1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/namei.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * Some corrections by tytso. 10 */ 11 12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 13 * lookup logic. 14 */ 15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 16 */ 17 18 #include <linux/init.h> 19 #include <linux/export.h> 20 #include <linux/slab.h> 21 #include <linux/wordpart.h> 22 #include <linux/fs.h> 23 #include <linux/filelock.h> 24 #include <linux/namei.h> 25 #include <linux/pagemap.h> 26 #include <linux/sched/mm.h> 27 #include <linux/fsnotify.h> 28 #include <linux/personality.h> 29 #include <linux/security.h> 30 #include <linux/syscalls.h> 31 #include <linux/mount.h> 32 #include <linux/audit.h> 33 #include <linux/capability.h> 34 #include <linux/file.h> 35 #include <linux/fcntl.h> 36 #include <linux/device_cgroup.h> 37 #include <linux/fs_struct.h> 38 #include <linux/posix_acl.h> 39 #include <linux/hash.h> 40 #include <linux/bitops.h> 41 #include <linux/init_task.h> 42 #include <linux/uaccess.h> 43 44 #include "internal.h" 45 #include "mount.h" 46 47 /* [Feb-1997 T. Schoebel-Theuer] 48 * Fundamental changes in the pathname lookup mechanisms (namei) 49 * were necessary because of omirr. The reason is that omirr needs 50 * to know the _real_ pathname, not the user-supplied one, in case 51 * of symlinks (and also when transname replacements occur). 52 * 53 * The new code replaces the old recursive symlink resolution with 54 * an iterative one (in case of non-nested symlink chains). It does 55 * this with calls to <fs>_follow_link(). 56 * As a side effect, dir_namei(), _namei() and follow_link() are now 57 * replaced with a single function lookup_dentry() that can handle all 58 * the special cases of the former code. 59 * 60 * With the new dcache, the pathname is stored at each inode, at least as 61 * long as the refcount of the inode is positive. As a side effect, the 62 * size of the dcache depends on the inode cache and thus is dynamic. 63 * 64 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 65 * resolution to correspond with current state of the code. 66 * 67 * Note that the symlink resolution is not *completely* iterative. 68 * There is still a significant amount of tail- and mid- recursion in 69 * the algorithm. Also, note that <fs>_readlink() is not used in 70 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 71 * may return different results than <fs>_follow_link(). Many virtual 72 * filesystems (including /proc) exhibit this behavior. 73 */ 74 75 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 76 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 77 * and the name already exists in form of a symlink, try to create the new 78 * name indicated by the symlink. The old code always complained that the 79 * name already exists, due to not following the symlink even if its target 80 * is nonexistent. The new semantics affects also mknod() and link() when 81 * the name is a symlink pointing to a non-existent name. 82 * 83 * I don't know which semantics is the right one, since I have no access 84 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 85 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 86 * "old" one. Personally, I think the new semantics is much more logical. 87 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 88 * file does succeed in both HP-UX and SunOs, but not in Solaris 89 * and in the old Linux semantics. 90 */ 91 92 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 93 * semantics. See the comments in "open_namei" and "do_link" below. 94 * 95 * [10-Sep-98 Alan Modra] Another symlink change. 96 */ 97 98 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 99 * inside the path - always follow. 100 * in the last component in creation/removal/renaming - never follow. 101 * if LOOKUP_FOLLOW passed - follow. 102 * if the pathname has trailing slashes - follow. 103 * otherwise - don't follow. 104 * (applied in that order). 105 * 106 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 107 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 108 * During the 2.4 we need to fix the userland stuff depending on it - 109 * hopefully we will be able to get rid of that wart in 2.5. So far only 110 * XEmacs seems to be relying on it... 111 */ 112 /* 113 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 114 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 115 * any extra contention... 116 */ 117 118 /* In order to reduce some races, while at the same time doing additional 119 * checking and hopefully speeding things up, we copy filenames to the 120 * kernel data space before using them.. 121 * 122 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 123 * PATH_MAX includes the nul terminator --RR. 124 */ 125 126 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) 127 128 struct filename * 129 getname_flags(const char __user *filename, int flags) 130 { 131 struct filename *result; 132 char *kname; 133 int len; 134 135 result = audit_reusename(filename); 136 if (result) 137 return result; 138 139 result = __getname(); 140 if (unlikely(!result)) 141 return ERR_PTR(-ENOMEM); 142 143 /* 144 * First, try to embed the struct filename inside the names_cache 145 * allocation 146 */ 147 kname = (char *)result->iname; 148 result->name = kname; 149 150 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); 151 /* 152 * Handle both empty path and copy failure in one go. 153 */ 154 if (unlikely(len <= 0)) { 155 if (unlikely(len < 0)) { 156 __putname(result); 157 return ERR_PTR(len); 158 } 159 160 /* The empty path is special. */ 161 if (!(flags & LOOKUP_EMPTY)) { 162 __putname(result); 163 return ERR_PTR(-ENOENT); 164 } 165 } 166 167 /* 168 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 169 * separate struct filename so we can dedicate the entire 170 * names_cache allocation for the pathname, and re-do the copy from 171 * userland. 172 */ 173 if (unlikely(len == EMBEDDED_NAME_MAX)) { 174 const size_t size = offsetof(struct filename, iname[1]); 175 kname = (char *)result; 176 177 /* 178 * size is chosen that way we to guarantee that 179 * result->iname[0] is within the same object and that 180 * kname can't be equal to result->iname, no matter what. 181 */ 182 result = kzalloc(size, GFP_KERNEL); 183 if (unlikely(!result)) { 184 __putname(kname); 185 return ERR_PTR(-ENOMEM); 186 } 187 result->name = kname; 188 len = strncpy_from_user(kname, filename, PATH_MAX); 189 if (unlikely(len < 0)) { 190 __putname(kname); 191 kfree(result); 192 return ERR_PTR(len); 193 } 194 /* The empty path is special. */ 195 if (unlikely(!len) && !(flags & LOOKUP_EMPTY)) { 196 __putname(kname); 197 kfree(result); 198 return ERR_PTR(-ENOENT); 199 } 200 if (unlikely(len == PATH_MAX)) { 201 __putname(kname); 202 kfree(result); 203 return ERR_PTR(-ENAMETOOLONG); 204 } 205 } 206 207 atomic_set(&result->refcnt, 1); 208 result->uptr = filename; 209 result->aname = NULL; 210 audit_getname(result); 211 return result; 212 } 213 214 struct filename * 215 getname_uflags(const char __user *filename, int uflags) 216 { 217 int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 218 219 return getname_flags(filename, flags); 220 } 221 222 struct filename * 223 getname(const char __user * filename) 224 { 225 return getname_flags(filename, 0); 226 } 227 228 struct filename * 229 getname_kernel(const char * filename) 230 { 231 struct filename *result; 232 int len = strlen(filename) + 1; 233 234 result = __getname(); 235 if (unlikely(!result)) 236 return ERR_PTR(-ENOMEM); 237 238 if (len <= EMBEDDED_NAME_MAX) { 239 result->name = (char *)result->iname; 240 } else if (len <= PATH_MAX) { 241 const size_t size = offsetof(struct filename, iname[1]); 242 struct filename *tmp; 243 244 tmp = kmalloc(size, GFP_KERNEL); 245 if (unlikely(!tmp)) { 246 __putname(result); 247 return ERR_PTR(-ENOMEM); 248 } 249 tmp->name = (char *)result; 250 result = tmp; 251 } else { 252 __putname(result); 253 return ERR_PTR(-ENAMETOOLONG); 254 } 255 memcpy((char *)result->name, filename, len); 256 result->uptr = NULL; 257 result->aname = NULL; 258 atomic_set(&result->refcnt, 1); 259 audit_getname(result); 260 261 return result; 262 } 263 EXPORT_SYMBOL(getname_kernel); 264 265 void putname(struct filename *name) 266 { 267 if (IS_ERR(name)) 268 return; 269 270 if (WARN_ON_ONCE(!atomic_read(&name->refcnt))) 271 return; 272 273 if (!atomic_dec_and_test(&name->refcnt)) 274 return; 275 276 if (name->name != name->iname) { 277 __putname(name->name); 278 kfree(name); 279 } else 280 __putname(name); 281 } 282 EXPORT_SYMBOL(putname); 283 284 /** 285 * check_acl - perform ACL permission checking 286 * @idmap: idmap of the mount the inode was found from 287 * @inode: inode to check permissions on 288 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 289 * 290 * This function performs the ACL permission checking. Since this function 291 * retrieve POSIX acls it needs to know whether it is called from a blocking or 292 * non-blocking context and thus cares about the MAY_NOT_BLOCK bit. 293 * 294 * If the inode has been found through an idmapped mount the idmap of 295 * the vfsmount must be passed through @idmap. This function will then take 296 * care to map the inode according to @idmap before checking permissions. 297 * On non-idmapped mounts or if permission checking is to be performed on the 298 * raw inode simply pass @nop_mnt_idmap. 299 */ 300 static int check_acl(struct mnt_idmap *idmap, 301 struct inode *inode, int mask) 302 { 303 #ifdef CONFIG_FS_POSIX_ACL 304 struct posix_acl *acl; 305 306 if (mask & MAY_NOT_BLOCK) { 307 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 308 if (!acl) 309 return -EAGAIN; 310 /* no ->get_inode_acl() calls in RCU mode... */ 311 if (is_uncached_acl(acl)) 312 return -ECHILD; 313 return posix_acl_permission(idmap, inode, acl, mask); 314 } 315 316 acl = get_inode_acl(inode, ACL_TYPE_ACCESS); 317 if (IS_ERR(acl)) 318 return PTR_ERR(acl); 319 if (acl) { 320 int error = posix_acl_permission(idmap, inode, acl, mask); 321 posix_acl_release(acl); 322 return error; 323 } 324 #endif 325 326 return -EAGAIN; 327 } 328 329 /** 330 * acl_permission_check - perform basic UNIX permission checking 331 * @idmap: idmap of the mount the inode was found from 332 * @inode: inode to check permissions on 333 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 334 * 335 * This function performs the basic UNIX permission checking. Since this 336 * function may retrieve POSIX acls it needs to know whether it is called from a 337 * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit. 338 * 339 * If the inode has been found through an idmapped mount the idmap of 340 * the vfsmount must be passed through @idmap. This function will then take 341 * care to map the inode according to @idmap before checking permissions. 342 * On non-idmapped mounts or if permission checking is to be performed on the 343 * raw inode simply pass @nop_mnt_idmap. 344 */ 345 static int acl_permission_check(struct mnt_idmap *idmap, 346 struct inode *inode, int mask) 347 { 348 unsigned int mode = inode->i_mode; 349 vfsuid_t vfsuid; 350 351 /* Are we the owner? If so, ACL's don't matter */ 352 vfsuid = i_uid_into_vfsuid(idmap, inode); 353 if (likely(vfsuid_eq_kuid(vfsuid, current_fsuid()))) { 354 mask &= 7; 355 mode >>= 6; 356 return (mask & ~mode) ? -EACCES : 0; 357 } 358 359 /* Do we have ACL's? */ 360 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 361 int error = check_acl(idmap, inode, mask); 362 if (error != -EAGAIN) 363 return error; 364 } 365 366 /* Only RWX matters for group/other mode bits */ 367 mask &= 7; 368 369 /* 370 * Are the group permissions different from 371 * the other permissions in the bits we care 372 * about? Need to check group ownership if so. 373 */ 374 if (mask & (mode ^ (mode >> 3))) { 375 vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode); 376 if (vfsgid_in_group_p(vfsgid)) 377 mode >>= 3; 378 } 379 380 /* Bits in 'mode' clear that we require? */ 381 return (mask & ~mode) ? -EACCES : 0; 382 } 383 384 /** 385 * generic_permission - check for access rights on a Posix-like filesystem 386 * @idmap: idmap of the mount the inode was found from 387 * @inode: inode to check access rights for 388 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, 389 * %MAY_NOT_BLOCK ...) 390 * 391 * Used to check for read/write/execute permissions on a file. 392 * We use "fsuid" for this, letting us set arbitrary permissions 393 * for filesystem access without changing the "normal" uids which 394 * are used for other things. 395 * 396 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 397 * request cannot be satisfied (eg. requires blocking or too much complexity). 398 * It would then be called again in ref-walk mode. 399 * 400 * If the inode has been found through an idmapped mount the idmap of 401 * the vfsmount must be passed through @idmap. This function will then take 402 * care to map the inode according to @idmap before checking permissions. 403 * On non-idmapped mounts or if permission checking is to be performed on the 404 * raw inode simply pass @nop_mnt_idmap. 405 */ 406 int generic_permission(struct mnt_idmap *idmap, struct inode *inode, 407 int mask) 408 { 409 int ret; 410 411 /* 412 * Do the basic permission checks. 413 */ 414 ret = acl_permission_check(idmap, inode, mask); 415 if (ret != -EACCES) 416 return ret; 417 418 if (S_ISDIR(inode->i_mode)) { 419 /* DACs are overridable for directories */ 420 if (!(mask & MAY_WRITE)) 421 if (capable_wrt_inode_uidgid(idmap, inode, 422 CAP_DAC_READ_SEARCH)) 423 return 0; 424 if (capable_wrt_inode_uidgid(idmap, inode, 425 CAP_DAC_OVERRIDE)) 426 return 0; 427 return -EACCES; 428 } 429 430 /* 431 * Searching includes executable on directories, else just read. 432 */ 433 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 434 if (mask == MAY_READ) 435 if (capable_wrt_inode_uidgid(idmap, inode, 436 CAP_DAC_READ_SEARCH)) 437 return 0; 438 /* 439 * Read/write DACs are always overridable. 440 * Executable DACs are overridable when there is 441 * at least one exec bit set. 442 */ 443 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 444 if (capable_wrt_inode_uidgid(idmap, inode, 445 CAP_DAC_OVERRIDE)) 446 return 0; 447 448 return -EACCES; 449 } 450 EXPORT_SYMBOL(generic_permission); 451 452 /** 453 * do_inode_permission - UNIX permission checking 454 * @idmap: idmap of the mount the inode was found from 455 * @inode: inode to check permissions on 456 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 457 * 458 * We _really_ want to just do "generic_permission()" without 459 * even looking at the inode->i_op values. So we keep a cache 460 * flag in inode->i_opflags, that says "this has not special 461 * permission function, use the fast case". 462 */ 463 static inline int do_inode_permission(struct mnt_idmap *idmap, 464 struct inode *inode, int mask) 465 { 466 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 467 if (likely(inode->i_op->permission)) 468 return inode->i_op->permission(idmap, inode, mask); 469 470 /* This gets set once for the inode lifetime */ 471 spin_lock(&inode->i_lock); 472 inode->i_opflags |= IOP_FASTPERM; 473 spin_unlock(&inode->i_lock); 474 } 475 return generic_permission(idmap, inode, mask); 476 } 477 478 /** 479 * sb_permission - Check superblock-level permissions 480 * @sb: Superblock of inode to check permission on 481 * @inode: Inode to check permission on 482 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 483 * 484 * Separate out file-system wide checks from inode-specific permission checks. 485 */ 486 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 487 { 488 if (unlikely(mask & MAY_WRITE)) { 489 umode_t mode = inode->i_mode; 490 491 /* Nobody gets write access to a read-only fs. */ 492 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 493 return -EROFS; 494 } 495 return 0; 496 } 497 498 /** 499 * inode_permission - Check for access rights to a given inode 500 * @idmap: idmap of the mount the inode was found from 501 * @inode: Inode to check permission on 502 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 503 * 504 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 505 * this, letting us set arbitrary permissions for filesystem access without 506 * changing the "normal" UIDs which are used for other things. 507 * 508 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 509 */ 510 int inode_permission(struct mnt_idmap *idmap, 511 struct inode *inode, int mask) 512 { 513 int retval; 514 515 retval = sb_permission(inode->i_sb, inode, mask); 516 if (retval) 517 return retval; 518 519 if (unlikely(mask & MAY_WRITE)) { 520 /* 521 * Nobody gets write access to an immutable file. 522 */ 523 if (IS_IMMUTABLE(inode)) 524 return -EPERM; 525 526 /* 527 * Updating mtime will likely cause i_uid and i_gid to be 528 * written back improperly if their true value is unknown 529 * to the vfs. 530 */ 531 if (HAS_UNMAPPED_ID(idmap, inode)) 532 return -EACCES; 533 } 534 535 retval = do_inode_permission(idmap, inode, mask); 536 if (retval) 537 return retval; 538 539 retval = devcgroup_inode_permission(inode, mask); 540 if (retval) 541 return retval; 542 543 return security_inode_permission(inode, mask); 544 } 545 EXPORT_SYMBOL(inode_permission); 546 547 /** 548 * path_get - get a reference to a path 549 * @path: path to get the reference to 550 * 551 * Given a path increment the reference count to the dentry and the vfsmount. 552 */ 553 void path_get(const struct path *path) 554 { 555 mntget(path->mnt); 556 dget(path->dentry); 557 } 558 EXPORT_SYMBOL(path_get); 559 560 /** 561 * path_put - put a reference to a path 562 * @path: path to put the reference to 563 * 564 * Given a path decrement the reference count to the dentry and the vfsmount. 565 */ 566 void path_put(const struct path *path) 567 { 568 dput(path->dentry); 569 mntput(path->mnt); 570 } 571 EXPORT_SYMBOL(path_put); 572 573 #define EMBEDDED_LEVELS 2 574 struct nameidata { 575 struct path path; 576 struct qstr last; 577 struct path root; 578 struct inode *inode; /* path.dentry.d_inode */ 579 unsigned int flags, state; 580 unsigned seq, next_seq, m_seq, r_seq; 581 int last_type; 582 unsigned depth; 583 int total_link_count; 584 struct saved { 585 struct path link; 586 struct delayed_call done; 587 const char *name; 588 unsigned seq; 589 } *stack, internal[EMBEDDED_LEVELS]; 590 struct filename *name; 591 struct nameidata *saved; 592 unsigned root_seq; 593 int dfd; 594 vfsuid_t dir_vfsuid; 595 umode_t dir_mode; 596 } __randomize_layout; 597 598 #define ND_ROOT_PRESET 1 599 #define ND_ROOT_GRABBED 2 600 #define ND_JUMPED 4 601 602 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name) 603 { 604 struct nameidata *old = current->nameidata; 605 p->stack = p->internal; 606 p->depth = 0; 607 p->dfd = dfd; 608 p->name = name; 609 p->path.mnt = NULL; 610 p->path.dentry = NULL; 611 p->total_link_count = old ? old->total_link_count : 0; 612 p->saved = old; 613 current->nameidata = p; 614 } 615 616 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name, 617 const struct path *root) 618 { 619 __set_nameidata(p, dfd, name); 620 p->state = 0; 621 if (unlikely(root)) { 622 p->state = ND_ROOT_PRESET; 623 p->root = *root; 624 } 625 } 626 627 static void restore_nameidata(void) 628 { 629 struct nameidata *now = current->nameidata, *old = now->saved; 630 631 current->nameidata = old; 632 if (old) 633 old->total_link_count = now->total_link_count; 634 if (now->stack != now->internal) 635 kfree(now->stack); 636 } 637 638 static bool nd_alloc_stack(struct nameidata *nd) 639 { 640 struct saved *p; 641 642 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved), 643 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL); 644 if (unlikely(!p)) 645 return false; 646 memcpy(p, nd->internal, sizeof(nd->internal)); 647 nd->stack = p; 648 return true; 649 } 650 651 /** 652 * path_connected - Verify that a dentry is below mnt.mnt_root 653 * @mnt: The mountpoint to check. 654 * @dentry: The dentry to check. 655 * 656 * Rename can sometimes move a file or directory outside of a bind 657 * mount, path_connected allows those cases to be detected. 