xref: /linux/fs/namei.c (revision 827634added7f38b7d724cab1dccdb2b004c13c3)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39 
40 #include "internal.h"
41 #include "mount.h"
42 
43 /* [Feb-1997 T. Schoebel-Theuer]
44  * Fundamental changes in the pathname lookup mechanisms (namei)
45  * were necessary because of omirr.  The reason is that omirr needs
46  * to know the _real_ pathname, not the user-supplied one, in case
47  * of symlinks (and also when transname replacements occur).
48  *
49  * The new code replaces the old recursive symlink resolution with
50  * an iterative one (in case of non-nested symlink chains).  It does
51  * this with calls to <fs>_follow_link().
52  * As a side effect, dir_namei(), _namei() and follow_link() are now
53  * replaced with a single function lookup_dentry() that can handle all
54  * the special cases of the former code.
55  *
56  * With the new dcache, the pathname is stored at each inode, at least as
57  * long as the refcount of the inode is positive.  As a side effect, the
58  * size of the dcache depends on the inode cache and thus is dynamic.
59  *
60  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61  * resolution to correspond with current state of the code.
62  *
63  * Note that the symlink resolution is not *completely* iterative.
64  * There is still a significant amount of tail- and mid- recursion in
65  * the algorithm.  Also, note that <fs>_readlink() is not used in
66  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67  * may return different results than <fs>_follow_link().  Many virtual
68  * filesystems (including /proc) exhibit this behavior.
69  */
70 
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73  * and the name already exists in form of a symlink, try to create the new
74  * name indicated by the symlink. The old code always complained that the
75  * name already exists, due to not following the symlink even if its target
76  * is nonexistent.  The new semantics affects also mknod() and link() when
77  * the name is a symlink pointing to a non-existent name.
78  *
79  * I don't know which semantics is the right one, since I have no access
80  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82  * "old" one. Personally, I think the new semantics is much more logical.
83  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84  * file does succeed in both HP-UX and SunOs, but not in Solaris
85  * and in the old Linux semantics.
86  */
87 
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89  * semantics.  See the comments in "open_namei" and "do_link" below.
90  *
91  * [10-Sep-98 Alan Modra] Another symlink change.
92  */
93 
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95  *	inside the path - always follow.
96  *	in the last component in creation/removal/renaming - never follow.
97  *	if LOOKUP_FOLLOW passed - follow.
98  *	if the pathname has trailing slashes - follow.
99  *	otherwise - don't follow.
100  * (applied in that order).
101  *
102  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104  * During the 2.4 we need to fix the userland stuff depending on it -
105  * hopefully we will be able to get rid of that wart in 2.5. So far only
106  * XEmacs seems to be relying on it...
107  */
108 /*
109  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
111  * any extra contention...
112  */
113 
114 /* In order to reduce some races, while at the same time doing additional
115  * checking and hopefully speeding things up, we copy filenames to the
116  * kernel data space before using them..
117  *
118  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119  * PATH_MAX includes the nul terminator --RR.
120  */
121 
122 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
123 
124 struct filename *
125 getname_flags(const char __user *filename, int flags, int *empty)
126 {
127 	struct filename *result;
128 	char *kname;
129 	int len;
130 
131 	result = audit_reusename(filename);
132 	if (result)
133 		return result;
134 
135 	result = __getname();
136 	if (unlikely(!result))
137 		return ERR_PTR(-ENOMEM);
138 
139 	/*
140 	 * First, try to embed the struct filename inside the names_cache
141 	 * allocation
142 	 */
143 	kname = (char *)result->iname;
144 	result->name = kname;
145 
146 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
147 	if (unlikely(len < 0)) {
148 		__putname(result);
149 		return ERR_PTR(len);
150 	}
151 
152 	/*
153 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
154 	 * separate struct filename so we can dedicate the entire
155 	 * names_cache allocation for the pathname, and re-do the copy from
156 	 * userland.
157 	 */
158 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
159 		const size_t size = offsetof(struct filename, iname[1]);
160 		kname = (char *)result;
161 
162 		/*
163 		 * size is chosen that way we to guarantee that
164 		 * result->iname[0] is within the same object and that
165 		 * kname can't be equal to result->iname, no matter what.
166 		 */
167 		result = kzalloc(size, GFP_KERNEL);
168 		if (unlikely(!result)) {
169 			__putname(kname);
170 			return ERR_PTR(-ENOMEM);
171 		}
172 		result->name = kname;
173 		len = strncpy_from_user(kname, filename, PATH_MAX);
174 		if (unlikely(len < 0)) {
175 			__putname(kname);
176 			kfree(result);
177 			return ERR_PTR(len);
178 		}
179 		if (unlikely(len == PATH_MAX)) {
180 			__putname(kname);
181 			kfree(result);
182 			return ERR_PTR(-ENAMETOOLONG);
183 		}
184 	}
185 
186 	result->refcnt = 1;
187 	/* The empty path is special. */
188 	if (unlikely(!len)) {
189 		if (empty)
190 			*empty = 1;
191 		if (!(flags & LOOKUP_EMPTY)) {
192 			putname(result);
193 			return ERR_PTR(-ENOENT);
194 		}
195 	}
196 
197 	result->uptr = filename;
198 	result->aname = NULL;
199 	audit_getname(result);
200 	return result;
201 }
202 
203 struct filename *
204 getname(const char __user * filename)
205 {
206 	return getname_flags(filename, 0, NULL);
207 }
208 
209 struct filename *
210 getname_kernel(const char * filename)
211 {
212 	struct filename *result;
213 	int len = strlen(filename) + 1;
214 
215 	result = __getname();
216 	if (unlikely(!result))
217 		return ERR_PTR(-ENOMEM);
218 
219 	if (len <= EMBEDDED_NAME_MAX) {
220 		result->name = (char *)result->iname;
221 	} else if (len <= PATH_MAX) {
222 		struct filename *tmp;
223 
224 		tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
225 		if (unlikely(!tmp)) {
226 			__putname(result);
227 			return ERR_PTR(-ENOMEM);
228 		}
229 		tmp->name = (char *)result;
230 		result = tmp;
231 	} else {
232 		__putname(result);
233 		return ERR_PTR(-ENAMETOOLONG);
234 	}
235 	memcpy((char *)result->name, filename, len);
236 	result->uptr = NULL;
237 	result->aname = NULL;
238 	result->refcnt = 1;
239 	audit_getname(result);
240 
241 	return result;
242 }
243 
244 void putname(struct filename *name)
245 {
246 	BUG_ON(name->refcnt <= 0);
247 
248 	if (--name->refcnt > 0)
249 		return;
250 
251 	if (name->name != name->iname) {
252 		__putname(name->name);
253 		kfree(name);
254 	} else
255 		__putname(name);
256 }
257 
258 static int check_acl(struct inode *inode, int mask)
259 {
260 #ifdef CONFIG_FS_POSIX_ACL
261 	struct posix_acl *acl;
262 
263 	if (mask & MAY_NOT_BLOCK) {
264 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
265 	        if (!acl)
266 	                return -EAGAIN;
267 		/* no ->get_acl() calls in RCU mode... */
268 		if (acl == ACL_NOT_CACHED)
269 			return -ECHILD;
270 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
271 	}
272 
273 	acl = get_acl(inode, ACL_TYPE_ACCESS);
274 	if (IS_ERR(acl))
275 		return PTR_ERR(acl);
276 	if (acl) {
277 	        int error = posix_acl_permission(inode, acl, mask);
278 	        posix_acl_release(acl);
279 	        return error;
280 	}
281 #endif
282 
283 	return -EAGAIN;
284 }
285 
286 /*
287  * This does the basic permission checking
288  */
289 static int acl_permission_check(struct inode *inode, int mask)
290 {
291 	unsigned int mode = inode->i_mode;
292 
293 	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
294 		mode >>= 6;
295 	else {
296 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
297 			int error = check_acl(inode, mask);
298 			if (error != -EAGAIN)
299 				return error;
300 		}
301 
302 		if (in_group_p(inode->i_gid))
303 			mode >>= 3;
304 	}
305 
306 	/*
307 	 * If the DACs are ok we don't need any capability check.
308 	 */
309 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
310 		return 0;
311 	return -EACCES;
312 }
313 
314 /**
315  * generic_permission -  check for access rights on a Posix-like filesystem
316  * @inode:	inode to check access rights for
317  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
318  *
319  * Used to check for read/write/execute permissions on a file.
320  * We use "fsuid" for this, letting us set arbitrary permissions
321  * for filesystem access without changing the "normal" uids which
322  * are used for other things.
323  *
324  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
325  * request cannot be satisfied (eg. requires blocking or too much complexity).
326  * It would then be called again in ref-walk mode.
327  */
328 int generic_permission(struct inode *inode, int mask)
329 {
330 	int ret;
331 
332 	/*
333 	 * Do the basic permission checks.
334 	 */
335 	ret = acl_permission_check(inode, mask);
336 	if (ret != -EACCES)
337 		return ret;
338 
339 	if (S_ISDIR(inode->i_mode)) {
340 		/* DACs are overridable for directories */
341 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
342 			return 0;
343 		if (!(mask & MAY_WRITE))
344 			if (capable_wrt_inode_uidgid(inode,
345 						     CAP_DAC_READ_SEARCH))
346 				return 0;
347 		return -EACCES;
348 	}
349 	/*
350 	 * Read/write DACs are always overridable.
351 	 * Executable DACs are overridable when there is
352 	 * at least one exec bit set.
353 	 */
354 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
355 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
356 			return 0;
357 
358 	/*
359 	 * Searching includes executable on directories, else just read.
360 	 */
361 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
362 	if (mask == MAY_READ)
363 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
364 			return 0;
365 
366 	return -EACCES;
367 }
368 EXPORT_SYMBOL(generic_permission);
369 
370 /*
371  * We _really_ want to just do "generic_permission()" without
372  * even looking at the inode->i_op values. So we keep a cache
373  * flag in inode->i_opflags, that says "this has not special
374  * permission function, use the fast case".
375  */
376 static inline int do_inode_permission(struct inode *inode, int mask)
377 {
378 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
379 		if (likely(inode->i_op->permission))
380 			return inode->i_op->permission(inode, mask);
381 
382 		/* This gets set once for the inode lifetime */
383 		spin_lock(&inode->i_lock);
384 		inode->i_opflags |= IOP_FASTPERM;
385 		spin_unlock(&inode->i_lock);
386 	}
387 	return generic_permission(inode, mask);
388 }
389 
390 /**
391  * __inode_permission - Check for access rights to a given inode
392  * @inode: Inode to check permission on
393  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
394  *
395  * Check for read/write/execute permissions on an inode.
396  *
397  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
398  *
399  * This does not check for a read-only file system.  You probably want
400  * inode_permission().
401  */
402 int __inode_permission(struct inode *inode, int mask)
403 {
404 	int retval;
405 
406 	if (unlikely(mask & MAY_WRITE)) {
407 		/*
408 		 * Nobody gets write access to an immutable file.
409 		 */
410 		if (IS_IMMUTABLE(inode))
411 			return -EACCES;
412 	}
413 
414 	retval = do_inode_permission(inode, mask);
415 	if (retval)
416 		return retval;
417 
418 	retval = devcgroup_inode_permission(inode, mask);
419 	if (retval)
420 		return retval;
421 
422 	return security_inode_permission(inode, mask);
423 }
424 EXPORT_SYMBOL(__inode_permission);
425 
426 /**
427  * sb_permission - Check superblock-level permissions
428  * @sb: Superblock of inode to check permission on
429  * @inode: Inode to check permission on
430  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431  *
432  * Separate out file-system wide checks from inode-specific permission checks.
433  */
434 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
435 {
436 	if (unlikely(mask & MAY_WRITE)) {
437 		umode_t mode = inode->i_mode;
438 
439 		/* Nobody gets write access to a read-only fs. */
440 		if ((sb->s_flags & MS_RDONLY) &&
441 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
442 			return -EROFS;
443 	}
444 	return 0;
445 }
446 
447 /**
448  * inode_permission - Check for access rights to a given inode
449  * @inode: Inode to check permission on
450  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
451  *
452  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
453  * this, letting us set arbitrary permissions for filesystem access without
454  * changing the "normal" UIDs which are used for other things.
455  *
456  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
457  */
458 int inode_permission(struct inode *inode, int mask)
459 {
460 	int retval;
461 
462 	retval = sb_permission(inode->i_sb, inode, mask);
463 	if (retval)
464 		return retval;
465 	return __inode_permission(inode, mask);
466 }
467 EXPORT_SYMBOL(inode_permission);
468 
469 /**
470  * path_get - get a reference to a path
471  * @path: path to get the reference to
472  *
473  * Given a path increment the reference count to the dentry and the vfsmount.
474  */
475 void path_get(const struct path *path)
476 {
477 	mntget(path->mnt);
478 	dget(path->dentry);
479 }
480 EXPORT_SYMBOL(path_get);
481 
482 /**
483  * path_put - put a reference to a path
484  * @path: path to put the reference to
485  *
486  * Given a path decrement the reference count to the dentry and the vfsmount.
487  */
488 void path_put(const struct path *path)
489 {
490 	dput(path->dentry);
491 	mntput(path->mnt);
492 }
493 EXPORT_SYMBOL(path_put);
494 
495 struct nameidata {
496 	struct path	path;
497 	struct qstr	last;
498 	struct path	root;
499 	struct inode	*inode; /* path.dentry.d_inode */
500 	unsigned int	flags;
501 	unsigned	seq, m_seq;
502 	int		last_type;
503 	unsigned	depth;
504 	struct file	*base;
505 	char *saved_names[MAX_NESTED_LINKS + 1];
506 };
507 
508 /*
509  * Path walking has 2 modes, rcu-walk and ref-walk (see
510  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
511  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
512  * normal reference counts on dentries and vfsmounts to transition to rcu-walk
513  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
514  * got stuck, so ref-walk may continue from there. If this is not successful
515  * (eg. a seqcount has changed), then failure is returned and it's up to caller
516  * to restart the path walk from the beginning in ref-walk mode.
517  */
518 
519 /**
520  * unlazy_walk - try to switch to ref-walk mode.
521  * @nd: nameidata pathwalk data
522  * @dentry: child of nd->path.dentry or NULL
523  * Returns: 0 on success, -ECHILD on failure
524  *
525  * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
526  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
527  * @nd or NULL.  Must be called from rcu-walk context.
528  */
529 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
530 {
531 	struct fs_struct *fs = current->fs;
532 	struct dentry *parent = nd->path.dentry;
533 
534 	BUG_ON(!(nd->flags & LOOKUP_RCU));
535 
536 	/*
537 	 * After legitimizing the bastards, terminate_walk()
538 	 * will do the right thing for non-RCU mode, and all our
539 	 * subsequent exit cases should rcu_read_unlock()
540 	 * before returning.  Do vfsmount first; if dentry
541 	 * can't be legitimized, just set nd->path.dentry to NULL
542 	 * and rely on dput(NULL) being a no-op.
543 	 */
544 	if (!legitimize_mnt(nd->path.mnt, nd->m_seq))
545 		return -ECHILD;
546 	nd->flags &= ~LOOKUP_RCU;
547 
548 	if (!lockref_get_not_dead(&parent->d_lockref)) {
549 		nd->path.dentry = NULL;
550 		goto out;
551 	}
552 
553 	/*
554 	 * For a negative lookup, the lookup sequence point is the parents
555 	 * sequence point, and it only needs to revalidate the parent dentry.
556 	 *
557 	 * For a positive lookup, we need to move both the parent and the
558 	 * dentry from the RCU domain to be properly refcounted. And the
559 	 * sequence number in the dentry validates *both* dentry counters,
560 	 * since we checked the sequence number of the parent after we got
561 	 * the child sequence number. So we know the parent must still
562 	 * be valid if the child sequence number is still valid.
563 	 */
564 	if (!dentry) {
565 		if (read_seqcount_retry(&parent->d_seq, nd->seq))
566 			goto out;
567 		BUG_ON(nd->inode != parent->d_inode);
568 	} else {
569 		if (!lockref_get_not_dead(&dentry->d_lockref))
570 			goto out;
571 		if (read_seqcount_retry(&dentry->d_seq, nd->seq))
572 			goto drop_dentry;
573 	}
574 
575 	/*
576 	 * Sequence counts matched. Now make sure that the root is
577 	 * still valid and get it if required.
578 	 */
579 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
580 		spin_lock(&fs->lock);
581 		if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
582 			goto unlock_and_drop_dentry;
583 		path_get(&nd->root);
584 		spin_unlock(&fs->lock);
585 	}
586 
587 	rcu_read_unlock();
588 	return 0;
589 
590 unlock_and_drop_dentry:
591 	spin_unlock(&fs->lock);
592 drop_dentry:
593 	rcu_read_unlock();
594 	dput(dentry);
595 	goto drop_root_mnt;
596 out:
597 	rcu_read_unlock();
598 drop_root_mnt:
599 	if (!(nd->flags & LOOKUP_ROOT))
600 		nd->root.mnt = NULL;
601 	return -ECHILD;
602 }
603 
604 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
605 {
606 	return dentry->d_op->d_revalidate(dentry, flags);
607 }
608 
609 /**
610  * complete_walk - successful completion of path walk
611  * @nd:  pointer nameidata
612  *
613  * If we had been in RCU mode, drop out of it and legitimize nd->path.
614  * Revalidate the final result, unless we'd already done that during
615  * the path walk or the filesystem doesn't ask for it.  Return 0 on
616  * success, -error on failure.  In case of failure caller does not
617  * need to drop nd->path.
