xref: /linux/fs/namei.c (revision a33f32244d8550da8b4a26e277ce07d5c6d158b5)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <asm/uaccess.h>
36 
37 #include "internal.h"
38 
39 /* [Feb-1997 T. Schoebel-Theuer]
40  * Fundamental changes in the pathname lookup mechanisms (namei)
41  * were necessary because of omirr.  The reason is that omirr needs
42  * to know the _real_ pathname, not the user-supplied one, in case
43  * of symlinks (and also when transname replacements occur).
44  *
45  * The new code replaces the old recursive symlink resolution with
46  * an iterative one (in case of non-nested symlink chains).  It does
47  * this with calls to <fs>_follow_link().
48  * As a side effect, dir_namei(), _namei() and follow_link() are now
49  * replaced with a single function lookup_dentry() that can handle all
50  * the special cases of the former code.
51  *
52  * With the new dcache, the pathname is stored at each inode, at least as
53  * long as the refcount of the inode is positive.  As a side effect, the
54  * size of the dcache depends on the inode cache and thus is dynamic.
55  *
56  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
57  * resolution to correspond with current state of the code.
58  *
59  * Note that the symlink resolution is not *completely* iterative.
60  * There is still a significant amount of tail- and mid- recursion in
61  * the algorithm.  Also, note that <fs>_readlink() is not used in
62  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
63  * may return different results than <fs>_follow_link().  Many virtual
64  * filesystems (including /proc) exhibit this behavior.
65  */
66 
67 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
68  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
69  * and the name already exists in form of a symlink, try to create the new
70  * name indicated by the symlink. The old code always complained that the
71  * name already exists, due to not following the symlink even if its target
72  * is nonexistent.  The new semantics affects also mknod() and link() when
73  * the name is a symlink pointing to a non-existant name.
74  *
75  * I don't know which semantics is the right one, since I have no access
76  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
77  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
78  * "old" one. Personally, I think the new semantics is much more logical.
79  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
80  * file does succeed in both HP-UX and SunOs, but not in Solaris
81  * and in the old Linux semantics.
82  */
83 
84 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
85  * semantics.  See the comments in "open_namei" and "do_link" below.
86  *
87  * [10-Sep-98 Alan Modra] Another symlink change.
88  */
89 
90 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
91  *	inside the path - always follow.
92  *	in the last component in creation/removal/renaming - never follow.
93  *	if LOOKUP_FOLLOW passed - follow.
94  *	if the pathname has trailing slashes - follow.
95  *	otherwise - don't follow.
96  * (applied in that order).
97  *
98  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
99  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
100  * During the 2.4 we need to fix the userland stuff depending on it -
101  * hopefully we will be able to get rid of that wart in 2.5. So far only
102  * XEmacs seems to be relying on it...
103  */
104 /*
105  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
106  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
107  * any extra contention...
108  */
109 
110 /* In order to reduce some races, while at the same time doing additional
111  * checking and hopefully speeding things up, we copy filenames to the
112  * kernel data space before using them..
113  *
114  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
115  * PATH_MAX includes the nul terminator --RR.
116  */
117 static int do_getname(const char __user *filename, char *page)
118 {
119 	int retval;
120 	unsigned long len = PATH_MAX;
121 
122 	if (!segment_eq(get_fs(), KERNEL_DS)) {
123 		if ((unsigned long) filename >= TASK_SIZE)
124 			return -EFAULT;
125 		if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
126 			len = TASK_SIZE - (unsigned long) filename;
127 	}
128 
129 	retval = strncpy_from_user(page, filename, len);
130 	if (retval > 0) {
131 		if (retval < len)
132 			return 0;
133 		return -ENAMETOOLONG;
134 	} else if (!retval)
135 		retval = -ENOENT;
136 	return retval;
137 }
138 
139 char * getname(const char __user * filename)
140 {
141 	char *tmp, *result;
142 
143 	result = ERR_PTR(-ENOMEM);
144 	tmp = __getname();
145 	if (tmp)  {
146 		int retval = do_getname(filename, tmp);
147 
148 		result = tmp;
149 		if (retval < 0) {
150 			__putname(tmp);
151 			result = ERR_PTR(retval);
152 		}
153 	}
154 	audit_getname(result);
155 	return result;
156 }
157 
158 #ifdef CONFIG_AUDITSYSCALL
159 void putname(const char *name)
160 {
161 	if (unlikely(!audit_dummy_context()))
162 		audit_putname(name);
163 	else
164 		__putname(name);
165 }
166 EXPORT_SYMBOL(putname);
167 #endif
168 
169 /*
170  * This does basic POSIX ACL permission checking
171  */
172 static int acl_permission_check(struct inode *inode, int mask,
173 		int (*check_acl)(struct inode *inode, int mask))
174 {
175 	umode_t			mode = inode->i_mode;
176 
177 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
178 
179 	if (current_fsuid() == inode->i_uid)
180 		mode >>= 6;
181 	else {
182 		if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
183 			int error = check_acl(inode, mask);
184 			if (error != -EAGAIN)
185 				return error;
186 		}
187 
188 		if (in_group_p(inode->i_gid))
189 			mode >>= 3;
190 	}
191 
192 	/*
193 	 * If the DACs are ok we don't need any capability check.
194 	 */
195 	if ((mask & ~mode) == 0)
196 		return 0;
197 	return -EACCES;
198 }
199 
200 /**
201  * generic_permission  -  check for access rights on a Posix-like filesystem
202  * @inode:	inode to check access rights for
203  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
204  * @check_acl:	optional callback to check for Posix ACLs
205  *
206  * Used to check for read/write/execute permissions on a file.
207  * We use "fsuid" for this, letting us set arbitrary permissions
208  * for filesystem access without changing the "normal" uids which
209  * are used for other things..
210  */
211 int generic_permission(struct inode *inode, int mask,
212 		int (*check_acl)(struct inode *inode, int mask))
213 {
214 	int ret;
215 
216 	/*
217 	 * Do the basic POSIX ACL permission checks.
218 	 */
219 	ret = acl_permission_check(inode, mask, check_acl);
220 	if (ret != -EACCES)
221 		return ret;
222 
223 	/*
224 	 * Read/write DACs are always overridable.
225 	 * Executable DACs are overridable if at least one exec bit is set.
226 	 */
227 	if (!(mask & MAY_EXEC) || execute_ok(inode))
228 		if (capable(CAP_DAC_OVERRIDE))
229 			return 0;
230 
231 	/*
232 	 * Searching includes executable on directories, else just read.
233 	 */
234 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
235 	if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
236 		if (capable(CAP_DAC_READ_SEARCH))
237 			return 0;
238 
239 	return -EACCES;
240 }
241 
242 /**
243  * inode_permission  -  check for access rights to a given inode
244  * @inode:	inode to check permission on
245  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
246  *
247  * Used to check for read/write/execute permissions on an inode.
248  * We use "fsuid" for this, letting us set arbitrary permissions
249  * for filesystem access without changing the "normal" uids which
250  * are used for other things.
251  */
252 int inode_permission(struct inode *inode, int mask)
253 {
254 	int retval;
255 
256 	if (mask & MAY_WRITE) {
257 		umode_t mode = inode->i_mode;
258 
259 		/*
260 		 * Nobody gets write access to a read-only fs.
261 		 */
262 		if (IS_RDONLY(inode) &&
263 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
264 			return -EROFS;
265 
266 		/*
267 		 * Nobody gets write access to an immutable file.
268 		 */
269 		if (IS_IMMUTABLE(inode))
270 			return -EACCES;
271 	}
272 
273 	if (inode->i_op->permission)
274 		retval = inode->i_op->permission(inode, mask);
275 	else
276 		retval = generic_permission(inode, mask, inode->i_op->check_acl);
277 
278 	if (retval)
279 		return retval;
280 
281 	retval = devcgroup_inode_permission(inode, mask);
282 	if (retval)
283 		return retval;
284 
285 	return security_inode_permission(inode,
286 			mask & (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND));
287 }
288 
289 /**
290  * file_permission  -  check for additional access rights to a given file
291  * @file:	file to check access rights for
292  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
293  *
294  * Used to check for read/write/execute permissions on an already opened
295  * file.
296  *
297  * Note:
298  *	Do not use this function in new code.  All access checks should
299  *	be done using inode_permission().
300  */
301 int file_permission(struct file *file, int mask)
302 {
303 	return inode_permission(file->f_path.dentry->d_inode, mask);
304 }
305 
306 /*
307  * get_write_access() gets write permission for a file.
308  * put_write_access() releases this write permission.
309  * This is used for regular files.
310  * We cannot support write (and maybe mmap read-write shared) accesses and
311  * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
312  * can have the following values:
313  * 0: no writers, no VM_DENYWRITE mappings
314  * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
315  * > 0: (i_writecount) users are writing to the file.
316  *
317  * Normally we operate on that counter with atomic_{inc,dec} and it's safe
318  * except for the cases where we don't hold i_writecount yet. Then we need to
319  * use {get,deny}_write_access() - these functions check the sign and refuse
320  * to do the change if sign is wrong. Exclusion between them is provided by
321  * the inode->i_lock spinlock.
322  */
323 
324 int get_write_access(struct inode * inode)
325 {
326 	spin_lock(&inode->i_lock);
327 	if (atomic_read(&inode->i_writecount) < 0) {
328 		spin_unlock(&inode->i_lock);
329 		return -ETXTBSY;
330 	}
331 	atomic_inc(&inode->i_writecount);
332 	spin_unlock(&inode->i_lock);
333 
334 	return 0;
335 }
336 
337 int deny_write_access(struct file * file)
338 {
339 	struct inode *inode = file->f_path.dentry->d_inode;
340 
341 	spin_lock(&inode->i_lock);
342 	if (atomic_read(&inode->i_writecount) > 0) {
343 		spin_unlock(&inode->i_lock);
344 		return -ETXTBSY;
345 	}
346 	atomic_dec(&inode->i_writecount);
347 	spin_unlock(&inode->i_lock);
348 
349 	return 0;
350 }
351 
352 /**
353  * path_get - get a reference to a path
354  * @path: path to get the reference to
355  *
356  * Given a path increment the reference count to the dentry and the vfsmount.
357  */
358 void path_get(struct path *path)
359 {
360 	mntget(path->mnt);
361 	dget(path->dentry);
362 }
363 EXPORT_SYMBOL(path_get);
364 
365 /**
366  * path_put - put a reference to a path
367  * @path: path to put the reference to
368  *
369  * Given a path decrement the reference count to the dentry and the vfsmount.
370  */
371 void path_put(struct path *path)
372 {
373 	dput(path->dentry);
374 	mntput(path->mnt);
375 }
376 EXPORT_SYMBOL(path_put);
377 
378 /**
379  * release_open_intent - free up open intent resources
380  * @nd: pointer to nameidata
381  */
382 void release_open_intent(struct nameidata *nd)
383 {
384 	if (nd->intent.open.file->f_path.dentry == NULL)
385 		put_filp(nd->intent.open.file);
386 	else
387 		fput(nd->intent.open.file);
388 }
389 
390 static inline struct dentry *
391 do_revalidate(struct dentry *dentry, struct nameidata *nd)
392 {
393 	int status = dentry->d_op->d_revalidate(dentry, nd);
394 	if (unlikely(status <= 0)) {
395 		/*
396 		 * The dentry failed validation.
397 		 * If d_revalidate returned 0 attempt to invalidate
398 		 * the dentry otherwise d_revalidate is asking us
399 		 * to return a fail status.
