1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/export.h> 19 #include <linux/kernel.h> 20 #include <linux/slab.h> 21 #include <linux/fs.h> 22 #include <linux/namei.h> 23 #include <linux/pagemap.h> 24 #include <linux/fsnotify.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/ima.h> 28 #include <linux/syscalls.h> 29 #include <linux/mount.h> 30 #include <linux/audit.h> 31 #include <linux/capability.h> 32 #include <linux/file.h> 33 #include <linux/fcntl.h> 34 #include <linux/device_cgroup.h> 35 #include <linux/fs_struct.h> 36 #include <linux/posix_acl.h> 37 #include <linux/hash.h> 38 #include <asm/uaccess.h> 39 40 #include "internal.h" 41 #include "mount.h" 42 43 /* [Feb-1997 T. Schoebel-Theuer] 44 * Fundamental changes in the pathname lookup mechanisms (namei) 45 * were necessary because of omirr. The reason is that omirr needs 46 * to know the _real_ pathname, not the user-supplied one, in case 47 * of symlinks (and also when transname replacements occur). 48 * 49 * The new code replaces the old recursive symlink resolution with 50 * an iterative one (in case of non-nested symlink chains). It does 51 * this with calls to <fs>_follow_link(). 52 * As a side effect, dir_namei(), _namei() and follow_link() are now 53 * replaced with a single function lookup_dentry() that can handle all 54 * the special cases of the former code. 55 * 56 * With the new dcache, the pathname is stored at each inode, at least as 57 * long as the refcount of the inode is positive. As a side effect, the 58 * size of the dcache depends on the inode cache and thus is dynamic. 59 * 60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 61 * resolution to correspond with current state of the code. 62 * 63 * Note that the symlink resolution is not *completely* iterative. 64 * There is still a significant amount of tail- and mid- recursion in 65 * the algorithm. Also, note that <fs>_readlink() is not used in 66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 67 * may return different results than <fs>_follow_link(). Many virtual 68 * filesystems (including /proc) exhibit this behavior. 69 */ 70 71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 73 * and the name already exists in form of a symlink, try to create the new 74 * name indicated by the symlink. The old code always complained that the 75 * name already exists, due to not following the symlink even if its target 76 * is nonexistent. The new semantics affects also mknod() and link() when 77 * the name is a symlink pointing to a non-existent name. 78 * 79 * I don't know which semantics is the right one, since I have no access 80 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 82 * "old" one. Personally, I think the new semantics is much more logical. 83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 84 * file does succeed in both HP-UX and SunOs, but not in Solaris 85 * and in the old Linux semantics. 86 */ 87 88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 89 * semantics. See the comments in "open_namei" and "do_link" below. 90 * 91 * [10-Sep-98 Alan Modra] Another symlink change. 92 */ 93 94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 95 * inside the path - always follow. 96 * in the last component in creation/removal/renaming - never follow. 97 * if LOOKUP_FOLLOW passed - follow. 98 * if the pathname has trailing slashes - follow. 99 * otherwise - don't follow. 100 * (applied in that order). 101 * 102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 104 * During the 2.4 we need to fix the userland stuff depending on it - 105 * hopefully we will be able to get rid of that wart in 2.5. So far only 106 * XEmacs seems to be relying on it... 107 */ 108 /* 109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 111 * any extra contention... 112 */ 113 114 /* In order to reduce some races, while at the same time doing additional 115 * checking and hopefully speeding things up, we copy filenames to the 116 * kernel data space before using them.. 117 * 118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 119 * PATH_MAX includes the nul terminator --RR. 120 */ 121 122 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) 123 124 struct filename * 125 getname_flags(const char __user *filename, int flags, int *empty) 126 { 127 struct filename *result; 128 char *kname; 129 int len; 130 131 result = audit_reusename(filename); 132 if (result) 133 return result; 134 135 result = __getname(); 136 if (unlikely(!result)) 137 return ERR_PTR(-ENOMEM); 138 139 /* 140 * First, try to embed the struct filename inside the names_cache 141 * allocation 142 */ 143 kname = (char *)result->iname; 144 result->name = kname; 145 146 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); 147 if (unlikely(len < 0)) { 148 __putname(result); 149 return ERR_PTR(len); 150 } 151 152 /* 153 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 154 * separate struct filename so we can dedicate the entire 155 * names_cache allocation for the pathname, and re-do the copy from 156 * userland. 157 */ 158 if (unlikely(len == EMBEDDED_NAME_MAX)) { 159 const size_t size = offsetof(struct filename, iname[1]); 160 kname = (char *)result; 161 162 /* 163 * size is chosen that way we to guarantee that 164 * result->iname[0] is within the same object and that 165 * kname can't be equal to result->iname, no matter what. 166 */ 167 result = kzalloc(size, GFP_KERNEL); 168 if (unlikely(!result)) { 169 __putname(kname); 170 return ERR_PTR(-ENOMEM); 171 } 172 result->name = kname; 173 len = strncpy_from_user(kname, filename, PATH_MAX); 174 if (unlikely(len < 0)) { 175 __putname(kname); 176 kfree(result); 177 return ERR_PTR(len); 178 } 179 if (unlikely(len == PATH_MAX)) { 180 __putname(kname); 181 kfree(result); 182 return ERR_PTR(-ENAMETOOLONG); 183 } 184 } 185 186 result->refcnt = 1; 187 /* The empty path is special. */ 188 if (unlikely(!len)) { 189 if (empty) 190 *empty = 1; 191 if (!(flags & LOOKUP_EMPTY)) { 192 putname(result); 193 return ERR_PTR(-ENOENT); 194 } 195 } 196 197 result->uptr = filename; 198 result->aname = NULL; 199 audit_getname(result); 200 return result; 201 } 202 203 struct filename * 204 getname(const char __user * filename) 205 { 206 return getname_flags(filename, 0, NULL); 207 } 208 209 struct filename * 210 getname_kernel(const char * filename) 211 { 212 struct filename *result; 213 int len = strlen(filename) + 1; 214 215 result = __getname(); 216 if (unlikely(!result)) 217 return ERR_PTR(-ENOMEM); 218 219 if (len <= EMBEDDED_NAME_MAX) { 220 result->name = (char *)result->iname; 221 } else if (len <= PATH_MAX) { 222 struct filename *tmp; 223 224 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL); 225 if (unlikely(!tmp)) { 226 __putname(result); 227 return ERR_PTR(-ENOMEM); 228 } 229 tmp->name = (char *)result; 230 result = tmp; 231 } else { 232 __putname(result); 233 return ERR_PTR(-ENAMETOOLONG); 234 } 235 memcpy((char *)result->name, filename, len); 236 result->uptr = NULL; 237 result->aname = NULL; 238 result->refcnt = 1; 239 audit_getname(result); 240 241 return result; 242 } 243 244 void putname(struct filename *name) 245 { 246 BUG_ON(name->refcnt <= 0); 247 248 if (--name->refcnt > 0) 249 return; 250 251 if (name->name != name->iname) { 252 __putname(name->name); 253 kfree(name); 254 } else 255 __putname(name); 256 } 257 258 static int check_acl(struct inode *inode, int mask) 259 { 260 #ifdef CONFIG_FS_POSIX_ACL 261 struct posix_acl *acl; 262 263 if (mask & MAY_NOT_BLOCK) { 264 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 265 if (!acl) 266 return -EAGAIN; 267 /* no ->get_acl() calls in RCU mode... */ 268 if (acl == ACL_NOT_CACHED) 269 return -ECHILD; 270 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK); 271 } 272 273 acl = get_acl(inode, ACL_TYPE_ACCESS); 274 if (IS_ERR(acl)) 275 return PTR_ERR(acl); 276 if (acl) { 277 int error = posix_acl_permission(inode, acl, mask); 278 posix_acl_release(acl); 279 return error; 280 } 281 #endif 282 283 return -EAGAIN; 284 } 285 286 /* 287 * This does the basic permission checking 288 */ 289 static int acl_permission_check(struct inode *inode, int mask) 290 { 291 unsigned int mode = inode->i_mode; 292 293 if (likely(uid_eq(current_fsuid(), inode->i_uid))) 294 mode >>= 6; 295 else { 296 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 297 int error = check_acl(inode, mask); 298 if (error != -EAGAIN) 299 return error; 300 } 301 302 if (in_group_p(inode->i_gid)) 303 mode >>= 3; 304 } 305 306 /* 307 * If the DACs are ok we don't need any capability check. 308 */ 309 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 310 return 0; 311 return -EACCES; 312 } 313 314 /** 315 * generic_permission - check for access rights on a Posix-like filesystem 316 * @inode: inode to check access rights for 317 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...) 318 * 319 * Used to check for read/write/execute permissions on a file. 320 * We use "fsuid" for this, letting us set arbitrary permissions 321 * for filesystem access without changing the "normal" uids which 322 * are used for other things. 323 * 324 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 325 * request cannot be satisfied (eg. requires blocking or too much complexity). 326 * It would then be called again in ref-walk mode. 327 */ 328 int generic_permission(struct inode *inode, int mask) 329 { 330 int ret; 331 332 /* 333 * Do the basic permission checks. 334 */ 335 ret = acl_permission_check(inode, mask); 336 if (ret != -EACCES) 337 return ret; 338 339 if (S_ISDIR(inode->i_mode)) { 340 /* DACs are overridable for directories */ 341 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 342 return 0; 343 if (!(mask & MAY_WRITE)) 344 if (capable_wrt_inode_uidgid(inode, 345 CAP_DAC_READ_SEARCH)) 346 return 0; 347 return -EACCES; 348 } 349 /* 350 * Read/write DACs are always overridable. 351 * Executable DACs are overridable when there is 352 * at least one exec bit set. 353 */ 354 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 355 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 356 return 0; 357 358 /* 359 * Searching includes executable on directories, else just read. 360 */ 361 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 362 if (mask == MAY_READ) 363 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH)) 364 return 0; 365 366 return -EACCES; 367 } 368 EXPORT_SYMBOL(generic_permission); 369 370 /* 371 * We _really_ want to just do "generic_permission()" without 372 * even looking at the inode->i_op values. So we keep a cache 373 * flag in inode->i_opflags, that says "this has not special 374 * permission function, use the fast case". 375 */ 376 static inline int do_inode_permission(struct inode *inode, int mask) 377 { 378 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 379 if (likely(inode->i_op->permission)) 380 return inode->i_op->permission(inode, mask); 381 382 /* This gets set once for the inode lifetime */ 383 spin_lock(&inode->i_lock); 384 inode->i_opflags |= IOP_FASTPERM; 385 spin_unlock(&inode->i_lock); 386 } 387 return generic_permission(inode, mask); 388 } 389 390 /** 391 * __inode_permission - Check for access rights to a given inode 392 * @inode: Inode to check permission on 393 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 394 * 395 * Check for read/write/execute permissions on an inode. 396 * 397 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 398 * 399 * This does not check for a read-only file system. You probably want 400 * inode_permission(). 401 */ 402 int __inode_permission(struct inode *inode, int mask) 403 { 404 int retval; 405 406 if (unlikely(mask & MAY_WRITE)) { 407 /* 408 * Nobody gets write access to an immutable file. 409 */ 410 if (IS_IMMUTABLE(inode)) 411 return -EACCES; 412 } 413 414 retval = do_inode_permission(inode, mask); 415 if (retval) 416 return retval; 417 418 retval = devcgroup_inode_permission(inode, mask); 419 if (retval) 420 return retval; 421 422 return security_inode_permission(inode, mask); 423 } 424 EXPORT_SYMBOL(__inode_permission); 425 426 /** 427 * sb_permission - Check superblock-level permissions 428 * @sb: Superblock of inode to check permission on 429 * @inode: Inode to check permission on 430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 431 * 432 * Separate out file-system wide checks from inode-specific permission checks. 433 */ 434 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 435 { 436 if (unlikely(mask & MAY_WRITE)) { 437 umode_t mode = inode->i_mode; 438 439 /* Nobody gets write access to a read-only fs. */ 440 if ((sb->s_flags & MS_RDONLY) && 441 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 442 return -EROFS; 443 } 444 return 0; 445 } 446 447 /** 448 * inode_permission - Check for access rights to a given inode 449 * @inode: Inode to check permission on 450 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 451 * 452 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 453 * this, letting us set arbitrary permissions for filesystem access without 454 * changing the "normal" UIDs which are used for other things. 455 * 456 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 457 */ 458 int inode_permission(struct inode *inode, int mask) 459 { 460 int retval; 461 462 retval = sb_permission(inode->i_sb, inode, mask); 463 if (retval) 464 return retval; 465 return __inode_permission(inode, mask); 466 } 467 EXPORT_SYMBOL(inode_permission); 468 469 /** 470 * path_get - get a reference to a path 471 * @path: path to get the reference to 472 * 473 * Given a path increment the reference count to the dentry and the vfsmount. 474 */ 475 void path_get(const struct path *path) 476 { 477 mntget(path->mnt); 478 dget(path->dentry); 479 } 480 EXPORT_SYMBOL(path_get); 481 482 /** 483 * path_put - put a reference to a path 484 * @path: path to put the reference to 485 * 486 * Given a path decrement the reference count to the dentry and the vfsmount. 487 */ 488 void path_put(const struct path *path) 489 { 490 dput(path->dentry); 491 mntput(path->mnt); 492 } 493 EXPORT_SYMBOL(path_put); 494 495 #define EMBEDDED_LEVELS 2 496 struct nameidata { 497 struct path path; 498 struct qstr last; 499 struct path root; 500 struct inode *inode; /* path.dentry.d_inode */ 501 unsigned int flags; 502 unsigned seq, m_seq; 503 int last_type; 504 unsigned depth; 505 int total_link_count; 506 struct saved { 507 struct path link; 508 struct delayed_call done; 509 const char *name; 510 unsigned seq; 511 } *stack, internal[EMBEDDED_LEVELS]; 512 struct filename *name; 513 struct nameidata *saved; 514 struct inode *link_inode; 515 unsigned root_seq; 516 int dfd; 517 }; 518 519 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name) 520 { 521 struct nameidata *old = current->nameidata; 522 p->stack = p->internal; 523 p->dfd = dfd; 524 p->name = name; 525 p->total_link_count = old ? old->total_link_count : 0; 526 p->saved = old; 527 current->nameidata = p; 528 } 529 530 static void restore_nameidata(void) 531 { 532 struct nameidata *now = current->nameidata, *old = now->saved; 533 534 current->nameidata = old; 535 if (old) 536 old->total_link_count = now->total_link_count; 537 if (now->stack != now->internal) 538 kfree(now->stack); 539 } 540 541 static int __nd_alloc_stack(struct nameidata *nd) 542 { 543 struct saved *p; 544 545 if (nd->flags & LOOKUP_RCU) { 546 p= kmalloc(MAXSYMLINKS * sizeof(struct saved), 547 GFP_ATOMIC); 548 if (unlikely(!p)) 549 return -ECHILD; 550 } else { 551 p= kmalloc(MAXSYMLINKS * sizeof(struct saved), 552 GFP_KERNEL); 553 if (unlikely(!p)) 554 return -ENOMEM; 555 } 556 memcpy(p, nd->internal, sizeof(nd->internal)); 557 nd->stack = p; 558 return 0; 559 } 560 561 /** 562 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root 563 * @path: nameidate to verify 564 * 565 * Rename can sometimes move a file or directory outside of a bind 566 * mount, path_connected allows those cases to be detected. 567 */ 568 static bool path_connected(const struct path *path) 569 { 570 struct vfsmount *mnt = path->mnt; 571 572 /* Only bind mounts can have disconnected paths */ 573 if (mnt->mnt_root == mnt->mnt_sb->s_root) 574 return true; 575 576 return is_subdir(path->dentry, mnt->mnt_root); 577 } 578 579 static inline int nd_alloc_stack(struct nameidata *nd) 580 { 581 if (likely(nd->depth != EMBEDDED_LEVELS)) 582 return 0; 583 if (likely(nd->stack != nd->internal)) 584 return 0; 585 return __nd_alloc_stack(nd); 586 } 587 588 static void drop_links(struct nameidata *nd) 589 { 590 int i = nd->depth; 591 while (i--) { 592 struct saved *last = nd->stack + i; 593 do_delayed_call(&last->done); 594 clear_delayed_call(&last->done); 595 } 596 } 597 598 static void terminate_walk(struct nameidata *nd) 599 { 600 drop_links(nd); 601 if (!