1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/export.h> 19 #include <linux/kernel.h> 20 #include <linux/slab.h> 21 #include <linux/fs.h> 22 #include <linux/namei.h> 23 #include <linux/pagemap.h> 24 #include <linux/fsnotify.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/ima.h> 28 #include <linux/syscalls.h> 29 #include <linux/mount.h> 30 #include <linux/audit.h> 31 #include <linux/capability.h> 32 #include <linux/file.h> 33 #include <linux/fcntl.h> 34 #include <linux/device_cgroup.h> 35 #include <linux/fs_struct.h> 36 #include <linux/posix_acl.h> 37 #include <linux/hash.h> 38 #include <asm/uaccess.h> 39 40 #include "internal.h" 41 #include "mount.h" 42 43 /* [Feb-1997 T. Schoebel-Theuer] 44 * Fundamental changes in the pathname lookup mechanisms (namei) 45 * were necessary because of omirr. The reason is that omirr needs 46 * to know the _real_ pathname, not the user-supplied one, in case 47 * of symlinks (and also when transname replacements occur). 48 * 49 * The new code replaces the old recursive symlink resolution with 50 * an iterative one (in case of non-nested symlink chains). It does 51 * this with calls to <fs>_follow_link(). 52 * As a side effect, dir_namei(), _namei() and follow_link() are now 53 * replaced with a single function lookup_dentry() that can handle all 54 * the special cases of the former code. 55 * 56 * With the new dcache, the pathname is stored at each inode, at least as 57 * long as the refcount of the inode is positive. As a side effect, the 58 * size of the dcache depends on the inode cache and thus is dynamic. 59 * 60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 61 * resolution to correspond with current state of the code. 62 * 63 * Note that the symlink resolution is not *completely* iterative. 64 * There is still a significant amount of tail- and mid- recursion in 65 * the algorithm. Also, note that <fs>_readlink() is not used in 66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 67 * may return different results than <fs>_follow_link(). Many virtual 68 * filesystems (including /proc) exhibit this behavior. 69 */ 70 71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 73 * and the name already exists in form of a symlink, try to create the new 74 * name indicated by the symlink. The old code always complained that the 75 * name already exists, due to not following the symlink even if its target 76 * is nonexistent. The new semantics affects also mknod() and link() when 77 * the name is a symlink pointing to a non-existent name. 78 * 79 * I don't know which semantics is the right one, since I have no access 80 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 82 * "old" one. Personally, I think the new semantics is much more logical. 83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 84 * file does succeed in both HP-UX and SunOs, but not in Solaris 85 * and in the old Linux semantics. 86 */ 87 88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 89 * semantics. See the comments in "open_namei" and "do_link" below. 90 * 91 * [10-Sep-98 Alan Modra] Another symlink change. 92 */ 93 94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 95 * inside the path - always follow. 96 * in the last component in creation/removal/renaming - never follow. 97 * if LOOKUP_FOLLOW passed - follow. 98 * if the pathname has trailing slashes - follow. 99 * otherwise - don't follow. 100 * (applied in that order). 101 * 102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 104 * During the 2.4 we need to fix the userland stuff depending on it - 105 * hopefully we will be able to get rid of that wart in 2.5. So far only 106 * XEmacs seems to be relying on it... 107 */ 108 /* 109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 111 * any extra contention... 112 */ 113 114 /* In order to reduce some races, while at the same time doing additional 115 * checking and hopefully speeding things up, we copy filenames to the 116 * kernel data space before using them.. 117 * 118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 119 * PATH_MAX includes the nul terminator --RR. 120 */ 121 122 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) 123 124 struct filename * 125 getname_flags(const char __user *filename, int flags, int *empty) 126 { 127 struct filename *result; 128 char *kname; 129 int len; 130 131 result = audit_reusename(filename); 132 if (result) 133 return result; 134 135 result = __getname(); 136 if (unlikely(!result)) 137 return ERR_PTR(-ENOMEM); 138 139 /* 140 * First, try to embed the struct filename inside the names_cache 141 * allocation 142 */ 143 kname = (char *)result->iname; 144 result->name = kname; 145 146 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); 147 if (unlikely(len < 0)) { 148 __putname(result); 149 return ERR_PTR(len); 150 } 151 152 /* 153 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 154 * separate struct filename so we can dedicate the entire 155 * names_cache allocation for the pathname, and re-do the copy from 156 * userland. 157 */ 158 if (unlikely(len == EMBEDDED_NAME_MAX)) { 159 const size_t size = offsetof(struct filename, iname[1]); 160 kname = (char *)result; 161 162 /* 163 * size is chosen that way we to guarantee that 164 * result->iname[0] is within the same object and that 165 * kname can't be equal to result->iname, no matter what. 166 */ 167 result = kzalloc(size, GFP_KERNEL); 168 if (unlikely(!result)) { 169 __putname(kname); 170 return ERR_PTR(-ENOMEM); 171 } 172 result->name = kname; 173 len = strncpy_from_user(kname, filename, PATH_MAX); 174 if (unlikely(len < 0)) { 175 __putname(kname); 176 kfree(result); 177 return ERR_PTR(len); 178 } 179 if (unlikely(len == PATH_MAX)) { 180 __putname(kname); 181 kfree(result); 182 return ERR_PTR(-ENAMETOOLONG); 183 } 184 } 185 186 result->refcnt = 1; 187 /* The empty path is special. */ 188 if (unlikely(!len)) { 189 if (empty) 190 *empty = 1; 191 if (!(flags & LOOKUP_EMPTY)) { 192 putname(result); 193 return ERR_PTR(-ENOENT); 194 } 195 } 196 197 result->uptr = filename; 198 result->aname = NULL; 199 audit_getname(result); 200 return result; 201 } 202 203 struct filename * 204 getname(const char __user * filename) 205 { 206 return getname_flags(filename, 0, NULL); 207 } 208 209 struct filename * 210 getname_kernel(const char * filename) 211 { 212 struct filename *result; 213 int len = strlen(filename) + 1; 214 215 result = __getname(); 216 if (unlikely(!result)) 217 return ERR_PTR(-ENOMEM); 218 219 if (len <= EMBEDDED_NAME_MAX) { 220 result->name = (char *)result->iname; 221 } else if (len <= PATH_MAX) { 222 struct filename *tmp; 223 224 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL); 225 if (unlikely(!tmp)) { 226 __putname(result); 227 return ERR_PTR(-ENOMEM); 228 } 229 tmp->name = (char *)result; 230 result = tmp; 231 } else { 232 __putname(result); 233 return ERR_PTR(-ENAMETOOLONG); 234 } 235 memcpy((char *)result->name, filename, len); 236 result->uptr = NULL; 237 result->aname = NULL; 238 result->refcnt = 1; 239 audit_getname(result); 240 241 return result; 242 } 243 244 void putname(struct filename *name) 245 { 246 BUG_ON(name->refcnt <= 0); 247 248 if (--name->refcnt > 0) 249 return; 250 251 if (name->name != name->iname) { 252 __putname(name->name); 253 kfree(name); 254 } else 255 __putname(name); 256 } 257 258 static int check_acl(struct inode *inode, int mask) 259 { 260 #ifdef CONFIG_FS_POSIX_ACL 261 struct posix_acl *acl; 262 263 if (mask & MAY_NOT_BLOCK) { 264 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 265 if (!acl) 266 return -EAGAIN; 267 /* no ->get_acl() calls in RCU mode... */ 268 if (acl == ACL_NOT_CACHED) 269 return -ECHILD; 270 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK); 271 } 272 273 acl = get_acl(inode, ACL_TYPE_ACCESS); 274 if (IS_ERR(acl)) 275 return PTR_ERR(acl); 276 if (acl) { 277 int error = posix_acl_permission(inode, acl, mask); 278 posix_acl_release(acl); 279 return error; 280 } 281 #endif 282 283 return -EAGAIN; 284 } 285 286 /* 287 * This does the basic permission checking 288 */ 289 static int acl_permission_check(struct inode *inode, int mask) 290 { 291 unsigned int mode = inode->i_mode; 292 293 if (likely(uid_eq(current_fsuid(), inode->i_uid))) 294 mode >>= 6; 295 else { 296 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 297 int error = check_acl(inode, mask); 298 if (error != -EAGAIN) 299 return error; 300 } 301 302 if (in_group_p(inode->i_gid)) 303 mode >>= 3; 304 } 305 306 /* 307 * If the DACs are ok we don't need any capability check. 308 */ 309 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 310 return 0; 311 return -EACCES; 312 } 313 314 /** 315 * generic_permission - check for access rights on a Posix-like filesystem 316 * @inode: inode to check access rights for 317 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...) 318 * 319 * Used to check for read/write/execute permissions on a file. 320 * We use "fsuid" for this, letting us set arbitrary permissions 321 * for filesystem access without changing the "normal" uids which 322 * are used for other things. 323 * 324 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 325 * request cannot be satisfied (eg. requires blocking or too much complexity). 326 * It would then be called again in ref-walk mode. 327 */ 328 int generic_permission(struct inode *inode, int mask) 329 { 330 int ret; 331 332 /* 333 * Do the basic permission checks. 334 */ 335 ret = acl_permission_check(inode, mask); 336 if (ret != -EACCES) 337 return ret; 338 339 if (S_ISDIR(inode->i_mode)) { 340 /* DACs are overridable for directories */ 341 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 342 return 0; 343 if (!(mask & MAY_WRITE)) 344 if (capable_wrt_inode_uidgid(inode, 345 CAP_DAC_READ_SEARCH)) 346 return 0; 347 return -EACCES; 348 } 349 /* 350 * Read/write DACs are always overridable. 351 * Executable DACs are overridable when there is 352 * at least one exec bit set. 353 */ 354 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 355 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 356 return 0; 357 358 /* 359 * Searching includes executable on directories, else just read. 360 */ 361 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 362 if (mask == MAY_READ) 363 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH)) 364 return 0; 365 366 return -EACCES; 367 } 368 EXPORT_SYMBOL(generic_permission); 369 370 /* 371 * We _really_ want to just do "generic_permission()" without 372 * even looking at the inode->i_op values. So we keep a cache 373 * flag in inode->i_opflags, that says "this has not special 374 * permission function, use the fast case". 375 */ 376 static inline int do_inode_permission(struct inode *inode, int mask) 377 { 378 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 379 if (likely(inode->i_op->permission)) 380 return inode->i_op->permission(inode, mask); 381 382 /* This gets set once for the inode lifetime */ 383 spin_lock(&inode->i_lock); 384 inode->i_opflags |= IOP_FASTPERM; 385 spin_unlock(&inode->i_lock); 386 } 387 return generic_permission(inode, mask); 388 } 389 390 /** 391 * __inode_permission - Check for access rights to a given inode 392 * @inode: Inode to check permission on 393 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 394 * 395 * Check for read/write/execute permissions on an inode. 396 * 397 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 398 * 399 * This does not check for a read-only file system. You probably want 400 * inode_permission(). 401 */ 402 int __inode_permission(struct inode *inode, int mask) 403 { 404 int retval; 405 406 if (unlikely(mask & MAY_WRITE)) { 407 /* 408 * Nobody gets write access to an immutable file. 409 */ 410 if (IS_IMMUTABLE(inode)) 411 return -EACCES; 412 } 413 414 retval = do_inode_permission(inode, mask); 415 if (retval) 416 return retval; 417 418 retval = devcgroup_inode_permission(inode, mask); 419 if (retval) 420 return retval; 421 422 return security_inode_permission(inode, mask); 423 } 424 EXPORT_SYMBOL(__inode_permission); 425 426 /** 427 * sb_permission - Check superblock-level permissions 428 * @sb: Superblock of inode to check permission on 429 * @inode: Inode to check permission on 430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 431 * 432 * Separate out file-system wide checks from inode-specific permission checks. 433 */ 434 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 435 { 436 if (unlikely(mask & MAY_WRITE)) { 437 umode_t mode = inode->i_mode; 438 439 /* Nobody gets write access to a read-only fs. */ 440 if ((sb->s_flags & MS_RDONLY) && 441 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 442 return -EROFS; 443 } 444 return 0; 445 } 446 447 /** 448 * inode_permission - Check for access rights to a given inode 449 * @inode: Inode to check permission on 450 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 451 * 452 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 453 * this, letting us set arbitrary permissions for filesystem access without 454 * changing the "normal" UIDs which are used for other things. 455 * 456 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 457 */ 458 int inode_permission(struct inode *inode, int mask) 459 { 460 int retval; 461 462 retval = sb_permission(inode->i_sb, inode, mask); 463 if (retval) 464 return retval; 465 return __inode_permission(inode, mask); 466 } 467 EXPORT_SYMBOL(inode_permission); 468 469 /** 470 * path_get - get a reference to a path 471 * @path: path to get the reference to 472 * 473 * Given a path increment the reference count to the dentry and the vfsmount. 474 */ 475 void path_get(const struct path *path) 476 { 477 mntget(path->mnt); 478 dget(path->dentry); 479 } 480 EXPORT_SYMBOL(path_get); 481 482 /** 483 * path_put - put a reference to a path 484 * @path: path to put the reference to 485 * 486 * Given a path decrement the reference count to the dentry and the vfsmount. 487 */ 488 void path_put(const struct path *path) 489 { 490 dput(path->dentry); 491 mntput(path->mnt); 492 } 493 EXPORT_SYMBOL(path_put); 494 495 #define EMBEDDED_LEVELS 2 496 struct nameidata { 497 struct path path; 498 struct qstr last; 499 struct path root; 500 struct inode *inode; /* path.dentry.d_inode */ 501 unsigned int flags; 502 unsigned seq, m_seq; 503 int last_type; 504 unsigned depth; 505 int total_link_count; 506 struct saved { 507 struct path link; 508 void *cookie; 509 const char *name; 510 struct inode *inode; 511 unsigned seq; 512 } *stack, internal[EMBEDDED_LEVELS]; 513 struct filename *name; 514 struct nameidata *saved; 515 unsigned root_seq; 516 int dfd; 517 }; 518 519 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name) 520 { 521 struct nameidata *old = current->nameidata; 522 p->stack = p->internal; 523 p->dfd = dfd; 524 p->name = name; 525 p->total_link_count = old ? old->total_link_count : 0; 526 p->saved = old; 527 current->nameidata = p; 528 } 529 530 static void restore_nameidata(void) 531 { 532 struct nameidata *now = current->nameidata, *old = now->saved; 533 534 current->nameidata = old; 535 if (old) 536 old->total_link_count = now->total_link_count; 537 if (now->stack != now->internal) { 538 kfree(now->stack); 539 now->stack = now->internal; 540 } 541 } 542 543 static int __nd_alloc_stack(struct nameidata *nd) 544 { 545 struct saved *p; 546 547 if (nd->flags & LOOKUP_RCU) { 548 p= kmalloc(MAXSYMLINKS * sizeof(struct saved), 549 GFP_ATOMIC); 550 if (unlikely(!p)) 551 return -ECHILD; 552 } else { 553 p= kmalloc(MAXSYMLINKS * sizeof(struct saved), 554 GFP_KERNEL); 555 if (unlikely(!p)) 556 return -ENOMEM; 557 } 558 memcpy(p, nd->internal, sizeof(nd->internal)); 559 nd->stack = p; 560 return 0; 561 } 562 563 /** 564 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root 565 * @path: nameidate to verify 566 * 567 * Rename can sometimes move a file or directory outside of a bind 568 * mount, path_connected allows those cases to be detected. 