1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/namei.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * Some corrections by tytso. 10 */ 11 12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 13 * lookup logic. 14 */ 15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 16 */ 17 18 #include <linux/init.h> 19 #include <linux/export.h> 20 #include <linux/kernel.h> 21 #include <linux/slab.h> 22 #include <linux/fs.h> 23 #include <linux/filelock.h> 24 #include <linux/namei.h> 25 #include <linux/pagemap.h> 26 #include <linux/sched/mm.h> 27 #include <linux/fsnotify.h> 28 #include <linux/personality.h> 29 #include <linux/security.h> 30 #include <linux/ima.h> 31 #include <linux/syscalls.h> 32 #include <linux/mount.h> 33 #include <linux/audit.h> 34 #include <linux/capability.h> 35 #include <linux/file.h> 36 #include <linux/fcntl.h> 37 #include <linux/device_cgroup.h> 38 #include <linux/fs_struct.h> 39 #include <linux/posix_acl.h> 40 #include <linux/hash.h> 41 #include <linux/bitops.h> 42 #include <linux/init_task.h> 43 #include <linux/uaccess.h> 44 45 #include "internal.h" 46 #include "mount.h" 47 48 /* [Feb-1997 T. Schoebel-Theuer] 49 * Fundamental changes in the pathname lookup mechanisms (namei) 50 * were necessary because of omirr. The reason is that omirr needs 51 * to know the _real_ pathname, not the user-supplied one, in case 52 * of symlinks (and also when transname replacements occur). 53 * 54 * The new code replaces the old recursive symlink resolution with 55 * an iterative one (in case of non-nested symlink chains). It does 56 * this with calls to <fs>_follow_link(). 57 * As a side effect, dir_namei(), _namei() and follow_link() are now 58 * replaced with a single function lookup_dentry() that can handle all 59 * the special cases of the former code. 60 * 61 * With the new dcache, the pathname is stored at each inode, at least as 62 * long as the refcount of the inode is positive. As a side effect, the 63 * size of the dcache depends on the inode cache and thus is dynamic. 64 * 65 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 66 * resolution to correspond with current state of the code. 67 * 68 * Note that the symlink resolution is not *completely* iterative. 69 * There is still a significant amount of tail- and mid- recursion in 70 * the algorithm. Also, note that <fs>_readlink() is not used in 71 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 72 * may return different results than <fs>_follow_link(). Many virtual 73 * filesystems (including /proc) exhibit this behavior. 74 */ 75 76 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 77 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 78 * and the name already exists in form of a symlink, try to create the new 79 * name indicated by the symlink. The old code always complained that the 80 * name already exists, due to not following the symlink even if its target 81 * is nonexistent. The new semantics affects also mknod() and link() when 82 * the name is a symlink pointing to a non-existent name. 83 * 84 * I don't know which semantics is the right one, since I have no access 85 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 86 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 87 * "old" one. Personally, I think the new semantics is much more logical. 88 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 89 * file does succeed in both HP-UX and SunOs, but not in Solaris 90 * and in the old Linux semantics. 91 */ 92 93 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 94 * semantics. See the comments in "open_namei" and "do_link" below. 95 * 96 * [10-Sep-98 Alan Modra] Another symlink change. 97 */ 98 99 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 100 * inside the path - always follow. 101 * in the last component in creation/removal/renaming - never follow. 102 * if LOOKUP_FOLLOW passed - follow. 103 * if the pathname has trailing slashes - follow. 104 * otherwise - don't follow. 105 * (applied in that order). 106 * 107 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 108 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 109 * During the 2.4 we need to fix the userland stuff depending on it - 110 * hopefully we will be able to get rid of that wart in 2.5. So far only 111 * XEmacs seems to be relying on it... 112 */ 113 /* 114 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 115 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 116 * any extra contention... 117 */ 118 119 /* In order to reduce some races, while at the same time doing additional 120 * checking and hopefully speeding things up, we copy filenames to the 121 * kernel data space before using them.. 122 * 123 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 124 * PATH_MAX includes the nul terminator --RR. 125 */ 126 127 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) 128 129 struct filename * 130 getname_flags(const char __user *filename, int flags, int *empty) 131 { 132 struct filename *result; 133 char *kname; 134 int len; 135 136 result = audit_reusename(filename); 137 if (result) 138 return result; 139 140 result = __getname(); 141 if (unlikely(!result)) 142 return ERR_PTR(-ENOMEM); 143 144 /* 145 * First, try to embed the struct filename inside the names_cache 146 * allocation 147 */ 148 kname = (char *)result->iname; 149 result->name = kname; 150 151 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); 152 if (unlikely(len < 0)) { 153 __putname(result); 154 return ERR_PTR(len); 155 } 156 157 /* 158 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 159 * separate struct filename so we can dedicate the entire 160 * names_cache allocation for the pathname, and re-do the copy from 161 * userland. 162 */ 163 if (unlikely(len == EMBEDDED_NAME_MAX)) { 164 const size_t size = offsetof(struct filename, iname[1]); 165 kname = (char *)result; 166 167 /* 168 * size is chosen that way we to guarantee that 169 * result->iname[0] is within the same object and that 170 * kname can't be equal to result->iname, no matter what. 171 */ 172 result = kzalloc(size, GFP_KERNEL); 173 if (unlikely(!result)) { 174 __putname(kname); 175 return ERR_PTR(-ENOMEM); 176 } 177 result->name = kname; 178 len = strncpy_from_user(kname, filename, PATH_MAX); 179 if (unlikely(len < 0)) { 180 __putname(kname); 181 kfree(result); 182 return ERR_PTR(len); 183 } 184 if (unlikely(len == PATH_MAX)) { 185 __putname(kname); 186 kfree(result); 187 return ERR_PTR(-ENAMETOOLONG); 188 } 189 } 190 191 atomic_set(&result->refcnt, 1); 192 /* The empty path is special. */ 193 if (unlikely(!len)) { 194 if (empty) 195 *empty = 1; 196 if (!(flags & LOOKUP_EMPTY)) { 197 putname(result); 198 return ERR_PTR(-ENOENT); 199 } 200 } 201 202 result->uptr = filename; 203 result->aname = NULL; 204 audit_getname(result); 205 return result; 206 } 207 208 struct filename * 209 getname_uflags(const char __user *filename, int uflags) 210 { 211 int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 212 213 return getname_flags(filename, flags, NULL); 214 } 215 216 struct filename * 217 getname(const char __user * filename) 218 { 219 return getname_flags(filename, 0, NULL); 220 } 221 222 struct filename * 223 getname_kernel(const char * filename) 224 { 225 struct filename *result; 226 int len = strlen(filename) + 1; 227 228 result = __getname(); 229 if (unlikely(!result)) 230 return ERR_PTR(-ENOMEM); 231 232 if (len <= EMBEDDED_NAME_MAX) { 233 result->name = (char *)result->iname; 234 } else if (len <= PATH_MAX) { 235 const size_t size = offsetof(struct filename, iname[1]); 236 struct filename *tmp; 237 238 tmp = kmalloc(size, GFP_KERNEL); 239 if (unlikely(!tmp)) { 240 __putname(result); 241 return ERR_PTR(-ENOMEM); 242 } 243 tmp->name = (char *)result; 244 result = tmp; 245 } else { 246 __putname(result); 247 return ERR_PTR(-ENAMETOOLONG); 248 } 249 memcpy((char *)result->name, filename, len); 250 result->uptr = NULL; 251 result->aname = NULL; 252 atomic_set(&result->refcnt, 1); 253 audit_getname(result); 254 255 return result; 256 } 257 EXPORT_SYMBOL(getname_kernel); 258 259 void putname(struct filename *name) 260 { 261 if (IS_ERR(name)) 262 return; 263 264 if (WARN_ON_ONCE(!atomic_read(&name->refcnt))) 265 return; 266 267 if (!atomic_dec_and_test(&name->refcnt)) 268 return; 269 270 if (name->name != name->iname) { 271 __putname(name->name); 272 kfree(name); 273 } else 274 __putname(name); 275 } 276 EXPORT_SYMBOL(putname); 277 278 /** 279 * check_acl - perform ACL permission checking 280 * @idmap: idmap of the mount the inode was found from 281 * @inode: inode to check permissions on 282 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 283 * 284 * This function performs the ACL permission checking. Since this function 285 * retrieve POSIX acls it needs to know whether it is called from a blocking or 286 * non-blocking context and thus cares about the MAY_NOT_BLOCK bit. 287 * 288 * If the inode has been found through an idmapped mount the idmap of 289 * the vfsmount must be passed through @idmap. This function will then take 290 * care to map the inode according to @idmap before checking permissions. 291 * On non-idmapped mounts or if permission checking is to be performed on the 292 * raw inode simply pass @nop_mnt_idmap. 293 */ 294 static int check_acl(struct mnt_idmap *idmap, 295 struct inode *inode, int mask) 296 { 297 #ifdef CONFIG_FS_POSIX_ACL 298 struct posix_acl *acl; 299 300 if (mask & MAY_NOT_BLOCK) { 301 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 302 if (!acl) 303 return -EAGAIN; 304 /* no ->get_inode_acl() calls in RCU mode... */ 305 if (is_uncached_acl(acl)) 306 return -ECHILD; 307 return posix_acl_permission(idmap, inode, acl, mask); 308 } 309 310 acl = get_inode_acl(inode, ACL_TYPE_ACCESS); 311 if (IS_ERR(acl)) 312 return PTR_ERR(acl); 313 if (acl) { 314 int error = posix_acl_permission(idmap, inode, acl, mask); 315 posix_acl_release(acl); 316 return error; 317 } 318 #endif 319 320 return -EAGAIN; 321 } 322 323 /** 324 * acl_permission_check - perform basic UNIX permission checking 325 * @idmap: idmap of the mount the inode was found from 326 * @inode: inode to check permissions on 327 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 328 * 329 * This function performs the basic UNIX permission checking. Since this 330 * function may retrieve POSIX acls it needs to know whether it is called from a 331 * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit. 332 * 333 * If the inode has been found through an idmapped mount the idmap of 334 * the vfsmount must be passed through @idmap. This function will then take 335 * care to map the inode according to @idmap before checking permissions. 336 * On non-idmapped mounts or if permission checking is to be performed on the 337 * raw inode simply pass @nop_mnt_idmap. 338 */ 339 static int acl_permission_check(struct mnt_idmap *idmap, 340 struct inode *inode, int mask) 341 { 342 unsigned int mode = inode->i_mode; 343 vfsuid_t vfsuid; 344 345 /* Are we the owner? If so, ACL's don't matter */ 346 vfsuid = i_uid_into_vfsuid(idmap, inode); 347 if (likely(vfsuid_eq_kuid(vfsuid, current_fsuid()))) { 348 mask &= 7; 349 mode >>= 6; 350 return (mask & ~mode) ? -EACCES : 0; 351 } 352 353 /* Do we have ACL's? */ 354 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 355 int error = check_acl(idmap, inode, mask); 356 if (error != -EAGAIN) 357 return error; 358 } 359 360 /* Only RWX matters for group/other mode bits */ 361 mask &= 7; 362 363 /* 364 * Are the group permissions different from 365 * the other permissions in the bits we care 366 * about? Need to check group ownership if so. 367 */ 368 if (mask & (mode ^ (mode >> 3))) { 369 vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode); 370 if (vfsgid_in_group_p(vfsgid)) 371 mode >>= 3; 372 } 373 374 /* Bits in 'mode' clear that we require? */ 375 return (mask & ~mode) ? -EACCES : 0; 376 } 377 378 /** 379 * generic_permission - check for access rights on a Posix-like filesystem 380 * @idmap: idmap of the mount the inode was found from 381 * @inode: inode to check access rights for 382 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, 383 * %MAY_NOT_BLOCK ...) 384 * 385 * Used to check for read/write/execute permissions on a file. 386 * We use "fsuid" for this, letting us set arbitrary permissions 387 * for filesystem access without changing the "normal" uids which 388 * are used for other things. 389 * 390 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 391 * request cannot be satisfied (eg. requires blocking or too much complexity). 392 * It would then be called again in ref-walk mode. 393 * 394 * If the inode has been found through an idmapped mount the idmap of 395 * the vfsmount must be passed through @idmap. This function will then take 396 * care to map the inode according to @idmap before checking permissions. 397 * On non-idmapped mounts or if permission checking is to be performed on the 398 * raw inode simply pass @nop_mnt_idmap. 399 */ 400 int generic_permission(struct mnt_idmap *idmap, struct inode *inode, 401 int mask) 402 { 403 int ret; 404 405 /* 406 * Do the basic permission checks. 407 */ 408 ret = acl_permission_check(idmap, inode, mask); 409 if (ret != -EACCES) 410 return ret; 411 412 if (S_ISDIR(inode->i_mode)) { 413 /* DACs are overridable for directories */ 414 if (!(mask & MAY_WRITE)) 415 if (capable_wrt_inode_uidgid(idmap, inode, 416 CAP_DAC_READ_SEARCH)) 417 return 0; 418 if (capable_wrt_inode_uidgid(idmap, inode, 419 CAP_DAC_OVERRIDE)) 420 return 0; 421 return -EACCES; 422 } 423 424 /* 425 * Searching includes executable on directories, else just read. 426 */ 427 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 428 if (mask == MAY_READ) 429 if (capable_wrt_inode_uidgid(idmap, inode, 430 CAP_DAC_READ_SEARCH)) 431 return 0; 432 /* 433 * Read/write DACs are always overridable. 434 * Executable DACs are overridable when there is 435 * at least one exec bit set. 436 */ 437 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 438 if (capable_wrt_inode_uidgid(idmap, inode, 439 CAP_DAC_OVERRIDE)) 440 return 0; 441 442 return -EACCES; 443 } 444 EXPORT_SYMBOL(generic_permission); 445 446 /** 447 * do_inode_permission - UNIX permission checking 448 * @idmap: idmap of the mount the inode was found from 449 * @inode: inode to check permissions on 450 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 451 * 452 * We _really_ want to just do "generic_permission()" without 453 * even looking at the inode->i_op values. So we keep a cache 454 * flag in inode->i_opflags, that says "this has not special 455 * permission function, use the fast case". 456 */ 457 static inline int do_inode_permission(struct mnt_idmap *idmap, 458 struct inode *inode, int mask) 459 { 460 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 461 if (likely(inode->i_op->permission)) 462 return inode->i_op->permission(idmap, inode, mask); 463 464 /* This gets set once for the inode lifetime */ 465 spin_lock(&inode->i_lock); 466 inode->i_opflags |= IOP_FASTPERM; 467 spin_unlock(&inode->i_lock); 468 } 469 return generic_permission(idmap, inode, mask); 470 } 471 472 /** 473 * sb_permission - Check superblock-level permissions 474 * @sb: Superblock of inode to check permission on 475 * @inode: Inode to check permission on 476 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 477 * 478 * Separate out file-system wide checks from inode-specific permission checks. 479 */ 480 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 481 { 482 if (unlikely(mask & MAY_WRITE)) { 483 umode_t mode = inode->i_mode; 484 485 /* Nobody gets write access to a read-only fs. */ 486 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 487 return -EROFS; 488 } 489 return 0; 490 } 491 492 /** 493 * inode_permission - Check for access rights to a given inode 494 * @idmap: idmap of the mount the inode was found from 495 * @inode: Inode to check permission on 496 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 497 * 498 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 499 * this, letting us set arbitrary permissions for filesystem access without 500 * changing the "normal" UIDs which are used for other things. 501 * 502 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 503 */ 504 int inode_permission(struct mnt_idmap *idmap, 505 struct inode *inode, int mask) 506 { 507 int retval; 508 509 retval = sb_permission(inode->i_sb, inode, mask); 510 if (retval) 511 return retval; 512 513 if (unlikely(mask & MAY_WRITE)) { 514 /* 515 * Nobody gets write access to an immutable file. 516 */ 517 if (IS_IMMUTABLE(inode)) 518 return -EPERM; 519 520 /* 521 * Updating mtime will likely cause i_uid and i_gid to be 522 * written back improperly if their true value is unknown 523 * to the vfs. 524 */ 525 if (HAS_UNMAPPED_ID(idmap, inode)) 526 return -EACCES; 527 } 528 529 retval = do_inode_permission(idmap, inode, mask); 530 if (retval) 531 return retval; 532 533 retval = devcgroup_inode_permission(inode, mask); 534 if (retval) 535 return retval; 536 537 return security_inode_permission(inode, mask); 538 } 539 EXPORT_SYMBOL(inode_permission); 540 541 /** 542 * path_get - get a reference to a path 543 * @path: path to get the reference to 544 * 545 * Given a path increment the reference count to the dentry and the vfsmount. 546 */ 547 void path_get(const struct path *path) 548 { 549 mntget(path->mnt); 550 dget(path->dentry); 551 } 552 EXPORT_SYMBOL(path_get); 553 554 /** 555 * path_put - put a reference to a path 556 * @path: path to put the reference to 557 * 558 * Given a path decrement the reference count to the dentry and the vfsmount. 559 */ 560 void path_put(const struct path *path) 561 { 562 dput(path->dentry); 563 mntput(path->mnt); 564 } 565 EXPORT_SYMBOL(path_put); 566 567 #define EMBEDDED_LEVELS 2 568 struct nameidata { 569 struct path path; 570 struct qstr last; 571 struct path root; 572 struct inode *inode; /* path.dentry.d_inode */ 573 unsigned int flags, state; 574 unsigned seq, next_seq, m_seq, r_seq; 575 int last_type; 576 unsigned depth; 577 int total_link_count; 578 struct saved { 579 struct path link; 580 struct delayed_call done; 581 const char *name; 582 unsigned seq; 583 } *stack, internal[EMBEDDED_LEVELS]; 584 struct filename *name; 585 struct nameidata *saved; 586 unsigned root_seq; 587 int dfd; 588 vfsuid_t dir_vfsuid; 589 umode_t dir_mode; 590 } __randomize_layout; 591 592 #define ND_ROOT_PRESET 1 593 #define ND_ROOT_GRABBED 2 594 #define ND_JUMPED 4 595 596 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name) 597 { 598 struct nameidata *old = current->nameidata; 599 p->stack = p->internal; 600 p->depth = 0; 601 p->dfd = dfd; 602 p->name = name; 603 p->path.mnt = NULL; 604 p->path.dentry = NULL; 605 p->total_link_count = old ? old->total_link_count : 0; 606 p->saved = old; 607 current->nameidata = p; 608 } 609 610 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name, 611 const struct path *root) 612 { 613 __set_nameidata(p, dfd, name); 614 p->state = 0; 615 if (unlikely(root)) { 616 p->state = ND_ROOT_PRESET; 617 p->root = *root; 618 } 619 } 620 621 static void restore_nameidata(void) 622 { 623 struct nameidata *now = current->nameidata, *old = now->saved; 624 625 current->nameidata = old; 626 if (old) 627 old->total_link_count = now->total_link_count; 628 if (now->stack != now->internal) 629 kfree(now->stack); 630 } 631 632 static bool nd_alloc_stack(struct nameidata *nd) 633 { 634 struct saved *p; 635 636 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved), 637 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL); 638 if (unlikely(!p)) 639 return false; 640 memcpy(p, nd->internal, sizeof(nd->internal)); 641 nd->stack = p; 642 return true; 643 } 644 645 /** 646 * path_connected - Verify that a dentry is below mnt.mnt_root 647 * @mnt: The mountpoint to check. 