xref: /linux/fs/namei.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39 
40 #include "internal.h"
41 #include "mount.h"
42 
43 /* [Feb-1997 T. Schoebel-Theuer]
44  * Fundamental changes in the pathname lookup mechanisms (namei)
45  * were necessary because of omirr.  The reason is that omirr needs
46  * to know the _real_ pathname, not the user-supplied one, in case
47  * of symlinks (and also when transname replacements occur).
48  *
49  * The new code replaces the old recursive symlink resolution with
50  * an iterative one (in case of non-nested symlink chains).  It does
51  * this with calls to <fs>_follow_link().
52  * As a side effect, dir_namei(), _namei() and follow_link() are now
53  * replaced with a single function lookup_dentry() that can handle all
54  * the special cases of the former code.
55  *
56  * With the new dcache, the pathname is stored at each inode, at least as
57  * long as the refcount of the inode is positive.  As a side effect, the
58  * size of the dcache depends on the inode cache and thus is dynamic.
59  *
60  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61  * resolution to correspond with current state of the code.
62  *
63  * Note that the symlink resolution is not *completely* iterative.
64  * There is still a significant amount of tail- and mid- recursion in
65  * the algorithm.  Also, note that <fs>_readlink() is not used in
66  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67  * may return different results than <fs>_follow_link().  Many virtual
68  * filesystems (including /proc) exhibit this behavior.
69  */
70 
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73  * and the name already exists in form of a symlink, try to create the new
74  * name indicated by the symlink. The old code always complained that the
75  * name already exists, due to not following the symlink even if its target
76  * is nonexistent.  The new semantics affects also mknod() and link() when
77  * the name is a symlink pointing to a non-existent name.
78  *
79  * I don't know which semantics is the right one, since I have no access
80  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82  * "old" one. Personally, I think the new semantics is much more logical.
83  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84  * file does succeed in both HP-UX and SunOs, but not in Solaris
85  * and in the old Linux semantics.
86  */
87 
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89  * semantics.  See the comments in "open_namei" and "do_link" below.
90  *
91  * [10-Sep-98 Alan Modra] Another symlink change.
92  */
93 
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95  *	inside the path - always follow.
96  *	in the last component in creation/removal/renaming - never follow.
97  *	if LOOKUP_FOLLOW passed - follow.
98  *	if the pathname has trailing slashes - follow.
99  *	otherwise - don't follow.
100  * (applied in that order).
101  *
102  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104  * During the 2.4 we need to fix the userland stuff depending on it -
105  * hopefully we will be able to get rid of that wart in 2.5. So far only
106  * XEmacs seems to be relying on it...
107  */
108 /*
109  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
111  * any extra contention...
112  */
113 
114 /* In order to reduce some races, while at the same time doing additional
115  * checking and hopefully speeding things up, we copy filenames to the
116  * kernel data space before using them..
117  *
118  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119  * PATH_MAX includes the nul terminator --RR.
120  */
121 
122 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
123 
124 struct filename *
125 getname_flags(const char __user *filename, int flags, int *empty)
126 {
127 	struct filename *result;
128 	char *kname;
129 	int len;
130 
131 	result = audit_reusename(filename);
132 	if (result)
133 		return result;
134 
135 	result = __getname();
136 	if (unlikely(!result))
137 		return ERR_PTR(-ENOMEM);
138 
139 	/*
140 	 * First, try to embed the struct filename inside the names_cache
141 	 * allocation
142 	 */
143 	kname = (char *)result->iname;
144 	result->name = kname;
145 
146 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
147 	if (unlikely(len < 0)) {
148 		__putname(result);
149 		return ERR_PTR(len);
150 	}
151 
152 	/*
153 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
154 	 * separate struct filename so we can dedicate the entire
155 	 * names_cache allocation for the pathname, and re-do the copy from
156 	 * userland.
157 	 */
158 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
159 		const size_t size = offsetof(struct filename, iname[1]);
160 		kname = (char *)result;
161 
162 		/*
163 		 * size is chosen that way we to guarantee that
164 		 * result->iname[0] is within the same object and that
165 		 * kname can't be equal to result->iname, no matter what.
166 		 */
167 		result = kzalloc(size, GFP_KERNEL);
168 		if (unlikely(!result)) {
169 			__putname(kname);
170 			return ERR_PTR(-ENOMEM);
171 		}
172 		result->name = kname;
173 		len = strncpy_from_user(kname, filename, PATH_MAX);
174 		if (unlikely(len < 0)) {
175 			__putname(kname);
176 			kfree(result);
177 			return ERR_PTR(len);
178 		}
179 		if (unlikely(len == PATH_MAX)) {
180 			__putname(kname);
181 			kfree(result);
182 			return ERR_PTR(-ENAMETOOLONG);
183 		}
184 	}
185 
186 	result->refcnt = 1;
187 	/* The empty path is special. */
188 	if (unlikely(!len)) {
189 		if (empty)
190 			*empty = 1;
191 		if (!(flags & LOOKUP_EMPTY)) {
192 			putname(result);
193 			return ERR_PTR(-ENOENT);
194 		}
195 	}
196 
197 	result->uptr = filename;
198 	result->aname = NULL;
199 	audit_getname(result);
200 	return result;
201 }
202 
203 struct filename *
204 getname(const char __user * filename)
205 {
206 	return getname_flags(filename, 0, NULL);
207 }
208 
209 struct filename *
210 getname_kernel(const char * filename)
211 {
212 	struct filename *result;
213 	int len = strlen(filename) + 1;
214 
215 	result = __getname();
216 	if (unlikely(!result))
217 		return ERR_PTR(-ENOMEM);
218 
219 	if (len <= EMBEDDED_NAME_MAX) {
220 		result->name = (char *)result->iname;
221 	} else if (len <= PATH_MAX) {
222 		struct filename *tmp;
223 
224 		tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
225 		if (unlikely(!tmp)) {
226 			__putname(result);
227 			return ERR_PTR(-ENOMEM);
228 		}
229 		tmp->name = (char *)result;
230 		result = tmp;
231 	} else {
232 		__putname(result);
233 		return ERR_PTR(-ENAMETOOLONG);
234 	}
235 	memcpy((char *)result->name, filename, len);
236 	result->uptr = NULL;
237 	result->aname = NULL;
238 	result->refcnt = 1;
239 	audit_getname(result);
240 
241 	return result;
242 }
243 
244 void putname(struct filename *name)
245 {
246 	BUG_ON(name->refcnt <= 0);
247 
248 	if (--name->refcnt > 0)
249 		return;
250 
251 	if (name->name != name->iname) {
252 		__putname(name->name);
253 		kfree(name);
254 	} else
255 		__putname(name);
256 }
257 
258 static int check_acl(struct inode *inode, int mask)
259 {
260 #ifdef CONFIG_FS_POSIX_ACL
261 	struct posix_acl *acl;
262 
263 	if (mask & MAY_NOT_BLOCK) {
264 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
265 	        if (!acl)
266 	                return -EAGAIN;
267 		/* no ->get_acl() calls in RCU mode... */
268 		if (acl == ACL_NOT_CACHED)
269 			return -ECHILD;
270 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
271 	}
272 
273 	acl = get_acl(inode, ACL_TYPE_ACCESS);
274 	if (IS_ERR(acl))
275 		return PTR_ERR(acl);
276 	if (acl) {
277 	        int error = posix_acl_permission(inode, acl, mask);
278 	        posix_acl_release(acl);
279 	        return error;
280 	}
281 #endif
282 
283 	return -EAGAIN;
284 }
285 
286 /*
287  * This does the basic permission checking
288  */
289 static int acl_permission_check(struct inode *inode, int mask)
290 {
291 	unsigned int mode = inode->i_mode;
292 
293 	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
294 		mode >>= 6;
295 	else {
296 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
297 			int error = check_acl(inode, mask);
298 			if (error != -EAGAIN)
299 				return error;
300 		}
301 
302 		if (in_group_p(inode->i_gid))
303 			mode >>= 3;
304 	}
305 
306 	/*
307 	 * If the DACs are ok we don't need any capability check.
308 	 */
309 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
310 		return 0;
311 	return -EACCES;
312 }
313 
314 /**
315  * generic_permission -  check for access rights on a Posix-like filesystem
316  * @inode:	inode to check access rights for
317  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
318  *
319  * Used to check for read/write/execute permissions on a file.
320  * We use "fsuid" for this, letting us set arbitrary permissions
321  * for filesystem access without changing the "normal" uids which
322  * are used for other things.
323  *
324  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
325  * request cannot be satisfied (eg. requires blocking or too much complexity).
326  * It would then be called again in ref-walk mode.
327  */
328 int generic_permission(struct inode *inode, int mask)
329 {
330 	int ret;
331 
332 	/*
333 	 * Do the basic permission checks.
334 	 */
335 	ret = acl_permission_check(inode, mask);
336 	if (ret != -EACCES)
337 		return ret;
338 
339 	if (S_ISDIR(inode->i_mode)) {
340 		/* DACs are overridable for directories */
341 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
342 			return 0;
343 		if (!(mask & MAY_WRITE))
344 			if (capable_wrt_inode_uidgid(inode,
345 						     CAP_DAC_READ_SEARCH))
346 				return 0;
347 		return -EACCES;
348 	}
349 	/*
350 	 * Read/write DACs are always overridable.
351 	 * Executable DACs are overridable when there is
352 	 * at least one exec bit set.
353 	 */
354 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
355 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
356 			return 0;
357 
358 	/*
359 	 * Searching includes executable on directories, else just read.
360 	 */
361 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
362 	if (mask == MAY_READ)
363 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
364 			return 0;
365 
366 	return -EACCES;
367 }
368 EXPORT_SYMBOL(generic_permission);
369 
370 /*
371  * We _really_ want to just do "generic_permission()" without
372  * even looking at the inode->i_op values. So we keep a cache
373  * flag in inode->i_opflags, that says "this has not special
374  * permission function, use the fast case".
375  */
376 static inline int do_inode_permission(struct inode *inode, int mask)
377 {
378 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
379 		if (likely(inode->i_op->permission))
380 			return inode->i_op->permission(inode, mask);
381 
382 		/* This gets set once for the inode lifetime */
383 		spin_lock(&inode->i_lock);
384 		inode->i_opflags |= IOP_FASTPERM;
385 		spin_unlock(&inode->i_lock);
386 	}
387 	return generic_permission(inode, mask);
388 }
389 
390 /**
391  * __inode_permission - Check for access rights to a given inode
392  * @inode: Inode to check permission on
393  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
394  *
395  * Check for read/write/execute permissions on an inode.
396  *
397  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
398  *
399  * This does not check for a read-only file system.  You probably want
400  * inode_permission().
401  */
402 int __inode_permission(struct inode *inode, int mask)
403 {
404 	int retval;
405 
406 	if (unlikely(mask & MAY_WRITE)) {
407 		/*
408 		 * Nobody gets write access to an immutable file.
409 		 */
410 		if (IS_IMMUTABLE(inode))
411 			return -EACCES;
412 	}
413 
414 	retval = do_inode_permission(inode, mask);
415 	if (retval)
416 		return retval;
417 
418 	retval = devcgroup_inode_permission(inode, mask);
419 	if (retval)
420 		return retval;
421 
422 	return security_inode_permission(inode, mask);
423 }
424 EXPORT_SYMBOL(__inode_permission);
425 
426 /**
427  * sb_permission - Check superblock-level permissions
428  * @sb: Superblock of inode to check permission on
429  * @inode: Inode to check permission on
430  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431  *
432  * Separate out file-system wide checks from inode-specific permission checks.
433  */
434 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
435 {
436 	if (unlikely(mask & MAY_WRITE)) {
437 		umode_t mode = inode->i_mode;
438 
439 		/* Nobody gets write access to a read-only fs. */
440 		if ((sb->s_flags & MS_RDONLY) &&
441 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
442 			return -EROFS;
443 	}
444 	return 0;
445 }
446 
447 /**
448  * inode_permission - Check for access rights to a given inode
449  * @inode: Inode to check permission on
450  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
451  *
452  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
453  * this, letting us set arbitrary permissions for filesystem access without
454  * changing the "normal" UIDs which are used for other things.
455  *
456  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
457  */
458 int inode_permission(struct inode *inode, int mask)
459 {
460 	int retval;
461 
462 	retval = sb_permission(inode->i_sb, inode, mask);
463 	if (retval)
464 		return retval;
465 	return __inode_permission(inode, mask);
466 }
467 EXPORT_SYMBOL(inode_permission);
468 
469 /**
470  * path_get - get a reference to a path
471  * @path: path to get the reference to
472  *
473  * Given a path increment the reference count to the dentry and the vfsmount.
474  */
475 void path_get(const struct path *path)
476 {
477 	mntget(path->mnt);
478 	dget(path->dentry);
479 }
480 EXPORT_SYMBOL(path_get);
481 
482 /**
483  * path_put - put a reference to a path
484  * @path: path to put the reference to
485  *
486  * Given a path decrement the reference count to the dentry and the vfsmount.
487  */
488 void path_put(const struct path *path)
489 {
490 	dput(path->dentry);
491 	mntput(path->mnt);
492 }
493 EXPORT_SYMBOL(path_put);
494 
495 #define EMBEDDED_LEVELS 2
496 struct nameidata {
497 	struct path	path;
498 	struct qstr	last;
499 	struct path	root;
500 	struct inode	*inode; /* path.dentry.d_inode */
501 	unsigned int	flags;
502 	unsigned	seq, m_seq;
503 	int		last_type;
504 	unsigned	depth;
505 	int		total_link_count;
506 	struct saved {
507 		struct path link;
508 		void *cookie;
509 		const char *name;
510 		struct inode *inode;
511 		unsigned seq;
512 	} *stack, internal[EMBEDDED_LEVELS];
513 	struct filename	*name;
514 	struct nameidata *saved;
515 	unsigned	root_seq;
516 	int		dfd;
517 };
518 
519 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
520 {
521 	struct nameidata *old = current->nameidata;
522 	p->stack = p->internal;
523 	p->dfd = dfd;
524 	p->name = name;
525 	p->total_link_count = old ? old->total_link_count : 0;
526 	p->saved = old;
527 	current->nameidata = p;
528 }
529 
530 static void restore_nameidata(void)
531 {
532 	struct nameidata *now = current->nameidata, *old = now->saved;
533 
534 	current->nameidata = old;
535 	if (old)
536 		old->total_link_count = now->total_link_count;
537 	if (now->stack != now->internal) {
538 		kfree(now->stack);
539 		now->stack = now->internal;
540 	}
541 }
542 
543 static int __nd_alloc_stack(struct nameidata *nd)
544 {
545 	struct saved *p;
546 
547 	if (nd->flags & LOOKUP_RCU) {
548 		p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
549 				  GFP_ATOMIC);
550 		if (unlikely(!p))
551 			return -ECHILD;
552 	} else {
553 		p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
554 				  GFP_KERNEL);
555 		if (unlikely(!p))
556 			return -ENOMEM;
557 	}
558 	memcpy(p, nd->internal, sizeof(nd->internal));
559 	nd->stack = p;
560 	return 0;
561 }
562 
563 /**
564  * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
565  * @path: nameidate to verify
566  *
567  * Rename can sometimes move a file or directory outside of a bind
568  * mount, path_connected allows those cases to be detected.
569  */
570 static bool path_connected(const struct path *path)
571 {
572 	struct vfsmount *mnt = path->mnt;
573 
574 	/* Only bind mounts can have disconnected paths */
575 	if (mnt->mnt_root == mnt->mnt_sb->s_root)
576 		return true;
577 
578 	return is_subdir(path->dentry, mnt->mnt_root);
579 }
580 
581 static inline int nd_alloc_stack(struct nameidata *nd)
582 {
583 	if (likely(nd->depth != EMBEDDED_LEVELS))
584 		return 0;
585 	if (likely(nd->stack != nd->internal))
586 		return 0;
587 	return __nd_alloc_stack(nd);
588 }
589 
590 static void drop_links(struct nameidata *nd)
591 {
592 	int i = nd->depth;
593 	while (i--) {
594 		struct saved *last = nd->stack + i;
595 		struct inode *inode = last->inode;
596 		if (last->cookie && inode->i_op->put_link) {
597 			inode->i_op->put_link(inode, last->cookie);
598 			last->cookie = NULL;
599 		}
600 	}
601 }
602 
603 static void terminate_walk(struct nameidata *nd)
604 {
605 	drop_links(nd);
606 	if (!(nd->flags & LOOKUP_RCU)) {
607 		int i;
608 		path_put(&nd->path);
609 		for (i = 0; i < nd->depth; i++)
610 			path_put(&nd->stack[i].link);
611 		if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
612 			path_put(&nd->root);
613 			nd->root.mnt = NULL;
614 		}
615 	} else {
616 		nd->flags &= ~LOOKUP_RCU;
617 		if (!(nd->flags & LOOKUP_ROOT))
618 			nd->root.mnt = NULL;
619 		rcu_read_unlock();
620 	}
621 	nd->depth = 0;
622 }
623 
624 /* path_put is needed afterwards regardless of success or failure */
625 static bool legitimize_path(struct nameidata *nd,
626 			    struct path *path, unsigned seq)
627 {
628 	int res = __legitimize_mnt(path->mnt, nd->m_seq);
629 	if (unlikely(res)) {
630 		if (res > 0)
631 			path->mnt = NULL;
632 		path->dentry = NULL;
633 		return false;
634 	}
635 	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
636 		path->dentry = NULL;
637 		return false;
638 	}
639 	return !read_seqcount_retry(&path->dentry->d_seq, seq);
640 }
641 
642 static bool legitimize_links(struct nameidata *nd)
643 {
644 	int i;
645 	for (i = 0; i < nd->depth; i++) {
646 		struct saved *last = nd->stack + i;
647 		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
648 			drop_links(nd);
649 			nd->depth = i + 1;
650 			return false;
651 		}
652 	}
653 	return true;
654 }
655 
656 /*
657  * Path walking has 2 modes, rcu-walk and ref-walk (see
658  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
659  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
660  * normal reference counts on dentries and vfsmounts to transition to rcu-walk
661  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
662  * got stuck, so ref-walk may continue from there. If this is not successful
663  * (eg. a seqcount has changed), then failure is returned and it's up to caller
664  * to restart the path walk from the beginning in ref-walk mode.
