1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/namei.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * Some corrections by tytso. 10 */ 11 12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 13 * lookup logic. 14 */ 15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 16 */ 17 18 #include <linux/init.h> 19 #include <linux/export.h> 20 #include <linux/kernel.h> 21 #include <linux/slab.h> 22 #include <linux/fs.h> 23 #include <linux/namei.h> 24 #include <linux/pagemap.h> 25 #include <linux/fsnotify.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/ima.h> 29 #include <linux/syscalls.h> 30 #include <linux/mount.h> 31 #include <linux/audit.h> 32 #include <linux/capability.h> 33 #include <linux/file.h> 34 #include <linux/fcntl.h> 35 #include <linux/device_cgroup.h> 36 #include <linux/fs_struct.h> 37 #include <linux/posix_acl.h> 38 #include <linux/hash.h> 39 #include <linux/bitops.h> 40 #include <linux/init_task.h> 41 #include <linux/uaccess.h> 42 43 #include "internal.h" 44 #include "mount.h" 45 46 /* [Feb-1997 T. Schoebel-Theuer] 47 * Fundamental changes in the pathname lookup mechanisms (namei) 48 * were necessary because of omirr. The reason is that omirr needs 49 * to know the _real_ pathname, not the user-supplied one, in case 50 * of symlinks (and also when transname replacements occur). 51 * 52 * The new code replaces the old recursive symlink resolution with 53 * an iterative one (in case of non-nested symlink chains). It does 54 * this with calls to <fs>_follow_link(). 55 * As a side effect, dir_namei(), _namei() and follow_link() are now 56 * replaced with a single function lookup_dentry() that can handle all 57 * the special cases of the former code. 58 * 59 * With the new dcache, the pathname is stored at each inode, at least as 60 * long as the refcount of the inode is positive. As a side effect, the 61 * size of the dcache depends on the inode cache and thus is dynamic. 62 * 63 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 64 * resolution to correspond with current state of the code. 65 * 66 * Note that the symlink resolution is not *completely* iterative. 67 * There is still a significant amount of tail- and mid- recursion in 68 * the algorithm. Also, note that <fs>_readlink() is not used in 69 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 70 * may return different results than <fs>_follow_link(). Many virtual 71 * filesystems (including /proc) exhibit this behavior. 72 */ 73 74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 75 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 76 * and the name already exists in form of a symlink, try to create the new 77 * name indicated by the symlink. The old code always complained that the 78 * name already exists, due to not following the symlink even if its target 79 * is nonexistent. The new semantics affects also mknod() and link() when 80 * the name is a symlink pointing to a non-existent name. 81 * 82 * I don't know which semantics is the right one, since I have no access 83 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 84 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 85 * "old" one. Personally, I think the new semantics is much more logical. 86 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 87 * file does succeed in both HP-UX and SunOs, but not in Solaris 88 * and in the old Linux semantics. 89 */ 90 91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 92 * semantics. See the comments in "open_namei" and "do_link" below. 93 * 94 * [10-Sep-98 Alan Modra] Another symlink change. 95 */ 96 97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 98 * inside the path - always follow. 99 * in the last component in creation/removal/renaming - never follow. 100 * if LOOKUP_FOLLOW passed - follow. 101 * if the pathname has trailing slashes - follow. 102 * otherwise - don't follow. 103 * (applied in that order). 104 * 105 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 106 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 107 * During the 2.4 we need to fix the userland stuff depending on it - 108 * hopefully we will be able to get rid of that wart in 2.5. So far only 109 * XEmacs seems to be relying on it... 110 */ 111 /* 112 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 113 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 114 * any extra contention... 115 */ 116 117 /* In order to reduce some races, while at the same time doing additional 118 * checking and hopefully speeding things up, we copy filenames to the 119 * kernel data space before using them.. 120 * 121 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 122 * PATH_MAX includes the nul terminator --RR. 123 */ 124 125 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) 126 127 struct filename * 128 getname_flags(const char __user *filename, int flags, int *empty) 129 { 130 struct filename *result; 131 char *kname; 132 int len; 133 134 result = audit_reusename(filename); 135 if (result) 136 return result; 137 138 result = __getname(); 139 if (unlikely(!result)) 140 return ERR_PTR(-ENOMEM); 141 142 /* 143 * First, try to embed the struct filename inside the names_cache 144 * allocation 145 */ 146 kname = (char *)result->iname; 147 result->name = kname; 148 149 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); 150 if (unlikely(len < 0)) { 151 __putname(result); 152 return ERR_PTR(len); 153 } 154 155 /* 156 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 157 * separate struct filename so we can dedicate the entire 158 * names_cache allocation for the pathname, and re-do the copy from 159 * userland. 160 */ 161 if (unlikely(len == EMBEDDED_NAME_MAX)) { 162 const size_t size = offsetof(struct filename, iname[1]); 163 kname = (char *)result; 164 165 /* 166 * size is chosen that way we to guarantee that 167 * result->iname[0] is within the same object and that 168 * kname can't be equal to result->iname, no matter what. 169 */ 170 result = kzalloc(size, GFP_KERNEL); 171 if (unlikely(!result)) { 172 __putname(kname); 173 return ERR_PTR(-ENOMEM); 174 } 175 result->name = kname; 176 len = strncpy_from_user(kname, filename, PATH_MAX); 177 if (unlikely(len < 0)) { 178 __putname(kname); 179 kfree(result); 180 return ERR_PTR(len); 181 } 182 if (unlikely(len == PATH_MAX)) { 183 __putname(kname); 184 kfree(result); 185 return ERR_PTR(-ENAMETOOLONG); 186 } 187 } 188 189 result->refcnt = 1; 190 /* The empty path is special. */ 191 if (unlikely(!len)) { 192 if (empty) 193 *empty = 1; 194 if (!(flags & LOOKUP_EMPTY)) { 195 putname(result); 196 return ERR_PTR(-ENOENT); 197 } 198 } 199 200 result->uptr = filename; 201 result->aname = NULL; 202 audit_getname(result); 203 return result; 204 } 205 206 struct filename * 207 getname(const char __user * filename) 208 { 209 return getname_flags(filename, 0, NULL); 210 } 211 212 struct filename * 213 getname_kernel(const char * filename) 214 { 215 struct filename *result; 216 int len = strlen(filename) + 1; 217 218 result = __getname(); 219 if (unlikely(!result)) 220 return ERR_PTR(-ENOMEM); 221 222 if (len <= EMBEDDED_NAME_MAX) { 223 result->name = (char *)result->iname; 224 } else if (len <= PATH_MAX) { 225 const size_t size = offsetof(struct filename, iname[1]); 226 struct filename *tmp; 227 228 tmp = kmalloc(size, GFP_KERNEL); 229 if (unlikely(!tmp)) { 230 __putname(result); 231 return ERR_PTR(-ENOMEM); 232 } 233 tmp->name = (char *)result; 234 result = tmp; 235 } else { 236 __putname(result); 237 return ERR_PTR(-ENAMETOOLONG); 238 } 239 memcpy((char *)result->name, filename, len); 240 result->uptr = NULL; 241 result->aname = NULL; 242 result->refcnt = 1; 243 audit_getname(result); 244 245 return result; 246 } 247 248 void putname(struct filename *name) 249 { 250 BUG_ON(name->refcnt <= 0); 251 252 if (--name->refcnt > 0) 253 return; 254 255 if (name->name != name->iname) { 256 __putname(name->name); 257 kfree(name); 258 } else 259 __putname(name); 260 } 261 262 /** 263 * check_acl - perform ACL permission checking 264 * @mnt_userns: user namespace of the mount the inode was found from 265 * @inode: inode to check permissions on 266 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 267 * 268 * This function performs the ACL permission checking. Since this function 269 * retrieve POSIX acls it needs to know whether it is called from a blocking or 270 * non-blocking context and thus cares about the MAY_NOT_BLOCK bit. 271 * 272 * If the inode has been found through an idmapped mount the user namespace of 273 * the vfsmount must be passed through @mnt_userns. This function will then take 274 * care to map the inode according to @mnt_userns before checking permissions. 275 * On non-idmapped mounts or if permission checking is to be performed on the 276 * raw inode simply passs init_user_ns. 277 */ 278 static int check_acl(struct user_namespace *mnt_userns, 279 struct inode *inode, int mask) 280 { 281 #ifdef CONFIG_FS_POSIX_ACL 282 struct posix_acl *acl; 283 284 if (mask & MAY_NOT_BLOCK) { 285 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 286 if (!acl) 287 return -EAGAIN; 288 /* no ->get_acl() calls in RCU mode... */ 289 if (is_uncached_acl(acl)) 290 return -ECHILD; 291 return posix_acl_permission(mnt_userns, inode, acl, mask); 292 } 293 294 acl = get_acl(inode, ACL_TYPE_ACCESS); 295 if (IS_ERR(acl)) 296 return PTR_ERR(acl); 297 if (acl) { 298 int error = posix_acl_permission(mnt_userns, inode, acl, mask); 299 posix_acl_release(acl); 300 return error; 301 } 302 #endif 303 304 return -EAGAIN; 305 } 306 307 /** 308 * acl_permission_check - perform basic UNIX permission checking 309 * @mnt_userns: user namespace of the mount the inode was found from 310 * @inode: inode to check permissions on 311 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 312 * 313 * This function performs the basic UNIX permission checking. Since this 314 * function may retrieve POSIX acls it needs to know whether it is called from a 315 * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit. 316 * 317 * If the inode has been found through an idmapped mount the user namespace of 318 * the vfsmount must be passed through @mnt_userns. This function will then take 319 * care to map the inode according to @mnt_userns before checking permissions. 320 * On non-idmapped mounts or if permission checking is to be performed on the 321 * raw inode simply passs init_user_ns. 322 */ 323 static int acl_permission_check(struct user_namespace *mnt_userns, 324 struct inode *inode, int mask) 325 { 326 unsigned int mode = inode->i_mode; 327 kuid_t i_uid; 328 329 /* Are we the owner? If so, ACL's don't matter */ 330 i_uid = i_uid_into_mnt(mnt_userns, inode); 331 if (likely(uid_eq(current_fsuid(), i_uid))) { 332 mask &= 7; 333 mode >>= 6; 334 return (mask & ~mode) ? -EACCES : 0; 335 } 336 337 /* Do we have ACL's? */ 338 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 339 int error = check_acl(mnt_userns, inode, mask); 340 if (error != -EAGAIN) 341 return error; 342 } 343 344 /* Only RWX matters for group/other mode bits */ 345 mask &= 7; 346 347 /* 348 * Are the group permissions different from 349 * the other permissions in the bits we care 350 * about? Need to check group ownership if so. 351 */ 352 if (mask & (mode ^ (mode >> 3))) { 353 kgid_t kgid = i_gid_into_mnt(mnt_userns, inode); 354 if (in_group_p(kgid)) 355 mode >>= 3; 356 } 357 358 /* Bits in 'mode' clear that we require? */ 359 return (mask & ~mode) ? -EACCES : 0; 360 } 361 362 /** 363 * generic_permission - check for access rights on a Posix-like filesystem 364 * @mnt_userns: user namespace of the mount the inode was found from 365 * @inode: inode to check access rights for 366 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, 367 * %MAY_NOT_BLOCK ...) 368 * 369 * Used to check for read/write/execute permissions on a file. 370 * We use "fsuid" for this, letting us set arbitrary permissions 371 * for filesystem access without changing the "normal" uids which 372 * are used for other things. 373 * 374 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 375 * request cannot be satisfied (eg. requires blocking or too much complexity). 376 * It would then be called again in ref-walk mode. 377 * 378 * If the inode has been found through an idmapped mount the user namespace of 379 * the vfsmount must be passed through @mnt_userns. This function will then take 380 * care to map the inode according to @mnt_userns before checking permissions. 381 * On non-idmapped mounts or if permission checking is to be performed on the 382 * raw inode simply passs init_user_ns. 383 */ 384 int generic_permission(struct user_namespace *mnt_userns, struct inode *inode, 385 int mask) 386 { 387 int ret; 388 389 /* 390 * Do the basic permission checks. 391 */ 392 ret = acl_permission_check(mnt_userns, inode, mask); 393 if (ret != -EACCES) 394 return ret; 395 396 if (S_ISDIR(inode->i_mode)) { 397 /* DACs are overridable for directories */ 398 if (!(mask & MAY_WRITE)) 399 if (capable_wrt_inode_uidgid(mnt_userns, inode, 400 CAP_DAC_READ_SEARCH)) 401 return 0; 402 if (capable_wrt_inode_uidgid(mnt_userns, inode, 403 CAP_DAC_OVERRIDE)) 404 return 0; 405 return -EACCES; 406 } 407 408 /* 409 * Searching includes executable on directories, else just read. 410 */ 411 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 412 if (mask == MAY_READ) 413 if (capable_wrt_inode_uidgid(mnt_userns, inode, 414 CAP_DAC_READ_SEARCH)) 415 return 0; 416 /* 417 * Read/write DACs are always overridable. 418 * Executable DACs are overridable when there is 419 * at least one exec bit set. 420 */ 421 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 422 if (capable_wrt_inode_uidgid(mnt_userns, inode, 423 CAP_DAC_OVERRIDE)) 424 return 0; 425 426 return -EACCES; 427 } 428 EXPORT_SYMBOL(generic_permission); 429 430 /** 431 * do_inode_permission - UNIX permission checking 432 * @mnt_userns: user namespace of the mount the inode was found from 433 * @inode: inode to check permissions on 434 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 435 * 436 * We _really_ want to just do "generic_permission()" without 437 * even looking at the inode->i_op values. So we keep a cache 438 * flag in inode->i_opflags, that says "this has not special 439 * permission function, use the fast case". 440 */ 441 static inline int do_inode_permission(struct user_namespace *mnt_userns, 442 struct inode *inode, int mask) 443 { 444 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 445 if (likely(inode->i_op->permission)) 446 return inode->i_op->permission(mnt_userns, inode, mask); 447 448 /* This gets set once for the inode lifetime */ 449 spin_lock(&inode->i_lock); 450 inode->i_opflags |= IOP_FASTPERM; 451 spin_unlock(&inode->i_lock); 452 } 453 return generic_permission(mnt_userns, inode, mask); 454 } 455 456 /** 457 * sb_permission - Check superblock-level permissions 458 * @sb: Superblock of inode to check permission on 459 * @inode: Inode to check permission on 460 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 461 * 462 * Separate out file-system wide checks from inode-specific permission checks. 463 */ 464 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 465 { 466 if (unlikely(mask & MAY_WRITE)) { 467 umode_t mode = inode->i_mode; 468 469 /* Nobody gets write access to a read-only fs. */ 470 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 471 return -EROFS; 472 } 473 return 0; 474 } 475 476 /** 477 * inode_permission - Check for access rights to a given inode 478 * @mnt_userns: User namespace of the mount the inode was found from 479 * @inode: Inode to check permission on 480 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 481 * 482 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 483 * this, letting us set arbitrary permissions for filesystem access without 484 * changing the "normal" UIDs which are used for other things. 485 * 486 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 487 */ 488 int inode_permission(struct user_namespace *mnt_userns, 489 struct inode *inode, int mask) 490 { 491 int retval; 492 493 retval = sb_permission(inode->i_sb, inode, mask); 494 if (retval) 495 return retval; 496 497 if (unlikely(mask & MAY_WRITE)) { 498 /* 499 * Nobody gets write access to an immutable file. 500 */ 501 if (IS_IMMUTABLE(inode)) 502 return -EPERM; 503 504 /* 505 * Updating mtime will likely cause i_uid and i_gid to be 506 * written back improperly if their true value is unknown 507 * to the vfs. 508 */ 509 if (HAS_UNMAPPED_ID(mnt_userns, inode)) 510 return -EACCES; 511 } 512 513 retval = do_inode_permission(mnt_userns, inode, mask); 514 if (retval) 515 return retval; 516 517 retval = devcgroup_inode_permission(inode, mask); 518 if (retval) 519 return retval; 520 521 return security_inode_permission(inode, mask); 522 } 523 EXPORT_SYMBOL(inode_permission); 524 525 /** 526 * path_get - get a reference to a path 527 * @path: path to get the reference to 528 * 529 * Given a path increment the reference count to the dentry and the vfsmount. 530 */ 531 void path_get(const struct path *path) 532 { 533 mntget(path->mnt); 534 dget(path->dentry); 535 } 536 EXPORT_SYMBOL(path_get); 537 538 /** 539 * path_put - put a reference to a path 540 * @path: path to put the reference to 541 * 542 * Given a path decrement the reference count to the dentry and the vfsmount. 543 */ 544 void path_put(const struct path *path) 545 { 546 dput(path->dentry); 547 mntput(path->mnt); 548 } 549 EXPORT_SYMBOL(path_put); 550 551 #define EMBEDDED_LEVELS 2 552 struct nameidata { 553 struct path path; 554 struct qstr last; 555 struct path root; 556 struct inode *inode; /* path.dentry.d_inode */ 557 unsigned int flags, state; 558 unsigned seq, m_seq, r_seq; 559 int last_type; 560 unsigned depth; 561 int total_link_count; 562 struct saved { 563 struct path link; 564 struct delayed_call done; 565 const char *name; 566 unsigned seq; 567 } *stack, internal[EMBEDDED_LEVELS]; 568 struct filename *name; 569 struct nameidata *saved; 570 unsigned root_seq; 571 int dfd; 572 kuid_t dir_uid; 573 umode_t dir_mode; 574 } __randomize_layout; 575 576 #define ND_ROOT_PRESET 1 577 #define ND_ROOT_GRABBED 2 578 #define ND_JUMPED 4 579 580 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name) 581 { 582 struct nameidata *old = current->nameidata; 583 p->stack = p->internal; 584 p->depth = 0; 585 p->dfd = dfd; 586 p->name = name; 587 p->path.mnt = NULL; 588 p->path.dentry = NULL; 589 p->total_link_count = old ? old->total_link_count : 0; 590 p->saved = old; 591 current->nameidata = p; 592 } 593 594 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name, 595 const struct path *root) 596 { 597 __set_nameidata(p, dfd, name); 598 p->state = 0; 599 if (unlikely(root)) { 600 p->state = ND_ROOT_PRESET; 601 p->root = *root; 602 } 603 } 604 605 static void restore_nameidata(void) 606 { 607 struct nameidata *now = current->nameidata, *old = now->saved; 608 609 current->nameidata = old; 610 if (old) 611 old->total_link_count = now->total_link_count; 612 if (now->stack != now->internal) 613 kfree(now->stack); 614 } 615 616 static bool nd_alloc_stack(struct nameidata *nd) 617 { 618 struct saved *p; 619 620 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved), 621 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL); 622 if (unlikely(!p)) 623 return false; 624 memcpy(p, nd->internal, sizeof(nd->internal)); 625 nd->stack = p; 626 return true; 627 } 628 629 /** 630 * path_connected - Verify that a dentry is below mnt.mnt_root 631 * 632 * Rename can sometimes move a file or directory outside of a bind 633 * mount, path_connected allows those cases to be detected. 