1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/fs.h> 21 #include <linux/namei.h> 22 #include <linux/pagemap.h> 23 #include <linux/fsnotify.h> 24 #include <linux/personality.h> 25 #include <linux/security.h> 26 #include <linux/ima.h> 27 #include <linux/syscalls.h> 28 #include <linux/mount.h> 29 #include <linux/audit.h> 30 #include <linux/capability.h> 31 #include <linux/file.h> 32 #include <linux/fcntl.h> 33 #include <linux/device_cgroup.h> 34 #include <linux/fs_struct.h> 35 #include <asm/uaccess.h> 36 37 #include "internal.h" 38 39 /* [Feb-1997 T. Schoebel-Theuer] 40 * Fundamental changes in the pathname lookup mechanisms (namei) 41 * were necessary because of omirr. The reason is that omirr needs 42 * to know the _real_ pathname, not the user-supplied one, in case 43 * of symlinks (and also when transname replacements occur). 44 * 45 * The new code replaces the old recursive symlink resolution with 46 * an iterative one (in case of non-nested symlink chains). It does 47 * this with calls to <fs>_follow_link(). 48 * As a side effect, dir_namei(), _namei() and follow_link() are now 49 * replaced with a single function lookup_dentry() that can handle all 50 * the special cases of the former code. 51 * 52 * With the new dcache, the pathname is stored at each inode, at least as 53 * long as the refcount of the inode is positive. As a side effect, the 54 * size of the dcache depends on the inode cache and thus is dynamic. 55 * 56 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 57 * resolution to correspond with current state of the code. 58 * 59 * Note that the symlink resolution is not *completely* iterative. 60 * There is still a significant amount of tail- and mid- recursion in 61 * the algorithm. Also, note that <fs>_readlink() is not used in 62 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 63 * may return different results than <fs>_follow_link(). Many virtual 64 * filesystems (including /proc) exhibit this behavior. 65 */ 66 67 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 68 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 69 * and the name already exists in form of a symlink, try to create the new 70 * name indicated by the symlink. The old code always complained that the 71 * name already exists, due to not following the symlink even if its target 72 * is nonexistent. The new semantics affects also mknod() and link() when 73 * the name is a symlink pointing to a non-existant name. 74 * 75 * I don't know which semantics is the right one, since I have no access 76 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 77 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 78 * "old" one. Personally, I think the new semantics is much more logical. 79 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 80 * file does succeed in both HP-UX and SunOs, but not in Solaris 81 * and in the old Linux semantics. 82 */ 83 84 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 85 * semantics. See the comments in "open_namei" and "do_link" below. 86 * 87 * [10-Sep-98 Alan Modra] Another symlink change. 88 */ 89 90 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 91 * inside the path - always follow. 92 * in the last component in creation/removal/renaming - never follow. 93 * if LOOKUP_FOLLOW passed - follow. 94 * if the pathname has trailing slashes - follow. 95 * otherwise - don't follow. 96 * (applied in that order). 97 * 98 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 99 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 100 * During the 2.4 we need to fix the userland stuff depending on it - 101 * hopefully we will be able to get rid of that wart in 2.5. So far only 102 * XEmacs seems to be relying on it... 103 */ 104 /* 105 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 106 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 107 * any extra contention... 108 */ 109 110 /* In order to reduce some races, while at the same time doing additional 111 * checking and hopefully speeding things up, we copy filenames to the 112 * kernel data space before using them.. 113 * 114 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 115 * PATH_MAX includes the nul terminator --RR. 116 */ 117 static int do_getname(const char __user *filename, char *page) 118 { 119 int retval; 120 unsigned long len = PATH_MAX; 121 122 if (!segment_eq(get_fs(), KERNEL_DS)) { 123 if ((unsigned long) filename >= TASK_SIZE) 124 return -EFAULT; 125 if (TASK_SIZE - (unsigned long) filename < PATH_MAX) 126 len = TASK_SIZE - (unsigned long) filename; 127 } 128 129 retval = strncpy_from_user(page, filename, len); 130 if (retval > 0) { 131 if (retval < len) 132 return 0; 133 return -ENAMETOOLONG; 134 } else if (!retval) 135 retval = -ENOENT; 136 return retval; 137 } 138 139 char * getname(const char __user * filename) 140 { 141 char *tmp, *result; 142 143 result = ERR_PTR(-ENOMEM); 144 tmp = __getname(); 145 if (tmp) { 146 int retval = do_getname(filename, tmp); 147 148 result = tmp; 149 if (retval < 0) { 150 __putname(tmp); 151 result = ERR_PTR(retval); 152 } 153 } 154 audit_getname(result); 155 return result; 156 } 157 158 #ifdef CONFIG_AUDITSYSCALL 159 void putname(const char *name) 160 { 161 if (unlikely(!audit_dummy_context())) 162 audit_putname(name); 163 else 164 __putname(name); 165 } 166 EXPORT_SYMBOL(putname); 167 #endif 168 169 /* 170 * This does basic POSIX ACL permission checking 171 */ 172 static int acl_permission_check(struct inode *inode, int mask, 173 int (*check_acl)(struct inode *inode, int mask)) 174 { 175 umode_t mode = inode->i_mode; 176 177 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 178 179 if (current_fsuid() == inode->i_uid) 180 mode >>= 6; 181 else { 182 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) { 183 int error = check_acl(inode, mask); 184 if (error != -EAGAIN) 185 return error; 186 } 187 188 if (in_group_p(inode->i_gid)) 189 mode >>= 3; 190 } 191 192 /* 193 * If the DACs are ok we don't need any capability check. 194 */ 195 if ((mask & ~mode) == 0) 196 return 0; 197 return -EACCES; 198 } 199 200 /** 201 * generic_permission - check for access rights on a Posix-like filesystem 202 * @inode: inode to check access rights for 203 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 204 * @check_acl: optional callback to check for Posix ACLs 205 * 206 * Used to check for read/write/execute permissions on a file. 207 * We use "fsuid" for this, letting us set arbitrary permissions 208 * for filesystem access without changing the "normal" uids which 209 * are used for other things.. 210 */ 211 int generic_permission(struct inode *inode, int mask, 212 int (*check_acl)(struct inode *inode, int mask)) 213 { 214 int ret; 215 216 /* 217 * Do the basic POSIX ACL permission checks. 218 */ 219 ret = acl_permission_check(inode, mask, check_acl); 220 if (ret != -EACCES) 221 return ret; 222 223 /* 224 * Read/write DACs are always overridable. 225 * Executable DACs are overridable if at least one exec bit is set. 226 */ 227 if (!(mask & MAY_EXEC) || execute_ok(inode)) 228 if (capable(CAP_DAC_OVERRIDE)) 229 return 0; 230 231 /* 232 * Searching includes executable on directories, else just read. 233 */ 234 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 235 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE))) 236 if (capable(CAP_DAC_READ_SEARCH)) 237 return 0; 238 239 return -EACCES; 240 } 241 242 /** 243 * inode_permission - check for access rights to a given inode 244 * @inode: inode to check permission on 245 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 246 * 247 * Used to check for read/write/execute permissions on an inode. 248 * We use "fsuid" for this, letting us set arbitrary permissions 249 * for filesystem access without changing the "normal" uids which 250 * are used for other things. 251 */ 252 int inode_permission(struct inode *inode, int mask) 253 { 254 int retval; 255 256 if (mask & MAY_WRITE) { 257 umode_t mode = inode->i_mode; 258 259 /* 260 * Nobody gets write access to a read-only fs. 261 */ 262 if (IS_RDONLY(inode) && 263 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 264 return -EROFS; 265 266 /* 267 * Nobody gets write access to an immutable file. 268 */ 269 if (IS_IMMUTABLE(inode)) 270 return -EACCES; 271 } 272 273 if (inode->i_op->permission) 274 retval = inode->i_op->permission(inode, mask); 275 else 276 retval = generic_permission(inode, mask, inode->i_op->check_acl); 277 278 if (retval) 279 return retval; 280 281 retval = devcgroup_inode_permission(inode, mask); 282 if (retval) 283 return retval; 284 285 return security_inode_permission(inode, 286 mask & (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND)); 287 } 288 289 /** 290 * file_permission - check for additional access rights to a given file 291 * @file: file to check access rights for 292 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 293 * 294 * Used to check for read/write/execute permissions on an already opened 295 * file. 296 * 297 * Note: 298 * Do not use this function in new code. All access checks should 299 * be done using inode_permission(). 300 */ 301 int file_permission(struct file *file, int mask) 302 { 303 return inode_permission(file->f_path.dentry->d_inode, mask); 304 } 305 306 /* 307 * get_write_access() gets write permission for a file. 308 * put_write_access() releases this write permission. 309 * This is used for regular files. 310 * We cannot support write (and maybe mmap read-write shared) accesses and 311 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode 312 * can have the following values: 313 * 0: no writers, no VM_DENYWRITE mappings 314 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist 315 * > 0: (i_writecount) users are writing to the file. 316 * 317 * Normally we operate on that counter with atomic_{inc,dec} and it's safe 318 * except for the cases where we don't hold i_writecount yet. Then we need to 319 * use {get,deny}_write_access() - these functions check the sign and refuse 320 * to do the change if sign is wrong. Exclusion between them is provided by 321 * the inode->i_lock spinlock. 