658 */ 659 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry) 660 { 661 struct super_block *sb = mnt->mnt_sb; 662 663 /* Bind mounts can have disconnected paths */ 664 if (mnt->mnt_root == sb->s_root) 665 return true; 666 667 return is_subdir(dentry, mnt->mnt_root); 668 } 669 670 static void drop_links(struct nameidata *nd) 671 { 672 int i = nd->depth; 673 while (i--) { 674 struct saved *last = nd->stack + i; 675 do_delayed_call(&last->done); 676 clear_delayed_call(&last->done); 677 } 678 } 679 680 static void leave_rcu(struct nameidata *nd) 681 { 682 nd->flags &= ~LOOKUP_RCU; 683 nd->seq = nd->next_seq = 0; 684 rcu_read_unlock(); 685 } 686 687 static void terminate_walk(struct nameidata *nd) 688 { 689 drop_links(nd); 690 if (!(nd->flags & LOOKUP_RCU)) { 691 int i; 692 path_put(&nd->path); 693 for (i = 0; i < nd->depth; i++) 694 path_put(&nd->stack[i].link); 695 if (nd->state & ND_ROOT_GRABBED) { 696 path_put(&nd->root); 697 nd->state &= ~ND_ROOT_GRABBED; 698 } 699 } else { 700 leave_rcu(nd); 701 } 702 nd->depth = 0; 703 nd->path.mnt = NULL; 704 nd->path.dentry = NULL; 705 } 706 707 /* path_put is needed afterwards regardless of success or failure */ 708 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq) 709 { 710 int res = __legitimize_mnt(path->mnt, mseq); 711 if (unlikely(res)) { 712 if (res > 0) 713 path->mnt = NULL; 714 path->dentry = NULL; 715 return false; 716 } 717 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) { 718 path->dentry = NULL; 719 return false; 720 } 721 return !read_seqcount_retry(&path->dentry->d_seq, seq); 722 } 723 724 static inline bool legitimize_path(struct nameidata *nd, 725 struct path *path, unsigned seq) 726 { 727 return __legitimize_path(path, seq, nd->m_seq); 728 } 729 730 static bool legitimize_links(struct nameidata *nd) 731 { 732 int i; 733 if (unlikely(nd->flags & LOOKUP_CACHED)) { 734 drop_links(nd); 735 nd->depth = 0; 736 return false; 737 } 738 for (i = 0; i < nd->depth; i++) { 739 struct saved *last = nd->stack + i; 740 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) { 741 drop_links(nd); 742 nd->depth = i + 1; 743 return false; 744 } 745 } 746 return true; 747 } 748 749 static bool legitimize_root(struct nameidata *nd) 750 { 751 /* Nothing to do if nd->root is zero or is managed by the VFS user. */ 752 if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET)) 753 return true; 754 nd->state |= ND_ROOT_GRABBED; 755 return legitimize_path(nd, &nd->root, nd->root_seq); 756 } 757 758 /* 759 * Path walking has 2 modes, rcu-walk and ref-walk (see 760 * Documentation/filesystems/path-lookup.txt). In situations when we can't 761 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 762 * normal reference counts on dentries and vfsmounts to transition to ref-walk 763 * mode. Refcounts are grabbed at the last known good point before rcu-walk 764 * got stuck, so ref-walk may continue from there. If this is not successful 765 * (eg. a seqcount has changed), then failure is returned and it's up to caller 766 * to restart the path walk from the beginning in ref-walk mode. 767 */ 768 769 /** 770 * try_to_unlazy - try to switch to ref-walk mode. 771 * @nd: nameidata pathwalk data 772 * Returns: true on success, false on failure 773 * 774 * try_to_unlazy attempts to legitimize the current nd->path and nd->root 775 * for ref-walk mode. 776 * Must be called from rcu-walk context. 777 * Nothing should touch nameidata between try_to_unlazy() failure and 778 * terminate_walk(). 779 */ 780 static bool try_to_unlazy(struct nameidata *nd) 781 { 782 struct dentry *parent = nd->path.dentry; 783 784 BUG_ON(!(nd->flags & LOOKUP_RCU)); 785 786 if (unlikely(!legitimize_links(nd))) 787 goto out1; 788 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq))) 789 goto out; 790 if (unlikely(!legitimize_root(nd))) 791 goto out; 792 leave_rcu(nd); 793 BUG_ON(nd->inode != parent->d_inode); 794 return true; 795 796 out1: 797 nd->path.mnt = NULL; 798 nd->path.dentry = NULL; 799 out: 800 leave_rcu(nd); 801 return false; 802 } 803 804 /** 805 * try_to_unlazy_next - try to switch to ref-walk mode. 806 * @nd: nameidata pathwalk data 807 * @dentry: next dentry to step into 808 * Returns: true on success, false on failure 809 * 810 * Similar to try_to_unlazy(), but here we have the next dentry already 811 * picked by rcu-walk and want to legitimize that in addition to the current 812 * nd->path and nd->root for ref-walk mode. Must be called from rcu-walk context. 813 * Nothing should touch nameidata between try_to_unlazy_next() failure and 814 * terminate_walk(). 815 */ 816 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry) 817 { 818 int res; 819 BUG_ON(!(nd->flags & LOOKUP_RCU)); 820 821 if (unlikely(!legitimize_links(nd))) 822 goto out2; 823 res = __legitimize_mnt(nd->path.mnt, nd->m_seq); 824 if (unlikely(res)) { 825 if (res > 0) 826 goto out2; 827 goto out1; 828 } 829 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref))) 830 goto out1; 831 832 /* 833 * We need to move both the parent and the dentry from the RCU domain 834 * to be properly refcounted. And the sequence number in the dentry 835 * validates *both* dentry counters, since we checked the sequence 836 * number of the parent after we got the child sequence number. So we 837 * know the parent must still be valid if the child sequence number is 838 */ 839 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) 840 goto out; 841 if (read_seqcount_retry(&dentry->d_seq, nd->next_seq)) 842 goto out_dput; 843 /* 844 * Sequence counts matched. Now make sure that the root is 845 * still valid and get it if required. 846 */ 847 if (unlikely(!legitimize_root(nd))) 848 goto out_dput; 849 leave_rcu(nd); 850 return true; 851 852 out2: 853 nd->path.mnt = NULL; 854 out1: 855 nd->path.dentry = NULL; 856 out: 857 leave_rcu(nd); 858 return false; 859 out_dput: 860 leave_rcu(nd); 861 dput(dentry); 862 return false; 863 } 864 865 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 866 { 867 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) 868 return dentry->d_op->d_revalidate(dentry, flags); 869 else 870 return 1; 871 } 872 873 /** 874 * complete_walk - successful completion of path walk 875 * @nd: pointer nameidata 876 * 877 * If we had been in RCU mode, drop out of it and legitimize nd->path. 878 * Revalidate the final result, unless we'd already done that during 879 * the path walk or the filesystem doesn't ask for it. Return 0 on 880 * success, -error on failure. In case of failure caller does not 881 * need to drop nd->path. 882 */ 883 static int complete_walk(struct nameidata *nd) 884 { 885 struct dentry *dentry = nd->path.dentry; 886 int status; 887 888 if (nd->flags & LOOKUP_RCU) { 889 /* 890 * We don't want to zero nd->root for scoped-lookups or 891 * externally-managed nd->root. 892 */ 893 if (!(nd->state & ND_ROOT_PRESET)) 894 if (!(nd->flags & LOOKUP_IS_SCOPED)) 895 nd->root.mnt = NULL; 896 nd->flags &= ~LOOKUP_CACHED; 897 if (!try_to_unlazy(nd)) 898 return -ECHILD; 899 } 900 901 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { 902 /* 903 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't 904 * ever step outside the root during lookup" and should already 905 * be guaranteed by the rest of namei, we want to avoid a namei 906 * BUG resulting in userspace being given a path that was not 907 * scoped within the root at some point during the lookup. 908 * 909 * So, do a final sanity-check to make sure that in the 910 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED) 911 * we won't silently return an fd completely outside of the 912 * requested root to userspace. 913 * 914 * Userspace could move the path outside the root after this 915 * check, but as discussed elsewhere this is not a concern (the 916 * resolved file was inside the root at some point). 917 */ 918 if (!path_is_under(&nd->path, &nd->root)) 919 return -EXDEV; 920 } 921 922 if (likely(!(nd->state & ND_JUMPED))) 923 return 0; 924 925 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 926 return 0; 927 928 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 929 if (status > 0) 930 return 0; 931 932 if (!status) 933 status = -ESTALE; 934 935 return status; 936 } 937 938 static int set_root(struct nameidata *nd) 939 { 940 struct fs_struct *fs = current->fs; 941 942 /* 943 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we 944 * still have to ensure it doesn't happen because it will cause a breakout 945 * from the dirfd. 946 */ 947 if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED)) 948 return -ENOTRECOVERABLE; 949 950 if (nd->flags & LOOKUP_RCU) { 951 unsigned seq; 952 953 do { 954 seq = read_seqcount_begin(&fs->seq); 955 nd->root = fs->root; 956 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 957 } while (read_seqcount_retry(&fs->seq, seq)); 958 } else { 959 get_fs_root(fs, &nd->root); 960 nd->state |= ND_ROOT_GRABBED; 961 } 962 return 0; 963 } 964 965 static int nd_jump_root(struct nameidata *nd) 966 { 967 if (unlikely(nd->flags & LOOKUP_BENEATH)) 968 return -EXDEV; 969 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { 970 /* Absolute path arguments to path_init() are allowed. */ 971 if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt) 972 return -EXDEV; 973 } 974 if (!nd->root.mnt) { 975 int error = set_root(nd); 976 if (error) 977 return error; 978 } 979 if (nd->flags & LOOKUP_RCU) { 980 struct dentry *d; 981 nd->path = nd->root; 982 d = nd->path.dentry; 983 nd->inode = d->d_inode; 984 nd->seq = nd->root_seq; 985 if (read_seqcount_retry(&d->d_seq, nd->seq)) 986 return -ECHILD; 987 } else { 988 path_put(&nd->path); 989 nd->path = nd->root; 990 path_get(&nd->path); 991 nd->inode = nd->path.dentry->d_inode; 992 } 993 nd->state |= ND_JUMPED; 994 return 0; 995 } 996 997 /* 998 * Helper to directly jump to a known parsed path from ->get_link, 999 * caller must have taken a reference to path beforehand. 1000 */ 1001 int nd_jump_link(const struct path *path) 1002 { 1003 int error = -ELOOP; 1004 struct nameidata *nd = current->nameidata; 1005 1006 if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS)) 1007 goto err; 1008 1009 error = -EXDEV; 1010 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { 1011 if (nd->path.mnt != path->mnt) 1012 goto err; 1013 } 1014 /* Not currently safe for scoped-lookups. */ 1015 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) 1016 goto err; 1017 1018 path_put(&nd->path); 1019 nd->path = *path; 1020 nd->inode = nd->path.dentry->d_inode; 1021 nd->state |= ND_JUMPED; 1022 return 0; 1023 1024 err: 1025 path_put(path); 1026 return error; 1027 } 1028 1029 static inline void put_link(struct nameidata *nd) 1030 { 1031 struct saved *last = nd->stack + --nd->depth; 1032 do_delayed_call(&last->done); 1033 if (!(nd->flags & LOOKUP_RCU)) 1034 path_put(&last->link); 1035 } 1036 1037 static int sysctl_protected_symlinks __read_mostly; 1038 static int sysctl_protected_hardlinks __read_mostly; 1039 static int sysctl_protected_fifos __read_mostly; 1040 static int sysctl_protected_regular __read_mostly; 1041 1042 #ifdef CONFIG_SYSCTL 1043 static struct ctl_table namei_sysctls[] = { 1044 { 1045 .procname = "protected_symlinks", 1046 .data = &sysctl_protected_symlinks, 1047 .maxlen = sizeof(int), 1048 .mode = 0644, 1049 .proc_handler = proc_dointvec_minmax, 1050 .extra1 = SYSCTL_ZERO, 1051 .extra2 = SYSCTL_ONE, 1052 }, 1053 { 1054 .procname = "protected_hardlinks", 1055 .data = &sysctl_protected_hardlinks, 1056 .maxlen = sizeof(int), 1057 .mode = 0644, 1058 .proc_handler = proc_dointvec_minmax, 1059 .extra1 = SYSCTL_ZERO, 1060 .extra2 = SYSCTL_ONE, 1061 }, 1062 { 1063 .procname = "protected_fifos", 1064 .data = &sysctl_protected_fifos, 1065 .maxlen = sizeof(int), 1066 .mode = 0644, 1067 .proc_handler = proc_dointvec_minmax, 1068 .extra1 = SYSCTL_ZERO, 1069 .extra2 = SYSCTL_TWO, 1070 }, 1071 { 1072 .procname = "protected_regular", 1073 .data = &sysctl_protected_regular, 1074 .maxlen = sizeof(int), 1075 .mode = 0644, 1076 .proc_handler = proc_dointvec_minmax, 1077 .extra1 = SYSCTL_ZERO, 1078 .extra2 = SYSCTL_TWO, 1079 }, 1080 }; 1081 1082 static int __init init_fs_namei_sysctls(void) 1083 { 1084 register_sysctl_init("fs", namei_sysctls); 1085 return 0; 1086 } 1087 fs_initcall(init_fs_namei_sysctls); 1088 1089 #endif /* CONFIG_SYSCTL */ 1090 1091 /** 1092 * may_follow_link - Check symlink following for unsafe situations 1093 * @nd: nameidata pathwalk data 1094 * @inode: Used for idmapping. 1095 * 1096 * In the case of the sysctl_protected_symlinks sysctl being enabled, 1097 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 1098 * in a sticky world-writable directory. This is to protect privileged 1099 * processes from failing races against path names that may change out 1100 * from under them by way of other users creating malicious symlinks. 1101 * It will permit symlinks to be followed only when outside a sticky 1102 * world-writable directory, or when the uid of the symlink and follower 1103 * match, or when the directory owner matches the symlink's owner. 1104 * 1105 * Returns 0 if following the symlink is allowed, -ve on error. 1106 */ 1107 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode) 1108 { 1109 struct mnt_idmap *idmap; 1110 vfsuid_t vfsuid; 1111 1112 if (!sysctl_protected_symlinks) 1113 return 0; 1114 1115 idmap = mnt_idmap(nd->path.mnt); 1116 vfsuid = i_uid_into_vfsuid(idmap, inode); 1117 /* Allowed if owner and follower match. */ 1118 if (vfsuid_eq_kuid(vfsuid, current_fsuid())) 1119 return 0; 1120 1121 /* Allowed if parent directory not sticky and world-writable. */ 1122 if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 1123 return 0; 1124 1125 /* Allowed if parent directory and link owner match. */ 1126 if (vfsuid_valid(nd->dir_vfsuid) && vfsuid_eq(nd->dir_vfsuid, vfsuid)) 1127 return 0; 1128 1129 if (nd->flags & LOOKUP_RCU) 1130 return -ECHILD; 1131 1132 audit_inode(nd->name, nd->stack[0].link.dentry, 0); 1133 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link"); 1134 return -EACCES; 1135 } 1136 1137 /** 1138 * safe_hardlink_source - Check for safe hardlink conditions 1139 * @idmap: idmap of the mount the inode was found from 1140 * @inode: the source inode to hardlink from 1141 * 1142 * Return false if at least one of the following conditions: 1143 * - inode is not a regular file 1144 * - inode is setuid 1145 * - inode is setgid and group-exec 1146 * - access failure for read and write 1147 * 1148 * Otherwise returns true. 1149 */ 1150 static bool safe_hardlink_source(struct mnt_idmap *idmap, 1151 struct inode *inode) 1152 { 1153 umode_t mode = inode->i_mode; 1154 1155 /* Special files should not get pinned to the filesystem. */ 1156 if (!S_ISREG(mode)) 1157 return false; 1158 1159 /* Setuid files should not get pinned to the filesystem. */ 1160 if (mode & S_ISUID) 1161 return false; 1162 1163 /* Executable setgid files should not get pinned to the filesystem. */ 1164 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 1165 return false; 1166 1167 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 1168 if (inode_permission(idmap, inode, MAY_READ | MAY_WRITE)) 1169 return false; 1170 1171 return true; 1172 } 1173 1174 /** 1175 * may_linkat - Check permissions for creating a hardlink 1176 * @idmap: idmap of the mount the inode was found from 1177 * @link: the source to hardlink from 1178 * 1179 * Block hardlink when all of: 1180 * - sysctl_protected_hardlinks enabled 1181 * - fsuid does not match inode 1182 * - hardlink source is unsafe (see safe_hardlink_source() above) 1183 * - not CAP_FOWNER in a namespace with the inode owner uid mapped 1184 * 1185 * If the inode has been found through an idmapped mount the idmap of 1186 * the vfsmount must be passed through @idmap. This function will then take 1187 * care to map the inode according to @idmap before checking permissions. 1188 * On non-idmapped mounts or if permission checking is to be performed on the 1189 * raw inode simply pass @nop_mnt_idmap. 1190 * 1191 * Returns 0 if successful, -ve on error. 1192 */ 1193 int may_linkat(struct mnt_idmap *idmap, const struct path *link) 1194 { 1195 struct inode *inode = link->dentry->d_inode; 1196 1197 /* Inode writeback is not safe when the uid or gid are invalid. */ 1198 if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) || 1199 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode))) 1200 return -EOVERFLOW; 1201 1202 if (!sysctl_protected_hardlinks) 1203 return 0; 1204 1205 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 1206 * otherwise, it must be a safe source. 1207 */ 1208 if (safe_hardlink_source(idmap, inode) || 1209 inode_owner_or_capable(idmap, inode)) 1210 return 0; 1211 1212 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat"); 1213 return -EPERM; 1214 } 1215 1216 /** 1217 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory 1218 * should be allowed, or not, on files that already 1219 * exist. 1220 * @idmap: idmap of the mount the inode was found from 1221 * @nd: nameidata pathwalk data 1222 * @inode: the inode of the file to open 1223 * 1224 * Block an O_CREAT open of a FIFO (or a regular file) when: 1225 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled 1226 * - the file already exists 1227 * - we are in a sticky directory 1228 * - we don't own the file 1229 * - the owner of the directory doesn't own the file 1230 * - the directory is world writable 1231 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2 1232 * the directory doesn't have to be world writable: being group writable will 1233 * be enough. 1234 * 1235 * If the inode has been found through an idmapped mount the idmap of 1236 * the vfsmount must be passed through @idmap. This function will then take 1237 * care to map the inode according to @idmap before checking permissions. 1238 * On non-idmapped mounts or if permission checking is to be performed on the 1239 * raw inode simply pass @nop_mnt_idmap. 1240 * 1241 * Returns 0 if the open is allowed, -ve on error. 1242 */ 1243 static int may_create_in_sticky(struct mnt_idmap *idmap, struct nameidata *nd, 1244 struct inode *const inode) 1245 { 1246 umode_t dir_mode = nd->dir_mode; 1247 vfsuid_t dir_vfsuid = nd->dir_vfsuid, i_vfsuid; 1248 1249 if (likely(!(dir_mode & S_ISVTX))) 1250 return 0; 1251 1252 if (S_ISREG(inode->i_mode) && !sysctl_protected_regular) 1253 return 0; 1254 1255 if (S_ISFIFO(inode->i_mode) && !sysctl_protected_fifos) 1256 return 0; 1257 1258 i_vfsuid = i_uid_into_vfsuid(idmap, inode); 1259 1260 if (vfsuid_eq(i_vfsuid, dir_vfsuid)) 1261 return 0; 1262 1263 if (vfsuid_eq_kuid(i_vfsuid, current_fsuid())) 1264 return 0; 1265 1266 if (likely(dir_mode & 0002)) { 1267 audit_log_path_denied(AUDIT_ANOM_CREAT, "sticky_create"); 1268 return -EACCES; 1269 } 1270 1271 if (dir_mode & 0020) { 1272 if (sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) { 1273 audit_log_path_denied(AUDIT_ANOM_CREAT, 1274 "sticky_create_fifo"); 1275 return -EACCES; 1276 } 1277 1278 if (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode)) { 1279 audit_log_path_denied(AUDIT_ANOM_CREAT, 1280 "sticky_create_regular"); 1281 return -EACCES; 1282 } 1283 } 1284 1285 return 0; 1286 } 1287 1288 /* 1289 * follow_up - Find the mountpoint of path's vfsmount 1290 * 1291 * Given a path, find the mountpoint of its source file system. 1292 * Replace @path with the path of the mountpoint in the parent mount. 1293 * Up is towards /. 