634 */ 635 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry) 636 { 637 struct super_block *sb = mnt->mnt_sb; 638 639 /* Bind mounts can have disconnected paths */ 640 if (mnt->mnt_root == sb->s_root) 641 return true; 642 643 return is_subdir(dentry, mnt->mnt_root); 644 } 645 646 static void drop_links(struct nameidata *nd) 647 { 648 int i = nd->depth; 649 while (i--) { 650 struct saved *last = nd->stack + i; 651 do_delayed_call(&last->done); 652 clear_delayed_call(&last->done); 653 } 654 } 655 656 static void terminate_walk(struct nameidata *nd) 657 { 658 drop_links(nd); 659 if (!(nd->flags & LOOKUP_RCU)) { 660 int i; 661 path_put(&nd->path); 662 for (i = 0; i < nd->depth; i++) 663 path_put(&nd->stack[i].link); 664 if (nd->state & ND_ROOT_GRABBED) { 665 path_put(&nd->root); 666 nd->state &= ~ND_ROOT_GRABBED; 667 } 668 } else { 669 nd->flags &= ~LOOKUP_RCU; 670 rcu_read_unlock(); 671 } 672 nd->depth = 0; 673 nd->path.mnt = NULL; 674 nd->path.dentry = NULL; 675 } 676 677 /* path_put is needed afterwards regardless of success or failure */ 678 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq) 679 { 680 int res = __legitimize_mnt(path->mnt, mseq); 681 if (unlikely(res)) { 682 if (res > 0) 683 path->mnt = NULL; 684 path->dentry = NULL; 685 return false; 686 } 687 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) { 688 path->dentry = NULL; 689 return false; 690 } 691 return !read_seqcount_retry(&path->dentry->d_seq, seq); 692 } 693 694 static inline bool legitimize_path(struct nameidata *nd, 695 struct path *path, unsigned seq) 696 { 697 return __legitimize_path(path, seq, nd->m_seq); 698 } 699 700 static bool legitimize_links(struct nameidata *nd) 701 { 702 int i; 703 if (unlikely(nd->flags & LOOKUP_CACHED)) { 704 drop_links(nd); 705 nd->depth = 0; 706 return false; 707 } 708 for (i = 0; i < nd->depth; i++) { 709 struct saved *last = nd->stack + i; 710 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) { 711 drop_links(nd); 712 nd->depth = i + 1; 713 return false; 714 } 715 } 716 return true; 717 } 718 719 static bool legitimize_root(struct nameidata *nd) 720 { 721 /* 722 * For scoped-lookups (where nd->root has been zeroed), we need to 723 * restart the whole lookup from scratch -- because set_root() is wrong 724 * for these lookups (nd->dfd is the root, not the filesystem root). 725 */ 726 if (!nd->root.mnt && (nd->flags & LOOKUP_IS_SCOPED)) 727 return false; 728 /* Nothing to do if nd->root is zero or is managed by the VFS user. */ 729 if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET)) 730 return true; 731 nd->state |= ND_ROOT_GRABBED; 732 return legitimize_path(nd, &nd->root, nd->root_seq); 733 } 734 735 /* 736 * Path walking has 2 modes, rcu-walk and ref-walk (see 737 * Documentation/filesystems/path-lookup.txt). In situations when we can't 738 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 739 * normal reference counts on dentries and vfsmounts to transition to ref-walk 740 * mode. Refcounts are grabbed at the last known good point before rcu-walk 741 * got stuck, so ref-walk may continue from there. If this is not successful 742 * (eg. a seqcount has changed), then failure is returned and it's up to caller 743 * to restart the path walk from the beginning in ref-walk mode. 744 */ 745 746 /** 747 * try_to_unlazy - try to switch to ref-walk mode. 748 * @nd: nameidata pathwalk data 749 * Returns: true on success, false on failure 750 * 751 * try_to_unlazy attempts to legitimize the current nd->path and nd->root 752 * for ref-walk mode. 753 * Must be called from rcu-walk context. 754 * Nothing should touch nameidata between try_to_unlazy() failure and 755 * terminate_walk(). 756 */ 757 static bool try_to_unlazy(struct nameidata *nd) 758 { 759 struct dentry *parent = nd->path.dentry; 760 761 BUG_ON(!(nd->flags & LOOKUP_RCU)); 762 763 nd->flags &= ~LOOKUP_RCU; 764 if (unlikely(!legitimize_links(nd))) 765 goto out1; 766 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq))) 767 goto out; 768 if (unlikely(!legitimize_root(nd))) 769 goto out; 770 rcu_read_unlock(); 771 BUG_ON(nd->inode != parent->d_inode); 772 return true; 773 774 out1: 775 nd->path.mnt = NULL; 776 nd->path.dentry = NULL; 777 out: 778 rcu_read_unlock(); 779 return false; 780 } 781 782 /** 783 * try_to_unlazy_next - try to switch to ref-walk mode. 784 * @nd: nameidata pathwalk data 785 * @dentry: next dentry to step into 786 * @seq: seq number to check @dentry against 787 * Returns: true on success, false on failure 788 * 789 * Similar to to try_to_unlazy(), but here we have the next dentry already 790 * picked by rcu-walk and want to legitimize that in addition to the current 791 * nd->path and nd->root for ref-walk mode. Must be called from rcu-walk context. 792 * Nothing should touch nameidata between try_to_unlazy_next() failure and 793 * terminate_walk(). 794 */ 795 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry, unsigned seq) 796 { 797 BUG_ON(!(nd->flags & LOOKUP_RCU)); 798 799 nd->flags &= ~LOOKUP_RCU; 800 if (unlikely(!legitimize_links(nd))) 801 goto out2; 802 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq))) 803 goto out2; 804 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref))) 805 goto out1; 806 807 /* 808 * We need to move both the parent and the dentry from the RCU domain 809 * to be properly refcounted. And the sequence number in the dentry 810 * validates *both* dentry counters, since we checked the sequence 811 * number of the parent after we got the child sequence number. So we 812 * know the parent must still be valid if the child sequence number is 813 */ 814 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) 815 goto out; 816 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) 817 goto out_dput; 818 /* 819 * Sequence counts matched. Now make sure that the root is 820 * still valid and get it if required. 821 */ 822 if (unlikely(!legitimize_root(nd))) 823 goto out_dput; 824 rcu_read_unlock(); 825 return true; 826 827 out2: 828 nd->path.mnt = NULL; 829 out1: 830 nd->path.dentry = NULL; 831 out: 832 rcu_read_unlock(); 833 return false; 834 out_dput: 835 rcu_read_unlock(); 836 dput(dentry); 837 return false; 838 } 839 840 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 841 { 842 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) 843 return dentry->d_op->d_revalidate(dentry, flags); 844 else 845 return 1; 846 } 847 848 /** 849 * complete_walk - successful completion of path walk 850 * @nd: pointer nameidata 851 * 852 * If we had been in RCU mode, drop out of it and legitimize nd->path. 853 * Revalidate the final result, unless we'd already done that during 854 * the path walk or the filesystem doesn't ask for it. Return 0 on 855 * success, -error on failure. In case of failure caller does not 856 * need to drop nd->path. 857 */ 858 static int complete_walk(struct nameidata *nd) 859 { 860 struct dentry *dentry = nd->path.dentry; 861 int status; 862 863 if (nd->flags & LOOKUP_RCU) { 864 /* 865 * We don't want to zero nd->root for scoped-lookups or 866 * externally-managed nd->root. 867 */ 868 if (!(nd->state & ND_ROOT_PRESET)) 869 if (!(nd->flags & LOOKUP_IS_SCOPED)) 870 nd->root.mnt = NULL; 871 nd->flags &= ~LOOKUP_CACHED; 872 if (!try_to_unlazy(nd)) 873 return -ECHILD; 874 } 875 876 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { 877 /* 878 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't 879 * ever step outside the root during lookup" and should already 880 * be guaranteed by the rest of namei, we want to avoid a namei 881 * BUG resulting in userspace being given a path that was not 882 * scoped within the root at some point during the lookup. 883 * 884 * So, do a final sanity-check to make sure that in the 885 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED) 886 * we won't silently return an fd completely outside of the 887 * requested root to userspace. 888 * 889 * Userspace could move the path outside the root after this 890 * check, but as discussed elsewhere this is not a concern (the 891 * resolved file was inside the root at some point). 892 */ 893 if (!path_is_under(&nd->path, &nd->root)) 894 return -EXDEV; 895 } 896 897 if (likely(!(nd->state & ND_JUMPED))) 898 return 0; 899 900 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 901 return 0; 902 903 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 904 if (status > 0) 905 return 0; 906 907 if (!status) 908 status = -ESTALE; 909 910 return status; 911 } 912 913 static int set_root(struct nameidata *nd) 914 { 915 struct fs_struct *fs = current->fs; 916 917 /* 918 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we 919 * still have to ensure it doesn't happen because it will cause a breakout 920 * from the dirfd. 921 */ 922 if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED)) 923 return -ENOTRECOVERABLE; 924 925 if (nd->flags & LOOKUP_RCU) { 926 unsigned seq; 927 928 do { 929 seq = read_seqcount_begin(&fs->seq); 930 nd->root = fs->root; 931 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 932 } while (read_seqcount_retry(&fs->seq, seq)); 933 } else { 934 get_fs_root(fs, &nd->root); 935 nd->state |= ND_ROOT_GRABBED; 936 } 937 return 0; 938 } 939 940 static int nd_jump_root(struct nameidata *nd) 941 { 942 if (unlikely(nd->flags & LOOKUP_BENEATH)) 943 return -EXDEV; 944 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { 945 /* Absolute path arguments to path_init() are allowed. */ 946 if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt) 947 return -EXDEV; 948 } 949 if (!nd->root.mnt) { 950 int error = set_root(nd); 951 if (error) 952 return error; 953 } 954 if (nd->flags & LOOKUP_RCU) { 955 struct dentry *d; 956 nd->path = nd->root; 957 d = nd->path.dentry; 958 nd->inode = d->d_inode; 959 nd->seq = nd->root_seq; 960 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq))) 961 return -ECHILD; 962 } else { 963 path_put(&nd->path); 964 nd->path = nd->root; 965 path_get(&nd->path); 966 nd->inode = nd->path.dentry->d_inode; 967 } 968 nd->state |= ND_JUMPED; 969 return 0; 970 } 971 972 /* 973 * Helper to directly jump to a known parsed path from ->get_link, 974 * caller must have taken a reference to path beforehand. 975 */ 976 int nd_jump_link(struct path *path) 977 { 978 int error = -ELOOP; 979 struct nameidata *nd = current->nameidata; 980 981 if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS)) 982 goto err; 983 984 error = -EXDEV; 985 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { 986 if (nd->path.mnt != path->mnt) 987 goto err; 988 } 989 /* Not currently safe for scoped-lookups. */ 990 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) 991 goto err; 992 993 path_put(&nd->path); 994 nd->path = *path; 995 nd->inode = nd->path.dentry->d_inode; 996 nd->state |= ND_JUMPED; 997 return 0; 998 999 err: 1000 path_put(path); 1001 return error; 1002 } 1003 1004 static inline void put_link(struct nameidata *nd) 1005 { 1006 struct saved *last = nd->stack + --nd->depth; 1007 do_delayed_call(&last->done); 1008 if (!(nd->flags & LOOKUP_RCU)) 1009 path_put(&last->link); 1010 } 1011 1012 int sysctl_protected_symlinks __read_mostly = 0; 1013 int sysctl_protected_hardlinks __read_mostly = 0; 1014 int sysctl_protected_fifos __read_mostly; 1015 int sysctl_protected_regular __read_mostly; 1016 1017 /** 1018 * may_follow_link - Check symlink following for unsafe situations 1019 * @nd: nameidata pathwalk data 1020 * 1021 * In the case of the sysctl_protected_symlinks sysctl being enabled, 1022 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 1023 * in a sticky world-writable directory. This is to protect privileged 1024 * processes from failing races against path names that may change out 1025 * from under them by way of other users creating malicious symlinks. 1026 * It will permit symlinks to be followed only when outside a sticky 1027 * world-writable directory, or when the uid of the symlink and follower 1028 * match, or when the directory owner matches the symlink's owner. 1029 * 1030 * Returns 0 if following the symlink is allowed, -ve on error. 1031 */ 1032 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode) 1033 { 1034 struct user_namespace *mnt_userns; 1035 kuid_t i_uid; 1036 1037 if (!sysctl_protected_symlinks) 1038 return 0; 1039 1040 mnt_userns = mnt_user_ns(nd->path.mnt); 1041 i_uid = i_uid_into_mnt(mnt_userns, inode); 1042 /* Allowed if owner and follower match. */ 1043 if (uid_eq(current_cred()->fsuid, i_uid)) 1044 return 0; 1045 1046 /* Allowed if parent directory not sticky and world-writable. */ 1047 if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 1048 return 0; 1049 1050 /* Allowed if parent directory and link owner match. */ 1051 if (uid_valid(nd->dir_uid) && uid_eq(nd->dir_uid, i_uid)) 1052 return 0; 1053 1054 if (nd->flags & LOOKUP_RCU) 1055 return -ECHILD; 1056 1057 audit_inode(nd->name, nd->stack[0].link.dentry, 0); 1058 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link"); 1059 return -EACCES; 1060 } 1061 1062 /** 1063 * safe_hardlink_source - Check for safe hardlink conditions 1064 * @mnt_userns: user namespace of the mount the inode was found from 1065 * @inode: the source inode to hardlink from 1066 * 1067 * Return false if at least one of the following conditions: 1068 * - inode is not a regular file 1069 * - inode is setuid 1070 * - inode is setgid and group-exec 1071 * - access failure for read and write 1072 * 1073 * Otherwise returns true. 1074 */ 1075 static bool safe_hardlink_source(struct user_namespace *mnt_userns, 1076 struct inode *inode) 1077 { 1078 umode_t mode = inode->i_mode; 1079 1080 /* Special files should not get pinned to the filesystem. */ 1081 if (!S_ISREG(mode)) 1082 return false; 1083 1084 /* Setuid files should not get pinned to the filesystem. */ 1085 if (mode & S_ISUID) 1086 return false; 1087 1088 /* Executable setgid files should not get pinned to the filesystem. */ 1089 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 1090 return false; 1091 1092 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 1093 if (inode_permission(mnt_userns, inode, MAY_READ | MAY_WRITE)) 1094 return false; 1095 1096 return true; 1097 } 1098 1099 /** 1100 * may_linkat - Check permissions for creating a hardlink 1101 * @mnt_userns: user namespace of the mount the inode was found from 1102 * @link: the source to hardlink from 1103 * 1104 * Block hardlink when all of: 1105 * - sysctl_protected_hardlinks enabled 1106 * - fsuid does not match inode 1107 * - hardlink source is unsafe (see safe_hardlink_source() above) 1108 * - not CAP_FOWNER in a namespace with the inode owner uid mapped 1109 * 1110 * If the inode has been found through an idmapped mount the user namespace of 1111 * the vfsmount must be passed through @mnt_userns. This function will then take 1112 * care to map the inode according to @mnt_userns before checking permissions. 1113 * On non-idmapped mounts or if permission checking is to be performed on the 1114 * raw inode simply passs init_user_ns. 1115 * 1116 * Returns 0 if successful, -ve on error. 1117 */ 1118 int may_linkat(struct user_namespace *mnt_userns, struct path *link) 1119 { 1120 struct inode *inode = link->dentry->d_inode; 1121 1122 /* Inode writeback is not safe when the uid or gid are invalid. */ 1123 if (!uid_valid(i_uid_into_mnt(mnt_userns, inode)) || 1124 !gid_valid(i_gid_into_mnt(mnt_userns, inode))) 1125 return -EOVERFLOW; 1126 1127 if (!sysctl_protected_hardlinks) 1128 return 0; 1129 1130 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 1131 * otherwise, it must be a safe source. 1132 */ 1133 if (safe_hardlink_source(mnt_userns, inode) || 1134 inode_owner_or_capable(mnt_userns, inode)) 1135 return 0; 1136 1137 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat"); 1138 return -EPERM; 1139 } 1140 1141 /** 1142 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory 1143 * should be allowed, or not, on files that already 1144 * exist. 1145 * @mnt_userns: user namespace of the mount the inode was found from 1146 * @nd: nameidata pathwalk data 1147 * @inode: the inode of the file to open 1148 * 1149 * Block an O_CREAT open of a FIFO (or a regular file) when: 1150 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled 1151 * - the file already exists 1152 * - we are in a sticky directory 1153 * - we don't own the file 1154 * - the owner of the directory doesn't own the file 1155 * - the directory is world writable 1156 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2 1157 * the directory doesn't have to be world writable: being group writable will 1158 * be enough. 1159 * 1160 * If the inode has been found through an idmapped mount the user namespace of 1161 * the vfsmount must be passed through @mnt_userns. This function will then take 1162 * care to map the inode according to @mnt_userns before checking permissions. 1163 * On non-idmapped mounts or if permission checking is to be performed on the 1164 * raw inode simply passs init_user_ns. 1165 * 1166 * Returns 0 if the open is allowed, -ve on error. 1167 */ 1168 static int may_create_in_sticky(struct user_namespace *mnt_userns, 1169 struct nameidata *nd, struct inode *const inode) 1170 { 1171 umode_t dir_mode = nd->dir_mode; 1172 kuid_t dir_uid = nd->dir_uid; 1173 1174 if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) || 1175 (!sysctl_protected_regular && S_ISREG(inode->i_mode)) || 1176 likely(!