400 		 */
401 		if (!status) {
402 			if (!d_invalidate(dentry)) {
403 				dput(dentry);
404 				dentry = NULL;
405 			}
406 		} else {
407 			dput(dentry);
408 			dentry = ERR_PTR(status);
409 		}
410 	}
411 	return dentry;
412 }
413 
414 /*
415  * force_reval_path - force revalidation of a dentry
416  *
417  * In some situations the path walking code will trust dentries without
418  * revalidating them. This causes problems for filesystems that depend on
419  * d_revalidate to handle file opens (e.g. NFSv4). When FS_REVAL_DOT is set
420  * (which indicates that it's possible for the dentry to go stale), force
421  * a d_revalidate call before proceeding.
422  *
423  * Returns 0 if the revalidation was successful. If the revalidation fails,
424  * either return the error returned by d_revalidate or -ESTALE if the
425  * revalidation it just returned 0. If d_revalidate returns 0, we attempt to
426  * invalidate the dentry. It's up to the caller to handle putting references
427  * to the path if necessary.
428  */
429 static int
430 force_reval_path(struct path *path, struct nameidata *nd)
431 {
432 	int status;
433 	struct dentry *dentry = path->dentry;
434 
435 	/*
436 	 * only check on filesystems where it's possible for the dentry to
437 	 * become stale. It's assumed that if this flag is set then the
438 	 * d_revalidate op will also be defined.
439 	 */
440 	if (!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT))
441 		return 0;
442 
443 	status = dentry->d_op->d_revalidate(dentry, nd);
444 	if (status > 0)
445 		return 0;
446 
447 	if (!status) {
448 		d_invalidate(dentry);
449 		status = -ESTALE;
450 	}
451 	return status;
452 }
453 
454 /*
455  * Short-cut version of permission(), for calling on directories
456  * during pathname resolution.  Combines parts of permission()
457  * and generic_permission(), and tests ONLY for MAY_EXEC permission.
458  *
459  * If appropriate, check DAC only.  If not appropriate, or
460  * short-cut DAC fails, then call ->permission() to do more
461  * complete permission check.
462  */
463 static int exec_permission(struct inode *inode)
464 {
465 	int ret;
466 
467 	if (inode->i_op->permission) {
468 		ret = inode->i_op->permission(inode, MAY_EXEC);
469 		if (!ret)
470 			goto ok;
471 		return ret;
472 	}
473 	ret = acl_permission_check(inode, MAY_EXEC, inode->i_op->check_acl);
474 	if (!ret)
475 		goto ok;
476 
477 	if (capable(CAP_DAC_OVERRIDE) || capable(CAP_DAC_READ_SEARCH))
478 		goto ok;
479 
480 	return ret;
481 ok:
482 	return security_inode_permission(inode, MAY_EXEC);
483 }
484 
485 static __always_inline void set_root(struct nameidata *nd)
486 {
487 	if (!nd->root.mnt) {
488 		struct fs_struct *fs = current->fs;
489 		read_lock(&fs->lock);
490 		nd->root = fs->root;
491 		path_get(&nd->root);
492 		read_unlock(&fs->lock);
493 	}
494 }
495 
496 static int link_path_walk(const char *, struct nameidata *);
497 
498 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
499 {
500 	if (IS_ERR(link))
501 		goto fail;
502 
503 	if (*link == '/') {
504 		set_root(nd);
505 		path_put(&nd->path);
506 		nd->path = nd->root;
507 		path_get(&nd->root);
508 	}
509 
510 	return link_path_walk(link, nd);
511 fail:
512 	path_put(&nd->path);
513 	return PTR_ERR(link);
514 }
515 
516 static void path_put_conditional(struct path *path, struct nameidata *nd)
517 {
518 	dput(path->dentry);
519 	if (path->mnt != nd->path.mnt)
520 		mntput(path->mnt);
521 }
522 
523 static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
524 {
525 	dput(nd->path.dentry);
526 	if (nd->path.mnt != path->mnt)
527 		mntput(nd->path.mnt);
528 	nd->path.mnt = path->mnt;
529 	nd->path.dentry = path->dentry;
530 }
531 
532 static __always_inline int
533 __do_follow_link(struct path *path, struct nameidata *nd, void **p)
534 {
535 	int error;
536 	struct dentry *dentry = path->dentry;
537 
538 	touch_atime(path->mnt, dentry);
539 	nd_set_link(nd, NULL);
540 
541 	if (path->mnt != nd->path.mnt) {
542 		path_to_nameidata(path, nd);
543 		dget(dentry);
544 	}
545 	mntget(path->mnt);
546 	nd->last_type = LAST_BIND;
547 	*p = dentry->d_inode->i_op->follow_link(dentry, nd);
548 	error = PTR_ERR(*p);
549 	if (!IS_ERR(*p)) {
550 		char *s = nd_get_link(nd);
551 		error = 0;
552 		if (s)
553 			error = __vfs_follow_link(nd, s);
554 		else if (nd->last_type == LAST_BIND) {
555 			error = force_reval_path(&nd->path, nd);
556 			if (error)
557 				path_put(&nd->path);
558 		}
559 	}
560 	return error;
561 }
562 
563 /*
564  * This limits recursive symlink follows to 8, while
565  * limiting consecutive symlinks to 40.
566  *
567  * Without that kind of total limit, nasty chains of consecutive
568  * symlinks can cause almost arbitrarily long lookups.
569  */
570 static inline int do_follow_link(struct path *path, struct nameidata *nd)
571 {
572 	void *cookie;
573 	int err = -ELOOP;
574 	if (current->link_count >= MAX_NESTED_LINKS)
575 		goto loop;
576 	if (current->total_link_count >= 40)
577 		goto loop;
578 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
579 	cond_resched();
580 	err = security_inode_follow_link(path->dentry, nd);
581 	if (err)
582 		goto loop;
583 	current->link_count++;
584 	current->total_link_count++;
585 	nd->depth++;
586 	err = __do_follow_link(path, nd, &cookie);
587 	if (!IS_ERR(cookie) && path->dentry->d_inode->i_op->put_link)
588 		path->dentry->d_inode->i_op->put_link(path->dentry, nd, cookie);
589 	path_put(path);
590 	current->link_count--;
591 	nd->depth--;
592 	return err;
593 loop:
594 	path_put_conditional(path, nd);
595 	path_put(&nd->path);
596 	return err;
597 }
598 
599 int follow_up(struct path *path)
600 {
601 	struct vfsmount *parent;
602 	struct dentry *mountpoint;
603 	spin_lock(&vfsmount_lock);
604 	parent = path->mnt->mnt_parent;
605 	if (parent == path->mnt) {
606 		spin_unlock(&vfsmount_lock);
607 		return 0;
608 	}
609 	mntget(parent);
610 	mountpoint = dget(path->mnt->mnt_mountpoint);
611 	spin_unlock(&vfsmount_lock);
612 	dput(path->dentry);
613 	path->dentry = mountpoint;
614 	mntput(path->mnt);
615 	path->mnt = parent;
616 	return 1;
617 }
618 
619 /* no need for dcache_lock, as serialization is taken care in
620  * namespace.c
621  */
622 static int __follow_mount(struct path *path)
623 {
624 	int res = 0;
625 	while (d_mountpoint(path->dentry)) {
626 		struct vfsmount *mounted = lookup_mnt(path);
627 		if (!mounted)
628 			break;
629 		dput(path->dentry);
630 		if (res)
631 			mntput(path->mnt);
632 		path->mnt = mounted;
633 		path->dentry = dget(mounted->mnt_root);
634 		res = 1;
635 	}
636 	return res;
637 }
638 
639 static void follow_mount(struct path *path)
640 {
641 	while (d_mountpoint(path->dentry)) {
642 		struct vfsmount *mounted = lookup_mnt(path);
643 		if (!mounted)
644 			break;
645 		dput(path->dentry);
646 		mntput(path->mnt);
647 		path->mnt = mounted;
648 		path->dentry = dget(mounted->mnt_root);
649 	}
650 }
651 
652 /* no need for dcache_lock, as serialization is taken care in
653  * namespace.c
654  */
655 int follow_down(struct path *path)
656 {
657 	struct vfsmount *mounted;
658 
659 	mounted = lookup_mnt(path);
660 	if (mounted) {
661 		dput(path->dentry);
662 		mntput(path->mnt);
663 		path->mnt = mounted;
664 		path->dentry = dget(mounted->mnt_root);
665 		return 1;
666 	}
667 	return 0;
668 }
669 
670 static __always_inline void follow_dotdot(struct nameidata *nd)
671 {
672 	set_root(nd);
673 
674 	while(1) {
675 		struct dentry *old = nd->path.dentry;
676 
677 		if (nd->path.dentry == nd->root.dentry &&
678 		    nd->path.mnt == nd->root.mnt) {
679 			break;
680 		}
681 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
682 			/* rare case of legitimate dget_parent()... */
683 			nd->path.dentry = dget_parent(nd->path.dentry);
684 			dput(old);
685 			break;
686 		}
687 		if (!follow_up(&nd->path))
688 			break;
689 	}
690 	follow_mount(&nd->path);
691 }
692 
693 /*
694  *  It's more convoluted than I'd like it to be, but... it's still fairly
695  *  small and for now I'd prefer to have fast path as straight as possible.
696  *  It _is_ time-critical.
697  */
698 static int do_lookup(struct nameidata *nd, struct qstr *name,
699 		     struct path *path)
700 {
701 	struct vfsmount *mnt = nd->path.mnt;
702 	struct dentry *dentry, *parent;
703 	struct inode *dir;
704 	/*
705 	 * See if the low-level filesystem might want
706 	 * to use its own hash..
707 	 */
708 	if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
709 		int err = nd->path.dentry->d_op->d_hash(nd->path.dentry, name);
710 		if (err < 0)
711 			return err;
712 	}
713 
714 	dentry = __d_lookup(nd->path.dentry, name);
715 	if (!dentry)
716 		goto need_lookup;
717 	if (dentry->d_op && dentry->d_op->d_revalidate)
718 		goto need_revalidate;
719 done:
720 	path->mnt = mnt;
721 	path->dentry = dentry;
722 	__follow_mount(path);
723 	return 0;
724 
725 need_lookup:
726 	parent = nd->path.dentry;
727 	dir = parent->d_inode;
728 
729 	mutex_lock(&dir->i_mutex);
730 	/*
731 	 * First re-do the cached lookup just in case it was created
732 	 * while we waited for the directory semaphore..
733 	 *
734 	 * FIXME! This could use version numbering or similar to
735 	 * avoid unnecessary cache lookups.
736 	 *
737 	 * The "dcache_lock" is purely to protect the RCU list walker
738 	 * from concurrent renames at this point (we mustn't get false
739 	 * negatives from the RCU list walk here, unlike the optimistic
740 	 * fast walk).
741 	 *
742 	 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup
743 	 */
744 	dentry = d_lookup(parent, name);
745 	if (!dentry) {
746 		struct dentry *new;
747 
748 		/* Don't create child dentry for a dead directory. */
749 		dentry = ERR_PTR(-ENOENT);
750 		if (IS_DEADDIR(dir))
751 			goto out_unlock;
752 
753 		new = d_alloc(parent, name);
754 		dentry = ERR_PTR(-ENOMEM);
755 		if (new) {
756 			dentry = dir->i_op->lookup(dir, new, nd);
757 			if (dentry)
758 				dput(new);
759 			else
760 				dentry = new;
761 		}
762 out_unlock:
763 		mutex_unlock(&dir->i_mutex);
764 		if (IS_ERR(dentry))
765 			goto fail;
766 		goto done;
767 	}
768 
769 	/*
770 	 * Uhhuh! Nasty case: the cache was re-populated while
771 	 * we waited on the semaphore. Need to revalidate.
