xref: /linux/fs/namei.c (revision 7fc2cd2e4b398c57c9cf961cfea05eadbf34c05c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/namei.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * Some corrections by tytso.
10  */
11 
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13  * lookup logic.
14  */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16  */
17 
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/slab.h>
21 #include <linux/wordpart.h>
22 #include <linux/fs.h>
23 #include <linux/filelock.h>
24 #include <linux/namei.h>
25 #include <linux/pagemap.h>
26 #include <linux/sched/mm.h>
27 #include <linux/fsnotify.h>
28 #include <linux/personality.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/mount.h>
32 #include <linux/audit.h>
33 #include <linux/capability.h>
34 #include <linux/file.h>
35 #include <linux/fcntl.h>
36 #include <linux/device_cgroup.h>
37 #include <linux/fs_struct.h>
38 #include <linux/posix_acl.h>
39 #include <linux/hash.h>
40 #include <linux/bitops.h>
41 #include <linux/init_task.h>
42 #include <linux/uaccess.h>
43 
44 #include "internal.h"
45 #include "mount.h"
46 
47 /* [Feb-1997 T. Schoebel-Theuer]
48  * Fundamental changes in the pathname lookup mechanisms (namei)
49  * were necessary because of omirr.  The reason is that omirr needs
50  * to know the _real_ pathname, not the user-supplied one, in case
51  * of symlinks (and also when transname replacements occur).
52  *
53  * The new code replaces the old recursive symlink resolution with
54  * an iterative one (in case of non-nested symlink chains).  It does
55  * this with calls to <fs>_follow_link().
56  * As a side effect, dir_namei(), _namei() and follow_link() are now
57  * replaced with a single function lookup_dentry() that can handle all
58  * the special cases of the former code.
59  *
60  * With the new dcache, the pathname is stored at each inode, at least as
61  * long as the refcount of the inode is positive.  As a side effect, the
62  * size of the dcache depends on the inode cache and thus is dynamic.
63  *
64  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
65  * resolution to correspond with current state of the code.
66  *
67  * Note that the symlink resolution is not *completely* iterative.
68  * There is still a significant amount of tail- and mid- recursion in
69  * the algorithm.  Also, note that <fs>_readlink() is not used in
70  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
71  * may return different results than <fs>_follow_link().  Many virtual
72  * filesystems (including /proc) exhibit this behavior.
73  */
74 
75 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
76  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
77  * and the name already exists in form of a symlink, try to create the new
78  * name indicated by the symlink. The old code always complained that the
79  * name already exists, due to not following the symlink even if its target
80  * is nonexistent.  The new semantics affects also mknod() and link() when
81  * the name is a symlink pointing to a non-existent name.
82  *
83  * I don't know which semantics is the right one, since I have no access
84  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
85  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
86  * "old" one. Personally, I think the new semantics is much more logical.
87  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
88  * file does succeed in both HP-UX and SunOs, but not in Solaris
89  * and in the old Linux semantics.
90  */
91 
92 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
93  * semantics.  See the comments in "open_namei" and "do_link" below.
94  *
95  * [10-Sep-98 Alan Modra] Another symlink change.
96  */
97 
98 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
99  *	inside the path - always follow.
100  *	in the last component in creation/removal/renaming - never follow.
101  *	if LOOKUP_FOLLOW passed - follow.
102  *	if the pathname has trailing slashes - follow.
103  *	otherwise - don't follow.
104  * (applied in that order).
105  *
106  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
107  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
108  * During the 2.4 we need to fix the userland stuff depending on it -
109  * hopefully we will be able to get rid of that wart in 2.5. So far only
110  * XEmacs seems to be relying on it...
111  */
112 /*
113  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
114  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
115  * any extra contention...
116  */
117 
118 /* In order to reduce some races, while at the same time doing additional
119  * checking and hopefully speeding things up, we copy filenames to the
120  * kernel data space before using them..
121  *
122  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
123  * PATH_MAX includes the nul terminator --RR.
124  */
125 
126 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
127 
128 static inline void initname(struct filename *name, const char __user *uptr)
129 {
130 	name->uptr = uptr;
131 	name->aname = NULL;
132 	atomic_set(&name->refcnt, 1);
133 }
134 
135 struct filename *
136 getname_flags(const char __user *filename, int flags)
137 {
138 	struct filename *result;
139 	char *kname;
140 	int len;
141 
142 	result = audit_reusename(filename);
143 	if (result)
144 		return result;
145 
146 	result = __getname();
147 	if (unlikely(!result))
148 		return ERR_PTR(-ENOMEM);
149 
150 	/*
151 	 * First, try to embed the struct filename inside the names_cache
152 	 * allocation
153 	 */
154 	kname = (char *)result->iname;
155 	result->name = kname;
156 
157 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
158 	/*
159 	 * Handle both empty path and copy failure in one go.
160 	 */
161 	if (unlikely(len <= 0)) {
162 		if (unlikely(len < 0)) {
163 			__putname(result);
164 			return ERR_PTR(len);
165 		}
166 
167 		/* The empty path is special. */
168 		if (!(flags & LOOKUP_EMPTY)) {
169 			__putname(result);
170 			return ERR_PTR(-ENOENT);
171 		}
172 	}
173 
174 	/*
175 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
176 	 * separate struct filename so we can dedicate the entire
177 	 * names_cache allocation for the pathname, and re-do the copy from
178 	 * userland.
179 	 */
180 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
181 		const size_t size = offsetof(struct filename, iname[1]);
182 		kname = (char *)result;
183 
184 		/*
185 		 * size is chosen that way we to guarantee that
186 		 * result->iname[0] is within the same object and that
187 		 * kname can't be equal to result->iname, no matter what.
188 		 */
189 		result = kzalloc(size, GFP_KERNEL);
190 		if (unlikely(!result)) {
191 			__putname(kname);
192 			return ERR_PTR(-ENOMEM);
193 		}
194 		result->name = kname;
195 		len = strncpy_from_user(kname, filename, PATH_MAX);
196 		if (unlikely(len < 0)) {
197 			__putname(kname);
198 			kfree(result);
199 			return ERR_PTR(len);
200 		}
201 		/* The empty path is special. */
202 		if (unlikely(!len) && !(flags & LOOKUP_EMPTY)) {
203 			__putname(kname);
204 			kfree(result);
205 			return ERR_PTR(-ENOENT);
206 		}
207 		if (unlikely(len == PATH_MAX)) {
208 			__putname(kname);
209 			kfree(result);
210 			return ERR_PTR(-ENAMETOOLONG);
211 		}
212 	}
213 	initname(result, filename);
214 	audit_getname(result);
215 	return result;
216 }
217 
218 struct filename *getname_uflags(const char __user *filename, int uflags)
219 {
220 	int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
221 
222 	return getname_flags(filename, flags);
223 }
224 
225 struct filename *__getname_maybe_null(const char __user *pathname)
226 {
227 	struct filename *name;
228 	char c;
229 
230 	/* try to save on allocations; loss on um, though */
231 	if (get_user(c, pathname))
232 		return ERR_PTR(-EFAULT);
233 	if (!c)
234 		return NULL;
235 
236 	name = getname_flags(pathname, LOOKUP_EMPTY);
237 	if (!IS_ERR(name) && !(name->name[0])) {
238 		putname(name);
239 		name = NULL;
240 	}
241 	return name;
242 }
243 
244 struct filename *getname_kernel(const char * filename)
245 {
246 	struct filename *result;
247 	int len = strlen(filename) + 1;
248 
249 	result = __getname();
250 	if (unlikely(!result))
251 		return ERR_PTR(-ENOMEM);
252 
253 	if (len <= EMBEDDED_NAME_MAX) {
254 		result->name = (char *)result->iname;
255 	} else if (len <= PATH_MAX) {
256 		const size_t size = offsetof(struct filename, iname[1]);
257 		struct filename *tmp;
258 
259 		tmp = kmalloc(size, GFP_KERNEL);
260 		if (unlikely(!tmp)) {
261 			__putname(result);
262 			return ERR_PTR(-ENOMEM);
263 		}
264 		tmp->name = (char *)result;
265 		result = tmp;
266 	} else {
267 		__putname(result);
268 		return ERR_PTR(-ENAMETOOLONG);
269 	}
270 	memcpy((char *)result->name, filename, len);
271 	initname(result, NULL);
272 	audit_getname(result);
273 	return result;
274 }
275 EXPORT_SYMBOL(getname_kernel);
276 
277 void putname(struct filename *name)
278 {
279 	int refcnt;
280 
281 	if (IS_ERR_OR_NULL(name))
282 		return;
283 
284 	refcnt = atomic_read(&name->refcnt);
285 	if (unlikely(refcnt != 1)) {
286 		if (WARN_ON_ONCE(!refcnt))
287 			return;
288 
289 		if (!atomic_dec_and_test(&name->refcnt))
290 			return;
291 	}
292 
293 	if (unlikely(name->name != name->iname)) {
294 		__putname(name->name);
295 		kfree(name);
296 	} else
297 		__putname(name);
298 }
299 EXPORT_SYMBOL(putname);
300 
301 /**
302  * check_acl - perform ACL permission checking
303  * @idmap:	idmap of the mount the inode was found from
304  * @inode:	inode to check permissions on
305  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
306  *
307  * This function performs the ACL permission checking. Since this function
308  * retrieve POSIX acls it needs to know whether it is called from a blocking or
309  * non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
310  *
311  * If the inode has been found through an idmapped mount the idmap of
312  * the vfsmount must be passed through @idmap. This function will then take
313  * care to map the inode according to @idmap before checking permissions.
314  * On non-idmapped mounts or if permission checking is to be performed on the
315  * raw inode simply pass @nop_mnt_idmap.
316  */
317 static int check_acl(struct mnt_idmap *idmap,
318 		     struct inode *inode, int mask)
319 {
320 #ifdef CONFIG_FS_POSIX_ACL
321 	struct posix_acl *acl;
322 
323 	if (mask & MAY_NOT_BLOCK) {
324 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
325 	        if (!acl)
326 	                return -EAGAIN;
327 		/* no ->get_inode_acl() calls in RCU mode... */
328 		if (is_uncached_acl(acl))
329 			return -ECHILD;
330 	        return posix_acl_permission(idmap, inode, acl, mask);
331 	}
332 
333 	acl = get_inode_acl(inode, ACL_TYPE_ACCESS);
334 	if (IS_ERR(acl))
335 		return PTR_ERR(acl);
336 	if (acl) {
337 	        int error = posix_acl_permission(idmap, inode, acl, mask);
338 	        posix_acl_release(acl);
339 	        return error;
340 	}
341 #endif
342 
343 	return -EAGAIN;
344 }
345 
346 /*
347  * Very quick optimistic "we know we have no ACL's" check.
348  *
349  * Note that this is purely for ACL_TYPE_ACCESS, and purely
350  * for the "we have cached that there are no ACLs" case.
351  *
352  * If this returns true, we know there are no ACLs. But if
353  * it returns false, we might still not have ACLs (it could
354  * be the is_uncached_acl() case).
355  */
356 static inline bool no_acl_inode(struct inode *inode)
357 {
358 #ifdef CONFIG_FS_POSIX_ACL
359 	return likely(!READ_ONCE(inode->i_acl));
360 #else
361 	return true;
362 #endif
363 }
364 
365 /**
366  * acl_permission_check - perform basic UNIX permission checking
367  * @idmap:	idmap of the mount the inode was found from
368  * @inode:	inode to check permissions on
369  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
370  *
371  * This function performs the basic UNIX permission checking. Since this
372  * function may retrieve POSIX acls it needs to know whether it is called from a
373  * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
374  *
375  * If the inode has been found through an idmapped mount the idmap of
376  * the vfsmount must be passed through @idmap. This function will then take
377  * care to map the inode according to @idmap before checking permissions.
378  * On non-idmapped mounts or if permission checking is to be performed on the
379  * raw inode simply pass @nop_mnt_idmap.
380  */
381 static int acl_permission_check(struct mnt_idmap *idmap,
382 				struct inode *inode, int mask)
383 {
384 	unsigned int mode = inode->i_mode;
385 	vfsuid_t vfsuid;
386 
387 	/*
388 	 * Common cheap case: everybody has the requested
389 	 * rights, and there are no ACLs to check. No need
390 	 * to do any owner/group checks in that case.
391 	 *
392 	 *  - 'mask&7' is the requested permission bit set
393 	 *  - multiplying by 0111 spreads them out to all of ugo
394 	 *  - '& ~mode' looks for missing inode permission bits
395 	 *  - the '!' is for "no missing permissions"
396 	 *
397 	 * After that, we just need to check that there are no
398 	 * ACL's on the inode - do the 'IS_POSIXACL()' check last
399 	 * because it will dereference the ->i_sb pointer and we
400 	 * want to avoid that if at all possible.
401 	 */
402 	if (!((mask & 7) * 0111 & ~mode)) {
403 		if (no_acl_inode(inode))
404 			return 0;
405 		if (!IS_POSIXACL(inode))
406 			return 0;
407 	}
408 
409 	/* Are we the owner? If so, ACL's don't matter */
410 	vfsuid = i_uid_into_vfsuid(idmap, inode);
411 	if (likely(vfsuid_eq_kuid(vfsuid, current_fsuid()))) {
412 		mask &= 7;
413 		mode >>= 6;
414 		return (mask & ~mode) ? -EACCES : 0;
415 	}
416 
417 	/* Do we have ACL's? */
418 	if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
419 		int error = check_acl(idmap, inode, mask);
420 		if (error != -EAGAIN)
421 			return error;
422 	}
423 
424 	/* Only RWX matters for group/other mode bits */
425 	mask &= 7;
426 
427 	/*
428 	 * Are the group permissions different from
429 	 * the other permissions in the bits we care
430 	 * about? Need to check group ownership if so.
431 	 */
432 	if (mask & (mode ^ (mode >> 3))) {
433 		vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
434 		if (vfsgid_in_group_p(vfsgid))
435 			mode >>= 3;
436 	}
437 
438 	/* Bits in 'mode' clear that we require? */
439 	return (mask & ~mode) ? -EACCES : 0;
440 }
441 
442 /**
443  * generic_permission -  check for access rights on a Posix-like filesystem
444  * @idmap:	idmap of the mount the inode was found from
445  * @inode:	inode to check access rights for
446  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
447  *		%MAY_NOT_BLOCK ...)
448  *
449  * Used to check for read/write/execute permissions on a file.
450  * We use "fsuid" for this, letting us set arbitrary permissions
451  * for filesystem access without changing the "normal" uids which
452  * are used for other things.
453  *
454  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
455  * request cannot be satisfied (eg. requires blocking or too much complexity).
456  * It would then be called again in ref-walk mode.
457  *
458  * If the inode has been found through an idmapped mount the idmap of
459  * the vfsmount must be passed through @idmap. This function will then take
460  * care to map the inode according to @idmap before checking permissions.
461  * On non-idmapped mounts or if permission checking is to be performed on the
462  * raw inode simply pass @nop_mnt_idmap.
463  */
464 int generic_permission(struct mnt_idmap *idmap, struct inode *inode,
465 		       int mask)
466 {
467 	int ret;
468 
469 	/*
470 	 * Do the basic permission checks.
471 	 */
472 	ret = acl_permission_check(idmap, inode, mask);
473 	if (ret != -EACCES)
474 		return ret;
475 
476 	if (S_ISDIR(inode->i_mode)) {
477 		/* DACs are overridable for directories */
478 		if (!(mask & MAY_WRITE))
479 			if (capable_wrt_inode_uidgid(idmap, inode,
480 						     CAP_DAC_READ_SEARCH))
481 				return 0;
482 		if (capable_wrt_inode_uidgid(idmap, inode,
483 					     CAP_DAC_OVERRIDE))
484 			return 0;
485 		return -EACCES;
486 	}
487 
488 	/*
489 	 * Searching includes executable on directories, else just read.
490 	 */
491 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
492 	if (mask == MAY_READ)
493 		if (capable_wrt_inode_uidgid(idmap, inode,
494 					     CAP_DAC_READ_SEARCH))
495 			return 0;
496 	/*
497 	 * Read/write DACs are always overridable.
498 	 * Executable DACs are overridable when there is
499 	 * at least one exec bit set.
500 	 */
501 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
502 		if (capable_wrt_inode_uidgid(idmap, inode,
503 					     CAP_DAC_OVERRIDE))
504 			return 0;
505 
506 	return -EACCES;
507 }
508 EXPORT_SYMBOL(generic_permission);
509 
510 /**
511  * do_inode_permission - UNIX permission checking
512  * @idmap:	idmap of the mount the inode was found from
513  * @inode:	inode to check permissions on
514  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
515  *
516  * We _really_ want to just do "generic_permission()" without
517  * even looking at the inode->i_op values. So we keep a cache
518  * flag in inode->i_opflags, that says "this has not special
519  * permission function, use the fast case".
520  */
521 static inline int do_inode_permission(struct mnt_idmap *idmap,
522 				      struct inode *inode, int mask)
523 {
524 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
525 		if (likely(inode->i_op->permission))
526 			return inode->i_op->permission(idmap, inode, mask);
527 
528 		/* This gets set once for the inode lifetime */
529 		spin_lock(&inode->i_lock);
530 		inode->i_opflags |= IOP_FASTPERM;
531 		spin_unlock(&inode->i_lock);
532 	}
533 	return generic_permission(idmap, inode, mask);
534 }
535 
536 /**
537  * sb_permission - Check superblock-level permissions
538  * @sb: Superblock of inode to check permission on
539  * @inode: Inode to check permission on
540  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
541  *
542  * Separate out file-system wide checks from inode-specific permission checks.
543  *
544  * Note: lookup_inode_permission_may_exec() does not call here. If you add
545  * MAY_EXEC checks, adjust it.
546  */
547 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
548 {
549 	if (mask & MAY_WRITE) {
550 		umode_t mode = inode->i_mode;
551 
552 		/* Nobody gets write access to a read-only fs. */
553 		if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
554 			return -EROFS;
555 	}
556 	return 0;
557 }
558 
559 /**
560  * inode_permission - Check for access rights to a given inode
561  * @idmap:	idmap of the mount the inode was found from
562  * @inode:	Inode to check permission on
563  * @mask:	Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
564  *
565  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
566  * this, letting us set arbitrary permissions for filesystem access without
567  * changing the "normal" UIDs which are used for other things.
568  *
569  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
570  */
571 int inode_permission(struct mnt_idmap *idmap,
572 		     struct inode *inode, int mask)
573 {
574 	int retval;
575 
576 	retval = sb_permission(inode->i_sb, inode, mask);
577 	if (unlikely(retval))
578 		return retval;
579 
580 	if (mask & MAY_WRITE) {
581 		/*
582 		 * Nobody gets write access to an immutable file.
583 		 */
584 		if (unlikely(IS_IMMUTABLE(inode)))
585 			return -EPERM;
586 
587 		/*
588 		 * Updating mtime will likely cause i_uid and i_gid to be
589 		 * written back improperly if their true value is unknown
590 		 * to the vfs.
591 		 */
592 		if (unlikely(HAS_UNMAPPED_ID(idmap, inode)))
593 			return -EACCES;
594 	}
595 
596 	retval = do_inode_permission(idmap, inode, mask);
597 	if (unlikely(retval))
598 		return retval;
599 
600 	retval = devcgroup_inode_permission(inode, mask);
601 	if (unlikely(retval))
602 		return retval;
603 
604 	return security_inode_permission(inode, mask);
605 }
606 EXPORT_SYMBOL(inode_permission);
607 
608 /*
609  * lookup_inode_permission_may_exec - Check traversal right for given inode
610  *
611  * This is a special case routine for may_lookup() making assumptions specific
612  * to path traversal. Use inode_permission() if you are doing something else.
613  *
614  * Work is shaved off compared to inode_permission() as follows:
615  * - we know for a fact there is no MAY_WRITE to worry about
616  * - it is an invariant the inode is a directory
617  *
618  * Since majority of real-world traversal happens on inodes which grant it for
619  * everyone, we check it upfront and only resort to more expensive work if it
620  * fails.
621  *
622  * Filesystems which have their own ->permission hook and consequently miss out
623  * on IOP_FASTPERM can still get the optimization if they set IOP_FASTPERM_MAY_EXEC
624  * on their directory inodes.
625  */
626 static __always_inline int lookup_inode_permission_may_exec(struct mnt_idmap *idmap,
627 	struct inode *inode, int mask)
628 {
629 	/* Lookup already checked this to return -ENOTDIR */
630 	VFS_BUG_ON_INODE(!S_ISDIR(inode->i_mode), inode);
631 	VFS_BUG_ON((mask & ~MAY_NOT_BLOCK) != 0);
632 
633 	mask |= MAY_EXEC;
634 
635 	if (unlikely(!(inode->i_opflags & (IOP_FASTPERM | IOP_FASTPERM_MAY_EXEC))))
636 		return inode_permission(idmap, inode, mask);
637 
638 	if (unlikely(((inode->i_mode & 0111) != 0111) || !no_acl_inode(inode)))
639 		return inode_permission(idmap, inode, mask);
640 
641 	return security_inode_permission(inode, mask);
642 }
643 
644 /**
645  * path_get - get a reference to a path
646  * @path: path to get the reference to
647  *
648  * Given a path increment the reference count to the dentry and the vfsmount.
649  */
650 void path_get(const struct path *path)
651 {
652 	mntget(path->mnt);
653 	dget(path->dentry);
654 }
655 EXPORT_SYMBOL(path_get);
656 
657 /**
658  * path_put - put a reference to a path
659  * @path: path to put the reference to
660  *
661  * Given a path decrement the reference count to the dentry and the vfsmount.
662  */
663 void path_put(const struct path *path)
664 {
665 	dput(path->dentry);
666 	mntput(path->mnt);
667 }
668 EXPORT_SYMBOL(path_put);
669 
670 #define EMBEDDED_LEVELS 2
671 struct nameidata {
672 	struct path	path;
673 	struct qstr	last;
674 	struct path	root;
675 	struct inode	*inode; /* path.dentry.d_inode */
676 	unsigned int	flags, state;
677 	unsigned	seq, next_seq, m_seq, r_seq;
678 	int		last_type;
679 	unsigned	depth;
680 	int		total_link_count;
681 	struct saved {
682 		struct path link;
683 		struct delayed_call done;
684 		const char *name;
685 		unsigned seq;
686 	} *stack, internal[EMBEDDED_LEVELS];
687 	struct filename	*name;
688 	const char *pathname;
689 	struct nameidata *saved;
690 	unsigned	root_seq;
691 	int		dfd;
692 	vfsuid_t	dir_vfsuid;
693 	umode_t		dir_mode;
694 } __randomize_layout;
695 
696 #define ND_ROOT_PRESET 1
697 #define ND_ROOT_GRABBED 2
698 #define ND_JUMPED 4
699 
700 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name)
701 {
702 	struct nameidata *old = current->nameidata;
703 	p->stack = p->internal;
704 	p->depth = 0;
705 	p->dfd = dfd;
706 	p->name = name;
707 	p->pathname = likely(name) ? name->name : "";
708 	p->path.mnt = NULL;
709 	p->path.dentry = NULL;
710 	p->total_link_count = old ? old->total_link_count : 0;
711 	p->saved = old;
712 	current->nameidata = p;
713 }
714 
715 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name,
716 			  const struct path *root)
717 {
718 	__set_nameidata(p, dfd, name);
719 	p->state = 0;
720 	if (unlikely(root)) {
721 		p->state = ND_ROOT_PRESET;
722 		p->root = *root;
723 	}
724 }
725 
726 static void restore_nameidata(void)
727 {
728 	struct nameidata *now = current->nameidata, *old = now->saved;
729 
730 	current->nameidata = old;
731 	if (old)
732 		old->total_link_count = now->total_link_count;
733 	if (now->stack != now->internal)
734 		kfree(now->stack);
735 }
736 
737 static bool nd_alloc_stack(struct nameidata *nd)
738 {
739 	struct saved *p;
740 
741 	p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
742 			 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
743 	if (unlikely(!p))
744 		return false;
745 	memcpy(p, nd->internal, sizeof(nd->internal));
746 	nd->stack = p;
747 	return true;
748 }
749 
750 /**
751  * path_connected - Verify that a dentry is below mnt.mnt_root
752  * @mnt: The mountpoint to check.
753  * @dentry: The dentry to check.
754  *
755  * Rename can sometimes move a file or directory outside of a bind
756  * mount, path_connected allows those cases to be detected.
757  */
758 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
759 {
760 	struct super_block *sb = mnt->mnt_sb;
761 
762 	/* Bind mounts can have disconnected paths */
763 	if (mnt->mnt_root == sb->s_root)
764 		return true;
765 
766 	return is_subdir(dentry, mnt->mnt_root);
767 }
768 
769 static void drop_links(struct nameidata *nd)
770 {
771 	int i = nd->depth;
772 	while (i--) {
773 		struct saved *last = nd->stack + i;
774 		do_delayed_call(&last->done);
775 		clear_delayed_call(&last->done);
776 	}
777 }
778 
779 static void leave_rcu(struct nameidata *nd)
780 {
781 	nd->flags &= ~LOOKUP_RCU;
782 	nd->seq = nd->next_seq = 0;
783 	rcu_read_unlock();
784 }
785 
786 static void terminate_walk(struct nameidata *nd)
787 {
788 	if (unlikely(nd->depth))
789 		drop_links(nd);
790 	if (!(nd->flags & LOOKUP_RCU)) {
791 		int i;
792 		path_put(&nd->path);
793 		for (i = 0; i < nd->depth; i++)
794 			path_put(&nd->stack[i].link);
795 		if (nd->state & ND_ROOT_GRABBED) {
796 			path_put(&nd->root);
797 			nd->state &= ~ND_ROOT_GRABBED;
798 		}
799 	} else {
800 		leave_rcu(nd);
801 	}
802 	nd->depth = 0;
803 	nd->path.mnt = NULL;
804 	nd->path.dentry = NULL;
805 }
806 
807 /* path_put is needed afterwards regardless of success or failure */
808 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
809 {
810 	int res = __legitimize_mnt(path->mnt, mseq);
811 	if (unlikely(res)) {
812 		if (res > 0)
813 			path->mnt = NULL;
814 		path->dentry = NULL;
815 		return false;
816 	}
817 	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
818 		path->dentry = NULL;
819 		return false;
820 	}
821 	return !read_seqcount_retry(&path->dentry->d_seq, seq);
822 }
823 
824 static inline bool legitimize_path(struct nameidata *nd,
825 			    struct path *path, unsigned seq)
826 {
827 	return __legitimize_path(path, seq, nd->m_seq);
828 }
829 
830 static bool legitimize_links(struct nameidata *nd)
831 {
832 	int i;
833 	if (unlikely(nd->flags & LOOKUP_CACHED)) {
834 		drop_links(nd);
835 		nd->depth = 0;
836 		return false;
837 	}
838 	for (i = 0; i < nd->depth; i++) {
839 		struct saved *last = nd->stack + i;
840 		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
841 			drop_links(nd);
842 			nd->depth = i + 1;
843 			return false;
844 		}
845 	}
846 	return true;
847 }
848 
849 static bool legitimize_root(struct nameidata *nd)
850 {
851 	/* Nothing to do if nd->root is zero or is managed by the VFS user. */
852 	if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET))
853 		return true;
854 	nd->state |= ND_ROOT_GRABBED;
855 	return legitimize_path(nd, &nd->root, nd->root_seq);
856 }
857 
858 /*
859  * Path walking has 2 modes, rcu-walk and ref-walk (see
860  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
861  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
862  * normal reference counts on dentries and vfsmounts to transition to ref-walk
863  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
864  * got stuck, so ref-walk may continue from there. If this is not successful
865  * (eg. a seqcount has changed), then failure is returned and it's up to caller
866  * to restart the path walk from the beginning in ref-walk mode.
867  */
868 
869 /**
870  * try_to_unlazy - try to switch to ref-walk mode.
