xref: /linux/fs/namei.c (revision 8137a49e1567726eb10fcf55ad141ac19804ca6b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/namei.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * Some corrections by tytso.
10  */
11 
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13  * lookup logic.
14  */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16  */
17 
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/fsnotify.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/ima.h>
29 #include <linux/syscalls.h>
30 #include <linux/mount.h>
31 #include <linux/audit.h>
32 #include <linux/capability.h>
33 #include <linux/file.h>
34 #include <linux/fcntl.h>
35 #include <linux/device_cgroup.h>
36 #include <linux/fs_struct.h>
37 #include <linux/posix_acl.h>
38 #include <linux/hash.h>
39 #include <linux/bitops.h>
40 #include <linux/init_task.h>
41 #include <linux/uaccess.h>
42 
43 #include "internal.h"
44 #include "mount.h"
45 
46 /* [Feb-1997 T. Schoebel-Theuer]
47  * Fundamental changes in the pathname lookup mechanisms (namei)
48  * were necessary because of omirr.  The reason is that omirr needs
49  * to know the _real_ pathname, not the user-supplied one, in case
50  * of symlinks (and also when transname replacements occur).
51  *
52  * The new code replaces the old recursive symlink resolution with
53  * an iterative one (in case of non-nested symlink chains).  It does
54  * this with calls to <fs>_follow_link().
55  * As a side effect, dir_namei(), _namei() and follow_link() are now
56  * replaced with a single function lookup_dentry() that can handle all
57  * the special cases of the former code.
58  *
59  * With the new dcache, the pathname is stored at each inode, at least as
60  * long as the refcount of the inode is positive.  As a side effect, the
61  * size of the dcache depends on the inode cache and thus is dynamic.
62  *
63  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
64  * resolution to correspond with current state of the code.
65  *
66  * Note that the symlink resolution is not *completely* iterative.
67  * There is still a significant amount of tail- and mid- recursion in
68  * the algorithm.  Also, note that <fs>_readlink() is not used in
69  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
70  * may return different results than <fs>_follow_link().  Many virtual
71  * filesystems (including /proc) exhibit this behavior.
72  */
73 
74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
75  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
76  * and the name already exists in form of a symlink, try to create the new
77  * name indicated by the symlink. The old code always complained that the
78  * name already exists, due to not following the symlink even if its target
79  * is nonexistent.  The new semantics affects also mknod() and link() when
80  * the name is a symlink pointing to a non-existent name.
81  *
82  * I don't know which semantics is the right one, since I have no access
83  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
84  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
85  * "old" one. Personally, I think the new semantics is much more logical.
86  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
87  * file does succeed in both HP-UX and SunOs, but not in Solaris
88  * and in the old Linux semantics.
89  */
90 
91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
92  * semantics.  See the comments in "open_namei" and "do_link" below.
93  *
94  * [10-Sep-98 Alan Modra] Another symlink change.
95  */
96 
97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
98  *	inside the path - always follow.
99  *	in the last component in creation/removal/renaming - never follow.
100  *	if LOOKUP_FOLLOW passed - follow.
101  *	if the pathname has trailing slashes - follow.
102  *	otherwise - don't follow.
103  * (applied in that order).
104  *
105  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
106  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
107  * During the 2.4 we need to fix the userland stuff depending on it -
108  * hopefully we will be able to get rid of that wart in 2.5. So far only
109  * XEmacs seems to be relying on it...
110  */
111 /*
112  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
113  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
114  * any extra contention...
115  */
116 
117 /* In order to reduce some races, while at the same time doing additional
118  * checking and hopefully speeding things up, we copy filenames to the
119  * kernel data space before using them..
120  *
121  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
122  * PATH_MAX includes the nul terminator --RR.
123  */
124 
125 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
126 
127 struct filename *
128 getname_flags(const char __user *filename, int flags, int *empty)
129 {
130 	struct filename *result;
131 	char *kname;
132 	int len;
133 
134 	result = audit_reusename(filename);
135 	if (result)
136 		return result;
137 
138 	result = __getname();
139 	if (unlikely(!result))
140 		return ERR_PTR(-ENOMEM);
141 
142 	/*
143 	 * First, try to embed the struct filename inside the names_cache
144 	 * allocation
145 	 */
146 	kname = (char *)result->iname;
147 	result->name = kname;
148 
149 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
150 	if (unlikely(len < 0)) {
151 		__putname(result);
152 		return ERR_PTR(len);
153 	}
154 
155 	/*
156 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
157 	 * separate struct filename so we can dedicate the entire
158 	 * names_cache allocation for the pathname, and re-do the copy from
159 	 * userland.
160 	 */
161 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
162 		const size_t size = offsetof(struct filename, iname[1]);
163 		kname = (char *)result;
164 
165 		/*
166 		 * size is chosen that way we to guarantee that
167 		 * result->iname[0] is within the same object and that
168 		 * kname can't be equal to result->iname, no matter what.
169 		 */
170 		result = kzalloc(size, GFP_KERNEL);
171 		if (unlikely(!result)) {
172 			__putname(kname);
173 			return ERR_PTR(-ENOMEM);
174 		}
175 		result->name = kname;
176 		len = strncpy_from_user(kname, filename, PATH_MAX);
177 		if (unlikely(len < 0)) {
178 			__putname(kname);
179 			kfree(result);
180 			return ERR_PTR(len);
181 		}
182 		if (unlikely(len == PATH_MAX)) {
183 			__putname(kname);
184 			kfree(result);
185 			return ERR_PTR(-ENAMETOOLONG);
186 		}
187 	}
188 
189 	result->refcnt = 1;
190 	/* The empty path is special. */
191 	if (unlikely(!len)) {
192 		if (empty)
193 			*empty = 1;
194 		if (!(flags & LOOKUP_EMPTY)) {
195 			putname(result);
196 			return ERR_PTR(-ENOENT);
197 		}
198 	}
199 
200 	result->uptr = filename;
201 	result->aname = NULL;
202 	audit_getname(result);
203 	return result;
204 }
205 
206 struct filename *
207 getname(const char __user * filename)
208 {
209 	return getname_flags(filename, 0, NULL);
210 }
211 
212 struct filename *
213 getname_kernel(const char * filename)
214 {
215 	struct filename *result;
216 	int len = strlen(filename) + 1;
217 
218 	result = __getname();
219 	if (unlikely(!result))
220 		return ERR_PTR(-ENOMEM);
221 
222 	if (len <= EMBEDDED_NAME_MAX) {
223 		result->name = (char *)result->iname;
224 	} else if (len <= PATH_MAX) {
225 		const size_t size = offsetof(struct filename, iname[1]);
226 		struct filename *tmp;
227 
228 		tmp = kmalloc(size, GFP_KERNEL);
229 		if (unlikely(!tmp)) {
230 			__putname(result);
231 			return ERR_PTR(-ENOMEM);
232 		}
233 		tmp->name = (char *)result;
234 		result = tmp;
235 	} else {
236 		__putname(result);
237 		return ERR_PTR(-ENAMETOOLONG);
238 	}
239 	memcpy((char *)result->name, filename, len);
240 	result->uptr = NULL;
241 	result->aname = NULL;
242 	result->refcnt = 1;
243 	audit_getname(result);
244 
245 	return result;
246 }
247 
248 void putname(struct filename *name)
249 {
250 	BUG_ON(name->refcnt <= 0);
251 
252 	if (--name->refcnt > 0)
253 		return;
254 
255 	if (name->name != name->iname) {
256 		__putname(name->name);
257 		kfree(name);
258 	} else
259 		__putname(name);
260 }
261 
262 /**
263  * check_acl - perform ACL permission checking
264  * @mnt_userns:	user namespace of the mount the inode was found from
265  * @inode:	inode to check permissions on
266  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
267  *
268  * This function performs the ACL permission checking. Since this function
269  * retrieve POSIX acls it needs to know whether it is called from a blocking or
270  * non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
271  *
272  * If the inode has been found through an idmapped mount the user namespace of
273  * the vfsmount must be passed through @mnt_userns. This function will then take
274  * care to map the inode according to @mnt_userns before checking permissions.
275  * On non-idmapped mounts or if permission checking is to be performed on the
276  * raw inode simply passs init_user_ns.
277  */
278 static int check_acl(struct user_namespace *mnt_userns,
279 		     struct inode *inode, int mask)
280 {
281 #ifdef CONFIG_FS_POSIX_ACL
282 	struct posix_acl *acl;
283 
284 	if (mask & MAY_NOT_BLOCK) {
285 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
286 	        if (!acl)
287 	                return -EAGAIN;
288 		/* no ->get_acl() calls in RCU mode... */
289 		if (is_uncached_acl(acl))
290 			return -ECHILD;
291 	        return posix_acl_permission(mnt_userns, inode, acl, mask);
292 	}
293 
294 	acl = get_acl(inode, ACL_TYPE_ACCESS);
295 	if (IS_ERR(acl))
296 		return PTR_ERR(acl);
297 	if (acl) {
298 	        int error = posix_acl_permission(mnt_userns, inode, acl, mask);
299 	        posix_acl_release(acl);
300 	        return error;
301 	}
302 #endif
303 
304 	return -EAGAIN;
305 }
306 
307 /**
308  * acl_permission_check - perform basic UNIX permission checking
309  * @mnt_userns:	user namespace of the mount the inode was found from
310  * @inode:	inode to check permissions on
311  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
312  *
313  * This function performs the basic UNIX permission checking. Since this
314  * function may retrieve POSIX acls it needs to know whether it is called from a
315  * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
316  *
317  * If the inode has been found through an idmapped mount the user namespace of
318  * the vfsmount must be passed through @mnt_userns. This function will then take
319  * care to map the inode according to @mnt_userns before checking permissions.
320  * On non-idmapped mounts or if permission checking is to be performed on the
321  * raw inode simply passs init_user_ns.
322  */
323 static int acl_permission_check(struct user_namespace *mnt_userns,
324 				struct inode *inode, int mask)
325 {
326 	unsigned int mode = inode->i_mode;
327 	kuid_t i_uid;
328 
329 	/* Are we the owner? If so, ACL's don't matter */
330 	i_uid = i_uid_into_mnt(mnt_userns, inode);
331 	if (likely(uid_eq(current_fsuid(), i_uid))) {
332 		mask &= 7;
333 		mode >>= 6;
334 		return (mask & ~mode) ? -EACCES : 0;
335 	}
336 
337 	/* Do we have ACL's? */
338 	if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
339 		int error = check_acl(mnt_userns, inode, mask);
340 		if (error != -EAGAIN)
341 			return error;
342 	}
343 
344 	/* Only RWX matters for group/other mode bits */
345 	mask &= 7;
346 
347 	/*
348 	 * Are the group permissions different from
349 	 * the other permissions in the bits we care
350 	 * about? Need to check group ownership if so.
351 	 */
352 	if (mask & (mode ^ (mode >> 3))) {
353 		kgid_t kgid = i_gid_into_mnt(mnt_userns, inode);
354 		if (in_group_p(kgid))
355 			mode >>= 3;
356 	}
357 
358 	/* Bits in 'mode' clear that we require? */
359 	return (mask & ~mode) ? -EACCES : 0;
360 }
361 
362 /**
363  * generic_permission -  check for access rights on a Posix-like filesystem
364  * @mnt_userns:	user namespace of the mount the inode was found from
365  * @inode:	inode to check access rights for
366  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
367  *		%MAY_NOT_BLOCK ...)
368  *
369  * Used to check for read/write/execute permissions on a file.
370  * We use "fsuid" for this, letting us set arbitrary permissions
371  * for filesystem access without changing the "normal" uids which
372  * are used for other things.
373  *
374  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
375  * request cannot be satisfied (eg. requires blocking or too much complexity).
376  * It would then be called again in ref-walk mode.
377  *
378  * If the inode has been found through an idmapped mount the user namespace of
379  * the vfsmount must be passed through @mnt_userns. This function will then take
380  * care to map the inode according to @mnt_userns before checking permissions.
381  * On non-idmapped mounts or if permission checking is to be performed on the
382  * raw inode simply passs init_user_ns.
383  */
384 int generic_permission(struct user_namespace *mnt_userns, struct inode *inode,
385 		       int mask)
386 {
387 	int ret;
388 
389 	/*
390 	 * Do the basic permission checks.
391 	 */
392 	ret = acl_permission_check(mnt_userns, inode, mask);
393 	if (ret != -EACCES)
394 		return ret;
395 
396 	if (S_ISDIR(inode->i_mode)) {
397 		/* DACs are overridable for directories */
398 		if (!(mask & MAY_WRITE))
399 			if (capable_wrt_inode_uidgid(mnt_userns, inode,
400 						     CAP_DAC_READ_SEARCH))
401 				return 0;
402 		if (capable_wrt_inode_uidgid(mnt_userns, inode,
403 					     CAP_DAC_OVERRIDE))
404 			return 0;
405 		return -EACCES;
406 	}
407 
408 	/*
409 	 * Searching includes executable on directories, else just read.
410 	 */
411 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
412 	if (mask == MAY_READ)
413 		if (capable_wrt_inode_uidgid(mnt_userns, inode,
414 					     CAP_DAC_READ_SEARCH))
415 			return 0;
416 	/*
417 	 * Read/write DACs are always overridable.
418 	 * Executable DACs are overridable when there is
419 	 * at least one exec bit set.
420 	 */
421 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
422 		if (capable_wrt_inode_uidgid(mnt_userns, inode,
423 					     CAP_DAC_OVERRIDE))
424 			return 0;
425 
426 	return -EACCES;
427 }
428 EXPORT_SYMBOL(generic_permission);
429 
430 /**
431  * do_inode_permission - UNIX permission checking
432  * @mnt_userns:	user namespace of the mount the inode was found from
433  * @inode:	inode to check permissions on
434  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
435  *
436  * We _really_ want to just do "generic_permission()" without
437  * even looking at the inode->i_op values. So we keep a cache
438  * flag in inode->i_opflags, that says "this has not special
439  * permission function, use the fast case".
440  */
441 static inline int do_inode_permission(struct user_namespace *mnt_userns,
442 				      struct inode *inode, int mask)
443 {
444 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
445 		if (likely(inode->i_op->permission))
446 			return inode->i_op->permission(mnt_userns, inode, mask);
447 
448 		/* This gets set once for the inode lifetime */
449 		spin_lock(&inode->i_lock);
450 		inode->i_opflags |= IOP_FASTPERM;
451 		spin_unlock(&inode->i_lock);
452 	}
453 	return generic_permission(mnt_userns, inode, mask);
454 }
455 
456 /**
457  * sb_permission - Check superblock-level permissions
458  * @sb: Superblock of inode to check permission on
459  * @inode: Inode to check permission on
460  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
461  *
462  * Separate out file-system wide checks from inode-specific permission checks.
463  */
464 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
465 {
466 	if (unlikely(mask & MAY_WRITE)) {
467 		umode_t mode = inode->i_mode;
468 
469 		/* Nobody gets write access to a read-only fs. */
470 		if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
471 			return -EROFS;
472 	}
473 	return 0;
474 }
475 
476 /**
477  * inode_permission - Check for access rights to a given inode
478  * @mnt_userns:	User namespace of the mount the inode was found from
479  * @inode:	Inode to check permission on
480  * @mask:	Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
481  *
482  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
483  * this, letting us set arbitrary permissions for filesystem access without
484  * changing the "normal" UIDs which are used for other things.
485  *
486  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
487  */
488 int inode_permission(struct user_namespace *mnt_userns,
489 		     struct inode *inode, int mask)
490 {
491 	int retval;
492 
493 	retval = sb_permission(inode->i_sb, inode, mask);
494 	if (retval)
495 		return retval;
496 
497 	if (unlikely(mask & MAY_WRITE)) {
498 		/*
499 		 * Nobody gets write access to an immutable file.
500 		 */
501 		if (IS_IMMUTABLE(inode))
502 			return -EPERM;
503 
504 		/*
505 		 * Updating mtime will likely cause i_uid and i_gid to be
506 		 * written back improperly if their true value is unknown
507 		 * to the vfs.
508 		 */
509 		if (HAS_UNMAPPED_ID(mnt_userns, inode))
510 			return -EACCES;
511 	}
512 
513 	retval = do_inode_permission(mnt_userns, inode, mask);
514 	if (retval)
515 		return retval;
516 
517 	retval = devcgroup_inode_permission(inode, mask);
518 	if (retval)
519 		return retval;
520 
521 	return security_inode_permission(inode, mask);
522 }
523 EXPORT_SYMBOL(inode_permission);
524 
525 /**
526  * path_get - get a reference to a path
527  * @path: path to get the reference to
528  *
529  * Given a path increment the reference count to the dentry and the vfsmount.
530  */
531 void path_get(const struct path *path)
532 {
533 	mntget(path->mnt);
534 	dget(path->dentry);
535 }
536 EXPORT_SYMBOL(path_get);
537 
538 /**
539  * path_put - put a reference to a path
540  * @path: path to put the reference to
541  *
542  * Given a path decrement the reference count to the dentry and the vfsmount.
543  */
544 void path_put(const struct path *path)
545 {
546 	dput(path->dentry);
547 	mntput(path->mnt);
548 }
549 EXPORT_SYMBOL(path_put);
550 
551 #define EMBEDDED_LEVELS 2
552 struct nameidata {
553 	struct path	path;
554 	struct qstr	last;
555 	struct path	root;
556 	struct inode	*inode; /* path.dentry.d_inode */
557 	unsigned int	flags, state;
558 	unsigned	seq, m_seq, r_seq;
559 	int		last_type;
560 	unsigned	depth;
561 	int		total_link_count;
562 	struct saved {
563 		struct path link;
564 		struct delayed_call done;
565 		const char *name;
566 		unsigned seq;
567 	} *stack, internal[EMBEDDED_LEVELS];
568 	struct filename	*name;
569 	struct nameidata *saved;
570 	unsigned	root_seq;
571 	int		dfd;
572 	kuid_t		dir_uid;
573 	umode_t		dir_mode;
574 } __randomize_layout;
575 
576 #define ND_ROOT_PRESET 1
577 #define ND_ROOT_GRABBED 2
578 #define ND_JUMPED 4
579 
580 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name)
581 {
582 	struct nameidata *old = current->nameidata;
583 	p->stack = p->internal;
584 	p->depth = 0;
585 	p->dfd = dfd;
586 	p->name = name;
587 	p->path.mnt = NULL;
588 	p->path.dentry = NULL;
589 	p->total_link_count = old ? old->total_link_count : 0;
590 	p->saved = old;
591 	current->nameidata = p;
592 }
593 
594 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name,
595 			  const struct path *root)
596 {
597 	__set_nameidata(p, dfd, name);
598 	p->state = 0;
599 	if (unlikely(root)) {
600 		p->state = ND_ROOT_PRESET;
601 		p->root = *root;
602 	}
603 }
604 
605 static void restore_nameidata(void)
606 {
607 	struct nameidata *now = current->nameidata, *old = now->saved;
608 
609 	current->nameidata = old;
610 	if (old)
611 		old->total_link_count = now->total_link_count;
612 	if (now->stack != now->internal)
613 		kfree(now->stack);
614 }
615 
616 static bool nd_alloc_stack(struct nameidata *nd)
617 {
618 	struct saved *p;
619 
620 	p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
621 			 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
622 	if (unlikely(!p))
623 		return false;
624 	memcpy(p, nd->internal, sizeof(nd->internal));
625 	nd->stack = p;
626 	return true;
627 }
628 
629 /**
630  * path_connected - Verify that a dentry is below mnt.mnt_root
631  *
632  * Rename can sometimes move a file or directory outside of a bind
633  * mount, path_connected allows those cases to be detected.