618  */
619 static int complete_walk(struct nameidata *nd)
620 {
621 	struct dentry *dentry = nd->path.dentry;
622 	int status;
623 
624 	if (nd->flags & LOOKUP_RCU) {
625 		nd->flags &= ~LOOKUP_RCU;
626 		if (!(nd->flags & LOOKUP_ROOT))
627 			nd->root.mnt = NULL;
628 
629 		if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) {
630 			rcu_read_unlock();
631 			return -ECHILD;
632 		}
633 		if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) {
634 			rcu_read_unlock();
635 			mntput(nd->path.mnt);
636 			return -ECHILD;
637 		}
638 		if (read_seqcount_retry(&dentry->d_seq, nd->seq)) {
639 			rcu_read_unlock();
640 			dput(dentry);
641 			mntput(nd->path.mnt);
642 			return -ECHILD;
643 		}
644 		rcu_read_unlock();
645 	}
646 
647 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
648 		return 0;
649 
650 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
651 		return 0;
652 
653 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
654 	if (status > 0)
655 		return 0;
656 
657 	if (!status)
658 		status = -ESTALE;
659 
660 	path_put(&nd->path);
661 	return status;
662 }
663 
664 static __always_inline void set_root(struct nameidata *nd)
665 {
666 	get_fs_root(current->fs, &nd->root);
667 }
668 
669 static int link_path_walk(const char *, struct nameidata *);
670 
671 static __always_inline unsigned set_root_rcu(struct nameidata *nd)
672 {
673 	struct fs_struct *fs = current->fs;
674 	unsigned seq, res;
675 
676 	do {
677 		seq = read_seqcount_begin(&fs->seq);
678 		nd->root = fs->root;
679 		res = __read_seqcount_begin(&nd->root.dentry->d_seq);
680 	} while (read_seqcount_retry(&fs->seq, seq));
681 	return res;
682 }
683 
684 static void path_put_conditional(struct path *path, struct nameidata *nd)
685 {
686 	dput(path->dentry);
687 	if (path->mnt != nd->path.mnt)
688 		mntput(path->mnt);
689 }
690 
691 static inline void path_to_nameidata(const struct path *path,
692 					struct nameidata *nd)
693 {
694 	if (!(nd->flags & LOOKUP_RCU)) {
695 		dput(nd->path.dentry);
696 		if (nd->path.mnt != path->mnt)
697 			mntput(nd->path.mnt);
698 	}
699 	nd->path.mnt = path->mnt;
700 	nd->path.dentry = path->dentry;
701 }
702 
703 /*
704  * Helper to directly jump to a known parsed path from ->follow_link,
705  * caller must have taken a reference to path beforehand.
706  */
707 void nd_jump_link(struct nameidata *nd, struct path *path)
708 {
709 	path_put(&nd->path);
710 
711 	nd->path = *path;
712 	nd->inode = nd->path.dentry->d_inode;
713 	nd->flags |= LOOKUP_JUMPED;
714 }
715 
716 void nd_set_link(struct nameidata *nd, char *path)
717 {
718 	nd->saved_names[nd->depth] = path;
719 }
720 EXPORT_SYMBOL(nd_set_link);
721 
722 char *nd_get_link(struct nameidata *nd)
723 {
724 	return nd->saved_names[nd->depth];
725 }
726 EXPORT_SYMBOL(nd_get_link);
727 
728 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
729 {
730 	struct inode *inode = link->dentry->d_inode;
731 	if (inode->i_op->put_link)
732 		inode->i_op->put_link(link->dentry, nd, cookie);
733 	path_put(link);
734 }
735 
736 int sysctl_protected_symlinks __read_mostly = 0;
737 int sysctl_protected_hardlinks __read_mostly = 0;
738 
739 /**
740  * may_follow_link - Check symlink following for unsafe situations
741  * @link: The path of the symlink
742  * @nd: nameidata pathwalk data
743  *
744  * In the case of the sysctl_protected_symlinks sysctl being enabled,
745  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
746  * in a sticky world-writable directory. This is to protect privileged
747  * processes from failing races against path names that may change out
748  * from under them by way of other users creating malicious symlinks.
749  * It will permit symlinks to be followed only when outside a sticky
750  * world-writable directory, or when the uid of the symlink and follower
751  * match, or when the directory owner matches the symlink's owner.
752  *
753  * Returns 0 if following the symlink is allowed, -ve on error.
754  */
755 static inline int may_follow_link(struct path *link, struct nameidata *nd)
756 {
757 	const struct inode *inode;
758 	const struct inode *parent;
759 
760 	if (!sysctl_protected_symlinks)
761 		return 0;
762 
763 	/* Allowed if owner and follower match. */
764 	inode = link->dentry->d_inode;
765 	if (uid_eq(current_cred()->fsuid, inode->i_uid))
766 		return 0;
767 
768 	/* Allowed if parent directory not sticky and world-writable. */
769 	parent = nd->path.dentry->d_inode;
770 	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
771 		return 0;
772 
773 	/* Allowed if parent directory and link owner match. */
774 	if (uid_eq(parent->i_uid, inode->i_uid))
775 		return 0;
776 
777 	audit_log_link_denied("follow_link", link);
778 	path_put_conditional(link, nd);
779 	path_put(&nd->path);
780 	return -EACCES;
781 }
782 
783 /**
784  * safe_hardlink_source - Check for safe hardlink conditions
785  * @inode: the source inode to hardlink from
786  *
787  * Return false if at least one of the following conditions:
788  *    - inode is not a regular file
789  *    - inode is setuid
790  *    - inode is setgid and group-exec
791  *    - access failure for read and write
792  *
793  * Otherwise returns true.
794  */
795 static bool safe_hardlink_source(struct inode *inode)
796 {
797 	umode_t mode = inode->i_mode;
798 
799 	/* Special files should not get pinned to the filesystem. */
800 	if (!S_ISREG(mode))
801 		return false;
802 
803 	/* Setuid files should not get pinned to the filesystem. */
804 	if (mode & S_ISUID)
805 		return false;
806 
807 	/* Executable setgid files should not get pinned to the filesystem. */
808 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
809 		return false;
810 
811 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
812 	if (inode_permission(inode, MAY_READ | MAY_WRITE))
813 		return false;
814 
815 	return true;
816 }
817 
818 /**
819  * may_linkat - Check permissions for creating a hardlink
820  * @link: the source to hardlink from
821  *
822  * Block hardlink when all of:
823  *  - sysctl_protected_hardlinks enabled
824  *  - fsuid does not match inode
825  *  - hardlink source is unsafe (see safe_hardlink_source() above)
826  *  - not CAP_FOWNER
827  *
828  * Returns 0 if successful, -ve on error.
829  */
830 static int may_linkat(struct path *link)
831 {
832 	const struct cred *cred;
833 	struct inode *inode;
834 
835 	if (!sysctl_protected_hardlinks)
836 		return 0;
837 
838 	cred = current_cred();
839 	inode = link->dentry->d_inode;
840 
841 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
842 	 * otherwise, it must be a safe source.
843 	 */
844 	if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
845 	    capable(CAP_FOWNER))
846 		return 0;
847 
848 	audit_log_link_denied("linkat", link);
849 	return -EPERM;
850 }
851 
852 static __always_inline int
853 follow_link(struct path *link, struct nameidata *nd, void **p)
854 {
855 	struct dentry *dentry = link->dentry;
856 	int error;
857 	char *s;
858 
859 	BUG_ON(nd->flags & LOOKUP_RCU);
860 
861 	if (link->mnt == nd->path.mnt)
862 		mntget(link->mnt);
863 
864 	error = -ELOOP;
865 	if (unlikely(current->total_link_count >= 40))
866 		goto out_put_nd_path;
867 
868 	cond_resched();
869 	current->total_link_count++;
870 
871 	touch_atime(link);
872 	nd_set_link(nd, NULL);
873 
874 	error = security_inode_follow_link(link->dentry, nd);
875 	if (error)
876 		goto out_put_nd_path;
877 
878 	nd->last_type = LAST_BIND;
879 	*p = dentry->d_inode->i_op->follow_link(dentry, nd);
880 	error = PTR_ERR(*p);
881 	if (IS_ERR(*p))
882 		goto out_put_nd_path;
883 
884 	error = 0;
885 	s = nd_get_link(nd);
886 	if (s) {
887 		if (unlikely(IS_ERR(s))) {
888 			path_put(&nd->path);
889 			put_link(nd, link, *p);
890 			return PTR_ERR(s);
891 		}
892 		if (*s == '/') {
893 			if (!nd->root.mnt)
894 				set_root(nd);
895 			path_put(&nd->path);
896 			nd->path = nd->root;
897 			path_get(&nd->root);
898 			nd->flags |= LOOKUP_JUMPED;
899 		}
900 		nd->inode = nd->path.dentry->d_inode;
901 		error = link_path_walk(s, nd);
902 		if (unlikely(error))
903 			put_link(nd, link, *p);
904 	}
905 
906 	return error;
907 
908 out_put_nd_path:
909 	*p = NULL;
910 	path_put(&nd->path);
911 	path_put(link);
912 	return error;
913 }
914 
915 static int follow_up_rcu(struct path *path)
916 {
917 	struct mount *mnt = real_mount(path->mnt);
918 	struct mount *parent;
919 	struct dentry *mountpoint;
920 
921 	parent = mnt->mnt_parent;
922 	if (&parent->mnt == path->mnt)
923 		return 0;
924 	mountpoint = mnt->mnt_mountpoint;
925 	path->dentry = mountpoint;
926 	path->mnt = &parent->mnt;
927 	return 1;
928 }
929 
930 /*
931  * follow_up - Find the mountpoint of path's vfsmount
932  *
933  * Given a path, find the mountpoint of its source file system.
934  * Replace @path with the path of the mountpoint in the parent mount.
935  * Up is towards /.
936  *
937  * Return 1 if we went up a level and 0 if we were already at the
938  * root.
939  */
940 int follow_up(struct path *path)
941 {
942 	struct mount *mnt = real_mount(path->mnt);
943 	struct mount *parent;
944 	struct dentry *mountpoint;
945 
946 	read_seqlock_excl(&mount_lock);
947 	parent = mnt->mnt_parent;
948 	if (parent == mnt) {
949 		read_sequnlock_excl(&mount_lock);
950 		return 0;
951 	}
952 	mntget(&parent->mnt);
953 	mountpoint = dget(mnt->mnt_mountpoint);
954 	read_sequnlock_excl(&mount_lock);
955 	dput(path->dentry);
956 	path->dentry = mountpoint;
957 	mntput(path->mnt);
958 	path->mnt = &parent->mnt;
959 	return 1;
960 }
961 EXPORT_SYMBOL(follow_up);
962 
963 /*
964  * Perform an automount
965  * - return -EISDIR to tell follow_managed() to stop and return the path we
966  *   were called with.
967  */
968 static int follow_automount(struct path *path, unsigned flags,
969 			    bool *need_mntput)
970 {
971 	struct vfsmount *mnt;
972 	int err;
973 
974 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
975 		return -EREMOTE;
976 
977 	/* We don't want to mount if someone's just doing a stat -
978 	 * unless they're stat'ing a directory and appended a '/' to
979 	 * the name.
980 	 *
981 	 * We do, however, want to mount if someone wants to open or
982 	 * create a file of any type under the mountpoint, wants to
983 	 * traverse through the mountpoint or wants to open the
984 	 * mounted directory.  Also, autofs may mark negative dentries
985 	 * as being automount points.  These will need the attentions
986 	 * of the daemon to instantiate them before they can be used.
987 	 */
988 	if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
989 		     LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
990 	    path->dentry->d_inode)
991 		return -EISDIR;
992 
993 	current->total_link_count++;
994 	if (current->total_link_count >= 40)
995 		return -ELOOP;
996 
997 	mnt = path->dentry->d_op->d_automount(path);
998 	if (IS_ERR(mnt)) {
999 		/*
1000 		 * The filesystem is allowed to return -EISDIR here to indicate
1001 		 * it doesn't want to automount.  For instance, autofs would do
1002 		 * this so that its userspace daemon can mount on this dentry.
1003 		 *
1004 		 * However, we can only permit this if it's a terminal point in
1005 		 * the path being looked up; if it wasn't then the remainder of
1006 		 * the path is inaccessible and we should say so.
1007 		 */
1008 		if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
1009 			return -EREMOTE;
1010 		return PTR_ERR(mnt);
1011 	}
1012 
1013 	if (!mnt) /* mount collision */
1014 		return 0;
1015 
1016 	if (!*need_mntput) {
1017 		/* lock_mount() may release path->mnt on error */
1018 		mntget(path->mnt);
1019 		*need_mntput = true;
1020 	}
1021 	err = finish_automount(mnt, path);
1022 
1023 	switch (err) {
1024 	case -EBUSY:
1025 		/* Someone else made a mount here whilst we were busy */
1026 		return 0;
1027 	case 0:
1028 		path_put(path);
1029 		path->mnt = mnt;
1030 		path->dentry = dget(mnt->mnt_root);
1031 		return 0;
1032 	default:
1033 		return err;
1034 	}
1035 
1036 }
1037 
1038 /*
1039  * Handle a dentry that is managed in some way.
1040  * - Flagged for transit management (autofs)
1041  * - Flagged as mountpoint
1042  * - Flagged as automount point
1043  *
1044  * This may only be called in refwalk mode.
1045  *
1046  * Serialization is taken care of in namespace.c
1047  */
1048 static int follow_managed(struct path *path, unsigned flags)
1049 {
1050 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1051 	unsigned managed;
1052 	bool need_mntput = false;
1053 	int ret = 0;
1054 
1055 	/* Given that we're not holding a lock here, we retain the value in a
1056 	 * local variable for each dentry as we look at it so that we don't see
1057 	 * the components of that value change under us */
1058 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1059 	       managed &= DCACHE_MANAGED_DENTRY,
1060 	       unlikely(managed != 0)) {
1061 		/* Allow the filesystem to manage the transit without i_mutex
1062 		 * being held. */
1063 		if (managed & DCACHE_MANAGE_TRANSIT) {
1064 			BUG_ON(!path->dentry->d_op);
1065 			BUG_ON(!path->dentry->d_op->d_manage);
1066 			ret = path->dentry->d_op->d_manage(path->dentry, false);
1067 			if (ret < 0)
1068 				break;
1069 		}
1070 
1071 		/* Transit to a mounted filesystem. */
1072 		if (managed & DCACHE_MOUNTED) {
1073 			struct vfsmount *mounted = lookup_mnt(path);
1074 			if (mounted) {
1075 				dput(path->dentry);
1076 				if (need_mntput)
1077 					mntput(path->mnt);
1078 				path->mnt = mounted;
1079 				path->dentry = dget(mounted->mnt_root);
1080 				need_mntput = true;
1081 				continue;
1082 			}
1083 
1084 			/* Something is mounted on this dentry in another
1085 			 * namespace and/or whatever was mounted there in this
1086 			 * namespace got unmounted before lookup_mnt() could
1087 			 * get it */
1088 		}
1089 
1090 		/* Handle an automount point */
1091 		if (managed & DCACHE_NEED_AUTOMOUNT) {
1092 			ret = follow_automount(path, flags, &need_mntput);
1093 			if (ret < 0)
1094 				break;
1095 			continue;
1096 		}
1097 
1098 		/* We didn't change the current path point */
1099 		break;
1100 	}
1101 
1102 	if (need_mntput && path->mnt == mnt)
1103 		mntput(path->mnt);
1104 	if (ret == -EISDIR)
1105 		ret = 0;
1106 	return ret < 0 ? ret : need_mntput;
1107 }
1108 
1109 int follow_down_one(struct path *path)
1110 {
1111 	struct vfsmount *mounted;
1112 
1113 	mounted = lookup_mnt(path);
1114 	if (mounted) {
1115 		dput(path->dentry);
1116 		mntput(path->mnt);
1117 		path->mnt = mounted;
1118 		path->dentry = dget(mounted->mnt_root);
1119 		return 1;
1120 	}
1121 	return 0;
1122 }
1123 EXPORT_SYMBOL(follow_down_one);
1124 
1125 static inline int managed_dentry_rcu(struct dentry *dentry)
1126 {
1127 	return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1128 		dentry->d_op->d_manage(dentry, true) : 0;
1129 }
1130 
1131 /*
1132  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1133  * we meet a managed dentry that would need blocking.
1134  */
1135 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1136 			       struct inode **inode)
1137 {
1138 	for (;;) {
1139 		struct mount *mounted;
1140 		/*
1141 		 * Don't forget we might have a non-mountpoint managed dentry
1142 		 * that wants to block transit.
1143 		 */
1144 		switch (managed_dentry_rcu(path->dentry)) {
1145 		case -ECHILD:
1146 		default:
1147 			return false;
1148 		case -EISDIR:
1149 			return true;
1150 		case 0:
1151 			break;
1152 		}
1153 
1154 		if (!d_mountpoint(path->dentry))
1155 			return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1156 
1157 		mounted = __lookup_mnt(path->mnt, path->dentry);
1158 		if (!mounted)
1159 			break;
1160 		path->mnt = &mounted->mnt;
1161 		path->dentry = mounted->mnt.mnt_root;
1162 		nd->flags |= LOOKUP_JUMPED;
1163 		nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1164 		/*
1165 		 * Update the inode too. We don't need to re-check the
1166 		 * dentry sequence number here after this d_inode read,
1167 		 * because a mount-point is always pinned.