1294 * 1295 * Return 1 if we went up a level and 0 if we were already at the 1296 * root. 1297 */ 1298 int follow_up(struct path *path) 1299 { 1300 struct mount *mnt = real_mount(path->mnt); 1301 struct mount *parent; 1302 struct dentry *mountpoint; 1303 1304 read_seqlock_excl(&mount_lock); 1305 parent = mnt->mnt_parent; 1306 if (parent == mnt) { 1307 read_sequnlock_excl(&mount_lock); 1308 return 0; 1309 } 1310 mntget(&parent->mnt); 1311 mountpoint = dget(mnt->mnt_mountpoint); 1312 read_sequnlock_excl(&mount_lock); 1313 dput(path->dentry); 1314 path->dentry = mountpoint; 1315 mntput(path->mnt); 1316 path->mnt = &parent->mnt; 1317 return 1; 1318 } 1319 EXPORT_SYMBOL(follow_up); 1320 1321 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root, 1322 struct path *path, unsigned *seqp) 1323 { 1324 while (mnt_has_parent(m)) { 1325 struct dentry *mountpoint = m->mnt_mountpoint; 1326 1327 m = m->mnt_parent; 1328 if (unlikely(root->dentry == mountpoint && 1329 root->mnt == &m->mnt)) 1330 break; 1331 if (mountpoint != m->mnt.mnt_root) { 1332 path->mnt = &m->mnt; 1333 path->dentry = mountpoint; 1334 *seqp = read_seqcount_begin(&mountpoint->d_seq); 1335 return true; 1336 } 1337 } 1338 return false; 1339 } 1340 1341 static bool choose_mountpoint(struct mount *m, const struct path *root, 1342 struct path *path) 1343 { 1344 bool found; 1345 1346 rcu_read_lock(); 1347 while (1) { 1348 unsigned seq, mseq = read_seqbegin(&mount_lock); 1349 1350 found = choose_mountpoint_rcu(m, root, path, &seq); 1351 if (unlikely(!found)) { 1352 if (!read_seqretry(&mount_lock, mseq)) 1353 break; 1354 } else { 1355 if (likely(__legitimize_path(path, seq, mseq))) 1356 break; 1357 rcu_read_unlock(); 1358 path_put(path); 1359 rcu_read_lock(); 1360 } 1361 } 1362 rcu_read_unlock(); 1363 return found; 1364 } 1365 1366 /* 1367 * Perform an automount 1368 * - return -EISDIR to tell follow_managed() to stop and return the path we 1369 * were called with. 1370 */ 1371 static int follow_automount(struct path *path, int *count, unsigned lookup_flags) 1372 { 1373 struct dentry *dentry = path->dentry; 1374 1375 /* We don't want to mount if someone's just doing a stat - 1376 * unless they're stat'ing a directory and appended a '/' to 1377 * the name. 1378 * 1379 * We do, however, want to mount if someone wants to open or 1380 * create a file of any type under the mountpoint, wants to 1381 * traverse through the mountpoint or wants to open the 1382 * mounted directory. Also, autofs may mark negative dentries 1383 * as being automount points. These will need the attentions 1384 * of the daemon to instantiate them before they can be used. 1385 */ 1386 if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 1387 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 1388 dentry->d_inode) 1389 return -EISDIR; 1390 1391 if (count && (*count)++ >= MAXSYMLINKS) 1392 return -ELOOP; 1393 1394 return finish_automount(dentry->d_op->d_automount(path), path); 1395 } 1396 1397 /* 1398 * mount traversal - out-of-line part. One note on ->d_flags accesses - 1399 * dentries are pinned but not locked here, so negative dentry can go 1400 * positive right under us. Use of smp_load_acquire() provides a barrier 1401 * sufficient for ->d_inode and ->d_flags consistency. 1402 */ 1403 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped, 1404 int *count, unsigned lookup_flags) 1405 { 1406 struct vfsmount *mnt = path->mnt; 1407 bool need_mntput = false; 1408 int ret = 0; 1409 1410 while (flags & DCACHE_MANAGED_DENTRY) { 1411 /* Allow the filesystem to manage the transit without i_mutex 1412 * being held. */ 1413 if (flags & DCACHE_MANAGE_TRANSIT) { 1414 ret = path->dentry->d_op->d_manage(path, false); 1415 flags = smp_load_acquire(&path->dentry->d_flags); 1416 if (ret < 0) 1417 break; 1418 } 1419 1420 if (flags & DCACHE_MOUNTED) { // something's mounted on it.. 1421 struct vfsmount *mounted = lookup_mnt(path); 1422 if (mounted) { // ... in our namespace 1423 dput(path->dentry); 1424 if (need_mntput) 1425 mntput(path->mnt); 1426 path->mnt = mounted; 1427 path->dentry = dget(mounted->mnt_root); 1428 // here we know it's positive 1429 flags = path->dentry->d_flags; 1430 need_mntput = true; 1431 continue; 1432 } 1433 } 1434 1435 if (!(flags & DCACHE_NEED_AUTOMOUNT)) 1436 break; 1437 1438 // uncovered automount point 1439 ret = follow_automount(path, count, lookup_flags); 1440 flags = smp_load_acquire(&path->dentry->d_flags); 1441 if (ret < 0) 1442 break; 1443 } 1444 1445 if (ret == -EISDIR) 1446 ret = 0; 1447 // possible if you race with several mount --move 1448 if (need_mntput && path->mnt == mnt) 1449 mntput(path->mnt); 1450 if (!ret && unlikely(d_flags_negative(flags))) 1451 ret = -ENOENT; 1452 *jumped = need_mntput; 1453 return ret; 1454 } 1455 1456 static inline int traverse_mounts(struct path *path, bool *jumped, 1457 int *count, unsigned lookup_flags) 1458 { 1459 unsigned flags = smp_load_acquire(&path->dentry->d_flags); 1460 1461 /* fastpath */ 1462 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) { 1463 *jumped = false; 1464 if (unlikely(d_flags_negative(flags))) 1465 return -ENOENT; 1466 return 0; 1467 } 1468 return __traverse_mounts(path, flags, jumped, count, lookup_flags); 1469 } 1470 1471 int follow_down_one(struct path *path) 1472 { 1473 struct vfsmount *mounted; 1474 1475 mounted = lookup_mnt(path); 1476 if (mounted) { 1477 dput(path->dentry); 1478 mntput(path->mnt); 1479 path->mnt = mounted; 1480 path->dentry = dget(mounted->mnt_root); 1481 return 1; 1482 } 1483 return 0; 1484 } 1485 EXPORT_SYMBOL(follow_down_one); 1486 1487 /* 1488 * Follow down to the covering mount currently visible to userspace. At each 1489 * point, the filesystem owning that dentry may be queried as to whether the 1490 * caller is permitted to proceed or not. 1491 */ 1492 int follow_down(struct path *path, unsigned int flags) 1493 { 1494 struct vfsmount *mnt = path->mnt; 1495 bool jumped; 1496 int ret = traverse_mounts(path, &jumped, NULL, flags); 1497 1498 if (path->mnt != mnt) 1499 mntput(mnt); 1500 return ret; 1501 } 1502 EXPORT_SYMBOL(follow_down); 1503 1504 /* 1505 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1506 * we meet a managed dentry that would need blocking. 1507 */ 1508 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path) 1509 { 1510 struct dentry *dentry = path->dentry; 1511 unsigned int flags = dentry->d_flags; 1512 1513 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) 1514 return true; 1515 1516 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1517 return false; 1518 1519 for (;;) { 1520 /* 1521 * Don't forget we might have a non-mountpoint managed dentry 1522 * that wants to block transit. 1523 */ 1524 if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) { 1525 int res = dentry->d_op->d_manage(path, true); 1526 if (res) 1527 return res == -EISDIR; 1528 flags = dentry->d_flags; 1529 } 1530 1531 if (flags & DCACHE_MOUNTED) { 1532 struct mount *mounted = __lookup_mnt(path->mnt, dentry); 1533 if (mounted) { 1534 path->mnt = &mounted->mnt; 1535 dentry = path->dentry = mounted->mnt.mnt_root; 1536 nd->state |= ND_JUMPED; 1537 nd->next_seq = read_seqcount_begin(&dentry->d_seq); 1538 flags = dentry->d_flags; 1539 // makes sure that non-RCU pathwalk could reach 1540 // this state. 1541 if (read_seqretry(&mount_lock, nd->m_seq)) 1542 return false; 1543 continue; 1544 } 1545 if (read_seqretry(&mount_lock, nd->m_seq)) 1546 return false; 1547 } 1548 return !(flags & DCACHE_NEED_AUTOMOUNT); 1549 } 1550 } 1551 1552 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry, 1553 struct path *path) 1554 { 1555 bool jumped; 1556 int ret; 1557 1558 path->mnt = nd->path.mnt; 1559 path->dentry = dentry; 1560 if (nd->flags & LOOKUP_RCU) { 1561 unsigned int seq = nd->next_seq; 1562 if (likely(__follow_mount_rcu(nd, path))) 1563 return 0; 1564 // *path and nd->next_seq might've been clobbered 1565 path->mnt = nd->path.mnt; 1566 path->dentry = dentry; 1567 nd->next_seq = seq; 1568 if (!try_to_unlazy_next(nd, dentry)) 1569 return -ECHILD; 1570 } 1571 ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags); 1572 if (jumped) { 1573 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1574 ret = -EXDEV; 1575 else 1576 nd->state |= ND_JUMPED; 1577 } 1578 if (unlikely(ret)) { 1579 dput(path->dentry); 1580 if (path->mnt != nd->path.mnt) 1581 mntput(path->mnt); 1582 } 1583 return ret; 1584 } 1585 1586 /* 1587 * This looks up the name in dcache and possibly revalidates the found dentry. 1588 * NULL is returned if the dentry does not exist in the cache. 1589 */ 1590 static struct dentry *lookup_dcache(const struct qstr *name, 1591 struct dentry *dir, 1592 unsigned int flags) 1593 { 1594 struct dentry *dentry = d_lookup(dir, name); 1595 if (dentry) { 1596 int error = d_revalidate(dentry, flags); 1597 if (unlikely(error <= 0)) { 1598 if (!error) 1599 d_invalidate(dentry); 1600 dput(dentry); 1601 return ERR_PTR(error); 1602 } 1603 } 1604 return dentry; 1605 } 1606 1607 /* 1608 * Parent directory has inode locked exclusive. This is one 1609 * and only case when ->lookup() gets called on non in-lookup 1610 * dentries - as the matter of fact, this only gets called 1611 * when directory is guaranteed to have no in-lookup children 1612 * at all. 1613 */ 1614 struct dentry *lookup_one_qstr_excl(const struct qstr *name, 1615 struct dentry *base, 1616 unsigned int flags) 1617 { 1618 struct dentry *dentry = lookup_dcache(name, base, flags); 1619 struct dentry *old; 1620 struct inode *dir = base->d_inode; 1621 1622 if (dentry) 1623 return dentry; 1624 1625 /* Don't create child dentry for a dead directory. */ 1626 if (unlikely(IS_DEADDIR(dir))) 1627 return ERR_PTR(-ENOENT); 1628 1629 dentry = d_alloc(base, name); 1630 if (unlikely(!dentry)) 1631 return ERR_PTR(-ENOMEM); 1632 1633 old = dir->i_op->lookup(dir, dentry, flags); 1634 if (unlikely(old)) { 1635 dput(dentry); 1636 dentry = old; 1637 } 1638 return dentry; 1639 } 1640 EXPORT_SYMBOL(lookup_one_qstr_excl); 1641 1642 /** 1643 * lookup_fast - do fast lockless (but racy) lookup of a dentry 1644 * @nd: current nameidata 1645 * 1646 * Do a fast, but racy lookup in the dcache for the given dentry, and 1647 * revalidate it. Returns a valid dentry pointer or NULL if one wasn't 1648 * found. On error, an ERR_PTR will be returned. 1649 * 1650 * If this function returns a valid dentry and the walk is no longer 1651 * lazy, the dentry will carry a reference that must later be put. If 1652 * RCU mode is still in force, then this is not the case and the dentry 1653 * must be legitimized before use. If this returns NULL, then the walk 1654 * will no longer be in RCU mode. 1655 */ 1656 static struct dentry *lookup_fast(struct nameidata *nd) 1657 { 1658 struct dentry *dentry, *parent = nd->path.dentry; 1659 int status = 1; 1660 1661 /* 1662 * Rename seqlock is not required here because in the off chance 1663 * of a false negative due to a concurrent rename, the caller is 1664 * going to fall back to non-racy lookup. 1665 */ 1666 if (nd->flags & LOOKUP_RCU) { 1667 dentry = __d_lookup_rcu(parent, &nd->last, &nd->next_seq); 1668 if (unlikely(!dentry)) { 1669 if (!try_to_unlazy(nd)) 1670 return ERR_PTR(-ECHILD); 1671 return NULL; 1672 } 1673 1674 /* 1675 * This sequence count validates that the parent had no 1676 * changes while we did the lookup of the dentry above. 1677 */ 1678 if (read_seqcount_retry(&parent->d_seq, nd->seq)) 1679 return ERR_PTR(-ECHILD); 1680 1681 status = d_revalidate(dentry, nd->flags); 1682 if (likely(status > 0)) 1683 return dentry; 1684 if (!try_to_unlazy_next(nd, dentry)) 1685 return ERR_PTR(-ECHILD); 1686 if (status == -ECHILD) 1687 /* we'd been told to redo it in non-rcu mode */ 1688 status = d_revalidate(dentry, nd->flags); 1689 } else { 1690 dentry = __d_lookup(parent, &nd->last); 1691 if (unlikely(!dentry)) 1692 return NULL; 1693 status = d_revalidate(dentry, nd->flags); 1694 } 1695 if (unlikely(status <= 0)) { 1696 if (!status) 1697 d_invalidate(dentry); 1698 dput(dentry); 1699 return ERR_PTR(status); 1700 } 1701 return dentry; 1702 } 1703 1704 /* Fast lookup failed, do it the slow way */ 1705 static struct dentry *__lookup_slow(const struct qstr *name, 1706 struct dentry *dir, 1707 unsigned int flags) 1708 { 1709 struct dentry *dentry, *old; 1710 struct inode *inode = dir->d_inode; 1711 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1712 1713 /* Don't go there if it's already dead */ 1714 if (unlikely(IS_DEADDIR(inode))) 1715 return ERR_PTR(-ENOENT); 1716 again: 1717 dentry = d_alloc_parallel(dir, name, &wq); 1718 if (IS_ERR(dentry)) 1719 return dentry; 1720 if (unlikely(!d_in_lookup(dentry))) { 1721 int error = d_revalidate(dentry, flags); 1722 if (unlikely(error <= 0)) { 1723 if (!error) { 1724 d_invalidate(dentry); 1725 dput(dentry); 1726 goto again; 1727 } 1728 dput(dentry); 1729 dentry = ERR_PTR(error); 1730 } 1731 } else { 1732 old = inode->i_op->lookup(inode, dentry, flags); 1733 d_lookup_done(dentry); 1734 if (unlikely(old)) { 1735 dput(dentry); 1736 dentry = old; 1737 } 1738 } 1739 return dentry; 1740 } 1741 1742 static struct dentry *lookup_slow(const struct qstr *name, 1743 struct dentry *dir, 1744 unsigned int flags) 1745 { 1746 struct inode *inode = dir->d_inode; 1747 struct dentry *res; 1748 inode_lock_shared(inode); 1749 res = __lookup_slow(name, dir, flags); 1750 inode_unlock_shared(inode); 1751 return res; 1752 } 1753 1754 static inline int may_lookup(struct mnt_idmap *idmap, 1755 struct nameidata *restrict nd) 1756 { 1757 int err, mask; 1758 1759 mask = nd->flags & LOOKUP_RCU ? MAY_NOT_BLOCK : 0; 1760 err = inode_permission(idmap, nd->inode, mask | MAY_EXEC); 1761 if (likely(!err)) 1762 return 0; 1763 1764 // If we failed, and we weren't in LOOKUP_RCU, it's final 1765 if (!(nd->flags & LOOKUP_RCU)) 1766 return err; 1767 1768 // Drop out of RCU mode to make sure it wasn't transient 1769 if (!try_to_unlazy(nd)) 1770 return -ECHILD; // redo it all non-lazy 1771 1772 if (err != -ECHILD) // hard error 1773 return err; 1774 1775 return inode_permission(idmap, nd->inode, MAY_EXEC); 1776 } 1777 1778 static int reserve_stack(struct nameidata *nd, struct path *link) 1779 { 1780 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) 1781 return -ELOOP; 1782 1783 if (likely(nd->depth != EMBEDDED_LEVELS)) 1784 return 0; 1785 if (likely(nd->stack != nd->internal)) 1786 return 0; 1787 if (likely(nd_alloc_stack(nd))) 1788 return 0; 1789 1790 if (nd->flags & LOOKUP_RCU) { 1791 // we need to grab link before we do unlazy. And we can't skip 1792 // unlazy even if we fail to grab the link - cleanup needs it 1793 bool grabbed_link = legitimize_path(nd, link, nd->next_seq); 1794 1795 if (!try_to_unlazy(nd) || !grabbed_link) 1796 return -ECHILD; 1797 1798 if (nd_alloc_stack(nd)) 1799 return 0; 1800 } 1801 return -ENOMEM; 1802 } 1803 1804 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4}; 1805 1806 static const char *pick_link(struct nameidata *nd, struct path *link, 1807 struct inode *inode, int flags) 1808 { 1809 struct saved *last; 1810 const char *res; 1811 int error = reserve_stack(nd, link); 1812 1813 if (unlikely(error)) { 1814 if (!(nd->flags & LOOKUP_RCU)) 1815 path_put(link); 1816 return ERR_PTR(error); 1817 } 1818 last = nd->stack + nd->depth++; 1819 last->link = *link; 1820 clear_delayed_call(&last->done); 1821 last->seq = nd->next_seq; 1822 1823 if (flags & WALK_TRAILING) { 1824 error = may_follow_link(nd, inode); 1825 if (unlikely(error)) 1826 return ERR_PTR(error); 1827 } 1828 1829 if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) || 1830 unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW)) 1831 return ERR_PTR(-ELOOP); 1832 1833 if (!(nd->flags & LOOKUP_RCU)) { 1834 touch_atime(&last->link); 1835 cond_resched(); 1836 } else if (atime_needs_update(&last->link, inode)) { 1837 if (!try_to_unlazy(nd)) 1838 return ERR_PTR(-ECHILD); 1839 touch_atime(&last->link); 1840 } 1841 1842 error = security_inode_follow_link(link->dentry, inode, 1843 nd->flags & LOOKUP_RCU); 1844 if (unlikely(error)) 1845 return ERR_PTR(error); 1846 1847 res = READ_ONCE(inode->i_link); 1848 if (!res) { 1849 const char * (*get)(struct dentry *, struct inode *, 1850 struct delayed_call *); 1851 get = inode->i_op->get_link; 1852 if (nd->flags & LOOKUP_RCU) { 1853 res = get(NULL, inode, &last->done); 1854 if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd)) 1855 res = get(link->dentry, inode, &last->done); 1856 } else { 1857 res = get(link->dentry, inode, &last->done); 1858 } 1859 if (!res) 1860 goto all_done; 1861 if (IS_ERR(res)) 1862 return res; 1863 } 1864 if (*res == '/') { 1865 error = nd_jump_root(nd); 1866 if (unlikely(error)) 1867 return ERR_PTR(error); 1868 while (unlikely(*++res == '/')) 1869 ; 1870 } 1871 if (*res) 1872 return res; 1873 all_done: // pure jump 1874 put_link(nd); 1875 return NULL; 1876 } 1877 1878 /* 1879 * Do we need to follow links? We _really_ want to be able 1880 * to do this check without having to look at inode->i_op, 1881 * so we keep a cache of "no, this doesn't need follow_link" 1882 * for the common case. 1883 * 1884 * NOTE: dentry must be what nd->next_seq had been sampled from. 1885 */ 1886 static const char *step_into(struct nameidata *nd, int flags, 1887 struct dentry *dentry) 1888 { 1889 struct path path; 1890 struct inode *inode; 1891 int err = handle_mounts(nd, dentry, &path); 1892 1893 if (err < 0) 1894 return ERR_PTR(err); 1895 inode = path.dentry->d_inode; 1896 if (likely(!d_is_symlink(path.dentry)) || 1897 ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) || 1898 (flags & WALK_NOFOLLOW)) { 1899 /* not a symlink or should not follow */ 1900 if (nd->flags & LOOKUP_RCU) { 1901 if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq)) 1902 return ERR_PTR(-ECHILD); 1903 if (unlikely(!inode)) 1904 return ERR_PTR(-ENOENT); 1905 } else { 1906 dput(nd->path.dentry); 1907 if (nd->path.mnt != path.mnt) 1908 mntput(nd->path.mnt); 1909 } 1910 nd->path = path; 1911 nd->inode = inode; 1912 nd->seq = nd->next_seq; 1913 return NULL; 1914 } 1915 if (nd->flags & LOOKUP_RCU) { 1916 /* make sure that d_is_symlink above matches inode */ 1917 if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq)) 1918 return ERR_PTR(-ECHILD); 1919 } else { 1920 if (path.mnt == nd->path.mnt) 1921 mntget(path.mnt); 1922 } 1923 return pick_link(nd, &path, inode, flags); 1924 } 1925 1926 static struct dentry *follow_dotdot_rcu(struct nameidata *nd) 1927 { 1928 struct dentry *parent, *old; 1929 1930 if (path_equal(&nd->path, &nd->root)) 1931 goto in_root; 1932 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { 1933 struct path path; 1934 unsigned seq; 1935 if (!choose_mountpoint_rcu(real_mount(nd->path.mnt), 1936 &nd->root, &path, &seq)) 1937 goto in_root; 1938 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1939 return ERR_PTR(-ECHILD); 1940 nd->path = path; 1941 nd->inode = path.dentry->d_inode; 1942 nd->seq = seq; 1943 // makes sure that non-RCU pathwalk could reach this state 1944 if (read_seqretry(&mount_lock, nd->m_seq)) 1945 return ERR_PTR(-ECHILD); 1946 /* we know that mountpoint was pinned */ 1947 } 1948 old = nd->path.dentry; 1949 parent = old->d_parent; 1950 nd->next_seq = read_seqcount_begin(&parent->d_seq); 1951 // makes sure that non-RCU pathwalk could reach this state 1952 if (read_seqcount_retry(&old->d_seq, nd->seq)) 1953 return ERR_PTR(-ECHILD); 1954 if (unlikely(!path_connected(nd->path.mnt, parent))) 1955 return ERR_PTR(-ECHILD); 1956 return parent; 1957 in_root: 1958 if (read_seqretry(&mount_lock, nd->m_seq)) 1959 return ERR_PTR(-ECHILD); 1960 if (unlikely(nd->flags & LOOKUP_BENEATH)) 1961 return ERR_PTR(-ECHILD); 1962 nd->next_seq = nd->seq; 1963 return nd->path.dentry; 1964 } 1965 1966 static struct dentry *follow_dotdot(struct nameidata *nd) 1967 { 1968 struct dentry *parent; 1969 1970 if (path_equal(&nd->path, &nd->root)) 1971 goto in_root; 1972 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { 1973 struct path path; 1974 1975 if (!choose_mountpoint(real_mount(nd->path.mnt), 1976 &nd->root, &path)) 1977 goto in_root; 1978 path_put(&nd->path); 1979 nd->path = path; 1980 nd->inode = path.dentry->d_inode; 1981 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1982 return ERR_PTR(-EXDEV); 1983 } 1984 /* rare case of legitimate dget_parent()... */ 1985 parent = dget_parent(nd->path.dentry); 1986 if (unlikely(!path_connected(nd->path.mnt, parent))) { 1987 dput(parent); 1988 return ERR_PTR(-ENOENT); 1989 } 1990 return parent; 1991 1992 in_root: 1993 if (unlikely(nd->flags & LOOKUP_BENEATH)) 1994 return ERR_PTR(-EXDEV); 1995 return dget(nd->path.dentry); 1996 } 1997 1998 static const char *handle_dots(struct nameidata *nd, int type) 1999 { 2000 if (type == LAST_DOTDOT) { 2001 const char *error = NULL; 2002 struct dentry *parent; 2003 2004 if (!nd->root.mnt) { 2005 error = ERR_PTR(set_root(nd)); 2006 if (error) 2007 return error; 2008 } 2009 if (nd->flags & LOOKUP_RCU) 2010 parent = follow_dotdot_rcu(nd); 2011 else 2012 parent = follow_dotdot(nd); 2013 if (IS_ERR(parent)) 2014 return ERR_CAST(parent); 2015 error = step_into(nd, WALK_NOFOLLOW, parent); 2016 if (unlikely(error)) 2017 return error; 2018 2019 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { 2020 /* 2021 * If there was a racing rename or mount along our 2022 * path, then we can't be sure that ".." hasn't jumped 2023 * above nd->root (and so userspace should retry or use 2024 * some fallback). 