; 368 } 369 370 /* Bits in 'mode' clear that we require? */ 371 return (mask & ~mode) ? -EACCES : 0; 372 } 373 374 /** 375 * generic_permission - check for access rights on a Posix-like filesystem 376 * @mnt_userns: user namespace of the mount the inode was found from 377 * @inode: inode to check access rights for 378 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, 379 * %MAY_NOT_BLOCK ...) 380 * 381 * Used to check for read/write/execute permissions on a file. 382 * We use "fsuid" for this, letting us set arbitrary permissions 383 * for filesystem access without changing the "normal" uids which 384 * are used for other things. 385 * 386 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 387 * request cannot be satisfied (eg. requires blocking or too much complexity). 388 * It would then be called again in ref-walk mode. 389 * 390 * If the inode has been found through an idmapped mount the user namespace of 391 * the vfsmount must be passed through @mnt_userns. This function will then take 392 * care to map the inode according to @mnt_userns before checking permissions. 393 * On non-idmapped mounts or if permission checking is to be performed on the 394 * raw inode simply passs init_user_ns. 395 */ 396 int generic_permission(struct user_namespace *mnt_userns, struct inode *inode, 397 int mask) 398 { 399 int ret; 400 401 /* 402 * Do the basic permission checks. 403 */ 404 ret = acl_permission_check(mnt_userns, inode, mask); 405 if (ret != -EACCES) 406 return ret; 407 408 if (S_ISDIR(inode->i_mode)) { 409 /* DACs are overridable for directories */ 410 if (!(mask & MAY_WRITE)) 411 if (capable_wrt_inode_uidgid(mnt_userns, inode, 412 CAP_DAC_READ_SEARCH)) 413 return 0; 414 if (capable_wrt_inode_uidgid(mnt_userns, inode, 415 CAP_DAC_OVERRIDE)) 416 return 0; 417 return -EACCES; 418 } 419 420 /* 421 * Searching includes executable on directories, else just read. 422 */ 423 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 424 if (mask == MAY_READ) 425 if (capable_wrt_inode_uidgid(mnt_userns, inode, 426 CAP_DAC_READ_SEARCH)) 427 return 0; 428 /* 429 * Read/write DACs are always overridable. 430 * Executable DACs are overridable when there is 431 * at least one exec bit set. 432 */ 433 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 434 if (capable_wrt_inode_uidgid(mnt_userns, inode, 435 CAP_DAC_OVERRIDE)) 436 return 0; 437 438 return -EACCES; 439 } 440 EXPORT_SYMBOL(generic_permission); 441 442 /** 443 * do_inode_permission - UNIX permission checking 444 * @mnt_userns: user namespace of the mount the inode was found from 445 * @inode: inode to check permissions on 446 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 447 * 448 * We _really_ want to just do "generic_permission()" without 449 * even looking at the inode->i_op values. So we keep a cache 450 * flag in inode->i_opflags, that says "this has not special 451 * permission function, use the fast case". 452 */ 453 static inline int do_inode_permission(struct user_namespace *mnt_userns, 454 struct inode *inode, int mask) 455 { 456 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 457 if (likely(inode->i_op->permission)) 458 return inode->i_op->permission(mnt_userns, inode, mask); 459 460 /* This gets set once for the inode lifetime */ 461 spin_lock(&inode->i_lock); 462 inode->i_opflags |= IOP_FASTPERM; 463 spin_unlock(&inode->i_lock); 464 } 465 return generic_permission(mnt_userns, inode, mask); 466 } 467 468 /** 469 * sb_permission - Check superblock-level permissions 470 * @sb: Superblock of inode to check permission on 471 * @inode: Inode to check permission on 472 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 473 * 474 * Separate out file-system wide checks from inode-specific permission checks. 475 */ 476 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 477 { 478 if (unlikely(mask & MAY_WRITE)) { 479 umode_t mode = inode->i_mode; 480 481 /* Nobody gets write access to a read-only fs. */ 482 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 483 return -EROFS; 484 } 485 return 0; 486 } 487 488 /** 489 * inode_permission - Check for access rights to a given inode 490 * @mnt_userns: User namespace of the mount the inode was found from 491 * @inode: Inode to check permission on 492 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 493 * 494 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 495 * this, letting us set arbitrary permissions for filesystem access without 496 * changing the "normal" UIDs which are used for other things. 497 * 498 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 499 */ 500 int inode_permission(struct user_namespace *mnt_userns, 501 struct inode *inode, int mask) 502 { 503 int retval; 504 505 retval = sb_permission(inode->i_sb, inode, mask); 506 if (retval) 507 return retval; 508 509 if (unlikely(mask & MAY_WRITE)) { 510 /* 511 * Nobody gets write access to an immutable file. 512 */ 513 if (IS_IMMUTABLE(inode)) 514 return -EPERM; 515 516 /* 517 * Updating mtime will likely cause i_uid and i_gid to be 518 * written back improperly if their true value is unknown 519 * to the vfs. 520 */ 521 if (HAS_UNMAPPED_ID(mnt_userns, inode)) 522 return -EACCES; 523 } 524 525 retval = do_inode_permission(mnt_userns, inode, mask); 526 if (retval) 527 return retval; 528 529 retval = devcgroup_inode_permission(inode, mask); 530 if (retval) 531 return retval; 532 533 return security_inode_permission(inode, mask); 534 } 535 EXPORT_SYMBOL(inode_permission); 536 537 /** 538 * path_get - get a reference to a path 539 * @path: path to get the reference to 540 * 541 * Given a path increment the reference count to the dentry and the vfsmount. 542 */ 543 void path_get(const struct path *path) 544 { 545 mntget(path->mnt); 546 dget(path->dentry); 547 } 548 EXPORT_SYMBOL(path_get); 549 550 /** 551 * path_put - put a reference to a path 552 * @path: path to put the reference to 553 * 554 * Given a path decrement the reference count to the dentry and the vfsmount. 555 */ 556 void path_put(const struct path *path) 557 { 558 dput(path->dentry); 559 mntput(path->mnt); 560 } 561 EXPORT_SYMBOL(path_put); 562 563 #define EMBEDDED_LEVELS 2 564 struct nameidata { 565 struct path path; 566 struct qstr last; 567 struct path root; 568 struct inode *inode; /* path.dentry.d_inode */ 569 unsigned int flags, state; 570 unsigned seq, m_seq, r_seq; 571 int last_type; 572 unsigned depth; 573 int total_link_count; 574 struct saved { 575 struct path link; 576 struct delayed_call done; 577 const char *name; 578 unsigned seq; 579 } *stack, internal[EMBEDDED_LEVELS]; 580 struct filename *name; 581 struct nameidata *saved; 582 unsigned root_seq; 583 int dfd; 584 kuid_t dir_uid; 585 umode_t dir_mode; 586 } __randomize_layout; 587 588 #define ND_ROOT_PRESET 1 589 #define ND_ROOT_GRABBED 2 590 #define ND_JUMPED 4 591 592 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name) 593 { 594 struct nameidata *old = current->nameidata; 595 p->stack = p->internal; 596 p->depth = 0; 597 p->dfd = dfd; 598 p->name = name; 599 p->path.mnt = NULL; 600 p->path.dentry = NULL; 601 p->total_link_count = old ? old->total_link_count : 0; 602 p->saved = old; 603 current->nameidata = p; 604 } 605 606 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name, 607 const struct path *root) 608 { 609 __set_nameidata(p, dfd, name); 610 p->state = 0; 611 if (unlikely(root)) { 612 p->state = ND_ROOT_PRESET; 613 p->root = *root; 614 } 615 } 616 617 static void restore_nameidata(void) 618 { 619 struct nameidata *now = current->nameidata, *old = now->saved; 620 621 current->nameidata = old; 622 if (old) 623 old->total_link_count = now->total_link_count; 624 if (now->stack != now->internal) 625 kfree(now->stack); 626 } 627 628 static bool nd_alloc_stack(struct nameidata *nd) 629 { 630 struct saved *p; 631 632 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved), 633 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL); 634 if (unlikely(!p)) 635 return false; 636 memcpy(p, nd->internal, sizeof(nd->internal)); 637 nd->stack = p; 638 return true; 639 } 640 641 /** 642 * path_connected - Verify that a dentry is below mnt.mnt_root 643 * 644 * Rename can sometimes move a file or directory outside of a bind 645 * mount, path_connected allows those cases to be detected. 646 */ 647 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry) 648 { 649 struct super_block *sb = mnt->mnt_sb; 650 651 /* Bind mounts can have disconnected paths */ 652 if (mnt->mnt_root == sb->s_root) 653 return true; 654 655 return is_subdir(dentry, mnt->mnt_root); 656 } 657 658 static void drop_links(struct nameidata *nd) 659 { 660 int i = nd->depth; 661 while (i--) { 662 struct saved *last = nd->stack + i; 663 do_delayed_call(&last->done); 664 clear_delayed_call(&last->done); 665 } 666 } 667 668 static void terminate_walk(struct nameidata *nd) 669 { 670 drop_links(nd); 671 if (!(nd->flags & LOOKUP_RCU)) { 672 int i; 673 path_put(&nd->path); 674 for (i = 0; i < nd->depth; i++) 675 path_put(&nd->stack[i].link); 676 if (nd->state & ND_ROOT_GRABBED) { 677 path_put(&nd->root); 678 nd->state &= ~ND_ROOT_GRABBED; 679 } 680 } else { 681 nd->flags &= ~LOOKUP_RCU; 682 rcu_read_unlock(); 683 } 684 nd->depth = 0; 685 nd->path.mnt = NULL; 686 nd->path.dentry = NULL; 687 } 688 689 /* path_put is needed afterwards regardless of success or failure */ 690 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq) 691 { 692 int res = __legitimize_mnt(path->mnt, mseq); 693 if (unlikely(res)) { 694 if (res > 0) 695 path->mnt = NULL; 696 path->dentry = NULL; 697 return false; 698 } 699 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) { 700 path->dentry = NULL; 701 return false; 702 } 703 return !read_seqcount_retry(&path->dentry->d_seq, seq); 704 } 705 706 static inline bool legitimize_path(struct nameidata *nd, 707 struct path *path, unsigned seq) 708 { 709 return __legitimize_path(path, seq, nd->m_seq); 710 } 711 712 static bool legitimize_links(struct nameidata *nd) 713 { 714 int i; 715 if (unlikely(nd->flags & LOOKUP_CACHED)) { 716 drop_links(nd); 717 nd->depth = 0; 718 return false; 719 } 720 for (i = 0; i < nd->depth; i++) { 721 struct saved *last = nd->stack + i; 722 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) { 723 drop_links(nd); 724 nd->depth = i + 1; 725 return false; 726 } 727 } 728 return true; 729 } 730 731 static bool legitimize_root(struct nameidata *nd) 732 { 733 /* Nothing to do if nd->root is zero or is managed by the VFS user. */ 734 if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET)) 735 return true; 736 nd->state |= ND_ROOT_GRABBED; 737 return legitimize_path(nd, &nd->root, nd->root_seq); 738 } 739 740 /* 741 * Path walking has 2 modes, rcu-walk and ref-walk (see 742 * Documentation/filesystems/path-lookup.txt). In situations when we can't 743 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 744 * normal reference counts on dentries and vfsmounts to transition to ref-walk 745 * mode. Refcounts are grabbed at the last known good point before rcu-walk 746 * got stuck, so ref-walk may continue from there. If this is not successful 747 * (eg. a seqcount has changed), then failure is returned and it's up to caller 748 * to restart the path walk from the beginning in ref-walk mode. 749 */ 750 751 /** 752 * try_to_unlazy - try to switch to ref-walk mode. 753 * @nd: nameidata pathwalk data 754 * Returns: true on success, false on failure 755 * 756 * try_to_unlazy attempts to legitimize the current nd->path and nd->root 757 * for ref-walk mode. 758 * Must be called from rcu-walk context. 759 * Nothing should touch nameidata between try_to_unlazy() failure and 760 * terminate_walk(). 761 */ 762 static bool try_to_unlazy(struct nameidata *nd) 763 { 764 struct dentry *parent = nd->path.dentry; 765 766 BUG_ON(!(nd->flags & LOOKUP_RCU)); 767 768 nd->flags &= ~LOOKUP_RCU; 769 if (unlikely(!legitimize_links(nd))) 770 goto out1; 771 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq))) 772 goto out; 773 if (unlikely(!legitimize_root(nd))) 774 goto out; 775 rcu_read_unlock(); 776 BUG_ON(nd->inode != parent->d_inode); 777 return true; 778 779 out1: 780 nd->path.mnt = NULL; 781 nd->path.dentry = NULL; 782 out: 783 rcu_read_unlock(); 784 return false; 785 } 786 787 /** 788 * try_to_unlazy_next - try to switch to ref-walk mode. 789 * @nd: nameidata pathwalk data 790 * @dentry: next dentry to step into 791 * @seq: seq number to check @dentry against 792 * Returns: true on success, false on failure 793 * 794 * Similar to try_to_unlazy(), but here we have the next dentry already 795 * picked by rcu-walk and want to legitimize that in addition to the current 796 * nd->path and nd->root for ref-walk mode. Must be called from rcu-walk context. 797 * Nothing should touch nameidata between try_to_unlazy_next() failure and 798 * terminate_walk(). 799 */ 800 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry, unsigned seq) 801 { 802 BUG_ON(!(nd->flags & LOOKUP_RCU)); 803 804 nd->flags &= ~LOOKUP_RCU; 805 if (unlikely(!legitimize_links(nd))) 806 goto out2; 807 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq))) 808 goto out2; 809 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref))) 810 goto out1; 811 812 /* 813 * We need to move both the parent and the dentry from the RCU domain 814 * to be properly refcounted. And the sequence number in the dentry 815 * validates *both* dentry counters, since we checked the sequence 816 * number of the parent after we got the child sequence number. So we 817 * know the parent must still be valid if the child sequence number is 818 */ 819 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) 820 goto out; 821 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) 822 goto out_dput; 823 /* 824 * Sequence counts matched. Now make sure that the root is 825 * still valid and get it if required. 826 */ 827 if (unlikely(!legitimize_root(nd))) 828 goto out_dput; 829 rcu_read_unlock(); 830 return true; 831 832 out2: 833 nd->path.mnt = NULL; 834 out1: 835 nd->path.dentry = NULL; 836 out: 837 rcu_read_unlock(); 838 return false; 839 out_dput: 840 rcu_read_unlock(); 841 dput(dentry); 842 return false; 843 } 844 845 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 846 { 847 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) 848 return dentry->d_op->d_revalidate(dentry, flags); 849 else 850 return 1; 851 } 852 853 /** 854 * complete_walk - successful completion of path walk 855 * @nd: pointer nameidata 856 * 857 * If we had been in RCU mode, drop out of it and legitimize nd->path. 858 * Revalidate the final result, unless we'd already done that during 859 * the path walk or the filesystem doesn't ask for it. Return 0 on 860 * success, -error on failure. In case of failure caller does not 861 * need to drop nd->path. 862 */ 863 static int complete_walk(struct nameidata *nd) 864 { 865 struct dentry *dentry = nd->path.dentry; 866 int status; 867 868 if (nd->flags & LOOKUP_RCU) { 869 /* 870 * We don't want to zero nd->root for scoped-lookups or 871 * externally-managed nd->root. 872 */ 873 if (!(nd->state & ND_ROOT_PRESET)) 874 if (!(nd->flags & LOOKUP_IS_SCOPED)) 875 nd->root.mnt = NULL; 876 nd->flags &= ~LOOKUP_CACHED; 877 if (!try_to_unlazy(nd)) 878 return -ECHILD; 879 } 880 881 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { 882 /* 883 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't 884 * ever step outside the root during lookup" and should already 885 * be guaranteed by the rest of namei, we want to avoid a namei 886 * BUG resulting in userspace being given a path that was not 887 * scoped within the root at some point during the lookup. 888 * 889 * So, do a final sanity-check to make sure that in the 890 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED) 891 * we won't silently return an fd completely outside of the 892 * requested root to userspace. 893 * 894 * Userspace could move the path outside the root after this 895 * check, but as discussed elsewhere this is not a concern (the 896 * resolved file was inside the root at some point). 897 */ 898 if (!path_is_under(&nd->path, &nd->root)) 899 return -EXDEV; 900 } 901 902 if (likely(!(nd->state & ND_JUMPED))) 903 return 0; 904 905 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 906 return 0; 907 908 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 909 if (status > 0) 910 return 0; 911 912 if (!status) 913 status = -ESTALE; 914 915 return status; 916 } 917 918 static int set_root(struct nameidata *nd) 919 { 920 struct fs_struct *fs = current->fs; 921 922 /* 923 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we 924 * still have to ensure it doesn't happen because it will cause a breakout 925 * from the dirfd. 926 */ 927 if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED)) 928 return -ENOTRECOVERABLE; 929 930 if (nd->flags & LOOKUP_RCU) { 931 unsigned seq; 932 933 do { 934 seq = read_seqcount_begin(&fs->seq); 935 nd->root = fs->root; 936 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 937 } while (read_seqcount_retry(&fs->seq, seq)); 938 } else { 939 get_fs_root(fs, &nd->root); 940 nd->state |= ND_ROOT_GRABBED; 941 } 942 return 0; 943 } 944 945 static int nd_jump_root(struct nameidata *nd) 946 { 947 if (unlikely(nd->flags & LOOKUP_BENEATH)) 948 return -EXDEV; 949 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { 950 /* Absolute path arguments to path_init() are allowed. */ 951 if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt) 952 return -EXDEV; 953 } 954 if (!nd->root.mnt) { 955 int error = set_root(nd); 956 if (error) 957 return error; 958 } 959 if (nd->flags & LOOKUP_RCU) { 960 struct dentry *d; 961 nd->path = nd->root; 962 d = nd->path.dentry; 963 nd->inode = d->d_inode; 964 nd->seq = nd->root_seq; 965 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq))) 966 return -ECHILD; 967 } else { 968 path_put(&nd->path); 969 nd->path = nd->root; 970 path_get(&nd->path); 971 nd->inode = nd->path.dentry->d_inode; 972 } 973 nd->state |= ND_JUMPED; 974 return 0; 975 } 976 977 /* 978 * Helper to directly jump to a known parsed path from ->get_link, 979 * caller must have taken a reference to path beforehand. 