1168 		 */
1169 		*inode = path->dentry->d_inode;
1170 	}
1171 	return !read_seqretry(&mount_lock, nd->m_seq) &&
1172 		!(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1173 }
1174 
1175 static int follow_dotdot_rcu(struct nameidata *nd)
1176 {
1177 	struct inode *inode = nd->inode;
1178 	if (!nd->root.mnt)
1179 		set_root_rcu(nd);
1180 
1181 	while (1) {
1182 		if (nd->path.dentry == nd->root.dentry &&
1183 		    nd->path.mnt == nd->root.mnt) {
1184 			break;
1185 		}
1186 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1187 			struct dentry *old = nd->path.dentry;
1188 			struct dentry *parent = old->d_parent;
1189 			unsigned seq;
1190 
1191 			inode = parent->d_inode;
1192 			seq = read_seqcount_begin(&parent->d_seq);
1193 			if (read_seqcount_retry(&old->d_seq, nd->seq))
1194 				goto failed;
1195 			nd->path.dentry = parent;
1196 			nd->seq = seq;
1197 			break;
1198 		}
1199 		if (!follow_up_rcu(&nd->path))
1200 			break;
1201 		inode = nd->path.dentry->d_inode;
1202 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1203 	}
1204 	while (d_mountpoint(nd->path.dentry)) {
1205 		struct mount *mounted;
1206 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1207 		if (!mounted)
1208 			break;
1209 		nd->path.mnt = &mounted->mnt;
1210 		nd->path.dentry = mounted->mnt.mnt_root;
1211 		inode = nd->path.dentry->d_inode;
1212 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1213 		if (read_seqretry(&mount_lock, nd->m_seq))
1214 			goto failed;
1215 	}
1216 	nd->inode = inode;
1217 	return 0;
1218 
1219 failed:
1220 	nd->flags &= ~LOOKUP_RCU;
1221 	if (!(nd->flags & LOOKUP_ROOT))
1222 		nd->root.mnt = NULL;
1223 	rcu_read_unlock();
1224 	return -ECHILD;
1225 }
1226 
1227 /*
1228  * Follow down to the covering mount currently visible to userspace.  At each
1229  * point, the filesystem owning that dentry may be queried as to whether the
1230  * caller is permitted to proceed or not.
1231  */
1232 int follow_down(struct path *path)
1233 {
1234 	unsigned managed;
1235 	int ret;
1236 
1237 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1238 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1239 		/* Allow the filesystem to manage the transit without i_mutex
1240 		 * being held.
1241 		 *
1242 		 * We indicate to the filesystem if someone is trying to mount
1243 		 * something here.  This gives autofs the chance to deny anyone
1244 		 * other than its daemon the right to mount on its
1245 		 * superstructure.
1246 		 *
1247 		 * The filesystem may sleep at this point.
1248 		 */
1249 		if (managed & DCACHE_MANAGE_TRANSIT) {
1250 			BUG_ON(!path->dentry->d_op);
1251 			BUG_ON(!path->dentry->d_op->d_manage);
1252 			ret = path->dentry->d_op->d_manage(
1253 				path->dentry, false);
1254 			if (ret < 0)
1255 				return ret == -EISDIR ? 0 : ret;
1256 		}
1257 
1258 		/* Transit to a mounted filesystem. */
1259 		if (managed & DCACHE_MOUNTED) {
1260 			struct vfsmount *mounted = lookup_mnt(path);
1261 			if (!mounted)
1262 				break;
1263 			dput(path->dentry);
1264 			mntput(path->mnt);
1265 			path->mnt = mounted;
1266 			path->dentry = dget(mounted->mnt_root);
1267 			continue;
1268 		}
1269 
1270 		/* Don't handle automount points here */
1271 		break;
1272 	}
1273 	return 0;
1274 }
1275 EXPORT_SYMBOL(follow_down);
1276 
1277 /*
1278  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1279  */
1280 static void follow_mount(struct path *path)
1281 {
1282 	while (d_mountpoint(path->dentry)) {
1283 		struct vfsmount *mounted = lookup_mnt(path);
1284 		if (!mounted)
1285 			break;
1286 		dput(path->dentry);
1287 		mntput(path->mnt);
1288 		path->mnt = mounted;
1289 		path->dentry = dget(mounted->mnt_root);
1290 	}
1291 }
1292 
1293 static void follow_dotdot(struct nameidata *nd)
1294 {
1295 	if (!nd->root.mnt)
1296 		set_root(nd);
1297 
1298 	while(1) {
1299 		struct dentry *old = nd->path.dentry;
1300 
1301 		if (nd->path.dentry == nd->root.dentry &&
1302 		    nd->path.mnt == nd->root.mnt) {
1303 			break;
1304 		}
1305 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1306 			/* rare case of legitimate dget_parent()... */
1307 			nd->path.dentry = dget_parent(nd->path.dentry);
1308 			dput(old);
1309 			break;
1310 		}
1311 		if (!follow_up(&nd->path))
1312 			break;
1313 	}
1314 	follow_mount(&nd->path);
1315 	nd->inode = nd->path.dentry->d_inode;
1316 }
1317 
1318 /*
1319  * This looks up the name in dcache, possibly revalidates the old dentry and
1320  * allocates a new one if not found or not valid.  In the need_lookup argument
1321  * returns whether i_op->lookup is necessary.
1322  *
1323  * dir->d_inode->i_mutex must be held
1324  */
1325 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1326 				    unsigned int flags, bool *need_lookup)
1327 {
1328 	struct dentry *dentry;
1329 	int error;
1330 
1331 	*need_lookup = false;
1332 	dentry = d_lookup(dir, name);
1333 	if (dentry) {
1334 		if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1335 			error = d_revalidate(dentry, flags);
1336 			if (unlikely(error <= 0)) {
1337 				if (error < 0) {
1338 					dput(dentry);
1339 					return ERR_PTR(error);
1340 				} else {
1341 					d_invalidate(dentry);
1342 					dput(dentry);
1343 					dentry = NULL;
1344 				}
1345 			}
1346 		}
1347 	}
1348 
1349 	if (!dentry) {
1350 		dentry = d_alloc(dir, name);
1351 		if (unlikely(!dentry))
1352 			return ERR_PTR(-ENOMEM);
1353 
1354 		*need_lookup = true;
1355 	}
1356 	return dentry;
1357 }
1358 
1359 /*
1360  * Call i_op->lookup on the dentry.  The dentry must be negative and
1361  * unhashed.
1362  *
1363  * dir->d_inode->i_mutex must be held
1364  */
1365 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1366 				  unsigned int flags)
1367 {
1368 	struct dentry *old;
1369 
1370 	/* Don't create child dentry for a dead directory. */
1371 	if (unlikely(IS_DEADDIR(dir))) {
1372 		dput(dentry);
1373 		return ERR_PTR(-ENOENT);
1374 	}
1375 
1376 	old = dir->i_op->lookup(dir, dentry, flags);
1377 	if (unlikely(old)) {
1378 		dput(dentry);
1379 		dentry = old;
1380 	}
1381 	return dentry;
1382 }
1383 
1384 static struct dentry *__lookup_hash(struct qstr *name,
1385 		struct dentry *base, unsigned int flags)
1386 {
1387 	bool need_lookup;
1388 	struct dentry *dentry;
1389 
1390 	dentry = lookup_dcache(name, base, flags, &need_lookup);
1391 	if (!need_lookup)
1392 		return dentry;
1393 
1394 	return lookup_real(base->d_inode, dentry, flags);
1395 }
1396 
1397 /*
1398  *  It's more convoluted than I'd like it to be, but... it's still fairly
1399  *  small and for now I'd prefer to have fast path as straight as possible.
1400  *  It _is_ time-critical.
1401  */
1402 static int lookup_fast(struct nameidata *nd,
1403 		       struct path *path, struct inode **inode)
1404 {
1405 	struct vfsmount *mnt = nd->path.mnt;
1406 	struct dentry *dentry, *parent = nd->path.dentry;
1407 	int need_reval = 1;
1408 	int status = 1;
1409 	int err;
1410 
1411 	/*
1412 	 * Rename seqlock is not required here because in the off chance
1413 	 * of a false negative due to a concurrent rename, we're going to
1414 	 * do the non-racy lookup, below.
1415 	 */
1416 	if (nd->flags & LOOKUP_RCU) {
1417 		unsigned seq;
1418 		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1419 		if (!dentry)
1420 			goto unlazy;
1421 
1422 		/*
1423 		 * This sequence count validates that the inode matches
1424 		 * the dentry name information from lookup.
1425 		 */
1426 		*inode = dentry->d_inode;
1427 		if (read_seqcount_retry(&dentry->d_seq, seq))
1428 			return -ECHILD;
1429 
1430 		/*
1431 		 * This sequence count validates that the parent had no
1432 		 * changes while we did the lookup of the dentry above.
1433 		 *
1434 		 * The memory barrier in read_seqcount_begin of child is
1435 		 *  enough, we can use __read_seqcount_retry here.
1436 		 */
1437 		if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1438 			return -ECHILD;
1439 		nd->seq = seq;
1440 
1441 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1442 			status = d_revalidate(dentry, nd->flags);
1443 			if (unlikely(status <= 0)) {
1444 				if (status != -ECHILD)
1445 					need_reval = 0;
1446 				goto unlazy;
1447 			}
1448 		}
1449 		path->mnt = mnt;
1450 		path->dentry = dentry;
1451 		if (likely(__follow_mount_rcu(nd, path, inode)))
1452 			return 0;
1453 unlazy:
1454 		if (unlazy_walk(nd, dentry))
1455 			return -ECHILD;
1456 	} else {
1457 		dentry = __d_lookup(parent, &nd->last);
1458 	}
1459 
1460 	if (unlikely(!dentry))
1461 		goto need_lookup;
1462 
1463 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1464 		status = d_revalidate(dentry, nd->flags);
1465 	if (unlikely(status <= 0)) {
1466 		if (status < 0) {
1467 			dput(dentry);
1468 			return status;
1469 		}
1470 		d_invalidate(dentry);
1471 		dput(dentry);
1472 		goto need_lookup;
1473 	}
1474 
1475 	path->mnt = mnt;
1476 	path->dentry = dentry;
1477 	err = follow_managed(path, nd->flags);
1478 	if (unlikely(err < 0)) {
1479 		path_put_conditional(path, nd);
1480 		return err;
1481 	}
1482 	if (err)
1483 		nd->flags |= LOOKUP_JUMPED;
1484 	*inode = path->dentry->d_inode;
1485 	return 0;
1486 
1487 need_lookup:
1488 	return 1;
1489 }
1490 
1491 /* Fast lookup failed, do it the slow way */
1492 static int lookup_slow(struct nameidata *nd, struct path *path)
1493 {
1494 	struct dentry *dentry, *parent;
1495 	int err;
1496 
1497 	parent = nd->path.dentry;
1498 	BUG_ON(nd->inode != parent->d_inode);
1499 
1500 	mutex_lock(&parent->d_inode->i_mutex);
1501 	dentry = __lookup_hash(&nd->last, parent, nd->flags);
1502 	mutex_unlock(&parent->d_inode->i_mutex);
1503 	if (IS_ERR(dentry))
1504 		return PTR_ERR(dentry);
1505 	path->mnt = nd->path.mnt;
1506 	path->dentry = dentry;
1507 	err = follow_managed(path, nd->flags);
1508 	if (unlikely(err < 0)) {
1509 		path_put_conditional(path, nd);
1510 		return err;
1511 	}
1512 	if (err)
1513 		nd->flags |= LOOKUP_JUMPED;
1514 	return 0;
1515 }
1516 
1517 static inline int may_lookup(struct nameidata *nd)
1518 {
1519 	if (nd->flags & LOOKUP_RCU) {
1520 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1521 		if (err != -ECHILD)
1522 			return err;
1523 		if (unlazy_walk(nd, NULL))
1524 			return -ECHILD;
1525 	}
1526 	return inode_permission(nd->inode, MAY_EXEC);
1527 }
1528 
1529 static inline int handle_dots(struct nameidata *nd, int type)
1530 {
1531 	if (type == LAST_DOTDOT) {
1532 		if (nd->flags & LOOKUP_RCU) {
1533 			if (follow_dotdot_rcu(nd))
1534 				return -ECHILD;
1535 		} else
1536 			follow_dotdot(nd);
1537 	}
1538 	return 0;
1539 }
1540 
1541 static void terminate_walk(struct nameidata *nd)
1542 {
1543 	if (!(nd->flags & LOOKUP_RCU)) {
1544 		path_put(&nd->path);
1545 	} else {
1546 		nd->flags &= ~LOOKUP_RCU;
1547 		if (!(nd->flags & LOOKUP_ROOT))
1548 			nd->root.mnt = NULL;
1549 		rcu_read_unlock();
1550 	}
1551 }
1552 
1553 /*
1554  * Do we need to follow links? We _really_ want to be able
1555  * to do this check without having to look at inode->i_op,
1556  * so we keep a cache of "no, this doesn't need follow_link"
1557  * for the common case.
1558  */
1559 static inline int should_follow_link(struct dentry *dentry, int follow)
1560 {
1561 	return unlikely(d_is_symlink(dentry)) ? follow : 0;
1562 }
1563 
1564 static inline int walk_component(struct nameidata *nd, struct path *path,
1565 		int follow)
1566 {
1567 	struct inode *inode;
1568 	int err;
1569 	/*
1570 	 * "." and ".." are special - ".." especially so because it has
1571 	 * to be able to know about the current root directory and
1572 	 * parent relationships.
1573 	 */
1574 	if (unlikely(nd->last_type != LAST_NORM))
1575 		return handle_dots(nd, nd->last_type);
1576 	err = lookup_fast(nd, path, &inode);
1577 	if (unlikely(err)) {
1578 		if (err < 0)
1579 			goto out_err;
1580 
1581 		err = lookup_slow(nd, path);
1582 		if (err < 0)
1583 			goto out_err;
1584 
1585 		inode = path->dentry->d_inode;
1586 	}
1587 	err = -ENOENT;
1588 	if (d_is_negative(path->dentry))
1589 		goto out_path_put;
1590 
1591 	if (should_follow_link(path->dentry, follow)) {
1592 		if (nd->flags & LOOKUP_RCU) {
1593 			if (unlikely(nd->path.mnt != path->mnt ||
1594 				     unlazy_walk(nd, path->dentry))) {
1595 				err = -ECHILD;
1596 				goto out_err;
1597 			}
1598 		}
1599 		BUG_ON(inode != path->dentry->d_inode);
1600 		return 1;
1601 	}
1602 	path_to_nameidata(path, nd);
1603 	nd->inode = inode;
1604 	return 0;
1605 
1606 out_path_put:
1607 	path_to_nameidata(path, nd);
1608 out_err:
1609 	terminate_walk(nd);
1610 	return err;
1611 }
1612 
1613 /*
1614  * This limits recursive symlink follows to 8, while
1615  * limiting consecutive symlinks to 40.
1616  *
1617  * Without that kind of total limit, nasty chains of consecutive
1618  * symlinks can cause almost arbitrarily long lookups.
1619  */
1620 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1621 {
1622 	int res;
1623 
1624 	if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1625 		path_put_conditional(path, nd);
1626 		path_put(&nd->path);
1627 		return -ELOOP;
1628 	}
1629 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1630 
1631 	nd->depth++;
1632 	current->link_count++;
1633 
1634 	do {
1635 		struct path link = *path;
1636 		void *cookie;
1637 
1638 		res = follow_link(&link, nd, &cookie);
1639 		if (res)
1640 			break;
1641 		res = walk_component(nd, path, LOOKUP_FOLLOW);
1642 		put_link(nd, &link, cookie);
1643 	} while (res > 0);
1644 
1645 	current->link_count--;
1646 	nd->depth--;
1647 	return res;
1648 }
1649 
1650 /*
1651  * We can do the critical dentry name comparison and hashing
1652  * operations one word at a time, but we are limited to:
1653  *
1654  * - Architectures with fast unaligned word accesses. We could
1655  *   do a "get_unaligned()" if this helps and is sufficiently
1656  *   fast.
1657  *
1658  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1659  *   do not trap on the (extremely unlikely) case of a page
1660  *   crossing operation.
1661  *
1662  * - Furthermore, we need an efficient 64-bit compile for the
1663  *   64-bit case in order to generate the "number of bytes in
1664  *   the final mask". Again, that could be replaced with a
1665  *   efficient population count instruction or similar.
1666  */
1667 #ifdef CONFIG_DCACHE_WORD_ACCESS
1668 
1669 #include <asm/word-at-a-time.h>
1670 
1671 #ifdef CONFIG_64BIT
1672 
1673 static inline unsigned int fold_hash(unsigned long hash)
1674 {
1675 	return hash_64(hash, 32);
1676 }
1677 
1678 #else	/* 32-bit case */
1679 
1680 #define fold_hash(x) (x)
1681 
1682 #endif
1683 
1684 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1685 {
1686 	unsigned long a, mask;
1687 	unsigned long hash = 0;
1688 
1689 	for (;;) {
1690 		a = load_unaligned_zeropad(name);
1691 		if (len < sizeof(unsigned long))
1692 			break;
1693 		hash += a;
1694 		hash *= 9;
1695 		name += sizeof(unsigned long);
1696 		len -= sizeof(unsigned long);
1697 		if (!len)
1698 			goto done;
1699 	}
1700 	mask = bytemask_from_count(len);
1701 	hash += mask & a;
1702 done:
1703 	return fold_hash(hash);
1704 }
1705 EXPORT_SYMBOL(full_name_hash);
1706 
1707 /*
1708  * Calculate the length and hash of the path component, and
1709  * return the "hash_len" as the result.
1710  */
1711 static inline u64 hash_name(const char *name)
1712 {
1713 	unsigned long a, b, adata, bdata, mask, hash, len;
1714 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1715 
1716 	hash = a = 0;
1717 	len = -sizeof(unsigned long);
1718 	do {
1719 		hash = (hash + a) * 9;
1720 		len += sizeof(unsigned long);
1721 		a = load_unaligned_zeropad(name+len);
1722 		b = a ^ REPEAT_BYTE('/');
1723 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1724 
1725 	adata = prep_zero_mask(a, adata, &constants);
1726 	bdata = prep_zero_mask(b, bdata, &constants);
1727 
1728 	mask = create_zero_mask(adata | bdata);
1729 
1730 	hash += a & zero_bytemask(mask);
1731 	len += find_zero(mask);
1732 	return hashlen_create(fold_hash(hash), len);
1733 }
1734 
1735 #else
1736 
1737 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1738 {
1739 	unsigned long hash = init_name_hash();
1740 	while (len--)
1741 		hash = partial_name_hash(*name++, hash);
1742 	return end_name_hash(hash);
1743 }
1744 EXPORT_SYMBOL(full_name_hash);
1745 
1746 /*
1747  * We know there's a real path component here of at least
1748  * one character.