772 	 */
773 	mutex_unlock(&dir->i_mutex);
774 	if (dentry->d_op && dentry->d_op->d_revalidate) {
775 		dentry = do_revalidate(dentry, nd);
776 		if (!dentry)
777 			dentry = ERR_PTR(-ENOENT);
778 	}
779 	if (IS_ERR(dentry))
780 		goto fail;
781 	goto done;
782 
783 need_revalidate:
784 	dentry = do_revalidate(dentry, nd);
785 	if (!dentry)
786 		goto need_lookup;
787 	if (IS_ERR(dentry))
788 		goto fail;
789 	goto done;
790 
791 fail:
792 	return PTR_ERR(dentry);
793 }
794 
795 /*
796  * This is a temporary kludge to deal with "automount" symlinks; proper
797  * solution is to trigger them on follow_mount(), so that do_lookup()
798  * would DTRT.  To be killed before 2.6.34-final.
799  */
800 static inline int follow_on_final(struct inode *inode, unsigned lookup_flags)
801 {
802 	return inode && unlikely(inode->i_op->follow_link) &&
803 		((lookup_flags & LOOKUP_FOLLOW) || S_ISDIR(inode->i_mode));
804 }
805 
806 /*
807  * Name resolution.
808  * This is the basic name resolution function, turning a pathname into
809  * the final dentry. We expect 'base' to be positive and a directory.
810  *
811  * Returns 0 and nd will have valid dentry and mnt on success.
812  * Returns error and drops reference to input namei data on failure.
813  */
814 static int link_path_walk(const char *name, struct nameidata *nd)
815 {
816 	struct path next;
817 	struct inode *inode;
818 	int err;
819 	unsigned int lookup_flags = nd->flags;
820 
821 	while (*name=='/')
822 		name++;
823 	if (!*name)
824 		goto return_reval;
825 
826 	inode = nd->path.dentry->d_inode;
827 	if (nd->depth)
828 		lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
829 
830 	/* At this point we know we have a real path component. */
831 	for(;;) {
832 		unsigned long hash;
833 		struct qstr this;
834 		unsigned int c;
835 
836 		nd->flags |= LOOKUP_CONTINUE;
837 		err = exec_permission(inode);
838  		if (err)
839 			break;
840 
841 		this.name = name;
842 		c = *(const unsigned char *)name;
843 
844 		hash = init_name_hash();
845 		do {
846 			name++;
847 			hash = partial_name_hash(c, hash);
848 			c = *(const unsigned char *)name;
849 		} while (c && (c != '/'));
850 		this.len = name - (const char *) this.name;
851 		this.hash = end_name_hash(hash);
852 
853 		/* remove trailing slashes? */
854 		if (!c)
855 			goto last_component;
856 		while (*++name == '/');
857 		if (!*name)
858 			goto last_with_slashes;
859 
860 		/*
861 		 * "." and ".." are special - ".." especially so because it has
862 		 * to be able to know about the current root directory and
863 		 * parent relationships.
864 		 */
865 		if (this.name[0] == '.') switch (this.len) {
866 			default:
867 				break;
868 			case 2:
869 				if (this.name[1] != '.')
870 					break;
871 				follow_dotdot(nd);
872 				inode = nd->path.dentry->d_inode;
873 				/* fallthrough */
874 			case 1:
875 				continue;
876 		}
877 		/* This does the actual lookups.. */
878 		err = do_lookup(nd, &this, &next);
879 		if (err)
880 			break;
881 
882 		err = -ENOENT;
883 		inode = next.dentry->d_inode;
884 		if (!inode)
885 			goto out_dput;
886 
887 		if (inode->i_op->follow_link) {
888 			err = do_follow_link(&next, nd);
889 			if (err)
890 				goto return_err;
891 			err = -ENOENT;
892 			inode = nd->path.dentry->d_inode;
893 			if (!inode)
894 				break;
895 		} else
896 			path_to_nameidata(&next, nd);
897 		err = -ENOTDIR;
898 		if (!inode->i_op->lookup)
899 			break;
900 		continue;
901 		/* here ends the main loop */
902 
903 last_with_slashes:
904 		lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
905 last_component:
906 		/* Clear LOOKUP_CONTINUE iff it was previously unset */
907 		nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
908 		if (lookup_flags & LOOKUP_PARENT)
909 			goto lookup_parent;
910 		if (this.name[0] == '.') switch (this.len) {
911 			default:
912 				break;
913 			case 2:
914 				if (this.name[1] != '.')
915 					break;
916 				follow_dotdot(nd);
917 				inode = nd->path.dentry->d_inode;
918 				/* fallthrough */
919 			case 1:
920 				goto return_reval;
921 		}
922 		err = do_lookup(nd, &this, &next);
923 		if (err)
924 			break;
925 		inode = next.dentry->d_inode;
926 		if (follow_on_final(inode, lookup_flags)) {
927 			err = do_follow_link(&next, nd);
928 			if (err)
929 				goto return_err;
930 			inode = nd->path.dentry->d_inode;
931 		} else
932 			path_to_nameidata(&next, nd);
933 		err = -ENOENT;
934 		if (!inode)
935 			break;
936 		if (lookup_flags & LOOKUP_DIRECTORY) {
937 			err = -ENOTDIR;
938 			if (!inode->i_op->lookup)
939 				break;
940 		}
941 		goto return_base;
942 lookup_parent:
943 		nd->last = this;
944 		nd->last_type = LAST_NORM;
945 		if (this.name[0] != '.')
946 			goto return_base;
947 		if (this.len == 1)
948 			nd->last_type = LAST_DOT;
949 		else if (this.len == 2 && this.name[1] == '.')
950 			nd->last_type = LAST_DOTDOT;
951 		else
952 			goto return_base;
953 return_reval:
954 		/*
955 		 * We bypassed the ordinary revalidation routines.
956 		 * We may need to check the cached dentry for staleness.
957 		 */
958 		if (nd->path.dentry && nd->path.dentry->d_sb &&
959 		    (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
960 			err = -ESTALE;
961 			/* Note: we do not d_invalidate() */
962 			if (!nd->path.dentry->d_op->d_revalidate(
963 					nd->path.dentry, nd))
964 				break;
965 		}
966 return_base:
967 		return 0;
968 out_dput:
969 		path_put_conditional(&next, nd);
970 		break;
971 	}
972 	path_put(&nd->path);
973 return_err:
974 	return err;
975 }
976 
977 static int path_walk(const char *name, struct nameidata *nd)
978 {
979 	struct path save = nd->path;
980 	int result;
981 
982 	current->total_link_count = 0;
983 
984 	/* make sure the stuff we saved doesn't go away */
985 	path_get(&save);
986 
987 	result = link_path_walk(name, nd);
988 	if (result == -ESTALE) {
989 		/* nd->path had been dropped */
990 		current->total_link_count = 0;
991 		nd->path = save;
992 		path_get(&nd->path);
993 		nd->flags |= LOOKUP_REVAL;
994 		result = link_path_walk(name, nd);
995 	}
996 
997 	path_put(&save);
998 
999 	return result;
1000 }
1001 
1002 static int path_init(int dfd, const char *name, unsigned int flags, struct nameidata *nd)
1003 {
1004 	int retval = 0;
1005 	int fput_needed;
1006 	struct file *file;
1007 
1008 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1009 	nd->flags = flags;
1010 	nd->depth = 0;
1011 	nd->root.mnt = NULL;
1012 
1013 	if (*name=='/') {
1014 		set_root(nd);
1015 		nd->path = nd->root;
1016 		path_get(&nd->root);
1017 	} else if (dfd == AT_FDCWD) {
1018 		struct fs_struct *fs = current->fs;
1019 		read_lock(&fs->lock);
1020 		nd->path = fs->pwd;
1021 		path_get(&fs->pwd);
1022 		read_unlock(&fs->lock);
1023 	} else {
1024 		struct dentry *dentry;
1025 
1026 		file = fget_light(dfd, &fput_needed);
1027 		retval = -EBADF;
1028 		if (!file)
1029 			goto out_fail;
1030 
1031 		dentry = file->f_path.dentry;
1032 
1033 		retval = -ENOTDIR;
1034 		if (!S_ISDIR(dentry->d_inode->i_mode))
1035 			goto fput_fail;
1036 
1037 		retval = file_permission(file, MAY_EXEC);
1038 		if (retval)
1039 			goto fput_fail;
1040 
1041 		nd->path = file->f_path;
1042 		path_get(&file->f_path);
1043 
1044 		fput_light(file, fput_needed);
1045 	}
1046 	return 0;
1047 
1048 fput_fail:
1049 	fput_light(file, fput_needed);
1050 out_fail:
1051 	return retval;
1052 }
1053 
1054 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1055 static int do_path_lookup(int dfd, const char *name,
1056 				unsigned int flags, struct nameidata *nd)
1057 {
1058 	int retval = path_init(dfd, name, flags, nd);
1059 	if (!retval)
1060 		retval = path_walk(name, nd);
1061 	if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1062 				nd->path.dentry->d_inode))
1063 		audit_inode(name, nd->path.dentry);
1064 	if (nd->root.mnt) {
1065 		path_put(&nd->root);
1066 		nd->root.mnt = NULL;
1067 	}
1068 	return retval;
1069 }
1070 
1071 int path_lookup(const char *name, unsigned int flags,
1072 			struct nameidata *nd)
1073 {
1074 	return do_path_lookup(AT_FDCWD, name, flags, nd);
1075 }
1076 
1077 int kern_path(const char *name, unsigned int flags, struct path *path)
1078 {
1079 	struct nameidata nd;
1080 	int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1081 	if (!res)
1082 		*path = nd.path;
1083 	return res;
1084 }
1085 
1086 /**
1087  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1088  * @dentry:  pointer to dentry of the base directory
1089  * @mnt: pointer to vfs mount of the base directory
1090  * @name: pointer to file name
1091  * @flags: lookup flags
1092  * @nd: pointer to nameidata
1093  */
1094 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1095 		    const char *name, unsigned int flags,
1096 		    struct nameidata *nd)
1097 {
1098 	int retval;
1099 
1100 	/* same as do_path_lookup */
1101 	nd->last_type = LAST_ROOT;
1102 	nd->flags = flags;
1103 	nd->depth = 0;
1104 
1105 	nd->path.dentry = dentry;
1106 	nd->path.mnt = mnt;
1107 	path_get(&nd->path);
1108 	nd->root = nd->path;
1109 	path_get(&nd->root);
1110 
1111 	retval = path_walk(name, nd);
1112 	if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1113 				nd->path.dentry->d_inode))
1114 		audit_inode(name, nd->path.dentry);
1115 
1116 	path_put(&nd->root);
1117 	nd->root.mnt = NULL;
1118 
1119 	return retval;
1120 }
1121 
1122 static struct dentry *__lookup_hash(struct qstr *name,
1123 		struct dentry *base, struct nameidata *nd)
1124 {
1125 	struct dentry *dentry;
1126 	struct inode *inode;
1127 	int err;
1128 
1129 	inode = base->d_inode;
1130 
1131 	/*
1132 	 * See if the low-level filesystem might want
1133 	 * to use its own hash..
