1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/fs.h> 21 #include <linux/namei.h> 22 #include <linux/pagemap.h> 23 #include <linux/fsnotify.h> 24 #include <linux/personality.h> 25 #include <linux/security.h> 26 #include <linux/ima.h> 27 #include <linux/syscalls.h> 28 #include <linux/mount.h> 29 #include <linux/audit.h> 30 #include <linux/capability.h> 31 #include <linux/file.h> 32 #include <linux/fcntl.h> 33 #include <linux/device_cgroup.h> 34 #include <linux/fs_struct.h> 35 #include <linux/posix_acl.h> 36 #include <asm/uaccess.h> 37 38 #include "internal.h" 39 40 /* [Feb-1997 T. Schoebel-Theuer] 41 * Fundamental changes in the pathname lookup mechanisms (namei) 42 * were necessary because of omirr. The reason is that omirr needs 43 * to know the _real_ pathname, not the user-supplied one, in case 44 * of symlinks (and also when transname replacements occur). 45 * 46 * The new code replaces the old recursive symlink resolution with 47 * an iterative one (in case of non-nested symlink chains). It does 48 * this with calls to <fs>_follow_link(). 49 * As a side effect, dir_namei(), _namei() and follow_link() are now 50 * replaced with a single function lookup_dentry() that can handle all 51 * the special cases of the former code. 52 * 53 * With the new dcache, the pathname is stored at each inode, at least as 54 * long as the refcount of the inode is positive. As a side effect, the 55 * size of the dcache depends on the inode cache and thus is dynamic. 56 * 57 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 58 * resolution to correspond with current state of the code. 59 * 60 * Note that the symlink resolution is not *completely* iterative. 61 * There is still a significant amount of tail- and mid- recursion in 62 * the algorithm. Also, note that <fs>_readlink() is not used in 63 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 64 * may return different results than <fs>_follow_link(). Many virtual 65 * filesystems (including /proc) exhibit this behavior. 66 */ 67 68 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 69 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 70 * and the name already exists in form of a symlink, try to create the new 71 * name indicated by the symlink. The old code always complained that the 72 * name already exists, due to not following the symlink even if its target 73 * is nonexistent. The new semantics affects also mknod() and link() when 74 * the name is a symlink pointing to a non-existent name. 75 * 76 * I don't know which semantics is the right one, since I have no access 77 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 78 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 79 * "old" one. Personally, I think the new semantics is much more logical. 80 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 81 * file does succeed in both HP-UX and SunOs, but not in Solaris 82 * and in the old Linux semantics. 83 */ 84 85 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 86 * semantics. See the comments in "open_namei" and "do_link" below. 87 * 88 * [10-Sep-98 Alan Modra] Another symlink change. 89 */ 90 91 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 92 * inside the path - always follow. 93 * in the last component in creation/removal/renaming - never follow. 94 * if LOOKUP_FOLLOW passed - follow. 95 * if the pathname has trailing slashes - follow. 96 * otherwise - don't follow. 97 * (applied in that order). 98 * 99 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 100 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 101 * During the 2.4 we need to fix the userland stuff depending on it - 102 * hopefully we will be able to get rid of that wart in 2.5. So far only 103 * XEmacs seems to be relying on it... 104 */ 105 /* 106 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 107 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 108 * any extra contention... 109 */ 110 111 /* In order to reduce some races, while at the same time doing additional 112 * checking and hopefully speeding things up, we copy filenames to the 113 * kernel data space before using them.. 114 * 115 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 116 * PATH_MAX includes the nul terminator --RR. 117 */ 118 static int do_getname(const char __user *filename, char *page) 119 { 120 int retval; 121 unsigned long len = PATH_MAX; 122 123 if (!segment_eq(get_fs(), KERNEL_DS)) { 124 if ((unsigned long) filename >= TASK_SIZE) 125 return -EFAULT; 126 if (TASK_SIZE - (unsigned long) filename < PATH_MAX) 127 len = TASK_SIZE - (unsigned long) filename; 128 } 129 130 retval = strncpy_from_user(page, filename, len); 131 if (retval > 0) { 132 if (retval < len) 133 return 0; 134 return -ENAMETOOLONG; 135 } else if (!retval) 136 retval = -ENOENT; 137 return retval; 138 } 139 140 static char *getname_flags(const char __user * filename, int flags) 141 { 142 char *tmp, *result; 143 144 result = ERR_PTR(-ENOMEM); 145 tmp = __getname(); 146 if (tmp) { 147 int retval = do_getname(filename, tmp); 148 149 result = tmp; 150 if (retval < 0) { 151 if (retval != -ENOENT || !(flags & LOOKUP_EMPTY)) { 152 __putname(tmp); 153 result = ERR_PTR(retval); 154 } 155 } 156 } 157 audit_getname(result); 158 return result; 159 } 160 161 char *getname(const char __user * filename) 162 { 163 return getname_flags(filename, 0); 164 } 165 166 #ifdef CONFIG_AUDITSYSCALL 167 void putname(const char *name) 168 { 169 if (unlikely(!audit_dummy_context())) 170 audit_putname(name); 171 else 172 __putname(name); 173 } 174 EXPORT_SYMBOL(putname); 175 #endif 176 177 static int check_acl(struct inode *inode, int mask) 178 { 179 #ifdef CONFIG_FS_POSIX_ACL 180 struct posix_acl *acl; 181 182 if (mask & MAY_NOT_BLOCK) { 183 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 184 if (!acl) 185 return -EAGAIN; 186 /* no ->get_acl() calls in RCU mode... */ 187 if (acl == ACL_NOT_CACHED) 188 return -ECHILD; 189 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK); 190 } 191 192 acl = get_cached_acl(inode, ACL_TYPE_ACCESS); 193 194 /* 195 * A filesystem can force a ACL callback by just never filling the 196 * ACL cache. But normally you'd fill the cache either at inode 197 * instantiation time, or on the first ->get_acl call. 198 * 199 * If the filesystem doesn't have a get_acl() function at all, we'll 200 * just create the negative cache entry. 201 */ 202 if (acl == ACL_NOT_CACHED) { 203 if (inode->i_op->get_acl) { 204 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS); 205 if (IS_ERR(acl)) 206 return PTR_ERR(acl); 207 } else { 208 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL); 209 return -EAGAIN; 210 } 211 } 212 213 if (acl) { 214 int error = posix_acl_permission(inode, acl, mask); 215 posix_acl_release(acl); 216 return error; 217 } 218 #endif 219 220 return -EAGAIN; 221 } 222 223 /* 224 * This does basic POSIX ACL permission checking 225 */ 226 static int acl_permission_check(struct inode *inode, int mask) 227 { 228 unsigned int mode = inode->i_mode; 229 230 mask &= MAY_READ | MAY_WRITE | MAY_EXEC | MAY_NOT_BLOCK; 231 232 if (current_user_ns() != inode_userns(inode)) 233 goto other_perms; 234 235 if (likely(current_fsuid() == inode->i_uid)) 236 mode >>= 6; 237 else { 238 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 239 int error = check_acl(inode, mask); 240 if (error != -EAGAIN) 241 return error; 242 } 243 244 if (in_group_p(inode->i_gid)) 245 mode >>= 3; 246 } 247 248 other_perms: 249 /* 250 * If the DACs are ok we don't need any capability check. 251 */ 252 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 253 return 0; 254 return -EACCES; 255 } 256 257 /** 258 * generic_permission - check for access rights on a Posix-like filesystem 259 * @inode: inode to check access rights for 260 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 261 * 262 * Used to check for read/write/execute permissions on a file. 263 * We use "fsuid" for this, letting us set arbitrary permissions 264 * for filesystem access without changing the "normal" uids which 265 * are used for other things. 266 * 267 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 268 * request cannot be satisfied (eg. requires blocking or too much complexity). 269 * It would then be called again in ref-walk mode. 270 */ 271 int generic_permission(struct inode *inode, int mask) 272 { 273 int ret; 274 275 /* 276 * Do the basic POSIX ACL permission checks. 277 */ 278 ret = acl_permission_check(inode, mask); 279 if (ret != -EACCES) 280 return ret; 281 282 if (S_ISDIR(inode->i_mode)) { 283 /* DACs are overridable for directories */ 284 if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE)) 285 return 0; 286 if (!(mask & MAY_WRITE)) 287 if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH)) 288 return 0; 289 return -EACCES; 290 } 291 /* 292 * Read/write DACs are always overridable. 293 * Executable DACs are overridable when there is 294 * at least one exec bit set. 295 */ 296 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 297 if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE)) 298 return 0; 299 300 /* 301 * Searching includes executable on directories, else just read. 302 */ 303 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 304 if (mask == MAY_READ) 305 if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH)) 306 return 0; 307 308 return -EACCES; 309 } 310 311 /* 312 * We _really_ want to just do "generic_permission()" without 313 * even looking at the inode->i_op values. So we keep a cache 314 * flag in inode->i_opflags, that says "this has not special 315 * permission function, use the fast case". 316 */ 317 static inline int do_inode_permission(struct inode *inode, int mask) 318 { 319 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 320 if (likely(inode->i_op->permission)) 321 return inode->i_op->permission(inode, mask); 322 323 /* This gets set once for the inode lifetime */ 324 spin_lock(&inode->i_lock); 325 inode->i_opflags |= IOP_FASTPERM; 326 spin_unlock(&inode->i_lock); 327 } 328 return generic_permission(inode, mask); 329 } 330 331 /** 332 * inode_permission - check for access rights to a given inode 333 * @inode: inode to check permission on 334 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 335 * 336 * Used to check for read/write/execute permissions on an inode. 337 * We use "fsuid" for this, letting us set arbitrary permissions 338 * for filesystem access without changing the "normal" uids which 339 * are used for other things. 340 */ 341 int inode_permission(struct inode *inode, int mask) 342 { 343 int retval; 344 345 if (unlikely(mask & MAY_WRITE)) { 346 umode_t mode = inode->i_mode; 347 348 /* 349 * Nobody gets write access to a read-only fs. 350 */ 351 if (IS_RDONLY(inode) && 352 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 353 return -EROFS; 354 355 /* 356 * Nobody gets write access to an immutable file. 357 */ 358 if (IS_IMMUTABLE(inode)) 359 return -EACCES; 360 } 361 362 retval = do_inode_permission(inode, mask); 363 if (retval) 364 return retval; 365 366 retval = devcgroup_inode_permission(inode, mask); 367 if (retval) 368 return retval; 369 370 return security_inode_permission(inode, mask); 371 } 372 373 /** 374 * path_get - get a reference to a path 375 * @path: path to get the reference to 376 * 377 * Given a path increment the reference count to the dentry and the vfsmount. 378 */ 379 void path_get(struct path *path) 380 { 381 mntget(path->mnt); 382 dget(path->dentry); 383 } 384 EXPORT_SYMBOL(path_get); 385 386 /** 387 * path_put - put a reference to a path 388 * @path: path to put the reference to 389 * 390 * Given a path decrement the reference count to the dentry and the vfsmount. 