1749  */
1750 static inline u64 hash_name(const char *name)
1751 {
1752 	unsigned long hash = init_name_hash();
1753 	unsigned long len = 0, c;
1754 
1755 	c = (unsigned char)*name;
1756 	do {
1757 		len++;
1758 		hash = partial_name_hash(c, hash);
1759 		c = (unsigned char)name[len];
1760 	} while (c && c != '/');
1761 	return hashlen_create(end_name_hash(hash), len);
1762 }
1763 
1764 #endif
1765 
1766 /*
1767  * Name resolution.
1768  * This is the basic name resolution function, turning a pathname into
1769  * the final dentry. We expect 'base' to be positive and a directory.
1770  *
1771  * Returns 0 and nd will have valid dentry and mnt on success.
1772  * Returns error and drops reference to input namei data on failure.
1773  */
1774 static int link_path_walk(const char *name, struct nameidata *nd)
1775 {
1776 	struct path next;
1777 	int err;
1778 
1779 	while (*name=='/')
1780 		name++;
1781 	if (!*name)
1782 		return 0;
1783 
1784 	/* At this point we know we have a real path component. */
1785 	for(;;) {
1786 		u64 hash_len;
1787 		int type;
1788 
1789 		err = may_lookup(nd);
1790  		if (err)
1791 			break;
1792 
1793 		hash_len = hash_name(name);
1794 
1795 		type = LAST_NORM;
1796 		if (name[0] == '.') switch (hashlen_len(hash_len)) {
1797 			case 2:
1798 				if (name[1] == '.') {
1799 					type = LAST_DOTDOT;
1800 					nd->flags |= LOOKUP_JUMPED;
1801 				}
1802 				break;
1803 			case 1:
1804 				type = LAST_DOT;
1805 		}
1806 		if (likely(type == LAST_NORM)) {
1807 			struct dentry *parent = nd->path.dentry;
1808 			nd->flags &= ~LOOKUP_JUMPED;
1809 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1810 				struct qstr this = { { .hash_len = hash_len }, .name = name };
1811 				err = parent->d_op->d_hash(parent, &this);
1812 				if (err < 0)
1813 					break;
1814 				hash_len = this.hash_len;
1815 				name = this.name;
1816 			}
1817 		}
1818 
1819 		nd->last.hash_len = hash_len;
1820 		nd->last.name = name;
1821 		nd->last_type = type;
1822 
1823 		name += hashlen_len(hash_len);
1824 		if (!*name)
1825 			return 0;
1826 		/*
1827 		 * If it wasn't NUL, we know it was '/'. Skip that
1828 		 * slash, and continue until no more slashes.
1829 		 */
1830 		do {
1831 			name++;
1832 		} while (unlikely(*name == '/'));
1833 		if (!*name)
1834 			return 0;
1835 
1836 		err = walk_component(nd, &next, LOOKUP_FOLLOW);
1837 		if (err < 0)
1838 			return err;
1839 
1840 		if (err) {
1841 			err = nested_symlink(&next, nd);
1842 			if (err)
1843 				return err;
1844 		}
1845 		if (!d_can_lookup(nd->path.dentry)) {
1846 			err = -ENOTDIR;
1847 			break;
1848 		}
1849 	}
1850 	terminate_walk(nd);
1851 	return err;
1852 }
1853 
1854 static int path_init(int dfd, const struct filename *name, unsigned int flags,
1855 		     struct nameidata *nd)
1856 {
1857 	int retval = 0;
1858 	const char *s = name->name;
1859 
1860 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1861 	nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
1862 	nd->depth = 0;
1863 	nd->base = NULL;
1864 	if (flags & LOOKUP_ROOT) {
1865 		struct dentry *root = nd->root.dentry;
1866 		struct inode *inode = root->d_inode;
1867 		if (*s) {
1868 			if (!d_can_lookup(root))
1869 				return -ENOTDIR;
1870 			retval = inode_permission(inode, MAY_EXEC);
1871 			if (retval)
1872 				return retval;
1873 		}
1874 		nd->path = nd->root;
1875 		nd->inode = inode;
1876 		if (flags & LOOKUP_RCU) {
1877 			rcu_read_lock();
1878 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1879 			nd->m_seq = read_seqbegin(&mount_lock);
1880 		} else {
1881 			path_get(&nd->path);
1882 		}
1883 		goto done;
1884 	}
1885 
1886 	nd->root.mnt = NULL;
1887 
1888 	nd->m_seq = read_seqbegin(&mount_lock);
1889 	if (*s == '/') {
1890 		if (flags & LOOKUP_RCU) {
1891 			rcu_read_lock();
1892 			nd->seq = set_root_rcu(nd);
1893 		} else {
1894 			set_root(nd);
1895 			path_get(&nd->root);
1896 		}
1897 		nd->path = nd->root;
1898 	} else if (dfd == AT_FDCWD) {
1899 		if (flags & LOOKUP_RCU) {
1900 			struct fs_struct *fs = current->fs;
1901 			unsigned seq;
1902 
1903 			rcu_read_lock();
1904 
1905 			do {
1906 				seq = read_seqcount_begin(&fs->seq);
1907 				nd->path = fs->pwd;
1908 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1909 			} while (read_seqcount_retry(&fs->seq, seq));
1910 		} else {
1911 			get_fs_pwd(current->fs, &nd->path);
1912 		}
1913 	} else {
1914 		/* Caller must check execute permissions on the starting path component */
1915 		struct fd f = fdget_raw(dfd);
1916 		struct dentry *dentry;
1917 
1918 		if (!f.file)
1919 			return -EBADF;
1920 
1921 		dentry = f.file->f_path.dentry;
1922 
1923 		if (*s) {
1924 			if (!d_can_lookup(dentry)) {
1925 				fdput(f);
1926 				return -ENOTDIR;
1927 			}
1928 		}
1929 
1930 		nd->path = f.file->f_path;
1931 		if (flags & LOOKUP_RCU) {
1932 			if (f.flags & FDPUT_FPUT)
1933 				nd->base = f.file;
1934 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1935 			rcu_read_lock();
1936 		} else {
1937 			path_get(&nd->path);
1938 			fdput(f);
1939 		}
1940 	}
1941 
1942 	nd->inode = nd->path.dentry->d_inode;
1943 	if (!(flags & LOOKUP_RCU))
1944 		goto done;
1945 	if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq)))
1946 		goto done;
1947 	if (!(nd->flags & LOOKUP_ROOT))
1948 		nd->root.mnt = NULL;
1949 	rcu_read_unlock();
1950 	return -ECHILD;
1951 done:
1952 	current->total_link_count = 0;
1953 	return link_path_walk(s, nd);
1954 }
1955 
1956 static void path_cleanup(struct nameidata *nd)
1957 {
1958 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1959 		path_put(&nd->root);
1960 		nd->root.mnt = NULL;
1961 	}
1962 	if (unlikely(nd->base))
1963 		fput(nd->base);
1964 }
1965 
1966 static inline int lookup_last(struct nameidata *nd, struct path *path)
1967 {
1968 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1969 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1970 
1971 	nd->flags &= ~LOOKUP_PARENT;
1972 	return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW);
1973 }
1974 
1975 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1976 static int path_lookupat(int dfd, const struct filename *name,
1977 				unsigned int flags, struct nameidata *nd)
1978 {
1979 	struct path path;
1980 	int err;
1981 
1982 	/*
1983 	 * Path walking is largely split up into 2 different synchronisation
1984 	 * schemes, rcu-walk and ref-walk (explained in
1985 	 * Documentation/filesystems/path-lookup.txt). These share much of the
1986 	 * path walk code, but some things particularly setup, cleanup, and
1987 	 * following mounts are sufficiently divergent that functions are
1988 	 * duplicated. Typically there is a function foo(), and its RCU
1989 	 * analogue, foo_rcu().
1990 	 *
1991 	 * -ECHILD is the error number of choice (just to avoid clashes) that
1992 	 * is returned if some aspect of an rcu-walk fails. Such an error must
1993 	 * be handled by restarting a traditional ref-walk (which will always
1994 	 * be able to complete).
1995 	 */
1996 	err = path_init(dfd, name, flags, nd);
1997 	if (!err && !(flags & LOOKUP_PARENT)) {
1998 		err = lookup_last(nd, &path);
1999 		while (err > 0) {
2000 			void *cookie;
2001 			struct path link = path;
2002 			err = may_follow_link(&link, nd);
2003 			if (unlikely(err))
2004 				break;
2005 			nd->flags |= LOOKUP_PARENT;
2006 			err = follow_link(&link, nd, &cookie);
2007 			if (err)
2008 				break;
2009 			err = lookup_last(nd, &path);
2010 			put_link(nd, &link, cookie);
2011 		}
2012 	}
2013 
2014 	if (!err)
2015 		err = complete_walk(nd);
2016 
2017 	if (!err && nd->flags & LOOKUP_DIRECTORY) {
2018 		if (!d_can_lookup(nd->path.dentry)) {
2019 			path_put(&nd->path);
2020 			err = -ENOTDIR;
2021 		}
2022 	}
2023 
2024 	path_cleanup(nd);
2025 	return err;
2026 }
2027 
2028 static int filename_lookup(int dfd, struct filename *name,
2029 				unsigned int flags, struct nameidata *nd)
2030 {
2031 	int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
2032 	if (unlikely(retval == -ECHILD))
2033 		retval = path_lookupat(dfd, name, flags, nd);
2034 	if (unlikely(retval == -ESTALE))
2035 		retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
2036 
2037 	if (likely(!retval))
2038 		audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2039 	return retval;
2040 }
2041 
2042 /* does lookup, returns the object with parent locked */
2043 struct dentry *kern_path_locked(const char *name, struct path *path)
2044 {
2045 	struct filename *filename = getname_kernel(name);
2046 	struct nameidata nd;
2047 	struct dentry *d;
2048 	int err;
2049 
2050 	if (IS_ERR(filename))
2051 		return ERR_CAST(filename);
2052 
2053 	err = filename_lookup(AT_FDCWD, filename, LOOKUP_PARENT, &nd);
2054 	if (err) {
2055 		d = ERR_PTR(err);
2056 		goto out;
2057 	}
2058 	if (nd.last_type != LAST_NORM) {
2059 		path_put(&nd.path);
2060 		d = ERR_PTR(-EINVAL);
2061 		goto out;
2062 	}
2063 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2064 	d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2065 	if (IS_ERR(d)) {
2066 		mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2067 		path_put(&nd.path);
2068 		goto out;
2069 	}
2070 	*path = nd.path;
2071 out:
2072 	putname(filename);
2073 	return d;
2074 }
2075 
2076 int kern_path(const char *name, unsigned int flags, struct path *path)
2077 {
2078 	struct nameidata nd;
2079 	struct filename *filename = getname_kernel(name);
2080 	int res = PTR_ERR(filename);
2081 
2082 	if (!IS_ERR(filename)) {
2083 		res = filename_lookup(AT_FDCWD, filename, flags, &nd);
2084 		putname(filename);
2085 		if (!res)
2086 			*path = nd.path;
2087 	}
2088 	return res;
2089 }
2090 EXPORT_SYMBOL(kern_path);
2091 
2092 /**
2093  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2094  * @dentry:  pointer to dentry of the base directory
2095  * @mnt: pointer to vfs mount of the base directory
2096  * @name: pointer to file name
2097  * @flags: lookup flags
2098  * @path: pointer to struct path to fill
2099  */
2100 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2101 		    const char *name, unsigned int flags,
2102 		    struct path *path)
2103 {
2104 	struct filename *filename = getname_kernel(name);
2105 	int err = PTR_ERR(filename);
2106 
2107 	BUG_ON(flags & LOOKUP_PARENT);
2108 
2109 	/* the first argument of filename_lookup() is ignored with LOOKUP_ROOT */
2110 	if (!IS_ERR(filename)) {
2111 		struct nameidata nd;
2112 		nd.root.dentry = dentry;
2113 		nd.root.mnt = mnt;
2114 		err = filename_lookup(AT_FDCWD, filename,
2115 				      flags | LOOKUP_ROOT, &nd);
2116 		if (!err)
2117 			*path = nd.path;
2118 		putname(filename);
2119 	}
2120 	return err;
2121 }
2122 EXPORT_SYMBOL(vfs_path_lookup);
2123 
2124 /*
2125  * Restricted form of lookup. Doesn't follow links, single-component only,
2126  * needs parent already locked. Doesn't follow mounts.
2127  * SMP-safe.
2128  */
2129 static struct dentry *lookup_hash(struct nameidata *nd)
2130 {
2131 	return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2132 }
2133 
2134 /**
2135  * lookup_one_len - filesystem helper to lookup single pathname component
2136  * @name:	pathname component to lookup
2137  * @base:	base directory to lookup from
2138  * @len:	maximum length @len should be interpreted to
2139  *
2140  * Note that this routine is purely a helper for filesystem usage and should
2141  * not be called by generic code.
2142  */
2143 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2144 {
2145 	struct qstr this;
2146 	unsigned int c;
2147 	int err;
2148 
2149 	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2150 
2151 	this.name = name;
2152 	this.len = len;
2153 	this.hash = full_name_hash(name, len);
2154 	if (!len)
2155 		return ERR_PTR(-EACCES);
2156 
2157 	if (unlikely(name[0] == '.')) {
2158 		if (len < 2 || (len == 2 && name[1] == '.'))
2159 			return ERR_PTR(-EACCES);
2160 	}
2161 
2162 	while (len--) {
2163 		c = *(const unsigned char *)name++;
2164 		if (c == '/' || c == '\0')
2165 			return ERR_PTR(-EACCES);
2166 	}
2167 	/*
2168 	 * See if the low-level filesystem might want
2169 	 * to use its own hash..
2170 	 */
2171 	if (base->d_flags & DCACHE_OP_HASH) {
2172 		int err = base->d_op->d_hash(base, &this);
2173 		if (err < 0)
2174 			return ERR_PTR(err);
2175 	}
2176 
2177 	err = inode_permission(base->d_inode, MAY_EXEC);
2178 	if (err)
2179 		return ERR_PTR(err);
2180 
2181 	return __lookup_hash(&this, base, 0);
2182 }
2183 EXPORT_SYMBOL(lookup_one_len);
2184 
2185 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2186 		 struct path *path, int *empty)
2187 {
2188 	struct nameidata nd;
2189 	struct filename *tmp = getname_flags(name, flags, empty);
2190 	int err = PTR_ERR(tmp);
2191 	if (!IS_ERR(tmp)) {
2192 
2193 		BUG_ON(flags & LOOKUP_PARENT);
2194 
2195 		err = filename_lookup(dfd, tmp, flags, &nd);
2196 		putname(tmp);
2197 		if (!err)
2198 			*path = nd.path;
2199 	}
2200 	return err;
2201 }
2202 
2203 int user_path_at(int dfd, const char __user *name, unsigned flags,
2204 		 struct path *path)
2205 {
2206 	return user_path_at_empty(dfd, name, flags, path, NULL);
2207 }
2208 EXPORT_SYMBOL(user_path_at);
2209 
2210 /*
2211  * NB: most callers don't do anything directly with the reference to the
2212  *     to struct filename, but the nd->last pointer points into the name string
2213  *     allocated by getname. So we must hold the reference to it until all
2214  *     path-walking is complete.
2215  */
2216 static struct filename *
2217 user_path_parent(int dfd, const char __user *path, struct nameidata *nd,
2218 		 unsigned int flags)
2219 {
2220 	struct filename *s = getname(path);
2221 	int error;
2222 
2223 	/* only LOOKUP_REVAL is allowed in extra flags */
2224 	flags &= LOOKUP_REVAL;
2225 
2226 	if (IS_ERR(s))
2227 		return s;
2228 
2229 	error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd);
2230 	if (error) {
2231 		putname(s);
2232 		return ERR_PTR(error);
2233 	}
2234 
2235 	return s;
2236 }
2237 
2238 /**
2239  * mountpoint_last - look up last component for umount
2240  * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2241  * @path: pointer to container for result
2242  *
2243  * This is a special lookup_last function just for umount. In this case, we
2244  * need to resolve the path without doing any revalidation.
2245  *
2246  * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2247  * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2248  * in almost all cases, this lookup will be served out of the dcache. The only
2249  * cases where it won't are if nd->last refers to a symlink or the path is
2250  * bogus and it doesn't exist.
2251  *
2252  * Returns:
2253  * -error: if there was an error during lookup. This includes -ENOENT if the
2254  *         lookup found a negative dentry. The nd->path reference will also be
2255  *         put in this case.
2256  *
2257  * 0:      if we successfully resolved nd->path and found it to not to be a
2258  *         symlink that needs to be followed. "path" will also be populated.
2259  *         The nd->path reference will also be put.
2260  *
2261  * 1:      if we successfully resolved nd->last and found it to be a symlink
2262  *         that needs to be followed. "path" will be populated with the path
2263  *         to the link, and nd->path will *not* be put.
2264  */
2265 static int
2266 mountpoint_last(struct nameidata *nd, struct path *path)
2267 {
2268 	int error = 0;
2269 	struct dentry *dentry;
2270 	struct dentry *dir = nd->path.dentry;
2271 
2272 	/* If we're in rcuwalk, drop out of it to handle last component */
2273 	if (nd->flags & LOOKUP_RCU) {
2274 		if (unlazy_walk(nd, NULL)) {
2275 			error = -ECHILD;
2276 			goto out;
2277 		}
2278 	}
2279 
2280 	nd->flags &= ~LOOKUP_PARENT;
2281 
2282 	if (unlikely(nd->last_type != LAST_NORM)) {
2283 		error = handle_dots(nd, nd->last_type);
2284 		if (error)
2285 			goto out;
2286 		dentry = dget(nd->path.dentry);
2287 		goto done;
2288 	}
2289 
2290 	mutex_lock(&dir->d_inode->i_mutex);
2291 	dentry = d_lookup(dir, &nd->last);
2292 	if (!dentry) {
2293 		/*
2294 		 * No cached dentry. Mounted dentries are pinned in the cache,
2295 		 * so that means that this dentry is probably a symlink or the
2296 		 * path doesn't actually point to a mounted dentry.