(nd->flags & LOOKUP_RCU)) { 602 int i; 603 path_put(&nd->path); 604 for (i = 0; i < nd->depth; i++) 605 path_put(&nd->stack[i].link); 606 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 607 path_put(&nd->root); 608 nd->root.mnt = NULL; 609 } 610 } else { 611 nd->flags &= ~LOOKUP_RCU; 612 if (!(nd->flags & LOOKUP_ROOT)) 613 nd->root.mnt = NULL; 614 rcu_read_unlock(); 615 } 616 nd->depth = 0; 617 } 618 619 /* path_put is needed afterwards regardless of success or failure */ 620 static bool legitimize_path(struct nameidata *nd, 621 struct path *path, unsigned seq) 622 { 623 int res = __legitimize_mnt(path->mnt, nd->m_seq); 624 if (unlikely(res)) { 625 if (res > 0) 626 path->mnt = NULL; 627 path->dentry = NULL; 628 return false; 629 } 630 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) { 631 path->dentry = NULL; 632 return false; 633 } 634 return !read_seqcount_retry(&path->dentry->d_seq, seq); 635 } 636 637 static bool legitimize_links(struct nameidata *nd) 638 { 639 int i; 640 for (i = 0; i < nd->depth; i++) { 641 struct saved *last = nd->stack + i; 642 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) { 643 drop_links(nd); 644 nd->depth = i + 1; 645 return false; 646 } 647 } 648 return true; 649 } 650 651 /* 652 * Path walking has 2 modes, rcu-walk and ref-walk (see 653 * Documentation/filesystems/path-lookup.txt). In situations when we can't 654 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 655 * normal reference counts on dentries and vfsmounts to transition to ref-walk 656 * mode. Refcounts are grabbed at the last known good point before rcu-walk 657 * got stuck, so ref-walk may continue from there. If this is not successful 658 * (eg. a seqcount has changed), then failure is returned and it's up to caller 659 * to restart the path walk from the beginning in ref-walk mode. 660 */ 661 662 /** 663 * unlazy_walk - try to switch to ref-walk mode. 664 * @nd: nameidata pathwalk data 665 * @dentry: child of nd->path.dentry or NULL 666 * @seq: seq number to check dentry against 667 * Returns: 0 on success, -ECHILD on failure 668 * 669 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry 670 * for ref-walk mode. @dentry must be a path found by a do_lookup call on 671 * @nd or NULL. Must be called from rcu-walk context. 672 * Nothing should touch nameidata between unlazy_walk() failure and 673 * terminate_walk(). 674 */ 675 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq) 676 { 677 struct dentry *parent = nd->path.dentry; 678 679 BUG_ON(!(nd->flags & LOOKUP_RCU)); 680 681 nd->flags &= ~LOOKUP_RCU; 682 if (unlikely(!legitimize_links(nd))) 683 goto out2; 684 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq))) 685 goto out2; 686 if (unlikely(!lockref_get_not_dead(&parent->d_lockref))) 687 goto out1; 688 689 /* 690 * For a negative lookup, the lookup sequence point is the parents 691 * sequence point, and it only needs to revalidate the parent dentry. 692 * 693 * For a positive lookup, we need to move both the parent and the 694 * dentry from the RCU domain to be properly refcounted. And the 695 * sequence number in the dentry validates *both* dentry counters, 696 * since we checked the sequence number of the parent after we got 697 * the child sequence number. So we know the parent must still 698 * be valid if the child sequence number is still valid. 699 */ 700 if (!dentry) { 701 if (read_seqcount_retry(&parent->d_seq, nd->seq)) 702 goto out; 703 BUG_ON(nd->inode != parent->d_inode); 704 } else { 705 if (!lockref_get_not_dead(&dentry->d_lockref)) 706 goto out; 707 if (read_seqcount_retry(&dentry->d_seq, seq)) 708 goto drop_dentry; 709 } 710 711 /* 712 * Sequence counts matched. Now make sure that the root is 713 * still valid and get it if required. 714 */ 715 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 716 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) { 717 rcu_read_unlock(); 718 dput(dentry); 719 return -ECHILD; 720 } 721 } 722 723 rcu_read_unlock(); 724 return 0; 725 726 drop_dentry: 727 rcu_read_unlock(); 728 dput(dentry); 729 goto drop_root_mnt; 730 out2: 731 nd->path.mnt = NULL; 732 out1: 733 nd->path.dentry = NULL; 734 out: 735 rcu_read_unlock(); 736 drop_root_mnt: 737 if (!(nd->flags & LOOKUP_ROOT)) 738 nd->root.mnt = NULL; 739 return -ECHILD; 740 } 741 742 static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq) 743 { 744 if (unlikely(!legitimize_path(nd, link, seq))) { 745 drop_links(nd); 746 nd->depth = 0; 747 nd->flags &= ~LOOKUP_RCU; 748 nd->path.mnt = NULL; 749 nd->path.dentry = NULL; 750 if (!(nd->flags & LOOKUP_ROOT)) 751 nd->root.mnt = NULL; 752 rcu_read_unlock(); 753 } else if (likely(unlazy_walk(nd, NULL, 0)) == 0) { 754 return 0; 755 } 756 path_put(link); 757 return -ECHILD; 758 } 759 760 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 761 { 762 return dentry->d_op->d_revalidate(dentry, flags); 763 } 764 765 /** 766 * complete_walk - successful completion of path walk 767 * @nd: pointer nameidata 768 * 769 * If we had been in RCU mode, drop out of it and legitimize nd->path. 770 * Revalidate the final result, unless we'd already done that during 771 * the path walk or the filesystem doesn't ask for it. Return 0 on 772 * success, -error on failure. In case of failure caller does not 773 * need to drop nd->path. 774 */ 775 static int complete_walk(struct nameidata *nd) 776 { 777 struct dentry *dentry = nd->path.dentry; 778 int status; 779 780 if (nd->flags & LOOKUP_RCU) { 781 if (!(nd->flags & LOOKUP_ROOT)) 782 nd->root.mnt = NULL; 783 if (unlikely(unlazy_walk(nd, NULL, 0))) 784 return -ECHILD; 785 } 786 787 if (likely(!(nd->flags & LOOKUP_JUMPED))) 788 return 0; 789 790 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 791 return 0; 792 793 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 794 if (status > 0) 795 return 0; 796 797 if (!status) 798 status = -ESTALE; 799 800 return status; 801 } 802 803 static void set_root(struct nameidata *nd) 804 { 805 struct fs_struct *fs = current->fs; 806 807 if (nd->flags & LOOKUP_RCU) { 808 unsigned seq; 809 810 do { 811 seq = read_seqcount_begin(&fs->seq); 812 nd->root = fs->root; 813 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 814 } while (read_seqcount_retry(&fs->seq, seq)); 815 } else { 816 get_fs_root(fs, &nd->root); 817 } 818 } 819 820 static void path_put_conditional(struct path *path, struct nameidata *nd) 821 { 822 dput(path->dentry); 823 if (path->mnt != nd->path.mnt) 824 mntput(path->mnt); 825 } 826 827 static inline void path_to_nameidata(const struct path *path, 828 struct nameidata *nd) 829 { 830 if (!(nd->flags & LOOKUP_RCU)) { 831 dput(nd->path.dentry); 832 if (nd->path.mnt != path->mnt) 833 mntput(nd->path.mnt); 834 } 835 nd->path.mnt = path->mnt; 836 nd->path.dentry = path->dentry; 837 } 838 839 static int nd_jump_root(struct nameidata *nd) 840 { 841 if (nd->flags & LOOKUP_RCU) { 842 struct dentry *d; 843 nd->path = nd->root; 844 d = nd->path.dentry; 845 nd->inode = d->d_inode; 846 nd->seq = nd->root_seq; 847 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq))) 848 return -ECHILD; 849 } else { 850 path_put(&nd->path); 851 nd->path = nd->root; 852 path_get(&nd->path); 853 nd->inode = nd->path.dentry->d_inode; 854 } 855 nd->flags |= LOOKUP_JUMPED; 856 return 0; 857 } 858 859 /* 860 * Helper to directly jump to a known parsed path from ->get_link, 861 * caller must have taken a reference to path beforehand. 862 */ 863 void nd_jump_link(struct path *path) 864 { 865 struct nameidata *nd = current->nameidata; 866 path_put(&nd->path); 867 868 nd->path = *path; 869 nd->inode = nd->path.dentry->d_inode; 870 nd->flags |= LOOKUP_JUMPED; 871 } 872 873 static inline void put_link(struct nameidata *nd) 874 { 875 struct saved *last = nd->stack + --nd->depth; 876 do_delayed_call(&last->done); 877 if (!(nd->flags & LOOKUP_RCU)) 878 path_put(&last->link); 879 } 880 881 int sysctl_protected_symlinks __read_mostly = 0; 882 int sysctl_protected_hardlinks __read_mostly = 0; 883 884 /** 885 * may_follow_link - Check symlink following for unsafe situations 886 * @nd: nameidata pathwalk data 887 * 888 * In the case of the sysctl_protected_symlinks sysctl being enabled, 889 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 890 * in a sticky world-writable directory. This is to protect privileged 891 * processes from failing races against path names that may change out 892 * from under them by way of other users creating malicious symlinks. 893 * It will permit symlinks to be followed only when outside a sticky 894 * world-writable directory, or when the uid of the symlink and follower 895 * match, or when the directory owner matches the symlink's owner. 896 * 897 * Returns 0 if following the symlink is allowed, -ve on error. 898 */ 899 static inline int may_follow_link(struct nameidata *nd) 900 { 901 const struct inode *inode; 902 const struct inode *parent; 903 904 if (!sysctl_protected_symlinks) 905 return 0; 906 907 /* Allowed if owner and follower match. */ 908 inode = nd->link_inode; 909 if (uid_eq(current_cred()->fsuid, inode->i_uid)) 910 return 0; 911 912 /* Allowed if parent directory not sticky and world-writable. */ 913 parent = nd->inode; 914 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 915 return 0; 916 917 /* Allowed if parent directory and link owner match. */ 918 if (uid_eq(parent->i_uid, inode->i_uid)) 919 return 0; 920 921 if (nd->flags & LOOKUP_RCU) 922 return -ECHILD; 923 924 audit_log_link_denied("follow_link", &nd->stack[0].link); 925 return -EACCES; 926 } 927 928 /** 929 * safe_hardlink_source - Check for safe hardlink conditions 930 * @inode: the source inode to hardlink from 931 * 932 * Return false if at least one of the following conditions: 933 * - inode is not a regular file 934 * - inode is setuid 935 * - inode is setgid and group-exec 936 * - access failure for read and write 937 * 938 * Otherwise returns true. 939 */ 940 static bool safe_hardlink_source(struct inode *inode) 941 { 942 umode_t mode = inode->i_mode; 943 944 /* Special files should not get pinned to the filesystem. */ 945 if (!S_ISREG(mode)) 946 return false; 947 948 /* Setuid files should not get pinned to the filesystem. */ 949 if (mode & S_ISUID) 950 return false; 951 952 /* Executable setgid files should not get pinned to the filesystem. */ 953 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 954 return false; 955 956 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 957 if (inode_permission(inode, MAY_READ | MAY_WRITE)) 958 return false; 959 960 return true; 961 } 962 963 /** 964 * may_linkat - Check permissions for creating a hardlink 965 * @link: the source to hardlink from 966 * 967 * Block hardlink when all of: 968 * - sysctl_protected_hardlinks enabled 969 * - fsuid does not match inode 970 * - hardlink source is unsafe (see safe_hardlink_source() above) 971 * - not CAP_FOWNER in a namespace with the inode owner uid mapped 972 * 973 * Returns 0 if successful, -ve on error. 974 */ 975 static int may_linkat(struct path *link) 976 { 977 struct inode *inode; 978 979 if (!sysctl_protected_hardlinks) 980 return 0; 981 982 inode = link->dentry->d_inode; 983 984 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 985 * otherwise, it must be a safe source. 986 */ 987 if (inode_owner_or_capable(inode) || safe_hardlink_source(inode)) 988 return 0; 989 990 audit_log_link_denied("linkat", link); 991 return -EPERM; 992 } 993 994 static __always_inline 995 const char *get_link(struct nameidata *nd) 996 { 997 struct saved *last = nd->stack + nd->depth - 1; 998 struct dentry *dentry = last->link.dentry; 999 struct inode *inode = nd->link_inode; 1000 int error; 1001 const char *res; 1002 1003 if (!(nd->flags & LOOKUP_RCU)) { 1004 touch_atime(&last->link); 1005 cond_resched(); 1006 } else if (atime_needs_update(&last->link, inode)) { 1007 if (unlikely(unlazy_walk(nd, NULL, 0))) 1008 return ERR_PTR(-ECHILD); 1009 touch_atime(&last->link); 1010 } 1011 1012 error = security_inode_follow_link(dentry, inode, 1013 nd->flags & LOOKUP_RCU); 1014 if (unlikely(error)) 1015 return ERR_PTR(error); 1016 1017 nd->last_type = LAST_BIND; 1018 res = inode->i_link; 1019 if (!res) { 1020 const char * (*get)(struct dentry *, struct inode *, 1021 struct delayed_call *); 1022 get = inode->i_op->get_link; 1023 if (nd->flags & LOOKUP_RCU) { 1024 res = get(NULL, inode, &last->done); 1025 if (res == ERR_PTR(-ECHILD)) { 1026 if (unlikely(unlazy_walk(nd, NULL, 0))) 1027 return ERR_PTR(-ECHILD); 1028 res = get(dentry, inode, &last->done); 1029 } 1030 } else { 1031 res = get(dentry, inode, &last->done); 1032 } 1033 if (IS_ERR_OR_NULL(res)) 1034 return res; 1035 } 1036 if (*res == '/') { 1037 if (!nd->root.mnt) 1038 set_root(nd); 1039 if (unlikely(nd_jump_root(nd))) 1040 return ERR_PTR(-ECHILD); 1041 while (unlikely(*++res == '/')) 1042 ; 1043 } 1044 if (!*res) 1045 res = NULL; 1046 return res; 1047 } 1048 1049 /* 1050 * follow_up - Find the mountpoint of path's vfsmount 1051 * 1052 * Given a path, find the mountpoint of its source file system. 1053 * Replace @path with the path of the mountpoint in the parent mount. 1054 * Up is towards /. 1055 * 1056 * Return 1 if we went up a level and 0 if we were already at the 1057 * root. 1058 */ 1059 int follow_up(struct path *path) 1060 { 1061 struct mount *mnt = real_mount(path->mnt); 1062 struct mount *parent; 1063 struct dentry *mountpoint; 1064 1065 read_seqlock_excl(&mount_lock); 1066 parent = mnt->mnt_parent; 1067 if (parent == mnt) { 1068 read_sequnlock_excl(&mount_lock); 1069 return 0; 1070 } 1071 mntget(&parent->mnt); 1072 mountpoint = dget(mnt->mnt_mountpoint); 1073 read_sequnlock_excl(&mount_lock); 1074 dput(path->dentry); 1075 path->dentry = mountpoint; 1076 mntput(path->mnt); 1077 path->mnt = &parent->mnt; 1078 return 1; 1079 } 1080 EXPORT_SYMBOL(follow_up); 1081 1082 /* 1083 * Perform an automount 1084 * - return -EISDIR to tell follow_managed() to stop and return the path we 1085 * were called with. 1086 */ 1087 static int follow_automount(struct path *path, struct nameidata *nd, 1088 bool *need_mntput) 1089 { 1090 struct vfsmount *mnt; 1091 int err; 1092 1093 if (!path->dentry->d_op || !path->dentry->d_op->d_automount) 1094 return -EREMOTE; 1095 1096 /* We don't want to mount if someone's just doing a stat - 1097 * unless they're stat'ing a directory and appended a '/' to 1098 * the name. 1099 * 1100 * We do, however, want to mount if someone wants to open or 1101 * create a file of any type under the mountpoint, wants to 1102 * traverse through the mountpoint or wants to open the 1103 * mounted directory. Also, autofs may mark negative dentries 1104 * as being automount points. These will need the attentions 1105 * of the daemon to instantiate them before they can be used. 1106 */ 1107 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 1108 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 1109 path->dentry->d_inode) 1110 return -EISDIR; 1111 1112 nd->total_link_count++; 1113 if (nd->total_link_count >= 40) 1114 return -ELOOP; 1115 1116 mnt = path->dentry->d_op->d_automount(path); 1117 if (IS_ERR(mnt)) { 1118 /* 1119 * The filesystem is allowed to return -EISDIR here to indicate 1120 * it doesn't want to automount. For instance, autofs would do 1121 * this so that its userspace daemon can mount on this dentry. 1122 * 1123 * However, we can only permit this if it's a terminal point in 1124 * the path being looked up; if it wasn't then the remainder of 1125 * the path is inaccessible and we should say so. 1126 */ 1127 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT)) 1128 return -EREMOTE; 1129 return PTR_ERR(mnt); 1130 } 1131 1132 if (!mnt) /* mount collision */ 1133 return 0; 1134 1135 if (!