xref: /linux/fs/namei.c (revision 88e24c3a4b30a6bd361f2b5ce602667a8161b2e8)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <linux/posix_acl.h>
36 #include <asm/uaccess.h>
37 
38 #include "internal.h"
39 
40 /* [Feb-1997 T. Schoebel-Theuer]
41  * Fundamental changes in the pathname lookup mechanisms (namei)
42  * were necessary because of omirr.  The reason is that omirr needs
43  * to know the _real_ pathname, not the user-supplied one, in case
44  * of symlinks (and also when transname replacements occur).
45  *
46  * The new code replaces the old recursive symlink resolution with
47  * an iterative one (in case of non-nested symlink chains).  It does
48  * this with calls to <fs>_follow_link().
49  * As a side effect, dir_namei(), _namei() and follow_link() are now
50  * replaced with a single function lookup_dentry() that can handle all
51  * the special cases of the former code.
52  *
53  * With the new dcache, the pathname is stored at each inode, at least as
54  * long as the refcount of the inode is positive.  As a side effect, the
55  * size of the dcache depends on the inode cache and thus is dynamic.
56  *
57  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
58  * resolution to correspond with current state of the code.
59  *
60  * Note that the symlink resolution is not *completely* iterative.
61  * There is still a significant amount of tail- and mid- recursion in
62  * the algorithm.  Also, note that <fs>_readlink() is not used in
63  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
64  * may return different results than <fs>_follow_link().  Many virtual
65  * filesystems (including /proc) exhibit this behavior.
66  */
67 
68 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
69  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
70  * and the name already exists in form of a symlink, try to create the new
71  * name indicated by the symlink. The old code always complained that the
72  * name already exists, due to not following the symlink even if its target
73  * is nonexistent.  The new semantics affects also mknod() and link() when
74  * the name is a symlink pointing to a non-existent name.
75  *
76  * I don't know which semantics is the right one, since I have no access
77  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
78  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
79  * "old" one. Personally, I think the new semantics is much more logical.
80  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
81  * file does succeed in both HP-UX and SunOs, but not in Solaris
82  * and in the old Linux semantics.
83  */
84 
85 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
86  * semantics.  See the comments in "open_namei" and "do_link" below.
87  *
88  * [10-Sep-98 Alan Modra] Another symlink change.
89  */
90 
91 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
92  *	inside the path - always follow.
93  *	in the last component in creation/removal/renaming - never follow.
94  *	if LOOKUP_FOLLOW passed - follow.
95  *	if the pathname has trailing slashes - follow.
96  *	otherwise - don't follow.
97  * (applied in that order).
98  *
99  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
100  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
101  * During the 2.4 we need to fix the userland stuff depending on it -
102  * hopefully we will be able to get rid of that wart in 2.5. So far only
103  * XEmacs seems to be relying on it...
104  */
105 /*
106  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
107  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
108  * any extra contention...
109  */
110 
111 /* In order to reduce some races, while at the same time doing additional
112  * checking and hopefully speeding things up, we copy filenames to the
113  * kernel data space before using them..
114  *
115  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
116  * PATH_MAX includes the nul terminator --RR.
117  */
118 static int do_getname(const char __user *filename, char *page)
119 {
120 	int retval;
121 	unsigned long len = PATH_MAX;
122 
123 	if (!segment_eq(get_fs(), KERNEL_DS)) {
124 		if ((unsigned long) filename >= TASK_SIZE)
125 			return -EFAULT;
126 		if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
127 			len = TASK_SIZE - (unsigned long) filename;
128 	}
129 
130 	retval = strncpy_from_user(page, filename, len);
131 	if (retval > 0) {
132 		if (retval < len)
133 			return 0;
134 		return -ENAMETOOLONG;
135 	} else if (!retval)
136 		retval = -ENOENT;
137 	return retval;
138 }
139 
140 static char *getname_flags(const char __user * filename, int flags)
141 {
142 	char *tmp, *result;
143 
144 	result = ERR_PTR(-ENOMEM);
145 	tmp = __getname();
146 	if (tmp)  {
147 		int retval = do_getname(filename, tmp);
148 
149 		result = tmp;
150 		if (retval < 0) {
151 			if (retval != -ENOENT || !(flags & LOOKUP_EMPTY)) {
152 				__putname(tmp);
153 				result = ERR_PTR(retval);
154 			}
155 		}
156 	}
157 	audit_getname(result);
158 	return result;
159 }
160 
161 char *getname(const char __user * filename)
162 {
163 	return getname_flags(filename, 0);
164 }
165 
166 #ifdef CONFIG_AUDITSYSCALL
167 void putname(const char *name)
168 {
169 	if (unlikely(!audit_dummy_context()))
170 		audit_putname(name);
171 	else
172 		__putname(name);
173 }
174 EXPORT_SYMBOL(putname);
175 #endif
176 
177 static int check_acl(struct inode *inode, int mask)
178 {
179 #ifdef CONFIG_FS_POSIX_ACL
180 	struct posix_acl *acl;
181 
182 	if (mask & MAY_NOT_BLOCK) {
183 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
184 	        if (!acl)
185 	                return -EAGAIN;
186 		/* no ->get_acl() calls in RCU mode... */
187 		if (acl == ACL_NOT_CACHED)
188 			return -ECHILD;
189 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
190 	}
191 
192 	acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
193 
194 	/*
195 	 * A filesystem can force a ACL callback by just never filling the
196 	 * ACL cache. But normally you'd fill the cache either at inode
197 	 * instantiation time, or on the first ->get_acl call.
198 	 *
199 	 * If the filesystem doesn't have a get_acl() function at all, we'll
200 	 * just create the negative cache entry.
201 	 */
202 	if (acl == ACL_NOT_CACHED) {
203 	        if (inode->i_op->get_acl) {
204 			acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
205 			if (IS_ERR(acl))
206 				return PTR_ERR(acl);
207 		} else {
208 		        set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
209 		        return -EAGAIN;
210 		}
211 	}
212 
213 	if (acl) {
214 	        int error = posix_acl_permission(inode, acl, mask);
215 	        posix_acl_release(acl);
216 	        return error;
217 	}
218 #endif
219 
220 	return -EAGAIN;
221 }
222 
223 /*
224  * This does basic POSIX ACL permission checking
225  */
226 static int acl_permission_check(struct inode *inode, int mask)
227 {
228 	unsigned int mode = inode->i_mode;
229 
230 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC | MAY_NOT_BLOCK;
231 
232 	if (current_user_ns() != inode_userns(inode))
233 		goto other_perms;
234 
235 	if (likely(current_fsuid() == inode->i_uid))
236 		mode >>= 6;
237 	else {
238 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
239 			int error = check_acl(inode, mask);
240 			if (error != -EAGAIN)
241 				return error;
242 		}
243 
244 		if (in_group_p(inode->i_gid))
245 			mode >>= 3;
246 	}
247 
248 other_perms:
249 	/*
250 	 * If the DACs are ok we don't need any capability check.
251 	 */
252 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
253 		return 0;
254 	return -EACCES;
255 }
256 
257 /**
258  * generic_permission -  check for access rights on a Posix-like filesystem
259  * @inode:	inode to check access rights for
260  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
261  *
262  * Used to check for read/write/execute permissions on a file.
263  * We use "fsuid" for this, letting us set arbitrary permissions
264  * for filesystem access without changing the "normal" uids which
265  * are used for other things.
266  *
267  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
268  * request cannot be satisfied (eg. requires blocking or too much complexity).
269  * It would then be called again in ref-walk mode.
270  */
271 int generic_permission(struct inode *inode, int mask)
272 {
273 	int ret;
274 
275 	/*
276 	 * Do the basic POSIX ACL permission checks.
277 	 */
278 	ret = acl_permission_check(inode, mask);
279 	if (ret != -EACCES)
280 		return ret;
281 
282 	if (S_ISDIR(inode->i_mode)) {
283 		/* DACs are overridable for directories */
284 		if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
285 			return 0;
286 		if (!(mask & MAY_WRITE))
287 			if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
288 				return 0;
289 		return -EACCES;
290 	}
291 	/*
292 	 * Read/write DACs are always overridable.
293 	 * Executable DACs are overridable when there is
294 	 * at least one exec bit set.
295 	 */
296 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
297 		if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
298 			return 0;
299 
300 	/*
301 	 * Searching includes executable on directories, else just read.
302 	 */
303 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
304 	if (mask == MAY_READ)
305 		if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
306 			return 0;
307 
308 	return -EACCES;
309 }
310 
311 /*
312  * We _really_ want to just do "generic_permission()" without
313  * even looking at the inode->i_op values. So we keep a cache
314  * flag in inode->i_opflags, that says "this has not special
315  * permission function, use the fast case".
316  */
317 static inline int do_inode_permission(struct inode *inode, int mask)
318 {
319 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
320 		if (likely(inode->i_op->permission))
321 			return inode->i_op->permission(inode, mask);
322 
323 		/* This gets set once for the inode lifetime */
324 		spin_lock(&inode->i_lock);
325 		inode->i_opflags |= IOP_FASTPERM;
326 		spin_unlock(&inode->i_lock);
327 	}
328 	return generic_permission(inode, mask);
329 }
330 
331 /**
332  * inode_permission  -  check for access rights to a given inode
333  * @inode:	inode to check permission on
334  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
335  *
336  * Used to check for read/write/execute permissions on an inode.
337  * We use "fsuid" for this, letting us set arbitrary permissions
338  * for filesystem access without changing the "normal" uids which
339  * are used for other things.
340  */
341 int inode_permission(struct inode *inode, int mask)
342 {
343 	int retval;
344 
345 	if (unlikely(mask & MAY_WRITE)) {
346 		umode_t mode = inode->i_mode;
347 
348 		/*
349 		 * Nobody gets write access to a read-only fs.
350 		 */
351 		if (IS_RDONLY(inode) &&
352 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
353 			return -EROFS;
354 
355 		/*
356 		 * Nobody gets write access to an immutable file.
357 		 */
358 		if (IS_IMMUTABLE(inode))
359 			return -EACCES;
360 	}
361 
362 	retval = do_inode_permission(inode, mask);
363 	if (retval)
364 		return retval;
365 
366 	retval = devcgroup_inode_permission(inode, mask);
367 	if (retval)
368 		return retval;
369 
370 	return security_inode_permission(inode, mask);
371 }
372 
373 /**
374  * path_get - get a reference to a path
375  * @path: path to get the reference to
376  *
377  * Given a path increment the reference count to the dentry and the vfsmount.
378  */
379 void path_get(struct path *path)
380 {
381 	mntget(path->mnt);
382 	dget(path->dentry);
383 }
384 EXPORT_SYMBOL(path_get);
385 
386 /**
387  * path_put - put a reference to a path
388  * @path: path to put the reference to
389  *
390  * Given a path decrement the reference count to the dentry and the vfsmount.
391  */
392 void path_put(struct path *path)
393 {
394 	dput(path->dentry);
395 	mntput(path->mnt);
396 }
397 EXPORT_SYMBOL(path_put);
398 
399 /*
400  * Path walking has 2 modes, rcu-walk and ref-walk (see
401  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
402  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
403  * normal reference counts on dentries and vfsmounts to transition to rcu-walk
404  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
405  * got stuck, so ref-walk may continue from there. If this is not successful
406  * (eg. a seqcount has changed), then failure is returned and it's up to caller
407  * to restart the path walk from the beginning in ref-walk mode.
408  */
409 
410 /**
411  * unlazy_walk - try to switch to ref-walk mode.
412  * @nd: nameidata pathwalk data
413  * @dentry: child of nd->path.dentry or NULL
414  * Returns: 0 on success, -ECHILD on failure
415  *
416  * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
417  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
418  * @nd or NULL.  Must be called from rcu-walk context.
419  */
420 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
421 {
422 	struct fs_struct *fs = current->fs;
423 	struct dentry *parent = nd->path.dentry;
424 	int want_root = 0;
425 
426 	BUG_ON(!(nd->flags & LOOKUP_RCU));
427 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
428 		want_root = 1;
429 		spin_lock(&fs->lock);
430 		if (nd->root.mnt != fs->root.mnt ||
431 				nd->root.dentry != fs->root.dentry)
432 			goto err_root;
433 	}
434 	spin_lock(&parent->d_lock);
435 	if (!dentry) {
436 		if (!__d_rcu_to_refcount(parent, nd->seq))
437 			goto err_parent;
438 		BUG_ON(nd->inode != parent->d_inode);
439 	} else {
440 		if (dentry->d_parent != parent)
441 			goto err_parent;
442 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
443 		if (!__d_rcu_to_refcount(dentry, nd->seq))
444 			goto err_child;
445 		/*
446 		 * If the sequence check on the child dentry passed, then
447 		 * the child has not been removed from its parent. This
448 		 * means the parent dentry must be valid and able to take
449 		 * a reference at this point.
