xref: /linux/fs/namei.c (revision 9e56ff53b4115875667760445b028357848b4748)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/namei.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * Some corrections by tytso.
10  */
11 
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13  * lookup logic.
14  */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16  */
17 
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/filelock.h>
24 #include <linux/namei.h>
25 #include <linux/pagemap.h>
26 #include <linux/sched/mm.h>
27 #include <linux/fsnotify.h>
28 #include <linux/personality.h>
29 #include <linux/security.h>
30 #include <linux/ima.h>
31 #include <linux/syscalls.h>
32 #include <linux/mount.h>
33 #include <linux/audit.h>
34 #include <linux/capability.h>
35 #include <linux/file.h>
36 #include <linux/fcntl.h>
37 #include <linux/device_cgroup.h>
38 #include <linux/fs_struct.h>
39 #include <linux/posix_acl.h>
40 #include <linux/hash.h>
41 #include <linux/bitops.h>
42 #include <linux/init_task.h>
43 #include <linux/uaccess.h>
44 
45 #include "internal.h"
46 #include "mount.h"
47 
48 /* [Feb-1997 T. Schoebel-Theuer]
49  * Fundamental changes in the pathname lookup mechanisms (namei)
50  * were necessary because of omirr.  The reason is that omirr needs
51  * to know the _real_ pathname, not the user-supplied one, in case
52  * of symlinks (and also when transname replacements occur).
53  *
54  * The new code replaces the old recursive symlink resolution with
55  * an iterative one (in case of non-nested symlink chains).  It does
56  * this with calls to <fs>_follow_link().
57  * As a side effect, dir_namei(), _namei() and follow_link() are now
58  * replaced with a single function lookup_dentry() that can handle all
59  * the special cases of the former code.
60  *
61  * With the new dcache, the pathname is stored at each inode, at least as
62  * long as the refcount of the inode is positive.  As a side effect, the
63  * size of the dcache depends on the inode cache and thus is dynamic.
64  *
65  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
66  * resolution to correspond with current state of the code.
67  *
68  * Note that the symlink resolution is not *completely* iterative.
69  * There is still a significant amount of tail- and mid- recursion in
70  * the algorithm.  Also, note that <fs>_readlink() is not used in
71  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
72  * may return different results than <fs>_follow_link().  Many virtual
73  * filesystems (including /proc) exhibit this behavior.
74  */
75 
76 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
77  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
78  * and the name already exists in form of a symlink, try to create the new
79  * name indicated by the symlink. The old code always complained that the
80  * name already exists, due to not following the symlink even if its target
81  * is nonexistent.  The new semantics affects also mknod() and link() when
82  * the name is a symlink pointing to a non-existent name.
83  *
84  * I don't know which semantics is the right one, since I have no access
85  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
86  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
87  * "old" one. Personally, I think the new semantics is much more logical.
88  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
89  * file does succeed in both HP-UX and SunOs, but not in Solaris
90  * and in the old Linux semantics.
91  */
92 
93 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
94  * semantics.  See the comments in "open_namei" and "do_link" below.
95  *
96  * [10-Sep-98 Alan Modra] Another symlink change.
97  */
98 
99 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
100  *	inside the path - always follow.
101  *	in the last component in creation/removal/renaming - never follow.
102  *	if LOOKUP_FOLLOW passed - follow.
103  *	if the pathname has trailing slashes - follow.
104  *	otherwise - don't follow.
105  * (applied in that order).
106  *
107  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
108  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
109  * During the 2.4 we need to fix the userland stuff depending on it -
110  * hopefully we will be able to get rid of that wart in 2.5. So far only
111  * XEmacs seems to be relying on it...
112  */
113 /*
114  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
115  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
116  * any extra contention...
117  */
118 
119 /* In order to reduce some races, while at the same time doing additional
120  * checking and hopefully speeding things up, we copy filenames to the
121  * kernel data space before using them..
122  *
123  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
124  * PATH_MAX includes the nul terminator --RR.
125  */
126 
127 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
128 
129 struct filename *
130 getname_flags(const char __user *filename, int flags, int *empty)
131 {
132 	struct filename *result;
133 	char *kname;
134 	int len;
135 
136 	result = audit_reusename(filename);
137 	if (result)
138 		return result;
139 
140 	result = __getname();
141 	if (unlikely(!result))
142 		return ERR_PTR(-ENOMEM);
143 
144 	/*
145 	 * First, try to embed the struct filename inside the names_cache
146 	 * allocation
147 	 */
148 	kname = (char *)result->iname;
149 	result->name = kname;
150 
151 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
152 	if (unlikely(len < 0)) {
153 		__putname(result);
154 		return ERR_PTR(len);
155 	}
156 
157 	/*
158 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
159 	 * separate struct filename so we can dedicate the entire
160 	 * names_cache allocation for the pathname, and re-do the copy from
161 	 * userland.
162 	 */
163 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
164 		const size_t size = offsetof(struct filename, iname[1]);
165 		kname = (char *)result;
166 
167 		/*
168 		 * size is chosen that way we to guarantee that
169 		 * result->iname[0] is within the same object and that
170 		 * kname can't be equal to result->iname, no matter what.
171 		 */
172 		result = kzalloc(size, GFP_KERNEL);
173 		if (unlikely(!result)) {
174 			__putname(kname);
175 			return ERR_PTR(-ENOMEM);
176 		}
177 		result->name = kname;
178 		len = strncpy_from_user(kname, filename, PATH_MAX);
179 		if (unlikely(len < 0)) {
180 			__putname(kname);
181 			kfree(result);
182 			return ERR_PTR(len);
183 		}
184 		if (unlikely(len == PATH_MAX)) {
185 			__putname(kname);
186 			kfree(result);
187 			return ERR_PTR(-ENAMETOOLONG);
188 		}
189 	}
190 
191 	atomic_set(&result->refcnt, 1);
192 	/* The empty path is special. */
193 	if (unlikely(!len)) {
194 		if (empty)
195 			*empty = 1;
196 		if (!(flags & LOOKUP_EMPTY)) {
197 			putname(result);
198 			return ERR_PTR(-ENOENT);
199 		}
200 	}
201 
202 	result->uptr = filename;
203 	result->aname = NULL;
204 	audit_getname(result);
205 	return result;
206 }
207 
208 struct filename *
209 getname_uflags(const char __user *filename, int uflags)
210 {
211 	int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
212 
213 	return getname_flags(filename, flags, NULL);
214 }
215 
216 struct filename *
217 getname(const char __user * filename)
218 {
219 	return getname_flags(filename, 0, NULL);
220 }
221 
222 struct filename *
223 getname_kernel(const char * filename)
224 {
225 	struct filename *result;
226 	int len = strlen(filename) + 1;
227 
228 	result = __getname();
229 	if (unlikely(!result))
230 		return ERR_PTR(-ENOMEM);
231 
232 	if (len <= EMBEDDED_NAME_MAX) {
233 		result->name = (char *)result->iname;
234 	} else if (len <= PATH_MAX) {
235 		const size_t size = offsetof(struct filename, iname[1]);
236 		struct filename *tmp;
237 
238 		tmp = kmalloc(size, GFP_KERNEL);
239 		if (unlikely(!tmp)) {
240 			__putname(result);
241 			return ERR_PTR(-ENOMEM);
242 		}
243 		tmp->name = (char *)result;
244 		result = tmp;
245 	} else {
246 		__putname(result);
247 		return ERR_PTR(-ENAMETOOLONG);
248 	}
249 	memcpy((char *)result->name, filename, len);
250 	result->uptr = NULL;
251 	result->aname = NULL;
252 	atomic_set(&result->refcnt, 1);
253 	audit_getname(result);
254 
255 	return result;
256 }
257 EXPORT_SYMBOL(getname_kernel);
258 
259 void putname(struct filename *name)
260 {
261 	if (IS_ERR(name))
262 		return;
263 
264 	if (WARN_ON_ONCE(!atomic_read(&name->refcnt)))
265 		return;
266 
267 	if (!atomic_dec_and_test(&name->refcnt))
268 		return;
269 
270 	if (name->name != name->iname) {
271 		__putname(name->name);
272 		kfree(name);
273 	} else
274 		__putname(name);
275 }
276 EXPORT_SYMBOL(putname);
277 
278 /**
279  * check_acl - perform ACL permission checking
280  * @idmap:	idmap of the mount the inode was found from
281  * @inode:	inode to check permissions on
282  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
283  *
284  * This function performs the ACL permission checking. Since this function
285  * retrieve POSIX acls it needs to know whether it is called from a blocking or
286  * non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
287  *
288  * If the inode has been found through an idmapped mount the idmap of
289  * the vfsmount must be passed through @idmap. This function will then take
290  * care to map the inode according to @idmap before checking permissions.
291  * On non-idmapped mounts or if permission checking is to be performed on the
292  * raw inode simply pass @nop_mnt_idmap.
293  */
294 static int check_acl(struct mnt_idmap *idmap,
295 		     struct inode *inode, int mask)
296 {
297 #ifdef CONFIG_FS_POSIX_ACL
298 	struct posix_acl *acl;
299 
300 	if (mask & MAY_NOT_BLOCK) {
301 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
302 	        if (!acl)
303 	                return -EAGAIN;
304 		/* no ->get_inode_acl() calls in RCU mode... */
305 		if (is_uncached_acl(acl))
306 			return -ECHILD;
307 	        return posix_acl_permission(idmap, inode, acl, mask);
308 	}
309 
310 	acl = get_inode_acl(inode, ACL_TYPE_ACCESS);
311 	if (IS_ERR(acl))
312 		return PTR_ERR(acl);
313 	if (acl) {
314 	        int error = posix_acl_permission(idmap, inode, acl, mask);
315 	        posix_acl_release(acl);
316 	        return error;
317 	}
318 #endif
319 
320 	return -EAGAIN;
321 }
322 
323 /**
324  * acl_permission_check - perform basic UNIX permission checking
325  * @idmap:	idmap of the mount the inode was found from
326  * @inode:	inode to check permissions on
327  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
328  *
329  * This function performs the basic UNIX permission checking. Since this
330  * function may retrieve POSIX acls it needs to know whether it is called from a
331  * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
332  *
333  * If the inode has been found through an idmapped mount the idmap of
334  * the vfsmount must be passed through @idmap. This function will then take
335  * care to map the inode according to @idmap before checking permissions.
336  * On non-idmapped mounts or if permission checking is to be performed on the
337  * raw inode simply pass @nop_mnt_idmap.
338  */
339 static int acl_permission_check(struct mnt_idmap *idmap,
340 				struct inode *inode, int mask)
341 {
342 	unsigned int mode = inode->i_mode;
343 	vfsuid_t vfsuid;
344 
345 	/* Are we the owner? If so, ACL's don't matter */
346 	vfsuid = i_uid_into_vfsuid(idmap, inode);
347 	if (likely(vfsuid_eq_kuid(vfsuid, current_fsuid()))) {
348 		mask &= 7;
349 		mode >>= 6;
350 		return (mask & ~mode) ? -EACCES : 0;
351 	}
352 
353 	/* Do we have ACL's? */
354 	if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
355 		int error = check_acl(idmap, inode, mask);
356 		if (error != -EAGAIN)
357 			return error;
358 	}
359 
360 	/* Only RWX matters for group/other mode bits */
361 	mask &= 7;
362 
363 	/*
364 	 * Are the group permissions different from
365 	 * the other permissions in the bits we care
366 	 * about? Need to check group ownership if so.
367 	 */
368 	if (mask & (mode ^ (mode >> 3))) {
369 		vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
370 		if (vfsgid_in_group_p(vfsgid))
371 			mode >>= 3;
372 	}
373 
374 	/* Bits in 'mode' clear that we require? */
375 	return (mask & ~mode) ? -EACCES : 0;
376 }
377 
378 /**
379  * generic_permission -  check for access rights on a Posix-like filesystem
380  * @idmap:	idmap of the mount the inode was found from
381  * @inode:	inode to check access rights for
382  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
383  *		%MAY_NOT_BLOCK ...)
384  *
385  * Used to check for read/write/execute permissions on a file.
386  * We use "fsuid" for this, letting us set arbitrary permissions
387  * for filesystem access without changing the "normal" uids which
388  * are used for other things.
389  *
390  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
391  * request cannot be satisfied (eg. requires blocking or too much complexity).
392  * It would then be called again in ref-walk mode.
393  *
394  * If the inode has been found through an idmapped mount the idmap of
395  * the vfsmount must be passed through @idmap. This function will then take
396  * care to map the inode according to @idmap before checking permissions.
397  * On non-idmapped mounts or if permission checking is to be performed on the
398  * raw inode simply pass @nop_mnt_idmap.
399  */
400 int generic_permission(struct mnt_idmap *idmap, struct inode *inode,
401 		       int mask)
402 {
403 	int ret;
404 
405 	/*
406 	 * Do the basic permission checks.
407 	 */
408 	ret = acl_permission_check(idmap, inode, mask);
409 	if (ret != -EACCES)
410 		return ret;
411 
412 	if (S_ISDIR(inode->i_mode)) {
413 		/* DACs are overridable for directories */
414 		if (!(mask & MAY_WRITE))
415 			if (capable_wrt_inode_uidgid(idmap, inode,
416 						     CAP_DAC_READ_SEARCH))
417 				return 0;
418 		if (capable_wrt_inode_uidgid(idmap, inode,
419 					     CAP_DAC_OVERRIDE))
420 			return 0;
421 		return -EACCES;
422 	}
423 
424 	/*
425 	 * Searching includes executable on directories, else just read.
426 	 */
427 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
428 	if (mask == MAY_READ)
429 		if (capable_wrt_inode_uidgid(idmap, inode,
430 					     CAP_DAC_READ_SEARCH))
431 			return 0;
432 	/*
433 	 * Read/write DACs are always overridable.
434 	 * Executable DACs are overridable when there is
435 	 * at least one exec bit set.
436 	 */
437 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
438 		if (capable_wrt_inode_uidgid(idmap, inode,
439 					     CAP_DAC_OVERRIDE))
440 			return 0;
441 
442 	return -EACCES;
443 }
444 EXPORT_SYMBOL(generic_permission);
445 
446 /**
447  * do_inode_permission - UNIX permission checking
448  * @idmap:	idmap of the mount the inode was found from
449  * @inode:	inode to check permissions on
450  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
451  *
452  * We _really_ want to just do "generic_permission()" without
453  * even looking at the inode->i_op values. So we keep a cache
454  * flag in inode->i_opflags, that says "this has not special
455  * permission function, use the fast case".
456  */
457 static inline int do_inode_permission(struct mnt_idmap *idmap,
458 				      struct inode *inode, int mask)
459 {
460 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
461 		if (likely(inode->i_op->permission))
462 			return inode->i_op->permission(idmap, inode, mask);
463 
464 		/* This gets set once for the inode lifetime */
465 		spin_lock(&inode->i_lock);
466 		inode->i_opflags |= IOP_FASTPERM;
467 		spin_unlock(&inode->i_lock);
468 	}
469 	return generic_permission(idmap, inode, mask);
470 }
471 
472 /**
473  * sb_permission - Check superblock-level permissions
474  * @sb: Superblock of inode to check permission on
475  * @inode: Inode to check permission on
476  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
477  *
478  * Separate out file-system wide checks from inode-specific permission checks.
479  */
480 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
481 {
482 	if (unlikely(mask & MAY_WRITE)) {
483 		umode_t mode = inode->i_mode;
484 
485 		/* Nobody gets write access to a read-only fs. */
486 		if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
487 			return -EROFS;
488 	}
489 	return 0;
490 }
491 
492 /**
493  * inode_permission - Check for access rights to a given inode
494  * @idmap:	idmap of the mount the inode was found from
495  * @inode:	Inode to check permission on
496  * @mask:	Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
497  *
498  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
499  * this, letting us set arbitrary permissions for filesystem access without
500  * changing the "normal" UIDs which are used for other things.
501  *
502  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
503  */
504 int inode_permission(struct mnt_idmap *idmap,
505 		     struct inode *inode, int mask)
506 {
507 	int retval;
508 
509 	retval = sb_permission(inode->i_sb, inode, mask);
510 	if (retval)
511 		return retval;
512 
513 	if (unlikely(mask & MAY_WRITE)) {
514 		/*
515 		 * Nobody gets write access to an immutable file.
516 		 */
517 		if (IS_IMMUTABLE(inode))
518 			return -EPERM;
519 
520 		/*
521 		 * Updating mtime will likely cause i_uid and i_gid to be
522 		 * written back improperly if their true value is unknown
523 		 * to the vfs.
524 		 */
525 		if (HAS_UNMAPPED_ID(idmap, inode))
526 			return -EACCES;
527 	}
528 
529 	retval = do_inode_permission(idmap, inode, mask);
530 	if (retval)
531 		return retval;
532 
533 	retval = devcgroup_inode_permission(inode, mask);
534 	if (retval)
535 		return retval;
536 
537 	return security_inode_permission(inode, mask);
538 }
539 EXPORT_SYMBOL(inode_permission);
540 
541 /**
542  * path_get - get a reference to a path
543  * @path: path to get the reference to
544  *
545  * Given a path increment the reference count to the dentry and the vfsmount.
546  */
547 void path_get(const struct path *path)
548 {
549 	mntget(path->mnt);
550 	dget(path->dentry);
551 }
552 EXPORT_SYMBOL(path_get);
553 
554 /**
555  * path_put - put a reference to a path
556  * @path: path to put the reference to
557  *
558  * Given a path decrement the reference count to the dentry and the vfsmount.
559  */
560 void path_put(const struct path *path)
561 {
562 	dput(path->dentry);
563 	mntput(path->mnt);
564 }
565 EXPORT_SYMBOL(path_put);
566 
567 #define EMBEDDED_LEVELS 2
568 struct nameidata {
569 	struct path	path;
570 	struct qstr	last;
571 	struct path	root;
572 	struct inode	*inode; /* path.dentry.d_inode */
573 	unsigned int	flags, state;
574 	unsigned	seq, next_seq, m_seq, r_seq;
575 	int		last_type;
576 	unsigned	depth;
577 	int		total_link_count;
578 	struct saved {
579 		struct path link;
580 		struct delayed_call done;
581 		const char *name;
582 		unsigned seq;
583 	} *stack, internal[EMBEDDED_LEVELS];
584 	struct filename	*name;
585 	struct nameidata *saved;
586 	unsigned	root_seq;
587 	int		dfd;
588 	vfsuid_t	dir_vfsuid;
589 	umode_t		dir_mode;
590 } __randomize_layout;
591 
592 #define ND_ROOT_PRESET 1
593 #define ND_ROOT_GRABBED 2
594 #define ND_JUMPED 4
595 
596 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name)
597 {
598 	struct nameidata *old = current->nameidata;
599 	p->stack = p->internal;
600 	p->depth = 0;
601 	p->dfd = dfd;
602 	p->name = name;
603 	p->path.mnt = NULL;
604 	p->path.dentry = NULL;
605 	p->total_link_count = old ? old->total_link_count : 0;
606 	p->saved = old;
607 	current->nameidata = p;
608 }
609 
610 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name,
611 			  const struct path *root)
612 {
613 	__set_nameidata(p, dfd, name);
614 	p->state = 0;
615 	if (unlikely(root)) {
616 		p->state = ND_ROOT_PRESET;
617 		p->root = *root;
618 	}
619 }
620 
621 static void restore_nameidata(void)
622 {
623 	struct nameidata *now = current->nameidata, *old = now->saved;
624 
625 	current->nameidata = old;
626 	if (old)
627 		old->total_link_count = now->total_link_count;
628 	if (now->stack != now->internal)
629 		kfree(now->stack);
630 }
631 
632 static bool nd_alloc_stack(struct nameidata *nd)
633 {
634 	struct saved *p;
635 
636 	p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
637 			 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
638 	if (unlikely(!p))
639 		return false;
640 	memcpy(p, nd->internal, sizeof(nd->internal));
641 	nd->stack = p;
642 	return true;
643 }
644 
645 /**
646  * path_connected - Verify that a dentry is below mnt.mnt_root
647  * @mnt: The mountpoint to check.
648  * @dentry: The dentry to check.
649  *
650  * Rename can sometimes move a file or directory outside of a bind
651  * mount, path_connected allows those cases to be detected.
652  */
653 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
654 {
655 	struct super_block *sb = mnt->mnt_sb;
656 
657 	/* Bind mounts can have disconnected paths */
658 	if (mnt->mnt_root == sb->s_root)
659 		return true;
660 
661 	return is_subdir(dentry, mnt->mnt_root);
662 }
663 
664 static void drop_links(struct nameidata *nd)
665 {
666 	int i = nd->depth;
667 	while (i--) {
668 		struct saved *last = nd->stack + i;
669 		do_delayed_call(&last->done);
670 		clear_delayed_call(&last->done);
671 	}
672 }
673 
674 static void leave_rcu(struct nameidata *nd)
675 {
676 	nd->flags &= ~LOOKUP_RCU;
677 	nd->seq = nd->next_seq = 0;
678 	rcu_read_unlock();
679 }
680 
681 static void terminate_walk(struct nameidata *nd)
682 {
683 	drop_links(nd);
684 	if (!(nd->flags & LOOKUP_RCU)) {
685 		int i;
686 		path_put(&nd->path);
687 		for (i = 0; i < nd->depth; i++)
688 			path_put(&nd->stack[i].link);
689 		if (nd->state & ND_ROOT_GRABBED) {
690 			path_put(&nd->root);
691 			nd->state &= ~ND_ROOT_GRABBED;
692 		}
693 	} else {
694 		leave_rcu(nd);
695 	}
696 	nd->depth = 0;
697 	nd->path.mnt = NULL;
698 	nd->path.dentry = NULL;
699 }
700 
701 /* path_put is needed afterwards regardless of success or failure */
702 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
703 {
704 	int res = __legitimize_mnt(path->mnt, mseq);
705 	if (unlikely(res)) {
706 		if (res > 0)
707 			path->mnt = NULL;
708 		path->dentry = NULL;
709 		return false;
710 	}
711 	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
712 		path->dentry = NULL;
713 		return false;
714 	}
715 	return !read_seqcount_retry(&path->dentry->d_seq, seq);
716 }
717 
718 static inline bool legitimize_path(struct nameidata *nd,
719 			    struct path *path, unsigned seq)
720 {
721 	return __legitimize_path(path, seq, nd->m_seq);
722 }
723 
724 static bool legitimize_links(struct nameidata *nd)
725 {
726 	int i;
727 	if (unlikely(nd->flags & LOOKUP_CACHED)) {
728 		drop_links(nd);
729 		nd->depth = 0;
730 		return false;
731 	}
732 	for (i = 0; i < nd->depth; i++) {
733 		struct saved *last = nd->stack + i;
734 		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
735 			drop_links(nd);
736 			nd->depth = i + 1;
737 			return false;
738 		}
739 	}
740 	return true;
741 }
742 
743 static bool legitimize_root(struct nameidata *nd)
744 {
745 	/* Nothing to do if nd->root is zero or is managed by the VFS user. */
746 	if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET))
747 		return true;
748 	nd->state |= ND_ROOT_GRABBED;
749 	return legitimize_path(nd, &nd->root, nd->root_seq);
750 }
751 
752 /*
753  * Path walking has 2 modes, rcu-walk and ref-walk (see
754  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
755  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
756  * normal reference counts on dentries and vfsmounts to transition to ref-walk
757  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
758  * got stuck, so ref-walk may continue from there. If this is not successful
759  * (eg. a seqcount has changed), then failure is returned and it's up to caller
760  * to restart the path walk from the beginning in ref-walk mode.
