1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/export.h> 19 #include <linux/kernel.h> 20 #include <linux/slab.h> 21 #include <linux/fs.h> 22 #include <linux/namei.h> 23 #include <linux/pagemap.h> 24 #include <linux/fsnotify.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/ima.h> 28 #include <linux/syscalls.h> 29 #include <linux/mount.h> 30 #include <linux/audit.h> 31 #include <linux/capability.h> 32 #include <linux/file.h> 33 #include <linux/fcntl.h> 34 #include <linux/device_cgroup.h> 35 #include <linux/fs_struct.h> 36 #include <linux/posix_acl.h> 37 #include <linux/hash.h> 38 #include <asm/uaccess.h> 39 40 #include "internal.h" 41 #include "mount.h" 42 43 /* [Feb-1997 T. Schoebel-Theuer] 44 * Fundamental changes in the pathname lookup mechanisms (namei) 45 * were necessary because of omirr. The reason is that omirr needs 46 * to know the _real_ pathname, not the user-supplied one, in case 47 * of symlinks (and also when transname replacements occur). 48 * 49 * The new code replaces the old recursive symlink resolution with 50 * an iterative one (in case of non-nested symlink chains). It does 51 * this with calls to <fs>_follow_link(). 52 * As a side effect, dir_namei(), _namei() and follow_link() are now 53 * replaced with a single function lookup_dentry() that can handle all 54 * the special cases of the former code. 55 * 56 * With the new dcache, the pathname is stored at each inode, at least as 57 * long as the refcount of the inode is positive. As a side effect, the 58 * size of the dcache depends on the inode cache and thus is dynamic. 59 * 60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 61 * resolution to correspond with current state of the code. 62 * 63 * Note that the symlink resolution is not *completely* iterative. 64 * There is still a significant amount of tail- and mid- recursion in 65 * the algorithm. Also, note that <fs>_readlink() is not used in 66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 67 * may return different results than <fs>_follow_link(). Many virtual 68 * filesystems (including /proc) exhibit this behavior. 69 */ 70 71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 73 * and the name already exists in form of a symlink, try to create the new 74 * name indicated by the symlink. The old code always complained that the 75 * name already exists, due to not following the symlink even if its target 76 * is nonexistent. The new semantics affects also mknod() and link() when 77 * the name is a symlink pointing to a non-existent name. 78 * 79 * I don't know which semantics is the right one, since I have no access 80 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 82 * "old" one. Personally, I think the new semantics is much more logical. 83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 84 * file does succeed in both HP-UX and SunOs, but not in Solaris 85 * and in the old Linux semantics. 86 */ 87 88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 89 * semantics. See the comments in "open_namei" and "do_link" below. 90 * 91 * [10-Sep-98 Alan Modra] Another symlink change. 92 */ 93 94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 95 * inside the path - always follow. 96 * in the last component in creation/removal/renaming - never follow. 97 * if LOOKUP_FOLLOW passed - follow. 98 * if the pathname has trailing slashes - follow. 99 * otherwise - don't follow. 100 * (applied in that order). 101 * 102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 104 * During the 2.4 we need to fix the userland stuff depending on it - 105 * hopefully we will be able to get rid of that wart in 2.5. So far only 106 * XEmacs seems to be relying on it... 107 */ 108 /* 109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 111 * any extra contention... 112 */ 113 114 /* In order to reduce some races, while at the same time doing additional 115 * checking and hopefully speeding things up, we copy filenames to the 116 * kernel data space before using them.. 117 * 118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 119 * PATH_MAX includes the nul terminator --RR. 120 */ 121 122 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) 123 124 struct filename * 125 getname_flags(const char __user *filename, int flags, int *empty) 126 { 127 struct filename *result; 128 char *kname; 129 int len; 130 131 result = audit_reusename(filename); 132 if (result) 133 return result; 134 135 result = __getname(); 136 if (unlikely(!result)) 137 return ERR_PTR(-ENOMEM); 138 139 /* 140 * First, try to embed the struct filename inside the names_cache 141 * allocation 142 */ 143 kname = (char *)result->iname; 144 result->name = kname; 145 146 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); 147 if (unlikely(len < 0)) { 148 __putname(result); 149 return ERR_PTR(len); 150 } 151 152 /* 153 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 154 * separate struct filename so we can dedicate the entire 155 * names_cache allocation for the pathname, and re-do the copy from 156 * userland. 157 */ 158 if (unlikely(len == EMBEDDED_NAME_MAX)) { 159 const size_t size = offsetof(struct filename, iname[1]); 160 kname = (char *)result; 161 162 /* 163 * size is chosen that way we to guarantee that 164 * result->iname[0] is within the same object and that 165 * kname can't be equal to result->iname, no matter what. 166 */ 167 result = kzalloc(size, GFP_KERNEL); 168 if (unlikely(!result)) { 169 __putname(kname); 170 return ERR_PTR(-ENOMEM); 171 } 172 result->name = kname; 173 len = strncpy_from_user(kname, filename, PATH_MAX); 174 if (unlikely(len < 0)) { 175 __putname(kname); 176 kfree(result); 177 return ERR_PTR(len); 178 } 179 if (unlikely(len == PATH_MAX)) { 180 __putname(kname); 181 kfree(result); 182 return ERR_PTR(-ENAMETOOLONG); 183 } 184 } 185 186 result->refcnt = 1; 187 /* The empty path is special. */ 188 if (unlikely(!len)) { 189 if (empty) 190 *empty = 1; 191 if (!(flags & LOOKUP_EMPTY)) { 192 putname(result); 193 return ERR_PTR(-ENOENT); 194 } 195 } 196 197 result->uptr = filename; 198 result->aname = NULL; 199 audit_getname(result); 200 return result; 201 } 202 203 struct filename * 204 getname(const char __user * filename) 205 { 206 return getname_flags(filename, 0, NULL); 207 } 208 209 struct filename * 210 getname_kernel(const char * filename) 211 { 212 struct filename *result; 213 int len = strlen(filename) + 1; 214 215 result = __getname(); 216 if (unlikely(!result)) 217 return ERR_PTR(-ENOMEM); 218 219 if (len <= EMBEDDED_NAME_MAX) { 220 result->name = (char *)result->iname; 221 } else if (len <= PATH_MAX) { 222 struct filename *tmp; 223 224 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL); 225 if (unlikely(!tmp)) { 226 __putname(result); 227 return ERR_PTR(-ENOMEM); 228 } 229 tmp->name = (char *)result; 230 result = tmp; 231 } else { 232 __putname(result); 233 return ERR_PTR(-ENAMETOOLONG); 234 } 235 memcpy((char *)result->name, filename, len); 236 result->uptr = NULL; 237 result->aname = NULL; 238 result->refcnt = 1; 239 audit_getname(result); 240 241 return result; 242 } 243 244 void putname(struct filename *name) 245 { 246 BUG_ON(name->refcnt <= 0); 247 248 if (--name->refcnt > 0) 249 return; 250 251 if (name->name != name->iname) { 252 __putname(name->name); 253 kfree(name); 254 } else 255 __putname(name); 256 } 257 258 static int check_acl(struct inode *inode, int mask) 259 { 260 #ifdef CONFIG_FS_POSIX_ACL 261 struct posix_acl *acl; 262 263 if (mask & MAY_NOT_BLOCK) { 264 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 265 if (!acl) 266 return -EAGAIN; 267 /* no ->get_acl() calls in RCU mode... */ 268 if (acl == ACL_NOT_CACHED) 269 return -ECHILD; 270 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK); 271 } 272 273 acl = get_acl(inode, ACL_TYPE_ACCESS); 274 if (IS_ERR(acl)) 275 return PTR_ERR(acl); 276 if (acl) { 277 int error = posix_acl_permission(inode, acl, mask); 278 posix_acl_release(acl); 279 return error; 280 } 281 #endif 282 283 return -EAGAIN; 284 } 285 286 /* 287 * This does the basic permission checking 288 */ 289 static int acl_permission_check(struct inode *inode, int mask) 290 { 291 unsigned int mode = inode->i_mode; 292 293 if (likely(uid_eq(current_fsuid(), inode->i_uid))) 294 mode >>= 6; 295 else { 296 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 297 int error = check_acl(inode, mask); 298 if (error != -EAGAIN) 299 return error; 300 } 301 302 if (in_group_p(inode->i_gid)) 303 mode >>= 3; 304 } 305 306 /* 307 * If the DACs are ok we don't need any capability check. 308 */ 309 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 310 return 0; 311 return -EACCES; 312 } 313 314 /** 315 * generic_permission - check for access rights on a Posix-like filesystem 316 * @inode: inode to check access rights for 317 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...) 318 * 319 * Used to check for read/write/execute permissions on a file. 320 * We use "fsuid" for this, letting us set arbitrary permissions 321 * for filesystem access without changing the "normal" uids which 322 * are used for other things. 323 * 324 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 325 * request cannot be satisfied (eg. requires blocking or too much complexity). 326 * It would then be called again in ref-walk mode. 327 */ 328 int generic_permission(struct inode *inode, int mask) 329 { 330 int ret; 331 332 /* 333 * Do the basic permission checks. 334 */ 335 ret = acl_permission_check(inode, mask); 336 if (ret != -EACCES) 337 return ret; 338 339 if (S_ISDIR(inode->i_mode)) { 340 /* DACs are overridable for directories */ 341 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 342 return 0; 343 if (!(mask & MAY_WRITE)) 344 if (capable_wrt_inode_uidgid(inode, 345 CAP_DAC_READ_SEARCH)) 346 return 0; 347 return -EACCES; 348 } 349 /* 350 * Read/write DACs are always overridable. 351 * Executable DACs are overridable when there is 352 * at least one exec bit set. 353 */ 354 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 355 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 356 return 0; 357 358 /* 359 * Searching includes executable on directories, else just read. 360 */ 361 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 362 if (mask == MAY_READ) 363 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH)) 364 return 0; 365 366 return -EACCES; 367 } 368 EXPORT_SYMBOL(generic_permission); 369 370 /* 371 * We _really_ want to just do "generic_permission()" without 372 * even looking at the inode->i_op values. So we keep a cache 373 * flag in inode->i_opflags, that says "this has not special 374 * permission function, use the fast case". 375 */ 376 static inline int do_inode_permission(struct inode *inode, int mask) 377 { 378 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 379 if (likely(inode->i_op->permission)) 380 return inode->i_op->permission(inode, mask); 381 382 /* This gets set once for the inode lifetime */ 383 spin_lock(&inode->i_lock); 384 inode->i_opflags |= IOP_FASTPERM; 385 spin_unlock(&inode->i_lock); 386 } 387 return generic_permission(inode, mask); 388 } 389 390 /** 391 * __inode_permission - Check for access rights to a given inode 392 * @inode: Inode to check permission on 393 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 394 * 395 * Check for read/write/execute permissions on an inode. 396 * 397 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 398 * 399 * This does not check for a read-only file system. You probably want 400 * inode_permission(). 401 */ 402 int __inode_permission(struct inode *inode, int mask) 403 { 404 int retval; 405 406 if (unlikely(mask & MAY_WRITE)) { 407 /* 408 * Nobody gets write access to an immutable file. 409 */ 410 if (IS_IMMUTABLE(inode)) 411 return -EACCES; 412 } 413 414 retval = do_inode_permission(inode, mask); 415 if (retval) 416 return retval; 417 418 retval = devcgroup_inode_permission(inode, mask); 419 if (retval) 420 return retval; 421 422 return security_inode_permission(inode, mask); 423 } 424 EXPORT_SYMBOL(__inode_permission); 425 426 /** 427 * sb_permission - Check superblock-level permissions 428 * @sb: Superblock of inode to check permission on 429 * @inode: Inode to check permission on 430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 431 * 432 * Separate out file-system wide checks from inode-specific permission checks. 433 */ 434 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 435 { 436 if (unlikely(mask & MAY_WRITE)) { 437 umode_t mode = inode->i_mode; 438 439 /* Nobody gets write access to a read-only fs. */ 440 if ((sb->s_flags & MS_RDONLY) && 441 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 442 return -EROFS; 443 } 444 return 0; 445 } 446 447 /** 448 * inode_permission - Check for access rights to a given inode 449 * @inode: Inode to check permission on 450 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 451 * 452 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 453 * this, letting us set arbitrary permissions for filesystem access without 454 * changing the "normal" UIDs which are used for other things. 455 * 456 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 457 */ 458 int inode_permission(struct inode *inode, int mask) 459 { 460 int retval; 461 462 retval = sb_permission(inode->i_sb, inode, mask); 463 if (retval) 464 return retval; 465 return __inode_permission(inode, mask); 466 } 467 EXPORT_SYMBOL(inode_permission); 468 469 /** 470 * path_get - get a reference to a path 471 * @path: path to get the reference to 472 * 473 * Given a path increment the reference count to the dentry and the vfsmount. 474 */ 475 void path_get(const struct path *path) 476 { 477 mntget(path->mnt); 478 dget(path->dentry); 479 } 480 EXPORT_SYMBOL(path_get); 481 482 /** 483 * path_put - put a reference to a path 484 * @path: path to put the reference to 485 * 486 * Given a path decrement the reference count to the dentry and the vfsmount. 487 */ 488 void path_put(const struct path *path) 489 { 490 dput(path->dentry); 491 mntput(path->mnt); 492 } 493 EXPORT_SYMBOL(path_put); 494 495 struct nameidata { 496 struct path path; 497 struct qstr last; 498 struct path root; 499 struct inode *inode; /* path.dentry.d_inode */ 500 unsigned int flags; 501 unsigned seq, m_seq; 502 int last_type; 503 unsigned depth; 504 struct file *base; 505 char *saved_names[MAX_NESTED_LINKS + 1]; 506 }; 507 508 /* 509 * Path walking has 2 modes, rcu-walk and ref-walk (see 510 * Documentation/filesystems/path-lookup.txt). In situations when we can't 511 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 512 * normal reference counts on dentries and vfsmounts to transition to rcu-walk 513 * mode. Refcounts are grabbed at the last known good point before rcu-walk 514 * got stuck, so ref-walk may continue from there. If this is not successful 515 * (eg. a seqcount has changed), then failure is returned and it's up to caller 516 * to restart the path walk from the beginning in ref-walk mode. 517 */ 518 519 /** 520 * unlazy_walk - try to switch to ref-walk mode. 521 * @nd: nameidata pathwalk data 522 * @dentry: child of nd->path.dentry or NULL 523 * Returns: 0 on success, -ECHILD on failure 524 * 525 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry 526 * for ref-walk mode. @dentry must be a path found by a do_lookup call on 527 * @nd or NULL. Must be called from rcu-walk context. 528 */ 529 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry) 530 { 531 struct fs_struct *fs = current->fs; 532 struct dentry *parent = nd->path.dentry; 533 534 BUG_ON(!(nd->flags & LOOKUP_RCU)); 535 536 /* 537 * After legitimizing the bastards, terminate_walk() 538 * will do the right thing for non-RCU mode, and all our 539 * subsequent exit cases should rcu_read_unlock() 540 * before returning. Do vfsmount first; if dentry 541 * can't be legitimized, just set nd->path.dentry to NULL 542 * and rely on dput(NULL) being a no-op. 543 */ 544 if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) 545 return -ECHILD; 546 nd->flags &= ~LOOKUP_RCU; 547 548 if (!lockref_get_not_dead(&parent->d_lockref)) { 549 nd->path.dentry = NULL; 550 goto out; 551 } 552 553 /* 554 * For a negative lookup, the lookup sequence point is the parents 555 * sequence point, and it only needs to revalidate the parent dentry. 