450 		 */
451 		BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
452 		BUG_ON(!parent->d_count);
453 		parent->d_count++;
454 		spin_unlock(&dentry->d_lock);
455 	}
456 	spin_unlock(&parent->d_lock);
457 	if (want_root) {
458 		path_get(&nd->root);
459 		spin_unlock(&fs->lock);
460 	}
461 	mntget(nd->path.mnt);
462 
463 	rcu_read_unlock();
464 	br_read_unlock(vfsmount_lock);
465 	nd->flags &= ~LOOKUP_RCU;
466 	return 0;
467 
468 err_child:
469 	spin_unlock(&dentry->d_lock);
470 err_parent:
471 	spin_unlock(&parent->d_lock);
472 err_root:
473 	if (want_root)
474 		spin_unlock(&fs->lock);
475 	return -ECHILD;
476 }
477 
478 /**
479  * release_open_intent - free up open intent resources
480  * @nd: pointer to nameidata
481  */
482 void release_open_intent(struct nameidata *nd)
483 {
484 	struct file *file = nd->intent.open.file;
485 
486 	if (file && !IS_ERR(file)) {
487 		if (file->f_path.dentry == NULL)
488 			put_filp(file);
489 		else
490 			fput(file);
491 	}
492 }
493 
494 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd)
495 {
496 	return dentry->d_op->d_revalidate(dentry, nd);
497 }
498 
499 /**
500  * complete_walk - successful completion of path walk
501  * @nd:  pointer nameidata
502  *
503  * If we had been in RCU mode, drop out of it and legitimize nd->path.
504  * Revalidate the final result, unless we'd already done that during
505  * the path walk or the filesystem doesn't ask for it.  Return 0 on
506  * success, -error on failure.  In case of failure caller does not
507  * need to drop nd->path.
508  */
509 static int complete_walk(struct nameidata *nd)
510 {
511 	struct dentry *dentry = nd->path.dentry;
512 	int status;
513 
514 	if (nd->flags & LOOKUP_RCU) {
515 		nd->flags &= ~LOOKUP_RCU;
516 		if (!(nd->flags & LOOKUP_ROOT))
517 			nd->root.mnt = NULL;
518 		spin_lock(&dentry->d_lock);
519 		if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
520 			spin_unlock(&dentry->d_lock);
521 			rcu_read_unlock();
522 			br_read_unlock(vfsmount_lock);
523 			return -ECHILD;
524 		}
525 		BUG_ON(nd->inode != dentry->d_inode);
526 		spin_unlock(&dentry->d_lock);
527 		mntget(nd->path.mnt);
528 		rcu_read_unlock();
529 		br_read_unlock(vfsmount_lock);
530 	}
531 
532 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
533 		return 0;
534 
535 	if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
536 		return 0;
537 
538 	if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
539 		return 0;
540 
541 	/* Note: we do not d_invalidate() */
542 	status = d_revalidate(dentry, nd);
543 	if (status > 0)
544 		return 0;
545 
546 	if (!status)
547 		status = -ESTALE;
548 
549 	path_put(&nd->path);
550 	return status;
551 }
552 
553 static __always_inline void set_root(struct nameidata *nd)
554 {
555 	if (!nd->root.mnt)
556 		get_fs_root(current->fs, &nd->root);
557 }
558 
559 static int link_path_walk(const char *, struct nameidata *);
560 
561 static __always_inline void set_root_rcu(struct nameidata *nd)
562 {
563 	if (!nd->root.mnt) {
564 		struct fs_struct *fs = current->fs;
565 		unsigned seq;
566 
567 		do {
568 			seq = read_seqcount_begin(&fs->seq);
569 			nd->root = fs->root;
570 			nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
571 		} while (read_seqcount_retry(&fs->seq, seq));
572 	}
573 }
574 
575 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
576 {
577 	int ret;
578 
579 	if (IS_ERR(link))
580 		goto fail;
581 
582 	if (*link == '/') {
583 		set_root(nd);
584 		path_put(&nd->path);
585 		nd->path = nd->root;
586 		path_get(&nd->root);
587 		nd->flags |= LOOKUP_JUMPED;
588 	}
589 	nd->inode = nd->path.dentry->d_inode;
590 
591 	ret = link_path_walk(link, nd);
592 	return ret;
593 fail:
594 	path_put(&nd->path);
595 	return PTR_ERR(link);
596 }
597 
598 static void path_put_conditional(struct path *path, struct nameidata *nd)
599 {
600 	dput(path->dentry);
601 	if (path->mnt != nd->path.mnt)
602 		mntput(path->mnt);
603 }
604 
605 static inline void path_to_nameidata(const struct path *path,
606 					struct nameidata *nd)
607 {
608 	if (!(nd->flags & LOOKUP_RCU)) {
609 		dput(nd->path.dentry);
610 		if (nd->path.mnt != path->mnt)
611 			mntput(nd->path.mnt);
612 	}
613 	nd->path.mnt = path->mnt;
614 	nd->path.dentry = path->dentry;
615 }
616 
617 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
618 {
619 	struct inode *inode = link->dentry->d_inode;
620 	if (!IS_ERR(cookie) && inode->i_op->put_link)
621 		inode->i_op->put_link(link->dentry, nd, cookie);
622 	path_put(link);
623 }
624 
625 static __always_inline int
626 follow_link(struct path *link, struct nameidata *nd, void **p)
627 {
628 	int error;
629 	struct dentry *dentry = link->dentry;
630 
631 	BUG_ON(nd->flags & LOOKUP_RCU);
632 
633 	if (link->mnt == nd->path.mnt)
634 		mntget(link->mnt);
635 
636 	if (unlikely(current->total_link_count >= 40)) {
637 		*p = ERR_PTR(-ELOOP); /* no ->put_link(), please */
638 		path_put(&nd->path);
639 		return -ELOOP;
640 	}
641 	cond_resched();
642 	current->total_link_count++;
643 
644 	touch_atime(link->mnt, dentry);
645 	nd_set_link(nd, NULL);
646 
647 	error = security_inode_follow_link(link->dentry, nd);
648 	if (error) {
649 		*p = ERR_PTR(error); /* no ->put_link(), please */
650 		path_put(&nd->path);
651 		return error;
652 	}
653 
654 	nd->last_type = LAST_BIND;
655 	*p = dentry->d_inode->i_op->follow_link(dentry, nd);
656 	error = PTR_ERR(*p);
657 	if (!IS_ERR(*p)) {
658 		char *s = nd_get_link(nd);
659 		error = 0;
660 		if (s)
661 			error = __vfs_follow_link(nd, s);
662 		else if (nd->last_type == LAST_BIND) {
663 			nd->flags |= LOOKUP_JUMPED;
664 			nd->inode = nd->path.dentry->d_inode;
665 			if (nd->inode->i_op->follow_link) {
666 				/* stepped on a _really_ weird one */
667 				path_put(&nd->path);
668 				error = -ELOOP;
669 			}
670 		}
671 	}
672 	return error;
673 }
674 
675 static int follow_up_rcu(struct path *path)
676 {
677 	struct vfsmount *parent;
678 	struct dentry *mountpoint;
679 
680 	parent = path->mnt->mnt_parent;
681 	if (parent == path->mnt)
682 		return 0;
683 	mountpoint = path->mnt->mnt_mountpoint;
684 	path->dentry = mountpoint;
685 	path->mnt = parent;
686 	return 1;
687 }
688 
689 int follow_up(struct path *path)
690 {
691 	struct vfsmount *parent;
692 	struct dentry *mountpoint;
693 
694 	br_read_lock(vfsmount_lock);
695 	parent = path->mnt->mnt_parent;
696 	if (parent == path->mnt) {
697 		br_read_unlock(vfsmount_lock);
698 		return 0;
699 	}
700 	mntget(parent);
701 	mountpoint = dget(path->mnt->mnt_mountpoint);
702 	br_read_unlock(vfsmount_lock);
703 	dput(path->dentry);
704 	path->dentry = mountpoint;
705 	mntput(path->mnt);
706 	path->mnt = parent;
707 	return 1;
708 }
709 
710 /*
711  * Perform an automount
712  * - return -EISDIR to tell follow_managed() to stop and return the path we
713  *   were called with.
714  */
715 static int follow_automount(struct path *path, unsigned flags,
716 			    bool *need_mntput)
717 {
718 	struct vfsmount *mnt;
719 	int err;
720 
721 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
722 		return -EREMOTE;
723 
724 	/* We don't want to mount if someone supplied AT_NO_AUTOMOUNT
725 	 * and this is the terminal part of the path.
726 	 */
727 	if ((flags & LOOKUP_NO_AUTOMOUNT) && !(flags & LOOKUP_PARENT))
728 		return -EISDIR; /* we actually want to stop here */
729 
730 	/*
731 	 * We don't want to mount if someone's just doing a stat and they've
732 	 * set AT_SYMLINK_NOFOLLOW - unless they're stat'ing a directory and
733 	 * appended a '/' to the name.
734 	 */
735 	if (!(flags & LOOKUP_FOLLOW)) {
736 		/* We do, however, want to mount if someone wants to open or
737 		 * create a file of any type under the mountpoint, wants to
738 		 * traverse through the mountpoint or wants to open the mounted
739 		 * directory.
740 		 * Also, autofs may mark negative dentries as being automount
741 		 * points.  These will need the attentions of the daemon to
742 		 * instantiate them before they can be used.
743 		 */
744 		if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
745 			     LOOKUP_OPEN | LOOKUP_CREATE)) &&
746 		    path->dentry->d_inode)
747 			return -EISDIR;
748 	}
749 	current->total_link_count++;
750 	if (current->total_link_count >= 40)
751 		return -ELOOP;
752 
753 	mnt = path->dentry->d_op->d_automount(path);
754 	if (IS_ERR(mnt)) {
755 		/*
756 		 * The filesystem is allowed to return -EISDIR here to indicate
757 		 * it doesn't want to automount.  For instance, autofs would do
758 		 * this so that its userspace daemon can mount on this dentry.
759 		 *
760 		 * However, we can only permit this if it's a terminal point in
761 		 * the path being looked up; if it wasn't then the remainder of
762 		 * the path is inaccessible and we should say so.
763 		 */
764 		if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
765 			return -EREMOTE;
766 		return PTR_ERR(mnt);
767 	}
768 
769 	if (!mnt) /* mount collision */
770 		return 0;
771 
772 	if (!*need_mntput) {
773 		/* lock_mount() may release path->mnt on error */
774 		mntget(path->mnt);
775 		*need_mntput = true;
776 	}
777 	err = finish_automount(mnt, path);
778 
779 	switch (err) {
780 	case -EBUSY:
781 		/* Someone else made a mount here whilst we were busy */
782 		return 0;
783 	case 0:
784 		path_put(path);
785 		path->mnt = mnt;
786 		path->dentry = dget(mnt->mnt_root);
787 		return 0;
788 	default:
789 		return err;
790 	}
791 
792 }
793 
794 /*
795  * Handle a dentry that is managed in some way.
796  * - Flagged for transit management (autofs)
797  * - Flagged as mountpoint
798  * - Flagged as automount point
799  *
800  * This may only be called in refwalk mode.
801  *
802  * Serialization is taken care of in namespace.c
803  */
804 static int follow_managed(struct path *path, unsigned flags)
805 {
806 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
807 	unsigned managed;
808 	bool need_mntput = false;
809 	int ret = 0;
810 
811 	/* Given that we're not holding a lock here, we retain the value in a
812 	 * local variable for each dentry as we look at it so that we don't see
813 	 * the components of that value change under us */
814 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
815 	       managed &= DCACHE_MANAGED_DENTRY,
816 	       unlikely(managed != 0)) {
817 		/* Allow the filesystem to manage the transit without i_mutex
818 		 * being held. */
819 		if (managed & DCACHE_MANAGE_TRANSIT) {
820 			BUG_ON(!path->dentry->d_op);
821 			BUG_ON(!path->dentry->d_op->d_manage);
822 			ret = path->dentry->d_op->d_manage(path->dentry, false);
823 			if (ret < 0)
824 				break;
825 		}
826 
827 		/* Transit to a mounted filesystem. */
828 		if (managed & DCACHE_MOUNTED) {
829 			struct vfsmount *mounted = lookup_mnt(path);
830 			if (mounted) {
831 				dput(path->dentry);
832 				if (need_mntput)
833 					mntput(path->mnt);
834 				path->mnt = mounted;
835 				path->dentry = dget(mounted->mnt_root);
836 				need_mntput = true;
837 				continue;
838 			}
839 
840 			/* Something is mounted on this dentry in another
841 			 * namespace and/or whatever was mounted there in this
842 			 * namespace got unmounted before we managed to get the
843 			 * vfsmount_lock */
844 		}
845 
846 		/* Handle an automount point */
847 		if (managed & DCACHE_NEED_AUTOMOUNT) {
848 			ret = follow_automount(path, flags, &need_mntput);
849 			if (ret < 0)
850 				break;
851 			continue;
852 		}
853 
854 		/* We didn't change the current path point */
855 		break;
856 	}
857 
858 	if (need_mntput && path->mnt == mnt)
859 		mntput(path->mnt);
860 	if (ret == -EISDIR)
861 		ret = 0;
862 	return ret;
863 }
864 
865 int follow_down_one(struct path *path)
866 {
867 	struct vfsmount *mounted;
868 
869 	mounted = lookup_mnt(path);
870 	if (mounted) {
871 		dput(path->dentry);
872 		mntput(path->mnt);
873 		path->mnt = mounted;
874 		path->dentry = dget(mounted->mnt_root);
875 		return 1;
876 	}
877 	return 0;
878 }
879 
880 static inline bool managed_dentry_might_block(struct dentry *dentry)
881 {
882 	return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
883 		dentry->d_op->d_manage(dentry, true) < 0);
884 }
885 
886 /*
887  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
888  * we meet a managed dentry that would need blocking.
