1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/namei.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * Some corrections by tytso. 10 */ 11 12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 13 * lookup logic. 14 */ 15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 16 */ 17 18 #include <linux/init.h> 19 #include <linux/export.h> 20 #include <linux/slab.h> 21 #include <linux/wordpart.h> 22 #include <linux/fs.h> 23 #include <linux/filelock.h> 24 #include <linux/namei.h> 25 #include <linux/pagemap.h> 26 #include <linux/sched/mm.h> 27 #include <linux/fsnotify.h> 28 #include <linux/personality.h> 29 #include <linux/security.h> 30 #include <linux/syscalls.h> 31 #include <linux/mount.h> 32 #include <linux/audit.h> 33 #include <linux/capability.h> 34 #include <linux/file.h> 35 #include <linux/fcntl.h> 36 #include <linux/device_cgroup.h> 37 #include <linux/fs_struct.h> 38 #include <linux/posix_acl.h> 39 #include <linux/hash.h> 40 #include <linux/bitops.h> 41 #include <linux/init_task.h> 42 #include <linux/uaccess.h> 43 44 #include "internal.h" 45 #include "mount.h" 46 47 /* [Feb-1997 T. Schoebel-Theuer] 48 * Fundamental changes in the pathname lookup mechanisms (namei) 49 * were necessary because of omirr. The reason is that omirr needs 50 * to know the _real_ pathname, not the user-supplied one, in case 51 * of symlinks (and also when transname replacements occur). 52 * 53 * The new code replaces the old recursive symlink resolution with 54 * an iterative one (in case of non-nested symlink chains). It does 55 * this with calls to <fs>_follow_link(). 56 * As a side effect, dir_namei(), _namei() and follow_link() are now 57 * replaced with a single function lookup_dentry() that can handle all 58 * the special cases of the former code. 59 * 60 * With the new dcache, the pathname is stored at each inode, at least as 61 * long as the refcount of the inode is positive. As a side effect, the 62 * size of the dcache depends on the inode cache and thus is dynamic. 63 * 64 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 65 * resolution to correspond with current state of the code. 66 * 67 * Note that the symlink resolution is not *completely* iterative. 68 * There is still a significant amount of tail- and mid- recursion in 69 * the algorithm. Also, note that <fs>_readlink() is not used in 70 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 71 * may return different results than <fs>_follow_link(). Many virtual 72 * filesystems (including /proc) exhibit this behavior. 73 */ 74 75 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 76 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 77 * and the name already exists in form of a symlink, try to create the new 78 * name indicated by the symlink. The old code always complained that the 79 * name already exists, due to not following the symlink even if its target 80 * is nonexistent. The new semantics affects also mknod() and link() when 81 * the name is a symlink pointing to a non-existent name. 82 * 83 * I don't know which semantics is the right one, since I have no access 84 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 85 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 86 * "old" one. Personally, I think the new semantics is much more logical. 87 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 88 * file does succeed in both HP-UX and SunOs, but not in Solaris 89 * and in the old Linux semantics. 90 */ 91 92 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 93 * semantics. See the comments in "open_namei" and "do_link" below. 94 * 95 * [10-Sep-98 Alan Modra] Another symlink change. 96 */ 97 98 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 99 * inside the path - always follow. 100 * in the last component in creation/removal/renaming - never follow. 101 * if LOOKUP_FOLLOW passed - follow. 102 * if the pathname has trailing slashes - follow. 103 * otherwise - don't follow. 104 * (applied in that order). 105 * 106 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 107 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 108 * During the 2.4 we need to fix the userland stuff depending on it - 109 * hopefully we will be able to get rid of that wart in 2.5. So far only 110 * XEmacs seems to be relying on it... 111 */ 112 /* 113 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 114 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 115 * any extra contention... 116 */ 117 118 /* In order to reduce some races, while at the same time doing additional 119 * checking and hopefully speeding things up, we copy filenames to the 120 * kernel data space before using them.. 121 * 122 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 123 * PATH_MAX includes the nul terminator --RR. 124 */ 125 126 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) 127 128 struct filename * 129 getname_flags(const char __user *filename, int flags, int *empty) 130 { 131 struct filename *result; 132 char *kname; 133 int len; 134 135 result = audit_reusename(filename); 136 if (result) 137 return result; 138 139 result = __getname(); 140 if (unlikely(!result)) 141 return ERR_PTR(-ENOMEM); 142 143 /* 144 * First, try to embed the struct filename inside the names_cache 145 * allocation 146 */ 147 kname = (char *)result->iname; 148 result->name = kname; 149 150 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); 151 if (unlikely(len < 0)) { 152 __putname(result); 153 return ERR_PTR(len); 154 } 155 156 /* 157 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 158 * separate struct filename so we can dedicate the entire 159 * names_cache allocation for the pathname, and re-do the copy from 160 * userland. 161 */ 162 if (unlikely(len == EMBEDDED_NAME_MAX)) { 163 const size_t size = offsetof(struct filename, iname[1]); 164 kname = (char *)result; 165 166 /* 167 * size is chosen that way we to guarantee that 168 * result->iname[0] is within the same object and that 169 * kname can't be equal to result->iname, no matter what. 170 */ 171 result = kzalloc(size, GFP_KERNEL); 172 if (unlikely(!result)) { 173 __putname(kname); 174 return ERR_PTR(-ENOMEM); 175 } 176 result->name = kname; 177 len = strncpy_from_user(kname, filename, PATH_MAX); 178 if (unlikely(len < 0)) { 179 __putname(kname); 180 kfree(result); 181 return ERR_PTR(len); 182 } 183 if (unlikely(len == PATH_MAX)) { 184 __putname(kname); 185 kfree(result); 186 return ERR_PTR(-ENAMETOOLONG); 187 } 188 } 189 190 atomic_set(&result->refcnt, 1); 191 /* The empty path is special. */ 192 if (unlikely(!len)) { 193 if (empty) 194 *empty = 1; 195 if (!(flags & LOOKUP_EMPTY)) { 196 putname(result); 197 return ERR_PTR(-ENOENT); 198 } 199 } 200 201 result->uptr = filename; 202 result->aname = NULL; 203 audit_getname(result); 204 return result; 205 } 206 207 struct filename * 208 getname_uflags(const char __user *filename, int uflags) 209 { 210 int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 211 212 return getname_flags(filename, flags, NULL); 213 } 214 215 struct filename * 216 getname(const char __user * filename) 217 { 218 return getname_flags(filename, 0, NULL); 219 } 220 221 struct filename * 222 getname_kernel(const char * filename) 223 { 224 struct filename *result; 225 int len = strlen(filename) + 1; 226 227 result = __getname(); 228 if (unlikely(!result)) 229 return ERR_PTR(-ENOMEM); 230 231 if (len <= EMBEDDED_NAME_MAX) { 232 result->name = (char *)result->iname; 233 } else if (len <= PATH_MAX) { 234 const size_t size = offsetof(struct filename, iname[1]); 235 struct filename *tmp; 236 237 tmp = kmalloc(size, GFP_KERNEL); 238 if (unlikely(!tmp)) { 239 __putname(result); 240 return ERR_PTR(-ENOMEM); 241 } 242 tmp->name = (char *)result; 243 result = tmp; 244 } else { 245 __putname(result); 246 return ERR_PTR(-ENAMETOOLONG); 247 } 248 memcpy((char *)result->name, filename, len); 249 result->uptr = NULL; 250 result->aname = NULL; 251 atomic_set(&result->refcnt, 1); 252 audit_getname(result); 253 254 return result; 255 } 256 EXPORT_SYMBOL(getname_kernel); 257 258 void putname(struct filename *name) 259 { 260 if (IS_ERR(name)) 261 return; 262 263 if (WARN_ON_ONCE(!atomic_read(&name->refcnt))) 264 return; 265 266 if (!atomic_dec_and_test(&name->refcnt)) 267 return; 268 269 if (name->name != name->iname) { 270 __putname(name->name); 271 kfree(name); 272 } else 273 __putname(name); 274 } 275 EXPORT_SYMBOL(putname); 276 277 /** 278 * check_acl - perform ACL permission checking 279 * @idmap: idmap of the mount the inode was found from 280 * @inode: inode to check permissions on 281 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 282 * 283 * This function performs the ACL permission checking. Since this function 284 * retrieve POSIX acls it needs to know whether it is called from a blocking or 285 * non-blocking context and thus cares about the MAY_NOT_BLOCK bit. 286 * 287 * If the inode has been found through an idmapped mount the idmap of 288 * the vfsmount must be passed through @idmap. This function will then take 289 * care to map the inode according to @idmap before checking permissions. 290 * On non-idmapped mounts or if permission checking is to be performed on the 291 * raw inode simply pass @nop_mnt_idmap. 292 */ 293 static int check_acl(struct mnt_idmap *idmap, 294 struct inode *inode, int mask) 295 { 296 #ifdef CONFIG_FS_POSIX_ACL 297 struct posix_acl *acl; 298 299 if (mask & MAY_NOT_BLOCK) { 300 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 301 if (!acl) 302 return -EAGAIN; 303 /* no ->get_inode_acl() calls in RCU mode... */ 304 if (is_uncached_acl(acl)) 305 return -ECHILD; 306 return posix_acl_permission(idmap, inode, acl, mask); 307 } 308 309 acl = get_inode_acl(inode, ACL_TYPE_ACCESS); 310 if (IS_ERR(acl)) 311 return PTR_ERR(acl); 312 if (acl) { 313 int error = posix_acl_permission(idmap, inode, acl, mask); 314 posix_acl_release(acl); 315 return error; 316 } 317 #endif 318 319 return -EAGAIN; 320 } 321 322 /** 323 * acl_permission_check - perform basic UNIX permission checking 324 * @idmap: idmap of the mount the inode was found from 325 * @inode: inode to check permissions on 326 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 327 * 328 * This function performs the basic UNIX permission checking. Since this 329 * function may retrieve POSIX acls it needs to know whether it is called from a 330 * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit. 331 * 332 * If the inode has been found through an idmapped mount the idmap of 333 * the vfsmount must be passed through @idmap. This function will then take 334 * care to map the inode according to @idmap before checking permissions. 335 * On non-idmapped mounts or if permission checking is to be performed on the 336 * raw inode simply pass @nop_mnt_idmap. 337 */ 338 static int acl_permission_check(struct mnt_idmap *idmap, 339 struct inode *inode, int mask) 340 { 341 unsigned int mode = inode->i_mode; 342 vfsuid_t vfsuid; 343 344 /* Are we the owner? If so, ACL's don't matter */ 345 vfsuid = i_uid_into_vfsuid(idmap, inode); 346 if (likely(vfsuid_eq_kuid(vfsuid, current_fsuid()))) { 347 mask &= 7; 348 mode >>= 6; 349 return (mask & ~mode) ? -EACCES : 0; 350 } 351 352 /* Do we have ACL's? */ 353 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 354 int error = check_acl(idmap, inode, mask); 355 if (error != -EAGAIN) 356 return error; 357 } 358 359 /* Only RWX matters for group/other mode bits */ 360 mask &= 7; 361 362 /* 363 * Are the group permissions different from 364 * the other permissions in the bits we care 365 * about? Need to check group ownership if so. 366 */ 367 if (mask & (mode ^ (mode >> 3))) { 368 vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode); 369 if (vfsgid_in_group_p(vfsgid)) 370 mode >>= 3; 371 } 372 373 /* Bits in 'mode' clear that we require? */ 374 return (mask & ~mode) ? -EACCES : 0; 375 } 376 377 /** 378 * generic_permission - check for access rights on a Posix-like filesystem 379 * @idmap: idmap of the mount the inode was found from 380 * @inode: inode to check access rights for 381 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, 382 * %MAY_NOT_BLOCK ...) 383 * 384 * Used to check for read/write/execute permissions on a file. 385 * We use "fsuid" for this, letting us set arbitrary permissions 386 * for filesystem access without changing the "normal" uids which 387 * are used for other things. 388 * 389 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 390 * request cannot be satisfied (eg. requires blocking or too much complexity). 391 * It would then be called again in ref-walk mode. 392 * 393 * If the inode has been found through an idmapped mount the idmap of 394 * the vfsmount must be passed through @idmap. This function will then take 395 * care to map the inode according to @idmap before checking permissions. 396 * On non-idmapped mounts or if permission checking is to be performed on the 397 * raw inode simply pass @nop_mnt_idmap. 398 */ 399 int generic_permission(struct mnt_idmap *idmap, struct inode *inode, 400 int mask) 401 { 402 int ret; 403 404 /* 405 * Do the basic permission checks. 406 */ 407 ret = acl_permission_check(idmap, inode, mask); 408 if (ret != -EACCES) 409 return ret; 410 411 if (S_ISDIR(inode->i_mode)) { 412 /* DACs are overridable for directories */ 413 if (!(mask & MAY_WRITE)) 414 if (capable_wrt_inode_uidgid(idmap, inode, 415 CAP_DAC_READ_SEARCH)) 416 return 0; 417 if (capable_wrt_inode_uidgid(idmap, inode, 418 CAP_DAC_OVERRIDE)) 419 return 0; 420 return -EACCES; 421 } 422 423 /* 424 * Searching includes executable on directories, else just read. 425 */ 426 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 427 if (mask == MAY_READ) 428 if (capable_wrt_inode_uidgid(idmap, inode, 429 CAP_DAC_READ_SEARCH)) 430 return 0; 431 /* 432 * Read/write DACs are always overridable. 433 * Executable DACs are overridable when there is 434 * at least one exec bit set. 435 */ 436 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 437 if (capable_wrt_inode_uidgid(idmap, inode, 438 CAP_DAC_OVERRIDE)) 439 return 0; 440 441 return -EACCES; 442 } 443 EXPORT_SYMBOL(generic_permission); 444 445 /** 446 * do_inode_permission - UNIX permission checking 447 * @idmap: idmap of the mount the inode was found from 448 * @inode: inode to check permissions on 449 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 450 * 451 * We _really_ want to just do "generic_permission()" without 452 * even looking at the inode->i_op values. So we keep a cache 453 * flag in inode->i_opflags, that says "this has not special 454 * permission function, use the fast case". 455 */ 456 static inline int do_inode_permission(struct mnt_idmap *idmap, 457 struct inode *inode, int mask) 458 { 459 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 460 if (likely(inode->i_op->permission)) 461 return inode->i_op->permission(idmap, inode, mask); 462 463 /* This gets set once for the inode lifetime */ 464 spin_lock(&inode->i_lock); 465 inode->i_opflags |= IOP_FASTPERM; 466 spin_unlock(&inode->i_lock); 467 } 468 return generic_permission(idmap, inode, mask); 469 } 470 471 /** 472 * sb_permission - Check superblock-level permissions 473 * @sb: Superblock of inode to check permission on 474 * @inode: Inode to check permission on 475 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 476 * 477 * Separate out file-system wide checks from inode-specific permission checks. 478 */ 479 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 480 { 481 if (unlikely(mask & MAY_WRITE)) { 482 umode_t mode = inode->i_mode; 483 484 /* Nobody gets write access to a read-only fs. */ 485 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 486 return -EROFS; 487 } 488 return 0; 489 } 490 491 /** 492 * inode_permission - Check for access rights to a given inode 493 * @idmap: idmap of the mount the inode was found from 494 * @inode: Inode to check permission on 495 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 496 * 497 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 498 * this, letting us set arbitrary permissions for filesystem access without 499 * changing the "normal" UIDs which are used for other things. 500 * 501 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 502 */ 503 int inode_permission(struct mnt_idmap *idmap, 504 struct inode *inode, int mask) 505 { 506 int retval; 507 508 retval = sb_permission(inode->i_sb, inode, mask); 509 if (retval) 510 return retval; 511 512 if (unlikely(mask & MAY_WRITE)) { 513 /* 514 * Nobody gets write access to an immutable file. 515 */ 516 if (IS_IMMUTABLE(inode)) 517 return -EPERM; 518 519 /* 520 * Updating mtime will likely cause i_uid and i_gid to be 521 * written back improperly if their true value is unknown 522 * to the vfs. 523 */ 524 if (HAS_UNMAPPED_ID(idmap, inode)) 525 return -EACCES; 526 } 527 528 retval = do_inode_permission(idmap, inode, mask); 529 if (retval) 530 return retval; 531 532 retval = devcgroup_inode_permission(inode, mask); 533 if (retval) 534 return retval; 535 536 return security_inode_permission(inode, mask); 537 } 538 EXPORT_SYMBOL(inode_permission); 539 540 /** 541 * path_get - get a reference to a path 542 * @path: path to get the reference to 543 * 544 * Given a path increment the reference count to the dentry and the vfsmount. 545 */ 546 void path_get(const struct path *path) 547 { 548 mntget(path->mnt); 549 dget(path->dentry); 550 } 551 EXPORT_SYMBOL(path_get); 552 553 /** 554 * path_put - put a reference to a path 555 * @path: path to put the reference to 556 * 557 * Given a path decrement the reference count to the dentry and the vfsmount. 558 */ 559 void path_put(const struct path *path) 560 { 561 dput(path->dentry); 562 mntput(path->mnt); 563 } 564 EXPORT_SYMBOL(path_put); 565 566 #define EMBEDDED_LEVELS 2 567 struct nameidata { 568 struct path path; 569 struct qstr last; 570 struct path root; 571 struct inode *inode; /* path.dentry.d_inode */ 572 unsigned int flags, state; 573 unsigned seq, next_seq, m_seq, r_seq; 574 int last_type; 575 unsigned depth; 576 int total_link_count; 577 struct saved { 578 struct path link; 579 struct delayed_call done; 580 const char *name; 581 unsigned seq; 582 } *stack, internal[EMBEDDED_LEVELS]; 583 struct filename *name; 584 struct nameidata *saved; 585 unsigned root_seq; 586 int dfd; 587 vfsuid_t dir_vfsuid; 588 umode_t dir_mode; 589 } __randomize_layout; 590 591 #define ND_ROOT_PRESET 1 592 #define ND_ROOT_GRABBED 2 593 #define ND_JUMPED 4 594 595 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name) 596 { 597 struct nameidata *old = current->nameidata; 598 p->stack = p->internal; 599 p->depth = 0; 600 p->dfd = dfd; 601 p->name = name; 602 p->path.mnt = NULL; 603 p->path.dentry = NULL; 604 p->total_link_count = old ? old->total_link_count : 0; 605 p->saved = old; 606 current->nameidata = p; 607 } 608 609 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name, 610 const struct path *root) 611 { 612 __set_nameidata(p, dfd, name); 613 p->state = 0; 614 if (unlikely(root)) { 615 p->state = ND_ROOT_PRESET; 616 p->root = *root; 617 } 618 } 619 620 static void restore_nameidata(void) 621 { 622 struct nameidata *now = current->nameidata, *old = now->saved; 623 624 current->nameidata = old; 625 if (old) 626 old->total_link_count = now->total_link_count; 627 if (now->stack != now->internal) 628 kfree(now->stack); 629 } 630 631 static bool nd_alloc_stack(struct nameidata *nd) 632 { 633 struct saved *p; 634 635 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved), 636 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL); 637 if (unlikely(!p)) 638 return false; 639 memcpy(p, nd->internal, sizeof(nd->internal)); 640 nd->stack = p; 641 return true; 642 } 643 644 /** 645 * path_connected - Verify that a dentry is below mnt.mnt_root 646 * @mnt: The mountpoint to check. 647 * @dentry: The dentry to check. 