xref: /linux/fs/namei.c (revision 8e96e3b7b8407be794ab1fd8e4b332818a358e78)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <linux/posix_acl.h>
36 #include <asm/uaccess.h>
37 
38 #include "internal.h"
39 #include "mount.h"
40 
41 /* [Feb-1997 T. Schoebel-Theuer]
42  * Fundamental changes in the pathname lookup mechanisms (namei)
43  * were necessary because of omirr.  The reason is that omirr needs
44  * to know the _real_ pathname, not the user-supplied one, in case
45  * of symlinks (and also when transname replacements occur).
46  *
47  * The new code replaces the old recursive symlink resolution with
48  * an iterative one (in case of non-nested symlink chains).  It does
49  * this with calls to <fs>_follow_link().
50  * As a side effect, dir_namei(), _namei() and follow_link() are now
51  * replaced with a single function lookup_dentry() that can handle all
52  * the special cases of the former code.
53  *
54  * With the new dcache, the pathname is stored at each inode, at least as
55  * long as the refcount of the inode is positive.  As a side effect, the
56  * size of the dcache depends on the inode cache and thus is dynamic.
57  *
58  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
59  * resolution to correspond with current state of the code.
60  *
61  * Note that the symlink resolution is not *completely* iterative.
62  * There is still a significant amount of tail- and mid- recursion in
63  * the algorithm.  Also, note that <fs>_readlink() is not used in
64  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
65  * may return different results than <fs>_follow_link().  Many virtual
66  * filesystems (including /proc) exhibit this behavior.
67  */
68 
69 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
70  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
71  * and the name already exists in form of a symlink, try to create the new
72  * name indicated by the symlink. The old code always complained that the
73  * name already exists, due to not following the symlink even if its target
74  * is nonexistent.  The new semantics affects also mknod() and link() when
75  * the name is a symlink pointing to a non-existent name.
76  *
77  * I don't know which semantics is the right one, since I have no access
78  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
79  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
80  * "old" one. Personally, I think the new semantics is much more logical.
81  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
82  * file does succeed in both HP-UX and SunOs, but not in Solaris
83  * and in the old Linux semantics.
84  */
85 
86 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
87  * semantics.  See the comments in "open_namei" and "do_link" below.
88  *
89  * [10-Sep-98 Alan Modra] Another symlink change.
90  */
91 
92 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
93  *	inside the path - always follow.
94  *	in the last component in creation/removal/renaming - never follow.
95  *	if LOOKUP_FOLLOW passed - follow.
96  *	if the pathname has trailing slashes - follow.
97  *	otherwise - don't follow.
98  * (applied in that order).
99  *
100  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
101  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
102  * During the 2.4 we need to fix the userland stuff depending on it -
103  * hopefully we will be able to get rid of that wart in 2.5. So far only
104  * XEmacs seems to be relying on it...
105  */
106 /*
107  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
108  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
109  * any extra contention...
110  */
111 
112 /* In order to reduce some races, while at the same time doing additional
113  * checking and hopefully speeding things up, we copy filenames to the
114  * kernel data space before using them..
115  *
116  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
117  * PATH_MAX includes the nul terminator --RR.
118  */
119 static int do_getname(const char __user *filename, char *page)
120 {
121 	int retval;
122 	unsigned long len = PATH_MAX;
123 
124 	if (!segment_eq(get_fs(), KERNEL_DS)) {
125 		if ((unsigned long) filename >= TASK_SIZE)
126 			return -EFAULT;
127 		if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
128 			len = TASK_SIZE - (unsigned long) filename;
129 	}
130 
131 	retval = strncpy_from_user(page, filename, len);
132 	if (retval > 0) {
133 		if (retval < len)
134 			return 0;
135 		return -ENAMETOOLONG;
136 	} else if (!retval)
137 		retval = -ENOENT;
138 	return retval;
139 }
140 
141 static char *getname_flags(const char __user *filename, int flags, int *empty)
142 {
143 	char *result = __getname();
144 	int retval;
145 
146 	if (!result)
147 		return ERR_PTR(-ENOMEM);
148 
149 	retval = do_getname(filename, result);
150 	if (retval < 0) {
151 		if (retval == -ENOENT && empty)
152 			*empty = 1;
153 		if (retval != -ENOENT || !(flags & LOOKUP_EMPTY)) {
154 			__putname(result);
155 			return ERR_PTR(retval);
156 		}
157 	}
158 	audit_getname(result);
159 	return result;
160 }
161 
162 char *getname(const char __user * filename)
163 {
164 	return getname_flags(filename, 0, NULL);
165 }
166 
167 #ifdef CONFIG_AUDITSYSCALL
168 void putname(const char *name)
169 {
170 	if (unlikely(!audit_dummy_context()))
171 		audit_putname(name);
172 	else
173 		__putname(name);
174 }
175 EXPORT_SYMBOL(putname);
176 #endif
177 
178 static int check_acl(struct inode *inode, int mask)
179 {
180 #ifdef CONFIG_FS_POSIX_ACL
181 	struct posix_acl *acl;
182 
183 	if (mask & MAY_NOT_BLOCK) {
184 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
185 	        if (!acl)
186 	                return -EAGAIN;
187 		/* no ->get_acl() calls in RCU mode... */
188 		if (acl == ACL_NOT_CACHED)
189 			return -ECHILD;
190 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
191 	}
192 
193 	acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
194 
195 	/*
196 	 * A filesystem can force a ACL callback by just never filling the
197 	 * ACL cache. But normally you'd fill the cache either at inode
198 	 * instantiation time, or on the first ->get_acl call.
199 	 *
200 	 * If the filesystem doesn't have a get_acl() function at all, we'll
201 	 * just create the negative cache entry.
202 	 */
203 	if (acl == ACL_NOT_CACHED) {
204 	        if (inode->i_op->get_acl) {
205 			acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
206 			if (IS_ERR(acl))
207 				return PTR_ERR(acl);
208 		} else {
209 		        set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
210 		        return -EAGAIN;
211 		}
212 	}
213 
214 	if (acl) {
215 	        int error = posix_acl_permission(inode, acl, mask);
216 	        posix_acl_release(acl);
217 	        return error;
218 	}
219 #endif
220 
221 	return -EAGAIN;
222 }
223 
224 /*
225  * This does the basic permission checking
226  */
227 static int acl_permission_check(struct inode *inode, int mask)
228 {
229 	unsigned int mode = inode->i_mode;
230 
231 	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
232 		mode >>= 6;
233 	else {
234 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
235 			int error = check_acl(inode, mask);
236 			if (error != -EAGAIN)
237 				return error;
238 		}
239 
240 		if (in_group_p(inode->i_gid))
241 			mode >>= 3;
242 	}
243 
244 	/*
245 	 * If the DACs are ok we don't need any capability check.
246 	 */
247 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
248 		return 0;
249 	return -EACCES;
250 }
251 
252 /**
253  * generic_permission -  check for access rights on a Posix-like filesystem
254  * @inode:	inode to check access rights for
255  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
256  *
257  * Used to check for read/write/execute permissions on a file.
258  * We use "fsuid" for this, letting us set arbitrary permissions
259  * for filesystem access without changing the "normal" uids which
260  * are used for other things.
261  *
262  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
263  * request cannot be satisfied (eg. requires blocking or too much complexity).
264  * It would then be called again in ref-walk mode.
265  */
266 int generic_permission(struct inode *inode, int mask)
267 {
268 	int ret;
269 
270 	/*
271 	 * Do the basic permission checks.
272 	 */
273 	ret = acl_permission_check(inode, mask);
274 	if (ret != -EACCES)
275 		return ret;
276 
277 	if (S_ISDIR(inode->i_mode)) {
278 		/* DACs are overridable for directories */
279 		if (inode_capable(inode, CAP_DAC_OVERRIDE))
280 			return 0;
281 		if (!(mask & MAY_WRITE))
282 			if (inode_capable(inode, CAP_DAC_READ_SEARCH))
283 				return 0;
284 		return -EACCES;
285 	}
286 	/*
287 	 * Read/write DACs are always overridable.
288 	 * Executable DACs are overridable when there is
289 	 * at least one exec bit set.
290 	 */
291 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
292 		if (inode_capable(inode, CAP_DAC_OVERRIDE))
293 			return 0;
294 
295 	/*
296 	 * Searching includes executable on directories, else just read.
297 	 */
298 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
299 	if (mask == MAY_READ)
300 		if (inode_capable(inode, CAP_DAC_READ_SEARCH))
301 			return 0;
302 
303 	return -EACCES;
304 }
305 
306 /*
307  * We _really_ want to just do "generic_permission()" without
308  * even looking at the inode->i_op values. So we keep a cache
309  * flag in inode->i_opflags, that says "this has not special
310  * permission function, use the fast case".
311  */
312 static inline int do_inode_permission(struct inode *inode, int mask)
313 {
314 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
315 		if (likely(inode->i_op->permission))
316 			return inode->i_op->permission(inode, mask);
317 
318 		/* This gets set once for the inode lifetime */
319 		spin_lock(&inode->i_lock);
320 		inode->i_opflags |= IOP_FASTPERM;
321 		spin_unlock(&inode->i_lock);
322 	}
323 	return generic_permission(inode, mask);
324 }
325 
326 /**
327  * inode_permission  -  check for access rights to a given inode
328  * @inode:	inode to check permission on
329  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
330  *
331  * Used to check for read/write/execute permissions on an inode.
332  * We use "fsuid" for this, letting us set arbitrary permissions
333  * for filesystem access without changing the "normal" uids which
334  * are used for other things.
335  *
336  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
337  */
338 int inode_permission(struct inode *inode, int mask)
339 {
340 	int retval;
341 
342 	if (unlikely(mask & MAY_WRITE)) {
343 		umode_t mode = inode->i_mode;
344 
345 		/*
346 		 * Nobody gets write access to a read-only fs.
347 		 */
348 		if (IS_RDONLY(inode) &&
349 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
350 			return -EROFS;
351 
352 		/*
353 		 * Nobody gets write access to an immutable file.
354 		 */
355 		if (IS_IMMUTABLE(inode))
356 			return -EACCES;
357 	}
358 
359 	retval = do_inode_permission(inode, mask);
360 	if (retval)
361 		return retval;
362 
363 	retval = devcgroup_inode_permission(inode, mask);
364 	if (retval)
365 		return retval;
366 
367 	return security_inode_permission(inode, mask);
368 }
369 
370 /**
371  * path_get - get a reference to a path
372  * @path: path to get the reference to
373  *
374  * Given a path increment the reference count to the dentry and the vfsmount.
375  */
376 void path_get(struct path *path)
377 {
378 	mntget(path->mnt);
379 	dget(path->dentry);
380 }
381 EXPORT_SYMBOL(path_get);
382 
383 /**
384  * path_put - put a reference to a path
385  * @path: path to put the reference to
386  *
387  * Given a path decrement the reference count to the dentry and the vfsmount.
388  */
389 void path_put(struct path *path)
390 {
391 	dput(path->dentry);
392 	mntput(path->mnt);
393 }
394 EXPORT_SYMBOL(path_put);
395 
396 /*
397  * Path walking has 2 modes, rcu-walk and ref-walk (see
398  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
399  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
400  * normal reference counts on dentries and vfsmounts to transition to rcu-walk
401  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
402  * got stuck, so ref-walk may continue from there. If this is not successful
403  * (eg. a seqcount has changed), then failure is returned and it's up to caller
404  * to restart the path walk from the beginning in ref-walk mode.
405  */
406 
407 /**
408  * unlazy_walk - try to switch to ref-walk mode.
409  * @nd: nameidata pathwalk data
410  * @dentry: child of nd->path.dentry or NULL
411  * Returns: 0 on success, -ECHILD on failure
412  *
413  * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
414  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
415  * @nd or NULL.  Must be called from rcu-walk context.
416  */
417 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
418 {
419 	struct fs_struct *fs = current->fs;
420 	struct dentry *parent = nd->path.dentry;
421 	int want_root = 0;
422 
423 	BUG_ON(!(nd->flags & LOOKUP_RCU));
424 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
425 		want_root = 1;
426 		spin_lock(&fs->lock);
427 		if (nd->root.mnt != fs->root.mnt ||
428 				nd->root.dentry != fs->root.dentry)
429 			goto err_root;
430 	}
431 	spin_lock(&parent->d_lock);
432 	if (!dentry) {
433 		if (!__d_rcu_to_refcount(parent, nd->seq))
434 			goto err_parent;
435 		BUG_ON(nd->inode != parent->d_inode);
436 	} else {
437 		if (dentry->d_parent != parent)
438 			goto err_parent;
439 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
440 		if (!__d_rcu_to_refcount(dentry, nd->seq))
441 			goto err_child;
442 		/*
443 		 * If the sequence check on the child dentry passed, then
444 		 * the child has not been removed from its parent. This
445 		 * means the parent dentry must be valid and able to take
446 		 * a reference at this point.
447 		 */
448 		BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
449 		BUG_ON(!parent->d_count);
450 		parent->d_count++;
451 		spin_unlock(&dentry->d_lock);
452 	}
453 	spin_unlock(&parent->d_lock);
454 	if (want_root) {
455 		path_get(&nd->root);
456 		spin_unlock(&fs->lock);
457 	}
458 	mntget(nd->path.mnt);
459 
460 	rcu_read_unlock();
461 	br_read_unlock(vfsmount_lock);
462 	nd->flags &= ~LOOKUP_RCU;
463 	return 0;
464 
465 err_child:
466 	spin_unlock(&dentry->d_lock);
467 err_parent:
468 	spin_unlock(&parent->d_lock);
469 err_root:
470 	if (want_root)
471 		spin_unlock(&fs->lock);
472 	return -ECHILD;
473 }
474 
475 /**
476  * release_open_intent - free up open intent resources
477  * @nd: pointer to nameidata
478  */
479 void release_open_intent(struct nameidata *nd)
480 {
481 	struct file *file = nd->intent.open.file;
482 
483 	if (file && !IS_ERR(file)) {
484 		if (file->f_path.dentry == NULL)
485 			put_filp(file);
486 		else
487 			fput(file);
488 	}
489 }
490 
491 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd)
492 {
493 	return dentry->d_op->d_revalidate(dentry, nd);
494 }
495 
496 /**
497  * complete_walk - successful completion of path walk
498  * @nd:  pointer nameidata
499  *
500  * If we had been in RCU mode, drop out of it and legitimize nd->path.