(dir_mode & S_ISVTX)) || 1177 uid_eq(i_uid_into_mnt(mnt_userns, inode), dir_uid) || 1178 uid_eq(current_fsuid(), i_uid_into_mnt(mnt_userns, inode))) 1179 return 0; 1180 1181 if (likely(dir_mode & 0002) || 1182 (dir_mode & 0020 && 1183 ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) || 1184 (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) { 1185 const char *operation = S_ISFIFO(inode->i_mode) ? 1186 "sticky_create_fifo" : 1187 "sticky_create_regular"; 1188 audit_log_path_denied(AUDIT_ANOM_CREAT, operation); 1189 return -EACCES; 1190 } 1191 return 0; 1192 } 1193 1194 /* 1195 * follow_up - Find the mountpoint of path's vfsmount 1196 * 1197 * Given a path, find the mountpoint of its source file system. 1198 * Replace @path with the path of the mountpoint in the parent mount. 1199 * Up is towards /. 1200 * 1201 * Return 1 if we went up a level and 0 if we were already at the 1202 * root. 1203 */ 1204 int follow_up(struct path *path) 1205 { 1206 struct mount *mnt = real_mount(path->mnt); 1207 struct mount *parent; 1208 struct dentry *mountpoint; 1209 1210 read_seqlock_excl(&mount_lock); 1211 parent = mnt->mnt_parent; 1212 if (parent == mnt) { 1213 read_sequnlock_excl(&mount_lock); 1214 return 0; 1215 } 1216 mntget(&parent->mnt); 1217 mountpoint = dget(mnt->mnt_mountpoint); 1218 read_sequnlock_excl(&mount_lock); 1219 dput(path->dentry); 1220 path->dentry = mountpoint; 1221 mntput(path->mnt); 1222 path->mnt = &parent->mnt; 1223 return 1; 1224 } 1225 EXPORT_SYMBOL(follow_up); 1226 1227 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root, 1228 struct path *path, unsigned *seqp) 1229 { 1230 while (mnt_has_parent(m)) { 1231 struct dentry *mountpoint = m->mnt_mountpoint; 1232 1233 m = m->mnt_parent; 1234 if (unlikely(root->dentry == mountpoint && 1235 root->mnt == &m->mnt)) 1236 break; 1237 if (mountpoint != m->mnt.mnt_root) { 1238 path->mnt = &m->mnt; 1239 path->dentry = mountpoint; 1240 *seqp = read_seqcount_begin(&mountpoint->d_seq); 1241 return true; 1242 } 1243 } 1244 return false; 1245 } 1246 1247 static bool choose_mountpoint(struct mount *m, const struct path *root, 1248 struct path *path) 1249 { 1250 bool found; 1251 1252 rcu_read_lock(); 1253 while (1) { 1254 unsigned seq, mseq = read_seqbegin(&mount_lock); 1255 1256 found = choose_mountpoint_rcu(m, root, path, &seq); 1257 if (unlikely(!found)) { 1258 if (!read_seqretry(&mount_lock, mseq)) 1259 break; 1260 } else { 1261 if (likely(__legitimize_path(path, seq, mseq))) 1262 break; 1263 rcu_read_unlock(); 1264 path_put(path); 1265 rcu_read_lock(); 1266 } 1267 } 1268 rcu_read_unlock(); 1269 return found; 1270 } 1271 1272 /* 1273 * Perform an automount 1274 * - return -EISDIR to tell follow_managed() to stop and return the path we 1275 * were called with. 1276 */ 1277 static int follow_automount(struct path *path, int *count, unsigned lookup_flags) 1278 { 1279 struct dentry *dentry = path->dentry; 1280 1281 /* We don't want to mount if someone's just doing a stat - 1282 * unless they're stat'ing a directory and appended a '/' to 1283 * the name. 1284 * 1285 * We do, however, want to mount if someone wants to open or 1286 * create a file of any type under the mountpoint, wants to 1287 * traverse through the mountpoint or wants to open the 1288 * mounted directory. Also, autofs may mark negative dentries 1289 * as being automount points. These will need the attentions 1290 * of the daemon to instantiate them before they can be used. 1291 */ 1292 if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 1293 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 1294 dentry->d_inode) 1295 return -EISDIR; 1296 1297 if (count && (*count)++ >= MAXSYMLINKS) 1298 return -ELOOP; 1299 1300 return finish_automount(dentry->d_op->d_automount(path), path); 1301 } 1302 1303 /* 1304 * mount traversal - out-of-line part. One note on ->d_flags accesses - 1305 * dentries are pinned but not locked here, so negative dentry can go 1306 * positive right under us. Use of smp_load_acquire() provides a barrier 1307 * sufficient for ->d_inode and ->d_flags consistency. 1308 */ 1309 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped, 1310 int *count, unsigned lookup_flags) 1311 { 1312 struct vfsmount *mnt = path->mnt; 1313 bool need_mntput = false; 1314 int ret = 0; 1315 1316 while (flags & DCACHE_MANAGED_DENTRY) { 1317 /* Allow the filesystem to manage the transit without i_mutex 1318 * being held. */ 1319 if (flags & DCACHE_MANAGE_TRANSIT) { 1320 ret = path->dentry->d_op->d_manage(path, false); 1321 flags = smp_load_acquire(&path->dentry->d_flags); 1322 if (ret < 0) 1323 break; 1324 } 1325 1326 if (flags & DCACHE_MOUNTED) { // something's mounted on it.. 1327 struct vfsmount *mounted = lookup_mnt(path); 1328 if (mounted) { // ... in our namespace 1329 dput(path->dentry); 1330 if (need_mntput) 1331 mntput(path->mnt); 1332 path->mnt = mounted; 1333 path->dentry = dget(mounted->mnt_root); 1334 // here we know it's positive 1335 flags = path->dentry->d_flags; 1336 need_mntput = true; 1337 continue; 1338 } 1339 } 1340 1341 if (!(flags & DCACHE_NEED_AUTOMOUNT)) 1342 break; 1343 1344 // uncovered automount point 1345 ret = follow_automount(path, count, lookup_flags); 1346 flags = smp_load_acquire(&path->dentry->d_flags); 1347 if (ret < 0) 1348 break; 1349 } 1350 1351 if (ret == -EISDIR) 1352 ret = 0; 1353 // possible if you race with several mount --move 1354 if (need_mntput && path->mnt == mnt) 1355 mntput(path->mnt); 1356 if (!ret && unlikely(d_flags_negative(flags))) 1357 ret = -ENOENT; 1358 *jumped = need_mntput; 1359 return ret; 1360 } 1361 1362 static inline int traverse_mounts(struct path *path, bool *jumped, 1363 int *count, unsigned lookup_flags) 1364 { 1365 unsigned flags = smp_load_acquire(&path->dentry->d_flags); 1366 1367 /* fastpath */ 1368 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) { 1369 *jumped = false; 1370 if (unlikely(d_flags_negative(flags))) 1371 return -ENOENT; 1372 return 0; 1373 } 1374 return __traverse_mounts(path, flags, jumped, count, lookup_flags); 1375 } 1376 1377 int follow_down_one(struct path *path) 1378 { 1379 struct vfsmount *mounted; 1380 1381 mounted = lookup_mnt(path); 1382 if (mounted) { 1383 dput(path->dentry); 1384 mntput(path->mnt); 1385 path->mnt = mounted; 1386 path->dentry = dget(mounted->mnt_root); 1387 return 1; 1388 } 1389 return 0; 1390 } 1391 EXPORT_SYMBOL(follow_down_one); 1392 1393 /* 1394 * Follow down to the covering mount currently visible to userspace. At each 1395 * point, the filesystem owning that dentry may be queried as to whether the 1396 * caller is permitted to proceed or not. 1397 */ 1398 int follow_down(struct path *path) 1399 { 1400 struct vfsmount *mnt = path->mnt; 1401 bool jumped; 1402 int ret = traverse_mounts(path, &jumped, NULL, 0); 1403 1404 if (path->mnt != mnt) 1405 mntput(mnt); 1406 return ret; 1407 } 1408 EXPORT_SYMBOL(follow_down); 1409 1410 /* 1411 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1412 * we meet a managed dentry that would need blocking. 1413 */ 1414 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1415 struct inode **inode, unsigned *seqp) 1416 { 1417 struct dentry *dentry = path->dentry; 1418 unsigned int flags = dentry->d_flags; 1419 1420 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) 1421 return true; 1422 1423 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1424 return false; 1425 1426 for (;;) { 1427 /* 1428 * Don't forget we might have a non-mountpoint managed dentry 1429 * that wants to block transit. 1430 */ 1431 if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) { 1432 int res = dentry->d_op->d_manage(path, true); 1433 if (res) 1434 return res == -EISDIR; 1435 flags = dentry->d_flags; 1436 } 1437 1438 if (flags & DCACHE_MOUNTED) { 1439 struct mount *mounted = __lookup_mnt(path->mnt, dentry); 1440 if (mounted) { 1441 path->mnt = &mounted->mnt; 1442 dentry = path->dentry = mounted->mnt.mnt_root; 1443 nd->state |= ND_JUMPED; 1444 *seqp = read_seqcount_begin(&dentry->d_seq); 1445 *inode = dentry->d_inode; 1446 /* 1447 * We don't need to re-check ->d_seq after this 1448 * ->d_inode read - there will be an RCU delay 1449 * between mount hash removal and ->mnt_root 1450 * becoming unpinned. 1451 */ 1452 flags = dentry->d_flags; 1453 continue; 1454 } 1455 if (read_seqretry(&mount_lock, nd->m_seq)) 1456 return false; 1457 } 1458 return !(flags & DCACHE_NEED_AUTOMOUNT); 1459 } 1460 } 1461 1462 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry, 1463 struct path *path, struct inode **inode, 1464 unsigned int *seqp) 1465 { 1466 bool jumped; 1467 int ret; 1468 1469 path->mnt = nd->path.mnt; 1470 path->dentry = dentry; 1471 if (nd->flags & LOOKUP_RCU) { 1472 unsigned int seq = *seqp; 1473 if (unlikely(!*inode)) 1474 return -ENOENT; 1475 if (likely(__follow_mount_rcu(nd, path, inode, seqp))) 1476 return 0; 1477 if (!try_to_unlazy_next(nd, dentry, seq)) 1478 return -ECHILD; 1479 // *path might've been clobbered by __follow_mount_rcu() 1480 path->mnt = nd->path.mnt; 1481 path->dentry = dentry; 1482 } 1483 ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags); 1484 if (jumped) { 1485 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1486 ret = -EXDEV; 1487 else 1488 nd->state |= ND_JUMPED; 1489 } 1490 if (unlikely(ret)) { 1491 dput(path->dentry); 1492 if (path->mnt != nd->path.mnt) 1493 mntput(path->mnt); 1494 } else { 1495 *inode = d_backing_inode(path->dentry); 1496 *seqp = 0; /* out of RCU mode, so the value doesn't matter */ 1497 } 1498 return ret; 1499 } 1500 1501 /* 1502 * This looks up the name in dcache and possibly revalidates the found dentry. 1503 * NULL is returned if the dentry does not exist in the cache. 1504 */ 1505 static struct dentry *lookup_dcache(const struct qstr *name, 1506 struct dentry *dir, 1507 unsigned int flags) 1508 { 1509 struct dentry *dentry = d_lookup(dir, name); 1510 if (dentry) { 1511 int error = d_revalidate(dentry, flags); 1512 if (unlikely(error <= 0)) { 1513 if (!error) 1514 d_invalidate(dentry); 1515 dput(dentry); 1516 return ERR_PTR(error); 1517 } 1518 } 1519 return dentry; 1520 } 1521 1522 /* 1523 * Parent directory has inode locked exclusive. This is one 1524 * and only case when ->lookup() gets called on non in-lookup 1525 * dentries - as the matter of fact, this only gets called 1526 * when directory is guaranteed to have no in-lookup children 1527 * at all. 1528 */ 1529 static struct dentry *__lookup_hash(const struct qstr *name, 1530 struct dentry *base, unsigned int flags) 1531 { 1532 struct dentry *dentry = lookup_dcache(name, base, flags); 1533 struct dentry *old; 1534 struct inode *dir = base->d_inode; 1535 1536 if (dentry) 1537 return dentry; 1538 1539 /* Don't create child dentry for a dead directory. */ 1540 if (unlikely(IS_DEADDIR(dir))) 1541 return ERR_PTR(-ENOENT); 1542 1543 dentry = d_alloc(base, name); 1544 if (unlikely(!dentry)) 1545 return ERR_PTR(-ENOMEM); 1546 1547 old = dir->i_op->lookup(dir, dentry, flags); 1548 if (unlikely(old)) { 1549 dput(dentry); 1550 dentry = old; 1551 } 1552 return dentry; 1553 } 1554 1555 static struct dentry *lookup_fast(struct nameidata *nd, 1556 struct inode **inode, 1557 unsigned *seqp) 1558 { 1559 struct dentry *dentry, *parent = nd->path.dentry; 1560 int status = 1; 1561 1562 /* 1563 * Rename seqlock is not required here because in the off chance 1564 * of a false negative due to a concurrent rename, the caller is 1565 * going to fall back to non-racy lookup. 1566 */ 1567 if (nd->flags & LOOKUP_RCU) { 1568 unsigned seq; 1569 dentry = __d_lookup_rcu(parent, &nd->last, &seq); 1570 if (unlikely(!dentry)) { 1571 if (!try_to_unlazy(nd)) 1572 return ERR_PTR(-ECHILD); 1573 return NULL; 1574 } 1575 1576 /* 1577 * This sequence count validates that the inode matches 1578 * the dentry name information from lookup. 1579 */ 1580 *inode = d_backing_inode(dentry); 1581 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) 1582 return ERR_PTR(-ECHILD); 1583 1584 /* 1585 * This sequence count validates that the parent had no 1586 * changes while we did the lookup of the dentry above. 1587 * 1588 * The memory barrier in read_seqcount_begin of child is 1589 * enough, we can use __read_seqcount_retry here. 1590 */ 1591 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq))) 1592 return ERR_PTR(-ECHILD); 1593 1594 *seqp = seq; 1595 status = d_revalidate(dentry, nd->flags); 1596 if (likely(status > 0)) 1597 return dentry; 1598 if (!try_to_unlazy_next(nd, dentry, seq)) 1599 return ERR_PTR(-ECHILD); 1600 if (status == -ECHILD) 1601 /* we'd been told to redo it in non-rcu mode */ 1602 status = d_revalidate(dentry, nd->flags); 1603 } else { 1604 dentry = __d_lookup(parent, &nd->last); 1605 if (unlikely(!dentry)) 1606 return NULL; 1607 status = d_revalidate(dentry, nd->flags); 1608 } 1609 if (unlikely(status <= 0)) { 1610 if (!status) 1611 d_invalidate(dentry); 1612 dput(dentry); 1613 return ERR_PTR(status); 1614 } 1615 return dentry; 1616 } 1617 1618 /* Fast lookup failed, do it the slow way */ 1619 static struct dentry *__lookup_slow(const struct qstr *name, 1620 struct dentry *dir, 1621 unsigned int flags) 1622 { 1623 struct dentry *dentry, *old; 1624 struct inode *inode = dir->d_inode; 1625 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1626 1627 /* Don't go there if it's already dead */ 1628 if (unlikely(IS_DEADDIR(inode))) 1629 return ERR_PTR(-ENOENT); 1630 again: 1631 dentry = d_alloc_parallel(dir, name, &wq); 1632 if (IS_ERR(dentry)) 1633 return dentry; 1634 if (unlikely(!d_in_lookup(dentry))) { 1635 int error = d_revalidate(dentry, flags); 1636 if (unlikely(error <= 0)) { 1637 if (!error) { 1638 d_invalidate(dentry); 1639 dput(dentry); 1640 goto again; 1641 } 1642 dput(dentry); 1643 dentry = ERR_PTR(error); 1644 } 1645 } else { 1646 old = inode->i_op->lookup(inode, dentry, flags); 1647 d_lookup_done(dentry); 1648 if (unlikely(old)) { 1649 dput(dentry); 1650 dentry = old; 1651 } 1652 } 1653 return dentry; 1654 } 1655 1656 static struct dentry *lookup_slow(const struct qstr *name, 1657 struct dentry *dir, 1658 unsigned int flags) 1659 { 1660 struct inode *inode = dir->d_inode; 1661 struct dentry *res; 1662 inode_lock_shared(inode); 1663 res = __lookup_slow(name, dir, flags); 1664 inode_unlock_shared(inode); 1665 return res; 1666 } 1667 1668 static inline int may_lookup(struct user_namespace *mnt_userns, 1669 struct nameidata *nd) 1670 { 1671 if (nd->flags & LOOKUP_RCU) { 1672 int err = inode_permission(mnt_userns, nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1673 if (err != -ECHILD || !try_to_unlazy(nd)) 1674 return err; 1675 } 1676 return inode_permission(mnt_userns, nd->inode, MAY_EXEC); 1677 } 1678 1679 static int reserve_stack(struct nameidata *nd, struct path *link, unsigned seq) 1680 { 1681 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) 1682 return -ELOOP; 1683 1684 if (likely(nd->depth != EMBEDDED_LEVELS)) 1685 return 0; 1686 if (likely(nd->stack != nd->internal)) 1687 return 0; 1688 if (likely(nd_alloc_stack(nd))) 1689 return 0; 1690 1691 if (nd->flags & LOOKUP_RCU) { 1692 // we need to grab link before we do unlazy. And we can't skip 1693 // unlazy even if we fail to grab the link - cleanup needs it 1694 bool grabbed_link = legitimize_path(nd, link, seq); 1695 1696 if (!try_to_unlazy(nd) != 0 || !grabbed_link) 1697 return -ECHILD; 1698 1699 if (nd_alloc_stack(nd)) 1700 return 0; 1701 } 1702 return -ENOMEM; 1703 } 1704 1705 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4}; 1706 1707 static const char *pick_link(struct nameidata *nd, struct path *link, 1708 struct inode *inode, unsigned seq, int flags) 1709 { 1710 struct saved *last; 1711 const char *res; 1712 int error = reserve_stack(nd, link, seq); 1713 1714 if (unlikely(error)) { 1715 if (!(nd->flags & LOOKUP_RCU)) 1716 path_put(link); 1717 return ERR_PTR(error); 1718 } 1719 last = nd->stack + nd->depth++; 1720 last->link = *link; 1721 clear_delayed_call(&last->done); 1722 last->seq = seq; 1723 1724 if (flags & WALK_TRAILING) { 1725 error = may_follow_link(nd, inode); 1726 if (unlikely(error)) 1727 return ERR_PTR(error); 1728 } 1729 1730 if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) || 1731 unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW)) 1732 return ERR_PTR(-ELOOP); 1733 1734 if (!(nd->flags & LOOKUP_RCU)) { 1735 touch_atime(&last->link); 1736 cond_resched(); 1737 } else if (atime_needs_update(&last->link, inode)) { 1738 if (!try_to_unlazy(nd)) 1739 return ERR_PTR(-ECHILD); 1740 touch_atime(&last->link); 1741 } 1742 1743 error = security_inode_follow_link(link->dentry, inode, 1744 nd->flags & LOOKUP_RCU); 1745 if (unlikely(error)) 1746 return ERR_PTR(error); 1747 1748 res = READ_ONCE(inode->i_link); 1749 if (!res) { 1750 const char * (*get)(struct dentry *, struct inode *, 1751 struct delayed_call *); 1752 get = inode->i_op->get_link; 1753 if (nd->flags & LOOKUP_RCU) { 1754 res = get(NULL, inode, &last->done); 1755 if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd)) 1756 res = get(link->dentry, inode, &last->done); 1757 } else { 1758 res = get(link->dentry, inode, &last->done); 1759 } 1760 if (!res) 1761 goto all_done; 1762 if (IS_ERR(res)) 1763 return res; 1764 } 1765 if (*res == '/') { 1766 error = nd_jump_root(nd); 1767 if (unlikely(error)) 1768 return ERR_PTR(error); 1769 while (unlikely(*++res == '/')) 1770 ; 1771 } 1772 if (*res) 1773 return res; 1774 all_done: // pure jump 1775 put_link(nd); 1776 return NULL; 1777 } 1778 1779 /* 1780 * Do we need to follow links? We _really_ want to be able 1781 * to do this check without having to look at inode->i_op, 1782 * so we keep a cache of "no, this doesn't need follow_link" 1783 * for the common case. 1784 */ 1785 static const char *step_into(struct nameidata *nd, int flags, 1786 struct dentry *dentry, struct inode *inode, unsigned seq) 1787 { 1788 struct path path; 1789 int err = handle_mounts(nd, dentry, &path, &inode, &seq); 1790 1791 if (err < 0) 1792 return ERR_PTR(err); 1793 if (likely(!d_is_symlink(path.dentry)) || 1794 ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) || 1795 (flags & WALK_NOFOLLOW)) { 1796 /* not a symlink or should not follow */ 1797 if (!