634  */
635 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
636 {
637 	struct super_block *sb = mnt->mnt_sb;
638 
639 	/* Bind mounts can have disconnected paths */
640 	if (mnt->mnt_root == sb->s_root)
641 		return true;
642 
643 	return is_subdir(dentry, mnt->mnt_root);
644 }
645 
646 static void drop_links(struct nameidata *nd)
647 {
648 	int i = nd->depth;
649 	while (i--) {
650 		struct saved *last = nd->stack + i;
651 		do_delayed_call(&last->done);
652 		clear_delayed_call(&last->done);
653 	}
654 }
655 
656 static void terminate_walk(struct nameidata *nd)
657 {
658 	drop_links(nd);
659 	if (!(nd->flags & LOOKUP_RCU)) {
660 		int i;
661 		path_put(&nd->path);
662 		for (i = 0; i < nd->depth; i++)
663 			path_put(&nd->stack[i].link);
664 		if (nd->state & ND_ROOT_GRABBED) {
665 			path_put(&nd->root);
666 			nd->state &= ~ND_ROOT_GRABBED;
667 		}
668 	} else {
669 		nd->flags &= ~LOOKUP_RCU;
670 		rcu_read_unlock();
671 	}
672 	nd->depth = 0;
673 	nd->path.mnt = NULL;
674 	nd->path.dentry = NULL;
675 }
676 
677 /* path_put is needed afterwards regardless of success or failure */
678 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
679 {
680 	int res = __legitimize_mnt(path->mnt, mseq);
681 	if (unlikely(res)) {
682 		if (res > 0)
683 			path->mnt = NULL;
684 		path->dentry = NULL;
685 		return false;
686 	}
687 	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
688 		path->dentry = NULL;
689 		return false;
690 	}
691 	return !read_seqcount_retry(&path->dentry->d_seq, seq);
692 }
693 
694 static inline bool legitimize_path(struct nameidata *nd,
695 			    struct path *path, unsigned seq)
696 {
697 	return __legitimize_path(path, seq, nd->m_seq);
698 }
699 
700 static bool legitimize_links(struct nameidata *nd)
701 {
702 	int i;
703 	if (unlikely(nd->flags & LOOKUP_CACHED)) {
704 		drop_links(nd);
705 		nd->depth = 0;
706 		return false;
707 	}
708 	for (i = 0; i < nd->depth; i++) {
709 		struct saved *last = nd->stack + i;
710 		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
711 			drop_links(nd);
712 			nd->depth = i + 1;
713 			return false;
714 		}
715 	}
716 	return true;
717 }
718 
719 static bool legitimize_root(struct nameidata *nd)
720 {
721 	/*
722 	 * For scoped-lookups (where nd->root has been zeroed), we need to
723 	 * restart the whole lookup from scratch -- because set_root() is wrong
724 	 * for these lookups (nd->dfd is the root, not the filesystem root).
725 	 */
726 	if (!nd->root.mnt && (nd->flags & LOOKUP_IS_SCOPED))
727 		return false;
728 	/* Nothing to do if nd->root is zero or is managed by the VFS user. */
729 	if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET))
730 		return true;
731 	nd->state |= ND_ROOT_GRABBED;
732 	return legitimize_path(nd, &nd->root, nd->root_seq);
733 }
734 
735 /*
736  * Path walking has 2 modes, rcu-walk and ref-walk (see
737  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
738  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
739  * normal reference counts on dentries and vfsmounts to transition to ref-walk
740  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
741  * got stuck, so ref-walk may continue from there. If this is not successful
742  * (eg. a seqcount has changed), then failure is returned and it's up to caller
743  * to restart the path walk from the beginning in ref-walk mode.
744  */
745 
746 /**
747  * try_to_unlazy - try to switch to ref-walk mode.
748  * @nd: nameidata pathwalk data
749  * Returns: true on success, false on failure
750  *
751  * try_to_unlazy attempts to legitimize the current nd->path and nd->root
752  * for ref-walk mode.
753  * Must be called from rcu-walk context.
754  * Nothing should touch nameidata between try_to_unlazy() failure and
755  * terminate_walk().
756  */
757 static bool try_to_unlazy(struct nameidata *nd)
758 {
759 	struct dentry *parent = nd->path.dentry;
760 
761 	BUG_ON(!(nd->flags & LOOKUP_RCU));
762 
763 	nd->flags &= ~LOOKUP_RCU;
764 	if (unlikely(!legitimize_links(nd)))
765 		goto out1;
766 	if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
767 		goto out;
768 	if (unlikely(!legitimize_root(nd)))
769 		goto out;
770 	rcu_read_unlock();
771 	BUG_ON(nd->inode != parent->d_inode);
772 	return true;
773 
774 out1:
775 	nd->path.mnt = NULL;
776 	nd->path.dentry = NULL;
777 out:
778 	rcu_read_unlock();
779 	return false;
780 }
781 
782 /**
783  * try_to_unlazy_next - try to switch to ref-walk mode.
784  * @nd: nameidata pathwalk data
785  * @dentry: next dentry to step into
786  * @seq: seq number to check @dentry against
787  * Returns: true on success, false on failure
788  *
789  * Similar to to try_to_unlazy(), but here we have the next dentry already
790  * picked by rcu-walk and want to legitimize that in addition to the current
791  * nd->path and nd->root for ref-walk mode.  Must be called from rcu-walk context.
792  * Nothing should touch nameidata between try_to_unlazy_next() failure and
793  * terminate_walk().
794  */
795 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry, unsigned seq)
796 {
797 	BUG_ON(!(nd->flags & LOOKUP_RCU));
798 
799 	nd->flags &= ~LOOKUP_RCU;
800 	if (unlikely(!legitimize_links(nd)))
801 		goto out2;
802 	if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
803 		goto out2;
804 	if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
805 		goto out1;
806 
807 	/*
808 	 * We need to move both the parent and the dentry from the RCU domain
809 	 * to be properly refcounted. And the sequence number in the dentry
810 	 * validates *both* dentry counters, since we checked the sequence
811 	 * number of the parent after we got the child sequence number. So we
812 	 * know the parent must still be valid if the child sequence number is
813 	 */
814 	if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
815 		goto out;
816 	if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
817 		goto out_dput;
818 	/*
819 	 * Sequence counts matched. Now make sure that the root is
820 	 * still valid and get it if required.
821 	 */
822 	if (unlikely(!legitimize_root(nd)))
823 		goto out_dput;
824 	rcu_read_unlock();
825 	return true;
826 
827 out2:
828 	nd->path.mnt = NULL;
829 out1:
830 	nd->path.dentry = NULL;
831 out:
832 	rcu_read_unlock();
833 	return false;
834 out_dput:
835 	rcu_read_unlock();
836 	dput(dentry);
837 	return false;
838 }
839 
840 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
841 {
842 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
843 		return dentry->d_op->d_revalidate(dentry, flags);
844 	else
845 		return 1;
846 }
847 
848 /**
849  * complete_walk - successful completion of path walk
850  * @nd:  pointer nameidata
851  *
852  * If we had been in RCU mode, drop out of it and legitimize nd->path.
853  * Revalidate the final result, unless we'd already done that during
854  * the path walk or the filesystem doesn't ask for it.  Return 0 on
855  * success, -error on failure.  In case of failure caller does not
856  * need to drop nd->path.
857  */
858 static int complete_walk(struct nameidata *nd)
859 {
860 	struct dentry *dentry = nd->path.dentry;
861 	int status;
862 
863 	if (nd->flags & LOOKUP_RCU) {
864 		/*
865 		 * We don't want to zero nd->root for scoped-lookups or
866 		 * externally-managed nd->root.
867 		 */
868 		if (!(nd->state & ND_ROOT_PRESET))
869 			if (!(nd->flags & LOOKUP_IS_SCOPED))
870 				nd->root.mnt = NULL;
871 		nd->flags &= ~LOOKUP_CACHED;
872 		if (!try_to_unlazy(nd))
873 			return -ECHILD;
874 	}
875 
876 	if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
877 		/*
878 		 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
879 		 * ever step outside the root during lookup" and should already
880 		 * be guaranteed by the rest of namei, we want to avoid a namei
881 		 * BUG resulting in userspace being given a path that was not
882 		 * scoped within the root at some point during the lookup.
883 		 *
884 		 * So, do a final sanity-check to make sure that in the
885 		 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
886 		 * we won't silently return an fd completely outside of the
887 		 * requested root to userspace.
888 		 *
889 		 * Userspace could move the path outside the root after this
890 		 * check, but as discussed elsewhere this is not a concern (the
891 		 * resolved file was inside the root at some point).
892 		 */
893 		if (!path_is_under(&nd->path, &nd->root))
894 			return -EXDEV;
895 	}
896 
897 	if (likely(!(nd->state & ND_JUMPED)))
898 		return 0;
899 
900 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
901 		return 0;
902 
903 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
904 	if (status > 0)
905 		return 0;
906 
907 	if (!status)
908 		status = -ESTALE;
909 
910 	return status;
911 }
912 
913 static int set_root(struct nameidata *nd)
914 {
915 	struct fs_struct *fs = current->fs;
916 
917 	/*
918 	 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
919 	 * still have to ensure it doesn't happen because it will cause a breakout
920 	 * from the dirfd.
921 	 */
922 	if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
923 		return -ENOTRECOVERABLE;
924 
925 	if (nd->flags & LOOKUP_RCU) {
926 		unsigned seq;
927 
928 		do {
929 			seq = read_seqcount_begin(&fs->seq);
930 			nd->root = fs->root;
931 			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
932 		} while (read_seqcount_retry(&fs->seq, seq));
933 	} else {
934 		get_fs_root(fs, &nd->root);
935 		nd->state |= ND_ROOT_GRABBED;
936 	}
937 	return 0;
938 }
939 
940 static int nd_jump_root(struct nameidata *nd)
941 {
942 	if (unlikely(nd->flags & LOOKUP_BENEATH))
943 		return -EXDEV;
944 	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
945 		/* Absolute path arguments to path_init() are allowed. */
946 		if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
947 			return -EXDEV;
948 	}
949 	if (!nd->root.mnt) {
950 		int error = set_root(nd);
951 		if (error)
952 			return error;
953 	}
954 	if (nd->flags & LOOKUP_RCU) {
955 		struct dentry *d;
956 		nd->path = nd->root;
957 		d = nd->path.dentry;
958 		nd->inode = d->d_inode;
959 		nd->seq = nd->root_seq;
960 		if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
961 			return -ECHILD;
962 	} else {
963 		path_put(&nd->path);
964 		nd->path = nd->root;
965 		path_get(&nd->path);
966 		nd->inode = nd->path.dentry->d_inode;
967 	}
968 	nd->state |= ND_JUMPED;
969 	return 0;
970 }
971 
972 /*
973  * Helper to directly jump to a known parsed path from ->get_link,
974  * caller must have taken a reference to path beforehand.
975  */
976 int nd_jump_link(struct path *path)
977 {
978 	int error = -ELOOP;
979 	struct nameidata *nd = current->nameidata;
980 
981 	if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
982 		goto err;
983 
984 	error = -EXDEV;
985 	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
986 		if (nd->path.mnt != path->mnt)
987 			goto err;
988 	}
989 	/* Not currently safe for scoped-lookups. */
990 	if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
991 		goto err;
992 
993 	path_put(&nd->path);
994 	nd->path = *path;
995 	nd->inode = nd->path.dentry->d_inode;
996 	nd->state |= ND_JUMPED;
997 	return 0;
998 
999 err:
1000 	path_put(path);
1001 	return error;
1002 }
1003 
1004 static inline void put_link(struct nameidata *nd)
1005 {
1006 	struct saved *last = nd->stack + --nd->depth;
1007 	do_delayed_call(&last->done);
1008 	if (!(nd->flags & LOOKUP_RCU))
1009 		path_put(&last->link);
1010 }
1011 
1012 int sysctl_protected_symlinks __read_mostly = 0;
1013 int sysctl_protected_hardlinks __read_mostly = 0;
1014 int sysctl_protected_fifos __read_mostly;
1015 int sysctl_protected_regular __read_mostly;
1016 
1017 /**
1018  * may_follow_link - Check symlink following for unsafe situations
1019  * @nd: nameidata pathwalk data
1020  *
1021  * In the case of the sysctl_protected_symlinks sysctl being enabled,
1022  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
1023  * in a sticky world-writable directory. This is to protect privileged
1024  * processes from failing races against path names that may change out
1025  * from under them by way of other users creating malicious symlinks.
1026  * It will permit symlinks to be followed only when outside a sticky
1027  * world-writable directory, or when the uid of the symlink and follower
1028  * match, or when the directory owner matches the symlink's owner.
1029  *
1030  * Returns 0 if following the symlink is allowed, -ve on error.
1031  */
1032 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
1033 {
1034 	struct user_namespace *mnt_userns;
1035 	kuid_t i_uid;
1036 
1037 	if (!sysctl_protected_symlinks)
1038 		return 0;
1039 
1040 	mnt_userns = mnt_user_ns(nd->path.mnt);
1041 	i_uid = i_uid_into_mnt(mnt_userns, inode);
1042 	/* Allowed if owner and follower match. */
1043 	if (uid_eq(current_cred()->fsuid, i_uid))
1044 		return 0;
1045 
1046 	/* Allowed if parent directory not sticky and world-writable. */
1047 	if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
1048 		return 0;
1049 
1050 	/* Allowed if parent directory and link owner match. */
1051 	if (uid_valid(nd->dir_uid) && uid_eq(nd->dir_uid, i_uid))
1052 		return 0;
1053 
1054 	if (nd->flags & LOOKUP_RCU)
1055 		return -ECHILD;
1056 
1057 	audit_inode(nd->name, nd->stack[0].link.dentry, 0);
1058 	audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
1059 	return -EACCES;
1060 }
1061 
1062 /**
1063  * safe_hardlink_source - Check for safe hardlink conditions
1064  * @mnt_userns:	user namespace of the mount the inode was found from
1065  * @inode: the source inode to hardlink from
1066  *
1067  * Return false if at least one of the following conditions:
1068  *    - inode is not a regular file
1069  *    - inode is setuid
1070  *    - inode is setgid and group-exec
1071  *    - access failure for read and write
1072  *
1073  * Otherwise returns true.
1074  */
1075 static bool safe_hardlink_source(struct user_namespace *mnt_userns,
1076 				 struct inode *inode)
1077 {
1078 	umode_t mode = inode->i_mode;
1079 
1080 	/* Special files should not get pinned to the filesystem. */
1081 	if (!S_ISREG(mode))
1082 		return false;
1083 
1084 	/* Setuid files should not get pinned to the filesystem. */
1085 	if (mode & S_ISUID)
1086 		return false;
1087 
1088 	/* Executable setgid files should not get pinned to the filesystem. */
1089 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1090 		return false;
1091 
1092 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
1093 	if (inode_permission(mnt_userns, inode, MAY_READ | MAY_WRITE))
1094 		return false;
1095 
1096 	return true;
1097 }
1098 
1099 /**
1100  * may_linkat - Check permissions for creating a hardlink
1101  * @mnt_userns:	user namespace of the mount the inode was found from
1102  * @link: the source to hardlink from
1103  *
1104  * Block hardlink when all of:
1105  *  - sysctl_protected_hardlinks enabled
1106  *  - fsuid does not match inode
1107  *  - hardlink source is unsafe (see safe_hardlink_source() above)
1108  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
1109  *
1110  * If the inode has been found through an idmapped mount the user namespace of
1111  * the vfsmount must be passed through @mnt_userns. This function will then take
1112  * care to map the inode according to @mnt_userns before checking permissions.
1113  * On non-idmapped mounts or if permission checking is to be performed on the
1114  * raw inode simply passs init_user_ns.
1115  *
1116  * Returns 0 if successful, -ve on error.
1117  */
1118 int may_linkat(struct user_namespace *mnt_userns, struct path *link)
1119 {
1120 	struct inode *inode = link->dentry->d_inode;
1121 
1122 	/* Inode writeback is not safe when the uid or gid are invalid. */
1123 	if (!uid_valid(i_uid_into_mnt(mnt_userns, inode)) ||
1124 	    !gid_valid(i_gid_into_mnt(mnt_userns, inode)))
1125 		return -EOVERFLOW;
1126 
1127 	if (!sysctl_protected_hardlinks)
1128 		return 0;
1129 
1130 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1131 	 * otherwise, it must be a safe source.
1132 	 */
1133 	if (safe_hardlink_source(mnt_userns, inode) ||
1134 	    inode_owner_or_capable(mnt_userns, inode))
1135 		return 0;
1136 
1137 	audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1138 	return -EPERM;
1139 }
1140 
1141 /**
1142  * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1143  *			  should be allowed, or not, on files that already
1144  *			  exist.
1145  * @mnt_userns:	user namespace of the mount the inode was found from
1146  * @nd: nameidata pathwalk data
1147  * @inode: the inode of the file to open
1148  *
1149  * Block an O_CREAT open of a FIFO (or a regular file) when:
1150  *   - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1151  *   - the file already exists
1152  *   - we are in a sticky directory
1153  *   - we don't own the file
1154  *   - the owner of the directory doesn't own the file
1155  *   - the directory is world writable
1156  * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1157  * the directory doesn't have to be world writable: being group writable will
1158  * be enough.
1159  *
1160  * If the inode has been found through an idmapped mount the user namespace of
1161  * the vfsmount must be passed through @mnt_userns. This function will then take
1162  * care to map the inode according to @mnt_userns before checking permissions.
1163  * On non-idmapped mounts or if permission checking is to be performed on the
1164  * raw inode simply passs init_user_ns.
1165  *
1166  * Returns 0 if the open is allowed, -ve on error.
1167  */
1168 static int may_create_in_sticky(struct user_namespace *mnt_userns,
1169 				struct nameidata *nd, struct inode *const inode)
1170 {
1171 	umode_t dir_mode = nd->dir_mode;
1172 	kuid_t dir_uid = nd->dir_uid;
1173 
1174 	if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1175 	    (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1176 	    likely(!(dir_mode & S_ISVTX)) ||
1177 	    uid_eq(i_uid_into_mnt(mnt_userns, inode), dir_uid) ||
1178 	    uid_eq(current_fsuid(), i_uid_into_mnt(mnt_userns, inode)))
1179 		return 0;
1180 
1181 	if (likely(dir_mode & 0002) ||
1182 	    (dir_mode & 0020 &&
1183 	     ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1184 	      (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1185 		const char *operation = S_ISFIFO(inode->i_mode) ?
1186 					"sticky_create_fifo" :
1187 					"sticky_create_regular";
1188 		audit_log_path_denied(AUDIT_ANOM_CREAT, operation);
1189 		return -EACCES;
1190 	}
1191 	return 0;
1192 }
1193 
1194 /*
1195  * follow_up - Find the mountpoint of path's vfsmount
1196  *
1197  * Given a path, find the mountpoint of its source file system.
1198  * Replace @path with the path of the mountpoint in the parent mount.
1199  * Up is towards /.
1200  *
1201  * Return 1 if we went up a level and 0 if we were already at the
1202  * root.
1203  */
1204 int follow_up(struct path *path)
1205 {
1206 	struct mount *mnt = real_mount(path->mnt);
1207 	struct mount *parent;
1208 	struct dentry *mountpoint;
1209 
1210 	read_seqlock_excl(&mount_lock);
1211 	parent = mnt->mnt_parent;
1212 	if (parent == mnt) {
1213 		read_sequnlock_excl(&mount_lock);
1214 		return 0;
1215 	}
1216 	mntget(&parent->mnt);
1217 	mountpoint = dget(mnt->mnt_mountpoint);
1218 	read_sequnlock_excl(&mount_lock);
1219 	dput(path->dentry);
1220 	path->dentry = mountpoint;
1221 	mntput(path->mnt);
1222 	path->mnt = &parent->mnt;
1223 	return 1;
1224 }
1225 EXPORT_SYMBOL(follow_up);
1226 
1227 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1228 				  struct path *path, unsigned *seqp)
1229 {
1230 	while (mnt_has_parent(m)) {
1231 		struct dentry *mountpoint = m->mnt_mountpoint;
1232 
1233 		m = m->mnt_parent;
1234 		if (unlikely(root->dentry == mountpoint &&
1235 			     root->mnt == &m->mnt))
1236 			break;
1237 		if (mountpoint != m->mnt.mnt_root) {
1238 			path->mnt = &m->mnt;
1239 			path->dentry = mountpoint;
1240 			*seqp = read_seqcount_begin(&mountpoint->d_seq);
1241 			return true;
1242 		}
1243 	}
1244 	return false;
1245 }
1246 
1247 static bool choose_mountpoint(struct mount *m, const struct path *root,
1248 			      struct path *path)
1249 {
1250 	bool found;
1251 
1252 	rcu_read_lock();
1253 	while (1) {
1254 		unsigned seq, mseq = read_seqbegin(&mount_lock);
1255 
1256 		found = choose_mountpoint_rcu(m, root, path, &seq);
1257 		if (unlikely(!found)) {
1258 			if (!read_seqretry(&mount_lock, mseq))
1259 				break;
1260 		} else {
1261 			if (likely(__legitimize_path(path, seq, mseq)))
1262 				break;
1263 			rcu_read_unlock();
1264 			path_put(path);
1265 			rcu_read_lock();
1266 		}
1267 	}
1268 	rcu_read_unlock();
1269 	return found;
1270 }
1271 
1272 /*
1273  * Perform an automount
1274  * - return -EISDIR to tell follow_managed() to stop and return the path we
1275  *   were called with.
1276  */
1277 static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1278 {
1279 	struct dentry *dentry = path->dentry;
1280 
1281 	/* We don't want to mount if someone's just doing a stat -
1282 	 * unless they're stat'ing a directory and appended a '/' to
1283 	 * the name.