569 */ 570 static bool path_connected(const struct path *path) 571 { 572 struct vfsmount *mnt = path->mnt; 573 574 /* Only bind mounts can have disconnected paths */ 575 if (mnt->mnt_root == mnt->mnt_sb->s_root) 576 return true; 577 578 return is_subdir(path->dentry, mnt->mnt_root); 579 } 580 581 static inline int nd_alloc_stack(struct nameidata *nd) 582 { 583 if (likely(nd->depth != EMBEDDED_LEVELS)) 584 return 0; 585 if (likely(nd->stack != nd->internal)) 586 return 0; 587 return __nd_alloc_stack(nd); 588 } 589 590 static void drop_links(struct nameidata *nd) 591 { 592 int i = nd->depth; 593 while (i--) { 594 struct saved *last = nd->stack + i; 595 struct inode *inode = last->inode; 596 if (last->cookie && inode->i_op->put_link) { 597 inode->i_op->put_link(inode, last->cookie); 598 last->cookie = NULL; 599 } 600 } 601 } 602 603 static void terminate_walk(struct nameidata *nd) 604 { 605 drop_links(nd); 606 if (!(nd->flags & LOOKUP_RCU)) { 607 int i; 608 path_put(&nd->path); 609 for (i = 0; i < nd->depth; i++) 610 path_put(&nd->stack[i].link); 611 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 612 path_put(&nd->root); 613 nd->root.mnt = NULL; 614 } 615 } else { 616 nd->flags &= ~LOOKUP_RCU; 617 if (!(nd->flags & LOOKUP_ROOT)) 618 nd->root.mnt = NULL; 619 rcu_read_unlock(); 620 } 621 nd->depth = 0; 622 } 623 624 /* path_put is needed afterwards regardless of success or failure */ 625 static bool legitimize_path(struct nameidata *nd, 626 struct path *path, unsigned seq) 627 { 628 int res = __legitimize_mnt(path->mnt, nd->m_seq); 629 if (unlikely(res)) { 630 if (res > 0) 631 path->mnt = NULL; 632 path->dentry = NULL; 633 return false; 634 } 635 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) { 636 path->dentry = NULL; 637 return false; 638 } 639 return !read_seqcount_retry(&path->dentry->d_seq, seq); 640 } 641 642 static bool legitimize_links(struct nameidata *nd) 643 { 644 int i; 645 for (i = 0; i < nd->depth; i++) { 646 struct saved *last = nd->stack + i; 647 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) { 648 drop_links(nd); 649 nd->depth = i + 1; 650 return false; 651 } 652 } 653 return true; 654 } 655 656 /* 657 * Path walking has 2 modes, rcu-walk and ref-walk (see 658 * Documentation/filesystems/path-lookup.txt). In situations when we can't 659 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 660 * normal reference counts on dentries and vfsmounts to transition to rcu-walk 661 * mode. Refcounts are grabbed at the last known good point before rcu-walk 662 * got stuck, so ref-walk may continue from there. If this is not successful 663 * (eg. a seqcount has changed), then failure is returned and it's up to caller 664 * to restart the path walk from the beginning in ref-walk mode. 665 */ 666 667 /** 668 * unlazy_walk - try to switch to ref-walk mode. 669 * @nd: nameidata pathwalk data 670 * @dentry: child of nd->path.dentry or NULL 671 * @seq: seq number to check dentry against 672 * Returns: 0 on success, -ECHILD on failure 673 * 674 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry 675 * for ref-walk mode. @dentry must be a path found by a do_lookup call on 676 * @nd or NULL. Must be called from rcu-walk context. 677 * Nothing should touch nameidata between unlazy_walk() failure and 678 * terminate_walk(). 679 */ 680 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq) 681 { 682 struct dentry *parent = nd->path.dentry; 683 684 BUG_ON(!(nd->flags & LOOKUP_RCU)); 685 686 nd->flags &= ~LOOKUP_RCU; 687 if (unlikely(!legitimize_links(nd))) 688 goto out2; 689 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq))) 690 goto out2; 691 if (unlikely(!lockref_get_not_dead(&parent->d_lockref))) 692 goto out1; 693 694 /* 695 * For a negative lookup, the lookup sequence point is the parents 696 * sequence point, and it only needs to revalidate the parent dentry. 697 * 698 * For a positive lookup, we need to move both the parent and the 699 * dentry from the RCU domain to be properly refcounted. And the 700 * sequence number in the dentry validates *both* dentry counters, 701 * since we checked the sequence number of the parent after we got 702 * the child sequence number. So we know the parent must still 703 * be valid if the child sequence number is still valid. 704 */ 705 if (!dentry) { 706 if (read_seqcount_retry(&parent->d_seq, nd->seq)) 707 goto out; 708 BUG_ON(nd->inode != parent->d_inode); 709 } else { 710 if (!lockref_get_not_dead(&dentry->d_lockref)) 711 goto out; 712 if (read_seqcount_retry(&dentry->d_seq, seq)) 713 goto drop_dentry; 714 } 715 716 /* 717 * Sequence counts matched. Now make sure that the root is 718 * still valid and get it if required. 719 */ 720 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 721 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) { 722 rcu_read_unlock(); 723 dput(dentry); 724 return -ECHILD; 725 } 726 } 727 728 rcu_read_unlock(); 729 return 0; 730 731 drop_dentry: 732 rcu_read_unlock(); 733 dput(dentry); 734 goto drop_root_mnt; 735 out2: 736 nd->path.mnt = NULL; 737 out1: 738 nd->path.dentry = NULL; 739 out: 740 rcu_read_unlock(); 741 drop_root_mnt: 742 if (!(nd->flags & LOOKUP_ROOT)) 743 nd->root.mnt = NULL; 744 return -ECHILD; 745 } 746 747 static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq) 748 { 749 if (unlikely(!legitimize_path(nd, link, seq))) { 750 drop_links(nd); 751 nd->depth = 0; 752 nd->flags &= ~LOOKUP_RCU; 753 nd->path.mnt = NULL; 754 nd->path.dentry = NULL; 755 if (!(nd->flags & LOOKUP_ROOT)) 756 nd->root.mnt = NULL; 757 rcu_read_unlock(); 758 } else if (likely(unlazy_walk(nd, NULL, 0)) == 0) { 759 return 0; 760 } 761 path_put(link); 762 return -ECHILD; 763 } 764 765 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 766 { 767 return dentry->d_op->d_revalidate(dentry, flags); 768 } 769 770 /** 771 * complete_walk - successful completion of path walk 772 * @nd: pointer nameidata 773 * 774 * If we had been in RCU mode, drop out of it and legitimize nd->path. 775 * Revalidate the final result, unless we'd already done that during 776 * the path walk or the filesystem doesn't ask for it. Return 0 on 777 * success, -error on failure. In case of failure caller does not 778 * need to drop nd->path. 779 */ 780 static int complete_walk(struct nameidata *nd) 781 { 782 struct dentry *dentry = nd->path.dentry; 783 int status; 784 785 if (nd->flags & LOOKUP_RCU) { 786 if (!(nd->flags & LOOKUP_ROOT)) 787 nd->root.mnt = NULL; 788 if (unlikely(unlazy_walk(nd, NULL, 0))) 789 return -ECHILD; 790 } 791 792 if (likely(!(nd->flags & LOOKUP_JUMPED))) 793 return 0; 794 795 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 796 return 0; 797 798 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 799 if (status > 0) 800 return 0; 801 802 if (!status) 803 status = -ESTALE; 804 805 return status; 806 } 807 808 static void set_root(struct nameidata *nd) 809 { 810 get_fs_root(current->fs, &nd->root); 811 } 812 813 static void set_root_rcu(struct nameidata *nd) 814 { 815 struct fs_struct *fs = current->fs; 816 unsigned seq; 817 818 do { 819 seq = read_seqcount_begin(&fs->seq); 820 nd->root = fs->root; 821 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 822 } while (read_seqcount_retry(&fs->seq, seq)); 823 } 824 825 static void path_put_conditional(struct path *path, struct nameidata *nd) 826 { 827 dput(path->dentry); 828 if (path->mnt != nd->path.mnt) 829 mntput(path->mnt); 830 } 831 832 static inline void path_to_nameidata(const struct path *path, 833 struct nameidata *nd) 834 { 835 if (!(nd->flags & LOOKUP_RCU)) { 836 dput(nd->path.dentry); 837 if (nd->path.mnt != path->mnt) 838 mntput(nd->path.mnt); 839 } 840 nd->path.mnt = path->mnt; 841 nd->path.dentry = path->dentry; 842 } 843 844 /* 845 * Helper to directly jump to a known parsed path from ->follow_link, 846 * caller must have taken a reference to path beforehand. 847 */ 848 void nd_jump_link(struct path *path) 849 { 850 struct nameidata *nd = current->nameidata; 851 path_put(&nd->path); 852 853 nd->path = *path; 854 nd->inode = nd->path.dentry->d_inode; 855 nd->flags |= LOOKUP_JUMPED; 856 } 857 858 static inline void put_link(struct nameidata *nd) 859 { 860 struct saved *last = nd->stack + --nd->depth; 861 struct inode *inode = last->inode; 862 if (last->cookie && inode->i_op->put_link) 863 inode->i_op->put_link(inode, last->cookie); 864 if (!(nd->flags & LOOKUP_RCU)) 865 path_put(&last->link); 866 } 867 868 int sysctl_protected_symlinks __read_mostly = 0; 869 int sysctl_protected_hardlinks __read_mostly = 0; 870 871 /** 872 * may_follow_link - Check symlink following for unsafe situations 873 * @nd: nameidata pathwalk data 874 * 875 * In the case of the sysctl_protected_symlinks sysctl being enabled, 876 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 877 * in a sticky world-writable directory. This is to protect privileged 878 * processes from failing races against path names that may change out 879 * from under them by way of other users creating malicious symlinks. 880 * It will permit symlinks to be followed only when outside a sticky 881 * world-writable directory, or when the uid of the symlink and follower 882 * match, or when the directory owner matches the symlink's owner. 883 * 884 * Returns 0 if following the symlink is allowed, -ve on error. 885 */ 886 static inline int may_follow_link(struct nameidata *nd) 887 { 888 const struct inode *inode; 889 const struct inode *parent; 890 891 if (!sysctl_protected_symlinks) 892 return 0; 893 894 /* Allowed if owner and follower match. */ 895 inode = nd->stack[0].inode; 896 if (uid_eq(current_cred()->fsuid, inode->i_uid)) 897 return 0; 898 899 /* Allowed if parent directory not sticky and world-writable. */ 900 parent = nd->inode; 901 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 902 return 0; 903 904 /* Allowed if parent directory and link owner match. */ 905 if (uid_eq(parent->i_uid, inode->i_uid)) 906 return 0; 907 908 if (nd->flags & LOOKUP_RCU) 909 return -ECHILD; 910 911 audit_log_link_denied("follow_link", &nd->stack[0].link); 912 return -EACCES; 913 } 914 915 /** 916 * safe_hardlink_source - Check for safe hardlink conditions 917 * @inode: the source inode to hardlink from 918 * 919 * Return false if at least one of the following conditions: 920 * - inode is not a regular file 921 * - inode is setuid 922 * - inode is setgid and group-exec 923 * - access failure for read and write 924 * 925 * Otherwise returns true. 926 */ 927 static bool safe_hardlink_source(struct inode *inode) 928 { 929 umode_t mode = inode->i_mode; 930 931 /* Special files should not get pinned to the filesystem. */ 932 if (!S_ISREG(mode)) 933 return false; 934 935 /* Setuid files should not get pinned to the filesystem. */ 936 if (mode & S_ISUID) 937 return false; 938 939 /* Executable setgid files should not get pinned to the filesystem. */ 940 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 941 return false; 942 943 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 944 if (inode_permission(inode, MAY_READ | MAY_WRITE)) 945 return false; 946 947 return true; 948 } 949 950 /** 951 * may_linkat - Check permissions for creating a hardlink 952 * @link: the source to hardlink from 953 * 954 * Block hardlink when all of: 955 * - sysctl_protected_hardlinks enabled 956 * - fsuid does not match inode 957 * - hardlink source is unsafe (see safe_hardlink_source() above) 958 * - not CAP_FOWNER in a namespace with the inode owner uid mapped 959 * 960 * Returns 0 if successful, -ve on error. 961 */ 962 static int may_linkat(struct path *link) 963 { 964 struct inode *inode; 965 966 if (!sysctl_protected_hardlinks) 967 return 0; 968 969 inode = link->dentry->d_inode; 970 971 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 972 * otherwise, it must be a safe source. 973 */ 974 if (inode_owner_or_capable(inode) || safe_hardlink_source(inode)) 975 return 0; 976 977 audit_log_link_denied("linkat", link); 978 return -EPERM; 979 } 980 981 static __always_inline 982 const char *get_link(struct nameidata *nd) 983 { 984 struct saved *last = nd->stack + nd->depth - 1; 985 struct dentry *dentry = last->link.dentry; 986 struct inode *inode = last->inode; 987 int error; 988 const char *res; 989 990 if (!(nd->flags & LOOKUP_RCU)) { 991 touch_atime(&last->link); 992 cond_resched(); 993 } else if (atime_needs_update(&last->link, inode)) { 994 if (unlikely(unlazy_walk(nd, NULL, 0))) 995 return ERR_PTR(-ECHILD); 996 touch_atime(&last->link); 997 } 998 999 error = security_inode_follow_link(dentry, inode, 1000 nd->flags & LOOKUP_RCU); 1001 if (unlikely(error)) 1002 return ERR_PTR(error); 1003 1004 nd->last_type = LAST_BIND; 1005 res = inode->i_link; 1006 if (!res) { 1007 if (nd->flags & LOOKUP_RCU) { 1008 if (unlikely(unlazy_walk(nd, NULL, 0))) 1009 return ERR_PTR(-ECHILD); 1010 } 1011 res = inode->i_op->follow_link(dentry, &last->cookie); 1012 if (IS_ERR_OR_NULL(res)) { 1013 last->cookie = NULL; 1014 return res; 1015 } 1016 } 1017 if (*res == '/') { 1018 if (nd->flags & LOOKUP_RCU) { 1019 struct dentry *d; 1020 if (!nd->root.mnt) 1021 set_root_rcu(nd); 1022 nd->path = nd->root; 1023 d = nd->path.dentry; 1024 nd->inode = d->d_inode; 1025 nd->seq = nd->root_seq; 1026 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq))) 1027 return ERR_PTR(-ECHILD); 1028 } else { 1029 if (!nd->root.mnt) 1030 set_root(nd); 1031 path_put(&nd->path); 1032 nd->path = nd->root; 1033 path_get(&nd->root); 1034 nd->inode = nd->path.dentry->d_inode; 1035 } 1036 nd->flags |= LOOKUP_JUMPED; 1037 while (unlikely(*++res == '/')) 1038 ; 1039 } 1040 if (!*res) 1041 res = NULL; 1042 return res; 1043 } 1044 1045 /* 1046 * follow_up - Find the mountpoint of path's vfsmount 1047 * 1048 * Given a path, find the mountpoint of its source file system. 1049 * Replace @path with the path of the mountpoint in the parent mount. 1050 * Up is towards /. 1051 * 1052 * Return 1 if we went up a level and 0 if we were already at the 1053 * root. 1054 */ 1055 int follow_up(struct path *path) 1056 { 1057 struct mount *mnt = real_mount(path->mnt); 1058 struct mount *parent; 1059 struct dentry *mountpoint; 1060 1061 read_seqlock_excl(&mount_lock); 1062 parent = mnt->mnt_parent; 1063 if (parent == mnt) { 1064 read_sequnlock_excl(&mount_lock); 1065 return 0; 1066 } 1067 mntget(&parent->mnt); 1068 mountpoint = dget(mnt->mnt_mountpoint); 1069 read_sequnlock_excl(&mount_lock); 1070 dput(path->dentry); 1071 path->dentry = mountpoint; 1072 mntput(path->mnt); 1073 path->mnt = &parent->mnt; 1074 return 1; 1075 } 1076 EXPORT_SYMBOL(follow_up); 1077 1078 /* 1079 * Perform an automount 1080 * - return -EISDIR to tell follow_managed() to stop and return the path we 1081 * were called with. 1082 */ 1083 static int follow_automount(struct path *path, struct nameidata *nd, 1084 bool *need_mntput) 1085 { 1086 struct vfsmount *mnt; 1087 int err; 1088 1089 if (!path->dentry->d_op || !path->dentry->d_op->d_automount) 1090 return -EREMOTE; 1091 1092 /* We don't want to mount if someone's just doing a stat - 1093 * unless they're stat'ing a directory and appended a '/' to 1094 * the name. 1095 * 1096 * We do, however, want to mount if someone wants to open or 1097 * create a file of any type under the mountpoint, wants to 1098 * traverse through the mountpoint or wants to open the 1099 * mounted directory. Also, autofs may mark negative dentries 1100 * as being automount points. These will need the attentions 1101 * of the daemon to instantiate them before they can be used. 1102 */ 1103 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 1104 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 1105 path->dentry->d_inode) 1106 return -EISDIR; 1107 1108 nd->total_link_count++; 1109 if (nd->total_link_count >= 40) 1110 return -ELOOP; 1111 1112 mnt = path->dentry->d_op->d_automount(path); 1113 if (IS_ERR(mnt)) { 1114 /* 1115 * The filesystem is allowed to return -EISDIR here to indicate 1116 * it doesn't want to automount. For instance, autofs would do 1117 * this so that its userspace daemon can mount on this dentry. 1118 * 1119 * However, we can only permit this if it's a terminal point in 1120 * the path being looked up; if it wasn't then the remainder of 1121 * the path is inaccessible and we should say so. 1122 */ 1123 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT)) 1124 return -EREMOTE; 1125 return PTR_ERR(mnt); 1126 } 1127 1128 if (!mnt) /* mount collision */ 1129 return 0; 1130 1131 if (!