1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/namei.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * Some corrections by tytso. 10 */ 11 12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 13 * lookup logic. 14 */ 15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 16 */ 17 18 #include <linux/init.h> 19 #include <linux/export.h> 20 #include <linux/kernel.h> 21 #include <linux/slab.h> 22 #include <linux/fs.h> 23 #include <linux/namei.h> 24 #include <linux/pagemap.h> 25 #include <linux/sched/mm.h> 26 #include <linux/fsnotify.h> 27 #include <linux/personality.h> 28 #include <linux/security.h> 29 #include <linux/ima.h> 30 #include <linux/syscalls.h> 31 #include <linux/mount.h> 32 #include <linux/audit.h> 33 #include <linux/capability.h> 34 #include <linux/file.h> 35 #include <linux/fcntl.h> 36 #include <linux/device_cgroup.h> 37 #include <linux/fs_struct.h> 38 #include <linux/posix_acl.h> 39 #include <linux/hash.h> 40 #include <linux/bitops.h> 41 #include <linux/init_task.h> 42 #include <linux/uaccess.h> 43 44 #include "internal.h" 45 #include "mount.h" 46 47 /* [Feb-1997 T. Schoebel-Theuer] 48 * Fundamental changes in the pathname lookup mechanisms (namei) 49 * were necessary because of omirr. The reason is that omirr needs 50 * to know the _real_ pathname, not the user-supplied one, in case 51 * of symlinks (and also when transname replacements occur). 52 * 53 * The new code replaces the old recursive symlink resolution with 54 * an iterative one (in case of non-nested symlink chains). It does 55 * this with calls to <fs>_follow_link(). 56 * As a side effect, dir_namei(), _namei() and follow_link() are now 57 * replaced with a single function lookup_dentry() that can handle all 58 * the special cases of the former code. 59 * 60 * With the new dcache, the pathname is stored at each inode, at least as 61 * long as the refcount of the inode is positive. As a side effect, the 62 * size of the dcache depends on the inode cache and thus is dynamic. 63 * 64 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 65 * resolution to correspond with current state of the code. 66 * 67 * Note that the symlink resolution is not *completely* iterative. 68 * There is still a significant amount of tail- and mid- recursion in 69 * the algorithm. Also, note that <fs>_readlink() is not used in 70 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 71 * may return different results than <fs>_follow_link(). Many virtual 72 * filesystems (including /proc) exhibit this behavior. 73 */ 74 75 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 76 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 77 * and the name already exists in form of a symlink, try to create the new 78 * name indicated by the symlink. The old code always complained that the 79 * name already exists, due to not following the symlink even if its target 80 * is nonexistent. The new semantics affects also mknod() and link() when 81 * the name is a symlink pointing to a non-existent name. 82 * 83 * I don't know which semantics is the right one, since I have no access 84 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 85 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 86 * "old" one. Personally, I think the new semantics is much more logical. 87 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 88 * file does succeed in both HP-UX and SunOs, but not in Solaris 89 * and in the old Linux semantics. 90 */ 91 92 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 93 * semantics. See the comments in "open_namei" and "do_link" below. 94 * 95 * [10-Sep-98 Alan Modra] Another symlink change. 96 */ 97 98 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 99 * inside the path - always follow. 100 * in the last component in creation/removal/renaming - never follow. 101 * if LOOKUP_FOLLOW passed - follow. 102 * if the pathname has trailing slashes - follow. 103 * otherwise - don't follow. 104 * (applied in that order). 105 * 106 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 107 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 108 * During the 2.4 we need to fix the userland stuff depending on it - 109 * hopefully we will be able to get rid of that wart in 2.5. So far only 110 * XEmacs seems to be relying on it... 111 */ 112 /* 113 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 114 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 115 * any extra contention... 116 */ 117 118 /* In order to reduce some races, while at the same time doing additional 119 * checking and hopefully speeding things up, we copy filenames to the 120 * kernel data space before using them.. 121 * 122 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 123 * PATH_MAX includes the nul terminator --RR. 124 */ 125 126 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) 127 128 struct filename * 129 getname_flags(const char __user *filename, int flags, int *empty) 130 { 131 struct filename *result; 132 char *kname; 133 int len; 134 135 result = audit_reusename(filename); 136 if (result) 137 return result; 138 139 result = __getname(); 140 if (unlikely(!result)) 141 return ERR_PTR(-ENOMEM); 142 143 /* 144 * First, try to embed the struct filename inside the names_cache 145 * allocation 146 */ 147 kname = (char *)result->iname; 148 result->name = kname; 149 150 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); 151 if (unlikely(len < 0)) { 152 __putname(result); 153 return ERR_PTR(len); 154 } 155 156 /* 157 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 158 * separate struct filename so we can dedicate the entire 159 * names_cache allocation for the pathname, and re-do the copy from 160 * userland. 161 */ 162 if (unlikely(len == EMBEDDED_NAME_MAX)) { 163 const size_t size = offsetof(struct filename, iname[1]); 164 kname = (char *)result; 165 166 /* 167 * size is chosen that way we to guarantee that 168 * result->iname[0] is within the same object and that 169 * kname can't be equal to result->iname, no matter what. 170 */ 171 result = kzalloc(size, GFP_KERNEL); 172 if (unlikely(!result)) { 173 __putname(kname); 174 return ERR_PTR(-ENOMEM); 175 } 176 result->name = kname; 177 len = strncpy_from_user(kname, filename, PATH_MAX); 178 if (unlikely(len < 0)) { 179 __putname(kname); 180 kfree(result); 181 return ERR_PTR(len); 182 } 183 if (unlikely(len == PATH_MAX)) { 184 __putname(kname); 185 kfree(result); 186 return ERR_PTR(-ENAMETOOLONG); 187 } 188 } 189 190 result->refcnt = 1; 191 /* The empty path is special. */ 192 if (unlikely(!len)) { 193 if (empty) 194 *empty = 1; 195 if (!(flags & LOOKUP_EMPTY)) { 196 putname(result); 197 return ERR_PTR(-ENOENT); 198 } 199 } 200 201 result->uptr = filename; 202 result->aname = NULL; 203 audit_getname(result); 204 return result; 205 } 206 207 struct filename * 208 getname_uflags(const char __user *filename, int uflags) 209 { 210 int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 211 212 return getname_flags(filename, flags, NULL); 213 } 214 215 struct filename * 216 getname(const char __user * filename) 217 { 218 return getname_flags(filename, 0, NULL); 219 } 220 221 struct filename * 222 getname_kernel(const char * filename) 223 { 224 struct filename *result; 225 int len = strlen(filename) + 1; 226 227 result = __getname(); 228 if (unlikely(!result)) 229 return ERR_PTR(-ENOMEM); 230 231 if (len <= EMBEDDED_NAME_MAX) { 232 result->name = (char *)result->iname; 233 } else if (len <= PATH_MAX) { 234 const size_t size = offsetof(struct filename, iname[1]); 235 struct filename *tmp; 236 237 tmp = kmalloc(size, GFP_KERNEL); 238 if (unlikely(!tmp)) { 239 __putname(result); 240 return ERR_PTR(-ENOMEM); 241 } 242 tmp->name = (char *)result; 243 result = tmp; 244 } else { 245 __putname(result); 246 return ERR_PTR(-ENAMETOOLONG); 247 } 248 memcpy((char *)result->name, filename, len); 249 result->uptr = NULL; 250 result->aname = NULL; 251 result->refcnt = 1; 252 audit_getname(result); 253 254 return result; 255 } 256 257 void putname(struct filename *name) 258 { 259 if (IS_ERR(name)) 260 return; 261 262 BUG_ON(name->refcnt <= 0); 263 264 if (--name->refcnt > 0) 265 return; 266 267 if (name->name != name->iname) { 268 __putname(name->name); 269 kfree(name); 270 } else 271 __putname(name); 272 } 273 274 /** 275 * check_acl - perform ACL permission checking 276 * @mnt_userns: user namespace of the mount the inode was found from 277 * @inode: inode to check permissions on 278 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 279 * 280 * This function performs the ACL permission checking. Since this function 281 * retrieve POSIX acls it needs to know whether it is called from a blocking or 282 * non-blocking context and thus cares about the MAY_NOT_BLOCK bit. 283 * 284 * If the inode has been found through an idmapped mount the user namespace of 285 * the vfsmount must be passed through @mnt_userns. This function will then take 286 * care to map the inode according to @mnt_userns before checking permissions. 287 * On non-idmapped mounts or if permission checking is to be performed on the 288 * raw inode simply passs init_user_ns. 289 */ 290 static int check_acl(struct user_namespace *mnt_userns, 291 struct inode *inode, int mask) 292 { 293 #ifdef CONFIG_FS_POSIX_ACL 294 struct posix_acl *acl; 295 296 if (mask & MAY_NOT_BLOCK) { 297 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 298 if (!acl) 299 return -EAGAIN; 300 /* no ->get_acl() calls in RCU mode... */ 301 if (is_uncached_acl(acl)) 302 return -ECHILD; 303 return posix_acl_permission(mnt_userns, inode, acl, mask); 304 } 305 306 acl = get_acl(inode, ACL_TYPE_ACCESS); 307 if (IS_ERR(acl)) 308 return PTR_ERR(acl); 309 if (acl) { 310 int error = posix_acl_permission(mnt_userns, inode, acl, mask); 311 posix_acl_release(acl); 312 return error; 313 } 314 #endif 315 316 return -EAGAIN; 317 } 318 319 /** 320 * acl_permission_check - perform basic UNIX permission checking 321 * @mnt_userns: user namespace of the mount the inode was found from 322 * @inode: inode to check permissions on 323 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 324 * 325 * This function performs the basic UNIX permission checking. Since this 326 * function may retrieve POSIX acls it needs to know whether it is called from a 327 * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit. 328 * 329 * If the inode has been found through an idmapped mount the user namespace of 330 * the vfsmount must be passed through @mnt_userns. This function will then take 331 * care to map the inode according to @mnt_userns before checking permissions. 332 * On non-idmapped mounts or if permission checking is to be performed on the 333 * raw inode simply passs init_user_ns. 334 */ 335 static int acl_permission_check(struct user_namespace *mnt_userns, 336 struct inode *inode, int mask) 337 { 338 unsigned int mode = inode->i_mode; 339 kuid_t i_uid; 340 341 /* Are we the owner? If so, ACL's don't matter */ 342 i_uid = i_uid_into_mnt(mnt_userns, inode); 343 if (likely(uid_eq(current_fsuid(), i_uid))) { 344 mask &= 7; 345 mode >>= 6; 346 return (mask & ~mode) ? -EACCES : 0; 347 } 348 349 /* Do we have ACL's? */ 350 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 351 int error = check_acl(mnt_userns, inode, mask); 352 if (error != -EAGAIN) 353 return error; 354 } 355 356 /* Only RWX matters for group/other mode bits */ 357 mask &= 7; 358 359 /* 360 * Are the group permissions different from 361 * the other permissions in the bits we care 362 * about? Need to check group ownership if so. 363 */ 364 if (mask & (mode ^ (mode >> 3))) { 365 kgid_t kgid = i_gid_into_mnt(mnt_userns, inode); 366 if (in_group_p(kgid)) 367 mode >>= 3; 368 } 369 370 /* Bits in 'mode' clear that we require? */ 371 return (mask & ~mode) ? -EACCES : 0; 372 } 373 374 /** 375 * generic_permission - check for access rights on a Posix-like filesystem 376 * @mnt_userns: user namespace of the mount the inode was found from 377 * @inode: inode to check access rights for 378 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, 379 * %MAY_NOT_BLOCK ...) 380 * 381 * Used to check for read/write/execute permissions on a file. 382 * We use "fsuid" for this, letting us set arbitrary permissions 383 * for filesystem access without changing the "normal" uids which 384 * are used for other things. 385 * 386 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 387 * request cannot be satisfied (eg. requires blocking or too much complexity). 388 * It would then be called again in ref-walk mode. 389 * 390 * If the inode has been found through an idmapped mount the user namespace of 391 * the vfsmount must be passed through @mnt_userns. This function will then take 392 * care to map the inode according to @mnt_userns before checking permissions. 393 * On non-idmapped mounts or if permission checking is to be performed on the 394 * raw inode simply passs init_user_ns. 395 */ 396 int generic_permission(struct user_namespace *mnt_userns, struct inode *inode, 397 int mask) 398 { 399 int ret; 400 401 /* 402 * Do the basic permission checks. 403 */ 404 ret = acl_permission_check(mnt_userns, inode, mask); 405 if (ret != -EACCES) 406 return ret; 407 408 if (S_ISDIR(inode->i_mode)) { 409 /* DACs are overridable for directories */ 410 if (!(mask & MAY_WRITE)) 411 if (capable_wrt_inode_uidgid(mnt_userns, inode, 412 CAP_DAC_READ_SEARCH)) 413 return 0; 414 if (capable_wrt_inode_uidgid(mnt_userns, inode, 415 CAP_DAC_OVERRIDE)) 416 return 0; 417 return -EACCES; 418 } 419 420 /* 421 * Searching includes executable on directories, else just read. 422 */ 423 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 424 if (mask == MAY_READ) 425 if (capable_wrt_inode_uidgid(mnt_userns, inode, 426 CAP_DAC_READ_SEARCH)) 427 return 0; 428 /* 429 * Read/write DACs are always overridable. 430 * Executable DACs are overridable when there is 431 * at least one exec bit set. 432 */ 433 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 434 if (capable_wrt_inode_uidgid(mnt_userns, inode, 435 CAP_DAC_OVERRIDE)) 436 return 0; 437 438 return -EACCES; 439 } 440 EXPORT_SYMBOL(generic_permission); 441 442 /** 443 * do_inode_permission - UNIX permission checking 444 * @mnt_userns: user namespace of the mount the inode was found from 445 * @inode: inode to check permissions on 446 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 447 * 448 * We _really_ want to just do "generic_permission()" without 449 * even looking at the inode->i_op values. So we keep a cache 450 * flag in inode->i_opflags, that says "this has not special 451 * permission function, use the fast case". 452 */ 453 static inline int do_inode_permission(struct user_namespace *mnt_userns, 454 struct inode *inode, int mask) 455 { 456 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 457 if (likely(inode->i_op->permission)) 458 return inode->i_op->permission(mnt_userns, inode, mask); 459 460 /* This gets set once for the inode lifetime */ 461 spin_lock(&inode->i_lock); 462 inode->i_opflags |= IOP_FASTPERM; 463 spin_unlock(&inode->i_lock); 464 } 465 return generic_permission(mnt_userns, inode, mask); 466 } 467 468 /** 469 * sb_permission - Check superblock-level permissions 470 * @sb: Superblock of inode to check permission on 471 * @inode: Inode to check permission on 472 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 473 * 474 * Separate out file-system wide checks from inode-specific permission checks. 475 */ 476 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 477 { 478 if (unlikely(mask & MAY_WRITE)) { 479 umode_t mode = inode->i_mode; 480 481 /* Nobody gets write access to a read-only fs. */ 482 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 483 return -EROFS; 484 } 485 return 0; 486 } 487 488 /** 489 * inode_permission - Check for access rights to a given inode 490 * @mnt_userns: User namespace of the mount the inode was found from 491 * @inode: Inode to check permission on 492 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 493 * 494 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 495 * this, letting us set arbitrary permissions for filesystem access without 496 * changing the "normal" UIDs which are used for other things. 497 * 498 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 499 */ 500 int inode_permission(struct user_namespace *mnt_userns, 501 struct inode *inode, int mask) 502 { 503 int retval; 504 505 retval = sb_permission(inode->i_sb, inode, mask); 506 if (retval) 507 return retval; 508 509 if (unlikely(mask & MAY_WRITE)) { 510 /* 511 * Nobody gets write access to an immutable file. 512 */ 513 if (IS_IMMUTABLE(inode)) 514 return -EPERM; 515 516 /* 517 * Updating mtime will likely cause i_uid and i_gid to be 518 * written back improperly if their true value is unknown 519 * to the vfs. 520 */ 521 if (HAS_UNMAPPED_ID(mnt_userns, inode)) 522 return -EACCES; 523 } 524 525 retval = do_inode_permission(mnt_userns, inode, mask); 526 if (retval) 527 return retval; 528 529 retval = devcgroup_inode_permission(inode, mask); 530 if (retval) 531 return retval; 532 533 return security_inode_permission(inode, mask); 534 } 535 EXPORT_SYMBOL(inode_permission); 536 537 /** 538 * path_get - get a reference to a path 539 * @path: path to get the reference to 540 * 541 * Given a path increment the reference count to the dentry and the vfsmount. 542 */ 543 void path_get(const struct path *path) 544 { 545 mntget(path->mnt); 546 dget(path->dentry); 547 } 548 EXPORT_SYMBOL(path_get); 549 550 /** 551 * path_put - put a reference to a path 552 * @path: path to put the reference to 553 * 554 * Given a path decrement the reference count to the dentry and the vfsmount. 555 */ 556 void path_put(const struct path *path) 557 { 558 dput(path->dentry); 559 mntput(path->mnt); 560 } 561 EXPORT_SYMBOL(path_put); 562 563 #define EMBEDDED_LEVELS 2 564 struct nameidata { 565 struct path path; 566 struct qstr last; 567 struct path root; 568 struct inode *inode; /* path.dentry.d_inode */ 569 unsigned int flags, state; 570 unsigned seq, m_seq, r_seq; 571 int last_type; 572 unsigned depth; 573 int total_link_count; 574 struct saved { 575 struct path link; 576 struct delayed_call done; 577 const char *name; 578 unsigned seq; 579 } *stack, internal[EMBEDDED_LEVELS]; 580 struct filename *name; 581 struct nameidata *saved; 582 unsigned root_seq; 583 int dfd; 584 kuid_t dir_uid; 585 umode_t dir_mode; 586 } __randomize_layout; 587 588 #define ND_ROOT_PRESET 1 589 #define ND_ROOT_GRABBED 2 590 #define ND_JUMPED 4 591 592 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name) 593 { 594 struct nameidata *old = current->nameidata; 595 p->stack = p->internal; 596 p->depth = 0; 597 p->dfd = dfd; 598 p->name = name; 599 p->path.mnt = NULL; 600 p->path.dentry = NULL; 601 p->total_link_count = old ? old->total_link_count : 0; 602 p->saved = old; 603 current->nameidata = p; 604 } 605 606 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name, 607 const struct path *root) 608 { 609 __set_nameidata(p, dfd, name); 610 p->state = 0; 611 if (unlikely(root)) { 612 p->state = ND_ROOT_PRESET; 613 p->root = *root; 614 } 615 } 616 617 static void restore_nameidata(void) 618 { 619 struct nameidata *now = current->nameidata, *old = now->saved; 620 621 current->nameidata = old; 622 if (old) 623 old->total_link_count = now->total_link_count; 624 if (now->stack != now->internal) 625 kfree(now->stack); 626 } 627 628 static bool nd_alloc_stack(struct nameidata *nd) 629 { 630 struct saved *p; 631 632 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved), 633 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL); 634 if (unlikely(!p)) 635 return false; 636 memcpy(p, nd->internal, sizeof(nd->internal)); 637 nd->stack = p; 638 return true; 639 } 640 641 /** 642 * path_connected - Verify that a dentry is below mnt.mnt_root 643 * 644 * Rename can sometimes move a file or directory outside of a bind 645 * mount, path_connected allows those cases to be detected. 