1284 	 *
1285 	 * We do, however, want to mount if someone wants to open or
1286 	 * create a file of any type under the mountpoint, wants to
1287 	 * traverse through the mountpoint or wants to open the
1288 	 * mounted directory.  Also, autofs may mark negative dentries
1289 	 * as being automount points.  These will need the attentions
1290 	 * of the daemon to instantiate them before they can be used.
1291 	 */
1292 	if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1293 			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1294 	    dentry->d_inode)
1295 		return -EISDIR;
1296 
1297 	if (count && (*count)++ >= MAXSYMLINKS)
1298 		return -ELOOP;
1299 
1300 	return finish_automount(dentry->d_op->d_automount(path), path);
1301 }
1302 
1303 /*
1304  * mount traversal - out-of-line part.  One note on ->d_flags accesses -
1305  * dentries are pinned but not locked here, so negative dentry can go
1306  * positive right under us.  Use of smp_load_acquire() provides a barrier
1307  * sufficient for ->d_inode and ->d_flags consistency.
1308  */
1309 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1310 			     int *count, unsigned lookup_flags)
1311 {
1312 	struct vfsmount *mnt = path->mnt;
1313 	bool need_mntput = false;
1314 	int ret = 0;
1315 
1316 	while (flags & DCACHE_MANAGED_DENTRY) {
1317 		/* Allow the filesystem to manage the transit without i_mutex
1318 		 * being held. */
1319 		if (flags & DCACHE_MANAGE_TRANSIT) {
1320 			ret = path->dentry->d_op->d_manage(path, false);
1321 			flags = smp_load_acquire(&path->dentry->d_flags);
1322 			if (ret < 0)
1323 				break;
1324 		}
1325 
1326 		if (flags & DCACHE_MOUNTED) {	// something's mounted on it..
1327 			struct vfsmount *mounted = lookup_mnt(path);
1328 			if (mounted) {		// ... in our namespace
1329 				dput(path->dentry);
1330 				if (need_mntput)
1331 					mntput(path->mnt);
1332 				path->mnt = mounted;
1333 				path->dentry = dget(mounted->mnt_root);
1334 				// here we know it's positive
1335 				flags = path->dentry->d_flags;
1336 				need_mntput = true;
1337 				continue;
1338 			}
1339 		}
1340 
1341 		if (!(flags & DCACHE_NEED_AUTOMOUNT))
1342 			break;
1343 
1344 		// uncovered automount point
1345 		ret = follow_automount(path, count, lookup_flags);
1346 		flags = smp_load_acquire(&path->dentry->d_flags);
1347 		if (ret < 0)
1348 			break;
1349 	}
1350 
1351 	if (ret == -EISDIR)
1352 		ret = 0;
1353 	// possible if you race with several mount --move
1354 	if (need_mntput && path->mnt == mnt)
1355 		mntput(path->mnt);
1356 	if (!ret && unlikely(d_flags_negative(flags)))
1357 		ret = -ENOENT;
1358 	*jumped = need_mntput;
1359 	return ret;
1360 }
1361 
1362 static inline int traverse_mounts(struct path *path, bool *jumped,
1363 				  int *count, unsigned lookup_flags)
1364 {
1365 	unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1366 
1367 	/* fastpath */
1368 	if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1369 		*jumped = false;
1370 		if (unlikely(d_flags_negative(flags)))
1371 			return -ENOENT;
1372 		return 0;
1373 	}
1374 	return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1375 }
1376 
1377 int follow_down_one(struct path *path)
1378 {
1379 	struct vfsmount *mounted;
1380 
1381 	mounted = lookup_mnt(path);
1382 	if (mounted) {
1383 		dput(path->dentry);
1384 		mntput(path->mnt);
1385 		path->mnt = mounted;
1386 		path->dentry = dget(mounted->mnt_root);
1387 		return 1;
1388 	}
1389 	return 0;
1390 }
1391 EXPORT_SYMBOL(follow_down_one);
1392 
1393 /*
1394  * Follow down to the covering mount currently visible to userspace.  At each
1395  * point, the filesystem owning that dentry may be queried as to whether the
1396  * caller is permitted to proceed or not.
1397  */
1398 int follow_down(struct path *path)
1399 {
1400 	struct vfsmount *mnt = path->mnt;
1401 	bool jumped;
1402 	int ret = traverse_mounts(path, &jumped, NULL, 0);
1403 
1404 	if (path->mnt != mnt)
1405 		mntput(mnt);
1406 	return ret;
1407 }
1408 EXPORT_SYMBOL(follow_down);
1409 
1410 /*
1411  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1412  * we meet a managed dentry that would need blocking.
1413  */
1414 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1415 			       struct inode **inode, unsigned *seqp)
1416 {
1417 	struct dentry *dentry = path->dentry;
1418 	unsigned int flags = dentry->d_flags;
1419 
1420 	if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1421 		return true;
1422 
1423 	if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1424 		return false;
1425 
1426 	for (;;) {
1427 		/*
1428 		 * Don't forget we might have a non-mountpoint managed dentry
1429 		 * that wants to block transit.
1430 		 */
1431 		if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1432 			int res = dentry->d_op->d_manage(path, true);
1433 			if (res)
1434 				return res == -EISDIR;
1435 			flags = dentry->d_flags;
1436 		}
1437 
1438 		if (flags & DCACHE_MOUNTED) {
1439 			struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1440 			if (mounted) {
1441 				path->mnt = &mounted->mnt;
1442 				dentry = path->dentry = mounted->mnt.mnt_root;
1443 				nd->state |= ND_JUMPED;
1444 				*seqp = read_seqcount_begin(&dentry->d_seq);
1445 				*inode = dentry->d_inode;
1446 				/*
1447 				 * We don't need to re-check ->d_seq after this
1448 				 * ->d_inode read - there will be an RCU delay
1449 				 * between mount hash removal and ->mnt_root
1450 				 * becoming unpinned.
1451 				 */
1452 				flags = dentry->d_flags;
1453 				continue;
1454 			}
1455 			if (read_seqretry(&mount_lock, nd->m_seq))
1456 				return false;
1457 		}
1458 		return !(flags & DCACHE_NEED_AUTOMOUNT);
1459 	}
1460 }
1461 
1462 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1463 			  struct path *path, struct inode **inode,
1464 			  unsigned int *seqp)
1465 {
1466 	bool jumped;
1467 	int ret;
1468 
1469 	path->mnt = nd->path.mnt;
1470 	path->dentry = dentry;
1471 	if (nd->flags & LOOKUP_RCU) {
1472 		unsigned int seq = *seqp;
1473 		if (unlikely(!*inode))
1474 			return -ENOENT;
1475 		if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1476 			return 0;
1477 		if (!try_to_unlazy_next(nd, dentry, seq))
1478 			return -ECHILD;
1479 		// *path might've been clobbered by __follow_mount_rcu()
1480 		path->mnt = nd->path.mnt;
1481 		path->dentry = dentry;
1482 	}
1483 	ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1484 	if (jumped) {
1485 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1486 			ret = -EXDEV;
1487 		else
1488 			nd->state |= ND_JUMPED;
1489 	}
1490 	if (unlikely(ret)) {
1491 		dput(path->dentry);
1492 		if (path->mnt != nd->path.mnt)
1493 			mntput(path->mnt);
1494 	} else {
1495 		*inode = d_backing_inode(path->dentry);
1496 		*seqp = 0; /* out of RCU mode, so the value doesn't matter */
1497 	}
1498 	return ret;
1499 }
1500 
1501 /*
1502  * This looks up the name in dcache and possibly revalidates the found dentry.
1503  * NULL is returned if the dentry does not exist in the cache.
1504  */
1505 static struct dentry *lookup_dcache(const struct qstr *name,
1506 				    struct dentry *dir,
1507 				    unsigned int flags)
1508 {
1509 	struct dentry *dentry = d_lookup(dir, name);
1510 	if (dentry) {
1511 		int error = d_revalidate(dentry, flags);
1512 		if (unlikely(error <= 0)) {
1513 			if (!error)
1514 				d_invalidate(dentry);
1515 			dput(dentry);
1516 			return ERR_PTR(error);
1517 		}
1518 	}
1519 	return dentry;
1520 }
1521 
1522 /*
1523  * Parent directory has inode locked exclusive.  This is one
1524  * and only case when ->lookup() gets called on non in-lookup
1525  * dentries - as the matter of fact, this only gets called
1526  * when directory is guaranteed to have no in-lookup children
1527  * at all.
1528  */
1529 static struct dentry *__lookup_hash(const struct qstr *name,
1530 		struct dentry *base, unsigned int flags)
1531 {
1532 	struct dentry *dentry = lookup_dcache(name, base, flags);
1533 	struct dentry *old;
1534 	struct inode *dir = base->d_inode;
1535 
1536 	if (dentry)
1537 		return dentry;
1538 
1539 	/* Don't create child dentry for a dead directory. */
1540 	if (unlikely(IS_DEADDIR(dir)))
1541 		return ERR_PTR(-ENOENT);
1542 
1543 	dentry = d_alloc(base, name);
1544 	if (unlikely(!dentry))
1545 		return ERR_PTR(-ENOMEM);
1546 
1547 	old = dir->i_op->lookup(dir, dentry, flags);
1548 	if (unlikely(old)) {
1549 		dput(dentry);
1550 		dentry = old;
1551 	}
1552 	return dentry;
1553 }
1554 
1555 static struct dentry *lookup_fast(struct nameidata *nd,
1556 				  struct inode **inode,
1557 			          unsigned *seqp)
1558 {
1559 	struct dentry *dentry, *parent = nd->path.dentry;
1560 	int status = 1;
1561 
1562 	/*
1563 	 * Rename seqlock is not required here because in the off chance
1564 	 * of a false negative due to a concurrent rename, the caller is
1565 	 * going to fall back to non-racy lookup.
1566 	 */
1567 	if (nd->flags & LOOKUP_RCU) {
1568 		unsigned seq;
1569 		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1570 		if (unlikely(!dentry)) {
1571 			if (!try_to_unlazy(nd))
1572 				return ERR_PTR(-ECHILD);
1573 			return NULL;
1574 		}
1575 
1576 		/*
1577 		 * This sequence count validates that the inode matches
1578 		 * the dentry name information from lookup.
1579 		 */
1580 		*inode = d_backing_inode(dentry);
1581 		if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1582 			return ERR_PTR(-ECHILD);
1583 
1584 		/*
1585 		 * This sequence count validates that the parent had no
1586 		 * changes while we did the lookup of the dentry above.
1587 		 *
1588 		 * The memory barrier in read_seqcount_begin of child is
1589 		 *  enough, we can use __read_seqcount_retry here.
1590 		 */
1591 		if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1592 			return ERR_PTR(-ECHILD);
1593 
1594 		*seqp = seq;
1595 		status = d_revalidate(dentry, nd->flags);
1596 		if (likely(status > 0))
1597 			return dentry;
1598 		if (!try_to_unlazy_next(nd, dentry, seq))
1599 			return ERR_PTR(-ECHILD);
1600 		if (status == -ECHILD)
1601 			/* we'd been told to redo it in non-rcu mode */
1602 			status = d_revalidate(dentry, nd->flags);
1603 	} else {
1604 		dentry = __d_lookup(parent, &nd->last);
1605 		if (unlikely(!dentry))
1606 			return NULL;
1607 		status = d_revalidate(dentry, nd->flags);
1608 	}
1609 	if (unlikely(status <= 0)) {
1610 		if (!status)
1611 			d_invalidate(dentry);
1612 		dput(dentry);
1613 		return ERR_PTR(status);
1614 	}
1615 	return dentry;
1616 }
1617 
1618 /* Fast lookup failed, do it the slow way */
1619 static struct dentry *__lookup_slow(const struct qstr *name,
1620 				    struct dentry *dir,
1621 				    unsigned int flags)
1622 {
1623 	struct dentry *dentry, *old;
1624 	struct inode *inode = dir->d_inode;
1625 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1626 
1627 	/* Don't go there if it's already dead */
1628 	if (unlikely(IS_DEADDIR(inode)))
1629 		return ERR_PTR(-ENOENT);
1630 again:
1631 	dentry = d_alloc_parallel(dir, name, &wq);
1632 	if (IS_ERR(dentry))
1633 		return dentry;
1634 	if (unlikely(!d_in_lookup(dentry))) {
1635 		int error = d_revalidate(dentry, flags);
1636 		if (unlikely(error <= 0)) {
1637 			if (!error) {
1638 				d_invalidate(dentry);
1639 				dput(dentry);
1640 				goto again;
1641 			}
1642 			dput(dentry);
1643 			dentry = ERR_PTR(error);
1644 		}
1645 	} else {
1646 		old = inode->i_op->lookup(inode, dentry, flags);
1647 		d_lookup_done(dentry);
1648 		if (unlikely(old)) {
1649 			dput(dentry);
1650 			dentry = old;
1651 		}
1652 	}
1653 	return dentry;
1654 }
1655 
1656 static struct dentry *lookup_slow(const struct qstr *name,
1657 				  struct dentry *dir,
1658 				  unsigned int flags)
1659 {
1660 	struct inode *inode = dir->d_inode;
1661 	struct dentry *res;
1662 	inode_lock_shared(inode);
1663 	res = __lookup_slow(name, dir, flags);
1664 	inode_unlock_shared(inode);
1665 	return res;
1666 }
1667 
1668 static inline int may_lookup(struct user_namespace *mnt_userns,
1669 			     struct nameidata *nd)
1670 {
1671 	if (nd->flags & LOOKUP_RCU) {
1672 		int err = inode_permission(mnt_userns, nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1673 		if (err != -ECHILD || !try_to_unlazy(nd))
1674 			return err;
1675 	}
1676 	return inode_permission(mnt_userns, nd->inode, MAY_EXEC);
1677 }
1678 
1679 static int reserve_stack(struct nameidata *nd, struct path *link, unsigned seq)
1680 {
1681 	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1682 		return -ELOOP;
1683 
1684 	if (likely(nd->depth != EMBEDDED_LEVELS))
1685 		return 0;
1686 	if (likely(nd->stack != nd->internal))
1687 		return 0;
1688 	if (likely(nd_alloc_stack(nd)))
1689 		return 0;
1690 
1691 	if (nd->flags & LOOKUP_RCU) {
1692 		// we need to grab link before we do unlazy.  And we can't skip
1693 		// unlazy even if we fail to grab the link - cleanup needs it
1694 		bool grabbed_link = legitimize_path(nd, link, seq);
1695 
1696 		if (!try_to_unlazy(nd) != 0 || !grabbed_link)
1697 			return -ECHILD;
1698 
1699 		if (nd_alloc_stack(nd))
1700 			return 0;
1701 	}
1702 	return -ENOMEM;
1703 }
1704 
1705 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1706 
1707 static const char *pick_link(struct nameidata *nd, struct path *link,
1708 		     struct inode *inode, unsigned seq, int flags)
1709 {
1710 	struct saved *last;
1711 	const char *res;
1712 	int error = reserve_stack(nd, link, seq);
1713 
1714 	if (unlikely(error)) {
1715 		if (!(nd->flags & LOOKUP_RCU))
1716 			path_put(link);
1717 		return ERR_PTR(error);
1718 	}
1719 	last = nd->stack + nd->depth++;
1720 	last->link = *link;
1721 	clear_delayed_call(&last->done);
1722 	last->seq = seq;
1723 
1724 	if (flags & WALK_TRAILING) {
1725 		error = may_follow_link(nd, inode);
1726 		if (unlikely(error))
1727 			return ERR_PTR(error);
1728 	}
1729 
1730 	if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1731 			unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1732 		return ERR_PTR(-ELOOP);
1733 
1734 	if (!(nd->flags & LOOKUP_RCU)) {
1735 		touch_atime(&last->link);
1736 		cond_resched();
1737 	} else if (atime_needs_update(&last->link, inode)) {
1738 		if (!try_to_unlazy(nd))
1739 			return ERR_PTR(-ECHILD);
1740 		touch_atime(&last->link);
1741 	}
1742 
1743 	error = security_inode_follow_link(link->dentry, inode,
1744 					   nd->flags & LOOKUP_RCU);
1745 	if (unlikely(error))
1746 		return ERR_PTR(error);
1747 
1748 	res = READ_ONCE(inode->i_link);
1749 	if (!res) {
1750 		const char * (*get)(struct dentry *, struct inode *,
1751 				struct delayed_call *);
1752 		get = inode->i_op->get_link;
1753 		if (nd->flags & LOOKUP_RCU) {
1754 			res = get(NULL, inode, &last->done);
1755 			if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd))
1756 				res = get(link->dentry, inode, &last->done);
1757 		} else {
1758 			res = get(link->dentry, inode, &last->done);
1759 		}
1760 		if (!res)
1761 			goto all_done;
1762 		if (IS_ERR(res))
1763 			return res;
1764 	}
1765 	if (*res == '/') {
1766 		error = nd_jump_root(nd);
1767 		if (unlikely(error))
1768 			return ERR_PTR(error);
1769 		while (unlikely(*++res == '/'))
1770 			;
1771 	}
1772 	if (*res)
1773 		return res;
1774 all_done: // pure jump
1775 	put_link(nd);
1776 	return NULL;
1777 }
1778 
1779 /*
1780  * Do we need to follow links? We _really_ want to be able
1781  * to do this check without having to look at inode->i_op,
1782  * so we keep a cache of "no, this doesn't need follow_link"
1783  * for the common case.
1784  */
1785 static const char *step_into(struct nameidata *nd, int flags,
1786 		     struct dentry *dentry, struct inode *inode, unsigned seq)
1787 {
1788 	struct path path;
1789 	int err = handle_mounts(nd, dentry, &path, &inode, &seq);
1790 
1791 	if (err < 0)
1792 		return ERR_PTR(err);
1793 	if (likely(!d_is_symlink(path.dentry)) ||
1794 	   ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1795 	   (flags & WALK_NOFOLLOW)) {
1796 		/* not a symlink or should not follow */
1797 		if (!(nd->flags & LOOKUP_RCU)) {
1798 			dput(nd->path.dentry);
1799 			if (nd->path.mnt != path.mnt)
1800 				mntput(nd->path.mnt);
1801 		}
1802 		nd->path = path;
1803 		nd->inode = inode;
1804 		nd->seq = seq;
1805 		return NULL;
1806 	}
1807 	if (nd->flags & LOOKUP_RCU) {
1808 		/* make sure that d_is_symlink above matches inode */
1809 		if (read_seqcount_retry(&path.dentry->d_seq, seq))
1810 			return ERR_PTR(-ECHILD);
1811 	} else {
1812 		if (path.mnt == nd->path.mnt)
1813 			mntget(path.mnt);
1814 	}
1815 	return pick_link(nd, &path, inode, seq, flags);
1816 }
1817 
1818 static struct dentry *follow_dotdot_rcu(struct nameidata *nd,
1819 					struct inode **inodep,
1820 					unsigned *seqp)
1821 {
1822 	struct dentry *parent, *old;
1823 
1824 	if (path_equal(&nd->path, &nd->root))
1825 		goto in_root;
1826 	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1827 		struct path path;
1828 		unsigned seq;
1829 		if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
1830 					   &nd->root, &path, &seq))
1831 			goto in_root;
1832 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1833 			return ERR_PTR(-ECHILD);
1834 		nd->path = path;
1835 		nd->inode = path.dentry->d_inode;
1836 		nd->seq = seq;
1837 		if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1838 			return ERR_PTR(-ECHILD);
1839 		/* we know that mountpoint was pinned */
1840 	}
1841 	old = nd->path.dentry;
1842 	parent = old->d_parent;
1843 	*inodep = parent->d_inode;
1844 	*seqp = read_seqcount_begin(&parent->d_seq);
1845 	if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1846 		return ERR_PTR(-ECHILD);
1847 	if (unlikely(!path_connected(nd->path.mnt, parent)))
1848 		return ERR_PTR(-ECHILD);
1849 	return parent;
1850 in_root:
1851 	if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1852 		return ERR_PTR(-ECHILD);
1853 	if (unlikely(nd->flags & LOOKUP_BENEATH))
1854 		return ERR_PTR(-ECHILD);
1855 	return NULL;
1856 }
1857 
1858 static struct dentry *follow_dotdot(struct nameidata *nd,
1859 				 struct inode **inodep,
1860 				 unsigned *seqp)
1861 {
1862 	struct dentry *parent;
1863 
1864 	if (path_equal(&nd->path, &nd->root))
1865 		goto in_root;
1866 	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1867 		struct path path;
1868 
1869 		if (!choose_mountpoint(real_mount(nd->path.mnt),
1870 				       &nd->root, &path))
1871 			goto in_root;
1872 		path_put(&nd->path);
1873 		nd->path = path;
1874 		nd->inode = path.dentry->d_inode;
1875 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1876 			return ERR_PTR(-EXDEV);
1877 	}
1878 	/* rare case of legitimate dget_parent()... */
1879 	parent = dget_parent(nd->path.dentry);
1880 	if (unlikely(!path_connected(nd->path.mnt, parent))) {
1881 		dput(parent);
1882 		return ERR_PTR(-ENOENT);
1883 	}
1884 	*seqp = 0;
1885 	*inodep = parent->d_inode;
1886 	return parent;
1887 
1888 in_root:
1889 	if (unlikely(nd->flags & LOOKUP_BENEATH))
1890 		return ERR_PTR(-EXDEV);
1891 	dget(nd->path.dentry);
1892 	return NULL;
1893 }
1894 
1895 static const char *handle_dots(struct nameidata *nd, int type)
1896 {
1897 	if (type == LAST_DOTDOT) {
1898 		const char *error = NULL;
1899 		struct dentry *parent;
1900 		struct inode *inode;
1901 		unsigned seq;
1902 
1903 		if (!nd->root.mnt) {
1904 			error = ERR_PTR(set_root(nd));
1905 			if (error)
1906 				return error;
1907 		}
1908 		if (nd->flags & LOOKUP_RCU)
1909 			parent = follow_dotdot_rcu(nd, &inode, &seq);
1910 		else
1911 			parent = follow_dotdot(nd, &inode, &seq);
1912 		if (IS_ERR(parent))
1913 			return ERR_CAST(parent);
1914 		if (unlikely(!parent))
1915 			error = step_into(nd, WALK_NOFOLLOW,
1916 					 nd->path.dentry, nd->inode, nd->seq);
1917 		else
1918 			error = step_into(nd, WALK_NOFOLLOW,
1919 					 parent, inode, seq);
1920 		if (unlikely(error))
1921 			return error;
1922 
1923 		if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
1924 			/*
1925 			 * If there was a racing rename or mount along our
1926 			 * path, then we can't be sure that ".." hasn't jumped
1927 			 * above nd->root (and so userspace should retry or use
1928 			 * some fallback).
