xref: /linux/fs/namei.c (revision 7d12e780e003f93433d49ce78cfedf4b4c52adc5)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/quotaops.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/smp_lock.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/namei.h>
35 #include <asm/namei.h>
36 #include <asm/uaccess.h>
37 
38 #define ACC_MODE(x) ("\000\004\002\006"[(x)&O_ACCMODE])
39 
40 /* [Feb-1997 T. Schoebel-Theuer]
41  * Fundamental changes in the pathname lookup mechanisms (namei)
42  * were necessary because of omirr.  The reason is that omirr needs
43  * to know the _real_ pathname, not the user-supplied one, in case
44  * of symlinks (and also when transname replacements occur).
45  *
46  * The new code replaces the old recursive symlink resolution with
47  * an iterative one (in case of non-nested symlink chains).  It does
48  * this with calls to <fs>_follow_link().
49  * As a side effect, dir_namei(), _namei() and follow_link() are now
50  * replaced with a single function lookup_dentry() that can handle all
51  * the special cases of the former code.
52  *
53  * With the new dcache, the pathname is stored at each inode, at least as
54  * long as the refcount of the inode is positive.  As a side effect, the
55  * size of the dcache depends on the inode cache and thus is dynamic.
56  *
57  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
58  * resolution to correspond with current state of the code.
59  *
60  * Note that the symlink resolution is not *completely* iterative.
61  * There is still a significant amount of tail- and mid- recursion in
62  * the algorithm.  Also, note that <fs>_readlink() is not used in
63  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
64  * may return different results than <fs>_follow_link().  Many virtual
65  * filesystems (including /proc) exhibit this behavior.
66  */
67 
68 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
69  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
70  * and the name already exists in form of a symlink, try to create the new
71  * name indicated by the symlink. The old code always complained that the
72  * name already exists, due to not following the symlink even if its target
73  * is nonexistent.  The new semantics affects also mknod() and link() when
74  * the name is a symlink pointing to a non-existant name.
75  *
76  * I don't know which semantics is the right one, since I have no access
77  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
78  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
79  * "old" one. Personally, I think the new semantics is much more logical.
80  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
81  * file does succeed in both HP-UX and SunOs, but not in Solaris
82  * and in the old Linux semantics.
83  */
84 
85 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
86  * semantics.  See the comments in "open_namei" and "do_link" below.
87  *
88  * [10-Sep-98 Alan Modra] Another symlink change.
89  */
90 
91 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
92  *	inside the path - always follow.
93  *	in the last component in creation/removal/renaming - never follow.
94  *	if LOOKUP_FOLLOW passed - follow.
95  *	if the pathname has trailing slashes - follow.
96  *	otherwise - don't follow.
97  * (applied in that order).
98  *
99  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
100  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
101  * During the 2.4 we need to fix the userland stuff depending on it -
102  * hopefully we will be able to get rid of that wart in 2.5. So far only
103  * XEmacs seems to be relying on it...
104  */
105 /*
106  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
107  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
108  * any extra contention...
109  */
110 
111 /* In order to reduce some races, while at the same time doing additional
112  * checking and hopefully speeding things up, we copy filenames to the
113  * kernel data space before using them..
114  *
115  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
116  * PATH_MAX includes the nul terminator --RR.
117  */
118 static int do_getname(const char __user *filename, char *page)
119 {
120 	int retval;
121 	unsigned long len = PATH_MAX;
122 
123 	if (!segment_eq(get_fs(), KERNEL_DS)) {
124 		if ((unsigned long) filename >= TASK_SIZE)
125 			return -EFAULT;
126 		if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
127 			len = TASK_SIZE - (unsigned long) filename;
128 	}
129 
130 	retval = strncpy_from_user(page, filename, len);
131 	if (retval > 0) {
132 		if (retval < len)
133 			return 0;
134 		return -ENAMETOOLONG;
135 	} else if (!retval)
136 		retval = -ENOENT;
137 	return retval;
138 }
139 
140 char * getname(const char __user * filename)
141 {
142 	char *tmp, *result;
143 
144 	result = ERR_PTR(-ENOMEM);
145 	tmp = __getname();
146 	if (tmp)  {
147 		int retval = do_getname(filename, tmp);
148 
149 		result = tmp;
150 		if (retval < 0) {
151 			__putname(tmp);
152 			result = ERR_PTR(retval);
153 		}
154 	}
155 	audit_getname(result);
156 	return result;
157 }
158 
159 #ifdef CONFIG_AUDITSYSCALL
160 void putname(const char *name)
161 {
162 	if (unlikely(!audit_dummy_context()))
163 		audit_putname(name);
164 	else
165 		__putname(name);
166 }
167 EXPORT_SYMBOL(putname);
168 #endif
169 
170 
171 /**
172  * generic_permission  -  check for access rights on a Posix-like filesystem
173  * @inode:	inode to check access rights for
174  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
175  * @check_acl:	optional callback to check for Posix ACLs
176  *
177  * Used to check for read/write/execute permissions on a file.
178  * We use "fsuid" for this, letting us set arbitrary permissions
179  * for filesystem access without changing the "normal" uids which
180  * are used for other things..
181  */
182 int generic_permission(struct inode *inode, int mask,
183 		int (*check_acl)(struct inode *inode, int mask))
184 {
185 	umode_t			mode = inode->i_mode;
186 
187 	if (current->fsuid == inode->i_uid)
188 		mode >>= 6;
189 	else {
190 		if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
191 			int error = check_acl(inode, mask);
192 			if (error == -EACCES)
193 				goto check_capabilities;
194 			else if (error != -EAGAIN)
195 				return error;
196 		}
197 
198 		if (in_group_p(inode->i_gid))
199 			mode >>= 3;
200 	}
201 
202 	/*
203 	 * If the DACs are ok we don't need any capability check.
204 	 */
205 	if (((mode & mask & (MAY_READ|MAY_WRITE|MAY_EXEC)) == mask))
206 		return 0;
207 
208  check_capabilities:
209 	/*
210 	 * Read/write DACs are always overridable.
211 	 * Executable DACs are overridable if at least one exec bit is set.
212 	 */
213 	if (!(mask & MAY_EXEC) ||
214 	    (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
215 		if (capable(CAP_DAC_OVERRIDE))
216 			return 0;
217 
218 	/*
219 	 * Searching includes executable on directories, else just read.
220 	 */
221 	if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
222 		if (capable(CAP_DAC_READ_SEARCH))
223 			return 0;
224 
225 	return -EACCES;
226 }
227 
228 int permission(struct inode *inode, int mask, struct nameidata *nd)
229 {
230 	umode_t mode = inode->i_mode;
231 	int retval, submask;
232 
233 	if (mask & MAY_WRITE) {
234 
235 		/*
236 		 * Nobody gets write access to a read-only fs.
237 		 */
238 		if (IS_RDONLY(inode) &&
239 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
240 			return -EROFS;
241 
242 		/*
243 		 * Nobody gets write access to an immutable file.
244 		 */
245 		if (IS_IMMUTABLE(inode))
246 			return -EACCES;
247 	}
248 
249 
250 	/*
251 	 * MAY_EXEC on regular files requires special handling: We override
252 	 * filesystem execute permissions if the mode bits aren't set.
253 	 */
254 	if ((mask & MAY_EXEC) && S_ISREG(mode) && !(mode & S_IXUGO))
255 		return -EACCES;
256 
257 	/* Ordinary permission routines do not understand MAY_APPEND. */
258 	submask = mask & ~MAY_APPEND;
259 	if (inode->i_op && inode->i_op->permission)
260 		retval = inode->i_op->permission(inode, submask, nd);
261 	else
262 		retval = generic_permission(inode, submask, NULL);
263 	if (retval)
264 		return retval;
265 
266 	return security_inode_permission(inode, mask, nd);
267 }
268 
269 /**
270  * vfs_permission  -  check for access rights to a given path
271  * @nd:		lookup result that describes the path
272  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
273  *
274  * Used to check for read/write/execute permissions on a path.
275  * We use "fsuid" for this, letting us set arbitrary permissions
276  * for filesystem access without changing the "normal" uids which
277  * are used for other things.
278  */
279 int vfs_permission(struct nameidata *nd, int mask)
280 {
281 	return permission(nd->dentry->d_inode, mask, nd);
282 }
283 
284 /**
285  * file_permission  -  check for additional access rights to a given file
286  * @file:	file to check access rights for
287  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
288  *
289  * Used to check for read/write/execute permissions on an already opened
290  * file.
291  *
292  * Note:
293  *	Do not use this function in new code.  All access checks should
294  *	be done using vfs_permission().
295  */
296 int file_permission(struct file *file, int mask)
297 {
298 	return permission(file->f_dentry->d_inode, mask, NULL);
299 }
300 
301 /*
302  * get_write_access() gets write permission for a file.
303  * put_write_access() releases this write permission.
304  * This is used for regular files.
305  * We cannot support write (and maybe mmap read-write shared) accesses and
306  * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
307  * can have the following values:
308  * 0: no writers, no VM_DENYWRITE mappings
309  * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
310  * > 0: (i_writecount) users are writing to the file.
311  *
312  * Normally we operate on that counter with atomic_{inc,dec} and it's safe
313  * except for the cases where we don't hold i_writecount yet. Then we need to
314  * use {get,deny}_write_access() - these functions check the sign and refuse
315  * to do the change if sign is wrong. Exclusion between them is provided by
316  * the inode->i_lock spinlock.
317  */
318 
319 int get_write_access(struct inode * inode)
320 {
321 	spin_lock(&inode->i_lock);
322 	if (atomic_read(&inode->i_writecount) < 0) {
323 		spin_unlock(&inode->i_lock);
324 		return -ETXTBSY;
325 	}
326 	atomic_inc(&inode->i_writecount);
327 	spin_unlock(&inode->i_lock);
328 
329 	return 0;
330 }
331 
332 int deny_write_access(struct file * file)
333 {
334 	struct inode *inode = file->f_dentry->d_inode;
335 
336 	spin_lock(&inode->i_lock);
337 	if (atomic_read(&inode->i_writecount) > 0) {
338 		spin_unlock(&inode->i_lock);
339 		return -ETXTBSY;
340 	}
341 	atomic_dec(&inode->i_writecount);
342 	spin_unlock(&inode->i_lock);
343 
344 	return 0;
345 }
346 
347 void path_release(struct nameidata *nd)
348 {
349 	dput(nd->dentry);
350 	mntput(nd->mnt);
351 }
352 
353 /*
354  * umount() mustn't call path_release()/mntput() as that would clear
355  * mnt_expiry_mark
356  */
357 void path_release_on_umount(struct nameidata *nd)
358 {
359 	dput(nd->dentry);
360 	mntput_no_expire(nd->mnt);
361 }
362 
363 /**
364  * release_open_intent - free up open intent resources
365  * @nd: pointer to nameidata
366  */
367 void release_open_intent(struct nameidata *nd)
368 {
369 	if (nd->intent.open.file->f_dentry == NULL)
370 		put_filp(nd->intent.open.file);
371 	else
372 		fput(nd->intent.open.file);
373 }
374 
375 static inline struct dentry *
376 do_revalidate(struct dentry *dentry, struct nameidata *nd)
377 {
378 	int status = dentry->d_op->d_revalidate(dentry, nd);
379 	if (unlikely(status <= 0)) {
380 		/*
381 		 * The dentry failed validation.
382 		 * If d_revalidate returned 0 attempt to invalidate
383 		 * the dentry otherwise d_revalidate is asking us
384 		 * to return a fail status.