871  * @nd: nameidata pathwalk data
872  * Returns: true on success, false on failure
873  *
874  * try_to_unlazy attempts to legitimize the current nd->path and nd->root
875  * for ref-walk mode.
876  * Must be called from rcu-walk context.
877  * Nothing should touch nameidata between try_to_unlazy() failure and
878  * terminate_walk().
879  */
880 static bool try_to_unlazy(struct nameidata *nd)
881 {
882 	struct dentry *parent = nd->path.dentry;
883 
884 	BUG_ON(!(nd->flags & LOOKUP_RCU));
885 
886 	if (unlikely(nd->depth && !legitimize_links(nd)))
887 		goto out1;
888 	if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
889 		goto out;
890 	if (unlikely(!legitimize_root(nd)))
891 		goto out;
892 	leave_rcu(nd);
893 	BUG_ON(nd->inode != parent->d_inode);
894 	return true;
895 
896 out1:
897 	nd->path.mnt = NULL;
898 	nd->path.dentry = NULL;
899 out:
900 	leave_rcu(nd);
901 	return false;
902 }
903 
904 /**
905  * try_to_unlazy_next - try to switch to ref-walk mode.
906  * @nd: nameidata pathwalk data
907  * @dentry: next dentry to step into
908  * Returns: true on success, false on failure
909  *
910  * Similar to try_to_unlazy(), but here we have the next dentry already
911  * picked by rcu-walk and want to legitimize that in addition to the current
912  * nd->path and nd->root for ref-walk mode.  Must be called from rcu-walk context.
913  * Nothing should touch nameidata between try_to_unlazy_next() failure and
914  * terminate_walk().
915  */
916 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry)
917 {
918 	int res;
919 	BUG_ON(!(nd->flags & LOOKUP_RCU));
920 
921 	if (unlikely(nd->depth && !legitimize_links(nd)))
922 		goto out2;
923 	res = __legitimize_mnt(nd->path.mnt, nd->m_seq);
924 	if (unlikely(res)) {
925 		if (res > 0)
926 			goto out2;
927 		goto out1;
928 	}
929 	if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
930 		goto out1;
931 
932 	/*
933 	 * We need to move both the parent and the dentry from the RCU domain
934 	 * to be properly refcounted. And the sequence number in the dentry
935 	 * validates *both* dentry counters, since we checked the sequence
936 	 * number of the parent after we got the child sequence number. So we
937 	 * know the parent must still be valid if the child sequence number is
938 	 */
939 	if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
940 		goto out;
941 	if (read_seqcount_retry(&dentry->d_seq, nd->next_seq))
942 		goto out_dput;
943 	/*
944 	 * Sequence counts matched. Now make sure that the root is
945 	 * still valid and get it if required.
946 	 */
947 	if (unlikely(!legitimize_root(nd)))
948 		goto out_dput;
949 	leave_rcu(nd);
950 	return true;
951 
952 out2:
953 	nd->path.mnt = NULL;
954 out1:
955 	nd->path.dentry = NULL;
956 out:
957 	leave_rcu(nd);
958 	return false;
959 out_dput:
960 	leave_rcu(nd);
961 	dput(dentry);
962 	return false;
963 }
964 
965 static inline int d_revalidate(struct inode *dir, const struct qstr *name,
966 			       struct dentry *dentry, unsigned int flags)
967 {
968 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
969 		return dentry->d_op->d_revalidate(dir, name, dentry, flags);
970 	else
971 		return 1;
972 }
973 
974 /**
975  * complete_walk - successful completion of path walk
976  * @nd:  pointer nameidata
977  *
978  * If we had been in RCU mode, drop out of it and legitimize nd->path.
979  * Revalidate the final result, unless we'd already done that during
980  * the path walk or the filesystem doesn't ask for it.  Return 0 on
981  * success, -error on failure.  In case of failure caller does not
982  * need to drop nd->path.
983  */
984 static int complete_walk(struct nameidata *nd)
985 {
986 	struct dentry *dentry = nd->path.dentry;
987 	int status;
988 
989 	if (nd->flags & LOOKUP_RCU) {
990 		/*
991 		 * We don't want to zero nd->root for scoped-lookups or
992 		 * externally-managed nd->root.
993 		 */
994 		if (likely(!(nd->state & ND_ROOT_PRESET)))
995 			if (likely(!(nd->flags & LOOKUP_IS_SCOPED)))
996 				nd->root.mnt = NULL;
997 		nd->flags &= ~LOOKUP_CACHED;
998 		if (!try_to_unlazy(nd))
999 			return -ECHILD;
1000 	}
1001 
1002 	if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
1003 		/*
1004 		 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
1005 		 * ever step outside the root during lookup" and should already
1006 		 * be guaranteed by the rest of namei, we want to avoid a namei
1007 		 * BUG resulting in userspace being given a path that was not
1008 		 * scoped within the root at some point during the lookup.
1009 		 *
1010 		 * So, do a final sanity-check to make sure that in the
1011 		 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
1012 		 * we won't silently return an fd completely outside of the
1013 		 * requested root to userspace.
1014 		 *
1015 		 * Userspace could move the path outside the root after this
1016 		 * check, but as discussed elsewhere this is not a concern (the
1017 		 * resolved file was inside the root at some point).
1018 		 */
1019 		if (!path_is_under(&nd->path, &nd->root))
1020 			return -EXDEV;
1021 	}
1022 
1023 	if (likely(!(nd->state & ND_JUMPED)))
1024 		return 0;
1025 
1026 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
1027 		return 0;
1028 
1029 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
1030 	if (status > 0)
1031 		return 0;
1032 
1033 	if (!status)
1034 		status = -ESTALE;
1035 
1036 	return status;
1037 }
1038 
1039 static int set_root(struct nameidata *nd)
1040 {
1041 	struct fs_struct *fs = current->fs;
1042 
1043 	/*
1044 	 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
1045 	 * still have to ensure it doesn't happen because it will cause a breakout
1046 	 * from the dirfd.
1047 	 */
1048 	if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
1049 		return -ENOTRECOVERABLE;
1050 
1051 	if (nd->flags & LOOKUP_RCU) {
1052 		unsigned seq;
1053 
1054 		do {
1055 			seq = read_seqbegin(&fs->seq);
1056 			nd->root = fs->root;
1057 			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
1058 		} while (read_seqretry(&fs->seq, seq));
1059 	} else {
1060 		get_fs_root(fs, &nd->root);
1061 		nd->state |= ND_ROOT_GRABBED;
1062 	}
1063 	return 0;
1064 }
1065 
1066 static int nd_jump_root(struct nameidata *nd)
1067 {
1068 	if (unlikely(nd->flags & LOOKUP_BENEATH))
1069 		return -EXDEV;
1070 	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
1071 		/* Absolute path arguments to path_init() are allowed. */
1072 		if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
1073 			return -EXDEV;
1074 	}
1075 	if (!nd->root.mnt) {
1076 		int error = set_root(nd);
1077 		if (unlikely(error))
1078 			return error;
1079 	}
1080 	if (nd->flags & LOOKUP_RCU) {
1081 		struct dentry *d;
1082 		nd->path = nd->root;
1083 		d = nd->path.dentry;
1084 		nd->inode = d->d_inode;
1085 		nd->seq = nd->root_seq;
1086 		if (read_seqcount_retry(&d->d_seq, nd->seq))
1087 			return -ECHILD;
1088 	} else {
1089 		path_put(&nd->path);
1090 		nd->path = nd->root;
1091 		path_get(&nd->path);
1092 		nd->inode = nd->path.dentry->d_inode;
1093 	}
1094 	nd->state |= ND_JUMPED;
1095 	return 0;
1096 }
1097 
1098 /*
1099  * Helper to directly jump to a known parsed path from ->get_link,
1100  * caller must have taken a reference to path beforehand.
1101  */
1102 int nd_jump_link(const struct path *path)
1103 {
1104 	int error = -ELOOP;
1105 	struct nameidata *nd = current->nameidata;
1106 
1107 	if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
1108 		goto err;
1109 
1110 	error = -EXDEV;
1111 	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
1112 		if (nd->path.mnt != path->mnt)
1113 			goto err;
1114 	}
1115 	/* Not currently safe for scoped-lookups. */
1116 	if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
1117 		goto err;
1118 
1119 	path_put(&nd->path);
1120 	nd->path = *path;
1121 	nd->inode = nd->path.dentry->d_inode;
1122 	nd->state |= ND_JUMPED;
1123 	return 0;
1124 
1125 err:
1126 	path_put(path);
1127 	return error;
1128 }
1129 
1130 static inline void put_link(struct nameidata *nd)
1131 {
1132 	struct saved *last = nd->stack + --nd->depth;
1133 	do_delayed_call(&last->done);
1134 	if (!(nd->flags & LOOKUP_RCU))
1135 		path_put(&last->link);
1136 }
1137 
1138 static int sysctl_protected_symlinks __read_mostly;
1139 static int sysctl_protected_hardlinks __read_mostly;
1140 static int sysctl_protected_fifos __read_mostly;
1141 static int sysctl_protected_regular __read_mostly;
1142 
1143 #ifdef CONFIG_SYSCTL
1144 static const struct ctl_table namei_sysctls[] = {
1145 	{
1146 		.procname	= "protected_symlinks",
1147 		.data		= &sysctl_protected_symlinks,
1148 		.maxlen		= sizeof(int),
1149 		.mode		= 0644,
1150 		.proc_handler	= proc_dointvec_minmax,
1151 		.extra1		= SYSCTL_ZERO,
1152 		.extra2		= SYSCTL_ONE,
1153 	},
1154 	{
1155 		.procname	= "protected_hardlinks",
1156 		.data		= &sysctl_protected_hardlinks,
1157 		.maxlen		= sizeof(int),
1158 		.mode		= 0644,
1159 		.proc_handler	= proc_dointvec_minmax,
1160 		.extra1		= SYSCTL_ZERO,
1161 		.extra2		= SYSCTL_ONE,
1162 	},
1163 	{
1164 		.procname	= "protected_fifos",
1165 		.data		= &sysctl_protected_fifos,
1166 		.maxlen		= sizeof(int),
1167 		.mode		= 0644,
1168 		.proc_handler	= proc_dointvec_minmax,
1169 		.extra1		= SYSCTL_ZERO,
1170 		.extra2		= SYSCTL_TWO,
1171 	},
1172 	{
1173 		.procname	= "protected_regular",
1174 		.data		= &sysctl_protected_regular,
1175 		.maxlen		= sizeof(int),
1176 		.mode		= 0644,
1177 		.proc_handler	= proc_dointvec_minmax,
1178 		.extra1		= SYSCTL_ZERO,
1179 		.extra2		= SYSCTL_TWO,
1180 	},
1181 };
1182 
1183 static int __init init_fs_namei_sysctls(void)
1184 {
1185 	register_sysctl_init("fs", namei_sysctls);
1186 	return 0;
1187 }
1188 fs_initcall(init_fs_namei_sysctls);
1189 
1190 #endif /* CONFIG_SYSCTL */
1191 
1192 /**
1193  * may_follow_link - Check symlink following for unsafe situations
1194  * @nd: nameidata pathwalk data
1195  * @inode: Used for idmapping.
1196  *
1197  * In the case of the sysctl_protected_symlinks sysctl being enabled,
1198  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
1199  * in a sticky world-writable directory. This is to protect privileged
1200  * processes from failing races against path names that may change out
1201  * from under them by way of other users creating malicious symlinks.
1202  * It will permit symlinks to be followed only when outside a sticky
1203  * world-writable directory, or when the uid of the symlink and follower
1204  * match, or when the directory owner matches the symlink's owner.
1205  *
1206  * Returns 0 if following the symlink is allowed, -ve on error.
1207  */
1208 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
1209 {
1210 	struct mnt_idmap *idmap;
1211 	vfsuid_t vfsuid;
1212 
1213 	if (!sysctl_protected_symlinks)
1214 		return 0;
1215 
1216 	idmap = mnt_idmap(nd->path.mnt);
1217 	vfsuid = i_uid_into_vfsuid(idmap, inode);
1218 	/* Allowed if owner and follower match. */
1219 	if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
1220 		return 0;
1221 
1222 	/* Allowed if parent directory not sticky and world-writable. */
1223 	if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
1224 		return 0;
1225 
1226 	/* Allowed if parent directory and link owner match. */
1227 	if (vfsuid_valid(nd->dir_vfsuid) && vfsuid_eq(nd->dir_vfsuid, vfsuid))
1228 		return 0;
1229 
1230 	if (nd->flags & LOOKUP_RCU)
1231 		return -ECHILD;
1232 
1233 	audit_inode(nd->name, nd->stack[0].link.dentry, 0);
1234 	audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
1235 	return -EACCES;
1236 }
1237 
1238 /**
1239  * safe_hardlink_source - Check for safe hardlink conditions
1240  * @idmap: idmap of the mount the inode was found from
1241  * @inode: the source inode to hardlink from
1242  *
1243  * Return false if at least one of the following conditions:
1244  *    - inode is not a regular file
1245  *    - inode is setuid
1246  *    - inode is setgid and group-exec
1247  *    - access failure for read and write
1248  *
1249  * Otherwise returns true.
1250  */
1251 static bool safe_hardlink_source(struct mnt_idmap *idmap,
1252 				 struct inode *inode)
1253 {
1254 	umode_t mode = inode->i_mode;
1255 
1256 	/* Special files should not get pinned to the filesystem. */
1257 	if (!S_ISREG(mode))
1258 		return false;
1259 
1260 	/* Setuid files should not get pinned to the filesystem. */
1261 	if (mode & S_ISUID)
1262 		return false;
1263 
1264 	/* Executable setgid files should not get pinned to the filesystem. */
1265 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1266 		return false;
1267 
1268 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
1269 	if (inode_permission(idmap, inode, MAY_READ | MAY_WRITE))
1270 		return false;
1271 
1272 	return true;
1273 }
1274 
1275 /**
1276  * may_linkat - Check permissions for creating a hardlink
1277  * @idmap: idmap of the mount the inode was found from
1278  * @link:  the source to hardlink from
1279  *
1280  * Block hardlink when all of:
1281  *  - sysctl_protected_hardlinks enabled
1282  *  - fsuid does not match inode
1283  *  - hardlink source is unsafe (see safe_hardlink_source() above)
1284  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
1285  *
1286  * If the inode has been found through an idmapped mount the idmap of
1287  * the vfsmount must be passed through @idmap. This function will then take
1288  * care to map the inode according to @idmap before checking permissions.
1289  * On non-idmapped mounts or if permission checking is to be performed on the
1290  * raw inode simply pass @nop_mnt_idmap.
1291  *
1292  * Returns 0 if successful, -ve on error.
1293  */
1294 int may_linkat(struct mnt_idmap *idmap, const struct path *link)
1295 {
1296 	struct inode *inode = link->dentry->d_inode;
1297 
1298 	/* Inode writeback is not safe when the uid or gid are invalid. */
1299 	if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
1300 	    !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
1301 		return -EOVERFLOW;
1302 
1303 	if (!sysctl_protected_hardlinks)
1304 		return 0;
1305 
1306 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1307 	 * otherwise, it must be a safe source.
1308 	 */
1309 	if (safe_hardlink_source(idmap, inode) ||
1310 	    inode_owner_or_capable(idmap, inode))
1311 		return 0;
1312 
1313 	audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1314 	return -EPERM;
1315 }
1316 
1317 /**
1318  * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1319  *			  should be allowed, or not, on files that already
1320  *			  exist.
1321  * @idmap: idmap of the mount the inode was found from
1322  * @nd: nameidata pathwalk data
1323  * @inode: the inode of the file to open
1324  *
1325  * Block an O_CREAT open of a FIFO (or a regular file) when:
1326  *   - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1327  *   - the file already exists
1328  *   - we are in a sticky directory
1329  *   - we don't own the file
1330  *   - the owner of the directory doesn't own the file
1331  *   - the directory is world writable
1332  * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1333  * the directory doesn't have to be world writable: being group writable will
1334  * be enough.
1335  *
1336  * If the inode has been found through an idmapped mount the idmap of
1337  * the vfsmount must be passed through @idmap. This function will then take
1338  * care to map the inode according to @idmap before checking permissions.
1339  * On non-idmapped mounts or if permission checking is to be performed on the
1340  * raw inode simply pass @nop_mnt_idmap.
1341  *
1342  * Returns 0 if the open is allowed, -ve on error.
1343  */
1344 static int may_create_in_sticky(struct mnt_idmap *idmap, struct nameidata *nd,
1345 				struct inode *const inode)
1346 {
1347 	umode_t dir_mode = nd->dir_mode;
1348 	vfsuid_t dir_vfsuid = nd->dir_vfsuid, i_vfsuid;
1349 
1350 	if (likely(!(dir_mode & S_ISVTX)))
1351 		return 0;
1352 
1353 	if (S_ISREG(inode->i_mode) && !sysctl_protected_regular)
1354 		return 0;
1355 
1356 	if (S_ISFIFO(inode->i_mode) && !sysctl_protected_fifos)
1357 		return 0;
1358 
1359 	i_vfsuid = i_uid_into_vfsuid(idmap, inode);
1360 
1361 	if (vfsuid_eq(i_vfsuid, dir_vfsuid))
1362 		return 0;
1363 
1364 	if (vfsuid_eq_kuid(i_vfsuid, current_fsuid()))
1365 		return 0;
1366 
1367 	if (likely(dir_mode & 0002)) {
1368 		audit_log_path_denied(AUDIT_ANOM_CREAT, "sticky_create");
1369 		return -EACCES;
1370 	}
1371 
1372 	if (dir_mode & 0020) {
1373 		if (sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) {
1374 			audit_log_path_denied(AUDIT_ANOM_CREAT,
1375 					      "sticky_create_fifo");
1376 			return -EACCES;
1377 		}
1378 
1379 		if (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode)) {
1380 			audit_log_path_denied(AUDIT_ANOM_CREAT,
1381 					      "sticky_create_regular");
1382 			return -EACCES;
1383 		}
1384 	}
1385 
1386 	return 0;
1387 }
1388 
1389 /*
1390  * follow_up - Find the mountpoint of path's vfsmount
1391  *
1392  * Given a path, find the mountpoint of its source file system.
1393  * Replace @path with the path of the mountpoint in the parent mount.
1394  * Up is towards /.
1395  *
1396  * Return 1 if we went up a level and 0 if we were already at the
1397  * root.
1398  */
1399 int follow_up(struct path *path)
1400 {
1401 	struct mount *mnt = real_mount(path->mnt);
1402 	struct mount *parent;
1403 	struct dentry *mountpoint;
1404 
1405 	read_seqlock_excl(&mount_lock);
1406 	parent = mnt->mnt_parent;
1407 	if (parent == mnt) {
1408 		read_sequnlock_excl(&mount_lock);
1409 		return 0;
1410 	}
1411 	mntget(&parent->mnt);
1412 	mountpoint = dget(mnt->mnt_mountpoint);
1413 	read_sequnlock_excl(&mount_lock);
1414 	dput(path->dentry);
1415 	path->dentry = mountpoint;
1416 	mntput(path->mnt);
1417 	path->mnt = &parent->mnt;
1418 	return 1;
1419 }
1420 EXPORT_SYMBOL(follow_up);
1421 
1422 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1423 				  struct path *path, unsigned *seqp)
1424 {
1425 	while (mnt_has_parent(m)) {
1426 		struct dentry *mountpoint = m->mnt_mountpoint;
1427 
1428 		m = m->mnt_parent;
1429 		if (unlikely(root->dentry == mountpoint &&
1430 			     root->mnt == &m->mnt))
1431 			break;
1432 		if (mountpoint != m->mnt.mnt_root) {
1433 			path->mnt = &m->mnt;
1434 			path->dentry = mountpoint;
1435 			*seqp = read_seqcount_begin(&mountpoint->d_seq);
1436 			return true;
1437 		}
1438 	}
1439 	return false;
1440 }
1441 
1442 static bool choose_mountpoint(struct mount *m, const struct path *root,
1443 			      struct path *path)
1444 {
1445 	bool found;
1446 
1447 	rcu_read_lock();
1448 	while (1) {
1449 		unsigned seq, mseq = read_seqbegin(&mount_lock);
1450 
1451 		found = choose_mountpoint_rcu(m, root, path, &seq);
1452 		if (unlikely(!found)) {
1453 			if (!read_seqretry(&mount_lock, mseq))
1454 				break;
1455 		} else {
1456 			if (likely(__legitimize_path(path, seq, mseq)))
1457 				break;
1458 			rcu_read_unlock();
1459 			path_put(path);
1460 			rcu_read_lock();
1461 		}
1462 	}
1463 	rcu_read_unlock();
1464 	return found;
1465 }
1466 
1467 /*
1468  * Perform an automount
1469  * - return -EISDIR to tell follow_managed() to stop and return the path we
1470  *   were called with.
1471  */
1472 static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1473 {
1474 	struct dentry *dentry = path->dentry;
1475 
1476 	/* We don't want to mount if someone's just doing a stat -
1477 	 * unless they're stat'ing a directory and appended a '/' to
1478 	 * the name.
1479 	 *
1480 	 * We do, however, want to mount if someone wants to open or
1481 	 * create a file of any type under the mountpoint, wants to
1482 	 * traverse through the mountpoint or wants to open the
1483 	 * mounted directory.  Also, autofs may mark negative dentries
1484 	 * as being automount points.  These will need the attentions
1485 	 * of the daemon to instantiate them before they can be used.
1486 	 */
1487 	if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1488 			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1489 	    dentry->d_inode)
1490 		return -EISDIR;
1491 
1492 	/* No need to trigger automounts if mountpoint crossing is disabled. */
1493 	if (lookup_flags & LOOKUP_NO_XDEV)
1494 		return -EXDEV;
1495 
1496 	if (count && (*count)++ >= MAXSYMLINKS)
1497 		return -ELOOP;
1498 
1499 	return finish_automount(dentry->d_op->d_automount(path), path);
1500 }
1501 
1502 /*
1503  * mount traversal - out-of-line part.  One note on ->d_flags accesses -
1504  * dentries are pinned but not locked here, so negative dentry can go
1505  * positive right under us.  Use of smp_load_acquire() provides a barrier
1506  * sufficient for ->d_inode and ->d_flags consistency.
1507  */
1508 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1509 			     int *count, unsigned lookup_flags)
1510 {
1511 	struct vfsmount *mnt = path->mnt;
1512 	bool need_mntput = false;
1513 	int ret = 0;
1514 
1515 	while (flags & DCACHE_MANAGED_DENTRY) {
1516 		/* Allow the filesystem to manage the transit without i_rwsem
1517 		 * being held. */
1518 		if (flags & DCACHE_MANAGE_TRANSIT) {
1519 			if (lookup_flags & LOOKUP_NO_XDEV) {
1520 				ret = -EXDEV;
1521 				break;
1522 			}
1523 			ret = path->dentry->d_op->d_manage(path, false);
1524 			flags = smp_load_acquire(&path->dentry->d_flags);
1525 			if (ret < 0)
1526 				break;
1527 		}
1528 
1529 		if (flags & DCACHE_MOUNTED) {	// something's mounted on it..
1530 			struct vfsmount *mounted = lookup_mnt(path);
1531 			if (mounted) {		// ... in our namespace
1532 				dput(path->dentry);
1533 				if (need_mntput)
1534 					mntput(path->mnt);
1535 				path->mnt = mounted;
1536 				path->dentry = dget(mounted->mnt_root);
1537 				// here we know it's positive
1538 				flags = path->dentry->d_flags;
1539 				need_mntput = true;
1540 				if (unlikely(lookup_flags & LOOKUP_NO_XDEV)) {
1541 					ret = -EXDEV;
1542 					break;
1543 				}
1544 				continue;
1545 			}
1546 		}
1547 
1548 		if (!(flags & DCACHE_NEED_AUTOMOUNT))
1549 			break;
1550 
1551 		// uncovered automount point
1552 		ret = follow_automount(path, count, lookup_flags);
1553 		flags = smp_load_acquire(&path->dentry->d_flags);
1554 		if (ret < 0)
1555 			break;
1556 	}
1557 
1558 	if (ret == -EISDIR)
1559 		ret = 0;
1560 	// possible if you race with several mount --move
1561 	if (need_mntput && path->mnt == mnt)
1562 		mntput(path->mnt);
1563 	if (!ret && unlikely(d_flags_negative(flags)))
1564 		ret = -ENOENT;
1565 	*jumped = need_mntput;
1566 	return ret;
1567 }
1568 
1569 static inline int traverse_mounts(struct path *path, bool *jumped,
1570 				  int *count, unsigned lookup_flags)
1571 {
1572 	unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1573 
1574 	/* fastpath */
1575 	if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1576 		*jumped = false;
1577 		if (unlikely(d_flags_negative(flags)))
1578 			return -ENOENT;
1579 		return 0;
1580 	}
1581 	return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1582 }
1583 
1584 int follow_down_one(struct path *path)
1585 {
1586 	struct vfsmount *mounted;
1587 
1588 	mounted = lookup_mnt(path);
1589 	if (mounted) {
1590 		dput(path->dentry);
1591 		mntput(path->mnt);
1592 		path->mnt = mounted;
1593 		path->dentry = dget(mounted->mnt_root);
1594 		return 1;
1595 	}
1596 	return 0;
1597 }
1598 EXPORT_SYMBOL(follow_down_one);
1599 
1600 /*
1601  * Follow down to the covering mount currently visible to userspace.  At each
1602  * point, the filesystem owning that dentry may be queried as to whether the
1603  * caller is permitted to proceed or not.
1604  */
1605 int follow_down(struct path *path, unsigned int flags)
1606 {
1607 	struct vfsmount *mnt = path->mnt;
1608 	bool jumped;
1609 	int ret = traverse_mounts(path, &jumped, NULL, flags);
1610 
1611 	if (path->mnt != mnt)
1612 		mntput(mnt);
1613 	return ret;
1614 }
1615 EXPORT_SYMBOL(follow_down);
1616 
1617 /*
1618  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1619  * we meet a managed dentry that would need blocking.
1620  */
1621 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path)
1622 {
1623 	struct dentry *dentry = path->dentry;
1624 	unsigned int flags = dentry->d_flags;
1625 
1626 	if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1627 		return true;
1628 
1629 	if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1630 		return false;
1631 
1632 	for (;;) {
1633 		/*
1634 		 * Don't forget we might have a non-mountpoint managed dentry
1635 		 * that wants to block transit.
1636 		 */
1637 		if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1638 			int res = dentry->d_op->d_manage(path, true);
1639 			if (res)
1640 				return res == -EISDIR;
1641 			flags = dentry->d_flags;
1642 		}
1643 
1644 		if (flags & DCACHE_MOUNTED) {
1645 			struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1646 			if (mounted) {
1647 				path->mnt = &mounted->mnt;
1648 				dentry = path->dentry = mounted->mnt.mnt_root;
1649 				nd->state |= ND_JUMPED;
1650 				nd->next_seq = read_seqcount_begin(&dentry->d_seq);
1651 				flags = dentry->d_flags;
1652 				// makes sure that non-RCU pathwalk could reach
1653 				// this state.
