xref: /linux/fs/namei.c (revision 90ab5ee94171b3e28de6bb42ee30b527014e0be7)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <linux/posix_acl.h>
36 #include <asm/uaccess.h>
37 
38 #include "internal.h"
39 #include "mount.h"
40 
41 /* [Feb-1997 T. Schoebel-Theuer]
42  * Fundamental changes in the pathname lookup mechanisms (namei)
43  * were necessary because of omirr.  The reason is that omirr needs
44  * to know the _real_ pathname, not the user-supplied one, in case
45  * of symlinks (and also when transname replacements occur).
46  *
47  * The new code replaces the old recursive symlink resolution with
48  * an iterative one (in case of non-nested symlink chains).  It does
49  * this with calls to <fs>_follow_link().
50  * As a side effect, dir_namei(), _namei() and follow_link() are now
51  * replaced with a single function lookup_dentry() that can handle all
52  * the special cases of the former code.
53  *
54  * With the new dcache, the pathname is stored at each inode, at least as
55  * long as the refcount of the inode is positive.  As a side effect, the
56  * size of the dcache depends on the inode cache and thus is dynamic.
57  *
58  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
59  * resolution to correspond with current state of the code.
60  *
61  * Note that the symlink resolution is not *completely* iterative.
62  * There is still a significant amount of tail- and mid- recursion in
63  * the algorithm.  Also, note that <fs>_readlink() is not used in
64  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
65  * may return different results than <fs>_follow_link().  Many virtual
66  * filesystems (including /proc) exhibit this behavior.
67  */
68 
69 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
70  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
71  * and the name already exists in form of a symlink, try to create the new
72  * name indicated by the symlink. The old code always complained that the
73  * name already exists, due to not following the symlink even if its target
74  * is nonexistent.  The new semantics affects also mknod() and link() when
75  * the name is a symlink pointing to a non-existent name.
76  *
77  * I don't know which semantics is the right one, since I have no access
78  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
79  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
80  * "old" one. Personally, I think the new semantics is much more logical.
81  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
82  * file does succeed in both HP-UX and SunOs, but not in Solaris
83  * and in the old Linux semantics.
84  */
85 
86 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
87  * semantics.  See the comments in "open_namei" and "do_link" below.
88  *
89  * [10-Sep-98 Alan Modra] Another symlink change.
90  */
91 
92 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
93  *	inside the path - always follow.
94  *	in the last component in creation/removal/renaming - never follow.
95  *	if LOOKUP_FOLLOW passed - follow.
96  *	if the pathname has trailing slashes - follow.
97  *	otherwise - don't follow.
98  * (applied in that order).
99  *
100  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
101  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
102  * During the 2.4 we need to fix the userland stuff depending on it -
103  * hopefully we will be able to get rid of that wart in 2.5. So far only
104  * XEmacs seems to be relying on it...
105  */
106 /*
107  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
108  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
109  * any extra contention...
110  */
111 
112 /* In order to reduce some races, while at the same time doing additional
113  * checking and hopefully speeding things up, we copy filenames to the
114  * kernel data space before using them..
115  *
116  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
117  * PATH_MAX includes the nul terminator --RR.
118  */
119 static int do_getname(const char __user *filename, char *page)
120 {
121 	int retval;
122 	unsigned long len = PATH_MAX;
123 
124 	if (!segment_eq(get_fs(), KERNEL_DS)) {
125 		if ((unsigned long) filename >= TASK_SIZE)
126 			return -EFAULT;
127 		if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
128 			len = TASK_SIZE - (unsigned long) filename;
129 	}
130 
131 	retval = strncpy_from_user(page, filename, len);
132 	if (retval > 0) {
133 		if (retval < len)
134 			return 0;
135 		return -ENAMETOOLONG;
136 	} else if (!retval)
137 		retval = -ENOENT;
138 	return retval;
139 }
140 
141 static char *getname_flags(const char __user *filename, int flags, int *empty)
142 {
143 	char *tmp, *result;
144 
145 	result = ERR_PTR(-ENOMEM);
146 	tmp = __getname();
147 	if (tmp)  {
148 		int retval = do_getname(filename, tmp);
149 
150 		result = tmp;
151 		if (retval < 0) {
152 			if (retval == -ENOENT && empty)
153 				*empty = 1;
154 			if (retval != -ENOENT || !(flags & LOOKUP_EMPTY)) {
155 				__putname(tmp);
156 				result = ERR_PTR(retval);
157 			}
158 		}
159 	}
160 	audit_getname(result);
161 	return result;
162 }
163 
164 char *getname(const char __user * filename)
165 {
166 	return getname_flags(filename, 0, 0);
167 }
168 
169 #ifdef CONFIG_AUDITSYSCALL
170 void putname(const char *name)
171 {
172 	if (unlikely(!audit_dummy_context()))
173 		audit_putname(name);
174 	else
175 		__putname(name);
176 }
177 EXPORT_SYMBOL(putname);
178 #endif
179 
180 static int check_acl(struct inode *inode, int mask)
181 {
182 #ifdef CONFIG_FS_POSIX_ACL
183 	struct posix_acl *acl;
184 
185 	if (mask & MAY_NOT_BLOCK) {
186 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
187 	        if (!acl)
188 	                return -EAGAIN;
189 		/* no ->get_acl() calls in RCU mode... */
190 		if (acl == ACL_NOT_CACHED)
191 			return -ECHILD;
192 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
193 	}
194 
195 	acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
196 
197 	/*
198 	 * A filesystem can force a ACL callback by just never filling the
199 	 * ACL cache. But normally you'd fill the cache either at inode
200 	 * instantiation time, or on the first ->get_acl call.
201 	 *
202 	 * If the filesystem doesn't have a get_acl() function at all, we'll
203 	 * just create the negative cache entry.
204 	 */
205 	if (acl == ACL_NOT_CACHED) {
206 	        if (inode->i_op->get_acl) {
207 			acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
208 			if (IS_ERR(acl))
209 				return PTR_ERR(acl);
210 		} else {
211 		        set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
212 		        return -EAGAIN;
213 		}
214 	}
215 
216 	if (acl) {
217 	        int error = posix_acl_permission(inode, acl, mask);
218 	        posix_acl_release(acl);
219 	        return error;
220 	}
221 #endif
222 
223 	return -EAGAIN;
224 }
225 
226 /*
227  * This does the basic permission checking
228  */
229 static int acl_permission_check(struct inode *inode, int mask)
230 {
231 	unsigned int mode = inode->i_mode;
232 
233 	if (current_user_ns() != inode_userns(inode))
234 		goto other_perms;
235 
236 	if (likely(current_fsuid() == inode->i_uid))
237 		mode >>= 6;
238 	else {
239 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
240 			int error = check_acl(inode, mask);
241 			if (error != -EAGAIN)
242 				return error;
243 		}
244 
245 		if (in_group_p(inode->i_gid))
246 			mode >>= 3;
247 	}
248 
249 other_perms:
250 	/*
251 	 * If the DACs are ok we don't need any capability check.
252 	 */
253 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
254 		return 0;
255 	return -EACCES;
256 }
257 
258 /**
259  * generic_permission -  check for access rights on a Posix-like filesystem
260  * @inode:	inode to check access rights for
261  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
262  *
263  * Used to check for read/write/execute permissions on a file.
264  * We use "fsuid" for this, letting us set arbitrary permissions
265  * for filesystem access without changing the "normal" uids which
266  * are used for other things.
267  *
268  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
269  * request cannot be satisfied (eg. requires blocking or too much complexity).
270  * It would then be called again in ref-walk mode.
271  */
272 int generic_permission(struct inode *inode, int mask)
273 {
274 	int ret;
275 
276 	/*
277 	 * Do the basic permission checks.
278 	 */
279 	ret = acl_permission_check(inode, mask);
280 	if (ret != -EACCES)
281 		return ret;
282 
283 	if (S_ISDIR(inode->i_mode)) {
284 		/* DACs are overridable for directories */
285 		if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
286 			return 0;
287 		if (!(mask & MAY_WRITE))
288 			if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
289 				return 0;
290 		return -EACCES;
291 	}
292 	/*
293 	 * Read/write DACs are always overridable.
294 	 * Executable DACs are overridable when there is
295 	 * at least one exec bit set.
296 	 */
297 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
298 		if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
299 			return 0;
300 
301 	/*
302 	 * Searching includes executable on directories, else just read.
303 	 */
304 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
305 	if (mask == MAY_READ)
306 		if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
307 			return 0;
308 
309 	return -EACCES;
310 }
311 
312 /*
313  * We _really_ want to just do "generic_permission()" without
314  * even looking at the inode->i_op values. So we keep a cache
315  * flag in inode->i_opflags, that says "this has not special
316  * permission function, use the fast case".
317  */
318 static inline int do_inode_permission(struct inode *inode, int mask)
319 {
320 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
321 		if (likely(inode->i_op->permission))
322 			return inode->i_op->permission(inode, mask);
323 
324 		/* This gets set once for the inode lifetime */
325 		spin_lock(&inode->i_lock);
326 		inode->i_opflags |= IOP_FASTPERM;
327 		spin_unlock(&inode->i_lock);
328 	}
329 	return generic_permission(inode, mask);
330 }
331 
332 /**
333  * inode_permission  -  check for access rights to a given inode
334  * @inode:	inode to check permission on
335  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
336  *
337  * Used to check for read/write/execute permissions on an inode.
338  * We use "fsuid" for this, letting us set arbitrary permissions
339  * for filesystem access without changing the "normal" uids which
340  * are used for other things.
341  *
342  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
343  */
344 int inode_permission(struct inode *inode, int mask)
345 {
346 	int retval;
347 
348 	if (unlikely(mask & MAY_WRITE)) {
349 		umode_t mode = inode->i_mode;
350 
351 		/*
352 		 * Nobody gets write access to a read-only fs.
353 		 */
354 		if (IS_RDONLY(inode) &&
355 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
356 			return -EROFS;
357 
358 		/*
359 		 * Nobody gets write access to an immutable file.
360 		 */
361 		if (IS_IMMUTABLE(inode))
362 			return -EACCES;
363 	}
364 
365 	retval = do_inode_permission(inode, mask);
366 	if (retval)
367 		return retval;
368 
369 	retval = devcgroup_inode_permission(inode, mask);
370 	if (retval)
371 		return retval;
372 
373 	return security_inode_permission(inode, mask);
374 }
375 
376 /**
377  * path_get - get a reference to a path
378  * @path: path to get the reference to
379  *
380  * Given a path increment the reference count to the dentry and the vfsmount.
381  */
382 void path_get(struct path *path)
383 {
384 	mntget(path->mnt);
385 	dget(path->dentry);
386 }
387 EXPORT_SYMBOL(path_get);
388 
389 /**
390  * path_put - put a reference to a path
391  * @path: path to put the reference to
392  *
393  * Given a path decrement the reference count to the dentry and the vfsmount.
394  */
395 void path_put(struct path *path)
396 {
397 	dput(path->dentry);
398 	mntput(path->mnt);
399 }
400 EXPORT_SYMBOL(path_put);
401 
402 /*
403  * Path walking has 2 modes, rcu-walk and ref-walk (see
404  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
405  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
406  * normal reference counts on dentries and vfsmounts to transition to rcu-walk
407  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
408  * got stuck, so ref-walk may continue from there. If this is not successful
409  * (eg. a seqcount has changed), then failure is returned and it's up to caller
410  * to restart the path walk from the beginning in ref-walk mode.
411  */
412 
413 /**
414  * unlazy_walk - try to switch to ref-walk mode.
415  * @nd: nameidata pathwalk data
416  * @dentry: child of nd->path.dentry or NULL
417  * Returns: 0 on success, -ECHILD on failure
418  *
419  * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
420  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
421  * @nd or NULL.  Must be called from rcu-walk context.
422  */
423 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
424 {
425 	struct fs_struct *fs = current->fs;
426 	struct dentry *parent = nd->path.dentry;
427 	int want_root = 0;
428 
429 	BUG_ON(!(nd->flags & LOOKUP_RCU));
430 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
431 		want_root = 1;
432 		spin_lock(&fs->lock);
433 		if (nd->root.mnt != fs->root.mnt ||
434 				nd->root.dentry != fs->root.dentry)
435 			goto err_root;
436 	}
437 	spin_lock(&parent->d_lock);
438 	if (!dentry) {
439 		if (!__d_rcu_to_refcount(parent, nd->seq))
440 			goto err_parent;
441 		BUG_ON(nd->inode != parent->d_inode);
442 	} else {
443 		if (dentry->d_parent != parent)
444 			goto err_parent;
445 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
446 		if (!__d_rcu_to_refcount(dentry, nd->seq))
447 			goto err_child;
448 		/*
449 		 * If the sequence check on the child dentry passed, then
450 		 * the child has not been removed from its parent. This
451 		 * means the parent dentry must be valid and able to take
452 		 * a reference at this point.