501  * Revalidate the final result, unless we'd already done that during
502  * the path walk or the filesystem doesn't ask for it.  Return 0 on
503  * success, -error on failure.  In case of failure caller does not
504  * need to drop nd->path.
505  */
506 static int complete_walk(struct nameidata *nd)
507 {
508 	struct dentry *dentry = nd->path.dentry;
509 	int status;
510 
511 	if (nd->flags & LOOKUP_RCU) {
512 		nd->flags &= ~LOOKUP_RCU;
513 		if (!(nd->flags & LOOKUP_ROOT))
514 			nd->root.mnt = NULL;
515 		spin_lock(&dentry->d_lock);
516 		if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
517 			spin_unlock(&dentry->d_lock);
518 			rcu_read_unlock();
519 			br_read_unlock(vfsmount_lock);
520 			return -ECHILD;
521 		}
522 		BUG_ON(nd->inode != dentry->d_inode);
523 		spin_unlock(&dentry->d_lock);
524 		mntget(nd->path.mnt);
525 		rcu_read_unlock();
526 		br_read_unlock(vfsmount_lock);
527 	}
528 
529 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
530 		return 0;
531 
532 	if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
533 		return 0;
534 
535 	if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
536 		return 0;
537 
538 	/* Note: we do not d_invalidate() */
539 	status = d_revalidate(dentry, nd);
540 	if (status > 0)
541 		return 0;
542 
543 	if (!status)
544 		status = -ESTALE;
545 
546 	path_put(&nd->path);
547 	return status;
548 }
549 
550 static __always_inline void set_root(struct nameidata *nd)
551 {
552 	if (!nd->root.mnt)
553 		get_fs_root(current->fs, &nd->root);
554 }
555 
556 static int link_path_walk(const char *, struct nameidata *);
557 
558 static __always_inline void set_root_rcu(struct nameidata *nd)
559 {
560 	if (!nd->root.mnt) {
561 		struct fs_struct *fs = current->fs;
562 		unsigned seq;
563 
564 		do {
565 			seq = read_seqcount_begin(&fs->seq);
566 			nd->root = fs->root;
567 			nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
568 		} while (read_seqcount_retry(&fs->seq, seq));
569 	}
570 }
571 
572 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
573 {
574 	int ret;
575 
576 	if (IS_ERR(link))
577 		goto fail;
578 
579 	if (*link == '/') {
580 		set_root(nd);
581 		path_put(&nd->path);
582 		nd->path = nd->root;
583 		path_get(&nd->root);
584 		nd->flags |= LOOKUP_JUMPED;
585 	}
586 	nd->inode = nd->path.dentry->d_inode;
587 
588 	ret = link_path_walk(link, nd);
589 	return ret;
590 fail:
591 	path_put(&nd->path);
592 	return PTR_ERR(link);
593 }
594 
595 static void path_put_conditional(struct path *path, struct nameidata *nd)
596 {
597 	dput(path->dentry);
598 	if (path->mnt != nd->path.mnt)
599 		mntput(path->mnt);
600 }
601 
602 static inline void path_to_nameidata(const struct path *path,
603 					struct nameidata *nd)
604 {
605 	if (!(nd->flags & LOOKUP_RCU)) {
606 		dput(nd->path.dentry);
607 		if (nd->path.mnt != path->mnt)
608 			mntput(nd->path.mnt);
609 	}
610 	nd->path.mnt = path->mnt;
611 	nd->path.dentry = path->dentry;
612 }
613 
614 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
615 {
616 	struct inode *inode = link->dentry->d_inode;
617 	if (!IS_ERR(cookie) && inode->i_op->put_link)
618 		inode->i_op->put_link(link->dentry, nd, cookie);
619 	path_put(link);
620 }
621 
622 static __always_inline int
623 follow_link(struct path *link, struct nameidata *nd, void **p)
624 {
625 	int error;
626 	struct dentry *dentry = link->dentry;
627 
628 	BUG_ON(nd->flags & LOOKUP_RCU);
629 
630 	if (link->mnt == nd->path.mnt)
631 		mntget(link->mnt);
632 
633 	if (unlikely(current->total_link_count >= 40)) {
634 		*p = ERR_PTR(-ELOOP); /* no ->put_link(), please */
635 		path_put(&nd->path);
636 		return -ELOOP;
637 	}
638 	cond_resched();
639 	current->total_link_count++;
640 
641 	touch_atime(link);
642 	nd_set_link(nd, NULL);
643 
644 	error = security_inode_follow_link(link->dentry, nd);
645 	if (error) {
646 		*p = ERR_PTR(error); /* no ->put_link(), please */
647 		path_put(&nd->path);
648 		return error;
649 	}
650 
651 	nd->last_type = LAST_BIND;
652 	*p = dentry->d_inode->i_op->follow_link(dentry, nd);
653 	error = PTR_ERR(*p);
654 	if (!IS_ERR(*p)) {
655 		char *s = nd_get_link(nd);
656 		error = 0;
657 		if (s)
658 			error = __vfs_follow_link(nd, s);
659 		else if (nd->last_type == LAST_BIND) {
660 			nd->flags |= LOOKUP_JUMPED;
661 			nd->inode = nd->path.dentry->d_inode;
662 			if (nd->inode->i_op->follow_link) {
663 				/* stepped on a _really_ weird one */
664 				path_put(&nd->path);
665 				error = -ELOOP;
666 			}
667 		}
668 	}
669 	return error;
670 }
671 
672 static int follow_up_rcu(struct path *path)
673 {
674 	struct mount *mnt = real_mount(path->mnt);
675 	struct mount *parent;
676 	struct dentry *mountpoint;
677 
678 	parent = mnt->mnt_parent;
679 	if (&parent->mnt == path->mnt)
680 		return 0;
681 	mountpoint = mnt->mnt_mountpoint;
682 	path->dentry = mountpoint;
683 	path->mnt = &parent->mnt;
684 	return 1;
685 }
686 
687 int follow_up(struct path *path)
688 {
689 	struct mount *mnt = real_mount(path->mnt);
690 	struct mount *parent;
691 	struct dentry *mountpoint;
692 
693 	br_read_lock(vfsmount_lock);
694 	parent = mnt->mnt_parent;
695 	if (&parent->mnt == path->mnt) {
696 		br_read_unlock(vfsmount_lock);
697 		return 0;
698 	}
699 	mntget(&parent->mnt);
700 	mountpoint = dget(mnt->mnt_mountpoint);
701 	br_read_unlock(vfsmount_lock);
702 	dput(path->dentry);
703 	path->dentry = mountpoint;
704 	mntput(path->mnt);
705 	path->mnt = &parent->mnt;
706 	return 1;
707 }
708 
709 /*
710  * Perform an automount
711  * - return -EISDIR to tell follow_managed() to stop and return the path we
712  *   were called with.
713  */
714 static int follow_automount(struct path *path, unsigned flags,
715 			    bool *need_mntput)
716 {
717 	struct vfsmount *mnt;
718 	int err;
719 
720 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
721 		return -EREMOTE;
722 
723 	/* We don't want to mount if someone's just doing a stat -
724 	 * unless they're stat'ing a directory and appended a '/' to
725 	 * the name.
726 	 *
727 	 * We do, however, want to mount if someone wants to open or
728 	 * create a file of any type under the mountpoint, wants to
729 	 * traverse through the mountpoint or wants to open the
730 	 * mounted directory.  Also, autofs may mark negative dentries
731 	 * as being automount points.  These will need the attentions
732 	 * of the daemon to instantiate them before they can be used.
733 	 */
734 	if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
735 		     LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
736 	    path->dentry->d_inode)
737 		return -EISDIR;
738 
739 	current->total_link_count++;
740 	if (current->total_link_count >= 40)
741 		return -ELOOP;
742 
743 	mnt = path->dentry->d_op->d_automount(path);
744 	if (IS_ERR(mnt)) {
745 		/*
746 		 * The filesystem is allowed to return -EISDIR here to indicate
747 		 * it doesn't want to automount.  For instance, autofs would do
748 		 * this so that its userspace daemon can mount on this dentry.
749 		 *
750 		 * However, we can only permit this if it's a terminal point in
751 		 * the path being looked up; if it wasn't then the remainder of
752 		 * the path is inaccessible and we should say so.
753 		 */
754 		if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
755 			return -EREMOTE;
756 		return PTR_ERR(mnt);
757 	}
758 
759 	if (!mnt) /* mount collision */
760 		return 0;
761 
762 	if (!*need_mntput) {
763 		/* lock_mount() may release path->mnt on error */
764 		mntget(path->mnt);
765 		*need_mntput = true;
766 	}
767 	err = finish_automount(mnt, path);
768 
769 	switch (err) {
770 	case -EBUSY:
771 		/* Someone else made a mount here whilst we were busy */
772 		return 0;
773 	case 0:
774 		path_put(path);
775 		path->mnt = mnt;
776 		path->dentry = dget(mnt->mnt_root);
777 		return 0;
778 	default:
779 		return err;
780 	}
781 
782 }
783 
784 /*
785  * Handle a dentry that is managed in some way.
786  * - Flagged for transit management (autofs)
787  * - Flagged as mountpoint
788  * - Flagged as automount point
789  *
790  * This may only be called in refwalk mode.
791  *
792  * Serialization is taken care of in namespace.c
793  */
794 static int follow_managed(struct path *path, unsigned flags)
795 {
796 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
797 	unsigned managed;
798 	bool need_mntput = false;
799 	int ret = 0;
800 
801 	/* Given that we're not holding a lock here, we retain the value in a
802 	 * local variable for each dentry as we look at it so that we don't see
803 	 * the components of that value change under us */
804 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
805 	       managed &= DCACHE_MANAGED_DENTRY,
806 	       unlikely(managed != 0)) {
807 		/* Allow the filesystem to manage the transit without i_mutex
808 		 * being held. */
809 		if (managed & DCACHE_MANAGE_TRANSIT) {
810 			BUG_ON(!path->dentry->d_op);
811 			BUG_ON(!path->dentry->d_op->d_manage);
812 			ret = path->dentry->d_op->d_manage(path->dentry, false);
813 			if (ret < 0)
814 				break;
815 		}
816 
817 		/* Transit to a mounted filesystem. */
818 		if (managed & DCACHE_MOUNTED) {
819 			struct vfsmount *mounted = lookup_mnt(path);
820 			if (mounted) {
821 				dput(path->dentry);
822 				if (need_mntput)
823 					mntput(path->mnt);
824 				path->mnt = mounted;
825 				path->dentry = dget(mounted->mnt_root);
826 				need_mntput = true;
827 				continue;
828 			}
829 
830 			/* Something is mounted on this dentry in another
831 			 * namespace and/or whatever was mounted there in this
832 			 * namespace got unmounted before we managed to get the
833 			 * vfsmount_lock */
834 		}
835 
836 		/* Handle an automount point */
837 		if (managed & DCACHE_NEED_AUTOMOUNT) {
838 			ret = follow_automount(path, flags, &need_mntput);
839 			if (ret < 0)
840 				break;
841 			continue;
842 		}
843 
844 		/* We didn't change the current path point */
845 		break;
846 	}
847 
848 	if (need_mntput && path->mnt == mnt)
849 		mntput(path->mnt);
850 	if (ret == -EISDIR)
851 		ret = 0;
852 	return ret < 0 ? ret : need_mntput;
853 }
854 
855 int follow_down_one(struct path *path)
856 {
857 	struct vfsmount *mounted;
858 
859 	mounted = lookup_mnt(path);
860 	if (mounted) {
861 		dput(path->dentry);
862 		mntput(path->mnt);
863 		path->mnt = mounted;
864 		path->dentry = dget(mounted->mnt_root);
865 		return 1;
866 	}
867 	return 0;
868 }
869 
870 static inline bool managed_dentry_might_block(struct dentry *dentry)
871 {
872 	return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
873 		dentry->d_op->d_manage(dentry, true) < 0);
874 }
875 
876 /*
877  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
878  * we meet a managed dentry that would need blocking.
879  */
880 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
881 			       struct inode **inode)
882 {
883 	for (;;) {
884 		struct mount *mounted;
885 		/*
886 		 * Don't forget we might have a non-mountpoint managed dentry
887 		 * that wants to block transit.
888 		 */
889 		if (unlikely(managed_dentry_might_block(path->dentry)))
890 			return false;
891 
892 		if (!d_mountpoint(path->dentry))
893 			break;
894 
895 		mounted = __lookup_mnt(path->mnt, path->dentry, 1);
896 		if (!mounted)
897 			break;
898 		path->mnt = &mounted->mnt;
899 		path->dentry = mounted->mnt.mnt_root;
900 		nd->flags |= LOOKUP_JUMPED;
901 		nd->seq = read_seqcount_begin(&path->dentry->d_seq);
902 		/*
903 		 * Update the inode too. We don't need to re-check the
904 		 * dentry sequence number here after this d_inode read,
905 		 * because a mount-point is always pinned.