761  */
762 
763 /**
764  * try_to_unlazy - try to switch to ref-walk mode.
765  * @nd: nameidata pathwalk data
766  * Returns: true on success, false on failure
767  *
768  * try_to_unlazy attempts to legitimize the current nd->path and nd->root
769  * for ref-walk mode.
770  * Must be called from rcu-walk context.
771  * Nothing should touch nameidata between try_to_unlazy() failure and
772  * terminate_walk().
773  */
774 static bool try_to_unlazy(struct nameidata *nd)
775 {
776 	struct dentry *parent = nd->path.dentry;
777 
778 	BUG_ON(!(nd->flags & LOOKUP_RCU));
779 
780 	if (unlikely(!legitimize_links(nd)))
781 		goto out1;
782 	if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
783 		goto out;
784 	if (unlikely(!legitimize_root(nd)))
785 		goto out;
786 	leave_rcu(nd);
787 	BUG_ON(nd->inode != parent->d_inode);
788 	return true;
789 
790 out1:
791 	nd->path.mnt = NULL;
792 	nd->path.dentry = NULL;
793 out:
794 	leave_rcu(nd);
795 	return false;
796 }
797 
798 /**
799  * try_to_unlazy_next - try to switch to ref-walk mode.
800  * @nd: nameidata pathwalk data
801  * @dentry: next dentry to step into
802  * Returns: true on success, false on failure
803  *
804  * Similar to try_to_unlazy(), but here we have the next dentry already
805  * picked by rcu-walk and want to legitimize that in addition to the current
806  * nd->path and nd->root for ref-walk mode.  Must be called from rcu-walk context.
807  * Nothing should touch nameidata between try_to_unlazy_next() failure and
808  * terminate_walk().
809  */
810 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry)
811 {
812 	int res;
813 	BUG_ON(!(nd->flags & LOOKUP_RCU));
814 
815 	if (unlikely(!legitimize_links(nd)))
816 		goto out2;
817 	res = __legitimize_mnt(nd->path.mnt, nd->m_seq);
818 	if (unlikely(res)) {
819 		if (res > 0)
820 			goto out2;
821 		goto out1;
822 	}
823 	if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
824 		goto out1;
825 
826 	/*
827 	 * We need to move both the parent and the dentry from the RCU domain
828 	 * to be properly refcounted. And the sequence number in the dentry
829 	 * validates *both* dentry counters, since we checked the sequence
830 	 * number of the parent after we got the child sequence number. So we
831 	 * know the parent must still be valid if the child sequence number is
832 	 */
833 	if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
834 		goto out;
835 	if (read_seqcount_retry(&dentry->d_seq, nd->next_seq))
836 		goto out_dput;
837 	/*
838 	 * Sequence counts matched. Now make sure that the root is
839 	 * still valid and get it if required.
840 	 */
841 	if (unlikely(!legitimize_root(nd)))
842 		goto out_dput;
843 	leave_rcu(nd);
844 	return true;
845 
846 out2:
847 	nd->path.mnt = NULL;
848 out1:
849 	nd->path.dentry = NULL;
850 out:
851 	leave_rcu(nd);
852 	return false;
853 out_dput:
854 	leave_rcu(nd);
855 	dput(dentry);
856 	return false;
857 }
858 
859 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
860 {
861 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
862 		return dentry->d_op->d_revalidate(dentry, flags);
863 	else
864 		return 1;
865 }
866 
867 /**
868  * complete_walk - successful completion of path walk
869  * @nd:  pointer nameidata
870  *
871  * If we had been in RCU mode, drop out of it and legitimize nd->path.
872  * Revalidate the final result, unless we'd already done that during
873  * the path walk or the filesystem doesn't ask for it.  Return 0 on
874  * success, -error on failure.  In case of failure caller does not
875  * need to drop nd->path.
876  */
877 static int complete_walk(struct nameidata *nd)
878 {
879 	struct dentry *dentry = nd->path.dentry;
880 	int status;
881 
882 	if (nd->flags & LOOKUP_RCU) {
883 		/*
884 		 * We don't want to zero nd->root for scoped-lookups or
885 		 * externally-managed nd->root.
886 		 */
887 		if (!(nd->state & ND_ROOT_PRESET))
888 			if (!(nd->flags & LOOKUP_IS_SCOPED))
889 				nd->root.mnt = NULL;
890 		nd->flags &= ~LOOKUP_CACHED;
891 		if (!try_to_unlazy(nd))
892 			return -ECHILD;
893 	}
894 
895 	if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
896 		/*
897 		 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
898 		 * ever step outside the root during lookup" and should already
899 		 * be guaranteed by the rest of namei, we want to avoid a namei
900 		 * BUG resulting in userspace being given a path that was not
901 		 * scoped within the root at some point during the lookup.
902 		 *
903 		 * So, do a final sanity-check to make sure that in the
904 		 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
905 		 * we won't silently return an fd completely outside of the
906 		 * requested root to userspace.
907 		 *
908 		 * Userspace could move the path outside the root after this
909 		 * check, but as discussed elsewhere this is not a concern (the
910 		 * resolved file was inside the root at some point).
911 		 */
912 		if (!path_is_under(&nd->path, &nd->root))
913 			return -EXDEV;
914 	}
915 
916 	if (likely(!(nd->state & ND_JUMPED)))
917 		return 0;
918 
919 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
920 		return 0;
921 
922 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
923 	if (status > 0)
924 		return 0;
925 
926 	if (!status)
927 		status = -ESTALE;
928 
929 	return status;
930 }
931 
932 static int set_root(struct nameidata *nd)
933 {
934 	struct fs_struct *fs = current->fs;
935 
936 	/*
937 	 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
938 	 * still have to ensure it doesn't happen because it will cause a breakout
939 	 * from the dirfd.
940 	 */
941 	if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
942 		return -ENOTRECOVERABLE;
943 
944 	if (nd->flags & LOOKUP_RCU) {
945 		unsigned seq;
946 
947 		do {
948 			seq = read_seqcount_begin(&fs->seq);
949 			nd->root = fs->root;
950 			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
951 		} while (read_seqcount_retry(&fs->seq, seq));
952 	} else {
953 		get_fs_root(fs, &nd->root);
954 		nd->state |= ND_ROOT_GRABBED;
955 	}
956 	return 0;
957 }
958 
959 static int nd_jump_root(struct nameidata *nd)
960 {
961 	if (unlikely(nd->flags & LOOKUP_BENEATH))
962 		return -EXDEV;
963 	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
964 		/* Absolute path arguments to path_init() are allowed. */
965 		if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
966 			return -EXDEV;
967 	}
968 	if (!nd->root.mnt) {
969 		int error = set_root(nd);
970 		if (error)
971 			return error;
972 	}
973 	if (nd->flags & LOOKUP_RCU) {
974 		struct dentry *d;
975 		nd->path = nd->root;
976 		d = nd->path.dentry;
977 		nd->inode = d->d_inode;
978 		nd->seq = nd->root_seq;
979 		if (read_seqcount_retry(&d->d_seq, nd->seq))
980 			return -ECHILD;
981 	} else {
982 		path_put(&nd->path);
983 		nd->path = nd->root;
984 		path_get(&nd->path);
985 		nd->inode = nd->path.dentry->d_inode;
986 	}
987 	nd->state |= ND_JUMPED;
988 	return 0;
989 }
990 
991 /*
992  * Helper to directly jump to a known parsed path from ->get_link,
993  * caller must have taken a reference to path beforehand.
994  */
995 int nd_jump_link(const struct path *path)
996 {
997 	int error = -ELOOP;
998 	struct nameidata *nd = current->nameidata;
999 
1000 	if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
1001 		goto err;
1002 
1003 	error = -EXDEV;
1004 	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
1005 		if (nd->path.mnt != path->mnt)
1006 			goto err;
1007 	}
1008 	/* Not currently safe for scoped-lookups. */
1009 	if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
1010 		goto err;
1011 
1012 	path_put(&nd->path);
1013 	nd->path = *path;
1014 	nd->inode = nd->path.dentry->d_inode;
1015 	nd->state |= ND_JUMPED;
1016 	return 0;
1017 
1018 err:
1019 	path_put(path);
1020 	return error;
1021 }
1022 
1023 static inline void put_link(struct nameidata *nd)
1024 {
1025 	struct saved *last = nd->stack + --nd->depth;
1026 	do_delayed_call(&last->done);
1027 	if (!(nd->flags & LOOKUP_RCU))
1028 		path_put(&last->link);
1029 }
1030 
1031 static int sysctl_protected_symlinks __read_mostly;
1032 static int sysctl_protected_hardlinks __read_mostly;
1033 static int sysctl_protected_fifos __read_mostly;
1034 static int sysctl_protected_regular __read_mostly;
1035 
1036 #ifdef CONFIG_SYSCTL
1037 static struct ctl_table namei_sysctls[] = {
1038 	{
1039 		.procname	= "protected_symlinks",
1040 		.data		= &sysctl_protected_symlinks,
1041 		.maxlen		= sizeof(int),
1042 		.mode		= 0644,
1043 		.proc_handler	= proc_dointvec_minmax,
1044 		.extra1		= SYSCTL_ZERO,
1045 		.extra2		= SYSCTL_ONE,
1046 	},
1047 	{
1048 		.procname	= "protected_hardlinks",
1049 		.data		= &sysctl_protected_hardlinks,
1050 		.maxlen		= sizeof(int),
1051 		.mode		= 0644,
1052 		.proc_handler	= proc_dointvec_minmax,
1053 		.extra1		= SYSCTL_ZERO,
1054 		.extra2		= SYSCTL_ONE,
1055 	},
1056 	{
1057 		.procname	= "protected_fifos",
1058 		.data		= &sysctl_protected_fifos,
1059 		.maxlen		= sizeof(int),
1060 		.mode		= 0644,
1061 		.proc_handler	= proc_dointvec_minmax,
1062 		.extra1		= SYSCTL_ZERO,
1063 		.extra2		= SYSCTL_TWO,
1064 	},
1065 	{
1066 		.procname	= "protected_regular",
1067 		.data		= &sysctl_protected_regular,
1068 		.maxlen		= sizeof(int),
1069 		.mode		= 0644,
1070 		.proc_handler	= proc_dointvec_minmax,
1071 		.extra1		= SYSCTL_ZERO,
1072 		.extra2		= SYSCTL_TWO,
1073 	},
1074 };
1075 
1076 static int __init init_fs_namei_sysctls(void)
1077 {
1078 	register_sysctl_init("fs", namei_sysctls);
1079 	return 0;
1080 }
1081 fs_initcall(init_fs_namei_sysctls);
1082 
1083 #endif /* CONFIG_SYSCTL */
1084 
1085 /**
1086  * may_follow_link - Check symlink following for unsafe situations
1087  * @nd: nameidata pathwalk data
1088  * @inode: Used for idmapping.
1089  *
1090  * In the case of the sysctl_protected_symlinks sysctl being enabled,
1091  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
1092  * in a sticky world-writable directory. This is to protect privileged
1093  * processes from failing races against path names that may change out
1094  * from under them by way of other users creating malicious symlinks.
1095  * It will permit symlinks to be followed only when outside a sticky
1096  * world-writable directory, or when the uid of the symlink and follower
1097  * match, or when the directory owner matches the symlink's owner.
1098  *
1099  * Returns 0 if following the symlink is allowed, -ve on error.
1100  */
1101 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
1102 {
1103 	struct mnt_idmap *idmap;
1104 	vfsuid_t vfsuid;
1105 
1106 	if (!sysctl_protected_symlinks)
1107 		return 0;
1108 
1109 	idmap = mnt_idmap(nd->path.mnt);
1110 	vfsuid = i_uid_into_vfsuid(idmap, inode);
1111 	/* Allowed if owner and follower match. */
1112 	if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
1113 		return 0;
1114 
1115 	/* Allowed if parent directory not sticky and world-writable. */
1116 	if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
1117 		return 0;
1118 
1119 	/* Allowed if parent directory and link owner match. */
1120 	if (vfsuid_valid(nd->dir_vfsuid) && vfsuid_eq(nd->dir_vfsuid, vfsuid))
1121 		return 0;
1122 
1123 	if (nd->flags & LOOKUP_RCU)
1124 		return -ECHILD;
1125 
1126 	audit_inode(nd->name, nd->stack[0].link.dentry, 0);
1127 	audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
1128 	return -EACCES;
1129 }
1130 
1131 /**
1132  * safe_hardlink_source - Check for safe hardlink conditions
1133  * @idmap: idmap of the mount the inode was found from
1134  * @inode: the source inode to hardlink from
1135  *
1136  * Return false if at least one of the following conditions:
1137  *    - inode is not a regular file
1138  *    - inode is setuid
1139  *    - inode is setgid and group-exec
1140  *    - access failure for read and write
1141  *
1142  * Otherwise returns true.
1143  */
1144 static bool safe_hardlink_source(struct mnt_idmap *idmap,
1145 				 struct inode *inode)
1146 {
1147 	umode_t mode = inode->i_mode;
1148 
1149 	/* Special files should not get pinned to the filesystem. */
1150 	if (!S_ISREG(mode))
1151 		return false;
1152 
1153 	/* Setuid files should not get pinned to the filesystem. */
1154 	if (mode & S_ISUID)
1155 		return false;
1156 
1157 	/* Executable setgid files should not get pinned to the filesystem. */
1158 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1159 		return false;
1160 
1161 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
1162 	if (inode_permission(idmap, inode, MAY_READ | MAY_WRITE))
1163 		return false;
1164 
1165 	return true;
1166 }
1167 
1168 /**
1169  * may_linkat - Check permissions for creating a hardlink
1170  * @idmap: idmap of the mount the inode was found from
1171  * @link:  the source to hardlink from
1172  *
1173  * Block hardlink when all of:
1174  *  - sysctl_protected_hardlinks enabled
1175  *  - fsuid does not match inode
1176  *  - hardlink source is unsafe (see safe_hardlink_source() above)
1177  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
1178  *
1179  * If the inode has been found through an idmapped mount the idmap of
1180  * the vfsmount must be passed through @idmap. This function will then take
1181  * care to map the inode according to @idmap before checking permissions.
1182  * On non-idmapped mounts or if permission checking is to be performed on the
1183  * raw inode simply pass @nop_mnt_idmap.
1184  *
1185  * Returns 0 if successful, -ve on error.
1186  */
1187 int may_linkat(struct mnt_idmap *idmap, const struct path *link)
1188 {
1189 	struct inode *inode = link->dentry->d_inode;
1190 
1191 	/* Inode writeback is not safe when the uid or gid are invalid. */
1192 	if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
1193 	    !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
1194 		return -EOVERFLOW;
1195 
1196 	if (!sysctl_protected_hardlinks)
1197 		return 0;
1198 
1199 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1200 	 * otherwise, it must be a safe source.
1201 	 */
1202 	if (safe_hardlink_source(idmap, inode) ||
1203 	    inode_owner_or_capable(idmap, inode))
1204 		return 0;
1205 
1206 	audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1207 	return -EPERM;
1208 }
1209 
1210 /**
1211  * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1212  *			  should be allowed, or not, on files that already
1213  *			  exist.
1214  * @idmap: idmap of the mount the inode was found from
1215  * @nd: nameidata pathwalk data
1216  * @inode: the inode of the file to open
1217  *
1218  * Block an O_CREAT open of a FIFO (or a regular file) when:
1219  *   - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1220  *   - the file already exists
1221  *   - we are in a sticky directory
1222  *   - we don't own the file
1223  *   - the owner of the directory doesn't own the file
1224  *   - the directory is world writable
1225  * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1226  * the directory doesn't have to be world writable: being group writable will
1227  * be enough.
1228  *
1229  * If the inode has been found through an idmapped mount the idmap of
1230  * the vfsmount must be passed through @idmap. This function will then take
1231  * care to map the inode according to @idmap before checking permissions.
1232  * On non-idmapped mounts or if permission checking is to be performed on the
1233  * raw inode simply pass @nop_mnt_idmap.
1234  *
1235  * Returns 0 if the open is allowed, -ve on error.
1236  */
1237 static int may_create_in_sticky(struct mnt_idmap *idmap,
1238 				struct nameidata *nd, struct inode *const inode)
1239 {
1240 	umode_t dir_mode = nd->dir_mode;
1241 	vfsuid_t dir_vfsuid = nd->dir_vfsuid;
1242 
1243 	if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1244 	    (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1245 	    likely(!(dir_mode & S_ISVTX)) ||
1246 	    vfsuid_eq(i_uid_into_vfsuid(idmap, inode), dir_vfsuid) ||
1247 	    vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), current_fsuid()))
1248 		return 0;
1249 
1250 	if (likely(dir_mode & 0002) ||
1251 	    (dir_mode & 0020 &&
1252 	     ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1253 	      (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1254 		const char *operation = S_ISFIFO(inode->i_mode) ?
1255 					"sticky_create_fifo" :
1256 					"sticky_create_regular";
1257 		audit_log_path_denied(AUDIT_ANOM_CREAT, operation);
1258 		return -EACCES;
1259 	}
1260 	return 0;
1261 }
1262 
1263 /*
1264  * follow_up - Find the mountpoint of path's vfsmount
1265  *
1266  * Given a path, find the mountpoint of its source file system.
1267  * Replace @path with the path of the mountpoint in the parent mount.
1268  * Up is towards /.
1269  *
1270  * Return 1 if we went up a level and 0 if we were already at the
1271  * root.
1272  */
1273 int follow_up(struct path *path)
1274 {
1275 	struct mount *mnt = real_mount(path->mnt);
1276 	struct mount *parent;
1277 	struct dentry *mountpoint;
1278 
1279 	read_seqlock_excl(&mount_lock);
1280 	parent = mnt->mnt_parent;
1281 	if (parent == mnt) {
1282 		read_sequnlock_excl(&mount_lock);
1283 		return 0;
1284 	}
1285 	mntget(&parent->mnt);
1286 	mountpoint = dget(mnt->mnt_mountpoint);
1287 	read_sequnlock_excl(&mount_lock);
1288 	dput(path->dentry);
1289 	path->dentry = mountpoint;
1290 	mntput(path->mnt);
1291 	path->mnt = &parent->mnt;
1292 	return 1;
1293 }
1294 EXPORT_SYMBOL(follow_up);
1295 
1296 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1297 				  struct path *path, unsigned *seqp)
1298 {
1299 	while (mnt_has_parent(m)) {
1300 		struct dentry *mountpoint = m->mnt_mountpoint;
1301 
1302 		m = m->mnt_parent;
1303 		if (unlikely(root->dentry == mountpoint &&
1304 			     root->mnt == &m->mnt))
1305 			break;
1306 		if (mountpoint != m->mnt.mnt_root) {
1307 			path->mnt = &m->mnt;
1308 			path->dentry = mountpoint;
1309 			*seqp = read_seqcount_begin(&mountpoint->d_seq);
1310 			return true;
1311 		}
1312 	}
1313 	return false;
1314 }
1315 
1316 static bool choose_mountpoint(struct mount *m, const struct path *root,
1317 			      struct path *path)
1318 {
1319 	bool found;
1320 
1321 	rcu_read_lock();
1322 	while (1) {
1323 		unsigned seq, mseq = read_seqbegin(&mount_lock);
1324 
1325 		found = choose_mountpoint_rcu(m, root, path, &seq);
1326 		if (unlikely(!found)) {
1327 			if (!read_seqretry(&mount_lock, mseq))
1328 				break;
1329 		} else {
1330 			if (likely(__legitimize_path(path, seq, mseq)))
1331 				break;
1332 			rcu_read_unlock();
1333 			path_put(path);
1334 			rcu_read_lock();
1335 		}
1336 	}
1337 	rcu_read_unlock();
1338 	return found;
1339 }
1340 
1341 /*
1342  * Perform an automount
1343  * - return -EISDIR to tell follow_managed() to stop and return the path we
1344  *   were called with.
1345  */
1346 static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1347 {
1348 	struct dentry *dentry = path->dentry;
1349 
1350 	/* We don't want to mount if someone's just doing a stat -
1351 	 * unless they're stat'ing a directory and appended a '/' to
1352 	 * the name.
1353 	 *
1354 	 * We do, however, want to mount if someone wants to open or
1355 	 * create a file of any type under the mountpoint, wants to
1356 	 * traverse through the mountpoint or wants to open the
1357 	 * mounted directory.  Also, autofs may mark negative dentries
1358 	 * as being automount points.  These will need the attentions
1359 	 * of the daemon to instantiate them before they can be used.
1360 	 */
1361 	if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1362 			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1363 	    dentry->d_inode)
1364 		return -EISDIR;
1365 
1366 	if (count && (*count)++ >= MAXSYMLINKS)
1367 		return -ELOOP;
1368 
1369 	return finish_automount(dentry->d_op->d_automount(path), path);
1370 }
1371 
1372 /*
1373  * mount traversal - out-of-line part.  One note on ->d_flags accesses -
1374  * dentries are pinned but not locked here, so negative dentry can go
1375  * positive right under us.  Use of smp_load_acquire() provides a barrier
1376  * sufficient for ->d_inode and ->d_flags consistency.