391 */ 392 void path_put(struct path *path) 393 { 394 dput(path->dentry); 395 mntput(path->mnt); 396 } 397 EXPORT_SYMBOL(path_put); 398 399 /* 400 * Path walking has 2 modes, rcu-walk and ref-walk (see 401 * Documentation/filesystems/path-lookup.txt). In situations when we can't 402 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 403 * normal reference counts on dentries and vfsmounts to transition to rcu-walk 404 * mode. Refcounts are grabbed at the last known good point before rcu-walk 405 * got stuck, so ref-walk may continue from there. If this is not successful 406 * (eg. a seqcount has changed), then failure is returned and it's up to caller 407 * to restart the path walk from the beginning in ref-walk mode. 408 */ 409 410 /** 411 * unlazy_walk - try to switch to ref-walk mode. 412 * @nd: nameidata pathwalk data 413 * @dentry: child of nd->path.dentry or NULL 414 * Returns: 0 on success, -ECHILD on failure 415 * 416 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry 417 * for ref-walk mode. @dentry must be a path found by a do_lookup call on 418 * @nd or NULL. Must be called from rcu-walk context. 419 */ 420 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry) 421 { 422 struct fs_struct *fs = current->fs; 423 struct dentry *parent = nd->path.dentry; 424 int want_root = 0; 425 426 BUG_ON(!(nd->flags & LOOKUP_RCU)); 427 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 428 want_root = 1; 429 spin_lock(&fs->lock); 430 if (nd->root.mnt != fs->root.mnt || 431 nd->root.dentry != fs->root.dentry) 432 goto err_root; 433 } 434 spin_lock(&parent->d_lock); 435 if (!dentry) { 436 if (!__d_rcu_to_refcount(parent, nd->seq)) 437 goto err_parent; 438 BUG_ON(nd->inode != parent->d_inode); 439 } else { 440 if (dentry->d_parent != parent) 441 goto err_parent; 442 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 443 if (!__d_rcu_to_refcount(dentry, nd->seq)) 444 goto err_child; 445 /* 446 * If the sequence check on the child dentry passed, then 447 * the child has not been removed from its parent. This 448 * means the parent dentry must be valid and able to take 449 * a reference at this point. 450 */ 451 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent); 452 BUG_ON(!parent->d_count); 453 parent->d_count++; 454 spin_unlock(&dentry->d_lock); 455 } 456 spin_unlock(&parent->d_lock); 457 if (want_root) { 458 path_get(&nd->root); 459 spin_unlock(&fs->lock); 460 } 461 mntget(nd->path.mnt); 462 463 rcu_read_unlock(); 464 br_read_unlock(vfsmount_lock); 465 nd->flags &= ~LOOKUP_RCU; 466 return 0; 467 468 err_child: 469 spin_unlock(&dentry->d_lock); 470 err_parent: 471 spin_unlock(&parent->d_lock); 472 err_root: 473 if (want_root) 474 spin_unlock(&fs->lock); 475 return -ECHILD; 476 } 477 478 /** 479 * release_open_intent - free up open intent resources 480 * @nd: pointer to nameidata 481 */ 482 void release_open_intent(struct nameidata *nd) 483 { 484 struct file *file = nd->intent.open.file; 485 486 if (file && !IS_ERR(file)) { 487 if (file->f_path.dentry == NULL) 488 put_filp(file); 489 else 490 fput(file); 491 } 492 } 493 494 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd) 495 { 496 return dentry->d_op->d_revalidate(dentry, nd); 497 } 498 499 /** 500 * complete_walk - successful completion of path walk 501 * @nd: pointer nameidata 502 * 503 * If we had been in RCU mode, drop out of it and legitimize nd->path. 504 * Revalidate the final result, unless we'd already done that during 505 * the path walk or the filesystem doesn't ask for it. Return 0 on 506 * success, -error on failure. In case of failure caller does not 507 * need to drop nd->path. 508 */ 509 static int complete_walk(struct nameidata *nd) 510 { 511 struct dentry *dentry = nd->path.dentry; 512 int status; 513 514 if (nd->flags & LOOKUP_RCU) { 515 nd->flags &= ~LOOKUP_RCU; 516 if (!(nd->flags & LOOKUP_ROOT)) 517 nd->root.mnt = NULL; 518 spin_lock(&dentry->d_lock); 519 if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) { 520 spin_unlock(&dentry->d_lock); 521 rcu_read_unlock(); 522 br_read_unlock(vfsmount_lock); 523 return -ECHILD; 524 } 525 BUG_ON(nd->inode != dentry->d_inode); 526 spin_unlock(&dentry->d_lock); 527 mntget(nd->path.mnt); 528 rcu_read_unlock(); 529 br_read_unlock(vfsmount_lock); 530 } 531 532 if (likely(!(nd->flags & LOOKUP_JUMPED))) 533 return 0; 534 535 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE))) 536 return 0; 537 538 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT))) 539 return 0; 540 541 /* Note: we do not d_invalidate() */ 542 status = d_revalidate(dentry, nd); 543 if (status > 0) 544 return 0; 545 546 if (!status) 547 status = -ESTALE; 548 549 path_put(&nd->path); 550 return status; 551 } 552 553 static __always_inline void set_root(struct nameidata *nd) 554 { 555 if (!nd->root.mnt) 556 get_fs_root(current->fs, &nd->root); 557 } 558 559 static int link_path_walk(const char *, struct nameidata *); 560 561 static __always_inline void set_root_rcu(struct nameidata *nd) 562 { 563 if (!nd->root.mnt) { 564 struct fs_struct *fs = current->fs; 565 unsigned seq; 566 567 do { 568 seq = read_seqcount_begin(&fs->seq); 569 nd->root = fs->root; 570 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 571 } while (read_seqcount_retry(&fs->seq, seq)); 572 } 573 } 574 575 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link) 576 { 577 int ret; 578 579 if (IS_ERR(link)) 580 goto fail; 581 582 if (*link == '/') { 583 set_root(nd); 584 path_put(&nd->path); 585 nd->path = nd->root; 586 path_get(&nd->root); 587 nd->flags |= LOOKUP_JUMPED; 588 } 589 nd->inode = nd->path.dentry->d_inode; 590 591 ret = link_path_walk(link, nd); 592 return ret; 593 fail: 594 path_put(&nd->path); 595 return PTR_ERR(link); 596 } 597 598 static void path_put_conditional(struct path *path, struct nameidata *nd) 599 { 600 dput(path->dentry); 601 if (path->mnt != nd->path.mnt) 602 mntput(path->mnt); 603 } 604 605 static inline void path_to_nameidata(const struct path *path, 606 struct nameidata *nd) 607 { 608 if (!(nd->flags & LOOKUP_RCU)) { 609 dput(nd->path.dentry); 610 if (nd->path.mnt != path->mnt) 611 mntput(nd->path.mnt); 612 } 613 nd->path.mnt = path->mnt; 614 nd->path.dentry = path->dentry; 615 } 616 617 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie) 618 { 619 struct inode *inode = link->dentry->d_inode; 620 if (!IS_ERR(cookie) && inode->i_op->put_link) 621 inode->i_op->put_link(link->dentry, nd, cookie); 622 path_put(link); 623 } 624 625 static __always_inline int 626 follow_link(struct path *link, struct nameidata *nd, void **p) 627 { 628 int error; 629 struct dentry *dentry = link->dentry; 630 631 BUG_ON(nd->flags & LOOKUP_RCU); 632 633 if (link->mnt == nd->path.mnt) 634 mntget(link->mnt); 635 636 if (unlikely(current->total_link_count >= 40)) { 637 *p = ERR_PTR(-ELOOP); /* no ->put_link(), please */ 638 path_put(&nd->path); 639 return -ELOOP; 640 } 641 cond_resched(); 642 current->total_link_count++; 643 644 touch_atime(link->mnt, dentry); 645 nd_set_link(nd, NULL); 646 647 error = security_inode_follow_link(link->dentry, nd); 648 if (error) { 649 *p = ERR_PTR(error); /* no ->put_link(), please */ 650 path_put(&nd->path); 651 return error; 652 } 653 654 nd->last_type = LAST_BIND; 655 *p = dentry->d_inode->i_op->follow_link(dentry, nd); 656 error = PTR_ERR(*p); 657 if (!IS_ERR(*p)) { 658 char *s = nd_get_link(nd); 659 error = 0; 660 if (s) 661 error = __vfs_follow_link(nd, s); 662 else if (nd->last_type == LAST_BIND) { 663 nd->flags |= LOOKUP_JUMPED; 664 nd->inode = nd->path.dentry->d_inode; 665 if (nd->inode->i_op->follow_link) { 666 /* stepped on a _really_ weird one */ 667 path_put(&nd->path); 668 error = -ELOOP; 669 } 670 } 671 } 672 return error; 673 } 674 675 static int follow_up_rcu(struct path *path) 676 { 677 struct vfsmount *parent; 678 struct dentry *mountpoint; 679 680 parent = path->mnt->mnt_parent; 681 if (parent == path->mnt) 682 return 0; 683 mountpoint = path->mnt->mnt_mountpoint; 684 path->dentry = mountpoint; 685 path->mnt = parent; 686 return 1; 687 } 688 689 int follow_up(struct path *path) 690 { 691 struct vfsmount *parent; 692 struct dentry *mountpoint; 693 694 br_read_lock(vfsmount_lock); 695 parent = path->mnt->mnt_parent; 696 if (parent == path->mnt) { 697 br_read_unlock(vfsmount_lock); 698 return 0; 699 } 700 mntget(parent); 701 mountpoint = dget(path->mnt->mnt_mountpoint); 702 br_read_unlock(vfsmount_lock); 703 dput(path->dentry); 704 path->dentry = mountpoint; 705 mntput(path->mnt); 706 path->mnt = parent; 707 return 1; 708 } 709 710 /* 711 * Perform an automount 712 * - return -EISDIR to tell follow_managed() to stop and return the path we 713 * were called with. 714 */ 715 static int follow_automount(struct path *path, unsigned flags, 716 bool *need_mntput) 717 { 718 struct vfsmount *mnt; 719 int err; 720 721 if (!path->dentry->d_op || !path->dentry->d_op->d_automount) 722 return -EREMOTE; 723 724 /* We don't want to mount if someone supplied AT_NO_AUTOMOUNT 725 * and this is the terminal part of the path. 726 */ 727 if ((flags & LOOKUP_NO_AUTOMOUNT) && !(flags & LOOKUP_PARENT)) 728 return -EISDIR; /* we actually want to stop here */ 729 730 /* 731 * We don't want to mount if someone's just doing a stat and they've 732 * set AT_SYMLINK_NOFOLLOW - unless they're stat'ing a directory and 733 * appended a '/' to the name. 734 */ 735 if (!(flags & LOOKUP_FOLLOW)) { 736 /* We do, however, want to mount if someone wants to open or 737 * create a file of any type under the mountpoint, wants to 738 * traverse through the mountpoint or wants to open the mounted 739 * directory. 740 * Also, autofs may mark negative dentries as being automount 741 * points. These will need the attentions of the daemon to 742 * instantiate them before they can be used. 743 */ 744 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 745 LOOKUP_OPEN | LOOKUP_CREATE)) && 746 path->dentry->d_inode) 747 return -EISDIR; 748 } 749 current->total_link_count++; 750 if (current->total_link_count >= 40) 751 return -ELOOP; 752 753 mnt = path->dentry->d_op->d_automount(path); 754 if (IS_ERR(mnt)) { 755 /* 756 * The filesystem is allowed to return -EISDIR here to indicate 757 * it doesn't want to automount. For instance, autofs would do 758 * this so that its userspace daemon can mount on this dentry. 759 * 760 * However, we can only permit this if it's a terminal point in 761 * the path being looked up; if it wasn't then the remainder of 762 * the path is inaccessible and we should say so. 763 */ 764 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT)) 765 return -EREMOTE; 766 return PTR_ERR(mnt); 767 } 768 769 if (!mnt) /* mount collision */ 770 return 0; 771 772 if (!