xref: /linux/fs/namei.c (revision 71ca97da9d027009d318d319cbacf54a72f666c1)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <asm/uaccess.h>
38 
39 #include "internal.h"
40 #include "mount.h"
41 
42 /* [Feb-1997 T. Schoebel-Theuer]
43  * Fundamental changes in the pathname lookup mechanisms (namei)
44  * were necessary because of omirr.  The reason is that omirr needs
45  * to know the _real_ pathname, not the user-supplied one, in case
46  * of symlinks (and also when transname replacements occur).
47  *
48  * The new code replaces the old recursive symlink resolution with
49  * an iterative one (in case of non-nested symlink chains).  It does
50  * this with calls to <fs>_follow_link().
51  * As a side effect, dir_namei(), _namei() and follow_link() are now
52  * replaced with a single function lookup_dentry() that can handle all
53  * the special cases of the former code.
54  *
55  * With the new dcache, the pathname is stored at each inode, at least as
56  * long as the refcount of the inode is positive.  As a side effect, the
57  * size of the dcache depends on the inode cache and thus is dynamic.
58  *
59  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
60  * resolution to correspond with current state of the code.
61  *
62  * Note that the symlink resolution is not *completely* iterative.
63  * There is still a significant amount of tail- and mid- recursion in
64  * the algorithm.  Also, note that <fs>_readlink() is not used in
65  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
66  * may return different results than <fs>_follow_link().  Many virtual
67  * filesystems (including /proc) exhibit this behavior.
68  */
69 
70 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
71  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
72  * and the name already exists in form of a symlink, try to create the new
73  * name indicated by the symlink. The old code always complained that the
74  * name already exists, due to not following the symlink even if its target
75  * is nonexistent.  The new semantics affects also mknod() and link() when
76  * the name is a symlink pointing to a non-existent name.
77  *
78  * I don't know which semantics is the right one, since I have no access
79  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
80  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
81  * "old" one. Personally, I think the new semantics is much more logical.
82  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
83  * file does succeed in both HP-UX and SunOs, but not in Solaris
84  * and in the old Linux semantics.
85  */
86 
87 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
88  * semantics.  See the comments in "open_namei" and "do_link" below.
89  *
90  * [10-Sep-98 Alan Modra] Another symlink change.
91  */
92 
93 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
94  *	inside the path - always follow.
95  *	in the last component in creation/removal/renaming - never follow.
96  *	if LOOKUP_FOLLOW passed - follow.
97  *	if the pathname has trailing slashes - follow.
98  *	otherwise - don't follow.
99  * (applied in that order).
100  *
101  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
102  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
103  * During the 2.4 we need to fix the userland stuff depending on it -
104  * hopefully we will be able to get rid of that wart in 2.5. So far only
105  * XEmacs seems to be relying on it...
106  */
107 /*
108  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
109  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
110  * any extra contention...
111  */
112 
113 /* In order to reduce some races, while at the same time doing additional
114  * checking and hopefully speeding things up, we copy filenames to the
115  * kernel data space before using them..
116  *
117  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118  * PATH_MAX includes the nul terminator --RR.
119  */
120 static char *getname_flags(const char __user *filename, int flags, int *empty)
121 {
122 	char *result = __getname(), *err;
123 	int len;
124 
125 	if (unlikely(!result))
126 		return ERR_PTR(-ENOMEM);
127 
128 	len = strncpy_from_user(result, filename, PATH_MAX);
129 	err = ERR_PTR(len);
130 	if (unlikely(len < 0))
131 		goto error;
132 
133 	/* The empty path is special. */
134 	if (unlikely(!len)) {
135 		if (empty)
136 			*empty = 1;
137 		err = ERR_PTR(-ENOENT);
138 		if (!(flags & LOOKUP_EMPTY))
139 			goto error;
140 	}
141 
142 	err = ERR_PTR(-ENAMETOOLONG);
143 	if (likely(len < PATH_MAX)) {
144 		audit_getname(result);
145 		return result;
146 	}
147 
148 error:
149 	__putname(result);
150 	return err;
151 }
152 
153 char *getname(const char __user * filename)
154 {
155 	return getname_flags(filename, 0, NULL);
156 }
157 
158 #ifdef CONFIG_AUDITSYSCALL
159 void putname(const char *name)
160 {
161 	if (unlikely(!audit_dummy_context()))
162 		audit_putname(name);
163 	else
164 		__putname(name);
165 }
166 EXPORT_SYMBOL(putname);
167 #endif
168 
169 static int check_acl(struct inode *inode, int mask)
170 {
171 #ifdef CONFIG_FS_POSIX_ACL
172 	struct posix_acl *acl;
173 
174 	if (mask & MAY_NOT_BLOCK) {
175 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
176 	        if (!acl)
177 	                return -EAGAIN;
178 		/* no ->get_acl() calls in RCU mode... */
179 		if (acl == ACL_NOT_CACHED)
180 			return -ECHILD;
181 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
182 	}
183 
184 	acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
185 
186 	/*
187 	 * A filesystem can force a ACL callback by just never filling the
188 	 * ACL cache. But normally you'd fill the cache either at inode
189 	 * instantiation time, or on the first ->get_acl call.
190 	 *
191 	 * If the filesystem doesn't have a get_acl() function at all, we'll
192 	 * just create the negative cache entry.
193 	 */
194 	if (acl == ACL_NOT_CACHED) {
195 	        if (inode->i_op->get_acl) {
196 			acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
197 			if (IS_ERR(acl))
198 				return PTR_ERR(acl);
199 		} else {
200 		        set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
201 		        return -EAGAIN;
202 		}
203 	}
204 
205 	if (acl) {
206 	        int error = posix_acl_permission(inode, acl, mask);
207 	        posix_acl_release(acl);
208 	        return error;
209 	}
210 #endif
211 
212 	return -EAGAIN;
213 }
214 
215 /*
216  * This does the basic permission checking
217  */
218 static int acl_permission_check(struct inode *inode, int mask)
219 {
220 	unsigned int mode = inode->i_mode;
221 
222 	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
223 		mode >>= 6;
224 	else {
225 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
226 			int error = check_acl(inode, mask);
227 			if (error != -EAGAIN)
228 				return error;
229 		}
230 
231 		if (in_group_p(inode->i_gid))
232 			mode >>= 3;
233 	}
234 
235 	/*
236 	 * If the DACs are ok we don't need any capability check.
237 	 */
238 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
239 		return 0;
240 	return -EACCES;
241 }
242 
243 /**
244  * generic_permission -  check for access rights on a Posix-like filesystem
245  * @inode:	inode to check access rights for
246  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
247  *
248  * Used to check for read/write/execute permissions on a file.
249  * We use "fsuid" for this, letting us set arbitrary permissions
250  * for filesystem access without changing the "normal" uids which
251  * are used for other things.
252  *
253  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
254  * request cannot be satisfied (eg. requires blocking or too much complexity).
255  * It would then be called again in ref-walk mode.
256  */
257 int generic_permission(struct inode *inode, int mask)
258 {
259 	int ret;
260 
261 	/*
262 	 * Do the basic permission checks.
263 	 */
264 	ret = acl_permission_check(inode, mask);
265 	if (ret != -EACCES)
266 		return ret;
267 
268 	if (S_ISDIR(inode->i_mode)) {
269 		/* DACs are overridable for directories */
270 		if (inode_capable(inode, CAP_DAC_OVERRIDE))
271 			return 0;
272 		if (!(mask & MAY_WRITE))
273 			if (inode_capable(inode, CAP_DAC_READ_SEARCH))
274 				return 0;
275 		return -EACCES;
276 	}
277 	/*
278 	 * Read/write DACs are always overridable.
279 	 * Executable DACs are overridable when there is
280 	 * at least one exec bit set.
281 	 */
282 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
283 		if (inode_capable(inode, CAP_DAC_OVERRIDE))
284 			return 0;
285 
286 	/*
287 	 * Searching includes executable on directories, else just read.
288 	 */
289 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
290 	if (mask == MAY_READ)
291 		if (inode_capable(inode, CAP_DAC_READ_SEARCH))
292 			return 0;
293 
294 	return -EACCES;
295 }
296 
297 /*
298  * We _really_ want to just do "generic_permission()" without
299  * even looking at the inode->i_op values. So we keep a cache
300  * flag in inode->i_opflags, that says "this has not special
301  * permission function, use the fast case".
302  */
303 static inline int do_inode_permission(struct inode *inode, int mask)
304 {
305 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
306 		if (likely(inode->i_op->permission))
307 			return inode->i_op->permission(inode, mask);
308 
309 		/* This gets set once for the inode lifetime */
310 		spin_lock(&inode->i_lock);
311 		inode->i_opflags |= IOP_FASTPERM;
312 		spin_unlock(&inode->i_lock);
313 	}
314 	return generic_permission(inode, mask);
315 }
316 
317 /**
318  * inode_permission  -  check for access rights to a given inode
319  * @inode:	inode to check permission on
320  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
321  *
322  * Used to check for read/write/execute permissions on an inode.
323  * We use "fsuid" for this, letting us set arbitrary permissions
324  * for filesystem access without changing the "normal" uids which
325  * are used for other things.