1377  */
1378 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1379 			     int *count, unsigned lookup_flags)
1380 {
1381 	struct vfsmount *mnt = path->mnt;
1382 	bool need_mntput = false;
1383 	int ret = 0;
1384 
1385 	while (flags & DCACHE_MANAGED_DENTRY) {
1386 		/* Allow the filesystem to manage the transit without i_mutex
1387 		 * being held. */
1388 		if (flags & DCACHE_MANAGE_TRANSIT) {
1389 			ret = path->dentry->d_op->d_manage(path, false);
1390 			flags = smp_load_acquire(&path->dentry->d_flags);
1391 			if (ret < 0)
1392 				break;
1393 		}
1394 
1395 		if (flags & DCACHE_MOUNTED) {	// something's mounted on it..
1396 			struct vfsmount *mounted = lookup_mnt(path);
1397 			if (mounted) {		// ... in our namespace
1398 				dput(path->dentry);
1399 				if (need_mntput)
1400 					mntput(path->mnt);
1401 				path->mnt = mounted;
1402 				path->dentry = dget(mounted->mnt_root);
1403 				// here we know it's positive
1404 				flags = path->dentry->d_flags;
1405 				need_mntput = true;
1406 				continue;
1407 			}
1408 		}
1409 
1410 		if (!(flags & DCACHE_NEED_AUTOMOUNT))
1411 			break;
1412 
1413 		// uncovered automount point
1414 		ret = follow_automount(path, count, lookup_flags);
1415 		flags = smp_load_acquire(&path->dentry->d_flags);
1416 		if (ret < 0)
1417 			break;
1418 	}
1419 
1420 	if (ret == -EISDIR)
1421 		ret = 0;
1422 	// possible if you race with several mount --move
1423 	if (need_mntput && path->mnt == mnt)
1424 		mntput(path->mnt);
1425 	if (!ret && unlikely(d_flags_negative(flags)))
1426 		ret = -ENOENT;
1427 	*jumped = need_mntput;
1428 	return ret;
1429 }
1430 
1431 static inline int traverse_mounts(struct path *path, bool *jumped,
1432 				  int *count, unsigned lookup_flags)
1433 {
1434 	unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1435 
1436 	/* fastpath */
1437 	if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1438 		*jumped = false;
1439 		if (unlikely(d_flags_negative(flags)))
1440 			return -ENOENT;
1441 		return 0;
1442 	}
1443 	return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1444 }
1445 
1446 int follow_down_one(struct path *path)
1447 {
1448 	struct vfsmount *mounted;
1449 
1450 	mounted = lookup_mnt(path);
1451 	if (mounted) {
1452 		dput(path->dentry);
1453 		mntput(path->mnt);
1454 		path->mnt = mounted;
1455 		path->dentry = dget(mounted->mnt_root);
1456 		return 1;
1457 	}
1458 	return 0;
1459 }
1460 EXPORT_SYMBOL(follow_down_one);
1461 
1462 /*
1463  * Follow down to the covering mount currently visible to userspace.  At each
1464  * point, the filesystem owning that dentry may be queried as to whether the
1465  * caller is permitted to proceed or not.
1466  */
1467 int follow_down(struct path *path, unsigned int flags)
1468 {
1469 	struct vfsmount *mnt = path->mnt;
1470 	bool jumped;
1471 	int ret = traverse_mounts(path, &jumped, NULL, flags);
1472 
1473 	if (path->mnt != mnt)
1474 		mntput(mnt);
1475 	return ret;
1476 }
1477 EXPORT_SYMBOL(follow_down);
1478 
1479 /*
1480  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1481  * we meet a managed dentry that would need blocking.
1482  */
1483 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path)
1484 {
1485 	struct dentry *dentry = path->dentry;
1486 	unsigned int flags = dentry->d_flags;
1487 
1488 	if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1489 		return true;
1490 
1491 	if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1492 		return false;
1493 
1494 	for (;;) {
1495 		/*
1496 		 * Don't forget we might have a non-mountpoint managed dentry
1497 		 * that wants to block transit.
1498 		 */
1499 		if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1500 			int res = dentry->d_op->d_manage(path, true);
1501 			if (res)
1502 				return res == -EISDIR;
1503 			flags = dentry->d_flags;
1504 		}
1505 
1506 		if (flags & DCACHE_MOUNTED) {
1507 			struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1508 			if (mounted) {
1509 				path->mnt = &mounted->mnt;
1510 				dentry = path->dentry = mounted->mnt.mnt_root;
1511 				nd->state |= ND_JUMPED;
1512 				nd->next_seq = read_seqcount_begin(&dentry->d_seq);
1513 				flags = dentry->d_flags;
1514 				// makes sure that non-RCU pathwalk could reach
1515 				// this state.
1516 				if (read_seqretry(&mount_lock, nd->m_seq))
1517 					return false;
1518 				continue;
1519 			}
1520 			if (read_seqretry(&mount_lock, nd->m_seq))
1521 				return false;
1522 		}
1523 		return !(flags & DCACHE_NEED_AUTOMOUNT);
1524 	}
1525 }
1526 
1527 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1528 			  struct path *path)
1529 {
1530 	bool jumped;
1531 	int ret;
1532 
1533 	path->mnt = nd->path.mnt;
1534 	path->dentry = dentry;
1535 	if (nd->flags & LOOKUP_RCU) {
1536 		unsigned int seq = nd->next_seq;
1537 		if (likely(__follow_mount_rcu(nd, path)))
1538 			return 0;
1539 		// *path and nd->next_seq might've been clobbered
1540 		path->mnt = nd->path.mnt;
1541 		path->dentry = dentry;
1542 		nd->next_seq = seq;
1543 		if (!try_to_unlazy_next(nd, dentry))
1544 			return -ECHILD;
1545 	}
1546 	ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1547 	if (jumped) {
1548 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1549 			ret = -EXDEV;
1550 		else
1551 			nd->state |= ND_JUMPED;
1552 	}
1553 	if (unlikely(ret)) {
1554 		dput(path->dentry);
1555 		if (path->mnt != nd->path.mnt)
1556 			mntput(path->mnt);
1557 	}
1558 	return ret;
1559 }
1560 
1561 /*
1562  * This looks up the name in dcache and possibly revalidates the found dentry.
1563  * NULL is returned if the dentry does not exist in the cache.
1564  */
1565 static struct dentry *lookup_dcache(const struct qstr *name,
1566 				    struct dentry *dir,
1567 				    unsigned int flags)
1568 {
1569 	struct dentry *dentry = d_lookup(dir, name);
1570 	if (dentry) {
1571 		int error = d_revalidate(dentry, flags);
1572 		if (unlikely(error <= 0)) {
1573 			if (!error)
1574 				d_invalidate(dentry);
1575 			dput(dentry);
1576 			return ERR_PTR(error);
1577 		}
1578 	}
1579 	return dentry;
1580 }
1581 
1582 /*
1583  * Parent directory has inode locked exclusive.  This is one
1584  * and only case when ->lookup() gets called on non in-lookup
1585  * dentries - as the matter of fact, this only gets called
1586  * when directory is guaranteed to have no in-lookup children
1587  * at all.
1588  */
1589 struct dentry *lookup_one_qstr_excl(const struct qstr *name,
1590 				    struct dentry *base,
1591 				    unsigned int flags)
1592 {
1593 	struct dentry *dentry = lookup_dcache(name, base, flags);
1594 	struct dentry *old;
1595 	struct inode *dir = base->d_inode;
1596 
1597 	if (dentry)
1598 		return dentry;
1599 
1600 	/* Don't create child dentry for a dead directory. */
1601 	if (unlikely(IS_DEADDIR(dir)))
1602 		return ERR_PTR(-ENOENT);
1603 
1604 	dentry = d_alloc(base, name);
1605 	if (unlikely(!dentry))
1606 		return ERR_PTR(-ENOMEM);
1607 
1608 	old = dir->i_op->lookup(dir, dentry, flags);
1609 	if (unlikely(old)) {
1610 		dput(dentry);
1611 		dentry = old;
1612 	}
1613 	return dentry;
1614 }
1615 EXPORT_SYMBOL(lookup_one_qstr_excl);
1616 
1617 static struct dentry *lookup_fast(struct nameidata *nd)
1618 {
1619 	struct dentry *dentry, *parent = nd->path.dentry;
1620 	int status = 1;
1621 
1622 	/*
1623 	 * Rename seqlock is not required here because in the off chance
1624 	 * of a false negative due to a concurrent rename, the caller is
1625 	 * going to fall back to non-racy lookup.
1626 	 */
1627 	if (nd->flags & LOOKUP_RCU) {
1628 		dentry = __d_lookup_rcu(parent, &nd->last, &nd->next_seq);
1629 		if (unlikely(!dentry)) {
1630 			if (!try_to_unlazy(nd))
1631 				return ERR_PTR(-ECHILD);
1632 			return NULL;
1633 		}
1634 
1635 		/*
1636 		 * This sequence count validates that the parent had no
1637 		 * changes while we did the lookup of the dentry above.
1638 		 */
1639 		if (read_seqcount_retry(&parent->d_seq, nd->seq))
1640 			return ERR_PTR(-ECHILD);
1641 
1642 		status = d_revalidate(dentry, nd->flags);
1643 		if (likely(status > 0))
1644 			return dentry;
1645 		if (!try_to_unlazy_next(nd, dentry))
1646 			return ERR_PTR(-ECHILD);
1647 		if (status == -ECHILD)
1648 			/* we'd been told to redo it in non-rcu mode */
1649 			status = d_revalidate(dentry, nd->flags);
1650 	} else {
1651 		dentry = __d_lookup(parent, &nd->last);
1652 		if (unlikely(!dentry))
1653 			return NULL;
1654 		status = d_revalidate(dentry, nd->flags);
1655 	}
1656 	if (unlikely(status <= 0)) {
1657 		if (!status)
1658 			d_invalidate(dentry);
1659 		dput(dentry);
1660 		return ERR_PTR(status);
1661 	}
1662 	return dentry;
1663 }
1664 
1665 /* Fast lookup failed, do it the slow way */
1666 static struct dentry *__lookup_slow(const struct qstr *name,
1667 				    struct dentry *dir,
1668 				    unsigned int flags)
1669 {
1670 	struct dentry *dentry, *old;
1671 	struct inode *inode = dir->d_inode;
1672 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1673 
1674 	/* Don't go there if it's already dead */
1675 	if (unlikely(IS_DEADDIR(inode)))
1676 		return ERR_PTR(-ENOENT);
1677 again:
1678 	dentry = d_alloc_parallel(dir, name, &wq);
1679 	if (IS_ERR(dentry))
1680 		return dentry;
1681 	if (unlikely(!d_in_lookup(dentry))) {
1682 		int error = d_revalidate(dentry, flags);
1683 		if (unlikely(error <= 0)) {
1684 			if (!error) {
1685 				d_invalidate(dentry);
1686 				dput(dentry);
1687 				goto again;
1688 			}
1689 			dput(dentry);
1690 			dentry = ERR_PTR(error);
1691 		}
1692 	} else {
1693 		old = inode->i_op->lookup(inode, dentry, flags);
1694 		d_lookup_done(dentry);
1695 		if (unlikely(old)) {
1696 			dput(dentry);
1697 			dentry = old;
1698 		}
1699 	}
1700 	return dentry;
1701 }
1702 
1703 static struct dentry *lookup_slow(const struct qstr *name,
1704 				  struct dentry *dir,
1705 				  unsigned int flags)
1706 {
1707 	struct inode *inode = dir->d_inode;
1708 	struct dentry *res;
1709 	inode_lock_shared(inode);
1710 	res = __lookup_slow(name, dir, flags);
1711 	inode_unlock_shared(inode);
1712 	return res;
1713 }
1714 
1715 static inline int may_lookup(struct mnt_idmap *idmap,
1716 			     struct nameidata *nd)
1717 {
1718 	if (nd->flags & LOOKUP_RCU) {
1719 		int err = inode_permission(idmap, nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1720 		if (err != -ECHILD || !try_to_unlazy(nd))
1721 			return err;
1722 	}
1723 	return inode_permission(idmap, nd->inode, MAY_EXEC);
1724 }
1725 
1726 static int reserve_stack(struct nameidata *nd, struct path *link)
1727 {
1728 	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1729 		return -ELOOP;
1730 
1731 	if (likely(nd->depth != EMBEDDED_LEVELS))
1732 		return 0;
1733 	if (likely(nd->stack != nd->internal))
1734 		return 0;
1735 	if (likely(nd_alloc_stack(nd)))
1736 		return 0;
1737 
1738 	if (nd->flags & LOOKUP_RCU) {
1739 		// we need to grab link before we do unlazy.  And we can't skip
1740 		// unlazy even if we fail to grab the link - cleanup needs it
1741 		bool grabbed_link = legitimize_path(nd, link, nd->next_seq);
1742 
1743 		if (!try_to_unlazy(nd) || !grabbed_link)
1744 			return -ECHILD;
1745 
1746 		if (nd_alloc_stack(nd))
1747 			return 0;
1748 	}
1749 	return -ENOMEM;
1750 }
1751 
1752 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1753 
1754 static const char *pick_link(struct nameidata *nd, struct path *link,
1755 		     struct inode *inode, int flags)
1756 {
1757 	struct saved *last;
1758 	const char *res;
1759 	int error = reserve_stack(nd, link);
1760 
1761 	if (unlikely(error)) {
1762 		if (!(nd->flags & LOOKUP_RCU))
1763 			path_put(link);
1764 		return ERR_PTR(error);
1765 	}
1766 	last = nd->stack + nd->depth++;
1767 	last->link = *link;
1768 	clear_delayed_call(&last->done);
1769 	last->seq = nd->next_seq;
1770 
1771 	if (flags & WALK_TRAILING) {
1772 		error = may_follow_link(nd, inode);
1773 		if (unlikely(error))
1774 			return ERR_PTR(error);
1775 	}
1776 
1777 	if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1778 			unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1779 		return ERR_PTR(-ELOOP);
1780 
1781 	if (!(nd->flags & LOOKUP_RCU)) {
1782 		touch_atime(&last->link);
1783 		cond_resched();
1784 	} else if (atime_needs_update(&last->link, inode)) {
1785 		if (!try_to_unlazy(nd))
1786 			return ERR_PTR(-ECHILD);
1787 		touch_atime(&last->link);
1788 	}
1789 
1790 	error = security_inode_follow_link(link->dentry, inode,
1791 					   nd->flags & LOOKUP_RCU);
1792 	if (unlikely(error))
1793 		return ERR_PTR(error);
1794 
1795 	res = READ_ONCE(inode->i_link);
1796 	if (!res) {
1797 		const char * (*get)(struct dentry *, struct inode *,
1798 				struct delayed_call *);
1799 		get = inode->i_op->get_link;
1800 		if (nd->flags & LOOKUP_RCU) {
1801 			res = get(NULL, inode, &last->done);
1802 			if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd))
1803 				res = get(link->dentry, inode, &last->done);
1804 		} else {
1805 			res = get(link->dentry, inode, &last->done);
1806 		}
1807 		if (!res)
1808 			goto all_done;
1809 		if (IS_ERR(res))
1810 			return res;
1811 	}
1812 	if (*res == '/') {
1813 		error = nd_jump_root(nd);
1814 		if (unlikely(error))
1815 			return ERR_PTR(error);
1816 		while (unlikely(*++res == '/'))
1817 			;
1818 	}
1819 	if (*res)
1820 		return res;
1821 all_done: // pure jump
1822 	put_link(nd);
1823 	return NULL;
1824 }
1825 
1826 /*
1827  * Do we need to follow links? We _really_ want to be able
1828  * to do this check without having to look at inode->i_op,
1829  * so we keep a cache of "no, this doesn't need follow_link"
1830  * for the common case.
1831  *
1832  * NOTE: dentry must be what nd->next_seq had been sampled from.
1833  */
1834 static const char *step_into(struct nameidata *nd, int flags,
1835 		     struct dentry *dentry)
1836 {
1837 	struct path path;
1838 	struct inode *inode;
1839 	int err = handle_mounts(nd, dentry, &path);
1840 
1841 	if (err < 0)
1842 		return ERR_PTR(err);
1843 	inode = path.dentry->d_inode;
1844 	if (likely(!d_is_symlink(path.dentry)) ||
1845 	   ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1846 	   (flags & WALK_NOFOLLOW)) {
1847 		/* not a symlink or should not follow */
1848 		if (nd->flags & LOOKUP_RCU) {
1849 			if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1850 				return ERR_PTR(-ECHILD);
1851 			if (unlikely(!inode))
1852 				return ERR_PTR(-ENOENT);
1853 		} else {
1854 			dput(nd->path.dentry);
1855 			if (nd->path.mnt != path.mnt)
1856 				mntput(nd->path.mnt);
1857 		}
1858 		nd->path = path;
1859 		nd->inode = inode;
1860 		nd->seq = nd->next_seq;
1861 		return NULL;
1862 	}
1863 	if (nd->flags & LOOKUP_RCU) {
1864 		/* make sure that d_is_symlink above matches inode */
1865 		if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1866 			return ERR_PTR(-ECHILD);
1867 	} else {
1868 		if (path.mnt == nd->path.mnt)
1869 			mntget(path.mnt);
1870 	}
1871 	return pick_link(nd, &path, inode, flags);
1872 }
1873 
1874 static struct dentry *follow_dotdot_rcu(struct nameidata *nd)
1875 {
1876 	struct dentry *parent, *old;
1877 
1878 	if (path_equal(&nd->path, &nd->root))
1879 		goto in_root;
1880 	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1881 		struct path path;
1882 		unsigned seq;
1883 		if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
1884 					   &nd->root, &path, &seq))
1885 			goto in_root;
1886 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1887 			return ERR_PTR(-ECHILD);
1888 		nd->path = path;
1889 		nd->inode = path.dentry->d_inode;
1890 		nd->seq = seq;
1891 		// makes sure that non-RCU pathwalk could reach this state
1892 		if (read_seqretry(&mount_lock, nd->m_seq))
1893 			return ERR_PTR(-ECHILD);
1894 		/* we know that mountpoint was pinned */
1895 	}
1896 	old = nd->path.dentry;
1897 	parent = old->d_parent;
1898 	nd->next_seq = read_seqcount_begin(&parent->d_seq);
1899 	// makes sure that non-RCU pathwalk could reach this state
1900 	if (read_seqcount_retry(&old->d_seq, nd->seq))
1901 		return ERR_PTR(-ECHILD);
1902 	if (unlikely(!path_connected(nd->path.mnt, parent)))
1903 		return ERR_PTR(-ECHILD);
1904 	return parent;
1905 in_root:
1906 	if (read_seqretry(&mount_lock, nd->m_seq))
1907 		return ERR_PTR(-ECHILD);
1908 	if (unlikely(nd->flags & LOOKUP_BENEATH))
1909 		return ERR_PTR(-ECHILD);
1910 	nd->next_seq = nd->seq;
1911 	return nd->path.dentry;
1912 }
1913 
1914 static struct dentry *follow_dotdot(struct nameidata *nd)
1915 {
1916 	struct dentry *parent;
1917 
1918 	if (path_equal(&nd->path, &nd->root))
1919 		goto in_root;
1920 	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1921 		struct path path;
1922 
1923 		if (!choose_mountpoint(real_mount(nd->path.mnt),
1924 				       &nd->root, &path))
1925 			goto in_root;
1926 		path_put(&nd->path);
1927 		nd->path = path;
1928 		nd->inode = path.dentry->d_inode;
1929 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1930 			return ERR_PTR(-EXDEV);
1931 	}
1932 	/* rare case of legitimate dget_parent()... */
1933 	parent = dget_parent(nd->path.dentry);
1934 	if (unlikely(!path_connected(nd->path.mnt, parent))) {
1935 		dput(parent);
1936 		return ERR_PTR(-ENOENT);
1937 	}
1938 	return parent;
1939 
1940 in_root:
1941 	if (unlikely(nd->flags & LOOKUP_BENEATH))
1942 		return ERR_PTR(-EXDEV);
1943 	return dget(nd->path.dentry);
1944 }
1945 
1946 static const char *handle_dots(struct nameidata *nd, int type)
1947 {
1948 	if (type == LAST_DOTDOT) {
1949 		const char *error = NULL;
1950 		struct dentry *parent;
1951 
1952 		if (!nd->root.mnt) {
1953 			error = ERR_PTR(set_root(nd));
1954 			if (error)
1955 				return error;
1956 		}
1957 		if (nd->flags & LOOKUP_RCU)
1958 			parent = follow_dotdot_rcu(nd);
1959 		else
1960 			parent = follow_dotdot(nd);
1961 		if (IS_ERR(parent))
1962 			return ERR_CAST(parent);
1963 		error = step_into(nd, WALK_NOFOLLOW, parent);
1964 		if (unlikely(error))
1965 			return error;
1966 
1967 		if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
1968 			/*
1969 			 * If there was a racing rename or mount along our
1970 			 * path, then we can't be sure that ".." hasn't jumped
1971 			 * above nd->root (and so userspace should retry or use
1972 			 * some fallback).
1973 			 */
1974 			smp_rmb();
1975 			if (__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq))
1976 				return ERR_PTR(-EAGAIN);
1977 			if (__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq))
1978 				return ERR_PTR(-EAGAIN);
1979 		}
1980 	}
1981 	return NULL;
1982 }
1983 
1984 static const char *walk_component(struct nameidata *nd, int flags)
1985 {
1986 	struct dentry *dentry;
1987 	/*
1988 	 * "." and ".." are special - ".." especially so because it has
1989 	 * to be able to know about the current root directory and
1990 	 * parent relationships.
1991 	 */
1992 	if (unlikely(nd->last_type != LAST_NORM)) {
1993 		if (!(flags & WALK_MORE) && nd->depth)
1994 			put_link(nd);
1995 		return handle_dots(nd, nd->last_type);
1996 	}
1997 	dentry = lookup_fast(nd);
1998 	if (IS_ERR(dentry))
1999 		return ERR_CAST(dentry);
2000 	if (unlikely(!dentry)) {
2001 		dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
2002 		if (IS_ERR(dentry))
2003 			return ERR_CAST(dentry);
2004 	}
2005 	if (!(flags & WALK_MORE) && nd->depth)
2006 		put_link(nd);
2007 	return step_into(nd, flags, dentry);
2008 }
2009 
2010 /*
2011  * We can do the critical dentry name comparison and hashing
2012  * operations one word at a time, but we are limited to:
2013  *
2014  * - Architectures with fast unaligned word accesses. We could
2015  *   do a "get_unaligned()" if this helps and is sufficiently
2016  *   fast.