1929 			 */
1930 			smp_rmb();
1931 			if (unlikely(__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq)))
1932 				return ERR_PTR(-EAGAIN);
1933 			if (unlikely(__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq)))
1934 				return ERR_PTR(-EAGAIN);
1935 		}
1936 	}
1937 	return NULL;
1938 }
1939 
1940 static const char *walk_component(struct nameidata *nd, int flags)
1941 {
1942 	struct dentry *dentry;
1943 	struct inode *inode;
1944 	unsigned seq;
1945 	/*
1946 	 * "." and ".." are special - ".." especially so because it has
1947 	 * to be able to know about the current root directory and
1948 	 * parent relationships.
1949 	 */
1950 	if (unlikely(nd->last_type != LAST_NORM)) {
1951 		if (!(flags & WALK_MORE) && nd->depth)
1952 			put_link(nd);
1953 		return handle_dots(nd, nd->last_type);
1954 	}
1955 	dentry = lookup_fast(nd, &inode, &seq);
1956 	if (IS_ERR(dentry))
1957 		return ERR_CAST(dentry);
1958 	if (unlikely(!dentry)) {
1959 		dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
1960 		if (IS_ERR(dentry))
1961 			return ERR_CAST(dentry);
1962 	}
1963 	if (!(flags & WALK_MORE) && nd->depth)
1964 		put_link(nd);
1965 	return step_into(nd, flags, dentry, inode, seq);
1966 }
1967 
1968 /*
1969  * We can do the critical dentry name comparison and hashing
1970  * operations one word at a time, but we are limited to:
1971  *
1972  * - Architectures with fast unaligned word accesses. We could
1973  *   do a "get_unaligned()" if this helps and is sufficiently
1974  *   fast.
1975  *
1976  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1977  *   do not trap on the (extremely unlikely) case of a page
1978  *   crossing operation.
1979  *
1980  * - Furthermore, we need an efficient 64-bit compile for the
1981  *   64-bit case in order to generate the "number of bytes in
1982  *   the final mask". Again, that could be replaced with a
1983  *   efficient population count instruction or similar.
1984  */
1985 #ifdef CONFIG_DCACHE_WORD_ACCESS
1986 
1987 #include <asm/word-at-a-time.h>
1988 
1989 #ifdef HASH_MIX
1990 
1991 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1992 
1993 #elif defined(CONFIG_64BIT)
1994 /*
1995  * Register pressure in the mixing function is an issue, particularly
1996  * on 32-bit x86, but almost any function requires one state value and
1997  * one temporary.  Instead, use a function designed for two state values
1998  * and no temporaries.
1999  *
2000  * This function cannot create a collision in only two iterations, so
2001  * we have two iterations to achieve avalanche.  In those two iterations,
2002  * we have six layers of mixing, which is enough to spread one bit's
2003  * influence out to 2^6 = 64 state bits.
2004  *
2005  * Rotate constants are scored by considering either 64 one-bit input
2006  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
2007  * probability of that delta causing a change to each of the 128 output
2008  * bits, using a sample of random initial states.
2009  *
2010  * The Shannon entropy of the computed probabilities is then summed
2011  * to produce a score.  Ideally, any input change has a 50% chance of
2012  * toggling any given output bit.
2013  *
2014  * Mixing scores (in bits) for (12,45):
2015  * Input delta: 1-bit      2-bit
2016  * 1 round:     713.3    42542.6
2017  * 2 rounds:   2753.7   140389.8
2018  * 3 rounds:   5954.1   233458.2
2019  * 4 rounds:   7862.6   256672.2
2020  * Perfect:    8192     258048
2021  *            (64*128) (64*63/2 * 128)
2022  */
2023 #define HASH_MIX(x, y, a)	\
2024 	(	x ^= (a),	\
2025 	y ^= x,	x = rol64(x,12),\
2026 	x += y,	y = rol64(y,45),\
2027 	y *= 9			)
2028 
2029 /*
2030  * Fold two longs into one 32-bit hash value.  This must be fast, but
2031  * latency isn't quite as critical, as there is a fair bit of additional
2032  * work done before the hash value is used.
2033  */
2034 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2035 {
2036 	y ^= x * GOLDEN_RATIO_64;
2037 	y *= GOLDEN_RATIO_64;
2038 	return y >> 32;
2039 }
2040 
2041 #else	/* 32-bit case */
2042 
2043 /*
2044  * Mixing scores (in bits) for (7,20):
2045  * Input delta: 1-bit      2-bit
2046  * 1 round:     330.3     9201.6
2047  * 2 rounds:   1246.4    25475.4
2048  * 3 rounds:   1907.1    31295.1
2049  * 4 rounds:   2042.3    31718.6
2050  * Perfect:    2048      31744
2051  *            (32*64)   (32*31/2 * 64)
2052  */
2053 #define HASH_MIX(x, y, a)	\
2054 	(	x ^= (a),	\
2055 	y ^= x,	x = rol32(x, 7),\
2056 	x += y,	y = rol32(y,20),\
2057 	y *= 9			)
2058 
2059 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2060 {
2061 	/* Use arch-optimized multiply if one exists */
2062 	return __hash_32(y ^ __hash_32(x));
2063 }
2064 
2065 #endif
2066 
2067 /*
2068  * Return the hash of a string of known length.  This is carfully
2069  * designed to match hash_name(), which is the more critical function.
2070  * In particular, we must end by hashing a final word containing 0..7
2071  * payload bytes, to match the way that hash_name() iterates until it
2072  * finds the delimiter after the name.
2073  */
2074 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2075 {
2076 	unsigned long a, x = 0, y = (unsigned long)salt;
2077 
2078 	for (;;) {
2079 		if (!len)
2080 			goto done;
2081 		a = load_unaligned_zeropad(name);
2082 		if (len < sizeof(unsigned long))
2083 			break;
2084 		HASH_MIX(x, y, a);
2085 		name += sizeof(unsigned long);
2086 		len -= sizeof(unsigned long);
2087 	}
2088 	x ^= a & bytemask_from_count(len);
2089 done:
2090 	return fold_hash(x, y);
2091 }
2092 EXPORT_SYMBOL(full_name_hash);
2093 
2094 /* Return the "hash_len" (hash and length) of a null-terminated string */
2095 u64 hashlen_string(const void *salt, const char *name)
2096 {
2097 	unsigned long a = 0, x = 0, y = (unsigned long)salt;
2098 	unsigned long adata, mask, len;
2099 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2100 
2101 	len = 0;
2102 	goto inside;
2103 
2104 	do {
2105 		HASH_MIX(x, y, a);
2106 		len += sizeof(unsigned long);
2107 inside:
2108 		a = load_unaligned_zeropad(name+len);
2109 	} while (!has_zero(a, &adata, &constants));
2110 
2111 	adata = prep_zero_mask(a, adata, &constants);
2112 	mask = create_zero_mask(adata);
2113 	x ^= a & zero_bytemask(mask);
2114 
2115 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2116 }
2117 EXPORT_SYMBOL(hashlen_string);
2118 
2119 /*
2120  * Calculate the length and hash of the path component, and
2121  * return the "hash_len" as the result.
2122  */
2123 static inline u64 hash_name(const void *salt, const char *name)
2124 {
2125 	unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
2126 	unsigned long adata, bdata, mask, len;
2127 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2128 
2129 	len = 0;
2130 	goto inside;
2131 
2132 	do {
2133 		HASH_MIX(x, y, a);
2134 		len += sizeof(unsigned long);
2135 inside:
2136 		a = load_unaligned_zeropad(name+len);
2137 		b = a ^ REPEAT_BYTE('/');
2138 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2139 
2140 	adata = prep_zero_mask(a, adata, &constants);
2141 	bdata = prep_zero_mask(b, bdata, &constants);
2142 	mask = create_zero_mask(adata | bdata);
2143 	x ^= a & zero_bytemask(mask);
2144 
2145 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2146 }
2147 
2148 #else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2149 
2150 /* Return the hash of a string of known length */
2151 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2152 {
2153 	unsigned long hash = init_name_hash(salt);
2154 	while (len--)
2155 		hash = partial_name_hash((unsigned char)*name++, hash);
2156 	return end_name_hash(hash);
2157 }
2158 EXPORT_SYMBOL(full_name_hash);
2159 
2160 /* Return the "hash_len" (hash and length) of a null-terminated string */
2161 u64 hashlen_string(const void *salt, const char *name)
2162 {
2163 	unsigned long hash = init_name_hash(salt);
2164 	unsigned long len = 0, c;
2165 
2166 	c = (unsigned char)*name;
2167 	while (c) {
2168 		len++;
2169 		hash = partial_name_hash(c, hash);
2170 		c = (unsigned char)name[len];
2171 	}
2172 	return hashlen_create(end_name_hash(hash), len);
2173 }
2174 EXPORT_SYMBOL(hashlen_string);
2175 
2176 /*
2177  * We know there's a real path component here of at least
2178  * one character.
2179  */
2180 static inline u64 hash_name(const void *salt, const char *name)
2181 {
2182 	unsigned long hash = init_name_hash(salt);
2183 	unsigned long len = 0, c;
2184 
2185 	c = (unsigned char)*name;
2186 	do {
2187 		len++;
2188 		hash = partial_name_hash(c, hash);
2189 		c = (unsigned char)name[len];
2190 	} while (c && c != '/');
2191 	return hashlen_create(end_name_hash(hash), len);
2192 }
2193 
2194 #endif
2195 
2196 /*
2197  * Name resolution.
2198  * This is the basic name resolution function, turning a pathname into
2199  * the final dentry. We expect 'base' to be positive and a directory.
2200  *
2201  * Returns 0 and nd will have valid dentry and mnt on success.
2202  * Returns error and drops reference to input namei data on failure.
2203  */
2204 static int link_path_walk(const char *name, struct nameidata *nd)
2205 {
2206 	int depth = 0; // depth <= nd->depth
2207 	int err;
2208 
2209 	nd->last_type = LAST_ROOT;
2210 	nd->flags |= LOOKUP_PARENT;
2211 	if (IS_ERR(name))
2212 		return PTR_ERR(name);
2213 	while (*name=='/')
2214 		name++;
2215 	if (!*name) {
2216 		nd->dir_mode = 0; // short-circuit the 'hardening' idiocy
2217 		return 0;
2218 	}
2219 
2220 	/* At this point we know we have a real path component. */
2221 	for(;;) {
2222 		struct user_namespace *mnt_userns;
2223 		const char *link;
2224 		u64 hash_len;
2225 		int type;
2226 
2227 		mnt_userns = mnt_user_ns(nd->path.mnt);
2228 		err = may_lookup(mnt_userns, nd);
2229 		if (err)
2230 			return err;
2231 
2232 		hash_len = hash_name(nd->path.dentry, name);
2233 
2234 		type = LAST_NORM;
2235 		if (name[0] == '.') switch (hashlen_len(hash_len)) {
2236 			case 2:
2237 				if (name[1] == '.') {
2238 					type = LAST_DOTDOT;
2239 					nd->state |= ND_JUMPED;
2240 				}
2241 				break;
2242 			case 1:
2243 				type = LAST_DOT;
2244 		}
2245 		if (likely(type == LAST_NORM)) {
2246 			struct dentry *parent = nd->path.dentry;
2247 			nd->state &= ~ND_JUMPED;
2248 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2249 				struct qstr this = { { .hash_len = hash_len }, .name = name };
2250 				err = parent->d_op->d_hash(parent, &this);
2251 				if (err < 0)
2252 					return err;
2253 				hash_len = this.hash_len;
2254 				name = this.name;
2255 			}
2256 		}
2257 
2258 		nd->last.hash_len = hash_len;
2259 		nd->last.name = name;
2260 		nd->last_type = type;
2261 
2262 		name += hashlen_len(hash_len);
2263 		if (!*name)
2264 			goto OK;
2265 		/*
2266 		 * If it wasn't NUL, we know it was '/'. Skip that
2267 		 * slash, and continue until no more slashes.
2268 		 */
2269 		do {
2270 			name++;
2271 		} while (unlikely(*name == '/'));
2272 		if (unlikely(!*name)) {
2273 OK:
2274 			/* pathname or trailing symlink, done */
2275 			if (!depth) {
2276 				nd->dir_uid = i_uid_into_mnt(mnt_userns, nd->inode);
2277 				nd->dir_mode = nd->inode->i_mode;
2278 				nd->flags &= ~LOOKUP_PARENT;
2279 				return 0;
2280 			}
2281 			/* last component of nested symlink */
2282 			name = nd->stack[--depth].name;
2283 			link = walk_component(nd, 0);
2284 		} else {
2285 			/* not the last component */
2286 			link = walk_component(nd, WALK_MORE);
2287 		}
2288 		if (unlikely(link)) {
2289 			if (IS_ERR(link))
2290 				return PTR_ERR(link);
2291 			/* a symlink to follow */
2292 			nd->stack[depth++].name = name;
2293 			name = link;
2294 			continue;
2295 		}
2296 		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2297 			if (nd->flags & LOOKUP_RCU) {
2298 				if (!try_to_unlazy(nd))
2299 					return -ECHILD;
2300 			}
2301 			return -ENOTDIR;
2302 		}
2303 	}
2304 }
2305 
2306 /* must be paired with terminate_walk() */
2307 static const char *path_init(struct nameidata *nd, unsigned flags)
2308 {
2309 	int error;
2310 	const char *s = nd->name->name;
2311 
2312 	/* LOOKUP_CACHED requires RCU, ask caller to retry */
2313 	if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED)
2314 		return ERR_PTR(-EAGAIN);
2315 
2316 	if (!*s)
2317 		flags &= ~LOOKUP_RCU;
2318 	if (flags & LOOKUP_RCU)
2319 		rcu_read_lock();
2320 
2321 	nd->flags = flags;
2322 	nd->state |= ND_JUMPED;
2323 
2324 	nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2325 	nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2326 	smp_rmb();
2327 
2328 	if (nd->state & ND_ROOT_PRESET) {
2329 		struct dentry *root = nd->root.dentry;
2330 		struct inode *inode = root->d_inode;
2331 		if (*s && unlikely(!d_can_lookup(root)))
2332 			return ERR_PTR(-ENOTDIR);
2333 		nd->path = nd->root;
2334 		nd->inode = inode;
2335 		if (flags & LOOKUP_RCU) {
2336 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2337 			nd->root_seq = nd->seq;
2338 		} else {
2339 			path_get(&nd->path);
2340 		}
2341 		return s;
2342 	}
2343 
2344 	nd->root.mnt = NULL;
2345 
2346 	/* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2347 	if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2348 		error = nd_jump_root(nd);
2349 		if (unlikely(error))
2350 			return ERR_PTR(error);
2351 		return s;
2352 	}
2353 
2354 	/* Relative pathname -- get the starting-point it is relative to. */
2355 	if (nd->dfd == AT_FDCWD) {
2356 		if (flags & LOOKUP_RCU) {
2357 			struct fs_struct *fs = current->fs;
2358 			unsigned seq;
2359 
2360 			do {
2361 				seq = read_seqcount_begin(&fs->seq);
2362 				nd->path = fs->pwd;
2363 				nd->inode = nd->path.dentry->d_inode;
2364 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2365 			} while (read_seqcount_retry(&fs->seq, seq));
2366 		} else {
2367 			get_fs_pwd(current->fs, &nd->path);
2368 			nd->inode = nd->path.dentry->d_inode;
2369 		}
2370 	} else {
2371 		/* Caller must check execute permissions on the starting path component */
2372 		struct fd f = fdget_raw(nd->dfd);
2373 		struct dentry *dentry;
2374 
2375 		if (!f.file)
2376 			return ERR_PTR(-EBADF);
2377 
2378 		dentry = f.file->f_path.dentry;
2379 
2380 		if (*s && unlikely(!d_can_lookup(dentry))) {
2381 			fdput(f);
2382 			return ERR_PTR(-ENOTDIR);
2383 		}
2384 
2385 		nd->path = f.file->f_path;
2386 		if (flags & LOOKUP_RCU) {
2387 			nd->inode = nd->path.dentry->d_inode;
2388 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2389 		} else {
2390 			path_get(&nd->path);
2391 			nd->inode = nd->path.dentry->d_inode;
2392 		}
2393 		fdput(f);
2394 	}
2395 
2396 	/* For scoped-lookups we need to set the root to the dirfd as well. */
2397 	if (flags & LOOKUP_IS_SCOPED) {
2398 		nd->root = nd->path;
2399 		if (flags & LOOKUP_RCU) {
2400 			nd->root_seq = nd->seq;
2401 		} else {
2402 			path_get(&nd->root);
2403 			nd->state |= ND_ROOT_GRABBED;
2404 		}
2405 	}
2406 	return s;
2407 }
2408 
2409 static inline const char *lookup_last(struct nameidata *nd)
2410 {
2411 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2412 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2413 
2414 	return walk_component(nd, WALK_TRAILING);
2415 }
2416 
2417 static int handle_lookup_down(struct nameidata *nd)
2418 {
2419 	if (!(nd->flags & LOOKUP_RCU))
2420 		dget(nd->path.dentry);
2421 	return PTR_ERR(step_into(nd, WALK_NOFOLLOW,
2422 			nd->path.dentry, nd->inode, nd->seq));
2423 }
2424 
2425 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2426 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2427 {
2428 	const char *s = path_init(nd, flags);
2429 	int err;
2430 
2431 	if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2432 		err = handle_lookup_down(nd);
2433 		if (unlikely(err < 0))
2434 			s = ERR_PTR(err);
2435 	}
2436 
2437 	while (!(err = link_path_walk(s, nd)) &&
2438 	       (s = lookup_last(nd)) != NULL)
2439 		;
2440 	if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2441 		err = handle_lookup_down(nd);
2442 		nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please...