453 		 */
454 		BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
455 		BUG_ON(!parent->d_count);
456 		parent->d_count++;
457 		spin_unlock(&dentry->d_lock);
458 	}
459 	spin_unlock(&parent->d_lock);
460 	if (want_root) {
461 		path_get(&nd->root);
462 		spin_unlock(&fs->lock);
463 	}
464 	mntget(nd->path.mnt);
465 
466 	rcu_read_unlock();
467 	br_read_unlock(vfsmount_lock);
468 	nd->flags &= ~LOOKUP_RCU;
469 	return 0;
470 
471 err_child:
472 	spin_unlock(&dentry->d_lock);
473 err_parent:
474 	spin_unlock(&parent->d_lock);
475 err_root:
476 	if (want_root)
477 		spin_unlock(&fs->lock);
478 	return -ECHILD;
479 }
480 
481 /**
482  * release_open_intent - free up open intent resources
483  * @nd: pointer to nameidata
484  */
485 void release_open_intent(struct nameidata *nd)
486 {
487 	struct file *file = nd->intent.open.file;
488 
489 	if (file && !IS_ERR(file)) {
490 		if (file->f_path.dentry == NULL)
491 			put_filp(file);
492 		else
493 			fput(file);
494 	}
495 }
496 
497 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd)
498 {
499 	return dentry->d_op->d_revalidate(dentry, nd);
500 }
501 
502 /**
503  * complete_walk - successful completion of path walk
504  * @nd:  pointer nameidata
505  *
506  * If we had been in RCU mode, drop out of it and legitimize nd->path.
507  * Revalidate the final result, unless we'd already done that during
508  * the path walk or the filesystem doesn't ask for it.  Return 0 on
509  * success, -error on failure.  In case of failure caller does not
510  * need to drop nd->path.
511  */
512 static int complete_walk(struct nameidata *nd)
513 {
514 	struct dentry *dentry = nd->path.dentry;
515 	int status;
516 
517 	if (nd->flags & LOOKUP_RCU) {
518 		nd->flags &= ~LOOKUP_RCU;
519 		if (!(nd->flags & LOOKUP_ROOT))
520 			nd->root.mnt = NULL;
521 		spin_lock(&dentry->d_lock);
522 		if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
523 			spin_unlock(&dentry->d_lock);
524 			rcu_read_unlock();
525 			br_read_unlock(vfsmount_lock);
526 			return -ECHILD;
527 		}
528 		BUG_ON(nd->inode != dentry->d_inode);
529 		spin_unlock(&dentry->d_lock);
530 		mntget(nd->path.mnt);
531 		rcu_read_unlock();
532 		br_read_unlock(vfsmount_lock);
533 	}
534 
535 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
536 		return 0;
537 
538 	if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
539 		return 0;
540 
541 	if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
542 		return 0;
543 
544 	/* Note: we do not d_invalidate() */
545 	status = d_revalidate(dentry, nd);
546 	if (status > 0)
547 		return 0;
548 
549 	if (!status)
550 		status = -ESTALE;
551 
552 	path_put(&nd->path);
553 	return status;
554 }
555 
556 static __always_inline void set_root(struct nameidata *nd)
557 {
558 	if (!nd->root.mnt)
559 		get_fs_root(current->fs, &nd->root);
560 }
561 
562 static int link_path_walk(const char *, struct nameidata *);
563 
564 static __always_inline void set_root_rcu(struct nameidata *nd)
565 {
566 	if (!nd->root.mnt) {
567 		struct fs_struct *fs = current->fs;
568 		unsigned seq;
569 
570 		do {
571 			seq = read_seqcount_begin(&fs->seq);
572 			nd->root = fs->root;
573 			nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
574 		} while (read_seqcount_retry(&fs->seq, seq));
575 	}
576 }
577 
578 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
579 {
580 	int ret;
581 
582 	if (IS_ERR(link))
583 		goto fail;
584 
585 	if (*link == '/') {
586 		set_root(nd);
587 		path_put(&nd->path);
588 		nd->path = nd->root;
589 		path_get(&nd->root);
590 		nd->flags |= LOOKUP_JUMPED;
591 	}
592 	nd->inode = nd->path.dentry->d_inode;
593 
594 	ret = link_path_walk(link, nd);
595 	return ret;
596 fail:
597 	path_put(&nd->path);
598 	return PTR_ERR(link);
599 }
600 
601 static void path_put_conditional(struct path *path, struct nameidata *nd)
602 {
603 	dput(path->dentry);
604 	if (path->mnt != nd->path.mnt)
605 		mntput(path->mnt);
606 }
607 
608 static inline void path_to_nameidata(const struct path *path,
609 					struct nameidata *nd)
610 {
611 	if (!(nd->flags & LOOKUP_RCU)) {
612 		dput(nd->path.dentry);
613 		if (nd->path.mnt != path->mnt)
614 			mntput(nd->path.mnt);
615 	}
616 	nd->path.mnt = path->mnt;
617 	nd->path.dentry = path->dentry;
618 }
619 
620 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
621 {
622 	struct inode *inode = link->dentry->d_inode;
623 	if (!IS_ERR(cookie) && inode->i_op->put_link)
624 		inode->i_op->put_link(link->dentry, nd, cookie);
625 	path_put(link);
626 }
627 
628 static __always_inline int
629 follow_link(struct path *link, struct nameidata *nd, void **p)
630 {
631 	int error;
632 	struct dentry *dentry = link->dentry;
633 
634 	BUG_ON(nd->flags & LOOKUP_RCU);
635 
636 	if (link->mnt == nd->path.mnt)
637 		mntget(link->mnt);
638 
639 	if (unlikely(current->total_link_count >= 40)) {
640 		*p = ERR_PTR(-ELOOP); /* no ->put_link(), please */
641 		path_put(&nd->path);
642 		return -ELOOP;
643 	}
644 	cond_resched();
645 	current->total_link_count++;
646 
647 	touch_atime(link->mnt, dentry);
648 	nd_set_link(nd, NULL);
649 
650 	error = security_inode_follow_link(link->dentry, nd);
651 	if (error) {
652 		*p = ERR_PTR(error); /* no ->put_link(), please */
653 		path_put(&nd->path);
654 		return error;
655 	}
656 
657 	nd->last_type = LAST_BIND;
658 	*p = dentry->d_inode->i_op->follow_link(dentry, nd);
659 	error = PTR_ERR(*p);
660 	if (!IS_ERR(*p)) {
661 		char *s = nd_get_link(nd);
662 		error = 0;
663 		if (s)
664 			error = __vfs_follow_link(nd, s);
665 		else if (nd->last_type == LAST_BIND) {
666 			nd->flags |= LOOKUP_JUMPED;
667 			nd->inode = nd->path.dentry->d_inode;
668 			if (nd->inode->i_op->follow_link) {
669 				/* stepped on a _really_ weird one */
670 				path_put(&nd->path);
671 				error = -ELOOP;
672 			}
673 		}
674 	}
675 	return error;
676 }
677 
678 static int follow_up_rcu(struct path *path)
679 {
680 	struct mount *mnt = real_mount(path->mnt);
681 	struct mount *parent;
682 	struct dentry *mountpoint;
683 
684 	parent = mnt->mnt_parent;
685 	if (&parent->mnt == path->mnt)
686 		return 0;
687 	mountpoint = mnt->mnt_mountpoint;
688 	path->dentry = mountpoint;
689 	path->mnt = &parent->mnt;
690 	return 1;
691 }
692 
693 int follow_up(struct path *path)
694 {
695 	struct mount *mnt = real_mount(path->mnt);
696 	struct mount *parent;
697 	struct dentry *mountpoint;
698 
699 	br_read_lock(vfsmount_lock);
700 	parent = mnt->mnt_parent;
701 	if (&parent->mnt == path->mnt) {
702 		br_read_unlock(vfsmount_lock);
703 		return 0;
704 	}
705 	mntget(&parent->mnt);
706 	mountpoint = dget(mnt->mnt_mountpoint);
707 	br_read_unlock(vfsmount_lock);
708 	dput(path->dentry);
709 	path->dentry = mountpoint;
710 	mntput(path->mnt);
711 	path->mnt = &parent->mnt;
712 	return 1;
713 }
714 
715 /*
716  * Perform an automount
717  * - return -EISDIR to tell follow_managed() to stop and return the path we
718  *   were called with.
719  */
720 static int follow_automount(struct path *path, unsigned flags,
721 			    bool *need_mntput)
722 {
723 	struct vfsmount *mnt;
724 	int err;
725 
726 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
727 		return -EREMOTE;
728 
729 	/* We don't want to mount if someone's just doing a stat -
730 	 * unless they're stat'ing a directory and appended a '/' to
731 	 * the name.
732 	 *
733 	 * We do, however, want to mount if someone wants to open or
734 	 * create a file of any type under the mountpoint, wants to
735 	 * traverse through the mountpoint or wants to open the
736 	 * mounted directory.  Also, autofs may mark negative dentries
737 	 * as being automount points.  These will need the attentions
738 	 * of the daemon to instantiate them before they can be used.
739 	 */
740 	if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
741 		     LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
742 	    path->dentry->d_inode)
743 		return -EISDIR;
744 
745 	current->total_link_count++;
746 	if (current->total_link_count >= 40)
747 		return -ELOOP;
748 
749 	mnt = path->dentry->d_op->d_automount(path);
750 	if (IS_ERR(mnt)) {
751 		/*
752 		 * The filesystem is allowed to return -EISDIR here to indicate
753 		 * it doesn't want to automount.  For instance, autofs would do
754 		 * this so that its userspace daemon can mount on this dentry.
755 		 *
756 		 * However, we can only permit this if it's a terminal point in
757 		 * the path being looked up; if it wasn't then the remainder of
758 		 * the path is inaccessible and we should say so.
759 		 */
760 		if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
761 			return -EREMOTE;
762 		return PTR_ERR(mnt);
763 	}
764 
765 	if (!mnt) /* mount collision */
766 		return 0;
767 
768 	if (!*need_mntput) {
769 		/* lock_mount() may release path->mnt on error */
770 		mntget(path->mnt);
771 		*need_mntput = true;
772 	}
773 	err = finish_automount(mnt, path);
774 
775 	switch (err) {
776 	case -EBUSY:
777 		/* Someone else made a mount here whilst we were busy */
778 		return 0;
779 	case 0:
780 		path_put(path);
781 		path->mnt = mnt;
782 		path->dentry = dget(mnt->mnt_root);
783 		return 0;
784 	default:
785 		return err;
786 	}
787 
788 }
789 
790 /*
791  * Handle a dentry that is managed in some way.
792  * - Flagged for transit management (autofs)
793  * - Flagged as mountpoint
794  * - Flagged as automount point
795  *
796  * This may only be called in refwalk mode.
797  *
798  * Serialization is taken care of in namespace.c
799  */
800 static int follow_managed(struct path *path, unsigned flags)
801 {
802 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
803 	unsigned managed;
804 	bool need_mntput = false;
805 	int ret = 0;
806 
807 	/* Given that we're not holding a lock here, we retain the value in a
808 	 * local variable for each dentry as we look at it so that we don't see
809 	 * the components of that value change under us */
810 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
811 	       managed &= DCACHE_MANAGED_DENTRY,
812 	       unlikely(managed != 0)) {
813 		/* Allow the filesystem to manage the transit without i_mutex
814 		 * being held. */
815 		if (managed & DCACHE_MANAGE_TRANSIT) {
816 			BUG_ON(!path->dentry->d_op);
817 			BUG_ON(!path->dentry->d_op->d_manage);
818 			ret = path->dentry->d_op->d_manage(path->dentry, false);
819 			if (ret < 0)
820 				break;
821 		}
822 
823 		/* Transit to a mounted filesystem. */
824 		if (managed & DCACHE_MOUNTED) {
825 			struct vfsmount *mounted = lookup_mnt(path);
826 			if (mounted) {
827 				dput(path->dentry);
828 				if (need_mntput)
829 					mntput(path->mnt);
830 				path->mnt = mounted;
831 				path->dentry = dget(mounted->mnt_root);
832 				need_mntput = true;
833 				continue;
834 			}
835 
836 			/* Something is mounted on this dentry in another
837 			 * namespace and/or whatever was mounted there in this
838 			 * namespace got unmounted before we managed to get the
839 			 * vfsmount_lock */
840 		}
841 
842 		/* Handle an automount point */
843 		if (managed & DCACHE_NEED_AUTOMOUNT) {
844 			ret = follow_automount(path, flags, &need_mntput);
845 			if (ret < 0)
846 				break;
847 			continue;
848 		}
849 
850 		/* We didn't change the current path point */
851 		break;
852 	}
853 
854 	if (need_mntput && path->mnt == mnt)
855 		mntput(path->mnt);
856 	if (ret == -EISDIR)
857 		ret = 0;
858 	return ret < 0 ? ret : need_mntput;
859 }
860 
861 int follow_down_one(struct path *path)
862 {
863 	struct vfsmount *mounted;
864 
865 	mounted = lookup_mnt(path);
866 	if (mounted) {
867 		dput(path->dentry);
868 		mntput(path->mnt);
869 		path->mnt = mounted;
870 		path->dentry = dget(mounted->mnt_root);
871 		return 1;
872 	}
873 	return 0;
874 }
875 
876 static inline bool managed_dentry_might_block(struct dentry *dentry)
877 {
878 	return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
879 		dentry->d_op->d_manage(dentry, true) < 0);
880 }
881 
882 /*
883  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
884  * we meet a managed dentry that would need blocking.
885  */
886 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
887 			       struct inode **inode)
888 {
889 	for (;;) {
890 		struct mount *mounted;
891 		/*
892 		 * Don't forget we might have a non-mountpoint managed dentry
893 		 * that wants to block transit.