1134 	 */
1135 	if (base->d_op && base->d_op->d_hash) {
1136 		err = base->d_op->d_hash(base, name);
1137 		dentry = ERR_PTR(err);
1138 		if (err < 0)
1139 			goto out;
1140 	}
1141 
1142 	dentry = __d_lookup(base, name);
1143 
1144 	/* lockess __d_lookup may fail due to concurrent d_move()
1145 	 * in some unrelated directory, so try with d_lookup
1146 	 */
1147 	if (!dentry)
1148 		dentry = d_lookup(base, name);
1149 
1150 	if (dentry && dentry->d_op && dentry->d_op->d_revalidate)
1151 		dentry = do_revalidate(dentry, nd);
1152 
1153 	if (!dentry) {
1154 		struct dentry *new;
1155 
1156 		/* Don't create child dentry for a dead directory. */
1157 		dentry = ERR_PTR(-ENOENT);
1158 		if (IS_DEADDIR(inode))
1159 			goto out;
1160 
1161 		new = d_alloc(base, name);
1162 		dentry = ERR_PTR(-ENOMEM);
1163 		if (!new)
1164 			goto out;
1165 		dentry = inode->i_op->lookup(inode, new, nd);
1166 		if (!dentry)
1167 			dentry = new;
1168 		else
1169 			dput(new);
1170 	}
1171 out:
1172 	return dentry;
1173 }
1174 
1175 /*
1176  * Restricted form of lookup. Doesn't follow links, single-component only,
1177  * needs parent already locked. Doesn't follow mounts.
1178  * SMP-safe.
1179  */
1180 static struct dentry *lookup_hash(struct nameidata *nd)
1181 {
1182 	int err;
1183 
1184 	err = exec_permission(nd->path.dentry->d_inode);
1185 	if (err)
1186 		return ERR_PTR(err);
1187 	return __lookup_hash(&nd->last, nd->path.dentry, nd);
1188 }
1189 
1190 static int __lookup_one_len(const char *name, struct qstr *this,
1191 		struct dentry *base, int len)
1192 {
1193 	unsigned long hash;
1194 	unsigned int c;
1195 
1196 	this->name = name;
1197 	this->len = len;
1198 	if (!len)
1199 		return -EACCES;
1200 
1201 	hash = init_name_hash();
1202 	while (len--) {
1203 		c = *(const unsigned char *)name++;
1204 		if (c == '/' || c == '\0')
1205 			return -EACCES;
1206 		hash = partial_name_hash(c, hash);
1207 	}
1208 	this->hash = end_name_hash(hash);
1209 	return 0;
1210 }
1211 
1212 /**
1213  * lookup_one_len - filesystem helper to lookup single pathname component
1214  * @name:	pathname component to lookup
1215  * @base:	base directory to lookup from
1216  * @len:	maximum length @len should be interpreted to
1217  *
1218  * Note that this routine is purely a helper for filesystem usage and should
1219  * not be called by generic code.  Also note that by using this function the
1220  * nameidata argument is passed to the filesystem methods and a filesystem
1221  * using this helper needs to be prepared for that.
1222  */
1223 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1224 {
1225 	int err;
1226 	struct qstr this;
1227 
1228 	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1229 
1230 	err = __lookup_one_len(name, &this, base, len);
1231 	if (err)
1232 		return ERR_PTR(err);
1233 
1234 	err = exec_permission(base->d_inode);
1235 	if (err)
1236 		return ERR_PTR(err);
1237 	return __lookup_hash(&this, base, NULL);
1238 }
1239 
1240 int user_path_at(int dfd, const char __user *name, unsigned flags,
1241 		 struct path *path)
1242 {
1243 	struct nameidata nd;
1244 	char *tmp = getname(name);
1245 	int err = PTR_ERR(tmp);
1246 	if (!IS_ERR(tmp)) {
1247 
1248 		BUG_ON(flags & LOOKUP_PARENT);
1249 
1250 		err = do_path_lookup(dfd, tmp, flags, &nd);
1251 		putname(tmp);
1252 		if (!err)
1253 			*path = nd.path;
1254 	}
1255 	return err;
1256 }
1257 
1258 static int user_path_parent(int dfd, const char __user *path,
1259 			struct nameidata *nd, char **name)
1260 {
1261 	char *s = getname(path);
1262 	int error;
1263 
1264 	if (IS_ERR(s))
1265 		return PTR_ERR(s);
1266 
1267 	error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1268 	if (error)
1269 		putname(s);
1270 	else
1271 		*name = s;
1272 
1273 	return error;
1274 }
1275 
1276 /*
1277  * It's inline, so penalty for filesystems that don't use sticky bit is
1278  * minimal.
1279  */
1280 static inline int check_sticky(struct inode *dir, struct inode *inode)
1281 {
1282 	uid_t fsuid = current_fsuid();
1283 
1284 	if (!(dir->i_mode & S_ISVTX))
1285 		return 0;
1286 	if (inode->i_uid == fsuid)
1287 		return 0;
1288 	if (dir->i_uid == fsuid)
1289 		return 0;
1290 	return !capable(CAP_FOWNER);
1291 }
1292 
1293 /*
1294  *	Check whether we can remove a link victim from directory dir, check
1295  *  whether the type of victim is right.
1296  *  1. We can't do it if dir is read-only (done in permission())
1297  *  2. We should have write and exec permissions on dir
1298  *  3. We can't remove anything from append-only dir
1299  *  4. We can't do anything with immutable dir (done in permission())
1300  *  5. If the sticky bit on dir is set we should either
1301  *	a. be owner of dir, or
1302  *	b. be owner of victim, or
1303  *	c. have CAP_FOWNER capability
1304  *  6. If the victim is append-only or immutable we can't do antyhing with
1305  *     links pointing to it.
1306  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1307  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1308  *  9. We can't remove a root or mountpoint.
1309  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1310  *     nfs_async_unlink().
1311  */
1312 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1313 {
1314 	int error;
1315 
1316 	if (!victim->d_inode)
1317 		return -ENOENT;
1318 
1319 	BUG_ON(victim->d_parent->d_inode != dir);
1320 	audit_inode_child(victim, dir);
1321 
1322 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1323 	if (error)
1324 		return error;
1325 	if (IS_APPEND(dir))
1326 		return -EPERM;
1327 	if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1328 	    IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1329 		return -EPERM;
1330 	if (isdir) {
1331 		if (!S_ISDIR(victim->d_inode->i_mode))
1332 			return -ENOTDIR;
1333 		if (IS_ROOT(victim))
1334 			return -EBUSY;
1335 	} else if (S_ISDIR(victim->d_inode->i_mode))
1336 		return -EISDIR;
1337 	if (IS_DEADDIR(dir))
1338 		return -ENOENT;
1339 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1340 		return -EBUSY;
1341 	return 0;
1342 }
1343 
1344 /*	Check whether we can create an object with dentry child in directory
1345  *  dir.
1346  *  1. We can't do it if child already exists (open has special treatment for
1347  *     this case, but since we are inlined it's OK)
1348  *  2. We can't do it if dir is read-only (done in permission())
1349  *  3. We should have write and exec permissions on dir
1350  *  4. We can't do it if dir is immutable (done in permission())
1351  */
1352 static inline int may_create(struct inode *dir, struct dentry *child)
1353 {
1354 	if (child->d_inode)
1355 		return -EEXIST;
1356 	if (IS_DEADDIR(dir))
1357 		return -ENOENT;
1358 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1359 }
1360 
1361 /*
1362  * p1 and p2 should be directories on the same fs.
1363  */
1364 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1365 {
1366 	struct dentry *p;
1367 
1368 	if (p1 == p2) {
1369 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1370 		return NULL;
1371 	}
1372 
1373 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1374 
1375 	p = d_ancestor(p2, p1);
1376 	if (p) {
1377 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1378 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1379 		return p;
1380 	}
1381 
1382 	p = d_ancestor(p1, p2);
1383 	if (p) {
1384 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1385 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1386 		return p;
1387 	}
1388 
1389 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1390 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1391 	return NULL;
1392 }
1393 
1394 void unlock_rename(struct dentry *p1, struct dentry *p2)
1395 {
1396 	mutex_unlock(&p1->d_inode->i_mutex);
1397 	if (p1 != p2) {
1398 		mutex_unlock(&p2->d_inode->i_mutex);
1399 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1400 	}
1401 }
1402 
1403 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1404 		struct nameidata *nd)
1405 {
1406 	int error = may_create(dir, dentry);
1407 
1408 	if (error)
1409 		return error;
1410 
1411 	if (!dir->i_op->create)
1412 		return -EACCES;	/* shouldn't it be ENOSYS? */
1413 	mode &= S_IALLUGO;
1414 	mode |= S_IFREG;
1415 	error = security_inode_create(dir, dentry, mode);
1416 	if (error)
1417 		return error;
1418 	error = dir->i_op->create(dir, dentry, mode, nd);
1419 	if (!error)
1420 		fsnotify_create(dir, dentry);
1421 	return error;
1422 }
1423 
1424 int may_open(struct path *path, int acc_mode, int flag)
1425 {
1426 	struct dentry *dentry = path->dentry;
1427 	struct inode *inode = dentry->d_inode;
1428 	int error;
1429 
1430 	if (!inode)
1431 		return -ENOENT;
1432 
1433 	switch (inode->i_mode & S_IFMT) {
1434 	case S_IFLNK:
1435 		return -ELOOP;
1436 	case S_IFDIR:
1437 		if (acc_mode & MAY_WRITE)
1438 			return -EISDIR;
1439 		break;
1440 	case S_IFBLK:
1441 	case S_IFCHR:
1442 		if (path->mnt->mnt_flags & MNT_NODEV)
1443 			return -EACCES;
1444 		/*FALLTHRU*/
1445 	case S_IFIFO:
1446 	case S_IFSOCK:
1447 		flag &= ~O_TRUNC;
1448 		break;
1449 	}
1450 
1451 	error = inode_permission(inode, acc_mode);
1452 	if (error)
1453 		return error;
1454 
1455 	/*
1456 	 * An append-only file must be opened in append mode for writing.
1457 	 */
1458 	if (IS_APPEND(inode)) {
1459 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
1460 			return -EPERM;
1461 		if (flag & O_TRUNC)
1462 			return -EPERM;
1463 	}
1464 
1465 	/* O_NOATIME can only be set by the owner or superuser */
1466 	if (flag & O_NOATIME && !is_owner_or_cap(inode))
1467 		return -EPERM;
1468 
1469 	/*
1470 	 * Ensure there are no outstanding leases on the file.
1471 	 */
1472 	return break_lease(inode, flag);
1473 }
1474 
1475 static int handle_truncate(struct path *path)
1476 {
1477 	struct inode *inode = path->dentry->d_inode;
1478 	int error = get_write_access(inode);
1479 	if (error)
1480 		return error;
1481 	/*
1482 	 * Refuse to truncate files with mandatory locks held on them.
1483 	 */
1484 	error = locks_verify_locked(inode);
1485 	if (!error)
1486 		error = security_path_truncate(path, 0,
1487 				       ATTR_MTIME|ATTR_CTIME|ATTR_OPEN);
1488 	if (!error) {
1489 		error = do_truncate(path->dentry, 0,
1490 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
1491 				    NULL);
1492 	}
1493 	put_write_access(inode);
1494 	return error;
1495 }
1496 
1497 /*
1498  * Be careful about ever adding any more callers of this
1499  * function.  Its flags must be in the namei format, not
1500  * what get passed to sys_open().