2025 */ 2026 smp_rmb(); 2027 if (__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq)) 2028 return ERR_PTR(-EAGAIN); 2029 if (__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq)) 2030 return ERR_PTR(-EAGAIN); 2031 } 2032 } 2033 return NULL; 2034 } 2035 2036 static const char *walk_component(struct nameidata *nd, int flags) 2037 { 2038 struct dentry *dentry; 2039 /* 2040 * "." and ".." are special - ".." especially so because it has 2041 * to be able to know about the current root directory and 2042 * parent relationships. 2043 */ 2044 if (unlikely(nd->last_type != LAST_NORM)) { 2045 if (!(flags & WALK_MORE) && nd->depth) 2046 put_link(nd); 2047 return handle_dots(nd, nd->last_type); 2048 } 2049 dentry = lookup_fast(nd); 2050 if (IS_ERR(dentry)) 2051 return ERR_CAST(dentry); 2052 if (unlikely(!dentry)) { 2053 dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags); 2054 if (IS_ERR(dentry)) 2055 return ERR_CAST(dentry); 2056 } 2057 if (!(flags & WALK_MORE) && nd->depth) 2058 put_link(nd); 2059 return step_into(nd, flags, dentry); 2060 } 2061 2062 /* 2063 * We can do the critical dentry name comparison and hashing 2064 * operations one word at a time, but we are limited to: 2065 * 2066 * - Architectures with fast unaligned word accesses. We could 2067 * do a "get_unaligned()" if this helps and is sufficiently 2068 * fast. 2069 * 2070 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 2071 * do not trap on the (extremely unlikely) case of a page 2072 * crossing operation. 2073 * 2074 * - Furthermore, we need an efficient 64-bit compile for the 2075 * 64-bit case in order to generate the "number of bytes in 2076 * the final mask". Again, that could be replaced with a 2077 * efficient population count instruction or similar. 2078 */ 2079 #ifdef CONFIG_DCACHE_WORD_ACCESS 2080 2081 #include <asm/word-at-a-time.h> 2082 2083 #ifdef HASH_MIX 2084 2085 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */ 2086 2087 #elif defined(CONFIG_64BIT) 2088 /* 2089 * Register pressure in the mixing function is an issue, particularly 2090 * on 32-bit x86, but almost any function requires one state value and 2091 * one temporary. Instead, use a function designed for two state values 2092 * and no temporaries. 2093 * 2094 * This function cannot create a collision in only two iterations, so 2095 * we have two iterations to achieve avalanche. In those two iterations, 2096 * we have six layers of mixing, which is enough to spread one bit's 2097 * influence out to 2^6 = 64 state bits. 2098 * 2099 * Rotate constants are scored by considering either 64 one-bit input 2100 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the 2101 * probability of that delta causing a change to each of the 128 output 2102 * bits, using a sample of random initial states. 2103 * 2104 * The Shannon entropy of the computed probabilities is then summed 2105 * to produce a score. Ideally, any input change has a 50% chance of 2106 * toggling any given output bit. 2107 * 2108 * Mixing scores (in bits) for (12,45): 2109 * Input delta: 1-bit 2-bit 2110 * 1 round: 713.3 42542.6 2111 * 2 rounds: 2753.7 140389.8 2112 * 3 rounds: 5954.1 233458.2 2113 * 4 rounds: 7862.6 256672.2 2114 * Perfect: 8192 258048 2115 * (64*128) (64*63/2 * 128) 2116 */ 2117 #define HASH_MIX(x, y, a) \ 2118 ( x ^= (a), \ 2119 y ^= x, x = rol64(x,12),\ 2120 x += y, y = rol64(y,45),\ 2121 y *= 9 ) 2122 2123 /* 2124 * Fold two longs into one 32-bit hash value. This must be fast, but 2125 * latency isn't quite as critical, as there is a fair bit of additional 2126 * work done before the hash value is used. 2127 */ 2128 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 2129 { 2130 y ^= x * GOLDEN_RATIO_64; 2131 y *= GOLDEN_RATIO_64; 2132 return y >> 32; 2133 } 2134 2135 #else /* 32-bit case */ 2136 2137 /* 2138 * Mixing scores (in bits) for (7,20): 2139 * Input delta: 1-bit 2-bit 2140 * 1 round: 330.3 9201.6 2141 * 2 rounds: 1246.4 25475.4 2142 * 3 rounds: 1907.1 31295.1 2143 * 4 rounds: 2042.3 31718.6 2144 * Perfect: 2048 31744 2145 * (32*64) (32*31/2 * 64) 2146 */ 2147 #define HASH_MIX(x, y, a) \ 2148 ( x ^= (a), \ 2149 y ^= x, x = rol32(x, 7),\ 2150 x += y, y = rol32(y,20),\ 2151 y *= 9 ) 2152 2153 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 2154 { 2155 /* Use arch-optimized multiply if one exists */ 2156 return __hash_32(y ^ __hash_32(x)); 2157 } 2158 2159 #endif 2160 2161 /* 2162 * Return the hash of a string of known length. This is carfully 2163 * designed to match hash_name(), which is the more critical function. 2164 * In particular, we must end by hashing a final word containing 0..7 2165 * payload bytes, to match the way that hash_name() iterates until it 2166 * finds the delimiter after the name. 2167 */ 2168 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2169 { 2170 unsigned long a, x = 0, y = (unsigned long)salt; 2171 2172 for (;;) { 2173 if (!len) 2174 goto done; 2175 a = load_unaligned_zeropad(name); 2176 if (len < sizeof(unsigned long)) 2177 break; 2178 HASH_MIX(x, y, a); 2179 name += sizeof(unsigned long); 2180 len -= sizeof(unsigned long); 2181 } 2182 x ^= a & bytemask_from_count(len); 2183 done: 2184 return fold_hash(x, y); 2185 } 2186 EXPORT_SYMBOL(full_name_hash); 2187 2188 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2189 u64 hashlen_string(const void *salt, const char *name) 2190 { 2191 unsigned long a = 0, x = 0, y = (unsigned long)salt; 2192 unsigned long adata, mask, len; 2193 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 2194 2195 len = 0; 2196 goto inside; 2197 2198 do { 2199 HASH_MIX(x, y, a); 2200 len += sizeof(unsigned long); 2201 inside: 2202 a = load_unaligned_zeropad(name+len); 2203 } while (!has_zero(a, &adata, &constants)); 2204 2205 adata = prep_zero_mask(a, adata, &constants); 2206 mask = create_zero_mask(adata); 2207 x ^= a & zero_bytemask(mask); 2208 2209 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 2210 } 2211 EXPORT_SYMBOL(hashlen_string); 2212 2213 /* 2214 * Calculate the length and hash of the path component, and 2215 * return the length as the result. 2216 */ 2217 static inline const char *hash_name(struct nameidata *nd, 2218 const char *name, 2219 unsigned long *lastword) 2220 { 2221 unsigned long a, b, x, y = (unsigned long)nd->path.dentry; 2222 unsigned long adata, bdata, mask, len; 2223 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 2224 2225 /* 2226 * The first iteration is special, because it can result in 2227 * '.' and '..' and has no mixing other than the final fold. 2228 */ 2229 a = load_unaligned_zeropad(name); 2230 b = a ^ REPEAT_BYTE('/'); 2231 if (has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)) { 2232 adata = prep_zero_mask(a, adata, &constants); 2233 bdata = prep_zero_mask(b, bdata, &constants); 2234 mask = create_zero_mask(adata | bdata); 2235 a &= zero_bytemask(mask); 2236 *lastword = a; 2237 len = find_zero(mask); 2238 nd->last.hash = fold_hash(a, y); 2239 nd->last.len = len; 2240 return name + len; 2241 } 2242 2243 len = 0; 2244 x = 0; 2245 do { 2246 HASH_MIX(x, y, a); 2247 len += sizeof(unsigned long); 2248 a = load_unaligned_zeropad(name+len); 2249 b = a ^ REPEAT_BYTE('/'); 2250 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 2251 2252 adata = prep_zero_mask(a, adata, &constants); 2253 bdata = prep_zero_mask(b, bdata, &constants); 2254 mask = create_zero_mask(adata | bdata); 2255 a &= zero_bytemask(mask); 2256 x ^= a; 2257 len += find_zero(mask); 2258 *lastword = 0; // Multi-word components cannot be DOT or DOTDOT 2259 2260 nd->last.hash = fold_hash(x, y); 2261 nd->last.len = len; 2262 return name + len; 2263 } 2264 2265 /* 2266 * Note that the 'last' word is always zero-masked, but 2267 * was loaded as a possibly big-endian word. 2268 */ 2269 #ifdef __BIG_ENDIAN 2270 #define LAST_WORD_IS_DOT (0x2eul << (BITS_PER_LONG-8)) 2271 #define LAST_WORD_IS_DOTDOT (0x2e2eul << (BITS_PER_LONG-16)) 2272 #endif 2273 2274 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */ 2275 2276 /* Return the hash of a string of known length */ 2277 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2278 { 2279 unsigned long hash = init_name_hash(salt); 2280 while (len--) 2281 hash = partial_name_hash((unsigned char)*name++, hash); 2282 return end_name_hash(hash); 2283 } 2284 EXPORT_SYMBOL(full_name_hash); 2285 2286 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2287 u64 hashlen_string(const void *salt, const char *name) 2288 { 2289 unsigned long hash = init_name_hash(salt); 2290 unsigned long len = 0, c; 2291 2292 c = (unsigned char)*name; 2293 while (c) { 2294 len++; 2295 hash = partial_name_hash(c, hash); 2296 c = (unsigned char)name[len]; 2297 } 2298 return hashlen_create(end_name_hash(hash), len); 2299 } 2300 EXPORT_SYMBOL(hashlen_string); 2301 2302 /* 2303 * We know there's a real path component here of at least 2304 * one character. 2305 */ 2306 static inline const char *hash_name(struct nameidata *nd, const char *name, unsigned long *lastword) 2307 { 2308 unsigned long hash = init_name_hash(nd->path.dentry); 2309 unsigned long len = 0, c, last = 0; 2310 2311 c = (unsigned char)*name; 2312 do { 2313 last = (last << 8) + c; 2314 len++; 2315 hash = partial_name_hash(c, hash); 2316 c = (unsigned char)name[len]; 2317 } while (c && c != '/'); 2318 2319 // This is reliable for DOT or DOTDOT, since the component 2320 // cannot contain NUL characters - top bits being zero means 2321 // we cannot have had any other pathnames. 2322 *lastword = last; 2323 nd->last.hash = end_name_hash(hash); 2324 nd->last.len = len; 2325 return name + len; 2326 } 2327 2328 #endif 2329 2330 #ifndef LAST_WORD_IS_DOT 2331 #define LAST_WORD_IS_DOT 0x2e 2332 #define LAST_WORD_IS_DOTDOT 0x2e2e 2333 #endif 2334 2335 /* 2336 * Name resolution. 2337 * This is the basic name resolution function, turning a pathname into 2338 * the final dentry. We expect 'base' to be positive and a directory. 2339 * 2340 * Returns 0 and nd will have valid dentry and mnt on success. 2341 * Returns error and drops reference to input namei data on failure. 2342 */ 2343 static int link_path_walk(const char *name, struct nameidata *nd) 2344 { 2345 int depth = 0; // depth <= nd->depth 2346 int err; 2347 2348 nd->last_type = LAST_ROOT; 2349 nd->flags |= LOOKUP_PARENT; 2350 if (IS_ERR(name)) 2351 return PTR_ERR(name); 2352 while (*name=='/') 2353 name++; 2354 if (!*name) { 2355 nd->dir_mode = 0; // short-circuit the 'hardening' idiocy 2356 return 0; 2357 } 2358 2359 /* At this point we know we have a real path component. */ 2360 for(;;) { 2361 struct mnt_idmap *idmap; 2362 const char *link; 2363 unsigned long lastword; 2364 2365 idmap = mnt_idmap(nd->path.mnt); 2366 err = may_lookup(idmap, nd); 2367 if (err) 2368 return err; 2369 2370 nd->last.name = name; 2371 name = hash_name(nd, name, &lastword); 2372 2373 switch(lastword) { 2374 case LAST_WORD_IS_DOTDOT: 2375 nd->last_type = LAST_DOTDOT; 2376 nd->state |= ND_JUMPED; 2377 break; 2378 2379 case LAST_WORD_IS_DOT: 2380 nd->last_type = LAST_DOT; 2381 break; 2382 2383 default: 2384 nd->last_type = LAST_NORM; 2385 nd->state &= ~ND_JUMPED; 2386 2387 struct dentry *parent = nd->path.dentry; 2388 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 2389 err = parent->d_op->d_hash(parent, &nd->last); 2390 if (err < 0) 2391 return err; 2392 } 2393 } 2394 2395 if (!*name) 2396 goto OK; 2397 /* 2398 * If it wasn't NUL, we know it was '/'. Skip that 2399 * slash, and continue until no more slashes. 2400 */ 2401 do { 2402 name++; 2403 } while (unlikely(*name == '/')); 2404 if (unlikely(!*name)) { 2405 OK: 2406 /* pathname or trailing symlink, done */ 2407 if (!depth) { 2408 nd->dir_vfsuid = i_uid_into_vfsuid(idmap, nd->inode); 2409 nd->dir_mode = nd->inode->i_mode; 2410 nd->flags &= ~LOOKUP_PARENT; 2411 return 0; 2412 } 2413 /* last component of nested symlink */ 2414 name = nd->stack[--depth].name; 2415 link = walk_component(nd, 0); 2416 } else { 2417 /* not the last component */ 2418 link = walk_component(nd, WALK_MORE); 2419 } 2420 if (unlikely(link)) { 2421 if (IS_ERR(link)) 2422 return PTR_ERR(link); 2423 /* a symlink to follow */ 2424 nd->stack[depth++].name = name; 2425 name = link; 2426 continue; 2427 } 2428 if (unlikely(!d_can_lookup(nd->path.dentry))) { 2429 if (nd->flags & LOOKUP_RCU) { 2430 if (!try_to_unlazy(nd)) 2431 return -ECHILD; 2432 } 2433 return -ENOTDIR; 2434 } 2435 } 2436 } 2437 2438 /* must be paired with terminate_walk() */ 2439 static const char *path_init(struct nameidata *nd, unsigned flags) 2440 { 2441 int error; 2442 const char *s = nd->name->name; 2443 2444 /* LOOKUP_CACHED requires RCU, ask caller to retry */ 2445 if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED) 2446 return ERR_PTR(-EAGAIN); 2447 2448 if (!*s) 2449 flags &= ~LOOKUP_RCU; 2450 if (flags & LOOKUP_RCU) 2451 rcu_read_lock(); 2452 else 2453 nd->seq = nd->next_seq = 0; 2454 2455 nd->flags = flags; 2456 nd->state |= ND_JUMPED; 2457 2458 nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount); 2459 nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount); 2460 smp_rmb(); 2461 2462 if (nd->state & ND_ROOT_PRESET) { 2463 struct dentry *root = nd->root.dentry; 2464 struct inode *inode = root->d_inode; 2465 if (*s && unlikely(!d_can_lookup(root))) 2466 return ERR_PTR(-ENOTDIR); 2467 nd->path = nd->root; 2468 nd->inode = inode; 2469 if (flags & LOOKUP_RCU) { 2470 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2471 nd->root_seq = nd->seq; 2472 } else { 2473 path_get(&nd->path); 2474 } 2475 return s; 2476 } 2477 2478 nd->root.mnt = NULL; 2479 2480 /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */ 2481 if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) { 2482 error = nd_jump_root(nd); 2483 if (unlikely(error)) 2484 return ERR_PTR(error); 2485 return s; 2486 } 2487 2488 /* Relative pathname -- get the starting-point it is relative to. */ 2489 if (nd->dfd == AT_FDCWD) { 2490 if (flags & LOOKUP_RCU) { 2491 struct fs_struct *fs = current->fs; 2492 unsigned seq; 2493 2494 do { 2495 seq = read_seqcount_begin(&fs->seq); 2496 nd->path = fs->pwd; 2497 nd->inode = nd->path.dentry->d_inode; 2498 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2499 } while (read_seqcount_retry(&fs->seq, seq)); 2500 } else { 2501 get_fs_pwd(current->fs, &nd->path); 2502 nd->inode = nd->path.dentry->d_inode; 2503 } 2504 } else { 2505 /* Caller must check execute permissions on the starting path component */ 2506 struct fd f = fdget_raw(nd->dfd); 2507 struct dentry *dentry; 2508 2509 if (!fd_file(f)) 2510 return ERR_PTR(-EBADF); 2511 2512 if (flags & LOOKUP_LINKAT_EMPTY) { 2513 if (fd_file(f)->f_cred != current_cred() && 2514 !ns_capable(fd_file(f)->f_cred->user_ns, CAP_DAC_READ_SEARCH)) { 2515 fdput(f); 2516 return ERR_PTR(-ENOENT); 2517 } 2518 } 2519 2520 dentry = fd_file(f)->f_path.dentry; 2521 2522 if (*s && unlikely(!d_can_lookup(dentry))) { 2523 fdput(f); 2524 return ERR_PTR(-ENOTDIR); 2525 } 2526 2527 nd->path = fd_file(f)->f_path; 2528 if (flags & LOOKUP_RCU) { 2529 nd->inode = nd->path.dentry->d_inode; 2530 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2531 } else { 2532 path_get(&nd->path); 2533 nd->inode = nd->path.dentry->d_inode; 2534 } 2535 fdput(f); 2536 } 2537 2538 /* For scoped-lookups we need to set the root to the dirfd as well. */ 2539 if (flags & LOOKUP_IS_SCOPED) { 2540 nd->root = nd->path; 2541 if (flags & LOOKUP_RCU) { 2542 nd->root_seq = nd->seq; 2543 } else { 2544 path_get(&nd->root); 2545 nd->state |= ND_ROOT_GRABBED; 2546 } 2547 } 2548 return s; 2549 } 2550 2551 static inline const char *lookup_last(struct nameidata *nd) 2552 { 2553 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 2554 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2555 2556 return walk_component(nd, WALK_TRAILING); 2557 } 2558 2559 static int handle_lookup_down(struct nameidata *nd) 2560 { 2561 if (!(nd->flags & LOOKUP_RCU)) 2562 dget(nd->path.dentry); 2563 nd->next_seq = nd->seq; 2564 return PTR_ERR(step_into(nd, WALK_NOFOLLOW, nd->path.dentry)); 2565 } 2566 2567 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */ 2568 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path) 2569 { 2570 const char *s = path_init(nd, flags); 2571 int err; 2572 2573 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) { 2574 err = handle_lookup_down(nd); 2575 if (unlikely(err < 0)) 2576 s = ERR_PTR(err); 2577 } 2578 2579 while (!(err = link_path_walk(s, nd)) && 2580 (s = lookup_last(nd)) != NULL) 2581 ; 2582 if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) { 2583 err = handle_lookup_down(nd); 2584 nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please... 2585 } 2586 if (!err) 2587 err = complete_walk(nd); 2588 2589 if (!err && nd->flags & LOOKUP_DIRECTORY) 2590 if (!d_can_lookup(nd->path.dentry)) 2591 err = -ENOTDIR; 2592 if (!err) { 2593 *path = nd->path; 2594 nd->path.mnt = NULL; 2595 nd->path.dentry = NULL; 2596 } 2597 terminate_walk(nd); 2598 return err; 2599 } 2600 2601 int filename_lookup(int dfd, struct filename *name, unsigned flags, 2602 struct path *path, struct path *root) 2603 { 2604 int retval; 2605 struct nameidata nd; 2606 if (IS_ERR(name)) 2607 return PTR_ERR(name); 2608 set_nameidata(&nd, dfd, name, root); 2609 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path); 2610 if (unlikely(retval == -ECHILD)) 2611 retval = path_lookupat(&nd, flags, path); 2612 if (unlikely(retval == -ESTALE)) 2613 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path); 2614 2615 if (likely(!retval)) 2616 audit_inode(name, path->dentry, 2617 flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0); 2618 restore_nameidata(); 2619 return retval; 2620 } 2621 2622 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */ 2623 static int path_parentat(struct nameidata *nd, unsigned flags, 2624 struct path *parent) 2625 { 2626 const char *s = path_init(nd, flags); 2627 int err = link_path_walk(s, nd); 2628 if (!err) 2629 err = complete_walk(nd); 2630 if (!err) { 2631 *parent = nd->path; 2632 nd->path.mnt = NULL; 2633 nd->path.dentry = NULL; 2634 } 2635 terminate_walk(nd); 2636 return err; 2637 } 2638 2639 /* Note: this does not consume "name" */ 2640 static int __filename_parentat(int dfd, struct filename *name, 2641 unsigned int flags, struct path *parent, 2642 struct qstr *last, int *type, 2643 const struct path *root) 2644 { 2645 int retval; 2646 struct nameidata nd; 2647 2648 if (IS_ERR(name)) 2649 return PTR_ERR(name); 2650 set_nameidata(&nd, dfd, name, root); 2651 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent); 2652 if (unlikely(retval == -ECHILD)) 2653 retval = path_parentat(&nd, flags, parent); 2654 if (unlikely(retval == -ESTALE)) 2655 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent); 2656 if (likely(!retval)) { 2657 *last = nd.last; 2658 *type = nd.last_type; 2659 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT); 2660 } 2661 restore_nameidata(); 2662 return retval; 2663 } 2664 2665 static int filename_parentat(int dfd, struct filename *name, 2666 unsigned int flags, struct path *parent, 2667 struct qstr *last, int *type) 2668 { 2669 return __filename_parentat(dfd, name, flags, parent, last, type, NULL); 2670 } 2671 2672 /* does lookup, returns the object with parent locked */ 2673 static struct dentry *__kern_path_locked(int dfd, struct filename *name, struct path *path) 2674 { 2675 struct dentry *d; 2676 struct qstr last; 2677 int type, error; 2678 2679 error = filename_parentat(dfd, name, 0, path, &last, &type); 2680 if (error) 2681 return ERR_PTR(error); 2682 if (unlikely(type != LAST_NORM)) { 2683 path_put(path); 2684 return ERR_PTR(-EINVAL); 2685 } 2686 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 2687 d = lookup_one_qstr_excl(&last, path->dentry, 0); 2688 if (IS_ERR(d)) { 2689 inode_unlock(path->dentry->d_inode); 2690 path_put(path); 2691 } 2692 return d; 2693 } 2694 2695 struct dentry *kern_path_locked(const char *name, struct path *path) 2696 { 2697 struct filename *filename = getname_kernel(name); 2698 struct dentry *res = __kern_path_locked(AT_FDCWD, filename, path); 2699 2700 putname(filename); 2701 return res; 2702 } 2703 2704 struct dentry *user_path_locked_at(int dfd, const char __user *name, struct path *path) 2705 { 2706 struct filename *filename = getname(name); 