665  */
666 
667 /**
668  * unlazy_walk - try to switch to ref-walk mode.
669  * @nd: nameidata pathwalk data
670  * @dentry: child of nd->path.dentry or NULL
671  * @seq: seq number to check dentry against
672  * Returns: 0 on success, -ECHILD on failure
673  *
674  * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
675  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
676  * @nd or NULL.  Must be called from rcu-walk context.
677  * Nothing should touch nameidata between unlazy_walk() failure and
678  * terminate_walk().
679  */
680 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq)
681 {
682 	struct dentry *parent = nd->path.dentry;
683 
684 	BUG_ON(!(nd->flags & LOOKUP_RCU));
685 
686 	nd->flags &= ~LOOKUP_RCU;
687 	if (unlikely(!legitimize_links(nd)))
688 		goto out2;
689 	if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
690 		goto out2;
691 	if (unlikely(!lockref_get_not_dead(&parent->d_lockref)))
692 		goto out1;
693 
694 	/*
695 	 * For a negative lookup, the lookup sequence point is the parents
696 	 * sequence point, and it only needs to revalidate the parent dentry.
697 	 *
698 	 * For a positive lookup, we need to move both the parent and the
699 	 * dentry from the RCU domain to be properly refcounted. And the
700 	 * sequence number in the dentry validates *both* dentry counters,
701 	 * since we checked the sequence number of the parent after we got
702 	 * the child sequence number. So we know the parent must still
703 	 * be valid if the child sequence number is still valid.
704 	 */
705 	if (!dentry) {
706 		if (read_seqcount_retry(&parent->d_seq, nd->seq))
707 			goto out;
708 		BUG_ON(nd->inode != parent->d_inode);
709 	} else {
710 		if (!lockref_get_not_dead(&dentry->d_lockref))
711 			goto out;
712 		if (read_seqcount_retry(&dentry->d_seq, seq))
713 			goto drop_dentry;
714 	}
715 
716 	/*
717 	 * Sequence counts matched. Now make sure that the root is
718 	 * still valid and get it if required.
719 	 */
720 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
721 		if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
722 			rcu_read_unlock();
723 			dput(dentry);
724 			return -ECHILD;
725 		}
726 	}
727 
728 	rcu_read_unlock();
729 	return 0;
730 
731 drop_dentry:
732 	rcu_read_unlock();
733 	dput(dentry);
734 	goto drop_root_mnt;
735 out2:
736 	nd->path.mnt = NULL;
737 out1:
738 	nd->path.dentry = NULL;
739 out:
740 	rcu_read_unlock();
741 drop_root_mnt:
742 	if (!(nd->flags & LOOKUP_ROOT))
743 		nd->root.mnt = NULL;
744 	return -ECHILD;
745 }
746 
747 static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq)
748 {
749 	if (unlikely(!legitimize_path(nd, link, seq))) {
750 		drop_links(nd);
751 		nd->depth = 0;
752 		nd->flags &= ~LOOKUP_RCU;
753 		nd->path.mnt = NULL;
754 		nd->path.dentry = NULL;
755 		if (!(nd->flags & LOOKUP_ROOT))
756 			nd->root.mnt = NULL;
757 		rcu_read_unlock();
758 	} else if (likely(unlazy_walk(nd, NULL, 0)) == 0) {
759 		return 0;
760 	}
761 	path_put(link);
762 	return -ECHILD;
763 }
764 
765 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
766 {
767 	return dentry->d_op->d_revalidate(dentry, flags);
768 }
769 
770 /**
771  * complete_walk - successful completion of path walk
772  * @nd:  pointer nameidata
773  *
774  * If we had been in RCU mode, drop out of it and legitimize nd->path.
775  * Revalidate the final result, unless we'd already done that during
776  * the path walk or the filesystem doesn't ask for it.  Return 0 on
777  * success, -error on failure.  In case of failure caller does not
778  * need to drop nd->path.
779  */
780 static int complete_walk(struct nameidata *nd)
781 {
782 	struct dentry *dentry = nd->path.dentry;
783 	int status;
784 
785 	if (nd->flags & LOOKUP_RCU) {
786 		if (!(nd->flags & LOOKUP_ROOT))
787 			nd->root.mnt = NULL;
788 		if (unlikely(unlazy_walk(nd, NULL, 0)))
789 			return -ECHILD;
790 	}
791 
792 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
793 		return 0;
794 
795 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
796 		return 0;
797 
798 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
799 	if (status > 0)
800 		return 0;
801 
802 	if (!status)
803 		status = -ESTALE;
804 
805 	return status;
806 }
807 
808 static void set_root(struct nameidata *nd)
809 {
810 	get_fs_root(current->fs, &nd->root);
811 }
812 
813 static void set_root_rcu(struct nameidata *nd)
814 {
815 	struct fs_struct *fs = current->fs;
816 	unsigned seq;
817 
818 	do {
819 		seq = read_seqcount_begin(&fs->seq);
820 		nd->root = fs->root;
821 		nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
822 	} while (read_seqcount_retry(&fs->seq, seq));
823 }
824 
825 static void path_put_conditional(struct path *path, struct nameidata *nd)
826 {
827 	dput(path->dentry);
828 	if (path->mnt != nd->path.mnt)
829 		mntput(path->mnt);
830 }
831 
832 static inline void path_to_nameidata(const struct path *path,
833 					struct nameidata *nd)
834 {
835 	if (!(nd->flags & LOOKUP_RCU)) {
836 		dput(nd->path.dentry);
837 		if (nd->path.mnt != path->mnt)
838 			mntput(nd->path.mnt);
839 	}
840 	nd->path.mnt = path->mnt;
841 	nd->path.dentry = path->dentry;
842 }
843 
844 /*
845  * Helper to directly jump to a known parsed path from ->follow_link,
846  * caller must have taken a reference to path beforehand.
847  */
848 void nd_jump_link(struct path *path)
849 {
850 	struct nameidata *nd = current->nameidata;
851 	path_put(&nd->path);
852 
853 	nd->path = *path;
854 	nd->inode = nd->path.dentry->d_inode;
855 	nd->flags |= LOOKUP_JUMPED;
856 }
857 
858 static inline void put_link(struct nameidata *nd)
859 {
860 	struct saved *last = nd->stack + --nd->depth;
861 	struct inode *inode = last->inode;
862 	if (last->cookie && inode->i_op->put_link)
863 		inode->i_op->put_link(inode, last->cookie);
864 	if (!(nd->flags & LOOKUP_RCU))
865 		path_put(&last->link);
866 }
867 
868 int sysctl_protected_symlinks __read_mostly = 0;
869 int sysctl_protected_hardlinks __read_mostly = 0;
870 
871 /**
872  * may_follow_link - Check symlink following for unsafe situations
873  * @nd: nameidata pathwalk data
874  *
875  * In the case of the sysctl_protected_symlinks sysctl being enabled,
876  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
877  * in a sticky world-writable directory. This is to protect privileged
878  * processes from failing races against path names that may change out
879  * from under them by way of other users creating malicious symlinks.
880  * It will permit symlinks to be followed only when outside a sticky
881  * world-writable directory, or when the uid of the symlink and follower
882  * match, or when the directory owner matches the symlink's owner.
883  *
884  * Returns 0 if following the symlink is allowed, -ve on error.
885  */
886 static inline int may_follow_link(struct nameidata *nd)
887 {
888 	const struct inode *inode;
889 	const struct inode *parent;
890 
891 	if (!sysctl_protected_symlinks)
892 		return 0;
893 
894 	/* Allowed if owner and follower match. */
895 	inode = nd->stack[0].inode;
896 	if (uid_eq(current_cred()->fsuid, inode->i_uid))
897 		return 0;
898 
899 	/* Allowed if parent directory not sticky and world-writable. */
900 	parent = nd->inode;
901 	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
902 		return 0;
903 
904 	/* Allowed if parent directory and link owner match. */
905 	if (uid_eq(parent->i_uid, inode->i_uid))
906 		return 0;
907 
908 	if (nd->flags & LOOKUP_RCU)
909 		return -ECHILD;
910 
911 	audit_log_link_denied("follow_link", &nd->stack[0].link);
912 	return -EACCES;
913 }
914 
915 /**
916  * safe_hardlink_source - Check for safe hardlink conditions
917  * @inode: the source inode to hardlink from
918  *
919  * Return false if at least one of the following conditions:
920  *    - inode is not a regular file
921  *    - inode is setuid
922  *    - inode is setgid and group-exec
923  *    - access failure for read and write
924  *
925  * Otherwise returns true.
926  */
927 static bool safe_hardlink_source(struct inode *inode)
928 {
929 	umode_t mode = inode->i_mode;
930 
931 	/* Special files should not get pinned to the filesystem. */
932 	if (!S_ISREG(mode))
933 		return false;
934 
935 	/* Setuid files should not get pinned to the filesystem. */
936 	if (mode & S_ISUID)
937 		return false;
938 
939 	/* Executable setgid files should not get pinned to the filesystem. */
940 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
941 		return false;
942 
943 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
944 	if (inode_permission(inode, MAY_READ | MAY_WRITE))
945 		return false;
946 
947 	return true;
948 }
949 
950 /**
951  * may_linkat - Check permissions for creating a hardlink
952  * @link: the source to hardlink from
953  *
954  * Block hardlink when all of:
955  *  - sysctl_protected_hardlinks enabled
956  *  - fsuid does not match inode
957  *  - hardlink source is unsafe (see safe_hardlink_source() above)
958  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
959  *
960  * Returns 0 if successful, -ve on error.
961  */
962 static int may_linkat(struct path *link)
963 {
964 	struct inode *inode;
965 
966 	if (!sysctl_protected_hardlinks)
967 		return 0;
968 
969 	inode = link->dentry->d_inode;
970 
971 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
972 	 * otherwise, it must be a safe source.
973 	 */
974 	if (inode_owner_or_capable(inode) || safe_hardlink_source(inode))
975 		return 0;
976 
977 	audit_log_link_denied("linkat", link);
978 	return -EPERM;
979 }
980 
981 static __always_inline
982 const char *get_link(struct nameidata *nd)
983 {
984 	struct saved *last = nd->stack + nd->depth - 1;
985 	struct dentry *dentry = last->link.dentry;
986 	struct inode *inode = last->inode;
987 	int error;
988 	const char *res;
989 
990 	if (!(nd->flags & LOOKUP_RCU)) {
991 		touch_atime(&last->link);
992 		cond_resched();
993 	} else if (atime_needs_update(&last->link, inode)) {
994 		if (unlikely(unlazy_walk(nd, NULL, 0)))
995 			return ERR_PTR(-ECHILD);
996 		touch_atime(&last->link);
997 	}
998 
999 	error = security_inode_follow_link(dentry, inode,
1000 					   nd->flags & LOOKUP_RCU);
1001 	if (unlikely(error))
1002 		return ERR_PTR(error);
1003 
1004 	nd->last_type = LAST_BIND;
1005 	res = inode->i_link;
1006 	if (!res) {
1007 		if (nd->flags & LOOKUP_RCU) {
1008 			if (unlikely(unlazy_walk(nd, NULL, 0)))
1009 				return ERR_PTR(-ECHILD);
1010 		}
1011 		res = inode->i_op->follow_link(dentry, &last->cookie);
1012 		if (IS_ERR_OR_NULL(res)) {
1013 			last->cookie = NULL;
1014 			return res;
1015 		}
1016 	}
1017 	if (*res == '/') {
1018 		if (nd->flags & LOOKUP_RCU) {
1019 			struct dentry *d;
1020 			if (!nd->root.mnt)
1021 				set_root_rcu(nd);
1022 			nd->path = nd->root;
1023 			d = nd->path.dentry;
1024 			nd->inode = d->d_inode;
1025 			nd->seq = nd->root_seq;
1026 			if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
1027 				return ERR_PTR(-ECHILD);
1028 		} else {
1029 			if (!nd->root.mnt)
1030 				set_root(nd);
1031 			path_put(&nd->path);
1032 			nd->path = nd->root;
1033 			path_get(&nd->root);
1034 			nd->inode = nd->path.dentry->d_inode;
1035 		}
1036 		nd->flags |= LOOKUP_JUMPED;
1037 		while (unlikely(*++res == '/'))
1038 			;
1039 	}
1040 	if (!*res)
1041 		res = NULL;
1042 	return res;
1043 }
1044 
1045 /*
1046  * follow_up - Find the mountpoint of path's vfsmount
1047  *
1048  * Given a path, find the mountpoint of its source file system.
1049  * Replace @path with the path of the mountpoint in the parent mount.
1050  * Up is towards /.
1051  *
1052  * Return 1 if we went up a level and 0 if we were already at the
1053  * root.
1054  */
1055 int follow_up(struct path *path)
1056 {
1057 	struct mount *mnt = real_mount(path->mnt);
1058 	struct mount *parent;
1059 	struct dentry *mountpoint;
1060 
1061 	read_seqlock_excl(&mount_lock);
1062 	parent = mnt->mnt_parent;
1063 	if (parent == mnt) {
1064 		read_sequnlock_excl(&mount_lock);
1065 		return 0;
1066 	}
1067 	mntget(&parent->mnt);
1068 	mountpoint = dget(mnt->mnt_mountpoint);
1069 	read_sequnlock_excl(&mount_lock);
1070 	dput(path->dentry);
1071 	path->dentry = mountpoint;
1072 	mntput(path->mnt);
1073 	path->mnt = &parent->mnt;
1074 	return 1;
1075 }
1076 EXPORT_SYMBOL(follow_up);
1077 
1078 /*
1079  * Perform an automount
1080  * - return -EISDIR to tell follow_managed() to stop and return the path we
1081  *   were called with.
1082  */
1083 static int follow_automount(struct path *path, struct nameidata *nd,
1084 			    bool *need_mntput)
1085 {
1086 	struct vfsmount *mnt;
1087 	int err;
1088 
1089 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1090 		return -EREMOTE;
1091 
1092 	/* We don't want to mount if someone's just doing a stat -
1093 	 * unless they're stat'ing a directory and appended a '/' to
1094 	 * the name.
1095 	 *
1096 	 * We do, however, want to mount if someone wants to open or
1097 	 * create a file of any type under the mountpoint, wants to
1098 	 * traverse through the mountpoint or wants to open the
1099 	 * mounted directory.  Also, autofs may mark negative dentries
1100 	 * as being automount points.  These will need the attentions
1101 	 * of the daemon to instantiate them before they can be used.
1102 	 */
1103 	if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1104 			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1105 	    path->dentry->d_inode)
1106 		return -EISDIR;
1107 
1108 	nd->total_link_count++;
1109 	if (nd->total_link_count >= 40)
1110 		return -ELOOP;
1111 
1112 	mnt = path->dentry->d_op->d_automount(path);
1113 	if (IS_ERR(mnt)) {
1114 		/*
1115 		 * The filesystem is allowed to return -EISDIR here to indicate
1116 		 * it doesn't want to automount.  For instance, autofs would do
1117 		 * this so that its userspace daemon can mount on this dentry.
1118 		 *
1119 		 * However, we can only permit this if it's a terminal point in
1120 		 * the path being looked up; if it wasn't then the remainder of
1121 		 * the path is inaccessible and we should say so.
1122 		 */
1123 		if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1124 			return -EREMOTE;
1125 		return PTR_ERR(mnt);
1126 	}
1127 
1128 	if (!mnt) /* mount collision */
1129 		return 0;
1130 
1131 	if (!*need_mntput) {
1132 		/* lock_mount() may release path->mnt on error */
1133 		mntget(path->mnt);
1134 		*need_mntput = true;
1135 	}
1136 	err = finish_automount(mnt, path);
1137 
1138 	switch (err) {
1139 	case -EBUSY:
1140 		/* Someone else made a mount here whilst we were busy */
1141 		return 0;
1142 	case 0:
1143 		path_put(path);
1144 		path->mnt = mnt;
1145 		path->dentry = dget(mnt->mnt_root);
1146 		return 0;
1147 	default:
1148 		return err;
1149 	}
1150 
1151 }
1152 
1153 /*
1154  * Handle a dentry that is managed in some way.
1155  * - Flagged for transit management (autofs)
1156  * - Flagged as mountpoint
1157  * - Flagged as automount point
1158  *
1159  * This may only be called in refwalk mode.
1160  *
1161  * Serialization is taken care of in namespace.c
1162  */
1163 static int follow_managed(struct path *path, struct nameidata *nd)
1164 {
1165 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1166 	unsigned managed;
1167 	bool need_mntput = false;
1168 	int ret = 0;
1169 
1170 	/* Given that we're not holding a lock here, we retain the value in a
1171 	 * local variable for each dentry as we look at it so that we don't see
1172 	 * the components of that value change under us */
1173 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1174 	       managed &= DCACHE_MANAGED_DENTRY,
1175 	       unlikely(managed != 0)) {
1176 		/* Allow the filesystem to manage the transit without i_mutex
1177 		 * being held. */
1178 		if (managed & DCACHE_MANAGE_TRANSIT) {
1179 			BUG_ON(!path->dentry->d_op);
1180 			BUG_ON(!path->dentry->d_op->d_manage);
1181 			ret = path->dentry->d_op->d_manage(path->dentry, false);
1182 			if (ret < 0)
1183 				break;
1184 		}
1185 
1186 		/* Transit to a mounted filesystem. */
1187 		if (managed & DCACHE_MOUNTED) {
1188 			struct vfsmount *mounted = lookup_mnt(path);
1189 			if (mounted) {
1190 				dput(path->dentry);
1191 				if (need_mntput)
1192 					mntput(path->mnt);
1193 				path->mnt = mounted;
1194 				path->dentry = dget(mounted->mnt_root);
1195 				need_mntput = true;
1196 				continue;
1197 			}
1198 
1199 			/* Something is mounted on this dentry in another
1200 			 * namespace and/or whatever was mounted there in this
1201 			 * namespace got unmounted before lookup_mnt() could
1202 			 * get it */
1203 		}
1204 
1205 		/* Handle an automount point */
1206 		if (managed & DCACHE_NEED_AUTOMOUNT) {
1207 			ret = follow_automount(path, nd, &need_mntput);
1208 			if (ret < 0)
1209 				break;
1210 			continue;
1211 		}
1212 
1213 		/* We didn't change the current path point */
1214 		break;
1215 	}
1216 
1217 	if (need_mntput && path->mnt == mnt)
1218 		mntput(path->mnt);
1219 	if (ret == -EISDIR)
1220 		ret = 0;
1221 	if (need_mntput)
1222 		nd->flags |= LOOKUP_JUMPED;
1223 	if (unlikely(ret < 0))
1224 		path_put_conditional(path, nd);
1225 	return ret;
1226 }
1227 
1228 int follow_down_one(struct path *path)
1229 {
1230 	struct vfsmount *mounted;
1231 
1232 	mounted = lookup_mnt(path);
1233 	if (mounted) {
1234 		dput(path->dentry);
1235 		mntput(path->mnt);
1236 		path->mnt = mounted;
1237 		path->dentry = dget(mounted->mnt_root);
1238 		return 1;
1239 	}
1240 	return 0;
1241 }
1242 EXPORT_SYMBOL(follow_down_one);
1243 
1244 static inline int managed_dentry_rcu(struct dentry *dentry)
1245 {
1246 	return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1247 		dentry->d_op->d_manage(dentry, true) : 0;
1248 }
1249 
1250 /*
1251  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1252  * we meet a managed dentry that would need blocking.