980 */ 981 int nd_jump_link(struct path *path) 982 { 983 int error = -ELOOP; 984 struct nameidata *nd = current->nameidata; 985 986 if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS)) 987 goto err; 988 989 error = -EXDEV; 990 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { 991 if (nd->path.mnt != path->mnt) 992 goto err; 993 } 994 /* Not currently safe for scoped-lookups. */ 995 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) 996 goto err; 997 998 path_put(&nd->path); 999 nd->path = *path; 1000 nd->inode = nd->path.dentry->d_inode; 1001 nd->state |= ND_JUMPED; 1002 return 0; 1003 1004 err: 1005 path_put(path); 1006 return error; 1007 } 1008 1009 static inline void put_link(struct nameidata *nd) 1010 { 1011 struct saved *last = nd->stack + --nd->depth; 1012 do_delayed_call(&last->done); 1013 if (!(nd->flags & LOOKUP_RCU)) 1014 path_put(&last->link); 1015 } 1016 1017 static int sysctl_protected_symlinks __read_mostly; 1018 static int sysctl_protected_hardlinks __read_mostly; 1019 static int sysctl_protected_fifos __read_mostly; 1020 static int sysctl_protected_regular __read_mostly; 1021 1022 #ifdef CONFIG_SYSCTL 1023 static struct ctl_table namei_sysctls[] = { 1024 { 1025 .procname = "protected_symlinks", 1026 .data = &sysctl_protected_symlinks, 1027 .maxlen = sizeof(int), 1028 .mode = 0644, 1029 .proc_handler = proc_dointvec_minmax, 1030 .extra1 = SYSCTL_ZERO, 1031 .extra2 = SYSCTL_ONE, 1032 }, 1033 { 1034 .procname = "protected_hardlinks", 1035 .data = &sysctl_protected_hardlinks, 1036 .maxlen = sizeof(int), 1037 .mode = 0644, 1038 .proc_handler = proc_dointvec_minmax, 1039 .extra1 = SYSCTL_ZERO, 1040 .extra2 = SYSCTL_ONE, 1041 }, 1042 { 1043 .procname = "protected_fifos", 1044 .data = &sysctl_protected_fifos, 1045 .maxlen = sizeof(int), 1046 .mode = 0644, 1047 .proc_handler = proc_dointvec_minmax, 1048 .extra1 = SYSCTL_ZERO, 1049 .extra2 = SYSCTL_TWO, 1050 }, 1051 { 1052 .procname = "protected_regular", 1053 .data = &sysctl_protected_regular, 1054 .maxlen = sizeof(int), 1055 .mode = 0644, 1056 .proc_handler = proc_dointvec_minmax, 1057 .extra1 = SYSCTL_ZERO, 1058 .extra2 = SYSCTL_TWO, 1059 }, 1060 { } 1061 }; 1062 1063 static int __init init_fs_namei_sysctls(void) 1064 { 1065 register_sysctl_init("fs", namei_sysctls); 1066 return 0; 1067 } 1068 fs_initcall(init_fs_namei_sysctls); 1069 1070 #endif /* CONFIG_SYSCTL */ 1071 1072 /** 1073 * may_follow_link - Check symlink following for unsafe situations 1074 * @nd: nameidata pathwalk data 1075 * 1076 * In the case of the sysctl_protected_symlinks sysctl being enabled, 1077 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 1078 * in a sticky world-writable directory. This is to protect privileged 1079 * processes from failing races against path names that may change out 1080 * from under them by way of other users creating malicious symlinks. 1081 * It will permit symlinks to be followed only when outside a sticky 1082 * world-writable directory, or when the uid of the symlink and follower 1083 * match, or when the directory owner matches the symlink's owner. 1084 * 1085 * Returns 0 if following the symlink is allowed, -ve on error. 1086 */ 1087 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode) 1088 { 1089 struct user_namespace *mnt_userns; 1090 kuid_t i_uid; 1091 1092 if (!sysctl_protected_symlinks) 1093 return 0; 1094 1095 mnt_userns = mnt_user_ns(nd->path.mnt); 1096 i_uid = i_uid_into_mnt(mnt_userns, inode); 1097 /* Allowed if owner and follower match. */ 1098 if (uid_eq(current_cred()->fsuid, i_uid)) 1099 return 0; 1100 1101 /* Allowed if parent directory not sticky and world-writable. */ 1102 if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 1103 return 0; 1104 1105 /* Allowed if parent directory and link owner match. */ 1106 if (uid_valid(nd->dir_uid) && uid_eq(nd->dir_uid, i_uid)) 1107 return 0; 1108 1109 if (nd->flags & LOOKUP_RCU) 1110 return -ECHILD; 1111 1112 audit_inode(nd->name, nd->stack[0].link.dentry, 0); 1113 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link"); 1114 return -EACCES; 1115 } 1116 1117 /** 1118 * safe_hardlink_source - Check for safe hardlink conditions 1119 * @mnt_userns: user namespace of the mount the inode was found from 1120 * @inode: the source inode to hardlink from 1121 * 1122 * Return false if at least one of the following conditions: 1123 * - inode is not a regular file 1124 * - inode is setuid 1125 * - inode is setgid and group-exec 1126 * - access failure for read and write 1127 * 1128 * Otherwise returns true. 1129 */ 1130 static bool safe_hardlink_source(struct user_namespace *mnt_userns, 1131 struct inode *inode) 1132 { 1133 umode_t mode = inode->i_mode; 1134 1135 /* Special files should not get pinned to the filesystem. */ 1136 if (!S_ISREG(mode)) 1137 return false; 1138 1139 /* Setuid files should not get pinned to the filesystem. */ 1140 if (mode & S_ISUID) 1141 return false; 1142 1143 /* Executable setgid files should not get pinned to the filesystem. */ 1144 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 1145 return false; 1146 1147 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 1148 if (inode_permission(mnt_userns, inode, MAY_READ | MAY_WRITE)) 1149 return false; 1150 1151 return true; 1152 } 1153 1154 /** 1155 * may_linkat - Check permissions for creating a hardlink 1156 * @mnt_userns: user namespace of the mount the inode was found from 1157 * @link: the source to hardlink from 1158 * 1159 * Block hardlink when all of: 1160 * - sysctl_protected_hardlinks enabled 1161 * - fsuid does not match inode 1162 * - hardlink source is unsafe (see safe_hardlink_source() above) 1163 * - not CAP_FOWNER in a namespace with the inode owner uid mapped 1164 * 1165 * If the inode has been found through an idmapped mount the user namespace of 1166 * the vfsmount must be passed through @mnt_userns. This function will then take 1167 * care to map the inode according to @mnt_userns before checking permissions. 1168 * On non-idmapped mounts or if permission checking is to be performed on the 1169 * raw inode simply passs init_user_ns. 1170 * 1171 * Returns 0 if successful, -ve on error. 1172 */ 1173 int may_linkat(struct user_namespace *mnt_userns, struct path *link) 1174 { 1175 struct inode *inode = link->dentry->d_inode; 1176 1177 /* Inode writeback is not safe when the uid or gid are invalid. */ 1178 if (!uid_valid(i_uid_into_mnt(mnt_userns, inode)) || 1179 !gid_valid(i_gid_into_mnt(mnt_userns, inode))) 1180 return -EOVERFLOW; 1181 1182 if (!sysctl_protected_hardlinks) 1183 return 0; 1184 1185 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 1186 * otherwise, it must be a safe source. 1187 */ 1188 if (safe_hardlink_source(mnt_userns, inode) || 1189 inode_owner_or_capable(mnt_userns, inode)) 1190 return 0; 1191 1192 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat"); 1193 return -EPERM; 1194 } 1195 1196 /** 1197 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory 1198 * should be allowed, or not, on files that already 1199 * exist. 1200 * @mnt_userns: user namespace of the mount the inode was found from 1201 * @nd: nameidata pathwalk data 1202 * @inode: the inode of the file to open 1203 * 1204 * Block an O_CREAT open of a FIFO (or a regular file) when: 1205 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled 1206 * - the file already exists 1207 * - we are in a sticky directory 1208 * - we don't own the file 1209 * - the owner of the directory doesn't own the file 1210 * - the directory is world writable 1211 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2 1212 * the directory doesn't have to be world writable: being group writable will 1213 * be enough. 1214 * 1215 * If the inode has been found through an idmapped mount the user namespace of 1216 * the vfsmount must be passed through @mnt_userns. This function will then take 1217 * care to map the inode according to @mnt_userns before checking permissions. 1218 * On non-idmapped mounts or if permission checking is to be performed on the 1219 * raw inode simply passs init_user_ns. 1220 * 1221 * Returns 0 if the open is allowed, -ve on error. 1222 */ 1223 static int may_create_in_sticky(struct user_namespace *mnt_userns, 1224 struct nameidata *nd, struct inode *const inode) 1225 { 1226 umode_t dir_mode = nd->dir_mode; 1227 kuid_t dir_uid = nd->dir_uid; 1228 1229 if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) || 1230 (!sysctl_protected_regular && S_ISREG(inode->i_mode)) || 1231 likely(!(dir_mode & S_ISVTX)) || 1232 uid_eq(i_uid_into_mnt(mnt_userns, inode), dir_uid) || 1233 uid_eq(current_fsuid(), i_uid_into_mnt(mnt_userns, inode))) 1234 return 0; 1235 1236 if (likely(dir_mode & 0002) || 1237 (dir_mode & 0020 && 1238 ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) || 1239 (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) { 1240 const char *operation = S_ISFIFO(inode->i_mode) ? 1241 "sticky_create_fifo" : 1242 "sticky_create_regular"; 1243 audit_log_path_denied(AUDIT_ANOM_CREAT, operation); 1244 return -EACCES; 1245 } 1246 return 0; 1247 } 1248 1249 /* 1250 * follow_up - Find the mountpoint of path's vfsmount 1251 * 1252 * Given a path, find the mountpoint of its source file system. 1253 * Replace @path with the path of the mountpoint in the parent mount. 1254 * Up is towards /. 1255 * 1256 * Return 1 if we went up a level and 0 if we were already at the 1257 * root. 1258 */ 1259 int follow_up(struct path *path) 1260 { 1261 struct mount *mnt = real_mount(path->mnt); 1262 struct mount *parent; 1263 struct dentry *mountpoint; 1264 1265 read_seqlock_excl(&mount_lock); 1266 parent = mnt->mnt_parent; 1267 if (parent == mnt) { 1268 read_sequnlock_excl(&mount_lock); 1269 return 0; 1270 } 1271 mntget(&parent->mnt); 1272 mountpoint = dget(mnt->mnt_mountpoint); 1273 read_sequnlock_excl(&mount_lock); 1274 dput(path->dentry); 1275 path->dentry = mountpoint; 1276 mntput(path->mnt); 1277 path->mnt = &parent->mnt; 1278 return 1; 1279 } 1280 EXPORT_SYMBOL(follow_up); 1281 1282 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root, 1283 struct path *path, unsigned *seqp) 1284 { 1285 while (mnt_has_parent(m)) { 1286 struct dentry *mountpoint = m->mnt_mountpoint; 1287 1288 m = m->mnt_parent; 1289 if (unlikely(root->dentry == mountpoint && 1290 root->mnt == &m->mnt)) 1291 break; 1292 if (mountpoint != m->mnt.mnt_root) { 1293 path->mnt = &m->mnt; 1294 path->dentry = mountpoint; 1295 *seqp = read_seqcount_begin(&mountpoint->d_seq); 1296 return true; 1297 } 1298 } 1299 return false; 1300 } 1301 1302 static bool choose_mountpoint(struct mount *m, const struct path *root, 1303 struct path *path) 1304 { 1305 bool found; 1306 1307 rcu_read_lock(); 1308 while (1) { 1309 unsigned seq, mseq = read_seqbegin(&mount_lock); 1310 1311 found = choose_mountpoint_rcu(m, root, path, &seq); 1312 if (unlikely(!found)) { 1313 if (!read_seqretry(&mount_lock, mseq)) 1314 break; 1315 } else { 1316 if (likely(__legitimize_path(path, seq, mseq))) 1317 break; 1318 rcu_read_unlock(); 1319 path_put(path); 1320 rcu_read_lock(); 1321 } 1322 } 1323 rcu_read_unlock(); 1324 return found; 1325 } 1326 1327 /* 1328 * Perform an automount 1329 * - return -EISDIR to tell follow_managed() to stop and return the path we 1330 * were called with. 1331 */ 1332 static int follow_automount(struct path *path, int *count, unsigned lookup_flags) 1333 { 1334 struct dentry *dentry = path->dentry; 1335 1336 /* We don't want to mount if someone's just doing a stat - 1337 * unless they're stat'ing a directory and appended a '/' to 1338 * the name. 1339 * 1340 * We do, however, want to mount if someone wants to open or 1341 * create a file of any type under the mountpoint, wants to 1342 * traverse through the mountpoint or wants to open the 1343 * mounted directory. Also, autofs may mark negative dentries 1344 * as being automount points. These will need the attentions 1345 * of the daemon to instantiate them before they can be used. 1346 */ 1347 if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 1348 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 1349 dentry->d_inode) 1350 return -EISDIR; 1351 1352 if (count && (*count)++ >= MAXSYMLINKS) 1353 return -ELOOP; 1354 1355 return finish_automount(dentry->d_op->d_automount(path), path); 1356 } 1357 1358 /* 1359 * mount traversal - out-of-line part. One note on ->d_flags accesses - 1360 * dentries are pinned but not locked here, so negative dentry can go 1361 * positive right under us. Use of smp_load_acquire() provides a barrier 1362 * sufficient for ->d_inode and ->d_flags consistency. 1363 */ 1364 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped, 1365 int *count, unsigned lookup_flags) 1366 { 1367 struct vfsmount *mnt = path->mnt; 1368 bool need_mntput = false; 1369 int ret = 0; 1370 1371 while (flags & DCACHE_MANAGED_DENTRY) { 1372 /* Allow the filesystem to manage the transit without i_mutex 1373 * being held. */ 1374 if (flags & DCACHE_MANAGE_TRANSIT) { 1375 ret = path->dentry->d_op->d_manage(path, false); 1376 flags = smp_load_acquire(&path->dentry->d_flags); 1377 if (ret < 0) 1378 break; 1379 } 1380 1381 if (flags & DCACHE_MOUNTED) { // something's mounted on it.. 1382 struct vfsmount *mounted = lookup_mnt(path); 1383 if (mounted) { // ... in our namespace 1384 dput(path->dentry); 1385 if (need_mntput) 1386 mntput(path->mnt); 1387 path->mnt = mounted; 1388 path->dentry = dget(mounted->mnt_root); 1389 // here we know it's positive 1390 flags = path->dentry->d_flags; 1391 need_mntput = true; 1392 continue; 1393 } 1394 } 1395 1396 if (!(flags & DCACHE_NEED_AUTOMOUNT)) 1397 break; 1398 1399 // uncovered automount point 1400 ret = follow_automount(path, count, lookup_flags); 1401 flags = smp_load_acquire(&path->dentry->d_flags); 1402 if (ret < 0) 1403 break; 1404 } 1405 1406 if (ret == -EISDIR) 1407 ret = 0; 1408 // possible if you race with several mount --move 1409 if (need_mntput && path->mnt == mnt) 1410 mntput(path->mnt); 1411 if (!ret && unlikely(d_flags_negative(flags))) 1412 ret = -ENOENT; 1413 *jumped = need_mntput; 1414 return ret; 1415 } 1416 1417 static inline int traverse_mounts(struct path *path, bool *jumped, 1418 int *count, unsigned lookup_flags) 1419 { 1420 unsigned flags = smp_load_acquire(&path->dentry->d_flags); 1421 1422 /* fastpath */ 1423 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) { 1424 *jumped = false; 1425 if (unlikely(d_flags_negative(flags))) 1426 return -ENOENT; 1427 return 0; 1428 } 1429 return __traverse_mounts(path, flags, jumped, count, lookup_flags); 1430 } 1431 1432 int follow_down_one(struct path *path) 1433 { 1434 struct vfsmount *mounted; 1435 1436 mounted = lookup_mnt(path); 1437 if (mounted) { 1438 dput(path->dentry); 1439 mntput(path->mnt); 1440 path->mnt = mounted; 1441 path->dentry = dget(mounted->mnt_root); 1442 return 1; 1443 } 1444 return 0; 1445 } 1446 EXPORT_SYMBOL(follow_down_one); 1447 1448 /* 1449 * Follow down to the covering mount currently visible to userspace. At each 1450 * point, the filesystem owning that dentry may be queried as to whether the 1451 * caller is permitted to proceed or not. 1452 */ 1453 int follow_down(struct path *path) 1454 { 1455 struct vfsmount *mnt = path->mnt; 1456 bool jumped; 1457 int ret = traverse_mounts(path, &jumped, NULL, 0); 1458 1459 if (path->mnt != mnt) 1460 mntput(mnt); 1461 return ret; 1462 } 1463 EXPORT_SYMBOL(follow_down); 1464 1465 /* 1466 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1467 * we meet a managed dentry that would need blocking. 1468 */ 1469 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1470 struct inode **inode, unsigned *seqp) 1471 { 1472 struct dentry *dentry = path->dentry; 1473 unsigned int flags = dentry->d_flags; 1474 1475 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) 1476 return true; 1477 1478 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1479 return false; 1480 1481 for (;;) { 1482 /* 1483 * Don't forget we might have a non-mountpoint managed dentry 1484 * that wants to block transit. 1485 */ 1486 if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) { 1487 int res = dentry->d_op->d_manage(path, true); 1488 if (res) 1489 return res == -EISDIR; 1490 flags = dentry->d_flags; 1491 } 1492 1493 if (flags & DCACHE_MOUNTED) { 1494 struct mount *mounted = __lookup_mnt(path->mnt, dentry); 1495 if (mounted) { 1496 path->mnt = &mounted->mnt; 1497 dentry = path->dentry = mounted->mnt.mnt_root; 1498 nd->state |= ND_JUMPED; 1499 *seqp = read_seqcount_begin(&dentry->d_seq); 1500 *inode = dentry->d_inode; 1501 /* 1502 * We don't need to re-check ->d_seq after this 1503 * ->d_inode read - there will be an RCU delay 1504 * between mount hash removal and ->mnt_root 1505 * becoming unpinned. 1506 */ 1507 flags = dentry->d_flags; 1508 continue; 1509 } 1510 if (read_seqretry(&mount_lock, nd->m_seq)) 1511 return false; 1512 } 1513 return !(flags & DCACHE_NEED_AUTOMOUNT); 1514 } 1515 } 1516 1517 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry, 1518 struct path *path, struct inode **inode, 1519 unsigned int *seqp) 1520 { 1521 bool jumped; 1522 int ret; 1523 1524 path->mnt = nd->path.mnt; 1525 path->dentry = dentry; 1526 if (nd->flags & LOOKUP_RCU) { 1527 unsigned int seq = *seqp; 1528 if (unlikely(!