889  */
890 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
891 			       struct inode **inode)
892 {
893 	for (;;) {
894 		struct vfsmount *mounted;
895 		/*
896 		 * Don't forget we might have a non-mountpoint managed dentry
897 		 * that wants to block transit.
898 		 */
899 		if (unlikely(managed_dentry_might_block(path->dentry)))
900 			return false;
901 
902 		if (!d_mountpoint(path->dentry))
903 			break;
904 
905 		mounted = __lookup_mnt(path->mnt, path->dentry, 1);
906 		if (!mounted)
907 			break;
908 		path->mnt = mounted;
909 		path->dentry = mounted->mnt_root;
910 		nd->seq = read_seqcount_begin(&path->dentry->d_seq);
911 		/*
912 		 * Update the inode too. We don't need to re-check the
913 		 * dentry sequence number here after this d_inode read,
914 		 * because a mount-point is always pinned.
915 		 */
916 		*inode = path->dentry->d_inode;
917 	}
918 	return true;
919 }
920 
921 static void follow_mount_rcu(struct nameidata *nd)
922 {
923 	while (d_mountpoint(nd->path.dentry)) {
924 		struct vfsmount *mounted;
925 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
926 		if (!mounted)
927 			break;
928 		nd->path.mnt = mounted;
929 		nd->path.dentry = mounted->mnt_root;
930 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
931 	}
932 }
933 
934 static int follow_dotdot_rcu(struct nameidata *nd)
935 {
936 	set_root_rcu(nd);
937 
938 	while (1) {
939 		if (nd->path.dentry == nd->root.dentry &&
940 		    nd->path.mnt == nd->root.mnt) {
941 			break;
942 		}
943 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
944 			struct dentry *old = nd->path.dentry;
945 			struct dentry *parent = old->d_parent;
946 			unsigned seq;
947 
948 			seq = read_seqcount_begin(&parent->d_seq);
949 			if (read_seqcount_retry(&old->d_seq, nd->seq))
950 				goto failed;
951 			nd->path.dentry = parent;
952 			nd->seq = seq;
953 			break;
954 		}
955 		if (!follow_up_rcu(&nd->path))
956 			break;
957 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
958 	}
959 	follow_mount_rcu(nd);
960 	nd->inode = nd->path.dentry->d_inode;
961 	return 0;
962 
963 failed:
964 	nd->flags &= ~LOOKUP_RCU;
965 	if (!(nd->flags & LOOKUP_ROOT))
966 		nd->root.mnt = NULL;
967 	rcu_read_unlock();
968 	br_read_unlock(vfsmount_lock);
969 	return -ECHILD;
970 }
971 
972 /*
973  * Follow down to the covering mount currently visible to userspace.  At each
974  * point, the filesystem owning that dentry may be queried as to whether the
975  * caller is permitted to proceed or not.
976  */
977 int follow_down(struct path *path)
978 {
979 	unsigned managed;
980 	int ret;
981 
982 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
983 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
984 		/* Allow the filesystem to manage the transit without i_mutex
985 		 * being held.
986 		 *
987 		 * We indicate to the filesystem if someone is trying to mount
988 		 * something here.  This gives autofs the chance to deny anyone
989 		 * other than its daemon the right to mount on its
990 		 * superstructure.
991 		 *
992 		 * The filesystem may sleep at this point.
993 		 */
994 		if (managed & DCACHE_MANAGE_TRANSIT) {
995 			BUG_ON(!path->dentry->d_op);
996 			BUG_ON(!path->dentry->d_op->d_manage);
997 			ret = path->dentry->d_op->d_manage(
998 				path->dentry, false);
999 			if (ret < 0)
1000 				return ret == -EISDIR ? 0 : ret;
1001 		}
1002 
1003 		/* Transit to a mounted filesystem. */
1004 		if (managed & DCACHE_MOUNTED) {
1005 			struct vfsmount *mounted = lookup_mnt(path);
1006 			if (!mounted)
1007 				break;
1008 			dput(path->dentry);
1009 			mntput(path->mnt);
1010 			path->mnt = mounted;
1011 			path->dentry = dget(mounted->mnt_root);
1012 			continue;
1013 		}
1014 
1015 		/* Don't handle automount points here */
1016 		break;
1017 	}
1018 	return 0;
1019 }
1020 
1021 /*
1022  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1023  */
1024 static void follow_mount(struct path *path)
1025 {
1026 	while (d_mountpoint(path->dentry)) {
1027 		struct vfsmount *mounted = lookup_mnt(path);
1028 		if (!mounted)
1029 			break;
1030 		dput(path->dentry);
1031 		mntput(path->mnt);
1032 		path->mnt = mounted;
1033 		path->dentry = dget(mounted->mnt_root);
1034 	}
1035 }
1036 
1037 static void follow_dotdot(struct nameidata *nd)
1038 {
1039 	set_root(nd);
1040 
1041 	while(1) {
1042 		struct dentry *old = nd->path.dentry;
1043 
1044 		if (nd->path.dentry == nd->root.dentry &&
1045 		    nd->path.mnt == nd->root.mnt) {
1046 			break;
1047 		}
1048 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1049 			/* rare case of legitimate dget_parent()... */
1050 			nd->path.dentry = dget_parent(nd->path.dentry);
1051 			dput(old);
1052 			break;
1053 		}
1054 		if (!follow_up(&nd->path))
1055 			break;
1056 	}
1057 	follow_mount(&nd->path);
1058 	nd->inode = nd->path.dentry->d_inode;
1059 }
1060 
1061 /*
1062  * Allocate a dentry with name and parent, and perform a parent
1063  * directory ->lookup on it. Returns the new dentry, or ERR_PTR
1064  * on error. parent->d_inode->i_mutex must be held. d_lookup must
1065  * have verified that no child exists while under i_mutex.
1066  */
1067 static struct dentry *d_alloc_and_lookup(struct dentry *parent,
1068 				struct qstr *name, struct nameidata *nd)
1069 {
1070 	struct inode *inode = parent->d_inode;
1071 	struct dentry *dentry;
1072 	struct dentry *old;
1073 
1074 	/* Don't create child dentry for a dead directory. */
1075 	if (unlikely(IS_DEADDIR(inode)))
1076 		return ERR_PTR(-ENOENT);
1077 
1078 	dentry = d_alloc(parent, name);
1079 	if (unlikely(!dentry))
1080 		return ERR_PTR(-ENOMEM);
1081 
1082 	old = inode->i_op->lookup(inode, dentry, nd);
1083 	if (unlikely(old)) {
1084 		dput(dentry);
1085 		dentry = old;
1086 	}
1087 	return dentry;
1088 }
1089 
1090 /*
1091  * We already have a dentry, but require a lookup to be performed on the parent
1092  * directory to fill in d_inode. Returns the new dentry, or ERR_PTR on error.
1093  * parent->d_inode->i_mutex must be held. d_lookup must have verified that no
1094  * child exists while under i_mutex.
1095  */
1096 static struct dentry *d_inode_lookup(struct dentry *parent, struct dentry *dentry,
1097 				     struct nameidata *nd)
1098 {
1099 	struct inode *inode = parent->d_inode;
1100 	struct dentry *old;
1101 
1102 	/* Don't create child dentry for a dead directory. */
1103 	if (unlikely(IS_DEADDIR(inode)))
1104 		return ERR_PTR(-ENOENT);
1105 
1106 	old = inode->i_op->lookup(inode, dentry, nd);
1107 	if (unlikely(old)) {
1108 		dput(dentry);
1109 		dentry = old;
1110 	}
1111 	return dentry;
1112 }
1113 
1114 /*
1115  *  It's more convoluted than I'd like it to be, but... it's still fairly
1116  *  small and for now I'd prefer to have fast path as straight as possible.
1117  *  It _is_ time-critical.
1118  */
1119 static int do_lookup(struct nameidata *nd, struct qstr *name,
1120 			struct path *path, struct inode **inode)
1121 {
1122 	struct vfsmount *mnt = nd->path.mnt;
1123 	struct dentry *dentry, *parent = nd->path.dentry;
1124 	int need_reval = 1;
1125 	int status = 1;
1126 	int err;
1127 
1128 	/*
1129 	 * Rename seqlock is not required here because in the off chance
1130 	 * of a false negative due to a concurrent rename, we're going to
1131 	 * do the non-racy lookup, below.
1132 	 */
1133 	if (nd->flags & LOOKUP_RCU) {
1134 		unsigned seq;
1135 		*inode = nd->inode;
1136 		dentry = __d_lookup_rcu(parent, name, &seq, inode);
1137 		if (!dentry)
1138 			goto unlazy;
1139 
1140 		/* Memory barrier in read_seqcount_begin of child is enough */
1141 		if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1142 			return -ECHILD;
1143 		nd->seq = seq;
1144 
1145 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1146 			status = d_revalidate(dentry, nd);
1147 			if (unlikely(status <= 0)) {
1148 				if (status != -ECHILD)
1149 					need_reval = 0;
1150 				goto unlazy;
1151 			}
1152 		}
1153 		if (unlikely(d_need_lookup(dentry)))
1154 			goto unlazy;
1155 		path->mnt = mnt;
1156 		path->dentry = dentry;
1157 		if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1158 			goto unlazy;
1159 		if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1160 			goto unlazy;
1161 		return 0;
1162 unlazy:
1163 		if (unlazy_walk(nd, dentry))
1164 			return -ECHILD;
1165 	} else {
1166 		dentry = __d_lookup(parent, name);
1167 	}
1168 
1169 	if (dentry && unlikely(d_need_lookup(dentry))) {
1170 		dput(dentry);
1171 		dentry = NULL;
1172 	}
1173 retry:
1174 	if (unlikely(!dentry)) {
1175 		struct inode *dir = parent->d_inode;
1176 		BUG_ON(nd->inode != dir);
1177 
1178 		mutex_lock(&dir->i_mutex);
1179 		dentry = d_lookup(parent, name);
1180 		if (likely(!dentry)) {
1181 			dentry = d_alloc_and_lookup(parent, name, nd);
1182 			if (IS_ERR(dentry)) {
1183 				mutex_unlock(&dir->i_mutex);
1184 				return PTR_ERR(dentry);
1185 			}
1186 			/* known good */
1187 			need_reval = 0;
1188 			status = 1;
1189 		} else if (unlikely(d_need_lookup(dentry))) {
1190 			dentry = d_inode_lookup(parent, dentry, nd);
1191 			if (IS_ERR(dentry)) {
1192 				mutex_unlock(&dir->i_mutex);
1193 				return PTR_ERR(dentry);
1194 			}
1195 			/* known good */
1196 			need_reval = 0;
1197 			status = 1;
1198 		}
1199 		mutex_unlock(&dir->i_mutex);
1200 	}
1201 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1202 		status = d_revalidate(dentry, nd);
1203 	if (unlikely(status <= 0)) {
1204 		if (status < 0) {
1205 			dput(dentry);
1206 			return status;
1207 		}
1208 		if (!d_invalidate(dentry)) {
1209 			dput(dentry);
1210 			dentry = NULL;
1211 			need_reval = 1;
1212 			goto retry;
1213 		}
1214 	}
1215 
1216 	path->mnt = mnt;
1217 	path->dentry = dentry;
1218 	err = follow_managed(path, nd->flags);
1219 	if (unlikely(err < 0)) {
1220 		path_put_conditional(path, nd);
1221 		return err;
1222 	}
1223 	*inode = path->dentry->d_inode;
1224 	return 0;
1225 }
1226 
1227 static inline int may_lookup(struct nameidata *nd)
1228 {
1229 	if (nd->flags & LOOKUP_RCU) {
1230 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1231 		if (err != -ECHILD)
1232 			return err;
1233 		if (unlazy_walk(nd, NULL))
1234 			return -ECHILD;
1235 	}
1236 	return inode_permission(nd->inode, MAY_EXEC);
1237 }
1238 
1239 static inline int handle_dots(struct nameidata *nd, int type)
1240 {
1241 	if (type == LAST_DOTDOT) {
1242 		if (nd->flags & LOOKUP_RCU) {
1243 			if (follow_dotdot_rcu(nd))
1244 				return -ECHILD;
1245 		} else
1246 			follow_dotdot(nd);
1247 	}
1248 	return 0;
1249 }
1250 
1251 static void terminate_walk(struct nameidata *nd)
1252 {
1253 	if (!(nd->flags & LOOKUP_RCU)) {
1254 		path_put(&nd->path);
1255 	} else {
1256 		nd->flags &= ~LOOKUP_RCU;
1257 		if (!(nd->flags & LOOKUP_ROOT))
1258 			nd->root.mnt = NULL;
1259 		rcu_read_unlock();
1260 		br_read_unlock(vfsmount_lock);
1261 	}
1262 }
1263 
1264 /*
1265  * Do we need to follow links? We _really_ want to be able
1266  * to do this check without having to look at inode->i_op,
1267  * so we keep a cache of "no, this doesn't need follow_link"
1268  * for the common case.
1269  */
1270 static inline int should_follow_link(struct inode *inode, int follow)
1271 {
1272 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1273 		if (likely(inode->i_op->follow_link))
1274 			return follow;
1275 
1276 		/* This gets set once for the inode lifetime */
1277 		spin_lock(&inode->i_lock);
1278 		inode->i_opflags |= IOP_NOFOLLOW;
1279 		spin_unlock(&inode->i_lock);
1280 	}
1281 	return 0;
1282 }
1283 
1284 static inline int walk_component(struct nameidata *nd, struct path *path,
1285 		struct qstr *name, int type, int follow)
1286 {
1287 	struct inode *inode;
1288 	int err;
1289 	/*
1290 	 * "." and ".." are special - ".." especially so because it has
1291 	 * to be able to know about the current root directory and
1292 	 * parent relationships.