1501  */
1502 static int __open_namei_create(struct nameidata *nd, struct path *path,
1503 				int open_flag, int mode)
1504 {
1505 	int error;
1506 	struct dentry *dir = nd->path.dentry;
1507 
1508 	if (!IS_POSIXACL(dir->d_inode))
1509 		mode &= ~current_umask();
1510 	error = security_path_mknod(&nd->path, path->dentry, mode, 0);
1511 	if (error)
1512 		goto out_unlock;
1513 	error = vfs_create(dir->d_inode, path->dentry, mode, nd);
1514 out_unlock:
1515 	mutex_unlock(&dir->d_inode->i_mutex);
1516 	dput(nd->path.dentry);
1517 	nd->path.dentry = path->dentry;
1518 	if (error)
1519 		return error;
1520 	/* Don't check for write permission, don't truncate */
1521 	return may_open(&nd->path, 0, open_flag & ~O_TRUNC);
1522 }
1523 
1524 /*
1525  * Note that while the flag value (low two bits) for sys_open means:
1526  *	00 - read-only
1527  *	01 - write-only
1528  *	10 - read-write
1529  *	11 - special
1530  * it is changed into
1531  *	00 - no permissions needed
1532  *	01 - read-permission
1533  *	10 - write-permission
1534  *	11 - read-write
1535  * for the internal routines (ie open_namei()/follow_link() etc)
1536  * This is more logical, and also allows the 00 "no perm needed"
1537  * to be used for symlinks (where the permissions are checked
1538  * later).
1539  *
1540 */
1541 static inline int open_to_namei_flags(int flag)
1542 {
1543 	if ((flag+1) & O_ACCMODE)
1544 		flag++;
1545 	return flag;
1546 }
1547 
1548 static int open_will_truncate(int flag, struct inode *inode)
1549 {
1550 	/*
1551 	 * We'll never write to the fs underlying
1552 	 * a device file.
1553 	 */
1554 	if (special_file(inode->i_mode))
1555 		return 0;
1556 	return (flag & O_TRUNC);
1557 }
1558 
1559 static struct file *finish_open(struct nameidata *nd,
1560 				int open_flag, int acc_mode)
1561 {
1562 	struct file *filp;
1563 	int will_truncate;
1564 	int error;
1565 
1566 	will_truncate = open_will_truncate(open_flag, nd->path.dentry->d_inode);
1567 	if (will_truncate) {
1568 		error = mnt_want_write(nd->path.mnt);
1569 		if (error)
1570 			goto exit;
1571 	}
1572 	error = may_open(&nd->path, acc_mode, open_flag);
1573 	if (error) {
1574 		if (will_truncate)
1575 			mnt_drop_write(nd->path.mnt);
1576 		goto exit;
1577 	}
1578 	filp = nameidata_to_filp(nd);
1579 	if (!IS_ERR(filp)) {
1580 		error = ima_file_check(filp, acc_mode);
1581 		if (error) {
1582 			fput(filp);
1583 			filp = ERR_PTR(error);
1584 		}
1585 	}
1586 	if (!IS_ERR(filp)) {
1587 		if (will_truncate) {
1588 			error = handle_truncate(&nd->path);
1589 			if (error) {
1590 				fput(filp);
1591 				filp = ERR_PTR(error);
1592 			}
1593 		}
1594 	}
1595 	/*
1596 	 * It is now safe to drop the mnt write
1597 	 * because the filp has had a write taken
1598 	 * on its behalf.
1599 	 */
1600 	if (will_truncate)
1601 		mnt_drop_write(nd->path.mnt);
1602 	return filp;
1603 
1604 exit:
1605 	if (!IS_ERR(nd->intent.open.file))
1606 		release_open_intent(nd);
1607 	path_put(&nd->path);
1608 	return ERR_PTR(error);
1609 }
1610 
1611 static struct file *do_last(struct nameidata *nd, struct path *path,
1612 			    int open_flag, int acc_mode,
1613 			    int mode, const char *pathname)
1614 {
1615 	struct dentry *dir = nd->path.dentry;
1616 	struct file *filp;
1617 	int error = -EISDIR;
1618 
1619 	switch (nd->last_type) {
1620 	case LAST_DOTDOT:
1621 		follow_dotdot(nd);
1622 		dir = nd->path.dentry;
1623 		if (nd->path.mnt->mnt_sb->s_type->fs_flags & FS_REVAL_DOT) {
1624 			if (!dir->d_op->d_revalidate(dir, nd)) {
1625 				error = -ESTALE;
1626 				goto exit;
1627 			}
1628 		}
1629 		/* fallthrough */
1630 	case LAST_DOT:
1631 	case LAST_ROOT:
1632 		if (open_flag & O_CREAT)
1633 			goto exit;
1634 		/* fallthrough */
1635 	case LAST_BIND:
1636 		audit_inode(pathname, dir);
1637 		goto ok;
1638 	}
1639 
1640 	/* trailing slashes? */
1641 	if (nd->last.name[nd->last.len]) {
1642 		if (open_flag & O_CREAT)
1643 			goto exit;
1644 		nd->flags |= LOOKUP_DIRECTORY;
1645 	}
1646 
1647 	/* just plain open? */
1648 	if (!(open_flag & O_CREAT)) {
1649 		error = do_lookup(nd, &nd->last, path);
1650 		if (error)
1651 			goto exit;
1652 		error = -ENOENT;
1653 		if (!path->dentry->d_inode)
1654 			goto exit_dput;
1655 		if (path->dentry->d_inode->i_op->follow_link)
1656 			return NULL;
1657 		error = -ENOTDIR;
1658 		if (nd->flags & LOOKUP_DIRECTORY) {
1659 			if (!path->dentry->d_inode->i_op->lookup)
1660 				goto exit_dput;
1661 		}
1662 		path_to_nameidata(path, nd);
1663 		audit_inode(pathname, nd->path.dentry);
1664 		goto ok;
1665 	}
1666 
1667 	/* OK, it's O_CREAT */
1668 	mutex_lock(&dir->d_inode->i_mutex);
1669 
1670 	path->dentry = lookup_hash(nd);
1671 	path->mnt = nd->path.mnt;
1672 
1673 	error = PTR_ERR(path->dentry);
1674 	if (IS_ERR(path->dentry)) {
1675 		mutex_unlock(&dir->d_inode->i_mutex);
1676 		goto exit;
1677 	}
1678 
1679 	if (IS_ERR(nd->intent.open.file)) {
1680 		error = PTR_ERR(nd->intent.open.file);
1681 		goto exit_mutex_unlock;
1682 	}
1683 
1684 	/* Negative dentry, just create the file */
1685 	if (!path->dentry->d_inode) {
1686 		/*
1687 		 * This write is needed to ensure that a
1688 		 * ro->rw transition does not occur between
1689 		 * the time when the file is created and when
1690 		 * a permanent write count is taken through
1691 		 * the 'struct file' in nameidata_to_filp().
1692 		 */
1693 		error = mnt_want_write(nd->path.mnt);
1694 		if (error)
1695 			goto exit_mutex_unlock;
1696 		error = __open_namei_create(nd, path, open_flag, mode);
1697 		if (error) {
1698 			mnt_drop_write(nd->path.mnt);
1699 			goto exit;
1700 		}
1701 		filp = nameidata_to_filp(nd);
1702 		mnt_drop_write(nd->path.mnt);
1703 		if (!IS_ERR(filp)) {
1704 			error = ima_file_check(filp, acc_mode);
1705 			if (error) {
1706 				fput(filp);
1707 				filp = ERR_PTR(error);
1708 			}
1709 		}
1710 		return filp;
1711 	}
1712 
1713 	/*
1714 	 * It already exists.
1715 	 */
1716 	mutex_unlock(&dir->d_inode->i_mutex);
1717 	audit_inode(pathname, path->dentry);
1718 
1719 	error = -EEXIST;
1720 	if (open_flag & O_EXCL)
1721 		goto exit_dput;
1722 
1723 	if (__follow_mount(path)) {
1724 		error = -ELOOP;
1725 		if (open_flag & O_NOFOLLOW)
1726 			goto exit_dput;
1727 	}
1728 
1729 	error = -ENOENT;
1730 	if (!path->dentry->d_inode)
1731 		goto exit_dput;
1732 
1733 	if (path->dentry->d_inode->i_op->follow_link)
1734 		return NULL;
1735 
1736 	path_to_nameidata(path, nd);
1737 	error = -EISDIR;
1738 	if (S_ISDIR(path->dentry->d_inode->i_mode))
1739 		goto exit;
1740 ok:
1741 	filp = finish_open(nd, open_flag, acc_mode);
1742 	return filp;
1743 
1744 exit_mutex_unlock:
1745 	mutex_unlock(&dir->d_inode->i_mutex);
1746 exit_dput:
1747 	path_put_conditional(path, nd);
1748 exit:
1749 	if (!IS_ERR(nd->intent.open.file))
1750 		release_open_intent(nd);
1751 	path_put(&nd->path);
1752 	return ERR_PTR(error);
1753 }
1754 
1755 /*
1756  * Note that the low bits of the passed in "open_flag"
1757  * are not the same as in the local variable "flag". See
1758  * open_to_namei_flags() for more details.
1759  */
1760 struct file *do_filp_open(int dfd, const char *pathname,
1761 		int open_flag, int mode, int acc_mode)
1762 {
1763 	struct file *filp;
1764 	struct nameidata nd;
1765 	int error;
1766 	struct path path;
1767 	int count = 0;
1768 	int flag = open_to_namei_flags(open_flag);
1769 	int force_reval = 0;
1770 
1771 	if (!(open_flag & O_CREAT))
1772 		mode = 0;
1773 
1774 	/*
1775 	 * O_SYNC is implemented as __O_SYNC|O_DSYNC.  As many places only
1776 	 * check for O_DSYNC if the need any syncing at all we enforce it's
1777 	 * always set instead of having to deal with possibly weird behaviour
1778 	 * for malicious applications setting only __O_SYNC.
1779 	 */
1780 	if (open_flag & __O_SYNC)
1781 		open_flag |= O_DSYNC;
1782 
1783 	if (!acc_mode)
1784 		acc_mode = MAY_OPEN | ACC_MODE(open_flag);
1785 
1786 	/* O_TRUNC implies we need access checks for write permissions */
1787 	if (open_flag & O_TRUNC)
1788 		acc_mode |= MAY_WRITE;
1789 
1790 	/* Allow the LSM permission hook to distinguish append
1791 	   access from general write access. */
1792 	if (open_flag & O_APPEND)
1793 		acc_mode |= MAY_APPEND;
1794 
1795 	/* find the parent */
1796 reval:
1797 	error = path_init(dfd, pathname, LOOKUP_PARENT, &nd);
1798 	if (error)
1799 		return ERR_PTR(error);
1800 	if (force_reval)
1801 		nd.flags |= LOOKUP_REVAL;
1802 
1803 	current->total_link_count = 0;
1804 	error = link_path_walk(pathname, &nd);
1805 	if (error) {
1806 		filp = ERR_PTR(error);
1807 		goto out;
1808 	}
1809 	if (unlikely(!audit_dummy_context()) && (open_flag & O_CREAT))
1810 		audit_inode(pathname, nd.path.dentry);
1811 
1812 	/*
1813 	 * We have the parent and last component.
1814 	 */
1815 
1816 	error = -ENFILE;
1817 	filp = get_empty_filp();
1818 	if (filp == NULL)
1819 		goto exit_parent;
1820 	nd.intent.open.file = filp;
1821 	filp->f_flags = open_flag;
1822 	nd.intent.open.flags = flag;
1823 	nd.intent.open.create_mode = mode;
1824 	nd.flags &= ~LOOKUP_PARENT;
1825 	nd.flags |= LOOKUP_OPEN;
1826 	if (open_flag & O_CREAT) {
1827 		nd.flags |= LOOKUP_CREATE;
1828 		if (open_flag & O_EXCL)
1829 			nd.flags |= LOOKUP_EXCL;
1830 	}
1831 	if (open_flag & O_DIRECTORY)
1832 		nd.flags |= LOOKUP_DIRECTORY;
1833 	filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname);
1834 	while (unlikely(!filp)) { /* trailing symlink */
1835 		struct path holder;
1836 		struct inode *inode = path.dentry->d_inode;
1837 		void *cookie;
1838 		error = -ELOOP;
1839 		/* S_ISDIR part is a temporary automount kludge */
1840 		if ((open_flag & O_NOFOLLOW) && !S_ISDIR(inode->i_mode))
1841 			goto exit_dput;
1842 		if (count++ == 32)
1843 			goto exit_dput;
1844 		/*
1845 		 * This is subtle. Instead of calling do_follow_link() we do
1846 		 * the thing by hands. The reason is that this way we have zero
1847 		 * link_count and path_walk() (called from ->follow_link)
1848 		 * honoring LOOKUP_PARENT.  After that we have the parent and
1849 		 * last component, i.e. we are in the same situation as after
1850 		 * the first path_walk().  Well, almost - if the last component
1851 		 * is normal we get its copy stored in nd->last.name and we will
1852 		 * have to putname() it when we are done. Procfs-like symlinks
1853 		 * just set LAST_BIND.