*inode)) 1529 return -ENOENT; 1530 if (likely(__follow_mount_rcu(nd, path, inode, seqp))) 1531 return 0; 1532 if (!try_to_unlazy_next(nd, dentry, seq)) 1533 return -ECHILD; 1534 // *path might've been clobbered by __follow_mount_rcu() 1535 path->mnt = nd->path.mnt; 1536 path->dentry = dentry; 1537 } 1538 ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags); 1539 if (jumped) { 1540 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1541 ret = -EXDEV; 1542 else 1543 nd->state |= ND_JUMPED; 1544 } 1545 if (unlikely(ret)) { 1546 dput(path->dentry); 1547 if (path->mnt != nd->path.mnt) 1548 mntput(path->mnt); 1549 } else { 1550 *inode = d_backing_inode(path->dentry); 1551 *seqp = 0; /* out of RCU mode, so the value doesn't matter */ 1552 } 1553 return ret; 1554 } 1555 1556 /* 1557 * This looks up the name in dcache and possibly revalidates the found dentry. 1558 * NULL is returned if the dentry does not exist in the cache. 1559 */ 1560 static struct dentry *lookup_dcache(const struct qstr *name, 1561 struct dentry *dir, 1562 unsigned int flags) 1563 { 1564 struct dentry *dentry = d_lookup(dir, name); 1565 if (dentry) { 1566 int error = d_revalidate(dentry, flags); 1567 if (unlikely(error <= 0)) { 1568 if (!error) 1569 d_invalidate(dentry); 1570 dput(dentry); 1571 return ERR_PTR(error); 1572 } 1573 } 1574 return dentry; 1575 } 1576 1577 /* 1578 * Parent directory has inode locked exclusive. This is one 1579 * and only case when ->lookup() gets called on non in-lookup 1580 * dentries - as the matter of fact, this only gets called 1581 * when directory is guaranteed to have no in-lookup children 1582 * at all. 1583 */ 1584 static struct dentry *__lookup_hash(const struct qstr *name, 1585 struct dentry *base, unsigned int flags) 1586 { 1587 struct dentry *dentry = lookup_dcache(name, base, flags); 1588 struct dentry *old; 1589 struct inode *dir = base->d_inode; 1590 1591 if (dentry) 1592 return dentry; 1593 1594 /* Don't create child dentry for a dead directory. */ 1595 if (unlikely(IS_DEADDIR(dir))) 1596 return ERR_PTR(-ENOENT); 1597 1598 dentry = d_alloc(base, name); 1599 if (unlikely(!dentry)) 1600 return ERR_PTR(-ENOMEM); 1601 1602 old = dir->i_op->lookup(dir, dentry, flags); 1603 if (unlikely(old)) { 1604 dput(dentry); 1605 dentry = old; 1606 } 1607 return dentry; 1608 } 1609 1610 static struct dentry *lookup_fast(struct nameidata *nd, 1611 struct inode **inode, 1612 unsigned *seqp) 1613 { 1614 struct dentry *dentry, *parent = nd->path.dentry; 1615 int status = 1; 1616 1617 /* 1618 * Rename seqlock is not required here because in the off chance 1619 * of a false negative due to a concurrent rename, the caller is 1620 * going to fall back to non-racy lookup. 1621 */ 1622 if (nd->flags & LOOKUP_RCU) { 1623 unsigned seq; 1624 dentry = __d_lookup_rcu(parent, &nd->last, &seq); 1625 if (unlikely(!dentry)) { 1626 if (!try_to_unlazy(nd)) 1627 return ERR_PTR(-ECHILD); 1628 return NULL; 1629 } 1630 1631 /* 1632 * This sequence count validates that the inode matches 1633 * the dentry name information from lookup. 1634 */ 1635 *inode = d_backing_inode(dentry); 1636 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) 1637 return ERR_PTR(-ECHILD); 1638 1639 /* 1640 * This sequence count validates that the parent had no 1641 * changes while we did the lookup of the dentry above. 1642 * 1643 * The memory barrier in read_seqcount_begin of child is 1644 * enough, we can use __read_seqcount_retry here. 1645 */ 1646 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq))) 1647 return ERR_PTR(-ECHILD); 1648 1649 *seqp = seq; 1650 status = d_revalidate(dentry, nd->flags); 1651 if (likely(status > 0)) 1652 return dentry; 1653 if (!try_to_unlazy_next(nd, dentry, seq)) 1654 return ERR_PTR(-ECHILD); 1655 if (status == -ECHILD) 1656 /* we'd been told to redo it in non-rcu mode */ 1657 status = d_revalidate(dentry, nd->flags); 1658 } else { 1659 dentry = __d_lookup(parent, &nd->last); 1660 if (unlikely(!dentry)) 1661 return NULL; 1662 status = d_revalidate(dentry, nd->flags); 1663 } 1664 if (unlikely(status <= 0)) { 1665 if (!status) 1666 d_invalidate(dentry); 1667 dput(dentry); 1668 return ERR_PTR(status); 1669 } 1670 return dentry; 1671 } 1672 1673 /* Fast lookup failed, do it the slow way */ 1674 static struct dentry *__lookup_slow(const struct qstr *name, 1675 struct dentry *dir, 1676 unsigned int flags) 1677 { 1678 struct dentry *dentry, *old; 1679 struct inode *inode = dir->d_inode; 1680 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1681 1682 /* Don't go there if it's already dead */ 1683 if (unlikely(IS_DEADDIR(inode))) 1684 return ERR_PTR(-ENOENT); 1685 again: 1686 dentry = d_alloc_parallel(dir, name, &wq); 1687 if (IS_ERR(dentry)) 1688 return dentry; 1689 if (unlikely(!d_in_lookup(dentry))) { 1690 int error = d_revalidate(dentry, flags); 1691 if (unlikely(error <= 0)) { 1692 if (!error) { 1693 d_invalidate(dentry); 1694 dput(dentry); 1695 goto again; 1696 } 1697 dput(dentry); 1698 dentry = ERR_PTR(error); 1699 } 1700 } else { 1701 old = inode->i_op->lookup(inode, dentry, flags); 1702 d_lookup_done(dentry); 1703 if (unlikely(old)) { 1704 dput(dentry); 1705 dentry = old; 1706 } 1707 } 1708 return dentry; 1709 } 1710 1711 static struct dentry *lookup_slow(const struct qstr *name, 1712 struct dentry *dir, 1713 unsigned int flags) 1714 { 1715 struct inode *inode = dir->d_inode; 1716 struct dentry *res; 1717 inode_lock_shared(inode); 1718 res = __lookup_slow(name, dir, flags); 1719 inode_unlock_shared(inode); 1720 return res; 1721 } 1722 1723 static inline int may_lookup(struct user_namespace *mnt_userns, 1724 struct nameidata *nd) 1725 { 1726 if (nd->flags & LOOKUP_RCU) { 1727 int err = inode_permission(mnt_userns, nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1728 if (err != -ECHILD || !try_to_unlazy(nd)) 1729 return err; 1730 } 1731 return inode_permission(mnt_userns, nd->inode, MAY_EXEC); 1732 } 1733 1734 static int reserve_stack(struct nameidata *nd, struct path *link, unsigned seq) 1735 { 1736 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) 1737 return -ELOOP; 1738 1739 if (likely(nd->depth != EMBEDDED_LEVELS)) 1740 return 0; 1741 if (likely(nd->stack != nd->internal)) 1742 return 0; 1743 if (likely(nd_alloc_stack(nd))) 1744 return 0; 1745 1746 if (nd->flags & LOOKUP_RCU) { 1747 // we need to grab link before we do unlazy. And we can't skip 1748 // unlazy even if we fail to grab the link - cleanup needs it 1749 bool grabbed_link = legitimize_path(nd, link, seq); 1750 1751 if (!try_to_unlazy(nd) || !grabbed_link) 1752 return -ECHILD; 1753 1754 if (nd_alloc_stack(nd)) 1755 return 0; 1756 } 1757 return -ENOMEM; 1758 } 1759 1760 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4}; 1761 1762 static const char *pick_link(struct nameidata *nd, struct path *link, 1763 struct inode *inode, unsigned seq, int flags) 1764 { 1765 struct saved *last; 1766 const char *res; 1767 int error = reserve_stack(nd, link, seq); 1768 1769 if (unlikely(error)) { 1770 if (!(nd->flags & LOOKUP_RCU)) 1771 path_put(link); 1772 return ERR_PTR(error); 1773 } 1774 last = nd->stack + nd->depth++; 1775 last->link = *link; 1776 clear_delayed_call(&last->done); 1777 last->seq = seq; 1778 1779 if (flags & WALK_TRAILING) { 1780 error = may_follow_link(nd, inode); 1781 if (unlikely(error)) 1782 return ERR_PTR(error); 1783 } 1784 1785 if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) || 1786 unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW)) 1787 return ERR_PTR(-ELOOP); 1788 1789 if (!(nd->flags & LOOKUP_RCU)) { 1790 touch_atime(&last->link); 1791 cond_resched(); 1792 } else if (atime_needs_update(&last->link, inode)) { 1793 if (!try_to_unlazy(nd)) 1794 return ERR_PTR(-ECHILD); 1795 touch_atime(&last->link); 1796 } 1797 1798 error = security_inode_follow_link(link->dentry, inode, 1799 nd->flags & LOOKUP_RCU); 1800 if (unlikely(error)) 1801 return ERR_PTR(error); 1802 1803 res = READ_ONCE(inode->i_link); 1804 if (!res) { 1805 const char * (*get)(struct dentry *, struct inode *, 1806 struct delayed_call *); 1807 get = inode->i_op->get_link; 1808 if (nd->flags & LOOKUP_RCU) { 1809 res = get(NULL, inode, &last->done); 1810 if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd)) 1811 res = get(link->dentry, inode, &last->done); 1812 } else { 1813 res = get(link->dentry, inode, &last->done); 1814 } 1815 if (!res) 1816 goto all_done; 1817 if (IS_ERR(res)) 1818 return res; 1819 } 1820 if (*res == '/') { 1821 error = nd_jump_root(nd); 1822 if (unlikely(error)) 1823 return ERR_PTR(error); 1824 while (unlikely(*++res == '/')) 1825 ; 1826 } 1827 if (*res) 1828 return res; 1829 all_done: // pure jump 1830 put_link(nd); 1831 return NULL; 1832 } 1833 1834 /* 1835 * Do we need to follow links? We _really_ want to be able 1836 * to do this check without having to look at inode->i_op, 1837 * so we keep a cache of "no, this doesn't need follow_link" 1838 * for the common case. 1839 */ 1840 static const char *step_into(struct nameidata *nd, int flags, 1841 struct dentry *dentry, struct inode *inode, unsigned seq) 1842 { 1843 struct path path; 1844 int err = handle_mounts(nd, dentry, &path, &inode, &seq); 1845 1846 if (err < 0) 1847 return ERR_PTR(err); 1848 if (likely(!d_is_symlink(path.dentry)) || 1849 ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) || 1850 (flags & WALK_NOFOLLOW)) { 1851 /* not a symlink or should not follow */ 1852 if (!(nd->flags & LOOKUP_RCU)) { 1853 dput(nd->path.dentry); 1854 if (nd->path.mnt != path.mnt) 1855 mntput(nd->path.mnt); 1856 } 1857 nd->path = path; 1858 nd->inode = inode; 1859 nd->seq = seq; 1860 return NULL; 1861 } 1862 if (nd->flags & LOOKUP_RCU) { 1863 /* make sure that d_is_symlink above matches inode */ 1864 if (read_seqcount_retry(&path.dentry->d_seq, seq)) 1865 return ERR_PTR(-ECHILD); 1866 } else { 1867 if (path.mnt == nd->path.mnt) 1868 mntget(path.mnt); 1869 } 1870 return pick_link(nd, &path, inode, seq, flags); 1871 } 1872 1873 static struct dentry *follow_dotdot_rcu(struct nameidata *nd, 1874 struct inode **inodep, 1875 unsigned *seqp) 1876 { 1877 struct dentry *parent, *old; 1878 1879 if (path_equal(&nd->path, &nd->root)) 1880 goto in_root; 1881 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { 1882 struct path path; 1883 unsigned seq; 1884 if (!choose_mountpoint_rcu(real_mount(nd->path.mnt), 1885 &nd->root, &path, &seq)) 1886 goto in_root; 1887 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1888 return ERR_PTR(-ECHILD); 1889 nd->path = path; 1890 nd->inode = path.dentry->d_inode; 1891 nd->seq = seq; 1892 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1893 return ERR_PTR(-ECHILD); 1894 /* we know that mountpoint was pinned */ 1895 } 1896 old = nd->path.dentry; 1897 parent = old->d_parent; 1898 *inodep = parent->d_inode; 1899 *seqp = read_seqcount_begin(&parent->d_seq); 1900 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq))) 1901 return ERR_PTR(-ECHILD); 1902 if (unlikely(!path_connected(nd->path.mnt, parent))) 1903 return ERR_PTR(-ECHILD); 1904 return parent; 1905 in_root: 1906 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1907 return ERR_PTR(-ECHILD); 1908 if (unlikely(nd->flags & LOOKUP_BENEATH)) 1909 return ERR_PTR(-ECHILD); 1910 return NULL; 1911 } 1912 1913 static struct dentry *follow_dotdot(struct nameidata *nd, 1914 struct inode **inodep, 1915 unsigned *seqp) 1916 { 1917 struct dentry *parent; 1918 1919 if (path_equal(&nd->path, &nd->root)) 1920 goto in_root; 1921 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { 1922 struct path path; 1923 1924 if (!choose_mountpoint(real_mount(nd->path.mnt), 1925 &nd->root, &path)) 1926 goto in_root; 1927 path_put(&nd->path); 1928 nd->path = path; 1929 nd->inode = path.dentry->d_inode; 1930 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1931 return ERR_PTR(-EXDEV); 1932 } 1933 /* rare case of legitimate dget_parent()... */ 1934 parent = dget_parent(nd->path.dentry); 1935 if (unlikely(!path_connected(nd->path.mnt, parent))) { 1936 dput(parent); 1937 return ERR_PTR(-ENOENT); 1938 } 1939 *seqp = 0; 1940 *inodep = parent->d_inode; 1941 return parent; 1942 1943 in_root: 1944 if (unlikely(nd->flags & LOOKUP_BENEATH)) 1945 return ERR_PTR(-EXDEV); 1946 dget(nd->path.dentry); 1947 return NULL; 1948 } 1949 1950 static const char *handle_dots(struct nameidata *nd, int type) 1951 { 1952 if (type == LAST_DOTDOT) { 1953 const char *error = NULL; 1954 struct dentry *parent; 1955 struct inode *inode; 1956 unsigned seq; 1957 1958 if (!nd->root.mnt) { 1959 error = ERR_PTR(set_root(nd)); 1960 if (error) 1961 return error; 1962 } 1963 if (nd->flags & LOOKUP_RCU) 1964 parent = follow_dotdot_rcu(nd, &inode, &seq); 1965 else 1966 parent = follow_dotdot(nd, &inode, &seq); 1967 if (IS_ERR(parent)) 1968 return ERR_CAST(parent); 1969 if (unlikely(!parent)) 1970 error = step_into(nd, WALK_NOFOLLOW, 1971 nd->path.dentry, nd->inode, nd->seq); 1972 else 1973 error = step_into(nd, WALK_NOFOLLOW, 1974 parent, inode, seq); 1975 if (unlikely(error)) 1976 return error; 1977 1978 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { 1979 /* 1980 * If there was a racing rename or mount along our 1981 * path, then we can't be sure that ".." hasn't jumped 1982 * above nd->root (and so userspace should retry or use 1983 * some fallback). 1984 */ 1985 smp_rmb(); 1986 if (unlikely(__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq))) 1987 return ERR_PTR(-EAGAIN); 1988 if (unlikely(__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq))) 1989 return ERR_PTR(-EAGAIN); 1990 } 1991 } 1992 return NULL; 1993 } 1994 1995 static const char *walk_component(struct nameidata *nd, int flags) 1996 { 1997 struct dentry *dentry; 1998 struct inode *inode; 1999 unsigned seq; 2000 /* 2001 * "." and ".." are special - ".." especially so because it has 2002 * to be able to know about the current root directory and 2003 * parent relationships. 2004 */ 2005 if (unlikely(nd->last_type != LAST_NORM)) { 2006 if (!(flags & WALK_MORE) && nd->depth) 2007 put_link(nd); 2008 return handle_dots(nd, nd->last_type); 2009 } 2010 dentry = lookup_fast(nd, &inode, &seq); 2011 if (IS_ERR(dentry)) 2012 return ERR_CAST(dentry); 2013 if (unlikely(!dentry)) { 2014 dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags); 2015 if (IS_ERR(dentry)) 2016 return ERR_CAST(dentry); 2017 } 2018 if (!(flags & WALK_MORE) && nd->depth) 2019 put_link(nd); 2020 return step_into(nd, flags, dentry, inode, seq); 2021 } 2022 2023 /* 2024 * We can do the critical dentry name comparison and hashing 2025 * operations one word at a time, but we are limited to: 2026 * 2027 * - Architectures with fast unaligned word accesses. We could 2028 * do a "get_unaligned()" if this helps and is sufficiently 2029 * fast. 2030 * 2031 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 2032 * do not trap on the (extremely unlikely) case of a page 2033 * crossing operation. 2034 * 2035 * - Furthermore, we need an efficient 64-bit compile for the 2036 * 64-bit case in order to generate the "number of bytes in 2037 * the final mask". Again, that could be replaced with a 2038 * efficient population count instruction or similar. 2039 */ 2040 #ifdef CONFIG_DCACHE_WORD_ACCESS 2041 2042 #include <asm/word-at-a-time.h> 2043 2044 #ifdef HASH_MIX 2045 2046 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */ 2047 2048 #elif defined(CONFIG_64BIT) 2049 /* 2050 * Register pressure in the mixing function is an issue, particularly 2051 * on 32-bit x86, but almost any function requires one state value and 2052 * one temporary. Instead, use a function designed for two state values 2053 * and no temporaries. 2054 * 2055 * This function cannot create a collision in only two iterations, so 2056 * we have two iterations to achieve avalanche. In those two iterations, 2057 * we have six layers of mixing, which is enough to spread one bit's 2058 * influence out to 2^6 = 64 state bits. 2059 * 2060 * Rotate constants are scored by considering either 64 one-bit input 2061 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the 2062 * probability of that delta causing a change to each of the 128 output 2063 * bits, using a sample of random initial states. 2064 * 2065 * The Shannon entropy of the computed probabilities is then summed 2066 * to produce a score. Ideally, any input change has a 50% chance of 2067 * toggling any given output bit. 2068 * 2069 * Mixing scores (in bits) for (12,45): 2070 * Input delta: 1-bit 2-bit 2071 * 1 round: 713.3 42542.6 2072 * 2 rounds: 2753.7 140389.8 2073 * 3 rounds: 5954.1 233458.2 2074 * 4 rounds: 7862.6 256672.2 2075 * Perfect: 8192 258048 2076 * (64*128) (64*63/2 * 128) 2077 */ 2078 #define HASH_MIX(x, y, a) \ 2079 ( x ^= (a), \ 2080 y ^= x, x = rol64(x,12),\ 2081 x += y, y = rol64(y,45),\ 2082 y *= 9 ) 2083 2084 /* 2085 * Fold two longs into one 32-bit hash value. This must be fast, but 2086 * latency isn't quite as critical, as there is a fair bit of additional 2087 * work done before the hash value is used. 2088 */ 2089 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 2090 { 2091 y ^= x * GOLDEN_RATIO_64; 2092 y *= GOLDEN_RATIO_64; 2093 return y >> 32; 2094 } 2095 2096 #else /* 32-bit case */ 2097 2098 /* 2099 * Mixing scores (in bits) for (7,20): 2100 * Input delta: 1-bit 2-bit 2101 * 1 round: 330.3 9201.6 2102 * 2 rounds: 1246.4 25475.4 2103 * 3 rounds: 1907.1 31295.1 2104 * 4 rounds: 2042.3 31718.6 2105 * Perfect: 2048 31744 2106 * (32*64) (32*31/2 * 64) 2107 */ 2108 #define HASH_MIX(x, y, a) \ 2109 ( x ^= (a), \ 2110 y ^= x, x = rol32(x, 7),\ 2111 x += y, y = rol32(y,20),\ 2112 y *= 9 ) 2113 2114 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 2115 { 2116 /* Use arch-optimized multiply if one exists */ 2117 return __hash_32(y ^ __hash_32(x)); 2118 } 2119 2120 #endif 2121 2122 /* 2123 * Return the hash of a string of known length. This is carfully 2124 * designed to match hash_name(), which is the more critical function. 