2017  *
2018  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
2019  *   do not trap on the (extremely unlikely) case of a page
2020  *   crossing operation.
2021  *
2022  * - Furthermore, we need an efficient 64-bit compile for the
2023  *   64-bit case in order to generate the "number of bytes in
2024  *   the final mask". Again, that could be replaced with a
2025  *   efficient population count instruction or similar.
2026  */
2027 #ifdef CONFIG_DCACHE_WORD_ACCESS
2028 
2029 #include <asm/word-at-a-time.h>
2030 
2031 #ifdef HASH_MIX
2032 
2033 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
2034 
2035 #elif defined(CONFIG_64BIT)
2036 /*
2037  * Register pressure in the mixing function is an issue, particularly
2038  * on 32-bit x86, but almost any function requires one state value and
2039  * one temporary.  Instead, use a function designed for two state values
2040  * and no temporaries.
2041  *
2042  * This function cannot create a collision in only two iterations, so
2043  * we have two iterations to achieve avalanche.  In those two iterations,
2044  * we have six layers of mixing, which is enough to spread one bit's
2045  * influence out to 2^6 = 64 state bits.
2046  *
2047  * Rotate constants are scored by considering either 64 one-bit input
2048  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
2049  * probability of that delta causing a change to each of the 128 output
2050  * bits, using a sample of random initial states.
2051  *
2052  * The Shannon entropy of the computed probabilities is then summed
2053  * to produce a score.  Ideally, any input change has a 50% chance of
2054  * toggling any given output bit.
2055  *
2056  * Mixing scores (in bits) for (12,45):
2057  * Input delta: 1-bit      2-bit
2058  * 1 round:     713.3    42542.6
2059  * 2 rounds:   2753.7   140389.8
2060  * 3 rounds:   5954.1   233458.2
2061  * 4 rounds:   7862.6   256672.2
2062  * Perfect:    8192     258048
2063  *            (64*128) (64*63/2 * 128)
2064  */
2065 #define HASH_MIX(x, y, a)	\
2066 	(	x ^= (a),	\
2067 	y ^= x,	x = rol64(x,12),\
2068 	x += y,	y = rol64(y,45),\
2069 	y *= 9			)
2070 
2071 /*
2072  * Fold two longs into one 32-bit hash value.  This must be fast, but
2073  * latency isn't quite as critical, as there is a fair bit of additional
2074  * work done before the hash value is used.
2075  */
2076 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2077 {
2078 	y ^= x * GOLDEN_RATIO_64;
2079 	y *= GOLDEN_RATIO_64;
2080 	return y >> 32;
2081 }
2082 
2083 #else	/* 32-bit case */
2084 
2085 /*
2086  * Mixing scores (in bits) for (7,20):
2087  * Input delta: 1-bit      2-bit
2088  * 1 round:     330.3     9201.6
2089  * 2 rounds:   1246.4    25475.4
2090  * 3 rounds:   1907.1    31295.1
2091  * 4 rounds:   2042.3    31718.6
2092  * Perfect:    2048      31744
2093  *            (32*64)   (32*31/2 * 64)
2094  */
2095 #define HASH_MIX(x, y, a)	\
2096 	(	x ^= (a),	\
2097 	y ^= x,	x = rol32(x, 7),\
2098 	x += y,	y = rol32(y,20),\
2099 	y *= 9			)
2100 
2101 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2102 {
2103 	/* Use arch-optimized multiply if one exists */
2104 	return __hash_32(y ^ __hash_32(x));
2105 }
2106 
2107 #endif
2108 
2109 /*
2110  * Return the hash of a string of known length.  This is carfully
2111  * designed to match hash_name(), which is the more critical function.
2112  * In particular, we must end by hashing a final word containing 0..7
2113  * payload bytes, to match the way that hash_name() iterates until it
2114  * finds the delimiter after the name.
2115  */
2116 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2117 {
2118 	unsigned long a, x = 0, y = (unsigned long)salt;
2119 
2120 	for (;;) {
2121 		if (!len)
2122 			goto done;
2123 		a = load_unaligned_zeropad(name);
2124 		if (len < sizeof(unsigned long))
2125 			break;
2126 		HASH_MIX(x, y, a);
2127 		name += sizeof(unsigned long);
2128 		len -= sizeof(unsigned long);
2129 	}
2130 	x ^= a & bytemask_from_count(len);
2131 done:
2132 	return fold_hash(x, y);
2133 }
2134 EXPORT_SYMBOL(full_name_hash);
2135 
2136 /* Return the "hash_len" (hash and length) of a null-terminated string */
2137 u64 hashlen_string(const void *salt, const char *name)
2138 {
2139 	unsigned long a = 0, x = 0, y = (unsigned long)salt;
2140 	unsigned long adata, mask, len;
2141 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2142 
2143 	len = 0;
2144 	goto inside;
2145 
2146 	do {
2147 		HASH_MIX(x, y, a);
2148 		len += sizeof(unsigned long);
2149 inside:
2150 		a = load_unaligned_zeropad(name+len);
2151 	} while (!has_zero(a, &adata, &constants));
2152 
2153 	adata = prep_zero_mask(a, adata, &constants);
2154 	mask = create_zero_mask(adata);
2155 	x ^= a & zero_bytemask(mask);
2156 
2157 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2158 }
2159 EXPORT_SYMBOL(hashlen_string);
2160 
2161 /*
2162  * Calculate the length and hash of the path component, and
2163  * return the "hash_len" as the result.
2164  */
2165 static inline u64 hash_name(const void *salt, const char *name)
2166 {
2167 	unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
2168 	unsigned long adata, bdata, mask, len;
2169 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2170 
2171 	len = 0;
2172 	goto inside;
2173 
2174 	do {
2175 		HASH_MIX(x, y, a);
2176 		len += sizeof(unsigned long);
2177 inside:
2178 		a = load_unaligned_zeropad(name+len);
2179 		b = a ^ REPEAT_BYTE('/');
2180 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2181 
2182 	adata = prep_zero_mask(a, adata, &constants);
2183 	bdata = prep_zero_mask(b, bdata, &constants);
2184 	mask = create_zero_mask(adata | bdata);
2185 	x ^= a & zero_bytemask(mask);
2186 
2187 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2188 }
2189 
2190 #else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2191 
2192 /* Return the hash of a string of known length */
2193 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2194 {
2195 	unsigned long hash = init_name_hash(salt);
2196 	while (len--)
2197 		hash = partial_name_hash((unsigned char)*name++, hash);
2198 	return end_name_hash(hash);
2199 }
2200 EXPORT_SYMBOL(full_name_hash);
2201 
2202 /* Return the "hash_len" (hash and length) of a null-terminated string */
2203 u64 hashlen_string(const void *salt, const char *name)
2204 {
2205 	unsigned long hash = init_name_hash(salt);
2206 	unsigned long len = 0, c;
2207 
2208 	c = (unsigned char)*name;
2209 	while (c) {
2210 		len++;
2211 		hash = partial_name_hash(c, hash);
2212 		c = (unsigned char)name[len];
2213 	}
2214 	return hashlen_create(end_name_hash(hash), len);
2215 }
2216 EXPORT_SYMBOL(hashlen_string);
2217 
2218 /*
2219  * We know there's a real path component here of at least
2220  * one character.
2221  */
2222 static inline u64 hash_name(const void *salt, const char *name)
2223 {
2224 	unsigned long hash = init_name_hash(salt);
2225 	unsigned long len = 0, c;
2226 
2227 	c = (unsigned char)*name;
2228 	do {
2229 		len++;
2230 		hash = partial_name_hash(c, hash);
2231 		c = (unsigned char)name[len];
2232 	} while (c && c != '/');
2233 	return hashlen_create(end_name_hash(hash), len);
2234 }
2235 
2236 #endif
2237 
2238 /*
2239  * Name resolution.
2240  * This is the basic name resolution function, turning a pathname into
2241  * the final dentry. We expect 'base' to be positive and a directory.
2242  *
2243  * Returns 0 and nd will have valid dentry and mnt on success.
2244  * Returns error and drops reference to input namei data on failure.
2245  */
2246 static int link_path_walk(const char *name, struct nameidata *nd)
2247 {
2248 	int depth = 0; // depth <= nd->depth
2249 	int err;
2250 
2251 	nd->last_type = LAST_ROOT;
2252 	nd->flags |= LOOKUP_PARENT;
2253 	if (IS_ERR(name))
2254 		return PTR_ERR(name);
2255 	while (*name=='/')
2256 		name++;
2257 	if (!*name) {
2258 		nd->dir_mode = 0; // short-circuit the 'hardening' idiocy
2259 		return 0;
2260 	}
2261 
2262 	/* At this point we know we have a real path component. */
2263 	for(;;) {
2264 		struct mnt_idmap *idmap;
2265 		const char *link;
2266 		u64 hash_len;
2267 		int type;
2268 
2269 		idmap = mnt_idmap(nd->path.mnt);
2270 		err = may_lookup(idmap, nd);
2271 		if (err)
2272 			return err;
2273 
2274 		hash_len = hash_name(nd->path.dentry, name);
2275 
2276 		type = LAST_NORM;
2277 		if (name[0] == '.') switch (hashlen_len(hash_len)) {
2278 			case 2:
2279 				if (name[1] == '.') {
2280 					type = LAST_DOTDOT;
2281 					nd->state |= ND_JUMPED;
2282 				}
2283 				break;
2284 			case 1:
2285 				type = LAST_DOT;
2286 		}
2287 		if (likely(type == LAST_NORM)) {
2288 			struct dentry *parent = nd->path.dentry;
2289 			nd->state &= ~ND_JUMPED;
2290 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2291 				struct qstr this = { { .hash_len = hash_len }, .name = name };
2292 				err = parent->d_op->d_hash(parent, &this);
2293 				if (err < 0)
2294 					return err;
2295 				hash_len = this.hash_len;
2296 				name = this.name;
2297 			}
2298 		}
2299 
2300 		nd->last.hash_len = hash_len;
2301 		nd->last.name = name;
2302 		nd->last_type = type;
2303 
2304 		name += hashlen_len(hash_len);
2305 		if (!*name)
2306 			goto OK;
2307 		/*
2308 		 * If it wasn't NUL, we know it was '/'. Skip that
2309 		 * slash, and continue until no more slashes.
2310 		 */
2311 		do {
2312 			name++;
2313 		} while (unlikely(*name == '/'));
2314 		if (unlikely(!*name)) {
2315 OK:
2316 			/* pathname or trailing symlink, done */
2317 			if (!depth) {
2318 				nd->dir_vfsuid = i_uid_into_vfsuid(idmap, nd->inode);
2319 				nd->dir_mode = nd->inode->i_mode;
2320 				nd->flags &= ~LOOKUP_PARENT;
2321 				return 0;
2322 			}
2323 			/* last component of nested symlink */
2324 			name = nd->stack[--depth].name;
2325 			link = walk_component(nd, 0);
2326 		} else {
2327 			/* not the last component */
2328 			link = walk_component(nd, WALK_MORE);
2329 		}
2330 		if (unlikely(link)) {
2331 			if (IS_ERR(link))
2332 				return PTR_ERR(link);
2333 			/* a symlink to follow */
2334 			nd->stack[depth++].name = name;
2335 			name = link;
2336 			continue;
2337 		}
2338 		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2339 			if (nd->flags & LOOKUP_RCU) {
2340 				if (!try_to_unlazy(nd))
2341 					return -ECHILD;
2342 			}
2343 			return -ENOTDIR;
2344 		}
2345 	}
2346 }
2347 
2348 /* must be paired with terminate_walk() */
2349 static const char *path_init(struct nameidata *nd, unsigned flags)
2350 {
2351 	int error;
2352 	const char *s = nd->name->name;
2353 
2354 	/* LOOKUP_CACHED requires RCU, ask caller to retry */
2355 	if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED)
2356 		return ERR_PTR(-EAGAIN);
2357 
2358 	if (!*s)
2359 		flags &= ~LOOKUP_RCU;
2360 	if (flags & LOOKUP_RCU)
2361 		rcu_read_lock();
2362 	else
2363 		nd->seq = nd->next_seq = 0;
2364 
2365 	nd->flags = flags;
2366 	nd->state |= ND_JUMPED;
2367 
2368 	nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2369 	nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2370 	smp_rmb();
2371 
2372 	if (nd->state & ND_ROOT_PRESET) {
2373 		struct dentry *root = nd->root.dentry;
2374 		struct inode *inode = root->d_inode;
2375 		if (*s && unlikely(!d_can_lookup(root)))
2376 			return ERR_PTR(-ENOTDIR);
2377 		nd->path = nd->root;
2378 		nd->inode = inode;
2379 		if (flags & LOOKUP_RCU) {
2380 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2381 			nd->root_seq = nd->seq;
2382 		} else {
2383 			path_get(&nd->path);
2384 		}
2385 		return s;
2386 	}
2387 
2388 	nd->root.mnt = NULL;
2389 
2390 	/* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2391 	if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2392 		error = nd_jump_root(nd);
2393 		if (unlikely(error))
2394 			return ERR_PTR(error);
2395 		return s;
2396 	}
2397 
2398 	/* Relative pathname -- get the starting-point it is relative to. */
2399 	if (nd->dfd == AT_FDCWD) {
2400 		if (flags & LOOKUP_RCU) {
2401 			struct fs_struct *fs = current->fs;
2402 			unsigned seq;
2403 
2404 			do {
2405 				seq = read_seqcount_begin(&fs->seq);
2406 				nd->path = fs->pwd;
2407 				nd->inode = nd->path.dentry->d_inode;
2408 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2409 			} while (read_seqcount_retry(&fs->seq, seq));
2410 		} else {
2411 			get_fs_pwd(current->fs, &nd->path);
2412 			nd->inode = nd->path.dentry->d_inode;
2413 		}
2414 	} else {
2415 		/* Caller must check execute permissions on the starting path component */
2416 		struct fd f = fdget_raw(nd->dfd);
2417 		struct dentry *dentry;
2418 
2419 		if (!f.file)
2420 			return ERR_PTR(-EBADF);
2421 
2422 		dentry = f.file->f_path.dentry;
2423 
2424 		if (*s && unlikely(!d_can_lookup(dentry))) {
2425 			fdput(f);
2426 			return ERR_PTR(-ENOTDIR);
2427 		}
2428 
2429 		nd->path = f.file->f_path;
2430 		if (flags & LOOKUP_RCU) {
2431 			nd->inode = nd->path.dentry->d_inode;
2432 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2433 		} else {
2434 			path_get(&nd->path);
2435 			nd->inode = nd->path.dentry->d_inode;
2436 		}
2437 		fdput(f);
2438 	}
2439 
2440 	/* For scoped-lookups we need to set the root to the dirfd as well. */
2441 	if (flags & LOOKUP_IS_SCOPED) {
2442 		nd->root = nd->path;
2443 		if (flags & LOOKUP_RCU) {
2444 			nd->root_seq = nd->seq;
2445 		} else {
2446 			path_get(&nd->root);
2447 			nd->state |= ND_ROOT_GRABBED;
2448 		}
2449 	}
2450 	return s;
2451 }
2452 
2453 static inline const char *lookup_last(struct nameidata *nd)
2454 {
2455 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2456 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2457 
2458 	return walk_component(nd, WALK_TRAILING);
2459 }
2460 
2461 static int handle_lookup_down(struct nameidata *nd)
2462 {
2463 	if (!(nd->flags & LOOKUP_RCU))
2464 		dget(nd->path.dentry);
2465 	nd->next_seq = nd->seq;
2466 	return PTR_ERR(step_into(nd, WALK_NOFOLLOW, nd->path.dentry));
2467 }
2468 
2469 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */
2470 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2471 {
2472 	const char *s = path_init(nd, flags);
2473 	int err;
2474 
2475 	if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2476 		err = handle_lookup_down(nd);
2477 		if (unlikely(err < 0))
2478 			s = ERR_PTR(err);
2479 	}
2480 
2481 	while (!(err = link_path_walk(s, nd)) &&
2482 	       (s = lookup_last(nd)) != NULL)
2483 		;
2484 	if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2485 		err = handle_lookup_down(nd);
2486 		nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please...
2487 	}
2488 	if (!err)
2489 		err = complete_walk(nd);
2490 
2491 	if (!err && nd->flags & LOOKUP_DIRECTORY)
2492 		if (!d_can_lookup(nd->path.dentry))
2493 			err = -ENOTDIR;
2494 	if (!err) {
2495 		*path = nd->path;
2496 		nd->path.mnt = NULL;
2497 		nd->path.dentry = NULL;
2498 	}
2499 	terminate_walk(nd);
2500 	return err;
2501 }
2502 
2503 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2504 		    struct path *path, struct path *root)
2505 {
2506 	int retval;
2507 	struct nameidata nd;
2508 	if (IS_ERR(name))
2509 		return PTR_ERR(name);
2510 	set_nameidata(&nd, dfd, name, root);
2511 	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2512 	if (unlikely(retval == -ECHILD))
2513 		retval = path_lookupat(&nd, flags, path);
2514 	if (unlikely(retval == -ESTALE))
2515 		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2516 
2517 	if (likely(!retval))
2518 		audit_inode(name, path->dentry,
2519 			    flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2520 	restore_nameidata();
2521 	return retval;
2522 }
2523 
2524 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */
2525 static int path_parentat(struct nameidata *nd, unsigned flags,
2526 				struct path *parent)
2527 {
2528 	const char *s = path_init(nd, flags);
2529 	int err = link_path_walk(s, nd);
2530 	if (!err)
2531 		err = complete_walk(nd);
2532 	if (!err) {
2533 		*parent = nd->path;
2534 		nd->path.mnt = NULL;
2535 		nd->path.dentry = NULL;
2536 	}
2537 	terminate_walk(nd);
2538 	return err;
2539 }
2540 
2541 /* Note: this does not consume "name" */
2542 static int __filename_parentat(int dfd, struct filename *name,
2543 			       unsigned int flags, struct path *parent,
2544 			       struct qstr *last, int *type,
2545 			       const struct path *root)
2546 {
2547 	int retval;
2548 	struct nameidata nd;
2549 
2550 	if (IS_ERR(name))
2551 		return PTR_ERR(name);
2552 	set_nameidata(&nd, dfd, name, root);
2553 	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2554 	if (unlikely(retval == -ECHILD))
2555 		retval = path_parentat(&nd, flags, parent);
2556 	if (unlikely(retval == -ESTALE))
2557 		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2558 	if (likely(!retval)) {
2559 		*last = nd.last;
2560 		*type = nd.last_type;
2561 		audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2562 	}
2563 	restore_nameidata();
2564 	return retval;
2565 }
2566 
2567 static int filename_parentat(int dfd, struct filename *name,
2568 			     unsigned int flags, struct path *parent,
2569 			     struct qstr *last, int *type)
2570 {
2571 	return __filename_parentat(dfd, name, flags, parent, last, type, NULL);
2572 }
2573 
2574 /* does lookup, returns the object with parent locked */
2575 static struct dentry *__kern_path_locked(int dfd, struct filename *name, struct path *path)
2576 {
2577 	struct dentry *d;
2578 	struct qstr last;
2579 	int type, error;
2580 
2581 	error = filename_parentat(dfd, name, 0, path, &last, &type);
2582 	if (error)
2583 		return ERR_PTR(error);
2584 	if (unlikely(type != LAST_NORM)) {
2585 		path_put(path);
2586 		return ERR_PTR(-EINVAL);
2587 	}
2588 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2589 	d = lookup_one_qstr_excl(&last, path->dentry, 0);
2590 	if (IS_ERR(d)) {
2591 		inode_unlock(path->dentry->d_inode);
2592 		path_put(path);
2593 	}
2594 	return d;
2595 }
2596 
2597 struct dentry *kern_path_locked(const char *name, struct path *path)
2598 {
2599 	struct filename *filename = getname_kernel(name);
2600 	struct dentry *res = __kern_path_locked(AT_FDCWD, filename, path);
2601 
2602 	putname(filename);
2603 	return res;
2604 }
2605 
2606 struct dentry *user_path_locked_at(int dfd, const char __user *name, struct path *path)
2607 {
2608 	struct filename *filename = getname(name);
2609 	struct dentry *res = __kern_path_locked(dfd, filename, path);
2610 
2611 	putname(filename);
2612 	return res;
2613 }
2614 EXPORT_SYMBOL(user_path_locked_at);
2615 
2616 int kern_path(const char *name, unsigned int flags, struct path *path)
2617 {
2618 	struct filename *filename = getname_kernel(name);
2619 	int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL);
2620 
2621 	putname(filename);
2622 	return ret;
2623 
2624 }
2625 EXPORT_SYMBOL(kern_path);
2626 
2627 /**
2628  * vfs_path_parent_lookup - lookup a parent path relative to a dentry-vfsmount pair
2629  * @filename: filename structure
2630  * @flags: lookup flags
2631  * @parent: pointer to struct path to fill
2632  * @last: last component
2633  * @type: type of the last component
2634  * @root: pointer to struct path of the base directory
2635  */
2636 int vfs_path_parent_lookup(struct filename *filename, unsigned int flags,
2637 			   struct path *parent, struct qstr *last, int *type,
2638 			   const struct path *root)
2639 {
2640 	return  __filename_parentat(AT_FDCWD, filename, flags, parent, last,
2641 				    type, root);
2642 }
2643 EXPORT_SYMBOL(vfs_path_parent_lookup);
2644 
2645 /**
2646  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2647  * @dentry:  pointer to dentry of the base directory
2648  * @mnt: pointer to vfs mount of the base directory
2649  * @name: pointer to file name
2650  * @flags: lookup flags
2651  * @path: pointer to struct path to fill
2652  */
2653 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2654 		    const char *name, unsigned int flags,
2655 		    struct path *path)
2656 {
2657 	struct filename *filename;
2658 	struct path root = {.mnt = mnt, .dentry = dentry};
2659 	int ret;
2660 
2661 	filename = getname_kernel(name);
2662 	/* the first argument of filename_lookup() is ignored with root */
2663 	ret = filename_lookup(AT_FDCWD, filename, flags, path, &root);
2664 	putname(filename);
2665 	return ret;
2666 }
2667 EXPORT_SYMBOL(vfs_path_lookup);
2668 
2669 static int lookup_one_common(struct mnt_idmap *idmap,
2670 			     const char *name, struct dentry *base, int len,
2671 			     struct qstr *this)
2672 {
2673 	this->name = name;
2674 	this->len = len;
2675 	this->hash = full_name_hash(base, name, len);
2676 	if (!len)
2677 		return -EACCES;
2678 
2679 	if (unlikely(name[0] == '.')) {
2680 		if (len < 2 || (len == 2 && name[1] == '.'))