(nd->flags & LOOKUP_RCU)) { 1798 dput(nd->path.dentry); 1799 if (nd->path.mnt != path.mnt) 1800 mntput(nd->path.mnt); 1801 } 1802 nd->path = path; 1803 nd->inode = inode; 1804 nd->seq = seq; 1805 return NULL; 1806 } 1807 if (nd->flags & LOOKUP_RCU) { 1808 /* make sure that d_is_symlink above matches inode */ 1809 if (read_seqcount_retry(&path.dentry->d_seq, seq)) 1810 return ERR_PTR(-ECHILD); 1811 } else { 1812 if (path.mnt == nd->path.mnt) 1813 mntget(path.mnt); 1814 } 1815 return pick_link(nd, &path, inode, seq, flags); 1816 } 1817 1818 static struct dentry *follow_dotdot_rcu(struct nameidata *nd, 1819 struct inode **inodep, 1820 unsigned *seqp) 1821 { 1822 struct dentry *parent, *old; 1823 1824 if (path_equal(&nd->path, &nd->root)) 1825 goto in_root; 1826 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { 1827 struct path path; 1828 unsigned seq; 1829 if (!choose_mountpoint_rcu(real_mount(nd->path.mnt), 1830 &nd->root, &path, &seq)) 1831 goto in_root; 1832 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1833 return ERR_PTR(-ECHILD); 1834 nd->path = path; 1835 nd->inode = path.dentry->d_inode; 1836 nd->seq = seq; 1837 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1838 return ERR_PTR(-ECHILD); 1839 /* we know that mountpoint was pinned */ 1840 } 1841 old = nd->path.dentry; 1842 parent = old->d_parent; 1843 *inodep = parent->d_inode; 1844 *seqp = read_seqcount_begin(&parent->d_seq); 1845 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq))) 1846 return ERR_PTR(-ECHILD); 1847 if (unlikely(!path_connected(nd->path.mnt, parent))) 1848 return ERR_PTR(-ECHILD); 1849 return parent; 1850 in_root: 1851 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1852 return ERR_PTR(-ECHILD); 1853 if (unlikely(nd->flags & LOOKUP_BENEATH)) 1854 return ERR_PTR(-ECHILD); 1855 return NULL; 1856 } 1857 1858 static struct dentry *follow_dotdot(struct nameidata *nd, 1859 struct inode **inodep, 1860 unsigned *seqp) 1861 { 1862 struct dentry *parent; 1863 1864 if (path_equal(&nd->path, &nd->root)) 1865 goto in_root; 1866 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { 1867 struct path path; 1868 1869 if (!choose_mountpoint(real_mount(nd->path.mnt), 1870 &nd->root, &path)) 1871 goto in_root; 1872 path_put(&nd->path); 1873 nd->path = path; 1874 nd->inode = path.dentry->d_inode; 1875 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1876 return ERR_PTR(-EXDEV); 1877 } 1878 /* rare case of legitimate dget_parent()... */ 1879 parent = dget_parent(nd->path.dentry); 1880 if (unlikely(!path_connected(nd->path.mnt, parent))) { 1881 dput(parent); 1882 return ERR_PTR(-ENOENT); 1883 } 1884 *seqp = 0; 1885 *inodep = parent->d_inode; 1886 return parent; 1887 1888 in_root: 1889 if (unlikely(nd->flags & LOOKUP_BENEATH)) 1890 return ERR_PTR(-EXDEV); 1891 dget(nd->path.dentry); 1892 return NULL; 1893 } 1894 1895 static const char *handle_dots(struct nameidata *nd, int type) 1896 { 1897 if (type == LAST_DOTDOT) { 1898 const char *error = NULL; 1899 struct dentry *parent; 1900 struct inode *inode; 1901 unsigned seq; 1902 1903 if (!nd->root.mnt) { 1904 error = ERR_PTR(set_root(nd)); 1905 if (error) 1906 return error; 1907 } 1908 if (nd->flags & LOOKUP_RCU) 1909 parent = follow_dotdot_rcu(nd, &inode, &seq); 1910 else 1911 parent = follow_dotdot(nd, &inode, &seq); 1912 if (IS_ERR(parent)) 1913 return ERR_CAST(parent); 1914 if (unlikely(!parent)) 1915 error = step_into(nd, WALK_NOFOLLOW, 1916 nd->path.dentry, nd->inode, nd->seq); 1917 else 1918 error = step_into(nd, WALK_NOFOLLOW, 1919 parent, inode, seq); 1920 if (unlikely(error)) 1921 return error; 1922 1923 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { 1924 /* 1925 * If there was a racing rename or mount along our 1926 * path, then we can't be sure that ".." hasn't jumped 1927 * above nd->root (and so userspace should retry or use 1928 * some fallback). 1929 */ 1930 smp_rmb(); 1931 if (unlikely(__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq))) 1932 return ERR_PTR(-EAGAIN); 1933 if (unlikely(__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq))) 1934 return ERR_PTR(-EAGAIN); 1935 } 1936 } 1937 return NULL; 1938 } 1939 1940 static const char *walk_component(struct nameidata *nd, int flags) 1941 { 1942 struct dentry *dentry; 1943 struct inode *inode; 1944 unsigned seq; 1945 /* 1946 * "." and ".." are special - ".." especially so because it has 1947 * to be able to know about the current root directory and 1948 * parent relationships. 1949 */ 1950 if (unlikely(nd->last_type != LAST_NORM)) { 1951 if (!(flags & WALK_MORE) && nd->depth) 1952 put_link(nd); 1953 return handle_dots(nd, nd->last_type); 1954 } 1955 dentry = lookup_fast(nd, &inode, &seq); 1956 if (IS_ERR(dentry)) 1957 return ERR_CAST(dentry); 1958 if (unlikely(!dentry)) { 1959 dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags); 1960 if (IS_ERR(dentry)) 1961 return ERR_CAST(dentry); 1962 } 1963 if (!(flags & WALK_MORE) && nd->depth) 1964 put_link(nd); 1965 return step_into(nd, flags, dentry, inode, seq); 1966 } 1967 1968 /* 1969 * We can do the critical dentry name comparison and hashing 1970 * operations one word at a time, but we are limited to: 1971 * 1972 * - Architectures with fast unaligned word accesses. We could 1973 * do a "get_unaligned()" if this helps and is sufficiently 1974 * fast. 1975 * 1976 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 1977 * do not trap on the (extremely unlikely) case of a page 1978 * crossing operation. 1979 * 1980 * - Furthermore, we need an efficient 64-bit compile for the 1981 * 64-bit case in order to generate the "number of bytes in 1982 * the final mask". Again, that could be replaced with a 1983 * efficient population count instruction or similar. 1984 */ 1985 #ifdef CONFIG_DCACHE_WORD_ACCESS 1986 1987 #include <asm/word-at-a-time.h> 1988 1989 #ifdef HASH_MIX 1990 1991 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */ 1992 1993 #elif defined(CONFIG_64BIT) 1994 /* 1995 * Register pressure in the mixing function is an issue, particularly 1996 * on 32-bit x86, but almost any function requires one state value and 1997 * one temporary. Instead, use a function designed for two state values 1998 * and no temporaries. 1999 * 2000 * This function cannot create a collision in only two iterations, so 2001 * we have two iterations to achieve avalanche. In those two iterations, 2002 * we have six layers of mixing, which is enough to spread one bit's 2003 * influence out to 2^6 = 64 state bits. 2004 * 2005 * Rotate constants are scored by considering either 64 one-bit input 2006 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the 2007 * probability of that delta causing a change to each of the 128 output 2008 * bits, using a sample of random initial states. 2009 * 2010 * The Shannon entropy of the computed probabilities is then summed 2011 * to produce a score. Ideally, any input change has a 50% chance of 2012 * toggling any given output bit. 2013 * 2014 * Mixing scores (in bits) for (12,45): 2015 * Input delta: 1-bit 2-bit 2016 * 1 round: 713.3 42542.6 2017 * 2 rounds: 2753.7 140389.8 2018 * 3 rounds: 5954.1 233458.2 2019 * 4 rounds: 7862.6 256672.2 2020 * Perfect: 8192 258048 2021 * (64*128) (64*63/2 * 128) 2022 */ 2023 #define HASH_MIX(x, y, a) \ 2024 ( x ^= (a), \ 2025 y ^= x, x = rol64(x,12),\ 2026 x += y, y = rol64(y,45),\ 2027 y *= 9 ) 2028 2029 /* 2030 * Fold two longs into one 32-bit hash value. This must be fast, but 2031 * latency isn't quite as critical, as there is a fair bit of additional 2032 * work done before the hash value is used. 2033 */ 2034 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 2035 { 2036 y ^= x * GOLDEN_RATIO_64; 2037 y *= GOLDEN_RATIO_64; 2038 return y >> 32; 2039 } 2040 2041 #else /* 32-bit case */ 2042 2043 /* 2044 * Mixing scores (in bits) for (7,20): 2045 * Input delta: 1-bit 2-bit 2046 * 1 round: 330.3 9201.6 2047 * 2 rounds: 1246.4 25475.4 2048 * 3 rounds: 1907.1 31295.1 2049 * 4 rounds: 2042.3 31718.6 2050 * Perfect: 2048 31744 2051 * (32*64) (32*31/2 * 64) 2052 */ 2053 #define HASH_MIX(x, y, a) \ 2054 ( x ^= (a), \ 2055 y ^= x, x = rol32(x, 7),\ 2056 x += y, y = rol32(y,20),\ 2057 y *= 9 ) 2058 2059 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 2060 { 2061 /* Use arch-optimized multiply if one exists */ 2062 return __hash_32(y ^ __hash_32(x)); 2063 } 2064 2065 #endif 2066 2067 /* 2068 * Return the hash of a string of known length. This is carfully 2069 * designed to match hash_name(), which is the more critical function. 2070 * In particular, we must end by hashing a final word containing 0..7 2071 * payload bytes, to match the way that hash_name() iterates until it 2072 * finds the delimiter after the name. 2073 */ 2074 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2075 { 2076 unsigned long a, x = 0, y = (unsigned long)salt; 2077 2078 for (;;) { 2079 if (!len) 2080 goto done; 2081 a = load_unaligned_zeropad(name); 2082 if (len < sizeof(unsigned long)) 2083 break; 2084 HASH_MIX(x, y, a); 2085 name += sizeof(unsigned long); 2086 len -= sizeof(unsigned long); 2087 } 2088 x ^= a & bytemask_from_count(len); 2089 done: 2090 return fold_hash(x, y); 2091 } 2092 EXPORT_SYMBOL(full_name_hash); 2093 2094 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2095 u64 hashlen_string(const void *salt, const char *name) 2096 { 2097 unsigned long a = 0, x = 0, y = (unsigned long)salt; 2098 unsigned long adata, mask, len; 2099 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 2100 2101 len = 0; 2102 goto inside; 2103 2104 do { 2105 HASH_MIX(x, y, a); 2106 len += sizeof(unsigned long); 2107 inside: 2108 a = load_unaligned_zeropad(name+len); 2109 } while (!has_zero(a, &adata, &constants)); 2110 2111 adata = prep_zero_mask(a, adata, &constants); 2112 mask = create_zero_mask(adata); 2113 x ^= a & zero_bytemask(mask); 2114 2115 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 2116 } 2117 EXPORT_SYMBOL(hashlen_string); 2118 2119 /* 2120 * Calculate the length and hash of the path component, and 2121 * return the "hash_len" as the result. 2122 */ 2123 static inline u64 hash_name(const void *salt, const char *name) 2124 { 2125 unsigned long a = 0, b, x = 0, y = (unsigned long)salt; 2126 unsigned long adata, bdata, mask, len; 2127 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 2128 2129 len = 0; 2130 goto inside; 2131 2132 do { 2133 HASH_MIX(x, y, a); 2134 len += sizeof(unsigned long); 2135 inside: 2136 a = load_unaligned_zeropad(name+len); 2137 b = a ^ REPEAT_BYTE('/'); 2138 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 2139 2140 adata = prep_zero_mask(a, adata, &constants); 2141 bdata = prep_zero_mask(b, bdata, &constants); 2142 mask = create_zero_mask(adata | bdata); 2143 x ^= a & zero_bytemask(mask); 2144 2145 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 2146 } 2147 2148 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */ 2149 2150 /* Return the hash of a string of known length */ 2151 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2152 { 2153 unsigned long hash = init_name_hash(salt); 2154 while (len--) 2155 hash = partial_name_hash((unsigned char)*name++, hash); 2156 return end_name_hash(hash); 2157 } 2158 EXPORT_SYMBOL(full_name_hash); 2159 2160 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2161 u64 hashlen_string(const void *salt, const char *name) 2162 { 2163 unsigned long hash = init_name_hash(salt); 2164 unsigned long len = 0, c; 2165 2166 c = (unsigned char)*name; 2167 while (c) { 2168 len++; 2169 hash = partial_name_hash(c, hash); 2170 c = (unsigned char)name[len]; 2171 } 2172 return hashlen_create(end_name_hash(hash), len); 2173 } 2174 EXPORT_SYMBOL(hashlen_string); 2175 2176 /* 2177 * We know there's a real path component here of at least 2178 * one character. 2179 */ 2180 static inline u64 hash_name(const void *salt, const char *name) 2181 { 2182 unsigned long hash = init_name_hash(salt); 2183 unsigned long len = 0, c; 2184 2185 c = (unsigned char)*name; 2186 do { 2187 len++; 2188 hash = partial_name_hash(c, hash); 2189 c = (unsigned char)name[len]; 2190 } while (c && c != '/'); 2191 return hashlen_create(end_name_hash(hash), len); 2192 } 2193 2194 #endif 2195 2196 /* 2197 * Name resolution. 2198 * This is the basic name resolution function, turning a pathname into 2199 * the final dentry. We expect 'base' to be positive and a directory. 2200 * 2201 * Returns 0 and nd will have valid dentry and mnt on success. 2202 * Returns error and drops reference to input namei data on failure. 2203 */ 2204 static int link_path_walk(const char *name, struct nameidata *nd) 2205 { 2206 int depth = 0; // depth <= nd->depth 2207 int err; 2208 2209 nd->last_type = LAST_ROOT; 2210 nd->flags |= LOOKUP_PARENT; 2211 if (IS_ERR(name)) 2212 return PTR_ERR(name); 2213 while (*name=='/') 2214 name++; 2215 if (!*name) { 2216 nd->dir_mode = 0; // short-circuit the 'hardening' idiocy 2217 return 0; 2218 } 2219 2220 /* At this point we know we have a real path component. */ 2221 for(;;) { 2222 struct user_namespace *mnt_userns; 2223 const char *link; 2224 u64 hash_len; 2225 int type; 2226 2227 mnt_userns = mnt_user_ns(nd->path.mnt); 2228 err = may_lookup(mnt_userns, nd); 2229 if (err) 2230 return err; 2231 2232 hash_len = hash_name(nd->path.dentry, name); 2233 2234 type = LAST_NORM; 2235 if (name[0] == '.') switch (hashlen_len(hash_len)) { 2236 case 2: 2237 if (name[1] == '.') { 2238 type = LAST_DOTDOT; 2239 nd->state |= ND_JUMPED; 2240 } 2241 break; 2242 case 1: 2243 type = LAST_DOT; 2244 } 2245 if (likely(type == LAST_NORM)) { 2246 struct dentry *parent = nd->path.dentry; 2247 nd->state &= ~ND_JUMPED; 2248 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 2249 struct qstr this = { { .hash_len = hash_len }, .name = name }; 2250 err = parent->d_op->d_hash(parent, &this); 2251 if (err < 0) 2252 return err; 2253 hash_len = this.hash_len; 2254 name = this.name; 2255 } 2256 } 2257 2258 nd->last.hash_len = hash_len; 2259 nd->last.name = name; 2260 nd->last_type = type; 2261 2262 name += hashlen_len(hash_len); 2263 if (!*name) 2264 goto OK; 2265 /* 2266 * If it wasn't NUL, we know it was '/'. Skip that 2267 * slash, and continue until no more slashes. 2268 */ 2269 do { 2270 name++; 2271 } while (unlikely(*name == '/')); 2272 if (unlikely(!*name)) { 2273 OK: 2274 /* pathname or trailing symlink, done */ 2275 if (!depth) { 2276 nd->dir_uid = i_uid_into_mnt(mnt_userns, nd->inode); 2277 nd->dir_mode = nd->inode->i_mode; 2278 nd->flags &= ~LOOKUP_PARENT; 2279 return 0; 2280 } 2281 /* last component of nested symlink */ 2282 name = nd->stack[--depth].name; 2283 link = walk_component(nd, 0); 2284 } else { 2285 /* not the last component */ 2286 link = walk_component(nd, WALK_MORE); 2287 } 2288 if (unlikely(link)) { 2289 if (IS_ERR(link)) 2290 return PTR_ERR(link); 2291 /* a symlink to follow */ 2292 nd->stack[depth++].name = name; 2293 name = link; 2294 continue; 2295 } 2296 if (unlikely(!d_can_lookup(nd->path.dentry))) { 2297 if (nd->flags & LOOKUP_RCU) { 2298 if (!try_to_unlazy(nd)) 2299 return -ECHILD; 2300 } 2301 return -ENOTDIR; 2302 } 2303 } 2304 } 2305 2306 /* must be paired with terminate_walk() */ 2307 static const char *path_init(struct nameidata *nd, unsigned flags) 2308 { 2309 int error; 2310 const char *s = nd->name->name; 2311 2312 /* LOOKUP_CACHED requires RCU, ask caller to retry */ 2313 if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED) 2314 return ERR_PTR(-EAGAIN); 2315 2316 if (!*s) 2317 flags &= ~LOOKUP_RCU; 2318 if (flags & LOOKUP_RCU) 2319 rcu_read_lock(); 2320 2321 nd->flags = flags; 2322 nd->state |= ND_JUMPED; 2323 2324 nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount); 2325 nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount); 2326 smp_rmb(); 2327 2328 if (nd->state & ND_ROOT_PRESET) { 2329 struct dentry *root = nd->root.dentry; 2330 struct inode *inode = root->d_inode; 2331 if (*s && unlikely(!d_can_lookup(root))) 2332 return ERR_PTR(-ENOTDIR); 2333 nd->path = nd->root; 2334 nd->inode = inode; 2335 if (flags & LOOKUP_RCU) { 2336 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2337 nd->root_seq = nd->seq; 2338 } else { 2339 path_get(&nd->path); 2340 } 2341 return s; 2342 } 2343 2344 nd->root.mnt = NULL; 2345 2346 /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */ 2347 if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) { 2348 error = nd_jump_root(nd); 2349 if (unlikely(error)) 2350 return ERR_PTR(error); 2351 return s; 2352 } 2353 2354 /* Relative pathname -- get the starting-point it is relative to. */ 2355 if (nd->dfd == AT_FDCWD) { 2356 if (flags & LOOKUP_RCU) { 2357 struct fs_struct *fs = current->fs; 2358 unsigned seq; 2359 2360 do { 2361 seq = read_seqcount_begin(&fs->seq); 2362 nd->path = fs->pwd; 2363 nd->inode = nd->path.dentry->d_inode; 2364 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2365 } while (read_seqcount_retry(&fs->seq, seq)); 2366 } else { 2367 get_fs_pwd(current->fs, &nd->path); 2368 nd->inode = nd->path.dentry->d_inode; 2369 } 2370 } else { 2371 /* Caller must check execute permissions on the starting path component */ 2372 struct fd f = fdget_raw(nd->dfd); 2373 struct dentry *dentry; 2374 2375 if (!f.file) 2376 return ERR_PTR(-EBADF); 2377 2378 dentry = f.file->f_path.dentry; 2379 2380 if (*s && unlikely(!d_can_lookup(dentry))) { 2381 fdput(f); 2382 return ERR_PTR(-ENOTDIR); 2383 } 2384 2385 nd->path = f.file->f_path; 2386 if (flags & LOOKUP_RCU) { 2387 nd->inode = nd->path.dentry->d_inode; 2388 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2389 } else { 2390 path_get(&nd->path); 2391 nd->inode = nd->path.dentry->d_inode; 2392 } 2393 fdput(f); 2394 } 2395 2396 /* For scoped-lookups we need to set the root to the dirfd as well. */ 2397 if (flags & LOOKUP_IS_SCOPED) { 2398 nd->root = nd->path; 2399 if (flags & LOOKUP_RCU) { 2400 nd->root_seq = nd->seq; 2401 } else { 2402 path_get(&nd->root); 2403 nd->state |= ND_ROOT_GRABBED; 2404 } 2405 } 2406 return s; 2407 } 2408 2409 static inline const char *lookup_last(struct nameidata *nd) 2410 { 2411 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 2412 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2413 2414 return walk_component(nd, WALK_TRAILING); 2415 } 2416 2417 static int handle_lookup_down(struct nameidata *nd) 2418 { 2419 if (!(nd->flags & LOOKUP_RCU)) 2420 dget(nd->path.dentry); 2421 return PTR_ERR(step_into(nd, WALK_NOFOLLOW, 2422 nd->path.dentry, nd->inode, nd->seq)); 2423 } 2424 2425 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2426 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path) 2427 { 2428 const char *s = path_init(nd, flags); 2429 int err; 2430 2431 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) { 2432 err = handle_lookup_down(nd); 2433 if (unlikely(err < 0)) 2434 s = ERR_PTR(err); 2435 } 2436 2437 while (!(err = link_path_walk(s, nd)) && 2438 (s = lookup_last(nd)) != NULL) 2439 ; 2440 if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) { 2441 err = handle_lookup_down(nd); 2442 nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please... 