1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/namei.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * Some corrections by tytso. 10 */ 11 12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 13 * lookup logic. 14 */ 15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 16 */ 17 18 #include <linux/init.h> 19 #include <linux/export.h> 20 #include <linux/slab.h> 21 #include <linux/wordpart.h> 22 #include <linux/fs.h> 23 #include <linux/filelock.h> 24 #include <linux/namei.h> 25 #include <linux/pagemap.h> 26 #include <linux/sched/mm.h> 27 #include <linux/fsnotify.h> 28 #include <linux/personality.h> 29 #include <linux/security.h> 30 #include <linux/syscalls.h> 31 #include <linux/mount.h> 32 #include <linux/audit.h> 33 #include <linux/capability.h> 34 #include <linux/file.h> 35 #include <linux/fcntl.h> 36 #include <linux/device_cgroup.h> 37 #include <linux/fs_struct.h> 38 #include <linux/posix_acl.h> 39 #include <linux/hash.h> 40 #include <linux/bitops.h> 41 #include <linux/init_task.h> 42 #include <linux/uaccess.h> 43 44 #include "internal.h" 45 #include "mount.h" 46 47 /* [Feb-1997 T. Schoebel-Theuer] 48 * Fundamental changes in the pathname lookup mechanisms (namei) 49 * were necessary because of omirr. The reason is that omirr needs 50 * to know the _real_ pathname, not the user-supplied one, in case 51 * of symlinks (and also when transname replacements occur). 52 * 53 * The new code replaces the old recursive symlink resolution with 54 * an iterative one (in case of non-nested symlink chains). It does 55 * this with calls to <fs>_follow_link(). 56 * As a side effect, dir_namei(), _namei() and follow_link() are now 57 * replaced with a single function lookup_dentry() that can handle all 58 * the special cases of the former code. 59 * 60 * With the new dcache, the pathname is stored at each inode, at least as 61 * long as the refcount of the inode is positive. As a side effect, the 62 * size of the dcache depends on the inode cache and thus is dynamic. 63 * 64 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 65 * resolution to correspond with current state of the code. 66 * 67 * Note that the symlink resolution is not *completely* iterative. 68 * There is still a significant amount of tail- and mid- recursion in 69 * the algorithm. Also, note that <fs>_readlink() is not used in 70 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 71 * may return different results than <fs>_follow_link(). Many virtual 72 * filesystems (including /proc) exhibit this behavior. 73 */ 74 75 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 76 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 77 * and the name already exists in form of a symlink, try to create the new 78 * name indicated by the symlink. The old code always complained that the 79 * name already exists, due to not following the symlink even if its target 80 * is nonexistent. The new semantics affects also mknod() and link() when 81 * the name is a symlink pointing to a non-existent name. 82 * 83 * I don't know which semantics is the right one, since I have no access 84 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 85 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 86 * "old" one. Personally, I think the new semantics is much more logical. 87 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 88 * file does succeed in both HP-UX and SunOs, but not in Solaris 89 * and in the old Linux semantics. 90 */ 91 92 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 93 * semantics. See the comments in "open_namei" and "do_link" below. 94 * 95 * [10-Sep-98 Alan Modra] Another symlink change. 96 */ 97 98 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 99 * inside the path - always follow. 100 * in the last component in creation/removal/renaming - never follow. 101 * if LOOKUP_FOLLOW passed - follow. 102 * if the pathname has trailing slashes - follow. 103 * otherwise - don't follow. 104 * (applied in that order). 105 * 106 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 107 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 108 * During the 2.4 we need to fix the userland stuff depending on it - 109 * hopefully we will be able to get rid of that wart in 2.5. So far only 110 * XEmacs seems to be relying on it... 111 */ 112 /* 113 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 114 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 115 * any extra contention... 116 */ 117 118 /* In order to reduce some races, while at the same time doing additional 119 * checking and hopefully speeding things up, we copy filenames to the 120 * kernel data space before using them.. 121 * 122 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 123 * PATH_MAX includes the nul terminator --RR. 124 */ 125 126 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) 127 128 static inline void initname(struct filename *name) 129 { 130 name->uptr = NULL; 131 name->aname = NULL; 132 atomic_set(&name->refcnt, 1); 133 } 134 135 struct filename * 136 getname_flags(const char __user *filename, int flags) 137 { 138 struct filename *result; 139 char *kname; 140 int len; 141 142 result = audit_reusename(filename); 143 if (result) 144 return result; 145 146 result = __getname(); 147 if (unlikely(!result)) 148 return ERR_PTR(-ENOMEM); 149 150 /* 151 * First, try to embed the struct filename inside the names_cache 152 * allocation 153 */ 154 kname = (char *)result->iname; 155 result->name = kname; 156 157 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); 158 /* 159 * Handle both empty path and copy failure in one go. 160 */ 161 if (unlikely(len <= 0)) { 162 if (unlikely(len < 0)) { 163 __putname(result); 164 return ERR_PTR(len); 165 } 166 167 /* The empty path is special. */ 168 if (!(flags & LOOKUP_EMPTY)) { 169 __putname(result); 170 return ERR_PTR(-ENOENT); 171 } 172 } 173 174 /* 175 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 176 * separate struct filename so we can dedicate the entire 177 * names_cache allocation for the pathname, and re-do the copy from 178 * userland. 179 */ 180 if (unlikely(len == EMBEDDED_NAME_MAX)) { 181 const size_t size = offsetof(struct filename, iname[1]); 182 kname = (char *)result; 183 184 /* 185 * size is chosen that way we to guarantee that 186 * result->iname[0] is within the same object and that 187 * kname can't be equal to result->iname, no matter what. 188 */ 189 result = kzalloc(size, GFP_KERNEL); 190 if (unlikely(!result)) { 191 __putname(kname); 192 return ERR_PTR(-ENOMEM); 193 } 194 result->name = kname; 195 len = strncpy_from_user(kname, filename, PATH_MAX); 196 if (unlikely(len < 0)) { 197 __putname(kname); 198 kfree(result); 199 return ERR_PTR(len); 200 } 201 /* The empty path is special. */ 202 if (unlikely(!len) && !(flags & LOOKUP_EMPTY)) { 203 __putname(kname); 204 kfree(result); 205 return ERR_PTR(-ENOENT); 206 } 207 if (unlikely(len == PATH_MAX)) { 208 __putname(kname); 209 kfree(result); 210 return ERR_PTR(-ENAMETOOLONG); 211 } 212 } 213 initname(result); 214 audit_getname(result); 215 return result; 216 } 217 218 struct filename *getname_uflags(const char __user *filename, int uflags) 219 { 220 int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 221 222 return getname_flags(filename, flags); 223 } 224 225 struct filename *__getname_maybe_null(const char __user *pathname) 226 { 227 struct filename *name; 228 char c; 229 230 /* try to save on allocations; loss on um, though */ 231 if (get_user(c, pathname)) 232 return ERR_PTR(-EFAULT); 233 if (!c) 234 return NULL; 235 236 name = getname_flags(pathname, LOOKUP_EMPTY); 237 if (!IS_ERR(name) && !(name->name[0])) { 238 putname(name); 239 name = NULL; 240 } 241 return name; 242 } 243 244 struct filename *getname_kernel(const char * filename) 245 { 246 struct filename *result; 247 int len = strlen(filename) + 1; 248 249 result = __getname(); 250 if (unlikely(!result)) 251 return ERR_PTR(-ENOMEM); 252 253 if (len <= EMBEDDED_NAME_MAX) { 254 result->name = (char *)result->iname; 255 } else if (len <= PATH_MAX) { 256 const size_t size = offsetof(struct filename, iname[1]); 257 struct filename *tmp; 258 259 tmp = kmalloc(size, GFP_KERNEL); 260 if (unlikely(!tmp)) { 261 __putname(result); 262 return ERR_PTR(-ENOMEM); 263 } 264 tmp->name = (char *)result; 265 result = tmp; 266 } else { 267 __putname(result); 268 return ERR_PTR(-ENAMETOOLONG); 269 } 270 memcpy((char *)result->name, filename, len); 271 initname(result); 272 audit_getname(result); 273 return result; 274 } 275 EXPORT_SYMBOL(getname_kernel); 276 277 void putname(struct filename *name) 278 { 279 int refcnt; 280 281 if (IS_ERR_OR_NULL(name)) 282 return; 283 284 refcnt = atomic_read(&name->refcnt); 285 if (refcnt != 1) { 286 if (WARN_ON_ONCE(!refcnt)) 287 return; 288 289 if (!atomic_dec_and_test(&name->refcnt)) 290 return; 291 } 292 293 if (name->name != name->iname) { 294 __putname(name->name); 295 kfree(name); 296 } else 297 __putname(name); 298 } 299 EXPORT_SYMBOL(putname); 300 301 /** 302 * check_acl - perform ACL permission checking 303 * @idmap: idmap of the mount the inode was found from 304 * @inode: inode to check permissions on 305 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 306 * 307 * This function performs the ACL permission checking. Since this function 308 * retrieve POSIX acls it needs to know whether it is called from a blocking or 309 * non-blocking context and thus cares about the MAY_NOT_BLOCK bit. 310 * 311 * If the inode has been found through an idmapped mount the idmap of 312 * the vfsmount must be passed through @idmap. This function will then take 313 * care to map the inode according to @idmap before checking permissions. 314 * On non-idmapped mounts or if permission checking is to be performed on the 315 * raw inode simply pass @nop_mnt_idmap. 316 */ 317 static int check_acl(struct mnt_idmap *idmap, 318 struct inode *inode, int mask) 319 { 320 #ifdef CONFIG_FS_POSIX_ACL 321 struct posix_acl *acl; 322 323 if (mask & MAY_NOT_BLOCK) { 324 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 325 if (!acl) 326 return -EAGAIN; 327 /* no ->get_inode_acl() calls in RCU mode... */ 328 if (is_uncached_acl(acl)) 329 return -ECHILD; 330 return posix_acl_permission(idmap, inode, acl, mask); 331 } 332 333 acl = get_inode_acl(inode, ACL_TYPE_ACCESS); 334 if (IS_ERR(acl)) 335 return PTR_ERR(acl); 336 if (acl) { 337 int error = posix_acl_permission(idmap, inode, acl, mask); 338 posix_acl_release(acl); 339 return error; 340 } 341 #endif 342 343 return -EAGAIN; 344 } 345 346 /* 347 * Very quick optimistic "we know we have no ACL's" check. 348 * 349 * Note that this is purely for ACL_TYPE_ACCESS, and purely 350 * for the "we have cached that there are no ACLs" case. 351 * 352 * If this returns true, we know there are no ACLs. But if 353 * it returns false, we might still not have ACLs (it could 354 * be the is_uncached_acl() case). 355 */ 356 static inline bool no_acl_inode(struct inode *inode) 357 { 358 #ifdef CONFIG_FS_POSIX_ACL 359 return likely(!READ_ONCE(inode->i_acl)); 360 #else 361 return true; 362 #endif 363 } 364 365 /** 366 * acl_permission_check - perform basic UNIX permission checking 367 * @idmap: idmap of the mount the inode was found from 368 * @inode: inode to check permissions on 369 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 370 * 371 * This function performs the basic UNIX permission checking. Since this 372 * function may retrieve POSIX acls it needs to know whether it is called from a 373 * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit. 374 * 375 * If the inode has been found through an idmapped mount the idmap of 376 * the vfsmount must be passed through @idmap. This function will then take 377 * care to map the inode according to @idmap before checking permissions. 378 * On non-idmapped mounts or if permission checking is to be performed on the 379 * raw inode simply pass @nop_mnt_idmap. 380 */ 381 static int acl_permission_check(struct mnt_idmap *idmap, 382 struct inode *inode, int mask) 383 { 384 unsigned int mode = inode->i_mode; 385 vfsuid_t vfsuid; 386 387 /* 388 * Common cheap case: everybody has the requested 389 * rights, and there are no ACLs to check. No need 390 * to do any owner/group checks in that case. 391 * 392 * - 'mask&7' is the requested permission bit set 393 * - multiplying by 0111 spreads them out to all of ugo 394 * - '& ~mode' looks for missing inode permission bits 395 * - the '!' is for "no missing permissions" 396 * 397 * After that, we just need to check that there are no 398 * ACL's on the inode - do the 'IS_POSIXACL()' check last 399 * because it will dereference the ->i_sb pointer and we 400 * want to avoid that if at all possible. 401 */ 402 if (!((mask & 7) * 0111 & ~mode)) { 403 if (no_acl_inode(inode)) 404 return 0; 405 if (!IS_POSIXACL(inode)) 406 return 0; 407 } 408 409 /* Are we the owner? If so, ACL's don't matter */ 410 vfsuid = i_uid_into_vfsuid(idmap, inode); 411 if (likely(vfsuid_eq_kuid(vfsuid, current_fsuid()))) { 412 mask &= 7; 413 mode >>= 6; 414 return (mask & ~mode) ? -EACCES : 0; 415 } 416 417 /* Do we have ACL's? */ 418 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 419 int error = check_acl(idmap, inode, mask); 420 if (error != -EAGAIN) 421 return error; 422 } 423 424 /* Only RWX matters for group/other mode bits */ 425 mask &= 7; 426 427 /* 428 * Are the group permissions different from 429 * the other permissions in the bits we care 430 * about? Need to check group ownership if so. 431 */ 432 if (mask & (mode ^ (mode >> 3))) { 433 vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode); 434 if (vfsgid_in_group_p(vfsgid)) 435 mode >>= 3; 436 } 437 438 /* Bits in 'mode' clear that we require? */ 439 return (mask & ~mode) ? -EACCES : 0; 440 } 441 442 /** 443 * generic_permission - check for access rights on a Posix-like filesystem 444 * @idmap: idmap of the mount the inode was found from 445 * @inode: inode to check access rights for 446 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, 447 * %MAY_NOT_BLOCK ...) 448 * 449 * Used to check for read/write/execute permissions on a file. 450 * We use "fsuid" for this, letting us set arbitrary permissions 451 * for filesystem access without changing the "normal" uids which 452 * are used for other things. 453 * 454 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 455 * request cannot be satisfied (eg. requires blocking or too much complexity). 456 * It would then be called again in ref-walk mode. 457 * 458 * If the inode has been found through an idmapped mount the idmap of 459 * the vfsmount must be passed through @idmap. This function will then take 460 * care to map the inode according to @idmap before checking permissions. 461 * On non-idmapped mounts or if permission checking is to be performed on the 462 * raw inode simply pass @nop_mnt_idmap. 463 */ 464 int generic_permission(struct mnt_idmap *idmap, struct inode *inode, 465 int mask) 466 { 467 int ret; 468 469 /* 470 * Do the basic permission checks. 471 */ 472 ret = acl_permission_check(idmap, inode, mask); 473 if (ret != -EACCES) 474 return ret; 475 476 if (S_ISDIR(inode->i_mode)) { 477 /* DACs are overridable for directories */ 478 if (!(mask & MAY_WRITE)) 479 if (capable_wrt_inode_uidgid(idmap, inode, 480 CAP_DAC_READ_SEARCH)) 481 return 0; 482 if (capable_wrt_inode_uidgid(idmap, inode, 483 CAP_DAC_OVERRIDE)) 484 return 0; 485 return -EACCES; 486 } 487 488 /* 489 * Searching includes executable on directories, else just read. 490 */ 491 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 492 if (mask == MAY_READ) 493 if (capable_wrt_inode_uidgid(idmap, inode, 494 CAP_DAC_READ_SEARCH)) 495 return 0; 496 /* 497 * Read/write DACs are always overridable. 498 * Executable DACs are overridable when there is 499 * at least one exec bit set. 500 */ 501 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 502 if (capable_wrt_inode_uidgid(idmap, inode, 503 CAP_DAC_OVERRIDE)) 504 return 0; 505 506 return -EACCES; 507 } 508 EXPORT_SYMBOL(generic_permission); 509 510 /** 511 * do_inode_permission - UNIX permission checking 512 * @idmap: idmap of the mount the inode was found from 513 * @inode: inode to check permissions on 514 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 515 * 516 * We _really_ want to just do "generic_permission()" without 517 * even looking at the inode->i_op values. So we keep a cache 518 * flag in inode->i_opflags, that says "this has not special 519 * permission function, use the fast case". 520 */ 521 static inline int do_inode_permission(struct mnt_idmap *idmap, 522 struct inode *inode, int mask) 523 { 524 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 525 if (likely(inode->i_op->permission)) 526 return inode->i_op->permission(idmap, inode, mask); 527 528 /* This gets set once for the inode lifetime */ 529 spin_lock(&inode->i_lock); 530 inode->i_opflags |= IOP_FASTPERM; 531 spin_unlock(&inode->i_lock); 532 } 533 return generic_permission(idmap, inode, mask); 534 } 535 536 /** 537 * sb_permission - Check superblock-level permissions 538 * @sb: Superblock of inode to check permission on 539 * @inode: Inode to check permission on 540 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 541 * 542 * Separate out file-system wide checks from inode-specific permission checks. 543 */ 544 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 545 { 546 if (unlikely(mask & MAY_WRITE)) { 547 umode_t mode = inode->i_mode; 548 549 /* Nobody gets write access to a read-only fs. */ 550 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 551 return -EROFS; 552 } 553 return 0; 554 } 555 556 /** 557 * inode_permission - Check for access rights to a given inode 558 * @idmap: idmap of the mount the inode was found from 559 * @inode: Inode to check permission on 560 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 561 * 562 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 563 * this, letting us set arbitrary permissions for filesystem access without 564 * changing the "normal" UIDs which are used for other things. 565 * 566 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 567 */ 568 int inode_permission(struct mnt_idmap *idmap, 569 struct inode *inode, int mask) 570 { 571 int retval; 572 573 retval = sb_permission(inode->i_sb, inode, mask); 574 if (retval) 575 return retval; 576 577 if (unlikely(mask & MAY_WRITE)) { 578 /* 579 * Nobody gets write access to an immutable file. 580 */ 581 if (IS_IMMUTABLE(inode)) 582 return -EPERM; 583 584 /* 585 * Updating mtime will likely cause i_uid and i_gid to be 586 * written back improperly if their true value is unknown 587 * to the vfs. 588 */ 589 if (HAS_UNMAPPED_ID(idmap, inode)) 590 return -EACCES; 591 } 592 593 retval = do_inode_permission(idmap, inode, mask); 594 if (retval) 595 return retval; 596 597 retval = devcgroup_inode_permission(inode, mask); 598 if (retval) 599 return retval; 600 601 return security_inode_permission(inode, mask); 602 } 603 EXPORT_SYMBOL(inode_permission); 604 605 /** 606 * path_get - get a reference to a path 607 * @path: path to get the reference to 608 * 609 * Given a path increment the reference count to the dentry and the vfsmount. 610 */ 611 void path_get(const struct path *path) 612 { 613 mntget(path->mnt); 614 dget(path->dentry); 615 } 616 EXPORT_SYMBOL(path_get); 617 618 /** 619 * path_put - put a reference to a path 620 * @path: path to put the reference to 621 * 622 * Given a path decrement the reference count to the dentry and the vfsmount. 