322 */ 323 324 int get_write_access(struct inode * inode) 325 { 326 spin_lock(&inode->i_lock); 327 if (atomic_read(&inode->i_writecount) < 0) { 328 spin_unlock(&inode->i_lock); 329 return -ETXTBSY; 330 } 331 atomic_inc(&inode->i_writecount); 332 spin_unlock(&inode->i_lock); 333 334 return 0; 335 } 336 337 int deny_write_access(struct file * file) 338 { 339 struct inode *inode = file->f_path.dentry->d_inode; 340 341 spin_lock(&inode->i_lock); 342 if (atomic_read(&inode->i_writecount) > 0) { 343 spin_unlock(&inode->i_lock); 344 return -ETXTBSY; 345 } 346 atomic_dec(&inode->i_writecount); 347 spin_unlock(&inode->i_lock); 348 349 return 0; 350 } 351 352 /** 353 * path_get - get a reference to a path 354 * @path: path to get the reference to 355 * 356 * Given a path increment the reference count to the dentry and the vfsmount. 357 */ 358 void path_get(struct path *path) 359 { 360 mntget(path->mnt); 361 dget(path->dentry); 362 } 363 EXPORT_SYMBOL(path_get); 364 365 /** 366 * path_put - put a reference to a path 367 * @path: path to put the reference to 368 * 369 * Given a path decrement the reference count to the dentry and the vfsmount. 370 */ 371 void path_put(struct path *path) 372 { 373 dput(path->dentry); 374 mntput(path->mnt); 375 } 376 EXPORT_SYMBOL(path_put); 377 378 /** 379 * release_open_intent - free up open intent resources 380 * @nd: pointer to nameidata 381 */ 382 void release_open_intent(struct nameidata *nd) 383 { 384 if (nd->intent.open.file->f_path.dentry == NULL) 385 put_filp(nd->intent.open.file); 386 else 387 fput(nd->intent.open.file); 388 } 389 390 static inline struct dentry * 391 do_revalidate(struct dentry *dentry, struct nameidata *nd) 392 { 393 int status = dentry->d_op->d_revalidate(dentry, nd); 394 if (unlikely(status <= 0)) { 395 /* 396 * The dentry failed validation. 397 * If d_revalidate returned 0 attempt to invalidate 398 * the dentry otherwise d_revalidate is asking us 399 * to return a fail status. 400 */ 401 if (!status) { 402 if (!d_invalidate(dentry)) { 403 dput(dentry); 404 dentry = NULL; 405 } 406 } else { 407 dput(dentry); 408 dentry = ERR_PTR(status); 409 } 410 } 411 return dentry; 412 } 413 414 /* 415 * force_reval_path - force revalidation of a dentry 416 * 417 * In some situations the path walking code will trust dentries without 418 * revalidating them. This causes problems for filesystems that depend on 419 * d_revalidate to handle file opens (e.g. NFSv4). When FS_REVAL_DOT is set 420 * (which indicates that it's possible for the dentry to go stale), force 421 * a d_revalidate call before proceeding. 422 * 423 * Returns 0 if the revalidation was successful. If the revalidation fails, 424 * either return the error returned by d_revalidate or -ESTALE if the 425 * revalidation it just returned 0. If d_revalidate returns 0, we attempt to 426 * invalidate the dentry. It's up to the caller to handle putting references 427 * to the path if necessary. 428 */ 429 static int 430 force_reval_path(struct path *path, struct nameidata *nd) 431 { 432 int status; 433 struct dentry *dentry = path->dentry; 434 435 /* 436 * only check on filesystems where it's possible for the dentry to 437 * become stale. It's assumed that if this flag is set then the 438 * d_revalidate op will also be defined. 439 */ 440 if (!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) 441 return 0; 442 443 status = dentry->d_op->d_revalidate(dentry, nd); 444 if (status > 0) 445 return 0; 446 447 if (!status) { 448 d_invalidate(dentry); 449 status = -ESTALE; 450 } 451 return status; 452 } 453 454 /* 455 * Short-cut version of permission(), for calling on directories 456 * during pathname resolution. Combines parts of permission() 457 * and generic_permission(), and tests ONLY for MAY_EXEC permission. 458 * 459 * If appropriate, check DAC only. If not appropriate, or 460 * short-cut DAC fails, then call ->permission() to do more 461 * complete permission check. 462 */ 463 static int exec_permission(struct inode *inode) 464 { 465 int ret; 466 467 if (inode->i_op->permission) { 468 ret = inode->i_op->permission(inode, MAY_EXEC); 469 if (!ret) 470 goto ok; 471 return ret; 472 } 473 ret = acl_permission_check(inode, MAY_EXEC, inode->i_op->check_acl); 474 if (!ret) 475 goto ok; 476 477 if (capable(CAP_DAC_OVERRIDE) || capable(CAP_DAC_READ_SEARCH)) 478 goto ok; 479 480 return ret; 481 ok: 482 return security_inode_permission(inode, MAY_EXEC); 483 } 484 485 static __always_inline void set_root(struct nameidata *nd) 486 { 487 if (!nd->root.mnt) { 488 struct fs_struct *fs = current->fs; 489 read_lock(&fs->lock); 490 nd->root = fs->root; 491 path_get(&nd->root); 492 read_unlock(&fs->lock); 493 } 494 } 495 496 static int link_path_walk(const char *, struct nameidata *); 497 498 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link) 499 { 500 if (IS_ERR(link)) 501 goto fail; 502 503 if (*link == '/') { 504 set_root(nd); 505 path_put(&nd->path); 506 nd->path = nd->root; 507 path_get(&nd->root); 508 } 509 510 return link_path_walk(link, nd); 511 fail: 512 path_put(&nd->path); 513 return PTR_ERR(link); 514 } 515 516 static void path_put_conditional(struct path *path, struct nameidata *nd) 517 { 518 dput(path->dentry); 519 if (path->mnt != nd->path.mnt) 520 mntput(path->mnt); 521 } 522 523 static inline void path_to_nameidata(struct path *path, struct nameidata *nd) 524 { 525 dput(nd->path.dentry); 526 if (nd->path.mnt != path->mnt) 527 mntput(nd->path.mnt); 528 nd->path.mnt = path->mnt; 529 nd->path.dentry = path->dentry; 530 } 531 532 static __always_inline int 533 __do_follow_link(struct path *path, struct nameidata *nd, void **p) 534 { 535 int error; 536 struct dentry *dentry = path->dentry; 537 538 touch_atime(path->mnt, dentry); 539 nd_set_link(nd, NULL); 540 541 if (path->mnt != nd->path.mnt) { 542 path_to_nameidata(path, nd); 543 dget(dentry); 544 } 545 mntget(path->mnt); 546 nd->last_type = LAST_BIND; 547 *p = dentry->d_inode->i_op->follow_link(dentry, nd); 548 error = PTR_ERR(*p); 549 if (!IS_ERR(*p)) { 550 char *s = nd_get_link(nd); 551 error = 0; 552 if (s) 553 error = __vfs_follow_link(nd, s); 554 else if (nd->last_type == LAST_BIND) { 555 error = force_reval_path(&nd->path, nd); 556 if (error) 557 path_put(&nd->path); 558 } 559 } 560 return error; 561 } 562 563 /* 564 * This limits recursive symlink follows to 8, while 565 * limiting consecutive symlinks to 40. 566 * 567 * Without that kind of total limit, nasty chains of consecutive 568 * symlinks can cause almost arbitrarily long lookups. 569 */ 570 static inline int do_follow_link(struct path *path, struct nameidata *nd) 571 { 572 void *cookie; 573 int err = -ELOOP; 574 if (current->link_count >= MAX_NESTED_LINKS) 575 goto loop; 576 if (current->total_link_count >= 40) 577 goto loop; 578 BUG_ON(nd->depth >= MAX_NESTED_LINKS); 579 cond_resched(); 580 err = security_inode_follow_link(path->dentry, nd); 581 if (err) 582 goto loop; 583 current->link_count++; 584 current->total_link_count++; 585 nd->depth++; 586 err = __do_follow_link(path, nd, &cookie); 587 if (!IS_ERR(cookie) && path->dentry->d_inode->i_op->put_link) 588 path->dentry->d_inode->i_op->put_link(path->dentry, nd, cookie); 589 path_put(path); 590 current->link_count--; 591 nd->depth--; 592 return err; 593 loop: 594 path_put_conditional(path, nd); 595 path_put(&nd->path); 596 return err; 597 } 598 599 int follow_up(struct path *path) 600 { 601 struct vfsmount *parent; 602 struct dentry *mountpoint; 603 spin_lock(&vfsmount_lock); 604 parent = path->mnt->mnt_parent; 605 if (parent == path->mnt) { 606 spin_unlock(&vfsmount_lock); 607 return 0; 608 } 609 mntget(parent); 610 mountpoint = dget(path->mnt->mnt_mountpoint); 611 spin_unlock(&vfsmount_lock); 612 dput(path->dentry); 613 path->dentry = mountpoint; 614 mntput(path->mnt); 615 path->mnt = parent; 616 return 1; 617 } 618 619 /* no need for dcache_lock, as serialization is taken care in 620 * namespace.c 621 */ 622 static int __follow_mount(struct path *path) 623 { 624 int res = 0; 625 while (d_mountpoint(path->dentry)) { 626 struct vfsmount *mounted = lookup_mnt(path); 627 if (!mounted) 628 break; 629 dput(path->dentry); 630 if (res) 631 mntput(path->mnt); 632 path->mnt = mounted; 633 path->dentry = dget(mounted->mnt_root); 634 res = 1; 635 } 636 return res; 637 } 638 639 static void follow_mount(struct path *path) 640 { 641 while (d_mountpoint(path->dentry)) { 642 struct vfsmount *mounted = lookup_mnt(path); 643 if (!mounted) 644 break; 645 dput(path->dentry); 646 mntput(path->mnt); 647 path->mnt = mounted; 648 path->dentry = dget(mounted->mnt_root); 649 } 650 } 651 652 /* no need for dcache_lock, as serialization is taken care in 653 * namespace.c 654 */ 655 int follow_down(struct path *path) 656 { 657 struct vfsmount *mounted; 658 659 mounted = lookup_mnt(path); 660 if (mounted) { 661 dput(path->dentry); 662 mntput(path->mnt); 663 path->mnt = mounted; 664 path->dentry = dget(mounted->mnt_root); 665 return 1; 666 } 667 return 0; 668 } 669 670 static __always_inline void follow_dotdot(struct nameidata *nd) 671 { 672 set_root(nd); 673 674 while(1) { 675 struct dentry *old = nd->path.dentry; 676 677 if (nd->path.dentry == nd->root.dentry && 678 nd->path.mnt == nd->root.mnt) { 679 break; 680 } 681 if (nd->path.dentry != nd->path.mnt->mnt_root) { 682 /* rare case of legitimate dget_parent()... */ 683 nd->path.dentry = dget_parent(nd->path.dentry); 684 dput(old); 685 break; 686 } 687 if (!follow_up(&nd->path)) 688 break; 689 } 690 follow_mount(&nd->path); 691 } 692 693 /* 694 * It's more convoluted than I'd like it to be, but... it's still fairly 695 * small and for now I'd prefer to have fast path as straight as possible. 696 * It _is_ time-critical. 