2681 			return -EACCES;
2682 	}
2683 
2684 	while (len--) {
2685 		unsigned int c = *(const unsigned char *)name++;
2686 		if (c == '/' || c == '\0')
2687 			return -EACCES;
2688 	}
2689 	/*
2690 	 * See if the low-level filesystem might want
2691 	 * to use its own hash..
2692 	 */
2693 	if (base->d_flags & DCACHE_OP_HASH) {
2694 		int err = base->d_op->d_hash(base, this);
2695 		if (err < 0)
2696 			return err;
2697 	}
2698 
2699 	return inode_permission(idmap, base->d_inode, MAY_EXEC);
2700 }
2701 
2702 /**
2703  * try_lookup_one_len - filesystem helper to lookup single pathname component
2704  * @name:	pathname component to lookup
2705  * @base:	base directory to lookup from
2706  * @len:	maximum length @len should be interpreted to
2707  *
2708  * Look up a dentry by name in the dcache, returning NULL if it does not
2709  * currently exist.  The function does not try to create a dentry.
2710  *
2711  * Note that this routine is purely a helper for filesystem usage and should
2712  * not be called by generic code.
2713  *
2714  * The caller must hold base->i_mutex.
2715  */
2716 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2717 {
2718 	struct qstr this;
2719 	int err;
2720 
2721 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2722 
2723 	err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this);
2724 	if (err)
2725 		return ERR_PTR(err);
2726 
2727 	return lookup_dcache(&this, base, 0);
2728 }
2729 EXPORT_SYMBOL(try_lookup_one_len);
2730 
2731 /**
2732  * lookup_one_len - filesystem helper to lookup single pathname component
2733  * @name:	pathname component to lookup
2734  * @base:	base directory to lookup from
2735  * @len:	maximum length @len should be interpreted to
2736  *
2737  * Note that this routine is purely a helper for filesystem usage and should
2738  * not be called by generic code.
2739  *
2740  * The caller must hold base->i_mutex.
2741  */
2742 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2743 {
2744 	struct dentry *dentry;
2745 	struct qstr this;
2746 	int err;
2747 
2748 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2749 
2750 	err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this);
2751 	if (err)
2752 		return ERR_PTR(err);
2753 
2754 	dentry = lookup_dcache(&this, base, 0);
2755 	return dentry ? dentry : __lookup_slow(&this, base, 0);
2756 }
2757 EXPORT_SYMBOL(lookup_one_len);
2758 
2759 /**
2760  * lookup_one - filesystem helper to lookup single pathname component
2761  * @idmap:	idmap of the mount the lookup is performed from
2762  * @name:	pathname component to lookup
2763  * @base:	base directory to lookup from
2764  * @len:	maximum length @len should be interpreted to
2765  *
2766  * Note that this routine is purely a helper for filesystem usage and should
2767  * not be called by generic code.
2768  *
2769  * The caller must hold base->i_mutex.
2770  */
2771 struct dentry *lookup_one(struct mnt_idmap *idmap, const char *name,
2772 			  struct dentry *base, int len)
2773 {
2774 	struct dentry *dentry;
2775 	struct qstr this;
2776 	int err;
2777 
2778 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2779 
2780 	err = lookup_one_common(idmap, name, base, len, &this);
2781 	if (err)
2782 		return ERR_PTR(err);
2783 
2784 	dentry = lookup_dcache(&this, base, 0);
2785 	return dentry ? dentry : __lookup_slow(&this, base, 0);
2786 }
2787 EXPORT_SYMBOL(lookup_one);
2788 
2789 /**
2790  * lookup_one_unlocked - filesystem helper to lookup single pathname component
2791  * @idmap:	idmap of the mount the lookup is performed from
2792  * @name:	pathname component to lookup
2793  * @base:	base directory to lookup from
2794  * @len:	maximum length @len should be interpreted to
2795  *
2796  * Note that this routine is purely a helper for filesystem usage and should
2797  * not be called by generic code.
2798  *
2799  * Unlike lookup_one_len, it should be called without the parent
2800  * i_mutex held, and will take the i_mutex itself if necessary.
2801  */
2802 struct dentry *lookup_one_unlocked(struct mnt_idmap *idmap,
2803 				   const char *name, struct dentry *base,
2804 				   int len)
2805 {
2806 	struct qstr this;
2807 	int err;
2808 	struct dentry *ret;
2809 
2810 	err = lookup_one_common(idmap, name, base, len, &this);
2811 	if (err)
2812 		return ERR_PTR(err);
2813 
2814 	ret = lookup_dcache(&this, base, 0);
2815 	if (!ret)
2816 		ret = lookup_slow(&this, base, 0);
2817 	return ret;
2818 }
2819 EXPORT_SYMBOL(lookup_one_unlocked);
2820 
2821 /**
2822  * lookup_one_positive_unlocked - filesystem helper to lookup single
2823  *				  pathname component
2824  * @idmap:	idmap of the mount the lookup is performed from
2825  * @name:	pathname component to lookup
2826  * @base:	base directory to lookup from
2827  * @len:	maximum length @len should be interpreted to
2828  *
2829  * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns
2830  * known positive or ERR_PTR(). This is what most of the users want.
2831  *
2832  * Note that pinned negative with unlocked parent _can_ become positive at any
2833  * time, so callers of lookup_one_unlocked() need to be very careful; pinned
2834  * positives have >d_inode stable, so this one avoids such problems.
2835  *
2836  * Note that this routine is purely a helper for filesystem usage and should
2837  * not be called by generic code.
2838  *
2839  * The helper should be called without i_mutex held.
2840  */
2841 struct dentry *lookup_one_positive_unlocked(struct mnt_idmap *idmap,
2842 					    const char *name,
2843 					    struct dentry *base, int len)
2844 {
2845 	struct dentry *ret = lookup_one_unlocked(idmap, name, base, len);
2846 
2847 	if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
2848 		dput(ret);
2849 		ret = ERR_PTR(-ENOENT);
2850 	}
2851 	return ret;
2852 }
2853 EXPORT_SYMBOL(lookup_one_positive_unlocked);
2854 
2855 /**
2856  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2857  * @name:	pathname component to lookup
2858  * @base:	base directory to lookup from
2859  * @len:	maximum length @len should be interpreted to
2860  *
2861  * Note that this routine is purely a helper for filesystem usage and should
2862  * not be called by generic code.
2863  *
2864  * Unlike lookup_one_len, it should be called without the parent
2865  * i_mutex held, and will take the i_mutex itself if necessary.
2866  */
2867 struct dentry *lookup_one_len_unlocked(const char *name,
2868 				       struct dentry *base, int len)
2869 {
2870 	return lookup_one_unlocked(&nop_mnt_idmap, name, base, len);
2871 }
2872 EXPORT_SYMBOL(lookup_one_len_unlocked);
2873 
2874 /*
2875  * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2876  * on negatives.  Returns known positive or ERR_PTR(); that's what
2877  * most of the users want.  Note that pinned negative with unlocked parent
2878  * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2879  * need to be very careful; pinned positives have ->d_inode stable, so
2880  * this one avoids such problems.
2881  */
2882 struct dentry *lookup_positive_unlocked(const char *name,
2883 				       struct dentry *base, int len)
2884 {
2885 	return lookup_one_positive_unlocked(&nop_mnt_idmap, name, base, len);
2886 }
2887 EXPORT_SYMBOL(lookup_positive_unlocked);
2888 
2889 #ifdef CONFIG_UNIX98_PTYS
2890 int path_pts(struct path *path)
2891 {
2892 	/* Find something mounted on "pts" in the same directory as
2893 	 * the input path.
2894 	 */
2895 	struct dentry *parent = dget_parent(path->dentry);
2896 	struct dentry *child;
2897 	struct qstr this = QSTR_INIT("pts", 3);
2898 
2899 	if (unlikely(!path_connected(path->mnt, parent))) {
2900 		dput(parent);
2901 		return -ENOENT;
2902 	}
2903 	dput(path->dentry);
2904 	path->dentry = parent;
2905 	child = d_hash_and_lookup(parent, &this);
2906 	if (IS_ERR_OR_NULL(child))
2907 		return -ENOENT;
2908 
2909 	path->dentry = child;
2910 	dput(parent);
2911 	follow_down(path, 0);
2912 	return 0;
2913 }
2914 #endif
2915 
2916 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2917 		 struct path *path, int *empty)
2918 {
2919 	struct filename *filename = getname_flags(name, flags, empty);
2920 	int ret = filename_lookup(dfd, filename, flags, path, NULL);
2921 
2922 	putname(filename);
2923 	return ret;
2924 }
2925 EXPORT_SYMBOL(user_path_at_empty);
2926 
2927 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir,
2928 		   struct inode *inode)
2929 {
2930 	kuid_t fsuid = current_fsuid();
2931 
2932 	if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), fsuid))
2933 		return 0;
2934 	if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, dir), fsuid))
2935 		return 0;
2936 	return !capable_wrt_inode_uidgid(idmap, inode, CAP_FOWNER);
2937 }
2938 EXPORT_SYMBOL(__check_sticky);
2939 
2940 /*
2941  *	Check whether we can remove a link victim from directory dir, check
2942  *  whether the type of victim is right.
2943  *  1. We can't do it if dir is read-only (done in permission())
2944  *  2. We should have write and exec permissions on dir
2945  *  3. We can't remove anything from append-only dir
2946  *  4. We can't do anything with immutable dir (done in permission())
2947  *  5. If the sticky bit on dir is set we should either
2948  *	a. be owner of dir, or
2949  *	b. be owner of victim, or
2950  *	c. have CAP_FOWNER capability
2951  *  6. If the victim is append-only or immutable we can't do antyhing with
2952  *     links pointing to it.
2953  *  7. If the victim has an unknown uid or gid we can't change the inode.
2954  *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2955  *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2956  * 10. We can't remove a root or mountpoint.
2957  * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2958  *     nfs_async_unlink().
2959  */
2960 static int may_delete(struct mnt_idmap *idmap, struct inode *dir,
2961 		      struct dentry *victim, bool isdir)
2962 {
2963 	struct inode *inode = d_backing_inode(victim);
2964 	int error;
2965 
2966 	if (d_is_negative(victim))
2967 		return -ENOENT;
2968 	BUG_ON(!inode);
2969 
2970 	BUG_ON(victim->d_parent->d_inode != dir);
2971 
2972 	/* Inode writeback is not safe when the uid or gid are invalid. */
2973 	if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
2974 	    !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
2975 		return -EOVERFLOW;
2976 
2977 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2978 
2979 	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
2980 	if (error)
2981 		return error;
2982 	if (IS_APPEND(dir))
2983 		return -EPERM;
2984 
2985 	if (check_sticky(idmap, dir, inode) || IS_APPEND(inode) ||
2986 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) ||
2987 	    HAS_UNMAPPED_ID(idmap, inode))
2988 		return -EPERM;
2989 	if (isdir) {
2990 		if (!d_is_dir(victim))
2991 			return -ENOTDIR;
2992 		if (IS_ROOT(victim))
2993 			return -EBUSY;
2994 	} else if (d_is_dir(victim))
2995 		return -EISDIR;
2996 	if (IS_DEADDIR(dir))
2997 		return -ENOENT;
2998 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2999 		return -EBUSY;
3000 	return 0;
3001 }
3002 
3003 /*	Check whether we can create an object with dentry child in directory
3004  *  dir.
3005  *  1. We can't do it if child already exists (open has special treatment for
3006  *     this case, but since we are inlined it's OK)
3007  *  2. We can't do it if dir is read-only (done in permission())
3008  *  3. We can't do it if the fs can't represent the fsuid or fsgid.
3009  *  4. We should have write and exec permissions on dir
3010  *  5. We can't do it if dir is immutable (done in permission())
3011  */
3012 static inline int may_create(struct mnt_idmap *idmap,
3013 			     struct inode *dir, struct dentry *child)
3014 {
3015 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
3016 	if (child->d_inode)
3017 		return -EEXIST;
3018 	if (IS_DEADDIR(dir))
3019 		return -ENOENT;
3020 	if (!fsuidgid_has_mapping(dir->i_sb, idmap))
3021 		return -EOVERFLOW;
3022 
3023 	return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3024 }
3025 
3026 // p1 != p2, both are on the same filesystem, ->s_vfs_rename_mutex is held
3027 static struct dentry *lock_two_directories(struct dentry *p1, struct dentry *p2)
3028 {
3029 	struct dentry *p = p1, *q = p2, *r;
3030 
3031 	while ((r = p->d_parent) != p2 && r != p)
3032 		p = r;
3033 	if (r == p2) {
3034 		// p is a child of p2 and an ancestor of p1 or p1 itself
3035 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3036 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT2);
3037 		return p;
3038 	}
3039 	// p is the root of connected component that contains p1
3040 	// p2 does not occur on the path from p to p1
3041 	while ((r = q->d_parent) != p1 && r != p && r != q)
3042 		q = r;
3043 	if (r == p1) {
3044 		// q is a child of p1 and an ancestor of p2 or p2 itself
3045 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3046 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3047 		return q;
3048 	} else if (likely(r == p)) {
3049 		// both p2 and p1 are descendents of p
3050 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3051 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3052 		return NULL;
3053 	} else { // no common ancestor at the time we'd been called
3054 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3055 		return ERR_PTR(-EXDEV);
3056 	}
3057 }
3058 
3059 /*
3060  * p1 and p2 should be directories on the same fs.
3061  */
3062 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
3063 {
3064 	if (p1 == p2) {
3065 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3066 		return NULL;
3067 	}
3068 
3069 	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
3070 	return lock_two_directories(p1, p2);
3071 }
3072 EXPORT_SYMBOL(lock_rename);
3073 
3074 /*
3075  * c1 and p2 should be on the same fs.
3076  */
3077 struct dentry *lock_rename_child(struct dentry *c1, struct dentry *p2)
3078 {
3079 	if (READ_ONCE(c1->d_parent) == p2) {
3080 		/*
3081 		 * hopefully won't need to touch ->s_vfs_rename_mutex at all.
3082 		 */
3083 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3084 		/*
3085 		 * now that p2 is locked, nobody can move in or out of it,
3086 		 * so the test below is safe.
3087 		 */
3088 		if (likely(c1->d_parent == p2))
3089 			return NULL;
3090 
3091 		/*
3092 		 * c1 got moved out of p2 while we'd been taking locks;
3093 		 * unlock and fall back to slow case.
3094 		 */
3095 		inode_unlock(p2->d_inode);
3096 	}
3097 
3098 	mutex_lock(&c1->d_sb->s_vfs_rename_mutex);
3099 	/*
3100 	 * nobody can move out of any directories on this fs.
3101 	 */
3102 	if (likely(c1->d_parent != p2))
3103 		return lock_two_directories(c1->d_parent, p2);
3104 
3105 	/*
3106 	 * c1 got moved into p2 while we were taking locks;
3107 	 * we need p2 locked and ->s_vfs_rename_mutex unlocked,
3108 	 * for consistency with lock_rename().
3109 	 */
3110 	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3111 	mutex_unlock(&c1->d_sb->s_vfs_rename_mutex);
3112 	return NULL;
3113 }
3114 EXPORT_SYMBOL(lock_rename_child);
3115 
3116 void unlock_rename(struct dentry *p1, struct dentry *p2)
3117 {
3118 	inode_unlock(p1->d_inode);
3119 	if (p1 != p2) {
3120 		inode_unlock(p2->d_inode);
3121 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3122 	}
3123 }
3124 EXPORT_SYMBOL(unlock_rename);
3125 
3126 /**
3127  * vfs_prepare_mode - prepare the mode to be used for a new inode
3128  * @idmap:	idmap of the mount the inode was found from
3129  * @dir:	parent directory of the new inode
3130  * @mode:	mode of the new inode
3131  * @mask_perms:	allowed permission by the vfs
3132  * @type:	type of file to be created
3133  *
3134  * This helper consolidates and enforces vfs restrictions on the @mode of a new
3135  * object to be created.
3136  *
3137  * Umask stripping depends on whether the filesystem supports POSIX ACLs (see
3138  * the kernel documentation for mode_strip_umask()). Moving umask stripping
3139  * after setgid stripping allows the same ordering for both non-POSIX ACL and
3140  * POSIX ACL supporting filesystems.
3141  *
3142  * Note that it's currently valid for @type to be 0 if a directory is created.
3143  * Filesystems raise that flag individually and we need to check whether each
3144  * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a
3145  * non-zero type.
3146  *
3147  * Returns: mode to be passed to the filesystem
3148  */
3149 static inline umode_t vfs_prepare_mode(struct mnt_idmap *idmap,
3150 				       const struct inode *dir, umode_t mode,
3151 				       umode_t mask_perms, umode_t type)
3152 {
3153 	mode = mode_strip_sgid(idmap, dir, mode);
3154 	mode = mode_strip_umask(dir, mode);
3155 
3156 	/*
3157 	 * Apply the vfs mandated allowed permission mask and set the type of
3158 	 * file to be created before we call into the filesystem.
3159 	 */
3160 	mode &= (mask_perms & ~S_IFMT);
3161 	mode |= (type & S_IFMT);
3162 
3163 	return mode;
3164 }
3165 
3166 /**
3167  * vfs_create - create new file
3168  * @idmap:	idmap of the mount the inode was found from
3169  * @dir:	inode of @dentry
3170  * @dentry:	pointer to dentry of the base directory
3171  * @mode:	mode of the new file
3172  * @want_excl:	whether the file must not yet exist
3173  *
3174  * Create a new file.
3175  *
3176  * If the inode has been found through an idmapped mount the idmap of
3177  * the vfsmount must be passed through @idmap. This function will then take
3178  * care to map the inode according to @idmap before checking permissions.
3179  * On non-idmapped mounts or if permission checking is to be performed on the
3180  * raw inode simply pass @nop_mnt_idmap.
3181  */
3182 int vfs_create(struct mnt_idmap *idmap, struct inode *dir,
3183 	       struct dentry *dentry, umode_t mode, bool want_excl)
3184 {
3185 	int error;
3186 
3187 	error = may_create(idmap, dir, dentry);
3188 	if (error)
3189 		return error;
3190 
3191 	if (!dir->i_op->create)
3192 		return -EACCES;	/* shouldn't it be ENOSYS? */
3193 
3194 	mode = vfs_prepare_mode(idmap, dir, mode, S_IALLUGO, S_IFREG);
3195 	error = security_inode_create(dir, dentry, mode);
3196 	if (error)
3197 		return error;
3198 	error = dir->i_op->create(idmap, dir, dentry, mode, want_excl);
3199 	if (!error)
3200 		fsnotify_create(dir, dentry);
3201 	return error;
3202 }
3203 EXPORT_SYMBOL(vfs_create);
3204 
3205 int vfs_mkobj(struct dentry *dentry, umode_t mode,
3206 		int (*f)(struct dentry *, umode_t, void *),
3207 		void *arg)
3208 {
3209 	struct inode *dir = dentry->d_parent->d_inode;
3210 	int error = may_create(&nop_mnt_idmap, dir, dentry);
3211 	if (error)
3212 		return error;
3213 
3214 	mode &= S_IALLUGO;
3215 	mode |= S_IFREG;
3216 	error = security_inode_create(dir, dentry, mode);
3217 	if (error)
3218 		return error;
3219 	error = f(dentry, mode, arg);
3220 	if (!error)
3221 		fsnotify_create(dir, dentry);
3222 	return error;
3223 }
3224 EXPORT_SYMBOL(vfs_mkobj);
3225 
3226 bool may_open_dev(const struct path *path)
3227 {
3228 	return !(path->mnt->mnt_flags & MNT_NODEV) &&
3229 		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
3230 }
3231 
3232 static int may_open(struct mnt_idmap *idmap, const struct path *path,
3233 		    int acc_mode, int flag)
3234 {
3235 	struct dentry *dentry = path->dentry;
3236 	struct inode *inode = dentry->d_inode;
3237 	int error;
3238 
3239 	if (!inode)
3240 		return -ENOENT;
3241 
3242 	switch (inode->i_mode & S_IFMT) {
3243 	case S_IFLNK:
3244 		return -ELOOP;
3245 	case S_IFDIR:
3246 		if (acc_mode & MAY_WRITE)
3247 			return -EISDIR;
3248 		if (acc_mode & MAY_EXEC)
3249 			return -EACCES;
3250 		break;
3251 	case S_IFBLK:
3252 	case S_IFCHR:
3253 		if (!may_open_dev(path))
3254 			return -EACCES;
3255 		fallthrough;
3256 	case S_IFIFO:
3257 	case S_IFSOCK:
3258 		if (acc_mode & MAY_EXEC)
3259 			return -EACCES;
3260 		flag &= ~O_TRUNC;
3261 		break;
3262 	case S_IFREG:
3263 		if ((acc_mode & MAY_EXEC) && path_noexec(path))
3264 			return -EACCES;
3265 		break;
3266 	}
3267 
3268 	error = inode_permission(idmap, inode, MAY_OPEN | acc_mode);
3269 	if (error)
3270 		return error;
3271 
3272 	/*
3273 	 * An append-only file must be opened in append mode for writing.