623 */ 624 void path_put(const struct path *path) 625 { 626 dput(path->dentry); 627 mntput(path->mnt); 628 } 629 EXPORT_SYMBOL(path_put); 630 631 #define EMBEDDED_LEVELS 2 632 struct nameidata { 633 struct path path; 634 struct qstr last; 635 struct path root; 636 struct inode *inode; /* path.dentry.d_inode */ 637 unsigned int flags, state; 638 unsigned seq, next_seq, m_seq, r_seq; 639 int last_type; 640 unsigned depth; 641 int total_link_count; 642 struct saved { 643 struct path link; 644 struct delayed_call done; 645 const char *name; 646 unsigned seq; 647 } *stack, internal[EMBEDDED_LEVELS]; 648 struct filename *name; 649 const char *pathname; 650 struct nameidata *saved; 651 unsigned root_seq; 652 int dfd; 653 vfsuid_t dir_vfsuid; 654 umode_t dir_mode; 655 } __randomize_layout; 656 657 #define ND_ROOT_PRESET 1 658 #define ND_ROOT_GRABBED 2 659 #define ND_JUMPED 4 660 661 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name) 662 { 663 struct nameidata *old = current->nameidata; 664 p->stack = p->internal; 665 p->depth = 0; 666 p->dfd = dfd; 667 p->name = name; 668 p->pathname = likely(name) ? name->name : ""; 669 p->path.mnt = NULL; 670 p->path.dentry = NULL; 671 p->total_link_count = old ? old->total_link_count : 0; 672 p->saved = old; 673 current->nameidata = p; 674 } 675 676 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name, 677 const struct path *root) 678 { 679 __set_nameidata(p, dfd, name); 680 p->state = 0; 681 if (unlikely(root)) { 682 p->state = ND_ROOT_PRESET; 683 p->root = *root; 684 } 685 } 686 687 static void restore_nameidata(void) 688 { 689 struct nameidata *now = current->nameidata, *old = now->saved; 690 691 current->nameidata = old; 692 if (old) 693 old->total_link_count = now->total_link_count; 694 if (now->stack != now->internal) 695 kfree(now->stack); 696 } 697 698 static bool nd_alloc_stack(struct nameidata *nd) 699 { 700 struct saved *p; 701 702 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved), 703 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL); 704 if (unlikely(!p)) 705 return false; 706 memcpy(p, nd->internal, sizeof(nd->internal)); 707 nd->stack = p; 708 return true; 709 } 710 711 /** 712 * path_connected - Verify that a dentry is below mnt.mnt_root 713 * @mnt: The mountpoint to check. 714 * @dentry: The dentry to check. 715 * 716 * Rename can sometimes move a file or directory outside of a bind 717 * mount, path_connected allows those cases to be detected. 718 */ 719 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry) 720 { 721 struct super_block *sb = mnt->mnt_sb; 722 723 /* Bind mounts can have disconnected paths */ 724 if (mnt->mnt_root == sb->s_root) 725 return true; 726 727 return is_subdir(dentry, mnt->mnt_root); 728 } 729 730 static void drop_links(struct nameidata *nd) 731 { 732 int i = nd->depth; 733 while (i--) { 734 struct saved *last = nd->stack + i; 735 do_delayed_call(&last->done); 736 clear_delayed_call(&last->done); 737 } 738 } 739 740 static void leave_rcu(struct nameidata *nd) 741 { 742 nd->flags &= ~LOOKUP_RCU; 743 nd->seq = nd->next_seq = 0; 744 rcu_read_unlock(); 745 } 746 747 static void terminate_walk(struct nameidata *nd) 748 { 749 drop_links(nd); 750 if (!(nd->flags & LOOKUP_RCU)) { 751 int i; 752 path_put(&nd->path); 753 for (i = 0; i < nd->depth; i++) 754 path_put(&nd->stack[i].link); 755 if (nd->state & ND_ROOT_GRABBED) { 756 path_put(&nd->root); 757 nd->state &= ~ND_ROOT_GRABBED; 758 } 759 } else { 760 leave_rcu(nd); 761 } 762 nd->depth = 0; 763 nd->path.mnt = NULL; 764 nd->path.dentry = NULL; 765 } 766 767 /* path_put is needed afterwards regardless of success or failure */ 768 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq) 769 { 770 int res = __legitimize_mnt(path->mnt, mseq); 771 if (unlikely(res)) { 772 if (res > 0) 773 path->mnt = NULL; 774 path->dentry = NULL; 775 return false; 776 } 777 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) { 778 path->dentry = NULL; 779 return false; 780 } 781 return !read_seqcount_retry(&path->dentry->d_seq, seq); 782 } 783 784 static inline bool legitimize_path(struct nameidata *nd, 785 struct path *path, unsigned seq) 786 { 787 return __legitimize_path(path, seq, nd->m_seq); 788 } 789 790 static bool legitimize_links(struct nameidata *nd) 791 { 792 int i; 793 if (unlikely(nd->flags & LOOKUP_CACHED)) { 794 drop_links(nd); 795 nd->depth = 0; 796 return false; 797 } 798 for (i = 0; i < nd->depth; i++) { 799 struct saved *last = nd->stack + i; 800 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) { 801 drop_links(nd); 802 nd->depth = i + 1; 803 return false; 804 } 805 } 806 return true; 807 } 808 809 static bool legitimize_root(struct nameidata *nd) 810 { 811 /* Nothing to do if nd->root is zero or is managed by the VFS user. */ 812 if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET)) 813 return true; 814 nd->state |= ND_ROOT_GRABBED; 815 return legitimize_path(nd, &nd->root, nd->root_seq); 816 } 817 818 /* 819 * Path walking has 2 modes, rcu-walk and ref-walk (see 820 * Documentation/filesystems/path-lookup.txt). In situations when we can't 821 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 822 * normal reference counts on dentries and vfsmounts to transition to ref-walk 823 * mode. Refcounts are grabbed at the last known good point before rcu-walk 824 * got stuck, so ref-walk may continue from there. If this is not successful 825 * (eg. a seqcount has changed), then failure is returned and it's up to caller 826 * to restart the path walk from the beginning in ref-walk mode. 827 */ 828 829 /** 830 * try_to_unlazy - try to switch to ref-walk mode. 831 * @nd: nameidata pathwalk data 832 * Returns: true on success, false on failure 833 * 834 * try_to_unlazy attempts to legitimize the current nd->path and nd->root 835 * for ref-walk mode. 836 * Must be called from rcu-walk context. 837 * Nothing should touch nameidata between try_to_unlazy() failure and 838 * terminate_walk(). 839 */ 840 static bool try_to_unlazy(struct nameidata *nd) 841 { 842 struct dentry *parent = nd->path.dentry; 843 844 BUG_ON(!(nd->flags & LOOKUP_RCU)); 845 846 if (unlikely(!legitimize_links(nd))) 847 goto out1; 848 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq))) 849 goto out; 850 if (unlikely(!legitimize_root(nd))) 851 goto out; 852 leave_rcu(nd); 853 BUG_ON(nd->inode != parent->d_inode); 854 return true; 855 856 out1: 857 nd->path.mnt = NULL; 858 nd->path.dentry = NULL; 859 out: 860 leave_rcu(nd); 861 return false; 862 } 863 864 /** 865 * try_to_unlazy_next - try to switch to ref-walk mode. 866 * @nd: nameidata pathwalk data 867 * @dentry: next dentry to step into 868 * Returns: true on success, false on failure 869 * 870 * Similar to try_to_unlazy(), but here we have the next dentry already 871 * picked by rcu-walk and want to legitimize that in addition to the current 872 * nd->path and nd->root for ref-walk mode. Must be called from rcu-walk context. 873 * Nothing should touch nameidata between try_to_unlazy_next() failure and 874 * terminate_walk(). 875 */ 876 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry) 877 { 878 int res; 879 BUG_ON(!(nd->flags & LOOKUP_RCU)); 880 881 if (unlikely(!legitimize_links(nd))) 882 goto out2; 883 res = __legitimize_mnt(nd->path.mnt, nd->m_seq); 884 if (unlikely(res)) { 885 if (res > 0) 886 goto out2; 887 goto out1; 888 } 889 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref))) 890 goto out1; 891 892 /* 893 * We need to move both the parent and the dentry from the RCU domain 894 * to be properly refcounted. And the sequence number in the dentry 895 * validates *both* dentry counters, since we checked the sequence 896 * number of the parent after we got the child sequence number. So we 897 * know the parent must still be valid if the child sequence number is 898 */ 899 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) 900 goto out; 901 if (read_seqcount_retry(&dentry->d_seq, nd->next_seq)) 902 goto out_dput; 903 /* 904 * Sequence counts matched. Now make sure that the root is 905 * still valid and get it if required. 906 */ 907 if (unlikely(!legitimize_root(nd))) 908 goto out_dput; 909 leave_rcu(nd); 910 return true; 911 912 out2: 913 nd->path.mnt = NULL; 914 out1: 915 nd->path.dentry = NULL; 916 out: 917 leave_rcu(nd); 918 return false; 919 out_dput: 920 leave_rcu(nd); 921 dput(dentry); 922 return false; 923 } 924 925 static inline int d_revalidate(struct inode *dir, const struct qstr *name, 926 struct dentry *dentry, unsigned int flags) 927 { 928 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) 929 return dentry->d_op->d_revalidate(dir, name, dentry, flags); 930 else 931 return 1; 932 } 933 934 /** 935 * complete_walk - successful completion of path walk 936 * @nd: pointer nameidata 937 * 938 * If we had been in RCU mode, drop out of it and legitimize nd->path. 939 * Revalidate the final result, unless we'd already done that during 940 * the path walk or the filesystem doesn't ask for it. Return 0 on 941 * success, -error on failure. In case of failure caller does not 942 * need to drop nd->path. 943 */ 944 static int complete_walk(struct nameidata *nd) 945 { 946 struct dentry *dentry = nd->path.dentry; 947 int status; 948 949 if (nd->flags & LOOKUP_RCU) { 950 /* 951 * We don't want to zero nd->root for scoped-lookups or 952 * externally-managed nd->root. 953 */ 954 if (!(nd->state & ND_ROOT_PRESET)) 955 if (!(nd->flags & LOOKUP_IS_SCOPED)) 956 nd->root.mnt = NULL; 957 nd->flags &= ~LOOKUP_CACHED; 958 if (!try_to_unlazy(nd)) 959 return -ECHILD; 960 } 961 962 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { 963 /* 964 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't 965 * ever step outside the root during lookup" and should already 966 * be guaranteed by the rest of namei, we want to avoid a namei 967 * BUG resulting in userspace being given a path that was not 968 * scoped within the root at some point during the lookup. 969 * 970 * So, do a final sanity-check to make sure that in the 971 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED) 972 * we won't silently return an fd completely outside of the 973 * requested root to userspace. 974 * 975 * Userspace could move the path outside the root after this 976 * check, but as discussed elsewhere this is not a concern (the 977 * resolved file was inside the root at some point). 978 */ 979 if (!path_is_under(&nd->path, &nd->root)) 980 return -EXDEV; 981 } 982 983 if (likely(!(nd->state & ND_JUMPED))) 984 return 0; 985 986 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 987 return 0; 988 989 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 990 if (status > 0) 991 return 0; 992 993 if (!status) 994 status = -ESTALE; 995 996 return status; 997 } 998 999 static int set_root(struct nameidata *nd) 1000 { 1001 struct fs_struct *fs = current->fs; 1002 1003 /* 1004 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we 1005 * still have to ensure it doesn't happen because it will cause a breakout 1006 * from the dirfd. 1007 */ 1008 if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED)) 1009 return -ENOTRECOVERABLE; 1010 1011 if (nd->flags & LOOKUP_RCU) { 1012 unsigned seq; 1013 1014 do { 1015 seq = read_seqcount_begin(&fs->seq); 1016 nd->root = fs->root; 1017 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 1018 } while (read_seqcount_retry(&fs->seq, seq)); 1019 } else { 1020 get_fs_root(fs, &nd->root); 1021 nd->state |= ND_ROOT_GRABBED; 1022 } 1023 return 0; 1024 } 1025 1026 static int nd_jump_root(struct nameidata *nd) 1027 { 1028 if (unlikely(nd->flags & LOOKUP_BENEATH)) 1029 return -EXDEV; 1030 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { 1031 /* Absolute path arguments to path_init() are allowed. */ 1032 if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt) 1033 return -EXDEV; 1034 } 1035 if (!nd->root.mnt) { 1036 int error = set_root(nd); 1037 if (error) 1038 return error; 1039 } 1040 if (nd->flags & LOOKUP_RCU) { 1041 struct dentry *d; 1042 nd->path = nd->root; 1043 d = nd->path.dentry; 1044 nd->inode = d->d_inode; 1045 nd->seq = nd->root_seq; 1046 if (read_seqcount_retry(&d->d_seq, nd->seq)) 1047 return -ECHILD; 1048 } else { 1049 path_put(&nd->path); 1050 nd->path = nd->root; 1051 path_get(&nd->path); 1052 nd->inode = nd->path.dentry->d_inode; 1053 } 1054 nd->state |= ND_JUMPED; 1055 return 0; 1056 } 1057 1058 /* 1059 * Helper to directly jump to a known parsed path from ->get_link, 1060 * caller must have taken a reference to path beforehand. 1061 */ 1062 int nd_jump_link(const struct path *path) 1063 { 1064 int error = -ELOOP; 1065 struct nameidata *nd = current->nameidata; 1066 1067 if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS)) 1068 goto err; 1069 1070 error = -EXDEV; 1071 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { 1072 if (nd->path.mnt != path->mnt) 1073 goto err; 1074 } 1075 /* Not currently safe for scoped-lookups. */ 1076 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) 1077 goto err; 1078 1079 path_put(&nd->path); 1080 nd->path = *path; 1081 nd->inode = nd->path.dentry->d_inode; 1082 nd->state |= ND_JUMPED; 1083 return 0; 1084 1085 err: 1086 path_put(path); 1087 return error; 1088 } 1089 1090 static inline void put_link(struct nameidata *nd) 1091 { 1092 struct saved *last = nd->stack + --nd->depth; 1093 do_delayed_call(&last->done); 1094 if (!(nd->flags & LOOKUP_RCU)) 1095 path_put(&last->link); 1096 } 1097 1098 static int sysctl_protected_symlinks __read_mostly; 1099 static int sysctl_protected_hardlinks __read_mostly; 1100 static int sysctl_protected_fifos __read_mostly; 1101 static int sysctl_protected_regular __read_mostly; 1102 1103 #ifdef CONFIG_SYSCTL 1104 static const struct ctl_table namei_sysctls[] = { 1105 { 1106 .procname = "protected_symlinks", 1107 .data = &sysctl_protected_symlinks, 1108 .maxlen = sizeof(int), 1109 .mode = 0644, 1110 .proc_handler = proc_dointvec_minmax, 1111 .extra1 = SYSCTL_ZERO, 1112 .extra2 = SYSCTL_ONE, 1113 }, 1114 { 1115 .procname = "protected_hardlinks", 1116 .data = &sysctl_protected_hardlinks, 1117 .maxlen = sizeof(int), 1118 .mode = 0644, 1119 .proc_handler = proc_dointvec_minmax, 1120 .extra1 = SYSCTL_ZERO, 1121 .extra2 = SYSCTL_ONE, 1122 }, 1123 { 1124 .procname = "protected_fifos", 1125 .data = &sysctl_protected_fifos, 1126 .maxlen = sizeof(int), 1127 .mode = 0644, 1128 .proc_handler = proc_dointvec_minmax, 1129 .extra1 = SYSCTL_ZERO, 1130 .extra2 = SYSCTL_TWO, 1131 }, 1132 { 1133 .procname = "protected_regular", 1134 .data = &sysctl_protected_regular, 1135 .maxlen = sizeof(int), 1136 .mode = 0644, 1137 .proc_handler = proc_dointvec_minmax, 1138 .extra1 = SYSCTL_ZERO, 1139 .extra2 = SYSCTL_TWO, 1140 }, 1141 }; 1142 1143 static int __init init_fs_namei_sysctls(void) 1144 { 1145 register_sysctl_init("fs", namei_sysctls); 1146 return 0; 1147 } 1148 fs_initcall(init_fs_namei_sysctls); 1149 1150 #endif /* CONFIG_SYSCTL */ 1151 1152 /** 1153 * may_follow_link - Check symlink following for unsafe situations 1154 * @nd: nameidata pathwalk data 1155 * @inode: Used for idmapping. 1156 * 1157 * In the case of the sysctl_protected_symlinks sysctl being enabled, 1158 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 1159 * in a sticky world-writable directory. This is to protect privileged 1160 * processes from failing races against path names that may change out 1161 * from under them by way of other users creating malicious symlinks. 1162 * It will permit symlinks to be followed only when outside a sticky 1163 * world-writable directory, or when the uid of the symlink and follower 1164 * match, or when the directory owner matches the symlink's owner. 1165 * 1166 * Returns 0 if following the symlink is allowed, -ve on error. 1167 */ 1168 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode) 1169 { 1170 struct mnt_idmap *idmap; 1171 vfsuid_t vfsuid; 1172 1173 if (!sysctl_protected_symlinks) 1174 return 0; 1175 1176 idmap = mnt_idmap(nd->path.mnt); 1177 vfsuid = i_uid_into_vfsuid(idmap, inode); 1178 /* Allowed if owner and follower match. */ 1179 if (vfsuid_eq_kuid(vfsuid, current_fsuid())) 1180 return 0; 1181 1182 /* Allowed if parent directory not sticky and world-writable. */ 1183 if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 1184 return 0; 1185 1186 /* Allowed if parent directory and link owner match. */ 1187 if (vfsuid_valid(nd->dir_vfsuid) && vfsuid_eq(nd->dir_vfsuid, vfsuid)) 1188 return 0; 1189 1190 if (nd->flags & LOOKUP_RCU) 1191 return -ECHILD; 1192 1193 audit_inode(nd->name, nd->stack[0].link.dentry, 0); 1194 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link"); 1195 return -EACCES; 1196 } 1197 1198 /** 1199 * safe_hardlink_source - Check for safe hardlink conditions 1200 * @idmap: idmap of the mount the inode was found from 1201 * @inode: the source inode to hardlink from 1202 * 1203 * Return false if at least one of the following conditions: 1204 * - inode is not a regular file 1205 * - inode is setuid 1206 * - inode is setgid and group-exec 1207 * - access failure for read and write 1208 * 1209 * Otherwise returns true. 1210 */ 1211 static bool safe_hardlink_source(struct mnt_idmap *idmap, 1212 struct inode *inode) 1213 { 1214 umode_t mode = inode->i_mode; 1215 1216 /* Special files should not get pinned to the filesystem. */ 1217 if (!S_ISREG(mode)) 1218 return false; 1219 1220 /* Setuid files should not get pinned to the filesystem. */ 1221 if (mode & S_ISUID) 1222 return false; 1223 1224 /* Executable setgid files should not get pinned to the filesystem. */ 1225 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 1226 return false; 1227 1228 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 1229 if (inode_permission(idmap, inode, MAY_READ | MAY_WRITE)) 1230 return false; 1231 1232 return true; 1233 } 1234 1235 /** 1236 * may_linkat - Check permissions for creating a hardlink 1237 * @idmap: idmap of the mount the inode was found from 1238 * @link: the source to hardlink from 1239 * 1240 * Block hardlink when all of: 1241 * - sysctl_protected_hardlinks enabled 1242 * - fsuid does not match inode 1243 * - hardlink source is unsafe (see safe_hardlink_source() above) 1244 * - not CAP_FOWNER in a namespace with the inode owner uid mapped 1245 * 1246 * If the inode has been found through an idmapped mount the idmap of 1247 * the vfsmount must be passed through @idmap. This function will then take 1248 * care to map the inode according to @idmap before checking permissions. 1249 * On non-idmapped mounts or if permission checking is to be performed on the 1250 * raw inode simply pass @nop_mnt_idmap. 1251 * 1252 * Returns 0 if successful, -ve on error. 1253 */ 1254 int may_linkat(struct mnt_idmap *idmap, const struct path *link) 1255 { 1256 struct inode *inode = link->dentry->d_inode; 1257 1258 /* Inode writeback is not safe when the uid or gid are invalid. */ 1259 if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) || 1260 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode))) 1261 return -EOVERFLOW; 1262 1263 if (!sysctl_protected_hardlinks) 1264 return 0; 1265 1266 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 1267 * otherwise, it must be a safe source. 1268 */ 1269 if (safe_hardlink_source(idmap, inode) || 1270 inode_owner_or_capable(idmap, inode)) 1271 return 0; 1272 1273 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat"); 1274 return -EPERM; 1275 } 1276 1277 /** 1278 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory 1279 * should be allowed, or not, on files that already 1280 * exist. 1281 * @idmap: idmap of the mount the inode was found from 1282 * @nd: nameidata pathwalk data 1283 * @inode: the inode of the file to open 1284 * 1285 * Block an O_CREAT open of a FIFO (or a regular file) when: 1286 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled 1287 * - the file already exists 1288 * - we are in a sticky directory 1289 * - we don't own the file 1290 * - the owner of the directory doesn't own the file 1291 * - the directory is world writable 1292 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2 1293 * the directory doesn't have to be world writable: being group writable will 1294 * be enough. 1295 * 1296 * If the inode has been found through an idmapped mount the idmap of 1297 * the vfsmount must be passed through @idmap. This function will then take 1298 * care to map the inode according to @idmap before checking permissions. 1299 * On non-idmapped mounts or if permission checking is to be performed on the 1300 * raw inode simply pass @nop_mnt_idmap. 1301 * 1302 * Returns 0 if the open is allowed, -ve on error. 1303 */ 1304 static int may_create_in_sticky(struct mnt_idmap *idmap, struct nameidata *nd, 1305 struct inode *const inode) 1306 { 1307 umode_t dir_mode = nd->dir_mode; 1308 vfsuid_t dir_vfsuid = nd->dir_vfsuid, i_vfsuid; 1309 1310 if (likely(!(dir_mode & S_ISVTX))) 1311 return 0; 1312 1313 if (S_ISREG(inode->i_mode) && !sysctl_protected_regular) 1314 return 0; 1315 1316 if (S_ISFIFO(inode->i_mode) && !sysctl_protected_fifos) 1317 return 0; 1318 1319 i_vfsuid = i_uid_into_vfsuid(idmap, inode); 1320 1321 if (vfsuid_eq(i_vfsuid, dir_vfsuid)) 1322 return 0; 1323 1324 if (vfsuid_eq_kuid(i_vfsuid, current_fsuid())) 1325 return 0; 1326 1327 if (likely(dir_mode & 0002)) { 1328 audit_log_path_denied(AUDIT_ANOM_CREAT, "sticky_create"); 1329 return -EACCES; 1330 } 1331 1332 if (dir_mode & 0020) { 1333 if (sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) { 1334 audit_log_path_denied(AUDIT_ANOM_CREAT, 1335 "sticky_create_fifo"); 1336 return -EACCES; 1337 } 1338 1339 if (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode)) { 1340 audit_log_path_denied(AUDIT_ANOM_CREAT, 1341 "sticky_create_regular"); 1342 return -EACCES; 1343 } 1344 } 1345 1346 return 0; 1347 } 1348 1349 /* 1350 * follow_up - Find the mountpoint of path's vfsmount 1351 * 1352 * Given a path, find the mountpoint of its source file system. 