*need_mntput) { 1136 /* lock_mount() may release path->mnt on error */ 1137 mntget(path->mnt); 1138 *need_mntput = true; 1139 } 1140 err = finish_automount(mnt, path); 1141 1142 switch (err) { 1143 case -EBUSY: 1144 /* Someone else made a mount here whilst we were busy */ 1145 return 0; 1146 case 0: 1147 path_put(path); 1148 path->mnt = mnt; 1149 path->dentry = dget(mnt->mnt_root); 1150 return 0; 1151 default: 1152 return err; 1153 } 1154 1155 } 1156 1157 /* 1158 * Handle a dentry that is managed in some way. 1159 * - Flagged for transit management (autofs) 1160 * - Flagged as mountpoint 1161 * - Flagged as automount point 1162 * 1163 * This may only be called in refwalk mode. 1164 * 1165 * Serialization is taken care of in namespace.c 1166 */ 1167 static int follow_managed(struct path *path, struct nameidata *nd) 1168 { 1169 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */ 1170 unsigned managed; 1171 bool need_mntput = false; 1172 int ret = 0; 1173 1174 /* Given that we're not holding a lock here, we retain the value in a 1175 * local variable for each dentry as we look at it so that we don't see 1176 * the components of that value change under us */ 1177 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1178 managed &= DCACHE_MANAGED_DENTRY, 1179 unlikely(managed != 0)) { 1180 /* Allow the filesystem to manage the transit without i_mutex 1181 * being held. */ 1182 if (managed & DCACHE_MANAGE_TRANSIT) { 1183 BUG_ON(!path->dentry->d_op); 1184 BUG_ON(!path->dentry->d_op->d_manage); 1185 ret = path->dentry->d_op->d_manage(path->dentry, false); 1186 if (ret < 0) 1187 break; 1188 } 1189 1190 /* Transit to a mounted filesystem. */ 1191 if (managed & DCACHE_MOUNTED) { 1192 struct vfsmount *mounted = lookup_mnt(path); 1193 if (mounted) { 1194 dput(path->dentry); 1195 if (need_mntput) 1196 mntput(path->mnt); 1197 path->mnt = mounted; 1198 path->dentry = dget(mounted->mnt_root); 1199 need_mntput = true; 1200 continue; 1201 } 1202 1203 /* Something is mounted on this dentry in another 1204 * namespace and/or whatever was mounted there in this 1205 * namespace got unmounted before lookup_mnt() could 1206 * get it */ 1207 } 1208 1209 /* Handle an automount point */ 1210 if (managed & DCACHE_NEED_AUTOMOUNT) { 1211 ret = follow_automount(path, nd, &need_mntput); 1212 if (ret < 0) 1213 break; 1214 continue; 1215 } 1216 1217 /* We didn't change the current path point */ 1218 break; 1219 } 1220 1221 if (need_mntput && path->mnt == mnt) 1222 mntput(path->mnt); 1223 if (ret == -EISDIR) 1224 ret = 0; 1225 if (need_mntput) 1226 nd->flags |= LOOKUP_JUMPED; 1227 if (unlikely(ret < 0)) 1228 path_put_conditional(path, nd); 1229 return ret; 1230 } 1231 1232 int follow_down_one(struct path *path) 1233 { 1234 struct vfsmount *mounted; 1235 1236 mounted = lookup_mnt(path); 1237 if (mounted) { 1238 dput(path->dentry); 1239 mntput(path->mnt); 1240 path->mnt = mounted; 1241 path->dentry = dget(mounted->mnt_root); 1242 return 1; 1243 } 1244 return 0; 1245 } 1246 EXPORT_SYMBOL(follow_down_one); 1247 1248 static inline int managed_dentry_rcu(struct dentry *dentry) 1249 { 1250 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ? 1251 dentry->d_op->d_manage(dentry, true) : 0; 1252 } 1253 1254 /* 1255 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1256 * we meet a managed dentry that would need blocking. 1257 */ 1258 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1259 struct inode **inode, unsigned *seqp) 1260 { 1261 for (;;) { 1262 struct mount *mounted; 1263 /* 1264 * Don't forget we might have a non-mountpoint managed dentry 1265 * that wants to block transit. 1266 */ 1267 switch (managed_dentry_rcu(path->dentry)) { 1268 case -ECHILD: 1269 default: 1270 return false; 1271 case -EISDIR: 1272 return true; 1273 case 0: 1274 break; 1275 } 1276 1277 if (!d_mountpoint(path->dentry)) 1278 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1279 1280 mounted = __lookup_mnt(path->mnt, path->dentry); 1281 if (!mounted) 1282 break; 1283 path->mnt = &mounted->mnt; 1284 path->dentry = mounted->mnt.mnt_root; 1285 nd->flags |= LOOKUP_JUMPED; 1286 *seqp = read_seqcount_begin(&path->dentry->d_seq); 1287 /* 1288 * Update the inode too. We don't need to re-check the 1289 * dentry sequence number here after this d_inode read, 1290 * because a mount-point is always pinned. 1291 */ 1292 *inode = path->dentry->d_inode; 1293 } 1294 return !read_seqretry(&mount_lock, nd->m_seq) && 1295 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1296 } 1297 1298 static int follow_dotdot_rcu(struct nameidata *nd) 1299 { 1300 struct inode *inode = nd->inode; 1301 1302 while (1) { 1303 if (path_equal(&nd->path, &nd->root)) 1304 break; 1305 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1306 struct dentry *old = nd->path.dentry; 1307 struct dentry *parent = old->d_parent; 1308 unsigned seq; 1309 1310 inode = parent->d_inode; 1311 seq = read_seqcount_begin(&parent->d_seq); 1312 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq))) 1313 return -ECHILD; 1314 nd->path.dentry = parent; 1315 nd->seq = seq; 1316 if (unlikely(!path_connected(&nd->path))) 1317 return -ENOENT; 1318 break; 1319 } else { 1320 struct mount *mnt = real_mount(nd->path.mnt); 1321 struct mount *mparent = mnt->mnt_parent; 1322 struct dentry *mountpoint = mnt->mnt_mountpoint; 1323 struct inode *inode2 = mountpoint->d_inode; 1324 unsigned seq = read_seqcount_begin(&mountpoint->d_seq); 1325 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1326 return -ECHILD; 1327 if (&mparent->mnt == nd->path.mnt) 1328 break; 1329 /* we know that mountpoint was pinned */ 1330 nd->path.dentry = mountpoint; 1331 nd->path.mnt = &mparent->mnt; 1332 inode = inode2; 1333 nd->seq = seq; 1334 } 1335 } 1336 while (unlikely(d_mountpoint(nd->path.dentry))) { 1337 struct mount *mounted; 1338 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry); 1339 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1340 return -ECHILD; 1341 if (!mounted) 1342 break; 1343 nd->path.mnt = &mounted->mnt; 1344 nd->path.dentry = mounted->mnt.mnt_root; 1345 inode = nd->path.dentry->d_inode; 1346 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1347 } 1348 nd->inode = inode; 1349 return 0; 1350 } 1351 1352 /* 1353 * Follow down to the covering mount currently visible to userspace. At each 1354 * point, the filesystem owning that dentry may be queried as to whether the 1355 * caller is permitted to proceed or not. 1356 */ 1357 int follow_down(struct path *path) 1358 { 1359 unsigned managed; 1360 int ret; 1361 1362 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1363 unlikely(managed & DCACHE_MANAGED_DENTRY)) { 1364 /* Allow the filesystem to manage the transit without i_mutex 1365 * being held. 1366 * 1367 * We indicate to the filesystem if someone is trying to mount 1368 * something here. This gives autofs the chance to deny anyone 1369 * other than its daemon the right to mount on its 1370 * superstructure. 1371 * 1372 * The filesystem may sleep at this point. 1373 */ 1374 if (managed & DCACHE_MANAGE_TRANSIT) { 1375 BUG_ON(!path->dentry->d_op); 1376 BUG_ON(!path->dentry->d_op->d_manage); 1377 ret = path->dentry->d_op->d_manage( 1378 path->dentry, false); 1379 if (ret < 0) 1380 return ret == -EISDIR ? 0 : ret; 1381 } 1382 1383 /* Transit to a mounted filesystem. */ 1384 if (managed & DCACHE_MOUNTED) { 1385 struct vfsmount *mounted = lookup_mnt(path); 1386 if (!mounted) 1387 break; 1388 dput(path->dentry); 1389 mntput(path->mnt); 1390 path->mnt = mounted; 1391 path->dentry = dget(mounted->mnt_root); 1392 continue; 1393 } 1394 1395 /* Don't handle automount points here */ 1396 break; 1397 } 1398 return 0; 1399 } 1400 EXPORT_SYMBOL(follow_down); 1401 1402 /* 1403 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() 1404 */ 1405 static void follow_mount(struct path *path) 1406 { 1407 while (d_mountpoint(path->dentry)) { 1408 struct vfsmount *mounted = lookup_mnt(path); 1409 if (!mounted) 1410 break; 1411 dput(path->dentry); 1412 mntput(path->mnt); 1413 path->mnt = mounted; 1414 path->dentry = dget(mounted->mnt_root); 1415 } 1416 } 1417 1418 static int follow_dotdot(struct nameidata *nd) 1419 { 1420 while(1) { 1421 struct dentry *old = nd->path.dentry; 1422 1423 if (nd->path.dentry == nd->root.dentry && 1424 nd->path.mnt == nd->root.mnt) { 1425 break; 1426 } 1427 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1428 /* rare case of legitimate dget_parent()... */ 1429 nd->path.dentry = dget_parent(nd->path.dentry); 1430 dput(old); 1431 if (unlikely(!path_connected(&nd->path))) 1432 return -ENOENT; 1433 break; 1434 } 1435 if (!follow_up(&nd->path)) 1436 break; 1437 } 1438 follow_mount(&nd->path); 1439 nd->inode = nd->path.dentry->d_inode; 1440 return 0; 1441 } 1442 1443 /* 1444 * This looks up the name in dcache, possibly revalidates the old dentry and 1445 * allocates a new one if not found or not valid. In the need_lookup argument 1446 * returns whether i_op->lookup is necessary. 1447 * 1448 * dir->d_inode->i_mutex must be held 1449 */ 1450 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir, 1451 unsigned int flags, bool *need_lookup) 1452 { 1453 struct dentry *dentry; 1454 int error; 1455 1456 *need_lookup = false; 1457 dentry = d_lookup(dir, name); 1458 if (dentry) { 1459 if (dentry->d_flags & DCACHE_OP_REVALIDATE) { 1460 error = d_revalidate(dentry, flags); 1461 if (unlikely(error <= 0)) { 1462 if (error < 0) { 1463 dput(dentry); 1464 return ERR_PTR(error); 1465 } else { 1466 d_invalidate(dentry); 1467 dput(dentry); 1468 dentry = NULL; 1469 } 1470 } 1471 } 1472 } 1473 1474 if (!dentry) { 1475 dentry = d_alloc(dir, name); 1476 if (unlikely(!dentry)) 1477 return ERR_PTR(-ENOMEM); 1478 1479 *need_lookup = true; 1480 } 1481 return dentry; 1482 } 1483 1484 /* 1485 * Call i_op->lookup on the dentry. The dentry must be negative and 1486 * unhashed. 1487 * 1488 * dir->d_inode->i_mutex must be held 1489 */ 1490 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry, 1491 unsigned int flags) 1492 { 1493 struct dentry *old; 1494 1495 /* Don't create child dentry for a dead directory. */ 1496 if (unlikely(IS_DEADDIR(dir))) { 1497 dput(dentry); 1498 return ERR_PTR(-ENOENT); 1499 } 1500 1501 old = dir->i_op->lookup(dir, dentry, flags); 1502 if (unlikely(old)) { 1503 dput(dentry); 1504 dentry = old; 1505 } 1506 return dentry; 1507 } 1508 1509 static struct dentry *__lookup_hash(struct qstr *name, 1510 struct dentry *base, unsigned int flags) 1511 { 1512 bool need_lookup; 1513 struct dentry *dentry; 1514 1515 dentry = lookup_dcache(name, base, flags, &need_lookup); 1516 if (!need_lookup) 1517 return dentry; 1518 1519 return lookup_real(base->d_inode, dentry, flags); 1520 } 1521 1522 /* 1523 * It's more convoluted than I'd like it to be, but... it's still fairly 1524 * small and for now I'd prefer to have fast path as straight as possible. 1525 * It _is_ time-critical. 1526 */ 1527 static int lookup_fast(struct nameidata *nd, 1528 struct path *path, struct inode **inode, 1529 unsigned *seqp) 1530 { 1531 struct vfsmount *mnt = nd->path.mnt; 1532 struct dentry *dentry, *parent = nd->path.dentry; 1533 int need_reval = 1; 1534 int status = 1; 1535 int err; 1536 1537 /* 1538 * Rename seqlock is not required here because in the off chance 1539 * of a false negative due to a concurrent rename, we're going to 1540 * do the non-racy lookup, below. 1541 */ 1542 if (nd->flags & LOOKUP_RCU) { 1543 unsigned seq; 1544 bool negative; 1545 dentry = __d_lookup_rcu(parent, &nd->last, &seq); 1546 if (!dentry) 1547 goto unlazy; 1548 1549 /* 1550 * This sequence count validates that the inode matches 1551 * the dentry name information from lookup. 1552 */ 1553 *inode = d_backing_inode(dentry); 1554 negative = d_is_negative(dentry); 1555 if (read_seqcount_retry(&dentry->d_seq, seq)) 1556 return -ECHILD; 1557 1558 /* 1559 * This sequence count validates that the parent had no 1560 * changes while we did the lookup of the dentry above. 1561 * 1562 * The memory barrier in read_seqcount_begin of child is 1563 * enough, we can use __read_seqcount_retry here. 1564 */ 1565 if (__read_seqcount_retry(&parent->d_seq, nd->seq)) 1566 return -ECHILD; 1567 1568 *seqp = seq; 1569 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) { 1570 status = d_revalidate(dentry, nd->flags); 1571 if (unlikely(status <= 0)) { 1572 if (status != -ECHILD) 1573 need_reval = 0; 1574 goto unlazy; 1575 } 1576 } 1577 /* 1578 * Note: do negative dentry check after revalidation in 1579 * case that drops it. 1580 */ 1581 if (negative) 1582 return -ENOENT; 1583 path->mnt = mnt; 1584 path->dentry = dentry; 1585 if (likely(__follow_mount_rcu(nd, path, inode, seqp))) 1586 return 0; 1587 unlazy: 1588 if (unlazy_walk(nd, dentry, seq)) 1589 return -ECHILD; 1590 } else { 1591 dentry = __d_lookup(parent, &nd->last); 1592 } 1593 1594 if (unlikely(!dentry)) 1595 goto need_lookup; 1596 1597 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval) 1598 status = d_revalidate(dentry, nd->flags); 1599 if (unlikely(status <= 0)) { 1600 if (status < 0) { 1601 dput(dentry); 1602 return status; 1603 } 1604 d_invalidate(dentry); 1605 dput(dentry); 1606 goto need_lookup; 1607 } 1608 1609 if (unlikely(d_is_negative(dentry))) { 1610 dput(dentry); 1611 return -ENOENT; 1612 } 1613 path->mnt = mnt; 1614 path->dentry = dentry; 1615 err = follow_managed(path, nd); 1616 if (likely(!err)) 1617 *inode = d_backing_inode(path->dentry); 1618 return err; 1619 1620 need_lookup: 1621 return 1; 1622 } 1623 1624 /* Fast lookup failed, do it the slow way */ 1625 static int lookup_slow(struct nameidata *nd, struct path *path) 1626 { 1627 struct dentry *dentry, *parent; 1628 1629 parent = nd->path.dentry; 1630 BUG_ON(nd->inode != parent->d_inode); 1631 1632 inode_lock(parent->d_inode); 1633 dentry = __lookup_hash(&nd->last, parent, nd->flags); 1634 inode_unlock(parent->d_inode); 1635 if (IS_ERR(dentry)) 1636 return PTR_ERR(dentry); 1637 path->mnt = nd->path.mnt; 1638 path->dentry = dentry; 1639 return follow_managed(path, nd); 1640 } 1641 1642 static inline int may_lookup(struct nameidata *nd) 1643 { 1644 if (nd->flags & LOOKUP_RCU) { 1645 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1646 if (err != -ECHILD) 1647 return err; 1648 if (unlazy_walk(nd, NULL, 0)) 1649 return -ECHILD; 1650 } 1651 return inode_permission(nd->inode, MAY_EXEC); 1652 } 1653 1654 static inline int handle_dots(struct nameidata *nd, int type) 1655 { 1656 if (type == LAST_DOTDOT) { 1657 if (!nd->root.mnt) 1658 set_root(nd); 1659 if (nd->flags & LOOKUP_RCU) { 1660 return follow_dotdot_rcu(nd); 1661 } else 1662 return follow_dotdot(nd); 1663 } 1664 return 0; 1665 } 1666 1667 static int pick_link(struct nameidata *nd, struct path *link, 1668 struct inode *inode, unsigned seq) 1669 { 1670 int error; 1671 struct saved *last; 1672 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) { 1673 path_to_nameidata(link, nd); 1674 return -ELOOP; 1675 } 1676 if (!(nd->flags & LOOKUP_RCU)) { 1677 if (link->mnt == nd->path.mnt) 1678 mntget(link->mnt); 1679 } 1680 error = nd_alloc_stack(nd); 1681 if (unlikely(error)) { 1682 if (error == -ECHILD) { 1683 if (unlikely(unlazy_link(nd, link, seq))) 1684 return -ECHILD; 1685 error = nd_alloc_stack(nd); 1686 } 1687 if (error) { 1688 path_put(link); 1689 return error; 1690 } 1691 } 1692 1693 last = nd->stack + nd->depth++; 1694 last->link = *link; 1695 clear_delayed_call(&last->done); 1696 nd->link_inode = inode; 1697 last->seq = seq; 1698 return 1; 1699 } 1700 1701 /* 1702 * Do we need to follow links? We _really_ want to be able 1703 * to do this check without having to look at inode->i_op, 1704 * so we keep a cache of "no, this doesn't need follow_link" 1705 * for the common case. 1706 */ 1707 static inline int should_follow_link(struct nameidata *nd, struct path *link, 1708 int follow, 1709 struct inode *inode, unsigned seq) 1710 { 1711 if (likely(!d_is_symlink(link->dentry))) 1712 return 0; 1713 if (!follow) 1714 return 0; 1715 return pick_link(nd, link, inode, seq); 1716 } 1717 1718 enum {WALK_GET = 1, WALK_PUT = 2}; 1719 1720 static int walk_component(struct nameidata *nd, int flags) 1721 { 1722 struct path path; 1723 struct inode *inode; 1724 unsigned seq; 1725 int err; 1726 /* 1727 * "." and ".." are special - ".." especially so because it has 1728 * to be able to know about the current root directory and 1729 * parent relationships. 