2443 	}
2444 	if (!err)
2445 		err = complete_walk(nd);
2446 
2447 	if (!err && nd->flags & LOOKUP_DIRECTORY)
2448 		if (!d_can_lookup(nd->path.dentry))
2449 			err = -ENOTDIR;
2450 	if (!err) {
2451 		*path = nd->path;
2452 		nd->path.mnt = NULL;
2453 		nd->path.dentry = NULL;
2454 	}
2455 	terminate_walk(nd);
2456 	return err;
2457 }
2458 
2459 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2460 		    struct path *path, struct path *root)
2461 {
2462 	int retval;
2463 	struct nameidata nd;
2464 	if (IS_ERR(name))
2465 		return PTR_ERR(name);
2466 	set_nameidata(&nd, dfd, name, root);
2467 	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2468 	if (unlikely(retval == -ECHILD))
2469 		retval = path_lookupat(&nd, flags, path);
2470 	if (unlikely(retval == -ESTALE))
2471 		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2472 
2473 	if (likely(!retval))
2474 		audit_inode(name, path->dentry,
2475 			    flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2476 	restore_nameidata();
2477 	putname(name);
2478 	return retval;
2479 }
2480 
2481 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2482 static int path_parentat(struct nameidata *nd, unsigned flags,
2483 				struct path *parent)
2484 {
2485 	const char *s = path_init(nd, flags);
2486 	int err = link_path_walk(s, nd);
2487 	if (!err)
2488 		err = complete_walk(nd);
2489 	if (!err) {
2490 		*parent = nd->path;
2491 		nd->path.mnt = NULL;
2492 		nd->path.dentry = NULL;
2493 	}
2494 	terminate_walk(nd);
2495 	return err;
2496 }
2497 
2498 static struct filename *filename_parentat(int dfd, struct filename *name,
2499 				unsigned int flags, struct path *parent,
2500 				struct qstr *last, int *type)
2501 {
2502 	int retval;
2503 	struct nameidata nd;
2504 
2505 	if (IS_ERR(name))
2506 		return name;
2507 	set_nameidata(&nd, dfd, name, NULL);
2508 	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2509 	if (unlikely(retval == -ECHILD))
2510 		retval = path_parentat(&nd, flags, parent);
2511 	if (unlikely(retval == -ESTALE))
2512 		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2513 	if (likely(!retval)) {
2514 		*last = nd.last;
2515 		*type = nd.last_type;
2516 		audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2517 	} else {
2518 		putname(name);
2519 		name = ERR_PTR(retval);
2520 	}
2521 	restore_nameidata();
2522 	return name;
2523 }
2524 
2525 /* does lookup, returns the object with parent locked */
2526 struct dentry *kern_path_locked(const char *name, struct path *path)
2527 {
2528 	struct filename *filename;
2529 	struct dentry *d;
2530 	struct qstr last;
2531 	int type;
2532 
2533 	filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2534 				    &last, &type);
2535 	if (IS_ERR(filename))
2536 		return ERR_CAST(filename);
2537 	if (unlikely(type != LAST_NORM)) {
2538 		path_put(path);
2539 		putname(filename);
2540 		return ERR_PTR(-EINVAL);
2541 	}
2542 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2543 	d = __lookup_hash(&last, path->dentry, 0);
2544 	if (IS_ERR(d)) {
2545 		inode_unlock(path->dentry->d_inode);
2546 		path_put(path);
2547 	}
2548 	putname(filename);
2549 	return d;
2550 }
2551 
2552 int kern_path(const char *name, unsigned int flags, struct path *path)
2553 {
2554 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2555 			       flags, path, NULL);
2556 }
2557 EXPORT_SYMBOL(kern_path);
2558 
2559 /**
2560  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2561  * @dentry:  pointer to dentry of the base directory
2562  * @mnt: pointer to vfs mount of the base directory
2563  * @name: pointer to file name
2564  * @flags: lookup flags
2565  * @path: pointer to struct path to fill
2566  */
2567 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2568 		    const char *name, unsigned int flags,
2569 		    struct path *path)
2570 {
2571 	struct path root = {.mnt = mnt, .dentry = dentry};
2572 	/* the first argument of filename_lookup() is ignored with root */
2573 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2574 			       flags , path, &root);
2575 }
2576 EXPORT_SYMBOL(vfs_path_lookup);
2577 
2578 static int lookup_one_len_common(const char *name, struct dentry *base,
2579 				 int len, struct qstr *this)
2580 {
2581 	this->name = name;
2582 	this->len = len;
2583 	this->hash = full_name_hash(base, name, len);
2584 	if (!len)
2585 		return -EACCES;
2586 
2587 	if (unlikely(name[0] == '.')) {
2588 		if (len < 2 || (len == 2 && name[1] == '.'))
2589 			return -EACCES;
2590 	}
2591 
2592 	while (len--) {
2593 		unsigned int c = *(const unsigned char *)name++;
2594 		if (c == '/' || c == '\0')
2595 			return -EACCES;
2596 	}
2597 	/*
2598 	 * See if the low-level filesystem might want
2599 	 * to use its own hash..
2600 	 */
2601 	if (base->d_flags & DCACHE_OP_HASH) {
2602 		int err = base->d_op->d_hash(base, this);
2603 		if (err < 0)
2604 			return err;
2605 	}
2606 
2607 	return inode_permission(&init_user_ns, base->d_inode, MAY_EXEC);
2608 }
2609 
2610 /**
2611  * try_lookup_one_len - filesystem helper to lookup single pathname component
2612  * @name:	pathname component to lookup
2613  * @base:	base directory to lookup from
2614  * @len:	maximum length @len should be interpreted to
2615  *
2616  * Look up a dentry by name in the dcache, returning NULL if it does not
2617  * currently exist.  The function does not try to create a dentry.
2618  *
2619  * Note that this routine is purely a helper for filesystem usage and should
2620  * not be called by generic code.
2621  *
2622  * The caller must hold base->i_mutex.
2623  */
2624 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2625 {
2626 	struct qstr this;
2627 	int err;
2628 
2629 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2630 
2631 	err = lookup_one_len_common(name, base, len, &this);
2632 	if (err)
2633 		return ERR_PTR(err);
2634 
2635 	return lookup_dcache(&this, base, 0);
2636 }
2637 EXPORT_SYMBOL(try_lookup_one_len);
2638 
2639 /**
2640  * lookup_one_len - filesystem helper to lookup single pathname component
2641  * @name:	pathname component to lookup
2642  * @base:	base directory to lookup from
2643  * @len:	maximum length @len should be interpreted to
2644  *
2645  * Note that this routine is purely a helper for filesystem usage and should
2646  * not be called by generic code.
2647  *
2648  * The caller must hold base->i_mutex.
2649  */
2650 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2651 {
2652 	struct dentry *dentry;
2653 	struct qstr this;
2654 	int err;
2655 
2656 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2657 
2658 	err = lookup_one_len_common(name, base, len, &this);
2659 	if (err)
2660 		return ERR_PTR(err);
2661 
2662 	dentry = lookup_dcache(&this, base, 0);
2663 	return dentry ? dentry : __lookup_slow(&this, base, 0);
2664 }
2665 EXPORT_SYMBOL(lookup_one_len);
2666 
2667 /**
2668  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2669  * @name:	pathname component to lookup
2670  * @base:	base directory to lookup from
2671  * @len:	maximum length @len should be interpreted to
2672  *
2673  * Note that this routine is purely a helper for filesystem usage and should
2674  * not be called by generic code.
2675  *
2676  * Unlike lookup_one_len, it should be called without the parent
2677  * i_mutex held, and will take the i_mutex itself if necessary.
2678  */
2679 struct dentry *lookup_one_len_unlocked(const char *name,
2680 				       struct dentry *base, int len)
2681 {
2682 	struct qstr this;
2683 	int err;
2684 	struct dentry *ret;
2685 
2686 	err = lookup_one_len_common(name, base, len, &this);
2687 	if (err)
2688 		return ERR_PTR(err);
2689 
2690 	ret = lookup_dcache(&this, base, 0);
2691 	if (!ret)
2692 		ret = lookup_slow(&this, base, 0);
2693 	return ret;
2694 }
2695 EXPORT_SYMBOL(lookup_one_len_unlocked);
2696 
2697 /*
2698  * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2699  * on negatives.  Returns known positive or ERR_PTR(); that's what
2700  * most of the users want.  Note that pinned negative with unlocked parent
2701  * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2702  * need to be very careful; pinned positives have ->d_inode stable, so
2703  * this one avoids such problems.
2704  */
2705 struct dentry *lookup_positive_unlocked(const char *name,
2706 				       struct dentry *base, int len)
2707 {
2708 	struct dentry *ret = lookup_one_len_unlocked(name, base, len);
2709 	if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
2710 		dput(ret);
2711 		ret = ERR_PTR(-ENOENT);
2712 	}
2713 	return ret;
2714 }
2715 EXPORT_SYMBOL(lookup_positive_unlocked);
2716 
2717 #ifdef CONFIG_UNIX98_PTYS
2718 int path_pts(struct path *path)
2719 {
2720 	/* Find something mounted on "pts" in the same directory as
2721 	 * the input path.
2722 	 */
2723 	struct dentry *parent = dget_parent(path->dentry);
2724 	struct dentry *child;
2725 	struct qstr this = QSTR_INIT("pts", 3);
2726 
2727 	if (unlikely(!path_connected(path->mnt, parent))) {
2728 		dput(parent);
2729 		return -ENOENT;
2730 	}
2731 	dput(path->dentry);
2732 	path->dentry = parent;
2733 	child = d_hash_and_lookup(parent, &this);
2734 	if (!child)
2735 		return -ENOENT;
2736 
2737 	path->dentry = child;
2738 	dput(parent);
2739 	follow_down(path);
2740 	return 0;
2741 }
2742 #endif
2743 
2744 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2745 		 struct path *path, int *empty)
2746 {
2747 	return filename_lookup(dfd, getname_flags(name, flags, empty),
2748 			       flags, path, NULL);
2749 }
2750 EXPORT_SYMBOL(user_path_at_empty);
2751 
2752 int __check_sticky(struct user_namespace *mnt_userns, struct inode *dir,
2753 		   struct inode *inode)
2754 {
2755 	kuid_t fsuid = current_fsuid();
2756 
2757 	if (uid_eq(i_uid_into_mnt(mnt_userns, inode), fsuid))
2758 		return 0;
2759 	if (uid_eq(i_uid_into_mnt(mnt_userns, dir), fsuid))
2760 		return 0;
2761 	return !capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FOWNER);
2762 }
2763 EXPORT_SYMBOL(__check_sticky);
2764 
2765 /*
2766  *	Check whether we can remove a link victim from directory dir, check
2767  *  whether the type of victim is right.
2768  *  1. We can't do it if dir is read-only (done in permission())
2769  *  2. We should have write and exec permissions on dir
2770  *  3. We can't remove anything from append-only dir
2771  *  4. We can't do anything with immutable dir (done in permission())
2772  *  5. If the sticky bit on dir is set we should either
2773  *	a. be owner of dir, or
2774  *	b. be owner of victim, or
2775  *	c. have CAP_FOWNER capability
2776  *  6. If the victim is append-only or immutable we can't do antyhing with
2777  *     links pointing to it.
2778  *  7. If the victim has an unknown uid or gid we can't change the inode.
2779  *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2780  *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2781  * 10. We can't remove a root or mountpoint.
2782  * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2783  *     nfs_async_unlink().
2784  */
2785 static int may_delete(struct user_namespace *mnt_userns, struct inode *dir,
2786 		      struct dentry *victim, bool isdir)
2787 {
2788 	struct inode *inode = d_backing_inode(victim);
2789 	int error;
2790 
2791 	if (d_is_negative(victim))
2792 		return -ENOENT;
2793 	BUG_ON(!inode);
2794 
2795 	BUG_ON(victim->d_parent->d_inode != dir);
2796 
2797 	/* Inode writeback is not safe when the uid or gid are invalid. */
2798 	if (!uid_valid(i_uid_into_mnt(mnt_userns, inode)) ||
2799 	    !gid_valid(i_gid_into_mnt(mnt_userns, inode)))
2800 		return -EOVERFLOW;
2801 
2802 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2803 
2804 	error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
2805 	if (error)
2806 		return error;
2807 	if (IS_APPEND(dir))
2808 		return -EPERM;
2809 
2810 	if (check_sticky(mnt_userns, dir, inode) || IS_APPEND(inode) ||
2811 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) ||
2812 	    HAS_UNMAPPED_ID(mnt_userns, inode))
2813 		return -EPERM;
2814 	if (isdir) {
2815 		if (!d_is_dir(victim))
2816 			return -ENOTDIR;
2817 		if (IS_ROOT(victim))
2818 			return -EBUSY;
2819 	} else if (d_is_dir(victim))
2820 		return -EISDIR;
2821 	if (IS_DEADDIR(dir))
2822 		return -ENOENT;
2823 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2824 		return -EBUSY;
2825 	return 0;
2826 }
2827 
2828 /*	Check whether we can create an object with dentry child in directory
2829  *  dir.
2830  *  1. We can't do it if child already exists (open has special treatment for
2831  *     this case, but since we are inlined it's OK)
2832  *  2. We can't do it if dir is read-only (done in permission())
2833  *  3. We can't do it if the fs can't represent the fsuid or fsgid.
2834  *  4. We should have write and exec permissions on dir
2835  *  5. We can't do it if dir is immutable (done in permission())
2836  */
2837 static inline int may_create(struct user_namespace *mnt_userns,
2838 			     struct inode *dir, struct dentry *child)
2839 {
2840 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2841 	if (child->d_inode)
2842 		return -EEXIST;
2843 	if (IS_DEADDIR(dir))
2844 		return -ENOENT;
2845 	if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns))
2846 		return -EOVERFLOW;
2847 
2848 	return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
2849 }
2850 
2851 /*
2852  * p1 and p2 should be directories on the same fs.
2853  */
2854 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2855 {
2856 	struct dentry *p;
2857 
2858 	if (p1 == p2) {
2859 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2860 		return NULL;
2861 	}
2862 
2863 	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2864 
2865 	p = d_ancestor(p2, p1);
2866 	if (p) {
2867 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2868 		inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2869 		return p;
2870 	}
2871 
2872 	p = d_ancestor(p1, p2);
2873 	if (p) {
2874 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2875 		inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2876 		return p;
2877 	}
2878 
2879 	inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2880 	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2881 	return NULL;
2882 }
2883 EXPORT_SYMBOL(lock_rename);
2884 
2885 void unlock_rename(struct dentry *p1, struct dentry *p2)
2886 {
2887 	inode_unlock(p1->d_inode);
2888 	if (p1 != p2) {
2889 		inode_unlock(p2->d_inode);
2890 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2891 	}
2892 }
2893 EXPORT_SYMBOL(unlock_rename);
2894 
2895 /**
2896  * vfs_create - create new file
2897  * @mnt_userns:	user namespace of the mount the inode was found from
2898  * @dir:	inode of @dentry
2899  * @dentry:	pointer to dentry of the base directory
2900  * @mode:	mode of the new file
2901  * @want_excl:	whether the file must not yet exist
2902  *
2903  * Create a new file.
2904  *
2905  * If the inode has been found through an idmapped mount the user namespace of
2906  * the vfsmount must be passed through @mnt_userns. This function will then take
2907  * care to map the inode according to @mnt_userns before checking permissions.
2908  * On non-idmapped mounts or if permission checking is to be performed on the
2909  * raw inode simply passs init_user_ns.
2910  */
2911 int vfs_create(struct user_namespace *mnt_userns, struct inode *dir,
2912 	       struct dentry *dentry, umode_t mode, bool want_excl)
2913 {
2914 	int error = may_create(mnt_userns, dir, dentry);
2915 	if (error)
2916 		return error;
2917 
2918 	if (!dir->i_op->create)
2919 		return -EACCES;	/* shouldn't it be ENOSYS? */
2920 	mode &= S_IALLUGO;
2921 	mode |= S_IFREG;
2922 	error = security_inode_create(dir, dentry, mode);
2923 	if (error)
2924 		return error;
2925 	error = dir->i_op->create(mnt_userns, dir, dentry, mode, want_excl);
2926 	if (!error)
2927 		fsnotify_create(dir, dentry);
2928 	return error;
2929 }
2930 EXPORT_SYMBOL(vfs_create);
2931 
2932 int vfs_mkobj(struct dentry *dentry, umode_t mode,
2933 		int (*f)(struct dentry *, umode_t, void *),
2934 		void *arg)
2935 {
2936 	struct inode *dir = dentry->d_parent->d_inode;
2937 	int error = may_create(&init_user_ns, dir, dentry);
2938 	if (error)
2939 		return error;
2940 
2941 	mode &= S_IALLUGO;
2942 	mode |= S_IFREG;
2943 	error = security_inode_create(dir, dentry, mode);
2944 	if (error)
2945 		return error;
2946 	error = f(dentry, mode, arg);
2947 	if (!error)
2948 		fsnotify_create(dir, dentry);
2949 	return error;
2950 }
2951 EXPORT_SYMBOL(vfs_mkobj);
2952 
2953 bool may_open_dev(const struct path *path)
2954 {
2955 	return !(path->mnt->mnt_flags & MNT_NODEV) &&
2956 		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2957 }
2958 
2959 static int may_open(struct user_namespace *mnt_userns, const struct path *path,
2960 		    int acc_mode, int flag)
2961 {
2962 	struct dentry *dentry = path->dentry;
2963 	struct inode *inode = dentry->d_inode;
2964 	int error;
2965 
2966 	if (!inode)
2967 		return -ENOENT;
2968 
2969 	switch (inode->i_mode & S_IFMT) {
2970 	case S_IFLNK:
2971 		return -ELOOP;
2972 	case S_IFDIR:
2973 		if (acc_mode & MAY_WRITE)
2974 			return -EISDIR;
2975 		if (acc_mode & MAY_EXEC)
2976 			return -EACCES;
2977 		break;
2978 	case S_IFBLK:
2979 	case S_IFCHR:
2980 		if (!may_open_dev(path))
2981 			return -EACCES;
2982 		fallthrough;
2983 	case S_IFIFO:
2984 	case S_IFSOCK:
2985 		if (acc_mode & MAY_EXEC)
2986 			return -EACCES;
2987 		flag &= ~O_TRUNC;
2988 		break;
2989 	case S_IFREG:
2990 		if ((acc_mode & MAY_EXEC) && path_noexec(path))
2991 			return -EACCES;
2992 		break;
2993 	}
2994 
2995 	error = inode_permission(mnt_userns, inode, MAY_OPEN | acc_mode);
2996 	if (error)
2997 		return error;
2998 
2999 	/*
3000 	 * An append-only file must be opened in append mode for writing.
3001 	 */
3002 	if (IS_APPEND(inode)) {
3003 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
3004 			return -EPERM;
3005 		if (flag & O_TRUNC)
3006 			return -EPERM;
3007 	}
3008 
3009 	/* O_NOATIME can only be set by the owner or superuser */
3010 	if (flag & O_NOATIME && !inode_owner_or_capable(mnt_userns, inode))
3011 		return -EPERM;
3012 
3013 	return 0;
3014 }
3015 
3016 static int handle_truncate(struct user_namespace *mnt_userns, struct file *filp)
3017 {
3018 	const struct path *path = &filp->f_path;
3019 	struct inode *inode = path->dentry->d_inode;
3020 	int error = get_write_access(inode);
3021 	if (error)
3022 		return error;
3023 	/*
3024 	 * Refuse to truncate files with mandatory locks held on them.
3025 	 */
3026 	error = locks_verify_locked(filp);
3027 	if (!error)
3028 		error = security_path_truncate(path);
3029 	if (!error) {
3030 		error = do_truncate(mnt_userns, path->dentry, 0,
3031 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3032 				    filp);
3033 	}
3034 	put_write_access(inode);
3035 	return error;
3036 }
3037 
3038 static inline int open_to_namei_flags(int flag)
3039 {
3040 	if ((flag & O_ACCMODE) == 3)
3041 		flag--;
3042 	return flag;
3043 }
3044 
3045 static int may_o_create(struct user_namespace *mnt_userns,
3046 			const struct path *dir, struct dentry *dentry,
3047 			umode_t mode)
3048 {
3049 	int error = security_path_mknod(dir, dentry, mode, 0);
3050 	if (error)
3051 		return error;
3052 
3053 	if (!fsuidgid_has_mapping(dir->dentry->d_sb, mnt_userns))
3054 		return -EOVERFLOW;
3055 
3056 	error = inode_permission(mnt_userns, dir->dentry->d_inode,
3057 				 MAY_WRITE | MAY_EXEC);
3058 	if (error)
3059 		return error;
3060 
3061 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
3062 }
3063 
3064 /*
3065  * Attempt to atomically look up, create and open a file from a negative
3066  * dentry.
3067  *
3068  * Returns 0 if successful.  The file will have been created and attached to
3069  * @file by the filesystem calling finish_open().
3070  *
3071  * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3072  * be set.  The caller will need to perform the open themselves.  @path will
3073  * have been updated to point to the new dentry.  This may be negative.
3074  *
3075  * Returns an error code otherwise.