894 		 */
895 		if (unlikely(managed_dentry_might_block(path->dentry)))
896 			return false;
897 
898 		if (!d_mountpoint(path->dentry))
899 			break;
900 
901 		mounted = __lookup_mnt(path->mnt, path->dentry, 1);
902 		if (!mounted)
903 			break;
904 		path->mnt = &mounted->mnt;
905 		path->dentry = mounted->mnt.mnt_root;
906 		nd->flags |= LOOKUP_JUMPED;
907 		nd->seq = read_seqcount_begin(&path->dentry->d_seq);
908 		/*
909 		 * Update the inode too. We don't need to re-check the
910 		 * dentry sequence number here after this d_inode read,
911 		 * because a mount-point is always pinned.
912 		 */
913 		*inode = path->dentry->d_inode;
914 	}
915 	return true;
916 }
917 
918 static void follow_mount_rcu(struct nameidata *nd)
919 {
920 	while (d_mountpoint(nd->path.dentry)) {
921 		struct mount *mounted;
922 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
923 		if (!mounted)
924 			break;
925 		nd->path.mnt = &mounted->mnt;
926 		nd->path.dentry = mounted->mnt.mnt_root;
927 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
928 	}
929 }
930 
931 static int follow_dotdot_rcu(struct nameidata *nd)
932 {
933 	set_root_rcu(nd);
934 
935 	while (1) {
936 		if (nd->path.dentry == nd->root.dentry &&
937 		    nd->path.mnt == nd->root.mnt) {
938 			break;
939 		}
940 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
941 			struct dentry *old = nd->path.dentry;
942 			struct dentry *parent = old->d_parent;
943 			unsigned seq;
944 
945 			seq = read_seqcount_begin(&parent->d_seq);
946 			if (read_seqcount_retry(&old->d_seq, nd->seq))
947 				goto failed;
948 			nd->path.dentry = parent;
949 			nd->seq = seq;
950 			break;
951 		}
952 		if (!follow_up_rcu(&nd->path))
953 			break;
954 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
955 	}
956 	follow_mount_rcu(nd);
957 	nd->inode = nd->path.dentry->d_inode;
958 	return 0;
959 
960 failed:
961 	nd->flags &= ~LOOKUP_RCU;
962 	if (!(nd->flags & LOOKUP_ROOT))
963 		nd->root.mnt = NULL;
964 	rcu_read_unlock();
965 	br_read_unlock(vfsmount_lock);
966 	return -ECHILD;
967 }
968 
969 /*
970  * Follow down to the covering mount currently visible to userspace.  At each
971  * point, the filesystem owning that dentry may be queried as to whether the
972  * caller is permitted to proceed or not.
973  */
974 int follow_down(struct path *path)
975 {
976 	unsigned managed;
977 	int ret;
978 
979 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
980 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
981 		/* Allow the filesystem to manage the transit without i_mutex
982 		 * being held.
983 		 *
984 		 * We indicate to the filesystem if someone is trying to mount
985 		 * something here.  This gives autofs the chance to deny anyone
986 		 * other than its daemon the right to mount on its
987 		 * superstructure.
988 		 *
989 		 * The filesystem may sleep at this point.
990 		 */
991 		if (managed & DCACHE_MANAGE_TRANSIT) {
992 			BUG_ON(!path->dentry->d_op);
993 			BUG_ON(!path->dentry->d_op->d_manage);
994 			ret = path->dentry->d_op->d_manage(
995 				path->dentry, false);
996 			if (ret < 0)
997 				return ret == -EISDIR ? 0 : ret;
998 		}
999 
1000 		/* Transit to a mounted filesystem. */
1001 		if (managed & DCACHE_MOUNTED) {
1002 			struct vfsmount *mounted = lookup_mnt(path);
1003 			if (!mounted)
1004 				break;
1005 			dput(path->dentry);
1006 			mntput(path->mnt);
1007 			path->mnt = mounted;
1008 			path->dentry = dget(mounted->mnt_root);
1009 			continue;
1010 		}
1011 
1012 		/* Don't handle automount points here */
1013 		break;
1014 	}
1015 	return 0;
1016 }
1017 
1018 /*
1019  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1020  */
1021 static void follow_mount(struct path *path)
1022 {
1023 	while (d_mountpoint(path->dentry)) {
1024 		struct vfsmount *mounted = lookup_mnt(path);
1025 		if (!mounted)
1026 			break;
1027 		dput(path->dentry);
1028 		mntput(path->mnt);
1029 		path->mnt = mounted;
1030 		path->dentry = dget(mounted->mnt_root);
1031 	}
1032 }
1033 
1034 static void follow_dotdot(struct nameidata *nd)
1035 {
1036 	set_root(nd);
1037 
1038 	while(1) {
1039 		struct dentry *old = nd->path.dentry;
1040 
1041 		if (nd->path.dentry == nd->root.dentry &&
1042 		    nd->path.mnt == nd->root.mnt) {
1043 			break;
1044 		}
1045 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1046 			/* rare case of legitimate dget_parent()... */
1047 			nd->path.dentry = dget_parent(nd->path.dentry);
1048 			dput(old);
1049 			break;
1050 		}
1051 		if (!follow_up(&nd->path))
1052 			break;
1053 	}
1054 	follow_mount(&nd->path);
1055 	nd->inode = nd->path.dentry->d_inode;
1056 }
1057 
1058 /*
1059  * Allocate a dentry with name and parent, and perform a parent
1060  * directory ->lookup on it. Returns the new dentry, or ERR_PTR
1061  * on error. parent->d_inode->i_mutex must be held. d_lookup must
1062  * have verified that no child exists while under i_mutex.
1063  */
1064 static struct dentry *d_alloc_and_lookup(struct dentry *parent,
1065 				struct qstr *name, struct nameidata *nd)
1066 {
1067 	struct inode *inode = parent->d_inode;
1068 	struct dentry *dentry;
1069 	struct dentry *old;
1070 
1071 	/* Don't create child dentry for a dead directory. */
1072 	if (unlikely(IS_DEADDIR(inode)))
1073 		return ERR_PTR(-ENOENT);
1074 
1075 	dentry = d_alloc(parent, name);
1076 	if (unlikely(!dentry))
1077 		return ERR_PTR(-ENOMEM);
1078 
1079 	old = inode->i_op->lookup(inode, dentry, nd);
1080 	if (unlikely(old)) {
1081 		dput(dentry);
1082 		dentry = old;
1083 	}
1084 	return dentry;
1085 }
1086 
1087 /*
1088  * We already have a dentry, but require a lookup to be performed on the parent
1089  * directory to fill in d_inode. Returns the new dentry, or ERR_PTR on error.
1090  * parent->d_inode->i_mutex must be held. d_lookup must have verified that no
1091  * child exists while under i_mutex.
1092  */
1093 static struct dentry *d_inode_lookup(struct dentry *parent, struct dentry *dentry,
1094 				     struct nameidata *nd)
1095 {
1096 	struct inode *inode = parent->d_inode;
1097 	struct dentry *old;
1098 
1099 	/* Don't create child dentry for a dead directory. */
1100 	if (unlikely(IS_DEADDIR(inode)))
1101 		return ERR_PTR(-ENOENT);
1102 
1103 	old = inode->i_op->lookup(inode, dentry, nd);
1104 	if (unlikely(old)) {
1105 		dput(dentry);
1106 		dentry = old;
1107 	}
1108 	return dentry;
1109 }
1110 
1111 /*
1112  *  It's more convoluted than I'd like it to be, but... it's still fairly
1113  *  small and for now I'd prefer to have fast path as straight as possible.
1114  *  It _is_ time-critical.
1115  */
1116 static int do_lookup(struct nameidata *nd, struct qstr *name,
1117 			struct path *path, struct inode **inode)
1118 {
1119 	struct vfsmount *mnt = nd->path.mnt;
1120 	struct dentry *dentry, *parent = nd->path.dentry;
1121 	int need_reval = 1;
1122 	int status = 1;
1123 	int err;
1124 
1125 	/*
1126 	 * Rename seqlock is not required here because in the off chance
1127 	 * of a false negative due to a concurrent rename, we're going to
1128 	 * do the non-racy lookup, below.
1129 	 */
1130 	if (nd->flags & LOOKUP_RCU) {
1131 		unsigned seq;
1132 		*inode = nd->inode;
1133 		dentry = __d_lookup_rcu(parent, name, &seq, inode);
1134 		if (!dentry)
1135 			goto unlazy;
1136 
1137 		/* Memory barrier in read_seqcount_begin of child is enough */
1138 		if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1139 			return -ECHILD;
1140 		nd->seq = seq;
1141 
1142 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1143 			status = d_revalidate(dentry, nd);
1144 			if (unlikely(status <= 0)) {
1145 				if (status != -ECHILD)
1146 					need_reval = 0;
1147 				goto unlazy;
1148 			}
1149 		}
1150 		if (unlikely(d_need_lookup(dentry)))
1151 			goto unlazy;
1152 		path->mnt = mnt;
1153 		path->dentry = dentry;
1154 		if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1155 			goto unlazy;
1156 		if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1157 			goto unlazy;
1158 		return 0;
1159 unlazy:
1160 		if (unlazy_walk(nd, dentry))
1161 			return -ECHILD;
1162 	} else {
1163 		dentry = __d_lookup(parent, name);
1164 	}
1165 
1166 	if (dentry && unlikely(d_need_lookup(dentry))) {
1167 		dput(dentry);
1168 		dentry = NULL;
1169 	}
1170 retry:
1171 	if (unlikely(!dentry)) {
1172 		struct inode *dir = parent->d_inode;
1173 		BUG_ON(nd->inode != dir);
1174 
1175 		mutex_lock(&dir->i_mutex);
1176 		dentry = d_lookup(parent, name);
1177 		if (likely(!dentry)) {
1178 			dentry = d_alloc_and_lookup(parent, name, nd);
1179 			if (IS_ERR(dentry)) {
1180 				mutex_unlock(&dir->i_mutex);
1181 				return PTR_ERR(dentry);
1182 			}
1183 			/* known good */
1184 			need_reval = 0;
1185 			status = 1;
1186 		} else if (unlikely(d_need_lookup(dentry))) {
1187 			dentry = d_inode_lookup(parent, dentry, nd);
1188 			if (IS_ERR(dentry)) {
1189 				mutex_unlock(&dir->i_mutex);
1190 				return PTR_ERR(dentry);
1191 			}
1192 			/* known good */
1193 			need_reval = 0;
1194 			status = 1;
1195 		}
1196 		mutex_unlock(&dir->i_mutex);
1197 	}
1198 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1199 		status = d_revalidate(dentry, nd);
1200 	if (unlikely(status <= 0)) {
1201 		if (status < 0) {
1202 			dput(dentry);
1203 			return status;
1204 		}
1205 		if (!d_invalidate(dentry)) {
1206 			dput(dentry);
1207 			dentry = NULL;
1208 			need_reval = 1;
1209 			goto retry;
1210 		}
1211 	}
1212 
1213 	path->mnt = mnt;
1214 	path->dentry = dentry;
1215 	err = follow_managed(path, nd->flags);
1216 	if (unlikely(err < 0)) {
1217 		path_put_conditional(path, nd);
1218 		return err;
1219 	}
1220 	if (err)
1221 		nd->flags |= LOOKUP_JUMPED;
1222 	*inode = path->dentry->d_inode;
1223 	return 0;
1224 }
1225 
1226 static inline int may_lookup(struct nameidata *nd)
1227 {
1228 	if (nd->flags & LOOKUP_RCU) {
1229 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1230 		if (err != -ECHILD)
1231 			return err;
1232 		if (unlazy_walk(nd, NULL))
1233 			return -ECHILD;
1234 	}
1235 	return inode_permission(nd->inode, MAY_EXEC);
1236 }
1237 
1238 static inline int handle_dots(struct nameidata *nd, int type)
1239 {
1240 	if (type == LAST_DOTDOT) {
1241 		if (nd->flags & LOOKUP_RCU) {
1242 			if (follow_dotdot_rcu(nd))
1243 				return -ECHILD;
1244 		} else
1245 			follow_dotdot(nd);
1246 	}
1247 	return 0;
1248 }
1249 
1250 static void terminate_walk(struct nameidata *nd)
1251 {
1252 	if (!(nd->flags & LOOKUP_RCU)) {
1253 		path_put(&nd->path);
1254 	} else {
1255 		nd->flags &= ~LOOKUP_RCU;
1256 		if (!(nd->flags & LOOKUP_ROOT))
1257 			nd->root.mnt = NULL;
1258 		rcu_read_unlock();
1259 		br_read_unlock(vfsmount_lock);
1260 	}
1261 }
1262 
1263 /*
1264  * Do we need to follow links? We _really_ want to be able
1265  * to do this check without having to look at inode->i_op,
1266  * so we keep a cache of "no, this doesn't need follow_link"
1267  * for the common case.
1268  */
1269 static inline int should_follow_link(struct inode *inode, int follow)
1270 {
1271 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1272 		if (likely(inode->i_op->follow_link))
1273 			return follow;
1274 
1275 		/* This gets set once for the inode lifetime */
1276 		spin_lock(&inode->i_lock);
1277 		inode->i_opflags |= IOP_NOFOLLOW;
1278 		spin_unlock(&inode->i_lock);
1279 	}
1280 	return 0;
1281 }
1282 
1283 static inline int walk_component(struct nameidata *nd, struct path *path,
1284 		struct qstr *name, int type, int follow)
1285 {
1286 	struct inode *inode;
1287 	int err;
1288 	/*
1289 	 * "." and ".." are special - ".." especially so because it has
1290 	 * to be able to know about the current root directory and
1291 	 * parent relationships.