*need_mntput) { 773 /* lock_mount() may release path->mnt on error */ 774 mntget(path->mnt); 775 *need_mntput = true; 776 } 777 err = finish_automount(mnt, path); 778 779 switch (err) { 780 case -EBUSY: 781 /* Someone else made a mount here whilst we were busy */ 782 return 0; 783 case 0: 784 path_put(path); 785 path->mnt = mnt; 786 path->dentry = dget(mnt->mnt_root); 787 return 0; 788 default: 789 return err; 790 } 791 792 } 793 794 /* 795 * Handle a dentry that is managed in some way. 796 * - Flagged for transit management (autofs) 797 * - Flagged as mountpoint 798 * - Flagged as automount point 799 * 800 * This may only be called in refwalk mode. 801 * 802 * Serialization is taken care of in namespace.c 803 */ 804 static int follow_managed(struct path *path, unsigned flags) 805 { 806 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */ 807 unsigned managed; 808 bool need_mntput = false; 809 int ret = 0; 810 811 /* Given that we're not holding a lock here, we retain the value in a 812 * local variable for each dentry as we look at it so that we don't see 813 * the components of that value change under us */ 814 while (managed = ACCESS_ONCE(path->dentry->d_flags), 815 managed &= DCACHE_MANAGED_DENTRY, 816 unlikely(managed != 0)) { 817 /* Allow the filesystem to manage the transit without i_mutex 818 * being held. */ 819 if (managed & DCACHE_MANAGE_TRANSIT) { 820 BUG_ON(!path->dentry->d_op); 821 BUG_ON(!path->dentry->d_op->d_manage); 822 ret = path->dentry->d_op->d_manage(path->dentry, false); 823 if (ret < 0) 824 break; 825 } 826 827 /* Transit to a mounted filesystem. */ 828 if (managed & DCACHE_MOUNTED) { 829 struct vfsmount *mounted = lookup_mnt(path); 830 if (mounted) { 831 dput(path->dentry); 832 if (need_mntput) 833 mntput(path->mnt); 834 path->mnt = mounted; 835 path->dentry = dget(mounted->mnt_root); 836 need_mntput = true; 837 continue; 838 } 839 840 /* Something is mounted on this dentry in another 841 * namespace and/or whatever was mounted there in this 842 * namespace got unmounted before we managed to get the 843 * vfsmount_lock */ 844 } 845 846 /* Handle an automount point */ 847 if (managed & DCACHE_NEED_AUTOMOUNT) { 848 ret = follow_automount(path, flags, &need_mntput); 849 if (ret < 0) 850 break; 851 continue; 852 } 853 854 /* We didn't change the current path point */ 855 break; 856 } 857 858 if (need_mntput && path->mnt == mnt) 859 mntput(path->mnt); 860 if (ret == -EISDIR) 861 ret = 0; 862 return ret; 863 } 864 865 int follow_down_one(struct path *path) 866 { 867 struct vfsmount *mounted; 868 869 mounted = lookup_mnt(path); 870 if (mounted) { 871 dput(path->dentry); 872 mntput(path->mnt); 873 path->mnt = mounted; 874 path->dentry = dget(mounted->mnt_root); 875 return 1; 876 } 877 return 0; 878 } 879 880 static inline bool managed_dentry_might_block(struct dentry *dentry) 881 { 882 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT && 883 dentry->d_op->d_manage(dentry, true) < 0); 884 } 885 886 /* 887 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 888 * we meet a managed dentry that would need blocking. 889 */ 890 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 891 struct inode **inode) 892 { 893 for (;;) { 894 struct vfsmount *mounted; 895 /* 896 * Don't forget we might have a non-mountpoint managed dentry 897 * that wants to block transit. 898 */ 899 if (unlikely(managed_dentry_might_block(path->dentry))) 900 return false; 901 902 if (!d_mountpoint(path->dentry)) 903 break; 904 905 mounted = __lookup_mnt(path->mnt, path->dentry, 1); 906 if (!mounted) 907 break; 908 path->mnt = mounted; 909 path->dentry = mounted->mnt_root; 910 nd->seq = read_seqcount_begin(&path->dentry->d_seq); 911 /* 912 * Update the inode too. We don't need to re-check the 913 * dentry sequence number here after this d_inode read, 914 * because a mount-point is always pinned. 915 */ 916 *inode = path->dentry->d_inode; 917 } 918 return true; 919 } 920 921 static void follow_mount_rcu(struct nameidata *nd) 922 { 923 while (d_mountpoint(nd->path.dentry)) { 924 struct vfsmount *mounted; 925 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1); 926 if (!mounted) 927 break; 928 nd->path.mnt = mounted; 929 nd->path.dentry = mounted->mnt_root; 930 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 931 } 932 } 933 934 static int follow_dotdot_rcu(struct nameidata *nd) 935 { 936 set_root_rcu(nd); 937 938 while (1) { 939 if (nd->path.dentry == nd->root.dentry && 940 nd->path.mnt == nd->root.mnt) { 941 break; 942 } 943 if (nd->path.dentry != nd->path.mnt->mnt_root) { 944 struct dentry *old = nd->path.dentry; 945 struct dentry *parent = old->d_parent; 946 unsigned seq; 947 948 seq = read_seqcount_begin(&parent->d_seq); 949 if (read_seqcount_retry(&old->d_seq, nd->seq)) 950 goto failed; 951 nd->path.dentry = parent; 952 nd->seq = seq; 953 break; 954 } 955 if (!follow_up_rcu(&nd->path)) 956 break; 957 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 958 } 959 follow_mount_rcu(nd); 960 nd->inode = nd->path.dentry->d_inode; 961 return 0; 962 963 failed: 964 nd->flags &= ~LOOKUP_RCU; 965 if (!(nd->flags & LOOKUP_ROOT)) 966 nd->root.mnt = NULL; 967 rcu_read_unlock(); 968 br_read_unlock(vfsmount_lock); 969 return -ECHILD; 970 } 971 972 /* 973 * Follow down to the covering mount currently visible to userspace. At each 974 * point, the filesystem owning that dentry may be queried as to whether the 975 * caller is permitted to proceed or not. 976 */ 977 int follow_down(struct path *path) 978 { 979 unsigned managed; 980 int ret; 981 982 while (managed = ACCESS_ONCE(path->dentry->d_flags), 983 unlikely(managed & DCACHE_MANAGED_DENTRY)) { 984 /* Allow the filesystem to manage the transit without i_mutex 985 * being held. 986 * 987 * We indicate to the filesystem if someone is trying to mount 988 * something here. This gives autofs the chance to deny anyone 989 * other than its daemon the right to mount on its 990 * superstructure. 991 * 992 * The filesystem may sleep at this point. 993 */ 994 if (managed & DCACHE_MANAGE_TRANSIT) { 995 BUG_ON(!path->dentry->d_op); 996 BUG_ON(!path->dentry->d_op->d_manage); 997 ret = path->dentry->d_op->d_manage( 998 path->dentry, false); 999 if (ret < 0) 1000 return ret == -EISDIR ? 0 : ret; 1001 } 1002 1003 /* Transit to a mounted filesystem. */ 1004 if (managed & DCACHE_MOUNTED) { 1005 struct vfsmount *mounted = lookup_mnt(path); 1006 if (!mounted) 1007 break; 1008 dput(path->dentry); 1009 mntput(path->mnt); 1010 path->mnt = mounted; 1011 path->dentry = dget(mounted->mnt_root); 1012 continue; 1013 } 1014 1015 /* Don't handle automount points here */ 1016 break; 1017 } 1018 return 0; 1019 } 1020 1021 /* 1022 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() 1023 */ 1024 static void follow_mount(struct path *path) 1025 { 1026 while (d_mountpoint(path->dentry)) { 1027 struct vfsmount *mounted = lookup_mnt(path); 1028 if (!mounted) 1029 break; 1030 dput(path->dentry); 1031 mntput(path->mnt); 1032 path->mnt = mounted; 1033 path->dentry = dget(mounted->mnt_root); 1034 } 1035 } 1036 1037 static void follow_dotdot(struct nameidata *nd) 1038 { 1039 set_root(nd); 1040 1041 while(1) { 1042 struct dentry *old = nd->path.dentry; 1043 1044 if (nd->path.dentry == nd->root.dentry && 1045 nd->path.mnt == nd->root.mnt) { 1046 break; 1047 } 1048 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1049 /* rare case of legitimate dget_parent()... */ 1050 nd->path.dentry = dget_parent(nd->path.dentry); 1051 dput(old); 1052 break; 1053 } 1054 if (!follow_up(&nd->path)) 1055 break; 1056 } 1057 follow_mount(&nd->path); 1058 nd->inode = nd->path.dentry->d_inode; 1059 } 1060 1061 /* 1062 * Allocate a dentry with name and parent, and perform a parent 1063 * directory ->lookup on it. Returns the new dentry, or ERR_PTR 1064 * on error. parent->d_inode->i_mutex must be held. d_lookup must 1065 * have verified that no child exists while under i_mutex. 1066 */ 1067 static struct dentry *d_alloc_and_lookup(struct dentry *parent, 1068 struct qstr *name, struct nameidata *nd) 1069 { 1070 struct inode *inode = parent->d_inode; 1071 struct dentry *dentry; 1072 struct dentry *old; 1073 1074 /* Don't create child dentry for a dead directory. */ 1075 if (unlikely(IS_DEADDIR(inode))) 1076 return ERR_PTR(-ENOENT); 1077 1078 dentry = d_alloc(parent, name); 1079 if (unlikely(!dentry)) 1080 return ERR_PTR(-ENOMEM); 1081 1082 old = inode->i_op->lookup(inode, dentry, nd); 1083 if (unlikely(old)) { 1084 dput(dentry); 1085 dentry = old; 1086 } 1087 return dentry; 1088 } 1089 1090 /* 1091 * We already have a dentry, but require a lookup to be performed on the parent 1092 * directory to fill in d_inode. Returns the new dentry, or ERR_PTR on error. 1093 * parent->d_inode->i_mutex must be held. d_lookup must have verified that no 1094 * child exists while under i_mutex. 1095 */ 1096 static struct dentry *d_inode_lookup(struct dentry *parent, struct dentry *dentry, 1097 struct nameidata *nd) 1098 { 1099 struct inode *inode = parent->d_inode; 1100 struct dentry *old; 1101 1102 /* Don't create child dentry for a dead directory. */ 1103 if (unlikely(IS_DEADDIR(inode))) 1104 return ERR_PTR(-ENOENT); 1105 1106 old = inode->i_op->lookup(inode, dentry, nd); 1107 if (unlikely(old)) { 1108 dput(dentry); 1109 dentry = old; 1110 } 1111 return dentry; 1112 } 1113 1114 /* 1115 * It's more convoluted than I'd like it to be, but... it's still fairly 1116 * small and for now I'd prefer to have fast path as straight as possible. 1117 * It _is_ time-critical. 1118 */ 1119 static int do_lookup(struct nameidata *nd, struct qstr *name, 1120 struct path *path, struct inode **inode) 1121 { 1122 struct vfsmount *mnt = nd->path.mnt; 1123 struct dentry *dentry, *parent = nd->path.dentry; 1124 int need_reval = 1; 1125 int status = 1; 1126 int err; 1127 1128 /* 1129 * Rename seqlock is not required here because in the off chance 1130 * of a false negative due to a concurrent rename, we're going to 1131 * do the non-racy lookup, below. 1132 */ 1133 if (nd->flags & LOOKUP_RCU) { 1134 unsigned seq; 1135 *inode = nd->inode; 1136 dentry = __d_lookup_rcu(parent, name, &seq, inode); 1137 if (!dentry) 1138 goto unlazy; 1139 1140 /* Memory barrier in read_seqcount_begin of child is enough */ 1141 if (__read_seqcount_retry(&parent->d_seq, nd->seq)) 1142 return -ECHILD; 1143 nd->seq = seq; 1144 1145 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) { 1146 status = d_revalidate(dentry, nd); 1147 if (unlikely(status <= 0)) { 1148 if (status != -ECHILD) 1149 need_reval = 0; 1150 goto unlazy; 1151 } 1152 } 1153 if (unlikely(d_need_lookup(dentry))) 1154 goto unlazy; 1155 path->mnt = mnt; 1156 path->dentry = dentry; 1157 if (unlikely(!__follow_mount_rcu(nd, path, inode))) 1158 goto unlazy; 1159 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT)) 1160 goto unlazy; 1161 return 0; 1162 unlazy: 1163 if (unlazy_walk(nd, dentry)) 1164 return -ECHILD; 1165 } else { 1166 dentry = __d_lookup(parent, name); 1167 } 1168 1169 if (dentry && unlikely(d_need_lookup(dentry))) { 1170 dput(dentry); 1171 dentry = NULL; 1172 } 1173 retry: 1174 if (unlikely(!dentry)) { 1175 struct inode *dir = parent->d_inode; 1176 BUG_ON(nd->inode != dir); 1177 1178 mutex_lock(&dir->i_mutex); 1179 dentry = d_lookup(parent, name); 1180 if (likely(!dentry)) { 1181 dentry = d_alloc_and_lookup(parent, name, nd); 1182 if (IS_ERR(dentry)) { 1183 mutex_unlock(&dir->i_mutex); 1184 return PTR_ERR(dentry); 1185 } 1186 /* known good */ 1187 need_reval = 0; 1188 status = 1; 1189 } else if (unlikely(d_need_lookup(dentry))) { 1190 dentry = d_inode_lookup(parent, dentry, nd); 1191 if (IS_ERR(dentry)) { 1192 mutex_unlock(&dir->i_mutex); 1193 return PTR_ERR(dentry); 1194 } 1195 /* known good */ 1196 need_reval = 0; 1197 status = 1; 1198 } 1199 mutex_unlock(&dir->i_mutex); 1200 } 1201 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval) 1202 status = d_revalidate(dentry, nd); 1203 if (unlikely(status <= 0)) { 1204 if (status < 0) { 1205 dput(dentry); 1206 return status; 1207 } 1208 if (!d_invalidate(dentry)) { 1209 dput(dentry); 1210 dentry = NULL; 1211 need_reval = 1; 1212 goto retry; 1213 } 1214 } 1215 1216 path->mnt = mnt; 1217 path->dentry = dentry; 1218 err = follow_managed(path, nd->flags); 1219 if (unlikely(err < 0)) { 1220 path_put_conditional(path, nd); 1221 return err; 1222 } 1223 *inode = path->dentry->d_inode; 1224 return 0; 1225 } 1226 1227 static inline int may_lookup(struct nameidata *nd) 1228 { 1229 if (nd->flags & LOOKUP_RCU) { 1230 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1231 if (err != -ECHILD) 1232 return err; 1233 if (unlazy_walk(nd, NULL)) 1234 return -ECHILD; 1235 } 1236 return inode_permission(nd->inode, MAY_EXEC); 1237 } 1238 1239 static inline int handle_dots(struct nameidata *nd, int type) 1240 { 1241 if (type == LAST_DOTDOT) { 1242 if (nd->flags & LOOKUP_RCU) { 1243 if (follow_dotdot_rcu(nd)) 1244 return -ECHILD; 1245 } else 1246 follow_dotdot(nd); 1247 } 1248 return 0; 1249 } 1250 1251 static void terminate_walk(struct nameidata *nd) 1252 { 1253 if (!