2297 		 */
2298 		dentry = d_alloc(dir, &nd->last);
2299 		if (!dentry) {
2300 			error = -ENOMEM;
2301 			mutex_unlock(&dir->d_inode->i_mutex);
2302 			goto out;
2303 		}
2304 		dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2305 		error = PTR_ERR(dentry);
2306 		if (IS_ERR(dentry)) {
2307 			mutex_unlock(&dir->d_inode->i_mutex);
2308 			goto out;
2309 		}
2310 	}
2311 	mutex_unlock(&dir->d_inode->i_mutex);
2312 
2313 done:
2314 	if (d_is_negative(dentry)) {
2315 		error = -ENOENT;
2316 		dput(dentry);
2317 		goto out;
2318 	}
2319 	path->dentry = dentry;
2320 	path->mnt = nd->path.mnt;
2321 	if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW))
2322 		return 1;
2323 	mntget(path->mnt);
2324 	follow_mount(path);
2325 	error = 0;
2326 out:
2327 	terminate_walk(nd);
2328 	return error;
2329 }
2330 
2331 /**
2332  * path_mountpoint - look up a path to be umounted
2333  * @dfd:	directory file descriptor to start walk from
2334  * @name:	full pathname to walk
2335  * @path:	pointer to container for result
2336  * @flags:	lookup flags
2337  *
2338  * Look up the given name, but don't attempt to revalidate the last component.
2339  * Returns 0 and "path" will be valid on success; Returns error otherwise.
2340  */
2341 static int
2342 path_mountpoint(int dfd, const struct filename *name, struct path *path,
2343 		unsigned int flags)
2344 {
2345 	struct nameidata nd;
2346 	int err;
2347 
2348 	err = path_init(dfd, name, flags, &nd);
2349 	if (unlikely(err))
2350 		goto out;
2351 
2352 	err = mountpoint_last(&nd, path);
2353 	while (err > 0) {
2354 		void *cookie;
2355 		struct path link = *path;
2356 		err = may_follow_link(&link, &nd);
2357 		if (unlikely(err))
2358 			break;
2359 		nd.flags |= LOOKUP_PARENT;
2360 		err = follow_link(&link, &nd, &cookie);
2361 		if (err)
2362 			break;
2363 		err = mountpoint_last(&nd, path);
2364 		put_link(&nd, &link, cookie);
2365 	}
2366 out:
2367 	path_cleanup(&nd);
2368 	return err;
2369 }
2370 
2371 static int
2372 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2373 			unsigned int flags)
2374 {
2375 	int error;
2376 	if (IS_ERR(name))
2377 		return PTR_ERR(name);
2378 	error = path_mountpoint(dfd, name, path, flags | LOOKUP_RCU);
2379 	if (unlikely(error == -ECHILD))
2380 		error = path_mountpoint(dfd, name, path, flags);
2381 	if (unlikely(error == -ESTALE))
2382 		error = path_mountpoint(dfd, name, path, flags | LOOKUP_REVAL);
2383 	if (likely(!error))
2384 		audit_inode(name, path->dentry, 0);
2385 	putname(name);
2386 	return error;
2387 }
2388 
2389 /**
2390  * user_path_mountpoint_at - lookup a path from userland in order to umount it
2391  * @dfd:	directory file descriptor
2392  * @name:	pathname from userland
2393  * @flags:	lookup flags
2394  * @path:	pointer to container to hold result
2395  *
2396  * A umount is a special case for path walking. We're not actually interested
2397  * in the inode in this situation, and ESTALE errors can be a problem. We
2398  * simply want track down the dentry and vfsmount attached at the mountpoint
2399  * and avoid revalidating the last component.
2400  *
2401  * Returns 0 and populates "path" on success.
2402  */
2403 int
2404 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2405 			struct path *path)
2406 {
2407 	return filename_mountpoint(dfd, getname(name), path, flags);
2408 }
2409 
2410 int
2411 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2412 			unsigned int flags)
2413 {
2414 	return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2415 }
2416 EXPORT_SYMBOL(kern_path_mountpoint);
2417 
2418 int __check_sticky(struct inode *dir, struct inode *inode)
2419 {
2420 	kuid_t fsuid = current_fsuid();
2421 
2422 	if (uid_eq(inode->i_uid, fsuid))
2423 		return 0;
2424 	if (uid_eq(dir->i_uid, fsuid))
2425 		return 0;
2426 	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2427 }
2428 EXPORT_SYMBOL(__check_sticky);
2429 
2430 /*
2431  *	Check whether we can remove a link victim from directory dir, check
2432  *  whether the type of victim is right.
2433  *  1. We can't do it if dir is read-only (done in permission())
2434  *  2. We should have write and exec permissions on dir
2435  *  3. We can't remove anything from append-only dir
2436  *  4. We can't do anything with immutable dir (done in permission())
2437  *  5. If the sticky bit on dir is set we should either
2438  *	a. be owner of dir, or
2439  *	b. be owner of victim, or
2440  *	c. have CAP_FOWNER capability
2441  *  6. If the victim is append-only or immutable we can't do antyhing with
2442  *     links pointing to it.
2443  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2444  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2445  *  9. We can't remove a root or mountpoint.
2446  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2447  *     nfs_async_unlink().
2448  */
2449 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2450 {
2451 	struct inode *inode = victim->d_inode;
2452 	int error;
2453 
2454 	if (d_is_negative(victim))
2455 		return -ENOENT;
2456 	BUG_ON(!inode);
2457 
2458 	BUG_ON(victim->d_parent->d_inode != dir);
2459 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2460 
2461 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2462 	if (error)
2463 		return error;
2464 	if (IS_APPEND(dir))
2465 		return -EPERM;
2466 
2467 	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2468 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2469 		return -EPERM;
2470 	if (isdir) {
2471 		if (!d_is_dir(victim))
2472 			return -ENOTDIR;
2473 		if (IS_ROOT(victim))
2474 			return -EBUSY;
2475 	} else if (d_is_dir(victim))
2476 		return -EISDIR;
2477 	if (IS_DEADDIR(dir))
2478 		return -ENOENT;
2479 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2480 		return -EBUSY;
2481 	return 0;
2482 }
2483 
2484 /*	Check whether we can create an object with dentry child in directory
2485  *  dir.
2486  *  1. We can't do it if child already exists (open has special treatment for
2487  *     this case, but since we are inlined it's OK)
2488  *  2. We can't do it if dir is read-only (done in permission())
2489  *  3. We should have write and exec permissions on dir
2490  *  4. We can't do it if dir is immutable (done in permission())
2491  */
2492 static inline int may_create(struct inode *dir, struct dentry *child)
2493 {
2494 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2495 	if (child->d_inode)
2496 		return -EEXIST;
2497 	if (IS_DEADDIR(dir))
2498 		return -ENOENT;
2499 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2500 }
2501 
2502 /*
2503  * p1 and p2 should be directories on the same fs.
2504  */
2505 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2506 {
2507 	struct dentry *p;
2508 
2509 	if (p1 == p2) {
2510 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2511 		return NULL;
2512 	}
2513 
2514 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2515 
2516 	p = d_ancestor(p2, p1);
2517 	if (p) {
2518 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2519 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2520 		return p;
2521 	}
2522 
2523 	p = d_ancestor(p1, p2);
2524 	if (p) {
2525 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2526 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2527 		return p;
2528 	}
2529 
2530 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2531 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT2);
2532 	return NULL;
2533 }
2534 EXPORT_SYMBOL(lock_rename);
2535 
2536 void unlock_rename(struct dentry *p1, struct dentry *p2)
2537 {
2538 	mutex_unlock(&p1->d_inode->i_mutex);
2539 	if (p1 != p2) {
2540 		mutex_unlock(&p2->d_inode->i_mutex);
2541 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2542 	}
2543 }
2544 EXPORT_SYMBOL(unlock_rename);
2545 
2546 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2547 		bool want_excl)
2548 {
2549 	int error = may_create(dir, dentry);
2550 	if (error)
2551 		return error;
2552 
2553 	if (!dir->i_op->create)
2554 		return -EACCES;	/* shouldn't it be ENOSYS? */
2555 	mode &= S_IALLUGO;
2556 	mode |= S_IFREG;
2557 	error = security_inode_create(dir, dentry, mode);
2558 	if (error)
2559 		return error;
2560 	error = dir->i_op->create(dir, dentry, mode, want_excl);
2561 	if (!error)
2562 		fsnotify_create(dir, dentry);
2563 	return error;
2564 }
2565 EXPORT_SYMBOL(vfs_create);
2566 
2567 static int may_open(struct path *path, int acc_mode, int flag)
2568 {
2569 	struct dentry *dentry = path->dentry;
2570 	struct inode *inode = dentry->d_inode;
2571 	int error;
2572 
2573 	/* O_PATH? */
2574 	if (!acc_mode)
2575 		return 0;
2576 
2577 	if (!inode)
2578 		return -ENOENT;
2579 
2580 	switch (inode->i_mode & S_IFMT) {
2581 	case S_IFLNK:
2582 		return -ELOOP;
2583 	case S_IFDIR:
2584 		if (acc_mode & MAY_WRITE)
2585 			return -EISDIR;
2586 		break;
2587 	case S_IFBLK:
2588 	case S_IFCHR:
2589 		if (path->mnt->mnt_flags & MNT_NODEV)
2590 			return -EACCES;
2591 		/*FALLTHRU*/
2592 	case S_IFIFO:
2593 	case S_IFSOCK:
2594 		flag &= ~O_TRUNC;
2595 		break;
2596 	}
2597 
2598 	error = inode_permission(inode, acc_mode);
2599 	if (error)
2600 		return error;
2601 
2602 	/*
2603 	 * An append-only file must be opened in append mode for writing.
2604 	 */
2605 	if (IS_APPEND(inode)) {
2606 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2607 			return -EPERM;
2608 		if (flag & O_TRUNC)
2609 			return -EPERM;
2610 	}
2611 
2612 	/* O_NOATIME can only be set by the owner or superuser */
2613 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2614 		return -EPERM;
2615 
2616 	return 0;
2617 }
2618 
2619 static int handle_truncate(struct file *filp)
2620 {
2621 	struct path *path = &filp->f_path;
2622 	struct inode *inode = path->dentry->d_inode;
2623 	int error = get_write_access(inode);
2624 	if (error)
2625 		return error;
2626 	/*
2627 	 * Refuse to truncate files with mandatory locks held on them.
2628 	 */
2629 	error = locks_verify_locked(filp);
2630 	if (!error)
2631 		error = security_path_truncate(path);
2632 	if (!error) {
2633 		error = do_truncate(path->dentry, 0,
2634 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2635 				    filp);
2636 	}
2637 	put_write_access(inode);
2638 	return error;
2639 }
2640 
2641 static inline int open_to_namei_flags(int flag)
2642 {
2643 	if ((flag & O_ACCMODE) == 3)
2644 		flag--;
2645 	return flag;
2646 }
2647 
2648 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2649 {
2650 	int error = security_path_mknod(dir, dentry, mode, 0);
2651 	if (error)
2652 		return error;
2653 
2654 	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2655 	if (error)
2656 		return error;
2657 
2658 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
2659 }
2660 
2661 /*
2662  * Attempt to atomically look up, create and open a file from a negative
2663  * dentry.
2664  *
2665  * Returns 0 if successful.  The file will have been created and attached to
2666  * @file by the filesystem calling finish_open().
2667  *
2668  * Returns 1 if the file was looked up only or didn't need creating.  The
2669  * caller will need to perform the open themselves.  @path will have been
2670  * updated to point to the new dentry.  This may be negative.
2671  *
2672  * Returns an error code otherwise.
2673  */
2674 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2675 			struct path *path, struct file *file,
2676 			const struct open_flags *op,
2677 			bool got_write, bool need_lookup,
2678 			int *opened)
2679 {
2680 	struct inode *dir =  nd->path.dentry->d_inode;
2681 	unsigned open_flag = open_to_namei_flags(op->open_flag);
2682 	umode_t mode;
2683 	int error;
2684 	int acc_mode;
2685 	int create_error = 0;
2686 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2687 	bool excl;
2688 
2689 	BUG_ON(dentry->d_inode);
2690 
2691 	/* Don't create child dentry for a dead directory. */
2692 	if (unlikely(IS_DEADDIR(dir))) {
2693 		error = -ENOENT;
2694 		goto out;
2695 	}
2696 
2697 	mode = op->mode;
2698 	if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2699 		mode &= ~current_umask();
2700 
2701 	excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2702 	if (excl)
2703 		open_flag &= ~O_TRUNC;
2704 
2705 	/*
2706 	 * Checking write permission is tricky, bacuse we don't know if we are
2707 	 * going to actually need it: O_CREAT opens should work as long as the
2708 	 * file exists.  But checking existence breaks atomicity.  The trick is
2709 	 * to check access and if not granted clear O_CREAT from the flags.
2710 	 *
2711 	 * Another problem is returing the "right" error value (e.g. for an
2712 	 * O_EXCL open we want to return EEXIST not EROFS).
2713 	 */
2714 	if (((open_flag & (O_CREAT | O_TRUNC)) ||
2715 	    (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2716 		if (!(open_flag & O_CREAT)) {
2717 			/*
2718 			 * No O_CREATE -> atomicity not a requirement -> fall
2719 			 * back to lookup + open
2720 			 */
2721 			goto no_open;
2722 		} else if (open_flag & (O_EXCL | O_TRUNC)) {
2723 			/* Fall back and fail with the right error */
2724 			create_error = -EROFS;
2725 			goto no_open;
2726 		} else {
2727 			/* No side effects, safe to clear O_CREAT */
2728 			create_error = -EROFS;
2729 			open_flag &= ~O_CREAT;
2730 		}
2731 	}
2732 
2733 	if (open_flag & O_CREAT) {
2734 		error = may_o_create(&nd->path, dentry, mode);
2735 		if (error) {
2736 			create_error = error;
2737 			if (open_flag & O_EXCL)
2738 				goto no_open;
2739 			open_flag &= ~O_CREAT;
2740 		}
2741 	}
2742 
2743 	if (nd->flags & LOOKUP_DIRECTORY)
2744 		open_flag |= O_DIRECTORY;
2745 
2746 	file->f_path.dentry = DENTRY_NOT_SET;
2747 	file->f_path.mnt = nd->path.mnt;
2748 	error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2749 				      opened);
2750 	if (error < 0) {
2751 		if (create_error && error == -ENOENT)
2752 			error = create_error;
2753 		goto out;
2754 	}
2755 
2756 	if (error) {	/* returned 1, that is */
2757 		if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2758 			error = -EIO;
2759 			goto out;
2760 		}
2761 		if (file->f_path.dentry) {
2762 			dput(dentry);
2763 			dentry = file->f_path.dentry;
2764 		}
2765 		if (*opened & FILE_CREATED)
2766 			fsnotify_create(dir, dentry);
2767 		if (!dentry->d_inode) {
2768 			WARN_ON(*opened & FILE_CREATED);
2769 			if (create_error) {
2770 				error = create_error;
2771 				goto out;
2772 			}
2773 		} else {
2774 			if (excl && !(*opened & FILE_CREATED)) {
2775 				error = -EEXIST;
2776 				goto out;
2777 			}
2778 		}
2779 		goto looked_up;
2780 	}
2781 
2782 	/*
2783 	 * We didn't have the inode before the open, so check open permission
2784 	 * here.
2785 	 */
2786 	acc_mode = op->acc_mode;
2787 	if (*opened & FILE_CREATED) {
2788 		WARN_ON(!(open_flag & O_CREAT));
2789 		fsnotify_create(dir, dentry);
2790 		acc_mode = MAY_OPEN;
2791 	}
2792 	error = may_open(&file->f_path, acc_mode, open_flag);
2793 	if (error)
2794 		fput(file);
2795 
2796 out:
2797 	dput(dentry);
2798 	return error;
2799 
2800 no_open:
2801 	if (need_lookup) {
2802 		dentry = lookup_real(dir, dentry, nd->flags);
2803 		if (IS_ERR(dentry))
2804 			return PTR_ERR(dentry);
2805 
2806 		if (create_error) {
2807 			int open_flag = op->open_flag;
2808 
2809 			error = create_error;
2810 			if ((open_flag & O_EXCL)) {
2811 				if (!dentry->d_inode)
2812 					goto out;
2813 			} else if (!dentry->d_inode) {
2814 				goto out;
2815 			} else if ((open_flag & O_TRUNC) &&
2816 				   d_is_reg(dentry)) {
2817 				goto out;
2818 			}
2819 			/* will fail later, go on to get the right error */
2820 		}
2821 	}
2822 looked_up:
2823 	path->dentry = dentry;
2824 	path->mnt = nd->path.mnt;
2825 	return 1;
2826 }
2827 
2828 /*
2829  * Look up and maybe create and open the last component.
2830  *
2831  * Must be called with i_mutex held on parent.
2832  *
2833  * Returns 0 if the file was successfully atomically created (if necessary) and
2834  * opened.  In this case the file will be returned attached to @file.
2835  *
2836  * Returns 1 if the file was not completely opened at this time, though lookups
2837  * and creations will have been performed and the dentry returned in @path will
2838  * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
2839  * specified then a negative dentry may be returned.
2840  *
2841  * An error code is returned otherwise.
2842  *
2843  * FILE_CREATE will be set in @*opened if the dentry was created and will be
2844  * cleared otherwise prior to returning.