2125 * In particular, we must end by hashing a final word containing 0..7 2126 * payload bytes, to match the way that hash_name() iterates until it 2127 * finds the delimiter after the name. 2128 */ 2129 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2130 { 2131 unsigned long a, x = 0, y = (unsigned long)salt; 2132 2133 for (;;) { 2134 if (!len) 2135 goto done; 2136 a = load_unaligned_zeropad(name); 2137 if (len < sizeof(unsigned long)) 2138 break; 2139 HASH_MIX(x, y, a); 2140 name += sizeof(unsigned long); 2141 len -= sizeof(unsigned long); 2142 } 2143 x ^= a & bytemask_from_count(len); 2144 done: 2145 return fold_hash(x, y); 2146 } 2147 EXPORT_SYMBOL(full_name_hash); 2148 2149 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2150 u64 hashlen_string(const void *salt, const char *name) 2151 { 2152 unsigned long a = 0, x = 0, y = (unsigned long)salt; 2153 unsigned long adata, mask, len; 2154 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 2155 2156 len = 0; 2157 goto inside; 2158 2159 do { 2160 HASH_MIX(x, y, a); 2161 len += sizeof(unsigned long); 2162 inside: 2163 a = load_unaligned_zeropad(name+len); 2164 } while (!has_zero(a, &adata, &constants)); 2165 2166 adata = prep_zero_mask(a, adata, &constants); 2167 mask = create_zero_mask(adata); 2168 x ^= a & zero_bytemask(mask); 2169 2170 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 2171 } 2172 EXPORT_SYMBOL(hashlen_string); 2173 2174 /* 2175 * Calculate the length and hash of the path component, and 2176 * return the "hash_len" as the result. 2177 */ 2178 static inline u64 hash_name(const void *salt, const char *name) 2179 { 2180 unsigned long a = 0, b, x = 0, y = (unsigned long)salt; 2181 unsigned long adata, bdata, mask, len; 2182 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 2183 2184 len = 0; 2185 goto inside; 2186 2187 do { 2188 HASH_MIX(x, y, a); 2189 len += sizeof(unsigned long); 2190 inside: 2191 a = load_unaligned_zeropad(name+len); 2192 b = a ^ REPEAT_BYTE('/'); 2193 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 2194 2195 adata = prep_zero_mask(a, adata, &constants); 2196 bdata = prep_zero_mask(b, bdata, &constants); 2197 mask = create_zero_mask(adata | bdata); 2198 x ^= a & zero_bytemask(mask); 2199 2200 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 2201 } 2202 2203 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */ 2204 2205 /* Return the hash of a string of known length */ 2206 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2207 { 2208 unsigned long hash = init_name_hash(salt); 2209 while (len--) 2210 hash = partial_name_hash((unsigned char)*name++, hash); 2211 return end_name_hash(hash); 2212 } 2213 EXPORT_SYMBOL(full_name_hash); 2214 2215 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2216 u64 hashlen_string(const void *salt, const char *name) 2217 { 2218 unsigned long hash = init_name_hash(salt); 2219 unsigned long len = 0, c; 2220 2221 c = (unsigned char)*name; 2222 while (c) { 2223 len++; 2224 hash = partial_name_hash(c, hash); 2225 c = (unsigned char)name[len]; 2226 } 2227 return hashlen_create(end_name_hash(hash), len); 2228 } 2229 EXPORT_SYMBOL(hashlen_string); 2230 2231 /* 2232 * We know there's a real path component here of at least 2233 * one character. 2234 */ 2235 static inline u64 hash_name(const void *salt, const char *name) 2236 { 2237 unsigned long hash = init_name_hash(salt); 2238 unsigned long len = 0, c; 2239 2240 c = (unsigned char)*name; 2241 do { 2242 len++; 2243 hash = partial_name_hash(c, hash); 2244 c = (unsigned char)name[len]; 2245 } while (c && c != '/'); 2246 return hashlen_create(end_name_hash(hash), len); 2247 } 2248 2249 #endif 2250 2251 /* 2252 * Name resolution. 2253 * This is the basic name resolution function, turning a pathname into 2254 * the final dentry. We expect 'base' to be positive and a directory. 2255 * 2256 * Returns 0 and nd will have valid dentry and mnt on success. 2257 * Returns error and drops reference to input namei data on failure. 2258 */ 2259 static int link_path_walk(const char *name, struct nameidata *nd) 2260 { 2261 int depth = 0; // depth <= nd->depth 2262 int err; 2263 2264 nd->last_type = LAST_ROOT; 2265 nd->flags |= LOOKUP_PARENT; 2266 if (IS_ERR(name)) 2267 return PTR_ERR(name); 2268 while (*name=='/') 2269 name++; 2270 if (!*name) { 2271 nd->dir_mode = 0; // short-circuit the 'hardening' idiocy 2272 return 0; 2273 } 2274 2275 /* At this point we know we have a real path component. */ 2276 for(;;) { 2277 struct user_namespace *mnt_userns; 2278 const char *link; 2279 u64 hash_len; 2280 int type; 2281 2282 mnt_userns = mnt_user_ns(nd->path.mnt); 2283 err = may_lookup(mnt_userns, nd); 2284 if (err) 2285 return err; 2286 2287 hash_len = hash_name(nd->path.dentry, name); 2288 2289 type = LAST_NORM; 2290 if (name[0] == '.') switch (hashlen_len(hash_len)) { 2291 case 2: 2292 if (name[1] == '.') { 2293 type = LAST_DOTDOT; 2294 nd->state |= ND_JUMPED; 2295 } 2296 break; 2297 case 1: 2298 type = LAST_DOT; 2299 } 2300 if (likely(type == LAST_NORM)) { 2301 struct dentry *parent = nd->path.dentry; 2302 nd->state &= ~ND_JUMPED; 2303 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 2304 struct qstr this = { { .hash_len = hash_len }, .name = name }; 2305 err = parent->d_op->d_hash(parent, &this); 2306 if (err < 0) 2307 return err; 2308 hash_len = this.hash_len; 2309 name = this.name; 2310 } 2311 } 2312 2313 nd->last.hash_len = hash_len; 2314 nd->last.name = name; 2315 nd->last_type = type; 2316 2317 name += hashlen_len(hash_len); 2318 if (!*name) 2319 goto OK; 2320 /* 2321 * If it wasn't NUL, we know it was '/'. Skip that 2322 * slash, and continue until no more slashes. 2323 */ 2324 do { 2325 name++; 2326 } while (unlikely(*name == '/')); 2327 if (unlikely(!*name)) { 2328 OK: 2329 /* pathname or trailing symlink, done */ 2330 if (!depth) { 2331 nd->dir_uid = i_uid_into_mnt(mnt_userns, nd->inode); 2332 nd->dir_mode = nd->inode->i_mode; 2333 nd->flags &= ~LOOKUP_PARENT; 2334 return 0; 2335 } 2336 /* last component of nested symlink */ 2337 name = nd->stack[--depth].name; 2338 link = walk_component(nd, 0); 2339 } else { 2340 /* not the last component */ 2341 link = walk_component(nd, WALK_MORE); 2342 } 2343 if (unlikely(link)) { 2344 if (IS_ERR(link)) 2345 return PTR_ERR(link); 2346 /* a symlink to follow */ 2347 nd->stack[depth++].name = name; 2348 name = link; 2349 continue; 2350 } 2351 if (unlikely(!d_can_lookup(nd->path.dentry))) { 2352 if (nd->flags & LOOKUP_RCU) { 2353 if (!try_to_unlazy(nd)) 2354 return -ECHILD; 2355 } 2356 return -ENOTDIR; 2357 } 2358 } 2359 } 2360 2361 /* must be paired with terminate_walk() */ 2362 static const char *path_init(struct nameidata *nd, unsigned flags) 2363 { 2364 int error; 2365 const char *s = nd->name->name; 2366 2367 /* LOOKUP_CACHED requires RCU, ask caller to retry */ 2368 if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED) 2369 return ERR_PTR(-EAGAIN); 2370 2371 if (!*s) 2372 flags &= ~LOOKUP_RCU; 2373 if (flags & LOOKUP_RCU) 2374 rcu_read_lock(); 2375 2376 nd->flags = flags; 2377 nd->state |= ND_JUMPED; 2378 2379 nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount); 2380 nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount); 2381 smp_rmb(); 2382 2383 if (nd->state & ND_ROOT_PRESET) { 2384 struct dentry *root = nd->root.dentry; 2385 struct inode *inode = root->d_inode; 2386 if (*s && unlikely(!d_can_lookup(root))) 2387 return ERR_PTR(-ENOTDIR); 2388 nd->path = nd->root; 2389 nd->inode = inode; 2390 if (flags & LOOKUP_RCU) { 2391 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2392 nd->root_seq = nd->seq; 2393 } else { 2394 path_get(&nd->path); 2395 } 2396 return s; 2397 } 2398 2399 nd->root.mnt = NULL; 2400 2401 /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */ 2402 if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) { 2403 error = nd_jump_root(nd); 2404 if (unlikely(error)) 2405 return ERR_PTR(error); 2406 return s; 2407 } 2408 2409 /* Relative pathname -- get the starting-point it is relative to. */ 2410 if (nd->dfd == AT_FDCWD) { 2411 if (flags & LOOKUP_RCU) { 2412 struct fs_struct *fs = current->fs; 2413 unsigned seq; 2414 2415 do { 2416 seq = read_seqcount_begin(&fs->seq); 2417 nd->path = fs->pwd; 2418 nd->inode = nd->path.dentry->d_inode; 2419 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2420 } while (read_seqcount_retry(&fs->seq, seq)); 2421 } else { 2422 get_fs_pwd(current->fs, &nd->path); 2423 nd->inode = nd->path.dentry->d_inode; 2424 } 2425 } else { 2426 /* Caller must check execute permissions on the starting path component */ 2427 struct fd f = fdget_raw(nd->dfd); 2428 struct dentry *dentry; 2429 2430 if (!f.file) 2431 return ERR_PTR(-EBADF); 2432 2433 dentry = f.file->f_path.dentry; 2434 2435 if (*s && unlikely(!d_can_lookup(dentry))) { 2436 fdput(f); 2437 return ERR_PTR(-ENOTDIR); 2438 } 2439 2440 nd->path = f.file->f_path; 2441 if (flags & LOOKUP_RCU) { 2442 nd->inode = nd->path.dentry->d_inode; 2443 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2444 } else { 2445 path_get(&nd->path); 2446 nd->inode = nd->path.dentry->d_inode; 2447 } 2448 fdput(f); 2449 } 2450 2451 /* For scoped-lookups we need to set the root to the dirfd as well. */ 2452 if (flags & LOOKUP_IS_SCOPED) { 2453 nd->root = nd->path; 2454 if (flags & LOOKUP_RCU) { 2455 nd->root_seq = nd->seq; 2456 } else { 2457 path_get(&nd->root); 2458 nd->state |= ND_ROOT_GRABBED; 2459 } 2460 } 2461 return s; 2462 } 2463 2464 static inline const char *lookup_last(struct nameidata *nd) 2465 { 2466 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 2467 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2468 2469 return walk_component(nd, WALK_TRAILING); 2470 } 2471 2472 static int handle_lookup_down(struct nameidata *nd) 2473 { 2474 if (!(nd->flags & LOOKUP_RCU)) 2475 dget(nd->path.dentry); 2476 return PTR_ERR(step_into(nd, WALK_NOFOLLOW, 2477 nd->path.dentry, nd->inode, nd->seq)); 2478 } 2479 2480 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2481 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path) 2482 { 2483 const char *s = path_init(nd, flags); 2484 int err; 2485 2486 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) { 2487 err = handle_lookup_down(nd); 2488 if (unlikely(err < 0)) 2489 s = ERR_PTR(err); 2490 } 2491 2492 while (!(err = link_path_walk(s, nd)) && 2493 (s = lookup_last(nd)) != NULL) 2494 ; 2495 if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) { 2496 err = handle_lookup_down(nd); 2497 nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please... 2498 } 2499 if (!err) 2500 err = complete_walk(nd); 2501 2502 if (!err && nd->flags & LOOKUP_DIRECTORY) 2503 if (!d_can_lookup(nd->path.dentry)) 2504 err = -ENOTDIR; 2505 if (!err) { 2506 *path = nd->path; 2507 nd->path.mnt = NULL; 2508 nd->path.dentry = NULL; 2509 } 2510 terminate_walk(nd); 2511 return err; 2512 } 2513 2514 int filename_lookup(int dfd, struct filename *name, unsigned flags, 2515 struct path *path, struct path *root) 2516 { 2517 int retval; 2518 struct nameidata nd; 2519 if (IS_ERR(name)) 2520 return PTR_ERR(name); 2521 set_nameidata(&nd, dfd, name, root); 2522 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path); 2523 if (unlikely(retval == -ECHILD)) 2524 retval = path_lookupat(&nd, flags, path); 2525 if (unlikely(retval == -ESTALE)) 2526 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path); 2527 2528 if (likely(!retval)) 2529 audit_inode(name, path->dentry, 2530 flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0); 2531 restore_nameidata(); 2532 return retval; 2533 } 2534 2535 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2536 static int path_parentat(struct nameidata *nd, unsigned flags, 2537 struct path *parent) 2538 { 2539 const char *s = path_init(nd, flags); 2540 int err = link_path_walk(s, nd); 2541 if (!err) 2542 err = complete_walk(nd); 2543 if (!err) { 2544 *parent = nd->path; 2545 nd->path.mnt = NULL; 2546 nd->path.dentry = NULL; 2547 } 2548 terminate_walk(nd); 2549 return err; 2550 } 2551 2552 /* Note: this does not consume "name" */ 2553 static int filename_parentat(int dfd, struct filename *name, 2554 unsigned int flags, struct path *parent, 2555 struct qstr *last, int *type) 2556 { 2557 int retval; 2558 struct nameidata nd; 2559 2560 if (IS_ERR(name)) 2561 return PTR_ERR(name); 2562 set_nameidata(&nd, dfd, name, NULL); 2563 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent); 2564 if (unlikely(retval == -ECHILD)) 2565 retval = path_parentat(&nd, flags, parent); 2566 if (unlikely(retval == -ESTALE)) 2567 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent); 2568 if (likely(!retval)) { 2569 *last = nd.last; 2570 *type = nd.last_type; 2571 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT); 2572 } 2573 restore_nameidata(); 2574 return retval; 2575 } 2576 2577 /* does lookup, returns the object with parent locked */ 2578 static struct dentry *__kern_path_locked(struct filename *name, struct path *path) 2579 { 2580 struct dentry *d; 2581 struct qstr last; 2582 int type, error; 2583 2584 error = filename_parentat(AT_FDCWD, name, 0, path, &last, &type); 2585 if (error) 2586 return ERR_PTR(error); 2587 if (unlikely(type != LAST_NORM)) { 2588 path_put(path); 2589 return ERR_PTR(-EINVAL); 2590 } 2591 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 2592 d = __lookup_hash(&last, path->dentry, 0); 2593 if (IS_ERR(d)) { 2594 inode_unlock(path->dentry->d_inode); 2595 path_put(path); 2596 } 2597 return d; 2598 } 2599 2600 struct dentry *kern_path_locked(const char *name, struct path *path) 2601 { 2602 struct filename *filename = getname_kernel(name); 2603 struct dentry *res = __kern_path_locked(filename, path); 2604 2605 putname(filename); 2606 return res; 2607 } 2608 2609 int kern_path(const char *name, unsigned int flags, struct path *path) 2610 { 2611 struct filename *filename = getname_kernel(name); 2612 int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL); 2613 2614 putname(filename); 2615 return ret; 2616 2617 } 2618 EXPORT_SYMBOL(kern_path); 2619 2620 /** 2621 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2622 * @dentry: pointer to dentry of the base directory 2623 * @mnt: pointer to vfs mount of the base directory 2624 * @name: pointer to file name 2625 * @flags: lookup flags 2626 * @path: pointer to struct path to fill 2627 */ 2628 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2629 const char *name, unsigned int flags, 2630 struct path *path) 2631 { 2632 struct filename *filename; 2633 struct path root = {.mnt = mnt, .dentry = dentry}; 2634 int ret; 2635 2636 filename = getname_kernel(name); 2637 /* the first argument of filename_lookup() is ignored with root */ 2638 ret = filename_lookup(AT_FDCWD, filename, flags, path, &root); 2639 putname(filename); 2640 return ret; 2641 } 2642 EXPORT_SYMBOL(vfs_path_lookup); 2643 2644 static int lookup_one_common(struct user_namespace *mnt_userns, 2645 const char *name, struct dentry *base, int len, 2646 struct qstr *this) 2647 { 2648 this->name = name; 2649 this->len = len; 2650 this->hash = full_name_hash(base, name, len); 2651 if (!len) 2652 return -EACCES; 2653 2654 if (unlikely(name[0] == '.')) { 2655 if (len < 2 || (len == 2 && name[1] == '.')) 2656 return -EACCES; 2657 } 2658 2659 while (len--) { 2660 unsigned int c = *(const unsigned char *)name++; 2661 if (c == '/' || c == '\0') 2662 return -EACCES; 2663 } 2664 /* 2665 * See if the low-level filesystem might want 2666 * to use its own hash.. 2667 */ 2668 if (base->d_flags & DCACHE_OP_HASH) { 2669 int err = base->d_op->d_hash(base, this); 2670 if (err < 0) 2671 return err; 2672 } 2673 2674 return inode_permission(mnt_userns, base->d_inode, MAY_EXEC); 2675 } 2676 2677 /** 2678 * try_lookup_one_len - filesystem helper to lookup single pathname component 2679 * @name: pathname component to lookup 2680 * @base: base directory to lookup from 2681 * @len: maximum length @len should be interpreted to 2682 * 2683 * Look up a dentry by name in the dcache, returning NULL if it does not 2684 * currently exist. The function does not try to create a dentry. 2685 * 2686 * Note that this routine is purely a helper for filesystem usage and should 2687 * not be called by generic code. 2688 * 2689 * The caller must hold base->i_mutex. 2690 */ 2691 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len) 2692 { 2693 struct qstr this; 2694 int err; 2695 2696 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2697 2698 err = lookup_one_common(&init_user_ns, name, base, len, &this); 2699 if (err) 2700 return ERR_PTR(err); 2701 2702 return lookup_dcache(&this, base, 0); 2703 } 2704 EXPORT_SYMBOL(try_lookup_one_len); 2705 2706 /** 2707 * lookup_one_len - filesystem helper to lookup single pathname component 2708 * @name: pathname component to lookup 2709 * @base: base directory to lookup from 2710 * @len: maximum length @len should be interpreted to 2711 * 2712 * Note that this routine is purely a helper for filesystem usage and should 2713 * not be called by generic code. 2714 * 2715 * The caller must hold base->i_mutex. 2716 */ 2717 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2718 { 2719 struct dentry *dentry; 2720 struct qstr this; 2721 int err; 2722 2723 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2724 2725 err = lookup_one_common(&init_user_ns, name, base, len, &this); 2726 if (err) 2727 return ERR_PTR(err); 2728 2729 dentry = lookup_dcache(&this, base, 0); 2730 return dentry ? dentry : __lookup_slow(&this, base, 0); 2731 } 2732 EXPORT_SYMBOL(lookup_one_len); 2733 2734 /** 2735 * lookup_one - filesystem helper to lookup single pathname component 2736 * @mnt_userns: user namespace of the mount the lookup is performed from 2737 * @name: pathname component to lookup 2738 * @base: base directory to lookup from 2739 * @len: maximum length @len should be interpreted to 2740 * 2741 * Note that this routine is purely a helper for filesystem usage and should 2742 * not be called by generic code. 2743 * 2744 * The caller must hold base->i_mutex. 