2443 } 2444 if (!err) 2445 err = complete_walk(nd); 2446 2447 if (!err && nd->flags & LOOKUP_DIRECTORY) 2448 if (!d_can_lookup(nd->path.dentry)) 2449 err = -ENOTDIR; 2450 if (!err) { 2451 *path = nd->path; 2452 nd->path.mnt = NULL; 2453 nd->path.dentry = NULL; 2454 } 2455 terminate_walk(nd); 2456 return err; 2457 } 2458 2459 int filename_lookup(int dfd, struct filename *name, unsigned flags, 2460 struct path *path, struct path *root) 2461 { 2462 int retval; 2463 struct nameidata nd; 2464 if (IS_ERR(name)) 2465 return PTR_ERR(name); 2466 set_nameidata(&nd, dfd, name, root); 2467 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path); 2468 if (unlikely(retval == -ECHILD)) 2469 retval = path_lookupat(&nd, flags, path); 2470 if (unlikely(retval == -ESTALE)) 2471 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path); 2472 2473 if (likely(!retval)) 2474 audit_inode(name, path->dentry, 2475 flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0); 2476 restore_nameidata(); 2477 putname(name); 2478 return retval; 2479 } 2480 2481 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2482 static int path_parentat(struct nameidata *nd, unsigned flags, 2483 struct path *parent) 2484 { 2485 const char *s = path_init(nd, flags); 2486 int err = link_path_walk(s, nd); 2487 if (!err) 2488 err = complete_walk(nd); 2489 if (!err) { 2490 *parent = nd->path; 2491 nd->path.mnt = NULL; 2492 nd->path.dentry = NULL; 2493 } 2494 terminate_walk(nd); 2495 return err; 2496 } 2497 2498 static struct filename *filename_parentat(int dfd, struct filename *name, 2499 unsigned int flags, struct path *parent, 2500 struct qstr *last, int *type) 2501 { 2502 int retval; 2503 struct nameidata nd; 2504 2505 if (IS_ERR(name)) 2506 return name; 2507 set_nameidata(&nd, dfd, name, NULL); 2508 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent); 2509 if (unlikely(retval == -ECHILD)) 2510 retval = path_parentat(&nd, flags, parent); 2511 if (unlikely(retval == -ESTALE)) 2512 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent); 2513 if (likely(!retval)) { 2514 *last = nd.last; 2515 *type = nd.last_type; 2516 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT); 2517 } else { 2518 putname(name); 2519 name = ERR_PTR(retval); 2520 } 2521 restore_nameidata(); 2522 return name; 2523 } 2524 2525 /* does lookup, returns the object with parent locked */ 2526 struct dentry *kern_path_locked(const char *name, struct path *path) 2527 { 2528 struct filename *filename; 2529 struct dentry *d; 2530 struct qstr last; 2531 int type; 2532 2533 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path, 2534 &last, &type); 2535 if (IS_ERR(filename)) 2536 return ERR_CAST(filename); 2537 if (unlikely(type != LAST_NORM)) { 2538 path_put(path); 2539 putname(filename); 2540 return ERR_PTR(-EINVAL); 2541 } 2542 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 2543 d = __lookup_hash(&last, path->dentry, 0); 2544 if (IS_ERR(d)) { 2545 inode_unlock(path->dentry->d_inode); 2546 path_put(path); 2547 } 2548 putname(filename); 2549 return d; 2550 } 2551 2552 int kern_path(const char *name, unsigned int flags, struct path *path) 2553 { 2554 return filename_lookup(AT_FDCWD, getname_kernel(name), 2555 flags, path, NULL); 2556 } 2557 EXPORT_SYMBOL(kern_path); 2558 2559 /** 2560 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2561 * @dentry: pointer to dentry of the base directory 2562 * @mnt: pointer to vfs mount of the base directory 2563 * @name: pointer to file name 2564 * @flags: lookup flags 2565 * @path: pointer to struct path to fill 2566 */ 2567 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2568 const char *name, unsigned int flags, 2569 struct path *path) 2570 { 2571 struct path root = {.mnt = mnt, .dentry = dentry}; 2572 /* the first argument of filename_lookup() is ignored with root */ 2573 return filename_lookup(AT_FDCWD, getname_kernel(name), 2574 flags , path, &root); 2575 } 2576 EXPORT_SYMBOL(vfs_path_lookup); 2577 2578 static int lookup_one_len_common(const char *name, struct dentry *base, 2579 int len, struct qstr *this) 2580 { 2581 this->name = name; 2582 this->len = len; 2583 this->hash = full_name_hash(base, name, len); 2584 if (!len) 2585 return -EACCES; 2586 2587 if (unlikely(name[0] == '.')) { 2588 if (len < 2 || (len == 2 && name[1] == '.')) 2589 return -EACCES; 2590 } 2591 2592 while (len--) { 2593 unsigned int c = *(const unsigned char *)name++; 2594 if (c == '/' || c == '\0') 2595 return -EACCES; 2596 } 2597 /* 2598 * See if the low-level filesystem might want 2599 * to use its own hash.. 2600 */ 2601 if (base->d_flags & DCACHE_OP_HASH) { 2602 int err = base->d_op->d_hash(base, this); 2603 if (err < 0) 2604 return err; 2605 } 2606 2607 return inode_permission(&init_user_ns, base->d_inode, MAY_EXEC); 2608 } 2609 2610 /** 2611 * try_lookup_one_len - filesystem helper to lookup single pathname component 2612 * @name: pathname component to lookup 2613 * @base: base directory to lookup from 2614 * @len: maximum length @len should be interpreted to 2615 * 2616 * Look up a dentry by name in the dcache, returning NULL if it does not 2617 * currently exist. The function does not try to create a dentry. 2618 * 2619 * Note that this routine is purely a helper for filesystem usage and should 2620 * not be called by generic code. 2621 * 2622 * The caller must hold base->i_mutex. 2623 */ 2624 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len) 2625 { 2626 struct qstr this; 2627 int err; 2628 2629 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2630 2631 err = lookup_one_len_common(name, base, len, &this); 2632 if (err) 2633 return ERR_PTR(err); 2634 2635 return lookup_dcache(&this, base, 0); 2636 } 2637 EXPORT_SYMBOL(try_lookup_one_len); 2638 2639 /** 2640 * lookup_one_len - filesystem helper to lookup single pathname component 2641 * @name: pathname component to lookup 2642 * @base: base directory to lookup from 2643 * @len: maximum length @len should be interpreted to 2644 * 2645 * Note that this routine is purely a helper for filesystem usage and should 2646 * not be called by generic code. 2647 * 2648 * The caller must hold base->i_mutex. 2649 */ 2650 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2651 { 2652 struct dentry *dentry; 2653 struct qstr this; 2654 int err; 2655 2656 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2657 2658 err = lookup_one_len_common(name, base, len, &this); 2659 if (err) 2660 return ERR_PTR(err); 2661 2662 dentry = lookup_dcache(&this, base, 0); 2663 return dentry ? dentry : __lookup_slow(&this, base, 0); 2664 } 2665 EXPORT_SYMBOL(lookup_one_len); 2666 2667 /** 2668 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component 2669 * @name: pathname component to lookup 2670 * @base: base directory to lookup from 2671 * @len: maximum length @len should be interpreted to 2672 * 2673 * Note that this routine is purely a helper for filesystem usage and should 2674 * not be called by generic code. 2675 * 2676 * Unlike lookup_one_len, it should be called without the parent 2677 * i_mutex held, and will take the i_mutex itself if necessary. 2678 */ 2679 struct dentry *lookup_one_len_unlocked(const char *name, 2680 struct dentry *base, int len) 2681 { 2682 struct qstr this; 2683 int err; 2684 struct dentry *ret; 2685 2686 err = lookup_one_len_common(name, base, len, &this); 2687 if (err) 2688 return ERR_PTR(err); 2689 2690 ret = lookup_dcache(&this, base, 0); 2691 if (!ret) 2692 ret = lookup_slow(&this, base, 0); 2693 return ret; 2694 } 2695 EXPORT_SYMBOL(lookup_one_len_unlocked); 2696 2697 /* 2698 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT) 2699 * on negatives. Returns known positive or ERR_PTR(); that's what 2700 * most of the users want. Note that pinned negative with unlocked parent 2701 * _can_ become positive at any time, so callers of lookup_one_len_unlocked() 2702 * need to be very careful; pinned positives have ->d_inode stable, so 2703 * this one avoids such problems. 2704 */ 2705 struct dentry *lookup_positive_unlocked(const char *name, 2706 struct dentry *base, int len) 2707 { 2708 struct dentry *ret = lookup_one_len_unlocked(name, base, len); 2709 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) { 2710 dput(ret); 2711 ret = ERR_PTR(-ENOENT); 2712 } 2713 return ret; 2714 } 2715 EXPORT_SYMBOL(lookup_positive_unlocked); 2716 2717 #ifdef CONFIG_UNIX98_PTYS 2718 int path_pts(struct path *path) 2719 { 2720 /* Find something mounted on "pts" in the same directory as 2721 * the input path. 2722 */ 2723 struct dentry *parent = dget_parent(path->dentry); 2724 struct dentry *child; 2725 struct qstr this = QSTR_INIT("pts", 3); 2726 2727 if (unlikely(!path_connected(path->mnt, parent))) { 2728 dput(parent); 2729 return -ENOENT; 2730 } 2731 dput(path->dentry); 2732 path->dentry = parent; 2733 child = d_hash_and_lookup(parent, &this); 2734 if (!child) 2735 return -ENOENT; 2736 2737 path->dentry = child; 2738 dput(parent); 2739 follow_down(path); 2740 return 0; 2741 } 2742 #endif 2743 2744 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2745 struct path *path, int *empty) 2746 { 2747 return filename_lookup(dfd, getname_flags(name, flags, empty), 2748 flags, path, NULL); 2749 } 2750 EXPORT_SYMBOL(user_path_at_empty); 2751 2752 int __check_sticky(struct user_namespace *mnt_userns, struct inode *dir, 2753 struct inode *inode) 2754 { 2755 kuid_t fsuid = current_fsuid(); 2756 2757 if (uid_eq(i_uid_into_mnt(mnt_userns, inode), fsuid)) 2758 return 0; 2759 if (uid_eq(i_uid_into_mnt(mnt_userns, dir), fsuid)) 2760 return 0; 2761 return !capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FOWNER); 2762 } 2763 EXPORT_SYMBOL(__check_sticky); 2764 2765 /* 2766 * Check whether we can remove a link victim from directory dir, check 2767 * whether the type of victim is right. 2768 * 1. We can't do it if dir is read-only (done in permission()) 2769 * 2. We should have write and exec permissions on dir 2770 * 3. We can't remove anything from append-only dir 2771 * 4. We can't do anything with immutable dir (done in permission()) 2772 * 5. If the sticky bit on dir is set we should either 2773 * a. be owner of dir, or 2774 * b. be owner of victim, or 2775 * c. have CAP_FOWNER capability 2776 * 6. If the victim is append-only or immutable we can't do antyhing with 2777 * links pointing to it. 2778 * 7. If the victim has an unknown uid or gid we can't change the inode. 2779 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2780 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2781 * 10. We can't remove a root or mountpoint. 2782 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by 2783 * nfs_async_unlink(). 2784 */ 2785 static int may_delete(struct user_namespace *mnt_userns, struct inode *dir, 2786 struct dentry *victim, bool isdir) 2787 { 2788 struct inode *inode = d_backing_inode(victim); 2789 int error; 2790 2791 if (d_is_negative(victim)) 2792 return -ENOENT; 2793 BUG_ON(!inode); 2794 2795 BUG_ON(victim->d_parent->d_inode != dir); 2796 2797 /* Inode writeback is not safe when the uid or gid are invalid. */ 2798 if (!uid_valid(i_uid_into_mnt(mnt_userns, inode)) || 2799 !gid_valid(i_gid_into_mnt(mnt_userns, inode))) 2800 return -EOVERFLOW; 2801 2802 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2803 2804 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); 2805 if (error) 2806 return error; 2807 if (IS_APPEND(dir)) 2808 return -EPERM; 2809 2810 if (check_sticky(mnt_userns, dir, inode) || IS_APPEND(inode) || 2811 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || 2812 HAS_UNMAPPED_ID(mnt_userns, inode)) 2813 return -EPERM; 2814 if (isdir) { 2815 if (!d_is_dir(victim)) 2816 return -ENOTDIR; 2817 if (IS_ROOT(victim)) 2818 return -EBUSY; 2819 } else if (d_is_dir(victim)) 2820 return -EISDIR; 2821 if (IS_DEADDIR(dir)) 2822 return -ENOENT; 2823 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2824 return -EBUSY; 2825 return 0; 2826 } 2827 2828 /* Check whether we can create an object with dentry child in directory 2829 * dir. 2830 * 1. We can't do it if child already exists (open has special treatment for 2831 * this case, but since we are inlined it's OK) 2832 * 2. We can't do it if dir is read-only (done in permission()) 2833 * 3. We can't do it if the fs can't represent the fsuid or fsgid. 2834 * 4. We should have write and exec permissions on dir 2835 * 5. We can't do it if dir is immutable (done in permission()) 2836 */ 2837 static inline int may_create(struct user_namespace *mnt_userns, 2838 struct inode *dir, struct dentry *child) 2839 { 2840 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 2841 if (child->d_inode) 2842 return -EEXIST; 2843 if (IS_DEADDIR(dir)) 2844 return -ENOENT; 2845 if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns)) 2846 return -EOVERFLOW; 2847 2848 return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); 2849 } 2850 2851 /* 2852 * p1 and p2 should be directories on the same fs. 2853 */ 2854 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2855 { 2856 struct dentry *p; 2857 2858 if (p1 == p2) { 2859 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2860 return NULL; 2861 } 2862 2863 mutex_lock(&p1->d_sb->s_vfs_rename_mutex); 2864 2865 p = d_ancestor(p2, p1); 2866 if (p) { 2867 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 2868 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD); 2869 return p; 2870 } 2871 2872 p = d_ancestor(p1, p2); 2873 if (p) { 2874 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2875 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD); 2876 return p; 2877 } 2878 2879 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2880 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 2881 return NULL; 2882 } 2883 EXPORT_SYMBOL(lock_rename); 2884 2885 void unlock_rename(struct dentry *p1, struct dentry *p2) 2886 { 2887 inode_unlock(p1->d_inode); 2888 if (p1 != p2) { 2889 inode_unlock(p2->d_inode); 2890 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 2891 } 2892 } 2893 EXPORT_SYMBOL(unlock_rename); 2894 2895 /** 2896 * vfs_create - create new file 2897 * @mnt_userns: user namespace of the mount the inode was found from 2898 * @dir: inode of @dentry 2899 * @dentry: pointer to dentry of the base directory 2900 * @mode: mode of the new file 2901 * @want_excl: whether the file must not yet exist 2902 * 2903 * Create a new file. 2904 * 2905 * If the inode has been found through an idmapped mount the user namespace of 2906 * the vfsmount must be passed through @mnt_userns. This function will then take 2907 * care to map the inode according to @mnt_userns before checking permissions. 2908 * On non-idmapped mounts or if permission checking is to be performed on the 2909 * raw inode simply passs init_user_ns. 2910 */ 2911 int vfs_create(struct user_namespace *mnt_userns, struct inode *dir, 2912 struct dentry *dentry, umode_t mode, bool want_excl) 2913 { 2914 int error = may_create(mnt_userns, dir, dentry); 2915 if (error) 2916 return error; 2917 2918 if (!dir->i_op->create) 2919 return -EACCES; /* shouldn't it be ENOSYS? */ 2920 mode &= S_IALLUGO; 2921 mode |= S_IFREG; 2922 error = security_inode_create(dir, dentry, mode); 2923 if (error) 2924 return error; 2925 error = dir->i_op->create(mnt_userns, dir, dentry, mode, want_excl); 2926 if (!error) 2927 fsnotify_create(dir, dentry); 2928 return error; 2929 } 2930 EXPORT_SYMBOL(vfs_create); 2931 2932 int vfs_mkobj(struct dentry *dentry, umode_t mode, 2933 int (*f)(struct dentry *, umode_t, void *), 2934 void *arg) 2935 { 2936 struct inode *dir = dentry->d_parent->d_inode; 2937 int error = may_create(&init_user_ns, dir, dentry); 2938 if (error) 2939 return error; 2940 2941 mode &= S_IALLUGO; 2942 mode |= S_IFREG; 2943 error = security_inode_create(dir, dentry, mode); 2944 if (error) 2945 return error; 2946 error = f(dentry, mode, arg); 2947 if (!error) 2948 fsnotify_create(dir, dentry); 2949 return error; 2950 } 2951 EXPORT_SYMBOL(vfs_mkobj); 2952 2953 bool may_open_dev(const struct path *path) 2954 { 2955 return !(path->mnt->mnt_flags & MNT_NODEV) && 2956 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV); 2957 } 2958 2959 static int may_open(struct user_namespace *mnt_userns, const struct path *path, 2960 int acc_mode, int flag) 2961 { 2962 struct dentry *dentry = path->dentry; 2963 struct inode *inode = dentry->d_inode; 2964 int error; 2965 2966 if (!inode) 2967 return -ENOENT; 2968 2969 switch (inode->i_mode & S_IFMT) { 2970 case S_IFLNK: 2971 return -ELOOP; 2972 case S_IFDIR: 2973 if (acc_mode & MAY_WRITE) 2974 return -EISDIR; 2975 if (acc_mode & MAY_EXEC) 2976 return -EACCES; 2977 break; 2978 case S_IFBLK: 2979 case S_IFCHR: 2980 if (!may_open_dev(path)) 2981 return -EACCES; 2982 fallthrough; 2983 case S_IFIFO: 2984 case S_IFSOCK: 2985 if (acc_mode & MAY_EXEC) 2986 return -EACCES; 2987 flag &= ~O_TRUNC; 2988 break; 2989 case S_IFREG: 2990 if ((acc_mode & MAY_EXEC) && path_noexec(path)) 2991 return -EACCES; 2992 break; 2993 } 2994 2995 error = inode_permission(mnt_userns, inode, MAY_OPEN | acc_mode); 2996 if (error) 2997 return error; 2998 2999 /* 3000 * An append-only file must be opened in append mode for writing. 3001 */ 3002 if (IS_APPEND(inode)) { 3003 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 3004 return -EPERM; 3005 if (flag & O_TRUNC) 3006 return -EPERM; 3007 } 3008 3009 /* O_NOATIME can only be set by the owner or superuser */ 3010 if (flag & O_NOATIME && !inode_owner_or_capable(mnt_userns, inode)) 3011 return -EPERM; 3012 3013 return 0; 3014 } 3015 3016 static int handle_truncate(struct user_namespace *mnt_userns, struct file *filp) 3017 { 3018 const struct path *path = &filp->f_path; 3019 struct inode *inode = path->dentry->d_inode; 3020 int error = get_write_access(inode); 3021 if (error) 3022 return error; 3023 /* 3024 * Refuse to truncate files with mandatory locks held on them. 3025 */ 3026 error = locks_verify_locked(filp); 3027 if (!error) 3028 error = security_path_truncate(path); 3029 if (!error) { 3030 error = do_truncate(mnt_userns, path->dentry, 0, 3031 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 3032 filp); 3033 } 3034 put_write_access(inode); 3035 return error; 3036 } 3037 3038 static inline int open_to_namei_flags(int flag) 3039 { 3040 if ((flag & O_ACCMODE) == 3) 3041 flag--; 3042 return flag; 3043 } 3044 3045 static int may_o_create(struct user_namespace *mnt_userns, 3046 const struct path *dir, struct dentry *dentry, 3047 umode_t mode) 3048 { 3049 int error = security_path_mknod(dir, dentry, mode, 0); 3050 if (error) 3051 return error; 3052 3053 if (!fsuidgid_has_mapping(dir->dentry->d_sb, mnt_userns)) 3054 return -EOVERFLOW; 3055 3056 error = inode_permission(mnt_userns, dir->dentry->d_inode, 3057 MAY_WRITE | MAY_EXEC); 3058 if (error) 3059 return error; 3060 3061 return security_inode_create(dir->dentry->d_inode, dentry, mode); 3062 } 3063 3064 /* 3065 * Attempt to atomically look up, create and open a file from a negative 3066 * dentry. 