648 * 649 * Rename can sometimes move a file or directory outside of a bind 650 * mount, path_connected allows those cases to be detected. 651 */ 652 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry) 653 { 654 struct super_block *sb = mnt->mnt_sb; 655 656 /* Bind mounts can have disconnected paths */ 657 if (mnt->mnt_root == sb->s_root) 658 return true; 659 660 return is_subdir(dentry, mnt->mnt_root); 661 } 662 663 static void drop_links(struct nameidata *nd) 664 { 665 int i = nd->depth; 666 while (i--) { 667 struct saved *last = nd->stack + i; 668 do_delayed_call(&last->done); 669 clear_delayed_call(&last->done); 670 } 671 } 672 673 static void leave_rcu(struct nameidata *nd) 674 { 675 nd->flags &= ~LOOKUP_RCU; 676 nd->seq = nd->next_seq = 0; 677 rcu_read_unlock(); 678 } 679 680 static void terminate_walk(struct nameidata *nd) 681 { 682 drop_links(nd); 683 if (!(nd->flags & LOOKUP_RCU)) { 684 int i; 685 path_put(&nd->path); 686 for (i = 0; i < nd->depth; i++) 687 path_put(&nd->stack[i].link); 688 if (nd->state & ND_ROOT_GRABBED) { 689 path_put(&nd->root); 690 nd->state &= ~ND_ROOT_GRABBED; 691 } 692 } else { 693 leave_rcu(nd); 694 } 695 nd->depth = 0; 696 nd->path.mnt = NULL; 697 nd->path.dentry = NULL; 698 } 699 700 /* path_put is needed afterwards regardless of success or failure */ 701 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq) 702 { 703 int res = __legitimize_mnt(path->mnt, mseq); 704 if (unlikely(res)) { 705 if (res > 0) 706 path->mnt = NULL; 707 path->dentry = NULL; 708 return false; 709 } 710 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) { 711 path->dentry = NULL; 712 return false; 713 } 714 return !read_seqcount_retry(&path->dentry->d_seq, seq); 715 } 716 717 static inline bool legitimize_path(struct nameidata *nd, 718 struct path *path, unsigned seq) 719 { 720 return __legitimize_path(path, seq, nd->m_seq); 721 } 722 723 static bool legitimize_links(struct nameidata *nd) 724 { 725 int i; 726 if (unlikely(nd->flags & LOOKUP_CACHED)) { 727 drop_links(nd); 728 nd->depth = 0; 729 return false; 730 } 731 for (i = 0; i < nd->depth; i++) { 732 struct saved *last = nd->stack + i; 733 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) { 734 drop_links(nd); 735 nd->depth = i + 1; 736 return false; 737 } 738 } 739 return true; 740 } 741 742 static bool legitimize_root(struct nameidata *nd) 743 { 744 /* Nothing to do if nd->root is zero or is managed by the VFS user. */ 745 if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET)) 746 return true; 747 nd->state |= ND_ROOT_GRABBED; 748 return legitimize_path(nd, &nd->root, nd->root_seq); 749 } 750 751 /* 752 * Path walking has 2 modes, rcu-walk and ref-walk (see 753 * Documentation/filesystems/path-lookup.txt). In situations when we can't 754 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 755 * normal reference counts on dentries and vfsmounts to transition to ref-walk 756 * mode. Refcounts are grabbed at the last known good point before rcu-walk 757 * got stuck, so ref-walk may continue from there. If this is not successful 758 * (eg. a seqcount has changed), then failure is returned and it's up to caller 759 * to restart the path walk from the beginning in ref-walk mode. 760 */ 761 762 /** 763 * try_to_unlazy - try to switch to ref-walk mode. 764 * @nd: nameidata pathwalk data 765 * Returns: true on success, false on failure 766 * 767 * try_to_unlazy attempts to legitimize the current nd->path and nd->root 768 * for ref-walk mode. 769 * Must be called from rcu-walk context. 770 * Nothing should touch nameidata between try_to_unlazy() failure and 771 * terminate_walk(). 772 */ 773 static bool try_to_unlazy(struct nameidata *nd) 774 { 775 struct dentry *parent = nd->path.dentry; 776 777 BUG_ON(!(nd->flags & LOOKUP_RCU)); 778 779 if (unlikely(!legitimize_links(nd))) 780 goto out1; 781 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq))) 782 goto out; 783 if (unlikely(!legitimize_root(nd))) 784 goto out; 785 leave_rcu(nd); 786 BUG_ON(nd->inode != parent->d_inode); 787 return true; 788 789 out1: 790 nd->path.mnt = NULL; 791 nd->path.dentry = NULL; 792 out: 793 leave_rcu(nd); 794 return false; 795 } 796 797 /** 798 * try_to_unlazy_next - try to switch to ref-walk mode. 799 * @nd: nameidata pathwalk data 800 * @dentry: next dentry to step into 801 * Returns: true on success, false on failure 802 * 803 * Similar to try_to_unlazy(), but here we have the next dentry already 804 * picked by rcu-walk and want to legitimize that in addition to the current 805 * nd->path and nd->root for ref-walk mode. Must be called from rcu-walk context. 806 * Nothing should touch nameidata between try_to_unlazy_next() failure and 807 * terminate_walk(). 808 */ 809 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry) 810 { 811 int res; 812 BUG_ON(!(nd->flags & LOOKUP_RCU)); 813 814 if (unlikely(!legitimize_links(nd))) 815 goto out2; 816 res = __legitimize_mnt(nd->path.mnt, nd->m_seq); 817 if (unlikely(res)) { 818 if (res > 0) 819 goto out2; 820 goto out1; 821 } 822 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref))) 823 goto out1; 824 825 /* 826 * We need to move both the parent and the dentry from the RCU domain 827 * to be properly refcounted. And the sequence number in the dentry 828 * validates *both* dentry counters, since we checked the sequence 829 * number of the parent after we got the child sequence number. So we 830 * know the parent must still be valid if the child sequence number is 831 */ 832 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) 833 goto out; 834 if (read_seqcount_retry(&dentry->d_seq, nd->next_seq)) 835 goto out_dput; 836 /* 837 * Sequence counts matched. Now make sure that the root is 838 * still valid and get it if required. 839 */ 840 if (unlikely(!legitimize_root(nd))) 841 goto out_dput; 842 leave_rcu(nd); 843 return true; 844 845 out2: 846 nd->path.mnt = NULL; 847 out1: 848 nd->path.dentry = NULL; 849 out: 850 leave_rcu(nd); 851 return false; 852 out_dput: 853 leave_rcu(nd); 854 dput(dentry); 855 return false; 856 } 857 858 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 859 { 860 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) 861 return dentry->d_op->d_revalidate(dentry, flags); 862 else 863 return 1; 864 } 865 866 /** 867 * complete_walk - successful completion of path walk 868 * @nd: pointer nameidata 869 * 870 * If we had been in RCU mode, drop out of it and legitimize nd->path. 871 * Revalidate the final result, unless we'd already done that during 872 * the path walk or the filesystem doesn't ask for it. Return 0 on 873 * success, -error on failure. In case of failure caller does not 874 * need to drop nd->path. 875 */ 876 static int complete_walk(struct nameidata *nd) 877 { 878 struct dentry *dentry = nd->path.dentry; 879 int status; 880 881 if (nd->flags & LOOKUP_RCU) { 882 /* 883 * We don't want to zero nd->root for scoped-lookups or 884 * externally-managed nd->root. 885 */ 886 if (!(nd->state & ND_ROOT_PRESET)) 887 if (!(nd->flags & LOOKUP_IS_SCOPED)) 888 nd->root.mnt = NULL; 889 nd->flags &= ~LOOKUP_CACHED; 890 if (!try_to_unlazy(nd)) 891 return -ECHILD; 892 } 893 894 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { 895 /* 896 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't 897 * ever step outside the root during lookup" and should already 898 * be guaranteed by the rest of namei, we want to avoid a namei 899 * BUG resulting in userspace being given a path that was not 900 * scoped within the root at some point during the lookup. 901 * 902 * So, do a final sanity-check to make sure that in the 903 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED) 904 * we won't silently return an fd completely outside of the 905 * requested root to userspace. 906 * 907 * Userspace could move the path outside the root after this 908 * check, but as discussed elsewhere this is not a concern (the 909 * resolved file was inside the root at some point). 910 */ 911 if (!path_is_under(&nd->path, &nd->root)) 912 return -EXDEV; 913 } 914 915 if (likely(!(nd->state & ND_JUMPED))) 916 return 0; 917 918 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 919 return 0; 920 921 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 922 if (status > 0) 923 return 0; 924 925 if (!status) 926 status = -ESTALE; 927 928 return status; 929 } 930 931 static int set_root(struct nameidata *nd) 932 { 933 struct fs_struct *fs = current->fs; 934 935 /* 936 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we 937 * still have to ensure it doesn't happen because it will cause a breakout 938 * from the dirfd. 939 */ 940 if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED)) 941 return -ENOTRECOVERABLE; 942 943 if (nd->flags & LOOKUP_RCU) { 944 unsigned seq; 945 946 do { 947 seq = read_seqcount_begin(&fs->seq); 948 nd->root = fs->root; 949 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 950 } while (read_seqcount_retry(&fs->seq, seq)); 951 } else { 952 get_fs_root(fs, &nd->root); 953 nd->state |= ND_ROOT_GRABBED; 954 } 955 return 0; 956 } 957 958 static int nd_jump_root(struct nameidata *nd) 959 { 960 if (unlikely(nd->flags & LOOKUP_BENEATH)) 961 return -EXDEV; 962 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { 963 /* Absolute path arguments to path_init() are allowed. */ 964 if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt) 965 return -EXDEV; 966 } 967 if (!nd->root.mnt) { 968 int error = set_root(nd); 969 if (error) 970 return error; 971 } 972 if (nd->flags & LOOKUP_RCU) { 973 struct dentry *d; 974 nd->path = nd->root; 975 d = nd->path.dentry; 976 nd->inode = d->d_inode; 977 nd->seq = nd->root_seq; 978 if (read_seqcount_retry(&d->d_seq, nd->seq)) 979 return -ECHILD; 980 } else { 981 path_put(&nd->path); 982 nd->path = nd->root; 983 path_get(&nd->path); 984 nd->inode = nd->path.dentry->d_inode; 985 } 986 nd->state |= ND_JUMPED; 987 return 0; 988 } 989 990 /* 991 * Helper to directly jump to a known parsed path from ->get_link, 992 * caller must have taken a reference to path beforehand. 993 */ 994 int nd_jump_link(const struct path *path) 995 { 996 int error = -ELOOP; 997 struct nameidata *nd = current->nameidata; 998 999 if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS)) 1000 goto err; 1001 1002 error = -EXDEV; 1003 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { 1004 if (nd->path.mnt != path->mnt) 1005 goto err; 1006 } 1007 /* Not currently safe for scoped-lookups. */ 1008 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) 1009 goto err; 1010 1011 path_put(&nd->path); 1012 nd->path = *path; 1013 nd->inode = nd->path.dentry->d_inode; 1014 nd->state |= ND_JUMPED; 1015 return 0; 1016 1017 err: 1018 path_put(path); 1019 return error; 1020 } 1021 1022 static inline void put_link(struct nameidata *nd) 1023 { 1024 struct saved *last = nd->stack + --nd->depth; 1025 do_delayed_call(&last->done); 1026 if (!(nd->flags & LOOKUP_RCU)) 1027 path_put(&last->link); 1028 } 1029 1030 static int sysctl_protected_symlinks __read_mostly; 1031 static int sysctl_protected_hardlinks __read_mostly; 1032 static int sysctl_protected_fifos __read_mostly; 1033 static int sysctl_protected_regular __read_mostly; 1034 1035 #ifdef CONFIG_SYSCTL 1036 static struct ctl_table namei_sysctls[] = { 1037 { 1038 .procname = "protected_symlinks", 1039 .data = &sysctl_protected_symlinks, 1040 .maxlen = sizeof(int), 1041 .mode = 0644, 1042 .proc_handler = proc_dointvec_minmax, 1043 .extra1 = SYSCTL_ZERO, 1044 .extra2 = SYSCTL_ONE, 1045 }, 1046 { 1047 .procname = "protected_hardlinks", 1048 .data = &sysctl_protected_hardlinks, 1049 .maxlen = sizeof(int), 1050 .mode = 0644, 1051 .proc_handler = proc_dointvec_minmax, 1052 .extra1 = SYSCTL_ZERO, 1053 .extra2 = SYSCTL_ONE, 1054 }, 1055 { 1056 .procname = "protected_fifos", 1057 .data = &sysctl_protected_fifos, 1058 .maxlen = sizeof(int), 1059 .mode = 0644, 1060 .proc_handler = proc_dointvec_minmax, 1061 .extra1 = SYSCTL_ZERO, 1062 .extra2 = SYSCTL_TWO, 1063 }, 1064 { 1065 .procname = "protected_regular", 1066 .data = &sysctl_protected_regular, 1067 .maxlen = sizeof(int), 1068 .mode = 0644, 1069 .proc_handler = proc_dointvec_minmax, 1070 .extra1 = SYSCTL_ZERO, 1071 .extra2 = SYSCTL_TWO, 1072 }, 1073 }; 1074 1075 static int __init init_fs_namei_sysctls(void) 1076 { 1077 register_sysctl_init("fs", namei_sysctls); 1078 return 0; 1079 } 1080 fs_initcall(init_fs_namei_sysctls); 1081 1082 #endif /* CONFIG_SYSCTL */ 1083 1084 /** 1085 * may_follow_link - Check symlink following for unsafe situations 1086 * @nd: nameidata pathwalk data 1087 * @inode: Used for idmapping. 1088 * 1089 * In the case of the sysctl_protected_symlinks sysctl being enabled, 1090 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 1091 * in a sticky world-writable directory. This is to protect privileged 1092 * processes from failing races against path names that may change out 1093 * from under them by way of other users creating malicious symlinks. 1094 * It will permit symlinks to be followed only when outside a sticky 1095 * world-writable directory, or when the uid of the symlink and follower 1096 * match, or when the directory owner matches the symlink's owner. 1097 * 1098 * Returns 0 if following the symlink is allowed, -ve on error. 1099 */ 1100 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode) 1101 { 1102 struct mnt_idmap *idmap; 1103 vfsuid_t vfsuid; 1104 1105 if (!sysctl_protected_symlinks) 1106 return 0; 1107 1108 idmap = mnt_idmap(nd->path.mnt); 1109 vfsuid = i_uid_into_vfsuid(idmap, inode); 1110 /* Allowed if owner and follower match. */ 1111 if (vfsuid_eq_kuid(vfsuid, current_fsuid())) 1112 return 0; 1113 1114 /* Allowed if parent directory not sticky and world-writable. */ 1115 if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 1116 return 0; 1117 1118 /* Allowed if parent directory and link owner match. */ 1119 if (vfsuid_valid(nd->dir_vfsuid) && vfsuid_eq(nd->dir_vfsuid, vfsuid)) 1120 return 0; 1121 1122 if (nd->flags & LOOKUP_RCU) 1123 return -ECHILD; 1124 1125 audit_inode(nd->name, nd->stack[0].link.dentry, 0); 1126 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link"); 1127 return -EACCES; 1128 } 1129 1130 /** 1131 * safe_hardlink_source - Check for safe hardlink conditions 1132 * @idmap: idmap of the mount the inode was found from 1133 * @inode: the source inode to hardlink from 1134 * 1135 * Return false if at least one of the following conditions: 1136 * - inode is not a regular file 1137 * - inode is setuid 1138 * - inode is setgid and group-exec 1139 * - access failure for read and write 1140 * 1141 * Otherwise returns true. 1142 */ 1143 static bool safe_hardlink_source(struct mnt_idmap *idmap, 1144 struct inode *inode) 1145 { 1146 umode_t mode = inode->i_mode; 1147 1148 /* Special files should not get pinned to the filesystem. */ 1149 if (!S_ISREG(mode)) 1150 return false; 1151 1152 /* Setuid files should not get pinned to the filesystem. */ 1153 if (mode & S_ISUID) 1154 return false; 1155 1156 /* Executable setgid files should not get pinned to the filesystem. */ 1157 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 1158 return false; 1159 1160 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 1161 if (inode_permission(idmap, inode, MAY_READ | MAY_WRITE)) 1162 return false; 1163 1164 return true; 1165 } 1166 1167 /** 1168 * may_linkat - Check permissions for creating a hardlink 1169 * @idmap: idmap of the mount the inode was found from 1170 * @link: the source to hardlink from 1171 * 1172 * Block hardlink when all of: 1173 * - sysctl_protected_hardlinks enabled 1174 * - fsuid does not match inode 1175 * - hardlink source is unsafe (see safe_hardlink_source() above) 1176 * - not CAP_FOWNER in a namespace with the inode owner uid mapped 1177 * 1178 * If the inode has been found through an idmapped mount the idmap of 1179 * the vfsmount must be passed through @idmap. This function will then take 1180 * care to map the inode according to @idmap before checking permissions. 1181 * On non-idmapped mounts or if permission checking is to be performed on the 1182 * raw inode simply pass @nop_mnt_idmap. 1183 * 1184 * Returns 0 if successful, -ve on error. 1185 */ 1186 int may_linkat(struct mnt_idmap *idmap, const struct path *link) 1187 { 1188 struct inode *inode = link->dentry->d_inode; 1189 1190 /* Inode writeback is not safe when the uid or gid are invalid. */ 1191 if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) || 1192 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode))) 1193 return -EOVERFLOW; 1194 1195 if (!sysctl_protected_hardlinks) 1196 return 0; 1197 1198 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 1199 * otherwise, it must be a safe source. 1200 */ 1201 if (safe_hardlink_source(idmap, inode) || 1202 inode_owner_or_capable(idmap, inode)) 1203 return 0; 1204 1205 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat"); 1206 return -EPERM; 1207 } 1208 1209 /** 1210 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory 1211 * should be allowed, or not, on files that already 1212 * exist. 1213 * @idmap: idmap of the mount the inode was found from 1214 * @nd: nameidata pathwalk data 1215 * @inode: the inode of the file to open 1216 * 1217 * Block an O_CREAT open of a FIFO (or a regular file) when: 1218 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled 1219 * - the file already exists 1220 * - we are in a sticky directory 1221 * - we don't own the file 1222 * - the owner of the directory doesn't own the file 1223 * - the directory is world writable 1224 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2 1225 * the directory doesn't have to be world writable: being group writable will 1226 * be enough. 1227 * 1228 * If the inode has been found through an idmapped mount the idmap of 1229 * the vfsmount must be passed through @idmap. This function will then take 1230 * care to map the inode according to @idmap before checking permissions. 1231 * On non-idmapped mounts or if permission checking is to be performed on the 1232 * raw inode simply pass @nop_mnt_idmap. 1233 * 1234 * Returns 0 if the open is allowed, -ve on error. 1235 */ 1236 static int may_create_in_sticky(struct mnt_idmap *idmap, 1237 struct nameidata *nd, struct inode *const inode) 1238 { 1239 umode_t dir_mode = nd->dir_mode; 1240 vfsuid_t dir_vfsuid = nd->dir_vfsuid; 1241 1242 if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) || 1243 (!sysctl_protected_regular && S_ISREG(inode->i_mode)) || 1244 likely(!(dir_mode & S_ISVTX)) || 1245 vfsuid_eq(i_uid_into_vfsuid(idmap, inode), dir_vfsuid) || 1246 vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), current_fsuid())) 1247 return 0; 1248 1249 if (likely(dir_mode & 0002) || 1250 (dir_mode & 0020 && 1251 ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) || 1252 (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) { 1253 const char *operation = S_ISFIFO(inode->i_mode) ? 1254 "sticky_create_fifo" : 1255 "sticky_create_regular"; 1256 audit_log_path_denied(AUDIT_ANOM_CREAT, operation); 1257 return -EACCES; 1258 } 1259 return 0; 1260 } 1261 1262 /* 1263 * follow_up - Find the mountpoint of path's vfsmount 1264 * 1265 * Given a path, find the mountpoint of its source file system. 1266 * Replace @path with the path of the mountpoint in the parent mount. 1267 * Up is towards /. 