1293 	 */
1294 	if (unlikely(type != LAST_NORM))
1295 		return handle_dots(nd, type);
1296 	err = do_lookup(nd, name, path, &inode);
1297 	if (unlikely(err)) {
1298 		terminate_walk(nd);
1299 		return err;
1300 	}
1301 	if (!inode) {
1302 		path_to_nameidata(path, nd);
1303 		terminate_walk(nd);
1304 		return -ENOENT;
1305 	}
1306 	if (should_follow_link(inode, follow)) {
1307 		if (nd->flags & LOOKUP_RCU) {
1308 			if (unlikely(unlazy_walk(nd, path->dentry))) {
1309 				terminate_walk(nd);
1310 				return -ECHILD;
1311 			}
1312 		}
1313 		BUG_ON(inode != path->dentry->d_inode);
1314 		return 1;
1315 	}
1316 	path_to_nameidata(path, nd);
1317 	nd->inode = inode;
1318 	return 0;
1319 }
1320 
1321 /*
1322  * This limits recursive symlink follows to 8, while
1323  * limiting consecutive symlinks to 40.
1324  *
1325  * Without that kind of total limit, nasty chains of consecutive
1326  * symlinks can cause almost arbitrarily long lookups.
1327  */
1328 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1329 {
1330 	int res;
1331 
1332 	if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1333 		path_put_conditional(path, nd);
1334 		path_put(&nd->path);
1335 		return -ELOOP;
1336 	}
1337 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1338 
1339 	nd->depth++;
1340 	current->link_count++;
1341 
1342 	do {
1343 		struct path link = *path;
1344 		void *cookie;
1345 
1346 		res = follow_link(&link, nd, &cookie);
1347 		if (!res)
1348 			res = walk_component(nd, path, &nd->last,
1349 					     nd->last_type, LOOKUP_FOLLOW);
1350 		put_link(nd, &link, cookie);
1351 	} while (res > 0);
1352 
1353 	current->link_count--;
1354 	nd->depth--;
1355 	return res;
1356 }
1357 
1358 /*
1359  * We really don't want to look at inode->i_op->lookup
1360  * when we don't have to. So we keep a cache bit in
1361  * the inode ->i_opflags field that says "yes, we can
1362  * do lookup on this inode".
1363  */
1364 static inline int can_lookup(struct inode *inode)
1365 {
1366 	if (likely(inode->i_opflags & IOP_LOOKUP))
1367 		return 1;
1368 	if (likely(!inode->i_op->lookup))
1369 		return 0;
1370 
1371 	/* We do this once for the lifetime of the inode */
1372 	spin_lock(&inode->i_lock);
1373 	inode->i_opflags |= IOP_LOOKUP;
1374 	spin_unlock(&inode->i_lock);
1375 	return 1;
1376 }
1377 
1378 /*
1379  * Name resolution.
1380  * This is the basic name resolution function, turning a pathname into
1381  * the final dentry. We expect 'base' to be positive and a directory.
1382  *
1383  * Returns 0 and nd will have valid dentry and mnt on success.
1384  * Returns error and drops reference to input namei data on failure.
1385  */
1386 static int link_path_walk(const char *name, struct nameidata *nd)
1387 {
1388 	struct path next;
1389 	int err;
1390 
1391 	while (*name=='/')
1392 		name++;
1393 	if (!*name)
1394 		return 0;
1395 
1396 	/* At this point we know we have a real path component. */
1397 	for(;;) {
1398 		unsigned long hash;
1399 		struct qstr this;
1400 		unsigned int c;
1401 		int type;
1402 
1403 		err = may_lookup(nd);
1404  		if (err)
1405 			break;
1406 
1407 		this.name = name;
1408 		c = *(const unsigned char *)name;
1409 
1410 		hash = init_name_hash();
1411 		do {
1412 			name++;
1413 			hash = partial_name_hash(c, hash);
1414 			c = *(const unsigned char *)name;
1415 		} while (c && (c != '/'));
1416 		this.len = name - (const char *) this.name;
1417 		this.hash = end_name_hash(hash);
1418 
1419 		type = LAST_NORM;
1420 		if (this.name[0] == '.') switch (this.len) {
1421 			case 2:
1422 				if (this.name[1] == '.') {
1423 					type = LAST_DOTDOT;
1424 					nd->flags |= LOOKUP_JUMPED;
1425 				}
1426 				break;
1427 			case 1:
1428 				type = LAST_DOT;
1429 		}
1430 		if (likely(type == LAST_NORM)) {
1431 			struct dentry *parent = nd->path.dentry;
1432 			nd->flags &= ~LOOKUP_JUMPED;
1433 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1434 				err = parent->d_op->d_hash(parent, nd->inode,
1435 							   &this);
1436 				if (err < 0)
1437 					break;
1438 			}
1439 		}
1440 
1441 		/* remove trailing slashes? */
1442 		if (!c)
1443 			goto last_component;
1444 		while (*++name == '/');
1445 		if (!*name)
1446 			goto last_component;
1447 
1448 		err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1449 		if (err < 0)
1450 			return err;
1451 
1452 		if (err) {
1453 			err = nested_symlink(&next, nd);
1454 			if (err)
1455 				return err;
1456 		}
1457 		if (can_lookup(nd->inode))
1458 			continue;
1459 		err = -ENOTDIR;
1460 		break;
1461 		/* here ends the main loop */
1462 
1463 last_component:
1464 		nd->last = this;
1465 		nd->last_type = type;
1466 		return 0;
1467 	}
1468 	terminate_walk(nd);
1469 	return err;
1470 }
1471 
1472 static int path_init(int dfd, const char *name, unsigned int flags,
1473 		     struct nameidata *nd, struct file **fp)
1474 {
1475 	int retval = 0;
1476 	int fput_needed;
1477 	struct file *file;
1478 
1479 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1480 	nd->flags = flags | LOOKUP_JUMPED;
1481 	nd->depth = 0;
1482 	if (flags & LOOKUP_ROOT) {
1483 		struct inode *inode = nd->root.dentry->d_inode;
1484 		if (*name) {
1485 			if (!inode->i_op->lookup)
1486 				return -ENOTDIR;
1487 			retval = inode_permission(inode, MAY_EXEC);
1488 			if (retval)
1489 				return retval;
1490 		}
1491 		nd->path = nd->root;
1492 		nd->inode = inode;
1493 		if (flags & LOOKUP_RCU) {
1494 			br_read_lock(vfsmount_lock);
1495 			rcu_read_lock();
1496 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1497 		} else {
1498 			path_get(&nd->path);
1499 		}
1500 		return 0;
1501 	}
1502 
1503 	nd->root.mnt = NULL;
1504 
1505 	if (*name=='/') {
1506 		if (flags & LOOKUP_RCU) {
1507 			br_read_lock(vfsmount_lock);
1508 			rcu_read_lock();
1509 			set_root_rcu(nd);
1510 		} else {
1511 			set_root(nd);
1512 			path_get(&nd->root);
1513 		}
1514 		nd->path = nd->root;
1515 	} else if (dfd == AT_FDCWD) {
1516 		if (flags & LOOKUP_RCU) {
1517 			struct fs_struct *fs = current->fs;
1518 			unsigned seq;
1519 
1520 			br_read_lock(vfsmount_lock);
1521 			rcu_read_lock();
1522 
1523 			do {
1524 				seq = read_seqcount_begin(&fs->seq);
1525 				nd->path = fs->pwd;
1526 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1527 			} while (read_seqcount_retry(&fs->seq, seq));
1528 		} else {
1529 			get_fs_pwd(current->fs, &nd->path);
1530 		}
1531 	} else {
1532 		struct dentry *dentry;
1533 
1534 		file = fget_raw_light(dfd, &fput_needed);
1535 		retval = -EBADF;
1536 		if (!file)
1537 			goto out_fail;
1538 
1539 		dentry = file->f_path.dentry;
1540 
1541 		if (*name) {
1542 			retval = -ENOTDIR;
1543 			if (!S_ISDIR(dentry->d_inode->i_mode))
1544 				goto fput_fail;
1545 
1546 			retval = inode_permission(dentry->d_inode, MAY_EXEC);
1547 			if (retval)
1548 				goto fput_fail;
1549 		}
1550 
1551 		nd->path = file->f_path;
1552 		if (flags & LOOKUP_RCU) {
1553 			if (fput_needed)
1554 				*fp = file;
1555 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1556 			br_read_lock(vfsmount_lock);
1557 			rcu_read_lock();
1558 		} else {
1559 			path_get(&file->f_path);
1560 			fput_light(file, fput_needed);
1561 		}
1562 	}
1563 
1564 	nd->inode = nd->path.dentry->d_inode;
1565 	return 0;
1566 
1567 fput_fail:
1568 	fput_light(file, fput_needed);
1569 out_fail:
1570 	return retval;
1571 }
1572 
1573 static inline int lookup_last(struct nameidata *nd, struct path *path)
1574 {
1575 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1576 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1577 
1578 	nd->flags &= ~LOOKUP_PARENT;
1579 	return walk_component(nd, path, &nd->last, nd->last_type,
1580 					nd->flags & LOOKUP_FOLLOW);
1581 }
1582 
1583 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1584 static int path_lookupat(int dfd, const char *name,
1585 				unsigned int flags, struct nameidata *nd)
1586 {
1587 	struct file *base = NULL;
1588 	struct path path;
1589 	int err;
1590 
1591 	/*
1592 	 * Path walking is largely split up into 2 different synchronisation
1593 	 * schemes, rcu-walk and ref-walk (explained in
1594 	 * Documentation/filesystems/path-lookup.txt). These share much of the
1595 	 * path walk code, but some things particularly setup, cleanup, and
1596 	 * following mounts are sufficiently divergent that functions are
1597 	 * duplicated. Typically there is a function foo(), and its RCU
1598 	 * analogue, foo_rcu().
1599 	 *
1600 	 * -ECHILD is the error number of choice (just to avoid clashes) that
1601 	 * is returned if some aspect of an rcu-walk fails. Such an error must
1602 	 * be handled by restarting a traditional ref-walk (which will always
1603 	 * be able to complete).
1604 	 */
1605 	err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1606 
1607 	if (unlikely(err))
1608 		return err;
1609 
1610 	current->total_link_count = 0;
1611 	err = link_path_walk(name, nd);
1612 
1613 	if (!err && !(flags & LOOKUP_PARENT)) {
1614 		err = lookup_last(nd, &path);
1615 		while (err > 0) {
1616 			void *cookie;
1617 			struct path link = path;
1618 			nd->flags |= LOOKUP_PARENT;
1619 			err = follow_link(&link, nd, &cookie);
1620 			if (!err)
1621 				err = lookup_last(nd, &path);
1622 			put_link(nd, &link, cookie);
1623 		}
1624 	}
1625 
1626 	if (!err)
1627 		err = complete_walk(nd);
1628 
1629 	if (!err && nd->flags & LOOKUP_DIRECTORY) {
1630 		if (!nd->inode->i_op->lookup) {
1631 			path_put(&nd->path);
1632 			err = -ENOTDIR;
1633 		}
1634 	}
1635 
1636 	if (base)
1637 		fput(base);
1638 
1639 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1640 		path_put(&nd->root);
1641 		nd->root.mnt = NULL;
1642 	}
1643 	return err;
1644 }
1645 
1646 static int do_path_lookup(int dfd, const char *name,
1647 				unsigned int flags, struct nameidata *nd)
1648 {
1649 	int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
1650 	if (unlikely(retval == -ECHILD))
1651 		retval = path_lookupat(dfd, name, flags, nd);
1652 	if (unlikely(retval == -ESTALE))
1653 		retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1654 
1655 	if (likely(!retval)) {
1656 		if (unlikely(!audit_dummy_context())) {
1657 			if (nd->path.dentry && nd->inode)
1658 				audit_inode(name, nd->path.dentry);
1659 		}
1660 	}
1661 	return retval;
1662 }
1663 
1664 int kern_path_parent(const char *name, struct nameidata *nd)
1665 {
1666 	return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd);
1667 }
1668 
1669 int kern_path(const char *name, unsigned int flags, struct path *path)
1670 {
1671 	struct nameidata nd;
1672 	int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1673 	if (!res)
1674 		*path = nd.path;
1675 	return res;
1676 }
1677 
1678 /**
1679  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1680  * @dentry:  pointer to dentry of the base directory
1681  * @mnt: pointer to vfs mount of the base directory
1682  * @name: pointer to file name
1683  * @flags: lookup flags
1684  * @path: pointer to struct path to fill
1685  */
1686 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1687 		    const char *name, unsigned int flags,
1688 		    struct path *path)
1689 {
1690 	struct nameidata nd;
1691 	int err;
1692 	nd.root.dentry = dentry;
1693 	nd.root.mnt = mnt;
1694 	BUG_ON(flags & LOOKUP_PARENT);
1695 	/* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
1696 	err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
1697 	if (!err)
1698 		*path = nd.path;
1699 	return err;
1700 }
1701 
1702 static struct dentry *__lookup_hash(struct qstr *name,
1703 		struct dentry *base, struct nameidata *nd)
1704 {
1705 	struct inode *inode = base->d_inode;
1706 	struct dentry *dentry;
1707 	int err;
1708 
1709 	err = inode_permission(inode, MAY_EXEC);
1710 	if (err)
1711 		return ERR_PTR(err);
1712 
1713 	/*
1714 	 * Don't bother with __d_lookup: callers are for creat as
1715 	 * well as unlink, so a lot of the time it would cost
1716 	 * a double lookup.
