1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/fs.h> 21 #include <linux/namei.h> 22 #include <linux/quotaops.h> 23 #include <linux/pagemap.h> 24 #include <linux/fsnotify.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/syscalls.h> 28 #include <linux/mount.h> 29 #include <linux/audit.h> 30 #include <linux/capability.h> 31 #include <linux/file.h> 32 #include <linux/fcntl.h> 33 #include <linux/device_cgroup.h> 34 #include <asm/uaccess.h> 35 36 #define ACC_MODE(x) ("\000\004\002\006"[(x)&O_ACCMODE]) 37 38 /* [Feb-1997 T. Schoebel-Theuer] 39 * Fundamental changes in the pathname lookup mechanisms (namei) 40 * were necessary because of omirr. The reason is that omirr needs 41 * to know the _real_ pathname, not the user-supplied one, in case 42 * of symlinks (and also when transname replacements occur). 43 * 44 * The new code replaces the old recursive symlink resolution with 45 * an iterative one (in case of non-nested symlink chains). It does 46 * this with calls to <fs>_follow_link(). 47 * As a side effect, dir_namei(), _namei() and follow_link() are now 48 * replaced with a single function lookup_dentry() that can handle all 49 * the special cases of the former code. 50 * 51 * With the new dcache, the pathname is stored at each inode, at least as 52 * long as the refcount of the inode is positive. As a side effect, the 53 * size of the dcache depends on the inode cache and thus is dynamic. 54 * 55 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 56 * resolution to correspond with current state of the code. 57 * 58 * Note that the symlink resolution is not *completely* iterative. 59 * There is still a significant amount of tail- and mid- recursion in 60 * the algorithm. Also, note that <fs>_readlink() is not used in 61 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 62 * may return different results than <fs>_follow_link(). Many virtual 63 * filesystems (including /proc) exhibit this behavior. 64 */ 65 66 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 67 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 68 * and the name already exists in form of a symlink, try to create the new 69 * name indicated by the symlink. The old code always complained that the 70 * name already exists, due to not following the symlink even if its target 71 * is nonexistent. The new semantics affects also mknod() and link() when 72 * the name is a symlink pointing to a non-existant name. 73 * 74 * I don't know which semantics is the right one, since I have no access 75 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 76 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 77 * "old" one. Personally, I think the new semantics is much more logical. 78 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 79 * file does succeed in both HP-UX and SunOs, but not in Solaris 80 * and in the old Linux semantics. 81 */ 82 83 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 84 * semantics. See the comments in "open_namei" and "do_link" below. 85 * 86 * [10-Sep-98 Alan Modra] Another symlink change. 87 */ 88 89 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 90 * inside the path - always follow. 91 * in the last component in creation/removal/renaming - never follow. 92 * if LOOKUP_FOLLOW passed - follow. 93 * if the pathname has trailing slashes - follow. 94 * otherwise - don't follow. 95 * (applied in that order). 96 * 97 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 98 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 99 * During the 2.4 we need to fix the userland stuff depending on it - 100 * hopefully we will be able to get rid of that wart in 2.5. So far only 101 * XEmacs seems to be relying on it... 102 */ 103 /* 104 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 105 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 106 * any extra contention... 107 */ 108 109 static int __link_path_walk(const char *name, struct nameidata *nd); 110 111 /* In order to reduce some races, while at the same time doing additional 112 * checking and hopefully speeding things up, we copy filenames to the 113 * kernel data space before using them.. 114 * 115 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 116 * PATH_MAX includes the nul terminator --RR. 117 */ 118 static int do_getname(const char __user *filename, char *page) 119 { 120 int retval; 121 unsigned long len = PATH_MAX; 122 123 if (!segment_eq(get_fs(), KERNEL_DS)) { 124 if ((unsigned long) filename >= TASK_SIZE) 125 return -EFAULT; 126 if (TASK_SIZE - (unsigned long) filename < PATH_MAX) 127 len = TASK_SIZE - (unsigned long) filename; 128 } 129 130 retval = strncpy_from_user(page, filename, len); 131 if (retval > 0) { 132 if (retval < len) 133 return 0; 134 return -ENAMETOOLONG; 135 } else if (!retval) 136 retval = -ENOENT; 137 return retval; 138 } 139 140 char * getname(const char __user * filename) 141 { 142 char *tmp, *result; 143 144 result = ERR_PTR(-ENOMEM); 145 tmp = __getname(); 146 if (tmp) { 147 int retval = do_getname(filename, tmp); 148 149 result = tmp; 150 if (retval < 0) { 151 __putname(tmp); 152 result = ERR_PTR(retval); 153 } 154 } 155 audit_getname(result); 156 return result; 157 } 158 159 #ifdef CONFIG_AUDITSYSCALL 160 void putname(const char *name) 161 { 162 if (unlikely(!audit_dummy_context())) 163 audit_putname(name); 164 else 165 __putname(name); 166 } 167 EXPORT_SYMBOL(putname); 168 #endif 169 170 171 /** 172 * generic_permission - check for access rights on a Posix-like filesystem 173 * @inode: inode to check access rights for 174 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 175 * @check_acl: optional callback to check for Posix ACLs 176 * 177 * Used to check for read/write/execute permissions on a file. 178 * We use "fsuid" for this, letting us set arbitrary permissions 179 * for filesystem access without changing the "normal" uids which 180 * are used for other things.. 181 */ 182 int generic_permission(struct inode *inode, int mask, 183 int (*check_acl)(struct inode *inode, int mask)) 184 { 185 umode_t mode = inode->i_mode; 186 187 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 188 189 if (current->fsuid == inode->i_uid) 190 mode >>= 6; 191 else { 192 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) { 193 int error = check_acl(inode, mask); 194 if (error == -EACCES) 195 goto check_capabilities; 196 else if (error != -EAGAIN) 197 return error; 198 } 199 200 if (in_group_p(inode->i_gid)) 201 mode >>= 3; 202 } 203 204 /* 205 * If the DACs are ok we don't need any capability check. 206 */ 207 if ((mask & ~mode) == 0) 208 return 0; 209 210 check_capabilities: 211 /* 212 * Read/write DACs are always overridable. 213 * Executable DACs are overridable if at least one exec bit is set. 214 */ 215 if (!(mask & MAY_EXEC) || 216 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode)) 217 if (capable(CAP_DAC_OVERRIDE)) 218 return 0; 219 220 /* 221 * Searching includes executable on directories, else just read. 222 */ 223 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE))) 224 if (capable(CAP_DAC_READ_SEARCH)) 225 return 0; 226 227 return -EACCES; 228 } 229 230 int inode_permission(struct inode *inode, int mask) 231 { 232 int retval; 233 234 if (mask & MAY_WRITE) { 235 umode_t mode = inode->i_mode; 236 237 /* 238 * Nobody gets write access to a read-only fs. 239 */ 240 if (IS_RDONLY(inode) && 241 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 242 return -EROFS; 243 244 /* 245 * Nobody gets write access to an immutable file. 246 */ 247 if (IS_IMMUTABLE(inode)) 248 return -EACCES; 249 } 250 251 /* Ordinary permission routines do not understand MAY_APPEND. */ 252 if (inode->i_op && inode->i_op->permission) { 253 retval = inode->i_op->permission(inode, mask); 254 if (!retval) { 255 /* 256 * Exec permission on a regular file is denied if none 257 * of the execute bits are set. 258 * 259 * This check should be done by the ->permission() 260 * method. 261 */ 262 if ((mask & MAY_EXEC) && S_ISREG(inode->i_mode) && 263 !(inode->i_mode & S_IXUGO)) 264 return -EACCES; 265 } 266 } else { 267 retval = generic_permission(inode, mask, NULL); 268 } 269 if (retval) 270 return retval; 271 272 retval = devcgroup_inode_permission(inode, mask); 273 if (retval) 274 return retval; 275 276 return security_inode_permission(inode, 277 mask & (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND)); 278 } 279 280 /** 281 * vfs_permission - check for access rights to a given path 282 * @nd: lookup result that describes the path 283 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 284 * 285 * Used to check for read/write/execute permissions on a path. 286 * We use "fsuid" for this, letting us set arbitrary permissions 287 * for filesystem access without changing the "normal" uids which 288 * are used for other things. 289 */ 290 int vfs_permission(struct nameidata *nd, int mask) 291 { 292 return inode_permission(nd->path.dentry->d_inode, mask); 293 } 294 295 /** 296 * file_permission - check for additional access rights to a given file 297 * @file: file to check access rights for 298 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 299 * 300 * Used to check for read/write/execute permissions on an already opened 301 * file. 302 * 303 * Note: 304 * Do not use this function in new code. All access checks should 305 * be done using vfs_permission(). 306 */ 307 int file_permission(struct file *file, int mask) 308 { 309 return inode_permission(file->f_path.dentry->d_inode, mask); 310 } 311 312 /* 313 * get_write_access() gets write permission for a file. 314 * put_write_access() releases this write permission. 315 * This is used for regular files. 