3067 * 3068 * Returns 0 if successful. The file will have been created and attached to 3069 * @file by the filesystem calling finish_open(). 3070 * 3071 * If the file was looked up only or didn't need creating, FMODE_OPENED won't 3072 * be set. The caller will need to perform the open themselves. @path will 3073 * have been updated to point to the new dentry. This may be negative. 3074 * 3075 * Returns an error code otherwise. 3076 */ 3077 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry, 3078 struct file *file, 3079 int open_flag, umode_t mode) 3080 { 3081 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 3082 struct inode *dir = nd->path.dentry->d_inode; 3083 int error; 3084 3085 if (nd->flags & LOOKUP_DIRECTORY) 3086 open_flag |= O_DIRECTORY; 3087 3088 file->f_path.dentry = DENTRY_NOT_SET; 3089 file->f_path.mnt = nd->path.mnt; 3090 error = dir->i_op->atomic_open(dir, dentry, file, 3091 open_to_namei_flags(open_flag), mode); 3092 d_lookup_done(dentry); 3093 if (!error) { 3094 if (file->f_mode & FMODE_OPENED) { 3095 if (unlikely(dentry != file->f_path.dentry)) { 3096 dput(dentry); 3097 dentry = dget(file->f_path.dentry); 3098 } 3099 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 3100 error = -EIO; 3101 } else { 3102 if (file->f_path.dentry) { 3103 dput(dentry); 3104 dentry = file->f_path.dentry; 3105 } 3106 if (unlikely(d_is_negative(dentry))) 3107 error = -ENOENT; 3108 } 3109 } 3110 if (error) { 3111 dput(dentry); 3112 dentry = ERR_PTR(error); 3113 } 3114 return dentry; 3115 } 3116 3117 /* 3118 * Look up and maybe create and open the last component. 3119 * 3120 * Must be called with parent locked (exclusive in O_CREAT case). 3121 * 3122 * Returns 0 on success, that is, if 3123 * the file was successfully atomically created (if necessary) and opened, or 3124 * the file was not completely opened at this time, though lookups and 3125 * creations were performed. 3126 * These case are distinguished by presence of FMODE_OPENED on file->f_mode. 3127 * In the latter case dentry returned in @path might be negative if O_CREAT 3128 * hadn't been specified. 3129 * 3130 * An error code is returned on failure. 3131 */ 3132 static struct dentry *lookup_open(struct nameidata *nd, struct file *file, 3133 const struct open_flags *op, 3134 bool got_write) 3135 { 3136 struct user_namespace *mnt_userns; 3137 struct dentry *dir = nd->path.dentry; 3138 struct inode *dir_inode = dir->d_inode; 3139 int open_flag = op->open_flag; 3140 struct dentry *dentry; 3141 int error, create_error = 0; 3142 umode_t mode = op->mode; 3143 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 3144 3145 if (unlikely(IS_DEADDIR(dir_inode))) 3146 return ERR_PTR(-ENOENT); 3147 3148 file->f_mode &= ~FMODE_CREATED; 3149 dentry = d_lookup(dir, &nd->last); 3150 for (;;) { 3151 if (!dentry) { 3152 dentry = d_alloc_parallel(dir, &nd->last, &wq); 3153 if (IS_ERR(dentry)) 3154 return dentry; 3155 } 3156 if (d_in_lookup(dentry)) 3157 break; 3158 3159 error = d_revalidate(dentry, nd->flags); 3160 if (likely(error > 0)) 3161 break; 3162 if (error) 3163 goto out_dput; 3164 d_invalidate(dentry); 3165 dput(dentry); 3166 dentry = NULL; 3167 } 3168 if (dentry->d_inode) { 3169 /* Cached positive dentry: will open in f_op->open */ 3170 return dentry; 3171 } 3172 3173 /* 3174 * Checking write permission is tricky, bacuse we don't know if we are 3175 * going to actually need it: O_CREAT opens should work as long as the 3176 * file exists. But checking existence breaks atomicity. The trick is 3177 * to check access and if not granted clear O_CREAT from the flags. 3178 * 3179 * Another problem is returing the "right" error value (e.g. for an 3180 * O_EXCL open we want to return EEXIST not EROFS). 3181 */ 3182 if (unlikely(!got_write)) 3183 open_flag &= ~O_TRUNC; 3184 mnt_userns = mnt_user_ns(nd->path.mnt); 3185 if (open_flag & O_CREAT) { 3186 if (open_flag & O_EXCL) 3187 open_flag &= ~O_TRUNC; 3188 if (!IS_POSIXACL(dir->d_inode)) 3189 mode &= ~current_umask(); 3190 if (likely(got_write)) 3191 create_error = may_o_create(mnt_userns, &nd->path, 3192 dentry, mode); 3193 else 3194 create_error = -EROFS; 3195 } 3196 if (create_error) 3197 open_flag &= ~O_CREAT; 3198 if (dir_inode->i_op->atomic_open) { 3199 dentry = atomic_open(nd, dentry, file, open_flag, mode); 3200 if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT)) 3201 dentry = ERR_PTR(create_error); 3202 return dentry; 3203 } 3204 3205 if (d_in_lookup(dentry)) { 3206 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry, 3207 nd->flags); 3208 d_lookup_done(dentry); 3209 if (unlikely(res)) { 3210 if (IS_ERR(res)) { 3211 error = PTR_ERR(res); 3212 goto out_dput; 3213 } 3214 dput(dentry); 3215 dentry = res; 3216 } 3217 } 3218 3219 /* Negative dentry, just create the file */ 3220 if (!dentry->d_inode && (open_flag & O_CREAT)) { 3221 file->f_mode |= FMODE_CREATED; 3222 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE); 3223 if (!dir_inode->i_op->create) { 3224 error = -EACCES; 3225 goto out_dput; 3226 } 3227 3228 error = dir_inode->i_op->create(mnt_userns, dir_inode, dentry, 3229 mode, open_flag & O_EXCL); 3230 if (error) 3231 goto out_dput; 3232 } 3233 if (unlikely(create_error) && !dentry->d_inode) { 3234 error = create_error; 3235 goto out_dput; 3236 } 3237 return dentry; 3238 3239 out_dput: 3240 dput(dentry); 3241 return ERR_PTR(error); 3242 } 3243 3244 static const char *open_last_lookups(struct nameidata *nd, 3245 struct file *file, const struct open_flags *op) 3246 { 3247 struct dentry *dir = nd->path.dentry; 3248 int open_flag = op->open_flag; 3249 bool got_write = false; 3250 unsigned seq; 3251 struct inode *inode; 3252 struct dentry *dentry; 3253 const char *res; 3254 3255 nd->flags |= op->intent; 3256 3257 if (nd->last_type != LAST_NORM) { 3258 if (nd->depth) 3259 put_link(nd); 3260 return handle_dots(nd, nd->last_type); 3261 } 3262 3263 if (!(open_flag & O_CREAT)) { 3264 if (nd->last.name[nd->last.len]) 3265 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 3266 /* we _can_ be in RCU mode here */ 3267 dentry = lookup_fast(nd, &inode, &seq); 3268 if (IS_ERR(dentry)) 3269 return ERR_CAST(dentry); 3270 if (likely(dentry)) 3271 goto finish_lookup; 3272 3273 BUG_ON(nd->flags & LOOKUP_RCU); 3274 } else { 3275 /* create side of things */ 3276 if (nd->flags & LOOKUP_RCU) { 3277 if (!try_to_unlazy(nd)) 3278 return ERR_PTR(-ECHILD); 3279 } 3280 audit_inode(nd->name, dir, AUDIT_INODE_PARENT); 3281 /* trailing slashes? */ 3282 if (unlikely(nd->last.name[nd->last.len])) 3283 return ERR_PTR(-EISDIR); 3284 } 3285 3286 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 3287 got_write = !mnt_want_write(nd->path.mnt); 3288 /* 3289 * do _not_ fail yet - we might not need that or fail with 3290 * a different error; let lookup_open() decide; we'll be 3291 * dropping this one anyway. 3292 */ 3293 } 3294 if (open_flag & O_CREAT) 3295 inode_lock(dir->d_inode); 3296 else 3297 inode_lock_shared(dir->d_inode); 3298 dentry = lookup_open(nd, file, op, got_write); 3299 if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED)) 3300 fsnotify_create(dir->d_inode, dentry); 3301 if (open_flag & O_CREAT) 3302 inode_unlock(dir->d_inode); 3303 else 3304 inode_unlock_shared(dir->d_inode); 3305 3306 if (got_write) 3307 mnt_drop_write(nd->path.mnt); 3308 3309 if (IS_ERR(dentry)) 3310 return ERR_CAST(dentry); 3311 3312 if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) { 3313 dput(nd->path.dentry); 3314 nd->path.dentry = dentry; 3315 return NULL; 3316 } 3317 3318 finish_lookup: 3319 if (nd->depth) 3320 put_link(nd); 3321 res = step_into(nd, WALK_TRAILING, dentry, inode, seq); 3322 if (unlikely(res)) 3323 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3324 return res; 3325 } 3326 3327 /* 3328 * Handle the last step of open() 3329 */ 3330 static int do_open(struct nameidata *nd, 3331 struct file *file, const struct open_flags *op) 3332 { 3333 struct user_namespace *mnt_userns; 3334 int open_flag = op->open_flag; 3335 bool do_truncate; 3336 int acc_mode; 3337 int error; 3338 3339 if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) { 3340 error = complete_walk(nd); 3341 if (error) 3342 return error; 3343 } 3344 if (!(file->f_mode & FMODE_CREATED)) 3345 audit_inode(nd->name, nd->path.dentry, 0); 3346 mnt_userns = mnt_user_ns(nd->path.mnt); 3347 if (open_flag & O_CREAT) { 3348 if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED)) 3349 return -EEXIST; 3350 if (d_is_dir(nd->path.dentry)) 3351 return -EISDIR; 3352 error = may_create_in_sticky(mnt_userns, nd, 3353 d_backing_inode(nd->path.dentry)); 3354 if (unlikely(error)) 3355 return error; 3356 } 3357 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3358 return -ENOTDIR; 3359 3360 do_truncate = false; 3361 acc_mode = op->acc_mode; 3362 if (file->f_mode & FMODE_CREATED) { 3363 /* Don't check for write permission, don't truncate */ 3364 open_flag &= ~O_TRUNC; 3365 acc_mode = 0; 3366 } else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) { 3367 error = mnt_want_write(nd->path.mnt); 3368 if (error) 3369 return error; 3370 do_truncate = true; 3371 } 3372 error = may_open(mnt_userns, &nd->path, acc_mode, open_flag); 3373 if (!error && !(file->f_mode & FMODE_OPENED)) 3374 error = vfs_open(&nd->path, file); 3375 if (!error) 3376 error = ima_file_check(file, op->acc_mode); 3377 if (!error && do_truncate) 3378 error = handle_truncate(mnt_userns, file); 3379 if (unlikely(error > 0)) { 3380 WARN_ON(1); 3381 error = -EINVAL; 3382 } 3383 if (do_truncate) 3384 mnt_drop_write(nd->path.mnt); 3385 return error; 3386 } 3387 3388 /** 3389 * vfs_tmpfile - create tmpfile 3390 * @mnt_userns: user namespace of the mount the inode was found from 3391 * @dentry: pointer to dentry of the base directory 3392 * @mode: mode of the new tmpfile 3393 * @open_flag: flags 3394 * 3395 * Create a temporary file. 3396 * 3397 * If the inode has been found through an idmapped mount the user namespace of 3398 * the vfsmount must be passed through @mnt_userns. This function will then take 3399 * care to map the inode according to @mnt_userns before checking permissions. 3400 * On non-idmapped mounts or if permission checking is to be performed on the 3401 * raw inode simply passs init_user_ns. 3402 */ 3403 struct dentry *vfs_tmpfile(struct user_namespace *mnt_userns, 3404 struct dentry *dentry, umode_t mode, int open_flag) 3405 { 3406 struct dentry *child = NULL; 3407 struct inode *dir = dentry->d_inode; 3408 struct inode *inode; 3409 int error; 3410 3411 /* we want directory to be writable */ 3412 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); 3413 if (error) 3414 goto out_err; 3415 error = -EOPNOTSUPP; 3416 if (!dir->i_op->tmpfile) 3417 goto out_err; 3418 error = -ENOMEM; 3419 child = d_alloc(dentry, &slash_name); 3420 if (unlikely(!child)) 3421 goto out_err; 3422 error = dir->i_op->tmpfile(mnt_userns, dir, child, mode); 3423 if (error) 3424 goto out_err; 3425 error = -ENOENT; 3426 inode = child->d_inode; 3427 if (unlikely(!inode)) 3428 goto out_err; 3429 if (!(open_flag & O_EXCL)) { 3430 spin_lock(&inode->i_lock); 3431 inode->i_state |= I_LINKABLE; 3432 spin_unlock(&inode->i_lock); 3433 } 3434 ima_post_create_tmpfile(mnt_userns, inode); 3435 return child; 3436 3437 out_err: 3438 dput(child); 3439 return ERR_PTR(error); 3440 } 3441 EXPORT_SYMBOL(vfs_tmpfile); 3442 3443 static int do_tmpfile(struct nameidata *nd, unsigned flags, 3444 const struct open_flags *op, 3445 struct file *file) 3446 { 3447 struct user_namespace *mnt_userns; 3448 struct dentry *child; 3449 struct path path; 3450 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path); 3451 if (unlikely(error)) 3452 return error; 3453 error = mnt_want_write(path.mnt); 3454 if (unlikely(error)) 3455 goto out; 3456 mnt_userns = mnt_user_ns(path.mnt); 3457 child = vfs_tmpfile(mnt_userns, path.dentry, op->mode, op->open_flag); 3458 error = PTR_ERR(child); 3459 if (IS_ERR(child)) 3460 goto out2; 3461 dput(path.dentry); 3462 path.dentry = child; 3463 audit_inode(nd->name, child, 0); 3464 /* Don't check for other permissions, the inode was just created */ 3465 error = may_open(mnt_userns, &path, 0, op->open_flag); 3466 if (!error) 3467 error = vfs_open(&path, file); 3468 out2: 3469 mnt_drop_write(path.mnt); 3470 out: 3471 path_put(&path); 3472 return error; 3473 } 3474 3475 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file) 3476 { 3477 struct path path; 3478 int error = path_lookupat(nd, flags, &path); 3479 if (!error) { 3480 audit_inode(nd->name, path.dentry, 0); 3481 error = vfs_open(&path, file); 3482 path_put(&path); 3483 } 3484 return error; 3485 } 3486 3487 static struct file *path_openat(struct nameidata *nd, 3488 const struct open_flags *op, unsigned flags) 3489 { 3490 struct file *file; 3491 int error; 3492 3493 file = alloc_empty_file(op->open_flag, current_cred()); 3494 if (IS_ERR(file)) 3495 return file; 3496 3497 if (unlikely(file->f_flags & __O_TMPFILE)) { 3498 error = do_tmpfile(nd, flags, op, file); 3499 } else if (unlikely(file->f_flags & O_PATH)) { 3500 error = do_o_path(nd, flags, file); 3501 } else { 3502 const char *s = path_init(nd, flags); 3503 while (!(error = link_path_walk(s, nd)) && 3504 (s = open_last_lookups(nd, file, op)) != NULL) 3505 ; 3506 if (!error) 3507 error = do_open(nd, file, op); 3508 terminate_walk(nd); 3509 } 3510 if (likely(!error)) { 3511 if (likely(file->f_mode & FMODE_OPENED)) 3512 return file; 3513 WARN_ON(1); 3514 error = -EINVAL; 3515 } 3516 fput(file); 3517 if (error == -EOPENSTALE) { 3518 if (flags & LOOKUP_RCU) 3519 error = -ECHILD; 3520 else 3521 error = -ESTALE; 3522 } 3523 return ERR_PTR(error); 3524 } 3525 3526 struct file *do_filp_open(int dfd, struct filename *pathname, 3527 const struct open_flags *op) 3528 { 3529 struct nameidata nd; 3530 int flags = op->lookup_flags; 3531 struct file *filp; 3532 3533 set_nameidata(&nd, dfd, pathname, NULL); 3534 filp = path_openat(&nd, op, flags | LOOKUP_RCU); 3535 if (unlikely(filp == ERR_PTR(-ECHILD))) 3536 filp = path_openat(&nd, op, flags); 3537 if (unlikely(filp == ERR_PTR(-ESTALE))) 3538 filp = path_openat(&nd, op, flags | LOOKUP_REVAL); 3539 restore_nameidata(); 3540 return filp; 3541 } 3542 3543 struct file *do_file_open_root(const struct path *root, 3544 const char *name, const struct open_flags *op) 3545 { 3546 struct nameidata nd; 3547 struct file *file; 3548 struct filename *filename; 3549 int flags = op->lookup_flags; 3550 3551 if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN) 3552 return ERR_PTR(-ELOOP); 3553 3554 filename = getname_kernel(name); 3555 if (IS_ERR(filename)) 3556 return ERR_CAST(filename); 3557 3558 set_nameidata(&nd, -1, filename, root); 3559 file = path_openat(&nd, op, flags | LOOKUP_RCU); 3560 if (unlikely(file == ERR_PTR(-ECHILD))) 3561 file = path_openat(&nd, op, flags); 3562 if (unlikely(file == ERR_PTR(-ESTALE))) 3563 file = path_openat(&nd, op, flags | LOOKUP_REVAL); 3564 restore_nameidata(); 3565 putname(filename); 3566 return file; 3567 } 3568 3569 static struct dentry *filename_create(int dfd, struct filename *name, 3570 struct path *path, unsigned int lookup_flags) 3571 { 3572 struct dentry *dentry = ERR_PTR(-EEXIST); 3573 struct qstr last; 3574 int type; 3575 int err2; 3576 int error; 3577 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY); 3578 3579 /* 3580 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any 3581 * other flags passed in are ignored! 3582 */ 3583 lookup_flags &= LOOKUP_REVAL; 3584 3585 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type); 3586 if (IS_ERR(name)) 3587 return ERR_CAST(name); 3588 3589 /* 3590 * Yucky last component or no last component at all? 3591 * (foo/., foo/.., /////) 3592 */ 3593 if (unlikely(type != LAST_NORM)) 3594 goto out; 3595 3596 /* don't fail immediately if it's r/o, at least try to report other errors */ 3597 err2 = mnt_want_write(path->mnt); 3598 /* 3599 * Do the final lookup. 3600 */ 3601 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL; 3602 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 3603 dentry = __lookup_hash(&last, path->dentry, lookup_flags); 3604 if (IS_ERR(dentry)) 3605 goto unlock; 3606 3607 error = -EEXIST; 3608 if (d_is_positive(dentry)) 3609 goto fail; 3610 3611 /* 3612 * Special case - lookup gave negative, but... we had foo/bar/ 3613 * From the vfs_mknod() POV we just have a negative dentry - 3614 * all is fine. Let's be bastards - you had / on the end, you've 3615 * been asking for (non-existent) directory. -ENOENT for you. 3616 */ 3617 if (unlikely(!is_dir && last.name[last.len])) { 3618 error = -ENOENT; 3619 goto fail; 3620 } 3621 if (unlikely(err2)) { 3622 error = err2; 3623 goto fail; 3624 } 3625 putname(name); 3626 return dentry; 3627 fail: 3628 dput(dentry); 3629 dentry = ERR_PTR(error); 3630 unlock: 3631 inode_unlock(path->dentry->d_inode); 3632 if (!err2) 3633 mnt_drop_write(path->mnt); 3634 out: 3635 path_put(path); 3636 putname(name); 3637 return dentry; 3638 } 3639 3640 struct dentry *kern_path_create(int dfd, const char *pathname, 3641 struct path *path, unsigned int lookup_flags) 3642 { 3643 return filename_create(dfd, getname_kernel(pathname), 3644 path, lookup_flags); 3645 } 3646 EXPORT_SYMBOL(kern_path_create); 3647 3648 void done_path_create(struct path *path, struct dentry *dentry) 3649 { 3650 dput(dentry); 3651 inode_unlock(path->dentry->d_inode); 3652 mnt_drop_write(path->mnt); 3653 path_put(path); 3654 } 3655 EXPORT_SYMBOL(done_path_create); 3656 3657 inline struct dentry *user_path_create(int dfd, const char __user *pathname, 3658 struct path *path, unsigned int lookup_flags) 3659 { 3660 return filename_create(dfd, getname(pathname), path, lookup_flags); 3661 } 3662 EXPORT_SYMBOL(user_path_create); 3663 3664 /** 3665 * vfs_mknod - create device node or file 3666 * @mnt_userns: user namespace of the mount the inode was found from 3667 * @dir: inode of @dentry 3668 * @dentry: pointer to dentry of the base directory 3669 * @mode: mode of the new device node or file 3670 * @dev: device number of device to create 3671 * 3672 * Create a device node or file. 3673 * 3674 * If the inode has been found through an idmapped mount the user namespace of 3675 * the vfsmount must be passed through @mnt_userns. This function will then take 3676 * care to map the inode according to @mnt_userns before checking permissions. 