*need_mntput) { 1132 /* lock_mount() may release path->mnt on error */ 1133 mntget(path->mnt); 1134 *need_mntput = true; 1135 } 1136 err = finish_automount(mnt, path); 1137 1138 switch (err) { 1139 case -EBUSY: 1140 /* Someone else made a mount here whilst we were busy */ 1141 return 0; 1142 case 0: 1143 path_put(path); 1144 path->mnt = mnt; 1145 path->dentry = dget(mnt->mnt_root); 1146 return 0; 1147 default: 1148 return err; 1149 } 1150 1151 } 1152 1153 /* 1154 * Handle a dentry that is managed in some way. 1155 * - Flagged for transit management (autofs) 1156 * - Flagged as mountpoint 1157 * - Flagged as automount point 1158 * 1159 * This may only be called in refwalk mode. 1160 * 1161 * Serialization is taken care of in namespace.c 1162 */ 1163 static int follow_managed(struct path *path, struct nameidata *nd) 1164 { 1165 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */ 1166 unsigned managed; 1167 bool need_mntput = false; 1168 int ret = 0; 1169 1170 /* Given that we're not holding a lock here, we retain the value in a 1171 * local variable for each dentry as we look at it so that we don't see 1172 * the components of that value change under us */ 1173 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1174 managed &= DCACHE_MANAGED_DENTRY, 1175 unlikely(managed != 0)) { 1176 /* Allow the filesystem to manage the transit without i_mutex 1177 * being held. */ 1178 if (managed & DCACHE_MANAGE_TRANSIT) { 1179 BUG_ON(!path->dentry->d_op); 1180 BUG_ON(!path->dentry->d_op->d_manage); 1181 ret = path->dentry->d_op->d_manage(path->dentry, false); 1182 if (ret < 0) 1183 break; 1184 } 1185 1186 /* Transit to a mounted filesystem. */ 1187 if (managed & DCACHE_MOUNTED) { 1188 struct vfsmount *mounted = lookup_mnt(path); 1189 if (mounted) { 1190 dput(path->dentry); 1191 if (need_mntput) 1192 mntput(path->mnt); 1193 path->mnt = mounted; 1194 path->dentry = dget(mounted->mnt_root); 1195 need_mntput = true; 1196 continue; 1197 } 1198 1199 /* Something is mounted on this dentry in another 1200 * namespace and/or whatever was mounted there in this 1201 * namespace got unmounted before lookup_mnt() could 1202 * get it */ 1203 } 1204 1205 /* Handle an automount point */ 1206 if (managed & DCACHE_NEED_AUTOMOUNT) { 1207 ret = follow_automount(path, nd, &need_mntput); 1208 if (ret < 0) 1209 break; 1210 continue; 1211 } 1212 1213 /* We didn't change the current path point */ 1214 break; 1215 } 1216 1217 if (need_mntput && path->mnt == mnt) 1218 mntput(path->mnt); 1219 if (ret == -EISDIR) 1220 ret = 0; 1221 if (need_mntput) 1222 nd->flags |= LOOKUP_JUMPED; 1223 if (unlikely(ret < 0)) 1224 path_put_conditional(path, nd); 1225 return ret; 1226 } 1227 1228 int follow_down_one(struct path *path) 1229 { 1230 struct vfsmount *mounted; 1231 1232 mounted = lookup_mnt(path); 1233 if (mounted) { 1234 dput(path->dentry); 1235 mntput(path->mnt); 1236 path->mnt = mounted; 1237 path->dentry = dget(mounted->mnt_root); 1238 return 1; 1239 } 1240 return 0; 1241 } 1242 EXPORT_SYMBOL(follow_down_one); 1243 1244 static inline int managed_dentry_rcu(struct dentry *dentry) 1245 { 1246 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ? 1247 dentry->d_op->d_manage(dentry, true) : 0; 1248 } 1249 1250 /* 1251 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1252 * we meet a managed dentry that would need blocking. 1253 */ 1254 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1255 struct inode **inode, unsigned *seqp) 1256 { 1257 for (;;) { 1258 struct mount *mounted; 1259 /* 1260 * Don't forget we might have a non-mountpoint managed dentry 1261 * that wants to block transit. 1262 */ 1263 switch (managed_dentry_rcu(path->dentry)) { 1264 case -ECHILD: 1265 default: 1266 return false; 1267 case -EISDIR: 1268 return true; 1269 case 0: 1270 break; 1271 } 1272 1273 if (!d_mountpoint(path->dentry)) 1274 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1275 1276 mounted = __lookup_mnt(path->mnt, path->dentry); 1277 if (!mounted) 1278 break; 1279 path->mnt = &mounted->mnt; 1280 path->dentry = mounted->mnt.mnt_root; 1281 nd->flags |= LOOKUP_JUMPED; 1282 *seqp = read_seqcount_begin(&path->dentry->d_seq); 1283 /* 1284 * Update the inode too. We don't need to re-check the 1285 * dentry sequence number here after this d_inode read, 1286 * because a mount-point is always pinned. 1287 */ 1288 *inode = path->dentry->d_inode; 1289 } 1290 return !read_seqretry(&mount_lock, nd->m_seq) && 1291 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1292 } 1293 1294 static int follow_dotdot_rcu(struct nameidata *nd) 1295 { 1296 struct inode *inode = nd->inode; 1297 if (!nd->root.mnt) 1298 set_root_rcu(nd); 1299 1300 while (1) { 1301 if (path_equal(&nd->path, &nd->root)) 1302 break; 1303 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1304 struct dentry *old = nd->path.dentry; 1305 struct dentry *parent = old->d_parent; 1306 unsigned seq; 1307 1308 inode = parent->d_inode; 1309 seq = read_seqcount_begin(&parent->d_seq); 1310 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq))) 1311 return -ECHILD; 1312 nd->path.dentry = parent; 1313 nd->seq = seq; 1314 if (unlikely(!path_connected(&nd->path))) 1315 return -ENOENT; 1316 break; 1317 } else { 1318 struct mount *mnt = real_mount(nd->path.mnt); 1319 struct mount *mparent = mnt->mnt_parent; 1320 struct dentry *mountpoint = mnt->mnt_mountpoint; 1321 struct inode *inode2 = mountpoint->d_inode; 1322 unsigned seq = read_seqcount_begin(&mountpoint->d_seq); 1323 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1324 return -ECHILD; 1325 if (&mparent->mnt == nd->path.mnt) 1326 break; 1327 /* we know that mountpoint was pinned */ 1328 nd->path.dentry = mountpoint; 1329 nd->path.mnt = &mparent->mnt; 1330 inode = inode2; 1331 nd->seq = seq; 1332 } 1333 } 1334 while (unlikely(d_mountpoint(nd->path.dentry))) { 1335 struct mount *mounted; 1336 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry); 1337 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1338 return -ECHILD; 1339 if (!mounted) 1340 break; 1341 nd->path.mnt = &mounted->mnt; 1342 nd->path.dentry = mounted->mnt.mnt_root; 1343 inode = nd->path.dentry->d_inode; 1344 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1345 } 1346 nd->inode = inode; 1347 return 0; 1348 } 1349 1350 /* 1351 * Follow down to the covering mount currently visible to userspace. At each 1352 * point, the filesystem owning that dentry may be queried as to whether the 1353 * caller is permitted to proceed or not. 1354 */ 1355 int follow_down(struct path *path) 1356 { 1357 unsigned managed; 1358 int ret; 1359 1360 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1361 unlikely(managed & DCACHE_MANAGED_DENTRY)) { 1362 /* Allow the filesystem to manage the transit without i_mutex 1363 * being held. 1364 * 1365 * We indicate to the filesystem if someone is trying to mount 1366 * something here. This gives autofs the chance to deny anyone 1367 * other than its daemon the right to mount on its 1368 * superstructure. 1369 * 1370 * The filesystem may sleep at this point. 1371 */ 1372 if (managed & DCACHE_MANAGE_TRANSIT) { 1373 BUG_ON(!path->dentry->d_op); 1374 BUG_ON(!path->dentry->d_op->d_manage); 1375 ret = path->dentry->d_op->d_manage( 1376 path->dentry, false); 1377 if (ret < 0) 1378 return ret == -EISDIR ? 0 : ret; 1379 } 1380 1381 /* Transit to a mounted filesystem. */ 1382 if (managed & DCACHE_MOUNTED) { 1383 struct vfsmount *mounted = lookup_mnt(path); 1384 if (!mounted) 1385 break; 1386 dput(path->dentry); 1387 mntput(path->mnt); 1388 path->mnt = mounted; 1389 path->dentry = dget(mounted->mnt_root); 1390 continue; 1391 } 1392 1393 /* Don't handle automount points here */ 1394 break; 1395 } 1396 return 0; 1397 } 1398 EXPORT_SYMBOL(follow_down); 1399 1400 /* 1401 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() 1402 */ 1403 static void follow_mount(struct path *path) 1404 { 1405 while (d_mountpoint(path->dentry)) { 1406 struct vfsmount *mounted = lookup_mnt(path); 1407 if (!mounted) 1408 break; 1409 dput(path->dentry); 1410 mntput(path->mnt); 1411 path->mnt = mounted; 1412 path->dentry = dget(mounted->mnt_root); 1413 } 1414 } 1415 1416 static int follow_dotdot(struct nameidata *nd) 1417 { 1418 if (!nd->root.mnt) 1419 set_root(nd); 1420 1421 while(1) { 1422 struct dentry *old = nd->path.dentry; 1423 1424 if (nd->path.dentry == nd->root.dentry && 1425 nd->path.mnt == nd->root.mnt) { 1426 break; 1427 } 1428 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1429 /* rare case of legitimate dget_parent()... */ 1430 nd->path.dentry = dget_parent(nd->path.dentry); 1431 dput(old); 1432 if (unlikely(!path_connected(&nd->path))) 1433 return -ENOENT; 1434 break; 1435 } 1436 if (!follow_up(&nd->path)) 1437 break; 1438 } 1439 follow_mount(&nd->path); 1440 nd->inode = nd->path.dentry->d_inode; 1441 return 0; 1442 } 1443 1444 /* 1445 * This looks up the name in dcache, possibly revalidates the old dentry and 1446 * allocates a new one if not found or not valid. In the need_lookup argument 1447 * returns whether i_op->lookup is necessary. 1448 * 1449 * dir->d_inode->i_mutex must be held 1450 */ 1451 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir, 1452 unsigned int flags, bool *need_lookup) 1453 { 1454 struct dentry *dentry; 1455 int error; 1456 1457 *need_lookup = false; 1458 dentry = d_lookup(dir, name); 1459 if (dentry) { 1460 if (dentry->d_flags & DCACHE_OP_REVALIDATE) { 1461 error = d_revalidate(dentry, flags); 1462 if (unlikely(error <= 0)) { 1463 if (error < 0) { 1464 dput(dentry); 1465 return ERR_PTR(error); 1466 } else { 1467 d_invalidate(dentry); 1468 dput(dentry); 1469 dentry = NULL; 1470 } 1471 } 1472 } 1473 } 1474 1475 if (!dentry) { 1476 dentry = d_alloc(dir, name); 1477 if (unlikely(!dentry)) 1478 return ERR_PTR(-ENOMEM); 1479 1480 *need_lookup = true; 1481 } 1482 return dentry; 1483 } 1484 1485 /* 1486 * Call i_op->lookup on the dentry. The dentry must be negative and 1487 * unhashed. 1488 * 1489 * dir->d_inode->i_mutex must be held 1490 */ 1491 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry, 1492 unsigned int flags) 1493 { 1494 struct dentry *old; 1495 1496 /* Don't create child dentry for a dead directory. */ 1497 if (unlikely(IS_DEADDIR(dir))) { 1498 dput(dentry); 1499 return ERR_PTR(-ENOENT); 1500 } 1501 1502 old = dir->i_op->lookup(dir, dentry, flags); 1503 if (unlikely(old)) { 1504 dput(dentry); 1505 dentry = old; 1506 } 1507 return dentry; 1508 } 1509 1510 static struct dentry *__lookup_hash(struct qstr *name, 1511 struct dentry *base, unsigned int flags) 1512 { 1513 bool need_lookup; 1514 struct dentry *dentry; 1515 1516 dentry = lookup_dcache(name, base, flags, &need_lookup); 1517 if (!need_lookup) 1518 return dentry; 1519 1520 return lookup_real(base->d_inode, dentry, flags); 1521 } 1522 1523 /* 1524 * It's more convoluted than I'd like it to be, but... it's still fairly 1525 * small and for now I'd prefer to have fast path as straight as possible. 1526 * It _is_ time-critical. 1527 */ 1528 static int lookup_fast(struct nameidata *nd, 1529 struct path *path, struct inode **inode, 1530 unsigned *seqp) 1531 { 1532 struct vfsmount *mnt = nd->path.mnt; 1533 struct dentry *dentry, *parent = nd->path.dentry; 1534 int need_reval = 1; 1535 int status = 1; 1536 int err; 1537 1538 /* 1539 * Rename seqlock is not required here because in the off chance 1540 * of a false negative due to a concurrent rename, we're going to 1541 * do the non-racy lookup, below. 1542 */ 1543 if (nd->flags & LOOKUP_RCU) { 1544 unsigned seq; 1545 bool negative; 1546 dentry = __d_lookup_rcu(parent, &nd->last, &seq); 1547 if (!dentry) 1548 goto unlazy; 1549 1550 /* 1551 * This sequence count validates that the inode matches 1552 * the dentry name information from lookup. 1553 */ 1554 *inode = d_backing_inode(dentry); 1555 negative = d_is_negative(dentry); 1556 if (read_seqcount_retry(&dentry->d_seq, seq)) 1557 return -ECHILD; 1558 1559 /* 1560 * This sequence count validates that the parent had no 1561 * changes while we did the lookup of the dentry above. 1562 * 1563 * The memory barrier in read_seqcount_begin of child is 1564 * enough, we can use __read_seqcount_retry here. 1565 */ 1566 if (__read_seqcount_retry(&parent->d_seq, nd->seq)) 1567 return -ECHILD; 1568 1569 *seqp = seq; 1570 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) { 1571 status = d_revalidate(dentry, nd->flags); 1572 if (unlikely(status <= 0)) { 1573 if (status != -ECHILD) 1574 need_reval = 0; 1575 goto unlazy; 1576 } 1577 } 1578 /* 1579 * Note: do negative dentry check after revalidation in 1580 * case that drops it. 1581 */ 1582 if (negative) 1583 return -ENOENT; 1584 path->mnt = mnt; 1585 path->dentry = dentry; 1586 if (likely(__follow_mount_rcu(nd, path, inode, seqp))) 1587 return 0; 1588 unlazy: 1589 if (unlazy_walk(nd, dentry, seq)) 1590 return -ECHILD; 1591 } else { 1592 dentry = __d_lookup(parent, &nd->last); 1593 } 1594 1595 if (unlikely(!dentry)) 1596 goto need_lookup; 1597 1598 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval) 1599 status = d_revalidate(dentry, nd->flags); 1600 if (unlikely(status <= 0)) { 1601 if (status < 0) { 1602 dput(dentry); 1603 return status; 1604 } 1605 d_invalidate(dentry); 1606 dput(dentry); 1607 goto need_lookup; 1608 } 1609 1610 if (unlikely(d_is_negative(dentry))) { 1611 dput(dentry); 1612 return -ENOENT; 1613 } 1614 path->mnt = mnt; 1615 path->dentry = dentry; 1616 err = follow_managed(path, nd); 1617 if (likely(!err)) 1618 *inode = d_backing_inode(path->dentry); 1619 return err; 1620 1621 need_lookup: 1622 return 1; 1623 } 1624 1625 /* Fast lookup failed, do it the slow way */ 1626 static int lookup_slow(struct nameidata *nd, struct path *path) 1627 { 1628 struct dentry *dentry, *parent; 1629 1630 parent = nd->path.dentry; 1631 BUG_ON(nd->inode != parent->d_inode); 1632 1633 mutex_lock(&parent->d_inode->i_mutex); 1634 dentry = __lookup_hash(&nd->last, parent, nd->flags); 1635 mutex_unlock(&parent->d_inode->i_mutex); 1636 if (IS_ERR(dentry)) 1637 return PTR_ERR(dentry); 1638 path->mnt = nd->path.mnt; 1639 path->dentry = dentry; 1640 return follow_managed(path, nd); 1641 } 1642 1643 static inline int may_lookup(struct nameidata *nd) 1644 { 1645 if (nd->flags & LOOKUP_RCU) { 1646 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1647 if (err != -ECHILD) 1648 return err; 1649 if (unlazy_walk(nd, NULL, 0)) 1650 return -ECHILD; 1651 } 1652 return inode_permission(nd->inode, MAY_EXEC); 1653 } 1654 1655 static inline int handle_dots(struct nameidata *nd, int type) 1656 { 1657 if (type == LAST_DOTDOT) { 1658 if (nd->flags & LOOKUP_RCU) { 1659 return follow_dotdot_rcu(nd); 1660 } else 1661 return follow_dotdot(nd); 1662 } 1663 return 0; 1664 } 1665 1666 static int pick_link(struct nameidata *nd, struct path *link, 1667 struct inode *inode, unsigned seq) 1668 { 1669 int error; 1670 struct saved *last; 1671 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) { 1672 path_to_nameidata(link, nd); 1673 return -ELOOP; 1674 } 1675 if (!(nd->flags & LOOKUP_RCU)) { 1676 if (link->mnt == nd->path.mnt) 1677 mntget(link->mnt); 1678 } 1679 error = nd_alloc_stack(nd); 1680 if (unlikely(error)) { 1681 if (error == -ECHILD) { 1682 if (unlikely(unlazy_link(nd, link, seq))) 1683 return -ECHILD; 1684 error = nd_alloc_stack(nd); 1685 } 1686 if (error) { 1687 path_put(link); 1688 return error; 1689 } 1690 } 1691 1692 last = nd->stack + nd->depth++; 1693 last->link = *link; 1694 last->cookie = NULL; 1695 last->inode = inode; 1696 last->seq = seq; 1697 return 1; 1698 } 1699 1700 /* 1701 * Do we need to follow links? We _really_ want to be able 1702 * to do this check without having to look at inode->i_op, 1703 * so we keep a cache of "no, this doesn't need follow_link" 1704 * for the common case. 1705 */ 1706 static inline int should_follow_link(struct nameidata *nd, struct path *link, 1707 int follow, 1708 struct inode *inode, unsigned seq) 1709 { 1710 if (likely(!d_is_symlink(link->dentry))) 1711 return 0; 1712 if (!follow) 1713 return 0; 1714 return pick_link(nd, link, inode, seq); 1715 } 1716 1717 enum {WALK_GET = 1, WALK_PUT = 2}; 1718 1719 static int walk_component(struct nameidata *nd, int flags) 1720 { 1721 struct path path; 1722 struct inode *inode; 1723 unsigned seq; 1724 int err; 1725 /* 1726 * "." and ".." are special - ".." especially so because it has 1727 * to be able to know about the current root directory and 1728 * parent relationships. 