316 * We cannot support write (and maybe mmap read-write shared) accesses and 317 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode 318 * can have the following values: 319 * 0: no writers, no VM_DENYWRITE mappings 320 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist 321 * > 0: (i_writecount) users are writing to the file. 322 * 323 * Normally we operate on that counter with atomic_{inc,dec} and it's safe 324 * except for the cases where we don't hold i_writecount yet. Then we need to 325 * use {get,deny}_write_access() - these functions check the sign and refuse 326 * to do the change if sign is wrong. Exclusion between them is provided by 327 * the inode->i_lock spinlock. 328 */ 329 330 int get_write_access(struct inode * inode) 331 { 332 spin_lock(&inode->i_lock); 333 if (atomic_read(&inode->i_writecount) < 0) { 334 spin_unlock(&inode->i_lock); 335 return -ETXTBSY; 336 } 337 atomic_inc(&inode->i_writecount); 338 spin_unlock(&inode->i_lock); 339 340 return 0; 341 } 342 343 int deny_write_access(struct file * file) 344 { 345 struct inode *inode = file->f_path.dentry->d_inode; 346 347 spin_lock(&inode->i_lock); 348 if (atomic_read(&inode->i_writecount) > 0) { 349 spin_unlock(&inode->i_lock); 350 return -ETXTBSY; 351 } 352 atomic_dec(&inode->i_writecount); 353 spin_unlock(&inode->i_lock); 354 355 return 0; 356 } 357 358 /** 359 * path_get - get a reference to a path 360 * @path: path to get the reference to 361 * 362 * Given a path increment the reference count to the dentry and the vfsmount. 363 */ 364 void path_get(struct path *path) 365 { 366 mntget(path->mnt); 367 dget(path->dentry); 368 } 369 EXPORT_SYMBOL(path_get); 370 371 /** 372 * path_put - put a reference to a path 373 * @path: path to put the reference to 374 * 375 * Given a path decrement the reference count to the dentry and the vfsmount. 376 */ 377 void path_put(struct path *path) 378 { 379 dput(path->dentry); 380 mntput(path->mnt); 381 } 382 EXPORT_SYMBOL(path_put); 383 384 /** 385 * release_open_intent - free up open intent resources 386 * @nd: pointer to nameidata 387 */ 388 void release_open_intent(struct nameidata *nd) 389 { 390 if (nd->intent.open.file->f_path.dentry == NULL) 391 put_filp(nd->intent.open.file); 392 else 393 fput(nd->intent.open.file); 394 } 395 396 static inline struct dentry * 397 do_revalidate(struct dentry *dentry, struct nameidata *nd) 398 { 399 int status = dentry->d_op->d_revalidate(dentry, nd); 400 if (unlikely(status <= 0)) { 401 /* 402 * The dentry failed validation. 403 * If d_revalidate returned 0 attempt to invalidate 404 * the dentry otherwise d_revalidate is asking us 405 * to return a fail status. 406 */ 407 if (!status) { 408 if (!d_invalidate(dentry)) { 409 dput(dentry); 410 dentry = NULL; 411 } 412 } else { 413 dput(dentry); 414 dentry = ERR_PTR(status); 415 } 416 } 417 return dentry; 418 } 419 420 /* 421 * Internal lookup() using the new generic dcache. 422 * SMP-safe 423 */ 424 static struct dentry * cached_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd) 425 { 426 struct dentry * dentry = __d_lookup(parent, name); 427 428 /* lockess __d_lookup may fail due to concurrent d_move() 429 * in some unrelated directory, so try with d_lookup 430 */ 431 if (!dentry) 432 dentry = d_lookup(parent, name); 433 434 if (dentry && dentry->d_op && dentry->d_op->d_revalidate) 435 dentry = do_revalidate(dentry, nd); 436 437 return dentry; 438 } 439 440 /* 441 * Short-cut version of permission(), for calling by 442 * path_walk(), when dcache lock is held. Combines parts 443 * of permission() and generic_permission(), and tests ONLY for 444 * MAY_EXEC permission. 445 * 446 * If appropriate, check DAC only. If not appropriate, or 447 * short-cut DAC fails, then call permission() to do more 448 * complete permission check. 449 */ 450 static int exec_permission_lite(struct inode *inode) 451 { 452 umode_t mode = inode->i_mode; 453 454 if (inode->i_op && inode->i_op->permission) 455 return -EAGAIN; 456 457 if (current->fsuid == inode->i_uid) 458 mode >>= 6; 459 else if (in_group_p(inode->i_gid)) 460 mode >>= 3; 461 462 if (mode & MAY_EXEC) 463 goto ok; 464 465 if ((inode->i_mode & S_IXUGO) && capable(CAP_DAC_OVERRIDE)) 466 goto ok; 467 468 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_OVERRIDE)) 469 goto ok; 470 471 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_READ_SEARCH)) 472 goto ok; 473 474 return -EACCES; 475 ok: 476 return security_inode_permission(inode, MAY_EXEC); 477 } 478 479 /* 480 * This is called when everything else fails, and we actually have 481 * to go to the low-level filesystem to find out what we should do.. 482 * 483 * We get the directory semaphore, and after getting that we also 484 * make sure that nobody added the entry to the dcache in the meantime.. 485 * SMP-safe 486 */ 487 static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd) 488 { 489 struct dentry * result; 490 struct inode *dir = parent->d_inode; 491 492 mutex_lock(&dir->i_mutex); 493 /* 494 * First re-do the cached lookup just in case it was created 495 * while we waited for the directory semaphore.. 496 * 497 * FIXME! This could use version numbering or similar to 498 * avoid unnecessary cache lookups. 499 * 500 * The "dcache_lock" is purely to protect the RCU list walker 501 * from concurrent renames at this point (we mustn't get false 502 * negatives from the RCU list walk here, unlike the optimistic 503 * fast walk). 504 * 505 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup 506 */ 507 result = d_lookup(parent, name); 508 if (!result) { 509 struct dentry *dentry; 510 511 /* Don't create child dentry for a dead directory. */ 512 result = ERR_PTR(-ENOENT); 513 if (IS_DEADDIR(dir)) 514 goto out_unlock; 515 516 dentry = d_alloc(parent, name); 517 result = ERR_PTR(-ENOMEM); 518 if (dentry) { 519 result = dir->i_op->lookup(dir, dentry, nd); 520 if (result) 521 dput(dentry); 522 else 523 result = dentry; 524 } 525 out_unlock: 526 mutex_unlock(&dir->i_mutex); 527 return result; 528 } 529 530 /* 531 * Uhhuh! Nasty case: the cache was re-populated while 532 * we waited on the semaphore. Need to revalidate. 533 */ 534 mutex_unlock(&dir->i_mutex); 535 if (result->d_op && result->d_op->d_revalidate) { 536 result = do_revalidate(result, nd); 537 if (!result) 538 result = ERR_PTR(-ENOENT); 539 } 540 return result; 541 } 542 543 /* SMP-safe */ 544 static __always_inline void 545 walk_init_root(const char *name, struct nameidata *nd) 546 { 547 struct fs_struct *fs = current->fs; 548 549 read_lock(&fs->lock); 550 nd->path = fs->root; 551 path_get(&fs->root); 552 read_unlock(&fs->lock); 553 } 554 555 /* 556 * Wrapper to retry pathname resolution whenever the underlying 557 * file system returns an ESTALE. 558 * 559 * Retry the whole path once, forcing real lookup requests 560 * instead of relying on the dcache. 561 */ 562 static __always_inline int link_path_walk(const char *name, struct nameidata *nd) 563 { 564 struct path save = nd->path; 565 int result; 566 567 /* make sure the stuff we saved doesn't go away */ 568 path_get(&save); 569 570 result = __link_path_walk(name, nd); 571 if (result == -ESTALE) { 572 /* nd->path had been dropped */ 573 nd->path = save; 574 path_get(&nd->path); 575 nd->flags |= LOOKUP_REVAL; 576 result = __link_path_walk(name, nd); 577 } 578 579 path_put(&save); 580 581 return result; 582 } 583 584 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link) 585 { 586 int res = 0; 587 char *name; 588 if (IS_ERR(link)) 589 goto fail; 590 591 if (*link == '/') { 592 path_put(&nd->path); 593 walk_init_root(link, nd); 594 } 595 res = link_path_walk(link, nd); 596 if (nd->depth || res || nd->last_type!=LAST_NORM) 597 return res; 598 /* 599 * If it is an iterative symlinks resolution in open_namei() we 600 * have to copy the last component. And all that crap because of 601 * bloody create() on broken symlinks. Furrfu... 602 */ 603 name = __getname(); 604 if (unlikely(!name)) { 605 path_put(&nd->path); 606 return -ENOMEM; 607 } 608 strcpy(name, nd->last.name); 609 nd->last.name = name; 610 return 0; 611 fail: 612 path_put(&nd->path); 613 return PTR_ERR(link); 614 } 615 616 static void path_put_conditional(struct path *path, struct nameidata *nd) 617 { 618 dput(path->dentry); 619 if (path->mnt != nd->path.mnt) 620 mntput(path->mnt); 621 } 622 623 static inline void path_to_nameidata(struct path *path, struct nameidata *nd) 624 { 625 dput(nd->path.dentry); 626 if (nd->path.mnt != path->mnt) 627 mntput(nd->path.mnt); 628 nd->path.mnt = path->mnt; 629 nd->path.dentry = path->dentry; 630 } 631 632 static __always_inline int __do_follow_link(struct path *path, struct nameidata *nd) 633 { 634 int error; 635 void *cookie; 636 struct dentry *dentry = path->dentry; 637 638 touch_atime(path->mnt, dentry); 639 nd_set_link(nd, NULL); 640 641 if (path->mnt != nd->path.mnt) { 642 path_to_nameidata(path, nd); 643 dget(dentry); 644 } 645 mntget(path->mnt); 646 cookie = dentry->d_inode->i_op->follow_link(dentry, nd); 647 error = PTR_ERR(cookie); 648 if (!IS_ERR(cookie)) { 649 char *s = nd_get_link(nd); 650 error = 0; 651 if (s) 652 error = __vfs_follow_link(nd, s); 653 if (dentry->d_inode->i_op->put_link) 654 dentry->d_inode->i_op->put_link(dentry, nd, cookie); 655 } 656 path_put(path); 657 658 return error; 659 } 660 661 /* 662 * This limits recursive symlink follows to 8, while 663 * limiting consecutive symlinks to 40. 664 * 665 * Without that kind of total limit, nasty chains of consecutive 666 * symlinks can cause almost arbitrarily long lookups. 