1730 */ 1731 if (unlikely(nd->last_type != LAST_NORM)) { 1732 err = handle_dots(nd, nd->last_type); 1733 if (flags & WALK_PUT) 1734 put_link(nd); 1735 return err; 1736 } 1737 err = lookup_fast(nd, &path, &inode, &seq); 1738 if (unlikely(err)) { 1739 if (err < 0) 1740 return err; 1741 1742 err = lookup_slow(nd, &path); 1743 if (err < 0) 1744 return err; 1745 1746 inode = d_backing_inode(path.dentry); 1747 seq = 0; /* we are already out of RCU mode */ 1748 err = -ENOENT; 1749 if (d_is_negative(path.dentry)) 1750 goto out_path_put; 1751 } 1752 1753 if (flags & WALK_PUT) 1754 put_link(nd); 1755 err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq); 1756 if (unlikely(err)) 1757 return err; 1758 path_to_nameidata(&path, nd); 1759 nd->inode = inode; 1760 nd->seq = seq; 1761 return 0; 1762 1763 out_path_put: 1764 path_to_nameidata(&path, nd); 1765 return err; 1766 } 1767 1768 /* 1769 * We can do the critical dentry name comparison and hashing 1770 * operations one word at a time, but we are limited to: 1771 * 1772 * - Architectures with fast unaligned word accesses. We could 1773 * do a "get_unaligned()" if this helps and is sufficiently 1774 * fast. 1775 * 1776 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 1777 * do not trap on the (extremely unlikely) case of a page 1778 * crossing operation. 1779 * 1780 * - Furthermore, we need an efficient 64-bit compile for the 1781 * 64-bit case in order to generate the "number of bytes in 1782 * the final mask". Again, that could be replaced with a 1783 * efficient population count instruction or similar. 1784 */ 1785 #ifdef CONFIG_DCACHE_WORD_ACCESS 1786 1787 #include <asm/word-at-a-time.h> 1788 1789 #ifdef CONFIG_64BIT 1790 1791 static inline unsigned int fold_hash(unsigned long hash) 1792 { 1793 return hash_64(hash, 32); 1794 } 1795 1796 #else /* 32-bit case */ 1797 1798 #define fold_hash(x) (x) 1799 1800 #endif 1801 1802 unsigned int full_name_hash(const unsigned char *name, unsigned int len) 1803 { 1804 unsigned long a, mask; 1805 unsigned long hash = 0; 1806 1807 for (;;) { 1808 a = load_unaligned_zeropad(name); 1809 if (len < sizeof(unsigned long)) 1810 break; 1811 hash += a; 1812 hash *= 9; 1813 name += sizeof(unsigned long); 1814 len -= sizeof(unsigned long); 1815 if (!len) 1816 goto done; 1817 } 1818 mask = bytemask_from_count(len); 1819 hash += mask & a; 1820 done: 1821 return fold_hash(hash); 1822 } 1823 EXPORT_SYMBOL(full_name_hash); 1824 1825 /* 1826 * Calculate the length and hash of the path component, and 1827 * return the "hash_len" as the result. 1828 */ 1829 static inline u64 hash_name(const char *name) 1830 { 1831 unsigned long a, b, adata, bdata, mask, hash, len; 1832 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1833 1834 hash = a = 0; 1835 len = -sizeof(unsigned long); 1836 do { 1837 hash = (hash + a) * 9; 1838 len += sizeof(unsigned long); 1839 a = load_unaligned_zeropad(name+len); 1840 b = a ^ REPEAT_BYTE('/'); 1841 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 1842 1843 adata = prep_zero_mask(a, adata, &constants); 1844 bdata = prep_zero_mask(b, bdata, &constants); 1845 1846 mask = create_zero_mask(adata | bdata); 1847 1848 hash += a & zero_bytemask(mask); 1849 len += find_zero(mask); 1850 return hashlen_create(fold_hash(hash), len); 1851 } 1852 1853 #else 1854 1855 unsigned int full_name_hash(const unsigned char *name, unsigned int len) 1856 { 1857 unsigned long hash = init_name_hash(); 1858 while (len--) 1859 hash = partial_name_hash(*name++, hash); 1860 return end_name_hash(hash); 1861 } 1862 EXPORT_SYMBOL(full_name_hash); 1863 1864 /* 1865 * We know there's a real path component here of at least 1866 * one character. 1867 */ 1868 static inline u64 hash_name(const char *name) 1869 { 1870 unsigned long hash = init_name_hash(); 1871 unsigned long len = 0, c; 1872 1873 c = (unsigned char)*name; 1874 do { 1875 len++; 1876 hash = partial_name_hash(c, hash); 1877 c = (unsigned char)name[len]; 1878 } while (c && c != '/'); 1879 return hashlen_create(end_name_hash(hash), len); 1880 } 1881 1882 #endif 1883 1884 /* 1885 * Name resolution. 1886 * This is the basic name resolution function, turning a pathname into 1887 * the final dentry. We expect 'base' to be positive and a directory. 1888 * 1889 * Returns 0 and nd will have valid dentry and mnt on success. 1890 * Returns error and drops reference to input namei data on failure. 1891 */ 1892 static int link_path_walk(const char *name, struct nameidata *nd) 1893 { 1894 int err; 1895 1896 while (*name=='/') 1897 name++; 1898 if (!*name) 1899 return 0; 1900 1901 /* At this point we know we have a real path component. */ 1902 for(;;) { 1903 u64 hash_len; 1904 int type; 1905 1906 err = may_lookup(nd); 1907 if (err) 1908 return err; 1909 1910 hash_len = hash_name(name); 1911 1912 type = LAST_NORM; 1913 if (name[0] == '.') switch (hashlen_len(hash_len)) { 1914 case 2: 1915 if (name[1] == '.') { 1916 type = LAST_DOTDOT; 1917 nd->flags |= LOOKUP_JUMPED; 1918 } 1919 break; 1920 case 1: 1921 type = LAST_DOT; 1922 } 1923 if (likely(type == LAST_NORM)) { 1924 struct dentry *parent = nd->path.dentry; 1925 nd->flags &= ~LOOKUP_JUMPED; 1926 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 1927 struct qstr this = { { .hash_len = hash_len }, .name = name }; 1928 err = parent->d_op->d_hash(parent, &this); 1929 if (err < 0) 1930 return err; 1931 hash_len = this.hash_len; 1932 name = this.name; 1933 } 1934 } 1935 1936 nd->last.hash_len = hash_len; 1937 nd->last.name = name; 1938 nd->last_type = type; 1939 1940 name += hashlen_len(hash_len); 1941 if (!*name) 1942 goto OK; 1943 /* 1944 * If it wasn't NUL, we know it was '/'. Skip that 1945 * slash, and continue until no more slashes. 1946 */ 1947 do { 1948 name++; 1949 } while (unlikely(*name == '/')); 1950 if (unlikely(!*name)) { 1951 OK: 1952 /* pathname body, done */ 1953 if (!nd->depth) 1954 return 0; 1955 name = nd->stack[nd->depth - 1].name; 1956 /* trailing symlink, done */ 1957 if (!name) 1958 return 0; 1959 /* last component of nested symlink */ 1960 err = walk_component(nd, WALK_GET | WALK_PUT); 1961 } else { 1962 err = walk_component(nd, WALK_GET); 1963 } 1964 if (err < 0) 1965 return err; 1966 1967 if (err) { 1968 const char *s = get_link(nd); 1969 1970 if (IS_ERR(s)) 1971 return PTR_ERR(s); 1972 err = 0; 1973 if (unlikely(!s)) { 1974 /* jumped */ 1975 put_link(nd); 1976 } else { 1977 nd->stack[nd->depth - 1].name = name; 1978 name = s; 1979 continue; 1980 } 1981 } 1982 if (unlikely(!d_can_lookup(nd->path.dentry))) { 1983 if (nd->flags & LOOKUP_RCU) { 1984 if (unlazy_walk(nd, NULL, 0)) 1985 return -ECHILD; 1986 } 1987 return -ENOTDIR; 1988 } 1989 } 1990 } 1991 1992 static const char *path_init(struct nameidata *nd, unsigned flags) 1993 { 1994 int retval = 0; 1995 const char *s = nd->name->name; 1996 1997 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 1998 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT; 1999 nd->depth = 0; 2000 if (flags & LOOKUP_ROOT) { 2001 struct dentry *root = nd->root.dentry; 2002 struct inode *inode = root->d_inode; 2003 if (*s) { 2004 if (!d_can_lookup(root)) 2005 return ERR_PTR(-ENOTDIR); 2006 retval = inode_permission(inode, MAY_EXEC); 2007 if (retval) 2008 return ERR_PTR(retval); 2009 } 2010 nd->path = nd->root; 2011 nd->inode = inode; 2012 if (flags & LOOKUP_RCU) { 2013 rcu_read_lock(); 2014 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2015 nd->root_seq = nd->seq; 2016 nd->m_seq = read_seqbegin(&mount_lock); 2017 } else { 2018 path_get(&nd->path); 2019 } 2020 return s; 2021 } 2022 2023 nd->root.mnt = NULL; 2024 nd->path.mnt = NULL; 2025 nd->path.dentry = NULL; 2026 2027 nd->m_seq = read_seqbegin(&mount_lock); 2028 if (*s == '/') { 2029 if (flags & LOOKUP_RCU) 2030 rcu_read_lock(); 2031 set_root(nd); 2032 if (likely(!nd_jump_root(nd))) 2033 return s; 2034 nd->root.mnt = NULL; 2035 rcu_read_unlock(); 2036 return ERR_PTR(-ECHILD); 2037 } else if (nd->dfd == AT_FDCWD) { 2038 if (flags & LOOKUP_RCU) { 2039 struct fs_struct *fs = current->fs; 2040 unsigned seq; 2041 2042 rcu_read_lock(); 2043 2044 do { 2045 seq = read_seqcount_begin(&fs->seq); 2046 nd->path = fs->pwd; 2047 nd->inode = nd->path.dentry->d_inode; 2048 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2049 } while (read_seqcount_retry(&fs->seq, seq)); 2050 } else { 2051 get_fs_pwd(current->fs, &nd->path); 2052 nd->inode = nd->path.dentry->d_inode; 2053 } 2054 return s; 2055 } else { 2056 /* Caller must check execute permissions on the starting path component */ 2057 struct fd f = fdget_raw(nd->dfd); 2058 struct dentry *dentry; 2059 2060 if (!f.file) 2061 return ERR_PTR(-EBADF); 2062 2063 dentry = f.file->f_path.dentry; 2064 2065 if (*s) { 2066 if (!d_can_lookup(dentry)) { 2067 fdput(f); 2068 return ERR_PTR(-ENOTDIR); 2069 } 2070 } 2071 2072 nd->path = f.file->f_path; 2073 if (flags & LOOKUP_RCU) { 2074 rcu_read_lock(); 2075 nd->inode = nd->path.dentry->d_inode; 2076 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2077 } else { 2078 path_get(&nd->path); 2079 nd->inode = nd->path.dentry->d_inode; 2080 } 2081 fdput(f); 2082 return s; 2083 } 2084 } 2085 2086 static const char *trailing_symlink(struct nameidata *nd) 2087 { 2088 const char *s; 2089 int error = may_follow_link(nd); 2090 if (unlikely(error)) 2091 return ERR_PTR(error); 2092 nd->flags |= LOOKUP_PARENT; 2093 nd->stack[0].name = NULL; 2094 s = get_link(nd); 2095 return s ? s : ""; 2096 } 2097 2098 static inline int lookup_last(struct nameidata *nd) 2099 { 2100 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 2101 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2102 2103 nd->flags &= ~LOOKUP_PARENT; 2104 return walk_component(nd, 2105 nd->flags & LOOKUP_FOLLOW 2106 ? nd->depth 2107 ? WALK_PUT | WALK_GET 2108 : WALK_GET 2109 : 0); 2110 } 2111 2112 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2113 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path) 2114 { 2115 const char *s = path_init(nd, flags); 2116 int err; 2117 2118 if (IS_ERR(s)) 2119 return PTR_ERR(s); 2120 while (!(err = link_path_walk(s, nd)) 2121 && ((err = lookup_last(nd)) > 0)) { 2122 s = trailing_symlink(nd); 2123 if (IS_ERR(s)) { 2124 err = PTR_ERR(s); 2125 break; 2126 } 2127 } 2128 if (!err) 2129 err = complete_walk(nd); 2130 2131 if (!err && nd->flags & LOOKUP_DIRECTORY) 2132 if (!d_can_lookup(nd->path.dentry)) 2133 err = -ENOTDIR; 2134 if (!err) { 2135 *path = nd->path; 2136 nd->path.mnt = NULL; 2137 nd->path.dentry = NULL; 2138 } 2139 terminate_walk(nd); 2140 return err; 2141 } 2142 2143 static int filename_lookup(int dfd, struct filename *name, unsigned flags, 2144 struct path *path, struct path *root) 2145 { 2146 int retval; 2147 struct nameidata nd; 2148 if (IS_ERR(name)) 2149 return PTR_ERR(name); 2150 if (unlikely(root)) { 2151 nd.root = *root; 2152 flags |= LOOKUP_ROOT; 2153 } 2154 set_nameidata(&nd, dfd, name); 2155 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path); 2156 if (unlikely(retval == -ECHILD)) 2157 retval = path_lookupat(&nd, flags, path); 2158 if (unlikely(retval == -ESTALE)) 2159 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path); 2160 2161 if (likely(!retval)) 2162 audit_inode(name, path->dentry, flags & LOOKUP_PARENT); 2163 restore_nameidata(); 2164 putname(name); 2165 return retval; 2166 } 2167 2168 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2169 static int path_parentat(struct nameidata *nd, unsigned flags, 2170 struct path *parent) 2171 { 2172 const char *s = path_init(nd, flags); 2173 int err; 2174 if (IS_ERR(s)) 2175 return PTR_ERR(s); 2176 err = link_path_walk(s, nd); 2177 if (!err) 2178 err = complete_walk(nd); 2179 if (!err) { 2180 *parent = nd->path; 2181 nd->path.mnt = NULL; 2182 nd->path.dentry = NULL; 2183 } 2184 terminate_walk(nd); 2185 return err; 2186 } 2187 2188 static struct filename *filename_parentat(int dfd, struct filename *name, 2189 unsigned int flags, struct path *parent, 2190 struct qstr *last, int *type) 2191 { 2192 int retval; 2193 struct nameidata nd; 2194 2195 if (IS_ERR(name)) 2196 return name; 2197 set_nameidata(&nd, dfd, name); 2198 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent); 2199 if (unlikely(retval == -ECHILD)) 2200 retval = path_parentat(&nd, flags, parent); 2201 if (unlikely(retval == -ESTALE)) 2202 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent); 2203 if (likely(!retval)) { 2204 *last = nd.last; 2205 *type = nd.last_type; 2206 audit_inode(name, parent->dentry, LOOKUP_PARENT); 2207 } else { 2208 putname(name); 2209 name = ERR_PTR(retval); 2210 } 2211 restore_nameidata(); 2212 return name; 2213 } 2214 2215 /* does lookup, returns the object with parent locked */ 2216 struct dentry *kern_path_locked(const char *name, struct path *path) 2217 { 2218 struct filename *filename; 2219 struct dentry *d; 2220 struct qstr last; 2221 int type; 2222 2223 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path, 2224 &last, &type); 2225 if (IS_ERR(filename)) 2226 return ERR_CAST(filename); 2227 if (unlikely(type != LAST_NORM)) { 2228 path_put(path); 2229 putname(filename); 2230 return ERR_PTR(-EINVAL); 2231 } 2232 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 2233 d = __lookup_hash(&last, path->dentry, 0); 2234 if (IS_ERR(d)) { 2235 inode_unlock(path->dentry->d_inode); 2236 path_put(path); 2237 } 2238 putname(filename); 2239 return d; 2240 } 2241 2242 int kern_path(const char *name, unsigned int flags, struct path *path) 2243 { 2244 return filename_lookup(AT_FDCWD, getname_kernel(name), 2245 flags, path, NULL); 2246 } 2247 EXPORT_SYMBOL(kern_path); 2248 2249 /** 2250 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2251 * @dentry: pointer to dentry of the base directory 2252 * @mnt: pointer to vfs mount of the base directory 2253 * @name: pointer to file name 2254 * @flags: lookup flags 2255 * @path: pointer to struct path to fill 2256 */ 2257 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2258 const char *name, unsigned int flags, 2259 struct path *path) 2260 { 2261 struct path root = {.mnt = mnt, .dentry = dentry}; 2262 /* the first argument of filename_lookup() is ignored with root */ 2263 return filename_lookup(AT_FDCWD, getname_kernel(name), 2264 flags , path, &root); 2265 } 2266 EXPORT_SYMBOL(vfs_path_lookup); 2267 2268 /** 2269 * lookup_one_len - filesystem helper to lookup single pathname component 2270 * @name: pathname component to lookup 2271 * @base: base directory to lookup from 2272 * @len: maximum length @len should be interpreted to 2273 * 2274 * Note that this routine is purely a helper for filesystem usage and should 2275 * not be called by generic code. 2276 * 2277 * The caller must hold base->i_mutex. 2278 */ 2279 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2280 { 2281 struct qstr this; 2282 unsigned int c; 2283 int err; 2284 2285 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2286 2287 this.name = name; 2288 this.len = len; 2289 this.hash = full_name_hash(name, len); 2290 if (!len) 2291 return ERR_PTR(-EACCES); 2292 2293 if (unlikely(name[0] == '.')) { 2294 if (len < 2 || (len == 2 && name[1] == '.')) 2295 return ERR_PTR(-EACCES); 2296 } 2297 2298 while (len--) { 2299 c = *(const unsigned char *)name++; 2300 if (c == '/' || c == '\0') 2301 return ERR_PTR(-EACCES); 2302 } 2303 /* 2304 * See if the low-level filesystem might want 2305 * to use its own hash.. 2306 */ 2307 if (base->d_flags & DCACHE_OP_HASH) { 2308 int err = base->d_op->d_hash(base, &this); 2309 if (err < 0) 2310 return ERR_PTR(err); 2311 } 2312 2313 err = inode_permission(base->d_inode, MAY_EXEC); 2314 if (err) 2315 return ERR_PTR(err); 2316 2317 return __lookup_hash(&this, base, 0); 2318 } 2319 EXPORT_SYMBOL(lookup_one_len); 2320 2321 /** 2322 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component 2323 * @name: pathname component to lookup 2324 * @base: base directory to lookup from 2325 * @len: maximum length @len should be interpreted to 2326 * 2327 * Note that this routine is purely a helper for filesystem usage and should 2328 * not be called by generic code. 2329 * 2330 * Unlike lookup_one_len, it should be called without the parent 2331 * i_mutex held, and will take the i_mutex itself if necessary. 2332 */ 2333 struct dentry *lookup_one_len_unlocked(const char *name, 2334 struct dentry *base, int len) 2335 { 2336 struct qstr this; 2337 unsigned int c; 2338 int err; 2339 struct dentry *ret; 2340 2341 this.name = name; 2342 this.len = len; 2343 this.hash = full_name_hash(name, len); 2344 if (!len) 2345 return ERR_PTR(-EACCES); 2346 2347 if (unlikely(name[0] == '.')) { 2348 if (len < 2 || (len == 2 && name[1] == '.')) 