1729 */ 1730 if (unlikely(nd->last_type != LAST_NORM)) { 1731 err = handle_dots(nd, nd->last_type); 1732 if (flags & WALK_PUT) 1733 put_link(nd); 1734 return err; 1735 } 1736 err = lookup_fast(nd, &path, &inode, &seq); 1737 if (unlikely(err)) { 1738 if (err < 0) 1739 return err; 1740 1741 err = lookup_slow(nd, &path); 1742 if (err < 0) 1743 return err; 1744 1745 inode = d_backing_inode(path.dentry); 1746 seq = 0; /* we are already out of RCU mode */ 1747 err = -ENOENT; 1748 if (d_is_negative(path.dentry)) 1749 goto out_path_put; 1750 } 1751 1752 if (flags & WALK_PUT) 1753 put_link(nd); 1754 err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq); 1755 if (unlikely(err)) 1756 return err; 1757 path_to_nameidata(&path, nd); 1758 nd->inode = inode; 1759 nd->seq = seq; 1760 return 0; 1761 1762 out_path_put: 1763 path_to_nameidata(&path, nd); 1764 return err; 1765 } 1766 1767 /* 1768 * We can do the critical dentry name comparison and hashing 1769 * operations one word at a time, but we are limited to: 1770 * 1771 * - Architectures with fast unaligned word accesses. We could 1772 * do a "get_unaligned()" if this helps and is sufficiently 1773 * fast. 1774 * 1775 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 1776 * do not trap on the (extremely unlikely) case of a page 1777 * crossing operation. 1778 * 1779 * - Furthermore, we need an efficient 64-bit compile for the 1780 * 64-bit case in order to generate the "number of bytes in 1781 * the final mask". Again, that could be replaced with a 1782 * efficient population count instruction or similar. 1783 */ 1784 #ifdef CONFIG_DCACHE_WORD_ACCESS 1785 1786 #include <asm/word-at-a-time.h> 1787 1788 #ifdef CONFIG_64BIT 1789 1790 static inline unsigned int fold_hash(unsigned long hash) 1791 { 1792 return hash_64(hash, 32); 1793 } 1794 1795 #else /* 32-bit case */ 1796 1797 #define fold_hash(x) (x) 1798 1799 #endif 1800 1801 unsigned int full_name_hash(const unsigned char *name, unsigned int len) 1802 { 1803 unsigned long a, mask; 1804 unsigned long hash = 0; 1805 1806 for (;;) { 1807 a = load_unaligned_zeropad(name); 1808 if (len < sizeof(unsigned long)) 1809 break; 1810 hash += a; 1811 hash *= 9; 1812 name += sizeof(unsigned long); 1813 len -= sizeof(unsigned long); 1814 if (!len) 1815 goto done; 1816 } 1817 mask = bytemask_from_count(len); 1818 hash += mask & a; 1819 done: 1820 return fold_hash(hash); 1821 } 1822 EXPORT_SYMBOL(full_name_hash); 1823 1824 /* 1825 * Calculate the length and hash of the path component, and 1826 * return the "hash_len" as the result. 1827 */ 1828 static inline u64 hash_name(const char *name) 1829 { 1830 unsigned long a, b, adata, bdata, mask, hash, len; 1831 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1832 1833 hash = a = 0; 1834 len = -sizeof(unsigned long); 1835 do { 1836 hash = (hash + a) * 9; 1837 len += sizeof(unsigned long); 1838 a = load_unaligned_zeropad(name+len); 1839 b = a ^ REPEAT_BYTE('/'); 1840 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 1841 1842 adata = prep_zero_mask(a, adata, &constants); 1843 bdata = prep_zero_mask(b, bdata, &constants); 1844 1845 mask = create_zero_mask(adata | bdata); 1846 1847 hash += a & zero_bytemask(mask); 1848 len += find_zero(mask); 1849 return hashlen_create(fold_hash(hash), len); 1850 } 1851 1852 #else 1853 1854 unsigned int full_name_hash(const unsigned char *name, unsigned int len) 1855 { 1856 unsigned long hash = init_name_hash(); 1857 while (len--) 1858 hash = partial_name_hash(*name++, hash); 1859 return end_name_hash(hash); 1860 } 1861 EXPORT_SYMBOL(full_name_hash); 1862 1863 /* 1864 * We know there's a real path component here of at least 1865 * one character. 1866 */ 1867 static inline u64 hash_name(const char *name) 1868 { 1869 unsigned long hash = init_name_hash(); 1870 unsigned long len = 0, c; 1871 1872 c = (unsigned char)*name; 1873 do { 1874 len++; 1875 hash = partial_name_hash(c, hash); 1876 c = (unsigned char)name[len]; 1877 } while (c && c != '/'); 1878 return hashlen_create(end_name_hash(hash), len); 1879 } 1880 1881 #endif 1882 1883 /* 1884 * Name resolution. 1885 * This is the basic name resolution function, turning a pathname into 1886 * the final dentry. We expect 'base' to be positive and a directory. 1887 * 1888 * Returns 0 and nd will have valid dentry and mnt on success. 1889 * Returns error and drops reference to input namei data on failure. 1890 */ 1891 static int link_path_walk(const char *name, struct nameidata *nd) 1892 { 1893 int err; 1894 1895 while (*name=='/') 1896 name++; 1897 if (!*name) 1898 return 0; 1899 1900 /* At this point we know we have a real path component. */ 1901 for(;;) { 1902 u64 hash_len; 1903 int type; 1904 1905 err = may_lookup(nd); 1906 if (err) 1907 return err; 1908 1909 hash_len = hash_name(name); 1910 1911 type = LAST_NORM; 1912 if (name[0] == '.') switch (hashlen_len(hash_len)) { 1913 case 2: 1914 if (name[1] == '.') { 1915 type = LAST_DOTDOT; 1916 nd->flags |= LOOKUP_JUMPED; 1917 } 1918 break; 1919 case 1: 1920 type = LAST_DOT; 1921 } 1922 if (likely(type == LAST_NORM)) { 1923 struct dentry *parent = nd->path.dentry; 1924 nd->flags &= ~LOOKUP_JUMPED; 1925 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 1926 struct qstr this = { { .hash_len = hash_len }, .name = name }; 1927 err = parent->d_op->d_hash(parent, &this); 1928 if (err < 0) 1929 return err; 1930 hash_len = this.hash_len; 1931 name = this.name; 1932 } 1933 } 1934 1935 nd->last.hash_len = hash_len; 1936 nd->last.name = name; 1937 nd->last_type = type; 1938 1939 name += hashlen_len(hash_len); 1940 if (!*name) 1941 goto OK; 1942 /* 1943 * If it wasn't NUL, we know it was '/'. Skip that 1944 * slash, and continue until no more slashes. 1945 */ 1946 do { 1947 name++; 1948 } while (unlikely(*name == '/')); 1949 if (unlikely(!*name)) { 1950 OK: 1951 /* pathname body, done */ 1952 if (!nd->depth) 1953 return 0; 1954 name = nd->stack[nd->depth - 1].name; 1955 /* trailing symlink, done */ 1956 if (!name) 1957 return 0; 1958 /* last component of nested symlink */ 1959 err = walk_component(nd, WALK_GET | WALK_PUT); 1960 } else { 1961 err = walk_component(nd, WALK_GET); 1962 } 1963 if (err < 0) 1964 return err; 1965 1966 if (err) { 1967 const char *s = get_link(nd); 1968 1969 if (IS_ERR(s)) 1970 return PTR_ERR(s); 1971 err = 0; 1972 if (unlikely(!s)) { 1973 /* jumped */ 1974 put_link(nd); 1975 } else { 1976 nd->stack[nd->depth - 1].name = name; 1977 name = s; 1978 continue; 1979 } 1980 } 1981 if (unlikely(!d_can_lookup(nd->path.dentry))) { 1982 if (nd->flags & LOOKUP_RCU) { 1983 if (unlazy_walk(nd, NULL, 0)) 1984 return -ECHILD; 1985 } 1986 return -ENOTDIR; 1987 } 1988 } 1989 } 1990 1991 static const char *path_init(struct nameidata *nd, unsigned flags) 1992 { 1993 int retval = 0; 1994 const char *s = nd->name->name; 1995 1996 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 1997 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT; 1998 nd->depth = 0; 1999 nd->total_link_count = 0; 2000 if (flags & LOOKUP_ROOT) { 2001 struct dentry *root = nd->root.dentry; 2002 struct inode *inode = root->d_inode; 2003 if (*s) { 2004 if (!d_can_lookup(root)) 2005 return ERR_PTR(-ENOTDIR); 2006 retval = inode_permission(inode, MAY_EXEC); 2007 if (retval) 2008 return ERR_PTR(retval); 2009 } 2010 nd->path = nd->root; 2011 nd->inode = inode; 2012 if (flags & LOOKUP_RCU) { 2013 rcu_read_lock(); 2014 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2015 nd->root_seq = nd->seq; 2016 nd->m_seq = read_seqbegin(&mount_lock); 2017 } else { 2018 path_get(&nd->path); 2019 } 2020 return s; 2021 } 2022 2023 nd->root.mnt = NULL; 2024 2025 nd->m_seq = read_seqbegin(&mount_lock); 2026 if (*s == '/') { 2027 if (flags & LOOKUP_RCU) { 2028 rcu_read_lock(); 2029 set_root_rcu(nd); 2030 nd->seq = nd->root_seq; 2031 } else { 2032 set_root(nd); 2033 path_get(&nd->root); 2034 } 2035 nd->path = nd->root; 2036 } else if (nd->dfd == AT_FDCWD) { 2037 if (flags & LOOKUP_RCU) { 2038 struct fs_struct *fs = current->fs; 2039 unsigned seq; 2040 2041 rcu_read_lock(); 2042 2043 do { 2044 seq = read_seqcount_begin(&fs->seq); 2045 nd->path = fs->pwd; 2046 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2047 } while (read_seqcount_retry(&fs->seq, seq)); 2048 } else { 2049 get_fs_pwd(current->fs, &nd->path); 2050 } 2051 } else { 2052 /* Caller must check execute permissions on the starting path component */ 2053 struct fd f = fdget_raw(nd->dfd); 2054 struct dentry *dentry; 2055 2056 if (!f.file) 2057 return ERR_PTR(-EBADF); 2058 2059 dentry = f.file->f_path.dentry; 2060 2061 if (*s) { 2062 if (!d_can_lookup(dentry)) { 2063 fdput(f); 2064 return ERR_PTR(-ENOTDIR); 2065 } 2066 } 2067 2068 nd->path = f.file->f_path; 2069 if (flags & LOOKUP_RCU) { 2070 rcu_read_lock(); 2071 nd->inode = nd->path.dentry->d_inode; 2072 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2073 } else { 2074 path_get(&nd->path); 2075 nd->inode = nd->path.dentry->d_inode; 2076 } 2077 fdput(f); 2078 return s; 2079 } 2080 2081 nd->inode = nd->path.dentry->d_inode; 2082 if (!(flags & LOOKUP_RCU)) 2083 return s; 2084 if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq))) 2085 return s; 2086 if (!(nd->flags & LOOKUP_ROOT)) 2087 nd->root.mnt = NULL; 2088 rcu_read_unlock(); 2089 return ERR_PTR(-ECHILD); 2090 } 2091 2092 static const char *trailing_symlink(struct nameidata *nd) 2093 { 2094 const char *s; 2095 int error = may_follow_link(nd); 2096 if (unlikely(error)) 2097 return ERR_PTR(error); 2098 nd->flags |= LOOKUP_PARENT; 2099 nd->stack[0].name = NULL; 2100 s = get_link(nd); 2101 return s ? s : ""; 2102 } 2103 2104 static inline int lookup_last(struct nameidata *nd) 2105 { 2106 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 2107 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2108 2109 nd->flags &= ~LOOKUP_PARENT; 2110 return walk_component(nd, 2111 nd->flags & LOOKUP_FOLLOW 2112 ? nd->depth 2113 ? WALK_PUT | WALK_GET 2114 : WALK_GET 2115 : 0); 2116 } 2117 2118 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2119 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path) 2120 { 2121 const char *s = path_init(nd, flags); 2122 int err; 2123 2124 if (IS_ERR(s)) 2125 return PTR_ERR(s); 2126 while (!(err = link_path_walk(s, nd)) 2127 && ((err = lookup_last(nd)) > 0)) { 2128 s = trailing_symlink(nd); 2129 if (IS_ERR(s)) { 2130 err = PTR_ERR(s); 2131 break; 2132 } 2133 } 2134 if (!err) 2135 err = complete_walk(nd); 2136 2137 if (!err && nd->flags & LOOKUP_DIRECTORY) 2138 if (!d_can_lookup(nd->path.dentry)) 2139 err = -ENOTDIR; 2140 if (!err) { 2141 *path = nd->path; 2142 nd->path.mnt = NULL; 2143 nd->path.dentry = NULL; 2144 } 2145 terminate_walk(nd); 2146 return err; 2147 } 2148 2149 static int filename_lookup(int dfd, struct filename *name, unsigned flags, 2150 struct path *path, struct path *root) 2151 { 2152 int retval; 2153 struct nameidata nd; 2154 if (IS_ERR(name)) 2155 return PTR_ERR(name); 2156 if (unlikely(root)) { 2157 nd.root = *root; 2158 flags |= LOOKUP_ROOT; 2159 } 2160 set_nameidata(&nd, dfd, name); 2161 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path); 2162 if (unlikely(retval == -ECHILD)) 2163 retval = path_lookupat(&nd, flags, path); 2164 if (unlikely(retval == -ESTALE)) 2165 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path); 2166 2167 if (likely(!retval)) 2168 audit_inode(name, path->dentry, flags & LOOKUP_PARENT); 2169 restore_nameidata(); 2170 putname(name); 2171 return retval; 2172 } 2173 2174 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2175 static int path_parentat(struct nameidata *nd, unsigned flags, 2176 struct path *parent) 2177 { 2178 const char *s = path_init(nd, flags); 2179 int err; 2180 if (IS_ERR(s)) 2181 return PTR_ERR(s); 2182 err = link_path_walk(s, nd); 2183 if (!err) 2184 err = complete_walk(nd); 2185 if (!err) { 2186 *parent = nd->path; 2187 nd->path.mnt = NULL; 2188 nd->path.dentry = NULL; 2189 } 2190 terminate_walk(nd); 2191 return err; 2192 } 2193 2194 static struct filename *filename_parentat(int dfd, struct filename *name, 2195 unsigned int flags, struct path *parent, 2196 struct qstr *last, int *type) 2197 { 2198 int retval; 2199 struct nameidata nd; 2200 2201 if (IS_ERR(name)) 2202 return name; 2203 set_nameidata(&nd, dfd, name); 2204 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent); 2205 if (unlikely(retval == -ECHILD)) 2206 retval = path_parentat(&nd, flags, parent); 2207 if (unlikely(retval == -ESTALE)) 2208 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent); 2209 if (likely(!retval)) { 2210 *last = nd.last; 2211 *type = nd.last_type; 2212 audit_inode(name, parent->dentry, LOOKUP_PARENT); 2213 } else { 2214 putname(name); 2215 name = ERR_PTR(retval); 2216 } 2217 restore_nameidata(); 2218 return name; 2219 } 2220 2221 /* does lookup, returns the object with parent locked */ 2222 struct dentry *kern_path_locked(const char *name, struct path *path) 2223 { 2224 struct filename *filename; 2225 struct dentry *d; 2226 struct qstr last; 2227 int type; 2228 2229 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path, 2230 &last, &type); 2231 if (IS_ERR(filename)) 2232 return ERR_CAST(filename); 2233 if (unlikely(type != LAST_NORM)) { 2234 path_put(path); 2235 putname(filename); 2236 return ERR_PTR(-EINVAL); 2237 } 2238 mutex_lock_nested(&path->dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2239 d = __lookup_hash(&last, path->dentry, 0); 2240 if (IS_ERR(d)) { 2241 mutex_unlock(&path->dentry->d_inode->i_mutex); 2242 path_put(path); 2243 } 2244 putname(filename); 2245 return d; 2246 } 2247 2248 int kern_path(const char *name, unsigned int flags, struct path *path) 2249 { 2250 return filename_lookup(AT_FDCWD, getname_kernel(name), 2251 flags, path, NULL); 2252 } 2253 EXPORT_SYMBOL(kern_path); 2254 2255 /** 2256 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2257 * @dentry: pointer to dentry of the base directory 2258 * @mnt: pointer to vfs mount of the base directory 2259 * @name: pointer to file name 2260 * @flags: lookup flags 2261 * @path: pointer to struct path to fill 2262 */ 2263 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2264 const char *name, unsigned int flags, 2265 struct path *path) 2266 { 2267 struct path root = {.mnt = mnt, .dentry = dentry}; 2268 /* the first argument of filename_lookup() is ignored with root */ 2269 return filename_lookup(AT_FDCWD, getname_kernel(name), 2270 flags , path, &root); 2271 } 2272 EXPORT_SYMBOL(vfs_path_lookup); 2273 2274 /** 2275 * lookup_one_len - filesystem helper to lookup single pathname component 2276 * @name: pathname component to lookup 2277 * @base: base directory to lookup from 2278 * @len: maximum length @len should be interpreted to 2279 * 2280 * Note that this routine is purely a helper for filesystem usage and should 2281 * not be called by generic code. 2282 */ 2283 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2284 { 2285 struct qstr this; 2286 unsigned int c; 2287 int err; 2288 2289 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex)); 2290 2291 this.name = name; 2292 this.len = len; 2293 this.hash = full_name_hash(name, len); 2294 if (!len) 2295 return ERR_PTR(-EACCES); 2296 2297 if (unlikely(name[0] == '.')) { 2298 if (len < 2 || (len == 2 && name[1] == '.')) 2299 return ERR_PTR(-EACCES); 2300 } 2301 2302 while (len--) { 2303 c = *(const unsigned char *)name++; 2304 if (c == '/' || c == '\0') 2305 return ERR_PTR(-EACCES); 2306 } 2307 /* 2308 * See if the low-level filesystem might want 2309 * to use its own hash.. 2310 */ 2311 if (base->d_flags & DCACHE_OP_HASH) { 2312 int err = base->d_op->d_hash(base, &this); 2313 if (err < 0) 2314 return ERR_PTR(err); 2315 } 2316 2317 err = inode_permission(base->d_inode, MAY_EXEC); 2318 if (err) 2319 return ERR_PTR(err); 2320 2321 return __lookup_hash(&this, base, 0); 2322 } 2323 EXPORT_SYMBOL(lookup_one_len); 2324 2325 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2326 struct path *path, int *empty) 2327 { 2328 return filename_lookup(dfd, getname_flags(name, flags, empty), 2329 flags, path, NULL); 2330 } 2331 EXPORT_SYMBOL(user_path_at_empty); 2332 2333 /* 2334 * NB: most callers don't do anything directly with the reference to the 2335 * to struct filename, but the nd->last pointer points into the name string 2336 * allocated by getname. So we must hold the reference to it until all 2337 * path-walking is complete. 