2707 struct dentry *res = __kern_path_locked(dfd, filename, path); 2708 2709 putname(filename); 2710 return res; 2711 } 2712 EXPORT_SYMBOL(user_path_locked_at); 2713 2714 int kern_path(const char *name, unsigned int flags, struct path *path) 2715 { 2716 struct filename *filename = getname_kernel(name); 2717 int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL); 2718 2719 putname(filename); 2720 return ret; 2721 2722 } 2723 EXPORT_SYMBOL(kern_path); 2724 2725 /** 2726 * vfs_path_parent_lookup - lookup a parent path relative to a dentry-vfsmount pair 2727 * @filename: filename structure 2728 * @flags: lookup flags 2729 * @parent: pointer to struct path to fill 2730 * @last: last component 2731 * @type: type of the last component 2732 * @root: pointer to struct path of the base directory 2733 */ 2734 int vfs_path_parent_lookup(struct filename *filename, unsigned int flags, 2735 struct path *parent, struct qstr *last, int *type, 2736 const struct path *root) 2737 { 2738 return __filename_parentat(AT_FDCWD, filename, flags, parent, last, 2739 type, root); 2740 } 2741 EXPORT_SYMBOL(vfs_path_parent_lookup); 2742 2743 /** 2744 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2745 * @dentry: pointer to dentry of the base directory 2746 * @mnt: pointer to vfs mount of the base directory 2747 * @name: pointer to file name 2748 * @flags: lookup flags 2749 * @path: pointer to struct path to fill 2750 */ 2751 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2752 const char *name, unsigned int flags, 2753 struct path *path) 2754 { 2755 struct filename *filename; 2756 struct path root = {.mnt = mnt, .dentry = dentry}; 2757 int ret; 2758 2759 filename = getname_kernel(name); 2760 /* the first argument of filename_lookup() is ignored with root */ 2761 ret = filename_lookup(AT_FDCWD, filename, flags, path, &root); 2762 putname(filename); 2763 return ret; 2764 } 2765 EXPORT_SYMBOL(vfs_path_lookup); 2766 2767 static int lookup_one_common(struct mnt_idmap *idmap, 2768 const char *name, struct dentry *base, int len, 2769 struct qstr *this) 2770 { 2771 this->name = name; 2772 this->len = len; 2773 this->hash = full_name_hash(base, name, len); 2774 if (!len) 2775 return -EACCES; 2776 2777 if (is_dot_dotdot(name, len)) 2778 return -EACCES; 2779 2780 while (len--) { 2781 unsigned int c = *(const unsigned char *)name++; 2782 if (c == '/' || c == '\0') 2783 return -EACCES; 2784 } 2785 /* 2786 * See if the low-level filesystem might want 2787 * to use its own hash.. 2788 */ 2789 if (base->d_flags & DCACHE_OP_HASH) { 2790 int err = base->d_op->d_hash(base, this); 2791 if (err < 0) 2792 return err; 2793 } 2794 2795 return inode_permission(idmap, base->d_inode, MAY_EXEC); 2796 } 2797 2798 /** 2799 * try_lookup_one_len - filesystem helper to lookup single pathname component 2800 * @name: pathname component to lookup 2801 * @base: base directory to lookup from 2802 * @len: maximum length @len should be interpreted to 2803 * 2804 * Look up a dentry by name in the dcache, returning NULL if it does not 2805 * currently exist. The function does not try to create a dentry. 2806 * 2807 * Note that this routine is purely a helper for filesystem usage and should 2808 * not be called by generic code. 2809 * 2810 * The caller must hold base->i_mutex. 2811 */ 2812 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len) 2813 { 2814 struct qstr this; 2815 int err; 2816 2817 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2818 2819 err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this); 2820 if (err) 2821 return ERR_PTR(err); 2822 2823 return lookup_dcache(&this, base, 0); 2824 } 2825 EXPORT_SYMBOL(try_lookup_one_len); 2826 2827 /** 2828 * lookup_one_len - filesystem helper to lookup single pathname component 2829 * @name: pathname component to lookup 2830 * @base: base directory to lookup from 2831 * @len: maximum length @len should be interpreted to 2832 * 2833 * Note that this routine is purely a helper for filesystem usage and should 2834 * not be called by generic code. 2835 * 2836 * The caller must hold base->i_mutex. 2837 */ 2838 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2839 { 2840 struct dentry *dentry; 2841 struct qstr this; 2842 int err; 2843 2844 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2845 2846 err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this); 2847 if (err) 2848 return ERR_PTR(err); 2849 2850 dentry = lookup_dcache(&this, base, 0); 2851 return dentry ? dentry : __lookup_slow(&this, base, 0); 2852 } 2853 EXPORT_SYMBOL(lookup_one_len); 2854 2855 /** 2856 * lookup_one - filesystem helper to lookup single pathname component 2857 * @idmap: idmap of the mount the lookup is performed from 2858 * @name: pathname component to lookup 2859 * @base: base directory to lookup from 2860 * @len: maximum length @len should be interpreted to 2861 * 2862 * Note that this routine is purely a helper for filesystem usage and should 2863 * not be called by generic code. 2864 * 2865 * The caller must hold base->i_mutex. 2866 */ 2867 struct dentry *lookup_one(struct mnt_idmap *idmap, const char *name, 2868 struct dentry *base, int len) 2869 { 2870 struct dentry *dentry; 2871 struct qstr this; 2872 int err; 2873 2874 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2875 2876 err = lookup_one_common(idmap, name, base, len, &this); 2877 if (err) 2878 return ERR_PTR(err); 2879 2880 dentry = lookup_dcache(&this, base, 0); 2881 return dentry ? dentry : __lookup_slow(&this, base, 0); 2882 } 2883 EXPORT_SYMBOL(lookup_one); 2884 2885 /** 2886 * lookup_one_unlocked - filesystem helper to lookup single pathname component 2887 * @idmap: idmap of the mount the lookup is performed from 2888 * @name: pathname component to lookup 2889 * @base: base directory to lookup from 2890 * @len: maximum length @len should be interpreted to 2891 * 2892 * Note that this routine is purely a helper for filesystem usage and should 2893 * not be called by generic code. 2894 * 2895 * Unlike lookup_one_len, it should be called without the parent 2896 * i_mutex held, and will take the i_mutex itself if necessary. 2897 */ 2898 struct dentry *lookup_one_unlocked(struct mnt_idmap *idmap, 2899 const char *name, struct dentry *base, 2900 int len) 2901 { 2902 struct qstr this; 2903 int err; 2904 struct dentry *ret; 2905 2906 err = lookup_one_common(idmap, name, base, len, &this); 2907 if (err) 2908 return ERR_PTR(err); 2909 2910 ret = lookup_dcache(&this, base, 0); 2911 if (!ret) 2912 ret = lookup_slow(&this, base, 0); 2913 return ret; 2914 } 2915 EXPORT_SYMBOL(lookup_one_unlocked); 2916 2917 /** 2918 * lookup_one_positive_unlocked - filesystem helper to lookup single 2919 * pathname component 2920 * @idmap: idmap of the mount the lookup is performed from 2921 * @name: pathname component to lookup 2922 * @base: base directory to lookup from 2923 * @len: maximum length @len should be interpreted to 2924 * 2925 * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns 2926 * known positive or ERR_PTR(). This is what most of the users want. 2927 * 2928 * Note that pinned negative with unlocked parent _can_ become positive at any 2929 * time, so callers of lookup_one_unlocked() need to be very careful; pinned 2930 * positives have >d_inode stable, so this one avoids such problems. 2931 * 2932 * Note that this routine is purely a helper for filesystem usage and should 2933 * not be called by generic code. 2934 * 2935 * The helper should be called without i_mutex held. 2936 */ 2937 struct dentry *lookup_one_positive_unlocked(struct mnt_idmap *idmap, 2938 const char *name, 2939 struct dentry *base, int len) 2940 { 2941 struct dentry *ret = lookup_one_unlocked(idmap, name, base, len); 2942 2943 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) { 2944 dput(ret); 2945 ret = ERR_PTR(-ENOENT); 2946 } 2947 return ret; 2948 } 2949 EXPORT_SYMBOL(lookup_one_positive_unlocked); 2950 2951 /** 2952 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component 2953 * @name: pathname component to lookup 2954 * @base: base directory to lookup from 2955 * @len: maximum length @len should be interpreted to 2956 * 2957 * Note that this routine is purely a helper for filesystem usage and should 2958 * not be called by generic code. 2959 * 2960 * Unlike lookup_one_len, it should be called without the parent 2961 * i_mutex held, and will take the i_mutex itself if necessary. 2962 */ 2963 struct dentry *lookup_one_len_unlocked(const char *name, 2964 struct dentry *base, int len) 2965 { 2966 return lookup_one_unlocked(&nop_mnt_idmap, name, base, len); 2967 } 2968 EXPORT_SYMBOL(lookup_one_len_unlocked); 2969 2970 /* 2971 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT) 2972 * on negatives. Returns known positive or ERR_PTR(); that's what 2973 * most of the users want. Note that pinned negative with unlocked parent 2974 * _can_ become positive at any time, so callers of lookup_one_len_unlocked() 2975 * need to be very careful; pinned positives have ->d_inode stable, so 2976 * this one avoids such problems. 2977 */ 2978 struct dentry *lookup_positive_unlocked(const char *name, 2979 struct dentry *base, int len) 2980 { 2981 return lookup_one_positive_unlocked(&nop_mnt_idmap, name, base, len); 2982 } 2983 EXPORT_SYMBOL(lookup_positive_unlocked); 2984 2985 #ifdef CONFIG_UNIX98_PTYS 2986 int path_pts(struct path *path) 2987 { 2988 /* Find something mounted on "pts" in the same directory as 2989 * the input path. 2990 */ 2991 struct dentry *parent = dget_parent(path->dentry); 2992 struct dentry *child; 2993 struct qstr this = QSTR_INIT("pts", 3); 2994 2995 if (unlikely(!path_connected(path->mnt, parent))) { 2996 dput(parent); 2997 return -ENOENT; 2998 } 2999 dput(path->dentry); 3000 path->dentry = parent; 3001 child = d_hash_and_lookup(parent, &this); 3002 if (IS_ERR_OR_NULL(child)) 3003 return -ENOENT; 3004 3005 path->dentry = child; 3006 dput(parent); 3007 follow_down(path, 0); 3008 return 0; 3009 } 3010 #endif 3011 3012 int user_path_at(int dfd, const char __user *name, unsigned flags, 3013 struct path *path) 3014 { 3015 struct filename *filename = getname_flags(name, flags); 3016 int ret = filename_lookup(dfd, filename, flags, path, NULL); 3017 3018 putname(filename); 3019 return ret; 3020 } 3021 EXPORT_SYMBOL(user_path_at); 3022 3023 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir, 3024 struct inode *inode) 3025 { 3026 kuid_t fsuid = current_fsuid(); 3027 3028 if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), fsuid)) 3029 return 0; 3030 if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, dir), fsuid)) 3031 return 0; 3032 return !capable_wrt_inode_uidgid(idmap, inode, CAP_FOWNER); 3033 } 3034 EXPORT_SYMBOL(__check_sticky); 3035 3036 /* 3037 * Check whether we can remove a link victim from directory dir, check 3038 * whether the type of victim is right. 3039 * 1. We can't do it if dir is read-only (done in permission()) 3040 * 2. We should have write and exec permissions on dir 3041 * 3. We can't remove anything from append-only dir 3042 * 4. We can't do anything with immutable dir (done in permission()) 3043 * 5. If the sticky bit on dir is set we should either 3044 * a. be owner of dir, or 3045 * b. be owner of victim, or 3046 * c. have CAP_FOWNER capability 3047 * 6. If the victim is append-only or immutable we can't do antyhing with 3048 * links pointing to it. 3049 * 7. If the victim has an unknown uid or gid we can't change the inode. 3050 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR. 3051 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR. 3052 * 10. We can't remove a root or mountpoint. 3053 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by 3054 * nfs_async_unlink(). 3055 */ 3056 static int may_delete(struct mnt_idmap *idmap, struct inode *dir, 3057 struct dentry *victim, bool isdir) 3058 { 3059 struct inode *inode = d_backing_inode(victim); 3060 int error; 3061 3062 if (d_is_negative(victim)) 3063 return -ENOENT; 3064 BUG_ON(!inode); 3065 3066 BUG_ON(victim->d_parent->d_inode != dir); 3067 3068 /* Inode writeback is not safe when the uid or gid are invalid. */ 3069 if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) || 3070 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode))) 3071 return -EOVERFLOW; 3072 3073 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 3074 3075 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 3076 if (error) 3077 return error; 3078 if (IS_APPEND(dir)) 3079 return -EPERM; 3080 3081 if (check_sticky(idmap, dir, inode) || IS_APPEND(inode) || 3082 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || 3083 HAS_UNMAPPED_ID(idmap, inode)) 3084 return -EPERM; 3085 if (isdir) { 3086 if (!d_is_dir(victim)) 3087 return -ENOTDIR; 3088 if (IS_ROOT(victim)) 3089 return -EBUSY; 3090 } else if (d_is_dir(victim)) 3091 return -EISDIR; 3092 if (IS_DEADDIR(dir)) 3093 return -ENOENT; 3094 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 3095 return -EBUSY; 3096 return 0; 3097 } 3098 3099 /* Check whether we can create an object with dentry child in directory 3100 * dir. 3101 * 1. We can't do it if child already exists (open has special treatment for 3102 * this case, but since we are inlined it's OK) 3103 * 2. We can't do it if dir is read-only (done in permission()) 3104 * 3. We can't do it if the fs can't represent the fsuid or fsgid. 3105 * 4. We should have write and exec permissions on dir 3106 * 5. We can't do it if dir is immutable (done in permission()) 3107 */ 3108 static inline int may_create(struct mnt_idmap *idmap, 3109 struct inode *dir, struct dentry *child) 3110 { 3111 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 3112 if (child->d_inode) 3113 return -EEXIST; 3114 if (IS_DEADDIR(dir)) 3115 return -ENOENT; 3116 if (!fsuidgid_has_mapping(dir->i_sb, idmap)) 3117 return -EOVERFLOW; 3118 3119 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 3120 } 3121 3122 // p1 != p2, both are on the same filesystem, ->s_vfs_rename_mutex is held 3123 static struct dentry *lock_two_directories(struct dentry *p1, struct dentry *p2) 3124 { 3125 struct dentry *p = p1, *q = p2, *r; 3126 3127 while ((r = p->d_parent) != p2 && r != p) 3128 p = r; 3129 if (r == p2) { 3130 // p is a child of p2 and an ancestor of p1 or p1 itself 3131 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 3132 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT2); 3133 return p; 3134 } 3135 // p is the root of connected component that contains p1 3136 // p2 does not occur on the path from p to p1 3137 while ((r = q->d_parent) != p1 && r != p && r != q) 3138 q = r; 3139 if (r == p1) { 3140 // q is a child of p1 and an ancestor of p2 or p2 itself 3141 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 3142 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 3143 return q; 3144 } else if (likely(r == p)) { 3145 // both p2 and p1 are descendents of p 3146 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 3147 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 3148 return NULL; 3149 } else { // no common ancestor at the time we'd been called 3150 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 3151 return ERR_PTR(-EXDEV); 3152 } 3153 } 3154 3155 /* 3156 * p1 and p2 should be directories on the same fs. 3157 */ 3158 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 3159 { 3160 if (p1 == p2) { 3161 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 3162 return NULL; 3163 } 3164 3165 mutex_lock(&p1->d_sb->s_vfs_rename_mutex); 3166 return lock_two_directories(p1, p2); 3167 } 3168 EXPORT_SYMBOL(lock_rename); 3169 3170 /* 3171 * c1 and p2 should be on the same fs. 3172 */ 3173 struct dentry *lock_rename_child(struct dentry *c1, struct dentry *p2) 3174 { 3175 if (READ_ONCE(c1->d_parent) == p2) { 3176 /* 3177 * hopefully won't need to touch ->s_vfs_rename_mutex at all. 3178 */ 3179 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 3180 /* 3181 * now that p2 is locked, nobody can move in or out of it, 3182 * so the test below is safe. 3183 */ 3184 if (likely(c1->d_parent == p2)) 3185 return NULL; 3186 3187 /* 3188 * c1 got moved out of p2 while we'd been taking locks; 3189 * unlock and fall back to slow case. 3190 */ 3191 inode_unlock(p2->d_inode); 3192 } 3193 3194 mutex_lock(&c1->d_sb->s_vfs_rename_mutex); 3195 /* 3196 * nobody can move out of any directories on this fs. 3197 */ 3198 if (likely(c1->d_parent != p2)) 3199 return lock_two_directories(c1->d_parent, p2); 3200 3201 /* 3202 * c1 got moved into p2 while we were taking locks; 3203 * we need p2 locked and ->s_vfs_rename_mutex unlocked, 3204 * for consistency with lock_rename(). 3205 */ 3206 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 3207 mutex_unlock(&c1->d_sb->s_vfs_rename_mutex); 3208 return NULL; 3209 } 3210 EXPORT_SYMBOL(lock_rename_child); 3211 3212 void unlock_rename(struct dentry *p1, struct dentry *p2) 3213 { 3214 inode_unlock(p1->d_inode); 3215 if (p1 != p2) { 3216 inode_unlock(p2->d_inode); 3217 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 3218 } 3219 } 3220 EXPORT_SYMBOL(unlock_rename); 3221 3222 /** 3223 * vfs_prepare_mode - prepare the mode to be used for a new inode 3224 * @idmap: idmap of the mount the inode was found from 3225 * @dir: parent directory of the new inode 3226 * @mode: mode of the new inode 3227 * @mask_perms: allowed permission by the vfs 3228 * @type: type of file to be created 3229 * 3230 * This helper consolidates and enforces vfs restrictions on the @mode of a new 3231 * object to be created. 3232 * 3233 * Umask stripping depends on whether the filesystem supports POSIX ACLs (see 3234 * the kernel documentation for mode_strip_umask()). Moving umask stripping 3235 * after setgid stripping allows the same ordering for both non-POSIX ACL and 3236 * POSIX ACL supporting filesystems. 3237 * 3238 * Note that it's currently valid for @type to be 0 if a directory is created. 3239 * Filesystems raise that flag individually and we need to check whether each 3240 * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a 3241 * non-zero type. 3242 * 3243 * Returns: mode to be passed to the filesystem 3244 */ 3245 static inline umode_t vfs_prepare_mode(struct mnt_idmap *idmap, 3246 const struct inode *dir, umode_t mode, 3247 umode_t mask_perms, umode_t type) 3248 { 3249 mode = mode_strip_sgid(idmap, dir, mode); 3250 mode = mode_strip_umask(dir, mode); 3251 3252 /* 3253 * Apply the vfs mandated allowed permission mask and set the type of 3254 * file to be created before we call into the filesystem. 3255 */ 3256 mode &= (mask_perms & ~S_IFMT); 3257 mode |= (type & S_IFMT); 3258 3259 return mode; 3260 } 3261 3262 /** 3263 * vfs_create - create new file 3264 * @idmap: idmap of the mount the inode was found from 3265 * @dir: inode of the parent directory 3266 * @dentry: dentry of the child file 3267 * @mode: mode of the child file 3268 * @want_excl: whether the file must not yet exist 3269 * 3270 * Create a new file. 3271 * 3272 * If the inode has been found through an idmapped mount the idmap of 3273 * the vfsmount must be passed through @idmap. This function will then take 3274 * care to map the inode according to @idmap before checking permissions. 3275 * On non-idmapped mounts or if permission checking is to be performed on the 3276 * raw inode simply pass @nop_mnt_idmap. 3277 */ 3278 int vfs_create(struct mnt_idmap *idmap, struct inode *dir, 3279 struct dentry *dentry, umode_t mode, bool want_excl) 3280 { 3281 int error; 3282 3283 error = may_create(idmap, dir, dentry); 3284 if (error) 3285 return error; 3286 3287 if (!dir->i_op->create) 3288 return -EACCES; /* shouldn't it be ENOSYS? */ 3289 3290 mode = vfs_prepare_mode(idmap, dir, mode, S_IALLUGO, S_IFREG); 3291 error = security_inode_create(dir, dentry, mode); 3292 if (error) 3293 return error; 3294 error = dir->i_op->create(idmap, dir, dentry, mode, want_excl); 3295 if (!error) 3296 fsnotify_create(dir, dentry); 3297 return error; 3298 } 3299 EXPORT_SYMBOL(vfs_create); 3300 3301 int vfs_mkobj(struct dentry *dentry, umode_t mode, 3302 int (*f)(struct dentry *, umode_t, void *), 3303 void *arg) 3304 { 3305 struct inode *dir = dentry->d_parent->d_inode; 3306 int error = may_create(&nop_mnt_idmap, dir, dentry); 3307 if (error) 3308 return error; 3309 3310 mode &= S_IALLUGO; 3311 mode |= S_IFREG; 3312 error = security_inode_create(dir, dentry, mode); 3313 if (error) 3314 return error; 3315 error = f(dentry, mode, arg); 3316 if (!error) 3317 fsnotify_create(dir, dentry); 3318 return error; 3319 } 3320 EXPORT_SYMBOL(vfs_mkobj); 3321 3322 bool may_open_dev(const struct path *path) 3323 { 3324 return !