385 		 */
386 		if (!status) {
387 			if (!d_invalidate(dentry)) {
388 				dput(dentry);
389 				dentry = NULL;
390 			}
391 		} else {
392 			dput(dentry);
393 			dentry = ERR_PTR(status);
394 		}
395 	}
396 	return dentry;
397 }
398 
399 /*
400  * Internal lookup() using the new generic dcache.
401  * SMP-safe
402  */
403 static struct dentry * cached_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
404 {
405 	struct dentry * dentry = __d_lookup(parent, name);
406 
407 	/* lockess __d_lookup may fail due to concurrent d_move()
408 	 * in some unrelated directory, so try with d_lookup
409 	 */
410 	if (!dentry)
411 		dentry = d_lookup(parent, name);
412 
413 	if (dentry && dentry->d_op && dentry->d_op->d_revalidate)
414 		dentry = do_revalidate(dentry, nd);
415 
416 	return dentry;
417 }
418 
419 /*
420  * Short-cut version of permission(), for calling by
421  * path_walk(), when dcache lock is held.  Combines parts
422  * of permission() and generic_permission(), and tests ONLY for
423  * MAY_EXEC permission.
424  *
425  * If appropriate, check DAC only.  If not appropriate, or
426  * short-cut DAC fails, then call permission() to do more
427  * complete permission check.
428  */
429 static int exec_permission_lite(struct inode *inode,
430 				       struct nameidata *nd)
431 {
432 	umode_t	mode = inode->i_mode;
433 
434 	if (inode->i_op && inode->i_op->permission)
435 		return -EAGAIN;
436 
437 	if (current->fsuid == inode->i_uid)
438 		mode >>= 6;
439 	else if (in_group_p(inode->i_gid))
440 		mode >>= 3;
441 
442 	if (mode & MAY_EXEC)
443 		goto ok;
444 
445 	if ((inode->i_mode & S_IXUGO) && capable(CAP_DAC_OVERRIDE))
446 		goto ok;
447 
448 	if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_OVERRIDE))
449 		goto ok;
450 
451 	if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_READ_SEARCH))
452 		goto ok;
453 
454 	return -EACCES;
455 ok:
456 	return security_inode_permission(inode, MAY_EXEC, nd);
457 }
458 
459 /*
460  * This is called when everything else fails, and we actually have
461  * to go to the low-level filesystem to find out what we should do..
462  *
463  * We get the directory semaphore, and after getting that we also
464  * make sure that nobody added the entry to the dcache in the meantime..
465  * SMP-safe
466  */
467 static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
468 {
469 	struct dentry * result;
470 	struct inode *dir = parent->d_inode;
471 
472 	mutex_lock(&dir->i_mutex);
473 	/*
474 	 * First re-do the cached lookup just in case it was created
475 	 * while we waited for the directory semaphore..
476 	 *
477 	 * FIXME! This could use version numbering or similar to
478 	 * avoid unnecessary cache lookups.
479 	 *
480 	 * The "dcache_lock" is purely to protect the RCU list walker
481 	 * from concurrent renames at this point (we mustn't get false
482 	 * negatives from the RCU list walk here, unlike the optimistic
483 	 * fast walk).
484 	 *
485 	 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup
486 	 */
487 	result = d_lookup(parent, name);
488 	if (!result) {
489 		struct dentry * dentry = d_alloc(parent, name);
490 		result = ERR_PTR(-ENOMEM);
491 		if (dentry) {
492 			result = dir->i_op->lookup(dir, dentry, nd);
493 			if (result)
494 				dput(dentry);
495 			else
496 				result = dentry;
497 		}
498 		mutex_unlock(&dir->i_mutex);
499 		return result;
500 	}
501 
502 	/*
503 	 * Uhhuh! Nasty case: the cache was re-populated while
504 	 * we waited on the semaphore. Need to revalidate.
505 	 */
506 	mutex_unlock(&dir->i_mutex);
507 	if (result->d_op && result->d_op->d_revalidate) {
508 		result = do_revalidate(result, nd);
509 		if (!result)
510 			result = ERR_PTR(-ENOENT);
511 	}
512 	return result;
513 }
514 
515 static int __emul_lookup_dentry(const char *, struct nameidata *);
516 
517 /* SMP-safe */
518 static __always_inline int
519 walk_init_root(const char *name, struct nameidata *nd)
520 {
521 	struct fs_struct *fs = current->fs;
522 
523 	read_lock(&fs->lock);
524 	if (fs->altroot && !(nd->flags & LOOKUP_NOALT)) {
525 		nd->mnt = mntget(fs->altrootmnt);
526 		nd->dentry = dget(fs->altroot);
527 		read_unlock(&fs->lock);
528 		if (__emul_lookup_dentry(name,nd))
529 			return 0;
530 		read_lock(&fs->lock);
531 	}
532 	nd->mnt = mntget(fs->rootmnt);
533 	nd->dentry = dget(fs->root);
534 	read_unlock(&fs->lock);
535 	return 1;
536 }
537 
538 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
539 {
540 	int res = 0;
541 	char *name;
542 	if (IS_ERR(link))
543 		goto fail;
544 
545 	if (*link == '/') {
546 		path_release(nd);
547 		if (!walk_init_root(link, nd))
548 			/* weird __emul_prefix() stuff did it */
549 			goto out;
550 	}
551 	res = link_path_walk(link, nd);
552 out:
553 	if (nd->depth || res || nd->last_type!=LAST_NORM)
554 		return res;
555 	/*
556 	 * If it is an iterative symlinks resolution in open_namei() we
557 	 * have to copy the last component. And all that crap because of
558 	 * bloody create() on broken symlinks. Furrfu...
559 	 */
560 	name = __getname();
561 	if (unlikely(!name)) {
562 		path_release(nd);
563 		return -ENOMEM;
564 	}
565 	strcpy(name, nd->last.name);
566 	nd->last.name = name;
567 	return 0;
568 fail:
569 	path_release(nd);
570 	return PTR_ERR(link);
571 }
572 
573 struct path {
574 	struct vfsmount *mnt;
575 	struct dentry *dentry;
576 };
577 
578 static inline void dput_path(struct path *path, struct nameidata *nd)
579 {
580 	dput(path->dentry);
581 	if (path->mnt != nd->mnt)
582 		mntput(path->mnt);
583 }
584 
585 static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
586 {
587 	dput(nd->dentry);
588 	if (nd->mnt != path->mnt)
589 		mntput(nd->mnt);
590 	nd->mnt = path->mnt;
591 	nd->dentry = path->dentry;
592 }
593 
594 static __always_inline int __do_follow_link(struct path *path, struct nameidata *nd)
595 {
596 	int error;
597 	void *cookie;
598 	struct dentry *dentry = path->dentry;
599 
600 	touch_atime(path->mnt, dentry);
601 	nd_set_link(nd, NULL);
602 
603 	if (path->mnt != nd->mnt) {
604 		path_to_nameidata(path, nd);
605 		dget(dentry);
606 	}
607 	mntget(path->mnt);
608 	cookie = dentry->d_inode->i_op->follow_link(dentry, nd);
609 	error = PTR_ERR(cookie);
610 	if (!IS_ERR(cookie)) {
611 		char *s = nd_get_link(nd);
612 		error = 0;
613 		if (s)
614 			error = __vfs_follow_link(nd, s);
615 		if (dentry->d_inode->i_op->put_link)
616 			dentry->d_inode->i_op->put_link(dentry, nd, cookie);
617 	}
618 	dput(dentry);
619 	mntput(path->mnt);
620 
621 	return error;
622 }
623 
624 /*
625  * This limits recursive symlink follows to 8, while
626  * limiting consecutive symlinks to 40.
627  *
628  * Without that kind of total limit, nasty chains of consecutive
629  * symlinks can cause almost arbitrarily long lookups.
630  */
631 static inline int do_follow_link(struct path *path, struct nameidata *nd)
632 {
633 	int err = -ELOOP;
634 	if (current->link_count >= MAX_NESTED_LINKS)
635 		goto loop;
636 	if (current->total_link_count >= 40)
637 		goto loop;
638 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
639 	cond_resched();
640 	err = security_inode_follow_link(path->dentry, nd);
641 	if (err)
642 		goto loop;
643 	current->link_count++;
644 	current->total_link_count++;
645 	nd->depth++;
646 	err = __do_follow_link(path, nd);
647 	current->link_count--;
648 	nd->depth--;
649 	return err;
650 loop:
651 	dput_path(path, nd);
652 	path_release(nd);
653 	return err;
654 }
655 
656 int follow_up(struct vfsmount **mnt, struct dentry **dentry)
657 {
658 	struct vfsmount *parent;
659 	struct dentry *mountpoint;
660 	spin_lock(&vfsmount_lock);
661 	parent=(*mnt)->mnt_parent;
662 	if (parent == *mnt) {
663 		spin_unlock(&vfsmount_lock);
664 		return 0;
665 	}
666 	mntget(parent);
667 	mountpoint=dget((*mnt)->mnt_mountpoint);
668 	spin_unlock(&vfsmount_lock);
669 	dput(*dentry);
670 	*dentry = mountpoint;
671 	mntput(*mnt);
672 	*mnt = parent;
673 	return 1;
674 }
675 
676 /* no need for dcache_lock, as serialization is taken care in
677  * namespace.c
678  */
679 static int __follow_mount(struct path *path)
680 {
681 	int res = 0;
682 	while (d_mountpoint(path->dentry)) {
683 		struct vfsmount *mounted = lookup_mnt(path->mnt, path->dentry);
684 		if (!mounted)
685 			break;
686 		dput(path->dentry);
687 		if (res)
688 			mntput(path->mnt);
689 		path->mnt = mounted;
690 		path->dentry = dget(mounted->mnt_root);
691 		res = 1;
692 	}
693 	return res;
694 }
695 
696 static void follow_mount(struct vfsmount **mnt, struct dentry **dentry)
697 {
698 	while (d_mountpoint(*dentry)) {
699 		struct vfsmount *mounted = lookup_mnt(*mnt, *dentry);
700 		if (!mounted)
701 			break;
702 		dput(*dentry);
703 		mntput(*mnt);
704 		*mnt = mounted;
705 		*dentry = dget(mounted->mnt_root);
706 	}
707 }
708 
709 /* no need for dcache_lock, as serialization is taken care in
710  * namespace.c
711  */
712 int follow_down(struct vfsmount **mnt, struct dentry **dentry)
713 {
714 	struct vfsmount *mounted;
715 
716 	mounted = lookup_mnt(*mnt, *dentry);
717 	if (mounted) {
718 		dput(*dentry);
719 		mntput(*mnt);
720 		*mnt = mounted;
721 		*dentry = dget(mounted->mnt_root);
722 		return 1;
723 	}
724 	return 0;
725 }
726 
727 static __always_inline void follow_dotdot(struct nameidata *nd)
728 {
729 	struct fs_struct *fs = current->fs;
730 
731 	while(1) {
732 		struct vfsmount *parent;
733 		struct dentry *old = nd->dentry;
734 
735                 read_lock(&fs->lock);
736 		if (nd->dentry == fs->root &&
737 		    nd->mnt == fs->rootmnt) {
738                         read_unlock(&fs->lock);
739 			break;
740 		}
741                 read_unlock(&fs->lock);
742 		spin_lock(&dcache_lock);
743 		if (nd->dentry != nd->mnt->mnt_root) {
744 			nd->dentry = dget(nd->dentry->d_parent);
745 			spin_unlock(&dcache_lock);
746 			dput(old);
747 			break;
748 		}
749 		spin_unlock(&dcache_lock);
750 		spin_lock(&vfsmount_lock);
751 		parent = nd->mnt->mnt_parent;
752 		if (parent == nd->mnt) {
753 			spin_unlock(&vfsmount_lock);
754 			break;
755 		}
756 		mntget(parent);
757 		nd->dentry = dget(nd->mnt->mnt_mountpoint);
758 		spin_unlock(&vfsmount_lock);
759 		dput(old);
760 		mntput(nd->mnt);
761 		nd->mnt = parent;
762 	}
763 	follow_mount(&nd->mnt, &nd->dentry);
764 }
765 
766 /*
767  *  It's more convoluted than I'd like it to be, but... it's still fairly
768  *  small and for now I'd prefer to have fast path as straight as possible.