3076  */
3077 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
3078 				  struct file *file,
3079 				  int open_flag, umode_t mode)
3080 {
3081 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3082 	struct inode *dir =  nd->path.dentry->d_inode;
3083 	int error;
3084 
3085 	if (nd->flags & LOOKUP_DIRECTORY)
3086 		open_flag |= O_DIRECTORY;
3087 
3088 	file->f_path.dentry = DENTRY_NOT_SET;
3089 	file->f_path.mnt = nd->path.mnt;
3090 	error = dir->i_op->atomic_open(dir, dentry, file,
3091 				       open_to_namei_flags(open_flag), mode);
3092 	d_lookup_done(dentry);
3093 	if (!error) {
3094 		if (file->f_mode & FMODE_OPENED) {
3095 			if (unlikely(dentry != file->f_path.dentry)) {
3096 				dput(dentry);
3097 				dentry = dget(file->f_path.dentry);
3098 			}
3099 		} else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3100 			error = -EIO;
3101 		} else {
3102 			if (file->f_path.dentry) {
3103 				dput(dentry);
3104 				dentry = file->f_path.dentry;
3105 			}
3106 			if (unlikely(d_is_negative(dentry)))
3107 				error = -ENOENT;
3108 		}
3109 	}
3110 	if (error) {
3111 		dput(dentry);
3112 		dentry = ERR_PTR(error);
3113 	}
3114 	return dentry;
3115 }
3116 
3117 /*
3118  * Look up and maybe create and open the last component.
3119  *
3120  * Must be called with parent locked (exclusive in O_CREAT case).
3121  *
3122  * Returns 0 on success, that is, if
3123  *  the file was successfully atomically created (if necessary) and opened, or
3124  *  the file was not completely opened at this time, though lookups and
3125  *  creations were performed.
3126  * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3127  * In the latter case dentry returned in @path might be negative if O_CREAT
3128  * hadn't been specified.
3129  *
3130  * An error code is returned on failure.
3131  */
3132 static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3133 				  const struct open_flags *op,
3134 				  bool got_write)
3135 {
3136 	struct user_namespace *mnt_userns;
3137 	struct dentry *dir = nd->path.dentry;
3138 	struct inode *dir_inode = dir->d_inode;
3139 	int open_flag = op->open_flag;
3140 	struct dentry *dentry;
3141 	int error, create_error = 0;
3142 	umode_t mode = op->mode;
3143 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3144 
3145 	if (unlikely(IS_DEADDIR(dir_inode)))
3146 		return ERR_PTR(-ENOENT);
3147 
3148 	file->f_mode &= ~FMODE_CREATED;
3149 	dentry = d_lookup(dir, &nd->last);
3150 	for (;;) {
3151 		if (!dentry) {
3152 			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3153 			if (IS_ERR(dentry))
3154 				return dentry;
3155 		}
3156 		if (d_in_lookup(dentry))
3157 			break;
3158 
3159 		error = d_revalidate(dentry, nd->flags);
3160 		if (likely(error > 0))
3161 			break;
3162 		if (error)
3163 			goto out_dput;
3164 		d_invalidate(dentry);
3165 		dput(dentry);
3166 		dentry = NULL;
3167 	}
3168 	if (dentry->d_inode) {
3169 		/* Cached positive dentry: will open in f_op->open */
3170 		return dentry;
3171 	}
3172 
3173 	/*
3174 	 * Checking write permission is tricky, bacuse we don't know if we are
3175 	 * going to actually need it: O_CREAT opens should work as long as the
3176 	 * file exists.  But checking existence breaks atomicity.  The trick is
3177 	 * to check access and if not granted clear O_CREAT from the flags.
3178 	 *
3179 	 * Another problem is returing the "right" error value (e.g. for an
3180 	 * O_EXCL open we want to return EEXIST not EROFS).
3181 	 */
3182 	if (unlikely(!got_write))
3183 		open_flag &= ~O_TRUNC;
3184 	mnt_userns = mnt_user_ns(nd->path.mnt);
3185 	if (open_flag & O_CREAT) {
3186 		if (open_flag & O_EXCL)
3187 			open_flag &= ~O_TRUNC;
3188 		if (!IS_POSIXACL(dir->d_inode))
3189 			mode &= ~current_umask();
3190 		if (likely(got_write))
3191 			create_error = may_o_create(mnt_userns, &nd->path,
3192 						    dentry, mode);
3193 		else
3194 			create_error = -EROFS;
3195 	}
3196 	if (create_error)
3197 		open_flag &= ~O_CREAT;
3198 	if (dir_inode->i_op->atomic_open) {
3199 		dentry = atomic_open(nd, dentry, file, open_flag, mode);
3200 		if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3201 			dentry = ERR_PTR(create_error);
3202 		return dentry;
3203 	}
3204 
3205 	if (d_in_lookup(dentry)) {
3206 		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3207 							     nd->flags);
3208 		d_lookup_done(dentry);
3209 		if (unlikely(res)) {
3210 			if (IS_ERR(res)) {
3211 				error = PTR_ERR(res);
3212 				goto out_dput;
3213 			}
3214 			dput(dentry);
3215 			dentry = res;
3216 		}
3217 	}
3218 
3219 	/* Negative dentry, just create the file */
3220 	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3221 		file->f_mode |= FMODE_CREATED;
3222 		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3223 		if (!dir_inode->i_op->create) {
3224 			error = -EACCES;
3225 			goto out_dput;
3226 		}
3227 
3228 		error = dir_inode->i_op->create(mnt_userns, dir_inode, dentry,
3229 						mode, open_flag & O_EXCL);
3230 		if (error)
3231 			goto out_dput;
3232 	}
3233 	if (unlikely(create_error) && !dentry->d_inode) {
3234 		error = create_error;
3235 		goto out_dput;
3236 	}
3237 	return dentry;
3238 
3239 out_dput:
3240 	dput(dentry);
3241 	return ERR_PTR(error);
3242 }
3243 
3244 static const char *open_last_lookups(struct nameidata *nd,
3245 		   struct file *file, const struct open_flags *op)
3246 {
3247 	struct dentry *dir = nd->path.dentry;
3248 	int open_flag = op->open_flag;
3249 	bool got_write = false;
3250 	unsigned seq;
3251 	struct inode *inode;
3252 	struct dentry *dentry;
3253 	const char *res;
3254 
3255 	nd->flags |= op->intent;
3256 
3257 	if (nd->last_type != LAST_NORM) {
3258 		if (nd->depth)
3259 			put_link(nd);
3260 		return handle_dots(nd, nd->last_type);
3261 	}
3262 
3263 	if (!(open_flag & O_CREAT)) {
3264 		if (nd->last.name[nd->last.len])
3265 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3266 		/* we _can_ be in RCU mode here */
3267 		dentry = lookup_fast(nd, &inode, &seq);
3268 		if (IS_ERR(dentry))
3269 			return ERR_CAST(dentry);
3270 		if (likely(dentry))
3271 			goto finish_lookup;
3272 
3273 		BUG_ON(nd->flags & LOOKUP_RCU);
3274 	} else {
3275 		/* create side of things */
3276 		if (nd->flags & LOOKUP_RCU) {
3277 			if (!try_to_unlazy(nd))
3278 				return ERR_PTR(-ECHILD);
3279 		}
3280 		audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3281 		/* trailing slashes? */
3282 		if (unlikely(nd->last.name[nd->last.len]))
3283 			return ERR_PTR(-EISDIR);
3284 	}
3285 
3286 	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3287 		got_write = !mnt_want_write(nd->path.mnt);
3288 		/*
3289 		 * do _not_ fail yet - we might not need that or fail with
3290 		 * a different error; let lookup_open() decide; we'll be
3291 		 * dropping this one anyway.
3292 		 */
3293 	}
3294 	if (open_flag & O_CREAT)
3295 		inode_lock(dir->d_inode);
3296 	else
3297 		inode_lock_shared(dir->d_inode);
3298 	dentry = lookup_open(nd, file, op, got_write);
3299 	if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED))
3300 		fsnotify_create(dir->d_inode, dentry);
3301 	if (open_flag & O_CREAT)
3302 		inode_unlock(dir->d_inode);
3303 	else
3304 		inode_unlock_shared(dir->d_inode);
3305 
3306 	if (got_write)
3307 		mnt_drop_write(nd->path.mnt);
3308 
3309 	if (IS_ERR(dentry))
3310 		return ERR_CAST(dentry);
3311 
3312 	if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3313 		dput(nd->path.dentry);
3314 		nd->path.dentry = dentry;
3315 		return NULL;
3316 	}
3317 
3318 finish_lookup:
3319 	if (nd->depth)
3320 		put_link(nd);
3321 	res = step_into(nd, WALK_TRAILING, dentry, inode, seq);
3322 	if (unlikely(res))
3323 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3324 	return res;
3325 }
3326 
3327 /*
3328  * Handle the last step of open()
3329  */
3330 static int do_open(struct nameidata *nd,
3331 		   struct file *file, const struct open_flags *op)
3332 {
3333 	struct user_namespace *mnt_userns;
3334 	int open_flag = op->open_flag;
3335 	bool do_truncate;
3336 	int acc_mode;
3337 	int error;
3338 
3339 	if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3340 		error = complete_walk(nd);
3341 		if (error)
3342 			return error;
3343 	}
3344 	if (!(file->f_mode & FMODE_CREATED))
3345 		audit_inode(nd->name, nd->path.dentry, 0);
3346 	mnt_userns = mnt_user_ns(nd->path.mnt);
3347 	if (open_flag & O_CREAT) {
3348 		if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3349 			return -EEXIST;
3350 		if (d_is_dir(nd->path.dentry))
3351 			return -EISDIR;
3352 		error = may_create_in_sticky(mnt_userns, nd,
3353 					     d_backing_inode(nd->path.dentry));
3354 		if (unlikely(error))
3355 			return error;
3356 	}
3357 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3358 		return -ENOTDIR;
3359 
3360 	do_truncate = false;
3361 	acc_mode = op->acc_mode;
3362 	if (file->f_mode & FMODE_CREATED) {
3363 		/* Don't check for write permission, don't truncate */
3364 		open_flag &= ~O_TRUNC;
3365 		acc_mode = 0;
3366 	} else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3367 		error = mnt_want_write(nd->path.mnt);
3368 		if (error)
3369 			return error;
3370 		do_truncate = true;
3371 	}
3372 	error = may_open(mnt_userns, &nd->path, acc_mode, open_flag);
3373 	if (!error && !(file->f_mode & FMODE_OPENED))
3374 		error = vfs_open(&nd->path, file);
3375 	if (!error)
3376 		error = ima_file_check(file, op->acc_mode);
3377 	if (!error && do_truncate)
3378 		error = handle_truncate(mnt_userns, file);
3379 	if (unlikely(error > 0)) {
3380 		WARN_ON(1);
3381 		error = -EINVAL;
3382 	}
3383 	if (do_truncate)
3384 		mnt_drop_write(nd->path.mnt);
3385 	return error;
3386 }
3387 
3388 /**
3389  * vfs_tmpfile - create tmpfile
3390  * @mnt_userns:	user namespace of the mount the inode was found from
3391  * @dentry:	pointer to dentry of the base directory
3392  * @mode:	mode of the new tmpfile
3393  * @open_flag:	flags
3394  *
3395  * Create a temporary file.
3396  *
3397  * If the inode has been found through an idmapped mount the user namespace of
3398  * the vfsmount must be passed through @mnt_userns. This function will then take
3399  * care to map the inode according to @mnt_userns before checking permissions.
3400  * On non-idmapped mounts or if permission checking is to be performed on the
3401  * raw inode simply passs init_user_ns.
3402  */
3403 struct dentry *vfs_tmpfile(struct user_namespace *mnt_userns,
3404 			   struct dentry *dentry, umode_t mode, int open_flag)
3405 {
3406 	struct dentry *child = NULL;
3407 	struct inode *dir = dentry->d_inode;
3408 	struct inode *inode;
3409 	int error;
3410 
3411 	/* we want directory to be writable */
3412 	error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
3413 	if (error)
3414 		goto out_err;
3415 	error = -EOPNOTSUPP;
3416 	if (!dir->i_op->tmpfile)
3417 		goto out_err;
3418 	error = -ENOMEM;
3419 	child = d_alloc(dentry, &slash_name);
3420 	if (unlikely(!child))
3421 		goto out_err;
3422 	error = dir->i_op->tmpfile(mnt_userns, dir, child, mode);
3423 	if (error)
3424 		goto out_err;
3425 	error = -ENOENT;
3426 	inode = child->d_inode;
3427 	if (unlikely(!inode))
3428 		goto out_err;
3429 	if (!(open_flag & O_EXCL)) {
3430 		spin_lock(&inode->i_lock);
3431 		inode->i_state |= I_LINKABLE;
3432 		spin_unlock(&inode->i_lock);
3433 	}
3434 	ima_post_create_tmpfile(mnt_userns, inode);
3435 	return child;
3436 
3437 out_err:
3438 	dput(child);
3439 	return ERR_PTR(error);
3440 }
3441 EXPORT_SYMBOL(vfs_tmpfile);
3442 
3443 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3444 		const struct open_flags *op,
3445 		struct file *file)
3446 {
3447 	struct user_namespace *mnt_userns;
3448 	struct dentry *child;
3449 	struct path path;
3450 	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3451 	if (unlikely(error))
3452 		return error;
3453 	error = mnt_want_write(path.mnt);
3454 	if (unlikely(error))
3455 		goto out;
3456 	mnt_userns = mnt_user_ns(path.mnt);
3457 	child = vfs_tmpfile(mnt_userns, path.dentry, op->mode, op->open_flag);
3458 	error = PTR_ERR(child);
3459 	if (IS_ERR(child))
3460 		goto out2;
3461 	dput(path.dentry);
3462 	path.dentry = child;
3463 	audit_inode(nd->name, child, 0);
3464 	/* Don't check for other permissions, the inode was just created */
3465 	error = may_open(mnt_userns, &path, 0, op->open_flag);
3466 	if (!error)
3467 		error = vfs_open(&path, file);
3468 out2:
3469 	mnt_drop_write(path.mnt);
3470 out:
3471 	path_put(&path);
3472 	return error;
3473 }
3474 
3475 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3476 {
3477 	struct path path;
3478 	int error = path_lookupat(nd, flags, &path);
3479 	if (!error) {
3480 		audit_inode(nd->name, path.dentry, 0);
3481 		error = vfs_open(&path, file);
3482 		path_put(&path);
3483 	}
3484 	return error;
3485 }
3486 
3487 static struct file *path_openat(struct nameidata *nd,
3488 			const struct open_flags *op, unsigned flags)
3489 {
3490 	struct file *file;
3491 	int error;
3492 
3493 	file = alloc_empty_file(op->open_flag, current_cred());
3494 	if (IS_ERR(file))
3495 		return file;
3496 
3497 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3498 		error = do_tmpfile(nd, flags, op, file);
3499 	} else if (unlikely(file->f_flags & O_PATH)) {
3500 		error = do_o_path(nd, flags, file);
3501 	} else {
3502 		const char *s = path_init(nd, flags);
3503 		while (!(error = link_path_walk(s, nd)) &&
3504 		       (s = open_last_lookups(nd, file, op)) != NULL)
3505 			;
3506 		if (!error)
3507 			error = do_open(nd, file, op);
3508 		terminate_walk(nd);
3509 	}
3510 	if (likely(!error)) {
3511 		if (likely(file->f_mode & FMODE_OPENED))
3512 			return file;
3513 		WARN_ON(1);
3514 		error = -EINVAL;
3515 	}
3516 	fput(file);
3517 	if (error == -EOPENSTALE) {
3518 		if (flags & LOOKUP_RCU)
3519 			error = -ECHILD;
3520 		else
3521 			error = -ESTALE;
3522 	}
3523 	return ERR_PTR(error);
3524 }
3525 
3526 struct file *do_filp_open(int dfd, struct filename *pathname,
3527 		const struct open_flags *op)
3528 {
3529 	struct nameidata nd;
3530 	int flags = op->lookup_flags;
3531 	struct file *filp;
3532 
3533 	set_nameidata(&nd, dfd, pathname, NULL);
3534 	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3535 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3536 		filp = path_openat(&nd, op, flags);
3537 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3538 		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3539 	restore_nameidata();
3540 	return filp;
3541 }
3542 
3543 struct file *do_file_open_root(const struct path *root,
3544 		const char *name, const struct open_flags *op)
3545 {
3546 	struct nameidata nd;
3547 	struct file *file;
3548 	struct filename *filename;
3549 	int flags = op->lookup_flags;
3550 
3551 	if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN)
3552 		return ERR_PTR(-ELOOP);
3553 
3554 	filename = getname_kernel(name);
3555 	if (IS_ERR(filename))
3556 		return ERR_CAST(filename);
3557 
3558 	set_nameidata(&nd, -1, filename, root);
3559 	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3560 	if (unlikely(file == ERR_PTR(-ECHILD)))
3561 		file = path_openat(&nd, op, flags);
3562 	if (unlikely(file == ERR_PTR(-ESTALE)))
3563 		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3564 	restore_nameidata();
3565 	putname(filename);
3566 	return file;
3567 }
3568 
3569 static struct dentry *filename_create(int dfd, struct filename *name,
3570 				struct path *path, unsigned int lookup_flags)
3571 {
3572 	struct dentry *dentry = ERR_PTR(-EEXIST);
3573 	struct qstr last;
3574 	int type;
3575 	int err2;
3576 	int error;
3577 	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3578 
3579 	/*
3580 	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3581 	 * other flags passed in are ignored!
3582 	 */
3583 	lookup_flags &= LOOKUP_REVAL;
3584 
3585 	name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3586 	if (IS_ERR(name))
3587 		return ERR_CAST(name);
3588 
3589 	/*
3590 	 * Yucky last component or no last component at all?
3591 	 * (foo/., foo/.., /////)
3592 	 */
3593 	if (unlikely(type != LAST_NORM))
3594 		goto out;
3595 
3596 	/* don't fail immediately if it's r/o, at least try to report other errors */
3597 	err2 = mnt_want_write(path->mnt);
3598 	/*
3599 	 * Do the final lookup.
3600 	 */
3601 	lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3602 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3603 	dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3604 	if (IS_ERR(dentry))
3605 		goto unlock;
3606 
3607 	error = -EEXIST;
3608 	if (d_is_positive(dentry))
3609 		goto fail;
3610 
3611 	/*
3612 	 * Special case - lookup gave negative, but... we had foo/bar/
3613 	 * From the vfs_mknod() POV we just have a negative dentry -
3614 	 * all is fine. Let's be bastards - you had / on the end, you've
3615 	 * been asking for (non-existent) directory. -ENOENT for you.
3616 	 */
3617 	if (unlikely(!is_dir && last.name[last.len])) {
3618 		error = -ENOENT;
3619 		goto fail;
3620 	}
3621 	if (unlikely(err2)) {
3622 		error = err2;
3623 		goto fail;
3624 	}
3625 	putname(name);
3626 	return dentry;
3627 fail:
3628 	dput(dentry);
3629 	dentry = ERR_PTR(error);
3630 unlock:
3631 	inode_unlock(path->dentry->d_inode);
3632 	if (!err2)
3633 		mnt_drop_write(path->mnt);
3634 out:
3635 	path_put(path);
3636 	putname(name);
3637 	return dentry;
3638 }
3639 
3640 struct dentry *kern_path_create(int dfd, const char *pathname,
3641 				struct path *path, unsigned int lookup_flags)
3642 {
3643 	return filename_create(dfd, getname_kernel(pathname),
3644 				path, lookup_flags);
3645 }
3646 EXPORT_SYMBOL(kern_path_create);
3647 
3648 void done_path_create(struct path *path, struct dentry *dentry)
3649 {
3650 	dput(dentry);
3651 	inode_unlock(path->dentry->d_inode);
3652 	mnt_drop_write(path->mnt);
3653 	path_put(path);
3654 }
3655 EXPORT_SYMBOL(done_path_create);
3656 
3657 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3658 				struct path *path, unsigned int lookup_flags)
3659 {
3660 	return filename_create(dfd, getname(pathname), path, lookup_flags);
3661 }
3662 EXPORT_SYMBOL(user_path_create);
3663 
3664 /**
3665  * vfs_mknod - create device node or file
3666  * @mnt_userns:	user namespace of the mount the inode was found from
3667  * @dir:	inode of @dentry
3668  * @dentry:	pointer to dentry of the base directory
3669  * @mode:	mode of the new device node or file
3670  * @dev:	device number of device to create
3671  *
3672  * Create a device node or file.
3673  *
3674  * If the inode has been found through an idmapped mount the user namespace of
3675  * the vfsmount must be passed through @mnt_userns. This function will then take
3676  * care to map the inode according to @mnt_userns before checking permissions.
3677  * On non-idmapped mounts or if permission checking is to be performed on the
3678  * raw inode simply passs init_user_ns.