1854 		 */
1855 		nd.flags |= LOOKUP_PARENT;
1856 		error = security_inode_follow_link(path.dentry, &nd);
1857 		if (error)
1858 			goto exit_dput;
1859 		error = __do_follow_link(&path, &nd, &cookie);
1860 		if (unlikely(error)) {
1861 			/* nd.path had been dropped */
1862 			if (!IS_ERR(cookie) && inode->i_op->put_link)
1863 				inode->i_op->put_link(path.dentry, &nd, cookie);
1864 			path_put(&path);
1865 			release_open_intent(&nd);
1866 			filp = ERR_PTR(error);
1867 			goto out;
1868 		}
1869 		holder = path;
1870 		nd.flags &= ~LOOKUP_PARENT;
1871 		filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname);
1872 		if (inode->i_op->put_link)
1873 			inode->i_op->put_link(holder.dentry, &nd, cookie);
1874 		path_put(&holder);
1875 	}
1876 out:
1877 	if (nd.root.mnt)
1878 		path_put(&nd.root);
1879 	if (filp == ERR_PTR(-ESTALE) && !force_reval) {
1880 		force_reval = 1;
1881 		goto reval;
1882 	}
1883 	return filp;
1884 
1885 exit_dput:
1886 	path_put_conditional(&path, &nd);
1887 	if (!IS_ERR(nd.intent.open.file))
1888 		release_open_intent(&nd);
1889 exit_parent:
1890 	path_put(&nd.path);
1891 	filp = ERR_PTR(error);
1892 	goto out;
1893 }
1894 
1895 /**
1896  * filp_open - open file and return file pointer
1897  *
1898  * @filename:	path to open
1899  * @flags:	open flags as per the open(2) second argument
1900  * @mode:	mode for the new file if O_CREAT is set, else ignored
1901  *
1902  * This is the helper to open a file from kernelspace if you really
1903  * have to.  But in generally you should not do this, so please move
1904  * along, nothing to see here..
1905  */
1906 struct file *filp_open(const char *filename, int flags, int mode)
1907 {
1908 	return do_filp_open(AT_FDCWD, filename, flags, mode, 0);
1909 }
1910 EXPORT_SYMBOL(filp_open);
1911 
1912 /**
1913  * lookup_create - lookup a dentry, creating it if it doesn't exist
1914  * @nd: nameidata info
1915  * @is_dir: directory flag
1916  *
1917  * Simple function to lookup and return a dentry and create it
1918  * if it doesn't exist.  Is SMP-safe.
1919  *
1920  * Returns with nd->path.dentry->d_inode->i_mutex locked.
1921  */
1922 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1923 {
1924 	struct dentry *dentry = ERR_PTR(-EEXIST);
1925 
1926 	mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1927 	/*
1928 	 * Yucky last component or no last component at all?
1929 	 * (foo/., foo/.., /////)
1930 	 */
1931 	if (nd->last_type != LAST_NORM)
1932 		goto fail;
1933 	nd->flags &= ~LOOKUP_PARENT;
1934 	nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
1935 	nd->intent.open.flags = O_EXCL;
1936 
1937 	/*
1938 	 * Do the final lookup.
1939 	 */
1940 	dentry = lookup_hash(nd);
1941 	if (IS_ERR(dentry))
1942 		goto fail;
1943 
1944 	if (dentry->d_inode)
1945 		goto eexist;
1946 	/*
1947 	 * Special case - lookup gave negative, but... we had foo/bar/
1948 	 * From the vfs_mknod() POV we just have a negative dentry -
1949 	 * all is fine. Let's be bastards - you had / on the end, you've
1950 	 * been asking for (non-existent) directory. -ENOENT for you.
1951 	 */
1952 	if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
1953 		dput(dentry);
1954 		dentry = ERR_PTR(-ENOENT);
1955 	}
1956 	return dentry;
1957 eexist:
1958 	dput(dentry);
1959 	dentry = ERR_PTR(-EEXIST);
1960 fail:
1961 	return dentry;
1962 }
1963 EXPORT_SYMBOL_GPL(lookup_create);
1964 
1965 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1966 {
1967 	int error = may_create(dir, dentry);
1968 
1969 	if (error)
1970 		return error;
1971 
1972 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
1973 		return -EPERM;
1974 
1975 	if (!dir->i_op->mknod)
1976 		return -EPERM;
1977 
1978 	error = devcgroup_inode_mknod(mode, dev);
1979 	if (error)
1980 		return error;
1981 
1982 	error = security_inode_mknod(dir, dentry, mode, dev);
1983 	if (error)
1984 		return error;
1985 
1986 	error = dir->i_op->mknod(dir, dentry, mode, dev);
1987 	if (!error)
1988 		fsnotify_create(dir, dentry);
1989 	return error;
1990 }
1991 
1992 static int may_mknod(mode_t mode)
1993 {
1994 	switch (mode & S_IFMT) {
1995 	case S_IFREG:
1996 	case S_IFCHR:
1997 	case S_IFBLK:
1998 	case S_IFIFO:
1999 	case S_IFSOCK:
2000 	case 0: /* zero mode translates to S_IFREG */
2001 		return 0;
2002 	case S_IFDIR:
2003 		return -EPERM;
2004 	default:
2005 		return -EINVAL;
2006 	}
2007 }
2008 
2009 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2010 		unsigned, dev)
2011 {
2012 	int error;
2013 	char *tmp;
2014 	struct dentry *dentry;
2015 	struct nameidata nd;
2016 
2017 	if (S_ISDIR(mode))
2018 		return -EPERM;
2019 
2020 	error = user_path_parent(dfd, filename, &nd, &tmp);
2021 	if (error)
2022 		return error;
2023 
2024 	dentry = lookup_create(&nd, 0);
2025 	if (IS_ERR(dentry)) {
2026 		error = PTR_ERR(dentry);
2027 		goto out_unlock;
2028 	}
2029 	if (!IS_POSIXACL(nd.path.dentry->d_inode))
2030 		mode &= ~current_umask();
2031 	error = may_mknod(mode);
2032 	if (error)
2033 		goto out_dput;
2034 	error = mnt_want_write(nd.path.mnt);
2035 	if (error)
2036 		goto out_dput;
2037 	error = security_path_mknod(&nd.path, dentry, mode, dev);
2038 	if (error)
2039 		goto out_drop_write;
2040 	switch (mode & S_IFMT) {
2041 		case 0: case S_IFREG:
2042 			error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2043 			break;
2044 		case S_IFCHR: case S_IFBLK:
2045 			error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2046 					new_decode_dev(dev));
2047 			break;
2048 		case S_IFIFO: case S_IFSOCK:
2049 			error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2050 			break;
2051 	}
2052 out_drop_write:
2053 	mnt_drop_write(nd.path.mnt);
2054 out_dput:
2055 	dput(dentry);
2056 out_unlock:
2057 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2058 	path_put(&nd.path);
2059 	putname(tmp);
2060 
2061 	return error;
2062 }
2063 
2064 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2065 {
2066 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
2067 }
2068 
2069 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2070 {
2071 	int error = may_create(dir, dentry);
2072 
2073 	if (error)
2074 		return error;
2075 
2076 	if (!dir->i_op->mkdir)
2077 		return -EPERM;
2078 
2079 	mode &= (S_IRWXUGO|S_ISVTX);
2080 	error = security_inode_mkdir(dir, dentry, mode);
2081 	if (error)
2082 		return error;
2083 
2084 	error = dir->i_op->mkdir(dir, dentry, mode);
2085 	if (!error)
2086 		fsnotify_mkdir(dir, dentry);
2087 	return error;
2088 }
2089 
2090 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2091 {
2092 	int error = 0;
2093 	char * tmp;
2094 	struct dentry *dentry;
2095 	struct nameidata nd;
2096 
2097 	error = user_path_parent(dfd, pathname, &nd, &tmp);
2098 	if (error)
2099 		goto out_err;
2100 
2101 	dentry = lookup_create(&nd, 1);
2102 	error = PTR_ERR(dentry);
2103 	if (IS_ERR(dentry))
2104 		goto out_unlock;
2105 
2106 	if (!IS_POSIXACL(nd.path.dentry->d_inode))
2107 		mode &= ~current_umask();
2108 	error = mnt_want_write(nd.path.mnt);
2109 	if (error)
2110 		goto out_dput;
2111 	error = security_path_mkdir(&nd.path, dentry, mode);
2112 	if (error)
2113 		goto out_drop_write;
2114 	error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2115 out_drop_write:
2116 	mnt_drop_write(nd.path.mnt);
2117 out_dput:
2118 	dput(dentry);
2119 out_unlock:
2120 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2121 	path_put(&nd.path);
2122 	putname(tmp);
2123 out_err:
2124 	return error;
2125 }
2126 
2127 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2128 {
2129 	return sys_mkdirat(AT_FDCWD, pathname, mode);
2130 }
2131 
2132 /*
2133  * We try to drop the dentry early: we should have
2134  * a usage count of 2 if we're the only user of this
2135  * dentry, and if that is true (possibly after pruning
2136  * the dcache), then we drop the dentry now.
2137  *
2138  * A low-level filesystem can, if it choses, legally
2139  * do a
2140  *
2141  *	if (!d_unhashed(dentry))
2142  *		return -EBUSY;
2143  *
2144  * if it cannot handle the case of removing a directory
2145  * that is still in use by something else..