769  *  It _is_ time-critical.
770  */
771 static int do_lookup(struct nameidata *nd, struct qstr *name,
772 		     struct path *path)
773 {
774 	struct vfsmount *mnt = nd->mnt;
775 	struct dentry *dentry = __d_lookup(nd->dentry, name);
776 
777 	if (!dentry)
778 		goto need_lookup;
779 	if (dentry->d_op && dentry->d_op->d_revalidate)
780 		goto need_revalidate;
781 done:
782 	path->mnt = mnt;
783 	path->dentry = dentry;
784 	__follow_mount(path);
785 	return 0;
786 
787 need_lookup:
788 	dentry = real_lookup(nd->dentry, name, nd);
789 	if (IS_ERR(dentry))
790 		goto fail;
791 	goto done;
792 
793 need_revalidate:
794 	dentry = do_revalidate(dentry, nd);
795 	if (!dentry)
796 		goto need_lookup;
797 	if (IS_ERR(dentry))
798 		goto fail;
799 	goto done;
800 
801 fail:
802 	return PTR_ERR(dentry);
803 }
804 
805 /*
806  * Name resolution.
807  * This is the basic name resolution function, turning a pathname into
808  * the final dentry. We expect 'base' to be positive and a directory.
809  *
810  * Returns 0 and nd will have valid dentry and mnt on success.
811  * Returns error and drops reference to input namei data on failure.
812  */
813 static fastcall int __link_path_walk(const char * name, struct nameidata *nd)
814 {
815 	struct path next;
816 	struct inode *inode;
817 	int err;
818 	unsigned int lookup_flags = nd->flags;
819 
820 	while (*name=='/')
821 		name++;
822 	if (!*name)
823 		goto return_reval;
824 
825 	inode = nd->dentry->d_inode;
826 	if (nd->depth)
827 		lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
828 
829 	/* At this point we know we have a real path component. */
830 	for(;;) {
831 		unsigned long hash;
832 		struct qstr this;
833 		unsigned int c;
834 
835 		nd->flags |= LOOKUP_CONTINUE;
836 		err = exec_permission_lite(inode, nd);
837 		if (err == -EAGAIN)
838 			err = vfs_permission(nd, MAY_EXEC);
839  		if (err)
840 			break;
841 
842 		this.name = name;
843 		c = *(const unsigned char *)name;
844 
845 		hash = init_name_hash();
846 		do {
847 			name++;
848 			hash = partial_name_hash(c, hash);
849 			c = *(const unsigned char *)name;
850 		} while (c && (c != '/'));
851 		this.len = name - (const char *) this.name;
852 		this.hash = end_name_hash(hash);
853 
854 		/* remove trailing slashes? */
855 		if (!c)
856 			goto last_component;
857 		while (*++name == '/');
858 		if (!*name)
859 			goto last_with_slashes;
860 
861 		/*
862 		 * "." and ".." are special - ".." especially so because it has
863 		 * to be able to know about the current root directory and
864 		 * parent relationships.
865 		 */
866 		if (this.name[0] == '.') switch (this.len) {
867 			default:
868 				break;
869 			case 2:
870 				if (this.name[1] != '.')
871 					break;
872 				follow_dotdot(nd);
873 				inode = nd->dentry->d_inode;
874 				/* fallthrough */
875 			case 1:
876 				continue;
877 		}
878 		/*
879 		 * See if the low-level filesystem might want
880 		 * to use its own hash..
881 		 */
882 		if (nd->dentry->d_op && nd->dentry->d_op->d_hash) {
883 			err = nd->dentry->d_op->d_hash(nd->dentry, &this);
884 			if (err < 0)
885 				break;
886 		}
887 		/* This does the actual lookups.. */
888 		err = do_lookup(nd, &this, &next);
889 		if (err)
890 			break;
891 
892 		err = -ENOENT;
893 		inode = next.dentry->d_inode;
894 		if (!inode)
895 			goto out_dput;
896 		err = -ENOTDIR;
897 		if (!inode->i_op)
898 			goto out_dput;
899 
900 		if (inode->i_op->follow_link) {
901 			err = do_follow_link(&next, nd);
902 			if (err)
903 				goto return_err;
904 			err = -ENOENT;
905 			inode = nd->dentry->d_inode;
906 			if (!inode)
907 				break;
908 			err = -ENOTDIR;
909 			if (!inode->i_op)
910 				break;
911 		} else
912 			path_to_nameidata(&next, nd);
913 		err = -ENOTDIR;
914 		if (!inode->i_op->lookup)
915 			break;
916 		continue;
917 		/* here ends the main loop */
918 
919 last_with_slashes:
920 		lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
921 last_component:
922 		/* Clear LOOKUP_CONTINUE iff it was previously unset */
923 		nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
924 		if (lookup_flags & LOOKUP_PARENT)
925 			goto lookup_parent;
926 		if (this.name[0] == '.') switch (this.len) {
927 			default:
928 				break;
929 			case 2:
930 				if (this.name[1] != '.')
931 					break;
932 				follow_dotdot(nd);
933 				inode = nd->dentry->d_inode;
934 				/* fallthrough */
935 			case 1:
936 				goto return_reval;
937 		}
938 		if (nd->dentry->d_op && nd->dentry->d_op->d_hash) {
939 			err = nd->dentry->d_op->d_hash(nd->dentry, &this);
940 			if (err < 0)
941 				break;
942 		}
943 		err = do_lookup(nd, &this, &next);
944 		if (err)
945 			break;
946 		inode = next.dentry->d_inode;
947 		if ((lookup_flags & LOOKUP_FOLLOW)
948 		    && inode && inode->i_op && inode->i_op->follow_link) {
949 			err = do_follow_link(&next, nd);
950 			if (err)
951 				goto return_err;
952 			inode = nd->dentry->d_inode;
953 		} else
954 			path_to_nameidata(&next, nd);
955 		err = -ENOENT;
956 		if (!inode)
957 			break;
958 		if (lookup_flags & LOOKUP_DIRECTORY) {
959 			err = -ENOTDIR;
960 			if (!inode->i_op || !inode->i_op->lookup)
961 				break;
962 		}
963 		goto return_base;
964 lookup_parent:
965 		nd->last = this;
966 		nd->last_type = LAST_NORM;
967 		if (this.name[0] != '.')
968 			goto return_base;
969 		if (this.len == 1)
970 			nd->last_type = LAST_DOT;
971 		else if (this.len == 2 && this.name[1] == '.')
972 			nd->last_type = LAST_DOTDOT;
973 		else
974 			goto return_base;
975 return_reval:
976 		/*
977 		 * We bypassed the ordinary revalidation routines.
978 		 * We may need to check the cached dentry for staleness.
979 		 */
980 		if (nd->dentry && nd->dentry->d_sb &&
981 		    (nd->dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
982 			err = -ESTALE;
983 			/* Note: we do not d_invalidate() */
984 			if (!nd->dentry->d_op->d_revalidate(nd->dentry, nd))
985 				break;
986 		}
987 return_base:
988 		return 0;
989 out_dput:
990 		dput_path(&next, nd);
991 		break;
992 	}
993 	path_release(nd);
994 return_err:
995 	return err;
996 }
997 
998 /*
999  * Wrapper to retry pathname resolution whenever the underlying
1000  * file system returns an ESTALE.
1001  *
1002  * Retry the whole path once, forcing real lookup requests
1003  * instead of relying on the dcache.
1004  */
1005 int fastcall link_path_walk(const char *name, struct nameidata *nd)
1006 {
1007 	struct nameidata save = *nd;
1008 	int result;
1009 
1010 	/* make sure the stuff we saved doesn't go away */
1011 	dget(save.dentry);
1012 	mntget(save.mnt);
1013 
1014 	result = __link_path_walk(name, nd);
1015 	if (result == -ESTALE) {
1016 		*nd = save;
1017 		dget(nd->dentry);
1018 		mntget(nd->mnt);
1019 		nd->flags |= LOOKUP_REVAL;
1020 		result = __link_path_walk(name, nd);
1021 	}
1022 
1023 	dput(save.dentry);
1024 	mntput(save.mnt);
1025 
1026 	return result;
1027 }
1028 
1029 int fastcall path_walk(const char * name, struct nameidata *nd)
1030 {
1031 	current->total_link_count = 0;
1032 	return link_path_walk(name, nd);
1033 }
1034 
1035 /*
1036  * SMP-safe: Returns 1 and nd will have valid dentry and mnt, if
1037  * everything is done. Returns 0 and drops input nd, if lookup failed;
1038  */
1039 static int __emul_lookup_dentry(const char *name, struct nameidata *nd)
1040 {
1041 	if (path_walk(name, nd))
1042 		return 0;		/* something went wrong... */
1043 
1044 	if (!nd->dentry->d_inode || S_ISDIR(nd->dentry->d_inode->i_mode)) {
1045 		struct dentry *old_dentry = nd->dentry;
1046 		struct vfsmount *old_mnt = nd->mnt;
1047 		struct qstr last = nd->last;
1048 		int last_type = nd->last_type;
1049 		struct fs_struct *fs = current->fs;
1050 
1051 		/*
1052 		 * NAME was not found in alternate root or it's a directory.