(path->mnt->mnt_flags & MNT_NODEV) && 3325 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV); 3326 } 3327 3328 static int may_open(struct mnt_idmap *idmap, const struct path *path, 3329 int acc_mode, int flag) 3330 { 3331 struct dentry *dentry = path->dentry; 3332 struct inode *inode = dentry->d_inode; 3333 int error; 3334 3335 if (!inode) 3336 return -ENOENT; 3337 3338 switch (inode->i_mode & S_IFMT) { 3339 case S_IFLNK: 3340 return -ELOOP; 3341 case S_IFDIR: 3342 if (acc_mode & MAY_WRITE) 3343 return -EISDIR; 3344 if (acc_mode & MAY_EXEC) 3345 return -EACCES; 3346 break; 3347 case S_IFBLK: 3348 case S_IFCHR: 3349 if (!may_open_dev(path)) 3350 return -EACCES; 3351 fallthrough; 3352 case S_IFIFO: 3353 case S_IFSOCK: 3354 if (acc_mode & MAY_EXEC) 3355 return -EACCES; 3356 flag &= ~O_TRUNC; 3357 break; 3358 case S_IFREG: 3359 if ((acc_mode & MAY_EXEC) && path_noexec(path)) 3360 return -EACCES; 3361 break; 3362 } 3363 3364 error = inode_permission(idmap, inode, MAY_OPEN | acc_mode); 3365 if (error) 3366 return error; 3367 3368 /* 3369 * An append-only file must be opened in append mode for writing. 3370 */ 3371 if (IS_APPEND(inode)) { 3372 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 3373 return -EPERM; 3374 if (flag & O_TRUNC) 3375 return -EPERM; 3376 } 3377 3378 /* O_NOATIME can only be set by the owner or superuser */ 3379 if (flag & O_NOATIME && !inode_owner_or_capable(idmap, inode)) 3380 return -EPERM; 3381 3382 return 0; 3383 } 3384 3385 static int handle_truncate(struct mnt_idmap *idmap, struct file *filp) 3386 { 3387 const struct path *path = &filp->f_path; 3388 struct inode *inode = path->dentry->d_inode; 3389 int error = get_write_access(inode); 3390 if (error) 3391 return error; 3392 3393 error = security_file_truncate(filp); 3394 if (!error) { 3395 error = do_truncate(idmap, path->dentry, 0, 3396 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 3397 filp); 3398 } 3399 put_write_access(inode); 3400 return error; 3401 } 3402 3403 static inline int open_to_namei_flags(int flag) 3404 { 3405 if ((flag & O_ACCMODE) == 3) 3406 flag--; 3407 return flag; 3408 } 3409 3410 static int may_o_create(struct mnt_idmap *idmap, 3411 const struct path *dir, struct dentry *dentry, 3412 umode_t mode) 3413 { 3414 int error = security_path_mknod(dir, dentry, mode, 0); 3415 if (error) 3416 return error; 3417 3418 if (!fsuidgid_has_mapping(dir->dentry->d_sb, idmap)) 3419 return -EOVERFLOW; 3420 3421 error = inode_permission(idmap, dir->dentry->d_inode, 3422 MAY_WRITE | MAY_EXEC); 3423 if (error) 3424 return error; 3425 3426 return security_inode_create(dir->dentry->d_inode, dentry, mode); 3427 } 3428 3429 /* 3430 * Attempt to atomically look up, create and open a file from a negative 3431 * dentry. 3432 * 3433 * Returns 0 if successful. The file will have been created and attached to 3434 * @file by the filesystem calling finish_open(). 3435 * 3436 * If the file was looked up only or didn't need creating, FMODE_OPENED won't 3437 * be set. The caller will need to perform the open themselves. @path will 3438 * have been updated to point to the new dentry. This may be negative. 3439 * 3440 * Returns an error code otherwise. 3441 */ 3442 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry, 3443 struct file *file, 3444 int open_flag, umode_t mode) 3445 { 3446 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 3447 struct inode *dir = nd->path.dentry->d_inode; 3448 int error; 3449 3450 if (nd->flags & LOOKUP_DIRECTORY) 3451 open_flag |= O_DIRECTORY; 3452 3453 file->f_path.dentry = DENTRY_NOT_SET; 3454 file->f_path.mnt = nd->path.mnt; 3455 error = dir->i_op->atomic_open(dir, dentry, file, 3456 open_to_namei_flags(open_flag), mode); 3457 d_lookup_done(dentry); 3458 if (!error) { 3459 if (file->f_mode & FMODE_OPENED) { 3460 if (unlikely(dentry != file->f_path.dentry)) { 3461 dput(dentry); 3462 dentry = dget(file->f_path.dentry); 3463 } 3464 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 3465 error = -EIO; 3466 } else { 3467 if (file->f_path.dentry) { 3468 dput(dentry); 3469 dentry = file->f_path.dentry; 3470 } 3471 if (unlikely(d_is_negative(dentry))) 3472 error = -ENOENT; 3473 } 3474 } 3475 if (error) { 3476 dput(dentry); 3477 dentry = ERR_PTR(error); 3478 } 3479 return dentry; 3480 } 3481 3482 /* 3483 * Look up and maybe create and open the last component. 3484 * 3485 * Must be called with parent locked (exclusive in O_CREAT case). 3486 * 3487 * Returns 0 on success, that is, if 3488 * the file was successfully atomically created (if necessary) and opened, or 3489 * the file was not completely opened at this time, though lookups and 3490 * creations were performed. 3491 * These case are distinguished by presence of FMODE_OPENED on file->f_mode. 3492 * In the latter case dentry returned in @path might be negative if O_CREAT 3493 * hadn't been specified. 3494 * 3495 * An error code is returned on failure. 3496 */ 3497 static struct dentry *lookup_open(struct nameidata *nd, struct file *file, 3498 const struct open_flags *op, 3499 bool got_write) 3500 { 3501 struct mnt_idmap *idmap; 3502 struct dentry *dir = nd->path.dentry; 3503 struct inode *dir_inode = dir->d_inode; 3504 int open_flag = op->open_flag; 3505 struct dentry *dentry; 3506 int error, create_error = 0; 3507 umode_t mode = op->mode; 3508 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 3509 3510 if (unlikely(IS_DEADDIR(dir_inode))) 3511 return ERR_PTR(-ENOENT); 3512 3513 file->f_mode &= ~FMODE_CREATED; 3514 dentry = d_lookup(dir, &nd->last); 3515 for (;;) { 3516 if (!dentry) { 3517 dentry = d_alloc_parallel(dir, &nd->last, &wq); 3518 if (IS_ERR(dentry)) 3519 return dentry; 3520 } 3521 if (d_in_lookup(dentry)) 3522 break; 3523 3524 error = d_revalidate(dentry, nd->flags); 3525 if (likely(error > 0)) 3526 break; 3527 if (error) 3528 goto out_dput; 3529 d_invalidate(dentry); 3530 dput(dentry); 3531 dentry = NULL; 3532 } 3533 if (dentry->d_inode) { 3534 /* Cached positive dentry: will open in f_op->open */ 3535 return dentry; 3536 } 3537 3538 if (open_flag & O_CREAT) 3539 audit_inode(nd->name, dir, AUDIT_INODE_PARENT); 3540 3541 /* 3542 * Checking write permission is tricky, bacuse we don't know if we are 3543 * going to actually need it: O_CREAT opens should work as long as the 3544 * file exists. But checking existence breaks atomicity. The trick is 3545 * to check access and if not granted clear O_CREAT from the flags. 3546 * 3547 * Another problem is returing the "right" error value (e.g. for an 3548 * O_EXCL open we want to return EEXIST not EROFS). 3549 */ 3550 if (unlikely(!got_write)) 3551 open_flag &= ~O_TRUNC; 3552 idmap = mnt_idmap(nd->path.mnt); 3553 if (open_flag & O_CREAT) { 3554 if (open_flag & O_EXCL) 3555 open_flag &= ~O_TRUNC; 3556 mode = vfs_prepare_mode(idmap, dir->d_inode, mode, mode, mode); 3557 if (likely(got_write)) 3558 create_error = may_o_create(idmap, &nd->path, 3559 dentry, mode); 3560 else 3561 create_error = -EROFS; 3562 } 3563 if (create_error) 3564 open_flag &= ~O_CREAT; 3565 if (dir_inode->i_op->atomic_open) { 3566 dentry = atomic_open(nd, dentry, file, open_flag, mode); 3567 if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT)) 3568 dentry = ERR_PTR(create_error); 3569 return dentry; 3570 } 3571 3572 if (d_in_lookup(dentry)) { 3573 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry, 3574 nd->flags); 3575 d_lookup_done(dentry); 3576 if (unlikely(res)) { 3577 if (IS_ERR(res)) { 3578 error = PTR_ERR(res); 3579 goto out_dput; 3580 } 3581 dput(dentry); 3582 dentry = res; 3583 } 3584 } 3585 3586 /* Negative dentry, just create the file */ 3587 if (!dentry->d_inode && (open_flag & O_CREAT)) { 3588 file->f_mode |= FMODE_CREATED; 3589 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE); 3590 if (!dir_inode->i_op->create) { 3591 error = -EACCES; 3592 goto out_dput; 3593 } 3594 3595 error = dir_inode->i_op->create(idmap, dir_inode, dentry, 3596 mode, open_flag & O_EXCL); 3597 if (error) 3598 goto out_dput; 3599 } 3600 if (unlikely(create_error) && !dentry->d_inode) { 3601 error = create_error; 3602 goto out_dput; 3603 } 3604 return dentry; 3605 3606 out_dput: 3607 dput(dentry); 3608 return ERR_PTR(error); 3609 } 3610 3611 static inline bool trailing_slashes(struct nameidata *nd) 3612 { 3613 return (bool)nd->last.name[nd->last.len]; 3614 } 3615 3616 static struct dentry *lookup_fast_for_open(struct nameidata *nd, int open_flag) 3617 { 3618 struct dentry *dentry; 3619 3620 if (open_flag & O_CREAT) { 3621 if (trailing_slashes(nd)) 3622 return ERR_PTR(-EISDIR); 3623 3624 /* Don't bother on an O_EXCL create */ 3625 if (open_flag & O_EXCL) 3626 return NULL; 3627 } 3628 3629 if (trailing_slashes(nd)) 3630 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 3631 3632 dentry = lookup_fast(nd); 3633 if (IS_ERR_OR_NULL(dentry)) 3634 return dentry; 3635 3636 if (open_flag & O_CREAT) { 3637 /* Discard negative dentries. Need inode_lock to do the create */ 3638 if (!dentry->d_inode) { 3639 if (!(nd->flags & LOOKUP_RCU)) 3640 dput(dentry); 3641 dentry = NULL; 3642 } 3643 } 3644 return dentry; 3645 } 3646 3647 static const char *open_last_lookups(struct nameidata *nd, 3648 struct file *file, const struct open_flags *op) 3649 { 3650 struct dentry *dir = nd->path.dentry; 3651 int open_flag = op->open_flag; 3652 bool got_write = false; 3653 struct dentry *dentry; 3654 const char *res; 3655 3656 nd->flags |= op->intent; 3657 3658 if (nd->last_type != LAST_NORM) { 3659 if (nd->depth) 3660 put_link(nd); 3661 return handle_dots(nd, nd->last_type); 3662 } 3663 3664 /* We _can_ be in RCU mode here */ 3665 dentry = lookup_fast_for_open(nd, open_flag); 3666 if (IS_ERR(dentry)) 3667 return ERR_CAST(dentry); 3668 3669 if (likely(dentry)) 3670 goto finish_lookup; 3671 3672 if (!(open_flag & O_CREAT)) { 3673 if (WARN_ON_ONCE(nd->flags & LOOKUP_RCU)) 3674 return ERR_PTR(-ECHILD); 3675 } else { 3676 if (nd->flags & LOOKUP_RCU) { 3677 if (!try_to_unlazy(nd)) 3678 return ERR_PTR(-ECHILD); 3679 } 3680 } 3681 3682 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 3683 got_write = !mnt_want_write(nd->path.mnt); 3684 /* 3685 * do _not_ fail yet - we might not need that or fail with 3686 * a different error; let lookup_open() decide; we'll be 3687 * dropping this one anyway. 3688 */ 3689 } 3690 if (open_flag & O_CREAT) 3691 inode_lock(dir->d_inode); 3692 else 3693 inode_lock_shared(dir->d_inode); 3694 dentry = lookup_open(nd, file, op, got_write); 3695 if (!IS_ERR(dentry)) { 3696 if (file->f_mode & FMODE_CREATED) 3697 fsnotify_create(dir->d_inode, dentry); 3698 if (file->f_mode & FMODE_OPENED) 3699 fsnotify_open(file); 3700 } 3701 if (open_flag & O_CREAT) 3702 inode_unlock(dir->d_inode); 3703 else 3704 inode_unlock_shared(dir->d_inode); 3705 3706 if (got_write) 3707 mnt_drop_write(nd->path.mnt); 3708 3709 if (IS_ERR(dentry)) 3710 return ERR_CAST(dentry); 3711 3712 if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) { 3713 dput(nd->path.dentry); 3714 nd->path.dentry = dentry; 3715 return NULL; 3716 } 3717 3718 finish_lookup: 3719 if (nd->depth) 3720 put_link(nd); 3721 res = step_into(nd, WALK_TRAILING, dentry); 3722 if (unlikely(res)) 3723 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3724 return res; 3725 } 3726 3727 /* 3728 * Handle the last step of open() 3729 */ 3730 static int do_open(struct nameidata *nd, 3731 struct file *file, const struct open_flags *op) 3732 { 3733 struct mnt_idmap *idmap; 3734 int open_flag = op->open_flag; 3735 bool do_truncate; 3736 int acc_mode; 3737 int error; 3738 3739 if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) { 3740 error = complete_walk(nd); 3741 if (error) 3742 return error; 3743 } 3744 if (!(file->f_mode & FMODE_CREATED)) 3745 audit_inode(nd->name, nd->path.dentry, 0); 3746 idmap = mnt_idmap(nd->path.mnt); 3747 if (open_flag & O_CREAT) { 3748 if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED)) 3749 return -EEXIST; 3750 if (d_is_dir(nd->path.dentry)) 3751 return -EISDIR; 3752 error = may_create_in_sticky(idmap, nd, 3753 d_backing_inode(nd->path.dentry)); 3754 if (unlikely(error)) 3755 return error; 3756 } 3757 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3758 return -ENOTDIR; 3759 3760 do_truncate = false; 3761 acc_mode = op->acc_mode; 3762 if (file->f_mode & FMODE_CREATED) { 3763 /* Don't check for write permission, don't truncate */ 3764 open_flag &= ~O_TRUNC; 3765 acc_mode = 0; 3766 } else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) { 3767 error = mnt_want_write(nd->path.mnt); 3768 if (error) 3769 return error; 3770 do_truncate = true; 3771 } 3772 error = may_open(idmap, &nd->path, acc_mode, open_flag); 3773 if (!error && !(file->f_mode & FMODE_OPENED)) 3774 error = vfs_open(&nd->path, file); 3775 if (!error) 3776 error = security_file_post_open(file, op->acc_mode); 3777 if (!error && do_truncate) 3778 error = handle_truncate(idmap, file); 3779 if (unlikely(error > 0)) { 3780 WARN_ON(1); 3781 error = -EINVAL; 3782 } 3783 if (do_truncate) 3784 mnt_drop_write(nd->path.mnt); 3785 return error; 3786 } 3787 3788 /** 3789 * vfs_tmpfile - create tmpfile 3790 * @idmap: idmap of the mount the inode was found from 3791 * @parentpath: pointer to the path of the base directory 3792 * @file: file descriptor of the new tmpfile 3793 * @mode: mode of the new tmpfile 3794 * 3795 * Create a temporary file. 3796 * 3797 * If the inode has been found through an idmapped mount the idmap of 3798 * the vfsmount must be passed through @idmap. This function will then take 3799 * care to map the inode according to @idmap before checking permissions. 3800 * On non-idmapped mounts or if permission checking is to be performed on the 3801 * raw inode simply pass @nop_mnt_idmap. 3802 */ 3803 int vfs_tmpfile(struct mnt_idmap *idmap, 3804 const struct path *parentpath, 3805 struct file *file, umode_t mode) 3806 { 3807 struct dentry *child; 3808 struct inode *dir = d_inode(parentpath->dentry); 3809 struct inode *inode; 3810 int error; 3811 int open_flag = file->f_flags; 3812 3813 /* we want directory to be writable */ 3814 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 3815 if (error) 3816 return error; 3817 if (!dir->i_op->tmpfile) 3818 return -EOPNOTSUPP; 3819 child = d_alloc(parentpath->dentry, &slash_name); 3820 if (unlikely(!child)) 3821 return -ENOMEM; 3822 file->f_path.mnt = parentpath->mnt; 3823 file->f_path.dentry = child; 3824 mode = vfs_prepare_mode(idmap, dir, mode, mode, mode); 3825 error = dir->i_op->tmpfile(idmap, dir, file, mode); 3826 dput(child); 3827 if (file->f_mode & FMODE_OPENED) 3828 fsnotify_open(file); 3829 if (error) 3830 return error; 3831 /* Don't check for other permissions, the inode was just created */ 3832 error = may_open(idmap, &file->f_path, 0, file->f_flags); 3833 if (error) 3834 return error; 3835 inode = file_inode(file); 3836 if (!(open_flag & O_EXCL)) { 3837 spin_lock(&inode->i_lock); 3838 inode->i_state |= I_LINKABLE; 3839 spin_unlock(&inode->i_lock); 3840 } 3841 security_inode_post_create_tmpfile(idmap, inode); 3842 return 0; 3843 } 3844 3845 /** 3846 * kernel_tmpfile_open - open a tmpfile for kernel internal use 3847 * @idmap: idmap of the mount the inode was found from 3848 * @parentpath: path of the base directory 3849 * @mode: mode of the new tmpfile 3850 * @open_flag: flags 3851 * @cred: credentials for open 3852 * 3853 * Create and open a temporary file. The file is not accounted in nr_files, 3854 * hence this is only for kernel internal use, and must not be installed into 3855 * file tables or such. 3856 */ 3857 struct file *kernel_tmpfile_open(struct mnt_idmap *idmap, 3858 const struct path *parentpath, 3859 umode_t mode, int open_flag, 3860 const struct cred *cred) 3861 { 3862 struct file *file; 3863 int error; 3864 3865 file = alloc_empty_file_noaccount(open_flag, cred); 3866 if (IS_ERR(file)) 3867 return file; 3868 3869 error = vfs_tmpfile(idmap, parentpath, file, mode); 3870 if (error) { 3871 fput(file); 3872 file = ERR_PTR(error); 3873 } 3874 return file; 3875 } 3876 EXPORT_SYMBOL(kernel_tmpfile_open); 3877 3878 static int do_tmpfile(struct nameidata *nd, unsigned flags, 3879 const struct open_flags *op, 3880 struct file *file) 3881 { 3882 struct path path; 3883 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path); 3884 3885 if (unlikely(error)) 3886 return error; 3887 error = mnt_want_write(path.mnt); 3888 if (unlikely(error)) 3889 goto out; 3890 error = vfs_tmpfile(mnt_idmap(path.mnt), &path, file, op->mode); 3891 if (error) 3892 goto out2; 3893 audit_inode(nd->name, file->f_path.dentry, 0); 3894 out2: 3895 mnt_drop_write(path.mnt); 3896 out: 3897 path_put(&path); 3898 return error; 3899 } 3900 3901 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file) 3902 { 3903 struct path path; 3904 int error = path_lookupat(nd, flags, &path); 3905 if (!error) { 3906 audit_inode(nd->name, path.dentry, 0); 3907 error = vfs_open(&path, file); 3908 path_put(&path); 3909 } 3910 return error; 3911 } 3912 3913 static struct file *path_openat(struct nameidata *nd, 3914 const struct open_flags *op, unsigned flags) 3915 { 3916 struct file *file; 3917 int error; 3918 3919 file = alloc_empty_file(op->open_flag, current_cred()); 3920 if (IS_ERR(file)) 3921 return file; 3922 3923 if (unlikely(file->f_flags & __O_TMPFILE)) { 3924 error = do_tmpfile(nd, flags, op, file); 3925 } else if (unlikely(file->f_flags & O_PATH)) { 3926 error = do_o_path(nd, flags, file); 3927 } else { 3928 const char *s = path_init(nd, flags); 3929 while (!(error = link_path_walk(s, nd)) && 3930 (s = open_last_lookups(nd, file, op)) != NULL) 3931 ; 3932 if (!error) 3933 error = do_open(nd, file, op); 3934 terminate_walk(nd); 3935 } 3936 if (likely(!error)) { 3937 if (likely(file->f_mode & FMODE_OPENED)) 3938 return file; 3939 WARN_ON(1); 3940 error = -EINVAL; 3941 } 3942 fput(file); 3943 if (error == -EOPENSTALE) { 3944 if (flags & LOOKUP_RCU) 3945 error = -ECHILD; 3946 else 3947 error = -ESTALE; 3948 } 3949 return ERR_PTR(error); 3950 } 3951 3952 struct file *do_filp_open(int dfd, struct filename *pathname, 3953 const struct open_flags *op) 3954 { 3955 struct nameidata nd; 3956 int flags = op->lookup_flags; 3957 struct file *filp; 3958 3959 set_nameidata(&nd, dfd, pathname, NULL); 3960 filp = path_openat(&nd, op, flags | LOOKUP_RCU); 3961 if (unlikely(filp == ERR_PTR(-ECHILD))) 3962 filp = path_openat(&nd, op, flags); 3963 if (unlikely(filp == ERR_PTR(-ESTALE))) 3964 filp = path_openat(&nd, op, flags | LOOKUP_REVAL); 3965 restore_nameidata(); 3966 return filp; 3967 } 3968 3969 struct file *do_file_open_root(const struct path *root, 3970 const char *name, const struct open_flags *op) 3971 { 3972 struct nameidata nd; 3973 struct file *file; 3974 struct filename *filename; 3975 int flags = op->lookup_flags; 3976 3977 if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN) 3978 return ERR_PTR(-ELOOP); 3979 3980 filename = getname_kernel(name); 3981 if (IS_ERR(filename)) 3982 return ERR_CAST(filename); 3983 3984 set_nameidata(&nd, -1, filename, root); 3985 file = path_openat(&nd, op, flags | LOOKUP_RCU); 3986 if (unlikely(file == ERR_PTR(-ECHILD))) 3987 file = path_openat(&nd, op, flags); 3988 if (unlikely(file == ERR_PTR(-ESTALE))) 3989 file = path_openat(&nd, op, flags | LOOKUP_REVAL); 3990 restore_nameidata(); 3991 putname(filename); 3992 return file; 3993 } 3994 3995 static struct dentry *filename_create(int dfd, struct filename *name, 3996 struct path *path, unsigned int lookup_flags) 3997 { 3998 struct dentry *dentry = ERR_PTR(-EEXIST); 3999 struct qstr last; 4000 bool want_dir = lookup_flags & LOOKUP_DIRECTORY; 4001 unsigned int reval_flag = lookup_flags & LOOKUP_REVAL; 4002 unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL; 4003 int type; 4004 int err2; 4005 int error; 4006 4007 error = filename_parentat(dfd, name, reval_flag, path, &last, &type); 4008 if (error) 4009 return ERR_PTR(error); 4010 4011 /* 4012 * Yucky last component or no last component at all? 4013 * (foo/., foo/.., /////) 4014 */ 4015 if (unlikely(type != LAST_NORM)) 4016 goto out; 4017 4018 /* don't fail immediately if it's r/o, at least try to report other errors */ 4019 err2 = mnt_want_write(path->mnt); 4020 /* 4021 * Do the final lookup. Suppress 'create' if there is a trailing 4022 * '/', and a directory wasn't requested. 