667 */ 668 static inline int do_follow_link(struct path *path, struct nameidata *nd) 669 { 670 int err = -ELOOP; 671 if (current->link_count >= MAX_NESTED_LINKS) 672 goto loop; 673 if (current->total_link_count >= 40) 674 goto loop; 675 BUG_ON(nd->depth >= MAX_NESTED_LINKS); 676 cond_resched(); 677 err = security_inode_follow_link(path->dentry, nd); 678 if (err) 679 goto loop; 680 current->link_count++; 681 current->total_link_count++; 682 nd->depth++; 683 err = __do_follow_link(path, nd); 684 current->link_count--; 685 nd->depth--; 686 return err; 687 loop: 688 path_put_conditional(path, nd); 689 path_put(&nd->path); 690 return err; 691 } 692 693 int follow_up(struct vfsmount **mnt, struct dentry **dentry) 694 { 695 struct vfsmount *parent; 696 struct dentry *mountpoint; 697 spin_lock(&vfsmount_lock); 698 parent=(*mnt)->mnt_parent; 699 if (parent == *mnt) { 700 spin_unlock(&vfsmount_lock); 701 return 0; 702 } 703 mntget(parent); 704 mountpoint=dget((*mnt)->mnt_mountpoint); 705 spin_unlock(&vfsmount_lock); 706 dput(*dentry); 707 *dentry = mountpoint; 708 mntput(*mnt); 709 *mnt = parent; 710 return 1; 711 } 712 713 /* no need for dcache_lock, as serialization is taken care in 714 * namespace.c 715 */ 716 static int __follow_mount(struct path *path) 717 { 718 int res = 0; 719 while (d_mountpoint(path->dentry)) { 720 struct vfsmount *mounted = lookup_mnt(path->mnt, path->dentry); 721 if (!mounted) 722 break; 723 dput(path->dentry); 724 if (res) 725 mntput(path->mnt); 726 path->mnt = mounted; 727 path->dentry = dget(mounted->mnt_root); 728 res = 1; 729 } 730 return res; 731 } 732 733 static void follow_mount(struct vfsmount **mnt, struct dentry **dentry) 734 { 735 while (d_mountpoint(*dentry)) { 736 struct vfsmount *mounted = lookup_mnt(*mnt, *dentry); 737 if (!mounted) 738 break; 739 dput(*dentry); 740 mntput(*mnt); 741 *mnt = mounted; 742 *dentry = dget(mounted->mnt_root); 743 } 744 } 745 746 /* no need for dcache_lock, as serialization is taken care in 747 * namespace.c 748 */ 749 int follow_down(struct vfsmount **mnt, struct dentry **dentry) 750 { 751 struct vfsmount *mounted; 752 753 mounted = lookup_mnt(*mnt, *dentry); 754 if (mounted) { 755 dput(*dentry); 756 mntput(*mnt); 757 *mnt = mounted; 758 *dentry = dget(mounted->mnt_root); 759 return 1; 760 } 761 return 0; 762 } 763 764 static __always_inline void follow_dotdot(struct nameidata *nd) 765 { 766 struct fs_struct *fs = current->fs; 767 768 while(1) { 769 struct vfsmount *parent; 770 struct dentry *old = nd->path.dentry; 771 772 read_lock(&fs->lock); 773 if (nd->path.dentry == fs->root.dentry && 774 nd->path.mnt == fs->root.mnt) { 775 read_unlock(&fs->lock); 776 break; 777 } 778 read_unlock(&fs->lock); 779 spin_lock(&dcache_lock); 780 if (nd->path.dentry != nd->path.mnt->mnt_root) { 781 nd->path.dentry = dget(nd->path.dentry->d_parent); 782 spin_unlock(&dcache_lock); 783 dput(old); 784 break; 785 } 786 spin_unlock(&dcache_lock); 787 spin_lock(&vfsmount_lock); 788 parent = nd->path.mnt->mnt_parent; 789 if (parent == nd->path.mnt) { 790 spin_unlock(&vfsmount_lock); 791 break; 792 } 793 mntget(parent); 794 nd->path.dentry = dget(nd->path.mnt->mnt_mountpoint); 795 spin_unlock(&vfsmount_lock); 796 dput(old); 797 mntput(nd->path.mnt); 798 nd->path.mnt = parent; 799 } 800 follow_mount(&nd->path.mnt, &nd->path.dentry); 801 } 802 803 /* 804 * It's more convoluted than I'd like it to be, but... it's still fairly 805 * small and for now I'd prefer to have fast path as straight as possible. 806 * It _is_ time-critical. 807 */ 808 static int do_lookup(struct nameidata *nd, struct qstr *name, 809 struct path *path) 810 { 811 struct vfsmount *mnt = nd->path.mnt; 812 struct dentry *dentry = __d_lookup(nd->path.dentry, name); 813 814 if (!dentry) 815 goto need_lookup; 816 if (dentry->d_op && dentry->d_op->d_revalidate) 817 goto need_revalidate; 818 done: 819 path->mnt = mnt; 820 path->dentry = dentry; 821 __follow_mount(path); 822 return 0; 823 824 need_lookup: 825 dentry = real_lookup(nd->path.dentry, name, nd); 826 if (IS_ERR(dentry)) 827 goto fail; 828 goto done; 829 830 need_revalidate: 831 dentry = do_revalidate(dentry, nd); 832 if (!dentry) 833 goto need_lookup; 834 if (IS_ERR(dentry)) 835 goto fail; 836 goto done; 837 838 fail: 839 return PTR_ERR(dentry); 840 } 841 842 /* 843 * Name resolution. 844 * This is the basic name resolution function, turning a pathname into 845 * the final dentry. We expect 'base' to be positive and a directory. 846 * 847 * Returns 0 and nd will have valid dentry and mnt on success. 848 * Returns error and drops reference to input namei data on failure. 849 */ 850 static int __link_path_walk(const char *name, struct nameidata *nd) 851 { 852 struct path next; 853 struct inode *inode; 854 int err; 855 unsigned int lookup_flags = nd->flags; 856 857 while (*name=='/') 858 name++; 859 if (!*name) 860 goto return_reval; 861 862 inode = nd->path.dentry->d_inode; 863 if (nd->depth) 864 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE); 865 866 /* At this point we know we have a real path component. */ 867 for(;;) { 868 unsigned long hash; 869 struct qstr this; 870 unsigned int c; 871 872 nd->flags |= LOOKUP_CONTINUE; 873 err = exec_permission_lite(inode); 874 if (err == -EAGAIN) 875 err = vfs_permission(nd, MAY_EXEC); 876 if (err) 877 break; 878 879 this.name = name; 880 c = *(const unsigned char *)name; 881 882 hash = init_name_hash(); 883 do { 884 name++; 885 hash = partial_name_hash(c, hash); 886 c = *(const unsigned char *)name; 887 } while (c && (c != '/')); 888 this.len = name - (const char *) this.name; 889 this.hash = end_name_hash(hash); 890 891 /* remove trailing slashes? */ 892 if (!c) 893 goto last_component; 894 while (*++name == '/'); 895 if (!*name) 896 goto last_with_slashes; 897 898 /* 899 * "." and ".." are special - ".." especially so because it has 900 * to be able to know about the current root directory and 901 * parent relationships. 902 */ 903 if (this.name[0] == '.') switch (this.len) { 904 default: 905 break; 906 case 2: 907 if (this.name[1] != '.') 908 break; 909 follow_dotdot(nd); 910 inode = nd->path.dentry->d_inode; 911 /* fallthrough */ 912 case 1: 913 continue; 914 } 915 /* 916 * See if the low-level filesystem might want 917 * to use its own hash.. 918 */ 919 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) { 920 err = nd->path.dentry->d_op->d_hash(nd->path.dentry, 921 &this); 922 if (err < 0) 923 break; 924 } 925 /* This does the actual lookups.. */ 926 err = do_lookup(nd, &this, &next); 927 if (err) 928 break; 929 930 err = -ENOENT; 931 inode = next.dentry->d_inode; 932 if (!inode) 933 goto out_dput; 934 err = -ENOTDIR; 935 if (!inode->i_op) 936 goto out_dput; 937 938 if (inode->i_op->follow_link) { 939 err = do_follow_link(&next, nd); 940 if (err) 941 goto return_err; 942 err = -ENOENT; 943 inode = nd->path.dentry->d_inode; 944 if (!inode) 945 break; 946 err = -ENOTDIR; 947 if (!inode->i_op) 948 break; 949 } else 950 path_to_nameidata(&next, nd); 951 err = -ENOTDIR; 952 if (!inode->i_op->lookup) 953 break; 954 continue; 955 /* here ends the main loop */ 956 957 last_with_slashes: 958 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 959 last_component: 960 /* Clear LOOKUP_CONTINUE iff it was previously unset */ 961 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE; 962 if (lookup_flags & LOOKUP_PARENT) 963 goto lookup_parent; 964 if (this.name[0] == '.') switch (this.len) { 965 default: 966 break; 967 case 2: 968 if (this.name[1] != '.') 969 break; 970 follow_dotdot(nd); 971 inode = nd->path.dentry->d_inode; 972 /* fallthrough */ 973 case 1: 974 goto return_reval; 975 } 976 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) { 977 err = nd->path.dentry->d_op->d_hash(nd->path.dentry, 978 &this); 979 if (err < 0) 980 break; 981 } 982 err = do_lookup(nd, &this, &next); 983 if (err) 984 break; 985 inode = next.dentry->d_inode; 986 if ((lookup_flags & LOOKUP_FOLLOW) 987 && inode && inode->i_op && inode->i_op->follow_link) { 988 err = do_follow_link(&next, nd); 989 if (err) 990 goto return_err; 991 inode = nd->path.dentry->d_inode; 992 } else 993 path_to_nameidata(&next, nd); 994 err = -ENOENT; 995 if (!inode) 996 break; 997 if (lookup_flags & LOOKUP_DIRECTORY) { 998 err = -ENOTDIR; 999 if (!inode->i_op || !inode->i_op->lookup) 1000 break; 1001 } 1002 goto return_base; 1003 lookup_parent: 1004 nd->last = this; 1005 nd->last_type = LAST_NORM; 1006 if (this.name[0] != '.') 1007 goto return_base; 1008 if (this.len == 1) 1009 nd->last_type = LAST_DOT; 1010 else if (this.len == 2 && this.name[1] == '.') 1011 nd->last_type = LAST_DOTDOT; 1012 else 1013 goto return_base; 1014 return_reval: 1015 /* 1016 * We bypassed the ordinary revalidation routines. 1017 * We may need to check the cached dentry for staleness. 1018 */ 1019 if (nd->path.dentry && nd->path.dentry->d_sb && 1020 (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) { 1021 err = -ESTALE; 1022 /* Note: we do not d_invalidate() */ 1023 if (!nd->path.dentry->d_op->d_revalidate( 1024 nd->path.dentry, nd)) 1025 break; 1026 } 1027 return_base: 1028 return 0; 1029 out_dput: 1030 path_put_conditional(&next, nd); 1031 break; 1032 } 1033 path_put(&nd->path); 1034 return_err: 1035 return err; 1036 } 1037 1038 static int path_walk(const char *name, struct nameidata *nd) 1039 { 1040 current->total_link_count = 0; 1041 return link_path_walk(name, nd); 1042 } 1043 1044 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 1045 static int do_path_lookup(int dfd, const char *name, 1046 unsigned int flags, struct nameidata *nd) 1047 { 1048 int retval = 0; 1049 int fput_needed; 1050 struct file *file; 1051 struct fs_struct *fs = current->fs; 1052 1053 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 1054 nd->flags = flags; 1055 nd->depth = 0; 1056 1057 if (*name=='/') { 1058 read_lock(&fs->lock); 1059 nd->path = fs->root; 1060 path_get(&fs->root); 1061 read_unlock(&fs->lock); 1062 } else if (dfd == AT_FDCWD) { 1063 read_lock(&fs->lock); 1064 nd->path = fs->pwd; 1065 path_get(&fs->pwd); 1066 read_unlock(&fs->lock); 1067 } else { 1068 struct dentry *dentry; 1069 1070 file = fget_light(dfd, &fput_needed); 1071 retval = -EBADF; 1072 if (!file) 1073 goto out_fail; 1074 1075 dentry = file->f_path.dentry; 1076 1077 retval = -ENOTDIR; 1078 if (!S_ISDIR(dentry->d_inode->i_mode)) 1079 goto fput_fail; 1080 1081 retval = file_permission(file, MAY_EXEC); 1082 if (retval) 1083 goto fput_fail; 1084 1085 nd->path = file->f_path; 1086 path_get(&file->f_path); 1087 1088 fput_light(file, fput_needed); 1089 } 1090 1091 retval = path_walk(name, nd); 1092 