1053 		 * Try to find it in the normal root:
1054 		 */
1055 		nd->last_type = LAST_ROOT;
1056 		read_lock(&fs->lock);
1057 		nd->mnt = mntget(fs->rootmnt);
1058 		nd->dentry = dget(fs->root);
1059 		read_unlock(&fs->lock);
1060 		if (path_walk(name, nd) == 0) {
1061 			if (nd->dentry->d_inode) {
1062 				dput(old_dentry);
1063 				mntput(old_mnt);
1064 				return 1;
1065 			}
1066 			path_release(nd);
1067 		}
1068 		nd->dentry = old_dentry;
1069 		nd->mnt = old_mnt;
1070 		nd->last = last;
1071 		nd->last_type = last_type;
1072 	}
1073 	return 1;
1074 }
1075 
1076 void set_fs_altroot(void)
1077 {
1078 	char *emul = __emul_prefix();
1079 	struct nameidata nd;
1080 	struct vfsmount *mnt = NULL, *oldmnt;
1081 	struct dentry *dentry = NULL, *olddentry;
1082 	int err;
1083 	struct fs_struct *fs = current->fs;
1084 
1085 	if (!emul)
1086 		goto set_it;
1087 	err = path_lookup(emul, LOOKUP_FOLLOW|LOOKUP_DIRECTORY|LOOKUP_NOALT, &nd);
1088 	if (!err) {
1089 		mnt = nd.mnt;
1090 		dentry = nd.dentry;
1091 	}
1092 set_it:
1093 	write_lock(&fs->lock);
1094 	oldmnt = fs->altrootmnt;
1095 	olddentry = fs->altroot;
1096 	fs->altrootmnt = mnt;
1097 	fs->altroot = dentry;
1098 	write_unlock(&fs->lock);
1099 	if (olddentry) {
1100 		dput(olddentry);
1101 		mntput(oldmnt);
1102 	}
1103 }
1104 
1105 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1106 static int fastcall do_path_lookup(int dfd, const char *name,
1107 				unsigned int flags, struct nameidata *nd)
1108 {
1109 	int retval = 0;
1110 	int fput_needed;
1111 	struct file *file;
1112 	struct fs_struct *fs = current->fs;
1113 
1114 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1115 	nd->flags = flags;
1116 	nd->depth = 0;
1117 
1118 	if (*name=='/') {
1119 		read_lock(&fs->lock);
1120 		if (fs->altroot && !(nd->flags & LOOKUP_NOALT)) {
1121 			nd->mnt = mntget(fs->altrootmnt);
1122 			nd->dentry = dget(fs->altroot);
1123 			read_unlock(&fs->lock);
1124 			if (__emul_lookup_dentry(name,nd))
1125 				goto out; /* found in altroot */
1126 			read_lock(&fs->lock);
1127 		}
1128 		nd->mnt = mntget(fs->rootmnt);
1129 		nd->dentry = dget(fs->root);
1130 		read_unlock(&fs->lock);
1131 	} else if (dfd == AT_FDCWD) {
1132 		read_lock(&fs->lock);
1133 		nd->mnt = mntget(fs->pwdmnt);
1134 		nd->dentry = dget(fs->pwd);
1135 		read_unlock(&fs->lock);
1136 	} else {
1137 		struct dentry *dentry;
1138 
1139 		file = fget_light(dfd, &fput_needed);
1140 		retval = -EBADF;
1141 		if (!file)
1142 			goto out_fail;
1143 
1144 		dentry = file->f_dentry;
1145 
1146 		retval = -ENOTDIR;
1147 		if (!S_ISDIR(dentry->d_inode->i_mode))
1148 			goto fput_fail;
1149 
1150 		retval = file_permission(file, MAY_EXEC);
1151 		if (retval)
1152 			goto fput_fail;
1153 
1154 		nd->mnt = mntget(file->f_vfsmnt);
1155 		nd->dentry = dget(dentry);
1156 
1157 		fput_light(file, fput_needed);
1158 	}
1159 	current->total_link_count = 0;
1160 	retval = link_path_walk(name, nd);
1161 out:
1162 	if (likely(retval == 0)) {
1163 		if (unlikely(!audit_dummy_context() && nd && nd->dentry &&
1164 				nd->dentry->d_inode))
1165 		audit_inode(name, nd->dentry->d_inode);
1166 	}
1167 out_fail:
1168 	return retval;
1169 
1170 fput_fail:
1171 	fput_light(file, fput_needed);
1172 	goto out_fail;
1173 }
1174 
1175 int fastcall path_lookup(const char *name, unsigned int flags,
1176 			struct nameidata *nd)
1177 {
1178 	return do_path_lookup(AT_FDCWD, name, flags, nd);
1179 }
1180 
1181 static int __path_lookup_intent_open(int dfd, const char *name,
1182 		unsigned int lookup_flags, struct nameidata *nd,
1183 		int open_flags, int create_mode)
1184 {
1185 	struct file *filp = get_empty_filp();
1186 	int err;
1187 
1188 	if (filp == NULL)
1189 		return -ENFILE;
1190 	nd->intent.open.file = filp;
1191 	nd->intent.open.flags = open_flags;
1192 	nd->intent.open.create_mode = create_mode;
1193 	err = do_path_lookup(dfd, name, lookup_flags|LOOKUP_OPEN, nd);
1194 	if (IS_ERR(nd->intent.open.file)) {
1195 		if (err == 0) {
1196 			err = PTR_ERR(nd->intent.open.file);
1197 			path_release(nd);
1198 		}
1199 	} else if (err != 0)
1200 		release_open_intent(nd);
1201 	return err;
1202 }
1203 
1204 /**
1205  * path_lookup_open - lookup a file path with open intent
1206  * @dfd: the directory to use as base, or AT_FDCWD
1207  * @name: pointer to file name
1208  * @lookup_flags: lookup intent flags
1209  * @nd: pointer to nameidata
1210  * @open_flags: open intent flags
1211  */
1212 int path_lookup_open(int dfd, const char *name, unsigned int lookup_flags,
1213 		struct nameidata *nd, int open_flags)
1214 {
1215 	return __path_lookup_intent_open(dfd, name, lookup_flags, nd,
1216 			open_flags, 0);
1217 }
1218 
1219 /**
1220  * path_lookup_create - lookup a file path with open + create intent
1221  * @dfd: the directory to use as base, or AT_FDCWD
1222  * @name: pointer to file name
1223  * @lookup_flags: lookup intent flags
1224  * @nd: pointer to nameidata
1225  * @open_flags: open intent flags
1226  * @create_mode: create intent flags
1227  */
1228 static int path_lookup_create(int dfd, const char *name,
1229 			      unsigned int lookup_flags, struct nameidata *nd,
1230 			      int open_flags, int create_mode)
1231 {
1232 	return __path_lookup_intent_open(dfd, name, lookup_flags|LOOKUP_CREATE,
1233 			nd, open_flags, create_mode);
1234 }
1235 
1236 int __user_path_lookup_open(const char __user *name, unsigned int lookup_flags,
1237 		struct nameidata *nd, int open_flags)
1238 {
1239 	char *tmp = getname(name);
1240 	int err = PTR_ERR(tmp);
1241 
1242 	if (!IS_ERR(tmp)) {
1243 		err = __path_lookup_intent_open(AT_FDCWD, tmp, lookup_flags, nd, open_flags, 0);
1244 		putname(tmp);
1245 	}
1246 	return err;
1247 }
1248 
1249 /*
1250  * Restricted form of lookup. Doesn't follow links, single-component only,
1251  * needs parent already locked. Doesn't follow mounts.
1252  * SMP-safe.
1253  */
1254 static struct dentry * __lookup_hash(struct qstr *name, struct dentry * base, struct nameidata *nd)
1255 {
1256 	struct dentry * dentry;
1257 	struct inode *inode;
1258 	int err;
1259 
1260 	inode = base->d_inode;
1261 	err = permission(inode, MAY_EXEC, nd);
1262 	dentry = ERR_PTR(err);
1263 	if (err)
1264 		goto out;
1265 
1266 	/*
1267 	 * See if the low-level filesystem might want
1268 	 * to use its own hash..
1269 	 */
1270 	if (base->d_op && base->d_op->d_hash) {
1271 		err = base->d_op->d_hash(base, name);
1272 		dentry = ERR_PTR(err);
1273 		if (err < 0)
1274 			goto out;
1275 	}
1276 
1277 	dentry = cached_lookup(base, name, nd);
1278 	if (!dentry) {
1279 		struct dentry *new = d_alloc(base, name);
1280 		dentry = ERR_PTR(-ENOMEM);
1281 		if (!new)
1282 			goto out;
1283 		dentry = inode->i_op->lookup(inode, new, nd);
1284 		if (!dentry)
1285 			dentry = new;
1286 		else
1287 			dput(new);
1288 	}
1289 out:
1290 	return dentry;
1291 }
1292 
1293 static struct dentry *lookup_hash(struct nameidata *nd)
1294 {
1295 	return __lookup_hash(&nd->last, nd->dentry, nd);
1296 }
1297 
1298 /* SMP-safe */
1299 struct dentry * lookup_one_len(const char * name, struct dentry * base, int len)
1300 {
1301 	unsigned long hash;
1302 	struct qstr this;
1303 	unsigned int c;
1304 
1305 	this.name = name;
1306 	this.len = len;
1307 	if (!len)
1308 		goto access;
1309 
1310 	hash = init_name_hash();
1311 	while (len--) {
1312 		c = *(const unsigned char *)name++;
1313 		if (c == '/' || c == '\0')
1314 			goto access;
1315 		hash = partial_name_hash(c, hash);
1316 	}
1317 	this.hash = end_name_hash(hash);
1318 
1319 	return __lookup_hash(&this, base, NULL);
1320 access:
1321 	return ERR_PTR(-EACCES);
1322 }
1323 
1324 /*
1325  *	namei()
1326  *
1327  * is used by most simple commands to get the inode of a specified name.
1328  * Open, link etc use their own routines, but this is enough for things
1329  * like 'chmod' etc.
1330  *
1331  * namei exists in two versions: namei/lnamei. The only difference is
1332  * that namei follows links, while lnamei does not.
1333  * SMP-safe
1334  */
1335 int fastcall __user_walk_fd(int dfd, const char __user *name, unsigned flags,
1336 			    struct nameidata *nd)
1337 {
1338 	char *tmp = getname(name);
1339 	int err = PTR_ERR(tmp);
1340 
1341 	if (!IS_ERR(tmp)) {
1342 		err = do_path_lookup(dfd, tmp, flags, nd);
1343 		putname(tmp);
1344 	}
1345 	return err;
1346 }
1347 
1348 int fastcall __user_walk(const char __user *name, unsigned flags, struct nameidata *nd)
1349 {
1350 	return __user_walk_fd(AT_FDCWD, name, flags, nd);
1351 }
1352 
1353 /*
1354  * It's inline, so penalty for filesystems that don't use sticky bit is
1355  * minimal.
1356  */
1357 static inline int check_sticky(struct inode *dir, struct inode *inode)
1358 {
1359 	if (!(dir->i_mode & S_ISVTX))
1360 		return 0;
1361 	if (inode->i_uid == current->fsuid)
1362 		return 0;
1363 	if (dir->i_uid == current->fsuid)
1364 		return 0;
1365 	return !capable(CAP_FOWNER);
1366 }
1367 
1368 /*
1369  *	Check whether we can remove a link victim from directory dir, check
1370  *  whether the type of victim is right.
1371  *  1. We can't do it if dir is read-only (done in permission())
1372  *  2. We should have write and exec permissions on dir
1373  *  3. We can't remove anything from append-only dir
1374  *  4. We can't do anything with immutable dir (done in permission())
1375  *  5. If the sticky bit on dir is set we should either
1376  *	a. be owner of dir, or
1377  *	b. be owner of victim, or
1378  *	c. have CAP_FOWNER capability
1379  *  6. If the victim is append-only or immutable we can't do antyhing with
1380  *     links pointing to it.
1381  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1382  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1383  *  9. We can't remove a root or mountpoint.
1384  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1385  *     nfs_async_unlink().
1386  */
1387 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1388 {
1389 	int error;
1390 
1391 	if (!victim->d_inode)
1392 		return -ENOENT;
1393 
1394 	BUG_ON(victim->d_parent->d_inode != dir);
1395 	audit_inode_child(victim->d_name.name, victim->d_inode, dir);
1396 
1397 	error = permission(dir,MAY_WRITE | MAY_EXEC, NULL);
1398 	if (error)
1399 		return error;
1400 	if (IS_APPEND(dir))
1401 		return -EPERM;
1402 	if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1403 	    IS_IMMUTABLE(victim->d_inode))
1404 		return -EPERM;
1405 	if (isdir) {
1406 		if (!S_ISDIR(victim->d_inode->i_mode))
1407 			return -ENOTDIR;
1408 		if (IS_ROOT(victim))
1409 			return -EBUSY;
1410 	} else if (S_ISDIR(victim->d_inode->i_mode))
1411 		return -EISDIR;
1412 	if (IS_DEADDIR(dir))
1413 		return -ENOENT;
1414 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1415 		return -EBUSY;
1416 	return 0;
1417 }
1418 
1419 /*	Check whether we can create an object with dentry child in directory
1420  *  dir.
1421  *  1. We can't do it if child already exists (open has special treatment for
1422  *     this case, but since we are inlined it's OK)
1423  *  2. We can't do it if dir is read-only (done in permission())
1424  *  3. We should have write and exec permissions on dir
1425  *  4. We can't do it if dir is immutable (done in permission())
1426  */
1427 static inline int may_create(struct inode *dir, struct dentry *child,
1428 			     struct nameidata *nd)
1429 {
1430 	if (child->d_inode)
1431 		return -EEXIST;
1432 	if (IS_DEADDIR(dir))
1433 		return -ENOENT;
1434 	return permission(dir,MAY_WRITE | MAY_EXEC, nd);
1435 }
1436 
1437 /*
1438  * O_DIRECTORY translates into forcing a directory lookup.