2349 return ERR_PTR(-EACCES); 2350 } 2351 2352 while (len--) { 2353 c = *(const unsigned char *)name++; 2354 if (c == '/' || c == '\0') 2355 return ERR_PTR(-EACCES); 2356 } 2357 /* 2358 * See if the low-level filesystem might want 2359 * to use its own hash.. 2360 */ 2361 if (base->d_flags & DCACHE_OP_HASH) { 2362 int err = base->d_op->d_hash(base, &this); 2363 if (err < 0) 2364 return ERR_PTR(err); 2365 } 2366 2367 err = inode_permission(base->d_inode, MAY_EXEC); 2368 if (err) 2369 return ERR_PTR(err); 2370 2371 /* 2372 * __d_lookup() is used to try to get a quick answer and avoid the 2373 * mutex. A false-negative does no harm. 2374 */ 2375 ret = __d_lookup(base, &this); 2376 if (ret && unlikely(ret->d_flags & DCACHE_OP_REVALIDATE)) { 2377 dput(ret); 2378 ret = NULL; 2379 } 2380 if (ret) 2381 return ret; 2382 2383 inode_lock(base->d_inode); 2384 ret = __lookup_hash(&this, base, 0); 2385 inode_unlock(base->d_inode); 2386 return ret; 2387 } 2388 EXPORT_SYMBOL(lookup_one_len_unlocked); 2389 2390 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2391 struct path *path, int *empty) 2392 { 2393 return filename_lookup(dfd, getname_flags(name, flags, empty), 2394 flags, path, NULL); 2395 } 2396 EXPORT_SYMBOL(user_path_at_empty); 2397 2398 /* 2399 * NB: most callers don't do anything directly with the reference to the 2400 * to struct filename, but the nd->last pointer points into the name string 2401 * allocated by getname. So we must hold the reference to it until all 2402 * path-walking is complete. 2403 */ 2404 static inline struct filename * 2405 user_path_parent(int dfd, const char __user *path, 2406 struct path *parent, 2407 struct qstr *last, 2408 int *type, 2409 unsigned int flags) 2410 { 2411 /* only LOOKUP_REVAL is allowed in extra flags */ 2412 return filename_parentat(dfd, getname(path), flags & LOOKUP_REVAL, 2413 parent, last, type); 2414 } 2415 2416 /** 2417 * mountpoint_last - look up last component for umount 2418 * @nd: pathwalk nameidata - currently pointing at parent directory of "last" 2419 * @path: pointer to container for result 2420 * 2421 * This is a special lookup_last function just for umount. In this case, we 2422 * need to resolve the path without doing any revalidation. 2423 * 2424 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since 2425 * mountpoints are always pinned in the dcache, their ancestors are too. Thus, 2426 * in almost all cases, this lookup will be served out of the dcache. The only 2427 * cases where it won't are if nd->last refers to a symlink or the path is 2428 * bogus and it doesn't exist. 2429 * 2430 * Returns: 2431 * -error: if there was an error during lookup. This includes -ENOENT if the 2432 * lookup found a negative dentry. The nd->path reference will also be 2433 * put in this case. 2434 * 2435 * 0: if we successfully resolved nd->path and found it to not to be a 2436 * symlink that needs to be followed. "path" will also be populated. 2437 * The nd->path reference will also be put. 2438 * 2439 * 1: if we successfully resolved nd->last and found it to be a symlink 2440 * that needs to be followed. "path" will be populated with the path 2441 * to the link, and nd->path will *not* be put. 2442 */ 2443 static int 2444 mountpoint_last(struct nameidata *nd, struct path *path) 2445 { 2446 int error = 0; 2447 struct dentry *dentry; 2448 struct dentry *dir = nd->path.dentry; 2449 2450 /* If we're in rcuwalk, drop out of it to handle last component */ 2451 if (nd->flags & LOOKUP_RCU) { 2452 if (unlazy_walk(nd, NULL, 0)) 2453 return -ECHILD; 2454 } 2455 2456 nd->flags &= ~LOOKUP_PARENT; 2457 2458 if (unlikely(nd->last_type != LAST_NORM)) { 2459 error = handle_dots(nd, nd->last_type); 2460 if (error) 2461 return error; 2462 dentry = dget(nd->path.dentry); 2463 goto done; 2464 } 2465 2466 inode_lock(dir->d_inode); 2467 dentry = d_lookup(dir, &nd->last); 2468 if (!dentry) { 2469 /* 2470 * No cached dentry. Mounted dentries are pinned in the cache, 2471 * so that means that this dentry is probably a symlink or the 2472 * path doesn't actually point to a mounted dentry. 2473 */ 2474 dentry = d_alloc(dir, &nd->last); 2475 if (!dentry) { 2476 inode_unlock(dir->d_inode); 2477 return -ENOMEM; 2478 } 2479 dentry = lookup_real(dir->d_inode, dentry, nd->flags); 2480 if (IS_ERR(dentry)) { 2481 inode_unlock(dir->d_inode); 2482 return PTR_ERR(dentry); 2483 } 2484 } 2485 inode_unlock(dir->d_inode); 2486 2487 done: 2488 if (d_is_negative(dentry)) { 2489 dput(dentry); 2490 return -ENOENT; 2491 } 2492 if (nd->depth) 2493 put_link(nd); 2494 path->dentry = dentry; 2495 path->mnt = nd->path.mnt; 2496 error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW, 2497 d_backing_inode(dentry), 0); 2498 if (unlikely(error)) 2499 return error; 2500 mntget(path->mnt); 2501 follow_mount(path); 2502 return 0; 2503 } 2504 2505 /** 2506 * path_mountpoint - look up a path to be umounted 2507 * @nd: lookup context 2508 * @flags: lookup flags 2509 * @path: pointer to container for result 2510 * 2511 * Look up the given name, but don't attempt to revalidate the last component. 2512 * Returns 0 and "path" will be valid on success; Returns error otherwise. 2513 */ 2514 static int 2515 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path) 2516 { 2517 const char *s = path_init(nd, flags); 2518 int err; 2519 if (IS_ERR(s)) 2520 return PTR_ERR(s); 2521 while (!(err = link_path_walk(s, nd)) && 2522 (err = mountpoint_last(nd, path)) > 0) { 2523 s = trailing_symlink(nd); 2524 if (IS_ERR(s)) { 2525 err = PTR_ERR(s); 2526 break; 2527 } 2528 } 2529 terminate_walk(nd); 2530 return err; 2531 } 2532 2533 static int 2534 filename_mountpoint(int dfd, struct filename *name, struct path *path, 2535 unsigned int flags) 2536 { 2537 struct nameidata nd; 2538 int error; 2539 if (IS_ERR(name)) 2540 return PTR_ERR(name); 2541 set_nameidata(&nd, dfd, name); 2542 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path); 2543 if (unlikely(error == -ECHILD)) 2544 error = path_mountpoint(&nd, flags, path); 2545 if (unlikely(error == -ESTALE)) 2546 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path); 2547 if (likely(!error)) 2548 audit_inode(name, path->dentry, 0); 2549 restore_nameidata(); 2550 putname(name); 2551 return error; 2552 } 2553 2554 /** 2555 * user_path_mountpoint_at - lookup a path from userland in order to umount it 2556 * @dfd: directory file descriptor 2557 * @name: pathname from userland 2558 * @flags: lookup flags 2559 * @path: pointer to container to hold result 2560 * 2561 * A umount is a special case for path walking. We're not actually interested 2562 * in the inode in this situation, and ESTALE errors can be a problem. We 2563 * simply want track down the dentry and vfsmount attached at the mountpoint 2564 * and avoid revalidating the last component. 2565 * 2566 * Returns 0 and populates "path" on success. 2567 */ 2568 int 2569 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags, 2570 struct path *path) 2571 { 2572 return filename_mountpoint(dfd, getname(name), path, flags); 2573 } 2574 2575 int 2576 kern_path_mountpoint(int dfd, const char *name, struct path *path, 2577 unsigned int flags) 2578 { 2579 return filename_mountpoint(dfd, getname_kernel(name), path, flags); 2580 } 2581 EXPORT_SYMBOL(kern_path_mountpoint); 2582 2583 int __check_sticky(struct inode *dir, struct inode *inode) 2584 { 2585 kuid_t fsuid = current_fsuid(); 2586 2587 if (uid_eq(inode->i_uid, fsuid)) 2588 return 0; 2589 if (uid_eq(dir->i_uid, fsuid)) 2590 return 0; 2591 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER); 2592 } 2593 EXPORT_SYMBOL(__check_sticky); 2594 2595 /* 2596 * Check whether we can remove a link victim from directory dir, check 2597 * whether the type of victim is right. 2598 * 1. We can't do it if dir is read-only (done in permission()) 2599 * 2. We should have write and exec permissions on dir 2600 * 3. We can't remove anything from append-only dir 2601 * 4. We can't do anything with immutable dir (done in permission()) 2602 * 5. If the sticky bit on dir is set we should either 2603 * a. be owner of dir, or 2604 * b. be owner of victim, or 2605 * c. have CAP_FOWNER capability 2606 * 6. If the victim is append-only or immutable we can't do antyhing with 2607 * links pointing to it. 2608 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2609 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2610 * 9. We can't remove a root or mountpoint. 2611 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 2612 * nfs_async_unlink(). 2613 */ 2614 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir) 2615 { 2616 struct inode *inode = d_backing_inode(victim); 2617 int error; 2618 2619 if (d_is_negative(victim)) 2620 return -ENOENT; 2621 BUG_ON(!inode); 2622 2623 BUG_ON(victim->d_parent->d_inode != dir); 2624 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2625 2626 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 2627 if (error) 2628 return error; 2629 if (IS_APPEND(dir)) 2630 return -EPERM; 2631 2632 if (check_sticky(dir, inode) || IS_APPEND(inode) || 2633 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode)) 2634 return -EPERM; 2635 if (isdir) { 2636 if (!d_is_dir(victim)) 2637 return -ENOTDIR; 2638 if (IS_ROOT(victim)) 2639 return -EBUSY; 2640 } else if (d_is_dir(victim)) 2641 return -EISDIR; 2642 if (IS_DEADDIR(dir)) 2643 return -ENOENT; 2644 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2645 return -EBUSY; 2646 return 0; 2647 } 2648 2649 /* Check whether we can create an object with dentry child in directory 2650 * dir. 2651 * 1. We can't do it if child already exists (open has special treatment for 2652 * this case, but since we are inlined it's OK) 2653 * 2. We can't do it if dir is read-only (done in permission()) 2654 * 3. We should have write and exec permissions on dir 2655 * 4. We can't do it if dir is immutable (done in permission()) 2656 */ 2657 static inline int may_create(struct inode *dir, struct dentry *child) 2658 { 2659 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 2660 if (child->d_inode) 2661 return -EEXIST; 2662 if (IS_DEADDIR(dir)) 2663 return -ENOENT; 2664 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 2665 } 2666 2667 /* 2668 * p1 and p2 should be directories on the same fs. 2669 */ 2670 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2671 { 2672 struct dentry *p; 2673 2674 if (p1 == p2) { 2675 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2676 return NULL; 2677 } 2678 2679 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2680 2681 p = d_ancestor(p2, p1); 2682 if (p) { 2683 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 2684 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD); 2685 return p; 2686 } 2687 2688 p = d_ancestor(p1, p2); 2689 if (p) { 2690 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2691 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD); 2692 return p; 2693 } 2694 2695 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2696 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 2697 return NULL; 2698 } 2699 EXPORT_SYMBOL(lock_rename); 2700 2701 void unlock_rename(struct dentry *p1, struct dentry *p2) 2702 { 2703 inode_unlock(p1->d_inode); 2704 if (p1 != p2) { 2705 inode_unlock(p2->d_inode); 2706 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2707 } 2708 } 2709 EXPORT_SYMBOL(unlock_rename); 2710 2711 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2712 bool want_excl) 2713 { 2714 int error = may_create(dir, dentry); 2715 if (error) 2716 return error; 2717 2718 if (!dir->i_op->create) 2719 return -EACCES; /* shouldn't it be ENOSYS? */ 2720 mode &= S_IALLUGO; 2721 mode |= S_IFREG; 2722 error = security_inode_create(dir, dentry, mode); 2723 if (error) 2724 return error; 2725 error = dir->i_op->create(dir, dentry, mode, want_excl); 2726 if (!error) 2727 fsnotify_create(dir, dentry); 2728 return error; 2729 } 2730 EXPORT_SYMBOL(vfs_create); 2731 2732 static int may_open(struct path *path, int acc_mode, int flag) 2733 { 2734 struct dentry *dentry = path->dentry; 2735 struct inode *inode = dentry->d_inode; 2736 int error; 2737 2738 if (!inode) 2739 return -ENOENT; 2740 2741 switch (inode->i_mode & S_IFMT) { 2742 case S_IFLNK: 2743 return -ELOOP; 2744 case S_IFDIR: 2745 if (acc_mode & MAY_WRITE) 2746 return -EISDIR; 2747 break; 2748 case S_IFBLK: 2749 case S_IFCHR: 2750 if (path->mnt->mnt_flags & MNT_NODEV) 2751 return -EACCES; 2752 /*FALLTHRU*/ 2753 case S_IFIFO: 2754 case S_IFSOCK: 2755 flag &= ~O_TRUNC; 2756 break; 2757 } 2758 2759 error = inode_permission(inode, MAY_OPEN | acc_mode); 2760 if (error) 2761 return error; 2762 2763 /* 2764 * An append-only file must be opened in append mode for writing. 2765 */ 2766 if (IS_APPEND(inode)) { 2767 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2768 return -EPERM; 2769 if (flag & O_TRUNC) 2770 return -EPERM; 2771 } 2772 2773 /* O_NOATIME can only be set by the owner or superuser */ 2774 if (flag & O_NOATIME && !inode_owner_or_capable(inode)) 2775 return -EPERM; 2776 2777 return 0; 2778 } 2779 2780 static int handle_truncate(struct file *filp) 2781 { 2782 struct path *path = &filp->f_path; 2783 struct inode *inode = path->dentry->d_inode; 2784 int error = get_write_access(inode); 2785 if (error) 2786 return error; 2787 /* 2788 * Refuse to truncate files with mandatory locks held on them. 2789 */ 2790 error = locks_verify_locked(filp); 2791 if (!error) 2792 error = security_path_truncate(path); 2793 if (!error) { 2794 error = do_truncate(path->dentry, 0, 2795 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 2796 filp); 2797 } 2798 put_write_access(inode); 2799 return error; 2800 } 2801 2802 static inline int open_to_namei_flags(int flag) 2803 { 2804 if ((flag & O_ACCMODE) == 3) 2805 flag--; 2806 return flag; 2807 } 2808 2809 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode) 2810 { 2811 int error = security_path_mknod(dir, dentry, mode, 0); 2812 if (error) 2813 return error; 2814 2815 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC); 2816 if (error) 2817 return error; 2818 2819 return security_inode_create(dir->dentry->d_inode, dentry, mode); 2820 } 2821 2822 /* 2823 * Attempt to atomically look up, create and open a file from a negative 2824 * dentry. 2825 * 2826 * Returns 0 if successful. The file will have been created and attached to 2827 * @file by the filesystem calling finish_open(). 2828 * 2829 * Returns 1 if the file was looked up only or didn't need creating. The 2830 * caller will need to perform the open themselves. @path will have been 2831 * updated to point to the new dentry. This may be negative. 2832 * 2833 * Returns an error code otherwise. 2834 */ 2835 static int atomic_open(struct nameidata *nd, struct dentry *dentry, 2836 struct path *path, struct file *file, 2837 const struct open_flags *op, 2838 bool got_write, bool need_lookup, 2839 int *opened) 2840 { 2841 struct inode *dir = nd->path.dentry->d_inode; 2842 unsigned open_flag = open_to_namei_flags(op->open_flag); 2843 umode_t mode; 2844 int error; 2845 int acc_mode; 2846 int create_error = 0; 2847 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 2848 bool excl; 2849 2850 BUG_ON(dentry->d_inode); 2851 2852 /* Don't create child dentry for a dead directory. */ 2853 if (unlikely(IS_DEADDIR(dir))) { 2854 error = -ENOENT; 2855 goto out; 2856 } 2857 2858 mode = op->mode; 2859 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir)) 2860 mode &= ~current_umask(); 2861 2862 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT); 2863 if (excl) 2864 open_flag &= ~O_TRUNC; 2865 2866 /* 2867 * Checking write permission is tricky, bacuse we don't know if we are 2868 * going to actually need it: O_CREAT opens should work as long as the 2869 * file exists. But checking existence breaks atomicity. The trick is 2870 * to check access and if not granted clear O_CREAT from the flags. 2871 * 2872 * Another problem is returing the "right" error value (e.g. for an 2873 * O_EXCL open we want to return EEXIST not EROFS). 2874 */ 2875 if (((open_flag & (O_CREAT | O_TRUNC)) || 2876 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) { 2877 if (!