1253  */
1254 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1255 			       struct inode **inode, unsigned *seqp)
1256 {
1257 	for (;;) {
1258 		struct mount *mounted;
1259 		/*
1260 		 * Don't forget we might have a non-mountpoint managed dentry
1261 		 * that wants to block transit.
1262 		 */
1263 		switch (managed_dentry_rcu(path->dentry)) {
1264 		case -ECHILD:
1265 		default:
1266 			return false;
1267 		case -EISDIR:
1268 			return true;
1269 		case 0:
1270 			break;
1271 		}
1272 
1273 		if (!d_mountpoint(path->dentry))
1274 			return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1275 
1276 		mounted = __lookup_mnt(path->mnt, path->dentry);
1277 		if (!mounted)
1278 			break;
1279 		path->mnt = &mounted->mnt;
1280 		path->dentry = mounted->mnt.mnt_root;
1281 		nd->flags |= LOOKUP_JUMPED;
1282 		*seqp = read_seqcount_begin(&path->dentry->d_seq);
1283 		/*
1284 		 * Update the inode too. We don't need to re-check the
1285 		 * dentry sequence number here after this d_inode read,
1286 		 * because a mount-point is always pinned.
1287 		 */
1288 		*inode = path->dentry->d_inode;
1289 	}
1290 	return !read_seqretry(&mount_lock, nd->m_seq) &&
1291 		!(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1292 }
1293 
1294 static int follow_dotdot_rcu(struct nameidata *nd)
1295 {
1296 	struct inode *inode = nd->inode;
1297 	if (!nd->root.mnt)
1298 		set_root_rcu(nd);
1299 
1300 	while (1) {
1301 		if (path_equal(&nd->path, &nd->root))
1302 			break;
1303 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1304 			struct dentry *old = nd->path.dentry;
1305 			struct dentry *parent = old->d_parent;
1306 			unsigned seq;
1307 
1308 			inode = parent->d_inode;
1309 			seq = read_seqcount_begin(&parent->d_seq);
1310 			if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1311 				return -ECHILD;
1312 			nd->path.dentry = parent;
1313 			nd->seq = seq;
1314 			if (unlikely(!path_connected(&nd->path)))
1315 				return -ENOENT;
1316 			break;
1317 		} else {
1318 			struct mount *mnt = real_mount(nd->path.mnt);
1319 			struct mount *mparent = mnt->mnt_parent;
1320 			struct dentry *mountpoint = mnt->mnt_mountpoint;
1321 			struct inode *inode2 = mountpoint->d_inode;
1322 			unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1323 			if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1324 				return -ECHILD;
1325 			if (&mparent->mnt == nd->path.mnt)
1326 				break;
1327 			/* we know that mountpoint was pinned */
1328 			nd->path.dentry = mountpoint;
1329 			nd->path.mnt = &mparent->mnt;
1330 			inode = inode2;
1331 			nd->seq = seq;
1332 		}
1333 	}
1334 	while (unlikely(d_mountpoint(nd->path.dentry))) {
1335 		struct mount *mounted;
1336 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1337 		if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1338 			return -ECHILD;
1339 		if (!mounted)
1340 			break;
1341 		nd->path.mnt = &mounted->mnt;
1342 		nd->path.dentry = mounted->mnt.mnt_root;
1343 		inode = nd->path.dentry->d_inode;
1344 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1345 	}
1346 	nd->inode = inode;
1347 	return 0;
1348 }
1349 
1350 /*
1351  * Follow down to the covering mount currently visible to userspace.  At each
1352  * point, the filesystem owning that dentry may be queried as to whether the
1353  * caller is permitted to proceed or not.
1354  */
1355 int follow_down(struct path *path)
1356 {
1357 	unsigned managed;
1358 	int ret;
1359 
1360 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1361 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1362 		/* Allow the filesystem to manage the transit without i_mutex
1363 		 * being held.
1364 		 *
1365 		 * We indicate to the filesystem if someone is trying to mount
1366 		 * something here.  This gives autofs the chance to deny anyone
1367 		 * other than its daemon the right to mount on its
1368 		 * superstructure.
1369 		 *
1370 		 * The filesystem may sleep at this point.
1371 		 */
1372 		if (managed & DCACHE_MANAGE_TRANSIT) {
1373 			BUG_ON(!path->dentry->d_op);
1374 			BUG_ON(!path->dentry->d_op->d_manage);
1375 			ret = path->dentry->d_op->d_manage(
1376 				path->dentry, false);
1377 			if (ret < 0)
1378 				return ret == -EISDIR ? 0 : ret;
1379 		}
1380 
1381 		/* Transit to a mounted filesystem. */
1382 		if (managed & DCACHE_MOUNTED) {
1383 			struct vfsmount *mounted = lookup_mnt(path);
1384 			if (!mounted)
1385 				break;
1386 			dput(path->dentry);
1387 			mntput(path->mnt);
1388 			path->mnt = mounted;
1389 			path->dentry = dget(mounted->mnt_root);
1390 			continue;
1391 		}
1392 
1393 		/* Don't handle automount points here */
1394 		break;
1395 	}
1396 	return 0;
1397 }
1398 EXPORT_SYMBOL(follow_down);
1399 
1400 /*
1401  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1402  */
1403 static void follow_mount(struct path *path)
1404 {
1405 	while (d_mountpoint(path->dentry)) {
1406 		struct vfsmount *mounted = lookup_mnt(path);
1407 		if (!mounted)
1408 			break;
1409 		dput(path->dentry);
1410 		mntput(path->mnt);
1411 		path->mnt = mounted;
1412 		path->dentry = dget(mounted->mnt_root);
1413 	}
1414 }
1415 
1416 static int follow_dotdot(struct nameidata *nd)
1417 {
1418 	if (!nd->root.mnt)
1419 		set_root(nd);
1420 
1421 	while(1) {
1422 		struct dentry *old = nd->path.dentry;
1423 
1424 		if (nd->path.dentry == nd->root.dentry &&
1425 		    nd->path.mnt == nd->root.mnt) {
1426 			break;
1427 		}
1428 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1429 			/* rare case of legitimate dget_parent()... */
1430 			nd->path.dentry = dget_parent(nd->path.dentry);
1431 			dput(old);
1432 			if (unlikely(!path_connected(&nd->path)))
1433 				return -ENOENT;
1434 			break;
1435 		}
1436 		if (!follow_up(&nd->path))
1437 			break;
1438 	}
1439 	follow_mount(&nd->path);
1440 	nd->inode = nd->path.dentry->d_inode;
1441 	return 0;
1442 }
1443 
1444 /*
1445  * This looks up the name in dcache, possibly revalidates the old dentry and
1446  * allocates a new one if not found or not valid.  In the need_lookup argument
1447  * returns whether i_op->lookup is necessary.
1448  *
1449  * dir->d_inode->i_mutex must be held
1450  */
1451 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1452 				    unsigned int flags, bool *need_lookup)
1453 {
1454 	struct dentry *dentry;
1455 	int error;
1456 
1457 	*need_lookup = false;
1458 	dentry = d_lookup(dir, name);
1459 	if (dentry) {
1460 		if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1461 			error = d_revalidate(dentry, flags);
1462 			if (unlikely(error <= 0)) {
1463 				if (error < 0) {
1464 					dput(dentry);
1465 					return ERR_PTR(error);
1466 				} else {
1467 					d_invalidate(dentry);
1468 					dput(dentry);
1469 					dentry = NULL;
1470 				}
1471 			}
1472 		}
1473 	}
1474 
1475 	if (!dentry) {
1476 		dentry = d_alloc(dir, name);
1477 		if (unlikely(!dentry))
1478 			return ERR_PTR(-ENOMEM);
1479 
1480 		*need_lookup = true;
1481 	}
1482 	return dentry;
1483 }
1484 
1485 /*
1486  * Call i_op->lookup on the dentry.  The dentry must be negative and
1487  * unhashed.
1488  *
1489  * dir->d_inode->i_mutex must be held
1490  */
1491 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1492 				  unsigned int flags)
1493 {
1494 	struct dentry *old;
1495 
1496 	/* Don't create child dentry for a dead directory. */
1497 	if (unlikely(IS_DEADDIR(dir))) {
1498 		dput(dentry);
1499 		return ERR_PTR(-ENOENT);
1500 	}
1501 
1502 	old = dir->i_op->lookup(dir, dentry, flags);
1503 	if (unlikely(old)) {
1504 		dput(dentry);
1505 		dentry = old;
1506 	}
1507 	return dentry;
1508 }
1509 
1510 static struct dentry *__lookup_hash(struct qstr *name,
1511 		struct dentry *base, unsigned int flags)
1512 {
1513 	bool need_lookup;
1514 	struct dentry *dentry;
1515 
1516 	dentry = lookup_dcache(name, base, flags, &need_lookup);
1517 	if (!need_lookup)
1518 		return dentry;
1519 
1520 	return lookup_real(base->d_inode, dentry, flags);
1521 }
1522 
1523 /*
1524  *  It's more convoluted than I'd like it to be, but... it's still fairly
1525  *  small and for now I'd prefer to have fast path as straight as possible.
1526  *  It _is_ time-critical.
1527  */
1528 static int lookup_fast(struct nameidata *nd,
1529 		       struct path *path, struct inode **inode,
1530 		       unsigned *seqp)
1531 {
1532 	struct vfsmount *mnt = nd->path.mnt;
1533 	struct dentry *dentry, *parent = nd->path.dentry;
1534 	int need_reval = 1;
1535 	int status = 1;
1536 	int err;
1537 
1538 	/*
1539 	 * Rename seqlock is not required here because in the off chance
1540 	 * of a false negative due to a concurrent rename, we're going to
1541 	 * do the non-racy lookup, below.
1542 	 */
1543 	if (nd->flags & LOOKUP_RCU) {
1544 		unsigned seq;
1545 		bool negative;
1546 		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1547 		if (!dentry)
1548 			goto unlazy;
1549 
1550 		/*
1551 		 * This sequence count validates that the inode matches
1552 		 * the dentry name information from lookup.
1553 		 */
1554 		*inode = d_backing_inode(dentry);
1555 		negative = d_is_negative(dentry);
1556 		if (read_seqcount_retry(&dentry->d_seq, seq))
1557 			return -ECHILD;
1558 
1559 		/*
1560 		 * This sequence count validates that the parent had no
1561 		 * changes while we did the lookup of the dentry above.
1562 		 *
1563 		 * The memory barrier in read_seqcount_begin of child is
1564 		 *  enough, we can use __read_seqcount_retry here.
1565 		 */
1566 		if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1567 			return -ECHILD;
1568 
1569 		*seqp = seq;
1570 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1571 			status = d_revalidate(dentry, nd->flags);
1572 			if (unlikely(status <= 0)) {
1573 				if (status != -ECHILD)
1574 					need_reval = 0;
1575 				goto unlazy;
1576 			}
1577 		}
1578 		/*
1579 		 * Note: do negative dentry check after revalidation in
1580 		 * case that drops it.
1581 		 */
1582 		if (negative)
1583 			return -ENOENT;
1584 		path->mnt = mnt;
1585 		path->dentry = dentry;
1586 		if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1587 			return 0;
1588 unlazy:
1589 		if (unlazy_walk(nd, dentry, seq))
1590 			return -ECHILD;
1591 	} else {
1592 		dentry = __d_lookup(parent, &nd->last);
1593 	}
1594 
1595 	if (unlikely(!dentry))
1596 		goto need_lookup;
1597 
1598 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1599 		status = d_revalidate(dentry, nd->flags);
1600 	if (unlikely(status <= 0)) {
1601 		if (status < 0) {
1602 			dput(dentry);
1603 			return status;
1604 		}
1605 		d_invalidate(dentry);
1606 		dput(dentry);
1607 		goto need_lookup;
1608 	}
1609 
1610 	if (unlikely(d_is_negative(dentry))) {
1611 		dput(dentry);
1612 		return -ENOENT;
1613 	}
1614 	path->mnt = mnt;
1615 	path->dentry = dentry;
1616 	err = follow_managed(path, nd);
1617 	if (likely(!err))
1618 		*inode = d_backing_inode(path->dentry);
1619 	return err;
1620 
1621 need_lookup:
1622 	return 1;
1623 }
1624 
1625 /* Fast lookup failed, do it the slow way */
1626 static int lookup_slow(struct nameidata *nd, struct path *path)
1627 {
1628 	struct dentry *dentry, *parent;
1629 
1630 	parent = nd->path.dentry;
1631 	BUG_ON(nd->inode != parent->d_inode);
1632 
1633 	mutex_lock(&parent->d_inode->i_mutex);
1634 	dentry = __lookup_hash(&nd->last, parent, nd->flags);
1635 	mutex_unlock(&parent->d_inode->i_mutex);
1636 	if (IS_ERR(dentry))
1637 		return PTR_ERR(dentry);
1638 	path->mnt = nd->path.mnt;
1639 	path->dentry = dentry;
1640 	return follow_managed(path, nd);
1641 }
1642 
1643 static inline int may_lookup(struct nameidata *nd)
1644 {
1645 	if (nd->flags & LOOKUP_RCU) {
1646 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1647 		if (err != -ECHILD)
1648 			return err;
1649 		if (unlazy_walk(nd, NULL, 0))
1650 			return -ECHILD;
1651 	}
1652 	return inode_permission(nd->inode, MAY_EXEC);
1653 }
1654 
1655 static inline int handle_dots(struct nameidata *nd, int type)
1656 {
1657 	if (type == LAST_DOTDOT) {
1658 		if (nd->flags & LOOKUP_RCU) {
1659 			return follow_dotdot_rcu(nd);
1660 		} else
1661 			return follow_dotdot(nd);
1662 	}
1663 	return 0;
1664 }
1665 
1666 static int pick_link(struct nameidata *nd, struct path *link,
1667 		     struct inode *inode, unsigned seq)
1668 {
1669 	int error;
1670 	struct saved *last;
1671 	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1672 		path_to_nameidata(link, nd);
1673 		return -ELOOP;
1674 	}
1675 	if (!(nd->flags & LOOKUP_RCU)) {
1676 		if (link->mnt == nd->path.mnt)
1677 			mntget(link->mnt);
1678 	}
1679 	error = nd_alloc_stack(nd);
1680 	if (unlikely(error)) {
1681 		if (error == -ECHILD) {
1682 			if (unlikely(unlazy_link(nd, link, seq)))
1683 				return -ECHILD;
1684 			error = nd_alloc_stack(nd);
1685 		}
1686 		if (error) {
1687 			path_put(link);
1688 			return error;
1689 		}
1690 	}
1691 
1692 	last = nd->stack + nd->depth++;
1693 	last->link = *link;
1694 	last->cookie = NULL;
1695 	last->inode = inode;
1696 	last->seq = seq;
1697 	return 1;
1698 }
1699 
1700 /*
1701  * Do we need to follow links? We _really_ want to be able
1702  * to do this check without having to look at inode->i_op,
1703  * so we keep a cache of "no, this doesn't need follow_link"
1704  * for the common case.
1705  */
1706 static inline int should_follow_link(struct nameidata *nd, struct path *link,
1707 				     int follow,
1708 				     struct inode *inode, unsigned seq)
1709 {
1710 	if (likely(!d_is_symlink(link->dentry)))
1711 		return 0;
1712 	if (!follow)
1713 		return 0;
1714 	return pick_link(nd, link, inode, seq);
1715 }
1716 
1717 enum {WALK_GET = 1, WALK_PUT = 2};
1718 
1719 static int walk_component(struct nameidata *nd, int flags)
1720 {
1721 	struct path path;
1722 	struct inode *inode;
1723 	unsigned seq;
1724 	int err;
1725 	/*
1726 	 * "." and ".." are special - ".." especially so because it has
1727 	 * to be able to know about the current root directory and
1728 	 * parent relationships.
1729 	 */
1730 	if (unlikely(nd->last_type != LAST_NORM)) {
1731 		err = handle_dots(nd, nd->last_type);
1732 		if (flags & WALK_PUT)
1733 			put_link(nd);
1734 		return err;
1735 	}
1736 	err = lookup_fast(nd, &path, &inode, &seq);
1737 	if (unlikely(err)) {
1738 		if (err < 0)
1739 			return err;
1740 
1741 		err = lookup_slow(nd, &path);
1742 		if (err < 0)
1743 			return err;
1744 
1745 		inode = d_backing_inode(path.dentry);
1746 		seq = 0;	/* we are already out of RCU mode */
1747 		err = -ENOENT;
1748 		if (d_is_negative(path.dentry))
1749 			goto out_path_put;
1750 	}
1751 
1752 	if (flags & WALK_PUT)
1753 		put_link(nd);
1754 	err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq);
1755 	if (unlikely(err))
1756 		return err;
1757 	path_to_nameidata(&path, nd);
1758 	nd->inode = inode;
1759 	nd->seq = seq;
1760 	return 0;
1761 
1762 out_path_put:
1763 	path_to_nameidata(&path, nd);
1764 	return err;
1765 }
1766 
1767 /*
1768  * We can do the critical dentry name comparison and hashing
1769  * operations one word at a time, but we are limited to:
1770  *
1771  * - Architectures with fast unaligned word accesses. We could
1772  *   do a "get_unaligned()" if this helps and is sufficiently
1773  *   fast.