(nd->flags & LOOKUP_RCU)) { 1254 path_put(&nd->path); 1255 } else { 1256 nd->flags &= ~LOOKUP_RCU; 1257 if (!(nd->flags & LOOKUP_ROOT)) 1258 nd->root.mnt = NULL; 1259 rcu_read_unlock(); 1260 br_read_unlock(vfsmount_lock); 1261 } 1262 } 1263 1264 /* 1265 * Do we need to follow links? We _really_ want to be able 1266 * to do this check without having to look at inode->i_op, 1267 * so we keep a cache of "no, this doesn't need follow_link" 1268 * for the common case. 1269 */ 1270 static inline int should_follow_link(struct inode *inode, int follow) 1271 { 1272 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1273 if (likely(inode->i_op->follow_link)) 1274 return follow; 1275 1276 /* This gets set once for the inode lifetime */ 1277 spin_lock(&inode->i_lock); 1278 inode->i_opflags |= IOP_NOFOLLOW; 1279 spin_unlock(&inode->i_lock); 1280 } 1281 return 0; 1282 } 1283 1284 static inline int walk_component(struct nameidata *nd, struct path *path, 1285 struct qstr *name, int type, int follow) 1286 { 1287 struct inode *inode; 1288 int err; 1289 /* 1290 * "." and ".." are special - ".." especially so because it has 1291 * to be able to know about the current root directory and 1292 * parent relationships. 1293 */ 1294 if (unlikely(type != LAST_NORM)) 1295 return handle_dots(nd, type); 1296 err = do_lookup(nd, name, path, &inode); 1297 if (unlikely(err)) { 1298 terminate_walk(nd); 1299 return err; 1300 } 1301 if (!inode) { 1302 path_to_nameidata(path, nd); 1303 terminate_walk(nd); 1304 return -ENOENT; 1305 } 1306 if (should_follow_link(inode, follow)) { 1307 if (nd->flags & LOOKUP_RCU) { 1308 if (unlikely(unlazy_walk(nd, path->dentry))) { 1309 terminate_walk(nd); 1310 return -ECHILD; 1311 } 1312 } 1313 BUG_ON(inode != path->dentry->d_inode); 1314 return 1; 1315 } 1316 path_to_nameidata(path, nd); 1317 nd->inode = inode; 1318 return 0; 1319 } 1320 1321 /* 1322 * This limits recursive symlink follows to 8, while 1323 * limiting consecutive symlinks to 40. 1324 * 1325 * Without that kind of total limit, nasty chains of consecutive 1326 * symlinks can cause almost arbitrarily long lookups. 1327 */ 1328 static inline int nested_symlink(struct path *path, struct nameidata *nd) 1329 { 1330 int res; 1331 1332 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) { 1333 path_put_conditional(path, nd); 1334 path_put(&nd->path); 1335 return -ELOOP; 1336 } 1337 BUG_ON(nd->depth >= MAX_NESTED_LINKS); 1338 1339 nd->depth++; 1340 current->link_count++; 1341 1342 do { 1343 struct path link = *path; 1344 void *cookie; 1345 1346 res = follow_link(&link, nd, &cookie); 1347 if (!res) 1348 res = walk_component(nd, path, &nd->last, 1349 nd->last_type, LOOKUP_FOLLOW); 1350 put_link(nd, &link, cookie); 1351 } while (res > 0); 1352 1353 current->link_count--; 1354 nd->depth--; 1355 return res; 1356 } 1357 1358 /* 1359 * We really don't want to look at inode->i_op->lookup 1360 * when we don't have to. So we keep a cache bit in 1361 * the inode ->i_opflags field that says "yes, we can 1362 * do lookup on this inode". 1363 */ 1364 static inline int can_lookup(struct inode *inode) 1365 { 1366 if (likely(inode->i_opflags & IOP_LOOKUP)) 1367 return 1; 1368 if (likely(!inode->i_op->lookup)) 1369 return 0; 1370 1371 /* We do this once for the lifetime of the inode */ 1372 spin_lock(&inode->i_lock); 1373 inode->i_opflags |= IOP_LOOKUP; 1374 spin_unlock(&inode->i_lock); 1375 return 1; 1376 } 1377 1378 /* 1379 * Name resolution. 1380 * This is the basic name resolution function, turning a pathname into 1381 * the final dentry. We expect 'base' to be positive and a directory. 1382 * 1383 * Returns 0 and nd will have valid dentry and mnt on success. 1384 * Returns error and drops reference to input namei data on failure. 1385 */ 1386 static int link_path_walk(const char *name, struct nameidata *nd) 1387 { 1388 struct path next; 1389 int err; 1390 1391 while (*name=='/') 1392 name++; 1393 if (!*name) 1394 return 0; 1395 1396 /* At this point we know we have a real path component. */ 1397 for(;;) { 1398 unsigned long hash; 1399 struct qstr this; 1400 unsigned int c; 1401 int type; 1402 1403 err = may_lookup(nd); 1404 if (err) 1405 break; 1406 1407 this.name = name; 1408 c = *(const unsigned char *)name; 1409 1410 hash = init_name_hash(); 1411 do { 1412 name++; 1413 hash = partial_name_hash(c, hash); 1414 c = *(const unsigned char *)name; 1415 } while (c && (c != '/')); 1416 this.len = name - (const char *) this.name; 1417 this.hash = end_name_hash(hash); 1418 1419 type = LAST_NORM; 1420 if (this.name[0] == '.') switch (this.len) { 1421 case 2: 1422 if (this.name[1] == '.') { 1423 type = LAST_DOTDOT; 1424 nd->flags |= LOOKUP_JUMPED; 1425 } 1426 break; 1427 case 1: 1428 type = LAST_DOT; 1429 } 1430 if (likely(type == LAST_NORM)) { 1431 struct dentry *parent = nd->path.dentry; 1432 nd->flags &= ~LOOKUP_JUMPED; 1433 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 1434 err = parent->d_op->d_hash(parent, nd->inode, 1435 &this); 1436 if (err < 0) 1437 break; 1438 } 1439 } 1440 1441 /* remove trailing slashes? */ 1442 if (!c) 1443 goto last_component; 1444 while (*++name == '/'); 1445 if (!*name) 1446 goto last_component; 1447 1448 err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW); 1449 if (err < 0) 1450 return err; 1451 1452 if (err) { 1453 err = nested_symlink(&next, nd); 1454 if (err) 1455 return err; 1456 } 1457 if (can_lookup(nd->inode)) 1458 continue; 1459 err = -ENOTDIR; 1460 break; 1461 /* here ends the main loop */ 1462 1463 last_component: 1464 nd->last = this; 1465 nd->last_type = type; 1466 return 0; 1467 } 1468 terminate_walk(nd); 1469 return err; 1470 } 1471 1472 static int path_init(int dfd, const char *name, unsigned int flags, 1473 struct nameidata *nd, struct file **fp) 1474 { 1475 int retval = 0; 1476 int fput_needed; 1477 struct file *file; 1478 1479 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 1480 nd->flags = flags | LOOKUP_JUMPED; 1481 nd->depth = 0; 1482 if (flags & LOOKUP_ROOT) { 1483 struct inode *inode = nd->root.dentry->d_inode; 1484 if (*name) { 1485 if (!inode->i_op->lookup) 1486 return -ENOTDIR; 1487 retval = inode_permission(inode, MAY_EXEC); 1488 if (retval) 1489 return retval; 1490 } 1491 nd->path = nd->root; 1492 nd->inode = inode; 1493 if (flags & LOOKUP_RCU) { 1494 br_read_lock(vfsmount_lock); 1495 rcu_read_lock(); 1496 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1497 } else { 1498 path_get(&nd->path); 1499 } 1500 return 0; 1501 } 1502 1503 nd->root.mnt = NULL; 1504 1505 if (*name=='/') { 1506 if (flags & LOOKUP_RCU) { 1507 br_read_lock(vfsmount_lock); 1508 rcu_read_lock(); 1509 set_root_rcu(nd); 1510 } else { 1511 set_root(nd); 1512 path_get(&nd->root); 1513 } 1514 nd->path = nd->root; 1515 } else if (dfd == AT_FDCWD) { 1516 if (flags & LOOKUP_RCU) { 1517 struct fs_struct *fs = current->fs; 1518 unsigned seq; 1519 1520 br_read_lock(vfsmount_lock); 1521 rcu_read_lock(); 1522 1523 do { 1524 seq = read_seqcount_begin(&fs->seq); 1525 nd->path = fs->pwd; 1526 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1527 } while (read_seqcount_retry(&fs->seq, seq)); 1528 } else { 1529 get_fs_pwd(current->fs, &nd->path); 1530 } 1531 } else { 1532 struct dentry *dentry; 1533 1534 file = fget_raw_light(dfd, &fput_needed); 1535 retval = -EBADF; 1536 if (!file) 1537 goto out_fail; 1538 1539 dentry = file->f_path.dentry; 1540 1541 if (*name) { 1542 retval = -ENOTDIR; 1543 if (!S_ISDIR(dentry->d_inode->i_mode)) 1544 goto fput_fail; 1545 1546 retval = inode_permission(dentry->d_inode, MAY_EXEC); 1547 if (retval) 1548 goto fput_fail; 1549 } 1550 1551 nd->path = file->f_path; 1552 if (flags & LOOKUP_RCU) { 1553 if (fput_needed) 1554 *fp = file; 1555 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1556 br_read_lock(vfsmount_lock); 1557 rcu_read_lock(); 1558 } else { 1559 path_get(&file->f_path); 1560 fput_light(file, fput_needed); 1561 } 1562 } 1563 1564 nd->inode = nd->path.dentry->d_inode; 1565 return 0; 1566 1567 fput_fail: 1568 fput_light(file, fput_needed); 1569 out_fail: 1570 return retval; 1571 } 1572 1573 static inline int lookup_last(struct nameidata *nd, struct path *path) 1574 { 1575 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 1576 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 1577 1578 nd->flags &= ~LOOKUP_PARENT; 1579 return walk_component(nd, path, &nd->last, nd->last_type, 1580 nd->flags & LOOKUP_FOLLOW); 1581 } 1582 1583 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 1584 static int path_lookupat(int dfd, const char *name, 1585 unsigned int flags, struct nameidata *nd) 1586 { 1587 struct file *base = NULL; 1588 struct path path; 1589 int err; 1590 1591 /* 1592 * Path walking is largely split up into 2 different synchronisation 1593 * schemes, rcu-walk and ref-walk (explained in 1594 * Documentation/filesystems/path-lookup.txt). These share much of the 1595 * path walk code, but some things particularly setup, cleanup, and 1596 * following mounts are sufficiently divergent that functions are 1597 * duplicated. Typically there is a function foo(), and its RCU 1598 * analogue, foo_rcu(). 1599 * 1600 * -ECHILD is the error number of choice (just to avoid clashes) that 1601 * is returned if some aspect of an rcu-walk fails. Such an error must 1602 * be handled by restarting a traditional ref-walk (which will always 1603 * be able to complete). 1604 */ 1605 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base); 1606 1607 if (unlikely(err)) 1608 return err; 1609 1610 current->total_link_count = 0; 1611 err = link_path_walk(name, nd); 1612 1613 if (!err && !(flags & LOOKUP_PARENT)) { 1614 err = lookup_last(nd, &path); 1615 while (err > 0) { 1616 void *cookie; 1617 struct path link = path; 1618 nd->flags |= LOOKUP_PARENT; 1619 err = follow_link(&link, nd, &cookie); 1620 if (!err) 1621 err = lookup_last(nd, &path); 1622 put_link(nd, &link, cookie); 1623 } 1624 } 1625 1626 if (!err) 1627 err = complete_walk(nd); 1628 1629 if (!err && nd->flags & LOOKUP_DIRECTORY) { 1630 if (!nd->inode->i_op->lookup) { 1631 path_put(&nd->path); 1632 err = -ENOTDIR; 1633 } 1634 } 1635 1636 if (base) 1637 fput(base); 1638 1639 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 1640 path_put(&nd->root); 1641 nd->root.mnt = NULL; 1642 } 1643 return err; 1644 } 1645 1646 static int do_path_lookup(int dfd, const char *name, 1647 unsigned int flags, struct nameidata *nd) 1648 { 1649 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd); 1650 if (unlikely(retval == -ECHILD)) 1651 retval = path_lookupat(dfd, name, flags, nd); 1652 if (unlikely(retval == -ESTALE)) 1653 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd); 1654 1655 if (likely(!retval)) { 1656 if (unlikely(!audit_dummy_context())) { 1657 if (nd->path.dentry && nd->inode) 1658 audit_inode(name, nd->path.dentry); 1659 } 1660 } 1661 return retval; 1662 } 1663 1664 int kern_path_parent(const char *name, struct nameidata *nd) 1665 { 1666 return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd); 1667 } 1668 1669 int kern_path(const char *name, unsigned int flags, struct path *path) 1670 { 1671 struct nameidata nd; 1672 int res = do_path_lookup(AT_FDCWD, name, flags, &nd); 1673 if (!res) 1674 *path = nd.path; 1675 return res; 1676 } 1677 1678 /** 1679 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 1680 * @dentry: pointer to dentry of the base directory 1681 * @mnt: pointer to vfs mount of the base directory 1682 * @name: pointer to file name 1683 * @flags: lookup flags 1684 * @path: pointer to struct path to fill 1685 */ 1686 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 1687 const char *name, unsigned int flags, 1688 struct path *path) 1689 { 1690 struct nameidata nd; 1691 int err; 1692 nd.root.dentry = dentry; 1693 nd.root.mnt = mnt; 1694 BUG_ON(flags & LOOKUP_PARENT); 1695 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */ 1696 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd); 1697 if (!err) 1698 *path = nd.path; 1699 return err; 1700 } 1701 1702 static struct dentry *__lookup_hash(struct qstr *name, 1703 struct dentry *base, struct nameidata *nd) 1704 { 1705 struct inode *inode = base->d_inode; 1706 struct dentry *dentry; 1707 int err; 1708 1709 err = inode_permission(inode, MAY_EXEC); 1710 if (err) 1711 return ERR_PTR(err); 1712 1713 /* 1714 * Don't bother with __d_lookup: callers are for creat as 1715 * well as unlink, so a lot of the time it would cost 1716 * a double lookup. 