2146  */
2147 void dentry_unhash(struct dentry *dentry)
2148 {
2149 	dget(dentry);
2150 	shrink_dcache_parent(dentry);
2151 	spin_lock(&dcache_lock);
2152 	spin_lock(&dentry->d_lock);
2153 	if (atomic_read(&dentry->d_count) == 2)
2154 		__d_drop(dentry);
2155 	spin_unlock(&dentry->d_lock);
2156 	spin_unlock(&dcache_lock);
2157 }
2158 
2159 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2160 {
2161 	int error = may_delete(dir, dentry, 1);
2162 
2163 	if (error)
2164 		return error;
2165 
2166 	if (!dir->i_op->rmdir)
2167 		return -EPERM;
2168 
2169 	mutex_lock(&dentry->d_inode->i_mutex);
2170 	dentry_unhash(dentry);
2171 	if (d_mountpoint(dentry))
2172 		error = -EBUSY;
2173 	else {
2174 		error = security_inode_rmdir(dir, dentry);
2175 		if (!error) {
2176 			error = dir->i_op->rmdir(dir, dentry);
2177 			if (!error)
2178 				dentry->d_inode->i_flags |= S_DEAD;
2179 		}
2180 	}
2181 	mutex_unlock(&dentry->d_inode->i_mutex);
2182 	if (!error) {
2183 		d_delete(dentry);
2184 	}
2185 	dput(dentry);
2186 
2187 	return error;
2188 }
2189 
2190 static long do_rmdir(int dfd, const char __user *pathname)
2191 {
2192 	int error = 0;
2193 	char * name;
2194 	struct dentry *dentry;
2195 	struct nameidata nd;
2196 
2197 	error = user_path_parent(dfd, pathname, &nd, &name);
2198 	if (error)
2199 		return error;
2200 
2201 	switch(nd.last_type) {
2202 	case LAST_DOTDOT:
2203 		error = -ENOTEMPTY;
2204 		goto exit1;
2205 	case LAST_DOT:
2206 		error = -EINVAL;
2207 		goto exit1;
2208 	case LAST_ROOT:
2209 		error = -EBUSY;
2210 		goto exit1;
2211 	}
2212 
2213 	nd.flags &= ~LOOKUP_PARENT;
2214 
2215 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2216 	dentry = lookup_hash(&nd);
2217 	error = PTR_ERR(dentry);
2218 	if (IS_ERR(dentry))
2219 		goto exit2;
2220 	error = mnt_want_write(nd.path.mnt);
2221 	if (error)
2222 		goto exit3;
2223 	error = security_path_rmdir(&nd.path, dentry);
2224 	if (error)
2225 		goto exit4;
2226 	error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2227 exit4:
2228 	mnt_drop_write(nd.path.mnt);
2229 exit3:
2230 	dput(dentry);
2231 exit2:
2232 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2233 exit1:
2234 	path_put(&nd.path);
2235 	putname(name);
2236 	return error;
2237 }
2238 
2239 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2240 {
2241 	return do_rmdir(AT_FDCWD, pathname);
2242 }
2243 
2244 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2245 {
2246 	int error = may_delete(dir, dentry, 0);
2247 
2248 	if (error)
2249 		return error;
2250 
2251 	if (!dir->i_op->unlink)
2252 		return -EPERM;
2253 
2254 	mutex_lock(&dentry->d_inode->i_mutex);
2255 	if (d_mountpoint(dentry))
2256 		error = -EBUSY;
2257 	else {
2258 		error = security_inode_unlink(dir, dentry);
2259 		if (!error) {
2260 			error = dir->i_op->unlink(dir, dentry);
2261 			if (!error)
2262 				dentry->d_inode->i_flags |= S_DEAD;
2263 		}
2264 	}
2265 	mutex_unlock(&dentry->d_inode->i_mutex);
2266 
2267 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
2268 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2269 		fsnotify_link_count(dentry->d_inode);
2270 		d_delete(dentry);
2271 	}
2272 
2273 	return error;
2274 }
2275 
2276 /*
2277  * Make sure that the actual truncation of the file will occur outside its
2278  * directory's i_mutex.  Truncate can take a long time if there is a lot of
2279  * writeout happening, and we don't want to prevent access to the directory
2280  * while waiting on the I/O.
2281  */
2282 static long do_unlinkat(int dfd, const char __user *pathname)
2283 {
2284 	int error;
2285 	char *name;
2286 	struct dentry *dentry;
2287 	struct nameidata nd;
2288 	struct inode *inode = NULL;
2289 
2290 	error = user_path_parent(dfd, pathname, &nd, &name);
2291 	if (error)
2292 		return error;
2293 
2294 	error = -EISDIR;
2295 	if (nd.last_type != LAST_NORM)
2296 		goto exit1;
2297 
2298 	nd.flags &= ~LOOKUP_PARENT;
2299 
2300 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2301 	dentry = lookup_hash(&nd);
2302 	error = PTR_ERR(dentry);
2303 	if (!IS_ERR(dentry)) {
2304 		/* Why not before? Because we want correct error value */
2305 		if (nd.last.name[nd.last.len])
2306 			goto slashes;
2307 		inode = dentry->d_inode;
2308 		if (inode)
2309 			atomic_inc(&inode->i_count);
2310 		error = mnt_want_write(nd.path.mnt);
2311 		if (error)
2312 			goto exit2;
2313 		error = security_path_unlink(&nd.path, dentry);
2314 		if (error)
2315 			goto exit3;
2316 		error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2317 exit3:
2318 		mnt_drop_write(nd.path.mnt);
2319 	exit2:
2320 		dput(dentry);
2321 	}
2322 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2323 	if (inode)
2324 		iput(inode);	/* truncate the inode here */
2325 exit1:
2326 	path_put(&nd.path);
2327 	putname(name);
2328 	return error;
2329 
2330 slashes:
2331 	error = !dentry->d_inode ? -ENOENT :
2332 		S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2333 	goto exit2;
2334 }
2335 
2336 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2337 {
2338 	if ((flag & ~AT_REMOVEDIR) != 0)
2339 		return -EINVAL;
2340 
2341 	if (flag & AT_REMOVEDIR)
2342 		return do_rmdir(dfd, pathname);
2343 
2344 	return do_unlinkat(dfd, pathname);
2345 }
2346 
2347 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2348 {
2349 	return do_unlinkat(AT_FDCWD, pathname);
2350 }
2351 
2352 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2353 {
2354 	int error = may_create(dir, dentry);
2355 
2356 	if (error)
2357 		return error;
2358 
2359 	if (!dir->i_op->symlink)
2360 		return -EPERM;
2361 
2362 	error = security_inode_symlink(dir, dentry, oldname);
2363 	if (error)
2364 		return error;
2365 
2366 	error = dir->i_op->symlink(dir, dentry, oldname);
2367 	if (!error)
2368 		fsnotify_create(dir, dentry);
2369 	return error;
2370 }
2371 
2372 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2373 		int, newdfd, const char __user *, newname)
2374 {
2375 	int error;
2376 	char *from;
2377 	char *to;
2378 	struct dentry *dentry;
2379 	struct nameidata nd;
2380 
2381 	from = getname(oldname);
2382 	if (IS_ERR(from))
2383 		return PTR_ERR(from);
2384 
2385 	error = user_path_parent(newdfd, newname, &nd, &to);
2386 	if (error)
2387 		goto out_putname;
2388 
2389 	dentry = lookup_create(&nd, 0);
2390 	error = PTR_ERR(dentry);
2391 	if (IS_ERR(dentry))
2392 		goto out_unlock;
2393 
2394 	error = mnt_want_write(nd.path.mnt);
2395 	if (error)
2396 		goto out_dput;
2397 	error = security_path_symlink(&nd.path, dentry, from);
2398 	if (error)
2399 		goto out_drop_write;
2400 	error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2401 out_drop_write:
2402 	mnt_drop_write(nd.path.mnt);
2403 out_dput:
2404 	dput(dentry);
2405 out_unlock:
2406 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2407 	path_put(&nd.path);
2408 	putname(to);
2409 out_putname:
2410 	putname(from);
2411 	return error;
2412 }
2413 
2414 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2415 {
2416 	return sys_symlinkat(oldname, AT_FDCWD, newname);
2417 }
2418 
2419 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2420 {
2421 	struct inode *inode = old_dentry->d_inode;
2422 	int error;
2423 
2424 	if (!inode)
2425 		return -ENOENT;
2426 
2427 	error = may_create(dir, new_dentry);
2428 	if (error)
2429 		return error;
2430 
2431 	if (dir->i_sb != inode->i_sb)
2432 		return -EXDEV;
2433 
2434 	/*
2435 	 * A link to an append-only or immutable file cannot be created.
2436 	 */
2437 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2438 		return -EPERM;
2439 	if (!dir->i_op->link)
2440 		return -EPERM;
2441 	if (S_ISDIR(inode->i_mode))
2442 		return -EPERM;
2443 
2444 	error = security_inode_link(old_dentry, dir, new_dentry);
2445 	if (error)
2446 		return error;
2447 
2448 	mutex_lock(&inode->i_mutex);
2449 	error = dir->i_op->link(old_dentry, dir, new_dentry);
2450 	mutex_unlock(&inode->i_mutex);
2451 	if (!error)
2452 		fsnotify_link(dir, inode, new_dentry);
2453 	return error;
2454 }
2455 
2456 /*
2457  * Hardlinks are often used in delicate situations.  We avoid
2458  * security-related surprises by not following symlinks on the
2459  * newname.  --KAB
2460  *
2461  * We don't follow them on the oldname either to be compatible
2462  * with linux 2.0, and to avoid hard-linking to directories
2463  * and other special files.  --ADM
2464  */
2465 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2466 		int, newdfd, const char __user *, newname, int, flags)
2467 {
2468 	struct dentry *new_dentry;
2469 	struct nameidata nd;
2470 	struct path old_path;
2471 	int error;
2472 	char *to;
2473 
2474 	if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2475 		return -EINVAL;
2476 
2477 	error = user_path_at(olddfd, oldname,
2478 			     flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2479 			     &old_path);
2480 	if (error)
2481 		return error;
2482 
2483 	error = user_path_parent(newdfd, newname, &nd, &to);
2484 	if (error)
2485 		goto out;
2486 	error = -EXDEV;
2487 	if (old_path.mnt != nd.path.mnt)
2488 		goto out_release;
2489 	new_dentry = lookup_create(&nd, 0);
2490 	error = PTR_ERR(new_dentry);
2491 	if (IS_ERR(new_dentry))
2492 		goto out_unlock;
2493 	error = mnt_want_write(nd.path.mnt);
2494 	if (error)
2495 		goto out_dput;
2496 	error = security_path_link(old_path.dentry, &nd.path, new_dentry);
2497 	if (error)
2498 		goto out_drop_write;
2499 	error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
2500 out_drop_write:
2501 	mnt_drop_write(nd.path.mnt);
2502 out_dput:
2503 	dput(new_dentry);
2504 out_unlock:
2505 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2506 out_release:
2507 	path_put(&nd.path);
2508 	putname(to);
2509 out:
2510 	path_put(&old_path);
2511 
2512 	return error;
2513 }
2514 
2515 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
2516 {
2517 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2518 }
2519 
2520 /*
2521  * The worst of all namespace operations - renaming directory. "Perverted"
2522  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2523  * Problems:
2524  *	a) we can get into loop creation. Check is done in is_subdir().
2525  *	b) race potential - two innocent renames can create a loop together.
2526  *	   That's where 4.4 screws up. Current fix: serialization on
2527  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2528  *	   story.
2529  *	c) we have to lock _three_ objects - parents and victim (if it exists).
2530  *	   And that - after we got ->i_mutex on parents (until then we don't know
2531  *	   whether the target exists).  Solution: try to be smart with locking
2532  *	   order for inodes.  We rely on the fact that tree topology may change
2533  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
2534  *	   move will be locked.  Thus we can rank directories by the tree
2535  *	   (ancestors first) and rank all non-directories after them.
2536  *	   That works since everybody except rename does "lock parent, lookup,
2537  *	   lock child" and rename is under ->s_vfs_rename_mutex.
2538  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
2539  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
2540  *	   we'd better make sure that there's no link(2) for them.
2541  *	d) some filesystems don't support opened-but-unlinked directories,
2542  *	   either because of layout or because they are not ready to deal with
2543  *	   all cases correctly. The latter will be fixed (taking this sort of
2544  *	   stuff into VFS), but the former is not going away. Solution: the same
2545  *	   trick as in rmdir().
2546  *	e) conversion from fhandle to dentry may come in the wrong moment - when
2547  *	   we are removing the target. Solution: we will have to grab ->i_mutex
2548  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2549  *	   ->i_mutex on parents, which works but leads to some truly excessive
2550  *	   locking].
2551  */
2552 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2553 			  struct inode *new_dir, struct dentry *new_dentry)
2554 {
2555 	int error = 0;
2556 	struct inode *target;
2557 
2558 	/*
2559 	 * If we are going to change the parent - check write permissions,
2560 	 * we'll need to flip '..'.