1268 * 1269 * Return 1 if we went up a level and 0 if we were already at the 1270 * root. 1271 */ 1272 int follow_up(struct path *path) 1273 { 1274 struct mount *mnt = real_mount(path->mnt); 1275 struct mount *parent; 1276 struct dentry *mountpoint; 1277 1278 read_seqlock_excl(&mount_lock); 1279 parent = mnt->mnt_parent; 1280 if (parent == mnt) { 1281 read_sequnlock_excl(&mount_lock); 1282 return 0; 1283 } 1284 mntget(&parent->mnt); 1285 mountpoint = dget(mnt->mnt_mountpoint); 1286 read_sequnlock_excl(&mount_lock); 1287 dput(path->dentry); 1288 path->dentry = mountpoint; 1289 mntput(path->mnt); 1290 path->mnt = &parent->mnt; 1291 return 1; 1292 } 1293 EXPORT_SYMBOL(follow_up); 1294 1295 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root, 1296 struct path *path, unsigned *seqp) 1297 { 1298 while (mnt_has_parent(m)) { 1299 struct dentry *mountpoint = m->mnt_mountpoint; 1300 1301 m = m->mnt_parent; 1302 if (unlikely(root->dentry == mountpoint && 1303 root->mnt == &m->mnt)) 1304 break; 1305 if (mountpoint != m->mnt.mnt_root) { 1306 path->mnt = &m->mnt; 1307 path->dentry = mountpoint; 1308 *seqp = read_seqcount_begin(&mountpoint->d_seq); 1309 return true; 1310 } 1311 } 1312 return false; 1313 } 1314 1315 static bool choose_mountpoint(struct mount *m, const struct path *root, 1316 struct path *path) 1317 { 1318 bool found; 1319 1320 rcu_read_lock(); 1321 while (1) { 1322 unsigned seq, mseq = read_seqbegin(&mount_lock); 1323 1324 found = choose_mountpoint_rcu(m, root, path, &seq); 1325 if (unlikely(!found)) { 1326 if (!read_seqretry(&mount_lock, mseq)) 1327 break; 1328 } else { 1329 if (likely(__legitimize_path(path, seq, mseq))) 1330 break; 1331 rcu_read_unlock(); 1332 path_put(path); 1333 rcu_read_lock(); 1334 } 1335 } 1336 rcu_read_unlock(); 1337 return found; 1338 } 1339 1340 /* 1341 * Perform an automount 1342 * - return -EISDIR to tell follow_managed() to stop and return the path we 1343 * were called with. 1344 */ 1345 static int follow_automount(struct path *path, int *count, unsigned lookup_flags) 1346 { 1347 struct dentry *dentry = path->dentry; 1348 1349 /* We don't want to mount if someone's just doing a stat - 1350 * unless they're stat'ing a directory and appended a '/' to 1351 * the name. 1352 * 1353 * We do, however, want to mount if someone wants to open or 1354 * create a file of any type under the mountpoint, wants to 1355 * traverse through the mountpoint or wants to open the 1356 * mounted directory. Also, autofs may mark negative dentries 1357 * as being automount points. These will need the attentions 1358 * of the daemon to instantiate them before they can be used. 1359 */ 1360 if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 1361 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 1362 dentry->d_inode) 1363 return -EISDIR; 1364 1365 if (count && (*count)++ >= MAXSYMLINKS) 1366 return -ELOOP; 1367 1368 return finish_automount(dentry->d_op->d_automount(path), path); 1369 } 1370 1371 /* 1372 * mount traversal - out-of-line part. One note on ->d_flags accesses - 1373 * dentries are pinned but not locked here, so negative dentry can go 1374 * positive right under us. Use of smp_load_acquire() provides a barrier 1375 * sufficient for ->d_inode and ->d_flags consistency. 1376 */ 1377 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped, 1378 int *count, unsigned lookup_flags) 1379 { 1380 struct vfsmount *mnt = path->mnt; 1381 bool need_mntput = false; 1382 int ret = 0; 1383 1384 while (flags & DCACHE_MANAGED_DENTRY) { 1385 /* Allow the filesystem to manage the transit without i_mutex 1386 * being held. */ 1387 if (flags & DCACHE_MANAGE_TRANSIT) { 1388 ret = path->dentry->d_op->d_manage(path, false); 1389 flags = smp_load_acquire(&path->dentry->d_flags); 1390 if (ret < 0) 1391 break; 1392 } 1393 1394 if (flags & DCACHE_MOUNTED) { // something's mounted on it.. 1395 struct vfsmount *mounted = lookup_mnt(path); 1396 if (mounted) { // ... in our namespace 1397 dput(path->dentry); 1398 if (need_mntput) 1399 mntput(path->mnt); 1400 path->mnt = mounted; 1401 path->dentry = dget(mounted->mnt_root); 1402 // here we know it's positive 1403 flags = path->dentry->d_flags; 1404 need_mntput = true; 1405 continue; 1406 } 1407 } 1408 1409 if (!(flags & DCACHE_NEED_AUTOMOUNT)) 1410 break; 1411 1412 // uncovered automount point 1413 ret = follow_automount(path, count, lookup_flags); 1414 flags = smp_load_acquire(&path->dentry->d_flags); 1415 if (ret < 0) 1416 break; 1417 } 1418 1419 if (ret == -EISDIR) 1420 ret = 0; 1421 // possible if you race with several mount --move 1422 if (need_mntput && path->mnt == mnt) 1423 mntput(path->mnt); 1424 if (!ret && unlikely(d_flags_negative(flags))) 1425 ret = -ENOENT; 1426 *jumped = need_mntput; 1427 return ret; 1428 } 1429 1430 static inline int traverse_mounts(struct path *path, bool *jumped, 1431 int *count, unsigned lookup_flags) 1432 { 1433 unsigned flags = smp_load_acquire(&path->dentry->d_flags); 1434 1435 /* fastpath */ 1436 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) { 1437 *jumped = false; 1438 if (unlikely(d_flags_negative(flags))) 1439 return -ENOENT; 1440 return 0; 1441 } 1442 return __traverse_mounts(path, flags, jumped, count, lookup_flags); 1443 } 1444 1445 int follow_down_one(struct path *path) 1446 { 1447 struct vfsmount *mounted; 1448 1449 mounted = lookup_mnt(path); 1450 if (mounted) { 1451 dput(path->dentry); 1452 mntput(path->mnt); 1453 path->mnt = mounted; 1454 path->dentry = dget(mounted->mnt_root); 1455 return 1; 1456 } 1457 return 0; 1458 } 1459 EXPORT_SYMBOL(follow_down_one); 1460 1461 /* 1462 * Follow down to the covering mount currently visible to userspace. At each 1463 * point, the filesystem owning that dentry may be queried as to whether the 1464 * caller is permitted to proceed or not. 1465 */ 1466 int follow_down(struct path *path, unsigned int flags) 1467 { 1468 struct vfsmount *mnt = path->mnt; 1469 bool jumped; 1470 int ret = traverse_mounts(path, &jumped, NULL, flags); 1471 1472 if (path->mnt != mnt) 1473 mntput(mnt); 1474 return ret; 1475 } 1476 EXPORT_SYMBOL(follow_down); 1477 1478 /* 1479 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1480 * we meet a managed dentry that would need blocking. 1481 */ 1482 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path) 1483 { 1484 struct dentry *dentry = path->dentry; 1485 unsigned int flags = dentry->d_flags; 1486 1487 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) 1488 return true; 1489 1490 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1491 return false; 1492 1493 for (;;) { 1494 /* 1495 * Don't forget we might have a non-mountpoint managed dentry 1496 * that wants to block transit. 1497 */ 1498 if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) { 1499 int res = dentry->d_op->d_manage(path, true); 1500 if (res) 1501 return res == -EISDIR; 1502 flags = dentry->d_flags; 1503 } 1504 1505 if (flags & DCACHE_MOUNTED) { 1506 struct mount *mounted = __lookup_mnt(path->mnt, dentry); 1507 if (mounted) { 1508 path->mnt = &mounted->mnt; 1509 dentry = path->dentry = mounted->mnt.mnt_root; 1510 nd->state |= ND_JUMPED; 1511 nd->next_seq = read_seqcount_begin(&dentry->d_seq); 1512 flags = dentry->d_flags; 1513 // makes sure that non-RCU pathwalk could reach 1514 // this state. 1515 if (read_seqretry(&mount_lock, nd->m_seq)) 1516 return false; 1517 continue; 1518 } 1519 if (read_seqretry(&mount_lock, nd->m_seq)) 1520 return false; 1521 } 1522 return !(flags & DCACHE_NEED_AUTOMOUNT); 1523 } 1524 } 1525 1526 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry, 1527 struct path *path) 1528 { 1529 bool jumped; 1530 int ret; 1531 1532 path->mnt = nd->path.mnt; 1533 path->dentry = dentry; 1534 if (nd->flags & LOOKUP_RCU) { 1535 unsigned int seq = nd->next_seq; 1536 if (likely(__follow_mount_rcu(nd, path))) 1537 return 0; 1538 // *path and nd->next_seq might've been clobbered 1539 path->mnt = nd->path.mnt; 1540 path->dentry = dentry; 1541 nd->next_seq = seq; 1542 if (!try_to_unlazy_next(nd, dentry)) 1543 return -ECHILD; 1544 } 1545 ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags); 1546 if (jumped) { 1547 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1548 ret = -EXDEV; 1549 else 1550 nd->state |= ND_JUMPED; 1551 } 1552 if (unlikely(ret)) { 1553 dput(path->dentry); 1554 if (path->mnt != nd->path.mnt) 1555 mntput(path->mnt); 1556 } 1557 return ret; 1558 } 1559 1560 /* 1561 * This looks up the name in dcache and possibly revalidates the found dentry. 1562 * NULL is returned if the dentry does not exist in the cache. 1563 */ 1564 static struct dentry *lookup_dcache(const struct qstr *name, 1565 struct dentry *dir, 1566 unsigned int flags) 1567 { 1568 struct dentry *dentry = d_lookup(dir, name); 1569 if (dentry) { 1570 int error = d_revalidate(dentry, flags); 1571 if (unlikely(error <= 0)) { 1572 if (!error) 1573 d_invalidate(dentry); 1574 dput(dentry); 1575 return ERR_PTR(error); 1576 } 1577 } 1578 return dentry; 1579 } 1580 1581 /* 1582 * Parent directory has inode locked exclusive. This is one 1583 * and only case when ->lookup() gets called on non in-lookup 1584 * dentries - as the matter of fact, this only gets called 1585 * when directory is guaranteed to have no in-lookup children 1586 * at all. 1587 */ 1588 struct dentry *lookup_one_qstr_excl(const struct qstr *name, 1589 struct dentry *base, 1590 unsigned int flags) 1591 { 1592 struct dentry *dentry = lookup_dcache(name, base, flags); 1593 struct dentry *old; 1594 struct inode *dir = base->d_inode; 1595 1596 if (dentry) 1597 return dentry; 1598 1599 /* Don't create child dentry for a dead directory. */ 1600 if (unlikely(IS_DEADDIR(dir))) 1601 return ERR_PTR(-ENOENT); 1602 1603 dentry = d_alloc(base, name); 1604 if (unlikely(!dentry)) 1605 return ERR_PTR(-ENOMEM); 1606 1607 old = dir->i_op->lookup(dir, dentry, flags); 1608 if (unlikely(old)) { 1609 dput(dentry); 1610 dentry = old; 1611 } 1612 return dentry; 1613 } 1614 EXPORT_SYMBOL(lookup_one_qstr_excl); 1615 1616 static struct dentry *lookup_fast(struct nameidata *nd) 1617 { 1618 struct dentry *dentry, *parent = nd->path.dentry; 1619 int status = 1; 1620 1621 /* 1622 * Rename seqlock is not required here because in the off chance 1623 * of a false negative due to a concurrent rename, the caller is 1624 * going to fall back to non-racy lookup. 1625 */ 1626 if (nd->flags & LOOKUP_RCU) { 1627 dentry = __d_lookup_rcu(parent, &nd->last, &nd->next_seq); 1628 if (unlikely(!dentry)) { 1629 if (!try_to_unlazy(nd)) 1630 return ERR_PTR(-ECHILD); 1631 return NULL; 1632 } 1633 1634 /* 1635 * This sequence count validates that the parent had no 1636 * changes while we did the lookup of the dentry above. 1637 */ 1638 if (read_seqcount_retry(&parent->d_seq, nd->seq)) 1639 return ERR_PTR(-ECHILD); 1640 1641 status = d_revalidate(dentry, nd->flags); 1642 if (likely(status > 0)) 1643 return dentry; 1644 if (!try_to_unlazy_next(nd, dentry)) 1645 return ERR_PTR(-ECHILD); 1646 if (status == -ECHILD) 1647 /* we'd been told to redo it in non-rcu mode */ 1648 status = d_revalidate(dentry, nd->flags); 1649 } else { 1650 dentry = __d_lookup(parent, &nd->last); 1651 if (unlikely(!dentry)) 1652 return NULL; 1653 status = d_revalidate(dentry, nd->flags); 1654 } 1655 if (unlikely(status <= 0)) { 1656 if (!status) 1657 d_invalidate(dentry); 1658 dput(dentry); 1659 return ERR_PTR(status); 1660 } 1661 return dentry; 1662 } 1663 1664 /* Fast lookup failed, do it the slow way */ 1665 static struct dentry *__lookup_slow(const struct qstr *name, 1666 struct dentry *dir, 1667 unsigned int flags) 1668 { 1669 struct dentry *dentry, *old; 1670 struct inode *inode = dir->d_inode; 1671 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1672 1673 /* Don't go there if it's already dead */ 1674 if (unlikely(IS_DEADDIR(inode))) 1675 return ERR_PTR(-ENOENT); 1676 again: 1677 dentry = d_alloc_parallel(dir, name, &wq); 1678 if (IS_ERR(dentry)) 1679 return dentry; 1680 if (unlikely(!d_in_lookup(dentry))) { 1681 int error = d_revalidate(dentry, flags); 1682 if (unlikely(error <= 0)) { 1683 if (!error) { 1684 d_invalidate(dentry); 1685 dput(dentry); 1686 goto again; 1687 } 1688 dput(dentry); 1689 dentry = ERR_PTR(error); 1690 } 1691 } else { 1692 old = inode->i_op->lookup(inode, dentry, flags); 1693 d_lookup_done(dentry); 1694 if (unlikely(old)) { 1695 dput(dentry); 1696 dentry = old; 1697 } 1698 } 1699 return dentry; 1700 } 1701 1702 static struct dentry *lookup_slow(const struct qstr *name, 1703 struct dentry *dir, 1704 unsigned int flags) 1705 { 1706 struct inode *inode = dir->d_inode; 1707 struct dentry *res; 1708 inode_lock_shared(inode); 1709 res = __lookup_slow(name, dir, flags); 1710 inode_unlock_shared(inode); 1711 return res; 1712 } 1713 1714 static inline int may_lookup(struct mnt_idmap *idmap, 1715 struct nameidata *nd) 1716 { 1717 if (nd->flags & LOOKUP_RCU) { 1718 int err = inode_permission(idmap, nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1719 if (!err) // success, keep going 1720 return 0; 1721 if (!try_to_unlazy(nd)) 1722 return -ECHILD; // redo it all non-lazy 1723 if (err != -ECHILD) // hard error 1724 return err; 1725 } 1726 return inode_permission(idmap, nd->inode, MAY_EXEC); 1727 } 1728 1729 static int reserve_stack(struct nameidata *nd, struct path *link) 1730 { 1731 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) 1732 return -ELOOP; 1733 1734 if (likely(nd->depth != EMBEDDED_LEVELS)) 1735 return 0; 1736 if (likely(nd->stack != nd->internal)) 1737 return 0; 1738 if (likely(nd_alloc_stack(nd))) 1739 return 0; 1740 1741 if (nd->flags & LOOKUP_RCU) { 1742 // we need to grab link before we do unlazy. And we can't skip 1743 // unlazy even if we fail to grab the link - cleanup needs it 1744 bool grabbed_link = legitimize_path(nd, link, nd->next_seq); 1745 1746 if (!try_to_unlazy(nd) || !grabbed_link) 1747 return -ECHILD; 1748 1749 if (nd_alloc_stack(nd)) 1750 return 0; 1751 } 1752 return -ENOMEM; 1753 } 1754 1755 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4}; 1756 1757 static const char *pick_link(struct nameidata *nd, struct path *link, 1758 struct inode *inode, int flags) 1759 { 1760 struct saved *last; 1761 const char *res; 1762 int error = reserve_stack(nd, link); 1763 1764 if (unlikely(error)) { 1765 if (!(nd->flags & LOOKUP_RCU)) 1766 path_put(link); 1767 return ERR_PTR(error); 1768 } 1769 last = nd->stack + nd->depth++; 1770 last->link = *link; 1771 clear_delayed_call(&last->done); 1772 last->seq = nd->next_seq; 1773 1774 if (flags & WALK_TRAILING) { 1775 error = may_follow_link(nd, inode); 1776 if (unlikely(error)) 1777 return ERR_PTR(error); 1778 } 1779 1780 if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) || 1781 unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW)) 1782 return ERR_PTR(-ELOOP); 1783 1784 if (!(nd->flags & LOOKUP_RCU)) { 1785 touch_atime(&last->link); 1786 cond_resched(); 1787 } else if (atime_needs_update(&last->link, inode)) { 1788 if (!try_to_unlazy(nd)) 1789 return ERR_PTR(-ECHILD); 1790 touch_atime(&last->link); 1791 } 1792 1793 error = security_inode_follow_link(link->dentry, inode, 1794 nd->flags & LOOKUP_RCU); 1795 if (unlikely(error)) 1796 return ERR_PTR(error); 1797 1798 res = READ_ONCE(inode->i_link); 1799 if (!res) { 1800 const char * (*get)(struct dentry *, struct inode *, 1801 struct delayed_call *); 1802 get = inode->i_op->get_link; 1803 if (nd->flags & LOOKUP_RCU) { 1804 res = get(NULL, inode, &last->done); 1805 if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd)) 1806 res = get(link->dentry, inode, &last->done); 1807 } else { 1808 res = get(link->dentry, inode, &last->done); 1809 } 1810 if (!res) 1811 goto all_done; 1812 if (IS_ERR(res)) 1813 return res; 1814 } 1815 if (*res == '/') { 1816 error = nd_jump_root(nd); 1817 if (unlikely(error)) 1818 return ERR_PTR(error); 1819 while (unlikely(*++res == '/')) 1820 ; 1821 } 1822 if (*res) 1823 return res; 1824 all_done: // pure jump 1825 put_link(nd); 1826 return NULL; 1827 } 1828 1829 /* 1830 * Do we need to follow links? We _really_ want to be able 1831 * to do this check without having to look at inode->i_op, 1832 * so we keep a cache of "no, this doesn't need follow_link" 1833 * for the common case. 1834 * 1835 * NOTE: dentry must be what nd->next_seq had been sampled from. 1836 */ 1837 static const char *step_into(struct nameidata *nd, int flags, 1838 struct dentry *dentry) 1839 { 1840 struct path path; 1841 struct inode *inode; 1842 int err = handle_mounts(nd, dentry, &path); 1843 1844 if (err < 0) 1845 return ERR_PTR(err); 1846 inode = path.dentry->d_inode; 1847 if (likely(!d_is_symlink(path.dentry)) || 1848 ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) || 1849 (flags & WALK_NOFOLLOW)) { 1850 /* not a symlink or should not follow */ 1851 if (nd->flags & LOOKUP_RCU) { 1852 if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq)) 1853 return ERR_PTR(-ECHILD); 1854 if (unlikely(!inode)) 1855 return ERR_PTR(-ENOENT); 1856 } else { 1857 dput(nd->path.dentry); 1858 if (nd->path.mnt != path.mnt) 1859 mntput(nd->path.mnt); 1860 } 1861 nd->path = path; 1862 nd->inode = inode; 1863 nd->seq = nd->next_seq; 1864 return NULL; 1865 } 1866 if (nd->flags & LOOKUP_RCU) { 1867 /* make sure that d_is_symlink above matches inode */ 1868 if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq)) 1869 return ERR_PTR(-ECHILD); 1870 } else { 1871 if (path.mnt == nd->path.mnt) 1872 mntget(path.mnt); 1873 } 1874 return pick_link(nd, &path, inode, flags); 1875 } 1876 1877 static struct dentry *follow_dotdot_rcu(struct nameidata *nd) 1878 { 1879 struct dentry *parent, *old; 1880 1881 if (path_equal(&nd->path, &nd->root)) 1882 goto in_root; 1883 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { 1884 struct path path; 1885 unsigned seq; 1886 if (!choose_mountpoint_rcu(real_mount(nd->path.mnt), 1887 &nd->root, &path, &seq)) 1888 goto in_root; 1889 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1890 return ERR_PTR(-ECHILD); 1891 nd->path = path; 1892 nd->inode = path.dentry->d_inode; 1893 nd->seq = seq; 1894 // makes sure that non-RCU pathwalk could reach this state 1895 if (read_seqretry(&mount_lock, nd->m_seq)) 1896 return ERR_PTR(-ECHILD); 1897 /* we know that mountpoint was pinned */ 1898 } 1899 old = nd->path.dentry; 1900 parent = old->d_parent; 1901 nd->next_seq = read_seqcount_begin(&parent->d_seq); 1902 // makes sure that non-RCU pathwalk could reach this state 1903 if (read_seqcount_retry(&old->d_seq, nd->seq)) 1904 return ERR_PTR(-ECHILD); 1905 if (unlikely(!path_connected(nd->path.mnt, parent))) 1906 return ERR_PTR(-ECHILD); 1907 return parent; 1908 in_root: 1909 if (read_seqretry(&mount_lock, nd->m_seq)) 1910 return ERR_PTR(-ECHILD); 1911 if (unlikely(nd->flags & LOOKUP_BENEATH)) 1912 return ERR_PTR(-ECHILD); 1913 nd->next_seq = nd->seq; 1914 return nd->path.dentry; 1915 } 1916 1917 static struct dentry *follow_dotdot(struct nameidata *nd) 1918 { 1919 struct dentry *parent; 1920 1921 if (path_equal(&nd->path, &nd->root)) 1922 goto in_root; 1923 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { 1924 struct path path; 1925 1926 if (!choose_mountpoint(real_mount(nd->path.mnt), 1927 &nd->root, &path)) 1928 goto in_root; 1929 path_put(&nd->path); 1930 nd->path = path; 1931 nd->inode = path.dentry->d_inode; 1932 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1933 return ERR_PTR(-EXDEV); 1934 } 1935 /* rare case of legitimate dget_parent()... */ 1936 parent = dget_parent(nd->path.dentry); 1937 if (unlikely(!path_connected(nd->path.mnt, parent))) { 1938 dput(parent); 1939 return ERR_PTR(-ENOENT); 1940 } 1941 return parent; 1942 1943 in_root: 1944 if (unlikely(nd->flags & LOOKUP_BENEATH)) 1945 return ERR_PTR(-EXDEV); 1946 return dget(nd->path.dentry); 1947 } 1948 1949 static const char *handle_dots(struct nameidata *nd, int type) 1950 { 1951 if (type == LAST_DOTDOT) { 1952 const char *error = NULL; 1953 struct dentry *parent; 1954 1955 if (!nd->root.mnt) { 1956 error = ERR_PTR(set_root(nd)); 1957 if (error) 1958 return error; 1959 } 1960 if (nd->flags & LOOKUP_RCU) 1961 parent = follow_dotdot_rcu(nd); 1962 else 1963 parent = follow_dotdot(nd); 1964 if (IS_ERR(parent)) 1965 return ERR_CAST(parent); 1966 error = step_into(nd, WALK_NOFOLLOW, parent); 1967 if (unlikely(error)) 1968 return error; 1969 1970 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { 1971 /* 1972 * If there was a racing rename or mount along our 1973 * path, then we can't be sure that ".." hasn't jumped 1974 * above nd->root (and so userspace should retry or use 1975 * some fallback). 