1439  */
1440 static inline int lookup_flags(unsigned int f)
1441 {
1442 	unsigned long retval = LOOKUP_FOLLOW;
1443 
1444 	if (f & O_NOFOLLOW)
1445 		retval &= ~LOOKUP_FOLLOW;
1446 
1447 	if (f & O_DIRECTORY)
1448 		retval |= LOOKUP_DIRECTORY;
1449 
1450 	return retval;
1451 }
1452 
1453 /*
1454  * p1 and p2 should be directories on the same fs.
1455  */
1456 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1457 {
1458 	struct dentry *p;
1459 
1460 	if (p1 == p2) {
1461 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1462 		return NULL;
1463 	}
1464 
1465 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1466 
1467 	for (p = p1; p->d_parent != p; p = p->d_parent) {
1468 		if (p->d_parent == p2) {
1469 			mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1470 			mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1471 			return p;
1472 		}
1473 	}
1474 
1475 	for (p = p2; p->d_parent != p; p = p->d_parent) {
1476 		if (p->d_parent == p1) {
1477 			mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1478 			mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1479 			return p;
1480 		}
1481 	}
1482 
1483 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1484 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1485 	return NULL;
1486 }
1487 
1488 void unlock_rename(struct dentry *p1, struct dentry *p2)
1489 {
1490 	mutex_unlock(&p1->d_inode->i_mutex);
1491 	if (p1 != p2) {
1492 		mutex_unlock(&p2->d_inode->i_mutex);
1493 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1494 	}
1495 }
1496 
1497 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1498 		struct nameidata *nd)
1499 {
1500 	int error = may_create(dir, dentry, nd);
1501 
1502 	if (error)
1503 		return error;
1504 
1505 	if (!dir->i_op || !dir->i_op->create)
1506 		return -EACCES;	/* shouldn't it be ENOSYS? */
1507 	mode &= S_IALLUGO;
1508 	mode |= S_IFREG;
1509 	error = security_inode_create(dir, dentry, mode);
1510 	if (error)
1511 		return error;
1512 	DQUOT_INIT(dir);
1513 	error = dir->i_op->create(dir, dentry, mode, nd);
1514 	if (!error)
1515 		fsnotify_create(dir, dentry);
1516 	return error;
1517 }
1518 
1519 int may_open(struct nameidata *nd, int acc_mode, int flag)
1520 {
1521 	struct dentry *dentry = nd->dentry;
1522 	struct inode *inode = dentry->d_inode;
1523 	int error;
1524 
1525 	if (!inode)
1526 		return -ENOENT;
1527 
1528 	if (S_ISLNK(inode->i_mode))
1529 		return -ELOOP;
1530 
1531 	if (S_ISDIR(inode->i_mode) && (flag & FMODE_WRITE))
1532 		return -EISDIR;
1533 
1534 	error = vfs_permission(nd, acc_mode);
1535 	if (error)
1536 		return error;
1537 
1538 	/*
1539 	 * FIFO's, sockets and device files are special: they don't
1540 	 * actually live on the filesystem itself, and as such you
1541 	 * can write to them even if the filesystem is read-only.
1542 	 */
1543 	if (S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
1544 	    	flag &= ~O_TRUNC;
1545 	} else if (S_ISBLK(inode->i_mode) || S_ISCHR(inode->i_mode)) {
1546 		if (nd->mnt->mnt_flags & MNT_NODEV)
1547 			return -EACCES;
1548 
1549 		flag &= ~O_TRUNC;
1550 	} else if (IS_RDONLY(inode) && (flag & FMODE_WRITE))
1551 		return -EROFS;
1552 	/*
1553 	 * An append-only file must be opened in append mode for writing.
1554 	 */
1555 	if (IS_APPEND(inode)) {
1556 		if  ((flag & FMODE_WRITE) && !(flag & O_APPEND))
1557 			return -EPERM;
1558 		if (flag & O_TRUNC)
1559 			return -EPERM;
1560 	}
1561 
1562 	/* O_NOATIME can only be set by the owner or superuser */
1563 	if (flag & O_NOATIME)
1564 		if (current->fsuid != inode->i_uid && !capable(CAP_FOWNER))
1565 			return -EPERM;
1566 
1567 	/*
1568 	 * Ensure there are no outstanding leases on the file.
1569 	 */
1570 	error = break_lease(inode, flag);
1571 	if (error)
1572 		return error;
1573 
1574 	if (flag & O_TRUNC) {
1575 		error = get_write_access(inode);
1576 		if (error)
1577 			return error;
1578 
1579 		/*
1580 		 * Refuse to truncate files with mandatory locks held on them.
1581 		 */
1582 		error = locks_verify_locked(inode);
1583 		if (!error) {
1584 			DQUOT_INIT(inode);
1585 
1586 			error = do_truncate(dentry, 0, ATTR_MTIME|ATTR_CTIME, NULL);
1587 		}
1588 		put_write_access(inode);
1589 		if (error)
1590 			return error;
1591 	} else
1592 		if (flag & FMODE_WRITE)
1593 			DQUOT_INIT(inode);
1594 
1595 	return 0;
1596 }
1597 
1598 static int open_namei_create(struct nameidata *nd, struct path *path,
1599 				int flag, int mode)
1600 {
1601 	int error;
1602 	struct dentry *dir = nd->dentry;
1603 
1604 	if (!IS_POSIXACL(dir->d_inode))
1605 		mode &= ~current->fs->umask;
1606 	error = vfs_create(dir->d_inode, path->dentry, mode, nd);
1607 	mutex_unlock(&dir->d_inode->i_mutex);
1608 	dput(nd->dentry);
1609 	nd->dentry = path->dentry;
1610 	if (error)
1611 		return error;
1612 	/* Don't check for write permission, don't truncate */
1613 	return may_open(nd, 0, flag & ~O_TRUNC);
1614 }
1615 
1616 /*
1617  *	open_namei()
1618  *
1619  * namei for open - this is in fact almost the whole open-routine.
1620  *
1621  * Note that the low bits of "flag" aren't the same as in the open
1622  * system call - they are 00 - no permissions needed
1623  *			  01 - read permission needed
1624  *			  10 - write permission needed
1625  *			  11 - read/write permissions needed
1626  * which is a lot more logical, and also allows the "no perm" needed
1627  * for symlinks (where the permissions are checked later).
1628  * SMP-safe
1629  */
1630 int open_namei(int dfd, const char *pathname, int flag,
1631 		int mode, struct nameidata *nd)
1632 {
1633 	int acc_mode, error;
1634 	struct path path;
1635 	struct dentry *dir;
1636 	int count = 0;
1637 
1638 	acc_mode = ACC_MODE(flag);
1639 
1640 	/* O_TRUNC implies we need access checks for write permissions */
1641 	if (flag & O_TRUNC)
1642 		acc_mode |= MAY_WRITE;
1643 
1644 	/* Allow the LSM permission hook to distinguish append
1645 	   access from general write access. */
1646 	if (flag & O_APPEND)
1647 		acc_mode |= MAY_APPEND;
1648 
1649 	/*
1650 	 * The simplest case - just a plain lookup.
1651 	 */
1652 	if (!(flag & O_CREAT)) {
1653 		error = path_lookup_open(dfd, pathname, lookup_flags(flag),
1654 					 nd, flag);
1655 		if (error)
1656 			return error;
1657 		goto ok;
1658 	}
1659 
1660 	/*
1661 	 * Create - we need to know the parent.
1662 	 */
1663 	error = path_lookup_create(dfd,pathname,LOOKUP_PARENT,nd,flag,mode);
1664 	if (error)
1665 		return error;
1666 
1667 	/*
1668 	 * We have the parent and last component. First of all, check
1669 	 * that we are not asked to creat(2) an obvious directory - that
1670 	 * will not do.
1671 	 */
1672 	error = -EISDIR;
1673 	if (nd->last_type != LAST_NORM || nd->last.name[nd->last.len])
1674 		goto exit;
1675 
1676 	dir = nd->dentry;
1677 	nd->flags &= ~LOOKUP_PARENT;
1678 	mutex_lock(&dir->d_inode->i_mutex);
1679 	path.dentry = lookup_hash(nd);
1680 	path.mnt = nd->mnt;
1681 
1682 do_last:
1683 	error = PTR_ERR(path.dentry);
1684 	if (IS_ERR(path.dentry)) {
1685 		mutex_unlock(&dir->d_inode->i_mutex);
1686 		goto exit;
1687 	}
1688 
1689 	if (IS_ERR(nd->intent.open.file)) {
1690 		mutex_unlock(&dir->d_inode->i_mutex);
1691 		error = PTR_ERR(nd->intent.open.file);
1692 		goto exit_dput;
1693 	}
1694 
1695 	/* Negative dentry, just create the file */
1696 	if (!path.dentry->d_inode) {
1697 		error = open_namei_create(nd, &path, flag, mode);
1698 		if (error)
1699 			goto exit;
1700 		return 0;
1701 	}
1702 
1703 	/*
1704 	 * It already exists.
1705 	 */
1706 	mutex_unlock(&dir->d_inode->i_mutex);
1707 	audit_inode_update(path.dentry->d_inode);
1708 
1709 	error = -EEXIST;
1710 	if (flag & O_EXCL)
1711 		goto exit_dput;
1712 
1713 	if (__follow_mount(&path)) {
1714 		error = -ELOOP;
1715 		if (flag & O_NOFOLLOW)
1716 			goto exit_dput;
1717 	}
1718 
1719 	error = -ENOENT;
1720 	if (!path.dentry->d_inode)
1721 		goto exit_dput;
1722 	if (path.dentry->d_inode->i_op && path.dentry->d_inode->i_op->follow_link)
1723 		goto do_link;
1724 
1725 	path_to_nameidata(&path, nd);
1726 	error = -EISDIR;
1727 	if (path.dentry->d_inode && S_ISDIR(path.dentry->d_inode->i_mode))
1728 		goto exit;
1729 ok:
1730 	error = may_open(nd, acc_mode, flag);
1731 	if (error)
1732 		goto exit;
1733 	return 0;
1734 
1735 exit_dput:
1736 	dput_path(&path, nd);
1737 exit:
1738 	if (!IS_ERR(nd->intent.open.file))
1739 		release_open_intent(nd);
1740 	path_release(nd);
1741 	return error;
1742 
1743 do_link:
1744 	error = -ELOOP;
1745 	if (flag & O_NOFOLLOW)
1746 		goto exit_dput;
1747 	/*
1748 	 * This is subtle. Instead of calling do_follow_link() we do the
1749 	 * thing by hands. The reason is that this way we have zero link_count
1750 	 * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT.
1751 	 * After that we have the parent and last component, i.e.
1752 	 * we are in the same situation as after the first path_walk().
1753 	 * Well, almost - if the last component is normal we get its copy
1754 	 * stored in nd->last.name and we will have to putname() it when we
1755 	 * are done. Procfs-like symlinks just set LAST_BIND.
1756 	 */
1757 	nd->flags |= LOOKUP_PARENT;
1758 	error = security_inode_follow_link(path.dentry, nd);
1759 	if (error)
1760 		goto exit_dput;
1761 	error = __do_follow_link(&path, nd);
1762 	if (error) {
1763 		/* Does someone understand code flow here? Or it is only
1764 		 * me so stupid? Anathema to whoever designed this non-sense
1765 		 * with "intent.open".