326  *
327  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
328  */
329 int inode_permission(struct inode *inode, int mask)
330 {
331 	int retval;
332 
333 	if (unlikely(mask & MAY_WRITE)) {
334 		umode_t mode = inode->i_mode;
335 
336 		/*
337 		 * Nobody gets write access to a read-only fs.
338 		 */
339 		if (IS_RDONLY(inode) &&
340 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
341 			return -EROFS;
342 
343 		/*
344 		 * Nobody gets write access to an immutable file.
345 		 */
346 		if (IS_IMMUTABLE(inode))
347 			return -EACCES;
348 	}
349 
350 	retval = do_inode_permission(inode, mask);
351 	if (retval)
352 		return retval;
353 
354 	retval = devcgroup_inode_permission(inode, mask);
355 	if (retval)
356 		return retval;
357 
358 	return security_inode_permission(inode, mask);
359 }
360 
361 /**
362  * path_get - get a reference to a path
363  * @path: path to get the reference to
364  *
365  * Given a path increment the reference count to the dentry and the vfsmount.
366  */
367 void path_get(struct path *path)
368 {
369 	mntget(path->mnt);
370 	dget(path->dentry);
371 }
372 EXPORT_SYMBOL(path_get);
373 
374 /**
375  * path_put - put a reference to a path
376  * @path: path to put the reference to
377  *
378  * Given a path decrement the reference count to the dentry and the vfsmount.
379  */
380 void path_put(struct path *path)
381 {
382 	dput(path->dentry);
383 	mntput(path->mnt);
384 }
385 EXPORT_SYMBOL(path_put);
386 
387 /*
388  * Path walking has 2 modes, rcu-walk and ref-walk (see
389  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
390  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
391  * normal reference counts on dentries and vfsmounts to transition to rcu-walk
392  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
393  * got stuck, so ref-walk may continue from there. If this is not successful
394  * (eg. a seqcount has changed), then failure is returned and it's up to caller
395  * to restart the path walk from the beginning in ref-walk mode.
396  */
397 
398 /**
399  * unlazy_walk - try to switch to ref-walk mode.
400  * @nd: nameidata pathwalk data
401  * @dentry: child of nd->path.dentry or NULL
402  * Returns: 0 on success, -ECHILD on failure
403  *
404  * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
405  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
406  * @nd or NULL.  Must be called from rcu-walk context.
407  */
408 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
409 {
410 	struct fs_struct *fs = current->fs;
411 	struct dentry *parent = nd->path.dentry;
412 	int want_root = 0;
413 
414 	BUG_ON(!(nd->flags & LOOKUP_RCU));
415 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
416 		want_root = 1;
417 		spin_lock(&fs->lock);
418 		if (nd->root.mnt != fs->root.mnt ||
419 				nd->root.dentry != fs->root.dentry)
420 			goto err_root;
421 	}
422 	spin_lock(&parent->d_lock);
423 	if (!dentry) {
424 		if (!__d_rcu_to_refcount(parent, nd->seq))
425 			goto err_parent;
426 		BUG_ON(nd->inode != parent->d_inode);
427 	} else {
428 		if (dentry->d_parent != parent)
429 			goto err_parent;
430 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
431 		if (!__d_rcu_to_refcount(dentry, nd->seq))
432 			goto err_child;
433 		/*
434 		 * If the sequence check on the child dentry passed, then
435 		 * the child has not been removed from its parent. This
436 		 * means the parent dentry must be valid and able to take
437 		 * a reference at this point.
438 		 */
439 		BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
440 		BUG_ON(!parent->d_count);
441 		parent->d_count++;
442 		spin_unlock(&dentry->d_lock);
443 	}
444 	spin_unlock(&parent->d_lock);
445 	if (want_root) {
446 		path_get(&nd->root);
447 		spin_unlock(&fs->lock);
448 	}
449 	mntget(nd->path.mnt);
450 
451 	rcu_read_unlock();
452 	br_read_unlock(vfsmount_lock);
453 	nd->flags &= ~LOOKUP_RCU;
454 	return 0;
455 
456 err_child:
457 	spin_unlock(&dentry->d_lock);
458 err_parent:
459 	spin_unlock(&parent->d_lock);
460 err_root:
461 	if (want_root)
462 		spin_unlock(&fs->lock);
463 	return -ECHILD;
464 }
465 
466 /**
467  * release_open_intent - free up open intent resources
468  * @nd: pointer to nameidata
469  */
470 void release_open_intent(struct nameidata *nd)
471 {
472 	struct file *file = nd->intent.open.file;
473 
474 	if (file && !IS_ERR(file)) {
475 		if (file->f_path.dentry == NULL)
476 			put_filp(file);
477 		else
478 			fput(file);
479 	}
480 }
481 
482 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd)
483 {
484 	return dentry->d_op->d_revalidate(dentry, nd);
485 }
486 
487 /**
488  * complete_walk - successful completion of path walk
489  * @nd:  pointer nameidata
490  *
491  * If we had been in RCU mode, drop out of it and legitimize nd->path.
492  * Revalidate the final result, unless we'd already done that during
493  * the path walk or the filesystem doesn't ask for it.  Return 0 on
494  * success, -error on failure.  In case of failure caller does not
495  * need to drop nd->path.
496  */
497 static int complete_walk(struct nameidata *nd)
498 {
499 	struct dentry *dentry = nd->path.dentry;
500 	int status;
501 
502 	if (nd->flags & LOOKUP_RCU) {
503 		nd->flags &= ~LOOKUP_RCU;
504 		if (!(nd->flags & LOOKUP_ROOT))
505 			nd->root.mnt = NULL;
506 		spin_lock(&dentry->d_lock);
507 		if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
508 			spin_unlock(&dentry->d_lock);
509 			rcu_read_unlock();
510 			br_read_unlock(vfsmount_lock);
511 			return -ECHILD;
512 		}
513 		BUG_ON(nd->inode != dentry->d_inode);
514 		spin_unlock(&dentry->d_lock);
515 		mntget(nd->path.mnt);
516 		rcu_read_unlock();
517 		br_read_unlock(vfsmount_lock);
518 	}
519 
520 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
521 		return 0;
522 
523 	if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
524 		return 0;
525 
526 	if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
527 		return 0;
528 
529 	/* Note: we do not d_invalidate() */
530 	status = d_revalidate(dentry, nd);
531 	if (status > 0)
532 		return 0;
533 
534 	if (!status)
535 		status = -ESTALE;
536 
537 	path_put(&nd->path);
538 	return status;
539 }
540 
541 static __always_inline void set_root(struct nameidata *nd)
542 {
543 	if (!nd->root.mnt)
544 		get_fs_root(current->fs, &nd->root);
545 }
546 
547 static int link_path_walk(const char *, struct nameidata *);
548 
549 static __always_inline void set_root_rcu(struct nameidata *nd)
550 {
551 	if (!nd->root.mnt) {
552 		struct fs_struct *fs = current->fs;
553 		unsigned seq;
554 
555 		do {
556 			seq = read_seqcount_begin(&fs->seq);
557 			nd->root = fs->root;
558 			nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
559 		} while (read_seqcount_retry(&fs->seq, seq));
560 	}
561 }
562 
563 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
564 {
565 	int ret;
566 
567 	if (IS_ERR(link))
568 		goto fail;
569 
570 	if (*link == '/') {
571 		set_root(nd);
572 		path_put(&nd->path);
573 		nd->path = nd->root;
574 		path_get(&nd->root);
575 		nd->flags |= LOOKUP_JUMPED;
576 	}
577 	nd->inode = nd->path.dentry->d_inode;
578 
579 	ret = link_path_walk(link, nd);
580 	return ret;
581 fail:
582 	path_put(&nd->path);
583 	return PTR_ERR(link);
584 }
585 
586 static void path_put_conditional(struct path *path, struct nameidata *nd)
587 {
588 	dput(path->dentry);
589 	if (path->mnt != nd->path.mnt)
590 		mntput(path->mnt);
591 }
592 
593 static inline void path_to_nameidata(const struct path *path,
594 					struct nameidata *nd)
595 {
596 	if (!(nd->flags & LOOKUP_RCU)) {
597 		dput(nd->path.dentry);
598 		if (nd->path.mnt != path->mnt)
599 			mntput(nd->path.mnt);
600 	}
601 	nd->path.mnt = path->mnt;
602 	nd->path.dentry = path->dentry;
603 }
604 
605 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
606 {
607 	struct inode *inode = link->dentry->d_inode;
608 	if (!IS_ERR(cookie) && inode->i_op->put_link)
609 		inode->i_op->put_link(link->dentry, nd, cookie);
610 	path_put(link);
611 }
612 
613 static __always_inline int
614 follow_link(struct path *link, struct nameidata *nd, void **p)
615 {
616 	int error;
617 	struct dentry *dentry = link->dentry;
618 
619 	BUG_ON(nd->flags & LOOKUP_RCU);
620 
621 	if (link->mnt == nd->path.mnt)
622 		mntget(link->mnt);
623 
624 	if (unlikely(current->total_link_count >= 40)) {
625 		*p = ERR_PTR(-ELOOP); /* no ->put_link(), please */
626 		path_put(&nd->path);
627 		return -ELOOP;
628 	}
629 	cond_resched();
630 	current->total_link_count++;
631 
632 	touch_atime(link);
633 	nd_set_link(nd, NULL);
634 
635 	error = security_inode_follow_link(link->dentry, nd);
636 	if (error) {
637 		*p = ERR_PTR(error); /* no ->put_link(), please */
638 		path_put(&nd->path);
639 		return error;
640 	}
641 
642 	nd->last_type = LAST_BIND;
643 	*p = dentry->d_inode->i_op->follow_link(dentry, nd);
644 	error = PTR_ERR(*p);
645 	if (!IS_ERR(*p)) {
646 		char *s = nd_get_link(nd);
647 		error = 0;
648 		if (s)
649 			error = __vfs_follow_link(nd, s);
650 		else if (nd->last_type == LAST_BIND) {
651 			nd->flags |= LOOKUP_JUMPED;
652 			nd->inode = nd->path.dentry->d_inode;
653 			if (nd->inode->i_op->follow_link) {
654 				/* stepped on a _really_ weird one */
655 				path_put(&nd->path);
656 				error = -ELOOP;
657 			}
658 		}
659 	}
660 	return error;
661 }
662 
663 static int follow_up_rcu(struct path *path)
664 {
665 	struct mount *mnt = real_mount(path->mnt);
666 	struct mount *parent;
667 	struct dentry *mountpoint;
668 
669 	parent = mnt->mnt_parent;
670 	if (&parent->mnt == path->mnt)
671 		return 0;
672 	mountpoint = mnt->mnt_mountpoint;
673 	path->dentry = mountpoint;
674 	path->mnt = &parent->mnt;
675 	return 1;
676 }
677 
678 int follow_up(struct path *path)
679 {
680 	struct mount *mnt = real_mount(path->mnt);
681 	struct mount *parent;
682 	struct dentry *mountpoint;
683 
684 	br_read_lock(vfsmount_lock);
685 	parent = mnt->mnt_parent;
686 	if (&parent->mnt == path->mnt) {
687 		br_read_unlock(vfsmount_lock);
688 		return 0;
689 	}
690 	mntget(&parent->mnt);
691 	mountpoint = dget(mnt->mnt_mountpoint);
692 	br_read_unlock(vfsmount_lock);
693 	dput(path->dentry);
694 	path->dentry = mountpoint;
695 	mntput(path->mnt);
696 	path->mnt = &parent->mnt;
697 	return 1;
698 }
699 
700 /*
701  * Perform an automount
702  * - return -EISDIR to tell follow_managed() to stop and return the path we
703  *   were called with.