1717 	 */
1718 	dentry = d_lookup(base, name);
1719 
1720 	if (dentry && d_need_lookup(dentry)) {
1721 		/*
1722 		 * __lookup_hash is called with the parent dir's i_mutex already
1723 		 * held, so we are good to go here.
1724 		 */
1725 		dentry = d_inode_lookup(base, dentry, nd);
1726 		if (IS_ERR(dentry))
1727 			return dentry;
1728 	}
1729 
1730 	if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1731 		int status = d_revalidate(dentry, nd);
1732 		if (unlikely(status <= 0)) {
1733 			/*
1734 			 * The dentry failed validation.
1735 			 * If d_revalidate returned 0 attempt to invalidate
1736 			 * the dentry otherwise d_revalidate is asking us
1737 			 * to return a fail status.
1738 			 */
1739 			if (status < 0) {
1740 				dput(dentry);
1741 				return ERR_PTR(status);
1742 			} else if (!d_invalidate(dentry)) {
1743 				dput(dentry);
1744 				dentry = NULL;
1745 			}
1746 		}
1747 	}
1748 
1749 	if (!dentry)
1750 		dentry = d_alloc_and_lookup(base, name, nd);
1751 
1752 	return dentry;
1753 }
1754 
1755 /*
1756  * Restricted form of lookup. Doesn't follow links, single-component only,
1757  * needs parent already locked. Doesn't follow mounts.
1758  * SMP-safe.
1759  */
1760 static struct dentry *lookup_hash(struct nameidata *nd)
1761 {
1762 	return __lookup_hash(&nd->last, nd->path.dentry, nd);
1763 }
1764 
1765 /**
1766  * lookup_one_len - filesystem helper to lookup single pathname component
1767  * @name:	pathname component to lookup
1768  * @base:	base directory to lookup from
1769  * @len:	maximum length @len should be interpreted to
1770  *
1771  * Note that this routine is purely a helper for filesystem usage and should
1772  * not be called by generic code.  Also note that by using this function the
1773  * nameidata argument is passed to the filesystem methods and a filesystem
1774  * using this helper needs to be prepared for that.
1775  */
1776 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1777 {
1778 	struct qstr this;
1779 	unsigned long hash;
1780 	unsigned int c;
1781 
1782 	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1783 
1784 	this.name = name;
1785 	this.len = len;
1786 	if (!len)
1787 		return ERR_PTR(-EACCES);
1788 
1789 	hash = init_name_hash();
1790 	while (len--) {
1791 		c = *(const unsigned char *)name++;
1792 		if (c == '/' || c == '\0')
1793 			return ERR_PTR(-EACCES);
1794 		hash = partial_name_hash(c, hash);
1795 	}
1796 	this.hash = end_name_hash(hash);
1797 	/*
1798 	 * See if the low-level filesystem might want
1799 	 * to use its own hash..
1800 	 */
1801 	if (base->d_flags & DCACHE_OP_HASH) {
1802 		int err = base->d_op->d_hash(base, base->d_inode, &this);
1803 		if (err < 0)
1804 			return ERR_PTR(err);
1805 	}
1806 
1807 	return __lookup_hash(&this, base, NULL);
1808 }
1809 
1810 int user_path_at(int dfd, const char __user *name, unsigned flags,
1811 		 struct path *path)
1812 {
1813 	struct nameidata nd;
1814 	char *tmp = getname_flags(name, flags);
1815 	int err = PTR_ERR(tmp);
1816 	if (!IS_ERR(tmp)) {
1817 
1818 		BUG_ON(flags & LOOKUP_PARENT);
1819 
1820 		err = do_path_lookup(dfd, tmp, flags, &nd);
1821 		putname(tmp);
1822 		if (!err)
1823 			*path = nd.path;
1824 	}
1825 	return err;
1826 }
1827 
1828 static int user_path_parent(int dfd, const char __user *path,
1829 			struct nameidata *nd, char **name)
1830 {
1831 	char *s = getname(path);
1832 	int error;
1833 
1834 	if (IS_ERR(s))
1835 		return PTR_ERR(s);
1836 
1837 	error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1838 	if (error)
1839 		putname(s);
1840 	else
1841 		*name = s;
1842 
1843 	return error;
1844 }
1845 
1846 /*
1847  * It's inline, so penalty for filesystems that don't use sticky bit is
1848  * minimal.
1849  */
1850 static inline int check_sticky(struct inode *dir, struct inode *inode)
1851 {
1852 	uid_t fsuid = current_fsuid();
1853 
1854 	if (!(dir->i_mode & S_ISVTX))
1855 		return 0;
1856 	if (current_user_ns() != inode_userns(inode))
1857 		goto other_userns;
1858 	if (inode->i_uid == fsuid)
1859 		return 0;
1860 	if (dir->i_uid == fsuid)
1861 		return 0;
1862 
1863 other_userns:
1864 	return !ns_capable(inode_userns(inode), CAP_FOWNER);
1865 }
1866 
1867 /*
1868  *	Check whether we can remove a link victim from directory dir, check
1869  *  whether the type of victim is right.
1870  *  1. We can't do it if dir is read-only (done in permission())
1871  *  2. We should have write and exec permissions on dir
1872  *  3. We can't remove anything from append-only dir
1873  *  4. We can't do anything with immutable dir (done in permission())
1874  *  5. If the sticky bit on dir is set we should either
1875  *	a. be owner of dir, or
1876  *	b. be owner of victim, or
1877  *	c. have CAP_FOWNER capability
1878  *  6. If the victim is append-only or immutable we can't do antyhing with
1879  *     links pointing to it.
1880  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1881  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1882  *  9. We can't remove a root or mountpoint.
1883  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1884  *     nfs_async_unlink().
1885  */
1886 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1887 {
1888 	int error;
1889 
1890 	if (!victim->d_inode)
1891 		return -ENOENT;
1892 
1893 	BUG_ON(victim->d_parent->d_inode != dir);
1894 	audit_inode_child(victim, dir);
1895 
1896 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1897 	if (error)
1898 		return error;
1899 	if (IS_APPEND(dir))
1900 		return -EPERM;
1901 	if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1902 	    IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1903 		return -EPERM;
1904 	if (isdir) {
1905 		if (!S_ISDIR(victim->d_inode->i_mode))
1906 			return -ENOTDIR;
1907 		if (IS_ROOT(victim))
1908 			return -EBUSY;
1909 	} else if (S_ISDIR(victim->d_inode->i_mode))
1910 		return -EISDIR;
1911 	if (IS_DEADDIR(dir))
1912 		return -ENOENT;
1913 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1914 		return -EBUSY;
1915 	return 0;
1916 }
1917 
1918 /*	Check whether we can create an object with dentry child in directory
1919  *  dir.
1920  *  1. We can't do it if child already exists (open has special treatment for
1921  *     this case, but since we are inlined it's OK)
1922  *  2. We can't do it if dir is read-only (done in permission())
1923  *  3. We should have write and exec permissions on dir
1924  *  4. We can't do it if dir is immutable (done in permission())
1925  */
1926 static inline int may_create(struct inode *dir, struct dentry *child)
1927 {
1928 	if (child->d_inode)
1929 		return -EEXIST;
1930 	if (IS_DEADDIR(dir))
1931 		return -ENOENT;
1932 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1933 }
1934 
1935 /*
1936  * p1 and p2 should be directories on the same fs.
1937  */
1938 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1939 {
1940 	struct dentry *p;
1941 
1942 	if (p1 == p2) {
1943 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1944 		return NULL;
1945 	}
1946 
1947 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1948 
1949 	p = d_ancestor(p2, p1);
1950 	if (p) {
1951 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1952 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1953 		return p;
1954 	}
1955 
1956 	p = d_ancestor(p1, p2);
1957 	if (p) {
1958 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1959 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1960 		return p;
1961 	}
1962 
1963 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1964 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1965 	return NULL;
1966 }
1967 
1968 void unlock_rename(struct dentry *p1, struct dentry *p2)
1969 {
1970 	mutex_unlock(&p1->d_inode->i_mutex);
1971 	if (p1 != p2) {
1972 		mutex_unlock(&p2->d_inode->i_mutex);
1973 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1974 	}
1975 }
1976 
1977 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1978 		struct nameidata *nd)
1979 {
1980 	int error = may_create(dir, dentry);
1981 
1982 	if (error)
1983 		return error;
1984 
1985 	if (!dir->i_op->create)
1986 		return -EACCES;	/* shouldn't it be ENOSYS? */
1987 	mode &= S_IALLUGO;
1988 	mode |= S_IFREG;
1989 	error = security_inode_create(dir, dentry, mode);
1990 	if (error)
1991 		return error;
1992 	error = dir->i_op->create(dir, dentry, mode, nd);
1993 	if (!error)
1994 		fsnotify_create(dir, dentry);
1995 	return error;
1996 }
1997 
1998 static int may_open(struct path *path, int acc_mode, int flag)
1999 {
2000 	struct dentry *dentry = path->dentry;
2001 	struct inode *inode = dentry->d_inode;
2002 	int error;
2003 
2004 	/* O_PATH? */
2005 	if (!acc_mode)
2006 		return 0;
2007 
2008 	if (!inode)
2009 		return -ENOENT;
2010 
2011 	switch (inode->i_mode & S_IFMT) {
2012 	case S_IFLNK:
2013 		return -ELOOP;
2014 	case S_IFDIR:
2015 		if (acc_mode & MAY_WRITE)
2016 			return -EISDIR;
2017 		break;
2018 	case S_IFBLK:
2019 	case S_IFCHR:
2020 		if (path->mnt->mnt_flags & MNT_NODEV)
2021 			return -EACCES;
2022 		/*FALLTHRU*/
2023 	case S_IFIFO:
2024 	case S_IFSOCK:
2025 		flag &= ~O_TRUNC;
2026 		break;
2027 	}
2028 
2029 	error = inode_permission(inode, acc_mode);
2030 	if (error)
2031 		return error;
2032 
2033 	/*
2034 	 * An append-only file must be opened in append mode for writing.
2035 	 */
2036 	if (IS_APPEND(inode)) {
2037 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2038 			return -EPERM;
2039 		if (flag & O_TRUNC)
2040 			return -EPERM;
2041 	}
2042 
2043 	/* O_NOATIME can only be set by the owner or superuser */
2044 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2045 		return -EPERM;
2046 
2047 	/*
2048 	 * Ensure there are no outstanding leases on the file.
2049 	 */
2050 	return break_lease(inode, flag);
2051 }
2052 
2053 static int handle_truncate(struct file *filp)
2054 {
2055 	struct path *path = &filp->f_path;
2056 	struct inode *inode = path->dentry->d_inode;
2057 	int error = get_write_access(inode);
2058 	if (error)
2059 		return error;
2060 	/*
2061 	 * Refuse to truncate files with mandatory locks held on them.
2062 	 */
2063 	error = locks_verify_locked(inode);
2064 	if (!error)
2065 		error = security_path_truncate(path);
2066 	if (!error) {
2067 		error = do_truncate(path->dentry, 0,
2068 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2069 				    filp);
2070 	}
2071 	put_write_access(inode);
2072 	return error;
2073 }
2074 
2075 static inline int open_to_namei_flags(int flag)
2076 {
2077 	if ((flag & O_ACCMODE) == 3)
2078 		flag--;
2079 	return flag;
2080 }
2081 
2082 /*
2083  * Handle the last step of open()
2084  */
2085 static struct file *do_last(struct nameidata *nd, struct path *path,
2086 			    const struct open_flags *op, const char *pathname)
2087 {
2088 	struct dentry *dir = nd->path.dentry;
2089 	struct dentry *dentry;
2090 	int open_flag = op->open_flag;
2091 	int will_truncate = open_flag & O_TRUNC;
2092 	int want_write = 0;
2093 	int acc_mode = op->acc_mode;
2094 	struct file *filp;
2095 	int error;
2096 
2097 	nd->flags &= ~LOOKUP_PARENT;
2098 	nd->flags |= op->intent;
2099 
2100 	switch (nd->last_type) {
2101 	case LAST_DOTDOT:
2102 	case LAST_DOT:
2103 		error = handle_dots(nd, nd->last_type);
2104 		if (error)
2105 			return ERR_PTR(error);
2106 		/* fallthrough */
2107 	case LAST_ROOT:
2108 		error = complete_walk(nd);
2109 		if (error)
2110 			return ERR_PTR(error);
2111 		audit_inode(pathname, nd->path.dentry);
2112 		if (open_flag & O_CREAT) {
2113 			error = -EISDIR;
2114 			goto exit;
2115 		}
2116 		goto ok;
2117 	case LAST_BIND:
2118 		error = complete_walk(nd);
2119 		if (error)
2120 			return ERR_PTR(error);
2121 		audit_inode(pathname, dir);
2122 		goto ok;
2123 	}
2124 
2125 	if (!(open_flag & O_CREAT)) {
2126 		int symlink_ok = 0;
2127 		if (nd->last.name[nd->last.len])
2128 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2129 		if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2130 			symlink_ok = 1;
2131 		/* we _can_ be in RCU mode here */
2132 		error = walk_component(nd, path, &nd->last, LAST_NORM,
2133 					!symlink_ok);
2134 		if (error < 0)
2135 			return ERR_PTR(error);
2136 		if (error) /* symlink */
2137 			return NULL;
2138 		/* sayonara */
2139 		error = complete_walk(nd);
2140 		if (error)
2141 			return ERR_PTR(-ECHILD);
2142 
2143 		error = -ENOTDIR;
2144 		if (nd->flags & LOOKUP_DIRECTORY) {
2145 			if (!nd->inode->i_op->lookup)
2146 				goto exit;
2147 		}
2148 		audit_inode(pathname, nd->path.dentry);
2149 		goto ok;
2150 	}
2151 
2152 	/* create side of things */
2153 	error = complete_walk(nd);
2154 	if (error)
2155 		return ERR_PTR(error);
2156 
2157 	audit_inode(pathname, dir);
2158 	error = -EISDIR;
2159 	/* trailing slashes? */
2160 	if (nd->last.name[nd->last.len])
2161 		goto exit;
2162 
2163 	mutex_lock(&dir->d_inode->i_mutex);
2164 
2165 	dentry = lookup_hash(nd);
2166 	error = PTR_ERR(dentry);
2167 	if (IS_ERR(dentry)) {
2168 		mutex_unlock(&dir->d_inode->i_mutex);
2169 		goto exit;
2170 	}
2171 
2172 	path->dentry = dentry;
2173 	path->mnt = nd->path.mnt;
2174 
2175 	/* Negative dentry, just create the file */
2176 	if (!dentry->d_inode) {
2177 		int mode = op->mode;
2178 		if (!IS_POSIXACL(dir->d_inode))
2179 			mode &= ~current_umask();
2180 		/*
2181 		 * This write is needed to ensure that a
2182 		 * rw->ro transition does not occur between
2183 		 * the time when the file is created and when
2184 		 * a permanent write count is taken through
2185 		 * the 'struct file' in nameidata_to_filp().