906 		 */
907 		*inode = path->dentry->d_inode;
908 	}
909 	return true;
910 }
911 
912 static void follow_mount_rcu(struct nameidata *nd)
913 {
914 	while (d_mountpoint(nd->path.dentry)) {
915 		struct mount *mounted;
916 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
917 		if (!mounted)
918 			break;
919 		nd->path.mnt = &mounted->mnt;
920 		nd->path.dentry = mounted->mnt.mnt_root;
921 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
922 	}
923 }
924 
925 static int follow_dotdot_rcu(struct nameidata *nd)
926 {
927 	set_root_rcu(nd);
928 
929 	while (1) {
930 		if (nd->path.dentry == nd->root.dentry &&
931 		    nd->path.mnt == nd->root.mnt) {
932 			break;
933 		}
934 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
935 			struct dentry *old = nd->path.dentry;
936 			struct dentry *parent = old->d_parent;
937 			unsigned seq;
938 
939 			seq = read_seqcount_begin(&parent->d_seq);
940 			if (read_seqcount_retry(&old->d_seq, nd->seq))
941 				goto failed;
942 			nd->path.dentry = parent;
943 			nd->seq = seq;
944 			break;
945 		}
946 		if (!follow_up_rcu(&nd->path))
947 			break;
948 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
949 	}
950 	follow_mount_rcu(nd);
951 	nd->inode = nd->path.dentry->d_inode;
952 	return 0;
953 
954 failed:
955 	nd->flags &= ~LOOKUP_RCU;
956 	if (!(nd->flags & LOOKUP_ROOT))
957 		nd->root.mnt = NULL;
958 	rcu_read_unlock();
959 	br_read_unlock(vfsmount_lock);
960 	return -ECHILD;
961 }
962 
963 /*
964  * Follow down to the covering mount currently visible to userspace.  At each
965  * point, the filesystem owning that dentry may be queried as to whether the
966  * caller is permitted to proceed or not.
967  */
968 int follow_down(struct path *path)
969 {
970 	unsigned managed;
971 	int ret;
972 
973 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
974 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
975 		/* Allow the filesystem to manage the transit without i_mutex
976 		 * being held.
977 		 *
978 		 * We indicate to the filesystem if someone is trying to mount
979 		 * something here.  This gives autofs the chance to deny anyone
980 		 * other than its daemon the right to mount on its
981 		 * superstructure.
982 		 *
983 		 * The filesystem may sleep at this point.
984 		 */
985 		if (managed & DCACHE_MANAGE_TRANSIT) {
986 			BUG_ON(!path->dentry->d_op);
987 			BUG_ON(!path->dentry->d_op->d_manage);
988 			ret = path->dentry->d_op->d_manage(
989 				path->dentry, false);
990 			if (ret < 0)
991 				return ret == -EISDIR ? 0 : ret;
992 		}
993 
994 		/* Transit to a mounted filesystem. */
995 		if (managed & DCACHE_MOUNTED) {
996 			struct vfsmount *mounted = lookup_mnt(path);
997 			if (!mounted)
998 				break;
999 			dput(path->dentry);
1000 			mntput(path->mnt);
1001 			path->mnt = mounted;
1002 			path->dentry = dget(mounted->mnt_root);
1003 			continue;
1004 		}
1005 
1006 		/* Don't handle automount points here */
1007 		break;
1008 	}
1009 	return 0;
1010 }
1011 
1012 /*
1013  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1014  */
1015 static void follow_mount(struct path *path)
1016 {
1017 	while (d_mountpoint(path->dentry)) {
1018 		struct vfsmount *mounted = lookup_mnt(path);
1019 		if (!mounted)
1020 			break;
1021 		dput(path->dentry);
1022 		mntput(path->mnt);
1023 		path->mnt = mounted;
1024 		path->dentry = dget(mounted->mnt_root);
1025 	}
1026 }
1027 
1028 static void follow_dotdot(struct nameidata *nd)
1029 {
1030 	set_root(nd);
1031 
1032 	while(1) {
1033 		struct dentry *old = nd->path.dentry;
1034 
1035 		if (nd->path.dentry == nd->root.dentry &&
1036 		    nd->path.mnt == nd->root.mnt) {
1037 			break;
1038 		}
1039 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1040 			/* rare case of legitimate dget_parent()... */
1041 			nd->path.dentry = dget_parent(nd->path.dentry);
1042 			dput(old);
1043 			break;
1044 		}
1045 		if (!follow_up(&nd->path))
1046 			break;
1047 	}
1048 	follow_mount(&nd->path);
1049 	nd->inode = nd->path.dentry->d_inode;
1050 }
1051 
1052 /*
1053  * This looks up the name in dcache, possibly revalidates the old dentry and
1054  * allocates a new one if not found or not valid.  In the need_lookup argument
1055  * returns whether i_op->lookup is necessary.
1056  *
1057  * dir->d_inode->i_mutex must be held
1058  */
1059 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1060 				    struct nameidata *nd, bool *need_lookup)
1061 {
1062 	struct dentry *dentry;
1063 	int error;
1064 
1065 	*need_lookup = false;
1066 	dentry = d_lookup(dir, name);
1067 	if (dentry) {
1068 		if (d_need_lookup(dentry)) {
1069 			*need_lookup = true;
1070 		} else if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1071 			error = d_revalidate(dentry, nd);
1072 			if (unlikely(error <= 0)) {
1073 				if (error < 0) {
1074 					dput(dentry);
1075 					return ERR_PTR(error);
1076 				} else if (!d_invalidate(dentry)) {
1077 					dput(dentry);
1078 					dentry = NULL;
1079 				}
1080 			}
1081 		}
1082 	}
1083 
1084 	if (!dentry) {
1085 		dentry = d_alloc(dir, name);
1086 		if (unlikely(!dentry))
1087 			return ERR_PTR(-ENOMEM);
1088 
1089 		*need_lookup = true;
1090 	}
1091 	return dentry;
1092 }
1093 
1094 /*
1095  * Call i_op->lookup on the dentry.  The dentry must be negative but may be
1096  * hashed if it was pouplated with DCACHE_NEED_LOOKUP.
1097  *
1098  * dir->d_inode->i_mutex must be held
1099  */
1100 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1101 				  struct nameidata *nd)
1102 {
1103 	struct dentry *old;
1104 
1105 	/* Don't create child dentry for a dead directory. */
1106 	if (unlikely(IS_DEADDIR(dir))) {
1107 		dput(dentry);
1108 		return ERR_PTR(-ENOENT);
1109 	}
1110 
1111 	old = dir->i_op->lookup(dir, dentry, nd);
1112 	if (unlikely(old)) {
1113 		dput(dentry);
1114 		dentry = old;
1115 	}
1116 	return dentry;
1117 }
1118 
1119 static struct dentry *__lookup_hash(struct qstr *name,
1120 		struct dentry *base, struct nameidata *nd)
1121 {
1122 	bool need_lookup;
1123 	struct dentry *dentry;
1124 
1125 	dentry = lookup_dcache(name, base, nd, &need_lookup);
1126 	if (!need_lookup)
1127 		return dentry;
1128 
1129 	return lookup_real(base->d_inode, dentry, nd);
1130 }
1131 
1132 /*
1133  *  It's more convoluted than I'd like it to be, but... it's still fairly
1134  *  small and for now I'd prefer to have fast path as straight as possible.
1135  *  It _is_ time-critical.
1136  */
1137 static int do_lookup(struct nameidata *nd, struct qstr *name,
1138 			struct path *path, struct inode **inode)
1139 {
1140 	struct vfsmount *mnt = nd->path.mnt;
1141 	struct dentry *dentry, *parent = nd->path.dentry;
1142 	int need_reval = 1;
1143 	int status = 1;
1144 	int err;
1145 
1146 	/*
1147 	 * Rename seqlock is not required here because in the off chance
1148 	 * of a false negative due to a concurrent rename, we're going to
1149 	 * do the non-racy lookup, below.
1150 	 */
1151 	if (nd->flags & LOOKUP_RCU) {
1152 		unsigned seq;
1153 		*inode = nd->inode;
1154 		dentry = __d_lookup_rcu(parent, name, &seq, inode);
1155 		if (!dentry)
1156 			goto unlazy;
1157 
1158 		/* Memory barrier in read_seqcount_begin of child is enough */
1159 		if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1160 			return -ECHILD;
1161 		nd->seq = seq;
1162 
1163 		if (unlikely(d_need_lookup(dentry)))
1164 			goto unlazy;
1165 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1166 			status = d_revalidate(dentry, nd);
1167 			if (unlikely(status <= 0)) {
1168 				if (status != -ECHILD)
1169 					need_reval = 0;
1170 				goto unlazy;
1171 			}
1172 		}
1173 		path->mnt = mnt;
1174 		path->dentry = dentry;
1175 		if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1176 			goto unlazy;
1177 		if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1178 			goto unlazy;
1179 		return 0;
1180 unlazy:
1181 		if (unlazy_walk(nd, dentry))
1182 			return -ECHILD;
1183 	} else {
1184 		dentry = __d_lookup(parent, name);
1185 	}
1186 
1187 	if (unlikely(!dentry))
1188 		goto need_lookup;
1189 
1190 	if (unlikely(d_need_lookup(dentry))) {
1191 		dput(dentry);
1192 		goto need_lookup;
1193 	}
1194 
1195 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1196 		status = d_revalidate(dentry, nd);
1197 	if (unlikely(status <= 0)) {
1198 		if (status < 0) {
1199 			dput(dentry);
1200 			return status;
1201 		}
1202 		if (!d_invalidate(dentry)) {
1203 			dput(dentry);
1204 			goto need_lookup;
1205 		}
1206 	}
1207 done:
1208 	path->mnt = mnt;
1209 	path->dentry = dentry;
1210 	err = follow_managed(path, nd->flags);
1211 	if (unlikely(err < 0)) {
1212 		path_put_conditional(path, nd);
1213 		return err;
1214 	}
1215 	if (err)
1216 		nd->flags |= LOOKUP_JUMPED;
1217 	*inode = path->dentry->d_inode;
1218 	return 0;
1219 
1220 need_lookup:
1221 	BUG_ON(nd->inode != parent->d_inode);
1222 
1223 	mutex_lock(&parent->d_inode->i_mutex);
1224 	dentry = __lookup_hash(name, parent, nd);
1225 	mutex_unlock(&parent->d_inode->i_mutex);
1226 	if (IS_ERR(dentry))
1227 		return PTR_ERR(dentry);
1228 	goto done;
1229 }
1230 
1231 static inline int may_lookup(struct nameidata *nd)
1232 {
1233 	if (nd->flags & LOOKUP_RCU) {
1234 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1235 		if (err != -ECHILD)
1236 			return err;
1237 		if (unlazy_walk(nd, NULL))
1238 			return -ECHILD;
1239 	}
1240 	return inode_permission(nd->inode, MAY_EXEC);
1241 }
1242 
1243 static inline int handle_dots(struct nameidata *nd, int type)
1244 {
1245 	if (type == LAST_DOTDOT) {
1246 		if (nd->flags & LOOKUP_RCU) {
1247 			if (follow_dotdot_rcu(nd))
1248 				return -ECHILD;
1249 		} else
1250 			follow_dotdot(nd);
1251 	}
1252 	return 0;
1253 }
1254 
1255 static void terminate_walk(struct nameidata *nd)
1256 {
1257 	if (!(nd->flags & LOOKUP_RCU)) {
1258 		path_put(&nd->path);
1259 	} else {
1260 		nd->flags &= ~LOOKUP_RCU;
1261 		if (!(nd->flags & LOOKUP_ROOT))
1262 			nd->root.mnt = NULL;
1263 		rcu_read_unlock();
1264 		br_read_unlock(vfsmount_lock);
1265 	}
1266 }
1267 
1268 /*
1269  * Do we need to follow links? We _really_ want to be able
1270  * to do this check without having to look at inode->i_op,
1271  * so we keep a cache of "no, this doesn't need follow_link"
1272  * for the common case.
1273  */
1274 static inline int should_follow_link(struct inode *inode, int follow)
1275 {
1276 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1277 		if (likely(inode->i_op->follow_link))
1278 			return follow;
1279 
1280 		/* This gets set once for the inode lifetime */
1281 		spin_lock(&inode->i_lock);
1282 		inode->i_opflags |= IOP_NOFOLLOW;
1283 		spin_unlock(&inode->i_lock);
1284 	}
1285 	return 0;
1286 }
1287 
1288 static inline int walk_component(struct nameidata *nd, struct path *path,
1289 		struct qstr *name, int type, int follow)
1290 {
1291 	struct inode *inode;
1292 	int err;
1293 	/*
1294 	 * "." and ".." are special - ".." especially so because it has
1295 	 * to be able to know about the current root directory and
1296 	 * parent relationships.
1297 	 */
1298 	if (unlikely(type != LAST_NORM))
1299 		return handle_dots(nd, type);
1300 	err = do_lookup(nd, name, path, &inode);
1301 	if (unlikely(err)) {
1302 		terminate_walk(nd);
1303 		return err;
1304 	}
1305 	if (!inode) {
1306 		path_to_nameidata(path, nd);
1307 		terminate_walk(nd);
1308 		return -ENOENT;
1309 	}
1310 	if (should_follow_link(inode, follow)) {
1311 		if (nd->flags & LOOKUP_RCU) {
1312 			if (unlikely(unlazy_walk(nd, path->dentry))) {
1313 				terminate_walk(nd);
1314 				return -ECHILD;
1315 			}
1316 		}
1317 		BUG_ON(inode != path->dentry->d_inode);
1318 		return 1;
1319 	}
1320 	path_to_nameidata(path, nd);
1321 	nd->inode = inode;
1322 	return 0;
1323 }
1324 
1325 /*
1326  * This limits recursive symlink follows to 8, while
1327  * limiting consecutive symlinks to 40.
1328  *
1329  * Without that kind of total limit, nasty chains of consecutive
1330  * symlinks can cause almost arbitrarily long lookups.