1774  *
1775  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1776  *   do not trap on the (extremely unlikely) case of a page
1777  *   crossing operation.
1778  *
1779  * - Furthermore, we need an efficient 64-bit compile for the
1780  *   64-bit case in order to generate the "number of bytes in
1781  *   the final mask". Again, that could be replaced with a
1782  *   efficient population count instruction or similar.
1783  */
1784 #ifdef CONFIG_DCACHE_WORD_ACCESS
1785 
1786 #include <asm/word-at-a-time.h>
1787 
1788 #ifdef CONFIG_64BIT
1789 
1790 static inline unsigned int fold_hash(unsigned long hash)
1791 {
1792 	return hash_64(hash, 32);
1793 }
1794 
1795 #else	/* 32-bit case */
1796 
1797 #define fold_hash(x) (x)
1798 
1799 #endif
1800 
1801 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1802 {
1803 	unsigned long a, mask;
1804 	unsigned long hash = 0;
1805 
1806 	for (;;) {
1807 		a = load_unaligned_zeropad(name);
1808 		if (len < sizeof(unsigned long))
1809 			break;
1810 		hash += a;
1811 		hash *= 9;
1812 		name += sizeof(unsigned long);
1813 		len -= sizeof(unsigned long);
1814 		if (!len)
1815 			goto done;
1816 	}
1817 	mask = bytemask_from_count(len);
1818 	hash += mask & a;
1819 done:
1820 	return fold_hash(hash);
1821 }
1822 EXPORT_SYMBOL(full_name_hash);
1823 
1824 /*
1825  * Calculate the length and hash of the path component, and
1826  * return the "hash_len" as the result.
1827  */
1828 static inline u64 hash_name(const char *name)
1829 {
1830 	unsigned long a, b, adata, bdata, mask, hash, len;
1831 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1832 
1833 	hash = a = 0;
1834 	len = -sizeof(unsigned long);
1835 	do {
1836 		hash = (hash + a) * 9;
1837 		len += sizeof(unsigned long);
1838 		a = load_unaligned_zeropad(name+len);
1839 		b = a ^ REPEAT_BYTE('/');
1840 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1841 
1842 	adata = prep_zero_mask(a, adata, &constants);
1843 	bdata = prep_zero_mask(b, bdata, &constants);
1844 
1845 	mask = create_zero_mask(adata | bdata);
1846 
1847 	hash += a & zero_bytemask(mask);
1848 	len += find_zero(mask);
1849 	return hashlen_create(fold_hash(hash), len);
1850 }
1851 
1852 #else
1853 
1854 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1855 {
1856 	unsigned long hash = init_name_hash();
1857 	while (len--)
1858 		hash = partial_name_hash(*name++, hash);
1859 	return end_name_hash(hash);
1860 }
1861 EXPORT_SYMBOL(full_name_hash);
1862 
1863 /*
1864  * We know there's a real path component here of at least
1865  * one character.
1866  */
1867 static inline u64 hash_name(const char *name)
1868 {
1869 	unsigned long hash = init_name_hash();
1870 	unsigned long len = 0, c;
1871 
1872 	c = (unsigned char)*name;
1873 	do {
1874 		len++;
1875 		hash = partial_name_hash(c, hash);
1876 		c = (unsigned char)name[len];
1877 	} while (c && c != '/');
1878 	return hashlen_create(end_name_hash(hash), len);
1879 }
1880 
1881 #endif
1882 
1883 /*
1884  * Name resolution.
1885  * This is the basic name resolution function, turning a pathname into
1886  * the final dentry. We expect 'base' to be positive and a directory.
1887  *
1888  * Returns 0 and nd will have valid dentry and mnt on success.
1889  * Returns error and drops reference to input namei data on failure.
1890  */
1891 static int link_path_walk(const char *name, struct nameidata *nd)
1892 {
1893 	int err;
1894 
1895 	while (*name=='/')
1896 		name++;
1897 	if (!*name)
1898 		return 0;
1899 
1900 	/* At this point we know we have a real path component. */
1901 	for(;;) {
1902 		u64 hash_len;
1903 		int type;
1904 
1905 		err = may_lookup(nd);
1906  		if (err)
1907 			return err;
1908 
1909 		hash_len = hash_name(name);
1910 
1911 		type = LAST_NORM;
1912 		if (name[0] == '.') switch (hashlen_len(hash_len)) {
1913 			case 2:
1914 				if (name[1] == '.') {
1915 					type = LAST_DOTDOT;
1916 					nd->flags |= LOOKUP_JUMPED;
1917 				}
1918 				break;
1919 			case 1:
1920 				type = LAST_DOT;
1921 		}
1922 		if (likely(type == LAST_NORM)) {
1923 			struct dentry *parent = nd->path.dentry;
1924 			nd->flags &= ~LOOKUP_JUMPED;
1925 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1926 				struct qstr this = { { .hash_len = hash_len }, .name = name };
1927 				err = parent->d_op->d_hash(parent, &this);
1928 				if (err < 0)
1929 					return err;
1930 				hash_len = this.hash_len;
1931 				name = this.name;
1932 			}
1933 		}
1934 
1935 		nd->last.hash_len = hash_len;
1936 		nd->last.name = name;
1937 		nd->last_type = type;
1938 
1939 		name += hashlen_len(hash_len);
1940 		if (!*name)
1941 			goto OK;
1942 		/*
1943 		 * If it wasn't NUL, we know it was '/'. Skip that
1944 		 * slash, and continue until no more slashes.
1945 		 */
1946 		do {
1947 			name++;
1948 		} while (unlikely(*name == '/'));
1949 		if (unlikely(!*name)) {
1950 OK:
1951 			/* pathname body, done */
1952 			if (!nd->depth)
1953 				return 0;
1954 			name = nd->stack[nd->depth - 1].name;
1955 			/* trailing symlink, done */
1956 			if (!name)
1957 				return 0;
1958 			/* last component of nested symlink */
1959 			err = walk_component(nd, WALK_GET | WALK_PUT);
1960 		} else {
1961 			err = walk_component(nd, WALK_GET);
1962 		}
1963 		if (err < 0)
1964 			return err;
1965 
1966 		if (err) {
1967 			const char *s = get_link(nd);
1968 
1969 			if (IS_ERR(s))
1970 				return PTR_ERR(s);
1971 			err = 0;
1972 			if (unlikely(!s)) {
1973 				/* jumped */
1974 				put_link(nd);
1975 			} else {
1976 				nd->stack[nd->depth - 1].name = name;
1977 				name = s;
1978 				continue;
1979 			}
1980 		}
1981 		if (unlikely(!d_can_lookup(nd->path.dentry))) {
1982 			if (nd->flags & LOOKUP_RCU) {
1983 				if (unlazy_walk(nd, NULL, 0))
1984 					return -ECHILD;
1985 			}
1986 			return -ENOTDIR;
1987 		}
1988 	}
1989 }
1990 
1991 static const char *path_init(struct nameidata *nd, unsigned flags)
1992 {
1993 	int retval = 0;
1994 	const char *s = nd->name->name;
1995 
1996 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1997 	nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
1998 	nd->depth = 0;
1999 	nd->total_link_count = 0;
2000 	if (flags & LOOKUP_ROOT) {
2001 		struct dentry *root = nd->root.dentry;
2002 		struct inode *inode = root->d_inode;
2003 		if (*s) {
2004 			if (!d_can_lookup(root))
2005 				return ERR_PTR(-ENOTDIR);
2006 			retval = inode_permission(inode, MAY_EXEC);
2007 			if (retval)
2008 				return ERR_PTR(retval);
2009 		}
2010 		nd->path = nd->root;
2011 		nd->inode = inode;
2012 		if (flags & LOOKUP_RCU) {
2013 			rcu_read_lock();
2014 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2015 			nd->root_seq = nd->seq;
2016 			nd->m_seq = read_seqbegin(&mount_lock);
2017 		} else {
2018 			path_get(&nd->path);
2019 		}
2020 		return s;
2021 	}
2022 
2023 	nd->root.mnt = NULL;
2024 
2025 	nd->m_seq = read_seqbegin(&mount_lock);
2026 	if (*s == '/') {
2027 		if (flags & LOOKUP_RCU) {
2028 			rcu_read_lock();
2029 			set_root_rcu(nd);
2030 			nd->seq = nd->root_seq;
2031 		} else {
2032 			set_root(nd);
2033 			path_get(&nd->root);
2034 		}
2035 		nd->path = nd->root;
2036 	} else if (nd->dfd == AT_FDCWD) {
2037 		if (flags & LOOKUP_RCU) {
2038 			struct fs_struct *fs = current->fs;
2039 			unsigned seq;
2040 
2041 			rcu_read_lock();
2042 
2043 			do {
2044 				seq = read_seqcount_begin(&fs->seq);
2045 				nd->path = fs->pwd;
2046 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2047 			} while (read_seqcount_retry(&fs->seq, seq));
2048 		} else {
2049 			get_fs_pwd(current->fs, &nd->path);
2050 		}
2051 	} else {
2052 		/* Caller must check execute permissions on the starting path component */
2053 		struct fd f = fdget_raw(nd->dfd);
2054 		struct dentry *dentry;
2055 
2056 		if (!f.file)
2057 			return ERR_PTR(-EBADF);
2058 
2059 		dentry = f.file->f_path.dentry;
2060 
2061 		if (*s) {
2062 			if (!d_can_lookup(dentry)) {
2063 				fdput(f);
2064 				return ERR_PTR(-ENOTDIR);
2065 			}
2066 		}
2067 
2068 		nd->path = f.file->f_path;
2069 		if (flags & LOOKUP_RCU) {
2070 			rcu_read_lock();
2071 			nd->inode = nd->path.dentry->d_inode;
2072 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2073 		} else {
2074 			path_get(&nd->path);
2075 			nd->inode = nd->path.dentry->d_inode;
2076 		}
2077 		fdput(f);
2078 		return s;
2079 	}
2080 
2081 	nd->inode = nd->path.dentry->d_inode;
2082 	if (!(flags & LOOKUP_RCU))
2083 		return s;
2084 	if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq)))
2085 		return s;
2086 	if (!(nd->flags & LOOKUP_ROOT))
2087 		nd->root.mnt = NULL;
2088 	rcu_read_unlock();
2089 	return ERR_PTR(-ECHILD);
2090 }
2091 
2092 static const char *trailing_symlink(struct nameidata *nd)
2093 {
2094 	const char *s;
2095 	int error = may_follow_link(nd);
2096 	if (unlikely(error))
2097 		return ERR_PTR(error);
2098 	nd->flags |= LOOKUP_PARENT;
2099 	nd->stack[0].name = NULL;
2100 	s = get_link(nd);
2101 	return s ? s : "";
2102 }
2103 
2104 static inline int lookup_last(struct nameidata *nd)
2105 {
2106 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2107 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2108 
2109 	nd->flags &= ~LOOKUP_PARENT;
2110 	return walk_component(nd,
2111 			nd->flags & LOOKUP_FOLLOW
2112 				? nd->depth
2113 					? WALK_PUT | WALK_GET
2114 					: WALK_GET
2115 				: 0);
2116 }
2117 
2118 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2119 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2120 {
2121 	const char *s = path_init(nd, flags);
2122 	int err;
2123 
2124 	if (IS_ERR(s))
2125 		return PTR_ERR(s);
2126 	while (!(err = link_path_walk(s, nd))
2127 		&& ((err = lookup_last(nd)) > 0)) {
2128 		s = trailing_symlink(nd);
2129 		if (IS_ERR(s)) {
2130 			err = PTR_ERR(s);
2131 			break;
2132 		}
2133 	}
2134 	if (!err)
2135 		err = complete_walk(nd);
2136 
2137 	if (!err && nd->flags & LOOKUP_DIRECTORY)
2138 		if (!d_can_lookup(nd->path.dentry))
2139 			err = -ENOTDIR;
2140 	if (!err) {
2141 		*path = nd->path;
2142 		nd->path.mnt = NULL;
2143 		nd->path.dentry = NULL;
2144 	}
2145 	terminate_walk(nd);
2146 	return err;
2147 }
2148 
2149 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2150 			   struct path *path, struct path *root)
2151 {
2152 	int retval;
2153 	struct nameidata nd;
2154 	if (IS_ERR(name))
2155 		return PTR_ERR(name);
2156 	if (unlikely(root)) {
2157 		nd.root = *root;
2158 		flags |= LOOKUP_ROOT;
2159 	}
2160 	set_nameidata(&nd, dfd, name);
2161 	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2162 	if (unlikely(retval == -ECHILD))
2163 		retval = path_lookupat(&nd, flags, path);
2164 	if (unlikely(retval == -ESTALE))
2165 		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2166 
2167 	if (likely(!retval))
2168 		audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2169 	restore_nameidata();
2170 	putname(name);
2171 	return retval;
2172 }
2173 
2174 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2175 static int path_parentat(struct nameidata *nd, unsigned flags,
2176 				struct path *parent)
2177 {
2178 	const char *s = path_init(nd, flags);
2179 	int err;
2180 	if (IS_ERR(s))
2181 		return PTR_ERR(s);
2182 	err = link_path_walk(s, nd);
2183 	if (!err)
2184 		err = complete_walk(nd);
2185 	if (!err) {
2186 		*parent = nd->path;
2187 		nd->path.mnt = NULL;
2188 		nd->path.dentry = NULL;
2189 	}
2190 	terminate_walk(nd);
2191 	return err;
2192 }
2193 
2194 static struct filename *filename_parentat(int dfd, struct filename *name,
2195 				unsigned int flags, struct path *parent,
2196 				struct qstr *last, int *type)
2197 {
2198 	int retval;
2199 	struct nameidata nd;
2200 
2201 	if (IS_ERR(name))
2202 		return name;
2203 	set_nameidata(&nd, dfd, name);
2204 	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2205 	if (unlikely(retval == -ECHILD))
2206 		retval = path_parentat(&nd, flags, parent);
2207 	if (unlikely(retval == -ESTALE))
2208 		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2209 	if (likely(!retval)) {
2210 		*last = nd.last;
2211 		*type = nd.last_type;
2212 		audit_inode(name, parent->dentry, LOOKUP_PARENT);
2213 	} else {
2214 		putname(name);
2215 		name = ERR_PTR(retval);
2216 	}
2217 	restore_nameidata();
2218 	return name;
2219 }
2220 
2221 /* does lookup, returns the object with parent locked */
2222 struct dentry *kern_path_locked(const char *name, struct path *path)
2223 {
2224 	struct filename *filename;
2225 	struct dentry *d;
2226 	struct qstr last;
2227 	int type;
2228 
2229 	filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2230 				    &last, &type);
2231 	if (IS_ERR(filename))
2232 		return ERR_CAST(filename);
2233 	if (unlikely(type != LAST_NORM)) {
2234 		path_put(path);
2235 		putname(filename);
2236 		return ERR_PTR(-EINVAL);
2237 	}
2238 	mutex_lock_nested(&path->dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2239 	d = __lookup_hash(&last, path->dentry, 0);
2240 	if (IS_ERR(d)) {
2241 		mutex_unlock(&path->dentry->d_inode->i_mutex);
2242 		path_put(path);
2243 	}
2244 	putname(filename);
2245 	return d;
2246 }
2247 
2248 int kern_path(const char *name, unsigned int flags, struct path *path)
2249 {
2250 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2251 			       flags, path, NULL);
2252 }
2253 EXPORT_SYMBOL(kern_path);
2254 
2255 /**
2256  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2257  * @dentry:  pointer to dentry of the base directory
2258  * @mnt: pointer to vfs mount of the base directory
2259  * @name: pointer to file name
2260  * @flags: lookup flags
2261  * @path: pointer to struct path to fill
2262  */
2263 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2264 		    const char *name, unsigned int flags,
2265 		    struct path *path)
2266 {
2267 	struct path root = {.mnt = mnt, .dentry = dentry};
2268 	/* the first argument of filename_lookup() is ignored with root */
2269 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2270 			       flags , path, &root);
2271 }
2272 EXPORT_SYMBOL(vfs_path_lookup);
2273 
2274 /**
2275  * lookup_one_len - filesystem helper to lookup single pathname component
2276  * @name:	pathname component to lookup
2277  * @base:	base directory to lookup from
2278  * @len:	maximum length @len should be interpreted to
2279  *
2280  * Note that this routine is purely a helper for filesystem usage and should
2281  * not be called by generic code.
2282  */
2283 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2284 {
2285 	struct qstr this;
2286 	unsigned int c;
2287 	int err;
2288 
2289 	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2290 
2291 	this.name = name;
2292 	this.len = len;
2293 	this.hash = full_name_hash(name, len);
2294 	if (!len)
2295 		return ERR_PTR(-EACCES);
2296 
2297 	if (unlikely(name[0] == '.')) {
2298 		if (len < 2 || (len == 2 && name[1] == '.'))
2299 			return ERR_PTR(-EACCES);
2300 	}
2301 
2302 	while (len--) {
2303 		c = *(const unsigned char *)name++;
2304 		if (c == '/' || c == '\0')
2305 			return ERR_PTR(-EACCES);
2306 	}
2307 	/*
2308 	 * See if the low-level filesystem might want
2309 	 * to use its own hash..
2310 	 */
2311 	if (base->d_flags & DCACHE_OP_HASH) {
2312 		int err = base->d_op->d_hash(base, &this);
2313 		if (err < 0)
2314 			return ERR_PTR(err);
2315 	}
2316 
2317 	err = inode_permission(base->d_inode, MAY_EXEC);
2318 	if (err)
2319 		return ERR_PTR(err);
2320 
2321 	return __lookup_hash(&this, base, 0);
2322 }
2323 EXPORT_SYMBOL(lookup_one_len);
2324 
2325 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2326 		 struct path *path, int *empty)
2327 {
2328 	return filename_lookup(dfd, getname_flags(name, flags, empty),
2329 			       flags, path, NULL);
2330 }
2331 EXPORT_SYMBOL(user_path_at_empty);
2332 
2333 /*
2334  * NB: most callers don't do anything directly with the reference to the
2335  *     to struct filename, but the nd->last pointer points into the name string
2336  *     allocated by getname. So we must hold the reference to it until all
2337  *     path-walking is complete.