646 */ 647 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry) 648 { 649 struct super_block *sb = mnt->mnt_sb; 650 651 /* Bind mounts can have disconnected paths */ 652 if (mnt->mnt_root == sb->s_root) 653 return true; 654 655 return is_subdir(dentry, mnt->mnt_root); 656 } 657 658 static void drop_links(struct nameidata *nd) 659 { 660 int i = nd->depth; 661 while (i--) { 662 struct saved *last = nd->stack + i; 663 do_delayed_call(&last->done); 664 clear_delayed_call(&last->done); 665 } 666 } 667 668 static void terminate_walk(struct nameidata *nd) 669 { 670 drop_links(nd); 671 if (!(nd->flags & LOOKUP_RCU)) { 672 int i; 673 path_put(&nd->path); 674 for (i = 0; i < nd->depth; i++) 675 path_put(&nd->stack[i].link); 676 if (nd->state & ND_ROOT_GRABBED) { 677 path_put(&nd->root); 678 nd->state &= ~ND_ROOT_GRABBED; 679 } 680 } else { 681 nd->flags &= ~LOOKUP_RCU; 682 rcu_read_unlock(); 683 } 684 nd->depth = 0; 685 nd->path.mnt = NULL; 686 nd->path.dentry = NULL; 687 } 688 689 /* path_put is needed afterwards regardless of success or failure */ 690 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq) 691 { 692 int res = __legitimize_mnt(path->mnt, mseq); 693 if (unlikely(res)) { 694 if (res > 0) 695 path->mnt = NULL; 696 path->dentry = NULL; 697 return false; 698 } 699 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) { 700 path->dentry = NULL; 701 return false; 702 } 703 return !read_seqcount_retry(&path->dentry->d_seq, seq); 704 } 705 706 static inline bool legitimize_path(struct nameidata *nd, 707 struct path *path, unsigned seq) 708 { 709 return __legitimize_path(path, seq, nd->m_seq); 710 } 711 712 static bool legitimize_links(struct nameidata *nd) 713 { 714 int i; 715 if (unlikely(nd->flags & LOOKUP_CACHED)) { 716 drop_links(nd); 717 nd->depth = 0; 718 return false; 719 } 720 for (i = 0; i < nd->depth; i++) { 721 struct saved *last = nd->stack + i; 722 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) { 723 drop_links(nd); 724 nd->depth = i + 1; 725 return false; 726 } 727 } 728 return true; 729 } 730 731 static bool legitimize_root(struct nameidata *nd) 732 { 733 /* 734 * For scoped-lookups (where nd->root has been zeroed), we need to 735 * restart the whole lookup from scratch -- because set_root() is wrong 736 * for these lookups (nd->dfd is the root, not the filesystem root). 737 */ 738 if (!nd->root.mnt && (nd->flags & LOOKUP_IS_SCOPED)) 739 return false; 740 /* Nothing to do if nd->root is zero or is managed by the VFS user. */ 741 if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET)) 742 return true; 743 nd->state |= ND_ROOT_GRABBED; 744 return legitimize_path(nd, &nd->root, nd->root_seq); 745 } 746 747 /* 748 * Path walking has 2 modes, rcu-walk and ref-walk (see 749 * Documentation/filesystems/path-lookup.txt). In situations when we can't 750 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 751 * normal reference counts on dentries and vfsmounts to transition to ref-walk 752 * mode. Refcounts are grabbed at the last known good point before rcu-walk 753 * got stuck, so ref-walk may continue from there. If this is not successful 754 * (eg. a seqcount has changed), then failure is returned and it's up to caller 755 * to restart the path walk from the beginning in ref-walk mode. 756 */ 757 758 /** 759 * try_to_unlazy - try to switch to ref-walk mode. 760 * @nd: nameidata pathwalk data 761 * Returns: true on success, false on failure 762 * 763 * try_to_unlazy attempts to legitimize the current nd->path and nd->root 764 * for ref-walk mode. 765 * Must be called from rcu-walk context. 766 * Nothing should touch nameidata between try_to_unlazy() failure and 767 * terminate_walk(). 768 */ 769 static bool try_to_unlazy(struct nameidata *nd) 770 { 771 struct dentry *parent = nd->path.dentry; 772 773 BUG_ON(!(nd->flags & LOOKUP_RCU)); 774 775 nd->flags &= ~LOOKUP_RCU; 776 if (unlikely(!legitimize_links(nd))) 777 goto out1; 778 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq))) 779 goto out; 780 if (unlikely(!legitimize_root(nd))) 781 goto out; 782 rcu_read_unlock(); 783 BUG_ON(nd->inode != parent->d_inode); 784 return true; 785 786 out1: 787 nd->path.mnt = NULL; 788 nd->path.dentry = NULL; 789 out: 790 rcu_read_unlock(); 791 return false; 792 } 793 794 /** 795 * try_to_unlazy_next - try to switch to ref-walk mode. 796 * @nd: nameidata pathwalk data 797 * @dentry: next dentry to step into 798 * @seq: seq number to check @dentry against 799 * Returns: true on success, false on failure 800 * 801 * Similar to to try_to_unlazy(), but here we have the next dentry already 802 * picked by rcu-walk and want to legitimize that in addition to the current 803 * nd->path and nd->root for ref-walk mode. Must be called from rcu-walk context. 804 * Nothing should touch nameidata between try_to_unlazy_next() failure and 805 * terminate_walk(). 806 */ 807 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry, unsigned seq) 808 { 809 BUG_ON(!(nd->flags & LOOKUP_RCU)); 810 811 nd->flags &= ~LOOKUP_RCU; 812 if (unlikely(!legitimize_links(nd))) 813 goto out2; 814 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq))) 815 goto out2; 816 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref))) 817 goto out1; 818 819 /* 820 * We need to move both the parent and the dentry from the RCU domain 821 * to be properly refcounted. And the sequence number in the dentry 822 * validates *both* dentry counters, since we checked the sequence 823 * number of the parent after we got the child sequence number. So we 824 * know the parent must still be valid if the child sequence number is 825 */ 826 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) 827 goto out; 828 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) 829 goto out_dput; 830 /* 831 * Sequence counts matched. Now make sure that the root is 832 * still valid and get it if required. 833 */ 834 if (unlikely(!legitimize_root(nd))) 835 goto out_dput; 836 rcu_read_unlock(); 837 return true; 838 839 out2: 840 nd->path.mnt = NULL; 841 out1: 842 nd->path.dentry = NULL; 843 out: 844 rcu_read_unlock(); 845 return false; 846 out_dput: 847 rcu_read_unlock(); 848 dput(dentry); 849 return false; 850 } 851 852 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 853 { 854 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) 855 return dentry->d_op->d_revalidate(dentry, flags); 856 else 857 return 1; 858 } 859 860 /** 861 * complete_walk - successful completion of path walk 862 * @nd: pointer nameidata 863 * 864 * If we had been in RCU mode, drop out of it and legitimize nd->path. 865 * Revalidate the final result, unless we'd already done that during 866 * the path walk or the filesystem doesn't ask for it. Return 0 on 867 * success, -error on failure. In case of failure caller does not 868 * need to drop nd->path. 869 */ 870 static int complete_walk(struct nameidata *nd) 871 { 872 struct dentry *dentry = nd->path.dentry; 873 int status; 874 875 if (nd->flags & LOOKUP_RCU) { 876 /* 877 * We don't want to zero nd->root for scoped-lookups or 878 * externally-managed nd->root. 879 */ 880 if (!(nd->state & ND_ROOT_PRESET)) 881 if (!(nd->flags & LOOKUP_IS_SCOPED)) 882 nd->root.mnt = NULL; 883 nd->flags &= ~LOOKUP_CACHED; 884 if (!try_to_unlazy(nd)) 885 return -ECHILD; 886 } 887 888 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { 889 /* 890 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't 891 * ever step outside the root during lookup" and should already 892 * be guaranteed by the rest of namei, we want to avoid a namei 893 * BUG resulting in userspace being given a path that was not 894 * scoped within the root at some point during the lookup. 895 * 896 * So, do a final sanity-check to make sure that in the 897 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED) 898 * we won't silently return an fd completely outside of the 899 * requested root to userspace. 900 * 901 * Userspace could move the path outside the root after this 902 * check, but as discussed elsewhere this is not a concern (the 903 * resolved file was inside the root at some point). 904 */ 905 if (!path_is_under(&nd->path, &nd->root)) 906 return -EXDEV; 907 } 908 909 if (likely(!(nd->state & ND_JUMPED))) 910 return 0; 911 912 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 913 return 0; 914 915 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 916 if (status > 0) 917 return 0; 918 919 if (!status) 920 status = -ESTALE; 921 922 return status; 923 } 924 925 static int set_root(struct nameidata *nd) 926 { 927 struct fs_struct *fs = current->fs; 928 929 /* 930 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we 931 * still have to ensure it doesn't happen because it will cause a breakout 932 * from the dirfd. 933 */ 934 if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED)) 935 return -ENOTRECOVERABLE; 936 937 if (nd->flags & LOOKUP_RCU) { 938 unsigned seq; 939 940 do { 941 seq = read_seqcount_begin(&fs->seq); 942 nd->root = fs->root; 943 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 944 } while (read_seqcount_retry(&fs->seq, seq)); 945 } else { 946 get_fs_root(fs, &nd->root); 947 nd->state |= ND_ROOT_GRABBED; 948 } 949 return 0; 950 } 951 952 static int nd_jump_root(struct nameidata *nd) 953 { 954 if (unlikely(nd->flags & LOOKUP_BENEATH)) 955 return -EXDEV; 956 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { 957 /* Absolute path arguments to path_init() are allowed. */ 958 if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt) 959 return -EXDEV; 960 } 961 if (!nd->root.mnt) { 962 int error = set_root(nd); 963 if (error) 964 return error; 965 } 966 if (nd->flags & LOOKUP_RCU) { 967 struct dentry *d; 968 nd->path = nd->root; 969 d = nd->path.dentry; 970 nd->inode = d->d_inode; 971 nd->seq = nd->root_seq; 972 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq))) 973 return -ECHILD; 974 } else { 975 path_put(&nd->path); 976 nd->path = nd->root; 977 path_get(&nd->path); 978 nd->inode = nd->path.dentry->d_inode; 979 } 980 nd->state |= ND_JUMPED; 981 return 0; 982 } 983 984 /* 985 * Helper to directly jump to a known parsed path from ->get_link, 986 * caller must have taken a reference to path beforehand. 987 */ 988 int nd_jump_link(struct path *path) 989 { 990 int error = -ELOOP; 991 struct nameidata *nd = current->nameidata; 992 993 if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS)) 994 goto err; 995 996 error = -EXDEV; 997 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { 998 if (nd->path.mnt != path->mnt) 999 goto err; 1000 } 1001 /* Not currently safe for scoped-lookups. */ 1002 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) 1003 goto err; 1004 1005 path_put(&nd->path); 1006 nd->path = *path; 1007 nd->inode = nd->path.dentry->d_inode; 1008 nd->state |= ND_JUMPED; 1009 return 0; 1010 1011 err: 1012 path_put(path); 1013 return error; 1014 } 1015 1016 static inline void put_link(struct nameidata *nd) 1017 { 1018 struct saved *last = nd->stack + --nd->depth; 1019 do_delayed_call(&last->done); 1020 if (!(nd->flags & LOOKUP_RCU)) 1021 path_put(&last->link); 1022 } 1023 1024 static int sysctl_protected_symlinks __read_mostly; 1025 static int sysctl_protected_hardlinks __read_mostly; 1026 static int sysctl_protected_fifos __read_mostly; 1027 static int sysctl_protected_regular __read_mostly; 1028 1029 #ifdef CONFIG_SYSCTL 1030 static struct ctl_table namei_sysctls[] = { 1031 { 1032 .procname = "protected_symlinks", 1033 .data = &sysctl_protected_symlinks, 1034 .maxlen = sizeof(int), 1035 .mode = 0600, 1036 .proc_handler = proc_dointvec_minmax, 1037 .extra1 = SYSCTL_ZERO, 1038 .extra2 = SYSCTL_ONE, 1039 }, 1040 { 1041 .procname = "protected_hardlinks", 1042 .data = &sysctl_protected_hardlinks, 1043 .maxlen = sizeof(int), 1044 .mode = 0600, 1045 .proc_handler = proc_dointvec_minmax, 1046 .extra1 = SYSCTL_ZERO, 1047 .extra2 = SYSCTL_ONE, 1048 }, 1049 { 1050 .procname = "protected_fifos", 1051 .data = &sysctl_protected_fifos, 1052 .maxlen = sizeof(int), 1053 .mode = 0600, 1054 .proc_handler = proc_dointvec_minmax, 1055 .extra1 = SYSCTL_ZERO, 1056 .extra2 = SYSCTL_TWO, 1057 }, 1058 { 1059 .procname = "protected_regular", 1060 .data = &sysctl_protected_regular, 1061 .maxlen = sizeof(int), 1062 .mode = 0600, 1063 .proc_handler = proc_dointvec_minmax, 1064 .extra1 = SYSCTL_ZERO, 1065 .extra2 = SYSCTL_TWO, 1066 }, 1067 { } 1068 }; 1069 1070 static int __init init_fs_namei_sysctls(void) 1071 { 1072 register_sysctl_init("fs", namei_sysctls); 1073 return 0; 1074 } 1075 fs_initcall(init_fs_namei_sysctls); 1076 1077 #endif /* CONFIG_SYSCTL */ 1078 1079 /** 1080 * may_follow_link - Check symlink following for unsafe situations 1081 * @nd: nameidata pathwalk data 1082 * 1083 * In the case of the sysctl_protected_symlinks sysctl being enabled, 1084 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 1085 * in a sticky world-writable directory. This is to protect privileged 1086 * processes from failing races against path names that may change out 1087 * from under them by way of other users creating malicious symlinks. 1088 * It will permit symlinks to be followed only when outside a sticky 1089 * world-writable directory, or when the uid of the symlink and follower 1090 * match, or when the directory owner matches the symlink's owner. 1091 * 1092 * Returns 0 if following the symlink is allowed, -ve on error. 1093 */ 1094 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode) 1095 { 1096 struct user_namespace *mnt_userns; 1097 kuid_t i_uid; 1098 1099 if (!sysctl_protected_symlinks) 1100 return 0; 1101 1102 mnt_userns = mnt_user_ns(nd->path.mnt); 1103 i_uid = i_uid_into_mnt(mnt_userns, inode); 1104 /* Allowed if owner and follower match. */ 1105 if (uid_eq(current_cred()->fsuid, i_uid)) 1106 return 0; 1107 1108 /* Allowed if parent directory not sticky and world-writable. */ 1109 if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 1110 return 0; 1111 1112 /* Allowed if parent directory and link owner match. */ 1113 if (uid_valid(nd->dir_uid) && uid_eq(nd->dir_uid, i_uid)) 1114 return 0; 1115 1116 if (nd->flags & LOOKUP_RCU) 1117 return -ECHILD; 1118 1119 audit_inode(nd->name, nd->stack[0].link.dentry, 0); 1120 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link"); 1121 return -EACCES; 1122 } 1123 1124 /** 1125 * safe_hardlink_source - Check for safe hardlink conditions 1126 * @mnt_userns: user namespace of the mount the inode was found from 1127 * @inode: the source inode to hardlink from 1128 * 1129 * Return false if at least one of the following conditions: 1130 * - inode is not a regular file 1131 * - inode is setuid 1132 * - inode is setgid and group-exec 1133 * - access failure for read and write 1134 * 1135 * Otherwise returns true. 1136 */ 1137 static bool safe_hardlink_source(struct user_namespace *mnt_userns, 1138 struct inode *inode) 1139 { 1140 umode_t mode = inode->i_mode; 1141 1142 /* Special files should not get pinned to the filesystem. */ 1143 if (!S_ISREG(mode)) 1144 return false; 1145 1146 /* Setuid files should not get pinned to the filesystem. */ 1147 if (mode & S_ISUID) 1148 return false; 1149 1150 /* Executable setgid files should not get pinned to the filesystem. */ 1151 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 1152 return false; 1153 1154 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 1155 if (inode_permission(mnt_userns, inode, MAY_READ | MAY_WRITE)) 1156 return false; 1157 1158 return true; 1159 } 1160 1161 /** 1162 * may_linkat - Check permissions for creating a hardlink 1163 * @mnt_userns: user namespace of the mount the inode was found from 1164 * @link: the source to hardlink from 1165 * 1166 * Block hardlink when all of: 1167 * - sysctl_protected_hardlinks enabled 1168 * - fsuid does not match inode 1169 * - hardlink source is unsafe (see safe_hardlink_source() above) 1170 * - not CAP_FOWNER in a namespace with the inode owner uid mapped 1171 * 1172 * If the inode has been found through an idmapped mount the user namespace of 1173 * the vfsmount must be passed through @mnt_userns. This function will then take 1174 * care to map the inode according to @mnt_userns before checking permissions. 1175 * On non-idmapped mounts or if permission checking is to be performed on the 1176 * raw inode simply passs init_user_ns. 1177 * 1178 * Returns 0 if successful, -ve on error. 1179 */ 1180 int may_linkat(struct user_namespace *mnt_userns, struct path *link) 1181 { 1182 struct inode *inode = link->dentry->d_inode; 1183 1184 /* Inode writeback is not safe when the uid or gid are invalid. */ 1185 if (!uid_valid(i_uid_into_mnt(mnt_userns, inode)) || 1186 !gid_valid(i_gid_into_mnt(mnt_userns, inode))) 1187 return -EOVERFLOW; 1188 1189 if (!sysctl_protected_hardlinks) 1190 return 0; 1191 1192 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 1193 * otherwise, it must be a safe source. 1194 */ 1195 if (safe_hardlink_source(mnt_userns, inode) || 1196 inode_owner_or_capable(mnt_userns, inode)) 1197 return 0; 1198 1199 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat"); 1200 return -EPERM; 1201 } 1202 1203 /** 1204 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory 1205 * should be allowed, or not, on files that already 1206 * exist. 1207 * @mnt_userns: user namespace of the mount the inode was found from 1208 * @nd: nameidata pathwalk data 1209 * @inode: the inode of the file to open 1210 * 1211 * Block an O_CREAT open of a FIFO (or a regular file) when: 1212 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled 1213 * - the file already exists 1214 * - we are in a sticky directory 1215 * - we don't own the file 1216 * - the owner of the directory doesn't own the file 1217 * - the directory is world writable 1218 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2 1219 * the directory doesn't have to be world writable: being group writable will 1220 * be enough. 1221 * 1222 * If the inode has been found through an idmapped mount the user namespace of 1223 * the vfsmount must be passed through @mnt_userns. This function will then take 1224 * care to map the inode according to @mnt_userns before checking permissions. 