1331  */
1332 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1333 {
1334 	int res;
1335 
1336 	if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1337 		path_put_conditional(path, nd);
1338 		path_put(&nd->path);
1339 		return -ELOOP;
1340 	}
1341 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1342 
1343 	nd->depth++;
1344 	current->link_count++;
1345 
1346 	do {
1347 		struct path link = *path;
1348 		void *cookie;
1349 
1350 		res = follow_link(&link, nd, &cookie);
1351 		if (!res)
1352 			res = walk_component(nd, path, &nd->last,
1353 					     nd->last_type, LOOKUP_FOLLOW);
1354 		put_link(nd, &link, cookie);
1355 	} while (res > 0);
1356 
1357 	current->link_count--;
1358 	nd->depth--;
1359 	return res;
1360 }
1361 
1362 /*
1363  * We really don't want to look at inode->i_op->lookup
1364  * when we don't have to. So we keep a cache bit in
1365  * the inode ->i_opflags field that says "yes, we can
1366  * do lookup on this inode".
1367  */
1368 static inline int can_lookup(struct inode *inode)
1369 {
1370 	if (likely(inode->i_opflags & IOP_LOOKUP))
1371 		return 1;
1372 	if (likely(!inode->i_op->lookup))
1373 		return 0;
1374 
1375 	/* We do this once for the lifetime of the inode */
1376 	spin_lock(&inode->i_lock);
1377 	inode->i_opflags |= IOP_LOOKUP;
1378 	spin_unlock(&inode->i_lock);
1379 	return 1;
1380 }
1381 
1382 /*
1383  * We can do the critical dentry name comparison and hashing
1384  * operations one word at a time, but we are limited to:
1385  *
1386  * - Architectures with fast unaligned word accesses. We could
1387  *   do a "get_unaligned()" if this helps and is sufficiently
1388  *   fast.
1389  *
1390  * - Little-endian machines (so that we can generate the mask
1391  *   of low bytes efficiently). Again, we *could* do a byte
1392  *   swapping load on big-endian architectures if that is not
1393  *   expensive enough to make the optimization worthless.
1394  *
1395  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1396  *   do not trap on the (extremely unlikely) case of a page
1397  *   crossing operation.
1398  *
1399  * - Furthermore, we need an efficient 64-bit compile for the
1400  *   64-bit case in order to generate the "number of bytes in
1401  *   the final mask". Again, that could be replaced with a
1402  *   efficient population count instruction or similar.
1403  */
1404 #ifdef CONFIG_DCACHE_WORD_ACCESS
1405 
1406 #ifdef CONFIG_64BIT
1407 
1408 /*
1409  * Jan Achrenius on G+: microoptimized version of
1410  * the simpler "(mask & ONEBYTES) * ONEBYTES >> 56"
1411  * that works for the bytemasks without having to
1412  * mask them first.
1413  */
1414 static inline long count_masked_bytes(unsigned long mask)
1415 {
1416 	return mask*0x0001020304050608ul >> 56;
1417 }
1418 
1419 static inline unsigned int fold_hash(unsigned long hash)
1420 {
1421 	hash += hash >> (8*sizeof(int));
1422 	return hash;
1423 }
1424 
1425 #else	/* 32-bit case */
1426 
1427 /* Carl Chatfield / Jan Achrenius G+ version for 32-bit */
1428 static inline long count_masked_bytes(long mask)
1429 {
1430 	/* (000000 0000ff 00ffff ffffff) -> ( 1 1 2 3 ) */
1431 	long a = (0x0ff0001+mask) >> 23;
1432 	/* Fix the 1 for 00 case */
1433 	return a & mask;
1434 }
1435 
1436 #define fold_hash(x) (x)
1437 
1438 #endif
1439 
1440 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1441 {
1442 	unsigned long a, mask;
1443 	unsigned long hash = 0;
1444 
1445 	for (;;) {
1446 		a = *(unsigned long *)name;
1447 		if (len < sizeof(unsigned long))
1448 			break;
1449 		hash += a;
1450 		hash *= 9;
1451 		name += sizeof(unsigned long);
1452 		len -= sizeof(unsigned long);
1453 		if (!len)
1454 			goto done;
1455 	}
1456 	mask = ~(~0ul << len*8);
1457 	hash += mask & a;
1458 done:
1459 	return fold_hash(hash);
1460 }
1461 EXPORT_SYMBOL(full_name_hash);
1462 
1463 #define REPEAT_BYTE(x)	((~0ul / 0xff) * (x))
1464 #define ONEBYTES	REPEAT_BYTE(0x01)
1465 #define SLASHBYTES	REPEAT_BYTE('/')
1466 #define HIGHBITS	REPEAT_BYTE(0x80)
1467 
1468 /* Return the high bit set in the first byte that is a zero */
1469 static inline unsigned long has_zero(unsigned long a)
1470 {
1471 	return ((a - ONEBYTES) & ~a) & HIGHBITS;
1472 }
1473 
1474 /*
1475  * Calculate the length and hash of the path component, and
1476  * return the length of the component;
1477  */
1478 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1479 {
1480 	unsigned long a, mask, hash, len;
1481 
1482 	hash = a = 0;
1483 	len = -sizeof(unsigned long);
1484 	do {
1485 		hash = (hash + a) * 9;
1486 		len += sizeof(unsigned long);
1487 		a = *(unsigned long *)(name+len);
1488 		/* Do we have any NUL or '/' bytes in this word? */
1489 		mask = has_zero(a) | has_zero(a ^ SLASHBYTES);
1490 	} while (!mask);
1491 
1492 	/* The mask *below* the first high bit set */
1493 	mask = (mask - 1) & ~mask;
1494 	mask >>= 7;
1495 	hash += a & mask;
1496 	*hashp = fold_hash(hash);
1497 
1498 	return len + count_masked_bytes(mask);
1499 }
1500 
1501 #else
1502 
1503 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1504 {
1505 	unsigned long hash = init_name_hash();
1506 	while (len--)
1507 		hash = partial_name_hash(*name++, hash);
1508 	return end_name_hash(hash);
1509 }
1510 EXPORT_SYMBOL(full_name_hash);
1511 
1512 /*
1513  * We know there's a real path component here of at least
1514  * one character.
1515  */
1516 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1517 {
1518 	unsigned long hash = init_name_hash();
1519 	unsigned long len = 0, c;
1520 
1521 	c = (unsigned char)*name;
1522 	do {
1523 		len++;
1524 		hash = partial_name_hash(c, hash);
1525 		c = (unsigned char)name[len];
1526 	} while (c && c != '/');
1527 	*hashp = end_name_hash(hash);
1528 	return len;
1529 }
1530 
1531 #endif
1532 
1533 /*
1534  * Name resolution.
1535  * This is the basic name resolution function, turning a pathname into
1536  * the final dentry. We expect 'base' to be positive and a directory.
1537  *
1538  * Returns 0 and nd will have valid dentry and mnt on success.
1539  * Returns error and drops reference to input namei data on failure.
1540  */
1541 static int link_path_walk(const char *name, struct nameidata *nd)
1542 {
1543 	struct path next;
1544 	int err;
1545 
1546 	while (*name=='/')
1547 		name++;
1548 	if (!*name)
1549 		return 0;
1550 
1551 	/* At this point we know we have a real path component. */
1552 	for(;;) {
1553 		struct qstr this;
1554 		long len;
1555 		int type;
1556 
1557 		err = may_lookup(nd);
1558  		if (err)
1559 			break;
1560 
1561 		len = hash_name(name, &this.hash);
1562 		this.name = name;
1563 		this.len = len;
1564 
1565 		type = LAST_NORM;
1566 		if (name[0] == '.') switch (len) {
1567 			case 2:
1568 				if (name[1] == '.') {
1569 					type = LAST_DOTDOT;
1570 					nd->flags |= LOOKUP_JUMPED;
1571 				}
1572 				break;
1573 			case 1:
1574 				type = LAST_DOT;
1575 		}
1576 		if (likely(type == LAST_NORM)) {
1577 			struct dentry *parent = nd->path.dentry;
1578 			nd->flags &= ~LOOKUP_JUMPED;
1579 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1580 				err = parent->d_op->d_hash(parent, nd->inode,
1581 							   &this);
1582 				if (err < 0)
1583 					break;
1584 			}
1585 		}
1586 
1587 		if (!name[len])
1588 			goto last_component;
1589 		/*
1590 		 * If it wasn't NUL, we know it was '/'. Skip that
1591 		 * slash, and continue until no more slashes.
1592 		 */
1593 		do {
1594 			len++;
1595 		} while (unlikely(name[len] == '/'));
1596 		if (!name[len])
1597 			goto last_component;
1598 		name += len;
1599 
1600 		err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1601 		if (err < 0)
1602 			return err;
1603 
1604 		if (err) {
1605 			err = nested_symlink(&next, nd);
1606 			if (err)
1607 				return err;
1608 		}
1609 		if (can_lookup(nd->inode))
1610 			continue;
1611 		err = -ENOTDIR;
1612 		break;
1613 		/* here ends the main loop */
1614 
1615 last_component:
1616 		nd->last = this;
1617 		nd->last_type = type;
1618 		return 0;
1619 	}
1620 	terminate_walk(nd);
1621 	return err;
1622 }
1623 
1624 static int path_init(int dfd, const char *name, unsigned int flags,
1625 		     struct nameidata *nd, struct file **fp)
1626 {
1627 	int retval = 0;
1628 	int fput_needed;
1629 	struct file *file;
1630 
1631 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1632 	nd->flags = flags | LOOKUP_JUMPED;
1633 	nd->depth = 0;
1634 	if (flags & LOOKUP_ROOT) {
1635 		struct inode *inode = nd->root.dentry->d_inode;
1636 		if (*name) {
1637 			if (!inode->i_op->lookup)
1638 				return -ENOTDIR;
1639 			retval = inode_permission(inode, MAY_EXEC);
1640 			if (retval)
1641 				return retval;
1642 		}
1643 		nd->path = nd->root;
1644 		nd->inode = inode;
1645 		if (flags & LOOKUP_RCU) {
1646 			br_read_lock(vfsmount_lock);
1647 			rcu_read_lock();
1648 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1649 		} else {
1650 			path_get(&nd->path);
1651 		}
1652 		return 0;
1653 	}
1654 
1655 	nd->root.mnt = NULL;
1656 
1657 	if (*name=='/') {
1658 		if (flags & LOOKUP_RCU) {
1659 			br_read_lock(vfsmount_lock);
1660 			rcu_read_lock();
1661 			set_root_rcu(nd);
1662 		} else {
1663 			set_root(nd);
1664 			path_get(&nd->root);
1665 		}
1666 		nd->path = nd->root;
1667 	} else if (dfd == AT_FDCWD) {
1668 		if (flags & LOOKUP_RCU) {
1669 			struct fs_struct *fs = current->fs;
1670 			unsigned seq;
1671 
1672 			br_read_lock(vfsmount_lock);
1673 			rcu_read_lock();
1674 
1675 			do {
1676 				seq = read_seqcount_begin(&fs->seq);
1677 				nd->path = fs->pwd;
1678 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1679 			} while (read_seqcount_retry(&fs->seq, seq));
1680 		} else {
1681 			get_fs_pwd(current->fs, &nd->path);
1682 		}
1683 	} else {
1684 		struct dentry *dentry;
1685 
1686 		file = fget_raw_light(dfd, &fput_needed);
1687 		retval = -EBADF;
1688 		if (!file)
1689 			goto out_fail;
1690 
1691 		dentry = file->f_path.dentry;
1692 
1693 		if (*name) {
1694 			retval = -ENOTDIR;
1695 			if (!S_ISDIR(dentry->d_inode->i_mode))
1696 				goto fput_fail;
1697 
1698 			retval = inode_permission(dentry->d_inode, MAY_EXEC);
1699 			if (retval)
1700 				goto fput_fail;
1701 		}
1702 
1703 		nd->path = file->f_path;
1704 		if (flags & LOOKUP_RCU) {
1705 			if (fput_needed)
1706 				*fp = file;
1707 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1708 			br_read_lock(vfsmount_lock);
1709 			rcu_read_lock();
1710 		} else {
1711 			path_get(&file->f_path);
1712 			fput_light(file, fput_needed);
1713 		}
1714 	}
1715 
1716 	nd->inode = nd->path.dentry->d_inode;
1717 	return 0;
1718 
1719 fput_fail:
1720 	fput_light(file, fput_needed);
1721 out_fail:
1722 	return retval;
1723 }
1724 
1725 static inline int lookup_last(struct nameidata *nd, struct path *path)
1726 {
1727 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1728 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1729 
1730 	nd->flags &= ~LOOKUP_PARENT;
1731 	return walk_component(nd, path, &nd->last, nd->last_type,
1732 					nd->flags & LOOKUP_FOLLOW);
1733 }
1734 
1735 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1736 static int path_lookupat(int dfd, const char *name,
1737 				unsigned int flags, struct nameidata *nd)
1738 {
1739 	struct file *base = NULL;
1740 	struct path path;
1741 	int err;
1742 
1743 	/*
1744 	 * Path walking is largely split up into 2 different synchronisation
1745 	 * schemes, rcu-walk and ref-walk (explained in
1746 	 * Documentation/filesystems/path-lookup.txt). These share much of the
1747 	 * path walk code, but some things particularly setup, cleanup, and
1748 	 * following mounts are sufficiently divergent that functions are
1749 	 * duplicated. Typically there is a function foo(), and its RCU
1750 	 * analogue, foo_rcu().
1751 	 *
1752 	 * -ECHILD is the error number of choice (just to avoid clashes) that
1753 	 * is returned if some aspect of an rcu-walk fails. Such an error must
1754 	 * be handled by restarting a traditional ref-walk (which will always
1755 	 * be able to complete).