1292 	 */
1293 	if (unlikely(type != LAST_NORM))
1294 		return handle_dots(nd, type);
1295 	err = do_lookup(nd, name, path, &inode);
1296 	if (unlikely(err)) {
1297 		terminate_walk(nd);
1298 		return err;
1299 	}
1300 	if (!inode) {
1301 		path_to_nameidata(path, nd);
1302 		terminate_walk(nd);
1303 		return -ENOENT;
1304 	}
1305 	if (should_follow_link(inode, follow)) {
1306 		if (nd->flags & LOOKUP_RCU) {
1307 			if (unlikely(unlazy_walk(nd, path->dentry))) {
1308 				terminate_walk(nd);
1309 				return -ECHILD;
1310 			}
1311 		}
1312 		BUG_ON(inode != path->dentry->d_inode);
1313 		return 1;
1314 	}
1315 	path_to_nameidata(path, nd);
1316 	nd->inode = inode;
1317 	return 0;
1318 }
1319 
1320 /*
1321  * This limits recursive symlink follows to 8, while
1322  * limiting consecutive symlinks to 40.
1323  *
1324  * Without that kind of total limit, nasty chains of consecutive
1325  * symlinks can cause almost arbitrarily long lookups.
1326  */
1327 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1328 {
1329 	int res;
1330 
1331 	if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1332 		path_put_conditional(path, nd);
1333 		path_put(&nd->path);
1334 		return -ELOOP;
1335 	}
1336 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1337 
1338 	nd->depth++;
1339 	current->link_count++;
1340 
1341 	do {
1342 		struct path link = *path;
1343 		void *cookie;
1344 
1345 		res = follow_link(&link, nd, &cookie);
1346 		if (!res)
1347 			res = walk_component(nd, path, &nd->last,
1348 					     nd->last_type, LOOKUP_FOLLOW);
1349 		put_link(nd, &link, cookie);
1350 	} while (res > 0);
1351 
1352 	current->link_count--;
1353 	nd->depth--;
1354 	return res;
1355 }
1356 
1357 /*
1358  * We really don't want to look at inode->i_op->lookup
1359  * when we don't have to. So we keep a cache bit in
1360  * the inode ->i_opflags field that says "yes, we can
1361  * do lookup on this inode".
1362  */
1363 static inline int can_lookup(struct inode *inode)
1364 {
1365 	if (likely(inode->i_opflags & IOP_LOOKUP))
1366 		return 1;
1367 	if (likely(!inode->i_op->lookup))
1368 		return 0;
1369 
1370 	/* We do this once for the lifetime of the inode */
1371 	spin_lock(&inode->i_lock);
1372 	inode->i_opflags |= IOP_LOOKUP;
1373 	spin_unlock(&inode->i_lock);
1374 	return 1;
1375 }
1376 
1377 /*
1378  * Name resolution.
1379  * This is the basic name resolution function, turning a pathname into
1380  * the final dentry. We expect 'base' to be positive and a directory.
1381  *
1382  * Returns 0 and nd will have valid dentry and mnt on success.
1383  * Returns error and drops reference to input namei data on failure.
1384  */
1385 static int link_path_walk(const char *name, struct nameidata *nd)
1386 {
1387 	struct path next;
1388 	int err;
1389 
1390 	while (*name=='/')
1391 		name++;
1392 	if (!*name)
1393 		return 0;
1394 
1395 	/* At this point we know we have a real path component. */
1396 	for(;;) {
1397 		unsigned long hash;
1398 		struct qstr this;
1399 		unsigned int c;
1400 		int type;
1401 
1402 		err = may_lookup(nd);
1403  		if (err)
1404 			break;
1405 
1406 		this.name = name;
1407 		c = *(const unsigned char *)name;
1408 
1409 		hash = init_name_hash();
1410 		do {
1411 			name++;
1412 			hash = partial_name_hash(c, hash);
1413 			c = *(const unsigned char *)name;
1414 		} while (c && (c != '/'));
1415 		this.len = name - (const char *) this.name;
1416 		this.hash = end_name_hash(hash);
1417 
1418 		type = LAST_NORM;
1419 		if (this.name[0] == '.') switch (this.len) {
1420 			case 2:
1421 				if (this.name[1] == '.') {
1422 					type = LAST_DOTDOT;
1423 					nd->flags |= LOOKUP_JUMPED;
1424 				}
1425 				break;
1426 			case 1:
1427 				type = LAST_DOT;
1428 		}
1429 		if (likely(type == LAST_NORM)) {
1430 			struct dentry *parent = nd->path.dentry;
1431 			nd->flags &= ~LOOKUP_JUMPED;
1432 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1433 				err = parent->d_op->d_hash(parent, nd->inode,
1434 							   &this);
1435 				if (err < 0)
1436 					break;
1437 			}
1438 		}
1439 
1440 		/* remove trailing slashes? */
1441 		if (!c)
1442 			goto last_component;
1443 		while (*++name == '/');
1444 		if (!*name)
1445 			goto last_component;
1446 
1447 		err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1448 		if (err < 0)
1449 			return err;
1450 
1451 		if (err) {
1452 			err = nested_symlink(&next, nd);
1453 			if (err)
1454 				return err;
1455 		}
1456 		if (can_lookup(nd->inode))
1457 			continue;
1458 		err = -ENOTDIR;
1459 		break;
1460 		/* here ends the main loop */
1461 
1462 last_component:
1463 		nd->last = this;
1464 		nd->last_type = type;
1465 		return 0;
1466 	}
1467 	terminate_walk(nd);
1468 	return err;
1469 }
1470 
1471 static int path_init(int dfd, const char *name, unsigned int flags,
1472 		     struct nameidata *nd, struct file **fp)
1473 {
1474 	int retval = 0;
1475 	int fput_needed;
1476 	struct file *file;
1477 
1478 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1479 	nd->flags = flags | LOOKUP_JUMPED;
1480 	nd->depth = 0;
1481 	if (flags & LOOKUP_ROOT) {
1482 		struct inode *inode = nd->root.dentry->d_inode;
1483 		if (*name) {
1484 			if (!inode->i_op->lookup)
1485 				return -ENOTDIR;
1486 			retval = inode_permission(inode, MAY_EXEC);
1487 			if (retval)
1488 				return retval;
1489 		}
1490 		nd->path = nd->root;
1491 		nd->inode = inode;
1492 		if (flags & LOOKUP_RCU) {
1493 			br_read_lock(vfsmount_lock);
1494 			rcu_read_lock();
1495 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1496 		} else {
1497 			path_get(&nd->path);
1498 		}
1499 		return 0;
1500 	}
1501 
1502 	nd->root.mnt = NULL;
1503 
1504 	if (*name=='/') {
1505 		if (flags & LOOKUP_RCU) {
1506 			br_read_lock(vfsmount_lock);
1507 			rcu_read_lock();
1508 			set_root_rcu(nd);
1509 		} else {
1510 			set_root(nd);
1511 			path_get(&nd->root);
1512 		}
1513 		nd->path = nd->root;
1514 	} else if (dfd == AT_FDCWD) {
1515 		if (flags & LOOKUP_RCU) {
1516 			struct fs_struct *fs = current->fs;
1517 			unsigned seq;
1518 
1519 			br_read_lock(vfsmount_lock);
1520 			rcu_read_lock();
1521 
1522 			do {
1523 				seq = read_seqcount_begin(&fs->seq);
1524 				nd->path = fs->pwd;
1525 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1526 			} while (read_seqcount_retry(&fs->seq, seq));
1527 		} else {
1528 			get_fs_pwd(current->fs, &nd->path);
1529 		}
1530 	} else {
1531 		struct dentry *dentry;
1532 
1533 		file = fget_raw_light(dfd, &fput_needed);
1534 		retval = -EBADF;
1535 		if (!file)
1536 			goto out_fail;
1537 
1538 		dentry = file->f_path.dentry;
1539 
1540 		if (*name) {
1541 			retval = -ENOTDIR;
1542 			if (!S_ISDIR(dentry->d_inode->i_mode))
1543 				goto fput_fail;
1544 
1545 			retval = inode_permission(dentry->d_inode, MAY_EXEC);
1546 			if (retval)
1547 				goto fput_fail;
1548 		}
1549 
1550 		nd->path = file->f_path;
1551 		if (flags & LOOKUP_RCU) {
1552 			if (fput_needed)
1553 				*fp = file;
1554 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1555 			br_read_lock(vfsmount_lock);
1556 			rcu_read_lock();
1557 		} else {
1558 			path_get(&file->f_path);
1559 			fput_light(file, fput_needed);
1560 		}
1561 	}
1562 
1563 	nd->inode = nd->path.dentry->d_inode;
1564 	return 0;
1565 
1566 fput_fail:
1567 	fput_light(file, fput_needed);
1568 out_fail:
1569 	return retval;
1570 }
1571 
1572 static inline int lookup_last(struct nameidata *nd, struct path *path)
1573 {
1574 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1575 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1576 
1577 	nd->flags &= ~LOOKUP_PARENT;
1578 	return walk_component(nd, path, &nd->last, nd->last_type,
1579 					nd->flags & LOOKUP_FOLLOW);
1580 }
1581 
1582 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1583 static int path_lookupat(int dfd, const char *name,
1584 				unsigned int flags, struct nameidata *nd)
1585 {
1586 	struct file *base = NULL;
1587 	struct path path;
1588 	int err;
1589 
1590 	/*
1591 	 * Path walking is largely split up into 2 different synchronisation
1592 	 * schemes, rcu-walk and ref-walk (explained in
1593 	 * Documentation/filesystems/path-lookup.txt). These share much of the
1594 	 * path walk code, but some things particularly setup, cleanup, and
1595 	 * following mounts are sufficiently divergent that functions are
1596 	 * duplicated. Typically there is a function foo(), and its RCU
1597 	 * analogue, foo_rcu().
1598 	 *
1599 	 * -ECHILD is the error number of choice (just to avoid clashes) that
1600 	 * is returned if some aspect of an rcu-walk fails. Such an error must
1601 	 * be handled by restarting a traditional ref-walk (which will always
1602 	 * be able to complete).
1603 	 */
1604 	err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1605 
1606 	if (unlikely(err))
1607 		return err;
1608 
1609 	current->total_link_count = 0;
1610 	err = link_path_walk(name, nd);
1611 
1612 	if (!err && !(flags & LOOKUP_PARENT)) {
1613 		err = lookup_last(nd, &path);
1614 		while (err > 0) {
1615 			void *cookie;
1616 			struct path link = path;
1617 			nd->flags |= LOOKUP_PARENT;
1618 			err = follow_link(&link, nd, &cookie);
1619 			if (!err)
1620 				err = lookup_last(nd, &path);
1621 			put_link(nd, &link, cookie);
1622 		}
1623 	}
1624 
1625 	if (!err)
1626 		err = complete_walk(nd);
1627 
1628 	if (!err && nd->flags & LOOKUP_DIRECTORY) {
1629 		if (!nd->inode->i_op->lookup) {
1630 			path_put(&nd->path);
1631 			err = -ENOTDIR;
1632 		}
1633 	}
1634 
1635 	if (base)
1636 		fput(base);
1637 
1638 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1639 		path_put(&nd->root);
1640 		nd->root.mnt = NULL;
1641 	}
1642 	return err;
1643 }
1644 
1645 static int do_path_lookup(int dfd, const char *name,
1646 				unsigned int flags, struct nameidata *nd)
1647 {
1648 	int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
1649 	if (unlikely(retval == -ECHILD))
1650 		retval = path_lookupat(dfd, name, flags, nd);
1651 	if (unlikely(retval == -ESTALE))
1652 		retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1653 
1654 	if (likely(!retval)) {
1655 		if (unlikely(!audit_dummy_context())) {
1656 			if (nd->path.dentry && nd->inode)
1657 				audit_inode(name, nd->path.dentry);
1658 		}
1659 	}
1660 	return retval;
1661 }
1662 
1663 int kern_path_parent(const char *name, struct nameidata *nd)
1664 {
1665 	return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd);
1666 }
1667 
1668 int kern_path(const char *name, unsigned int flags, struct path *path)
1669 {
1670 	struct nameidata nd;
1671 	int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1672 	if (!res)
1673 		*path = nd.path;
1674 	return res;
1675 }
1676 
1677 /**
1678  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1679  * @dentry:  pointer to dentry of the base directory
1680  * @mnt: pointer to vfs mount of the base directory
1681  * @name: pointer to file name
1682  * @flags: lookup flags
1683  * @path: pointer to struct path to fill
1684  */
1685 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1686 		    const char *name, unsigned int flags,
1687 		    struct path *path)
1688 {
1689 	struct nameidata nd;
1690 	int err;
1691 	nd.root.dentry = dentry;
1692 	nd.root.mnt = mnt;
1693 	BUG_ON(flags & LOOKUP_PARENT);
1694 	/* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
1695 	err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
1696 	if (!err)
1697 		*path = nd.path;
1698 	return err;
1699 }
1700 
1701 static struct dentry *__lookup_hash(struct qstr *name,
1702 		struct dentry *base, struct nameidata *nd)
1703 {
1704 	struct inode *inode = base->d_inode;
1705 	struct dentry *dentry;
1706 	int err;
1707 
1708 	err = inode_permission(inode, MAY_EXEC);
1709 	if (err)
1710 		return ERR_PTR(err);
1711 
1712 	/*
1713 	 * Don't bother with __d_lookup: callers are for creat as
1714 	 * well as unlink, so a lot of the time it would cost
1715 	 * a double lookup.