3274 	 */
3275 	if (IS_APPEND(inode)) {
3276 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
3277 			return -EPERM;
3278 		if (flag & O_TRUNC)
3279 			return -EPERM;
3280 	}
3281 
3282 	/* O_NOATIME can only be set by the owner or superuser */
3283 	if (flag & O_NOATIME && !inode_owner_or_capable(idmap, inode))
3284 		return -EPERM;
3285 
3286 	return 0;
3287 }
3288 
3289 static int handle_truncate(struct mnt_idmap *idmap, struct file *filp)
3290 {
3291 	const struct path *path = &filp->f_path;
3292 	struct inode *inode = path->dentry->d_inode;
3293 	int error = get_write_access(inode);
3294 	if (error)
3295 		return error;
3296 
3297 	error = security_file_truncate(filp);
3298 	if (!error) {
3299 		error = do_truncate(idmap, path->dentry, 0,
3300 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3301 				    filp);
3302 	}
3303 	put_write_access(inode);
3304 	return error;
3305 }
3306 
3307 static inline int open_to_namei_flags(int flag)
3308 {
3309 	if ((flag & O_ACCMODE) == 3)
3310 		flag--;
3311 	return flag;
3312 }
3313 
3314 static int may_o_create(struct mnt_idmap *idmap,
3315 			const struct path *dir, struct dentry *dentry,
3316 			umode_t mode)
3317 {
3318 	int error = security_path_mknod(dir, dentry, mode, 0);
3319 	if (error)
3320 		return error;
3321 
3322 	if (!fsuidgid_has_mapping(dir->dentry->d_sb, idmap))
3323 		return -EOVERFLOW;
3324 
3325 	error = inode_permission(idmap, dir->dentry->d_inode,
3326 				 MAY_WRITE | MAY_EXEC);
3327 	if (error)
3328 		return error;
3329 
3330 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
3331 }
3332 
3333 /*
3334  * Attempt to atomically look up, create and open a file from a negative
3335  * dentry.
3336  *
3337  * Returns 0 if successful.  The file will have been created and attached to
3338  * @file by the filesystem calling finish_open().
3339  *
3340  * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3341  * be set.  The caller will need to perform the open themselves.  @path will
3342  * have been updated to point to the new dentry.  This may be negative.
3343  *
3344  * Returns an error code otherwise.
3345  */
3346 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
3347 				  struct file *file,
3348 				  int open_flag, umode_t mode)
3349 {
3350 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3351 	struct inode *dir =  nd->path.dentry->d_inode;
3352 	int error;
3353 
3354 	if (nd->flags & LOOKUP_DIRECTORY)
3355 		open_flag |= O_DIRECTORY;
3356 
3357 	file->f_path.dentry = DENTRY_NOT_SET;
3358 	file->f_path.mnt = nd->path.mnt;
3359 	error = dir->i_op->atomic_open(dir, dentry, file,
3360 				       open_to_namei_flags(open_flag), mode);
3361 	d_lookup_done(dentry);
3362 	if (!error) {
3363 		if (file->f_mode & FMODE_OPENED) {
3364 			if (unlikely(dentry != file->f_path.dentry)) {
3365 				dput(dentry);
3366 				dentry = dget(file->f_path.dentry);
3367 			}
3368 		} else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3369 			error = -EIO;
3370 		} else {
3371 			if (file->f_path.dentry) {
3372 				dput(dentry);
3373 				dentry = file->f_path.dentry;
3374 			}
3375 			if (unlikely(d_is_negative(dentry)))
3376 				error = -ENOENT;
3377 		}
3378 	}
3379 	if (error) {
3380 		dput(dentry);
3381 		dentry = ERR_PTR(error);
3382 	}
3383 	return dentry;
3384 }
3385 
3386 /*
3387  * Look up and maybe create and open the last component.
3388  *
3389  * Must be called with parent locked (exclusive in O_CREAT case).
3390  *
3391  * Returns 0 on success, that is, if
3392  *  the file was successfully atomically created (if necessary) and opened, or
3393  *  the file was not completely opened at this time, though lookups and
3394  *  creations were performed.
3395  * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3396  * In the latter case dentry returned in @path might be negative if O_CREAT
3397  * hadn't been specified.
3398  *
3399  * An error code is returned on failure.
3400  */
3401 static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3402 				  const struct open_flags *op,
3403 				  bool got_write)
3404 {
3405 	struct mnt_idmap *idmap;
3406 	struct dentry *dir = nd->path.dentry;
3407 	struct inode *dir_inode = dir->d_inode;
3408 	int open_flag = op->open_flag;
3409 	struct dentry *dentry;
3410 	int error, create_error = 0;
3411 	umode_t mode = op->mode;
3412 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3413 
3414 	if (unlikely(IS_DEADDIR(dir_inode)))
3415 		return ERR_PTR(-ENOENT);
3416 
3417 	file->f_mode &= ~FMODE_CREATED;
3418 	dentry = d_lookup(dir, &nd->last);
3419 	for (;;) {
3420 		if (!dentry) {
3421 			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3422 			if (IS_ERR(dentry))
3423 				return dentry;
3424 		}
3425 		if (d_in_lookup(dentry))
3426 			break;
3427 
3428 		error = d_revalidate(dentry, nd->flags);
3429 		if (likely(error > 0))
3430 			break;
3431 		if (error)
3432 			goto out_dput;
3433 		d_invalidate(dentry);
3434 		dput(dentry);
3435 		dentry = NULL;
3436 	}
3437 	if (dentry->d_inode) {
3438 		/* Cached positive dentry: will open in f_op->open */
3439 		return dentry;
3440 	}
3441 
3442 	/*
3443 	 * Checking write permission is tricky, bacuse we don't know if we are
3444 	 * going to actually need it: O_CREAT opens should work as long as the
3445 	 * file exists.  But checking existence breaks atomicity.  The trick is
3446 	 * to check access and if not granted clear O_CREAT from the flags.
3447 	 *
3448 	 * Another problem is returing the "right" error value (e.g. for an
3449 	 * O_EXCL open we want to return EEXIST not EROFS).
3450 	 */
3451 	if (unlikely(!got_write))
3452 		open_flag &= ~O_TRUNC;
3453 	idmap = mnt_idmap(nd->path.mnt);
3454 	if (open_flag & O_CREAT) {
3455 		if (open_flag & O_EXCL)
3456 			open_flag &= ~O_TRUNC;
3457 		mode = vfs_prepare_mode(idmap, dir->d_inode, mode, mode, mode);
3458 		if (likely(got_write))
3459 			create_error = may_o_create(idmap, &nd->path,
3460 						    dentry, mode);
3461 		else
3462 			create_error = -EROFS;
3463 	}
3464 	if (create_error)
3465 		open_flag &= ~O_CREAT;
3466 	if (dir_inode->i_op->atomic_open) {
3467 		dentry = atomic_open(nd, dentry, file, open_flag, mode);
3468 		if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3469 			dentry = ERR_PTR(create_error);
3470 		return dentry;
3471 	}
3472 
3473 	if (d_in_lookup(dentry)) {
3474 		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3475 							     nd->flags);
3476 		d_lookup_done(dentry);
3477 		if (unlikely(res)) {
3478 			if (IS_ERR(res)) {
3479 				error = PTR_ERR(res);
3480 				goto out_dput;
3481 			}
3482 			dput(dentry);
3483 			dentry = res;
3484 		}
3485 	}
3486 
3487 	/* Negative dentry, just create the file */
3488 	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3489 		file->f_mode |= FMODE_CREATED;
3490 		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3491 		if (!dir_inode->i_op->create) {
3492 			error = -EACCES;
3493 			goto out_dput;
3494 		}
3495 
3496 		error = dir_inode->i_op->create(idmap, dir_inode, dentry,
3497 						mode, open_flag & O_EXCL);
3498 		if (error)
3499 			goto out_dput;
3500 	}
3501 	if (unlikely(create_error) && !dentry->d_inode) {
3502 		error = create_error;
3503 		goto out_dput;
3504 	}
3505 	return dentry;
3506 
3507 out_dput:
3508 	dput(dentry);
3509 	return ERR_PTR(error);
3510 }
3511 
3512 static const char *open_last_lookups(struct nameidata *nd,
3513 		   struct file *file, const struct open_flags *op)
3514 {
3515 	struct dentry *dir = nd->path.dentry;
3516 	int open_flag = op->open_flag;
3517 	bool got_write = false;
3518 	struct dentry *dentry;
3519 	const char *res;
3520 
3521 	nd->flags |= op->intent;
3522 
3523 	if (nd->last_type != LAST_NORM) {
3524 		if (nd->depth)
3525 			put_link(nd);
3526 		return handle_dots(nd, nd->last_type);
3527 	}
3528 
3529 	if (!(open_flag & O_CREAT)) {
3530 		if (nd->last.name[nd->last.len])
3531 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3532 		/* we _can_ be in RCU mode here */
3533 		dentry = lookup_fast(nd);
3534 		if (IS_ERR(dentry))
3535 			return ERR_CAST(dentry);
3536 		if (likely(dentry))
3537 			goto finish_lookup;
3538 
3539 		if (WARN_ON_ONCE(nd->flags & LOOKUP_RCU))
3540 			return ERR_PTR(-ECHILD);
3541 	} else {
3542 		/* create side of things */
3543 		if (nd->flags & LOOKUP_RCU) {
3544 			if (!try_to_unlazy(nd))
3545 				return ERR_PTR(-ECHILD);
3546 		}
3547 		audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3548 		/* trailing slashes? */
3549 		if (unlikely(nd->last.name[nd->last.len]))
3550 			return ERR_PTR(-EISDIR);
3551 	}
3552 
3553 	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3554 		got_write = !mnt_want_write(nd->path.mnt);
3555 		/*
3556 		 * do _not_ fail yet - we might not need that or fail with
3557 		 * a different error; let lookup_open() decide; we'll be
3558 		 * dropping this one anyway.
3559 		 */
3560 	}
3561 	if (open_flag & O_CREAT)
3562 		inode_lock(dir->d_inode);
3563 	else
3564 		inode_lock_shared(dir->d_inode);
3565 	dentry = lookup_open(nd, file, op, got_write);
3566 	if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED))
3567 		fsnotify_create(dir->d_inode, dentry);
3568 	if (open_flag & O_CREAT)
3569 		inode_unlock(dir->d_inode);
3570 	else
3571 		inode_unlock_shared(dir->d_inode);
3572 
3573 	if (got_write)
3574 		mnt_drop_write(nd->path.mnt);
3575 
3576 	if (IS_ERR(dentry))
3577 		return ERR_CAST(dentry);
3578 
3579 	if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3580 		dput(nd->path.dentry);
3581 		nd->path.dentry = dentry;
3582 		return NULL;
3583 	}
3584 
3585 finish_lookup:
3586 	if (nd->depth)
3587 		put_link(nd);
3588 	res = step_into(nd, WALK_TRAILING, dentry);
3589 	if (unlikely(res))
3590 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3591 	return res;
3592 }
3593 
3594 /*
3595  * Handle the last step of open()
3596  */
3597 static int do_open(struct nameidata *nd,
3598 		   struct file *file, const struct open_flags *op)
3599 {
3600 	struct mnt_idmap *idmap;
3601 	int open_flag = op->open_flag;
3602 	bool do_truncate;
3603 	int acc_mode;
3604 	int error;
3605 
3606 	if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3607 		error = complete_walk(nd);
3608 		if (error)
3609 			return error;
3610 	}
3611 	if (!(file->f_mode & FMODE_CREATED))
3612 		audit_inode(nd->name, nd->path.dentry, 0);
3613 	idmap = mnt_idmap(nd->path.mnt);
3614 	if (open_flag & O_CREAT) {
3615 		if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3616 			return -EEXIST;
3617 		if (d_is_dir(nd->path.dentry))
3618 			return -EISDIR;
3619 		error = may_create_in_sticky(idmap, nd,
3620 					     d_backing_inode(nd->path.dentry));
3621 		if (unlikely(error))
3622 			return error;
3623 	}
3624 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3625 		return -ENOTDIR;
3626 
3627 	do_truncate = false;
3628 	acc_mode = op->acc_mode;
3629 	if (file->f_mode & FMODE_CREATED) {
3630 		/* Don't check for write permission, don't truncate */
3631 		open_flag &= ~O_TRUNC;
3632 		acc_mode = 0;
3633 	} else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3634 		error = mnt_want_write(nd->path.mnt);
3635 		if (error)
3636 			return error;
3637 		do_truncate = true;
3638 	}
3639 	error = may_open(idmap, &nd->path, acc_mode, open_flag);
3640 	if (!error && !(file->f_mode & FMODE_OPENED))
3641 		error = vfs_open(&nd->path, file);
3642 	if (!error)
3643 		error = ima_file_check(file, op->acc_mode);
3644 	if (!error && do_truncate)
3645 		error = handle_truncate(idmap, file);
3646 	if (unlikely(error > 0)) {
3647 		WARN_ON(1);
3648 		error = -EINVAL;
3649 	}
3650 	if (do_truncate)
3651 		mnt_drop_write(nd->path.mnt);
3652 	return error;
3653 }
3654 
3655 /**
3656  * vfs_tmpfile - create tmpfile
3657  * @idmap:	idmap of the mount the inode was found from
3658  * @parentpath:	pointer to the path of the base directory
3659  * @file:	file descriptor of the new tmpfile
3660  * @mode:	mode of the new tmpfile
3661  *
3662  * Create a temporary file.
3663  *
3664  * If the inode has been found through an idmapped mount the idmap of
3665  * the vfsmount must be passed through @idmap. This function will then take
3666  * care to map the inode according to @idmap before checking permissions.
3667  * On non-idmapped mounts or if permission checking is to be performed on the
3668  * raw inode simply pass @nop_mnt_idmap.
3669  */
3670 static int vfs_tmpfile(struct mnt_idmap *idmap,
3671 		       const struct path *parentpath,
3672 		       struct file *file, umode_t mode)
3673 {
3674 	struct dentry *child;
3675 	struct inode *dir = d_inode(parentpath->dentry);
3676 	struct inode *inode;
3677 	int error;
3678 	int open_flag = file->f_flags;
3679 
3680 	/* we want directory to be writable */
3681 	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3682 	if (error)
3683 		return error;
3684 	if (!dir->i_op->tmpfile)
3685 		return -EOPNOTSUPP;
3686 	child = d_alloc(parentpath->dentry, &slash_name);
3687 	if (unlikely(!child))
3688 		return -ENOMEM;
3689 	file->f_path.mnt = parentpath->mnt;
3690 	file->f_path.dentry = child;
3691 	mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
3692 	error = dir->i_op->tmpfile(idmap, dir, file, mode);
3693 	dput(child);
3694 	if (error)
3695 		return error;
3696 	/* Don't check for other permissions, the inode was just created */
3697 	error = may_open(idmap, &file->f_path, 0, file->f_flags);
3698 	if (error)
3699 		return error;
3700 	inode = file_inode(file);
3701 	if (!(open_flag & O_EXCL)) {
3702 		spin_lock(&inode->i_lock);
3703 		inode->i_state |= I_LINKABLE;
3704 		spin_unlock(&inode->i_lock);
3705 	}
3706 	ima_post_create_tmpfile(idmap, inode);
3707 	return 0;
3708 }
3709 
3710 /**
3711  * kernel_tmpfile_open - open a tmpfile for kernel internal use
3712  * @idmap:	idmap of the mount the inode was found from
3713  * @parentpath:	path of the base directory
3714  * @mode:	mode of the new tmpfile
3715  * @open_flag:	flags
3716  * @cred:	credentials for open
3717  *
3718  * Create and open a temporary file.  The file is not accounted in nr_files,
3719  * hence this is only for kernel internal use, and must not be installed into
3720  * file tables or such.
3721  */
3722 struct file *kernel_tmpfile_open(struct mnt_idmap *idmap,
3723 				 const struct path *parentpath,
3724 				 umode_t mode, int open_flag,
3725 				 const struct cred *cred)
3726 {
3727 	struct file *file;
3728 	int error;
3729 
3730 	file = alloc_empty_file_noaccount(open_flag, cred);
3731 	if (IS_ERR(file))
3732 		return file;
3733 
3734 	error = vfs_tmpfile(idmap, parentpath, file, mode);
3735 	if (error) {
3736 		fput(file);
3737 		file = ERR_PTR(error);
3738 	}
3739 	return file;
3740 }
3741 EXPORT_SYMBOL(kernel_tmpfile_open);
3742 
3743 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3744 		const struct open_flags *op,
3745 		struct file *file)
3746 {
3747 	struct path path;
3748 	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3749 
3750 	if (unlikely(error))
3751 		return error;
3752 	error = mnt_want_write(path.mnt);
3753 	if (unlikely(error))
3754 		goto out;
3755 	error = vfs_tmpfile(mnt_idmap(path.mnt), &path, file, op->mode);
3756 	if (error)
3757 		goto out2;
3758 	audit_inode(nd->name, file->f_path.dentry, 0);
3759 out2:
3760 	mnt_drop_write(path.mnt);
3761 out:
3762 	path_put(&path);
3763 	return error;
3764 }
3765 
3766 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3767 {
3768 	struct path path;
3769 	int error = path_lookupat(nd, flags, &path);
3770 	if (!error) {
3771 		audit_inode(nd->name, path.dentry, 0);
3772 		error = vfs_open(&path, file);
3773 		path_put(&path);
3774 	}
3775 	return error;
3776 }
3777 
3778 static struct file *path_openat(struct nameidata *nd,
3779 			const struct open_flags *op, unsigned flags)
3780 {
3781 	struct file *file;
3782 	int error;
3783 
3784 	file = alloc_empty_file(op->open_flag, current_cred());
3785 	if (IS_ERR(file))
3786 		return file;
3787 
3788 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3789 		error = do_tmpfile(nd, flags, op, file);
3790 	} else if (unlikely(file->f_flags & O_PATH)) {
3791 		error = do_o_path(nd, flags, file);
3792 	} else {
3793 		const char *s = path_init(nd, flags);
3794 		while (!(error = link_path_walk(s, nd)) &&
3795 		       (s = open_last_lookups(nd, file, op)) != NULL)
3796 			;
3797 		if (!error)
3798 			error = do_open(nd, file, op);
3799 		terminate_walk(nd);
3800 	}
3801 	if (likely(!error)) {
3802 		if (likely(file->f_mode & FMODE_OPENED))
3803 			return file;
3804 		WARN_ON(1);
3805 		error = -EINVAL;
3806 	}
3807 	fput(file);
3808 	if (error == -EOPENSTALE) {
3809 		if (flags & LOOKUP_RCU)
3810 			error = -ECHILD;
3811 		else
3812 			error = -ESTALE;
3813 	}
3814 	return ERR_PTR(error);
3815 }
3816 
3817 struct file *do_filp_open(int dfd, struct filename *pathname,
3818 		const struct open_flags *op)
3819 {
3820 	struct nameidata nd;
3821 	int flags = op->lookup_flags;
3822 	struct file *filp;
3823 
3824 	set_nameidata(&nd, dfd, pathname, NULL);
3825 	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3826 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3827 		filp = path_openat(&nd, op, flags);
3828 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3829 		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3830 	restore_nameidata();
3831 	return filp;
3832 }
3833 
3834 struct file *do_file_open_root(const struct path *root,
3835 		const char *name, const struct open_flags *op)
3836 {
3837 	struct nameidata nd;
3838 	struct file *file;
3839 	struct filename *filename;
3840 	int flags = op->lookup_flags;
3841 
3842 	if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN)
3843 		return ERR_PTR(-ELOOP);
3844 
3845 	filename = getname_kernel(name);
3846 	if (IS_ERR(filename))
3847 		return ERR_CAST(filename);
3848 
3849 	set_nameidata(&nd, -1, filename, root);
3850 	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3851 	if (unlikely(file == ERR_PTR(-ECHILD)))
3852 		file = path_openat(&nd, op, flags);
3853 	if (unlikely(file == ERR_PTR(-ESTALE)))
3854 		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3855 	restore_nameidata();
3856 	putname(filename);
3857 	return file;
3858 }
3859 
3860 static struct dentry *filename_create(int dfd, struct filename *name,
3861 				      struct path *path, unsigned int lookup_flags)
3862 {
3863 	struct dentry *dentry = ERR_PTR(-EEXIST);
3864 	struct qstr last;
3865 	bool want_dir = lookup_flags & LOOKUP_DIRECTORY;
3866 	unsigned int reval_flag = lookup_flags & LOOKUP_REVAL;
3867 	unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL;
3868 	int type;
3869 	int err2;
3870 	int error;
3871 
3872 	error = filename_parentat(dfd, name, reval_flag, path, &last, &type);
3873 	if (error)
3874 		return ERR_PTR(error);
3875 
3876 	/*
3877 	 * Yucky last component or no last component at all?
3878 	 * (foo/., foo/.., /////)
3879 	 */
3880 	if (unlikely(type != LAST_NORM))
3881 		goto out;
3882 
3883 	/* don't fail immediately if it's r/o, at least try to report other errors */
3884 	err2 = mnt_want_write(path->mnt);
3885 	/*
3886 	 * Do the final lookup.  Suppress 'create' if there is a trailing
3887 	 * '/', and a directory wasn't requested.
3888 	 */
3889 	if (last.name[last.len] && !want_dir)
3890 		create_flags = 0;
3891 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3892 	dentry = lookup_one_qstr_excl(&last, path->dentry,
3893 				      reval_flag | create_flags);
3894 	if (IS_ERR(dentry))
3895 		goto unlock;
3896 
3897 	error = -EEXIST;
3898 	if (d_is_positive(dentry))
3899 		goto fail;
3900 
3901 	/*
3902 	 * Special case - lookup gave negative, but... we had foo/bar/
3903 	 * From the vfs_mknod() POV we just have a negative dentry -
3904 	 * all is fine. Let's be bastards - you had / on the end, you've
3905 	 * been asking for (non-existent) directory. -ENOENT for you.
3906 	 */
3907 	if (unlikely(!create_flags)) {
3908 		error = -ENOENT;
3909 		goto fail;
3910 	}
3911 	if (unlikely(err2)) {
3912 		error = err2;
3913 		goto fail;
3914 	}
3915 	return dentry;
3916 fail:
3917 	dput(dentry);
3918 	dentry = ERR_PTR(error);
3919 unlock:
3920 	inode_unlock(path->dentry->d_inode);
3921 	if (!err2)
3922 		mnt_drop_write(path->mnt);
3923 out:
3924 	path_put(path);
3925 	return dentry;
3926 }
3927 
3928 struct dentry *kern_path_create(int dfd, const char *pathname,
3929 				struct path *path, unsigned int lookup_flags)
3930 {
3931 	struct filename *filename = getname_kernel(pathname);
3932 	struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
3933 
3934 	putname(filename);
3935 	return res;
3936 }
3937 EXPORT_SYMBOL(kern_path_create);
3938 
3939 void done_path_create(struct path *path, struct dentry *dentry)
3940 {
3941 	dput(dentry);
3942 	inode_unlock(path->dentry->d_inode);
3943 	mnt_drop_write(path->mnt);
3944 	path_put(path);
3945 }
3946 EXPORT_SYMBOL(done_path_create);
3947 
3948 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3949 				struct path *path, unsigned int lookup_flags)
3950 {
3951 	struct filename *filename = getname(pathname);
3952 	struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
3953 
3954 	putname(filename);
3955 	return res;
3956 }
3957 EXPORT_SYMBOL(user_path_create);
3958 
3959 /**
3960  * vfs_mknod - create device node or file
3961  * @idmap:	idmap of the mount the inode was found from
3962  * @dir:	inode of @dentry
3963  * @dentry:	pointer to dentry of the base directory
3964  * @mode:	mode of the new device node or file
3965  * @dev:	device number of device to create
3966  *
3967  * Create a device node or file.