1225 * On non-idmapped mounts or if permission checking is to be performed on the 1226 * raw inode simply passs init_user_ns. 1227 * 1228 * Returns 0 if the open is allowed, -ve on error. 1229 */ 1230 static int may_create_in_sticky(struct user_namespace *mnt_userns, 1231 struct nameidata *nd, struct inode *const inode) 1232 { 1233 umode_t dir_mode = nd->dir_mode; 1234 kuid_t dir_uid = nd->dir_uid; 1235 1236 if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) || 1237 (!sysctl_protected_regular && S_ISREG(inode->i_mode)) || 1238 likely(!(dir_mode & S_ISVTX)) || 1239 uid_eq(i_uid_into_mnt(mnt_userns, inode), dir_uid) || 1240 uid_eq(current_fsuid(), i_uid_into_mnt(mnt_userns, inode))) 1241 return 0; 1242 1243 if (likely(dir_mode & 0002) || 1244 (dir_mode & 0020 && 1245 ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) || 1246 (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) { 1247 const char *operation = S_ISFIFO(inode->i_mode) ? 1248 "sticky_create_fifo" : 1249 "sticky_create_regular"; 1250 audit_log_path_denied(AUDIT_ANOM_CREAT, operation); 1251 return -EACCES; 1252 } 1253 return 0; 1254 } 1255 1256 /* 1257 * follow_up - Find the mountpoint of path's vfsmount 1258 * 1259 * Given a path, find the mountpoint of its source file system. 1260 * Replace @path with the path of the mountpoint in the parent mount. 1261 * Up is towards /. 1262 * 1263 * Return 1 if we went up a level and 0 if we were already at the 1264 * root. 1265 */ 1266 int follow_up(struct path *path) 1267 { 1268 struct mount *mnt = real_mount(path->mnt); 1269 struct mount *parent; 1270 struct dentry *mountpoint; 1271 1272 read_seqlock_excl(&mount_lock); 1273 parent = mnt->mnt_parent; 1274 if (parent == mnt) { 1275 read_sequnlock_excl(&mount_lock); 1276 return 0; 1277 } 1278 mntget(&parent->mnt); 1279 mountpoint = dget(mnt->mnt_mountpoint); 1280 read_sequnlock_excl(&mount_lock); 1281 dput(path->dentry); 1282 path->dentry = mountpoint; 1283 mntput(path->mnt); 1284 path->mnt = &parent->mnt; 1285 return 1; 1286 } 1287 EXPORT_SYMBOL(follow_up); 1288 1289 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root, 1290 struct path *path, unsigned *seqp) 1291 { 1292 while (mnt_has_parent(m)) { 1293 struct dentry *mountpoint = m->mnt_mountpoint; 1294 1295 m = m->mnt_parent; 1296 if (unlikely(root->dentry == mountpoint && 1297 root->mnt == &m->mnt)) 1298 break; 1299 if (mountpoint != m->mnt.mnt_root) { 1300 path->mnt = &m->mnt; 1301 path->dentry = mountpoint; 1302 *seqp = read_seqcount_begin(&mountpoint->d_seq); 1303 return true; 1304 } 1305 } 1306 return false; 1307 } 1308 1309 static bool choose_mountpoint(struct mount *m, const struct path *root, 1310 struct path *path) 1311 { 1312 bool found; 1313 1314 rcu_read_lock(); 1315 while (1) { 1316 unsigned seq, mseq = read_seqbegin(&mount_lock); 1317 1318 found = choose_mountpoint_rcu(m, root, path, &seq); 1319 if (unlikely(!found)) { 1320 if (!read_seqretry(&mount_lock, mseq)) 1321 break; 1322 } else { 1323 if (likely(__legitimize_path(path, seq, mseq))) 1324 break; 1325 rcu_read_unlock(); 1326 path_put(path); 1327 rcu_read_lock(); 1328 } 1329 } 1330 rcu_read_unlock(); 1331 return found; 1332 } 1333 1334 /* 1335 * Perform an automount 1336 * - return -EISDIR to tell follow_managed() to stop and return the path we 1337 * were called with. 1338 */ 1339 static int follow_automount(struct path *path, int *count, unsigned lookup_flags) 1340 { 1341 struct dentry *dentry = path->dentry; 1342 1343 /* We don't want to mount if someone's just doing a stat - 1344 * unless they're stat'ing a directory and appended a '/' to 1345 * the name. 1346 * 1347 * We do, however, want to mount if someone wants to open or 1348 * create a file of any type under the mountpoint, wants to 1349 * traverse through the mountpoint or wants to open the 1350 * mounted directory. Also, autofs may mark negative dentries 1351 * as being automount points. These will need the attentions 1352 * of the daemon to instantiate them before they can be used. 1353 */ 1354 if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 1355 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 1356 dentry->d_inode) 1357 return -EISDIR; 1358 1359 if (count && (*count)++ >= MAXSYMLINKS) 1360 return -ELOOP; 1361 1362 return finish_automount(dentry->d_op->d_automount(path), path); 1363 } 1364 1365 /* 1366 * mount traversal - out-of-line part. One note on ->d_flags accesses - 1367 * dentries are pinned but not locked here, so negative dentry can go 1368 * positive right under us. Use of smp_load_acquire() provides a barrier 1369 * sufficient for ->d_inode and ->d_flags consistency. 1370 */ 1371 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped, 1372 int *count, unsigned lookup_flags) 1373 { 1374 struct vfsmount *mnt = path->mnt; 1375 bool need_mntput = false; 1376 int ret = 0; 1377 1378 while (flags & DCACHE_MANAGED_DENTRY) { 1379 /* Allow the filesystem to manage the transit without i_mutex 1380 * being held. */ 1381 if (flags & DCACHE_MANAGE_TRANSIT) { 1382 ret = path->dentry->d_op->d_manage(path, false); 1383 flags = smp_load_acquire(&path->dentry->d_flags); 1384 if (ret < 0) 1385 break; 1386 } 1387 1388 if (flags & DCACHE_MOUNTED) { // something's mounted on it.. 1389 struct vfsmount *mounted = lookup_mnt(path); 1390 if (mounted) { // ... in our namespace 1391 dput(path->dentry); 1392 if (need_mntput) 1393 mntput(path->mnt); 1394 path->mnt = mounted; 1395 path->dentry = dget(mounted->mnt_root); 1396 // here we know it's positive 1397 flags = path->dentry->d_flags; 1398 need_mntput = true; 1399 continue; 1400 } 1401 } 1402 1403 if (!(flags & DCACHE_NEED_AUTOMOUNT)) 1404 break; 1405 1406 // uncovered automount point 1407 ret = follow_automount(path, count, lookup_flags); 1408 flags = smp_load_acquire(&path->dentry->d_flags); 1409 if (ret < 0) 1410 break; 1411 } 1412 1413 if (ret == -EISDIR) 1414 ret = 0; 1415 // possible if you race with several mount --move 1416 if (need_mntput && path->mnt == mnt) 1417 mntput(path->mnt); 1418 if (!ret && unlikely(d_flags_negative(flags))) 1419 ret = -ENOENT; 1420 *jumped = need_mntput; 1421 return ret; 1422 } 1423 1424 static inline int traverse_mounts(struct path *path, bool *jumped, 1425 int *count, unsigned lookup_flags) 1426 { 1427 unsigned flags = smp_load_acquire(&path->dentry->d_flags); 1428 1429 /* fastpath */ 1430 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) { 1431 *jumped = false; 1432 if (unlikely(d_flags_negative(flags))) 1433 return -ENOENT; 1434 return 0; 1435 } 1436 return __traverse_mounts(path, flags, jumped, count, lookup_flags); 1437 } 1438 1439 int follow_down_one(struct path *path) 1440 { 1441 struct vfsmount *mounted; 1442 1443 mounted = lookup_mnt(path); 1444 if (mounted) { 1445 dput(path->dentry); 1446 mntput(path->mnt); 1447 path->mnt = mounted; 1448 path->dentry = dget(mounted->mnt_root); 1449 return 1; 1450 } 1451 return 0; 1452 } 1453 EXPORT_SYMBOL(follow_down_one); 1454 1455 /* 1456 * Follow down to the covering mount currently visible to userspace. At each 1457 * point, the filesystem owning that dentry may be queried as to whether the 1458 * caller is permitted to proceed or not. 1459 */ 1460 int follow_down(struct path *path) 1461 { 1462 struct vfsmount *mnt = path->mnt; 1463 bool jumped; 1464 int ret = traverse_mounts(path, &jumped, NULL, 0); 1465 1466 if (path->mnt != mnt) 1467 mntput(mnt); 1468 return ret; 1469 } 1470 EXPORT_SYMBOL(follow_down); 1471 1472 /* 1473 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1474 * we meet a managed dentry that would need blocking. 1475 */ 1476 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1477 struct inode **inode, unsigned *seqp) 1478 { 1479 struct dentry *dentry = path->dentry; 1480 unsigned int flags = dentry->d_flags; 1481 1482 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) 1483 return true; 1484 1485 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1486 return false; 1487 1488 for (;;) { 1489 /* 1490 * Don't forget we might have a non-mountpoint managed dentry 1491 * that wants to block transit. 1492 */ 1493 if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) { 1494 int res = dentry->d_op->d_manage(path, true); 1495 if (res) 1496 return res == -EISDIR; 1497 flags = dentry->d_flags; 1498 } 1499 1500 if (flags & DCACHE_MOUNTED) { 1501 struct mount *mounted = __lookup_mnt(path->mnt, dentry); 1502 if (mounted) { 1503 path->mnt = &mounted->mnt; 1504 dentry = path->dentry = mounted->mnt.mnt_root; 1505 nd->state |= ND_JUMPED; 1506 *seqp = read_seqcount_begin(&dentry->d_seq); 1507 *inode = dentry->d_inode; 1508 /* 1509 * We don't need to re-check ->d_seq after this 1510 * ->d_inode read - there will be an RCU delay 1511 * between mount hash removal and ->mnt_root 1512 * becoming unpinned. 1513 */ 1514 flags = dentry->d_flags; 1515 continue; 1516 } 1517 if (read_seqretry(&mount_lock, nd->m_seq)) 1518 return false; 1519 } 1520 return !(flags & DCACHE_NEED_AUTOMOUNT); 1521 } 1522 } 1523 1524 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry, 1525 struct path *path, struct inode **inode, 1526 unsigned int *seqp) 1527 { 1528 bool jumped; 1529 int ret; 1530 1531 path->mnt = nd->path.mnt; 1532 path->dentry = dentry; 1533 if (nd->flags & LOOKUP_RCU) { 1534 unsigned int seq = *seqp; 1535 if (unlikely(!*inode)) 1536 return -ENOENT; 1537 if (likely(__follow_mount_rcu(nd, path, inode, seqp))) 1538 return 0; 1539 if (!try_to_unlazy_next(nd, dentry, seq)) 1540 return -ECHILD; 1541 // *path might've been clobbered by __follow_mount_rcu() 1542 path->mnt = nd->path.mnt; 1543 path->dentry = dentry; 1544 } 1545 ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags); 1546 if (jumped) { 1547 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1548 ret = -EXDEV; 1549 else 1550 nd->state |= ND_JUMPED; 1551 } 1552 if (unlikely(ret)) { 1553 dput(path->dentry); 1554 if (path->mnt != nd->path.mnt) 1555 mntput(path->mnt); 1556 } else { 1557 *inode = d_backing_inode(path->dentry); 1558 *seqp = 0; /* out of RCU mode, so the value doesn't matter */ 1559 } 1560 return ret; 1561 } 1562 1563 /* 1564 * This looks up the name in dcache and possibly revalidates the found dentry. 1565 * NULL is returned if the dentry does not exist in the cache. 1566 */ 1567 static struct dentry *lookup_dcache(const struct qstr *name, 1568 struct dentry *dir, 1569 unsigned int flags) 1570 { 1571 struct dentry *dentry = d_lookup(dir, name); 1572 if (dentry) { 1573 int error = d_revalidate(dentry, flags); 1574 if (unlikely(error <= 0)) { 1575 if (!error) 1576 d_invalidate(dentry); 1577 dput(dentry); 1578 return ERR_PTR(error); 1579 } 1580 } 1581 return dentry; 1582 } 1583 1584 /* 1585 * Parent directory has inode locked exclusive. This is one 1586 * and only case when ->lookup() gets called on non in-lookup 1587 * dentries - as the matter of fact, this only gets called 1588 * when directory is guaranteed to have no in-lookup children 1589 * at all. 1590 */ 1591 static struct dentry *__lookup_hash(const struct qstr *name, 1592 struct dentry *base, unsigned int flags) 1593 { 1594 struct dentry *dentry = lookup_dcache(name, base, flags); 1595 struct dentry *old; 1596 struct inode *dir = base->d_inode; 1597 1598 if (dentry) 1599 return dentry; 1600 1601 /* Don't create child dentry for a dead directory. */ 1602 if (unlikely(IS_DEADDIR(dir))) 1603 return ERR_PTR(-ENOENT); 1604 1605 dentry = d_alloc(base, name); 1606 if (unlikely(!dentry)) 1607 return ERR_PTR(-ENOMEM); 1608 1609 old = dir->i_op->lookup(dir, dentry, flags); 1610 if (unlikely(old)) { 1611 dput(dentry); 1612 dentry = old; 1613 } 1614 return dentry; 1615 } 1616 1617 static struct dentry *lookup_fast(struct nameidata *nd, 1618 struct inode **inode, 1619 unsigned *seqp) 1620 { 1621 struct dentry *dentry, *parent = nd->path.dentry; 1622 int status = 1; 1623 1624 /* 1625 * Rename seqlock is not required here because in the off chance 1626 * of a false negative due to a concurrent rename, the caller is 1627 * going to fall back to non-racy lookup. 1628 */ 1629 if (nd->flags & LOOKUP_RCU) { 1630 unsigned seq; 1631 dentry = __d_lookup_rcu(parent, &nd->last, &seq); 1632 if (unlikely(!dentry)) { 1633 if (!try_to_unlazy(nd)) 1634 return ERR_PTR(-ECHILD); 1635 return NULL; 1636 } 1637 1638 /* 1639 * This sequence count validates that the inode matches 1640 * the dentry name information from lookup. 1641 */ 1642 *inode = d_backing_inode(dentry); 1643 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) 1644 return ERR_PTR(-ECHILD); 1645 1646 /* 1647 * This sequence count validates that the parent had no 1648 * changes while we did the lookup of the dentry above. 1649 * 1650 * The memory barrier in read_seqcount_begin of child is 1651 * enough, we can use __read_seqcount_retry here. 1652 */ 1653 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq))) 1654 return ERR_PTR(-ECHILD); 1655 1656 *seqp = seq; 1657 status = d_revalidate(dentry, nd->flags); 1658 if (likely(status > 0)) 1659 return dentry; 1660 if (!try_to_unlazy_next(nd, dentry, seq)) 1661 return ERR_PTR(-ECHILD); 1662 if (status == -ECHILD) 1663 /* we'd been told to redo it in non-rcu mode */ 1664 status = d_revalidate(dentry, nd->flags); 1665 } else { 1666 dentry = __d_lookup(parent, &nd->last); 1667 if (unlikely(!dentry)) 1668 return NULL; 1669 status = d_revalidate(dentry, nd->flags); 1670 } 1671 if (unlikely(status <= 0)) { 1672 if (!status) 1673 d_invalidate(dentry); 1674 dput(dentry); 1675 return ERR_PTR(status); 1676 } 1677 return dentry; 1678 } 1679 1680 /* Fast lookup failed, do it the slow way */ 1681 static struct dentry *__lookup_slow(const struct qstr *name, 1682 struct dentry *dir, 1683 unsigned int flags) 1684 { 1685 struct dentry *dentry, *old; 1686 struct inode *inode = dir->d_inode; 1687 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1688 1689 /* Don't go there if it's already dead */ 1690 if (unlikely(IS_DEADDIR(inode))) 1691 return ERR_PTR(-ENOENT); 1692 again: 1693 dentry = d_alloc_parallel(dir, name, &wq); 1694 if (IS_ERR(dentry)) 1695 return dentry; 1696 if (unlikely(!d_in_lookup(dentry))) { 1697 int error = d_revalidate(dentry, flags); 1698 if (unlikely(error <= 0)) { 1699 if (!error) { 1700 d_invalidate(dentry); 1701 dput(dentry); 1702 goto again; 1703 } 1704 dput(dentry); 1705 dentry = ERR_PTR(error); 1706 } 1707 } else { 1708 old = inode->i_op->lookup(inode, dentry, flags); 1709 d_lookup_done(dentry); 1710 if (unlikely(old)) { 1711 dput(dentry); 1712 dentry = old; 1713 } 1714 } 1715 return dentry; 1716 } 1717 1718 static struct dentry *lookup_slow(const struct qstr *name, 1719 struct dentry *dir, 1720 unsigned int flags) 1721 { 1722 struct inode *inode = dir->d_inode; 1723 struct dentry *res; 1724 inode_lock_shared(inode); 1725 res = __lookup_slow(name, dir, flags); 1726 inode_unlock_shared(inode); 1727 return res; 1728 } 1729 1730 static inline int may_lookup(struct user_namespace *mnt_userns, 1731 struct nameidata *nd) 1732 { 1733 if (nd->flags & LOOKUP_RCU) { 1734 int err = inode_permission(mnt_userns, nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1735 if (err != -ECHILD || !try_to_unlazy(nd)) 1736 return err; 1737 } 1738 return inode_permission(mnt_userns, nd->inode, MAY_EXEC); 1739 } 1740 1741 static int reserve_stack(struct nameidata *nd, struct path *link, unsigned seq) 1742 { 1743 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) 1744 return -ELOOP; 1745 1746 if (likely(nd->depth != EMBEDDED_LEVELS)) 1747 return 0; 1748 if (likely(nd->stack != nd->internal)) 1749 return 0; 1750 if (likely(nd_alloc_stack(nd))) 1751 return 0; 1752 1753 if (nd->flags & LOOKUP_RCU) { 1754 // we need to grab link before we do unlazy. And we can't skip 1755 // unlazy even if we fail to grab the link - cleanup needs it 1756 bool grabbed_link = legitimize_path(nd, link, seq); 1757 1758 if (!try_to_unlazy(nd) != 0 || !grabbed_link) 1759 return -ECHILD; 1760 1761 if (nd_alloc_stack(nd)) 1762 return 0; 1763 } 1764 return -ENOMEM; 1765 } 1766 1767 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4}; 1768 1769 static const char *pick_link(struct nameidata *nd, struct path *link, 1770 struct inode *inode, unsigned seq, int flags) 1771 { 1772 struct saved *last; 1773 const char *res; 1774 int error = reserve_stack(nd, link, seq); 1775 1776 if (unlikely(error)) { 1777 if (!(nd->flags & LOOKUP_RCU)) 1778 path_put(link); 1779 return ERR_PTR(error); 1780 } 1781 last = nd->stack + nd->depth++; 1782 last->link = *link; 1783 clear_delayed_call(&last->done); 1784 last->seq = seq; 1785 1786 if (flags & WALK_TRAILING) { 1787 error = may_follow_link(nd, inode); 1788 if (unlikely(error)) 1789 return ERR_PTR(error); 1790 } 1791 1792 if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) || 1793 unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW)) 1794 return ERR_PTR(-ELOOP); 1795 1796 if (!(nd->flags & LOOKUP_RCU)) { 1797 touch_atime(&last->link); 1798 cond_resched(); 1799 } else if (atime_needs_update(&last->link, inode)) { 1800 if (!try_to_unlazy(nd)) 1801 return ERR_PTR(-ECHILD); 1802 touch_atime(&last->link); 1803 } 1804 1805 error = security_inode_follow_link(link->dentry, inode, 1806 nd->flags & LOOKUP_RCU); 1807 if (unlikely(error)) 1808 return ERR_PTR(error); 1809 1810 res = READ_ONCE(inode->i_link); 1811 if (!res) { 1812 const char * (*get)(struct dentry *, struct inode *, 1813 struct delayed_call *); 1814 get = inode->i_op->get_link; 1815 if (nd->flags & LOOKUP_RCU) { 1816 res = get(NULL, inode, &last->done); 1817 if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd)) 1818 res = get(link->dentry, inode, &last->done); 1819 } else { 1820 res = get(link->dentry, inode, &last->done); 1821 } 1822 if (!res) 1823 goto all_done; 1824 if (IS_ERR(res)) 1825 return res; 1826 } 1827 if (*res == '/') { 1828 error = nd_jump_root(nd); 1829 if (unlikely(error)) 1830 return ERR_PTR(error); 1831 while (unlikely(*++res == '/')) 1832 ; 1833 } 1834 if (*res) 1835 return res; 1836 all_done: // pure jump 1837 put_link(nd); 1838 return NULL; 1839 } 1840 1841 /* 1842 * Do we need to follow links? We _really_ want to be able 1843 * to do this check without having to look at inode->i_op, 1844 * so we keep a cache of "no, this doesn't need follow_link" 1845 * for the common case. 1846 */ 1847 static const char *step_into(struct nameidata *nd, int flags, 1848 struct dentry *dentry, struct inode *inode, unsigned seq) 1849 { 1850 struct path path; 1851 int err = handle_mounts(nd, dentry, &path, &inode, &seq); 1852 1853 if (err < 0) 1854 return ERR_PTR(err); 1855 if (likely(!d_is_symlink(path.dentry)) || 1856 ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) || 1857 (flags & WALK_NOFOLLOW)) { 1858 /* not a symlink or should not follow */ 1859 if (!