2845  */
2846 static int lookup_open(struct nameidata *nd, struct path *path,
2847 			struct file *file,
2848 			const struct open_flags *op,
2849 			bool got_write, int *opened)
2850 {
2851 	struct dentry *dir = nd->path.dentry;
2852 	struct inode *dir_inode = dir->d_inode;
2853 	struct dentry *dentry;
2854 	int error;
2855 	bool need_lookup;
2856 
2857 	*opened &= ~FILE_CREATED;
2858 	dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2859 	if (IS_ERR(dentry))
2860 		return PTR_ERR(dentry);
2861 
2862 	/* Cached positive dentry: will open in f_op->open */
2863 	if (!need_lookup && dentry->d_inode)
2864 		goto out_no_open;
2865 
2866 	if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2867 		return atomic_open(nd, dentry, path, file, op, got_write,
2868 				   need_lookup, opened);
2869 	}
2870 
2871 	if (need_lookup) {
2872 		BUG_ON(dentry->d_inode);
2873 
2874 		dentry = lookup_real(dir_inode, dentry, nd->flags);
2875 		if (IS_ERR(dentry))
2876 			return PTR_ERR(dentry);
2877 	}
2878 
2879 	/* Negative dentry, just create the file */
2880 	if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2881 		umode_t mode = op->mode;
2882 		if (!IS_POSIXACL(dir->d_inode))
2883 			mode &= ~current_umask();
2884 		/*
2885 		 * This write is needed to ensure that a
2886 		 * rw->ro transition does not occur between
2887 		 * the time when the file is created and when
2888 		 * a permanent write count is taken through
2889 		 * the 'struct file' in finish_open().
2890 		 */
2891 		if (!got_write) {
2892 			error = -EROFS;
2893 			goto out_dput;
2894 		}
2895 		*opened |= FILE_CREATED;
2896 		error = security_path_mknod(&nd->path, dentry, mode, 0);
2897 		if (error)
2898 			goto out_dput;
2899 		error = vfs_create(dir->d_inode, dentry, mode,
2900 				   nd->flags & LOOKUP_EXCL);
2901 		if (error)
2902 			goto out_dput;
2903 	}
2904 out_no_open:
2905 	path->dentry = dentry;
2906 	path->mnt = nd->path.mnt;
2907 	return 1;
2908 
2909 out_dput:
2910 	dput(dentry);
2911 	return error;
2912 }
2913 
2914 /*
2915  * Handle the last step of open()
2916  */
2917 static int do_last(struct nameidata *nd, struct path *path,
2918 		   struct file *file, const struct open_flags *op,
2919 		   int *opened, struct filename *name)
2920 {
2921 	struct dentry *dir = nd->path.dentry;
2922 	int open_flag = op->open_flag;
2923 	bool will_truncate = (open_flag & O_TRUNC) != 0;
2924 	bool got_write = false;
2925 	int acc_mode = op->acc_mode;
2926 	struct inode *inode;
2927 	bool symlink_ok = false;
2928 	struct path save_parent = { .dentry = NULL, .mnt = NULL };
2929 	bool retried = false;
2930 	int error;
2931 
2932 	nd->flags &= ~LOOKUP_PARENT;
2933 	nd->flags |= op->intent;
2934 
2935 	if (nd->last_type != LAST_NORM) {
2936 		error = handle_dots(nd, nd->last_type);
2937 		if (error)
2938 			return error;
2939 		goto finish_open;
2940 	}
2941 
2942 	if (!(open_flag & O_CREAT)) {
2943 		if (nd->last.name[nd->last.len])
2944 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2945 		if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2946 			symlink_ok = true;
2947 		/* we _can_ be in RCU mode here */
2948 		error = lookup_fast(nd, path, &inode);
2949 		if (likely(!error))
2950 			goto finish_lookup;
2951 
2952 		if (error < 0)
2953 			goto out;
2954 
2955 		BUG_ON(nd->inode != dir->d_inode);
2956 	} else {
2957 		/* create side of things */
2958 		/*
2959 		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2960 		 * has been cleared when we got to the last component we are
2961 		 * about to look up
2962 		 */
2963 		error = complete_walk(nd);
2964 		if (error)
2965 			return error;
2966 
2967 		audit_inode(name, dir, LOOKUP_PARENT);
2968 		error = -EISDIR;
2969 		/* trailing slashes? */
2970 		if (nd->last.name[nd->last.len])
2971 			goto out;
2972 	}
2973 
2974 retry_lookup:
2975 	if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2976 		error = mnt_want_write(nd->path.mnt);
2977 		if (!error)
2978 			got_write = true;
2979 		/*
2980 		 * do _not_ fail yet - we might not need that or fail with
2981 		 * a different error; let lookup_open() decide; we'll be
2982 		 * dropping this one anyway.
2983 		 */
2984 	}
2985 	mutex_lock(&dir->d_inode->i_mutex);
2986 	error = lookup_open(nd, path, file, op, got_write, opened);
2987 	mutex_unlock(&dir->d_inode->i_mutex);
2988 
2989 	if (error <= 0) {
2990 		if (error)
2991 			goto out;
2992 
2993 		if ((*opened & FILE_CREATED) ||
2994 		    !S_ISREG(file_inode(file)->i_mode))
2995 			will_truncate = false;
2996 
2997 		audit_inode(name, file->f_path.dentry, 0);
2998 		goto opened;
2999 	}
3000 
3001 	if (*opened & FILE_CREATED) {
3002 		/* Don't check for write permission, don't truncate */
3003 		open_flag &= ~O_TRUNC;
3004 		will_truncate = false;
3005 		acc_mode = MAY_OPEN;
3006 		path_to_nameidata(path, nd);
3007 		goto finish_open_created;
3008 	}
3009 
3010 	/*
3011 	 * create/update audit record if it already exists.
3012 	 */
3013 	if (d_is_positive(path->dentry))
3014 		audit_inode(name, path->dentry, 0);
3015 
3016 	/*
3017 	 * If atomic_open() acquired write access it is dropped now due to
3018 	 * possible mount and symlink following (this might be optimized away if
3019 	 * necessary...)
3020 	 */
3021 	if (got_write) {
3022 		mnt_drop_write(nd->path.mnt);
3023 		got_write = false;
3024 	}
3025 
3026 	error = -EEXIST;
3027 	if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
3028 		goto exit_dput;
3029 
3030 	error = follow_managed(path, nd->flags);
3031 	if (error < 0)
3032 		goto exit_dput;
3033 
3034 	if (error)
3035 		nd->flags |= LOOKUP_JUMPED;
3036 
3037 	BUG_ON(nd->flags & LOOKUP_RCU);
3038 	inode = path->dentry->d_inode;
3039 finish_lookup:
3040 	/* we _can_ be in RCU mode here */
3041 	error = -ENOENT;
3042 	if (d_is_negative(path->dentry)) {
3043 		path_to_nameidata(path, nd);
3044 		goto out;
3045 	}
3046 
3047 	if (should_follow_link(path->dentry, !symlink_ok)) {
3048 		if (nd->flags & LOOKUP_RCU) {
3049 			if (unlikely(nd->path.mnt != path->mnt ||
3050 				     unlazy_walk(nd, path->dentry))) {
3051 				error = -ECHILD;
3052 				goto out;
3053 			}
3054 		}
3055 		BUG_ON(inode != path->dentry->d_inode);
3056 		return 1;
3057 	}
3058 
3059 	if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
3060 		path_to_nameidata(path, nd);
3061 	} else {
3062 		save_parent.dentry = nd->path.dentry;
3063 		save_parent.mnt = mntget(path->mnt);
3064 		nd->path.dentry = path->dentry;
3065 
3066 	}
3067 	nd->inode = inode;
3068 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3069 finish_open:
3070 	error = complete_walk(nd);
3071 	if (error) {
3072 		path_put(&save_parent);
3073 		return error;
3074 	}
3075 	audit_inode(name, nd->path.dentry, 0);
3076 	error = -EISDIR;
3077 	if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3078 		goto out;
3079 	error = -ENOTDIR;
3080 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3081 		goto out;
3082 	if (!d_is_reg(nd->path.dentry))
3083 		will_truncate = false;
3084 
3085 	if (will_truncate) {
3086 		error = mnt_want_write(nd->path.mnt);
3087 		if (error)
3088 			goto out;
3089 		got_write = true;
3090 	}
3091 finish_open_created:
3092 	error = may_open(&nd->path, acc_mode, open_flag);
3093 	if (error)
3094 		goto out;
3095 
3096 	BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3097 	error = vfs_open(&nd->path, file, current_cred());
3098 	if (!error) {
3099 		*opened |= FILE_OPENED;
3100 	} else {
3101 		if (error == -EOPENSTALE)
3102 			goto stale_open;
3103 		goto out;
3104 	}
3105 opened:
3106 	error = open_check_o_direct(file);
3107 	if (error)
3108 		goto exit_fput;
3109 	error = ima_file_check(file, op->acc_mode, *opened);
3110 	if (error)
3111 		goto exit_fput;
3112 
3113 	if (will_truncate) {
3114 		error = handle_truncate(file);
3115 		if (error)
3116 			goto exit_fput;
3117 	}
3118 out:
3119 	if (got_write)
3120 		mnt_drop_write(nd->path.mnt);
3121 	path_put(&save_parent);
3122 	terminate_walk(nd);
3123 	return error;
3124 
3125 exit_dput:
3126 	path_put_conditional(path, nd);
3127 	goto out;
3128 exit_fput:
3129 	fput(file);
3130 	goto out;
3131 
3132 stale_open:
3133 	/* If no saved parent or already retried then can't retry */
3134 	if (!save_parent.dentry || retried)
3135 		goto out;
3136 
3137 	BUG_ON(save_parent.dentry != dir);
3138 	path_put(&nd->path);
3139 	nd->path = save_parent;
3140 	nd->inode = dir->d_inode;
3141 	save_parent.mnt = NULL;
3142 	save_parent.dentry = NULL;
3143 	if (got_write) {
3144 		mnt_drop_write(nd->path.mnt);
3145 		got_write = false;
3146 	}
3147 	retried = true;
3148 	goto retry_lookup;
3149 }
3150 
3151 static int do_tmpfile(int dfd, struct filename *pathname,
3152 		struct nameidata *nd, int flags,
3153 		const struct open_flags *op,
3154 		struct file *file, int *opened)
3155 {
3156 	static const struct qstr name = QSTR_INIT("/", 1);
3157 	struct dentry *dentry, *child;
3158 	struct inode *dir;
3159 	int error = path_lookupat(dfd, pathname,
3160 				  flags | LOOKUP_DIRECTORY, nd);
3161 	if (unlikely(error))
3162 		return error;
3163 	error = mnt_want_write(nd->path.mnt);
3164 	if (unlikely(error))
3165 		goto out;
3166 	/* we want directory to be writable */
3167 	error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3168 	if (error)
3169 		goto out2;
3170 	dentry = nd->path.dentry;
3171 	dir = dentry->d_inode;
3172 	if (!dir->i_op->tmpfile) {
3173 		error = -EOPNOTSUPP;
3174 		goto out2;
3175 	}
3176 	child = d_alloc(dentry, &name);
3177 	if (unlikely(!child)) {
3178 		error = -ENOMEM;
3179 		goto out2;
3180 	}
3181 	nd->flags &= ~LOOKUP_DIRECTORY;
3182 	nd->flags |= op->intent;
3183 	dput(nd->path.dentry);
3184 	nd->path.dentry = child;
3185 	error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3186 	if (error)
3187 		goto out2;
3188 	audit_inode(pathname, nd->path.dentry, 0);
3189 	/* Don't check for other permissions, the inode was just created */
3190 	error = may_open(&nd->path, MAY_OPEN, op->open_flag);
3191 	if (error)
3192 		goto out2;
3193 	file->f_path.mnt = nd->path.mnt;
3194 	error = finish_open(file, nd->path.dentry, NULL, opened);
3195 	if (error)
3196 		goto out2;
3197 	error = open_check_o_direct(file);
3198 	if (error) {
3199 		fput(file);
3200 	} else if (!(op->open_flag & O_EXCL)) {
3201 		struct inode *inode = file_inode(file);
3202 		spin_lock(&inode->i_lock);
3203 		inode->i_state |= I_LINKABLE;
3204 		spin_unlock(&inode->i_lock);
3205 	}
3206 out2:
3207 	mnt_drop_write(nd->path.mnt);
3208 out:
3209 	path_put(&nd->path);
3210 	return error;
3211 }
3212 
3213 static struct file *path_openat(int dfd, struct filename *pathname,
3214 		struct nameidata *nd, const struct open_flags *op, int flags)
3215 {
3216 	struct file *file;
3217 	struct path path;
3218 	int opened = 0;
3219 	int error;
3220 
3221 	file = get_empty_filp();
3222 	if (IS_ERR(file))
3223 		return file;
3224 
3225 	file->f_flags = op->open_flag;
3226 
3227 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3228 		error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3229 		goto out;
3230 	}
3231 
3232 	error = path_init(dfd, pathname, flags, nd);
3233 	if (unlikely(error))
3234 		goto out;
3235 
3236 	error = do_last(nd, &path, file, op, &opened, pathname);
3237 	while (unlikely(error > 0)) { /* trailing symlink */
3238 		struct path link = path;
3239 		void *cookie;
3240 		if (!(nd->flags & LOOKUP_FOLLOW)) {
3241 			path_put_conditional(&path, nd);
3242 			path_put(&nd->path);
3243 			error = -ELOOP;
3244 			break;
3245 		}
3246 		error = may_follow_link(&link, nd);
3247 		if (unlikely(error))
3248 			break;
3249 		nd->flags |= LOOKUP_PARENT;
3250 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3251 		error = follow_link(&link, nd, &cookie);
3252 		if (unlikely(error))
3253 			break;
3254 		error = do_last(nd, &path, file, op, &opened, pathname);
3255 		put_link(nd, &link, cookie);
3256 	}
3257 out:
3258 	path_cleanup(nd);
3259 	if (!(opened & FILE_OPENED)) {
3260 		BUG_ON(!error);
3261 		put_filp(file);
3262 	}
3263 	if (unlikely(error)) {
3264 		if (error == -EOPENSTALE) {
3265 			if (flags & LOOKUP_RCU)
3266 				error = -ECHILD;
3267 			else
3268 				error = -ESTALE;
3269 		}
3270 		file = ERR_PTR(error);
3271 	}
3272 	return file;
3273 }
3274 
3275 struct file *do_filp_open(int dfd, struct filename *pathname,
3276 		const struct open_flags *op)
3277 {
3278 	struct nameidata nd;
3279 	int flags = op->lookup_flags;
3280 	struct file *filp;
3281 
3282 	filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3283 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3284 		filp = path_openat(dfd, pathname, &nd, op, flags);
3285 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3286 		filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3287 	return filp;
3288 }
3289 
3290 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3291 		const char *name, const struct open_flags *op)
3292 {
3293 	struct nameidata nd;
3294 	struct file *file;
3295 	struct filename *filename;
3296 	int flags = op->lookup_flags | LOOKUP_ROOT;
3297 
3298 	nd.root.mnt = mnt;
3299 	nd.root.dentry = dentry;
3300 
3301 	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3302 		return ERR_PTR(-ELOOP);
3303 
3304 	filename = getname_kernel(name);
3305 	if (unlikely(IS_ERR(filename)))
3306 		return ERR_CAST(filename);
3307 
3308 	file = path_openat(-1, filename, &nd, op, flags | LOOKUP_RCU);
3309 	if (unlikely(file == ERR_PTR(-ECHILD)))
3310 		file = path_openat(-1, filename, &nd, op, flags);
3311 	if (unlikely(file == ERR_PTR(-ESTALE)))
3312 		file = path_openat(-1, filename, &nd, op, flags | LOOKUP_REVAL);
3313 	putname(filename);
3314 	return file;
3315 }
3316 
3317 static struct dentry *filename_create(int dfd, struct filename *name,
3318 				struct path *path, unsigned int lookup_flags)
3319 {
3320 	struct dentry *dentry = ERR_PTR(-EEXIST);
3321 	struct nameidata nd;
3322 	int err2;
3323 	int error;
3324 	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3325 
3326 	/*
3327 	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3328 	 * other flags passed in are ignored!
3329 	 */
3330 	lookup_flags &= LOOKUP_REVAL;
3331 
3332 	error = filename_lookup(dfd, name, LOOKUP_PARENT|lookup_flags, &nd);
3333 	if (error)
3334 		return ERR_PTR(error);
3335 
3336 	/*
3337 	 * Yucky last component or no last component at all?
3338 	 * (foo/., foo/.., /////)
3339 	 */
3340 	if (nd.last_type != LAST_NORM)
3341 		goto out;
3342 	nd.flags &= ~LOOKUP_PARENT;
3343 	nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3344 
3345 	/* don't fail immediately if it's r/o, at least try to report other errors */
3346 	err2 = mnt_want_write(nd.path.mnt);
3347 	/*
3348 	 * Do the final lookup.
3349 	 */
3350 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3351 	dentry = lookup_hash(&nd);
3352 	if (IS_ERR(dentry))
3353 		goto unlock;
3354 
3355 	error = -EEXIST;
3356 	if (d_is_positive(dentry))
3357 		goto fail;
3358 
3359 	/*
3360 	 * Special case - lookup gave negative, but... we had foo/bar/
3361 	 * From the vfs_mknod() POV we just have a negative dentry -
3362 	 * all is fine. Let's be bastards - you had / on the end, you've
3363 	 * been asking for (non-existent) directory. -ENOENT for you.