2745 */ 2746 struct dentry *lookup_one(struct user_namespace *mnt_userns, const char *name, 2747 struct dentry *base, int len) 2748 { 2749 struct dentry *dentry; 2750 struct qstr this; 2751 int err; 2752 2753 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2754 2755 err = lookup_one_common(mnt_userns, name, base, len, &this); 2756 if (err) 2757 return ERR_PTR(err); 2758 2759 dentry = lookup_dcache(&this, base, 0); 2760 return dentry ? dentry : __lookup_slow(&this, base, 0); 2761 } 2762 EXPORT_SYMBOL(lookup_one); 2763 2764 /** 2765 * lookup_one_unlocked - filesystem helper to lookup single pathname component 2766 * @mnt_userns: idmapping of the mount the lookup is performed from 2767 * @name: pathname component to lookup 2768 * @base: base directory to lookup from 2769 * @len: maximum length @len should be interpreted to 2770 * 2771 * Note that this routine is purely a helper for filesystem usage and should 2772 * not be called by generic code. 2773 * 2774 * Unlike lookup_one_len, it should be called without the parent 2775 * i_mutex held, and will take the i_mutex itself if necessary. 2776 */ 2777 struct dentry *lookup_one_unlocked(struct user_namespace *mnt_userns, 2778 const char *name, struct dentry *base, 2779 int len) 2780 { 2781 struct qstr this; 2782 int err; 2783 struct dentry *ret; 2784 2785 err = lookup_one_common(mnt_userns, name, base, len, &this); 2786 if (err) 2787 return ERR_PTR(err); 2788 2789 ret = lookup_dcache(&this, base, 0); 2790 if (!ret) 2791 ret = lookup_slow(&this, base, 0); 2792 return ret; 2793 } 2794 EXPORT_SYMBOL(lookup_one_unlocked); 2795 2796 /** 2797 * lookup_one_positive_unlocked - filesystem helper to lookup single 2798 * pathname component 2799 * @mnt_userns: idmapping of the mount the lookup is performed from 2800 * @name: pathname component to lookup 2801 * @base: base directory to lookup from 2802 * @len: maximum length @len should be interpreted to 2803 * 2804 * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns 2805 * known positive or ERR_PTR(). This is what most of the users want. 2806 * 2807 * Note that pinned negative with unlocked parent _can_ become positive at any 2808 * time, so callers of lookup_one_unlocked() need to be very careful; pinned 2809 * positives have >d_inode stable, so this one avoids such problems. 2810 * 2811 * Note that this routine is purely a helper for filesystem usage and should 2812 * not be called by generic code. 2813 * 2814 * The helper should be called without i_mutex held. 2815 */ 2816 struct dentry *lookup_one_positive_unlocked(struct user_namespace *mnt_userns, 2817 const char *name, 2818 struct dentry *base, int len) 2819 { 2820 struct dentry *ret = lookup_one_unlocked(mnt_userns, name, base, len); 2821 2822 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) { 2823 dput(ret); 2824 ret = ERR_PTR(-ENOENT); 2825 } 2826 return ret; 2827 } 2828 EXPORT_SYMBOL(lookup_one_positive_unlocked); 2829 2830 /** 2831 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component 2832 * @name: pathname component to lookup 2833 * @base: base directory to lookup from 2834 * @len: maximum length @len should be interpreted to 2835 * 2836 * Note that this routine is purely a helper for filesystem usage and should 2837 * not be called by generic code. 2838 * 2839 * Unlike lookup_one_len, it should be called without the parent 2840 * i_mutex held, and will take the i_mutex itself if necessary. 2841 */ 2842 struct dentry *lookup_one_len_unlocked(const char *name, 2843 struct dentry *base, int len) 2844 { 2845 return lookup_one_unlocked(&init_user_ns, name, base, len); 2846 } 2847 EXPORT_SYMBOL(lookup_one_len_unlocked); 2848 2849 /* 2850 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT) 2851 * on negatives. Returns known positive or ERR_PTR(); that's what 2852 * most of the users want. Note that pinned negative with unlocked parent 2853 * _can_ become positive at any time, so callers of lookup_one_len_unlocked() 2854 * need to be very careful; pinned positives have ->d_inode stable, so 2855 * this one avoids such problems. 2856 */ 2857 struct dentry *lookup_positive_unlocked(const char *name, 2858 struct dentry *base, int len) 2859 { 2860 return lookup_one_positive_unlocked(&init_user_ns, name, base, len); 2861 } 2862 EXPORT_SYMBOL(lookup_positive_unlocked); 2863 2864 #ifdef CONFIG_UNIX98_PTYS 2865 int path_pts(struct path *path) 2866 { 2867 /* Find something mounted on "pts" in the same directory as 2868 * the input path. 2869 */ 2870 struct dentry *parent = dget_parent(path->dentry); 2871 struct dentry *child; 2872 struct qstr this = QSTR_INIT("pts", 3); 2873 2874 if (unlikely(!path_connected(path->mnt, parent))) { 2875 dput(parent); 2876 return -ENOENT; 2877 } 2878 dput(path->dentry); 2879 path->dentry = parent; 2880 child = d_hash_and_lookup(parent, &this); 2881 if (!child) 2882 return -ENOENT; 2883 2884 path->dentry = child; 2885 dput(parent); 2886 follow_down(path); 2887 return 0; 2888 } 2889 #endif 2890 2891 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2892 struct path *path, int *empty) 2893 { 2894 struct filename *filename = getname_flags(name, flags, empty); 2895 int ret = filename_lookup(dfd, filename, flags, path, NULL); 2896 2897 putname(filename); 2898 return ret; 2899 } 2900 EXPORT_SYMBOL(user_path_at_empty); 2901 2902 int __check_sticky(struct user_namespace *mnt_userns, struct inode *dir, 2903 struct inode *inode) 2904 { 2905 kuid_t fsuid = current_fsuid(); 2906 2907 if (uid_eq(i_uid_into_mnt(mnt_userns, inode), fsuid)) 2908 return 0; 2909 if (uid_eq(i_uid_into_mnt(mnt_userns, dir), fsuid)) 2910 return 0; 2911 return !capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FOWNER); 2912 } 2913 EXPORT_SYMBOL(__check_sticky); 2914 2915 /* 2916 * Check whether we can remove a link victim from directory dir, check 2917 * whether the type of victim is right. 2918 * 1. We can't do it if dir is read-only (done in permission()) 2919 * 2. We should have write and exec permissions on dir 2920 * 3. We can't remove anything from append-only dir 2921 * 4. We can't do anything with immutable dir (done in permission()) 2922 * 5. If the sticky bit on dir is set we should either 2923 * a. be owner of dir, or 2924 * b. be owner of victim, or 2925 * c. have CAP_FOWNER capability 2926 * 6. If the victim is append-only or immutable we can't do antyhing with 2927 * links pointing to it. 2928 * 7. If the victim has an unknown uid or gid we can't change the inode. 2929 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2930 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2931 * 10. We can't remove a root or mountpoint. 2932 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by 2933 * nfs_async_unlink(). 2934 */ 2935 static int may_delete(struct user_namespace *mnt_userns, struct inode *dir, 2936 struct dentry *victim, bool isdir) 2937 { 2938 struct inode *inode = d_backing_inode(victim); 2939 int error; 2940 2941 if (d_is_negative(victim)) 2942 return -ENOENT; 2943 BUG_ON(!inode); 2944 2945 BUG_ON(victim->d_parent->d_inode != dir); 2946 2947 /* Inode writeback is not safe when the uid or gid are invalid. */ 2948 if (!uid_valid(i_uid_into_mnt(mnt_userns, inode)) || 2949 !gid_valid(i_gid_into_mnt(mnt_userns, inode))) 2950 return -EOVERFLOW; 2951 2952 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2953 2954 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); 2955 if (error) 2956 return error; 2957 if (IS_APPEND(dir)) 2958 return -EPERM; 2959 2960 if (check_sticky(mnt_userns, dir, inode) || IS_APPEND(inode) || 2961 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || 2962 HAS_UNMAPPED_ID(mnt_userns, inode)) 2963 return -EPERM; 2964 if (isdir) { 2965 if (!d_is_dir(victim)) 2966 return -ENOTDIR; 2967 if (IS_ROOT(victim)) 2968 return -EBUSY; 2969 } else if (d_is_dir(victim)) 2970 return -EISDIR; 2971 if (IS_DEADDIR(dir)) 2972 return -ENOENT; 2973 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2974 return -EBUSY; 2975 return 0; 2976 } 2977 2978 /* Check whether we can create an object with dentry child in directory 2979 * dir. 2980 * 1. We can't do it if child already exists (open has special treatment for 2981 * this case, but since we are inlined it's OK) 2982 * 2. We can't do it if dir is read-only (done in permission()) 2983 * 3. We can't do it if the fs can't represent the fsuid or fsgid. 2984 * 4. We should have write and exec permissions on dir 2985 * 5. We can't do it if dir is immutable (done in permission()) 2986 */ 2987 static inline int may_create(struct user_namespace *mnt_userns, 2988 struct inode *dir, struct dentry *child) 2989 { 2990 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 2991 if (child->d_inode) 2992 return -EEXIST; 2993 if (IS_DEADDIR(dir)) 2994 return -ENOENT; 2995 if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns)) 2996 return -EOVERFLOW; 2997 2998 return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); 2999 } 3000 3001 /* 3002 * p1 and p2 should be directories on the same fs. 3003 */ 3004 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 3005 { 3006 struct dentry *p; 3007 3008 if (p1 == p2) { 3009 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 3010 return NULL; 3011 } 3012 3013 mutex_lock(&p1->d_sb->s_vfs_rename_mutex); 3014 3015 p = d_ancestor(p2, p1); 3016 if (p) { 3017 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 3018 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD); 3019 return p; 3020 } 3021 3022 p = d_ancestor(p1, p2); 3023 if (p) { 3024 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 3025 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD); 3026 return p; 3027 } 3028 3029 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 3030 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 3031 return NULL; 3032 } 3033 EXPORT_SYMBOL(lock_rename); 3034 3035 void unlock_rename(struct dentry *p1, struct dentry *p2) 3036 { 3037 inode_unlock(p1->d_inode); 3038 if (p1 != p2) { 3039 inode_unlock(p2->d_inode); 3040 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 3041 } 3042 } 3043 EXPORT_SYMBOL(unlock_rename); 3044 3045 /** 3046 * vfs_create - create new file 3047 * @mnt_userns: user namespace of the mount the inode was found from 3048 * @dir: inode of @dentry 3049 * @dentry: pointer to dentry of the base directory 3050 * @mode: mode of the new file 3051 * @want_excl: whether the file must not yet exist 3052 * 3053 * Create a new file. 3054 * 3055 * If the inode has been found through an idmapped mount the user namespace of 3056 * the vfsmount must be passed through @mnt_userns. This function will then take 3057 * care to map the inode according to @mnt_userns before checking permissions. 3058 * On non-idmapped mounts or if permission checking is to be performed on the 3059 * raw inode simply passs init_user_ns. 3060 */ 3061 int vfs_create(struct user_namespace *mnt_userns, struct inode *dir, 3062 struct dentry *dentry, umode_t mode, bool want_excl) 3063 { 3064 int error = may_create(mnt_userns, dir, dentry); 3065 if (error) 3066 return error; 3067 3068 if (!dir->i_op->create) 3069 return -EACCES; /* shouldn't it be ENOSYS? */ 3070 mode &= S_IALLUGO; 3071 mode |= S_IFREG; 3072 error = security_inode_create(dir, dentry, mode); 3073 if (error) 3074 return error; 3075 error = dir->i_op->create(mnt_userns, dir, dentry, mode, want_excl); 3076 if (!error) 3077 fsnotify_create(dir, dentry); 3078 return error; 3079 } 3080 EXPORT_SYMBOL(vfs_create); 3081 3082 int vfs_mkobj(struct dentry *dentry, umode_t mode, 3083 int (*f)(struct dentry *, umode_t, void *), 3084 void *arg) 3085 { 3086 struct inode *dir = dentry->d_parent->d_inode; 3087 int error = may_create(&init_user_ns, dir, dentry); 3088 if (error) 3089 return error; 3090 3091 mode &= S_IALLUGO; 3092 mode |= S_IFREG; 3093 error = security_inode_create(dir, dentry, mode); 3094 if (error) 3095 return error; 3096 error = f(dentry, mode, arg); 3097 if (!error) 3098 fsnotify_create(dir, dentry); 3099 return error; 3100 } 3101 EXPORT_SYMBOL(vfs_mkobj); 3102 3103 bool may_open_dev(const struct path *path) 3104 { 3105 return !(path->mnt->mnt_flags & MNT_NODEV) && 3106 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV); 3107 } 3108 3109 static int may_open(struct user_namespace *mnt_userns, const struct path *path, 3110 int acc_mode, int flag) 3111 { 3112 struct dentry *dentry = path->dentry; 3113 struct inode *inode = dentry->d_inode; 3114 int error; 3115 3116 if (!inode) 3117 return -ENOENT; 3118 3119 switch (inode->i_mode & S_IFMT) { 3120 case S_IFLNK: 3121 return -ELOOP; 3122 case S_IFDIR: 3123 if (acc_mode & MAY_WRITE) 3124 return -EISDIR; 3125 if (acc_mode & MAY_EXEC) 3126 return -EACCES; 3127 break; 3128 case S_IFBLK: 3129 case S_IFCHR: 3130 if (!may_open_dev(path)) 3131 return -EACCES; 3132 fallthrough; 3133 case S_IFIFO: 3134 case S_IFSOCK: 3135 if (acc_mode & MAY_EXEC) 3136 return -EACCES; 3137 flag &= ~O_TRUNC; 3138 break; 3139 case S_IFREG: 3140 if ((acc_mode & MAY_EXEC) && path_noexec(path)) 3141 return -EACCES; 3142 break; 3143 } 3144 3145 error = inode_permission(mnt_userns, inode, MAY_OPEN | acc_mode); 3146 if (error) 3147 return error; 3148 3149 /* 3150 * An append-only file must be opened in append mode for writing. 3151 */ 3152 if (IS_APPEND(inode)) { 3153 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 3154 return -EPERM; 3155 if (flag & O_TRUNC) 3156 return -EPERM; 3157 } 3158 3159 /* O_NOATIME can only be set by the owner or superuser */ 3160 if (flag & O_NOATIME && !inode_owner_or_capable(mnt_userns, inode)) 3161 return -EPERM; 3162 3163 return 0; 3164 } 3165 3166 static int handle_truncate(struct user_namespace *mnt_userns, struct file *filp) 3167 { 3168 const struct path *path = &filp->f_path; 3169 struct inode *inode = path->dentry->d_inode; 3170 int error = get_write_access(inode); 3171 if (error) 3172 return error; 3173 3174 error = security_path_truncate(path); 3175 if (!error) { 3176 error = do_truncate(mnt_userns, path->dentry, 0, 3177 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 3178 filp); 3179 } 3180 put_write_access(inode); 3181 return error; 3182 } 3183 3184 static inline int open_to_namei_flags(int flag) 3185 { 3186 if ((flag & O_ACCMODE) == 3) 3187 flag--; 3188 return flag; 3189 } 3190 3191 static int may_o_create(struct user_namespace *mnt_userns, 3192 const struct path *dir, struct dentry *dentry, 3193 umode_t mode) 3194 { 3195 int error = security_path_mknod(dir, dentry, mode, 0); 3196 if (error) 3197 return error; 3198 3199 if (!fsuidgid_has_mapping(dir->dentry->d_sb, mnt_userns)) 3200 return -EOVERFLOW; 3201 3202 error = inode_permission(mnt_userns, dir->dentry->d_inode, 3203 MAY_WRITE | MAY_EXEC); 3204 if (error) 3205 return error; 3206 3207 return security_inode_create(dir->dentry->d_inode, dentry, mode); 3208 } 3209 3210 /* 3211 * Attempt to atomically look up, create and open a file from a negative 3212 * dentry. 3213 * 3214 * Returns 0 if successful. The file will have been created and attached to 3215 * @file by the filesystem calling finish_open(). 3216 * 3217 * If the file was looked up only or didn't need creating, FMODE_OPENED won't 3218 * be set. The caller will need to perform the open themselves. @path will 3219 * have been updated to point to the new dentry. This may be negative. 3220 * 3221 * Returns an error code otherwise. 3222 */ 3223 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry, 3224 struct file *file, 3225 int open_flag, umode_t mode) 3226 { 3227 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 3228 struct inode *dir = nd->path.dentry->d_inode; 3229 int error; 3230 3231 if (nd->flags & LOOKUP_DIRECTORY) 3232 open_flag |= O_DIRECTORY; 3233 3234 file->f_path.dentry = DENTRY_NOT_SET; 3235 file->f_path.mnt = nd->path.mnt; 3236 error = dir->i_op->atomic_open(dir, dentry, file, 3237 open_to_namei_flags(open_flag), mode); 3238 d_lookup_done(dentry); 3239 if (!error) { 3240 if (file->f_mode & FMODE_OPENED) { 3241 if (unlikely(dentry != file->f_path.dentry)) { 3242 dput(dentry); 3243 dentry = dget(file->f_path.dentry); 3244 } 3245 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 3246 error = -EIO; 3247 } else { 3248 if (file->f_path.dentry) { 3249 dput(dentry); 3250 dentry = file->f_path.dentry; 3251 } 3252 if (unlikely(d_is_negative(dentry))) 3253 error = -ENOENT; 3254 } 3255 } 3256 if (error) { 3257 dput(dentry); 3258 dentry = ERR_PTR(error); 3259 } 3260 return dentry; 3261 } 3262 3263 /* 3264 * Look up and maybe create and open the last component. 3265 * 3266 * Must be called with parent locked (exclusive in O_CREAT case). 3267 * 3268 * Returns 0 on success, that is, if 3269 * the file was successfully atomically created (if necessary) and opened, or 3270 * the file was not completely opened at this time, though lookups and 3271 * creations were performed. 3272 * These case are distinguished by presence of FMODE_OPENED on file->f_mode. 3273 * In the latter case dentry returned in @path might be negative if O_CREAT 3274 * hadn't been specified. 3275 * 3276 * An error code is returned on failure. 