3679  */
3680 int vfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
3681 	      struct dentry *dentry, umode_t mode, dev_t dev)
3682 {
3683 	bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
3684 	int error = may_create(mnt_userns, dir, dentry);
3685 
3686 	if (error)
3687 		return error;
3688 
3689 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
3690 	    !capable(CAP_MKNOD))
3691 		return -EPERM;
3692 
3693 	if (!dir->i_op->mknod)
3694 		return -EPERM;
3695 
3696 	error = devcgroup_inode_mknod(mode, dev);
3697 	if (error)
3698 		return error;
3699 
3700 	error = security_inode_mknod(dir, dentry, mode, dev);
3701 	if (error)
3702 		return error;
3703 
3704 	error = dir->i_op->mknod(mnt_userns, dir, dentry, mode, dev);
3705 	if (!error)
3706 		fsnotify_create(dir, dentry);
3707 	return error;
3708 }
3709 EXPORT_SYMBOL(vfs_mknod);
3710 
3711 static int may_mknod(umode_t mode)
3712 {
3713 	switch (mode & S_IFMT) {
3714 	case S_IFREG:
3715 	case S_IFCHR:
3716 	case S_IFBLK:
3717 	case S_IFIFO:
3718 	case S_IFSOCK:
3719 	case 0: /* zero mode translates to S_IFREG */
3720 		return 0;
3721 	case S_IFDIR:
3722 		return -EPERM;
3723 	default:
3724 		return -EINVAL;
3725 	}
3726 }
3727 
3728 static long do_mknodat(int dfd, const char __user *filename, umode_t mode,
3729 		unsigned int dev)
3730 {
3731 	struct user_namespace *mnt_userns;
3732 	struct dentry *dentry;
3733 	struct path path;
3734 	int error;
3735 	unsigned int lookup_flags = 0;
3736 
3737 	error = may_mknod(mode);
3738 	if (error)
3739 		return error;
3740 retry:
3741 	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3742 	if (IS_ERR(dentry))
3743 		return PTR_ERR(dentry);
3744 
3745 	if (!IS_POSIXACL(path.dentry->d_inode))
3746 		mode &= ~current_umask();
3747 	error = security_path_mknod(&path, dentry, mode, dev);
3748 	if (error)
3749 		goto out;
3750 
3751 	mnt_userns = mnt_user_ns(path.mnt);
3752 	switch (mode & S_IFMT) {
3753 		case 0: case S_IFREG:
3754 			error = vfs_create(mnt_userns, path.dentry->d_inode,
3755 					   dentry, mode, true);
3756 			if (!error)
3757 				ima_post_path_mknod(mnt_userns, dentry);
3758 			break;
3759 		case S_IFCHR: case S_IFBLK:
3760 			error = vfs_mknod(mnt_userns, path.dentry->d_inode,
3761 					  dentry, mode, new_decode_dev(dev));
3762 			break;
3763 		case S_IFIFO: case S_IFSOCK:
3764 			error = vfs_mknod(mnt_userns, path.dentry->d_inode,
3765 					  dentry, mode, 0);
3766 			break;
3767 	}
3768 out:
3769 	done_path_create(&path, dentry);
3770 	if (retry_estale(error, lookup_flags)) {
3771 		lookup_flags |= LOOKUP_REVAL;
3772 		goto retry;
3773 	}
3774 	return error;
3775 }
3776 
3777 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3778 		unsigned int, dev)
3779 {
3780 	return do_mknodat(dfd, filename, mode, dev);
3781 }
3782 
3783 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3784 {
3785 	return do_mknodat(AT_FDCWD, filename, mode, dev);
3786 }
3787 
3788 /**
3789  * vfs_mkdir - create directory
3790  * @mnt_userns:	user namespace of the mount the inode was found from
3791  * @dir:	inode of @dentry
3792  * @dentry:	pointer to dentry of the base directory
3793  * @mode:	mode of the new directory
3794  *
3795  * Create a directory.
3796  *
3797  * If the inode has been found through an idmapped mount the user namespace of
3798  * the vfsmount must be passed through @mnt_userns. This function will then take
3799  * care to map the inode according to @mnt_userns before checking permissions.
3800  * On non-idmapped mounts or if permission checking is to be performed on the
3801  * raw inode simply passs init_user_ns.
3802  */
3803 int vfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
3804 	      struct dentry *dentry, umode_t mode)
3805 {
3806 	int error = may_create(mnt_userns, dir, dentry);
3807 	unsigned max_links = dir->i_sb->s_max_links;
3808 
3809 	if (error)
3810 		return error;
3811 
3812 	if (!dir->i_op->mkdir)
3813 		return -EPERM;
3814 
3815 	mode &= (S_IRWXUGO|S_ISVTX);
3816 	error = security_inode_mkdir(dir, dentry, mode);
3817 	if (error)
3818 		return error;
3819 
3820 	if (max_links && dir->i_nlink >= max_links)
3821 		return -EMLINK;
3822 
3823 	error = dir->i_op->mkdir(mnt_userns, dir, dentry, mode);
3824 	if (!error)
3825 		fsnotify_mkdir(dir, dentry);
3826 	return error;
3827 }
3828 EXPORT_SYMBOL(vfs_mkdir);
3829 
3830 static long do_mkdirat(int dfd, const char __user *pathname, umode_t mode)
3831 {
3832 	struct dentry *dentry;
3833 	struct path path;
3834 	int error;
3835 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3836 
3837 retry:
3838 	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3839 	if (IS_ERR(dentry))
3840 		return PTR_ERR(dentry);
3841 
3842 	if (!IS_POSIXACL(path.dentry->d_inode))
3843 		mode &= ~current_umask();
3844 	error = security_path_mkdir(&path, dentry, mode);
3845 	if (!error) {
3846 		struct user_namespace *mnt_userns;
3847 		mnt_userns = mnt_user_ns(path.mnt);
3848 		error = vfs_mkdir(mnt_userns, path.dentry->d_inode, dentry,
3849 				  mode);
3850 	}
3851 	done_path_create(&path, dentry);
3852 	if (retry_estale(error, lookup_flags)) {
3853 		lookup_flags |= LOOKUP_REVAL;
3854 		goto retry;
3855 	}
3856 	return error;
3857 }
3858 
3859 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3860 {
3861 	return do_mkdirat(dfd, pathname, mode);
3862 }
3863 
3864 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3865 {
3866 	return do_mkdirat(AT_FDCWD, pathname, mode);
3867 }
3868 
3869 /**
3870  * vfs_rmdir - remove directory
3871  * @mnt_userns:	user namespace of the mount the inode was found from
3872  * @dir:	inode of @dentry
3873  * @dentry:	pointer to dentry of the base directory
3874  *
3875  * Remove a directory.
3876  *
3877  * If the inode has been found through an idmapped mount the user namespace of
3878  * the vfsmount must be passed through @mnt_userns. This function will then take
3879  * care to map the inode according to @mnt_userns before checking permissions.
3880  * On non-idmapped mounts or if permission checking is to be performed on the
3881  * raw inode simply passs init_user_ns.
3882  */
3883 int vfs_rmdir(struct user_namespace *mnt_userns, struct inode *dir,
3884 		     struct dentry *dentry)
3885 {
3886 	int error = may_delete(mnt_userns, dir, dentry, 1);
3887 
3888 	if (error)
3889 		return error;
3890 
3891 	if (!dir->i_op->rmdir)
3892 		return -EPERM;
3893 
3894 	dget(dentry);
3895 	inode_lock(dentry->d_inode);
3896 
3897 	error = -EBUSY;
3898 	if (is_local_mountpoint(dentry))
3899 		goto out;
3900 
3901 	error = security_inode_rmdir(dir, dentry);
3902 	if (error)
3903 		goto out;
3904 
3905 	error = dir->i_op->rmdir(dir, dentry);
3906 	if (error)
3907 		goto out;
3908 
3909 	shrink_dcache_parent(dentry);
3910 	dentry->d_inode->i_flags |= S_DEAD;
3911 	dont_mount(dentry);
3912 	detach_mounts(dentry);
3913 	fsnotify_rmdir(dir, dentry);
3914 
3915 out:
3916 	inode_unlock(dentry->d_inode);
3917 	dput(dentry);
3918 	if (!error)
3919 		d_delete(dentry);
3920 	return error;
3921 }
3922 EXPORT_SYMBOL(vfs_rmdir);
3923 
3924 long do_rmdir(int dfd, struct filename *name)
3925 {
3926 	struct user_namespace *mnt_userns;
3927 	int error = 0;
3928 	struct dentry *dentry;
3929 	struct path path;
3930 	struct qstr last;
3931 	int type;
3932 	unsigned int lookup_flags = 0;
3933 retry:
3934 	name = filename_parentat(dfd, name, lookup_flags,
3935 				&path, &last, &type);
3936 	if (IS_ERR(name))
3937 		return PTR_ERR(name);
3938 
3939 	switch (type) {
3940 	case LAST_DOTDOT:
3941 		error = -ENOTEMPTY;
3942 		goto exit1;
3943 	case LAST_DOT:
3944 		error = -EINVAL;
3945 		goto exit1;
3946 	case LAST_ROOT:
3947 		error = -EBUSY;
3948 		goto exit1;
3949 	}
3950 
3951 	error = mnt_want_write(path.mnt);
3952 	if (error)
3953 		goto exit1;
3954 
3955 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3956 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3957 	error = PTR_ERR(dentry);
3958 	if (IS_ERR(dentry))
3959 		goto exit2;
3960 	if (!dentry->d_inode) {
3961 		error = -ENOENT;
3962 		goto exit3;
3963 	}
3964 	error = security_path_rmdir(&path, dentry);
3965 	if (error)
3966 		goto exit3;
3967 	mnt_userns = mnt_user_ns(path.mnt);
3968 	error = vfs_rmdir(mnt_userns, path.dentry->d_inode, dentry);
3969 exit3:
3970 	dput(dentry);
3971 exit2:
3972 	inode_unlock(path.dentry->d_inode);
3973 	mnt_drop_write(path.mnt);
3974 exit1:
3975 	path_put(&path);
3976 	if (retry_estale(error, lookup_flags)) {
3977 		lookup_flags |= LOOKUP_REVAL;
3978 		goto retry;
3979 	}
3980 	putname(name);
3981 	return error;
3982 }
3983 
3984 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3985 {
3986 	return do_rmdir(AT_FDCWD, getname(pathname));
3987 }
3988 
3989 /**
3990  * vfs_unlink - unlink a filesystem object
3991  * @mnt_userns:	user namespace of the mount the inode was found from
3992  * @dir:	parent directory
3993  * @dentry:	victim
3994  * @delegated_inode: returns victim inode, if the inode is delegated.
3995  *
3996  * The caller must hold dir->i_mutex.
3997  *
3998  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3999  * return a reference to the inode in delegated_inode.  The caller
4000  * should then break the delegation on that inode and retry.  Because
4001  * breaking a delegation may take a long time, the caller should drop
4002  * dir->i_mutex before doing so.
4003  *
4004  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4005  * be appropriate for callers that expect the underlying filesystem not
4006  * to be NFS exported.
4007  *
4008  * If the inode has been found through an idmapped mount the user namespace of
4009  * the vfsmount must be passed through @mnt_userns. This function will then take
4010  * care to map the inode according to @mnt_userns before checking permissions.
4011  * On non-idmapped mounts or if permission checking is to be performed on the
4012  * raw inode simply passs init_user_ns.
4013  */
4014 int vfs_unlink(struct user_namespace *mnt_userns, struct inode *dir,
4015 	       struct dentry *dentry, struct inode **delegated_inode)
4016 {
4017 	struct inode *target = dentry->d_inode;
4018 	int error = may_delete(mnt_userns, dir, dentry, 0);
4019 
4020 	if (error)
4021 		return error;
4022 
4023 	if (!dir->i_op->unlink)
4024 		return -EPERM;
4025 
4026 	inode_lock(target);
4027 	if (is_local_mountpoint(dentry))
4028 		error = -EBUSY;
4029 	else {
4030 		error = security_inode_unlink(dir, dentry);
4031 		if (!error) {
4032 			error = try_break_deleg(target, delegated_inode);
4033 			if (error)
4034 				goto out;
4035 			error = dir->i_op->unlink(dir, dentry);
4036 			if (!error) {
4037 				dont_mount(dentry);
4038 				detach_mounts(dentry);
4039 				fsnotify_unlink(dir, dentry);
4040 			}
4041 		}
4042 	}
4043 out:
4044 	inode_unlock(target);
4045 
4046 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
4047 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
4048 		fsnotify_link_count(target);
4049 		d_delete(dentry);
4050 	}
4051 
4052 	return error;
4053 }
4054 EXPORT_SYMBOL(vfs_unlink);
4055 
4056 /*
4057  * Make sure that the actual truncation of the file will occur outside its
4058  * directory's i_mutex.  Truncate can take a long time if there is a lot of
4059  * writeout happening, and we don't want to prevent access to the directory
4060  * while waiting on the I/O.
4061  */
4062 long do_unlinkat(int dfd, struct filename *name)
4063 {
4064 	int error;
4065 	struct dentry *dentry;
4066 	struct path path;
4067 	struct qstr last;
4068 	int type;
4069 	struct inode *inode = NULL;
4070 	struct inode *delegated_inode = NULL;
4071 	unsigned int lookup_flags = 0;
4072 retry:
4073 	name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4074 	if (IS_ERR(name))
4075 		return PTR_ERR(name);
4076 
4077 	error = -EISDIR;
4078 	if (type != LAST_NORM)
4079 		goto exit1;
4080 
4081 	error = mnt_want_write(path.mnt);
4082 	if (error)
4083 		goto exit1;
4084 retry_deleg:
4085 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4086 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4087 	error = PTR_ERR(dentry);
4088 	if (!IS_ERR(dentry)) {
4089 		struct user_namespace *mnt_userns;
4090 
4091 		/* Why not before? Because we want correct error value */
4092 		if (last.name[last.len])
4093 			goto slashes;
4094 		inode = dentry->d_inode;
4095 		if (d_is_negative(dentry))
4096 			goto slashes;
4097 		ihold(inode);
4098 		error = security_path_unlink(&path, dentry);
4099 		if (error)
4100 			goto exit2;
4101 		mnt_userns = mnt_user_ns(path.mnt);
4102 		error = vfs_unlink(mnt_userns, path.dentry->d_inode, dentry,
4103 				   &delegated_inode);
4104 exit2:
4105 		dput(dentry);
4106 	}
4107 	inode_unlock(path.dentry->d_inode);
4108 	if (inode)
4109 		iput(inode);	/* truncate the inode here */
4110 	inode = NULL;
4111 	if (delegated_inode) {
4112 		error = break_deleg_wait(&delegated_inode);
4113 		if (!error)
4114 			goto retry_deleg;
4115 	}
4116 	mnt_drop_write(path.mnt);
4117 exit1:
4118 	path_put(&path);
4119 	if (retry_estale(error, lookup_flags)) {
4120 		lookup_flags |= LOOKUP_REVAL;
4121 		inode = NULL;
4122 		goto retry;
4123 	}
4124 	putname(name);
4125 	return error;
4126 
4127 slashes:
4128 	if (d_is_negative(dentry))
4129 		error = -ENOENT;
4130 	else if (d_is_dir(dentry))
4131 		error = -EISDIR;
4132 	else
4133 		error = -ENOTDIR;
4134 	goto exit2;
4135 }
4136 
4137 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4138 {
4139 	if ((flag & ~AT_REMOVEDIR) != 0)
4140 		return -EINVAL;
4141 
4142 	if (flag & AT_REMOVEDIR)
4143 		return do_rmdir(dfd, getname(pathname));
4144 	return do_unlinkat(dfd, getname(pathname));
4145 }
4146 
4147 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4148 {
4149 	return do_unlinkat(AT_FDCWD, getname(pathname));
4150 }
4151 
4152 /**
4153  * vfs_symlink - create symlink
4154  * @mnt_userns:	user namespace of the mount the inode was found from
4155  * @dir:	inode of @dentry
4156  * @dentry:	pointer to dentry of the base directory
4157  * @oldname:	name of the file to link to
4158  *
4159  * Create a symlink.
4160  *
4161  * If the inode has been found through an idmapped mount the user namespace of
4162  * the vfsmount must be passed through @mnt_userns. This function will then take
4163  * care to map the inode according to @mnt_userns before checking permissions.
4164  * On non-idmapped mounts or if permission checking is to be performed on the
4165  * raw inode simply passs init_user_ns.
4166  */
4167 int vfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
4168 		struct dentry *dentry, const char *oldname)
4169 {
4170 	int error = may_create(mnt_userns, dir, dentry);
4171 
4172 	if (error)
4173 		return error;
4174 
4175 	if (!dir->i_op->symlink)
4176 		return -EPERM;
4177 
4178 	error = security_inode_symlink(dir, dentry, oldname);
4179 	if (error)
4180 		return error;
4181 
4182 	error = dir->i_op->symlink(mnt_userns, dir, dentry, oldname);
4183 	if (!error)
4184 		fsnotify_create(dir, dentry);
4185 	return error;
4186 }
4187 EXPORT_SYMBOL(vfs_symlink);
4188 
4189 static long do_symlinkat(const char __user *oldname, int newdfd,
4190 		  const char __user *newname)
4191 {
4192 	int error;
4193 	struct filename *from;
4194 	struct dentry *dentry;
4195 	struct path path;
4196 	unsigned int lookup_flags = 0;
4197 
4198 	from = getname(oldname);
4199 	if (IS_ERR(from))
4200 		return PTR_ERR(from);
4201 retry:
4202 	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4203 	error = PTR_ERR(dentry);
4204 	if (IS_ERR(dentry))
4205 		goto out_putname;
4206 
4207 	error = security_path_symlink(&path, dentry, from->name);
4208 	if (!error) {
4209 		struct user_namespace *mnt_userns;
4210 
4211 		mnt_userns = mnt_user_ns(path.mnt);
4212 		error = vfs_symlink(mnt_userns, path.dentry->d_inode, dentry,
4213 				    from->name);
4214 	}
4215 	done_path_create(&path, dentry);
4216 	if (retry_estale(error, lookup_flags)) {
4217 		lookup_flags |= LOOKUP_REVAL;
4218 		goto retry;
4219 	}
4220 out_putname:
4221 	putname(from);
4222 	return error;
4223 }
4224 
4225 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4226 		int, newdfd, const char __user *, newname)
4227 {
4228 	return do_symlinkat(oldname, newdfd, newname);
4229 }
4230 
4231 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4232 {
4233 	return do_symlinkat(oldname, AT_FDCWD, newname);
4234 }
4235 
4236 /**
4237  * vfs_link - create a new link
4238  * @old_dentry:	object to be linked
4239  * @mnt_userns:	the user namespace of the mount
4240  * @dir:	new parent
4241  * @new_dentry:	where to create the new link
4242  * @delegated_inode: returns inode needing a delegation break
4243  *
4244  * The caller must hold dir->i_mutex
4245  *
4246  * If vfs_link discovers a delegation on the to-be-linked file in need
4247  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4248  * inode in delegated_inode.  The caller should then break the delegation
4249  * and retry.  Because breaking a delegation may take a long time, the
4250  * caller should drop the i_mutex before doing so.
4251  *
4252  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4253  * be appropriate for callers that expect the underlying filesystem not
4254  * to be NFS exported.
4255  *
4256  * If the inode has been found through an idmapped mount the user namespace of
4257  * the vfsmount must be passed through @mnt_userns. This function will then take
4258  * care to map the inode according to @mnt_userns before checking permissions.
4259  * On non-idmapped mounts or if permission checking is to be performed on the
4260  * raw inode simply passs init_user_ns.
4261  */
4262 int vfs_link(struct dentry *old_dentry, struct user_namespace *mnt_userns,
4263 	     struct inode *dir, struct dentry *new_dentry,
4264 	     struct inode **delegated_inode)
4265 {
4266 	struct inode *inode = old_dentry->d_inode;
4267 	unsigned max_links = dir->i_sb->s_max_links;
4268 	int error;
4269 
4270 	if (!inode)
4271 		return -ENOENT;
4272 
4273 	error = may_create(mnt_userns, dir, new_dentry);
4274 	if (error)
4275 		return error;
4276 
4277 	if (dir->i_sb != inode->i_sb)
4278 		return -EXDEV;
4279 
4280 	/*
4281 	 * A link to an append-only or immutable file cannot be created.
4282 	 */
4283 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4284 		return -EPERM;
4285 	/*
4286 	 * Updating the link count will likely cause i_uid and i_gid to
4287 	 * be writen back improperly if their true value is unknown to
4288 	 * the vfs.