1353 * Replace @path with the path of the mountpoint in the parent mount. 1354 * Up is towards /. 1355 * 1356 * Return 1 if we went up a level and 0 if we were already at the 1357 * root. 1358 */ 1359 int follow_up(struct path *path) 1360 { 1361 struct mount *mnt = real_mount(path->mnt); 1362 struct mount *parent; 1363 struct dentry *mountpoint; 1364 1365 read_seqlock_excl(&mount_lock); 1366 parent = mnt->mnt_parent; 1367 if (parent == mnt) { 1368 read_sequnlock_excl(&mount_lock); 1369 return 0; 1370 } 1371 mntget(&parent->mnt); 1372 mountpoint = dget(mnt->mnt_mountpoint); 1373 read_sequnlock_excl(&mount_lock); 1374 dput(path->dentry); 1375 path->dentry = mountpoint; 1376 mntput(path->mnt); 1377 path->mnt = &parent->mnt; 1378 return 1; 1379 } 1380 EXPORT_SYMBOL(follow_up); 1381 1382 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root, 1383 struct path *path, unsigned *seqp) 1384 { 1385 while (mnt_has_parent(m)) { 1386 struct dentry *mountpoint = m->mnt_mountpoint; 1387 1388 m = m->mnt_parent; 1389 if (unlikely(root->dentry == mountpoint && 1390 root->mnt == &m->mnt)) 1391 break; 1392 if (mountpoint != m->mnt.mnt_root) { 1393 path->mnt = &m->mnt; 1394 path->dentry = mountpoint; 1395 *seqp = read_seqcount_begin(&mountpoint->d_seq); 1396 return true; 1397 } 1398 } 1399 return false; 1400 } 1401 1402 static bool choose_mountpoint(struct mount *m, const struct path *root, 1403 struct path *path) 1404 { 1405 bool found; 1406 1407 rcu_read_lock(); 1408 while (1) { 1409 unsigned seq, mseq = read_seqbegin(&mount_lock); 1410 1411 found = choose_mountpoint_rcu(m, root, path, &seq); 1412 if (unlikely(!found)) { 1413 if (!read_seqretry(&mount_lock, mseq)) 1414 break; 1415 } else { 1416 if (likely(__legitimize_path(path, seq, mseq))) 1417 break; 1418 rcu_read_unlock(); 1419 path_put(path); 1420 rcu_read_lock(); 1421 } 1422 } 1423 rcu_read_unlock(); 1424 return found; 1425 } 1426 1427 /* 1428 * Perform an automount 1429 * - return -EISDIR to tell follow_managed() to stop and return the path we 1430 * were called with. 1431 */ 1432 static int follow_automount(struct path *path, int *count, unsigned lookup_flags) 1433 { 1434 struct dentry *dentry = path->dentry; 1435 1436 /* We don't want to mount if someone's just doing a stat - 1437 * unless they're stat'ing a directory and appended a '/' to 1438 * the name. 1439 * 1440 * We do, however, want to mount if someone wants to open or 1441 * create a file of any type under the mountpoint, wants to 1442 * traverse through the mountpoint or wants to open the 1443 * mounted directory. Also, autofs may mark negative dentries 1444 * as being automount points. These will need the attentions 1445 * of the daemon to instantiate them before they can be used. 1446 */ 1447 if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 1448 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 1449 dentry->d_inode) 1450 return -EISDIR; 1451 1452 if (count && (*count)++ >= MAXSYMLINKS) 1453 return -ELOOP; 1454 1455 return finish_automount(dentry->d_op->d_automount(path), path); 1456 } 1457 1458 /* 1459 * mount traversal - out-of-line part. One note on ->d_flags accesses - 1460 * dentries are pinned but not locked here, so negative dentry can go 1461 * positive right under us. Use of smp_load_acquire() provides a barrier 1462 * sufficient for ->d_inode and ->d_flags consistency. 1463 */ 1464 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped, 1465 int *count, unsigned lookup_flags) 1466 { 1467 struct vfsmount *mnt = path->mnt; 1468 bool need_mntput = false; 1469 int ret = 0; 1470 1471 while (flags & DCACHE_MANAGED_DENTRY) { 1472 /* Allow the filesystem to manage the transit without i_mutex 1473 * being held. */ 1474 if (flags & DCACHE_MANAGE_TRANSIT) { 1475 ret = path->dentry->d_op->d_manage(path, false); 1476 flags = smp_load_acquire(&path->dentry->d_flags); 1477 if (ret < 0) 1478 break; 1479 } 1480 1481 if (flags & DCACHE_MOUNTED) { // something's mounted on it.. 1482 struct vfsmount *mounted = lookup_mnt(path); 1483 if (mounted) { // ... in our namespace 1484 dput(path->dentry); 1485 if (need_mntput) 1486 mntput(path->mnt); 1487 path->mnt = mounted; 1488 path->dentry = dget(mounted->mnt_root); 1489 // here we know it's positive 1490 flags = path->dentry->d_flags; 1491 need_mntput = true; 1492 continue; 1493 } 1494 } 1495 1496 if (!(flags & DCACHE_NEED_AUTOMOUNT)) 1497 break; 1498 1499 // uncovered automount point 1500 ret = follow_automount(path, count, lookup_flags); 1501 flags = smp_load_acquire(&path->dentry->d_flags); 1502 if (ret < 0) 1503 break; 1504 } 1505 1506 if (ret == -EISDIR) 1507 ret = 0; 1508 // possible if you race with several mount --move 1509 if (need_mntput && path->mnt == mnt) 1510 mntput(path->mnt); 1511 if (!ret && unlikely(d_flags_negative(flags))) 1512 ret = -ENOENT; 1513 *jumped = need_mntput; 1514 return ret; 1515 } 1516 1517 static inline int traverse_mounts(struct path *path, bool *jumped, 1518 int *count, unsigned lookup_flags) 1519 { 1520 unsigned flags = smp_load_acquire(&path->dentry->d_flags); 1521 1522 /* fastpath */ 1523 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) { 1524 *jumped = false; 1525 if (unlikely(d_flags_negative(flags))) 1526 return -ENOENT; 1527 return 0; 1528 } 1529 return __traverse_mounts(path, flags, jumped, count, lookup_flags); 1530 } 1531 1532 int follow_down_one(struct path *path) 1533 { 1534 struct vfsmount *mounted; 1535 1536 mounted = lookup_mnt(path); 1537 if (mounted) { 1538 dput(path->dentry); 1539 mntput(path->mnt); 1540 path->mnt = mounted; 1541 path->dentry = dget(mounted->mnt_root); 1542 return 1; 1543 } 1544 return 0; 1545 } 1546 EXPORT_SYMBOL(follow_down_one); 1547 1548 /* 1549 * Follow down to the covering mount currently visible to userspace. At each 1550 * point, the filesystem owning that dentry may be queried as to whether the 1551 * caller is permitted to proceed or not. 1552 */ 1553 int follow_down(struct path *path, unsigned int flags) 1554 { 1555 struct vfsmount *mnt = path->mnt; 1556 bool jumped; 1557 int ret = traverse_mounts(path, &jumped, NULL, flags); 1558 1559 if (path->mnt != mnt) 1560 mntput(mnt); 1561 return ret; 1562 } 1563 EXPORT_SYMBOL(follow_down); 1564 1565 /* 1566 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1567 * we meet a managed dentry that would need blocking. 1568 */ 1569 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path) 1570 { 1571 struct dentry *dentry = path->dentry; 1572 unsigned int flags = dentry->d_flags; 1573 1574 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) 1575 return true; 1576 1577 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1578 return false; 1579 1580 for (;;) { 1581 /* 1582 * Don't forget we might have a non-mountpoint managed dentry 1583 * that wants to block transit. 1584 */ 1585 if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) { 1586 int res = dentry->d_op->d_manage(path, true); 1587 if (res) 1588 return res == -EISDIR; 1589 flags = dentry->d_flags; 1590 } 1591 1592 if (flags & DCACHE_MOUNTED) { 1593 struct mount *mounted = __lookup_mnt(path->mnt, dentry); 1594 if (mounted) { 1595 path->mnt = &mounted->mnt; 1596 dentry = path->dentry = mounted->mnt.mnt_root; 1597 nd->state |= ND_JUMPED; 1598 nd->next_seq = read_seqcount_begin(&dentry->d_seq); 1599 flags = dentry->d_flags; 1600 // makes sure that non-RCU pathwalk could reach 1601 // this state. 1602 if (read_seqretry(&mount_lock, nd->m_seq)) 1603 return false; 1604 continue; 1605 } 1606 if (read_seqretry(&mount_lock, nd->m_seq)) 1607 return false; 1608 } 1609 return !(flags & DCACHE_NEED_AUTOMOUNT); 1610 } 1611 } 1612 1613 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry, 1614 struct path *path) 1615 { 1616 bool jumped; 1617 int ret; 1618 1619 path->mnt = nd->path.mnt; 1620 path->dentry = dentry; 1621 if (nd->flags & LOOKUP_RCU) { 1622 unsigned int seq = nd->next_seq; 1623 if (likely(__follow_mount_rcu(nd, path))) 1624 return 0; 1625 // *path and nd->next_seq might've been clobbered 1626 path->mnt = nd->path.mnt; 1627 path->dentry = dentry; 1628 nd->next_seq = seq; 1629 if (!try_to_unlazy_next(nd, dentry)) 1630 return -ECHILD; 1631 } 1632 ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags); 1633 if (jumped) { 1634 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1635 ret = -EXDEV; 1636 else 1637 nd->state |= ND_JUMPED; 1638 } 1639 if (unlikely(ret)) { 1640 dput(path->dentry); 1641 if (path->mnt != nd->path.mnt) 1642 mntput(path->mnt); 1643 } 1644 return ret; 1645 } 1646 1647 /* 1648 * This looks up the name in dcache and possibly revalidates the found dentry. 1649 * NULL is returned if the dentry does not exist in the cache. 1650 */ 1651 static struct dentry *lookup_dcache(const struct qstr *name, 1652 struct dentry *dir, 1653 unsigned int flags) 1654 { 1655 struct dentry *dentry = d_lookup(dir, name); 1656 if (dentry) { 1657 int error = d_revalidate(dir->d_inode, name, dentry, flags); 1658 if (unlikely(error <= 0)) { 1659 if (!error) 1660 d_invalidate(dentry); 1661 dput(dentry); 1662 return ERR_PTR(error); 1663 } 1664 } 1665 return dentry; 1666 } 1667 1668 /* 1669 * Parent directory has inode locked exclusive. This is one 1670 * and only case when ->lookup() gets called on non in-lookup 1671 * dentries - as the matter of fact, this only gets called 1672 * when directory is guaranteed to have no in-lookup children 1673 * at all. 1674 */ 1675 struct dentry *lookup_one_qstr_excl(const struct qstr *name, 1676 struct dentry *base, 1677 unsigned int flags) 1678 { 1679 struct dentry *dentry = lookup_dcache(name, base, flags); 1680 struct dentry *old; 1681 struct inode *dir = base->d_inode; 1682 1683 if (dentry) 1684 return dentry; 1685 1686 /* Don't create child dentry for a dead directory. */ 1687 if (unlikely(IS_DEADDIR(dir))) 1688 return ERR_PTR(-ENOENT); 1689 1690 dentry = d_alloc(base, name); 1691 if (unlikely(!dentry)) 1692 return ERR_PTR(-ENOMEM); 1693 1694 old = dir->i_op->lookup(dir, dentry, flags); 1695 if (unlikely(old)) { 1696 dput(dentry); 1697 dentry = old; 1698 } 1699 return dentry; 1700 } 1701 EXPORT_SYMBOL(lookup_one_qstr_excl); 1702 1703 /** 1704 * lookup_fast - do fast lockless (but racy) lookup of a dentry 1705 * @nd: current nameidata 1706 * 1707 * Do a fast, but racy lookup in the dcache for the given dentry, and 1708 * revalidate it. Returns a valid dentry pointer or NULL if one wasn't 1709 * found. On error, an ERR_PTR will be returned. 1710 * 1711 * If this function returns a valid dentry and the walk is no longer 1712 * lazy, the dentry will carry a reference that must later be put. If 1713 * RCU mode is still in force, then this is not the case and the dentry 1714 * must be legitimized before use. If this returns NULL, then the walk 1715 * will no longer be in RCU mode. 1716 */ 1717 static struct dentry *lookup_fast(struct nameidata *nd) 1718 { 1719 struct dentry *dentry, *parent = nd->path.dentry; 1720 int status = 1; 1721 1722 /* 1723 * Rename seqlock is not required here because in the off chance 1724 * of a false negative due to a concurrent rename, the caller is 1725 * going to fall back to non-racy lookup. 1726 */ 1727 if (nd->flags & LOOKUP_RCU) { 1728 dentry = __d_lookup_rcu(parent, &nd->last, &nd->next_seq); 1729 if (unlikely(!dentry)) { 1730 if (!try_to_unlazy(nd)) 1731 return ERR_PTR(-ECHILD); 1732 return NULL; 1733 } 1734 1735 /* 1736 * This sequence count validates that the parent had no 1737 * changes while we did the lookup of the dentry above. 1738 */ 1739 if (read_seqcount_retry(&parent->d_seq, nd->seq)) 1740 return ERR_PTR(-ECHILD); 1741 1742 status = d_revalidate(nd->inode, &nd->last, dentry, nd->flags); 1743 if (likely(status > 0)) 1744 return dentry; 1745 if (!try_to_unlazy_next(nd, dentry)) 1746 return ERR_PTR(-ECHILD); 1747 if (status == -ECHILD) 1748 /* we'd been told to redo it in non-rcu mode */ 1749 status = d_revalidate(nd->inode, &nd->last, 1750 dentry, nd->flags); 1751 } else { 1752 dentry = __d_lookup(parent, &nd->last); 1753 if (unlikely(!dentry)) 1754 return NULL; 1755 status = d_revalidate(nd->inode, &nd->last, dentry, nd->flags); 1756 } 1757 if (unlikely(status <= 0)) { 1758 if (!status) 1759 d_invalidate(dentry); 1760 dput(dentry); 1761 return ERR_PTR(status); 1762 } 1763 return dentry; 1764 } 1765 1766 /* Fast lookup failed, do it the slow way */ 1767 static struct dentry *__lookup_slow(const struct qstr *name, 1768 struct dentry *dir, 1769 unsigned int flags) 1770 { 1771 struct dentry *dentry, *old; 1772 struct inode *inode = dir->d_inode; 1773 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1774 1775 /* Don't go there if it's already dead */ 1776 if (unlikely(IS_DEADDIR(inode))) 1777 return ERR_PTR(-ENOENT); 1778 again: 1779 dentry = d_alloc_parallel(dir, name, &wq); 1780 if (IS_ERR(dentry)) 1781 return dentry; 1782 if (unlikely(!d_in_lookup(dentry))) { 1783 int error = d_revalidate(inode, name, dentry, flags); 1784 if (unlikely(error <= 0)) { 1785 if (!error) { 1786 d_invalidate(dentry); 1787 dput(dentry); 1788 goto again; 1789 } 1790 dput(dentry); 1791 dentry = ERR_PTR(error); 1792 } 1793 } else { 1794 old = inode->i_op->lookup(inode, dentry, flags); 1795 d_lookup_done(dentry); 1796 if (unlikely(old)) { 1797 dput(dentry); 1798 dentry = old; 1799 } 1800 } 1801 return dentry; 1802 } 1803 1804 static struct dentry *lookup_slow(const struct qstr *name, 1805 struct dentry *dir, 1806 unsigned int flags) 1807 { 1808 struct inode *inode = dir->d_inode; 1809 struct dentry *res; 1810 inode_lock_shared(inode); 1811 res = __lookup_slow(name, dir, flags); 1812 inode_unlock_shared(inode); 1813 return res; 1814 } 1815 1816 static inline int may_lookup(struct mnt_idmap *idmap, 1817 struct nameidata *restrict nd) 1818 { 1819 int err, mask; 1820 1821 mask = nd->flags & LOOKUP_RCU ? MAY_NOT_BLOCK : 0; 1822 err = inode_permission(idmap, nd->inode, mask | MAY_EXEC); 1823 if (likely(!err)) 1824 return 0; 1825 1826 // If we failed, and we weren't in LOOKUP_RCU, it's final 1827 if (!(nd->flags & LOOKUP_RCU)) 1828 return err; 1829 1830 // Drop out of RCU mode to make sure it wasn't transient 1831 if (!try_to_unlazy(nd)) 1832 return -ECHILD; // redo it all non-lazy 1833 1834 if (err != -ECHILD) // hard error 1835 return err; 1836 1837 return inode_permission(idmap, nd->inode, MAY_EXEC); 1838 } 1839 1840 static int reserve_stack(struct nameidata *nd, struct path *link) 1841 { 1842 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) 1843 return -ELOOP; 1844 1845 if (likely(nd->depth != EMBEDDED_LEVELS)) 1846 return 0; 1847 if (likely(nd->stack != nd->internal)) 1848 return 0; 1849 if (likely(nd_alloc_stack(nd))) 1850 return 0; 1851 1852 if (nd->flags & LOOKUP_RCU) { 1853 // we need to grab link before we do unlazy. And we can't skip 1854 // unlazy even if we fail to grab the link - cleanup needs it 1855 bool grabbed_link = legitimize_path(nd, link, nd->next_seq); 1856 1857 if (!try_to_unlazy(nd) || !grabbed_link) 1858 return -ECHILD; 1859 1860 if (nd_alloc_stack(nd)) 1861 return 0; 1862 } 1863 return -ENOMEM; 1864 } 1865 1866 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4}; 1867 1868 static const char *pick_link(struct nameidata *nd, struct path *link, 1869 struct inode *inode, int flags) 1870 { 1871 struct saved *last; 1872 const char *res; 1873 int error = reserve_stack(nd, link); 1874 1875 if (unlikely(error)) { 1876 if (!(nd->flags & LOOKUP_RCU)) 1877 path_put(link); 1878 return ERR_PTR(error); 1879 } 1880 last = nd->stack + nd->depth++; 1881 last->link = *link; 1882 clear_delayed_call(&last->done); 1883 last->seq = nd->next_seq; 1884 1885 if (flags & WALK_TRAILING) { 1886 error = may_follow_link(nd, inode); 1887 if (unlikely(error)) 1888 return ERR_PTR(error); 1889 } 1890 1891 if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) || 1892 unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW)) 1893 return ERR_PTR(-ELOOP); 1894 1895 if (!(nd->flags & LOOKUP_RCU)) { 1896 touch_atime(&last->link); 1897 cond_resched(); 1898 } else if (atime_needs_update(&last->link, inode)) { 1899 if (!try_to_unlazy(nd)) 1900 return ERR_PTR(-ECHILD); 1901 touch_atime(&last->link); 1902 } 1903 1904 error = security_inode_follow_link(link->dentry, inode, 1905 nd->flags & LOOKUP_RCU); 1906 if (unlikely(error)) 1907 return ERR_PTR(error); 1908 1909 res = READ_ONCE(inode->i_link); 1910 if (!res) { 1911 const char * (*get)(struct dentry *, struct inode *, 1912 struct delayed_call *); 1913 get = inode->i_op->get_link; 1914 if (nd->flags & LOOKUP_RCU) { 1915 res = get(NULL, inode, &last->done); 1916 if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd)) 1917 res = get(link->dentry, inode, &last->done); 1918 } else { 1919 res = get(link->dentry, inode, &last->done); 1920 } 1921 if (!res) 1922 goto all_done; 1923 if (IS_ERR(res)) 1924 return res; 1925 } 1926 if (*res == '/') { 1927 error = nd_jump_root(nd); 1928 if (unlikely(error)) 1929 return ERR_PTR(error); 1930 while (unlikely(*++res == '/')) 1931 ; 1932 } 1933 if (*res) 1934 return res; 1935 all_done: // pure jump 1936 put_link(nd); 1937 return NULL; 1938 } 1939 1940 /* 1941 * Do we need to follow links? We _really_ want to be able 1942 * to do this check without having to look at inode->i_op, 1943 * so we keep a cache of "no, this doesn't need follow_link" 1944 * for the common case. 1945 * 1946 * NOTE: dentry must be what nd->next_seq had been sampled from. 1947 */ 1948 static const char *step_into(struct nameidata *nd, int flags, 1949 struct dentry *dentry) 1950 { 1951 struct path path; 1952 struct inode *inode; 1953 int err = handle_mounts(nd, dentry, &path); 1954 1955 if (err < 0) 1956 return ERR_PTR(err); 1957 inode = path.dentry->d_inode; 1958 if (likely(!d_is_symlink(path.dentry)) || 1959 ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) || 1960 (flags & WALK_NOFOLLOW)) { 1961 /* not a symlink or should not follow */ 1962 if (nd->flags & LOOKUP_RCU) { 1963 if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq)) 1964 return ERR_PTR(-ECHILD); 1965 if (unlikely(!inode)) 1966 return ERR_PTR(-ENOENT); 1967 } else { 1968 dput(nd->path.dentry); 1969 if (nd->path.mnt != path.mnt) 1970 mntput(nd->path.mnt); 1971 } 1972 nd->path = path; 1973 nd->inode = inode; 1974 nd->seq = nd->next_seq; 1975 return NULL; 1976 } 1977 if (nd->flags & LOOKUP_RCU) { 1978 /* make sure that d_is_symlink above matches inode */ 1979 if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq)) 1980 return ERR_PTR(-ECHILD); 1981 } else { 1982 if (path.mnt == nd->path.mnt) 1983 mntget(path.mnt); 1984 } 1985 return pick_link(nd, &path, inode, flags); 1986 } 1987 1988 static struct dentry *follow_dotdot_rcu(struct nameidata *nd) 1989 { 1990 struct dentry *parent, *old; 1991 1992 if (path_equal(&nd->path, &nd->root)) 1993 goto in_root; 1994 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { 1995 struct path path; 1996 unsigned seq; 1997 if (!choose_mountpoint_rcu(real_mount(nd->path.mnt), 1998 &nd->root, &path, &seq)) 1999 goto in_root; 2000 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 2001 return ERR_PTR(-ECHILD); 2002 nd->path = path; 2003 nd->inode = path.dentry->d_inode; 2004 nd->seq = seq; 2005 // makes sure that non-RCU pathwalk could reach this state 2006 if (read_seqretry(&mount_lock, nd->m_seq)) 2007 return ERR_PTR(-ECHILD); 2008 /* we know that mountpoint was pinned */ 2009 } 2010 old = nd->path.dentry; 2011 parent = old->d_parent; 2012 nd->next_seq = read_seqcount_begin(&parent->d_seq); 2013 // makes sure that non-RCU pathwalk could reach this state 2014 if (read_seqcount_retry(&old->d_seq, nd->seq)) 2015 return ERR_PTR(-ECHILD); 2016 if (unlikely(!path_connected(nd->path.mnt, parent))) 2017 return ERR_PTR(-ECHILD); 2018 return parent; 2019 in_root: 2020 if (read_seqretry(&mount_lock, nd->m_seq)) 2021 return ERR_PTR(-ECHILD); 2022 if (unlikely(nd->flags & LOOKUP_BENEATH)) 2023 return ERR_PTR(-ECHILD); 2024 nd->next_seq = nd->seq; 2025 return nd->path.dentry; 2026 } 2027 2028 static struct dentry *follow_dotdot(struct nameidata *nd) 2029 { 2030 struct dentry *parent; 2031 2032 if (path_equal(&nd->path, &nd->root)) 2033 goto in_root; 2034 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { 2035 struct path path; 2036 2037 if (!choose_mountpoint(real_mount(nd->path.mnt), 2038 &nd->root, &path)) 2039 goto in_root; 2040 path_put(&nd->path); 2041 nd->path = path; 2042 nd->inode = path.dentry->d_inode; 2043 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 2044 return ERR_PTR(-EXDEV); 2045 } 2046 /* rare case of legitimate dget_parent()... */ 2047 parent = dget_parent(nd->path.dentry); 2048 if (unlikely(!path_connected(nd->path.mnt, parent))) { 2049 dput(parent); 2050 return ERR_PTR(-ENOENT); 2051 } 2052 return parent; 2053 2054 in_root: 2055 if (unlikely(nd->flags & LOOKUP_BENEATH)) 2056 return ERR_PTR(-EXDEV); 2057 return dget(nd->path.dentry); 2058 } 2059 2060 static const char *handle_dots(struct nameidata *nd, int type) 2061 { 2062 if (type == LAST_DOTDOT) { 2063 const char *error = NULL; 2064 struct dentry *parent; 2065 2066 if (!nd->root.mnt) { 2067 error = ERR_PTR(set_root(nd)); 2068 if (error) 2069 return error; 2070 } 2071 if (nd->flags & LOOKUP_RCU) 2072 parent = follow_dotdot_rcu(nd); 2073 else 2074 parent = follow_dotdot(nd); 2075 if (IS_ERR(parent)) 2076 return ERR_CAST(parent); 2077 error = step_into(nd, WALK_NOFOLLOW, parent); 2078 if (unlikely(error)) 2079 return error; 2080 2081 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { 2082 /* 2083 * If there was a racing rename or mount along our 2084 * path, then we can't be sure that ".." hasn't jumped 2085 * above nd->root (and so userspace should retry or use 2086 * some fallback). 