648 * @dentry: The dentry to check. 649 * 650 * Rename can sometimes move a file or directory outside of a bind 651 * mount, path_connected allows those cases to be detected. 652 */ 653 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry) 654 { 655 struct super_block *sb = mnt->mnt_sb; 656 657 /* Bind mounts can have disconnected paths */ 658 if (mnt->mnt_root == sb->s_root) 659 return true; 660 661 return is_subdir(dentry, mnt->mnt_root); 662 } 663 664 static void drop_links(struct nameidata *nd) 665 { 666 int i = nd->depth; 667 while (i--) { 668 struct saved *last = nd->stack + i; 669 do_delayed_call(&last->done); 670 clear_delayed_call(&last->done); 671 } 672 } 673 674 static void leave_rcu(struct nameidata *nd) 675 { 676 nd->flags &= ~LOOKUP_RCU; 677 nd->seq = nd->next_seq = 0; 678 rcu_read_unlock(); 679 } 680 681 static void terminate_walk(struct nameidata *nd) 682 { 683 drop_links(nd); 684 if (!(nd->flags & LOOKUP_RCU)) { 685 int i; 686 path_put(&nd->path); 687 for (i = 0; i < nd->depth; i++) 688 path_put(&nd->stack[i].link); 689 if (nd->state & ND_ROOT_GRABBED) { 690 path_put(&nd->root); 691 nd->state &= ~ND_ROOT_GRABBED; 692 } 693 } else { 694 leave_rcu(nd); 695 } 696 nd->depth = 0; 697 nd->path.mnt = NULL; 698 nd->path.dentry = NULL; 699 } 700 701 /* path_put is needed afterwards regardless of success or failure */ 702 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq) 703 { 704 int res = __legitimize_mnt(path->mnt, mseq); 705 if (unlikely(res)) { 706 if (res > 0) 707 path->mnt = NULL; 708 path->dentry = NULL; 709 return false; 710 } 711 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) { 712 path->dentry = NULL; 713 return false; 714 } 715 return !read_seqcount_retry(&path->dentry->d_seq, seq); 716 } 717 718 static inline bool legitimize_path(struct nameidata *nd, 719 struct path *path, unsigned seq) 720 { 721 return __legitimize_path(path, seq, nd->m_seq); 722 } 723 724 static bool legitimize_links(struct nameidata *nd) 725 { 726 int i; 727 if (unlikely(nd->flags & LOOKUP_CACHED)) { 728 drop_links(nd); 729 nd->depth = 0; 730 return false; 731 } 732 for (i = 0; i < nd->depth; i++) { 733 struct saved *last = nd->stack + i; 734 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) { 735 drop_links(nd); 736 nd->depth = i + 1; 737 return false; 738 } 739 } 740 return true; 741 } 742 743 static bool legitimize_root(struct nameidata *nd) 744 { 745 /* Nothing to do if nd->root is zero or is managed by the VFS user. */ 746 if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET)) 747 return true; 748 nd->state |= ND_ROOT_GRABBED; 749 return legitimize_path(nd, &nd->root, nd->root_seq); 750 } 751 752 /* 753 * Path walking has 2 modes, rcu-walk and ref-walk (see 754 * Documentation/filesystems/path-lookup.txt). In situations when we can't 755 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 756 * normal reference counts on dentries and vfsmounts to transition to ref-walk 757 * mode. Refcounts are grabbed at the last known good point before rcu-walk 758 * got stuck, so ref-walk may continue from there. If this is not successful 759 * (eg. a seqcount has changed), then failure is returned and it's up to caller 760 * to restart the path walk from the beginning in ref-walk mode. 761 */ 762 763 /** 764 * try_to_unlazy - try to switch to ref-walk mode. 765 * @nd: nameidata pathwalk data 766 * Returns: true on success, false on failure 767 * 768 * try_to_unlazy attempts to legitimize the current nd->path and nd->root 769 * for ref-walk mode. 770 * Must be called from rcu-walk context. 771 * Nothing should touch nameidata between try_to_unlazy() failure and 772 * terminate_walk(). 773 */ 774 static bool try_to_unlazy(struct nameidata *nd) 775 { 776 struct dentry *parent = nd->path.dentry; 777 778 BUG_ON(!(nd->flags & LOOKUP_RCU)); 779 780 if (unlikely(!legitimize_links(nd))) 781 goto out1; 782 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq))) 783 goto out; 784 if (unlikely(!legitimize_root(nd))) 785 goto out; 786 leave_rcu(nd); 787 BUG_ON(nd->inode != parent->d_inode); 788 return true; 789 790 out1: 791 nd->path.mnt = NULL; 792 nd->path.dentry = NULL; 793 out: 794 leave_rcu(nd); 795 return false; 796 } 797 798 /** 799 * try_to_unlazy_next - try to switch to ref-walk mode. 800 * @nd: nameidata pathwalk data 801 * @dentry: next dentry to step into 802 * Returns: true on success, false on failure 803 * 804 * Similar to try_to_unlazy(), but here we have the next dentry already 805 * picked by rcu-walk and want to legitimize that in addition to the current 806 * nd->path and nd->root for ref-walk mode. Must be called from rcu-walk context. 807 * Nothing should touch nameidata between try_to_unlazy_next() failure and 808 * terminate_walk(). 809 */ 810 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry) 811 { 812 int res; 813 BUG_ON(!(nd->flags & LOOKUP_RCU)); 814 815 if (unlikely(!legitimize_links(nd))) 816 goto out2; 817 res = __legitimize_mnt(nd->path.mnt, nd->m_seq); 818 if (unlikely(res)) { 819 if (res > 0) 820 goto out2; 821 goto out1; 822 } 823 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref))) 824 goto out1; 825 826 /* 827 * We need to move both the parent and the dentry from the RCU domain 828 * to be properly refcounted. And the sequence number in the dentry 829 * validates *both* dentry counters, since we checked the sequence 830 * number of the parent after we got the child sequence number. So we 831 * know the parent must still be valid if the child sequence number is 832 */ 833 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) 834 goto out; 835 if (read_seqcount_retry(&dentry->d_seq, nd->next_seq)) 836 goto out_dput; 837 /* 838 * Sequence counts matched. Now make sure that the root is 839 * still valid and get it if required. 840 */ 841 if (unlikely(!legitimize_root(nd))) 842 goto out_dput; 843 leave_rcu(nd); 844 return true; 845 846 out2: 847 nd->path.mnt = NULL; 848 out1: 849 nd->path.dentry = NULL; 850 out: 851 leave_rcu(nd); 852 return false; 853 out_dput: 854 leave_rcu(nd); 855 dput(dentry); 856 return false; 857 } 858 859 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 860 { 861 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) 862 return dentry->d_op->d_revalidate(dentry, flags); 863 else 864 return 1; 865 } 866 867 /** 868 * complete_walk - successful completion of path walk 869 * @nd: pointer nameidata 870 * 871 * If we had been in RCU mode, drop out of it and legitimize nd->path. 872 * Revalidate the final result, unless we'd already done that during 873 * the path walk or the filesystem doesn't ask for it. Return 0 on 874 * success, -error on failure. In case of failure caller does not 875 * need to drop nd->path. 876 */ 877 static int complete_walk(struct nameidata *nd) 878 { 879 struct dentry *dentry = nd->path.dentry; 880 int status; 881 882 if (nd->flags & LOOKUP_RCU) { 883 /* 884 * We don't want to zero nd->root for scoped-lookups or 885 * externally-managed nd->root. 886 */ 887 if (!(nd->state & ND_ROOT_PRESET)) 888 if (!(nd->flags & LOOKUP_IS_SCOPED)) 889 nd->root.mnt = NULL; 890 nd->flags &= ~LOOKUP_CACHED; 891 if (!try_to_unlazy(nd)) 892 return -ECHILD; 893 } 894 895 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { 896 /* 897 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't 898 * ever step outside the root during lookup" and should already 899 * be guaranteed by the rest of namei, we want to avoid a namei 900 * BUG resulting in userspace being given a path that was not 901 * scoped within the root at some point during the lookup. 902 * 903 * So, do a final sanity-check to make sure that in the 904 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED) 905 * we won't silently return an fd completely outside of the 906 * requested root to userspace. 907 * 908 * Userspace could move the path outside the root after this 909 * check, but as discussed elsewhere this is not a concern (the 910 * resolved file was inside the root at some point). 911 */ 912 if (!path_is_under(&nd->path, &nd->root)) 913 return -EXDEV; 914 } 915 916 if (likely(!(nd->state & ND_JUMPED))) 917 return 0; 918 919 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 920 return 0; 921 922 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 923 if (status > 0) 924 return 0; 925 926 if (!status) 927 status = -ESTALE; 928 929 return status; 930 } 931 932 static int set_root(struct nameidata *nd) 933 { 934 struct fs_struct *fs = current->fs; 935 936 /* 937 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we 938 * still have to ensure it doesn't happen because it will cause a breakout 939 * from the dirfd. 940 */ 941 if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED)) 942 return -ENOTRECOVERABLE; 943 944 if (nd->flags & LOOKUP_RCU) { 945 unsigned seq; 946 947 do { 948 seq = read_seqcount_begin(&fs->seq); 949 nd->root = fs->root; 950 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 951 } while (read_seqcount_retry(&fs->seq, seq)); 952 } else { 953 get_fs_root(fs, &nd->root); 954 nd->state |= ND_ROOT_GRABBED; 955 } 956 return 0; 957 } 958 959 static int nd_jump_root(struct nameidata *nd) 960 { 961 if (unlikely(nd->flags & LOOKUP_BENEATH)) 962 return -EXDEV; 963 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { 964 /* Absolute path arguments to path_init() are allowed. */ 965 if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt) 966 return -EXDEV; 967 } 968 if (!nd->root.mnt) { 969 int error = set_root(nd); 970 if (error) 971 return error; 972 } 973 if (nd->flags & LOOKUP_RCU) { 974 struct dentry *d; 975 nd->path = nd->root; 976 d = nd->path.dentry; 977 nd->inode = d->d_inode; 978 nd->seq = nd->root_seq; 979 if (read_seqcount_retry(&d->d_seq, nd->seq)) 980 return -ECHILD; 981 } else { 982 path_put(&nd->path); 983 nd->path = nd->root; 984 path_get(&nd->path); 985 nd->inode = nd->path.dentry->d_inode; 986 } 987 nd->state |= ND_JUMPED; 988 return 0; 989 } 990 991 /* 992 * Helper to directly jump to a known parsed path from ->get_link, 993 * caller must have taken a reference to path beforehand. 994 */ 995 int nd_jump_link(const struct path *path) 996 { 997 int error = -ELOOP; 998 struct nameidata *nd = current->nameidata; 999 1000 if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS)) 1001 goto err; 1002 1003 error = -EXDEV; 1004 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { 1005 if (nd->path.mnt != path->mnt) 1006 goto err; 1007 } 1008 /* Not currently safe for scoped-lookups. */ 1009 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) 1010 goto err; 1011 1012 path_put(&nd->path); 1013 nd->path = *path; 1014 nd->inode = nd->path.dentry->d_inode; 1015 nd->state |= ND_JUMPED; 1016 return 0; 1017 1018 err: 1019 path_put(path); 1020 return error; 1021 } 1022 1023 static inline void put_link(struct nameidata *nd) 1024 { 1025 struct saved *last = nd->stack + --nd->depth; 1026 do_delayed_call(&last->done); 1027 if (!(nd->flags & LOOKUP_RCU)) 1028 path_put(&last->link); 1029 } 1030 1031 static int sysctl_protected_symlinks __read_mostly; 1032 static int sysctl_protected_hardlinks __read_mostly; 1033 static int sysctl_protected_fifos __read_mostly; 1034 static int sysctl_protected_regular __read_mostly; 1035 1036 #ifdef CONFIG_SYSCTL 1037 static struct ctl_table namei_sysctls[] = { 1038 { 1039 .procname = "protected_symlinks", 1040 .data = &sysctl_protected_symlinks, 1041 .maxlen = sizeof(int), 1042 .mode = 0644, 1043 .proc_handler = proc_dointvec_minmax, 1044 .extra1 = SYSCTL_ZERO, 1045 .extra2 = SYSCTL_ONE, 1046 }, 1047 { 1048 .procname = "protected_hardlinks", 1049 .data = &sysctl_protected_hardlinks, 1050 .maxlen = sizeof(int), 1051 .mode = 0644, 1052 .proc_handler = proc_dointvec_minmax, 1053 .extra1 = SYSCTL_ZERO, 1054 .extra2 = SYSCTL_ONE, 1055 }, 1056 { 1057 .procname = "protected_fifos", 1058 .data = &sysctl_protected_fifos, 1059 .maxlen = sizeof(int), 1060 .mode = 0644, 1061 .proc_handler = proc_dointvec_minmax, 1062 .extra1 = SYSCTL_ZERO, 1063 .extra2 = SYSCTL_TWO, 1064 }, 1065 { 1066 .procname = "protected_regular", 1067 .data = &sysctl_protected_regular, 1068 .maxlen = sizeof(int), 1069 .mode = 0644, 1070 .proc_handler = proc_dointvec_minmax, 1071 .extra1 = SYSCTL_ZERO, 1072 .extra2 = SYSCTL_TWO, 1073 }, 1074 }; 1075 1076 static int __init init_fs_namei_sysctls(void) 1077 { 1078 register_sysctl_init("fs", namei_sysctls); 1079 return 0; 1080 } 1081 fs_initcall(init_fs_namei_sysctls); 1082 1083 #endif /* CONFIG_SYSCTL */ 1084 1085 /** 1086 * may_follow_link - Check symlink following for unsafe situations 1087 * @nd: nameidata pathwalk data 1088 * @inode: Used for idmapping. 1089 * 1090 * In the case of the sysctl_protected_symlinks sysctl being enabled, 1091 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 1092 * in a sticky world-writable directory. This is to protect privileged 1093 * processes from failing races against path names that may change out 1094 * from under them by way of other users creating malicious symlinks. 1095 * It will permit symlinks to be followed only when outside a sticky 1096 * world-writable directory, or when the uid of the symlink and follower 1097 * match, or when the directory owner matches the symlink's owner. 1098 * 1099 * Returns 0 if following the symlink is allowed, -ve on error. 1100 */ 1101 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode) 1102 { 1103 struct mnt_idmap *idmap; 1104 vfsuid_t vfsuid; 1105 1106 if (!sysctl_protected_symlinks) 1107 return 0; 1108 1109 idmap = mnt_idmap(nd->path.mnt); 1110 vfsuid = i_uid_into_vfsuid(idmap, inode); 1111 /* Allowed if owner and follower match. */ 1112 if (vfsuid_eq_kuid(vfsuid, current_fsuid())) 1113 return 0; 1114 1115 /* Allowed if parent directory not sticky and world-writable. */ 1116 if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 1117 return 0; 1118 1119 /* Allowed if parent directory and link owner match. */ 1120 if (vfsuid_valid(nd->dir_vfsuid) && vfsuid_eq(nd->dir_vfsuid, vfsuid)) 1121 return 0; 1122 1123 if (nd->flags & LOOKUP_RCU) 1124 return -ECHILD; 1125 1126 audit_inode(nd->name, nd->stack[0].link.dentry, 0); 1127 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link"); 1128 return -EACCES; 1129 } 1130 1131 /** 1132 * safe_hardlink_source - Check for safe hardlink conditions 1133 * @idmap: idmap of the mount the inode was found from 1134 * @inode: the source inode to hardlink from 1135 * 1136 * Return false if at least one of the following conditions: 1137 * - inode is not a regular file 1138 * - inode is setuid 1139 * - inode is setgid and group-exec 1140 * - access failure for read and write 1141 * 1142 * Otherwise returns true. 1143 */ 1144 static bool safe_hardlink_source(struct mnt_idmap *idmap, 1145 struct inode *inode) 1146 { 1147 umode_t mode = inode->i_mode; 1148 1149 /* Special files should not get pinned to the filesystem. */ 1150 if (!S_ISREG(mode)) 1151 return false; 1152 1153 /* Setuid files should not get pinned to the filesystem. */ 1154 if (mode & S_ISUID) 1155 return false; 1156 1157 /* Executable setgid files should not get pinned to the filesystem. */ 1158 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 1159 return false; 1160 1161 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 1162 if (inode_permission(idmap, inode, MAY_READ | MAY_WRITE)) 1163 return false; 1164 1165 return true; 1166 } 1167 1168 /** 1169 * may_linkat - Check permissions for creating a hardlink 1170 * @idmap: idmap of the mount the inode was found from 1171 * @link: the source to hardlink from 1172 * 1173 * Block hardlink when all of: 1174 * - sysctl_protected_hardlinks enabled 1175 * - fsuid does not match inode 1176 * - hardlink source is unsafe (see safe_hardlink_source() above) 1177 * - not CAP_FOWNER in a namespace with the inode owner uid mapped 1178 * 1179 * If the inode has been found through an idmapped mount the idmap of 1180 * the vfsmount must be passed through @idmap. This function will then take 1181 * care to map the inode according to @idmap before checking permissions. 1182 * On non-idmapped mounts or if permission checking is to be performed on the 1183 * raw inode simply pass @nop_mnt_idmap. 1184 * 1185 * Returns 0 if successful, -ve on error. 1186 */ 1187 int may_linkat(struct mnt_idmap *idmap, const struct path *link) 1188 { 1189 struct inode *inode = link->dentry->d_inode; 1190 1191 /* Inode writeback is not safe when the uid or gid are invalid. */ 1192 if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) || 1193 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode))) 1194 return -EOVERFLOW; 1195 1196 if (!sysctl_protected_hardlinks) 1197 return 0; 1198 1199 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 1200 * otherwise, it must be a safe source. 1201 */ 1202 if (safe_hardlink_source(idmap, inode) || 1203 inode_owner_or_capable(idmap, inode)) 1204 return 0; 1205 1206 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat"); 1207 return -EPERM; 1208 } 1209 1210 /** 1211 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory 1212 * should be allowed, or not, on files that already 1213 * exist. 1214 * @idmap: idmap of the mount the inode was found from 1215 * @nd: nameidata pathwalk data 1216 * @inode: the inode of the file to open 1217 * 1218 * Block an O_CREAT open of a FIFO (or a regular file) when: 1219 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled 1220 * - the file already exists 1221 * - we are in a sticky directory 1222 * - we don't own the file 1223 * - the owner of the directory doesn't own the file 1224 * - the directory is world writable 1225 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2 1226 * the directory doesn't have to be world writable: being group writable will 1227 * be enough. 1228 * 1229 * If the inode has been found through an idmapped mount the idmap of 1230 * the vfsmount must be passed through @idmap. This function will then take 1231 * care to map the inode according to @idmap before checking permissions. 1232 * On non-idmapped mounts or if permission checking is to be performed on the 1233 * raw inode simply pass @nop_mnt_idmap. 1234 * 1235 * Returns 0 if the open is allowed, -ve on error. 1236 */ 1237 static int may_create_in_sticky(struct mnt_idmap *idmap, 1238 struct nameidata *nd, struct inode *const inode) 1239 { 1240 umode_t dir_mode = nd->dir_mode; 1241 vfsuid_t dir_vfsuid = nd->dir_vfsuid; 1242 1243 if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) || 1244 (!sysctl_protected_regular && S_ISREG(inode->i_mode)) || 1245 likely(!(dir_mode & S_ISVTX)) || 1246 vfsuid_eq(i_uid_into_vfsuid(idmap, inode), dir_vfsuid) || 1247 vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), current_fsuid())) 1248 return 0; 1249 1250 if (likely(dir_mode & 0002) || 1251 (dir_mode & 0020 && 1252 ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) || 1253 (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) { 1254 const char *operation = S_ISFIFO(inode->i_mode) ? 1255 "sticky_create_fifo" : 1256 "sticky_create_regular"; 1257 audit_log_path_denied(AUDIT_ANOM_CREAT, operation); 1258 return -EACCES; 1259 } 1260 return 0; 1261 } 1262 1263 /* 1264 * follow_up - Find the mountpoint of path's vfsmount 1265 * 1266 * Given a path, find the mountpoint of its source file system. 1267 * Replace @path with the path of the mountpoint in the parent mount. 1268 * Up is towards /. 