1976 */ 1977 smp_rmb(); 1978 if (__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq)) 1979 return ERR_PTR(-EAGAIN); 1980 if (__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq)) 1981 return ERR_PTR(-EAGAIN); 1982 } 1983 } 1984 return NULL; 1985 } 1986 1987 static const char *walk_component(struct nameidata *nd, int flags) 1988 { 1989 struct dentry *dentry; 1990 /* 1991 * "." and ".." are special - ".." especially so because it has 1992 * to be able to know about the current root directory and 1993 * parent relationships. 1994 */ 1995 if (unlikely(nd->last_type != LAST_NORM)) { 1996 if (!(flags & WALK_MORE) && nd->depth) 1997 put_link(nd); 1998 return handle_dots(nd, nd->last_type); 1999 } 2000 dentry = lookup_fast(nd); 2001 if (IS_ERR(dentry)) 2002 return ERR_CAST(dentry); 2003 if (unlikely(!dentry)) { 2004 dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags); 2005 if (IS_ERR(dentry)) 2006 return ERR_CAST(dentry); 2007 } 2008 if (!(flags & WALK_MORE) && nd->depth) 2009 put_link(nd); 2010 return step_into(nd, flags, dentry); 2011 } 2012 2013 /* 2014 * We can do the critical dentry name comparison and hashing 2015 * operations one word at a time, but we are limited to: 2016 * 2017 * - Architectures with fast unaligned word accesses. We could 2018 * do a "get_unaligned()" if this helps and is sufficiently 2019 * fast. 2020 * 2021 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 2022 * do not trap on the (extremely unlikely) case of a page 2023 * crossing operation. 2024 * 2025 * - Furthermore, we need an efficient 64-bit compile for the 2026 * 64-bit case in order to generate the "number of bytes in 2027 * the final mask". Again, that could be replaced with a 2028 * efficient population count instruction or similar. 2029 */ 2030 #ifdef CONFIG_DCACHE_WORD_ACCESS 2031 2032 #include <asm/word-at-a-time.h> 2033 2034 #ifdef HASH_MIX 2035 2036 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */ 2037 2038 #elif defined(CONFIG_64BIT) 2039 /* 2040 * Register pressure in the mixing function is an issue, particularly 2041 * on 32-bit x86, but almost any function requires one state value and 2042 * one temporary. Instead, use a function designed for two state values 2043 * and no temporaries. 2044 * 2045 * This function cannot create a collision in only two iterations, so 2046 * we have two iterations to achieve avalanche. In those two iterations, 2047 * we have six layers of mixing, which is enough to spread one bit's 2048 * influence out to 2^6 = 64 state bits. 2049 * 2050 * Rotate constants are scored by considering either 64 one-bit input 2051 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the 2052 * probability of that delta causing a change to each of the 128 output 2053 * bits, using a sample of random initial states. 2054 * 2055 * The Shannon entropy of the computed probabilities is then summed 2056 * to produce a score. Ideally, any input change has a 50% chance of 2057 * toggling any given output bit. 2058 * 2059 * Mixing scores (in bits) for (12,45): 2060 * Input delta: 1-bit 2-bit 2061 * 1 round: 713.3 42542.6 2062 * 2 rounds: 2753.7 140389.8 2063 * 3 rounds: 5954.1 233458.2 2064 * 4 rounds: 7862.6 256672.2 2065 * Perfect: 8192 258048 2066 * (64*128) (64*63/2 * 128) 2067 */ 2068 #define HASH_MIX(x, y, a) \ 2069 ( x ^= (a), \ 2070 y ^= x, x = rol64(x,12),\ 2071 x += y, y = rol64(y,45),\ 2072 y *= 9 ) 2073 2074 /* 2075 * Fold two longs into one 32-bit hash value. This must be fast, but 2076 * latency isn't quite as critical, as there is a fair bit of additional 2077 * work done before the hash value is used. 2078 */ 2079 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 2080 { 2081 y ^= x * GOLDEN_RATIO_64; 2082 y *= GOLDEN_RATIO_64; 2083 return y >> 32; 2084 } 2085 2086 #else /* 32-bit case */ 2087 2088 /* 2089 * Mixing scores (in bits) for (7,20): 2090 * Input delta: 1-bit 2-bit 2091 * 1 round: 330.3 9201.6 2092 * 2 rounds: 1246.4 25475.4 2093 * 3 rounds: 1907.1 31295.1 2094 * 4 rounds: 2042.3 31718.6 2095 * Perfect: 2048 31744 2096 * (32*64) (32*31/2 * 64) 2097 */ 2098 #define HASH_MIX(x, y, a) \ 2099 ( x ^= (a), \ 2100 y ^= x, x = rol32(x, 7),\ 2101 x += y, y = rol32(y,20),\ 2102 y *= 9 ) 2103 2104 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 2105 { 2106 /* Use arch-optimized multiply if one exists */ 2107 return __hash_32(y ^ __hash_32(x)); 2108 } 2109 2110 #endif 2111 2112 /* 2113 * Return the hash of a string of known length. This is carfully 2114 * designed to match hash_name(), which is the more critical function. 2115 * In particular, we must end by hashing a final word containing 0..7 2116 * payload bytes, to match the way that hash_name() iterates until it 2117 * finds the delimiter after the name. 2118 */ 2119 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2120 { 2121 unsigned long a, x = 0, y = (unsigned long)salt; 2122 2123 for (;;) { 2124 if (!len) 2125 goto done; 2126 a = load_unaligned_zeropad(name); 2127 if (len < sizeof(unsigned long)) 2128 break; 2129 HASH_MIX(x, y, a); 2130 name += sizeof(unsigned long); 2131 len -= sizeof(unsigned long); 2132 } 2133 x ^= a & bytemask_from_count(len); 2134 done: 2135 return fold_hash(x, y); 2136 } 2137 EXPORT_SYMBOL(full_name_hash); 2138 2139 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2140 u64 hashlen_string(const void *salt, const char *name) 2141 { 2142 unsigned long a = 0, x = 0, y = (unsigned long)salt; 2143 unsigned long adata, mask, len; 2144 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 2145 2146 len = 0; 2147 goto inside; 2148 2149 do { 2150 HASH_MIX(x, y, a); 2151 len += sizeof(unsigned long); 2152 inside: 2153 a = load_unaligned_zeropad(name+len); 2154 } while (!has_zero(a, &adata, &constants)); 2155 2156 adata = prep_zero_mask(a, adata, &constants); 2157 mask = create_zero_mask(adata); 2158 x ^= a & zero_bytemask(mask); 2159 2160 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 2161 } 2162 EXPORT_SYMBOL(hashlen_string); 2163 2164 /* 2165 * Calculate the length and hash of the path component, and 2166 * return the "hash_len" as the result. 2167 */ 2168 static inline u64 hash_name(const void *salt, const char *name) 2169 { 2170 unsigned long a = 0, b, x = 0, y = (unsigned long)salt; 2171 unsigned long adata, bdata, mask, len; 2172 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 2173 2174 len = 0; 2175 goto inside; 2176 2177 do { 2178 HASH_MIX(x, y, a); 2179 len += sizeof(unsigned long); 2180 inside: 2181 a = load_unaligned_zeropad(name+len); 2182 b = a ^ REPEAT_BYTE('/'); 2183 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 2184 2185 adata = prep_zero_mask(a, adata, &constants); 2186 bdata = prep_zero_mask(b, bdata, &constants); 2187 mask = create_zero_mask(adata | bdata); 2188 x ^= a & zero_bytemask(mask); 2189 2190 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 2191 } 2192 2193 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */ 2194 2195 /* Return the hash of a string of known length */ 2196 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2197 { 2198 unsigned long hash = init_name_hash(salt); 2199 while (len--) 2200 hash = partial_name_hash((unsigned char)*name++, hash); 2201 return end_name_hash(hash); 2202 } 2203 EXPORT_SYMBOL(full_name_hash); 2204 2205 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2206 u64 hashlen_string(const void *salt, const char *name) 2207 { 2208 unsigned long hash = init_name_hash(salt); 2209 unsigned long len = 0, c; 2210 2211 c = (unsigned char)*name; 2212 while (c) { 2213 len++; 2214 hash = partial_name_hash(c, hash); 2215 c = (unsigned char)name[len]; 2216 } 2217 return hashlen_create(end_name_hash(hash), len); 2218 } 2219 EXPORT_SYMBOL(hashlen_string); 2220 2221 /* 2222 * We know there's a real path component here of at least 2223 * one character. 2224 */ 2225 static inline u64 hash_name(const void *salt, const char *name) 2226 { 2227 unsigned long hash = init_name_hash(salt); 2228 unsigned long len = 0, c; 2229 2230 c = (unsigned char)*name; 2231 do { 2232 len++; 2233 hash = partial_name_hash(c, hash); 2234 c = (unsigned char)name[len]; 2235 } while (c && c != '/'); 2236 return hashlen_create(end_name_hash(hash), len); 2237 } 2238 2239 #endif 2240 2241 /* 2242 * Name resolution. 2243 * This is the basic name resolution function, turning a pathname into 2244 * the final dentry. We expect 'base' to be positive and a directory. 2245 * 2246 * Returns 0 and nd will have valid dentry and mnt on success. 2247 * Returns error and drops reference to input namei data on failure. 2248 */ 2249 static int link_path_walk(const char *name, struct nameidata *nd) 2250 { 2251 int depth = 0; // depth <= nd->depth 2252 int err; 2253 2254 nd->last_type = LAST_ROOT; 2255 nd->flags |= LOOKUP_PARENT; 2256 if (IS_ERR(name)) 2257 return PTR_ERR(name); 2258 while (*name=='/') 2259 name++; 2260 if (!*name) { 2261 nd->dir_mode = 0; // short-circuit the 'hardening' idiocy 2262 return 0; 2263 } 2264 2265 /* At this point we know we have a real path component. */ 2266 for(;;) { 2267 struct mnt_idmap *idmap; 2268 const char *link; 2269 u64 hash_len; 2270 int type; 2271 2272 idmap = mnt_idmap(nd->path.mnt); 2273 err = may_lookup(idmap, nd); 2274 if (err) 2275 return err; 2276 2277 hash_len = hash_name(nd->path.dentry, name); 2278 2279 type = LAST_NORM; 2280 if (name[0] == '.') switch (hashlen_len(hash_len)) { 2281 case 2: 2282 if (name[1] == '.') { 2283 type = LAST_DOTDOT; 2284 nd->state |= ND_JUMPED; 2285 } 2286 break; 2287 case 1: 2288 type = LAST_DOT; 2289 } 2290 if (likely(type == LAST_NORM)) { 2291 struct dentry *parent = nd->path.dentry; 2292 nd->state &= ~ND_JUMPED; 2293 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 2294 struct qstr this = { { .hash_len = hash_len }, .name = name }; 2295 err = parent->d_op->d_hash(parent, &this); 2296 if (err < 0) 2297 return err; 2298 hash_len = this.hash_len; 2299 name = this.name; 2300 } 2301 } 2302 2303 nd->last.hash_len = hash_len; 2304 nd->last.name = name; 2305 nd->last_type = type; 2306 2307 name += hashlen_len(hash_len); 2308 if (!*name) 2309 goto OK; 2310 /* 2311 * If it wasn't NUL, we know it was '/'. Skip that 2312 * slash, and continue until no more slashes. 2313 */ 2314 do { 2315 name++; 2316 } while (unlikely(*name == '/')); 2317 if (unlikely(!*name)) { 2318 OK: 2319 /* pathname or trailing symlink, done */ 2320 if (!depth) { 2321 nd->dir_vfsuid = i_uid_into_vfsuid(idmap, nd->inode); 2322 nd->dir_mode = nd->inode->i_mode; 2323 nd->flags &= ~LOOKUP_PARENT; 2324 return 0; 2325 } 2326 /* last component of nested symlink */ 2327 name = nd->stack[--depth].name; 2328 link = walk_component(nd, 0); 2329 } else { 2330 /* not the last component */ 2331 link = walk_component(nd, WALK_MORE); 2332 } 2333 if (unlikely(link)) { 2334 if (IS_ERR(link)) 2335 return PTR_ERR(link); 2336 /* a symlink to follow */ 2337 nd->stack[depth++].name = name; 2338 name = link; 2339 continue; 2340 } 2341 if (unlikely(!d_can_lookup(nd->path.dentry))) { 2342 if (nd->flags & LOOKUP_RCU) { 2343 if (!try_to_unlazy(nd)) 2344 return -ECHILD; 2345 } 2346 return -ENOTDIR; 2347 } 2348 } 2349 } 2350 2351 /* must be paired with terminate_walk() */ 2352 static const char *path_init(struct nameidata *nd, unsigned flags) 2353 { 2354 int error; 2355 const char *s = nd->name->name; 2356 2357 /* LOOKUP_CACHED requires RCU, ask caller to retry */ 2358 if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED) 2359 return ERR_PTR(-EAGAIN); 2360 2361 if (!*s) 2362 flags &= ~LOOKUP_RCU; 2363 if (flags & LOOKUP_RCU) 2364 rcu_read_lock(); 2365 else 2366 nd->seq = nd->next_seq = 0; 2367 2368 nd->flags = flags; 2369 nd->state |= ND_JUMPED; 2370 2371 nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount); 2372 nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount); 2373 smp_rmb(); 2374 2375 if (nd->state & ND_ROOT_PRESET) { 2376 struct dentry *root = nd->root.dentry; 2377 struct inode *inode = root->d_inode; 2378 if (*s && unlikely(!d_can_lookup(root))) 2379 return ERR_PTR(-ENOTDIR); 2380 nd->path = nd->root; 2381 nd->inode = inode; 2382 if (flags & LOOKUP_RCU) { 2383 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2384 nd->root_seq = nd->seq; 2385 } else { 2386 path_get(&nd->path); 2387 } 2388 return s; 2389 } 2390 2391 nd->root.mnt = NULL; 2392 2393 /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */ 2394 if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) { 2395 error = nd_jump_root(nd); 2396 if (unlikely(error)) 2397 return ERR_PTR(error); 2398 return s; 2399 } 2400 2401 /* Relative pathname -- get the starting-point it is relative to. */ 2402 if (nd->dfd == AT_FDCWD) { 2403 if (flags & LOOKUP_RCU) { 2404 struct fs_struct *fs = current->fs; 2405 unsigned seq; 2406 2407 do { 2408 seq = read_seqcount_begin(&fs->seq); 2409 nd->path = fs->pwd; 2410 nd->inode = nd->path.dentry->d_inode; 2411 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2412 } while (read_seqcount_retry(&fs->seq, seq)); 2413 } else { 2414 get_fs_pwd(current->fs, &nd->path); 2415 nd->inode = nd->path.dentry->d_inode; 2416 } 2417 } else { 2418 /* Caller must check execute permissions on the starting path component */ 2419 struct fd f = fdget_raw(nd->dfd); 2420 struct dentry *dentry; 2421 2422 if (!f.file) 2423 return ERR_PTR(-EBADF); 2424 2425 dentry = f.file->f_path.dentry; 2426 2427 if (*s && unlikely(!d_can_lookup(dentry))) { 2428 fdput(f); 2429 return ERR_PTR(-ENOTDIR); 2430 } 2431 2432 nd->path = f.file->f_path; 2433 if (flags & LOOKUP_RCU) { 2434 nd->inode = nd->path.dentry->d_inode; 2435 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2436 } else { 2437 path_get(&nd->path); 2438 nd->inode = nd->path.dentry->d_inode; 2439 } 2440 fdput(f); 2441 } 2442 2443 /* For scoped-lookups we need to set the root to the dirfd as well. */ 2444 if (flags & LOOKUP_IS_SCOPED) { 2445 nd->root = nd->path; 2446 if (flags & LOOKUP_RCU) { 2447 nd->root_seq = nd->seq; 2448 } else { 2449 path_get(&nd->root); 2450 nd->state |= ND_ROOT_GRABBED; 2451 } 2452 } 2453 return s; 2454 } 2455 2456 static inline const char *lookup_last(struct nameidata *nd) 2457 { 2458 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 2459 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2460 2461 return walk_component(nd, WALK_TRAILING); 2462 } 2463 2464 static int handle_lookup_down(struct nameidata *nd) 2465 { 2466 if (!(nd->flags & LOOKUP_RCU)) 2467 dget(nd->path.dentry); 2468 nd->next_seq = nd->seq; 2469 return PTR_ERR(step_into(nd, WALK_NOFOLLOW, nd->path.dentry)); 2470 } 2471 2472 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */ 2473 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path) 2474 { 2475 const char *s = path_init(nd, flags); 2476 int err; 2477 2478 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) { 2479 err = handle_lookup_down(nd); 2480 if (unlikely(err < 0)) 2481 s = ERR_PTR(err); 2482 } 2483 2484 while (!(err = link_path_walk(s, nd)) && 2485 (s = lookup_last(nd)) != NULL) 2486 ; 2487 if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) { 2488 err = handle_lookup_down(nd); 2489 nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please... 2490 } 2491 if (!err) 2492 err = complete_walk(nd); 2493 2494 if (!err && nd->flags & LOOKUP_DIRECTORY) 2495 if (!d_can_lookup(nd->path.dentry)) 2496 err = -ENOTDIR; 2497 if (!err) { 2498 *path = nd->path; 2499 nd->path.mnt = NULL; 2500 nd->path.dentry = NULL; 2501 } 2502 terminate_walk(nd); 2503 return err; 2504 } 2505 2506 int filename_lookup(int dfd, struct filename *name, unsigned flags, 2507 struct path *path, struct path *root) 2508 { 2509 int retval; 2510 struct nameidata nd; 2511 if (IS_ERR(name)) 2512 return PTR_ERR(name); 2513 set_nameidata(&nd, dfd, name, root); 2514 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path); 2515 if (unlikely(retval == -ECHILD)) 2516 retval = path_lookupat(&nd, flags, path); 2517 if (unlikely(retval == -ESTALE)) 2518 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path); 2519 2520 if (likely(!retval)) 2521 audit_inode(name, path->dentry, 2522 flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0); 2523 restore_nameidata(); 2524 return retval; 2525 } 2526 2527 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */ 2528 static int path_parentat(struct nameidata *nd, unsigned flags, 2529 struct path *parent) 2530 { 2531 const char *s = path_init(nd, flags); 2532 int err = link_path_walk(s, nd); 2533 if (!err) 2534 err = complete_walk(nd); 2535 if (!err) { 2536 *parent = nd->path; 2537 nd->path.mnt = NULL; 2538 nd->path.dentry = NULL; 2539 } 2540 terminate_walk(nd); 2541 return err; 2542 } 2543 2544 /* Note: this does not consume "name" */ 2545 static int __filename_parentat(int dfd, struct filename *name, 2546 unsigned int flags, struct path *parent, 2547 struct qstr *last, int *type, 2548 const struct path *root) 2549 { 2550 int retval; 2551 struct nameidata nd; 2552 2553 if (IS_ERR(name)) 2554 return PTR_ERR(name); 2555 set_nameidata(&nd, dfd, name, root); 2556 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent); 2557 if (unlikely(retval == -ECHILD)) 2558 retval = path_parentat(&nd, flags, parent); 2559 if (unlikely(retval == -ESTALE)) 2560 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent); 2561 if (likely(!retval)) { 2562 *last = nd.last; 2563 *type = nd.last_type; 2564 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT); 2565 } 2566 restore_nameidata(); 2567 return retval; 2568 } 2569 2570 static int filename_parentat(int dfd, struct filename *name, 2571 unsigned int flags, struct path *parent, 2572 struct qstr *last, int *type) 2573 { 2574 return __filename_parentat(dfd, name, flags, parent, last, type, NULL); 2575 } 2576 2577 /* does lookup, returns the object with parent locked */ 2578 static struct dentry *__kern_path_locked(int dfd, struct filename *name, struct path *path) 2579 { 2580 struct dentry *d; 2581 struct qstr last; 2582 int type, error; 2583 2584 error = filename_parentat(dfd, name, 0, path, &last, &type); 2585 if (error) 2586 return ERR_PTR(error); 2587 if (unlikely(type != LAST_NORM)) { 2588 path_put(path); 2589 return ERR_PTR(-EINVAL); 2590 } 2591 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 2592 d = lookup_one_qstr_excl(&last, path->dentry, 0); 2593 if (IS_ERR(d)) { 2594 inode_unlock(path->dentry->d_inode); 2595 path_put(path); 2596 } 2597 return d; 2598 } 2599 2600 struct dentry *kern_path_locked(const char *name, struct path *path) 2601 { 2602 struct filename *filename = getname_kernel(name); 2603 struct dentry *res = __kern_path_locked(AT_FDCWD, filename, path); 2604 2605 putname(filename); 2606 return res; 2607 } 2608 2609 struct dentry *user_path_locked_at(int dfd, const char __user *name, struct path *path) 2610 { 2611 struct filename *filename = getname(name); 2612 struct dentry *res = __kern_path_locked(dfd, filename, path); 2613 2614 putname(filename); 2615 return res; 2616 } 2617 EXPORT_SYMBOL(user_path_locked_at); 2618 2619 int kern_path(const char *name, unsigned int flags, struct path *path) 2620 { 2621 struct filename *filename = getname_kernel(name); 2622 int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL); 2623 2624 putname(filename); 2625 return ret; 2626 2627 } 2628 EXPORT_SYMBOL(kern_path); 2629 2630 /** 2631 * vfs_path_parent_lookup - lookup a parent path relative to a dentry-vfsmount pair 2632 * @filename: filename structure 2633 * @flags: lookup flags 2634 * @parent: pointer to struct path to fill 2635 * @last: last component 2636 * @type: type of the last component 2637 * @root: pointer to struct path of the base directory 2638 */ 2639 int vfs_path_parent_lookup(struct filename *filename, unsigned int flags, 2640 struct path *parent, struct qstr *last, int *type, 2641 const struct path *root) 2642 { 2643 return __filename_parentat(AT_FDCWD, filename, flags, parent, last, 2644 type, root); 2645 } 2646 EXPORT_SYMBOL(vfs_path_parent_lookup); 2647 2648 /** 2649 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2650 * @dentry: pointer to dentry of the base directory 2651 * @mnt: pointer to vfs mount of the base directory 2652 * @name: pointer to file name 2653 * @flags: lookup flags 2654 * @path: pointer to struct path to fill 2655 */ 2656 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2657 const char *name, unsigned int flags, 2658 struct path *path) 2659 { 2660 struct filename *filename; 2661 struct path root = {.mnt = mnt, .dentry = dentry}; 2662 int ret; 2663 2664 filename = getname_kernel(name); 2665 /* the first argument of filename_lookup() is ignored with root */ 2666 ret = filename_lookup(AT_FDCWD, filename, flags, path, &root); 2667 putname(filename); 2668 return ret; 2669 } 2670 EXPORT_SYMBOL(vfs_path_lookup); 2671 2672 static int lookup_one_common(struct mnt_idmap *idmap, 2673 const char *name, struct dentry *base, int len, 2674 struct qstr *this) 2675 { 2676 this->name = name; 2677 this->len = len; 2678 this->hash = full_name_hash(base, name, len); 2679 if (!len) 2680 return -EACCES; 2681 2682 if (is_dot_dotdot(name, len)) 2683 return -EACCES; 2684 2685 while (len--) { 2686 unsigned int c = *(const unsigned char *)name++; 2687 if (c == '/' || c == '\0') 2688 return -EACCES; 2689 } 2690 /* 2691 * See if the low-level filesystem might want 2692 * to use its own hash.. 2693 */ 2694 if (base->d_flags & DCACHE_OP_HASH) { 2695 int err = base->d_op->d_hash(base, this); 2696 if (err < 0) 2697 return err; 2698 } 2699 2700 return inode_permission(idmap, base->d_inode, MAY_EXEC); 2701 } 2702 2703 /** 2704 * try_lookup_one_len - filesystem helper to lookup single pathname component 2705 * @name: pathname component to lookup 2706 * @base: base directory to lookup from 2707 * @len: maximum length @len should be interpreted to 2708 * 2709 * Look up a dentry by name in the dcache, returning NULL if it does not 2710 * currently exist. The function does not try to create a dentry. 