2087 */ 2088 smp_rmb(); 2089 if (__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq)) 2090 return ERR_PTR(-EAGAIN); 2091 if (__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq)) 2092 return ERR_PTR(-EAGAIN); 2093 } 2094 } 2095 return NULL; 2096 } 2097 2098 static const char *walk_component(struct nameidata *nd, int flags) 2099 { 2100 struct dentry *dentry; 2101 /* 2102 * "." and ".." are special - ".." especially so because it has 2103 * to be able to know about the current root directory and 2104 * parent relationships. 2105 */ 2106 if (unlikely(nd->last_type != LAST_NORM)) { 2107 if (!(flags & WALK_MORE) && nd->depth) 2108 put_link(nd); 2109 return handle_dots(nd, nd->last_type); 2110 } 2111 dentry = lookup_fast(nd); 2112 if (IS_ERR(dentry)) 2113 return ERR_CAST(dentry); 2114 if (unlikely(!dentry)) { 2115 dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags); 2116 if (IS_ERR(dentry)) 2117 return ERR_CAST(dentry); 2118 } 2119 if (!(flags & WALK_MORE) && nd->depth) 2120 put_link(nd); 2121 return step_into(nd, flags, dentry); 2122 } 2123 2124 /* 2125 * We can do the critical dentry name comparison and hashing 2126 * operations one word at a time, but we are limited to: 2127 * 2128 * - Architectures with fast unaligned word accesses. We could 2129 * do a "get_unaligned()" if this helps and is sufficiently 2130 * fast. 2131 * 2132 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 2133 * do not trap on the (extremely unlikely) case of a page 2134 * crossing operation. 2135 * 2136 * - Furthermore, we need an efficient 64-bit compile for the 2137 * 64-bit case in order to generate the "number of bytes in 2138 * the final mask". Again, that could be replaced with a 2139 * efficient population count instruction or similar. 2140 */ 2141 #ifdef CONFIG_DCACHE_WORD_ACCESS 2142 2143 #include <asm/word-at-a-time.h> 2144 2145 #ifdef HASH_MIX 2146 2147 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */ 2148 2149 #elif defined(CONFIG_64BIT) 2150 /* 2151 * Register pressure in the mixing function is an issue, particularly 2152 * on 32-bit x86, but almost any function requires one state value and 2153 * one temporary. Instead, use a function designed for two state values 2154 * and no temporaries. 2155 * 2156 * This function cannot create a collision in only two iterations, so 2157 * we have two iterations to achieve avalanche. In those two iterations, 2158 * we have six layers of mixing, which is enough to spread one bit's 2159 * influence out to 2^6 = 64 state bits. 2160 * 2161 * Rotate constants are scored by considering either 64 one-bit input 2162 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the 2163 * probability of that delta causing a change to each of the 128 output 2164 * bits, using a sample of random initial states. 2165 * 2166 * The Shannon entropy of the computed probabilities is then summed 2167 * to produce a score. Ideally, any input change has a 50% chance of 2168 * toggling any given output bit. 2169 * 2170 * Mixing scores (in bits) for (12,45): 2171 * Input delta: 1-bit 2-bit 2172 * 1 round: 713.3 42542.6 2173 * 2 rounds: 2753.7 140389.8 2174 * 3 rounds: 5954.1 233458.2 2175 * 4 rounds: 7862.6 256672.2 2176 * Perfect: 8192 258048 2177 * (64*128) (64*63/2 * 128) 2178 */ 2179 #define HASH_MIX(x, y, a) \ 2180 ( x ^= (a), \ 2181 y ^= x, x = rol64(x,12),\ 2182 x += y, y = rol64(y,45),\ 2183 y *= 9 ) 2184 2185 /* 2186 * Fold two longs into one 32-bit hash value. This must be fast, but 2187 * latency isn't quite as critical, as there is a fair bit of additional 2188 * work done before the hash value is used. 2189 */ 2190 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 2191 { 2192 y ^= x * GOLDEN_RATIO_64; 2193 y *= GOLDEN_RATIO_64; 2194 return y >> 32; 2195 } 2196 2197 #else /* 32-bit case */ 2198 2199 /* 2200 * Mixing scores (in bits) for (7,20): 2201 * Input delta: 1-bit 2-bit 2202 * 1 round: 330.3 9201.6 2203 * 2 rounds: 1246.4 25475.4 2204 * 3 rounds: 1907.1 31295.1 2205 * 4 rounds: 2042.3 31718.6 2206 * Perfect: 2048 31744 2207 * (32*64) (32*31/2 * 64) 2208 */ 2209 #define HASH_MIX(x, y, a) \ 2210 ( x ^= (a), \ 2211 y ^= x, x = rol32(x, 7),\ 2212 x += y, y = rol32(y,20),\ 2213 y *= 9 ) 2214 2215 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 2216 { 2217 /* Use arch-optimized multiply if one exists */ 2218 return __hash_32(y ^ __hash_32(x)); 2219 } 2220 2221 #endif 2222 2223 /* 2224 * Return the hash of a string of known length. This is carfully 2225 * designed to match hash_name(), which is the more critical function. 2226 * In particular, we must end by hashing a final word containing 0..7 2227 * payload bytes, to match the way that hash_name() iterates until it 2228 * finds the delimiter after the name. 2229 */ 2230 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2231 { 2232 unsigned long a, x = 0, y = (unsigned long)salt; 2233 2234 for (;;) { 2235 if (!len) 2236 goto done; 2237 a = load_unaligned_zeropad(name); 2238 if (len < sizeof(unsigned long)) 2239 break; 2240 HASH_MIX(x, y, a); 2241 name += sizeof(unsigned long); 2242 len -= sizeof(unsigned long); 2243 } 2244 x ^= a & bytemask_from_count(len); 2245 done: 2246 return fold_hash(x, y); 2247 } 2248 EXPORT_SYMBOL(full_name_hash); 2249 2250 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2251 u64 hashlen_string(const void *salt, const char *name) 2252 { 2253 unsigned long a = 0, x = 0, y = (unsigned long)salt; 2254 unsigned long adata, mask, len; 2255 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 2256 2257 len = 0; 2258 goto inside; 2259 2260 do { 2261 HASH_MIX(x, y, a); 2262 len += sizeof(unsigned long); 2263 inside: 2264 a = load_unaligned_zeropad(name+len); 2265 } while (!has_zero(a, &adata, &constants)); 2266 2267 adata = prep_zero_mask(a, adata, &constants); 2268 mask = create_zero_mask(adata); 2269 x ^= a & zero_bytemask(mask); 2270 2271 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 2272 } 2273 EXPORT_SYMBOL(hashlen_string); 2274 2275 /* 2276 * Calculate the length and hash of the path component, and 2277 * return the length as the result. 2278 */ 2279 static inline const char *hash_name(struct nameidata *nd, 2280 const char *name, 2281 unsigned long *lastword) 2282 { 2283 unsigned long a, b, x, y = (unsigned long)nd->path.dentry; 2284 unsigned long adata, bdata, mask, len; 2285 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 2286 2287 /* 2288 * The first iteration is special, because it can result in 2289 * '.' and '..' and has no mixing other than the final fold. 2290 */ 2291 a = load_unaligned_zeropad(name); 2292 b = a ^ REPEAT_BYTE('/'); 2293 if (has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)) { 2294 adata = prep_zero_mask(a, adata, &constants); 2295 bdata = prep_zero_mask(b, bdata, &constants); 2296 mask = create_zero_mask(adata | bdata); 2297 a &= zero_bytemask(mask); 2298 *lastword = a; 2299 len = find_zero(mask); 2300 nd->last.hash = fold_hash(a, y); 2301 nd->last.len = len; 2302 return name + len; 2303 } 2304 2305 len = 0; 2306 x = 0; 2307 do { 2308 HASH_MIX(x, y, a); 2309 len += sizeof(unsigned long); 2310 a = load_unaligned_zeropad(name+len); 2311 b = a ^ REPEAT_BYTE('/'); 2312 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 2313 2314 adata = prep_zero_mask(a, adata, &constants); 2315 bdata = prep_zero_mask(b, bdata, &constants); 2316 mask = create_zero_mask(adata | bdata); 2317 a &= zero_bytemask(mask); 2318 x ^= a; 2319 len += find_zero(mask); 2320 *lastword = 0; // Multi-word components cannot be DOT or DOTDOT 2321 2322 nd->last.hash = fold_hash(x, y); 2323 nd->last.len = len; 2324 return name + len; 2325 } 2326 2327 /* 2328 * Note that the 'last' word is always zero-masked, but 2329 * was loaded as a possibly big-endian word. 2330 */ 2331 #ifdef __BIG_ENDIAN 2332 #define LAST_WORD_IS_DOT (0x2eul << (BITS_PER_LONG-8)) 2333 #define LAST_WORD_IS_DOTDOT (0x2e2eul << (BITS_PER_LONG-16)) 2334 #endif 2335 2336 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */ 2337 2338 /* Return the hash of a string of known length */ 2339 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2340 { 2341 unsigned long hash = init_name_hash(salt); 2342 while (len--) 2343 hash = partial_name_hash((unsigned char)*name++, hash); 2344 return end_name_hash(hash); 2345 } 2346 EXPORT_SYMBOL(full_name_hash); 2347 2348 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2349 u64 hashlen_string(const void *salt, const char *name) 2350 { 2351 unsigned long hash = init_name_hash(salt); 2352 unsigned long len = 0, c; 2353 2354 c = (unsigned char)*name; 2355 while (c) { 2356 len++; 2357 hash = partial_name_hash(c, hash); 2358 c = (unsigned char)name[len]; 2359 } 2360 return hashlen_create(end_name_hash(hash), len); 2361 } 2362 EXPORT_SYMBOL(hashlen_string); 2363 2364 /* 2365 * We know there's a real path component here of at least 2366 * one character. 2367 */ 2368 static inline const char *hash_name(struct nameidata *nd, const char *name, unsigned long *lastword) 2369 { 2370 unsigned long hash = init_name_hash(nd->path.dentry); 2371 unsigned long len = 0, c, last = 0; 2372 2373 c = (unsigned char)*name; 2374 do { 2375 last = (last << 8) + c; 2376 len++; 2377 hash = partial_name_hash(c, hash); 2378 c = (unsigned char)name[len]; 2379 } while (c && c != '/'); 2380 2381 // This is reliable for DOT or DOTDOT, since the component 2382 // cannot contain NUL characters - top bits being zero means 2383 // we cannot have had any other pathnames. 2384 *lastword = last; 2385 nd->last.hash = end_name_hash(hash); 2386 nd->last.len = len; 2387 return name + len; 2388 } 2389 2390 #endif 2391 2392 #ifndef LAST_WORD_IS_DOT 2393 #define LAST_WORD_IS_DOT 0x2e 2394 #define LAST_WORD_IS_DOTDOT 0x2e2e 2395 #endif 2396 2397 /* 2398 * Name resolution. 2399 * This is the basic name resolution function, turning a pathname into 2400 * the final dentry. We expect 'base' to be positive and a directory. 2401 * 2402 * Returns 0 and nd will have valid dentry and mnt on success. 2403 * Returns error and drops reference to input namei data on failure. 2404 */ 2405 static int link_path_walk(const char *name, struct nameidata *nd) 2406 { 2407 int depth = 0; // depth <= nd->depth 2408 int err; 2409 2410 nd->last_type = LAST_ROOT; 2411 nd->flags |= LOOKUP_PARENT; 2412 if (IS_ERR(name)) 2413 return PTR_ERR(name); 2414 while (*name=='/') 2415 name++; 2416 if (!*name) { 2417 nd->dir_mode = 0; // short-circuit the 'hardening' idiocy 2418 return 0; 2419 } 2420 2421 /* At this point we know we have a real path component. */ 2422 for(;;) { 2423 struct mnt_idmap *idmap; 2424 const char *link; 2425 unsigned long lastword; 2426 2427 idmap = mnt_idmap(nd->path.mnt); 2428 err = may_lookup(idmap, nd); 2429 if (err) 2430 return err; 2431 2432 nd->last.name = name; 2433 name = hash_name(nd, name, &lastword); 2434 2435 switch(lastword) { 2436 case LAST_WORD_IS_DOTDOT: 2437 nd->last_type = LAST_DOTDOT; 2438 nd->state |= ND_JUMPED; 2439 break; 2440 2441 case LAST_WORD_IS_DOT: 2442 nd->last_type = LAST_DOT; 2443 break; 2444 2445 default: 2446 nd->last_type = LAST_NORM; 2447 nd->state &= ~ND_JUMPED; 2448 2449 struct dentry *parent = nd->path.dentry; 2450 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 2451 err = parent->d_op->d_hash(parent, &nd->last); 2452 if (err < 0) 2453 return err; 2454 } 2455 } 2456 2457 if (!*name) 2458 goto OK; 2459 /* 2460 * If it wasn't NUL, we know it was '/'. Skip that 2461 * slash, and continue until no more slashes. 2462 */ 2463 do { 2464 name++; 2465 } while (unlikely(*name == '/')); 2466 if (unlikely(!*name)) { 2467 OK: 2468 /* pathname or trailing symlink, done */ 2469 if (!depth) { 2470 nd->dir_vfsuid = i_uid_into_vfsuid(idmap, nd->inode); 2471 nd->dir_mode = nd->inode->i_mode; 2472 nd->flags &= ~LOOKUP_PARENT; 2473 return 0; 2474 } 2475 /* last component of nested symlink */ 2476 name = nd->stack[--depth].name; 2477 link = walk_component(nd, 0); 2478 } else { 2479 /* not the last component */ 2480 link = walk_component(nd, WALK_MORE); 2481 } 2482 if (unlikely(link)) { 2483 if (IS_ERR(link)) 2484 return PTR_ERR(link); 2485 /* a symlink to follow */ 2486 nd->stack[depth++].name = name; 2487 name = link; 2488 continue; 2489 } 2490 if (unlikely(!d_can_lookup(nd->path.dentry))) { 2491 if (nd->flags & LOOKUP_RCU) { 2492 if (!try_to_unlazy(nd)) 2493 return -ECHILD; 2494 } 2495 return -ENOTDIR; 2496 } 2497 } 2498 } 2499 2500 /* must be paired with terminate_walk() */ 2501 static const char *path_init(struct nameidata *nd, unsigned flags) 2502 { 2503 int error; 2504 const char *s = nd->pathname; 2505 2506 /* LOOKUP_CACHED requires RCU, ask caller to retry */ 2507 if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED) 2508 return ERR_PTR(-EAGAIN); 2509 2510 if (!*s) 2511 flags &= ~LOOKUP_RCU; 2512 if (flags & LOOKUP_RCU) 2513 rcu_read_lock(); 2514 else 2515 nd->seq = nd->next_seq = 0; 2516 2517 nd->flags = flags; 2518 nd->state |= ND_JUMPED; 2519 2520 nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount); 2521 nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount); 2522 smp_rmb(); 2523 2524 if (nd->state & ND_ROOT_PRESET) { 2525 struct dentry *root = nd->root.dentry; 2526 struct inode *inode = root->d_inode; 2527 if (*s && unlikely(!d_can_lookup(root))) 2528 return ERR_PTR(-ENOTDIR); 2529 nd->path = nd->root; 2530 nd->inode = inode; 2531 if (flags & LOOKUP_RCU) { 2532 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2533 nd->root_seq = nd->seq; 2534 } else { 2535 path_get(&nd->path); 2536 } 2537 return s; 2538 } 2539 2540 nd->root.mnt = NULL; 2541 2542 /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */ 2543 if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) { 2544 error = nd_jump_root(nd); 2545 if (unlikely(error)) 2546 return ERR_PTR(error); 2547 return s; 2548 } 2549 2550 /* Relative pathname -- get the starting-point it is relative to. */ 2551 if (nd->dfd == AT_FDCWD) { 2552 if (flags & LOOKUP_RCU) { 2553 struct fs_struct *fs = current->fs; 2554 unsigned seq; 2555 2556 do { 2557 seq = read_seqcount_begin(&fs->seq); 2558 nd->path = fs->pwd; 2559 nd->inode = nd->path.dentry->d_inode; 2560 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2561 } while (read_seqcount_retry(&fs->seq, seq)); 2562 } else { 2563 get_fs_pwd(current->fs, &nd->path); 2564 nd->inode = nd->path.dentry->d_inode; 2565 } 2566 } else { 2567 /* Caller must check execute permissions on the starting path component */ 2568 CLASS(fd_raw, f)(nd->dfd); 2569 struct dentry *dentry; 2570 2571 if (fd_empty(f)) 2572 return ERR_PTR(-EBADF); 2573 2574 if (flags & LOOKUP_LINKAT_EMPTY) { 2575 if (fd_file(f)->f_cred != current_cred() && 2576 !ns_capable(fd_file(f)->f_cred->user_ns, CAP_DAC_READ_SEARCH)) 2577 return ERR_PTR(-ENOENT); 2578 } 2579 2580 dentry = fd_file(f)->f_path.dentry; 2581 2582 if (*s && unlikely(!d_can_lookup(dentry))) 2583 return ERR_PTR(-ENOTDIR); 2584 2585 nd->path = fd_file(f)->f_path; 2586 if (flags & LOOKUP_RCU) { 2587 nd->inode = nd->path.dentry->d_inode; 2588 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2589 } else { 2590 path_get(&nd->path); 2591 nd->inode = nd->path.dentry->d_inode; 2592 } 2593 } 2594 2595 /* For scoped-lookups we need to set the root to the dirfd as well. */ 2596 if (flags & LOOKUP_IS_SCOPED) { 2597 nd->root = nd->path; 2598 if (flags & LOOKUP_RCU) { 2599 nd->root_seq = nd->seq; 2600 } else { 2601 path_get(&nd->root); 2602 nd->state |= ND_ROOT_GRABBED; 2603 } 2604 } 2605 return s; 2606 } 2607 2608 static inline const char *lookup_last(struct nameidata *nd) 2609 { 2610 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 2611 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2612 2613 return walk_component(nd, WALK_TRAILING); 2614 } 2615 2616 static int handle_lookup_down(struct nameidata *nd) 2617 { 2618 if (!(nd->flags & LOOKUP_RCU)) 2619 dget(nd->path.dentry); 2620 nd->next_seq = nd->seq; 2621 return PTR_ERR(step_into(nd, WALK_NOFOLLOW, nd->path.dentry)); 2622 } 2623 2624 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */ 2625 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path) 2626 { 2627 const char *s = path_init(nd, flags); 2628 int err; 2629 2630 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) { 2631 err = handle_lookup_down(nd); 2632 if (unlikely(err < 0)) 2633 s = ERR_PTR(err); 2634 } 2635 2636 while (!(err = link_path_walk(s, nd)) && 2637 (s = lookup_last(nd)) != NULL) 2638 ; 2639 if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) { 2640 err = handle_lookup_down(nd); 2641 nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please... 