1269 * 1270 * Return 1 if we went up a level and 0 if we were already at the 1271 * root. 1272 */ 1273 int follow_up(struct path *path) 1274 { 1275 struct mount *mnt = real_mount(path->mnt); 1276 struct mount *parent; 1277 struct dentry *mountpoint; 1278 1279 read_seqlock_excl(&mount_lock); 1280 parent = mnt->mnt_parent; 1281 if (parent == mnt) { 1282 read_sequnlock_excl(&mount_lock); 1283 return 0; 1284 } 1285 mntget(&parent->mnt); 1286 mountpoint = dget(mnt->mnt_mountpoint); 1287 read_sequnlock_excl(&mount_lock); 1288 dput(path->dentry); 1289 path->dentry = mountpoint; 1290 mntput(path->mnt); 1291 path->mnt = &parent->mnt; 1292 return 1; 1293 } 1294 EXPORT_SYMBOL(follow_up); 1295 1296 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root, 1297 struct path *path, unsigned *seqp) 1298 { 1299 while (mnt_has_parent(m)) { 1300 struct dentry *mountpoint = m->mnt_mountpoint; 1301 1302 m = m->mnt_parent; 1303 if (unlikely(root->dentry == mountpoint && 1304 root->mnt == &m->mnt)) 1305 break; 1306 if (mountpoint != m->mnt.mnt_root) { 1307 path->mnt = &m->mnt; 1308 path->dentry = mountpoint; 1309 *seqp = read_seqcount_begin(&mountpoint->d_seq); 1310 return true; 1311 } 1312 } 1313 return false; 1314 } 1315 1316 static bool choose_mountpoint(struct mount *m, const struct path *root, 1317 struct path *path) 1318 { 1319 bool found; 1320 1321 rcu_read_lock(); 1322 while (1) { 1323 unsigned seq, mseq = read_seqbegin(&mount_lock); 1324 1325 found = choose_mountpoint_rcu(m, root, path, &seq); 1326 if (unlikely(!found)) { 1327 if (!read_seqretry(&mount_lock, mseq)) 1328 break; 1329 } else { 1330 if (likely(__legitimize_path(path, seq, mseq))) 1331 break; 1332 rcu_read_unlock(); 1333 path_put(path); 1334 rcu_read_lock(); 1335 } 1336 } 1337 rcu_read_unlock(); 1338 return found; 1339 } 1340 1341 /* 1342 * Perform an automount 1343 * - return -EISDIR to tell follow_managed() to stop and return the path we 1344 * were called with. 1345 */ 1346 static int follow_automount(struct path *path, int *count, unsigned lookup_flags) 1347 { 1348 struct dentry *dentry = path->dentry; 1349 1350 /* We don't want to mount if someone's just doing a stat - 1351 * unless they're stat'ing a directory and appended a '/' to 1352 * the name. 1353 * 1354 * We do, however, want to mount if someone wants to open or 1355 * create a file of any type under the mountpoint, wants to 1356 * traverse through the mountpoint or wants to open the 1357 * mounted directory. Also, autofs may mark negative dentries 1358 * as being automount points. These will need the attentions 1359 * of the daemon to instantiate them before they can be used. 1360 */ 1361 if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 1362 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 1363 dentry->d_inode) 1364 return -EISDIR; 1365 1366 if (count && (*count)++ >= MAXSYMLINKS) 1367 return -ELOOP; 1368 1369 return finish_automount(dentry->d_op->d_automount(path), path); 1370 } 1371 1372 /* 1373 * mount traversal - out-of-line part. One note on ->d_flags accesses - 1374 * dentries are pinned but not locked here, so negative dentry can go 1375 * positive right under us. Use of smp_load_acquire() provides a barrier 1376 * sufficient for ->d_inode and ->d_flags consistency. 1377 */ 1378 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped, 1379 int *count, unsigned lookup_flags) 1380 { 1381 struct vfsmount *mnt = path->mnt; 1382 bool need_mntput = false; 1383 int ret = 0; 1384 1385 while (flags & DCACHE_MANAGED_DENTRY) { 1386 /* Allow the filesystem to manage the transit without i_mutex 1387 * being held. */ 1388 if (flags & DCACHE_MANAGE_TRANSIT) { 1389 ret = path->dentry->d_op->d_manage(path, false); 1390 flags = smp_load_acquire(&path->dentry->d_flags); 1391 if (ret < 0) 1392 break; 1393 } 1394 1395 if (flags & DCACHE_MOUNTED) { // something's mounted on it.. 1396 struct vfsmount *mounted = lookup_mnt(path); 1397 if (mounted) { // ... in our namespace 1398 dput(path->dentry); 1399 if (need_mntput) 1400 mntput(path->mnt); 1401 path->mnt = mounted; 1402 path->dentry = dget(mounted->mnt_root); 1403 // here we know it's positive 1404 flags = path->dentry->d_flags; 1405 need_mntput = true; 1406 continue; 1407 } 1408 } 1409 1410 if (!(flags & DCACHE_NEED_AUTOMOUNT)) 1411 break; 1412 1413 // uncovered automount point 1414 ret = follow_automount(path, count, lookup_flags); 1415 flags = smp_load_acquire(&path->dentry->d_flags); 1416 if (ret < 0) 1417 break; 1418 } 1419 1420 if (ret == -EISDIR) 1421 ret = 0; 1422 // possible if you race with several mount --move 1423 if (need_mntput && path->mnt == mnt) 1424 mntput(path->mnt); 1425 if (!ret && unlikely(d_flags_negative(flags))) 1426 ret = -ENOENT; 1427 *jumped = need_mntput; 1428 return ret; 1429 } 1430 1431 static inline int traverse_mounts(struct path *path, bool *jumped, 1432 int *count, unsigned lookup_flags) 1433 { 1434 unsigned flags = smp_load_acquire(&path->dentry->d_flags); 1435 1436 /* fastpath */ 1437 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) { 1438 *jumped = false; 1439 if (unlikely(d_flags_negative(flags))) 1440 return -ENOENT; 1441 return 0; 1442 } 1443 return __traverse_mounts(path, flags, jumped, count, lookup_flags); 1444 } 1445 1446 int follow_down_one(struct path *path) 1447 { 1448 struct vfsmount *mounted; 1449 1450 mounted = lookup_mnt(path); 1451 if (mounted) { 1452 dput(path->dentry); 1453 mntput(path->mnt); 1454 path->mnt = mounted; 1455 path->dentry = dget(mounted->mnt_root); 1456 return 1; 1457 } 1458 return 0; 1459 } 1460 EXPORT_SYMBOL(follow_down_one); 1461 1462 /* 1463 * Follow down to the covering mount currently visible to userspace. At each 1464 * point, the filesystem owning that dentry may be queried as to whether the 1465 * caller is permitted to proceed or not. 1466 */ 1467 int follow_down(struct path *path, unsigned int flags) 1468 { 1469 struct vfsmount *mnt = path->mnt; 1470 bool jumped; 1471 int ret = traverse_mounts(path, &jumped, NULL, flags); 1472 1473 if (path->mnt != mnt) 1474 mntput(mnt); 1475 return ret; 1476 } 1477 EXPORT_SYMBOL(follow_down); 1478 1479 /* 1480 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1481 * we meet a managed dentry that would need blocking. 1482 */ 1483 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path) 1484 { 1485 struct dentry *dentry = path->dentry; 1486 unsigned int flags = dentry->d_flags; 1487 1488 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) 1489 return true; 1490 1491 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1492 return false; 1493 1494 for (;;) { 1495 /* 1496 * Don't forget we might have a non-mountpoint managed dentry 1497 * that wants to block transit. 1498 */ 1499 if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) { 1500 int res = dentry->d_op->d_manage(path, true); 1501 if (res) 1502 return res == -EISDIR; 1503 flags = dentry->d_flags; 1504 } 1505 1506 if (flags & DCACHE_MOUNTED) { 1507 struct mount *mounted = __lookup_mnt(path->mnt, dentry); 1508 if (mounted) { 1509 path->mnt = &mounted->mnt; 1510 dentry = path->dentry = mounted->mnt.mnt_root; 1511 nd->state |= ND_JUMPED; 1512 nd->next_seq = read_seqcount_begin(&dentry->d_seq); 1513 flags = dentry->d_flags; 1514 // makes sure that non-RCU pathwalk could reach 1515 // this state. 1516 if (read_seqretry(&mount_lock, nd->m_seq)) 1517 return false; 1518 continue; 1519 } 1520 if (read_seqretry(&mount_lock, nd->m_seq)) 1521 return false; 1522 } 1523 return !(flags & DCACHE_NEED_AUTOMOUNT); 1524 } 1525 } 1526 1527 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry, 1528 struct path *path) 1529 { 1530 bool jumped; 1531 int ret; 1532 1533 path->mnt = nd->path.mnt; 1534 path->dentry = dentry; 1535 if (nd->flags & LOOKUP_RCU) { 1536 unsigned int seq = nd->next_seq; 1537 if (likely(__follow_mount_rcu(nd, path))) 1538 return 0; 1539 // *path and nd->next_seq might've been clobbered 1540 path->mnt = nd->path.mnt; 1541 path->dentry = dentry; 1542 nd->next_seq = seq; 1543 if (!try_to_unlazy_next(nd, dentry)) 1544 return -ECHILD; 1545 } 1546 ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags); 1547 if (jumped) { 1548 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1549 ret = -EXDEV; 1550 else 1551 nd->state |= ND_JUMPED; 1552 } 1553 if (unlikely(ret)) { 1554 dput(path->dentry); 1555 if (path->mnt != nd->path.mnt) 1556 mntput(path->mnt); 1557 } 1558 return ret; 1559 } 1560 1561 /* 1562 * This looks up the name in dcache and possibly revalidates the found dentry. 1563 * NULL is returned if the dentry does not exist in the cache. 1564 */ 1565 static struct dentry *lookup_dcache(const struct qstr *name, 1566 struct dentry *dir, 1567 unsigned int flags) 1568 { 1569 struct dentry *dentry = d_lookup(dir, name); 1570 if (dentry) { 1571 int error = d_revalidate(dentry, flags); 1572 if (unlikely(error <= 0)) { 1573 if (!error) 1574 d_invalidate(dentry); 1575 dput(dentry); 1576 return ERR_PTR(error); 1577 } 1578 } 1579 return dentry; 1580 } 1581 1582 /* 1583 * Parent directory has inode locked exclusive. This is one 1584 * and only case when ->lookup() gets called on non in-lookup 1585 * dentries - as the matter of fact, this only gets called 1586 * when directory is guaranteed to have no in-lookup children 1587 * at all. 1588 */ 1589 struct dentry *lookup_one_qstr_excl(const struct qstr *name, 1590 struct dentry *base, 1591 unsigned int flags) 1592 { 1593 struct dentry *dentry = lookup_dcache(name, base, flags); 1594 struct dentry *old; 1595 struct inode *dir = base->d_inode; 1596 1597 if (dentry) 1598 return dentry; 1599 1600 /* Don't create child dentry for a dead directory. */ 1601 if (unlikely(IS_DEADDIR(dir))) 1602 return ERR_PTR(-ENOENT); 1603 1604 dentry = d_alloc(base, name); 1605 if (unlikely(!dentry)) 1606 return ERR_PTR(-ENOMEM); 1607 1608 old = dir->i_op->lookup(dir, dentry, flags); 1609 if (unlikely(old)) { 1610 dput(dentry); 1611 dentry = old; 1612 } 1613 return dentry; 1614 } 1615 EXPORT_SYMBOL(lookup_one_qstr_excl); 1616 1617 static struct dentry *lookup_fast(struct nameidata *nd) 1618 { 1619 struct dentry *dentry, *parent = nd->path.dentry; 1620 int status = 1; 1621 1622 /* 1623 * Rename seqlock is not required here because in the off chance 1624 * of a false negative due to a concurrent rename, the caller is 1625 * going to fall back to non-racy lookup. 1626 */ 1627 if (nd->flags & LOOKUP_RCU) { 1628 dentry = __d_lookup_rcu(parent, &nd->last, &nd->next_seq); 1629 if (unlikely(!dentry)) { 1630 if (!try_to_unlazy(nd)) 1631 return ERR_PTR(-ECHILD); 1632 return NULL; 1633 } 1634 1635 /* 1636 * This sequence count validates that the parent had no 1637 * changes while we did the lookup of the dentry above. 1638 */ 1639 if (read_seqcount_retry(&parent->d_seq, nd->seq)) 1640 return ERR_PTR(-ECHILD); 1641 1642 status = d_revalidate(dentry, nd->flags); 1643 if (likely(status > 0)) 1644 return dentry; 1645 if (!try_to_unlazy_next(nd, dentry)) 1646 return ERR_PTR(-ECHILD); 1647 if (status == -ECHILD) 1648 /* we'd been told to redo it in non-rcu mode */ 1649 status = d_revalidate(dentry, nd->flags); 1650 } else { 1651 dentry = __d_lookup(parent, &nd->last); 1652 if (unlikely(!dentry)) 1653 return NULL; 1654 status = d_revalidate(dentry, nd->flags); 1655 } 1656 if (unlikely(status <= 0)) { 1657 if (!status) 1658 d_invalidate(dentry); 1659 dput(dentry); 1660 return ERR_PTR(status); 1661 } 1662 return dentry; 1663 } 1664 1665 /* Fast lookup failed, do it the slow way */ 1666 static struct dentry *__lookup_slow(const struct qstr *name, 1667 struct dentry *dir, 1668 unsigned int flags) 1669 { 1670 struct dentry *dentry, *old; 1671 struct inode *inode = dir->d_inode; 1672 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1673 1674 /* Don't go there if it's already dead */ 1675 if (unlikely(IS_DEADDIR(inode))) 1676 return ERR_PTR(-ENOENT); 1677 again: 1678 dentry = d_alloc_parallel(dir, name, &wq); 1679 if (IS_ERR(dentry)) 1680 return dentry; 1681 if (unlikely(!d_in_lookup(dentry))) { 1682 int error = d_revalidate(dentry, flags); 1683 if (unlikely(error <= 0)) { 1684 if (!error) { 1685 d_invalidate(dentry); 1686 dput(dentry); 1687 goto again; 1688 } 1689 dput(dentry); 1690 dentry = ERR_PTR(error); 1691 } 1692 } else { 1693 old = inode->i_op->lookup(inode, dentry, flags); 1694 d_lookup_done(dentry); 1695 if (unlikely(old)) { 1696 dput(dentry); 1697 dentry = old; 1698 } 1699 } 1700 return dentry; 1701 } 1702 1703 static struct dentry *lookup_slow(const struct qstr *name, 1704 struct dentry *dir, 1705 unsigned int flags) 1706 { 1707 struct inode *inode = dir->d_inode; 1708 struct dentry *res; 1709 inode_lock_shared(inode); 1710 res = __lookup_slow(name, dir, flags); 1711 inode_unlock_shared(inode); 1712 return res; 1713 } 1714 1715 static inline int may_lookup(struct mnt_idmap *idmap, 1716 struct nameidata *nd) 1717 { 1718 if (nd->flags & LOOKUP_RCU) { 1719 int err = inode_permission(idmap, nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1720 if (err != -ECHILD || !try_to_unlazy(nd)) 1721 return err; 1722 } 1723 return inode_permission(idmap, nd->inode, MAY_EXEC); 1724 } 1725 1726 static int reserve_stack(struct nameidata *nd, struct path *link) 1727 { 1728 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) 1729 return -ELOOP; 1730 1731 if (likely(nd->depth != EMBEDDED_LEVELS)) 1732 return 0; 1733 if (likely(nd->stack != nd->internal)) 1734 return 0; 1735 if (likely(nd_alloc_stack(nd))) 1736 return 0; 1737 1738 if (nd->flags & LOOKUP_RCU) { 1739 // we need to grab link before we do unlazy. And we can't skip 1740 // unlazy even if we fail to grab the link - cleanup needs it 1741 bool grabbed_link = legitimize_path(nd, link, nd->next_seq); 1742 1743 if (!try_to_unlazy(nd) || !grabbed_link) 1744 return -ECHILD; 1745 1746 if (nd_alloc_stack(nd)) 1747 return 0; 1748 } 1749 return -ENOMEM; 1750 } 1751 1752 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4}; 1753 1754 static const char *pick_link(struct nameidata *nd, struct path *link, 1755 struct inode *inode, int flags) 1756 { 1757 struct saved *last; 1758 const char *res; 1759 int error = reserve_stack(nd, link); 1760 1761 if (unlikely(error)) { 1762 if (!(nd->flags & LOOKUP_RCU)) 1763 path_put(link); 1764 return ERR_PTR(error); 1765 } 1766 last = nd->stack + nd->depth++; 1767 last->link = *link; 1768 clear_delayed_call(&last->done); 1769 last->seq = nd->next_seq; 1770 1771 if (flags & WALK_TRAILING) { 1772 error = may_follow_link(nd, inode); 1773 if (unlikely(error)) 1774 return ERR_PTR(error); 1775 } 1776 1777 if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) || 1778 unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW)) 1779 return ERR_PTR(-ELOOP); 1780 1781 if (!(nd->flags & LOOKUP_RCU)) { 1782 touch_atime(&last->link); 1783 cond_resched(); 1784 } else if (atime_needs_update(&last->link, inode)) { 1785 if (!try_to_unlazy(nd)) 1786 return ERR_PTR(-ECHILD); 1787 touch_atime(&last->link); 1788 } 1789 1790 error = security_inode_follow_link(link->dentry, inode, 1791 nd->flags & LOOKUP_RCU); 1792 if (unlikely(error)) 1793 return ERR_PTR(error); 1794 1795 res = READ_ONCE(inode->i_link); 1796 if (!res) { 1797 const char * (*get)(struct dentry *, struct inode *, 1798 struct delayed_call *); 1799 get = inode->i_op->get_link; 1800 if (nd->flags & LOOKUP_RCU) { 1801 res = get(NULL, inode, &last->done); 1802 if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd)) 1803 res = get(link->dentry, inode, &last->done); 1804 } else { 1805 res = get(link->dentry, inode, &last->done); 1806 } 1807 if (!res) 1808 goto all_done; 1809 if (IS_ERR(res)) 1810 return res; 1811 } 1812 if (*res == '/') { 1813 error = nd_jump_root(nd); 1814 if (unlikely(error)) 1815 return ERR_PTR(error); 1816 while (unlikely(*++res == '/')) 1817 ; 1818 } 1819 if (*res) 1820 return res; 1821 all_done: // pure jump 1822 put_link(nd); 1823 return NULL; 1824 } 1825 1826 /* 1827 * Do we need to follow links? We _really_ want to be able 1828 * to do this check without having to look at inode->i_op, 1829 * so we keep a cache of "no, this doesn't need follow_link" 1830 * for the common case. 1831 * 1832 * NOTE: dentry must be what nd->next_seq had been sampled from. 1833 */ 1834 static const char *step_into(struct nameidata *nd, int flags, 1835 struct dentry *dentry) 1836 { 1837 struct path path; 1838 struct inode *inode; 1839 int err = handle_mounts(nd, dentry, &path); 1840 1841 if (err < 0) 1842 return ERR_PTR(err); 1843 inode = path.dentry->d_inode; 1844 if (likely(!d_is_symlink(path.dentry)) || 1845 ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) || 1846 (flags & WALK_NOFOLLOW)) { 1847 /* not a symlink or should not follow */ 1848 if (nd->flags & LOOKUP_RCU) { 1849 if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq)) 1850 return ERR_PTR(-ECHILD); 1851 if (unlikely(!inode)) 1852 return ERR_PTR(-ENOENT); 1853 } else { 1854 dput(nd->path.dentry); 1855 if (nd->path.mnt != path.mnt) 1856 mntput(nd->path.mnt); 1857 } 1858 nd->path = path; 1859 nd->inode = inode; 1860 nd->seq = nd->next_seq; 1861 return NULL; 1862 } 1863 if (nd->flags & LOOKUP_RCU) { 1864 /* make sure that d_is_symlink above matches inode */ 1865 if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq)) 1866 return ERR_PTR(-ECHILD); 1867 } else { 1868 if (path.mnt == nd->path.mnt) 1869 mntget(path.mnt); 1870 } 1871 return pick_link(nd, &path, inode, flags); 1872 } 1873 1874 static struct dentry *follow_dotdot_rcu(struct nameidata *nd) 1875 { 1876 struct dentry *parent, *old; 1877 1878 if (path_equal(&nd->path, &nd->root)) 1879 goto in_root; 1880 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { 1881 struct path path; 1882 unsigned seq; 1883 if (!choose_mountpoint_rcu(real_mount(nd->path.mnt), 1884 &nd->root, &path, &seq)) 1885 goto in_root; 1886 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1887 return ERR_PTR(-ECHILD); 1888 nd->path = path; 1889 nd->inode = path.dentry->d_inode; 1890 nd->seq = seq; 1891 // makes sure that non-RCU pathwalk could reach this state 1892 if (read_seqretry(&mount_lock, nd->m_seq)) 1893 return ERR_PTR(-ECHILD); 1894 /* we know that mountpoint was pinned */ 1895 } 1896 old = nd->path.dentry; 1897 parent = old->d_parent; 1898 nd->next_seq = read_seqcount_begin(&parent->d_seq); 1899 // makes sure that non-RCU pathwalk could reach this state 1900 if (read_seqcount_retry(&old->d_seq, nd->seq)) 1901 return ERR_PTR(-ECHILD); 1902 if (unlikely(!path_connected(nd->path.mnt, parent))) 1903 return ERR_PTR(-ECHILD); 1904 return parent; 1905 in_root: 1906 if (read_seqretry(&mount_lock, nd->m_seq)) 1907 return ERR_PTR(-ECHILD); 1908 if (unlikely(nd->flags & LOOKUP_BENEATH)) 1909 return ERR_PTR(-ECHILD); 1910 nd->next_seq = nd->seq; 1911 return nd->path.dentry; 1912 } 1913 1914 static struct dentry *follow_dotdot(struct nameidata *nd) 1915 { 1916 struct dentry *parent; 1917 1918 if (path_equal(&nd->path, &nd->root)) 1919 goto in_root; 1920 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { 1921 struct path path; 1922 1923 if (!choose_mountpoint(real_mount(nd->path.mnt), 1924 &nd->root, &path)) 1925 goto in_root; 1926 path_put(&nd->path); 1927 nd->path = path; 1928 nd->inode = path.dentry->d_inode; 1929 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1930 return ERR_PTR(-EXDEV); 1931 } 1932 /* rare case of legitimate dget_parent()... */ 1933 parent = dget_parent(nd->path.dentry); 1934 if (unlikely(!path_connected(nd->path.mnt, parent))) { 1935 dput(parent); 1936 return ERR_PTR(-ENOENT); 1937 } 1938 return parent; 1939 1940 in_root: 1941 if (unlikely(nd->flags & LOOKUP_BENEATH)) 1942 return ERR_PTR(-EXDEV); 1943 return dget(nd->path.dentry); 1944 } 1945 1946 static const char *handle_dots(struct nameidata *nd, int type) 1947 { 1948 if (type == LAST_DOTDOT) { 1949 const char *error = NULL; 1950 struct dentry *parent; 1951 1952 if (!nd->root.mnt) { 1953 error = ERR_PTR(set_root(nd)); 1954 if (error) 1955 return error; 1956 } 1957 if (nd->flags & LOOKUP_RCU) 1958 parent = follow_dotdot_rcu(nd); 1959 else 1960 parent = follow_dotdot(nd); 1961 if (IS_ERR(parent)) 1962 return ERR_CAST(parent); 1963 error = step_into(nd, WALK_NOFOLLOW, parent); 1964 if (unlikely(error)) 1965 return error; 1966 1967 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { 1968 /* 1969 * If there was a racing rename or mount along our 1970 * path, then we can't be sure that ".." hasn't jumped 1971 * above nd->root (and so userspace should retry or use 1972 * some fallback). 