4023 */ 4024 if (last.name[last.len] && !want_dir) 4025 create_flags = 0; 4026 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 4027 dentry = lookup_one_qstr_excl(&last, path->dentry, 4028 reval_flag | create_flags); 4029 if (IS_ERR(dentry)) 4030 goto unlock; 4031 4032 error = -EEXIST; 4033 if (d_is_positive(dentry)) 4034 goto fail; 4035 4036 /* 4037 * Special case - lookup gave negative, but... we had foo/bar/ 4038 * From the vfs_mknod() POV we just have a negative dentry - 4039 * all is fine. Let's be bastards - you had / on the end, you've 4040 * been asking for (non-existent) directory. -ENOENT for you. 4041 */ 4042 if (unlikely(!create_flags)) { 4043 error = -ENOENT; 4044 goto fail; 4045 } 4046 if (unlikely(err2)) { 4047 error = err2; 4048 goto fail; 4049 } 4050 return dentry; 4051 fail: 4052 dput(dentry); 4053 dentry = ERR_PTR(error); 4054 unlock: 4055 inode_unlock(path->dentry->d_inode); 4056 if (!err2) 4057 mnt_drop_write(path->mnt); 4058 out: 4059 path_put(path); 4060 return dentry; 4061 } 4062 4063 struct dentry *kern_path_create(int dfd, const char *pathname, 4064 struct path *path, unsigned int lookup_flags) 4065 { 4066 struct filename *filename = getname_kernel(pathname); 4067 struct dentry *res = filename_create(dfd, filename, path, lookup_flags); 4068 4069 putname(filename); 4070 return res; 4071 } 4072 EXPORT_SYMBOL(kern_path_create); 4073 4074 void done_path_create(struct path *path, struct dentry *dentry) 4075 { 4076 dput(dentry); 4077 inode_unlock(path->dentry->d_inode); 4078 mnt_drop_write(path->mnt); 4079 path_put(path); 4080 } 4081 EXPORT_SYMBOL(done_path_create); 4082 4083 inline struct dentry *user_path_create(int dfd, const char __user *pathname, 4084 struct path *path, unsigned int lookup_flags) 4085 { 4086 struct filename *filename = getname(pathname); 4087 struct dentry *res = filename_create(dfd, filename, path, lookup_flags); 4088 4089 putname(filename); 4090 return res; 4091 } 4092 EXPORT_SYMBOL(user_path_create); 4093 4094 /** 4095 * vfs_mknod - create device node or file 4096 * @idmap: idmap of the mount the inode was found from 4097 * @dir: inode of the parent directory 4098 * @dentry: dentry of the child device node 4099 * @mode: mode of the child device node 4100 * @dev: device number of device to create 4101 * 4102 * Create a device node or file. 4103 * 4104 * If the inode has been found through an idmapped mount the idmap of 4105 * the vfsmount must be passed through @idmap. This function will then take 4106 * care to map the inode according to @idmap before checking permissions. 4107 * On non-idmapped mounts or if permission checking is to be performed on the 4108 * raw inode simply pass @nop_mnt_idmap. 4109 */ 4110 int vfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 4111 struct dentry *dentry, umode_t mode, dev_t dev) 4112 { 4113 bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV; 4114 int error = may_create(idmap, dir, dentry); 4115 4116 if (error) 4117 return error; 4118 4119 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout && 4120 !capable(CAP_MKNOD)) 4121 return -EPERM; 4122 4123 if (!dir->i_op->mknod) 4124 return -EPERM; 4125 4126 mode = vfs_prepare_mode(idmap, dir, mode, mode, mode); 4127 error = devcgroup_inode_mknod(mode, dev); 4128 if (error) 4129 return error; 4130 4131 error = security_inode_mknod(dir, dentry, mode, dev); 4132 if (error) 4133 return error; 4134 4135 error = dir->i_op->mknod(idmap, dir, dentry, mode, dev); 4136 if (!error) 4137 fsnotify_create(dir, dentry); 4138 return error; 4139 } 4140 EXPORT_SYMBOL(vfs_mknod); 4141 4142 static int may_mknod(umode_t mode) 4143 { 4144 switch (mode & S_IFMT) { 4145 case S_IFREG: 4146 case S_IFCHR: 4147 case S_IFBLK: 4148 case S_IFIFO: 4149 case S_IFSOCK: 4150 case 0: /* zero mode translates to S_IFREG */ 4151 return 0; 4152 case S_IFDIR: 4153 return -EPERM; 4154 default: 4155 return -EINVAL; 4156 } 4157 } 4158 4159 static int do_mknodat(int dfd, struct filename *name, umode_t mode, 4160 unsigned int dev) 4161 { 4162 struct mnt_idmap *idmap; 4163 struct dentry *dentry; 4164 struct path path; 4165 int error; 4166 unsigned int lookup_flags = 0; 4167 4168 error = may_mknod(mode); 4169 if (error) 4170 goto out1; 4171 retry: 4172 dentry = filename_create(dfd, name, &path, lookup_flags); 4173 error = PTR_ERR(dentry); 4174 if (IS_ERR(dentry)) 4175 goto out1; 4176 4177 error = security_path_mknod(&path, dentry, 4178 mode_strip_umask(path.dentry->d_inode, mode), dev); 4179 if (error) 4180 goto out2; 4181 4182 idmap = mnt_idmap(path.mnt); 4183 switch (mode & S_IFMT) { 4184 case 0: case S_IFREG: 4185 error = vfs_create(idmap, path.dentry->d_inode, 4186 dentry, mode, true); 4187 if (!error) 4188 security_path_post_mknod(idmap, dentry); 4189 break; 4190 case S_IFCHR: case S_IFBLK: 4191 error = vfs_mknod(idmap, path.dentry->d_inode, 4192 dentry, mode, new_decode_dev(dev)); 4193 break; 4194 case S_IFIFO: case S_IFSOCK: 4195 error = vfs_mknod(idmap, path.dentry->d_inode, 4196 dentry, mode, 0); 4197 break; 4198 } 4199 out2: 4200 done_path_create(&path, dentry); 4201 if (retry_estale(error, lookup_flags)) { 4202 lookup_flags |= LOOKUP_REVAL; 4203 goto retry; 4204 } 4205 out1: 4206 putname(name); 4207 return error; 4208 } 4209 4210 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 4211 unsigned int, dev) 4212 { 4213 return do_mknodat(dfd, getname(filename), mode, dev); 4214 } 4215 4216 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 4217 { 4218 return do_mknodat(AT_FDCWD, getname(filename), mode, dev); 4219 } 4220 4221 /** 4222 * vfs_mkdir - create directory 4223 * @idmap: idmap of the mount the inode was found from 4224 * @dir: inode of the parent directory 4225 * @dentry: dentry of the child directory 4226 * @mode: mode of the child directory 4227 * 4228 * Create a directory. 4229 * 4230 * If the inode has been found through an idmapped mount the idmap of 4231 * the vfsmount must be passed through @idmap. This function will then take 4232 * care to map the inode according to @idmap before checking permissions. 4233 * On non-idmapped mounts or if permission checking is to be performed on the 4234 * raw inode simply pass @nop_mnt_idmap. 4235 */ 4236 int vfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 4237 struct dentry *dentry, umode_t mode) 4238 { 4239 int error; 4240 unsigned max_links = dir->i_sb->s_max_links; 4241 4242 error = may_create(idmap, dir, dentry); 4243 if (error) 4244 return error; 4245 4246 if (!dir->i_op->mkdir) 4247 return -EPERM; 4248 4249 mode = vfs_prepare_mode(idmap, dir, mode, S_IRWXUGO | S_ISVTX, 0); 4250 error = security_inode_mkdir(dir, dentry, mode); 4251 if (error) 4252 return error; 4253 4254 if (max_links && dir->i_nlink >= max_links) 4255 return -EMLINK; 4256 4257 error = dir->i_op->mkdir(idmap, dir, dentry, mode); 4258 if (!error) 4259 fsnotify_mkdir(dir, dentry); 4260 return error; 4261 } 4262 EXPORT_SYMBOL(vfs_mkdir); 4263 4264 int do_mkdirat(int dfd, struct filename *name, umode_t mode) 4265 { 4266 struct dentry *dentry; 4267 struct path path; 4268 int error; 4269 unsigned int lookup_flags = LOOKUP_DIRECTORY; 4270 4271 retry: 4272 dentry = filename_create(dfd, name, &path, lookup_flags); 4273 error = PTR_ERR(dentry); 4274 if (IS_ERR(dentry)) 4275 goto out_putname; 4276 4277 error = security_path_mkdir(&path, dentry, 4278 mode_strip_umask(path.dentry->d_inode, mode)); 4279 if (!error) { 4280 error = vfs_mkdir(mnt_idmap(path.mnt), path.dentry->d_inode, 4281 dentry, mode); 4282 } 4283 done_path_create(&path, dentry); 4284 if (retry_estale(error, lookup_flags)) { 4285 lookup_flags |= LOOKUP_REVAL; 4286 goto retry; 4287 } 4288 out_putname: 4289 putname(name); 4290 return error; 4291 } 4292 4293 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 4294 { 4295 return do_mkdirat(dfd, getname(pathname), mode); 4296 } 4297 4298 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 4299 { 4300 return do_mkdirat(AT_FDCWD, getname(pathname), mode); 4301 } 4302 4303 /** 4304 * vfs_rmdir - remove directory 4305 * @idmap: idmap of the mount the inode was found from 4306 * @dir: inode of the parent directory 4307 * @dentry: dentry of the child directory 4308 * 4309 * Remove a directory. 4310 * 4311 * If the inode has been found through an idmapped mount the idmap of 4312 * the vfsmount must be passed through @idmap. This function will then take 4313 * care to map the inode according to @idmap before checking permissions. 4314 * On non-idmapped mounts or if permission checking is to be performed on the 4315 * raw inode simply pass @nop_mnt_idmap. 4316 */ 4317 int vfs_rmdir(struct mnt_idmap *idmap, struct inode *dir, 4318 struct dentry *dentry) 4319 { 4320 int error = may_delete(idmap, dir, dentry, 1); 4321 4322 if (error) 4323 return error; 4324 4325 if (!dir->i_op->rmdir) 4326 return -EPERM; 4327 4328 dget(dentry); 4329 inode_lock(dentry->d_inode); 4330 4331 error = -EBUSY; 4332 if (is_local_mountpoint(dentry) || 4333 (dentry->d_inode->i_flags & S_KERNEL_FILE)) 4334 goto out; 4335 4336 error = security_inode_rmdir(dir, dentry); 4337 if (error) 4338 goto out; 4339 4340 error = dir->i_op->rmdir(dir, dentry); 4341 if (error) 4342 goto out; 4343 4344 shrink_dcache_parent(dentry); 4345 dentry->d_inode->i_flags |= S_DEAD; 4346 dont_mount(dentry); 4347 detach_mounts(dentry); 4348 4349 out: 4350 inode_unlock(dentry->d_inode); 4351 dput(dentry); 4352 if (!error) 4353 d_delete_notify(dir, dentry); 4354 return error; 4355 } 4356 EXPORT_SYMBOL(vfs_rmdir); 4357 4358 int do_rmdir(int dfd, struct filename *name) 4359 { 4360 int error; 4361 struct dentry *dentry; 4362 struct path path; 4363 struct qstr last; 4364 int type; 4365 unsigned int lookup_flags = 0; 4366 retry: 4367 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 4368 if (error) 4369 goto exit1; 4370 4371 switch (type) { 4372 case LAST_DOTDOT: 4373 error = -ENOTEMPTY; 4374 goto exit2; 4375 case LAST_DOT: 4376 error = -EINVAL; 4377 goto exit2; 4378 case LAST_ROOT: 4379 error = -EBUSY; 4380 goto exit2; 4381 } 4382 4383 error = mnt_want_write(path.mnt); 4384 if (error) 4385 goto exit2; 4386 4387 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4388 dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags); 4389 error = PTR_ERR(dentry); 4390 if (IS_ERR(dentry)) 4391 goto exit3; 4392 if (!dentry->d_inode) { 4393 error = -ENOENT; 4394 goto exit4; 4395 } 4396 error = security_path_rmdir(&path, dentry); 4397 if (error) 4398 goto exit4; 4399 error = vfs_rmdir(mnt_idmap(path.mnt), path.dentry->d_inode, dentry); 4400 exit4: 4401 dput(dentry); 4402 exit3: 4403 inode_unlock(path.dentry->d_inode); 4404 mnt_drop_write(path.mnt); 4405 exit2: 4406 path_put(&path); 4407 if (retry_estale(error, lookup_flags)) { 4408 lookup_flags |= LOOKUP_REVAL; 4409 goto retry; 4410 } 4411 exit1: 4412 putname(name); 4413 return error; 4414 } 4415 4416 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 4417 { 4418 return do_rmdir(AT_FDCWD, getname(pathname)); 4419 } 4420 4421 /** 4422 * vfs_unlink - unlink a filesystem object 4423 * @idmap: idmap of the mount the inode was found from 4424 * @dir: parent directory 4425 * @dentry: victim 4426 * @delegated_inode: returns victim inode, if the inode is delegated. 4427 * 4428 * The caller must hold dir->i_mutex. 4429 * 4430 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 4431 * return a reference to the inode in delegated_inode. The caller 4432 * should then break the delegation on that inode and retry. Because 4433 * breaking a delegation may take a long time, the caller should drop 4434 * dir->i_mutex before doing so. 4435 * 4436 * Alternatively, a caller may pass NULL for delegated_inode. This may 4437 * be appropriate for callers that expect the underlying filesystem not 4438 * to be NFS exported. 4439 * 4440 * If the inode has been found through an idmapped mount the idmap of 4441 * the vfsmount must be passed through @idmap. This function will then take 4442 * care to map the inode according to @idmap before checking permissions. 4443 * On non-idmapped mounts or if permission checking is to be performed on the 4444 * raw inode simply pass @nop_mnt_idmap. 4445 */ 4446 int vfs_unlink(struct mnt_idmap *idmap, struct inode *dir, 4447 struct dentry *dentry, struct inode **delegated_inode) 4448 { 4449 struct inode *target = dentry->d_inode; 4450 int error = may_delete(idmap, dir, dentry, 0); 4451 4452 if (error) 4453 return error; 4454 4455 if (!dir->i_op->unlink) 4456 return -EPERM; 4457 4458 inode_lock(target); 4459 if (IS_SWAPFILE(target)) 4460 error = -EPERM; 4461 else if (is_local_mountpoint(dentry)) 4462 error = -EBUSY; 4463 else { 4464 error = security_inode_unlink(dir, dentry); 4465 if (!error) { 4466 error = try_break_deleg(target, delegated_inode); 4467 if (error) 4468 goto out; 4469 error = dir->i_op->unlink(dir, dentry); 4470 if (!error) { 4471 dont_mount(dentry); 4472 detach_mounts(dentry); 4473 } 4474 } 4475 } 4476 out: 4477 inode_unlock(target); 4478 4479 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 4480 if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) { 4481 fsnotify_unlink(dir, dentry); 4482 } else if (!error) { 4483 fsnotify_link_count(target); 4484 d_delete_notify(dir, dentry); 4485 } 4486 4487 return error; 4488 } 4489 EXPORT_SYMBOL(vfs_unlink); 4490 4491 /* 4492 * Make sure that the actual truncation of the file will occur outside its 4493 * directory's i_mutex. Truncate can take a long time if there is a lot of 4494 * writeout happening, and we don't want to prevent access to the directory 4495 * while waiting on the I/O. 4496 */ 4497 int do_unlinkat(int dfd, struct filename *name) 4498 { 4499 int error; 4500 struct dentry *dentry; 4501 struct path path; 4502 struct qstr last; 4503 int type; 4504 struct inode *inode = NULL; 4505 struct inode *delegated_inode = NULL; 4506 unsigned int lookup_flags = 0; 4507 retry: 4508 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 4509 if (error) 4510 goto exit1; 4511 4512 error = -EISDIR; 4513 if (type != LAST_NORM) 4514 goto exit2; 4515 4516 error = mnt_want_write(path.mnt); 4517 if (error) 4518 goto exit2; 4519 retry_deleg: 4520 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4521 dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags); 4522 error = PTR_ERR(dentry); 4523 if (!IS_ERR(dentry)) { 4524 4525 /* Why not before? Because we want correct error value */ 4526 if (last.name[last.len] || d_is_negative(dentry)) 4527 goto slashes; 4528 inode = dentry->d_inode; 4529 ihold(inode); 4530 error = security_path_unlink(&path, dentry); 4531 if (error) 4532 goto exit3; 4533 error = vfs_unlink(mnt_idmap(path.mnt), path.dentry->d_inode, 4534 dentry, &delegated_inode); 4535 exit3: 4536 dput(dentry); 4537 } 4538 inode_unlock(path.dentry->d_inode); 4539 if (inode) 4540 iput(inode); /* truncate the inode here */ 4541 inode = NULL; 4542 if (delegated_inode) { 4543 error = break_deleg_wait(&delegated_inode); 4544 if (!error) 4545 goto retry_deleg; 4546 } 4547 mnt_drop_write(path.mnt); 4548 exit2: 4549 path_put(&path); 4550 if (retry_estale(error, lookup_flags)) { 4551 lookup_flags |= LOOKUP_REVAL; 4552 inode = NULL; 4553 goto retry; 4554 } 4555 exit1: 4556 putname(name); 4557 return error; 4558 4559 slashes: 4560 if (d_is_negative(dentry)) 4561 error = -ENOENT; 4562 else if (d_is_dir(dentry)) 4563 error = -EISDIR; 4564 else 4565 error = -ENOTDIR; 4566 goto exit3; 4567 } 4568 4569 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 4570 { 4571 if ((flag & ~AT_REMOVEDIR) != 0) 4572 return -EINVAL; 4573 4574 if (flag & AT_REMOVEDIR) 4575 return do_rmdir(dfd, getname(pathname)); 4576 return do_unlinkat(dfd, getname(pathname)); 4577 } 4578 4579 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 4580 { 4581 return do_unlinkat(AT_FDCWD, getname(pathname)); 4582 } 4583 4584 /** 4585 * vfs_symlink - create symlink 4586 * @idmap: idmap of the mount the inode was found from 4587 * @dir: inode of the parent directory 4588 * @dentry: dentry of the child symlink file 4589 * @oldname: name of the file to link to 4590 * 4591 * Create a symlink. 4592 * 4593 * If the inode has been found through an idmapped mount the idmap of 4594 * the vfsmount must be passed through @idmap. This function will then take 4595 * care to map the inode according to @idmap before checking permissions. 4596 * On non-idmapped mounts or if permission checking is to be performed on the 4597 * raw inode simply pass @nop_mnt_idmap. 4598 */ 4599 int vfs_symlink(struct mnt_idmap *idmap, struct inode *dir, 4600 struct dentry *dentry, const char *oldname) 4601 { 4602 int error; 4603 4604 error = may_create(idmap, dir, dentry); 4605 if (error) 4606 return error; 4607 4608 if (!dir->i_op->symlink) 4609 return -EPERM; 4610 4611 error = security_inode_symlink(dir, dentry, oldname); 4612 if (error) 4613 return error; 4614 4615 error = dir->i_op->symlink(idmap, dir, dentry, oldname); 4616 if (!error) 4617 fsnotify_create(dir, dentry); 4618 return error; 4619 } 4620 EXPORT_SYMBOL(vfs_symlink); 4621 4622 int do_symlinkat(struct filename *from, int newdfd, struct filename *to) 4623 { 4624 int error; 4625 struct dentry *dentry; 4626 struct path path; 4627 unsigned int lookup_flags = 0; 4628 4629 if (IS_ERR(from)) { 4630 error = PTR_ERR(from); 4631 goto out_putnames; 4632 } 4633 retry: 4634 dentry = filename_create(newdfd, to, &path, lookup_flags); 4635 error = PTR_ERR(dentry); 4636 if (IS_ERR(dentry)) 4637 goto out_putnames; 4638 4639 error = security_path_symlink(&path, dentry, from->name); 4640 if (!error) 4641 error = vfs_symlink(mnt_idmap(path.mnt), path.dentry->d_inode, 4642 dentry, from->name); 4643 done_path_create(&path, dentry); 4644 if (retry_estale(error, lookup_flags)) { 4645 lookup_flags |= LOOKUP_REVAL; 4646 goto retry; 4647 } 4648 out_putnames: 4649 putname(to); 4650 putname(from); 4651 return error; 4652 } 4653 4654 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 4655 int, newdfd, const char __user *, newname) 4656 { 4657 return do_symlinkat(getname(oldname), newdfd, getname(newname)); 4658 } 4659 4660 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 4661 { 4662 return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname)); 4663 } 4664 4665 /** 4666 * vfs_link - create a new link 4667 * @old_dentry: object to be linked 4668 * @idmap: idmap of the mount 4669 * @dir: new parent 4670 * @new_dentry: where to create the new link 4671 * @delegated_inode: returns inode needing a delegation break 4672 * 4673 * The caller must hold dir->i_mutex 4674 * 4675 * If vfs_link discovers a delegation on the to-be-linked file in need 4676 * of breaking, it will return -EWOULDBLOCK and return a reference to the 4677 * inode in delegated_inode. The caller should then break the delegation 4678 * and retry. Because breaking a delegation may take a long time, the 4679 * caller should drop the i_mutex before doing so. 4680 * 4681 * Alternatively, a caller may pass NULL for delegated_inode. This may 4682 * be appropriate for callers that expect the underlying filesystem not 4683 * to be NFS exported. 4684 * 4685 * If the inode has been found through an idmapped mount the idmap of 4686 * the vfsmount must be passed through @idmap. This function will then take 4687 * care to map the inode according to @idmap before checking permissions. 4688 * On non-idmapped mounts or if permission checking is to be performed on the 4689 * raw inode simply pass @nop_mnt_idmap. 4690 */ 4691 int vfs_link(struct dentry *old_dentry, struct mnt_idmap *idmap, 4692 struct inode *dir, struct dentry *new_dentry, 4693 struct inode **delegated_inode) 4694 { 4695 struct inode *inode = old_dentry->d_inode; 4696 unsigned max_links = dir->i_sb->s_max_links; 4697 int error; 4698 4699 if (!inode) 4700 return -ENOENT; 4701 4702 error = may_create(idmap, dir, new_dentry); 4703 if (error) 4704 return error; 4705 4706 if (dir->i_sb != inode->i_sb) 4707 return -EXDEV; 4708 4709 /* 4710 * A link to an append-only or immutable file cannot be created. 