2642 } 2643 if (!err) 2644 err = complete_walk(nd); 2645 2646 if (!err && nd->flags & LOOKUP_DIRECTORY) 2647 if (!d_can_lookup(nd->path.dentry)) 2648 err = -ENOTDIR; 2649 if (!err) { 2650 *path = nd->path; 2651 nd->path.mnt = NULL; 2652 nd->path.dentry = NULL; 2653 } 2654 terminate_walk(nd); 2655 return err; 2656 } 2657 2658 int filename_lookup(int dfd, struct filename *name, unsigned flags, 2659 struct path *path, struct path *root) 2660 { 2661 int retval; 2662 struct nameidata nd; 2663 if (IS_ERR(name)) 2664 return PTR_ERR(name); 2665 set_nameidata(&nd, dfd, name, root); 2666 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path); 2667 if (unlikely(retval == -ECHILD)) 2668 retval = path_lookupat(&nd, flags, path); 2669 if (unlikely(retval == -ESTALE)) 2670 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path); 2671 2672 if (likely(!retval)) 2673 audit_inode(name, path->dentry, 2674 flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0); 2675 restore_nameidata(); 2676 return retval; 2677 } 2678 2679 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */ 2680 static int path_parentat(struct nameidata *nd, unsigned flags, 2681 struct path *parent) 2682 { 2683 const char *s = path_init(nd, flags); 2684 int err = link_path_walk(s, nd); 2685 if (!err) 2686 err = complete_walk(nd); 2687 if (!err) { 2688 *parent = nd->path; 2689 nd->path.mnt = NULL; 2690 nd->path.dentry = NULL; 2691 } 2692 terminate_walk(nd); 2693 return err; 2694 } 2695 2696 /* Note: this does not consume "name" */ 2697 static int __filename_parentat(int dfd, struct filename *name, 2698 unsigned int flags, struct path *parent, 2699 struct qstr *last, int *type, 2700 const struct path *root) 2701 { 2702 int retval; 2703 struct nameidata nd; 2704 2705 if (IS_ERR(name)) 2706 return PTR_ERR(name); 2707 set_nameidata(&nd, dfd, name, root); 2708 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent); 2709 if (unlikely(retval == -ECHILD)) 2710 retval = path_parentat(&nd, flags, parent); 2711 if (unlikely(retval == -ESTALE)) 2712 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent); 2713 if (likely(!retval)) { 2714 *last = nd.last; 2715 *type = nd.last_type; 2716 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT); 2717 } 2718 restore_nameidata(); 2719 return retval; 2720 } 2721 2722 static int filename_parentat(int dfd, struct filename *name, 2723 unsigned int flags, struct path *parent, 2724 struct qstr *last, int *type) 2725 { 2726 return __filename_parentat(dfd, name, flags, parent, last, type, NULL); 2727 } 2728 2729 /* does lookup, returns the object with parent locked */ 2730 static struct dentry *__kern_path_locked(int dfd, struct filename *name, struct path *path) 2731 { 2732 struct dentry *d; 2733 struct qstr last; 2734 int type, error; 2735 2736 error = filename_parentat(dfd, name, 0, path, &last, &type); 2737 if (error) 2738 return ERR_PTR(error); 2739 if (unlikely(type != LAST_NORM)) { 2740 path_put(path); 2741 return ERR_PTR(-EINVAL); 2742 } 2743 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 2744 d = lookup_one_qstr_excl(&last, path->dentry, 0); 2745 if (IS_ERR(d)) { 2746 inode_unlock(path->dentry->d_inode); 2747 path_put(path); 2748 } 2749 return d; 2750 } 2751 2752 struct dentry *kern_path_locked(const char *name, struct path *path) 2753 { 2754 struct filename *filename = getname_kernel(name); 2755 struct dentry *res = __kern_path_locked(AT_FDCWD, filename, path); 2756 2757 putname(filename); 2758 return res; 2759 } 2760 2761 struct dentry *user_path_locked_at(int dfd, const char __user *name, struct path *path) 2762 { 2763 struct filename *filename = getname(name); 2764 struct dentry *res = __kern_path_locked(dfd, filename, path); 2765 2766 putname(filename); 2767 return res; 2768 } 2769 EXPORT_SYMBOL(user_path_locked_at); 2770 2771 int kern_path(const char *name, unsigned int flags, struct path *path) 2772 { 2773 struct filename *filename = getname_kernel(name); 2774 int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL); 2775 2776 putname(filename); 2777 return ret; 2778 2779 } 2780 EXPORT_SYMBOL(kern_path); 2781 2782 /** 2783 * vfs_path_parent_lookup - lookup a parent path relative to a dentry-vfsmount pair 2784 * @filename: filename structure 2785 * @flags: lookup flags 2786 * @parent: pointer to struct path to fill 2787 * @last: last component 2788 * @type: type of the last component 2789 * @root: pointer to struct path of the base directory 2790 */ 2791 int vfs_path_parent_lookup(struct filename *filename, unsigned int flags, 2792 struct path *parent, struct qstr *last, int *type, 2793 const struct path *root) 2794 { 2795 return __filename_parentat(AT_FDCWD, filename, flags, parent, last, 2796 type, root); 2797 } 2798 EXPORT_SYMBOL(vfs_path_parent_lookup); 2799 2800 /** 2801 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2802 * @dentry: pointer to dentry of the base directory 2803 * @mnt: pointer to vfs mount of the base directory 2804 * @name: pointer to file name 2805 * @flags: lookup flags 2806 * @path: pointer to struct path to fill 2807 */ 2808 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2809 const char *name, unsigned int flags, 2810 struct path *path) 2811 { 2812 struct filename *filename; 2813 struct path root = {.mnt = mnt, .dentry = dentry}; 2814 int ret; 2815 2816 filename = getname_kernel(name); 2817 /* the first argument of filename_lookup() is ignored with root */ 2818 ret = filename_lookup(AT_FDCWD, filename, flags, path, &root); 2819 putname(filename); 2820 return ret; 2821 } 2822 EXPORT_SYMBOL(vfs_path_lookup); 2823 2824 static int lookup_one_common(struct mnt_idmap *idmap, 2825 const char *name, struct dentry *base, int len, 2826 struct qstr *this) 2827 { 2828 this->name = name; 2829 this->len = len; 2830 this->hash = full_name_hash(base, name, len); 2831 if (!len) 2832 return -EACCES; 2833 2834 if (is_dot_dotdot(name, len)) 2835 return -EACCES; 2836 2837 while (len--) { 2838 unsigned int c = *(const unsigned char *)name++; 2839 if (c == '/' || c == '\0') 2840 return -EACCES; 2841 } 2842 /* 2843 * See if the low-level filesystem might want 2844 * to use its own hash.. 2845 */ 2846 if (base->d_flags & DCACHE_OP_HASH) { 2847 int err = base->d_op->d_hash(base, this); 2848 if (err < 0) 2849 return err; 2850 } 2851 2852 return inode_permission(idmap, base->d_inode, MAY_EXEC); 2853 } 2854 2855 /** 2856 * try_lookup_one_len - filesystem helper to lookup single pathname component 2857 * @name: pathname component to lookup 2858 * @base: base directory to lookup from 2859 * @len: maximum length @len should be interpreted to 2860 * 2861 * Look up a dentry by name in the dcache, returning NULL if it does not 2862 * currently exist. The function does not try to create a dentry. 2863 * 2864 * Note that this routine is purely a helper for filesystem usage and should 2865 * not be called by generic code. 2866 * 2867 * No locks need be held - only a counted reference to @base is needed. 2868 * 2869 */ 2870 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len) 2871 { 2872 struct qstr this; 2873 int err; 2874 2875 err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this); 2876 if (err) 2877 return ERR_PTR(err); 2878 2879 return lookup_dcache(&this, base, 0); 2880 } 2881 EXPORT_SYMBOL(try_lookup_one_len); 2882 2883 /** 2884 * lookup_one_len - filesystem helper to lookup single pathname component 2885 * @name: pathname component to lookup 2886 * @base: base directory to lookup from 2887 * @len: maximum length @len should be interpreted to 2888 * 2889 * Note that this routine is purely a helper for filesystem usage and should 2890 * not be called by generic code. 2891 * 2892 * The caller must hold base->i_mutex. 2893 */ 2894 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2895 { 2896 struct dentry *dentry; 2897 struct qstr this; 2898 int err; 2899 2900 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2901 2902 err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this); 2903 if (err) 2904 return ERR_PTR(err); 2905 2906 dentry = lookup_dcache(&this, base, 0); 2907 return dentry ? dentry : __lookup_slow(&this, base, 0); 2908 } 2909 EXPORT_SYMBOL(lookup_one_len); 2910 2911 /** 2912 * lookup_one - filesystem helper to lookup single pathname component 2913 * @idmap: idmap of the mount the lookup is performed from 2914 * @name: pathname component to lookup 2915 * @base: base directory to lookup from 2916 * @len: maximum length @len should be interpreted to 2917 * 2918 * Note that this routine is purely a helper for filesystem usage and should 2919 * not be called by generic code. 2920 * 2921 * The caller must hold base->i_mutex. 2922 */ 2923 struct dentry *lookup_one(struct mnt_idmap *idmap, const char *name, 2924 struct dentry *base, int len) 2925 { 2926 struct dentry *dentry; 2927 struct qstr this; 2928 int err; 2929 2930 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2931 2932 err = lookup_one_common(idmap, name, base, len, &this); 2933 if (err) 2934 return ERR_PTR(err); 2935 2936 dentry = lookup_dcache(&this, base, 0); 2937 return dentry ? dentry : __lookup_slow(&this, base, 0); 2938 } 2939 EXPORT_SYMBOL(lookup_one); 2940 2941 /** 2942 * lookup_one_unlocked - filesystem helper to lookup single pathname component 2943 * @idmap: idmap of the mount the lookup is performed from 2944 * @name: pathname component to lookup 2945 * @base: base directory to lookup from 2946 * @len: maximum length @len should be interpreted to 2947 * 2948 * Note that this routine is purely a helper for filesystem usage and should 2949 * not be called by generic code. 2950 * 2951 * Unlike lookup_one_len, it should be called without the parent 2952 * i_mutex held, and will take the i_mutex itself if necessary. 2953 */ 2954 struct dentry *lookup_one_unlocked(struct mnt_idmap *idmap, 2955 const char *name, struct dentry *base, 2956 int len) 2957 { 2958 struct qstr this; 2959 int err; 2960 struct dentry *ret; 2961 2962 err = lookup_one_common(idmap, name, base, len, &this); 2963 if (err) 2964 return ERR_PTR(err); 2965 2966 ret = lookup_dcache(&this, base, 0); 2967 if (!ret) 2968 ret = lookup_slow(&this, base, 0); 2969 return ret; 2970 } 2971 EXPORT_SYMBOL(lookup_one_unlocked); 2972 2973 /** 2974 * lookup_one_positive_unlocked - filesystem helper to lookup single 2975 * pathname component 2976 * @idmap: idmap of the mount the lookup is performed from 2977 * @name: pathname component to lookup 2978 * @base: base directory to lookup from 2979 * @len: maximum length @len should be interpreted to 2980 * 2981 * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns 2982 * known positive or ERR_PTR(). This is what most of the users want. 2983 * 2984 * Note that pinned negative with unlocked parent _can_ become positive at any 2985 * time, so callers of lookup_one_unlocked() need to be very careful; pinned 2986 * positives have >d_inode stable, so this one avoids such problems. 2987 * 2988 * Note that this routine is purely a helper for filesystem usage and should 2989 * not be called by generic code. 2990 * 2991 * The helper should be called without i_mutex held. 2992 */ 2993 struct dentry *lookup_one_positive_unlocked(struct mnt_idmap *idmap, 2994 const char *name, 2995 struct dentry *base, int len) 2996 { 2997 struct dentry *ret = lookup_one_unlocked(idmap, name, base, len); 2998 2999 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) { 3000 dput(ret); 3001 ret = ERR_PTR(-ENOENT); 3002 } 3003 return ret; 3004 } 3005 EXPORT_SYMBOL(lookup_one_positive_unlocked); 3006 3007 /** 3008 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component 3009 * @name: pathname component to lookup 3010 * @base: base directory to lookup from 3011 * @len: maximum length @len should be interpreted to 3012 * 3013 * Note that this routine is purely a helper for filesystem usage and should 3014 * not be called by generic code. 3015 * 3016 * Unlike lookup_one_len, it should be called without the parent 3017 * i_mutex held, and will take the i_mutex itself if necessary. 3018 */ 3019 struct dentry *lookup_one_len_unlocked(const char *name, 3020 struct dentry *base, int len) 3021 { 3022 return lookup_one_unlocked(&nop_mnt_idmap, name, base, len); 3023 } 3024 EXPORT_SYMBOL(lookup_one_len_unlocked); 3025 3026 /* 3027 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT) 3028 * on negatives. Returns known positive or ERR_PTR(); that's what 3029 * most of the users want. Note that pinned negative with unlocked parent 3030 * _can_ become positive at any time, so callers of lookup_one_len_unlocked() 3031 * need to be very careful; pinned positives have ->d_inode stable, so 3032 * this one avoids such problems. 3033 */ 3034 struct dentry *lookup_positive_unlocked(const char *name, 3035 struct dentry *base, int len) 3036 { 3037 return lookup_one_positive_unlocked(&nop_mnt_idmap, name, base, len); 3038 } 3039 EXPORT_SYMBOL(lookup_positive_unlocked); 3040 3041 #ifdef CONFIG_UNIX98_PTYS 3042 int path_pts(struct path *path) 3043 { 3044 /* Find something mounted on "pts" in the same directory as 3045 * the input path. 3046 */ 3047 struct dentry *parent = dget_parent(path->dentry); 3048 struct dentry *child; 3049 struct qstr this = QSTR_INIT("pts", 3); 3050 3051 if (unlikely(!path_connected(path->mnt, parent))) { 3052 dput(parent); 3053 return -ENOENT; 3054 } 3055 dput(path->dentry); 3056 path->dentry = parent; 3057 child = d_hash_and_lookup(parent, &this); 3058 if (IS_ERR_OR_NULL(child)) 3059 return -ENOENT; 3060 3061 path->dentry = child; 3062 dput(parent); 3063 follow_down(path, 0); 3064 return 0; 3065 } 3066 #endif 3067 3068 int user_path_at(int dfd, const char __user *name, unsigned flags, 3069 struct path *path) 3070 { 3071 struct filename *filename = getname_flags(name, flags); 3072 int ret = filename_lookup(dfd, filename, flags, path, NULL); 3073 3074 putname(filename); 3075 return ret; 3076 } 3077 EXPORT_SYMBOL(user_path_at); 3078 3079 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir, 3080 struct inode *inode) 3081 { 3082 kuid_t fsuid = current_fsuid(); 3083 3084 if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), fsuid)) 3085 return 0; 3086 if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, dir), fsuid)) 3087 return 0; 3088 return !capable_wrt_inode_uidgid(idmap, inode, CAP_FOWNER); 3089 } 3090 EXPORT_SYMBOL(__check_sticky); 3091 3092 /* 3093 * Check whether we can remove a link victim from directory dir, check 3094 * whether the type of victim is right. 3095 * 1. We can't do it if dir is read-only (done in permission()) 3096 * 2. We should have write and exec permissions on dir 3097 * 3. We can't remove anything from append-only dir 3098 * 4. We can't do anything with immutable dir (done in permission()) 3099 * 5. If the sticky bit on dir is set we should either 3100 * a. be owner of dir, or 3101 * b. be owner of victim, or 3102 * c. have CAP_FOWNER capability 3103 * 6. If the victim is append-only or immutable we can't do antyhing with 3104 * links pointing to it. 3105 * 7. If the victim has an unknown uid or gid we can't change the inode. 3106 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR. 3107 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR. 3108 * 10. We can't remove a root or mountpoint. 3109 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by 3110 * nfs_async_unlink(). 3111 */ 3112 static int may_delete(struct mnt_idmap *idmap, struct inode *dir, 3113 struct dentry *victim, bool isdir) 3114 { 3115 struct inode *inode = d_backing_inode(victim); 3116 int error; 3117 3118 if (d_is_negative(victim)) 3119 return -ENOENT; 3120 BUG_ON(!inode); 3121 3122 BUG_ON(victim->d_parent->d_inode != dir); 3123 3124 /* Inode writeback is not safe when the uid or gid are invalid. */ 3125 if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) || 3126 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode))) 3127 return -EOVERFLOW; 3128 3129 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 3130 3131 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 3132 if (error) 3133 return error; 3134 if (IS_APPEND(dir)) 3135 return -EPERM; 3136 3137 if (check_sticky(idmap, dir, inode) || IS_APPEND(inode) || 3138 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || 3139 HAS_UNMAPPED_ID(idmap, inode)) 3140 return -EPERM; 3141 if (isdir) { 3142 if (!d_is_dir(victim)) 3143 return -ENOTDIR; 3144 if (IS_ROOT(victim)) 3145 return -EBUSY; 3146 } else if (d_is_dir(victim)) 3147 return -EISDIR; 3148 if (IS_DEADDIR(dir)) 3149 return -ENOENT; 3150 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 3151 return -EBUSY; 3152 return 0; 3153 } 3154 3155 /* Check whether we can create an object with dentry child in directory 3156 * dir. 3157 * 1. We can't do it if child already exists (open has special treatment for 3158 * this case, but since we are inlined it's OK) 3159 * 2. We can't do it if dir is read-only (done in permission()) 3160 * 3. We can't do it if the fs can't represent the fsuid or fsgid. 3161 * 4. We should have write and exec permissions on dir 3162 * 5. We can't do it if dir is immutable (done in permission()) 3163 */ 3164 static inline int may_create(struct mnt_idmap *idmap, 3165 struct inode *dir, struct dentry *child) 3166 { 3167 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 3168 if (child->d_inode) 3169 return -EEXIST; 3170 if (IS_DEADDIR(dir)) 3171 return -ENOENT; 3172 if (!fsuidgid_has_mapping(dir->i_sb, idmap)) 3173 return -EOVERFLOW; 3174 3175 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 3176 } 3177 3178 // p1 != p2, both are on the same filesystem, ->s_vfs_rename_mutex is held 3179 static struct dentry *lock_two_directories(struct dentry *p1, struct dentry *p2) 3180 { 3181 struct dentry *p = p1, *q = p2, *r; 3182 3183 while ((r = p->d_parent) != p2 && r != p) 3184 p = r; 3185 if (r == p2) { 3186 // p is a child of p2 and an ancestor of p1 or p1 itself 3187 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 3188 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT2); 3189 return p; 3190 } 3191 // p is the root of connected component that contains p1 3192 // p2 does not occur on the path from p to p1 3193 while ((r = q->d_parent) != p1 && r != p && r != q) 3194 q = r; 3195 if (r == p1) { 3196 // q is a child of p1 and an ancestor of p2 or p2 itself 3197 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 3198 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 3199 return q; 3200 } else if (likely(r == p)) { 3201 // both p2 and p1 are descendents of p 3202 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 3203 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 3204 return NULL; 3205 } else { // no common ancestor at the time we'd been called 3206 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 3207 return ERR_PTR(-EXDEV); 3208 } 3209 } 3210 3211 /* 3212 * p1 and p2 should be directories on the same fs. 3213 */ 3214 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 3215 { 3216 if (p1 == p2) { 3217 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 3218 return NULL; 3219 } 3220 3221 mutex_lock(&p1->d_sb->s_vfs_rename_mutex); 3222 return lock_two_directories(p1, p2); 3223 } 3224 EXPORT_SYMBOL(lock_rename); 3225 3226 /* 3227 * c1 and p2 should be on the same fs. 3228 */ 3229 struct dentry *lock_rename_child(struct dentry *c1, struct dentry *p2) 3230 { 3231 if (READ_ONCE(c1->d_parent) == p2) { 3232 /* 3233 * hopefully won't need to touch ->s_vfs_rename_mutex at all. 3234 */ 3235 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 3236 /* 3237 * now that p2 is locked, nobody can move in or out of it, 3238 * so the test below is safe. 3239 */ 3240 if (likely(c1->d_parent == p2)) 3241 return NULL; 3242 3243 /* 3244 * c1 got moved out of p2 while we'd been taking locks; 3245 * unlock and fall back to slow case. 3246 */ 3247 inode_unlock(p2->d_inode); 3248 } 3249 3250 mutex_lock(&c1->d_sb->s_vfs_rename_mutex); 3251 /* 3252 * nobody can move out of any directories on this fs. 3253 */ 3254 if (likely(c1->d_parent != p2)) 3255 return lock_two_directories(c1->d_parent, p2); 3256 3257 /* 3258 * c1 got moved into p2 while we were taking locks; 3259 * we need p2 locked and ->s_vfs_rename_mutex unlocked, 3260 * for consistency with lock_rename(). 3261 */ 3262 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 3263 mutex_unlock(&c1->d_sb->s_vfs_rename_mutex); 3264 return NULL; 3265 } 3266 EXPORT_SYMBOL(lock_rename_child); 3267 3268 void unlock_rename(struct dentry *p1, struct dentry *p2) 3269 { 3270 inode_unlock(p1->d_inode); 3271 if (p1 != p2) { 3272 inode_unlock(p2->d_inode); 3273 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 3274 } 3275 } 3276 EXPORT_SYMBOL(unlock_rename); 3277 3278 /** 3279 * vfs_prepare_mode - prepare the mode to be used for a new inode 3280 * @idmap: idmap of the mount the inode was found from 3281 * @dir: parent directory of the new inode 3282 * @mode: mode of the new inode 3283 * @mask_perms: allowed permission by the vfs 3284 * @type: type of file to be created 3285 * 3286 * This helper consolidates and enforces vfs restrictions on the @mode of a new 3287 * object to be created. 3288 * 3289 * Umask stripping depends on whether the filesystem supports POSIX ACLs (see 3290 * the kernel documentation for mode_strip_umask()). Moving umask stripping 3291 * after setgid stripping allows the same ordering for both non-POSIX ACL and 3292 * POSIX ACL supporting filesystems. 3293 * 3294 * Note that it's currently valid for @type to be 0 if a directory is created. 3295 * Filesystems raise that flag individually and we need to check whether each 3296 * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a 3297 * non-zero type. 3298 * 3299 * Returns: mode to be passed to the filesystem 3300 */ 3301 static inline umode_t vfs_prepare_mode(struct mnt_idmap *idmap, 3302 const struct inode *dir, umode_t mode, 3303 umode_t mask_perms, umode_t type) 3304 { 3305 mode = mode_strip_sgid(idmap, dir, mode); 3306 mode = mode_strip_umask(dir, mode); 3307 3308 /* 3309 * Apply the vfs mandated allowed permission mask and set the type of 3310 * file to be created before we call into the filesystem. 3311 */ 3312 mode &= (mask_perms & ~S_IFMT); 3313 mode |= (type & S_IFMT); 3314 3315 return mode; 3316 } 3317 3318 /** 3319 * vfs_create - create new file 3320 * @idmap: idmap of the mount the inode was found from 3321 * @dir: inode of the parent directory 3322 * @dentry: dentry of the child file 3323 * @mode: mode of the child file 3324 * @want_excl: whether the file must not yet exist 3325 * 3326 * Create a new file. 3327 * 3328 * If the inode has been found through an idmapped mount the idmap of 3329 * the vfsmount must be passed through @idmap. This function will then take 3330 * care to map the inode according to @idmap before checking permissions. 3331 * On non-idmapped mounts or if permission checking is to be performed on the 3332 * raw inode simply pass @nop_mnt_idmap. 3333 */ 3334 int vfs_create(struct mnt_idmap *idmap, struct inode *dir, 3335 struct dentry *dentry, umode_t mode, bool want_excl) 3336 { 3337 int error; 3338 3339 error = may_create(idmap, dir, dentry); 3340 if (error) 3341 return error; 3342 3343 if (!dir->i_op->create) 3344 return -EACCES; /* shouldn't it be ENOSYS? */ 3345 3346 mode = vfs_prepare_mode(idmap, dir, mode, S_IALLUGO, S_IFREG); 3347 error = security_inode_create(dir, dentry, mode); 3348 if (error) 3349 return error; 3350 error = dir->i_op->create(idmap, dir, dentry, mode, want_excl); 3351 if (!error) 3352 fsnotify_create(dir, dentry); 3353 return error; 3354 } 3355 EXPORT_SYMBOL(vfs_create); 3356 3357 int vfs_mkobj(struct dentry *dentry, umode_t mode, 3358 int (*f)(struct dentry *, umode_t, void *), 3359 void *arg) 3360 { 3361 struct inode *dir = dentry->d_parent->d_inode; 3362 int error = may_create(&nop_mnt_idmap, dir, dentry); 3363 if (error) 3364 return error; 3365 3366 mode &= S_IALLUGO; 3367 mode |= S_IFREG; 3368 error = security_inode_create(dir, dentry, mode); 3369 if (error) 3370 return error; 3371 error = f(dentry, mode, arg); 3372 if (!error) 3373 fsnotify_create(dir, dentry); 3374 return error; 3375 } 3376 EXPORT_SYMBOL(vfs_mkobj); 3377 3378 bool may_open_dev(const struct path *path) 3379 { 3380 return !