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry && 1093 nd->path.dentry->d_inode)) 1094 audit_inode(name, nd->path.dentry); 1095 out_fail: 1096 return retval; 1097 1098 fput_fail: 1099 fput_light(file, fput_needed); 1100 goto out_fail; 1101 } 1102 1103 int path_lookup(const char *name, unsigned int flags, 1104 struct nameidata *nd) 1105 { 1106 return do_path_lookup(AT_FDCWD, name, flags, nd); 1107 } 1108 1109 /** 1110 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 1111 * @dentry: pointer to dentry of the base directory 1112 * @mnt: pointer to vfs mount of the base directory 1113 * @name: pointer to file name 1114 * @flags: lookup flags 1115 * @nd: pointer to nameidata 1116 */ 1117 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 1118 const char *name, unsigned int flags, 1119 struct nameidata *nd) 1120 { 1121 int retval; 1122 1123 /* same as do_path_lookup */ 1124 nd->last_type = LAST_ROOT; 1125 nd->flags = flags; 1126 nd->depth = 0; 1127 1128 nd->path.dentry = dentry; 1129 nd->path.mnt = mnt; 1130 path_get(&nd->path); 1131 1132 retval = path_walk(name, nd); 1133 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry && 1134 nd->path.dentry->d_inode)) 1135 audit_inode(name, nd->path.dentry); 1136 1137 return retval; 1138 1139 } 1140 1141 static int __path_lookup_intent_open(int dfd, const char *name, 1142 unsigned int lookup_flags, struct nameidata *nd, 1143 int open_flags, int create_mode) 1144 { 1145 struct file *filp = get_empty_filp(); 1146 int err; 1147 1148 if (filp == NULL) 1149 return -ENFILE; 1150 nd->intent.open.file = filp; 1151 nd->intent.open.flags = open_flags; 1152 nd->intent.open.create_mode = create_mode; 1153 err = do_path_lookup(dfd, name, lookup_flags|LOOKUP_OPEN, nd); 1154 if (IS_ERR(nd->intent.open.file)) { 1155 if (err == 0) { 1156 err = PTR_ERR(nd->intent.open.file); 1157 path_put(&nd->path); 1158 } 1159 } else if (err != 0) 1160 release_open_intent(nd); 1161 return err; 1162 } 1163 1164 /** 1165 * path_lookup_open - lookup a file path with open intent 1166 * @dfd: the directory to use as base, or AT_FDCWD 1167 * @name: pointer to file name 1168 * @lookup_flags: lookup intent flags 1169 * @nd: pointer to nameidata 1170 * @open_flags: open intent flags 1171 */ 1172 int path_lookup_open(int dfd, const char *name, unsigned int lookup_flags, 1173 struct nameidata *nd, int open_flags) 1174 { 1175 return __path_lookup_intent_open(dfd, name, lookup_flags, nd, 1176 open_flags, 0); 1177 } 1178 1179 /** 1180 * path_lookup_create - lookup a file path with open + create intent 1181 * @dfd: the directory to use as base, or AT_FDCWD 1182 * @name: pointer to file name 1183 * @lookup_flags: lookup intent flags 1184 * @nd: pointer to nameidata 1185 * @open_flags: open intent flags 1186 * @create_mode: create intent flags 1187 */ 1188 static int path_lookup_create(int dfd, const char *name, 1189 unsigned int lookup_flags, struct nameidata *nd, 1190 int open_flags, int create_mode) 1191 { 1192 return __path_lookup_intent_open(dfd, name, lookup_flags|LOOKUP_CREATE, 1193 nd, open_flags, create_mode); 1194 } 1195 1196 static struct dentry *__lookup_hash(struct qstr *name, 1197 struct dentry *base, struct nameidata *nd) 1198 { 1199 struct dentry *dentry; 1200 struct inode *inode; 1201 int err; 1202 1203 inode = base->d_inode; 1204 1205 /* 1206 * See if the low-level filesystem might want 1207 * to use its own hash.. 1208 */ 1209 if (base->d_op && base->d_op->d_hash) { 1210 err = base->d_op->d_hash(base, name); 1211 dentry = ERR_PTR(err); 1212 if (err < 0) 1213 goto out; 1214 } 1215 1216 dentry = cached_lookup(base, name, nd); 1217 if (!dentry) { 1218 struct dentry *new; 1219 1220 /* Don't create child dentry for a dead directory. */ 1221 dentry = ERR_PTR(-ENOENT); 1222 if (IS_DEADDIR(inode)) 1223 goto out; 1224 1225 new = d_alloc(base, name); 1226 dentry = ERR_PTR(-ENOMEM); 1227 if (!new) 1228 goto out; 1229 dentry = inode->i_op->lookup(inode, new, nd); 1230 if (!dentry) 1231 dentry = new; 1232 else 1233 dput(new); 1234 } 1235 out: 1236 return dentry; 1237 } 1238 1239 /* 1240 * Restricted form of lookup. Doesn't follow links, single-component only, 1241 * needs parent already locked. Doesn't follow mounts. 1242 * SMP-safe. 1243 */ 1244 static struct dentry *lookup_hash(struct nameidata *nd) 1245 { 1246 int err; 1247 1248 err = inode_permission(nd->path.dentry->d_inode, MAY_EXEC); 1249 if (err) 1250 return ERR_PTR(err); 1251 return __lookup_hash(&nd->last, nd->path.dentry, nd); 1252 } 1253 1254 static int __lookup_one_len(const char *name, struct qstr *this, 1255 struct dentry *base, int len) 1256 { 1257 unsigned long hash; 1258 unsigned int c; 1259 1260 this->name = name; 1261 this->len = len; 1262 if (!len) 1263 return -EACCES; 1264 1265 hash = init_name_hash(); 1266 while (len--) { 1267 c = *(const unsigned char *)name++; 1268 if (c == '/' || c == '\0') 1269 return -EACCES; 1270 hash = partial_name_hash(c, hash); 1271 } 1272 this->hash = end_name_hash(hash); 1273 return 0; 1274 } 1275 1276 /** 1277 * lookup_one_len - filesystem helper to lookup single pathname component 1278 * @name: pathname component to lookup 1279 * @base: base directory to lookup from 1280 * @len: maximum length @len should be interpreted to 1281 * 1282 * Note that this routine is purely a helper for filesystem usage and should 1283 * not be called by generic code. Also note that by using this function the 1284 * nameidata argument is passed to the filesystem methods and a filesystem 1285 * using this helper needs to be prepared for that. 1286 */ 1287 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 1288 { 1289 int err; 1290 struct qstr this; 1291 1292 err = __lookup_one_len(name, &this, base, len); 1293 if (err) 1294 return ERR_PTR(err); 1295 1296 err = inode_permission(base->d_inode, MAY_EXEC); 1297 if (err) 1298 return ERR_PTR(err); 1299 return __lookup_hash(&this, base, NULL); 1300 } 1301 1302 /** 1303 * lookup_one_noperm - bad hack for sysfs 1304 * @name: pathname component to lookup 1305 * @base: base directory to lookup from 1306 * 1307 * This is a variant of lookup_one_len that doesn't perform any permission 1308 * checks. It's a horrible hack to work around the braindead sysfs 1309 * architecture and should not be used anywhere else. 1310 * 1311 * DON'T USE THIS FUNCTION EVER, thanks. 1312 */ 1313 struct dentry *lookup_one_noperm(const char *name, struct dentry *base) 1314 { 1315 int err; 1316 struct qstr this; 1317 1318 err = __lookup_one_len(name, &this, base, strlen(name)); 1319 if (err) 1320 return ERR_PTR(err); 1321 return __lookup_hash(&this, base, NULL); 1322 } 1323 1324 int user_path_at(int dfd, const char __user *name, unsigned flags, 1325 struct path *path) 1326 { 1327 struct nameidata nd; 1328 char *tmp = getname(name); 1329 int err = PTR_ERR(tmp); 1330 if (!IS_ERR(tmp)) { 1331 1332 BUG_ON(flags & LOOKUP_PARENT); 1333 1334 err = do_path_lookup(dfd, tmp, flags, &nd); 1335 putname(tmp); 1336 if (!err) 1337 *path = nd.path; 1338 } 1339 return err; 1340 } 1341 1342 static int user_path_parent(int dfd, const char __user *path, 1343 struct nameidata *nd, char **name) 1344 { 1345 char *s = getname(path); 1346 int error; 1347 1348 if (IS_ERR(s)) 1349 return PTR_ERR(s); 1350 1351 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd); 1352 if (error) 1353 putname(s); 1354 else 1355 *name = s; 1356 1357 return error; 1358 } 1359 1360 /* 1361 * It's inline, so penalty for filesystems that don't use sticky bit is 1362 * minimal. 1363 */ 1364 static inline int check_sticky(struct inode *dir, struct inode *inode) 1365 { 1366 if (!(dir->i_mode & S_ISVTX)) 1367 return 0; 1368 if (inode->i_uid == current->fsuid) 1369 return 0; 1370 if (dir->i_uid == current->fsuid) 1371 return 0; 1372 return !capable(CAP_FOWNER); 1373 } 1374 1375 /* 1376 * Check whether we can remove a link victim from directory dir, check 1377 * whether the type of victim is right. 1378 * 1. We can't do it if dir is read-only (done in permission()) 1379 * 2. We should have write and exec permissions on dir 1380 * 3. We can't remove anything from append-only dir 1381 * 4. We can't do anything with immutable dir (done in permission()) 1382 * 5. If the sticky bit on dir is set we should either 1383 * a. be owner of dir, or 1384 * b. be owner of victim, or 1385 * c. have CAP_FOWNER capability 1386 * 6. If the victim is append-only or immutable we can't do antyhing with 1387 * links pointing to it. 1388 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 1389 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 1390 * 9. We can't remove a root or mountpoint. 1391 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 1392 * nfs_async_unlink(). 1393 */ 1394 static int may_delete(struct inode *dir,struct dentry *victim,int isdir) 1395 { 1396 int error; 1397 1398 if (!victim->d_inode) 1399 return -ENOENT; 1400 1401 BUG_ON(victim->d_parent->d_inode != dir); 1402 audit_inode_child(victim->d_name.name, victim, dir); 1403 1404 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 1405 if (error) 1406 return error; 1407 if (IS_APPEND(dir)) 1408 return -EPERM; 1409 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)|| 1410 IS_IMMUTABLE(victim->d_inode)) 1411 return -EPERM; 1412 if (isdir) { 1413 if (!S_ISDIR(victim->d_inode->i_mode)) 1414 return -ENOTDIR; 1415 if (IS_ROOT(victim)) 1416 return -EBUSY; 1417 } else if (S_ISDIR(victim->d_inode->i_mode)) 1418 return -EISDIR; 1419 if (IS_DEADDIR(dir)) 1420 return -ENOENT; 1421 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 1422 return -EBUSY; 1423 return 0; 1424 } 1425 1426 /* Check whether we can create an object with dentry child in directory 1427 * dir. 1428 * 1. We can't do it if child already exists (open has special treatment for 1429 * this case, but since we are inlined it's OK) 1430 * 2. We can't do it if dir is read-only (done in permission()) 1431 * 3. We should have write and exec permissions on dir 1432 * 4. We can't do it if dir is immutable (done in permission()) 1433 */ 1434 static inline int may_create(struct inode *dir, struct dentry *child) 1435 { 1436 if (child->d_inode) 1437 return -EEXIST; 1438 if (IS_DEADDIR(dir)) 1439 return -ENOENT; 1440 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 1441 } 1442 1443 /* 1444 * O_DIRECTORY translates into forcing a directory lookup. 