1973 */ 1974 smp_rmb(); 1975 if (__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq)) 1976 return ERR_PTR(-EAGAIN); 1977 if (__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq)) 1978 return ERR_PTR(-EAGAIN); 1979 } 1980 } 1981 return NULL; 1982 } 1983 1984 static const char *walk_component(struct nameidata *nd, int flags) 1985 { 1986 struct dentry *dentry; 1987 /* 1988 * "." and ".." are special - ".." especially so because it has 1989 * to be able to know about the current root directory and 1990 * parent relationships. 1991 */ 1992 if (unlikely(nd->last_type != LAST_NORM)) { 1993 if (!(flags & WALK_MORE) && nd->depth) 1994 put_link(nd); 1995 return handle_dots(nd, nd->last_type); 1996 } 1997 dentry = lookup_fast(nd); 1998 if (IS_ERR(dentry)) 1999 return ERR_CAST(dentry); 2000 if (unlikely(!dentry)) { 2001 dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags); 2002 if (IS_ERR(dentry)) 2003 return ERR_CAST(dentry); 2004 } 2005 if (!(flags & WALK_MORE) && nd->depth) 2006 put_link(nd); 2007 return step_into(nd, flags, dentry); 2008 } 2009 2010 /* 2011 * We can do the critical dentry name comparison and hashing 2012 * operations one word at a time, but we are limited to: 2013 * 2014 * - Architectures with fast unaligned word accesses. We could 2015 * do a "get_unaligned()" if this helps and is sufficiently 2016 * fast. 2017 * 2018 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 2019 * do not trap on the (extremely unlikely) case of a page 2020 * crossing operation. 2021 * 2022 * - Furthermore, we need an efficient 64-bit compile for the 2023 * 64-bit case in order to generate the "number of bytes in 2024 * the final mask". Again, that could be replaced with a 2025 * efficient population count instruction or similar. 2026 */ 2027 #ifdef CONFIG_DCACHE_WORD_ACCESS 2028 2029 #include <asm/word-at-a-time.h> 2030 2031 #ifdef HASH_MIX 2032 2033 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */ 2034 2035 #elif defined(CONFIG_64BIT) 2036 /* 2037 * Register pressure in the mixing function is an issue, particularly 2038 * on 32-bit x86, but almost any function requires one state value and 2039 * one temporary. Instead, use a function designed for two state values 2040 * and no temporaries. 2041 * 2042 * This function cannot create a collision in only two iterations, so 2043 * we have two iterations to achieve avalanche. In those two iterations, 2044 * we have six layers of mixing, which is enough to spread one bit's 2045 * influence out to 2^6 = 64 state bits. 2046 * 2047 * Rotate constants are scored by considering either 64 one-bit input 2048 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the 2049 * probability of that delta causing a change to each of the 128 output 2050 * bits, using a sample of random initial states. 2051 * 2052 * The Shannon entropy of the computed probabilities is then summed 2053 * to produce a score. Ideally, any input change has a 50% chance of 2054 * toggling any given output bit. 2055 * 2056 * Mixing scores (in bits) for (12,45): 2057 * Input delta: 1-bit 2-bit 2058 * 1 round: 713.3 42542.6 2059 * 2 rounds: 2753.7 140389.8 2060 * 3 rounds: 5954.1 233458.2 2061 * 4 rounds: 7862.6 256672.2 2062 * Perfect: 8192 258048 2063 * (64*128) (64*63/2 * 128) 2064 */ 2065 #define HASH_MIX(x, y, a) \ 2066 ( x ^= (a), \ 2067 y ^= x, x = rol64(x,12),\ 2068 x += y, y = rol64(y,45),\ 2069 y *= 9 ) 2070 2071 /* 2072 * Fold two longs into one 32-bit hash value. This must be fast, but 2073 * latency isn't quite as critical, as there is a fair bit of additional 2074 * work done before the hash value is used. 2075 */ 2076 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 2077 { 2078 y ^= x * GOLDEN_RATIO_64; 2079 y *= GOLDEN_RATIO_64; 2080 return y >> 32; 2081 } 2082 2083 #else /* 32-bit case */ 2084 2085 /* 2086 * Mixing scores (in bits) for (7,20): 2087 * Input delta: 1-bit 2-bit 2088 * 1 round: 330.3 9201.6 2089 * 2 rounds: 1246.4 25475.4 2090 * 3 rounds: 1907.1 31295.1 2091 * 4 rounds: 2042.3 31718.6 2092 * Perfect: 2048 31744 2093 * (32*64) (32*31/2 * 64) 2094 */ 2095 #define HASH_MIX(x, y, a) \ 2096 ( x ^= (a), \ 2097 y ^= x, x = rol32(x, 7),\ 2098 x += y, y = rol32(y,20),\ 2099 y *= 9 ) 2100 2101 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 2102 { 2103 /* Use arch-optimized multiply if one exists */ 2104 return __hash_32(y ^ __hash_32(x)); 2105 } 2106 2107 #endif 2108 2109 /* 2110 * Return the hash of a string of known length. This is carfully 2111 * designed to match hash_name(), which is the more critical function. 2112 * In particular, we must end by hashing a final word containing 0..7 2113 * payload bytes, to match the way that hash_name() iterates until it 2114 * finds the delimiter after the name. 2115 */ 2116 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2117 { 2118 unsigned long a, x = 0, y = (unsigned long)salt; 2119 2120 for (;;) { 2121 if (!len) 2122 goto done; 2123 a = load_unaligned_zeropad(name); 2124 if (len < sizeof(unsigned long)) 2125 break; 2126 HASH_MIX(x, y, a); 2127 name += sizeof(unsigned long); 2128 len -= sizeof(unsigned long); 2129 } 2130 x ^= a & bytemask_from_count(len); 2131 done: 2132 return fold_hash(x, y); 2133 } 2134 EXPORT_SYMBOL(full_name_hash); 2135 2136 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2137 u64 hashlen_string(const void *salt, const char *name) 2138 { 2139 unsigned long a = 0, x = 0, y = (unsigned long)salt; 2140 unsigned long adata, mask, len; 2141 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 2142 2143 len = 0; 2144 goto inside; 2145 2146 do { 2147 HASH_MIX(x, y, a); 2148 len += sizeof(unsigned long); 2149 inside: 2150 a = load_unaligned_zeropad(name+len); 2151 } while (!has_zero(a, &adata, &constants)); 2152 2153 adata = prep_zero_mask(a, adata, &constants); 2154 mask = create_zero_mask(adata); 2155 x ^= a & zero_bytemask(mask); 2156 2157 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 2158 } 2159 EXPORT_SYMBOL(hashlen_string); 2160 2161 /* 2162 * Calculate the length and hash of the path component, and 2163 * return the "hash_len" as the result. 2164 */ 2165 static inline u64 hash_name(const void *salt, const char *name) 2166 { 2167 unsigned long a = 0, b, x = 0, y = (unsigned long)salt; 2168 unsigned long adata, bdata, mask, len; 2169 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 2170 2171 len = 0; 2172 goto inside; 2173 2174 do { 2175 HASH_MIX(x, y, a); 2176 len += sizeof(unsigned long); 2177 inside: 2178 a = load_unaligned_zeropad(name+len); 2179 b = a ^ REPEAT_BYTE('/'); 2180 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 2181 2182 adata = prep_zero_mask(a, adata, &constants); 2183 bdata = prep_zero_mask(b, bdata, &constants); 2184 mask = create_zero_mask(adata | bdata); 2185 x ^= a & zero_bytemask(mask); 2186 2187 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 2188 } 2189 2190 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */ 2191 2192 /* Return the hash of a string of known length */ 2193 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2194 { 2195 unsigned long hash = init_name_hash(salt); 2196 while (len--) 2197 hash = partial_name_hash((unsigned char)*name++, hash); 2198 return end_name_hash(hash); 2199 } 2200 EXPORT_SYMBOL(full_name_hash); 2201 2202 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2203 u64 hashlen_string(const void *salt, const char *name) 2204 { 2205 unsigned long hash = init_name_hash(salt); 2206 unsigned long len = 0, c; 2207 2208 c = (unsigned char)*name; 2209 while (c) { 2210 len++; 2211 hash = partial_name_hash(c, hash); 2212 c = (unsigned char)name[len]; 2213 } 2214 return hashlen_create(end_name_hash(hash), len); 2215 } 2216 EXPORT_SYMBOL(hashlen_string); 2217 2218 /* 2219 * We know there's a real path component here of at least 2220 * one character. 2221 */ 2222 static inline u64 hash_name(const void *salt, const char *name) 2223 { 2224 unsigned long hash = init_name_hash(salt); 2225 unsigned long len = 0, c; 2226 2227 c = (unsigned char)*name; 2228 do { 2229 len++; 2230 hash = partial_name_hash(c, hash); 2231 c = (unsigned char)name[len]; 2232 } while (c && c != '/'); 2233 return hashlen_create(end_name_hash(hash), len); 2234 } 2235 2236 #endif 2237 2238 /* 2239 * Name resolution. 2240 * This is the basic name resolution function, turning a pathname into 2241 * the final dentry. We expect 'base' to be positive and a directory. 2242 * 2243 * Returns 0 and nd will have valid dentry and mnt on success. 2244 * Returns error and drops reference to input namei data on failure. 2245 */ 2246 static int link_path_walk(const char *name, struct nameidata *nd) 2247 { 2248 int depth = 0; // depth <= nd->depth 2249 int err; 2250 2251 nd->last_type = LAST_ROOT; 2252 nd->flags |= LOOKUP_PARENT; 2253 if (IS_ERR(name)) 2254 return PTR_ERR(name); 2255 while (*name=='/') 2256 name++; 2257 if (!*name) { 2258 nd->dir_mode = 0; // short-circuit the 'hardening' idiocy 2259 return 0; 2260 } 2261 2262 /* At this point we know we have a real path component. */ 2263 for(;;) { 2264 struct mnt_idmap *idmap; 2265 const char *link; 2266 u64 hash_len; 2267 int type; 2268 2269 idmap = mnt_idmap(nd->path.mnt); 2270 err = may_lookup(idmap, nd); 2271 if (err) 2272 return err; 2273 2274 hash_len = hash_name(nd->path.dentry, name); 2275 2276 type = LAST_NORM; 2277 if (name[0] == '.') switch (hashlen_len(hash_len)) { 2278 case 2: 2279 if (name[1] == '.') { 2280 type = LAST_DOTDOT; 2281 nd->state |= ND_JUMPED; 2282 } 2283 break; 2284 case 1: 2285 type = LAST_DOT; 2286 } 2287 if (likely(type == LAST_NORM)) { 2288 struct dentry *parent = nd->path.dentry; 2289 nd->state &= ~ND_JUMPED; 2290 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 2291 struct qstr this = { { .hash_len = hash_len }, .name = name }; 2292 err = parent->d_op->d_hash(parent, &this); 2293 if (err < 0) 2294 return err; 2295 hash_len = this.hash_len; 2296 name = this.name; 2297 } 2298 } 2299 2300 nd->last.hash_len = hash_len; 2301 nd->last.name = name; 2302 nd->last_type = type; 2303 2304 name += hashlen_len(hash_len); 2305 if (!*name) 2306 goto OK; 2307 /* 2308 * If it wasn't NUL, we know it was '/'. Skip that 2309 * slash, and continue until no more slashes. 2310 */ 2311 do { 2312 name++; 2313 } while (unlikely(*name == '/')); 2314 if (unlikely(!*name)) { 2315 OK: 2316 /* pathname or trailing symlink, done */ 2317 if (!depth) { 2318 nd->dir_vfsuid = i_uid_into_vfsuid(idmap, nd->inode); 2319 nd->dir_mode = nd->inode->i_mode; 2320 nd->flags &= ~LOOKUP_PARENT; 2321 return 0; 2322 } 2323 /* last component of nested symlink */ 2324 name = nd->stack[--depth].name; 2325 link = walk_component(nd, 0); 2326 } else { 2327 /* not the last component */ 2328 link = walk_component(nd, WALK_MORE); 2329 } 2330 if (unlikely(link)) { 2331 if (IS_ERR(link)) 2332 return PTR_ERR(link); 2333 /* a symlink to follow */ 2334 nd->stack[depth++].name = name; 2335 name = link; 2336 continue; 2337 } 2338 if (unlikely(!d_can_lookup(nd->path.dentry))) { 2339 if (nd->flags & LOOKUP_RCU) { 2340 if (!try_to_unlazy(nd)) 2341 return -ECHILD; 2342 } 2343 return -ENOTDIR; 2344 } 2345 } 2346 } 2347 2348 /* must be paired with terminate_walk() */ 2349 static const char *path_init(struct nameidata *nd, unsigned flags) 2350 { 2351 int error; 2352 const char *s = nd->name->name; 2353 2354 /* LOOKUP_CACHED requires RCU, ask caller to retry */ 2355 if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED) 2356 return ERR_PTR(-EAGAIN); 2357 2358 if (!*s) 2359 flags &= ~LOOKUP_RCU; 2360 if (flags & LOOKUP_RCU) 2361 rcu_read_lock(); 2362 else 2363 nd->seq = nd->next_seq = 0; 2364 2365 nd->flags = flags; 2366 nd->state |= ND_JUMPED; 2367 2368 nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount); 2369 nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount); 2370 smp_rmb(); 2371 2372 if (nd->state & ND_ROOT_PRESET) { 2373 struct dentry *root = nd->root.dentry; 2374 struct inode *inode = root->d_inode; 2375 if (*s && unlikely(!d_can_lookup(root))) 2376 return ERR_PTR(-ENOTDIR); 2377 nd->path = nd->root; 2378 nd->inode = inode; 2379 if (flags & LOOKUP_RCU) { 2380 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2381 nd->root_seq = nd->seq; 2382 } else { 2383 path_get(&nd->path); 2384 } 2385 return s; 2386 } 2387 2388 nd->root.mnt = NULL; 2389 2390 /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */ 2391 if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) { 2392 error = nd_jump_root(nd); 2393 if (unlikely(error)) 2394 return ERR_PTR(error); 2395 return s; 2396 } 2397 2398 /* Relative pathname -- get the starting-point it is relative to. */ 2399 if (nd->dfd == AT_FDCWD) { 2400 if (flags & LOOKUP_RCU) { 2401 struct fs_struct *fs = current->fs; 2402 unsigned seq; 2403 2404 do { 2405 seq = read_seqcount_begin(&fs->seq); 2406 nd->path = fs->pwd; 2407 nd->inode = nd->path.dentry->d_inode; 2408 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2409 } while (read_seqcount_retry(&fs->seq, seq)); 2410 } else { 2411 get_fs_pwd(current->fs, &nd->path); 2412 nd->inode = nd->path.dentry->d_inode; 2413 } 2414 } else { 2415 /* Caller must check execute permissions on the starting path component */ 2416 struct fd f = fdget_raw(nd->dfd); 2417 struct dentry *dentry; 2418 2419 if (!f.file) 2420 return ERR_PTR(-EBADF); 2421 2422 dentry = f.file->f_path.dentry; 2423 2424 if (*s && unlikely(!d_can_lookup(dentry))) { 2425 fdput(f); 2426 return ERR_PTR(-ENOTDIR); 2427 } 2428 2429 nd->path = f.file->f_path; 2430 if (flags & LOOKUP_RCU) { 2431 nd->inode = nd->path.dentry->d_inode; 2432 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2433 } else { 2434 path_get(&nd->path); 2435 nd->inode = nd->path.dentry->d_inode; 2436 } 2437 fdput(f); 2438 } 2439 2440 /* For scoped-lookups we need to set the root to the dirfd as well. */ 2441 if (flags & LOOKUP_IS_SCOPED) { 2442 nd->root = nd->path; 2443 if (flags & LOOKUP_RCU) { 2444 nd->root_seq = nd->seq; 2445 } else { 2446 path_get(&nd->root); 2447 nd->state |= ND_ROOT_GRABBED; 2448 } 2449 } 2450 return s; 2451 } 2452 2453 static inline const char *lookup_last(struct nameidata *nd) 2454 { 2455 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 2456 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2457 2458 return walk_component(nd, WALK_TRAILING); 2459 } 2460 2461 static int handle_lookup_down(struct nameidata *nd) 2462 { 2463 if (!(nd->flags & LOOKUP_RCU)) 2464 dget(nd->path.dentry); 2465 nd->next_seq = nd->seq; 2466 return PTR_ERR(step_into(nd, WALK_NOFOLLOW, nd->path.dentry)); 2467 } 2468 2469 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */ 2470 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path) 2471 { 2472 const char *s = path_init(nd, flags); 2473 int err; 2474 2475 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) { 2476 err = handle_lookup_down(nd); 2477 if (unlikely(err < 0)) 2478 s = ERR_PTR(err); 2479 } 2480 2481 while (!(err = link_path_walk(s, nd)) && 2482 (s = lookup_last(nd)) != NULL) 2483 ; 2484 if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) { 2485 err = handle_lookup_down(nd); 2486 nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please... 2487 } 2488 if (!err) 2489 err = complete_walk(nd); 2490 2491 if (!err && nd->flags & LOOKUP_DIRECTORY) 2492 if (!d_can_lookup(nd->path.dentry)) 2493 err = -ENOTDIR; 2494 if (!err) { 2495 *path = nd->path; 2496 nd->path.mnt = NULL; 2497 nd->path.dentry = NULL; 2498 } 2499 terminate_walk(nd); 2500 return err; 2501 } 2502 2503 int filename_lookup(int dfd, struct filename *name, unsigned flags, 2504 struct path *path, struct path *root) 2505 { 2506 int retval; 2507 struct nameidata nd; 2508 if (IS_ERR(name)) 2509 return PTR_ERR(name); 2510 set_nameidata(&nd, dfd, name, root); 2511 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path); 2512 if (unlikely(retval == -ECHILD)) 2513 retval = path_lookupat(&nd, flags, path); 2514 if (unlikely(retval == -ESTALE)) 2515 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path); 2516 2517 if (likely(!retval)) 2518 audit_inode(name, path->dentry, 2519 flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0); 2520 restore_nameidata(); 2521 return retval; 2522 } 2523 2524 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */ 2525 static int path_parentat(struct nameidata *nd, unsigned flags, 2526 struct path *parent) 2527 { 2528 const char *s = path_init(nd, flags); 2529 int err = link_path_walk(s, nd); 2530 if (!err) 2531 err = complete_walk(nd); 2532 if (!err) { 2533 *parent = nd->path; 2534 nd->path.mnt = NULL; 2535 nd->path.dentry = NULL; 2536 } 2537 terminate_walk(nd); 2538 return err; 2539 } 2540 2541 /* Note: this does not consume "name" */ 2542 static int __filename_parentat(int dfd, struct filename *name, 2543 unsigned int flags, struct path *parent, 2544 struct qstr *last, int *type, 2545 const struct path *root) 2546 { 2547 int retval; 2548 struct nameidata nd; 2549 2550 if (IS_ERR(name)) 2551 return PTR_ERR(name); 2552 set_nameidata(&nd, dfd, name, root); 2553 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent); 2554 if (unlikely(retval == -ECHILD)) 2555 retval = path_parentat(&nd, flags, parent); 2556 if (unlikely(retval == -ESTALE)) 2557 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent); 2558 if (likely(!retval)) { 2559 *last = nd.last; 2560 *type = nd.last_type; 2561 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT); 2562 } 2563 restore_nameidata(); 2564 return retval; 2565 } 2566 2567 static int filename_parentat(int dfd, struct filename *name, 2568 unsigned int flags, struct path *parent, 2569 struct qstr *last, int *type) 2570 { 2571 return __filename_parentat(dfd, name, flags, parent, last, type, NULL); 2572 } 2573 2574 /* does lookup, returns the object with parent locked */ 2575 static struct dentry *__kern_path_locked(int dfd, struct filename *name, struct path *path) 2576 { 2577 struct dentry *d; 2578 struct qstr last; 2579 int type, error; 2580 2581 error = filename_parentat(dfd, name, 0, path, &last, &type); 2582 if (error) 2583 return ERR_PTR(error); 2584 if (unlikely(type != LAST_NORM)) { 2585 path_put(path); 2586 return ERR_PTR(-EINVAL); 2587 } 2588 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 2589 d = lookup_one_qstr_excl(&last, path->dentry, 0); 2590 if (IS_ERR(d)) { 2591 inode_unlock(path->dentry->d_inode); 2592 path_put(path); 2593 } 2594 return d; 2595 } 2596 2597 struct dentry *kern_path_locked(const char *name, struct path *path) 2598 { 2599 struct filename *filename = getname_kernel(name); 2600 struct dentry *res = __kern_path_locked(AT_FDCWD, filename, path); 2601 2602 putname(filename); 2603 return res; 2604 } 2605 2606 struct dentry *user_path_locked_at(int dfd, const char __user *name, struct path *path) 2607 { 2608 struct filename *filename = getname(name); 2609 struct dentry *res = __kern_path_locked(dfd, filename, path); 2610 2611 putname(filename); 2612 return res; 2613 } 2614 EXPORT_SYMBOL(user_path_locked_at); 2615 2616 int kern_path(const char *name, unsigned int flags, struct path *path) 2617 { 2618 struct filename *filename = getname_kernel(name); 2619 int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL); 2620 2621 putname(filename); 2622 return ret; 2623 2624 } 2625 EXPORT_SYMBOL(kern_path); 2626 2627 /** 2628 * vfs_path_parent_lookup - lookup a parent path relative to a dentry-vfsmount pair 2629 * @filename: filename structure 2630 * @flags: lookup flags 2631 * @parent: pointer to struct path to fill 2632 * @last: last component 2633 * @type: type of the last component 2634 * @root: pointer to struct path of the base directory 2635 */ 2636 int vfs_path_parent_lookup(struct filename *filename, unsigned int flags, 2637 struct path *parent, struct qstr *last, int *type, 2638 const struct path *root) 2639 { 2640 return __filename_parentat(AT_FDCWD, filename, flags, parent, last, 2641 type, root); 2642 } 2643 EXPORT_SYMBOL(vfs_path_parent_lookup); 2644 2645 /** 2646 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2647 * @dentry: pointer to dentry of the base directory 2648 * @mnt: pointer to vfs mount of the base directory 2649 * @name: pointer to file name 2650 * @flags: lookup flags 2651 * @path: pointer to struct path to fill 2652 */ 2653 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2654 const char *name, unsigned int flags, 2655 struct path *path) 2656 { 2657 struct filename *filename; 2658 struct path root = {.mnt = mnt, .dentry = dentry}; 2659 int ret; 2660 2661 filename = getname_kernel(name); 2662 /* the first argument of filename_lookup() is ignored with root */ 2663 ret = filename_lookup(AT_FDCWD, filename, flags, path, &root); 2664 putname(filename); 2665 return ret; 2666 } 2667 EXPORT_SYMBOL(vfs_path_lookup); 2668 2669 static int lookup_one_common(struct mnt_idmap *idmap, 2670 const char *name, struct dentry *base, int len, 2671 struct qstr *this) 2672 { 2673 this->name = name; 2674 this->len = len; 2675 this->hash = full_name_hash(base, name, len); 2676 if (!len) 2677 return -EACCES; 2678 2679 if (unlikely(name[0] == '.')) { 2680 if (len < 2 || (len == 2 && name[1] == '.')) 