2711 * 2712 * Note that this routine is purely a helper for filesystem usage and should 2713 * not be called by generic code. 2714 * 2715 * The caller must hold base->i_mutex. 2716 */ 2717 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len) 2718 { 2719 struct qstr this; 2720 int err; 2721 2722 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2723 2724 err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this); 2725 if (err) 2726 return ERR_PTR(err); 2727 2728 return lookup_dcache(&this, base, 0); 2729 } 2730 EXPORT_SYMBOL(try_lookup_one_len); 2731 2732 /** 2733 * lookup_one_len - filesystem helper to lookup single pathname component 2734 * @name: pathname component to lookup 2735 * @base: base directory to lookup from 2736 * @len: maximum length @len should be interpreted to 2737 * 2738 * Note that this routine is purely a helper for filesystem usage and should 2739 * not be called by generic code. 2740 * 2741 * The caller must hold base->i_mutex. 2742 */ 2743 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2744 { 2745 struct dentry *dentry; 2746 struct qstr this; 2747 int err; 2748 2749 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2750 2751 err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this); 2752 if (err) 2753 return ERR_PTR(err); 2754 2755 dentry = lookup_dcache(&this, base, 0); 2756 return dentry ? dentry : __lookup_slow(&this, base, 0); 2757 } 2758 EXPORT_SYMBOL(lookup_one_len); 2759 2760 /** 2761 * lookup_one - filesystem helper to lookup single pathname component 2762 * @idmap: idmap of the mount the lookup is performed from 2763 * @name: pathname component to lookup 2764 * @base: base directory to lookup from 2765 * @len: maximum length @len should be interpreted to 2766 * 2767 * Note that this routine is purely a helper for filesystem usage and should 2768 * not be called by generic code. 2769 * 2770 * The caller must hold base->i_mutex. 2771 */ 2772 struct dentry *lookup_one(struct mnt_idmap *idmap, const char *name, 2773 struct dentry *base, int len) 2774 { 2775 struct dentry *dentry; 2776 struct qstr this; 2777 int err; 2778 2779 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2780 2781 err = lookup_one_common(idmap, name, base, len, &this); 2782 if (err) 2783 return ERR_PTR(err); 2784 2785 dentry = lookup_dcache(&this, base, 0); 2786 return dentry ? dentry : __lookup_slow(&this, base, 0); 2787 } 2788 EXPORT_SYMBOL(lookup_one); 2789 2790 /** 2791 * lookup_one_unlocked - filesystem helper to lookup single pathname component 2792 * @idmap: idmap of the mount the lookup is performed from 2793 * @name: pathname component to lookup 2794 * @base: base directory to lookup from 2795 * @len: maximum length @len should be interpreted to 2796 * 2797 * Note that this routine is purely a helper for filesystem usage and should 2798 * not be called by generic code. 2799 * 2800 * Unlike lookup_one_len, it should be called without the parent 2801 * i_mutex held, and will take the i_mutex itself if necessary. 2802 */ 2803 struct dentry *lookup_one_unlocked(struct mnt_idmap *idmap, 2804 const char *name, struct dentry *base, 2805 int len) 2806 { 2807 struct qstr this; 2808 int err; 2809 struct dentry *ret; 2810 2811 err = lookup_one_common(idmap, name, base, len, &this); 2812 if (err) 2813 return ERR_PTR(err); 2814 2815 ret = lookup_dcache(&this, base, 0); 2816 if (!ret) 2817 ret = lookup_slow(&this, base, 0); 2818 return ret; 2819 } 2820 EXPORT_SYMBOL(lookup_one_unlocked); 2821 2822 /** 2823 * lookup_one_positive_unlocked - filesystem helper to lookup single 2824 * pathname component 2825 * @idmap: idmap of the mount the lookup is performed from 2826 * @name: pathname component to lookup 2827 * @base: base directory to lookup from 2828 * @len: maximum length @len should be interpreted to 2829 * 2830 * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns 2831 * known positive or ERR_PTR(). This is what most of the users want. 2832 * 2833 * Note that pinned negative with unlocked parent _can_ become positive at any 2834 * time, so callers of lookup_one_unlocked() need to be very careful; pinned 2835 * positives have >d_inode stable, so this one avoids such problems. 2836 * 2837 * Note that this routine is purely a helper for filesystem usage and should 2838 * not be called by generic code. 2839 * 2840 * The helper should be called without i_mutex held. 2841 */ 2842 struct dentry *lookup_one_positive_unlocked(struct mnt_idmap *idmap, 2843 const char *name, 2844 struct dentry *base, int len) 2845 { 2846 struct dentry *ret = lookup_one_unlocked(idmap, name, base, len); 2847 2848 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) { 2849 dput(ret); 2850 ret = ERR_PTR(-ENOENT); 2851 } 2852 return ret; 2853 } 2854 EXPORT_SYMBOL(lookup_one_positive_unlocked); 2855 2856 /** 2857 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component 2858 * @name: pathname component to lookup 2859 * @base: base directory to lookup from 2860 * @len: maximum length @len should be interpreted to 2861 * 2862 * Note that this routine is purely a helper for filesystem usage and should 2863 * not be called by generic code. 2864 * 2865 * Unlike lookup_one_len, it should be called without the parent 2866 * i_mutex held, and will take the i_mutex itself if necessary. 2867 */ 2868 struct dentry *lookup_one_len_unlocked(const char *name, 2869 struct dentry *base, int len) 2870 { 2871 return lookup_one_unlocked(&nop_mnt_idmap, name, base, len); 2872 } 2873 EXPORT_SYMBOL(lookup_one_len_unlocked); 2874 2875 /* 2876 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT) 2877 * on negatives. Returns known positive or ERR_PTR(); that's what 2878 * most of the users want. Note that pinned negative with unlocked parent 2879 * _can_ become positive at any time, so callers of lookup_one_len_unlocked() 2880 * need to be very careful; pinned positives have ->d_inode stable, so 2881 * this one avoids such problems. 2882 */ 2883 struct dentry *lookup_positive_unlocked(const char *name, 2884 struct dentry *base, int len) 2885 { 2886 return lookup_one_positive_unlocked(&nop_mnt_idmap, name, base, len); 2887 } 2888 EXPORT_SYMBOL(lookup_positive_unlocked); 2889 2890 #ifdef CONFIG_UNIX98_PTYS 2891 int path_pts(struct path *path) 2892 { 2893 /* Find something mounted on "pts" in the same directory as 2894 * the input path. 2895 */ 2896 struct dentry *parent = dget_parent(path->dentry); 2897 struct dentry *child; 2898 struct qstr this = QSTR_INIT("pts", 3); 2899 2900 if (unlikely(!path_connected(path->mnt, parent))) { 2901 dput(parent); 2902 return -ENOENT; 2903 } 2904 dput(path->dentry); 2905 path->dentry = parent; 2906 child = d_hash_and_lookup(parent, &this); 2907 if (IS_ERR_OR_NULL(child)) 2908 return -ENOENT; 2909 2910 path->dentry = child; 2911 dput(parent); 2912 follow_down(path, 0); 2913 return 0; 2914 } 2915 #endif 2916 2917 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2918 struct path *path, int *empty) 2919 { 2920 struct filename *filename = getname_flags(name, flags, empty); 2921 int ret = filename_lookup(dfd, filename, flags, path, NULL); 2922 2923 putname(filename); 2924 return ret; 2925 } 2926 EXPORT_SYMBOL(user_path_at_empty); 2927 2928 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir, 2929 struct inode *inode) 2930 { 2931 kuid_t fsuid = current_fsuid(); 2932 2933 if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), fsuid)) 2934 return 0; 2935 if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, dir), fsuid)) 2936 return 0; 2937 return !capable_wrt_inode_uidgid(idmap, inode, CAP_FOWNER); 2938 } 2939 EXPORT_SYMBOL(__check_sticky); 2940 2941 /* 2942 * Check whether we can remove a link victim from directory dir, check 2943 * whether the type of victim is right. 2944 * 1. We can't do it if dir is read-only (done in permission()) 2945 * 2. We should have write and exec permissions on dir 2946 * 3. We can't remove anything from append-only dir 2947 * 4. We can't do anything with immutable dir (done in permission()) 2948 * 5. If the sticky bit on dir is set we should either 2949 * a. be owner of dir, or 2950 * b. be owner of victim, or 2951 * c. have CAP_FOWNER capability 2952 * 6. If the victim is append-only or immutable we can't do antyhing with 2953 * links pointing to it. 2954 * 7. If the victim has an unknown uid or gid we can't change the inode. 2955 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2956 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2957 * 10. We can't remove a root or mountpoint. 2958 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by 2959 * nfs_async_unlink(). 2960 */ 2961 static int may_delete(struct mnt_idmap *idmap, struct inode *dir, 2962 struct dentry *victim, bool isdir) 2963 { 2964 struct inode *inode = d_backing_inode(victim); 2965 int error; 2966 2967 if (d_is_negative(victim)) 2968 return -ENOENT; 2969 BUG_ON(!inode); 2970 2971 BUG_ON(victim->d_parent->d_inode != dir); 2972 2973 /* Inode writeback is not safe when the uid or gid are invalid. */ 2974 if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) || 2975 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode))) 2976 return -EOVERFLOW; 2977 2978 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2979 2980 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 2981 if (error) 2982 return error; 2983 if (IS_APPEND(dir)) 2984 return -EPERM; 2985 2986 if (check_sticky(idmap, dir, inode) || IS_APPEND(inode) || 2987 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || 2988 HAS_UNMAPPED_ID(idmap, inode)) 2989 return -EPERM; 2990 if (isdir) { 2991 if (!d_is_dir(victim)) 2992 return -ENOTDIR; 2993 if (IS_ROOT(victim)) 2994 return -EBUSY; 2995 } else if (d_is_dir(victim)) 2996 return -EISDIR; 2997 if (IS_DEADDIR(dir)) 2998 return -ENOENT; 2999 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 3000 return -EBUSY; 3001 return 0; 3002 } 3003 3004 /* Check whether we can create an object with dentry child in directory 3005 * dir. 3006 * 1. We can't do it if child already exists (open has special treatment for 3007 * this case, but since we are inlined it's OK) 3008 * 2. We can't do it if dir is read-only (done in permission()) 3009 * 3. We can't do it if the fs can't represent the fsuid or fsgid. 3010 * 4. We should have write and exec permissions on dir 3011 * 5. We can't do it if dir is immutable (done in permission()) 3012 */ 3013 static inline int may_create(struct mnt_idmap *idmap, 3014 struct inode *dir, struct dentry *child) 3015 { 3016 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 3017 if (child->d_inode) 3018 return -EEXIST; 3019 if (IS_DEADDIR(dir)) 3020 return -ENOENT; 3021 if (!fsuidgid_has_mapping(dir->i_sb, idmap)) 3022 return -EOVERFLOW; 3023 3024 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 3025 } 3026 3027 // p1 != p2, both are on the same filesystem, ->s_vfs_rename_mutex is held 3028 static struct dentry *lock_two_directories(struct dentry *p1, struct dentry *p2) 3029 { 3030 struct dentry *p = p1, *q = p2, *r; 3031 3032 while ((r = p->d_parent) != p2 && r != p) 3033 p = r; 3034 if (r == p2) { 3035 // p is a child of p2 and an ancestor of p1 or p1 itself 3036 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 3037 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT2); 3038 return p; 3039 } 3040 // p is the root of connected component that contains p1 3041 // p2 does not occur on the path from p to p1 3042 while ((r = q->d_parent) != p1 && r != p && r != q) 3043 q = r; 3044 if (r == p1) { 3045 // q is a child of p1 and an ancestor of p2 or p2 itself 3046 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 3047 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 3048 return q; 3049 } else if (likely(r == p)) { 3050 // both p2 and p1 are descendents of p 3051 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 3052 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 3053 return NULL; 3054 } else { // no common ancestor at the time we'd been called 3055 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 3056 return ERR_PTR(-EXDEV); 3057 } 3058 } 3059 3060 /* 3061 * p1 and p2 should be directories on the same fs. 3062 */ 3063 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 3064 { 3065 if (p1 == p2) { 3066 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 3067 return NULL; 3068 } 3069 3070 mutex_lock(&p1->d_sb->s_vfs_rename_mutex); 3071 return lock_two_directories(p1, p2); 3072 } 3073 EXPORT_SYMBOL(lock_rename); 3074 3075 /* 3076 * c1 and p2 should be on the same fs. 3077 */ 3078 struct dentry *lock_rename_child(struct dentry *c1, struct dentry *p2) 3079 { 3080 if (READ_ONCE(c1->d_parent) == p2) { 3081 /* 3082 * hopefully won't need to touch ->s_vfs_rename_mutex at all. 3083 */ 3084 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 3085 /* 3086 * now that p2 is locked, nobody can move in or out of it, 3087 * so the test below is safe. 3088 */ 3089 if (likely(c1->d_parent == p2)) 3090 return NULL; 3091 3092 /* 3093 * c1 got moved out of p2 while we'd been taking locks; 3094 * unlock and fall back to slow case. 3095 */ 3096 inode_unlock(p2->d_inode); 3097 } 3098 3099 mutex_lock(&c1->d_sb->s_vfs_rename_mutex); 3100 /* 3101 * nobody can move out of any directories on this fs. 3102 */ 3103 if (likely(c1->d_parent != p2)) 3104 return lock_two_directories(c1->d_parent, p2); 3105 3106 /* 3107 * c1 got moved into p2 while we were taking locks; 3108 * we need p2 locked and ->s_vfs_rename_mutex unlocked, 3109 * for consistency with lock_rename(). 3110 */ 3111 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 3112 mutex_unlock(&c1->d_sb->s_vfs_rename_mutex); 3113 return NULL; 3114 } 3115 EXPORT_SYMBOL(lock_rename_child); 3116 3117 void unlock_rename(struct dentry *p1, struct dentry *p2) 3118 { 3119 inode_unlock(p1->d_inode); 3120 if (p1 != p2) { 3121 inode_unlock(p2->d_inode); 3122 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 3123 } 3124 } 3125 EXPORT_SYMBOL(unlock_rename); 3126 3127 /** 3128 * vfs_prepare_mode - prepare the mode to be used for a new inode 3129 * @idmap: idmap of the mount the inode was found from 3130 * @dir: parent directory of the new inode 3131 * @mode: mode of the new inode 3132 * @mask_perms: allowed permission by the vfs 3133 * @type: type of file to be created 3134 * 3135 * This helper consolidates and enforces vfs restrictions on the @mode of a new 3136 * object to be created. 3137 * 3138 * Umask stripping depends on whether the filesystem supports POSIX ACLs (see 3139 * the kernel documentation for mode_strip_umask()). Moving umask stripping 3140 * after setgid stripping allows the same ordering for both non-POSIX ACL and 3141 * POSIX ACL supporting filesystems. 3142 * 3143 * Note that it's currently valid for @type to be 0 if a directory is created. 3144 * Filesystems raise that flag individually and we need to check whether each 3145 * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a 3146 * non-zero type. 3147 * 3148 * Returns: mode to be passed to the filesystem 3149 */ 3150 static inline umode_t vfs_prepare_mode(struct mnt_idmap *idmap, 3151 const struct inode *dir, umode_t mode, 3152 umode_t mask_perms, umode_t type) 3153 { 3154 mode = mode_strip_sgid(idmap, dir, mode); 3155 mode = mode_strip_umask(dir, mode); 3156 3157 /* 3158 * Apply the vfs mandated allowed permission mask and set the type of 3159 * file to be created before we call into the filesystem. 3160 */ 3161 mode &= (mask_perms & ~S_IFMT); 3162 mode |= (type & S_IFMT); 3163 3164 return mode; 3165 } 3166 3167 /** 3168 * vfs_create - create new file 3169 * @idmap: idmap of the mount the inode was found from 3170 * @dir: inode of @dentry 3171 * @dentry: pointer to dentry of the base directory 3172 * @mode: mode of the new file 3173 * @want_excl: whether the file must not yet exist 3174 * 3175 * Create a new file. 3176 * 3177 * If the inode has been found through an idmapped mount the idmap of 3178 * the vfsmount must be passed through @idmap. This function will then take 3179 * care to map the inode according to @idmap before checking permissions. 3180 * On non-idmapped mounts or if permission checking is to be performed on the 3181 * raw inode simply pass @nop_mnt_idmap. 3182 */ 3183 int vfs_create(struct mnt_idmap *idmap, struct inode *dir, 3184 struct dentry *dentry, umode_t mode, bool want_excl) 3185 { 3186 int error; 3187 3188 error = may_create(idmap, dir, dentry); 3189 if (error) 3190 return error; 3191 3192 if (!dir->i_op->create) 3193 return -EACCES; /* shouldn't it be ENOSYS? */ 3194 3195 mode = vfs_prepare_mode(idmap, dir, mode, S_IALLUGO, S_IFREG); 3196 error = security_inode_create(dir, dentry, mode); 3197 if (error) 3198 return error; 3199 error = dir->i_op->create(idmap, dir, dentry, mode, want_excl); 3200 if (!error) 3201 fsnotify_create(dir, dentry); 3202 return error; 3203 } 3204 EXPORT_SYMBOL(vfs_create); 3205 3206 int vfs_mkobj(struct dentry *dentry, umode_t mode, 3207 int (*f)(struct dentry *, umode_t, void *), 3208 void *arg) 3209 { 3210 struct inode *dir = dentry->d_parent->d_inode; 3211 int error = may_create(&nop_mnt_idmap, dir, dentry); 3212 if (error) 3213 return error; 3214 3215 mode &= S_IALLUGO; 3216 mode |= S_IFREG; 3217 error = security_inode_create(dir, dentry, mode); 3218 if (error) 3219 return error; 3220 error = f(dentry, mode, arg); 3221 if (!error) 3222 fsnotify_create(dir, dentry); 3223 return error; 3224 } 3225 EXPORT_SYMBOL(vfs_mkobj); 3226 3227 bool may_open_dev(const struct path *path) 3228 { 3229 return !