1717 */ 1718 dentry = d_lookup(base, name); 1719 1720 if (dentry && d_need_lookup(dentry)) { 1721 /* 1722 * __lookup_hash is called with the parent dir's i_mutex already 1723 * held, so we are good to go here. 1724 */ 1725 dentry = d_inode_lookup(base, dentry, nd); 1726 if (IS_ERR(dentry)) 1727 return dentry; 1728 } 1729 1730 if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE)) { 1731 int status = d_revalidate(dentry, nd); 1732 if (unlikely(status <= 0)) { 1733 /* 1734 * The dentry failed validation. 1735 * If d_revalidate returned 0 attempt to invalidate 1736 * the dentry otherwise d_revalidate is asking us 1737 * to return a fail status. 1738 */ 1739 if (status < 0) { 1740 dput(dentry); 1741 return ERR_PTR(status); 1742 } else if (!d_invalidate(dentry)) { 1743 dput(dentry); 1744 dentry = NULL; 1745 } 1746 } 1747 } 1748 1749 if (!dentry) 1750 dentry = d_alloc_and_lookup(base, name, nd); 1751 1752 return dentry; 1753 } 1754 1755 /* 1756 * Restricted form of lookup. Doesn't follow links, single-component only, 1757 * needs parent already locked. Doesn't follow mounts. 1758 * SMP-safe. 1759 */ 1760 static struct dentry *lookup_hash(struct nameidata *nd) 1761 { 1762 return __lookup_hash(&nd->last, nd->path.dentry, nd); 1763 } 1764 1765 /** 1766 * lookup_one_len - filesystem helper to lookup single pathname component 1767 * @name: pathname component to lookup 1768 * @base: base directory to lookup from 1769 * @len: maximum length @len should be interpreted to 1770 * 1771 * Note that this routine is purely a helper for filesystem usage and should 1772 * not be called by generic code. Also note that by using this function the 1773 * nameidata argument is passed to the filesystem methods and a filesystem 1774 * using this helper needs to be prepared for that. 1775 */ 1776 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 1777 { 1778 struct qstr this; 1779 unsigned long hash; 1780 unsigned int c; 1781 1782 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex)); 1783 1784 this.name = name; 1785 this.len = len; 1786 if (!len) 1787 return ERR_PTR(-EACCES); 1788 1789 hash = init_name_hash(); 1790 while (len--) { 1791 c = *(const unsigned char *)name++; 1792 if (c == '/' || c == '\0') 1793 return ERR_PTR(-EACCES); 1794 hash = partial_name_hash(c, hash); 1795 } 1796 this.hash = end_name_hash(hash); 1797 /* 1798 * See if the low-level filesystem might want 1799 * to use its own hash.. 1800 */ 1801 if (base->d_flags & DCACHE_OP_HASH) { 1802 int err = base->d_op->d_hash(base, base->d_inode, &this); 1803 if (err < 0) 1804 return ERR_PTR(err); 1805 } 1806 1807 return __lookup_hash(&this, base, NULL); 1808 } 1809 1810 int user_path_at(int dfd, const char __user *name, unsigned flags, 1811 struct path *path) 1812 { 1813 struct nameidata nd; 1814 char *tmp = getname_flags(name, flags); 1815 int err = PTR_ERR(tmp); 1816 if (!IS_ERR(tmp)) { 1817 1818 BUG_ON(flags & LOOKUP_PARENT); 1819 1820 err = do_path_lookup(dfd, tmp, flags, &nd); 1821 putname(tmp); 1822 if (!err) 1823 *path = nd.path; 1824 } 1825 return err; 1826 } 1827 1828 static int user_path_parent(int dfd, const char __user *path, 1829 struct nameidata *nd, char **name) 1830 { 1831 char *s = getname(path); 1832 int error; 1833 1834 if (IS_ERR(s)) 1835 return PTR_ERR(s); 1836 1837 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd); 1838 if (error) 1839 putname(s); 1840 else 1841 *name = s; 1842 1843 return error; 1844 } 1845 1846 /* 1847 * It's inline, so penalty for filesystems that don't use sticky bit is 1848 * minimal. 1849 */ 1850 static inline int check_sticky(struct inode *dir, struct inode *inode) 1851 { 1852 uid_t fsuid = current_fsuid(); 1853 1854 if (!(dir->i_mode & S_ISVTX)) 1855 return 0; 1856 if (current_user_ns() != inode_userns(inode)) 1857 goto other_userns; 1858 if (inode->i_uid == fsuid) 1859 return 0; 1860 if (dir->i_uid == fsuid) 1861 return 0; 1862 1863 other_userns: 1864 return !ns_capable(inode_userns(inode), CAP_FOWNER); 1865 } 1866 1867 /* 1868 * Check whether we can remove a link victim from directory dir, check 1869 * whether the type of victim is right. 1870 * 1. We can't do it if dir is read-only (done in permission()) 1871 * 2. We should have write and exec permissions on dir 1872 * 3. We can't remove anything from append-only dir 1873 * 4. We can't do anything with immutable dir (done in permission()) 1874 * 5. If the sticky bit on dir is set we should either 1875 * a. be owner of dir, or 1876 * b. be owner of victim, or 1877 * c. have CAP_FOWNER capability 1878 * 6. If the victim is append-only or immutable we can't do antyhing with 1879 * links pointing to it. 1880 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 1881 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 1882 * 9. We can't remove a root or mountpoint. 1883 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 1884 * nfs_async_unlink(). 1885 */ 1886 static int may_delete(struct inode *dir,struct dentry *victim,int isdir) 1887 { 1888 int error; 1889 1890 if (!victim->d_inode) 1891 return -ENOENT; 1892 1893 BUG_ON(victim->d_parent->d_inode != dir); 1894 audit_inode_child(victim, dir); 1895 1896 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 1897 if (error) 1898 return error; 1899 if (IS_APPEND(dir)) 1900 return -EPERM; 1901 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)|| 1902 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode)) 1903 return -EPERM; 1904 if (isdir) { 1905 if (!S_ISDIR(victim->d_inode->i_mode)) 1906 return -ENOTDIR; 1907 if (IS_ROOT(victim)) 1908 return -EBUSY; 1909 } else if (S_ISDIR(victim->d_inode->i_mode)) 1910 return -EISDIR; 1911 if (IS_DEADDIR(dir)) 1912 return -ENOENT; 1913 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 1914 return -EBUSY; 1915 return 0; 1916 } 1917 1918 /* Check whether we can create an object with dentry child in directory 1919 * dir. 1920 * 1. We can't do it if child already exists (open has special treatment for 1921 * this case, but since we are inlined it's OK) 1922 * 2. We can't do it if dir is read-only (done in permission()) 1923 * 3. We should have write and exec permissions on dir 1924 * 4. We can't do it if dir is immutable (done in permission()) 1925 */ 1926 static inline int may_create(struct inode *dir, struct dentry *child) 1927 { 1928 if (child->d_inode) 1929 return -EEXIST; 1930 if (IS_DEADDIR(dir)) 1931 return -ENOENT; 1932 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 1933 } 1934 1935 /* 1936 * p1 and p2 should be directories on the same fs. 1937 */ 1938 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 1939 { 1940 struct dentry *p; 1941 1942 if (p1 == p2) { 1943 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1944 return NULL; 1945 } 1946 1947 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 1948 1949 p = d_ancestor(p2, p1); 1950 if (p) { 1951 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT); 1952 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD); 1953 return p; 1954 } 1955 1956 p = d_ancestor(p1, p2); 1957 if (p) { 1958 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1959 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 1960 return p; 1961 } 1962 1963 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1964 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 1965 return NULL; 1966 } 1967 1968 void unlock_rename(struct dentry *p1, struct dentry *p2) 1969 { 1970 mutex_unlock(&p1->d_inode->i_mutex); 1971 if (p1 != p2) { 1972 mutex_unlock(&p2->d_inode->i_mutex); 1973 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 1974 } 1975 } 1976 1977 int vfs_create(struct inode *dir, struct dentry *dentry, int mode, 1978 struct nameidata *nd) 1979 { 1980 int error = may_create(dir, dentry); 1981 1982 if (error) 1983 return error; 1984 1985 if (!dir->i_op->create) 1986 return -EACCES; /* shouldn't it be ENOSYS? */ 1987 mode &= S_IALLUGO; 1988 mode |= S_IFREG; 1989 error = security_inode_create(dir, dentry, mode); 1990 if (error) 1991 return error; 1992 error = dir->i_op->create(dir, dentry, mode, nd); 1993 if (!error) 1994 fsnotify_create(dir, dentry); 1995 return error; 1996 } 1997 1998 static int may_open(struct path *path, int acc_mode, int flag) 1999 { 2000 struct dentry *dentry = path->dentry; 2001 struct inode *inode = dentry->d_inode; 2002 int error; 2003 2004 /* O_PATH? */ 2005 if (!acc_mode) 2006 return 0; 2007 2008 if (!inode) 2009 return -ENOENT; 2010 2011 switch (inode->i_mode & S_IFMT) { 2012 case S_IFLNK: 2013 return -ELOOP; 2014 case S_IFDIR: 2015 if (acc_mode & MAY_WRITE) 2016 return -EISDIR; 2017 break; 2018 case S_IFBLK: 2019 case S_IFCHR: 2020 if (path->mnt->mnt_flags & MNT_NODEV) 2021 return -EACCES; 2022 /*FALLTHRU*/ 2023 case S_IFIFO: 2024 case S_IFSOCK: 2025 flag &= ~O_TRUNC; 2026 break; 2027 } 2028 2029 error = inode_permission(inode, acc_mode); 2030 if (error) 2031 return error; 2032 2033 /* 2034 * An append-only file must be opened in append mode for writing. 2035 */ 2036 if (IS_APPEND(inode)) { 2037 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2038 return -EPERM; 2039 if (flag & O_TRUNC) 2040 return -EPERM; 2041 } 2042 2043 /* O_NOATIME can only be set by the owner or superuser */ 2044 if (flag & O_NOATIME && !inode_owner_or_capable(inode)) 2045 return -EPERM; 2046 2047 /* 2048 * Ensure there are no outstanding leases on the file. 2049 */ 2050 return break_lease(inode, flag); 2051 } 2052 2053 static int handle_truncate(struct file *filp) 2054 { 2055 struct path *path = &filp->f_path; 2056 struct inode *inode = path->dentry->d_inode; 2057 int error = get_write_access(inode); 2058 if (error) 2059 return error; 2060 /* 2061 * Refuse to truncate files with mandatory locks held on them. 2062 */ 2063 error = locks_verify_locked(inode); 2064 if (!error) 2065 error = security_path_truncate(path); 2066 if (!error) { 2067 error = do_truncate(path->dentry, 0, 2068 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 2069 filp); 2070 } 2071 put_write_access(inode); 2072 return error; 2073 } 2074 2075 static inline int open_to_namei_flags(int flag) 2076 { 2077 if ((flag & O_ACCMODE) == 3) 2078 flag--; 2079 return flag; 2080 } 2081 2082 /* 2083 * Handle the last step of open() 2084 */ 2085 static struct file *do_last(struct nameidata *nd, struct path *path, 2086 const struct open_flags *op, const char *pathname) 2087 { 2088 struct dentry *dir = nd->path.dentry; 2089 struct dentry *dentry; 2090 int open_flag = op->open_flag; 2091 int will_truncate = open_flag & O_TRUNC; 2092 int want_write = 0; 2093 int acc_mode = op->acc_mode; 2094 struct file *filp; 2095 int error; 2096 2097 nd->flags &= ~LOOKUP_PARENT; 2098 nd->flags |= op->intent; 2099 2100 switch (nd->last_type) { 2101 case LAST_DOTDOT: 2102 case LAST_DOT: 2103 error = handle_dots(nd, nd->last_type); 2104 if (error) 2105 return ERR_PTR(error); 2106 /* fallthrough */ 2107 case LAST_ROOT: 2108 error = complete_walk(nd); 2109 if (error) 2110 return ERR_PTR(error); 2111 audit_inode(pathname, nd->path.dentry); 2112 if (open_flag & O_CREAT) { 2113 error = -EISDIR; 2114 goto exit; 2115 } 2116 goto ok; 2117 case LAST_BIND: 2118 error = complete_walk(nd); 2119 if (error) 2120 return ERR_PTR(error); 2121 audit_inode(pathname, dir); 2122 goto ok; 2123 } 2124 2125 if (!