556 * 557 * For a positive lookup, we need to move both the parent and the 558 * dentry from the RCU domain to be properly refcounted. And the 559 * sequence number in the dentry validates *both* dentry counters, 560 * since we checked the sequence number of the parent after we got 561 * the child sequence number. So we know the parent must still 562 * be valid if the child sequence number is still valid. 563 */ 564 if (!dentry) { 565 if (read_seqcount_retry(&parent->d_seq, nd->seq)) 566 goto out; 567 BUG_ON(nd->inode != parent->d_inode); 568 } else { 569 if (!lockref_get_not_dead(&dentry->d_lockref)) 570 goto out; 571 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) 572 goto drop_dentry; 573 } 574 575 /* 576 * Sequence counts matched. Now make sure that the root is 577 * still valid and get it if required. 578 */ 579 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 580 spin_lock(&fs->lock); 581 if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry) 582 goto unlock_and_drop_dentry; 583 path_get(&nd->root); 584 spin_unlock(&fs->lock); 585 } 586 587 rcu_read_unlock(); 588 return 0; 589 590 unlock_and_drop_dentry: 591 spin_unlock(&fs->lock); 592 drop_dentry: 593 rcu_read_unlock(); 594 dput(dentry); 595 goto drop_root_mnt; 596 out: 597 rcu_read_unlock(); 598 drop_root_mnt: 599 if (!(nd->flags & LOOKUP_ROOT)) 600 nd->root.mnt = NULL; 601 return -ECHILD; 602 } 603 604 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 605 { 606 return dentry->d_op->d_revalidate(dentry, flags); 607 } 608 609 /** 610 * complete_walk - successful completion of path walk 611 * @nd: pointer nameidata 612 * 613 * If we had been in RCU mode, drop out of it and legitimize nd->path. 614 * Revalidate the final result, unless we'd already done that during 615 * the path walk or the filesystem doesn't ask for it. Return 0 on 616 * success, -error on failure. In case of failure caller does not 617 * need to drop nd->path. 618 */ 619 static int complete_walk(struct nameidata *nd) 620 { 621 struct dentry *dentry = nd->path.dentry; 622 int status; 623 624 if (nd->flags & LOOKUP_RCU) { 625 nd->flags &= ~LOOKUP_RCU; 626 if (!(nd->flags & LOOKUP_ROOT)) 627 nd->root.mnt = NULL; 628 629 if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) { 630 rcu_read_unlock(); 631 return -ECHILD; 632 } 633 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) { 634 rcu_read_unlock(); 635 mntput(nd->path.mnt); 636 return -ECHILD; 637 } 638 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) { 639 rcu_read_unlock(); 640 dput(dentry); 641 mntput(nd->path.mnt); 642 return -ECHILD; 643 } 644 rcu_read_unlock(); 645 } 646 647 if (likely(!(nd->flags & LOOKUP_JUMPED))) 648 return 0; 649 650 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 651 return 0; 652 653 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 654 if (status > 0) 655 return 0; 656 657 if (!status) 658 status = -ESTALE; 659 660 path_put(&nd->path); 661 return status; 662 } 663 664 static __always_inline void set_root(struct nameidata *nd) 665 { 666 get_fs_root(current->fs, &nd->root); 667 } 668 669 static int link_path_walk(const char *, struct nameidata *); 670 671 static __always_inline unsigned set_root_rcu(struct nameidata *nd) 672 { 673 struct fs_struct *fs = current->fs; 674 unsigned seq, res; 675 676 do { 677 seq = read_seqcount_begin(&fs->seq); 678 nd->root = fs->root; 679 res = __read_seqcount_begin(&nd->root.dentry->d_seq); 680 } while (read_seqcount_retry(&fs->seq, seq)); 681 return res; 682 } 683 684 static void path_put_conditional(struct path *path, struct nameidata *nd) 685 { 686 dput(path->dentry); 687 if (path->mnt != nd->path.mnt) 688 mntput(path->mnt); 689 } 690 691 static inline void path_to_nameidata(const struct path *path, 692 struct nameidata *nd) 693 { 694 if (!(nd->flags & LOOKUP_RCU)) { 695 dput(nd->path.dentry); 696 if (nd->path.mnt != path->mnt) 697 mntput(nd->path.mnt); 698 } 699 nd->path.mnt = path->mnt; 700 nd->path.dentry = path->dentry; 701 } 702 703 /* 704 * Helper to directly jump to a known parsed path from ->follow_link, 705 * caller must have taken a reference to path beforehand. 706 */ 707 void nd_jump_link(struct nameidata *nd, struct path *path) 708 { 709 path_put(&nd->path); 710 711 nd->path = *path; 712 nd->inode = nd->path.dentry->d_inode; 713 nd->flags |= LOOKUP_JUMPED; 714 } 715 716 void nd_set_link(struct nameidata *nd, char *path) 717 { 718 nd->saved_names[nd->depth] = path; 719 } 720 EXPORT_SYMBOL(nd_set_link); 721 722 char *nd_get_link(struct nameidata *nd) 723 { 724 return nd->saved_names[nd->depth]; 725 } 726 EXPORT_SYMBOL(nd_get_link); 727 728 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie) 729 { 730 struct inode *inode = link->dentry->d_inode; 731 if (inode->i_op->put_link) 732 inode->i_op->put_link(link->dentry, nd, cookie); 733 path_put(link); 734 } 735 736 int sysctl_protected_symlinks __read_mostly = 0; 737 int sysctl_protected_hardlinks __read_mostly = 0; 738 739 /** 740 * may_follow_link - Check symlink following for unsafe situations 741 * @link: The path of the symlink 742 * @nd: nameidata pathwalk data 743 * 744 * In the case of the sysctl_protected_symlinks sysctl being enabled, 745 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 746 * in a sticky world-writable directory. This is to protect privileged 747 * processes from failing races against path names that may change out 748 * from under them by way of other users creating malicious symlinks. 749 * It will permit symlinks to be followed only when outside a sticky 750 * world-writable directory, or when the uid of the symlink and follower 751 * match, or when the directory owner matches the symlink's owner. 752 * 753 * Returns 0 if following the symlink is allowed, -ve on error. 754 */ 755 static inline int may_follow_link(struct path *link, struct nameidata *nd) 756 { 757 const struct inode *inode; 758 const struct inode *parent; 759 760 if (!sysctl_protected_symlinks) 761 return 0; 762 763 /* Allowed if owner and follower match. */ 764 inode = link->dentry->d_inode; 765 if (uid_eq(current_cred()->fsuid, inode->i_uid)) 766 return 0; 767 768 /* Allowed if parent directory not sticky and world-writable. */ 769 parent = nd->path.dentry->d_inode; 770 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 771 return 0; 772 773 /* Allowed if parent directory and link owner match. */ 774 if (uid_eq(parent->i_uid, inode->i_uid)) 775 return 0; 776 777 audit_log_link_denied("follow_link", link); 778 path_put_conditional(link, nd); 779 path_put(&nd->path); 780 return -EACCES; 781 } 782 783 /** 784 * safe_hardlink_source - Check for safe hardlink conditions 785 * @inode: the source inode to hardlink from 786 * 787 * Return false if at least one of the following conditions: 788 * - inode is not a regular file 789 * - inode is setuid 790 * - inode is setgid and group-exec 791 * - access failure for read and write 792 * 793 * Otherwise returns true. 794 */ 795 static bool safe_hardlink_source(struct inode *inode) 796 { 797 umode_t mode = inode->i_mode; 798 799 /* Special files should not get pinned to the filesystem. */ 800 if (!S_ISREG(mode)) 801 return false; 802 803 /* Setuid files should not get pinned to the filesystem. */ 804 if (mode & S_ISUID) 805 return false; 806 807 /* Executable setgid files should not get pinned to the filesystem. */ 808 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 809 return false; 810 811 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 812 if (inode_permission(inode, MAY_READ | MAY_WRITE)) 813 return false; 814 815 return true; 816 } 817 818 /** 819 * may_linkat - Check permissions for creating a hardlink 820 * @link: the source to hardlink from 821 * 822 * Block hardlink when all of: 823 * - sysctl_protected_hardlinks enabled 824 * - fsuid does not match inode 825 * - hardlink source is unsafe (see safe_hardlink_source() above) 826 * - not CAP_FOWNER 827 * 828 * Returns 0 if successful, -ve on error. 829 */ 830 static int may_linkat(struct path *link) 831 { 832 const struct cred *cred; 833 struct inode *inode; 834 835 if (!sysctl_protected_hardlinks) 836 return 0; 837 838 cred = current_cred(); 839 inode = link->dentry->d_inode; 840 841 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 842 * otherwise, it must be a safe source. 843 */ 844 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) || 845 capable(CAP_FOWNER)) 846 return 0; 847 848 audit_log_link_denied("linkat", link); 849 return -EPERM; 850 } 851 852 static __always_inline int 853 follow_link(struct path *link, struct nameidata *nd, void **p) 854 { 855 struct dentry *dentry = link->dentry; 856 int error; 857 char *s; 858 859 BUG_ON(nd->flags & LOOKUP_RCU); 860 861 if (link->mnt == nd->path.mnt) 862 mntget(link->mnt); 863 864 error = -ELOOP; 865 if (unlikely(current->total_link_count >= 40)) 866 goto out_put_nd_path; 867 868 cond_resched(); 869 current->total_link_count++; 870 871 touch_atime(link); 872 nd_set_link(nd, NULL); 873 874 error = security_inode_follow_link(link->dentry, nd); 875 if (error) 876 goto out_put_nd_path; 877 878 nd->last_type = LAST_BIND; 879 *p = dentry->d_inode->i_op->follow_link(dentry, nd); 880 error = PTR_ERR(*p); 881 if (IS_ERR(*p)) 882 goto out_put_nd_path; 883 884 error = 0; 885 s = nd_get_link(nd); 886 if (s) { 887 if (unlikely(IS_ERR(s))) { 888 path_put(&nd->path); 889 put_link(nd, link, *p); 890 return PTR_ERR(s); 891 } 892 if (*s == '/') { 893 if (!nd->root.mnt) 894 set_root(nd); 895 path_put(&nd->path); 896 nd->path = nd->root; 897 path_get(&nd->root); 898 nd->flags |= LOOKUP_JUMPED; 899 } 900 nd->inode = nd->path.dentry->d_inode; 901 error = link_path_walk(s, nd); 902 if (unlikely(error)) 903 put_link(nd, link, *p); 904 } 905 906 return error; 907 908 out_put_nd_path: 909 *p = NULL; 910 path_put(&nd->path); 911 path_put(link); 912 return error; 913 } 914 915 static int follow_up_rcu(struct path *path) 916 { 917 struct mount *mnt = real_mount(path->mnt); 918 struct mount *parent; 919 struct dentry *mountpoint; 920 921 parent = mnt->mnt_parent; 922 if (&parent->mnt == path->mnt) 923 return 0; 924 mountpoint = mnt->mnt_mountpoint; 925 path->dentry = mountpoint; 926 path->mnt = &parent->mnt; 927 return 1; 928 } 929 930 /* 931 * follow_up - Find the mountpoint of path's vfsmount 932 * 933 * Given a path, find the mountpoint of its source file system. 934 * Replace @path with the path of the mountpoint in the parent mount. 935 * Up is towards /. 936 * 937 * Return 1 if we went up a level and 0 if we were already at the 938 * root. 939 */ 940 int follow_up(struct path *path) 941 { 942 struct mount *mnt = real_mount(path->mnt); 943 struct mount *parent; 944 struct dentry *mountpoint; 945 946 read_seqlock_excl(&mount_lock); 947 parent = mnt->mnt_parent; 948 if (parent == mnt) { 949 read_sequnlock_excl(&mount_lock); 950 return 0; 951 } 952 mntget(&parent->mnt); 953 mountpoint = dget(mnt->mnt_mountpoint); 954 read_sequnlock_excl(&mount_lock); 955 dput(path->dentry); 956 path->dentry = mountpoint; 957 mntput(path->mnt); 958 path->mnt = &parent->mnt; 959 return 1; 960 } 961 EXPORT_SYMBOL(follow_up); 962 963 /* 964 * Perform an automount 965 * - return -EISDIR to tell follow_managed() to stop and return the path we 966 * were called with. 967 */ 968 static int follow_automount(struct path *path, unsigned flags, 969 bool *need_mntput) 970 { 971 struct vfsmount *mnt; 972 int err; 973 974 if (!path->dentry->d_op || !path->dentry->d_op->d_automount) 975 return -EREMOTE; 976 977 /* We don't want to mount if someone's just doing a stat - 978 * unless they're stat'ing a directory and appended a '/' to 979 * the name. 980 * 981 * We do, however, want to mount if someone wants to open or 982 * create a file of any type under the mountpoint, wants to 983 * traverse through the mountpoint or wants to open the 984 * mounted directory. Also, autofs may mark negative dentries 985 * as being automount points. These will need the attentions 986 * of the daemon to instantiate them before they can be used. 987 */ 988 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 989 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 990 path->dentry->d_inode) 991 return -EISDIR; 992 993 current->total_link_count++; 994 if (current->total_link_count >= 40) 995 return -ELOOP; 996 997 mnt = path->dentry->d_op->d_automount(path); 998 if (IS_ERR(mnt)) { 999 /* 1000 * The filesystem is allowed to return -EISDIR here to indicate 1001 * it doesn't want to automount. For instance, autofs would do 1002 * this so that its userspace daemon can mount on this dentry. 1003 * 1004 * However, we can only permit this if it's a terminal point in 1005 * the path being looked up; if it wasn't then the remainder of 1006 * the path is inaccessible and we should say so. 1007 */ 1008 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT)) 1009 return -EREMOTE; 1010 return PTR_ERR(mnt); 1011 } 1012 1013 if (!mnt) /* mount collision */ 1014 return 0; 1015 1016 if (!*need_mntput) { 1017 /* lock_mount() may release path->mnt on error */ 1018 mntget(path->mnt); 1019 *need_mntput = true; 1020 } 1021 err = finish_automount(mnt, path); 1022 1023 switch (err) { 1024 case -EBUSY: 1025 /* Someone else made a mount here whilst we were busy */ 1026 return 0; 1027 case 0: 1028 path_put(path); 1029 path->mnt = mnt; 1030 path->dentry = dget(mnt->mnt_root); 1031 return 0; 1032 default: 1033 return err; 1034 } 1035 1036 } 1037 1038 /* 1039 * Handle a dentry that is managed in some way. 1040 * - Flagged for transit management (autofs) 1041 * - Flagged as mountpoint 1042 * - Flagged as automount point 1043 * 1044 * This may only be called in refwalk mode. 1045 * 1046 * Serialization is taken care of in namespace.c 1047 */ 1048 static int follow_managed(struct path *path, unsigned flags) 1049 { 1050 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */ 1051 unsigned managed; 1052 bool need_mntput = false; 1053 int ret = 0; 1054 1055 /* Given that we're not holding a lock here, we retain the value in a 1056 * local variable for each dentry as we look at it so that we don't see 1057 * the components of that value change under us */ 1058 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1059 managed &= DCACHE_MANAGED_DENTRY, 1060 unlikely(managed != 0)) { 1061 /* Allow the filesystem to manage the transit without i_mutex 1062 * being held. */ 1063 if (managed & DCACHE_MANAGE_TRANSIT) { 1064 BUG_ON(!path->dentry->d_op); 1065 BUG_ON(!path->dentry->d_op->d_manage); 1066 ret = path->dentry->d_op->d_manage(path->dentry, false); 1067 if (ret < 0) 1068 break; 1069 } 1070 1071 /* Transit to a mounted filesystem. */ 1072 if (managed & DCACHE_MOUNTED) { 1073 struct vfsmount *mounted = lookup_mnt(path); 1074 if (mounted) { 1075 dput(path->dentry); 1076 if (need_mntput) 1077 mntput(path->mnt); 1078 path->mnt = mounted; 1079 path->dentry = dget(mounted->mnt_root); 1080 need_mntput = true; 1081 continue; 1082 } 1083 1084 /* Something is mounted on this dentry in another 1085 * namespace and/or whatever was mounted there in this 1086 * namespace got unmounted before lookup_mnt() could 1087 * get it */ 1088 } 1089 1090 /* Handle an automount point */ 1091 if (managed & DCACHE_NEED_AUTOMOUNT) { 1092 ret = follow_automount(path, flags, &need_mntput); 1093 if (ret < 0) 1094 break; 1095 continue; 1096 } 1097 1098 /* We didn't change the current path point */ 1099 break; 1100 } 1101 1102 if (need_mntput && path->mnt == mnt) 1103 mntput(path->mnt); 1104 if (ret == -EISDIR) 1105 ret = 0; 1106 return ret < 0 ? ret : need_mntput; 1107 } 1108 1109 int follow_down_one(struct path *path) 1110 { 1111 struct vfsmount *mounted; 1112 1113 mounted = lookup_mnt(path); 1114 if (mounted) { 1115 dput(path->dentry); 1116 mntput(path->mnt); 1117 path->mnt = mounted; 1118 path->dentry = dget(mounted->mnt_root); 1119 return 1; 1120 } 1121 return 0; 1122 } 1123 EXPORT_SYMBOL(follow_down_one); 1124 1125 static inline int managed_dentry_rcu(struct dentry *dentry) 1126 { 1127 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ? 