1716 	 */
1717 	dentry = d_lookup(base, name);
1718 
1719 	if (dentry && d_need_lookup(dentry)) {
1720 		/*
1721 		 * __lookup_hash is called with the parent dir's i_mutex already
1722 		 * held, so we are good to go here.
1723 		 */
1724 		dentry = d_inode_lookup(base, dentry, nd);
1725 		if (IS_ERR(dentry))
1726 			return dentry;
1727 	}
1728 
1729 	if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1730 		int status = d_revalidate(dentry, nd);
1731 		if (unlikely(status <= 0)) {
1732 			/*
1733 			 * The dentry failed validation.
1734 			 * If d_revalidate returned 0 attempt to invalidate
1735 			 * the dentry otherwise d_revalidate is asking us
1736 			 * to return a fail status.
1737 			 */
1738 			if (status < 0) {
1739 				dput(dentry);
1740 				return ERR_PTR(status);
1741 			} else if (!d_invalidate(dentry)) {
1742 				dput(dentry);
1743 				dentry = NULL;
1744 			}
1745 		}
1746 	}
1747 
1748 	if (!dentry)
1749 		dentry = d_alloc_and_lookup(base, name, nd);
1750 
1751 	return dentry;
1752 }
1753 
1754 /*
1755  * Restricted form of lookup. Doesn't follow links, single-component only,
1756  * needs parent already locked. Doesn't follow mounts.
1757  * SMP-safe.
1758  */
1759 static struct dentry *lookup_hash(struct nameidata *nd)
1760 {
1761 	return __lookup_hash(&nd->last, nd->path.dentry, nd);
1762 }
1763 
1764 /**
1765  * lookup_one_len - filesystem helper to lookup single pathname component
1766  * @name:	pathname component to lookup
1767  * @base:	base directory to lookup from
1768  * @len:	maximum length @len should be interpreted to
1769  *
1770  * Note that this routine is purely a helper for filesystem usage and should
1771  * not be called by generic code.  Also note that by using this function the
1772  * nameidata argument is passed to the filesystem methods and a filesystem
1773  * using this helper needs to be prepared for that.
1774  */
1775 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1776 {
1777 	struct qstr this;
1778 	unsigned long hash;
1779 	unsigned int c;
1780 
1781 	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1782 
1783 	this.name = name;
1784 	this.len = len;
1785 	if (!len)
1786 		return ERR_PTR(-EACCES);
1787 
1788 	hash = init_name_hash();
1789 	while (len--) {
1790 		c = *(const unsigned char *)name++;
1791 		if (c == '/' || c == '\0')
1792 			return ERR_PTR(-EACCES);
1793 		hash = partial_name_hash(c, hash);
1794 	}
1795 	this.hash = end_name_hash(hash);
1796 	/*
1797 	 * See if the low-level filesystem might want
1798 	 * to use its own hash..
1799 	 */
1800 	if (base->d_flags & DCACHE_OP_HASH) {
1801 		int err = base->d_op->d_hash(base, base->d_inode, &this);
1802 		if (err < 0)
1803 			return ERR_PTR(err);
1804 	}
1805 
1806 	return __lookup_hash(&this, base, NULL);
1807 }
1808 
1809 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
1810 		 struct path *path, int *empty)
1811 {
1812 	struct nameidata nd;
1813 	char *tmp = getname_flags(name, flags, empty);
1814 	int err = PTR_ERR(tmp);
1815 	if (!IS_ERR(tmp)) {
1816 
1817 		BUG_ON(flags & LOOKUP_PARENT);
1818 
1819 		err = do_path_lookup(dfd, tmp, flags, &nd);
1820 		putname(tmp);
1821 		if (!err)
1822 			*path = nd.path;
1823 	}
1824 	return err;
1825 }
1826 
1827 int user_path_at(int dfd, const char __user *name, unsigned flags,
1828 		 struct path *path)
1829 {
1830 	return user_path_at_empty(dfd, name, flags, path, 0);
1831 }
1832 
1833 static int user_path_parent(int dfd, const char __user *path,
1834 			struct nameidata *nd, char **name)
1835 {
1836 	char *s = getname(path);
1837 	int error;
1838 
1839 	if (IS_ERR(s))
1840 		return PTR_ERR(s);
1841 
1842 	error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1843 	if (error)
1844 		putname(s);
1845 	else
1846 		*name = s;
1847 
1848 	return error;
1849 }
1850 
1851 /*
1852  * It's inline, so penalty for filesystems that don't use sticky bit is
1853  * minimal.
1854  */
1855 static inline int check_sticky(struct inode *dir, struct inode *inode)
1856 {
1857 	uid_t fsuid = current_fsuid();
1858 
1859 	if (!(dir->i_mode & S_ISVTX))
1860 		return 0;
1861 	if (current_user_ns() != inode_userns(inode))
1862 		goto other_userns;
1863 	if (inode->i_uid == fsuid)
1864 		return 0;
1865 	if (dir->i_uid == fsuid)
1866 		return 0;
1867 
1868 other_userns:
1869 	return !ns_capable(inode_userns(inode), CAP_FOWNER);
1870 }
1871 
1872 /*
1873  *	Check whether we can remove a link victim from directory dir, check
1874  *  whether the type of victim is right.
1875  *  1. We can't do it if dir is read-only (done in permission())
1876  *  2. We should have write and exec permissions on dir
1877  *  3. We can't remove anything from append-only dir
1878  *  4. We can't do anything with immutable dir (done in permission())
1879  *  5. If the sticky bit on dir is set we should either
1880  *	a. be owner of dir, or
1881  *	b. be owner of victim, or
1882  *	c. have CAP_FOWNER capability
1883  *  6. If the victim is append-only or immutable we can't do antyhing with
1884  *     links pointing to it.
1885  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1886  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1887  *  9. We can't remove a root or mountpoint.
1888  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1889  *     nfs_async_unlink().
1890  */
1891 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1892 {
1893 	int error;
1894 
1895 	if (!victim->d_inode)
1896 		return -ENOENT;
1897 
1898 	BUG_ON(victim->d_parent->d_inode != dir);
1899 	audit_inode_child(victim, dir);
1900 
1901 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1902 	if (error)
1903 		return error;
1904 	if (IS_APPEND(dir))
1905 		return -EPERM;
1906 	if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1907 	    IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1908 		return -EPERM;
1909 	if (isdir) {
1910 		if (!S_ISDIR(victim->d_inode->i_mode))
1911 			return -ENOTDIR;
1912 		if (IS_ROOT(victim))
1913 			return -EBUSY;
1914 	} else if (S_ISDIR(victim->d_inode->i_mode))
1915 		return -EISDIR;
1916 	if (IS_DEADDIR(dir))
1917 		return -ENOENT;
1918 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1919 		return -EBUSY;
1920 	return 0;
1921 }
1922 
1923 /*	Check whether we can create an object with dentry child in directory
1924  *  dir.
1925  *  1. We can't do it if child already exists (open has special treatment for
1926  *     this case, but since we are inlined it's OK)
1927  *  2. We can't do it if dir is read-only (done in permission())
1928  *  3. We should have write and exec permissions on dir
1929  *  4. We can't do it if dir is immutable (done in permission())
1930  */
1931 static inline int may_create(struct inode *dir, struct dentry *child)
1932 {
1933 	if (child->d_inode)
1934 		return -EEXIST;
1935 	if (IS_DEADDIR(dir))
1936 		return -ENOENT;
1937 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1938 }
1939 
1940 /*
1941  * p1 and p2 should be directories on the same fs.
1942  */
1943 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1944 {
1945 	struct dentry *p;
1946 
1947 	if (p1 == p2) {
1948 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1949 		return NULL;
1950 	}
1951 
1952 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1953 
1954 	p = d_ancestor(p2, p1);
1955 	if (p) {
1956 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1957 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1958 		return p;
1959 	}
1960 
1961 	p = d_ancestor(p1, p2);
1962 	if (p) {
1963 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1964 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1965 		return p;
1966 	}
1967 
1968 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1969 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1970 	return NULL;
1971 }
1972 
1973 void unlock_rename(struct dentry *p1, struct dentry *p2)
1974 {
1975 	mutex_unlock(&p1->d_inode->i_mutex);
1976 	if (p1 != p2) {
1977 		mutex_unlock(&p2->d_inode->i_mutex);
1978 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1979 	}
1980 }
1981 
1982 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1983 		struct nameidata *nd)
1984 {
1985 	int error = may_create(dir, dentry);
1986 
1987 	if (error)
1988 		return error;
1989 
1990 	if (!dir->i_op->create)
1991 		return -EACCES;	/* shouldn't it be ENOSYS? */
1992 	mode &= S_IALLUGO;
1993 	mode |= S_IFREG;
1994 	error = security_inode_create(dir, dentry, mode);
1995 	if (error)
1996 		return error;
1997 	error = dir->i_op->create(dir, dentry, mode, nd);
1998 	if (!error)
1999 		fsnotify_create(dir, dentry);
2000 	return error;
2001 }
2002 
2003 static int may_open(struct path *path, int acc_mode, int flag)
2004 {
2005 	struct dentry *dentry = path->dentry;
2006 	struct inode *inode = dentry->d_inode;
2007 	int error;
2008 
2009 	/* O_PATH? */
2010 	if (!acc_mode)
2011 		return 0;
2012 
2013 	if (!inode)
2014 		return -ENOENT;
2015 
2016 	switch (inode->i_mode & S_IFMT) {
2017 	case S_IFLNK:
2018 		return -ELOOP;
2019 	case S_IFDIR:
2020 		if (acc_mode & MAY_WRITE)
2021 			return -EISDIR;
2022 		break;
2023 	case S_IFBLK:
2024 	case S_IFCHR:
2025 		if (path->mnt->mnt_flags & MNT_NODEV)
2026 			return -EACCES;
2027 		/*FALLTHRU*/
2028 	case S_IFIFO:
2029 	case S_IFSOCK:
2030 		flag &= ~O_TRUNC;
2031 		break;
2032 	}
2033 
2034 	error = inode_permission(inode, acc_mode);
2035 	if (error)
2036 		return error;
2037 
2038 	/*
2039 	 * An append-only file must be opened in append mode for writing.
2040 	 */
2041 	if (IS_APPEND(inode)) {
2042 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2043 			return -EPERM;
2044 		if (flag & O_TRUNC)
2045 			return -EPERM;
2046 	}
2047 
2048 	/* O_NOATIME can only be set by the owner or superuser */
2049 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2050 		return -EPERM;
2051 
2052 	return 0;
2053 }
2054 
2055 static int handle_truncate(struct file *filp)
2056 {
2057 	struct path *path = &filp->f_path;
2058 	struct inode *inode = path->dentry->d_inode;
2059 	int error = get_write_access(inode);
2060 	if (error)
2061 		return error;
2062 	/*
2063 	 * Refuse to truncate files with mandatory locks held on them.
2064 	 */
2065 	error = locks_verify_locked(inode);
2066 	if (!error)
2067 		error = security_path_truncate(path);
2068 	if (!error) {
2069 		error = do_truncate(path->dentry, 0,
2070 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2071 				    filp);
2072 	}
2073 	put_write_access(inode);
2074 	return error;
2075 }
2076 
2077 static inline int open_to_namei_flags(int flag)
2078 {
2079 	if ((flag & O_ACCMODE) == 3)
2080 		flag--;
2081 	return flag;
2082 }
2083 
2084 /*
2085  * Handle the last step of open()
2086  */
2087 static struct file *do_last(struct nameidata *nd, struct path *path,
2088 			    const struct open_flags *op, const char *pathname)
2089 {
2090 	struct dentry *dir = nd->path.dentry;
2091 	struct dentry *dentry;
2092 	int open_flag = op->open_flag;
2093 	int will_truncate = open_flag & O_TRUNC;
2094 	int want_write = 0;
2095 	int acc_mode = op->acc_mode;
2096 	struct file *filp;
2097 	int error;
2098 
2099 	nd->flags &= ~LOOKUP_PARENT;
2100 	nd->flags |= op->intent;
2101 
2102 	switch (nd->last_type) {
2103 	case LAST_DOTDOT:
2104 	case LAST_DOT:
2105 		error = handle_dots(nd, nd->last_type);
2106 		if (error)
2107 			return ERR_PTR(error);
2108 		/* fallthrough */
2109 	case LAST_ROOT:
2110 		error = complete_walk(nd);
2111 		if (error)
2112 			return ERR_PTR(error);
2113 		audit_inode(pathname, nd->path.dentry);
2114 		if (open_flag & O_CREAT) {
2115 			error = -EISDIR;
2116 			goto exit;
2117 		}
2118 		goto ok;
2119 	case LAST_BIND:
2120 		error = complete_walk(nd);
2121 		if (error)
2122 			return ERR_PTR(error);
2123 		audit_inode(pathname, dir);
2124 		goto ok;
2125 	}
2126 
2127 	if (!(open_flag & O_CREAT)) {
2128 		int symlink_ok = 0;
2129 		if (nd->last.name[nd->last.len])
2130 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2131 		if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2132 			symlink_ok = 1;
2133 		/* we _can_ be in RCU mode here */
2134 		error = walk_component(nd, path, &nd->last, LAST_NORM,
2135 					!symlink_ok);
2136 		if (error < 0)
2137 			return ERR_PTR(error);
2138 		if (error) /* symlink */
2139 			return NULL;
2140 		/* sayonara */
2141 		error = complete_walk(nd);
2142 		if (error)
2143 			return ERR_PTR(-ECHILD);
2144 
2145 		error = -ENOTDIR;
2146 		if (nd->flags & LOOKUP_DIRECTORY) {
2147 			if (!nd->inode->i_op->lookup)
2148 				goto exit;
2149 		}
2150 		audit_inode(pathname, nd->path.dentry);
2151 		goto ok;
2152 	}
2153 
2154 	/* create side of things */
2155 	/*
2156 	 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED has been
2157 	 * cleared when we got to the last component we are about to look up
2158 	 */
2159 	error = complete_walk(nd);
2160 	if (error)
2161 		return ERR_PTR(error);
2162 
2163 	audit_inode(pathname, dir);
2164 	error = -EISDIR;
2165 	/* trailing slashes? */
2166 	if (nd->last.name[nd->last.len])
2167 		goto exit;
2168 
2169 	mutex_lock(&dir->d_inode->i_mutex);
2170 
2171 	dentry = lookup_hash(nd);
2172 	error = PTR_ERR(dentry);
2173 	if (IS_ERR(dentry)) {
2174 		mutex_unlock(&dir->d_inode->i_mutex);
2175 		goto exit;
2176 	}
2177 
2178 	path->dentry = dentry;
2179 	path->mnt = nd->path.mnt;
2180 
2181 	/* Negative dentry, just create the file */
2182 	if (!dentry->d_inode) {
2183 		umode_t mode = op->mode;
2184 		if (!IS_POSIXACL(dir->d_inode))
2185 			mode &= ~current_umask();
2186 		/*
2187 		 * This write is needed to ensure that a
2188 		 * rw->ro transition does not occur between
2189 		 * the time when the file is created and when
2190 		 * a permanent write count is taken through
2191 		 * the 'struct file' in nameidata_to_filp().