2338 */ 2339 static inline struct filename * 2340 user_path_parent(int dfd, const char __user *path, 2341 struct path *parent, 2342 struct qstr *last, 2343 int *type, 2344 unsigned int flags) 2345 { 2346 /* only LOOKUP_REVAL is allowed in extra flags */ 2347 return filename_parentat(dfd, getname(path), flags & LOOKUP_REVAL, 2348 parent, last, type); 2349 } 2350 2351 /** 2352 * mountpoint_last - look up last component for umount 2353 * @nd: pathwalk nameidata - currently pointing at parent directory of "last" 2354 * @path: pointer to container for result 2355 * 2356 * This is a special lookup_last function just for umount. In this case, we 2357 * need to resolve the path without doing any revalidation. 2358 * 2359 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since 2360 * mountpoints are always pinned in the dcache, their ancestors are too. Thus, 2361 * in almost all cases, this lookup will be served out of the dcache. The only 2362 * cases where it won't are if nd->last refers to a symlink or the path is 2363 * bogus and it doesn't exist. 2364 * 2365 * Returns: 2366 * -error: if there was an error during lookup. This includes -ENOENT if the 2367 * lookup found a negative dentry. The nd->path reference will also be 2368 * put in this case. 2369 * 2370 * 0: if we successfully resolved nd->path and found it to not to be a 2371 * symlink that needs to be followed. "path" will also be populated. 2372 * The nd->path reference will also be put. 2373 * 2374 * 1: if we successfully resolved nd->last and found it to be a symlink 2375 * that needs to be followed. "path" will be populated with the path 2376 * to the link, and nd->path will *not* be put. 2377 */ 2378 static int 2379 mountpoint_last(struct nameidata *nd, struct path *path) 2380 { 2381 int error = 0; 2382 struct dentry *dentry; 2383 struct dentry *dir = nd->path.dentry; 2384 2385 /* If we're in rcuwalk, drop out of it to handle last component */ 2386 if (nd->flags & LOOKUP_RCU) { 2387 if (unlazy_walk(nd, NULL, 0)) 2388 return -ECHILD; 2389 } 2390 2391 nd->flags &= ~LOOKUP_PARENT; 2392 2393 if (unlikely(nd->last_type != LAST_NORM)) { 2394 error = handle_dots(nd, nd->last_type); 2395 if (error) 2396 return error; 2397 dentry = dget(nd->path.dentry); 2398 goto done; 2399 } 2400 2401 mutex_lock(&dir->d_inode->i_mutex); 2402 dentry = d_lookup(dir, &nd->last); 2403 if (!dentry) { 2404 /* 2405 * No cached dentry. Mounted dentries are pinned in the cache, 2406 * so that means that this dentry is probably a symlink or the 2407 * path doesn't actually point to a mounted dentry. 2408 */ 2409 dentry = d_alloc(dir, &nd->last); 2410 if (!dentry) { 2411 mutex_unlock(&dir->d_inode->i_mutex); 2412 return -ENOMEM; 2413 } 2414 dentry = lookup_real(dir->d_inode, dentry, nd->flags); 2415 if (IS_ERR(dentry)) { 2416 mutex_unlock(&dir->d_inode->i_mutex); 2417 return PTR_ERR(dentry); 2418 } 2419 } 2420 mutex_unlock(&dir->d_inode->i_mutex); 2421 2422 done: 2423 if (d_is_negative(dentry)) { 2424 dput(dentry); 2425 return -ENOENT; 2426 } 2427 if (nd->depth) 2428 put_link(nd); 2429 path->dentry = dentry; 2430 path->mnt = nd->path.mnt; 2431 error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW, 2432 d_backing_inode(dentry), 0); 2433 if (unlikely(error)) 2434 return error; 2435 mntget(path->mnt); 2436 follow_mount(path); 2437 return 0; 2438 } 2439 2440 /** 2441 * path_mountpoint - look up a path to be umounted 2442 * @nd: lookup context 2443 * @flags: lookup flags 2444 * @path: pointer to container for result 2445 * 2446 * Look up the given name, but don't attempt to revalidate the last component. 2447 * Returns 0 and "path" will be valid on success; Returns error otherwise. 2448 */ 2449 static int 2450 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path) 2451 { 2452 const char *s = path_init(nd, flags); 2453 int err; 2454 if (IS_ERR(s)) 2455 return PTR_ERR(s); 2456 while (!(err = link_path_walk(s, nd)) && 2457 (err = mountpoint_last(nd, path)) > 0) { 2458 s = trailing_symlink(nd); 2459 if (IS_ERR(s)) { 2460 err = PTR_ERR(s); 2461 break; 2462 } 2463 } 2464 terminate_walk(nd); 2465 return err; 2466 } 2467 2468 static int 2469 filename_mountpoint(int dfd, struct filename *name, struct path *path, 2470 unsigned int flags) 2471 { 2472 struct nameidata nd; 2473 int error; 2474 if (IS_ERR(name)) 2475 return PTR_ERR(name); 2476 set_nameidata(&nd, dfd, name); 2477 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path); 2478 if (unlikely(error == -ECHILD)) 2479 error = path_mountpoint(&nd, flags, path); 2480 if (unlikely(error == -ESTALE)) 2481 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path); 2482 if (likely(!error)) 2483 audit_inode(name, path->dentry, 0); 2484 restore_nameidata(); 2485 putname(name); 2486 return error; 2487 } 2488 2489 /** 2490 * user_path_mountpoint_at - lookup a path from userland in order to umount it 2491 * @dfd: directory file descriptor 2492 * @name: pathname from userland 2493 * @flags: lookup flags 2494 * @path: pointer to container to hold result 2495 * 2496 * A umount is a special case for path walking. We're not actually interested 2497 * in the inode in this situation, and ESTALE errors can be a problem. We 2498 * simply want track down the dentry and vfsmount attached at the mountpoint 2499 * and avoid revalidating the last component. 2500 * 2501 * Returns 0 and populates "path" on success. 2502 */ 2503 int 2504 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags, 2505 struct path *path) 2506 { 2507 return filename_mountpoint(dfd, getname(name), path, flags); 2508 } 2509 2510 int 2511 kern_path_mountpoint(int dfd, const char *name, struct path *path, 2512 unsigned int flags) 2513 { 2514 return filename_mountpoint(dfd, getname_kernel(name), path, flags); 2515 } 2516 EXPORT_SYMBOL(kern_path_mountpoint); 2517 2518 int __check_sticky(struct inode *dir, struct inode *inode) 2519 { 2520 kuid_t fsuid = current_fsuid(); 2521 2522 if (uid_eq(inode->i_uid, fsuid)) 2523 return 0; 2524 if (uid_eq(dir->i_uid, fsuid)) 2525 return 0; 2526 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER); 2527 } 2528 EXPORT_SYMBOL(__check_sticky); 2529 2530 /* 2531 * Check whether we can remove a link victim from directory dir, check 2532 * whether the type of victim is right. 2533 * 1. We can't do it if dir is read-only (done in permission()) 2534 * 2. We should have write and exec permissions on dir 2535 * 3. We can't remove anything from append-only dir 2536 * 4. We can't do anything with immutable dir (done in permission()) 2537 * 5. If the sticky bit on dir is set we should either 2538 * a. be owner of dir, or 2539 * b. be owner of victim, or 2540 * c. have CAP_FOWNER capability 2541 * 6. If the victim is append-only or immutable we can't do antyhing with 2542 * links pointing to it. 2543 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2544 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2545 * 9. We can't remove a root or mountpoint. 2546 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 2547 * nfs_async_unlink(). 2548 */ 2549 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir) 2550 { 2551 struct inode *inode = d_backing_inode(victim); 2552 int error; 2553 2554 if (d_is_negative(victim)) 2555 return -ENOENT; 2556 BUG_ON(!inode); 2557 2558 BUG_ON(victim->d_parent->d_inode != dir); 2559 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2560 2561 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 2562 if (error) 2563 return error; 2564 if (IS_APPEND(dir)) 2565 return -EPERM; 2566 2567 if (check_sticky(dir, inode) || IS_APPEND(inode) || 2568 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode)) 2569 return -EPERM; 2570 if (isdir) { 2571 if (!d_is_dir(victim)) 2572 return -ENOTDIR; 2573 if (IS_ROOT(victim)) 2574 return -EBUSY; 2575 } else if (d_is_dir(victim)) 2576 return -EISDIR; 2577 if (IS_DEADDIR(dir)) 2578 return -ENOENT; 2579 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2580 return -EBUSY; 2581 return 0; 2582 } 2583 2584 /* Check whether we can create an object with dentry child in directory 2585 * dir. 2586 * 1. We can't do it if child already exists (open has special treatment for 2587 * this case, but since we are inlined it's OK) 2588 * 2. We can't do it if dir is read-only (done in permission()) 2589 * 3. We should have write and exec permissions on dir 2590 * 4. We can't do it if dir is immutable (done in permission()) 2591 */ 2592 static inline int may_create(struct inode *dir, struct dentry *child) 2593 { 2594 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 2595 if (child->d_inode) 2596 return -EEXIST; 2597 if (IS_DEADDIR(dir)) 2598 return -ENOENT; 2599 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 2600 } 2601 2602 /* 2603 * p1 and p2 should be directories on the same fs. 2604 */ 2605 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2606 { 2607 struct dentry *p; 2608 2609 if (p1 == p2) { 2610 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2611 return NULL; 2612 } 2613 2614 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2615 2616 p = d_ancestor(p2, p1); 2617 if (p) { 2618 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT); 2619 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD); 2620 return p; 2621 } 2622 2623 p = d_ancestor(p1, p2); 2624 if (p) { 2625 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2626 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 2627 return p; 2628 } 2629 2630 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2631 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT2); 2632 return NULL; 2633 } 2634 EXPORT_SYMBOL(lock_rename); 2635 2636 void unlock_rename(struct dentry *p1, struct dentry *p2) 2637 { 2638 mutex_unlock(&p1->d_inode->i_mutex); 2639 if (p1 != p2) { 2640 mutex_unlock(&p2->d_inode->i_mutex); 2641 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2642 } 2643 } 2644 EXPORT_SYMBOL(unlock_rename); 2645 2646 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2647 bool want_excl) 2648 { 2649 int error = may_create(dir, dentry); 2650 if (error) 2651 return error; 2652 2653 if (!dir->i_op->create) 2654 return -EACCES; /* shouldn't it be ENOSYS? */ 2655 mode &= S_IALLUGO; 2656 mode |= S_IFREG; 2657 error = security_inode_create(dir, dentry, mode); 2658 if (error) 2659 return error; 2660 error = dir->i_op->create(dir, dentry, mode, want_excl); 2661 if (!error) 2662 fsnotify_create(dir, dentry); 2663 return error; 2664 } 2665 EXPORT_SYMBOL(vfs_create); 2666 2667 static int may_open(struct path *path, int acc_mode, int flag) 2668 { 2669 struct dentry *dentry = path->dentry; 2670 struct inode *inode = dentry->d_inode; 2671 int error; 2672 2673 /* O_PATH? */ 2674 if (!acc_mode) 2675 return 0; 2676 2677 if (!inode) 2678 return -ENOENT; 2679 2680 switch (inode->i_mode & S_IFMT) { 2681 case S_IFLNK: 2682 return -ELOOP; 2683 case S_IFDIR: 2684 if (acc_mode & MAY_WRITE) 2685 return -EISDIR; 2686 break; 2687 case S_IFBLK: 2688 case S_IFCHR: 2689 if (path->mnt->mnt_flags & MNT_NODEV) 2690 return -EACCES; 2691 /*FALLTHRU*/ 2692 case S_IFIFO: 2693 case S_IFSOCK: 2694 flag &= ~O_TRUNC; 2695 break; 2696 } 2697 2698 error = inode_permission(inode, acc_mode); 2699 if (error) 2700 return error; 2701 2702 /* 2703 * An append-only file must be opened in append mode for writing. 2704 */ 2705 if (IS_APPEND(inode)) { 2706 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2707 return -EPERM; 2708 if (flag & O_TRUNC) 2709 return -EPERM; 2710 } 2711 2712 /* O_NOATIME can only be set by the owner or superuser */ 2713 if (flag & O_NOATIME && !inode_owner_or_capable(inode)) 2714 return -EPERM; 2715 2716 return 0; 2717 } 2718 2719 static int handle_truncate(struct file *filp) 2720 { 2721 struct path *path = &filp->f_path; 2722 struct inode *inode = path->dentry->d_inode; 2723 int error = get_write_access(inode); 2724 if (error) 2725 return error; 2726 /* 2727 * Refuse to truncate files with mandatory locks held on them. 2728 */ 2729 error = locks_verify_locked(filp); 2730 if (!error) 2731 error = security_path_truncate(path); 2732 if (!error) { 2733 error = do_truncate(path->dentry, 0, 2734 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 2735 filp); 2736 } 2737 put_write_access(inode); 2738 return error; 2739 } 2740 2741 static inline int open_to_namei_flags(int flag) 2742 { 2743 if ((flag & O_ACCMODE) == 3) 2744 flag--; 2745 return flag; 2746 } 2747 2748 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode) 2749 { 2750 int error = security_path_mknod(dir, dentry, mode, 0); 2751 if (error) 2752 return error; 2753 2754 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC); 2755 if (error) 2756 return error; 2757 2758 return security_inode_create(dir->dentry->d_inode, dentry, mode); 2759 } 2760 2761 /* 2762 * Attempt to atomically look up, create and open a file from a negative 2763 * dentry. 2764 * 2765 * Returns 0 if successful. The file will have been created and attached to 2766 * @file by the filesystem calling finish_open(). 2767 * 2768 * Returns 1 if the file was looked up only or didn't need creating. The 2769 * caller will need to perform the open themselves. @path will have been 2770 * updated to point to the new dentry. This may be negative. 2771 * 2772 * Returns an error code otherwise. 2773 */ 2774 static int atomic_open(struct nameidata *nd, struct dentry *dentry, 2775 struct path *path, struct file *file, 2776 const struct open_flags *op, 2777 bool got_write, bool need_lookup, 2778 int *opened) 2779 { 2780 struct inode *dir = nd->path.dentry->d_inode; 2781 unsigned open_flag = open_to_namei_flags(op->open_flag); 2782 umode_t mode; 2783 int error; 2784 int acc_mode; 2785 int create_error = 0; 2786 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 2787 bool excl; 2788 2789 BUG_ON(dentry->d_inode); 2790 2791 /* Don't create child dentry for a dead directory. */ 2792 if (unlikely(IS_DEADDIR(dir))) { 2793 error = -ENOENT; 2794 goto out; 2795 } 2796 2797 mode = op->mode; 2798 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir)) 2799 mode &= ~current_umask(); 2800 2801 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT); 2802 if (excl) 2803 open_flag &= ~O_TRUNC; 2804 2805 /* 2806 * Checking write permission is tricky, bacuse we don't know if we are 2807 * going to actually need it: O_CREAT opens should work as long as the 2808 * file exists. But checking existence breaks atomicity. The trick is 2809 * to check access and if not granted clear O_CREAT from the flags. 2810 * 2811 * Another problem is returing the "right" error value (e.g. for an 2812 * O_EXCL open we want to return EEXIST not EROFS). 2813 */ 2814 if (((open_flag & (O_CREAT | O_TRUNC)) || 2815 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) { 2816 if (!(open_flag & O_CREAT)) { 2817 /* 2818 * No O_CREATE -> atomicity not a requirement -> fall 2819 * back to lookup + open 2820 */ 2821 goto no_open; 2822 } else if (open_flag & (O_EXCL | O_TRUNC)) { 2823 /* Fall back and fail with the right error */ 2824 create_error = -EROFS; 2825 goto no_open; 2826 } else { 2827 /* No side effects, safe to clear O_CREAT */ 2828 create_error = -EROFS; 2829 open_flag &= ~O_CREAT; 2830 } 2831 } 2832 2833 if (open_flag & O_CREAT) { 2834 error = may_o_create(&nd->path, dentry, mode); 2835 if (error) { 2836 create_error = error; 2837 if (open_flag & O_EXCL) 2838 goto no_open; 2839 open_flag &= ~O_CREAT; 2840 } 2841 } 2842 2843 if (nd->flags & LOOKUP_DIRECTORY) 2844 open_flag |= O_DIRECTORY; 2845 2846 file->f_path.dentry = DENTRY_NOT_SET; 2847 file->f_path.mnt = nd->path.mnt; 2848 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode, 2849 opened); 2850 if (error < 0) { 2851 if (create_error && error == -ENOENT) 2852 error = create_error; 2853 goto out; 2854 } 2855 2856 if (error) { /* returned 1, that is */ 2857 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 2858 error = -EIO; 2859 goto out; 2860 } 2861 if (file->f_path.dentry) { 2862 dput(dentry); 2863 dentry = file->f_path.dentry; 2864 } 2865 if (*opened & FILE_CREATED) 2866 fsnotify_create(dir, dentry); 2867 if (!dentry->d_inode) { 2868 WARN_ON(*opened & FILE_CREATED); 2869 if (create_error) { 2870 error = create_error; 2871 goto out; 2872 } 2873 } else { 2874 if (excl && !