1766 		 */
1767 		release_open_intent(nd);
1768 		return error;
1769 	}
1770 	nd->flags &= ~LOOKUP_PARENT;
1771 	if (nd->last_type == LAST_BIND)
1772 		goto ok;
1773 	error = -EISDIR;
1774 	if (nd->last_type != LAST_NORM)
1775 		goto exit;
1776 	if (nd->last.name[nd->last.len]) {
1777 		__putname(nd->last.name);
1778 		goto exit;
1779 	}
1780 	error = -ELOOP;
1781 	if (count++==32) {
1782 		__putname(nd->last.name);
1783 		goto exit;
1784 	}
1785 	dir = nd->dentry;
1786 	mutex_lock(&dir->d_inode->i_mutex);
1787 	path.dentry = lookup_hash(nd);
1788 	path.mnt = nd->mnt;
1789 	__putname(nd->last.name);
1790 	goto do_last;
1791 }
1792 
1793 /**
1794  * lookup_create - lookup a dentry, creating it if it doesn't exist
1795  * @nd: nameidata info
1796  * @is_dir: directory flag
1797  *
1798  * Simple function to lookup and return a dentry and create it
1799  * if it doesn't exist.  Is SMP-safe.
1800  *
1801  * Returns with nd->dentry->d_inode->i_mutex locked.
1802  */
1803 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1804 {
1805 	struct dentry *dentry = ERR_PTR(-EEXIST);
1806 
1807 	mutex_lock_nested(&nd->dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1808 	/*
1809 	 * Yucky last component or no last component at all?
1810 	 * (foo/., foo/.., /////)
1811 	 */
1812 	if (nd->last_type != LAST_NORM)
1813 		goto fail;
1814 	nd->flags &= ~LOOKUP_PARENT;
1815 	nd->flags |= LOOKUP_CREATE;
1816 	nd->intent.open.flags = O_EXCL;
1817 
1818 	/*
1819 	 * Do the final lookup.
1820 	 */
1821 	dentry = lookup_hash(nd);
1822 	if (IS_ERR(dentry))
1823 		goto fail;
1824 
1825 	/*
1826 	 * Special case - lookup gave negative, but... we had foo/bar/
1827 	 * From the vfs_mknod() POV we just have a negative dentry -
1828 	 * all is fine. Let's be bastards - you had / on the end, you've
1829 	 * been asking for (non-existent) directory. -ENOENT for you.
1830 	 */
1831 	if (!is_dir && nd->last.name[nd->last.len] && !dentry->d_inode)
1832 		goto enoent;
1833 	return dentry;
1834 enoent:
1835 	dput(dentry);
1836 	dentry = ERR_PTR(-ENOENT);
1837 fail:
1838 	return dentry;
1839 }
1840 EXPORT_SYMBOL_GPL(lookup_create);
1841 
1842 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1843 {
1844 	int error = may_create(dir, dentry, NULL);
1845 
1846 	if (error)
1847 		return error;
1848 
1849 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
1850 		return -EPERM;
1851 
1852 	if (!dir->i_op || !dir->i_op->mknod)
1853 		return -EPERM;
1854 
1855 	error = security_inode_mknod(dir, dentry, mode, dev);
1856 	if (error)
1857 		return error;
1858 
1859 	DQUOT_INIT(dir);
1860 	error = dir->i_op->mknod(dir, dentry, mode, dev);
1861 	if (!error)
1862 		fsnotify_create(dir, dentry);
1863 	return error;
1864 }
1865 
1866 asmlinkage long sys_mknodat(int dfd, const char __user *filename, int mode,
1867 				unsigned dev)
1868 {
1869 	int error = 0;
1870 	char * tmp;
1871 	struct dentry * dentry;
1872 	struct nameidata nd;
1873 
1874 	if (S_ISDIR(mode))
1875 		return -EPERM;
1876 	tmp = getname(filename);
1877 	if (IS_ERR(tmp))
1878 		return PTR_ERR(tmp);
1879 
1880 	error = do_path_lookup(dfd, tmp, LOOKUP_PARENT, &nd);
1881 	if (error)
1882 		goto out;
1883 	dentry = lookup_create(&nd, 0);
1884 	error = PTR_ERR(dentry);
1885 
1886 	if (!IS_POSIXACL(nd.dentry->d_inode))
1887 		mode &= ~current->fs->umask;
1888 	if (!IS_ERR(dentry)) {
1889 		switch (mode & S_IFMT) {
1890 		case 0: case S_IFREG:
1891 			error = vfs_create(nd.dentry->d_inode,dentry,mode,&nd);
1892 			break;
1893 		case S_IFCHR: case S_IFBLK:
1894 			error = vfs_mknod(nd.dentry->d_inode,dentry,mode,
1895 					new_decode_dev(dev));
1896 			break;
1897 		case S_IFIFO: case S_IFSOCK:
1898 			error = vfs_mknod(nd.dentry->d_inode,dentry,mode,0);
1899 			break;
1900 		case S_IFDIR:
1901 			error = -EPERM;
1902 			break;
1903 		default:
1904 			error = -EINVAL;
1905 		}
1906 		dput(dentry);
1907 	}
1908 	mutex_unlock(&nd.dentry->d_inode->i_mutex);
1909 	path_release(&nd);
1910 out:
1911 	putname(tmp);
1912 
1913 	return error;
1914 }
1915 
1916 asmlinkage long sys_mknod(const char __user *filename, int mode, unsigned dev)
1917 {
1918 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
1919 }
1920 
1921 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1922 {
1923 	int error = may_create(dir, dentry, NULL);
1924 
1925 	if (error)
1926 		return error;
1927 
1928 	if (!dir->i_op || !dir->i_op->mkdir)
1929 		return -EPERM;
1930 
1931 	mode &= (S_IRWXUGO|S_ISVTX);
1932 	error = security_inode_mkdir(dir, dentry, mode);
1933 	if (error)
1934 		return error;
1935 
1936 	DQUOT_INIT(dir);
1937 	error = dir->i_op->mkdir(dir, dentry, mode);
1938 	if (!error)
1939 		fsnotify_mkdir(dir, dentry);
1940 	return error;
1941 }
1942 
1943 asmlinkage long sys_mkdirat(int dfd, const char __user *pathname, int mode)
1944 {
1945 	int error = 0;
1946 	char * tmp;
1947 	struct dentry *dentry;
1948 	struct nameidata nd;
1949 
1950 	tmp = getname(pathname);
1951 	error = PTR_ERR(tmp);
1952 	if (IS_ERR(tmp))
1953 		goto out_err;
1954 
1955 	error = do_path_lookup(dfd, tmp, LOOKUP_PARENT, &nd);
1956 	if (error)
1957 		goto out;
1958 	dentry = lookup_create(&nd, 1);
1959 	error = PTR_ERR(dentry);
1960 	if (IS_ERR(dentry))
1961 		goto out_unlock;
1962 
1963 	if (!IS_POSIXACL(nd.dentry->d_inode))
1964 		mode &= ~current->fs->umask;
1965 	error = vfs_mkdir(nd.dentry->d_inode, dentry, mode);
1966 	dput(dentry);
1967 out_unlock:
1968 	mutex_unlock(&nd.dentry->d_inode->i_mutex);
1969 	path_release(&nd);
1970 out:
1971 	putname(tmp);
1972 out_err:
1973 	return error;
1974 }
1975 
1976 asmlinkage long sys_mkdir(const char __user *pathname, int mode)
1977 {
1978 	return sys_mkdirat(AT_FDCWD, pathname, mode);
1979 }
1980 
1981 /*
1982  * We try to drop the dentry early: we should have
1983  * a usage count of 2 if we're the only user of this
1984  * dentry, and if that is true (possibly after pruning
1985  * the dcache), then we drop the dentry now.
1986  *
1987  * A low-level filesystem can, if it choses, legally
1988  * do a
1989  *
1990  *	if (!d_unhashed(dentry))
1991  *		return -EBUSY;
1992  *
1993  * if it cannot handle the case of removing a directory
1994  * that is still in use by something else..
1995  */
1996 void dentry_unhash(struct dentry *dentry)
1997 {
1998 	dget(dentry);
1999 	if (atomic_read(&dentry->d_count))
2000 		shrink_dcache_parent(dentry);
2001 	spin_lock(&dcache_lock);
2002 	spin_lock(&dentry->d_lock);
2003 	if (atomic_read(&dentry->d_count) == 2)
2004 		__d_drop(dentry);
2005 	spin_unlock(&dentry->d_lock);
2006 	spin_unlock(&dcache_lock);
2007 }
2008 
2009 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2010 {
2011 	int error = may_delete(dir, dentry, 1);
2012 
2013 	if (error)
2014 		return error;
2015 
2016 	if (!dir->i_op || !dir->i_op->rmdir)
2017 		return -EPERM;
2018 
2019 	DQUOT_INIT(dir);
2020 
2021 	mutex_lock(&dentry->d_inode->i_mutex);
2022 	dentry_unhash(dentry);
2023 	if (d_mountpoint(dentry))
2024 		error = -EBUSY;
2025 	else {
2026 		error = security_inode_rmdir(dir, dentry);
2027 		if (!error) {
2028 			error = dir->i_op->rmdir(dir, dentry);
2029 			if (!error)
2030 				dentry->d_inode->i_flags |= S_DEAD;
2031 		}
2032 	}
2033 	mutex_unlock(&dentry->d_inode->i_mutex);
2034 	if (!error) {
2035 		d_delete(dentry);
2036 	}
2037 	dput(dentry);
2038 
2039 	return error;
2040 }
2041 
2042 static long do_rmdir(int dfd, const char __user *pathname)
2043 {
2044 	int error = 0;
2045 	char * name;
2046 	struct dentry *dentry;
2047 	struct nameidata nd;
2048 
2049 	name = getname(pathname);
2050 	if(IS_ERR(name))
2051 		return PTR_ERR(name);
2052 
2053 	error = do_path_lookup(dfd, name, LOOKUP_PARENT, &nd);
2054 	if (error)
2055 		goto exit;
2056 
2057 	switch(nd.last_type) {
2058 		case LAST_DOTDOT:
2059 			error = -ENOTEMPTY;
2060 			goto exit1;
2061 		case LAST_DOT:
2062 			error = -EINVAL;
2063 			goto exit1;
2064 		case LAST_ROOT:
2065 			error = -EBUSY;
2066 			goto exit1;
2067 	}
2068 	mutex_lock_nested(&nd.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2069 	dentry = lookup_hash(&nd);
2070 	error = PTR_ERR(dentry);
2071 	if (IS_ERR(dentry))
2072 		goto exit2;
2073 	error = vfs_rmdir(nd.dentry->d_inode, dentry);
2074 	dput(dentry);
2075 exit2:
2076 	mutex_unlock(&nd.dentry->d_inode->i_mutex);
2077 exit1:
2078 	path_release(&nd);
2079 exit:
2080 	putname(name);
2081 	return error;
2082 }
2083 
2084 asmlinkage long sys_rmdir(const char __user *pathname)
2085 {
2086 	return do_rmdir(AT_FDCWD, pathname);
2087 }
2088 
2089 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2090 {
2091 	int error = may_delete(dir, dentry, 0);
2092 
2093 	if (error)
2094 		return error;
2095 
2096 	if (!dir->i_op || !dir->i_op->unlink)
2097 		return -EPERM;
2098 
2099 	DQUOT_INIT(dir);
2100 
2101 	mutex_lock(&dentry->d_inode->i_mutex);
2102 	if (d_mountpoint(dentry))
2103 		error = -EBUSY;
2104 	else {
2105 		error = security_inode_unlink(dir, dentry);
2106 		if (!error)
2107 			error = dir->i_op->unlink(dir, dentry);
2108 	}
2109 	mutex_unlock(&dentry->d_inode->i_mutex);
2110 
2111 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
2112 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2113 		d_delete(dentry);
2114 	}
2115 
2116 	return error;
2117 }
2118 
2119 /*
2120  * Make sure that the actual truncation of the file will occur outside its
2121  * directory's i_mutex.  Truncate can take a long time if there is a lot of
2122  * writeout happening, and we don't want to prevent access to the directory
2123  * while waiting on the I/O.