(nd->flags & LOOKUP_RCU)) { 1860 dput(nd->path.dentry); 1861 if (nd->path.mnt != path.mnt) 1862 mntput(nd->path.mnt); 1863 } 1864 nd->path = path; 1865 nd->inode = inode; 1866 nd->seq = seq; 1867 return NULL; 1868 } 1869 if (nd->flags & LOOKUP_RCU) { 1870 /* make sure that d_is_symlink above matches inode */ 1871 if (read_seqcount_retry(&path.dentry->d_seq, seq)) 1872 return ERR_PTR(-ECHILD); 1873 } else { 1874 if (path.mnt == nd->path.mnt) 1875 mntget(path.mnt); 1876 } 1877 return pick_link(nd, &path, inode, seq, flags); 1878 } 1879 1880 static struct dentry *follow_dotdot_rcu(struct nameidata *nd, 1881 struct inode **inodep, 1882 unsigned *seqp) 1883 { 1884 struct dentry *parent, *old; 1885 1886 if (path_equal(&nd->path, &nd->root)) 1887 goto in_root; 1888 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { 1889 struct path path; 1890 unsigned seq; 1891 if (!choose_mountpoint_rcu(real_mount(nd->path.mnt), 1892 &nd->root, &path, &seq)) 1893 goto in_root; 1894 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1895 return ERR_PTR(-ECHILD); 1896 nd->path = path; 1897 nd->inode = path.dentry->d_inode; 1898 nd->seq = seq; 1899 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1900 return ERR_PTR(-ECHILD); 1901 /* we know that mountpoint was pinned */ 1902 } 1903 old = nd->path.dentry; 1904 parent = old->d_parent; 1905 *inodep = parent->d_inode; 1906 *seqp = read_seqcount_begin(&parent->d_seq); 1907 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq))) 1908 return ERR_PTR(-ECHILD); 1909 if (unlikely(!path_connected(nd->path.mnt, parent))) 1910 return ERR_PTR(-ECHILD); 1911 return parent; 1912 in_root: 1913 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1914 return ERR_PTR(-ECHILD); 1915 if (unlikely(nd->flags & LOOKUP_BENEATH)) 1916 return ERR_PTR(-ECHILD); 1917 return NULL; 1918 } 1919 1920 static struct dentry *follow_dotdot(struct nameidata *nd, 1921 struct inode **inodep, 1922 unsigned *seqp) 1923 { 1924 struct dentry *parent; 1925 1926 if (path_equal(&nd->path, &nd->root)) 1927 goto in_root; 1928 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { 1929 struct path path; 1930 1931 if (!choose_mountpoint(real_mount(nd->path.mnt), 1932 &nd->root, &path)) 1933 goto in_root; 1934 path_put(&nd->path); 1935 nd->path = path; 1936 nd->inode = path.dentry->d_inode; 1937 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1938 return ERR_PTR(-EXDEV); 1939 } 1940 /* rare case of legitimate dget_parent()... */ 1941 parent = dget_parent(nd->path.dentry); 1942 if (unlikely(!path_connected(nd->path.mnt, parent))) { 1943 dput(parent); 1944 return ERR_PTR(-ENOENT); 1945 } 1946 *seqp = 0; 1947 *inodep = parent->d_inode; 1948 return parent; 1949 1950 in_root: 1951 if (unlikely(nd->flags & LOOKUP_BENEATH)) 1952 return ERR_PTR(-EXDEV); 1953 dget(nd->path.dentry); 1954 return NULL; 1955 } 1956 1957 static const char *handle_dots(struct nameidata *nd, int type) 1958 { 1959 if (type == LAST_DOTDOT) { 1960 const char *error = NULL; 1961 struct dentry *parent; 1962 struct inode *inode; 1963 unsigned seq; 1964 1965 if (!nd->root.mnt) { 1966 error = ERR_PTR(set_root(nd)); 1967 if (error) 1968 return error; 1969 } 1970 if (nd->flags & LOOKUP_RCU) 1971 parent = follow_dotdot_rcu(nd, &inode, &seq); 1972 else 1973 parent = follow_dotdot(nd, &inode, &seq); 1974 if (IS_ERR(parent)) 1975 return ERR_CAST(parent); 1976 if (unlikely(!parent)) 1977 error = step_into(nd, WALK_NOFOLLOW, 1978 nd->path.dentry, nd->inode, nd->seq); 1979 else 1980 error = step_into(nd, WALK_NOFOLLOW, 1981 parent, inode, seq); 1982 if (unlikely(error)) 1983 return error; 1984 1985 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { 1986 /* 1987 * If there was a racing rename or mount along our 1988 * path, then we can't be sure that ".." hasn't jumped 1989 * above nd->root (and so userspace should retry or use 1990 * some fallback). 1991 */ 1992 smp_rmb(); 1993 if (unlikely(__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq))) 1994 return ERR_PTR(-EAGAIN); 1995 if (unlikely(__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq))) 1996 return ERR_PTR(-EAGAIN); 1997 } 1998 } 1999 return NULL; 2000 } 2001 2002 static const char *walk_component(struct nameidata *nd, int flags) 2003 { 2004 struct dentry *dentry; 2005 struct inode *inode; 2006 unsigned seq; 2007 /* 2008 * "." and ".." are special - ".." especially so because it has 2009 * to be able to know about the current root directory and 2010 * parent relationships. 2011 */ 2012 if (unlikely(nd->last_type != LAST_NORM)) { 2013 if (!(flags & WALK_MORE) && nd->depth) 2014 put_link(nd); 2015 return handle_dots(nd, nd->last_type); 2016 } 2017 dentry = lookup_fast(nd, &inode, &seq); 2018 if (IS_ERR(dentry)) 2019 return ERR_CAST(dentry); 2020 if (unlikely(!dentry)) { 2021 dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags); 2022 if (IS_ERR(dentry)) 2023 return ERR_CAST(dentry); 2024 } 2025 if (!(flags & WALK_MORE) && nd->depth) 2026 put_link(nd); 2027 return step_into(nd, flags, dentry, inode, seq); 2028 } 2029 2030 /* 2031 * We can do the critical dentry name comparison and hashing 2032 * operations one word at a time, but we are limited to: 2033 * 2034 * - Architectures with fast unaligned word accesses. We could 2035 * do a "get_unaligned()" if this helps and is sufficiently 2036 * fast. 2037 * 2038 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 2039 * do not trap on the (extremely unlikely) case of a page 2040 * crossing operation. 2041 * 2042 * - Furthermore, we need an efficient 64-bit compile for the 2043 * 64-bit case in order to generate the "number of bytes in 2044 * the final mask". Again, that could be replaced with a 2045 * efficient population count instruction or similar. 2046 */ 2047 #ifdef CONFIG_DCACHE_WORD_ACCESS 2048 2049 #include <asm/word-at-a-time.h> 2050 2051 #ifdef HASH_MIX 2052 2053 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */ 2054 2055 #elif defined(CONFIG_64BIT) 2056 /* 2057 * Register pressure in the mixing function is an issue, particularly 2058 * on 32-bit x86, but almost any function requires one state value and 2059 * one temporary. Instead, use a function designed for two state values 2060 * and no temporaries. 2061 * 2062 * This function cannot create a collision in only two iterations, so 2063 * we have two iterations to achieve avalanche. In those two iterations, 2064 * we have six layers of mixing, which is enough to spread one bit's 2065 * influence out to 2^6 = 64 state bits. 2066 * 2067 * Rotate constants are scored by considering either 64 one-bit input 2068 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the 2069 * probability of that delta causing a change to each of the 128 output 2070 * bits, using a sample of random initial states. 2071 * 2072 * The Shannon entropy of the computed probabilities is then summed 2073 * to produce a score. Ideally, any input change has a 50% chance of 2074 * toggling any given output bit. 2075 * 2076 * Mixing scores (in bits) for (12,45): 2077 * Input delta: 1-bit 2-bit 2078 * 1 round: 713.3 42542.6 2079 * 2 rounds: 2753.7 140389.8 2080 * 3 rounds: 5954.1 233458.2 2081 * 4 rounds: 7862.6 256672.2 2082 * Perfect: 8192 258048 2083 * (64*128) (64*63/2 * 128) 2084 */ 2085 #define HASH_MIX(x, y, a) \ 2086 ( x ^= (a), \ 2087 y ^= x, x = rol64(x,12),\ 2088 x += y, y = rol64(y,45),\ 2089 y *= 9 ) 2090 2091 /* 2092 * Fold two longs into one 32-bit hash value. This must be fast, but 2093 * latency isn't quite as critical, as there is a fair bit of additional 2094 * work done before the hash value is used. 2095 */ 2096 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 2097 { 2098 y ^= x * GOLDEN_RATIO_64; 2099 y *= GOLDEN_RATIO_64; 2100 return y >> 32; 2101 } 2102 2103 #else /* 32-bit case */ 2104 2105 /* 2106 * Mixing scores (in bits) for (7,20): 2107 * Input delta: 1-bit 2-bit 2108 * 1 round: 330.3 9201.6 2109 * 2 rounds: 1246.4 25475.4 2110 * 3 rounds: 1907.1 31295.1 2111 * 4 rounds: 2042.3 31718.6 2112 * Perfect: 2048 31744 2113 * (32*64) (32*31/2 * 64) 2114 */ 2115 #define HASH_MIX(x, y, a) \ 2116 ( x ^= (a), \ 2117 y ^= x, x = rol32(x, 7),\ 2118 x += y, y = rol32(y,20),\ 2119 y *= 9 ) 2120 2121 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 2122 { 2123 /* Use arch-optimized multiply if one exists */ 2124 return __hash_32(y ^ __hash_32(x)); 2125 } 2126 2127 #endif 2128 2129 /* 2130 * Return the hash of a string of known length. This is carfully 2131 * designed to match hash_name(), which is the more critical function. 2132 * In particular, we must end by hashing a final word containing 0..7 2133 * payload bytes, to match the way that hash_name() iterates until it 2134 * finds the delimiter after the name. 2135 */ 2136 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2137 { 2138 unsigned long a, x = 0, y = (unsigned long)salt; 2139 2140 for (;;) { 2141 if (!len) 2142 goto done; 2143 a = load_unaligned_zeropad(name); 2144 if (len < sizeof(unsigned long)) 2145 break; 2146 HASH_MIX(x, y, a); 2147 name += sizeof(unsigned long); 2148 len -= sizeof(unsigned long); 2149 } 2150 x ^= a & bytemask_from_count(len); 2151 done: 2152 return fold_hash(x, y); 2153 } 2154 EXPORT_SYMBOL(full_name_hash); 2155 2156 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2157 u64 hashlen_string(const void *salt, const char *name) 2158 { 2159 unsigned long a = 0, x = 0, y = (unsigned long)salt; 2160 unsigned long adata, mask, len; 2161 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 2162 2163 len = 0; 2164 goto inside; 2165 2166 do { 2167 HASH_MIX(x, y, a); 2168 len += sizeof(unsigned long); 2169 inside: 2170 a = load_unaligned_zeropad(name+len); 2171 } while (!has_zero(a, &adata, &constants)); 2172 2173 adata = prep_zero_mask(a, adata, &constants); 2174 mask = create_zero_mask(adata); 2175 x ^= a & zero_bytemask(mask); 2176 2177 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 2178 } 2179 EXPORT_SYMBOL(hashlen_string); 2180 2181 /* 2182 * Calculate the length and hash of the path component, and 2183 * return the "hash_len" as the result. 2184 */ 2185 static inline u64 hash_name(const void *salt, const char *name) 2186 { 2187 unsigned long a = 0, b, x = 0, y = (unsigned long)salt; 2188 unsigned long adata, bdata, mask, len; 2189 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 2190 2191 len = 0; 2192 goto inside; 2193 2194 do { 2195 HASH_MIX(x, y, a); 2196 len += sizeof(unsigned long); 2197 inside: 2198 a = load_unaligned_zeropad(name+len); 2199 b = a ^ REPEAT_BYTE('/'); 2200 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 2201 2202 adata = prep_zero_mask(a, adata, &constants); 2203 bdata = prep_zero_mask(b, bdata, &constants); 2204 mask = create_zero_mask(adata | bdata); 2205 x ^= a & zero_bytemask(mask); 2206 2207 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 2208 } 2209 2210 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */ 2211 2212 /* Return the hash of a string of known length */ 2213 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2214 { 2215 unsigned long hash = init_name_hash(salt); 2216 while (len--) 2217 hash = partial_name_hash((unsigned char)*name++, hash); 2218 return end_name_hash(hash); 2219 } 2220 EXPORT_SYMBOL(full_name_hash); 2221 2222 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2223 u64 hashlen_string(const void *salt, const char *name) 2224 { 2225 unsigned long hash = init_name_hash(salt); 2226 unsigned long len = 0, c; 2227 2228 c = (unsigned char)*name; 2229 while (c) { 2230 len++; 2231 hash = partial_name_hash(c, hash); 2232 c = (unsigned char)name[len]; 2233 } 2234 return hashlen_create(end_name_hash(hash), len); 2235 } 2236 EXPORT_SYMBOL(hashlen_string); 2237 2238 /* 2239 * We know there's a real path component here of at least 2240 * one character. 2241 */ 2242 static inline u64 hash_name(const void *salt, const char *name) 2243 { 2244 unsigned long hash = init_name_hash(salt); 2245 unsigned long len = 0, c; 2246 2247 c = (unsigned char)*name; 2248 do { 2249 len++; 2250 hash = partial_name_hash(c, hash); 2251 c = (unsigned char)name[len]; 2252 } while (c && c != '/'); 2253 return hashlen_create(end_name_hash(hash), len); 2254 } 2255 2256 #endif 2257 2258 /* 2259 * Name resolution. 2260 * This is the basic name resolution function, turning a pathname into 2261 * the final dentry. We expect 'base' to be positive and a directory. 2262 * 2263 * Returns 0 and nd will have valid dentry and mnt on success. 2264 * Returns error and drops reference to input namei data on failure. 2265 */ 2266 static int link_path_walk(const char *name, struct nameidata *nd) 2267 { 2268 int depth = 0; // depth <= nd->depth 2269 int err; 2270 2271 nd->last_type = LAST_ROOT; 2272 nd->flags |= LOOKUP_PARENT; 2273 if (IS_ERR(name)) 2274 return PTR_ERR(name); 2275 while (*name=='/') 2276 name++; 2277 if (!*name) { 2278 nd->dir_mode = 0; // short-circuit the 'hardening' idiocy 2279 return 0; 2280 } 2281 2282 /* At this point we know we have a real path component. */ 2283 for(;;) { 2284 struct user_namespace *mnt_userns; 2285 const char *link; 2286 u64 hash_len; 2287 int type; 2288 2289 mnt_userns = mnt_user_ns(nd->path.mnt); 2290 err = may_lookup(mnt_userns, nd); 2291 if (err) 2292 return err; 2293 2294 hash_len = hash_name(nd->path.dentry, name); 2295 2296 type = LAST_NORM; 2297 if (name[0] == '.') switch (hashlen_len(hash_len)) { 2298 case 2: 2299 if (name[1] == '.') { 2300 type = LAST_DOTDOT; 2301 nd->state |= ND_JUMPED; 2302 } 2303 break; 2304 case 1: 2305 type = LAST_DOT; 2306 } 2307 if (likely(type == LAST_NORM)) { 2308 struct dentry *parent = nd->path.dentry; 2309 nd->state &= ~ND_JUMPED; 2310 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 2311 struct qstr this = { { .hash_len = hash_len }, .name = name }; 2312 err = parent->d_op->d_hash(parent, &this); 2313 if (err < 0) 2314 return err; 2315 hash_len = this.hash_len; 2316 name = this.name; 2317 } 2318 } 2319 2320 nd->last.hash_len = hash_len; 2321 nd->last.name = name; 2322 nd->last_type = type; 2323 2324 name += hashlen_len(hash_len); 2325 if (!*name) 2326 goto OK; 2327 /* 2328 * If it wasn't NUL, we know it was '/'. Skip that 2329 * slash, and continue until no more slashes. 2330 */ 2331 do { 2332 name++; 2333 } while (unlikely(*name == '/')); 2334 if (unlikely(!*name)) { 2335 OK: 2336 /* pathname or trailing symlink, done */ 2337 if (!depth) { 2338 nd->dir_uid = i_uid_into_mnt(mnt_userns, nd->inode); 2339 nd->dir_mode = nd->inode->i_mode; 2340 nd->flags &= ~LOOKUP_PARENT; 2341 return 0; 2342 } 2343 /* last component of nested symlink */ 2344 name = nd->stack[--depth].name; 2345 link = walk_component(nd, 0); 2346 } else { 2347 /* not the last component */ 2348 link = walk_component(nd, WALK_MORE); 2349 } 2350 if (unlikely(link)) { 2351 if (IS_ERR(link)) 2352 return PTR_ERR(link); 2353 /* a symlink to follow */ 2354 nd->stack[depth++].name = name; 2355 name = link; 2356 continue; 2357 } 2358 if (unlikely(!d_can_lookup(nd->path.dentry))) { 2359 if (nd->flags & LOOKUP_RCU) { 2360 if (!try_to_unlazy(nd)) 2361 return -ECHILD; 2362 } 2363 return -ENOTDIR; 2364 } 2365 } 2366 } 2367 2368 /* must be paired with terminate_walk() */ 2369 static const char *path_init(struct nameidata *nd, unsigned flags) 2370 { 2371 int error; 2372 const char *s = nd->name->name; 2373 2374 /* LOOKUP_CACHED requires RCU, ask caller to retry */ 2375 if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED) 2376 return ERR_PTR(-EAGAIN); 2377 2378 if (!*s) 2379 flags &= ~LOOKUP_RCU; 2380 if (flags & LOOKUP_RCU) 2381 rcu_read_lock(); 2382 2383 nd->flags = flags; 2384 nd->state |= ND_JUMPED; 2385 2386 nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount); 2387 nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount); 2388 smp_rmb(); 2389 2390 if (nd->state & ND_ROOT_PRESET) { 2391 struct dentry *root = nd->root.dentry; 2392 struct inode *inode = root->d_inode; 2393 if (*s && unlikely(!d_can_lookup(root))) 2394 return ERR_PTR(-ENOTDIR); 2395 nd->path = nd->root; 2396 nd->inode = inode; 2397 if (flags & LOOKUP_RCU) { 2398 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2399 nd->root_seq = nd->seq; 2400 } else { 2401 path_get(&nd->path); 2402 } 2403 return s; 2404 } 2405 2406 nd->root.mnt = NULL; 2407 2408 /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */ 2409 if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) { 2410 error = nd_jump_root(nd); 2411 if (unlikely(error)) 2412 return ERR_PTR(error); 2413 return s; 2414 } 2415 2416 /* Relative pathname -- get the starting-point it is relative to. */ 2417 if (nd->dfd == AT_FDCWD) { 2418 if (flags & LOOKUP_RCU) { 2419 struct fs_struct *fs = current->fs; 2420 unsigned seq; 2421 2422 do { 2423 seq = read_seqcount_begin(&fs->seq); 2424 nd->path = fs->pwd; 2425 nd->inode = nd->path.dentry->d_inode; 2426 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2427 } while (read_seqcount_retry(&fs->seq, seq)); 2428 } else { 2429 get_fs_pwd(current->fs, &nd->path); 2430 nd->inode = nd->path.dentry->d_inode; 2431 } 2432 } else { 2433 /* Caller must check execute permissions on the starting path component */ 2434 struct fd f = fdget_raw(nd->dfd); 2435 struct dentry *dentry; 2436 2437 if (!f.file) 2438 return ERR_PTR(-EBADF); 2439 2440 dentry = f.file->f_path.dentry; 2441 2442 if (*s && unlikely(!d_can_lookup(dentry))) { 2443 fdput(f); 2444 return ERR_PTR(-ENOTDIR); 2445 } 2446 2447 nd->path = f.file->f_path; 2448 if (flags & LOOKUP_RCU) { 2449 nd->inode = nd->path.dentry->d_inode; 2450 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2451 } else { 2452 path_get(&nd->path); 2453 nd->inode = nd->path.dentry->d_inode; 2454 } 2455 fdput(f); 2456 } 2457 2458 /* For scoped-lookups we need to set the root to the dirfd as well. */ 2459 if (flags & LOOKUP_IS_SCOPED) { 2460 nd->root = nd->path; 2461 if (flags & LOOKUP_RCU) { 2462 nd->root_seq = nd->seq; 2463 } else { 2464 path_get(&nd->root); 2465 nd->state |= ND_ROOT_GRABBED; 2466 } 2467 } 2468 return s; 2469 } 2470 2471 static inline const char *lookup_last(struct nameidata *nd) 2472 { 2473 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 2474 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2475 2476 return walk_component(nd, WALK_TRAILING); 2477 } 2478 2479 static int handle_lookup_down(struct nameidata *nd) 2480 { 2481 if (!(nd->flags & LOOKUP_RCU)) 2482 dget(nd->path.dentry); 2483 return PTR_ERR(step_into(nd, WALK_NOFOLLOW, 2484 nd->path.dentry, nd->inode, nd->seq)); 2485 } 2486 2487 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2488 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path) 2489 { 2490 const char *s = path_init(nd, flags); 2491 int err; 2492 2493 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) { 2494 err = handle_lookup_down(nd); 2495 if (unlikely(err < 0)) 2496 s = ERR_PTR(err); 2497 } 2498 2499 while (!(err = link_path_walk(s, nd)) && 2500 (s = lookup_last(nd)) != NULL) 2501 ; 2502 if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) { 2503 err = handle_lookup_down(nd); 2504 nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please... 