1654 				if (read_seqretry(&mount_lock, nd->m_seq))
1655 					return false;
1656 				continue;
1657 			}
1658 			if (read_seqretry(&mount_lock, nd->m_seq))
1659 				return false;
1660 		}
1661 		return !(flags & DCACHE_NEED_AUTOMOUNT);
1662 	}
1663 }
1664 
1665 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1666 			  struct path *path)
1667 {
1668 	bool jumped;
1669 	int ret;
1670 
1671 	path->mnt = nd->path.mnt;
1672 	path->dentry = dentry;
1673 	if (nd->flags & LOOKUP_RCU) {
1674 		unsigned int seq = nd->next_seq;
1675 		if (likely(!d_managed(dentry)))
1676 			return 0;
1677 		if (likely(__follow_mount_rcu(nd, path)))
1678 			return 0;
1679 		// *path and nd->next_seq might've been clobbered
1680 		path->mnt = nd->path.mnt;
1681 		path->dentry = dentry;
1682 		nd->next_seq = seq;
1683 		if (unlikely(!try_to_unlazy_next(nd, dentry)))
1684 			return -ECHILD;
1685 	}
1686 	ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1687 	if (jumped)
1688 		nd->state |= ND_JUMPED;
1689 	if (unlikely(ret)) {
1690 		dput(path->dentry);
1691 		if (path->mnt != nd->path.mnt)
1692 			mntput(path->mnt);
1693 	}
1694 	return ret;
1695 }
1696 
1697 /*
1698  * This looks up the name in dcache and possibly revalidates the found dentry.
1699  * NULL is returned if the dentry does not exist in the cache.
1700  */
1701 static struct dentry *lookup_dcache(const struct qstr *name,
1702 				    struct dentry *dir,
1703 				    unsigned int flags)
1704 {
1705 	struct dentry *dentry = d_lookup(dir, name);
1706 	if (dentry) {
1707 		int error = d_revalidate(dir->d_inode, name, dentry, flags);
1708 		if (unlikely(error <= 0)) {
1709 			if (!error)
1710 				d_invalidate(dentry);
1711 			dput(dentry);
1712 			return ERR_PTR(error);
1713 		}
1714 	}
1715 	return dentry;
1716 }
1717 
1718 /*
1719  * Parent directory has inode locked exclusive.  This is one
1720  * and only case when ->lookup() gets called on non in-lookup
1721  * dentries - as the matter of fact, this only gets called
1722  * when directory is guaranteed to have no in-lookup children
1723  * at all.
1724  * Will return -ENOENT if name isn't found and LOOKUP_CREATE wasn't passed.
1725  * Will return -EEXIST if name is found and LOOKUP_EXCL was passed.
1726  */
1727 struct dentry *lookup_one_qstr_excl(const struct qstr *name,
1728 				    struct dentry *base, unsigned int flags)
1729 {
1730 	struct dentry *dentry;
1731 	struct dentry *old;
1732 	struct inode *dir;
1733 
1734 	dentry = lookup_dcache(name, base, flags);
1735 	if (dentry)
1736 		goto found;
1737 
1738 	/* Don't create child dentry for a dead directory. */
1739 	dir = base->d_inode;
1740 	if (unlikely(IS_DEADDIR(dir)))
1741 		return ERR_PTR(-ENOENT);
1742 
1743 	dentry = d_alloc(base, name);
1744 	if (unlikely(!dentry))
1745 		return ERR_PTR(-ENOMEM);
1746 
1747 	old = dir->i_op->lookup(dir, dentry, flags);
1748 	if (unlikely(old)) {
1749 		dput(dentry);
1750 		dentry = old;
1751 	}
1752 found:
1753 	if (IS_ERR(dentry))
1754 		return dentry;
1755 	if (d_is_negative(dentry) && !(flags & LOOKUP_CREATE)) {
1756 		dput(dentry);
1757 		return ERR_PTR(-ENOENT);
1758 	}
1759 	if (d_is_positive(dentry) && (flags & LOOKUP_EXCL)) {
1760 		dput(dentry);
1761 		return ERR_PTR(-EEXIST);
1762 	}
1763 	return dentry;
1764 }
1765 EXPORT_SYMBOL(lookup_one_qstr_excl);
1766 
1767 /**
1768  * lookup_fast - do fast lockless (but racy) lookup of a dentry
1769  * @nd: current nameidata
1770  *
1771  * Do a fast, but racy lookup in the dcache for the given dentry, and
1772  * revalidate it. Returns a valid dentry pointer or NULL if one wasn't
1773  * found. On error, an ERR_PTR will be returned.
1774  *
1775  * If this function returns a valid dentry and the walk is no longer
1776  * lazy, the dentry will carry a reference that must later be put. If
1777  * RCU mode is still in force, then this is not the case and the dentry
1778  * must be legitimized before use. If this returns NULL, then the walk
1779  * will no longer be in RCU mode.
1780  */
1781 static struct dentry *lookup_fast(struct nameidata *nd)
1782 {
1783 	struct dentry *dentry, *parent = nd->path.dentry;
1784 	int status = 1;
1785 
1786 	/*
1787 	 * Rename seqlock is not required here because in the off chance
1788 	 * of a false negative due to a concurrent rename, the caller is
1789 	 * going to fall back to non-racy lookup.
1790 	 */
1791 	if (nd->flags & LOOKUP_RCU) {
1792 		dentry = __d_lookup_rcu(parent, &nd->last, &nd->next_seq);
1793 		if (unlikely(!dentry)) {
1794 			if (!try_to_unlazy(nd))
1795 				return ERR_PTR(-ECHILD);
1796 			return NULL;
1797 		}
1798 
1799 		/*
1800 		 * This sequence count validates that the parent had no
1801 		 * changes while we did the lookup of the dentry above.
1802 		 */
1803 		if (read_seqcount_retry(&parent->d_seq, nd->seq))
1804 			return ERR_PTR(-ECHILD);
1805 
1806 		status = d_revalidate(nd->inode, &nd->last, dentry, nd->flags);
1807 		if (likely(status > 0))
1808 			return dentry;
1809 		if (!try_to_unlazy_next(nd, dentry))
1810 			return ERR_PTR(-ECHILD);
1811 		if (status == -ECHILD)
1812 			/* we'd been told to redo it in non-rcu mode */
1813 			status = d_revalidate(nd->inode, &nd->last,
1814 					      dentry, nd->flags);
1815 	} else {
1816 		dentry = __d_lookup(parent, &nd->last);
1817 		if (unlikely(!dentry))
1818 			return NULL;
1819 		status = d_revalidate(nd->inode, &nd->last, dentry, nd->flags);
1820 	}
1821 	if (unlikely(status <= 0)) {
1822 		if (!status)
1823 			d_invalidate(dentry);
1824 		dput(dentry);
1825 		return ERR_PTR(status);
1826 	}
1827 	return dentry;
1828 }
1829 
1830 /* Fast lookup failed, do it the slow way */
1831 static struct dentry *__lookup_slow(const struct qstr *name,
1832 				    struct dentry *dir,
1833 				    unsigned int flags)
1834 {
1835 	struct dentry *dentry, *old;
1836 	struct inode *inode = dir->d_inode;
1837 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1838 
1839 	/* Don't go there if it's already dead */
1840 	if (unlikely(IS_DEADDIR(inode)))
1841 		return ERR_PTR(-ENOENT);
1842 again:
1843 	dentry = d_alloc_parallel(dir, name, &wq);
1844 	if (IS_ERR(dentry))
1845 		return dentry;
1846 	if (unlikely(!d_in_lookup(dentry))) {
1847 		int error = d_revalidate(inode, name, dentry, flags);
1848 		if (unlikely(error <= 0)) {
1849 			if (!error) {
1850 				d_invalidate(dentry);
1851 				dput(dentry);
1852 				goto again;
1853 			}
1854 			dput(dentry);
1855 			dentry = ERR_PTR(error);
1856 		}
1857 	} else {
1858 		old = inode->i_op->lookup(inode, dentry, flags);
1859 		d_lookup_done(dentry);
1860 		if (unlikely(old)) {
1861 			dput(dentry);
1862 			dentry = old;
1863 		}
1864 	}
1865 	return dentry;
1866 }
1867 
1868 static noinline struct dentry *lookup_slow(const struct qstr *name,
1869 				  struct dentry *dir,
1870 				  unsigned int flags)
1871 {
1872 	struct inode *inode = dir->d_inode;
1873 	struct dentry *res;
1874 	inode_lock_shared(inode);
1875 	res = __lookup_slow(name, dir, flags);
1876 	inode_unlock_shared(inode);
1877 	return res;
1878 }
1879 
1880 static struct dentry *lookup_slow_killable(const struct qstr *name,
1881 					   struct dentry *dir,
1882 					   unsigned int flags)
1883 {
1884 	struct inode *inode = dir->d_inode;
1885 	struct dentry *res;
1886 
1887 	if (inode_lock_shared_killable(inode))
1888 		return ERR_PTR(-EINTR);
1889 	res = __lookup_slow(name, dir, flags);
1890 	inode_unlock_shared(inode);
1891 	return res;
1892 }
1893 
1894 static inline int may_lookup(struct mnt_idmap *idmap,
1895 			     struct nameidata *restrict nd)
1896 {
1897 	int err, mask;
1898 
1899 	mask = nd->flags & LOOKUP_RCU ? MAY_NOT_BLOCK : 0;
1900 	err = lookup_inode_permission_may_exec(idmap, nd->inode, mask);
1901 	if (likely(!err))
1902 		return 0;
1903 
1904 	// If we failed, and we weren't in LOOKUP_RCU, it's final
1905 	if (!(nd->flags & LOOKUP_RCU))
1906 		return err;
1907 
1908 	// Drop out of RCU mode to make sure it wasn't transient
1909 	if (!try_to_unlazy(nd))
1910 		return -ECHILD;	// redo it all non-lazy
1911 
1912 	if (err != -ECHILD)	// hard error
1913 		return err;
1914 
1915 	return lookup_inode_permission_may_exec(idmap, nd->inode, 0);
1916 }
1917 
1918 static int reserve_stack(struct nameidata *nd, struct path *link)
1919 {
1920 	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1921 		return -ELOOP;
1922 
1923 	if (likely(nd->depth != EMBEDDED_LEVELS))
1924 		return 0;
1925 	if (likely(nd->stack != nd->internal))
1926 		return 0;
1927 	if (likely(nd_alloc_stack(nd)))
1928 		return 0;
1929 
1930 	if (nd->flags & LOOKUP_RCU) {
1931 		// we need to grab link before we do unlazy.  And we can't skip
1932 		// unlazy even if we fail to grab the link - cleanup needs it
1933 		bool grabbed_link = legitimize_path(nd, link, nd->next_seq);
1934 
1935 		if (!try_to_unlazy(nd) || !grabbed_link)
1936 			return -ECHILD;
1937 
1938 		if (nd_alloc_stack(nd))
1939 			return 0;
1940 	}
1941 	return -ENOMEM;
1942 }
1943 
1944 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1945 
1946 static noinline const char *pick_link(struct nameidata *nd, struct path *link,
1947 		     struct inode *inode, int flags)
1948 {
1949 	struct saved *last;
1950 	const char *res;
1951 	int error;
1952 
1953 	if (nd->flags & LOOKUP_RCU) {
1954 		/* make sure that d_is_symlink from step_into_slowpath() matches the inode */
1955 		if (read_seqcount_retry(&link->dentry->d_seq, nd->next_seq))
1956 			return ERR_PTR(-ECHILD);
1957 	} else {
1958 		if (link->mnt == nd->path.mnt)
1959 			mntget(link->mnt);
1960 	}
1961 
1962 	error = reserve_stack(nd, link);
1963 	if (unlikely(error)) {
1964 		if (!(nd->flags & LOOKUP_RCU))
1965 			path_put(link);
1966 		return ERR_PTR(error);
1967 	}
1968 	last = nd->stack + nd->depth++;
1969 	last->link = *link;
1970 	clear_delayed_call(&last->done);
1971 	last->seq = nd->next_seq;
1972 
1973 	if (flags & WALK_TRAILING) {
1974 		error = may_follow_link(nd, inode);
1975 		if (unlikely(error))
1976 			return ERR_PTR(error);
1977 	}
1978 
1979 	if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1980 			unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1981 		return ERR_PTR(-ELOOP);
1982 
1983 	if (unlikely(atime_needs_update(&last->link, inode))) {
1984 		if (nd->flags & LOOKUP_RCU) {
1985 			if (!try_to_unlazy(nd))
1986 				return ERR_PTR(-ECHILD);
1987 		}
1988 		touch_atime(&last->link);
1989 		cond_resched();
1990 	}
1991 
1992 	error = security_inode_follow_link(link->dentry, inode,
1993 					   nd->flags & LOOKUP_RCU);
1994 	if (unlikely(error))
1995 		return ERR_PTR(error);
1996 
1997 	res = READ_ONCE(inode->i_link);
1998 	if (!res) {
1999 		const char * (*get)(struct dentry *, struct inode *,
2000 				struct delayed_call *);
2001 		get = inode->i_op->get_link;
2002 		if (nd->flags & LOOKUP_RCU) {
2003 			res = get(NULL, inode, &last->done);
2004 			if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd))
2005 				res = get(link->dentry, inode, &last->done);
2006 		} else {
2007 			res = get(link->dentry, inode, &last->done);
2008 		}
2009 		if (!res)
2010 			goto all_done;
2011 		if (IS_ERR(res))
2012 			return res;
2013 	}
2014 	if (*res == '/') {
2015 		error = nd_jump_root(nd);
2016 		if (unlikely(error))
2017 			return ERR_PTR(error);
2018 		while (unlikely(*++res == '/'))
2019 			;
2020 	}
2021 	if (*res)
2022 		return res;
2023 all_done: // pure jump
2024 	put_link(nd);
2025 	return NULL;
2026 }
2027 
2028 /*
2029  * Do we need to follow links? We _really_ want to be able
2030  * to do this check without having to look at inode->i_op,
2031  * so we keep a cache of "no, this doesn't need follow_link"
2032  * for the common case.
2033  *
2034  * NOTE: dentry must be what nd->next_seq had been sampled from.
2035  */
2036 static noinline const char *step_into_slowpath(struct nameidata *nd, int flags,
2037 		     struct dentry *dentry)
2038 {
2039 	struct path path;
2040 	struct inode *inode;
2041 	int err;
2042 
2043 	err = handle_mounts(nd, dentry, &path);
2044 	if (unlikely(err < 0))
2045 		return ERR_PTR(err);
2046 	inode = path.dentry->d_inode;
2047 	if (likely(!d_is_symlink(path.dentry)) ||
2048 	   ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
2049 	   (flags & WALK_NOFOLLOW)) {
2050 		/* not a symlink or should not follow */
2051 		if (nd->flags & LOOKUP_RCU) {
2052 			if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
2053 				return ERR_PTR(-ECHILD);
2054 			if (unlikely(!inode))
2055 				return ERR_PTR(-ENOENT);
2056 		} else {
2057 			dput(nd->path.dentry);
2058 			if (nd->path.mnt != path.mnt)
2059 				mntput(nd->path.mnt);
2060 		}
2061 		nd->path = path;
2062 		nd->inode = inode;
2063 		nd->seq = nd->next_seq;
2064 		return NULL;
2065 	}
2066 	return pick_link(nd, &path, inode, flags);
2067 }
2068 
2069 static __always_inline const char *step_into(struct nameidata *nd, int flags,
2070                     struct dentry *dentry)
2071 {
2072 	/*
2073 	 * In the common case we are in rcu-walk and traversing over a non-mounted on
2074 	 * directory (as opposed to e.g., a symlink).
2075 	 *
2076 	 * We can handle that and negative entries with the checks below.
2077 	 */
2078 	if (likely((nd->flags & LOOKUP_RCU) &&
2079 	    !d_managed(dentry) && !d_is_symlink(dentry))) {
2080 		struct inode *inode = dentry->d_inode;
2081 		if (read_seqcount_retry(&dentry->d_seq, nd->next_seq))
2082 			return ERR_PTR(-ECHILD);
2083 		if (unlikely(!inode))
2084 			return ERR_PTR(-ENOENT);
2085 		nd->path.dentry = dentry;
2086 		/* nd->path.mnt is retained on purpose */
2087 		nd->inode = inode;
2088 		nd->seq = nd->next_seq;
2089 		return NULL;
2090 	}
2091 	return step_into_slowpath(nd, flags, dentry);
2092 }
2093 
2094 static struct dentry *follow_dotdot_rcu(struct nameidata *nd)
2095 {
2096 	struct dentry *parent, *old;
2097 
2098 	if (path_equal(&nd->path, &nd->root))
2099 		goto in_root;
2100 	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
2101 		struct path path;
2102 		unsigned seq;
2103 		if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
2104 					   &nd->root, &path, &seq))
2105 			goto in_root;
2106 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
2107 			return ERR_PTR(-ECHILD);
2108 		nd->path = path;
2109 		nd->inode = path.dentry->d_inode;
2110 		nd->seq = seq;
2111 		// makes sure that non-RCU pathwalk could reach this state
2112 		if (read_seqretry(&mount_lock, nd->m_seq))
2113 			return ERR_PTR(-ECHILD);
2114 		/* we know that mountpoint was pinned */
2115 	}
2116 	old = nd->path.dentry;
2117 	parent = old->d_parent;
2118 	nd->next_seq = read_seqcount_begin(&parent->d_seq);
2119 	// makes sure that non-RCU pathwalk could reach this state
2120 	if (read_seqcount_retry(&old->d_seq, nd->seq))
2121 		return ERR_PTR(-ECHILD);
2122 	if (unlikely(!path_connected(nd->path.mnt, parent)))
2123 		return ERR_PTR(-ECHILD);
2124 	return parent;
2125 in_root:
2126 	if (read_seqretry(&mount_lock, nd->m_seq))
2127 		return ERR_PTR(-ECHILD);
2128 	if (unlikely(nd->flags & LOOKUP_BENEATH))
2129 		return ERR_PTR(-ECHILD);
2130 	nd->next_seq = nd->seq;
2131 	return nd->path.dentry;
2132 }
2133 
2134 static struct dentry *follow_dotdot(struct nameidata *nd)
2135 {
2136 	struct dentry *parent;
2137 
2138 	if (path_equal(&nd->path, &nd->root))
2139 		goto in_root;
2140 	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
2141 		struct path path;
2142 
2143 		if (!choose_mountpoint(real_mount(nd->path.mnt),
2144 				       &nd->root, &path))
2145 			goto in_root;
2146 		path_put(&nd->path);
2147 		nd->path = path;
2148 		nd->inode = path.dentry->d_inode;
2149 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
2150 			return ERR_PTR(-EXDEV);
2151 	}
2152 	/* rare case of legitimate dget_parent()... */
2153 	parent = dget_parent(nd->path.dentry);
2154 	if (unlikely(!path_connected(nd->path.mnt, parent))) {
2155 		dput(parent);
2156 		return ERR_PTR(-ENOENT);
2157 	}
2158 	return parent;
2159 
2160 in_root:
2161 	if (unlikely(nd->flags & LOOKUP_BENEATH))
2162 		return ERR_PTR(-EXDEV);
2163 	return dget(nd->path.dentry);
2164 }
2165 
2166 static const char *handle_dots(struct nameidata *nd, int type)
2167 {
2168 	if (type == LAST_DOTDOT) {
2169 		const char *error = NULL;
2170 		struct dentry *parent;
2171 
2172 		if (!nd->root.mnt) {
2173 			error = ERR_PTR(set_root(nd));
2174 			if (unlikely(error))
2175 				return error;
2176 		}
2177 		if (nd->flags & LOOKUP_RCU)
2178 			parent = follow_dotdot_rcu(nd);
2179 		else
2180 			parent = follow_dotdot(nd);
2181 		if (IS_ERR(parent))
2182 			return ERR_CAST(parent);
2183 		error = step_into(nd, WALK_NOFOLLOW, parent);
2184 		if (unlikely(error))
2185 			return error;
2186 
2187 		if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
2188 			/*
2189 			 * If there was a racing rename or mount along our
2190 			 * path, then we can't be sure that ".." hasn't jumped
2191 			 * above nd->root (and so userspace should retry or use
2192 			 * some fallback).
2193 			 */
2194 			smp_rmb();
2195 			if (__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq))
2196 				return ERR_PTR(-EAGAIN);
2197 			if (__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq))
2198 				return ERR_PTR(-EAGAIN);
2199 		}
2200 	}
2201 	return NULL;
2202 }
2203 
2204 static __always_inline const char *walk_component(struct nameidata *nd, int flags)
2205 {
2206 	struct dentry *dentry;
2207 	/*
2208 	 * "." and ".." are special - ".." especially so because it has
2209 	 * to be able to know about the current root directory and
2210 	 * parent relationships.
2211 	 */
2212 	if (unlikely(nd->last_type != LAST_NORM)) {
2213 		if (unlikely(nd->depth) && !(flags & WALK_MORE))
2214 			put_link(nd);
2215 		return handle_dots(nd, nd->last_type);
2216 	}
2217 	dentry = lookup_fast(nd);
2218 	if (IS_ERR(dentry))
2219 		return ERR_CAST(dentry);
2220 	if (unlikely(!dentry)) {
2221 		dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
2222 		if (IS_ERR(dentry))
2223 			return ERR_CAST(dentry);
2224 	}
2225 	if (unlikely(nd->depth) && !(flags & WALK_MORE))
2226 		put_link(nd);
2227 	return step_into(nd, flags, dentry);
2228 }
2229 
2230 /*
2231  * We can do the critical dentry name comparison and hashing
2232  * operations one word at a time, but we are limited to:
2233  *
2234  * - Architectures with fast unaligned word accesses. We could
2235  *   do a "get_unaligned()" if this helps and is sufficiently
2236  *   fast.
2237  *
2238  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
2239  *   do not trap on the (extremely unlikely) case of a page
2240  *   crossing operation.
2241  *
2242  * - Furthermore, we need an efficient 64-bit compile for the
2243  *   64-bit case in order to generate the "number of bytes in
2244  *   the final mask". Again, that could be replaced with a
2245  *   efficient population count instruction or similar.
2246  */
2247 #ifdef CONFIG_DCACHE_WORD_ACCESS
2248 
2249 #include <asm/word-at-a-time.h>
2250 
2251 #ifdef HASH_MIX
2252 
2253 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
2254 
2255 #elif defined(CONFIG_64BIT)
2256 /*
2257  * Register pressure in the mixing function is an issue, particularly
2258  * on 32-bit x86, but almost any function requires one state value and
2259  * one temporary.  Instead, use a function designed for two state values
2260  * and no temporaries.
2261  *
2262  * This function cannot create a collision in only two iterations, so
2263  * we have two iterations to achieve avalanche.  In those two iterations,
2264  * we have six layers of mixing, which is enough to spread one bit's
2265  * influence out to 2^6 = 64 state bits.
2266  *
2267  * Rotate constants are scored by considering either 64 one-bit input
2268  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
2269  * probability of that delta causing a change to each of the 128 output
2270  * bits, using a sample of random initial states.
2271  *
2272  * The Shannon entropy of the computed probabilities is then summed
2273  * to produce a score.  Ideally, any input change has a 50% chance of
2274  * toggling any given output bit.
2275  *
2276  * Mixing scores (in bits) for (12,45):
2277  * Input delta: 1-bit      2-bit
2278  * 1 round:     713.3    42542.6
2279  * 2 rounds:   2753.7   140389.8
2280  * 3 rounds:   5954.1   233458.2
2281  * 4 rounds:   7862.6   256672.2
2282  * Perfect:    8192     258048
2283  *            (64*128) (64*63/2 * 128)
2284  */
2285 #define HASH_MIX(x, y, a)	\
2286 	(	x ^= (a),	\
2287 	y ^= x,	x = rol64(x,12),\
2288 	x += y,	y = rol64(y,45),\
2289 	y *= 9			)
2290 
2291 /*
2292  * Fold two longs into one 32-bit hash value.  This must be fast, but
2293  * latency isn't quite as critical, as there is a fair bit of additional
2294  * work done before the hash value is used.
2295  */
2296 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2297 {
2298 	y ^= x * GOLDEN_RATIO_64;
2299 	y *= GOLDEN_RATIO_64;
2300 	return y >> 32;
2301 }
2302 
2303 #else	/* 32-bit case */
2304 
2305 /*
2306  * Mixing scores (in bits) for (7,20):
2307  * Input delta: 1-bit      2-bit
2308  * 1 round:     330.3     9201.6
2309  * 2 rounds:   1246.4    25475.4
2310  * 3 rounds:   1907.1    31295.1
2311  * 4 rounds:   2042.3    31718.6
2312  * Perfect:    2048      31744
2313  *            (32*64)   (32*31/2 * 64)
2314  */
2315 #define HASH_MIX(x, y, a)	\
2316 	(	x ^= (a),	\
2317 	y ^= x,	x = rol32(x, 7),\
2318 	x += y,	y = rol32(y,20),\
2319 	y *= 9			)
2320 
2321 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2322 {
2323 	/* Use arch-optimized multiply if one exists */
2324 	return __hash_32(y ^ __hash_32(x));
2325 }
2326 
2327 #endif
2328 
2329 /*
2330  * Return the hash of a string of known length.  This is carfully
2331  * designed to match hash_name(), which is the more critical function.
2332  * In particular, we must end by hashing a final word containing 0..7
2333  * payload bytes, to match the way that hash_name() iterates until it
2334  * finds the delimiter after the name.
2335  */
2336 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2337 {
2338 	unsigned long a, x = 0, y = (unsigned long)salt;
2339 
2340 	for (;;) {
2341 		if (!len)
2342 			goto done;
2343 		a = load_unaligned_zeropad(name);
2344 		if (len < sizeof(unsigned long))
2345 			break;
2346 		HASH_MIX(x, y, a);
2347 		name += sizeof(unsigned long);
2348 		len -= sizeof(unsigned long);
2349 	}
2350 	x ^= a & bytemask_from_count(len);
2351 done:
2352 	return fold_hash(x, y);
2353 }
2354 EXPORT_SYMBOL(full_name_hash);
2355 
2356 /* Return the "hash_len" (hash and length) of a null-terminated string */
2357 u64 hashlen_string(const void *salt, const char *name)
2358 {
2359 	unsigned long a = 0, x = 0, y = (unsigned long)salt;
2360 	unsigned long adata, mask, len;
2361 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2362 
2363 	len = 0;
2364 	goto inside;
2365 
2366 	do {
2367 		HASH_MIX(x, y, a);
2368 		len += sizeof(unsigned long);
2369 inside:
2370 		a = load_unaligned_zeropad(name+len);
2371 	} while (!has_zero(a, &adata, &constants));
2372 
2373 	adata = prep_zero_mask(a, adata, &constants);
2374 	mask = create_zero_mask(adata);
2375 	x ^= a & zero_bytemask(mask);
2376 
2377 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2378 }
2379 EXPORT_SYMBOL(hashlen_string);
2380 
2381 /*
2382  * Calculate the length and hash of the path component, and
2383  * return the length as the result.
2384  */
2385 static inline const char *hash_name(struct nameidata *nd,
2386 				    const char *name,
2387 				    unsigned long *lastword)
2388 {
2389 	unsigned long a, b, x, y = (unsigned long)nd->path.dentry;
2390 	unsigned long adata, bdata, mask, len;
2391 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2392 
2393 	/*
2394 	 * The first iteration is special, because it can result in
2395 	 * '.' and '..' and has no mixing other than the final fold.
2396 	 */
2397 	a = load_unaligned_zeropad(name);
2398 	b = a ^ REPEAT_BYTE('/');
2399 	if (has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)) {
2400 		adata = prep_zero_mask(a, adata, &constants);
2401 		bdata = prep_zero_mask(b, bdata, &constants);
2402 		mask = create_zero_mask(adata | bdata);
2403 		a &= zero_bytemask(mask);
2404 		*lastword = a;
2405 		len = find_zero(mask);
2406 		nd->last.hash = fold_hash(a, y);
2407 		nd->last.len = len;
2408 		return name + len;
2409 	}
2410 
2411 	len = 0;
2412 	x = 0;
2413 	do {
2414 		HASH_MIX(x, y, a);
2415 		len += sizeof(unsigned long);
2416 		a = load_unaligned_zeropad(name+len);
2417 		b = a ^ REPEAT_BYTE('/');
2418 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2419 
2420 	adata = prep_zero_mask(a, adata, &constants);
2421 	bdata = prep_zero_mask(b, bdata, &constants);
2422 	mask = create_zero_mask(adata | bdata);
2423 	a &= zero_bytemask(mask);
2424 	x ^= a;
2425 	len += find_zero(mask);
2426 	*lastword = 0;		// Multi-word components cannot be DOT or DOTDOT
2427 
2428 	nd->last.hash = fold_hash(x, y);
2429 	nd->last.len = len;
2430 	return name + len;
2431 }
2432 
2433 /*
2434  * Note that the 'last' word is always zero-masked, but
2435  * was loaded as a possibly big-endian word.