2186 		 */
2187 		error = mnt_want_write(nd->path.mnt);
2188 		if (error)
2189 			goto exit_mutex_unlock;
2190 		want_write = 1;
2191 		/* Don't check for write permission, don't truncate */
2192 		open_flag &= ~O_TRUNC;
2193 		will_truncate = 0;
2194 		acc_mode = MAY_OPEN;
2195 		error = security_path_mknod(&nd->path, dentry, mode, 0);
2196 		if (error)
2197 			goto exit_mutex_unlock;
2198 		error = vfs_create(dir->d_inode, dentry, mode, nd);
2199 		if (error)
2200 			goto exit_mutex_unlock;
2201 		mutex_unlock(&dir->d_inode->i_mutex);
2202 		dput(nd->path.dentry);
2203 		nd->path.dentry = dentry;
2204 		goto common;
2205 	}
2206 
2207 	/*
2208 	 * It already exists.
2209 	 */
2210 	mutex_unlock(&dir->d_inode->i_mutex);
2211 	audit_inode(pathname, path->dentry);
2212 
2213 	error = -EEXIST;
2214 	if (open_flag & O_EXCL)
2215 		goto exit_dput;
2216 
2217 	error = follow_managed(path, nd->flags);
2218 	if (error < 0)
2219 		goto exit_dput;
2220 
2221 	error = -ENOENT;
2222 	if (!path->dentry->d_inode)
2223 		goto exit_dput;
2224 
2225 	if (path->dentry->d_inode->i_op->follow_link)
2226 		return NULL;
2227 
2228 	path_to_nameidata(path, nd);
2229 	nd->inode = path->dentry->d_inode;
2230 	error = -EISDIR;
2231 	if (S_ISDIR(nd->inode->i_mode))
2232 		goto exit;
2233 ok:
2234 	if (!S_ISREG(nd->inode->i_mode))
2235 		will_truncate = 0;
2236 
2237 	if (will_truncate) {
2238 		error = mnt_want_write(nd->path.mnt);
2239 		if (error)
2240 			goto exit;
2241 		want_write = 1;
2242 	}
2243 common:
2244 	error = may_open(&nd->path, acc_mode, open_flag);
2245 	if (error)
2246 		goto exit;
2247 	filp = nameidata_to_filp(nd);
2248 	if (!IS_ERR(filp)) {
2249 		error = ima_file_check(filp, op->acc_mode);
2250 		if (error) {
2251 			fput(filp);
2252 			filp = ERR_PTR(error);
2253 		}
2254 	}
2255 	if (!IS_ERR(filp)) {
2256 		if (will_truncate) {
2257 			error = handle_truncate(filp);
2258 			if (error) {
2259 				fput(filp);
2260 				filp = ERR_PTR(error);
2261 			}
2262 		}
2263 	}
2264 out:
2265 	if (want_write)
2266 		mnt_drop_write(nd->path.mnt);
2267 	path_put(&nd->path);
2268 	return filp;
2269 
2270 exit_mutex_unlock:
2271 	mutex_unlock(&dir->d_inode->i_mutex);
2272 exit_dput:
2273 	path_put_conditional(path, nd);
2274 exit:
2275 	filp = ERR_PTR(error);
2276 	goto out;
2277 }
2278 
2279 static struct file *path_openat(int dfd, const char *pathname,
2280 		struct nameidata *nd, const struct open_flags *op, int flags)
2281 {
2282 	struct file *base = NULL;
2283 	struct file *filp;
2284 	struct path path;
2285 	int error;
2286 
2287 	filp = get_empty_filp();
2288 	if (!filp)
2289 		return ERR_PTR(-ENFILE);
2290 
2291 	filp->f_flags = op->open_flag;
2292 	nd->intent.open.file = filp;
2293 	nd->intent.open.flags = open_to_namei_flags(op->open_flag);
2294 	nd->intent.open.create_mode = op->mode;
2295 
2296 	error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base);
2297 	if (unlikely(error))
2298 		goto out_filp;
2299 
2300 	current->total_link_count = 0;
2301 	error = link_path_walk(pathname, nd);
2302 	if (unlikely(error))
2303 		goto out_filp;
2304 
2305 	filp = do_last(nd, &path, op, pathname);
2306 	while (unlikely(!filp)) { /* trailing symlink */
2307 		struct path link = path;
2308 		void *cookie;
2309 		if (!(nd->flags & LOOKUP_FOLLOW)) {
2310 			path_put_conditional(&path, nd);
2311 			path_put(&nd->path);
2312 			filp = ERR_PTR(-ELOOP);
2313 			break;
2314 		}
2315 		nd->flags |= LOOKUP_PARENT;
2316 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2317 		error = follow_link(&link, nd, &cookie);
2318 		if (unlikely(error))
2319 			filp = ERR_PTR(error);
2320 		else
2321 			filp = do_last(nd, &path, op, pathname);
2322 		put_link(nd, &link, cookie);
2323 	}
2324 out:
2325 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2326 		path_put(&nd->root);
2327 	if (base)
2328 		fput(base);
2329 	release_open_intent(nd);
2330 	return filp;
2331 
2332 out_filp:
2333 	filp = ERR_PTR(error);
2334 	goto out;
2335 }
2336 
2337 struct file *do_filp_open(int dfd, const char *pathname,
2338 		const struct open_flags *op, int flags)
2339 {
2340 	struct nameidata nd;
2341 	struct file *filp;
2342 
2343 	filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2344 	if (unlikely(filp == ERR_PTR(-ECHILD)))
2345 		filp = path_openat(dfd, pathname, &nd, op, flags);
2346 	if (unlikely(filp == ERR_PTR(-ESTALE)))
2347 		filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
2348 	return filp;
2349 }
2350 
2351 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
2352 		const char *name, const struct open_flags *op, int flags)
2353 {
2354 	struct nameidata nd;
2355 	struct file *file;
2356 
2357 	nd.root.mnt = mnt;
2358 	nd.root.dentry = dentry;
2359 
2360 	flags |= LOOKUP_ROOT;
2361 
2362 	if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
2363 		return ERR_PTR(-ELOOP);
2364 
2365 	file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU);
2366 	if (unlikely(file == ERR_PTR(-ECHILD)))
2367 		file = path_openat(-1, name, &nd, op, flags);
2368 	if (unlikely(file == ERR_PTR(-ESTALE)))
2369 		file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL);
2370 	return file;
2371 }
2372 
2373 struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, int is_dir)
2374 {
2375 	struct dentry *dentry = ERR_PTR(-EEXIST);
2376 	struct nameidata nd;
2377 	int error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
2378 	if (error)
2379 		return ERR_PTR(error);
2380 
2381 	/*
2382 	 * Yucky last component or no last component at all?
2383 	 * (foo/., foo/.., /////)
2384 	 */
2385 	if (nd.last_type != LAST_NORM)
2386 		goto out;
2387 	nd.flags &= ~LOOKUP_PARENT;
2388 	nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2389 	nd.intent.open.flags = O_EXCL;
2390 
2391 	/*
2392 	 * Do the final lookup.
2393 	 */
2394 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2395 	dentry = lookup_hash(&nd);
2396 	if (IS_ERR(dentry))
2397 		goto fail;
2398 
2399 	if (dentry->d_inode)
2400 		goto eexist;
2401 	/*
2402 	 * Special case - lookup gave negative, but... we had foo/bar/
2403 	 * From the vfs_mknod() POV we just have a negative dentry -
2404 	 * all is fine. Let's be bastards - you had / on the end, you've
2405 	 * been asking for (non-existent) directory. -ENOENT for you.
2406 	 */
2407 	if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
2408 		dput(dentry);
2409 		dentry = ERR_PTR(-ENOENT);
2410 		goto fail;
2411 	}
2412 	*path = nd.path;
2413 	return dentry;
2414 eexist:
2415 	dput(dentry);
2416 	dentry = ERR_PTR(-EEXIST);
2417 fail:
2418 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2419 out:
2420 	path_put(&nd.path);
2421 	return dentry;
2422 }
2423 EXPORT_SYMBOL(kern_path_create);
2424 
2425 struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, int is_dir)
2426 {
2427 	char *tmp = getname(pathname);
2428 	struct dentry *res;
2429 	if (IS_ERR(tmp))
2430 		return ERR_CAST(tmp);
2431 	res = kern_path_create(dfd, tmp, path, is_dir);
2432 	putname(tmp);
2433 	return res;
2434 }
2435 EXPORT_SYMBOL(user_path_create);
2436 
2437 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2438 {
2439 	int error = may_create(dir, dentry);
2440 
2441 	if (error)
2442 		return error;
2443 
2444 	if ((S_ISCHR(mode) || S_ISBLK(mode)) &&
2445 	    !ns_capable(inode_userns(dir), CAP_MKNOD))
2446 		return -EPERM;
2447 
2448 	if (!dir->i_op->mknod)
2449 		return -EPERM;
2450 
2451 	error = devcgroup_inode_mknod(mode, dev);
2452 	if (error)
2453 		return error;
2454 
2455 	error = security_inode_mknod(dir, dentry, mode, dev);
2456 	if (error)
2457 		return error;
2458 
2459 	error = dir->i_op->mknod(dir, dentry, mode, dev);
2460 	if (!error)
2461 		fsnotify_create(dir, dentry);
2462 	return error;
2463 }
2464 
2465 static int may_mknod(mode_t mode)
2466 {
2467 	switch (mode & S_IFMT) {
2468 	case S_IFREG:
2469 	case S_IFCHR:
2470 	case S_IFBLK:
2471 	case S_IFIFO:
2472 	case S_IFSOCK:
2473 	case 0: /* zero mode translates to S_IFREG */
2474 		return 0;
2475 	case S_IFDIR:
2476 		return -EPERM;
2477 	default:
2478 		return -EINVAL;
2479 	}
2480 }
2481 
2482 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2483 		unsigned, dev)
2484 {
2485 	struct dentry *dentry;
2486 	struct path path;
2487 	int error;
2488 
2489 	if (S_ISDIR(mode))
2490 		return -EPERM;
2491 
2492 	dentry = user_path_create(dfd, filename, &path, 0);
2493 	if (IS_ERR(dentry))
2494 		return PTR_ERR(dentry);
2495 
2496 	if (!IS_POSIXACL(path.dentry->d_inode))
2497 		mode &= ~current_umask();
2498 	error = may_mknod(mode);
2499 	if (error)
2500 		goto out_dput;
2501 	error = mnt_want_write(path.mnt);
2502 	if (error)
2503 		goto out_dput;
2504 	error = security_path_mknod(&path, dentry, mode, dev);
2505 	if (error)
2506 		goto out_drop_write;
2507 	switch (mode & S_IFMT) {
2508 		case 0: case S_IFREG:
2509 			error = vfs_create(path.dentry->d_inode,dentry,mode,NULL);
2510 			break;
2511 		case S_IFCHR: case S_IFBLK:
2512 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
2513 					new_decode_dev(dev));
2514 			break;
2515 		case S_IFIFO: case S_IFSOCK:
2516 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
2517 			break;
2518 	}
2519 out_drop_write:
2520 	mnt_drop_write(path.mnt);
2521 out_dput:
2522 	dput(dentry);
2523 	mutex_unlock(&path.dentry->d_inode->i_mutex);
2524 	path_put(&path);
2525 
2526 	return error;
2527 }
2528 
2529 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2530 {
2531 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
2532 }
2533 
2534 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2535 {
2536 	int error = may_create(dir, dentry);
2537 
2538 	if (error)
2539 		return error;
2540 
2541 	if (!dir->i_op->mkdir)
2542 		return -EPERM;
2543 
2544 	mode &= (S_IRWXUGO|S_ISVTX);
2545 	error = security_inode_mkdir(dir, dentry, mode);
2546 	if (error)
2547 		return error;
2548 
2549 	error = dir->i_op->mkdir(dir, dentry, mode);
2550 	if (!error)
2551 		fsnotify_mkdir(dir, dentry);
2552 	return error;
2553 }
2554 
2555 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2556 {
2557 	struct dentry *dentry;
2558 	struct path path;
2559 	int error;
2560 
2561 	dentry = user_path_create(dfd, pathname, &path, 1);
2562 	if (IS_ERR(dentry))
2563 		return PTR_ERR(dentry);
2564 
2565 	if (!IS_POSIXACL(path.dentry->d_inode))
2566 		mode &= ~current_umask();
2567 	error = mnt_want_write(path.mnt);
2568 	if (error)
2569 		goto out_dput;
2570 	error = security_path_mkdir(&path, dentry, mode);
2571 	if (error)
2572 		goto out_drop_write;
2573 	error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
2574 out_drop_write:
2575 	mnt_drop_write(path.mnt);
2576 out_dput:
2577 	dput(dentry);
2578 	mutex_unlock(&path.dentry->d_inode->i_mutex);
2579 	path_put(&path);
2580 	return error;
2581 }
2582 
2583 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2584 {
2585 	return sys_mkdirat(AT_FDCWD, pathname, mode);
2586 }
2587 
2588 /*
2589  * The dentry_unhash() helper will try to drop the dentry early: we
2590  * should have a usage count of 2 if we're the only user of this
2591  * dentry, and if that is true (possibly after pruning the dcache),
2592  * then we drop the dentry now.