697 */ 698 static int do_lookup(struct nameidata *nd, struct qstr *name, 699 struct path *path) 700 { 701 struct vfsmount *mnt = nd->path.mnt; 702 struct dentry *dentry, *parent; 703 struct inode *dir; 704 /* 705 * See if the low-level filesystem might want 706 * to use its own hash.. 707 */ 708 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) { 709 int err = nd->path.dentry->d_op->d_hash(nd->path.dentry, name); 710 if (err < 0) 711 return err; 712 } 713 714 dentry = __d_lookup(nd->path.dentry, name); 715 if (!dentry) 716 goto need_lookup; 717 if (dentry->d_op && dentry->d_op->d_revalidate) 718 goto need_revalidate; 719 done: 720 path->mnt = mnt; 721 path->dentry = dentry; 722 __follow_mount(path); 723 return 0; 724 725 need_lookup: 726 parent = nd->path.dentry; 727 dir = parent->d_inode; 728 729 mutex_lock(&dir->i_mutex); 730 /* 731 * First re-do the cached lookup just in case it was created 732 * while we waited for the directory semaphore.. 733 * 734 * FIXME! This could use version numbering or similar to 735 * avoid unnecessary cache lookups. 736 * 737 * The "dcache_lock" is purely to protect the RCU list walker 738 * from concurrent renames at this point (we mustn't get false 739 * negatives from the RCU list walk here, unlike the optimistic 740 * fast walk). 741 * 742 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup 743 */ 744 dentry = d_lookup(parent, name); 745 if (!dentry) { 746 struct dentry *new; 747 748 /* Don't create child dentry for a dead directory. */ 749 dentry = ERR_PTR(-ENOENT); 750 if (IS_DEADDIR(dir)) 751 goto out_unlock; 752 753 new = d_alloc(parent, name); 754 dentry = ERR_PTR(-ENOMEM); 755 if (new) { 756 dentry = dir->i_op->lookup(dir, new, nd); 757 if (dentry) 758 dput(new); 759 else 760 dentry = new; 761 } 762 out_unlock: 763 mutex_unlock(&dir->i_mutex); 764 if (IS_ERR(dentry)) 765 goto fail; 766 goto done; 767 } 768 769 /* 770 * Uhhuh! Nasty case: the cache was re-populated while 771 * we waited on the semaphore. Need to revalidate. 772 */ 773 mutex_unlock(&dir->i_mutex); 774 if (dentry->d_op && dentry->d_op->d_revalidate) { 775 dentry = do_revalidate(dentry, nd); 776 if (!dentry) 777 dentry = ERR_PTR(-ENOENT); 778 } 779 if (IS_ERR(dentry)) 780 goto fail; 781 goto done; 782 783 need_revalidate: 784 dentry = do_revalidate(dentry, nd); 785 if (!dentry) 786 goto need_lookup; 787 if (IS_ERR(dentry)) 788 goto fail; 789 goto done; 790 791 fail: 792 return PTR_ERR(dentry); 793 } 794 795 /* 796 * This is a temporary kludge to deal with "automount" symlinks; proper 797 * solution is to trigger them on follow_mount(), so that do_lookup() 798 * would DTRT. To be killed before 2.6.34-final. 799 */ 800 static inline int follow_on_final(struct inode *inode, unsigned lookup_flags) 801 { 802 return inode && unlikely(inode->i_op->follow_link) && 803 ((lookup_flags & LOOKUP_FOLLOW) || S_ISDIR(inode->i_mode)); 804 } 805 806 /* 807 * Name resolution. 808 * This is the basic name resolution function, turning a pathname into 809 * the final dentry. We expect 'base' to be positive and a directory. 810 * 811 * Returns 0 and nd will have valid dentry and mnt on success. 812 * Returns error and drops reference to input namei data on failure. 813 */ 814 static int link_path_walk(const char *name, struct nameidata *nd) 815 { 816 struct path next; 817 struct inode *inode; 818 int err; 819 unsigned int lookup_flags = nd->flags; 820 821 while (*name=='/') 822 name++; 823 if (!*name) 824 goto return_reval; 825 826 inode = nd->path.dentry->d_inode; 827 if (nd->depth) 828 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE); 829 830 /* At this point we know we have a real path component. */ 831 for(;;) { 832 unsigned long hash; 833 struct qstr this; 834 unsigned int c; 835 836 nd->flags |= LOOKUP_CONTINUE; 837 err = exec_permission(inode); 838 if (err) 839 break; 840 841 this.name = name; 842 c = *(const unsigned char *)name; 843 844 hash = init_name_hash(); 845 do { 846 name++; 847 hash = partial_name_hash(c, hash); 848 c = *(const unsigned char *)name; 849 } while (c && (c != '/')); 850 this.len = name - (const char *) this.name; 851 this.hash = end_name_hash(hash); 852 853 /* remove trailing slashes? */ 854 if (!c) 855 goto last_component; 856 while (*++name == '/'); 857 if (!*name) 858 goto last_with_slashes; 859 860 /* 861 * "." and ".." are special - ".." especially so because it has 862 * to be able to know about the current root directory and 863 * parent relationships. 864 */ 865 if (this.name[0] == '.') switch (this.len) { 866 default: 867 break; 868 case 2: 869 if (this.name[1] != '.') 870 break; 871 follow_dotdot(nd); 872 inode = nd->path.dentry->d_inode; 873 /* fallthrough */ 874 case 1: 875 continue; 876 } 877 /* This does the actual lookups.. */ 878 err = do_lookup(nd, &this, &next); 879 if (err) 880 break; 881 882 err = -ENOENT; 883 inode = next.dentry->d_inode; 884 if (!inode) 885 goto out_dput; 886 887 if (inode->i_op->follow_link) { 888 err = do_follow_link(&next, nd); 889 if (err) 890 goto return_err; 891 err = -ENOENT; 892 inode = nd->path.dentry->d_inode; 893 if (!inode) 894 break; 895 } else 896 path_to_nameidata(&next, nd); 897 err = -ENOTDIR; 898 if (!inode->i_op->lookup) 899 break; 900 continue; 901 /* here ends the main loop */ 902 903 last_with_slashes: 904 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 905 last_component: 906 /* Clear LOOKUP_CONTINUE iff it was previously unset */ 907 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE; 908 if (lookup_flags & LOOKUP_PARENT) 909 goto lookup_parent; 910 if (this.name[0] == '.') switch (this.len) { 911 default: 912 break; 913 case 2: 914 if (this.name[1] != '.') 915 break; 916 follow_dotdot(nd); 917 inode = nd->path.dentry->d_inode; 918 /* fallthrough */ 919 case 1: 920 goto return_reval; 921 } 922 err = do_lookup(nd, &this, &next); 923 if (err) 924 break; 925 inode = next.dentry->d_inode; 926 if (follow_on_final(inode, lookup_flags)) { 927 err = do_follow_link(&next, nd); 928 if (err) 929 goto return_err; 930 inode = nd->path.dentry->d_inode; 931 } else 932 path_to_nameidata(&next, nd); 933 err = -ENOENT; 934 if (!inode) 935 break; 936 if (lookup_flags & LOOKUP_DIRECTORY) { 937 err = -ENOTDIR; 938 if (!inode->i_op->lookup) 939 break; 940 } 941 goto return_base; 942 lookup_parent: 943 nd->last = this; 944 nd->last_type = LAST_NORM; 945 if (this.name[0] != '.') 946 goto return_base; 947 if (this.len == 1) 948 nd->last_type = LAST_DOT; 949 else if (this.len == 2 && this.name[1] == '.') 950 nd->last_type = LAST_DOTDOT; 951 else 952 goto return_base; 953 return_reval: 954 /* 955 * We bypassed the ordinary revalidation routines. 956 * We may need to check the cached dentry for staleness. 957 */ 958 if (nd->path.dentry && nd->path.dentry->d_sb && 959 (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) { 960 err = -ESTALE; 961 /* Note: we do not d_invalidate() */ 962 if (!nd->path.dentry->d_op->d_revalidate( 963 nd->path.dentry, nd)) 964 break; 965 } 966 return_base: 967 return 0; 968 out_dput: 969 path_put_conditional(&next, nd); 970 break; 971 } 972 path_put(&nd->path); 973 return_err: 974 return err; 975 } 976 977 static int path_walk(const char *name, struct nameidata *nd) 978 { 979 struct path save = nd->path; 980 int result; 981 982 current->total_link_count = 0; 983 984 /* make sure the stuff we saved doesn't go away */ 985 path_get(&save); 986 987 result = link_path_walk(name, nd); 988 if (result == -ESTALE) { 989 /* nd->path had been dropped */ 990 current->total_link_count = 0; 991 nd->path = save; 992 path_get(&nd->path); 993 nd->flags |= LOOKUP_REVAL; 994 result = link_path_walk(name, nd); 995 } 996 997 path_put(&save); 998 999 return result; 1000 } 1001 1002 static int path_init(int dfd, const char *name, unsigned int flags, struct nameidata *nd) 1003 { 1004 int retval = 0; 1005 int fput_needed; 1006 struct file *file; 1007 1008 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 1009 nd->flags = flags; 1010 nd->depth = 0; 1011 nd->root.mnt = NULL; 1012 1013 if (*name=='/') { 1014 set_root(nd); 1015 nd->path = nd->root; 1016 path_get(&nd->root); 1017 } else if (dfd == AT_FDCWD) { 1018 struct fs_struct *fs = current->fs; 1019 read_lock(&fs->lock); 1020 nd->path = fs->pwd; 1021 path_get(&fs->pwd); 1022 read_unlock(&fs->lock); 1023 } else { 1024 struct dentry *dentry; 1025 1026 file = fget_light(dfd, &fput_needed); 1027 retval = -EBADF; 1028 if (!file) 1029 goto out_fail; 1030 1031 dentry = file->f_path.dentry; 1032 1033 retval = -ENOTDIR; 1034 if (!S_ISDIR(dentry->d_inode->i_mode)) 1035 goto fput_fail; 1036 1037 retval = file_permission(file, MAY_EXEC); 1038 if (retval) 1039 goto fput_fail; 1040 1041 nd->path = file->f_path; 1042 path_get(&file->f_path); 1043 1044 fput_light(file, fput_needed); 1045 } 1046 return 0; 1047 1048 fput_fail: 1049 fput_light(file, fput_needed); 1050 out_fail: 1051 return retval; 1052 } 1053 1054 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 1055 static int do_path_lookup(int dfd, const char *name, 1056 unsigned int flags, struct nameidata *nd) 1057 { 1058 int retval = path_init(dfd, name, flags, nd); 1059 if (!retval) 1060 retval = path_walk(name, nd); 1061 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry && 1062 nd->path.dentry->d_inode)) 1063 audit_inode(name, nd->path.dentry); 1064 if (nd->root.mnt) { 1065 path_put(&nd->root); 1066 nd->root.mnt = NULL; 1067 } 1068 return retval; 1069 } 1070 1071 int path_lookup(const char *name, unsigned int flags, 1072 struct nameidata *nd) 1073 { 1074 return do_path_lookup(AT_FDCWD, name, flags, nd); 1075 } 1076 1077 int kern_path(const char *name, unsigned int flags, struct path *path) 1078 { 1079 struct nameidata nd; 1080 int res = do_path_lookup(AT_FDCWD, name, flags, &nd); 1081 if (!res) 1082 *path = nd.path; 1083 return res; 1084 } 1085 1086 /** 1087 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 1088 * @dentry: pointer to dentry of the base directory 1089 * @mnt: pointer to vfs mount of the base directory 1090 * @name: pointer to file name 1091 * @flags: lookup flags 1092 * @nd: pointer to nameidata 1093 */ 1094 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 1095 const char *name, unsigned int flags, 1096 struct nameidata *nd) 1097 { 1098 int retval; 1099 1100 /* same as do_path_lookup */ 1101 nd->last_type = LAST_ROOT; 1102 nd->flags = flags; 1103 nd->depth = 0; 1104 1105 nd->path.dentry = dentry; 1106 nd->path.mnt = mnt; 1107 path_get(&nd->path); 1108 nd->root = nd->path; 1109 path_get(&nd->root); 1110 1111 retval = path_walk(name, nd); 1112 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry && 1113 nd->path.dentry->d_inode)) 1114 audit_inode(name, nd->path.dentry); 1115 1116 path_put(&nd->root); 1117 nd->root.mnt = NULL; 1118 1119 return retval; 1120 } 1121 1122 static struct dentry *__lookup_hash(struct qstr *name, 1123 struct dentry *base, struct nameidata *nd) 1124 { 1125 struct dentry *dentry; 1126 struct inode *inode; 1127 int err; 1128 1129 inode = base->d_inode; 1130 1131 /* 1132 * See if the low-level filesystem might want 1133 * to use its own hash.. 1134 */ 1135 if (base->d_op && base->d_op->d_hash) { 1136 err = base->d_op->d_hash(base, name); 1137 dentry = ERR_PTR(err); 1138 if (err < 0) 1139 goto out; 1140 } 1141 1142 dentry = __d_lookup(base, name); 1143 1144 /* lockess __d_lookup may fail due to concurrent d_move() 1145 * in some unrelated directory, so try with d_lookup 1146 */ 1147 if (!dentry) 1148 dentry = d_lookup(base, name); 1149 1150 if (dentry && dentry->d_op && dentry->d_op->d_revalidate) 1151 dentry = do_revalidate(dentry, nd); 1152 1153 if (!dentry) { 1154 struct dentry *new; 1155 1156 /* Don't create child dentry for a dead directory. */ 1157 dentry = ERR_PTR(-ENOENT); 1158 if (IS_DEADDIR(inode)) 1159 goto out; 1160 1161 new = d_alloc(base, name); 1162 dentry = ERR_PTR(-ENOMEM); 1163 if (!new) 1164 goto out; 1165 dentry = inode->i_op->lookup(inode, new, nd); 1166 if (!dentry) 1167 dentry = new; 1168 else 1169 dput(new); 1170 } 1171 out: 1172 return dentry; 1173 } 1174 1175 /* 1176 * Restricted form of lookup. Doesn't follow links, single-component only, 1177 * needs parent already locked. Doesn't follow mounts. 1178 * SMP-safe. 1179 */ 1180 static struct dentry *lookup_hash(struct nameidata *nd) 1181 { 1182 int err; 1183 1184 err = exec_permission(nd->path.dentry->d_inode); 1185 if (err) 1186 return ERR_PTR(err); 1187 return __lookup_hash(&nd->last, nd->path.dentry, nd); 1188 } 1189 1190 static int __lookup_one_len(const char *name, struct qstr *this, 1191 struct dentry *base, int len) 1192 { 1193 unsigned long hash; 1194 unsigned int c; 1195 1196 this->name = name; 1197 this->len = len; 1198 if (!len) 1199 return -EACCES; 1200 1201 hash = init_name_hash(); 1202 while (len--) { 1203 c = *(const unsigned char *)name++; 1204 if (c == '/' || c == '\0') 1205 return -EACCES; 1206 hash = partial_name_hash(c, hash); 1207 } 1208 this->hash = end_name_hash(hash); 1209 return 0; 1210 } 1211 1212 /** 1213 * lookup_one_len - filesystem helper to lookup single pathname component 1214 * @name: pathname component to lookup 1215 * @base: base directory to lookup from 1216 * @len: maximum length @len should be interpreted to 1217 * 1218 * Note that this routine is purely a helper for filesystem usage and should 1219 * not be called by generic code. Also note that by using this function the 1220 * nameidata argument is passed to the filesystem methods and a filesystem 1221 * using this helper needs to be prepared for that. 1222 */ 1223 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 1224 { 1225 int err; 1226 struct qstr this; 1227 1228 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex)); 1229 1230 err = __lookup_one_len(name, &this, base, len); 1231 if (err) 1232 return ERR_PTR(err); 1233 1234 err = exec_permission(base->d_inode); 1235 if (err) 1236 return ERR_PTR(err); 1237 return __lookup_hash(&this, base, NULL); 1238 } 1239 1240 int user_path_at(int dfd, const char __user *name, unsigned flags, 1241 struct path *path) 1242 { 1243 struct nameidata nd; 1244 char *tmp = getname(name); 1245 int err = PTR_ERR(tmp); 1246 if (!IS_ERR(tmp)) { 1247 1248 BUG_ON(flags & LOOKUP_PARENT); 1249 1250 err = do_path_lookup(dfd, tmp, flags, &nd); 1251 putname(tmp); 1252 if (!err) 1253 *path = nd.path; 1254 } 1255 return err; 1256 } 1257 1258 static int user_path_parent(int dfd, const char __user *path, 1259 struct nameidata *nd, char **name) 1260 { 1261 char *s = getname(path); 1262 int error; 1263 1264 if (IS_ERR(s)) 1265 return PTR_ERR(s); 1266 1267 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd); 1268 if (error) 1269 putname(s); 1270 else 1271 *name = s; 1272 1273 return error; 1274 } 1275 1276 /* 1277 * It's inline, so penalty for filesystems that don't use sticky bit is 1278 * minimal. 1279 */ 1280 static inline int check_sticky(struct inode *dir, struct inode *inode) 1281 { 1282 uid_t fsuid = current_fsuid(); 1283 1284 if (!(dir->i_mode & S_ISVTX)) 1285 return 0; 1286 if (inode->i_uid == fsuid) 1287 return 0; 1288 if (dir->i_uid == fsuid) 1289 return 0; 1290 return !capable(CAP_FOWNER); 1291 } 1292 1293 /* 1294 * Check whether we can remove a link victim from directory dir, check 1295 * whether the type of victim is right. 1296 * 1. We can't do it if dir is read-only (done in permission()) 1297 * 2. We should have write and exec permissions on dir 1298 * 3. We can't remove anything from append-only dir 1299 * 4. We can't do anything with immutable dir (done in permission()) 1300 * 5. If the sticky bit on dir is set we should either 1301 * a. be owner of dir, or 1302 * b. be owner of victim, or 1303 * c. have CAP_FOWNER capability 1304 * 6. If the victim is append-only or immutable we can't do antyhing with 1305 * links pointing to it. 1306 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 1307 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 1308 * 9. We can't remove a root or mountpoint. 1309 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 1310 * nfs_async_unlink(). 1311 */ 1312 static int may_delete(struct inode *dir,struct dentry *victim,int isdir) 1313 { 1314 int error; 1315 1316 if (!victim->d_inode) 1317 return -ENOENT; 1318 1319 BUG_ON(victim->d_parent->d_inode != dir); 1320 audit_inode_child(victim, dir); 1321 1322 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 1323 if (error) 1324 return error; 1325 if (IS_APPEND(dir)) 1326 return -EPERM; 1327 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)|| 1328 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode)) 1329 return -EPERM; 1330 if (isdir) { 1331 if (!S_ISDIR(victim->d_inode->i_mode)) 1332 return -ENOTDIR; 1333 if (IS_ROOT(victim)) 1334 return -EBUSY; 1335 } else if (S_ISDIR(victim->d_inode->i_mode)) 1336 return -EISDIR; 1337 if (IS_DEADDIR(dir)) 1338 return -ENOENT; 1339 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 1340 return -EBUSY; 1341 return 0; 1342 } 1343 1344 /* Check whether we can create an object with dentry child in directory 1345 * dir. 1346 * 1. We can't do it if child already exists (open has special treatment for 1347 * this case, but since we are inlined it's OK) 1348 * 2. We can't do it if dir is read-only (done in permission()) 1349 * 3. We should have write and exec permissions on dir 1350 * 4. We can't do it if dir is immutable (done in permission()) 1351 */ 1352 static inline int may_create(struct inode *dir, struct dentry *child) 1353 { 1354 if (child->d_inode) 1355 return -EEXIST; 1356 if (IS_DEADDIR(dir)) 1357 return -ENOENT; 1358 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 1359 } 1360 1361 /* 1362 * p1 and p2 should be directories on the same fs. 1363 */ 1364 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 1365 { 1366 struct dentry *p; 1367 1368 if (p1 == p2) { 1369 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1370 return NULL; 1371 } 1372 1373 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 1374 1375 p = d_ancestor(p2, p1); 1376 if (p) { 1377 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT); 1378 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD); 1379 return p; 1380 } 1381 1382 p = d_ancestor(p1, p2); 1383 if (p) { 1384 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1385 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 1386 return p; 1387 } 1388 1389 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1390 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 1391 return NULL; 1392 } 1393 1394 void unlock_rename(struct dentry *p1, struct dentry *p2) 1395 { 1396 mutex_unlock(&p1->d_inode->i_mutex); 1397 if (p1 != p2) { 1398 mutex_unlock(&p2->d_inode->i_mutex); 1399 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 1400 } 1401 } 1402 1403 int vfs_create(struct inode *dir, struct dentry *dentry, int mode, 1404 struct nameidata *nd) 1405 { 1406 int error = may_create(dir, dentry); 1407 1408 if (error) 1409 return error; 1410 1411 if (!dir->i_op->create) 1412 return -EACCES; /* shouldn't it be ENOSYS? */ 1413 mode &= S_IALLUGO; 1414 mode |= S_IFREG; 1415 error = security_inode_create(dir, dentry, mode); 1416 if (error) 1417 return error; 1418 error = dir->i_op->create(dir, dentry, mode, nd); 1419 if (!error) 1420 fsnotify_create(dir, dentry); 1421 return error; 1422 } 1423 1424 int may_open(struct path *path, int acc_mode, int flag) 1425 { 1426 struct dentry *dentry = path->dentry; 1427 struct inode *inode = dentry->d_inode; 1428 int error; 1429 1430 if (!inode) 1431 return -ENOENT; 1432 1433 switch (inode->i_mode & S_IFMT) { 1434 case S_IFLNK: 1435 return -ELOOP; 1436 case S_IFDIR: 1437 if (acc_mode & MAY_WRITE) 1438 return -EISDIR; 1439 break; 1440 case S_IFBLK: 1441 case S_IFCHR: 1442 if (path->mnt->mnt_flags & MNT_NODEV) 1443 return -EACCES; 1444 /*FALLTHRU*/ 1445 case S_IFIFO: 1446 case S_IFSOCK: 1447 flag &= ~O_TRUNC; 1448 break; 1449 } 1450 1451 error = inode_permission(inode, acc_mode); 1452 if (error) 1453 return error; 1454 1455 /* 1456 * An append-only file must be opened in append mode for writing. 