2436  */
2437 #ifdef __BIG_ENDIAN
2438   #define LAST_WORD_IS_DOT	(0x2eul << (BITS_PER_LONG-8))
2439   #define LAST_WORD_IS_DOTDOT	(0x2e2eul << (BITS_PER_LONG-16))
2440 #endif
2441 
2442 #else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2443 
2444 /* Return the hash of a string of known length */
2445 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2446 {
2447 	unsigned long hash = init_name_hash(salt);
2448 	while (len--)
2449 		hash = partial_name_hash((unsigned char)*name++, hash);
2450 	return end_name_hash(hash);
2451 }
2452 EXPORT_SYMBOL(full_name_hash);
2453 
2454 /* Return the "hash_len" (hash and length) of a null-terminated string */
2455 u64 hashlen_string(const void *salt, const char *name)
2456 {
2457 	unsigned long hash = init_name_hash(salt);
2458 	unsigned long len = 0, c;
2459 
2460 	c = (unsigned char)*name;
2461 	while (c) {
2462 		len++;
2463 		hash = partial_name_hash(c, hash);
2464 		c = (unsigned char)name[len];
2465 	}
2466 	return hashlen_create(end_name_hash(hash), len);
2467 }
2468 EXPORT_SYMBOL(hashlen_string);
2469 
2470 /*
2471  * We know there's a real path component here of at least
2472  * one character.
2473  */
2474 static inline const char *hash_name(struct nameidata *nd, const char *name, unsigned long *lastword)
2475 {
2476 	unsigned long hash = init_name_hash(nd->path.dentry);
2477 	unsigned long len = 0, c, last = 0;
2478 
2479 	c = (unsigned char)*name;
2480 	do {
2481 		last = (last << 8) + c;
2482 		len++;
2483 		hash = partial_name_hash(c, hash);
2484 		c = (unsigned char)name[len];
2485 	} while (c && c != '/');
2486 
2487 	// This is reliable for DOT or DOTDOT, since the component
2488 	// cannot contain NUL characters - top bits being zero means
2489 	// we cannot have had any other pathnames.
2490 	*lastword = last;
2491 	nd->last.hash = end_name_hash(hash);
2492 	nd->last.len = len;
2493 	return name + len;
2494 }
2495 
2496 #endif
2497 
2498 #ifndef LAST_WORD_IS_DOT
2499   #define LAST_WORD_IS_DOT	0x2e
2500   #define LAST_WORD_IS_DOTDOT	0x2e2e
2501 #endif
2502 
2503 /*
2504  * Name resolution.
2505  * This is the basic name resolution function, turning a pathname into
2506  * the final dentry. We expect 'base' to be positive and a directory.
2507  *
2508  * Returns 0 and nd will have valid dentry and mnt on success.
2509  * Returns error and drops reference to input namei data on failure.
2510  */
2511 static int link_path_walk(const char *name, struct nameidata *nd)
2512 {
2513 	int depth = 0; // depth <= nd->depth
2514 	int err;
2515 
2516 	nd->last_type = LAST_ROOT;
2517 	nd->flags |= LOOKUP_PARENT;
2518 	if (IS_ERR(name))
2519 		return PTR_ERR(name);
2520 	if (*name == '/') {
2521 		do {
2522 			name++;
2523 		} while (unlikely(*name == '/'));
2524 	}
2525 	if (unlikely(!*name)) {
2526 		nd->dir_mode = 0; // short-circuit the 'hardening' idiocy
2527 		return 0;
2528 	}
2529 
2530 	/* At this point we know we have a real path component. */
2531 	for(;;) {
2532 		struct mnt_idmap *idmap;
2533 		const char *link;
2534 		unsigned long lastword;
2535 
2536 		idmap = mnt_idmap(nd->path.mnt);
2537 		err = may_lookup(idmap, nd);
2538 		if (unlikely(err))
2539 			return err;
2540 
2541 		nd->last.name = name;
2542 		name = hash_name(nd, name, &lastword);
2543 
2544 		switch(lastword) {
2545 		case LAST_WORD_IS_DOTDOT:
2546 			nd->last_type = LAST_DOTDOT;
2547 			nd->state |= ND_JUMPED;
2548 			break;
2549 
2550 		case LAST_WORD_IS_DOT:
2551 			nd->last_type = LAST_DOT;
2552 			break;
2553 
2554 		default:
2555 			nd->last_type = LAST_NORM;
2556 			nd->state &= ~ND_JUMPED;
2557 
2558 			struct dentry *parent = nd->path.dentry;
2559 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2560 				err = parent->d_op->d_hash(parent, &nd->last);
2561 				if (err < 0)
2562 					return err;
2563 			}
2564 		}
2565 
2566 		if (!*name)
2567 			goto OK;
2568 		/*
2569 		 * If it wasn't NUL, we know it was '/'. Skip that
2570 		 * slash, and continue until no more slashes.
2571 		 */
2572 		do {
2573 			name++;
2574 		} while (unlikely(*name == '/'));
2575 		if (unlikely(!*name)) {
2576 OK:
2577 			/* pathname or trailing symlink, done */
2578 			if (likely(!depth)) {
2579 				nd->dir_vfsuid = i_uid_into_vfsuid(idmap, nd->inode);
2580 				nd->dir_mode = nd->inode->i_mode;
2581 				nd->flags &= ~LOOKUP_PARENT;
2582 				return 0;
2583 			}
2584 			/* last component of nested symlink */
2585 			name = nd->stack[--depth].name;
2586 			link = walk_component(nd, 0);
2587 		} else {
2588 			/* not the last component */
2589 			link = walk_component(nd, WALK_MORE);
2590 		}
2591 		if (unlikely(link)) {
2592 			if (IS_ERR(link))
2593 				return PTR_ERR(link);
2594 			/* a symlink to follow */
2595 			nd->stack[depth++].name = name;
2596 			name = link;
2597 			continue;
2598 		}
2599 		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2600 			if (nd->flags & LOOKUP_RCU) {
2601 				if (!try_to_unlazy(nd))
2602 					return -ECHILD;
2603 			}
2604 			return -ENOTDIR;
2605 		}
2606 	}
2607 }
2608 
2609 /* must be paired with terminate_walk() */
2610 static const char *path_init(struct nameidata *nd, unsigned flags)
2611 {
2612 	int error;
2613 	const char *s = nd->pathname;
2614 
2615 	/* LOOKUP_CACHED requires RCU, ask caller to retry */
2616 	if (unlikely((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED))
2617 		return ERR_PTR(-EAGAIN);
2618 
2619 	if (unlikely(!*s))
2620 		flags &= ~LOOKUP_RCU;
2621 	if (flags & LOOKUP_RCU)
2622 		rcu_read_lock();
2623 	else
2624 		nd->seq = nd->next_seq = 0;
2625 
2626 	nd->flags = flags;
2627 	nd->state |= ND_JUMPED;
2628 
2629 	nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2630 	nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2631 	smp_rmb();
2632 
2633 	if (unlikely(nd->state & ND_ROOT_PRESET)) {
2634 		struct dentry *root = nd->root.dentry;
2635 		struct inode *inode = root->d_inode;
2636 		if (*s && unlikely(!d_can_lookup(root)))
2637 			return ERR_PTR(-ENOTDIR);
2638 		nd->path = nd->root;
2639 		nd->inode = inode;
2640 		if (flags & LOOKUP_RCU) {
2641 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2642 			nd->root_seq = nd->seq;
2643 		} else {
2644 			path_get(&nd->path);
2645 		}
2646 		return s;
2647 	}
2648 
2649 	nd->root.mnt = NULL;
2650 
2651 	/* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2652 	if (*s == '/' && likely(!(flags & LOOKUP_IN_ROOT))) {
2653 		error = nd_jump_root(nd);
2654 		if (unlikely(error))
2655 			return ERR_PTR(error);
2656 		return s;
2657 	}
2658 
2659 	/* Relative pathname -- get the starting-point it is relative to. */
2660 	if (nd->dfd == AT_FDCWD) {
2661 		if (flags & LOOKUP_RCU) {
2662 			struct fs_struct *fs = current->fs;
2663 			unsigned seq;
2664 
2665 			do {
2666 				seq = read_seqbegin(&fs->seq);
2667 				nd->path = fs->pwd;
2668 				nd->inode = nd->path.dentry->d_inode;
2669 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2670 			} while (read_seqretry(&fs->seq, seq));
2671 		} else {
2672 			get_fs_pwd(current->fs, &nd->path);
2673 			nd->inode = nd->path.dentry->d_inode;
2674 		}
2675 	} else {
2676 		/* Caller must check execute permissions on the starting path component */
2677 		CLASS(fd_raw, f)(nd->dfd);
2678 		struct dentry *dentry;
2679 
2680 		if (fd_empty(f))
2681 			return ERR_PTR(-EBADF);
2682 
2683 		if (flags & LOOKUP_LINKAT_EMPTY) {
2684 			if (fd_file(f)->f_cred != current_cred() &&
2685 			    !ns_capable(fd_file(f)->f_cred->user_ns, CAP_DAC_READ_SEARCH))
2686 				return ERR_PTR(-ENOENT);
2687 		}
2688 
2689 		dentry = fd_file(f)->f_path.dentry;
2690 
2691 		if (*s && unlikely(!d_can_lookup(dentry)))
2692 			return ERR_PTR(-ENOTDIR);
2693 
2694 		nd->path = fd_file(f)->f_path;
2695 		if (flags & LOOKUP_RCU) {
2696 			nd->inode = nd->path.dentry->d_inode;
2697 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2698 		} else {
2699 			path_get(&nd->path);
2700 			nd->inode = nd->path.dentry->d_inode;
2701 		}
2702 	}
2703 
2704 	/* For scoped-lookups we need to set the root to the dirfd as well. */
2705 	if (unlikely(flags & LOOKUP_IS_SCOPED)) {
2706 		nd->root = nd->path;
2707 		if (flags & LOOKUP_RCU) {
2708 			nd->root_seq = nd->seq;
2709 		} else {
2710 			path_get(&nd->root);
2711 			nd->state |= ND_ROOT_GRABBED;
2712 		}
2713 	}
2714 	return s;
2715 }
2716 
2717 static inline const char *lookup_last(struct nameidata *nd)
2718 {
2719 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2720 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2721 
2722 	return walk_component(nd, WALK_TRAILING);
2723 }
2724 
2725 static int handle_lookup_down(struct nameidata *nd)
2726 {
2727 	if (!(nd->flags & LOOKUP_RCU))
2728 		dget(nd->path.dentry);
2729 	nd->next_seq = nd->seq;
2730 	return PTR_ERR(step_into(nd, WALK_NOFOLLOW, nd->path.dentry));
2731 }
2732 
2733 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */
2734 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2735 {
2736 	const char *s = path_init(nd, flags);
2737 	int err;
2738 
2739 	if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2740 		err = handle_lookup_down(nd);
2741 		if (unlikely(err < 0))
2742 			s = ERR_PTR(err);
2743 	}
2744 
2745 	while (!(err = link_path_walk(s, nd)) &&
2746 	       (s = lookup_last(nd)) != NULL)
2747 		;
2748 	if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2749 		err = handle_lookup_down(nd);
2750 		nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please...
2751 	}
2752 	if (!err)
2753 		err = complete_walk(nd);
2754 
2755 	if (!err && nd->flags & LOOKUP_DIRECTORY)
2756 		if (!d_can_lookup(nd->path.dentry))
2757 			err = -ENOTDIR;
2758 	if (!err) {
2759 		*path = nd->path;
2760 		nd->path.mnt = NULL;
2761 		nd->path.dentry = NULL;
2762 	}
2763 	terminate_walk(nd);
2764 	return err;
2765 }
2766 
2767 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2768 		    struct path *path, const struct path *root)
2769 {
2770 	int retval;
2771 	struct nameidata nd;
2772 	if (IS_ERR(name))
2773 		return PTR_ERR(name);
2774 	set_nameidata(&nd, dfd, name, root);
2775 	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2776 	if (unlikely(retval == -ECHILD))
2777 		retval = path_lookupat(&nd, flags, path);
2778 	if (unlikely(retval == -ESTALE))
2779 		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2780 
2781 	if (likely(!retval))
2782 		audit_inode(name, path->dentry,
2783 			    flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2784 	restore_nameidata();
2785 	return retval;
2786 }
2787 
2788 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */
2789 static int path_parentat(struct nameidata *nd, unsigned flags,
2790 				struct path *parent)
2791 {
2792 	const char *s = path_init(nd, flags);
2793 	int err = link_path_walk(s, nd);
2794 	if (!err)
2795 		err = complete_walk(nd);
2796 	if (!err) {
2797 		*parent = nd->path;
2798 		nd->path.mnt = NULL;
2799 		nd->path.dentry = NULL;
2800 	}
2801 	terminate_walk(nd);
2802 	return err;
2803 }
2804 
2805 /* Note: this does not consume "name" */
2806 static int __filename_parentat(int dfd, struct filename *name,
2807 			       unsigned int flags, struct path *parent,
2808 			       struct qstr *last, int *type,
2809 			       const struct path *root)
2810 {
2811 	int retval;
2812 	struct nameidata nd;
2813 
2814 	if (IS_ERR(name))
2815 		return PTR_ERR(name);
2816 	set_nameidata(&nd, dfd, name, root);
2817 	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2818 	if (unlikely(retval == -ECHILD))
2819 		retval = path_parentat(&nd, flags, parent);
2820 	if (unlikely(retval == -ESTALE))
2821 		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2822 	if (likely(!retval)) {
2823 		*last = nd.last;
2824 		*type = nd.last_type;
2825 		audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2826 	}
2827 	restore_nameidata();
2828 	return retval;
2829 }
2830 
2831 static int filename_parentat(int dfd, struct filename *name,
2832 			     unsigned int flags, struct path *parent,
2833 			     struct qstr *last, int *type)
2834 {
2835 	return __filename_parentat(dfd, name, flags, parent, last, type, NULL);
2836 }
2837 
2838 /**
2839  * start_dirop - begin a create or remove dirop, performing locking and lookup
2840  * @parent:       the dentry of the parent in which the operation will occur
2841  * @name:         a qstr holding the name within that parent
2842  * @lookup_flags: intent and other lookup flags.
2843  *
2844  * The lookup is performed and necessary locks are taken so that, on success,
2845  * the returned dentry can be operated on safely.
2846  * The qstr must already have the hash value calculated.
2847  *
2848  * Returns: a locked dentry, or an error.
2849  *
2850  */
2851 static struct dentry *__start_dirop(struct dentry *parent, struct qstr *name,
2852 				    unsigned int lookup_flags,
2853 				    unsigned int state)
2854 {
2855 	struct dentry *dentry;
2856 	struct inode *dir = d_inode(parent);
2857 
2858 	if (state == TASK_KILLABLE) {
2859 		int ret = down_write_killable_nested(&dir->i_rwsem,
2860 						     I_MUTEX_PARENT);
2861 		if (ret)
2862 			return ERR_PTR(ret);
2863 	} else {
2864 		inode_lock_nested(dir, I_MUTEX_PARENT);
2865 	}
2866 	dentry = lookup_one_qstr_excl(name, parent, lookup_flags);
2867 	if (IS_ERR(dentry))
2868 		inode_unlock(dir);
2869 	return dentry;
2870 }
2871 
2872 struct dentry *start_dirop(struct dentry *parent, struct qstr *name,
2873 			   unsigned int lookup_flags)
2874 {
2875 	return __start_dirop(parent, name, lookup_flags, TASK_NORMAL);
2876 }
2877 
2878 /**
2879  * end_dirop - signal completion of a dirop
2880  * @de: the dentry which was returned by start_dirop or similar.
2881  *
2882  * If the de is an error, nothing happens. Otherwise any lock taken to
2883  * protect the dentry is dropped and the dentry itself is release (dput()).
2884  */
2885 void end_dirop(struct dentry *de)
2886 {
2887 	if (!IS_ERR(de)) {
2888 		inode_unlock(de->d_parent->d_inode);
2889 		dput(de);
2890 	}
2891 }
2892 EXPORT_SYMBOL(end_dirop);
2893 
2894 /* does lookup, returns the object with parent locked */
2895 static struct dentry *__start_removing_path(int dfd, struct filename *name,
2896 					   struct path *path)
2897 {
2898 	struct path parent_path __free(path_put) = {};
2899 	struct dentry *d;
2900 	struct qstr last;
2901 	int type, error;
2902 
2903 	error = filename_parentat(dfd, name, 0, &parent_path, &last, &type);
2904 	if (error)
2905 		return ERR_PTR(error);
2906 	if (unlikely(type != LAST_NORM))
2907 		return ERR_PTR(-EINVAL);
2908 	/* don't fail immediately if it's r/o, at least try to report other errors */
2909 	error = mnt_want_write(parent_path.mnt);
2910 	d = start_dirop(parent_path.dentry, &last, 0);
2911 	if (IS_ERR(d))
2912 		goto drop;
2913 	if (error)
2914 		goto fail;
2915 	path->dentry = no_free_ptr(parent_path.dentry);
2916 	path->mnt = no_free_ptr(parent_path.mnt);
2917 	return d;
2918 
2919 fail:
2920 	end_dirop(d);
2921 	d = ERR_PTR(error);
2922 drop:
2923 	if (!error)
2924 		mnt_drop_write(parent_path.mnt);
2925 	return d;
2926 }
2927 
2928 /**
2929  * kern_path_parent: lookup path returning parent and target
2930  * @name: path name
2931  * @path: path to store parent in
2932  *
2933  * The path @name should end with a normal component, not "." or ".." or "/".
2934  * A lookup is performed and if successful the parent information
2935  * is store in @parent and the dentry is returned.
2936  *
2937  * The dentry maybe negative, the parent will be positive.
2938  *
2939  * Returns:  dentry or error.
2940  */
2941 struct dentry *kern_path_parent(const char *name, struct path *path)
2942 {
2943 	struct path parent_path __free(path_put) = {};
2944 	struct filename *filename __free(putname) = getname_kernel(name);
2945 	struct dentry *d;
2946 	struct qstr last;
2947 	int type, error;
2948 
2949 	error = filename_parentat(AT_FDCWD, filename, 0, &parent_path, &last, &type);
2950 	if (error)
2951 		return ERR_PTR(error);
2952 	if (unlikely(type != LAST_NORM))
2953 		return ERR_PTR(-EINVAL);
2954 
2955 	d = lookup_noperm_unlocked(&last, parent_path.dentry);
2956 	if (IS_ERR(d))
2957 		return d;
2958 	path->dentry = no_free_ptr(parent_path.dentry);
2959 	path->mnt = no_free_ptr(parent_path.mnt);
2960 	return d;
2961 }
2962 
2963 struct dentry *start_removing_path(const char *name, struct path *path)
2964 {
2965 	struct filename *filename = getname_kernel(name);
2966 	struct dentry *res = __start_removing_path(AT_FDCWD, filename, path);
2967 
2968 	putname(filename);
2969 	return res;
2970 }
2971 
2972 struct dentry *start_removing_user_path_at(int dfd,
2973 					   const char __user *name,
2974 					   struct path *path)
2975 {
2976 	struct filename *filename = getname(name);
2977 	struct dentry *res = __start_removing_path(dfd, filename, path);
2978 
2979 	putname(filename);
2980 	return res;
2981 }
2982 EXPORT_SYMBOL(start_removing_user_path_at);
2983 
2984 int kern_path(const char *name, unsigned int flags, struct path *path)
2985 {
2986 	struct filename *filename = getname_kernel(name);
2987 	int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL);
2988 
2989 	putname(filename);
2990 	return ret;
2991 
2992 }
2993 EXPORT_SYMBOL(kern_path);
2994 
2995 /**
2996  * vfs_path_parent_lookup - lookup a parent path relative to a dentry-vfsmount pair
2997  * @filename: filename structure
2998  * @flags: lookup flags
2999  * @parent: pointer to struct path to fill
3000  * @last: last component
3001  * @type: type of the last component
3002  * @root: pointer to struct path of the base directory
3003  */
3004 int vfs_path_parent_lookup(struct filename *filename, unsigned int flags,
3005 			   struct path *parent, struct qstr *last, int *type,
3006 			   const struct path *root)
3007 {
3008 	return  __filename_parentat(AT_FDCWD, filename, flags, parent, last,
3009 				    type, root);
3010 }
3011 EXPORT_SYMBOL(vfs_path_parent_lookup);
3012 
3013 /**
3014  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
3015  * @dentry:  pointer to dentry of the base directory
3016  * @mnt: pointer to vfs mount of the base directory
3017  * @name: pointer to file name
3018  * @flags: lookup flags
3019  * @path: pointer to struct path to fill
3020  */
3021 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
3022 		    const char *name, unsigned int flags,
3023 		    struct path *path)
3024 {
3025 	struct filename *filename;
3026 	struct path root = {.mnt = mnt, .dentry = dentry};
3027 	int ret;
3028 
3029 	filename = getname_kernel(name);
3030 	/* the first argument of filename_lookup() is ignored with root */
3031 	ret = filename_lookup(AT_FDCWD, filename, flags, path, &root);
3032 	putname(filename);
3033 	return ret;
3034 }
3035 EXPORT_SYMBOL(vfs_path_lookup);
3036 
3037 int lookup_noperm_common(struct qstr *qname, struct dentry *base)
3038 {
3039 	const char *name = qname->name;
3040 	u32 len = qname->len;
3041 
3042 	qname->hash = full_name_hash(base, name, len);
3043 	if (!len)
3044 		return -EACCES;
3045 
3046 	if (is_dot_dotdot(name, len))
3047 		return -EACCES;
3048 
3049 	while (len--) {
3050 		unsigned int c = *(const unsigned char *)name++;
3051 		if (c == '/' || c == '\0')
3052 			return -EACCES;
3053 	}
3054 	/*
3055 	 * See if the low-level filesystem might want
3056 	 * to use its own hash..
3057 	 */
3058 	if (base->d_flags & DCACHE_OP_HASH) {
3059 		int err = base->d_op->d_hash(base, qname);
3060 		if (err < 0)
3061 			return err;
3062 	}
3063 	return 0;
3064 }
3065 
3066 static int lookup_one_common(struct mnt_idmap *idmap,
3067 			     struct qstr *qname, struct dentry *base)
3068 {
3069 	int err;
3070 	err = lookup_noperm_common(qname, base);
3071 	if (err < 0)
3072 		return err;
3073 	return inode_permission(idmap, base->d_inode, MAY_EXEC);
3074 }
3075 
3076 /**
3077  * try_lookup_noperm - filesystem helper to lookup single pathname component
3078  * @name:	qstr storing pathname component to lookup
3079  * @base:	base directory to lookup from
3080  *
3081  * Look up a dentry by name in the dcache, returning NULL if it does not
3082  * currently exist.  The function does not try to create a dentry and if one
3083  * is found it doesn't try to revalidate it.
3084  *
3085  * Note that this routine is purely a helper for filesystem usage and should
3086  * not be called by generic code.  It does no permission checking.
3087  *
3088  * No locks need be held - only a counted reference to @base is needed.
3089  *
3090  */
3091 struct dentry *try_lookup_noperm(struct qstr *name, struct dentry *base)
3092 {
3093 	int err;
3094 
3095 	err = lookup_noperm_common(name, base);
3096 	if (err)
3097 		return ERR_PTR(err);
3098 
3099 	return d_lookup(base, name);
3100 }
3101 EXPORT_SYMBOL(try_lookup_noperm);
3102 
3103 /**
3104  * lookup_noperm - filesystem helper to lookup single pathname component
3105  * @name:	qstr storing pathname component to lookup
3106  * @base:	base directory to lookup from
3107  *
3108  * Note that this routine is purely a helper for filesystem usage and should
3109  * not be called by generic code.  It does no permission checking.
3110  *
3111  * The caller must hold base->i_rwsem.
3112  */
3113 struct dentry *lookup_noperm(struct qstr *name, struct dentry *base)
3114 {
3115 	struct dentry *dentry;
3116 	int err;
3117 
3118 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
3119 
3120 	err = lookup_noperm_common(name, base);
3121 	if (err)
3122 		return ERR_PTR(err);
3123 
3124 	dentry = lookup_dcache(name, base, 0);
3125 	return dentry ? dentry : __lookup_slow(name, base, 0);
3126 }
3127 EXPORT_SYMBOL(lookup_noperm);
3128 
3129 /**
3130  * lookup_one - lookup single pathname component
3131  * @idmap:	idmap of the mount the lookup is performed from
3132  * @name:	qstr holding pathname component to lookup
3133  * @base:	base directory to lookup from
3134  *
3135  * This can be used for in-kernel filesystem clients such as file servers.
3136  *
3137  * The caller must hold base->i_rwsem.
3138  */
3139 struct dentry *lookup_one(struct mnt_idmap *idmap, struct qstr *name,
3140 			  struct dentry *base)
3141 {
3142 	struct dentry *dentry;
3143 	int err;
3144 
3145 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
3146 
3147 	err = lookup_one_common(idmap, name, base);
3148 	if (err)
3149 		return ERR_PTR(err);
3150 
3151 	dentry = lookup_dcache(name, base, 0);
3152 	return dentry ? dentry : __lookup_slow(name, base, 0);
3153 }
3154 EXPORT_SYMBOL(lookup_one);
3155 
3156 /**
3157  * lookup_one_unlocked - lookup single pathname component
3158  * @idmap:	idmap of the mount the lookup is performed from
3159  * @name:	qstr olding pathname component to lookup
3160  * @base:	base directory to lookup from
3161  *
3162  * This can be used for in-kernel filesystem clients such as file servers.
3163  *
3164  * Unlike lookup_one, it should be called without the parent
3165  * i_rwsem held, and will take the i_rwsem itself if necessary.
3166  */
3167 struct dentry *lookup_one_unlocked(struct mnt_idmap *idmap, struct qstr *name,
3168 				   struct dentry *base)
3169 {
3170 	int err;
3171 	struct dentry *ret;
3172 
3173 	err = lookup_one_common(idmap, name, base);
3174 	if (err)
3175 		return ERR_PTR(err);
3176 
3177 	ret = lookup_dcache(name, base, 0);
3178 	if (!ret)
3179 		ret = lookup_slow(name, base, 0);
3180 	return ret;
3181 }
3182 EXPORT_SYMBOL(lookup_one_unlocked);
3183 
3184 /**
3185  * lookup_one_positive_killable - lookup single pathname component
3186  * @idmap:	idmap of the mount the lookup is performed from
3187  * @name:	qstr olding pathname component to lookup
3188  * @base:	base directory to lookup from
3189  *
3190  * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns
3191  * known positive or ERR_PTR(). This is what most of the users want.
3192  *
3193  * Note that pinned negative with unlocked parent _can_ become positive at any
3194  * time, so callers of lookup_one_unlocked() need to be very careful; pinned
3195  * positives have >d_inode stable, so this one avoids such problems.
3196  *
3197  * This can be used for in-kernel filesystem clients such as file servers.
3198  *
3199  * It should be called without the parent i_rwsem held, and will take
3200  * the i_rwsem itself if necessary.  If a fatal signal is pending or
3201  * delivered, it will return %-EINTR if the lock is needed.