3677 * On non-idmapped mounts or if permission checking is to be performed on the 3678 * raw inode simply passs init_user_ns. 3679 */ 3680 int vfs_mknod(struct user_namespace *mnt_userns, struct inode *dir, 3681 struct dentry *dentry, umode_t mode, dev_t dev) 3682 { 3683 bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV; 3684 int error = may_create(mnt_userns, dir, dentry); 3685 3686 if (error) 3687 return error; 3688 3689 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout && 3690 !capable(CAP_MKNOD)) 3691 return -EPERM; 3692 3693 if (!dir->i_op->mknod) 3694 return -EPERM; 3695 3696 error = devcgroup_inode_mknod(mode, dev); 3697 if (error) 3698 return error; 3699 3700 error = security_inode_mknod(dir, dentry, mode, dev); 3701 if (error) 3702 return error; 3703 3704 error = dir->i_op->mknod(mnt_userns, dir, dentry, mode, dev); 3705 if (!error) 3706 fsnotify_create(dir, dentry); 3707 return error; 3708 } 3709 EXPORT_SYMBOL(vfs_mknod); 3710 3711 static int may_mknod(umode_t mode) 3712 { 3713 switch (mode & S_IFMT) { 3714 case S_IFREG: 3715 case S_IFCHR: 3716 case S_IFBLK: 3717 case S_IFIFO: 3718 case S_IFSOCK: 3719 case 0: /* zero mode translates to S_IFREG */ 3720 return 0; 3721 case S_IFDIR: 3722 return -EPERM; 3723 default: 3724 return -EINVAL; 3725 } 3726 } 3727 3728 static long do_mknodat(int dfd, const char __user *filename, umode_t mode, 3729 unsigned int dev) 3730 { 3731 struct user_namespace *mnt_userns; 3732 struct dentry *dentry; 3733 struct path path; 3734 int error; 3735 unsigned int lookup_flags = 0; 3736 3737 error = may_mknod(mode); 3738 if (error) 3739 return error; 3740 retry: 3741 dentry = user_path_create(dfd, filename, &path, lookup_flags); 3742 if (IS_ERR(dentry)) 3743 return PTR_ERR(dentry); 3744 3745 if (!IS_POSIXACL(path.dentry->d_inode)) 3746 mode &= ~current_umask(); 3747 error = security_path_mknod(&path, dentry, mode, dev); 3748 if (error) 3749 goto out; 3750 3751 mnt_userns = mnt_user_ns(path.mnt); 3752 switch (mode & S_IFMT) { 3753 case 0: case S_IFREG: 3754 error = vfs_create(mnt_userns, path.dentry->d_inode, 3755 dentry, mode, true); 3756 if (!error) 3757 ima_post_path_mknod(mnt_userns, dentry); 3758 break; 3759 case S_IFCHR: case S_IFBLK: 3760 error = vfs_mknod(mnt_userns, path.dentry->d_inode, 3761 dentry, mode, new_decode_dev(dev)); 3762 break; 3763 case S_IFIFO: case S_IFSOCK: 3764 error = vfs_mknod(mnt_userns, path.dentry->d_inode, 3765 dentry, mode, 0); 3766 break; 3767 } 3768 out: 3769 done_path_create(&path, dentry); 3770 if (retry_estale(error, lookup_flags)) { 3771 lookup_flags |= LOOKUP_REVAL; 3772 goto retry; 3773 } 3774 return error; 3775 } 3776 3777 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3778 unsigned int, dev) 3779 { 3780 return do_mknodat(dfd, filename, mode, dev); 3781 } 3782 3783 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3784 { 3785 return do_mknodat(AT_FDCWD, filename, mode, dev); 3786 } 3787 3788 /** 3789 * vfs_mkdir - create directory 3790 * @mnt_userns: user namespace of the mount the inode was found from 3791 * @dir: inode of @dentry 3792 * @dentry: pointer to dentry of the base directory 3793 * @mode: mode of the new directory 3794 * 3795 * Create a directory. 3796 * 3797 * If the inode has been found through an idmapped mount the user namespace of 3798 * the vfsmount must be passed through @mnt_userns. This function will then take 3799 * care to map the inode according to @mnt_userns before checking permissions. 3800 * On non-idmapped mounts or if permission checking is to be performed on the 3801 * raw inode simply passs init_user_ns. 3802 */ 3803 int vfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 3804 struct dentry *dentry, umode_t mode) 3805 { 3806 int error = may_create(mnt_userns, dir, dentry); 3807 unsigned max_links = dir->i_sb->s_max_links; 3808 3809 if (error) 3810 return error; 3811 3812 if (!dir->i_op->mkdir) 3813 return -EPERM; 3814 3815 mode &= (S_IRWXUGO|S_ISVTX); 3816 error = security_inode_mkdir(dir, dentry, mode); 3817 if (error) 3818 return error; 3819 3820 if (max_links && dir->i_nlink >= max_links) 3821 return -EMLINK; 3822 3823 error = dir->i_op->mkdir(mnt_userns, dir, dentry, mode); 3824 if (!error) 3825 fsnotify_mkdir(dir, dentry); 3826 return error; 3827 } 3828 EXPORT_SYMBOL(vfs_mkdir); 3829 3830 static long do_mkdirat(int dfd, const char __user *pathname, umode_t mode) 3831 { 3832 struct dentry *dentry; 3833 struct path path; 3834 int error; 3835 unsigned int lookup_flags = LOOKUP_DIRECTORY; 3836 3837 retry: 3838 dentry = user_path_create(dfd, pathname, &path, lookup_flags); 3839 if (IS_ERR(dentry)) 3840 return PTR_ERR(dentry); 3841 3842 if (!IS_POSIXACL(path.dentry->d_inode)) 3843 mode &= ~current_umask(); 3844 error = security_path_mkdir(&path, dentry, mode); 3845 if (!error) { 3846 struct user_namespace *mnt_userns; 3847 mnt_userns = mnt_user_ns(path.mnt); 3848 error = vfs_mkdir(mnt_userns, path.dentry->d_inode, dentry, 3849 mode); 3850 } 3851 done_path_create(&path, dentry); 3852 if (retry_estale(error, lookup_flags)) { 3853 lookup_flags |= LOOKUP_REVAL; 3854 goto retry; 3855 } 3856 return error; 3857 } 3858 3859 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 3860 { 3861 return do_mkdirat(dfd, pathname, mode); 3862 } 3863 3864 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 3865 { 3866 return do_mkdirat(AT_FDCWD, pathname, mode); 3867 } 3868 3869 /** 3870 * vfs_rmdir - remove directory 3871 * @mnt_userns: user namespace of the mount the inode was found from 3872 * @dir: inode of @dentry 3873 * @dentry: pointer to dentry of the base directory 3874 * 3875 * Remove a directory. 3876 * 3877 * If the inode has been found through an idmapped mount the user namespace of 3878 * the vfsmount must be passed through @mnt_userns. This function will then take 3879 * care to map the inode according to @mnt_userns before checking permissions. 3880 * On non-idmapped mounts or if permission checking is to be performed on the 3881 * raw inode simply passs init_user_ns. 3882 */ 3883 int vfs_rmdir(struct user_namespace *mnt_userns, struct inode *dir, 3884 struct dentry *dentry) 3885 { 3886 int error = may_delete(mnt_userns, dir, dentry, 1); 3887 3888 if (error) 3889 return error; 3890 3891 if (!dir->i_op->rmdir) 3892 return -EPERM; 3893 3894 dget(dentry); 3895 inode_lock(dentry->d_inode); 3896 3897 error = -EBUSY; 3898 if (is_local_mountpoint(dentry)) 3899 goto out; 3900 3901 error = security_inode_rmdir(dir, dentry); 3902 if (error) 3903 goto out; 3904 3905 error = dir->i_op->rmdir(dir, dentry); 3906 if (error) 3907 goto out; 3908 3909 shrink_dcache_parent(dentry); 3910 dentry->d_inode->i_flags |= S_DEAD; 3911 dont_mount(dentry); 3912 detach_mounts(dentry); 3913 fsnotify_rmdir(dir, dentry); 3914 3915 out: 3916 inode_unlock(dentry->d_inode); 3917 dput(dentry); 3918 if (!error) 3919 d_delete(dentry); 3920 return error; 3921 } 3922 EXPORT_SYMBOL(vfs_rmdir); 3923 3924 long do_rmdir(int dfd, struct filename *name) 3925 { 3926 struct user_namespace *mnt_userns; 3927 int error = 0; 3928 struct dentry *dentry; 3929 struct path path; 3930 struct qstr last; 3931 int type; 3932 unsigned int lookup_flags = 0; 3933 retry: 3934 name = filename_parentat(dfd, name, lookup_flags, 3935 &path, &last, &type); 3936 if (IS_ERR(name)) 3937 return PTR_ERR(name); 3938 3939 switch (type) { 3940 case LAST_DOTDOT: 3941 error = -ENOTEMPTY; 3942 goto exit1; 3943 case LAST_DOT: 3944 error = -EINVAL; 3945 goto exit1; 3946 case LAST_ROOT: 3947 error = -EBUSY; 3948 goto exit1; 3949 } 3950 3951 error = mnt_want_write(path.mnt); 3952 if (error) 3953 goto exit1; 3954 3955 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 3956 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 3957 error = PTR_ERR(dentry); 3958 if (IS_ERR(dentry)) 3959 goto exit2; 3960 if (!dentry->d_inode) { 3961 error = -ENOENT; 3962 goto exit3; 3963 } 3964 error = security_path_rmdir(&path, dentry); 3965 if (error) 3966 goto exit3; 3967 mnt_userns = mnt_user_ns(path.mnt); 3968 error = vfs_rmdir(mnt_userns, path.dentry->d_inode, dentry); 3969 exit3: 3970 dput(dentry); 3971 exit2: 3972 inode_unlock(path.dentry->d_inode); 3973 mnt_drop_write(path.mnt); 3974 exit1: 3975 path_put(&path); 3976 if (retry_estale(error, lookup_flags)) { 3977 lookup_flags |= LOOKUP_REVAL; 3978 goto retry; 3979 } 3980 putname(name); 3981 return error; 3982 } 3983 3984 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 3985 { 3986 return do_rmdir(AT_FDCWD, getname(pathname)); 3987 } 3988 3989 /** 3990 * vfs_unlink - unlink a filesystem object 3991 * @mnt_userns: user namespace of the mount the inode was found from 3992 * @dir: parent directory 3993 * @dentry: victim 3994 * @delegated_inode: returns victim inode, if the inode is delegated. 3995 * 3996 * The caller must hold dir->i_mutex. 3997 * 3998 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 3999 * return a reference to the inode in delegated_inode. The caller 4000 * should then break the delegation on that inode and retry. Because 4001 * breaking a delegation may take a long time, the caller should drop 4002 * dir->i_mutex before doing so. 4003 * 4004 * Alternatively, a caller may pass NULL for delegated_inode. This may 4005 * be appropriate for callers that expect the underlying filesystem not 4006 * to be NFS exported. 4007 * 4008 * If the inode has been found through an idmapped mount the user namespace of 4009 * the vfsmount must be passed through @mnt_userns. This function will then take 4010 * care to map the inode according to @mnt_userns before checking permissions. 4011 * On non-idmapped mounts or if permission checking is to be performed on the 4012 * raw inode simply passs init_user_ns. 4013 */ 4014 int vfs_unlink(struct user_namespace *mnt_userns, struct inode *dir, 4015 struct dentry *dentry, struct inode **delegated_inode) 4016 { 4017 struct inode *target = dentry->d_inode; 4018 int error = may_delete(mnt_userns, dir, dentry, 0); 4019 4020 if (error) 4021 return error; 4022 4023 if (!dir->i_op->unlink) 4024 return -EPERM; 4025 4026 inode_lock(target); 4027 if (is_local_mountpoint(dentry)) 4028 error = -EBUSY; 4029 else { 4030 error = security_inode_unlink(dir, dentry); 4031 if (!error) { 4032 error = try_break_deleg(target, delegated_inode); 4033 if (error) 4034 goto out; 4035 error = dir->i_op->unlink(dir, dentry); 4036 if (!error) { 4037 dont_mount(dentry); 4038 detach_mounts(dentry); 4039 fsnotify_unlink(dir, dentry); 4040 } 4041 } 4042 } 4043 out: 4044 inode_unlock(target); 4045 4046 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 4047 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 4048 fsnotify_link_count(target); 4049 d_delete(dentry); 4050 } 4051 4052 return error; 4053 } 4054 EXPORT_SYMBOL(vfs_unlink); 4055 4056 /* 4057 * Make sure that the actual truncation of the file will occur outside its 4058 * directory's i_mutex. Truncate can take a long time if there is a lot of 4059 * writeout happening, and we don't want to prevent access to the directory 4060 * while waiting on the I/O. 4061 */ 4062 long do_unlinkat(int dfd, struct filename *name) 4063 { 4064 int error; 4065 struct dentry *dentry; 4066 struct path path; 4067 struct qstr last; 4068 int type; 4069 struct inode *inode = NULL; 4070 struct inode *delegated_inode = NULL; 4071 unsigned int lookup_flags = 0; 4072 retry: 4073 name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 4074 if (IS_ERR(name)) 4075 return PTR_ERR(name); 4076 4077 error = -EISDIR; 4078 if (type != LAST_NORM) 4079 goto exit1; 4080 4081 error = mnt_want_write(path.mnt); 4082 if (error) 4083 goto exit1; 4084 retry_deleg: 4085 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4086 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 4087 error = PTR_ERR(dentry); 4088 if (!IS_ERR(dentry)) { 4089 struct user_namespace *mnt_userns; 4090 4091 /* Why not before? Because we want correct error value */ 4092 if (last.name[last.len]) 4093 goto slashes; 4094 inode = dentry->d_inode; 4095 if (d_is_negative(dentry)) 4096 goto slashes; 4097 ihold(inode); 4098 error = security_path_unlink(&path, dentry); 4099 if (error) 4100 goto exit2; 4101 mnt_userns = mnt_user_ns(path.mnt); 4102 error = vfs_unlink(mnt_userns, path.dentry->d_inode, dentry, 4103 &delegated_inode); 4104 exit2: 4105 dput(dentry); 4106 } 4107 inode_unlock(path.dentry->d_inode); 4108 if (inode) 4109 iput(inode); /* truncate the inode here */ 4110 inode = NULL; 4111 if (delegated_inode) { 4112 error = break_deleg_wait(&delegated_inode); 4113 if (!error) 4114 goto retry_deleg; 4115 } 4116 mnt_drop_write(path.mnt); 4117 exit1: 4118 path_put(&path); 4119 if (retry_estale(error, lookup_flags)) { 4120 lookup_flags |= LOOKUP_REVAL; 4121 inode = NULL; 4122 goto retry; 4123 } 4124 putname(name); 4125 return error; 4126 4127 slashes: 4128 if (d_is_negative(dentry)) 4129 error = -ENOENT; 4130 else if (d_is_dir(dentry)) 4131 error = -EISDIR; 4132 else 4133 error = -ENOTDIR; 4134 goto exit2; 4135 } 4136 4137 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 4138 { 4139 if ((flag & ~AT_REMOVEDIR) != 0) 4140 return -EINVAL; 4141 4142 if (flag & AT_REMOVEDIR) 4143 return do_rmdir(dfd, getname(pathname)); 4144 return do_unlinkat(dfd, getname(pathname)); 4145 } 4146 4147 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 4148 { 4149 return do_unlinkat(AT_FDCWD, getname(pathname)); 4150 } 4151 4152 /** 4153 * vfs_symlink - create symlink 4154 * @mnt_userns: user namespace of the mount the inode was found from 4155 * @dir: inode of @dentry 4156 * @dentry: pointer to dentry of the base directory 4157 * @oldname: name of the file to link to 4158 * 4159 * Create a symlink. 4160 * 4161 * If the inode has been found through an idmapped mount the user namespace of 4162 * the vfsmount must be passed through @mnt_userns. This function will then take 4163 * care to map the inode according to @mnt_userns before checking permissions. 4164 * On non-idmapped mounts or if permission checking is to be performed on the 4165 * raw inode simply passs init_user_ns. 4166 */ 4167 int vfs_symlink(struct user_namespace *mnt_userns, struct inode *dir, 4168 struct dentry *dentry, const char *oldname) 4169 { 4170 int error = may_create(mnt_userns, dir, dentry); 4171 4172 if (error) 4173 return error; 4174 4175 if (!dir->i_op->symlink) 4176 return -EPERM; 4177 4178 error = security_inode_symlink(dir, dentry, oldname); 4179 if (error) 4180 return error; 4181 4182 error = dir->i_op->symlink(mnt_userns, dir, dentry, oldname); 4183 if (!error) 4184 fsnotify_create(dir, dentry); 4185 return error; 4186 } 4187 EXPORT_SYMBOL(vfs_symlink); 4188 4189 static long do_symlinkat(const char __user *oldname, int newdfd, 4190 const char __user *newname) 4191 { 4192 int error; 4193 struct filename *from; 4194 struct dentry *dentry; 4195 struct path path; 4196 unsigned int lookup_flags = 0; 4197 4198 from = getname(oldname); 4199 if (IS_ERR(from)) 4200 return PTR_ERR(from); 4201 retry: 4202 dentry = user_path_create(newdfd, newname, &path, lookup_flags); 4203 error = PTR_ERR(dentry); 4204 if (IS_ERR(dentry)) 4205 goto out_putname; 4206 4207 error = security_path_symlink(&path, dentry, from->name); 4208 if (!error) { 4209 struct user_namespace *mnt_userns; 4210 4211 mnt_userns = mnt_user_ns(path.mnt); 4212 error = vfs_symlink(mnt_userns, path.dentry->d_inode, dentry, 4213 from->name); 4214 } 4215 done_path_create(&path, dentry); 4216 if (retry_estale(error, lookup_flags)) { 4217 lookup_flags |= LOOKUP_REVAL; 4218 goto retry; 4219 } 4220 out_putname: 4221 putname(from); 4222 return error; 4223 } 4224 4225 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 4226 int, newdfd, const char __user *, newname) 4227 { 4228 return do_symlinkat(oldname, newdfd, newname); 4229 } 4230 4231 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 4232 { 4233 return do_symlinkat(oldname, AT_FDCWD, newname); 4234 } 4235 4236 /** 4237 * vfs_link - create a new link 4238 * @old_dentry: object to be linked 4239 * @mnt_userns: the user namespace of the mount 4240 * @dir: new parent 4241 * @new_dentry: where to create the new link 4242 * @delegated_inode: returns inode needing a delegation break 4243 * 4244 * The caller must hold dir->i_mutex 4245 * 4246 * If vfs_link discovers a delegation on the to-be-linked file in need 4247 * of breaking, it will return -EWOULDBLOCK and return a reference to the 4248 * inode in delegated_inode. The caller should then break the delegation 4249 * and retry. Because breaking a delegation may take a long time, the 4250 * caller should drop the i_mutex before doing so. 4251 * 4252 * Alternatively, a caller may pass NULL for delegated_inode. This may 4253 * be appropriate for callers that expect the underlying filesystem not 4254 * to be NFS exported. 4255 * 4256 * If the inode has been found through an idmapped mount the user namespace of 4257 * the vfsmount must be passed through @mnt_userns. This function will then take 4258 * care to map the inode according to @mnt_userns before checking permissions. 4259 * On non-idmapped mounts or if permission checking is to be performed on the 4260 * raw inode simply passs init_user_ns. 4261 */ 4262 int vfs_link(struct dentry *old_dentry, struct user_namespace *mnt_userns, 4263 struct inode *dir, struct dentry *new_dentry, 4264 struct inode **delegated_inode) 4265 { 4266 struct inode *inode = old_dentry->d_inode; 4267 unsigned max_links = dir->i_sb->s_max_links; 4268 int error; 4269 4270 if (!inode) 4271 return -ENOENT; 4272 4273 error = may_create(mnt_userns, dir, new_dentry); 4274 if (error) 4275 return error; 4276 4277 if (dir->i_sb != inode->i_sb) 4278 return -EXDEV; 4279 4280 /* 4281 * A link to an append-only or immutable file cannot be created. 