(path->mnt->mnt_flags & MNT_NODEV) && 3230 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV); 3231 } 3232 3233 static int may_open(struct mnt_idmap *idmap, const struct path *path, 3234 int acc_mode, int flag) 3235 { 3236 struct dentry *dentry = path->dentry; 3237 struct inode *inode = dentry->d_inode; 3238 int error; 3239 3240 if (!inode) 3241 return -ENOENT; 3242 3243 switch (inode->i_mode & S_IFMT) { 3244 case S_IFLNK: 3245 return -ELOOP; 3246 case S_IFDIR: 3247 if (acc_mode & MAY_WRITE) 3248 return -EISDIR; 3249 if (acc_mode & MAY_EXEC) 3250 return -EACCES; 3251 break; 3252 case S_IFBLK: 3253 case S_IFCHR: 3254 if (!may_open_dev(path)) 3255 return -EACCES; 3256 fallthrough; 3257 case S_IFIFO: 3258 case S_IFSOCK: 3259 if (acc_mode & MAY_EXEC) 3260 return -EACCES; 3261 flag &= ~O_TRUNC; 3262 break; 3263 case S_IFREG: 3264 if ((acc_mode & MAY_EXEC) && path_noexec(path)) 3265 return -EACCES; 3266 break; 3267 } 3268 3269 error = inode_permission(idmap, inode, MAY_OPEN | acc_mode); 3270 if (error) 3271 return error; 3272 3273 /* 3274 * An append-only file must be opened in append mode for writing. 3275 */ 3276 if (IS_APPEND(inode)) { 3277 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 3278 return -EPERM; 3279 if (flag & O_TRUNC) 3280 return -EPERM; 3281 } 3282 3283 /* O_NOATIME can only be set by the owner or superuser */ 3284 if (flag & O_NOATIME && !inode_owner_or_capable(idmap, inode)) 3285 return -EPERM; 3286 3287 return 0; 3288 } 3289 3290 static int handle_truncate(struct mnt_idmap *idmap, struct file *filp) 3291 { 3292 const struct path *path = &filp->f_path; 3293 struct inode *inode = path->dentry->d_inode; 3294 int error = get_write_access(inode); 3295 if (error) 3296 return error; 3297 3298 error = security_file_truncate(filp); 3299 if (!error) { 3300 error = do_truncate(idmap, path->dentry, 0, 3301 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 3302 filp); 3303 } 3304 put_write_access(inode); 3305 return error; 3306 } 3307 3308 static inline int open_to_namei_flags(int flag) 3309 { 3310 if ((flag & O_ACCMODE) == 3) 3311 flag--; 3312 return flag; 3313 } 3314 3315 static int may_o_create(struct mnt_idmap *idmap, 3316 const struct path *dir, struct dentry *dentry, 3317 umode_t mode) 3318 { 3319 int error = security_path_mknod(dir, dentry, mode, 0); 3320 if (error) 3321 return error; 3322 3323 if (!fsuidgid_has_mapping(dir->dentry->d_sb, idmap)) 3324 return -EOVERFLOW; 3325 3326 error = inode_permission(idmap, dir->dentry->d_inode, 3327 MAY_WRITE | MAY_EXEC); 3328 if (error) 3329 return error; 3330 3331 return security_inode_create(dir->dentry->d_inode, dentry, mode); 3332 } 3333 3334 /* 3335 * Attempt to atomically look up, create and open a file from a negative 3336 * dentry. 3337 * 3338 * Returns 0 if successful. The file will have been created and attached to 3339 * @file by the filesystem calling finish_open(). 3340 * 3341 * If the file was looked up only or didn't need creating, FMODE_OPENED won't 3342 * be set. The caller will need to perform the open themselves. @path will 3343 * have been updated to point to the new dentry. This may be negative. 3344 * 3345 * Returns an error code otherwise. 3346 */ 3347 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry, 3348 struct file *file, 3349 int open_flag, umode_t mode) 3350 { 3351 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 3352 struct inode *dir = nd->path.dentry->d_inode; 3353 int error; 3354 3355 if (nd->flags & LOOKUP_DIRECTORY) 3356 open_flag |= O_DIRECTORY; 3357 3358 file->f_path.dentry = DENTRY_NOT_SET; 3359 file->f_path.mnt = nd->path.mnt; 3360 error = dir->i_op->atomic_open(dir, dentry, file, 3361 open_to_namei_flags(open_flag), mode); 3362 d_lookup_done(dentry); 3363 if (!error) { 3364 if (file->f_mode & FMODE_OPENED) { 3365 if (unlikely(dentry != file->f_path.dentry)) { 3366 dput(dentry); 3367 dentry = dget(file->f_path.dentry); 3368 } 3369 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 3370 error = -EIO; 3371 } else { 3372 if (file->f_path.dentry) { 3373 dput(dentry); 3374 dentry = file->f_path.dentry; 3375 } 3376 if (unlikely(d_is_negative(dentry))) 3377 error = -ENOENT; 3378 } 3379 } 3380 if (error) { 3381 dput(dentry); 3382 dentry = ERR_PTR(error); 3383 } 3384 return dentry; 3385 } 3386 3387 /* 3388 * Look up and maybe create and open the last component. 3389 * 3390 * Must be called with parent locked (exclusive in O_CREAT case). 3391 * 3392 * Returns 0 on success, that is, if 3393 * the file was successfully atomically created (if necessary) and opened, or 3394 * the file was not completely opened at this time, though lookups and 3395 * creations were performed. 3396 * These case are distinguished by presence of FMODE_OPENED on file->f_mode. 3397 * In the latter case dentry returned in @path might be negative if O_CREAT 3398 * hadn't been specified. 3399 * 3400 * An error code is returned on failure. 3401 */ 3402 static struct dentry *lookup_open(struct nameidata *nd, struct file *file, 3403 const struct open_flags *op, 3404 bool got_write) 3405 { 3406 struct mnt_idmap *idmap; 3407 struct dentry *dir = nd->path.dentry; 3408 struct inode *dir_inode = dir->d_inode; 3409 int open_flag = op->open_flag; 3410 struct dentry *dentry; 3411 int error, create_error = 0; 3412 umode_t mode = op->mode; 3413 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 3414 3415 if (unlikely(IS_DEADDIR(dir_inode))) 3416 return ERR_PTR(-ENOENT); 3417 3418 file->f_mode &= ~FMODE_CREATED; 3419 dentry = d_lookup(dir, &nd->last); 3420 for (;;) { 3421 if (!dentry) { 3422 dentry = d_alloc_parallel(dir, &nd->last, &wq); 3423 if (IS_ERR(dentry)) 3424 return dentry; 3425 } 3426 if (d_in_lookup(dentry)) 3427 break; 3428 3429 error = d_revalidate(dentry, nd->flags); 3430 if (likely(error > 0)) 3431 break; 3432 if (error) 3433 goto out_dput; 3434 d_invalidate(dentry); 3435 dput(dentry); 3436 dentry = NULL; 3437 } 3438 if (dentry->d_inode) { 3439 /* Cached positive dentry: will open in f_op->open */ 3440 return dentry; 3441 } 3442 3443 /* 3444 * Checking write permission is tricky, bacuse we don't know if we are 3445 * going to actually need it: O_CREAT opens should work as long as the 3446 * file exists. But checking existence breaks atomicity. The trick is 3447 * to check access and if not granted clear O_CREAT from the flags. 3448 * 3449 * Another problem is returing the "right" error value (e.g. for an 3450 * O_EXCL open we want to return EEXIST not EROFS). 3451 */ 3452 if (unlikely(!got_write)) 3453 open_flag &= ~O_TRUNC; 3454 idmap = mnt_idmap(nd->path.mnt); 3455 if (open_flag & O_CREAT) { 3456 if (open_flag & O_EXCL) 3457 open_flag &= ~O_TRUNC; 3458 mode = vfs_prepare_mode(idmap, dir->d_inode, mode, mode, mode); 3459 if (likely(got_write)) 3460 create_error = may_o_create(idmap, &nd->path, 3461 dentry, mode); 3462 else 3463 create_error = -EROFS; 3464 } 3465 if (create_error) 3466 open_flag &= ~O_CREAT; 3467 if (dir_inode->i_op->atomic_open) { 3468 dentry = atomic_open(nd, dentry, file, open_flag, mode); 3469 if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT)) 3470 dentry = ERR_PTR(create_error); 3471 return dentry; 3472 } 3473 3474 if (d_in_lookup(dentry)) { 3475 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry, 3476 nd->flags); 3477 d_lookup_done(dentry); 3478 if (unlikely(res)) { 3479 if (IS_ERR(res)) { 3480 error = PTR_ERR(res); 3481 goto out_dput; 3482 } 3483 dput(dentry); 3484 dentry = res; 3485 } 3486 } 3487 3488 /* Negative dentry, just create the file */ 3489 if (!dentry->d_inode && (open_flag & O_CREAT)) { 3490 file->f_mode |= FMODE_CREATED; 3491 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE); 3492 if (!dir_inode->i_op->create) { 3493 error = -EACCES; 3494 goto out_dput; 3495 } 3496 3497 error = dir_inode->i_op->create(idmap, dir_inode, dentry, 3498 mode, open_flag & O_EXCL); 3499 if (error) 3500 goto out_dput; 3501 } 3502 if (unlikely(create_error) && !dentry->d_inode) { 3503 error = create_error; 3504 goto out_dput; 3505 } 3506 return dentry; 3507 3508 out_dput: 3509 dput(dentry); 3510 return ERR_PTR(error); 3511 } 3512 3513 static const char *open_last_lookups(struct nameidata *nd, 3514 struct file *file, const struct open_flags *op) 3515 { 3516 struct dentry *dir = nd->path.dentry; 3517 int open_flag = op->open_flag; 3518 bool got_write = false; 3519 struct dentry *dentry; 3520 const char *res; 3521 3522 nd->flags |= op->intent; 3523 3524 if (nd->last_type != LAST_NORM) { 3525 if (nd->depth) 3526 put_link(nd); 3527 return handle_dots(nd, nd->last_type); 3528 } 3529 3530 if (!(open_flag & O_CREAT)) { 3531 if (nd->last.name[nd->last.len]) 3532 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 3533 /* we _can_ be in RCU mode here */ 3534 dentry = lookup_fast(nd); 3535 if (IS_ERR(dentry)) 3536 return ERR_CAST(dentry); 3537 if (likely(dentry)) 3538 goto finish_lookup; 3539 3540 if (WARN_ON_ONCE(nd->flags & LOOKUP_RCU)) 3541 return ERR_PTR(-ECHILD); 3542 } else { 3543 /* create side of things */ 3544 if (nd->flags & LOOKUP_RCU) { 3545 if (!try_to_unlazy(nd)) 3546 return ERR_PTR(-ECHILD); 3547 } 3548 audit_inode(nd->name, dir, AUDIT_INODE_PARENT); 3549 /* trailing slashes? */ 3550 if (unlikely(nd->last.name[nd->last.len])) 3551 return ERR_PTR(-EISDIR); 3552 } 3553 3554 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 3555 got_write = !mnt_want_write(nd->path.mnt); 3556 /* 3557 * do _not_ fail yet - we might not need that or fail with 3558 * a different error; let lookup_open() decide; we'll be 3559 * dropping this one anyway. 3560 */ 3561 } 3562 if (open_flag & O_CREAT) 3563 inode_lock(dir->d_inode); 3564 else 3565 inode_lock_shared(dir->d_inode); 3566 dentry = lookup_open(nd, file, op, got_write); 3567 if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED)) 3568 fsnotify_create(dir->d_inode, dentry); 3569 if (open_flag & O_CREAT) 3570 inode_unlock(dir->d_inode); 3571 else 3572 inode_unlock_shared(dir->d_inode); 3573 3574 if (got_write) 3575 mnt_drop_write(nd->path.mnt); 3576 3577 if (IS_ERR(dentry)) 3578 return ERR_CAST(dentry); 3579 3580 if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) { 3581 dput(nd->path.dentry); 3582 nd->path.dentry = dentry; 3583 return NULL; 3584 } 3585 3586 finish_lookup: 3587 if (nd->depth) 3588 put_link(nd); 3589 res = step_into(nd, WALK_TRAILING, dentry); 3590 if (unlikely(res)) 3591 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3592 return res; 3593 } 3594 3595 /* 3596 * Handle the last step of open() 3597 */ 3598 static int do_open(struct nameidata *nd, 3599 struct file *file, const struct open_flags *op) 3600 { 3601 struct mnt_idmap *idmap; 3602 int open_flag = op->open_flag; 3603 bool do_truncate; 3604 int acc_mode; 3605 int error; 3606 3607 if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) { 3608 error = complete_walk(nd); 3609 if (error) 3610 return error; 3611 } 3612 if (!(file->f_mode & FMODE_CREATED)) 3613 audit_inode(nd->name, nd->path.dentry, 0); 3614 idmap = mnt_idmap(nd->path.mnt); 3615 if (open_flag & O_CREAT) { 3616 if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED)) 3617 return -EEXIST; 3618 if (d_is_dir(nd->path.dentry)) 3619 return -EISDIR; 3620 error = may_create_in_sticky(idmap, nd, 3621 d_backing_inode(nd->path.dentry)); 3622 if (unlikely(error)) 3623 return error; 3624 } 3625 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3626 return -ENOTDIR; 3627 3628 do_truncate = false; 3629 acc_mode = op->acc_mode; 3630 if (file->f_mode & FMODE_CREATED) { 3631 /* Don't check for write permission, don't truncate */ 3632 open_flag &= ~O_TRUNC; 3633 acc_mode = 0; 3634 } else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) { 3635 error = mnt_want_write(nd->path.mnt); 3636 if (error) 3637 return error; 3638 do_truncate = true; 3639 } 3640 error = may_open(idmap, &nd->path, acc_mode, open_flag); 3641 if (!error && !(file->f_mode & FMODE_OPENED)) 3642 error = vfs_open(&nd->path, file); 3643 if (!error) 3644 error = security_file_post_open(file, op->acc_mode); 3645 if (!error && do_truncate) 3646 error = handle_truncate(idmap, file); 3647 if (unlikely(error > 0)) { 3648 WARN_ON(1); 3649 error = -EINVAL; 3650 } 3651 if (do_truncate) 3652 mnt_drop_write(nd->path.mnt); 3653 return error; 3654 } 3655 3656 /** 3657 * vfs_tmpfile - create tmpfile 3658 * @idmap: idmap of the mount the inode was found from 3659 * @parentpath: pointer to the path of the base directory 3660 * @file: file descriptor of the new tmpfile 3661 * @mode: mode of the new tmpfile 3662 * 3663 * Create a temporary file. 3664 * 3665 * If the inode has been found through an idmapped mount the idmap of 3666 * the vfsmount must be passed through @idmap. This function will then take 3667 * care to map the inode according to @idmap before checking permissions. 3668 * On non-idmapped mounts or if permission checking is to be performed on the 3669 * raw inode simply pass @nop_mnt_idmap. 3670 */ 3671 static int vfs_tmpfile(struct mnt_idmap *idmap, 3672 const struct path *parentpath, 3673 struct file *file, umode_t mode) 3674 { 3675 struct dentry *child; 3676 struct inode *dir = d_inode(parentpath->dentry); 3677 struct inode *inode; 3678 int error; 3679 int open_flag = file->f_flags; 3680 3681 /* we want directory to be writable */ 3682 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 3683 if (error) 3684 return error; 3685 if (!dir->i_op->tmpfile) 3686 return -EOPNOTSUPP; 3687 child = d_alloc(parentpath->dentry, &slash_name); 3688 if (unlikely(!child)) 3689 return -ENOMEM; 3690 file->f_path.mnt = parentpath->mnt; 3691 file->f_path.dentry = child; 3692 mode = vfs_prepare_mode(idmap, dir, mode, mode, mode); 3693 error = dir->i_op->tmpfile(idmap, dir, file, mode); 3694 dput(child); 3695 if (error) 3696 return error; 3697 /* Don't check for other permissions, the inode was just created */ 3698 error = may_open(idmap, &file->f_path, 0, file->f_flags); 3699 if (error) 3700 return error; 3701 inode = file_inode(file); 3702 if (!(open_flag & O_EXCL)) { 3703 spin_lock(&inode->i_lock); 3704 inode->i_state |= I_LINKABLE; 3705 spin_unlock(&inode->i_lock); 3706 } 3707 security_inode_post_create_tmpfile(idmap, inode); 3708 return 0; 3709 } 3710 3711 /** 3712 * kernel_tmpfile_open - open a tmpfile for kernel internal use 3713 * @idmap: idmap of the mount the inode was found from 3714 * @parentpath: path of the base directory 3715 * @mode: mode of the new tmpfile 3716 * @open_flag: flags 3717 * @cred: credentials for open 3718 * 3719 * Create and open a temporary file. The file is not accounted in nr_files, 3720 * hence this is only for kernel internal use, and must not be installed into 3721 * file tables or such. 3722 */ 3723 struct file *kernel_tmpfile_open(struct mnt_idmap *idmap, 3724 const struct path *parentpath, 3725 umode_t mode, int open_flag, 3726 const struct cred *cred) 3727 { 3728 struct file *file; 3729 int error; 3730 3731 file = alloc_empty_file_noaccount(open_flag, cred); 3732 if (IS_ERR(file)) 3733 return file; 3734 3735 error = vfs_tmpfile(idmap, parentpath, file, mode); 3736 if (error) { 3737 fput(file); 3738 file = ERR_PTR(error); 3739 } 3740 return file; 3741 } 3742 EXPORT_SYMBOL(kernel_tmpfile_open); 3743 3744 static int do_tmpfile(struct nameidata *nd, unsigned flags, 3745 const struct open_flags *op, 3746 struct file *file) 3747 { 3748 struct path path; 3749 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path); 3750 3751 if (unlikely(error)) 3752 return error; 3753 error = mnt_want_write(path.mnt); 3754 if (unlikely(error)) 3755 goto out; 3756 error = vfs_tmpfile(mnt_idmap(path.mnt), &path, file, op->mode); 3757 if (error) 3758 goto out2; 3759 audit_inode(nd->name, file->f_path.dentry, 0); 3760 out2: 3761 mnt_drop_write(path.mnt); 3762 out: 3763 path_put(&path); 3764 return error; 3765 } 3766 3767 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file) 3768 { 3769 struct path path; 3770 int error = path_lookupat(nd, flags, &path); 3771 if (!error) { 3772 audit_inode(nd->name, path.dentry, 0); 3773 error = vfs_open(&path, file); 3774 path_put(&path); 3775 } 3776 return error; 3777 } 3778 3779 static struct file *path_openat(struct nameidata *nd, 3780 const struct open_flags *op, unsigned flags) 3781 { 3782 struct file *file; 3783 int error; 3784 3785 file = alloc_empty_file(op->open_flag, current_cred()); 3786 if (IS_ERR(file)) 3787 return file; 3788 3789 if (unlikely(file->f_flags & __O_TMPFILE)) { 3790 error = do_tmpfile(nd, flags, op, file); 3791 } else if (unlikely(file->f_flags & O_PATH)) { 3792 error = do_o_path(nd, flags, file); 3793 } else { 3794 const char *s = path_init(nd, flags); 3795 while (!(error = link_path_walk(s, nd)) && 3796 (s = open_last_lookups(nd, file, op)) != NULL) 3797 ; 3798 if (!error) 3799 error = do_open(nd, file, op); 3800 terminate_walk(nd); 3801 } 3802 if (likely(!error)) { 3803 if (likely(file->f_mode & FMODE_OPENED)) 3804 return file; 3805 WARN_ON(1); 3806 error = -EINVAL; 3807 } 3808 fput(file); 3809 if (error == -EOPENSTALE) { 3810 if (flags & LOOKUP_RCU) 3811 error = -ECHILD; 3812 else 3813 error = -ESTALE; 3814 } 3815 return ERR_PTR(error); 3816 } 3817 3818 struct file *do_filp_open(int dfd, struct filename *pathname, 3819 const struct open_flags *op) 3820 { 3821 struct nameidata nd; 3822 int flags = op->lookup_flags; 3823 struct file *filp; 3824 3825 set_nameidata(&nd, dfd, pathname, NULL); 3826 filp = path_openat(&nd, op, flags | LOOKUP_RCU); 3827 if (unlikely(filp == ERR_PTR(-ECHILD))) 3828 filp = path_openat(&nd, op, flags); 3829 if (unlikely(filp == ERR_PTR(-ESTALE))) 3830 filp = path_openat(&nd, op, flags | LOOKUP_REVAL); 3831 restore_nameidata(); 3832 return filp; 3833 } 3834 3835 struct file *do_file_open_root(const struct path *root, 3836 const char *name, const struct open_flags *op) 3837 { 3838 struct nameidata nd; 3839 struct file *file; 3840 struct filename *filename; 3841 int flags = op->lookup_flags; 3842 3843 if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN) 3844 return ERR_PTR(-ELOOP); 3845 3846 filename = getname_kernel(name); 3847 if (IS_ERR(filename)) 3848 return ERR_CAST(filename); 3849 3850 set_nameidata(&nd, -1, filename, root); 3851 file = path_openat(&nd, op, flags | LOOKUP_RCU); 3852 if (unlikely(file == ERR_PTR(-ECHILD))) 3853 file = path_openat(&nd, op, flags); 3854 if (unlikely(file == ERR_PTR(-ESTALE))) 3855 file = path_openat(&nd, op, flags | LOOKUP_REVAL); 3856 restore_nameidata(); 3857 putname(filename); 3858 return file; 3859 } 3860 3861 static struct dentry *filename_create(int dfd, struct filename *name, 3862 struct path *path, unsigned int lookup_flags) 3863 { 3864 struct dentry *dentry = ERR_PTR(-EEXIST); 3865 struct qstr last; 3866 bool want_dir = lookup_flags & LOOKUP_DIRECTORY; 3867 unsigned int reval_flag = lookup_flags & LOOKUP_REVAL; 3868 unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL; 3869 int type; 3870 int err2; 3871 int error; 3872 3873 error = filename_parentat(dfd, name, reval_flag, path, &last, &type); 3874 if (error) 3875 return ERR_PTR(error); 3876 3877 /* 3878 * Yucky last component or no last component at all? 3879 * (foo/., foo/.., /////) 3880 */ 3881 if (unlikely(type != LAST_NORM)) 3882 goto out; 3883 3884 /* don't fail immediately if it's r/o, at least try to report other errors */ 3885 err2 = mnt_want_write(path->mnt); 3886 /* 3887 * Do the final lookup. Suppress 'create' if there is a trailing 3888 * '/', and a directory wasn't requested. 