2505 } 2506 if (!err) 2507 err = complete_walk(nd); 2508 2509 if (!err && nd->flags & LOOKUP_DIRECTORY) 2510 if (!d_can_lookup(nd->path.dentry)) 2511 err = -ENOTDIR; 2512 if (!err) { 2513 *path = nd->path; 2514 nd->path.mnt = NULL; 2515 nd->path.dentry = NULL; 2516 } 2517 terminate_walk(nd); 2518 return err; 2519 } 2520 2521 int filename_lookup(int dfd, struct filename *name, unsigned flags, 2522 struct path *path, struct path *root) 2523 { 2524 int retval; 2525 struct nameidata nd; 2526 if (IS_ERR(name)) 2527 return PTR_ERR(name); 2528 set_nameidata(&nd, dfd, name, root); 2529 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path); 2530 if (unlikely(retval == -ECHILD)) 2531 retval = path_lookupat(&nd, flags, path); 2532 if (unlikely(retval == -ESTALE)) 2533 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path); 2534 2535 if (likely(!retval)) 2536 audit_inode(name, path->dentry, 2537 flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0); 2538 restore_nameidata(); 2539 return retval; 2540 } 2541 2542 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2543 static int path_parentat(struct nameidata *nd, unsigned flags, 2544 struct path *parent) 2545 { 2546 const char *s = path_init(nd, flags); 2547 int err = link_path_walk(s, nd); 2548 if (!err) 2549 err = complete_walk(nd); 2550 if (!err) { 2551 *parent = nd->path; 2552 nd->path.mnt = NULL; 2553 nd->path.dentry = NULL; 2554 } 2555 terminate_walk(nd); 2556 return err; 2557 } 2558 2559 /* Note: this does not consume "name" */ 2560 static int filename_parentat(int dfd, struct filename *name, 2561 unsigned int flags, struct path *parent, 2562 struct qstr *last, int *type) 2563 { 2564 int retval; 2565 struct nameidata nd; 2566 2567 if (IS_ERR(name)) 2568 return PTR_ERR(name); 2569 set_nameidata(&nd, dfd, name, NULL); 2570 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent); 2571 if (unlikely(retval == -ECHILD)) 2572 retval = path_parentat(&nd, flags, parent); 2573 if (unlikely(retval == -ESTALE)) 2574 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent); 2575 if (likely(!retval)) { 2576 *last = nd.last; 2577 *type = nd.last_type; 2578 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT); 2579 } 2580 restore_nameidata(); 2581 return retval; 2582 } 2583 2584 /* does lookup, returns the object with parent locked */ 2585 static struct dentry *__kern_path_locked(struct filename *name, struct path *path) 2586 { 2587 struct dentry *d; 2588 struct qstr last; 2589 int type, error; 2590 2591 error = filename_parentat(AT_FDCWD, name, 0, path, &last, &type); 2592 if (error) 2593 return ERR_PTR(error); 2594 if (unlikely(type != LAST_NORM)) { 2595 path_put(path); 2596 return ERR_PTR(-EINVAL); 2597 } 2598 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 2599 d = __lookup_hash(&last, path->dentry, 0); 2600 if (IS_ERR(d)) { 2601 inode_unlock(path->dentry->d_inode); 2602 path_put(path); 2603 } 2604 return d; 2605 } 2606 2607 struct dentry *kern_path_locked(const char *name, struct path *path) 2608 { 2609 struct filename *filename = getname_kernel(name); 2610 struct dentry *res = __kern_path_locked(filename, path); 2611 2612 putname(filename); 2613 return res; 2614 } 2615 2616 int kern_path(const char *name, unsigned int flags, struct path *path) 2617 { 2618 struct filename *filename = getname_kernel(name); 2619 int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL); 2620 2621 putname(filename); 2622 return ret; 2623 2624 } 2625 EXPORT_SYMBOL(kern_path); 2626 2627 /** 2628 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2629 * @dentry: pointer to dentry of the base directory 2630 * @mnt: pointer to vfs mount of the base directory 2631 * @name: pointer to file name 2632 * @flags: lookup flags 2633 * @path: pointer to struct path to fill 2634 */ 2635 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2636 const char *name, unsigned int flags, 2637 struct path *path) 2638 { 2639 struct filename *filename; 2640 struct path root = {.mnt = mnt, .dentry = dentry}; 2641 int ret; 2642 2643 filename = getname_kernel(name); 2644 /* the first argument of filename_lookup() is ignored with root */ 2645 ret = filename_lookup(AT_FDCWD, filename, flags, path, &root); 2646 putname(filename); 2647 return ret; 2648 } 2649 EXPORT_SYMBOL(vfs_path_lookup); 2650 2651 static int lookup_one_common(struct user_namespace *mnt_userns, 2652 const char *name, struct dentry *base, int len, 2653 struct qstr *this) 2654 { 2655 this->name = name; 2656 this->len = len; 2657 this->hash = full_name_hash(base, name, len); 2658 if (!len) 2659 return -EACCES; 2660 2661 if (unlikely(name[0] == '.')) { 2662 if (len < 2 || (len == 2 && name[1] == '.')) 2663 return -EACCES; 2664 } 2665 2666 while (len--) { 2667 unsigned int c = *(const unsigned char *)name++; 2668 if (c == '/' || c == '\0') 2669 return -EACCES; 2670 } 2671 /* 2672 * See if the low-level filesystem might want 2673 * to use its own hash.. 2674 */ 2675 if (base->d_flags & DCACHE_OP_HASH) { 2676 int err = base->d_op->d_hash(base, this); 2677 if (err < 0) 2678 return err; 2679 } 2680 2681 return inode_permission(mnt_userns, base->d_inode, MAY_EXEC); 2682 } 2683 2684 /** 2685 * try_lookup_one_len - filesystem helper to lookup single pathname component 2686 * @name: pathname component to lookup 2687 * @base: base directory to lookup from 2688 * @len: maximum length @len should be interpreted to 2689 * 2690 * Look up a dentry by name in the dcache, returning NULL if it does not 2691 * currently exist. The function does not try to create a dentry. 2692 * 2693 * Note that this routine is purely a helper for filesystem usage and should 2694 * not be called by generic code. 2695 * 2696 * The caller must hold base->i_mutex. 2697 */ 2698 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len) 2699 { 2700 struct qstr this; 2701 int err; 2702 2703 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2704 2705 err = lookup_one_common(&init_user_ns, name, base, len, &this); 2706 if (err) 2707 return ERR_PTR(err); 2708 2709 return lookup_dcache(&this, base, 0); 2710 } 2711 EXPORT_SYMBOL(try_lookup_one_len); 2712 2713 /** 2714 * lookup_one_len - filesystem helper to lookup single pathname component 2715 * @name: pathname component to lookup 2716 * @base: base directory to lookup from 2717 * @len: maximum length @len should be interpreted to 2718 * 2719 * Note that this routine is purely a helper for filesystem usage and should 2720 * not be called by generic code. 2721 * 2722 * The caller must hold base->i_mutex. 2723 */ 2724 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2725 { 2726 struct dentry *dentry; 2727 struct qstr this; 2728 int err; 2729 2730 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2731 2732 err = lookup_one_common(&init_user_ns, name, base, len, &this); 2733 if (err) 2734 return ERR_PTR(err); 2735 2736 dentry = lookup_dcache(&this, base, 0); 2737 return dentry ? dentry : __lookup_slow(&this, base, 0); 2738 } 2739 EXPORT_SYMBOL(lookup_one_len); 2740 2741 /** 2742 * lookup_one - filesystem helper to lookup single pathname component 2743 * @mnt_userns: user namespace of the mount the lookup is performed from 2744 * @name: pathname component to lookup 2745 * @base: base directory to lookup from 2746 * @len: maximum length @len should be interpreted to 2747 * 2748 * Note that this routine is purely a helper for filesystem usage and should 2749 * not be called by generic code. 2750 * 2751 * The caller must hold base->i_mutex. 2752 */ 2753 struct dentry *lookup_one(struct user_namespace *mnt_userns, const char *name, 2754 struct dentry *base, int len) 2755 { 2756 struct dentry *dentry; 2757 struct qstr this; 2758 int err; 2759 2760 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2761 2762 err = lookup_one_common(mnt_userns, name, base, len, &this); 2763 if (err) 2764 return ERR_PTR(err); 2765 2766 dentry = lookup_dcache(&this, base, 0); 2767 return dentry ? dentry : __lookup_slow(&this, base, 0); 2768 } 2769 EXPORT_SYMBOL(lookup_one); 2770 2771 /** 2772 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component 2773 * @name: pathname component to lookup 2774 * @base: base directory to lookup from 2775 * @len: maximum length @len should be interpreted to 2776 * 2777 * Note that this routine is purely a helper for filesystem usage and should 2778 * not be called by generic code. 2779 * 2780 * Unlike lookup_one_len, it should be called without the parent 2781 * i_mutex held, and will take the i_mutex itself if necessary. 2782 */ 2783 struct dentry *lookup_one_len_unlocked(const char *name, 2784 struct dentry *base, int len) 2785 { 2786 struct qstr this; 2787 int err; 2788 struct dentry *ret; 2789 2790 err = lookup_one_common(&init_user_ns, name, base, len, &this); 2791 if (err) 2792 return ERR_PTR(err); 2793 2794 ret = lookup_dcache(&this, base, 0); 2795 if (!ret) 2796 ret = lookup_slow(&this, base, 0); 2797 return ret; 2798 } 2799 EXPORT_SYMBOL(lookup_one_len_unlocked); 2800 2801 /* 2802 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT) 2803 * on negatives. Returns known positive or ERR_PTR(); that's what 2804 * most of the users want. Note that pinned negative with unlocked parent 2805 * _can_ become positive at any time, so callers of lookup_one_len_unlocked() 2806 * need to be very careful; pinned positives have ->d_inode stable, so 2807 * this one avoids such problems. 2808 */ 2809 struct dentry *lookup_positive_unlocked(const char *name, 2810 struct dentry *base, int len) 2811 { 2812 struct dentry *ret = lookup_one_len_unlocked(name, base, len); 2813 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) { 2814 dput(ret); 2815 ret = ERR_PTR(-ENOENT); 2816 } 2817 return ret; 2818 } 2819 EXPORT_SYMBOL(lookup_positive_unlocked); 2820 2821 #ifdef CONFIG_UNIX98_PTYS 2822 int path_pts(struct path *path) 2823 { 2824 /* Find something mounted on "pts" in the same directory as 2825 * the input path. 2826 */ 2827 struct dentry *parent = dget_parent(path->dentry); 2828 struct dentry *child; 2829 struct qstr this = QSTR_INIT("pts", 3); 2830 2831 if (unlikely(!path_connected(path->mnt, parent))) { 2832 dput(parent); 2833 return -ENOENT; 2834 } 2835 dput(path->dentry); 2836 path->dentry = parent; 2837 child = d_hash_and_lookup(parent, &this); 2838 if (!child) 2839 return -ENOENT; 2840 2841 path->dentry = child; 2842 dput(parent); 2843 follow_down(path); 2844 return 0; 2845 } 2846 #endif 2847 2848 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2849 struct path *path, int *empty) 2850 { 2851 struct filename *filename = getname_flags(name, flags, empty); 2852 int ret = filename_lookup(dfd, filename, flags, path, NULL); 2853 2854 putname(filename); 2855 return ret; 2856 } 2857 EXPORT_SYMBOL(user_path_at_empty); 2858 2859 int __check_sticky(struct user_namespace *mnt_userns, struct inode *dir, 2860 struct inode *inode) 2861 { 2862 kuid_t fsuid = current_fsuid(); 2863 2864 if (uid_eq(i_uid_into_mnt(mnt_userns, inode), fsuid)) 2865 return 0; 2866 if (uid_eq(i_uid_into_mnt(mnt_userns, dir), fsuid)) 2867 return 0; 2868 return !capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FOWNER); 2869 } 2870 EXPORT_SYMBOL(__check_sticky); 2871 2872 /* 2873 * Check whether we can remove a link victim from directory dir, check 2874 * whether the type of victim is right. 2875 * 1. We can't do it if dir is read-only (done in permission()) 2876 * 2. We should have write and exec permissions on dir 2877 * 3. We can't remove anything from append-only dir 2878 * 4. We can't do anything with immutable dir (done in permission()) 2879 * 5. If the sticky bit on dir is set we should either 2880 * a. be owner of dir, or 2881 * b. be owner of victim, or 2882 * c. have CAP_FOWNER capability 2883 * 6. If the victim is append-only or immutable we can't do antyhing with 2884 * links pointing to it. 2885 * 7. If the victim has an unknown uid or gid we can't change the inode. 2886 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2887 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2888 * 10. We can't remove a root or mountpoint. 2889 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by 2890 * nfs_async_unlink(). 2891 */ 2892 static int may_delete(struct user_namespace *mnt_userns, struct inode *dir, 2893 struct dentry *victim, bool isdir) 2894 { 2895 struct inode *inode = d_backing_inode(victim); 2896 int error; 2897 2898 if (d_is_negative(victim)) 2899 return -ENOENT; 2900 BUG_ON(!inode); 2901 2902 BUG_ON(victim->d_parent->d_inode != dir); 2903 2904 /* Inode writeback is not safe when the uid or gid are invalid. */ 2905 if (!uid_valid(i_uid_into_mnt(mnt_userns, inode)) || 2906 !gid_valid(i_gid_into_mnt(mnt_userns, inode))) 2907 return -EOVERFLOW; 2908 2909 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2910 2911 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); 2912 if (error) 2913 return error; 2914 if (IS_APPEND(dir)) 2915 return -EPERM; 2916 2917 if (check_sticky(mnt_userns, dir, inode) || IS_APPEND(inode) || 2918 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || 2919 HAS_UNMAPPED_ID(mnt_userns, inode)) 2920 return -EPERM; 2921 if (isdir) { 2922 if (!d_is_dir(victim)) 2923 return -ENOTDIR; 2924 if (IS_ROOT(victim)) 2925 return -EBUSY; 2926 } else if (d_is_dir(victim)) 2927 return -EISDIR; 2928 if (IS_DEADDIR(dir)) 2929 return -ENOENT; 2930 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2931 return -EBUSY; 2932 return 0; 2933 } 2934 2935 /* Check whether we can create an object with dentry child in directory 2936 * dir. 2937 * 1. We can't do it if child already exists (open has special treatment for 2938 * this case, but since we are inlined it's OK) 2939 * 2. We can't do it if dir is read-only (done in permission()) 2940 * 3. We can't do it if the fs can't represent the fsuid or fsgid. 2941 * 4. We should have write and exec permissions on dir 2942 * 5. We can't do it if dir is immutable (done in permission()) 2943 */ 2944 static inline int may_create(struct user_namespace *mnt_userns, 2945 struct inode *dir, struct dentry *child) 2946 { 2947 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 2948 if (child->d_inode) 2949 return -EEXIST; 2950 if (IS_DEADDIR(dir)) 2951 return -ENOENT; 2952 if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns)) 2953 return -EOVERFLOW; 2954 2955 return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); 2956 } 2957 2958 /* 2959 * p1 and p2 should be directories on the same fs. 2960 */ 2961 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2962 { 2963 struct dentry *p; 2964 2965 if (p1 == p2) { 2966 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2967 return NULL; 2968 } 2969 2970 mutex_lock(&p1->d_sb->s_vfs_rename_mutex); 2971 2972 p = d_ancestor(p2, p1); 2973 if (p) { 2974 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 2975 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD); 2976 return p; 2977 } 2978 2979 p = d_ancestor(p1, p2); 2980 if (p) { 2981 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2982 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD); 2983 return p; 2984 } 2985 2986 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2987 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 2988 return NULL; 2989 } 2990 EXPORT_SYMBOL(lock_rename); 2991 2992 void unlock_rename(struct dentry *p1, struct dentry *p2) 2993 { 2994 inode_unlock(p1->d_inode); 2995 if (p1 != p2) { 2996 inode_unlock(p2->d_inode); 2997 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 2998 } 2999 } 3000 EXPORT_SYMBOL(unlock_rename); 3001 3002 /** 3003 * vfs_create - create new file 3004 * @mnt_userns: user namespace of the mount the inode was found from 3005 * @dir: inode of @dentry 3006 * @dentry: pointer to dentry of the base directory 3007 * @mode: mode of the new file 3008 * @want_excl: whether the file must not yet exist 3009 * 3010 * Create a new file. 3011 * 3012 * If the inode has been found through an idmapped mount the user namespace of 3013 * the vfsmount must be passed through @mnt_userns. This function will then take 3014 * care to map the inode according to @mnt_userns before checking permissions. 3015 * On non-idmapped mounts or if permission checking is to be performed on the 3016 * raw inode simply passs init_user_ns. 3017 */ 3018 int vfs_create(struct user_namespace *mnt_userns, struct inode *dir, 3019 struct dentry *dentry, umode_t mode, bool want_excl) 3020 { 3021 int error = may_create(mnt_userns, dir, dentry); 3022 if (error) 3023 return error; 3024 3025 if (!dir->i_op->create) 3026 return -EACCES; /* shouldn't it be ENOSYS? */ 3027 mode &= S_IALLUGO; 3028 mode |= S_IFREG; 3029 error = security_inode_create(dir, dentry, mode); 3030 if (error) 3031 return error; 3032 error = dir->i_op->create(mnt_userns, dir, dentry, mode, want_excl); 3033 if (!error) 3034 fsnotify_create(dir, dentry); 3035 return error; 3036 } 3037 EXPORT_SYMBOL(vfs_create); 3038 3039 int vfs_mkobj(struct dentry *dentry, umode_t mode, 3040 int (*f)(struct dentry *, umode_t, void *), 3041 void *arg) 3042 { 3043 struct inode *dir = dentry->d_parent->d_inode; 3044 int error = may_create(&init_user_ns, dir, dentry); 3045 if (error) 3046 return error; 3047 3048 mode &= S_IALLUGO; 3049 mode |= S_IFREG; 3050 error = security_inode_create(dir, dentry, mode); 3051 if (error) 3052 return error; 3053 error = f(dentry, mode, arg); 3054 if (!error) 3055 fsnotify_create(dir, dentry); 3056 return error; 3057 } 3058 EXPORT_SYMBOL(vfs_mkobj); 3059 3060 bool may_open_dev(const struct path *path) 3061 { 3062 return !(path->mnt->mnt_flags & MNT_NODEV) && 3063 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV); 3064 } 3065 3066 static int may_open(struct user_namespace *mnt_userns, const struct path *path, 3067 int acc_mode, int flag) 3068 { 3069 struct dentry *dentry = path->dentry; 3070 struct inode *inode = dentry->d_inode; 3071 int error; 3072 3073 if (!inode) 3074 return -ENOENT; 3075 3076 switch (inode->i_mode & S_IFMT) { 3077 case S_IFLNK: 3078 return -ELOOP; 3079 case S_IFDIR: 3080 if (acc_mode & MAY_WRITE) 3081 return -EISDIR; 3082 if (acc_mode & MAY_EXEC) 3083 return -EACCES; 3084 break; 3085 case S_IFBLK: 3086 case S_IFCHR: 3087 if (!may_open_dev(path)) 3088 return -EACCES; 3089 fallthrough; 3090 case S_IFIFO: 3091 case S_IFSOCK: 3092 if (acc_mode & MAY_EXEC) 3093 return -EACCES; 3094 flag &= ~O_TRUNC; 3095 break; 3096 case S_IFREG: 3097 if ((acc_mode & MAY_EXEC) && path_noexec(path)) 3098 return -EACCES; 3099 break; 3100 } 3101 3102 error = inode_permission(mnt_userns, inode, MAY_OPEN | acc_mode); 3103 if (error) 3104 return error; 3105 3106 /* 3107 * An append-only file must be opened in append mode for writing. 