1128 dentry->d_op->d_manage(dentry, true) : 0; 1129 } 1130 1131 /* 1132 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1133 * we meet a managed dentry that would need blocking. 1134 */ 1135 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1136 struct inode **inode) 1137 { 1138 for (;;) { 1139 struct mount *mounted; 1140 /* 1141 * Don't forget we might have a non-mountpoint managed dentry 1142 * that wants to block transit. 1143 */ 1144 switch (managed_dentry_rcu(path->dentry)) { 1145 case -ECHILD: 1146 default: 1147 return false; 1148 case -EISDIR: 1149 return true; 1150 case 0: 1151 break; 1152 } 1153 1154 if (!d_mountpoint(path->dentry)) 1155 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1156 1157 mounted = __lookup_mnt(path->mnt, path->dentry); 1158 if (!mounted) 1159 break; 1160 path->mnt = &mounted->mnt; 1161 path->dentry = mounted->mnt.mnt_root; 1162 nd->flags |= LOOKUP_JUMPED; 1163 nd->seq = read_seqcount_begin(&path->dentry->d_seq); 1164 /* 1165 * Update the inode too. We don't need to re-check the 1166 * dentry sequence number here after this d_inode read, 1167 * because a mount-point is always pinned. 1168 */ 1169 *inode = path->dentry->d_inode; 1170 } 1171 return !read_seqretry(&mount_lock, nd->m_seq) && 1172 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1173 } 1174 1175 static int follow_dotdot_rcu(struct nameidata *nd) 1176 { 1177 struct inode *inode = nd->inode; 1178 if (!nd->root.mnt) 1179 set_root_rcu(nd); 1180 1181 while (1) { 1182 if (nd->path.dentry == nd->root.dentry && 1183 nd->path.mnt == nd->root.mnt) { 1184 break; 1185 } 1186 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1187 struct dentry *old = nd->path.dentry; 1188 struct dentry *parent = old->d_parent; 1189 unsigned seq; 1190 1191 inode = parent->d_inode; 1192 seq = read_seqcount_begin(&parent->d_seq); 1193 if (read_seqcount_retry(&old->d_seq, nd->seq)) 1194 goto failed; 1195 nd->path.dentry = parent; 1196 nd->seq = seq; 1197 break; 1198 } 1199 if (!follow_up_rcu(&nd->path)) 1200 break; 1201 inode = nd->path.dentry->d_inode; 1202 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1203 } 1204 while (d_mountpoint(nd->path.dentry)) { 1205 struct mount *mounted; 1206 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry); 1207 if (!mounted) 1208 break; 1209 nd->path.mnt = &mounted->mnt; 1210 nd->path.dentry = mounted->mnt.mnt_root; 1211 inode = nd->path.dentry->d_inode; 1212 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1213 if (read_seqretry(&mount_lock, nd->m_seq)) 1214 goto failed; 1215 } 1216 nd->inode = inode; 1217 return 0; 1218 1219 failed: 1220 nd->flags &= ~LOOKUP_RCU; 1221 if (!(nd->flags & LOOKUP_ROOT)) 1222 nd->root.mnt = NULL; 1223 rcu_read_unlock(); 1224 return -ECHILD; 1225 } 1226 1227 /* 1228 * Follow down to the covering mount currently visible to userspace. At each 1229 * point, the filesystem owning that dentry may be queried as to whether the 1230 * caller is permitted to proceed or not. 1231 */ 1232 int follow_down(struct path *path) 1233 { 1234 unsigned managed; 1235 int ret; 1236 1237 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1238 unlikely(managed & DCACHE_MANAGED_DENTRY)) { 1239 /* Allow the filesystem to manage the transit without i_mutex 1240 * being held. 1241 * 1242 * We indicate to the filesystem if someone is trying to mount 1243 * something here. This gives autofs the chance to deny anyone 1244 * other than its daemon the right to mount on its 1245 * superstructure. 1246 * 1247 * The filesystem may sleep at this point. 1248 */ 1249 if (managed & DCACHE_MANAGE_TRANSIT) { 1250 BUG_ON(!path->dentry->d_op); 1251 BUG_ON(!path->dentry->d_op->d_manage); 1252 ret = path->dentry->d_op->d_manage( 1253 path->dentry, false); 1254 if (ret < 0) 1255 return ret == -EISDIR ? 0 : ret; 1256 } 1257 1258 /* Transit to a mounted filesystem. */ 1259 if (managed & DCACHE_MOUNTED) { 1260 struct vfsmount *mounted = lookup_mnt(path); 1261 if (!mounted) 1262 break; 1263 dput(path->dentry); 1264 mntput(path->mnt); 1265 path->mnt = mounted; 1266 path->dentry = dget(mounted->mnt_root); 1267 continue; 1268 } 1269 1270 /* Don't handle automount points here */ 1271 break; 1272 } 1273 return 0; 1274 } 1275 EXPORT_SYMBOL(follow_down); 1276 1277 /* 1278 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() 1279 */ 1280 static void follow_mount(struct path *path) 1281 { 1282 while (d_mountpoint(path->dentry)) { 1283 struct vfsmount *mounted = lookup_mnt(path); 1284 if (!mounted) 1285 break; 1286 dput(path->dentry); 1287 mntput(path->mnt); 1288 path->mnt = mounted; 1289 path->dentry = dget(mounted->mnt_root); 1290 } 1291 } 1292 1293 static void follow_dotdot(struct nameidata *nd) 1294 { 1295 if (!nd->root.mnt) 1296 set_root(nd); 1297 1298 while(1) { 1299 struct dentry *old = nd->path.dentry; 1300 1301 if (nd->path.dentry == nd->root.dentry && 1302 nd->path.mnt == nd->root.mnt) { 1303 break; 1304 } 1305 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1306 /* rare case of legitimate dget_parent()... */ 1307 nd->path.dentry = dget_parent(nd->path.dentry); 1308 dput(old); 1309 break; 1310 } 1311 if (!follow_up(&nd->path)) 1312 break; 1313 } 1314 follow_mount(&nd->path); 1315 nd->inode = nd->path.dentry->d_inode; 1316 } 1317 1318 /* 1319 * This looks up the name in dcache, possibly revalidates the old dentry and 1320 * allocates a new one if not found or not valid. In the need_lookup argument 1321 * returns whether i_op->lookup is necessary. 1322 * 1323 * dir->d_inode->i_mutex must be held 1324 */ 1325 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir, 1326 unsigned int flags, bool *need_lookup) 1327 { 1328 struct dentry *dentry; 1329 int error; 1330 1331 *need_lookup = false; 1332 dentry = d_lookup(dir, name); 1333 if (dentry) { 1334 if (dentry->d_flags & DCACHE_OP_REVALIDATE) { 1335 error = d_revalidate(dentry, flags); 1336 if (unlikely(error <= 0)) { 1337 if (error < 0) { 1338 dput(dentry); 1339 return ERR_PTR(error); 1340 } else { 1341 d_invalidate(dentry); 1342 dput(dentry); 1343 dentry = NULL; 1344 } 1345 } 1346 } 1347 } 1348 1349 if (!dentry) { 1350 dentry = d_alloc(dir, name); 1351 if (unlikely(!dentry)) 1352 return ERR_PTR(-ENOMEM); 1353 1354 *need_lookup = true; 1355 } 1356 return dentry; 1357 } 1358 1359 /* 1360 * Call i_op->lookup on the dentry. The dentry must be negative and 1361 * unhashed. 1362 * 1363 * dir->d_inode->i_mutex must be held 1364 */ 1365 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry, 1366 unsigned int flags) 1367 { 1368 struct dentry *old; 1369 1370 /* Don't create child dentry for a dead directory. */ 1371 if (unlikely(IS_DEADDIR(dir))) { 1372 dput(dentry); 1373 return ERR_PTR(-ENOENT); 1374 } 1375 1376 old = dir->i_op->lookup(dir, dentry, flags); 1377 if (unlikely(old)) { 1378 dput(dentry); 1379 dentry = old; 1380 } 1381 return dentry; 1382 } 1383 1384 static struct dentry *__lookup_hash(struct qstr *name, 1385 struct dentry *base, unsigned int flags) 1386 { 1387 bool need_lookup; 1388 struct dentry *dentry; 1389 1390 dentry = lookup_dcache(name, base, flags, &need_lookup); 1391 if (!need_lookup) 1392 return dentry; 1393 1394 return lookup_real(base->d_inode, dentry, flags); 1395 } 1396 1397 /* 1398 * It's more convoluted than I'd like it to be, but... it's still fairly 1399 * small and for now I'd prefer to have fast path as straight as possible. 1400 * It _is_ time-critical. 1401 */ 1402 static int lookup_fast(struct nameidata *nd, 1403 struct path *path, struct inode **inode) 1404 { 1405 struct vfsmount *mnt = nd->path.mnt; 1406 struct dentry *dentry, *parent = nd->path.dentry; 1407 int need_reval = 1; 1408 int status = 1; 1409 int err; 1410 1411 /* 1412 * Rename seqlock is not required here because in the off chance 1413 * of a false negative due to a concurrent rename, we're going to 1414 * do the non-racy lookup, below. 1415 */ 1416 if (nd->flags & LOOKUP_RCU) { 1417 unsigned seq; 1418 dentry = __d_lookup_rcu(parent, &nd->last, &seq); 1419 if (!dentry) 1420 goto unlazy; 1421 1422 /* 1423 * This sequence count validates that the inode matches 1424 * the dentry name information from lookup. 1425 */ 1426 *inode = dentry->d_inode; 1427 if (read_seqcount_retry(&dentry->d_seq, seq)) 1428 return -ECHILD; 1429 1430 /* 1431 * This sequence count validates that the parent had no 1432 * changes while we did the lookup of the dentry above. 1433 * 1434 * The memory barrier in read_seqcount_begin of child is 1435 * enough, we can use __read_seqcount_retry here. 1436 */ 1437 if (__read_seqcount_retry(&parent->d_seq, nd->seq)) 1438 return -ECHILD; 1439 nd->seq = seq; 1440 1441 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) { 1442 status = d_revalidate(dentry, nd->flags); 1443 if (unlikely(status <= 0)) { 1444 if (status != -ECHILD) 1445 need_reval = 0; 1446 goto unlazy; 1447 } 1448 } 1449 path->mnt = mnt; 1450 path->dentry = dentry; 1451 if (likely(__follow_mount_rcu(nd, path, inode))) 1452 return 0; 1453 unlazy: 1454 if (unlazy_walk(nd, dentry)) 1455 return -ECHILD; 1456 } else { 1457 dentry = __d_lookup(parent, &nd->last); 1458 } 1459 1460 if (unlikely(!dentry)) 1461 goto need_lookup; 1462 1463 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval) 1464 status = d_revalidate(dentry, nd->flags); 1465 if (unlikely(status <= 0)) { 1466 if (status < 0) { 1467 dput(dentry); 1468 return status; 1469 } 1470 d_invalidate(dentry); 1471 dput(dentry); 1472 goto need_lookup; 1473 } 1474 1475 path->mnt = mnt; 1476 path->dentry = dentry; 1477 err = follow_managed(path, nd->flags); 1478 if (unlikely(err < 0)) { 1479 path_put_conditional(path, nd); 1480 return err; 1481 } 1482 if (err) 1483 nd->flags |= LOOKUP_JUMPED; 1484 *inode = path->dentry->d_inode; 1485 return 0; 1486 1487 need_lookup: 1488 return 1; 1489 } 1490 1491 /* Fast lookup failed, do it the slow way */ 1492 static int lookup_slow(struct nameidata *nd, struct path *path) 1493 { 1494 struct dentry *dentry, *parent; 1495 int err; 1496 1497 parent = nd->path.dentry; 1498 BUG_ON(nd->inode != parent->d_inode); 1499 1500 mutex_lock(&parent->d_inode->i_mutex); 1501 dentry = __lookup_hash(&nd->last, parent, nd->flags); 1502 mutex_unlock(&parent->d_inode->i_mutex); 1503 if (IS_ERR(dentry)) 1504 return PTR_ERR(dentry); 1505 path->mnt = nd->path.mnt; 1506 path->dentry = dentry; 1507 err = follow_managed(path, nd->flags); 1508 if (unlikely(err < 0)) { 1509 path_put_conditional(path, nd); 1510 return err; 1511 } 1512 if (err) 1513 nd->flags |= LOOKUP_JUMPED; 1514 return 0; 1515 } 1516 1517 static inline int may_lookup(struct nameidata *nd) 1518 { 1519 if (nd->flags & LOOKUP_RCU) { 1520 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1521 if (err != -ECHILD) 1522 return err; 1523 if (unlazy_walk(nd, NULL)) 1524 return -ECHILD; 1525 } 1526 return inode_permission(nd->inode, MAY_EXEC); 1527 } 1528 1529 static inline int handle_dots(struct nameidata *nd, int type) 1530 { 1531 if (type == LAST_DOTDOT) { 1532 if (nd->flags & LOOKUP_RCU) { 1533 if (follow_dotdot_rcu(nd)) 1534 return -ECHILD; 1535 } else 1536 follow_dotdot(nd); 1537 } 1538 return 0; 1539 } 1540 1541 static void terminate_walk(struct nameidata *nd) 1542 { 1543 if (!(nd->flags & LOOKUP_RCU)) { 1544 path_put(&nd->path); 1545 } else { 1546 nd->flags &= ~LOOKUP_RCU; 1547 if (!(nd->flags & LOOKUP_ROOT)) 1548 nd->root.mnt = NULL; 1549 rcu_read_unlock(); 1550 } 1551 } 1552 1553 /* 1554 * Do we need to follow links? We _really_ want to be able 1555 * to do this check without having to look at inode->i_op, 1556 * so we keep a cache of "no, this doesn't need follow_link" 1557 * for the common case. 1558 */ 1559 static inline int should_follow_link(struct dentry *dentry, int follow) 1560 { 1561 return unlikely(d_is_symlink(dentry)) ? follow : 0; 1562 } 1563 1564 static inline int walk_component(struct nameidata *nd, struct path *path, 1565 int follow) 1566 { 1567 struct inode *inode; 1568 int err; 1569 /* 1570 * "." and ".." are special - ".." especially so because it has 1571 * to be able to know about the current root directory and 1572 * parent relationships. 1573 */ 1574 if (unlikely(nd->last_type != LAST_NORM)) 1575 return handle_dots(nd, nd->last_type); 1576 err = lookup_fast(nd, path, &inode); 1577 if (unlikely(err)) { 1578 if (err < 0) 1579 goto out_err; 1580 1581 err = lookup_slow(nd, path); 1582 if (err < 0) 1583 goto out_err; 1584 1585 inode = path->dentry->d_inode; 1586 } 1587 err = -ENOENT; 1588 if (d_is_negative(path->dentry)) 1589 goto out_path_put; 1590 1591 if (should_follow_link(path->dentry, follow)) { 1592 if (nd->flags & LOOKUP_RCU) { 1593 if (unlikely(nd->path.mnt != path->mnt || 1594 unlazy_walk(nd, path->dentry))) { 1595 err = -ECHILD; 1596 goto out_err; 1597 } 1598 } 1599 BUG_ON(inode != path->dentry->d_inode); 1600 return 1; 1601 } 1602 path_to_nameidata(path, nd); 1603 nd->inode = inode; 1604 return 0; 1605 1606 out_path_put: 1607 path_to_nameidata(path, nd); 1608 out_err: 1609 terminate_walk(nd); 1610 return err; 1611 } 1612 1613 /* 1614 * This limits recursive symlink follows to 8, while 1615 * limiting consecutive symlinks to 40. 1616 * 1617 * Without that kind of total limit, nasty chains of consecutive 1618 * symlinks can cause almost arbitrarily long lookups. 1619 */ 1620 static inline int nested_symlink(struct path *path, struct nameidata *nd) 1621 { 1622 int res; 1623 1624 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) { 1625 path_put_conditional(path, nd); 1626 path_put(&nd->path); 1627 return -ELOOP; 1628 } 1629 BUG_ON(nd->depth >= MAX_NESTED_LINKS); 1630 1631 nd->depth++; 1632 current->link_count++; 1633 1634 do { 1635 struct path link = *path; 1636 void *cookie; 1637 1638 res = follow_link(&link, nd, &cookie); 1639 if (res) 1640 break; 1641 res = walk_component(nd, path, LOOKUP_FOLLOW); 1642 put_link(nd, &link, cookie); 1643 } while (res > 0); 1644 1645 current->link_count--; 1646 nd->depth--; 1647 return res; 1648 } 1649 1650 /* 1651 * We can do the critical dentry name comparison and hashing 1652 * operations one word at a time, but we are limited to: 1653 * 1654 * - Architectures with fast unaligned word accesses. We could 1655 * do a "get_unaligned()" if this helps and is sufficiently 1656 * fast. 1657 * 1658 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 1659 * do not trap on the (extremely unlikely) case of a page 1660 * crossing operation. 1661 * 1662 * - Furthermore, we need an efficient 64-bit compile for the 1663 * 64-bit case in order to generate the "number of bytes in 1664 * the final mask". Again, that could be replaced with a 1665 * efficient population count instruction or similar. 1666 */ 1667 #ifdef CONFIG_DCACHE_WORD_ACCESS 1668 1669 #include <asm/word-at-a-time.h> 1670 1671 #ifdef CONFIG_64BIT 1672 1673 static inline unsigned int fold_hash(unsigned long hash) 1674 { 1675 return hash_64(hash, 32); 1676 } 1677 1678 #else /* 32-bit case */ 1679 1680 #define fold_hash(x) (x) 1681 1682 #endif 1683 1684 unsigned int full_name_hash(const unsigned char *name, unsigned int len) 1685 { 1686 unsigned long a, mask; 1687 unsigned long hash = 0; 1688 1689 for (;;) { 1690 a = load_unaligned_zeropad(name); 1691 if (len < sizeof(unsigned long)) 1692 break; 1693 hash += a; 1694 hash *= 9; 1695 name += sizeof(unsigned long); 1696 len -= sizeof(unsigned long); 1697 if (!len) 1698 goto done; 1699 } 1700 mask = bytemask_from_count(len); 1701 hash += mask & a; 1702 done: 1703 return fold_hash(hash); 1704 } 1705 EXPORT_SYMBOL(full_name_hash); 1706 1707 /* 1708 * Calculate the length and hash of the path component, and 1709 * return the "hash_len" as the result. 