(*opened & FILE_CREATED)) { 2875 error = -EEXIST; 2876 goto out; 2877 } 2878 } 2879 goto looked_up; 2880 } 2881 2882 /* 2883 * We didn't have the inode before the open, so check open permission 2884 * here. 2885 */ 2886 acc_mode = op->acc_mode; 2887 if (*opened & FILE_CREATED) { 2888 WARN_ON(!(open_flag & O_CREAT)); 2889 fsnotify_create(dir, dentry); 2890 acc_mode = MAY_OPEN; 2891 } 2892 error = may_open(&file->f_path, acc_mode, open_flag); 2893 if (error) 2894 fput(file); 2895 2896 out: 2897 dput(dentry); 2898 return error; 2899 2900 no_open: 2901 if (need_lookup) { 2902 dentry = lookup_real(dir, dentry, nd->flags); 2903 if (IS_ERR(dentry)) 2904 return PTR_ERR(dentry); 2905 2906 if (create_error) { 2907 int open_flag = op->open_flag; 2908 2909 error = create_error; 2910 if ((open_flag & O_EXCL)) { 2911 if (!dentry->d_inode) 2912 goto out; 2913 } else if (!dentry->d_inode) { 2914 goto out; 2915 } else if ((open_flag & O_TRUNC) && 2916 d_is_reg(dentry)) { 2917 goto out; 2918 } 2919 /* will fail later, go on to get the right error */ 2920 } 2921 } 2922 looked_up: 2923 path->dentry = dentry; 2924 path->mnt = nd->path.mnt; 2925 return 1; 2926 } 2927 2928 /* 2929 * Look up and maybe create and open the last component. 2930 * 2931 * Must be called with i_mutex held on parent. 2932 * 2933 * Returns 0 if the file was successfully atomically created (if necessary) and 2934 * opened. In this case the file will be returned attached to @file. 2935 * 2936 * Returns 1 if the file was not completely opened at this time, though lookups 2937 * and creations will have been performed and the dentry returned in @path will 2938 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't 2939 * specified then a negative dentry may be returned. 2940 * 2941 * An error code is returned otherwise. 2942 * 2943 * FILE_CREATE will be set in @*opened if the dentry was created and will be 2944 * cleared otherwise prior to returning. 2945 */ 2946 static int lookup_open(struct nameidata *nd, struct path *path, 2947 struct file *file, 2948 const struct open_flags *op, 2949 bool got_write, int *opened) 2950 { 2951 struct dentry *dir = nd->path.dentry; 2952 struct inode *dir_inode = dir->d_inode; 2953 struct dentry *dentry; 2954 int error; 2955 bool need_lookup; 2956 2957 *opened &= ~FILE_CREATED; 2958 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup); 2959 if (IS_ERR(dentry)) 2960 return PTR_ERR(dentry); 2961 2962 /* Cached positive dentry: will open in f_op->open */ 2963 if (!need_lookup && dentry->d_inode) 2964 goto out_no_open; 2965 2966 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) { 2967 return atomic_open(nd, dentry, path, file, op, got_write, 2968 need_lookup, opened); 2969 } 2970 2971 if (need_lookup) { 2972 BUG_ON(dentry->d_inode); 2973 2974 dentry = lookup_real(dir_inode, dentry, nd->flags); 2975 if (IS_ERR(dentry)) 2976 return PTR_ERR(dentry); 2977 } 2978 2979 /* Negative dentry, just create the file */ 2980 if (!dentry->d_inode && (op->open_flag & O_CREAT)) { 2981 umode_t mode = op->mode; 2982 if (!IS_POSIXACL(dir->d_inode)) 2983 mode &= ~current_umask(); 2984 /* 2985 * This write is needed to ensure that a 2986 * rw->ro transition does not occur between 2987 * the time when the file is created and when 2988 * a permanent write count is taken through 2989 * the 'struct file' in finish_open(). 2990 */ 2991 if (!got_write) { 2992 error = -EROFS; 2993 goto out_dput; 2994 } 2995 *opened |= FILE_CREATED; 2996 error = security_path_mknod(&nd->path, dentry, mode, 0); 2997 if (error) 2998 goto out_dput; 2999 error = vfs_create(dir->d_inode, dentry, mode, 3000 nd->flags & LOOKUP_EXCL); 3001 if (error) 3002 goto out_dput; 3003 } 3004 out_no_open: 3005 path->dentry = dentry; 3006 path->mnt = nd->path.mnt; 3007 return 1; 3008 3009 out_dput: 3010 dput(dentry); 3011 return error; 3012 } 3013 3014 /* 3015 * Handle the last step of open() 3016 */ 3017 static int do_last(struct nameidata *nd, 3018 struct file *file, const struct open_flags *op, 3019 int *opened) 3020 { 3021 struct dentry *dir = nd->path.dentry; 3022 int open_flag = op->open_flag; 3023 bool will_truncate = (open_flag & O_TRUNC) != 0; 3024 bool got_write = false; 3025 int acc_mode = op->acc_mode; 3026 unsigned seq; 3027 struct inode *inode; 3028 struct path save_parent = { .dentry = NULL, .mnt = NULL }; 3029 struct path path; 3030 bool retried = false; 3031 int error; 3032 3033 nd->flags &= ~LOOKUP_PARENT; 3034 nd->flags |= op->intent; 3035 3036 if (nd->last_type != LAST_NORM) { 3037 error = handle_dots(nd, nd->last_type); 3038 if (unlikely(error)) 3039 return error; 3040 goto finish_open; 3041 } 3042 3043 if (!(open_flag & O_CREAT)) { 3044 if (nd->last.name[nd->last.len]) 3045 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 3046 /* we _can_ be in RCU mode here */ 3047 error = lookup_fast(nd, &path, &inode, &seq); 3048 if (likely(!error)) 3049 goto finish_lookup; 3050 3051 if (error < 0) 3052 return error; 3053 3054 BUG_ON(nd->inode != dir->d_inode); 3055 } else { 3056 /* create side of things */ 3057 /* 3058 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED 3059 * has been cleared when we got to the last component we are 3060 * about to look up 3061 */ 3062 error = complete_walk(nd); 3063 if (error) 3064 return error; 3065 3066 audit_inode(nd->name, dir, LOOKUP_PARENT); 3067 /* trailing slashes? */ 3068 if (unlikely(nd->last.name[nd->last.len])) 3069 return -EISDIR; 3070 } 3071 3072 retry_lookup: 3073 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 3074 error = mnt_want_write(nd->path.mnt); 3075 if (!error) 3076 got_write = true; 3077 /* 3078 * do _not_ fail yet - we might not need that or fail with 3079 * a different error; let lookup_open() decide; we'll be 3080 * dropping this one anyway. 3081 */ 3082 } 3083 mutex_lock(&dir->d_inode->i_mutex); 3084 error = lookup_open(nd, &path, file, op, got_write, opened); 3085 mutex_unlock(&dir->d_inode->i_mutex); 3086 3087 if (error <= 0) { 3088 if (error) 3089 goto out; 3090 3091 if ((*opened & FILE_CREATED) || 3092 !S_ISREG(file_inode(file)->i_mode)) 3093 will_truncate = false; 3094 3095 audit_inode(nd->name, file->f_path.dentry, 0); 3096 goto opened; 3097 } 3098 3099 if (*opened & FILE_CREATED) { 3100 /* Don't check for write permission, don't truncate */ 3101 open_flag &= ~O_TRUNC; 3102 will_truncate = false; 3103 acc_mode = MAY_OPEN; 3104 path_to_nameidata(&path, nd); 3105 goto finish_open_created; 3106 } 3107 3108 /* 3109 * create/update audit record if it already exists. 3110 */ 3111 if (d_is_positive(path.dentry)) 3112 audit_inode(nd->name, path.dentry, 0); 3113 3114 /* 3115 * If atomic_open() acquired write access it is dropped now due to 3116 * possible mount and symlink following (this might be optimized away if 3117 * necessary...) 3118 */ 3119 if (got_write) { 3120 mnt_drop_write(nd->path.mnt); 3121 got_write = false; 3122 } 3123 3124 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) { 3125 path_to_nameidata(&path, nd); 3126 return -EEXIST; 3127 } 3128 3129 error = follow_managed(&path, nd); 3130 if (unlikely(error < 0)) 3131 return error; 3132 3133 BUG_ON(nd->flags & LOOKUP_RCU); 3134 inode = d_backing_inode(path.dentry); 3135 seq = 0; /* out of RCU mode, so the value doesn't matter */ 3136 if (unlikely(d_is_negative(path.dentry))) { 3137 path_to_nameidata(&path, nd); 3138 return -ENOENT; 3139 } 3140 finish_lookup: 3141 if (nd->depth) 3142 put_link(nd); 3143 error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW, 3144 inode, seq); 3145 if (unlikely(error)) 3146 return error; 3147 3148 if (unlikely(d_is_symlink(path.dentry)) && !(open_flag & O_PATH)) { 3149 path_to_nameidata(&path, nd); 3150 return -ELOOP; 3151 } 3152 3153 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) { 3154 path_to_nameidata(&path, nd); 3155 } else { 3156 save_parent.dentry = nd->path.dentry; 3157 save_parent.mnt = mntget(path.mnt); 3158 nd->path.dentry = path.dentry; 3159 3160 } 3161 nd->inode = inode; 3162 nd->seq = seq; 3163 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */ 3164 finish_open: 3165 error = complete_walk(nd); 3166 if (error) { 3167 path_put(&save_parent); 3168 return error; 3169 } 3170 audit_inode(nd->name, nd->path.dentry, 0); 3171 error = -EISDIR; 3172 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry)) 3173 goto out; 3174 error = -ENOTDIR; 3175 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3176 goto out; 3177 if (!d_is_reg(nd->path.dentry)) 3178 will_truncate = false; 3179 3180 if (will_truncate) { 3181 error = mnt_want_write(nd->path.mnt); 3182 if (error) 3183 goto out; 3184 got_write = true; 3185 } 3186 finish_open_created: 3187 error = may_open(&nd->path, acc_mode, open_flag); 3188 if (error) 3189 goto out; 3190 3191 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */ 3192 error = vfs_open(&nd->path, file, current_cred()); 3193 if (!error) { 3194 *opened |= FILE_OPENED; 3195 } else { 3196 if (error == -EOPENSTALE) 3197 goto stale_open; 3198 goto out; 3199 } 3200 opened: 3201 error = open_check_o_direct(file); 3202 if (error) 3203 goto exit_fput; 3204 error = ima_file_check(file, op->acc_mode, *opened); 3205 if (error) 3206 goto exit_fput; 3207 3208 if (will_truncate) { 3209 error = handle_truncate(file); 3210 if (error) 3211 goto exit_fput; 3212 } 3213 out: 3214 if (got_write) 3215 mnt_drop_write(nd->path.mnt); 3216 path_put(&save_parent); 3217 return error; 3218 3219 exit_fput: 3220 fput(file); 3221 goto out; 3222 3223 stale_open: 3224 /* If no saved parent or already retried then can't retry */ 3225 if (!save_parent.dentry || retried) 3226 goto out; 3227 3228 BUG_ON(save_parent.dentry != dir); 3229 path_put(&nd->path); 3230 nd->path = save_parent; 3231 nd->inode = dir->d_inode; 3232 save_parent.mnt = NULL; 3233 save_parent.dentry = NULL; 3234 if (got_write) { 3235 mnt_drop_write(nd->path.mnt); 3236 got_write = false; 3237 } 3238 retried = true; 3239 goto retry_lookup; 3240 } 3241 3242 static int do_tmpfile(struct nameidata *nd, unsigned flags, 3243 const struct open_flags *op, 3244 struct file *file, int *opened) 3245 { 3246 static const struct qstr name = QSTR_INIT("/", 1); 3247 struct dentry *child; 3248 struct inode *dir; 3249 struct path path; 3250 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path); 3251 if (unlikely(error)) 3252 return error; 3253 error = mnt_want_write(path.mnt); 3254 if (unlikely(error)) 3255 goto out; 3256 dir = path.dentry->d_inode; 3257 /* we want directory to be writable */ 3258 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 3259 if (error) 3260 goto out2; 3261 if (!dir->i_op->tmpfile) { 3262 error = -EOPNOTSUPP; 3263 goto out2; 3264 } 3265 child = d_alloc(path.dentry, &name); 3266 if (unlikely(!child)) { 3267 error = -ENOMEM; 3268 goto out2; 3269 } 3270 dput(path.dentry); 3271 path.dentry = child; 3272 error = dir->i_op->tmpfile(dir, child, op->mode); 3273 if (error) 3274 goto out2; 3275 audit_inode(nd->name, child, 0); 3276 /* Don't check for other permissions, the inode was just created */ 3277 error = may_open(&path, MAY_OPEN, op->open_flag); 3278 if (error) 3279 goto out2; 3280 file->f_path.mnt = path.mnt; 3281 error = finish_open(file, child, NULL, opened); 3282 if (error) 3283 goto out2; 3284 error = open_check_o_direct(file); 3285 if (error) { 3286 fput(file); 3287 } else if (!(op->open_flag & O_EXCL)) { 3288 struct inode *inode = file_inode(file); 3289 spin_lock(&inode->i_lock); 3290 inode->i_state |= I_LINKABLE; 3291 spin_unlock(&inode->i_lock); 3292 } 3293 out2: 3294 mnt_drop_write(path.mnt); 3295 out: 3296 path_put(&path); 3297 return error; 3298 } 3299 3300 static struct file *path_openat(struct nameidata *nd, 3301 const struct open_flags *op, unsigned flags) 3302 { 3303 const char *s; 3304 struct file *file; 3305 int opened = 0; 3306 int error; 3307 3308 file = get_empty_filp(); 3309 if (IS_ERR(file)) 3310 return file; 3311 3312 file->f_flags = op->open_flag; 3313 3314 if (unlikely(file->f_flags & __O_TMPFILE)) { 3315 error = do_tmpfile(nd, flags, op, file, &opened); 3316 goto out2; 3317 } 3318 3319 s = path_init(nd, flags); 3320 if (IS_ERR(s)) { 3321 put_filp(file); 3322 return ERR_CAST(s); 3323 } 3324 while (!(error = link_path_walk(s, nd)) && 3325 (error = do_last(nd, file, op, &opened)) > 0) { 3326 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3327 s = trailing_symlink(nd); 3328 if (IS_ERR(s)) { 3329 error = PTR_ERR(s); 3330 break; 3331 } 3332 } 3333 terminate_walk(nd); 3334 out2: 3335 if (!(opened & FILE_OPENED)) { 3336 BUG_ON(!error); 3337 put_filp(file); 3338 } 3339 if (unlikely(error)) { 3340 if (error == -EOPENSTALE) { 3341 if (flags & LOOKUP_RCU) 3342 error = -ECHILD; 3343 else 3344 error = -ESTALE; 3345 } 3346 file = ERR_PTR(error); 3347 } 3348 return file; 3349 } 3350 3351 struct file *do_filp_open(int dfd, struct filename *pathname, 3352 const struct open_flags *op) 3353 { 3354 struct nameidata nd; 3355 int flags = op->lookup_flags; 3356 struct file *filp; 3357 3358 set_nameidata(&nd, dfd, pathname); 3359 filp = path_openat(&nd, op, flags | LOOKUP_RCU); 3360 if (unlikely(filp == ERR_PTR(-ECHILD))) 3361 filp = path_openat(&nd, op, flags); 3362 if (unlikely(filp == ERR_PTR(-ESTALE))) 3363 filp = path_openat(&nd, op, flags | LOOKUP_REVAL); 3364 restore_nameidata(); 3365 return filp; 3366 } 3367 3368 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 3369 const char *name, const struct open_flags *op) 3370 { 3371 struct nameidata nd; 3372 struct file *file; 3373 struct filename *filename; 3374 int flags = op->lookup_flags | LOOKUP_ROOT; 3375 3376 nd.root.mnt = mnt; 3377 nd.root.dentry = dentry; 3378 3379 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN) 3380 return ERR_PTR(-ELOOP); 3381 3382 filename = getname_kernel(name); 3383 if (IS_ERR(filename)) 3384 return ERR_CAST(filename); 3385 3386 set_nameidata(&nd, -1, filename); 3387 file = path_openat(&nd, op, flags | LOOKUP_RCU); 3388 if (unlikely(file == ERR_PTR(-ECHILD))) 3389 file = path_openat(&nd, op, flags); 3390 if (unlikely(file == ERR_PTR(-ESTALE))) 3391 file = path_openat(&nd, op, flags | LOOKUP_REVAL); 3392 restore_nameidata(); 3393 putname(filename); 3394 return file; 3395 } 3396 3397 static struct dentry *filename_create(int dfd, struct filename *name, 3398 struct path *path, unsigned int lookup_flags) 3399 { 3400 struct dentry *dentry = ERR_PTR(-EEXIST); 3401 struct qstr last; 3402 int type; 3403 int err2; 3404 int error; 3405 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY); 3406 3407 /* 3408 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any 3409 * other flags passed in are ignored! 3410 */ 3411 lookup_flags &= LOOKUP_REVAL; 3412 3413 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type); 3414 if (IS_ERR(name)) 3415 return ERR_CAST(name); 3416 3417 /* 3418 * Yucky last component or no last component at all? 3419 * (foo/., foo/.., /////) 3420 */ 3421 if (unlikely(type != LAST_NORM)) 3422 goto out; 3423 3424 /* don't fail immediately if it's r/o, at least try to report other errors */ 3425 err2 = mnt_want_write(path->mnt); 3426 /* 3427 * Do the final lookup. 