(path->mnt->mnt_flags & MNT_NODEV) && 3381 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV); 3382 } 3383 3384 static int may_open(struct mnt_idmap *idmap, const struct path *path, 3385 int acc_mode, int flag) 3386 { 3387 struct dentry *dentry = path->dentry; 3388 struct inode *inode = dentry->d_inode; 3389 int error; 3390 3391 if (!inode) 3392 return -ENOENT; 3393 3394 switch (inode->i_mode & S_IFMT) { 3395 case S_IFLNK: 3396 return -ELOOP; 3397 case S_IFDIR: 3398 if (acc_mode & MAY_WRITE) 3399 return -EISDIR; 3400 if (acc_mode & MAY_EXEC) 3401 return -EACCES; 3402 break; 3403 case S_IFBLK: 3404 case S_IFCHR: 3405 if (!may_open_dev(path)) 3406 return -EACCES; 3407 fallthrough; 3408 case S_IFIFO: 3409 case S_IFSOCK: 3410 if (acc_mode & MAY_EXEC) 3411 return -EACCES; 3412 flag &= ~O_TRUNC; 3413 break; 3414 case S_IFREG: 3415 if ((acc_mode & MAY_EXEC) && path_noexec(path)) 3416 return -EACCES; 3417 break; 3418 default: 3419 VFS_BUG_ON_INODE(1, inode); 3420 } 3421 3422 error = inode_permission(idmap, inode, MAY_OPEN | acc_mode); 3423 if (error) 3424 return error; 3425 3426 /* 3427 * An append-only file must be opened in append mode for writing. 3428 */ 3429 if (IS_APPEND(inode)) { 3430 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 3431 return -EPERM; 3432 if (flag & O_TRUNC) 3433 return -EPERM; 3434 } 3435 3436 /* O_NOATIME can only be set by the owner or superuser */ 3437 if (flag & O_NOATIME && !inode_owner_or_capable(idmap, inode)) 3438 return -EPERM; 3439 3440 return 0; 3441 } 3442 3443 static int handle_truncate(struct mnt_idmap *idmap, struct file *filp) 3444 { 3445 const struct path *path = &filp->f_path; 3446 struct inode *inode = path->dentry->d_inode; 3447 int error = get_write_access(inode); 3448 if (error) 3449 return error; 3450 3451 error = security_file_truncate(filp); 3452 if (!error) { 3453 error = do_truncate(idmap, path->dentry, 0, 3454 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 3455 filp); 3456 } 3457 put_write_access(inode); 3458 return error; 3459 } 3460 3461 static inline int open_to_namei_flags(int flag) 3462 { 3463 if ((flag & O_ACCMODE) == 3) 3464 flag--; 3465 return flag; 3466 } 3467 3468 static int may_o_create(struct mnt_idmap *idmap, 3469 const struct path *dir, struct dentry *dentry, 3470 umode_t mode) 3471 { 3472 int error = security_path_mknod(dir, dentry, mode, 0); 3473 if (error) 3474 return error; 3475 3476 if (!fsuidgid_has_mapping(dir->dentry->d_sb, idmap)) 3477 return -EOVERFLOW; 3478 3479 error = inode_permission(idmap, dir->dentry->d_inode, 3480 MAY_WRITE | MAY_EXEC); 3481 if (error) 3482 return error; 3483 3484 return security_inode_create(dir->dentry->d_inode, dentry, mode); 3485 } 3486 3487 /* 3488 * Attempt to atomically look up, create and open a file from a negative 3489 * dentry. 3490 * 3491 * Returns 0 if successful. The file will have been created and attached to 3492 * @file by the filesystem calling finish_open(). 3493 * 3494 * If the file was looked up only or didn't need creating, FMODE_OPENED won't 3495 * be set. The caller will need to perform the open themselves. @path will 3496 * have been updated to point to the new dentry. This may be negative. 3497 * 3498 * Returns an error code otherwise. 3499 */ 3500 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry, 3501 struct file *file, 3502 int open_flag, umode_t mode) 3503 { 3504 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 3505 struct inode *dir = nd->path.dentry->d_inode; 3506 int error; 3507 3508 if (nd->flags & LOOKUP_DIRECTORY) 3509 open_flag |= O_DIRECTORY; 3510 3511 file->f_path.dentry = DENTRY_NOT_SET; 3512 file->f_path.mnt = nd->path.mnt; 3513 error = dir->i_op->atomic_open(dir, dentry, file, 3514 open_to_namei_flags(open_flag), mode); 3515 d_lookup_done(dentry); 3516 if (!error) { 3517 if (file->f_mode & FMODE_OPENED) { 3518 if (unlikely(dentry != file->f_path.dentry)) { 3519 dput(dentry); 3520 dentry = dget(file->f_path.dentry); 3521 } 3522 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 3523 error = -EIO; 3524 } else { 3525 if (file->f_path.dentry) { 3526 dput(dentry); 3527 dentry = file->f_path.dentry; 3528 } 3529 if (unlikely(d_is_negative(dentry))) 3530 error = -ENOENT; 3531 } 3532 } 3533 if (error) { 3534 dput(dentry); 3535 dentry = ERR_PTR(error); 3536 } 3537 return dentry; 3538 } 3539 3540 /* 3541 * Look up and maybe create and open the last component. 3542 * 3543 * Must be called with parent locked (exclusive in O_CREAT case). 3544 * 3545 * Returns 0 on success, that is, if 3546 * the file was successfully atomically created (if necessary) and opened, or 3547 * the file was not completely opened at this time, though lookups and 3548 * creations were performed. 3549 * These case are distinguished by presence of FMODE_OPENED on file->f_mode. 3550 * In the latter case dentry returned in @path might be negative if O_CREAT 3551 * hadn't been specified. 3552 * 3553 * An error code is returned on failure. 3554 */ 3555 static struct dentry *lookup_open(struct nameidata *nd, struct file *file, 3556 const struct open_flags *op, 3557 bool got_write) 3558 { 3559 struct mnt_idmap *idmap; 3560 struct dentry *dir = nd->path.dentry; 3561 struct inode *dir_inode = dir->d_inode; 3562 int open_flag = op->open_flag; 3563 struct dentry *dentry; 3564 int error, create_error = 0; 3565 umode_t mode = op->mode; 3566 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 3567 3568 if (unlikely(IS_DEADDIR(dir_inode))) 3569 return ERR_PTR(-ENOENT); 3570 3571 file->f_mode &= ~FMODE_CREATED; 3572 dentry = d_lookup(dir, &nd->last); 3573 for (;;) { 3574 if (!dentry) { 3575 dentry = d_alloc_parallel(dir, &nd->last, &wq); 3576 if (IS_ERR(dentry)) 3577 return dentry; 3578 } 3579 if (d_in_lookup(dentry)) 3580 break; 3581 3582 error = d_revalidate(dir_inode, &nd->last, dentry, nd->flags); 3583 if (likely(error > 0)) 3584 break; 3585 if (error) 3586 goto out_dput; 3587 d_invalidate(dentry); 3588 dput(dentry); 3589 dentry = NULL; 3590 } 3591 if (dentry->d_inode) { 3592 /* Cached positive dentry: will open in f_op->open */ 3593 return dentry; 3594 } 3595 3596 if (open_flag & O_CREAT) 3597 audit_inode(nd->name, dir, AUDIT_INODE_PARENT); 3598 3599 /* 3600 * Checking write permission is tricky, bacuse we don't know if we are 3601 * going to actually need it: O_CREAT opens should work as long as the 3602 * file exists. But checking existence breaks atomicity. The trick is 3603 * to check access and if not granted clear O_CREAT from the flags. 3604 * 3605 * Another problem is returing the "right" error value (e.g. for an 3606 * O_EXCL open we want to return EEXIST not EROFS). 3607 */ 3608 if (unlikely(!got_write)) 3609 open_flag &= ~O_TRUNC; 3610 idmap = mnt_idmap(nd->path.mnt); 3611 if (open_flag & O_CREAT) { 3612 if (open_flag & O_EXCL) 3613 open_flag &= ~O_TRUNC; 3614 mode = vfs_prepare_mode(idmap, dir->d_inode, mode, mode, mode); 3615 if (likely(got_write)) 3616 create_error = may_o_create(idmap, &nd->path, 3617 dentry, mode); 3618 else 3619 create_error = -EROFS; 3620 } 3621 if (create_error) 3622 open_flag &= ~O_CREAT; 3623 if (dir_inode->i_op->atomic_open) { 3624 dentry = atomic_open(nd, dentry, file, open_flag, mode); 3625 if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT)) 3626 dentry = ERR_PTR(create_error); 3627 return dentry; 3628 } 3629 3630 if (d_in_lookup(dentry)) { 3631 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry, 3632 nd->flags); 3633 d_lookup_done(dentry); 3634 if (unlikely(res)) { 3635 if (IS_ERR(res)) { 3636 error = PTR_ERR(res); 3637 goto out_dput; 3638 } 3639 dput(dentry); 3640 dentry = res; 3641 } 3642 } 3643 3644 /* Negative dentry, just create the file */ 3645 if (!dentry->d_inode && (open_flag & O_CREAT)) { 3646 file->f_mode |= FMODE_CREATED; 3647 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE); 3648 if (!dir_inode->i_op->create) { 3649 error = -EACCES; 3650 goto out_dput; 3651 } 3652 3653 error = dir_inode->i_op->create(idmap, dir_inode, dentry, 3654 mode, open_flag & O_EXCL); 3655 if (error) 3656 goto out_dput; 3657 } 3658 if (unlikely(create_error) && !dentry->d_inode) { 3659 error = create_error; 3660 goto out_dput; 3661 } 3662 return dentry; 3663 3664 out_dput: 3665 dput(dentry); 3666 return ERR_PTR(error); 3667 } 3668 3669 static inline bool trailing_slashes(struct nameidata *nd) 3670 { 3671 return (bool)nd->last.name[nd->last.len]; 3672 } 3673 3674 static struct dentry *lookup_fast_for_open(struct nameidata *nd, int open_flag) 3675 { 3676 struct dentry *dentry; 3677 3678 if (open_flag & O_CREAT) { 3679 if (trailing_slashes(nd)) 3680 return ERR_PTR(-EISDIR); 3681 3682 /* Don't bother on an O_EXCL create */ 3683 if (open_flag & O_EXCL) 3684 return NULL; 3685 } 3686 3687 if (trailing_slashes(nd)) 3688 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 3689 3690 dentry = lookup_fast(nd); 3691 if (IS_ERR_OR_NULL(dentry)) 3692 return dentry; 3693 3694 if (open_flag & O_CREAT) { 3695 /* Discard negative dentries. Need inode_lock to do the create */ 3696 if (!dentry->d_inode) { 3697 if (!(nd->flags & LOOKUP_RCU)) 3698 dput(dentry); 3699 dentry = NULL; 3700 } 3701 } 3702 return dentry; 3703 } 3704 3705 static const char *open_last_lookups(struct nameidata *nd, 3706 struct file *file, const struct open_flags *op) 3707 { 3708 struct dentry *dir = nd->path.dentry; 3709 int open_flag = op->open_flag; 3710 bool got_write = false; 3711 struct dentry *dentry; 3712 const char *res; 3713 3714 nd->flags |= op->intent; 3715 3716 if (nd->last_type != LAST_NORM) { 3717 if (nd->depth) 3718 put_link(nd); 3719 return handle_dots(nd, nd->last_type); 3720 } 3721 3722 /* We _can_ be in RCU mode here */ 3723 dentry = lookup_fast_for_open(nd, open_flag); 3724 if (IS_ERR(dentry)) 3725 return ERR_CAST(dentry); 3726 3727 if (likely(dentry)) 3728 goto finish_lookup; 3729 3730 if (!(open_flag & O_CREAT)) { 3731 if (WARN_ON_ONCE(nd->flags & LOOKUP_RCU)) 3732 return ERR_PTR(-ECHILD); 3733 } else { 3734 if (nd->flags & LOOKUP_RCU) { 3735 if (!try_to_unlazy(nd)) 3736 return ERR_PTR(-ECHILD); 3737 } 3738 } 3739 3740 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 3741 got_write = !mnt_want_write(nd->path.mnt); 3742 /* 3743 * do _not_ fail yet - we might not need that or fail with 3744 * a different error; let lookup_open() decide; we'll be 3745 * dropping this one anyway. 3746 */ 3747 } 3748 if (open_flag & O_CREAT) 3749 inode_lock(dir->d_inode); 3750 else 3751 inode_lock_shared(dir->d_inode); 3752 dentry = lookup_open(nd, file, op, got_write); 3753 if (!IS_ERR(dentry)) { 3754 if (file->f_mode & FMODE_CREATED) 3755 fsnotify_create(dir->d_inode, dentry); 3756 if (file->f_mode & FMODE_OPENED) 3757 fsnotify_open(file); 3758 } 3759 if (open_flag & O_CREAT) 3760 inode_unlock(dir->d_inode); 3761 else 3762 inode_unlock_shared(dir->d_inode); 3763 3764 if (got_write) 3765 mnt_drop_write(nd->path.mnt); 3766 3767 if (IS_ERR(dentry)) 3768 return ERR_CAST(dentry); 3769 3770 if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) { 3771 dput(nd->path.dentry); 3772 nd->path.dentry = dentry; 3773 return NULL; 3774 } 3775 3776 finish_lookup: 3777 if (nd->depth) 3778 put_link(nd); 3779 res = step_into(nd, WALK_TRAILING, dentry); 3780 if (unlikely(res)) 3781 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3782 return res; 3783 } 3784 3785 /* 3786 * Handle the last step of open() 3787 */ 3788 static int do_open(struct nameidata *nd, 3789 struct file *file, const struct open_flags *op) 3790 { 3791 struct mnt_idmap *idmap; 3792 int open_flag = op->open_flag; 3793 bool do_truncate; 3794 int acc_mode; 3795 int error; 3796 3797 if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) { 3798 error = complete_walk(nd); 3799 if (error) 3800 return error; 3801 } 3802 if (!(file->f_mode & FMODE_CREATED)) 3803 audit_inode(nd->name, nd->path.dentry, 0); 3804 idmap = mnt_idmap(nd->path.mnt); 3805 if (open_flag & O_CREAT) { 3806 if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED)) 3807 return -EEXIST; 3808 if (d_is_dir(nd->path.dentry)) 3809 return -EISDIR; 3810 error = may_create_in_sticky(idmap, nd, 3811 d_backing_inode(nd->path.dentry)); 3812 if (unlikely(error)) 3813 return error; 3814 } 3815 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3816 return -ENOTDIR; 3817 3818 do_truncate = false; 3819 acc_mode = op->acc_mode; 3820 if (file->f_mode & FMODE_CREATED) { 3821 /* Don't check for write permission, don't truncate */ 3822 open_flag &= ~O_TRUNC; 3823 acc_mode = 0; 3824 } else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) { 3825 error = mnt_want_write(nd->path.mnt); 3826 if (error) 3827 return error; 3828 do_truncate = true; 3829 } 3830 error = may_open(idmap, &nd->path, acc_mode, open_flag); 3831 if (!error && !(file->f_mode & FMODE_OPENED)) 3832 error = vfs_open(&nd->path, file); 3833 if (!error) 3834 error = security_file_post_open(file, op->acc_mode); 3835 if (!error && do_truncate) 3836 error = handle_truncate(idmap, file); 3837 if (unlikely(error > 0)) { 3838 WARN_ON(1); 3839 error = -EINVAL; 3840 } 3841 if (do_truncate) 3842 mnt_drop_write(nd->path.mnt); 3843 return error; 3844 } 3845 3846 /** 3847 * vfs_tmpfile - create tmpfile 3848 * @idmap: idmap of the mount the inode was found from 3849 * @parentpath: pointer to the path of the base directory 3850 * @file: file descriptor of the new tmpfile 3851 * @mode: mode of the new tmpfile 3852 * 3853 * Create a temporary file. 3854 * 3855 * If the inode has been found through an idmapped mount the idmap of 3856 * the vfsmount must be passed through @idmap. This function will then take 3857 * care to map the inode according to @idmap before checking permissions. 3858 * On non-idmapped mounts or if permission checking is to be performed on the 3859 * raw inode simply pass @nop_mnt_idmap. 3860 */ 3861 int vfs_tmpfile(struct mnt_idmap *idmap, 3862 const struct path *parentpath, 3863 struct file *file, umode_t mode) 3864 { 3865 struct dentry *child; 3866 struct inode *dir = d_inode(parentpath->dentry); 3867 struct inode *inode; 3868 int error; 3869 int open_flag = file->f_flags; 3870 3871 /* we want directory to be writable */ 3872 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 3873 if (error) 3874 return error; 3875 if (!dir->i_op->tmpfile) 3876 return -EOPNOTSUPP; 3877 child = d_alloc(parentpath->dentry, &slash_name); 3878 if (unlikely(!child)) 3879 return -ENOMEM; 3880 file->f_path.mnt = parentpath->mnt; 3881 file->f_path.dentry = child; 3882 mode = vfs_prepare_mode(idmap, dir, mode, mode, mode); 3883 error = dir->i_op->tmpfile(idmap, dir, file, mode); 3884 dput(child); 3885 if (file->f_mode & FMODE_OPENED) 3886 fsnotify_open(file); 3887 if (error) 3888 return error; 3889 /* Don't check for other permissions, the inode was just created */ 3890 error = may_open(idmap, &file->f_path, 0, file->f_flags); 3891 if (error) 3892 return error; 3893 inode = file_inode(file); 3894 if (!(open_flag & O_EXCL)) { 3895 spin_lock(&inode->i_lock); 3896 inode->i_state |= I_LINKABLE; 3897 spin_unlock(&inode->i_lock); 3898 } 3899 security_inode_post_create_tmpfile(idmap, inode); 3900 return 0; 3901 } 3902 3903 /** 3904 * kernel_tmpfile_open - open a tmpfile for kernel internal use 3905 * @idmap: idmap of the mount the inode was found from 3906 * @parentpath: path of the base directory 3907 * @mode: mode of the new tmpfile 3908 * @open_flag: flags 3909 * @cred: credentials for open 3910 * 3911 * Create and open a temporary file. The file is not accounted in nr_files, 3912 * hence this is only for kernel internal use, and must not be installed into 3913 * file tables or such. 3914 */ 3915 struct file *kernel_tmpfile_open(struct mnt_idmap *idmap, 3916 const struct path *parentpath, 3917 umode_t mode, int open_flag, 3918 const struct cred *cred) 3919 { 3920 struct file *file; 3921 int error; 3922 3923 file = alloc_empty_file_noaccount(open_flag, cred); 3924 if (IS_ERR(file)) 3925 return file; 3926 3927 error = vfs_tmpfile(idmap, parentpath, file, mode); 3928 if (error) { 3929 fput(file); 3930 file = ERR_PTR(error); 3931 } 3932 return file; 3933 } 3934 EXPORT_SYMBOL(kernel_tmpfile_open); 3935 3936 static int do_tmpfile(struct nameidata *nd, unsigned flags, 3937 const struct open_flags *op, 3938 struct file *file) 3939 { 3940 struct path path; 3941 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path); 3942 3943 if (unlikely(error)) 3944 return error; 3945 error = mnt_want_write(path.mnt); 3946 if (unlikely(error)) 3947 goto out; 3948 error = vfs_tmpfile(mnt_idmap(path.mnt), &path, file, op->mode); 3949 if (error) 3950 goto out2; 3951 audit_inode(nd->name, file->f_path.dentry, 0); 3952 out2: 3953 mnt_drop_write(path.mnt); 3954 out: 3955 path_put(&path); 3956 return error; 3957 } 3958 3959 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file) 3960 { 3961 struct path path; 3962 int error = path_lookupat(nd, flags, &path); 3963 if (!error) { 3964 audit_inode(nd->name, path.dentry, 0); 3965 error = vfs_open(&path, file); 3966 path_put(&path); 3967 } 3968 return error; 3969 } 3970 3971 static struct file *path_openat(struct nameidata *nd, 3972 const struct open_flags *op, unsigned flags) 3973 { 3974 struct file *file; 3975 int error; 3976 3977 file = alloc_empty_file(op->open_flag, current_cred()); 3978 if (IS_ERR(file)) 3979 return file; 3980 3981 if (unlikely(file->f_flags & __O_TMPFILE)) { 3982 error = do_tmpfile(nd, flags, op, file); 3983 } else if (unlikely(file->f_flags & O_PATH)) { 3984 error = do_o_path(nd, flags, file); 3985 } else { 3986 const char *s = path_init(nd, flags); 3987 while (!(error = link_path_walk(s, nd)) && 3988 (s = open_last_lookups(nd, file, op)) != NULL) 3989 ; 3990 if (!error) 3991 error = do_open(nd, file, op); 3992 terminate_walk(nd); 3993 } 3994 if (likely(!error)) { 3995 if (likely(file->f_mode & FMODE_OPENED)) 3996 return file; 3997 WARN_ON(1); 3998 error = -EINVAL; 3999 } 4000 fput(file); 4001 if (error == -EOPENSTALE) { 4002 if (flags & LOOKUP_RCU) 4003 error = -ECHILD; 4004 else 4005 error = -ESTALE; 4006 } 4007 return ERR_PTR(error); 4008 } 4009 4010 struct file *do_filp_open(int dfd, struct filename *pathname, 4011 const struct open_flags *op) 4012 { 4013 struct nameidata nd; 4014 int flags = op->lookup_flags; 4015 struct file *filp; 4016 4017 set_nameidata(&nd, dfd, pathname, NULL); 4018 filp = path_openat(&nd, op, flags | LOOKUP_RCU); 4019 if (unlikely(filp == ERR_PTR(-ECHILD))) 4020 filp = path_openat(&nd, op, flags); 4021 if (unlikely(filp == ERR_PTR(-ESTALE))) 4022 filp = path_openat(&nd, op, flags | LOOKUP_REVAL); 4023 restore_nameidata(); 4024 return filp; 4025 } 4026 4027 struct file *do_file_open_root(const struct path *root, 4028 const char *name, const struct open_flags *op) 4029 { 4030 struct nameidata nd; 4031 struct file *file; 4032 struct filename *filename; 4033 int flags = op->lookup_flags; 4034 4035 if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN) 4036 return ERR_PTR(-ELOOP); 4037 4038 filename = getname_kernel(name); 4039 if (IS_ERR(filename)) 4040 return ERR_CAST(filename); 4041 4042 set_nameidata(&nd, -1, filename, root); 4043 file = path_openat(&nd, op, flags | LOOKUP_RCU); 4044 if (unlikely(file == ERR_PTR(-ECHILD))) 4045 file = path_openat(&nd, op, flags); 4046 if (unlikely(file == ERR_PTR(-ESTALE))) 4047 file = path_openat(&nd, op, flags | LOOKUP_REVAL); 4048 restore_nameidata(); 4049 putname(filename); 4050 return file; 4051 } 4052 4053 static struct dentry *filename_create(int dfd, struct filename *name, 4054 struct path *path, unsigned int lookup_flags) 4055 { 4056 struct dentry *dentry = ERR_PTR(-EEXIST); 4057 struct qstr last; 4058 bool want_dir = lookup_flags & LOOKUP_DIRECTORY; 4059 unsigned int reval_flag = lookup_flags & LOOKUP_REVAL; 4060 unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL; 4061 int type; 4062 int err2; 4063 int error; 4064 4065 error = filename_parentat(dfd, name, reval_flag, path, &last, &type); 4066 if (error) 4067 return ERR_PTR(error); 4068 4069 /* 4070 * Yucky last component or no last component at all? 4071 * (foo/., foo/.., /////) 4072 */ 4073 if (unlikely(type != LAST_NORM)) 4074 goto out; 4075 4076 /* don't fail immediately if it's r/o, at least try to report other errors */ 4077 err2 = mnt_want_write(path->mnt); 4078 /* 4079 * Do the final lookup. Suppress 'create' if there is a trailing 4080 * '/', and a directory wasn't requested. 