3889 */ 3890 if (last.name[last.len] && !want_dir) 3891 create_flags = 0; 3892 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 3893 dentry = lookup_one_qstr_excl(&last, path->dentry, 3894 reval_flag | create_flags); 3895 if (IS_ERR(dentry)) 3896 goto unlock; 3897 3898 error = -EEXIST; 3899 if (d_is_positive(dentry)) 3900 goto fail; 3901 3902 /* 3903 * Special case - lookup gave negative, but... we had foo/bar/ 3904 * From the vfs_mknod() POV we just have a negative dentry - 3905 * all is fine. Let's be bastards - you had / on the end, you've 3906 * been asking for (non-existent) directory. -ENOENT for you. 3907 */ 3908 if (unlikely(!create_flags)) { 3909 error = -ENOENT; 3910 goto fail; 3911 } 3912 if (unlikely(err2)) { 3913 error = err2; 3914 goto fail; 3915 } 3916 return dentry; 3917 fail: 3918 dput(dentry); 3919 dentry = ERR_PTR(error); 3920 unlock: 3921 inode_unlock(path->dentry->d_inode); 3922 if (!err2) 3923 mnt_drop_write(path->mnt); 3924 out: 3925 path_put(path); 3926 return dentry; 3927 } 3928 3929 struct dentry *kern_path_create(int dfd, const char *pathname, 3930 struct path *path, unsigned int lookup_flags) 3931 { 3932 struct filename *filename = getname_kernel(pathname); 3933 struct dentry *res = filename_create(dfd, filename, path, lookup_flags); 3934 3935 putname(filename); 3936 return res; 3937 } 3938 EXPORT_SYMBOL(kern_path_create); 3939 3940 void done_path_create(struct path *path, struct dentry *dentry) 3941 { 3942 dput(dentry); 3943 inode_unlock(path->dentry->d_inode); 3944 mnt_drop_write(path->mnt); 3945 path_put(path); 3946 } 3947 EXPORT_SYMBOL(done_path_create); 3948 3949 inline struct dentry *user_path_create(int dfd, const char __user *pathname, 3950 struct path *path, unsigned int lookup_flags) 3951 { 3952 struct filename *filename = getname(pathname); 3953 struct dentry *res = filename_create(dfd, filename, path, lookup_flags); 3954 3955 putname(filename); 3956 return res; 3957 } 3958 EXPORT_SYMBOL(user_path_create); 3959 3960 /** 3961 * vfs_mknod - create device node or file 3962 * @idmap: idmap of the mount the inode was found from 3963 * @dir: inode of @dentry 3964 * @dentry: pointer to dentry of the base directory 3965 * @mode: mode of the new device node or file 3966 * @dev: device number of device to create 3967 * 3968 * Create a device node or file. 3969 * 3970 * If the inode has been found through an idmapped mount the idmap of 3971 * the vfsmount must be passed through @idmap. This function will then take 3972 * care to map the inode according to @idmap before checking permissions. 3973 * On non-idmapped mounts or if permission checking is to be performed on the 3974 * raw inode simply pass @nop_mnt_idmap. 3975 */ 3976 int vfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 3977 struct dentry *dentry, umode_t mode, dev_t dev) 3978 { 3979 bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV; 3980 int error = may_create(idmap, dir, dentry); 3981 3982 if (error) 3983 return error; 3984 3985 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout && 3986 !capable(CAP_MKNOD)) 3987 return -EPERM; 3988 3989 if (!dir->i_op->mknod) 3990 return -EPERM; 3991 3992 mode = vfs_prepare_mode(idmap, dir, mode, mode, mode); 3993 error = devcgroup_inode_mknod(mode, dev); 3994 if (error) 3995 return error; 3996 3997 error = security_inode_mknod(dir, dentry, mode, dev); 3998 if (error) 3999 return error; 4000 4001 error = dir->i_op->mknod(idmap, dir, dentry, mode, dev); 4002 if (!error) 4003 fsnotify_create(dir, dentry); 4004 return error; 4005 } 4006 EXPORT_SYMBOL(vfs_mknod); 4007 4008 static int may_mknod(umode_t mode) 4009 { 4010 switch (mode & S_IFMT) { 4011 case S_IFREG: 4012 case S_IFCHR: 4013 case S_IFBLK: 4014 case S_IFIFO: 4015 case S_IFSOCK: 4016 case 0: /* zero mode translates to S_IFREG */ 4017 return 0; 4018 case S_IFDIR: 4019 return -EPERM; 4020 default: 4021 return -EINVAL; 4022 } 4023 } 4024 4025 static int do_mknodat(int dfd, struct filename *name, umode_t mode, 4026 unsigned int dev) 4027 { 4028 struct mnt_idmap *idmap; 4029 struct dentry *dentry; 4030 struct path path; 4031 int error; 4032 unsigned int lookup_flags = 0; 4033 4034 error = may_mknod(mode); 4035 if (error) 4036 goto out1; 4037 retry: 4038 dentry = filename_create(dfd, name, &path, lookup_flags); 4039 error = PTR_ERR(dentry); 4040 if (IS_ERR(dentry)) 4041 goto out1; 4042 4043 error = security_path_mknod(&path, dentry, 4044 mode_strip_umask(path.dentry->d_inode, mode), dev); 4045 if (error) 4046 goto out2; 4047 4048 idmap = mnt_idmap(path.mnt); 4049 switch (mode & S_IFMT) { 4050 case 0: case S_IFREG: 4051 error = vfs_create(idmap, path.dentry->d_inode, 4052 dentry, mode, true); 4053 if (!error) 4054 security_path_post_mknod(idmap, dentry); 4055 break; 4056 case S_IFCHR: case S_IFBLK: 4057 error = vfs_mknod(idmap, path.dentry->d_inode, 4058 dentry, mode, new_decode_dev(dev)); 4059 break; 4060 case S_IFIFO: case S_IFSOCK: 4061 error = vfs_mknod(idmap, path.dentry->d_inode, 4062 dentry, mode, 0); 4063 break; 4064 } 4065 out2: 4066 done_path_create(&path, dentry); 4067 if (retry_estale(error, lookup_flags)) { 4068 lookup_flags |= LOOKUP_REVAL; 4069 goto retry; 4070 } 4071 out1: 4072 putname(name); 4073 return error; 4074 } 4075 4076 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 4077 unsigned int, dev) 4078 { 4079 return do_mknodat(dfd, getname(filename), mode, dev); 4080 } 4081 4082 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 4083 { 4084 return do_mknodat(AT_FDCWD, getname(filename), mode, dev); 4085 } 4086 4087 /** 4088 * vfs_mkdir - create directory 4089 * @idmap: idmap of the mount the inode was found from 4090 * @dir: inode of @dentry 4091 * @dentry: pointer to dentry of the base directory 4092 * @mode: mode of the new directory 4093 * 4094 * Create a directory. 4095 * 4096 * If the inode has been found through an idmapped mount the idmap of 4097 * the vfsmount must be passed through @idmap. This function will then take 4098 * care to map the inode according to @idmap before checking permissions. 4099 * On non-idmapped mounts or if permission checking is to be performed on the 4100 * raw inode simply pass @nop_mnt_idmap. 4101 */ 4102 int vfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 4103 struct dentry *dentry, umode_t mode) 4104 { 4105 int error; 4106 unsigned max_links = dir->i_sb->s_max_links; 4107 4108 error = may_create(idmap, dir, dentry); 4109 if (error) 4110 return error; 4111 4112 if (!dir->i_op->mkdir) 4113 return -EPERM; 4114 4115 mode = vfs_prepare_mode(idmap, dir, mode, S_IRWXUGO | S_ISVTX, 0); 4116 error = security_inode_mkdir(dir, dentry, mode); 4117 if (error) 4118 return error; 4119 4120 if (max_links && dir->i_nlink >= max_links) 4121 return -EMLINK; 4122 4123 error = dir->i_op->mkdir(idmap, dir, dentry, mode); 4124 if (!error) 4125 fsnotify_mkdir(dir, dentry); 4126 return error; 4127 } 4128 EXPORT_SYMBOL(vfs_mkdir); 4129 4130 int do_mkdirat(int dfd, struct filename *name, umode_t mode) 4131 { 4132 struct dentry *dentry; 4133 struct path path; 4134 int error; 4135 unsigned int lookup_flags = LOOKUP_DIRECTORY; 4136 4137 retry: 4138 dentry = filename_create(dfd, name, &path, lookup_flags); 4139 error = PTR_ERR(dentry); 4140 if (IS_ERR(dentry)) 4141 goto out_putname; 4142 4143 error = security_path_mkdir(&path, dentry, 4144 mode_strip_umask(path.dentry->d_inode, mode)); 4145 if (!error) { 4146 error = vfs_mkdir(mnt_idmap(path.mnt), path.dentry->d_inode, 4147 dentry, mode); 4148 } 4149 done_path_create(&path, dentry); 4150 if (retry_estale(error, lookup_flags)) { 4151 lookup_flags |= LOOKUP_REVAL; 4152 goto retry; 4153 } 4154 out_putname: 4155 putname(name); 4156 return error; 4157 } 4158 4159 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 4160 { 4161 return do_mkdirat(dfd, getname(pathname), mode); 4162 } 4163 4164 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 4165 { 4166 return do_mkdirat(AT_FDCWD, getname(pathname), mode); 4167 } 4168 4169 /** 4170 * vfs_rmdir - remove directory 4171 * @idmap: idmap of the mount the inode was found from 4172 * @dir: inode of @dentry 4173 * @dentry: pointer to dentry of the base directory 4174 * 4175 * Remove a directory. 4176 * 4177 * If the inode has been found through an idmapped mount the idmap of 4178 * the vfsmount must be passed through @idmap. This function will then take 4179 * care to map the inode according to @idmap before checking permissions. 4180 * On non-idmapped mounts or if permission checking is to be performed on the 4181 * raw inode simply pass @nop_mnt_idmap. 4182 */ 4183 int vfs_rmdir(struct mnt_idmap *idmap, struct inode *dir, 4184 struct dentry *dentry) 4185 { 4186 int error = may_delete(idmap, dir, dentry, 1); 4187 4188 if (error) 4189 return error; 4190 4191 if (!dir->i_op->rmdir) 4192 return -EPERM; 4193 4194 dget(dentry); 4195 inode_lock(dentry->d_inode); 4196 4197 error = -EBUSY; 4198 if (is_local_mountpoint(dentry) || 4199 (dentry->d_inode->i_flags & S_KERNEL_FILE)) 4200 goto out; 4201 4202 error = security_inode_rmdir(dir, dentry); 4203 if (error) 4204 goto out; 4205 4206 error = dir->i_op->rmdir(dir, dentry); 4207 if (error) 4208 goto out; 4209 4210 shrink_dcache_parent(dentry); 4211 dentry->d_inode->i_flags |= S_DEAD; 4212 dont_mount(dentry); 4213 detach_mounts(dentry); 4214 4215 out: 4216 inode_unlock(dentry->d_inode); 4217 dput(dentry); 4218 if (!error) 4219 d_delete_notify(dir, dentry); 4220 return error; 4221 } 4222 EXPORT_SYMBOL(vfs_rmdir); 4223 4224 int do_rmdir(int dfd, struct filename *name) 4225 { 4226 int error; 4227 struct dentry *dentry; 4228 struct path path; 4229 struct qstr last; 4230 int type; 4231 unsigned int lookup_flags = 0; 4232 retry: 4233 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 4234 if (error) 4235 goto exit1; 4236 4237 switch (type) { 4238 case LAST_DOTDOT: 4239 error = -ENOTEMPTY; 4240 goto exit2; 4241 case LAST_DOT: 4242 error = -EINVAL; 4243 goto exit2; 4244 case LAST_ROOT: 4245 error = -EBUSY; 4246 goto exit2; 4247 } 4248 4249 error = mnt_want_write(path.mnt); 4250 if (error) 4251 goto exit2; 4252 4253 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4254 dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags); 4255 error = PTR_ERR(dentry); 4256 if (IS_ERR(dentry)) 4257 goto exit3; 4258 if (!dentry->d_inode) { 4259 error = -ENOENT; 4260 goto exit4; 4261 } 4262 error = security_path_rmdir(&path, dentry); 4263 if (error) 4264 goto exit4; 4265 error = vfs_rmdir(mnt_idmap(path.mnt), path.dentry->d_inode, dentry); 4266 exit4: 4267 dput(dentry); 4268 exit3: 4269 inode_unlock(path.dentry->d_inode); 4270 mnt_drop_write(path.mnt); 4271 exit2: 4272 path_put(&path); 4273 if (retry_estale(error, lookup_flags)) { 4274 lookup_flags |= LOOKUP_REVAL; 4275 goto retry; 4276 } 4277 exit1: 4278 putname(name); 4279 return error; 4280 } 4281 4282 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 4283 { 4284 return do_rmdir(AT_FDCWD, getname(pathname)); 4285 } 4286 4287 /** 4288 * vfs_unlink - unlink a filesystem object 4289 * @idmap: idmap of the mount the inode was found from 4290 * @dir: parent directory 4291 * @dentry: victim 4292 * @delegated_inode: returns victim inode, if the inode is delegated. 4293 * 4294 * The caller must hold dir->i_mutex. 4295 * 4296 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 4297 * return a reference to the inode in delegated_inode. The caller 4298 * should then break the delegation on that inode and retry. Because 4299 * breaking a delegation may take a long time, the caller should drop 4300 * dir->i_mutex before doing so. 4301 * 4302 * Alternatively, a caller may pass NULL for delegated_inode. This may 4303 * be appropriate for callers that expect the underlying filesystem not 4304 * to be NFS exported. 4305 * 4306 * If the inode has been found through an idmapped mount the idmap of 4307 * the vfsmount must be passed through @idmap. This function will then take 4308 * care to map the inode according to @idmap before checking permissions. 4309 * On non-idmapped mounts or if permission checking is to be performed on the 4310 * raw inode simply pass @nop_mnt_idmap. 4311 */ 4312 int vfs_unlink(struct mnt_idmap *idmap, struct inode *dir, 4313 struct dentry *dentry, struct inode **delegated_inode) 4314 { 4315 struct inode *target = dentry->d_inode; 4316 int error = may_delete(idmap, dir, dentry, 0); 4317 4318 if (error) 4319 return error; 4320 4321 if (!dir->i_op->unlink) 4322 return -EPERM; 4323 4324 inode_lock(target); 4325 if (IS_SWAPFILE(target)) 4326 error = -EPERM; 4327 else if (is_local_mountpoint(dentry)) 4328 error = -EBUSY; 4329 else { 4330 error = security_inode_unlink(dir, dentry); 4331 if (!error) { 4332 error = try_break_deleg(target, delegated_inode); 4333 if (error) 4334 goto out; 4335 error = dir->i_op->unlink(dir, dentry); 4336 if (!error) { 4337 dont_mount(dentry); 4338 detach_mounts(dentry); 4339 } 4340 } 4341 } 4342 out: 4343 inode_unlock(target); 4344 4345 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 4346 if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) { 4347 fsnotify_unlink(dir, dentry); 4348 } else if (!error) { 4349 fsnotify_link_count(target); 4350 d_delete_notify(dir, dentry); 4351 } 4352 4353 return error; 4354 } 4355 EXPORT_SYMBOL(vfs_unlink); 4356 4357 /* 4358 * Make sure that the actual truncation of the file will occur outside its 4359 * directory's i_mutex. Truncate can take a long time if there is a lot of 4360 * writeout happening, and we don't want to prevent access to the directory 4361 * while waiting on the I/O. 4362 */ 4363 int do_unlinkat(int dfd, struct filename *name) 4364 { 4365 int error; 4366 struct dentry *dentry; 4367 struct path path; 4368 struct qstr last; 4369 int type; 4370 struct inode *inode = NULL; 4371 struct inode *delegated_inode = NULL; 4372 unsigned int lookup_flags = 0; 4373 retry: 4374 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 4375 if (error) 4376 goto exit1; 4377 4378 error = -EISDIR; 4379 if (type != LAST_NORM) 4380 goto exit2; 4381 4382 error = mnt_want_write(path.mnt); 4383 if (error) 4384 goto exit2; 4385 retry_deleg: 4386 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4387 dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags); 4388 error = PTR_ERR(dentry); 4389 if (!IS_ERR(dentry)) { 4390 4391 /* Why not before? Because we want correct error value */ 4392 if (last.name[last.len] || d_is_negative(dentry)) 4393 goto slashes; 4394 inode = dentry->d_inode; 4395 ihold(inode); 4396 error = security_path_unlink(&path, dentry); 4397 if (error) 4398 goto exit3; 4399 error = vfs_unlink(mnt_idmap(path.mnt), path.dentry->d_inode, 4400 dentry, &delegated_inode); 4401 exit3: 4402 dput(dentry); 4403 } 4404 inode_unlock(path.dentry->d_inode); 4405 if (inode) 4406 iput(inode); /* truncate the inode here */ 4407 inode = NULL; 4408 if (delegated_inode) { 4409 error = break_deleg_wait(&delegated_inode); 4410 if (!error) 4411 goto retry_deleg; 4412 } 4413 mnt_drop_write(path.mnt); 4414 exit2: 4415 path_put(&path); 4416 if (retry_estale(error, lookup_flags)) { 4417 lookup_flags |= LOOKUP_REVAL; 4418 inode = NULL; 4419 goto retry; 4420 } 4421 exit1: 4422 putname(name); 4423 return error; 4424 4425 slashes: 4426 if (d_is_negative(dentry)) 4427 error = -ENOENT; 4428 else if (d_is_dir(dentry)) 4429 error = -EISDIR; 4430 else 4431 error = -ENOTDIR; 4432 goto exit3; 4433 } 4434 4435 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 4436 { 4437 if ((flag & ~AT_REMOVEDIR) != 0) 4438 return -EINVAL; 4439 4440 if (flag & AT_REMOVEDIR) 4441 return do_rmdir(dfd, getname(pathname)); 4442 return do_unlinkat(dfd, getname(pathname)); 4443 } 4444 4445 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 4446 { 4447 return do_unlinkat(AT_FDCWD, getname(pathname)); 4448 } 4449 4450 /** 4451 * vfs_symlink - create symlink 4452 * @idmap: idmap of the mount the inode was found from 4453 * @dir: inode of @dentry 4454 * @dentry: pointer to dentry of the base directory 4455 * @oldname: name of the file to link to 4456 * 4457 * Create a symlink. 4458 * 4459 * If the inode has been found through an idmapped mount the idmap of 4460 * the vfsmount must be passed through @idmap. This function will then take 4461 * care to map the inode according to @idmap before checking permissions. 4462 * On non-idmapped mounts or if permission checking is to be performed on the 4463 * raw inode simply pass @nop_mnt_idmap. 4464 */ 4465 int vfs_symlink(struct mnt_idmap *idmap, struct inode *dir, 4466 struct dentry *dentry, const char *oldname) 4467 { 4468 int error; 4469 4470 error = may_create(idmap, dir, dentry); 4471 if (error) 4472 return error; 4473 4474 if (!dir->i_op->symlink) 4475 return -EPERM; 4476 4477 error = security_inode_symlink(dir, dentry, oldname); 4478 if (error) 4479 return error; 4480 4481 error = dir->i_op->symlink(idmap, dir, dentry, oldname); 4482 if (!error) 4483 fsnotify_create(dir, dentry); 4484 return error; 4485 } 4486 EXPORT_SYMBOL(vfs_symlink); 4487 4488 int do_symlinkat(struct filename *from, int newdfd, struct filename *to) 4489 { 4490 int error; 4491 struct dentry *dentry; 4492 struct path path; 4493 unsigned int lookup_flags = 0; 4494 4495 if (IS_ERR(from)) { 4496 error = PTR_ERR(from); 4497 goto out_putnames; 4498 } 4499 retry: 4500 dentry = filename_create(newdfd, to, &path, lookup_flags); 4501 error = PTR_ERR(dentry); 4502 if (IS_ERR(dentry)) 4503 goto out_putnames; 4504 4505 error = security_path_symlink(&path, dentry, from->name); 4506 if (!error) 4507 error = vfs_symlink(mnt_idmap(path.mnt), path.dentry->d_inode, 4508 dentry, from->name); 4509 done_path_create(&path, dentry); 4510 if (retry_estale(error, lookup_flags)) { 4511 lookup_flags |= LOOKUP_REVAL; 4512 goto retry; 4513 } 4514 out_putnames: 4515 putname(to); 4516 putname(from); 4517 return error; 4518 } 4519 4520 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 4521 int, newdfd, const char __user *, newname) 4522 { 4523 return do_symlinkat(getname(oldname), newdfd, getname(newname)); 4524 } 4525 4526 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 4527 { 4528 return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname)); 4529 } 4530 4531 /** 4532 * vfs_link - create a new link 4533 * @old_dentry: object to be linked 4534 * @idmap: idmap of the mount 4535 * @dir: new parent 4536 * @new_dentry: where to create the new link 4537 * @delegated_inode: returns inode needing a delegation break 4538 * 4539 * The caller must hold dir->i_mutex 4540 * 4541 * If vfs_link discovers a delegation on the to-be-linked file in need 4542 * of breaking, it will return -EWOULDBLOCK and return a reference to the 4543 * inode in delegated_inode. The caller should then break the delegation 4544 * and retry. Because breaking a delegation may take a long time, the 4545 * caller should drop the i_mutex before doing so. 4546 * 4547 * Alternatively, a caller may pass NULL for delegated_inode. This may 4548 * be appropriate for callers that expect the underlying filesystem not 4549 * to be NFS exported. 4550 * 4551 * If the inode has been found through an idmapped mount the idmap of 4552 * the vfsmount must be passed through @idmap. This function will then take 4553 * care to map the inode according to @idmap before checking permissions. 4554 * On non-idmapped mounts or if permission checking is to be performed on the 4555 * raw inode simply pass @nop_mnt_idmap. 4556 */ 4557 int vfs_link(struct dentry *old_dentry, struct mnt_idmap *idmap, 4558 struct inode *dir, struct dentry *new_dentry, 4559 struct inode **delegated_inode) 4560 { 4561 struct inode *inode = old_dentry->d_inode; 4562 unsigned max_links = dir->i_sb->s_max_links; 4563 int error; 4564 4565 if (!inode) 4566 return -ENOENT; 4567 4568 error = may_create(idmap, dir, new_dentry); 4569 if (error) 4570 return error; 4571 4572 if (dir->i_sb != inode->i_sb) 4573 return -EXDEV; 4574 4575 /* 4576 * A link to an append-only or immutable file cannot be created. 