704  */
705 static int follow_automount(struct path *path, unsigned flags,
706 			    bool *need_mntput)
707 {
708 	struct vfsmount *mnt;
709 	int err;
710 
711 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
712 		return -EREMOTE;
713 
714 	/* We don't want to mount if someone's just doing a stat -
715 	 * unless they're stat'ing a directory and appended a '/' to
716 	 * the name.
717 	 *
718 	 * We do, however, want to mount if someone wants to open or
719 	 * create a file of any type under the mountpoint, wants to
720 	 * traverse through the mountpoint or wants to open the
721 	 * mounted directory.  Also, autofs may mark negative dentries
722 	 * as being automount points.  These will need the attentions
723 	 * of the daemon to instantiate them before they can be used.
724 	 */
725 	if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
726 		     LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
727 	    path->dentry->d_inode)
728 		return -EISDIR;
729 
730 	current->total_link_count++;
731 	if (current->total_link_count >= 40)
732 		return -ELOOP;
733 
734 	mnt = path->dentry->d_op->d_automount(path);
735 	if (IS_ERR(mnt)) {
736 		/*
737 		 * The filesystem is allowed to return -EISDIR here to indicate
738 		 * it doesn't want to automount.  For instance, autofs would do
739 		 * this so that its userspace daemon can mount on this dentry.
740 		 *
741 		 * However, we can only permit this if it's a terminal point in
742 		 * the path being looked up; if it wasn't then the remainder of
743 		 * the path is inaccessible and we should say so.
744 		 */
745 		if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
746 			return -EREMOTE;
747 		return PTR_ERR(mnt);
748 	}
749 
750 	if (!mnt) /* mount collision */
751 		return 0;
752 
753 	if (!*need_mntput) {
754 		/* lock_mount() may release path->mnt on error */
755 		mntget(path->mnt);
756 		*need_mntput = true;
757 	}
758 	err = finish_automount(mnt, path);
759 
760 	switch (err) {
761 	case -EBUSY:
762 		/* Someone else made a mount here whilst we were busy */
763 		return 0;
764 	case 0:
765 		path_put(path);
766 		path->mnt = mnt;
767 		path->dentry = dget(mnt->mnt_root);
768 		return 0;
769 	default:
770 		return err;
771 	}
772 
773 }
774 
775 /*
776  * Handle a dentry that is managed in some way.
777  * - Flagged for transit management (autofs)
778  * - Flagged as mountpoint
779  * - Flagged as automount point
780  *
781  * This may only be called in refwalk mode.
782  *
783  * Serialization is taken care of in namespace.c
784  */
785 static int follow_managed(struct path *path, unsigned flags)
786 {
787 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
788 	unsigned managed;
789 	bool need_mntput = false;
790 	int ret = 0;
791 
792 	/* Given that we're not holding a lock here, we retain the value in a
793 	 * local variable for each dentry as we look at it so that we don't see
794 	 * the components of that value change under us */
795 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
796 	       managed &= DCACHE_MANAGED_DENTRY,
797 	       unlikely(managed != 0)) {
798 		/* Allow the filesystem to manage the transit without i_mutex
799 		 * being held. */
800 		if (managed & DCACHE_MANAGE_TRANSIT) {
801 			BUG_ON(!path->dentry->d_op);
802 			BUG_ON(!path->dentry->d_op->d_manage);
803 			ret = path->dentry->d_op->d_manage(path->dentry, false);
804 			if (ret < 0)
805 				break;
806 		}
807 
808 		/* Transit to a mounted filesystem. */
809 		if (managed & DCACHE_MOUNTED) {
810 			struct vfsmount *mounted = lookup_mnt(path);
811 			if (mounted) {
812 				dput(path->dentry);
813 				if (need_mntput)
814 					mntput(path->mnt);
815 				path->mnt = mounted;
816 				path->dentry = dget(mounted->mnt_root);
817 				need_mntput = true;
818 				continue;
819 			}
820 
821 			/* Something is mounted on this dentry in another
822 			 * namespace and/or whatever was mounted there in this
823 			 * namespace got unmounted before we managed to get the
824 			 * vfsmount_lock */
825 		}
826 
827 		/* Handle an automount point */
828 		if (managed & DCACHE_NEED_AUTOMOUNT) {
829 			ret = follow_automount(path, flags, &need_mntput);
830 			if (ret < 0)
831 				break;
832 			continue;
833 		}
834 
835 		/* We didn't change the current path point */
836 		break;
837 	}
838 
839 	if (need_mntput && path->mnt == mnt)
840 		mntput(path->mnt);
841 	if (ret == -EISDIR)
842 		ret = 0;
843 	return ret < 0 ? ret : need_mntput;
844 }
845 
846 int follow_down_one(struct path *path)
847 {
848 	struct vfsmount *mounted;
849 
850 	mounted = lookup_mnt(path);
851 	if (mounted) {
852 		dput(path->dentry);
853 		mntput(path->mnt);
854 		path->mnt = mounted;
855 		path->dentry = dget(mounted->mnt_root);
856 		return 1;
857 	}
858 	return 0;
859 }
860 
861 static inline bool managed_dentry_might_block(struct dentry *dentry)
862 {
863 	return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
864 		dentry->d_op->d_manage(dentry, true) < 0);
865 }
866 
867 /*
868  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
869  * we meet a managed dentry that would need blocking.
870  */
871 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
872 			       struct inode **inode)
873 {
874 	for (;;) {
875 		struct mount *mounted;
876 		/*
877 		 * Don't forget we might have a non-mountpoint managed dentry
878 		 * that wants to block transit.
879 		 */
880 		if (unlikely(managed_dentry_might_block(path->dentry)))
881 			return false;
882 
883 		if (!d_mountpoint(path->dentry))
884 			break;
885 
886 		mounted = __lookup_mnt(path->mnt, path->dentry, 1);
887 		if (!mounted)
888 			break;
889 		path->mnt = &mounted->mnt;
890 		path->dentry = mounted->mnt.mnt_root;
891 		nd->flags |= LOOKUP_JUMPED;
892 		nd->seq = read_seqcount_begin(&path->dentry->d_seq);
893 		/*
894 		 * Update the inode too. We don't need to re-check the
895 		 * dentry sequence number here after this d_inode read,
896 		 * because a mount-point is always pinned.