1445 */ 1446 static inline int lookup_flags(unsigned int f) 1447 { 1448 unsigned long retval = LOOKUP_FOLLOW; 1449 1450 if (f & O_NOFOLLOW) 1451 retval &= ~LOOKUP_FOLLOW; 1452 1453 if (f & O_DIRECTORY) 1454 retval |= LOOKUP_DIRECTORY; 1455 1456 return retval; 1457 } 1458 1459 /* 1460 * p1 and p2 should be directories on the same fs. 1461 */ 1462 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 1463 { 1464 struct dentry *p; 1465 1466 if (p1 == p2) { 1467 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1468 return NULL; 1469 } 1470 1471 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 1472 1473 for (p = p1; p->d_parent != p; p = p->d_parent) { 1474 if (p->d_parent == p2) { 1475 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT); 1476 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD); 1477 return p; 1478 } 1479 } 1480 1481 for (p = p2; p->d_parent != p; p = p->d_parent) { 1482 if (p->d_parent == p1) { 1483 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1484 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 1485 return p; 1486 } 1487 } 1488 1489 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1490 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 1491 return NULL; 1492 } 1493 1494 void unlock_rename(struct dentry *p1, struct dentry *p2) 1495 { 1496 mutex_unlock(&p1->d_inode->i_mutex); 1497 if (p1 != p2) { 1498 mutex_unlock(&p2->d_inode->i_mutex); 1499 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 1500 } 1501 } 1502 1503 int vfs_create(struct inode *dir, struct dentry *dentry, int mode, 1504 struct nameidata *nd) 1505 { 1506 int error = may_create(dir, dentry); 1507 1508 if (error) 1509 return error; 1510 1511 if (!dir->i_op || !dir->i_op->create) 1512 return -EACCES; /* shouldn't it be ENOSYS? */ 1513 mode &= S_IALLUGO; 1514 mode |= S_IFREG; 1515 error = security_inode_create(dir, dentry, mode); 1516 if (error) 1517 return error; 1518 DQUOT_INIT(dir); 1519 error = dir->i_op->create(dir, dentry, mode, nd); 1520 if (!error) 1521 fsnotify_create(dir, dentry); 1522 return error; 1523 } 1524 1525 int may_open(struct nameidata *nd, int acc_mode, int flag) 1526 { 1527 struct dentry *dentry = nd->path.dentry; 1528 struct inode *inode = dentry->d_inode; 1529 int error; 1530 1531 if (!inode) 1532 return -ENOENT; 1533 1534 if (S_ISLNK(inode->i_mode)) 1535 return -ELOOP; 1536 1537 if (S_ISDIR(inode->i_mode) && (acc_mode & MAY_WRITE)) 1538 return -EISDIR; 1539 1540 /* 1541 * FIFO's, sockets and device files are special: they don't 1542 * actually live on the filesystem itself, and as such you 1543 * can write to them even if the filesystem is read-only. 1544 */ 1545 if (S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 1546 flag &= ~O_TRUNC; 1547 } else if (S_ISBLK(inode->i_mode) || S_ISCHR(inode->i_mode)) { 1548 if (nd->path.mnt->mnt_flags & MNT_NODEV) 1549 return -EACCES; 1550 1551 flag &= ~O_TRUNC; 1552 } 1553 1554 error = vfs_permission(nd, acc_mode); 1555 if (error) 1556 return error; 1557 /* 1558 * An append-only file must be opened in append mode for writing. 1559 */ 1560 if (IS_APPEND(inode)) { 1561 if ((flag & FMODE_WRITE) && !(flag & O_APPEND)) 1562 return -EPERM; 1563 if (flag & O_TRUNC) 1564 return -EPERM; 1565 } 1566 1567 /* O_NOATIME can only be set by the owner or superuser */ 1568 if (flag & O_NOATIME) 1569 if (!is_owner_or_cap(inode)) 1570 return -EPERM; 1571 1572 /* 1573 * Ensure there are no outstanding leases on the file. 1574 */ 1575 error = break_lease(inode, flag); 1576 if (error) 1577 return error; 1578 1579 if (flag & O_TRUNC) { 1580 error = get_write_access(inode); 1581 if (error) 1582 return error; 1583 1584 /* 1585 * Refuse to truncate files with mandatory locks held on them. 1586 */ 1587 error = locks_verify_locked(inode); 1588 if (!error) { 1589 DQUOT_INIT(inode); 1590 1591 error = do_truncate(dentry, 0, 1592 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 1593 NULL); 1594 } 1595 put_write_access(inode); 1596 if (error) 1597 return error; 1598 } else 1599 if (flag & FMODE_WRITE) 1600 DQUOT_INIT(inode); 1601 1602 return 0; 1603 } 1604 1605 /* 1606 * Be careful about ever adding any more callers of this 1607 * function. Its flags must be in the namei format, not 1608 * what get passed to sys_open(). 1609 */ 1610 static int __open_namei_create(struct nameidata *nd, struct path *path, 1611 int flag, int mode) 1612 { 1613 int error; 1614 struct dentry *dir = nd->path.dentry; 1615 1616 if (!IS_POSIXACL(dir->d_inode)) 1617 mode &= ~current->fs->umask; 1618 error = vfs_create(dir->d_inode, path->dentry, mode, nd); 1619 mutex_unlock(&dir->d_inode->i_mutex); 1620 dput(nd->path.dentry); 1621 nd->path.dentry = path->dentry; 1622 if (error) 1623 return error; 1624 /* Don't check for write permission, don't truncate */ 1625 return may_open(nd, 0, flag & ~O_TRUNC); 1626 } 1627 1628 /* 1629 * Note that while the flag value (low two bits) for sys_open means: 1630 * 00 - read-only 1631 * 01 - write-only 1632 * 10 - read-write 1633 * 11 - special 1634 * it is changed into 1635 * 00 - no permissions needed 1636 * 01 - read-permission 1637 * 10 - write-permission 1638 * 11 - read-write 1639 * for the internal routines (ie open_namei()/follow_link() etc) 1640 * This is more logical, and also allows the 00 "no perm needed" 1641 * to be used for symlinks (where the permissions are checked 1642 * later). 1643 * 1644 */ 1645 static inline int open_to_namei_flags(int flag) 1646 { 1647 if ((flag+1) & O_ACCMODE) 1648 flag++; 1649 return flag; 1650 } 1651 1652 static int open_will_write_to_fs(int flag, struct inode *inode) 1653 { 1654 /* 1655 * We'll never write to the fs underlying 1656 * a device file. 1657 */ 1658 if (special_file(inode->i_mode)) 1659 return 0; 1660 return (flag & O_TRUNC); 1661 } 1662 1663 /* 1664 * Note that the low bits of the passed in "open_flag" 1665 * are not the same as in the local variable "flag". See 1666 * open_to_namei_flags() for more details. 1667 */ 1668 struct file *do_filp_open(int dfd, const char *pathname, 1669 int open_flag, int mode) 1670 { 1671 struct file *filp; 1672 struct nameidata nd; 1673 int acc_mode, error; 1674 struct path path; 1675 struct dentry *dir; 1676 int count = 0; 1677 int will_write; 1678 int flag = open_to_namei_flags(open_flag); 1679 1680 acc_mode = MAY_OPEN | ACC_MODE(flag); 1681 1682 /* O_TRUNC implies we need access checks for write permissions */ 1683 if (flag & O_TRUNC) 1684 acc_mode |= MAY_WRITE; 1685 1686 /* Allow the LSM permission hook to distinguish append 1687 access from general write access. */ 1688 if (flag & O_APPEND) 1689 acc_mode |= MAY_APPEND; 1690 1691 /* 1692 * The simplest case - just a plain lookup. 1693 */ 1694 if (!(flag & O_CREAT)) { 1695 error = path_lookup_open(dfd, pathname, lookup_flags(flag), 1696 &nd, flag); 1697 if (error) 1698 return ERR_PTR(error); 1699 goto ok; 1700 } 1701 1702 /* 1703 * Create - we need to know the parent. 1704 */ 1705 error = path_lookup_create(dfd, pathname, LOOKUP_PARENT, 1706 &nd, flag, mode); 1707 if (error) 1708 return ERR_PTR(error); 1709 1710 /* 1711 * We have the parent and last component. First of all, check 1712 * that we are not asked to creat(2) an obvious directory - that 1713 * will not do. 1714 */ 1715 error = -EISDIR; 1716 if (nd.last_type != LAST_NORM || nd.last.name[nd.last.len]) 1717 goto exit; 1718 1719 dir = nd.path.dentry; 1720 nd.flags &= ~LOOKUP_PARENT; 1721 mutex_lock(&dir->d_inode->i_mutex); 1722 path.dentry = lookup_hash(&nd); 1723 path.mnt = nd.path.mnt; 1724 1725 do_last: 1726 error = PTR_ERR(path.dentry); 1727 if (IS_ERR(path.dentry)) { 1728 mutex_unlock(&dir->d_inode->i_mutex); 1729 goto exit; 1730 } 1731 1732 if (IS_ERR(nd.intent.open.file)) { 1733 error = PTR_ERR(nd.intent.open.file); 1734 goto exit_mutex_unlock; 1735 } 1736 1737 /* Negative dentry, just create the file */ 1738 if (!path.dentry->d_inode) { 1739 /* 1740 * This write is needed to ensure that a 1741 * ro->rw transition does not occur between 1742 * the time when the file is created and when 1743 * a permanent write count is taken through 1744 * the 'struct file' in nameidata_to_filp(). 1745 */ 1746 error = mnt_want_write(nd.path.mnt); 1747 if (error) 1748 goto exit_mutex_unlock; 1749 error = __open_namei_create(&nd, &path, flag, mode); 1750 if (error) { 1751 mnt_drop_write(nd.path.mnt); 1752 goto exit; 1753 } 1754 filp = nameidata_to_filp(&nd, open_flag); 1755 mnt_drop_write(nd.path.mnt); 1756 return filp; 1757 } 1758 1759 /* 1760 * It already exists. 1761 */ 1762 mutex_unlock(&dir->d_inode->i_mutex); 1763 audit_inode(pathname, path.dentry); 1764 1765 error = -EEXIST; 1766 if (flag & O_EXCL) 1767 goto exit_dput; 1768 1769 if (__follow_mount(&path)) { 1770 error = -ELOOP; 1771 if (flag & O_NOFOLLOW) 1772 goto exit_dput; 1773 } 1774 1775 error = -ENOENT; 1776 if (!path.dentry->d_inode) 1777 goto exit_dput; 1778 if (path.dentry->d_inode->i_op && path.dentry->d_inode->i_op->follow_link) 1779 goto do_link; 1780 1781 path_to_nameidata(&path, &nd); 1782 error = -EISDIR; 1783 if (path.dentry->d_inode && S_ISDIR(path.dentry->d_inode->i_mode)) 1784 goto exit; 1785 ok: 1786 /* 1787 * Consider: 1788 * 1. may_open() truncates a file 1789 * 2. a rw->ro mount transition occurs 1790 * 3. nameidata_to_filp() fails due to 1791 * the ro mount. 1792 * That would be inconsistent, and should 1793 * be avoided. Taking this mnt write here 1794 * ensures that (2) can not occur. 