4289 	 */
4290 	if (HAS_UNMAPPED_ID(mnt_userns, inode))
4291 		return -EPERM;
4292 	if (!dir->i_op->link)
4293 		return -EPERM;
4294 	if (S_ISDIR(inode->i_mode))
4295 		return -EPERM;
4296 
4297 	error = security_inode_link(old_dentry, dir, new_dentry);
4298 	if (error)
4299 		return error;
4300 
4301 	inode_lock(inode);
4302 	/* Make sure we don't allow creating hardlink to an unlinked file */
4303 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4304 		error =  -ENOENT;
4305 	else if (max_links && inode->i_nlink >= max_links)
4306 		error = -EMLINK;
4307 	else {
4308 		error = try_break_deleg(inode, delegated_inode);
4309 		if (!error)
4310 			error = dir->i_op->link(old_dentry, dir, new_dentry);
4311 	}
4312 
4313 	if (!error && (inode->i_state & I_LINKABLE)) {
4314 		spin_lock(&inode->i_lock);
4315 		inode->i_state &= ~I_LINKABLE;
4316 		spin_unlock(&inode->i_lock);
4317 	}
4318 	inode_unlock(inode);
4319 	if (!error)
4320 		fsnotify_link(dir, inode, new_dentry);
4321 	return error;
4322 }
4323 EXPORT_SYMBOL(vfs_link);
4324 
4325 /*
4326  * Hardlinks are often used in delicate situations.  We avoid
4327  * security-related surprises by not following symlinks on the
4328  * newname.  --KAB
4329  *
4330  * We don't follow them on the oldname either to be compatible
4331  * with linux 2.0, and to avoid hard-linking to directories
4332  * and other special files.  --ADM
4333  */
4334 static int do_linkat(int olddfd, const char __user *oldname, int newdfd,
4335 	      const char __user *newname, int flags)
4336 {
4337 	struct user_namespace *mnt_userns;
4338 	struct dentry *new_dentry;
4339 	struct path old_path, new_path;
4340 	struct inode *delegated_inode = NULL;
4341 	int how = 0;
4342 	int error;
4343 
4344 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4345 		return -EINVAL;
4346 	/*
4347 	 * To use null names we require CAP_DAC_READ_SEARCH
4348 	 * This ensures that not everyone will be able to create
4349 	 * handlink using the passed filedescriptor.
4350 	 */
4351 	if (flags & AT_EMPTY_PATH) {
4352 		if (!capable(CAP_DAC_READ_SEARCH))
4353 			return -ENOENT;
4354 		how = LOOKUP_EMPTY;
4355 	}
4356 
4357 	if (flags & AT_SYMLINK_FOLLOW)
4358 		how |= LOOKUP_FOLLOW;
4359 retry:
4360 	error = user_path_at(olddfd, oldname, how, &old_path);
4361 	if (error)
4362 		return error;
4363 
4364 	new_dentry = user_path_create(newdfd, newname, &new_path,
4365 					(how & LOOKUP_REVAL));
4366 	error = PTR_ERR(new_dentry);
4367 	if (IS_ERR(new_dentry))
4368 		goto out;
4369 
4370 	error = -EXDEV;
4371 	if (old_path.mnt != new_path.mnt)
4372 		goto out_dput;
4373 	mnt_userns = mnt_user_ns(new_path.mnt);
4374 	error = may_linkat(mnt_userns, &old_path);
4375 	if (unlikely(error))
4376 		goto out_dput;
4377 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4378 	if (error)
4379 		goto out_dput;
4380 	error = vfs_link(old_path.dentry, mnt_userns, new_path.dentry->d_inode,
4381 			 new_dentry, &delegated_inode);
4382 out_dput:
4383 	done_path_create(&new_path, new_dentry);
4384 	if (delegated_inode) {
4385 		error = break_deleg_wait(&delegated_inode);
4386 		if (!error) {
4387 			path_put(&old_path);
4388 			goto retry;
4389 		}
4390 	}
4391 	if (retry_estale(error, how)) {
4392 		path_put(&old_path);
4393 		how |= LOOKUP_REVAL;
4394 		goto retry;
4395 	}
4396 out:
4397 	path_put(&old_path);
4398 
4399 	return error;
4400 }
4401 
4402 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4403 		int, newdfd, const char __user *, newname, int, flags)
4404 {
4405 	return do_linkat(olddfd, oldname, newdfd, newname, flags);
4406 }
4407 
4408 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4409 {
4410 	return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4411 }
4412 
4413 /**
4414  * vfs_rename - rename a filesystem object
4415  * @rd:		pointer to &struct renamedata info
4416  *
4417  * The caller must hold multiple mutexes--see lock_rename()).
4418  *
4419  * If vfs_rename discovers a delegation in need of breaking at either
4420  * the source or destination, it will return -EWOULDBLOCK and return a
4421  * reference to the inode in delegated_inode.  The caller should then
4422  * break the delegation and retry.  Because breaking a delegation may
4423  * take a long time, the caller should drop all locks before doing
4424  * so.
4425  *
4426  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4427  * be appropriate for callers that expect the underlying filesystem not
4428  * to be NFS exported.
4429  *
4430  * The worst of all namespace operations - renaming directory. "Perverted"
4431  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4432  * Problems:
4433  *
4434  *	a) we can get into loop creation.
4435  *	b) race potential - two innocent renames can create a loop together.
4436  *	   That's where 4.4 screws up. Current fix: serialization on
4437  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4438  *	   story.
4439  *	c) we have to lock _four_ objects - parents and victim (if it exists),
4440  *	   and source (if it is not a directory).
4441  *	   And that - after we got ->i_mutex on parents (until then we don't know
4442  *	   whether the target exists).  Solution: try to be smart with locking
4443  *	   order for inodes.  We rely on the fact that tree topology may change
4444  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4445  *	   move will be locked.  Thus we can rank directories by the tree
4446  *	   (ancestors first) and rank all non-directories after them.
4447  *	   That works since everybody except rename does "lock parent, lookup,
4448  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4449  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4450  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4451  *	   we'd better make sure that there's no link(2) for them.
4452  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4453  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4454  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4455  *	   ->i_mutex on parents, which works but leads to some truly excessive
4456  *	   locking].
4457  */
4458 int vfs_rename(struct renamedata *rd)
4459 {
4460 	int error;
4461 	struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir;
4462 	struct dentry *old_dentry = rd->old_dentry;
4463 	struct dentry *new_dentry = rd->new_dentry;
4464 	struct inode **delegated_inode = rd->delegated_inode;
4465 	unsigned int flags = rd->flags;
4466 	bool is_dir = d_is_dir(old_dentry);
4467 	struct inode *source = old_dentry->d_inode;
4468 	struct inode *target = new_dentry->d_inode;
4469 	bool new_is_dir = false;
4470 	unsigned max_links = new_dir->i_sb->s_max_links;
4471 	struct name_snapshot old_name;
4472 
4473 	if (source == target)
4474 		return 0;
4475 
4476 	error = may_delete(rd->old_mnt_userns, old_dir, old_dentry, is_dir);
4477 	if (error)
4478 		return error;
4479 
4480 	if (!target) {
4481 		error = may_create(rd->new_mnt_userns, new_dir, new_dentry);
4482 	} else {
4483 		new_is_dir = d_is_dir(new_dentry);
4484 
4485 		if (!(flags & RENAME_EXCHANGE))
4486 			error = may_delete(rd->new_mnt_userns, new_dir,
4487 					   new_dentry, is_dir);
4488 		else
4489 			error = may_delete(rd->new_mnt_userns, new_dir,
4490 					   new_dentry, new_is_dir);
4491 	}
4492 	if (error)
4493 		return error;
4494 
4495 	if (!old_dir->i_op->rename)
4496 		return -EPERM;
4497 
4498 	/*
4499 	 * If we are going to change the parent - check write permissions,
4500 	 * we'll need to flip '..'.
4501 	 */
4502 	if (new_dir != old_dir) {
4503 		if (is_dir) {
4504 			error = inode_permission(rd->old_mnt_userns, source,
4505 						 MAY_WRITE);
4506 			if (error)
4507 				return error;
4508 		}
4509 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4510 			error = inode_permission(rd->new_mnt_userns, target,
4511 						 MAY_WRITE);
4512 			if (error)
4513 				return error;
4514 		}
4515 	}
4516 
4517 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4518 				      flags);
4519 	if (error)
4520 		return error;
4521 
4522 	take_dentry_name_snapshot(&old_name, old_dentry);
4523 	dget(new_dentry);
4524 	if (!is_dir || (flags & RENAME_EXCHANGE))
4525 		lock_two_nondirectories(source, target);
4526 	else if (target)
4527 		inode_lock(target);
4528 
4529 	error = -EBUSY;
4530 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4531 		goto out;
4532 
4533 	if (max_links && new_dir != old_dir) {
4534 		error = -EMLINK;
4535 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4536 			goto out;
4537 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4538 		    old_dir->i_nlink >= max_links)
4539 			goto out;
4540 	}
4541 	if (!is_dir) {
4542 		error = try_break_deleg(source, delegated_inode);
4543 		if (error)
4544 			goto out;
4545 	}
4546 	if (target && !new_is_dir) {
4547 		error = try_break_deleg(target, delegated_inode);
4548 		if (error)
4549 			goto out;
4550 	}
4551 	error = old_dir->i_op->rename(rd->new_mnt_userns, old_dir, old_dentry,
4552 				      new_dir, new_dentry, flags);
4553 	if (error)
4554 		goto out;
4555 
4556 	if (!(flags & RENAME_EXCHANGE) && target) {
4557 		if (is_dir) {
4558 			shrink_dcache_parent(new_dentry);
4559 			target->i_flags |= S_DEAD;
4560 		}
4561 		dont_mount(new_dentry);
4562 		detach_mounts(new_dentry);
4563 	}
4564 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4565 		if (!(flags & RENAME_EXCHANGE))
4566 			d_move(old_dentry, new_dentry);
4567 		else
4568 			d_exchange(old_dentry, new_dentry);
4569 	}
4570 out:
4571 	if (!is_dir || (flags & RENAME_EXCHANGE))
4572 		unlock_two_nondirectories(source, target);
4573 	else if (target)
4574 		inode_unlock(target);
4575 	dput(new_dentry);
4576 	if (!error) {
4577 		fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4578 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4579 		if (flags & RENAME_EXCHANGE) {
4580 			fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4581 				      new_is_dir, NULL, new_dentry);
4582 		}
4583 	}
4584 	release_dentry_name_snapshot(&old_name);
4585 
4586 	return error;
4587 }
4588 EXPORT_SYMBOL(vfs_rename);
4589 
4590 int do_renameat2(int olddfd, struct filename *from, int newdfd,
4591 		 struct filename *to, unsigned int flags)
4592 {
4593 	struct renamedata rd;
4594 	struct dentry *old_dentry, *new_dentry;
4595 	struct dentry *trap;
4596 	struct path old_path, new_path;
4597 	struct qstr old_last, new_last;
4598 	int old_type, new_type;
4599 	struct inode *delegated_inode = NULL;
4600 	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4601 	bool should_retry = false;
4602 	int error = -EINVAL;
4603 
4604 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4605 		goto put_both;
4606 
4607 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4608 	    (flags & RENAME_EXCHANGE))
4609 		goto put_both;
4610 
4611 	if (flags & RENAME_EXCHANGE)
4612 		target_flags = 0;
4613 
4614 retry:
4615 	from = filename_parentat(olddfd, from, lookup_flags, &old_path,
4616 					&old_last, &old_type);
4617 	if (IS_ERR(from)) {
4618 		error = PTR_ERR(from);
4619 		goto put_new;
4620 	}
4621 
4622 	to = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
4623 				&new_type);
4624 	if (IS_ERR(to)) {
4625 		error = PTR_ERR(to);
4626 		goto exit1;
4627 	}
4628 
4629 	error = -EXDEV;
4630 	if (old_path.mnt != new_path.mnt)
4631 		goto exit2;
4632 
4633 	error = -EBUSY;
4634 	if (old_type != LAST_NORM)
4635 		goto exit2;
4636 
4637 	if (flags & RENAME_NOREPLACE)
4638 		error = -EEXIST;
4639 	if (new_type != LAST_NORM)
4640 		goto exit2;
4641 
4642 	error = mnt_want_write(old_path.mnt);
4643 	if (error)
4644 		goto exit2;
4645 
4646 retry_deleg:
4647 	trap = lock_rename(new_path.dentry, old_path.dentry);
4648 
4649 	old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4650 	error = PTR_ERR(old_dentry);
4651 	if (IS_ERR(old_dentry))
4652 		goto exit3;
4653 	/* source must exist */
4654 	error = -ENOENT;
4655 	if (d_is_negative(old_dentry))
4656 		goto exit4;
4657 	new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4658 	error = PTR_ERR(new_dentry);
4659 	if (IS_ERR(new_dentry))
4660 		goto exit4;
4661 	error = -EEXIST;
4662 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4663 		goto exit5;
4664 	if (flags & RENAME_EXCHANGE) {
4665 		error = -ENOENT;
4666 		if (d_is_negative(new_dentry))
4667 			goto exit5;
4668 
4669 		if (!d_is_dir(new_dentry)) {
4670 			error = -ENOTDIR;
4671 			if (new_last.name[new_last.len])
4672 				goto exit5;
4673 		}
4674 	}
4675 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4676 	if (!d_is_dir(old_dentry)) {
4677 		error = -ENOTDIR;
4678 		if (old_last.name[old_last.len])
4679 			goto exit5;
4680 		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4681 			goto exit5;
4682 	}
4683 	/* source should not be ancestor of target */
4684 	error = -EINVAL;
4685 	if (old_dentry == trap)
4686 		goto exit5;
4687 	/* target should not be an ancestor of source */
4688 	if (!(flags & RENAME_EXCHANGE))
4689 		error = -ENOTEMPTY;
4690 	if (new_dentry == trap)
4691 		goto exit5;
4692 
4693 	error = security_path_rename(&old_path, old_dentry,
4694 				     &new_path, new_dentry, flags);
4695 	if (error)
4696 		goto exit5;
4697 
4698 	rd.old_dir	   = old_path.dentry->d_inode;
4699 	rd.old_dentry	   = old_dentry;
4700 	rd.old_mnt_userns  = mnt_user_ns(old_path.mnt);
4701 	rd.new_dir	   = new_path.dentry->d_inode;
4702 	rd.new_dentry	   = new_dentry;
4703 	rd.new_mnt_userns  = mnt_user_ns(new_path.mnt);
4704 	rd.delegated_inode = &delegated_inode;
4705 	rd.flags	   = flags;
4706 	error = vfs_rename(&rd);
4707 exit5:
4708 	dput(new_dentry);
4709 exit4:
4710 	dput(old_dentry);
4711 exit3:
4712 	unlock_rename(new_path.dentry, old_path.dentry);
4713 	if (delegated_inode) {
4714 		error = break_deleg_wait(&delegated_inode);
4715 		if (!error)
4716 			goto retry_deleg;
4717 	}
4718 	mnt_drop_write(old_path.mnt);
4719 exit2:
4720 	if (retry_estale(error, lookup_flags))
4721 		should_retry = true;
4722 	path_put(&new_path);
4723 exit1:
4724 	path_put(&old_path);
4725 	if (should_retry) {
4726 		should_retry = false;
4727 		lookup_flags |= LOOKUP_REVAL;
4728 		goto retry;
4729 	}
4730 put_both:
4731 	if (!IS_ERR(from))
4732 		putname(from);
4733 put_new:
4734 	if (!IS_ERR(to))
4735 		putname(to);
4736 	return error;
4737 }
4738 
4739 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4740 		int, newdfd, const char __user *, newname, unsigned int, flags)
4741 {
4742 	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
4743 				flags);
4744 }
4745 
4746 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4747 		int, newdfd, const char __user *, newname)
4748 {
4749 	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
4750 				0);
4751 }
4752 
4753 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4754 {
4755 	return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
4756 				getname(newname), 0);
4757 }
4758 
4759 int readlink_copy(char __user *buffer, int buflen, const char *link)
4760 {
4761 	int len = PTR_ERR(link);
4762 	if (IS_ERR(link))
4763 		goto out;
4764 
4765 	len = strlen(link);
4766 	if (len > (unsigned) buflen)
4767 		len = buflen;
4768 	if (copy_to_user(buffer, link, len))
4769 		len = -EFAULT;
4770 out:
4771 	return len;
4772 }
4773 
4774 /**
4775  * vfs_readlink - copy symlink body into userspace buffer
4776  * @dentry: dentry on which to get symbolic link
4777  * @buffer: user memory pointer
4778  * @buflen: size of buffer
4779  *
4780  * Does not touch atime.  That's up to the caller if necessary
4781  *
4782  * Does not call security hook.
4783  */
4784 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4785 {
4786 	struct inode *inode = d_inode(dentry);
4787 	DEFINE_DELAYED_CALL(done);
4788 	const char *link;
4789 	int res;
4790 
4791 	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4792 		if (unlikely(inode->i_op->readlink))
4793 			return inode->i_op->readlink(dentry, buffer, buflen);
4794 
4795 		if (!d_is_symlink(dentry))
4796 			return -EINVAL;
4797 
4798 		spin_lock(&inode->i_lock);
4799 		inode->i_opflags |= IOP_DEFAULT_READLINK;
4800 		spin_unlock(&inode->i_lock);
4801 	}
4802 
4803 	link = READ_ONCE(inode->i_link);
4804 	if (!link) {
4805 		link = inode->i_op->get_link(dentry, inode, &done);
4806 		if (IS_ERR(link))
4807 			return PTR_ERR(link);
4808 	}
4809 	res = readlink_copy(buffer, buflen, link);
4810 	do_delayed_call(&done);
4811 	return res;
4812 }
4813 EXPORT_SYMBOL(vfs_readlink);
4814 
4815 /**
4816  * vfs_get_link - get symlink body
4817  * @dentry: dentry on which to get symbolic link
4818  * @done: caller needs to free returned data with this
4819  *
4820  * Calls security hook and i_op->get_link() on the supplied inode.
4821  *
4822  * It does not touch atime.  That's up to the caller if necessary.
4823  *
4824  * Does not work on "special" symlinks like /proc/$$/fd/N
4825  */
4826 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4827 {
4828 	const char *res = ERR_PTR(-EINVAL);
4829 	struct inode *inode = d_inode(dentry);
4830 
4831 	if (d_is_symlink(dentry)) {
4832 		res = ERR_PTR(security_inode_readlink(dentry));
4833 		if (!res)
4834 			res = inode->i_op->get_link(dentry, inode, done);
4835 	}
4836 	return res;
4837 }
4838 EXPORT_SYMBOL(vfs_get_link);
4839 
4840 /* get the link contents into pagecache */
4841 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4842 			  struct delayed_call *callback)
4843 {
4844 	char *kaddr;
4845 	struct page *page;
4846 	struct address_space *mapping = inode->i_mapping;
4847 
4848 	if (!dentry) {
4849 		page = find_get_page(mapping, 0);
4850 		if (!page)
4851 			return ERR_PTR(-ECHILD);
4852 		if (!PageUptodate(page)) {
4853 			put_page(page);
4854 			return ERR_PTR(-ECHILD);
4855 		}
4856 	} else {
4857 		page = read_mapping_page(mapping, 0, NULL);
4858 		if (IS_ERR(page))
4859 			return (char*)page;
4860 	}
4861 	set_delayed_call(callback, page_put_link, page);
4862 	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4863 	kaddr = page_address(page);
4864 	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4865 	return kaddr;
4866 }
4867 
4868 EXPORT_SYMBOL(page_get_link);
4869 
4870 void page_put_link(void *arg)
4871 {
4872 	put_page(arg);
4873 }
4874 EXPORT_SYMBOL(page_put_link);
4875 
4876 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4877 {
4878 	DEFINE_DELAYED_CALL(done);
4879 	int res = readlink_copy(buffer, buflen,
4880 				page_get_link(dentry, d_inode(dentry),
4881 					      &done));
4882 	do_delayed_call(&done);
4883 	return res;
4884 }
4885 EXPORT_SYMBOL(page_readlink);
4886 
4887 /*
4888  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4889  */
4890 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4891 {
4892 	struct address_space *mapping = inode->i_mapping;
4893 	struct page *page;
4894 	void *fsdata;
4895 	int err;
4896 	unsigned int flags = 0;
4897 	if (nofs)
4898 		flags |= AOP_FLAG_NOFS;
4899 
4900 retry:
4901 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4902 				flags, &page, &fsdata);
4903 	if (err)
4904 		goto fail;
4905 
4906 	memcpy(page_address(page), symname, len-1);
4907 
4908 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4909 							page, fsdata);
4910 	if (err < 0)
4911 		goto fail;
4912 	if (err < len-1)
4913 		goto retry;
4914 
4915 	mark_inode_dirty(inode);
4916 	return 0;
4917 fail:
4918 	return err;
4919 }
4920 EXPORT_SYMBOL(__page_symlink);
4921 
4922 int page_symlink(struct inode *inode, const char *symname, int len)
4923 {
4924 	return __page_symlink(inode, symname, len,
4925 			!mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4926 }
4927 EXPORT_SYMBOL(page_symlink);
4928 
4929 const struct inode_operations page_symlink_inode_operations = {
4930 	.get_link	= page_get_link,
4931 };
4932 EXPORT_SYMBOL(page_symlink_inode_operations);
4933