897 		 */
898 		*inode = path->dentry->d_inode;
899 	}
900 	return true;
901 }
902 
903 static void follow_mount_rcu(struct nameidata *nd)
904 {
905 	while (d_mountpoint(nd->path.dentry)) {
906 		struct mount *mounted;
907 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
908 		if (!mounted)
909 			break;
910 		nd->path.mnt = &mounted->mnt;
911 		nd->path.dentry = mounted->mnt.mnt_root;
912 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
913 	}
914 }
915 
916 static int follow_dotdot_rcu(struct nameidata *nd)
917 {
918 	set_root_rcu(nd);
919 
920 	while (1) {
921 		if (nd->path.dentry == nd->root.dentry &&
922 		    nd->path.mnt == nd->root.mnt) {
923 			break;
924 		}
925 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
926 			struct dentry *old = nd->path.dentry;
927 			struct dentry *parent = old->d_parent;
928 			unsigned seq;
929 
930 			seq = read_seqcount_begin(&parent->d_seq);
931 			if (read_seqcount_retry(&old->d_seq, nd->seq))
932 				goto failed;
933 			nd->path.dentry = parent;
934 			nd->seq = seq;
935 			break;
936 		}
937 		if (!follow_up_rcu(&nd->path))
938 			break;
939 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
940 	}
941 	follow_mount_rcu(nd);
942 	nd->inode = nd->path.dentry->d_inode;
943 	return 0;
944 
945 failed:
946 	nd->flags &= ~LOOKUP_RCU;
947 	if (!(nd->flags & LOOKUP_ROOT))
948 		nd->root.mnt = NULL;
949 	rcu_read_unlock();
950 	br_read_unlock(vfsmount_lock);
951 	return -ECHILD;
952 }
953 
954 /*
955  * Follow down to the covering mount currently visible to userspace.  At each
956  * point, the filesystem owning that dentry may be queried as to whether the
957  * caller is permitted to proceed or not.
958  */
959 int follow_down(struct path *path)
960 {
961 	unsigned managed;
962 	int ret;
963 
964 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
965 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
966 		/* Allow the filesystem to manage the transit without i_mutex
967 		 * being held.
968 		 *
969 		 * We indicate to the filesystem if someone is trying to mount
970 		 * something here.  This gives autofs the chance to deny anyone
971 		 * other than its daemon the right to mount on its
972 		 * superstructure.
973 		 *
974 		 * The filesystem may sleep at this point.
975 		 */
976 		if (managed & DCACHE_MANAGE_TRANSIT) {
977 			BUG_ON(!path->dentry->d_op);
978 			BUG_ON(!path->dentry->d_op->d_manage);
979 			ret = path->dentry->d_op->d_manage(
980 				path->dentry, false);
981 			if (ret < 0)
982 				return ret == -EISDIR ? 0 : ret;
983 		}
984 
985 		/* Transit to a mounted filesystem. */
986 		if (managed & DCACHE_MOUNTED) {
987 			struct vfsmount *mounted = lookup_mnt(path);
988 			if (!mounted)
989 				break;
990 			dput(path->dentry);
991 			mntput(path->mnt);
992 			path->mnt = mounted;
993 			path->dentry = dget(mounted->mnt_root);
994 			continue;
995 		}
996 
997 		/* Don't handle automount points here */
998 		break;
999 	}
1000 	return 0;
1001 }
1002 
1003 /*
1004  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1005  */
1006 static void follow_mount(struct path *path)
1007 {
1008 	while (d_mountpoint(path->dentry)) {
1009 		struct vfsmount *mounted = lookup_mnt(path);
1010 		if (!mounted)
1011 			break;
1012 		dput(path->dentry);
1013 		mntput(path->mnt);
1014 		path->mnt = mounted;
1015 		path->dentry = dget(mounted->mnt_root);
1016 	}
1017 }
1018 
1019 static void follow_dotdot(struct nameidata *nd)
1020 {
1021 	set_root(nd);
1022 
1023 	while(1) {
1024 		struct dentry *old = nd->path.dentry;
1025 
1026 		if (nd->path.dentry == nd->root.dentry &&
1027 		    nd->path.mnt == nd->root.mnt) {
1028 			break;
1029 		}
1030 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1031 			/* rare case of legitimate dget_parent()... */
1032 			nd->path.dentry = dget_parent(nd->path.dentry);
1033 			dput(old);
1034 			break;
1035 		}
1036 		if (!follow_up(&nd->path))
1037 			break;
1038 	}
1039 	follow_mount(&nd->path);
1040 	nd->inode = nd->path.dentry->d_inode;
1041 }
1042 
1043 /*
1044  * This looks up the name in dcache, possibly revalidates the old dentry and
1045  * allocates a new one if not found or not valid.  In the need_lookup argument
1046  * returns whether i_op->lookup is necessary.
1047  *
1048  * dir->d_inode->i_mutex must be held
1049  */
1050 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1051 				    struct nameidata *nd, bool *need_lookup)
1052 {
1053 	struct dentry *dentry;
1054 	int error;
1055 
1056 	*need_lookup = false;
1057 	dentry = d_lookup(dir, name);
1058 	if (dentry) {
1059 		if (d_need_lookup(dentry)) {
1060 			*need_lookup = true;
1061 		} else if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1062 			error = d_revalidate(dentry, nd);
1063 			if (unlikely(error <= 0)) {
1064 				if (error < 0) {
1065 					dput(dentry);
1066 					return ERR_PTR(error);
1067 				} else if (!d_invalidate(dentry)) {
1068 					dput(dentry);
1069 					dentry = NULL;
1070 				}
1071 			}
1072 		}
1073 	}
1074 
1075 	if (!dentry) {
1076 		dentry = d_alloc(dir, name);
1077 		if (unlikely(!dentry))
1078 			return ERR_PTR(-ENOMEM);
1079 
1080 		*need_lookup = true;
1081 	}
1082 	return dentry;
1083 }
1084 
1085 /*
1086  * Call i_op->lookup on the dentry.  The dentry must be negative but may be
1087  * hashed if it was pouplated with DCACHE_NEED_LOOKUP.
1088  *
1089  * dir->d_inode->i_mutex must be held
1090  */
1091 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1092 				  struct nameidata *nd)
1093 {
1094 	struct dentry *old;
1095 
1096 	/* Don't create child dentry for a dead directory. */
1097 	if (unlikely(IS_DEADDIR(dir))) {
1098 		dput(dentry);
1099 		return ERR_PTR(-ENOENT);
1100 	}
1101 
1102 	old = dir->i_op->lookup(dir, dentry, nd);
1103 	if (unlikely(old)) {
1104 		dput(dentry);
1105 		dentry = old;
1106 	}
1107 	return dentry;
1108 }
1109 
1110 static struct dentry *__lookup_hash(struct qstr *name,
1111 		struct dentry *base, struct nameidata *nd)
1112 {
1113 	bool need_lookup;
1114 	struct dentry *dentry;
1115 
1116 	dentry = lookup_dcache(name, base, nd, &need_lookup);
1117 	if (!need_lookup)
1118 		return dentry;
1119 
1120 	return lookup_real(base->d_inode, dentry, nd);
1121 }
1122 
1123 /*
1124  *  It's more convoluted than I'd like it to be, but... it's still fairly
1125  *  small and for now I'd prefer to have fast path as straight as possible.
1126  *  It _is_ time-critical.
1127  */
1128 static int do_lookup(struct nameidata *nd, struct qstr *name,
1129 			struct path *path, struct inode **inode)
1130 {
1131 	struct vfsmount *mnt = nd->path.mnt;
1132 	struct dentry *dentry, *parent = nd->path.dentry;
1133 	int need_reval = 1;
1134 	int status = 1;
1135 	int err;
1136 
1137 	/*
1138 	 * Rename seqlock is not required here because in the off chance
1139 	 * of a false negative due to a concurrent rename, we're going to
1140 	 * do the non-racy lookup, below.
1141 	 */
1142 	if (nd->flags & LOOKUP_RCU) {
1143 		unsigned seq;
1144 		dentry = __d_lookup_rcu(parent, name, &seq, nd->inode);
1145 		if (!dentry)
1146 			goto unlazy;
1147 
1148 		/*
1149 		 * This sequence count validates that the inode matches
1150 		 * the dentry name information from lookup.
1151 		 */
1152 		*inode = dentry->d_inode;
1153 		if (read_seqcount_retry(&dentry->d_seq, seq))
1154 			return -ECHILD;
1155 
1156 		/*
1157 		 * This sequence count validates that the parent had no
1158 		 * changes while we did the lookup of the dentry above.
1159 		 *
1160 		 * The memory barrier in read_seqcount_begin of child is
1161 		 *  enough, we can use __read_seqcount_retry here.