2124  */
2125 static long do_unlinkat(int dfd, const char __user *pathname)
2126 {
2127 	int error = 0;
2128 	char * name;
2129 	struct dentry *dentry;
2130 	struct nameidata nd;
2131 	struct inode *inode = NULL;
2132 
2133 	name = getname(pathname);
2134 	if(IS_ERR(name))
2135 		return PTR_ERR(name);
2136 
2137 	error = do_path_lookup(dfd, name, LOOKUP_PARENT, &nd);
2138 	if (error)
2139 		goto exit;
2140 	error = -EISDIR;
2141 	if (nd.last_type != LAST_NORM)
2142 		goto exit1;
2143 	mutex_lock_nested(&nd.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2144 	dentry = lookup_hash(&nd);
2145 	error = PTR_ERR(dentry);
2146 	if (!IS_ERR(dentry)) {
2147 		/* Why not before? Because we want correct error value */
2148 		if (nd.last.name[nd.last.len])
2149 			goto slashes;
2150 		inode = dentry->d_inode;
2151 		if (inode)
2152 			atomic_inc(&inode->i_count);
2153 		error = vfs_unlink(nd.dentry->d_inode, dentry);
2154 	exit2:
2155 		dput(dentry);
2156 	}
2157 	mutex_unlock(&nd.dentry->d_inode->i_mutex);
2158 	if (inode)
2159 		iput(inode);	/* truncate the inode here */
2160 exit1:
2161 	path_release(&nd);
2162 exit:
2163 	putname(name);
2164 	return error;
2165 
2166 slashes:
2167 	error = !dentry->d_inode ? -ENOENT :
2168 		S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2169 	goto exit2;
2170 }
2171 
2172 asmlinkage long sys_unlinkat(int dfd, const char __user *pathname, int flag)
2173 {
2174 	if ((flag & ~AT_REMOVEDIR) != 0)
2175 		return -EINVAL;
2176 
2177 	if (flag & AT_REMOVEDIR)
2178 		return do_rmdir(dfd, pathname);
2179 
2180 	return do_unlinkat(dfd, pathname);
2181 }
2182 
2183 asmlinkage long sys_unlink(const char __user *pathname)
2184 {
2185 	return do_unlinkat(AT_FDCWD, pathname);
2186 }
2187 
2188 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname, int mode)
2189 {
2190 	int error = may_create(dir, dentry, NULL);
2191 
2192 	if (error)
2193 		return error;
2194 
2195 	if (!dir->i_op || !dir->i_op->symlink)
2196 		return -EPERM;
2197 
2198 	error = security_inode_symlink(dir, dentry, oldname);
2199 	if (error)
2200 		return error;
2201 
2202 	DQUOT_INIT(dir);
2203 	error = dir->i_op->symlink(dir, dentry, oldname);
2204 	if (!error)
2205 		fsnotify_create(dir, dentry);
2206 	return error;
2207 }
2208 
2209 asmlinkage long sys_symlinkat(const char __user *oldname,
2210 			      int newdfd, const char __user *newname)
2211 {
2212 	int error = 0;
2213 	char * from;
2214 	char * to;
2215 	struct dentry *dentry;
2216 	struct nameidata nd;
2217 
2218 	from = getname(oldname);
2219 	if(IS_ERR(from))
2220 		return PTR_ERR(from);
2221 	to = getname(newname);
2222 	error = PTR_ERR(to);
2223 	if (IS_ERR(to))
2224 		goto out_putname;
2225 
2226 	error = do_path_lookup(newdfd, to, LOOKUP_PARENT, &nd);
2227 	if (error)
2228 		goto out;
2229 	dentry = lookup_create(&nd, 0);
2230 	error = PTR_ERR(dentry);
2231 	if (IS_ERR(dentry))
2232 		goto out_unlock;
2233 
2234 	error = vfs_symlink(nd.dentry->d_inode, dentry, from, S_IALLUGO);
2235 	dput(dentry);
2236 out_unlock:
2237 	mutex_unlock(&nd.dentry->d_inode->i_mutex);
2238 	path_release(&nd);
2239 out:
2240 	putname(to);
2241 out_putname:
2242 	putname(from);
2243 	return error;
2244 }
2245 
2246 asmlinkage long sys_symlink(const char __user *oldname, const char __user *newname)
2247 {
2248 	return sys_symlinkat(oldname, AT_FDCWD, newname);
2249 }
2250 
2251 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2252 {
2253 	struct inode *inode = old_dentry->d_inode;
2254 	int error;
2255 
2256 	if (!inode)
2257 		return -ENOENT;
2258 
2259 	error = may_create(dir, new_dentry, NULL);
2260 	if (error)
2261 		return error;
2262 
2263 	if (dir->i_sb != inode->i_sb)
2264 		return -EXDEV;
2265 
2266 	/*
2267 	 * A link to an append-only or immutable file cannot be created.
2268 	 */
2269 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2270 		return -EPERM;
2271 	if (!dir->i_op || !dir->i_op->link)
2272 		return -EPERM;
2273 	if (S_ISDIR(old_dentry->d_inode->i_mode))
2274 		return -EPERM;
2275 
2276 	error = security_inode_link(old_dentry, dir, new_dentry);
2277 	if (error)
2278 		return error;
2279 
2280 	mutex_lock(&old_dentry->d_inode->i_mutex);
2281 	DQUOT_INIT(dir);
2282 	error = dir->i_op->link(old_dentry, dir, new_dentry);
2283 	mutex_unlock(&old_dentry->d_inode->i_mutex);
2284 	if (!error)
2285 		fsnotify_create(dir, new_dentry);
2286 	return error;
2287 }
2288 
2289 /*
2290  * Hardlinks are often used in delicate situations.  We avoid
2291  * security-related surprises by not following symlinks on the
2292  * newname.  --KAB
2293  *
2294  * We don't follow them on the oldname either to be compatible
2295  * with linux 2.0, and to avoid hard-linking to directories
2296  * and other special files.  --ADM
2297  */
2298 asmlinkage long sys_linkat(int olddfd, const char __user *oldname,
2299 			   int newdfd, const char __user *newname,
2300 			   int flags)
2301 {
2302 	struct dentry *new_dentry;
2303 	struct nameidata nd, old_nd;
2304 	int error;
2305 	char * to;
2306 
2307 	if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2308 		return -EINVAL;
2309 
2310 	to = getname(newname);
2311 	if (IS_ERR(to))
2312 		return PTR_ERR(to);
2313 
2314 	error = __user_walk_fd(olddfd, oldname,
2315 			       flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2316 			       &old_nd);
2317 	if (error)
2318 		goto exit;
2319 	error = do_path_lookup(newdfd, to, LOOKUP_PARENT, &nd);
2320 	if (error)
2321 		goto out;
2322 	error = -EXDEV;
2323 	if (old_nd.mnt != nd.mnt)
2324 		goto out_release;
2325 	new_dentry = lookup_create(&nd, 0);
2326 	error = PTR_ERR(new_dentry);
2327 	if (IS_ERR(new_dentry))
2328 		goto out_unlock;
2329 	error = vfs_link(old_nd.dentry, nd.dentry->d_inode, new_dentry);
2330 	dput(new_dentry);
2331 out_unlock:
2332 	mutex_unlock(&nd.dentry->d_inode->i_mutex);
2333 out_release:
2334 	path_release(&nd);
2335 out:
2336 	path_release(&old_nd);
2337 exit:
2338 	putname(to);
2339 
2340 	return error;
2341 }
2342 
2343 asmlinkage long sys_link(const char __user *oldname, const char __user *newname)
2344 {
2345 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2346 }
2347 
2348 /*
2349  * The worst of all namespace operations - renaming directory. "Perverted"
2350  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2351  * Problems:
2352  *	a) we can get into loop creation. Check is done in is_subdir().
2353  *	b) race potential - two innocent renames can create a loop together.
2354  *	   That's where 4.4 screws up. Current fix: serialization on
2355  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2356  *	   story.
2357  *	c) we have to lock _three_ objects - parents and victim (if it exists).
2358  *	   And that - after we got ->i_mutex on parents (until then we don't know
2359  *	   whether the target exists).  Solution: try to be smart with locking
2360  *	   order for inodes.  We rely on the fact that tree topology may change
2361  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
2362  *	   move will be locked.  Thus we can rank directories by the tree
2363  *	   (ancestors first) and rank all non-directories after them.
2364  *	   That works since everybody except rename does "lock parent, lookup,
2365  *	   lock child" and rename is under ->s_vfs_rename_mutex.
2366  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
2367  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
2368  *	   we'd better make sure that there's no link(2) for them.
2369  *	d) some filesystems don't support opened-but-unlinked directories,
2370  *	   either because of layout or because they are not ready to deal with
2371  *	   all cases correctly. The latter will be fixed (taking this sort of
2372  *	   stuff into VFS), but the former is not going away. Solution: the same
2373  *	   trick as in rmdir().
2374  *	e) conversion from fhandle to dentry may come in the wrong moment - when
2375  *	   we are removing the target. Solution: we will have to grab ->i_mutex
2376  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2377  *	   ->i_mutex on parents, which works but leads to some truely excessive
2378  *	   locking].
2379  */
2380 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2381 			  struct inode *new_dir, struct dentry *new_dentry)
2382 {
2383 	int error = 0;
2384 	struct inode *target;
2385 
2386 	/*
2387 	 * If we are going to change the parent - check write permissions,
2388 	 * we'll need to flip '..'.