1710 */ 1711 static inline u64 hash_name(const char *name) 1712 { 1713 unsigned long a, b, adata, bdata, mask, hash, len; 1714 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1715 1716 hash = a = 0; 1717 len = -sizeof(unsigned long); 1718 do { 1719 hash = (hash + a) * 9; 1720 len += sizeof(unsigned long); 1721 a = load_unaligned_zeropad(name+len); 1722 b = a ^ REPEAT_BYTE('/'); 1723 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 1724 1725 adata = prep_zero_mask(a, adata, &constants); 1726 bdata = prep_zero_mask(b, bdata, &constants); 1727 1728 mask = create_zero_mask(adata | bdata); 1729 1730 hash += a & zero_bytemask(mask); 1731 len += find_zero(mask); 1732 return hashlen_create(fold_hash(hash), len); 1733 } 1734 1735 #else 1736 1737 unsigned int full_name_hash(const unsigned char *name, unsigned int len) 1738 { 1739 unsigned long hash = init_name_hash(); 1740 while (len--) 1741 hash = partial_name_hash(*name++, hash); 1742 return end_name_hash(hash); 1743 } 1744 EXPORT_SYMBOL(full_name_hash); 1745 1746 /* 1747 * We know there's a real path component here of at least 1748 * one character. 1749 */ 1750 static inline u64 hash_name(const char *name) 1751 { 1752 unsigned long hash = init_name_hash(); 1753 unsigned long len = 0, c; 1754 1755 c = (unsigned char)*name; 1756 do { 1757 len++; 1758 hash = partial_name_hash(c, hash); 1759 c = (unsigned char)name[len]; 1760 } while (c && c != '/'); 1761 return hashlen_create(end_name_hash(hash), len); 1762 } 1763 1764 #endif 1765 1766 /* 1767 * Name resolution. 1768 * This is the basic name resolution function, turning a pathname into 1769 * the final dentry. We expect 'base' to be positive and a directory. 1770 * 1771 * Returns 0 and nd will have valid dentry and mnt on success. 1772 * Returns error and drops reference to input namei data on failure. 1773 */ 1774 static int link_path_walk(const char *name, struct nameidata *nd) 1775 { 1776 struct path next; 1777 int err; 1778 1779 while (*name=='/') 1780 name++; 1781 if (!*name) 1782 return 0; 1783 1784 /* At this point we know we have a real path component. */ 1785 for(;;) { 1786 u64 hash_len; 1787 int type; 1788 1789 err = may_lookup(nd); 1790 if (err) 1791 break; 1792 1793 hash_len = hash_name(name); 1794 1795 type = LAST_NORM; 1796 if (name[0] == '.') switch (hashlen_len(hash_len)) { 1797 case 2: 1798 if (name[1] == '.') { 1799 type = LAST_DOTDOT; 1800 nd->flags |= LOOKUP_JUMPED; 1801 } 1802 break; 1803 case 1: 1804 type = LAST_DOT; 1805 } 1806 if (likely(type == LAST_NORM)) { 1807 struct dentry *parent = nd->path.dentry; 1808 nd->flags &= ~LOOKUP_JUMPED; 1809 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 1810 struct qstr this = { { .hash_len = hash_len }, .name = name }; 1811 err = parent->d_op->d_hash(parent, &this); 1812 if (err < 0) 1813 break; 1814 hash_len = this.hash_len; 1815 name = this.name; 1816 } 1817 } 1818 1819 nd->last.hash_len = hash_len; 1820 nd->last.name = name; 1821 nd->last_type = type; 1822 1823 name += hashlen_len(hash_len); 1824 if (!*name) 1825 return 0; 1826 /* 1827 * If it wasn't NUL, we know it was '/'. Skip that 1828 * slash, and continue until no more slashes. 1829 */ 1830 do { 1831 name++; 1832 } while (unlikely(*name == '/')); 1833 if (!*name) 1834 return 0; 1835 1836 err = walk_component(nd, &next, LOOKUP_FOLLOW); 1837 if (err < 0) 1838 return err; 1839 1840 if (err) { 1841 err = nested_symlink(&next, nd); 1842 if (err) 1843 return err; 1844 } 1845 if (!d_can_lookup(nd->path.dentry)) { 1846 err = -ENOTDIR; 1847 break; 1848 } 1849 } 1850 terminate_walk(nd); 1851 return err; 1852 } 1853 1854 static int path_init(int dfd, const struct filename *name, unsigned int flags, 1855 struct nameidata *nd) 1856 { 1857 int retval = 0; 1858 const char *s = name->name; 1859 1860 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 1861 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT; 1862 nd->depth = 0; 1863 nd->base = NULL; 1864 if (flags & LOOKUP_ROOT) { 1865 struct dentry *root = nd->root.dentry; 1866 struct inode *inode = root->d_inode; 1867 if (*s) { 1868 if (!d_can_lookup(root)) 1869 return -ENOTDIR; 1870 retval = inode_permission(inode, MAY_EXEC); 1871 if (retval) 1872 return retval; 1873 } 1874 nd->path = nd->root; 1875 nd->inode = inode; 1876 if (flags & LOOKUP_RCU) { 1877 rcu_read_lock(); 1878 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1879 nd->m_seq = read_seqbegin(&mount_lock); 1880 } else { 1881 path_get(&nd->path); 1882 } 1883 goto done; 1884 } 1885 1886 nd->root.mnt = NULL; 1887 1888 nd->m_seq = read_seqbegin(&mount_lock); 1889 if (*s == '/') { 1890 if (flags & LOOKUP_RCU) { 1891 rcu_read_lock(); 1892 nd->seq = set_root_rcu(nd); 1893 } else { 1894 set_root(nd); 1895 path_get(&nd->root); 1896 } 1897 nd->path = nd->root; 1898 } else if (dfd == AT_FDCWD) { 1899 if (flags & LOOKUP_RCU) { 1900 struct fs_struct *fs = current->fs; 1901 unsigned seq; 1902 1903 rcu_read_lock(); 1904 1905 do { 1906 seq = read_seqcount_begin(&fs->seq); 1907 nd->path = fs->pwd; 1908 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1909 } while (read_seqcount_retry(&fs->seq, seq)); 1910 } else { 1911 get_fs_pwd(current->fs, &nd->path); 1912 } 1913 } else { 1914 /* Caller must check execute permissions on the starting path component */ 1915 struct fd f = fdget_raw(dfd); 1916 struct dentry *dentry; 1917 1918 if (!f.file) 1919 return -EBADF; 1920 1921 dentry = f.file->f_path.dentry; 1922 1923 if (*s) { 1924 if (!d_can_lookup(dentry)) { 1925 fdput(f); 1926 return -ENOTDIR; 1927 } 1928 } 1929 1930 nd->path = f.file->f_path; 1931 if (flags & LOOKUP_RCU) { 1932 if (f.flags & FDPUT_FPUT) 1933 nd->base = f.file; 1934 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1935 rcu_read_lock(); 1936 } else { 1937 path_get(&nd->path); 1938 fdput(f); 1939 } 1940 } 1941 1942 nd->inode = nd->path.dentry->d_inode; 1943 if (!(flags & LOOKUP_RCU)) 1944 goto done; 1945 if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq))) 1946 goto done; 1947 if (!(nd->flags & LOOKUP_ROOT)) 1948 nd->root.mnt = NULL; 1949 rcu_read_unlock(); 1950 return -ECHILD; 1951 done: 1952 current->total_link_count = 0; 1953 return link_path_walk(s, nd); 1954 } 1955 1956 static void path_cleanup(struct nameidata *nd) 1957 { 1958 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 1959 path_put(&nd->root); 1960 nd->root.mnt = NULL; 1961 } 1962 if (unlikely(nd->base)) 1963 fput(nd->base); 1964 } 1965 1966 static inline int lookup_last(struct nameidata *nd, struct path *path) 1967 { 1968 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 1969 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 1970 1971 nd->flags &= ~LOOKUP_PARENT; 1972 return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW); 1973 } 1974 1975 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 1976 static int path_lookupat(int dfd, const struct filename *name, 1977 unsigned int flags, struct nameidata *nd) 1978 { 1979 struct path path; 1980 int err; 1981 1982 /* 1983 * Path walking is largely split up into 2 different synchronisation 1984 * schemes, rcu-walk and ref-walk (explained in 1985 * Documentation/filesystems/path-lookup.txt). These share much of the 1986 * path walk code, but some things particularly setup, cleanup, and 1987 * following mounts are sufficiently divergent that functions are 1988 * duplicated. Typically there is a function foo(), and its RCU 1989 * analogue, foo_rcu(). 1990 * 1991 * -ECHILD is the error number of choice (just to avoid clashes) that 1992 * is returned if some aspect of an rcu-walk fails. Such an error must 1993 * be handled by restarting a traditional ref-walk (which will always 1994 * be able to complete). 1995 */ 1996 err = path_init(dfd, name, flags, nd); 1997 if (!err && !(flags & LOOKUP_PARENT)) { 1998 err = lookup_last(nd, &path); 1999 while (err > 0) { 2000 void *cookie; 2001 struct path link = path; 2002 err = may_follow_link(&link, nd); 2003 if (unlikely(err)) 2004 break; 2005 nd->flags |= LOOKUP_PARENT; 2006 err = follow_link(&link, nd, &cookie); 2007 if (err) 2008 break; 2009 err = lookup_last(nd, &path); 2010 put_link(nd, &link, cookie); 2011 } 2012 } 2013 2014 if (!err) 2015 err = complete_walk(nd); 2016 2017 if (!err && nd->flags & LOOKUP_DIRECTORY) { 2018 if (!d_can_lookup(nd->path.dentry)) { 2019 path_put(&nd->path); 2020 err = -ENOTDIR; 2021 } 2022 } 2023 2024 path_cleanup(nd); 2025 return err; 2026 } 2027 2028 static int filename_lookup(int dfd, struct filename *name, 2029 unsigned int flags, struct nameidata *nd) 2030 { 2031 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd); 2032 if (unlikely(retval == -ECHILD)) 2033 retval = path_lookupat(dfd, name, flags, nd); 2034 if (unlikely(retval == -ESTALE)) 2035 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd); 2036 2037 if (likely(!retval)) 2038 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT); 2039 return retval; 2040 } 2041 2042 /* does lookup, returns the object with parent locked */ 2043 struct dentry *kern_path_locked(const char *name, struct path *path) 2044 { 2045 struct filename *filename = getname_kernel(name); 2046 struct nameidata nd; 2047 struct dentry *d; 2048 int err; 2049 2050 if (IS_ERR(filename)) 2051 return ERR_CAST(filename); 2052 2053 err = filename_lookup(AT_FDCWD, filename, LOOKUP_PARENT, &nd); 2054 if (err) { 2055 d = ERR_PTR(err); 2056 goto out; 2057 } 2058 if (nd.last_type != LAST_NORM) { 2059 path_put(&nd.path); 2060 d = ERR_PTR(-EINVAL); 2061 goto out; 2062 } 2063 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2064 d = __lookup_hash(&nd.last, nd.path.dentry, 0); 2065 if (IS_ERR(d)) { 2066 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2067 path_put(&nd.path); 2068 goto out; 2069 } 2070 *path = nd.path; 2071 out: 2072 putname(filename); 2073 return d; 2074 } 2075 2076 int kern_path(const char *name, unsigned int flags, struct path *path) 2077 { 2078 struct nameidata nd; 2079 struct filename *filename = getname_kernel(name); 2080 int res = PTR_ERR(filename); 2081 2082 if (!IS_ERR(filename)) { 2083 res = filename_lookup(AT_FDCWD, filename, flags, &nd); 2084 putname(filename); 2085 if (!res) 2086 *path = nd.path; 2087 } 2088 return res; 2089 } 2090 EXPORT_SYMBOL(kern_path); 2091 2092 /** 2093 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2094 * @dentry: pointer to dentry of the base directory 2095 * @mnt: pointer to vfs mount of the base directory 2096 * @name: pointer to file name 2097 * @flags: lookup flags 2098 * @path: pointer to struct path to fill 2099 */ 2100 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2101 const char *name, unsigned int flags, 2102 struct path *path) 2103 { 2104 struct filename *filename = getname_kernel(name); 2105 int err = PTR_ERR(filename); 2106 2107 BUG_ON(flags & LOOKUP_PARENT); 2108 2109 /* the first argument of filename_lookup() is ignored with LOOKUP_ROOT */ 2110 if (!IS_ERR(filename)) { 2111 struct nameidata nd; 2112 nd.root.dentry = dentry; 2113 nd.root.mnt = mnt; 2114 err = filename_lookup(AT_FDCWD, filename, 2115 flags | LOOKUP_ROOT, &nd); 2116 if (!err) 2117 *path = nd.path; 2118 putname(filename); 2119 } 2120 return err; 2121 } 2122 EXPORT_SYMBOL(vfs_path_lookup); 2123 2124 /* 2125 * Restricted form of lookup. Doesn't follow links, single-component only, 2126 * needs parent already locked. Doesn't follow mounts. 2127 * SMP-safe. 2128 */ 2129 static struct dentry *lookup_hash(struct nameidata *nd) 2130 { 2131 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags); 2132 } 2133 2134 /** 2135 * lookup_one_len - filesystem helper to lookup single pathname component 2136 * @name: pathname component to lookup 2137 * @base: base directory to lookup from 2138 * @len: maximum length @len should be interpreted to 2139 * 2140 * Note that this routine is purely a helper for filesystem usage and should 2141 * not be called by generic code. 2142 */ 2143 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2144 { 2145 struct qstr this; 2146 unsigned int c; 2147 int err; 2148 2149 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex)); 2150 2151 this.name = name; 2152 this.len = len; 2153 this.hash = full_name_hash(name, len); 2154 if (!len) 2155 return ERR_PTR(-EACCES); 2156 2157 if (unlikely(name[0] == '.')) { 2158 if (len < 2 || (len == 2 && name[1] == '.')) 2159 return ERR_PTR(-EACCES); 2160 } 2161 2162 while (len--) { 2163 c = *(const unsigned char *)name++; 2164 if (c == '/' || c == '\0') 2165 return ERR_PTR(-EACCES); 2166 } 2167 /* 2168 * See if the low-level filesystem might want 2169 * to use its own hash.. 2170 */ 2171 if (base->d_flags & DCACHE_OP_HASH) { 2172 int err = base->d_op->d_hash(base, &this); 2173 if (err < 0) 2174 return ERR_PTR(err); 2175 } 2176 2177 err = inode_permission(base->d_inode, MAY_EXEC); 2178 if (err) 2179 return ERR_PTR(err); 2180 2181 return __lookup_hash(&this, base, 0); 2182 } 2183 EXPORT_SYMBOL(lookup_one_len); 2184 2185 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2186 struct path *path, int *empty) 2187 { 2188 struct nameidata nd; 2189 struct filename *tmp = getname_flags(name, flags, empty); 2190 int err = PTR_ERR(tmp); 2191 if (!IS_ERR(tmp)) { 2192 2193 BUG_ON(flags & LOOKUP_PARENT); 2194 2195 err = filename_lookup(dfd, tmp, flags, &nd); 2196 putname(tmp); 2197 if (!err) 2198 *path = nd.path; 2199 } 2200 return err; 2201 } 2202 2203 int user_path_at(int dfd, const char __user *name, unsigned flags, 2204 struct path *path) 2205 { 2206 return user_path_at_empty(dfd, name, flags, path, NULL); 2207 } 2208 EXPORT_SYMBOL(user_path_at); 2209 2210 /* 2211 * NB: most callers don't do anything directly with the reference to the 2212 * to struct filename, but the nd->last pointer points into the name string 2213 * allocated by getname. So we must hold the reference to it until all 2214 * path-walking is complete. 2215 */ 2216 static struct filename * 2217 user_path_parent(int dfd, const char __user *path, struct nameidata *nd, 2218 unsigned int flags) 2219 { 2220 struct filename *s = getname(path); 2221 int error; 2222 2223 /* only LOOKUP_REVAL is allowed in extra flags */ 2224 flags &= LOOKUP_REVAL; 2225 2226 if (IS_ERR(s)) 2227 return s; 2228 2229 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd); 2230 if (error) { 2231 putname(s); 2232 return ERR_PTR(error); 2233 } 2234 2235 return s; 2236 } 2237 2238 /** 2239 * mountpoint_last - look up last component for umount 2240 * @nd: pathwalk nameidata - currently pointing at parent directory of "last" 2241 * @path: pointer to container for result 2242 * 2243 * This is a special lookup_last function just for umount. In this case, we 2244 * need to resolve the path without doing any revalidation. 2245 * 2246 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since 2247 * mountpoints are always pinned in the dcache, their ancestors are too. Thus, 2248 * in almost all cases, this lookup will be served out of the dcache. The only 2249 * cases where it won't are if nd->last refers to a symlink or the path is 2250 * bogus and it doesn't exist. 2251 * 2252 * Returns: 2253 * -error: if there was an error during lookup. This includes -ENOENT if the 2254 * lookup found a negative dentry. The nd->path reference will also be 2255 * put in this case. 2256 * 2257 * 0: if we successfully resolved nd->path and found it to not to be a 2258 * symlink that needs to be followed. "path" will also be populated. 2259 * The nd->path reference will also be put. 2260 * 2261 * 1: if we successfully resolved nd->last and found it to be a symlink 2262 * that needs to be followed. "path" will be populated with the path 2263 * to the link, and nd->path will *not* be put. 2264 */ 2265 static int 2266 mountpoint_last(struct nameidata *nd, struct path *path) 2267 { 2268 int error = 0; 2269 struct dentry *dentry; 2270 struct dentry *dir = nd->path.dentry; 2271 2272 /* If we're in rcuwalk, drop out of it to handle last component */ 2273 if (nd->flags & LOOKUP_RCU) { 2274 if (unlazy_walk(nd, NULL)) { 2275 error = -ECHILD; 2276 goto out; 2277 } 2278 } 2279 2280 nd->flags &= ~LOOKUP_PARENT; 2281 2282 if (unlikely(nd->last_type != LAST_NORM)) { 2283 error = handle_dots(nd, nd->last_type); 2284 if (error) 2285 goto out; 2286 dentry = dget(nd->path.dentry); 2287 goto done; 2288 } 2289 2290 mutex_lock(&dir->d_inode->i_mutex); 2291 dentry = d_lookup(dir, &nd->last); 2292 if (!dentry) { 2293 /* 2294 * No cached dentry. Mounted dentries are pinned in the cache, 2295 * so that means that this dentry is probably a symlink or the 2296 * path doesn't actually point to a mounted dentry. 