(open_flag & O_CREAT)) { 2126 int symlink_ok = 0; 2127 if (nd->last.name[nd->last.len]) 2128 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2129 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW)) 2130 symlink_ok = 1; 2131 /* we _can_ be in RCU mode here */ 2132 error = walk_component(nd, path, &nd->last, LAST_NORM, 2133 !symlink_ok); 2134 if (error < 0) 2135 return ERR_PTR(error); 2136 if (error) /* symlink */ 2137 return NULL; 2138 /* sayonara */ 2139 error = complete_walk(nd); 2140 if (error) 2141 return ERR_PTR(-ECHILD); 2142 2143 error = -ENOTDIR; 2144 if (nd->flags & LOOKUP_DIRECTORY) { 2145 if (!nd->inode->i_op->lookup) 2146 goto exit; 2147 } 2148 audit_inode(pathname, nd->path.dentry); 2149 goto ok; 2150 } 2151 2152 /* create side of things */ 2153 error = complete_walk(nd); 2154 if (error) 2155 return ERR_PTR(error); 2156 2157 audit_inode(pathname, dir); 2158 error = -EISDIR; 2159 /* trailing slashes? */ 2160 if (nd->last.name[nd->last.len]) 2161 goto exit; 2162 2163 mutex_lock(&dir->d_inode->i_mutex); 2164 2165 dentry = lookup_hash(nd); 2166 error = PTR_ERR(dentry); 2167 if (IS_ERR(dentry)) { 2168 mutex_unlock(&dir->d_inode->i_mutex); 2169 goto exit; 2170 } 2171 2172 path->dentry = dentry; 2173 path->mnt = nd->path.mnt; 2174 2175 /* Negative dentry, just create the file */ 2176 if (!dentry->d_inode) { 2177 int mode = op->mode; 2178 if (!IS_POSIXACL(dir->d_inode)) 2179 mode &= ~current_umask(); 2180 /* 2181 * This write is needed to ensure that a 2182 * rw->ro transition does not occur between 2183 * the time when the file is created and when 2184 * a permanent write count is taken through 2185 * the 'struct file' in nameidata_to_filp(). 2186 */ 2187 error = mnt_want_write(nd->path.mnt); 2188 if (error) 2189 goto exit_mutex_unlock; 2190 want_write = 1; 2191 /* Don't check for write permission, don't truncate */ 2192 open_flag &= ~O_TRUNC; 2193 will_truncate = 0; 2194 acc_mode = MAY_OPEN; 2195 error = security_path_mknod(&nd->path, dentry, mode, 0); 2196 if (error) 2197 goto exit_mutex_unlock; 2198 error = vfs_create(dir->d_inode, dentry, mode, nd); 2199 if (error) 2200 goto exit_mutex_unlock; 2201 mutex_unlock(&dir->d_inode->i_mutex); 2202 dput(nd->path.dentry); 2203 nd->path.dentry = dentry; 2204 goto common; 2205 } 2206 2207 /* 2208 * It already exists. 2209 */ 2210 mutex_unlock(&dir->d_inode->i_mutex); 2211 audit_inode(pathname, path->dentry); 2212 2213 error = -EEXIST; 2214 if (open_flag & O_EXCL) 2215 goto exit_dput; 2216 2217 error = follow_managed(path, nd->flags); 2218 if (error < 0) 2219 goto exit_dput; 2220 2221 error = -ENOENT; 2222 if (!path->dentry->d_inode) 2223 goto exit_dput; 2224 2225 if (path->dentry->d_inode->i_op->follow_link) 2226 return NULL; 2227 2228 path_to_nameidata(path, nd); 2229 nd->inode = path->dentry->d_inode; 2230 error = -EISDIR; 2231 if (S_ISDIR(nd->inode->i_mode)) 2232 goto exit; 2233 ok: 2234 if (!S_ISREG(nd->inode->i_mode)) 2235 will_truncate = 0; 2236 2237 if (will_truncate) { 2238 error = mnt_want_write(nd->path.mnt); 2239 if (error) 2240 goto exit; 2241 want_write = 1; 2242 } 2243 common: 2244 error = may_open(&nd->path, acc_mode, open_flag); 2245 if (error) 2246 goto exit; 2247 filp = nameidata_to_filp(nd); 2248 if (!IS_ERR(filp)) { 2249 error = ima_file_check(filp, op->acc_mode); 2250 if (error) { 2251 fput(filp); 2252 filp = ERR_PTR(error); 2253 } 2254 } 2255 if (!IS_ERR(filp)) { 2256 if (will_truncate) { 2257 error = handle_truncate(filp); 2258 if (error) { 2259 fput(filp); 2260 filp = ERR_PTR(error); 2261 } 2262 } 2263 } 2264 out: 2265 if (want_write) 2266 mnt_drop_write(nd->path.mnt); 2267 path_put(&nd->path); 2268 return filp; 2269 2270 exit_mutex_unlock: 2271 mutex_unlock(&dir->d_inode->i_mutex); 2272 exit_dput: 2273 path_put_conditional(path, nd); 2274 exit: 2275 filp = ERR_PTR(error); 2276 goto out; 2277 } 2278 2279 static struct file *path_openat(int dfd, const char *pathname, 2280 struct nameidata *nd, const struct open_flags *op, int flags) 2281 { 2282 struct file *base = NULL; 2283 struct file *filp; 2284 struct path path; 2285 int error; 2286 2287 filp = get_empty_filp(); 2288 if (!filp) 2289 return ERR_PTR(-ENFILE); 2290 2291 filp->f_flags = op->open_flag; 2292 nd->intent.open.file = filp; 2293 nd->intent.open.flags = open_to_namei_flags(op->open_flag); 2294 nd->intent.open.create_mode = op->mode; 2295 2296 error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base); 2297 if (unlikely(error)) 2298 goto out_filp; 2299 2300 current->total_link_count = 0; 2301 error = link_path_walk(pathname, nd); 2302 if (unlikely(error)) 2303 goto out_filp; 2304 2305 filp = do_last(nd, &path, op, pathname); 2306 while (unlikely(!filp)) { /* trailing symlink */ 2307 struct path link = path; 2308 void *cookie; 2309 if (!(nd->flags & LOOKUP_FOLLOW)) { 2310 path_put_conditional(&path, nd); 2311 path_put(&nd->path); 2312 filp = ERR_PTR(-ELOOP); 2313 break; 2314 } 2315 nd->flags |= LOOKUP_PARENT; 2316 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 2317 error = follow_link(&link, nd, &cookie); 2318 if (unlikely(error)) 2319 filp = ERR_PTR(error); 2320 else 2321 filp = do_last(nd, &path, op, pathname); 2322 put_link(nd, &link, cookie); 2323 } 2324 out: 2325 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) 2326 path_put(&nd->root); 2327 if (base) 2328 fput(base); 2329 release_open_intent(nd); 2330 return filp; 2331 2332 out_filp: 2333 filp = ERR_PTR(error); 2334 goto out; 2335 } 2336 2337 struct file *do_filp_open(int dfd, const char *pathname, 2338 const struct open_flags *op, int flags) 2339 { 2340 struct nameidata nd; 2341 struct file *filp; 2342 2343 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU); 2344 if (unlikely(filp == ERR_PTR(-ECHILD))) 2345 filp = path_openat(dfd, pathname, &nd, op, flags); 2346 if (unlikely(filp == ERR_PTR(-ESTALE))) 2347 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL); 2348 return filp; 2349 } 2350 2351 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 2352 const char *name, const struct open_flags *op, int flags) 2353 { 2354 struct nameidata nd; 2355 struct file *file; 2356 2357 nd.root.mnt = mnt; 2358 nd.root.dentry = dentry; 2359 2360 flags |= LOOKUP_ROOT; 2361 2362 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN) 2363 return ERR_PTR(-ELOOP); 2364 2365 file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU); 2366 if (unlikely(file == ERR_PTR(-ECHILD))) 2367 file = path_openat(-1, name, &nd, op, flags); 2368 if (unlikely(file == ERR_PTR(-ESTALE))) 2369 file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL); 2370 return file; 2371 } 2372 2373 struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, int is_dir) 2374 { 2375 struct dentry *dentry = ERR_PTR(-EEXIST); 2376 struct nameidata nd; 2377 int error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd); 2378 if (error) 2379 return ERR_PTR(error); 2380 2381 /* 2382 * Yucky last component or no last component at all? 2383 * (foo/., foo/.., /////) 2384 */ 2385 if (nd.last_type != LAST_NORM) 2386 goto out; 2387 nd.flags &= ~LOOKUP_PARENT; 2388 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL; 2389 nd.intent.open.flags = O_EXCL; 2390 2391 /* 2392 * Do the final lookup. 2393 */ 2394 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2395 dentry = lookup_hash(&nd); 2396 if (IS_ERR(dentry)) 2397 goto fail; 2398 2399 if (dentry->d_inode) 2400 goto eexist; 2401 /* 2402 * Special case - lookup gave negative, but... we had foo/bar/ 2403 * From the vfs_mknod() POV we just have a negative dentry - 2404 * all is fine. Let's be bastards - you had / on the end, you've 2405 * been asking for (non-existent) directory. -ENOENT for you. 2406 */ 2407 if (unlikely(!is_dir && nd.last.name[nd.last.len])) { 2408 dput(dentry); 2409 dentry = ERR_PTR(-ENOENT); 2410 goto fail; 2411 } 2412 *path = nd.path; 2413 return dentry; 2414 eexist: 2415 dput(dentry); 2416 dentry = ERR_PTR(-EEXIST); 2417 fail: 2418 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2419 out: 2420 path_put(&nd.path); 2421 return dentry; 2422 } 2423 EXPORT_SYMBOL(kern_path_create); 2424 2425 struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, int is_dir) 2426 { 2427 char *tmp = getname(pathname); 2428 struct dentry *res; 2429 if (IS_ERR(tmp)) 2430 return ERR_CAST(tmp); 2431 res = kern_path_create(dfd, tmp, path, is_dir); 2432 putname(tmp); 2433 return res; 2434 } 2435 EXPORT_SYMBOL(user_path_create); 2436 2437 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 2438 { 2439 int error = may_create(dir, dentry); 2440 2441 if (error) 2442 return error; 2443 2444 if ((S_ISCHR(mode) || S_ISBLK(mode)) && 2445 !ns_capable(inode_userns(dir), CAP_MKNOD)) 2446 return -EPERM; 2447 2448 if (!dir->i_op->mknod) 2449 return -EPERM; 2450 2451 error = devcgroup_inode_mknod(mode, dev); 2452 if (error) 2453 return error; 2454 2455 error = security_inode_mknod(dir, dentry, mode, dev); 2456 if (error) 2457 return error; 2458 2459 error = dir->i_op->mknod(dir, dentry, mode, dev); 2460 if (!error) 2461 fsnotify_create(dir, dentry); 2462 return error; 2463 } 2464 2465 static int may_mknod(mode_t mode) 2466 { 2467 switch (mode & S_IFMT) { 2468 case S_IFREG: 2469 case S_IFCHR: 2470 case S_IFBLK: 2471 case S_IFIFO: 2472 case S_IFSOCK: 2473 case 0: /* zero mode translates to S_IFREG */ 2474 return 0; 2475 case S_IFDIR: 2476 return -EPERM; 2477 default: 2478 return -EINVAL; 2479 } 2480 } 2481 2482 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode, 2483 unsigned, dev) 2484 { 2485 struct dentry *dentry; 2486 struct path path; 2487 int error; 2488 2489 if (S_ISDIR(mode)) 2490 return -EPERM; 2491 2492 dentry = user_path_create(dfd, filename, &path, 0); 2493 if (IS_ERR(dentry)) 2494 return PTR_ERR(dentry); 2495 2496 if (!IS_POSIXACL(path.dentry->d_inode)) 2497 mode &= ~current_umask(); 2498 error = may_mknod(mode); 2499 if (error) 2500 goto out_dput; 2501 error = mnt_want_write(path.mnt); 2502 if (error) 2503 goto out_dput; 2504 error = security_path_mknod(&path, dentry, mode, dev); 2505 if (error) 2506 goto out_drop_write; 2507 switch (mode & S_IFMT) { 2508 case 0: case S_IFREG: 2509 error = vfs_create(path.dentry->d_inode,dentry,mode,NULL); 2510 break; 2511 case S_IFCHR: case S_IFBLK: 2512 error = vfs_mknod(path.dentry->d_inode,dentry,mode, 2513 new_decode_dev(dev)); 2514 break; 2515 case S_IFIFO: case S_IFSOCK: 2516 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0); 2517 break; 2518 } 2519 out_drop_write: 2520 mnt_drop_write(path.mnt); 2521 out_dput: 2522 dput(dentry); 2523 mutex_unlock(&path.dentry->d_inode->i_mutex); 2524 path_put(&path); 2525 2526 return error; 2527 } 2528 2529 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev) 2530 { 2531 return sys_mknodat(AT_FDCWD, filename, mode, dev); 2532 } 2533 2534 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 2535 { 2536 int error = may_create(dir, dentry); 2537 2538 if (error) 2539 return