2338  */
2339 static inline struct filename *
2340 user_path_parent(int dfd, const char __user *path,
2341 		 struct path *parent,
2342 		 struct qstr *last,
2343 		 int *type,
2344 		 unsigned int flags)
2345 {
2346 	/* only LOOKUP_REVAL is allowed in extra flags */
2347 	return filename_parentat(dfd, getname(path), flags & LOOKUP_REVAL,
2348 				 parent, last, type);
2349 }
2350 
2351 /**
2352  * mountpoint_last - look up last component for umount
2353  * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2354  * @path: pointer to container for result
2355  *
2356  * This is a special lookup_last function just for umount. In this case, we
2357  * need to resolve the path without doing any revalidation.
2358  *
2359  * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2360  * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2361  * in almost all cases, this lookup will be served out of the dcache. The only
2362  * cases where it won't are if nd->last refers to a symlink or the path is
2363  * bogus and it doesn't exist.
2364  *
2365  * Returns:
2366  * -error: if there was an error during lookup. This includes -ENOENT if the
2367  *         lookup found a negative dentry. The nd->path reference will also be
2368  *         put in this case.
2369  *
2370  * 0:      if we successfully resolved nd->path and found it to not to be a
2371  *         symlink that needs to be followed. "path" will also be populated.
2372  *         The nd->path reference will also be put.
2373  *
2374  * 1:      if we successfully resolved nd->last and found it to be a symlink
2375  *         that needs to be followed. "path" will be populated with the path
2376  *         to the link, and nd->path will *not* be put.
2377  */
2378 static int
2379 mountpoint_last(struct nameidata *nd, struct path *path)
2380 {
2381 	int error = 0;
2382 	struct dentry *dentry;
2383 	struct dentry *dir = nd->path.dentry;
2384 
2385 	/* If we're in rcuwalk, drop out of it to handle last component */
2386 	if (nd->flags & LOOKUP_RCU) {
2387 		if (unlazy_walk(nd, NULL, 0))
2388 			return -ECHILD;
2389 	}
2390 
2391 	nd->flags &= ~LOOKUP_PARENT;
2392 
2393 	if (unlikely(nd->last_type != LAST_NORM)) {
2394 		error = handle_dots(nd, nd->last_type);
2395 		if (error)
2396 			return error;
2397 		dentry = dget(nd->path.dentry);
2398 		goto done;
2399 	}
2400 
2401 	mutex_lock(&dir->d_inode->i_mutex);
2402 	dentry = d_lookup(dir, &nd->last);
2403 	if (!dentry) {
2404 		/*
2405 		 * No cached dentry. Mounted dentries are pinned in the cache,
2406 		 * so that means that this dentry is probably a symlink or the
2407 		 * path doesn't actually point to a mounted dentry.
2408 		 */
2409 		dentry = d_alloc(dir, &nd->last);
2410 		if (!dentry) {
2411 			mutex_unlock(&dir->d_inode->i_mutex);
2412 			return -ENOMEM;
2413 		}
2414 		dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2415 		if (IS_ERR(dentry)) {
2416 			mutex_unlock(&dir->d_inode->i_mutex);
2417 			return PTR_ERR(dentry);
2418 		}
2419 	}
2420 	mutex_unlock(&dir->d_inode->i_mutex);
2421 
2422 done:
2423 	if (d_is_negative(dentry)) {
2424 		dput(dentry);
2425 		return -ENOENT;
2426 	}
2427 	if (nd->depth)
2428 		put_link(nd);
2429 	path->dentry = dentry;
2430 	path->mnt = nd->path.mnt;
2431 	error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW,
2432 				   d_backing_inode(dentry), 0);
2433 	if (unlikely(error))
2434 		return error;
2435 	mntget(path->mnt);
2436 	follow_mount(path);
2437 	return 0;
2438 }
2439 
2440 /**
2441  * path_mountpoint - look up a path to be umounted
2442  * @nd:		lookup context
2443  * @flags:	lookup flags
2444  * @path:	pointer to container for result
2445  *
2446  * Look up the given name, but don't attempt to revalidate the last component.
2447  * Returns 0 and "path" will be valid on success; Returns error otherwise.
2448  */
2449 static int
2450 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2451 {
2452 	const char *s = path_init(nd, flags);
2453 	int err;
2454 	if (IS_ERR(s))
2455 		return PTR_ERR(s);
2456 	while (!(err = link_path_walk(s, nd)) &&
2457 		(err = mountpoint_last(nd, path)) > 0) {
2458 		s = trailing_symlink(nd);
2459 		if (IS_ERR(s)) {
2460 			err = PTR_ERR(s);
2461 			break;
2462 		}
2463 	}
2464 	terminate_walk(nd);
2465 	return err;
2466 }
2467 
2468 static int
2469 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2470 			unsigned int flags)
2471 {
2472 	struct nameidata nd;
2473 	int error;
2474 	if (IS_ERR(name))
2475 		return PTR_ERR(name);
2476 	set_nameidata(&nd, dfd, name);
2477 	error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2478 	if (unlikely(error == -ECHILD))
2479 		error = path_mountpoint(&nd, flags, path);
2480 	if (unlikely(error == -ESTALE))
2481 		error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2482 	if (likely(!error))
2483 		audit_inode(name, path->dentry, 0);
2484 	restore_nameidata();
2485 	putname(name);
2486 	return error;
2487 }
2488 
2489 /**
2490  * user_path_mountpoint_at - lookup a path from userland in order to umount it
2491  * @dfd:	directory file descriptor
2492  * @name:	pathname from userland
2493  * @flags:	lookup flags
2494  * @path:	pointer to container to hold result
2495  *
2496  * A umount is a special case for path walking. We're not actually interested
2497  * in the inode in this situation, and ESTALE errors can be a problem. We
2498  * simply want track down the dentry and vfsmount attached at the mountpoint
2499  * and avoid revalidating the last component.
2500  *
2501  * Returns 0 and populates "path" on success.
2502  */
2503 int
2504 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2505 			struct path *path)
2506 {
2507 	return filename_mountpoint(dfd, getname(name), path, flags);
2508 }
2509 
2510 int
2511 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2512 			unsigned int flags)
2513 {
2514 	return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2515 }
2516 EXPORT_SYMBOL(kern_path_mountpoint);
2517 
2518 int __check_sticky(struct inode *dir, struct inode *inode)
2519 {
2520 	kuid_t fsuid = current_fsuid();
2521 
2522 	if (uid_eq(inode->i_uid, fsuid))
2523 		return 0;
2524 	if (uid_eq(dir->i_uid, fsuid))
2525 		return 0;
2526 	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2527 }
2528 EXPORT_SYMBOL(__check_sticky);
2529 
2530 /*
2531  *	Check whether we can remove a link victim from directory dir, check
2532  *  whether the type of victim is right.
2533  *  1. We can't do it if dir is read-only (done in permission())
2534  *  2. We should have write and exec permissions on dir
2535  *  3. We can't remove anything from append-only dir
2536  *  4. We can't do anything with immutable dir (done in permission())
2537  *  5. If the sticky bit on dir is set we should either
2538  *	a. be owner of dir, or
2539  *	b. be owner of victim, or
2540  *	c. have CAP_FOWNER capability
2541  *  6. If the victim is append-only or immutable we can't do antyhing with
2542  *     links pointing to it.
2543  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2544  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2545  *  9. We can't remove a root or mountpoint.
2546  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2547  *     nfs_async_unlink().
2548  */
2549 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2550 {
2551 	struct inode *inode = d_backing_inode(victim);
2552 	int error;
2553 
2554 	if (d_is_negative(victim))
2555 		return -ENOENT;
2556 	BUG_ON(!inode);
2557 
2558 	BUG_ON(victim->d_parent->d_inode != dir);
2559 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2560 
2561 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2562 	if (error)
2563 		return error;
2564 	if (IS_APPEND(dir))
2565 		return -EPERM;
2566 
2567 	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2568 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2569 		return -EPERM;
2570 	if (isdir) {
2571 		if (!d_is_dir(victim))
2572 			return -ENOTDIR;
2573 		if (IS_ROOT(victim))
2574 			return -EBUSY;
2575 	} else if (d_is_dir(victim))
2576 		return -EISDIR;
2577 	if (IS_DEADDIR(dir))
2578 		return -ENOENT;
2579 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2580 		return -EBUSY;
2581 	return 0;
2582 }
2583 
2584 /*	Check whether we can create an object with dentry child in directory
2585  *  dir.
2586  *  1. We can't do it if child already exists (open has special treatment for
2587  *     this case, but since we are inlined it's OK)
2588  *  2. We can't do it if dir is read-only (done in permission())
2589  *  3. We should have write and exec permissions on dir
2590  *  4. We can't do it if dir is immutable (done in permission())
2591  */
2592 static inline int may_create(struct inode *dir, struct dentry *child)
2593 {
2594 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2595 	if (child->d_inode)
2596 		return -EEXIST;
2597 	if (IS_DEADDIR(dir))
2598 		return -ENOENT;
2599 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2600 }
2601 
2602 /*
2603  * p1 and p2 should be directories on the same fs.
2604  */
2605 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2606 {
2607 	struct dentry *p;
2608 
2609 	if (p1 == p2) {
2610 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2611 		return NULL;
2612 	}
2613 
2614 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2615 
2616 	p = d_ancestor(p2, p1);
2617 	if (p) {
2618 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2619 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2620 		return p;
2621 	}
2622 
2623 	p = d_ancestor(p1, p2);
2624 	if (p) {
2625 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2626 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2627 		return p;
2628 	}
2629 
2630 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2631 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT2);
2632 	return NULL;
2633 }
2634 EXPORT_SYMBOL(lock_rename);
2635 
2636 void unlock_rename(struct dentry *p1, struct dentry *p2)
2637 {
2638 	mutex_unlock(&p1->d_inode->i_mutex);
2639 	if (p1 != p2) {
2640 		mutex_unlock(&p2->d_inode->i_mutex);
2641 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2642 	}
2643 }
2644 EXPORT_SYMBOL(unlock_rename);
2645 
2646 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2647 		bool want_excl)
2648 {
2649 	int error = may_create(dir, dentry);
2650 	if (error)
2651 		return error;
2652 
2653 	if (!dir->i_op->create)
2654 		return -EACCES;	/* shouldn't it be ENOSYS? */
2655 	mode &= S_IALLUGO;
2656 	mode |= S_IFREG;
2657 	error = security_inode_create(dir, dentry, mode);
2658 	if (error)
2659 		return error;
2660 	error = dir->i_op->create(dir, dentry, mode, want_excl);
2661 	if (!error)
2662 		fsnotify_create(dir, dentry);
2663 	return error;
2664 }
2665 EXPORT_SYMBOL(vfs_create);
2666 
2667 static int may_open(struct path *path, int acc_mode, int flag)
2668 {
2669 	struct dentry *dentry = path->dentry;
2670 	struct inode *inode = dentry->d_inode;
2671 	int error;
2672 
2673 	/* O_PATH? */
2674 	if (!acc_mode)
2675 		return 0;
2676 
2677 	if (!inode)
2678 		return -ENOENT;
2679 
2680 	switch (inode->i_mode & S_IFMT) {
2681 	case S_IFLNK:
2682 		return -ELOOP;
2683 	case S_IFDIR:
2684 		if (acc_mode & MAY_WRITE)
2685 			return -EISDIR;
2686 		break;
2687 	case S_IFBLK:
2688 	case S_IFCHR:
2689 		if (path->mnt->mnt_flags & MNT_NODEV)
2690 			return -EACCES;
2691 		/*FALLTHRU*/
2692 	case S_IFIFO:
2693 	case S_IFSOCK:
2694 		flag &= ~O_TRUNC;
2695 		break;
2696 	}
2697 
2698 	error = inode_permission(inode, acc_mode);
2699 	if (error)
2700 		return error;
2701 
2702 	/*
2703 	 * An append-only file must be opened in append mode for writing.
2704 	 */
2705 	if (IS_APPEND(inode)) {
2706 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2707 			return -EPERM;
2708 		if (flag & O_TRUNC)
2709 			return -EPERM;
2710 	}
2711 
2712 	/* O_NOATIME can only be set by the owner or superuser */
2713 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2714 		return -EPERM;
2715 
2716 	return 0;
2717 }
2718 
2719 static int handle_truncate(struct file *filp)
2720 {
2721 	struct path *path = &filp->f_path;
2722 	struct inode *inode = path->dentry->d_inode;
2723 	int error = get_write_access(inode);
2724 	if (error)
2725 		return error;
2726 	/*
2727 	 * Refuse to truncate files with mandatory locks held on them.
2728 	 */
2729 	error = locks_verify_locked(filp);
2730 	if (!error)
2731 		error = security_path_truncate(path);
2732 	if (!error) {
2733 		error = do_truncate(path->dentry, 0,
2734 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2735 				    filp);
2736 	}
2737 	put_write_access(inode);
2738 	return error;
2739 }
2740 
2741 static inline int open_to_namei_flags(int flag)
2742 {
2743 	if ((flag & O_ACCMODE) == 3)
2744 		flag--;
2745 	return flag;
2746 }
2747 
2748 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2749 {
2750 	int error = security_path_mknod(dir, dentry, mode, 0);
2751 	if (error)
2752 		return error;
2753 
2754 	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2755 	if (error)
2756 		return error;
2757 
2758 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
2759 }
2760 
2761 /*
2762  * Attempt to atomically look up, create and open a file from a negative
2763  * dentry.
2764  *
2765  * Returns 0 if successful.  The file will have been created and attached to
2766  * @file by the filesystem calling finish_open().
2767  *
2768  * Returns 1 if the file was looked up only or didn't need creating.  The
2769  * caller will need to perform the open themselves.  @path will have been
2770  * updated to point to the new dentry.  This may be negative.
2771  *
2772  * Returns an error code otherwise.
2773  */
2774 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2775 			struct path *path, struct file *file,
2776 			const struct open_flags *op,
2777 			bool got_write, bool need_lookup,
2778 			int *opened)
2779 {
2780 	struct inode *dir =  nd->path.dentry->d_inode;
2781 	unsigned open_flag = open_to_namei_flags(op->open_flag);
2782 	umode_t mode;
2783 	int error;
2784 	int acc_mode;
2785 	int create_error = 0;
2786 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2787 	bool excl;
2788 
2789 	BUG_ON(dentry->d_inode);
2790 
2791 	/* Don't create child dentry for a dead directory. */
2792 	if (unlikely(IS_DEADDIR(dir))) {
2793 		error = -ENOENT;
2794 		goto out;
2795 	}
2796 
2797 	mode = op->mode;
2798 	if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2799 		mode &= ~current_umask();
2800 
2801 	excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2802 	if (excl)
2803 		open_flag &= ~O_TRUNC;
2804 
2805 	/*
2806 	 * Checking write permission is tricky, bacuse we don't know if we are
2807 	 * going to actually need it: O_CREAT opens should work as long as the
2808 	 * file exists.  But checking existence breaks atomicity.  The trick is
2809 	 * to check access and if not granted clear O_CREAT from the flags.
2810 	 *
2811 	 * Another problem is returing the "right" error value (e.g. for an
2812 	 * O_EXCL open we want to return EEXIST not EROFS).
2813 	 */
2814 	if (((open_flag & (O_CREAT | O_TRUNC)) ||
2815 	    (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2816 		if (!(open_flag & O_CREAT)) {
2817 			/*
2818 			 * No O_CREATE -> atomicity not a requirement -> fall
2819 			 * back to lookup + open
2820 			 */
2821 			goto no_open;
2822 		} else if (open_flag & (O_EXCL | O_TRUNC)) {
2823 			/* Fall back and fail with the right error */
2824 			create_error = -EROFS;
2825 			goto no_open;
2826 		} else {
2827 			/* No side effects, safe to clear O_CREAT */
2828 			create_error = -EROFS;
2829 			open_flag &= ~O_CREAT;
2830 		}
2831 	}
2832 
2833 	if (open_flag & O_CREAT) {
2834 		error = may_o_create(&nd->path, dentry, mode);
2835 		if (error) {
2836 			create_error = error;
2837 			if (open_flag & O_EXCL)
2838 				goto no_open;
2839 			open_flag &= ~O_CREAT;
2840 		}
2841 	}
2842 
2843 	if (nd->flags & LOOKUP_DIRECTORY)
2844 		open_flag |= O_DIRECTORY;
2845 
2846 	file->f_path.dentry = DENTRY_NOT_SET;
2847 	file->f_path.mnt = nd->path.mnt;
2848 	error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2849 				      opened);
2850 	if (error < 0) {
2851 		if (create_error && error == -ENOENT)
2852 			error = create_error;
2853 		goto out;
2854 	}
2855 
2856 	if (error) {	/* returned 1, that is */
2857 		if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2858 			error = -EIO;
2859 			goto out;
2860 		}
2861 		if (file->f_path.dentry) {
2862 			dput(dentry);
2863 			dentry = file->f_path.dentry;
2864 		}
2865 		if (*opened & FILE_CREATED)
2866 			fsnotify_create(dir, dentry);
2867 		if (!dentry->d_inode) {
2868 			WARN_ON(*opened & FILE_CREATED);
2869 			if (create_error) {
2870 				error = create_error;
2871 				goto out;
2872 			}
2873 		} else {
2874 			if (excl && !(*opened & FILE_CREATED)) {
2875 				error = -EEXIST;
2876 				goto out;
2877 			}
2878 		}
2879 		goto looked_up;
2880 	}
2881 
2882 	/*
2883 	 * We didn't have the inode before the open, so check open permission
2884 	 * here.