2297 */ 2298 dentry = d_alloc(dir, &nd->last); 2299 if (!dentry) { 2300 error = -ENOMEM; 2301 mutex_unlock(&dir->d_inode->i_mutex); 2302 goto out; 2303 } 2304 dentry = lookup_real(dir->d_inode, dentry, nd->flags); 2305 error = PTR_ERR(dentry); 2306 if (IS_ERR(dentry)) { 2307 mutex_unlock(&dir->d_inode->i_mutex); 2308 goto out; 2309 } 2310 } 2311 mutex_unlock(&dir->d_inode->i_mutex); 2312 2313 done: 2314 if (d_is_negative(dentry)) { 2315 error = -ENOENT; 2316 dput(dentry); 2317 goto out; 2318 } 2319 path->dentry = dentry; 2320 path->mnt = nd->path.mnt; 2321 if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW)) 2322 return 1; 2323 mntget(path->mnt); 2324 follow_mount(path); 2325 error = 0; 2326 out: 2327 terminate_walk(nd); 2328 return error; 2329 } 2330 2331 /** 2332 * path_mountpoint - look up a path to be umounted 2333 * @dfd: directory file descriptor to start walk from 2334 * @name: full pathname to walk 2335 * @path: pointer to container for result 2336 * @flags: lookup flags 2337 * 2338 * Look up the given name, but don't attempt to revalidate the last component. 2339 * Returns 0 and "path" will be valid on success; Returns error otherwise. 2340 */ 2341 static int 2342 path_mountpoint(int dfd, const struct filename *name, struct path *path, 2343 unsigned int flags) 2344 { 2345 struct nameidata nd; 2346 int err; 2347 2348 err = path_init(dfd, name, flags, &nd); 2349 if (unlikely(err)) 2350 goto out; 2351 2352 err = mountpoint_last(&nd, path); 2353 while (err > 0) { 2354 void *cookie; 2355 struct path link = *path; 2356 err = may_follow_link(&link, &nd); 2357 if (unlikely(err)) 2358 break; 2359 nd.flags |= LOOKUP_PARENT; 2360 err = follow_link(&link, &nd, &cookie); 2361 if (err) 2362 break; 2363 err = mountpoint_last(&nd, path); 2364 put_link(&nd, &link, cookie); 2365 } 2366 out: 2367 path_cleanup(&nd); 2368 return err; 2369 } 2370 2371 static int 2372 filename_mountpoint(int dfd, struct filename *name, struct path *path, 2373 unsigned int flags) 2374 { 2375 int error; 2376 if (IS_ERR(name)) 2377 return PTR_ERR(name); 2378 error = path_mountpoint(dfd, name, path, flags | LOOKUP_RCU); 2379 if (unlikely(error == -ECHILD)) 2380 error = path_mountpoint(dfd, name, path, flags); 2381 if (unlikely(error == -ESTALE)) 2382 error = path_mountpoint(dfd, name, path, flags | LOOKUP_REVAL); 2383 if (likely(!error)) 2384 audit_inode(name, path->dentry, 0); 2385 putname(name); 2386 return error; 2387 } 2388 2389 /** 2390 * user_path_mountpoint_at - lookup a path from userland in order to umount it 2391 * @dfd: directory file descriptor 2392 * @name: pathname from userland 2393 * @flags: lookup flags 2394 * @path: pointer to container to hold result 2395 * 2396 * A umount is a special case for path walking. We're not actually interested 2397 * in the inode in this situation, and ESTALE errors can be a problem. We 2398 * simply want track down the dentry and vfsmount attached at the mountpoint 2399 * and avoid revalidating the last component. 2400 * 2401 * Returns 0 and populates "path" on success. 2402 */ 2403 int 2404 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags, 2405 struct path *path) 2406 { 2407 return filename_mountpoint(dfd, getname(name), path, flags); 2408 } 2409 2410 int 2411 kern_path_mountpoint(int dfd, const char *name, struct path *path, 2412 unsigned int flags) 2413 { 2414 return filename_mountpoint(dfd, getname_kernel(name), path, flags); 2415 } 2416 EXPORT_SYMBOL(kern_path_mountpoint); 2417 2418 int __check_sticky(struct inode *dir, struct inode *inode) 2419 { 2420 kuid_t fsuid = current_fsuid(); 2421 2422 if (uid_eq(inode->i_uid, fsuid)) 2423 return 0; 2424 if (uid_eq(dir->i_uid, fsuid)) 2425 return 0; 2426 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER); 2427 } 2428 EXPORT_SYMBOL(__check_sticky); 2429 2430 /* 2431 * Check whether we can remove a link victim from directory dir, check 2432 * whether the type of victim is right. 2433 * 1. We can't do it if dir is read-only (done in permission()) 2434 * 2. We should have write and exec permissions on dir 2435 * 3. We can't remove anything from append-only dir 2436 * 4. We can't do anything with immutable dir (done in permission()) 2437 * 5. If the sticky bit on dir is set we should either 2438 * a. be owner of dir, or 2439 * b. be owner of victim, or 2440 * c. have CAP_FOWNER capability 2441 * 6. If the victim is append-only or immutable we can't do antyhing with 2442 * links pointing to it. 2443 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2444 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2445 * 9. We can't remove a root or mountpoint. 2446 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 2447 * nfs_async_unlink(). 2448 */ 2449 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir) 2450 { 2451 struct inode *inode = victim->d_inode; 2452 int error; 2453 2454 if (d_is_negative(victim)) 2455 return -ENOENT; 2456 BUG_ON(!inode); 2457 2458 BUG_ON(victim->d_parent->d_inode != dir); 2459 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2460 2461 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 2462 if (error) 2463 return error; 2464 if (IS_APPEND(dir)) 2465 return -EPERM; 2466 2467 if (check_sticky(dir, inode) || IS_APPEND(inode) || 2468 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode)) 2469 return -EPERM; 2470 if (isdir) { 2471 if (!d_is_dir(victim)) 2472 return -ENOTDIR; 2473 if (IS_ROOT(victim)) 2474 return -EBUSY; 2475 } else if (d_is_dir(victim)) 2476 return -EISDIR; 2477 if (IS_DEADDIR(dir)) 2478 return -ENOENT; 2479 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2480 return -EBUSY; 2481 return 0; 2482 } 2483 2484 /* Check whether we can create an object with dentry child in directory 2485 * dir. 2486 * 1. We can't do it if child already exists (open has special treatment for 2487 * this case, but since we are inlined it's OK) 2488 * 2. We can't do it if dir is read-only (done in permission()) 2489 * 3. We should have write and exec permissions on dir 2490 * 4. We can't do it if dir is immutable (done in permission()) 2491 */ 2492 static inline int may_create(struct inode *dir, struct dentry *child) 2493 { 2494 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 2495 if (child->d_inode) 2496 return -EEXIST; 2497 if (IS_DEADDIR(dir)) 2498 return -ENOENT; 2499 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 2500 } 2501 2502 /* 2503 * p1 and p2 should be directories on the same fs. 2504 */ 2505 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2506 { 2507 struct dentry *p; 2508 2509 if (p1 == p2) { 2510 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2511 return NULL; 2512 } 2513 2514 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2515 2516 p = d_ancestor(p2, p1); 2517 if (p) { 2518 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT); 2519 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD); 2520 return p; 2521 } 2522 2523 p = d_ancestor(p1, p2); 2524 if (p) { 2525 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2526 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 2527 return p; 2528 } 2529 2530 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2531 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT2); 2532 return NULL; 2533 } 2534 EXPORT_SYMBOL(lock_rename); 2535 2536 void unlock_rename(struct dentry *p1, struct dentry *p2) 2537 { 2538 mutex_unlock(&p1->d_inode->i_mutex); 2539 if (p1 != p2) { 2540 mutex_unlock(&p2->d_inode->i_mutex); 2541 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2542 } 2543 } 2544 EXPORT_SYMBOL(unlock_rename); 2545 2546 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2547 bool want_excl) 2548 { 2549 int error = may_create(dir, dentry); 2550 if (error) 2551 return error; 2552 2553 if (!dir->i_op->create) 2554 return -EACCES; /* shouldn't it be ENOSYS? */ 2555 mode &= S_IALLUGO; 2556 mode |= S_IFREG; 2557 error = security_inode_create(dir, dentry, mode); 2558 if (error) 2559 return error; 2560 error = dir->i_op->create(dir, dentry, mode, want_excl); 2561 if (!error) 2562 fsnotify_create(dir, dentry); 2563 return error; 2564 } 2565 EXPORT_SYMBOL(vfs_create); 2566 2567 static int may_open(struct path *path, int acc_mode, int flag) 2568 { 2569 struct dentry *dentry = path->dentry; 2570 struct inode *inode = dentry->d_inode; 2571 int error; 2572 2573 /* O_PATH? */ 2574 if (!acc_mode) 2575 return 0; 2576 2577 if (!inode) 2578 return -ENOENT; 2579 2580 switch (inode->i_mode & S_IFMT) { 2581 case S_IFLNK: 2582 return -ELOOP; 2583 case S_IFDIR: 2584 if (acc_mode & MAY_WRITE) 2585 return -EISDIR; 2586 break; 2587 case S_IFBLK: 2588 case S_IFCHR: 2589 if (path->mnt->mnt_flags & MNT_NODEV) 2590 return -EACCES; 2591 /*FALLTHRU*/ 2592 case S_IFIFO: 2593 case S_IFSOCK: 2594 flag &= ~O_TRUNC; 2595 break; 2596 } 2597 2598 error = inode_permission(inode, acc_mode); 2599 if (error) 2600 return error; 2601 2602 /* 2603 * An append-only file must be opened in append mode for writing. 2604 */ 2605 if (IS_APPEND(inode)) { 2606 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2607 return -EPERM; 2608 if (flag & O_TRUNC) 2609 return -EPERM; 2610 } 2611 2612 /* O_NOATIME can only be set by the owner or superuser */ 2613 if (flag & O_NOATIME && !inode_owner_or_capable(inode)) 2614 return -EPERM; 2615 2616 return 0; 2617 } 2618 2619 static int handle_truncate(struct file *filp) 2620 { 2621 struct path *path = &filp->f_path; 2622 struct inode *inode = path->dentry->d_inode; 2623 int error = get_write_access(inode); 2624 if (error) 2625 return error; 2626 /* 2627 * Refuse to truncate files with mandatory locks held on them. 2628 */ 2629 error = locks_verify_locked(filp); 2630 if (!error) 2631 error = security_path_truncate(path); 2632 if (!error) { 2633 error = do_truncate(path->dentry, 0, 2634 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 2635 filp); 2636 } 2637 put_write_access(inode); 2638 return error; 2639 } 2640 2641 static inline int open_to_namei_flags(int flag) 2642 { 2643 if ((flag & O_ACCMODE) == 3) 2644 flag--; 2645 return flag; 2646 } 2647 2648 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode) 2649 { 2650 int error = security_path_mknod(dir, dentry, mode, 0); 2651 if (error) 2652 return error; 2653 2654 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC); 2655 if (error) 2656 return error; 2657 2658 return security_inode_create(dir->dentry->d_inode, dentry, mode); 2659 } 2660 2661 /* 2662 * Attempt to atomically look up, create and open a file from a negative 2663 * dentry. 2664 * 2665 * Returns 0 if successful. The file will have been created and attached to 2666 * @file by the filesystem calling finish_open(). 2667 * 2668 * Returns 1 if the file was looked up only or didn't need creating. The 2669 * caller will need to perform the open themselves. @path will have been 2670 * updated to point to the new dentry. This may be negative. 2671 * 2672 * Returns an error code otherwise. 2673 */ 2674 static int atomic_open(struct nameidata *nd, struct dentry *dentry, 2675 struct path *path, struct file *file, 2676 const struct open_flags *op, 2677 bool got_write, bool need_lookup, 2678 int *opened) 2679 { 2680 struct inode *dir = nd->path.dentry->d_inode; 2681 unsigned open_flag = open_to_namei_flags(op->open_flag); 2682 umode_t mode; 2683 int error; 2684 int acc_mode; 2685 int create_error = 0; 2686 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 2687 bool excl; 2688 2689 BUG_ON(dentry->d_inode); 2690 2691 /* Don't create child dentry for a dead directory. */ 2692 if (unlikely(IS_DEADDIR(dir))) { 2693 error = -ENOENT; 2694 goto out; 2695 } 2696 2697 mode = op->mode; 2698 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir)) 2699 mode &= ~current_umask(); 2700 2701 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT); 2702 if (excl) 2703 open_flag &= ~O_TRUNC; 2704 2705 /* 2706 * Checking write permission is tricky, bacuse we don't know if we are 2707 * going to actually need it: O_CREAT opens should work as long as the 2708 * file exists. But checking existence breaks atomicity. The trick is 2709 * to check access and if not granted clear O_CREAT from the flags. 2710 * 2711 * Another problem is returing the "right" error value (e.g. for an 2712 * O_EXCL open we want to return EEXIST not EROFS). 2713 */ 2714 if (((open_flag & (O_CREAT | O_TRUNC)) || 2715 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) { 2716 if (!(open_flag & O_CREAT)) { 2717 /* 2718 * No O_CREATE -> atomicity not a requirement -> fall 2719 * back to lookup + open 2720 */ 2721 goto no_open; 2722 } else if (open_flag & (O_EXCL | O_TRUNC)) { 2723 /* Fall back and fail with the right error */ 2724 create_error = -EROFS; 2725 goto no_open; 2726 } else { 2727 /* No side effects, safe to clear O_CREAT */ 2728 create_error = -EROFS; 2729 open_flag &= ~O_CREAT; 2730 } 2731 } 2732 2733 if (open_flag & O_CREAT) { 2734 error = may_o_create(&nd->path, dentry, mode); 2735 if (error) { 2736 create_error = error; 2737 if (open_flag & O_EXCL) 2738 goto no_open; 2739 open_flag &= ~O_CREAT; 2740 } 2741 } 2742 2743 if (nd->flags & LOOKUP_DIRECTORY) 2744 open_flag |= O_DIRECTORY; 2745 2746 file->f_path.dentry = DENTRY_NOT_SET; 2747 file->f_path.mnt = nd->path.mnt; 2748 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode, 2749 opened); 2750 if (error < 0) { 2751 if (create_error && error == -ENOENT) 2752 error = create_error; 2753 goto out; 2754 } 2755 2756 if (error) { /* returned 1, that is */ 2757 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 2758 error = -EIO; 2759 goto out; 2760 } 2761 if (file->f_path.dentry) { 2762 dput(dentry); 2763 dentry = file->f_path.dentry; 2764 } 2765 if (*opened & FILE_CREATED) 2766 fsnotify_create(dir, dentry); 2767 if (!dentry->d_inode) { 2768 WARN_ON(*opened & FILE_CREATED); 2769 if (create_error) { 2770 error = create_error; 2771 goto out; 2772 } 2773 } else { 2774 if (excl && !(*opened & FILE_CREATED)) { 2775 error = -EEXIST; 2776 goto out; 2777 } 2778 } 2779 goto looked_up; 2780 } 2781 2782 /* 2783 * We didn't have the inode before the open, so check open permission 2784 * here. 2785 */ 2786 acc_mode = op->acc_mode; 2787 if (*opened & FILE_CREATED) { 2788 WARN_ON(!(open_flag & O_CREAT)); 2789 fsnotify_create(dir, dentry); 2790 acc_mode = MAY_OPEN; 2791 } 2792 error = may_open(&file->f_path, acc_mode, open_flag); 2793 if (error) 2794 fput(file); 2795 2796 out: 2797 dput(dentry); 2798 return error; 2799 2800 no_open: 2801 if (need_lookup) { 2802 dentry = lookup_real(dir, dentry, nd->flags); 2803 if (IS_ERR(dentry)) 2804 return PTR_ERR(dentry); 2805 2806 if (create_error) { 2807 int open_flag = op->open_flag; 2808 2809 error = create_error; 2810 if ((open_flag & O_EXCL)) { 2811 if (!dentry->d_inode) 2812 goto out; 2813 } else if (!dentry->d_inode) { 2814 goto out; 2815 } else if ((open_flag & O_TRUNC) && 2816 d_is_reg(dentry)) { 2817 goto out; 2818 } 2819 /* will fail later, go on to get the right error */ 2820 } 2821 } 2822 looked_up: 2823 path->dentry = dentry; 2824 path->mnt = nd->path.mnt; 2825 return 1; 2826 } 2827 2828 /* 2829 * Look up and maybe create and open the last component. 2830 * 2831 * Must be called with i_mutex held on parent. 2832 * 2833 * Returns 0 if the file was successfully atomically created (if necessary) and 2834 * opened. In this case the file will be returned attached to @file. 2835 * 2836 * Returns 1 if the file was not completely opened at this time, though lookups 2837 * and creations will have been performed and the dentry returned in @path will 2838 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't 2839 * specified then a negative dentry may be returned. 