3202  */
3203 struct dentry *lookup_one_positive_killable(struct mnt_idmap *idmap,
3204 					    struct qstr *name,
3205 					    struct dentry *base)
3206 {
3207 	int err;
3208 	struct dentry *ret;
3209 
3210 	err = lookup_one_common(idmap, name, base);
3211 	if (err)
3212 		return ERR_PTR(err);
3213 
3214 	ret = lookup_dcache(name, base, 0);
3215 	if (!ret)
3216 		ret = lookup_slow_killable(name, base, 0);
3217 	if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
3218 		dput(ret);
3219 		ret = ERR_PTR(-ENOENT);
3220 	}
3221 	return ret;
3222 }
3223 EXPORT_SYMBOL(lookup_one_positive_killable);
3224 
3225 /**
3226  * lookup_one_positive_unlocked - lookup single pathname component
3227  * @idmap:	idmap of the mount the lookup is performed from
3228  * @name:	qstr holding pathname component to lookup
3229  * @base:	base directory to lookup from
3230  *
3231  * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns
3232  * known positive or ERR_PTR(). This is what most of the users want.
3233  *
3234  * Note that pinned negative with unlocked parent _can_ become positive at any
3235  * time, so callers of lookup_one_unlocked() need to be very careful; pinned
3236  * positives have >d_inode stable, so this one avoids such problems.
3237  *
3238  * This can be used for in-kernel filesystem clients such as file servers.
3239  *
3240  * The helper should be called without i_rwsem held.
3241  */
3242 struct dentry *lookup_one_positive_unlocked(struct mnt_idmap *idmap,
3243 					    struct qstr *name,
3244 					    struct dentry *base)
3245 {
3246 	struct dentry *ret = lookup_one_unlocked(idmap, name, base);
3247 
3248 	if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
3249 		dput(ret);
3250 		ret = ERR_PTR(-ENOENT);
3251 	}
3252 	return ret;
3253 }
3254 EXPORT_SYMBOL(lookup_one_positive_unlocked);
3255 
3256 /**
3257  * lookup_noperm_unlocked - filesystem helper to lookup single pathname component
3258  * @name:	pathname component to lookup
3259  * @base:	base directory to lookup from
3260  *
3261  * Note that this routine is purely a helper for filesystem usage and should
3262  * not be called by generic code. It does no permission checking.
3263  *
3264  * Unlike lookup_noperm(), it should be called without the parent
3265  * i_rwsem held, and will take the i_rwsem itself if necessary.
3266  *
3267  * Unlike try_lookup_noperm() it *does* revalidate the dentry if it already
3268  * existed.
3269  */
3270 struct dentry *lookup_noperm_unlocked(struct qstr *name, struct dentry *base)
3271 {
3272 	struct dentry *ret;
3273 	int err;
3274 
3275 	err = lookup_noperm_common(name, base);
3276 	if (err)
3277 		return ERR_PTR(err);
3278 
3279 	ret = lookup_dcache(name, base, 0);
3280 	if (!ret)
3281 		ret = lookup_slow(name, base, 0);
3282 	return ret;
3283 }
3284 EXPORT_SYMBOL(lookup_noperm_unlocked);
3285 
3286 /*
3287  * Like lookup_noperm_unlocked(), except that it yields ERR_PTR(-ENOENT)
3288  * on negatives.  Returns known positive or ERR_PTR(); that's what
3289  * most of the users want.  Note that pinned negative with unlocked parent
3290  * _can_ become positive at any time, so callers of lookup_noperm_unlocked()
3291  * need to be very careful; pinned positives have ->d_inode stable, so
3292  * this one avoids such problems.
3293  */
3294 struct dentry *lookup_noperm_positive_unlocked(struct qstr *name,
3295 					       struct dentry *base)
3296 {
3297 	struct dentry *ret;
3298 
3299 	ret = lookup_noperm_unlocked(name, base);
3300 	if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
3301 		dput(ret);
3302 		ret = ERR_PTR(-ENOENT);
3303 	}
3304 	return ret;
3305 }
3306 EXPORT_SYMBOL(lookup_noperm_positive_unlocked);
3307 
3308 /**
3309  * start_creating - prepare to create a given name with permission checking
3310  * @idmap:  idmap of the mount
3311  * @parent: directory in which to prepare to create the name
3312  * @name:   the name to be created
3313  *
3314  * Locks are taken and a lookup is performed prior to creating
3315  * an object in a directory.  Permission checking (MAY_EXEC) is performed
3316  * against @idmap.
3317  *
3318  * If the name already exists, a positive dentry is returned, so
3319  * behaviour is similar to O_CREAT without O_EXCL, which doesn't fail
3320  * with -EEXIST.
3321  *
3322  * Returns: a negative or positive dentry, or an error.
3323  */
3324 struct dentry *start_creating(struct mnt_idmap *idmap, struct dentry *parent,
3325 			      struct qstr *name)
3326 {
3327 	int err = lookup_one_common(idmap, name, parent);
3328 
3329 	if (err)
3330 		return ERR_PTR(err);
3331 	return start_dirop(parent, name, LOOKUP_CREATE);
3332 }
3333 EXPORT_SYMBOL(start_creating);
3334 
3335 /**
3336  * start_removing - prepare to remove a given name with permission checking
3337  * @idmap:  idmap of the mount
3338  * @parent: directory in which to find the name
3339  * @name:   the name to be removed
3340  *
3341  * Locks are taken and a lookup in performed prior to removing
3342  * an object from a directory.  Permission checking (MAY_EXEC) is performed
3343  * against @idmap.
3344  *
3345  * If the name doesn't exist, an error is returned.
3346  *
3347  * end_removing() should be called when removal is complete, or aborted.
3348  *
3349  * Returns: a positive dentry, or an error.
3350  */
3351 struct dentry *start_removing(struct mnt_idmap *idmap, struct dentry *parent,
3352 			      struct qstr *name)
3353 {
3354 	int err = lookup_one_common(idmap, name, parent);
3355 
3356 	if (err)
3357 		return ERR_PTR(err);
3358 	return start_dirop(parent, name, 0);
3359 }
3360 EXPORT_SYMBOL(start_removing);
3361 
3362 /**
3363  * start_creating_killable - prepare to create a given name with permission checking
3364  * @idmap:  idmap of the mount
3365  * @parent: directory in which to prepare to create the name
3366  * @name:   the name to be created
3367  *
3368  * Locks are taken and a lookup in performed prior to creating
3369  * an object in a directory.  Permission checking (MAY_EXEC) is performed
3370  * against @idmap.
3371  *
3372  * If the name already exists, a positive dentry is returned.
3373  *
3374  * If a signal is received or was already pending, the function aborts
3375  * with -EINTR;
3376  *
3377  * Returns: a negative or positive dentry, or an error.
3378  */
3379 struct dentry *start_creating_killable(struct mnt_idmap *idmap,
3380 				       struct dentry *parent,
3381 				       struct qstr *name)
3382 {
3383 	int err = lookup_one_common(idmap, name, parent);
3384 
3385 	if (err)
3386 		return ERR_PTR(err);
3387 	return __start_dirop(parent, name, LOOKUP_CREATE, TASK_KILLABLE);
3388 }
3389 EXPORT_SYMBOL(start_creating_killable);
3390 
3391 /**
3392  * start_removing_killable - prepare to remove a given name with permission checking
3393  * @idmap:  idmap of the mount
3394  * @parent: directory in which to find the name
3395  * @name:   the name to be removed
3396  *
3397  * Locks are taken and a lookup in performed prior to removing
3398  * an object from a directory.  Permission checking (MAY_EXEC) is performed
3399  * against @idmap.
3400  *
3401  * If the name doesn't exist, an error is returned.
3402  *
3403  * end_removing() should be called when removal is complete, or aborted.
3404  *
3405  * If a signal is received or was already pending, the function aborts
3406  * with -EINTR;
3407  *
3408  * Returns: a positive dentry, or an error.
3409  */
3410 struct dentry *start_removing_killable(struct mnt_idmap *idmap,
3411 				       struct dentry *parent,
3412 				       struct qstr *name)
3413 {
3414 	int err = lookup_one_common(idmap, name, parent);
3415 
3416 	if (err)
3417 		return ERR_PTR(err);
3418 	return __start_dirop(parent, name, 0, TASK_KILLABLE);
3419 }
3420 EXPORT_SYMBOL(start_removing_killable);
3421 
3422 /**
3423  * start_creating_noperm - prepare to create a given name without permission checking
3424  * @parent: directory in which to prepare to create the name
3425  * @name:   the name to be created
3426  *
3427  * Locks are taken and a lookup in performed prior to creating
3428  * an object in a directory.
3429  *
3430  * If the name already exists, a positive dentry is returned.
3431  *
3432  * Returns: a negative or positive dentry, or an error.
3433  */
3434 struct dentry *start_creating_noperm(struct dentry *parent,
3435 				     struct qstr *name)
3436 {
3437 	int err = lookup_noperm_common(name, parent);
3438 
3439 	if (err)
3440 		return ERR_PTR(err);
3441 	return start_dirop(parent, name, LOOKUP_CREATE);
3442 }
3443 EXPORT_SYMBOL(start_creating_noperm);
3444 
3445 /**
3446  * start_removing_noperm - prepare to remove a given name without permission checking
3447  * @parent: directory in which to find the name
3448  * @name:   the name to be removed
3449  *
3450  * Locks are taken and a lookup in performed prior to removing
3451  * an object from a directory.
3452  *
3453  * If the name doesn't exist, an error is returned.
3454  *
3455  * end_removing() should be called when removal is complete, or aborted.
3456  *
3457  * Returns: a positive dentry, or an error.
3458  */
3459 struct dentry *start_removing_noperm(struct dentry *parent,
3460 				     struct qstr *name)
3461 {
3462 	int err = lookup_noperm_common(name, parent);
3463 
3464 	if (err)
3465 		return ERR_PTR(err);
3466 	return start_dirop(parent, name, 0);
3467 }
3468 EXPORT_SYMBOL(start_removing_noperm);
3469 
3470 /**
3471  * start_creating_dentry - prepare to create a given dentry
3472  * @parent: directory from which dentry should be removed
3473  * @child:  the dentry to be removed
3474  *
3475  * A lock is taken to protect the dentry again other dirops and
3476  * the validity of the dentry is checked: correct parent and still hashed.
3477  *
3478  * If the dentry is valid and negative a reference is taken and
3479  * returned.  If not an error is returned.
3480  *
3481  * end_creating() should be called when creation is complete, or aborted.
3482  *
3483  * Returns: the valid dentry, or an error.
3484  */
3485 struct dentry *start_creating_dentry(struct dentry *parent,
3486 				     struct dentry *child)
3487 {
3488 	inode_lock_nested(parent->d_inode, I_MUTEX_PARENT);
3489 	if (unlikely(IS_DEADDIR(parent->d_inode) ||
3490 		     child->d_parent != parent ||
3491 		     d_unhashed(child))) {
3492 		inode_unlock(parent->d_inode);
3493 		return ERR_PTR(-EINVAL);
3494 	}
3495 	if (d_is_positive(child)) {
3496 		inode_unlock(parent->d_inode);
3497 		return ERR_PTR(-EEXIST);
3498 	}
3499 	return dget(child);
3500 }
3501 EXPORT_SYMBOL(start_creating_dentry);
3502 
3503 /**
3504  * start_removing_dentry - prepare to remove a given dentry
3505  * @parent: directory from which dentry should be removed
3506  * @child:  the dentry to be removed
3507  *
3508  * A lock is taken to protect the dentry again other dirops and
3509  * the validity of the dentry is checked: correct parent and still hashed.
3510  *
3511  * If the dentry is valid and positive, a reference is taken and
3512  * returned.  If not an error is returned.
3513  *
3514  * end_removing() should be called when removal is complete, or aborted.
3515  *
3516  * Returns: the valid dentry, or an error.
3517  */
3518 struct dentry *start_removing_dentry(struct dentry *parent,
3519 				     struct dentry *child)
3520 {
3521 	inode_lock_nested(parent->d_inode, I_MUTEX_PARENT);
3522 	if (unlikely(IS_DEADDIR(parent->d_inode) ||
3523 		     child->d_parent != parent ||
3524 		     d_unhashed(child))) {
3525 		inode_unlock(parent->d_inode);
3526 		return ERR_PTR(-EINVAL);
3527 	}
3528 	if (d_is_negative(child)) {
3529 		inode_unlock(parent->d_inode);
3530 		return ERR_PTR(-ENOENT);
3531 	}
3532 	return dget(child);
3533 }
3534 EXPORT_SYMBOL(start_removing_dentry);
3535 
3536 #ifdef CONFIG_UNIX98_PTYS
3537 int path_pts(struct path *path)
3538 {
3539 	/* Find something mounted on "pts" in the same directory as
3540 	 * the input path.
3541 	 */
3542 	struct dentry *parent = dget_parent(path->dentry);
3543 	struct dentry *child;
3544 	struct qstr this = QSTR_INIT("pts", 3);
3545 
3546 	if (unlikely(!path_connected(path->mnt, parent))) {
3547 		dput(parent);
3548 		return -ENOENT;
3549 	}
3550 	dput(path->dentry);
3551 	path->dentry = parent;
3552 	child = d_hash_and_lookup(parent, &this);
3553 	if (IS_ERR_OR_NULL(child))
3554 		return -ENOENT;
3555 
3556 	path->dentry = child;
3557 	dput(parent);
3558 	follow_down(path, 0);
3559 	return 0;
3560 }
3561 #endif
3562 
3563 int user_path_at(int dfd, const char __user *name, unsigned flags,
3564 		 struct path *path)
3565 {
3566 	struct filename *filename = getname_flags(name, flags);
3567 	int ret = filename_lookup(dfd, filename, flags, path, NULL);
3568 
3569 	putname(filename);
3570 	return ret;
3571 }
3572 EXPORT_SYMBOL(user_path_at);
3573 
3574 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir,
3575 		   struct inode *inode)
3576 {
3577 	kuid_t fsuid = current_fsuid();
3578 
3579 	if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), fsuid))
3580 		return 0;
3581 	if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, dir), fsuid))
3582 		return 0;
3583 	return !capable_wrt_inode_uidgid(idmap, inode, CAP_FOWNER);
3584 }
3585 EXPORT_SYMBOL(__check_sticky);
3586 
3587 /*
3588  *	Check whether we can remove a link victim from directory dir, check
3589  *  whether the type of victim is right.
3590  *  1. We can't do it if dir is read-only (done in permission())
3591  *  2. We should have write and exec permissions on dir
3592  *  3. We can't remove anything from append-only dir
3593  *  4. We can't do anything with immutable dir (done in permission())
3594  *  5. If the sticky bit on dir is set we should either
3595  *	a. be owner of dir, or
3596  *	b. be owner of victim, or
3597  *	c. have CAP_FOWNER capability
3598  *  6. If the victim is append-only or immutable we can't do antyhing with
3599  *     links pointing to it.
3600  *  7. If the victim has an unknown uid or gid we can't change the inode.
3601  *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
3602  *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
3603  * 10. We can't remove a root or mountpoint.
3604  * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
3605  *     nfs_async_unlink().
3606  */
3607 static int may_delete(struct mnt_idmap *idmap, struct inode *dir,
3608 		      struct dentry *victim, bool isdir)
3609 {
3610 	struct inode *inode = d_backing_inode(victim);
3611 	int error;
3612 
3613 	if (d_is_negative(victim))
3614 		return -ENOENT;
3615 	BUG_ON(!inode);
3616 
3617 	BUG_ON(victim->d_parent->d_inode != dir);
3618 
3619 	/* Inode writeback is not safe when the uid or gid are invalid. */
3620 	if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
3621 	    !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
3622 		return -EOVERFLOW;
3623 
3624 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
3625 
3626 	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3627 	if (error)
3628 		return error;
3629 	if (IS_APPEND(dir))
3630 		return -EPERM;
3631 
3632 	if (check_sticky(idmap, dir, inode) || IS_APPEND(inode) ||
3633 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) ||
3634 	    HAS_UNMAPPED_ID(idmap, inode))
3635 		return -EPERM;
3636 	if (isdir) {
3637 		if (!d_is_dir(victim))
3638 			return -ENOTDIR;
3639 		if (IS_ROOT(victim))
3640 			return -EBUSY;
3641 	} else if (d_is_dir(victim))
3642 		return -EISDIR;
3643 	if (IS_DEADDIR(dir))
3644 		return -ENOENT;
3645 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
3646 		return -EBUSY;
3647 	return 0;
3648 }
3649 
3650 /*	Check whether we can create an object with dentry child in directory
3651  *  dir.
3652  *  1. We can't do it if child already exists (open has special treatment for
3653  *     this case, but since we are inlined it's OK)
3654  *  2. We can't do it if dir is read-only (done in permission())
3655  *  3. We can't do it if the fs can't represent the fsuid or fsgid.
3656  *  4. We should have write and exec permissions on dir
3657  *  5. We can't do it if dir is immutable (done in permission())
3658  */
3659 static inline int may_create(struct mnt_idmap *idmap,
3660 			     struct inode *dir, struct dentry *child)
3661 {
3662 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
3663 	if (child->d_inode)
3664 		return -EEXIST;
3665 	if (IS_DEADDIR(dir))
3666 		return -ENOENT;
3667 	if (!fsuidgid_has_mapping(dir->i_sb, idmap))
3668 		return -EOVERFLOW;
3669 
3670 	return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3671 }
3672 
3673 // p1 != p2, both are on the same filesystem, ->s_vfs_rename_mutex is held
3674 static struct dentry *lock_two_directories(struct dentry *p1, struct dentry *p2)
3675 {
3676 	struct dentry *p = p1, *q = p2, *r;
3677 
3678 	while ((r = p->d_parent) != p2 && r != p)
3679 		p = r;
3680 	if (r == p2) {
3681 		// p is a child of p2 and an ancestor of p1 or p1 itself
3682 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3683 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT2);
3684 		return p;
3685 	}
3686 	// p is the root of connected component that contains p1
3687 	// p2 does not occur on the path from p to p1
3688 	while ((r = q->d_parent) != p1 && r != p && r != q)
3689 		q = r;
3690 	if (r == p1) {
3691 		// q is a child of p1 and an ancestor of p2 or p2 itself
3692 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3693 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3694 		return q;
3695 	} else if (likely(r == p)) {
3696 		// both p2 and p1 are descendents of p
3697 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3698 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3699 		return NULL;
3700 	} else { // no common ancestor at the time we'd been called
3701 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3702 		return ERR_PTR(-EXDEV);
3703 	}
3704 }
3705 
3706 /*
3707  * p1 and p2 should be directories on the same fs.
3708  */
3709 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
3710 {
3711 	if (p1 == p2) {
3712 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3713 		return NULL;
3714 	}
3715 
3716 	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
3717 	return lock_two_directories(p1, p2);
3718 }
3719 EXPORT_SYMBOL(lock_rename);
3720 
3721 /*
3722  * c1 and p2 should be on the same fs.
3723  */
3724 struct dentry *lock_rename_child(struct dentry *c1, struct dentry *p2)
3725 {
3726 	if (READ_ONCE(c1->d_parent) == p2) {
3727 		/*
3728 		 * hopefully won't need to touch ->s_vfs_rename_mutex at all.
3729 		 */
3730 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3731 		/*
3732 		 * now that p2 is locked, nobody can move in or out of it,
3733 		 * so the test below is safe.
3734 		 */
3735 		if (likely(c1->d_parent == p2))
3736 			return NULL;
3737 
3738 		/*
3739 		 * c1 got moved out of p2 while we'd been taking locks;
3740 		 * unlock and fall back to slow case.
3741 		 */
3742 		inode_unlock(p2->d_inode);
3743 	}
3744 
3745 	mutex_lock(&c1->d_sb->s_vfs_rename_mutex);
3746 	/*
3747 	 * nobody can move out of any directories on this fs.
3748 	 */
3749 	if (likely(c1->d_parent != p2))
3750 		return lock_two_directories(c1->d_parent, p2);
3751 
3752 	/*
3753 	 * c1 got moved into p2 while we were taking locks;
3754 	 * we need p2 locked and ->s_vfs_rename_mutex unlocked,
3755 	 * for consistency with lock_rename().
3756 	 */
3757 	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3758 	mutex_unlock(&c1->d_sb->s_vfs_rename_mutex);
3759 	return NULL;
3760 }
3761 EXPORT_SYMBOL(lock_rename_child);
3762 
3763 void unlock_rename(struct dentry *p1, struct dentry *p2)
3764 {
3765 	inode_unlock(p1->d_inode);
3766 	if (p1 != p2) {
3767 		inode_unlock(p2->d_inode);
3768 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3769 	}
3770 }
3771 EXPORT_SYMBOL(unlock_rename);
3772 
3773 /**
3774  * __start_renaming - lookup and lock names for rename
3775  * @rd:           rename data containing parents and flags, and
3776  *                for receiving found dentries
3777  * @lookup_flags: extra flags to pass to ->lookup (e.g. LOOKUP_REVAL,
3778  *                LOOKUP_NO_SYMLINKS etc).
3779  * @old_last:     name of object in @rd.old_parent
3780  * @new_last:     name of object in @rd.new_parent
3781  *
3782  * Look up two names and ensure locks are in place for
3783  * rename.
3784  *
3785  * On success the found dentries are stored in @rd.old_dentry,
3786  * @rd.new_dentry and an extra ref is taken on @rd.old_parent.
3787  * These references and the lock are dropped by end_renaming().
3788  *
3789  * The passed in qstrs must have the hash calculated, and no permission
3790  * checking is performed.
3791  *
3792  * Returns: zero or an error.
3793  */
3794 static int
3795 __start_renaming(struct renamedata *rd, int lookup_flags,
3796 		 struct qstr *old_last, struct qstr *new_last)
3797 {
3798 	struct dentry *trap;
3799 	struct dentry *d1, *d2;
3800 	int target_flags = LOOKUP_RENAME_TARGET | LOOKUP_CREATE;
3801 	int err;
3802 
3803 	if (rd->flags & RENAME_EXCHANGE)
3804 		target_flags = 0;
3805 	if (rd->flags & RENAME_NOREPLACE)
3806 		target_flags |= LOOKUP_EXCL;
3807 
3808 	trap = lock_rename(rd->old_parent, rd->new_parent);
3809 	if (IS_ERR(trap))
3810 		return PTR_ERR(trap);
3811 
3812 	d1 = lookup_one_qstr_excl(old_last, rd->old_parent,
3813 				  lookup_flags);
3814 	err = PTR_ERR(d1);
3815 	if (IS_ERR(d1))
3816 		goto out_unlock;
3817 
3818 	d2 = lookup_one_qstr_excl(new_last, rd->new_parent,
3819 				  lookup_flags | target_flags);
3820 	err = PTR_ERR(d2);
3821 	if (IS_ERR(d2))
3822 		goto out_dput_d1;
3823 
3824 	if (d1 == trap) {
3825 		/* source is an ancestor of target */
3826 		err = -EINVAL;
3827 		goto out_dput_d2;
3828 	}
3829 
3830 	if (d2 == trap) {
3831 		/* target is an ancestor of source */
3832 		if (rd->flags & RENAME_EXCHANGE)
3833 			err = -EINVAL;
3834 		else
3835 			err = -ENOTEMPTY;
3836 		goto out_dput_d2;
3837 	}
3838 
3839 	rd->old_dentry = d1;
3840 	rd->new_dentry = d2;
3841 	dget(rd->old_parent);
3842 	return 0;
3843 
3844 out_dput_d2:
3845 	dput(d2);
3846 out_dput_d1:
3847 	dput(d1);
3848 out_unlock:
3849 	unlock_rename(rd->old_parent, rd->new_parent);
3850 	return err;
3851 }
3852 
3853 /**
3854  * start_renaming - lookup and lock names for rename with permission checking
3855  * @rd:           rename data containing parents and flags, and
3856  *                for receiving found dentries
3857  * @lookup_flags: extra flags to pass to ->lookup (e.g. LOOKUP_REVAL,
3858  *                LOOKUP_NO_SYMLINKS etc).
3859  * @old_last:     name of object in @rd.old_parent
3860  * @new_last:     name of object in @rd.new_parent
3861  *
3862  * Look up two names and ensure locks are in place for
3863  * rename.
3864  *
3865  * On success the found dentries are stored in @rd.old_dentry,
3866  * @rd.new_dentry.  Also the refcount on @rd->old_parent is increased.
3867  * These references and the lock are dropped by end_renaming().
3868  *
3869  * The passed in qstrs need not have the hash calculated, and basic
3870  * eXecute permission checking is performed against @rd.mnt_idmap.
3871  *
3872  * Returns: zero or an error.
3873  */
3874 int start_renaming(struct renamedata *rd, int lookup_flags,
3875 		   struct qstr *old_last, struct qstr *new_last)
3876 {
3877 	int err;
3878 
3879 	err = lookup_one_common(rd->mnt_idmap, old_last, rd->old_parent);
3880 	if (err)
3881 		return err;
3882 	err = lookup_one_common(rd->mnt_idmap, new_last, rd->new_parent);
3883 	if (err)
3884 		return err;
3885 	return __start_renaming(rd, lookup_flags, old_last, new_last);
3886 }
3887 EXPORT_SYMBOL(start_renaming);
3888 
3889 static int
3890 __start_renaming_dentry(struct renamedata *rd, int lookup_flags,
3891 			struct dentry *old_dentry, struct qstr *new_last)
3892 {
3893 	struct dentry *trap;
3894 	struct dentry *d2;
3895 	int target_flags = LOOKUP_RENAME_TARGET | LOOKUP_CREATE;
3896 	int err;
3897 
3898 	if (rd->flags & RENAME_EXCHANGE)
3899 		target_flags = 0;
3900 	if (rd->flags & RENAME_NOREPLACE)
3901 		target_flags |= LOOKUP_EXCL;
3902 
3903 	/* Already have the dentry - need to be sure to lock the correct parent */
3904 	trap = lock_rename_child(old_dentry, rd->new_parent);
3905 	if (IS_ERR(trap))
3906 		return PTR_ERR(trap);
3907 	if (d_unhashed(old_dentry) ||
3908 	    (rd->old_parent && rd->old_parent != old_dentry->d_parent)) {
3909 		/* dentry was removed, or moved and explicit parent requested */
3910 		err = -EINVAL;
3911 		goto out_unlock;
3912 	}
3913 
3914 	d2 = lookup_one_qstr_excl(new_last, rd->new_parent,
3915 				  lookup_flags | target_flags);
3916 	err = PTR_ERR(d2);
3917 	if (IS_ERR(d2))
3918 		goto out_unlock;
3919 
3920 	if (old_dentry == trap) {
3921 		/* source is an ancestor of target */
3922 		err = -EINVAL;
3923 		goto out_dput_d2;
3924 	}
3925 
3926 	if (d2 == trap) {
3927 		/* target is an ancestor of source */
3928 		if (rd->flags & RENAME_EXCHANGE)
3929 			err = -EINVAL;
3930 		else
3931 			err = -ENOTEMPTY;
3932 		goto out_dput_d2;
3933 	}
3934 
3935 	rd->old_dentry = dget(old_dentry);
3936 	rd->new_dentry = d2;
3937 	rd->old_parent = dget(old_dentry->d_parent);
3938 	return 0;
3939 
3940 out_dput_d2:
3941 	dput(d2);
3942 out_unlock:
3943 	unlock_rename(old_dentry->d_parent, rd->new_parent);
3944 	return err;
3945 }
3946 
3947 /**
3948  * start_renaming_dentry - lookup and lock name for rename with permission checking
3949  * @rd:           rename data containing parents and flags, and
3950  *                for receiving found dentries
3951  * @lookup_flags: extra flags to pass to ->lookup (e.g. LOOKUP_REVAL,
3952  *                LOOKUP_NO_SYMLINKS etc).
3953  * @old_dentry:   dentry of name to move
3954  * @new_last:     name of target in @rd.new_parent
3955  *
3956  * Look up target name and ensure locks are in place for
3957  * rename.
3958  *
3959  * On success the found dentry is stored in @rd.new_dentry and
3960  * @rd.old_parent is confirmed to be the parent of @old_dentry.  If it
3961  * was originally %NULL, it is set.  In either case a reference is taken
3962  * so that end_renaming() can have a stable reference to unlock.