3364 	 */
3365 	if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3366 		error = -ENOENT;
3367 		goto fail;
3368 	}
3369 	if (unlikely(err2)) {
3370 		error = err2;
3371 		goto fail;
3372 	}
3373 	*path = nd.path;
3374 	return dentry;
3375 fail:
3376 	dput(dentry);
3377 	dentry = ERR_PTR(error);
3378 unlock:
3379 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3380 	if (!err2)
3381 		mnt_drop_write(nd.path.mnt);
3382 out:
3383 	path_put(&nd.path);
3384 	return dentry;
3385 }
3386 
3387 struct dentry *kern_path_create(int dfd, const char *pathname,
3388 				struct path *path, unsigned int lookup_flags)
3389 {
3390 	struct filename *filename = getname_kernel(pathname);
3391 	struct dentry *res;
3392 
3393 	if (IS_ERR(filename))
3394 		return ERR_CAST(filename);
3395 	res = filename_create(dfd, filename, path, lookup_flags);
3396 	putname(filename);
3397 	return res;
3398 }
3399 EXPORT_SYMBOL(kern_path_create);
3400 
3401 void done_path_create(struct path *path, struct dentry *dentry)
3402 {
3403 	dput(dentry);
3404 	mutex_unlock(&path->dentry->d_inode->i_mutex);
3405 	mnt_drop_write(path->mnt);
3406 	path_put(path);
3407 }
3408 EXPORT_SYMBOL(done_path_create);
3409 
3410 struct dentry *user_path_create(int dfd, const char __user *pathname,
3411 				struct path *path, unsigned int lookup_flags)
3412 {
3413 	struct filename *tmp = getname(pathname);
3414 	struct dentry *res;
3415 	if (IS_ERR(tmp))
3416 		return ERR_CAST(tmp);
3417 	res = filename_create(dfd, tmp, path, lookup_flags);
3418 	putname(tmp);
3419 	return res;
3420 }
3421 EXPORT_SYMBOL(user_path_create);
3422 
3423 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3424 {
3425 	int error = may_create(dir, dentry);
3426 
3427 	if (error)
3428 		return error;
3429 
3430 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3431 		return -EPERM;
3432 
3433 	if (!dir->i_op->mknod)
3434 		return -EPERM;
3435 
3436 	error = devcgroup_inode_mknod(mode, dev);
3437 	if (error)
3438 		return error;
3439 
3440 	error = security_inode_mknod(dir, dentry, mode, dev);
3441 	if (error)
3442 		return error;
3443 
3444 	error = dir->i_op->mknod(dir, dentry, mode, dev);
3445 	if (!error)
3446 		fsnotify_create(dir, dentry);
3447 	return error;
3448 }
3449 EXPORT_SYMBOL(vfs_mknod);
3450 
3451 static int may_mknod(umode_t mode)
3452 {
3453 	switch (mode & S_IFMT) {
3454 	case S_IFREG:
3455 	case S_IFCHR:
3456 	case S_IFBLK:
3457 	case S_IFIFO:
3458 	case S_IFSOCK:
3459 	case 0: /* zero mode translates to S_IFREG */
3460 		return 0;
3461 	case S_IFDIR:
3462 		return -EPERM;
3463 	default:
3464 		return -EINVAL;
3465 	}
3466 }
3467 
3468 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3469 		unsigned, dev)
3470 {
3471 	struct dentry *dentry;
3472 	struct path path;
3473 	int error;
3474 	unsigned int lookup_flags = 0;
3475 
3476 	error = may_mknod(mode);
3477 	if (error)
3478 		return error;
3479 retry:
3480 	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3481 	if (IS_ERR(dentry))
3482 		return PTR_ERR(dentry);
3483 
3484 	if (!IS_POSIXACL(path.dentry->d_inode))
3485 		mode &= ~current_umask();
3486 	error = security_path_mknod(&path, dentry, mode, dev);
3487 	if (error)
3488 		goto out;
3489 	switch (mode & S_IFMT) {
3490 		case 0: case S_IFREG:
3491 			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3492 			break;
3493 		case S_IFCHR: case S_IFBLK:
3494 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3495 					new_decode_dev(dev));
3496 			break;
3497 		case S_IFIFO: case S_IFSOCK:
3498 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3499 			break;
3500 	}
3501 out:
3502 	done_path_create(&path, dentry);
3503 	if (retry_estale(error, lookup_flags)) {
3504 		lookup_flags |= LOOKUP_REVAL;
3505 		goto retry;
3506 	}
3507 	return error;
3508 }
3509 
3510 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3511 {
3512 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
3513 }
3514 
3515 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3516 {
3517 	int error = may_create(dir, dentry);
3518 	unsigned max_links = dir->i_sb->s_max_links;
3519 
3520 	if (error)
3521 		return error;
3522 
3523 	if (!dir->i_op->mkdir)
3524 		return -EPERM;
3525 
3526 	mode &= (S_IRWXUGO|S_ISVTX);
3527 	error = security_inode_mkdir(dir, dentry, mode);
3528 	if (error)
3529 		return error;
3530 
3531 	if (max_links && dir->i_nlink >= max_links)
3532 		return -EMLINK;
3533 
3534 	error = dir->i_op->mkdir(dir, dentry, mode);
3535 	if (!error)
3536 		fsnotify_mkdir(dir, dentry);
3537 	return error;
3538 }
3539 EXPORT_SYMBOL(vfs_mkdir);
3540 
3541 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3542 {
3543 	struct dentry *dentry;
3544 	struct path path;
3545 	int error;
3546 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3547 
3548 retry:
3549 	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3550 	if (IS_ERR(dentry))
3551 		return PTR_ERR(dentry);
3552 
3553 	if (!IS_POSIXACL(path.dentry->d_inode))
3554 		mode &= ~current_umask();
3555 	error = security_path_mkdir(&path, dentry, mode);
3556 	if (!error)
3557 		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3558 	done_path_create(&path, dentry);
3559 	if (retry_estale(error, lookup_flags)) {
3560 		lookup_flags |= LOOKUP_REVAL;
3561 		goto retry;
3562 	}
3563 	return error;
3564 }
3565 
3566 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3567 {
3568 	return sys_mkdirat(AT_FDCWD, pathname, mode);
3569 }
3570 
3571 /*
3572  * The dentry_unhash() helper will try to drop the dentry early: we
3573  * should have a usage count of 1 if we're the only user of this
3574  * dentry, and if that is true (possibly after pruning the dcache),
3575  * then we drop the dentry now.
3576  *
3577  * A low-level filesystem can, if it choses, legally
3578  * do a
3579  *
3580  *	if (!d_unhashed(dentry))
3581  *		return -EBUSY;
3582  *
3583  * if it cannot handle the case of removing a directory
3584  * that is still in use by something else..
3585  */
3586 void dentry_unhash(struct dentry *dentry)
3587 {
3588 	shrink_dcache_parent(dentry);
3589 	spin_lock(&dentry->d_lock);
3590 	if (dentry->d_lockref.count == 1)
3591 		__d_drop(dentry);
3592 	spin_unlock(&dentry->d_lock);
3593 }
3594 EXPORT_SYMBOL(dentry_unhash);
3595 
3596 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3597 {
3598 	int error = may_delete(dir, dentry, 1);
3599 
3600 	if (error)
3601 		return error;
3602 
3603 	if (!dir->i_op->rmdir)
3604 		return -EPERM;
3605 
3606 	dget(dentry);
3607 	mutex_lock(&dentry->d_inode->i_mutex);
3608 
3609 	error = -EBUSY;
3610 	if (is_local_mountpoint(dentry))
3611 		goto out;
3612 
3613 	error = security_inode_rmdir(dir, dentry);
3614 	if (error)
3615 		goto out;
3616 
3617 	shrink_dcache_parent(dentry);
3618 	error = dir->i_op->rmdir(dir, dentry);
3619 	if (error)
3620 		goto out;
3621 
3622 	dentry->d_inode->i_flags |= S_DEAD;
3623 	dont_mount(dentry);
3624 	detach_mounts(dentry);
3625 
3626 out:
3627 	mutex_unlock(&dentry->d_inode->i_mutex);
3628 	dput(dentry);
3629 	if (!error)
3630 		d_delete(dentry);
3631 	return error;
3632 }
3633 EXPORT_SYMBOL(vfs_rmdir);
3634 
3635 static long do_rmdir(int dfd, const char __user *pathname)
3636 {
3637 	int error = 0;
3638 	struct filename *name;
3639 	struct dentry *dentry;
3640 	struct nameidata nd;
3641 	unsigned int lookup_flags = 0;
3642 retry:
3643 	name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3644 	if (IS_ERR(name))
3645 		return PTR_ERR(name);
3646 
3647 	switch(nd.last_type) {
3648 	case LAST_DOTDOT:
3649 		error = -ENOTEMPTY;
3650 		goto exit1;
3651 	case LAST_DOT:
3652 		error = -EINVAL;
3653 		goto exit1;
3654 	case LAST_ROOT:
3655 		error = -EBUSY;
3656 		goto exit1;
3657 	}
3658 
3659 	nd.flags &= ~LOOKUP_PARENT;
3660 	error = mnt_want_write(nd.path.mnt);
3661 	if (error)
3662 		goto exit1;
3663 
3664 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3665 	dentry = lookup_hash(&nd);
3666 	error = PTR_ERR(dentry);
3667 	if (IS_ERR(dentry))
3668 		goto exit2;
3669 	if (!dentry->d_inode) {
3670 		error = -ENOENT;
3671 		goto exit3;
3672 	}
3673 	error = security_path_rmdir(&nd.path, dentry);
3674 	if (error)
3675 		goto exit3;
3676 	error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3677 exit3:
3678 	dput(dentry);
3679 exit2:
3680 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3681 	mnt_drop_write(nd.path.mnt);
3682 exit1:
3683 	path_put(&nd.path);
3684 	putname(name);
3685 	if (retry_estale(error, lookup_flags)) {
3686 		lookup_flags |= LOOKUP_REVAL;
3687 		goto retry;
3688 	}
3689 	return error;
3690 }
3691 
3692 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3693 {
3694 	return do_rmdir(AT_FDCWD, pathname);
3695 }
3696 
3697 /**
3698  * vfs_unlink - unlink a filesystem object
3699  * @dir:	parent directory
3700  * @dentry:	victim
3701  * @delegated_inode: returns victim inode, if the inode is delegated.
3702  *
3703  * The caller must hold dir->i_mutex.
3704  *
3705  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3706  * return a reference to the inode in delegated_inode.  The caller
3707  * should then break the delegation on that inode and retry.  Because
3708  * breaking a delegation may take a long time, the caller should drop
3709  * dir->i_mutex before doing so.
3710  *
3711  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3712  * be appropriate for callers that expect the underlying filesystem not
3713  * to be NFS exported.
3714  */
3715 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3716 {
3717 	struct inode *target = dentry->d_inode;
3718 	int error = may_delete(dir, dentry, 0);
3719 
3720 	if (error)
3721 		return error;
3722 
3723 	if (!dir->i_op->unlink)
3724 		return -EPERM;
3725 
3726 	mutex_lock(&target->i_mutex);
3727 	if (is_local_mountpoint(dentry))
3728 		error = -EBUSY;
3729 	else {
3730 		error = security_inode_unlink(dir, dentry);
3731 		if (!error) {
3732 			error = try_break_deleg(target, delegated_inode);
3733 			if (error)
3734 				goto out;
3735 			error = dir->i_op->unlink(dir, dentry);
3736 			if (!error) {
3737 				dont_mount(dentry);
3738 				detach_mounts(dentry);
3739 			}
3740 		}
3741 	}
3742 out:
3743 	mutex_unlock(&target->i_mutex);
3744 
3745 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
3746 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3747 		fsnotify_link_count(target);
3748 		d_delete(dentry);
3749 	}
3750 
3751 	return error;
3752 }
3753 EXPORT_SYMBOL(vfs_unlink);
3754 
3755 /*
3756  * Make sure that the actual truncation of the file will occur outside its
3757  * directory's i_mutex.  Truncate can take a long time if there is a lot of
3758  * writeout happening, and we don't want to prevent access to the directory
3759  * while waiting on the I/O.
3760  */
3761 static long do_unlinkat(int dfd, const char __user *pathname)
3762 {
3763 	int error;
3764 	struct filename *name;
3765 	struct dentry *dentry;
3766 	struct nameidata nd;
3767 	struct inode *inode = NULL;
3768 	struct inode *delegated_inode = NULL;
3769 	unsigned int lookup_flags = 0;
3770 retry:
3771 	name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3772 	if (IS_ERR(name))
3773 		return PTR_ERR(name);
3774 
3775 	error = -EISDIR;
3776 	if (nd.last_type != LAST_NORM)
3777 		goto exit1;
3778 
3779 	nd.flags &= ~LOOKUP_PARENT;
3780 	error = mnt_want_write(nd.path.mnt);
3781 	if (error)
3782 		goto exit1;
3783 retry_deleg:
3784 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3785 	dentry = lookup_hash(&nd);
3786 	error = PTR_ERR(dentry);
3787 	if (!IS_ERR(dentry)) {
3788 		/* Why not before? Because we want correct error value */
3789 		if (nd.last.name[nd.last.len])
3790 			goto slashes;
3791 		inode = dentry->d_inode;
3792 		if (d_is_negative(dentry))
3793 			goto slashes;
3794 		ihold(inode);
3795 		error = security_path_unlink(&nd.path, dentry);
3796 		if (error)
3797 			goto exit2;
3798 		error = vfs_unlink(nd.path.dentry->d_inode, dentry, &delegated_inode);
3799 exit2:
3800 		dput(dentry);
3801 	}
3802 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3803 	if (inode)
3804 		iput(inode);	/* truncate the inode here */
3805 	inode = NULL;
3806 	if (delegated_inode) {
3807 		error = break_deleg_wait(&delegated_inode);
3808 		if (!error)
3809 			goto retry_deleg;
3810 	}
3811 	mnt_drop_write(nd.path.mnt);
3812 exit1:
3813 	path_put(&nd.path);
3814 	putname(name);
3815 	if (retry_estale(error, lookup_flags)) {
3816 		lookup_flags |= LOOKUP_REVAL;
3817 		inode = NULL;
3818 		goto retry;
3819 	}
3820 	return error;
3821 
3822 slashes:
3823 	if (d_is_negative(dentry))
3824 		error = -ENOENT;
3825 	else if (d_is_dir(dentry))
3826 		error = -EISDIR;
3827 	else
3828 		error = -ENOTDIR;
3829 	goto exit2;
3830 }
3831 
3832 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3833 {
3834 	if ((flag & ~AT_REMOVEDIR) != 0)
3835 		return -EINVAL;
3836 
3837 	if (flag & AT_REMOVEDIR)
3838 		return do_rmdir(dfd, pathname);
3839 
3840 	return do_unlinkat(dfd, pathname);
3841 }
3842 
3843 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3844 {
3845 	return do_unlinkat(AT_FDCWD, pathname);
3846 }
3847 
3848 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3849 {
3850 	int error = may_create(dir, dentry);
3851 
3852 	if (error)
3853 		return error;
3854 
3855 	if (!dir->i_op->symlink)
3856 		return -EPERM;
3857 
3858 	error = security_inode_symlink(dir, dentry, oldname);
3859 	if (error)
3860 		return error;
3861 
3862 	error = dir->i_op->symlink(dir, dentry, oldname);
3863 	if (!error)
3864 		fsnotify_create(dir, dentry);
3865 	return error;
3866 }
3867 EXPORT_SYMBOL(vfs_symlink);
3868 
3869 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3870 		int, newdfd, const char __user *, newname)
3871 {
3872 	int error;
3873 	struct filename *from;
3874 	struct dentry *dentry;
3875 	struct path path;
3876 	unsigned int lookup_flags = 0;
3877 
3878 	from = getname(oldname);
3879 	if (IS_ERR(from))
3880 		return PTR_ERR(from);
3881 retry:
3882 	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3883 	error = PTR_ERR(dentry);
3884 	if (IS_ERR(dentry))
3885 		goto out_putname;
3886 
3887 	error = security_path_symlink(&path, dentry, from->name);
3888 	if (!error)
3889 		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3890 	done_path_create(&path, dentry);
3891 	if (retry_estale(error, lookup_flags)) {
3892 		lookup_flags |= LOOKUP_REVAL;
3893 		goto retry;
3894 	}
3895 out_putname:
3896 	putname(from);
3897 	return error;
3898 }
3899 
3900 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3901 {
3902 	return sys_symlinkat(oldname, AT_FDCWD, newname);
3903 }
3904 
3905 /**
3906  * vfs_link - create a new link
3907  * @old_dentry:	object to be linked
3908  * @dir:	new parent
3909  * @new_dentry:	where to create the new link
3910  * @delegated_inode: returns inode needing a delegation break
3911  *
3912  * The caller must hold dir->i_mutex
3913  *
3914  * If vfs_link discovers a delegation on the to-be-linked file in need
3915  * of breaking, it will return -EWOULDBLOCK and return a reference to the
3916  * inode in delegated_inode.  The caller should then break the delegation
3917  * and retry.  Because breaking a delegation may take a long time, the
3918  * caller should drop the i_mutex before doing so.
3919  *
3920  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3921  * be appropriate for callers that expect the underlying filesystem not
3922  * to be NFS exported.
3923  */
3924 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3925 {
3926 	struct inode *inode = old_dentry->d_inode;
3927 	unsigned max_links = dir->i_sb->s_max_links;
3928 	int error;
3929 
3930 	if (!inode)
3931 		return -ENOENT;
3932 
3933 	error = may_create(dir, new_dentry);
3934 	if (error)
3935 		return error;
3936 
3937 	if (dir->i_sb != inode->i_sb)
3938 		return -EXDEV;
3939 
3940 	/*
3941 	 * A link to an append-only or immutable file cannot be created.
3942 	 */
3943 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3944 		return -EPERM;
3945 	if (!dir->i_op->link)
3946 		return -EPERM;
3947 	if (S_ISDIR(inode->i_mode))
3948 		return -EPERM;
3949 
3950 	error = security_inode_link(old_dentry, dir, new_dentry);
3951 	if (error)
3952 		return error;
3953 
3954 	mutex_lock(&inode->i_mutex);
3955 	/* Make sure we don't allow creating hardlink to an unlinked file */
3956 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
3957 		error =  -ENOENT;
3958 	else if (max_links && inode->i_nlink >= max_links)
3959 		error = -EMLINK;
3960 	else {
3961 		error = try_break_deleg(inode, delegated_inode);
3962 		if (!error)
3963 			error = dir->i_op->link(old_dentry, dir, new_dentry);
3964 	}
3965 
3966 	if (!error && (inode->i_state & I_LINKABLE)) {
3967 		spin_lock(&inode->i_lock);
3968 		inode->i_state &= ~I_LINKABLE;
3969 		spin_unlock(&inode->i_lock);
3970 	}
3971 	mutex_unlock(&inode->i_mutex);
3972 	if (!error)
3973 		fsnotify_link(dir, inode, new_dentry);
3974 	return error;
3975 }
3976 EXPORT_SYMBOL(vfs_link);
3977 
3978 /*
3979  * Hardlinks are often used in delicate situations.  We avoid
3980  * security-related surprises by not following symlinks on the
3981  * newname.  --KAB
3982  *
3983  * We don't follow them on the oldname either to be compatible
3984  * with linux 2.0, and to avoid hard-linking to directories
3985  * and other special files.  --ADM
3986  */
3987 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3988 		int, newdfd, const char __user *, newname, int, flags)
3989 {
3990 	struct dentry *new_dentry;
3991 	struct path old_path, new_path;
3992 	struct inode *delegated_inode = NULL;
3993 	int how = 0;
3994 	int error;
3995 
3996 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3997 		return -EINVAL;
3998 	/*
3999 	 * To use null names we require CAP_DAC_READ_SEARCH
4000 	 * This ensures that not everyone will be able to create
4001 	 * handlink using the passed filedescriptor.