2840 * 2841 * An error code is returned otherwise. 2842 * 2843 * FILE_CREATE will be set in @*opened if the dentry was created and will be 2844 * cleared otherwise prior to returning. 2845 */ 2846 static int lookup_open(struct nameidata *nd, struct path *path, 2847 struct file *file, 2848 const struct open_flags *op, 2849 bool got_write, int *opened) 2850 { 2851 struct dentry *dir = nd->path.dentry; 2852 struct inode *dir_inode = dir->d_inode; 2853 struct dentry *dentry; 2854 int error; 2855 bool need_lookup; 2856 2857 *opened &= ~FILE_CREATED; 2858 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup); 2859 if (IS_ERR(dentry)) 2860 return PTR_ERR(dentry); 2861 2862 /* Cached positive dentry: will open in f_op->open */ 2863 if (!need_lookup && dentry->d_inode) 2864 goto out_no_open; 2865 2866 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) { 2867 return atomic_open(nd, dentry, path, file, op, got_write, 2868 need_lookup, opened); 2869 } 2870 2871 if (need_lookup) { 2872 BUG_ON(dentry->d_inode); 2873 2874 dentry = lookup_real(dir_inode, dentry, nd->flags); 2875 if (IS_ERR(dentry)) 2876 return PTR_ERR(dentry); 2877 } 2878 2879 /* Negative dentry, just create the file */ 2880 if (!dentry->d_inode && (op->open_flag & O_CREAT)) { 2881 umode_t mode = op->mode; 2882 if (!IS_POSIXACL(dir->d_inode)) 2883 mode &= ~current_umask(); 2884 /* 2885 * This write is needed to ensure that a 2886 * rw->ro transition does not occur between 2887 * the time when the file is created and when 2888 * a permanent write count is taken through 2889 * the 'struct file' in finish_open(). 2890 */ 2891 if (!got_write) { 2892 error = -EROFS; 2893 goto out_dput; 2894 } 2895 *opened |= FILE_CREATED; 2896 error = security_path_mknod(&nd->path, dentry, mode, 0); 2897 if (error) 2898 goto out_dput; 2899 error = vfs_create(dir->d_inode, dentry, mode, 2900 nd->flags & LOOKUP_EXCL); 2901 if (error) 2902 goto out_dput; 2903 } 2904 out_no_open: 2905 path->dentry = dentry; 2906 path->mnt = nd->path.mnt; 2907 return 1; 2908 2909 out_dput: 2910 dput(dentry); 2911 return error; 2912 } 2913 2914 /* 2915 * Handle the last step of open() 2916 */ 2917 static int do_last(struct nameidata *nd, struct path *path, 2918 struct file *file, const struct open_flags *op, 2919 int *opened, struct filename *name) 2920 { 2921 struct dentry *dir = nd->path.dentry; 2922 int open_flag = op->open_flag; 2923 bool will_truncate = (open_flag & O_TRUNC) != 0; 2924 bool got_write = false; 2925 int acc_mode = op->acc_mode; 2926 struct inode *inode; 2927 bool symlink_ok = false; 2928 struct path save_parent = { .dentry = NULL, .mnt = NULL }; 2929 bool retried = false; 2930 int error; 2931 2932 nd->flags &= ~LOOKUP_PARENT; 2933 nd->flags |= op->intent; 2934 2935 if (nd->last_type != LAST_NORM) { 2936 error = handle_dots(nd, nd->last_type); 2937 if (error) 2938 return error; 2939 goto finish_open; 2940 } 2941 2942 if (!(open_flag & O_CREAT)) { 2943 if (nd->last.name[nd->last.len]) 2944 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2945 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW)) 2946 symlink_ok = true; 2947 /* we _can_ be in RCU mode here */ 2948 error = lookup_fast(nd, path, &inode); 2949 if (likely(!error)) 2950 goto finish_lookup; 2951 2952 if (error < 0) 2953 goto out; 2954 2955 BUG_ON(nd->inode != dir->d_inode); 2956 } else { 2957 /* create side of things */ 2958 /* 2959 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED 2960 * has been cleared when we got to the last component we are 2961 * about to look up 2962 */ 2963 error = complete_walk(nd); 2964 if (error) 2965 return error; 2966 2967 audit_inode(name, dir, LOOKUP_PARENT); 2968 error = -EISDIR; 2969 /* trailing slashes? */ 2970 if (nd->last.name[nd->last.len]) 2971 goto out; 2972 } 2973 2974 retry_lookup: 2975 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 2976 error = mnt_want_write(nd->path.mnt); 2977 if (!error) 2978 got_write = true; 2979 /* 2980 * do _not_ fail yet - we might not need that or fail with 2981 * a different error; let lookup_open() decide; we'll be 2982 * dropping this one anyway. 2983 */ 2984 } 2985 mutex_lock(&dir->d_inode->i_mutex); 2986 error = lookup_open(nd, path, file, op, got_write, opened); 2987 mutex_unlock(&dir->d_inode->i_mutex); 2988 2989 if (error <= 0) { 2990 if (error) 2991 goto out; 2992 2993 if ((*opened & FILE_CREATED) || 2994 !S_ISREG(file_inode(file)->i_mode)) 2995 will_truncate = false; 2996 2997 audit_inode(name, file->f_path.dentry, 0); 2998 goto opened; 2999 } 3000 3001 if (*opened & FILE_CREATED) { 3002 /* Don't check for write permission, don't truncate */ 3003 open_flag &= ~O_TRUNC; 3004 will_truncate = false; 3005 acc_mode = MAY_OPEN; 3006 path_to_nameidata(path, nd); 3007 goto finish_open_created; 3008 } 3009 3010 /* 3011 * create/update audit record if it already exists. 3012 */ 3013 if (d_is_positive(path->dentry)) 3014 audit_inode(name, path->dentry, 0); 3015 3016 /* 3017 * If atomic_open() acquired write access it is dropped now due to 3018 * possible mount and symlink following (this might be optimized away if 3019 * necessary...) 3020 */ 3021 if (got_write) { 3022 mnt_drop_write(nd->path.mnt); 3023 got_write = false; 3024 } 3025 3026 error = -EEXIST; 3027 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT)) 3028 goto exit_dput; 3029 3030 error = follow_managed(path, nd->flags); 3031 if (error < 0) 3032 goto exit_dput; 3033 3034 if (error) 3035 nd->flags |= LOOKUP_JUMPED; 3036 3037 BUG_ON(nd->flags & LOOKUP_RCU); 3038 inode = path->dentry->d_inode; 3039 finish_lookup: 3040 /* we _can_ be in RCU mode here */ 3041 error = -ENOENT; 3042 if (d_is_negative(path->dentry)) { 3043 path_to_nameidata(path, nd); 3044 goto out; 3045 } 3046 3047 if (should_follow_link(path->dentry, !symlink_ok)) { 3048 if (nd->flags & LOOKUP_RCU) { 3049 if (unlikely(nd->path.mnt != path->mnt || 3050 unlazy_walk(nd, path->dentry))) { 3051 error = -ECHILD; 3052 goto out; 3053 } 3054 } 3055 BUG_ON(inode != path->dentry->d_inode); 3056 return 1; 3057 } 3058 3059 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) { 3060 path_to_nameidata(path, nd); 3061 } else { 3062 save_parent.dentry = nd->path.dentry; 3063 save_parent.mnt = mntget(path->mnt); 3064 nd->path.dentry = path->dentry; 3065 3066 } 3067 nd->inode = inode; 3068 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */ 3069 finish_open: 3070 error = complete_walk(nd); 3071 if (error) { 3072 path_put(&save_parent); 3073 return error; 3074 } 3075 audit_inode(name, nd->path.dentry, 0); 3076 error = -EISDIR; 3077 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry)) 3078 goto out; 3079 error = -ENOTDIR; 3080 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3081 goto out; 3082 if (!d_is_reg(nd->path.dentry)) 3083 will_truncate = false; 3084 3085 if (will_truncate) { 3086 error = mnt_want_write(nd->path.mnt); 3087 if (error) 3088 goto out; 3089 got_write = true; 3090 } 3091 finish_open_created: 3092 error = may_open(&nd->path, acc_mode, open_flag); 3093 if (error) 3094 goto out; 3095 3096 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */ 3097 error = vfs_open(&nd->path, file, current_cred()); 3098 if (!error) { 3099 *opened |= FILE_OPENED; 3100 } else { 3101 if (error == -EOPENSTALE) 3102 goto stale_open; 3103 goto out; 3104 } 3105 opened: 3106 error = open_check_o_direct(file); 3107 if (error) 3108 goto exit_fput; 3109 error = ima_file_check(file, op->acc_mode, *opened); 3110 if (error) 3111 goto exit_fput; 3112 3113 if (will_truncate) { 3114 error = handle_truncate(file); 3115 if (error) 3116 goto exit_fput; 3117 } 3118 out: 3119 if (got_write) 3120 mnt_drop_write(nd->path.mnt); 3121 path_put(&save_parent); 3122 terminate_walk(nd); 3123 return error; 3124 3125 exit_dput: 3126 path_put_conditional(path, nd); 3127 goto out; 3128 exit_fput: 3129 fput(file); 3130 goto out; 3131 3132 stale_open: 3133 /* If no saved parent or already retried then can't retry */ 3134 if (!save_parent.dentry || retried) 3135 goto out; 3136 3137 BUG_ON(save_parent.dentry != dir); 3138 path_put(&nd->path); 3139 nd->path = save_parent; 3140 nd->inode = dir->d_inode; 3141 save_parent.mnt = NULL; 3142 save_parent.dentry = NULL; 3143 if (got_write) { 3144 mnt_drop_write(nd->path.mnt); 3145 got_write = false; 3146 } 3147 retried = true; 3148 goto retry_lookup; 3149 } 3150 3151 static int do_tmpfile(int dfd, struct filename *pathname, 3152 struct nameidata *nd, int flags, 3153 const struct open_flags *op, 3154 struct file *file, int *opened) 3155 { 3156 static const struct qstr name = QSTR_INIT("/", 1); 3157 struct dentry *dentry, *child; 3158 struct inode *dir; 3159 int error = path_lookupat(dfd, pathname, 3160 flags | LOOKUP_DIRECTORY, nd); 3161 if (unlikely(error)) 3162 return error; 3163 error = mnt_want_write(nd->path.mnt); 3164 if (unlikely(error)) 3165 goto out; 3166 /* we want directory to be writable */ 3167 error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC); 3168 if (error) 3169 goto out2; 3170 dentry = nd->path.dentry; 3171 dir = dentry->d_inode; 3172 if (!dir->i_op->tmpfile) { 3173 error = -EOPNOTSUPP; 3174 goto out2; 3175 } 3176 child = d_alloc(dentry, &name); 3177 if (unlikely(!child)) { 3178 error = -ENOMEM; 3179 goto out2; 3180 } 3181 nd->flags &= ~LOOKUP_DIRECTORY; 3182 nd->flags |= op->intent; 3183 dput(nd->path.dentry); 3184 nd->path.dentry = child; 3185 error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode); 3186 if (error) 3187 goto out2; 3188 audit_inode(pathname, nd->path.dentry, 0); 3189 /* Don't check for other permissions, the inode was just created */ 3190 error = may_open(&nd->path, MAY_OPEN, op->open_flag); 3191 if (error) 3192 goto out2; 3193 file->f_path.mnt = nd->path.mnt; 3194 error = finish_open(file, nd->path.dentry, NULL, opened); 3195 if (error) 3196 goto out2; 3197 error = open_check_o_direct(file); 3198 if (error) { 3199 fput(file); 3200 } else if (!(op->open_flag & O_EXCL)) { 3201 struct inode *inode = file_inode(file); 3202 spin_lock(&inode->i_lock); 3203 inode->i_state |= I_LINKABLE; 3204 spin_unlock(&inode->i_lock); 3205 } 3206 out2: 3207 mnt_drop_write(nd->path.mnt); 3208 out: 3209 path_put(&nd->path); 3210 return error; 3211 } 3212 3213 static struct file *path_openat(int dfd, struct filename *pathname, 3214 struct nameidata *nd, const struct open_flags *op, int flags) 3215 { 3216 struct file *file; 3217 struct path path; 3218 int opened = 0; 3219 int error; 3220 3221 file = get_empty_filp(); 3222 if (IS_ERR(file)) 3223 return file; 3224 3225 file->f_flags = op->open_flag; 3226 3227 if (unlikely(file->f_flags & __O_TMPFILE)) { 3228 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened); 3229 goto out; 3230 } 3231 3232 error = path_init(dfd, pathname, flags, nd); 3233 if (unlikely(error)) 3234 goto out; 3235 3236 error = do_last(nd, &path, file, op, &opened, pathname); 3237 while (unlikely(error > 0)) { /* trailing symlink */ 3238 struct path link = path; 3239 void *cookie; 3240 if (!(nd->flags & LOOKUP_FOLLOW)) { 3241 path_put_conditional(&path, nd); 3242 path_put(&nd->path); 3243 error = -ELOOP; 3244 break; 3245 } 3246 error = may_follow_link(&link, nd); 3247 if (unlikely(error)) 3248 break; 3249 nd->flags |= LOOKUP_PARENT; 3250 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3251 error = follow_link(&link, nd, &cookie); 3252 if (unlikely(error)) 3253 break; 3254 error = do_last(nd, &path, file, op, &opened, pathname); 3255 put_link(nd, &link, cookie); 3256 } 3257 out: 3258 path_cleanup(nd); 3259 if (!(opened & FILE_OPENED)) { 3260 BUG_ON(!error); 3261 put_filp(file); 3262 } 3263 if (unlikely(error)) { 3264 if (error == -EOPENSTALE) { 3265 if (flags & LOOKUP_RCU) 3266 error = -ECHILD; 3267 else 3268 error = -ESTALE; 3269 } 3270 file = ERR_PTR(error); 3271 } 3272 return file; 3273 } 3274 3275 struct file *do_filp_open(int dfd, struct filename *pathname, 3276 const struct open_flags *op) 3277 { 3278 struct nameidata nd; 3279 int flags = op->lookup_flags; 3280 struct file *filp; 3281 3282 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU); 3283 if (unlikely(filp == ERR_PTR(-ECHILD))) 3284 filp = path_openat(dfd, pathname, &nd, op, flags); 3285 if (unlikely(filp == ERR_PTR(-ESTALE))) 3286 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL); 3287 return filp; 3288 } 3289 3290 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 3291 const char *name, const struct open_flags *op) 3292 { 3293 struct nameidata nd; 3294 struct file *file; 3295 struct filename *filename; 3296 int flags = op->lookup_flags | LOOKUP_ROOT; 3297 3298 nd.root.mnt = mnt; 3299 nd.root.dentry = dentry; 3300 3301 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN) 3302 return ERR_PTR(-ELOOP); 3303 3304 filename = getname_kernel(name); 3305 if (unlikely(IS_ERR(filename))) 3306 return ERR_CAST(filename); 3307 3308 file = path_openat(-1, filename, &nd, op, flags | LOOKUP_RCU); 3309 if (unlikely(file == ERR_PTR(-ECHILD))) 3310 file = path_openat(-1, filename, &nd, op, flags); 3311 if (unlikely(file == ERR_PTR(-ESTALE))) 3312 file = path_openat(-1, filename, &nd, op, flags | LOOKUP_REVAL); 3313 putname(filename); 3314 return file; 3315 } 3316 3317 static struct dentry *filename_create(int dfd, struct filename *name, 3318 struct path *path, unsigned int lookup_flags) 3319 { 3320 struct dentry *dentry = ERR_PTR(-EEXIST); 3321 struct nameidata nd; 3322 int err2; 3323 int error; 3324 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY); 3325 3326 /* 3327 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any 3328 * other flags passed in are ignored! 3329 */ 3330 lookup_flags &= LOOKUP_REVAL; 3331 3332 error = filename_lookup(dfd, name, LOOKUP_PARENT|lookup_flags, &nd); 3333 if (error) 3334 return ERR_PTR(error); 3335 3336 /* 3337 * Yucky last component or no last component at all? 3338 * (foo/., foo/.., /////) 3339 */ 3340 if (nd.last_type != LAST_NORM) 3341 goto out; 3342 nd.flags &= ~LOOKUP_PARENT; 3343 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL; 3344 3345 /* don't fail immediately if it's r/o, at least try to report other errors */ 3346 err2 = mnt_want_write(nd.path.mnt); 3347 /* 3348 * Do the final lookup. 