2593  *
2594  * A low-level filesystem can, if it choses, legally
2595  * do a
2596  *
2597  *	if (!d_unhashed(dentry))
2598  *		return -EBUSY;
2599  *
2600  * if it cannot handle the case of removing a directory
2601  * that is still in use by something else..
2602  */
2603 void dentry_unhash(struct dentry *dentry)
2604 {
2605 	shrink_dcache_parent(dentry);
2606 	spin_lock(&dentry->d_lock);
2607 	if (dentry->d_count == 1)
2608 		__d_drop(dentry);
2609 	spin_unlock(&dentry->d_lock);
2610 }
2611 
2612 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2613 {
2614 	int error = may_delete(dir, dentry, 1);
2615 
2616 	if (error)
2617 		return error;
2618 
2619 	if (!dir->i_op->rmdir)
2620 		return -EPERM;
2621 
2622 	mutex_lock(&dentry->d_inode->i_mutex);
2623 
2624 	error = -EBUSY;
2625 	if (d_mountpoint(dentry))
2626 		goto out;
2627 
2628 	error = security_inode_rmdir(dir, dentry);
2629 	if (error)
2630 		goto out;
2631 
2632 	shrink_dcache_parent(dentry);
2633 	error = dir->i_op->rmdir(dir, dentry);
2634 	if (error)
2635 		goto out;
2636 
2637 	dentry->d_inode->i_flags |= S_DEAD;
2638 	dont_mount(dentry);
2639 
2640 out:
2641 	mutex_unlock(&dentry->d_inode->i_mutex);
2642 	if (!error)
2643 		d_delete(dentry);
2644 	return error;
2645 }
2646 
2647 static long do_rmdir(int dfd, const char __user *pathname)
2648 {
2649 	int error = 0;
2650 	char * name;
2651 	struct dentry *dentry;
2652 	struct nameidata nd;
2653 
2654 	error = user_path_parent(dfd, pathname, &nd, &name);
2655 	if (error)
2656 		return error;
2657 
2658 	switch(nd.last_type) {
2659 	case LAST_DOTDOT:
2660 		error = -ENOTEMPTY;
2661 		goto exit1;
2662 	case LAST_DOT:
2663 		error = -EINVAL;
2664 		goto exit1;
2665 	case LAST_ROOT:
2666 		error = -EBUSY;
2667 		goto exit1;
2668 	}
2669 
2670 	nd.flags &= ~LOOKUP_PARENT;
2671 
2672 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2673 	dentry = lookup_hash(&nd);
2674 	error = PTR_ERR(dentry);
2675 	if (IS_ERR(dentry))
2676 		goto exit2;
2677 	if (!dentry->d_inode) {
2678 		error = -ENOENT;
2679 		goto exit3;
2680 	}
2681 	error = mnt_want_write(nd.path.mnt);
2682 	if (error)
2683 		goto exit3;
2684 	error = security_path_rmdir(&nd.path, dentry);
2685 	if (error)
2686 		goto exit4;
2687 	error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2688 exit4:
2689 	mnt_drop_write(nd.path.mnt);
2690 exit3:
2691 	dput(dentry);
2692 exit2:
2693 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2694 exit1:
2695 	path_put(&nd.path);
2696 	putname(name);
2697 	return error;
2698 }
2699 
2700 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2701 {
2702 	return do_rmdir(AT_FDCWD, pathname);
2703 }
2704 
2705 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2706 {
2707 	int error = may_delete(dir, dentry, 0);
2708 
2709 	if (error)
2710 		return error;
2711 
2712 	if (!dir->i_op->unlink)
2713 		return -EPERM;
2714 
2715 	mutex_lock(&dentry->d_inode->i_mutex);
2716 	if (d_mountpoint(dentry))
2717 		error = -EBUSY;
2718 	else {
2719 		error = security_inode_unlink(dir, dentry);
2720 		if (!error) {
2721 			error = dir->i_op->unlink(dir, dentry);
2722 			if (!error)
2723 				dont_mount(dentry);
2724 		}
2725 	}
2726 	mutex_unlock(&dentry->d_inode->i_mutex);
2727 
2728 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
2729 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2730 		fsnotify_link_count(dentry->d_inode);
2731 		d_delete(dentry);
2732 	}
2733 
2734 	return error;
2735 }
2736 
2737 /*
2738  * Make sure that the actual truncation of the file will occur outside its
2739  * directory's i_mutex.  Truncate can take a long time if there is a lot of
2740  * writeout happening, and we don't want to prevent access to the directory
2741  * while waiting on the I/O.
2742  */
2743 static long do_unlinkat(int dfd, const char __user *pathname)
2744 {
2745 	int error;
2746 	char *name;
2747 	struct dentry *dentry;
2748 	struct nameidata nd;
2749 	struct inode *inode = NULL;
2750 
2751 	error = user_path_parent(dfd, pathname, &nd, &name);
2752 	if (error)
2753 		return error;
2754 
2755 	error = -EISDIR;
2756 	if (nd.last_type != LAST_NORM)
2757 		goto exit1;
2758 
2759 	nd.flags &= ~LOOKUP_PARENT;
2760 
2761 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2762 	dentry = lookup_hash(&nd);
2763 	error = PTR_ERR(dentry);
2764 	if (!IS_ERR(dentry)) {
2765 		/* Why not before? Because we want correct error value */
2766 		if (nd.last.name[nd.last.len])
2767 			goto slashes;
2768 		inode = dentry->d_inode;
2769 		if (!inode)
2770 			goto slashes;
2771 		ihold(inode);
2772 		error = mnt_want_write(nd.path.mnt);
2773 		if (error)
2774 			goto exit2;
2775 		error = security_path_unlink(&nd.path, dentry);
2776 		if (error)
2777 			goto exit3;
2778 		error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2779 exit3:
2780 		mnt_drop_write(nd.path.mnt);
2781 	exit2:
2782 		dput(dentry);
2783 	}
2784 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2785 	if (inode)
2786 		iput(inode);	/* truncate the inode here */
2787 exit1:
2788 	path_put(&nd.path);
2789 	putname(name);
2790 	return error;
2791 
2792 slashes:
2793 	error = !dentry->d_inode ? -ENOENT :
2794 		S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2795 	goto exit2;
2796 }
2797 
2798 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2799 {
2800 	if ((flag & ~AT_REMOVEDIR) != 0)
2801 		return -EINVAL;
2802 
2803 	if (flag & AT_REMOVEDIR)
2804 		return do_rmdir(dfd, pathname);
2805 
2806 	return do_unlinkat(dfd, pathname);
2807 }
2808 
2809 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2810 {
2811 	return do_unlinkat(AT_FDCWD, pathname);
2812 }
2813 
2814 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2815 {
2816 	int error = may_create(dir, dentry);
2817 
2818 	if (error)
2819 		return error;
2820 
2821 	if (!dir->i_op->symlink)
2822 		return -EPERM;
2823 
2824 	error = security_inode_symlink(dir, dentry, oldname);
2825 	if (error)
2826 		return error;
2827 
2828 	error = dir->i_op->symlink(dir, dentry, oldname);
2829 	if (!error)
2830 		fsnotify_create(dir, dentry);
2831 	return error;
2832 }
2833 
2834 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2835 		int, newdfd, const char __user *, newname)
2836 {
2837 	int error;
2838 	char *from;
2839 	struct dentry *dentry;
2840 	struct path path;
2841 
2842 	from = getname(oldname);
2843 	if (IS_ERR(from))
2844 		return PTR_ERR(from);
2845 
2846 	dentry = user_path_create(newdfd, newname, &path, 0);
2847 	error = PTR_ERR(dentry);
2848 	if (IS_ERR(dentry))
2849 		goto out_putname;
2850 
2851 	error = mnt_want_write(path.mnt);
2852 	if (error)
2853 		goto out_dput;
2854 	error = security_path_symlink(&path, dentry, from);
2855 	if (error)
2856 		goto out_drop_write;
2857 	error = vfs_symlink(path.dentry->d_inode, dentry, from);
2858 out_drop_write:
2859 	mnt_drop_write(path.mnt);
2860 out_dput:
2861 	dput(dentry);
2862 	mutex_unlock(&path.dentry->d_inode->i_mutex);
2863 	path_put(&path);
2864 out_putname:
2865 	putname(from);
2866 	return error;
2867 }
2868 
2869 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2870 {
2871 	return sys_symlinkat(oldname, AT_FDCWD, newname);
2872 }
2873 
2874 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2875 {
2876 	struct inode *inode = old_dentry->d_inode;
2877 	int error;
2878 
2879 	if (!inode)
2880 		return -ENOENT;
2881 
2882 	error = may_create(dir, new_dentry);
2883 	if (error)
2884 		return error;
2885 
2886 	if (dir->i_sb != inode->i_sb)
2887 		return -EXDEV;
2888 
2889 	/*
2890 	 * A link to an append-only or immutable file cannot be created.
2891 	 */
2892 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2893 		return -EPERM;
2894 	if (!dir->i_op->link)
2895 		return -EPERM;
2896 	if (S_ISDIR(inode->i_mode))
2897 		return -EPERM;
2898 
2899 	error = security_inode_link(old_dentry, dir, new_dentry);
2900 	if (error)
2901 		return error;
2902 
2903 	mutex_lock(&inode->i_mutex);
2904 	/* Make sure we don't allow creating hardlink to an unlinked file */
2905 	if (inode->i_nlink == 0)
2906 		error =  -ENOENT;
2907 	else
2908 		error = dir->i_op->link(old_dentry, dir, new_dentry);
2909 	mutex_unlock(&inode->i_mutex);
2910 	if (!error)
2911 		fsnotify_link(dir, inode, new_dentry);
2912 	return error;
2913 }
2914 
2915 /*
2916  * Hardlinks are often used in delicate situations.  We avoid
2917  * security-related surprises by not following symlinks on the
2918  * newname.  --KAB
2919  *
2920  * We don't follow them on the oldname either to be compatible
2921  * with linux 2.0, and to avoid hard-linking to directories
2922  * and other special files.  --ADM
2923  */
2924 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2925 		int, newdfd, const char __user *, newname, int, flags)
2926 {
2927 	struct dentry *new_dentry;
2928 	struct path old_path, new_path;
2929 	int how = 0;
2930 	int error;
2931 
2932 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
2933 		return -EINVAL;
2934 	/*
2935 	 * To use null names we require CAP_DAC_READ_SEARCH
2936 	 * This ensures that not everyone will be able to create
2937 	 * handlink using the passed filedescriptor.
2938 	 */
2939 	if (flags & AT_EMPTY_PATH) {
2940 		if (!capable(CAP_DAC_READ_SEARCH))
2941 			return -ENOENT;
2942 		how = LOOKUP_EMPTY;
2943 	}
2944 
2945 	if (flags & AT_SYMLINK_FOLLOW)
2946 		how |= LOOKUP_FOLLOW;
2947 
2948 	error = user_path_at(olddfd, oldname, how, &old_path);
2949 	if (error)
2950 		return error;
2951 
2952 	new_dentry = user_path_create(newdfd, newname, &new_path, 0);
2953 	error = PTR_ERR(new_dentry);
2954 	if (IS_ERR(new_dentry))
2955 		goto out;
2956 
2957 	error = -EXDEV;
2958 	if (old_path.mnt != new_path.mnt)
2959 		goto out_dput;
2960 	error = mnt_want_write(new_path.mnt);
2961 	if (error)
2962 		goto out_dput;
2963 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
2964 	if (error)
2965 		goto out_drop_write;
2966 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
2967 out_drop_write:
2968 	mnt_drop_write(new_path.mnt);
2969 out_dput:
2970 	dput(new_dentry);
2971 	mutex_unlock(&new_path.dentry->d_inode->i_mutex);
2972 	path_put(&new_path);
2973 out:
2974 	path_put(&old_path);
2975 
2976 	return error;
2977 }
2978 
2979 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
2980 {
2981 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2982 }
2983 
2984 /*
2985  * The worst of all namespace operations - renaming directory. "Perverted"
2986  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2987  * Problems:
2988  *	a) we can get into loop creation. Check is done in is_subdir().