4711 */ 4712 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4713 return -EPERM; 4714 /* 4715 * Updating the link count will likely cause i_uid and i_gid to 4716 * be writen back improperly if their true value is unknown to 4717 * the vfs. 4718 */ 4719 if (HAS_UNMAPPED_ID(idmap, inode)) 4720 return -EPERM; 4721 if (!dir->i_op->link) 4722 return -EPERM; 4723 if (S_ISDIR(inode->i_mode)) 4724 return -EPERM; 4725 4726 error = security_inode_link(old_dentry, dir, new_dentry); 4727 if (error) 4728 return error; 4729 4730 inode_lock(inode); 4731 /* Make sure we don't allow creating hardlink to an unlinked file */ 4732 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 4733 error = -ENOENT; 4734 else if (max_links && inode->i_nlink >= max_links) 4735 error = -EMLINK; 4736 else { 4737 error = try_break_deleg(inode, delegated_inode); 4738 if (!error) 4739 error = dir->i_op->link(old_dentry, dir, new_dentry); 4740 } 4741 4742 if (!error && (inode->i_state & I_LINKABLE)) { 4743 spin_lock(&inode->i_lock); 4744 inode->i_state &= ~I_LINKABLE; 4745 spin_unlock(&inode->i_lock); 4746 } 4747 inode_unlock(inode); 4748 if (!error) 4749 fsnotify_link(dir, inode, new_dentry); 4750 return error; 4751 } 4752 EXPORT_SYMBOL(vfs_link); 4753 4754 /* 4755 * Hardlinks are often used in delicate situations. We avoid 4756 * security-related surprises by not following symlinks on the 4757 * newname. --KAB 4758 * 4759 * We don't follow them on the oldname either to be compatible 4760 * with linux 2.0, and to avoid hard-linking to directories 4761 * and other special files. --ADM 4762 */ 4763 int do_linkat(int olddfd, struct filename *old, int newdfd, 4764 struct filename *new, int flags) 4765 { 4766 struct mnt_idmap *idmap; 4767 struct dentry *new_dentry; 4768 struct path old_path, new_path; 4769 struct inode *delegated_inode = NULL; 4770 int how = 0; 4771 int error; 4772 4773 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) { 4774 error = -EINVAL; 4775 goto out_putnames; 4776 } 4777 /* 4778 * To use null names we require CAP_DAC_READ_SEARCH or 4779 * that the open-time creds of the dfd matches current. 4780 * This ensures that not everyone will be able to create 4781 * a hardlink using the passed file descriptor. 4782 */ 4783 if (flags & AT_EMPTY_PATH) 4784 how |= LOOKUP_LINKAT_EMPTY; 4785 4786 if (flags & AT_SYMLINK_FOLLOW) 4787 how |= LOOKUP_FOLLOW; 4788 retry: 4789 error = filename_lookup(olddfd, old, how, &old_path, NULL); 4790 if (error) 4791 goto out_putnames; 4792 4793 new_dentry = filename_create(newdfd, new, &new_path, 4794 (how & LOOKUP_REVAL)); 4795 error = PTR_ERR(new_dentry); 4796 if (IS_ERR(new_dentry)) 4797 goto out_putpath; 4798 4799 error = -EXDEV; 4800 if (old_path.mnt != new_path.mnt) 4801 goto out_dput; 4802 idmap = mnt_idmap(new_path.mnt); 4803 error = may_linkat(idmap, &old_path); 4804 if (unlikely(error)) 4805 goto out_dput; 4806 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4807 if (error) 4808 goto out_dput; 4809 error = vfs_link(old_path.dentry, idmap, new_path.dentry->d_inode, 4810 new_dentry, &delegated_inode); 4811 out_dput: 4812 done_path_create(&new_path, new_dentry); 4813 if (delegated_inode) { 4814 error = break_deleg_wait(&delegated_inode); 4815 if (!error) { 4816 path_put(&old_path); 4817 goto retry; 4818 } 4819 } 4820 if (retry_estale(error, how)) { 4821 path_put(&old_path); 4822 how |= LOOKUP_REVAL; 4823 goto retry; 4824 } 4825 out_putpath: 4826 path_put(&old_path); 4827 out_putnames: 4828 putname(old); 4829 putname(new); 4830 4831 return error; 4832 } 4833 4834 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 4835 int, newdfd, const char __user *, newname, int, flags) 4836 { 4837 return do_linkat(olddfd, getname_uflags(oldname, flags), 4838 newdfd, getname(newname), flags); 4839 } 4840 4841 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4842 { 4843 return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0); 4844 } 4845 4846 /** 4847 * vfs_rename - rename a filesystem object 4848 * @rd: pointer to &struct renamedata info 4849 * 4850 * The caller must hold multiple mutexes--see lock_rename()). 4851 * 4852 * If vfs_rename discovers a delegation in need of breaking at either 4853 * the source or destination, it will return -EWOULDBLOCK and return a 4854 * reference to the inode in delegated_inode. The caller should then 4855 * break the delegation and retry. Because breaking a delegation may 4856 * take a long time, the caller should drop all locks before doing 4857 * so. 4858 * 4859 * Alternatively, a caller may pass NULL for delegated_inode. This may 4860 * be appropriate for callers that expect the underlying filesystem not 4861 * to be NFS exported. 4862 * 4863 * The worst of all namespace operations - renaming directory. "Perverted" 4864 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4865 * Problems: 4866 * 4867 * a) we can get into loop creation. 4868 * b) race potential - two innocent renames can create a loop together. 4869 * That's where 4.4BSD screws up. Current fix: serialization on 4870 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4871 * story. 4872 * c) we may have to lock up to _four_ objects - parents and victim (if it exists), 4873 * and source (if it's a non-directory or a subdirectory that moves to 4874 * different parent). 4875 * And that - after we got ->i_mutex on parents (until then we don't know 4876 * whether the target exists). Solution: try to be smart with locking 4877 * order for inodes. We rely on the fact that tree topology may change 4878 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4879 * move will be locked. Thus we can rank directories by the tree 4880 * (ancestors first) and rank all non-directories after them. 4881 * That works since everybody except rename does "lock parent, lookup, 4882 * lock child" and rename is under ->s_vfs_rename_mutex. 4883 * HOWEVER, it relies on the assumption that any object with ->lookup() 4884 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4885 * we'd better make sure that there's no link(2) for them. 4886 * d) conversion from fhandle to dentry may come in the wrong moment - when 4887 * we are removing the target. Solution: we will have to grab ->i_mutex 4888 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4889 * ->i_mutex on parents, which works but leads to some truly excessive 4890 * locking]. 4891 */ 4892 int vfs_rename(struct renamedata *rd) 4893 { 4894 int error; 4895 struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir; 4896 struct dentry *old_dentry = rd->old_dentry; 4897 struct dentry *new_dentry = rd->new_dentry; 4898 struct inode **delegated_inode = rd->delegated_inode; 4899 unsigned int flags = rd->flags; 4900 bool is_dir = d_is_dir(old_dentry); 4901 struct inode *source = old_dentry->d_inode; 4902 struct inode *target = new_dentry->d_inode; 4903 bool new_is_dir = false; 4904 unsigned max_links = new_dir->i_sb->s_max_links; 4905 struct name_snapshot old_name; 4906 bool lock_old_subdir, lock_new_subdir; 4907 4908 if (source == target) 4909 return 0; 4910 4911 error = may_delete(rd->old_mnt_idmap, old_dir, old_dentry, is_dir); 4912 if (error) 4913 return error; 4914 4915 if (!target) { 4916 error = may_create(rd->new_mnt_idmap, new_dir, new_dentry); 4917 } else { 4918 new_is_dir = d_is_dir(new_dentry); 4919 4920 if (!(flags & RENAME_EXCHANGE)) 4921 error = may_delete(rd->new_mnt_idmap, new_dir, 4922 new_dentry, is_dir); 4923 else 4924 error = may_delete(rd->new_mnt_idmap, new_dir, 4925 new_dentry, new_is_dir); 4926 } 4927 if (error) 4928 return error; 4929 4930 if (!old_dir->i_op->rename) 4931 return -EPERM; 4932 4933 /* 4934 * If we are going to change the parent - check write permissions, 4935 * we'll need to flip '..'. 4936 */ 4937 if (new_dir != old_dir) { 4938 if (is_dir) { 4939 error = inode_permission(rd->old_mnt_idmap, source, 4940 MAY_WRITE); 4941 if (error) 4942 return error; 4943 } 4944 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4945 error = inode_permission(rd->new_mnt_idmap, target, 4946 MAY_WRITE); 4947 if (error) 4948 return error; 4949 } 4950 } 4951 4952 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 4953 flags); 4954 if (error) 4955 return error; 4956 4957 take_dentry_name_snapshot(&old_name, old_dentry); 4958 dget(new_dentry); 4959 /* 4960 * Lock children. 4961 * The source subdirectory needs to be locked on cross-directory 4962 * rename or cross-directory exchange since its parent changes. 4963 * The target subdirectory needs to be locked on cross-directory 4964 * exchange due to parent change and on any rename due to becoming 4965 * a victim. 4966 * Non-directories need locking in all cases (for NFS reasons); 4967 * they get locked after any subdirectories (in inode address order). 4968 * 4969 * NOTE: WE ONLY LOCK UNRELATED DIRECTORIES IN CROSS-DIRECTORY CASE. 4970 * NEVER, EVER DO THAT WITHOUT ->s_vfs_rename_mutex. 4971 */ 4972 lock_old_subdir = new_dir != old_dir; 4973 lock_new_subdir = new_dir != old_dir || !(flags & RENAME_EXCHANGE); 4974 if (is_dir) { 4975 if (lock_old_subdir) 4976 inode_lock_nested(source, I_MUTEX_CHILD); 4977 if (target && (!new_is_dir || lock_new_subdir)) 4978 inode_lock(target); 4979 } else if (new_is_dir) { 4980 if (lock_new_subdir) 4981 inode_lock_nested(target, I_MUTEX_CHILD); 4982 inode_lock(source); 4983 } else { 4984 lock_two_nondirectories(source, target); 4985 } 4986 4987 error = -EPERM; 4988 if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target))) 4989 goto out; 4990 4991 error = -EBUSY; 4992 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 4993 goto out; 4994 4995 if (max_links && new_dir != old_dir) { 4996 error = -EMLINK; 4997 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 4998 goto out; 4999 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 5000 old_dir->i_nlink >= max_links) 5001 goto out; 5002 } 5003 if (!is_dir) { 5004 error = try_break_deleg(source, delegated_inode); 5005 if (error) 5006 goto out; 5007 } 5008 if (target && !new_is_dir) { 5009 error = try_break_deleg(target, delegated_inode); 5010 if (error) 5011 goto out; 5012 } 5013 error = old_dir->i_op->rename(rd->new_mnt_idmap, old_dir, old_dentry, 5014 new_dir, new_dentry, flags); 5015 if (error) 5016 goto out; 5017 5018 if (!(flags & RENAME_EXCHANGE) && target) { 5019 if (is_dir) { 5020 shrink_dcache_parent(new_dentry); 5021 target->i_flags |= S_DEAD; 5022 } 5023 dont_mount(new_dentry); 5024 detach_mounts(new_dentry); 5025 } 5026 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 5027 if (!(flags & RENAME_EXCHANGE)) 5028 d_move(old_dentry, new_dentry); 5029 else 5030 d_exchange(old_dentry, new_dentry); 5031 } 5032 out: 5033 if (!is_dir || lock_old_subdir) 5034 inode_unlock(source); 5035 if (target && (!new_is_dir || lock_new_subdir)) 5036 inode_unlock(target); 5037 dput(new_dentry); 5038 if (!error) { 5039 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir, 5040 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 5041 if (flags & RENAME_EXCHANGE) { 5042 fsnotify_move(new_dir, old_dir, &old_dentry->d_name, 5043 new_is_dir, NULL, new_dentry); 5044 } 5045 } 5046 release_dentry_name_snapshot(&old_name); 5047 5048 return error; 5049 } 5050 EXPORT_SYMBOL(vfs_rename); 5051 5052 int do_renameat2(int olddfd, struct filename *from, int newdfd, 5053 struct filename *to, unsigned int flags) 5054 { 5055 struct renamedata rd; 5056 struct dentry *old_dentry, *new_dentry; 5057 struct dentry *trap; 5058 struct path old_path, new_path; 5059 struct qstr old_last, new_last; 5060 int old_type, new_type; 5061 struct inode *delegated_inode = NULL; 5062 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET; 5063 bool should_retry = false; 5064 int error = -EINVAL; 5065 5066 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 5067 goto put_names; 5068 5069 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 5070 (flags & RENAME_EXCHANGE)) 5071 goto put_names; 5072 5073 if (flags & RENAME_EXCHANGE) 5074 target_flags = 0; 5075 5076 retry: 5077 error = filename_parentat(olddfd, from, lookup_flags, &old_path, 5078 &old_last, &old_type); 5079 if (error) 5080 goto put_names; 5081 5082 error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last, 5083 &new_type); 5084 if (error) 5085 goto exit1; 5086 5087 error = -EXDEV; 5088 if (old_path.mnt != new_path.mnt) 5089 goto exit2; 5090 5091 error = -EBUSY; 5092 if (old_type != LAST_NORM) 5093 goto exit2; 5094 5095 if (flags & RENAME_NOREPLACE) 5096 error = -EEXIST; 5097 if (new_type != LAST_NORM) 5098 goto exit2; 5099 5100 error = mnt_want_write(old_path.mnt); 5101 if (error) 5102 goto exit2; 5103 5104 retry_deleg: 5105 trap = lock_rename(new_path.dentry, old_path.dentry); 5106 if (IS_ERR(trap)) { 5107 error = PTR_ERR(trap); 5108 goto exit_lock_rename; 5109 } 5110 5111 old_dentry = lookup_one_qstr_excl(&old_last, old_path.dentry, 5112 lookup_flags); 5113 error = PTR_ERR(old_dentry); 5114 if (IS_ERR(old_dentry)) 5115 goto exit3; 5116 /* source must exist */ 5117 error = -ENOENT; 5118 if (d_is_negative(old_dentry)) 5119 goto exit4; 5120 new_dentry = lookup_one_qstr_excl(&new_last, new_path.dentry, 5121 lookup_flags | target_flags); 5122 error = PTR_ERR(new_dentry); 5123 if (IS_ERR(new_dentry)) 5124 goto exit4; 5125 error = -EEXIST; 5126 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 5127 goto exit5; 5128 if (flags & RENAME_EXCHANGE) { 5129 error = -ENOENT; 5130 if (d_is_negative(new_dentry)) 5131 goto exit5; 5132 5133 if (!d_is_dir(new_dentry)) { 5134 error = -ENOTDIR; 5135 if (new_last.name[new_last.len]) 5136 goto exit5; 5137 } 5138 } 5139 /* unless the source is a directory trailing slashes give -ENOTDIR */ 5140 if (!d_is_dir(old_dentry)) { 5141 error = -ENOTDIR; 5142 if (old_last.name[old_last.len]) 5143 goto exit5; 5144 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len]) 5145 goto exit5; 5146 } 5147 /* source should not be ancestor of target */ 5148 error = -EINVAL; 5149 if (old_dentry == trap) 5150 goto exit5; 5151 /* target should not be an ancestor of source */ 5152 if (!(flags & RENAME_EXCHANGE)) 5153 error = -ENOTEMPTY; 5154 if (new_dentry == trap) 5155 goto exit5; 5156 5157 error = security_path_rename(&old_path, old_dentry, 5158 &new_path, new_dentry, flags); 5159 if (error) 5160 goto exit5; 5161 5162 rd.old_dir = old_path.dentry->d_inode; 5163 rd.old_dentry = old_dentry; 5164 rd.old_mnt_idmap = mnt_idmap(old_path.mnt); 5165 rd.new_dir = new_path.dentry->d_inode; 5166 rd.new_dentry = new_dentry; 5167 rd.new_mnt_idmap = mnt_idmap(new_path.mnt); 5168 rd.delegated_inode = &delegated_inode; 5169 rd.flags = flags; 5170 error = vfs_rename(&rd); 5171 exit5: 5172 dput(new_dentry); 5173 exit4: 5174 dput(old_dentry); 5175 exit3: 5176 unlock_rename(new_path.dentry, old_path.dentry); 5177 exit_lock_rename: 5178 if (delegated_inode) { 5179 error = break_deleg_wait(&delegated_inode); 5180 if (!error) 5181 goto retry_deleg; 5182 } 5183 mnt_drop_write(old_path.mnt); 5184 exit2: 5185 if (retry_estale(error, lookup_flags)) 5186 should_retry = true; 5187 path_put(&new_path); 5188 exit1: 5189 path_put(&old_path); 5190 if (should_retry) { 5191 should_retry = false; 5192 lookup_flags |= LOOKUP_REVAL; 5193 goto retry; 5194 } 5195 put_names: 5196 putname(from); 5197 putname(to); 5198 return error; 5199 } 5200 5201 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 5202 int, newdfd, const char __user *, newname, unsigned int, flags) 5203 { 5204 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname), 5205 flags); 5206 } 5207 5208 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 5209 int, newdfd, const char __user *, newname) 5210 { 5211 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname), 5212 0); 5213 } 5214 5215 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 5216 { 5217 return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD, 5218 getname(newname), 0); 5219 } 5220 5221 int readlink_copy(char __user *buffer, int buflen, const char *link) 5222 { 5223 int len = PTR_ERR(link); 5224 if (IS_ERR(link)) 5225 goto out; 5226 5227 len = strlen(link); 5228 if (len > (unsigned) buflen) 5229 len = buflen; 5230 if (copy_to_user(buffer, link, len)) 5231 len = -EFAULT; 5232 out: 5233 return len; 5234 } 5235 5236 /** 5237 * vfs_readlink - copy symlink body into userspace buffer 5238 * @dentry: dentry on which to get symbolic link 5239 * @buffer: user memory pointer 5240 * @buflen: size of buffer 5241 * 5242 * Does not touch atime. That's up to the caller if necessary 5243 * 5244 * Does not call security hook. 5245 */ 5246 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen) 5247 { 5248 struct inode *inode = d_inode(dentry); 5249 DEFINE_DELAYED_CALL(done); 5250 const char *link; 5251 int res; 5252 5253 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) { 5254 if (unlikely(inode->i_op->readlink)) 5255 return inode->i_op->readlink(dentry, buffer, buflen); 5256 5257 if (!d_is_symlink(dentry)) 5258 return -EINVAL; 5259 5260 spin_lock(&inode->i_lock); 5261 inode->i_opflags |= IOP_DEFAULT_READLINK; 5262 spin_unlock(&inode->i_lock); 5263 } 5264 5265 link = READ_ONCE(inode->i_link); 5266 if (!link) { 5267 link = inode->i_op->get_link(dentry, inode, &done); 5268 if (IS_ERR(link)) 5269 return PTR_ERR(link); 5270 } 5271 res = readlink_copy(buffer, buflen, link); 5272 do_delayed_call(&done); 5273 return res; 5274 } 5275 EXPORT_SYMBOL(vfs_readlink); 5276 5277 /** 5278 * vfs_get_link - get symlink body 5279 * @dentry: dentry on which to get symbolic link 5280 * @done: caller needs to free returned data with this 5281 * 5282 * Calls security hook and i_op->get_link() on the supplied inode. 5283 * 5284 * It does not touch atime. That's up to the caller if necessary. 5285 * 5286 * Does not work on "special" symlinks like /proc/$$/fd/N 5287 */ 5288 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done) 5289 { 5290 const char *res = ERR_PTR(-EINVAL); 5291 struct inode *inode = d_inode(dentry); 5292 5293 if (d_is_symlink(dentry)) { 5294 res = ERR_PTR(security_inode_readlink(dentry)); 5295 if (!res) 5296 res = inode->i_op->get_link(dentry, inode, done); 5297 } 5298 return res; 5299 } 5300 EXPORT_SYMBOL(vfs_get_link); 5301 5302 /* get the link contents into pagecache */ 5303 const char *page_get_link(struct dentry *dentry, struct inode *inode, 5304 struct delayed_call *callback) 5305 { 5306 char *kaddr; 5307 struct page *page; 5308 struct address_space *mapping = inode->i_mapping; 5309 5310 if (!dentry) { 5311 page = find_get_page(mapping, 0); 5312 if (!page) 5313 return ERR_PTR(-ECHILD); 5314 if (!PageUptodate(page)) { 5315 put_page(page); 5316 return ERR_PTR(-ECHILD); 5317 } 5318 } else { 5319 page = read_mapping_page(mapping, 0, NULL); 5320 if (IS_ERR(page)) 5321 return (char*)page; 5322 } 5323 set_delayed_call(callback, page_put_link, page); 5324 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM); 5325 kaddr = page_address(page); 5326 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1); 5327 return kaddr; 5328 } 5329 5330 EXPORT_SYMBOL(page_get_link); 5331 5332 void page_put_link(void *arg) 5333 { 5334 put_page(arg); 5335 } 5336 EXPORT_SYMBOL(page_put_link); 5337 5338 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 5339 { 5340 DEFINE_DELAYED_CALL(done); 5341 int res = readlink_copy(buffer, buflen, 5342 page_get_link(dentry, d_inode(dentry), 5343 &done)); 5344 do_delayed_call(&done); 5345 return res; 5346 } 5347 EXPORT_SYMBOL(page_readlink); 5348 5349 int page_symlink(struct inode *inode, const char *symname, int len) 5350 { 5351 struct address_space *mapping = inode->i_mapping; 5352 const struct address_space_operations *aops = mapping->a_ops; 5353 bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS); 5354 struct folio *folio; 5355 void *fsdata = NULL; 5356 int err; 5357 unsigned int flags; 5358 5359 retry: 5360 if (nofs) 5361 flags = memalloc_nofs_save(); 5362 err = aops->write_begin(NULL, mapping, 0, len-1, &folio, &fsdata); 5363 if (nofs) 5364 memalloc_nofs_restore(flags); 5365 if (err) 5366 goto fail; 5367 5368 memcpy(folio_address(folio), symname, len - 1); 5369 5370 err = aops->write_end(NULL, mapping, 0, len - 1, len - 1, 5371 folio, fsdata); 5372 if (err < 0) 5373 goto fail; 5374 if (err < len-1) 5375 goto retry; 5376 5377 mark_inode_dirty(inode); 5378 return 0; 5379 fail: 5380 return err; 5381 } 5382 EXPORT_SYMBOL(page_symlink); 5383 5384 const struct inode_operations page_symlink_inode_operations = { 5385 .get_link = page_get_link, 5386 }; 5387 EXPORT_SYMBOL(page_symlink_inode_operations); 5388