3349 */ 3350 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3351 dentry = lookup_hash(&nd); 3352 if (IS_ERR(dentry)) 3353 goto unlock; 3354 3355 error = -EEXIST; 3356 if (d_is_positive(dentry)) 3357 goto fail; 3358 3359 /* 3360 * Special case - lookup gave negative, but... we had foo/bar/ 3361 * From the vfs_mknod() POV we just have a negative dentry - 3362 * all is fine. Let's be bastards - you had / on the end, you've 3363 * been asking for (non-existent) directory. -ENOENT for you. 3364 */ 3365 if (unlikely(!is_dir && nd.last.name[nd.last.len])) { 3366 error = -ENOENT; 3367 goto fail; 3368 } 3369 if (unlikely(err2)) { 3370 error = err2; 3371 goto fail; 3372 } 3373 *path = nd.path; 3374 return dentry; 3375 fail: 3376 dput(dentry); 3377 dentry = ERR_PTR(error); 3378 unlock: 3379 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 3380 if (!err2) 3381 mnt_drop_write(nd.path.mnt); 3382 out: 3383 path_put(&nd.path); 3384 return dentry; 3385 } 3386 3387 struct dentry *kern_path_create(int dfd, const char *pathname, 3388 struct path *path, unsigned int lookup_flags) 3389 { 3390 struct filename *filename = getname_kernel(pathname); 3391 struct dentry *res; 3392 3393 if (IS_ERR(filename)) 3394 return ERR_CAST(filename); 3395 res = filename_create(dfd, filename, path, lookup_flags); 3396 putname(filename); 3397 return res; 3398 } 3399 EXPORT_SYMBOL(kern_path_create); 3400 3401 void done_path_create(struct path *path, struct dentry *dentry) 3402 { 3403 dput(dentry); 3404 mutex_unlock(&path->dentry->d_inode->i_mutex); 3405 mnt_drop_write(path->mnt); 3406 path_put(path); 3407 } 3408 EXPORT_SYMBOL(done_path_create); 3409 3410 struct dentry *user_path_create(int dfd, const char __user *pathname, 3411 struct path *path, unsigned int lookup_flags) 3412 { 3413 struct filename *tmp = getname(pathname); 3414 struct dentry *res; 3415 if (IS_ERR(tmp)) 3416 return ERR_CAST(tmp); 3417 res = filename_create(dfd, tmp, path, lookup_flags); 3418 putname(tmp); 3419 return res; 3420 } 3421 EXPORT_SYMBOL(user_path_create); 3422 3423 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 3424 { 3425 int error = may_create(dir, dentry); 3426 3427 if (error) 3428 return error; 3429 3430 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 3431 return -EPERM; 3432 3433 if (!dir->i_op->mknod) 3434 return -EPERM; 3435 3436 error = devcgroup_inode_mknod(mode, dev); 3437 if (error) 3438 return error; 3439 3440 error = security_inode_mknod(dir, dentry, mode, dev); 3441 if (error) 3442 return error; 3443 3444 error = dir->i_op->mknod(dir, dentry, mode, dev); 3445 if (!error) 3446 fsnotify_create(dir, dentry); 3447 return error; 3448 } 3449 EXPORT_SYMBOL(vfs_mknod); 3450 3451 static int may_mknod(umode_t mode) 3452 { 3453 switch (mode & S_IFMT) { 3454 case S_IFREG: 3455 case S_IFCHR: 3456 case S_IFBLK: 3457 case S_IFIFO: 3458 case S_IFSOCK: 3459 case 0: /* zero mode translates to S_IFREG */ 3460 return 0; 3461 case S_IFDIR: 3462 return -EPERM; 3463 default: 3464 return -EINVAL; 3465 } 3466 } 3467 3468 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3469 unsigned, dev) 3470 { 3471 struct dentry *dentry; 3472 struct path path; 3473 int error; 3474 unsigned int lookup_flags = 0; 3475 3476 error = may_mknod(mode); 3477 if (error) 3478 return error; 3479 retry: 3480 dentry = user_path_create(dfd, filename, &path, lookup_flags); 3481 if (IS_ERR(dentry)) 3482 return PTR_ERR(dentry); 3483 3484 if (!IS_POSIXACL(path.dentry->d_inode)) 3485 mode &= ~current_umask(); 3486 error = security_path_mknod(&path, dentry, mode, dev); 3487 if (error) 3488 goto out; 3489 switch (mode & S_IFMT) { 3490 case 0: case S_IFREG: 3491 error = vfs_create(path.dentry->d_inode,dentry,mode,true); 3492 break; 3493 case S_IFCHR: case S_IFBLK: 3494 error = vfs_mknod(path.dentry->d_inode,dentry,mode, 3495 new_decode_dev(dev)); 3496 break; 3497 case S_IFIFO: case S_IFSOCK: 3498 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0); 3499 break; 3500 } 3501 out: 3502 done_path_create(&path, dentry); 3503 if (retry_estale(error, lookup_flags)) { 3504 lookup_flags |= LOOKUP_REVAL; 3505 goto retry; 3506 } 3507 return error; 3508 } 3509 3510 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3511 { 3512 return sys_mknodat(AT_FDCWD, filename, mode, dev); 3513 } 3514 3515 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 3516 { 3517 int error = may_create(dir, dentry); 3518 unsigned max_links = dir->i_sb->s_max_links; 3519 3520 if (error) 3521 return error; 3522 3523 if (!dir->i_op->mkdir) 3524 return -EPERM; 3525 3526 mode &= (S_IRWXUGO|S_ISVTX); 3527 error = security_inode_mkdir(dir, dentry, mode); 3528 if (error) 3529 return error; 3530 3531 if (max_links && dir->i_nlink >= max_links) 3532 return -EMLINK; 3533 3534 error = dir->i_op->mkdir(dir, dentry, mode); 3535 if (!error) 3536 fsnotify_mkdir(dir, dentry); 3537 return error; 3538 } 3539 EXPORT_SYMBOL(vfs_mkdir); 3540 3541 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 3542 { 3543 struct dentry *dentry; 3544 struct path path; 3545 int error; 3546 unsigned int lookup_flags = LOOKUP_DIRECTORY; 3547 3548 retry: 3549 dentry = user_path_create(dfd, pathname, &path, lookup_flags); 3550 if (IS_ERR(dentry)) 3551 return PTR_ERR(dentry); 3552 3553 if (!IS_POSIXACL(path.dentry->d_inode)) 3554 mode &= ~current_umask(); 3555 error = security_path_mkdir(&path, dentry, mode); 3556 if (!error) 3557 error = vfs_mkdir(path.dentry->d_inode, dentry, mode); 3558 done_path_create(&path, dentry); 3559 if (retry_estale(error, lookup_flags)) { 3560 lookup_flags |= LOOKUP_REVAL; 3561 goto retry; 3562 } 3563 return error; 3564 } 3565 3566 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 3567 { 3568 return sys_mkdirat(AT_FDCWD, pathname, mode); 3569 } 3570 3571 /* 3572 * The dentry_unhash() helper will try to drop the dentry early: we 3573 * should have a usage count of 1 if we're the only user of this 3574 * dentry, and if that is true (possibly after pruning the dcache), 3575 * then we drop the dentry now. 3576 * 3577 * A low-level filesystem can, if it choses, legally 3578 * do a 3579 * 3580 * if (!d_unhashed(dentry)) 3581 * return -EBUSY; 3582 * 3583 * if it cannot handle the case of removing a directory 3584 * that is still in use by something else.. 3585 */ 3586 void dentry_unhash(struct dentry *dentry) 3587 { 3588 shrink_dcache_parent(dentry); 3589 spin_lock(&dentry->d_lock); 3590 if (dentry->d_lockref.count == 1) 3591 __d_drop(dentry); 3592 spin_unlock(&dentry->d_lock); 3593 } 3594 EXPORT_SYMBOL(dentry_unhash); 3595 3596 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 3597 { 3598 int error = may_delete(dir, dentry, 1); 3599 3600 if (error) 3601 return error; 3602 3603 if (!dir->i_op->rmdir) 3604 return -EPERM; 3605 3606 dget(dentry); 3607 mutex_lock(&dentry->d_inode->i_mutex); 3608 3609 error = -EBUSY; 3610 if (is_local_mountpoint(dentry)) 3611 goto out; 3612 3613 error = security_inode_rmdir(dir, dentry); 3614 if (error) 3615 goto out; 3616 3617 shrink_dcache_parent(dentry); 3618 error = dir->i_op->rmdir(dir, dentry); 3619 if (error) 3620 goto out; 3621 3622 dentry->d_inode->i_flags |= S_DEAD; 3623 dont_mount(dentry); 3624 detach_mounts(dentry); 3625 3626 out: 3627 mutex_unlock(&dentry->d_inode->i_mutex); 3628 dput(dentry); 3629 if (!error) 3630 d_delete(dentry); 3631 return error; 3632 } 3633 EXPORT_SYMBOL(vfs_rmdir); 3634 3635 static long do_rmdir(int dfd, const char __user *pathname) 3636 { 3637 int error = 0; 3638 struct filename *name; 3639 struct dentry *dentry; 3640 struct nameidata nd; 3641 unsigned int lookup_flags = 0; 3642 retry: 3643 name = user_path_parent(dfd, pathname, &nd, lookup_flags); 3644 if (IS_ERR(name)) 3645 return PTR_ERR(name); 3646 3647 switch(nd.last_type) { 3648 case LAST_DOTDOT: 3649 error = -ENOTEMPTY; 3650 goto exit1; 3651 case LAST_DOT: 3652 error = -EINVAL; 3653 goto exit1; 3654 case LAST_ROOT: 3655 error = -EBUSY; 3656 goto exit1; 3657 } 3658 3659 nd.flags &= ~LOOKUP_PARENT; 3660 error = mnt_want_write(nd.path.mnt); 3661 if (error) 3662 goto exit1; 3663 3664 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3665 dentry = lookup_hash(&nd); 3666 error = PTR_ERR(dentry); 3667 if (IS_ERR(dentry)) 3668 goto exit2; 3669 if (!dentry->d_inode) { 3670 error = -ENOENT; 3671 goto exit3; 3672 } 3673 error = security_path_rmdir(&nd.path, dentry); 3674 if (error) 3675 goto exit3; 3676 error = vfs_rmdir(nd.path.dentry->d_inode, dentry); 3677 exit3: 3678 dput(dentry); 3679 exit2: 3680 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 3681 mnt_drop_write(nd.path.mnt); 3682 exit1: 3683 path_put(&nd.path); 3684 putname(name); 3685 if (retry_estale(error, lookup_flags)) { 3686 lookup_flags |= LOOKUP_REVAL; 3687 goto retry; 3688 } 3689 return error; 3690 } 3691 3692 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 3693 { 3694 return do_rmdir(AT_FDCWD, pathname); 3695 } 3696 3697 /** 3698 * vfs_unlink - unlink a filesystem object 3699 * @dir: parent directory 3700 * @dentry: victim 3701 * @delegated_inode: returns victim inode, if the inode is delegated. 3702 * 3703 * The caller must hold dir->i_mutex. 3704 * 3705 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 3706 * return a reference to the inode in delegated_inode. The caller 3707 * should then break the delegation on that inode and retry. Because 3708 * breaking a delegation may take a long time, the caller should drop 3709 * dir->i_mutex before doing so. 3710 * 3711 * Alternatively, a caller may pass NULL for delegated_inode. This may 3712 * be appropriate for callers that expect the underlying filesystem not 3713 * to be NFS exported. 3714 */ 3715 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode) 3716 { 3717 struct inode *target = dentry->d_inode; 3718 int error = may_delete(dir, dentry, 0); 3719 3720 if (error) 3721 return error; 3722 3723 if (!dir->i_op->unlink) 3724 return -EPERM; 3725 3726 mutex_lock(&target->i_mutex); 3727 if (is_local_mountpoint(dentry)) 3728 error = -EBUSY; 3729 else { 3730 error = security_inode_unlink(dir, dentry); 3731 if (!error) { 3732 error = try_break_deleg(target, delegated_inode); 3733 if (error) 3734 goto out; 3735 error = dir->i_op->unlink(dir, dentry); 3736 if (!error) { 3737 dont_mount(dentry); 3738 detach_mounts(dentry); 3739 } 3740 } 3741 } 3742 out: 3743 mutex_unlock(&target->i_mutex); 3744 3745 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 3746 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 3747 fsnotify_link_count(target); 3748 d_delete(dentry); 3749 } 3750 3751 return error; 3752 } 3753 EXPORT_SYMBOL(vfs_unlink); 3754 3755 /* 3756 * Make sure that the actual truncation of the file will occur outside its 3757 * directory's i_mutex. Truncate can take a long time if there is a lot of 3758 * writeout happening, and we don't want to prevent access to the directory 3759 * while waiting on the I/O. 3760 */ 3761 static long do_unlinkat(int dfd, const char __user *pathname) 3762 { 3763 int error; 3764 struct filename *name; 3765 struct dentry *dentry; 3766 struct nameidata nd; 3767 struct inode *inode = NULL; 3768 struct inode *delegated_inode = NULL; 3769 unsigned int lookup_flags = 0; 3770 retry: 3771 name = user_path_parent(dfd, pathname, &nd, lookup_flags); 3772 if (IS_ERR(name)) 3773 return PTR_ERR(name); 3774 3775 error = -EISDIR; 3776 if (nd.last_type != LAST_NORM) 3777 goto exit1; 3778 3779 nd.flags &= ~LOOKUP_PARENT; 3780 error = mnt_want_write(nd.path.mnt); 3781 if (error) 3782 goto exit1; 3783 retry_deleg: 3784 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3785 dentry = lookup_hash(&nd); 3786 error = PTR_ERR(dentry); 3787 if (!IS_ERR(dentry)) { 3788 /* Why not before? Because we want correct error value */ 3789 if (nd.last.name[nd.last.len]) 3790 goto slashes; 3791 inode = dentry->d_inode; 3792 if (d_is_negative(dentry)) 3793 goto slashes; 3794 ihold(inode); 3795 error = security_path_unlink(&nd.path, dentry); 3796 if (error) 3797 goto exit2; 3798 error = vfs_unlink(nd.path.dentry->d_inode, dentry, &delegated_inode); 3799 exit2: 3800 dput(dentry); 3801 } 3802 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 3803 if (inode) 3804 iput(inode); /* truncate the inode here */ 3805 inode = NULL; 3806 if (delegated_inode) { 3807 error = break_deleg_wait(&delegated_inode); 3808 if (!error) 3809 goto retry_deleg; 3810 } 3811 mnt_drop_write(nd.path.mnt); 3812 exit1: 3813 path_put(&nd.path); 3814 putname(name); 3815 if (retry_estale(error, lookup_flags)) { 3816 lookup_flags |= LOOKUP_REVAL; 3817 inode = NULL; 3818 goto retry; 3819 } 3820 return error; 3821 3822 slashes: 3823 if (d_is_negative(dentry)) 3824 error = -ENOENT; 3825 else if (d_is_dir(dentry)) 3826 error = -EISDIR; 3827 else 3828 error = -ENOTDIR; 3829 goto exit2; 3830 } 3831 3832 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 3833 { 3834 if ((flag & ~AT_REMOVEDIR) != 0) 3835 return -EINVAL; 3836 3837 if (flag & AT_REMOVEDIR) 3838 return do_rmdir(dfd, pathname); 3839 3840 return do_unlinkat(dfd, pathname); 3841 } 3842 3843 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 3844 { 3845 return do_unlinkat(AT_FDCWD, pathname); 3846 } 3847 3848 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 3849 { 3850 int error = may_create(dir, dentry); 3851 3852 if (error) 3853 return error; 3854 3855 if (!dir->i_op->symlink) 3856 return -EPERM; 3857 3858 error = security_inode_symlink(dir, dentry, oldname); 3859 if (error) 3860 return error; 3861 3862 error = dir->i_op->symlink(dir, dentry, oldname); 3863 if (!error) 3864 fsnotify_create(dir, dentry); 3865 return error; 3866 } 3867 EXPORT_SYMBOL(vfs_symlink); 3868 3869 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 3870 int, newdfd, const char __user *, newname) 3871 { 3872 int error; 3873 struct filename *from; 3874 struct dentry *dentry; 3875 struct path path; 3876 unsigned int lookup_flags = 0; 3877 3878 from = getname(oldname); 3879 if (IS_ERR(from)) 3880 return PTR_ERR(from); 3881 retry: 3882 dentry = user_path_create(newdfd, newname, &path, lookup_flags); 3883 error = PTR_ERR(dentry); 3884 if (IS_ERR(dentry)) 3885 goto out_putname; 3886 3887 error = security_path_symlink(&path, dentry, from->name); 3888 if (!error) 3889 error = vfs_symlink(path.dentry->d_inode, dentry, from->name); 3890 done_path_create(&path, dentry); 3891 if (retry_estale(error, lookup_flags)) { 3892 lookup_flags |= LOOKUP_REVAL; 3893 goto retry; 3894 } 3895 out_putname: 3896 putname(from); 3897 return error; 3898 } 3899 3900 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 3901 { 3902 return sys_symlinkat(oldname, AT_FDCWD, newname); 3903 } 3904 3905 /** 3906 * vfs_link - create a new link 3907 * @old_dentry: object to be linked 3908 * @dir: new parent 3909 * @new_dentry: where to create the new link 3910 * @delegated_inode: returns inode needing a delegation break 3911 * 3912 * The caller must hold dir->i_mutex 3913 * 3914 * If vfs_link discovers a delegation on the to-be-linked file in need 3915 * of breaking, it will return -EWOULDBLOCK and return a reference to the 3916 * inode in delegated_inode. The caller should then break the delegation 3917 * and retry. Because breaking a delegation may take a long time, the 3918 * caller should drop the i_mutex before doing so. 3919 * 3920 * Alternatively, a caller may pass NULL for delegated_inode. This may 3921 * be appropriate for callers that expect the underlying filesystem not 3922 * to be NFS exported. 3923 */ 3924 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode) 3925 { 3926 struct inode *inode = old_dentry->d_inode; 3927 unsigned max_links = dir->i_sb->s_max_links; 3928 int error; 3929 3930 if (!inode) 3931 return -ENOENT; 3932 3933 error = may_create(dir, new_dentry); 3934 if (error) 3935 return error; 3936 3937 if (dir->i_sb != inode->i_sb) 3938 return -EXDEV; 3939 3940 /* 3941 * A link to an append-only or immutable file cannot be created. 3942 */ 3943 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 3944 return -EPERM; 3945 if (!dir->i_op->link) 3946 return -EPERM; 3947 if (S_ISDIR(inode->i_mode)) 3948 return -EPERM; 3949 3950 error = security_inode_link(old_dentry, dir, new_dentry); 3951 if (error) 3952 return error; 3953 3954 mutex_lock(&inode->i_mutex); 3955 /* Make sure we don't allow creating hardlink to an unlinked file */ 3956 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 3957 error = -ENOENT; 3958 else if (max_links && inode->i_nlink >= max_links) 3959 error = -EMLINK; 3960 else { 3961 error = try_break_deleg(inode, delegated_inode); 3962 if (!error) 3963 error = dir->i_op->link(old_dentry, dir, new_dentry); 3964 } 3965 3966 if (!error && (inode->i_state & I_LINKABLE)) { 3967 spin_lock(&inode->i_lock); 3968 inode->i_state &= ~I_LINKABLE; 3969 spin_unlock(&inode->i_lock); 3970 } 3971 mutex_unlock(&inode->i_mutex); 3972 if (!error) 3973 fsnotify_link(dir, inode, new_dentry); 3974 return error; 3975 } 3976 EXPORT_SYMBOL(vfs_link); 3977 3978 /* 3979 * Hardlinks are often used in delicate situations. We avoid 3980 * security-related surprises by not following symlinks on the 3981 * newname. --KAB 3982 * 3983 * We don't follow them on the oldname either to be compatible 3984 * with linux 2.0, and to avoid hard-linking to directories 3985 * and other special files. --ADM 3986 */ 3987 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 3988 int, newdfd, const char __user *, newname, int, flags) 3989 { 3990 struct dentry *new_dentry; 3991 struct path old_path, new_path; 3992 struct inode *delegated_inode = NULL; 3993 int how = 0; 3994 int error; 3995 3996 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 3997 return -EINVAL; 3998 /* 3999 * To use null names we require CAP_DAC_READ_SEARCH 4000 * This ensures that not everyone will be able to create 4001 * handlink using the passed filedescriptor. 