3963  *
3964  * References and the lock can be dropped with end_renaming()
3965  *
3966  * The passed in qstr need not have the hash calculated, and basic
3967  * eXecute permission checking is performed against @rd.mnt_idmap.
3968  *
3969  * Returns: zero or an error.
3970  */
3971 int start_renaming_dentry(struct renamedata *rd, int lookup_flags,
3972 			  struct dentry *old_dentry, struct qstr *new_last)
3973 {
3974 	int err;
3975 
3976 	err = lookup_one_common(rd->mnt_idmap, new_last, rd->new_parent);
3977 	if (err)
3978 		return err;
3979 	return __start_renaming_dentry(rd, lookup_flags, old_dentry, new_last);
3980 }
3981 EXPORT_SYMBOL(start_renaming_dentry);
3982 
3983 /**
3984  * start_renaming_two_dentries - Lock to dentries in given parents for rename
3985  * @rd:           rename data containing parent
3986  * @old_dentry:   dentry of name to move
3987  * @new_dentry:   dentry to move to
3988  *
3989  * Ensure locks are in place for rename and check parentage is still correct.
3990  *
3991  * On success the two dentries are stored in @rd.old_dentry and
3992  * @rd.new_dentry and @rd.old_parent and @rd.new_parent are confirmed to
3993  * be the parents of the dentries.
3994  *
3995  * References and the lock can be dropped with end_renaming()
3996  *
3997  * Returns: zero or an error.
3998  */
3999 int
4000 start_renaming_two_dentries(struct renamedata *rd,
4001 			    struct dentry *old_dentry, struct dentry *new_dentry)
4002 {
4003 	struct dentry *trap;
4004 	int err;
4005 
4006 	/* Already have the dentry - need to be sure to lock the correct parent */
4007 	trap = lock_rename_child(old_dentry, rd->new_parent);
4008 	if (IS_ERR(trap))
4009 		return PTR_ERR(trap);
4010 	err = -EINVAL;
4011 	if (d_unhashed(old_dentry) ||
4012 	    (rd->old_parent && rd->old_parent != old_dentry->d_parent))
4013 		/* old_dentry was removed, or moved and explicit parent requested */
4014 		goto out_unlock;
4015 	if (d_unhashed(new_dentry) ||
4016 	    rd->new_parent != new_dentry->d_parent)
4017 		/* new_dentry was removed or moved */
4018 		goto out_unlock;
4019 
4020 	if (old_dentry == trap)
4021 		/* source is an ancestor of target */
4022 		goto out_unlock;
4023 
4024 	if (new_dentry == trap) {
4025 		/* target is an ancestor of source */
4026 		if (rd->flags & RENAME_EXCHANGE)
4027 			err = -EINVAL;
4028 		else
4029 			err = -ENOTEMPTY;
4030 		goto out_unlock;
4031 	}
4032 
4033 	err = -EEXIST;
4034 	if (d_is_positive(new_dentry) && (rd->flags & RENAME_NOREPLACE))
4035 		goto out_unlock;
4036 
4037 	rd->old_dentry = dget(old_dentry);
4038 	rd->new_dentry = dget(new_dentry);
4039 	rd->old_parent = dget(old_dentry->d_parent);
4040 	return 0;
4041 
4042 out_unlock:
4043 	unlock_rename(old_dentry->d_parent, rd->new_parent);
4044 	return err;
4045 }
4046 EXPORT_SYMBOL(start_renaming_two_dentries);
4047 
4048 void end_renaming(struct renamedata *rd)
4049 {
4050 	unlock_rename(rd->old_parent, rd->new_parent);
4051 	dput(rd->old_dentry);
4052 	dput(rd->new_dentry);
4053 	dput(rd->old_parent);
4054 }
4055 EXPORT_SYMBOL(end_renaming);
4056 
4057 /**
4058  * vfs_prepare_mode - prepare the mode to be used for a new inode
4059  * @idmap:	idmap of the mount the inode was found from
4060  * @dir:	parent directory of the new inode
4061  * @mode:	mode of the new inode
4062  * @mask_perms:	allowed permission by the vfs
4063  * @type:	type of file to be created
4064  *
4065  * This helper consolidates and enforces vfs restrictions on the @mode of a new
4066  * object to be created.
4067  *
4068  * Umask stripping depends on whether the filesystem supports POSIX ACLs (see
4069  * the kernel documentation for mode_strip_umask()). Moving umask stripping
4070  * after setgid stripping allows the same ordering for both non-POSIX ACL and
4071  * POSIX ACL supporting filesystems.
4072  *
4073  * Note that it's currently valid for @type to be 0 if a directory is created.
4074  * Filesystems raise that flag individually and we need to check whether each
4075  * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a
4076  * non-zero type.
4077  *
4078  * Returns: mode to be passed to the filesystem
4079  */
4080 static inline umode_t vfs_prepare_mode(struct mnt_idmap *idmap,
4081 				       const struct inode *dir, umode_t mode,
4082 				       umode_t mask_perms, umode_t type)
4083 {
4084 	mode = mode_strip_sgid(idmap, dir, mode);
4085 	mode = mode_strip_umask(dir, mode);
4086 
4087 	/*
4088 	 * Apply the vfs mandated allowed permission mask and set the type of
4089 	 * file to be created before we call into the filesystem.
4090 	 */
4091 	mode &= (mask_perms & ~S_IFMT);
4092 	mode |= (type & S_IFMT);
4093 
4094 	return mode;
4095 }
4096 
4097 /**
4098  * vfs_create - create new file
4099  * @idmap:	idmap of the mount the inode was found from
4100  * @dentry:	dentry of the child file
4101  * @mode:	mode of the child file
4102  * @di:		returns parent inode, if the inode is delegated.
4103  *
4104  * Create a new file.
4105  *
4106  * If the inode has been found through an idmapped mount the idmap of
4107  * the vfsmount must be passed through @idmap. This function will then take
4108  * care to map the inode according to @idmap before checking permissions.
4109  * On non-idmapped mounts or if permission checking is to be performed on the
4110  * raw inode simply pass @nop_mnt_idmap.
4111  */
4112 int vfs_create(struct mnt_idmap *idmap, struct dentry *dentry, umode_t mode,
4113 	       struct delegated_inode *di)
4114 {
4115 	struct inode *dir = d_inode(dentry->d_parent);
4116 	int error;
4117 
4118 	error = may_create(idmap, dir, dentry);
4119 	if (error)
4120 		return error;
4121 
4122 	if (!dir->i_op->create)
4123 		return -EACCES;	/* shouldn't it be ENOSYS? */
4124 
4125 	mode = vfs_prepare_mode(idmap, dir, mode, S_IALLUGO, S_IFREG);
4126 	error = security_inode_create(dir, dentry, mode);
4127 	if (error)
4128 		return error;
4129 	error = try_break_deleg(dir, di);
4130 	if (error)
4131 		return error;
4132 	error = dir->i_op->create(idmap, dir, dentry, mode, true);
4133 	if (!error)
4134 		fsnotify_create(dir, dentry);
4135 	return error;
4136 }
4137 EXPORT_SYMBOL(vfs_create);
4138 
4139 int vfs_mkobj(struct dentry *dentry, umode_t mode,
4140 		int (*f)(struct dentry *, umode_t, void *),
4141 		void *arg)
4142 {
4143 	struct inode *dir = dentry->d_parent->d_inode;
4144 	int error = may_create(&nop_mnt_idmap, dir, dentry);
4145 	if (error)
4146 		return error;
4147 
4148 	mode &= S_IALLUGO;
4149 	mode |= S_IFREG;
4150 	error = security_inode_create(dir, dentry, mode);
4151 	if (error)
4152 		return error;
4153 	error = f(dentry, mode, arg);
4154 	if (!error)
4155 		fsnotify_create(dir, dentry);
4156 	return error;
4157 }
4158 EXPORT_SYMBOL(vfs_mkobj);
4159 
4160 bool may_open_dev(const struct path *path)
4161 {
4162 	return !(path->mnt->mnt_flags & MNT_NODEV) &&
4163 		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
4164 }
4165 
4166 static int may_open(struct mnt_idmap *idmap, const struct path *path,
4167 		    int acc_mode, int flag)
4168 {
4169 	struct dentry *dentry = path->dentry;
4170 	struct inode *inode = dentry->d_inode;
4171 	int error;
4172 
4173 	if (!inode)
4174 		return -ENOENT;
4175 
4176 	switch (inode->i_mode & S_IFMT) {
4177 	case S_IFLNK:
4178 		return -ELOOP;
4179 	case S_IFDIR:
4180 		if (acc_mode & MAY_WRITE)
4181 			return -EISDIR;
4182 		if (acc_mode & MAY_EXEC)
4183 			return -EACCES;
4184 		break;
4185 	case S_IFBLK:
4186 	case S_IFCHR:
4187 		if (!may_open_dev(path))
4188 			return -EACCES;
4189 		fallthrough;
4190 	case S_IFIFO:
4191 	case S_IFSOCK:
4192 		if (acc_mode & MAY_EXEC)
4193 			return -EACCES;
4194 		flag &= ~O_TRUNC;
4195 		break;
4196 	case S_IFREG:
4197 		if ((acc_mode & MAY_EXEC) && path_noexec(path))
4198 			return -EACCES;
4199 		break;
4200 	default:
4201 		VFS_BUG_ON_INODE(!IS_ANON_FILE(inode), inode);
4202 	}
4203 
4204 	error = inode_permission(idmap, inode, MAY_OPEN | acc_mode);
4205 	if (error)
4206 		return error;
4207 
4208 	/*
4209 	 * An append-only file must be opened in append mode for writing.
4210 	 */
4211 	if (IS_APPEND(inode)) {
4212 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
4213 			return -EPERM;
4214 		if (flag & O_TRUNC)
4215 			return -EPERM;
4216 	}
4217 
4218 	/* O_NOATIME can only be set by the owner or superuser */
4219 	if (flag & O_NOATIME && !inode_owner_or_capable(idmap, inode))
4220 		return -EPERM;
4221 
4222 	return 0;
4223 }
4224 
4225 static int handle_truncate(struct mnt_idmap *idmap, struct file *filp)
4226 {
4227 	const struct path *path = &filp->f_path;
4228 	struct inode *inode = path->dentry->d_inode;
4229 	int error = get_write_access(inode);
4230 	if (error)
4231 		return error;
4232 
4233 	error = security_file_truncate(filp);
4234 	if (!error) {
4235 		error = do_truncate(idmap, path->dentry, 0,
4236 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
4237 				    filp);
4238 	}
4239 	put_write_access(inode);
4240 	return error;
4241 }
4242 
4243 static inline int open_to_namei_flags(int flag)
4244 {
4245 	if ((flag & O_ACCMODE) == 3)
4246 		flag--;
4247 	return flag;
4248 }
4249 
4250 static int may_o_create(struct mnt_idmap *idmap,
4251 			const struct path *dir, struct dentry *dentry,
4252 			umode_t mode)
4253 {
4254 	int error = security_path_mknod(dir, dentry, mode, 0);
4255 	if (error)
4256 		return error;
4257 
4258 	if (!fsuidgid_has_mapping(dir->dentry->d_sb, idmap))
4259 		return -EOVERFLOW;
4260 
4261 	error = inode_permission(idmap, dir->dentry->d_inode,
4262 				 MAY_WRITE | MAY_EXEC);
4263 	if (error)
4264 		return error;
4265 
4266 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
4267 }
4268 
4269 /*
4270  * Attempt to atomically look up, create and open a file from a negative
4271  * dentry.
4272  *
4273  * Returns 0 if successful.  The file will have been created and attached to
4274  * @file by the filesystem calling finish_open().
4275  *
4276  * If the file was looked up only or didn't need creating, FMODE_OPENED won't
4277  * be set.  The caller will need to perform the open themselves.  @path will
4278  * have been updated to point to the new dentry.  This may be negative.
4279  *
4280  * Returns an error code otherwise.
4281  */
4282 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
4283 				  struct file *file,
4284 				  int open_flag, umode_t mode)
4285 {
4286 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
4287 	struct inode *dir =  nd->path.dentry->d_inode;
4288 	int error;
4289 
4290 	if (nd->flags & LOOKUP_DIRECTORY)
4291 		open_flag |= O_DIRECTORY;
4292 
4293 	file->__f_path.dentry = DENTRY_NOT_SET;
4294 	file->__f_path.mnt = nd->path.mnt;
4295 	error = dir->i_op->atomic_open(dir, dentry, file,
4296 				       open_to_namei_flags(open_flag), mode);
4297 	d_lookup_done(dentry);
4298 	if (!error) {
4299 		if (file->f_mode & FMODE_OPENED) {
4300 			if (unlikely(dentry != file->f_path.dentry)) {
4301 				dput(dentry);
4302 				dentry = dget(file->f_path.dentry);
4303 			}
4304 		} else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
4305 			error = -EIO;
4306 		} else {
4307 			if (file->f_path.dentry) {
4308 				dput(dentry);
4309 				dentry = file->f_path.dentry;
4310 			}
4311 			if (unlikely(d_is_negative(dentry)))
4312 				error = -ENOENT;
4313 		}
4314 	}
4315 	if (error) {
4316 		dput(dentry);
4317 		dentry = ERR_PTR(error);
4318 	}
4319 	return dentry;
4320 }
4321 
4322 /*
4323  * Look up and maybe create and open the last component.
4324  *
4325  * Must be called with parent locked (exclusive in O_CREAT case).
4326  *
4327  * Returns 0 on success, that is, if
4328  *  the file was successfully atomically created (if necessary) and opened, or
4329  *  the file was not completely opened at this time, though lookups and
4330  *  creations were performed.
4331  * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
4332  * In the latter case dentry returned in @path might be negative if O_CREAT
4333  * hadn't been specified.
4334  *
4335  * An error code is returned on failure.
4336  */
4337 static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
4338 				  const struct open_flags *op,
4339 				  bool got_write, struct delegated_inode *delegated_inode)
4340 {
4341 	struct mnt_idmap *idmap;
4342 	struct dentry *dir = nd->path.dentry;
4343 	struct inode *dir_inode = dir->d_inode;
4344 	int open_flag = op->open_flag;
4345 	struct dentry *dentry;
4346 	int error, create_error = 0;
4347 	umode_t mode = op->mode;
4348 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
4349 
4350 	if (unlikely(IS_DEADDIR(dir_inode)))
4351 		return ERR_PTR(-ENOENT);
4352 
4353 	file->f_mode &= ~FMODE_CREATED;
4354 	dentry = d_lookup(dir, &nd->last);
4355 	for (;;) {
4356 		if (!dentry) {
4357 			dentry = d_alloc_parallel(dir, &nd->last, &wq);
4358 			if (IS_ERR(dentry))
4359 				return dentry;
4360 		}
4361 		if (d_in_lookup(dentry))
4362 			break;
4363 
4364 		error = d_revalidate(dir_inode, &nd->last, dentry, nd->flags);
4365 		if (likely(error > 0))
4366 			break;
4367 		if (error)
4368 			goto out_dput;
4369 		d_invalidate(dentry);
4370 		dput(dentry);
4371 		dentry = NULL;
4372 	}
4373 	if (dentry->d_inode) {
4374 		/* Cached positive dentry: will open in f_op->open */
4375 		return dentry;
4376 	}
4377 
4378 	if (open_flag & O_CREAT)
4379 		audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
4380 
4381 	/*
4382 	 * Checking write permission is tricky, bacuse we don't know if we are
4383 	 * going to actually need it: O_CREAT opens should work as long as the
4384 	 * file exists.  But checking existence breaks atomicity.  The trick is
4385 	 * to check access and if not granted clear O_CREAT from the flags.
4386 	 *
4387 	 * Another problem is returing the "right" error value (e.g. for an
4388 	 * O_EXCL open we want to return EEXIST not EROFS).
4389 	 */
4390 	if (unlikely(!got_write))
4391 		open_flag &= ~O_TRUNC;
4392 	idmap = mnt_idmap(nd->path.mnt);
4393 	if (open_flag & O_CREAT) {
4394 		if (open_flag & O_EXCL)
4395 			open_flag &= ~O_TRUNC;
4396 		mode = vfs_prepare_mode(idmap, dir->d_inode, mode, mode, mode);
4397 		if (likely(got_write))
4398 			create_error = may_o_create(idmap, &nd->path,
4399 						    dentry, mode);
4400 		else
4401 			create_error = -EROFS;
4402 	}
4403 	if (create_error)
4404 		open_flag &= ~O_CREAT;
4405 	if (dir_inode->i_op->atomic_open) {
4406 		dentry = atomic_open(nd, dentry, file, open_flag, mode);
4407 		if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
4408 			dentry = ERR_PTR(create_error);
4409 		return dentry;
4410 	}
4411 
4412 	if (d_in_lookup(dentry)) {
4413 		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
4414 							     nd->flags);
4415 		d_lookup_done(dentry);
4416 		if (unlikely(res)) {
4417 			if (IS_ERR(res)) {
4418 				error = PTR_ERR(res);
4419 				goto out_dput;
4420 			}
4421 			dput(dentry);
4422 			dentry = res;
4423 		}
4424 	}
4425 
4426 	/* Negative dentry, just create the file */
4427 	if (!dentry->d_inode && (open_flag & O_CREAT)) {
4428 		/* but break the directory lease first! */
4429 		error = try_break_deleg(dir_inode, delegated_inode);
4430 		if (error)
4431 			goto out_dput;
4432 
4433 		file->f_mode |= FMODE_CREATED;
4434 		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
4435 		if (!dir_inode->i_op->create) {
4436 			error = -EACCES;
4437 			goto out_dput;
4438 		}
4439 
4440 		error = dir_inode->i_op->create(idmap, dir_inode, dentry,
4441 						mode, open_flag & O_EXCL);
4442 		if (error)
4443 			goto out_dput;
4444 	}
4445 	if (unlikely(create_error) && !dentry->d_inode) {
4446 		error = create_error;
4447 		goto out_dput;
4448 	}
4449 	return dentry;
4450 
4451 out_dput:
4452 	dput(dentry);
4453 	return ERR_PTR(error);
4454 }
4455 
4456 static inline bool trailing_slashes(struct nameidata *nd)
4457 {
4458 	return (bool)nd->last.name[nd->last.len];
4459 }
4460 
4461 static struct dentry *lookup_fast_for_open(struct nameidata *nd, int open_flag)
4462 {
4463 	struct dentry *dentry;
4464 
4465 	if (open_flag & O_CREAT) {
4466 		if (trailing_slashes(nd))
4467 			return ERR_PTR(-EISDIR);
4468 
4469 		/* Don't bother on an O_EXCL create */
4470 		if (open_flag & O_EXCL)
4471 			return NULL;
4472 	}
4473 
4474 	if (trailing_slashes(nd))
4475 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
4476 
4477 	dentry = lookup_fast(nd);
4478 	if (IS_ERR_OR_NULL(dentry))
4479 		return dentry;
4480 
4481 	if (open_flag & O_CREAT) {
4482 		/* Discard negative dentries. Need inode_lock to do the create */
4483 		if (!dentry->d_inode) {
4484 			if (!(nd->flags & LOOKUP_RCU))
4485 				dput(dentry);
4486 			dentry = NULL;
4487 		}
4488 	}
4489 	return dentry;
4490 }
4491 
4492 static const char *open_last_lookups(struct nameidata *nd,
4493 		   struct file *file, const struct open_flags *op)
4494 {
4495 	struct delegated_inode delegated_inode = { };
4496 	struct dentry *dir = nd->path.dentry;
4497 	int open_flag = op->open_flag;
4498 	bool got_write = false;
4499 	struct dentry *dentry;
4500 	const char *res;
4501 
4502 	nd->flags |= op->intent;
4503 
4504 	if (nd->last_type != LAST_NORM) {
4505 		if (nd->depth)
4506 			put_link(nd);
4507 		return handle_dots(nd, nd->last_type);
4508 	}
4509 
4510 	/* We _can_ be in RCU mode here */
4511 	dentry = lookup_fast_for_open(nd, open_flag);
4512 	if (IS_ERR(dentry))
4513 		return ERR_CAST(dentry);
4514 
4515 	if (likely(dentry))
4516 		goto finish_lookup;
4517 
4518 	if (!(open_flag & O_CREAT)) {
4519 		if (WARN_ON_ONCE(nd->flags & LOOKUP_RCU))
4520 			return ERR_PTR(-ECHILD);
4521 	} else {
4522 		if (nd->flags & LOOKUP_RCU) {
4523 			if (!try_to_unlazy(nd))
4524 				return ERR_PTR(-ECHILD);
4525 		}
4526 	}
4527 retry:
4528 	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
4529 		got_write = !mnt_want_write(nd->path.mnt);
4530 		/*
4531 		 * do _not_ fail yet - we might not need that or fail with
4532 		 * a different error; let lookup_open() decide; we'll be
4533 		 * dropping this one anyway.
4534 		 */
4535 	}
4536 	if (open_flag & O_CREAT)
4537 		inode_lock(dir->d_inode);
4538 	else
4539 		inode_lock_shared(dir->d_inode);
4540 	dentry = lookup_open(nd, file, op, got_write, &delegated_inode);
4541 	if (!IS_ERR(dentry)) {
4542 		if (file->f_mode & FMODE_CREATED)
4543 			fsnotify_create(dir->d_inode, dentry);
4544 		if (file->f_mode & FMODE_OPENED)
4545 			fsnotify_open(file);
4546 	}
4547 	if (open_flag & O_CREAT)
4548 		inode_unlock(dir->d_inode);
4549 	else
4550 		inode_unlock_shared(dir->d_inode);
4551 
4552 	if (got_write)
4553 		mnt_drop_write(nd->path.mnt);
4554 
4555 	if (IS_ERR(dentry)) {
4556 		if (is_delegated(&delegated_inode)) {
4557 			int error = break_deleg_wait(&delegated_inode);
4558 
4559 			if (!error)
4560 				goto retry;
4561 			return ERR_PTR(error);
4562 		}
4563 		return ERR_CAST(dentry);
4564 	}
4565 
4566 	if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
4567 		dput(nd->path.dentry);
4568 		nd->path.dentry = dentry;
4569 		return NULL;
4570 	}
4571 
4572 finish_lookup:
4573 	if (nd->depth)
4574 		put_link(nd);
4575 	res = step_into(nd, WALK_TRAILING, dentry);
4576 	if (unlikely(res))
4577 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
4578 	return res;
4579 }
4580 
4581 /*
4582  * Handle the last step of open()
4583  */
4584 static int do_open(struct nameidata *nd,
4585 		   struct file *file, const struct open_flags *op)
4586 {
4587 	struct mnt_idmap *idmap;
4588 	int open_flag = op->open_flag;
4589 	bool do_truncate;
4590 	int acc_mode;
4591 	int error;
4592 
4593 	if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
4594 		error = complete_walk(nd);
4595 		if (error)
4596 			return error;
4597 	}
4598 	if (!(file->f_mode & FMODE_CREATED))
4599 		audit_inode(nd->name, nd->path.dentry, 0);
4600 	idmap = mnt_idmap(nd->path.mnt);
4601 	if (open_flag & O_CREAT) {
4602 		if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
4603 			return -EEXIST;
4604 		if (d_is_dir(nd->path.dentry))
4605 			return -EISDIR;
4606 		error = may_create_in_sticky(idmap, nd,
4607 					     d_backing_inode(nd->path.dentry));
4608 		if (unlikely(error))
4609 			return error;
4610 	}
4611 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
4612 		return -ENOTDIR;
4613 
4614 	do_truncate = false;
4615 	acc_mode = op->acc_mode;
4616 	if (file->f_mode & FMODE_CREATED) {
4617 		/* Don't check for write permission, don't truncate */
4618 		open_flag &= ~O_TRUNC;
4619 		acc_mode = 0;
4620 	} else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
4621 		error = mnt_want_write(nd->path.mnt);
4622 		if (error)
4623 			return error;
4624 		do_truncate = true;
4625 	}
4626 	error = may_open(idmap, &nd->path, acc_mode, open_flag);
4627 	if (!error && !(file->f_mode & FMODE_OPENED))
4628 		error = vfs_open(&nd->path, file);
4629 	if (!error)
4630 		error = security_file_post_open(file, op->acc_mode);
4631 	if (!error && do_truncate)
4632 		error = handle_truncate(idmap, file);
4633 	if (unlikely(error > 0)) {
4634 		WARN_ON(1);
4635 		error = -EINVAL;
4636 	}
4637 	if (do_truncate)
4638 		mnt_drop_write(nd->path.mnt);
4639 	return error;
4640 }
4641 
4642 /**
4643  * vfs_tmpfile - create tmpfile
4644  * @idmap:	idmap of the mount the inode was found from
4645  * @parentpath:	pointer to the path of the base directory
4646  * @file:	file descriptor of the new tmpfile
4647  * @mode:	mode of the new tmpfile
4648  *
4649  * Create a temporary file.
4650  *
4651  * If the inode has been found through an idmapped mount the idmap of
4652  * the vfsmount must be passed through @idmap. This function will then take
4653  * care to map the inode according to @idmap before checking permissions.
4654  * On non-idmapped mounts or if permission checking is to be performed on the
4655  * raw inode simply pass @nop_mnt_idmap.
4656  */
4657 int vfs_tmpfile(struct mnt_idmap *idmap,
4658 		const struct path *parentpath,
4659 		struct file *file, umode_t mode)
4660 {
4661 	struct dentry *child;
4662 	struct inode *dir = d_inode(parentpath->dentry);
4663 	struct inode *inode;
4664 	int error;
4665 	int open_flag = file->f_flags;
4666 
4667 	/* we want directory to be writable */
4668 	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
4669 	if (error)
4670 		return error;
4671 	if (!dir->i_op->tmpfile)
4672 		return -EOPNOTSUPP;
4673 	child = d_alloc(parentpath->dentry, &slash_name);
4674 	if (unlikely(!child))
4675 		return -ENOMEM;
4676 	file->__f_path.mnt = parentpath->mnt;
4677 	file->__f_path.dentry = child;
4678 	mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
4679 	error = dir->i_op->tmpfile(idmap, dir, file, mode);
4680 	dput(child);
4681 	if (file->f_mode & FMODE_OPENED)
4682 		fsnotify_open(file);
4683 	if (error)
4684 		return error;
4685 	/* Don't check for other permissions, the inode was just created */
4686 	error = may_open(idmap, &file->f_path, 0, file->f_flags);
4687 	if (error)
4688 		return error;
4689 	inode = file_inode(file);
4690 	if (!(open_flag & O_EXCL)) {
4691 		spin_lock(&inode->i_lock);
4692 		inode_state_set(inode, I_LINKABLE);
4693 		spin_unlock(&inode->i_lock);
4694 	}
4695 	security_inode_post_create_tmpfile(idmap, inode);
4696 	return 0;
4697 }
4698 
4699 /**
4700  * kernel_tmpfile_open - open a tmpfile for kernel internal use
4701  * @idmap:	idmap of the mount the inode was found from
4702  * @parentpath:	path of the base directory
4703  * @mode:	mode of the new tmpfile
4704  * @open_flag:	flags
4705  * @cred:	credentials for open
4706  *
4707  * Create and open a temporary file.  The file is not accounted in nr_files,
4708  * hence this is only for kernel internal use, and must not be installed into
4709  * file tables or such.