1457 */ 1458 if (IS_APPEND(inode)) { 1459 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 1460 return -EPERM; 1461 if (flag & O_TRUNC) 1462 return -EPERM; 1463 } 1464 1465 /* O_NOATIME can only be set by the owner or superuser */ 1466 if (flag & O_NOATIME && !is_owner_or_cap(inode)) 1467 return -EPERM; 1468 1469 /* 1470 * Ensure there are no outstanding leases on the file. 1471 */ 1472 return break_lease(inode, flag); 1473 } 1474 1475 static int handle_truncate(struct path *path) 1476 { 1477 struct inode *inode = path->dentry->d_inode; 1478 int error = get_write_access(inode); 1479 if (error) 1480 return error; 1481 /* 1482 * Refuse to truncate files with mandatory locks held on them. 1483 */ 1484 error = locks_verify_locked(inode); 1485 if (!error) 1486 error = security_path_truncate(path, 0, 1487 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN); 1488 if (!error) { 1489 error = do_truncate(path->dentry, 0, 1490 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 1491 NULL); 1492 } 1493 put_write_access(inode); 1494 return error; 1495 } 1496 1497 /* 1498 * Be careful about ever adding any more callers of this 1499 * function. Its flags must be in the namei format, not 1500 * what get passed to sys_open(). 1501 */ 1502 static int __open_namei_create(struct nameidata *nd, struct path *path, 1503 int open_flag, int mode) 1504 { 1505 int error; 1506 struct dentry *dir = nd->path.dentry; 1507 1508 if (!IS_POSIXACL(dir->d_inode)) 1509 mode &= ~current_umask(); 1510 error = security_path_mknod(&nd->path, path->dentry, mode, 0); 1511 if (error) 1512 goto out_unlock; 1513 error = vfs_create(dir->d_inode, path->dentry, mode, nd); 1514 out_unlock: 1515 mutex_unlock(&dir->d_inode->i_mutex); 1516 dput(nd->path.dentry); 1517 nd->path.dentry = path->dentry; 1518 if (error) 1519 return error; 1520 /* Don't check for write permission, don't truncate */ 1521 return may_open(&nd->path, 0, open_flag & ~O_TRUNC); 1522 } 1523 1524 /* 1525 * Note that while the flag value (low two bits) for sys_open means: 1526 * 00 - read-only 1527 * 01 - write-only 1528 * 10 - read-write 1529 * 11 - special 1530 * it is changed into 1531 * 00 - no permissions needed 1532 * 01 - read-permission 1533 * 10 - write-permission 1534 * 11 - read-write 1535 * for the internal routines (ie open_namei()/follow_link() etc) 1536 * This is more logical, and also allows the 00 "no perm needed" 1537 * to be used for symlinks (where the permissions are checked 1538 * later). 1539 * 1540 */ 1541 static inline int open_to_namei_flags(int flag) 1542 { 1543 if ((flag+1) & O_ACCMODE) 1544 flag++; 1545 return flag; 1546 } 1547 1548 static int open_will_truncate(int flag, struct inode *inode) 1549 { 1550 /* 1551 * We'll never write to the fs underlying 1552 * a device file. 1553 */ 1554 if (special_file(inode->i_mode)) 1555 return 0; 1556 return (flag & O_TRUNC); 1557 } 1558 1559 static struct file *finish_open(struct nameidata *nd, 1560 int open_flag, int acc_mode) 1561 { 1562 struct file *filp; 1563 int will_truncate; 1564 int error; 1565 1566 will_truncate = open_will_truncate(open_flag, nd->path.dentry->d_inode); 1567 if (will_truncate) { 1568 error = mnt_want_write(nd->path.mnt); 1569 if (error) 1570 goto exit; 1571 } 1572 error = may_open(&nd->path, acc_mode, open_flag); 1573 if (error) { 1574 if (will_truncate) 1575 mnt_drop_write(nd->path.mnt); 1576 goto exit; 1577 } 1578 filp = nameidata_to_filp(nd); 1579 if (!IS_ERR(filp)) { 1580 error = ima_file_check(filp, acc_mode); 1581 if (error) { 1582 fput(filp); 1583 filp = ERR_PTR(error); 1584 } 1585 } 1586 if (!IS_ERR(filp)) { 1587 if (will_truncate) { 1588 error = handle_truncate(&nd->path); 1589 if (error) { 1590 fput(filp); 1591 filp = ERR_PTR(error); 1592 } 1593 } 1594 } 1595 /* 1596 * It is now safe to drop the mnt write 1597 * because the filp has had a write taken 1598 * on its behalf. 1599 */ 1600 if (will_truncate) 1601 mnt_drop_write(nd->path.mnt); 1602 return filp; 1603 1604 exit: 1605 if (!IS_ERR(nd->intent.open.file)) 1606 release_open_intent(nd); 1607 path_put(&nd->path); 1608 return ERR_PTR(error); 1609 } 1610 1611 static struct file *do_last(struct nameidata *nd, struct path *path, 1612 int open_flag, int acc_mode, 1613 int mode, const char *pathname) 1614 { 1615 struct dentry *dir = nd->path.dentry; 1616 struct file *filp; 1617 int error = -EISDIR; 1618 1619 switch (nd->last_type) { 1620 case LAST_DOTDOT: 1621 follow_dotdot(nd); 1622 dir = nd->path.dentry; 1623 if (nd->path.mnt->mnt_sb->s_type->fs_flags & FS_REVAL_DOT) { 1624 if (!dir->d_op->d_revalidate(dir, nd)) { 1625 error = -ESTALE; 1626 goto exit; 1627 } 1628 } 1629 /* fallthrough */ 1630 case LAST_DOT: 1631 case LAST_ROOT: 1632 if (open_flag & O_CREAT) 1633 goto exit; 1634 /* fallthrough */ 1635 case LAST_BIND: 1636 audit_inode(pathname, dir); 1637 goto ok; 1638 } 1639 1640 /* trailing slashes? */ 1641 if (nd->last.name[nd->last.len]) { 1642 if (open_flag & O_CREAT) 1643 goto exit; 1644 nd->flags |= LOOKUP_DIRECTORY; 1645 } 1646 1647 /* just plain open? */ 1648 if (!(open_flag & O_CREAT)) { 1649 error = do_lookup(nd, &nd->last, path); 1650 if (error) 1651 goto exit; 1652 error = -ENOENT; 1653 if (!path->dentry->d_inode) 1654 goto exit_dput; 1655 if (path->dentry->d_inode->i_op->follow_link) 1656 return NULL; 1657 error = -ENOTDIR; 1658 if (nd->flags & LOOKUP_DIRECTORY) { 1659 if (!path->dentry->d_inode->i_op->lookup) 1660 goto exit_dput; 1661 } 1662 path_to_nameidata(path, nd); 1663 audit_inode(pathname, nd->path.dentry); 1664 goto ok; 1665 } 1666 1667 /* OK, it's O_CREAT */ 1668 mutex_lock(&dir->d_inode->i_mutex); 1669 1670 path->dentry = lookup_hash(nd); 1671 path->mnt = nd->path.mnt; 1672 1673 error = PTR_ERR(path->dentry); 1674 if (IS_ERR(path->dentry)) { 1675 mutex_unlock(&dir->d_inode->i_mutex); 1676 goto exit; 1677 } 1678 1679 if (IS_ERR(nd->intent.open.file)) { 1680 error = PTR_ERR(nd->intent.open.file); 1681 goto exit_mutex_unlock; 1682 } 1683 1684 /* Negative dentry, just create the file */ 1685 if (!path->dentry->d_inode) { 1686 /* 1687 * This write is needed to ensure that a 1688 * ro->rw transition does not occur between 1689 * the time when the file is created and when 1690 * a permanent write count is taken through 1691 * the 'struct file' in nameidata_to_filp(). 1692 */ 1693 error = mnt_want_write(nd->path.mnt); 1694 if (error) 1695 goto exit_mutex_unlock; 1696 error = __open_namei_create(nd, path, open_flag, mode); 1697 if (error) { 1698 mnt_drop_write(nd->path.mnt); 1699 goto exit; 1700 } 1701 filp = nameidata_to_filp(nd); 1702 mnt_drop_write(nd->path.mnt); 1703 if (!IS_ERR(filp)) { 1704 error = ima_file_check(filp, acc_mode); 1705 if (error) { 1706 fput(filp); 1707 filp = ERR_PTR(error); 1708 } 1709 } 1710 return filp; 1711 } 1712 1713 /* 1714 * It already exists. 1715 */ 1716 mutex_unlock(&dir->d_inode->i_mutex); 1717 audit_inode(pathname, path->dentry); 1718 1719 error = -EEXIST; 1720 if (open_flag & O_EXCL) 1721 goto exit_dput; 1722 1723 if (__follow_mount(path)) { 1724 error = -ELOOP; 1725 if (open_flag & O_NOFOLLOW) 1726 goto exit_dput; 1727 } 1728 1729 error = -ENOENT; 1730 if (!path->dentry->d_inode) 1731 goto exit_dput; 1732 1733 if (path->dentry->d_inode->i_op->follow_link) 1734 return NULL; 1735 1736 path_to_nameidata(path, nd); 1737 error = -EISDIR; 1738 if (S_ISDIR(path->dentry->d_inode->i_mode)) 1739 goto exit; 1740 ok: 1741 filp = finish_open(nd, open_flag, acc_mode); 1742 return filp; 1743 1744 exit_mutex_unlock: 1745 mutex_unlock(&dir->d_inode->i_mutex); 1746 exit_dput: 1747 path_put_conditional(path, nd); 1748 exit: 1749 if (!IS_ERR(nd->intent.open.file)) 1750 release_open_intent(nd); 1751 path_put(&nd->path); 1752 return ERR_PTR(error); 1753 } 1754 1755 /* 1756 * Note that the low bits of the passed in "open_flag" 1757 * are not the same as in the local variable "flag". See 1758 * open_to_namei_flags() for more details. 1759 */ 1760 struct file *do_filp_open(int dfd, const char *pathname, 1761 int open_flag, int mode, int acc_mode) 1762 { 1763 struct file *filp; 1764 struct nameidata nd; 1765 int error; 1766 struct path path; 1767 int count = 0; 1768 int flag = open_to_namei_flags(open_flag); 1769 int force_reval = 0; 1770 1771 if (!(open_flag & O_CREAT)) 1772 mode = 0; 1773 1774 /* 1775 * O_SYNC is implemented as __O_SYNC|O_DSYNC. As many places only 1776 * check for O_DSYNC if the need any syncing at all we enforce it's 1777 * always set instead of having to deal with possibly weird behaviour 1778 * for malicious applications setting only __O_SYNC. 1779 */ 1780 if (open_flag & __O_SYNC) 1781 open_flag |= O_DSYNC; 1782 1783 if (!acc_mode) 1784 acc_mode = MAY_OPEN | ACC_MODE(open_flag); 1785 1786 /* O_TRUNC implies we need access checks for write permissions */ 1787 if (open_flag & O_TRUNC) 1788 acc_mode |= MAY_WRITE; 1789 1790 /* Allow the LSM permission hook to distinguish append 1791 access from general write access. */ 1792 if (open_flag & O_APPEND) 1793 acc_mode |= MAY_APPEND; 1794 1795 /* find the parent */ 1796 reval: 1797 error = path_init(dfd, pathname, LOOKUP_PARENT, &nd); 1798 if (error) 1799 return ERR_PTR(error); 1800 if (force_reval) 1801 nd.flags |= LOOKUP_REVAL; 1802 1803 current->total_link_count = 0; 1804 error = link_path_walk(pathname, &nd); 1805 if (error) { 1806 filp = ERR_PTR(error); 1807 goto out; 1808 } 1809 if (unlikely(!audit_dummy_context()) && (open_flag & O_CREAT)) 1810 audit_inode(pathname, nd.path.dentry); 1811 1812 /* 1813 * We have the parent and last component. 