4002 */ 4003 if (flags & AT_EMPTY_PATH) { 4004 if (!capable(CAP_DAC_READ_SEARCH)) 4005 return -ENOENT; 4006 how = LOOKUP_EMPTY; 4007 } 4008 4009 if (flags & AT_SYMLINK_FOLLOW) 4010 how |= LOOKUP_FOLLOW; 4011 retry: 4012 error = user_path_at(olddfd, oldname, how, &old_path); 4013 if (error) 4014 return error; 4015 4016 new_dentry = user_path_create(newdfd, newname, &new_path, 4017 (how & LOOKUP_REVAL)); 4018 error = PTR_ERR(new_dentry); 4019 if (IS_ERR(new_dentry)) 4020 goto out; 4021 4022 error = -EXDEV; 4023 if (old_path.mnt != new_path.mnt) 4024 goto out_dput; 4025 error = may_linkat(&old_path); 4026 if (unlikely(error)) 4027 goto out_dput; 4028 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4029 if (error) 4030 goto out_dput; 4031 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode); 4032 out_dput: 4033 done_path_create(&new_path, new_dentry); 4034 if (delegated_inode) { 4035 error = break_deleg_wait(&delegated_inode); 4036 if (!error) { 4037 path_put(&old_path); 4038 goto retry; 4039 } 4040 } 4041 if (retry_estale(error, how)) { 4042 path_put(&old_path); 4043 how |= LOOKUP_REVAL; 4044 goto retry; 4045 } 4046 out: 4047 path_put(&old_path); 4048 4049 return error; 4050 } 4051 4052 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4053 { 4054 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4055 } 4056 4057 /** 4058 * vfs_rename - rename a filesystem object 4059 * @old_dir: parent of source 4060 * @old_dentry: source 4061 * @new_dir: parent of destination 4062 * @new_dentry: destination 4063 * @delegated_inode: returns an inode needing a delegation break 4064 * @flags: rename flags 4065 * 4066 * The caller must hold multiple mutexes--see lock_rename()). 4067 * 4068 * If vfs_rename discovers a delegation in need of breaking at either 4069 * the source or destination, it will return -EWOULDBLOCK and return a 4070 * reference to the inode in delegated_inode. The caller should then 4071 * break the delegation and retry. Because breaking a delegation may 4072 * take a long time, the caller should drop all locks before doing 4073 * so. 4074 * 4075 * Alternatively, a caller may pass NULL for delegated_inode. This may 4076 * be appropriate for callers that expect the underlying filesystem not 4077 * to be NFS exported. 4078 * 4079 * The worst of all namespace operations - renaming directory. "Perverted" 4080 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4081 * Problems: 4082 * a) we can get into loop creation. 4083 * b) race potential - two innocent renames can create a loop together. 4084 * That's where 4.4 screws up. Current fix: serialization on 4085 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4086 * story. 4087 * c) we have to lock _four_ objects - parents and victim (if it exists), 4088 * and source (if it is not a directory). 4089 * And that - after we got ->i_mutex on parents (until then we don't know 4090 * whether the target exists). Solution: try to be smart with locking 4091 * order for inodes. We rely on the fact that tree topology may change 4092 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4093 * move will be locked. Thus we can rank directories by the tree 4094 * (ancestors first) and rank all non-directories after them. 4095 * That works since everybody except rename does "lock parent, lookup, 4096 * lock child" and rename is under ->s_vfs_rename_mutex. 4097 * HOWEVER, it relies on the assumption that any object with ->lookup() 4098 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4099 * we'd better make sure that there's no link(2) for them. 4100 * d) conversion from fhandle to dentry may come in the wrong moment - when 4101 * we are removing the target. Solution: we will have to grab ->i_mutex 4102 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4103 * ->i_mutex on parents, which works but leads to some truly excessive 4104 * locking]. 4105 */ 4106 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 4107 struct inode *new_dir, struct dentry *new_dentry, 4108 struct inode **delegated_inode, unsigned int flags) 4109 { 4110 int error; 4111 bool is_dir = d_is_dir(old_dentry); 4112 const unsigned char *old_name; 4113 struct inode *source = old_dentry->d_inode; 4114 struct inode *target = new_dentry->d_inode; 4115 bool new_is_dir = false; 4116 unsigned max_links = new_dir->i_sb->s_max_links; 4117 4118 if (source == target) 4119 return 0; 4120 4121 error = may_delete(old_dir, old_dentry, is_dir); 4122 if (error) 4123 return error; 4124 4125 if (!target) { 4126 error = may_create(new_dir, new_dentry); 4127 } else { 4128 new_is_dir = d_is_dir(new_dentry); 4129 4130 if (!(flags & RENAME_EXCHANGE)) 4131 error = may_delete(new_dir, new_dentry, is_dir); 4132 else 4133 error = may_delete(new_dir, new_dentry, new_is_dir); 4134 } 4135 if (error) 4136 return error; 4137 4138 if (!old_dir->i_op->rename && !old_dir->i_op->rename2) 4139 return -EPERM; 4140 4141 if (flags && !old_dir->i_op->rename2) 4142 return -EINVAL; 4143 4144 /* 4145 * If we are going to change the parent - check write permissions, 4146 * we'll need to flip '..'. 4147 */ 4148 if (new_dir != old_dir) { 4149 if (is_dir) { 4150 error = inode_permission(source, MAY_WRITE); 4151 if (error) 4152 return error; 4153 } 4154 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4155 error = inode_permission(target, MAY_WRITE); 4156 if (error) 4157 return error; 4158 } 4159 } 4160 4161 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 4162 flags); 4163 if (error) 4164 return error; 4165 4166 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 4167 dget(new_dentry); 4168 if (!is_dir || (flags & RENAME_EXCHANGE)) 4169 lock_two_nondirectories(source, target); 4170 else if (target) 4171 mutex_lock(&target->i_mutex); 4172 4173 error = -EBUSY; 4174 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 4175 goto out; 4176 4177 if (max_links && new_dir != old_dir) { 4178 error = -EMLINK; 4179 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 4180 goto out; 4181 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 4182 old_dir->i_nlink >= max_links) 4183 goto out; 4184 } 4185 if (is_dir && !(flags & RENAME_EXCHANGE) && target) 4186 shrink_dcache_parent(new_dentry); 4187 if (!is_dir) { 4188 error = try_break_deleg(source, delegated_inode); 4189 if (error) 4190 goto out; 4191 } 4192 if (target && !new_is_dir) { 4193 error = try_break_deleg(target, delegated_inode); 4194 if (error) 4195 goto out; 4196 } 4197 if (!old_dir->i_op->rename2) { 4198 error = old_dir->i_op->rename(old_dir, old_dentry, 4199 new_dir, new_dentry); 4200 } else { 4201 WARN_ON(old_dir->i_op->rename != NULL); 4202 error = old_dir->i_op->rename2(old_dir, old_dentry, 4203 new_dir, new_dentry, flags); 4204 } 4205 if (error) 4206 goto out; 4207 4208 if (!(flags & RENAME_EXCHANGE) && target) { 4209 if (is_dir) 4210 target->i_flags |= S_DEAD; 4211 dont_mount(new_dentry); 4212 detach_mounts(new_dentry); 4213 } 4214 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 4215 if (!(flags & RENAME_EXCHANGE)) 4216 d_move(old_dentry, new_dentry); 4217 else 4218 d_exchange(old_dentry, new_dentry); 4219 } 4220 out: 4221 if (!is_dir || (flags & RENAME_EXCHANGE)) 4222 unlock_two_nondirectories(source, target); 4223 else if (target) 4224 mutex_unlock(&target->i_mutex); 4225 dput(new_dentry); 4226 if (!error) { 4227 fsnotify_move(old_dir, new_dir, old_name, is_dir, 4228 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 4229 if (flags & RENAME_EXCHANGE) { 4230 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name, 4231 new_is_dir, NULL, new_dentry); 4232 } 4233 } 4234 fsnotify_oldname_free(old_name); 4235 4236 return error; 4237 } 4238 EXPORT_SYMBOL(vfs_rename); 4239 4240 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 4241 int, newdfd, const char __user *, newname, unsigned int, flags) 4242 { 4243 struct dentry *old_dir, *new_dir; 4244 struct dentry *old_dentry, *new_dentry; 4245 struct dentry *trap; 4246 struct nameidata oldnd, newnd; 4247 struct inode *delegated_inode = NULL; 4248 struct filename *from; 4249 struct filename *to; 4250 unsigned int lookup_flags = 0; 4251 bool should_retry = false; 4252 int error; 4253 4254 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4255 return -EINVAL; 4256 4257 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 4258 (flags & RENAME_EXCHANGE)) 4259 return -EINVAL; 4260 4261 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD)) 4262 return -EPERM; 4263 4264 retry: 4265 from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags); 4266 if (IS_ERR(from)) { 4267 error = PTR_ERR(from); 4268 goto exit; 4269 } 4270 4271 to = user_path_parent(newdfd, newname, &newnd, lookup_flags); 4272 if (IS_ERR(to)) { 4273 error = PTR_ERR(to); 4274 goto exit1; 4275 } 4276 4277 error = -EXDEV; 4278 if (oldnd.path.mnt != newnd.path.mnt) 4279 goto exit2; 4280 4281 old_dir = oldnd.path.dentry; 4282 error = -EBUSY; 4283 if (oldnd.last_type != LAST_NORM) 4284 goto exit2; 4285 4286 new_dir = newnd.path.dentry; 4287 if (flags & RENAME_NOREPLACE) 4288 error = -EEXIST; 4289 if (newnd.last_type != LAST_NORM) 4290 goto exit2; 4291 4292 error = mnt_want_write(oldnd.path.mnt); 4293 if (error) 4294 goto exit2; 4295 4296 oldnd.flags &= ~LOOKUP_PARENT; 4297 newnd.flags &= ~LOOKUP_PARENT; 4298 if (!(flags & RENAME_EXCHANGE)) 4299 newnd.flags |= LOOKUP_RENAME_TARGET; 4300 4301 retry_deleg: 4302 trap = lock_rename(new_dir, old_dir); 4303 4304 old_dentry = lookup_hash(&oldnd); 4305 error = PTR_ERR(old_dentry); 4306 if (IS_ERR(old_dentry)) 4307 goto exit3; 4308 /* source must exist */ 4309 error = -ENOENT; 4310 if (d_is_negative(old_dentry)) 4311 goto exit4; 4312 new_dentry = lookup_hash(&newnd); 4313 error = PTR_ERR(new_dentry); 4314 if (IS_ERR(new_dentry)) 4315 goto exit4; 4316 error = -EEXIST; 4317 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 4318 goto exit5; 4319 if (flags & RENAME_EXCHANGE) { 4320 error = -ENOENT; 4321 if (d_is_negative(new_dentry)) 4322 goto exit5; 4323 4324 if (!d_is_dir(new_dentry)) { 4325 error = -ENOTDIR; 4326 if (newnd.last.name[newnd.last.len]) 4327 goto exit5; 4328 } 4329 } 4330 /* unless the source is a directory trailing slashes give -ENOTDIR */ 4331 if (!d_is_dir(old_dentry)) { 4332 error = -ENOTDIR; 4333 if (oldnd.last.name[oldnd.last.len]) 4334 goto exit5; 4335 if (!(flags & RENAME_EXCHANGE) && newnd.last.name[newnd.last.len]) 4336 goto exit5; 4337 } 4338 /* source should not be ancestor of target */ 4339 error = -EINVAL; 4340 if (old_dentry == trap) 4341 goto exit5; 4342 /* target should not be an ancestor of source */ 4343 if (!(flags & RENAME_EXCHANGE)) 4344 error = -ENOTEMPTY; 4345 if (new_dentry == trap) 4346 goto exit5; 4347 4348 error = security_path_rename(&oldnd.path, old_dentry, 4349 &newnd.path, new_dentry, flags); 4350 if (error) 4351 goto exit5; 4352 error = vfs_rename(old_dir->d_inode, old_dentry, 4353 new_dir->d_inode, new_dentry, 4354 &delegated_inode, flags); 4355 exit5: 4356 dput(new_dentry); 4357 exit4: 4358 dput(old_dentry); 4359 exit3: 4360 unlock_rename(new_dir, old_dir); 4361 if (delegated_inode) { 4362 error = break_deleg_wait(&delegated_inode); 4363 if (!error) 4364 goto retry_deleg; 4365 } 4366 mnt_drop_write(oldnd.path.mnt); 4367 exit2: 4368 if (retry_estale(error, lookup_flags)) 4369 should_retry = true; 4370 path_put(&newnd.path); 4371 putname(to); 4372 exit1: 4373 path_put(&oldnd.path); 4374 putname(from); 4375 if (should_retry) { 4376 should_retry = false; 4377 lookup_flags |= LOOKUP_REVAL; 4378 goto retry; 4379 } 4380 exit: 4381 return error; 4382 } 4383 4384 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 4385 int, newdfd, const char __user *, newname) 4386 { 4387 return sys_renameat2(olddfd, oldname, newdfd, newname, 0); 4388 } 4389 4390 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 4391 { 4392 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4393 } 4394 4395 int vfs_whiteout(struct inode *dir, struct dentry *dentry) 4396 { 4397 int error = may_create(dir, dentry); 4398 if (error) 4399 return error; 4400 4401 if (!dir->i_op->mknod) 4402 return -EPERM; 4403 4404 return dir->i_op->mknod(dir, dentry, 4405 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 4406 } 4407 EXPORT_SYMBOL(vfs_whiteout); 4408 4409 int readlink_copy(char __user *buffer, int buflen, const char *link) 4410 { 4411 int len = PTR_ERR(link); 4412 if (IS_ERR(link)) 4413 goto out; 4414 4415 len = strlen(link); 4416 if (len > (unsigned) buflen) 4417 len = buflen; 4418 if (copy_to_user(buffer, link, len)) 4419 len = -EFAULT; 4420 out: 4421 return len; 4422 } 4423 EXPORT_SYMBOL(readlink_copy); 4424 4425 /* 4426 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 4427 * have ->follow_link() touching nd only in nd_set_link(). Using (or not 4428 * using) it for any given inode is up to filesystem. 4429 */ 4430 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4431 { 4432 struct nameidata nd; 4433 void *cookie; 4434 int res; 4435 4436 nd.depth = 0; 4437 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd); 4438 if (IS_ERR(cookie)) 4439 return PTR_ERR(cookie); 4440 4441 res = readlink_copy(buffer, buflen, nd_get_link(&nd)); 4442 if (dentry->d_inode->i_op->put_link) 4443 dentry->d_inode->i_op->put_link(dentry, &nd, cookie); 4444 return res; 4445 } 4446 EXPORT_SYMBOL(generic_readlink); 4447 4448 /* get the link contents into pagecache */ 4449 static char *page_getlink(struct dentry * dentry, struct page **ppage) 4450 { 4451 char *kaddr; 4452 struct page *page; 4453 struct address_space *mapping = dentry->d_inode->i_mapping; 4454 page = read_mapping_page(mapping, 0, NULL); 4455 if (IS_ERR(page)) 4456 return (char*)page; 4457 *ppage = page; 4458 kaddr = kmap(page); 4459 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1); 4460 return kaddr; 4461 } 4462 4463 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4464 { 4465 struct page *page = NULL; 4466 int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page)); 4467 if (page) { 4468 kunmap(page); 4469 page_cache_release(page); 4470 } 4471 return res; 4472 } 4473 EXPORT_SYMBOL(page_readlink); 4474 4475 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd) 4476 { 4477 struct page *page = NULL; 4478 nd_set_link(nd, page_getlink(dentry, &page)); 4479 return page; 4480 } 4481 EXPORT_SYMBOL(page_follow_link_light); 4482 4483 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 4484 { 4485 struct page *page = cookie; 4486 4487 if (page) { 4488 kunmap(page); 4489 page_cache_release(page); 4490 } 4491 } 4492 EXPORT_SYMBOL(page_put_link); 4493 4494 /* 4495 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 4496 */ 4497 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 4498 { 4499 struct address_space *mapping = inode->i_mapping; 4500 struct page *page; 4501 void *fsdata; 4502 int err; 4503 char *kaddr; 4504 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE; 4505 if (nofs) 4506 flags |= AOP_FLAG_NOFS; 4507 4508 retry: 4509 err = pagecache_write_begin(NULL, mapping, 0, len-1, 4510 flags, &page, &fsdata); 4511 if (err) 4512 goto fail; 4513 4514 kaddr = kmap_atomic(page); 4515 memcpy(kaddr, symname, len-1); 4516 kunmap_atomic(kaddr); 4517 4518 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 4519 page, fsdata); 4520 if (err < 0) 4521 goto fail; 4522 if (err < len-1) 4523 goto retry; 4524 4525 mark_inode_dirty(inode); 4526 return 0; 4527 fail: 4528 return err; 4529 } 4530 EXPORT_SYMBOL(__page_symlink); 4531 4532 int page_symlink(struct inode *inode, const char *symname, int len) 4533 { 4534 return __page_symlink(inode, symname, len, 4535 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS)); 4536 } 4537 EXPORT_SYMBOL(page_symlink); 4538 4539 const struct inode_operations page_symlink_inode_operations = { 4540 .readlink = generic_readlink, 4541 .follow_link = page_follow_link_light, 4542 .put_link = page_put_link, 4543 }; 4544 EXPORT_SYMBOL(page_symlink_inode_operations); 4545