2681 return -EACCES; 2682 } 2683 2684 while (len--) { 2685 unsigned int c = *(const unsigned char *)name++; 2686 if (c == '/' || c == '\0') 2687 return -EACCES; 2688 } 2689 /* 2690 * See if the low-level filesystem might want 2691 * to use its own hash.. 2692 */ 2693 if (base->d_flags & DCACHE_OP_HASH) { 2694 int err = base->d_op->d_hash(base, this); 2695 if (err < 0) 2696 return err; 2697 } 2698 2699 return inode_permission(idmap, base->d_inode, MAY_EXEC); 2700 } 2701 2702 /** 2703 * try_lookup_one_len - filesystem helper to lookup single pathname component 2704 * @name: pathname component to lookup 2705 * @base: base directory to lookup from 2706 * @len: maximum length @len should be interpreted to 2707 * 2708 * Look up a dentry by name in the dcache, returning NULL if it does not 2709 * currently exist. The function does not try to create a dentry. 2710 * 2711 * Note that this routine is purely a helper for filesystem usage and should 2712 * not be called by generic code. 2713 * 2714 * The caller must hold base->i_mutex. 2715 */ 2716 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len) 2717 { 2718 struct qstr this; 2719 int err; 2720 2721 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2722 2723 err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this); 2724 if (err) 2725 return ERR_PTR(err); 2726 2727 return lookup_dcache(&this, base, 0); 2728 } 2729 EXPORT_SYMBOL(try_lookup_one_len); 2730 2731 /** 2732 * lookup_one_len - filesystem helper to lookup single pathname component 2733 * @name: pathname component to lookup 2734 * @base: base directory to lookup from 2735 * @len: maximum length @len should be interpreted to 2736 * 2737 * Note that this routine is purely a helper for filesystem usage and should 2738 * not be called by generic code. 2739 * 2740 * The caller must hold base->i_mutex. 2741 */ 2742 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2743 { 2744 struct dentry *dentry; 2745 struct qstr this; 2746 int err; 2747 2748 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2749 2750 err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this); 2751 if (err) 2752 return ERR_PTR(err); 2753 2754 dentry = lookup_dcache(&this, base, 0); 2755 return dentry ? dentry : __lookup_slow(&this, base, 0); 2756 } 2757 EXPORT_SYMBOL(lookup_one_len); 2758 2759 /** 2760 * lookup_one - filesystem helper to lookup single pathname component 2761 * @idmap: idmap of the mount the lookup is performed from 2762 * @name: pathname component to lookup 2763 * @base: base directory to lookup from 2764 * @len: maximum length @len should be interpreted to 2765 * 2766 * Note that this routine is purely a helper for filesystem usage and should 2767 * not be called by generic code. 2768 * 2769 * The caller must hold base->i_mutex. 2770 */ 2771 struct dentry *lookup_one(struct mnt_idmap *idmap, const char *name, 2772 struct dentry *base, int len) 2773 { 2774 struct dentry *dentry; 2775 struct qstr this; 2776 int err; 2777 2778 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2779 2780 err = lookup_one_common(idmap, name, base, len, &this); 2781 if (err) 2782 return ERR_PTR(err); 2783 2784 dentry = lookup_dcache(&this, base, 0); 2785 return dentry ? dentry : __lookup_slow(&this, base, 0); 2786 } 2787 EXPORT_SYMBOL(lookup_one); 2788 2789 /** 2790 * lookup_one_unlocked - filesystem helper to lookup single pathname component 2791 * @idmap: idmap of the mount the lookup is performed from 2792 * @name: pathname component to lookup 2793 * @base: base directory to lookup from 2794 * @len: maximum length @len should be interpreted to 2795 * 2796 * Note that this routine is purely a helper for filesystem usage and should 2797 * not be called by generic code. 2798 * 2799 * Unlike lookup_one_len, it should be called without the parent 2800 * i_mutex held, and will take the i_mutex itself if necessary. 2801 */ 2802 struct dentry *lookup_one_unlocked(struct mnt_idmap *idmap, 2803 const char *name, struct dentry *base, 2804 int len) 2805 { 2806 struct qstr this; 2807 int err; 2808 struct dentry *ret; 2809 2810 err = lookup_one_common(idmap, name, base, len, &this); 2811 if (err) 2812 return ERR_PTR(err); 2813 2814 ret = lookup_dcache(&this, base, 0); 2815 if (!ret) 2816 ret = lookup_slow(&this, base, 0); 2817 return ret; 2818 } 2819 EXPORT_SYMBOL(lookup_one_unlocked); 2820 2821 /** 2822 * lookup_one_positive_unlocked - filesystem helper to lookup single 2823 * pathname component 2824 * @idmap: idmap of the mount the lookup is performed from 2825 * @name: pathname component to lookup 2826 * @base: base directory to lookup from 2827 * @len: maximum length @len should be interpreted to 2828 * 2829 * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns 2830 * known positive or ERR_PTR(). This is what most of the users want. 2831 * 2832 * Note that pinned negative with unlocked parent _can_ become positive at any 2833 * time, so callers of lookup_one_unlocked() need to be very careful; pinned 2834 * positives have >d_inode stable, so this one avoids such problems. 2835 * 2836 * Note that this routine is purely a helper for filesystem usage and should 2837 * not be called by generic code. 2838 * 2839 * The helper should be called without i_mutex held. 2840 */ 2841 struct dentry *lookup_one_positive_unlocked(struct mnt_idmap *idmap, 2842 const char *name, 2843 struct dentry *base, int len) 2844 { 2845 struct dentry *ret = lookup_one_unlocked(idmap, name, base, len); 2846 2847 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) { 2848 dput(ret); 2849 ret = ERR_PTR(-ENOENT); 2850 } 2851 return ret; 2852 } 2853 EXPORT_SYMBOL(lookup_one_positive_unlocked); 2854 2855 /** 2856 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component 2857 * @name: pathname component to lookup 2858 * @base: base directory to lookup from 2859 * @len: maximum length @len should be interpreted to 2860 * 2861 * Note that this routine is purely a helper for filesystem usage and should 2862 * not be called by generic code. 2863 * 2864 * Unlike lookup_one_len, it should be called without the parent 2865 * i_mutex held, and will take the i_mutex itself if necessary. 2866 */ 2867 struct dentry *lookup_one_len_unlocked(const char *name, 2868 struct dentry *base, int len) 2869 { 2870 return lookup_one_unlocked(&nop_mnt_idmap, name, base, len); 2871 } 2872 EXPORT_SYMBOL(lookup_one_len_unlocked); 2873 2874 /* 2875 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT) 2876 * on negatives. Returns known positive or ERR_PTR(); that's what 2877 * most of the users want. Note that pinned negative with unlocked parent 2878 * _can_ become positive at any time, so callers of lookup_one_len_unlocked() 2879 * need to be very careful; pinned positives have ->d_inode stable, so 2880 * this one avoids such problems. 2881 */ 2882 struct dentry *lookup_positive_unlocked(const char *name, 2883 struct dentry *base, int len) 2884 { 2885 return lookup_one_positive_unlocked(&nop_mnt_idmap, name, base, len); 2886 } 2887 EXPORT_SYMBOL(lookup_positive_unlocked); 2888 2889 #ifdef CONFIG_UNIX98_PTYS 2890 int path_pts(struct path *path) 2891 { 2892 /* Find something mounted on "pts" in the same directory as 2893 * the input path. 2894 */ 2895 struct dentry *parent = dget_parent(path->dentry); 2896 struct dentry *child; 2897 struct qstr this = QSTR_INIT("pts", 3); 2898 2899 if (unlikely(!path_connected(path->mnt, parent))) { 2900 dput(parent); 2901 return -ENOENT; 2902 } 2903 dput(path->dentry); 2904 path->dentry = parent; 2905 child = d_hash_and_lookup(parent, &this); 2906 if (IS_ERR_OR_NULL(child)) 2907 return -ENOENT; 2908 2909 path->dentry = child; 2910 dput(parent); 2911 follow_down(path, 0); 2912 return 0; 2913 } 2914 #endif 2915 2916 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2917 struct path *path, int *empty) 2918 { 2919 struct filename *filename = getname_flags(name, flags, empty); 2920 int ret = filename_lookup(dfd, filename, flags, path, NULL); 2921 2922 putname(filename); 2923 return ret; 2924 } 2925 EXPORT_SYMBOL(user_path_at_empty); 2926 2927 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir, 2928 struct inode *inode) 2929 { 2930 kuid_t fsuid = current_fsuid(); 2931 2932 if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), fsuid)) 2933 return 0; 2934 if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, dir), fsuid)) 2935 return 0; 2936 return !capable_wrt_inode_uidgid(idmap, inode, CAP_FOWNER); 2937 } 2938 EXPORT_SYMBOL(__check_sticky); 2939 2940 /* 2941 * Check whether we can remove a link victim from directory dir, check 2942 * whether the type of victim is right. 2943 * 1. We can't do it if dir is read-only (done in permission()) 2944 * 2. We should have write and exec permissions on dir 2945 * 3. We can't remove anything from append-only dir 2946 * 4. We can't do anything with immutable dir (done in permission()) 2947 * 5. If the sticky bit on dir is set we should either 2948 * a. be owner of dir, or 2949 * b. be owner of victim, or 2950 * c. have CAP_FOWNER capability 2951 * 6. If the victim is append-only or immutable we can't do antyhing with 2952 * links pointing to it. 2953 * 7. If the victim has an unknown uid or gid we can't change the inode. 2954 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2955 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2956 * 10. We can't remove a root or mountpoint. 2957 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by 2958 * nfs_async_unlink(). 2959 */ 2960 static int may_delete(struct mnt_idmap *idmap, struct inode *dir, 2961 struct dentry *victim, bool isdir) 2962 { 2963 struct inode *inode = d_backing_inode(victim); 2964 int error; 2965 2966 if (d_is_negative(victim)) 2967 return -ENOENT; 2968 BUG_ON(!inode); 2969 2970 BUG_ON(victim->d_parent->d_inode != dir); 2971 2972 /* Inode writeback is not safe when the uid or gid are invalid. */ 2973 if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) || 2974 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode))) 2975 return -EOVERFLOW; 2976 2977 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2978 2979 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 2980 if (error) 2981 return error; 2982 if (IS_APPEND(dir)) 2983 return -EPERM; 2984 2985 if (check_sticky(idmap, dir, inode) || IS_APPEND(inode) || 2986 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || 2987 HAS_UNMAPPED_ID(idmap, inode)) 2988 return -EPERM; 2989 if (isdir) { 2990 if (!d_is_dir(victim)) 2991 return -ENOTDIR; 2992 if (IS_ROOT(victim)) 2993 return -EBUSY; 2994 } else if (d_is_dir(victim)) 2995 return -EISDIR; 2996 if (IS_DEADDIR(dir)) 2997 return -ENOENT; 2998 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2999 return -EBUSY; 3000 return 0; 3001 } 3002 3003 /* Check whether we can create an object with dentry child in directory 3004 * dir. 3005 * 1. We can't do it if child already exists (open has special treatment for 3006 * this case, but since we are inlined it's OK) 3007 * 2. We can't do it if dir is read-only (done in permission()) 3008 * 3. We can't do it if the fs can't represent the fsuid or fsgid. 3009 * 4. We should have write and exec permissions on dir 3010 * 5. We can't do it if dir is immutable (done in permission()) 3011 */ 3012 static inline int may_create(struct mnt_idmap *idmap, 3013 struct inode *dir, struct dentry *child) 3014 { 3015 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 3016 if (child->d_inode) 3017 return -EEXIST; 3018 if (IS_DEADDIR(dir)) 3019 return -ENOENT; 3020 if (!fsuidgid_has_mapping(dir->i_sb, idmap)) 3021 return -EOVERFLOW; 3022 3023 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 3024 } 3025 3026 // p1 != p2, both are on the same filesystem, ->s_vfs_rename_mutex is held 3027 static struct dentry *lock_two_directories(struct dentry *p1, struct dentry *p2) 3028 { 3029 struct dentry *p = p1, *q = p2, *r; 3030 3031 while ((r = p->d_parent) != p2 && r != p) 3032 p = r; 3033 if (r == p2) { 3034 // p is a child of p2 and an ancestor of p1 or p1 itself 3035 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 3036 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT2); 3037 return p; 3038 } 3039 // p is the root of connected component that contains p1 3040 // p2 does not occur on the path from p to p1 3041 while ((r = q->d_parent) != p1 && r != p && r != q) 3042 q = r; 3043 if (r == p1) { 3044 // q is a child of p1 and an ancestor of p2 or p2 itself 3045 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 3046 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 3047 return q; 3048 } else if (likely(r == p)) { 3049 // both p2 and p1 are descendents of p 3050 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 3051 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 3052 return NULL; 3053 } else { // no common ancestor at the time we'd been called 3054 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 3055 return ERR_PTR(-EXDEV); 3056 } 3057 } 3058 3059 /* 3060 * p1 and p2 should be directories on the same fs. 3061 */ 3062 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 3063 { 3064 if (p1 == p2) { 3065 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 3066 return NULL; 3067 } 3068 3069 mutex_lock(&p1->d_sb->s_vfs_rename_mutex); 3070 return lock_two_directories(p1, p2); 3071 } 3072 EXPORT_SYMBOL(lock_rename); 3073 3074 /* 3075 * c1 and p2 should be on the same fs. 3076 */ 3077 struct dentry *lock_rename_child(struct dentry *c1, struct dentry *p2) 3078 { 3079 if (READ_ONCE(c1->d_parent) == p2) { 3080 /* 3081 * hopefully won't need to touch ->s_vfs_rename_mutex at all. 3082 */ 3083 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 3084 /* 3085 * now that p2 is locked, nobody can move in or out of it, 3086 * so the test below is safe. 3087 */ 3088 if (likely(c1->d_parent == p2)) 3089 return NULL; 3090 3091 /* 3092 * c1 got moved out of p2 while we'd been taking locks; 3093 * unlock and fall back to slow case. 3094 */ 3095 inode_unlock(p2->d_inode); 3096 } 3097 3098 mutex_lock(&c1->d_sb->s_vfs_rename_mutex); 3099 /* 3100 * nobody can move out of any directories on this fs. 3101 */ 3102 if (likely(c1->d_parent != p2)) 3103 return lock_two_directories(c1->d_parent, p2); 3104 3105 /* 3106 * c1 got moved into p2 while we were taking locks; 3107 * we need p2 locked and ->s_vfs_rename_mutex unlocked, 3108 * for consistency with lock_rename(). 3109 */ 3110 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 3111 mutex_unlock(&c1->d_sb->s_vfs_rename_mutex); 3112 return NULL; 3113 } 3114 EXPORT_SYMBOL(lock_rename_child); 3115 3116 void unlock_rename(struct dentry *p1, struct dentry *p2) 3117 { 3118 inode_unlock(p1->d_inode); 3119 if (p1 != p2) { 3120 inode_unlock(p2->d_inode); 3121 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 3122 } 3123 } 3124 EXPORT_SYMBOL(unlock_rename); 3125 3126 /** 3127 * vfs_prepare_mode - prepare the mode to be used for a new inode 3128 * @idmap: idmap of the mount the inode was found from 3129 * @dir: parent directory of the new inode 3130 * @mode: mode of the new inode 3131 * @mask_perms: allowed permission by the vfs 3132 * @type: type of file to be created 3133 * 3134 * This helper consolidates and enforces vfs restrictions on the @mode of a new 3135 * object to be created. 3136 * 3137 * Umask stripping depends on whether the filesystem supports POSIX ACLs (see 3138 * the kernel documentation for mode_strip_umask()). Moving umask stripping 3139 * after setgid stripping allows the same ordering for both non-POSIX ACL and 3140 * POSIX ACL supporting filesystems. 3141 * 3142 * Note that it's currently valid for @type to be 0 if a directory is created. 3143 * Filesystems raise that flag individually and we need to check whether each 3144 * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a 3145 * non-zero type. 3146 * 3147 * Returns: mode to be passed to the filesystem 3148 */ 3149 static inline umode_t vfs_prepare_mode(struct mnt_idmap *idmap, 3150 const struct inode *dir, umode_t mode, 3151 umode_t mask_perms, umode_t type) 3152 { 3153 mode = mode_strip_sgid(idmap, dir, mode); 3154 mode = mode_strip_umask(dir, mode); 3155 3156 /* 3157 * Apply the vfs mandated allowed permission mask and set the type of 3158 * file to be created before we call into the filesystem. 3159 */ 3160 mode &= (mask_perms & ~S_IFMT); 3161 mode |= (type & S_IFMT); 3162 3163 return mode; 3164 } 3165 3166 /** 3167 * vfs_create - create new file 3168 * @idmap: idmap of the mount the inode was found from 3169 * @dir: inode of @dentry 3170 * @dentry: pointer to dentry of the base directory 3171 * @mode: mode of the new file 3172 * @want_excl: whether the file must not yet exist 3173 * 3174 * Create a new file. 3175 * 3176 * If the inode has been found through an idmapped mount the idmap of 3177 * the vfsmount must be passed through @idmap. This function will then take 3178 * care to map the inode according to @idmap before checking permissions. 3179 * On non-idmapped mounts or if permission checking is to be performed on the 3180 * raw inode simply pass @nop_mnt_idmap. 3181 */ 3182 int vfs_create(struct mnt_idmap *idmap, struct inode *dir, 3183 struct dentry *dentry, umode_t mode, bool want_excl) 3184 { 3185 int error; 3186 3187 error = may_create(idmap, dir, dentry); 3188 if (error) 3189 return error; 3190 3191 if (!dir->i_op->create) 3192 return -EACCES; /* shouldn't it be ENOSYS? */ 3193 3194 mode = vfs_prepare_mode(idmap, dir, mode, S_IALLUGO, S_IFREG); 3195 error = security_inode_create(dir, dentry, mode); 3196 if (error) 3197 return error; 3198 error = dir->i_op->create(idmap, dir, dentry, mode, want_excl); 3199 if (!error) 3200 fsnotify_create(dir, dentry); 3201 return error; 3202 } 3203 EXPORT_SYMBOL(vfs_create); 3204 3205 int vfs_mkobj(struct dentry *dentry, umode_t mode, 3206 int (*f)(struct dentry *, umode_t, void *), 3207 void *arg) 3208 { 3209 struct inode *dir = dentry->d_parent->d_inode; 3210 int error = may_create(&nop_mnt_idmap, dir, dentry); 3211 if (error) 3212 return error; 3213 3214 mode &= S_IALLUGO; 3215 mode |= S_IFREG; 3216 error = security_inode_create(dir, dentry, mode); 3217 if (error) 3218 return error; 3219 error = f(dentry, mode, arg); 3220 if (!error) 3221 fsnotify_create(dir, dentry); 3222 return error; 3223 } 3224 EXPORT_SYMBOL(vfs_mkobj); 3225 3226 bool may_open_dev(const struct path *path) 3227 { 3228 return !