1162 		 */
1163 		if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1164 			return -ECHILD;
1165 		nd->seq = seq;
1166 
1167 		if (unlikely(d_need_lookup(dentry)))
1168 			goto unlazy;
1169 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1170 			status = d_revalidate(dentry, nd);
1171 			if (unlikely(status <= 0)) {
1172 				if (status != -ECHILD)
1173 					need_reval = 0;
1174 				goto unlazy;
1175 			}
1176 		}
1177 		path->mnt = mnt;
1178 		path->dentry = dentry;
1179 		if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1180 			goto unlazy;
1181 		if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1182 			goto unlazy;
1183 		return 0;
1184 unlazy:
1185 		if (unlazy_walk(nd, dentry))
1186 			return -ECHILD;
1187 	} else {
1188 		dentry = __d_lookup(parent, name);
1189 	}
1190 
1191 	if (unlikely(!dentry))
1192 		goto need_lookup;
1193 
1194 	if (unlikely(d_need_lookup(dentry))) {
1195 		dput(dentry);
1196 		goto need_lookup;
1197 	}
1198 
1199 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1200 		status = d_revalidate(dentry, nd);
1201 	if (unlikely(status <= 0)) {
1202 		if (status < 0) {
1203 			dput(dentry);
1204 			return status;
1205 		}
1206 		if (!d_invalidate(dentry)) {
1207 			dput(dentry);
1208 			goto need_lookup;
1209 		}
1210 	}
1211 done:
1212 	path->mnt = mnt;
1213 	path->dentry = dentry;
1214 	err = follow_managed(path, nd->flags);
1215 	if (unlikely(err < 0)) {
1216 		path_put_conditional(path, nd);
1217 		return err;
1218 	}
1219 	if (err)
1220 		nd->flags |= LOOKUP_JUMPED;
1221 	*inode = path->dentry->d_inode;
1222 	return 0;
1223 
1224 need_lookup:
1225 	BUG_ON(nd->inode != parent->d_inode);
1226 
1227 	mutex_lock(&parent->d_inode->i_mutex);
1228 	dentry = __lookup_hash(name, parent, nd);
1229 	mutex_unlock(&parent->d_inode->i_mutex);
1230 	if (IS_ERR(dentry))
1231 		return PTR_ERR(dentry);
1232 	goto done;
1233 }
1234 
1235 static inline int may_lookup(struct nameidata *nd)
1236 {
1237 	if (nd->flags & LOOKUP_RCU) {
1238 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1239 		if (err != -ECHILD)
1240 			return err;
1241 		if (unlazy_walk(nd, NULL))
1242 			return -ECHILD;
1243 	}
1244 	return inode_permission(nd->inode, MAY_EXEC);
1245 }
1246 
1247 static inline int handle_dots(struct nameidata *nd, int type)
1248 {
1249 	if (type == LAST_DOTDOT) {
1250 		if (nd->flags & LOOKUP_RCU) {
1251 			if (follow_dotdot_rcu(nd))
1252 				return -ECHILD;
1253 		} else
1254 			follow_dotdot(nd);
1255 	}
1256 	return 0;
1257 }
1258 
1259 static void terminate_walk(struct nameidata *nd)
1260 {
1261 	if (!(nd->flags & LOOKUP_RCU)) {
1262 		path_put(&nd->path);
1263 	} else {
1264 		nd->flags &= ~LOOKUP_RCU;
1265 		if (!(nd->flags & LOOKUP_ROOT))
1266 			nd->root.mnt = NULL;
1267 		rcu_read_unlock();
1268 		br_read_unlock(vfsmount_lock);
1269 	}
1270 }
1271 
1272 /*
1273  * Do we need to follow links? We _really_ want to be able
1274  * to do this check without having to look at inode->i_op,
1275  * so we keep a cache of "no, this doesn't need follow_link"
1276  * for the common case.
1277  */
1278 static inline int should_follow_link(struct inode *inode, int follow)
1279 {
1280 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1281 		if (likely(inode->i_op->follow_link))
1282 			return follow;
1283 
1284 		/* This gets set once for the inode lifetime */
1285 		spin_lock(&inode->i_lock);
1286 		inode->i_opflags |= IOP_NOFOLLOW;
1287 		spin_unlock(&inode->i_lock);
1288 	}
1289 	return 0;
1290 }
1291 
1292 static inline int walk_component(struct nameidata *nd, struct path *path,
1293 		struct qstr *name, int type, int follow)
1294 {
1295 	struct inode *inode;
1296 	int err;
1297 	/*
1298 	 * "." and ".." are special - ".." especially so because it has
1299 	 * to be able to know about the current root directory and
1300 	 * parent relationships.
1301 	 */
1302 	if (unlikely(type != LAST_NORM))
1303 		return handle_dots(nd, type);
1304 	err = do_lookup(nd, name, path, &inode);
1305 	if (unlikely(err)) {
1306 		terminate_walk(nd);
1307 		return err;
1308 	}
1309 	if (!inode) {
1310 		path_to_nameidata(path, nd);
1311 		terminate_walk(nd);
1312 		return -ENOENT;
1313 	}
1314 	if (should_follow_link(inode, follow)) {
1315 		if (nd->flags & LOOKUP_RCU) {
1316 			if (unlikely(unlazy_walk(nd, path->dentry))) {
1317 				terminate_walk(nd);
1318 				return -ECHILD;
1319 			}
1320 		}
1321 		BUG_ON(inode != path->dentry->d_inode);
1322 		return 1;
1323 	}
1324 	path_to_nameidata(path, nd);
1325 	nd->inode = inode;
1326 	return 0;
1327 }
1328 
1329 /*
1330  * This limits recursive symlink follows to 8, while
1331  * limiting consecutive symlinks to 40.
1332  *
1333  * Without that kind of total limit, nasty chains of consecutive
1334  * symlinks can cause almost arbitrarily long lookups.
1335  */
1336 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1337 {
1338 	int res;
1339 
1340 	if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1341 		path_put_conditional(path, nd);
1342 		path_put(&nd->path);
1343 		return -ELOOP;
1344 	}
1345 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1346 
1347 	nd->depth++;
1348 	current->link_count++;
1349 
1350 	do {
1351 		struct path link = *path;
1352 		void *cookie;
1353 
1354 		res = follow_link(&link, nd, &cookie);
1355 		if (!res)
1356 			res = walk_component(nd, path, &nd->last,
1357 					     nd->last_type, LOOKUP_FOLLOW);
1358 		put_link(nd, &link, cookie);
1359 	} while (res > 0);
1360 
1361 	current->link_count--;
1362 	nd->depth--;
1363 	return res;
1364 }
1365 
1366 /*
1367  * We really don't want to look at inode->i_op->lookup
1368  * when we don't have to. So we keep a cache bit in
1369  * the inode ->i_opflags field that says "yes, we can
1370  * do lookup on this inode".
1371  */
1372 static inline int can_lookup(struct inode *inode)
1373 {
1374 	if (likely(inode->i_opflags & IOP_LOOKUP))
1375 		return 1;
1376 	if (likely(!inode->i_op->lookup))
1377 		return 0;
1378 
1379 	/* We do this once for the lifetime of the inode */
1380 	spin_lock(&inode->i_lock);
1381 	inode->i_opflags |= IOP_LOOKUP;
1382 	spin_unlock(&inode->i_lock);
1383 	return 1;
1384 }
1385 
1386 /*
1387  * We can do the critical dentry name comparison and hashing
1388  * operations one word at a time, but we are limited to:
1389  *
1390  * - Architectures with fast unaligned word accesses. We could
1391  *   do a "get_unaligned()" if this helps and is sufficiently
1392  *   fast.
1393  *
1394  * - Little-endian machines (so that we can generate the mask
1395  *   of low bytes efficiently). Again, we *could* do a byte
1396  *   swapping load on big-endian architectures if that is not
1397  *   expensive enough to make the optimization worthless.
1398  *
1399  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1400  *   do not trap on the (extremely unlikely) case of a page
1401  *   crossing operation.
1402  *
1403  * - Furthermore, we need an efficient 64-bit compile for the
1404  *   64-bit case in order to generate the "number of bytes in
1405  *   the final mask". Again, that could be replaced with a
1406  *   efficient population count instruction or similar.
1407  */
1408 #ifdef CONFIG_DCACHE_WORD_ACCESS
1409 
1410 #include <asm/word-at-a-time.h>
1411 
1412 #ifdef CONFIG_64BIT
1413 
1414 static inline unsigned int fold_hash(unsigned long hash)
1415 {
1416 	hash += hash >> (8*sizeof(int));
1417 	return hash;
1418 }
1419 
1420 #else	/* 32-bit case */
1421 
1422 #define fold_hash(x) (x)
1423 
1424 #endif
1425 
1426 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1427 {
1428 	unsigned long a, mask;
1429 	unsigned long hash = 0;
1430 
1431 	for (;;) {
1432 		a = load_unaligned_zeropad(name);
1433 		if (len < sizeof(unsigned long))
1434 			break;
1435 		hash += a;
1436 		hash *= 9;
1437 		name += sizeof(unsigned long);
1438 		len -= sizeof(unsigned long);
1439 		if (!len)
1440 			goto done;
1441 	}
1442 	mask = ~(~0ul << len*8);
1443 	hash += mask & a;
1444 done:
1445 	return fold_hash(hash);
1446 }
1447 EXPORT_SYMBOL(full_name_hash);
1448 
1449 /*
1450  * Calculate the length and hash of the path component, and
1451  * return the length of the component;
1452  */
1453 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1454 {
1455 	unsigned long a, b, adata, bdata, mask, hash, len;
1456 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1457 
1458 	hash = a = 0;
1459 	len = -sizeof(unsigned long);
1460 	do {
1461 		hash = (hash + a) * 9;
1462 		len += sizeof(unsigned long);
1463 		a = load_unaligned_zeropad(name+len);
1464 		b = a ^ REPEAT_BYTE('/');
1465 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1466 
1467 	adata = prep_zero_mask(a, adata, &constants);
1468 	bdata = prep_zero_mask(b, bdata, &constants);
1469 
1470 	mask = create_zero_mask(adata | bdata);
1471 
1472 	hash += a & zero_bytemask(mask);
1473 	*hashp = fold_hash(hash);
1474 
1475 	return len + find_zero(mask);
1476 }
1477 
1478 #else
1479 
1480 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1481 {
1482 	unsigned long hash = init_name_hash();
1483 	while (len--)
1484 		hash = partial_name_hash(*name++, hash);
1485 	return end_name_hash(hash);
1486 }
1487 EXPORT_SYMBOL(full_name_hash);
1488 
1489 /*
1490  * We know there's a real path component here of at least
1491  * one character.