1756 	 */
1757 	err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1758 
1759 	if (unlikely(err))
1760 		return err;
1761 
1762 	current->total_link_count = 0;
1763 	err = link_path_walk(name, nd);
1764 
1765 	if (!err && !(flags & LOOKUP_PARENT)) {
1766 		err = lookup_last(nd, &path);
1767 		while (err > 0) {
1768 			void *cookie;
1769 			struct path link = path;
1770 			nd->flags |= LOOKUP_PARENT;
1771 			err = follow_link(&link, nd, &cookie);
1772 			if (!err)
1773 				err = lookup_last(nd, &path);
1774 			put_link(nd, &link, cookie);
1775 		}
1776 	}
1777 
1778 	if (!err)
1779 		err = complete_walk(nd);
1780 
1781 	if (!err && nd->flags & LOOKUP_DIRECTORY) {
1782 		if (!nd->inode->i_op->lookup) {
1783 			path_put(&nd->path);
1784 			err = -ENOTDIR;
1785 		}
1786 	}
1787 
1788 	if (base)
1789 		fput(base);
1790 
1791 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1792 		path_put(&nd->root);
1793 		nd->root.mnt = NULL;
1794 	}
1795 	return err;
1796 }
1797 
1798 static int do_path_lookup(int dfd, const char *name,
1799 				unsigned int flags, struct nameidata *nd)
1800 {
1801 	int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
1802 	if (unlikely(retval == -ECHILD))
1803 		retval = path_lookupat(dfd, name, flags, nd);
1804 	if (unlikely(retval == -ESTALE))
1805 		retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1806 
1807 	if (likely(!retval)) {
1808 		if (unlikely(!audit_dummy_context())) {
1809 			if (nd->path.dentry && nd->inode)
1810 				audit_inode(name, nd->path.dentry);
1811 		}
1812 	}
1813 	return retval;
1814 }
1815 
1816 int kern_path_parent(const char *name, struct nameidata *nd)
1817 {
1818 	return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd);
1819 }
1820 
1821 int kern_path(const char *name, unsigned int flags, struct path *path)
1822 {
1823 	struct nameidata nd;
1824 	int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1825 	if (!res)
1826 		*path = nd.path;
1827 	return res;
1828 }
1829 
1830 /**
1831  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1832  * @dentry:  pointer to dentry of the base directory
1833  * @mnt: pointer to vfs mount of the base directory
1834  * @name: pointer to file name
1835  * @flags: lookup flags
1836  * @path: pointer to struct path to fill
1837  */
1838 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1839 		    const char *name, unsigned int flags,
1840 		    struct path *path)
1841 {
1842 	struct nameidata nd;
1843 	int err;
1844 	nd.root.dentry = dentry;
1845 	nd.root.mnt = mnt;
1846 	BUG_ON(flags & LOOKUP_PARENT);
1847 	/* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
1848 	err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
1849 	if (!err)
1850 		*path = nd.path;
1851 	return err;
1852 }
1853 
1854 /*
1855  * Restricted form of lookup. Doesn't follow links, single-component only,
1856  * needs parent already locked. Doesn't follow mounts.
1857  * SMP-safe.
1858  */
1859 static struct dentry *lookup_hash(struct nameidata *nd)
1860 {
1861 	return __lookup_hash(&nd->last, nd->path.dentry, nd);
1862 }
1863 
1864 /**
1865  * lookup_one_len - filesystem helper to lookup single pathname component
1866  * @name:	pathname component to lookup
1867  * @base:	base directory to lookup from
1868  * @len:	maximum length @len should be interpreted to
1869  *
1870  * Note that this routine is purely a helper for filesystem usage and should
1871  * not be called by generic code.  Also note that by using this function the
1872  * nameidata argument is passed to the filesystem methods and a filesystem
1873  * using this helper needs to be prepared for that.
1874  */
1875 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1876 {
1877 	struct qstr this;
1878 	unsigned int c;
1879 	int err;
1880 
1881 	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1882 
1883 	this.name = name;
1884 	this.len = len;
1885 	this.hash = full_name_hash(name, len);
1886 	if (!len)
1887 		return ERR_PTR(-EACCES);
1888 
1889 	while (len--) {
1890 		c = *(const unsigned char *)name++;
1891 		if (c == '/' || c == '\0')
1892 			return ERR_PTR(-EACCES);
1893 	}
1894 	/*
1895 	 * See if the low-level filesystem might want
1896 	 * to use its own hash..
1897 	 */
1898 	if (base->d_flags & DCACHE_OP_HASH) {
1899 		int err = base->d_op->d_hash(base, base->d_inode, &this);
1900 		if (err < 0)
1901 			return ERR_PTR(err);
1902 	}
1903 
1904 	err = inode_permission(base->d_inode, MAY_EXEC);
1905 	if (err)
1906 		return ERR_PTR(err);
1907 
1908 	return __lookup_hash(&this, base, NULL);
1909 }
1910 
1911 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
1912 		 struct path *path, int *empty)
1913 {
1914 	struct nameidata nd;
1915 	char *tmp = getname_flags(name, flags, empty);
1916 	int err = PTR_ERR(tmp);
1917 	if (!IS_ERR(tmp)) {
1918 
1919 		BUG_ON(flags & LOOKUP_PARENT);
1920 
1921 		err = do_path_lookup(dfd, tmp, flags, &nd);
1922 		putname(tmp);
1923 		if (!err)
1924 			*path = nd.path;
1925 	}
1926 	return err;
1927 }
1928 
1929 int user_path_at(int dfd, const char __user *name, unsigned flags,
1930 		 struct path *path)
1931 {
1932 	return user_path_at_empty(dfd, name, flags, path, NULL);
1933 }
1934 
1935 static int user_path_parent(int dfd, const char __user *path,
1936 			struct nameidata *nd, char **name)
1937 {
1938 	char *s = getname(path);
1939 	int error;
1940 
1941 	if (IS_ERR(s))
1942 		return PTR_ERR(s);
1943 
1944 	error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1945 	if (error)
1946 		putname(s);
1947 	else
1948 		*name = s;
1949 
1950 	return error;
1951 }
1952 
1953 /*
1954  * It's inline, so penalty for filesystems that don't use sticky bit is
1955  * minimal.
1956  */
1957 static inline int check_sticky(struct inode *dir, struct inode *inode)
1958 {
1959 	kuid_t fsuid = current_fsuid();
1960 
1961 	if (!(dir->i_mode & S_ISVTX))
1962 		return 0;
1963 	if (uid_eq(inode->i_uid, fsuid))
1964 		return 0;
1965 	if (uid_eq(dir->i_uid, fsuid))
1966 		return 0;
1967 	return !inode_capable(inode, CAP_FOWNER);
1968 }
1969 
1970 /*
1971  *	Check whether we can remove a link victim from directory dir, check
1972  *  whether the type of victim is right.
1973  *  1. We can't do it if dir is read-only (done in permission())
1974  *  2. We should have write and exec permissions on dir
1975  *  3. We can't remove anything from append-only dir
1976  *  4. We can't do anything with immutable dir (done in permission())
1977  *  5. If the sticky bit on dir is set we should either
1978  *	a. be owner of dir, or
1979  *	b. be owner of victim, or
1980  *	c. have CAP_FOWNER capability
1981  *  6. If the victim is append-only or immutable we can't do antyhing with
1982  *     links pointing to it.
1983  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1984  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1985  *  9. We can't remove a root or mountpoint.
1986  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1987  *     nfs_async_unlink().
1988  */
1989 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1990 {
1991 	int error;
1992 
1993 	if (!victim->d_inode)
1994 		return -ENOENT;
1995 
1996 	BUG_ON(victim->d_parent->d_inode != dir);
1997 	audit_inode_child(victim, dir);
1998 
1999 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2000 	if (error)
2001 		return error;
2002 	if (IS_APPEND(dir))
2003 		return -EPERM;
2004 	if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
2005 	    IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
2006 		return -EPERM;
2007 	if (isdir) {
2008 		if (!S_ISDIR(victim->d_inode->i_mode))
2009 			return -ENOTDIR;
2010 		if (IS_ROOT(victim))
2011 			return -EBUSY;
2012 	} else if (S_ISDIR(victim->d_inode->i_mode))
2013 		return -EISDIR;
2014 	if (IS_DEADDIR(dir))
2015 		return -ENOENT;
2016 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2017 		return -EBUSY;
2018 	return 0;
2019 }
2020 
2021 /*	Check whether we can create an object with dentry child in directory
2022  *  dir.
2023  *  1. We can't do it if child already exists (open has special treatment for
2024  *     this case, but since we are inlined it's OK)
2025  *  2. We can't do it if dir is read-only (done in permission())
2026  *  3. We should have write and exec permissions on dir
2027  *  4. We can't do it if dir is immutable (done in permission())
2028  */
2029 static inline int may_create(struct inode *dir, struct dentry *child)
2030 {
2031 	if (child->d_inode)
2032 		return -EEXIST;
2033 	if (IS_DEADDIR(dir))
2034 		return -ENOENT;
2035 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2036 }
2037 
2038 /*
2039  * p1 and p2 should be directories on the same fs.
2040  */
2041 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2042 {
2043 	struct dentry *p;
2044 
2045 	if (p1 == p2) {
2046 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2047 		return NULL;
2048 	}
2049 
2050 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2051 
2052 	p = d_ancestor(p2, p1);
2053 	if (p) {
2054 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2055 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2056 		return p;
2057 	}
2058 
2059 	p = d_ancestor(p1, p2);
2060 	if (p) {
2061 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2062 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2063 		return p;
2064 	}
2065 
2066 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2067 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2068 	return NULL;
2069 }
2070 
2071 void unlock_rename(struct dentry *p1, struct dentry *p2)
2072 {
2073 	mutex_unlock(&p1->d_inode->i_mutex);
2074 	if (p1 != p2) {
2075 		mutex_unlock(&p2->d_inode->i_mutex);
2076 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2077 	}
2078 }
2079 
2080 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2081 		struct nameidata *nd)
2082 {
2083 	int error = may_create(dir, dentry);
2084 
2085 	if (error)
2086 		return error;
2087 
2088 	if (!dir->i_op->create)
2089 		return -EACCES;	/* shouldn't it be ENOSYS? */
2090 	mode &= S_IALLUGO;
2091 	mode |= S_IFREG;
2092 	error = security_inode_create(dir, dentry, mode);
2093 	if (error)
2094 		return error;
2095 	error = dir->i_op->create(dir, dentry, mode, nd);
2096 	if (!error)
2097 		fsnotify_create(dir, dentry);
2098 	return error;
2099 }
2100 
2101 static int may_open(struct path *path, int acc_mode, int flag)
2102 {
2103 	struct dentry *dentry = path->dentry;
2104 	struct inode *inode = dentry->d_inode;
2105 	int error;
2106 
2107 	/* O_PATH? */
2108 	if (!acc_mode)
2109 		return 0;
2110 
2111 	if (!inode)
2112 		return -ENOENT;
2113 
2114 	switch (inode->i_mode & S_IFMT) {
2115 	case S_IFLNK:
2116 		return -ELOOP;
2117 	case S_IFDIR:
2118 		if (acc_mode & MAY_WRITE)
2119 			return -EISDIR;
2120 		break;
2121 	case S_IFBLK:
2122 	case S_IFCHR:
2123 		if (path->mnt->mnt_flags & MNT_NODEV)
2124 			return -EACCES;
2125 		/*FALLTHRU*/
2126 	case S_IFIFO:
2127 	case S_IFSOCK:
2128 		flag &= ~O_TRUNC;
2129 		break;
2130 	}
2131 
2132 	error = inode_permission(inode, acc_mode);
2133 	if (error)
2134 		return error;
2135 
2136 	/*
2137 	 * An append-only file must be opened in append mode for writing.
2138 	 */
2139 	if (IS_APPEND(inode)) {
2140 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2141 			return -EPERM;
2142 		if (flag & O_TRUNC)
2143 			return -EPERM;
2144 	}
2145 
2146 	/* O_NOATIME can only be set by the owner or superuser */
2147 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2148 		return -EPERM;
2149 
2150 	return 0;
2151 }
2152 
2153 static int handle_truncate(struct file *filp)
2154 {
2155 	struct path *path = &filp->f_path;
2156 	struct inode *inode = path->dentry->d_inode;
2157 	int error = get_write_access(inode);
2158 	if (error)
2159 		return error;
2160 	/*
2161 	 * Refuse to truncate files with mandatory locks held on them.