4081 */ 4082 if (last.name[last.len] && !want_dir) 4083 create_flags = 0; 4084 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 4085 dentry = lookup_one_qstr_excl(&last, path->dentry, 4086 reval_flag | create_flags); 4087 if (IS_ERR(dentry)) 4088 goto unlock; 4089 4090 error = -EEXIST; 4091 if (d_is_positive(dentry)) 4092 goto fail; 4093 4094 /* 4095 * Special case - lookup gave negative, but... we had foo/bar/ 4096 * From the vfs_mknod() POV we just have a negative dentry - 4097 * all is fine. Let's be bastards - you had / on the end, you've 4098 * been asking for (non-existent) directory. -ENOENT for you. 4099 */ 4100 if (unlikely(!create_flags)) { 4101 error = -ENOENT; 4102 goto fail; 4103 } 4104 if (unlikely(err2)) { 4105 error = err2; 4106 goto fail; 4107 } 4108 return dentry; 4109 fail: 4110 dput(dentry); 4111 dentry = ERR_PTR(error); 4112 unlock: 4113 inode_unlock(path->dentry->d_inode); 4114 if (!err2) 4115 mnt_drop_write(path->mnt); 4116 out: 4117 path_put(path); 4118 return dentry; 4119 } 4120 4121 struct dentry *kern_path_create(int dfd, const char *pathname, 4122 struct path *path, unsigned int lookup_flags) 4123 { 4124 struct filename *filename = getname_kernel(pathname); 4125 struct dentry *res = filename_create(dfd, filename, path, lookup_flags); 4126 4127 putname(filename); 4128 return res; 4129 } 4130 EXPORT_SYMBOL(kern_path_create); 4131 4132 void done_path_create(struct path *path, struct dentry *dentry) 4133 { 4134 dput(dentry); 4135 inode_unlock(path->dentry->d_inode); 4136 mnt_drop_write(path->mnt); 4137 path_put(path); 4138 } 4139 EXPORT_SYMBOL(done_path_create); 4140 4141 inline struct dentry *user_path_create(int dfd, const char __user *pathname, 4142 struct path *path, unsigned int lookup_flags) 4143 { 4144 struct filename *filename = getname(pathname); 4145 struct dentry *res = filename_create(dfd, filename, path, lookup_flags); 4146 4147 putname(filename); 4148 return res; 4149 } 4150 EXPORT_SYMBOL(user_path_create); 4151 4152 /** 4153 * vfs_mknod - create device node or file 4154 * @idmap: idmap of the mount the inode was found from 4155 * @dir: inode of the parent directory 4156 * @dentry: dentry of the child device node 4157 * @mode: mode of the child device node 4158 * @dev: device number of device to create 4159 * 4160 * Create a device node or file. 4161 * 4162 * If the inode has been found through an idmapped mount the idmap of 4163 * the vfsmount must be passed through @idmap. This function will then take 4164 * care to map the inode according to @idmap before checking permissions. 4165 * On non-idmapped mounts or if permission checking is to be performed on the 4166 * raw inode simply pass @nop_mnt_idmap. 4167 */ 4168 int vfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 4169 struct dentry *dentry, umode_t mode, dev_t dev) 4170 { 4171 bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV; 4172 int error = may_create(idmap, dir, dentry); 4173 4174 if (error) 4175 return error; 4176 4177 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout && 4178 !capable(CAP_MKNOD)) 4179 return -EPERM; 4180 4181 if (!dir->i_op->mknod) 4182 return -EPERM; 4183 4184 mode = vfs_prepare_mode(idmap, dir, mode, mode, mode); 4185 error = devcgroup_inode_mknod(mode, dev); 4186 if (error) 4187 return error; 4188 4189 error = security_inode_mknod(dir, dentry, mode, dev); 4190 if (error) 4191 return error; 4192 4193 error = dir->i_op->mknod(idmap, dir, dentry, mode, dev); 4194 if (!error) 4195 fsnotify_create(dir, dentry); 4196 return error; 4197 } 4198 EXPORT_SYMBOL(vfs_mknod); 4199 4200 static int may_mknod(umode_t mode) 4201 { 4202 switch (mode & S_IFMT) { 4203 case S_IFREG: 4204 case S_IFCHR: 4205 case S_IFBLK: 4206 case S_IFIFO: 4207 case S_IFSOCK: 4208 case 0: /* zero mode translates to S_IFREG */ 4209 return 0; 4210 case S_IFDIR: 4211 return -EPERM; 4212 default: 4213 return -EINVAL; 4214 } 4215 } 4216 4217 static int do_mknodat(int dfd, struct filename *name, umode_t mode, 4218 unsigned int dev) 4219 { 4220 struct mnt_idmap *idmap; 4221 struct dentry *dentry; 4222 struct path path; 4223 int error; 4224 unsigned int lookup_flags = 0; 4225 4226 error = may_mknod(mode); 4227 if (error) 4228 goto out1; 4229 retry: 4230 dentry = filename_create(dfd, name, &path, lookup_flags); 4231 error = PTR_ERR(dentry); 4232 if (IS_ERR(dentry)) 4233 goto out1; 4234 4235 error = security_path_mknod(&path, dentry, 4236 mode_strip_umask(path.dentry->d_inode, mode), dev); 4237 if (error) 4238 goto out2; 4239 4240 idmap = mnt_idmap(path.mnt); 4241 switch (mode & S_IFMT) { 4242 case 0: case S_IFREG: 4243 error = vfs_create(idmap, path.dentry->d_inode, 4244 dentry, mode, true); 4245 if (!error) 4246 security_path_post_mknod(idmap, dentry); 4247 break; 4248 case S_IFCHR: case S_IFBLK: 4249 error = vfs_mknod(idmap, path.dentry->d_inode, 4250 dentry, mode, new_decode_dev(dev)); 4251 break; 4252 case S_IFIFO: case S_IFSOCK: 4253 error = vfs_mknod(idmap, path.dentry->d_inode, 4254 dentry, mode, 0); 4255 break; 4256 } 4257 out2: 4258 done_path_create(&path, dentry); 4259 if (retry_estale(error, lookup_flags)) { 4260 lookup_flags |= LOOKUP_REVAL; 4261 goto retry; 4262 } 4263 out1: 4264 putname(name); 4265 return error; 4266 } 4267 4268 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 4269 unsigned int, dev) 4270 { 4271 return do_mknodat(dfd, getname(filename), mode, dev); 4272 } 4273 4274 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 4275 { 4276 return do_mknodat(AT_FDCWD, getname(filename), mode, dev); 4277 } 4278 4279 /** 4280 * vfs_mkdir - create directory 4281 * @idmap: idmap of the mount the inode was found from 4282 * @dir: inode of the parent directory 4283 * @dentry: dentry of the child directory 4284 * @mode: mode of the child directory 4285 * 4286 * Create a directory. 4287 * 4288 * If the inode has been found through an idmapped mount the idmap of 4289 * the vfsmount must be passed through @idmap. This function will then take 4290 * care to map the inode according to @idmap before checking permissions. 4291 * On non-idmapped mounts or if permission checking is to be performed on the 4292 * raw inode simply pass @nop_mnt_idmap. 4293 */ 4294 int vfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 4295 struct dentry *dentry, umode_t mode) 4296 { 4297 int error; 4298 unsigned max_links = dir->i_sb->s_max_links; 4299 4300 error = may_create(idmap, dir, dentry); 4301 if (error) 4302 return error; 4303 4304 if (!dir->i_op->mkdir) 4305 return -EPERM; 4306 4307 mode = vfs_prepare_mode(idmap, dir, mode, S_IRWXUGO | S_ISVTX, 0); 4308 error = security_inode_mkdir(dir, dentry, mode); 4309 if (error) 4310 return error; 4311 4312 if (max_links && dir->i_nlink >= max_links) 4313 return -EMLINK; 4314 4315 error = dir->i_op->mkdir(idmap, dir, dentry, mode); 4316 if (!error) 4317 fsnotify_mkdir(dir, dentry); 4318 return error; 4319 } 4320 EXPORT_SYMBOL(vfs_mkdir); 4321 4322 int do_mkdirat(int dfd, struct filename *name, umode_t mode) 4323 { 4324 struct dentry *dentry; 4325 struct path path; 4326 int error; 4327 unsigned int lookup_flags = LOOKUP_DIRECTORY; 4328 4329 retry: 4330 dentry = filename_create(dfd, name, &path, lookup_flags); 4331 error = PTR_ERR(dentry); 4332 if (IS_ERR(dentry)) 4333 goto out_putname; 4334 4335 error = security_path_mkdir(&path, dentry, 4336 mode_strip_umask(path.dentry->d_inode, mode)); 4337 if (!error) { 4338 error = vfs_mkdir(mnt_idmap(path.mnt), path.dentry->d_inode, 4339 dentry, mode); 4340 } 4341 done_path_create(&path, dentry); 4342 if (retry_estale(error, lookup_flags)) { 4343 lookup_flags |= LOOKUP_REVAL; 4344 goto retry; 4345 } 4346 out_putname: 4347 putname(name); 4348 return error; 4349 } 4350 4351 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 4352 { 4353 return do_mkdirat(dfd, getname(pathname), mode); 4354 } 4355 4356 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 4357 { 4358 return do_mkdirat(AT_FDCWD, getname(pathname), mode); 4359 } 4360 4361 /** 4362 * vfs_rmdir - remove directory 4363 * @idmap: idmap of the mount the inode was found from 4364 * @dir: inode of the parent directory 4365 * @dentry: dentry of the child directory 4366 * 4367 * Remove a directory. 4368 * 4369 * If the inode has been found through an idmapped mount the idmap of 4370 * the vfsmount must be passed through @idmap. This function will then take 4371 * care to map the inode according to @idmap before checking permissions. 4372 * On non-idmapped mounts or if permission checking is to be performed on the 4373 * raw inode simply pass @nop_mnt_idmap. 4374 */ 4375 int vfs_rmdir(struct mnt_idmap *idmap, struct inode *dir, 4376 struct dentry *dentry) 4377 { 4378 int error = may_delete(idmap, dir, dentry, 1); 4379 4380 if (error) 4381 return error; 4382 4383 if (!dir->i_op->rmdir) 4384 return -EPERM; 4385 4386 dget(dentry); 4387 inode_lock(dentry->d_inode); 4388 4389 error = -EBUSY; 4390 if (is_local_mountpoint(dentry) || 4391 (dentry->d_inode->i_flags & S_KERNEL_FILE)) 4392 goto out; 4393 4394 error = security_inode_rmdir(dir, dentry); 4395 if (error) 4396 goto out; 4397 4398 error = dir->i_op->rmdir(dir, dentry); 4399 if (error) 4400 goto out; 4401 4402 shrink_dcache_parent(dentry); 4403 dentry->d_inode->i_flags |= S_DEAD; 4404 dont_mount(dentry); 4405 detach_mounts(dentry); 4406 4407 out: 4408 inode_unlock(dentry->d_inode); 4409 dput(dentry); 4410 if (!error) 4411 d_delete_notify(dir, dentry); 4412 return error; 4413 } 4414 EXPORT_SYMBOL(vfs_rmdir); 4415 4416 int do_rmdir(int dfd, struct filename *name) 4417 { 4418 int error; 4419 struct dentry *dentry; 4420 struct path path; 4421 struct qstr last; 4422 int type; 4423 unsigned int lookup_flags = 0; 4424 retry: 4425 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 4426 if (error) 4427 goto exit1; 4428 4429 switch (type) { 4430 case LAST_DOTDOT: 4431 error = -ENOTEMPTY; 4432 goto exit2; 4433 case LAST_DOT: 4434 error = -EINVAL; 4435 goto exit2; 4436 case LAST_ROOT: 4437 error = -EBUSY; 4438 goto exit2; 4439 } 4440 4441 error = mnt_want_write(path.mnt); 4442 if (error) 4443 goto exit2; 4444 4445 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4446 dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags); 4447 error = PTR_ERR(dentry); 4448 if (IS_ERR(dentry)) 4449 goto exit3; 4450 if (!dentry->d_inode) { 4451 error = -ENOENT; 4452 goto exit4; 4453 } 4454 error = security_path_rmdir(&path, dentry); 4455 if (error) 4456 goto exit4; 4457 error = vfs_rmdir(mnt_idmap(path.mnt), path.dentry->d_inode, dentry); 4458 exit4: 4459 dput(dentry); 4460 exit3: 4461 inode_unlock(path.dentry->d_inode); 4462 mnt_drop_write(path.mnt); 4463 exit2: 4464 path_put(&path); 4465 if (retry_estale(error, lookup_flags)) { 4466 lookup_flags |= LOOKUP_REVAL; 4467 goto retry; 4468 } 4469 exit1: 4470 putname(name); 4471 return error; 4472 } 4473 4474 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 4475 { 4476 return do_rmdir(AT_FDCWD, getname(pathname)); 4477 } 4478 4479 /** 4480 * vfs_unlink - unlink a filesystem object 4481 * @idmap: idmap of the mount the inode was found from 4482 * @dir: parent directory 4483 * @dentry: victim 4484 * @delegated_inode: returns victim inode, if the inode is delegated. 4485 * 4486 * The caller must hold dir->i_mutex. 4487 * 4488 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 4489 * return a reference to the inode in delegated_inode. The caller 4490 * should then break the delegation on that inode and retry. Because 4491 * breaking a delegation may take a long time, the caller should drop 4492 * dir->i_mutex before doing so. 4493 * 4494 * Alternatively, a caller may pass NULL for delegated_inode. This may 4495 * be appropriate for callers that expect the underlying filesystem not 4496 * to be NFS exported. 4497 * 4498 * If the inode has been found through an idmapped mount the idmap of 4499 * the vfsmount must be passed through @idmap. This function will then take 4500 * care to map the inode according to @idmap before checking permissions. 4501 * On non-idmapped mounts or if permission checking is to be performed on the 4502 * raw inode simply pass @nop_mnt_idmap. 4503 */ 4504 int vfs_unlink(struct mnt_idmap *idmap, struct inode *dir, 4505 struct dentry *dentry, struct inode **delegated_inode) 4506 { 4507 struct inode *target = dentry->d_inode; 4508 int error = may_delete(idmap, dir, dentry, 0); 4509 4510 if (error) 4511 return error; 4512 4513 if (!dir->i_op->unlink) 4514 return -EPERM; 4515 4516 inode_lock(target); 4517 if (IS_SWAPFILE(target)) 4518 error = -EPERM; 4519 else if (is_local_mountpoint(dentry)) 4520 error = -EBUSY; 4521 else { 4522 error = security_inode_unlink(dir, dentry); 4523 if (!error) { 4524 error = try_break_deleg(target, delegated_inode); 4525 if (error) 4526 goto out; 4527 error = dir->i_op->unlink(dir, dentry); 4528 if (!error) { 4529 dont_mount(dentry); 4530 detach_mounts(dentry); 4531 } 4532 } 4533 } 4534 out: 4535 inode_unlock(target); 4536 4537 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 4538 if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) { 4539 fsnotify_unlink(dir, dentry); 4540 } else if (!error) { 4541 fsnotify_link_count(target); 4542 d_delete_notify(dir, dentry); 4543 } 4544 4545 return error; 4546 } 4547 EXPORT_SYMBOL(vfs_unlink); 4548 4549 /* 4550 * Make sure that the actual truncation of the file will occur outside its 4551 * directory's i_mutex. Truncate can take a long time if there is a lot of 4552 * writeout happening, and we don't want to prevent access to the directory 4553 * while waiting on the I/O. 4554 */ 4555 int do_unlinkat(int dfd, struct filename *name) 4556 { 4557 int error; 4558 struct dentry *dentry; 4559 struct path path; 4560 struct qstr last; 4561 int type; 4562 struct inode *inode = NULL; 4563 struct inode *delegated_inode = NULL; 4564 unsigned int lookup_flags = 0; 4565 retry: 4566 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 4567 if (error) 4568 goto exit1; 4569 4570 error = -EISDIR; 4571 if (type != LAST_NORM) 4572 goto exit2; 4573 4574 error = mnt_want_write(path.mnt); 4575 if (error) 4576 goto exit2; 4577 retry_deleg: 4578 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4579 dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags); 4580 error = PTR_ERR(dentry); 4581 if (!IS_ERR(dentry)) { 4582 4583 /* Why not before? Because we want correct error value */ 4584 if (last.name[last.len] || d_is_negative(dentry)) 4585 goto slashes; 4586 inode = dentry->d_inode; 4587 ihold(inode); 4588 error = security_path_unlink(&path, dentry); 4589 if (error) 4590 goto exit3; 4591 error = vfs_unlink(mnt_idmap(path.mnt), path.dentry->d_inode, 4592 dentry, &delegated_inode); 4593 exit3: 4594 dput(dentry); 4595 } 4596 inode_unlock(path.dentry->d_inode); 4597 if (inode) 4598 iput(inode); /* truncate the inode here */ 4599 inode = NULL; 4600 if (delegated_inode) { 4601 error = break_deleg_wait(&delegated_inode); 4602 if (!error) 4603 goto retry_deleg; 4604 } 4605 mnt_drop_write(path.mnt); 4606 exit2: 4607 path_put(&path); 4608 if (retry_estale(error, lookup_flags)) { 4609 lookup_flags |= LOOKUP_REVAL; 4610 inode = NULL; 4611 goto retry; 4612 } 4613 exit1: 4614 putname(name); 4615 return error; 4616 4617 slashes: 4618 if (d_is_negative(dentry)) 4619 error = -ENOENT; 4620 else if (d_is_dir(dentry)) 4621 error = -EISDIR; 4622 else 4623 error = -ENOTDIR; 4624 goto exit3; 4625 } 4626 4627 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 4628 { 4629 if ((flag & ~AT_REMOVEDIR) != 0) 4630 return -EINVAL; 4631 4632 if (flag & AT_REMOVEDIR) 4633 return do_rmdir(dfd, getname(pathname)); 4634 return do_unlinkat(dfd, getname(pathname)); 4635 } 4636 4637 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 4638 { 4639 return do_unlinkat(AT_FDCWD, getname(pathname)); 4640 } 4641 4642 /** 4643 * vfs_symlink - create symlink 4644 * @idmap: idmap of the mount the inode was found from 4645 * @dir: inode of the parent directory 4646 * @dentry: dentry of the child symlink file 4647 * @oldname: name of the file to link to 4648 * 4649 * Create a symlink. 4650 * 4651 * If the inode has been found through an idmapped mount the idmap of 4652 * the vfsmount must be passed through @idmap. This function will then take 4653 * care to map the inode according to @idmap before checking permissions. 4654 * On non-idmapped mounts or if permission checking is to be performed on the 4655 * raw inode simply pass @nop_mnt_idmap. 4656 */ 4657 int vfs_symlink(struct mnt_idmap *idmap, struct inode *dir, 4658 struct dentry *dentry, const char *oldname) 4659 { 4660 int error; 4661 4662 error = may_create(idmap, dir, dentry); 4663 if (error) 4664 return error; 4665 4666 if (!dir->i_op->symlink) 4667 return -EPERM; 4668 4669 error = security_inode_symlink(dir, dentry, oldname); 4670 if (error) 4671 return error; 4672 4673 error = dir->i_op->symlink(idmap, dir, dentry, oldname); 4674 if (!error) 4675 fsnotify_create(dir, dentry); 4676 return error; 4677 } 4678 EXPORT_SYMBOL(vfs_symlink); 4679 4680 int do_symlinkat(struct filename *from, int newdfd, struct filename *to) 4681 { 4682 int error; 4683 struct dentry *dentry; 4684 struct path path; 4685 unsigned int lookup_flags = 0; 4686 4687 if (IS_ERR(from)) { 4688 error = PTR_ERR(from); 4689 goto out_putnames; 4690 } 4691 retry: 4692 dentry = filename_create(newdfd, to, &path, lookup_flags); 4693 error = PTR_ERR(dentry); 4694 if (IS_ERR(dentry)) 4695 goto out_putnames; 4696 4697 error = security_path_symlink(&path, dentry, from->name); 4698 if (!error) 4699 error = vfs_symlink(mnt_idmap(path.mnt), path.dentry->d_inode, 4700 dentry, from->name); 4701 done_path_create(&path, dentry); 4702 if (retry_estale(error, lookup_flags)) { 4703 lookup_flags |= LOOKUP_REVAL; 4704 goto retry; 4705 } 4706 out_putnames: 4707 putname(to); 4708 putname(from); 4709 return error; 4710 } 4711 4712 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 4713 int, newdfd, const char __user *, newname) 4714 { 4715 return do_symlinkat(getname(oldname), newdfd, getname(newname)); 4716 } 4717 4718 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 4719 { 4720 return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname)); 4721 } 4722 4723 /** 4724 * vfs_link - create a new link 4725 * @old_dentry: object to be linked 4726 * @idmap: idmap of the mount 4727 * @dir: new parent 4728 * @new_dentry: where to create the new link 4729 * @delegated_inode: returns inode needing a delegation break 4730 * 4731 * The caller must hold dir->i_mutex 4732 * 4733 * If vfs_link discovers a delegation on the to-be-linked file in need 4734 * of breaking, it will return -EWOULDBLOCK and return a reference to the 4735 * inode in delegated_inode. The caller should then break the delegation 4736 * and retry. Because breaking a delegation may take a long time, the 4737 * caller should drop the i_mutex before doing so. 4738 * 4739 * Alternatively, a caller may pass NULL for delegated_inode. This may 4740 * be appropriate for callers that expect the underlying filesystem not 4741 * to be NFS exported. 4742 * 4743 * If the inode has been found through an idmapped mount the idmap of 4744 * the vfsmount must be passed through @idmap. This function will then take 4745 * care to map the inode according to @idmap before checking permissions. 4746 * On non-idmapped mounts or if permission checking is to be performed on the 4747 * raw inode simply pass @nop_mnt_idmap. 4748 */ 4749 int vfs_link(struct dentry *old_dentry, struct mnt_idmap *idmap, 4750 struct inode *dir, struct dentry *new_dentry, 4751 struct inode **delegated_inode) 4752 { 4753 struct inode *inode = old_dentry->d_inode; 4754 unsigned max_links = dir->i_sb->s_max_links; 4755 int error; 4756 4757 if (!inode) 4758 return -ENOENT; 4759 4760 error = may_create(idmap, dir, new_dentry); 4761 if (error) 4762 return error; 4763 4764 if (dir->i_sb != inode->i_sb) 4765 return -EXDEV; 4766 4767 /* 4768 * A link to an append-only or immutable file cannot be created. 