1795 */ 1796 will_write = open_will_write_to_fs(flag, nd.path.dentry->d_inode); 1797 if (will_write) { 1798 error = mnt_want_write(nd.path.mnt); 1799 if (error) 1800 goto exit; 1801 } 1802 error = may_open(&nd, acc_mode, flag); 1803 if (error) { 1804 if (will_write) 1805 mnt_drop_write(nd.path.mnt); 1806 goto exit; 1807 } 1808 filp = nameidata_to_filp(&nd, open_flag); 1809 /* 1810 * It is now safe to drop the mnt write 1811 * because the filp has had a write taken 1812 * on its behalf. 1813 */ 1814 if (will_write) 1815 mnt_drop_write(nd.path.mnt); 1816 return filp; 1817 1818 exit_mutex_unlock: 1819 mutex_unlock(&dir->d_inode->i_mutex); 1820 exit_dput: 1821 path_put_conditional(&path, &nd); 1822 exit: 1823 if (!IS_ERR(nd.intent.open.file)) 1824 release_open_intent(&nd); 1825 path_put(&nd.path); 1826 return ERR_PTR(error); 1827 1828 do_link: 1829 error = -ELOOP; 1830 if (flag & O_NOFOLLOW) 1831 goto exit_dput; 1832 /* 1833 * This is subtle. Instead of calling do_follow_link() we do the 1834 * thing by hands. The reason is that this way we have zero link_count 1835 * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT. 1836 * After that we have the parent and last component, i.e. 1837 * we are in the same situation as after the first path_walk(). 1838 * Well, almost - if the last component is normal we get its copy 1839 * stored in nd->last.name and we will have to putname() it when we 1840 * are done. Procfs-like symlinks just set LAST_BIND. 1841 */ 1842 nd.flags |= LOOKUP_PARENT; 1843 error = security_inode_follow_link(path.dentry, &nd); 1844 if (error) 1845 goto exit_dput; 1846 error = __do_follow_link(&path, &nd); 1847 if (error) { 1848 /* Does someone understand code flow here? Or it is only 1849 * me so stupid? Anathema to whoever designed this non-sense 1850 * with "intent.open". 1851 */ 1852 release_open_intent(&nd); 1853 return ERR_PTR(error); 1854 } 1855 nd.flags &= ~LOOKUP_PARENT; 1856 if (nd.last_type == LAST_BIND) 1857 goto ok; 1858 error = -EISDIR; 1859 if (nd.last_type != LAST_NORM) 1860 goto exit; 1861 if (nd.last.name[nd.last.len]) { 1862 __putname(nd.last.name); 1863 goto exit; 1864 } 1865 error = -ELOOP; 1866 if (count++==32) { 1867 __putname(nd.last.name); 1868 goto exit; 1869 } 1870 dir = nd.path.dentry; 1871 mutex_lock(&dir->d_inode->i_mutex); 1872 path.dentry = lookup_hash(&nd); 1873 path.mnt = nd.path.mnt; 1874 __putname(nd.last.name); 1875 goto do_last; 1876 } 1877 1878 /** 1879 * filp_open - open file and return file pointer 1880 * 1881 * @filename: path to open 1882 * @flags: open flags as per the open(2) second argument 1883 * @mode: mode for the new file if O_CREAT is set, else ignored 1884 * 1885 * This is the helper to open a file from kernelspace if you really 1886 * have to. But in generally you should not do this, so please move 1887 * along, nothing to see here.. 1888 */ 1889 struct file *filp_open(const char *filename, int flags, int mode) 1890 { 1891 return do_filp_open(AT_FDCWD, filename, flags, mode); 1892 } 1893 EXPORT_SYMBOL(filp_open); 1894 1895 /** 1896 * lookup_create - lookup a dentry, creating it if it doesn't exist 1897 * @nd: nameidata info 1898 * @is_dir: directory flag 1899 * 1900 * Simple function to lookup and return a dentry and create it 1901 * if it doesn't exist. Is SMP-safe. 1902 * 1903 * Returns with nd->path.dentry->d_inode->i_mutex locked. 1904 */ 1905 struct dentry *lookup_create(struct nameidata *nd, int is_dir) 1906 { 1907 struct dentry *dentry = ERR_PTR(-EEXIST); 1908 1909 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 1910 /* 1911 * Yucky last component or no last component at all? 1912 * (foo/., foo/.., /////) 1913 */ 1914 if (nd->last_type != LAST_NORM) 1915 goto fail; 1916 nd->flags &= ~LOOKUP_PARENT; 1917 nd->flags |= LOOKUP_CREATE; 1918 nd->intent.open.flags = O_EXCL; 1919 1920 /* 1921 * Do the final lookup. 1922 */ 1923 dentry = lookup_hash(nd); 1924 if (IS_ERR(dentry)) 1925 goto fail; 1926 1927 if (dentry->d_inode) 1928 goto eexist; 1929 /* 1930 * Special case - lookup gave negative, but... we had foo/bar/ 1931 * From the vfs_mknod() POV we just have a negative dentry - 1932 * all is fine. Let's be bastards - you had / on the end, you've 1933 * been asking for (non-existent) directory. -ENOENT for you. 1934 */ 1935 if (unlikely(!is_dir && nd->last.name[nd->last.len])) { 1936 dput(dentry); 1937 dentry = ERR_PTR(-ENOENT); 1938 } 1939 return dentry; 1940 eexist: 1941 dput(dentry); 1942 dentry = ERR_PTR(-EEXIST); 1943 fail: 1944 return dentry; 1945 } 1946 EXPORT_SYMBOL_GPL(lookup_create); 1947 1948 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 1949 { 1950 int error = may_create(dir, dentry); 1951 1952 if (error) 1953 return error; 1954 1955 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 1956 return -EPERM; 1957 1958 if (!dir->i_op || !dir->i_op->mknod) 1959 return -EPERM; 1960 1961 error = devcgroup_inode_mknod(mode, dev); 1962 if (error) 1963 return error; 1964 1965 error = security_inode_mknod(dir, dentry, mode, dev); 1966 if (error) 1967 return error; 1968 1969 DQUOT_INIT(dir); 1970 error = dir->i_op->mknod(dir, dentry, mode, dev); 1971 if (!error) 1972 fsnotify_create(dir, dentry); 1973 return error; 1974 } 1975 1976 static int may_mknod(mode_t mode) 1977 { 1978 switch (mode & S_IFMT) { 1979 case S_IFREG: 1980 case S_IFCHR: 1981 case S_IFBLK: 1982 case S_IFIFO: 1983 case S_IFSOCK: 1984 case 0: /* zero mode translates to S_IFREG */ 1985 return 0; 1986 case S_IFDIR: 1987 return -EPERM; 1988 default: 1989 return -EINVAL; 1990 } 1991 } 1992 1993 asmlinkage long sys_mknodat(int dfd, const char __user *filename, int mode, 1994 unsigned dev) 1995 { 1996 int error; 1997 char *tmp; 1998 struct dentry *dentry; 1999 struct nameidata nd; 2000 2001 if (S_ISDIR(mode)) 2002 return -EPERM; 2003 2004 error = user_path_parent(dfd, filename, &nd, &tmp); 2005 if (error) 2006 return error; 2007 2008 dentry = lookup_create(&nd, 0); 2009 if (IS_ERR(dentry)) { 2010 error = PTR_ERR(dentry); 2011 goto out_unlock; 2012 } 2013 if (!IS_POSIXACL(nd.path.dentry->d_inode)) 2014 mode &= ~current->fs->umask; 2015 error = may_mknod(mode); 2016 if (error) 2017 goto out_dput; 2018 error = mnt_want_write(nd.path.mnt); 2019 if (error) 2020 goto out_dput; 2021 switch (mode & S_IFMT) { 2022 case 0: case S_IFREG: 2023 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd); 2024 break; 2025 case S_IFCHR: case S_IFBLK: 2026 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode, 2027 new_decode_dev(dev)); 2028 break; 2029 case S_IFIFO: case S_IFSOCK: 2030 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0); 2031 break; 2032 } 2033 mnt_drop_write(nd.path.mnt); 2034 out_dput: 2035 dput(dentry); 2036 out_unlock: 2037 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2038 path_put(&nd.path); 2039 putname(tmp); 2040 2041 return error; 2042 } 2043 2044 asmlinkage long sys_mknod(const char __user *filename, int mode, unsigned dev) 2045 { 2046 return sys_mknodat(AT_FDCWD, filename, mode, dev); 2047 } 2048 2049 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 2050 { 2051 int error = may_create(dir, dentry); 2052 2053 if (error) 2054 return error; 2055 2056 if (!dir->i_op || !dir->i_op->mkdir) 2057 return -EPERM; 2058 2059 mode &= (S_IRWXUGO|S_ISVTX); 2060 error = security_inode_mkdir(dir, dentry, mode); 2061 if (error) 2062 return error; 2063 2064 DQUOT_INIT(dir); 2065 error = dir->i_op->mkdir(dir, dentry, mode); 2066 if (!error) 2067 fsnotify_mkdir(dir, dentry); 2068 return error; 2069 } 2070 2071 asmlinkage long sys_mkdirat(int dfd, const char __user *pathname, int mode) 2072 { 2073 int error = 0; 2074 char * tmp; 2075 struct dentry *dentry; 2076 struct nameidata nd; 2077 2078 error = user_path_parent(dfd, pathname, &nd, &tmp); 2079 if (error) 2080 goto out_err; 2081 2082 dentry = lookup_create(&nd, 1); 2083 error = PTR_ERR(dentry); 2084 if (IS_ERR(dentry)) 2085 goto out_unlock; 2086 2087 if (!IS_POSIXACL(nd.path.dentry->d_inode)) 2088 mode &= ~current->fs->umask; 2089 error = mnt_want_write(nd.path.mnt); 2090 if (error) 2091 goto out_dput; 2092 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode); 2093 mnt_drop_write(nd.path.mnt); 2094 out_dput: 2095 dput(dentry); 2096 out_unlock: 2097 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2098 path_put(&nd.path); 2099 putname(tmp); 2100 out_err: 2101 return error; 2102 } 2103 2104 asmlinkage long sys_mkdir(const char __user *pathname, int mode) 2105 { 2106 return sys_mkdirat(AT_FDCWD, pathname, mode); 2107 } 2108 2109 /* 2110 * We try to drop the dentry early: we should have 2111 * a usage count of 2 if we're the only user of this 2112 * dentry, and if that is true (possibly after pruning 2113 * the dcache), then we drop the dentry now. 2114 * 2115 * A low-level filesystem can, if it choses, legally 2116 * do a 2117 * 2118 * if (!d_unhashed(dentry)) 2119 * return -EBUSY; 2120 * 2121 * if it cannot handle the case of removing a directory 2122 * that is still in use by something else.. 2123 */ 2124 void dentry_unhash(struct dentry *dentry) 2125 { 2126 dget(dentry); 2127 shrink_dcache_parent(dentry); 2128 spin_lock(&dcache_lock); 2129 spin_lock(&dentry->d_lock); 2130 if (atomic_read(&dentry->d_count) == 2) 2131 __d_drop(dentry); 2132 spin_unlock(&dentry->d_lock); 2133 spin_unlock(&dcache_lock); 2134 } 2135 2136 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 2137 { 2138 int error = may_delete(dir, dentry, 1); 2139 2140 if (error) 2141 return error; 2142 2143 if (!dir->i_op || !dir->i_op->rmdir) 2144 return -EPERM; 2145 2146 DQUOT_INIT(dir); 2147 2148 mutex_lock(&dentry->d_inode->i_mutex); 2149 dentry_unhash(dentry); 2150 if (d_mountpoint(dentry)) 2151 error = -EBUSY; 2152 else { 2153 error = security_inode_rmdir(dir, dentry); 2154 if (!error) { 2155 error = dir->i_op->rmdir(dir, dentry); 2156 if (!error) 2157 dentry->d_inode->i_flags |= S_DEAD; 2158 } 2159 } 2160 mutex_unlock(&dentry->d_inode->i_mutex); 2161 if (!error) { 2162 d_delete(dentry); 2163 } 2164 dput(dentry); 2165 2166 return error; 2167 } 2168 2169 static long do_rmdir(int dfd, const char __user *pathname) 2170 { 2171 int error = 0; 2172 char * name; 