3968  *
3969  * If the inode has been found through an idmapped mount the idmap of
3970  * the vfsmount must be passed through @idmap. This function will then take
3971  * care to map the inode according to @idmap before checking permissions.
3972  * On non-idmapped mounts or if permission checking is to be performed on the
3973  * raw inode simply pass @nop_mnt_idmap.
3974  */
3975 int vfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
3976 	      struct dentry *dentry, umode_t mode, dev_t dev)
3977 {
3978 	bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
3979 	int error = may_create(idmap, dir, dentry);
3980 
3981 	if (error)
3982 		return error;
3983 
3984 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
3985 	    !capable(CAP_MKNOD))
3986 		return -EPERM;
3987 
3988 	if (!dir->i_op->mknod)
3989 		return -EPERM;
3990 
3991 	mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
3992 	error = devcgroup_inode_mknod(mode, dev);
3993 	if (error)
3994 		return error;
3995 
3996 	error = security_inode_mknod(dir, dentry, mode, dev);
3997 	if (error)
3998 		return error;
3999 
4000 	error = dir->i_op->mknod(idmap, dir, dentry, mode, dev);
4001 	if (!error)
4002 		fsnotify_create(dir, dentry);
4003 	return error;
4004 }
4005 EXPORT_SYMBOL(vfs_mknod);
4006 
4007 static int may_mknod(umode_t mode)
4008 {
4009 	switch (mode & S_IFMT) {
4010 	case S_IFREG:
4011 	case S_IFCHR:
4012 	case S_IFBLK:
4013 	case S_IFIFO:
4014 	case S_IFSOCK:
4015 	case 0: /* zero mode translates to S_IFREG */
4016 		return 0;
4017 	case S_IFDIR:
4018 		return -EPERM;
4019 	default:
4020 		return -EINVAL;
4021 	}
4022 }
4023 
4024 static int do_mknodat(int dfd, struct filename *name, umode_t mode,
4025 		unsigned int dev)
4026 {
4027 	struct mnt_idmap *idmap;
4028 	struct dentry *dentry;
4029 	struct path path;
4030 	int error;
4031 	unsigned int lookup_flags = 0;
4032 
4033 	error = may_mknod(mode);
4034 	if (error)
4035 		goto out1;
4036 retry:
4037 	dentry = filename_create(dfd, name, &path, lookup_flags);
4038 	error = PTR_ERR(dentry);
4039 	if (IS_ERR(dentry))
4040 		goto out1;
4041 
4042 	error = security_path_mknod(&path, dentry,
4043 			mode_strip_umask(path.dentry->d_inode, mode), dev);
4044 	if (error)
4045 		goto out2;
4046 
4047 	idmap = mnt_idmap(path.mnt);
4048 	switch (mode & S_IFMT) {
4049 		case 0: case S_IFREG:
4050 			error = vfs_create(idmap, path.dentry->d_inode,
4051 					   dentry, mode, true);
4052 			if (!error)
4053 				ima_post_path_mknod(idmap, dentry);
4054 			break;
4055 		case S_IFCHR: case S_IFBLK:
4056 			error = vfs_mknod(idmap, path.dentry->d_inode,
4057 					  dentry, mode, new_decode_dev(dev));
4058 			break;
4059 		case S_IFIFO: case S_IFSOCK:
4060 			error = vfs_mknod(idmap, path.dentry->d_inode,
4061 					  dentry, mode, 0);
4062 			break;
4063 	}
4064 out2:
4065 	done_path_create(&path, dentry);
4066 	if (retry_estale(error, lookup_flags)) {
4067 		lookup_flags |= LOOKUP_REVAL;
4068 		goto retry;
4069 	}
4070 out1:
4071 	putname(name);
4072 	return error;
4073 }
4074 
4075 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
4076 		unsigned int, dev)
4077 {
4078 	return do_mknodat(dfd, getname(filename), mode, dev);
4079 }
4080 
4081 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
4082 {
4083 	return do_mknodat(AT_FDCWD, getname(filename), mode, dev);
4084 }
4085 
4086 /**
4087  * vfs_mkdir - create directory
4088  * @idmap:	idmap of the mount the inode was found from
4089  * @dir:	inode of @dentry
4090  * @dentry:	pointer to dentry of the base directory
4091  * @mode:	mode of the new directory
4092  *
4093  * Create a directory.
4094  *
4095  * If the inode has been found through an idmapped mount the idmap of
4096  * the vfsmount must be passed through @idmap. This function will then take
4097  * care to map the inode according to @idmap before checking permissions.
4098  * On non-idmapped mounts or if permission checking is to be performed on the
4099  * raw inode simply pass @nop_mnt_idmap.
4100  */
4101 int vfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
4102 	      struct dentry *dentry, umode_t mode)
4103 {
4104 	int error;
4105 	unsigned max_links = dir->i_sb->s_max_links;
4106 
4107 	error = may_create(idmap, dir, dentry);
4108 	if (error)
4109 		return error;
4110 
4111 	if (!dir->i_op->mkdir)
4112 		return -EPERM;
4113 
4114 	mode = vfs_prepare_mode(idmap, dir, mode, S_IRWXUGO | S_ISVTX, 0);
4115 	error = security_inode_mkdir(dir, dentry, mode);
4116 	if (error)
4117 		return error;
4118 
4119 	if (max_links && dir->i_nlink >= max_links)
4120 		return -EMLINK;
4121 
4122 	error = dir->i_op->mkdir(idmap, dir, dentry, mode);
4123 	if (!error)
4124 		fsnotify_mkdir(dir, dentry);
4125 	return error;
4126 }
4127 EXPORT_SYMBOL(vfs_mkdir);
4128 
4129 int do_mkdirat(int dfd, struct filename *name, umode_t mode)
4130 {
4131 	struct dentry *dentry;
4132 	struct path path;
4133 	int error;
4134 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
4135 
4136 retry:
4137 	dentry = filename_create(dfd, name, &path, lookup_flags);
4138 	error = PTR_ERR(dentry);
4139 	if (IS_ERR(dentry))
4140 		goto out_putname;
4141 
4142 	error = security_path_mkdir(&path, dentry,
4143 			mode_strip_umask(path.dentry->d_inode, mode));
4144 	if (!error) {
4145 		error = vfs_mkdir(mnt_idmap(path.mnt), path.dentry->d_inode,
4146 				  dentry, mode);
4147 	}
4148 	done_path_create(&path, dentry);
4149 	if (retry_estale(error, lookup_flags)) {
4150 		lookup_flags |= LOOKUP_REVAL;
4151 		goto retry;
4152 	}
4153 out_putname:
4154 	putname(name);
4155 	return error;
4156 }
4157 
4158 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
4159 {
4160 	return do_mkdirat(dfd, getname(pathname), mode);
4161 }
4162 
4163 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
4164 {
4165 	return do_mkdirat(AT_FDCWD, getname(pathname), mode);
4166 }
4167 
4168 /**
4169  * vfs_rmdir - remove directory
4170  * @idmap:	idmap of the mount the inode was found from
4171  * @dir:	inode of @dentry
4172  * @dentry:	pointer to dentry of the base directory
4173  *
4174  * Remove a directory.
4175  *
4176  * If the inode has been found through an idmapped mount the idmap of
4177  * the vfsmount must be passed through @idmap. This function will then take
4178  * care to map the inode according to @idmap before checking permissions.
4179  * On non-idmapped mounts or if permission checking is to be performed on the
4180  * raw inode simply pass @nop_mnt_idmap.
4181  */
4182 int vfs_rmdir(struct mnt_idmap *idmap, struct inode *dir,
4183 		     struct dentry *dentry)
4184 {
4185 	int error = may_delete(idmap, dir, dentry, 1);
4186 
4187 	if (error)
4188 		return error;
4189 
4190 	if (!dir->i_op->rmdir)
4191 		return -EPERM;
4192 
4193 	dget(dentry);
4194 	inode_lock(dentry->d_inode);
4195 
4196 	error = -EBUSY;
4197 	if (is_local_mountpoint(dentry) ||
4198 	    (dentry->d_inode->i_flags & S_KERNEL_FILE))
4199 		goto out;
4200 
4201 	error = security_inode_rmdir(dir, dentry);
4202 	if (error)
4203 		goto out;
4204 
4205 	error = dir->i_op->rmdir(dir, dentry);
4206 	if (error)
4207 		goto out;
4208 
4209 	shrink_dcache_parent(dentry);
4210 	dentry->d_inode->i_flags |= S_DEAD;
4211 	dont_mount(dentry);
4212 	detach_mounts(dentry);
4213 
4214 out:
4215 	inode_unlock(dentry->d_inode);
4216 	dput(dentry);
4217 	if (!error)
4218 		d_delete_notify(dir, dentry);
4219 	return error;
4220 }
4221 EXPORT_SYMBOL(vfs_rmdir);
4222 
4223 int do_rmdir(int dfd, struct filename *name)
4224 {
4225 	int error;
4226 	struct dentry *dentry;
4227 	struct path path;
4228 	struct qstr last;
4229 	int type;
4230 	unsigned int lookup_flags = 0;
4231 retry:
4232 	error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4233 	if (error)
4234 		goto exit1;
4235 
4236 	switch (type) {
4237 	case LAST_DOTDOT:
4238 		error = -ENOTEMPTY;
4239 		goto exit2;
4240 	case LAST_DOT:
4241 		error = -EINVAL;
4242 		goto exit2;
4243 	case LAST_ROOT:
4244 		error = -EBUSY;
4245 		goto exit2;
4246 	}
4247 
4248 	error = mnt_want_write(path.mnt);
4249 	if (error)
4250 		goto exit2;
4251 
4252 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4253 	dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4254 	error = PTR_ERR(dentry);
4255 	if (IS_ERR(dentry))
4256 		goto exit3;
4257 	if (!dentry->d_inode) {
4258 		error = -ENOENT;
4259 		goto exit4;
4260 	}
4261 	error = security_path_rmdir(&path, dentry);
4262 	if (error)
4263 		goto exit4;
4264 	error = vfs_rmdir(mnt_idmap(path.mnt), path.dentry->d_inode, dentry);
4265 exit4:
4266 	dput(dentry);
4267 exit3:
4268 	inode_unlock(path.dentry->d_inode);
4269 	mnt_drop_write(path.mnt);
4270 exit2:
4271 	path_put(&path);
4272 	if (retry_estale(error, lookup_flags)) {
4273 		lookup_flags |= LOOKUP_REVAL;
4274 		goto retry;
4275 	}
4276 exit1:
4277 	putname(name);
4278 	return error;
4279 }
4280 
4281 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
4282 {
4283 	return do_rmdir(AT_FDCWD, getname(pathname));
4284 }
4285 
4286 /**
4287  * vfs_unlink - unlink a filesystem object
4288  * @idmap:	idmap of the mount the inode was found from
4289  * @dir:	parent directory
4290  * @dentry:	victim
4291  * @delegated_inode: returns victim inode, if the inode is delegated.
4292  *
4293  * The caller must hold dir->i_mutex.
4294  *
4295  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
4296  * return a reference to the inode in delegated_inode.  The caller
4297  * should then break the delegation on that inode and retry.  Because
4298  * breaking a delegation may take a long time, the caller should drop
4299  * dir->i_mutex before doing so.
4300  *
4301  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4302  * be appropriate for callers that expect the underlying filesystem not
4303  * to be NFS exported.
4304  *
4305  * If the inode has been found through an idmapped mount the idmap of
4306  * the vfsmount must be passed through @idmap. This function will then take
4307  * care to map the inode according to @idmap before checking permissions.
4308  * On non-idmapped mounts or if permission checking is to be performed on the
4309  * raw inode simply pass @nop_mnt_idmap.
4310  */
4311 int vfs_unlink(struct mnt_idmap *idmap, struct inode *dir,
4312 	       struct dentry *dentry, struct inode **delegated_inode)
4313 {
4314 	struct inode *target = dentry->d_inode;
4315 	int error = may_delete(idmap, dir, dentry, 0);
4316 
4317 	if (error)
4318 		return error;
4319 
4320 	if (!dir->i_op->unlink)
4321 		return -EPERM;
4322 
4323 	inode_lock(target);
4324 	if (IS_SWAPFILE(target))
4325 		error = -EPERM;
4326 	else if (is_local_mountpoint(dentry))
4327 		error = -EBUSY;
4328 	else {
4329 		error = security_inode_unlink(dir, dentry);
4330 		if (!error) {
4331 			error = try_break_deleg(target, delegated_inode);
4332 			if (error)
4333 				goto out;
4334 			error = dir->i_op->unlink(dir, dentry);
4335 			if (!error) {
4336 				dont_mount(dentry);
4337 				detach_mounts(dentry);
4338 			}
4339 		}
4340 	}
4341 out:
4342 	inode_unlock(target);
4343 
4344 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
4345 	if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) {
4346 		fsnotify_unlink(dir, dentry);
4347 	} else if (!error) {
4348 		fsnotify_link_count(target);
4349 		d_delete_notify(dir, dentry);
4350 	}
4351 
4352 	return error;
4353 }
4354 EXPORT_SYMBOL(vfs_unlink);
4355 
4356 /*
4357  * Make sure that the actual truncation of the file will occur outside its
4358  * directory's i_mutex.  Truncate can take a long time if there is a lot of
4359  * writeout happening, and we don't want to prevent access to the directory
4360  * while waiting on the I/O.
4361  */
4362 int do_unlinkat(int dfd, struct filename *name)
4363 {
4364 	int error;
4365 	struct dentry *dentry;
4366 	struct path path;
4367 	struct qstr last;
4368 	int type;
4369 	struct inode *inode = NULL;
4370 	struct inode *delegated_inode = NULL;
4371 	unsigned int lookup_flags = 0;
4372 retry:
4373 	error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4374 	if (error)
4375 		goto exit1;
4376 
4377 	error = -EISDIR;
4378 	if (type != LAST_NORM)
4379 		goto exit2;
4380 
4381 	error = mnt_want_write(path.mnt);
4382 	if (error)
4383 		goto exit2;
4384 retry_deleg:
4385 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4386 	dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4387 	error = PTR_ERR(dentry);
4388 	if (!IS_ERR(dentry)) {
4389 
4390 		/* Why not before? Because we want correct error value */
4391 		if (last.name[last.len] || d_is_negative(dentry))
4392 			goto slashes;
4393 		inode = dentry->d_inode;
4394 		ihold(inode);
4395 		error = security_path_unlink(&path, dentry);
4396 		if (error)
4397 			goto exit3;
4398 		error = vfs_unlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4399 				   dentry, &delegated_inode);
4400 exit3:
4401 		dput(dentry);
4402 	}
4403 	inode_unlock(path.dentry->d_inode);
4404 	if (inode)
4405 		iput(inode);	/* truncate the inode here */
4406 	inode = NULL;
4407 	if (delegated_inode) {
4408 		error = break_deleg_wait(&delegated_inode);
4409 		if (!error)
4410 			goto retry_deleg;
4411 	}
4412 	mnt_drop_write(path.mnt);
4413 exit2:
4414 	path_put(&path);
4415 	if (retry_estale(error, lookup_flags)) {
4416 		lookup_flags |= LOOKUP_REVAL;
4417 		inode = NULL;
4418 		goto retry;
4419 	}
4420 exit1:
4421 	putname(name);
4422 	return error;
4423 
4424 slashes:
4425 	if (d_is_negative(dentry))
4426 		error = -ENOENT;
4427 	else if (d_is_dir(dentry))
4428 		error = -EISDIR;
4429 	else
4430 		error = -ENOTDIR;
4431 	goto exit3;
4432 }
4433 
4434 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4435 {
4436 	if ((flag & ~AT_REMOVEDIR) != 0)
4437 		return -EINVAL;
4438 
4439 	if (flag & AT_REMOVEDIR)
4440 		return do_rmdir(dfd, getname(pathname));
4441 	return do_unlinkat(dfd, getname(pathname));
4442 }
4443 
4444 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4445 {
4446 	return do_unlinkat(AT_FDCWD, getname(pathname));
4447 }
4448 
4449 /**
4450  * vfs_symlink - create symlink
4451  * @idmap:	idmap of the mount the inode was found from
4452  * @dir:	inode of @dentry
4453  * @dentry:	pointer to dentry of the base directory
4454  * @oldname:	name of the file to link to
4455  *
4456  * Create a symlink.
4457  *
4458  * If the inode has been found through an idmapped mount the idmap of
4459  * the vfsmount must be passed through @idmap. This function will then take
4460  * care to map the inode according to @idmap before checking permissions.
4461  * On non-idmapped mounts or if permission checking is to be performed on the
4462  * raw inode simply pass @nop_mnt_idmap.
4463  */
4464 int vfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
4465 		struct dentry *dentry, const char *oldname)
4466 {
4467 	int error;
4468 
4469 	error = may_create(idmap, dir, dentry);
4470 	if (error)
4471 		return error;
4472 
4473 	if (!dir->i_op->symlink)
4474 		return -EPERM;
4475 
4476 	error = security_inode_symlink(dir, dentry, oldname);
4477 	if (error)
4478 		return error;
4479 
4480 	error = dir->i_op->symlink(idmap, dir, dentry, oldname);
4481 	if (!error)
4482 		fsnotify_create(dir, dentry);
4483 	return error;
4484 }
4485 EXPORT_SYMBOL(vfs_symlink);
4486 
4487 int do_symlinkat(struct filename *from, int newdfd, struct filename *to)
4488 {
4489 	int error;
4490 	struct dentry *dentry;
4491 	struct path path;
4492 	unsigned int lookup_flags = 0;
4493 
4494 	if (IS_ERR(from)) {
4495 		error = PTR_ERR(from);
4496 		goto out_putnames;
4497 	}
4498 retry:
4499 	dentry = filename_create(newdfd, to, &path, lookup_flags);
4500 	error = PTR_ERR(dentry);
4501 	if (IS_ERR(dentry))
4502 		goto out_putnames;
4503 
4504 	error = security_path_symlink(&path, dentry, from->name);
4505 	if (!error)
4506 		error = vfs_symlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4507 				    dentry, from->name);
4508 	done_path_create(&path, dentry);
4509 	if (retry_estale(error, lookup_flags)) {
4510 		lookup_flags |= LOOKUP_REVAL;
4511 		goto retry;
4512 	}
4513 out_putnames:
4514 	putname(to);
4515 	putname(from);
4516 	return error;
4517 }
4518 
4519 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4520 		int, newdfd, const char __user *, newname)
4521 {
4522 	return do_symlinkat(getname(oldname), newdfd, getname(newname));
4523 }
4524 
4525 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4526 {
4527 	return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname));
4528 }
4529 
4530 /**
4531  * vfs_link - create a new link
4532  * @old_dentry:	object to be linked
4533  * @idmap:	idmap of the mount
4534  * @dir:	new parent
4535  * @new_dentry:	where to create the new link
4536  * @delegated_inode: returns inode needing a delegation break
4537  *
4538  * The caller must hold dir->i_mutex
4539  *
4540  * If vfs_link discovers a delegation on the to-be-linked file in need
4541  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4542  * inode in delegated_inode.  The caller should then break the delegation
4543  * and retry.  Because breaking a delegation may take a long time, the
4544  * caller should drop the i_mutex before doing so.
4545  *
4546  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4547  * be appropriate for callers that expect the underlying filesystem not
4548  * to be NFS exported.
4549  *
4550  * If the inode has been found through an idmapped mount the idmap of
4551  * the vfsmount must be passed through @idmap. This function will then take
4552  * care to map the inode according to @idmap before checking permissions.
4553  * On non-idmapped mounts or if permission checking is to be performed on the
4554  * raw inode simply pass @nop_mnt_idmap.
4555  */
4556 int vfs_link(struct dentry *old_dentry, struct mnt_idmap *idmap,
4557 	     struct inode *dir, struct dentry *new_dentry,
4558 	     struct inode **delegated_inode)
4559 {
4560 	struct inode *inode = old_dentry->d_inode;
4561 	unsigned max_links = dir->i_sb->s_max_links;
4562 	int error;
4563 
4564 	if (!inode)
4565 		return -ENOENT;
4566 
4567 	error = may_create(idmap, dir, new_dentry);
4568 	if (error)
4569 		return error;
4570 
4571 	if (dir->i_sb != inode->i_sb)
4572 		return -EXDEV;
4573 
4574 	/*
4575 	 * A link to an append-only or immutable file cannot be created.
4576 	 */
4577 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4578 		return -EPERM;
4579 	/*
4580 	 * Updating the link count will likely cause i_uid and i_gid to
4581 	 * be writen back improperly if their true value is unknown to
4582 	 * the vfs.