4710  */
4711 struct file *kernel_tmpfile_open(struct mnt_idmap *idmap,
4712 				 const struct path *parentpath,
4713 				 umode_t mode, int open_flag,
4714 				 const struct cred *cred)
4715 {
4716 	struct file *file;
4717 	int error;
4718 
4719 	file = alloc_empty_file_noaccount(open_flag, cred);
4720 	if (IS_ERR(file))
4721 		return file;
4722 
4723 	error = vfs_tmpfile(idmap, parentpath, file, mode);
4724 	if (error) {
4725 		fput(file);
4726 		file = ERR_PTR(error);
4727 	}
4728 	return file;
4729 }
4730 EXPORT_SYMBOL(kernel_tmpfile_open);
4731 
4732 static int do_tmpfile(struct nameidata *nd, unsigned flags,
4733 		const struct open_flags *op,
4734 		struct file *file)
4735 {
4736 	struct path path;
4737 	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
4738 
4739 	if (unlikely(error))
4740 		return error;
4741 	error = mnt_want_write(path.mnt);
4742 	if (unlikely(error))
4743 		goto out;
4744 	error = vfs_tmpfile(mnt_idmap(path.mnt), &path, file, op->mode);
4745 	if (error)
4746 		goto out2;
4747 	audit_inode(nd->name, file->f_path.dentry, 0);
4748 out2:
4749 	mnt_drop_write(path.mnt);
4750 out:
4751 	path_put(&path);
4752 	return error;
4753 }
4754 
4755 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
4756 {
4757 	struct path path;
4758 	int error = path_lookupat(nd, flags, &path);
4759 	if (!error) {
4760 		audit_inode(nd->name, path.dentry, 0);
4761 		error = vfs_open(&path, file);
4762 		path_put(&path);
4763 	}
4764 	return error;
4765 }
4766 
4767 static struct file *path_openat(struct nameidata *nd,
4768 			const struct open_flags *op, unsigned flags)
4769 {
4770 	struct file *file;
4771 	int error;
4772 
4773 	file = alloc_empty_file(op->open_flag, current_cred());
4774 	if (IS_ERR(file))
4775 		return file;
4776 
4777 	if (unlikely(file->f_flags & __O_TMPFILE)) {
4778 		error = do_tmpfile(nd, flags, op, file);
4779 	} else if (unlikely(file->f_flags & O_PATH)) {
4780 		error = do_o_path(nd, flags, file);
4781 	} else {
4782 		const char *s = path_init(nd, flags);
4783 		while (!(error = link_path_walk(s, nd)) &&
4784 		       (s = open_last_lookups(nd, file, op)) != NULL)
4785 			;
4786 		if (!error)
4787 			error = do_open(nd, file, op);
4788 		terminate_walk(nd);
4789 	}
4790 	if (likely(!error)) {
4791 		if (likely(file->f_mode & FMODE_OPENED))
4792 			return file;
4793 		WARN_ON(1);
4794 		error = -EINVAL;
4795 	}
4796 	fput_close(file);
4797 	if (error == -EOPENSTALE) {
4798 		if (flags & LOOKUP_RCU)
4799 			error = -ECHILD;
4800 		else
4801 			error = -ESTALE;
4802 	}
4803 	return ERR_PTR(error);
4804 }
4805 
4806 struct file *do_filp_open(int dfd, struct filename *pathname,
4807 		const struct open_flags *op)
4808 {
4809 	struct nameidata nd;
4810 	int flags = op->lookup_flags;
4811 	struct file *filp;
4812 
4813 	set_nameidata(&nd, dfd, pathname, NULL);
4814 	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
4815 	if (unlikely(filp == ERR_PTR(-ECHILD)))
4816 		filp = path_openat(&nd, op, flags);
4817 	if (unlikely(filp == ERR_PTR(-ESTALE)))
4818 		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
4819 	restore_nameidata();
4820 	return filp;
4821 }
4822 
4823 struct file *do_file_open_root(const struct path *root,
4824 		const char *name, const struct open_flags *op)
4825 {
4826 	struct nameidata nd;
4827 	struct file *file;
4828 	struct filename *filename;
4829 	int flags = op->lookup_flags;
4830 
4831 	if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN)
4832 		return ERR_PTR(-ELOOP);
4833 
4834 	filename = getname_kernel(name);
4835 	if (IS_ERR(filename))
4836 		return ERR_CAST(filename);
4837 
4838 	set_nameidata(&nd, -1, filename, root);
4839 	file = path_openat(&nd, op, flags | LOOKUP_RCU);
4840 	if (unlikely(file == ERR_PTR(-ECHILD)))
4841 		file = path_openat(&nd, op, flags);
4842 	if (unlikely(file == ERR_PTR(-ESTALE)))
4843 		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
4844 	restore_nameidata();
4845 	putname(filename);
4846 	return file;
4847 }
4848 
4849 static struct dentry *filename_create(int dfd, struct filename *name,
4850 				      struct path *path, unsigned int lookup_flags)
4851 {
4852 	struct dentry *dentry = ERR_PTR(-EEXIST);
4853 	struct qstr last;
4854 	bool want_dir = lookup_flags & LOOKUP_DIRECTORY;
4855 	unsigned int reval_flag = lookup_flags & LOOKUP_REVAL;
4856 	unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL;
4857 	int type;
4858 	int error;
4859 
4860 	error = filename_parentat(dfd, name, reval_flag, path, &last, &type);
4861 	if (error)
4862 		return ERR_PTR(error);
4863 
4864 	/*
4865 	 * Yucky last component or no last component at all?
4866 	 * (foo/., foo/.., /////)
4867 	 */
4868 	if (unlikely(type != LAST_NORM))
4869 		goto out;
4870 
4871 	/* don't fail immediately if it's r/o, at least try to report other errors */
4872 	error = mnt_want_write(path->mnt);
4873 	/*
4874 	 * Do the final lookup.  Suppress 'create' if there is a trailing
4875 	 * '/', and a directory wasn't requested.
4876 	 */
4877 	if (last.name[last.len] && !want_dir)
4878 		create_flags &= ~LOOKUP_CREATE;
4879 	dentry = start_dirop(path->dentry, &last, reval_flag | create_flags);
4880 	if (IS_ERR(dentry))
4881 		goto out_drop_write;
4882 
4883 	if (unlikely(error))
4884 		goto fail;
4885 
4886 	return dentry;
4887 fail:
4888 	end_dirop(dentry);
4889 	dentry = ERR_PTR(error);
4890 out_drop_write:
4891 	if (!error)
4892 		mnt_drop_write(path->mnt);
4893 out:
4894 	path_put(path);
4895 	return dentry;
4896 }
4897 
4898 struct dentry *start_creating_path(int dfd, const char *pathname,
4899 				   struct path *path, unsigned int lookup_flags)
4900 {
4901 	struct filename *filename = getname_kernel(pathname);
4902 	struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
4903 
4904 	putname(filename);
4905 	return res;
4906 }
4907 EXPORT_SYMBOL(start_creating_path);
4908 
4909 /**
4910  * end_creating_path - finish a code section started by start_creating_path()
4911  * @path: the path instantiated by start_creating_path()
4912  * @dentry: the dentry returned by start_creating_path()
4913  *
4914  * end_creating_path() will unlock and locks taken by start_creating_path()
4915  * and drop an references that were taken.  It should only be called
4916  * if start_creating_path() returned a non-error.
4917  * If vfs_mkdir() was called and it returned an error, that error *should*
4918  * be passed to end_creating_path() together with the path.
4919  */
4920 void end_creating_path(const struct path *path, struct dentry *dentry)
4921 {
4922 	end_creating(dentry);
4923 	mnt_drop_write(path->mnt);
4924 	path_put(path);
4925 }
4926 EXPORT_SYMBOL(end_creating_path);
4927 
4928 inline struct dentry *start_creating_user_path(
4929 	int dfd, const char __user *pathname,
4930 	struct path *path, unsigned int lookup_flags)
4931 {
4932 	struct filename *filename = getname(pathname);
4933 	struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
4934 
4935 	putname(filename);
4936 	return res;
4937 }
4938 EXPORT_SYMBOL(start_creating_user_path);
4939 
4940 
4941 /**
4942  * vfs_mknod - create device node or file
4943  * @idmap:		idmap of the mount the inode was found from
4944  * @dir:		inode of the parent directory
4945  * @dentry:		dentry of the child device node
4946  * @mode:		mode of the child device node
4947  * @dev:		device number of device to create
4948  * @delegated_inode:	returns parent inode, if the inode is delegated.
4949  *
4950  * Create a device node or file.
4951  *
4952  * If the inode has been found through an idmapped mount the idmap of
4953  * the vfsmount must be passed through @idmap. This function will then take
4954  * care to map the inode according to @idmap before checking permissions.
4955  * On non-idmapped mounts or if permission checking is to be performed on the
4956  * raw inode simply pass @nop_mnt_idmap.
4957  */
4958 int vfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
4959 	      struct dentry *dentry, umode_t mode, dev_t dev,
4960 	      struct delegated_inode *delegated_inode)
4961 {
4962 	bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
4963 	int error = may_create(idmap, dir, dentry);
4964 
4965 	if (error)
4966 		return error;
4967 
4968 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
4969 	    !capable(CAP_MKNOD))
4970 		return -EPERM;
4971 
4972 	if (!dir->i_op->mknod)
4973 		return -EPERM;
4974 
4975 	mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
4976 	error = devcgroup_inode_mknod(mode, dev);
4977 	if (error)
4978 		return error;
4979 
4980 	error = security_inode_mknod(dir, dentry, mode, dev);
4981 	if (error)
4982 		return error;
4983 
4984 	error = try_break_deleg(dir, delegated_inode);
4985 	if (error)
4986 		return error;
4987 
4988 	error = dir->i_op->mknod(idmap, dir, dentry, mode, dev);
4989 	if (!error)
4990 		fsnotify_create(dir, dentry);
4991 	return error;
4992 }
4993 EXPORT_SYMBOL(vfs_mknod);
4994 
4995 static int may_mknod(umode_t mode)
4996 {
4997 	switch (mode & S_IFMT) {
4998 	case S_IFREG:
4999 	case S_IFCHR:
5000 	case S_IFBLK:
5001 	case S_IFIFO:
5002 	case S_IFSOCK:
5003 	case 0: /* zero mode translates to S_IFREG */
5004 		return 0;
5005 	case S_IFDIR:
5006 		return -EPERM;
5007 	default:
5008 		return -EINVAL;
5009 	}
5010 }
5011 
5012 static int do_mknodat(int dfd, struct filename *name, umode_t mode,
5013 		unsigned int dev)
5014 {
5015 	struct delegated_inode di = { };
5016 	struct mnt_idmap *idmap;
5017 	struct dentry *dentry;
5018 	struct path path;
5019 	int error;
5020 	unsigned int lookup_flags = 0;
5021 
5022 	error = may_mknod(mode);
5023 	if (error)
5024 		goto out1;
5025 retry:
5026 	dentry = filename_create(dfd, name, &path, lookup_flags);
5027 	error = PTR_ERR(dentry);
5028 	if (IS_ERR(dentry))
5029 		goto out1;
5030 
5031 	error = security_path_mknod(&path, dentry,
5032 			mode_strip_umask(path.dentry->d_inode, mode), dev);
5033 	if (error)
5034 		goto out2;
5035 
5036 	idmap = mnt_idmap(path.mnt);
5037 	switch (mode & S_IFMT) {
5038 		case 0: case S_IFREG:
5039 			error = vfs_create(idmap, dentry, mode, &di);
5040 			if (!error)
5041 				security_path_post_mknod(idmap, dentry);
5042 			break;
5043 		case S_IFCHR: case S_IFBLK:
5044 			error = vfs_mknod(idmap, path.dentry->d_inode,
5045 					  dentry, mode, new_decode_dev(dev), &di);
5046 			break;
5047 		case S_IFIFO: case S_IFSOCK:
5048 			error = vfs_mknod(idmap, path.dentry->d_inode,
5049 					  dentry, mode, 0, &di);
5050 			break;
5051 	}
5052 out2:
5053 	end_creating_path(&path, dentry);
5054 	if (is_delegated(&di)) {
5055 		error = break_deleg_wait(&di);
5056 		if (!error)
5057 			goto retry;
5058 	}
5059 	if (retry_estale(error, lookup_flags)) {
5060 		lookup_flags |= LOOKUP_REVAL;
5061 		goto retry;
5062 	}
5063 out1:
5064 	putname(name);
5065 	return error;
5066 }
5067 
5068 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
5069 		unsigned int, dev)
5070 {
5071 	return do_mknodat(dfd, getname(filename), mode, dev);
5072 }
5073 
5074 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
5075 {
5076 	return do_mknodat(AT_FDCWD, getname(filename), mode, dev);
5077 }
5078 
5079 /**
5080  * vfs_mkdir - create directory returning correct dentry if possible
5081  * @idmap:		idmap of the mount the inode was found from
5082  * @dir:		inode of the parent directory
5083  * @dentry:		dentry of the child directory
5084  * @mode:		mode of the child directory
5085  * @delegated_inode:	returns parent inode, if the inode is delegated.
5086  *
5087  * Create a directory.
5088  *
5089  * If the inode has been found through an idmapped mount the idmap of
5090  * the vfsmount must be passed through @idmap. This function will then take
5091  * care to map the inode according to @idmap before checking permissions.
5092  * On non-idmapped mounts or if permission checking is to be performed on the
5093  * raw inode simply pass @nop_mnt_idmap.
5094  *
5095  * In the event that the filesystem does not use the *@dentry but leaves it
5096  * negative or unhashes it and possibly splices a different one returning it,
5097  * the original dentry is dput() and the alternate is returned.
5098  *
5099  * In case of an error the dentry is dput() and an ERR_PTR() is returned.
5100  */
5101 struct dentry *vfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
5102 			 struct dentry *dentry, umode_t mode,
5103 			 struct delegated_inode *delegated_inode)
5104 {
5105 	int error;
5106 	unsigned max_links = dir->i_sb->s_max_links;
5107 	struct dentry *de;
5108 
5109 	error = may_create(idmap, dir, dentry);
5110 	if (error)
5111 		goto err;
5112 
5113 	error = -EPERM;
5114 	if (!dir->i_op->mkdir)
5115 		goto err;
5116 
5117 	mode = vfs_prepare_mode(idmap, dir, mode, S_IRWXUGO | S_ISVTX, 0);
5118 	error = security_inode_mkdir(dir, dentry, mode);
5119 	if (error)
5120 		goto err;
5121 
5122 	error = -EMLINK;
5123 	if (max_links && dir->i_nlink >= max_links)
5124 		goto err;
5125 
5126 	error = try_break_deleg(dir, delegated_inode);
5127 	if (error)
5128 		goto err;
5129 
5130 	de = dir->i_op->mkdir(idmap, dir, dentry, mode);
5131 	error = PTR_ERR(de);
5132 	if (IS_ERR(de))
5133 		goto err;
5134 	if (de) {
5135 		dput(dentry);
5136 		dentry = de;
5137 	}
5138 	fsnotify_mkdir(dir, dentry);
5139 	return dentry;
5140 
5141 err:
5142 	end_creating(dentry);
5143 	return ERR_PTR(error);
5144 }
5145 EXPORT_SYMBOL(vfs_mkdir);
5146 
5147 int do_mkdirat(int dfd, struct filename *name, umode_t mode)
5148 {
5149 	struct dentry *dentry;
5150 	struct path path;
5151 	int error;
5152 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
5153 	struct delegated_inode delegated_inode = { };
5154 
5155 retry:
5156 	dentry = filename_create(dfd, name, &path, lookup_flags);
5157 	error = PTR_ERR(dentry);
5158 	if (IS_ERR(dentry))
5159 		goto out_putname;
5160 
5161 	error = security_path_mkdir(&path, dentry,
5162 			mode_strip_umask(path.dentry->d_inode, mode));
5163 	if (!error) {
5164 		dentry = vfs_mkdir(mnt_idmap(path.mnt), path.dentry->d_inode,
5165 				   dentry, mode, &delegated_inode);
5166 		if (IS_ERR(dentry))
5167 			error = PTR_ERR(dentry);
5168 	}
5169 	end_creating_path(&path, dentry);
5170 	if (is_delegated(&delegated_inode)) {
5171 		error = break_deleg_wait(&delegated_inode);
5172 		if (!error)
5173 			goto retry;
5174 	}
5175 	if (retry_estale(error, lookup_flags)) {
5176 		lookup_flags |= LOOKUP_REVAL;
5177 		goto retry;
5178 	}
5179 out_putname:
5180 	putname(name);
5181 	return error;
5182 }
5183 
5184 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
5185 {
5186 	return do_mkdirat(dfd, getname(pathname), mode);
5187 }
5188 
5189 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
5190 {
5191 	return do_mkdirat(AT_FDCWD, getname(pathname), mode);
5192 }
5193 
5194 /**
5195  * vfs_rmdir - remove directory
5196  * @idmap:		idmap of the mount the inode was found from
5197  * @dir:		inode of the parent directory
5198  * @dentry:		dentry of the child directory
5199  * @delegated_inode:	returns parent inode, if it's delegated.
5200  *
5201  * Remove a directory.
5202  *
5203  * If the inode has been found through an idmapped mount the idmap of
5204  * the vfsmount must be passed through @idmap. This function will then take
5205  * care to map the inode according to @idmap before checking permissions.
5206  * On non-idmapped mounts or if permission checking is to be performed on the
5207  * raw inode simply pass @nop_mnt_idmap.
5208  */
5209 int vfs_rmdir(struct mnt_idmap *idmap, struct inode *dir,
5210 	      struct dentry *dentry, struct delegated_inode *delegated_inode)
5211 {
5212 	int error = may_delete(idmap, dir, dentry, 1);
5213 
5214 	if (error)
5215 		return error;
5216 
5217 	if (!dir->i_op->rmdir)
5218 		return -EPERM;
5219 
5220 	dget(dentry);
5221 	inode_lock(dentry->d_inode);
5222 
5223 	error = -EBUSY;
5224 	if (is_local_mountpoint(dentry) ||
5225 	    (dentry->d_inode->i_flags & S_KERNEL_FILE))
5226 		goto out;
5227 
5228 	error = security_inode_rmdir(dir, dentry);
5229 	if (error)
5230 		goto out;
5231 
5232 	error = try_break_deleg(dir, delegated_inode);
5233 	if (error)
5234 		goto out;
5235 
5236 	error = dir->i_op->rmdir(dir, dentry);
5237 	if (error)
5238 		goto out;
5239 
5240 	shrink_dcache_parent(dentry);
5241 	dentry->d_inode->i_flags |= S_DEAD;
5242 	dont_mount(dentry);
5243 	detach_mounts(dentry);
5244 
5245 out:
5246 	inode_unlock(dentry->d_inode);
5247 	dput(dentry);
5248 	if (!error)
5249 		d_delete_notify(dir, dentry);
5250 	return error;
5251 }
5252 EXPORT_SYMBOL(vfs_rmdir);
5253 
5254 int do_rmdir(int dfd, struct filename *name)
5255 {
5256 	int error;
5257 	struct dentry *dentry;
5258 	struct path path;
5259 	struct qstr last;
5260 	int type;
5261 	unsigned int lookup_flags = 0;
5262 	struct delegated_inode delegated_inode = { };
5263 retry:
5264 	error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
5265 	if (error)
5266 		goto exit1;
5267 
5268 	switch (type) {
5269 	case LAST_DOTDOT:
5270 		error = -ENOTEMPTY;
5271 		goto exit2;
5272 	case LAST_DOT:
5273 		error = -EINVAL;
5274 		goto exit2;
5275 	case LAST_ROOT:
5276 		error = -EBUSY;
5277 		goto exit2;
5278 	}
5279 
5280 	error = mnt_want_write(path.mnt);
5281 	if (error)
5282 		goto exit2;
5283 
5284 	dentry = start_dirop(path.dentry, &last, lookup_flags);
5285 	error = PTR_ERR(dentry);
5286 	if (IS_ERR(dentry))
5287 		goto exit3;
5288 	error = security_path_rmdir(&path, dentry);
5289 	if (error)
5290 		goto exit4;
5291 	error = vfs_rmdir(mnt_idmap(path.mnt), path.dentry->d_inode,
5292 			  dentry, &delegated_inode);
5293 exit4:
5294 	end_dirop(dentry);
5295 exit3:
5296 	mnt_drop_write(path.mnt);
5297 exit2:
5298 	path_put(&path);
5299 	if (is_delegated(&delegated_inode)) {
5300 		error = break_deleg_wait(&delegated_inode);
5301 		if (!error)
5302 			goto retry;
5303 	}
5304 	if (retry_estale(error, lookup_flags)) {
5305 		lookup_flags |= LOOKUP_REVAL;
5306 		goto retry;
5307 	}
5308 exit1:
5309 	putname(name);
5310 	return error;
5311 }
5312 
5313 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
5314 {
5315 	return do_rmdir(AT_FDCWD, getname(pathname));
5316 }
5317 
5318 /**
5319  * vfs_unlink - unlink a filesystem object
5320  * @idmap:	idmap of the mount the inode was found from
5321  * @dir:	parent directory
5322  * @dentry:	victim
5323  * @delegated_inode: returns victim inode, if the inode is delegated.
5324  *
5325  * The caller must hold dir->i_rwsem exclusively.
5326  *
5327  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
5328  * return a reference to the inode in delegated_inode.  The caller
5329  * should then break the delegation on that inode and retry.  Because
5330  * breaking a delegation may take a long time, the caller should drop
5331  * dir->i_rwsem before doing so.
5332  *
5333  * Alternatively, a caller may pass NULL for delegated_inode.  This may
5334  * be appropriate for callers that expect the underlying filesystem not
5335  * to be NFS exported.
5336  *
5337  * If the inode has been found through an idmapped mount the idmap of
5338  * the vfsmount must be passed through @idmap. This function will then take
5339  * care to map the inode according to @idmap before checking permissions.
5340  * On non-idmapped mounts or if permission checking is to be performed on the
5341  * raw inode simply pass @nop_mnt_idmap.
5342  */
5343 int vfs_unlink(struct mnt_idmap *idmap, struct inode *dir,
5344 	       struct dentry *dentry, struct delegated_inode *delegated_inode)
5345 {
5346 	struct inode *target = dentry->d_inode;
5347 	int error = may_delete(idmap, dir, dentry, 0);
5348 
5349 	if (error)
5350 		return error;
5351 
5352 	if (!dir->i_op->unlink)
5353 		return -EPERM;
5354 
5355 	inode_lock(target);
5356 	if (IS_SWAPFILE(target))
5357 		error = -EPERM;
5358 	else if (is_local_mountpoint(dentry))
5359 		error = -EBUSY;
5360 	else {
5361 		error = security_inode_unlink(dir, dentry);
5362 		if (!error) {
5363 			error = try_break_deleg(dir, delegated_inode);
5364 			if (error)
5365 				goto out;
5366 			error = try_break_deleg(target, delegated_inode);
5367 			if (error)
5368 				goto out;
5369 			error = dir->i_op->unlink(dir, dentry);
5370 			if (!error) {
5371 				dont_mount(dentry);
5372 				detach_mounts(dentry);
5373 			}
5374 		}
5375 	}
5376 out:
5377 	inode_unlock(target);
5378 
5379 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
5380 	if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) {
5381 		fsnotify_unlink(dir, dentry);
5382 	} else if (!error) {
5383 		fsnotify_link_count(target);
5384 		d_delete_notify(dir, dentry);
5385 	}
5386 
5387 	return error;
5388 }
5389 EXPORT_SYMBOL(vfs_unlink);
5390 
5391 /*
5392  * Make sure that the actual truncation of the file will occur outside its
5393  * directory's i_rwsem.  Truncate can take a long time if there is a lot of
5394  * writeout happening, and we don't want to prevent access to the directory
5395  * while waiting on the I/O.
5396  */
5397 int do_unlinkat(int dfd, struct filename *name)
5398 {
5399 	int error;
5400 	struct dentry *dentry;
5401 	struct path path;
5402 	struct qstr last;
5403 	int type;
5404 	struct inode *inode;
5405 	struct delegated_inode delegated_inode = { };
5406 	unsigned int lookup_flags = 0;
5407 retry:
5408 	error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
5409 	if (error)
5410 		goto exit_putname;
5411 
5412 	error = -EISDIR;
5413 	if (type != LAST_NORM)
5414 		goto exit_path_put;
5415 
5416 	error = mnt_want_write(path.mnt);
5417 	if (error)
5418 		goto exit_path_put;
5419 retry_deleg:
5420 	dentry = start_dirop(path.dentry, &last, lookup_flags);
5421 	error = PTR_ERR(dentry);
5422 	if (IS_ERR(dentry))
5423 		goto exit_drop_write;
5424 
5425 	/* Why not before? Because we want correct error value */
5426 	if (unlikely(last.name[last.len])) {
5427 		if (d_is_dir(dentry))
5428 			error = -EISDIR;
5429 		else
5430 			error = -ENOTDIR;
5431 		end_dirop(dentry);
5432 		goto exit_drop_write;
5433 	}
5434 	inode = dentry->d_inode;
5435 	ihold(inode);
5436 	error = security_path_unlink(&path, dentry);
5437 	if (error)
5438 		goto exit_end_dirop;
5439 	error = vfs_unlink(mnt_idmap(path.mnt), path.dentry->d_inode,
5440 			   dentry, &delegated_inode);
5441 exit_end_dirop:
5442 	end_dirop(dentry);
5443 	iput(inode);	/* truncate the inode here */
5444 	if (is_delegated(&delegated_inode)) {
5445 		error = break_deleg_wait(&delegated_inode);
5446 		if (!error)
5447 			goto retry_deleg;
5448 	}
5449 exit_drop_write:
5450 	mnt_drop_write(path.mnt);
5451 exit_path_put:
5452 	path_put(&path);
5453 	if (retry_estale(error, lookup_flags)) {
5454 		lookup_flags |= LOOKUP_REVAL;
5455 		goto retry;
5456 	}
5457 exit_putname:
5458 	putname(name);
5459 	return error;
5460 }
5461 
5462 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
5463 {
5464 	if ((flag & ~AT_REMOVEDIR) != 0)
5465 		return -EINVAL;
5466 
5467 	if (flag & AT_REMOVEDIR)
5468 		return do_rmdir(dfd, getname(pathname));
5469 	return do_unlinkat(dfd, getname(pathname));
5470 }
5471 
5472 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
5473 {
5474 	return do_unlinkat(AT_FDCWD, getname(pathname));
5475 }
5476 
5477 /**
5478  * vfs_symlink - create symlink
5479  * @idmap:	idmap of the mount the inode was found from
5480  * @dir:	inode of the parent directory
5481  * @dentry:	dentry of the child symlink file
5482  * @oldname:	name of the file to link to
5483  * @delegated_inode: returns victim inode, if the inode is delegated.
5484  *
5485  * Create a symlink.
5486  *
5487  * If the inode has been found through an idmapped mount the idmap of
5488  * the vfsmount must be passed through @idmap. This function will then take
5489  * care to map the inode according to @idmap before checking permissions.
5490  * On non-idmapped mounts or if permission checking is to be performed on the
5491  * raw inode simply pass @nop_mnt_idmap.