2885 	 */
2886 	acc_mode = op->acc_mode;
2887 	if (*opened & FILE_CREATED) {
2888 		WARN_ON(!(open_flag & O_CREAT));
2889 		fsnotify_create(dir, dentry);
2890 		acc_mode = MAY_OPEN;
2891 	}
2892 	error = may_open(&file->f_path, acc_mode, open_flag);
2893 	if (error)
2894 		fput(file);
2895 
2896 out:
2897 	dput(dentry);
2898 	return error;
2899 
2900 no_open:
2901 	if (need_lookup) {
2902 		dentry = lookup_real(dir, dentry, nd->flags);
2903 		if (IS_ERR(dentry))
2904 			return PTR_ERR(dentry);
2905 
2906 		if (create_error) {
2907 			int open_flag = op->open_flag;
2908 
2909 			error = create_error;
2910 			if ((open_flag & O_EXCL)) {
2911 				if (!dentry->d_inode)
2912 					goto out;
2913 			} else if (!dentry->d_inode) {
2914 				goto out;
2915 			} else if ((open_flag & O_TRUNC) &&
2916 				   d_is_reg(dentry)) {
2917 				goto out;
2918 			}
2919 			/* will fail later, go on to get the right error */
2920 		}
2921 	}
2922 looked_up:
2923 	path->dentry = dentry;
2924 	path->mnt = nd->path.mnt;
2925 	return 1;
2926 }
2927 
2928 /*
2929  * Look up and maybe create and open the last component.
2930  *
2931  * Must be called with i_mutex held on parent.
2932  *
2933  * Returns 0 if the file was successfully atomically created (if necessary) and
2934  * opened.  In this case the file will be returned attached to @file.
2935  *
2936  * Returns 1 if the file was not completely opened at this time, though lookups
2937  * and creations will have been performed and the dentry returned in @path will
2938  * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
2939  * specified then a negative dentry may be returned.
2940  *
2941  * An error code is returned otherwise.
2942  *
2943  * FILE_CREATE will be set in @*opened if the dentry was created and will be
2944  * cleared otherwise prior to returning.
2945  */
2946 static int lookup_open(struct nameidata *nd, struct path *path,
2947 			struct file *file,
2948 			const struct open_flags *op,
2949 			bool got_write, int *opened)
2950 {
2951 	struct dentry *dir = nd->path.dentry;
2952 	struct inode *dir_inode = dir->d_inode;
2953 	struct dentry *dentry;
2954 	int error;
2955 	bool need_lookup;
2956 
2957 	*opened &= ~FILE_CREATED;
2958 	dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2959 	if (IS_ERR(dentry))
2960 		return PTR_ERR(dentry);
2961 
2962 	/* Cached positive dentry: will open in f_op->open */
2963 	if (!need_lookup && dentry->d_inode)
2964 		goto out_no_open;
2965 
2966 	if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2967 		return atomic_open(nd, dentry, path, file, op, got_write,
2968 				   need_lookup, opened);
2969 	}
2970 
2971 	if (need_lookup) {
2972 		BUG_ON(dentry->d_inode);
2973 
2974 		dentry = lookup_real(dir_inode, dentry, nd->flags);
2975 		if (IS_ERR(dentry))
2976 			return PTR_ERR(dentry);
2977 	}
2978 
2979 	/* Negative dentry, just create the file */
2980 	if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2981 		umode_t mode = op->mode;
2982 		if (!IS_POSIXACL(dir->d_inode))
2983 			mode &= ~current_umask();
2984 		/*
2985 		 * This write is needed to ensure that a
2986 		 * rw->ro transition does not occur between
2987 		 * the time when the file is created and when
2988 		 * a permanent write count is taken through
2989 		 * the 'struct file' in finish_open().
2990 		 */
2991 		if (!got_write) {
2992 			error = -EROFS;
2993 			goto out_dput;
2994 		}
2995 		*opened |= FILE_CREATED;
2996 		error = security_path_mknod(&nd->path, dentry, mode, 0);
2997 		if (error)
2998 			goto out_dput;
2999 		error = vfs_create(dir->d_inode, dentry, mode,
3000 				   nd->flags & LOOKUP_EXCL);
3001 		if (error)
3002 			goto out_dput;
3003 	}
3004 out_no_open:
3005 	path->dentry = dentry;
3006 	path->mnt = nd->path.mnt;
3007 	return 1;
3008 
3009 out_dput:
3010 	dput(dentry);
3011 	return error;
3012 }
3013 
3014 /*
3015  * Handle the last step of open()
3016  */
3017 static int do_last(struct nameidata *nd,
3018 		   struct file *file, const struct open_flags *op,
3019 		   int *opened)
3020 {
3021 	struct dentry *dir = nd->path.dentry;
3022 	int open_flag = op->open_flag;
3023 	bool will_truncate = (open_flag & O_TRUNC) != 0;
3024 	bool got_write = false;
3025 	int acc_mode = op->acc_mode;
3026 	unsigned seq;
3027 	struct inode *inode;
3028 	struct path save_parent = { .dentry = NULL, .mnt = NULL };
3029 	struct path path;
3030 	bool retried = false;
3031 	int error;
3032 
3033 	nd->flags &= ~LOOKUP_PARENT;
3034 	nd->flags |= op->intent;
3035 
3036 	if (nd->last_type != LAST_NORM) {
3037 		error = handle_dots(nd, nd->last_type);
3038 		if (unlikely(error))
3039 			return error;
3040 		goto finish_open;
3041 	}
3042 
3043 	if (!(open_flag & O_CREAT)) {
3044 		if (nd->last.name[nd->last.len])
3045 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3046 		/* we _can_ be in RCU mode here */
3047 		error = lookup_fast(nd, &path, &inode, &seq);
3048 		if (likely(!error))
3049 			goto finish_lookup;
3050 
3051 		if (error < 0)
3052 			return error;
3053 
3054 		BUG_ON(nd->inode != dir->d_inode);
3055 	} else {
3056 		/* create side of things */
3057 		/*
3058 		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3059 		 * has been cleared when we got to the last component we are
3060 		 * about to look up
3061 		 */
3062 		error = complete_walk(nd);
3063 		if (error)
3064 			return error;
3065 
3066 		audit_inode(nd->name, dir, LOOKUP_PARENT);
3067 		/* trailing slashes? */
3068 		if (unlikely(nd->last.name[nd->last.len]))
3069 			return -EISDIR;
3070 	}
3071 
3072 retry_lookup:
3073 	if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3074 		error = mnt_want_write(nd->path.mnt);
3075 		if (!error)
3076 			got_write = true;
3077 		/*
3078 		 * do _not_ fail yet - we might not need that or fail with
3079 		 * a different error; let lookup_open() decide; we'll be
3080 		 * dropping this one anyway.
3081 		 */
3082 	}
3083 	mutex_lock(&dir->d_inode->i_mutex);
3084 	error = lookup_open(nd, &path, file, op, got_write, opened);
3085 	mutex_unlock(&dir->d_inode->i_mutex);
3086 
3087 	if (error <= 0) {
3088 		if (error)
3089 			goto out;
3090 
3091 		if ((*opened & FILE_CREATED) ||
3092 		    !S_ISREG(file_inode(file)->i_mode))
3093 			will_truncate = false;
3094 
3095 		audit_inode(nd->name, file->f_path.dentry, 0);
3096 		goto opened;
3097 	}
3098 
3099 	if (*opened & FILE_CREATED) {
3100 		/* Don't check for write permission, don't truncate */
3101 		open_flag &= ~O_TRUNC;
3102 		will_truncate = false;
3103 		acc_mode = MAY_OPEN;
3104 		path_to_nameidata(&path, nd);
3105 		goto finish_open_created;
3106 	}
3107 
3108 	/*
3109 	 * create/update audit record if it already exists.
3110 	 */
3111 	if (d_is_positive(path.dentry))
3112 		audit_inode(nd->name, path.dentry, 0);
3113 
3114 	/*
3115 	 * If atomic_open() acquired write access it is dropped now due to
3116 	 * possible mount and symlink following (this might be optimized away if
3117 	 * necessary...)
3118 	 */
3119 	if (got_write) {
3120 		mnt_drop_write(nd->path.mnt);
3121 		got_write = false;
3122 	}
3123 
3124 	if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3125 		path_to_nameidata(&path, nd);
3126 		return -EEXIST;
3127 	}
3128 
3129 	error = follow_managed(&path, nd);
3130 	if (unlikely(error < 0))
3131 		return error;
3132 
3133 	BUG_ON(nd->flags & LOOKUP_RCU);
3134 	inode = d_backing_inode(path.dentry);
3135 	seq = 0;	/* out of RCU mode, so the value doesn't matter */
3136 	if (unlikely(d_is_negative(path.dentry))) {
3137 		path_to_nameidata(&path, nd);
3138 		return -ENOENT;
3139 	}
3140 finish_lookup:
3141 	if (nd->depth)
3142 		put_link(nd);
3143 	error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW,
3144 				   inode, seq);
3145 	if (unlikely(error))
3146 		return error;
3147 
3148 	if (unlikely(d_is_symlink(path.dentry)) && !(open_flag & O_PATH)) {
3149 		path_to_nameidata(&path, nd);
3150 		return -ELOOP;
3151 	}
3152 
3153 	if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) {
3154 		path_to_nameidata(&path, nd);
3155 	} else {
3156 		save_parent.dentry = nd->path.dentry;
3157 		save_parent.mnt = mntget(path.mnt);
3158 		nd->path.dentry = path.dentry;
3159 
3160 	}
3161 	nd->inode = inode;
3162 	nd->seq = seq;
3163 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3164 finish_open:
3165 	error = complete_walk(nd);
3166 	if (error) {
3167 		path_put(&save_parent);
3168 		return error;
3169 	}
3170 	audit_inode(nd->name, nd->path.dentry, 0);
3171 	error = -EISDIR;
3172 	if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3173 		goto out;
3174 	error = -ENOTDIR;
3175 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3176 		goto out;
3177 	if (!d_is_reg(nd->path.dentry))
3178 		will_truncate = false;
3179 
3180 	if (will_truncate) {
3181 		error = mnt_want_write(nd->path.mnt);
3182 		if (error)
3183 			goto out;
3184 		got_write = true;
3185 	}
3186 finish_open_created:
3187 	error = may_open(&nd->path, acc_mode, open_flag);
3188 	if (error)
3189 		goto out;
3190 
3191 	BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3192 	error = vfs_open(&nd->path, file, current_cred());
3193 	if (!error) {
3194 		*opened |= FILE_OPENED;
3195 	} else {
3196 		if (error == -EOPENSTALE)
3197 			goto stale_open;
3198 		goto out;
3199 	}
3200 opened:
3201 	error = open_check_o_direct(file);
3202 	if (error)
3203 		goto exit_fput;
3204 	error = ima_file_check(file, op->acc_mode, *opened);
3205 	if (error)
3206 		goto exit_fput;
3207 
3208 	if (will_truncate) {
3209 		error = handle_truncate(file);
3210 		if (error)
3211 			goto exit_fput;
3212 	}
3213 out:
3214 	if (got_write)
3215 		mnt_drop_write(nd->path.mnt);
3216 	path_put(&save_parent);
3217 	return error;
3218 
3219 exit_fput:
3220 	fput(file);
3221 	goto out;
3222 
3223 stale_open:
3224 	/* If no saved parent or already retried then can't retry */
3225 	if (!save_parent.dentry || retried)
3226 		goto out;
3227 
3228 	BUG_ON(save_parent.dentry != dir);
3229 	path_put(&nd->path);
3230 	nd->path = save_parent;
3231 	nd->inode = dir->d_inode;
3232 	save_parent.mnt = NULL;
3233 	save_parent.dentry = NULL;
3234 	if (got_write) {
3235 		mnt_drop_write(nd->path.mnt);
3236 		got_write = false;
3237 	}
3238 	retried = true;
3239 	goto retry_lookup;
3240 }
3241 
3242 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3243 		const struct open_flags *op,
3244 		struct file *file, int *opened)
3245 {
3246 	static const struct qstr name = QSTR_INIT("/", 1);
3247 	struct dentry *child;
3248 	struct inode *dir;
3249 	struct path path;
3250 	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3251 	if (unlikely(error))
3252 		return error;
3253 	error = mnt_want_write(path.mnt);
3254 	if (unlikely(error))
3255 		goto out;
3256 	dir = path.dentry->d_inode;
3257 	/* we want directory to be writable */
3258 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3259 	if (error)
3260 		goto out2;
3261 	if (!dir->i_op->tmpfile) {
3262 		error = -EOPNOTSUPP;
3263 		goto out2;
3264 	}
3265 	child = d_alloc(path.dentry, &name);
3266 	if (unlikely(!child)) {
3267 		error = -ENOMEM;
3268 		goto out2;
3269 	}
3270 	dput(path.dentry);
3271 	path.dentry = child;
3272 	error = dir->i_op->tmpfile(dir, child, op->mode);
3273 	if (error)
3274 		goto out2;
3275 	audit_inode(nd->name, child, 0);
3276 	/* Don't check for other permissions, the inode was just created */
3277 	error = may_open(&path, MAY_OPEN, op->open_flag);
3278 	if (error)
3279 		goto out2;
3280 	file->f_path.mnt = path.mnt;
3281 	error = finish_open(file, child, NULL, opened);
3282 	if (error)
3283 		goto out2;
3284 	error = open_check_o_direct(file);
3285 	if (error) {
3286 		fput(file);
3287 	} else if (!(op->open_flag & O_EXCL)) {
3288 		struct inode *inode = file_inode(file);
3289 		spin_lock(&inode->i_lock);
3290 		inode->i_state |= I_LINKABLE;
3291 		spin_unlock(&inode->i_lock);
3292 	}
3293 out2:
3294 	mnt_drop_write(path.mnt);
3295 out:
3296 	path_put(&path);
3297 	return error;
3298 }
3299 
3300 static struct file *path_openat(struct nameidata *nd,
3301 			const struct open_flags *op, unsigned flags)
3302 {
3303 	const char *s;
3304 	struct file *file;
3305 	int opened = 0;
3306 	int error;
3307 
3308 	file = get_empty_filp();
3309 	if (IS_ERR(file))
3310 		return file;
3311 
3312 	file->f_flags = op->open_flag;
3313 
3314 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3315 		error = do_tmpfile(nd, flags, op, file, &opened);
3316 		goto out2;
3317 	}
3318 
3319 	s = path_init(nd, flags);
3320 	if (IS_ERR(s)) {
3321 		put_filp(file);
3322 		return ERR_CAST(s);
3323 	}
3324 	while (!(error = link_path_walk(s, nd)) &&
3325 		(error = do_last(nd, file, op, &opened)) > 0) {
3326 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3327 		s = trailing_symlink(nd);
3328 		if (IS_ERR(s)) {
3329 			error = PTR_ERR(s);
3330 			break;
3331 		}
3332 	}
3333 	terminate_walk(nd);
3334 out2:
3335 	if (!(opened & FILE_OPENED)) {
3336 		BUG_ON(!error);
3337 		put_filp(file);
3338 	}
3339 	if (unlikely(error)) {
3340 		if (error == -EOPENSTALE) {
3341 			if (flags & LOOKUP_RCU)
3342 				error = -ECHILD;
3343 			else
3344 				error = -ESTALE;
3345 		}
3346 		file = ERR_PTR(error);
3347 	}
3348 	return file;
3349 }
3350 
3351 struct file *do_filp_open(int dfd, struct filename *pathname,
3352 		const struct open_flags *op)
3353 {
3354 	struct nameidata nd;
3355 	int flags = op->lookup_flags;
3356 	struct file *filp;
3357 
3358 	set_nameidata(&nd, dfd, pathname);
3359 	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3360 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3361 		filp = path_openat(&nd, op, flags);
3362 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3363 		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3364 	restore_nameidata();
3365 	return filp;
3366 }
3367 
3368 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3369 		const char *name, const struct open_flags *op)
3370 {
3371 	struct nameidata nd;
3372 	struct file *file;
3373 	struct filename *filename;
3374 	int flags = op->lookup_flags | LOOKUP_ROOT;
3375 
3376 	nd.root.mnt = mnt;
3377 	nd.root.dentry = dentry;
3378 
3379 	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3380 		return ERR_PTR(-ELOOP);
3381 
3382 	filename = getname_kernel(name);
3383 	if (IS_ERR(filename))
3384 		return ERR_CAST(filename);
3385 
3386 	set_nameidata(&nd, -1, filename);
3387 	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3388 	if (unlikely(file == ERR_PTR(-ECHILD)))
3389 		file = path_openat(&nd, op, flags);
3390 	if (unlikely(file == ERR_PTR(-ESTALE)))
3391 		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3392 	restore_nameidata();
3393 	putname(filename);
3394 	return file;
3395 }
3396 
3397 static struct dentry *filename_create(int dfd, struct filename *name,
3398 				struct path *path, unsigned int lookup_flags)
3399 {
3400 	struct dentry *dentry = ERR_PTR(-EEXIST);
3401 	struct qstr last;
3402 	int type;
3403 	int err2;
3404 	int error;
3405 	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3406 
3407 	/*
3408 	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3409 	 * other flags passed in are ignored!
3410 	 */
3411 	lookup_flags &= LOOKUP_REVAL;
3412 
3413 	name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3414 	if (IS_ERR(name))
3415 		return ERR_CAST(name);
3416 
3417 	/*
3418 	 * Yucky last component or no last component at all?
3419 	 * (foo/., foo/.., /////)
3420 	 */
3421 	if (unlikely(type != LAST_NORM))
3422 		goto out;
3423 
3424 	/* don't fail immediately if it's r/o, at least try to report other errors */
3425 	err2 = mnt_want_write(path->mnt);
3426 	/*
3427 	 * Do the final lookup.
3428 	 */
3429 	lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3430 	mutex_lock_nested(&path->dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3431 	dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3432 	if (IS_ERR(dentry))
3433 		goto unlock;
3434 
3435 	error = -EEXIST;
3436 	if (d_is_positive(dentry))
3437 		goto fail;
3438 
3439 	/*
3440 	 * Special case - lookup gave negative, but... we had foo/bar/
3441 	 * From the vfs_mknod() POV we just have a negative dentry -
3442 	 * all is fine. Let's be bastards - you had / on the end, you've
3443 	 * been asking for (non-existent) directory. -ENOENT for you.