1492  */
1493 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1494 {
1495 	unsigned long hash = init_name_hash();
1496 	unsigned long len = 0, c;
1497 
1498 	c = (unsigned char)*name;
1499 	do {
1500 		len++;
1501 		hash = partial_name_hash(c, hash);
1502 		c = (unsigned char)name[len];
1503 	} while (c && c != '/');
1504 	*hashp = end_name_hash(hash);
1505 	return len;
1506 }
1507 
1508 #endif
1509 
1510 /*
1511  * Name resolution.
1512  * This is the basic name resolution function, turning a pathname into
1513  * the final dentry. We expect 'base' to be positive and a directory.
1514  *
1515  * Returns 0 and nd will have valid dentry and mnt on success.
1516  * Returns error and drops reference to input namei data on failure.
1517  */
1518 static int link_path_walk(const char *name, struct nameidata *nd)
1519 {
1520 	struct path next;
1521 	int err;
1522 
1523 	while (*name=='/')
1524 		name++;
1525 	if (!*name)
1526 		return 0;
1527 
1528 	/* At this point we know we have a real path component. */
1529 	for(;;) {
1530 		struct qstr this;
1531 		long len;
1532 		int type;
1533 
1534 		err = may_lookup(nd);
1535  		if (err)
1536 			break;
1537 
1538 		len = hash_name(name, &this.hash);
1539 		this.name = name;
1540 		this.len = len;
1541 
1542 		type = LAST_NORM;
1543 		if (name[0] == '.') switch (len) {
1544 			case 2:
1545 				if (name[1] == '.') {
1546 					type = LAST_DOTDOT;
1547 					nd->flags |= LOOKUP_JUMPED;
1548 				}
1549 				break;
1550 			case 1:
1551 				type = LAST_DOT;
1552 		}
1553 		if (likely(type == LAST_NORM)) {
1554 			struct dentry *parent = nd->path.dentry;
1555 			nd->flags &= ~LOOKUP_JUMPED;
1556 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1557 				err = parent->d_op->d_hash(parent, nd->inode,
1558 							   &this);
1559 				if (err < 0)
1560 					break;
1561 			}
1562 		}
1563 
1564 		if (!name[len])
1565 			goto last_component;
1566 		/*
1567 		 * If it wasn't NUL, we know it was '/'. Skip that
1568 		 * slash, and continue until no more slashes.
1569 		 */
1570 		do {
1571 			len++;
1572 		} while (unlikely(name[len] == '/'));
1573 		if (!name[len])
1574 			goto last_component;
1575 		name += len;
1576 
1577 		err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1578 		if (err < 0)
1579 			return err;
1580 
1581 		if (err) {
1582 			err = nested_symlink(&next, nd);
1583 			if (err)
1584 				return err;
1585 		}
1586 		if (can_lookup(nd->inode))
1587 			continue;
1588 		err = -ENOTDIR;
1589 		break;
1590 		/* here ends the main loop */
1591 
1592 last_component:
1593 		nd->last = this;
1594 		nd->last_type = type;
1595 		return 0;
1596 	}
1597 	terminate_walk(nd);
1598 	return err;
1599 }
1600 
1601 static int path_init(int dfd, const char *name, unsigned int flags,
1602 		     struct nameidata *nd, struct file **fp)
1603 {
1604 	int retval = 0;
1605 	int fput_needed;
1606 	struct file *file;
1607 
1608 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1609 	nd->flags = flags | LOOKUP_JUMPED;
1610 	nd->depth = 0;
1611 	if (flags & LOOKUP_ROOT) {
1612 		struct inode *inode = nd->root.dentry->d_inode;
1613 		if (*name) {
1614 			if (!inode->i_op->lookup)
1615 				return -ENOTDIR;
1616 			retval = inode_permission(inode, MAY_EXEC);
1617 			if (retval)
1618 				return retval;
1619 		}
1620 		nd->path = nd->root;
1621 		nd->inode = inode;
1622 		if (flags & LOOKUP_RCU) {
1623 			br_read_lock(vfsmount_lock);
1624 			rcu_read_lock();
1625 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1626 		} else {
1627 			path_get(&nd->path);
1628 		}
1629 		return 0;
1630 	}
1631 
1632 	nd->root.mnt = NULL;
1633 
1634 	if (*name=='/') {
1635 		if (flags & LOOKUP_RCU) {
1636 			br_read_lock(vfsmount_lock);
1637 			rcu_read_lock();
1638 			set_root_rcu(nd);
1639 		} else {
1640 			set_root(nd);
1641 			path_get(&nd->root);
1642 		}
1643 		nd->path = nd->root;
1644 	} else if (dfd == AT_FDCWD) {
1645 		if (flags & LOOKUP_RCU) {
1646 			struct fs_struct *fs = current->fs;
1647 			unsigned seq;
1648 
1649 			br_read_lock(vfsmount_lock);
1650 			rcu_read_lock();
1651 
1652 			do {
1653 				seq = read_seqcount_begin(&fs->seq);
1654 				nd->path = fs->pwd;
1655 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1656 			} while (read_seqcount_retry(&fs->seq, seq));
1657 		} else {
1658 			get_fs_pwd(current->fs, &nd->path);
1659 		}
1660 	} else {
1661 		struct dentry *dentry;
1662 
1663 		file = fget_raw_light(dfd, &fput_needed);
1664 		retval = -EBADF;
1665 		if (!file)
1666 			goto out_fail;
1667 
1668 		dentry = file->f_path.dentry;
1669 
1670 		if (*name) {
1671 			retval = -ENOTDIR;
1672 			if (!S_ISDIR(dentry->d_inode->i_mode))
1673 				goto fput_fail;
1674 
1675 			retval = inode_permission(dentry->d_inode, MAY_EXEC);
1676 			if (retval)
1677 				goto fput_fail;
1678 		}
1679 
1680 		nd->path = file->f_path;
1681 		if (flags & LOOKUP_RCU) {
1682 			if (fput_needed)
1683 				*fp = file;
1684 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1685 			br_read_lock(vfsmount_lock);
1686 			rcu_read_lock();
1687 		} else {
1688 			path_get(&file->f_path);
1689 			fput_light(file, fput_needed);
1690 		}
1691 	}
1692 
1693 	nd->inode = nd->path.dentry->d_inode;
1694 	return 0;
1695 
1696 fput_fail:
1697 	fput_light(file, fput_needed);
1698 out_fail:
1699 	return retval;
1700 }
1701 
1702 static inline int lookup_last(struct nameidata *nd, struct path *path)
1703 {
1704 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1705 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1706 
1707 	nd->flags &= ~LOOKUP_PARENT;
1708 	return walk_component(nd, path, &nd->last, nd->last_type,
1709 					nd->flags & LOOKUP_FOLLOW);
1710 }
1711 
1712 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1713 static int path_lookupat(int dfd, const char *name,
1714 				unsigned int flags, struct nameidata *nd)
1715 {
1716 	struct file *base = NULL;
1717 	struct path path;
1718 	int err;
1719 
1720 	/*
1721 	 * Path walking is largely split up into 2 different synchronisation
1722 	 * schemes, rcu-walk and ref-walk (explained in
1723 	 * Documentation/filesystems/path-lookup.txt). These share much of the
1724 	 * path walk code, but some things particularly setup, cleanup, and
1725 	 * following mounts are sufficiently divergent that functions are
1726 	 * duplicated. Typically there is a function foo(), and its RCU
1727 	 * analogue, foo_rcu().
1728 	 *
1729 	 * -ECHILD is the error number of choice (just to avoid clashes) that
1730 	 * is returned if some aspect of an rcu-walk fails. Such an error must
1731 	 * be handled by restarting a traditional ref-walk (which will always
1732 	 * be able to complete).