3428 */ 3429 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL; 3430 mutex_lock_nested(&path->dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3431 dentry = __lookup_hash(&last, path->dentry, lookup_flags); 3432 if (IS_ERR(dentry)) 3433 goto unlock; 3434 3435 error = -EEXIST; 3436 if (d_is_positive(dentry)) 3437 goto fail; 3438 3439 /* 3440 * Special case - lookup gave negative, but... we had foo/bar/ 3441 * From the vfs_mknod() POV we just have a negative dentry - 3442 * all is fine. Let's be bastards - you had / on the end, you've 3443 * been asking for (non-existent) directory. -ENOENT for you. 3444 */ 3445 if (unlikely(!is_dir && last.name[last.len])) { 3446 error = -ENOENT; 3447 goto fail; 3448 } 3449 if (unlikely(err2)) { 3450 error = err2; 3451 goto fail; 3452 } 3453 putname(name); 3454 return dentry; 3455 fail: 3456 dput(dentry); 3457 dentry = ERR_PTR(error); 3458 unlock: 3459 mutex_unlock(&path->dentry->d_inode->i_mutex); 3460 if (!err2) 3461 mnt_drop_write(path->mnt); 3462 out: 3463 path_put(path); 3464 putname(name); 3465 return dentry; 3466 } 3467 3468 struct dentry *kern_path_create(int dfd, const char *pathname, 3469 struct path *path, unsigned int lookup_flags) 3470 { 3471 return filename_create(dfd, getname_kernel(pathname), 3472 path, lookup_flags); 3473 } 3474 EXPORT_SYMBOL(kern_path_create); 3475 3476 void done_path_create(struct path *path, struct dentry *dentry) 3477 { 3478 dput(dentry); 3479 mutex_unlock(&path->dentry->d_inode->i_mutex); 3480 mnt_drop_write(path->mnt); 3481 path_put(path); 3482 } 3483 EXPORT_SYMBOL(done_path_create); 3484 3485 inline struct dentry *user_path_create(int dfd, const char __user *pathname, 3486 struct path *path, unsigned int lookup_flags) 3487 { 3488 return filename_create(dfd, getname(pathname), path, lookup_flags); 3489 } 3490 EXPORT_SYMBOL(user_path_create); 3491 3492 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 3493 { 3494 int error = may_create(dir, dentry); 3495 3496 if (error) 3497 return error; 3498 3499 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 3500 return -EPERM; 3501 3502 if (!dir->i_op->mknod) 3503 return -EPERM; 3504 3505 error = devcgroup_inode_mknod(mode, dev); 3506 if (error) 3507 return error; 3508 3509 error = security_inode_mknod(dir, dentry, mode, dev); 3510 if (error) 3511 return error; 3512 3513 error = dir->i_op->mknod(dir, dentry, mode, dev); 3514 if (!error) 3515 fsnotify_create(dir, dentry); 3516 return error; 3517 } 3518 EXPORT_SYMBOL(vfs_mknod); 3519 3520 static int may_mknod(umode_t mode) 3521 { 3522 switch (mode & S_IFMT) { 3523 case S_IFREG: 3524 case S_IFCHR: 3525 case S_IFBLK: 3526 case S_IFIFO: 3527 case S_IFSOCK: 3528 case 0: /* zero mode translates to S_IFREG */ 3529 return 0; 3530 case S_IFDIR: 3531 return -EPERM; 3532 default: 3533 return -EINVAL; 3534 } 3535 } 3536 3537 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3538 unsigned, dev) 3539 { 3540 struct dentry *dentry; 3541 struct path path; 3542 int error; 3543 unsigned int lookup_flags = 0; 3544 3545 error = may_mknod(mode); 3546 if (error) 3547 return error; 3548 retry: 3549 dentry = user_path_create(dfd, filename, &path, lookup_flags); 3550 if (IS_ERR(dentry)) 3551 return PTR_ERR(dentry); 3552 3553 if (!IS_POSIXACL(path.dentry->d_inode)) 3554 mode &= ~current_umask(); 3555 error = security_path_mknod(&path, dentry, mode, dev); 3556 if (error) 3557 goto out; 3558 switch (mode & S_IFMT) { 3559 case 0: case S_IFREG: 3560 error = vfs_create(path.dentry->d_inode,dentry,mode,true); 3561 break; 3562 case S_IFCHR: case S_IFBLK: 3563 error = vfs_mknod(path.dentry->d_inode,dentry,mode, 3564 new_decode_dev(dev)); 3565 break; 3566 case S_IFIFO: case S_IFSOCK: 3567 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0); 3568 break; 3569 } 3570 out: 3571 done_path_create(&path, dentry); 3572 if (retry_estale(error, lookup_flags)) { 3573 lookup_flags |= LOOKUP_REVAL; 3574 goto retry; 3575 } 3576 return error; 3577 } 3578 3579 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3580 { 3581 return sys_mknodat(AT_FDCWD, filename, mode, dev); 3582 } 3583 3584 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 3585 { 3586 int error = may_create(dir, dentry); 3587 unsigned max_links = dir->i_sb->s_max_links; 3588 3589 if (error) 3590 return error; 3591 3592 if (!dir->i_op->mkdir) 3593 return -EPERM; 3594 3595 mode &= (S_IRWXUGO|S_ISVTX); 3596 error = security_inode_mkdir(dir, dentry, mode); 3597 if (error) 3598 return error; 3599 3600 if (max_links && dir->i_nlink >= max_links) 3601 return -EMLINK; 3602 3603 error = dir->i_op->mkdir(dir, dentry, mode); 3604 if (!error) 3605 fsnotify_mkdir(dir, dentry); 3606 return error; 3607 } 3608 EXPORT_SYMBOL(vfs_mkdir); 3609 3610 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 3611 { 3612 struct dentry *dentry; 3613 struct path path; 3614 int error; 3615 unsigned int lookup_flags = LOOKUP_DIRECTORY; 3616 3617 retry: 3618 dentry = user_path_create(dfd, pathname, &path, lookup_flags); 3619 if (IS_ERR(dentry)) 3620 return PTR_ERR(dentry); 3621 3622 if (!IS_POSIXACL(path.dentry->d_inode)) 3623 mode &= ~current_umask(); 3624 error = security_path_mkdir(&path, dentry, mode); 3625 if (!error) 3626 error = vfs_mkdir(path.dentry->d_inode, dentry, mode); 3627 done_path_create(&path, dentry); 3628 if (retry_estale(error, lookup_flags)) { 3629 lookup_flags |= LOOKUP_REVAL; 3630 goto retry; 3631 } 3632 return error; 3633 } 3634 3635 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 3636 { 3637 return sys_mkdirat(AT_FDCWD, pathname, mode); 3638 } 3639 3640 /* 3641 * The dentry_unhash() helper will try to drop the dentry early: we 3642 * should have a usage count of 1 if we're the only user of this 3643 * dentry, and if that is true (possibly after pruning the dcache), 3644 * then we drop the dentry now. 3645 * 3646 * A low-level filesystem can, if it choses, legally 3647 * do a 3648 * 3649 * if (!d_unhashed(dentry)) 3650 * return -EBUSY; 3651 * 3652 * if it cannot handle the case of removing a directory 3653 * that is still in use by something else.. 3654 */ 3655 void dentry_unhash(struct dentry *dentry) 3656 { 3657 shrink_dcache_parent(dentry); 3658 spin_lock(&dentry->d_lock); 3659 if (dentry->d_lockref.count == 1) 3660 __d_drop(dentry); 3661 spin_unlock(&dentry->d_lock); 3662 } 3663 EXPORT_SYMBOL(dentry_unhash); 3664 3665 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 3666 { 3667 int error = may_delete(dir, dentry, 1); 3668 3669 if (error) 3670 return error; 3671 3672 if (!dir->i_op->rmdir) 3673 return -EPERM; 3674 3675 dget(dentry); 3676 mutex_lock(&dentry->d_inode->i_mutex); 3677 3678 error = -EBUSY; 3679 if (is_local_mountpoint(dentry)) 3680 goto out; 3681 3682 error = security_inode_rmdir(dir, dentry); 3683 if (error) 3684 goto out; 3685 3686 shrink_dcache_parent(dentry); 3687 error = dir->i_op->rmdir(dir, dentry); 3688 if (error) 3689 goto out; 3690 3691 dentry->d_inode->i_flags |= S_DEAD; 3692 dont_mount(dentry); 3693 detach_mounts(dentry); 3694 3695 out: 3696 mutex_unlock(&dentry->d_inode->i_mutex); 3697 dput(dentry); 3698 if (!error) 3699 d_delete(dentry); 3700 return error; 3701 } 3702 EXPORT_SYMBOL(vfs_rmdir); 3703 3704 static long do_rmdir(int dfd, const char __user *pathname) 3705 { 3706 int error = 0; 3707 struct filename *name; 3708 struct dentry *dentry; 3709 struct path path; 3710 struct qstr last; 3711 int type; 3712 unsigned int lookup_flags = 0; 3713 retry: 3714 name = user_path_parent(dfd, pathname, 3715 &path, &last, &type, lookup_flags); 3716 if (IS_ERR(name)) 3717 return PTR_ERR(name); 3718 3719 switch (type) { 3720 case LAST_DOTDOT: 3721 error = -ENOTEMPTY; 3722 goto exit1; 3723 case LAST_DOT: 3724 error = -EINVAL; 3725 goto exit1; 3726 case LAST_ROOT: 3727 error = -EBUSY; 3728 goto exit1; 3729 } 3730 3731 error = mnt_want_write(path.mnt); 3732 if (error) 3733 goto exit1; 3734 3735 mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3736 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 3737 error = PTR_ERR(dentry); 3738 if (IS_ERR(dentry)) 3739 goto exit2; 3740 if (!dentry->d_inode) { 3741 error = -ENOENT; 3742 goto exit3; 3743 } 3744 error = security_path_rmdir(&path, dentry); 3745 if (error) 3746 goto exit3; 3747 error = vfs_rmdir(path.dentry->d_inode, dentry); 3748 exit3: 3749 dput(dentry); 3750 exit2: 3751 mutex_unlock(&path.dentry->d_inode->i_mutex); 3752 mnt_drop_write(path.mnt); 3753 exit1: 3754 path_put(&path); 3755 putname(name); 3756 if (retry_estale(error, lookup_flags)) { 3757 lookup_flags |= LOOKUP_REVAL; 3758 goto retry; 3759 } 3760 return error; 3761 } 3762 3763 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 3764 { 3765 return do_rmdir(AT_FDCWD, pathname); 3766 } 3767 3768 /** 3769 * vfs_unlink - unlink a filesystem object 3770 * @dir: parent directory 3771 * @dentry: victim 3772 * @delegated_inode: returns victim inode, if the inode is delegated. 3773 * 3774 * The caller must hold dir->i_mutex. 3775 * 3776 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 3777 * return a reference to the inode in delegated_inode. The caller 3778 * should then break the delegation on that inode and retry. Because 3779 * breaking a delegation may take a long time, the caller should drop 3780 * dir->i_mutex before doing so. 3781 * 3782 * Alternatively, a caller may pass NULL for delegated_inode. This may 3783 * be appropriate for callers that expect the underlying filesystem not 3784 * to be NFS exported. 3785 */ 3786 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode) 3787 { 3788 struct inode *target = dentry->d_inode; 3789 int error = may_delete(dir, dentry, 0); 3790 3791 if (error) 3792 return error; 3793 3794 if (!dir->i_op->unlink) 3795 return -EPERM; 3796 3797 mutex_lock(&target->i_mutex); 3798 if (is_local_mountpoint(dentry)) 3799 error = -EBUSY; 3800 else { 3801 error = security_inode_unlink(dir, dentry); 3802 if (!error) { 3803 error = try_break_deleg(target, delegated_inode); 3804 if (error) 3805 goto out; 3806 error = dir->i_op->unlink(dir, dentry); 3807 if (!error) { 3808 dont_mount(dentry); 3809 detach_mounts(dentry); 3810 } 3811 } 3812 } 3813 out: 3814 mutex_unlock(&target->i_mutex); 3815 3816 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 3817 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 3818 fsnotify_link_count(target); 3819 d_delete(dentry); 3820 } 3821 3822 return error; 3823 } 3824 EXPORT_SYMBOL(vfs_unlink); 3825 3826 /* 3827 * Make sure that the actual truncation of the file will occur outside its 3828 * directory's i_mutex. Truncate can take a long time if there is a lot of 3829 * writeout happening, and we don't want to prevent access to the directory 3830 * while waiting on the I/O. 3831 */ 3832 static long do_unlinkat(int dfd, const char __user *pathname) 3833 { 3834 int error; 3835 struct filename *name; 3836 struct dentry *dentry; 3837 struct path path; 3838 struct qstr last; 3839 int type; 3840 struct inode *inode = NULL; 3841 struct inode *delegated_inode = NULL; 3842 unsigned int lookup_flags = 0; 3843 retry: 3844 name = user_path_parent(dfd, pathname, 3845 &path, &last, &type, lookup_flags); 3846 if (IS_ERR(name)) 3847 return PTR_ERR(name); 3848 3849 error = -EISDIR; 3850 if (type != LAST_NORM) 3851 goto exit1; 3852 3853 error = mnt_want_write(path.mnt); 3854 if (error) 3855 goto exit1; 3856 retry_deleg: 3857 mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3858 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 3859 error = PTR_ERR(dentry); 3860 if (!IS_ERR(dentry)) { 3861 /* Why not before? Because we want correct error value */ 3862 if (last.name[last.len]) 3863 goto slashes; 3864 inode = dentry->d_inode; 3865 if (d_is_negative(dentry)) 3866 goto slashes; 3867 ihold(inode); 3868 error = security_path_unlink(&path, dentry); 3869 if (error) 3870 goto exit2; 3871 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode); 3872 exit2: 3873 dput(dentry); 3874 } 3875 mutex_unlock(&path.dentry->d_inode->i_mutex); 3876 if (inode) 3877 iput(inode); /* truncate the inode here */ 3878 inode = NULL; 3879 if (delegated_inode) { 3880 error = break_deleg_wait(&delegated_inode); 3881 if (!error) 3882 goto retry_deleg; 3883 } 3884 mnt_drop_write(path.mnt); 3885 exit1: 3886 path_put(&path); 3887 putname(name); 3888 if (retry_estale(error, lookup_flags)) { 3889 lookup_flags |= LOOKUP_REVAL; 3890 inode = NULL; 3891 goto retry; 3892 } 3893 return error; 3894 3895 slashes: 3896 if (d_is_negative(dentry)) 3897 error = -ENOENT; 3898 else if (d_is_dir(dentry)) 3899 error = -EISDIR; 3900 else 3901 error = -ENOTDIR; 3902 goto exit2; 3903 } 3904 3905 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 3906 { 3907 if ((flag & ~AT_REMOVEDIR) != 0) 3908 return -EINVAL; 3909 3910 if (flag & AT_REMOVEDIR) 3911 return do_rmdir(dfd, pathname); 3912 3913 return do_unlinkat(dfd, pathname); 3914 } 3915 3916 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 3917 { 3918 return do_unlinkat(AT_FDCWD, pathname); 3919 } 3920 3921 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 3922 { 3923 int error = may_create(dir, dentry); 3924 3925 if (error) 3926 return error; 3927 3928 if (!dir->i_op->symlink) 3929 return -EPERM; 3930 3931 error = security_inode_symlink(dir, dentry, oldname); 3932 if (error) 3933 return error; 3934 3935 error = dir->i_op->symlink(dir, dentry, oldname); 3936 if (!error) 3937 fsnotify_create(dir, dentry); 3938 return error; 3939 } 3940 EXPORT_SYMBOL(vfs_symlink); 3941 3942 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 3943 int, newdfd, const char __user *, newname) 3944 { 3945 int error; 3946 struct filename *from; 3947 struct dentry *dentry; 3948 struct path path; 3949 unsigned int lookup_flags = 0; 3950 3951 from = getname(oldname); 3952 if (IS_ERR(from)) 3953 return PTR_ERR(from); 3954 retry: 3955 dentry = user_path_create(newdfd, newname, &path, lookup_flags); 3956 error = PTR_ERR(dentry); 3957 if (IS_ERR(dentry)) 3958 goto out_putname; 3959 3960 error = security_path_symlink(&path, dentry, from->name); 3961 if (!error) 3962 error = vfs_symlink(path.dentry->d_inode, dentry, from->name); 3963 done_path_create(&path, dentry); 3964 if (retry_estale(error, lookup_flags)) { 3965 lookup_flags |= LOOKUP_REVAL; 3966 goto retry; 3967 } 3968 out_putname: 3969 putname(from); 3970 return error; 3971 } 3972 3973 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 3974 { 3975 return sys_symlinkat(oldname, AT_FDCWD, newname); 3976 } 3977 3978 /** 3979 * vfs_link - create a new link 3980 * @old_dentry: object to be linked 3981 * @dir: new parent 3982 * @new_dentry: where to create the new link 3983 * @delegated_inode: returns inode needing a delegation break 3984 * 3985 * The caller must hold dir->i_mutex 3986 * 3987 * If vfs_link discovers a delegation on the to-be-linked file in need 3988 * of breaking, it will return -EWOULDBLOCK and return a reference to the 3989 * inode in delegated_inode. The caller should then break the delegation 3990 * and retry. Because breaking a delegation may take a long time, the 3991 * caller should drop the i_mutex before doing so. 3992 * 3993 * Alternatively, a caller may pass NULL for delegated_inode. This may 3994 * be appropriate for callers that expect the underlying filesystem not 3995 * to be NFS exported. 3996 */ 3997 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode) 3998 { 3999 struct inode *inode = old_dentry->d_inode; 4000 unsigned max_links = dir->i_sb->s_max_links; 4001 int error; 4002 4003 if (!inode) 4004 return -ENOENT; 4005 4006 error = may_create(dir, new_dentry); 4007 if (error) 4008 return error; 4009 4010 if (dir->i_sb != inode->i_sb) 4011 return -EXDEV; 4012 4013 /* 4014 * A link to an append-only or immutable file cannot be created. 4015 */ 4016 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4017 return -EPERM; 4018 if (!dir->i_op->link) 4019 return -EPERM; 4020 if (S_ISDIR(inode->i_mode)) 4021 return -EPERM; 4022 4023 error = security_inode_link(old_dentry, dir, new_dentry); 4024 if (error) 4025 return error; 4026 4027 mutex_lock(&inode->i_mutex); 4028 /* Make sure we don't allow creating hardlink to an unlinked file */ 4029 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 4030 error = -ENOENT; 4031 else if (max_links && inode->i_nlink >= max_links) 4032 error = -EMLINK; 4033 else { 4034 error = try_break_deleg(inode, delegated_inode); 4035 if (!error) 4036 error = dir->i_op->link(old_dentry, dir, new_dentry); 4037 } 4038 4039 if (!error && (inode->i_state & I_LINKABLE)) { 4040 spin_lock(&inode->i_lock); 4041 inode->i_state &= ~I_LINKABLE; 4042 spin_unlock(&inode->i_lock); 4043 } 4044 mutex_unlock(&inode->i_mutex); 4045 if (!error) 4046 fsnotify_link(dir, inode, new_dentry); 4047 return error; 4048 } 4049 EXPORT_SYMBOL(vfs_link); 4050 4051 /* 4052 * Hardlinks are often used in delicate situations. We avoid 4053 * security-related surprises by not following symlinks on the 4054 * newname. --KAB 4055 * 4056 * We don't follow them on the oldname either to be compatible 4057 * with linux 2.0, and to avoid hard-linking to directories 4058 * and other special files. --ADM 4059 */ 4060 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 4061 int, newdfd, const char __user *, newname, int, flags) 4062 { 4063 struct dentry *new_dentry; 4064 struct path old_path, new_path; 4065 struct inode *delegated_inode = NULL; 4066 int how = 0; 4067 int error; 4068 4069 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 4070 return -EINVAL; 4071 /* 4072 * To use null names we require CAP_DAC_READ_SEARCH 4073 * This ensures that not everyone will be able to create 4074 * handlink using the passed filedescriptor. 