2162 	 */
2163 	error = locks_verify_locked(inode);
2164 	if (!error)
2165 		error = security_path_truncate(path);
2166 	if (!error) {
2167 		error = do_truncate(path->dentry, 0,
2168 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2169 				    filp);
2170 	}
2171 	put_write_access(inode);
2172 	return error;
2173 }
2174 
2175 static inline int open_to_namei_flags(int flag)
2176 {
2177 	if ((flag & O_ACCMODE) == 3)
2178 		flag--;
2179 	return flag;
2180 }
2181 
2182 /*
2183  * Handle the last step of open()
2184  */
2185 static struct file *do_last(struct nameidata *nd, struct path *path,
2186 			    const struct open_flags *op, const char *pathname)
2187 {
2188 	struct dentry *dir = nd->path.dentry;
2189 	struct dentry *dentry;
2190 	int open_flag = op->open_flag;
2191 	int will_truncate = open_flag & O_TRUNC;
2192 	int want_write = 0;
2193 	int acc_mode = op->acc_mode;
2194 	struct file *filp;
2195 	int error;
2196 
2197 	nd->flags &= ~LOOKUP_PARENT;
2198 	nd->flags |= op->intent;
2199 
2200 	switch (nd->last_type) {
2201 	case LAST_DOTDOT:
2202 	case LAST_DOT:
2203 		error = handle_dots(nd, nd->last_type);
2204 		if (error)
2205 			return ERR_PTR(error);
2206 		/* fallthrough */
2207 	case LAST_ROOT:
2208 		error = complete_walk(nd);
2209 		if (error)
2210 			return ERR_PTR(error);
2211 		audit_inode(pathname, nd->path.dentry);
2212 		if (open_flag & O_CREAT) {
2213 			error = -EISDIR;
2214 			goto exit;
2215 		}
2216 		goto ok;
2217 	case LAST_BIND:
2218 		error = complete_walk(nd);
2219 		if (error)
2220 			return ERR_PTR(error);
2221 		audit_inode(pathname, dir);
2222 		goto ok;
2223 	}
2224 
2225 	if (!(open_flag & O_CREAT)) {
2226 		int symlink_ok = 0;
2227 		if (nd->last.name[nd->last.len])
2228 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2229 		if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2230 			symlink_ok = 1;
2231 		/* we _can_ be in RCU mode here */
2232 		error = walk_component(nd, path, &nd->last, LAST_NORM,
2233 					!symlink_ok);
2234 		if (error < 0)
2235 			return ERR_PTR(error);
2236 		if (error) /* symlink */
2237 			return NULL;
2238 		/* sayonara */
2239 		error = complete_walk(nd);
2240 		if (error)
2241 			return ERR_PTR(error);
2242 
2243 		error = -ENOTDIR;
2244 		if (nd->flags & LOOKUP_DIRECTORY) {
2245 			if (!nd->inode->i_op->lookup)
2246 				goto exit;
2247 		}
2248 		audit_inode(pathname, nd->path.dentry);
2249 		goto ok;
2250 	}
2251 
2252 	/* create side of things */
2253 	/*
2254 	 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED has been
2255 	 * cleared when we got to the last component we are about to look up
2256 	 */
2257 	error = complete_walk(nd);
2258 	if (error)
2259 		return ERR_PTR(error);
2260 
2261 	audit_inode(pathname, dir);
2262 	error = -EISDIR;
2263 	/* trailing slashes? */
2264 	if (nd->last.name[nd->last.len])
2265 		goto exit;
2266 
2267 	mutex_lock(&dir->d_inode->i_mutex);
2268 
2269 	dentry = lookup_hash(nd);
2270 	error = PTR_ERR(dentry);
2271 	if (IS_ERR(dentry)) {
2272 		mutex_unlock(&dir->d_inode->i_mutex);
2273 		goto exit;
2274 	}
2275 
2276 	path->dentry = dentry;
2277 	path->mnt = nd->path.mnt;
2278 
2279 	/* Negative dentry, just create the file */
2280 	if (!dentry->d_inode) {
2281 		umode_t mode = op->mode;
2282 		if (!IS_POSIXACL(dir->d_inode))
2283 			mode &= ~current_umask();
2284 		/*
2285 		 * This write is needed to ensure that a
2286 		 * rw->ro transition does not occur between
2287 		 * the time when the file is created and when
2288 		 * a permanent write count is taken through
2289 		 * the 'struct file' in nameidata_to_filp().
2290 		 */
2291 		error = mnt_want_write(nd->path.mnt);
2292 		if (error)
2293 			goto exit_mutex_unlock;
2294 		want_write = 1;
2295 		/* Don't check for write permission, don't truncate */
2296 		open_flag &= ~O_TRUNC;
2297 		will_truncate = 0;
2298 		acc_mode = MAY_OPEN;
2299 		error = security_path_mknod(&nd->path, dentry, mode, 0);
2300 		if (error)
2301 			goto exit_mutex_unlock;
2302 		error = vfs_create(dir->d_inode, dentry, mode, nd);
2303 		if (error)
2304 			goto exit_mutex_unlock;
2305 		mutex_unlock(&dir->d_inode->i_mutex);
2306 		dput(nd->path.dentry);
2307 		nd->path.dentry = dentry;
2308 		goto common;
2309 	}
2310 
2311 	/*
2312 	 * It already exists.
2313 	 */
2314 	mutex_unlock(&dir->d_inode->i_mutex);
2315 	audit_inode(pathname, path->dentry);
2316 
2317 	error = -EEXIST;
2318 	if (open_flag & O_EXCL)
2319 		goto exit_dput;
2320 
2321 	error = follow_managed(path, nd->flags);
2322 	if (error < 0)
2323 		goto exit_dput;
2324 
2325 	if (error)
2326 		nd->flags |= LOOKUP_JUMPED;
2327 
2328 	error = -ENOENT;
2329 	if (!path->dentry->d_inode)
2330 		goto exit_dput;
2331 
2332 	if (path->dentry->d_inode->i_op->follow_link)
2333 		return NULL;
2334 
2335 	path_to_nameidata(path, nd);
2336 	nd->inode = path->dentry->d_inode;
2337 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
2338 	error = complete_walk(nd);
2339 	if (error)
2340 		return ERR_PTR(error);
2341 	error = -EISDIR;
2342 	if (S_ISDIR(nd->inode->i_mode))
2343 		goto exit;
2344 ok:
2345 	if (!S_ISREG(nd->inode->i_mode))
2346 		will_truncate = 0;
2347 
2348 	if (will_truncate) {
2349 		error = mnt_want_write(nd->path.mnt);
2350 		if (error)
2351 			goto exit;
2352 		want_write = 1;
2353 	}
2354 common:
2355 	error = may_open(&nd->path, acc_mode, open_flag);
2356 	if (error)
2357 		goto exit;
2358 	filp = nameidata_to_filp(nd);
2359 	if (!IS_ERR(filp)) {
2360 		error = ima_file_check(filp, op->acc_mode);
2361 		if (error) {
2362 			fput(filp);
2363 			filp = ERR_PTR(error);
2364 		}
2365 	}
2366 	if (!IS_ERR(filp)) {
2367 		if (will_truncate) {
2368 			error = handle_truncate(filp);
2369 			if (error) {
2370 				fput(filp);
2371 				filp = ERR_PTR(error);
2372 			}
2373 		}
2374 	}
2375 out:
2376 	if (want_write)
2377 		mnt_drop_write(nd->path.mnt);
2378 	path_put(&nd->path);
2379 	return filp;
2380 
2381 exit_mutex_unlock:
2382 	mutex_unlock(&dir->d_inode->i_mutex);
2383 exit_dput:
2384 	path_put_conditional(path, nd);
2385 exit:
2386 	filp = ERR_PTR(error);
2387 	goto out;
2388 }
2389 
2390 static struct file *path_openat(int dfd, const char *pathname,
2391 		struct nameidata *nd, const struct open_flags *op, int flags)
2392 {
2393 	struct file *base = NULL;
2394 	struct file *filp;
2395 	struct path path;
2396 	int error;
2397 
2398 	filp = get_empty_filp();
2399 	if (!filp)
2400 		return ERR_PTR(-ENFILE);
2401 
2402 	filp->f_flags = op->open_flag;
2403 	nd->intent.open.file = filp;
2404 	nd->intent.open.flags = open_to_namei_flags(op->open_flag);
2405 	nd->intent.open.create_mode = op->mode;
2406 
2407 	error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base);
2408 	if (unlikely(error))
2409 		goto out_filp;
2410 
2411 	current->total_link_count = 0;
2412 	error = link_path_walk(pathname, nd);
2413 	if (unlikely(error))
2414 		goto out_filp;
2415 
2416 	filp = do_last(nd, &path, op, pathname);
2417 	while (unlikely(!filp)) { /* trailing symlink */
2418 		struct path link = path;
2419 		void *cookie;
2420 		if (!(nd->flags & LOOKUP_FOLLOW)) {
2421 			path_put_conditional(&path, nd);
2422 			path_put(&nd->path);
2423 			filp = ERR_PTR(-ELOOP);
2424 			break;
2425 		}
2426 		nd->flags |= LOOKUP_PARENT;
2427 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2428 		error = follow_link(&link, nd, &cookie);
2429 		if (unlikely(error))
2430 			filp = ERR_PTR(error);
2431 		else
2432 			filp = do_last(nd, &path, op, pathname);
2433 		put_link(nd, &link, cookie);
2434 	}
2435 out:
2436 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2437 		path_put(&nd->root);
2438 	if (base)
2439 		fput(base);
2440 	release_open_intent(nd);
2441 	return filp;
2442 
2443 out_filp:
2444 	filp = ERR_PTR(error);
2445 	goto out;
2446 }
2447 
2448 struct file *do_filp_open(int dfd, const char *pathname,
2449 		const struct open_flags *op, int flags)
2450 {
2451 	struct nameidata nd;
2452 	struct file *filp;
2453 
2454 	filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2455 	if (unlikely(filp == ERR_PTR(-ECHILD)))
2456 		filp = path_openat(dfd, pathname, &nd, op, flags);
2457 	if (unlikely(filp == ERR_PTR(-ESTALE)))
2458 		filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
2459 	return filp;
2460 }
2461 
2462 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
2463 		const char *name, const struct open_flags *op, int flags)
2464 {
2465 	struct nameidata nd;
2466 	struct file *file;
2467 
2468 	nd.root.mnt = mnt;
2469 	nd.root.dentry = dentry;
2470 
2471 	flags |= LOOKUP_ROOT;
2472 
2473 	if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
2474 		return ERR_PTR(-ELOOP);
2475 
2476 	file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU);
2477 	if (unlikely(file == ERR_PTR(-ECHILD)))
2478 		file = path_openat(-1, name, &nd, op, flags);
2479 	if (unlikely(file == ERR_PTR(-ESTALE)))
2480 		file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL);
2481 	return file;
2482 }
2483 
2484 struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, int is_dir)
2485 {
2486 	struct dentry *dentry = ERR_PTR(-EEXIST);
2487 	struct nameidata nd;
2488 	int error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
2489 	if (error)
2490 		return ERR_PTR(error);
2491 
2492 	/*
2493 	 * Yucky last component or no last component at all?
2494 	 * (foo/., foo/.., /////)
2495 	 */
2496 	if (nd.last_type != LAST_NORM)
2497 		goto out;
2498 	nd.flags &= ~LOOKUP_PARENT;
2499 	nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2500 	nd.intent.open.flags = O_EXCL;
2501 
2502 	/*
2503 	 * Do the final lookup.
2504 	 */
2505 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2506 	dentry = lookup_hash(&nd);
2507 	if (IS_ERR(dentry))
2508 		goto fail;
2509 
2510 	if (dentry->d_inode)
2511 		goto eexist;
2512 	/*
2513 	 * Special case - lookup gave negative, but... we had foo/bar/
2514 	 * From the vfs_mknod() POV we just have a negative dentry -
2515 	 * all is fine. Let's be bastards - you had / on the end, you've
2516 	 * been asking for (non-existent) directory. -ENOENT for you.
2517 	 */
2518 	if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
2519 		dput(dentry);
2520 		dentry = ERR_PTR(-ENOENT);
2521 		goto fail;
2522 	}
2523 	*path = nd.path;
2524 	return dentry;
2525 eexist:
2526 	dput(dentry);
2527 	dentry = ERR_PTR(-EEXIST);
2528 fail:
2529 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2530 out:
2531 	path_put(&nd.path);
2532 	return dentry;
2533 }
2534 EXPORT_SYMBOL(kern_path_create);
2535 
2536 struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, int is_dir)
2537 {
2538 	char *tmp = getname(pathname);
2539 	struct dentry *res;
2540 	if (IS_ERR(tmp))
2541 		return ERR_CAST(tmp);
2542 	res = kern_path_create(dfd, tmp, path, is_dir);
2543 	putname(tmp);
2544 	return res;
2545 }
2546 EXPORT_SYMBOL(user_path_create);
2547 
2548 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2549 {
2550 	int error = may_create(dir, dentry);
2551 
2552 	if (error)
2553 		return error;
2554 
2555 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
2556 		return -EPERM;
2557 
2558 	if (!dir->i_op->mknod)
2559 		return -EPERM;
2560 
2561 	error = devcgroup_inode_mknod(mode, dev);
2562 	if (error)
2563 		return error;
2564 
2565 	error = security_inode_mknod(dir, dentry, mode, dev);
2566 	if (error)
2567 		return error;
2568 
2569 	error = dir->i_op->mknod(dir, dentry, mode, dev);
2570 	if (!error)
2571 		fsnotify_create(dir, dentry);
2572 	return error;
2573 }
2574 
2575 static int may_mknod(umode_t mode)
2576 {
2577 	switch (mode & S_IFMT) {
2578 	case S_IFREG:
2579 	case S_IFCHR:
2580 	case S_IFBLK:
2581 	case S_IFIFO:
2582 	case S_IFSOCK:
2583 	case 0: /* zero mode translates to S_IFREG */
2584 		return 0;
2585 	case S_IFDIR:
2586 		return -EPERM;
2587 	default:
2588 		return -EINVAL;
2589 	}
2590 }
2591 
2592 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
2593 		unsigned, dev)
2594 {
2595 	struct dentry *dentry;
2596 	struct path path;
2597 	int error;
2598 
2599 	if (S_ISDIR(mode))
2600 		return -EPERM;
2601 
2602 	dentry = user_path_create(dfd, filename, &path, 0);
2603 	if (IS_ERR(dentry))
2604 		return PTR_ERR(dentry);
2605 
2606 	if (!IS_POSIXACL(path.dentry->d_inode))
2607 		mode &= ~current_umask();
2608 	error = may_mknod(mode);
2609 	if (error)
2610 		goto out_dput;
2611 	error = mnt_want_write(path.mnt);
2612 	if (error)
2613 		goto out_dput;
2614 	error = security_path_mknod(&path, dentry, mode, dev);
2615 	if (error)
2616 		goto out_drop_write;
2617 	switch (mode & S_IFMT) {
2618 		case 0: case S_IFREG:
2619 			error = vfs_create(path.dentry->d_inode,dentry,mode,NULL);
2620 			break;
2621 		case S_IFCHR: case S_IFBLK:
2622 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
2623 					new_decode_dev(dev));
2624 			break;
2625 		case S_IFIFO: case S_IFSOCK:
2626 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
2627 			break;
2628 	}
2629 out_drop_write:
2630 	mnt_drop_write(path.mnt);
2631 out_dput:
2632 	dput(dentry);
2633 	mutex_unlock(&path.dentry->d_inode->i_mutex);
2634 	path_put(&path);
2635 
2636 	return error;
2637 }
2638 
2639 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
2640 {
2641 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
2642 }
2643 
2644 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2645 {
2646 	int error = may_create(dir, dentry);
2647 	unsigned max_links = dir->i_sb->s_max_links;
2648 
2649 	if (error)
2650 		return error;
2651 
2652 	if (!dir->i_op->mkdir)
2653 		return -EPERM;
2654 
2655 	mode &= (S_IRWXUGO|S_ISVTX);
2656 	error = security_inode_mkdir(dir, dentry, mode);
2657 	if (error)
2658 		return error;
2659 
2660 	if (max_links && dir->i_nlink >= max_links)
2661 		return -EMLINK;
2662 
2663 	error = dir->i_op->mkdir(dir, dentry, mode);
2664 	if (!error)
2665 		fsnotify_mkdir(dir, dentry);
2666 	return error;
2667 }
2668 
2669 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
2670 {
2671 	struct dentry *dentry;
2672 	struct path path;
2673 	int error;
2674 
2675 	dentry = user_path_create(dfd, pathname, &path, 1);
2676 	if (IS_ERR(dentry))
2677 		return PTR_ERR(dentry);
2678 
2679 	if (!IS_POSIXACL(path.dentry->d_inode))
2680 		mode &= ~current_umask();
2681 	error = mnt_want_write(path.mnt);
2682 	if (error)
2683 		goto out_dput;
2684 	error = security_path_mkdir(&path, dentry, mode);
2685 	if (error)
2686 		goto out_drop_write;
2687 	error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
2688 out_drop_write:
2689 	mnt_drop_write(path.mnt);
2690 out_dput:
2691 	dput(dentry);
2692 	mutex_unlock(&path.dentry->d_inode->i_mutex);
2693 	path_put(&path);
2694 	return error;
2695 }
2696 
2697 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
2698 {
2699 	return sys_mkdirat(AT_FDCWD, pathname, mode);
2700 }
2701 
2702 /*
2703  * The dentry_unhash() helper will try to drop the dentry early: we
2704  * should have a usage count of 1 if we're the only user of this
2705  * dentry, and if that is true (possibly after pruning the dcache),
2706  * then we drop the dentry now.