4583 	 */
4584 	if (HAS_UNMAPPED_ID(idmap, inode))
4585 		return -EPERM;
4586 	if (!dir->i_op->link)
4587 		return -EPERM;
4588 	if (S_ISDIR(inode->i_mode))
4589 		return -EPERM;
4590 
4591 	error = security_inode_link(old_dentry, dir, new_dentry);
4592 	if (error)
4593 		return error;
4594 
4595 	inode_lock(inode);
4596 	/* Make sure we don't allow creating hardlink to an unlinked file */
4597 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4598 		error =  -ENOENT;
4599 	else if (max_links && inode->i_nlink >= max_links)
4600 		error = -EMLINK;
4601 	else {
4602 		error = try_break_deleg(inode, delegated_inode);
4603 		if (!error)
4604 			error = dir->i_op->link(old_dentry, dir, new_dentry);
4605 	}
4606 
4607 	if (!error && (inode->i_state & I_LINKABLE)) {
4608 		spin_lock(&inode->i_lock);
4609 		inode->i_state &= ~I_LINKABLE;
4610 		spin_unlock(&inode->i_lock);
4611 	}
4612 	inode_unlock(inode);
4613 	if (!error)
4614 		fsnotify_link(dir, inode, new_dentry);
4615 	return error;
4616 }
4617 EXPORT_SYMBOL(vfs_link);
4618 
4619 /*
4620  * Hardlinks are often used in delicate situations.  We avoid
4621  * security-related surprises by not following symlinks on the
4622  * newname.  --KAB
4623  *
4624  * We don't follow them on the oldname either to be compatible
4625  * with linux 2.0, and to avoid hard-linking to directories
4626  * and other special files.  --ADM
4627  */
4628 int do_linkat(int olddfd, struct filename *old, int newdfd,
4629 	      struct filename *new, int flags)
4630 {
4631 	struct mnt_idmap *idmap;
4632 	struct dentry *new_dentry;
4633 	struct path old_path, new_path;
4634 	struct inode *delegated_inode = NULL;
4635 	int how = 0;
4636 	int error;
4637 
4638 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) {
4639 		error = -EINVAL;
4640 		goto out_putnames;
4641 	}
4642 	/*
4643 	 * To use null names we require CAP_DAC_READ_SEARCH
4644 	 * This ensures that not everyone will be able to create
4645 	 * handlink using the passed filedescriptor.
4646 	 */
4647 	if (flags & AT_EMPTY_PATH && !capable(CAP_DAC_READ_SEARCH)) {
4648 		error = -ENOENT;
4649 		goto out_putnames;
4650 	}
4651 
4652 	if (flags & AT_SYMLINK_FOLLOW)
4653 		how |= LOOKUP_FOLLOW;
4654 retry:
4655 	error = filename_lookup(olddfd, old, how, &old_path, NULL);
4656 	if (error)
4657 		goto out_putnames;
4658 
4659 	new_dentry = filename_create(newdfd, new, &new_path,
4660 					(how & LOOKUP_REVAL));
4661 	error = PTR_ERR(new_dentry);
4662 	if (IS_ERR(new_dentry))
4663 		goto out_putpath;
4664 
4665 	error = -EXDEV;
4666 	if (old_path.mnt != new_path.mnt)
4667 		goto out_dput;
4668 	idmap = mnt_idmap(new_path.mnt);
4669 	error = may_linkat(idmap, &old_path);
4670 	if (unlikely(error))
4671 		goto out_dput;
4672 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4673 	if (error)
4674 		goto out_dput;
4675 	error = vfs_link(old_path.dentry, idmap, new_path.dentry->d_inode,
4676 			 new_dentry, &delegated_inode);
4677 out_dput:
4678 	done_path_create(&new_path, new_dentry);
4679 	if (delegated_inode) {
4680 		error = break_deleg_wait(&delegated_inode);
4681 		if (!error) {
4682 			path_put(&old_path);
4683 			goto retry;
4684 		}
4685 	}
4686 	if (retry_estale(error, how)) {
4687 		path_put(&old_path);
4688 		how |= LOOKUP_REVAL;
4689 		goto retry;
4690 	}
4691 out_putpath:
4692 	path_put(&old_path);
4693 out_putnames:
4694 	putname(old);
4695 	putname(new);
4696 
4697 	return error;
4698 }
4699 
4700 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4701 		int, newdfd, const char __user *, newname, int, flags)
4702 {
4703 	return do_linkat(olddfd, getname_uflags(oldname, flags),
4704 		newdfd, getname(newname), flags);
4705 }
4706 
4707 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4708 {
4709 	return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0);
4710 }
4711 
4712 /**
4713  * vfs_rename - rename a filesystem object
4714  * @rd:		pointer to &struct renamedata info
4715  *
4716  * The caller must hold multiple mutexes--see lock_rename()).
4717  *
4718  * If vfs_rename discovers a delegation in need of breaking at either
4719  * the source or destination, it will return -EWOULDBLOCK and return a
4720  * reference to the inode in delegated_inode.  The caller should then
4721  * break the delegation and retry.  Because breaking a delegation may
4722  * take a long time, the caller should drop all locks before doing
4723  * so.
4724  *
4725  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4726  * be appropriate for callers that expect the underlying filesystem not
4727  * to be NFS exported.
4728  *
4729  * The worst of all namespace operations - renaming directory. "Perverted"
4730  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4731  * Problems:
4732  *
4733  *	a) we can get into loop creation.
4734  *	b) race potential - two innocent renames can create a loop together.
4735  *	   That's where 4.4BSD screws up. Current fix: serialization on
4736  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4737  *	   story.
4738  *	c) we may have to lock up to _four_ objects - parents and victim (if it exists),
4739  *	   and source (if it's a non-directory or a subdirectory that moves to
4740  *	   different parent).
4741  *	   And that - after we got ->i_mutex on parents (until then we don't know
4742  *	   whether the target exists).  Solution: try to be smart with locking
4743  *	   order for inodes.  We rely on the fact that tree topology may change
4744  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4745  *	   move will be locked.  Thus we can rank directories by the tree
4746  *	   (ancestors first) and rank all non-directories after them.
4747  *	   That works since everybody except rename does "lock parent, lookup,
4748  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4749  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4750  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4751  *	   we'd better make sure that there's no link(2) for them.
4752  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4753  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4754  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4755  *	   ->i_mutex on parents, which works but leads to some truly excessive
4756  *	   locking].
4757  */
4758 int vfs_rename(struct renamedata *rd)
4759 {
4760 	int error;
4761 	struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir;
4762 	struct dentry *old_dentry = rd->old_dentry;
4763 	struct dentry *new_dentry = rd->new_dentry;
4764 	struct inode **delegated_inode = rd->delegated_inode;
4765 	unsigned int flags = rd->flags;
4766 	bool is_dir = d_is_dir(old_dentry);
4767 	struct inode *source = old_dentry->d_inode;
4768 	struct inode *target = new_dentry->d_inode;
4769 	bool new_is_dir = false;
4770 	unsigned max_links = new_dir->i_sb->s_max_links;
4771 	struct name_snapshot old_name;
4772 	bool lock_old_subdir, lock_new_subdir;
4773 
4774 	if (source == target)
4775 		return 0;
4776 
4777 	error = may_delete(rd->old_mnt_idmap, old_dir, old_dentry, is_dir);
4778 	if (error)
4779 		return error;
4780 
4781 	if (!target) {
4782 		error = may_create(rd->new_mnt_idmap, new_dir, new_dentry);
4783 	} else {
4784 		new_is_dir = d_is_dir(new_dentry);
4785 
4786 		if (!(flags & RENAME_EXCHANGE))
4787 			error = may_delete(rd->new_mnt_idmap, new_dir,
4788 					   new_dentry, is_dir);
4789 		else
4790 			error = may_delete(rd->new_mnt_idmap, new_dir,
4791 					   new_dentry, new_is_dir);
4792 	}
4793 	if (error)
4794 		return error;
4795 
4796 	if (!old_dir->i_op->rename)
4797 		return -EPERM;
4798 
4799 	/*
4800 	 * If we are going to change the parent - check write permissions,
4801 	 * we'll need to flip '..'.
4802 	 */
4803 	if (new_dir != old_dir) {
4804 		if (is_dir) {
4805 			error = inode_permission(rd->old_mnt_idmap, source,
4806 						 MAY_WRITE);
4807 			if (error)
4808 				return error;
4809 		}
4810 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4811 			error = inode_permission(rd->new_mnt_idmap, target,
4812 						 MAY_WRITE);
4813 			if (error)
4814 				return error;
4815 		}
4816 	}
4817 
4818 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4819 				      flags);
4820 	if (error)
4821 		return error;
4822 
4823 	take_dentry_name_snapshot(&old_name, old_dentry);
4824 	dget(new_dentry);
4825 	/*
4826 	 * Lock children.
4827 	 * The source subdirectory needs to be locked on cross-directory
4828 	 * rename or cross-directory exchange since its parent changes.
4829 	 * The target subdirectory needs to be locked on cross-directory
4830 	 * exchange due to parent change and on any rename due to becoming
4831 	 * a victim.
4832 	 * Non-directories need locking in all cases (for NFS reasons);
4833 	 * they get locked after any subdirectories (in inode address order).
4834 	 *
4835 	 * NOTE: WE ONLY LOCK UNRELATED DIRECTORIES IN CROSS-DIRECTORY CASE.
4836 	 * NEVER, EVER DO THAT WITHOUT ->s_vfs_rename_mutex.
4837 	 */
4838 	lock_old_subdir = new_dir != old_dir;
4839 	lock_new_subdir = new_dir != old_dir || !(flags & RENAME_EXCHANGE);
4840 	if (is_dir) {
4841 		if (lock_old_subdir)
4842 			inode_lock_nested(source, I_MUTEX_CHILD);
4843 		if (target && (!new_is_dir || lock_new_subdir))
4844 			inode_lock(target);
4845 	} else if (new_is_dir) {
4846 		if (lock_new_subdir)
4847 			inode_lock_nested(target, I_MUTEX_CHILD);
4848 		inode_lock(source);
4849 	} else {
4850 		lock_two_nondirectories(source, target);
4851 	}
4852 
4853 	error = -EPERM;
4854 	if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target)))
4855 		goto out;
4856 
4857 	error = -EBUSY;
4858 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4859 		goto out;
4860 
4861 	if (max_links && new_dir != old_dir) {
4862 		error = -EMLINK;
4863 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4864 			goto out;
4865 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4866 		    old_dir->i_nlink >= max_links)
4867 			goto out;
4868 	}
4869 	if (!is_dir) {
4870 		error = try_break_deleg(source, delegated_inode);
4871 		if (error)
4872 			goto out;
4873 	}
4874 	if (target && !new_is_dir) {
4875 		error = try_break_deleg(target, delegated_inode);
4876 		if (error)
4877 			goto out;
4878 	}
4879 	error = old_dir->i_op->rename(rd->new_mnt_idmap, old_dir, old_dentry,
4880 				      new_dir, new_dentry, flags);
4881 	if (error)
4882 		goto out;
4883 
4884 	if (!(flags & RENAME_EXCHANGE) && target) {
4885 		if (is_dir) {
4886 			shrink_dcache_parent(new_dentry);
4887 			target->i_flags |= S_DEAD;
4888 		}
4889 		dont_mount(new_dentry);
4890 		detach_mounts(new_dentry);
4891 	}
4892 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4893 		if (!(flags & RENAME_EXCHANGE))
4894 			d_move(old_dentry, new_dentry);
4895 		else
4896 			d_exchange(old_dentry, new_dentry);
4897 	}
4898 out:
4899 	if (!is_dir || lock_old_subdir)
4900 		inode_unlock(source);
4901 	if (target && (!new_is_dir || lock_new_subdir))
4902 		inode_unlock(target);
4903 	dput(new_dentry);
4904 	if (!error) {
4905 		fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4906 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4907 		if (flags & RENAME_EXCHANGE) {
4908 			fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4909 				      new_is_dir, NULL, new_dentry);
4910 		}
4911 	}
4912 	release_dentry_name_snapshot(&old_name);
4913 
4914 	return error;
4915 }
4916 EXPORT_SYMBOL(vfs_rename);
4917 
4918 int do_renameat2(int olddfd, struct filename *from, int newdfd,
4919 		 struct filename *to, unsigned int flags)
4920 {
4921 	struct renamedata rd;
4922 	struct dentry *old_dentry, *new_dentry;
4923 	struct dentry *trap;
4924 	struct path old_path, new_path;
4925 	struct qstr old_last, new_last;
4926 	int old_type, new_type;
4927 	struct inode *delegated_inode = NULL;
4928 	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4929 	bool should_retry = false;
4930 	int error = -EINVAL;
4931 
4932 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4933 		goto put_names;
4934 
4935 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4936 	    (flags & RENAME_EXCHANGE))
4937 		goto put_names;
4938 
4939 	if (flags & RENAME_EXCHANGE)
4940 		target_flags = 0;
4941 
4942 retry:
4943 	error = filename_parentat(olddfd, from, lookup_flags, &old_path,
4944 				  &old_last, &old_type);
4945 	if (error)
4946 		goto put_names;
4947 
4948 	error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
4949 				  &new_type);
4950 	if (error)
4951 		goto exit1;
4952 
4953 	error = -EXDEV;
4954 	if (old_path.mnt != new_path.mnt)
4955 		goto exit2;
4956 
4957 	error = -EBUSY;
4958 	if (old_type != LAST_NORM)
4959 		goto exit2;
4960 
4961 	if (flags & RENAME_NOREPLACE)
4962 		error = -EEXIST;
4963 	if (new_type != LAST_NORM)
4964 		goto exit2;
4965 
4966 	error = mnt_want_write(old_path.mnt);
4967 	if (error)
4968 		goto exit2;
4969 
4970 retry_deleg:
4971 	trap = lock_rename(new_path.dentry, old_path.dentry);
4972 	if (IS_ERR(trap)) {
4973 		error = PTR_ERR(trap);
4974 		goto exit_lock_rename;
4975 	}
4976 
4977 	old_dentry = lookup_one_qstr_excl(&old_last, old_path.dentry,
4978 					  lookup_flags);
4979 	error = PTR_ERR(old_dentry);
4980 	if (IS_ERR(old_dentry))
4981 		goto exit3;
4982 	/* source must exist */
4983 	error = -ENOENT;
4984 	if (d_is_negative(old_dentry))
4985 		goto exit4;
4986 	new_dentry = lookup_one_qstr_excl(&new_last, new_path.dentry,
4987 					  lookup_flags | target_flags);
4988 	error = PTR_ERR(new_dentry);
4989 	if (IS_ERR(new_dentry))
4990 		goto exit4;
4991 	error = -EEXIST;
4992 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4993 		goto exit5;
4994 	if (flags & RENAME_EXCHANGE) {
4995 		error = -ENOENT;
4996 		if (d_is_negative(new_dentry))
4997 			goto exit5;
4998 
4999 		if (!d_is_dir(new_dentry)) {
5000 			error = -ENOTDIR;
5001 			if (new_last.name[new_last.len])
5002 				goto exit5;
5003 		}
5004 	}
5005 	/* unless the source is a directory trailing slashes give -ENOTDIR */
5006 	if (!d_is_dir(old_dentry)) {
5007 		error = -ENOTDIR;
5008 		if (old_last.name[old_last.len])
5009 			goto exit5;
5010 		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
5011 			goto exit5;
5012 	}
5013 	/* source should not be ancestor of target */
5014 	error = -EINVAL;
5015 	if (old_dentry == trap)
5016 		goto exit5;
5017 	/* target should not be an ancestor of source */
5018 	if (!(flags & RENAME_EXCHANGE))
5019 		error = -ENOTEMPTY;
5020 	if (new_dentry == trap)
5021 		goto exit5;
5022 
5023 	error = security_path_rename(&old_path, old_dentry,
5024 				     &new_path, new_dentry, flags);
5025 	if (error)
5026 		goto exit5;
5027 
5028 	rd.old_dir	   = old_path.dentry->d_inode;
5029 	rd.old_dentry	   = old_dentry;
5030 	rd.old_mnt_idmap   = mnt_idmap(old_path.mnt);
5031 	rd.new_dir	   = new_path.dentry->d_inode;
5032 	rd.new_dentry	   = new_dentry;
5033 	rd.new_mnt_idmap   = mnt_idmap(new_path.mnt);
5034 	rd.delegated_inode = &delegated_inode;
5035 	rd.flags	   = flags;
5036 	error = vfs_rename(&rd);
5037 exit5:
5038 	dput(new_dentry);
5039 exit4:
5040 	dput(old_dentry);
5041 exit3:
5042 	unlock_rename(new_path.dentry, old_path.dentry);
5043 exit_lock_rename:
5044 	if (delegated_inode) {
5045 		error = break_deleg_wait(&delegated_inode);
5046 		if (!error)
5047 			goto retry_deleg;
5048 	}
5049 	mnt_drop_write(old_path.mnt);
5050 exit2:
5051 	if (retry_estale(error, lookup_flags))
5052 		should_retry = true;
5053 	path_put(&new_path);
5054 exit1:
5055 	path_put(&old_path);
5056 	if (should_retry) {
5057 		should_retry = false;
5058 		lookup_flags |= LOOKUP_REVAL;
5059 		goto retry;
5060 	}
5061 put_names:
5062 	putname(from);
5063 	putname(to);
5064 	return error;
5065 }
5066 
5067 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
5068 		int, newdfd, const char __user *, newname, unsigned int, flags)
5069 {
5070 	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5071 				flags);
5072 }
5073 
5074 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
5075 		int, newdfd, const char __user *, newname)
5076 {
5077 	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5078 				0);
5079 }
5080 
5081 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
5082 {
5083 	return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
5084 				getname(newname), 0);
5085 }
5086 
5087 int readlink_copy(char __user *buffer, int buflen, const char *link)
5088 {
5089 	int len = PTR_ERR(link);
5090 	if (IS_ERR(link))
5091 		goto out;
5092 
5093 	len = strlen(link);
5094 	if (len > (unsigned) buflen)
5095 		len = buflen;
5096 	if (copy_to_user(buffer, link, len))
5097 		len = -EFAULT;
5098 out:
5099 	return len;
5100 }
5101 
5102 /**
5103  * vfs_readlink - copy symlink body into userspace buffer
5104  * @dentry: dentry on which to get symbolic link
5105  * @buffer: user memory pointer
5106  * @buflen: size of buffer
5107  *
5108  * Does not touch atime.  That's up to the caller if necessary
5109  *
5110  * Does not call security hook.
5111  */
5112 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5113 {
5114 	struct inode *inode = d_inode(dentry);
5115 	DEFINE_DELAYED_CALL(done);
5116 	const char *link;
5117 	int res;
5118 
5119 	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
5120 		if (unlikely(inode->i_op->readlink))
5121 			return inode->i_op->readlink(dentry, buffer, buflen);
5122 
5123 		if (!d_is_symlink(dentry))
5124 			return -EINVAL;
5125 
5126 		spin_lock(&inode->i_lock);
5127 		inode->i_opflags |= IOP_DEFAULT_READLINK;
5128 		spin_unlock(&inode->i_lock);
5129 	}
5130 
5131 	link = READ_ONCE(inode->i_link);
5132 	if (!link) {
5133 		link = inode->i_op->get_link(dentry, inode, &done);
5134 		if (IS_ERR(link))
5135 			return PTR_ERR(link);
5136 	}
5137 	res = readlink_copy(buffer, buflen, link);
5138 	do_delayed_call(&done);
5139 	return res;
5140 }
5141 EXPORT_SYMBOL(vfs_readlink);
5142 
5143 /**
5144  * vfs_get_link - get symlink body
5145  * @dentry: dentry on which to get symbolic link
5146  * @done: caller needs to free returned data with this
5147  *
5148  * Calls security hook and i_op->get_link() on the supplied inode.
5149  *
5150  * It does not touch atime.  That's up to the caller if necessary.
5151  *
5152  * Does not work on "special" symlinks like /proc/$$/fd/N
5153  */
5154 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
5155 {
5156 	const char *res = ERR_PTR(-EINVAL);
5157 	struct inode *inode = d_inode(dentry);
5158 
5159 	if (d_is_symlink(dentry)) {
5160 		res = ERR_PTR(security_inode_readlink(dentry));
5161 		if (!res)
5162 			res = inode->i_op->get_link(dentry, inode, done);
5163 	}
5164 	return res;
5165 }
5166 EXPORT_SYMBOL(vfs_get_link);
5167 
5168 /* get the link contents into pagecache */
5169 const char *page_get_link(struct dentry *dentry, struct inode *inode,
5170 			  struct delayed_call *callback)
5171 {
5172 	char *kaddr;
5173 	struct page *page;
5174 	struct address_space *mapping = inode->i_mapping;
5175 
5176 	if (!dentry) {
5177 		page = find_get_page(mapping, 0);
5178 		if (!page)
5179 			return ERR_PTR(-ECHILD);
5180 		if (!PageUptodate(page)) {
5181 			put_page(page);
5182 			return ERR_PTR(-ECHILD);
5183 		}
5184 	} else {
5185 		page = read_mapping_page(mapping, 0, NULL);
5186 		if (IS_ERR(page))
5187 			return (char*)page;
5188 	}
5189 	set_delayed_call(callback, page_put_link, page);
5190 	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
5191 	kaddr = page_address(page);
5192 	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
5193 	return kaddr;
5194 }
5195 
5196 EXPORT_SYMBOL(page_get_link);
5197 
5198 void page_put_link(void *arg)
5199 {
5200 	put_page(arg);
5201 }
5202 EXPORT_SYMBOL(page_put_link);
5203 
5204 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5205 {
5206 	DEFINE_DELAYED_CALL(done);
5207 	int res = readlink_copy(buffer, buflen,
5208 				page_get_link(dentry, d_inode(dentry),
5209 					      &done));
5210 	do_delayed_call(&done);
5211 	return res;
5212 }
5213 EXPORT_SYMBOL(page_readlink);
5214 
5215 int page_symlink(struct inode *inode, const char *symname, int len)
5216 {
5217 	struct address_space *mapping = inode->i_mapping;
5218 	const struct address_space_operations *aops = mapping->a_ops;
5219 	bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS);
5220 	struct page *page;
5221 	void *fsdata = NULL;
5222 	int err;
5223 	unsigned int flags;
5224 
5225 retry:
5226 	if (nofs)
5227 		flags = memalloc_nofs_save();
5228 	err = aops->write_begin(NULL, mapping, 0, len-1, &page, &fsdata);
5229 	if (nofs)
5230 		memalloc_nofs_restore(flags);
5231 	if (err)
5232 		goto fail;
5233 
5234 	memcpy(page_address(page), symname, len-1);
5235 
5236 	err = aops->write_end(NULL, mapping, 0, len-1, len-1,
5237 							page, fsdata);
5238 	if (err < 0)
5239 		goto fail;
5240 	if (err < len-1)
5241 		goto retry;
5242 
5243 	mark_inode_dirty(inode);
5244 	return 0;
5245 fail:
5246 	return err;
5247 }
5248 EXPORT_SYMBOL(page_symlink);
5249 
5250 const struct inode_operations page_symlink_inode_operations = {
5251 	.get_link	= page_get_link,
5252 };
5253 EXPORT_SYMBOL(page_symlink_inode_operations);
5254