3277 */ 3278 static struct dentry *lookup_open(struct nameidata *nd, struct file *file, 3279 const struct open_flags *op, 3280 bool got_write) 3281 { 3282 struct user_namespace *mnt_userns; 3283 struct dentry *dir = nd->path.dentry; 3284 struct inode *dir_inode = dir->d_inode; 3285 int open_flag = op->open_flag; 3286 struct dentry *dentry; 3287 int error, create_error = 0; 3288 umode_t mode = op->mode; 3289 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 3290 3291 if (unlikely(IS_DEADDIR(dir_inode))) 3292 return ERR_PTR(-ENOENT); 3293 3294 file->f_mode &= ~FMODE_CREATED; 3295 dentry = d_lookup(dir, &nd->last); 3296 for (;;) { 3297 if (!dentry) { 3298 dentry = d_alloc_parallel(dir, &nd->last, &wq); 3299 if (IS_ERR(dentry)) 3300 return dentry; 3301 } 3302 if (d_in_lookup(dentry)) 3303 break; 3304 3305 error = d_revalidate(dentry, nd->flags); 3306 if (likely(error > 0)) 3307 break; 3308 if (error) 3309 goto out_dput; 3310 d_invalidate(dentry); 3311 dput(dentry); 3312 dentry = NULL; 3313 } 3314 if (dentry->d_inode) { 3315 /* Cached positive dentry: will open in f_op->open */ 3316 return dentry; 3317 } 3318 3319 /* 3320 * Checking write permission is tricky, bacuse we don't know if we are 3321 * going to actually need it: O_CREAT opens should work as long as the 3322 * file exists. But checking existence breaks atomicity. The trick is 3323 * to check access and if not granted clear O_CREAT from the flags. 3324 * 3325 * Another problem is returing the "right" error value (e.g. for an 3326 * O_EXCL open we want to return EEXIST not EROFS). 3327 */ 3328 if (unlikely(!got_write)) 3329 open_flag &= ~O_TRUNC; 3330 mnt_userns = mnt_user_ns(nd->path.mnt); 3331 if (open_flag & O_CREAT) { 3332 if (open_flag & O_EXCL) 3333 open_flag &= ~O_TRUNC; 3334 if (!IS_POSIXACL(dir->d_inode)) 3335 mode &= ~current_umask(); 3336 if (likely(got_write)) 3337 create_error = may_o_create(mnt_userns, &nd->path, 3338 dentry, mode); 3339 else 3340 create_error = -EROFS; 3341 } 3342 if (create_error) 3343 open_flag &= ~O_CREAT; 3344 if (dir_inode->i_op->atomic_open) { 3345 dentry = atomic_open(nd, dentry, file, open_flag, mode); 3346 if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT)) 3347 dentry = ERR_PTR(create_error); 3348 return dentry; 3349 } 3350 3351 if (d_in_lookup(dentry)) { 3352 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry, 3353 nd->flags); 3354 d_lookup_done(dentry); 3355 if (unlikely(res)) { 3356 if (IS_ERR(res)) { 3357 error = PTR_ERR(res); 3358 goto out_dput; 3359 } 3360 dput(dentry); 3361 dentry = res; 3362 } 3363 } 3364 3365 /* Negative dentry, just create the file */ 3366 if (!dentry->d_inode && (open_flag & O_CREAT)) { 3367 file->f_mode |= FMODE_CREATED; 3368 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE); 3369 if (!dir_inode->i_op->create) { 3370 error = -EACCES; 3371 goto out_dput; 3372 } 3373 3374 error = dir_inode->i_op->create(mnt_userns, dir_inode, dentry, 3375 mode, open_flag & O_EXCL); 3376 if (error) 3377 goto out_dput; 3378 } 3379 if (unlikely(create_error) && !dentry->d_inode) { 3380 error = create_error; 3381 goto out_dput; 3382 } 3383 return dentry; 3384 3385 out_dput: 3386 dput(dentry); 3387 return ERR_PTR(error); 3388 } 3389 3390 static const char *open_last_lookups(struct nameidata *nd, 3391 struct file *file, const struct open_flags *op) 3392 { 3393 struct dentry *dir = nd->path.dentry; 3394 int open_flag = op->open_flag; 3395 bool got_write = false; 3396 unsigned seq; 3397 struct inode *inode; 3398 struct dentry *dentry; 3399 const char *res; 3400 3401 nd->flags |= op->intent; 3402 3403 if (nd->last_type != LAST_NORM) { 3404 if (nd->depth) 3405 put_link(nd); 3406 return handle_dots(nd, nd->last_type); 3407 } 3408 3409 if (!(open_flag & O_CREAT)) { 3410 if (nd->last.name[nd->last.len]) 3411 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 3412 /* we _can_ be in RCU mode here */ 3413 dentry = lookup_fast(nd, &inode, &seq); 3414 if (IS_ERR(dentry)) 3415 return ERR_CAST(dentry); 3416 if (likely(dentry)) 3417 goto finish_lookup; 3418 3419 BUG_ON(nd->flags & LOOKUP_RCU); 3420 } else { 3421 /* create side of things */ 3422 if (nd->flags & LOOKUP_RCU) { 3423 if (!try_to_unlazy(nd)) 3424 return ERR_PTR(-ECHILD); 3425 } 3426 audit_inode(nd->name, dir, AUDIT_INODE_PARENT); 3427 /* trailing slashes? */ 3428 if (unlikely(nd->last.name[nd->last.len])) 3429 return ERR_PTR(-EISDIR); 3430 } 3431 3432 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 3433 got_write = !mnt_want_write(nd->path.mnt); 3434 /* 3435 * do _not_ fail yet - we might not need that or fail with 3436 * a different error; let lookup_open() decide; we'll be 3437 * dropping this one anyway. 3438 */ 3439 } 3440 if (open_flag & O_CREAT) 3441 inode_lock(dir->d_inode); 3442 else 3443 inode_lock_shared(dir->d_inode); 3444 dentry = lookup_open(nd, file, op, got_write); 3445 if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED)) 3446 fsnotify_create(dir->d_inode, dentry); 3447 if (open_flag & O_CREAT) 3448 inode_unlock(dir->d_inode); 3449 else 3450 inode_unlock_shared(dir->d_inode); 3451 3452 if (got_write) 3453 mnt_drop_write(nd->path.mnt); 3454 3455 if (IS_ERR(dentry)) 3456 return ERR_CAST(dentry); 3457 3458 if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) { 3459 dput(nd->path.dentry); 3460 nd->path.dentry = dentry; 3461 return NULL; 3462 } 3463 3464 finish_lookup: 3465 if (nd->depth) 3466 put_link(nd); 3467 res = step_into(nd, WALK_TRAILING, dentry, inode, seq); 3468 if (unlikely(res)) 3469 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3470 return res; 3471 } 3472 3473 /* 3474 * Handle the last step of open() 3475 */ 3476 static int do_open(struct nameidata *nd, 3477 struct file *file, const struct open_flags *op) 3478 { 3479 struct user_namespace *mnt_userns; 3480 int open_flag = op->open_flag; 3481 bool do_truncate; 3482 int acc_mode; 3483 int error; 3484 3485 if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) { 3486 error = complete_walk(nd); 3487 if (error) 3488 return error; 3489 } 3490 if (!(file->f_mode & FMODE_CREATED)) 3491 audit_inode(nd->name, nd->path.dentry, 0); 3492 mnt_userns = mnt_user_ns(nd->path.mnt); 3493 if (open_flag & O_CREAT) { 3494 if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED)) 3495 return -EEXIST; 3496 if (d_is_dir(nd->path.dentry)) 3497 return -EISDIR; 3498 error = may_create_in_sticky(mnt_userns, nd, 3499 d_backing_inode(nd->path.dentry)); 3500 if (unlikely(error)) 3501 return error; 3502 } 3503 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3504 return -ENOTDIR; 3505 3506 do_truncate = false; 3507 acc_mode = op->acc_mode; 3508 if (file->f_mode & FMODE_CREATED) { 3509 /* Don't check for write permission, don't truncate */ 3510 open_flag &= ~O_TRUNC; 3511 acc_mode = 0; 3512 } else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) { 3513 error = mnt_want_write(nd->path.mnt); 3514 if (error) 3515 return error; 3516 do_truncate = true; 3517 } 3518 error = may_open(mnt_userns, &nd->path, acc_mode, open_flag); 3519 if (!error && !(file->f_mode & FMODE_OPENED)) 3520 error = vfs_open(&nd->path, file); 3521 if (!error) 3522 error = ima_file_check(file, op->acc_mode); 3523 if (!error && do_truncate) 3524 error = handle_truncate(mnt_userns, file); 3525 if (unlikely(error > 0)) { 3526 WARN_ON(1); 3527 error = -EINVAL; 3528 } 3529 if (do_truncate) 3530 mnt_drop_write(nd->path.mnt); 3531 return error; 3532 } 3533 3534 /** 3535 * vfs_tmpfile - create tmpfile 3536 * @mnt_userns: user namespace of the mount the inode was found from 3537 * @dentry: pointer to dentry of the base directory 3538 * @mode: mode of the new tmpfile 3539 * @open_flag: flags 3540 * 3541 * Create a temporary file. 3542 * 3543 * If the inode has been found through an idmapped mount the user namespace of 3544 * the vfsmount must be passed through @mnt_userns. This function will then take 3545 * care to map the inode according to @mnt_userns before checking permissions. 3546 * On non-idmapped mounts or if permission checking is to be performed on the 3547 * raw inode simply passs init_user_ns. 3548 */ 3549 struct dentry *vfs_tmpfile(struct user_namespace *mnt_userns, 3550 struct dentry *dentry, umode_t mode, int open_flag) 3551 { 3552 struct dentry *child = NULL; 3553 struct inode *dir = dentry->d_inode; 3554 struct inode *inode; 3555 int error; 3556 3557 /* we want directory to be writable */ 3558 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); 3559 if (error) 3560 goto out_err; 3561 error = -EOPNOTSUPP; 3562 if (!dir->i_op->tmpfile) 3563 goto out_err; 3564 error = -ENOMEM; 3565 child = d_alloc(dentry, &slash_name); 3566 if (unlikely(!child)) 3567 goto out_err; 3568 error = dir->i_op->tmpfile(mnt_userns, dir, child, mode); 3569 if (error) 3570 goto out_err; 3571 error = -ENOENT; 3572 inode = child->d_inode; 3573 if (unlikely(!inode)) 3574 goto out_err; 3575 if (!(open_flag & O_EXCL)) { 3576 spin_lock(&inode->i_lock); 3577 inode->i_state |= I_LINKABLE; 3578 spin_unlock(&inode->i_lock); 3579 } 3580 ima_post_create_tmpfile(mnt_userns, inode); 3581 return child; 3582 3583 out_err: 3584 dput(child); 3585 return ERR_PTR(error); 3586 } 3587 EXPORT_SYMBOL(vfs_tmpfile); 3588 3589 static int do_tmpfile(struct nameidata *nd, unsigned flags, 3590 const struct open_flags *op, 3591 struct file *file) 3592 { 3593 struct user_namespace *mnt_userns; 3594 struct dentry *child; 3595 struct path path; 3596 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path); 3597 if (unlikely(error)) 3598 return error; 3599 error = mnt_want_write(path.mnt); 3600 if (unlikely(error)) 3601 goto out; 3602 mnt_userns = mnt_user_ns(path.mnt); 3603 child = vfs_tmpfile(mnt_userns, path.dentry, op->mode, op->open_flag); 3604 error = PTR_ERR(child); 3605 if (IS_ERR(child)) 3606 goto out2; 3607 dput(path.dentry); 3608 path.dentry = child; 3609 audit_inode(nd->name, child, 0); 3610 /* Don't check for other permissions, the inode was just created */ 3611 error = may_open(mnt_userns, &path, 0, op->open_flag); 3612 if (!error) 3613 error = vfs_open(&path, file); 3614 out2: 3615 mnt_drop_write(path.mnt); 3616 out: 3617 path_put(&path); 3618 return error; 3619 } 3620 3621 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file) 3622 { 3623 struct path path; 3624 int error = path_lookupat(nd, flags, &path); 3625 if (!error) { 3626 audit_inode(nd->name, path.dentry, 0); 3627 error = vfs_open(&path, file); 3628 path_put(&path); 3629 } 3630 return error; 3631 } 3632 3633 static struct file *path_openat(struct nameidata *nd, 3634 const struct open_flags *op, unsigned flags) 3635 { 3636 struct file *file; 3637 int error; 3638 3639 file = alloc_empty_file(op->open_flag, current_cred()); 3640 if (IS_ERR(file)) 3641 return file; 3642 3643 if (unlikely(file->f_flags & __O_TMPFILE)) { 3644 error = do_tmpfile(nd, flags, op, file); 3645 } else if (unlikely(file->f_flags & O_PATH)) { 3646 error = do_o_path(nd, flags, file); 3647 } else { 3648 const char *s = path_init(nd, flags); 3649 while (!(error = link_path_walk(s, nd)) && 3650 (s = open_last_lookups(nd, file, op)) != NULL) 3651 ; 3652 if (!error) 3653 error = do_open(nd, file, op); 3654 terminate_walk(nd); 3655 } 3656 if (likely(!error)) { 3657 if (likely(file->f_mode & FMODE_OPENED)) 3658 return file; 3659 WARN_ON(1); 3660 error = -EINVAL; 3661 } 3662 fput(file); 3663 if (error == -EOPENSTALE) { 3664 if (flags & LOOKUP_RCU) 3665 error = -ECHILD; 3666 else 3667 error = -ESTALE; 3668 } 3669 return ERR_PTR(error); 3670 } 3671 3672 struct file *do_filp_open(int dfd, struct filename *pathname, 3673 const struct open_flags *op) 3674 { 3675 struct nameidata nd; 3676 int flags = op->lookup_flags; 3677 struct file *filp; 3678 3679 set_nameidata(&nd, dfd, pathname, NULL); 3680 filp = path_openat(&nd, op, flags | LOOKUP_RCU); 3681 if (unlikely(filp == ERR_PTR(-ECHILD))) 3682 filp = path_openat(&nd, op, flags); 3683 if (unlikely(filp == ERR_PTR(-ESTALE))) 3684 filp = path_openat(&nd, op, flags | LOOKUP_REVAL); 3685 restore_nameidata(); 3686 return filp; 3687 } 3688 3689 struct file *do_file_open_root(const struct path *root, 3690 const char *name, const struct open_flags *op) 3691 { 3692 struct nameidata nd; 3693 struct file *file; 3694 struct filename *filename; 3695 int flags = op->lookup_flags; 3696 3697 if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN) 3698 return ERR_PTR(-ELOOP); 3699 3700 filename = getname_kernel(name); 3701 if (IS_ERR(filename)) 3702 return ERR_CAST(filename); 3703 3704 set_nameidata(&nd, -1, filename, root); 3705 file = path_openat(&nd, op, flags | LOOKUP_RCU); 3706 if (unlikely(file == ERR_PTR(-ECHILD))) 3707 file = path_openat(&nd, op, flags); 3708 if (unlikely(file == ERR_PTR(-ESTALE))) 3709 file = path_openat(&nd, op, flags | LOOKUP_REVAL); 3710 restore_nameidata(); 3711 putname(filename); 3712 return file; 3713 } 3714 3715 static struct dentry *filename_create(int dfd, struct filename *name, 3716 struct path *path, unsigned int lookup_flags) 3717 { 3718 struct dentry *dentry = ERR_PTR(-EEXIST); 3719 struct qstr last; 3720 bool want_dir = lookup_flags & LOOKUP_DIRECTORY; 3721 unsigned int reval_flag = lookup_flags & LOOKUP_REVAL; 3722 unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL; 3723 int type; 3724 int err2; 3725 int error; 3726 3727 error = filename_parentat(dfd, name, reval_flag, path, &last, &type); 3728 if (error) 3729 return ERR_PTR(error); 3730 3731 /* 3732 * Yucky last component or no last component at all? 3733 * (foo/., foo/.., /////) 3734 */ 3735 if (unlikely(type != LAST_NORM)) 3736 goto out; 3737 3738 /* don't fail immediately if it's r/o, at least try to report other errors */ 3739 err2 = mnt_want_write(path->mnt); 3740 /* 3741 * Do the final lookup. Suppress 'create' if there is a trailing 3742 * '/', and a directory wasn't requested. 3743 */ 3744 if (last.name[last.len] && !want_dir) 3745 create_flags = 0; 3746 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 3747 dentry = __lookup_hash(&last, path->dentry, reval_flag | create_flags); 3748 if (IS_ERR(dentry)) 3749 goto unlock; 3750 3751 error = -EEXIST; 3752 if (d_is_positive(dentry)) 3753 goto fail; 3754 3755 /* 3756 * Special case - lookup gave negative, but... we had foo/bar/ 3757 * From the vfs_mknod() POV we just have a negative dentry - 3758 * all is fine. Let's be bastards - you had / on the end, you've 3759 * been asking for (non-existent) directory. -ENOENT for you. 3760 */ 3761 if (unlikely(!create_flags)) { 3762 error = -ENOENT; 3763 goto fail; 3764 } 3765 if (unlikely(err2)) { 3766 error = err2; 3767 goto fail; 3768 } 3769 return dentry; 3770 fail: 3771 dput(dentry); 3772 dentry = ERR_PTR(error); 3773 unlock: 3774 inode_unlock(path->dentry->d_inode); 3775 if (!err2) 3776 mnt_drop_write(path->mnt); 3777 out: 3778 path_put(path); 3779 return dentry; 3780 } 3781 3782 struct dentry *kern_path_create(int dfd, const char *pathname, 3783 struct path *path, unsigned int lookup_flags) 3784 { 3785 struct filename *filename = getname_kernel(pathname); 3786 struct dentry *res = filename_create(dfd, filename, path, lookup_flags); 3787 3788 putname(filename); 3789 return res; 3790 } 3791 EXPORT_SYMBOL(kern_path_create); 3792 3793 void done_path_create(struct path *path, struct dentry *dentry) 3794 { 3795 dput(dentry); 3796 inode_unlock(path->dentry->d_inode); 3797 mnt_drop_write(path->mnt); 3798 path_put(path); 3799 } 3800 EXPORT_SYMBOL(done_path_create); 3801 3802 inline struct dentry *user_path_create(int dfd, const char __user *pathname, 3803 struct path *path, unsigned int lookup_flags) 3804 { 3805 struct filename *filename = getname(pathname); 3806 struct dentry *res = filename_create(dfd, filename, path, lookup_flags); 3807 3808 putname(filename); 3809 return res; 3810 } 3811 EXPORT_SYMBOL(user_path_create); 3812 3813 /** 3814 * vfs_mknod - create device node or file 3815 * @mnt_userns: user namespace of the mount the inode was found from 3816 * @dir: inode of @dentry 3817 * @dentry: pointer to dentry of the base directory 3818 * @mode: mode of the new device node or file 3819 * @dev: device number of device to create 3820 * 3821 * Create a device node or file. 3822 * 3823 * If the inode has been found through an idmapped mount the user namespace of 3824 * the vfsmount must be passed through @mnt_userns. This function will then take 3825 * care to map the inode according to @mnt_userns before checking permissions. 3826 * On non-idmapped mounts or if permission checking is to be performed on the 3827 * raw inode simply passs init_user_ns. 3828 */ 3829 int vfs_mknod(struct user_namespace *mnt_userns, struct inode *dir, 3830 struct dentry *dentry, umode_t mode, dev_t dev) 3831 { 3832 bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV; 3833 int error = may_create(mnt_userns, dir, dentry); 3834 3835 if (error) 3836 return error; 3837 3838 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout && 3839 !capable(CAP_MKNOD)) 3840 return -EPERM; 3841 3842 if (!dir->i_op->mknod) 3843 return -EPERM; 3844 3845 error = devcgroup_inode_mknod(mode, dev); 3846 if (error) 3847 return error; 3848 3849 error = security_inode_mknod(dir, dentry, mode, dev); 3850 if (error) 3851 return error; 3852 3853 error = dir->i_op->mknod(mnt_userns, dir, dentry, mode, dev); 3854 if (!error) 3855 fsnotify_create(dir, dentry); 3856 return error; 3857 } 3858 EXPORT_SYMBOL(vfs_mknod); 3859 3860 static int may_mknod(umode_t mode) 3861 { 3862 switch (mode & S_IFMT) { 3863 case S_IFREG: 3864 case S_IFCHR: 3865 case S_IFBLK: 3866 case S_IFIFO: 3867 case S_IFSOCK: 3868 case 0: /* zero mode translates to S_IFREG */ 3869 return 0; 3870 case S_IFDIR: 3871 return -EPERM; 3872 default: 3873 return -EINVAL; 3874 } 3875 } 3876 3877 static int do_mknodat(int dfd, struct filename *name, umode_t mode, 3878 unsigned int dev) 3879 { 3880 struct user_namespace *mnt_userns; 3881 struct dentry *dentry; 3882 struct path path; 3883 int error; 3884 unsigned int lookup_flags = 0; 3885 3886 error = may_mknod(mode); 3887 if (error) 3888 goto out1; 3889 retry: 3890 dentry = filename_create(dfd, name, &path, lookup_flags); 3891 error = PTR_ERR(dentry); 3892 if (IS_ERR(dentry)) 3893 goto out1; 3894 3895 if (!IS_POSIXACL(path.dentry->d_inode)) 3896 mode &= ~current_umask(); 3897 error = security_path_mknod(&path, dentry, mode, dev); 3898 if (error) 3899 goto out2; 3900 3901 mnt_userns = mnt_user_ns(path.mnt); 3902 switch (mode & S_IFMT) { 3903 case 0: case S_IFREG: 3904 error = vfs_create(mnt_userns, path.dentry->d_inode, 3905 dentry, mode, true); 3906 if (!error) 3907 ima_post_path_mknod(mnt_userns, dentry); 3908 break; 3909 case S_IFCHR: case S_IFBLK: 3910 error = vfs_mknod(mnt_userns, path.dentry->d_inode, 3911 dentry, mode, new_decode_dev(dev)); 3912 break; 3913 case S_IFIFO: case S_IFSOCK: 3914 error = vfs_mknod(mnt_userns, path.dentry->d_inode, 3915 dentry, mode, 0); 3916 break; 3917 } 3918 out2: 3919 done_path_create(&path, dentry); 3920 if (retry_estale(error, lookup_flags)) { 3921 lookup_flags |= LOOKUP_REVAL; 3922 goto retry; 3923 } 3924 out1: 3925 putname(name); 3926 return error; 3927 } 3928 3929 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3930 unsigned int, dev) 3931 { 3932 return do_mknodat(dfd, getname(filename), mode, dev); 3933 } 3934 3935 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3936 { 3937 return do_mknodat(AT_FDCWD, getname(filename), mode, dev); 3938 } 3939 3940 /** 3941 * vfs_mkdir - create directory 3942 * @mnt_userns: user namespace of the mount the inode was found from 3943 * @dir: inode of @dentry 3944 * @dentry: pointer to dentry of the base directory 3945 * @mode: mode of the new directory 3946 * 3947 * Create a directory. 