2707  *
2708  * A low-level filesystem can, if it choses, legally
2709  * do a
2710  *
2711  *	if (!d_unhashed(dentry))
2712  *		return -EBUSY;
2713  *
2714  * if it cannot handle the case of removing a directory
2715  * that is still in use by something else..
2716  */
2717 void dentry_unhash(struct dentry *dentry)
2718 {
2719 	shrink_dcache_parent(dentry);
2720 	spin_lock(&dentry->d_lock);
2721 	if (dentry->d_count == 1)
2722 		__d_drop(dentry);
2723 	spin_unlock(&dentry->d_lock);
2724 }
2725 
2726 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2727 {
2728 	int error = may_delete(dir, dentry, 1);
2729 
2730 	if (error)
2731 		return error;
2732 
2733 	if (!dir->i_op->rmdir)
2734 		return -EPERM;
2735 
2736 	dget(dentry);
2737 	mutex_lock(&dentry->d_inode->i_mutex);
2738 
2739 	error = -EBUSY;
2740 	if (d_mountpoint(dentry))
2741 		goto out;
2742 
2743 	error = security_inode_rmdir(dir, dentry);
2744 	if (error)
2745 		goto out;
2746 
2747 	shrink_dcache_parent(dentry);
2748 	error = dir->i_op->rmdir(dir, dentry);
2749 	if (error)
2750 		goto out;
2751 
2752 	dentry->d_inode->i_flags |= S_DEAD;
2753 	dont_mount(dentry);
2754 
2755 out:
2756 	mutex_unlock(&dentry->d_inode->i_mutex);
2757 	dput(dentry);
2758 	if (!error)
2759 		d_delete(dentry);
2760 	return error;
2761 }
2762 
2763 static long do_rmdir(int dfd, const char __user *pathname)
2764 {
2765 	int error = 0;
2766 	char * name;
2767 	struct dentry *dentry;
2768 	struct nameidata nd;
2769 
2770 	error = user_path_parent(dfd, pathname, &nd, &name);
2771 	if (error)
2772 		return error;
2773 
2774 	switch(nd.last_type) {
2775 	case LAST_DOTDOT:
2776 		error = -ENOTEMPTY;
2777 		goto exit1;
2778 	case LAST_DOT:
2779 		error = -EINVAL;
2780 		goto exit1;
2781 	case LAST_ROOT:
2782 		error = -EBUSY;
2783 		goto exit1;
2784 	}
2785 
2786 	nd.flags &= ~LOOKUP_PARENT;
2787 
2788 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2789 	dentry = lookup_hash(&nd);
2790 	error = PTR_ERR(dentry);
2791 	if (IS_ERR(dentry))
2792 		goto exit2;
2793 	if (!dentry->d_inode) {
2794 		error = -ENOENT;
2795 		goto exit3;
2796 	}
2797 	error = mnt_want_write(nd.path.mnt);
2798 	if (error)
2799 		goto exit3;
2800 	error = security_path_rmdir(&nd.path, dentry);
2801 	if (error)
2802 		goto exit4;
2803 	error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2804 exit4:
2805 	mnt_drop_write(nd.path.mnt);
2806 exit3:
2807 	dput(dentry);
2808 exit2:
2809 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2810 exit1:
2811 	path_put(&nd.path);
2812 	putname(name);
2813 	return error;
2814 }
2815 
2816 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2817 {
2818 	return do_rmdir(AT_FDCWD, pathname);
2819 }
2820 
2821 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2822 {
2823 	int error = may_delete(dir, dentry, 0);
2824 
2825 	if (error)
2826 		return error;
2827 
2828 	if (!dir->i_op->unlink)
2829 		return -EPERM;
2830 
2831 	mutex_lock(&dentry->d_inode->i_mutex);
2832 	if (d_mountpoint(dentry))
2833 		error = -EBUSY;
2834 	else {
2835 		error = security_inode_unlink(dir, dentry);
2836 		if (!error) {
2837 			error = dir->i_op->unlink(dir, dentry);
2838 			if (!error)
2839 				dont_mount(dentry);
2840 		}
2841 	}
2842 	mutex_unlock(&dentry->d_inode->i_mutex);
2843 
2844 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
2845 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2846 		fsnotify_link_count(dentry->d_inode);
2847 		d_delete(dentry);
2848 	}
2849 
2850 	return error;
2851 }
2852 
2853 /*
2854  * Make sure that the actual truncation of the file will occur outside its
2855  * directory's i_mutex.  Truncate can take a long time if there is a lot of
2856  * writeout happening, and we don't want to prevent access to the directory
2857  * while waiting on the I/O.
2858  */
2859 static long do_unlinkat(int dfd, const char __user *pathname)
2860 {
2861 	int error;
2862 	char *name;
2863 	struct dentry *dentry;
2864 	struct nameidata nd;
2865 	struct inode *inode = NULL;
2866 
2867 	error = user_path_parent(dfd, pathname, &nd, &name);
2868 	if (error)
2869 		return error;
2870 
2871 	error = -EISDIR;
2872 	if (nd.last_type != LAST_NORM)
2873 		goto exit1;
2874 
2875 	nd.flags &= ~LOOKUP_PARENT;
2876 
2877 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2878 	dentry = lookup_hash(&nd);
2879 	error = PTR_ERR(dentry);
2880 	if (!IS_ERR(dentry)) {
2881 		/* Why not before? Because we want correct error value */
2882 		if (nd.last.name[nd.last.len])
2883 			goto slashes;
2884 		inode = dentry->d_inode;
2885 		if (!inode)
2886 			goto slashes;
2887 		ihold(inode);
2888 		error = mnt_want_write(nd.path.mnt);
2889 		if (error)
2890 			goto exit2;
2891 		error = security_path_unlink(&nd.path, dentry);
2892 		if (error)
2893 			goto exit3;
2894 		error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2895 exit3:
2896 		mnt_drop_write(nd.path.mnt);
2897 	exit2:
2898 		dput(dentry);
2899 	}
2900 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2901 	if (inode)
2902 		iput(inode);	/* truncate the inode here */
2903 exit1:
2904 	path_put(&nd.path);
2905 	putname(name);
2906 	return error;
2907 
2908 slashes:
2909 	error = !dentry->d_inode ? -ENOENT :
2910 		S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2911 	goto exit2;
2912 }
2913 
2914 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2915 {
2916 	if ((flag & ~AT_REMOVEDIR) != 0)
2917 		return -EINVAL;
2918 
2919 	if (flag & AT_REMOVEDIR)
2920 		return do_rmdir(dfd, pathname);
2921 
2922 	return do_unlinkat(dfd, pathname);
2923 }
2924 
2925 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2926 {
2927 	return do_unlinkat(AT_FDCWD, pathname);
2928 }
2929 
2930 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2931 {
2932 	int error = may_create(dir, dentry);
2933 
2934 	if (error)
2935 		return error;
2936 
2937 	if (!dir->i_op->symlink)
2938 		return -EPERM;
2939 
2940 	error = security_inode_symlink(dir, dentry, oldname);
2941 	if (error)
2942 		return error;
2943 
2944 	error = dir->i_op->symlink(dir, dentry, oldname);
2945 	if (!error)
2946 		fsnotify_create(dir, dentry);
2947 	return error;
2948 }
2949 
2950 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2951 		int, newdfd, const char __user *, newname)
2952 {
2953 	int error;
2954 	char *from;
2955 	struct dentry *dentry;
2956 	struct path path;
2957 
2958 	from = getname(oldname);
2959 	if (IS_ERR(from))
2960 		return PTR_ERR(from);
2961 
2962 	dentry = user_path_create(newdfd, newname, &path, 0);
2963 	error = PTR_ERR(dentry);
2964 	if (IS_ERR(dentry))
2965 		goto out_putname;
2966 
2967 	error = mnt_want_write(path.mnt);
2968 	if (error)
2969 		goto out_dput;
2970 	error = security_path_symlink(&path, dentry, from);
2971 	if (error)
2972 		goto out_drop_write;
2973 	error = vfs_symlink(path.dentry->d_inode, dentry, from);
2974 out_drop_write:
2975 	mnt_drop_write(path.mnt);
2976 out_dput:
2977 	dput(dentry);
2978 	mutex_unlock(&path.dentry->d_inode->i_mutex);
2979 	path_put(&path);
2980 out_putname:
2981 	putname(from);
2982 	return error;
2983 }
2984 
2985 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2986 {
2987 	return sys_symlinkat(oldname, AT_FDCWD, newname);
2988 }
2989 
2990 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2991 {
2992 	struct inode *inode = old_dentry->d_inode;
2993 	unsigned max_links = dir->i_sb->s_max_links;
2994 	int error;
2995 
2996 	if (!inode)
2997 		return -ENOENT;
2998 
2999 	error = may_create(dir, new_dentry);
3000 	if (error)
3001 		return error;
3002 
3003 	if (dir->i_sb != inode->i_sb)
3004 		return -EXDEV;
3005 
3006 	/*
3007 	 * A link to an append-only or immutable file cannot be created.
3008 	 */
3009 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3010 		return -EPERM;
3011 	if (!dir->i_op->link)
3012 		return -EPERM;
3013 	if (S_ISDIR(inode->i_mode))
3014 		return -EPERM;
3015 
3016 	error = security_inode_link(old_dentry, dir, new_dentry);
3017 	if (error)
3018 		return error;
3019 
3020 	mutex_lock(&inode->i_mutex);
3021 	/* Make sure we don't allow creating hardlink to an unlinked file */
3022 	if (inode->i_nlink == 0)
3023 		error =  -ENOENT;
3024 	else if (max_links && inode->i_nlink >= max_links)
3025 		error = -EMLINK;
3026 	else
3027 		error = dir->i_op->link(old_dentry, dir, new_dentry);
3028 	mutex_unlock(&inode->i_mutex);
3029 	if (!error)
3030 		fsnotify_link(dir, inode, new_dentry);
3031 	return error;
3032 }
3033 
3034 /*
3035  * Hardlinks are often used in delicate situations.  We avoid
3036  * security-related surprises by not following symlinks on the
3037  * newname.  --KAB
3038  *
3039  * We don't follow them on the oldname either to be compatible
3040  * with linux 2.0, and to avoid hard-linking to directories
3041  * and other special files.  --ADM
3042  */
3043 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3044 		int, newdfd, const char __user *, newname, int, flags)
3045 {
3046 	struct dentry *new_dentry;
3047 	struct path old_path, new_path;
3048 	int how = 0;
3049 	int error;
3050 
3051 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3052 		return -EINVAL;
3053 	/*
3054 	 * To use null names we require CAP_DAC_READ_SEARCH
3055 	 * This ensures that not everyone will be able to create
3056 	 * handlink using the passed filedescriptor.
3057 	 */
3058 	if (flags & AT_EMPTY_PATH) {
3059 		if (!capable(CAP_DAC_READ_SEARCH))
3060 			return -ENOENT;
3061 		how = LOOKUP_EMPTY;
3062 	}
3063 
3064 	if (flags & AT_SYMLINK_FOLLOW)
3065 		how |= LOOKUP_FOLLOW;
3066 
3067 	error = user_path_at(olddfd, oldname, how, &old_path);
3068 	if (error)
3069 		return error;
3070 
3071 	new_dentry = user_path_create(newdfd, newname, &new_path, 0);
3072 	error = PTR_ERR(new_dentry);
3073 	if (IS_ERR(new_dentry))
3074 		goto out;
3075 
3076 	error = -EXDEV;
3077 	if (old_path.mnt != new_path.mnt)
3078 		goto out_dput;
3079 	error = mnt_want_write(new_path.mnt);
3080 	if (error)
3081 		goto out_dput;
3082 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
3083 	if (error)
3084 		goto out_drop_write;
3085 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
3086 out_drop_write:
3087 	mnt_drop_write(new_path.mnt);
3088 out_dput:
3089 	dput(new_dentry);
3090 	mutex_unlock(&new_path.dentry->d_inode->i_mutex);
3091 	path_put(&new_path);
3092 out:
3093 	path_put(&old_path);
3094 
3095 	return error;
3096 }
3097 
3098 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3099 {
3100 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3101 }
3102 
3103 /*
3104  * The worst of all namespace operations - renaming directory. "Perverted"
3105  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3106  * Problems:
3107  *	a) we can get into loop creation. Check is done in is_subdir().