4002 	 */
4003 	if (flags & AT_EMPTY_PATH) {
4004 		if (!capable(CAP_DAC_READ_SEARCH))
4005 			return -ENOENT;
4006 		how = LOOKUP_EMPTY;
4007 	}
4008 
4009 	if (flags & AT_SYMLINK_FOLLOW)
4010 		how |= LOOKUP_FOLLOW;
4011 retry:
4012 	error = user_path_at(olddfd, oldname, how, &old_path);
4013 	if (error)
4014 		return error;
4015 
4016 	new_dentry = user_path_create(newdfd, newname, &new_path,
4017 					(how & LOOKUP_REVAL));
4018 	error = PTR_ERR(new_dentry);
4019 	if (IS_ERR(new_dentry))
4020 		goto out;
4021 
4022 	error = -EXDEV;
4023 	if (old_path.mnt != new_path.mnt)
4024 		goto out_dput;
4025 	error = may_linkat(&old_path);
4026 	if (unlikely(error))
4027 		goto out_dput;
4028 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4029 	if (error)
4030 		goto out_dput;
4031 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4032 out_dput:
4033 	done_path_create(&new_path, new_dentry);
4034 	if (delegated_inode) {
4035 		error = break_deleg_wait(&delegated_inode);
4036 		if (!error) {
4037 			path_put(&old_path);
4038 			goto retry;
4039 		}
4040 	}
4041 	if (retry_estale(error, how)) {
4042 		path_put(&old_path);
4043 		how |= LOOKUP_REVAL;
4044 		goto retry;
4045 	}
4046 out:
4047 	path_put(&old_path);
4048 
4049 	return error;
4050 }
4051 
4052 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4053 {
4054 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4055 }
4056 
4057 /**
4058  * vfs_rename - rename a filesystem object
4059  * @old_dir:	parent of source
4060  * @old_dentry:	source
4061  * @new_dir:	parent of destination
4062  * @new_dentry:	destination
4063  * @delegated_inode: returns an inode needing a delegation break
4064  * @flags:	rename flags
4065  *
4066  * The caller must hold multiple mutexes--see lock_rename()).
4067  *
4068  * If vfs_rename discovers a delegation in need of breaking at either
4069  * the source or destination, it will return -EWOULDBLOCK and return a
4070  * reference to the inode in delegated_inode.  The caller should then
4071  * break the delegation and retry.  Because breaking a delegation may
4072  * take a long time, the caller should drop all locks before doing
4073  * so.
4074  *
4075  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4076  * be appropriate for callers that expect the underlying filesystem not
4077  * to be NFS exported.
4078  *
4079  * The worst of all namespace operations - renaming directory. "Perverted"
4080  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4081  * Problems:
4082  *	a) we can get into loop creation.
4083  *	b) race potential - two innocent renames can create a loop together.
4084  *	   That's where 4.4 screws up. Current fix: serialization on
4085  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4086  *	   story.
4087  *	c) we have to lock _four_ objects - parents and victim (if it exists),
4088  *	   and source (if it is not a directory).
4089  *	   And that - after we got ->i_mutex on parents (until then we don't know
4090  *	   whether the target exists).  Solution: try to be smart with locking
4091  *	   order for inodes.  We rely on the fact that tree topology may change
4092  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4093  *	   move will be locked.  Thus we can rank directories by the tree
4094  *	   (ancestors first) and rank all non-directories after them.
4095  *	   That works since everybody except rename does "lock parent, lookup,
4096  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4097  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4098  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4099  *	   we'd better make sure that there's no link(2) for them.
4100  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4101  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4102  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4103  *	   ->i_mutex on parents, which works but leads to some truly excessive
4104  *	   locking].
4105  */
4106 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4107 	       struct inode *new_dir, struct dentry *new_dentry,
4108 	       struct inode **delegated_inode, unsigned int flags)
4109 {
4110 	int error;
4111 	bool is_dir = d_is_dir(old_dentry);
4112 	const unsigned char *old_name;
4113 	struct inode *source = old_dentry->d_inode;
4114 	struct inode *target = new_dentry->d_inode;
4115 	bool new_is_dir = false;
4116 	unsigned max_links = new_dir->i_sb->s_max_links;
4117 
4118 	if (source == target)
4119 		return 0;
4120 
4121 	error = may_delete(old_dir, old_dentry, is_dir);
4122 	if (error)
4123 		return error;
4124 
4125 	if (!target) {
4126 		error = may_create(new_dir, new_dentry);
4127 	} else {
4128 		new_is_dir = d_is_dir(new_dentry);
4129 
4130 		if (!(flags & RENAME_EXCHANGE))
4131 			error = may_delete(new_dir, new_dentry, is_dir);
4132 		else
4133 			error = may_delete(new_dir, new_dentry, new_is_dir);
4134 	}
4135 	if (error)
4136 		return error;
4137 
4138 	if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4139 		return -EPERM;
4140 
4141 	if (flags && !old_dir->i_op->rename2)
4142 		return -EINVAL;
4143 
4144 	/*
4145 	 * If we are going to change the parent - check write permissions,
4146 	 * we'll need to flip '..'.
4147 	 */
4148 	if (new_dir != old_dir) {
4149 		if (is_dir) {
4150 			error = inode_permission(source, MAY_WRITE);
4151 			if (error)
4152 				return error;
4153 		}
4154 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4155 			error = inode_permission(target, MAY_WRITE);
4156 			if (error)
4157 				return error;
4158 		}
4159 	}
4160 
4161 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4162 				      flags);
4163 	if (error)
4164 		return error;
4165 
4166 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4167 	dget(new_dentry);
4168 	if (!is_dir || (flags & RENAME_EXCHANGE))
4169 		lock_two_nondirectories(source, target);
4170 	else if (target)
4171 		mutex_lock(&target->i_mutex);
4172 
4173 	error = -EBUSY;
4174 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4175 		goto out;
4176 
4177 	if (max_links && new_dir != old_dir) {
4178 		error = -EMLINK;
4179 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4180 			goto out;
4181 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4182 		    old_dir->i_nlink >= max_links)
4183 			goto out;
4184 	}
4185 	if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4186 		shrink_dcache_parent(new_dentry);
4187 	if (!is_dir) {
4188 		error = try_break_deleg(source, delegated_inode);
4189 		if (error)
4190 			goto out;
4191 	}
4192 	if (target && !new_is_dir) {
4193 		error = try_break_deleg(target, delegated_inode);
4194 		if (error)
4195 			goto out;
4196 	}
4197 	if (!old_dir->i_op->rename2) {
4198 		error = old_dir->i_op->rename(old_dir, old_dentry,
4199 					      new_dir, new_dentry);
4200 	} else {
4201 		WARN_ON(old_dir->i_op->rename != NULL);
4202 		error = old_dir->i_op->rename2(old_dir, old_dentry,
4203 					       new_dir, new_dentry, flags);
4204 	}
4205 	if (error)
4206 		goto out;
4207 
4208 	if (!(flags & RENAME_EXCHANGE) && target) {
4209 		if (is_dir)
4210 			target->i_flags |= S_DEAD;
4211 		dont_mount(new_dentry);
4212 		detach_mounts(new_dentry);
4213 	}
4214 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4215 		if (!(flags & RENAME_EXCHANGE))
4216 			d_move(old_dentry, new_dentry);
4217 		else
4218 			d_exchange(old_dentry, new_dentry);
4219 	}
4220 out:
4221 	if (!is_dir || (flags & RENAME_EXCHANGE))
4222 		unlock_two_nondirectories(source, target);
4223 	else if (target)
4224 		mutex_unlock(&target->i_mutex);
4225 	dput(new_dentry);
4226 	if (!error) {
4227 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
4228 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4229 		if (flags & RENAME_EXCHANGE) {
4230 			fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4231 				      new_is_dir, NULL, new_dentry);
4232 		}
4233 	}
4234 	fsnotify_oldname_free(old_name);
4235 
4236 	return error;
4237 }
4238 EXPORT_SYMBOL(vfs_rename);
4239 
4240 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4241 		int, newdfd, const char __user *, newname, unsigned int, flags)
4242 {
4243 	struct dentry *old_dir, *new_dir;
4244 	struct dentry *old_dentry, *new_dentry;
4245 	struct dentry *trap;
4246 	struct nameidata oldnd, newnd;
4247 	struct inode *delegated_inode = NULL;
4248 	struct filename *from;
4249 	struct filename *to;
4250 	unsigned int lookup_flags = 0;
4251 	bool should_retry = false;
4252 	int error;
4253 
4254 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4255 		return -EINVAL;
4256 
4257 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4258 	    (flags & RENAME_EXCHANGE))
4259 		return -EINVAL;
4260 
4261 	if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4262 		return -EPERM;
4263 
4264 retry:
4265 	from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags);
4266 	if (IS_ERR(from)) {
4267 		error = PTR_ERR(from);
4268 		goto exit;
4269 	}
4270 
4271 	to = user_path_parent(newdfd, newname, &newnd, lookup_flags);
4272 	if (IS_ERR(to)) {
4273 		error = PTR_ERR(to);
4274 		goto exit1;
4275 	}
4276 
4277 	error = -EXDEV;
4278 	if (oldnd.path.mnt != newnd.path.mnt)
4279 		goto exit2;
4280 
4281 	old_dir = oldnd.path.dentry;
4282 	error = -EBUSY;
4283 	if (oldnd.last_type != LAST_NORM)
4284 		goto exit2;
4285 
4286 	new_dir = newnd.path.dentry;
4287 	if (flags & RENAME_NOREPLACE)
4288 		error = -EEXIST;
4289 	if (newnd.last_type != LAST_NORM)
4290 		goto exit2;
4291 
4292 	error = mnt_want_write(oldnd.path.mnt);
4293 	if (error)
4294 		goto exit2;
4295 
4296 	oldnd.flags &= ~LOOKUP_PARENT;
4297 	newnd.flags &= ~LOOKUP_PARENT;
4298 	if (!(flags & RENAME_EXCHANGE))
4299 		newnd.flags |= LOOKUP_RENAME_TARGET;
4300 
4301 retry_deleg:
4302 	trap = lock_rename(new_dir, old_dir);
4303 
4304 	old_dentry = lookup_hash(&oldnd);
4305 	error = PTR_ERR(old_dentry);
4306 	if (IS_ERR(old_dentry))
4307 		goto exit3;
4308 	/* source must exist */
4309 	error = -ENOENT;
4310 	if (d_is_negative(old_dentry))
4311 		goto exit4;
4312 	new_dentry = lookup_hash(&newnd);
4313 	error = PTR_ERR(new_dentry);
4314 	if (IS_ERR(new_dentry))
4315 		goto exit4;
4316 	error = -EEXIST;
4317 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4318 		goto exit5;
4319 	if (flags & RENAME_EXCHANGE) {
4320 		error = -ENOENT;
4321 		if (d_is_negative(new_dentry))
4322 			goto exit5;
4323 
4324 		if (!d_is_dir(new_dentry)) {
4325 			error = -ENOTDIR;
4326 			if (newnd.last.name[newnd.last.len])
4327 				goto exit5;
4328 		}
4329 	}
4330 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4331 	if (!d_is_dir(old_dentry)) {
4332 		error = -ENOTDIR;
4333 		if (oldnd.last.name[oldnd.last.len])
4334 			goto exit5;
4335 		if (!(flags & RENAME_EXCHANGE) && newnd.last.name[newnd.last.len])
4336 			goto exit5;
4337 	}
4338 	/* source should not be ancestor of target */
4339 	error = -EINVAL;
4340 	if (old_dentry == trap)
4341 		goto exit5;
4342 	/* target should not be an ancestor of source */
4343 	if (!(flags & RENAME_EXCHANGE))
4344 		error = -ENOTEMPTY;
4345 	if (new_dentry == trap)
4346 		goto exit5;
4347 
4348 	error = security_path_rename(&oldnd.path, old_dentry,
4349 				     &newnd.path, new_dentry, flags);
4350 	if (error)
4351 		goto exit5;
4352 	error = vfs_rename(old_dir->d_inode, old_dentry,
4353 			   new_dir->d_inode, new_dentry,
4354 			   &delegated_inode, flags);
4355 exit5:
4356 	dput(new_dentry);
4357 exit4:
4358 	dput(old_dentry);
4359 exit3:
4360 	unlock_rename(new_dir, old_dir);
4361 	if (delegated_inode) {
4362 		error = break_deleg_wait(&delegated_inode);
4363 		if (!error)
4364 			goto retry_deleg;
4365 	}
4366 	mnt_drop_write(oldnd.path.mnt);
4367 exit2:
4368 	if (retry_estale(error, lookup_flags))
4369 		should_retry = true;
4370 	path_put(&newnd.path);
4371 	putname(to);
4372 exit1:
4373 	path_put(&oldnd.path);
4374 	putname(from);
4375 	if (should_retry) {
4376 		should_retry = false;
4377 		lookup_flags |= LOOKUP_REVAL;
4378 		goto retry;
4379 	}
4380 exit:
4381 	return error;
4382 }
4383 
4384 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4385 		int, newdfd, const char __user *, newname)
4386 {
4387 	return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4388 }
4389 
4390 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4391 {
4392 	return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4393 }
4394 
4395 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4396 {
4397 	int error = may_create(dir, dentry);
4398 	if (error)
4399 		return error;
4400 
4401 	if (!dir->i_op->mknod)
4402 		return -EPERM;
4403 
4404 	return dir->i_op->mknod(dir, dentry,
4405 				S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4406 }
4407 EXPORT_SYMBOL(vfs_whiteout);
4408 
4409 int readlink_copy(char __user *buffer, int buflen, const char *link)
4410 {
4411 	int len = PTR_ERR(link);
4412 	if (IS_ERR(link))
4413 		goto out;
4414 
4415 	len = strlen(link);
4416 	if (len > (unsigned) buflen)
4417 		len = buflen;
4418 	if (copy_to_user(buffer, link, len))
4419 		len = -EFAULT;
4420 out:
4421 	return len;
4422 }
4423 EXPORT_SYMBOL(readlink_copy);
4424 
4425 /*
4426  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
4427  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
4428  * using) it for any given inode is up to filesystem.
4429  */
4430 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4431 {
4432 	struct nameidata nd;
4433 	void *cookie;
4434 	int res;
4435 
4436 	nd.depth = 0;
4437 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
4438 	if (IS_ERR(cookie))
4439 		return PTR_ERR(cookie);
4440 
4441 	res = readlink_copy(buffer, buflen, nd_get_link(&nd));
4442 	if (dentry->d_inode->i_op->put_link)
4443 		dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
4444 	return res;
4445 }
4446 EXPORT_SYMBOL(generic_readlink);
4447 
4448 /* get the link contents into pagecache */
4449 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4450 {
4451 	char *kaddr;
4452 	struct page *page;
4453 	struct address_space *mapping = dentry->d_inode->i_mapping;
4454 	page = read_mapping_page(mapping, 0, NULL);
4455 	if (IS_ERR(page))
4456 		return (char*)page;
4457 	*ppage = page;
4458 	kaddr = kmap(page);
4459 	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4460 	return kaddr;
4461 }
4462 
4463 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4464 {
4465 	struct page *page = NULL;
4466 	int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4467 	if (page) {
4468 		kunmap(page);
4469 		page_cache_release(page);
4470 	}
4471 	return res;
4472 }
4473 EXPORT_SYMBOL(page_readlink);
4474 
4475 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
4476 {
4477 	struct page *page = NULL;
4478 	nd_set_link(nd, page_getlink(dentry, &page));
4479 	return page;
4480 }
4481 EXPORT_SYMBOL(page_follow_link_light);
4482 
4483 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
4484 {
4485 	struct page *page = cookie;
4486 
4487 	if (page) {
4488 		kunmap(page);
4489 		page_cache_release(page);
4490 	}
4491 }
4492 EXPORT_SYMBOL(page_put_link);
4493 
4494 /*
4495  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4496  */
4497 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4498 {
4499 	struct address_space *mapping = inode->i_mapping;
4500 	struct page *page;
4501 	void *fsdata;
4502 	int err;
4503 	char *kaddr;
4504 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4505 	if (nofs)
4506 		flags |= AOP_FLAG_NOFS;
4507 
4508 retry:
4509 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4510 				flags, &page, &fsdata);
4511 	if (err)
4512 		goto fail;
4513 
4514 	kaddr = kmap_atomic(page);
4515 	memcpy(kaddr, symname, len-1);
4516 	kunmap_atomic(kaddr);
4517 
4518 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4519 							page, fsdata);
4520 	if (err < 0)
4521 		goto fail;
4522 	if (err < len-1)
4523 		goto retry;
4524 
4525 	mark_inode_dirty(inode);
4526 	return 0;
4527 fail:
4528 	return err;
4529 }
4530 EXPORT_SYMBOL(__page_symlink);
4531 
4532 int page_symlink(struct inode *inode, const char *symname, int len)
4533 {
4534 	return __page_symlink(inode, symname, len,
4535 			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4536 }
4537 EXPORT_SYMBOL(page_symlink);
4538 
4539 const struct inode_operations page_symlink_inode_operations = {
4540 	.readlink	= generic_readlink,
4541 	.follow_link	= page_follow_link_light,
4542 	.put_link	= page_put_link,
4543 };
4544 EXPORT_SYMBOL(page_symlink_inode_operations);
4545