3948 * 3949 * If the inode has been found through an idmapped mount the user namespace of 3950 * the vfsmount must be passed through @mnt_userns. This function will then take 3951 * care to map the inode according to @mnt_userns before checking permissions. 3952 * On non-idmapped mounts or if permission checking is to be performed on the 3953 * raw inode simply passs init_user_ns. 3954 */ 3955 int vfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 3956 struct dentry *dentry, umode_t mode) 3957 { 3958 int error = may_create(mnt_userns, dir, dentry); 3959 unsigned max_links = dir->i_sb->s_max_links; 3960 3961 if (error) 3962 return error; 3963 3964 if (!dir->i_op->mkdir) 3965 return -EPERM; 3966 3967 mode &= (S_IRWXUGO|S_ISVTX); 3968 error = security_inode_mkdir(dir, dentry, mode); 3969 if (error) 3970 return error; 3971 3972 if (max_links && dir->i_nlink >= max_links) 3973 return -EMLINK; 3974 3975 error = dir->i_op->mkdir(mnt_userns, dir, dentry, mode); 3976 if (!error) 3977 fsnotify_mkdir(dir, dentry); 3978 return error; 3979 } 3980 EXPORT_SYMBOL(vfs_mkdir); 3981 3982 int do_mkdirat(int dfd, struct filename *name, umode_t mode) 3983 { 3984 struct dentry *dentry; 3985 struct path path; 3986 int error; 3987 unsigned int lookup_flags = LOOKUP_DIRECTORY; 3988 3989 retry: 3990 dentry = filename_create(dfd, name, &path, lookup_flags); 3991 error = PTR_ERR(dentry); 3992 if (IS_ERR(dentry)) 3993 goto out_putname; 3994 3995 if (!IS_POSIXACL(path.dentry->d_inode)) 3996 mode &= ~current_umask(); 3997 error = security_path_mkdir(&path, dentry, mode); 3998 if (!error) { 3999 struct user_namespace *mnt_userns; 4000 mnt_userns = mnt_user_ns(path.mnt); 4001 error = vfs_mkdir(mnt_userns, path.dentry->d_inode, dentry, 4002 mode); 4003 } 4004 done_path_create(&path, dentry); 4005 if (retry_estale(error, lookup_flags)) { 4006 lookup_flags |= LOOKUP_REVAL; 4007 goto retry; 4008 } 4009 out_putname: 4010 putname(name); 4011 return error; 4012 } 4013 4014 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 4015 { 4016 return do_mkdirat(dfd, getname(pathname), mode); 4017 } 4018 4019 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 4020 { 4021 return do_mkdirat(AT_FDCWD, getname(pathname), mode); 4022 } 4023 4024 /** 4025 * vfs_rmdir - remove directory 4026 * @mnt_userns: user namespace of the mount the inode was found from 4027 * @dir: inode of @dentry 4028 * @dentry: pointer to dentry of the base directory 4029 * 4030 * Remove a directory. 4031 * 4032 * If the inode has been found through an idmapped mount the user namespace of 4033 * the vfsmount must be passed through @mnt_userns. This function will then take 4034 * care to map the inode according to @mnt_userns before checking permissions. 4035 * On non-idmapped mounts or if permission checking is to be performed on the 4036 * raw inode simply passs init_user_ns. 4037 */ 4038 int vfs_rmdir(struct user_namespace *mnt_userns, struct inode *dir, 4039 struct dentry *dentry) 4040 { 4041 int error = may_delete(mnt_userns, dir, dentry, 1); 4042 4043 if (error) 4044 return error; 4045 4046 if (!dir->i_op->rmdir) 4047 return -EPERM; 4048 4049 dget(dentry); 4050 inode_lock(dentry->d_inode); 4051 4052 error = -EBUSY; 4053 if (is_local_mountpoint(dentry) || 4054 (dentry->d_inode->i_flags & S_KERNEL_FILE)) 4055 goto out; 4056 4057 error = security_inode_rmdir(dir, dentry); 4058 if (error) 4059 goto out; 4060 4061 error = dir->i_op->rmdir(dir, dentry); 4062 if (error) 4063 goto out; 4064 4065 shrink_dcache_parent(dentry); 4066 dentry->d_inode->i_flags |= S_DEAD; 4067 dont_mount(dentry); 4068 detach_mounts(dentry); 4069 4070 out: 4071 inode_unlock(dentry->d_inode); 4072 dput(dentry); 4073 if (!error) 4074 d_delete_notify(dir, dentry); 4075 return error; 4076 } 4077 EXPORT_SYMBOL(vfs_rmdir); 4078 4079 int do_rmdir(int dfd, struct filename *name) 4080 { 4081 struct user_namespace *mnt_userns; 4082 int error; 4083 struct dentry *dentry; 4084 struct path path; 4085 struct qstr last; 4086 int type; 4087 unsigned int lookup_flags = 0; 4088 retry: 4089 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 4090 if (error) 4091 goto exit1; 4092 4093 switch (type) { 4094 case LAST_DOTDOT: 4095 error = -ENOTEMPTY; 4096 goto exit2; 4097 case LAST_DOT: 4098 error = -EINVAL; 4099 goto exit2; 4100 case LAST_ROOT: 4101 error = -EBUSY; 4102 goto exit2; 4103 } 4104 4105 error = mnt_want_write(path.mnt); 4106 if (error) 4107 goto exit2; 4108 4109 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4110 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 4111 error = PTR_ERR(dentry); 4112 if (IS_ERR(dentry)) 4113 goto exit3; 4114 if (!dentry->d_inode) { 4115 error = -ENOENT; 4116 goto exit4; 4117 } 4118 error = security_path_rmdir(&path, dentry); 4119 if (error) 4120 goto exit4; 4121 mnt_userns = mnt_user_ns(path.mnt); 4122 error = vfs_rmdir(mnt_userns, path.dentry->d_inode, dentry); 4123 exit4: 4124 dput(dentry); 4125 exit3: 4126 inode_unlock(path.dentry->d_inode); 4127 mnt_drop_write(path.mnt); 4128 exit2: 4129 path_put(&path); 4130 if (retry_estale(error, lookup_flags)) { 4131 lookup_flags |= LOOKUP_REVAL; 4132 goto retry; 4133 } 4134 exit1: 4135 putname(name); 4136 return error; 4137 } 4138 4139 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 4140 { 4141 return do_rmdir(AT_FDCWD, getname(pathname)); 4142 } 4143 4144 /** 4145 * vfs_unlink - unlink a filesystem object 4146 * @mnt_userns: user namespace of the mount the inode was found from 4147 * @dir: parent directory 4148 * @dentry: victim 4149 * @delegated_inode: returns victim inode, if the inode is delegated. 4150 * 4151 * The caller must hold dir->i_mutex. 4152 * 4153 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 4154 * return a reference to the inode in delegated_inode. The caller 4155 * should then break the delegation on that inode and retry. Because 4156 * breaking a delegation may take a long time, the caller should drop 4157 * dir->i_mutex before doing so. 4158 * 4159 * Alternatively, a caller may pass NULL for delegated_inode. This may 4160 * be appropriate for callers that expect the underlying filesystem not 4161 * to be NFS exported. 4162 * 4163 * If the inode has been found through an idmapped mount the user namespace of 4164 * the vfsmount must be passed through @mnt_userns. This function will then take 4165 * care to map the inode according to @mnt_userns before checking permissions. 4166 * On non-idmapped mounts or if permission checking is to be performed on the 4167 * raw inode simply passs init_user_ns. 4168 */ 4169 int vfs_unlink(struct user_namespace *mnt_userns, struct inode *dir, 4170 struct dentry *dentry, struct inode **delegated_inode) 4171 { 4172 struct inode *target = dentry->d_inode; 4173 int error = may_delete(mnt_userns, dir, dentry, 0); 4174 4175 if (error) 4176 return error; 4177 4178 if (!dir->i_op->unlink) 4179 return -EPERM; 4180 4181 inode_lock(target); 4182 if (IS_SWAPFILE(target)) 4183 error = -EPERM; 4184 else if (is_local_mountpoint(dentry)) 4185 error = -EBUSY; 4186 else { 4187 error = security_inode_unlink(dir, dentry); 4188 if (!error) { 4189 error = try_break_deleg(target, delegated_inode); 4190 if (error) 4191 goto out; 4192 error = dir->i_op->unlink(dir, dentry); 4193 if (!error) { 4194 dont_mount(dentry); 4195 detach_mounts(dentry); 4196 } 4197 } 4198 } 4199 out: 4200 inode_unlock(target); 4201 4202 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 4203 if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) { 4204 fsnotify_unlink(dir, dentry); 4205 } else if (!error) { 4206 fsnotify_link_count(target); 4207 d_delete_notify(dir, dentry); 4208 } 4209 4210 return error; 4211 } 4212 EXPORT_SYMBOL(vfs_unlink); 4213 4214 /* 4215 * Make sure that the actual truncation of the file will occur outside its 4216 * directory's i_mutex. Truncate can take a long time if there is a lot of 4217 * writeout happening, and we don't want to prevent access to the directory 4218 * while waiting on the I/O. 4219 */ 4220 int do_unlinkat(int dfd, struct filename *name) 4221 { 4222 int error; 4223 struct dentry *dentry; 4224 struct path path; 4225 struct qstr last; 4226 int type; 4227 struct inode *inode = NULL; 4228 struct inode *delegated_inode = NULL; 4229 unsigned int lookup_flags = 0; 4230 retry: 4231 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 4232 if (error) 4233 goto exit1; 4234 4235 error = -EISDIR; 4236 if (type != LAST_NORM) 4237 goto exit2; 4238 4239 error = mnt_want_write(path.mnt); 4240 if (error) 4241 goto exit2; 4242 retry_deleg: 4243 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4244 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 4245 error = PTR_ERR(dentry); 4246 if (!IS_ERR(dentry)) { 4247 struct user_namespace *mnt_userns; 4248 4249 /* Why not before? Because we want correct error value */ 4250 if (last.name[last.len]) 4251 goto slashes; 4252 inode = dentry->d_inode; 4253 if (d_is_negative(dentry)) 4254 goto slashes; 4255 ihold(inode); 4256 error = security_path_unlink(&path, dentry); 4257 if (error) 4258 goto exit3; 4259 mnt_userns = mnt_user_ns(path.mnt); 4260 error = vfs_unlink(mnt_userns, path.dentry->d_inode, dentry, 4261 &delegated_inode); 4262 exit3: 4263 dput(dentry); 4264 } 4265 inode_unlock(path.dentry->d_inode); 4266 if (inode) 4267 iput(inode); /* truncate the inode here */ 4268 inode = NULL; 4269 if (delegated_inode) { 4270 error = break_deleg_wait(&delegated_inode); 4271 if (!error) 4272 goto retry_deleg; 4273 } 4274 mnt_drop_write(path.mnt); 4275 exit2: 4276 path_put(&path); 4277 if (retry_estale(error, lookup_flags)) { 4278 lookup_flags |= LOOKUP_REVAL; 4279 inode = NULL; 4280 goto retry; 4281 } 4282 exit1: 4283 putname(name); 4284 return error; 4285 4286 slashes: 4287 if (d_is_negative(dentry)) 4288 error = -ENOENT; 4289 else if (d_is_dir(dentry)) 4290 error = -EISDIR; 4291 else 4292 error = -ENOTDIR; 4293 goto exit3; 4294 } 4295 4296 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 4297 { 4298 if ((flag & ~AT_REMOVEDIR) != 0) 4299 return -EINVAL; 4300 4301 if (flag & AT_REMOVEDIR) 4302 return do_rmdir(dfd, getname(pathname)); 4303 return do_unlinkat(dfd, getname(pathname)); 4304 } 4305 4306 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 4307 { 4308 return do_unlinkat(AT_FDCWD, getname(pathname)); 4309 } 4310 4311 /** 4312 * vfs_symlink - create symlink 4313 * @mnt_userns: user namespace of the mount the inode was found from 4314 * @dir: inode of @dentry 4315 * @dentry: pointer to dentry of the base directory 4316 * @oldname: name of the file to link to 4317 * 4318 * Create a symlink. 4319 * 4320 * If the inode has been found through an idmapped mount the user namespace of 4321 * the vfsmount must be passed through @mnt_userns. This function will then take 4322 * care to map the inode according to @mnt_userns before checking permissions. 4323 * On non-idmapped mounts or if permission checking is to be performed on the 4324 * raw inode simply passs init_user_ns. 4325 */ 4326 int vfs_symlink(struct user_namespace *mnt_userns, struct inode *dir, 4327 struct dentry *dentry, const char *oldname) 4328 { 4329 int error = may_create(mnt_userns, dir, dentry); 4330 4331 if (error) 4332 return error; 4333 4334 if (!dir->i_op->symlink) 4335 return -EPERM; 4336 4337 error = security_inode_symlink(dir, dentry, oldname); 4338 if (error) 4339 return error; 4340 4341 error = dir->i_op->symlink(mnt_userns, dir, dentry, oldname); 4342 if (!error) 4343 fsnotify_create(dir, dentry); 4344 return error; 4345 } 4346 EXPORT_SYMBOL(vfs_symlink); 4347 4348 int do_symlinkat(struct filename *from, int newdfd, struct filename *to) 4349 { 4350 int error; 4351 struct dentry *dentry; 4352 struct path path; 4353 unsigned int lookup_flags = 0; 4354 4355 if (IS_ERR(from)) { 4356 error = PTR_ERR(from); 4357 goto out_putnames; 4358 } 4359 retry: 4360 dentry = filename_create(newdfd, to, &path, lookup_flags); 4361 error = PTR_ERR(dentry); 4362 if (IS_ERR(dentry)) 4363 goto out_putnames; 4364 4365 error = security_path_symlink(&path, dentry, from->name); 4366 if (!error) { 4367 struct user_namespace *mnt_userns; 4368 4369 mnt_userns = mnt_user_ns(path.mnt); 4370 error = vfs_symlink(mnt_userns, path.dentry->d_inode, dentry, 4371 from->name); 4372 } 4373 done_path_create(&path, dentry); 4374 if (retry_estale(error, lookup_flags)) { 4375 lookup_flags |= LOOKUP_REVAL; 4376 goto retry; 4377 } 4378 out_putnames: 4379 putname(to); 4380 putname(from); 4381 return error; 4382 } 4383 4384 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 4385 int, newdfd, const char __user *, newname) 4386 { 4387 return do_symlinkat(getname(oldname), newdfd, getname(newname)); 4388 } 4389 4390 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 4391 { 4392 return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname)); 4393 } 4394 4395 /** 4396 * vfs_link - create a new link 4397 * @old_dentry: object to be linked 4398 * @mnt_userns: the user namespace of the mount 4399 * @dir: new parent 4400 * @new_dentry: where to create the new link 4401 * @delegated_inode: returns inode needing a delegation break 4402 * 4403 * The caller must hold dir->i_mutex 4404 * 4405 * If vfs_link discovers a delegation on the to-be-linked file in need 4406 * of breaking, it will return -EWOULDBLOCK and return a reference to the 4407 * inode in delegated_inode. The caller should then break the delegation 4408 * and retry. Because breaking a delegation may take a long time, the 4409 * caller should drop the i_mutex before doing so. 4410 * 4411 * Alternatively, a caller may pass NULL for delegated_inode. This may 4412 * be appropriate for callers that expect the underlying filesystem not 4413 * to be NFS exported. 4414 * 4415 * If the inode has been found through an idmapped mount the user namespace of 4416 * the vfsmount must be passed through @mnt_userns. This function will then take 4417 * care to map the inode according to @mnt_userns before checking permissions. 4418 * On non-idmapped mounts or if permission checking is to be performed on the 4419 * raw inode simply passs init_user_ns. 4420 */ 4421 int vfs_link(struct dentry *old_dentry, struct user_namespace *mnt_userns, 4422 struct inode *dir, struct dentry *new_dentry, 4423 struct inode **delegated_inode) 4424 { 4425 struct inode *inode = old_dentry->d_inode; 4426 unsigned max_links = dir->i_sb->s_max_links; 4427 int error; 4428 4429 if (!inode) 4430 return -ENOENT; 4431 4432 error = may_create(mnt_userns, dir, new_dentry); 4433 if (error) 4434 return error; 4435 4436 if (dir->i_sb != inode->i_sb) 4437 return -EXDEV; 4438 4439 /* 4440 * A link to an append-only or immutable file cannot be created. 4441 */ 4442 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4443 return -EPERM; 4444 /* 4445 * Updating the link count will likely cause i_uid and i_gid to 4446 * be writen back improperly if their true value is unknown to 4447 * the vfs. 4448 */ 4449 if (HAS_UNMAPPED_ID(mnt_userns, inode)) 4450 return -EPERM; 4451 if (!dir->i_op->link) 4452 return -EPERM; 4453 if (S_ISDIR(inode->i_mode)) 4454 return -EPERM; 4455 4456 error = security_inode_link(old_dentry, dir, new_dentry); 4457 if (error) 4458 return error; 4459 4460 inode_lock(inode); 4461 /* Make sure we don't allow creating hardlink to an unlinked file */ 4462 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 4463 error = -ENOENT; 4464 else if (max_links && inode->i_nlink >= max_links) 4465 error = -EMLINK; 4466 else { 4467 error = try_break_deleg(inode, delegated_inode); 4468 if (!error) 4469 error = dir->i_op->link(old_dentry, dir, new_dentry); 4470 } 4471 4472 if (!error && (inode->i_state & I_LINKABLE)) { 4473 spin_lock(&inode->i_lock); 4474 inode->i_state &= ~I_LINKABLE; 4475 spin_unlock(&inode->i_lock); 4476 } 4477 inode_unlock(inode); 4478 if (!error) 4479 fsnotify_link(dir, inode, new_dentry); 4480 return error; 4481 } 4482 EXPORT_SYMBOL(vfs_link); 4483 4484 /* 4485 * Hardlinks are often used in delicate situations. We avoid 4486 * security-related surprises by not following symlinks on the 4487 * newname. --KAB 4488 * 4489 * We don't follow them on the oldname either to be compatible 4490 * with linux 2.0, and to avoid hard-linking to directories 4491 * and other special files. --ADM 4492 */ 4493 int do_linkat(int olddfd, struct filename *old, int newdfd, 4494 struct filename *new, int flags) 4495 { 4496 struct user_namespace *mnt_userns; 4497 struct dentry *new_dentry; 4498 struct path old_path, new_path; 4499 struct inode *delegated_inode = NULL; 4500 int how = 0; 4501 int error; 4502 4503 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) { 4504 error = -EINVAL; 4505 goto out_putnames; 4506 } 4507 /* 4508 * To use null names we require CAP_DAC_READ_SEARCH 4509 * This ensures that not everyone will be able to create 4510 * handlink using the passed filedescriptor. 