1814 */ 1815 1816 error = -ENFILE; 1817 filp = get_empty_filp(); 1818 if (filp == NULL) 1819 goto exit_parent; 1820 nd.intent.open.file = filp; 1821 filp->f_flags = open_flag; 1822 nd.intent.open.flags = flag; 1823 nd.intent.open.create_mode = mode; 1824 nd.flags &= ~LOOKUP_PARENT; 1825 nd.flags |= LOOKUP_OPEN; 1826 if (open_flag & O_CREAT) { 1827 nd.flags |= LOOKUP_CREATE; 1828 if (open_flag & O_EXCL) 1829 nd.flags |= LOOKUP_EXCL; 1830 } 1831 if (open_flag & O_DIRECTORY) 1832 nd.flags |= LOOKUP_DIRECTORY; 1833 filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname); 1834 while (unlikely(!filp)) { /* trailing symlink */ 1835 struct path holder; 1836 struct inode *inode = path.dentry->d_inode; 1837 void *cookie; 1838 error = -ELOOP; 1839 /* S_ISDIR part is a temporary automount kludge */ 1840 if ((open_flag & O_NOFOLLOW) && !S_ISDIR(inode->i_mode)) 1841 goto exit_dput; 1842 if (count++ == 32) 1843 goto exit_dput; 1844 /* 1845 * This is subtle. Instead of calling do_follow_link() we do 1846 * the thing by hands. The reason is that this way we have zero 1847 * link_count and path_walk() (called from ->follow_link) 1848 * honoring LOOKUP_PARENT. After that we have the parent and 1849 * last component, i.e. we are in the same situation as after 1850 * the first path_walk(). Well, almost - if the last component 1851 * is normal we get its copy stored in nd->last.name and we will 1852 * have to putname() it when we are done. Procfs-like symlinks 1853 * just set LAST_BIND. 1854 */ 1855 nd.flags |= LOOKUP_PARENT; 1856 error = security_inode_follow_link(path.dentry, &nd); 1857 if (error) 1858 goto exit_dput; 1859 error = __do_follow_link(&path, &nd, &cookie); 1860 if (unlikely(error)) { 1861 /* nd.path had been dropped */ 1862 if (!IS_ERR(cookie) && inode->i_op->put_link) 1863 inode->i_op->put_link(path.dentry, &nd, cookie); 1864 path_put(&path); 1865 release_open_intent(&nd); 1866 filp = ERR_PTR(error); 1867 goto out; 1868 } 1869 holder = path; 1870 nd.flags &= ~LOOKUP_PARENT; 1871 filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname); 1872 if (inode->i_op->put_link) 1873 inode->i_op->put_link(holder.dentry, &nd, cookie); 1874 path_put(&holder); 1875 } 1876 out: 1877 if (nd.root.mnt) 1878 path_put(&nd.root); 1879 if (filp == ERR_PTR(-ESTALE) && !force_reval) { 1880 force_reval = 1; 1881 goto reval; 1882 } 1883 return filp; 1884 1885 exit_dput: 1886 path_put_conditional(&path, &nd); 1887 if (!IS_ERR(nd.intent.open.file)) 1888 release_open_intent(&nd); 1889 exit_parent: 1890 path_put(&nd.path); 1891 filp = ERR_PTR(error); 1892 goto out; 1893 } 1894 1895 /** 1896 * filp_open - open file and return file pointer 1897 * 1898 * @filename: path to open 1899 * @flags: open flags as per the open(2) second argument 1900 * @mode: mode for the new file if O_CREAT is set, else ignored 1901 * 1902 * This is the helper to open a file from kernelspace if you really 1903 * have to. But in generally you should not do this, so please move 1904 * along, nothing to see here.. 1905 */ 1906 struct file *filp_open(const char *filename, int flags, int mode) 1907 { 1908 return do_filp_open(AT_FDCWD, filename, flags, mode, 0); 1909 } 1910 EXPORT_SYMBOL(filp_open); 1911 1912 /** 1913 * lookup_create - lookup a dentry, creating it if it doesn't exist 1914 * @nd: nameidata info 1915 * @is_dir: directory flag 1916 * 1917 * Simple function to lookup and return a dentry and create it 1918 * if it doesn't exist. Is SMP-safe. 1919 * 1920 * Returns with nd->path.dentry->d_inode->i_mutex locked. 1921 */ 1922 struct dentry *lookup_create(struct nameidata *nd, int is_dir) 1923 { 1924 struct dentry *dentry = ERR_PTR(-EEXIST); 1925 1926 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 1927 /* 1928 * Yucky last component or no last component at all? 1929 * (foo/., foo/.., /////) 1930 */ 1931 if (nd->last_type != LAST_NORM) 1932 goto fail; 1933 nd->flags &= ~LOOKUP_PARENT; 1934 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL; 1935 nd->intent.open.flags = O_EXCL; 1936 1937 /* 1938 * Do the final lookup. 1939 */ 1940 dentry = lookup_hash(nd); 1941 if (IS_ERR(dentry)) 1942 goto fail; 1943 1944 if (dentry->d_inode) 1945 goto eexist; 1946 /* 1947 * Special case - lookup gave negative, but... we had foo/bar/ 1948 * From the vfs_mknod() POV we just have a negative dentry - 1949 * all is fine. Let's be bastards - you had / on the end, you've 1950 * been asking for (non-existent) directory. -ENOENT for you. 1951 */ 1952 if (unlikely(!is_dir && nd->last.name[nd->last.len])) { 1953 dput(dentry); 1954 dentry = ERR_PTR(-ENOENT); 1955 } 1956 return dentry; 1957 eexist: 1958 dput(dentry); 1959 dentry = ERR_PTR(-EEXIST); 1960 fail: 1961 return dentry; 1962 } 1963 EXPORT_SYMBOL_GPL(lookup_create); 1964 1965 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 1966 { 1967 int error = may_create(dir, dentry); 1968 1969 if (error) 1970 return error; 1971 1972 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 1973 return -EPERM; 1974 1975 if (!dir->i_op->mknod) 1976 return -EPERM; 1977 1978 error = devcgroup_inode_mknod(mode, dev); 1979 if (error) 1980 return error; 1981 1982 error = security_inode_mknod(dir, dentry, mode, dev); 1983 if (error) 1984 return error; 1985 1986 error = dir->i_op->mknod(dir, dentry, mode, dev); 1987 if (!error) 1988 fsnotify_create(dir, dentry); 1989 return error; 1990 } 1991 1992 static int may_mknod(mode_t mode) 1993 { 1994 switch (mode & S_IFMT) { 1995 case S_IFREG: 1996 case S_IFCHR: 1997 case S_IFBLK: 1998 case S_IFIFO: 1999 case S_IFSOCK: 2000 case 0: /* zero mode translates to S_IFREG */ 2001 return 0; 2002 case S_IFDIR: 2003 return -EPERM; 2004 default: 2005 return -EINVAL; 2006 } 2007 } 2008 2009 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode, 2010 unsigned, dev) 2011 { 2012 int error; 2013 char *tmp; 2014 struct dentry *dentry; 2015 struct nameidata nd; 2016 2017 if (S_ISDIR(mode)) 2018 return -EPERM; 2019 2020 error = user_path_parent(dfd, filename, &nd, &tmp); 2021 if (error) 2022 return error; 2023 2024 dentry = lookup_create(&nd, 0); 2025 if (IS_ERR(dentry)) { 2026 error = PTR_ERR(dentry); 2027 goto out_unlock; 2028 } 2029 if (!IS_POSIXACL(nd.path.dentry->d_inode)) 2030 mode &= ~current_umask(); 2031 error = may_mknod(mode); 2032 if (error) 2033 goto out_dput; 2034 error = mnt_want_write(nd.path.mnt); 2035 if (error) 2036 goto out_dput; 2037 error = security_path_mknod(&nd.path, dentry, mode, dev); 2038 if (error) 2039 goto out_drop_write; 2040 switch (mode & S_IFMT) { 2041 case 0: case S_IFREG: 2042 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd); 2043 break; 2044 case S_IFCHR: case S_IFBLK: 2045 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode, 2046 new_decode_dev(dev)); 2047 break; 2048 case S_IFIFO: case S_IFSOCK: 2049 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0); 2050 break; 2051 } 2052 out_drop_write: 2053 mnt_drop_write(nd.path.mnt); 2054 out_dput: 2055 dput(dentry); 2056 out_unlock: 2057 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2058 path_put(&nd.path); 2059 putname(tmp); 2060 2061 return error; 2062 } 2063 2064 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev) 2065 { 2066 return sys_mknodat(AT_FDCWD, filename, mode, dev); 2067 } 2068 2069 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 2070 { 2071 int error = may_create(dir, dentry); 2072 2073 if (error) 2074 return error; 2075 2076 if (!dir->i_op->mkdir) 2077 return -EPERM; 2078 2079 mode &= (S_IRWXUGO|S_ISVTX); 2080 error = security_inode_mkdir(dir, dentry, mode); 2081 if (error) 2082 return error; 2083 2084 error = dir->i_op->mkdir(dir, dentry, mode); 2085 if (!error) 2086 fsnotify_mkdir(dir, dentry); 2087 return error; 2088 } 2089 2090 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode) 2091 { 2092 int error = 0; 2093 char * tmp; 2094 struct dentry *dentry; 2095 struct nameidata nd; 2096 2097 error = user_path_parent(dfd, pathname, &nd, &tmp); 2098 if (error) 2099 goto out_err; 2100 2101 dentry = lookup_create(&nd, 1); 2102 error = PTR_ERR(dentry); 2103 if (IS_ERR(dentry)) 2104 goto out_unlock; 2105 2106 if (!IS_POSIXACL(nd.path.dentry->d_inode)) 2107 mode &= ~current_umask(); 2108 error = mnt_want_write(nd.path.mnt); 2109 if (error) 2110 goto out_dput; 2111 error = security_path_mkdir(&nd.path, dentry, mode); 2112 if (error) 2113 goto out_drop_write; 2114 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode); 2115 out_drop_write: 2116 mnt_drop_write(nd.path.mnt); 2117 out_dput: 2118 dput(dentry); 2119 out_unlock: 2120 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2121 path_put(&nd.path); 2122 putname(tmp); 2123 out_err: 2124 return error; 2125 } 2126 2127 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode) 2128 { 2129 return sys_mkdirat(AT_FDCWD, pathname, mode); 2130 } 2131 2132 /* 2133 * We try to drop the dentry early: we should have 2134 * a usage count of 2 if we're the only user of this 2135 * dentry, and if that is true (possibly after pruning 2136 * the dcache), then we drop the dentry now. 2137 * 2138 * A low-level filesystem can, if it choses, legally 2139 * do a 2140 * 2141 * if (!d_unhashed(dentry)) 2142 * return -EBUSY; 2143 * 2144 * if it cannot handle the case of removing a directory 2145 * that is still in use by something else.. 2146 */ 2147 void dentry_unhash(struct dentry *dentry) 2148 { 2149 dget(dentry); 2150 shrink_dcache_parent(dentry); 2151 spin_lock(&dcache_lock); 2152 spin_lock(&dentry->d_lock); 2153 if (atomic_read(&dentry->d_count) == 2) 2154 __d_drop(dentry); 2155 spin_unlock(&dentry->d_lock); 2156 spin_unlock(&dcache_lock); 2157 } 2158 2159 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 2160 { 2161 int error = may_delete(dir, dentry, 1); 2162 2163 if (error) 2164 return error; 2165 2166 if (!dir->i_op->rmdir) 2167 return -EPERM; 2168 2169 mutex_lock(&dentry->d_inode->i_mutex); 2170 dentry_unhash(dentry); 2171 if (d_mountpoint(dentry)) 2172 error = -EBUSY; 2173 else { 2174 error = security_inode_rmdir(dir, dentry); 2175 if (!error) { 2176 error = dir->i_op->rmdir(dir, dentry); 2177 if (!error) 2178 dentry->d_inode->i_flags |= S_DEAD; 2179 } 2180 } 2181 mutex_unlock(&dentry->d_inode->i_mutex); 2182 if (!error) { 2183 d_delete(dentry); 2184 } 2185 dput(dentry); 2186 2187 return error; 2188 } 2189 2190 static long do_rmdir(int dfd, const char __user *pathname) 2191 { 2192 int error = 0; 2193 char * name; 2194 struct dentry *dentry; 2195 struct nameidata nd; 2196 2197 error = user_path_parent(dfd, pathname, &nd, &name); 2198 if (error) 2199 return error; 2200 2201 switch(nd.last_type) { 2202 case LAST_DOTDOT: 2203 error = -ENOTEMPTY; 2204 goto exit1; 2205 case LAST_DOT: 2206 error = -EINVAL; 2207 goto exit1; 2208 case LAST_ROOT: 2209 error = -EBUSY; 2210 goto exit1; 2211 } 2212 2213 nd.flags &= ~LOOKUP_PARENT; 2214 2215 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2216 dentry = lookup_hash(&nd); 2217 error = PTR_ERR(dentry); 2218 if (IS_ERR(dentry)) 2219 goto exit2; 2220 error = mnt_want_write(nd.path.mnt); 2221 if (error) 2222 goto exit3; 2223 error = security_path_rmdir(&nd.path, dentry); 2224 if (error) 2225 goto exit4; 2226 error = vfs_rmdir(nd.path.dentry->d_inode, dentry); 2227 exit4: 2228 mnt_drop_write(nd.path.mnt); 2229 exit3: 2230 dput(dentry); 2231 exit2: 2232 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2233 exit1: 2234 path_put(&nd.path); 2235 putname(name); 2236 return error; 2237 } 2238 2239 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 2240 { 2241 return do_rmdir(AT_FDCWD, pathname); 2242 } 2243 2244 int vfs_unlink(struct inode *dir, struct dentry *dentry) 2245 { 2246 int error = may_delete(dir, dentry, 0); 2247 2248 if (error) 2249 return error; 2250 2251 if (!dir->i_op->unlink) 2252 return -EPERM; 2253 2254 mutex_lock(&dentry->d_inode->i_mutex); 2255 if (d_mountpoint(dentry)) 2256 error = -EBUSY; 2257 else { 2258 error = security_inode_unlink(dir, dentry); 2259 if (!error) { 2260 error = dir->i_op->unlink(dir, dentry); 2261 if (!error) 2262 dentry->d_inode->i_flags |= S_DEAD; 2263 } 2264 } 2265 mutex_unlock(&dentry->d_inode->i_mutex); 2266 2267 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 2268 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 2269 fsnotify_link_count(dentry->d_inode); 2270 d_delete(dentry); 2271 } 2272 2273 return error; 2274 } 2275 2276 /* 2277 * Make sure that the actual truncation of the file will occur outside its 2278 * directory's i_mutex. Truncate can take a long time if there is a lot of 2279 * writeout happening, and we don't want to prevent access to the directory 2280 * while waiting on the I/O. 2281 */ 2282 static long do_unlinkat(int dfd, const char __user *pathname) 2283 { 2284 int error; 2285 char *name; 2286 struct dentry *dentry; 2287 struct nameidata nd; 2288 struct inode *inode = NULL; 2289 2290 error = user_path_parent(dfd, pathname, &nd, &name); 2291 if (error) 2292 return error; 2293 2294 error = -EISDIR; 2295 if (nd.last_type != LAST_NORM) 2296 goto exit1; 2297 2298 nd.flags &= ~LOOKUP_PARENT; 2299 2300 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2301 dentry = lookup_hash(&nd); 2302 error = PTR_ERR(dentry); 2303 if (!IS_ERR(dentry)) { 2304 /* Why not before? Because we want correct error value */ 2305 if (nd.last.name[nd.last.len]) 2306 goto slashes; 2307 inode = dentry->d_inode; 2308 if (inode) 2309 atomic_inc(&inode->i_count); 2310 error = mnt_want_write(nd.path.mnt); 2311 if (error) 2312 goto exit2; 2313 error = security_path_unlink(&nd.path, dentry); 2314 if (error) 2315 goto exit3; 2316 error = vfs_unlink(nd.path.dentry->d_inode, dentry); 2317 exit3: 2318 mnt_drop_write(nd.path.mnt); 2319 exit2: 2320 dput(dentry); 2321 } 2322 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2323 if (inode) 2324 iput(inode); /* truncate the inode here */ 2325 exit1: 2326 path_put(&nd.path); 2327 putname(name); 2328 return error; 2329 2330 slashes: 2331 error = !dentry->d_inode ? -ENOENT : 2332 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR; 2333 goto exit2; 2334 } 2335 2336 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 2337 { 2338 if ((flag & ~AT_REMOVEDIR) != 0) 2339 return -EINVAL; 2340 2341 if (flag & AT_REMOVEDIR) 2342 return do_rmdir(dfd, pathname); 2343 2344 return do_unlinkat(dfd, pathname); 2345 } 2346 2347 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 2348 { 2349 return do_unlinkat(AT_FDCWD, pathname); 2350 } 2351 2352 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 2353 { 2354 int error = may_create(dir, dentry); 2355 2356 if (error) 2357 return error; 2358 2359 if (!dir->i_op->symlink) 2360 return -EPERM; 2361 2362 error = security_inode_symlink(dir, dentry, oldname); 2363 if (error) 2364 return error; 2365 2366 error = dir->i_op->symlink(dir, dentry, oldname); 2367 if (!error) 2368 fsnotify_create(dir, dentry); 2369 return error; 2370 } 2371 2372 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 2373 int, newdfd, const char __user *, newname) 2374 { 2375 int error; 2376 char *from; 2377 char *to; 2378 struct dentry *dentry; 2379 struct nameidata nd; 2380 2381 from = getname(oldname); 2382 if (IS_ERR(from)) 2383 return PTR_ERR(from); 2384 2385 error = user_path_parent(newdfd, newname, &nd, &to); 2386 if (error) 2387 goto out_putname; 2388 2389 dentry = lookup_create(&nd, 0); 2390 error = PTR_ERR(dentry); 2391 if (IS_ERR(dentry)) 2392 goto out_unlock; 2393 2394 error = mnt_want_write(nd.path.mnt); 2395 if (error) 2396 goto out_dput; 2397 error = security_path_symlink(&nd.path, dentry, from); 2398 if (error) 2399 goto out_drop_write; 2400 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from); 2401 out_drop_write: 2402 mnt_drop_write(nd.path.mnt); 2403 out_dput: 2404 dput(dentry); 2405 out_unlock: 2406 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2407 path_put(&nd.path); 2408 putname(to); 2409 out_putname: 2410 putname(from); 2411 return error; 2412 } 2413 2414 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 2415 { 2416 return sys_symlinkat(oldname, AT_FDCWD, newname); 2417 } 2418 2419 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2420 { 2421 struct inode *inode = old_dentry->d_inode; 2422 int error; 2423 2424 if (!inode) 2425 return -ENOENT; 2426 2427 error = may_create(dir, new_dentry); 2428 if (error) 2429 return error; 2430 2431 if (dir->i_sb != inode->i_sb) 2432 return -EXDEV; 2433 2434 /* 2435 * A link to an append-only or immutable file cannot be created. 2436 */ 2437 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 2438 return -EPERM; 2439 if (!dir->i_op->link) 2440 return -EPERM; 2441 if (S_ISDIR(inode->i_mode)) 2442 return -EPERM; 2443 2444 error = security_inode_link(old_dentry, dir, new_dentry); 2445 if (error) 2446 return error; 2447 2448 mutex_lock(&inode->i_mutex); 2449 error = dir->i_op->link(old_dentry, dir, new_dentry); 2450 mutex_unlock(&inode->i_mutex); 2451 if (!error) 2452 fsnotify_link(dir, inode, new_dentry); 2453 return error; 2454 } 2455 2456 /* 2457 * Hardlinks are often used in delicate situations. We avoid 2458 * security-related surprises by not following symlinks on the 2459 * newname. --KAB 2460 * 2461 * We don't follow them on the oldname either to be compatible 2462 * with linux 2.0, and to avoid hard-linking to directories 2463 * and other special files. --ADM 2464 */ 2465 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 2466 int, newdfd, const char __user *, newname, int, flags) 2467 { 2468 struct dentry *new_dentry; 2469 struct nameidata nd; 2470 struct path old_path; 2471 int error; 2472 char *to; 2473 2474 if ((flags & ~AT_SYMLINK_FOLLOW) != 0) 2475 return -EINVAL; 2476 2477 error = user_path_at(olddfd, oldname, 2478 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0, 2479 &old_path); 2480 if (error) 2481 return error; 2482 2483 error = user_path_parent(newdfd, newname, &nd, &to); 2484 if (error) 2485 goto out; 2486 error = -EXDEV; 2487 if (old_path.mnt != nd.path.mnt) 2488 goto out_release; 2489 new_dentry = lookup_create(&nd, 0); 2490 error = PTR_ERR(new_dentry); 2491 if (IS_ERR(new_dentry)) 2492 goto out_unlock; 2493 error = mnt_want_write(nd.path.mnt); 2494 if (error) 2495 goto out_dput; 2496 error = security_path_link(old_path.dentry, &nd.path, new_dentry); 2497 if (error) 2498 goto out_drop_write; 2499 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry); 2500 out_drop_write: 2501 mnt_drop_write(nd.path.mnt); 2502 out_dput: 2503 dput(new_dentry); 2504 out_unlock: 2505 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2506 out_release: 2507 path_put(&nd.path); 2508 putname(to); 2509 out: 2510 path_put(&old_path); 2511 2512 return error; 2513 } 2514 2515 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 2516 { 2517 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 2518 } 2519 2520 /* 2521 * The worst of all namespace operations - renaming directory. "Perverted" 2522 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 2523 * Problems: 2524 * a) we can get into loop creation. Check is done in is_subdir(). 2525 * b) race potential - two innocent renames can create a loop together. 2526 * That's where 4.4 screws up. Current fix: serialization on 2527 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 2528 * story. 2529 * c) we have to lock _three_ objects - parents and victim (if it exists). 2530 * And that - after we got ->i_mutex on parents (until then we don't know 2531 * whether the target exists). Solution: try to be smart with locking 2532 * order for inodes. We rely on the fact that tree topology may change 2533 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 2534 * move will be locked. Thus we can rank directories by the tree 2535 * (ancestors first) and rank all non-directories after them. 2536 * That works since everybody except rename does "lock parent, lookup, 2537 * lock child" and rename is under ->s_vfs_rename_mutex. 2538 * HOWEVER, it relies on the assumption that any object with ->lookup() 2539 * has no more than 1 dentry. If "hybrid" objects will ever appear, 2540 * we'd better make sure that there's no link(2) for them. 2541 * d) some filesystems don't support opened-but-unlinked directories, 2542 * either because of layout or because they are not ready to deal with 2543 * all cases correctly. The latter will be fixed (taking this sort of 2544 * stuff into VFS), but the former is not going away. Solution: the same 2545 * trick as in rmdir(). 2546 * e) conversion from fhandle to dentry may come in the wrong moment - when 2547 * we are removing the target. Solution: we will have to grab ->i_mutex 2548 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 2549 * ->i_mutex on parents, which works but leads to some truly excessive 2550 * locking]. 2551 */ 2552 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry, 2553 struct inode *new_dir, struct dentry *new_dentry) 2554 { 2555 int error = 0; 2556 struct inode *target; 2557 2558 /* 2559 * If we are going to change the parent - check write permissions, 2560 * we'll need to flip '..'