error; 2540 2541 if (!dir->i_op->mkdir) 2542 return -EPERM; 2543 2544 mode &= (S_IRWXUGO|S_ISVTX); 2545 error = security_inode_mkdir(dir, dentry, mode); 2546 if (error) 2547 return error; 2548 2549 error = dir->i_op->mkdir(dir, dentry, mode); 2550 if (!error) 2551 fsnotify_mkdir(dir, dentry); 2552 return error; 2553 } 2554 2555 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode) 2556 { 2557 struct dentry *dentry; 2558 struct path path; 2559 int error; 2560 2561 dentry = user_path_create(dfd, pathname, &path, 1); 2562 if (IS_ERR(dentry)) 2563 return PTR_ERR(dentry); 2564 2565 if (!IS_POSIXACL(path.dentry->d_inode)) 2566 mode &= ~current_umask(); 2567 error = mnt_want_write(path.mnt); 2568 if (error) 2569 goto out_dput; 2570 error = security_path_mkdir(&path, dentry, mode); 2571 if (error) 2572 goto out_drop_write; 2573 error = vfs_mkdir(path.dentry->d_inode, dentry, mode); 2574 out_drop_write: 2575 mnt_drop_write(path.mnt); 2576 out_dput: 2577 dput(dentry); 2578 mutex_unlock(&path.dentry->d_inode->i_mutex); 2579 path_put(&path); 2580 return error; 2581 } 2582 2583 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode) 2584 { 2585 return sys_mkdirat(AT_FDCWD, pathname, mode); 2586 } 2587 2588 /* 2589 * The dentry_unhash() helper will try to drop the dentry early: we 2590 * should have a usage count of 2 if we're the only user of this 2591 * dentry, and if that is true (possibly after pruning the dcache), 2592 * then we drop the dentry now. 2593 * 2594 * A low-level filesystem can, if it choses, legally 2595 * do a 2596 * 2597 * if (!d_unhashed(dentry)) 2598 * return -EBUSY; 2599 * 2600 * if it cannot handle the case of removing a directory 2601 * that is still in use by something else.. 2602 */ 2603 void dentry_unhash(struct dentry *dentry) 2604 { 2605 shrink_dcache_parent(dentry); 2606 spin_lock(&dentry->d_lock); 2607 if (dentry->d_count == 1) 2608 __d_drop(dentry); 2609 spin_unlock(&dentry->d_lock); 2610 } 2611 2612 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 2613 { 2614 int error = may_delete(dir, dentry, 1); 2615 2616 if (error) 2617 return error; 2618 2619 if (!dir->i_op->rmdir) 2620 return -EPERM; 2621 2622 mutex_lock(&dentry->d_inode->i_mutex); 2623 2624 error = -EBUSY; 2625 if (d_mountpoint(dentry)) 2626 goto out; 2627 2628 error = security_inode_rmdir(dir, dentry); 2629 if (error) 2630 goto out; 2631 2632 shrink_dcache_parent(dentry); 2633 error = dir->i_op->rmdir(dir, dentry); 2634 if (error) 2635 goto out; 2636 2637 dentry->d_inode->i_flags |= S_DEAD; 2638 dont_mount(dentry); 2639 2640 out: 2641 mutex_unlock(&dentry->d_inode->i_mutex); 2642 if (!error) 2643 d_delete(dentry); 2644 return error; 2645 } 2646 2647 static long do_rmdir(int dfd, const char __user *pathname) 2648 { 2649 int error = 0; 2650 char * name; 2651 struct dentry *dentry; 2652 struct nameidata nd; 2653 2654 error = user_path_parent(dfd, pathname, &nd, &name); 2655 if (error) 2656 return error; 2657 2658 switch(nd.last_type) { 2659 case LAST_DOTDOT: 2660 error = -ENOTEMPTY; 2661 goto exit1; 2662 case LAST_DOT: 2663 error = -EINVAL; 2664 goto exit1; 2665 case LAST_ROOT: 2666 error = -EBUSY; 2667 goto exit1; 2668 } 2669 2670 nd.flags &= ~LOOKUP_PARENT; 2671 2672 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2673 dentry = lookup_hash(&nd); 2674 error = PTR_ERR(dentry); 2675 if (IS_ERR(dentry)) 2676 goto exit2; 2677 if (!dentry->d_inode) { 2678 error = -ENOENT; 2679 goto exit3; 2680 } 2681 error = mnt_want_write(nd.path.mnt); 2682 if (error) 2683 goto exit3; 2684 error = security_path_rmdir(&nd.path, dentry); 2685 if (error) 2686 goto exit4; 2687 error = vfs_rmdir(nd.path.dentry->d_inode, dentry); 2688 exit4: 2689 mnt_drop_write(nd.path.mnt); 2690 exit3: 2691 dput(dentry); 2692 exit2: 2693 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2694 exit1: 2695 path_put(&nd.path); 2696 putname(name); 2697 return error; 2698 } 2699 2700 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 2701 { 2702 return do_rmdir(AT_FDCWD, pathname); 2703 } 2704 2705 int vfs_unlink(struct inode *dir, struct dentry *dentry) 2706 { 2707 int error = may_delete(dir, dentry, 0); 2708 2709 if (error) 2710 return error; 2711 2712 if (!dir->i_op->unlink) 2713 return -EPERM; 2714 2715 mutex_lock(&dentry->d_inode->i_mutex); 2716 if (d_mountpoint(dentry)) 2717 error = -EBUSY; 2718 else { 2719 error = security_inode_unlink(dir, dentry); 2720 if (!error) { 2721 error = dir->i_op->unlink(dir, dentry); 2722 if (!error) 2723 dont_mount(dentry); 2724 } 2725 } 2726 mutex_unlock(&dentry->d_inode->i_mutex); 2727 2728 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 2729 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 2730 fsnotify_link_count(dentry->d_inode); 2731 d_delete(dentry); 2732 } 2733 2734 return error; 2735 } 2736 2737 /* 2738 * Make sure that the actual truncation of the file will occur outside its 2739 * directory's i_mutex. Truncate can take a long time if there is a lot of 2740 * writeout happening, and we don't want to prevent access to the directory 2741 * while waiting on the I/O. 2742 */ 2743 static long do_unlinkat(int dfd, const char __user *pathname) 2744 { 2745 int error; 2746 char *name; 2747 struct dentry *dentry; 2748 struct nameidata nd; 2749 struct inode *inode = NULL; 2750 2751 error = user_path_parent(dfd, pathname, &nd, &name); 2752 if (error) 2753 return error; 2754 2755 error = -EISDIR; 2756 if (nd.last_type != LAST_NORM) 2757 goto exit1; 2758 2759 nd.flags &= ~LOOKUP_PARENT; 2760 2761 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2762 dentry = lookup_hash(&nd); 2763 error = PTR_ERR(dentry); 2764 if (!IS_ERR(dentry)) { 2765 /* Why not before? Because we want correct error value */ 2766 if (nd.last.name[nd.last.len]) 2767 goto slashes; 2768 inode = dentry->d_inode; 2769 if (!inode) 2770 goto slashes; 2771 ihold(inode); 2772 error = mnt_want_write(nd.path.mnt); 2773 if (error) 2774 goto exit2; 2775 error = security_path_unlink(&nd.path, dentry); 2776 if (error) 2777 goto exit3; 2778 error = vfs_unlink(nd.path.dentry->d_inode, dentry); 2779 exit3: 2780 mnt_drop_write(nd.path.mnt); 2781 exit2: 2782 dput(dentry); 2783 } 2784 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2785 if (inode) 2786 iput(inode); /* truncate the inode here */ 2787 exit1: 2788 path_put(&nd.path); 2789 putname(name); 2790 return error; 2791 2792 slashes: 2793 error = !dentry->d_inode ? -ENOENT : 2794 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR; 2795 goto exit2; 2796 } 2797 2798 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 2799 { 2800 if ((flag & ~AT_REMOVEDIR) != 0) 2801 return -EINVAL; 2802 2803 if (flag & AT_REMOVEDIR) 2804 return do_rmdir(dfd, pathname); 2805 2806 return do_unlinkat(dfd, pathname); 2807 } 2808 2809 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 2810 { 2811 return do_unlinkat(AT_FDCWD, pathname); 2812 } 2813 2814 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 2815 { 2816 int error = may_create(dir, dentry); 2817 2818 if (error) 2819 return error; 2820 2821 if (!dir->i_op->symlink) 2822 return -EPERM; 2823 2824 error = security_inode_symlink(dir, dentry, oldname); 2825 if (error) 2826 return error; 2827 2828 error = dir->i_op->symlink(dir, dentry, oldname); 2829 if (!error) 2830 fsnotify_create(dir, dentry); 2831 return error; 2832 } 2833 2834 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 2835 int, newdfd, const char __user *, newname) 2836 { 2837 int error; 2838 char *from; 2839 struct dentry *dentry; 2840 struct path path; 2841 2842 from = getname(oldname); 2843 if (IS_ERR(from)) 2844 return PTR_ERR(from); 2845 2846 dentry = user_path_create(newdfd, newname, &path, 0); 2847 error = PTR_ERR(dentry); 2848 if (IS_ERR(dentry)) 2849 goto out_putname; 2850 2851 error = mnt_want_write(path.mnt); 2852 if (error) 2853 goto out_dput; 2854 error = security_path_symlink(&path, dentry, from); 2855 if (error) 2856 goto out_drop_write; 2857 error = vfs_symlink(path.dentry->d_inode, dentry, from); 2858 out_drop_write: 2859 mnt_drop_write(path.mnt); 2860 out_dput: 2861 dput(dentry); 2862 mutex_unlock(&path.dentry->d_inode->i_mutex); 2863 path_put(&path); 2864 out_putname: 2865 putname(from); 2866 return error; 2867 } 2868 2869 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 2870 { 2871 return sys_symlinkat(oldname, AT_FDCWD, newname); 2872 } 2873 2874 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2875 { 2876 struct inode *inode = old_dentry->d_inode; 2877 int error; 2878 2879 if (!inode) 2880 return -ENOENT; 2881 2882 error = may_create(dir, new_dentry); 2883 if (error) 2884 return error; 2885 2886 if (dir->i_sb != inode->i_sb) 2887 return -EXDEV; 2888 2889 /* 2890 * A link to an append-only or immutable file cannot be created. 2891 */ 2892 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 2893 return -EPERM; 2894 if (!dir->i_op->link) 2895 return -EPERM; 2896 if (S_ISDIR(inode->i_mode)) 2897 return -EPERM; 2898 2899 error = security_inode_link(old_dentry, dir, new_dentry); 2900 if (error) 2901 return error; 2902 2903 mutex_lock(&inode->i_mutex); 2904 /* Make sure we don't allow creating hardlink to an unlinked file */ 2905 if (inode->i_nlink == 0) 2906 error = -ENOENT; 2907 else 2908 error = dir->i_op->link(old_dentry, dir, new_dentry); 2909 mutex_unlock(&inode->i_mutex); 2910 if (!error) 2911 fsnotify_link(dir, inode, new_dentry); 2912 return error; 2913 } 2914 2915 /* 2916 * Hardlinks are often used in delicate situations. We avoid 2917 * security-related surprises by not following symlinks on the 2918 * newname. --KAB 2919 * 2920 * We don't follow them on the oldname either to be compatible 2921 * with linux 2.0, and to avoid hard-linking to directories 2922 * and other special files. --ADM 2923 */ 2924 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 2925 int, newdfd, const char __user *, newname, int, flags) 2926 { 2927 struct dentry *new_dentry; 2928 struct path old_path, new_path; 2929 int how = 0; 2930 int error; 2931 2932 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 2933 return -EINVAL; 2934 /* 2935 * To use null names we require CAP_DAC_READ_SEARCH 2936 * This ensures that not everyone will be able to create 2937 * handlink using the passed filedescriptor. 2938 */ 2939 if (flags & AT_EMPTY_PATH) { 2940 if (!capable(CAP_DAC_READ_SEARCH)) 2941 return -ENOENT; 2942 how = LOOKUP_EMPTY; 2943 } 2944 2945 if (flags & AT_SYMLINK_FOLLOW) 2946 how |= LOOKUP_FOLLOW; 2947 2948 error = user_path_at(olddfd, oldname, how, &old_path); 2949 if (error) 2950 return error; 2951 2952 new_dentry = user_path_create(newdfd, newname, &new_path, 0); 2953 error = PTR_ERR(new_dentry); 2954 if (IS_ERR(new_dentry)) 2955 goto out; 2956 2957 error = -EXDEV; 2958 if (old_path.mnt != new_path.mnt) 2959 goto out_dput; 2960 error = mnt_want_write(new_path.mnt); 2961 if (error) 2962 goto out_dput; 2963 error = security_path_link(old_path.dentry, &new_path, new_dentry); 2964 if (error) 2965 goto out_drop_write; 2966 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry); 2967 out_drop_write: 2968 mnt_drop_write(new_path.mnt); 2969 out_dput: 2970 dput(new_dentry); 2971 mutex_unlock(&new_path.dentry->d_inode->i_mutex); 2972 path_put(&new_path); 2973 out: 2974 path_put(&old_path); 2975 2976 return error; 2977 } 2978 2979 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 2980 { 2981 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 2982 } 2983 2984 /* 2985 * The worst of all namespace operations - renaming directory. "Perverted" 2986 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 2987 * Problems: 2988 * a) we can get into loop creation. Check is done in is_subdir(). 