4577 */ 4578 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4579 return -EPERM; 4580 /* 4581 * Updating the link count will likely cause i_uid and i_gid to 4582 * be writen back improperly if their true value is unknown to 4583 * the vfs. 4584 */ 4585 if (HAS_UNMAPPED_ID(idmap, inode)) 4586 return -EPERM; 4587 if (!dir->i_op->link) 4588 return -EPERM; 4589 if (S_ISDIR(inode->i_mode)) 4590 return -EPERM; 4591 4592 error = security_inode_link(old_dentry, dir, new_dentry); 4593 if (error) 4594 return error; 4595 4596 inode_lock(inode); 4597 /* Make sure we don't allow creating hardlink to an unlinked file */ 4598 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 4599 error = -ENOENT; 4600 else if (max_links && inode->i_nlink >= max_links) 4601 error = -EMLINK; 4602 else { 4603 error = try_break_deleg(inode, delegated_inode); 4604 if (!error) 4605 error = dir->i_op->link(old_dentry, dir, new_dentry); 4606 } 4607 4608 if (!error && (inode->i_state & I_LINKABLE)) { 4609 spin_lock(&inode->i_lock); 4610 inode->i_state &= ~I_LINKABLE; 4611 spin_unlock(&inode->i_lock); 4612 } 4613 inode_unlock(inode); 4614 if (!error) 4615 fsnotify_link(dir, inode, new_dentry); 4616 return error; 4617 } 4618 EXPORT_SYMBOL(vfs_link); 4619 4620 /* 4621 * Hardlinks are often used in delicate situations. We avoid 4622 * security-related surprises by not following symlinks on the 4623 * newname. --KAB 4624 * 4625 * We don't follow them on the oldname either to be compatible 4626 * with linux 2.0, and to avoid hard-linking to directories 4627 * and other special files. --ADM 4628 */ 4629 int do_linkat(int olddfd, struct filename *old, int newdfd, 4630 struct filename *new, int flags) 4631 { 4632 struct mnt_idmap *idmap; 4633 struct dentry *new_dentry; 4634 struct path old_path, new_path; 4635 struct inode *delegated_inode = NULL; 4636 int how = 0; 4637 int error; 4638 4639 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) { 4640 error = -EINVAL; 4641 goto out_putnames; 4642 } 4643 /* 4644 * To use null names we require CAP_DAC_READ_SEARCH 4645 * This ensures that not everyone will be able to create 4646 * handlink using the passed filedescriptor. 4647 */ 4648 if (flags & AT_EMPTY_PATH && !capable(CAP_DAC_READ_SEARCH)) { 4649 error = -ENOENT; 4650 goto out_putnames; 4651 } 4652 4653 if (flags & AT_SYMLINK_FOLLOW) 4654 how |= LOOKUP_FOLLOW; 4655 retry: 4656 error = filename_lookup(olddfd, old, how, &old_path, NULL); 4657 if (error) 4658 goto out_putnames; 4659 4660 new_dentry = filename_create(newdfd, new, &new_path, 4661 (how & LOOKUP_REVAL)); 4662 error = PTR_ERR(new_dentry); 4663 if (IS_ERR(new_dentry)) 4664 goto out_putpath; 4665 4666 error = -EXDEV; 4667 if (old_path.mnt != new_path.mnt) 4668 goto out_dput; 4669 idmap = mnt_idmap(new_path.mnt); 4670 error = may_linkat(idmap, &old_path); 4671 if (unlikely(error)) 4672 goto out_dput; 4673 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4674 if (error) 4675 goto out_dput; 4676 error = vfs_link(old_path.dentry, idmap, new_path.dentry->d_inode, 4677 new_dentry, &delegated_inode); 4678 out_dput: 4679 done_path_create(&new_path, new_dentry); 4680 if (delegated_inode) { 4681 error = break_deleg_wait(&delegated_inode); 4682 if (!error) { 4683 path_put(&old_path); 4684 goto retry; 4685 } 4686 } 4687 if (retry_estale(error, how)) { 4688 path_put(&old_path); 4689 how |= LOOKUP_REVAL; 4690 goto retry; 4691 } 4692 out_putpath: 4693 path_put(&old_path); 4694 out_putnames: 4695 putname(old); 4696 putname(new); 4697 4698 return error; 4699 } 4700 4701 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 4702 int, newdfd, const char __user *, newname, int, flags) 4703 { 4704 return do_linkat(olddfd, getname_uflags(oldname, flags), 4705 newdfd, getname(newname), flags); 4706 } 4707 4708 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4709 { 4710 return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0); 4711 } 4712 4713 /** 4714 * vfs_rename - rename a filesystem object 4715 * @rd: pointer to &struct renamedata info 4716 * 4717 * The caller must hold multiple mutexes--see lock_rename()). 4718 * 4719 * If vfs_rename discovers a delegation in need of breaking at either 4720 * the source or destination, it will return -EWOULDBLOCK and return a 4721 * reference to the inode in delegated_inode. The caller should then 4722 * break the delegation and retry. Because breaking a delegation may 4723 * take a long time, the caller should drop all locks before doing 4724 * so. 4725 * 4726 * Alternatively, a caller may pass NULL for delegated_inode. This may 4727 * be appropriate for callers that expect the underlying filesystem not 4728 * to be NFS exported. 4729 * 4730 * The worst of all namespace operations - renaming directory. "Perverted" 4731 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4732 * Problems: 4733 * 4734 * a) we can get into loop creation. 4735 * b) race potential - two innocent renames can create a loop together. 4736 * That's where 4.4BSD screws up. Current fix: serialization on 4737 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4738 * story. 4739 * c) we may have to lock up to _four_ objects - parents and victim (if it exists), 4740 * and source (if it's a non-directory or a subdirectory that moves to 4741 * different parent). 4742 * And that - after we got ->i_mutex on parents (until then we don't know 4743 * whether the target exists). Solution: try to be smart with locking 4744 * order for inodes. We rely on the fact that tree topology may change 4745 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4746 * move will be locked. Thus we can rank directories by the tree 4747 * (ancestors first) and rank all non-directories after them. 4748 * That works since everybody except rename does "lock parent, lookup, 4749 * lock child" and rename is under ->s_vfs_rename_mutex. 4750 * HOWEVER, it relies on the assumption that any object with ->lookup() 4751 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4752 * we'd better make sure that there's no link(2) for them. 4753 * d) conversion from fhandle to dentry may come in the wrong moment - when 4754 * we are removing the target. Solution: we will have to grab ->i_mutex 4755 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4756 * ->i_mutex on parents, which works but leads to some truly excessive 4757 * locking]. 4758 */ 4759 int vfs_rename(struct renamedata *rd) 4760 { 4761 int error; 4762 struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir; 4763 struct dentry *old_dentry = rd->old_dentry; 4764 struct dentry *new_dentry = rd->new_dentry; 4765 struct inode **delegated_inode = rd->delegated_inode; 4766 unsigned int flags = rd->flags; 4767 bool is_dir = d_is_dir(old_dentry); 4768 struct inode *source = old_dentry->d_inode; 4769 struct inode *target = new_dentry->d_inode; 4770 bool new_is_dir = false; 4771 unsigned max_links = new_dir->i_sb->s_max_links; 4772 struct name_snapshot old_name; 4773 bool lock_old_subdir, lock_new_subdir; 4774 4775 if (source == target) 4776 return 0; 4777 4778 error = may_delete(rd->old_mnt_idmap, old_dir, old_dentry, is_dir); 4779 if (error) 4780 return error; 4781 4782 if (!target) { 4783 error = may_create(rd->new_mnt_idmap, new_dir, new_dentry); 4784 } else { 4785 new_is_dir = d_is_dir(new_dentry); 4786 4787 if (!(flags & RENAME_EXCHANGE)) 4788 error = may_delete(rd->new_mnt_idmap, new_dir, 4789 new_dentry, is_dir); 4790 else 4791 error = may_delete(rd->new_mnt_idmap, new_dir, 4792 new_dentry, new_is_dir); 4793 } 4794 if (error) 4795 return error; 4796 4797 if (!old_dir->i_op->rename) 4798 return -EPERM; 4799 4800 /* 4801 * If we are going to change the parent - check write permissions, 4802 * we'll need to flip '..'. 4803 */ 4804 if (new_dir != old_dir) { 4805 if (is_dir) { 4806 error = inode_permission(rd->old_mnt_idmap, source, 4807 MAY_WRITE); 4808 if (error) 4809 return error; 4810 } 4811 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4812 error = inode_permission(rd->new_mnt_idmap, target, 4813 MAY_WRITE); 4814 if (error) 4815 return error; 4816 } 4817 } 4818 4819 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 4820 flags); 4821 if (error) 4822 return error; 4823 4824 take_dentry_name_snapshot(&old_name, old_dentry); 4825 dget(new_dentry); 4826 /* 4827 * Lock children. 4828 * The source subdirectory needs to be locked on cross-directory 4829 * rename or cross-directory exchange since its parent changes. 4830 * The target subdirectory needs to be locked on cross-directory 4831 * exchange due to parent change and on any rename due to becoming 4832 * a victim. 4833 * Non-directories need locking in all cases (for NFS reasons); 4834 * they get locked after any subdirectories (in inode address order). 4835 * 4836 * NOTE: WE ONLY LOCK UNRELATED DIRECTORIES IN CROSS-DIRECTORY CASE. 4837 * NEVER, EVER DO THAT WITHOUT ->s_vfs_rename_mutex. 4838 */ 4839 lock_old_subdir = new_dir != old_dir; 4840 lock_new_subdir = new_dir != old_dir || !(flags & RENAME_EXCHANGE); 4841 if (is_dir) { 4842 if (lock_old_subdir) 4843 inode_lock_nested(source, I_MUTEX_CHILD); 4844 if (target && (!new_is_dir || lock_new_subdir)) 4845 inode_lock(target); 4846 } else if (new_is_dir) { 4847 if (lock_new_subdir) 4848 inode_lock_nested(target, I_MUTEX_CHILD); 4849 inode_lock(source); 4850 } else { 4851 lock_two_nondirectories(source, target); 4852 } 4853 4854 error = -EPERM; 4855 if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target))) 4856 goto out; 4857 4858 error = -EBUSY; 4859 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 4860 goto out; 4861 4862 if (max_links && new_dir != old_dir) { 4863 error = -EMLINK; 4864 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 4865 goto out; 4866 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 4867 old_dir->i_nlink >= max_links) 4868 goto out; 4869 } 4870 if (!is_dir) { 4871 error = try_break_deleg(source, delegated_inode); 4872 if (error) 4873 goto out; 4874 } 4875 if (target && !new_is_dir) { 4876 error = try_break_deleg(target, delegated_inode); 4877 if (error) 4878 goto out; 4879 } 4880 error = old_dir->i_op->rename(rd->new_mnt_idmap, old_dir, old_dentry, 4881 new_dir, new_dentry, flags); 4882 if (error) 4883 goto out; 4884 4885 if (!(flags & RENAME_EXCHANGE) && target) { 4886 if (is_dir) { 4887 shrink_dcache_parent(new_dentry); 4888 target->i_flags |= S_DEAD; 4889 } 4890 dont_mount(new_dentry); 4891 detach_mounts(new_dentry); 4892 } 4893 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 4894 if (!(flags & RENAME_EXCHANGE)) 4895 d_move(old_dentry, new_dentry); 4896 else 4897 d_exchange(old_dentry, new_dentry); 4898 } 4899 out: 4900 if (!is_dir || lock_old_subdir) 4901 inode_unlock(source); 4902 if (target && (!new_is_dir || lock_new_subdir)) 4903 inode_unlock(target); 4904 dput(new_dentry); 4905 if (!error) { 4906 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir, 4907 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 4908 if (flags & RENAME_EXCHANGE) { 4909 fsnotify_move(new_dir, old_dir, &old_dentry->d_name, 4910 new_is_dir, NULL, new_dentry); 4911 } 4912 } 4913 release_dentry_name_snapshot(&old_name); 4914 4915 return error; 4916 } 4917 EXPORT_SYMBOL(vfs_rename); 4918 4919 int do_renameat2(int olddfd, struct filename *from, int newdfd, 4920 struct filename *to, unsigned int flags) 4921 { 4922 struct renamedata rd; 4923 struct dentry *old_dentry, *new_dentry; 4924 struct dentry *trap; 4925 struct path old_path, new_path; 4926 struct qstr old_last, new_last; 4927 int old_type, new_type; 4928 struct inode *delegated_inode = NULL; 4929 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET; 4930 bool should_retry = false; 4931 int error = -EINVAL; 4932 4933 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4934 goto put_names; 4935 4936 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 4937 (flags & RENAME_EXCHANGE)) 4938 goto put_names; 4939 4940 if (flags & RENAME_EXCHANGE) 4941 target_flags = 0; 4942 4943 retry: 4944 error = filename_parentat(olddfd, from, lookup_flags, &old_path, 4945 &old_last, &old_type); 4946 if (error) 4947 goto put_names; 4948 4949 error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last, 4950 &new_type); 4951 if (error) 4952 goto exit1; 4953 4954 error = -EXDEV; 4955 if (old_path.mnt != new_path.mnt) 4956 goto exit2; 4957 4958 error = -EBUSY; 4959 if (old_type != LAST_NORM) 4960 goto exit2; 4961 4962 if (flags & RENAME_NOREPLACE) 4963 error = -EEXIST; 4964 if (new_type != LAST_NORM) 4965 goto exit2; 4966 4967 error = mnt_want_write(old_path.mnt); 4968 if (error) 4969 goto exit2; 4970 4971 retry_deleg: 4972 trap = lock_rename(new_path.dentry, old_path.dentry); 4973 if (IS_ERR(trap)) { 4974 error = PTR_ERR(trap); 4975 goto exit_lock_rename; 4976 } 4977 4978 old_dentry = lookup_one_qstr_excl(&old_last, old_path.dentry, 4979 lookup_flags); 4980 error = PTR_ERR(old_dentry); 4981 if (IS_ERR(old_dentry)) 4982 goto exit3; 4983 /* source must exist */ 4984 error = -ENOENT; 4985 if (d_is_negative(old_dentry)) 4986 goto exit4; 4987 new_dentry = lookup_one_qstr_excl(&new_last, new_path.dentry, 4988 lookup_flags | target_flags); 4989 error = PTR_ERR(new_dentry); 4990 if (IS_ERR(new_dentry)) 4991 goto exit4; 4992 error = -EEXIST; 4993 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 4994 goto exit5; 4995 if (flags & RENAME_EXCHANGE) { 4996 error = -ENOENT; 4997 if (d_is_negative(new_dentry)) 4998 goto exit5; 4999 5000 if (!d_is_dir(new_dentry)) { 5001 error = -ENOTDIR; 5002 if (new_last.name[new_last.len]) 5003 goto exit5; 5004 } 5005 } 5006 /* unless the source is a directory trailing slashes give -ENOTDIR */ 5007 if (!d_is_dir(old_dentry)) { 5008 error = -ENOTDIR; 5009 if (old_last.name[old_last.len]) 5010 goto exit5; 5011 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len]) 5012 goto exit5; 5013 } 5014 /* source should not be ancestor of target */ 5015 error = -EINVAL; 5016 if (old_dentry == trap) 5017 goto exit5; 5018 /* target should not be an ancestor of source */ 5019 if (!(flags & RENAME_EXCHANGE)) 5020 error = -ENOTEMPTY; 5021 if (new_dentry == trap) 5022 goto exit5; 5023 5024 error = security_path_rename(&old_path, old_dentry, 5025 &new_path, new_dentry, flags); 5026 if (error) 5027 goto exit5; 5028 5029 rd.old_dir = old_path.dentry->d_inode; 5030 rd.old_dentry = old_dentry; 5031 rd.old_mnt_idmap = mnt_idmap(old_path.mnt); 5032 rd.new_dir = new_path.dentry->d_inode; 5033 rd.new_dentry = new_dentry; 5034 rd.new_mnt_idmap = mnt_idmap(new_path.mnt); 5035 rd.delegated_inode = &delegated_inode; 5036 rd.flags = flags; 5037 error = vfs_rename(&rd); 5038 exit5: 5039 dput(new_dentry); 5040 exit4: 5041 dput(old_dentry); 5042 exit3: 5043 unlock_rename(new_path.dentry, old_path.dentry); 5044 exit_lock_rename: 5045 if (delegated_inode) { 5046 error = break_deleg_wait(&delegated_inode); 5047 if (!error) 5048 goto retry_deleg; 5049 } 5050 mnt_drop_write(old_path.mnt); 5051 exit2: 5052 if (retry_estale(error, lookup_flags)) 5053 should_retry = true; 5054 path_put(&new_path); 5055 exit1: 5056 path_put(&old_path); 5057 if (should_retry) { 5058 should_retry = false; 5059 lookup_flags |= LOOKUP_REVAL; 5060 goto retry; 5061 } 5062 put_names: 5063 putname(from); 5064 putname(to); 5065 return error; 5066 } 5067 5068 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 5069 int, newdfd, const char __user *, newname, unsigned int, flags) 5070 { 5071 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname), 5072 flags); 5073 } 5074 5075 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 5076 int, newdfd, const char __user *, newname) 5077 { 5078 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname), 5079 0); 5080 } 5081 5082 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 5083 { 5084 return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD, 5085 getname(newname), 0); 5086 } 5087 5088 int readlink_copy(char __user *buffer, int buflen, const char *link) 5089 { 5090 int len = PTR_ERR(link); 5091 if (IS_ERR(link)) 5092 goto out; 5093 5094 len = strlen(link); 5095 if (len > (unsigned) buflen) 5096 len = buflen; 5097 if (copy_to_user(buffer, link, len)) 5098 len = -EFAULT; 5099 out: 5100 return len; 5101 } 5102 5103 /** 5104 * vfs_readlink - copy symlink body into userspace buffer 5105 * @dentry: dentry on which to get symbolic link 5106 * @buffer: user memory pointer 5107 * @buflen: size of buffer 5108 * 5109 * Does not touch atime. That's up to the caller if necessary 5110 * 5111 * Does not call security hook. 5112 */ 5113 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen) 5114 { 5115 struct inode *inode = d_inode(dentry); 5116 DEFINE_DELAYED_CALL(done); 5117 const char *link; 5118 int res; 5119 5120 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) { 5121 if (unlikely(inode->i_op->readlink)) 5122 return inode->i_op->readlink(dentry, buffer, buflen); 5123 5124 if (!d_is_symlink(dentry)) 5125 return -EINVAL; 5126 5127 spin_lock(&inode->i_lock); 5128 inode->i_opflags |= IOP_DEFAULT_READLINK; 5129 spin_unlock(&inode->i_lock); 5130 } 5131 5132 link = READ_ONCE(inode->i_link); 5133 if (!link) { 5134 link = inode->i_op->get_link(dentry, inode, &done); 5135 if (IS_ERR(link)) 5136 return PTR_ERR(link); 5137 } 5138 res = readlink_copy(buffer, buflen, link); 5139 do_delayed_call(&done); 5140 return res; 5141 } 5142 EXPORT_SYMBOL(vfs_readlink); 5143 5144 /** 5145 * vfs_get_link - get symlink body 5146 * @dentry: dentry on which to get symbolic link 5147 * @done: caller needs to free returned data with this 5148 * 5149 * Calls security hook and i_op->get_link() on the supplied inode. 5150 * 5151 * It does not touch atime. That's up to the caller if necessary. 5152 * 5153 * Does not work on "special" symlinks like /proc/$$/fd/N 5154 */ 5155 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done) 5156 { 5157 const char *res = ERR_PTR(-EINVAL); 5158 struct inode *inode = d_inode(dentry); 5159 5160 if (d_is_symlink(dentry)) { 5161 res = ERR_PTR(security_inode_readlink(dentry)); 5162 if (!res) 5163 res = inode->i_op->get_link(dentry, inode, done); 5164 } 5165 return res; 5166 } 5167 EXPORT_SYMBOL(vfs_get_link); 5168 5169 /* get the link contents into pagecache */ 5170 const char *page_get_link(struct dentry *dentry, struct inode *inode, 5171 struct delayed_call *callback) 5172 { 5173 char *kaddr; 5174 struct page *page; 5175 struct address_space *mapping = inode->i_mapping; 5176 5177 if (!dentry) { 5178 page = find_get_page(mapping, 0); 5179 if (!page) 5180 return ERR_PTR(-ECHILD); 5181 if (!PageUptodate(page)) { 5182 put_page(page); 5183 return ERR_PTR(-ECHILD); 5184 } 5185 } else { 5186 page = read_mapping_page(mapping, 0, NULL); 5187 if (IS_ERR(page)) 5188 return (char*)page; 5189 } 5190 set_delayed_call(callback, page_put_link, page); 5191 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM); 5192 kaddr = page_address(page); 5193 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1); 5194 return kaddr; 5195 } 5196 5197 EXPORT_SYMBOL(page_get_link); 5198 5199 void page_put_link(void *arg) 5200 { 5201 put_page(arg); 5202 } 5203 EXPORT_SYMBOL(page_put_link); 5204 5205 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 5206 { 5207 DEFINE_DELAYED_CALL(done); 5208 int res = readlink_copy(buffer, buflen, 5209 page_get_link(dentry, d_inode(dentry), 5210 &done)); 5211 do_delayed_call(&done); 5212 return res; 5213 } 5214 EXPORT_SYMBOL(page_readlink); 5215 5216 int page_symlink(struct inode *inode, const char *symname, int len) 5217 { 5218 struct address_space *mapping = inode->i_mapping; 5219 const struct address_space_operations *aops = mapping->a_ops; 5220 bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS); 5221 struct page *page; 5222 void *fsdata = NULL; 5223 int err; 5224 unsigned int flags; 5225 5226 retry: 5227 if (nofs) 5228 flags = memalloc_nofs_save(); 5229 err = aops->write_begin(NULL, mapping, 0, len-1, &page, &fsdata); 5230 if (nofs) 5231 memalloc_nofs_restore(flags); 5232 if (err) 5233 goto fail; 5234 5235 memcpy(page_address(page), symname, len-1); 5236 5237 err = aops->write_end(NULL, mapping, 0, len-1, len-1, 5238 page, fsdata); 5239 if (err < 0) 5240 goto fail; 5241 if (err < len-1) 5242 goto retry; 5243 5244 mark_inode_dirty(inode); 5245 return 0; 5246 fail: 5247 return err; 5248 } 5249 EXPORT_SYMBOL(page_symlink); 5250 5251 const struct inode_operations page_symlink_inode_operations = { 5252 .get_link = page_get_link, 5253 }; 5254 EXPORT_SYMBOL(page_symlink_inode_operations); 5255