2192 		 */
2193 		error = mnt_want_write(nd->path.mnt);
2194 		if (error)
2195 			goto exit_mutex_unlock;
2196 		want_write = 1;
2197 		/* Don't check for write permission, don't truncate */
2198 		open_flag &= ~O_TRUNC;
2199 		will_truncate = 0;
2200 		acc_mode = MAY_OPEN;
2201 		error = security_path_mknod(&nd->path, dentry, mode, 0);
2202 		if (error)
2203 			goto exit_mutex_unlock;
2204 		error = vfs_create(dir->d_inode, dentry, mode, nd);
2205 		if (error)
2206 			goto exit_mutex_unlock;
2207 		mutex_unlock(&dir->d_inode->i_mutex);
2208 		dput(nd->path.dentry);
2209 		nd->path.dentry = dentry;
2210 		goto common;
2211 	}
2212 
2213 	/*
2214 	 * It already exists.
2215 	 */
2216 	mutex_unlock(&dir->d_inode->i_mutex);
2217 	audit_inode(pathname, path->dentry);
2218 
2219 	error = -EEXIST;
2220 	if (open_flag & O_EXCL)
2221 		goto exit_dput;
2222 
2223 	error = follow_managed(path, nd->flags);
2224 	if (error < 0)
2225 		goto exit_dput;
2226 
2227 	if (error)
2228 		nd->flags |= LOOKUP_JUMPED;
2229 
2230 	error = -ENOENT;
2231 	if (!path->dentry->d_inode)
2232 		goto exit_dput;
2233 
2234 	if (path->dentry->d_inode->i_op->follow_link)
2235 		return NULL;
2236 
2237 	path_to_nameidata(path, nd);
2238 	nd->inode = path->dentry->d_inode;
2239 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
2240 	error = complete_walk(nd);
2241 	if (error)
2242 		goto exit;
2243 	error = -EISDIR;
2244 	if (S_ISDIR(nd->inode->i_mode))
2245 		goto exit;
2246 ok:
2247 	if (!S_ISREG(nd->inode->i_mode))
2248 		will_truncate = 0;
2249 
2250 	if (will_truncate) {
2251 		error = mnt_want_write(nd->path.mnt);
2252 		if (error)
2253 			goto exit;
2254 		want_write = 1;
2255 	}
2256 common:
2257 	error = may_open(&nd->path, acc_mode, open_flag);
2258 	if (error)
2259 		goto exit;
2260 	filp = nameidata_to_filp(nd);
2261 	if (!IS_ERR(filp)) {
2262 		error = ima_file_check(filp, op->acc_mode);
2263 		if (error) {
2264 			fput(filp);
2265 			filp = ERR_PTR(error);
2266 		}
2267 	}
2268 	if (!IS_ERR(filp)) {
2269 		if (will_truncate) {
2270 			error = handle_truncate(filp);
2271 			if (error) {
2272 				fput(filp);
2273 				filp = ERR_PTR(error);
2274 			}
2275 		}
2276 	}
2277 out:
2278 	if (want_write)
2279 		mnt_drop_write(nd->path.mnt);
2280 	path_put(&nd->path);
2281 	return filp;
2282 
2283 exit_mutex_unlock:
2284 	mutex_unlock(&dir->d_inode->i_mutex);
2285 exit_dput:
2286 	path_put_conditional(path, nd);
2287 exit:
2288 	filp = ERR_PTR(error);
2289 	goto out;
2290 }
2291 
2292 static struct file *path_openat(int dfd, const char *pathname,
2293 		struct nameidata *nd, const struct open_flags *op, int flags)
2294 {
2295 	struct file *base = NULL;
2296 	struct file *filp;
2297 	struct path path;
2298 	int error;
2299 
2300 	filp = get_empty_filp();
2301 	if (!filp)
2302 		return ERR_PTR(-ENFILE);
2303 
2304 	filp->f_flags = op->open_flag;
2305 	nd->intent.open.file = filp;
2306 	nd->intent.open.flags = open_to_namei_flags(op->open_flag);
2307 	nd->intent.open.create_mode = op->mode;
2308 
2309 	error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base);
2310 	if (unlikely(error))
2311 		goto out_filp;
2312 
2313 	current->total_link_count = 0;
2314 	error = link_path_walk(pathname, nd);
2315 	if (unlikely(error))
2316 		goto out_filp;
2317 
2318 	filp = do_last(nd, &path, op, pathname);
2319 	while (unlikely(!filp)) { /* trailing symlink */
2320 		struct path link = path;
2321 		void *cookie;
2322 		if (!(nd->flags & LOOKUP_FOLLOW)) {
2323 			path_put_conditional(&path, nd);
2324 			path_put(&nd->path);
2325 			filp = ERR_PTR(-ELOOP);
2326 			break;
2327 		}
2328 		nd->flags |= LOOKUP_PARENT;
2329 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2330 		error = follow_link(&link, nd, &cookie);
2331 		if (unlikely(error))
2332 			filp = ERR_PTR(error);
2333 		else
2334 			filp = do_last(nd, &path, op, pathname);
2335 		put_link(nd, &link, cookie);
2336 	}
2337 out:
2338 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2339 		path_put(&nd->root);
2340 	if (base)
2341 		fput(base);
2342 	release_open_intent(nd);
2343 	return filp;
2344 
2345 out_filp:
2346 	filp = ERR_PTR(error);
2347 	goto out;
2348 }
2349 
2350 struct file *do_filp_open(int dfd, const char *pathname,
2351 		const struct open_flags *op, int flags)
2352 {
2353 	struct nameidata nd;
2354 	struct file *filp;
2355 
2356 	filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2357 	if (unlikely(filp == ERR_PTR(-ECHILD)))
2358 		filp = path_openat(dfd, pathname, &nd, op, flags);
2359 	if (unlikely(filp == ERR_PTR(-ESTALE)))
2360 		filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
2361 	return filp;
2362 }
2363 
2364 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
2365 		const char *name, const struct open_flags *op, int flags)
2366 {
2367 	struct nameidata nd;
2368 	struct file *file;
2369 
2370 	nd.root.mnt = mnt;
2371 	nd.root.dentry = dentry;
2372 
2373 	flags |= LOOKUP_ROOT;
2374 
2375 	if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
2376 		return ERR_PTR(-ELOOP);
2377 
2378 	file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU);
2379 	if (unlikely(file == ERR_PTR(-ECHILD)))
2380 		file = path_openat(-1, name, &nd, op, flags);
2381 	if (unlikely(file == ERR_PTR(-ESTALE)))
2382 		file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL);
2383 	return file;
2384 }
2385 
2386 struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, int is_dir)
2387 {
2388 	struct dentry *dentry = ERR_PTR(-EEXIST);
2389 	struct nameidata nd;
2390 	int error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
2391 	if (error)
2392 		return ERR_PTR(error);
2393 
2394 	/*
2395 	 * Yucky last component or no last component at all?
2396 	 * (foo/., foo/.., /////)
2397 	 */
2398 	if (nd.last_type != LAST_NORM)
2399 		goto out;
2400 	nd.flags &= ~LOOKUP_PARENT;
2401 	nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2402 	nd.intent.open.flags = O_EXCL;
2403 
2404 	/*
2405 	 * Do the final lookup.
2406 	 */
2407 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2408 	dentry = lookup_hash(&nd);
2409 	if (IS_ERR(dentry))
2410 		goto fail;
2411 
2412 	if (dentry->d_inode)
2413 		goto eexist;
2414 	/*
2415 	 * Special case - lookup gave negative, but... we had foo/bar/
2416 	 * From the vfs_mknod() POV we just have a negative dentry -
2417 	 * all is fine. Let's be bastards - you had / on the end, you've
2418 	 * been asking for (non-existent) directory. -ENOENT for you.
2419 	 */
2420 	if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
2421 		dput(dentry);
2422 		dentry = ERR_PTR(-ENOENT);
2423 		goto fail;
2424 	}
2425 	*path = nd.path;
2426 	return dentry;
2427 eexist:
2428 	dput(dentry);
2429 	dentry = ERR_PTR(-EEXIST);
2430 fail:
2431 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2432 out:
2433 	path_put(&nd.path);
2434 	return dentry;
2435 }
2436 EXPORT_SYMBOL(kern_path_create);
2437 
2438 struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, int is_dir)
2439 {
2440 	char *tmp = getname(pathname);
2441 	struct dentry *res;
2442 	if (IS_ERR(tmp))
2443 		return ERR_CAST(tmp);
2444 	res = kern_path_create(dfd, tmp, path, is_dir);
2445 	putname(tmp);
2446 	return res;
2447 }
2448 EXPORT_SYMBOL(user_path_create);
2449 
2450 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2451 {
2452 	int error = may_create(dir, dentry);
2453 
2454 	if (error)
2455 		return error;
2456 
2457 	if ((S_ISCHR(mode) || S_ISBLK(mode)) &&
2458 	    !ns_capable(inode_userns(dir), CAP_MKNOD))
2459 		return -EPERM;
2460 
2461 	if (!dir->i_op->mknod)
2462 		return -EPERM;
2463 
2464 	error = devcgroup_inode_mknod(mode, dev);
2465 	if (error)
2466 		return error;
2467 
2468 	error = security_inode_mknod(dir, dentry, mode, dev);
2469 	if (error)
2470 		return error;
2471 
2472 	error = dir->i_op->mknod(dir, dentry, mode, dev);
2473 	if (!error)
2474 		fsnotify_create(dir, dentry);
2475 	return error;
2476 }
2477 
2478 static int may_mknod(umode_t mode)
2479 {
2480 	switch (mode & S_IFMT) {
2481 	case S_IFREG:
2482 	case S_IFCHR:
2483 	case S_IFBLK:
2484 	case S_IFIFO:
2485 	case S_IFSOCK:
2486 	case 0: /* zero mode translates to S_IFREG */
2487 		return 0;
2488 	case S_IFDIR:
2489 		return -EPERM;
2490 	default:
2491 		return -EINVAL;
2492 	}
2493 }
2494 
2495 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
2496 		unsigned, dev)
2497 {
2498 	struct dentry *dentry;
2499 	struct path path;
2500 	int error;
2501 
2502 	if (S_ISDIR(mode))
2503 		return -EPERM;
2504 
2505 	dentry = user_path_create(dfd, filename, &path, 0);
2506 	if (IS_ERR(dentry))
2507 		return PTR_ERR(dentry);
2508 
2509 	if (!IS_POSIXACL(path.dentry->d_inode))
2510 		mode &= ~current_umask();
2511 	error = may_mknod(mode);
2512 	if (error)
2513 		goto out_dput;
2514 	error = mnt_want_write(path.mnt);
2515 	if (error)
2516 		goto out_dput;
2517 	error = security_path_mknod(&path, dentry, mode, dev);
2518 	if (error)
2519 		goto out_drop_write;
2520 	switch (mode & S_IFMT) {
2521 		case 0: case S_IFREG:
2522 			error = vfs_create(path.dentry->d_inode,dentry,mode,NULL);
2523 			break;
2524 		case S_IFCHR: case S_IFBLK:
2525 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
2526 					new_decode_dev(dev));
2527 			break;
2528 		case S_IFIFO: case S_IFSOCK:
2529 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
2530 			break;
2531 	}
2532 out_drop_write:
2533 	mnt_drop_write(path.mnt);
2534 out_dput:
2535 	dput(dentry);
2536 	mutex_unlock(&path.dentry->d_inode->i_mutex);
2537 	path_put(&path);
2538 
2539 	return error;
2540 }
2541 
2542 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
2543 {
2544 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
2545 }
2546 
2547 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2548 {
2549 	int error = may_create(dir, dentry);
2550 
2551 	if (error)
2552 		return error;
2553 
2554 	if (!dir->i_op->mkdir)
2555 		return -EPERM;
2556 
2557 	mode &= (S_IRWXUGO|S_ISVTX);
2558 	error = security_inode_mkdir(dir, dentry, mode);
2559 	if (error)
2560 		return error;
2561 
2562 	error = dir->i_op->mkdir(dir, dentry, mode);
2563 	if (!error)
2564 		fsnotify_mkdir(dir, dentry);
2565 	return error;
2566 }
2567 
2568 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
2569 {
2570 	struct dentry *dentry;
2571 	struct path path;
2572 	int error;
2573 
2574 	dentry = user_path_create(dfd, pathname, &path, 1);
2575 	if (IS_ERR(dentry))
2576 		return PTR_ERR(dentry);
2577 
2578 	if (!IS_POSIXACL(path.dentry->d_inode))
2579 		mode &= ~current_umask();
2580 	error = mnt_want_write(path.mnt);
2581 	if (error)
2582 		goto out_dput;
2583 	error = security_path_mkdir(&path, dentry, mode);
2584 	if (error)
2585 		goto out_drop_write;
2586 	error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
2587 out_drop_write:
2588 	mnt_drop_write(path.mnt);
2589 out_dput:
2590 	dput(dentry);
2591 	mutex_unlock(&path.dentry->d_inode->i_mutex);
2592 	path_put(&path);
2593 	return error;
2594 }
2595 
2596 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
2597 {
2598 	return sys_mkdirat(AT_FDCWD, pathname, mode);
2599 }
2600 
2601 /*
2602  * The dentry_unhash() helper will try to drop the dentry early: we
2603  * should have a usage count of 2 if we're the only user of this
2604  * dentry, and if that is true (possibly after pruning the dcache),
2605  * then we drop the dentry now.