(path->mnt->mnt_flags & MNT_NODEV) && 3229 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV); 3230 } 3231 3232 static int may_open(struct mnt_idmap *idmap, const struct path *path, 3233 int acc_mode, int flag) 3234 { 3235 struct dentry *dentry = path->dentry; 3236 struct inode *inode = dentry->d_inode; 3237 int error; 3238 3239 if (!inode) 3240 return -ENOENT; 3241 3242 switch (inode->i_mode & S_IFMT) { 3243 case S_IFLNK: 3244 return -ELOOP; 3245 case S_IFDIR: 3246 if (acc_mode & MAY_WRITE) 3247 return -EISDIR; 3248 if (acc_mode & MAY_EXEC) 3249 return -EACCES; 3250 break; 3251 case S_IFBLK: 3252 case S_IFCHR: 3253 if (!may_open_dev(path)) 3254 return -EACCES; 3255 fallthrough; 3256 case S_IFIFO: 3257 case S_IFSOCK: 3258 if (acc_mode & MAY_EXEC) 3259 return -EACCES; 3260 flag &= ~O_TRUNC; 3261 break; 3262 case S_IFREG: 3263 if ((acc_mode & MAY_EXEC) && path_noexec(path)) 3264 return -EACCES; 3265 break; 3266 } 3267 3268 error = inode_permission(idmap, inode, MAY_OPEN | acc_mode); 3269 if (error) 3270 return error; 3271 3272 /* 3273 * An append-only file must be opened in append mode for writing. 3274 */ 3275 if (IS_APPEND(inode)) { 3276 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 3277 return -EPERM; 3278 if (flag & O_TRUNC) 3279 return -EPERM; 3280 } 3281 3282 /* O_NOATIME can only be set by the owner or superuser */ 3283 if (flag & O_NOATIME && !inode_owner_or_capable(idmap, inode)) 3284 return -EPERM; 3285 3286 return 0; 3287 } 3288 3289 static int handle_truncate(struct mnt_idmap *idmap, struct file *filp) 3290 { 3291 const struct path *path = &filp->f_path; 3292 struct inode *inode = path->dentry->d_inode; 3293 int error = get_write_access(inode); 3294 if (error) 3295 return error; 3296 3297 error = security_file_truncate(filp); 3298 if (!error) { 3299 error = do_truncate(idmap, path->dentry, 0, 3300 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 3301 filp); 3302 } 3303 put_write_access(inode); 3304 return error; 3305 } 3306 3307 static inline int open_to_namei_flags(int flag) 3308 { 3309 if ((flag & O_ACCMODE) == 3) 3310 flag--; 3311 return flag; 3312 } 3313 3314 static int may_o_create(struct mnt_idmap *idmap, 3315 const struct path *dir, struct dentry *dentry, 3316 umode_t mode) 3317 { 3318 int error = security_path_mknod(dir, dentry, mode, 0); 3319 if (error) 3320 return error; 3321 3322 if (!fsuidgid_has_mapping(dir->dentry->d_sb, idmap)) 3323 return -EOVERFLOW; 3324 3325 error = inode_permission(idmap, dir->dentry->d_inode, 3326 MAY_WRITE | MAY_EXEC); 3327 if (error) 3328 return error; 3329 3330 return security_inode_create(dir->dentry->d_inode, dentry, mode); 3331 } 3332 3333 /* 3334 * Attempt to atomically look up, create and open a file from a negative 3335 * dentry. 3336 * 3337 * Returns 0 if successful. The file will have been created and attached to 3338 * @file by the filesystem calling finish_open(). 3339 * 3340 * If the file was looked up only or didn't need creating, FMODE_OPENED won't 3341 * be set. The caller will need to perform the open themselves. @path will 3342 * have been updated to point to the new dentry. This may be negative. 3343 * 3344 * Returns an error code otherwise. 3345 */ 3346 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry, 3347 struct file *file, 3348 int open_flag, umode_t mode) 3349 { 3350 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 3351 struct inode *dir = nd->path.dentry->d_inode; 3352 int error; 3353 3354 if (nd->flags & LOOKUP_DIRECTORY) 3355 open_flag |= O_DIRECTORY; 3356 3357 file->f_path.dentry = DENTRY_NOT_SET; 3358 file->f_path.mnt = nd->path.mnt; 3359 error = dir->i_op->atomic_open(dir, dentry, file, 3360 open_to_namei_flags(open_flag), mode); 3361 d_lookup_done(dentry); 3362 if (!error) { 3363 if (file->f_mode & FMODE_OPENED) { 3364 if (unlikely(dentry != file->f_path.dentry)) { 3365 dput(dentry); 3366 dentry = dget(file->f_path.dentry); 3367 } 3368 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 3369 error = -EIO; 3370 } else { 3371 if (file->f_path.dentry) { 3372 dput(dentry); 3373 dentry = file->f_path.dentry; 3374 } 3375 if (unlikely(d_is_negative(dentry))) 3376 error = -ENOENT; 3377 } 3378 } 3379 if (error) { 3380 dput(dentry); 3381 dentry = ERR_PTR(error); 3382 } 3383 return dentry; 3384 } 3385 3386 /* 3387 * Look up and maybe create and open the last component. 3388 * 3389 * Must be called with parent locked (exclusive in O_CREAT case). 3390 * 3391 * Returns 0 on success, that is, if 3392 * the file was successfully atomically created (if necessary) and opened, or 3393 * the file was not completely opened at this time, though lookups and 3394 * creations were performed. 3395 * These case are distinguished by presence of FMODE_OPENED on file->f_mode. 3396 * In the latter case dentry returned in @path might be negative if O_CREAT 3397 * hadn't been specified. 3398 * 3399 * An error code is returned on failure. 3400 */ 3401 static struct dentry *lookup_open(struct nameidata *nd, struct file *file, 3402 const struct open_flags *op, 3403 bool got_write) 3404 { 3405 struct mnt_idmap *idmap; 3406 struct dentry *dir = nd->path.dentry; 3407 struct inode *dir_inode = dir->d_inode; 3408 int open_flag = op->open_flag; 3409 struct dentry *dentry; 3410 int error, create_error = 0; 3411 umode_t mode = op->mode; 3412 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 3413 3414 if (unlikely(IS_DEADDIR(dir_inode))) 3415 return ERR_PTR(-ENOENT); 3416 3417 file->f_mode &= ~FMODE_CREATED; 3418 dentry = d_lookup(dir, &nd->last); 3419 for (;;) { 3420 if (!dentry) { 3421 dentry = d_alloc_parallel(dir, &nd->last, &wq); 3422 if (IS_ERR(dentry)) 3423 return dentry; 3424 } 3425 if (d_in_lookup(dentry)) 3426 break; 3427 3428 error = d_revalidate(dentry, nd->flags); 3429 if (likely(error > 0)) 3430 break; 3431 if (error) 3432 goto out_dput; 3433 d_invalidate(dentry); 3434 dput(dentry); 3435 dentry = NULL; 3436 } 3437 if (dentry->d_inode) { 3438 /* Cached positive dentry: will open in f_op->open */ 3439 return dentry; 3440 } 3441 3442 /* 3443 * Checking write permission is tricky, bacuse we don't know if we are 3444 * going to actually need it: O_CREAT opens should work as long as the 3445 * file exists. But checking existence breaks atomicity. The trick is 3446 * to check access and if not granted clear O_CREAT from the flags. 3447 * 3448 * Another problem is returing the "right" error value (e.g. for an 3449 * O_EXCL open we want to return EEXIST not EROFS). 3450 */ 3451 if (unlikely(!got_write)) 3452 open_flag &= ~O_TRUNC; 3453 idmap = mnt_idmap(nd->path.mnt); 3454 if (open_flag & O_CREAT) { 3455 if (open_flag & O_EXCL) 3456 open_flag &= ~O_TRUNC; 3457 mode = vfs_prepare_mode(idmap, dir->d_inode, mode, mode, mode); 3458 if (likely(got_write)) 3459 create_error = may_o_create(idmap, &nd->path, 3460 dentry, mode); 3461 else 3462 create_error = -EROFS; 3463 } 3464 if (create_error) 3465 open_flag &= ~O_CREAT; 3466 if (dir_inode->i_op->atomic_open) { 3467 dentry = atomic_open(nd, dentry, file, open_flag, mode); 3468 if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT)) 3469 dentry = ERR_PTR(create_error); 3470 return dentry; 3471 } 3472 3473 if (d_in_lookup(dentry)) { 3474 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry, 3475 nd->flags); 3476 d_lookup_done(dentry); 3477 if (unlikely(res)) { 3478 if (IS_ERR(res)) { 3479 error = PTR_ERR(res); 3480 goto out_dput; 3481 } 3482 dput(dentry); 3483 dentry = res; 3484 } 3485 } 3486 3487 /* Negative dentry, just create the file */ 3488 if (!dentry->d_inode && (open_flag & O_CREAT)) { 3489 file->f_mode |= FMODE_CREATED; 3490 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE); 3491 if (!dir_inode->i_op->create) { 3492 error = -EACCES; 3493 goto out_dput; 3494 } 3495 3496 error = dir_inode->i_op->create(idmap, dir_inode, dentry, 3497 mode, open_flag & O_EXCL); 3498 if (error) 3499 goto out_dput; 3500 } 3501 if (unlikely(create_error) && !dentry->d_inode) { 3502 error = create_error; 3503 goto out_dput; 3504 } 3505 return dentry; 3506 3507 out_dput: 3508 dput(dentry); 3509 return ERR_PTR(error); 3510 } 3511 3512 static const char *open_last_lookups(struct nameidata *nd, 3513 struct file *file, const struct open_flags *op) 3514 { 3515 struct dentry *dir = nd->path.dentry; 3516 int open_flag = op->open_flag; 3517 bool got_write = false; 3518 struct dentry *dentry; 3519 const char *res; 3520 3521 nd->flags |= op->intent; 3522 3523 if (nd->last_type != LAST_NORM) { 3524 if (nd->depth) 3525 put_link(nd); 3526 return handle_dots(nd, nd->last_type); 3527 } 3528 3529 if (!(open_flag & O_CREAT)) { 3530 if (nd->last.name[nd->last.len]) 3531 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 3532 /* we _can_ be in RCU mode here */ 3533 dentry = lookup_fast(nd); 3534 if (IS_ERR(dentry)) 3535 return ERR_CAST(dentry); 3536 if (likely(dentry)) 3537 goto finish_lookup; 3538 3539 if (WARN_ON_ONCE(nd->flags & LOOKUP_RCU)) 3540 return ERR_PTR(-ECHILD); 3541 } else { 3542 /* create side of things */ 3543 if (nd->flags & LOOKUP_RCU) { 3544 if (!try_to_unlazy(nd)) 3545 return ERR_PTR(-ECHILD); 3546 } 3547 audit_inode(nd->name, dir, AUDIT_INODE_PARENT); 3548 /* trailing slashes? */ 3549 if (unlikely(nd->last.name[nd->last.len])) 3550 return ERR_PTR(-EISDIR); 3551 } 3552 3553 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 3554 got_write = !mnt_want_write(nd->path.mnt); 3555 /* 3556 * do _not_ fail yet - we might not need that or fail with 3557 * a different error; let lookup_open() decide; we'll be 3558 * dropping this one anyway. 3559 */ 3560 } 3561 if (open_flag & O_CREAT) 3562 inode_lock(dir->d_inode); 3563 else 3564 inode_lock_shared(dir->d_inode); 3565 dentry = lookup_open(nd, file, op, got_write); 3566 if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED)) 3567 fsnotify_create(dir->d_inode, dentry); 3568 if (open_flag & O_CREAT) 3569 inode_unlock(dir->d_inode); 3570 else 3571 inode_unlock_shared(dir->d_inode); 3572 3573 if (got_write) 3574 mnt_drop_write(nd->path.mnt); 3575 3576 if (IS_ERR(dentry)) 3577 return ERR_CAST(dentry); 3578 3579 if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) { 3580 dput(nd->path.dentry); 3581 nd->path.dentry = dentry; 3582 return NULL; 3583 } 3584 3585 finish_lookup: 3586 if (nd->depth) 3587 put_link(nd); 3588 res = step_into(nd, WALK_TRAILING, dentry); 3589 if (unlikely(res)) 3590 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3591 return res; 3592 } 3593 3594 /* 3595 * Handle the last step of open() 3596 */ 3597 static int do_open(struct nameidata *nd, 3598 struct file *file, const struct open_flags *op) 3599 { 3600 struct mnt_idmap *idmap; 3601 int open_flag = op->open_flag; 3602 bool do_truncate; 3603 int acc_mode; 3604 int error; 3605 3606 if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) { 3607 error = complete_walk(nd); 3608 if (error) 3609 return error; 3610 } 3611 if (!(file->f_mode & FMODE_CREATED)) 3612 audit_inode(nd->name, nd->path.dentry, 0); 3613 idmap = mnt_idmap(nd->path.mnt); 3614 if (open_flag & O_CREAT) { 3615 if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED)) 3616 return -EEXIST; 3617 if (d_is_dir(nd->path.dentry)) 3618 return -EISDIR; 3619 error = may_create_in_sticky(idmap, nd, 3620 d_backing_inode(nd->path.dentry)); 3621 if (unlikely(error)) 3622 return error; 3623 } 3624 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3625 return -ENOTDIR; 3626 3627 do_truncate = false; 3628 acc_mode = op->acc_mode; 3629 if (file->f_mode & FMODE_CREATED) { 3630 /* Don't check for write permission, don't truncate */ 3631 open_flag &= ~O_TRUNC; 3632 acc_mode = 0; 3633 } else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) { 3634 error = mnt_want_write(nd->path.mnt); 3635 if (error) 3636 return error; 3637 do_truncate = true; 3638 } 3639 error = may_open(idmap, &nd->path, acc_mode, open_flag); 3640 if (!error && !(file->f_mode & FMODE_OPENED)) 3641 error = vfs_open(&nd->path, file); 3642 if (!error) 3643 error = ima_file_check(file, op->acc_mode); 3644 if (!error && do_truncate) 3645 error = handle_truncate(idmap, file); 3646 if (unlikely(error > 0)) { 3647 WARN_ON(1); 3648 error = -EINVAL; 3649 } 3650 if (do_truncate) 3651 mnt_drop_write(nd->path.mnt); 3652 return error; 3653 } 3654 3655 /** 3656 * vfs_tmpfile - create tmpfile 3657 * @idmap: idmap of the mount the inode was found from 3658 * @parentpath: pointer to the path of the base directory 3659 * @file: file descriptor of the new tmpfile 3660 * @mode: mode of the new tmpfile 3661 * 3662 * Create a temporary file. 3663 * 3664 * If the inode has been found through an idmapped mount the idmap of 3665 * the vfsmount must be passed through @idmap. This function will then take 3666 * care to map the inode according to @idmap before checking permissions. 3667 * On non-idmapped mounts or if permission checking is to be performed on the 3668 * raw inode simply pass @nop_mnt_idmap. 3669 */ 3670 static int vfs_tmpfile(struct mnt_idmap *idmap, 3671 const struct path *parentpath, 3672 struct file *file, umode_t mode) 3673 { 3674 struct dentry *child; 3675 struct inode *dir = d_inode(parentpath->dentry); 3676 struct inode *inode; 3677 int error; 3678 int open_flag = file->f_flags; 3679 3680 /* we want directory to be writable */ 3681 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 3682 if (error) 3683 return error; 3684 if (!dir->i_op->tmpfile) 3685 return -EOPNOTSUPP; 3686 child = d_alloc(parentpath->dentry, &slash_name); 3687 if (unlikely(!child)) 3688 return -ENOMEM; 3689 file->f_path.mnt = parentpath->mnt; 3690 file->f_path.dentry = child; 3691 mode = vfs_prepare_mode(idmap, dir, mode, mode, mode); 3692 error = dir->i_op->tmpfile(idmap, dir, file, mode); 3693 dput(child); 3694 if (error) 3695 return error; 3696 /* Don't check for other permissions, the inode was just created */ 3697 error = may_open(idmap, &file->f_path, 0, file->f_flags); 3698 if (error) 3699 return error; 3700 inode = file_inode(file); 3701 if (!(open_flag & O_EXCL)) { 3702 spin_lock(&inode->i_lock); 3703 inode->i_state |= I_LINKABLE; 3704 spin_unlock(&inode->i_lock); 3705 } 3706 ima_post_create_tmpfile(idmap, inode); 3707 return 0; 3708 } 3709 3710 /** 3711 * kernel_tmpfile_open - open a tmpfile for kernel internal use 3712 * @idmap: idmap of the mount the inode was found from 3713 * @parentpath: path of the base directory 3714 * @mode: mode of the new tmpfile 3715 * @open_flag: flags 3716 * @cred: credentials for open 3717 * 3718 * Create and open a temporary file. The file is not accounted in nr_files, 3719 * hence this is only for kernel internal use, and must not be installed into 3720 * file tables or such. 3721 */ 3722 struct file *kernel_tmpfile_open(struct mnt_idmap *idmap, 3723 const struct path *parentpath, 3724 umode_t mode, int open_flag, 3725 const struct cred *cred) 3726 { 3727 struct file *file; 3728 int error; 3729 3730 file = alloc_empty_file_noaccount(open_flag, cred); 3731 if (IS_ERR(file)) 3732 return file; 3733 3734 error = vfs_tmpfile(idmap, parentpath, file, mode); 3735 if (error) { 3736 fput(file); 3737 file = ERR_PTR(error); 3738 } 3739 return file; 3740 } 3741 EXPORT_SYMBOL(kernel_tmpfile_open); 3742 3743 static int do_tmpfile(struct nameidata *nd, unsigned flags, 3744 const struct open_flags *op, 3745 struct file *file) 3746 { 3747 struct path path; 3748 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path); 3749 3750 if (unlikely(error)) 3751 return error; 3752 error = mnt_want_write(path.mnt); 3753 if (unlikely(error)) 3754 goto out; 3755 error = vfs_tmpfile(mnt_idmap(path.mnt), &path, file, op->mode); 3756 if (error) 3757 goto out2; 3758 audit_inode(nd->name, file->f_path.dentry, 0); 3759 out2: 3760 mnt_drop_write(path.mnt); 3761 out: 3762 path_put(&path); 3763 return error; 3764 } 3765 3766 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file) 3767 { 3768 struct path path; 3769 int error = path_lookupat(nd, flags, &path); 3770 if (!error) { 3771 audit_inode(nd->name, path.dentry, 0); 3772 error = vfs_open(&path, file); 3773 path_put(&path); 3774 } 3775 return error; 3776 } 3777 3778 static struct file *path_openat(struct nameidata *nd, 3779 const struct open_flags *op, unsigned flags) 3780 { 3781 struct file *file; 3782 int error; 3783 3784 file = alloc_empty_file(op->open_flag, current_cred()); 3785 if (IS_ERR(file)) 3786 return file; 3787 3788 if (unlikely(file->f_flags & __O_TMPFILE)) { 3789 error = do_tmpfile(nd, flags, op, file); 3790 } else if (unlikely(file->f_flags & O_PATH)) { 3791 error = do_o_path(nd, flags, file); 3792 } else { 3793 const char *s = path_init(nd, flags); 3794 while (!(error = link_path_walk(s, nd)) && 3795 (s = open_last_lookups(nd, file, op)) != NULL) 3796 ; 3797 if (!error) 3798 error = do_open(nd, file, op); 3799 terminate_walk(nd); 3800 } 3801 if (likely(!error)) { 3802 if (likely(file->f_mode & FMODE_OPENED)) 3803 return file; 3804 WARN_ON(1); 3805 error = -EINVAL; 3806 } 3807 fput(file); 3808 if (error == -EOPENSTALE) { 3809 if (flags & LOOKUP_RCU) 3810 error = -ECHILD; 3811 else 3812 error = -ESTALE; 3813 } 3814 return ERR_PTR(error); 3815 } 3816 3817 struct file *do_filp_open(int dfd, struct filename *pathname, 3818 const struct open_flags *op) 3819 { 3820 struct nameidata nd; 3821 int flags = op->lookup_flags; 3822 struct file *filp; 3823 3824 set_nameidata(&nd, dfd, pathname, NULL); 3825 filp = path_openat(&nd, op, flags | LOOKUP_RCU); 3826 if (unlikely(filp == ERR_PTR(-ECHILD))) 3827 filp = path_openat(&nd, op, flags); 3828 if (unlikely(filp == ERR_PTR(-ESTALE))) 3829 filp = path_openat(&nd, op, flags | LOOKUP_REVAL); 3830 restore_nameidata(); 3831 return filp; 3832 } 3833 3834 struct file *do_file_open_root(const struct path *root, 3835 const char *name, const struct open_flags *op) 3836 { 3837 struct nameidata nd; 3838 struct file *file; 3839 struct filename *filename; 3840 int flags = op->lookup_flags; 3841 3842 if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN) 3843 return ERR_PTR(-ELOOP); 3844 3845 filename = getname_kernel(name); 3846 if (IS_ERR(filename)) 3847 return ERR_CAST(filename); 3848 3849 set_nameidata(&nd, -1, filename, root); 3850 file = path_openat(&nd, op, flags | LOOKUP_RCU); 3851 if (unlikely(file == ERR_PTR(-ECHILD))) 3852 file = path_openat(&nd, op, flags); 3853 if (unlikely(file == ERR_PTR(-ESTALE))) 3854 file = path_openat(&nd, op, flags | LOOKUP_REVAL); 3855 restore_nameidata(); 3856 putname(filename); 3857 return file; 3858 } 3859 3860 static struct dentry *filename_create(int dfd, struct filename *name, 3861 struct path *path, unsigned int lookup_flags) 3862 { 3863 struct dentry *dentry = ERR_PTR(-EEXIST); 3864 struct qstr last; 3865 bool want_dir = lookup_flags & LOOKUP_DIRECTORY; 3866 unsigned int reval_flag = lookup_flags & LOOKUP_REVAL; 3867 unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL; 3868 int type; 3869 int err2; 3870 int error; 3871 3872 error = filename_parentat(dfd, name, reval_flag, path, &last, &type); 3873 if (error) 3874 return ERR_PTR(error); 3875 3876 /* 3877 * Yucky last component or no last component at all? 3878 * (foo/., foo/.., /////) 3879 */ 3880 if (unlikely(type != LAST_NORM)) 3881 goto out; 3882 3883 /* don't fail immediately if it's r/o, at least try to report other errors */ 3884 err2 = mnt_want_write(path->mnt); 3885 /* 3886 * Do the final lookup. Suppress 'create' if there is a trailing 3887 * '/', and a directory wasn't requested. 