. 2561 */ 2562 if (new_dir != old_dir) { 2563 error = inode_permission(old_dentry->d_inode, MAY_WRITE); 2564 if (error) 2565 return error; 2566 } 2567 2568 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 2569 if (error) 2570 return error; 2571 2572 target = new_dentry->d_inode; 2573 if (target) { 2574 mutex_lock(&target->i_mutex); 2575 dentry_unhash(new_dentry); 2576 } 2577 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) 2578 error = -EBUSY; 2579 else 2580 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 2581 if (target) { 2582 if (!error) 2583 target->i_flags |= S_DEAD; 2584 mutex_unlock(&target->i_mutex); 2585 if (d_unhashed(new_dentry)) 2586 d_rehash(new_dentry); 2587 dput(new_dentry); 2588 } 2589 if (!error) 2590 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 2591 d_move(old_dentry,new_dentry); 2592 return error; 2593 } 2594 2595 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry, 2596 struct inode *new_dir, struct dentry *new_dentry) 2597 { 2598 struct inode *target; 2599 int error; 2600 2601 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 2602 if (error) 2603 return error; 2604 2605 dget(new_dentry); 2606 target = new_dentry->d_inode; 2607 if (target) 2608 mutex_lock(&target->i_mutex); 2609 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) 2610 error = -EBUSY; 2611 else 2612 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 2613 if (!error) { 2614 if (target) 2615 target->i_flags |= S_DEAD; 2616 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 2617 d_move(old_dentry, new_dentry); 2618 } 2619 if (target) 2620 mutex_unlock(&target->i_mutex); 2621 dput(new_dentry); 2622 return error; 2623 } 2624 2625 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 2626 struct inode *new_dir, struct dentry *new_dentry) 2627 { 2628 int error; 2629 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode); 2630 const char *old_name; 2631 2632 if (old_dentry->d_inode == new_dentry->d_inode) 2633 return 0; 2634 2635 error = may_delete(old_dir, old_dentry, is_dir); 2636 if (error) 2637 return error; 2638 2639 if (!new_dentry->d_inode) 2640 error = may_create(new_dir, new_dentry); 2641 else 2642 error = may_delete(new_dir, new_dentry, is_dir); 2643 if (error) 2644 return error; 2645 2646 if (!old_dir->i_op->rename) 2647 return -EPERM; 2648 2649 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 2650 2651 if (is_dir) 2652 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry); 2653 else 2654 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry); 2655 if (!error) 2656 fsnotify_move(old_dir, new_dir, old_name, is_dir, 2657 new_dentry->d_inode, old_dentry); 2658 fsnotify_oldname_free(old_name); 2659 2660 return error; 2661 } 2662 2663 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 2664 int, newdfd, const char __user *, newname) 2665 { 2666 struct dentry *old_dir, *new_dir; 2667 struct dentry *old_dentry, *new_dentry; 2668 struct dentry *trap; 2669 struct nameidata oldnd, newnd; 2670 char *from; 2671 char *to; 2672 int error; 2673 2674 error = user_path_parent(olddfd, oldname, &oldnd, &from); 2675 if (error) 2676 goto exit; 2677 2678 error = user_path_parent(newdfd, newname, &newnd, &to); 2679 if (error) 2680 goto exit1; 2681 2682 error = -EXDEV; 2683 if (oldnd.path.mnt != newnd.path.mnt) 2684 goto exit2; 2685 2686 old_dir = oldnd.path.dentry; 2687 error = -EBUSY; 2688 if (oldnd.last_type != LAST_NORM) 2689 goto exit2; 2690 2691 new_dir = newnd.path.dentry; 2692 if (newnd.last_type != LAST_NORM) 2693 goto exit2; 2694 2695 oldnd.flags &= ~LOOKUP_PARENT; 2696 newnd.flags &= ~LOOKUP_PARENT; 2697 newnd.flags |= LOOKUP_RENAME_TARGET; 2698 2699 trap = lock_rename(new_dir, old_dir); 2700 2701 old_dentry = lookup_hash(&oldnd); 2702 error = PTR_ERR(old_dentry); 2703 if (IS_ERR(old_dentry)) 2704 goto exit3; 2705 /* source must exist */ 2706 error = -ENOENT; 2707 if (!old_dentry->d_inode) 2708 goto exit4; 2709 /* unless the source is a directory trailing slashes give -ENOTDIR */ 2710 if (!S_ISDIR(old_dentry->d_inode->i_mode)) { 2711 error = -ENOTDIR; 2712 if (oldnd.last.name[oldnd.last.len]) 2713 goto exit4; 2714 if (newnd.last.name[newnd.last.len]) 2715 goto exit4; 2716 } 2717 /* source should not be ancestor of target */ 2718 error = -EINVAL; 2719 if (old_dentry == trap) 2720 goto exit4; 2721 new_dentry = lookup_hash(&newnd); 2722 error = PTR_ERR(new_dentry); 2723 if (IS_ERR(new_dentry)) 2724 goto exit4; 2725 /* target should not be an ancestor of source */ 2726 error = -ENOTEMPTY; 2727 if (new_dentry == trap) 2728 goto exit5; 2729 2730 error = mnt_want_write(oldnd.path.mnt); 2731 if (error) 2732 goto exit5; 2733 error = security_path_rename(&oldnd.path, old_dentry, 2734 &newnd.path, new_dentry); 2735 if (error) 2736 goto exit6; 2737 error = vfs_rename(old_dir->d_inode, old_dentry, 2738 new_dir->d_inode, new_dentry); 2739 exit6: 2740 mnt_drop_write(oldnd.path.mnt); 2741 exit5: 2742 dput(new_dentry); 2743 exit4: 2744 dput(old_dentry); 2745 exit3: 2746 unlock_rename(new_dir, old_dir); 2747 exit2: 2748 path_put(&newnd.path); 2749 putname(to); 2750 exit1: 2751 path_put(&oldnd.path); 2752 putname(from); 2753 exit: 2754 return error; 2755 } 2756 2757 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 2758 { 2759 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname); 2760 } 2761 2762 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link) 2763 { 2764 int len; 2765 2766 len = PTR_ERR(link); 2767 if (IS_ERR(link)) 2768 goto out; 2769 2770 len = strlen(link); 2771 if (len > (unsigned) buflen) 2772 len = buflen; 2773 if (copy_to_user(buffer, link, len)) 2774 len = -EFAULT; 2775 out: 2776 return len; 2777 } 2778 2779 /* 2780 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 2781 * have ->follow_link() touching nd only in nd_set_link(). Using (or not 2782 * using) it for any given inode is up to filesystem. 2783 */ 2784 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) 2785 { 2786 struct nameidata nd; 2787 void *cookie; 2788 int res; 2789 2790 nd.depth = 0; 2791 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd); 2792 if (IS_ERR(cookie)) 2793 return PTR_ERR(cookie); 2794 2795 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd)); 2796 if (dentry->d_inode->i_op->put_link) 2797 dentry->d_inode->i_op->put_link(dentry, &nd, cookie); 2798 return res; 2799 } 2800 2801 int vfs_follow_link(struct nameidata *nd, const char *link) 2802 { 2803 return __vfs_follow_link(nd, link); 2804 } 2805 2806 /* get the link contents into pagecache */ 2807 static char *page_getlink(struct dentry * dentry, struct page **ppage) 2808 { 2809 char *kaddr; 2810 struct page *page; 2811 struct address_space *mapping = dentry->d_inode->i_mapping; 2812 page = read_mapping_page(mapping, 0, NULL); 2813 if (IS_ERR(page)) 2814 return (char*)page; 2815 *ppage = page; 2816 kaddr = kmap(page); 2817 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1); 2818 return kaddr; 2819 } 2820 2821 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 2822 { 2823 struct page *page = NULL; 2824 char *s = page_getlink(dentry, &page); 2825 int res = vfs_readlink(dentry,buffer,buflen,s); 2826 if (page) { 2827 kunmap(page); 2828 page_cache_release(page); 2829 } 2830 return res; 2831 } 2832 2833 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd) 2834 { 2835 struct page *page = NULL; 2836 nd_set_link(nd, page_getlink(dentry, &page)); 2837 return page; 2838 } 2839 2840 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 2841 { 2842 struct page *page = cookie; 2843 2844 if (page) { 2845 kunmap(page); 2846 page_cache_release(page); 2847 } 2848 } 2849 2850 /* 2851 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 2852 */ 2853 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 2854 { 2855 struct address_space *mapping = inode->i_mapping; 2856 struct page *page; 2857 void *fsdata; 2858 int err; 2859 char *kaddr; 2860 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE; 2861 if (nofs) 2862 flags |= AOP_FLAG_NOFS; 2863 2864 retry: 2865 err = pagecache_write_begin(NULL, mapping, 0, len-1, 2866 flags, &page, &fsdata); 2867 if (err) 2868 goto fail; 2869 2870 kaddr = kmap_atomic(page, KM_USER0); 2871 memcpy(kaddr, symname, len-1); 2872 kunmap_atomic(kaddr, KM_USER0); 2873 2874 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 2875 page, fsdata); 2876 if (err < 0) 2877 goto fail; 2878 if (err < len-1) 2879 goto retry; 2880 2881 mark_inode_dirty(inode); 2882 return 0; 2883 fail: 2884 return err; 2885 } 2886 2887 int page_symlink(struct inode *inode, const char *symname, int len) 2888 { 2889 return __page_symlink(inode, symname, len, 2890 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS)); 2891 } 2892 2893 const struct inode_operations page_symlink_inode_operations = { 2894 .readlink = generic_readlink, 2895 .follow_link = page_follow_link_light, 2896 .put_link = page_put_link, 2897 }; 2898 2899 EXPORT_SYMBOL(user_path_at); 2900 EXPORT_SYMBOL(follow_down); 2901 EXPORT_SYMBOL(follow_up); 2902 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */ 2903 EXPORT_SYMBOL(getname); 2904 EXPORT_SYMBOL(lock_rename); 2905 EXPORT_SYMBOL(lookup_one_len); 2906 EXPORT_SYMBOL(page_follow_link_light); 2907 EXPORT_SYMBOL(page_put_link); 2908 EXPORT_SYMBOL(page_readlink); 2909 EXPORT_SYMBOL(__page_symlink); 2910 EXPORT_SYMBOL(page_symlink); 2911 EXPORT_SYMBOL(page_symlink_inode_operations); 2912 EXPORT_SYMBOL(path_lookup); 2913 EXPORT_SYMBOL(kern_path); 2914 EXPORT_SYMBOL(vfs_path_lookup); 2915 EXPORT_SYMBOL(inode_permission); 2916 EXPORT_SYMBOL(file_permission); 2917 EXPORT_SYMBOL(unlock_rename); 2918 EXPORT_SYMBOL(vfs_create); 2919 EXPORT_SYMBOL(vfs_follow_link); 2920 EXPORT_SYMBOL(vfs_link); 2921 EXPORT_SYMBOL(vfs_mkdir); 2922 EXPORT_SYMBOL(vfs_mknod); 2923 EXPORT_SYMBOL(generic_permission); 2924 EXPORT_SYMBOL(vfs_readlink); 2925 EXPORT_SYMBOL(vfs_rename); 2926 EXPORT_SYMBOL(vfs_rmdir); 2927 EXPORT_SYMBOL(vfs_symlink); 2928 EXPORT_SYMBOL(vfs_unlink); 2929 EXPORT_SYMBOL(dentry_unhash); 2930 EXPORT_SYMBOL(generic_readlink); 2931