2989  *	b) race potential - two innocent renames can create a loop together.
2990  *	   That's where 4.4 screws up. Current fix: serialization on
2991  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2992  *	   story.
2993  *	c) we have to lock _three_ objects - parents and victim (if it exists).
2994  *	   And that - after we got ->i_mutex on parents (until then we don't know
2995  *	   whether the target exists).  Solution: try to be smart with locking
2996  *	   order for inodes.  We rely on the fact that tree topology may change
2997  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
2998  *	   move will be locked.  Thus we can rank directories by the tree
2999  *	   (ancestors first) and rank all non-directories after them.
3000  *	   That works since everybody except rename does "lock parent, lookup,
3001  *	   lock child" and rename is under ->s_vfs_rename_mutex.
3002  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
3003  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
3004  *	   we'd better make sure that there's no link(2) for them.
3005  *	d) conversion from fhandle to dentry may come in the wrong moment - when
3006  *	   we are removing the target. Solution: we will have to grab ->i_mutex
3007  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3008  *	   ->i_mutex on parents, which works but leads to some truly excessive
3009  *	   locking].
3010  */
3011 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3012 			  struct inode *new_dir, struct dentry *new_dentry)
3013 {
3014 	int error = 0;
3015 	struct inode *target = new_dentry->d_inode;
3016 
3017 	/*
3018 	 * If we are going to change the parent - check write permissions,
3019 	 * we'll need to flip '..'.
3020 	 */
3021 	if (new_dir != old_dir) {
3022 		error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3023 		if (error)
3024 			return error;
3025 	}
3026 
3027 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3028 	if (error)
3029 		return error;
3030 
3031 	if (target)
3032 		mutex_lock(&target->i_mutex);
3033 
3034 	error = -EBUSY;
3035 	if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3036 		goto out;
3037 
3038 	if (target)
3039 		shrink_dcache_parent(new_dentry);
3040 	error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3041 	if (error)
3042 		goto out;
3043 
3044 	if (target) {
3045 		target->i_flags |= S_DEAD;
3046 		dont_mount(new_dentry);
3047 	}
3048 out:
3049 	if (target)
3050 		mutex_unlock(&target->i_mutex);
3051 	if (!error)
3052 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3053 			d_move(old_dentry,new_dentry);
3054 	return error;
3055 }
3056 
3057 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3058 			    struct inode *new_dir, struct dentry *new_dentry)
3059 {
3060 	struct inode *target = new_dentry->d_inode;
3061 	int error;
3062 
3063 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3064 	if (error)
3065 		return error;
3066 
3067 	dget(new_dentry);
3068 	if (target)
3069 		mutex_lock(&target->i_mutex);
3070 
3071 	error = -EBUSY;
3072 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3073 		goto out;
3074 
3075 	error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3076 	if (error)
3077 		goto out;
3078 
3079 	if (target)
3080 		dont_mount(new_dentry);
3081 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3082 		d_move(old_dentry, new_dentry);
3083 out:
3084 	if (target)
3085 		mutex_unlock(&target->i_mutex);
3086 	dput(new_dentry);
3087 	return error;
3088 }
3089 
3090 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3091 	       struct inode *new_dir, struct dentry *new_dentry)
3092 {
3093 	int error;
3094 	int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3095 	const unsigned char *old_name;
3096 
3097 	if (old_dentry->d_inode == new_dentry->d_inode)
3098  		return 0;
3099 
3100 	error = may_delete(old_dir, old_dentry, is_dir);
3101 	if (error)
3102 		return error;
3103 
3104 	if (!new_dentry->d_inode)
3105 		error = may_create(new_dir, new_dentry);
3106 	else
3107 		error = may_delete(new_dir, new_dentry, is_dir);
3108 	if (error)
3109 		return error;
3110 
3111 	if (!old_dir->i_op->rename)
3112 		return -EPERM;
3113 
3114 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3115 
3116 	if (is_dir)
3117 		error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3118 	else
3119 		error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3120 	if (!error)
3121 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
3122 			      new_dentry->d_inode, old_dentry);
3123 	fsnotify_oldname_free(old_name);
3124 
3125 	return error;
3126 }
3127 
3128 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3129 		int, newdfd, const char __user *, newname)
3130 {
3131 	struct dentry *old_dir, *new_dir;
3132 	struct dentry *old_dentry, *new_dentry;
3133 	struct dentry *trap;
3134 	struct nameidata oldnd, newnd;
3135 	char *from;
3136 	char *to;
3137 	int error;
3138 
3139 	error = user_path_parent(olddfd, oldname, &oldnd, &from);
3140 	if (error)
3141 		goto exit;
3142 
3143 	error = user_path_parent(newdfd, newname, &newnd, &to);
3144 	if (error)
3145 		goto exit1;
3146 
3147 	error = -EXDEV;
3148 	if (oldnd.path.mnt != newnd.path.mnt)
3149 		goto exit2;
3150 
3151 	old_dir = oldnd.path.dentry;
3152 	error = -EBUSY;
3153 	if (oldnd.last_type != LAST_NORM)
3154 		goto exit2;
3155 
3156 	new_dir = newnd.path.dentry;
3157 	if (newnd.last_type != LAST_NORM)
3158 		goto exit2;
3159 
3160 	oldnd.flags &= ~LOOKUP_PARENT;
3161 	newnd.flags &= ~LOOKUP_PARENT;
3162 	newnd.flags |= LOOKUP_RENAME_TARGET;
3163 
3164 	trap = lock_rename(new_dir, old_dir);
3165 
3166 	old_dentry = lookup_hash(&oldnd);
3167 	error = PTR_ERR(old_dentry);
3168 	if (IS_ERR(old_dentry))
3169 		goto exit3;
3170 	/* source must exist */
3171 	error = -ENOENT;
3172 	if (!old_dentry->d_inode)
3173 		goto exit4;
3174 	/* unless the source is a directory trailing slashes give -ENOTDIR */
3175 	if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3176 		error = -ENOTDIR;
3177 		if (oldnd.last.name[oldnd.last.len])
3178 			goto exit4;
3179 		if (newnd.last.name[newnd.last.len])
3180 			goto exit4;
3181 	}
3182 	/* source should not be ancestor of target */
3183 	error = -EINVAL;
3184 	if (old_dentry == trap)
3185 		goto exit4;
3186 	new_dentry = lookup_hash(&newnd);
3187 	error = PTR_ERR(new_dentry);
3188 	if (IS_ERR(new_dentry))
3189 		goto exit4;
3190 	/* target should not be an ancestor of source */
3191 	error = -ENOTEMPTY;
3192 	if (new_dentry == trap)
3193 		goto exit5;
3194 
3195 	error = mnt_want_write(oldnd.path.mnt);
3196 	if (error)
3197 		goto exit5;
3198 	error = security_path_rename(&oldnd.path, old_dentry,
3199 				     &newnd.path, new_dentry);
3200 	if (error)
3201 		goto exit6;
3202 	error = vfs_rename(old_dir->d_inode, old_dentry,
3203 				   new_dir->d_inode, new_dentry);
3204 exit6:
3205 	mnt_drop_write(oldnd.path.mnt);
3206 exit5:
3207 	dput(new_dentry);
3208 exit4:
3209 	dput(old_dentry);
3210 exit3:
3211 	unlock_rename(new_dir, old_dir);
3212 exit2:
3213 	path_put(&newnd.path);
3214 	putname(to);
3215 exit1:
3216 	path_put(&oldnd.path);
3217 	putname(from);
3218 exit:
3219 	return error;
3220 }
3221 
3222 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3223 {
3224 	return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3225 }
3226 
3227 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3228 {
3229 	int len;
3230 
3231 	len = PTR_ERR(link);
3232 	if (IS_ERR(link))
3233 		goto out;
3234 
3235 	len = strlen(link);
3236 	if (len > (unsigned) buflen)
3237 		len = buflen;
3238 	if (copy_to_user(buffer, link, len))
3239 		len = -EFAULT;
3240 out:
3241 	return len;
3242 }
3243 
3244 /*
3245  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
3246  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
3247  * using) it for any given inode is up to filesystem.
3248  */
3249 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3250 {
3251 	struct nameidata nd;
3252 	void *cookie;
3253 	int res;
3254 
3255 	nd.depth = 0;
3256 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3257 	if (IS_ERR(cookie))
3258 		return PTR_ERR(cookie);
3259 
3260 	res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3261 	if (dentry->d_inode->i_op->put_link)
3262 		dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3263 	return res;
3264 }
3265 
3266 int vfs_follow_link(struct nameidata *nd, const char *link)
3267 {
3268 	return __vfs_follow_link(nd, link);
3269 }
3270 
3271 /* get the link contents into pagecache */
3272 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3273 {
3274 	char *kaddr;
3275 	struct page *page;
3276 	struct address_space *mapping = dentry->d_inode->i_mapping;
3277 	page = read_mapping_page(mapping, 0, NULL);
3278 	if (IS_ERR(page))
3279 		return (char*)page;
3280 	*ppage = page;
3281 	kaddr = kmap(page);
3282 	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3283 	return kaddr;
3284 }
3285 
3286 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3287 {
3288 	struct page *page = NULL;
3289 	char *s = page_getlink(dentry, &page);
3290 	int res = vfs_readlink(dentry,buffer,buflen,s);
3291 	if (page) {
3292 		kunmap(page);
3293 		page_cache_release(page);
3294 	}
3295 	return res;
3296 }
3297 
3298 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3299 {
3300 	struct page *page = NULL;
3301 	nd_set_link(nd, page_getlink(dentry, &page));
3302 	return page;
3303 }
3304 
3305 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3306 {
3307 	struct page *page = cookie;
3308 
3309 	if (page) {
3310 		kunmap(page);
3311 		page_cache_release(page);
3312 	}
3313 }
3314 
3315 /*
3316  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3317  */
3318 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3319 {
3320 	struct address_space *mapping = inode->i_mapping;
3321 	struct page *page;
3322 	void *fsdata;
3323 	int err;
3324 	char *kaddr;
3325 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3326 	if (nofs)
3327 		flags |= AOP_FLAG_NOFS;
3328 
3329 retry:
3330 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
3331 				flags, &page, &fsdata);
3332 	if (err)
3333 		goto fail;
3334 
3335 	kaddr = kmap_atomic(page, KM_USER0);
3336 	memcpy(kaddr, symname, len-1);
3337 	kunmap_atomic(kaddr, KM_USER0);
3338 
3339 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3340 							page, fsdata);
3341 	if (err < 0)
3342 		goto fail;
3343 	if (err < len-1)
3344 		goto retry;
3345 
3346 	mark_inode_dirty(inode);
3347 	return 0;
3348 fail:
3349 	return err;
3350 }
3351 
3352 int page_symlink(struct inode *inode, const char *symname, int len)
3353 {
3354 	return __page_symlink(inode, symname, len,
3355 			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3356 }
3357 
3358 const struct inode_operations page_symlink_inode_operations = {
3359 	.readlink	= generic_readlink,
3360 	.follow_link	= page_follow_link_light,
3361 	.put_link	= page_put_link,
3362 };
3363 
3364 EXPORT_SYMBOL(user_path_at);
3365 EXPORT_SYMBOL(follow_down_one);
3366 EXPORT_SYMBOL(follow_down);
3367 EXPORT_SYMBOL(follow_up);
3368 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3369 EXPORT_SYMBOL(getname);
3370 EXPORT_SYMBOL(lock_rename);
3371 EXPORT_SYMBOL(lookup_one_len);
3372 EXPORT_SYMBOL(page_follow_link_light);
3373 EXPORT_SYMBOL(page_put_link);
3374 EXPORT_SYMBOL(page_readlink);
3375 EXPORT_SYMBOL(__page_symlink);
3376 EXPORT_SYMBOL(page_symlink);
3377 EXPORT_SYMBOL(page_symlink_inode_operations);
3378 EXPORT_SYMBOL(kern_path);
3379 EXPORT_SYMBOL(vfs_path_lookup);
3380 EXPORT_SYMBOL(inode_permission);
3381 EXPORT_SYMBOL(unlock_rename);
3382 EXPORT_SYMBOL(vfs_create);
3383 EXPORT_SYMBOL(vfs_follow_link);
3384 EXPORT_SYMBOL(vfs_link);
3385 EXPORT_SYMBOL(vfs_mkdir);
3386 EXPORT_SYMBOL(vfs_mknod);
3387 EXPORT_SYMBOL(generic_permission);
3388 EXPORT_SYMBOL(vfs_readlink);
3389 EXPORT_SYMBOL(vfs_rename);
3390 EXPORT_SYMBOL(vfs_rmdir);
3391 EXPORT_SYMBOL(vfs_symlink);
3392 EXPORT_SYMBOL(vfs_unlink);
3393 EXPORT_SYMBOL(dentry_unhash);
3394 EXPORT_SYMBOL(generic_readlink);
3395