2173 struct dentry *dentry; 2174 struct nameidata nd; 2175 2176 error = user_path_parent(dfd, pathname, &nd, &name); 2177 if (error) 2178 return error; 2179 2180 switch(nd.last_type) { 2181 case LAST_DOTDOT: 2182 error = -ENOTEMPTY; 2183 goto exit1; 2184 case LAST_DOT: 2185 error = -EINVAL; 2186 goto exit1; 2187 case LAST_ROOT: 2188 error = -EBUSY; 2189 goto exit1; 2190 } 2191 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2192 dentry = lookup_hash(&nd); 2193 error = PTR_ERR(dentry); 2194 if (IS_ERR(dentry)) 2195 goto exit2; 2196 error = mnt_want_write(nd.path.mnt); 2197 if (error) 2198 goto exit3; 2199 error = vfs_rmdir(nd.path.dentry->d_inode, dentry); 2200 mnt_drop_write(nd.path.mnt); 2201 exit3: 2202 dput(dentry); 2203 exit2: 2204 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2205 exit1: 2206 path_put(&nd.path); 2207 putname(name); 2208 return error; 2209 } 2210 2211 asmlinkage long sys_rmdir(const char __user *pathname) 2212 { 2213 return do_rmdir(AT_FDCWD, pathname); 2214 } 2215 2216 int vfs_unlink(struct inode *dir, struct dentry *dentry) 2217 { 2218 int error = may_delete(dir, dentry, 0); 2219 2220 if (error) 2221 return error; 2222 2223 if (!dir->i_op || !dir->i_op->unlink) 2224 return -EPERM; 2225 2226 DQUOT_INIT(dir); 2227 2228 mutex_lock(&dentry->d_inode->i_mutex); 2229 if (d_mountpoint(dentry)) 2230 error = -EBUSY; 2231 else { 2232 error = security_inode_unlink(dir, dentry); 2233 if (!error) 2234 error = dir->i_op->unlink(dir, dentry); 2235 } 2236 mutex_unlock(&dentry->d_inode->i_mutex); 2237 2238 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 2239 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 2240 fsnotify_link_count(dentry->d_inode); 2241 d_delete(dentry); 2242 } 2243 2244 return error; 2245 } 2246 2247 /* 2248 * Make sure that the actual truncation of the file will occur outside its 2249 * directory's i_mutex. Truncate can take a long time if there is a lot of 2250 * writeout happening, and we don't want to prevent access to the directory 2251 * while waiting on the I/O. 2252 */ 2253 static long do_unlinkat(int dfd, const char __user *pathname) 2254 { 2255 int error; 2256 char *name; 2257 struct dentry *dentry; 2258 struct nameidata nd; 2259 struct inode *inode = NULL; 2260 2261 error = user_path_parent(dfd, pathname, &nd, &name); 2262 if (error) 2263 return error; 2264 2265 error = -EISDIR; 2266 if (nd.last_type != LAST_NORM) 2267 goto exit1; 2268 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2269 dentry = lookup_hash(&nd); 2270 error = PTR_ERR(dentry); 2271 if (!IS_ERR(dentry)) { 2272 /* Why not before? Because we want correct error value */ 2273 if (nd.last.name[nd.last.len]) 2274 goto slashes; 2275 inode = dentry->d_inode; 2276 if (inode) 2277 atomic_inc(&inode->i_count); 2278 error = mnt_want_write(nd.path.mnt); 2279 if (error) 2280 goto exit2; 2281 error = vfs_unlink(nd.path.dentry->d_inode, dentry); 2282 mnt_drop_write(nd.path.mnt); 2283 exit2: 2284 dput(dentry); 2285 } 2286 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2287 if (inode) 2288 iput(inode); /* truncate the inode here */ 2289 exit1: 2290 path_put(&nd.path); 2291 putname(name); 2292 return error; 2293 2294 slashes: 2295 error = !dentry->d_inode ? -ENOENT : 2296 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR; 2297 goto exit2; 2298 } 2299 2300 asmlinkage long sys_unlinkat(int dfd, const char __user *pathname, int flag) 2301 { 2302 if ((flag & ~AT_REMOVEDIR) != 0) 2303 return -EINVAL; 2304 2305 if (flag & AT_REMOVEDIR) 2306 return do_rmdir(dfd, pathname); 2307 2308 return do_unlinkat(dfd, pathname); 2309 } 2310 2311 asmlinkage long sys_unlink(const char __user *pathname) 2312 { 2313 return do_unlinkat(AT_FDCWD, pathname); 2314 } 2315 2316 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 2317 { 2318 int error = may_create(dir, dentry); 2319 2320 if (error) 2321 return error; 2322 2323 if (!dir->i_op || !dir->i_op->symlink) 2324 return -EPERM; 2325 2326 error = security_inode_symlink(dir, dentry, oldname); 2327 if (error) 2328 return error; 2329 2330 DQUOT_INIT(dir); 2331 error = dir->i_op->symlink(dir, dentry, oldname); 2332 if (!error) 2333 fsnotify_create(dir, dentry); 2334 return error; 2335 } 2336 2337 asmlinkage long sys_symlinkat(const char __user *oldname, 2338 int newdfd, const char __user *newname) 2339 { 2340 int error; 2341 char *from; 2342 char *to; 2343 struct dentry *dentry; 2344 struct nameidata nd; 2345 2346 from = getname(oldname); 2347 if (IS_ERR(from)) 2348 return PTR_ERR(from); 2349 2350 error = user_path_parent(newdfd, newname, &nd, &to); 2351 if (error) 2352 goto out_putname; 2353 2354 dentry = lookup_create(&nd, 0); 2355 error = PTR_ERR(dentry); 2356 if (IS_ERR(dentry)) 2357 goto out_unlock; 2358 2359 error = mnt_want_write(nd.path.mnt); 2360 if (error) 2361 goto out_dput; 2362 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from); 2363 mnt_drop_write(nd.path.mnt); 2364 out_dput: 2365 dput(dentry); 2366 out_unlock: 2367 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2368 path_put(&nd.path); 2369 putname(to); 2370 out_putname: 2371 putname(from); 2372 return error; 2373 } 2374 2375 asmlinkage long sys_symlink(const char __user *oldname, const char __user *newname) 2376 { 2377 return sys_symlinkat(oldname, AT_FDCWD, newname); 2378 } 2379 2380 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2381 { 2382 struct inode *inode = old_dentry->d_inode; 2383 int error; 2384 2385 if (!inode) 2386 return -ENOENT; 2387 2388 error = may_create(dir, new_dentry); 2389 if (error) 2390 return error; 2391 2392 if (dir->i_sb != inode->i_sb) 2393 return -EXDEV; 2394 2395 /* 2396 * A link to an append-only or immutable file cannot be created. 2397 */ 2398 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 2399 return -EPERM; 2400 if (!dir->i_op || !dir->i_op->link) 2401 return -EPERM; 2402 if (S_ISDIR(inode->i_mode)) 2403 return -EPERM; 2404 2405 error = security_inode_link(old_dentry, dir, new_dentry); 2406 if (error) 2407 return error; 2408 2409 mutex_lock(&inode->i_mutex); 2410 DQUOT_INIT(dir); 2411 error = dir->i_op->link(old_dentry, dir, new_dentry); 2412 mutex_unlock(&inode->i_mutex); 2413 if (!error) 2414 fsnotify_link(dir, inode, new_dentry); 2415 return error; 2416 } 2417 2418 /* 2419 * Hardlinks are often used in delicate situations. We avoid 2420 * security-related surprises by not following symlinks on the 2421 * newname. --KAB 2422 * 2423 * We don't follow them on the oldname either to be compatible 2424 * with linux 2.0, and to avoid hard-linking to directories 2425 * and other special files. --ADM 2426 */ 2427 asmlinkage long sys_linkat(int olddfd, const char __user *oldname, 2428 int newdfd, const char __user *newname, 2429 int flags) 2430 { 2431 struct dentry *new_dentry; 2432 struct nameidata nd; 2433 struct path old_path; 2434 int error; 2435 char *to; 2436 2437 if ((flags & ~AT_SYMLINK_FOLLOW) != 0) 2438 return -EINVAL; 2439 2440 error = user_path_at(olddfd, oldname, 2441 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0, 2442 &old_path); 2443 if (error) 2444 return error; 2445 2446 error = user_path_parent(newdfd, newname, &nd, &to); 2447 if (error) 2448 goto out; 2449 error = -EXDEV; 2450 if (old_path.mnt != nd.path.mnt) 2451 goto out_release; 2452 new_dentry = lookup_create(&nd, 0); 2453 error = PTR_ERR(new_dentry); 2454 if (IS_ERR(new_dentry)) 2455 goto out_unlock; 2456 error = mnt_want_write(nd.path.mnt); 2457 if (error) 2458 goto out_dput; 2459 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry); 2460 mnt_drop_write(nd.path.mnt); 2461 out_dput: 2462 dput(new_dentry); 2463 out_unlock: 2464 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2465 out_release: 2466 path_put(&nd.path); 2467 putname(to); 2468 out: 2469 path_put(&old_path); 2470 2471 return error; 2472 } 2473 2474 asmlinkage long sys_link(const char __user *oldname, const char __user *newname) 2475 { 2476 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 2477 } 2478 2479 /* 2480 * The worst of all namespace operations - renaming directory. "Perverted" 2481 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 2482 * Problems: 2483 * a) we can get into loop creation. Check is done in is_subdir(). 2484 * b) race potential - two innocent renames can create a loop together. 2485 * That's where 4.4 screws up. Current fix: serialization on 2486 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 2487 * story. 2488 * c) we have to lock _three_ objects - parents and victim (if it exists). 2489 * And that - after we got ->i_mutex on parents (until then we don't know 2490 * whether the target exists). Solution: try to be smart with locking 2491 * order for inodes. We rely on the fact that tree topology may change 2492 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 2493 * move will be locked. Thus we can rank directories by the tree 2494 * (ancestors first) and rank all non-directories after them. 2495 * That works since everybody except rename does "lock parent, lookup, 2496 * lock child" and rename is under ->s_vfs_rename_mutex. 2497 * HOWEVER, it relies on the assumption that any object with ->lookup() 2498 * has no more than 1 dentry. If "hybrid" objects will ever appear, 2499 * we'd better make sure that there's no link(2) for them. 2500 * d) some filesystems don't support opened-but-unlinked directories, 2501 * either because of layout or because they are not ready to deal with 2502 * all cases correctly. The latter will be fixed (taking this sort of 2503 * stuff into VFS), but the former is not going away. Solution: the same 2504 * trick as in rmdir(). 2505 * e) conversion from fhandle to dentry may come in the wrong moment - when 2506 * we are removing the target. Solution: we will have to grab ->i_mutex 2507 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 2508 * ->i_mutex on parents, which works but leads to some truely excessive 2509 * locking]. 