4769 */ 4770 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4771 return -EPERM; 4772 /* 4773 * Updating the link count will likely cause i_uid and i_gid to 4774 * be writen back improperly if their true value is unknown to 4775 * the vfs. 4776 */ 4777 if (HAS_UNMAPPED_ID(idmap, inode)) 4778 return -EPERM; 4779 if (!dir->i_op->link) 4780 return -EPERM; 4781 if (S_ISDIR(inode->i_mode)) 4782 return -EPERM; 4783 4784 error = security_inode_link(old_dentry, dir, new_dentry); 4785 if (error) 4786 return error; 4787 4788 inode_lock(inode); 4789 /* Make sure we don't allow creating hardlink to an unlinked file */ 4790 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 4791 error = -ENOENT; 4792 else if (max_links && inode->i_nlink >= max_links) 4793 error = -EMLINK; 4794 else { 4795 error = try_break_deleg(inode, delegated_inode); 4796 if (!error) 4797 error = dir->i_op->link(old_dentry, dir, new_dentry); 4798 } 4799 4800 if (!error && (inode->i_state & I_LINKABLE)) { 4801 spin_lock(&inode->i_lock); 4802 inode->i_state &= ~I_LINKABLE; 4803 spin_unlock(&inode->i_lock); 4804 } 4805 inode_unlock(inode); 4806 if (!error) 4807 fsnotify_link(dir, inode, new_dentry); 4808 return error; 4809 } 4810 EXPORT_SYMBOL(vfs_link); 4811 4812 /* 4813 * Hardlinks are often used in delicate situations. We avoid 4814 * security-related surprises by not following symlinks on the 4815 * newname. --KAB 4816 * 4817 * We don't follow them on the oldname either to be compatible 4818 * with linux 2.0, and to avoid hard-linking to directories 4819 * and other special files. --ADM 4820 */ 4821 int do_linkat(int olddfd, struct filename *old, int newdfd, 4822 struct filename *new, int flags) 4823 { 4824 struct mnt_idmap *idmap; 4825 struct dentry *new_dentry; 4826 struct path old_path, new_path; 4827 struct inode *delegated_inode = NULL; 4828 int how = 0; 4829 int error; 4830 4831 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) { 4832 error = -EINVAL; 4833 goto out_putnames; 4834 } 4835 /* 4836 * To use null names we require CAP_DAC_READ_SEARCH or 4837 * that the open-time creds of the dfd matches current. 4838 * This ensures that not everyone will be able to create 4839 * a hardlink using the passed file descriptor. 4840 */ 4841 if (flags & AT_EMPTY_PATH) 4842 how |= LOOKUP_LINKAT_EMPTY; 4843 4844 if (flags & AT_SYMLINK_FOLLOW) 4845 how |= LOOKUP_FOLLOW; 4846 retry: 4847 error = filename_lookup(olddfd, old, how, &old_path, NULL); 4848 if (error) 4849 goto out_putnames; 4850 4851 new_dentry = filename_create(newdfd, new, &new_path, 4852 (how & LOOKUP_REVAL)); 4853 error = PTR_ERR(new_dentry); 4854 if (IS_ERR(new_dentry)) 4855 goto out_putpath; 4856 4857 error = -EXDEV; 4858 if (old_path.mnt != new_path.mnt) 4859 goto out_dput; 4860 idmap = mnt_idmap(new_path.mnt); 4861 error = may_linkat(idmap, &old_path); 4862 if (unlikely(error)) 4863 goto out_dput; 4864 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4865 if (error) 4866 goto out_dput; 4867 error = vfs_link(old_path.dentry, idmap, new_path.dentry->d_inode, 4868 new_dentry, &delegated_inode); 4869 out_dput: 4870 done_path_create(&new_path, new_dentry); 4871 if (delegated_inode) { 4872 error = break_deleg_wait(&delegated_inode); 4873 if (!error) { 4874 path_put(&old_path); 4875 goto retry; 4876 } 4877 } 4878 if (retry_estale(error, how)) { 4879 path_put(&old_path); 4880 how |= LOOKUP_REVAL; 4881 goto retry; 4882 } 4883 out_putpath: 4884 path_put(&old_path); 4885 out_putnames: 4886 putname(old); 4887 putname(new); 4888 4889 return error; 4890 } 4891 4892 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 4893 int, newdfd, const char __user *, newname, int, flags) 4894 { 4895 return do_linkat(olddfd, getname_uflags(oldname, flags), 4896 newdfd, getname(newname), flags); 4897 } 4898 4899 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4900 { 4901 return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0); 4902 } 4903 4904 /** 4905 * vfs_rename - rename a filesystem object 4906 * @rd: pointer to &struct renamedata info 4907 * 4908 * The caller must hold multiple mutexes--see lock_rename()). 4909 * 4910 * If vfs_rename discovers a delegation in need of breaking at either 4911 * the source or destination, it will return -EWOULDBLOCK and return a 4912 * reference to the inode in delegated_inode. The caller should then 4913 * break the delegation and retry. Because breaking a delegation may 4914 * take a long time, the caller should drop all locks before doing 4915 * so. 4916 * 4917 * Alternatively, a caller may pass NULL for delegated_inode. This may 4918 * be appropriate for callers that expect the underlying filesystem not 4919 * to be NFS exported. 4920 * 4921 * The worst of all namespace operations - renaming directory. "Perverted" 4922 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4923 * Problems: 4924 * 4925 * a) we can get into loop creation. 4926 * b) race potential - two innocent renames can create a loop together. 4927 * That's where 4.4BSD screws up. Current fix: serialization on 4928 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4929 * story. 4930 * c) we may have to lock up to _four_ objects - parents and victim (if it exists), 4931 * and source (if it's a non-directory or a subdirectory that moves to 4932 * different parent). 4933 * And that - after we got ->i_mutex on parents (until then we don't know 4934 * whether the target exists). Solution: try to be smart with locking 4935 * order for inodes. We rely on the fact that tree topology may change 4936 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4937 * move will be locked. Thus we can rank directories by the tree 4938 * (ancestors first) and rank all non-directories after them. 4939 * That works since everybody except rename does "lock parent, lookup, 4940 * lock child" and rename is under ->s_vfs_rename_mutex. 4941 * HOWEVER, it relies on the assumption that any object with ->lookup() 4942 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4943 * we'd better make sure that there's no link(2) for them. 4944 * d) conversion from fhandle to dentry may come in the wrong moment - when 4945 * we are removing the target. Solution: we will have to grab ->i_mutex 4946 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4947 * ->i_mutex on parents, which works but leads to some truly excessive 4948 * locking]. 4949 */ 4950 int vfs_rename(struct renamedata *rd) 4951 { 4952 int error; 4953 struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir; 4954 struct dentry *old_dentry = rd->old_dentry; 4955 struct dentry *new_dentry = rd->new_dentry; 4956 struct inode **delegated_inode = rd->delegated_inode; 4957 unsigned int flags = rd->flags; 4958 bool is_dir = d_is_dir(old_dentry); 4959 struct inode *source = old_dentry->d_inode; 4960 struct inode *target = new_dentry->d_inode; 4961 bool new_is_dir = false; 4962 unsigned max_links = new_dir->i_sb->s_max_links; 4963 struct name_snapshot old_name; 4964 bool lock_old_subdir, lock_new_subdir; 4965 4966 if (source == target) 4967 return 0; 4968 4969 error = may_delete(rd->old_mnt_idmap, old_dir, old_dentry, is_dir); 4970 if (error) 4971 return error; 4972 4973 if (!target) { 4974 error = may_create(rd->new_mnt_idmap, new_dir, new_dentry); 4975 } else { 4976 new_is_dir = d_is_dir(new_dentry); 4977 4978 if (!(flags & RENAME_EXCHANGE)) 4979 error = may_delete(rd->new_mnt_idmap, new_dir, 4980 new_dentry, is_dir); 4981 else 4982 error = may_delete(rd->new_mnt_idmap, new_dir, 4983 new_dentry, new_is_dir); 4984 } 4985 if (error) 4986 return error; 4987 4988 if (!old_dir->i_op->rename) 4989 return -EPERM; 4990 4991 /* 4992 * If we are going to change the parent - check write permissions, 4993 * we'll need to flip '..'. 4994 */ 4995 if (new_dir != old_dir) { 4996 if (is_dir) { 4997 error = inode_permission(rd->old_mnt_idmap, source, 4998 MAY_WRITE); 4999 if (error) 5000 return error; 5001 } 5002 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 5003 error = inode_permission(rd->new_mnt_idmap, target, 5004 MAY_WRITE); 5005 if (error) 5006 return error; 5007 } 5008 } 5009 5010 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 5011 flags); 5012 if (error) 5013 return error; 5014 5015 take_dentry_name_snapshot(&old_name, old_dentry); 5016 dget(new_dentry); 5017 /* 5018 * Lock children. 5019 * The source subdirectory needs to be locked on cross-directory 5020 * rename or cross-directory exchange since its parent changes. 5021 * The target subdirectory needs to be locked on cross-directory 5022 * exchange due to parent change and on any rename due to becoming 5023 * a victim. 5024 * Non-directories need locking in all cases (for NFS reasons); 5025 * they get locked after any subdirectories (in inode address order). 5026 * 5027 * NOTE: WE ONLY LOCK UNRELATED DIRECTORIES IN CROSS-DIRECTORY CASE. 5028 * NEVER, EVER DO THAT WITHOUT ->s_vfs_rename_mutex. 5029 */ 5030 lock_old_subdir = new_dir != old_dir; 5031 lock_new_subdir = new_dir != old_dir || !(flags & RENAME_EXCHANGE); 5032 if (is_dir) { 5033 if (lock_old_subdir) 5034 inode_lock_nested(source, I_MUTEX_CHILD); 5035 if (target && (!new_is_dir || lock_new_subdir)) 5036 inode_lock(target); 5037 } else if (new_is_dir) { 5038 if (lock_new_subdir) 5039 inode_lock_nested(target, I_MUTEX_CHILD); 5040 inode_lock(source); 5041 } else { 5042 lock_two_nondirectories(source, target); 5043 } 5044 5045 error = -EPERM; 5046 if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target))) 5047 goto out; 5048 5049 error = -EBUSY; 5050 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 5051 goto out; 5052 5053 if (max_links && new_dir != old_dir) { 5054 error = -EMLINK; 5055 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 5056 goto out; 5057 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 5058 old_dir->i_nlink >= max_links) 5059 goto out; 5060 } 5061 if (!is_dir) { 5062 error = try_break_deleg(source, delegated_inode); 5063 if (error) 5064 goto out; 5065 } 5066 if (target && !new_is_dir) { 5067 error = try_break_deleg(target, delegated_inode); 5068 if (error) 5069 goto out; 5070 } 5071 error = old_dir->i_op->rename(rd->new_mnt_idmap, old_dir, old_dentry, 5072 new_dir, new_dentry, flags); 5073 if (error) 5074 goto out; 5075 5076 if (!(flags & RENAME_EXCHANGE) && target) { 5077 if (is_dir) { 5078 shrink_dcache_parent(new_dentry); 5079 target->i_flags |= S_DEAD; 5080 } 5081 dont_mount(new_dentry); 5082 detach_mounts(new_dentry); 5083 } 5084 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 5085 if (!(flags & RENAME_EXCHANGE)) 5086 d_move(old_dentry, new_dentry); 5087 else 5088 d_exchange(old_dentry, new_dentry); 5089 } 5090 out: 5091 if (!is_dir || lock_old_subdir) 5092 inode_unlock(source); 5093 if (target && (!new_is_dir || lock_new_subdir)) 5094 inode_unlock(target); 5095 dput(new_dentry); 5096 if (!error) { 5097 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir, 5098 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 5099 if (flags & RENAME_EXCHANGE) { 5100 fsnotify_move(new_dir, old_dir, &old_dentry->d_name, 5101 new_is_dir, NULL, new_dentry); 5102 } 5103 } 5104 release_dentry_name_snapshot(&old_name); 5105 5106 return error; 5107 } 5108 EXPORT_SYMBOL(vfs_rename); 5109 5110 int do_renameat2(int olddfd, struct filename *from, int newdfd, 5111 struct filename *to, unsigned int flags) 5112 { 5113 struct renamedata rd; 5114 struct dentry *old_dentry, *new_dentry; 5115 struct dentry *trap; 5116 struct path old_path, new_path; 5117 struct qstr old_last, new_last; 5118 int old_type, new_type; 5119 struct inode *delegated_inode = NULL; 5120 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET; 5121 bool should_retry = false; 5122 int error = -EINVAL; 5123 5124 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 5125 goto put_names; 5126 5127 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 5128 (flags & RENAME_EXCHANGE)) 5129 goto put_names; 5130 5131 if (flags & RENAME_EXCHANGE) 5132 target_flags = 0; 5133 5134 retry: 5135 error = filename_parentat(olddfd, from, lookup_flags, &old_path, 5136 &old_last, &old_type); 5137 if (error) 5138 goto put_names; 5139 5140 error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last, 5141 &new_type); 5142 if (error) 5143 goto exit1; 5144 5145 error = -EXDEV; 5146 if (old_path.mnt != new_path.mnt) 5147 goto exit2; 5148 5149 error = -EBUSY; 5150 if (old_type != LAST_NORM) 5151 goto exit2; 5152 5153 if (flags & RENAME_NOREPLACE) 5154 error = -EEXIST; 5155 if (new_type != LAST_NORM) 5156 goto exit2; 5157 5158 error = mnt_want_write(old_path.mnt); 5159 if (error) 5160 goto exit2; 5161 5162 retry_deleg: 5163 trap = lock_rename(new_path.dentry, old_path.dentry); 5164 if (IS_ERR(trap)) { 5165 error = PTR_ERR(trap); 5166 goto exit_lock_rename; 5167 } 5168 5169 old_dentry = lookup_one_qstr_excl(&old_last, old_path.dentry, 5170 lookup_flags); 5171 error = PTR_ERR(old_dentry); 5172 if (IS_ERR(old_dentry)) 5173 goto exit3; 5174 /* source must exist */ 5175 error = -ENOENT; 5176 if (d_is_negative(old_dentry)) 5177 goto exit4; 5178 new_dentry = lookup_one_qstr_excl(&new_last, new_path.dentry, 5179 lookup_flags | target_flags); 5180 error = PTR_ERR(new_dentry); 5181 if (IS_ERR(new_dentry)) 5182 goto exit4; 5183 error = -EEXIST; 5184 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 5185 goto exit5; 5186 if (flags & RENAME_EXCHANGE) { 5187 error = -ENOENT; 5188 if (d_is_negative(new_dentry)) 5189 goto exit5; 5190 5191 if (!d_is_dir(new_dentry)) { 5192 error = -ENOTDIR; 5193 if (new_last.name[new_last.len]) 5194 goto exit5; 5195 } 5196 } 5197 /* unless the source is a directory trailing slashes give -ENOTDIR */ 5198 if (!d_is_dir(old_dentry)) { 5199 error = -ENOTDIR; 5200 if (old_last.name[old_last.len]) 5201 goto exit5; 5202 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len]) 5203 goto exit5; 5204 } 5205 /* source should not be ancestor of target */ 5206 error = -EINVAL; 5207 if (old_dentry == trap) 5208 goto exit5; 5209 /* target should not be an ancestor of source */ 5210 if (!(flags & RENAME_EXCHANGE)) 5211 error = -ENOTEMPTY; 5212 if (new_dentry == trap) 5213 goto exit5; 5214 5215 error = security_path_rename(&old_path, old_dentry, 5216 &new_path, new_dentry, flags); 5217 if (error) 5218 goto exit5; 5219 5220 rd.old_dir = old_path.dentry->d_inode; 5221 rd.old_dentry = old_dentry; 5222 rd.old_mnt_idmap = mnt_idmap(old_path.mnt); 5223 rd.new_dir = new_path.dentry->d_inode; 5224 rd.new_dentry = new_dentry; 5225 rd.new_mnt_idmap = mnt_idmap(new_path.mnt); 5226 rd.delegated_inode = &delegated_inode; 5227 rd.flags = flags; 5228 error = vfs_rename(&rd); 5229 exit5: 5230 dput(new_dentry); 5231 exit4: 5232 dput(old_dentry); 5233 exit3: 5234 unlock_rename(new_path.dentry, old_path.dentry); 5235 exit_lock_rename: 5236 if (delegated_inode) { 5237 error = break_deleg_wait(&delegated_inode); 5238 if (!error) 5239 goto retry_deleg; 5240 } 5241 mnt_drop_write(old_path.mnt); 5242 exit2: 5243 if (retry_estale(error, lookup_flags)) 5244 should_retry = true; 5245 path_put(&new_path); 5246 exit1: 5247 path_put(&old_path); 5248 if (should_retry) { 5249 should_retry = false; 5250 lookup_flags |= LOOKUP_REVAL; 5251 goto retry; 5252 } 5253 put_names: 5254 putname(from); 5255 putname(to); 5256 return error; 5257 } 5258 5259 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 5260 int, newdfd, const char __user *, newname, unsigned int, flags) 5261 { 5262 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname), 5263 flags); 5264 } 5265 5266 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 5267 int, newdfd, const char __user *, newname) 5268 { 5269 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname), 5270 0); 5271 } 5272 5273 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 5274 { 5275 return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD, 5276 getname(newname), 0); 5277 } 5278 5279 int readlink_copy(char __user *buffer, int buflen, const char *link, int linklen) 5280 { 5281 int copylen; 5282 5283 copylen = linklen; 5284 if (unlikely(copylen > (unsigned) buflen)) 5285 copylen = buflen; 5286 if (copy_to_user(buffer, link, copylen)) 5287 copylen = -EFAULT; 5288 return copylen; 5289 } 5290 5291 /** 5292 * vfs_readlink - copy symlink body into userspace buffer 5293 * @dentry: dentry on which to get symbolic link 5294 * @buffer: user memory pointer 5295 * @buflen: size of buffer 5296 * 5297 * Does not touch atime. That's up to the caller if necessary 5298 * 5299 * Does not call security hook. 5300 */ 5301 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen) 5302 { 5303 struct inode *inode = d_inode(dentry); 5304 DEFINE_DELAYED_CALL(done); 5305 const char *link; 5306 int res; 5307 5308 if (inode->i_opflags & IOP_CACHED_LINK) 5309 return readlink_copy(buffer, buflen, inode->i_link, inode->i_linklen); 5310 5311 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) { 5312 if (unlikely(inode->i_op->readlink)) 5313 return inode->i_op->readlink(dentry, buffer, buflen); 5314 5315 if (!d_is_symlink(dentry)) 5316 return -EINVAL; 5317 5318 spin_lock(&inode->i_lock); 5319 inode->i_opflags |= IOP_DEFAULT_READLINK; 5320 spin_unlock(&inode->i_lock); 5321 } 5322 5323 link = READ_ONCE(inode->i_link); 5324 if (!link) { 5325 link = inode->i_op->get_link(dentry, inode, &done); 5326 if (IS_ERR(link)) 5327 return PTR_ERR(link); 5328 } 5329 res = readlink_copy(buffer, buflen, link, strlen(link)); 5330 do_delayed_call(&done); 5331 return res; 5332 } 5333 EXPORT_SYMBOL(vfs_readlink); 5334 5335 /** 5336 * vfs_get_link - get symlink body 5337 * @dentry: dentry on which to get symbolic link 5338 * @done: caller needs to free returned data with this 5339 * 5340 * Calls security hook and i_op->get_link() on the supplied inode. 5341 * 5342 * It does not touch atime. That's up to the caller if necessary. 5343 * 5344 * Does not work on "special" symlinks like /proc/$$/fd/N 5345 */ 5346 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done) 5347 { 5348 const char *res = ERR_PTR(-EINVAL); 5349 struct inode *inode = d_inode(dentry); 5350 5351 if (d_is_symlink(dentry)) { 5352 res = ERR_PTR(security_inode_readlink(dentry)); 5353 if (!res) 5354 res = inode->i_op->get_link(dentry, inode, done); 5355 } 5356 return res; 5357 } 5358 EXPORT_SYMBOL(vfs_get_link); 5359 5360 /* get the link contents into pagecache */ 5361 static char *__page_get_link(struct dentry *dentry, struct inode *inode, 5362 struct delayed_call *callback) 5363 { 5364 struct page *page; 5365 struct address_space *mapping = inode->i_mapping; 5366 5367 if (!dentry) { 5368 page = find_get_page(mapping, 0); 5369 if (!page) 5370 return ERR_PTR(-ECHILD); 5371 if (!PageUptodate(page)) { 5372 put_page(page); 5373 return ERR_PTR(-ECHILD); 5374 } 5375 } else { 5376 page = read_mapping_page(mapping, 0, NULL); 5377 if (IS_ERR(page)) 5378 return (char*)page; 5379 } 5380 set_delayed_call(callback, page_put_link, page); 5381 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM); 5382 return page_address(page); 5383 } 5384 5385 const char *page_get_link_raw(struct dentry *dentry, struct inode *inode, 5386 struct delayed_call *callback) 5387 { 5388 return __page_get_link(dentry, inode, callback); 5389 } 5390 EXPORT_SYMBOL_GPL(page_get_link_raw); 5391 5392 const char *page_get_link(struct dentry *dentry, struct inode *inode, 5393 struct delayed_call *callback) 5394 { 5395 char *kaddr = __page_get_link(dentry, inode, callback); 5396 5397 if (!IS_ERR(kaddr)) 5398 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1); 5399 return kaddr; 5400 } 5401 5402 EXPORT_SYMBOL(page_get_link); 5403 5404 void page_put_link(void *arg) 5405 { 5406 put_page(arg); 5407 } 5408 EXPORT_SYMBOL(page_put_link); 5409 5410 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 5411 { 5412 const char *link; 5413 int res; 5414 5415 DEFINE_DELAYED_CALL(done); 5416 link = page_get_link(dentry, d_inode(dentry), &done); 5417 res = PTR_ERR(link); 5418 if (!IS_ERR(link)) 5419 res = readlink_copy(buffer, buflen, link, strlen(link)); 5420 do_delayed_call(&done); 5421 return res; 5422 } 5423 EXPORT_SYMBOL(page_readlink); 5424 5425 int page_symlink(struct inode *inode, const char *symname, int len) 5426 { 5427 struct address_space *mapping = inode->i_mapping; 5428 const struct address_space_operations *aops = mapping->a_ops; 5429 bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS); 5430 struct folio *folio; 5431 void *fsdata = NULL; 5432 int err; 5433 unsigned int flags; 5434 5435 retry: 5436 if (nofs) 5437 flags = memalloc_nofs_save(); 5438 err = aops->write_begin(NULL, mapping, 0, len-1, &folio, &fsdata); 5439 if (nofs) 5440 memalloc_nofs_restore(flags); 5441 if (err) 5442 goto fail; 5443 5444 memcpy(folio_address(folio), symname, len - 1); 5445 5446 err = aops->write_end(NULL, mapping, 0, len - 1, len - 1, 5447 folio, fsdata); 5448 if (err < 0) 5449 goto fail; 5450 if (err < len-1) 5451 goto retry; 5452 5453 mark_inode_dirty(inode); 5454 return 0; 5455 fail: 5456 return err; 5457 } 5458 EXPORT_SYMBOL(page_symlink); 5459 5460 const struct inode_operations page_symlink_inode_operations = { 5461 .get_link = page_get_link, 5462 }; 5463 EXPORT_SYMBOL(page_symlink_inode_operations); 5464