2989 * b) race potential - two innocent renames can create a loop together. 2990 * That's where 4.4 screws up. Current fix: serialization on 2991 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 2992 * story. 2993 * c) we have to lock _three_ objects - parents and victim (if it exists). 2994 * And that - after we got ->i_mutex on parents (until then we don't know 2995 * whether the target exists). Solution: try to be smart with locking 2996 * order for inodes. We rely on the fact that tree topology may change 2997 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 2998 * move will be locked. Thus we can rank directories by the tree 2999 * (ancestors first) and rank all non-directories after them. 3000 * That works since everybody except rename does "lock parent, lookup, 3001 * lock child" and rename is under ->s_vfs_rename_mutex. 3002 * HOWEVER, it relies on the assumption that any object with ->lookup() 3003 * has no more than 1 dentry. If "hybrid" objects will ever appear, 3004 * we'd better make sure that there's no link(2) for them. 3005 * d) conversion from fhandle to dentry may come in the wrong moment - when 3006 * we are removing the target. Solution: we will have to grab ->i_mutex 3007 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 3008 * ->i_mutex on parents, which works but leads to some truly excessive 3009 * locking]. 3010 */ 3011 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry, 3012 struct inode *new_dir, struct dentry *new_dentry) 3013 { 3014 int error = 0; 3015 struct inode *target = new_dentry->d_inode; 3016 3017 /* 3018 * If we are going to change the parent - check write permissions, 3019 * we'll need to flip '..'. 3020 */ 3021 if (new_dir != old_dir) { 3022 error = inode_permission(old_dentry->d_inode, MAY_WRITE); 3023 if (error) 3024 return error; 3025 } 3026 3027 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 3028 if (error) 3029 return error; 3030 3031 if (target) 3032 mutex_lock(&target->i_mutex); 3033 3034 error = -EBUSY; 3035 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry)) 3036 goto out; 3037 3038 if (target) 3039 shrink_dcache_parent(new_dentry); 3040 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 3041 if (error) 3042 goto out; 3043 3044 if (target) { 3045 target->i_flags |= S_DEAD; 3046 dont_mount(new_dentry); 3047 } 3048 out: 3049 if (target) 3050 mutex_unlock(&target->i_mutex); 3051 if (!error) 3052 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 3053 d_move(old_dentry,new_dentry); 3054 return error; 3055 } 3056 3057 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry, 3058 struct inode *new_dir, struct dentry *new_dentry) 3059 { 3060 struct inode *target = new_dentry->d_inode; 3061 int error; 3062 3063 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 3064 if (error) 3065 return error; 3066 3067 dget(new_dentry); 3068 if (target) 3069 mutex_lock(&target->i_mutex); 3070 3071 error = -EBUSY; 3072 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) 3073 goto out; 3074 3075 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 3076 if (error) 3077 goto out; 3078 3079 if (target) 3080 dont_mount(new_dentry); 3081 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 3082 d_move(old_dentry, new_dentry); 3083 out: 3084 if (target) 3085 mutex_unlock(&target->i_mutex); 3086 dput(new_dentry); 3087 return error; 3088 } 3089 3090 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 3091 struct inode *new_dir, struct dentry *new_dentry) 3092 { 3093 int error; 3094 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode); 3095 const unsigned char *old_name; 3096 3097 if (old_dentry->d_inode == new_dentry->d_inode) 3098 return 0; 3099 3100 error = may_delete(old_dir, old_dentry, is_dir); 3101 if (error) 3102 return error; 3103 3104 if (!new_dentry->d_inode) 3105 error = may_create(new_dir, new_dentry); 3106 else 3107 error = may_delete(new_dir, new_dentry, is_dir); 3108 if (error) 3109 return error; 3110 3111 if (!old_dir->i_op->rename) 3112 return -EPERM; 3113 3114 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 3115 3116 if (is_dir) 3117 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry); 3118 else 3119 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry); 3120 if (!error) 3121 fsnotify_move(old_dir, new_dir, old_name, is_dir, 3122 new_dentry->d_inode, old_dentry); 3123 fsnotify_oldname_free(old_name); 3124 3125 return error; 3126 } 3127 3128 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 3129 int, newdfd, const char __user *, newname) 3130 { 3131 struct dentry *old_dir, *new_dir; 3132 struct dentry *old_dentry, *new_dentry; 3133 struct dentry *trap; 3134 struct nameidata oldnd, newnd; 3135 char *from; 3136 char *to; 3137 int error; 3138 3139 error = user_path_parent(olddfd, oldname, &oldnd, &from); 3140 if (error) 3141 goto exit; 3142 3143 error = user_path_parent(newdfd, newname, &newnd, &to); 3144 if (error) 3145 goto exit1; 3146 3147 error = -EXDEV; 3148 if (oldnd.path.mnt != newnd.path.mnt) 3149 goto exit2; 3150 3151 old_dir = oldnd.path.dentry; 3152 error = -EBUSY; 3153 if (oldnd.last_type != LAST_NORM) 3154 goto exit2; 3155 3156 new_dir = newnd.path.dentry; 3157 if (newnd.last_type != LAST_NORM) 3158 goto exit2; 3159 3160 oldnd.flags &= ~LOOKUP_PARENT; 3161 newnd.flags &= ~LOOKUP_PARENT; 3162 newnd.flags |= LOOKUP_RENAME_TARGET; 3163 3164 trap = lock_rename(new_dir, old_dir); 3165 3166 old_dentry = lookup_hash(&oldnd); 3167 error = PTR_ERR(old_dentry); 3168 if (IS_ERR(old_dentry)) 3169 goto exit3; 3170 /* source must exist */ 3171 error = -ENOENT; 3172 if (!old_dentry->d_inode) 3173 goto exit4; 3174 /* unless the source is a directory trailing slashes give -ENOTDIR */ 3175 if (!S_ISDIR(old_dentry->d_inode->i_mode)) { 3176 error = -ENOTDIR; 3177 if (oldnd.last.name[oldnd.last.len]) 3178 goto exit4; 3179 if (newnd.last.name[newnd.last.len]) 3180 goto exit4; 3181 } 3182 /* source should not be ancestor of target */ 3183 error = -EINVAL; 3184 if (old_dentry == trap) 3185 goto exit4; 3186 new_dentry = lookup_hash(&newnd); 3187 error = PTR_ERR(new_dentry); 3188 if (IS_ERR(new_dentry)) 3189 goto exit4; 3190 /* target should not be an ancestor of source */ 3191 error = -ENOTEMPTY; 3192 if (new_dentry == trap) 3193 goto exit5; 3194 3195 error = mnt_want_write(oldnd.path.mnt); 3196 if (error) 3197 goto exit5; 3198 error = security_path_rename(&oldnd.path, old_dentry, 3199 &newnd.path, new_dentry); 3200 if (error) 3201 goto exit6; 3202 error = vfs_rename(old_dir->d_inode, old_dentry, 3203 new_dir->d_inode, new_dentry); 3204 exit6: 3205 mnt_drop_write(oldnd.path.mnt); 3206 exit5: 3207 dput(new_dentry); 3208 exit4: 3209 dput(old_dentry); 3210 exit3: 3211 unlock_rename(new_dir, old_dir); 3212 exit2: 3213 path_put(&newnd.path); 3214 putname(to); 3215 exit1: 3216 path_put(&oldnd.path); 3217 putname(from); 3218 exit: 3219 return error; 3220 } 3221 3222 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 3223 { 3224 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname); 3225 } 3226 3227 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link) 3228 { 3229 int len; 3230 3231 len = PTR_ERR(link); 3232 if (IS_ERR(link)) 3233 goto out; 3234 3235 len = strlen(link); 3236 if (len > (unsigned) buflen) 3237 len = buflen; 3238 if (copy_to_user(buffer, link, len)) 3239 len = -EFAULT; 3240 out: 3241 return len; 3242 } 3243 3244 /* 3245 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 3246 * have ->follow_link() touching nd only in nd_set_link(). Using (or not 3247 * using) it for any given inode is up to filesystem. 3248 */ 3249 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) 3250 { 3251 struct nameidata nd; 3252 void *cookie; 3253 int res; 3254 3255 nd.depth = 0; 3256 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd); 3257 if (IS_ERR(cookie)) 3258 return PTR_ERR(cookie); 3259 3260 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd)); 3261 if (dentry->d_inode->i_op->put_link) 3262 dentry->d_inode->i_op->put_link(dentry, &nd, cookie); 3263 return res; 3264 } 3265 3266 int vfs_follow_link(struct nameidata *nd, const char *link) 3267 { 3268 return __vfs_follow_link(nd, link); 3269 } 3270 3271 /* get the link contents into pagecache */ 3272 static char *page_getlink(struct dentry * dentry, struct page **ppage) 3273 { 3274 char *kaddr; 3275 struct page *page; 3276 struct address_space *mapping = dentry->d_inode->i_mapping; 3277 page = read_mapping_page(mapping, 0, NULL); 3278 if (IS_ERR(page)) 3279 return (char*)page; 3280 *ppage = page; 3281 kaddr = kmap(page); 3282 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1); 3283 return kaddr; 3284 } 3285 3286 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 3287 { 3288 struct page *page = NULL; 3289 char *s = page_getlink(dentry, &page); 3290 int res = vfs_readlink(dentry,buffer,buflen,s); 3291 if (page) { 3292 kunmap(page); 3293 page_cache_release(page); 3294 } 3295 return res; 3296 } 3297 3298 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd) 3299 { 3300 struct page *page = NULL; 3301 nd_set_link(nd, page_getlink(dentry, &page)); 3302 return page; 3303 } 3304 3305 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 3306 { 3307 struct page *page = cookie; 3308 3309 if (page) { 3310 kunmap(page); 3311 page_cache_release(page); 3312 } 3313 } 3314 3315 /* 3316 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 3317 */ 3318 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 3319 { 3320 struct address_space *mapping = inode->i_mapping; 3321 struct page *page; 3322 void *fsdata; 3323 int err; 3324 char *kaddr; 3325 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE; 3326 if (nofs) 3327 flags |= AOP_FLAG_NOFS; 3328 3329 retry: 3330 err = pagecache_write_begin(NULL, mapping, 0, len-1, 3331 flags, &page, &fsdata); 3332 if (err) 3333 goto fail; 3334 3335 kaddr = kmap_atomic(page, KM_USER0); 3336 memcpy(kaddr, symname, len-1); 3337 kunmap_atomic(kaddr, KM_USER0); 3338 3339 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 3340 page, fsdata); 3341 if (err < 0) 3342 goto fail; 3343 if (err < len-1) 3344 goto retry; 3345 3346 mark_inode_dirty(inode); 3347 return 0; 3348 fail: 3349 return err; 3350 } 3351 3352 int page_symlink(struct inode *inode, const char *symname, int len) 3353 { 3354 return __page_symlink(inode, symname, len, 3355 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS)); 3356 } 3357 3358 const struct inode_operations page_symlink_inode_operations = { 3359 .readlink = generic_readlink, 3360 .follow_link = page_follow_link_light, 3361 .put_link = page_put_link, 3362 }; 3363 3364 EXPORT_SYMBOL(user_path_at); 3365 EXPORT_SYMBOL(follow_down_one); 3366 EXPORT_SYMBOL(follow_down); 3367 EXPORT_SYMBOL(follow_up); 3368 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */ 3369 EXPORT_SYMBOL(getname); 3370 EXPORT_SYMBOL(lock_rename); 3371 EXPORT_SYMBOL(lookup_one_len); 3372 EXPORT_SYMBOL(page_follow_link_light); 3373 EXPORT_SYMBOL(page_put_link); 3374 EXPORT_SYMBOL(page_readlink); 3375 EXPORT_SYMBOL(__page_symlink); 3376 EXPORT_SYMBOL(page_symlink); 3377 EXPORT_SYMBOL(page_symlink_inode_operations); 3378 EXPORT_SYMBOL(kern_path); 3379 EXPORT_SYMBOL(vfs_path_lookup); 3380 EXPORT_SYMBOL(inode_permission); 3381 EXPORT_SYMBOL(unlock_rename); 3382 EXPORT_SYMBOL(vfs_create); 3383 EXPORT_SYMBOL(vfs_follow_link); 3384 EXPORT_SYMBOL(vfs_link); 3385 EXPORT_SYMBOL(vfs_mkdir); 3386 EXPORT_SYMBOL(vfs_mknod); 3387 EXPORT_SYMBOL(generic_permission); 3388 EXPORT_SYMBOL(vfs_readlink); 3389 EXPORT_SYMBOL(vfs_rename); 3390 EXPORT_SYMBOL(vfs_rmdir); 3391 EXPORT_SYMBOL(vfs_symlink); 3392 EXPORT_SYMBOL(vfs_unlink); 3393 EXPORT_SYMBOL(dentry_unhash); 3394 EXPORT_SYMBOL(generic_readlink); 3395