3444 	 */
3445 	if (unlikely(!is_dir && last.name[last.len])) {
3446 		error = -ENOENT;
3447 		goto fail;
3448 	}
3449 	if (unlikely(err2)) {
3450 		error = err2;
3451 		goto fail;
3452 	}
3453 	putname(name);
3454 	return dentry;
3455 fail:
3456 	dput(dentry);
3457 	dentry = ERR_PTR(error);
3458 unlock:
3459 	mutex_unlock(&path->dentry->d_inode->i_mutex);
3460 	if (!err2)
3461 		mnt_drop_write(path->mnt);
3462 out:
3463 	path_put(path);
3464 	putname(name);
3465 	return dentry;
3466 }
3467 
3468 struct dentry *kern_path_create(int dfd, const char *pathname,
3469 				struct path *path, unsigned int lookup_flags)
3470 {
3471 	return filename_create(dfd, getname_kernel(pathname),
3472 				path, lookup_flags);
3473 }
3474 EXPORT_SYMBOL(kern_path_create);
3475 
3476 void done_path_create(struct path *path, struct dentry *dentry)
3477 {
3478 	dput(dentry);
3479 	mutex_unlock(&path->dentry->d_inode->i_mutex);
3480 	mnt_drop_write(path->mnt);
3481 	path_put(path);
3482 }
3483 EXPORT_SYMBOL(done_path_create);
3484 
3485 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3486 				struct path *path, unsigned int lookup_flags)
3487 {
3488 	return filename_create(dfd, getname(pathname), path, lookup_flags);
3489 }
3490 EXPORT_SYMBOL(user_path_create);
3491 
3492 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3493 {
3494 	int error = may_create(dir, dentry);
3495 
3496 	if (error)
3497 		return error;
3498 
3499 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3500 		return -EPERM;
3501 
3502 	if (!dir->i_op->mknod)
3503 		return -EPERM;
3504 
3505 	error = devcgroup_inode_mknod(mode, dev);
3506 	if (error)
3507 		return error;
3508 
3509 	error = security_inode_mknod(dir, dentry, mode, dev);
3510 	if (error)
3511 		return error;
3512 
3513 	error = dir->i_op->mknod(dir, dentry, mode, dev);
3514 	if (!error)
3515 		fsnotify_create(dir, dentry);
3516 	return error;
3517 }
3518 EXPORT_SYMBOL(vfs_mknod);
3519 
3520 static int may_mknod(umode_t mode)
3521 {
3522 	switch (mode & S_IFMT) {
3523 	case S_IFREG:
3524 	case S_IFCHR:
3525 	case S_IFBLK:
3526 	case S_IFIFO:
3527 	case S_IFSOCK:
3528 	case 0: /* zero mode translates to S_IFREG */
3529 		return 0;
3530 	case S_IFDIR:
3531 		return -EPERM;
3532 	default:
3533 		return -EINVAL;
3534 	}
3535 }
3536 
3537 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3538 		unsigned, dev)
3539 {
3540 	struct dentry *dentry;
3541 	struct path path;
3542 	int error;
3543 	unsigned int lookup_flags = 0;
3544 
3545 	error = may_mknod(mode);
3546 	if (error)
3547 		return error;
3548 retry:
3549 	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3550 	if (IS_ERR(dentry))
3551 		return PTR_ERR(dentry);
3552 
3553 	if (!IS_POSIXACL(path.dentry->d_inode))
3554 		mode &= ~current_umask();
3555 	error = security_path_mknod(&path, dentry, mode, dev);
3556 	if (error)
3557 		goto out;
3558 	switch (mode & S_IFMT) {
3559 		case 0: case S_IFREG:
3560 			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3561 			break;
3562 		case S_IFCHR: case S_IFBLK:
3563 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3564 					new_decode_dev(dev));
3565 			break;
3566 		case S_IFIFO: case S_IFSOCK:
3567 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3568 			break;
3569 	}
3570 out:
3571 	done_path_create(&path, dentry);
3572 	if (retry_estale(error, lookup_flags)) {
3573 		lookup_flags |= LOOKUP_REVAL;
3574 		goto retry;
3575 	}
3576 	return error;
3577 }
3578 
3579 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3580 {
3581 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
3582 }
3583 
3584 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3585 {
3586 	int error = may_create(dir, dentry);
3587 	unsigned max_links = dir->i_sb->s_max_links;
3588 
3589 	if (error)
3590 		return error;
3591 
3592 	if (!dir->i_op->mkdir)
3593 		return -EPERM;
3594 
3595 	mode &= (S_IRWXUGO|S_ISVTX);
3596 	error = security_inode_mkdir(dir, dentry, mode);
3597 	if (error)
3598 		return error;
3599 
3600 	if (max_links && dir->i_nlink >= max_links)
3601 		return -EMLINK;
3602 
3603 	error = dir->i_op->mkdir(dir, dentry, mode);
3604 	if (!error)
3605 		fsnotify_mkdir(dir, dentry);
3606 	return error;
3607 }
3608 EXPORT_SYMBOL(vfs_mkdir);
3609 
3610 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3611 {
3612 	struct dentry *dentry;
3613 	struct path path;
3614 	int error;
3615 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3616 
3617 retry:
3618 	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3619 	if (IS_ERR(dentry))
3620 		return PTR_ERR(dentry);
3621 
3622 	if (!IS_POSIXACL(path.dentry->d_inode))
3623 		mode &= ~current_umask();
3624 	error = security_path_mkdir(&path, dentry, mode);
3625 	if (!error)
3626 		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3627 	done_path_create(&path, dentry);
3628 	if (retry_estale(error, lookup_flags)) {
3629 		lookup_flags |= LOOKUP_REVAL;
3630 		goto retry;
3631 	}
3632 	return error;
3633 }
3634 
3635 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3636 {
3637 	return sys_mkdirat(AT_FDCWD, pathname, mode);
3638 }
3639 
3640 /*
3641  * The dentry_unhash() helper will try to drop the dentry early: we
3642  * should have a usage count of 1 if we're the only user of this
3643  * dentry, and if that is true (possibly after pruning the dcache),
3644  * then we drop the dentry now.
3645  *
3646  * A low-level filesystem can, if it choses, legally
3647  * do a
3648  *
3649  *	if (!d_unhashed(dentry))
3650  *		return -EBUSY;
3651  *
3652  * if it cannot handle the case of removing a directory
3653  * that is still in use by something else..
3654  */
3655 void dentry_unhash(struct dentry *dentry)
3656 {
3657 	shrink_dcache_parent(dentry);
3658 	spin_lock(&dentry->d_lock);
3659 	if (dentry->d_lockref.count == 1)
3660 		__d_drop(dentry);
3661 	spin_unlock(&dentry->d_lock);
3662 }
3663 EXPORT_SYMBOL(dentry_unhash);
3664 
3665 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3666 {
3667 	int error = may_delete(dir, dentry, 1);
3668 
3669 	if (error)
3670 		return error;
3671 
3672 	if (!dir->i_op->rmdir)
3673 		return -EPERM;
3674 
3675 	dget(dentry);
3676 	mutex_lock(&dentry->d_inode->i_mutex);
3677 
3678 	error = -EBUSY;
3679 	if (is_local_mountpoint(dentry))
3680 		goto out;
3681 
3682 	error = security_inode_rmdir(dir, dentry);
3683 	if (error)
3684 		goto out;
3685 
3686 	shrink_dcache_parent(dentry);
3687 	error = dir->i_op->rmdir(dir, dentry);
3688 	if (error)
3689 		goto out;
3690 
3691 	dentry->d_inode->i_flags |= S_DEAD;
3692 	dont_mount(dentry);
3693 	detach_mounts(dentry);
3694 
3695 out:
3696 	mutex_unlock(&dentry->d_inode->i_mutex);
3697 	dput(dentry);
3698 	if (!error)
3699 		d_delete(dentry);
3700 	return error;
3701 }
3702 EXPORT_SYMBOL(vfs_rmdir);
3703 
3704 static long do_rmdir(int dfd, const char __user *pathname)
3705 {
3706 	int error = 0;
3707 	struct filename *name;
3708 	struct dentry *dentry;
3709 	struct path path;
3710 	struct qstr last;
3711 	int type;
3712 	unsigned int lookup_flags = 0;
3713 retry:
3714 	name = user_path_parent(dfd, pathname,
3715 				&path, &last, &type, lookup_flags);
3716 	if (IS_ERR(name))
3717 		return PTR_ERR(name);
3718 
3719 	switch (type) {
3720 	case LAST_DOTDOT:
3721 		error = -ENOTEMPTY;
3722 		goto exit1;
3723 	case LAST_DOT:
3724 		error = -EINVAL;
3725 		goto exit1;
3726 	case LAST_ROOT:
3727 		error = -EBUSY;
3728 		goto exit1;
3729 	}
3730 
3731 	error = mnt_want_write(path.mnt);
3732 	if (error)
3733 		goto exit1;
3734 
3735 	mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3736 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3737 	error = PTR_ERR(dentry);
3738 	if (IS_ERR(dentry))
3739 		goto exit2;
3740 	if (!dentry->d_inode) {
3741 		error = -ENOENT;
3742 		goto exit3;
3743 	}
3744 	error = security_path_rmdir(&path, dentry);
3745 	if (error)
3746 		goto exit3;
3747 	error = vfs_rmdir(path.dentry->d_inode, dentry);
3748 exit3:
3749 	dput(dentry);
3750 exit2:
3751 	mutex_unlock(&path.dentry->d_inode->i_mutex);
3752 	mnt_drop_write(path.mnt);
3753 exit1:
3754 	path_put(&path);
3755 	putname(name);
3756 	if (retry_estale(error, lookup_flags)) {
3757 		lookup_flags |= LOOKUP_REVAL;
3758 		goto retry;
3759 	}
3760 	return error;
3761 }
3762 
3763 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3764 {
3765 	return do_rmdir(AT_FDCWD, pathname);
3766 }
3767 
3768 /**
3769  * vfs_unlink - unlink a filesystem object
3770  * @dir:	parent directory
3771  * @dentry:	victim
3772  * @delegated_inode: returns victim inode, if the inode is delegated.
3773  *
3774  * The caller must hold dir->i_mutex.
3775  *
3776  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3777  * return a reference to the inode in delegated_inode.  The caller
3778  * should then break the delegation on that inode and retry.  Because
3779  * breaking a delegation may take a long time, the caller should drop
3780  * dir->i_mutex before doing so.
3781  *
3782  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3783  * be appropriate for callers that expect the underlying filesystem not
3784  * to be NFS exported.
3785  */
3786 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3787 {
3788 	struct inode *target = dentry->d_inode;
3789 	int error = may_delete(dir, dentry, 0);
3790 
3791 	if (error)
3792 		return error;
3793 
3794 	if (!dir->i_op->unlink)
3795 		return -EPERM;
3796 
3797 	mutex_lock(&target->i_mutex);
3798 	if (is_local_mountpoint(dentry))
3799 		error = -EBUSY;
3800 	else {
3801 		error = security_inode_unlink(dir, dentry);
3802 		if (!error) {
3803 			error = try_break_deleg(target, delegated_inode);
3804 			if (error)
3805 				goto out;
3806 			error = dir->i_op->unlink(dir, dentry);
3807 			if (!error) {
3808 				dont_mount(dentry);
3809 				detach_mounts(dentry);
3810 			}
3811 		}
3812 	}
3813 out:
3814 	mutex_unlock(&target->i_mutex);
3815 
3816 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
3817 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3818 		fsnotify_link_count(target);
3819 		d_delete(dentry);
3820 	}
3821 
3822 	return error;
3823 }
3824 EXPORT_SYMBOL(vfs_unlink);
3825 
3826 /*
3827  * Make sure that the actual truncation of the file will occur outside its
3828  * directory's i_mutex.  Truncate can take a long time if there is a lot of
3829  * writeout happening, and we don't want to prevent access to the directory
3830  * while waiting on the I/O.
3831  */
3832 static long do_unlinkat(int dfd, const char __user *pathname)
3833 {
3834 	int error;
3835 	struct filename *name;
3836 	struct dentry *dentry;
3837 	struct path path;
3838 	struct qstr last;
3839 	int type;
3840 	struct inode *inode = NULL;
3841 	struct inode *delegated_inode = NULL;
3842 	unsigned int lookup_flags = 0;
3843 retry:
3844 	name = user_path_parent(dfd, pathname,
3845 				&path, &last, &type, lookup_flags);
3846 	if (IS_ERR(name))
3847 		return PTR_ERR(name);
3848 
3849 	error = -EISDIR;
3850 	if (type != LAST_NORM)
3851 		goto exit1;
3852 
3853 	error = mnt_want_write(path.mnt);
3854 	if (error)
3855 		goto exit1;
3856 retry_deleg:
3857 	mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3858 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3859 	error = PTR_ERR(dentry);
3860 	if (!IS_ERR(dentry)) {
3861 		/* Why not before? Because we want correct error value */
3862 		if (last.name[last.len])
3863 			goto slashes;
3864 		inode = dentry->d_inode;
3865 		if (d_is_negative(dentry))
3866 			goto slashes;
3867 		ihold(inode);
3868 		error = security_path_unlink(&path, dentry);
3869 		if (error)
3870 			goto exit2;
3871 		error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3872 exit2:
3873 		dput(dentry);
3874 	}
3875 	mutex_unlock(&path.dentry->d_inode->i_mutex);
3876 	if (inode)
3877 		iput(inode);	/* truncate the inode here */
3878 	inode = NULL;
3879 	if (delegated_inode) {
3880 		error = break_deleg_wait(&delegated_inode);
3881 		if (!error)
3882 			goto retry_deleg;
3883 	}
3884 	mnt_drop_write(path.mnt);
3885 exit1:
3886 	path_put(&path);
3887 	putname(name);
3888 	if (retry_estale(error, lookup_flags)) {
3889 		lookup_flags |= LOOKUP_REVAL;
3890 		inode = NULL;
3891 		goto retry;
3892 	}
3893 	return error;
3894 
3895 slashes:
3896 	if (d_is_negative(dentry))
3897 		error = -ENOENT;
3898 	else if (d_is_dir(dentry))
3899 		error = -EISDIR;
3900 	else
3901 		error = -ENOTDIR;
3902 	goto exit2;
3903 }
3904 
3905 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3906 {
3907 	if ((flag & ~AT_REMOVEDIR) != 0)
3908 		return -EINVAL;
3909 
3910 	if (flag & AT_REMOVEDIR)
3911 		return do_rmdir(dfd, pathname);
3912 
3913 	return do_unlinkat(dfd, pathname);
3914 }
3915 
3916 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3917 {
3918 	return do_unlinkat(AT_FDCWD, pathname);
3919 }
3920 
3921 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3922 {
3923 	int error = may_create(dir, dentry);
3924 
3925 	if (error)
3926 		return error;
3927 
3928 	if (!dir->i_op->symlink)
3929 		return -EPERM;
3930 
3931 	error = security_inode_symlink(dir, dentry, oldname);
3932 	if (error)
3933 		return error;
3934 
3935 	error = dir->i_op->symlink(dir, dentry, oldname);
3936 	if (!error)
3937 		fsnotify_create(dir, dentry);
3938 	return error;
3939 }
3940 EXPORT_SYMBOL(vfs_symlink);
3941 
3942 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3943 		int, newdfd, const char __user *, newname)
3944 {
3945 	int error;
3946 	struct filename *from;
3947 	struct dentry *dentry;
3948 	struct path path;
3949 	unsigned int lookup_flags = 0;
3950 
3951 	from = getname(oldname);
3952 	if (IS_ERR(from))
3953 		return PTR_ERR(from);
3954 retry:
3955 	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3956 	error = PTR_ERR(dentry);
3957 	if (IS_ERR(dentry))
3958 		goto out_putname;
3959 
3960 	error = security_path_symlink(&path, dentry, from->name);
3961 	if (!error)
3962 		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3963 	done_path_create(&path, dentry);
3964 	if (retry_estale(error, lookup_flags)) {
3965 		lookup_flags |= LOOKUP_REVAL;
3966 		goto retry;
3967 	}
3968 out_putname:
3969 	putname(from);
3970 	return error;
3971 }
3972 
3973 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3974 {
3975 	return sys_symlinkat(oldname, AT_FDCWD, newname);
3976 }
3977 
3978 /**
3979  * vfs_link - create a new link
3980  * @old_dentry:	object to be linked
3981  * @dir:	new parent
3982  * @new_dentry:	where to create the new link
3983  * @delegated_inode: returns inode needing a delegation break
3984  *
3985  * The caller must hold dir->i_mutex
3986  *
3987  * If vfs_link discovers a delegation on the to-be-linked file in need
3988  * of breaking, it will return -EWOULDBLOCK and return a reference to the
3989  * inode in delegated_inode.  The caller should then break the delegation
3990  * and retry.  Because breaking a delegation may take a long time, the
3991  * caller should drop the i_mutex before doing so.
3992  *
3993  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3994  * be appropriate for callers that expect the underlying filesystem not
3995  * to be NFS exported.
3996  */
3997 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3998 {
3999 	struct inode *inode = old_dentry->d_inode;
4000 	unsigned max_links = dir->i_sb->s_max_links;
4001 	int error;
4002 
4003 	if (!inode)
4004 		return -ENOENT;
4005 
4006 	error = may_create(dir, new_dentry);
4007 	if (error)
4008 		return error;
4009 
4010 	if (dir->i_sb != inode->i_sb)
4011 		return -EXDEV;
4012 
4013 	/*
4014 	 * A link to an append-only or immutable file cannot be created.