2606  *
2607  * A low-level filesystem can, if it choses, legally
2608  * do a
2609  *
2610  *	if (!d_unhashed(dentry))
2611  *		return -EBUSY;
2612  *
2613  * if it cannot handle the case of removing a directory
2614  * that is still in use by something else..
2615  */
2616 void dentry_unhash(struct dentry *dentry)
2617 {
2618 	shrink_dcache_parent(dentry);
2619 	spin_lock(&dentry->d_lock);
2620 	if (dentry->d_count == 1)
2621 		__d_drop(dentry);
2622 	spin_unlock(&dentry->d_lock);
2623 }
2624 
2625 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2626 {
2627 	int error = may_delete(dir, dentry, 1);
2628 
2629 	if (error)
2630 		return error;
2631 
2632 	if (!dir->i_op->rmdir)
2633 		return -EPERM;
2634 
2635 	dget(dentry);
2636 	mutex_lock(&dentry->d_inode->i_mutex);
2637 
2638 	error = -EBUSY;
2639 	if (d_mountpoint(dentry))
2640 		goto out;
2641 
2642 	error = security_inode_rmdir(dir, dentry);
2643 	if (error)
2644 		goto out;
2645 
2646 	shrink_dcache_parent(dentry);
2647 	error = dir->i_op->rmdir(dir, dentry);
2648 	if (error)
2649 		goto out;
2650 
2651 	dentry->d_inode->i_flags |= S_DEAD;
2652 	dont_mount(dentry);
2653 
2654 out:
2655 	mutex_unlock(&dentry->d_inode->i_mutex);
2656 	dput(dentry);
2657 	if (!error)
2658 		d_delete(dentry);
2659 	return error;
2660 }
2661 
2662 static long do_rmdir(int dfd, const char __user *pathname)
2663 {
2664 	int error = 0;
2665 	char * name;
2666 	struct dentry *dentry;
2667 	struct nameidata nd;
2668 
2669 	error = user_path_parent(dfd, pathname, &nd, &name);
2670 	if (error)
2671 		return error;
2672 
2673 	switch(nd.last_type) {
2674 	case LAST_DOTDOT:
2675 		error = -ENOTEMPTY;
2676 		goto exit1;
2677 	case LAST_DOT:
2678 		error = -EINVAL;
2679 		goto exit1;
2680 	case LAST_ROOT:
2681 		error = -EBUSY;
2682 		goto exit1;
2683 	}
2684 
2685 	nd.flags &= ~LOOKUP_PARENT;
2686 
2687 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2688 	dentry = lookup_hash(&nd);
2689 	error = PTR_ERR(dentry);
2690 	if (IS_ERR(dentry))
2691 		goto exit2;
2692 	if (!dentry->d_inode) {
2693 		error = -ENOENT;
2694 		goto exit3;
2695 	}
2696 	error = mnt_want_write(nd.path.mnt);
2697 	if (error)
2698 		goto exit3;
2699 	error = security_path_rmdir(&nd.path, dentry);
2700 	if (error)
2701 		goto exit4;
2702 	error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2703 exit4:
2704 	mnt_drop_write(nd.path.mnt);
2705 exit3:
2706 	dput(dentry);
2707 exit2:
2708 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2709 exit1:
2710 	path_put(&nd.path);
2711 	putname(name);
2712 	return error;
2713 }
2714 
2715 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2716 {
2717 	return do_rmdir(AT_FDCWD, pathname);
2718 }
2719 
2720 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2721 {
2722 	int error = may_delete(dir, dentry, 0);
2723 
2724 	if (error)
2725 		return error;
2726 
2727 	if (!dir->i_op->unlink)
2728 		return -EPERM;
2729 
2730 	mutex_lock(&dentry->d_inode->i_mutex);
2731 	if (d_mountpoint(dentry))
2732 		error = -EBUSY;
2733 	else {
2734 		error = security_inode_unlink(dir, dentry);
2735 		if (!error) {
2736 			error = dir->i_op->unlink(dir, dentry);
2737 			if (!error)
2738 				dont_mount(dentry);
2739 		}
2740 	}
2741 	mutex_unlock(&dentry->d_inode->i_mutex);
2742 
2743 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
2744 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2745 		fsnotify_link_count(dentry->d_inode);
2746 		d_delete(dentry);
2747 	}
2748 
2749 	return error;
2750 }
2751 
2752 /*
2753  * Make sure that the actual truncation of the file will occur outside its
2754  * directory's i_mutex.  Truncate can take a long time if there is a lot of
2755  * writeout happening, and we don't want to prevent access to the directory
2756  * while waiting on the I/O.
2757  */
2758 static long do_unlinkat(int dfd, const char __user *pathname)
2759 {
2760 	int error;
2761 	char *name;
2762 	struct dentry *dentry;
2763 	struct nameidata nd;
2764 	struct inode *inode = NULL;
2765 
2766 	error = user_path_parent(dfd, pathname, &nd, &name);
2767 	if (error)
2768 		return error;
2769 
2770 	error = -EISDIR;
2771 	if (nd.last_type != LAST_NORM)
2772 		goto exit1;
2773 
2774 	nd.flags &= ~LOOKUP_PARENT;
2775 
2776 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2777 	dentry = lookup_hash(&nd);
2778 	error = PTR_ERR(dentry);
2779 	if (!IS_ERR(dentry)) {
2780 		/* Why not before? Because we want correct error value */
2781 		if (nd.last.name[nd.last.len])
2782 			goto slashes;
2783 		inode = dentry->d_inode;
2784 		if (!inode)
2785 			goto slashes;
2786 		ihold(inode);
2787 		error = mnt_want_write(nd.path.mnt);
2788 		if (error)
2789 			goto exit2;
2790 		error = security_path_unlink(&nd.path, dentry);
2791 		if (error)
2792 			goto exit3;
2793 		error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2794 exit3:
2795 		mnt_drop_write(nd.path.mnt);
2796 	exit2:
2797 		dput(dentry);
2798 	}
2799 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2800 	if (inode)
2801 		iput(inode);	/* truncate the inode here */
2802 exit1:
2803 	path_put(&nd.path);
2804 	putname(name);
2805 	return error;
2806 
2807 slashes:
2808 	error = !dentry->d_inode ? -ENOENT :
2809 		S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2810 	goto exit2;
2811 }
2812 
2813 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2814 {
2815 	if ((flag & ~AT_REMOVEDIR) != 0)
2816 		return -EINVAL;
2817 
2818 	if (flag & AT_REMOVEDIR)
2819 		return do_rmdir(dfd, pathname);
2820 
2821 	return do_unlinkat(dfd, pathname);
2822 }
2823 
2824 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2825 {
2826 	return do_unlinkat(AT_FDCWD, pathname);
2827 }
2828 
2829 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2830 {
2831 	int error = may_create(dir, dentry);
2832 
2833 	if (error)
2834 		return error;
2835 
2836 	if (!dir->i_op->symlink)
2837 		return -EPERM;
2838 
2839 	error = security_inode_symlink(dir, dentry, oldname);
2840 	if (error)
2841 		return error;
2842 
2843 	error = dir->i_op->symlink(dir, dentry, oldname);
2844 	if (!error)
2845 		fsnotify_create(dir, dentry);
2846 	return error;
2847 }
2848 
2849 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2850 		int, newdfd, const char __user *, newname)
2851 {
2852 	int error;
2853 	char *from;
2854 	struct dentry *dentry;
2855 	struct path path;
2856 
2857 	from = getname(oldname);
2858 	if (IS_ERR(from))
2859 		return PTR_ERR(from);
2860 
2861 	dentry = user_path_create(newdfd, newname, &path, 0);
2862 	error = PTR_ERR(dentry);
2863 	if (IS_ERR(dentry))
2864 		goto out_putname;
2865 
2866 	error = mnt_want_write(path.mnt);
2867 	if (error)
2868 		goto out_dput;
2869 	error = security_path_symlink(&path, dentry, from);
2870 	if (error)
2871 		goto out_drop_write;
2872 	error = vfs_symlink(path.dentry->d_inode, dentry, from);
2873 out_drop_write:
2874 	mnt_drop_write(path.mnt);
2875 out_dput:
2876 	dput(dentry);
2877 	mutex_unlock(&path.dentry->d_inode->i_mutex);
2878 	path_put(&path);
2879 out_putname:
2880 	putname(from);
2881 	return error;
2882 }
2883 
2884 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2885 {
2886 	return sys_symlinkat(oldname, AT_FDCWD, newname);
2887 }
2888 
2889 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2890 {
2891 	struct inode *inode = old_dentry->d_inode;
2892 	int error;
2893 
2894 	if (!inode)
2895 		return -ENOENT;
2896 
2897 	error = may_create(dir, new_dentry);
2898 	if (error)
2899 		return error;
2900 
2901 	if (dir->i_sb != inode->i_sb)
2902 		return -EXDEV;
2903 
2904 	/*
2905 	 * A link to an append-only or immutable file cannot be created.
2906 	 */
2907 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2908 		return -EPERM;
2909 	if (!dir->i_op->link)
2910 		return -EPERM;
2911 	if (S_ISDIR(inode->i_mode))
2912 		return -EPERM;
2913 
2914 	error = security_inode_link(old_dentry, dir, new_dentry);
2915 	if (error)
2916 		return error;
2917 
2918 	mutex_lock(&inode->i_mutex);
2919 	/* Make sure we don't allow creating hardlink to an unlinked file */
2920 	if (inode->i_nlink == 0)
2921 		error =  -ENOENT;
2922 	else
2923 		error = dir->i_op->link(old_dentry, dir, new_dentry);
2924 	mutex_unlock(&inode->i_mutex);
2925 	if (!error)
2926 		fsnotify_link(dir, inode, new_dentry);
2927 	return error;
2928 }
2929 
2930 /*
2931  * Hardlinks are often used in delicate situations.  We avoid
2932  * security-related surprises by not following symlinks on the
2933  * newname.  --KAB
2934  *
2935  * We don't follow them on the oldname either to be compatible
2936  * with linux 2.0, and to avoid hard-linking to directories
2937  * and other special files.  --ADM
2938  */
2939 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2940 		int, newdfd, const char __user *, newname, int, flags)
2941 {
2942 	struct dentry *new_dentry;
2943 	struct path old_path, new_path;
2944 	int how = 0;
2945 	int error;
2946 
2947 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
2948 		return -EINVAL;
2949 	/*
2950 	 * To use null names we require CAP_DAC_READ_SEARCH
2951 	 * This ensures that not everyone will be able to create
2952 	 * handlink using the passed filedescriptor.
2953 	 */
2954 	if (flags & AT_EMPTY_PATH) {
2955 		if (!capable(CAP_DAC_READ_SEARCH))
2956 			return -ENOENT;
2957 		how = LOOKUP_EMPTY;
2958 	}
2959 
2960 	if (flags & AT_SYMLINK_FOLLOW)
2961 		how |= LOOKUP_FOLLOW;
2962 
2963 	error = user_path_at(olddfd, oldname, how, &old_path);
2964 	if (error)
2965 		return error;
2966 
2967 	new_dentry = user_path_create(newdfd, newname, &new_path, 0);
2968 	error = PTR_ERR(new_dentry);
2969 	if (IS_ERR(new_dentry))
2970 		goto out;
2971 
2972 	error = -EXDEV;
2973 	if (old_path.mnt != new_path.mnt)
2974 		goto out_dput;
2975 	error = mnt_want_write(new_path.mnt);
2976 	if (error)
2977 		goto out_dput;
2978 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
2979 	if (error)
2980 		goto out_drop_write;
2981 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
2982 out_drop_write:
2983 	mnt_drop_write(new_path.mnt);
2984 out_dput:
2985 	dput(new_dentry);
2986 	mutex_unlock(&new_path.dentry->d_inode->i_mutex);
2987 	path_put(&new_path);
2988 out:
2989 	path_put(&old_path);
2990 
2991 	return error;
2992 }
2993 
2994 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
2995 {
2996 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2997 }
2998 
2999 /*
3000  * The worst of all namespace operations - renaming directory. "Perverted"
3001  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3002  * Problems:
3003  *	a) we can get into loop creation. Check is done in is_subdir().