3888 */ 3889 if (last.name[last.len] && !want_dir) 3890 create_flags = 0; 3891 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 3892 dentry = lookup_one_qstr_excl(&last, path->dentry, 3893 reval_flag | create_flags); 3894 if (IS_ERR(dentry)) 3895 goto unlock; 3896 3897 error = -EEXIST; 3898 if (d_is_positive(dentry)) 3899 goto fail; 3900 3901 /* 3902 * Special case - lookup gave negative, but... we had foo/bar/ 3903 * From the vfs_mknod() POV we just have a negative dentry - 3904 * all is fine. Let's be bastards - you had / on the end, you've 3905 * been asking for (non-existent) directory. -ENOENT for you. 3906 */ 3907 if (unlikely(!create_flags)) { 3908 error = -ENOENT; 3909 goto fail; 3910 } 3911 if (unlikely(err2)) { 3912 error = err2; 3913 goto fail; 3914 } 3915 return dentry; 3916 fail: 3917 dput(dentry); 3918 dentry = ERR_PTR(error); 3919 unlock: 3920 inode_unlock(path->dentry->d_inode); 3921 if (!err2) 3922 mnt_drop_write(path->mnt); 3923 out: 3924 path_put(path); 3925 return dentry; 3926 } 3927 3928 struct dentry *kern_path_create(int dfd, const char *pathname, 3929 struct path *path, unsigned int lookup_flags) 3930 { 3931 struct filename *filename = getname_kernel(pathname); 3932 struct dentry *res = filename_create(dfd, filename, path, lookup_flags); 3933 3934 putname(filename); 3935 return res; 3936 } 3937 EXPORT_SYMBOL(kern_path_create); 3938 3939 void done_path_create(struct path *path, struct dentry *dentry) 3940 { 3941 dput(dentry); 3942 inode_unlock(path->dentry->d_inode); 3943 mnt_drop_write(path->mnt); 3944 path_put(path); 3945 } 3946 EXPORT_SYMBOL(done_path_create); 3947 3948 inline struct dentry *user_path_create(int dfd, const char __user *pathname, 3949 struct path *path, unsigned int lookup_flags) 3950 { 3951 struct filename *filename = getname(pathname); 3952 struct dentry *res = filename_create(dfd, filename, path, lookup_flags); 3953 3954 putname(filename); 3955 return res; 3956 } 3957 EXPORT_SYMBOL(user_path_create); 3958 3959 /** 3960 * vfs_mknod - create device node or file 3961 * @idmap: idmap of the mount the inode was found from 3962 * @dir: inode of @dentry 3963 * @dentry: pointer to dentry of the base directory 3964 * @mode: mode of the new device node or file 3965 * @dev: device number of device to create 3966 * 3967 * Create a device node or file. 3968 * 3969 * If the inode has been found through an idmapped mount the idmap of 3970 * the vfsmount must be passed through @idmap. This function will then take 3971 * care to map the inode according to @idmap before checking permissions. 3972 * On non-idmapped mounts or if permission checking is to be performed on the 3973 * raw inode simply pass @nop_mnt_idmap. 3974 */ 3975 int vfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 3976 struct dentry *dentry, umode_t mode, dev_t dev) 3977 { 3978 bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV; 3979 int error = may_create(idmap, dir, dentry); 3980 3981 if (error) 3982 return error; 3983 3984 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout && 3985 !capable(CAP_MKNOD)) 3986 return -EPERM; 3987 3988 if (!dir->i_op->mknod) 3989 return -EPERM; 3990 3991 mode = vfs_prepare_mode(idmap, dir, mode, mode, mode); 3992 error = devcgroup_inode_mknod(mode, dev); 3993 if (error) 3994 return error; 3995 3996 error = security_inode_mknod(dir, dentry, mode, dev); 3997 if (error) 3998 return error; 3999 4000 error = dir->i_op->mknod(idmap, dir, dentry, mode, dev); 4001 if (!error) 4002 fsnotify_create(dir, dentry); 4003 return error; 4004 } 4005 EXPORT_SYMBOL(vfs_mknod); 4006 4007 static int may_mknod(umode_t mode) 4008 { 4009 switch (mode & S_IFMT) { 4010 case S_IFREG: 4011 case S_IFCHR: 4012 case S_IFBLK: 4013 case S_IFIFO: 4014 case S_IFSOCK: 4015 case 0: /* zero mode translates to S_IFREG */ 4016 return 0; 4017 case S_IFDIR: 4018 return -EPERM; 4019 default: 4020 return -EINVAL; 4021 } 4022 } 4023 4024 static int do_mknodat(int dfd, struct filename *name, umode_t mode, 4025 unsigned int dev) 4026 { 4027 struct mnt_idmap *idmap; 4028 struct dentry *dentry; 4029 struct path path; 4030 int error; 4031 unsigned int lookup_flags = 0; 4032 4033 error = may_mknod(mode); 4034 if (error) 4035 goto out1; 4036 retry: 4037 dentry = filename_create(dfd, name, &path, lookup_flags); 4038 error = PTR_ERR(dentry); 4039 if (IS_ERR(dentry)) 4040 goto out1; 4041 4042 error = security_path_mknod(&path, dentry, 4043 mode_strip_umask(path.dentry->d_inode, mode), dev); 4044 if (error) 4045 goto out2; 4046 4047 idmap = mnt_idmap(path.mnt); 4048 switch (mode & S_IFMT) { 4049 case 0: case S_IFREG: 4050 error = vfs_create(idmap, path.dentry->d_inode, 4051 dentry, mode, true); 4052 if (!error) 4053 ima_post_path_mknod(idmap, dentry); 4054 break; 4055 case S_IFCHR: case S_IFBLK: 4056 error = vfs_mknod(idmap, path.dentry->d_inode, 4057 dentry, mode, new_decode_dev(dev)); 4058 break; 4059 case S_IFIFO: case S_IFSOCK: 4060 error = vfs_mknod(idmap, path.dentry->d_inode, 4061 dentry, mode, 0); 4062 break; 4063 } 4064 out2: 4065 done_path_create(&path, dentry); 4066 if (retry_estale(error, lookup_flags)) { 4067 lookup_flags |= LOOKUP_REVAL; 4068 goto retry; 4069 } 4070 out1: 4071 putname(name); 4072 return error; 4073 } 4074 4075 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 4076 unsigned int, dev) 4077 { 4078 return do_mknodat(dfd, getname(filename), mode, dev); 4079 } 4080 4081 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 4082 { 4083 return do_mknodat(AT_FDCWD, getname(filename), mode, dev); 4084 } 4085 4086 /** 4087 * vfs_mkdir - create directory 4088 * @idmap: idmap of the mount the inode was found from 4089 * @dir: inode of @dentry 4090 * @dentry: pointer to dentry of the base directory 4091 * @mode: mode of the new directory 4092 * 4093 * Create a directory. 4094 * 4095 * If the inode has been found through an idmapped mount the idmap of 4096 * the vfsmount must be passed through @idmap. This function will then take 4097 * care to map the inode according to @idmap before checking permissions. 4098 * On non-idmapped mounts or if permission checking is to be performed on the 4099 * raw inode simply pass @nop_mnt_idmap. 4100 */ 4101 int vfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 4102 struct dentry *dentry, umode_t mode) 4103 { 4104 int error; 4105 unsigned max_links = dir->i_sb->s_max_links; 4106 4107 error = may_create(idmap, dir, dentry); 4108 if (error) 4109 return error; 4110 4111 if (!dir->i_op->mkdir) 4112 return -EPERM; 4113 4114 mode = vfs_prepare_mode(idmap, dir, mode, S_IRWXUGO | S_ISVTX, 0); 4115 error = security_inode_mkdir(dir, dentry, mode); 4116 if (error) 4117 return error; 4118 4119 if (max_links && dir->i_nlink >= max_links) 4120 return -EMLINK; 4121 4122 error = dir->i_op->mkdir(idmap, dir, dentry, mode); 4123 if (!error) 4124 fsnotify_mkdir(dir, dentry); 4125 return error; 4126 } 4127 EXPORT_SYMBOL(vfs_mkdir); 4128 4129 int do_mkdirat(int dfd, struct filename *name, umode_t mode) 4130 { 4131 struct dentry *dentry; 4132 struct path path; 4133 int error; 4134 unsigned int lookup_flags = LOOKUP_DIRECTORY; 4135 4136 retry: 4137 dentry = filename_create(dfd, name, &path, lookup_flags); 4138 error = PTR_ERR(dentry); 4139 if (IS_ERR(dentry)) 4140 goto out_putname; 4141 4142 error = security_path_mkdir(&path, dentry, 4143 mode_strip_umask(path.dentry->d_inode, mode)); 4144 if (!error) { 4145 error = vfs_mkdir(mnt_idmap(path.mnt), path.dentry->d_inode, 4146 dentry, mode); 4147 } 4148 done_path_create(&path, dentry); 4149 if (retry_estale(error, lookup_flags)) { 4150 lookup_flags |= LOOKUP_REVAL; 4151 goto retry; 4152 } 4153 out_putname: 4154 putname(name); 4155 return error; 4156 } 4157 4158 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 4159 { 4160 return do_mkdirat(dfd, getname(pathname), mode); 4161 } 4162 4163 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 4164 { 4165 return do_mkdirat(AT_FDCWD, getname(pathname), mode); 4166 } 4167 4168 /** 4169 * vfs_rmdir - remove directory 4170 * @idmap: idmap of the mount the inode was found from 4171 * @dir: inode of @dentry 4172 * @dentry: pointer to dentry of the base directory 4173 * 4174 * Remove a directory. 4175 * 4176 * If the inode has been found through an idmapped mount the idmap of 4177 * the vfsmount must be passed through @idmap. This function will then take 4178 * care to map the inode according to @idmap before checking permissions. 4179 * On non-idmapped mounts or if permission checking is to be performed on the 4180 * raw inode simply pass @nop_mnt_idmap. 4181 */ 4182 int vfs_rmdir(struct mnt_idmap *idmap, struct inode *dir, 4183 struct dentry *dentry) 4184 { 4185 int error = may_delete(idmap, dir, dentry, 1); 4186 4187 if (error) 4188 return error; 4189 4190 if (!dir->i_op->rmdir) 4191 return -EPERM; 4192 4193 dget(dentry); 4194 inode_lock(dentry->d_inode); 4195 4196 error = -EBUSY; 4197 if (is_local_mountpoint(dentry) || 4198 (dentry->d_inode->i_flags & S_KERNEL_FILE)) 4199 goto out; 4200 4201 error = security_inode_rmdir(dir, dentry); 4202 if (error) 4203 goto out; 4204 4205 error = dir->i_op->rmdir(dir, dentry); 4206 if (error) 4207 goto out; 4208 4209 shrink_dcache_parent(dentry); 4210 dentry->d_inode->i_flags |= S_DEAD; 4211 dont_mount(dentry); 4212 detach_mounts(dentry); 4213 4214 out: 4215 inode_unlock(dentry->d_inode); 4216 dput(dentry); 4217 if (!error) 4218 d_delete_notify(dir, dentry); 4219 return error; 4220 } 4221 EXPORT_SYMBOL(vfs_rmdir); 4222 4223 int do_rmdir(int dfd, struct filename *name) 4224 { 4225 int error; 4226 struct dentry *dentry; 4227 struct path path; 4228 struct qstr last; 4229 int type; 4230 unsigned int lookup_flags = 0; 4231 retry: 4232 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 4233 if (error) 4234 goto exit1; 4235 4236 switch (type) { 4237 case LAST_DOTDOT: 4238 error = -ENOTEMPTY; 4239 goto exit2; 4240 case LAST_DOT: 4241 error = -EINVAL; 4242 goto exit2; 4243 case LAST_ROOT: 4244 error = -EBUSY; 4245 goto exit2; 4246 } 4247 4248 error = mnt_want_write(path.mnt); 4249 if (error) 4250 goto exit2; 4251 4252 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4253 dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags); 4254 error = PTR_ERR(dentry); 4255 if (IS_ERR(dentry)) 4256 goto exit3; 4257 if (!dentry->d_inode) { 4258 error = -ENOENT; 4259 goto exit4; 4260 } 4261 error = security_path_rmdir(&path, dentry); 4262 if (error) 4263 goto exit4; 4264 error = vfs_rmdir(mnt_idmap(path.mnt), path.dentry->d_inode, dentry); 4265 exit4: 4266 dput(dentry); 4267 exit3: 4268 inode_unlock(path.dentry->d_inode); 4269 mnt_drop_write(path.mnt); 4270 exit2: 4271 path_put(&path); 4272 if (retry_estale(error, lookup_flags)) { 4273 lookup_flags |= LOOKUP_REVAL; 4274 goto retry; 4275 } 4276 exit1: 4277 putname(name); 4278 return error; 4279 } 4280 4281 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 4282 { 4283 return do_rmdir(AT_FDCWD, getname(pathname)); 4284 } 4285 4286 /** 4287 * vfs_unlink - unlink a filesystem object 4288 * @idmap: idmap of the mount the inode was found from 4289 * @dir: parent directory 4290 * @dentry: victim 4291 * @delegated_inode: returns victim inode, if the inode is delegated. 4292 * 4293 * The caller must hold dir->i_mutex. 4294 * 4295 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 4296 * return a reference to the inode in delegated_inode. The caller 4297 * should then break the delegation on that inode and retry. Because 4298 * breaking a delegation may take a long time, the caller should drop 4299 * dir->i_mutex before doing so. 4300 * 4301 * Alternatively, a caller may pass NULL for delegated_inode. This may 4302 * be appropriate for callers that expect the underlying filesystem not 4303 * to be NFS exported. 4304 * 4305 * If the inode has been found through an idmapped mount the idmap of 4306 * the vfsmount must be passed through @idmap. This function will then take 4307 * care to map the inode according to @idmap before checking permissions. 4308 * On non-idmapped mounts or if permission checking is to be performed on the 4309 * raw inode simply pass @nop_mnt_idmap. 4310 */ 4311 int vfs_unlink(struct mnt_idmap *idmap, struct inode *dir, 4312 struct dentry *dentry, struct inode **delegated_inode) 4313 { 4314 struct inode *target = dentry->d_inode; 4315 int error = may_delete(idmap, dir, dentry, 0); 4316 4317 if (error) 4318 return error; 4319 4320 if (!dir->i_op->unlink) 4321 return -EPERM; 4322 4323 inode_lock(target); 4324 if (IS_SWAPFILE(target)) 4325 error = -EPERM; 4326 else if (is_local_mountpoint(dentry)) 4327 error = -EBUSY; 4328 else { 4329 error = security_inode_unlink(dir, dentry); 4330 if (!error) { 4331 error = try_break_deleg(target, delegated_inode); 4332 if (error) 4333 goto out; 4334 error = dir->i_op->unlink(dir, dentry); 4335 if (!error) { 4336 dont_mount(dentry); 4337 detach_mounts(dentry); 4338 } 4339 } 4340 } 4341 out: 4342 inode_unlock(target); 4343 4344 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 4345 if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) { 4346 fsnotify_unlink(dir, dentry); 4347 } else if (!error) { 4348 fsnotify_link_count(target); 4349 d_delete_notify(dir, dentry); 4350 } 4351 4352 return error; 4353 } 4354 EXPORT_SYMBOL(vfs_unlink); 4355 4356 /* 4357 * Make sure that the actual truncation of the file will occur outside its 4358 * directory's i_mutex. Truncate can take a long time if there is a lot of 4359 * writeout happening, and we don't want to prevent access to the directory 4360 * while waiting on the I/O. 4361 */ 4362 int do_unlinkat(int dfd, struct filename *name) 4363 { 4364 int error; 4365 struct dentry *dentry; 4366 struct path path; 4367 struct qstr last; 4368 int type; 4369 struct inode *inode = NULL; 4370 struct inode *delegated_inode = NULL; 4371 unsigned int lookup_flags = 0; 4372 retry: 4373 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 4374 if (error) 4375 goto exit1; 4376 4377 error = -EISDIR; 4378 if (type != LAST_NORM) 4379 goto exit2; 4380 4381 error = mnt_want_write(path.mnt); 4382 if (error) 4383 goto exit2; 4384 retry_deleg: 4385 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4386 dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags); 4387 error = PTR_ERR(dentry); 4388 if (!IS_ERR(dentry)) { 4389 4390 /* Why not before? Because we want correct error value */ 4391 if (last.name[last.len] || d_is_negative(dentry)) 4392 goto slashes; 4393 inode = dentry->d_inode; 4394 ihold(inode); 4395 error = security_path_unlink(&path, dentry); 4396 if (error) 4397 goto exit3; 4398 error = vfs_unlink(mnt_idmap(path.mnt), path.dentry->d_inode, 4399 dentry, &delegated_inode); 4400 exit3: 4401 dput(dentry); 4402 } 4403 inode_unlock(path.dentry->d_inode); 4404 if (inode) 4405 iput(inode); /* truncate the inode here */ 4406 inode = NULL; 4407 if (delegated_inode) { 4408 error = break_deleg_wait(&delegated_inode); 4409 if (!error) 4410 goto retry_deleg; 4411 } 4412 mnt_drop_write(path.mnt); 4413 exit2: 4414 path_put(&path); 4415 if (retry_estale(error, lookup_flags)) { 4416 lookup_flags |= LOOKUP_REVAL; 4417 inode = NULL; 4418 goto retry; 4419 } 4420 exit1: 4421 putname(name); 4422 return error; 4423 4424 slashes: 4425 if (d_is_negative(dentry)) 4426 error = -ENOENT; 4427 else if (d_is_dir(dentry)) 4428 error = -EISDIR; 4429 else 4430 error = -ENOTDIR; 4431 goto exit3; 4432 } 4433 4434 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 4435 { 4436 if ((flag & ~AT_REMOVEDIR) != 0) 4437 return -EINVAL; 4438 4439 if (flag & AT_REMOVEDIR) 4440 return do_rmdir(dfd, getname(pathname)); 4441 return do_unlinkat(dfd, getname(pathname)); 4442 } 4443 4444 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 4445 { 4446 return do_unlinkat(AT_FDCWD, getname(pathname)); 4447 } 4448 4449 /** 4450 * vfs_symlink - create symlink 4451 * @idmap: idmap of the mount the inode was found from 4452 * @dir: inode of @dentry 4453 * @dentry: pointer to dentry of the base directory 4454 * @oldname: name of the file to link to 4455 * 4456 * Create a symlink. 4457 * 4458 * If the inode has been found through an idmapped mount the idmap of 4459 * the vfsmount must be passed through @idmap. This function will then take 4460 * care to map the inode according to @idmap before checking permissions. 4461 * On non-idmapped mounts or if permission checking is to be performed on the 4462 * raw inode simply pass @nop_mnt_idmap. 4463 */ 4464 int vfs_symlink(struct mnt_idmap *idmap, struct inode *dir, 4465 struct dentry *dentry, const char *oldname) 4466 { 4467 int error; 4468 4469 error = may_create(idmap, dir, dentry); 4470 if (error) 4471 return error; 4472 4473 if (!dir->i_op->symlink) 4474 return -EPERM; 4475 4476 error = security_inode_symlink(dir, dentry, oldname); 4477 if (error) 4478 return error; 4479 4480 error = dir->i_op->symlink(idmap, dir, dentry, oldname); 4481 if (!error) 4482 fsnotify_create(dir, dentry); 4483 return error; 4484 } 4485 EXPORT_SYMBOL(vfs_symlink); 4486 4487 int do_symlinkat(struct filename *from, int newdfd, struct filename *to) 4488 { 4489 int error; 4490 struct dentry *dentry; 4491 struct path path; 4492 unsigned int lookup_flags = 0; 4493 4494 if (IS_ERR(from)) { 4495 error = PTR_ERR(from); 4496 goto out_putnames; 4497 } 4498 retry: 4499 dentry = filename_create(newdfd, to, &path, lookup_flags); 4500 error = PTR_ERR(dentry); 4501 if (IS_ERR(dentry)) 4502 goto out_putnames; 4503 4504 error = security_path_symlink(&path, dentry, from->name); 4505 if (!error) 4506 error = vfs_symlink(mnt_idmap(path.mnt), path.dentry->d_inode, 4507 dentry, from->name); 4508 done_path_create(&path, dentry); 4509 if (retry_estale(error, lookup_flags)) { 4510 lookup_flags |= LOOKUP_REVAL; 4511 goto retry; 4512 } 4513 out_putnames: 4514 putname(to); 4515 putname(from); 4516 return error; 4517 } 4518 4519 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 4520 int, newdfd, const char __user *, newname) 4521 { 4522 return do_symlinkat(getname(oldname), newdfd, getname(newname)); 4523 } 4524 4525 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 4526 { 4527 return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname)); 4528 } 4529 4530 /** 4531 * vfs_link - create a new link 4532 * @old_dentry: object to be linked 4533 * @idmap: idmap of the mount 4534 * @dir: new parent 4535 * @new_dentry: where to create the new link 4536 * @delegated_inode: returns inode needing a delegation break 4537 * 4538 * The caller must hold dir->i_mutex 4539 * 4540 * If vfs_link discovers a delegation on the to-be-linked file in need 4541 * of breaking, it will return -EWOULDBLOCK and return a reference to the 4542 * inode in delegated_inode. The caller should then break the delegation 4543 * and retry. Because breaking a delegation may take a long time, the 4544 * caller should drop the i_mutex before doing so. 4545 * 4546 * Alternatively, a caller may pass NULL for delegated_inode. This may 4547 * be appropriate for callers that expect the underlying filesystem not 4548 * to be NFS exported. 4549 * 4550 * If the inode has been found through an idmapped mount the idmap of 4551 * the vfsmount must be passed through @idmap. This function will then take 4552 * care to map the inode according to @idmap before checking permissions. 4553 * On non-idmapped mounts or if permission checking is to be performed on the 4554 * raw inode simply pass @nop_mnt_idmap. 4555 */ 4556 int vfs_link(struct dentry *old_dentry, struct mnt_idmap *idmap, 4557 struct inode *dir, struct dentry *new_dentry, 4558 struct inode **delegated_inode) 4559 { 4560 struct inode *inode = old_dentry->d_inode; 4561 unsigned max_links = dir->i_sb->s_max_links; 4562 int error; 4563 4564 if (!inode) 4565 return -ENOENT; 4566 4567 error = may_create(idmap, dir, new_dentry); 4568 if (error) 4569 return error; 4570 4571 if (dir->i_sb != inode->i_sb) 4572 return -EXDEV; 4573 4574 /* 4575 * A link to an append-only or immutable file cannot be created. 