(open_flag & O_CREAT)) { 2878 /* 2879 * No O_CREATE -> atomicity not a requirement -> fall 2880 * back to lookup + open 2881 */ 2882 goto no_open; 2883 } else if (open_flag & (O_EXCL | O_TRUNC)) { 2884 /* Fall back and fail with the right error */ 2885 create_error = -EROFS; 2886 goto no_open; 2887 } else { 2888 /* No side effects, safe to clear O_CREAT */ 2889 create_error = -EROFS; 2890 open_flag &= ~O_CREAT; 2891 } 2892 } 2893 2894 if (open_flag & O_CREAT) { 2895 error = may_o_create(&nd->path, dentry, mode); 2896 if (error) { 2897 create_error = error; 2898 if (open_flag & O_EXCL) 2899 goto no_open; 2900 open_flag &= ~O_CREAT; 2901 } 2902 } 2903 2904 if (nd->flags & LOOKUP_DIRECTORY) 2905 open_flag |= O_DIRECTORY; 2906 2907 file->f_path.dentry = DENTRY_NOT_SET; 2908 file->f_path.mnt = nd->path.mnt; 2909 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode, 2910 opened); 2911 if (error < 0) { 2912 if (create_error && error == -ENOENT) 2913 error = create_error; 2914 goto out; 2915 } 2916 2917 if (error) { /* returned 1, that is */ 2918 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 2919 error = -EIO; 2920 goto out; 2921 } 2922 if (file->f_path.dentry) { 2923 dput(dentry); 2924 dentry = file->f_path.dentry; 2925 } 2926 if (*opened & FILE_CREATED) 2927 fsnotify_create(dir, dentry); 2928 if (!dentry->d_inode) { 2929 WARN_ON(*opened & FILE_CREATED); 2930 if (create_error) { 2931 error = create_error; 2932 goto out; 2933 } 2934 } else { 2935 if (excl && !(*opened & FILE_CREATED)) { 2936 error = -EEXIST; 2937 goto out; 2938 } 2939 } 2940 goto looked_up; 2941 } 2942 2943 /* 2944 * We didn't have the inode before the open, so check open permission 2945 * here. 2946 */ 2947 acc_mode = op->acc_mode; 2948 if (*opened & FILE_CREATED) { 2949 WARN_ON(!(open_flag & O_CREAT)); 2950 fsnotify_create(dir, dentry); 2951 acc_mode = 0; 2952 } 2953 error = may_open(&file->f_path, acc_mode, open_flag); 2954 if (error) 2955 fput(file); 2956 2957 out: 2958 dput(dentry); 2959 return error; 2960 2961 no_open: 2962 if (need_lookup) { 2963 dentry = lookup_real(dir, dentry, nd->flags); 2964 if (IS_ERR(dentry)) 2965 return PTR_ERR(dentry); 2966 2967 if (create_error) { 2968 int open_flag = op->open_flag; 2969 2970 error = create_error; 2971 if ((open_flag & O_EXCL)) { 2972 if (!dentry->d_inode) 2973 goto out; 2974 } else if (!dentry->d_inode) { 2975 goto out; 2976 } else if ((open_flag & O_TRUNC) && 2977 d_is_reg(dentry)) { 2978 goto out; 2979 } 2980 /* will fail later, go on to get the right error */ 2981 } 2982 } 2983 looked_up: 2984 path->dentry = dentry; 2985 path->mnt = nd->path.mnt; 2986 return 1; 2987 } 2988 2989 /* 2990 * Look up and maybe create and open the last component. 2991 * 2992 * Must be called with i_mutex held on parent. 2993 * 2994 * Returns 0 if the file was successfully atomically created (if necessary) and 2995 * opened. In this case the file will be returned attached to @file. 2996 * 2997 * Returns 1 if the file was not completely opened at this time, though lookups 2998 * and creations will have been performed and the dentry returned in @path will 2999 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't 3000 * specified then a negative dentry may be returned. 3001 * 3002 * An error code is returned otherwise. 3003 * 3004 * FILE_CREATE will be set in @*opened if the dentry was created and will be 3005 * cleared otherwise prior to returning. 3006 */ 3007 static int lookup_open(struct nameidata *nd, struct path *path, 3008 struct file *file, 3009 const struct open_flags *op, 3010 bool got_write, int *opened) 3011 { 3012 struct dentry *dir = nd->path.dentry; 3013 struct inode *dir_inode = dir->d_inode; 3014 struct dentry *dentry; 3015 int error; 3016 bool need_lookup; 3017 3018 *opened &= ~FILE_CREATED; 3019 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup); 3020 if (IS_ERR(dentry)) 3021 return PTR_ERR(dentry); 3022 3023 /* Cached positive dentry: will open in f_op->open */ 3024 if (!need_lookup && dentry->d_inode) 3025 goto out_no_open; 3026 3027 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) { 3028 return atomic_open(nd, dentry, path, file, op, got_write, 3029 need_lookup, opened); 3030 } 3031 3032 if (need_lookup) { 3033 BUG_ON(dentry->d_inode); 3034 3035 dentry = lookup_real(dir_inode, dentry, nd->flags); 3036 if (IS_ERR(dentry)) 3037 return PTR_ERR(dentry); 3038 } 3039 3040 /* Negative dentry, just create the file */ 3041 if (!dentry->d_inode && (op->open_flag & O_CREAT)) { 3042 umode_t mode = op->mode; 3043 if (!IS_POSIXACL(dir->d_inode)) 3044 mode &= ~current_umask(); 3045 /* 3046 * This write is needed to ensure that a 3047 * rw->ro transition does not occur between 3048 * the time when the file is created and when 3049 * a permanent write count is taken through 3050 * the 'struct file' in finish_open(). 3051 */ 3052 if (!got_write) { 3053 error = -EROFS; 3054 goto out_dput; 3055 } 3056 *opened |= FILE_CREATED; 3057 error = security_path_mknod(&nd->path, dentry, mode, 0); 3058 if (error) 3059 goto out_dput; 3060 error = vfs_create(dir->d_inode, dentry, mode, 3061 nd->flags & LOOKUP_EXCL); 3062 if (error) 3063 goto out_dput; 3064 } 3065 out_no_open: 3066 path->dentry = dentry; 3067 path->mnt = nd->path.mnt; 3068 return 1; 3069 3070 out_dput: 3071 dput(dentry); 3072 return error; 3073 } 3074 3075 /* 3076 * Handle the last step of open() 3077 */ 3078 static int do_last(struct nameidata *nd, 3079 struct file *file, const struct open_flags *op, 3080 int *opened) 3081 { 3082 struct dentry *dir = nd->path.dentry; 3083 int open_flag = op->open_flag; 3084 bool will_truncate = (open_flag & O_TRUNC) != 0; 3085 bool got_write = false; 3086 int acc_mode = op->acc_mode; 3087 unsigned seq; 3088 struct inode *inode; 3089 struct path save_parent = { .dentry = NULL, .mnt = NULL }; 3090 struct path path; 3091 bool retried = false; 3092 int error; 3093 3094 nd->flags &= ~LOOKUP_PARENT; 3095 nd->flags |= op->intent; 3096 3097 if (nd->last_type != LAST_NORM) { 3098 error = handle_dots(nd, nd->last_type); 3099 if (unlikely(error)) 3100 return error; 3101 goto finish_open; 3102 } 3103 3104 if (!(open_flag & O_CREAT)) { 3105 if (nd->last.name[nd->last.len]) 3106 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 3107 /* we _can_ be in RCU mode here */ 3108 error = lookup_fast(nd, &path, &inode, &seq); 3109 if (likely(!error)) 3110 goto finish_lookup; 3111 3112 if (error < 0) 3113 return error; 3114 3115 BUG_ON(nd->inode != dir->d_inode); 3116 } else { 3117 /* create side of things */ 3118 /* 3119 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED 3120 * has been cleared when we got to the last component we are 3121 * about to look up 3122 */ 3123 error = complete_walk(nd); 3124 if (error) 3125 return error; 3126 3127 audit_inode(nd->name, dir, LOOKUP_PARENT); 3128 /* trailing slashes? */ 3129 if (unlikely(nd->last.name[nd->last.len])) 3130 return -EISDIR; 3131 } 3132 3133 retry_lookup: 3134 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 3135 error = mnt_want_write(nd->path.mnt); 3136 if (!error) 3137 got_write = true; 3138 /* 3139 * do _not_ fail yet - we might not need that or fail with 3140 * a different error; let lookup_open() decide; we'll be 3141 * dropping this one anyway. 3142 */ 3143 } 3144 inode_lock(dir->d_inode); 3145 error = lookup_open(nd, &path, file, op, got_write, opened); 3146 inode_unlock(dir->d_inode); 3147 3148 if (error <= 0) { 3149 if (error) 3150 goto out; 3151 3152 if ((*opened & FILE_CREATED) || 3153 !S_ISREG(file_inode(file)->i_mode)) 3154 will_truncate = false; 3155 3156 audit_inode(nd->name, file->f_path.dentry, 0); 3157 goto opened; 3158 } 3159 3160 if (*opened & FILE_CREATED) { 3161 /* Don't check for write permission, don't truncate */ 3162 open_flag &= ~O_TRUNC; 3163 will_truncate = false; 3164 acc_mode = 0; 3165 path_to_nameidata(&path, nd); 3166 goto finish_open_created; 3167 } 3168 3169 /* 3170 * create/update audit record if it already exists. 3171 */ 3172 if (d_is_positive(path.dentry)) 3173 audit_inode(nd->name, path.dentry, 0); 3174 3175 /* 3176 * If atomic_open() acquired write access it is dropped now due to 3177 * possible mount and symlink following (this might be optimized away if 3178 * necessary...) 3179 */ 3180 if (got_write) { 3181 mnt_drop_write(nd->path.mnt); 3182 got_write = false; 3183 } 3184 3185 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) { 3186 path_to_nameidata(&path, nd); 3187 return -EEXIST; 3188 } 3189 3190 error = follow_managed(&path, nd); 3191 if (unlikely(error < 0)) 3192 return error; 3193 3194 BUG_ON(nd->flags & LOOKUP_RCU); 3195 inode = d_backing_inode(path.dentry); 3196 seq = 0; /* out of RCU mode, so the value doesn't matter */ 3197 if (unlikely(d_is_negative(path.dentry))) { 3198 path_to_nameidata(&path, nd); 3199 return -ENOENT; 3200 } 3201 finish_lookup: 3202 if (nd->depth) 3203 put_link(nd); 3204 error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW, 3205 inode, seq); 3206 if (unlikely(error)) 3207 return error; 3208 3209 if (unlikely(d_is_symlink(path.dentry)) && !(open_flag & O_PATH)) { 3210 path_to_nameidata(&path, nd); 3211 return -ELOOP; 3212 } 3213 3214 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) { 3215 path_to_nameidata(&path, nd); 3216 } else { 3217 save_parent.dentry = nd->path.dentry; 3218 save_parent.mnt = mntget(path.mnt); 3219 nd->path.dentry = path.dentry; 3220 3221 } 3222 nd->inode = inode; 3223 nd->seq = seq; 3224 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */ 3225 finish_open: 3226 error = complete_walk(nd); 3227 if (error) { 3228 path_put(&save_parent); 3229 return error; 3230 } 3231 audit_inode(nd->name, nd->path.dentry, 0); 3232 error = -EISDIR; 3233 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry)) 3234 goto out; 3235 error = -ENOTDIR; 3236 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3237 goto out; 3238 if (!d_is_reg(nd->path.dentry)) 3239 will_truncate = false; 3240 3241 if (will_truncate) { 3242 error = mnt_want_write(nd->path.mnt); 3243 if (error) 3244 goto out; 3245 got_write = true; 3246 } 3247 finish_open_created: 3248 if (likely(!(open_flag & O_PATH))) { 3249 error = may_open(&nd->path, acc_mode, open_flag); 3250 if (error) 3251 goto out; 3252 } 3253 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */ 3254 error = vfs_open(&nd->path, file, current_cred()); 3255 if (!error) { 3256 *opened |= FILE_OPENED; 3257 } else { 3258 if (error == -EOPENSTALE) 3259 goto stale_open; 3260 goto out; 3261 } 3262 opened: 3263 error = open_check_o_direct(file); 3264 if (error) 3265 goto exit_fput; 3266 error = ima_file_check(file, op->acc_mode, *opened); 3267 if (error) 3268 goto exit_fput; 3269 3270 if (will_truncate) { 3271 error = handle_truncate(file); 3272 if (error) 3273 goto exit_fput; 3274 } 3275 out: 3276 if (got_write) 3277 mnt_drop_write(nd->path.mnt); 3278 path_put(&save_parent); 3279 return error; 3280 3281 exit_fput: 3282 fput(file); 3283 goto out; 3284 3285 stale_open: 3286 /* If no saved parent or already retried then can't retry */ 3287 if (!save_parent.dentry || retried) 3288 goto out; 3289 3290 BUG_ON(save_parent.dentry != dir); 3291 path_put(&nd->path); 3292 nd->path = save_parent; 3293 nd->inode = dir->d_inode; 3294 save_parent.mnt = NULL; 3295 save_parent.dentry = NULL; 3296 if (got_write) { 3297 mnt_drop_write(nd->path.mnt); 3298 got_write = false; 3299 } 3300 retried = true; 3301 goto retry_lookup; 3302 } 3303 3304 static int do_tmpfile(struct nameidata *nd, unsigned flags, 3305 const struct open_flags *op, 3306 struct file *file, int *opened) 3307 { 3308 static const struct qstr name = QSTR_INIT("/", 1); 3309 struct dentry *child; 3310 struct inode *dir; 3311 struct path path; 3312 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path); 3313 if (unlikely(error)) 3314 return error; 3315 error = mnt_want_write(path.mnt); 3316 if (unlikely(error)) 3317 goto out; 3318 dir = path.dentry->d_inode; 3319 /* we want directory to be writable */ 3320 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 3321 if (error) 3322 goto out2; 3323 if (!dir->i_op->tmpfile) { 3324 error = -EOPNOTSUPP; 3325 goto out2; 3326 } 3327 child = d_alloc(path.dentry, &name); 3328 if (unlikely(!child)) { 3329 error = -ENOMEM; 3330 goto out2; 3331 } 3332 dput(path.dentry); 3333 path.dentry = child; 3334 error = dir->i_op->tmpfile(dir, child, op->mode); 3335 if (error) 3336 goto out2; 3337 audit_inode(nd->name, child, 0); 3338 /* Don't check for other permissions, the inode was just created */ 3339 error = may_open(&path, 0, op->open_flag); 3340 if (error) 3341 goto out2; 3342 file->f_path.mnt = path.mnt; 3343 error = finish_open(file, child, NULL, opened); 3344 if (error) 3345 goto out2; 3346 error = open_check_o_direct(file); 3347 if (error) { 3348 fput(file); 3349 } else if (!(op->open_flag & O_EXCL)) { 3350 struct inode *inode = file_inode(file); 3351 spin_lock(&inode->i_lock); 3352 inode->i_state |= I_LINKABLE; 3353 spin_unlock(&inode->i_lock); 3354 } 3355 out2: 3356 mnt_drop_write(path.mnt); 3357 out: 3358 path_put(&path); 3359 return error; 3360 } 3361 3362 static struct file *path_openat(struct nameidata *nd, 3363 const struct open_flags *op, unsigned flags) 3364 { 3365 const char *s; 3366 struct file *file; 3367 int opened = 0; 3368 int error; 3369 3370 file = get_empty_filp(); 3371 if (IS_ERR(file)) 3372 return file; 3373 3374 file->f_flags = op->open_flag; 3375 3376 if (unlikely(file->f_flags & __O_TMPFILE)) { 3377 error = do_tmpfile(nd, flags, op, file, &opened); 3378 goto out2; 3379 } 3380 3381 s = path_init(nd, flags); 3382 if (IS_ERR(s)) { 3383 put_filp(file); 3384 return ERR_CAST(s); 3385 } 3386 while (!(error = link_path_walk(s, nd)) && 3387 (error = do_last(nd, file, op, &opened)) > 0) { 3388 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3389 s = trailing_symlink(nd); 3390 if (IS_ERR(s)) { 3391 error = PTR_ERR(s); 3392 break; 3393 } 3394 } 3395 terminate_walk(nd); 3396 out2: 3397 if (!(opened & FILE_OPENED)) { 3398 BUG_ON(!error); 3399 put_filp(file); 3400 } 3401 if (unlikely(error)) { 3402 if (error == -EOPENSTALE) { 3403 if (flags & LOOKUP_RCU) 3404 error = -ECHILD; 3405 else 3406 error = -ESTALE; 3407 } 3408 file = ERR_PTR(error); 3409 } 3410 return file; 3411 } 3412 3413 struct file *do_filp_open(int dfd, struct filename *pathname, 3414 const struct open_flags *op) 3415 { 3416 struct nameidata nd; 3417 int flags = op->lookup_flags; 3418 struct file *filp; 3419 3420 set_nameidata(&nd, dfd, pathname); 3421 filp = path_openat(&nd, op, flags | LOOKUP_RCU); 3422 if (unlikely(filp == ERR_PTR(-ECHILD))) 3423 filp = path_openat(&nd, op, flags); 3424 if (unlikely(filp == ERR_PTR(-ESTALE))) 3425 filp = path_openat(&nd, op, flags | LOOKUP_REVAL); 3426 restore_nameidata(); 3427 return filp; 3428 } 3429 3430 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 3431 const char *name, const struct open_flags *op) 3432 { 3433 struct nameidata nd; 3434 struct file *file; 3435 struct filename *filename; 3436 int flags = op->lookup_flags | LOOKUP_ROOT; 3437 3438 nd.root.mnt = mnt; 3439 nd.root.dentry = dentry; 3440 3441 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN) 3442 return ERR_PTR(-ELOOP); 3443 3444 filename = getname_kernel(name); 3445 if (IS_ERR(filename)) 3446 return ERR_CAST(filename); 3447 3448 set_nameidata(&nd, -1, filename); 3449 file = path_openat(&nd, op, flags | LOOKUP_RCU); 3450 if (unlikely(file == ERR_PTR(-ECHILD))) 3451 file = path_openat(&nd, op, flags); 3452 if (unlikely(file == ERR_PTR(-ESTALE))) 3453 file = path_openat(&nd, op, flags | LOOKUP_REVAL); 3454 restore_nameidata(); 3455 putname(filename); 3456 return file; 3457 } 3458 3459 static struct dentry *filename_create(int dfd, struct filename *name, 3460 struct path *path, unsigned int lookup_flags) 3461 { 3462 struct dentry *dentry = ERR_PTR(-EEXIST); 3463 struct qstr last; 3464 int type; 3465 int err2; 3466 int error; 3467 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY); 3468 3469 /* 3470 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any 3471 * other flags passed in are ignored! 3472 */ 3473 lookup_flags &= LOOKUP_REVAL; 3474 3475 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type); 3476 if (IS_ERR(name)) 3477 return ERR_CAST(name); 3478 3479 /* 3480 * Yucky last component or no last component at all? 3481 * (foo/., foo/.., /////) 3482 */ 3483 if (unlikely(type != LAST_NORM)) 3484 goto out; 3485 3486 /* don't fail immediately if it's r/o, at least try to report other errors */ 3487 err2 = mnt_want_write(path->mnt); 3488 /* 3489 * Do the final lookup. 