4015 	 */
4016 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4017 		return -EPERM;
4018 	if (!dir->i_op->link)
4019 		return -EPERM;
4020 	if (S_ISDIR(inode->i_mode))
4021 		return -EPERM;
4022 
4023 	error = security_inode_link(old_dentry, dir, new_dentry);
4024 	if (error)
4025 		return error;
4026 
4027 	mutex_lock(&inode->i_mutex);
4028 	/* Make sure we don't allow creating hardlink to an unlinked file */
4029 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4030 		error =  -ENOENT;
4031 	else if (max_links && inode->i_nlink >= max_links)
4032 		error = -EMLINK;
4033 	else {
4034 		error = try_break_deleg(inode, delegated_inode);
4035 		if (!error)
4036 			error = dir->i_op->link(old_dentry, dir, new_dentry);
4037 	}
4038 
4039 	if (!error && (inode->i_state & I_LINKABLE)) {
4040 		spin_lock(&inode->i_lock);
4041 		inode->i_state &= ~I_LINKABLE;
4042 		spin_unlock(&inode->i_lock);
4043 	}
4044 	mutex_unlock(&inode->i_mutex);
4045 	if (!error)
4046 		fsnotify_link(dir, inode, new_dentry);
4047 	return error;
4048 }
4049 EXPORT_SYMBOL(vfs_link);
4050 
4051 /*
4052  * Hardlinks are often used in delicate situations.  We avoid
4053  * security-related surprises by not following symlinks on the
4054  * newname.  --KAB
4055  *
4056  * We don't follow them on the oldname either to be compatible
4057  * with linux 2.0, and to avoid hard-linking to directories
4058  * and other special files.  --ADM
4059  */
4060 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4061 		int, newdfd, const char __user *, newname, int, flags)
4062 {
4063 	struct dentry *new_dentry;
4064 	struct path old_path, new_path;
4065 	struct inode *delegated_inode = NULL;
4066 	int how = 0;
4067 	int error;
4068 
4069 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4070 		return -EINVAL;
4071 	/*
4072 	 * To use null names we require CAP_DAC_READ_SEARCH
4073 	 * This ensures that not everyone will be able to create
4074 	 * handlink using the passed filedescriptor.
4075 	 */
4076 	if (flags & AT_EMPTY_PATH) {
4077 		if (!capable(CAP_DAC_READ_SEARCH))
4078 			return -ENOENT;
4079 		how = LOOKUP_EMPTY;
4080 	}
4081 
4082 	if (flags & AT_SYMLINK_FOLLOW)
4083 		how |= LOOKUP_FOLLOW;
4084 retry:
4085 	error = user_path_at(olddfd, oldname, how, &old_path);
4086 	if (error)
4087 		return error;
4088 
4089 	new_dentry = user_path_create(newdfd, newname, &new_path,
4090 					(how & LOOKUP_REVAL));
4091 	error = PTR_ERR(new_dentry);
4092 	if (IS_ERR(new_dentry))
4093 		goto out;
4094 
4095 	error = -EXDEV;
4096 	if (old_path.mnt != new_path.mnt)
4097 		goto out_dput;
4098 	error = may_linkat(&old_path);
4099 	if (unlikely(error))
4100 		goto out_dput;
4101 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4102 	if (error)
4103 		goto out_dput;
4104 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4105 out_dput:
4106 	done_path_create(&new_path, new_dentry);
4107 	if (delegated_inode) {
4108 		error = break_deleg_wait(&delegated_inode);
4109 		if (!error) {
4110 			path_put(&old_path);
4111 			goto retry;
4112 		}
4113 	}
4114 	if (retry_estale(error, how)) {
4115 		path_put(&old_path);
4116 		how |= LOOKUP_REVAL;
4117 		goto retry;
4118 	}
4119 out:
4120 	path_put(&old_path);
4121 
4122 	return error;
4123 }
4124 
4125 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4126 {
4127 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4128 }
4129 
4130 /**
4131  * vfs_rename - rename a filesystem object
4132  * @old_dir:	parent of source
4133  * @old_dentry:	source
4134  * @new_dir:	parent of destination
4135  * @new_dentry:	destination
4136  * @delegated_inode: returns an inode needing a delegation break
4137  * @flags:	rename flags
4138  *
4139  * The caller must hold multiple mutexes--see lock_rename()).
4140  *
4141  * If vfs_rename discovers a delegation in need of breaking at either
4142  * the source or destination, it will return -EWOULDBLOCK and return a
4143  * reference to the inode in delegated_inode.  The caller should then
4144  * break the delegation and retry.  Because breaking a delegation may
4145  * take a long time, the caller should drop all locks before doing
4146  * so.
4147  *
4148  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4149  * be appropriate for callers that expect the underlying filesystem not
4150  * to be NFS exported.
4151  *
4152  * The worst of all namespace operations - renaming directory. "Perverted"
4153  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4154  * Problems:
4155  *	a) we can get into loop creation.
4156  *	b) race potential - two innocent renames can create a loop together.
4157  *	   That's where 4.4 screws up. Current fix: serialization on
4158  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4159  *	   story.
4160  *	c) we have to lock _four_ objects - parents and victim (if it exists),
4161  *	   and source (if it is not a directory).
4162  *	   And that - after we got ->i_mutex on parents (until then we don't know
4163  *	   whether the target exists).  Solution: try to be smart with locking
4164  *	   order for inodes.  We rely on the fact that tree topology may change
4165  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4166  *	   move will be locked.  Thus we can rank directories by the tree
4167  *	   (ancestors first) and rank all non-directories after them.
4168  *	   That works since everybody except rename does "lock parent, lookup,
4169  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4170  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4171  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4172  *	   we'd better make sure that there's no link(2) for them.
4173  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4174  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4175  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4176  *	   ->i_mutex on parents, which works but leads to some truly excessive
4177  *	   locking].
4178  */
4179 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4180 	       struct inode *new_dir, struct dentry *new_dentry,
4181 	       struct inode **delegated_inode, unsigned int flags)
4182 {
4183 	int error;
4184 	bool is_dir = d_is_dir(old_dentry);
4185 	const unsigned char *old_name;
4186 	struct inode *source = old_dentry->d_inode;
4187 	struct inode *target = new_dentry->d_inode;
4188 	bool new_is_dir = false;
4189 	unsigned max_links = new_dir->i_sb->s_max_links;
4190 
4191 	if (source == target)
4192 		return 0;
4193 
4194 	error = may_delete(old_dir, old_dentry, is_dir);
4195 	if (error)
4196 		return error;
4197 
4198 	if (!target) {
4199 		error = may_create(new_dir, new_dentry);
4200 	} else {
4201 		new_is_dir = d_is_dir(new_dentry);
4202 
4203 		if (!(flags & RENAME_EXCHANGE))
4204 			error = may_delete(new_dir, new_dentry, is_dir);
4205 		else
4206 			error = may_delete(new_dir, new_dentry, new_is_dir);
4207 	}
4208 	if (error)
4209 		return error;
4210 
4211 	if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4212 		return -EPERM;
4213 
4214 	if (flags && !old_dir->i_op->rename2)
4215 		return -EINVAL;
4216 
4217 	/*
4218 	 * If we are going to change the parent - check write permissions,
4219 	 * we'll need to flip '..'.
4220 	 */
4221 	if (new_dir != old_dir) {
4222 		if (is_dir) {
4223 			error = inode_permission(source, MAY_WRITE);
4224 			if (error)
4225 				return error;
4226 		}
4227 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4228 			error = inode_permission(target, MAY_WRITE);
4229 			if (error)
4230 				return error;
4231 		}
4232 	}
4233 
4234 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4235 				      flags);
4236 	if (error)
4237 		return error;
4238 
4239 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4240 	dget(new_dentry);
4241 	if (!is_dir || (flags & RENAME_EXCHANGE))
4242 		lock_two_nondirectories(source, target);
4243 	else if (target)
4244 		mutex_lock(&target->i_mutex);
4245 
4246 	error = -EBUSY;
4247 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4248 		goto out;
4249 
4250 	if (max_links && new_dir != old_dir) {
4251 		error = -EMLINK;
4252 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4253 			goto out;
4254 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4255 		    old_dir->i_nlink >= max_links)
4256 			goto out;
4257 	}
4258 	if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4259 		shrink_dcache_parent(new_dentry);
4260 	if (!is_dir) {
4261 		error = try_break_deleg(source, delegated_inode);
4262 		if (error)
4263 			goto out;
4264 	}
4265 	if (target && !new_is_dir) {
4266 		error = try_break_deleg(target, delegated_inode);
4267 		if (error)
4268 			goto out;
4269 	}
4270 	if (!old_dir->i_op->rename2) {
4271 		error = old_dir->i_op->rename(old_dir, old_dentry,
4272 					      new_dir, new_dentry);
4273 	} else {
4274 		WARN_ON(old_dir->i_op->rename != NULL);
4275 		error = old_dir->i_op->rename2(old_dir, old_dentry,
4276 					       new_dir, new_dentry, flags);
4277 	}
4278 	if (error)
4279 		goto out;
4280 
4281 	if (!(flags & RENAME_EXCHANGE) && target) {
4282 		if (is_dir)
4283 			target->i_flags |= S_DEAD;
4284 		dont_mount(new_dentry);
4285 		detach_mounts(new_dentry);
4286 	}
4287 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4288 		if (!(flags & RENAME_EXCHANGE))
4289 			d_move(old_dentry, new_dentry);
4290 		else
4291 			d_exchange(old_dentry, new_dentry);
4292 	}
4293 out:
4294 	if (!is_dir || (flags & RENAME_EXCHANGE))
4295 		unlock_two_nondirectories(source, target);
4296 	else if (target)
4297 		mutex_unlock(&target->i_mutex);
4298 	dput(new_dentry);
4299 	if (!error) {
4300 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
4301 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4302 		if (flags & RENAME_EXCHANGE) {
4303 			fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4304 				      new_is_dir, NULL, new_dentry);
4305 		}
4306 	}
4307 	fsnotify_oldname_free(old_name);
4308 
4309 	return error;
4310 }
4311 EXPORT_SYMBOL(vfs_rename);
4312 
4313 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4314 		int, newdfd, const char __user *, newname, unsigned int, flags)
4315 {
4316 	struct dentry *old_dentry, *new_dentry;
4317 	struct dentry *trap;
4318 	struct path old_path, new_path;
4319 	struct qstr old_last, new_last;
4320 	int old_type, new_type;
4321 	struct inode *delegated_inode = NULL;
4322 	struct filename *from;
4323 	struct filename *to;
4324 	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4325 	bool should_retry = false;
4326 	int error;
4327 
4328 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4329 		return -EINVAL;
4330 
4331 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4332 	    (flags & RENAME_EXCHANGE))
4333 		return -EINVAL;
4334 
4335 	if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4336 		return -EPERM;
4337 
4338 	if (flags & RENAME_EXCHANGE)
4339 		target_flags = 0;
4340 
4341 retry:
4342 	from = user_path_parent(olddfd, oldname,
4343 				&old_path, &old_last, &old_type, lookup_flags);
4344 	if (IS_ERR(from)) {
4345 		error = PTR_ERR(from);
4346 		goto exit;
4347 	}
4348 
4349 	to = user_path_parent(newdfd, newname,
4350 				&new_path, &new_last, &new_type, lookup_flags);
4351 	if (IS_ERR(to)) {
4352 		error = PTR_ERR(to);
4353 		goto exit1;
4354 	}
4355 
4356 	error = -EXDEV;
4357 	if (old_path.mnt != new_path.mnt)
4358 		goto exit2;
4359 
4360 	error = -EBUSY;
4361 	if (old_type != LAST_NORM)
4362 		goto exit2;
4363 
4364 	if (flags & RENAME_NOREPLACE)
4365 		error = -EEXIST;
4366 	if (new_type != LAST_NORM)
4367 		goto exit2;
4368 
4369 	error = mnt_want_write(old_path.mnt);
4370 	if (error)
4371 		goto exit2;
4372 
4373 retry_deleg:
4374 	trap = lock_rename(new_path.dentry, old_path.dentry);
4375 
4376 	old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4377 	error = PTR_ERR(old_dentry);
4378 	if (IS_ERR(old_dentry))
4379 		goto exit3;
4380 	/* source must exist */
4381 	error = -ENOENT;
4382 	if (d_is_negative(old_dentry))
4383 		goto exit4;
4384 	new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4385 	error = PTR_ERR(new_dentry);
4386 	if (IS_ERR(new_dentry))
4387 		goto exit4;
4388 	error = -EEXIST;
4389 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4390 		goto exit5;
4391 	if (flags & RENAME_EXCHANGE) {
4392 		error = -ENOENT;
4393 		if (d_is_negative(new_dentry))
4394 			goto exit5;
4395 
4396 		if (!d_is_dir(new_dentry)) {
4397 			error = -ENOTDIR;
4398 			if (new_last.name[new_last.len])
4399 				goto exit5;
4400 		}
4401 	}
4402 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4403 	if (!d_is_dir(old_dentry)) {
4404 		error = -ENOTDIR;
4405 		if (old_last.name[old_last.len])
4406 			goto exit5;
4407 		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4408 			goto exit5;
4409 	}
4410 	/* source should not be ancestor of target */
4411 	error = -EINVAL;
4412 	if (old_dentry == trap)
4413 		goto exit5;
4414 	/* target should not be an ancestor of source */
4415 	if (!(flags & RENAME_EXCHANGE))
4416 		error = -ENOTEMPTY;
4417 	if (new_dentry == trap)
4418 		goto exit5;
4419 
4420 	error = security_path_rename(&old_path, old_dentry,
4421 				     &new_path, new_dentry, flags);
4422 	if (error)
4423 		goto exit5;
4424 	error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4425 			   new_path.dentry->d_inode, new_dentry,
4426 			   &delegated_inode, flags);
4427 exit5:
4428 	dput(new_dentry);
4429 exit4:
4430 	dput(old_dentry);
4431 exit3:
4432 	unlock_rename(new_path.dentry, old_path.dentry);
4433 	if (delegated_inode) {
4434 		error = break_deleg_wait(&delegated_inode);
4435 		if (!error)
4436 			goto retry_deleg;
4437 	}
4438 	mnt_drop_write(old_path.mnt);
4439 exit2:
4440 	if (retry_estale(error, lookup_flags))
4441 		should_retry = true;
4442 	path_put(&new_path);
4443 	putname(to);
4444 exit1:
4445 	path_put(&old_path);
4446 	putname(from);
4447 	if (should_retry) {
4448 		should_retry = false;
4449 		lookup_flags |= LOOKUP_REVAL;
4450 		goto retry;
4451 	}
4452 exit:
4453 	return error;
4454 }
4455 
4456 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4457 		int, newdfd, const char __user *, newname)
4458 {
4459 	return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4460 }
4461 
4462 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4463 {
4464 	return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4465 }
4466 
4467 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4468 {
4469 	int error = may_create(dir, dentry);
4470 	if (error)
4471 		return error;
4472 
4473 	if (!dir->i_op->mknod)
4474 		return -EPERM;
4475 
4476 	return dir->i_op->mknod(dir, dentry,
4477 				S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4478 }
4479 EXPORT_SYMBOL(vfs_whiteout);
4480 
4481 int readlink_copy(char __user *buffer, int buflen, const char *link)
4482 {
4483 	int len = PTR_ERR(link);
4484 	if (IS_ERR(link))
4485 		goto out;
4486 
4487 	len = strlen(link);
4488 	if (len > (unsigned) buflen)
4489 		len = buflen;
4490 	if (copy_to_user(buffer, link, len))
4491 		len = -EFAULT;
4492 out:
4493 	return len;
4494 }
4495 EXPORT_SYMBOL(readlink_copy);
4496 
4497 /*
4498  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
4499  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
4500  * using) it for any given inode is up to filesystem.
4501  */
4502 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4503 {
4504 	void *cookie;
4505 	struct inode *inode = d_inode(dentry);
4506 	const char *link = inode->i_link;
4507 	int res;
4508 
4509 	if (!link) {
4510 		link = inode->i_op->follow_link(dentry, &cookie);
4511 		if (IS_ERR(link))
4512 			return PTR_ERR(link);
4513 	}
4514 	res = readlink_copy(buffer, buflen, link);
4515 	if (inode->i_op->put_link)
4516 		inode->i_op->put_link(inode, cookie);
4517 	return res;
4518 }
4519 EXPORT_SYMBOL(generic_readlink);
4520 
4521 /* get the link contents into pagecache */
4522 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4523 {
4524 	char *kaddr;
4525 	struct page *page;
4526 	struct address_space *mapping = dentry->d_inode->i_mapping;
4527 	page = read_mapping_page(mapping, 0, NULL);
4528 	if (IS_ERR(page))
4529 		return (char*)page;
4530 	*ppage = page;
4531 	kaddr = kmap(page);
4532 	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4533 	return kaddr;
4534 }
4535 
4536 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4537 {
4538 	struct page *page = NULL;
4539 	int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4540 	if (page) {
4541 		kunmap(page);
4542 		page_cache_release(page);
4543 	}
4544 	return res;
4545 }
4546 EXPORT_SYMBOL(page_readlink);
4547 
4548 const char *page_follow_link_light(struct dentry *dentry, void **cookie)
4549 {
4550 	struct page *page = NULL;
4551 	char *res = page_getlink(dentry, &page);
4552 	if (!IS_ERR(res))
4553 		*cookie = page;
4554 	return res;
4555 }
4556 EXPORT_SYMBOL(page_follow_link_light);
4557 
4558 void page_put_link(struct inode *unused, void *cookie)
4559 {
4560 	struct page *page = cookie;
4561 	kunmap(page);
4562 	page_cache_release(page);
4563 }
4564 EXPORT_SYMBOL(page_put_link);
4565 
4566 /*
4567  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4568  */
4569 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4570 {
4571 	struct address_space *mapping = inode->i_mapping;
4572 	struct page *page;
4573 	void *fsdata;
4574 	int err;
4575 	char *kaddr;
4576 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4577 	if (nofs)
4578 		flags |= AOP_FLAG_NOFS;
4579 
4580 retry:
4581 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4582 				flags, &page, &fsdata);
4583 	if (err)
4584 		goto fail;
4585 
4586 	kaddr = kmap_atomic(page);
4587 	memcpy(kaddr, symname, len-1);
4588 	kunmap_atomic(kaddr);
4589 
4590 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4591 							page, fsdata);
4592 	if (err < 0)
4593 		goto fail;
4594 	if (err < len-1)
4595 		goto retry;
4596 
4597 	mark_inode_dirty(inode);
4598 	return 0;
4599 fail:
4600 	return err;
4601 }
4602 EXPORT_SYMBOL(__page_symlink);
4603 
4604 int page_symlink(struct inode *inode, const char *symname, int len)
4605 {
4606 	return __page_symlink(inode, symname, len,
4607 			!mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4608 }
4609 EXPORT_SYMBOL(page_symlink);
4610 
4611 const struct inode_operations page_symlink_inode_operations = {
4612 	.readlink	= generic_readlink,
4613 	.follow_link	= page_follow_link_light,
4614 	.put_link	= page_put_link,
4615 };
4616 EXPORT_SYMBOL(page_symlink_inode_operations);
4617