4576 */ 4577 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4578 return -EPERM; 4579 /* 4580 * Updating the link count will likely cause i_uid and i_gid to 4581 * be writen back improperly if their true value is unknown to 4582 * the vfs. 4583 */ 4584 if (HAS_UNMAPPED_ID(idmap, inode)) 4585 return -EPERM; 4586 if (!dir->i_op->link) 4587 return -EPERM; 4588 if (S_ISDIR(inode->i_mode)) 4589 return -EPERM; 4590 4591 error = security_inode_link(old_dentry, dir, new_dentry); 4592 if (error) 4593 return error; 4594 4595 inode_lock(inode); 4596 /* Make sure we don't allow creating hardlink to an unlinked file */ 4597 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 4598 error = -ENOENT; 4599 else if (max_links && inode->i_nlink >= max_links) 4600 error = -EMLINK; 4601 else { 4602 error = try_break_deleg(inode, delegated_inode); 4603 if (!error) 4604 error = dir->i_op->link(old_dentry, dir, new_dentry); 4605 } 4606 4607 if (!error && (inode->i_state & I_LINKABLE)) { 4608 spin_lock(&inode->i_lock); 4609 inode->i_state &= ~I_LINKABLE; 4610 spin_unlock(&inode->i_lock); 4611 } 4612 inode_unlock(inode); 4613 if (!error) 4614 fsnotify_link(dir, inode, new_dentry); 4615 return error; 4616 } 4617 EXPORT_SYMBOL(vfs_link); 4618 4619 /* 4620 * Hardlinks are often used in delicate situations. We avoid 4621 * security-related surprises by not following symlinks on the 4622 * newname. --KAB 4623 * 4624 * We don't follow them on the oldname either to be compatible 4625 * with linux 2.0, and to avoid hard-linking to directories 4626 * and other special files. --ADM 4627 */ 4628 int do_linkat(int olddfd, struct filename *old, int newdfd, 4629 struct filename *new, int flags) 4630 { 4631 struct mnt_idmap *idmap; 4632 struct dentry *new_dentry; 4633 struct path old_path, new_path; 4634 struct inode *delegated_inode = NULL; 4635 int how = 0; 4636 int error; 4637 4638 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) { 4639 error = -EINVAL; 4640 goto out_putnames; 4641 } 4642 /* 4643 * To use null names we require CAP_DAC_READ_SEARCH 4644 * This ensures that not everyone will be able to create 4645 * handlink using the passed filedescriptor. 4646 */ 4647 if (flags & AT_EMPTY_PATH && !capable(CAP_DAC_READ_SEARCH)) { 4648 error = -ENOENT; 4649 goto out_putnames; 4650 } 4651 4652 if (flags & AT_SYMLINK_FOLLOW) 4653 how |= LOOKUP_FOLLOW; 4654 retry: 4655 error = filename_lookup(olddfd, old, how, &old_path, NULL); 4656 if (error) 4657 goto out_putnames; 4658 4659 new_dentry = filename_create(newdfd, new, &new_path, 4660 (how & LOOKUP_REVAL)); 4661 error = PTR_ERR(new_dentry); 4662 if (IS_ERR(new_dentry)) 4663 goto out_putpath; 4664 4665 error = -EXDEV; 4666 if (old_path.mnt != new_path.mnt) 4667 goto out_dput; 4668 idmap = mnt_idmap(new_path.mnt); 4669 error = may_linkat(idmap, &old_path); 4670 if (unlikely(error)) 4671 goto out_dput; 4672 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4673 if (error) 4674 goto out_dput; 4675 error = vfs_link(old_path.dentry, idmap, new_path.dentry->d_inode, 4676 new_dentry, &delegated_inode); 4677 out_dput: 4678 done_path_create(&new_path, new_dentry); 4679 if (delegated_inode) { 4680 error = break_deleg_wait(&delegated_inode); 4681 if (!error) { 4682 path_put(&old_path); 4683 goto retry; 4684 } 4685 } 4686 if (retry_estale(error, how)) { 4687 path_put(&old_path); 4688 how |= LOOKUP_REVAL; 4689 goto retry; 4690 } 4691 out_putpath: 4692 path_put(&old_path); 4693 out_putnames: 4694 putname(old); 4695 putname(new); 4696 4697 return error; 4698 } 4699 4700 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 4701 int, newdfd, const char __user *, newname, int, flags) 4702 { 4703 return do_linkat(olddfd, getname_uflags(oldname, flags), 4704 newdfd, getname(newname), flags); 4705 } 4706 4707 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4708 { 4709 return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0); 4710 } 4711 4712 /** 4713 * vfs_rename - rename a filesystem object 4714 * @rd: pointer to &struct renamedata info 4715 * 4716 * The caller must hold multiple mutexes--see lock_rename()). 4717 * 4718 * If vfs_rename discovers a delegation in need of breaking at either 4719 * the source or destination, it will return -EWOULDBLOCK and return a 4720 * reference to the inode in delegated_inode. The caller should then 4721 * break the delegation and retry. Because breaking a delegation may 4722 * take a long time, the caller should drop all locks before doing 4723 * so. 4724 * 4725 * Alternatively, a caller may pass NULL for delegated_inode. This may 4726 * be appropriate for callers that expect the underlying filesystem not 4727 * to be NFS exported. 4728 * 4729 * The worst of all namespace operations - renaming directory. "Perverted" 4730 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4731 * Problems: 4732 * 4733 * a) we can get into loop creation. 4734 * b) race potential - two innocent renames can create a loop together. 4735 * That's where 4.4BSD screws up. Current fix: serialization on 4736 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4737 * story. 4738 * c) we may have to lock up to _four_ objects - parents and victim (if it exists), 4739 * and source (if it's a non-directory or a subdirectory that moves to 4740 * different parent). 4741 * And that - after we got ->i_mutex on parents (until then we don't know 4742 * whether the target exists). Solution: try to be smart with locking 4743 * order for inodes. We rely on the fact that tree topology may change 4744 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4745 * move will be locked. Thus we can rank directories by the tree 4746 * (ancestors first) and rank all non-directories after them. 4747 * That works since everybody except rename does "lock parent, lookup, 4748 * lock child" and rename is under ->s_vfs_rename_mutex. 4749 * HOWEVER, it relies on the assumption that any object with ->lookup() 4750 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4751 * we'd better make sure that there's no link(2) for them. 4752 * d) conversion from fhandle to dentry may come in the wrong moment - when 4753 * we are removing the target. Solution: we will have to grab ->i_mutex 4754 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4755 * ->i_mutex on parents, which works but leads to some truly excessive 4756 * locking]. 4757 */ 4758 int vfs_rename(struct renamedata *rd) 4759 { 4760 int error; 4761 struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir; 4762 struct dentry *old_dentry = rd->old_dentry; 4763 struct dentry *new_dentry = rd->new_dentry; 4764 struct inode **delegated_inode = rd->delegated_inode; 4765 unsigned int flags = rd->flags; 4766 bool is_dir = d_is_dir(old_dentry); 4767 struct inode *source = old_dentry->d_inode; 4768 struct inode *target = new_dentry->d_inode; 4769 bool new_is_dir = false; 4770 unsigned max_links = new_dir->i_sb->s_max_links; 4771 struct name_snapshot old_name; 4772 bool lock_old_subdir, lock_new_subdir; 4773 4774 if (source == target) 4775 return 0; 4776 4777 error = may_delete(rd->old_mnt_idmap, old_dir, old_dentry, is_dir); 4778 if (error) 4779 return error; 4780 4781 if (!target) { 4782 error = may_create(rd->new_mnt_idmap, new_dir, new_dentry); 4783 } else { 4784 new_is_dir = d_is_dir(new_dentry); 4785 4786 if (!(flags & RENAME_EXCHANGE)) 4787 error = may_delete(rd->new_mnt_idmap, new_dir, 4788 new_dentry, is_dir); 4789 else 4790 error = may_delete(rd->new_mnt_idmap, new_dir, 4791 new_dentry, new_is_dir); 4792 } 4793 if (error) 4794 return error; 4795 4796 if (!old_dir->i_op->rename) 4797 return -EPERM; 4798 4799 /* 4800 * If we are going to change the parent - check write permissions, 4801 * we'll need to flip '..'. 4802 */ 4803 if (new_dir != old_dir) { 4804 if (is_dir) { 4805 error = inode_permission(rd->old_mnt_idmap, source, 4806 MAY_WRITE); 4807 if (error) 4808 return error; 4809 } 4810 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4811 error = inode_permission(rd->new_mnt_idmap, target, 4812 MAY_WRITE); 4813 if (error) 4814 return error; 4815 } 4816 } 4817 4818 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 4819 flags); 4820 if (error) 4821 return error; 4822 4823 take_dentry_name_snapshot(&old_name, old_dentry); 4824 dget(new_dentry); 4825 /* 4826 * Lock children. 4827 * The source subdirectory needs to be locked on cross-directory 4828 * rename or cross-directory exchange since its parent changes. 4829 * The target subdirectory needs to be locked on cross-directory 4830 * exchange due to parent change and on any rename due to becoming 4831 * a victim. 4832 * Non-directories need locking in all cases (for NFS reasons); 4833 * they get locked after any subdirectories (in inode address order). 4834 * 4835 * NOTE: WE ONLY LOCK UNRELATED DIRECTORIES IN CROSS-DIRECTORY CASE. 4836 * NEVER, EVER DO THAT WITHOUT ->s_vfs_rename_mutex. 4837 */ 4838 lock_old_subdir = new_dir != old_dir; 4839 lock_new_subdir = new_dir != old_dir || !(flags & RENAME_EXCHANGE); 4840 if (is_dir) { 4841 if (lock_old_subdir) 4842 inode_lock_nested(source, I_MUTEX_CHILD); 4843 if (target && (!new_is_dir || lock_new_subdir)) 4844 inode_lock(target); 4845 } else if (new_is_dir) { 4846 if (lock_new_subdir) 4847 inode_lock_nested(target, I_MUTEX_CHILD); 4848 inode_lock(source); 4849 } else { 4850 lock_two_nondirectories(source, target); 4851 } 4852 4853 error = -EPERM; 4854 if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target))) 4855 goto out; 4856 4857 error = -EBUSY; 4858 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 4859 goto out; 4860 4861 if (max_links && new_dir != old_dir) { 4862 error = -EMLINK; 4863 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 4864 goto out; 4865 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 4866 old_dir->i_nlink >= max_links) 4867 goto out; 4868 } 4869 if (!is_dir) { 4870 error = try_break_deleg(source, delegated_inode); 4871 if (error) 4872 goto out; 4873 } 4874 if (target && !new_is_dir) { 4875 error = try_break_deleg(target, delegated_inode); 4876 if (error) 4877 goto out; 4878 } 4879 error = old_dir->i_op->rename(rd->new_mnt_idmap, old_dir, old_dentry, 4880 new_dir, new_dentry, flags); 4881 if (error) 4882 goto out; 4883 4884 if (!(flags & RENAME_EXCHANGE) && target) { 4885 if (is_dir) { 4886 shrink_dcache_parent(new_dentry); 4887 target->i_flags |= S_DEAD; 4888 } 4889 dont_mount(new_dentry); 4890 detach_mounts(new_dentry); 4891 } 4892 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 4893 if (!(flags & RENAME_EXCHANGE)) 4894 d_move(old_dentry, new_dentry); 4895 else 4896 d_exchange(old_dentry, new_dentry); 4897 } 4898 out: 4899 if (!is_dir || lock_old_subdir) 4900 inode_unlock(source); 4901 if (target && (!new_is_dir || lock_new_subdir)) 4902 inode_unlock(target); 4903 dput(new_dentry); 4904 if (!error) { 4905 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir, 4906 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 4907 if (flags & RENAME_EXCHANGE) { 4908 fsnotify_move(new_dir, old_dir, &old_dentry->d_name, 4909 new_is_dir, NULL, new_dentry); 4910 } 4911 } 4912 release_dentry_name_snapshot(&old_name); 4913 4914 return error; 4915 } 4916 EXPORT_SYMBOL(vfs_rename); 4917 4918 int do_renameat2(int olddfd, struct filename *from, int newdfd, 4919 struct filename *to, unsigned int flags) 4920 { 4921 struct renamedata rd; 4922 struct dentry *old_dentry, *new_dentry; 4923 struct dentry *trap; 4924 struct path old_path, new_path; 4925 struct qstr old_last, new_last; 4926 int old_type, new_type; 4927 struct inode *delegated_inode = NULL; 4928 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET; 4929 bool should_retry = false; 4930 int error = -EINVAL; 4931 4932 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4933 goto put_names; 4934 4935 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 4936 (flags & RENAME_EXCHANGE)) 4937 goto put_names; 4938 4939 if (flags & RENAME_EXCHANGE) 4940 target_flags = 0; 4941 4942 retry: 4943 error = filename_parentat(olddfd, from, lookup_flags, &old_path, 4944 &old_last, &old_type); 4945 if (error) 4946 goto put_names; 4947 4948 error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last, 4949 &new_type); 4950 if (error) 4951 goto exit1; 4952 4953 error = -EXDEV; 4954 if (old_path.mnt != new_path.mnt) 4955 goto exit2; 4956 4957 error = -EBUSY; 4958 if (old_type != LAST_NORM) 4959 goto exit2; 4960 4961 if (flags & RENAME_NOREPLACE) 4962 error = -EEXIST; 4963 if (new_type != LAST_NORM) 4964 goto exit2; 4965 4966 error = mnt_want_write(old_path.mnt); 4967 if (error) 4968 goto exit2; 4969 4970 retry_deleg: 4971 trap = lock_rename(new_path.dentry, old_path.dentry); 4972 if (IS_ERR(trap)) { 4973 error = PTR_ERR(trap); 4974 goto exit_lock_rename; 4975 } 4976 4977 old_dentry = lookup_one_qstr_excl(&old_last, old_path.dentry, 4978 lookup_flags); 4979 error = PTR_ERR(old_dentry); 4980 if (IS_ERR(old_dentry)) 4981 goto exit3; 4982 /* source must exist */ 4983 error = -ENOENT; 4984 if (d_is_negative(old_dentry)) 4985 goto exit4; 4986 new_dentry = lookup_one_qstr_excl(&new_last, new_path.dentry, 4987 lookup_flags | target_flags); 4988 error = PTR_ERR(new_dentry); 4989 if (IS_ERR(new_dentry)) 4990 goto exit4; 4991 error = -EEXIST; 4992 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 4993 goto exit5; 4994 if (flags & RENAME_EXCHANGE) { 4995 error = -ENOENT; 4996 if (d_is_negative(new_dentry)) 4997 goto exit5; 4998 4999 if (!d_is_dir(new_dentry)) { 5000 error = -ENOTDIR; 5001 if (new_last.name[new_last.len]) 5002 goto exit5; 5003 } 5004 } 5005 /* unless the source is a directory trailing slashes give -ENOTDIR */ 5006 if (!d_is_dir(old_dentry)) { 5007 error = -ENOTDIR; 5008 if (old_last.name[old_last.len]) 5009 goto exit5; 5010 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len]) 5011 goto exit5; 5012 } 5013 /* source should not be ancestor of target */ 5014 error = -EINVAL; 5015 if (old_dentry == trap) 5016 goto exit5; 5017 /* target should not be an ancestor of source */ 5018 if (!(flags & RENAME_EXCHANGE)) 5019 error = -ENOTEMPTY; 5020 if (new_dentry == trap) 5021 goto exit5; 5022 5023 error = security_path_rename(&old_path, old_dentry, 5024 &new_path, new_dentry, flags); 5025 if (error) 5026 goto exit5; 5027 5028 rd.old_dir = old_path.dentry->d_inode; 5029 rd.old_dentry = old_dentry; 5030 rd.old_mnt_idmap = mnt_idmap(old_path.mnt); 5031 rd.new_dir = new_path.dentry->d_inode; 5032 rd.new_dentry = new_dentry; 5033 rd.new_mnt_idmap = mnt_idmap(new_path.mnt); 5034 rd.delegated_inode = &delegated_inode; 5035 rd.flags = flags; 5036 error = vfs_rename(&rd); 5037 exit5: 5038 dput(new_dentry); 5039 exit4: 5040 dput(old_dentry); 5041 exit3: 5042 unlock_rename(new_path.dentry, old_path.dentry); 5043 exit_lock_rename: 5044 if (delegated_inode) { 5045 error = break_deleg_wait(&delegated_inode); 5046 if (!error) 5047 goto retry_deleg; 5048 } 5049 mnt_drop_write(old_path.mnt); 5050 exit2: 5051 if (retry_estale(error, lookup_flags)) 5052 should_retry = true; 5053 path_put(&new_path); 5054 exit1: 5055 path_put(&old_path); 5056 if (should_retry) { 5057 should_retry = false; 5058 lookup_flags |= LOOKUP_REVAL; 5059 goto retry; 5060 } 5061 put_names: 5062 putname(from); 5063 putname(to); 5064 return error; 5065 } 5066 5067 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 5068 int, newdfd, const char __user *, newname, unsigned int, flags) 5069 { 5070 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname), 5071 flags); 5072 } 5073 5074 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 5075 int, newdfd, const char __user *, newname) 5076 { 5077 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname), 5078 0); 5079 } 5080 5081 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 5082 { 5083 return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD, 5084 getname(newname), 0); 5085 } 5086 5087 int readlink_copy(char __user *buffer, int buflen, const char *link) 5088 { 5089 int len = PTR_ERR(link); 5090 if (IS_ERR(link)) 5091 goto out; 5092 5093 len = strlen(link); 5094 if (len > (unsigned) buflen) 5095 len = buflen; 5096 if (copy_to_user(buffer, link, len)) 5097 len = -EFAULT; 5098 out: 5099 return len; 5100 } 5101 5102 /** 5103 * vfs_readlink - copy symlink body into userspace buffer 5104 * @dentry: dentry on which to get symbolic link 5105 * @buffer: user memory pointer 5106 * @buflen: size of buffer 5107 * 5108 * Does not touch atime. That's up to the caller if necessary 5109 * 5110 * Does not call security hook. 5111 */ 5112 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen) 5113 { 5114 struct inode *inode = d_inode(dentry); 5115 DEFINE_DELAYED_CALL(done); 5116 const char *link; 5117 int res; 5118 5119 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) { 5120 if (unlikely(inode->i_op->readlink)) 5121 return inode->i_op->readlink(dentry, buffer, buflen); 5122 5123 if (!d_is_symlink(dentry)) 5124 return -EINVAL; 5125 5126 spin_lock(&inode->i_lock); 5127 inode->i_opflags |= IOP_DEFAULT_READLINK; 5128 spin_unlock(&inode->i_lock); 5129 } 5130 5131 link = READ_ONCE(inode->i_link); 5132 if (!link) { 5133 link = inode->i_op->get_link(dentry, inode, &done); 5134 if (IS_ERR(link)) 5135 return PTR_ERR(link); 5136 } 5137 res = readlink_copy(buffer, buflen, link); 5138 do_delayed_call(&done); 5139 return res; 5140 } 5141 EXPORT_SYMBOL(vfs_readlink); 5142 5143 /** 5144 * vfs_get_link - get symlink body 5145 * @dentry: dentry on which to get symbolic link 5146 * @done: caller needs to free returned data with this 5147 * 5148 * Calls security hook and i_op->get_link() on the supplied inode. 5149 * 5150 * It does not touch atime. That's up to the caller if necessary. 5151 * 5152 * Does not work on "special" symlinks like /proc/$$/fd/N 5153 */ 5154 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done) 5155 { 5156 const char *res = ERR_PTR(-EINVAL); 5157 struct inode *inode = d_inode(dentry); 5158 5159 if (d_is_symlink(dentry)) { 5160 res = ERR_PTR(security_inode_readlink(dentry)); 5161 if (!res) 5162 res = inode->i_op->get_link(dentry, inode, done); 5163 } 5164 return res; 5165 } 5166 EXPORT_SYMBOL(vfs_get_link); 5167 5168 /* get the link contents into pagecache */ 5169 const char *page_get_link(struct dentry *dentry, struct inode *inode, 5170 struct delayed_call *callback) 5171 { 5172 char *kaddr; 5173 struct page *page; 5174 struct address_space *mapping = inode->i_mapping; 5175 5176 if (!dentry) { 5177 page = find_get_page(mapping, 0); 5178 if (!page) 5179 return ERR_PTR(-ECHILD); 5180 if (!PageUptodate(page)) { 5181 put_page(page); 5182 return ERR_PTR(-ECHILD); 5183 } 5184 } else { 5185 page = read_mapping_page(mapping, 0, NULL); 5186 if (IS_ERR(page)) 5187 return (char*)page; 5188 } 5189 set_delayed_call(callback, page_put_link, page); 5190 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM); 5191 kaddr = page_address(page); 5192 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1); 5193 return kaddr; 5194 } 5195 5196 EXPORT_SYMBOL(page_get_link); 5197 5198 void page_put_link(void *arg) 5199 { 5200 put_page(arg); 5201 } 5202 EXPORT_SYMBOL(page_put_link); 5203 5204 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 5205 { 5206 DEFINE_DELAYED_CALL(done); 5207 int res = readlink_copy(buffer, buflen, 5208 page_get_link(dentry, d_inode(dentry), 5209 &done)); 5210 do_delayed_call(&done); 5211 return res; 5212 } 5213 EXPORT_SYMBOL(page_readlink); 5214 5215 int page_symlink(struct inode *inode, const char *symname, int len) 5216 { 5217 struct address_space *mapping = inode->i_mapping; 5218 const struct address_space_operations *aops = mapping->a_ops; 5219 bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS); 5220 struct page *page; 5221 void *fsdata = NULL; 5222 int err; 5223 unsigned int flags; 5224 5225 retry: 5226 if (nofs) 5227 flags = memalloc_nofs_save(); 5228 err = aops->write_begin(NULL, mapping, 0, len-1, &page, &fsdata); 5229 if (nofs) 5230 memalloc_nofs_restore(flags); 5231 if (err) 5232 goto fail; 5233 5234 memcpy(page_address(page), symname, len-1); 5235 5236 err = aops->write_end(NULL, mapping, 0, len-1, len-1, 5237 page, fsdata); 5238 if (err < 0) 5239 goto fail; 5240 if (err < len-1) 5241 goto retry; 5242 5243 mark_inode_dirty(inode); 5244 return 0; 5245 fail: 5246 return err; 5247 } 5248 EXPORT_SYMBOL(page_symlink); 5249 5250 const struct inode_operations page_symlink_inode_operations = { 5251 .get_link = page_get_link, 5252 }; 5253 EXPORT_SYMBOL(page_symlink_inode_operations); 5254