4075 */ 4076 if (flags & AT_EMPTY_PATH) { 4077 if (!capable(CAP_DAC_READ_SEARCH)) 4078 return -ENOENT; 4079 how = LOOKUP_EMPTY; 4080 } 4081 4082 if (flags & AT_SYMLINK_FOLLOW) 4083 how |= LOOKUP_FOLLOW; 4084 retry: 4085 error = user_path_at(olddfd, oldname, how, &old_path); 4086 if (error) 4087 return error; 4088 4089 new_dentry = user_path_create(newdfd, newname, &new_path, 4090 (how & LOOKUP_REVAL)); 4091 error = PTR_ERR(new_dentry); 4092 if (IS_ERR(new_dentry)) 4093 goto out; 4094 4095 error = -EXDEV; 4096 if (old_path.mnt != new_path.mnt) 4097 goto out_dput; 4098 error = may_linkat(&old_path); 4099 if (unlikely(error)) 4100 goto out_dput; 4101 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4102 if (error) 4103 goto out_dput; 4104 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode); 4105 out_dput: 4106 done_path_create(&new_path, new_dentry); 4107 if (delegated_inode) { 4108 error = break_deleg_wait(&delegated_inode); 4109 if (!error) { 4110 path_put(&old_path); 4111 goto retry; 4112 } 4113 } 4114 if (retry_estale(error, how)) { 4115 path_put(&old_path); 4116 how |= LOOKUP_REVAL; 4117 goto retry; 4118 } 4119 out: 4120 path_put(&old_path); 4121 4122 return error; 4123 } 4124 4125 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4126 { 4127 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4128 } 4129 4130 /** 4131 * vfs_rename - rename a filesystem object 4132 * @old_dir: parent of source 4133 * @old_dentry: source 4134 * @new_dir: parent of destination 4135 * @new_dentry: destination 4136 * @delegated_inode: returns an inode needing a delegation break 4137 * @flags: rename flags 4138 * 4139 * The caller must hold multiple mutexes--see lock_rename()). 4140 * 4141 * If vfs_rename discovers a delegation in need of breaking at either 4142 * the source or destination, it will return -EWOULDBLOCK and return a 4143 * reference to the inode in delegated_inode. The caller should then 4144 * break the delegation and retry. Because breaking a delegation may 4145 * take a long time, the caller should drop all locks before doing 4146 * so. 4147 * 4148 * Alternatively, a caller may pass NULL for delegated_inode. This may 4149 * be appropriate for callers that expect the underlying filesystem not 4150 * to be NFS exported. 4151 * 4152 * The worst of all namespace operations - renaming directory. "Perverted" 4153 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4154 * Problems: 4155 * a) we can get into loop creation. 4156 * b) race potential - two innocent renames can create a loop together. 4157 * That's where 4.4 screws up. Current fix: serialization on 4158 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4159 * story. 4160 * c) we have to lock _four_ objects - parents and victim (if it exists), 4161 * and source (if it is not a directory). 4162 * And that - after we got ->i_mutex on parents (until then we don't know 4163 * whether the target exists). Solution: try to be smart with locking 4164 * order for inodes. We rely on the fact that tree topology may change 4165 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4166 * move will be locked. Thus we can rank directories by the tree 4167 * (ancestors first) and rank all non-directories after them. 4168 * That works since everybody except rename does "lock parent, lookup, 4169 * lock child" and rename is under ->s_vfs_rename_mutex. 4170 * HOWEVER, it relies on the assumption that any object with ->lookup() 4171 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4172 * we'd better make sure that there's no link(2) for them. 4173 * d) conversion from fhandle to dentry may come in the wrong moment - when 4174 * we are removing the target. Solution: we will have to grab ->i_mutex 4175 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4176 * ->i_mutex on parents, which works but leads to some truly excessive 4177 * locking]. 4178 */ 4179 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 4180 struct inode *new_dir, struct dentry *new_dentry, 4181 struct inode **delegated_inode, unsigned int flags) 4182 { 4183 int error; 4184 bool is_dir = d_is_dir(old_dentry); 4185 const unsigned char *old_name; 4186 struct inode *source = old_dentry->d_inode; 4187 struct inode *target = new_dentry->d_inode; 4188 bool new_is_dir = false; 4189 unsigned max_links = new_dir->i_sb->s_max_links; 4190 4191 if (source == target) 4192 return 0; 4193 4194 error = may_delete(old_dir, old_dentry, is_dir); 4195 if (error) 4196 return error; 4197 4198 if (!target) { 4199 error = may_create(new_dir, new_dentry); 4200 } else { 4201 new_is_dir = d_is_dir(new_dentry); 4202 4203 if (!(flags & RENAME_EXCHANGE)) 4204 error = may_delete(new_dir, new_dentry, is_dir); 4205 else 4206 error = may_delete(new_dir, new_dentry, new_is_dir); 4207 } 4208 if (error) 4209 return error; 4210 4211 if (!old_dir->i_op->rename && !old_dir->i_op->rename2) 4212 return -EPERM; 4213 4214 if (flags && !old_dir->i_op->rename2) 4215 return -EINVAL; 4216 4217 /* 4218 * If we are going to change the parent - check write permissions, 4219 * we'll need to flip '..'. 4220 */ 4221 if (new_dir != old_dir) { 4222 if (is_dir) { 4223 error = inode_permission(source, MAY_WRITE); 4224 if (error) 4225 return error; 4226 } 4227 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4228 error = inode_permission(target, MAY_WRITE); 4229 if (error) 4230 return error; 4231 } 4232 } 4233 4234 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 4235 flags); 4236 if (error) 4237 return error; 4238 4239 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 4240 dget(new_dentry); 4241 if (!is_dir || (flags & RENAME_EXCHANGE)) 4242 lock_two_nondirectories(source, target); 4243 else if (target) 4244 mutex_lock(&target->i_mutex); 4245 4246 error = -EBUSY; 4247 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 4248 goto out; 4249 4250 if (max_links && new_dir != old_dir) { 4251 error = -EMLINK; 4252 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 4253 goto out; 4254 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 4255 old_dir->i_nlink >= max_links) 4256 goto out; 4257 } 4258 if (is_dir && !(flags & RENAME_EXCHANGE) && target) 4259 shrink_dcache_parent(new_dentry); 4260 if (!is_dir) { 4261 error = try_break_deleg(source, delegated_inode); 4262 if (error) 4263 goto out; 4264 } 4265 if (target && !new_is_dir) { 4266 error = try_break_deleg(target, delegated_inode); 4267 if (error) 4268 goto out; 4269 } 4270 if (!old_dir->i_op->rename2) { 4271 error = old_dir->i_op->rename(old_dir, old_dentry, 4272 new_dir, new_dentry); 4273 } else { 4274 WARN_ON(old_dir->i_op->rename != NULL); 4275 error = old_dir->i_op->rename2(old_dir, old_dentry, 4276 new_dir, new_dentry, flags); 4277 } 4278 if (error) 4279 goto out; 4280 4281 if (!(flags & RENAME_EXCHANGE) && target) { 4282 if (is_dir) 4283 target->i_flags |= S_DEAD; 4284 dont_mount(new_dentry); 4285 detach_mounts(new_dentry); 4286 } 4287 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 4288 if (!(flags & RENAME_EXCHANGE)) 4289 d_move(old_dentry, new_dentry); 4290 else 4291 d_exchange(old_dentry, new_dentry); 4292 } 4293 out: 4294 if (!is_dir || (flags & RENAME_EXCHANGE)) 4295 unlock_two_nondirectories(source, target); 4296 else if (target) 4297 mutex_unlock(&target->i_mutex); 4298 dput(new_dentry); 4299 if (!error) { 4300 fsnotify_move(old_dir, new_dir, old_name, is_dir, 4301 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 4302 if (flags & RENAME_EXCHANGE) { 4303 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name, 4304 new_is_dir, NULL, new_dentry); 4305 } 4306 } 4307 fsnotify_oldname_free(old_name); 4308 4309 return error; 4310 } 4311 EXPORT_SYMBOL(vfs_rename); 4312 4313 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 4314 int, newdfd, const char __user *, newname, unsigned int, flags) 4315 { 4316 struct dentry *old_dentry, *new_dentry; 4317 struct dentry *trap; 4318 struct path old_path, new_path; 4319 struct qstr old_last, new_last; 4320 int old_type, new_type; 4321 struct inode *delegated_inode = NULL; 4322 struct filename *from; 4323 struct filename *to; 4324 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET; 4325 bool should_retry = false; 4326 int error; 4327 4328 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4329 return -EINVAL; 4330 4331 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 4332 (flags & RENAME_EXCHANGE)) 4333 return -EINVAL; 4334 4335 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD)) 4336 return -EPERM; 4337 4338 if (flags & RENAME_EXCHANGE) 4339 target_flags = 0; 4340 4341 retry: 4342 from = user_path_parent(olddfd, oldname, 4343 &old_path, &old_last, &old_type, lookup_flags); 4344 if (IS_ERR(from)) { 4345 error = PTR_ERR(from); 4346 goto exit; 4347 } 4348 4349 to = user_path_parent(newdfd, newname, 4350 &new_path, &new_last, &new_type, lookup_flags); 4351 if (IS_ERR(to)) { 4352 error = PTR_ERR(to); 4353 goto exit1; 4354 } 4355 4356 error = -EXDEV; 4357 if (old_path.mnt != new_path.mnt) 4358 goto exit2; 4359 4360 error = -EBUSY; 4361 if (old_type != LAST_NORM) 4362 goto exit2; 4363 4364 if (flags & RENAME_NOREPLACE) 4365 error = -EEXIST; 4366 if (new_type != LAST_NORM) 4367 goto exit2; 4368 4369 error = mnt_want_write(old_path.mnt); 4370 if (error) 4371 goto exit2; 4372 4373 retry_deleg: 4374 trap = lock_rename(new_path.dentry, old_path.dentry); 4375 4376 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags); 4377 error = PTR_ERR(old_dentry); 4378 if (IS_ERR(old_dentry)) 4379 goto exit3; 4380 /* source must exist */ 4381 error = -ENOENT; 4382 if (d_is_negative(old_dentry)) 4383 goto exit4; 4384 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags); 4385 error = PTR_ERR(new_dentry); 4386 if (IS_ERR(new_dentry)) 4387 goto exit4; 4388 error = -EEXIST; 4389 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 4390 goto exit5; 4391 if (flags & RENAME_EXCHANGE) { 4392 error = -ENOENT; 4393 if (d_is_negative(new_dentry)) 4394 goto exit5; 4395 4396 if (!d_is_dir(new_dentry)) { 4397 error = -ENOTDIR; 4398 if (new_last.name[new_last.len]) 4399 goto exit5; 4400 } 4401 } 4402 /* unless the source is a directory trailing slashes give -ENOTDIR */ 4403 if (!d_is_dir(old_dentry)) { 4404 error = -ENOTDIR; 4405 if (old_last.name[old_last.len]) 4406 goto exit5; 4407 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len]) 4408 goto exit5; 4409 } 4410 /* source should not be ancestor of target */ 4411 error = -EINVAL; 4412 if (old_dentry == trap) 4413 goto exit5; 4414 /* target should not be an ancestor of source */ 4415 if (!(flags & RENAME_EXCHANGE)) 4416 error = -ENOTEMPTY; 4417 if (new_dentry == trap) 4418 goto exit5; 4419 4420 error = security_path_rename(&old_path, old_dentry, 4421 &new_path, new_dentry, flags); 4422 if (error) 4423 goto exit5; 4424 error = vfs_rename(old_path.dentry->d_inode, old_dentry, 4425 new_path.dentry->d_inode, new_dentry, 4426 &delegated_inode, flags); 4427 exit5: 4428 dput(new_dentry); 4429 exit4: 4430 dput(old_dentry); 4431 exit3: 4432 unlock_rename(new_path.dentry, old_path.dentry); 4433 if (delegated_inode) { 4434 error = break_deleg_wait(&delegated_inode); 4435 if (!error) 4436 goto retry_deleg; 4437 } 4438 mnt_drop_write(old_path.mnt); 4439 exit2: 4440 if (retry_estale(error, lookup_flags)) 4441 should_retry = true; 4442 path_put(&new_path); 4443 putname(to); 4444 exit1: 4445 path_put(&old_path); 4446 putname(from); 4447 if (should_retry) { 4448 should_retry = false; 4449 lookup_flags |= LOOKUP_REVAL; 4450 goto retry; 4451 } 4452 exit: 4453 return error; 4454 } 4455 4456 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 4457 int, newdfd, const char __user *, newname) 4458 { 4459 return sys_renameat2(olddfd, oldname, newdfd, newname, 0); 4460 } 4461 4462 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 4463 { 4464 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4465 } 4466 4467 int vfs_whiteout(struct inode *dir, struct dentry *dentry) 4468 { 4469 int error = may_create(dir, dentry); 4470 if (error) 4471 return error; 4472 4473 if (!dir->i_op->mknod) 4474 return -EPERM; 4475 4476 return dir->i_op->mknod(dir, dentry, 4477 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 4478 } 4479 EXPORT_SYMBOL(vfs_whiteout); 4480 4481 int readlink_copy(char __user *buffer, int buflen, const char *link) 4482 { 4483 int len = PTR_ERR(link); 4484 if (IS_ERR(link)) 4485 goto out; 4486 4487 len = strlen(link); 4488 if (len > (unsigned) buflen) 4489 len = buflen; 4490 if (copy_to_user(buffer, link, len)) 4491 len = -EFAULT; 4492 out: 4493 return len; 4494 } 4495 EXPORT_SYMBOL(readlink_copy); 4496 4497 /* 4498 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 4499 * have ->follow_link() touching nd only in nd_set_link(). Using (or not 4500 * using) it for any given inode is up to filesystem. 4501 */ 4502 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4503 { 4504 void *cookie; 4505 struct inode *inode = d_inode(dentry); 4506 const char *link = inode->i_link; 4507 int res; 4508 4509 if (!link) { 4510 link = inode->i_op->follow_link(dentry, &cookie); 4511 if (IS_ERR(link)) 4512 return PTR_ERR(link); 4513 } 4514 res = readlink_copy(buffer, buflen, link); 4515 if (inode->i_op->put_link) 4516 inode->i_op->put_link(inode, cookie); 4517 return res; 4518 } 4519 EXPORT_SYMBOL(generic_readlink); 4520 4521 /* get the link contents into pagecache */ 4522 static char *page_getlink(struct dentry * dentry, struct page **ppage) 4523 { 4524 char *kaddr; 4525 struct page *page; 4526 struct address_space *mapping = dentry->d_inode->i_mapping; 4527 page = read_mapping_page(mapping, 0, NULL); 4528 if (IS_ERR(page)) 4529 return (char*)page; 4530 *ppage = page; 4531 kaddr = kmap(page); 4532 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1); 4533 return kaddr; 4534 } 4535 4536 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4537 { 4538 struct page *page = NULL; 4539 int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page)); 4540 if (page) { 4541 kunmap(page); 4542 page_cache_release(page); 4543 } 4544 return res; 4545 } 4546 EXPORT_SYMBOL(page_readlink); 4547 4548 const char *page_follow_link_light(struct dentry *dentry, void **cookie) 4549 { 4550 struct page *page = NULL; 4551 char *res = page_getlink(dentry, &page); 4552 if (!IS_ERR(res)) 4553 *cookie = page; 4554 return res; 4555 } 4556 EXPORT_SYMBOL(page_follow_link_light); 4557 4558 void page_put_link(struct inode *unused, void *cookie) 4559 { 4560 struct page *page = cookie; 4561 kunmap(page); 4562 page_cache_release(page); 4563 } 4564 EXPORT_SYMBOL(page_put_link); 4565 4566 /* 4567 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 4568 */ 4569 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 4570 { 4571 struct address_space *mapping = inode->i_mapping; 4572 struct page *page; 4573 void *fsdata; 4574 int err; 4575 char *kaddr; 4576 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE; 4577 if (nofs) 4578 flags |= AOP_FLAG_NOFS; 4579 4580 retry: 4581 err = pagecache_write_begin(NULL, mapping, 0, len-1, 4582 flags, &page, &fsdata); 4583 if (err) 4584 goto fail; 4585 4586 kaddr = kmap_atomic(page); 4587 memcpy(kaddr, symname, len-1); 4588 kunmap_atomic(kaddr); 4589 4590 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 4591 page, fsdata); 4592 if (err < 0) 4593 goto fail; 4594 if (err < len-1) 4595 goto retry; 4596 4597 mark_inode_dirty(inode); 4598 return 0; 4599 fail: 4600 return err; 4601 } 4602 EXPORT_SYMBOL(__page_symlink); 4603 4604 int page_symlink(struct inode *inode, const char *symname, int len) 4605 { 4606 return __page_symlink(inode, symname, len, 4607 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS)); 4608 } 4609 EXPORT_SYMBOL(page_symlink); 4610 4611 const struct inode_operations page_symlink_inode_operations = { 4612 .readlink = generic_readlink, 4613 .follow_link = page_follow_link_light, 4614 .put_link = page_put_link, 4615 }; 4616 EXPORT_SYMBOL(page_symlink_inode_operations); 4617