1733 	 */
1734 	err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1735 
1736 	if (unlikely(err))
1737 		return err;
1738 
1739 	current->total_link_count = 0;
1740 	err = link_path_walk(name, nd);
1741 
1742 	if (!err && !(flags & LOOKUP_PARENT)) {
1743 		err = lookup_last(nd, &path);
1744 		while (err > 0) {
1745 			void *cookie;
1746 			struct path link = path;
1747 			nd->flags |= LOOKUP_PARENT;
1748 			err = follow_link(&link, nd, &cookie);
1749 			if (!err)
1750 				err = lookup_last(nd, &path);
1751 			put_link(nd, &link, cookie);
1752 		}
1753 	}
1754 
1755 	if (!err)
1756 		err = complete_walk(nd);
1757 
1758 	if (!err && nd->flags & LOOKUP_DIRECTORY) {
1759 		if (!nd->inode->i_op->lookup) {
1760 			path_put(&nd->path);
1761 			err = -ENOTDIR;
1762 		}
1763 	}
1764 
1765 	if (base)
1766 		fput(base);
1767 
1768 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1769 		path_put(&nd->root);
1770 		nd->root.mnt = NULL;
1771 	}
1772 	return err;
1773 }
1774 
1775 static int do_path_lookup(int dfd, const char *name,
1776 				unsigned int flags, struct nameidata *nd)
1777 {
1778 	int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
1779 	if (unlikely(retval == -ECHILD))
1780 		retval = path_lookupat(dfd, name, flags, nd);
1781 	if (unlikely(retval == -ESTALE))
1782 		retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1783 
1784 	if (likely(!retval)) {
1785 		if (unlikely(!audit_dummy_context())) {
1786 			if (nd->path.dentry && nd->inode)
1787 				audit_inode(name, nd->path.dentry);
1788 		}
1789 	}
1790 	return retval;
1791 }
1792 
1793 int kern_path_parent(const char *name, struct nameidata *nd)
1794 {
1795 	return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd);
1796 }
1797 
1798 int kern_path(const char *name, unsigned int flags, struct path *path)
1799 {
1800 	struct nameidata nd;
1801 	int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1802 	if (!res)
1803 		*path = nd.path;
1804 	return res;
1805 }
1806 
1807 /**
1808  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1809  * @dentry:  pointer to dentry of the base directory
1810  * @mnt: pointer to vfs mount of the base directory
1811  * @name: pointer to file name
1812  * @flags: lookup flags
1813  * @path: pointer to struct path to fill
1814  */
1815 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1816 		    const char *name, unsigned int flags,
1817 		    struct path *path)
1818 {
1819 	struct nameidata nd;
1820 	int err;
1821 	nd.root.dentry = dentry;
1822 	nd.root.mnt = mnt;
1823 	BUG_ON(flags & LOOKUP_PARENT);
1824 	/* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
1825 	err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
1826 	if (!err)
1827 		*path = nd.path;
1828 	return err;
1829 }
1830 
1831 /*
1832  * Restricted form of lookup. Doesn't follow links, single-component only,
1833  * needs parent already locked. Doesn't follow mounts.
1834  * SMP-safe.
1835  */
1836 static struct dentry *lookup_hash(struct nameidata *nd)
1837 {
1838 	return __lookup_hash(&nd->last, nd->path.dentry, nd);
1839 }
1840 
1841 /**
1842  * lookup_one_len - filesystem helper to lookup single pathname component
1843  * @name:	pathname component to lookup
1844  * @base:	base directory to lookup from
1845  * @len:	maximum length @len should be interpreted to
1846  *
1847  * Note that this routine is purely a helper for filesystem usage and should
1848  * not be called by generic code.  Also note that by using this function the
1849  * nameidata argument is passed to the filesystem methods and a filesystem
1850  * using this helper needs to be prepared for that.
1851  */
1852 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1853 {
1854 	struct qstr this;
1855 	unsigned int c;
1856 	int err;
1857 
1858 	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1859 
1860 	this.name = name;
1861 	this.len = len;
1862 	this.hash = full_name_hash(name, len);
1863 	if (!len)
1864 		return ERR_PTR(-EACCES);
1865 
1866 	while (len--) {
1867 		c = *(const unsigned char *)name++;
1868 		if (c == '/' || c == '\0')
1869 			return ERR_PTR(-EACCES);
1870 	}
1871 	/*
1872 	 * See if the low-level filesystem might want
1873 	 * to use its own hash..
1874 	 */
1875 	if (base->d_flags & DCACHE_OP_HASH) {
1876 		int err = base->d_op->d_hash(base, base->d_inode, &this);
1877 		if (err < 0)
1878 			return ERR_PTR(err);
1879 	}
1880 
1881 	err = inode_permission(base->d_inode, MAY_EXEC);
1882 	if (err)
1883 		return ERR_PTR(err);
1884 
1885 	return __lookup_hash(&this, base, NULL);
1886 }
1887 
1888 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
1889 		 struct path *path, int *empty)
1890 {
1891 	struct nameidata nd;
1892 	char *tmp = getname_flags(name, flags, empty);
1893 	int err = PTR_ERR(tmp);
1894 	if (!IS_ERR(tmp)) {
1895 
1896 		BUG_ON(flags & LOOKUP_PARENT);
1897 
1898 		err = do_path_lookup(dfd, tmp, flags, &nd);
1899 		putname(tmp);
1900 		if (!err)
1901 			*path = nd.path;
1902 	}
1903 	return err;
1904 }
1905 
1906 int user_path_at(int dfd, const char __user *name, unsigned flags,
1907 		 struct path *path)
1908 {
1909 	return user_path_at_empty(dfd, name, flags, path, NULL);
1910 }
1911 
1912 static int user_path_parent(int dfd, const char __user *path,
1913 			struct nameidata *nd, char **name)
1914 {
1915 	char *s = getname(path);
1916 	int error;
1917 
1918 	if (IS_ERR(s))
1919 		return PTR_ERR(s);
1920 
1921 	error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1922 	if (error)
1923 		putname(s);
1924 	else
1925 		*name = s;
1926 
1927 	return error;
1928 }
1929 
1930 /*
1931  * It's inline, so penalty for filesystems that don't use sticky bit is
1932  * minimal.
1933  */
1934 static inline int check_sticky(struct inode *dir, struct inode *inode)
1935 {
1936 	kuid_t fsuid = current_fsuid();
1937 
1938 	if (!(dir->i_mode & S_ISVTX))
1939 		return 0;
1940 	if (uid_eq(inode->i_uid, fsuid))
1941 		return 0;
1942 	if (uid_eq(dir->i_uid, fsuid))
1943 		return 0;
1944 	return !inode_capable(inode, CAP_FOWNER);
1945 }
1946 
1947 /*
1948  *	Check whether we can remove a link victim from directory dir, check
1949  *  whether the type of victim is right.
1950  *  1. We can't do it if dir is read-only (done in permission())
1951  *  2. We should have write and exec permissions on dir
1952  *  3. We can't remove anything from append-only dir
1953  *  4. We can't do anything with immutable dir (done in permission())
1954  *  5. If the sticky bit on dir is set we should either
1955  *	a. be owner of dir, or
1956  *	b. be owner of victim, or
1957  *	c. have CAP_FOWNER capability
1958  *  6. If the victim is append-only or immutable we can't do antyhing with
1959  *     links pointing to it.
1960  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1961  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1962  *  9. We can't remove a root or mountpoint.
1963  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1964  *     nfs_async_unlink().
1965  */
1966 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1967 {
1968 	int error;
1969 
1970 	if (!victim->d_inode)
1971 		return -ENOENT;
1972 
1973 	BUG_ON(victim->d_parent->d_inode != dir);
1974 	audit_inode_child(victim, dir);
1975 
1976 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1977 	if (error)
1978 		return error;
1979 	if (IS_APPEND(dir))
1980 		return -EPERM;
1981 	if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1982 	    IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1983 		return -EPERM;
1984 	if (isdir) {
1985 		if (!S_ISDIR(victim->d_inode->i_mode))
1986 			return -ENOTDIR;
1987 		if (IS_ROOT(victim))
1988 			return -EBUSY;
1989 	} else if (S_ISDIR(victim->d_inode->i_mode))
1990 		return -EISDIR;
1991 	if (IS_DEADDIR(dir))
1992 		return -ENOENT;
1993 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1994 		return -EBUSY;
1995 	return 0;
1996 }
1997 
1998 /*	Check whether we can create an object with dentry child in directory
1999  *  dir.
2000  *  1. We can't do it if child already exists (open has special treatment for
2001  *     this case, but since we are inlined it's OK)
2002  *  2. We can't do it if dir is read-only (done in permission())
2003  *  3. We should have write and exec permissions on dir
2004  *  4. We can't do it if dir is immutable (done in permission())
2005  */
2006 static inline int may_create(struct inode *dir, struct dentry *child)
2007 {
2008 	if (child->d_inode)
2009 		return -EEXIST;
2010 	if (IS_DEADDIR(dir))
2011 		return -ENOENT;
2012 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2013 }
2014 
2015 /*
2016  * p1 and p2 should be directories on the same fs.