3004  *	b) race potential - two innocent renames can create a loop together.
3005  *	   That's where 4.4 screws up. Current fix: serialization on
3006  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3007  *	   story.
3008  *	c) we have to lock _three_ objects - parents and victim (if it exists).
3009  *	   And that - after we got ->i_mutex on parents (until then we don't know
3010  *	   whether the target exists).  Solution: try to be smart with locking
3011  *	   order for inodes.  We rely on the fact that tree topology may change
3012  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
3013  *	   move will be locked.  Thus we can rank directories by the tree
3014  *	   (ancestors first) and rank all non-directories after them.
3015  *	   That works since everybody except rename does "lock parent, lookup,
3016  *	   lock child" and rename is under ->s_vfs_rename_mutex.
3017  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
3018  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
3019  *	   we'd better make sure that there's no link(2) for them.
3020  *	d) conversion from fhandle to dentry may come in the wrong moment - when
3021  *	   we are removing the target. Solution: we will have to grab ->i_mutex
3022  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3023  *	   ->i_mutex on parents, which works but leads to some truly excessive
3024  *	   locking].
3025  */
3026 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3027 			  struct inode *new_dir, struct dentry *new_dentry)
3028 {
3029 	int error = 0;
3030 	struct inode *target = new_dentry->d_inode;
3031 
3032 	/*
3033 	 * If we are going to change the parent - check write permissions,
3034 	 * we'll need to flip '..'.
3035 	 */
3036 	if (new_dir != old_dir) {
3037 		error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3038 		if (error)
3039 			return error;
3040 	}
3041 
3042 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3043 	if (error)
3044 		return error;
3045 
3046 	dget(new_dentry);
3047 	if (target)
3048 		mutex_lock(&target->i_mutex);
3049 
3050 	error = -EBUSY;
3051 	if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3052 		goto out;
3053 
3054 	if (target)
3055 		shrink_dcache_parent(new_dentry);
3056 	error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3057 	if (error)
3058 		goto out;
3059 
3060 	if (target) {
3061 		target->i_flags |= S_DEAD;
3062 		dont_mount(new_dentry);
3063 	}
3064 out:
3065 	if (target)
3066 		mutex_unlock(&target->i_mutex);
3067 	dput(new_dentry);
3068 	if (!error)
3069 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3070 			d_move(old_dentry,new_dentry);
3071 	return error;
3072 }
3073 
3074 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3075 			    struct inode *new_dir, struct dentry *new_dentry)
3076 {
3077 	struct inode *target = new_dentry->d_inode;
3078 	int error;
3079 
3080 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3081 	if (error)
3082 		return error;
3083 
3084 	dget(new_dentry);
3085 	if (target)
3086 		mutex_lock(&target->i_mutex);
3087 
3088 	error = -EBUSY;
3089 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3090 		goto out;
3091 
3092 	error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3093 	if (error)
3094 		goto out;
3095 
3096 	if (target)
3097 		dont_mount(new_dentry);
3098 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3099 		d_move(old_dentry, new_dentry);
3100 out:
3101 	if (target)
3102 		mutex_unlock(&target->i_mutex);
3103 	dput(new_dentry);
3104 	return error;
3105 }
3106 
3107 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3108 	       struct inode *new_dir, struct dentry *new_dentry)
3109 {
3110 	int error;
3111 	int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3112 	const unsigned char *old_name;
3113 
3114 	if (old_dentry->d_inode == new_dentry->d_inode)
3115  		return 0;
3116 
3117 	error = may_delete(old_dir, old_dentry, is_dir);
3118 	if (error)
3119 		return error;
3120 
3121 	if (!new_dentry->d_inode)
3122 		error = may_create(new_dir, new_dentry);
3123 	else
3124 		error = may_delete(new_dir, new_dentry, is_dir);
3125 	if (error)
3126 		return error;
3127 
3128 	if (!old_dir->i_op->rename)
3129 		return -EPERM;
3130 
3131 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3132 
3133 	if (is_dir)
3134 		error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3135 	else
3136 		error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3137 	if (!error)
3138 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
3139 			      new_dentry->d_inode, old_dentry);
3140 	fsnotify_oldname_free(old_name);
3141 
3142 	return error;
3143 }
3144 
3145 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3146 		int, newdfd, const char __user *, newname)
3147 {
3148 	struct dentry *old_dir, *new_dir;
3149 	struct dentry *old_dentry, *new_dentry;
3150 	struct dentry *trap;
3151 	struct nameidata oldnd, newnd;
3152 	char *from;
3153 	char *to;
3154 	int error;
3155 
3156 	error = user_path_parent(olddfd, oldname, &oldnd, &from);
3157 	if (error)
3158 		goto exit;
3159 
3160 	error = user_path_parent(newdfd, newname, &newnd, &to);
3161 	if (error)
3162 		goto exit1;
3163 
3164 	error = -EXDEV;
3165 	if (oldnd.path.mnt != newnd.path.mnt)
3166 		goto exit2;
3167 
3168 	old_dir = oldnd.path.dentry;
3169 	error = -EBUSY;
3170 	if (oldnd.last_type != LAST_NORM)
3171 		goto exit2;
3172 
3173 	new_dir = newnd.path.dentry;
3174 	if (newnd.last_type != LAST_NORM)
3175 		goto exit2;
3176 
3177 	oldnd.flags &= ~LOOKUP_PARENT;
3178 	newnd.flags &= ~LOOKUP_PARENT;
3179 	newnd.flags |= LOOKUP_RENAME_TARGET;
3180 
3181 	trap = lock_rename(new_dir, old_dir);
3182 
3183 	old_dentry = lookup_hash(&oldnd);
3184 	error = PTR_ERR(old_dentry);
3185 	if (IS_ERR(old_dentry))
3186 		goto exit3;
3187 	/* source must exist */
3188 	error = -ENOENT;
3189 	if (!old_dentry->d_inode)
3190 		goto exit4;
3191 	/* unless the source is a directory trailing slashes give -ENOTDIR */
3192 	if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3193 		error = -ENOTDIR;
3194 		if (oldnd.last.name[oldnd.last.len])
3195 			goto exit4;
3196 		if (newnd.last.name[newnd.last.len])
3197 			goto exit4;
3198 	}
3199 	/* source should not be ancestor of target */
3200 	error = -EINVAL;
3201 	if (old_dentry == trap)
3202 		goto exit4;
3203 	new_dentry = lookup_hash(&newnd);
3204 	error = PTR_ERR(new_dentry);
3205 	if (IS_ERR(new_dentry))
3206 		goto exit4;
3207 	/* target should not be an ancestor of source */
3208 	error = -ENOTEMPTY;
3209 	if (new_dentry == trap)
3210 		goto exit5;
3211 
3212 	error = mnt_want_write(oldnd.path.mnt);
3213 	if (error)
3214 		goto exit5;
3215 	error = security_path_rename(&oldnd.path, old_dentry,
3216 				     &newnd.path, new_dentry);
3217 	if (error)
3218 		goto exit6;
3219 	error = vfs_rename(old_dir->d_inode, old_dentry,
3220 				   new_dir->d_inode, new_dentry);
3221 exit6:
3222 	mnt_drop_write(oldnd.path.mnt);
3223 exit5:
3224 	dput(new_dentry);
3225 exit4:
3226 	dput(old_dentry);
3227 exit3:
3228 	unlock_rename(new_dir, old_dir);
3229 exit2:
3230 	path_put(&newnd.path);
3231 	putname(to);
3232 exit1:
3233 	path_put(&oldnd.path);
3234 	putname(from);
3235 exit:
3236 	return error;
3237 }
3238 
3239 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3240 {
3241 	return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3242 }
3243 
3244 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3245 {
3246 	int len;
3247 
3248 	len = PTR_ERR(link);
3249 	if (IS_ERR(link))
3250 		goto out;
3251 
3252 	len = strlen(link);
3253 	if (len > (unsigned) buflen)
3254 		len = buflen;
3255 	if (copy_to_user(buffer, link, len))
3256 		len = -EFAULT;
3257 out:
3258 	return len;
3259 }
3260 
3261 /*
3262  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
3263  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
3264  * using) it for any given inode is up to filesystem.
3265  */
3266 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3267 {
3268 	struct nameidata nd;
3269 	void *cookie;
3270 	int res;
3271 
3272 	nd.depth = 0;
3273 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3274 	if (IS_ERR(cookie))
3275 		return PTR_ERR(cookie);
3276 
3277 	res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3278 	if (dentry->d_inode->i_op->put_link)
3279 		dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3280 	return res;
3281 }
3282 
3283 int vfs_follow_link(struct nameidata *nd, const char *link)
3284 {
3285 	return __vfs_follow_link(nd, link);
3286 }
3287 
3288 /* get the link contents into pagecache */
3289 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3290 {
3291 	char *kaddr;
3292 	struct page *page;
3293 	struct address_space *mapping = dentry->d_inode->i_mapping;
3294 	page = read_mapping_page(mapping, 0, NULL);
3295 	if (IS_ERR(page))
3296 		return (char*)page;
3297 	*ppage = page;
3298 	kaddr = kmap(page);
3299 	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3300 	return kaddr;
3301 }
3302 
3303 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3304 {
3305 	struct page *page = NULL;
3306 	char *s = page_getlink(dentry, &page);
3307 	int res = vfs_readlink(dentry,buffer,buflen,s);
3308 	if (page) {
3309 		kunmap(page);
3310 		page_cache_release(page);
3311 	}
3312 	return res;
3313 }
3314 
3315 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3316 {
3317 	struct page *page = NULL;
3318 	nd_set_link(nd, page_getlink(dentry, &page));
3319 	return page;
3320 }
3321 
3322 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3323 {
3324 	struct page *page = cookie;
3325 
3326 	if (page) {
3327 		kunmap(page);
3328 		page_cache_release(page);
3329 	}
3330 }
3331 
3332 /*
3333  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3334  */
3335 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3336 {
3337 	struct address_space *mapping = inode->i_mapping;
3338 	struct page *page;
3339 	void *fsdata;
3340 	int err;
3341 	char *kaddr;
3342 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3343 	if (nofs)
3344 		flags |= AOP_FLAG_NOFS;
3345 
3346 retry:
3347 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
3348 				flags, &page, &fsdata);
3349 	if (err)
3350 		goto fail;
3351 
3352 	kaddr = kmap_atomic(page, KM_USER0);
3353 	memcpy(kaddr, symname, len-1);
3354 	kunmap_atomic(kaddr, KM_USER0);
3355 
3356 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3357 							page, fsdata);
3358 	if (err < 0)
3359 		goto fail;
3360 	if (err < len-1)
3361 		goto retry;
3362 
3363 	mark_inode_dirty(inode);
3364 	return 0;
3365 fail:
3366 	return err;
3367 }
3368 
3369 int page_symlink(struct inode *inode, const char *symname, int len)
3370 {
3371 	return __page_symlink(inode, symname, len,
3372 			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3373 }
3374 
3375 const struct inode_operations page_symlink_inode_operations = {
3376 	.readlink	= generic_readlink,
3377 	.follow_link	= page_follow_link_light,
3378 	.put_link	= page_put_link,
3379 };
3380 
3381 EXPORT_SYMBOL(user_path_at);
3382 EXPORT_SYMBOL(follow_down_one);
3383 EXPORT_SYMBOL(follow_down);
3384 EXPORT_SYMBOL(follow_up);
3385 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3386 EXPORT_SYMBOL(getname);
3387 EXPORT_SYMBOL(lock_rename);
3388 EXPORT_SYMBOL(lookup_one_len);
3389 EXPORT_SYMBOL(page_follow_link_light);
3390 EXPORT_SYMBOL(page_put_link);
3391 EXPORT_SYMBOL(page_readlink);
3392 EXPORT_SYMBOL(__page_symlink);
3393 EXPORT_SYMBOL(page_symlink);
3394 EXPORT_SYMBOL(page_symlink_inode_operations);
3395 EXPORT_SYMBOL(kern_path);
3396 EXPORT_SYMBOL(vfs_path_lookup);
3397 EXPORT_SYMBOL(inode_permission);
3398 EXPORT_SYMBOL(unlock_rename);
3399 EXPORT_SYMBOL(vfs_create);
3400 EXPORT_SYMBOL(vfs_follow_link);
3401 EXPORT_SYMBOL(vfs_link);
3402 EXPORT_SYMBOL(vfs_mkdir);
3403 EXPORT_SYMBOL(vfs_mknod);
3404 EXPORT_SYMBOL(generic_permission);
3405 EXPORT_SYMBOL(vfs_readlink);
3406 EXPORT_SYMBOL(vfs_rename);
3407 EXPORT_SYMBOL(vfs_rmdir);
3408 EXPORT_SYMBOL(vfs_symlink);
3409 EXPORT_SYMBOL(vfs_unlink);
3410 EXPORT_SYMBOL(dentry_unhash);
3411 EXPORT_SYMBOL(generic_readlink);
3412