2510 */ 2511 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry, 2512 struct inode *new_dir, struct dentry *new_dentry) 2513 { 2514 int error = 0; 2515 struct inode *target; 2516 2517 /* 2518 * If we are going to change the parent - check write permissions, 2519 * we'll need to flip '..'. 2520 */ 2521 if (new_dir != old_dir) { 2522 error = inode_permission(old_dentry->d_inode, MAY_WRITE); 2523 if (error) 2524 return error; 2525 } 2526 2527 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 2528 if (error) 2529 return error; 2530 2531 target = new_dentry->d_inode; 2532 if (target) { 2533 mutex_lock(&target->i_mutex); 2534 dentry_unhash(new_dentry); 2535 } 2536 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) 2537 error = -EBUSY; 2538 else 2539 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 2540 if (target) { 2541 if (!error) 2542 target->i_flags |= S_DEAD; 2543 mutex_unlock(&target->i_mutex); 2544 if (d_unhashed(new_dentry)) 2545 d_rehash(new_dentry); 2546 dput(new_dentry); 2547 } 2548 if (!error) 2549 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 2550 d_move(old_dentry,new_dentry); 2551 return error; 2552 } 2553 2554 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry, 2555 struct inode *new_dir, struct dentry *new_dentry) 2556 { 2557 struct inode *target; 2558 int error; 2559 2560 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 2561 if (error) 2562 return error; 2563 2564 dget(new_dentry); 2565 target = new_dentry->d_inode; 2566 if (target) 2567 mutex_lock(&target->i_mutex); 2568 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) 2569 error = -EBUSY; 2570 else 2571 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 2572 if (!error) { 2573 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 2574 d_move(old_dentry, new_dentry); 2575 } 2576 if (target) 2577 mutex_unlock(&target->i_mutex); 2578 dput(new_dentry); 2579 return error; 2580 } 2581 2582 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 2583 struct inode *new_dir, struct dentry *new_dentry) 2584 { 2585 int error; 2586 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode); 2587 const char *old_name; 2588 2589 if (old_dentry->d_inode == new_dentry->d_inode) 2590 return 0; 2591 2592 error = may_delete(old_dir, old_dentry, is_dir); 2593 if (error) 2594 return error; 2595 2596 if (!new_dentry->d_inode) 2597 error = may_create(new_dir, new_dentry); 2598 else 2599 error = may_delete(new_dir, new_dentry, is_dir); 2600 if (error) 2601 return error; 2602 2603 if (!old_dir->i_op || !old_dir->i_op->rename) 2604 return -EPERM; 2605 2606 DQUOT_INIT(old_dir); 2607 DQUOT_INIT(new_dir); 2608 2609 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 2610 2611 if (is_dir) 2612 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry); 2613 else 2614 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry); 2615 if (!error) { 2616 const char *new_name = old_dentry->d_name.name; 2617 fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir, 2618 new_dentry->d_inode, old_dentry); 2619 } 2620 fsnotify_oldname_free(old_name); 2621 2622 return error; 2623 } 2624 2625 asmlinkage long sys_renameat(int olddfd, const char __user *oldname, 2626 int newdfd, const char __user *newname) 2627 { 2628 struct dentry *old_dir, *new_dir; 2629 struct dentry *old_dentry, *new_dentry; 2630 struct dentry *trap; 2631 struct nameidata oldnd, newnd; 2632 char *from; 2633 char *to; 2634 int error; 2635 2636 error = user_path_parent(olddfd, oldname, &oldnd, &from); 2637 if (error) 2638 goto exit; 2639 2640 error = user_path_parent(newdfd, newname, &newnd, &to); 2641 if (error) 2642 goto exit1; 2643 2644 error = -EXDEV; 2645 if (oldnd.path.mnt != newnd.path.mnt) 2646 goto exit2; 2647 2648 old_dir = oldnd.path.dentry; 2649 error = -EBUSY; 2650 if (oldnd.last_type != LAST_NORM) 2651 goto exit2; 2652 2653 new_dir = newnd.path.dentry; 2654 if (newnd.last_type != LAST_NORM) 2655 goto exit2; 2656 2657 trap = lock_rename(new_dir, old_dir); 2658 2659 old_dentry = lookup_hash(&oldnd); 2660 error = PTR_ERR(old_dentry); 2661 if (IS_ERR(old_dentry)) 2662 goto exit3; 2663 /* source must exist */ 2664 error = -ENOENT; 2665 if (!old_dentry->d_inode) 2666 goto exit4; 2667 /* unless the source is a directory trailing slashes give -ENOTDIR */ 2668 if (!S_ISDIR(old_dentry->d_inode->i_mode)) { 2669 error = -ENOTDIR; 2670 if (oldnd.last.name[oldnd.last.len]) 2671 goto exit4; 2672 if (newnd.last.name[newnd.last.len]) 2673 goto exit4; 2674 } 2675 /* source should not be ancestor of target */ 2676 error = -EINVAL; 2677 if (old_dentry == trap) 2678 goto exit4; 2679 new_dentry = lookup_hash(&newnd); 2680 error = PTR_ERR(new_dentry); 2681 if (IS_ERR(new_dentry)) 2682 goto exit4; 2683 /* target should not be an ancestor of source */ 2684 error = -ENOTEMPTY; 2685 if (new_dentry == trap) 2686 goto exit5; 2687 2688 error = mnt_want_write(oldnd.path.mnt); 2689 if (error) 2690 goto exit5; 2691 error = vfs_rename(old_dir->d_inode, old_dentry, 2692 new_dir->d_inode, new_dentry); 2693 mnt_drop_write(oldnd.path.mnt); 2694 exit5: 2695 dput(new_dentry); 2696 exit4: 2697 dput(old_dentry); 2698 exit3: 2699 unlock_rename(new_dir, old_dir); 2700 exit2: 2701 path_put(&newnd.path); 2702 putname(to); 2703 exit1: 2704 path_put(&oldnd.path); 2705 putname(from); 2706 exit: 2707 return error; 2708 } 2709 2710 asmlinkage long sys_rename(const char __user *oldname, const char __user *newname) 2711 { 2712 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname); 2713 } 2714 2715 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link) 2716 { 2717 int len; 2718 2719 len = PTR_ERR(link); 2720 if (IS_ERR(link)) 2721 goto out; 2722 2723 len = strlen(link); 2724 if (len > (unsigned) buflen) 2725 len = buflen; 2726 if (copy_to_user(buffer, link, len)) 2727 len = -EFAULT; 2728 out: 2729 return len; 2730 } 2731 2732 /* 2733 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 2734 * have ->follow_link() touching nd only in nd_set_link(). Using (or not 2735 * using) it for any given inode is up to filesystem. 2736 */ 2737 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) 2738 { 2739 struct nameidata nd; 2740 void *cookie; 2741 int res; 2742 2743 nd.depth = 0; 2744 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd); 2745 if (IS_ERR(cookie)) 2746 return PTR_ERR(cookie); 2747 2748 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd)); 2749 if (dentry->d_inode->i_op->put_link) 2750 dentry->d_inode->i_op->put_link(dentry, &nd, cookie); 2751 return res; 2752 } 2753 2754 int vfs_follow_link(struct nameidata *nd, const char *link) 2755 { 2756 return __vfs_follow_link(nd, link); 2757 } 2758 2759 /* get the link contents into pagecache */ 2760 static char *page_getlink(struct dentry * dentry, struct page **ppage) 2761 { 2762 struct page * page; 2763 struct address_space *mapping = dentry->d_inode->i_mapping; 2764 page = read_mapping_page(mapping, 0, NULL); 2765 if (IS_ERR(page)) 2766 return (char*)page; 2767 *ppage = page; 2768 return kmap(page); 2769 } 2770 2771 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 2772 { 2773 struct page *page = NULL; 2774 char *s = page_getlink(dentry, &page); 2775 int res = vfs_readlink(dentry,buffer,buflen,s); 2776 if (page) { 2777 kunmap(page); 2778 page_cache_release(page); 2779 } 2780 return res; 2781 } 2782 2783 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd) 2784 { 2785 struct page *page = NULL; 2786 nd_set_link(nd, page_getlink(dentry, &page)); 2787 return page; 2788 } 2789 2790 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 2791 { 2792 struct page *page = cookie; 2793 2794 if (page) { 2795 kunmap(page); 2796 page_cache_release(page); 2797 } 2798 } 2799 2800 int __page_symlink(struct inode *inode, const char *symname, int len, 2801 gfp_t gfp_mask) 2802 { 2803 struct address_space *mapping = inode->i_mapping; 2804 struct page *page; 2805 void *fsdata; 2806 int err; 2807 char *kaddr; 2808 2809 retry: 2810 err = pagecache_write_begin(NULL, mapping, 0, len-1, 2811 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata); 2812 if (err) 2813 goto fail; 2814 2815 kaddr = kmap_atomic(page, KM_USER0); 2816 memcpy(kaddr, symname, len-1); 2817 kunmap_atomic(kaddr, KM_USER0); 2818 2819 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 2820 page, fsdata); 2821 if (err < 0) 2822 goto fail; 2823 if (err < len-1) 2824 goto retry; 2825 2826 mark_inode_dirty(inode); 2827 return 0; 2828 fail: 2829 return err; 2830 } 2831 2832 int page_symlink(struct inode *inode, const char *symname, int len) 2833 { 2834 return __page_symlink(inode, symname, len, 2835 mapping_gfp_mask(inode->i_mapping)); 2836 } 2837 2838 const struct inode_operations page_symlink_inode_operations = { 2839 .readlink = generic_readlink, 2840 .follow_link = page_follow_link_light, 2841 .put_link = page_put_link, 2842 }; 2843 2844 EXPORT_SYMBOL(user_path_at); 2845 EXPORT_SYMBOL(follow_down); 2846 EXPORT_SYMBOL(follow_up); 2847 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */ 2848 EXPORT_SYMBOL(getname); 2849 EXPORT_SYMBOL(lock_rename); 2850 EXPORT_SYMBOL(lookup_one_len); 2851 EXPORT_SYMBOL(page_follow_link_light); 2852 EXPORT_SYMBOL(page_put_link); 2853 EXPORT_SYMBOL(page_readlink); 2854 EXPORT_SYMBOL(__page_symlink); 2855 EXPORT_SYMBOL(page_symlink); 2856 EXPORT_SYMBOL(page_symlink_inode_operations); 2857 EXPORT_SYMBOL(path_lookup); 2858 EXPORT_SYMBOL(vfs_path_lookup); 2859 EXPORT_SYMBOL(inode_permission); 2860 EXPORT_SYMBOL(vfs_permission); 2861 EXPORT_SYMBOL(file_permission); 2862 EXPORT_SYMBOL(unlock_rename); 2863 EXPORT_SYMBOL(vfs_create); 2864 EXPORT_SYMBOL(vfs_follow_link); 2865 EXPORT_SYMBOL(vfs_link); 2866 EXPORT_SYMBOL(vfs_mkdir); 2867 EXPORT_SYMBOL(vfs_mknod); 2868 EXPORT_SYMBOL(generic_permission); 2869 EXPORT_SYMBOL(vfs_readlink); 2870 EXPORT_SYMBOL(vfs_rename); 2871 EXPORT_SYMBOL(vfs_rmdir); 2872 EXPORT_SYMBOL(vfs_symlink); 2873 EXPORT_SYMBOL(vfs_unlink); 2874 EXPORT_SYMBOL(dentry_unhash); 2875 EXPORT_SYMBOL(generic_readlink); 2876