4282 */ 4283 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4284 return -EPERM; 4285 /* 4286 * Updating the link count will likely cause i_uid and i_gid to 4287 * be writen back improperly if their true value is unknown to 4288 * the vfs. 4289 */ 4290 if (HAS_UNMAPPED_ID(mnt_userns, inode)) 4291 return -EPERM; 4292 if (!dir->i_op->link) 4293 return -EPERM; 4294 if (S_ISDIR(inode->i_mode)) 4295 return -EPERM; 4296 4297 error = security_inode_link(old_dentry, dir, new_dentry); 4298 if (error) 4299 return error; 4300 4301 inode_lock(inode); 4302 /* Make sure we don't allow creating hardlink to an unlinked file */ 4303 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 4304 error = -ENOENT; 4305 else if (max_links && inode->i_nlink >= max_links) 4306 error = -EMLINK; 4307 else { 4308 error = try_break_deleg(inode, delegated_inode); 4309 if (!error) 4310 error = dir->i_op->link(old_dentry, dir, new_dentry); 4311 } 4312 4313 if (!error && (inode->i_state & I_LINKABLE)) { 4314 spin_lock(&inode->i_lock); 4315 inode->i_state &= ~I_LINKABLE; 4316 spin_unlock(&inode->i_lock); 4317 } 4318 inode_unlock(inode); 4319 if (!error) 4320 fsnotify_link(dir, inode, new_dentry); 4321 return error; 4322 } 4323 EXPORT_SYMBOL(vfs_link); 4324 4325 /* 4326 * Hardlinks are often used in delicate situations. We avoid 4327 * security-related surprises by not following symlinks on the 4328 * newname. --KAB 4329 * 4330 * We don't follow them on the oldname either to be compatible 4331 * with linux 2.0, and to avoid hard-linking to directories 4332 * and other special files. --ADM 4333 */ 4334 static int do_linkat(int olddfd, const char __user *oldname, int newdfd, 4335 const char __user *newname, int flags) 4336 { 4337 struct user_namespace *mnt_userns; 4338 struct dentry *new_dentry; 4339 struct path old_path, new_path; 4340 struct inode *delegated_inode = NULL; 4341 int how = 0; 4342 int error; 4343 4344 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 4345 return -EINVAL; 4346 /* 4347 * To use null names we require CAP_DAC_READ_SEARCH 4348 * This ensures that not everyone will be able to create 4349 * handlink using the passed filedescriptor. 4350 */ 4351 if (flags & AT_EMPTY_PATH) { 4352 if (!capable(CAP_DAC_READ_SEARCH)) 4353 return -ENOENT; 4354 how = LOOKUP_EMPTY; 4355 } 4356 4357 if (flags & AT_SYMLINK_FOLLOW) 4358 how |= LOOKUP_FOLLOW; 4359 retry: 4360 error = user_path_at(olddfd, oldname, how, &old_path); 4361 if (error) 4362 return error; 4363 4364 new_dentry = user_path_create(newdfd, newname, &new_path, 4365 (how & LOOKUP_REVAL)); 4366 error = PTR_ERR(new_dentry); 4367 if (IS_ERR(new_dentry)) 4368 goto out; 4369 4370 error = -EXDEV; 4371 if (old_path.mnt != new_path.mnt) 4372 goto out_dput; 4373 mnt_userns = mnt_user_ns(new_path.mnt); 4374 error = may_linkat(mnt_userns, &old_path); 4375 if (unlikely(error)) 4376 goto out_dput; 4377 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4378 if (error) 4379 goto out_dput; 4380 error = vfs_link(old_path.dentry, mnt_userns, new_path.dentry->d_inode, 4381 new_dentry, &delegated_inode); 4382 out_dput: 4383 done_path_create(&new_path, new_dentry); 4384 if (delegated_inode) { 4385 error = break_deleg_wait(&delegated_inode); 4386 if (!error) { 4387 path_put(&old_path); 4388 goto retry; 4389 } 4390 } 4391 if (retry_estale(error, how)) { 4392 path_put(&old_path); 4393 how |= LOOKUP_REVAL; 4394 goto retry; 4395 } 4396 out: 4397 path_put(&old_path); 4398 4399 return error; 4400 } 4401 4402 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 4403 int, newdfd, const char __user *, newname, int, flags) 4404 { 4405 return do_linkat(olddfd, oldname, newdfd, newname, flags); 4406 } 4407 4408 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4409 { 4410 return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4411 } 4412 4413 /** 4414 * vfs_rename - rename a filesystem object 4415 * @rd: pointer to &struct renamedata info 4416 * 4417 * The caller must hold multiple mutexes--see lock_rename()). 4418 * 4419 * If vfs_rename discovers a delegation in need of breaking at either 4420 * the source or destination, it will return -EWOULDBLOCK and return a 4421 * reference to the inode in delegated_inode. The caller should then 4422 * break the delegation and retry. Because breaking a delegation may 4423 * take a long time, the caller should drop all locks before doing 4424 * so. 4425 * 4426 * Alternatively, a caller may pass NULL for delegated_inode. This may 4427 * be appropriate for callers that expect the underlying filesystem not 4428 * to be NFS exported. 4429 * 4430 * The worst of all namespace operations - renaming directory. "Perverted" 4431 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4432 * Problems: 4433 * 4434 * a) we can get into loop creation. 4435 * b) race potential - two innocent renames can create a loop together. 4436 * That's where 4.4 screws up. Current fix: serialization on 4437 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4438 * story. 4439 * c) we have to lock _four_ objects - parents and victim (if it exists), 4440 * and source (if it is not a directory). 4441 * And that - after we got ->i_mutex on parents (until then we don't know 4442 * whether the target exists). Solution: try to be smart with locking 4443 * order for inodes. We rely on the fact that tree topology may change 4444 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4445 * move will be locked. Thus we can rank directories by the tree 4446 * (ancestors first) and rank all non-directories after them. 4447 * That works since everybody except rename does "lock parent, lookup, 4448 * lock child" and rename is under ->s_vfs_rename_mutex. 4449 * HOWEVER, it relies on the assumption that any object with ->lookup() 4450 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4451 * we'd better make sure that there's no link(2) for them. 4452 * d) conversion from fhandle to dentry may come in the wrong moment - when 4453 * we are removing the target. Solution: we will have to grab ->i_mutex 4454 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4455 * ->i_mutex on parents, which works but leads to some truly excessive 4456 * locking]. 4457 */ 4458 int vfs_rename(struct renamedata *rd) 4459 { 4460 int error; 4461 struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir; 4462 struct dentry *old_dentry = rd->old_dentry; 4463 struct dentry *new_dentry = rd->new_dentry; 4464 struct inode **delegated_inode = rd->delegated_inode; 4465 unsigned int flags = rd->flags; 4466 bool is_dir = d_is_dir(old_dentry); 4467 struct inode *source = old_dentry->d_inode; 4468 struct inode *target = new_dentry->d_inode; 4469 bool new_is_dir = false; 4470 unsigned max_links = new_dir->i_sb->s_max_links; 4471 struct name_snapshot old_name; 4472 4473 if (source == target) 4474 return 0; 4475 4476 error = may_delete(rd->old_mnt_userns, old_dir, old_dentry, is_dir); 4477 if (error) 4478 return error; 4479 4480 if (!target) { 4481 error = may_create(rd->new_mnt_userns, new_dir, new_dentry); 4482 } else { 4483 new_is_dir = d_is_dir(new_dentry); 4484 4485 if (!(flags & RENAME_EXCHANGE)) 4486 error = may_delete(rd->new_mnt_userns, new_dir, 4487 new_dentry, is_dir); 4488 else 4489 error = may_delete(rd->new_mnt_userns, new_dir, 4490 new_dentry, new_is_dir); 4491 } 4492 if (error) 4493 return error; 4494 4495 if (!old_dir->i_op->rename) 4496 return -EPERM; 4497 4498 /* 4499 * If we are going to change the parent - check write permissions, 4500 * we'll need to flip '..'. 4501 */ 4502 if (new_dir != old_dir) { 4503 if (is_dir) { 4504 error = inode_permission(rd->old_mnt_userns, source, 4505 MAY_WRITE); 4506 if (error) 4507 return error; 4508 } 4509 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4510 error = inode_permission(rd->new_mnt_userns, target, 4511 MAY_WRITE); 4512 if (error) 4513 return error; 4514 } 4515 } 4516 4517 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 4518 flags); 4519 if (error) 4520 return error; 4521 4522 take_dentry_name_snapshot(&old_name, old_dentry); 4523 dget(new_dentry); 4524 if (!is_dir || (flags & RENAME_EXCHANGE)) 4525 lock_two_nondirectories(source, target); 4526 else if (target) 4527 inode_lock(target); 4528 4529 error = -EBUSY; 4530 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 4531 goto out; 4532 4533 if (max_links && new_dir != old_dir) { 4534 error = -EMLINK; 4535 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 4536 goto out; 4537 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 4538 old_dir->i_nlink >= max_links) 4539 goto out; 4540 } 4541 if (!is_dir) { 4542 error = try_break_deleg(source, delegated_inode); 4543 if (error) 4544 goto out; 4545 } 4546 if (target && !new_is_dir) { 4547 error = try_break_deleg(target, delegated_inode); 4548 if (error) 4549 goto out; 4550 } 4551 error = old_dir->i_op->rename(rd->new_mnt_userns, old_dir, old_dentry, 4552 new_dir, new_dentry, flags); 4553 if (error) 4554 goto out; 4555 4556 if (!(flags & RENAME_EXCHANGE) && target) { 4557 if (is_dir) { 4558 shrink_dcache_parent(new_dentry); 4559 target->i_flags |= S_DEAD; 4560 } 4561 dont_mount(new_dentry); 4562 detach_mounts(new_dentry); 4563 } 4564 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 4565 if (!(flags & RENAME_EXCHANGE)) 4566 d_move(old_dentry, new_dentry); 4567 else 4568 d_exchange(old_dentry, new_dentry); 4569 } 4570 out: 4571 if (!is_dir || (flags & RENAME_EXCHANGE)) 4572 unlock_two_nondirectories(source, target); 4573 else if (target) 4574 inode_unlock(target); 4575 dput(new_dentry); 4576 if (!error) { 4577 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir, 4578 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 4579 if (flags & RENAME_EXCHANGE) { 4580 fsnotify_move(new_dir, old_dir, &old_dentry->d_name, 4581 new_is_dir, NULL, new_dentry); 4582 } 4583 } 4584 release_dentry_name_snapshot(&old_name); 4585 4586 return error; 4587 } 4588 EXPORT_SYMBOL(vfs_rename); 4589 4590 int do_renameat2(int olddfd, struct filename *from, int newdfd, 4591 struct filename *to, unsigned int flags) 4592 { 4593 struct renamedata rd; 4594 struct dentry *old_dentry, *new_dentry; 4595 struct dentry *trap; 4596 struct path old_path, new_path; 4597 struct qstr old_last, new_last; 4598 int old_type, new_type; 4599 struct inode *delegated_inode = NULL; 4600 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET; 4601 bool should_retry = false; 4602 int error = -EINVAL; 4603 4604 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4605 goto put_both; 4606 4607 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 4608 (flags & RENAME_EXCHANGE)) 4609 goto put_both; 4610 4611 if (flags & RENAME_EXCHANGE) 4612 target_flags = 0; 4613 4614 retry: 4615 from = filename_parentat(olddfd, from, lookup_flags, &old_path, 4616 &old_last, &old_type); 4617 if (IS_ERR(from)) { 4618 error = PTR_ERR(from); 4619 goto put_new; 4620 } 4621 4622 to = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last, 4623 &new_type); 4624 if (IS_ERR(to)) { 4625 error = PTR_ERR(to); 4626 goto exit1; 4627 } 4628 4629 error = -EXDEV; 4630 if (old_path.mnt != new_path.mnt) 4631 goto exit2; 4632 4633 error = -EBUSY; 4634 if (old_type != LAST_NORM) 4635 goto exit2; 4636 4637 if (flags & RENAME_NOREPLACE) 4638 error = -EEXIST; 4639 if (new_type != LAST_NORM) 4640 goto exit2; 4641 4642 error = mnt_want_write(old_path.mnt); 4643 if (error) 4644 goto exit2; 4645 4646 retry_deleg: 4647 trap = lock_rename(new_path.dentry, old_path.dentry); 4648 4649 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags); 4650 error = PTR_ERR(old_dentry); 4651 if (IS_ERR(old_dentry)) 4652 goto exit3; 4653 /* source must exist */ 4654 error = -ENOENT; 4655 if (d_is_negative(old_dentry)) 4656 goto exit4; 4657 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags); 4658 error = PTR_ERR(new_dentry); 4659 if (IS_ERR(new_dentry)) 4660 goto exit4; 4661 error = -EEXIST; 4662 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 4663 goto exit5; 4664 if (flags & RENAME_EXCHANGE) { 4665 error = -ENOENT; 4666 if (d_is_negative(new_dentry)) 4667 goto exit5; 4668 4669 if (!d_is_dir(new_dentry)) { 4670 error = -ENOTDIR; 4671 if (new_last.name[new_last.len]) 4672 goto exit5; 4673 } 4674 } 4675 /* unless the source is a directory trailing slashes give -ENOTDIR */ 4676 if (!d_is_dir(old_dentry)) { 4677 error = -ENOTDIR; 4678 if (old_last.name[old_last.len]) 4679 goto exit5; 4680 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len]) 4681 goto exit5; 4682 } 4683 /* source should not be ancestor of target */ 4684 error = -EINVAL; 4685 if (old_dentry == trap) 4686 goto exit5; 4687 /* target should not be an ancestor of source */ 4688 if (!(flags & RENAME_EXCHANGE)) 4689 error = -ENOTEMPTY; 4690 if (new_dentry == trap) 4691 goto exit5; 4692 4693 error = security_path_rename(&old_path, old_dentry, 4694 &new_path, new_dentry, flags); 4695 if (error) 4696 goto exit5; 4697 4698 rd.old_dir = old_path.dentry->d_inode; 4699 rd.old_dentry = old_dentry; 4700 rd.old_mnt_userns = mnt_user_ns(old_path.mnt); 4701 rd.new_dir = new_path.dentry->d_inode; 4702 rd.new_dentry = new_dentry; 4703 rd.new_mnt_userns = mnt_user_ns(new_path.mnt); 4704 rd.delegated_inode = &delegated_inode; 4705 rd.flags = flags; 4706 error = vfs_rename(&rd); 4707 exit5: 4708 dput(new_dentry); 4709 exit4: 4710 dput(old_dentry); 4711 exit3: 4712 unlock_rename(new_path.dentry, old_path.dentry); 4713 if (delegated_inode) { 4714 error = break_deleg_wait(&delegated_inode); 4715 if (!error) 4716 goto retry_deleg; 4717 } 4718 mnt_drop_write(old_path.mnt); 4719 exit2: 4720 if (retry_estale(error, lookup_flags)) 4721 should_retry = true; 4722 path_put(&new_path); 4723 exit1: 4724 path_put(&old_path); 4725 if (should_retry) { 4726 should_retry = false; 4727 lookup_flags |= LOOKUP_REVAL; 4728 goto retry; 4729 } 4730 put_both: 4731 if (!IS_ERR(from)) 4732 putname(from); 4733 put_new: 4734 if (!IS_ERR(to)) 4735 putname(to); 4736 return error; 4737 } 4738 4739 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 4740 int, newdfd, const char __user *, newname, unsigned int, flags) 4741 { 4742 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname), 4743 flags); 4744 } 4745 4746 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 4747 int, newdfd, const char __user *, newname) 4748 { 4749 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname), 4750 0); 4751 } 4752 4753 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 4754 { 4755 return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD, 4756 getname(newname), 0); 4757 } 4758 4759 int readlink_copy(char __user *buffer, int buflen, const char *link) 4760 { 4761 int len = PTR_ERR(link); 4762 if (IS_ERR(link)) 4763 goto out; 4764 4765 len = strlen(link); 4766 if (len > (unsigned) buflen) 4767 len = buflen; 4768 if (copy_to_user(buffer, link, len)) 4769 len = -EFAULT; 4770 out: 4771 return len; 4772 } 4773 4774 /** 4775 * vfs_readlink - copy symlink body into userspace buffer 4776 * @dentry: dentry on which to get symbolic link 4777 * @buffer: user memory pointer 4778 * @buflen: size of buffer 4779 * 4780 * Does not touch atime. That's up to the caller if necessary 4781 * 4782 * Does not call security hook. 4783 */ 4784 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4785 { 4786 struct inode *inode = d_inode(dentry); 4787 DEFINE_DELAYED_CALL(done); 4788 const char *link; 4789 int res; 4790 4791 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) { 4792 if (unlikely(inode->i_op->readlink)) 4793 return inode->i_op->readlink(dentry, buffer, buflen); 4794 4795 if (!d_is_symlink(dentry)) 4796 return -EINVAL; 4797 4798 spin_lock(&inode->i_lock); 4799 inode->i_opflags |= IOP_DEFAULT_READLINK; 4800 spin_unlock(&inode->i_lock); 4801 } 4802 4803 link = READ_ONCE(inode->i_link); 4804 if (!link) { 4805 link = inode->i_op->get_link(dentry, inode, &done); 4806 if (IS_ERR(link)) 4807 return PTR_ERR(link); 4808 } 4809 res = readlink_copy(buffer, buflen, link); 4810 do_delayed_call(&done); 4811 return res; 4812 } 4813 EXPORT_SYMBOL(vfs_readlink); 4814 4815 /** 4816 * vfs_get_link - get symlink body 4817 * @dentry: dentry on which to get symbolic link 4818 * @done: caller needs to free returned data with this 4819 * 4820 * Calls security hook and i_op->get_link() on the supplied inode. 4821 * 4822 * It does not touch atime. That's up to the caller if necessary. 4823 * 4824 * Does not work on "special" symlinks like /proc/$$/fd/N 4825 */ 4826 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done) 4827 { 4828 const char *res = ERR_PTR(-EINVAL); 4829 struct inode *inode = d_inode(dentry); 4830 4831 if (d_is_symlink(dentry)) { 4832 res = ERR_PTR(security_inode_readlink(dentry)); 4833 if (!res) 4834 res = inode->i_op->get_link(dentry, inode, done); 4835 } 4836 return res; 4837 } 4838 EXPORT_SYMBOL(vfs_get_link); 4839 4840 /* get the link contents into pagecache */ 4841 const char *page_get_link(struct dentry *dentry, struct inode *inode, 4842 struct delayed_call *callback) 4843 { 4844 char *kaddr; 4845 struct page *page; 4846 struct address_space *mapping = inode->i_mapping; 4847 4848 if (!dentry) { 4849 page = find_get_page(mapping, 0); 4850 if (!page) 4851 return ERR_PTR(-ECHILD); 4852 if (!PageUptodate(page)) { 4853 put_page(page); 4854 return ERR_PTR(-ECHILD); 4855 } 4856 } else { 4857 page = read_mapping_page(mapping, 0, NULL); 4858 if (IS_ERR(page)) 4859 return (char*)page; 4860 } 4861 set_delayed_call(callback, page_put_link, page); 4862 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM); 4863 kaddr = page_address(page); 4864 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1); 4865 return kaddr; 4866 } 4867 4868 EXPORT_SYMBOL(page_get_link); 4869 4870 void page_put_link(void *arg) 4871 { 4872 put_page(arg); 4873 } 4874 EXPORT_SYMBOL(page_put_link); 4875 4876 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4877 { 4878 DEFINE_DELAYED_CALL(done); 4879 int res = readlink_copy(buffer, buflen, 4880 page_get_link(dentry, d_inode(dentry), 4881 &done)); 4882 do_delayed_call(&done); 4883 return res; 4884 } 4885 EXPORT_SYMBOL(page_readlink); 4886 4887 /* 4888 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 4889 */ 4890 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 4891 { 4892 struct address_space *mapping = inode->i_mapping; 4893 struct page *page; 4894 void *fsdata; 4895 int err; 4896 unsigned int flags = 0; 4897 if (nofs) 4898 flags |= AOP_FLAG_NOFS; 4899 4900 retry: 4901 err = pagecache_write_begin(NULL, mapping, 0, len-1, 4902 flags, &page, &fsdata); 4903 if (err) 4904 goto fail; 4905 4906 memcpy(page_address(page), symname, len-1); 4907 4908 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 4909 page, fsdata); 4910 if (err < 0) 4911 goto fail; 4912 if (err < len-1) 4913 goto retry; 4914 4915 mark_inode_dirty(inode); 4916 return 0; 4917 fail: 4918 return err; 4919 } 4920 EXPORT_SYMBOL(__page_symlink); 4921 4922 int page_symlink(struct inode *inode, const char *symname, int len) 4923 { 4924 return __page_symlink(inode, symname, len, 4925 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS)); 4926 } 4927 EXPORT_SYMBOL(page_symlink); 4928 4929 const struct inode_operations page_symlink_inode_operations = { 4930 .get_link = page_get_link, 4931 }; 4932 EXPORT_SYMBOL(page_symlink_inode_operations); 4933