3108  *	b) race potential - two innocent renames can create a loop together.
3109  *	   That's where 4.4 screws up. Current fix: serialization on
3110  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3111  *	   story.
3112  *	c) we have to lock _three_ objects - parents and victim (if it exists).
3113  *	   And that - after we got ->i_mutex on parents (until then we don't know
3114  *	   whether the target exists).  Solution: try to be smart with locking
3115  *	   order for inodes.  We rely on the fact that tree topology may change
3116  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
3117  *	   move will be locked.  Thus we can rank directories by the tree
3118  *	   (ancestors first) and rank all non-directories after them.
3119  *	   That works since everybody except rename does "lock parent, lookup,
3120  *	   lock child" and rename is under ->s_vfs_rename_mutex.
3121  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
3122  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
3123  *	   we'd better make sure that there's no link(2) for them.
3124  *	d) conversion from fhandle to dentry may come in the wrong moment - when
3125  *	   we are removing the target. Solution: we will have to grab ->i_mutex
3126  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3127  *	   ->i_mutex on parents, which works but leads to some truly excessive
3128  *	   locking].
3129  */
3130 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3131 			  struct inode *new_dir, struct dentry *new_dentry)
3132 {
3133 	int error = 0;
3134 	struct inode *target = new_dentry->d_inode;
3135 	unsigned max_links = new_dir->i_sb->s_max_links;
3136 
3137 	/*
3138 	 * If we are going to change the parent - check write permissions,
3139 	 * we'll need to flip '..'.
3140 	 */
3141 	if (new_dir != old_dir) {
3142 		error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3143 		if (error)
3144 			return error;
3145 	}
3146 
3147 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3148 	if (error)
3149 		return error;
3150 
3151 	dget(new_dentry);
3152 	if (target)
3153 		mutex_lock(&target->i_mutex);
3154 
3155 	error = -EBUSY;
3156 	if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3157 		goto out;
3158 
3159 	error = -EMLINK;
3160 	if (max_links && !target && new_dir != old_dir &&
3161 	    new_dir->i_nlink >= max_links)
3162 		goto out;
3163 
3164 	if (target)
3165 		shrink_dcache_parent(new_dentry);
3166 	error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3167 	if (error)
3168 		goto out;
3169 
3170 	if (target) {
3171 		target->i_flags |= S_DEAD;
3172 		dont_mount(new_dentry);
3173 	}
3174 out:
3175 	if (target)
3176 		mutex_unlock(&target->i_mutex);
3177 	dput(new_dentry);
3178 	if (!error)
3179 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3180 			d_move(old_dentry,new_dentry);
3181 	return error;
3182 }
3183 
3184 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3185 			    struct inode *new_dir, struct dentry *new_dentry)
3186 {
3187 	struct inode *target = new_dentry->d_inode;
3188 	int error;
3189 
3190 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3191 	if (error)
3192 		return error;
3193 
3194 	dget(new_dentry);
3195 	if (target)
3196 		mutex_lock(&target->i_mutex);
3197 
3198 	error = -EBUSY;
3199 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3200 		goto out;
3201 
3202 	error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3203 	if (error)
3204 		goto out;
3205 
3206 	if (target)
3207 		dont_mount(new_dentry);
3208 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3209 		d_move(old_dentry, new_dentry);
3210 out:
3211 	if (target)
3212 		mutex_unlock(&target->i_mutex);
3213 	dput(new_dentry);
3214 	return error;
3215 }
3216 
3217 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3218 	       struct inode *new_dir, struct dentry *new_dentry)
3219 {
3220 	int error;
3221 	int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3222 	const unsigned char *old_name;
3223 
3224 	if (old_dentry->d_inode == new_dentry->d_inode)
3225  		return 0;
3226 
3227 	error = may_delete(old_dir, old_dentry, is_dir);
3228 	if (error)
3229 		return error;
3230 
3231 	if (!new_dentry->d_inode)
3232 		error = may_create(new_dir, new_dentry);
3233 	else
3234 		error = may_delete(new_dir, new_dentry, is_dir);
3235 	if (error)
3236 		return error;
3237 
3238 	if (!old_dir->i_op->rename)
3239 		return -EPERM;
3240 
3241 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3242 
3243 	if (is_dir)
3244 		error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3245 	else
3246 		error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3247 	if (!error)
3248 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
3249 			      new_dentry->d_inode, old_dentry);
3250 	fsnotify_oldname_free(old_name);
3251 
3252 	return error;
3253 }
3254 
3255 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3256 		int, newdfd, const char __user *, newname)
3257 {
3258 	struct dentry *old_dir, *new_dir;
3259 	struct dentry *old_dentry, *new_dentry;
3260 	struct dentry *trap;
3261 	struct nameidata oldnd, newnd;
3262 	char *from;
3263 	char *to;
3264 	int error;
3265 
3266 	error = user_path_parent(olddfd, oldname, &oldnd, &from);
3267 	if (error)
3268 		goto exit;
3269 
3270 	error = user_path_parent(newdfd, newname, &newnd, &to);
3271 	if (error)
3272 		goto exit1;
3273 
3274 	error = -EXDEV;
3275 	if (oldnd.path.mnt != newnd.path.mnt)
3276 		goto exit2;
3277 
3278 	old_dir = oldnd.path.dentry;
3279 	error = -EBUSY;
3280 	if (oldnd.last_type != LAST_NORM)
3281 		goto exit2;
3282 
3283 	new_dir = newnd.path.dentry;
3284 	if (newnd.last_type != LAST_NORM)
3285 		goto exit2;
3286 
3287 	oldnd.flags &= ~LOOKUP_PARENT;
3288 	newnd.flags &= ~LOOKUP_PARENT;
3289 	newnd.flags |= LOOKUP_RENAME_TARGET;
3290 
3291 	trap = lock_rename(new_dir, old_dir);
3292 
3293 	old_dentry = lookup_hash(&oldnd);
3294 	error = PTR_ERR(old_dentry);
3295 	if (IS_ERR(old_dentry))
3296 		goto exit3;
3297 	/* source must exist */
3298 	error = -ENOENT;
3299 	if (!old_dentry->d_inode)
3300 		goto exit4;
3301 	/* unless the source is a directory trailing slashes give -ENOTDIR */
3302 	if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3303 		error = -ENOTDIR;
3304 		if (oldnd.last.name[oldnd.last.len])
3305 			goto exit4;
3306 		if (newnd.last.name[newnd.last.len])
3307 			goto exit4;
3308 	}
3309 	/* source should not be ancestor of target */
3310 	error = -EINVAL;
3311 	if (old_dentry == trap)
3312 		goto exit4;
3313 	new_dentry = lookup_hash(&newnd);
3314 	error = PTR_ERR(new_dentry);
3315 	if (IS_ERR(new_dentry))
3316 		goto exit4;
3317 	/* target should not be an ancestor of source */
3318 	error = -ENOTEMPTY;
3319 	if (new_dentry == trap)
3320 		goto exit5;
3321 
3322 	error = mnt_want_write(oldnd.path.mnt);
3323 	if (error)
3324 		goto exit5;
3325 	error = security_path_rename(&oldnd.path, old_dentry,
3326 				     &newnd.path, new_dentry);
3327 	if (error)
3328 		goto exit6;
3329 	error = vfs_rename(old_dir->d_inode, old_dentry,
3330 				   new_dir->d_inode, new_dentry);
3331 exit6:
3332 	mnt_drop_write(oldnd.path.mnt);
3333 exit5:
3334 	dput(new_dentry);
3335 exit4:
3336 	dput(old_dentry);
3337 exit3:
3338 	unlock_rename(new_dir, old_dir);
3339 exit2:
3340 	path_put(&newnd.path);
3341 	putname(to);
3342 exit1:
3343 	path_put(&oldnd.path);
3344 	putname(from);
3345 exit:
3346 	return error;
3347 }
3348 
3349 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3350 {
3351 	return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3352 }
3353 
3354 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3355 {
3356 	int len;
3357 
3358 	len = PTR_ERR(link);
3359 	if (IS_ERR(link))
3360 		goto out;
3361 
3362 	len = strlen(link);
3363 	if (len > (unsigned) buflen)
3364 		len = buflen;
3365 	if (copy_to_user(buffer, link, len))
3366 		len = -EFAULT;
3367 out:
3368 	return len;
3369 }
3370 
3371 /*
3372  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
3373  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
3374  * using) it for any given inode is up to filesystem.
3375  */
3376 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3377 {
3378 	struct nameidata nd;
3379 	void *cookie;
3380 	int res;
3381 
3382 	nd.depth = 0;
3383 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3384 	if (IS_ERR(cookie))
3385 		return PTR_ERR(cookie);
3386 
3387 	res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3388 	if (dentry->d_inode->i_op->put_link)
3389 		dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3390 	return res;
3391 }
3392 
3393 int vfs_follow_link(struct nameidata *nd, const char *link)
3394 {
3395 	return __vfs_follow_link(nd, link);
3396 }
3397 
3398 /* get the link contents into pagecache */
3399 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3400 {
3401 	char *kaddr;
3402 	struct page *page;
3403 	struct address_space *mapping = dentry->d_inode->i_mapping;
3404 	page = read_mapping_page(mapping, 0, NULL);
3405 	if (IS_ERR(page))
3406 		return (char*)page;
3407 	*ppage = page;
3408 	kaddr = kmap(page);
3409 	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3410 	return kaddr;
3411 }
3412 
3413 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3414 {
3415 	struct page *page = NULL;
3416 	char *s = page_getlink(dentry, &page);
3417 	int res = vfs_readlink(dentry,buffer,buflen,s);
3418 	if (page) {
3419 		kunmap(page);
3420 		page_cache_release(page);
3421 	}
3422 	return res;
3423 }
3424 
3425 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3426 {
3427 	struct page *page = NULL;
3428 	nd_set_link(nd, page_getlink(dentry, &page));
3429 	return page;
3430 }
3431 
3432 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3433 {
3434 	struct page *page = cookie;
3435 
3436 	if (page) {
3437 		kunmap(page);
3438 		page_cache_release(page);
3439 	}
3440 }
3441 
3442 /*
3443  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3444  */
3445 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3446 {
3447 	struct address_space *mapping = inode->i_mapping;
3448 	struct page *page;
3449 	void *fsdata;
3450 	int err;
3451 	char *kaddr;
3452 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3453 	if (nofs)
3454 		flags |= AOP_FLAG_NOFS;
3455 
3456 retry:
3457 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
3458 				flags, &page, &fsdata);
3459 	if (err)
3460 		goto fail;
3461 
3462 	kaddr = kmap_atomic(page);
3463 	memcpy(kaddr, symname, len-1);
3464 	kunmap_atomic(kaddr);
3465 
3466 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3467 							page, fsdata);
3468 	if (err < 0)
3469 		goto fail;
3470 	if (err < len-1)
3471 		goto retry;
3472 
3473 	mark_inode_dirty(inode);
3474 	return 0;
3475 fail:
3476 	return err;
3477 }
3478 
3479 int page_symlink(struct inode *inode, const char *symname, int len)
3480 {
3481 	return __page_symlink(inode, symname, len,
3482 			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3483 }
3484 
3485 const struct inode_operations page_symlink_inode_operations = {
3486 	.readlink	= generic_readlink,
3487 	.follow_link	= page_follow_link_light,
3488 	.put_link	= page_put_link,
3489 };
3490 
3491 EXPORT_SYMBOL(user_path_at);
3492 EXPORT_SYMBOL(follow_down_one);
3493 EXPORT_SYMBOL(follow_down);
3494 EXPORT_SYMBOL(follow_up);
3495 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3496 EXPORT_SYMBOL(getname);
3497 EXPORT_SYMBOL(lock_rename);
3498 EXPORT_SYMBOL(lookup_one_len);
3499 EXPORT_SYMBOL(page_follow_link_light);
3500 EXPORT_SYMBOL(page_put_link);
3501 EXPORT_SYMBOL(page_readlink);
3502 EXPORT_SYMBOL(__page_symlink);
3503 EXPORT_SYMBOL(page_symlink);
3504 EXPORT_SYMBOL(page_symlink_inode_operations);
3505 EXPORT_SYMBOL(kern_path);
3506 EXPORT_SYMBOL(vfs_path_lookup);
3507 EXPORT_SYMBOL(inode_permission);
3508 EXPORT_SYMBOL(unlock_rename);
3509 EXPORT_SYMBOL(vfs_create);
3510 EXPORT_SYMBOL(vfs_follow_link);
3511 EXPORT_SYMBOL(vfs_link);
3512 EXPORT_SYMBOL(vfs_mkdir);
3513 EXPORT_SYMBOL(vfs_mknod);
3514 EXPORT_SYMBOL(generic_permission);
3515 EXPORT_SYMBOL(vfs_readlink);
3516 EXPORT_SYMBOL(vfs_rename);
3517 EXPORT_SYMBOL(vfs_rmdir);
3518 EXPORT_SYMBOL(vfs_symlink);
3519 EXPORT_SYMBOL(vfs_unlink);
3520 EXPORT_SYMBOL(dentry_unhash);
3521 EXPORT_SYMBOL(generic_readlink);
3522