3108 */ 3109 if (IS_APPEND(inode)) { 3110 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 3111 return -EPERM; 3112 if (flag & O_TRUNC) 3113 return -EPERM; 3114 } 3115 3116 /* O_NOATIME can only be set by the owner or superuser */ 3117 if (flag & O_NOATIME && !inode_owner_or_capable(mnt_userns, inode)) 3118 return -EPERM; 3119 3120 return 0; 3121 } 3122 3123 static int handle_truncate(struct user_namespace *mnt_userns, struct file *filp) 3124 { 3125 const struct path *path = &filp->f_path; 3126 struct inode *inode = path->dentry->d_inode; 3127 int error = get_write_access(inode); 3128 if (error) 3129 return error; 3130 3131 error = security_path_truncate(path); 3132 if (!error) { 3133 error = do_truncate(mnt_userns, path->dentry, 0, 3134 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 3135 filp); 3136 } 3137 put_write_access(inode); 3138 return error; 3139 } 3140 3141 static inline int open_to_namei_flags(int flag) 3142 { 3143 if ((flag & O_ACCMODE) == 3) 3144 flag--; 3145 return flag; 3146 } 3147 3148 static int may_o_create(struct user_namespace *mnt_userns, 3149 const struct path *dir, struct dentry *dentry, 3150 umode_t mode) 3151 { 3152 int error = security_path_mknod(dir, dentry, mode, 0); 3153 if (error) 3154 return error; 3155 3156 if (!fsuidgid_has_mapping(dir->dentry->d_sb, mnt_userns)) 3157 return -EOVERFLOW; 3158 3159 error = inode_permission(mnt_userns, dir->dentry->d_inode, 3160 MAY_WRITE | MAY_EXEC); 3161 if (error) 3162 return error; 3163 3164 return security_inode_create(dir->dentry->d_inode, dentry, mode); 3165 } 3166 3167 /* 3168 * Attempt to atomically look up, create and open a file from a negative 3169 * dentry. 3170 * 3171 * Returns 0 if successful. The file will have been created and attached to 3172 * @file by the filesystem calling finish_open(). 3173 * 3174 * If the file was looked up only or didn't need creating, FMODE_OPENED won't 3175 * be set. The caller will need to perform the open themselves. @path will 3176 * have been updated to point to the new dentry. This may be negative. 3177 * 3178 * Returns an error code otherwise. 3179 */ 3180 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry, 3181 struct file *file, 3182 int open_flag, umode_t mode) 3183 { 3184 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 3185 struct inode *dir = nd->path.dentry->d_inode; 3186 int error; 3187 3188 if (nd->flags & LOOKUP_DIRECTORY) 3189 open_flag |= O_DIRECTORY; 3190 3191 file->f_path.dentry = DENTRY_NOT_SET; 3192 file->f_path.mnt = nd->path.mnt; 3193 error = dir->i_op->atomic_open(dir, dentry, file, 3194 open_to_namei_flags(open_flag), mode); 3195 d_lookup_done(dentry); 3196 if (!error) { 3197 if (file->f_mode & FMODE_OPENED) { 3198 if (unlikely(dentry != file->f_path.dentry)) { 3199 dput(dentry); 3200 dentry = dget(file->f_path.dentry); 3201 } 3202 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 3203 error = -EIO; 3204 } else { 3205 if (file->f_path.dentry) { 3206 dput(dentry); 3207 dentry = file->f_path.dentry; 3208 } 3209 if (unlikely(d_is_negative(dentry))) 3210 error = -ENOENT; 3211 } 3212 } 3213 if (error) { 3214 dput(dentry); 3215 dentry = ERR_PTR(error); 3216 } 3217 return dentry; 3218 } 3219 3220 /* 3221 * Look up and maybe create and open the last component. 3222 * 3223 * Must be called with parent locked (exclusive in O_CREAT case). 3224 * 3225 * Returns 0 on success, that is, if 3226 * the file was successfully atomically created (if necessary) and opened, or 3227 * the file was not completely opened at this time, though lookups and 3228 * creations were performed. 3229 * These case are distinguished by presence of FMODE_OPENED on file->f_mode. 3230 * In the latter case dentry returned in @path might be negative if O_CREAT 3231 * hadn't been specified. 3232 * 3233 * An error code is returned on failure. 3234 */ 3235 static struct dentry *lookup_open(struct nameidata *nd, struct file *file, 3236 const struct open_flags *op, 3237 bool got_write) 3238 { 3239 struct user_namespace *mnt_userns; 3240 struct dentry *dir = nd->path.dentry; 3241 struct inode *dir_inode = dir->d_inode; 3242 int open_flag = op->open_flag; 3243 struct dentry *dentry; 3244 int error, create_error = 0; 3245 umode_t mode = op->mode; 3246 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 3247 3248 if (unlikely(IS_DEADDIR(dir_inode))) 3249 return ERR_PTR(-ENOENT); 3250 3251 file->f_mode &= ~FMODE_CREATED; 3252 dentry = d_lookup(dir, &nd->last); 3253 for (;;) { 3254 if (!dentry) { 3255 dentry = d_alloc_parallel(dir, &nd->last, &wq); 3256 if (IS_ERR(dentry)) 3257 return dentry; 3258 } 3259 if (d_in_lookup(dentry)) 3260 break; 3261 3262 error = d_revalidate(dentry, nd->flags); 3263 if (likely(error > 0)) 3264 break; 3265 if (error) 3266 goto out_dput; 3267 d_invalidate(dentry); 3268 dput(dentry); 3269 dentry = NULL; 3270 } 3271 if (dentry->d_inode) { 3272 /* Cached positive dentry: will open in f_op->open */ 3273 return dentry; 3274 } 3275 3276 /* 3277 * Checking write permission is tricky, bacuse we don't know if we are 3278 * going to actually need it: O_CREAT opens should work as long as the 3279 * file exists. But checking existence breaks atomicity. The trick is 3280 * to check access and if not granted clear O_CREAT from the flags. 3281 * 3282 * Another problem is returing the "right" error value (e.g. for an 3283 * O_EXCL open we want to return EEXIST not EROFS). 3284 */ 3285 if (unlikely(!got_write)) 3286 open_flag &= ~O_TRUNC; 3287 mnt_userns = mnt_user_ns(nd->path.mnt); 3288 if (open_flag & O_CREAT) { 3289 if (open_flag & O_EXCL) 3290 open_flag &= ~O_TRUNC; 3291 if (!IS_POSIXACL(dir->d_inode)) 3292 mode &= ~current_umask(); 3293 if (likely(got_write)) 3294 create_error = may_o_create(mnt_userns, &nd->path, 3295 dentry, mode); 3296 else 3297 create_error = -EROFS; 3298 } 3299 if (create_error) 3300 open_flag &= ~O_CREAT; 3301 if (dir_inode->i_op->atomic_open) { 3302 dentry = atomic_open(nd, dentry, file, open_flag, mode); 3303 if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT)) 3304 dentry = ERR_PTR(create_error); 3305 return dentry; 3306 } 3307 3308 if (d_in_lookup(dentry)) { 3309 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry, 3310 nd->flags); 3311 d_lookup_done(dentry); 3312 if (unlikely(res)) { 3313 if (IS_ERR(res)) { 3314 error = PTR_ERR(res); 3315 goto out_dput; 3316 } 3317 dput(dentry); 3318 dentry = res; 3319 } 3320 } 3321 3322 /* Negative dentry, just create the file */ 3323 if (!dentry->d_inode && (open_flag & O_CREAT)) { 3324 file->f_mode |= FMODE_CREATED; 3325 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE); 3326 if (!dir_inode->i_op->create) { 3327 error = -EACCES; 3328 goto out_dput; 3329 } 3330 3331 error = dir_inode->i_op->create(mnt_userns, dir_inode, dentry, 3332 mode, open_flag & O_EXCL); 3333 if (error) 3334 goto out_dput; 3335 } 3336 if (unlikely(create_error) && !dentry->d_inode) { 3337 error = create_error; 3338 goto out_dput; 3339 } 3340 return dentry; 3341 3342 out_dput: 3343 dput(dentry); 3344 return ERR_PTR(error); 3345 } 3346 3347 static const char *open_last_lookups(struct nameidata *nd, 3348 struct file *file, const struct open_flags *op) 3349 { 3350 struct dentry *dir = nd->path.dentry; 3351 int open_flag = op->open_flag; 3352 bool got_write = false; 3353 unsigned seq; 3354 struct inode *inode; 3355 struct dentry *dentry; 3356 const char *res; 3357 3358 nd->flags |= op->intent; 3359 3360 if (nd->last_type != LAST_NORM) { 3361 if (nd->depth) 3362 put_link(nd); 3363 return handle_dots(nd, nd->last_type); 3364 } 3365 3366 if (!(open_flag & O_CREAT)) { 3367 if (nd->last.name[nd->last.len]) 3368 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 3369 /* we _can_ be in RCU mode here */ 3370 dentry = lookup_fast(nd, &inode, &seq); 3371 if (IS_ERR(dentry)) 3372 return ERR_CAST(dentry); 3373 if (likely(dentry)) 3374 goto finish_lookup; 3375 3376 BUG_ON(nd->flags & LOOKUP_RCU); 3377 } else { 3378 /* create side of things */ 3379 if (nd->flags & LOOKUP_RCU) { 3380 if (!try_to_unlazy(nd)) 3381 return ERR_PTR(-ECHILD); 3382 } 3383 audit_inode(nd->name, dir, AUDIT_INODE_PARENT); 3384 /* trailing slashes? */ 3385 if (unlikely(nd->last.name[nd->last.len])) 3386 return ERR_PTR(-EISDIR); 3387 } 3388 3389 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 3390 got_write = !mnt_want_write(nd->path.mnt); 3391 /* 3392 * do _not_ fail yet - we might not need that or fail with 3393 * a different error; let lookup_open() decide; we'll be 3394 * dropping this one anyway. 3395 */ 3396 } 3397 if (open_flag & O_CREAT) 3398 inode_lock(dir->d_inode); 3399 else 3400 inode_lock_shared(dir->d_inode); 3401 dentry = lookup_open(nd, file, op, got_write); 3402 if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED)) 3403 fsnotify_create(dir->d_inode, dentry); 3404 if (open_flag & O_CREAT) 3405 inode_unlock(dir->d_inode); 3406 else 3407 inode_unlock_shared(dir->d_inode); 3408 3409 if (got_write) 3410 mnt_drop_write(nd->path.mnt); 3411 3412 if (IS_ERR(dentry)) 3413 return ERR_CAST(dentry); 3414 3415 if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) { 3416 dput(nd->path.dentry); 3417 nd->path.dentry = dentry; 3418 return NULL; 3419 } 3420 3421 finish_lookup: 3422 if (nd->depth) 3423 put_link(nd); 3424 res = step_into(nd, WALK_TRAILING, dentry, inode, seq); 3425 if (unlikely(res)) 3426 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3427 return res; 3428 } 3429 3430 /* 3431 * Handle the last step of open() 3432 */ 3433 static int do_open(struct nameidata *nd, 3434 struct file *file, const struct open_flags *op) 3435 { 3436 struct user_namespace *mnt_userns; 3437 int open_flag = op->open_flag; 3438 bool do_truncate; 3439 int acc_mode; 3440 int error; 3441 3442 if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) { 3443 error = complete_walk(nd); 3444 if (error) 3445 return error; 3446 } 3447 if (!(file->f_mode & FMODE_CREATED)) 3448 audit_inode(nd->name, nd->path.dentry, 0); 3449 mnt_userns = mnt_user_ns(nd->path.mnt); 3450 if (open_flag & O_CREAT) { 3451 if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED)) 3452 return -EEXIST; 3453 if (d_is_dir(nd->path.dentry)) 3454 return -EISDIR; 3455 error = may_create_in_sticky(mnt_userns, nd, 3456 d_backing_inode(nd->path.dentry)); 3457 if (unlikely(error)) 3458 return error; 3459 } 3460 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3461 return -ENOTDIR; 3462 3463 do_truncate = false; 3464 acc_mode = op->acc_mode; 3465 if (file->f_mode & FMODE_CREATED) { 3466 /* Don't check for write permission, don't truncate */ 3467 open_flag &= ~O_TRUNC; 3468 acc_mode = 0; 3469 } else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) { 3470 error = mnt_want_write(nd->path.mnt); 3471 if (error) 3472 return error; 3473 do_truncate = true; 3474 } 3475 error = may_open(mnt_userns, &nd->path, acc_mode, open_flag); 3476 if (!error && !(file->f_mode & FMODE_OPENED)) 3477 error = vfs_open(&nd->path, file); 3478 if (!error) 3479 error = ima_file_check(file, op->acc_mode); 3480 if (!error && do_truncate) 3481 error = handle_truncate(mnt_userns, file); 3482 if (unlikely(error > 0)) { 3483 WARN_ON(1); 3484 error = -EINVAL; 3485 } 3486 if (do_truncate) 3487 mnt_drop_write(nd->path.mnt); 3488 return error; 3489 } 3490 3491 /** 3492 * vfs_tmpfile - create tmpfile 3493 * @mnt_userns: user namespace of the mount the inode was found from 3494 * @dentry: pointer to dentry of the base directory 3495 * @mode: mode of the new tmpfile 3496 * @open_flag: flags 3497 * 3498 * Create a temporary file. 3499 * 3500 * If the inode has been found through an idmapped mount the user namespace of 3501 * the vfsmount must be passed through @mnt_userns. This function will then take 3502 * care to map the inode according to @mnt_userns before checking permissions. 3503 * On non-idmapped mounts or if permission checking is to be performed on the 3504 * raw inode simply passs init_user_ns. 3505 */ 3506 struct dentry *vfs_tmpfile(struct user_namespace *mnt_userns, 3507 struct dentry *dentry, umode_t mode, int open_flag) 3508 { 3509 struct dentry *child = NULL; 3510 struct inode *dir = dentry->d_inode; 3511 struct inode *inode; 3512 int error; 3513 3514 /* we want directory to be writable */ 3515 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); 3516 if (error) 3517 goto out_err; 3518 error = -EOPNOTSUPP; 3519 if (!dir->i_op->tmpfile) 3520 goto out_err; 3521 error = -ENOMEM; 3522 child = d_alloc(dentry, &slash_name); 3523 if (unlikely(!child)) 3524 goto out_err; 3525 error = dir->i_op->tmpfile(mnt_userns, dir, child, mode); 3526 if (error) 3527 goto out_err; 3528 error = -ENOENT; 3529 inode = child->d_inode; 3530 if (unlikely(!inode)) 3531 goto out_err; 3532 if (!(open_flag & O_EXCL)) { 3533 spin_lock(&inode->i_lock); 3534 inode->i_state |= I_LINKABLE; 3535 spin_unlock(&inode->i_lock); 3536 } 3537 ima_post_create_tmpfile(mnt_userns, inode); 3538 return child; 3539 3540 out_err: 3541 dput(child); 3542 return ERR_PTR(error); 3543 } 3544 EXPORT_SYMBOL(vfs_tmpfile); 3545 3546 static int do_tmpfile(struct nameidata *nd, unsigned flags, 3547 const struct open_flags *op, 3548 struct file *file) 3549 { 3550 struct user_namespace *mnt_userns; 3551 struct dentry *child; 3552 struct path path; 3553 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path); 3554 if (unlikely(error)) 3555 return error; 3556 error = mnt_want_write(path.mnt); 3557 if (unlikely(error)) 3558 goto out; 3559 mnt_userns = mnt_user_ns(path.mnt); 3560 child = vfs_tmpfile(mnt_userns, path.dentry, op->mode, op->open_flag); 3561 error = PTR_ERR(child); 3562 if (IS_ERR(child)) 3563 goto out2; 3564 dput(path.dentry); 3565 path.dentry = child; 3566 audit_inode(nd->name, child, 0); 3567 /* Don't check for other permissions, the inode was just created */ 3568 error = may_open(mnt_userns, &path, 0, op->open_flag); 3569 if (!error) 3570 error = vfs_open(&path, file); 3571 out2: 3572 mnt_drop_write(path.mnt); 3573 out: 3574 path_put(&path); 3575 return error; 3576 } 3577 3578 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file) 3579 { 3580 struct path path; 3581 int error = path_lookupat(nd, flags, &path); 3582 if (!error) { 3583 audit_inode(nd->name, path.dentry, 0); 3584 error = vfs_open(&path, file); 3585 path_put(&path); 3586 } 3587 return error; 3588 } 3589 3590 static struct file *path_openat(struct nameidata *nd, 3591 const struct open_flags *op, unsigned flags) 3592 { 3593 struct file *file; 3594 int error; 3595 3596 file = alloc_empty_file(op->open_flag, current_cred()); 3597 if (IS_ERR(file)) 3598 return file; 3599 3600 if (unlikely(file->f_flags & __O_TMPFILE)) { 3601 error = do_tmpfile(nd, flags, op, file); 3602 } else if (unlikely(file->f_flags & O_PATH)) { 3603 error = do_o_path(nd, flags, file); 3604 } else { 3605 const char *s = path_init(nd, flags); 3606 while (!(error = link_path_walk(s, nd)) && 3607 (s = open_last_lookups(nd, file, op)) != NULL) 3608 ; 3609 if (!error) 3610 error = do_open(nd, file, op); 3611 terminate_walk(nd); 3612 } 3613 if (likely(!error)) { 3614 if (likely(file->f_mode & FMODE_OPENED)) 3615 return file; 3616 WARN_ON(1); 3617 error = -EINVAL; 3618 } 3619 fput(file); 3620 if (error == -EOPENSTALE) { 3621 if (flags & LOOKUP_RCU) 3622 error = -ECHILD; 3623 else 3624 error = -ESTALE; 3625 } 3626 return ERR_PTR(error); 3627 } 3628 3629 struct file *do_filp_open(int dfd, struct filename *pathname, 3630 const struct open_flags *op) 3631 { 3632 struct nameidata nd; 3633 int flags = op->lookup_flags; 3634 struct file *filp; 3635 3636 set_nameidata(&nd, dfd, pathname, NULL); 3637 filp = path_openat(&nd, op, flags | LOOKUP_RCU); 3638 if (unlikely(filp == ERR_PTR(-ECHILD))) 3639 filp = path_openat(&nd, op, flags); 3640 if (unlikely(filp == ERR_PTR(-ESTALE))) 3641 filp = path_openat(&nd, op, flags | LOOKUP_REVAL); 3642 restore_nameidata(); 3643 return filp; 3644 } 3645 3646 struct file *do_file_open_root(const struct path *root, 3647 const char *name, const struct open_flags *op) 3648 { 3649 struct nameidata nd; 3650 struct file *file; 3651 struct filename *filename; 3652 int flags = op->lookup_flags; 3653 3654 if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN) 3655 return ERR_PTR(-ELOOP); 3656 3657 filename = getname_kernel(name); 3658 if (IS_ERR(filename)) 3659 return ERR_CAST(filename); 3660 3661 set_nameidata(&nd, -1, filename, root); 3662 file = path_openat(&nd, op, flags | LOOKUP_RCU); 3663 if (unlikely(file == ERR_PTR(-ECHILD))) 3664 file = path_openat(&nd, op, flags); 3665 if (unlikely(file == ERR_PTR(-ESTALE))) 3666 file = path_openat(&nd, op, flags | LOOKUP_REVAL); 3667 restore_nameidata(); 3668 putname(filename); 3669 return file; 3670 } 3671 3672 static struct dentry *filename_create(int dfd, struct filename *name, 3673 struct path *path, unsigned int lookup_flags) 3674 { 3675 struct dentry *dentry = ERR_PTR(-EEXIST); 3676 struct qstr last; 3677 bool want_dir = lookup_flags & LOOKUP_DIRECTORY; 3678 unsigned int reval_flag = lookup_flags & LOOKUP_REVAL; 3679 unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL; 3680 int type; 3681 int err2; 3682 int error; 3683 3684 error = filename_parentat(dfd, name, reval_flag, path, &last, &type); 3685 if (error) 3686 return ERR_PTR(error); 3687 3688 /* 3689 * Yucky last component or no last component at all? 3690 * (foo/., foo/.., /////) 3691 */ 3692 if (unlikely(type != LAST_NORM)) 3693 goto out; 3694 3695 /* don't fail immediately if it's r/o, at least try to report other errors */ 3696 err2 = mnt_want_write(path->mnt); 3697 /* 3698 * Do the final lookup. Suppress 'create' if there is a trailing 3699 * '/', and a directory wasn't requested. 3700 */ 3701 if (last.name[last.len] && !want_dir) 3702 create_flags = 0; 3703 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 3704 dentry = __lookup_hash(&last, path->dentry, reval_flag | create_flags); 3705 if (IS_ERR(dentry)) 3706 goto unlock; 3707 3708 error = -EEXIST; 3709 if (d_is_positive(dentry)) 3710 goto fail; 3711 3712 /* 3713 * Special case - lookup gave negative, but... we had foo/bar/ 3714 * From the vfs_mknod() POV we just have a negative dentry - 3715 * all is fine. Let's be bastards - you had / on the end, you've 3716 * been asking for (non-existent) directory. -ENOENT for you. 3717 */ 3718 if (unlikely(!create_flags)) { 3719 error = -ENOENT; 3720 goto fail; 3721 } 3722 if (unlikely(err2)) { 3723 error = err2; 3724 goto fail; 3725 } 3726 return dentry; 3727 fail: 3728 dput(dentry); 3729 dentry = ERR_PTR(error); 3730 unlock: 3731 inode_unlock(path->dentry->d_inode); 3732 if (!err2) 3733 mnt_drop_write(path->mnt); 3734 out: 3735 path_put(path); 3736 return dentry; 3737 } 3738 3739 struct dentry *kern_path_create(int dfd, const char *pathname, 3740 struct path *path, unsigned int lookup_flags) 3741 { 3742 struct filename *filename = getname_kernel(pathname); 3743 struct dentry *res = filename_create(dfd, filename, path, lookup_flags); 3744 3745 putname(filename); 3746 return res; 3747 } 3748 EXPORT_SYMBOL(kern_path_create); 3749 3750 void done_path_create(struct path *path, struct dentry *dentry) 3751 { 3752 dput(dentry); 3753 inode_unlock(path->dentry->d_inode); 3754 mnt_drop_write(path->mnt); 3755 path_put(path); 3756 } 3757 EXPORT_SYMBOL(done_path_create); 3758 3759 inline struct dentry *user_path_create(int dfd, const char __user *pathname, 3760 struct path *path, unsigned int lookup_flags) 3761 { 3762 struct filename *filename = getname(pathname); 3763 struct dentry *res = filename_create(dfd, filename, path, lookup_flags); 3764 3765 putname(filename); 3766 return res; 3767 } 3768 EXPORT_SYMBOL(user_path_create); 3769 3770 /** 3771 * vfs_mknod - create device node or file 3772 * @mnt_userns: user namespace of the mount the inode was found from 3773 * @dir: inode of @dentry 3774 * @dentry: pointer to dentry of the base directory 3775 * @mode: mode of the new device node or file 3776 * @dev: device number of device to create 3777 * 3778 * Create a device node or file. 3779 * 3780 * If the inode has been found through an idmapped mount the user namespace of 3781 * the vfsmount must be passed through @mnt_userns. This function will then take 3782 * care to map the inode according to @mnt_userns before checking permissions. 