3490 */ 3491 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL; 3492 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 3493 dentry = __lookup_hash(&last, path->dentry, lookup_flags); 3494 if (IS_ERR(dentry)) 3495 goto unlock; 3496 3497 error = -EEXIST; 3498 if (d_is_positive(dentry)) 3499 goto fail; 3500 3501 /* 3502 * Special case - lookup gave negative, but... we had foo/bar/ 3503 * From the vfs_mknod() POV we just have a negative dentry - 3504 * all is fine. Let's be bastards - you had / on the end, you've 3505 * been asking for (non-existent) directory. -ENOENT for you. 3506 */ 3507 if (unlikely(!is_dir && last.name[last.len])) { 3508 error = -ENOENT; 3509 goto fail; 3510 } 3511 if (unlikely(err2)) { 3512 error = err2; 3513 goto fail; 3514 } 3515 putname(name); 3516 return dentry; 3517 fail: 3518 dput(dentry); 3519 dentry = ERR_PTR(error); 3520 unlock: 3521 inode_unlock(path->dentry->d_inode); 3522 if (!err2) 3523 mnt_drop_write(path->mnt); 3524 out: 3525 path_put(path); 3526 putname(name); 3527 return dentry; 3528 } 3529 3530 struct dentry *kern_path_create(int dfd, const char *pathname, 3531 struct path *path, unsigned int lookup_flags) 3532 { 3533 return filename_create(dfd, getname_kernel(pathname), 3534 path, lookup_flags); 3535 } 3536 EXPORT_SYMBOL(kern_path_create); 3537 3538 void done_path_create(struct path *path, struct dentry *dentry) 3539 { 3540 dput(dentry); 3541 inode_unlock(path->dentry->d_inode); 3542 mnt_drop_write(path->mnt); 3543 path_put(path); 3544 } 3545 EXPORT_SYMBOL(done_path_create); 3546 3547 inline struct dentry *user_path_create(int dfd, const char __user *pathname, 3548 struct path *path, unsigned int lookup_flags) 3549 { 3550 return filename_create(dfd, getname(pathname), path, lookup_flags); 3551 } 3552 EXPORT_SYMBOL(user_path_create); 3553 3554 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 3555 { 3556 int error = may_create(dir, dentry); 3557 3558 if (error) 3559 return error; 3560 3561 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 3562 return -EPERM; 3563 3564 if (!dir->i_op->mknod) 3565 return -EPERM; 3566 3567 error = devcgroup_inode_mknod(mode, dev); 3568 if (error) 3569 return error; 3570 3571 error = security_inode_mknod(dir, dentry, mode, dev); 3572 if (error) 3573 return error; 3574 3575 error = dir->i_op->mknod(dir, dentry, mode, dev); 3576 if (!error) 3577 fsnotify_create(dir, dentry); 3578 return error; 3579 } 3580 EXPORT_SYMBOL(vfs_mknod); 3581 3582 static int may_mknod(umode_t mode) 3583 { 3584 switch (mode & S_IFMT) { 3585 case S_IFREG: 3586 case S_IFCHR: 3587 case S_IFBLK: 3588 case S_IFIFO: 3589 case S_IFSOCK: 3590 case 0: /* zero mode translates to S_IFREG */ 3591 return 0; 3592 case S_IFDIR: 3593 return -EPERM; 3594 default: 3595 return -EINVAL; 3596 } 3597 } 3598 3599 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3600 unsigned, dev) 3601 { 3602 struct dentry *dentry; 3603 struct path path; 3604 int error; 3605 unsigned int lookup_flags = 0; 3606 3607 error = may_mknod(mode); 3608 if (error) 3609 return error; 3610 retry: 3611 dentry = user_path_create(dfd, filename, &path, lookup_flags); 3612 if (IS_ERR(dentry)) 3613 return PTR_ERR(dentry); 3614 3615 if (!IS_POSIXACL(path.dentry->d_inode)) 3616 mode &= ~current_umask(); 3617 error = security_path_mknod(&path, dentry, mode, dev); 3618 if (error) 3619 goto out; 3620 switch (mode & S_IFMT) { 3621 case 0: case S_IFREG: 3622 error = vfs_create(path.dentry->d_inode,dentry,mode,true); 3623 break; 3624 case S_IFCHR: case S_IFBLK: 3625 error = vfs_mknod(path.dentry->d_inode,dentry,mode, 3626 new_decode_dev(dev)); 3627 break; 3628 case S_IFIFO: case S_IFSOCK: 3629 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0); 3630 break; 3631 } 3632 out: 3633 done_path_create(&path, dentry); 3634 if (retry_estale(error, lookup_flags)) { 3635 lookup_flags |= LOOKUP_REVAL; 3636 goto retry; 3637 } 3638 return error; 3639 } 3640 3641 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3642 { 3643 return sys_mknodat(AT_FDCWD, filename, mode, dev); 3644 } 3645 3646 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 3647 { 3648 int error = may_create(dir, dentry); 3649 unsigned max_links = dir->i_sb->s_max_links; 3650 3651 if (error) 3652 return error; 3653 3654 if (!dir->i_op->mkdir) 3655 return -EPERM; 3656 3657 mode &= (S_IRWXUGO|S_ISVTX); 3658 error = security_inode_mkdir(dir, dentry, mode); 3659 if (error) 3660 return error; 3661 3662 if (max_links && dir->i_nlink >= max_links) 3663 return -EMLINK; 3664 3665 error = dir->i_op->mkdir(dir, dentry, mode); 3666 if (!error) 3667 fsnotify_mkdir(dir, dentry); 3668 return error; 3669 } 3670 EXPORT_SYMBOL(vfs_mkdir); 3671 3672 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 3673 { 3674 struct dentry *dentry; 3675 struct path path; 3676 int error; 3677 unsigned int lookup_flags = LOOKUP_DIRECTORY; 3678 3679 retry: 3680 dentry = user_path_create(dfd, pathname, &path, lookup_flags); 3681 if (IS_ERR(dentry)) 3682 return PTR_ERR(dentry); 3683 3684 if (!IS_POSIXACL(path.dentry->d_inode)) 3685 mode &= ~current_umask(); 3686 error = security_path_mkdir(&path, dentry, mode); 3687 if (!error) 3688 error = vfs_mkdir(path.dentry->d_inode, dentry, mode); 3689 done_path_create(&path, dentry); 3690 if (retry_estale(error, lookup_flags)) { 3691 lookup_flags |= LOOKUP_REVAL; 3692 goto retry; 3693 } 3694 return error; 3695 } 3696 3697 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 3698 { 3699 return sys_mkdirat(AT_FDCWD, pathname, mode); 3700 } 3701 3702 /* 3703 * The dentry_unhash() helper will try to drop the dentry early: we 3704 * should have a usage count of 1 if we're the only user of this 3705 * dentry, and if that is true (possibly after pruning the dcache), 3706 * then we drop the dentry now. 3707 * 3708 * A low-level filesystem can, if it choses, legally 3709 * do a 3710 * 3711 * if (!d_unhashed(dentry)) 3712 * return -EBUSY; 3713 * 3714 * if it cannot handle the case of removing a directory 3715 * that is still in use by something else.. 3716 */ 3717 void dentry_unhash(struct dentry *dentry) 3718 { 3719 shrink_dcache_parent(dentry); 3720 spin_lock(&dentry->d_lock); 3721 if (dentry->d_lockref.count == 1) 3722 __d_drop(dentry); 3723 spin_unlock(&dentry->d_lock); 3724 } 3725 EXPORT_SYMBOL(dentry_unhash); 3726 3727 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 3728 { 3729 int error = may_delete(dir, dentry, 1); 3730 3731 if (error) 3732 return error; 3733 3734 if (!dir->i_op->rmdir) 3735 return -EPERM; 3736 3737 dget(dentry); 3738 inode_lock(dentry->d_inode); 3739 3740 error = -EBUSY; 3741 if (is_local_mountpoint(dentry)) 3742 goto out; 3743 3744 error = security_inode_rmdir(dir, dentry); 3745 if (error) 3746 goto out; 3747 3748 shrink_dcache_parent(dentry); 3749 error = dir->i_op->rmdir(dir, dentry); 3750 if (error) 3751 goto out; 3752 3753 dentry->d_inode->i_flags |= S_DEAD; 3754 dont_mount(dentry); 3755 detach_mounts(dentry); 3756 3757 out: 3758 inode_unlock(dentry->d_inode); 3759 dput(dentry); 3760 if (!error) 3761 d_delete(dentry); 3762 return error; 3763 } 3764 EXPORT_SYMBOL(vfs_rmdir); 3765 3766 static long do_rmdir(int dfd, const char __user *pathname) 3767 { 3768 int error = 0; 3769 struct filename *name; 3770 struct dentry *dentry; 3771 struct path path; 3772 struct qstr last; 3773 int type; 3774 unsigned int lookup_flags = 0; 3775 retry: 3776 name = user_path_parent(dfd, pathname, 3777 &path, &last, &type, lookup_flags); 3778 if (IS_ERR(name)) 3779 return PTR_ERR(name); 3780 3781 switch (type) { 3782 case LAST_DOTDOT: 3783 error = -ENOTEMPTY; 3784 goto exit1; 3785 case LAST_DOT: 3786 error = -EINVAL; 3787 goto exit1; 3788 case LAST_ROOT: 3789 error = -EBUSY; 3790 goto exit1; 3791 } 3792 3793 error = mnt_want_write(path.mnt); 3794 if (error) 3795 goto exit1; 3796 3797 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 3798 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 3799 error = PTR_ERR(dentry); 3800 if (IS_ERR(dentry)) 3801 goto exit2; 3802 if (!dentry->d_inode) { 3803 error = -ENOENT; 3804 goto exit3; 3805 } 3806 error = security_path_rmdir(&path, dentry); 3807 if (error) 3808 goto exit3; 3809 error = vfs_rmdir(path.dentry->d_inode, dentry); 3810 exit3: 3811 dput(dentry); 3812 exit2: 3813 inode_unlock(path.dentry->d_inode); 3814 mnt_drop_write(path.mnt); 3815 exit1: 3816 path_put(&path); 3817 putname(name); 3818 if (retry_estale(error, lookup_flags)) { 3819 lookup_flags |= LOOKUP_REVAL; 3820 goto retry; 3821 } 3822 return error; 3823 } 3824 3825 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 3826 { 3827 return do_rmdir(AT_FDCWD, pathname); 3828 } 3829 3830 /** 3831 * vfs_unlink - unlink a filesystem object 3832 * @dir: parent directory 3833 * @dentry: victim 3834 * @delegated_inode: returns victim inode, if the inode is delegated. 3835 * 3836 * The caller must hold dir->i_mutex. 3837 * 3838 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 3839 * return a reference to the inode in delegated_inode. The caller 3840 * should then break the delegation on that inode and retry. Because 3841 * breaking a delegation may take a long time, the caller should drop 3842 * dir->i_mutex before doing so. 3843 * 3844 * Alternatively, a caller may pass NULL for delegated_inode. This may 3845 * be appropriate for callers that expect the underlying filesystem not 3846 * to be NFS exported. 3847 */ 3848 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode) 3849 { 3850 struct inode *target = dentry->d_inode; 3851 int error = may_delete(dir, dentry, 0); 3852 3853 if (error) 3854 return error; 3855 3856 if (!dir->i_op->unlink) 3857 return -EPERM; 3858 3859 inode_lock(target); 3860 if (is_local_mountpoint(dentry)) 3861 error = -EBUSY; 3862 else { 3863 error = security_inode_unlink(dir, dentry); 3864 if (!error) { 3865 error = try_break_deleg(target, delegated_inode); 3866 if (error) 3867 goto out; 3868 error = dir->i_op->unlink(dir, dentry); 3869 if (!error) { 3870 dont_mount(dentry); 3871 detach_mounts(dentry); 3872 } 3873 } 3874 } 3875 out: 3876 inode_unlock(target); 3877 3878 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 3879 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 3880 fsnotify_link_count(target); 3881 d_delete(dentry); 3882 } 3883 3884 return error; 3885 } 3886 EXPORT_SYMBOL(vfs_unlink); 3887 3888 /* 3889 * Make sure that the actual truncation of the file will occur outside its 3890 * directory's i_mutex. Truncate can take a long time if there is a lot of 3891 * writeout happening, and we don't want to prevent access to the directory 3892 * while waiting on the I/O. 3893 */ 3894 static long do_unlinkat(int dfd, const char __user *pathname) 3895 { 3896 int error; 3897 struct filename *name; 3898 struct dentry *dentry; 3899 struct path path; 3900 struct qstr last; 3901 int type; 3902 struct inode *inode = NULL; 3903 struct inode *delegated_inode = NULL; 3904 unsigned int lookup_flags = 0; 3905 retry: 3906 name = user_path_parent(dfd, pathname, 3907 &path, &last, &type, lookup_flags); 3908 if (IS_ERR(name)) 3909 return PTR_ERR(name); 3910 3911 error = -EISDIR; 3912 if (type != LAST_NORM) 3913 goto exit1; 3914 3915 error = mnt_want_write(path.mnt); 3916 if (error) 3917 goto exit1; 3918 retry_deleg: 3919 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 3920 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 3921 error = PTR_ERR(dentry); 3922 if (!IS_ERR(dentry)) { 3923 /* Why not before? Because we want correct error value */ 3924 if (last.name[last.len]) 3925 goto slashes; 3926 inode = dentry->d_inode; 3927 if (d_is_negative(dentry)) 3928 goto slashes; 3929 ihold(inode); 3930 error = security_path_unlink(&path, dentry); 3931 if (error) 3932 goto exit2; 3933 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode); 3934 exit2: 3935 dput(dentry); 3936 } 3937 inode_unlock(path.dentry->d_inode); 3938 if (inode) 3939 iput(inode); /* truncate the inode here */ 3940 inode = NULL; 3941 if (delegated_inode) { 3942 error = break_deleg_wait(&delegated_inode); 3943 if (!error) 3944 goto retry_deleg; 3945 } 3946 mnt_drop_write(path.mnt); 3947 exit1: 3948 path_put(&path); 3949 putname(name); 3950 if (retry_estale(error, lookup_flags)) { 3951 lookup_flags |= LOOKUP_REVAL; 3952 inode = NULL; 3953 goto retry; 3954 } 3955 return error; 3956 3957 slashes: 3958 if (d_is_negative(dentry)) 3959 error = -ENOENT; 3960 else if (d_is_dir(dentry)) 3961 error = -EISDIR; 3962 else 3963 error = -ENOTDIR; 3964 goto exit2; 3965 } 3966 3967 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 3968 { 3969 if ((flag & ~AT_REMOVEDIR) != 0) 3970 return -EINVAL; 3971 3972 if (flag & AT_REMOVEDIR) 3973 return do_rmdir(dfd, pathname); 3974 3975 return do_unlinkat(dfd, pathname); 3976 } 3977 3978 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 3979 { 3980 return do_unlinkat(AT_FDCWD, pathname); 3981 } 3982 3983 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 3984 { 3985 int error = may_create(dir, dentry); 3986 3987 if (error) 3988 return error; 3989 3990 if (!dir->i_op->symlink) 3991 return -EPERM; 3992 3993 error = security_inode_symlink(dir, dentry, oldname); 3994 if (error) 3995 return error; 3996 3997 error = dir->i_op->symlink(dir, dentry, oldname); 3998 if (!error) 3999 fsnotify_create(dir, dentry); 4000 return error; 4001 } 4002 EXPORT_SYMBOL(vfs_symlink); 4003 4004 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 4005 int, newdfd, const char __user *, newname) 4006 { 4007 int error; 4008 struct filename *from; 4009 struct dentry *dentry; 4010 struct path path; 4011 unsigned int lookup_flags = 0; 4012 4013 from = getname(oldname); 4014 if (IS_ERR(from)) 4015 return PTR_ERR(from); 4016 retry: 4017 dentry = user_path_create(newdfd, newname, &path, lookup_flags); 4018 error = PTR_ERR(dentry); 4019 if (IS_ERR(dentry)) 4020 goto out_putname; 4021 4022 error = security_path_symlink(&path, dentry, from->name); 4023 if (!error) 4024 error = vfs_symlink(path.dentry->d_inode, dentry, from->name); 4025 done_path_create(&path, dentry); 4026 if (retry_estale(error, lookup_flags)) { 4027 lookup_flags |= LOOKUP_REVAL; 4028 goto retry; 4029 } 4030 out_putname: 4031 putname(from); 4032 return error; 4033 } 4034 4035 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 4036 { 4037 return sys_symlinkat(oldname, AT_FDCWD, newname); 4038 } 4039 4040 /** 4041 * vfs_link - create a new link 4042 * @old_dentry: object to be linked 4043 * @dir: new parent 4044 * @new_dentry: where to create the new link 4045 * @delegated_inode: returns inode needing a delegation break 4046 * 4047 * The caller must hold dir->i_mutex 4048 * 4049 * If vfs_link discovers a delegation on the to-be-linked file in need 4050 * of breaking, it will return -EWOULDBLOCK and return a reference to the 4051 * inode in delegated_inode. The caller should then break the delegation 4052 * and retry. Because breaking a delegation may take a long time, the 4053 * caller should drop the i_mutex before doing so. 4054 * 4055 * Alternatively, a caller may pass NULL for delegated_inode. This may 4056 * be appropriate for callers that expect the underlying filesystem not 4057 * to be NFS exported. 4058 */ 4059 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode) 4060 { 4061 struct inode *inode = old_dentry->d_inode; 4062 unsigned max_links = dir->i_sb->s_max_links; 4063 int error; 4064 4065 if (!inode) 4066 return -ENOENT; 4067 4068 error = may_create(dir, new_dentry); 4069 if (error) 4070 return error; 4071 4072 if (dir->i_sb != inode->i_sb) 4073 return -EXDEV; 4074 4075 /* 4076 * A link to an append-only or immutable file cannot be created. 4077 */ 4078 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4079 return -EPERM; 4080 if (!dir->i_op->link) 4081 return -EPERM; 4082 if (S_ISDIR(inode->i_mode)) 4083 return -EPERM; 4084 4085 error = security_inode_link(old_dentry, dir, new_dentry); 4086 if (error) 4087 return error; 4088 4089 inode_lock(inode); 4090 /* Make sure we don't allow creating hardlink to an unlinked file */ 4091 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 4092 error = -ENOENT; 4093 else if (max_links && inode->i_nlink >= max_links) 4094 error = -EMLINK; 4095 else { 4096 error = try_break_deleg(inode, delegated_inode); 4097 if (!error) 4098 error = dir->i_op->link(old_dentry, dir, new_dentry); 4099 } 4100 4101 if (!error && (inode->i_state & I_LINKABLE)) { 4102 spin_lock(&inode->i_lock); 4103 inode->i_state &= ~I_LINKABLE; 4104 spin_unlock(&inode->i_lock); 4105 } 4106 inode_unlock(inode); 4107 if (!error) 4108 fsnotify_link(dir, inode, new_dentry); 4109 return error; 4110 } 4111 EXPORT_SYMBOL(vfs_link); 4112 4113 /* 4114 * Hardlinks are often used in delicate situations. We avoid 4115 * security-related surprises by not following symlinks on the 4116 * newname. --KAB 4117 * 4118 * We don't follow them on the oldname either to be compatible 4119 * with linux 2.0, and to avoid hard-linking to directories 4120 * and other special files. --ADM 4121 */ 4122 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 4123 int, newdfd, const char __user *, newname, int, flags) 4124 { 4125 struct dentry *new_dentry; 4126 struct path old_path, new_path; 4127 struct inode *delegated_inode = NULL; 4128 int how = 0; 4129 int error; 4130 4131 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 4132 return -EINVAL; 4133 /* 4134 * To use null names we require CAP_DAC_READ_SEARCH 4135 * This ensures that not everyone will be able to create 4136 * handlink using the passed filedescriptor. 