2561 	 */
2562 	if (new_dir != old_dir) {
2563 		error = inode_permission(old_dentry->d_inode, MAY_WRITE);
2564 		if (error)
2565 			return error;
2566 	}
2567 
2568 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2569 	if (error)
2570 		return error;
2571 
2572 	target = new_dentry->d_inode;
2573 	if (target) {
2574 		mutex_lock(&target->i_mutex);
2575 		dentry_unhash(new_dentry);
2576 	}
2577 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2578 		error = -EBUSY;
2579 	else
2580 		error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2581 	if (target) {
2582 		if (!error)
2583 			target->i_flags |= S_DEAD;
2584 		mutex_unlock(&target->i_mutex);
2585 		if (d_unhashed(new_dentry))
2586 			d_rehash(new_dentry);
2587 		dput(new_dentry);
2588 	}
2589 	if (!error)
2590 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2591 			d_move(old_dentry,new_dentry);
2592 	return error;
2593 }
2594 
2595 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2596 			    struct inode *new_dir, struct dentry *new_dentry)
2597 {
2598 	struct inode *target;
2599 	int error;
2600 
2601 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2602 	if (error)
2603 		return error;
2604 
2605 	dget(new_dentry);
2606 	target = new_dentry->d_inode;
2607 	if (target)
2608 		mutex_lock(&target->i_mutex);
2609 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2610 		error = -EBUSY;
2611 	else
2612 		error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2613 	if (!error) {
2614 		if (target)
2615 			target->i_flags |= S_DEAD;
2616 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2617 			d_move(old_dentry, new_dentry);
2618 	}
2619 	if (target)
2620 		mutex_unlock(&target->i_mutex);
2621 	dput(new_dentry);
2622 	return error;
2623 }
2624 
2625 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2626 	       struct inode *new_dir, struct dentry *new_dentry)
2627 {
2628 	int error;
2629 	int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2630 	const char *old_name;
2631 
2632 	if (old_dentry->d_inode == new_dentry->d_inode)
2633  		return 0;
2634 
2635 	error = may_delete(old_dir, old_dentry, is_dir);
2636 	if (error)
2637 		return error;
2638 
2639 	if (!new_dentry->d_inode)
2640 		error = may_create(new_dir, new_dentry);
2641 	else
2642 		error = may_delete(new_dir, new_dentry, is_dir);
2643 	if (error)
2644 		return error;
2645 
2646 	if (!old_dir->i_op->rename)
2647 		return -EPERM;
2648 
2649 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2650 
2651 	if (is_dir)
2652 		error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2653 	else
2654 		error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2655 	if (!error)
2656 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
2657 			      new_dentry->d_inode, old_dentry);
2658 	fsnotify_oldname_free(old_name);
2659 
2660 	return error;
2661 }
2662 
2663 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
2664 		int, newdfd, const char __user *, newname)
2665 {
2666 	struct dentry *old_dir, *new_dir;
2667 	struct dentry *old_dentry, *new_dentry;
2668 	struct dentry *trap;
2669 	struct nameidata oldnd, newnd;
2670 	char *from;
2671 	char *to;
2672 	int error;
2673 
2674 	error = user_path_parent(olddfd, oldname, &oldnd, &from);
2675 	if (error)
2676 		goto exit;
2677 
2678 	error = user_path_parent(newdfd, newname, &newnd, &to);
2679 	if (error)
2680 		goto exit1;
2681 
2682 	error = -EXDEV;
2683 	if (oldnd.path.mnt != newnd.path.mnt)
2684 		goto exit2;
2685 
2686 	old_dir = oldnd.path.dentry;
2687 	error = -EBUSY;
2688 	if (oldnd.last_type != LAST_NORM)
2689 		goto exit2;
2690 
2691 	new_dir = newnd.path.dentry;
2692 	if (newnd.last_type != LAST_NORM)
2693 		goto exit2;
2694 
2695 	oldnd.flags &= ~LOOKUP_PARENT;
2696 	newnd.flags &= ~LOOKUP_PARENT;
2697 	newnd.flags |= LOOKUP_RENAME_TARGET;
2698 
2699 	trap = lock_rename(new_dir, old_dir);
2700 
2701 	old_dentry = lookup_hash(&oldnd);
2702 	error = PTR_ERR(old_dentry);
2703 	if (IS_ERR(old_dentry))
2704 		goto exit3;
2705 	/* source must exist */
2706 	error = -ENOENT;
2707 	if (!old_dentry->d_inode)
2708 		goto exit4;
2709 	/* unless the source is a directory trailing slashes give -ENOTDIR */
2710 	if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2711 		error = -ENOTDIR;
2712 		if (oldnd.last.name[oldnd.last.len])
2713 			goto exit4;
2714 		if (newnd.last.name[newnd.last.len])
2715 			goto exit4;
2716 	}
2717 	/* source should not be ancestor of target */
2718 	error = -EINVAL;
2719 	if (old_dentry == trap)
2720 		goto exit4;
2721 	new_dentry = lookup_hash(&newnd);
2722 	error = PTR_ERR(new_dentry);
2723 	if (IS_ERR(new_dentry))
2724 		goto exit4;
2725 	/* target should not be an ancestor of source */
2726 	error = -ENOTEMPTY;
2727 	if (new_dentry == trap)
2728 		goto exit5;
2729 
2730 	error = mnt_want_write(oldnd.path.mnt);
2731 	if (error)
2732 		goto exit5;
2733 	error = security_path_rename(&oldnd.path, old_dentry,
2734 				     &newnd.path, new_dentry);
2735 	if (error)
2736 		goto exit6;
2737 	error = vfs_rename(old_dir->d_inode, old_dentry,
2738 				   new_dir->d_inode, new_dentry);
2739 exit6:
2740 	mnt_drop_write(oldnd.path.mnt);
2741 exit5:
2742 	dput(new_dentry);
2743 exit4:
2744 	dput(old_dentry);
2745 exit3:
2746 	unlock_rename(new_dir, old_dir);
2747 exit2:
2748 	path_put(&newnd.path);
2749 	putname(to);
2750 exit1:
2751 	path_put(&oldnd.path);
2752 	putname(from);
2753 exit:
2754 	return error;
2755 }
2756 
2757 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
2758 {
2759 	return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2760 }
2761 
2762 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2763 {
2764 	int len;
2765 
2766 	len = PTR_ERR(link);
2767 	if (IS_ERR(link))
2768 		goto out;
2769 
2770 	len = strlen(link);
2771 	if (len > (unsigned) buflen)
2772 		len = buflen;
2773 	if (copy_to_user(buffer, link, len))
2774 		len = -EFAULT;
2775 out:
2776 	return len;
2777 }
2778 
2779 /*
2780  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
2781  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
2782  * using) it for any given inode is up to filesystem.
2783  */
2784 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2785 {
2786 	struct nameidata nd;
2787 	void *cookie;
2788 	int res;
2789 
2790 	nd.depth = 0;
2791 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2792 	if (IS_ERR(cookie))
2793 		return PTR_ERR(cookie);
2794 
2795 	res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2796 	if (dentry->d_inode->i_op->put_link)
2797 		dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2798 	return res;
2799 }
2800 
2801 int vfs_follow_link(struct nameidata *nd, const char *link)
2802 {
2803 	return __vfs_follow_link(nd, link);
2804 }
2805 
2806 /* get the link contents into pagecache */
2807 static char *page_getlink(struct dentry * dentry, struct page **ppage)
2808 {
2809 	char *kaddr;
2810 	struct page *page;
2811 	struct address_space *mapping = dentry->d_inode->i_mapping;
2812 	page = read_mapping_page(mapping, 0, NULL);
2813 	if (IS_ERR(page))
2814 		return (char*)page;
2815 	*ppage = page;
2816 	kaddr = kmap(page);
2817 	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
2818 	return kaddr;
2819 }
2820 
2821 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2822 {
2823 	struct page *page = NULL;
2824 	char *s = page_getlink(dentry, &page);
2825 	int res = vfs_readlink(dentry,buffer,buflen,s);
2826 	if (page) {
2827 		kunmap(page);
2828 		page_cache_release(page);
2829 	}
2830 	return res;
2831 }
2832 
2833 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2834 {
2835 	struct page *page = NULL;
2836 	nd_set_link(nd, page_getlink(dentry, &page));
2837 	return page;
2838 }
2839 
2840 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2841 {
2842 	struct page *page = cookie;
2843 
2844 	if (page) {
2845 		kunmap(page);
2846 		page_cache_release(page);
2847 	}
2848 }
2849 
2850 /*
2851  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
2852  */
2853 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
2854 {
2855 	struct address_space *mapping = inode->i_mapping;
2856 	struct page *page;
2857 	void *fsdata;
2858 	int err;
2859 	char *kaddr;
2860 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
2861 	if (nofs)
2862 		flags |= AOP_FLAG_NOFS;
2863 
2864 retry:
2865 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
2866 				flags, &page, &fsdata);
2867 	if (err)
2868 		goto fail;
2869 
2870 	kaddr = kmap_atomic(page, KM_USER0);
2871 	memcpy(kaddr, symname, len-1);
2872 	kunmap_atomic(kaddr, KM_USER0);
2873 
2874 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
2875 							page, fsdata);
2876 	if (err < 0)
2877 		goto fail;
2878 	if (err < len-1)
2879 		goto retry;
2880 
2881 	mark_inode_dirty(inode);
2882 	return 0;
2883 fail:
2884 	return err;
2885 }
2886 
2887 int page_symlink(struct inode *inode, const char *symname, int len)
2888 {
2889 	return __page_symlink(inode, symname, len,
2890 			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
2891 }
2892 
2893 const struct inode_operations page_symlink_inode_operations = {
2894 	.readlink	= generic_readlink,
2895 	.follow_link	= page_follow_link_light,
2896 	.put_link	= page_put_link,
2897 };
2898 
2899 EXPORT_SYMBOL(user_path_at);
2900 EXPORT_SYMBOL(follow_down);
2901 EXPORT_SYMBOL(follow_up);
2902 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2903 EXPORT_SYMBOL(getname);
2904 EXPORT_SYMBOL(lock_rename);
2905 EXPORT_SYMBOL(lookup_one_len);
2906 EXPORT_SYMBOL(page_follow_link_light);
2907 EXPORT_SYMBOL(page_put_link);
2908 EXPORT_SYMBOL(page_readlink);
2909 EXPORT_SYMBOL(__page_symlink);
2910 EXPORT_SYMBOL(page_symlink);
2911 EXPORT_SYMBOL(page_symlink_inode_operations);
2912 EXPORT_SYMBOL(path_lookup);
2913 EXPORT_SYMBOL(kern_path);
2914 EXPORT_SYMBOL(vfs_path_lookup);
2915 EXPORT_SYMBOL(inode_permission);
2916 EXPORT_SYMBOL(file_permission);
2917 EXPORT_SYMBOL(unlock_rename);
2918 EXPORT_SYMBOL(vfs_create);
2919 EXPORT_SYMBOL(vfs_follow_link);
2920 EXPORT_SYMBOL(vfs_link);
2921 EXPORT_SYMBOL(vfs_mkdir);
2922 EXPORT_SYMBOL(vfs_mknod);
2923 EXPORT_SYMBOL(generic_permission);
2924 EXPORT_SYMBOL(vfs_readlink);
2925 EXPORT_SYMBOL(vfs_rename);
2926 EXPORT_SYMBOL(vfs_rmdir);
2927 EXPORT_SYMBOL(vfs_symlink);
2928 EXPORT_SYMBOL(vfs_unlink);
2929 EXPORT_SYMBOL(dentry_unhash);
2930 EXPORT_SYMBOL(generic_readlink);
2931