3783 * On non-idmapped mounts or if permission checking is to be performed on the 3784 * raw inode simply passs init_user_ns. 3785 */ 3786 int vfs_mknod(struct user_namespace *mnt_userns, struct inode *dir, 3787 struct dentry *dentry, umode_t mode, dev_t dev) 3788 { 3789 bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV; 3790 int error = may_create(mnt_userns, dir, dentry); 3791 3792 if (error) 3793 return error; 3794 3795 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout && 3796 !capable(CAP_MKNOD)) 3797 return -EPERM; 3798 3799 if (!dir->i_op->mknod) 3800 return -EPERM; 3801 3802 error = devcgroup_inode_mknod(mode, dev); 3803 if (error) 3804 return error; 3805 3806 error = security_inode_mknod(dir, dentry, mode, dev); 3807 if (error) 3808 return error; 3809 3810 error = dir->i_op->mknod(mnt_userns, dir, dentry, mode, dev); 3811 if (!error) 3812 fsnotify_create(dir, dentry); 3813 return error; 3814 } 3815 EXPORT_SYMBOL(vfs_mknod); 3816 3817 static int may_mknod(umode_t mode) 3818 { 3819 switch (mode & S_IFMT) { 3820 case S_IFREG: 3821 case S_IFCHR: 3822 case S_IFBLK: 3823 case S_IFIFO: 3824 case S_IFSOCK: 3825 case 0: /* zero mode translates to S_IFREG */ 3826 return 0; 3827 case S_IFDIR: 3828 return -EPERM; 3829 default: 3830 return -EINVAL; 3831 } 3832 } 3833 3834 static int do_mknodat(int dfd, struct filename *name, umode_t mode, 3835 unsigned int dev) 3836 { 3837 struct user_namespace *mnt_userns; 3838 struct dentry *dentry; 3839 struct path path; 3840 int error; 3841 unsigned int lookup_flags = 0; 3842 3843 error = may_mknod(mode); 3844 if (error) 3845 goto out1; 3846 retry: 3847 dentry = filename_create(dfd, name, &path, lookup_flags); 3848 error = PTR_ERR(dentry); 3849 if (IS_ERR(dentry)) 3850 goto out1; 3851 3852 if (!IS_POSIXACL(path.dentry->d_inode)) 3853 mode &= ~current_umask(); 3854 error = security_path_mknod(&path, dentry, mode, dev); 3855 if (error) 3856 goto out2; 3857 3858 mnt_userns = mnt_user_ns(path.mnt); 3859 switch (mode & S_IFMT) { 3860 case 0: case S_IFREG: 3861 error = vfs_create(mnt_userns, path.dentry->d_inode, 3862 dentry, mode, true); 3863 if (!error) 3864 ima_post_path_mknod(mnt_userns, dentry); 3865 break; 3866 case S_IFCHR: case S_IFBLK: 3867 error = vfs_mknod(mnt_userns, path.dentry->d_inode, 3868 dentry, mode, new_decode_dev(dev)); 3869 break; 3870 case S_IFIFO: case S_IFSOCK: 3871 error = vfs_mknod(mnt_userns, path.dentry->d_inode, 3872 dentry, mode, 0); 3873 break; 3874 } 3875 out2: 3876 done_path_create(&path, dentry); 3877 if (retry_estale(error, lookup_flags)) { 3878 lookup_flags |= LOOKUP_REVAL; 3879 goto retry; 3880 } 3881 out1: 3882 putname(name); 3883 return error; 3884 } 3885 3886 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3887 unsigned int, dev) 3888 { 3889 return do_mknodat(dfd, getname(filename), mode, dev); 3890 } 3891 3892 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3893 { 3894 return do_mknodat(AT_FDCWD, getname(filename), mode, dev); 3895 } 3896 3897 /** 3898 * vfs_mkdir - create directory 3899 * @mnt_userns: user namespace of the mount the inode was found from 3900 * @dir: inode of @dentry 3901 * @dentry: pointer to dentry of the base directory 3902 * @mode: mode of the new directory 3903 * 3904 * Create a directory. 3905 * 3906 * If the inode has been found through an idmapped mount the user namespace of 3907 * the vfsmount must be passed through @mnt_userns. This function will then take 3908 * care to map the inode according to @mnt_userns before checking permissions. 3909 * On non-idmapped mounts or if permission checking is to be performed on the 3910 * raw inode simply passs init_user_ns. 3911 */ 3912 int vfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 3913 struct dentry *dentry, umode_t mode) 3914 { 3915 int error = may_create(mnt_userns, dir, dentry); 3916 unsigned max_links = dir->i_sb->s_max_links; 3917 3918 if (error) 3919 return error; 3920 3921 if (!dir->i_op->mkdir) 3922 return -EPERM; 3923 3924 mode &= (S_IRWXUGO|S_ISVTX); 3925 error = security_inode_mkdir(dir, dentry, mode); 3926 if (error) 3927 return error; 3928 3929 if (max_links && dir->i_nlink >= max_links) 3930 return -EMLINK; 3931 3932 error = dir->i_op->mkdir(mnt_userns, dir, dentry, mode); 3933 if (!error) 3934 fsnotify_mkdir(dir, dentry); 3935 return error; 3936 } 3937 EXPORT_SYMBOL(vfs_mkdir); 3938 3939 int do_mkdirat(int dfd, struct filename *name, umode_t mode) 3940 { 3941 struct dentry *dentry; 3942 struct path path; 3943 int error; 3944 unsigned int lookup_flags = LOOKUP_DIRECTORY; 3945 3946 retry: 3947 dentry = filename_create(dfd, name, &path, lookup_flags); 3948 error = PTR_ERR(dentry); 3949 if (IS_ERR(dentry)) 3950 goto out_putname; 3951 3952 if (!IS_POSIXACL(path.dentry->d_inode)) 3953 mode &= ~current_umask(); 3954 error = security_path_mkdir(&path, dentry, mode); 3955 if (!error) { 3956 struct user_namespace *mnt_userns; 3957 mnt_userns = mnt_user_ns(path.mnt); 3958 error = vfs_mkdir(mnt_userns, path.dentry->d_inode, dentry, 3959 mode); 3960 } 3961 done_path_create(&path, dentry); 3962 if (retry_estale(error, lookup_flags)) { 3963 lookup_flags |= LOOKUP_REVAL; 3964 goto retry; 3965 } 3966 out_putname: 3967 putname(name); 3968 return error; 3969 } 3970 3971 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 3972 { 3973 return do_mkdirat(dfd, getname(pathname), mode); 3974 } 3975 3976 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 3977 { 3978 return do_mkdirat(AT_FDCWD, getname(pathname), mode); 3979 } 3980 3981 /** 3982 * vfs_rmdir - remove directory 3983 * @mnt_userns: user namespace of the mount the inode was found from 3984 * @dir: inode of @dentry 3985 * @dentry: pointer to dentry of the base directory 3986 * 3987 * Remove a directory. 3988 * 3989 * If the inode has been found through an idmapped mount the user namespace of 3990 * the vfsmount must be passed through @mnt_userns. This function will then take 3991 * care to map the inode according to @mnt_userns before checking permissions. 3992 * On non-idmapped mounts or if permission checking is to be performed on the 3993 * raw inode simply passs init_user_ns. 3994 */ 3995 int vfs_rmdir(struct user_namespace *mnt_userns, struct inode *dir, 3996 struct dentry *dentry) 3997 { 3998 int error = may_delete(mnt_userns, dir, dentry, 1); 3999 4000 if (error) 4001 return error; 4002 4003 if (!dir->i_op->rmdir) 4004 return -EPERM; 4005 4006 dget(dentry); 4007 inode_lock(dentry->d_inode); 4008 4009 error = -EBUSY; 4010 if (is_local_mountpoint(dentry) || 4011 (dentry->d_inode->i_flags & S_KERNEL_FILE)) 4012 goto out; 4013 4014 error = security_inode_rmdir(dir, dentry); 4015 if (error) 4016 goto out; 4017 4018 error = dir->i_op->rmdir(dir, dentry); 4019 if (error) 4020 goto out; 4021 4022 shrink_dcache_parent(dentry); 4023 dentry->d_inode->i_flags |= S_DEAD; 4024 dont_mount(dentry); 4025 detach_mounts(dentry); 4026 4027 out: 4028 inode_unlock(dentry->d_inode); 4029 dput(dentry); 4030 if (!error) 4031 d_delete_notify(dir, dentry); 4032 return error; 4033 } 4034 EXPORT_SYMBOL(vfs_rmdir); 4035 4036 int do_rmdir(int dfd, struct filename *name) 4037 { 4038 struct user_namespace *mnt_userns; 4039 int error; 4040 struct dentry *dentry; 4041 struct path path; 4042 struct qstr last; 4043 int type; 4044 unsigned int lookup_flags = 0; 4045 retry: 4046 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 4047 if (error) 4048 goto exit1; 4049 4050 switch (type) { 4051 case LAST_DOTDOT: 4052 error = -ENOTEMPTY; 4053 goto exit2; 4054 case LAST_DOT: 4055 error = -EINVAL; 4056 goto exit2; 4057 case LAST_ROOT: 4058 error = -EBUSY; 4059 goto exit2; 4060 } 4061 4062 error = mnt_want_write(path.mnt); 4063 if (error) 4064 goto exit2; 4065 4066 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4067 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 4068 error = PTR_ERR(dentry); 4069 if (IS_ERR(dentry)) 4070 goto exit3; 4071 if (!dentry->d_inode) { 4072 error = -ENOENT; 4073 goto exit4; 4074 } 4075 error = security_path_rmdir(&path, dentry); 4076 if (error) 4077 goto exit4; 4078 mnt_userns = mnt_user_ns(path.mnt); 4079 error = vfs_rmdir(mnt_userns, path.dentry->d_inode, dentry); 4080 exit4: 4081 dput(dentry); 4082 exit3: 4083 inode_unlock(path.dentry->d_inode); 4084 mnt_drop_write(path.mnt); 4085 exit2: 4086 path_put(&path); 4087 if (retry_estale(error, lookup_flags)) { 4088 lookup_flags |= LOOKUP_REVAL; 4089 goto retry; 4090 } 4091 exit1: 4092 putname(name); 4093 return error; 4094 } 4095 4096 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 4097 { 4098 return do_rmdir(AT_FDCWD, getname(pathname)); 4099 } 4100 4101 /** 4102 * vfs_unlink - unlink a filesystem object 4103 * @mnt_userns: user namespace of the mount the inode was found from 4104 * @dir: parent directory 4105 * @dentry: victim 4106 * @delegated_inode: returns victim inode, if the inode is delegated. 4107 * 4108 * The caller must hold dir->i_mutex. 4109 * 4110 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 4111 * return a reference to the inode in delegated_inode. The caller 4112 * should then break the delegation on that inode and retry. Because 4113 * breaking a delegation may take a long time, the caller should drop 4114 * dir->i_mutex before doing so. 4115 * 4116 * Alternatively, a caller may pass NULL for delegated_inode. This may 4117 * be appropriate for callers that expect the underlying filesystem not 4118 * to be NFS exported. 4119 * 4120 * If the inode has been found through an idmapped mount the user namespace of 4121 * the vfsmount must be passed through @mnt_userns. This function will then take 4122 * care to map the inode according to @mnt_userns before checking permissions. 4123 * On non-idmapped mounts or if permission checking is to be performed on the 4124 * raw inode simply passs init_user_ns. 4125 */ 4126 int vfs_unlink(struct user_namespace *mnt_userns, struct inode *dir, 4127 struct dentry *dentry, struct inode **delegated_inode) 4128 { 4129 struct inode *target = dentry->d_inode; 4130 int error = may_delete(mnt_userns, dir, dentry, 0); 4131 4132 if (error) 4133 return error; 4134 4135 if (!dir->i_op->unlink) 4136 return -EPERM; 4137 4138 inode_lock(target); 4139 if (IS_SWAPFILE(target)) 4140 error = -EPERM; 4141 else if (is_local_mountpoint(dentry)) 4142 error = -EBUSY; 4143 else { 4144 error = security_inode_unlink(dir, dentry); 4145 if (!error) { 4146 error = try_break_deleg(target, delegated_inode); 4147 if (error) 4148 goto out; 4149 error = dir->i_op->unlink(dir, dentry); 4150 if (!error) { 4151 dont_mount(dentry); 4152 detach_mounts(dentry); 4153 } 4154 } 4155 } 4156 out: 4157 inode_unlock(target); 4158 4159 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 4160 if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) { 4161 fsnotify_unlink(dir, dentry); 4162 } else if (!error) { 4163 fsnotify_link_count(target); 4164 d_delete_notify(dir, dentry); 4165 } 4166 4167 return error; 4168 } 4169 EXPORT_SYMBOL(vfs_unlink); 4170 4171 /* 4172 * Make sure that the actual truncation of the file will occur outside its 4173 * directory's i_mutex. Truncate can take a long time if there is a lot of 4174 * writeout happening, and we don't want to prevent access to the directory 4175 * while waiting on the I/O. 4176 */ 4177 int do_unlinkat(int dfd, struct filename *name) 4178 { 4179 int error; 4180 struct dentry *dentry; 4181 struct path path; 4182 struct qstr last; 4183 int type; 4184 struct inode *inode = NULL; 4185 struct inode *delegated_inode = NULL; 4186 unsigned int lookup_flags = 0; 4187 retry: 4188 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 4189 if (error) 4190 goto exit1; 4191 4192 error = -EISDIR; 4193 if (type != LAST_NORM) 4194 goto exit2; 4195 4196 error = mnt_want_write(path.mnt); 4197 if (error) 4198 goto exit2; 4199 retry_deleg: 4200 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4201 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 4202 error = PTR_ERR(dentry); 4203 if (!IS_ERR(dentry)) { 4204 struct user_namespace *mnt_userns; 4205 4206 /* Why not before? Because we want correct error value */ 4207 if (last.name[last.len]) 4208 goto slashes; 4209 inode = dentry->d_inode; 4210 if (d_is_negative(dentry)) 4211 goto slashes; 4212 ihold(inode); 4213 error = security_path_unlink(&path, dentry); 4214 if (error) 4215 goto exit3; 4216 mnt_userns = mnt_user_ns(path.mnt); 4217 error = vfs_unlink(mnt_userns, path.dentry->d_inode, dentry, 4218 &delegated_inode); 4219 exit3: 4220 dput(dentry); 4221 } 4222 inode_unlock(path.dentry->d_inode); 4223 if (inode) 4224 iput(inode); /* truncate the inode here */ 4225 inode = NULL; 4226 if (delegated_inode) { 4227 error = break_deleg_wait(&delegated_inode); 4228 if (!error) 4229 goto retry_deleg; 4230 } 4231 mnt_drop_write(path.mnt); 4232 exit2: 4233 path_put(&path); 4234 if (retry_estale(error, lookup_flags)) { 4235 lookup_flags |= LOOKUP_REVAL; 4236 inode = NULL; 4237 goto retry; 4238 } 4239 exit1: 4240 putname(name); 4241 return error; 4242 4243 slashes: 4244 if (d_is_negative(dentry)) 4245 error = -ENOENT; 4246 else if (d_is_dir(dentry)) 4247 error = -EISDIR; 4248 else 4249 error = -ENOTDIR; 4250 goto exit3; 4251 } 4252 4253 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 4254 { 4255 if ((flag & ~AT_REMOVEDIR) != 0) 4256 return -EINVAL; 4257 4258 if (flag & AT_REMOVEDIR) 4259 return do_rmdir(dfd, getname(pathname)); 4260 return do_unlinkat(dfd, getname(pathname)); 4261 } 4262 4263 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 4264 { 4265 return do_unlinkat(AT_FDCWD, getname(pathname)); 4266 } 4267 4268 /** 4269 * vfs_symlink - create symlink 4270 * @mnt_userns: user namespace of the mount the inode was found from 4271 * @dir: inode of @dentry 4272 * @dentry: pointer to dentry of the base directory 4273 * @oldname: name of the file to link to 4274 * 4275 * Create a symlink. 4276 * 4277 * If the inode has been found through an idmapped mount the user namespace of 4278 * the vfsmount must be passed through @mnt_userns. This function will then take 4279 * care to map the inode according to @mnt_userns before checking permissions. 4280 * On non-idmapped mounts or if permission checking is to be performed on the 4281 * raw inode simply passs init_user_ns. 4282 */ 4283 int vfs_symlink(struct user_namespace *mnt_userns, struct inode *dir, 4284 struct dentry *dentry, const char *oldname) 4285 { 4286 int error = may_create(mnt_userns, dir, dentry); 4287 4288 if (error) 4289 return error; 4290 4291 if (!dir->i_op->symlink) 4292 return -EPERM; 4293 4294 error = security_inode_symlink(dir, dentry, oldname); 4295 if (error) 4296 return error; 4297 4298 error = dir->i_op->symlink(mnt_userns, dir, dentry, oldname); 4299 if (!error) 4300 fsnotify_create(dir, dentry); 4301 return error; 4302 } 4303 EXPORT_SYMBOL(vfs_symlink); 4304 4305 int do_symlinkat(struct filename *from, int newdfd, struct filename *to) 4306 { 4307 int error; 4308 struct dentry *dentry; 4309 struct path path; 4310 unsigned int lookup_flags = 0; 4311 4312 if (IS_ERR(from)) { 4313 error = PTR_ERR(from); 4314 goto out_putnames; 4315 } 4316 retry: 4317 dentry = filename_create(newdfd, to, &path, lookup_flags); 4318 error = PTR_ERR(dentry); 4319 if (IS_ERR(dentry)) 4320 goto out_putnames; 4321 4322 error = security_path_symlink(&path, dentry, from->name); 4323 if (!error) { 4324 struct user_namespace *mnt_userns; 4325 4326 mnt_userns = mnt_user_ns(path.mnt); 4327 error = vfs_symlink(mnt_userns, path.dentry->d_inode, dentry, 4328 from->name); 4329 } 4330 done_path_create(&path, dentry); 4331 if (retry_estale(error, lookup_flags)) { 4332 lookup_flags |= LOOKUP_REVAL; 4333 goto retry; 4334 } 4335 out_putnames: 4336 putname(to); 4337 putname(from); 4338 return error; 4339 } 4340 4341 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 4342 int, newdfd, const char __user *, newname) 4343 { 4344 return do_symlinkat(getname(oldname), newdfd, getname(newname)); 4345 } 4346 4347 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 4348 { 4349 return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname)); 4350 } 4351 4352 /** 4353 * vfs_link - create a new link 4354 * @old_dentry: object to be linked 4355 * @mnt_userns: the user namespace of the mount 4356 * @dir: new parent 4357 * @new_dentry: where to create the new link 4358 * @delegated_inode: returns inode needing a delegation break 4359 * 4360 * The caller must hold dir->i_mutex 4361 * 4362 * If vfs_link discovers a delegation on the to-be-linked file in need 4363 * of breaking, it will return -EWOULDBLOCK and return a reference to the 4364 * inode in delegated_inode. The caller should then break the delegation 4365 * and retry. Because breaking a delegation may take a long time, the 4366 * caller should drop the i_mutex before doing so. 4367 * 4368 * Alternatively, a caller may pass NULL for delegated_inode. This may 4369 * be appropriate for callers that expect the underlying filesystem not 4370 * to be NFS exported. 4371 * 4372 * If the inode has been found through an idmapped mount the user namespace of 4373 * the vfsmount must be passed through @mnt_userns. This function will then take 4374 * care to map the inode according to @mnt_userns before checking permissions. 4375 * On non-idmapped mounts or if permission checking is to be performed on the 4376 * raw inode simply passs init_user_ns. 4377 */ 4378 int vfs_link(struct dentry *old_dentry, struct user_namespace *mnt_userns, 4379 struct inode *dir, struct dentry *new_dentry, 4380 struct inode **delegated_inode) 4381 { 4382 struct inode *inode = old_dentry->d_inode; 4383 unsigned max_links = dir->i_sb->s_max_links; 4384 int error; 4385 4386 if (!inode) 4387 return -ENOENT; 4388 4389 error = may_create(mnt_userns, dir, new_dentry); 4390 if (error) 4391 return error; 4392 4393 if (dir->i_sb != inode->i_sb) 4394 return -EXDEV; 4395 4396 /* 4397 * A link to an append-only or immutable file cannot be created. 