4137 */ 4138 if (flags & AT_EMPTY_PATH) { 4139 if (!capable(CAP_DAC_READ_SEARCH)) 4140 return -ENOENT; 4141 how = LOOKUP_EMPTY; 4142 } 4143 4144 if (flags & AT_SYMLINK_FOLLOW) 4145 how |= LOOKUP_FOLLOW; 4146 retry: 4147 error = user_path_at(olddfd, oldname, how, &old_path); 4148 if (error) 4149 return error; 4150 4151 new_dentry = user_path_create(newdfd, newname, &new_path, 4152 (how & LOOKUP_REVAL)); 4153 error = PTR_ERR(new_dentry); 4154 if (IS_ERR(new_dentry)) 4155 goto out; 4156 4157 error = -EXDEV; 4158 if (old_path.mnt != new_path.mnt) 4159 goto out_dput; 4160 error = may_linkat(&old_path); 4161 if (unlikely(error)) 4162 goto out_dput; 4163 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4164 if (error) 4165 goto out_dput; 4166 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode); 4167 out_dput: 4168 done_path_create(&new_path, new_dentry); 4169 if (delegated_inode) { 4170 error = break_deleg_wait(&delegated_inode); 4171 if (!error) { 4172 path_put(&old_path); 4173 goto retry; 4174 } 4175 } 4176 if (retry_estale(error, how)) { 4177 path_put(&old_path); 4178 how |= LOOKUP_REVAL; 4179 goto retry; 4180 } 4181 out: 4182 path_put(&old_path); 4183 4184 return error; 4185 } 4186 4187 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4188 { 4189 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4190 } 4191 4192 /** 4193 * vfs_rename - rename a filesystem object 4194 * @old_dir: parent of source 4195 * @old_dentry: source 4196 * @new_dir: parent of destination 4197 * @new_dentry: destination 4198 * @delegated_inode: returns an inode needing a delegation break 4199 * @flags: rename flags 4200 * 4201 * The caller must hold multiple mutexes--see lock_rename()). 4202 * 4203 * If vfs_rename discovers a delegation in need of breaking at either 4204 * the source or destination, it will return -EWOULDBLOCK and return a 4205 * reference to the inode in delegated_inode. The caller should then 4206 * break the delegation and retry. Because breaking a delegation may 4207 * take a long time, the caller should drop all locks before doing 4208 * so. 4209 * 4210 * Alternatively, a caller may pass NULL for delegated_inode. This may 4211 * be appropriate for callers that expect the underlying filesystem not 4212 * to be NFS exported. 4213 * 4214 * The worst of all namespace operations - renaming directory. "Perverted" 4215 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4216 * Problems: 4217 * a) we can get into loop creation. 4218 * b) race potential - two innocent renames can create a loop together. 4219 * That's where 4.4 screws up. Current fix: serialization on 4220 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4221 * story. 4222 * c) we have to lock _four_ objects - parents and victim (if it exists), 4223 * and source (if it is not a directory). 4224 * And that - after we got ->i_mutex on parents (until then we don't know 4225 * whether the target exists). Solution: try to be smart with locking 4226 * order for inodes. We rely on the fact that tree topology may change 4227 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4228 * move will be locked. Thus we can rank directories by the tree 4229 * (ancestors first) and rank all non-directories after them. 4230 * That works since everybody except rename does "lock parent, lookup, 4231 * lock child" and rename is under ->s_vfs_rename_mutex. 4232 * HOWEVER, it relies on the assumption that any object with ->lookup() 4233 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4234 * we'd better make sure that there's no link(2) for them. 4235 * d) conversion from fhandle to dentry may come in the wrong moment - when 4236 * we are removing the target. Solution: we will have to grab ->i_mutex 4237 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4238 * ->i_mutex on parents, which works but leads to some truly excessive 4239 * locking]. 4240 */ 4241 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 4242 struct inode *new_dir, struct dentry *new_dentry, 4243 struct inode **delegated_inode, unsigned int flags) 4244 { 4245 int error; 4246 bool is_dir = d_is_dir(old_dentry); 4247 const unsigned char *old_name; 4248 struct inode *source = old_dentry->d_inode; 4249 struct inode *target = new_dentry->d_inode; 4250 bool new_is_dir = false; 4251 unsigned max_links = new_dir->i_sb->s_max_links; 4252 4253 if (source == target) 4254 return 0; 4255 4256 error = may_delete(old_dir, old_dentry, is_dir); 4257 if (error) 4258 return error; 4259 4260 if (!target) { 4261 error = may_create(new_dir, new_dentry); 4262 } else { 4263 new_is_dir = d_is_dir(new_dentry); 4264 4265 if (!(flags & RENAME_EXCHANGE)) 4266 error = may_delete(new_dir, new_dentry, is_dir); 4267 else 4268 error = may_delete(new_dir, new_dentry, new_is_dir); 4269 } 4270 if (error) 4271 return error; 4272 4273 if (!old_dir->i_op->rename && !old_dir->i_op->rename2) 4274 return -EPERM; 4275 4276 if (flags && !old_dir->i_op->rename2) 4277 return -EINVAL; 4278 4279 /* 4280 * If we are going to change the parent - check write permissions, 4281 * we'll need to flip '..'. 4282 */ 4283 if (new_dir != old_dir) { 4284 if (is_dir) { 4285 error = inode_permission(source, MAY_WRITE); 4286 if (error) 4287 return error; 4288 } 4289 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4290 error = inode_permission(target, MAY_WRITE); 4291 if (error) 4292 return error; 4293 } 4294 } 4295 4296 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 4297 flags); 4298 if (error) 4299 return error; 4300 4301 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 4302 dget(new_dentry); 4303 if (!is_dir || (flags & RENAME_EXCHANGE)) 4304 lock_two_nondirectories(source, target); 4305 else if (target) 4306 inode_lock(target); 4307 4308 error = -EBUSY; 4309 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 4310 goto out; 4311 4312 if (max_links && new_dir != old_dir) { 4313 error = -EMLINK; 4314 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 4315 goto out; 4316 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 4317 old_dir->i_nlink >= max_links) 4318 goto out; 4319 } 4320 if (is_dir && !(flags & RENAME_EXCHANGE) && target) 4321 shrink_dcache_parent(new_dentry); 4322 if (!is_dir) { 4323 error = try_break_deleg(source, delegated_inode); 4324 if (error) 4325 goto out; 4326 } 4327 if (target && !new_is_dir) { 4328 error = try_break_deleg(target, delegated_inode); 4329 if (error) 4330 goto out; 4331 } 4332 if (!old_dir->i_op->rename2) { 4333 error = old_dir->i_op->rename(old_dir, old_dentry, 4334 new_dir, new_dentry); 4335 } else { 4336 WARN_ON(old_dir->i_op->rename != NULL); 4337 error = old_dir->i_op->rename2(old_dir, old_dentry, 4338 new_dir, new_dentry, flags); 4339 } 4340 if (error) 4341 goto out; 4342 4343 if (!(flags & RENAME_EXCHANGE) && target) { 4344 if (is_dir) 4345 target->i_flags |= S_DEAD; 4346 dont_mount(new_dentry); 4347 detach_mounts(new_dentry); 4348 } 4349 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 4350 if (!(flags & RENAME_EXCHANGE)) 4351 d_move(old_dentry, new_dentry); 4352 else 4353 d_exchange(old_dentry, new_dentry); 4354 } 4355 out: 4356 if (!is_dir || (flags & RENAME_EXCHANGE)) 4357 unlock_two_nondirectories(source, target); 4358 else if (target) 4359 inode_unlock(target); 4360 dput(new_dentry); 4361 if (!error) { 4362 fsnotify_move(old_dir, new_dir, old_name, is_dir, 4363 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 4364 if (flags & RENAME_EXCHANGE) { 4365 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name, 4366 new_is_dir, NULL, new_dentry); 4367 } 4368 } 4369 fsnotify_oldname_free(old_name); 4370 4371 return error; 4372 } 4373 EXPORT_SYMBOL(vfs_rename); 4374 4375 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 4376 int, newdfd, const char __user *, newname, unsigned int, flags) 4377 { 4378 struct dentry *old_dentry, *new_dentry; 4379 struct dentry *trap; 4380 struct path old_path, new_path; 4381 struct qstr old_last, new_last; 4382 int old_type, new_type; 4383 struct inode *delegated_inode = NULL; 4384 struct filename *from; 4385 struct filename *to; 4386 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET; 4387 bool should_retry = false; 4388 int error; 4389 4390 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4391 return -EINVAL; 4392 4393 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 4394 (flags & RENAME_EXCHANGE)) 4395 return -EINVAL; 4396 4397 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD)) 4398 return -EPERM; 4399 4400 if (flags & RENAME_EXCHANGE) 4401 target_flags = 0; 4402 4403 retry: 4404 from = user_path_parent(olddfd, oldname, 4405 &old_path, &old_last, &old_type, lookup_flags); 4406 if (IS_ERR(from)) { 4407 error = PTR_ERR(from); 4408 goto exit; 4409 } 4410 4411 to = user_path_parent(newdfd, newname, 4412 &new_path, &new_last, &new_type, lookup_flags); 4413 if (IS_ERR(to)) { 4414 error = PTR_ERR(to); 4415 goto exit1; 4416 } 4417 4418 error = -EXDEV; 4419 if (old_path.mnt != new_path.mnt) 4420 goto exit2; 4421 4422 error = -EBUSY; 4423 if (old_type != LAST_NORM) 4424 goto exit2; 4425 4426 if (flags & RENAME_NOREPLACE) 4427 error = -EEXIST; 4428 if (new_type != LAST_NORM) 4429 goto exit2; 4430 4431 error = mnt_want_write(old_path.mnt); 4432 if (error) 4433 goto exit2; 4434 4435 retry_deleg: 4436 trap = lock_rename(new_path.dentry, old_path.dentry); 4437 4438 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags); 4439 error = PTR_ERR(old_dentry); 4440 if (IS_ERR(old_dentry)) 4441 goto exit3; 4442 /* source must exist */ 4443 error = -ENOENT; 4444 if (d_is_negative(old_dentry)) 4445 goto exit4; 4446 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags); 4447 error = PTR_ERR(new_dentry); 4448 if (IS_ERR(new_dentry)) 4449 goto exit4; 4450 error = -EEXIST; 4451 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 4452 goto exit5; 4453 if (flags & RENAME_EXCHANGE) { 4454 error = -ENOENT; 4455 if (d_is_negative(new_dentry)) 4456 goto exit5; 4457 4458 if (!d_is_dir(new_dentry)) { 4459 error = -ENOTDIR; 4460 if (new_last.name[new_last.len]) 4461 goto exit5; 4462 } 4463 } 4464 /* unless the source is a directory trailing slashes give -ENOTDIR */ 4465 if (!d_is_dir(old_dentry)) { 4466 error = -ENOTDIR; 4467 if (old_last.name[old_last.len]) 4468 goto exit5; 4469 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len]) 4470 goto exit5; 4471 } 4472 /* source should not be ancestor of target */ 4473 error = -EINVAL; 4474 if (old_dentry == trap) 4475 goto exit5; 4476 /* target should not be an ancestor of source */ 4477 if (!(flags & RENAME_EXCHANGE)) 4478 error = -ENOTEMPTY; 4479 if (new_dentry == trap) 4480 goto exit5; 4481 4482 error = security_path_rename(&old_path, old_dentry, 4483 &new_path, new_dentry, flags); 4484 if (error) 4485 goto exit5; 4486 error = vfs_rename(old_path.dentry->d_inode, old_dentry, 4487 new_path.dentry->d_inode, new_dentry, 4488 &delegated_inode, flags); 4489 exit5: 4490 dput(new_dentry); 4491 exit4: 4492 dput(old_dentry); 4493 exit3: 4494 unlock_rename(new_path.dentry, old_path.dentry); 4495 if (delegated_inode) { 4496 error = break_deleg_wait(&delegated_inode); 4497 if (!error) 4498 goto retry_deleg; 4499 } 4500 mnt_drop_write(old_path.mnt); 4501 exit2: 4502 if (retry_estale(error, lookup_flags)) 4503 should_retry = true; 4504 path_put(&new_path); 4505 putname(to); 4506 exit1: 4507 path_put(&old_path); 4508 putname(from); 4509 if (should_retry) { 4510 should_retry = false; 4511 lookup_flags |= LOOKUP_REVAL; 4512 goto retry; 4513 } 4514 exit: 4515 return error; 4516 } 4517 4518 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 4519 int, newdfd, const char __user *, newname) 4520 { 4521 return sys_renameat2(olddfd, oldname, newdfd, newname, 0); 4522 } 4523 4524 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 4525 { 4526 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4527 } 4528 4529 int vfs_whiteout(struct inode *dir, struct dentry *dentry) 4530 { 4531 int error = may_create(dir, dentry); 4532 if (error) 4533 return error; 4534 4535 if (!dir->i_op->mknod) 4536 return -EPERM; 4537 4538 return dir->i_op->mknod(dir, dentry, 4539 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 4540 } 4541 EXPORT_SYMBOL(vfs_whiteout); 4542 4543 int readlink_copy(char __user *buffer, int buflen, const char *link) 4544 { 4545 int len = PTR_ERR(link); 4546 if (IS_ERR(link)) 4547 goto out; 4548 4549 len = strlen(link); 4550 if (len > (unsigned) buflen) 4551 len = buflen; 4552 if (copy_to_user(buffer, link, len)) 4553 len = -EFAULT; 4554 out: 4555 return len; 4556 } 4557 EXPORT_SYMBOL(readlink_copy); 4558 4559 /* 4560 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 4561 * have ->get_link() not calling nd_jump_link(). Using (or not using) it 4562 * for any given inode is up to filesystem. 4563 */ 4564 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4565 { 4566 DEFINE_DELAYED_CALL(done); 4567 struct inode *inode = d_inode(dentry); 4568 const char *link = inode->i_link; 4569 int res; 4570 4571 if (!link) { 4572 link = inode->i_op->get_link(dentry, inode, &done); 4573 if (IS_ERR(link)) 4574 return PTR_ERR(link); 4575 } 4576 res = readlink_copy(buffer, buflen, link); 4577 do_delayed_call(&done); 4578 return res; 4579 } 4580 EXPORT_SYMBOL(generic_readlink); 4581 4582 /* get the link contents into pagecache */ 4583 const char *page_get_link(struct dentry *dentry, struct inode *inode, 4584 struct delayed_call *callback) 4585 { 4586 char *kaddr; 4587 struct page *page; 4588 struct address_space *mapping = inode->i_mapping; 4589 4590 if (!dentry) { 4591 page = find_get_page(mapping, 0); 4592 if (!page) 4593 return ERR_PTR(-ECHILD); 4594 if (!PageUptodate(page)) { 4595 put_page(page); 4596 return ERR_PTR(-ECHILD); 4597 } 4598 } else { 4599 page = read_mapping_page(mapping, 0, NULL); 4600 if (IS_ERR(page)) 4601 return (char*)page; 4602 } 4603 set_delayed_call(callback, page_put_link, page); 4604 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM); 4605 kaddr = page_address(page); 4606 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1); 4607 return kaddr; 4608 } 4609 4610 EXPORT_SYMBOL(page_get_link); 4611 4612 void page_put_link(void *arg) 4613 { 4614 put_page(arg); 4615 } 4616 EXPORT_SYMBOL(page_put_link); 4617 4618 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4619 { 4620 DEFINE_DELAYED_CALL(done); 4621 int res = readlink_copy(buffer, buflen, 4622 page_get_link(dentry, d_inode(dentry), 4623 &done)); 4624 do_delayed_call(&done); 4625 return res; 4626 } 4627 EXPORT_SYMBOL(page_readlink); 4628 4629 /* 4630 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 4631 */ 4632 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 4633 { 4634 struct address_space *mapping = inode->i_mapping; 4635 struct page *page; 4636 void *fsdata; 4637 int err; 4638 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE; 4639 if (nofs) 4640 flags |= AOP_FLAG_NOFS; 4641 4642 retry: 4643 err = pagecache_write_begin(NULL, mapping, 0, len-1, 4644 flags, &page, &fsdata); 4645 if (err) 4646 goto fail; 4647 4648 memcpy(page_address(page), symname, len-1); 4649 4650 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 4651 page, fsdata); 4652 if (err < 0) 4653 goto fail; 4654 if (err < len-1) 4655 goto retry; 4656 4657 mark_inode_dirty(inode); 4658 return 0; 4659 fail: 4660 return err; 4661 } 4662 EXPORT_SYMBOL(__page_symlink); 4663 4664 int page_symlink(struct inode *inode, const char *symname, int len) 4665 { 4666 return __page_symlink(inode, symname, len, 4667 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS)); 4668 } 4669 EXPORT_SYMBOL(page_symlink); 4670 4671 const struct inode_operations page_symlink_inode_operations = { 4672 .readlink = generic_readlink, 4673 .get_link = page_get_link, 4674 }; 4675 EXPORT_SYMBOL(page_symlink_inode_operations); 4676