2389 	 */
2390 	if (new_dir != old_dir) {
2391 		error = permission(old_dentry->d_inode, MAY_WRITE, NULL);
2392 		if (error)
2393 			return error;
2394 	}
2395 
2396 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2397 	if (error)
2398 		return error;
2399 
2400 	target = new_dentry->d_inode;
2401 	if (target) {
2402 		mutex_lock(&target->i_mutex);
2403 		dentry_unhash(new_dentry);
2404 	}
2405 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2406 		error = -EBUSY;
2407 	else
2408 		error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2409 	if (target) {
2410 		if (!error)
2411 			target->i_flags |= S_DEAD;
2412 		mutex_unlock(&target->i_mutex);
2413 		if (d_unhashed(new_dentry))
2414 			d_rehash(new_dentry);
2415 		dput(new_dentry);
2416 	}
2417 	if (!error)
2418 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2419 			d_move(old_dentry,new_dentry);
2420 	return error;
2421 }
2422 
2423 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2424 			    struct inode *new_dir, struct dentry *new_dentry)
2425 {
2426 	struct inode *target;
2427 	int error;
2428 
2429 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2430 	if (error)
2431 		return error;
2432 
2433 	dget(new_dentry);
2434 	target = new_dentry->d_inode;
2435 	if (target)
2436 		mutex_lock(&target->i_mutex);
2437 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2438 		error = -EBUSY;
2439 	else
2440 		error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2441 	if (!error) {
2442 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2443 			d_move(old_dentry, new_dentry);
2444 	}
2445 	if (target)
2446 		mutex_unlock(&target->i_mutex);
2447 	dput(new_dentry);
2448 	return error;
2449 }
2450 
2451 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2452 	       struct inode *new_dir, struct dentry *new_dentry)
2453 {
2454 	int error;
2455 	int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2456 	const char *old_name;
2457 
2458 	if (old_dentry->d_inode == new_dentry->d_inode)
2459  		return 0;
2460 
2461 	error = may_delete(old_dir, old_dentry, is_dir);
2462 	if (error)
2463 		return error;
2464 
2465 	if (!new_dentry->d_inode)
2466 		error = may_create(new_dir, new_dentry, NULL);
2467 	else
2468 		error = may_delete(new_dir, new_dentry, is_dir);
2469 	if (error)
2470 		return error;
2471 
2472 	if (!old_dir->i_op || !old_dir->i_op->rename)
2473 		return -EPERM;
2474 
2475 	DQUOT_INIT(old_dir);
2476 	DQUOT_INIT(new_dir);
2477 
2478 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2479 
2480 	if (is_dir)
2481 		error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2482 	else
2483 		error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2484 	if (!error) {
2485 		const char *new_name = old_dentry->d_name.name;
2486 		fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir,
2487 			      new_dentry->d_inode, old_dentry->d_inode);
2488 	}
2489 	fsnotify_oldname_free(old_name);
2490 
2491 	return error;
2492 }
2493 
2494 static int do_rename(int olddfd, const char *oldname,
2495 			int newdfd, const char *newname)
2496 {
2497 	int error = 0;
2498 	struct dentry * old_dir, * new_dir;
2499 	struct dentry * old_dentry, *new_dentry;
2500 	struct dentry * trap;
2501 	struct nameidata oldnd, newnd;
2502 
2503 	error = do_path_lookup(olddfd, oldname, LOOKUP_PARENT, &oldnd);
2504 	if (error)
2505 		goto exit;
2506 
2507 	error = do_path_lookup(newdfd, newname, LOOKUP_PARENT, &newnd);
2508 	if (error)
2509 		goto exit1;
2510 
2511 	error = -EXDEV;
2512 	if (oldnd.mnt != newnd.mnt)
2513 		goto exit2;
2514 
2515 	old_dir = oldnd.dentry;
2516 	error = -EBUSY;
2517 	if (oldnd.last_type != LAST_NORM)
2518 		goto exit2;
2519 
2520 	new_dir = newnd.dentry;
2521 	if (newnd.last_type != LAST_NORM)
2522 		goto exit2;
2523 
2524 	trap = lock_rename(new_dir, old_dir);
2525 
2526 	old_dentry = lookup_hash(&oldnd);
2527 	error = PTR_ERR(old_dentry);
2528 	if (IS_ERR(old_dentry))
2529 		goto exit3;
2530 	/* source must exist */
2531 	error = -ENOENT;
2532 	if (!old_dentry->d_inode)
2533 		goto exit4;
2534 	/* unless the source is a directory trailing slashes give -ENOTDIR */
2535 	if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2536 		error = -ENOTDIR;
2537 		if (oldnd.last.name[oldnd.last.len])
2538 			goto exit4;
2539 		if (newnd.last.name[newnd.last.len])
2540 			goto exit4;
2541 	}
2542 	/* source should not be ancestor of target */
2543 	error = -EINVAL;
2544 	if (old_dentry == trap)
2545 		goto exit4;
2546 	new_dentry = lookup_hash(&newnd);
2547 	error = PTR_ERR(new_dentry);
2548 	if (IS_ERR(new_dentry))
2549 		goto exit4;
2550 	/* target should not be an ancestor of source */
2551 	error = -ENOTEMPTY;
2552 	if (new_dentry == trap)
2553 		goto exit5;
2554 
2555 	error = vfs_rename(old_dir->d_inode, old_dentry,
2556 				   new_dir->d_inode, new_dentry);
2557 exit5:
2558 	dput(new_dentry);
2559 exit4:
2560 	dput(old_dentry);
2561 exit3:
2562 	unlock_rename(new_dir, old_dir);
2563 exit2:
2564 	path_release(&newnd);
2565 exit1:
2566 	path_release(&oldnd);
2567 exit:
2568 	return error;
2569 }
2570 
2571 asmlinkage long sys_renameat(int olddfd, const char __user *oldname,
2572 			     int newdfd, const char __user *newname)
2573 {
2574 	int error;
2575 	char * from;
2576 	char * to;
2577 
2578 	from = getname(oldname);
2579 	if(IS_ERR(from))
2580 		return PTR_ERR(from);
2581 	to = getname(newname);
2582 	error = PTR_ERR(to);
2583 	if (!IS_ERR(to)) {
2584 		error = do_rename(olddfd, from, newdfd, to);
2585 		putname(to);
2586 	}
2587 	putname(from);
2588 	return error;
2589 }
2590 
2591 asmlinkage long sys_rename(const char __user *oldname, const char __user *newname)
2592 {
2593 	return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2594 }
2595 
2596 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2597 {
2598 	int len;
2599 
2600 	len = PTR_ERR(link);
2601 	if (IS_ERR(link))
2602 		goto out;
2603 
2604 	len = strlen(link);
2605 	if (len > (unsigned) buflen)
2606 		len = buflen;
2607 	if (copy_to_user(buffer, link, len))
2608 		len = -EFAULT;
2609 out:
2610 	return len;
2611 }
2612 
2613 /*
2614  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
2615  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
2616  * using) it for any given inode is up to filesystem.
2617  */
2618 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2619 {
2620 	struct nameidata nd;
2621 	void *cookie;
2622 
2623 	nd.depth = 0;
2624 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2625 	if (!IS_ERR(cookie)) {
2626 		int res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2627 		if (dentry->d_inode->i_op->put_link)
2628 			dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2629 		cookie = ERR_PTR(res);
2630 	}
2631 	return PTR_ERR(cookie);
2632 }
2633 
2634 int vfs_follow_link(struct nameidata *nd, const char *link)
2635 {
2636 	return __vfs_follow_link(nd, link);
2637 }
2638 
2639 /* get the link contents into pagecache */
2640 static char *page_getlink(struct dentry * dentry, struct page **ppage)
2641 {
2642 	struct page * page;
2643 	struct address_space *mapping = dentry->d_inode->i_mapping;
2644 	page = read_mapping_page(mapping, 0, NULL);
2645 	if (IS_ERR(page))
2646 		goto sync_fail;
2647 	wait_on_page_locked(page);
2648 	if (!PageUptodate(page))
2649 		goto async_fail;
2650 	*ppage = page;
2651 	return kmap(page);
2652 
2653 async_fail:
2654 	page_cache_release(page);
2655 	return ERR_PTR(-EIO);
2656 
2657 sync_fail:
2658 	return (char*)page;
2659 }
2660 
2661 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2662 {
2663 	struct page *page = NULL;
2664 	char *s = page_getlink(dentry, &page);
2665 	int res = vfs_readlink(dentry,buffer,buflen,s);
2666 	if (page) {
2667 		kunmap(page);
2668 		page_cache_release(page);
2669 	}
2670 	return res;
2671 }
2672 
2673 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2674 {
2675 	struct page *page = NULL;
2676 	nd_set_link(nd, page_getlink(dentry, &page));
2677 	return page;
2678 }
2679 
2680 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2681 {
2682 	struct page *page = cookie;
2683 
2684 	if (page) {
2685 		kunmap(page);
2686 		page_cache_release(page);
2687 	}
2688 }
2689 
2690 int __page_symlink(struct inode *inode, const char *symname, int len,
2691 		gfp_t gfp_mask)
2692 {
2693 	struct address_space *mapping = inode->i_mapping;
2694 	struct page *page;
2695 	int err = -ENOMEM;
2696 	char *kaddr;
2697 
2698 retry:
2699 	page = find_or_create_page(mapping, 0, gfp_mask);
2700 	if (!page)
2701 		goto fail;
2702 	err = mapping->a_ops->prepare_write(NULL, page, 0, len-1);
2703 	if (err == AOP_TRUNCATED_PAGE) {
2704 		page_cache_release(page);
2705 		goto retry;
2706 	}
2707 	if (err)
2708 		goto fail_map;
2709 	kaddr = kmap_atomic(page, KM_USER0);
2710 	memcpy(kaddr, symname, len-1);
2711 	kunmap_atomic(kaddr, KM_USER0);
2712 	err = mapping->a_ops->commit_write(NULL, page, 0, len-1);
2713 	if (err == AOP_TRUNCATED_PAGE) {
2714 		page_cache_release(page);
2715 		goto retry;
2716 	}
2717 	if (err)
2718 		goto fail_map;
2719 	/*
2720 	 * Notice that we are _not_ going to block here - end of page is
2721 	 * unmapped, so this will only try to map the rest of page, see
2722 	 * that it is unmapped (typically even will not look into inode -
2723 	 * ->i_size will be enough for everything) and zero it out.
2724 	 * OTOH it's obviously correct and should make the page up-to-date.
2725 	 */
2726 	if (!PageUptodate(page)) {
2727 		err = mapping->a_ops->readpage(NULL, page);
2728 		if (err != AOP_TRUNCATED_PAGE)
2729 			wait_on_page_locked(page);
2730 	} else {
2731 		unlock_page(page);
2732 	}
2733 	page_cache_release(page);
2734 	if (err < 0)
2735 		goto fail;
2736 	mark_inode_dirty(inode);
2737 	return 0;
2738 fail_map:
2739 	unlock_page(page);
2740 	page_cache_release(page);
2741 fail:
2742 	return err;
2743 }
2744 
2745 int page_symlink(struct inode *inode, const char *symname, int len)
2746 {
2747 	return __page_symlink(inode, symname, len,
2748 			mapping_gfp_mask(inode->i_mapping));
2749 }
2750 
2751 struct inode_operations page_symlink_inode_operations = {
2752 	.readlink	= generic_readlink,
2753 	.follow_link	= page_follow_link_light,
2754 	.put_link	= page_put_link,
2755 };
2756 
2757 EXPORT_SYMBOL(__user_walk);
2758 EXPORT_SYMBOL(__user_walk_fd);
2759 EXPORT_SYMBOL(follow_down);
2760 EXPORT_SYMBOL(follow_up);
2761 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2762 EXPORT_SYMBOL(getname);
2763 EXPORT_SYMBOL(lock_rename);
2764 EXPORT_SYMBOL(lookup_one_len);
2765 EXPORT_SYMBOL(page_follow_link_light);
2766 EXPORT_SYMBOL(page_put_link);
2767 EXPORT_SYMBOL(page_readlink);
2768 EXPORT_SYMBOL(__page_symlink);
2769 EXPORT_SYMBOL(page_symlink);
2770 EXPORT_SYMBOL(page_symlink_inode_operations);
2771 EXPORT_SYMBOL(path_lookup);
2772 EXPORT_SYMBOL(path_release);
2773 EXPORT_SYMBOL(path_walk);
2774 EXPORT_SYMBOL(permission);
2775 EXPORT_SYMBOL(vfs_permission);
2776 EXPORT_SYMBOL(file_permission);
2777 EXPORT_SYMBOL(unlock_rename);
2778 EXPORT_SYMBOL(vfs_create);
2779 EXPORT_SYMBOL(vfs_follow_link);
2780 EXPORT_SYMBOL(vfs_link);
2781 EXPORT_SYMBOL(vfs_mkdir);
2782 EXPORT_SYMBOL(vfs_mknod);
2783 EXPORT_SYMBOL(generic_permission);
2784 EXPORT_SYMBOL(vfs_readlink);
2785 EXPORT_SYMBOL(vfs_rename);
2786 EXPORT_SYMBOL(vfs_rmdir);
2787 EXPORT_SYMBOL(vfs_symlink);
2788 EXPORT_SYMBOL(vfs_unlink);
2789 EXPORT_SYMBOL(dentry_unhash);
2790 EXPORT_SYMBOL(generic_readlink);
2791