4398 */ 4399 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4400 return -EPERM; 4401 /* 4402 * Updating the link count will likely cause i_uid and i_gid to 4403 * be writen back improperly if their true value is unknown to 4404 * the vfs. 4405 */ 4406 if (HAS_UNMAPPED_ID(mnt_userns, inode)) 4407 return -EPERM; 4408 if (!dir->i_op->link) 4409 return -EPERM; 4410 if (S_ISDIR(inode->i_mode)) 4411 return -EPERM; 4412 4413 error = security_inode_link(old_dentry, dir, new_dentry); 4414 if (error) 4415 return error; 4416 4417 inode_lock(inode); 4418 /* Make sure we don't allow creating hardlink to an unlinked file */ 4419 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 4420 error = -ENOENT; 4421 else if (max_links && inode->i_nlink >= max_links) 4422 error = -EMLINK; 4423 else { 4424 error = try_break_deleg(inode, delegated_inode); 4425 if (!error) 4426 error = dir->i_op->link(old_dentry, dir, new_dentry); 4427 } 4428 4429 if (!error && (inode->i_state & I_LINKABLE)) { 4430 spin_lock(&inode->i_lock); 4431 inode->i_state &= ~I_LINKABLE; 4432 spin_unlock(&inode->i_lock); 4433 } 4434 inode_unlock(inode); 4435 if (!error) 4436 fsnotify_link(dir, inode, new_dentry); 4437 return error; 4438 } 4439 EXPORT_SYMBOL(vfs_link); 4440 4441 /* 4442 * Hardlinks are often used in delicate situations. We avoid 4443 * security-related surprises by not following symlinks on the 4444 * newname. --KAB 4445 * 4446 * We don't follow them on the oldname either to be compatible 4447 * with linux 2.0, and to avoid hard-linking to directories 4448 * and other special files. --ADM 4449 */ 4450 int do_linkat(int olddfd, struct filename *old, int newdfd, 4451 struct filename *new, int flags) 4452 { 4453 struct user_namespace *mnt_userns; 4454 struct dentry *new_dentry; 4455 struct path old_path, new_path; 4456 struct inode *delegated_inode = NULL; 4457 int how = 0; 4458 int error; 4459 4460 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) { 4461 error = -EINVAL; 4462 goto out_putnames; 4463 } 4464 /* 4465 * To use null names we require CAP_DAC_READ_SEARCH 4466 * This ensures that not everyone will be able to create 4467 * handlink using the passed filedescriptor. 4468 */ 4469 if (flags & AT_EMPTY_PATH && !capable(CAP_DAC_READ_SEARCH)) { 4470 error = -ENOENT; 4471 goto out_putnames; 4472 } 4473 4474 if (flags & AT_SYMLINK_FOLLOW) 4475 how |= LOOKUP_FOLLOW; 4476 retry: 4477 error = filename_lookup(olddfd, old, how, &old_path, NULL); 4478 if (error) 4479 goto out_putnames; 4480 4481 new_dentry = filename_create(newdfd, new, &new_path, 4482 (how & LOOKUP_REVAL)); 4483 error = PTR_ERR(new_dentry); 4484 if (IS_ERR(new_dentry)) 4485 goto out_putpath; 4486 4487 error = -EXDEV; 4488 if (old_path.mnt != new_path.mnt) 4489 goto out_dput; 4490 mnt_userns = mnt_user_ns(new_path.mnt); 4491 error = may_linkat(mnt_userns, &old_path); 4492 if (unlikely(error)) 4493 goto out_dput; 4494 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4495 if (error) 4496 goto out_dput; 4497 error = vfs_link(old_path.dentry, mnt_userns, new_path.dentry->d_inode, 4498 new_dentry, &delegated_inode); 4499 out_dput: 4500 done_path_create(&new_path, new_dentry); 4501 if (delegated_inode) { 4502 error = break_deleg_wait(&delegated_inode); 4503 if (!error) { 4504 path_put(&old_path); 4505 goto retry; 4506 } 4507 } 4508 if (retry_estale(error, how)) { 4509 path_put(&old_path); 4510 how |= LOOKUP_REVAL; 4511 goto retry; 4512 } 4513 out_putpath: 4514 path_put(&old_path); 4515 out_putnames: 4516 putname(old); 4517 putname(new); 4518 4519 return error; 4520 } 4521 4522 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 4523 int, newdfd, const char __user *, newname, int, flags) 4524 { 4525 return do_linkat(olddfd, getname_uflags(oldname, flags), 4526 newdfd, getname(newname), flags); 4527 } 4528 4529 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4530 { 4531 return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0); 4532 } 4533 4534 /** 4535 * vfs_rename - rename a filesystem object 4536 * @rd: pointer to &struct renamedata info 4537 * 4538 * The caller must hold multiple mutexes--see lock_rename()). 4539 * 4540 * If vfs_rename discovers a delegation in need of breaking at either 4541 * the source or destination, it will return -EWOULDBLOCK and return a 4542 * reference to the inode in delegated_inode. The caller should then 4543 * break the delegation and retry. Because breaking a delegation may 4544 * take a long time, the caller should drop all locks before doing 4545 * so. 4546 * 4547 * Alternatively, a caller may pass NULL for delegated_inode. This may 4548 * be appropriate for callers that expect the underlying filesystem not 4549 * to be NFS exported. 4550 * 4551 * The worst of all namespace operations - renaming directory. "Perverted" 4552 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4553 * Problems: 4554 * 4555 * a) we can get into loop creation. 4556 * b) race potential - two innocent renames can create a loop together. 4557 * That's where 4.4 screws up. Current fix: serialization on 4558 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4559 * story. 4560 * c) we have to lock _four_ objects - parents and victim (if it exists), 4561 * and source (if it is not a directory). 4562 * And that - after we got ->i_mutex on parents (until then we don't know 4563 * whether the target exists). Solution: try to be smart with locking 4564 * order for inodes. We rely on the fact that tree topology may change 4565 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4566 * move will be locked. Thus we can rank directories by the tree 4567 * (ancestors first) and rank all non-directories after them. 4568 * That works since everybody except rename does "lock parent, lookup, 4569 * lock child" and rename is under ->s_vfs_rename_mutex. 4570 * HOWEVER, it relies on the assumption that any object with ->lookup() 4571 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4572 * we'd better make sure that there's no link(2) for them. 4573 * d) conversion from fhandle to dentry may come in the wrong moment - when 4574 * we are removing the target. Solution: we will have to grab ->i_mutex 4575 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4576 * ->i_mutex on parents, which works but leads to some truly excessive 4577 * locking]. 4578 */ 4579 int vfs_rename(struct renamedata *rd) 4580 { 4581 int error; 4582 struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir; 4583 struct dentry *old_dentry = rd->old_dentry; 4584 struct dentry *new_dentry = rd->new_dentry; 4585 struct inode **delegated_inode = rd->delegated_inode; 4586 unsigned int flags = rd->flags; 4587 bool is_dir = d_is_dir(old_dentry); 4588 struct inode *source = old_dentry->d_inode; 4589 struct inode *target = new_dentry->d_inode; 4590 bool new_is_dir = false; 4591 unsigned max_links = new_dir->i_sb->s_max_links; 4592 struct name_snapshot old_name; 4593 4594 if (source == target) 4595 return 0; 4596 4597 error = may_delete(rd->old_mnt_userns, old_dir, old_dentry, is_dir); 4598 if (error) 4599 return error; 4600 4601 if (!target) { 4602 error = may_create(rd->new_mnt_userns, new_dir, new_dentry); 4603 } else { 4604 new_is_dir = d_is_dir(new_dentry); 4605 4606 if (!(flags & RENAME_EXCHANGE)) 4607 error = may_delete(rd->new_mnt_userns, new_dir, 4608 new_dentry, is_dir); 4609 else 4610 error = may_delete(rd->new_mnt_userns, new_dir, 4611 new_dentry, new_is_dir); 4612 } 4613 if (error) 4614 return error; 4615 4616 if (!old_dir->i_op->rename) 4617 return -EPERM; 4618 4619 /* 4620 * If we are going to change the parent - check write permissions, 4621 * we'll need to flip '..'. 4622 */ 4623 if (new_dir != old_dir) { 4624 if (is_dir) { 4625 error = inode_permission(rd->old_mnt_userns, source, 4626 MAY_WRITE); 4627 if (error) 4628 return error; 4629 } 4630 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4631 error = inode_permission(rd->new_mnt_userns, target, 4632 MAY_WRITE); 4633 if (error) 4634 return error; 4635 } 4636 } 4637 4638 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 4639 flags); 4640 if (error) 4641 return error; 4642 4643 take_dentry_name_snapshot(&old_name, old_dentry); 4644 dget(new_dentry); 4645 if (!is_dir || (flags & RENAME_EXCHANGE)) 4646 lock_two_nondirectories(source, target); 4647 else if (target) 4648 inode_lock(target); 4649 4650 error = -EPERM; 4651 if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target))) 4652 goto out; 4653 4654 error = -EBUSY; 4655 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 4656 goto out; 4657 4658 if (max_links && new_dir != old_dir) { 4659 error = -EMLINK; 4660 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 4661 goto out; 4662 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 4663 old_dir->i_nlink >= max_links) 4664 goto out; 4665 } 4666 if (!is_dir) { 4667 error = try_break_deleg(source, delegated_inode); 4668 if (error) 4669 goto out; 4670 } 4671 if (target && !new_is_dir) { 4672 error = try_break_deleg(target, delegated_inode); 4673 if (error) 4674 goto out; 4675 } 4676 error = old_dir->i_op->rename(rd->new_mnt_userns, old_dir, old_dentry, 4677 new_dir, new_dentry, flags); 4678 if (error) 4679 goto out; 4680 4681 if (!(flags & RENAME_EXCHANGE) && target) { 4682 if (is_dir) { 4683 shrink_dcache_parent(new_dentry); 4684 target->i_flags |= S_DEAD; 4685 } 4686 dont_mount(new_dentry); 4687 detach_mounts(new_dentry); 4688 } 4689 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 4690 if (!(flags & RENAME_EXCHANGE)) 4691 d_move(old_dentry, new_dentry); 4692 else 4693 d_exchange(old_dentry, new_dentry); 4694 } 4695 out: 4696 if (!is_dir || (flags & RENAME_EXCHANGE)) 4697 unlock_two_nondirectories(source, target); 4698 else if (target) 4699 inode_unlock(target); 4700 dput(new_dentry); 4701 if (!error) { 4702 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir, 4703 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 4704 if (flags & RENAME_EXCHANGE) { 4705 fsnotify_move(new_dir, old_dir, &old_dentry->d_name, 4706 new_is_dir, NULL, new_dentry); 4707 } 4708 } 4709 release_dentry_name_snapshot(&old_name); 4710 4711 return error; 4712 } 4713 EXPORT_SYMBOL(vfs_rename); 4714 4715 int do_renameat2(int olddfd, struct filename *from, int newdfd, 4716 struct filename *to, unsigned int flags) 4717 { 4718 struct renamedata rd; 4719 struct dentry *old_dentry, *new_dentry; 4720 struct dentry *trap; 4721 struct path old_path, new_path; 4722 struct qstr old_last, new_last; 4723 int old_type, new_type; 4724 struct inode *delegated_inode = NULL; 4725 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET; 4726 bool should_retry = false; 4727 int error = -EINVAL; 4728 4729 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4730 goto put_names; 4731 4732 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 4733 (flags & RENAME_EXCHANGE)) 4734 goto put_names; 4735 4736 if (flags & RENAME_EXCHANGE) 4737 target_flags = 0; 4738 4739 retry: 4740 error = filename_parentat(olddfd, from, lookup_flags, &old_path, 4741 &old_last, &old_type); 4742 if (error) 4743 goto put_names; 4744 4745 error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last, 4746 &new_type); 4747 if (error) 4748 goto exit1; 4749 4750 error = -EXDEV; 4751 if (old_path.mnt != new_path.mnt) 4752 goto exit2; 4753 4754 error = -EBUSY; 4755 if (old_type != LAST_NORM) 4756 goto exit2; 4757 4758 if (flags & RENAME_NOREPLACE) 4759 error = -EEXIST; 4760 if (new_type != LAST_NORM) 4761 goto exit2; 4762 4763 error = mnt_want_write(old_path.mnt); 4764 if (error) 4765 goto exit2; 4766 4767 retry_deleg: 4768 trap = lock_rename(new_path.dentry, old_path.dentry); 4769 4770 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags); 4771 error = PTR_ERR(old_dentry); 4772 if (IS_ERR(old_dentry)) 4773 goto exit3; 4774 /* source must exist */ 4775 error = -ENOENT; 4776 if (d_is_negative(old_dentry)) 4777 goto exit4; 4778 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags); 4779 error = PTR_ERR(new_dentry); 4780 if (IS_ERR(new_dentry)) 4781 goto exit4; 4782 error = -EEXIST; 4783 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 4784 goto exit5; 4785 if (flags & RENAME_EXCHANGE) { 4786 error = -ENOENT; 4787 if (d_is_negative(new_dentry)) 4788 goto exit5; 4789 4790 if (!d_is_dir(new_dentry)) { 4791 error = -ENOTDIR; 4792 if (new_last.name[new_last.len]) 4793 goto exit5; 4794 } 4795 } 4796 /* unless the source is a directory trailing slashes give -ENOTDIR */ 4797 if (!d_is_dir(old_dentry)) { 4798 error = -ENOTDIR; 4799 if (old_last.name[old_last.len]) 4800 goto exit5; 4801 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len]) 4802 goto exit5; 4803 } 4804 /* source should not be ancestor of target */ 4805 error = -EINVAL; 4806 if (old_dentry == trap) 4807 goto exit5; 4808 /* target should not be an ancestor of source */ 4809 if (!(flags & RENAME_EXCHANGE)) 4810 error = -ENOTEMPTY; 4811 if (new_dentry == trap) 4812 goto exit5; 4813 4814 error = security_path_rename(&old_path, old_dentry, 4815 &new_path, new_dentry, flags); 4816 if (error) 4817 goto exit5; 4818 4819 rd.old_dir = old_path.dentry->d_inode; 4820 rd.old_dentry = old_dentry; 4821 rd.old_mnt_userns = mnt_user_ns(old_path.mnt); 4822 rd.new_dir = new_path.dentry->d_inode; 4823 rd.new_dentry = new_dentry; 4824 rd.new_mnt_userns = mnt_user_ns(new_path.mnt); 4825 rd.delegated_inode = &delegated_inode; 4826 rd.flags = flags; 4827 error = vfs_rename(&rd); 4828 exit5: 4829 dput(new_dentry); 4830 exit4: 4831 dput(old_dentry); 4832 exit3: 4833 unlock_rename(new_path.dentry, old_path.dentry); 4834 if (delegated_inode) { 4835 error = break_deleg_wait(&delegated_inode); 4836 if (!error) 4837 goto retry_deleg; 4838 } 4839 mnt_drop_write(old_path.mnt); 4840 exit2: 4841 if (retry_estale(error, lookup_flags)) 4842 should_retry = true; 4843 path_put(&new_path); 4844 exit1: 4845 path_put(&old_path); 4846 if (should_retry) { 4847 should_retry = false; 4848 lookup_flags |= LOOKUP_REVAL; 4849 goto retry; 4850 } 4851 put_names: 4852 putname(from); 4853 putname(to); 4854 return error; 4855 } 4856 4857 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 4858 int, newdfd, const char __user *, newname, unsigned int, flags) 4859 { 4860 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname), 4861 flags); 4862 } 4863 4864 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 4865 int, newdfd, const char __user *, newname) 4866 { 4867 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname), 4868 0); 4869 } 4870 4871 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 4872 { 4873 return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD, 4874 getname(newname), 0); 4875 } 4876 4877 int readlink_copy(char __user *buffer, int buflen, const char *link) 4878 { 4879 int len = PTR_ERR(link); 4880 if (IS_ERR(link)) 4881 goto out; 4882 4883 len = strlen(link); 4884 if (len > (unsigned) buflen) 4885 len = buflen; 4886 if (copy_to_user(buffer, link, len)) 4887 len = -EFAULT; 4888 out: 4889 return len; 4890 } 4891 4892 /** 4893 * vfs_readlink - copy symlink body into userspace buffer 4894 * @dentry: dentry on which to get symbolic link 4895 * @buffer: user memory pointer 4896 * @buflen: size of buffer 4897 * 4898 * Does not touch atime. That's up to the caller if necessary 4899 * 4900 * Does not call security hook. 4901 */ 4902 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4903 { 4904 struct inode *inode = d_inode(dentry); 4905 DEFINE_DELAYED_CALL(done); 4906 const char *link; 4907 int res; 4908 4909 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) { 4910 if (unlikely(inode->i_op->readlink)) 4911 return inode->i_op->readlink(dentry, buffer, buflen); 4912 4913 if (!d_is_symlink(dentry)) 4914 return -EINVAL; 4915 4916 spin_lock(&inode->i_lock); 4917 inode->i_opflags |= IOP_DEFAULT_READLINK; 4918 spin_unlock(&inode->i_lock); 4919 } 4920 4921 link = READ_ONCE(inode->i_link); 4922 if (!link) { 4923 link = inode->i_op->get_link(dentry, inode, &done); 4924 if (IS_ERR(link)) 4925 return PTR_ERR(link); 4926 } 4927 res = readlink_copy(buffer, buflen, link); 4928 do_delayed_call(&done); 4929 return res; 4930 } 4931 EXPORT_SYMBOL(vfs_readlink); 4932 4933 /** 4934 * vfs_get_link - get symlink body 4935 * @dentry: dentry on which to get symbolic link 4936 * @done: caller needs to free returned data with this 4937 * 4938 * Calls security hook and i_op->get_link() on the supplied inode. 4939 * 4940 * It does not touch atime. That's up to the caller if necessary. 4941 * 4942 * Does not work on "special" symlinks like /proc/$$/fd/N 4943 */ 4944 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done) 4945 { 4946 const char *res = ERR_PTR(-EINVAL); 4947 struct inode *inode = d_inode(dentry); 4948 4949 if (d_is_symlink(dentry)) { 4950 res = ERR_PTR(security_inode_readlink(dentry)); 4951 if (!res) 4952 res = inode->i_op->get_link(dentry, inode, done); 4953 } 4954 return res; 4955 } 4956 EXPORT_SYMBOL(vfs_get_link); 4957 4958 /* get the link contents into pagecache */ 4959 const char *page_get_link(struct dentry *dentry, struct inode *inode, 4960 struct delayed_call *callback) 4961 { 4962 char *kaddr; 4963 struct page *page; 4964 struct address_space *mapping = inode->i_mapping; 4965 4966 if (!dentry) { 4967 page = find_get_page(mapping, 0); 4968 if (!page) 4969 return ERR_PTR(-ECHILD); 4970 if (!PageUptodate(page)) { 4971 put_page(page); 4972 return ERR_PTR(-ECHILD); 4973 } 4974 } else { 4975 page = read_mapping_page(mapping, 0, NULL); 4976 if (IS_ERR(page)) 4977 return (char*)page; 4978 } 4979 set_delayed_call(callback, page_put_link, page); 4980 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM); 4981 kaddr = page_address(page); 4982 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1); 4983 return kaddr; 4984 } 4985 4986 EXPORT_SYMBOL(page_get_link); 4987 4988 void page_put_link(void *arg) 4989 { 4990 put_page(arg); 4991 } 4992 EXPORT_SYMBOL(page_put_link); 4993 4994 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4995 { 4996 DEFINE_DELAYED_CALL(done); 4997 int res = readlink_copy(buffer, buflen, 4998 page_get_link(dentry, d_inode(dentry), 4999 &done)); 5000 do_delayed_call(&done); 5001 return res; 5002 } 5003 EXPORT_SYMBOL(page_readlink); 5004 5005 int page_symlink(struct inode *inode, const char *symname, int len) 5006 { 5007 struct address_space *mapping = inode->i_mapping; 5008 const struct address_space_operations *aops = mapping->a_ops; 5009 bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS); 5010 struct page *page; 5011 void *fsdata; 5012 int err; 5013 unsigned int flags; 5014 5015 retry: 5016 if (nofs) 5017 flags = memalloc_nofs_save(); 5018 err = aops->write_begin(NULL, mapping, 0, len-1, &page, &fsdata); 5019 if (nofs) 5020 memalloc_nofs_restore(flags); 5021 if (err) 5022 goto fail; 5023 5024 memcpy(page_address(page), symname, len-1); 5025 5026 err = aops->write_end(NULL, mapping, 0, len-1, len-1, 5027 page, fsdata); 5028 if (err < 0) 5029 goto fail; 5030 if (err < len-1) 5031 goto retry; 5032 5033 mark_inode_dirty(inode); 5034 return 0; 5035 fail: 5036 return err; 5037 } 5038 EXPORT_SYMBOL(page_symlink); 5039 5040 const struct inode_operations page_symlink_inode_operations = { 5041 .get_link = page_get_link, 5042 }; 5043 EXPORT_SYMBOL(page_symlink_inode_operations); 5044