4511 */ 4512 if (flags & AT_EMPTY_PATH && !capable(CAP_DAC_READ_SEARCH)) { 4513 error = -ENOENT; 4514 goto out_putnames; 4515 } 4516 4517 if (flags & AT_SYMLINK_FOLLOW) 4518 how |= LOOKUP_FOLLOW; 4519 retry: 4520 error = filename_lookup(olddfd, old, how, &old_path, NULL); 4521 if (error) 4522 goto out_putnames; 4523 4524 new_dentry = filename_create(newdfd, new, &new_path, 4525 (how & LOOKUP_REVAL)); 4526 error = PTR_ERR(new_dentry); 4527 if (IS_ERR(new_dentry)) 4528 goto out_putpath; 4529 4530 error = -EXDEV; 4531 if (old_path.mnt != new_path.mnt) 4532 goto out_dput; 4533 mnt_userns = mnt_user_ns(new_path.mnt); 4534 error = may_linkat(mnt_userns, &old_path); 4535 if (unlikely(error)) 4536 goto out_dput; 4537 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4538 if (error) 4539 goto out_dput; 4540 error = vfs_link(old_path.dentry, mnt_userns, new_path.dentry->d_inode, 4541 new_dentry, &delegated_inode); 4542 out_dput: 4543 done_path_create(&new_path, new_dentry); 4544 if (delegated_inode) { 4545 error = break_deleg_wait(&delegated_inode); 4546 if (!error) { 4547 path_put(&old_path); 4548 goto retry; 4549 } 4550 } 4551 if (retry_estale(error, how)) { 4552 path_put(&old_path); 4553 how |= LOOKUP_REVAL; 4554 goto retry; 4555 } 4556 out_putpath: 4557 path_put(&old_path); 4558 out_putnames: 4559 putname(old); 4560 putname(new); 4561 4562 return error; 4563 } 4564 4565 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 4566 int, newdfd, const char __user *, newname, int, flags) 4567 { 4568 return do_linkat(olddfd, getname_uflags(oldname, flags), 4569 newdfd, getname(newname), flags); 4570 } 4571 4572 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4573 { 4574 return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0); 4575 } 4576 4577 /** 4578 * vfs_rename - rename a filesystem object 4579 * @rd: pointer to &struct renamedata info 4580 * 4581 * The caller must hold multiple mutexes--see lock_rename()). 4582 * 4583 * If vfs_rename discovers a delegation in need of breaking at either 4584 * the source or destination, it will return -EWOULDBLOCK and return a 4585 * reference to the inode in delegated_inode. The caller should then 4586 * break the delegation and retry. Because breaking a delegation may 4587 * take a long time, the caller should drop all locks before doing 4588 * so. 4589 * 4590 * Alternatively, a caller may pass NULL for delegated_inode. This may 4591 * be appropriate for callers that expect the underlying filesystem not 4592 * to be NFS exported. 4593 * 4594 * The worst of all namespace operations - renaming directory. "Perverted" 4595 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4596 * Problems: 4597 * 4598 * a) we can get into loop creation. 4599 * b) race potential - two innocent renames can create a loop together. 4600 * That's where 4.4 screws up. Current fix: serialization on 4601 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4602 * story. 4603 * c) we have to lock _four_ objects - parents and victim (if it exists), 4604 * and source (if it is not a directory). 4605 * And that - after we got ->i_mutex on parents (until then we don't know 4606 * whether the target exists). Solution: try to be smart with locking 4607 * order for inodes. We rely on the fact that tree topology may change 4608 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4609 * move will be locked. Thus we can rank directories by the tree 4610 * (ancestors first) and rank all non-directories after them. 4611 * That works since everybody except rename does "lock parent, lookup, 4612 * lock child" and rename is under ->s_vfs_rename_mutex. 4613 * HOWEVER, it relies on the assumption that any object with ->lookup() 4614 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4615 * we'd better make sure that there's no link(2) for them. 4616 * d) conversion from fhandle to dentry may come in the wrong moment - when 4617 * we are removing the target. Solution: we will have to grab ->i_mutex 4618 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4619 * ->i_mutex on parents, which works but leads to some truly excessive 4620 * locking]. 4621 */ 4622 int vfs_rename(struct renamedata *rd) 4623 { 4624 int error; 4625 struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir; 4626 struct dentry *old_dentry = rd->old_dentry; 4627 struct dentry *new_dentry = rd->new_dentry; 4628 struct inode **delegated_inode = rd->delegated_inode; 4629 unsigned int flags = rd->flags; 4630 bool is_dir = d_is_dir(old_dentry); 4631 struct inode *source = old_dentry->d_inode; 4632 struct inode *target = new_dentry->d_inode; 4633 bool new_is_dir = false; 4634 unsigned max_links = new_dir->i_sb->s_max_links; 4635 struct name_snapshot old_name; 4636 4637 if (source == target) 4638 return 0; 4639 4640 error = may_delete(rd->old_mnt_userns, old_dir, old_dentry, is_dir); 4641 if (error) 4642 return error; 4643 4644 if (!target) { 4645 error = may_create(rd->new_mnt_userns, new_dir, new_dentry); 4646 } else { 4647 new_is_dir = d_is_dir(new_dentry); 4648 4649 if (!(flags & RENAME_EXCHANGE)) 4650 error = may_delete(rd->new_mnt_userns, new_dir, 4651 new_dentry, is_dir); 4652 else 4653 error = may_delete(rd->new_mnt_userns, new_dir, 4654 new_dentry, new_is_dir); 4655 } 4656 if (error) 4657 return error; 4658 4659 if (!old_dir->i_op->rename) 4660 return -EPERM; 4661 4662 /* 4663 * If we are going to change the parent - check write permissions, 4664 * we'll need to flip '..'. 4665 */ 4666 if (new_dir != old_dir) { 4667 if (is_dir) { 4668 error = inode_permission(rd->old_mnt_userns, source, 4669 MAY_WRITE); 4670 if (error) 4671 return error; 4672 } 4673 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4674 error = inode_permission(rd->new_mnt_userns, target, 4675 MAY_WRITE); 4676 if (error) 4677 return error; 4678 } 4679 } 4680 4681 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 4682 flags); 4683 if (error) 4684 return error; 4685 4686 take_dentry_name_snapshot(&old_name, old_dentry); 4687 dget(new_dentry); 4688 if (!is_dir || (flags & RENAME_EXCHANGE)) 4689 lock_two_nondirectories(source, target); 4690 else if (target) 4691 inode_lock(target); 4692 4693 error = -EPERM; 4694 if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target))) 4695 goto out; 4696 4697 error = -EBUSY; 4698 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 4699 goto out; 4700 4701 if (max_links && new_dir != old_dir) { 4702 error = -EMLINK; 4703 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 4704 goto out; 4705 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 4706 old_dir->i_nlink >= max_links) 4707 goto out; 4708 } 4709 if (!is_dir) { 4710 error = try_break_deleg(source, delegated_inode); 4711 if (error) 4712 goto out; 4713 } 4714 if (target && !new_is_dir) { 4715 error = try_break_deleg(target, delegated_inode); 4716 if (error) 4717 goto out; 4718 } 4719 error = old_dir->i_op->rename(rd->new_mnt_userns, old_dir, old_dentry, 4720 new_dir, new_dentry, flags); 4721 if (error) 4722 goto out; 4723 4724 if (!(flags & RENAME_EXCHANGE) && target) { 4725 if (is_dir) { 4726 shrink_dcache_parent(new_dentry); 4727 target->i_flags |= S_DEAD; 4728 } 4729 dont_mount(new_dentry); 4730 detach_mounts(new_dentry); 4731 } 4732 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 4733 if (!(flags & RENAME_EXCHANGE)) 4734 d_move(old_dentry, new_dentry); 4735 else 4736 d_exchange(old_dentry, new_dentry); 4737 } 4738 out: 4739 if (!is_dir || (flags & RENAME_EXCHANGE)) 4740 unlock_two_nondirectories(source, target); 4741 else if (target) 4742 inode_unlock(target); 4743 dput(new_dentry); 4744 if (!error) { 4745 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir, 4746 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 4747 if (flags & RENAME_EXCHANGE) { 4748 fsnotify_move(new_dir, old_dir, &old_dentry->d_name, 4749 new_is_dir, NULL, new_dentry); 4750 } 4751 } 4752 release_dentry_name_snapshot(&old_name); 4753 4754 return error; 4755 } 4756 EXPORT_SYMBOL(vfs_rename); 4757 4758 int do_renameat2(int olddfd, struct filename *from, int newdfd, 4759 struct filename *to, unsigned int flags) 4760 { 4761 struct renamedata rd; 4762 struct dentry *old_dentry, *new_dentry; 4763 struct dentry *trap; 4764 struct path old_path, new_path; 4765 struct qstr old_last, new_last; 4766 int old_type, new_type; 4767 struct inode *delegated_inode = NULL; 4768 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET; 4769 bool should_retry = false; 4770 int error = -EINVAL; 4771 4772 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4773 goto put_names; 4774 4775 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 4776 (flags & RENAME_EXCHANGE)) 4777 goto put_names; 4778 4779 if (flags & RENAME_EXCHANGE) 4780 target_flags = 0; 4781 4782 retry: 4783 error = filename_parentat(olddfd, from, lookup_flags, &old_path, 4784 &old_last, &old_type); 4785 if (error) 4786 goto put_names; 4787 4788 error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last, 4789 &new_type); 4790 if (error) 4791 goto exit1; 4792 4793 error = -EXDEV; 4794 if (old_path.mnt != new_path.mnt) 4795 goto exit2; 4796 4797 error = -EBUSY; 4798 if (old_type != LAST_NORM) 4799 goto exit2; 4800 4801 if (flags & RENAME_NOREPLACE) 4802 error = -EEXIST; 4803 if (new_type != LAST_NORM) 4804 goto exit2; 4805 4806 error = mnt_want_write(old_path.mnt); 4807 if (error) 4808 goto exit2; 4809 4810 retry_deleg: 4811 trap = lock_rename(new_path.dentry, old_path.dentry); 4812 4813 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags); 4814 error = PTR_ERR(old_dentry); 4815 if (IS_ERR(old_dentry)) 4816 goto exit3; 4817 /* source must exist */ 4818 error = -ENOENT; 4819 if (d_is_negative(old_dentry)) 4820 goto exit4; 4821 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags); 4822 error = PTR_ERR(new_dentry); 4823 if (IS_ERR(new_dentry)) 4824 goto exit4; 4825 error = -EEXIST; 4826 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 4827 goto exit5; 4828 if (flags & RENAME_EXCHANGE) { 4829 error = -ENOENT; 4830 if (d_is_negative(new_dentry)) 4831 goto exit5; 4832 4833 if (!d_is_dir(new_dentry)) { 4834 error = -ENOTDIR; 4835 if (new_last.name[new_last.len]) 4836 goto exit5; 4837 } 4838 } 4839 /* unless the source is a directory trailing slashes give -ENOTDIR */ 4840 if (!d_is_dir(old_dentry)) { 4841 error = -ENOTDIR; 4842 if (old_last.name[old_last.len]) 4843 goto exit5; 4844 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len]) 4845 goto exit5; 4846 } 4847 /* source should not be ancestor of target */ 4848 error = -EINVAL; 4849 if (old_dentry == trap) 4850 goto exit5; 4851 /* target should not be an ancestor of source */ 4852 if (!(flags & RENAME_EXCHANGE)) 4853 error = -ENOTEMPTY; 4854 if (new_dentry == trap) 4855 goto exit5; 4856 4857 error = security_path_rename(&old_path, old_dentry, 4858 &new_path, new_dentry, flags); 4859 if (error) 4860 goto exit5; 4861 4862 rd.old_dir = old_path.dentry->d_inode; 4863 rd.old_dentry = old_dentry; 4864 rd.old_mnt_userns = mnt_user_ns(old_path.mnt); 4865 rd.new_dir = new_path.dentry->d_inode; 4866 rd.new_dentry = new_dentry; 4867 rd.new_mnt_userns = mnt_user_ns(new_path.mnt); 4868 rd.delegated_inode = &delegated_inode; 4869 rd.flags = flags; 4870 error = vfs_rename(&rd); 4871 exit5: 4872 dput(new_dentry); 4873 exit4: 4874 dput(old_dentry); 4875 exit3: 4876 unlock_rename(new_path.dentry, old_path.dentry); 4877 if (delegated_inode) { 4878 error = break_deleg_wait(&delegated_inode); 4879 if (!error) 4880 goto retry_deleg; 4881 } 4882 mnt_drop_write(old_path.mnt); 4883 exit2: 4884 if (retry_estale(error, lookup_flags)) 4885 should_retry = true; 4886 path_put(&new_path); 4887 exit1: 4888 path_put(&old_path); 4889 if (should_retry) { 4890 should_retry = false; 4891 lookup_flags |= LOOKUP_REVAL; 4892 goto retry; 4893 } 4894 put_names: 4895 putname(from); 4896 putname(to); 4897 return error; 4898 } 4899 4900 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 4901 int, newdfd, const char __user *, newname, unsigned int, flags) 4902 { 4903 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname), 4904 flags); 4905 } 4906 4907 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 4908 int, newdfd, const char __user *, newname) 4909 { 4910 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname), 4911 0); 4912 } 4913 4914 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 4915 { 4916 return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD, 4917 getname(newname), 0); 4918 } 4919 4920 int readlink_copy(char __user *buffer, int buflen, const char *link) 4921 { 4922 int len = PTR_ERR(link); 4923 if (IS_ERR(link)) 4924 goto out; 4925 4926 len = strlen(link); 4927 if (len > (unsigned) buflen) 4928 len = buflen; 4929 if (copy_to_user(buffer, link, len)) 4930 len = -EFAULT; 4931 out: 4932 return len; 4933 } 4934 4935 /** 4936 * vfs_readlink - copy symlink body into userspace buffer 4937 * @dentry: dentry on which to get symbolic link 4938 * @buffer: user memory pointer 4939 * @buflen: size of buffer 4940 * 4941 * Does not touch atime. That's up to the caller if necessary 4942 * 4943 * Does not call security hook. 4944 */ 4945 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4946 { 4947 struct inode *inode = d_inode(dentry); 4948 DEFINE_DELAYED_CALL(done); 4949 const char *link; 4950 int res; 4951 4952 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) { 4953 if (unlikely(inode->i_op->readlink)) 4954 return inode->i_op->readlink(dentry, buffer, buflen); 4955 4956 if (!d_is_symlink(dentry)) 4957 return -EINVAL; 4958 4959 spin_lock(&inode->i_lock); 4960 inode->i_opflags |= IOP_DEFAULT_READLINK; 4961 spin_unlock(&inode->i_lock); 4962 } 4963 4964 link = READ_ONCE(inode->i_link); 4965 if (!link) { 4966 link = inode->i_op->get_link(dentry, inode, &done); 4967 if (IS_ERR(link)) 4968 return PTR_ERR(link); 4969 } 4970 res = readlink_copy(buffer, buflen, link); 4971 do_delayed_call(&done); 4972 return res; 4973 } 4974 EXPORT_SYMBOL(vfs_readlink); 4975 4976 /** 4977 * vfs_get_link - get symlink body 4978 * @dentry: dentry on which to get symbolic link 4979 * @done: caller needs to free returned data with this 4980 * 4981 * Calls security hook and i_op->get_link() on the supplied inode. 4982 * 4983 * It does not touch atime. That's up to the caller if necessary. 4984 * 4985 * Does not work on "special" symlinks like /proc/$$/fd/N 4986 */ 4987 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done) 4988 { 4989 const char *res = ERR_PTR(-EINVAL); 4990 struct inode *inode = d_inode(dentry); 4991 4992 if (d_is_symlink(dentry)) { 4993 res = ERR_PTR(security_inode_readlink(dentry)); 4994 if (!res) 4995 res = inode->i_op->get_link(dentry, inode, done); 4996 } 4997 return res; 4998 } 4999 EXPORT_SYMBOL(vfs_get_link); 5000 5001 /* get the link contents into pagecache */ 5002 const char *page_get_link(struct dentry *dentry, struct inode *inode, 5003 struct delayed_call *callback) 5004 { 5005 char *kaddr; 5006 struct page *page; 5007 struct address_space *mapping = inode->i_mapping; 5008 5009 if (!dentry) { 5010 page = find_get_page(mapping, 0); 5011 if (!page) 5012 return ERR_PTR(-ECHILD); 5013 if (!PageUptodate(page)) { 5014 put_page(page); 5015 return ERR_PTR(-ECHILD); 5016 } 5017 } else { 5018 page = read_mapping_page(mapping, 0, NULL); 5019 if (IS_ERR(page)) 5020 return (char*)page; 5021 } 5022 set_delayed_call(callback, page_put_link, page); 5023 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM); 5024 kaddr = page_address(page); 5025 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1); 5026 return kaddr; 5027 } 5028 5029 EXPORT_SYMBOL(page_get_link); 5030 5031 void page_put_link(void *arg) 5032 { 5033 put_page(arg); 5034 } 5035 EXPORT_SYMBOL(page_put_link); 5036 5037 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 5038 { 5039 DEFINE_DELAYED_CALL(done); 5040 int res = readlink_copy(buffer, buflen, 5041 page_get_link(dentry, d_inode(dentry), 5042 &done)); 5043 do_delayed_call(&done); 5044 return res; 5045 } 5046 EXPORT_SYMBOL(page_readlink); 5047 5048 int page_symlink(struct inode *inode, const char *symname, int len) 5049 { 5050 struct address_space *mapping = inode->i_mapping; 5051 const struct address_space_operations *aops = mapping->a_ops; 5052 bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS); 5053 struct page *page; 5054 void *fsdata; 5055 int err; 5056 unsigned int flags; 5057 5058 retry: 5059 if (nofs) 5060 flags = memalloc_nofs_save(); 5061 err = aops->write_begin(NULL, mapping, 0, len-1, &page, &fsdata); 5062 if (nofs) 5063 memalloc_nofs_restore(flags); 5064 if (err) 5065 goto fail; 5066 5067 memcpy(page_address(page), symname, len-1); 5068 5069 err = aops->write_end(NULL, mapping, 0, len-1, len-1, 5070 page, fsdata); 5071 if (err < 0) 5072 goto fail; 5073 if (err < len-1) 5074 goto retry; 5075 5076 mark_inode_dirty(inode); 5077 return 0; 5078 fail: 5079 return err; 5080 } 5081 EXPORT_SYMBOL(page_symlink); 5082 5083 const struct inode_operations page_symlink_inode_operations = { 5084 .get_link = page_get_link, 5085 }; 5086 EXPORT_SYMBOL(page_symlink_inode_operations); 5087