5492  */
5493 int vfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
5494 		struct dentry *dentry, const char *oldname,
5495 		struct delegated_inode *delegated_inode)
5496 {
5497 	int error;
5498 
5499 	error = may_create(idmap, dir, dentry);
5500 	if (error)
5501 		return error;
5502 
5503 	if (!dir->i_op->symlink)
5504 		return -EPERM;
5505 
5506 	error = security_inode_symlink(dir, dentry, oldname);
5507 	if (error)
5508 		return error;
5509 
5510 	error = try_break_deleg(dir, delegated_inode);
5511 	if (error)
5512 		return error;
5513 
5514 	error = dir->i_op->symlink(idmap, dir, dentry, oldname);
5515 	if (!error)
5516 		fsnotify_create(dir, dentry);
5517 	return error;
5518 }
5519 EXPORT_SYMBOL(vfs_symlink);
5520 
5521 int do_symlinkat(struct filename *from, int newdfd, struct filename *to)
5522 {
5523 	int error;
5524 	struct dentry *dentry;
5525 	struct path path;
5526 	unsigned int lookup_flags = 0;
5527 	struct delegated_inode delegated_inode = { };
5528 
5529 	if (IS_ERR(from)) {
5530 		error = PTR_ERR(from);
5531 		goto out_putnames;
5532 	}
5533 retry:
5534 	dentry = filename_create(newdfd, to, &path, lookup_flags);
5535 	error = PTR_ERR(dentry);
5536 	if (IS_ERR(dentry))
5537 		goto out_putnames;
5538 
5539 	error = security_path_symlink(&path, dentry, from->name);
5540 	if (!error)
5541 		error = vfs_symlink(mnt_idmap(path.mnt), path.dentry->d_inode,
5542 				    dentry, from->name, &delegated_inode);
5543 	end_creating_path(&path, dentry);
5544 	if (is_delegated(&delegated_inode)) {
5545 		error = break_deleg_wait(&delegated_inode);
5546 		if (!error)
5547 			goto retry;
5548 	}
5549 	if (retry_estale(error, lookup_flags)) {
5550 		lookup_flags |= LOOKUP_REVAL;
5551 		goto retry;
5552 	}
5553 out_putnames:
5554 	putname(to);
5555 	putname(from);
5556 	return error;
5557 }
5558 
5559 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
5560 		int, newdfd, const char __user *, newname)
5561 {
5562 	return do_symlinkat(getname(oldname), newdfd, getname(newname));
5563 }
5564 
5565 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
5566 {
5567 	return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname));
5568 }
5569 
5570 /**
5571  * vfs_link - create a new link
5572  * @old_dentry:	object to be linked
5573  * @idmap:	idmap of the mount
5574  * @dir:	new parent
5575  * @new_dentry:	where to create the new link
5576  * @delegated_inode: returns inode needing a delegation break
5577  *
5578  * The caller must hold dir->i_rwsem exclusively.
5579  *
5580  * If vfs_link discovers a delegation on the to-be-linked file in need
5581  * of breaking, it will return -EWOULDBLOCK and return a reference to the
5582  * inode in delegated_inode.  The caller should then break the delegation
5583  * and retry.  Because breaking a delegation may take a long time, the
5584  * caller should drop the i_rwsem before doing so.
5585  *
5586  * Alternatively, a caller may pass NULL for delegated_inode.  This may
5587  * be appropriate for callers that expect the underlying filesystem not
5588  * to be NFS exported.
5589  *
5590  * If the inode has been found through an idmapped mount the idmap of
5591  * the vfsmount must be passed through @idmap. This function will then take
5592  * care to map the inode according to @idmap before checking permissions.
5593  * On non-idmapped mounts or if permission checking is to be performed on the
5594  * raw inode simply pass @nop_mnt_idmap.
5595  */
5596 int vfs_link(struct dentry *old_dentry, struct mnt_idmap *idmap,
5597 	     struct inode *dir, struct dentry *new_dentry,
5598 	     struct delegated_inode *delegated_inode)
5599 {
5600 	struct inode *inode = old_dentry->d_inode;
5601 	unsigned max_links = dir->i_sb->s_max_links;
5602 	int error;
5603 
5604 	if (!inode)
5605 		return -ENOENT;
5606 
5607 	error = may_create(idmap, dir, new_dentry);
5608 	if (error)
5609 		return error;
5610 
5611 	if (dir->i_sb != inode->i_sb)
5612 		return -EXDEV;
5613 
5614 	/*
5615 	 * A link to an append-only or immutable file cannot be created.
5616 	 */
5617 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
5618 		return -EPERM;
5619 	/*
5620 	 * Updating the link count will likely cause i_uid and i_gid to
5621 	 * be written back improperly if their true value is unknown to
5622 	 * the vfs.
5623 	 */
5624 	if (HAS_UNMAPPED_ID(idmap, inode))
5625 		return -EPERM;
5626 	if (!dir->i_op->link)
5627 		return -EPERM;
5628 	if (S_ISDIR(inode->i_mode))
5629 		return -EPERM;
5630 
5631 	error = security_inode_link(old_dentry, dir, new_dentry);
5632 	if (error)
5633 		return error;
5634 
5635 	inode_lock(inode);
5636 	/* Make sure we don't allow creating hardlink to an unlinked file */
5637 	if (inode->i_nlink == 0 && !(inode_state_read_once(inode) & I_LINKABLE))
5638 		error =  -ENOENT;
5639 	else if (max_links && inode->i_nlink >= max_links)
5640 		error = -EMLINK;
5641 	else {
5642 		error = try_break_deleg(dir, delegated_inode);
5643 		if (!error)
5644 			error = try_break_deleg(inode, delegated_inode);
5645 		if (!error)
5646 			error = dir->i_op->link(old_dentry, dir, new_dentry);
5647 	}
5648 
5649 	if (!error && (inode_state_read_once(inode) & I_LINKABLE)) {
5650 		spin_lock(&inode->i_lock);
5651 		inode_state_clear(inode, I_LINKABLE);
5652 		spin_unlock(&inode->i_lock);
5653 	}
5654 	inode_unlock(inode);
5655 	if (!error)
5656 		fsnotify_link(dir, inode, new_dentry);
5657 	return error;
5658 }
5659 EXPORT_SYMBOL(vfs_link);
5660 
5661 /*
5662  * Hardlinks are often used in delicate situations.  We avoid
5663  * security-related surprises by not following symlinks on the
5664  * newname.  --KAB
5665  *
5666  * We don't follow them on the oldname either to be compatible
5667  * with linux 2.0, and to avoid hard-linking to directories
5668  * and other special files.  --ADM
5669  */
5670 int do_linkat(int olddfd, struct filename *old, int newdfd,
5671 	      struct filename *new, int flags)
5672 {
5673 	struct mnt_idmap *idmap;
5674 	struct dentry *new_dentry;
5675 	struct path old_path, new_path;
5676 	struct delegated_inode delegated_inode = { };
5677 	int how = 0;
5678 	int error;
5679 
5680 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) {
5681 		error = -EINVAL;
5682 		goto out_putnames;
5683 	}
5684 	/*
5685 	 * To use null names we require CAP_DAC_READ_SEARCH or
5686 	 * that the open-time creds of the dfd matches current.
5687 	 * This ensures that not everyone will be able to create
5688 	 * a hardlink using the passed file descriptor.
5689 	 */
5690 	if (flags & AT_EMPTY_PATH)
5691 		how |= LOOKUP_LINKAT_EMPTY;
5692 
5693 	if (flags & AT_SYMLINK_FOLLOW)
5694 		how |= LOOKUP_FOLLOW;
5695 retry:
5696 	error = filename_lookup(olddfd, old, how, &old_path, NULL);
5697 	if (error)
5698 		goto out_putnames;
5699 
5700 	new_dentry = filename_create(newdfd, new, &new_path,
5701 					(how & LOOKUP_REVAL));
5702 	error = PTR_ERR(new_dentry);
5703 	if (IS_ERR(new_dentry))
5704 		goto out_putpath;
5705 
5706 	error = -EXDEV;
5707 	if (old_path.mnt != new_path.mnt)
5708 		goto out_dput;
5709 	idmap = mnt_idmap(new_path.mnt);
5710 	error = may_linkat(idmap, &old_path);
5711 	if (unlikely(error))
5712 		goto out_dput;
5713 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
5714 	if (error)
5715 		goto out_dput;
5716 	error = vfs_link(old_path.dentry, idmap, new_path.dentry->d_inode,
5717 			 new_dentry, &delegated_inode);
5718 out_dput:
5719 	end_creating_path(&new_path, new_dentry);
5720 	if (is_delegated(&delegated_inode)) {
5721 		error = break_deleg_wait(&delegated_inode);
5722 		if (!error) {
5723 			path_put(&old_path);
5724 			goto retry;
5725 		}
5726 	}
5727 	if (retry_estale(error, how)) {
5728 		path_put(&old_path);
5729 		how |= LOOKUP_REVAL;
5730 		goto retry;
5731 	}
5732 out_putpath:
5733 	path_put(&old_path);
5734 out_putnames:
5735 	putname(old);
5736 	putname(new);
5737 
5738 	return error;
5739 }
5740 
5741 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
5742 		int, newdfd, const char __user *, newname, int, flags)
5743 {
5744 	return do_linkat(olddfd, getname_uflags(oldname, flags),
5745 		newdfd, getname(newname), flags);
5746 }
5747 
5748 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
5749 {
5750 	return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0);
5751 }
5752 
5753 /**
5754  * vfs_rename - rename a filesystem object
5755  * @rd:		pointer to &struct renamedata info
5756  *
5757  * The caller must hold multiple mutexes--see lock_rename()).
5758  *
5759  * If vfs_rename discovers a delegation in need of breaking at either
5760  * the source or destination, it will return -EWOULDBLOCK and return a
5761  * reference to the inode in delegated_inode.  The caller should then
5762  * break the delegation and retry.  Because breaking a delegation may
5763  * take a long time, the caller should drop all locks before doing
5764  * so.
5765  *
5766  * Alternatively, a caller may pass NULL for delegated_inode.  This may
5767  * be appropriate for callers that expect the underlying filesystem not
5768  * to be NFS exported.
5769  *
5770  * The worst of all namespace operations - renaming directory. "Perverted"
5771  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
5772  * Problems:
5773  *
5774  *	a) we can get into loop creation.
5775  *	b) race potential - two innocent renames can create a loop together.
5776  *	   That's where 4.4BSD screws up. Current fix: serialization on
5777  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
5778  *	   story.
5779  *	c) we may have to lock up to _four_ objects - parents and victim (if it exists),
5780  *	   and source (if it's a non-directory or a subdirectory that moves to
5781  *	   different parent).
5782  *	   And that - after we got ->i_rwsem on parents (until then we don't know
5783  *	   whether the target exists).  Solution: try to be smart with locking
5784  *	   order for inodes.  We rely on the fact that tree topology may change
5785  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
5786  *	   move will be locked.  Thus we can rank directories by the tree
5787  *	   (ancestors first) and rank all non-directories after them.
5788  *	   That works since everybody except rename does "lock parent, lookup,
5789  *	   lock child" and rename is under ->s_vfs_rename_mutex.
5790  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
5791  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
5792  *	   we'd better make sure that there's no link(2) for them.
5793  *	d) conversion from fhandle to dentry may come in the wrong moment - when
5794  *	   we are removing the target. Solution: we will have to grab ->i_rwsem
5795  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
5796  *	   ->i_rwsem on parents, which works but leads to some truly excessive
5797  *	   locking].
5798  */
5799 int vfs_rename(struct renamedata *rd)
5800 {
5801 	int error;
5802 	struct inode *old_dir = d_inode(rd->old_parent);
5803 	struct inode *new_dir = d_inode(rd->new_parent);
5804 	struct dentry *old_dentry = rd->old_dentry;
5805 	struct dentry *new_dentry = rd->new_dentry;
5806 	struct delegated_inode *delegated_inode = rd->delegated_inode;
5807 	unsigned int flags = rd->flags;
5808 	bool is_dir = d_is_dir(old_dentry);
5809 	struct inode *source = old_dentry->d_inode;
5810 	struct inode *target = new_dentry->d_inode;
5811 	bool new_is_dir = false;
5812 	unsigned max_links = new_dir->i_sb->s_max_links;
5813 	struct name_snapshot old_name;
5814 	bool lock_old_subdir, lock_new_subdir;
5815 
5816 	if (source == target)
5817 		return 0;
5818 
5819 	error = may_delete(rd->mnt_idmap, old_dir, old_dentry, is_dir);
5820 	if (error)
5821 		return error;
5822 
5823 	if (!target) {
5824 		error = may_create(rd->mnt_idmap, new_dir, new_dentry);
5825 	} else {
5826 		new_is_dir = d_is_dir(new_dentry);
5827 
5828 		if (!(flags & RENAME_EXCHANGE))
5829 			error = may_delete(rd->mnt_idmap, new_dir,
5830 					   new_dentry, is_dir);
5831 		else
5832 			error = may_delete(rd->mnt_idmap, new_dir,
5833 					   new_dentry, new_is_dir);
5834 	}
5835 	if (error)
5836 		return error;
5837 
5838 	if (!old_dir->i_op->rename)
5839 		return -EPERM;
5840 
5841 	/*
5842 	 * If we are going to change the parent - check write permissions,
5843 	 * we'll need to flip '..'.
5844 	 */
5845 	if (new_dir != old_dir) {
5846 		if (is_dir) {
5847 			error = inode_permission(rd->mnt_idmap, source,
5848 						 MAY_WRITE);
5849 			if (error)
5850 				return error;
5851 		}
5852 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
5853 			error = inode_permission(rd->mnt_idmap, target,
5854 						 MAY_WRITE);
5855 			if (error)
5856 				return error;
5857 		}
5858 	}
5859 
5860 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
5861 				      flags);
5862 	if (error)
5863 		return error;
5864 
5865 	take_dentry_name_snapshot(&old_name, old_dentry);
5866 	dget(new_dentry);
5867 	/*
5868 	 * Lock children.
5869 	 * The source subdirectory needs to be locked on cross-directory
5870 	 * rename or cross-directory exchange since its parent changes.
5871 	 * The target subdirectory needs to be locked on cross-directory
5872 	 * exchange due to parent change and on any rename due to becoming
5873 	 * a victim.
5874 	 * Non-directories need locking in all cases (for NFS reasons);
5875 	 * they get locked after any subdirectories (in inode address order).
5876 	 *
5877 	 * NOTE: WE ONLY LOCK UNRELATED DIRECTORIES IN CROSS-DIRECTORY CASE.
5878 	 * NEVER, EVER DO THAT WITHOUT ->s_vfs_rename_mutex.
5879 	 */
5880 	lock_old_subdir = new_dir != old_dir;
5881 	lock_new_subdir = new_dir != old_dir || !(flags & RENAME_EXCHANGE);
5882 	if (is_dir) {
5883 		if (lock_old_subdir)
5884 			inode_lock_nested(source, I_MUTEX_CHILD);
5885 		if (target && (!new_is_dir || lock_new_subdir))
5886 			inode_lock(target);
5887 	} else if (new_is_dir) {
5888 		if (lock_new_subdir)
5889 			inode_lock_nested(target, I_MUTEX_CHILD);
5890 		inode_lock(source);
5891 	} else {
5892 		lock_two_nondirectories(source, target);
5893 	}
5894 
5895 	error = -EPERM;
5896 	if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target)))
5897 		goto out;
5898 
5899 	error = -EBUSY;
5900 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
5901 		goto out;
5902 
5903 	if (max_links && new_dir != old_dir) {
5904 		error = -EMLINK;
5905 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
5906 			goto out;
5907 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
5908 		    old_dir->i_nlink >= max_links)
5909 			goto out;
5910 	}
5911 	error = try_break_deleg(old_dir, delegated_inode);
5912 	if (error)
5913 		goto out;
5914 	if (new_dir != old_dir) {
5915 		error = try_break_deleg(new_dir, delegated_inode);
5916 		if (error)
5917 			goto out;
5918 	}
5919 	if (!is_dir) {
5920 		error = try_break_deleg(source, delegated_inode);
5921 		if (error)
5922 			goto out;
5923 	}
5924 	if (target && !new_is_dir) {
5925 		error = try_break_deleg(target, delegated_inode);
5926 		if (error)
5927 			goto out;
5928 	}
5929 	error = old_dir->i_op->rename(rd->mnt_idmap, old_dir, old_dentry,
5930 				      new_dir, new_dentry, flags);
5931 	if (error)
5932 		goto out;
5933 
5934 	if (!(flags & RENAME_EXCHANGE) && target) {
5935 		if (is_dir) {
5936 			shrink_dcache_parent(new_dentry);
5937 			target->i_flags |= S_DEAD;
5938 		}
5939 		dont_mount(new_dentry);
5940 		detach_mounts(new_dentry);
5941 	}
5942 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
5943 		if (!(flags & RENAME_EXCHANGE))
5944 			d_move(old_dentry, new_dentry);
5945 		else
5946 			d_exchange(old_dentry, new_dentry);
5947 	}
5948 out:
5949 	if (!is_dir || lock_old_subdir)
5950 		inode_unlock(source);
5951 	if (target && (!new_is_dir || lock_new_subdir))
5952 		inode_unlock(target);
5953 	dput(new_dentry);
5954 	if (!error) {
5955 		fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
5956 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
5957 		if (flags & RENAME_EXCHANGE) {
5958 			fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
5959 				      new_is_dir, NULL, new_dentry);
5960 		}
5961 	}
5962 	release_dentry_name_snapshot(&old_name);
5963 
5964 	return error;
5965 }
5966 EXPORT_SYMBOL(vfs_rename);
5967 
5968 int do_renameat2(int olddfd, struct filename *from, int newdfd,
5969 		 struct filename *to, unsigned int flags)
5970 {
5971 	struct renamedata rd;
5972 	struct path old_path, new_path;
5973 	struct qstr old_last, new_last;
5974 	int old_type, new_type;
5975 	struct delegated_inode delegated_inode = { };
5976 	unsigned int lookup_flags = 0;
5977 	bool should_retry = false;
5978 	int error = -EINVAL;
5979 
5980 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
5981 		goto put_names;
5982 
5983 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
5984 	    (flags & RENAME_EXCHANGE))
5985 		goto put_names;
5986 
5987 retry:
5988 	error = filename_parentat(olddfd, from, lookup_flags, &old_path,
5989 				  &old_last, &old_type);
5990 	if (error)
5991 		goto put_names;
5992 
5993 	error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
5994 				  &new_type);
5995 	if (error)
5996 		goto exit1;
5997 
5998 	error = -EXDEV;
5999 	if (old_path.mnt != new_path.mnt)
6000 		goto exit2;
6001 
6002 	error = -EBUSY;
6003 	if (old_type != LAST_NORM)
6004 		goto exit2;
6005 
6006 	if (flags & RENAME_NOREPLACE)
6007 		error = -EEXIST;
6008 	if (new_type != LAST_NORM)
6009 		goto exit2;
6010 
6011 	error = mnt_want_write(old_path.mnt);
6012 	if (error)
6013 		goto exit2;
6014 
6015 retry_deleg:
6016 	rd.old_parent	   = old_path.dentry;
6017 	rd.mnt_idmap	   = mnt_idmap(old_path.mnt);
6018 	rd.new_parent	   = new_path.dentry;
6019 	rd.delegated_inode = &delegated_inode;
6020 	rd.flags	   = flags;
6021 
6022 	error = __start_renaming(&rd, lookup_flags, &old_last, &new_last);
6023 	if (error)
6024 		goto exit_lock_rename;
6025 
6026 	if (flags & RENAME_EXCHANGE) {
6027 		if (!d_is_dir(rd.new_dentry)) {
6028 			error = -ENOTDIR;
6029 			if (new_last.name[new_last.len])
6030 				goto exit_unlock;
6031 		}
6032 	}
6033 	/* unless the source is a directory trailing slashes give -ENOTDIR */
6034 	if (!d_is_dir(rd.old_dentry)) {
6035 		error = -ENOTDIR;
6036 		if (old_last.name[old_last.len])
6037 			goto exit_unlock;
6038 		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
6039 			goto exit_unlock;
6040 	}
6041 
6042 	error = security_path_rename(&old_path, rd.old_dentry,
6043 				     &new_path, rd.new_dentry, flags);
6044 	if (error)
6045 		goto exit_unlock;
6046 
6047 	error = vfs_rename(&rd);
6048 exit_unlock:
6049 	end_renaming(&rd);
6050 exit_lock_rename:
6051 	if (is_delegated(&delegated_inode)) {
6052 		error = break_deleg_wait(&delegated_inode);
6053 		if (!error)
6054 			goto retry_deleg;
6055 	}
6056 	mnt_drop_write(old_path.mnt);
6057 exit2:
6058 	if (retry_estale(error, lookup_flags))
6059 		should_retry = true;
6060 	path_put(&new_path);
6061 exit1:
6062 	path_put(&old_path);
6063 	if (should_retry) {
6064 		should_retry = false;
6065 		lookup_flags |= LOOKUP_REVAL;
6066 		goto retry;
6067 	}
6068 put_names:
6069 	putname(from);
6070 	putname(to);
6071 	return error;
6072 }
6073 
6074 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
6075 		int, newdfd, const char __user *, newname, unsigned int, flags)
6076 {
6077 	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
6078 				flags);
6079 }
6080 
6081 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
6082 		int, newdfd, const char __user *, newname)
6083 {
6084 	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
6085 				0);
6086 }
6087 
6088 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
6089 {
6090 	return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
6091 				getname(newname), 0);
6092 }
6093 
6094 int readlink_copy(char __user *buffer, int buflen, const char *link, int linklen)
6095 {
6096 	int copylen;
6097 
6098 	copylen = linklen;
6099 	if (unlikely(copylen > (unsigned) buflen))
6100 		copylen = buflen;
6101 	if (copy_to_user(buffer, link, copylen))
6102 		copylen = -EFAULT;
6103 	return copylen;
6104 }
6105 
6106 /**
6107  * vfs_readlink - copy symlink body into userspace buffer
6108  * @dentry: dentry on which to get symbolic link
6109  * @buffer: user memory pointer
6110  * @buflen: size of buffer
6111  *
6112  * Does not touch atime.  That's up to the caller if necessary
6113  *
6114  * Does not call security hook.
6115  */
6116 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
6117 {
6118 	struct inode *inode = d_inode(dentry);
6119 	DEFINE_DELAYED_CALL(done);
6120 	const char *link;
6121 	int res;
6122 
6123 	if (inode->i_opflags & IOP_CACHED_LINK)
6124 		return readlink_copy(buffer, buflen, inode->i_link, inode->i_linklen);
6125 
6126 	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
6127 		if (unlikely(inode->i_op->readlink))
6128 			return inode->i_op->readlink(dentry, buffer, buflen);
6129 
6130 		if (!d_is_symlink(dentry))
6131 			return -EINVAL;
6132 
6133 		spin_lock(&inode->i_lock);
6134 		inode->i_opflags |= IOP_DEFAULT_READLINK;
6135 		spin_unlock(&inode->i_lock);
6136 	}
6137 
6138 	link = READ_ONCE(inode->i_link);
6139 	if (!link) {
6140 		link = inode->i_op->get_link(dentry, inode, &done);
6141 		if (IS_ERR(link))
6142 			return PTR_ERR(link);
6143 	}
6144 	res = readlink_copy(buffer, buflen, link, strlen(link));
6145 	do_delayed_call(&done);
6146 	return res;
6147 }
6148 EXPORT_SYMBOL(vfs_readlink);
6149 
6150 /**
6151  * vfs_get_link - get symlink body
6152  * @dentry: dentry on which to get symbolic link
6153  * @done: caller needs to free returned data with this
6154  *
6155  * Calls security hook and i_op->get_link() on the supplied inode.
6156  *
6157  * It does not touch atime.  That's up to the caller if necessary.
6158  *
6159  * Does not work on "special" symlinks like /proc/$$/fd/N
6160  */
6161 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
6162 {
6163 	const char *res = ERR_PTR(-EINVAL);
6164 	struct inode *inode = d_inode(dentry);
6165 
6166 	if (d_is_symlink(dentry)) {
6167 		res = ERR_PTR(security_inode_readlink(dentry));
6168 		if (!res)
6169 			res = inode->i_op->get_link(dentry, inode, done);
6170 	}
6171 	return res;
6172 }
6173 EXPORT_SYMBOL(vfs_get_link);
6174 
6175 /* get the link contents into pagecache */
6176 static char *__page_get_link(struct dentry *dentry, struct inode *inode,
6177 			     struct delayed_call *callback)
6178 {
6179 	struct folio *folio;
6180 	struct address_space *mapping = inode->i_mapping;
6181 
6182 	if (!dentry) {
6183 		folio = filemap_get_folio(mapping, 0);
6184 		if (IS_ERR(folio))
6185 			return ERR_PTR(-ECHILD);
6186 		if (!folio_test_uptodate(folio)) {
6187 			folio_put(folio);
6188 			return ERR_PTR(-ECHILD);
6189 		}
6190 	} else {
6191 		folio = read_mapping_folio(mapping, 0, NULL);
6192 		if (IS_ERR(folio))
6193 			return ERR_CAST(folio);
6194 	}
6195 	set_delayed_call(callback, page_put_link, folio);
6196 	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
6197 	return folio_address(folio);
6198 }
6199 
6200 const char *page_get_link_raw(struct dentry *dentry, struct inode *inode,
6201 			      struct delayed_call *callback)
6202 {
6203 	return __page_get_link(dentry, inode, callback);
6204 }
6205 EXPORT_SYMBOL_GPL(page_get_link_raw);
6206 
6207 /**
6208  * page_get_link() - An implementation of the get_link inode_operation.
6209  * @dentry: The directory entry which is the symlink.
6210  * @inode: The inode for the symlink.
6211  * @callback: Used to drop the reference to the symlink.
6212  *
6213  * Filesystems which store their symlinks in the page cache should use
6214  * this to implement the get_link() member of their inode_operations.
6215  *
6216  * Return: A pointer to the NUL-terminated symlink.
6217  */
6218 const char *page_get_link(struct dentry *dentry, struct inode *inode,
6219 					struct delayed_call *callback)
6220 {
6221 	char *kaddr = __page_get_link(dentry, inode, callback);
6222 
6223 	if (!IS_ERR(kaddr))
6224 		nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
6225 	return kaddr;
6226 }
6227 EXPORT_SYMBOL(page_get_link);
6228 
6229 /**
6230  * page_put_link() - Drop the reference to the symlink.
6231  * @arg: The folio which contains the symlink.
6232  *
6233  * This is used internally by page_get_link().  It is exported for use
6234  * by filesystems which need to implement a variant of page_get_link()
6235  * themselves.  Despite the apparent symmetry, filesystems which use
6236  * page_get_link() do not need to call page_put_link().
6237  *
6238  * The argument, while it has a void pointer type, must be a pointer to
6239  * the folio which was retrieved from the page cache.  The delayed_call
6240  * infrastructure is used to drop the reference count once the caller
6241  * is done with the symlink.
6242  */
6243 void page_put_link(void *arg)
6244 {
6245 	folio_put(arg);
6246 }
6247 EXPORT_SYMBOL(page_put_link);
6248 
6249 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
6250 {
6251 	const char *link;
6252 	int res;
6253 
6254 	DEFINE_DELAYED_CALL(done);
6255 	link = page_get_link(dentry, d_inode(dentry), &done);
6256 	res = PTR_ERR(link);
6257 	if (!IS_ERR(link))
6258 		res = readlink_copy(buffer, buflen, link, strlen(link));
6259 	do_delayed_call(&done);
6260 	return res;
6261 }
6262 EXPORT_SYMBOL(page_readlink);
6263 
6264 int page_symlink(struct inode *inode, const char *symname, int len)
6265 {
6266 	struct address_space *mapping = inode->i_mapping;
6267 	const struct address_space_operations *aops = mapping->a_ops;
6268 	bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS);
6269 	struct folio *folio;
6270 	void *fsdata = NULL;
6271 	int err;
6272 	unsigned int flags;
6273 
6274 retry:
6275 	if (nofs)
6276 		flags = memalloc_nofs_save();
6277 	err = aops->write_begin(NULL, mapping, 0, len-1, &folio, &fsdata);
6278 	if (nofs)
6279 		memalloc_nofs_restore(flags);
6280 	if (err)
6281 		goto fail;
6282 
6283 	memcpy(folio_address(folio), symname, len - 1);
6284 
6285 	err = aops->write_end(NULL, mapping, 0, len - 1, len - 1,
6286 						folio, fsdata);
6287 	if (err < 0)
6288 		goto fail;
6289 	if (err < len-1)
6290 		goto retry;
6291 
6292 	mark_inode_dirty(inode);
6293 	return 0;
6294 fail:
6295 	return err;
6296 }
6297 EXPORT_SYMBOL(page_symlink);
6298 
6299 const struct inode_operations page_symlink_inode_operations = {
6300 	.get_link	= page_get_link,
6301 };
6302 EXPORT_SYMBOL(page_symlink_inode_operations);
6303