2017  */
2018 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2019 {
2020 	struct dentry *p;
2021 
2022 	if (p1 == p2) {
2023 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2024 		return NULL;
2025 	}
2026 
2027 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2028 
2029 	p = d_ancestor(p2, p1);
2030 	if (p) {
2031 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2032 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2033 		return p;
2034 	}
2035 
2036 	p = d_ancestor(p1, p2);
2037 	if (p) {
2038 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2039 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2040 		return p;
2041 	}
2042 
2043 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2044 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2045 	return NULL;
2046 }
2047 
2048 void unlock_rename(struct dentry *p1, struct dentry *p2)
2049 {
2050 	mutex_unlock(&p1->d_inode->i_mutex);
2051 	if (p1 != p2) {
2052 		mutex_unlock(&p2->d_inode->i_mutex);
2053 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2054 	}
2055 }
2056 
2057 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2058 		struct nameidata *nd)
2059 {
2060 	int error = may_create(dir, dentry);
2061 
2062 	if (error)
2063 		return error;
2064 
2065 	if (!dir->i_op->create)
2066 		return -EACCES;	/* shouldn't it be ENOSYS? */
2067 	mode &= S_IALLUGO;
2068 	mode |= S_IFREG;
2069 	error = security_inode_create(dir, dentry, mode);
2070 	if (error)
2071 		return error;
2072 	error = dir->i_op->create(dir, dentry, mode, nd);
2073 	if (!error)
2074 		fsnotify_create(dir, dentry);
2075 	return error;
2076 }
2077 
2078 static int may_open(struct path *path, int acc_mode, int flag)
2079 {
2080 	struct dentry *dentry = path->dentry;
2081 	struct inode *inode = dentry->d_inode;
2082 	int error;
2083 
2084 	/* O_PATH? */
2085 	if (!acc_mode)
2086 		return 0;
2087 
2088 	if (!inode)
2089 		return -ENOENT;
2090 
2091 	switch (inode->i_mode & S_IFMT) {
2092 	case S_IFLNK:
2093 		return -ELOOP;
2094 	case S_IFDIR:
2095 		if (acc_mode & MAY_WRITE)
2096 			return -EISDIR;
2097 		break;
2098 	case S_IFBLK:
2099 	case S_IFCHR:
2100 		if (path->mnt->mnt_flags & MNT_NODEV)
2101 			return -EACCES;
2102 		/*FALLTHRU*/
2103 	case S_IFIFO:
2104 	case S_IFSOCK:
2105 		flag &= ~O_TRUNC;
2106 		break;
2107 	}
2108 
2109 	error = inode_permission(inode, acc_mode);
2110 	if (error)
2111 		return error;
2112 
2113 	/*
2114 	 * An append-only file must be opened in append mode for writing.
2115 	 */
2116 	if (IS_APPEND(inode)) {
2117 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2118 			return -EPERM;
2119 		if (flag & O_TRUNC)
2120 			return -EPERM;
2121 	}
2122 
2123 	/* O_NOATIME can only be set by the owner or superuser */
2124 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2125 		return -EPERM;
2126 
2127 	return 0;
2128 }
2129 
2130 static int handle_truncate(struct file *filp)
2131 {
2132 	struct path *path = &filp->f_path;
2133 	struct inode *inode = path->dentry->d_inode;
2134 	int error = get_write_access(inode);
2135 	if (error)
2136 		return error;
2137 	/*
2138 	 * Refuse to truncate files with mandatory locks held on them.
2139 	 */
2140 	error = locks_verify_locked(inode);
2141 	if (!error)
2142 		error = security_path_truncate(path);
2143 	if (!error) {
2144 		error = do_truncate(path->dentry, 0,
2145 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2146 				    filp);
2147 	}
2148 	put_write_access(inode);
2149 	return error;
2150 }
2151 
2152 static inline int open_to_namei_flags(int flag)
2153 {
2154 	if ((flag & O_ACCMODE) == 3)
2155 		flag--;
2156 	return flag;
2157 }
2158 
2159 /*
2160  * Handle the last step of open()
2161  */
2162 static struct file *do_last(struct nameidata *nd, struct path *path,
2163 			    const struct open_flags *op, const char *pathname)
2164 {
2165 	struct dentry *dir = nd->path.dentry;
2166 	struct dentry *dentry;
2167 	int open_flag = op->open_flag;
2168 	int will_truncate = open_flag & O_TRUNC;
2169 	int want_write = 0;
2170 	int acc_mode = op->acc_mode;
2171 	struct file *filp;
2172 	int error;
2173 
2174 	nd->flags &= ~LOOKUP_PARENT;
2175 	nd->flags |= op->intent;
2176 
2177 	switch (nd->last_type) {
2178 	case LAST_DOTDOT:
2179 	case LAST_DOT:
2180 		error = handle_dots(nd, nd->last_type);
2181 		if (error)
2182 			return ERR_PTR(error);
2183 		/* fallthrough */
2184 	case LAST_ROOT:
2185 		error = complete_walk(nd);
2186 		if (error)
2187 			return ERR_PTR(error);
2188 		audit_inode(pathname, nd->path.dentry);
2189 		if (open_flag & O_CREAT) {
2190 			error = -EISDIR;
2191 			goto exit;
2192 		}
2193 		goto ok;
2194 	case LAST_BIND:
2195 		error = complete_walk(nd);
2196 		if (error)
2197 			return ERR_PTR(error);
2198 		audit_inode(pathname, dir);
2199 		goto ok;
2200 	}
2201 
2202 	if (!(open_flag & O_CREAT)) {
2203 		int symlink_ok = 0;
2204 		if (nd->last.name[nd->last.len])
2205 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2206 		if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2207 			symlink_ok = 1;
2208 		/* we _can_ be in RCU mode here */
2209 		error = walk_component(nd, path, &nd->last, LAST_NORM,
2210 					!symlink_ok);
2211 		if (error < 0)
2212 			return ERR_PTR(error);
2213 		if (error) /* symlink */
2214 			return NULL;
2215 		/* sayonara */
2216 		error = complete_walk(nd);
2217 		if (error)
2218 			return ERR_PTR(error);
2219 
2220 		error = -ENOTDIR;
2221 		if (nd->flags & LOOKUP_DIRECTORY) {
2222 			if (!nd->inode->i_op->lookup)
2223 				goto exit;
2224 		}
2225 		audit_inode(pathname, nd->path.dentry);
2226 		goto ok;
2227 	}
2228 
2229 	/* create side of things */
2230 	/*
2231 	 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED has been
2232 	 * cleared when we got to the last component we are about to look up
2233 	 */
2234 	error = complete_walk(nd);
2235 	if (error)
2236 		return ERR_PTR(error);
2237 
2238 	audit_inode(pathname, dir);
2239 	error = -EISDIR;
2240 	/* trailing slashes? */
2241 	if (nd->last.name[nd->last.len])
2242 		goto exit;
2243 
2244 	mutex_lock(&dir->d_inode->i_mutex);
2245 
2246 	dentry = lookup_hash(nd);
2247 	error = PTR_ERR(dentry);
2248 	if (IS_ERR(dentry)) {
2249 		mutex_unlock(&dir->d_inode->i_mutex);
2250 		goto exit;
2251 	}
2252 
2253 	path->dentry = dentry;
2254 	path->mnt = nd->path.mnt;
2255 
2256 	/* Negative dentry, just create the file */
2257 	if (!dentry->d_inode) {
2258 		umode_t mode = op->mode;
2259 		if (!IS_POSIXACL(dir->d_inode))
2260 			mode &= ~current_umask();
2261 		/*
2262 		 * This write is needed to ensure that a
2263 		 * rw->ro transition does not occur between
2264 		 * the time when the file is created and when
2265 		 * a permanent write count is taken through
2266 		 * the 'struct file' in nameidata_to_filp().
2267 		 */
2268 		error = mnt_want_write(nd->path.mnt);
2269 		if (error)
2270 			goto exit_mutex_unlock;
2271 		want_write = 1;
2272 		/* Don't check for write permission, don't truncate */
2273 		open_flag &= ~O_TRUNC;
2274 		will_truncate = 0;
2275 		acc_mode = MAY_OPEN;
2276 		error = security_path_mknod(&nd->path, dentry, mode, 0);
2277 		if (error)
2278 			goto exit_mutex_unlock;
2279 		error = vfs_create(dir->d_inode, dentry, mode, nd);
2280 		if (error)
2281 			goto exit_mutex_unlock;
2282 		mutex_unlock(&dir->d_inode->i_mutex);
2283 		dput(nd->path.dentry);
2284 		nd->path.dentry = dentry;
2285 		goto common;
2286 	}
2287 
2288 	/*
2289 	 * It already exists.
2290 	 */
2291 	mutex_unlock(&dir->d_inode->i_mutex);
2292 	audit_inode(pathname, path->dentry);
2293 
2294 	error = -EEXIST;
2295 	if (open_flag & O_EXCL)
2296 		goto exit_dput;
2297 
2298 	error = follow_managed(path, nd->flags);
2299 	if (error < 0)
2300 		goto exit_dput;
2301 
2302 	if (error)
2303 		nd->flags |= LOOKUP_JUMPED;
2304 
2305 	error = -ENOENT;
2306 	if (!path->dentry->d_inode)
2307 		goto exit_dput;
2308 
2309 	if (path->dentry->d_inode->i_op->follow_link)
2310 		return NULL;
2311 
2312 	path_to_nameidata(path, nd);
2313 	nd->inode = path->dentry->d_inode;
2314 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
2315 	error = complete_walk(nd);
2316 	if (error)
2317 		return ERR_PTR(error);
2318 	error = -EISDIR;
2319 	if (S_ISDIR(nd->inode->i_mode))
2320 		goto exit;
2321 ok:
2322 	if (!S_ISREG(nd->inode->i_mode))
2323 		will_truncate = 0;
2324 
2325 	if (will_truncate) {
2326 		error = mnt_want_write(nd->path.mnt);
2327 		if (error)
2328 			goto exit;
2329 		want_write = 1;
2330 	}
2331 common:
2332 	error = may_open(&nd->path, acc_mode, open_flag);
2333 	if (error)
2334 		goto exit;
2335 	filp = nameidata_to_filp(nd);
2336 	if (!IS_ERR(filp)) {
2337 		error = ima_file_check(filp, op->acc_mode);
2338 		if (error) {
2339 			fput(filp);
2340 			filp = ERR_PTR(error);
2341 		}
2342 	}
2343 	if (!IS_ERR(filp)) {
2344 		if (will_truncate) {
2345 			error = handle_truncate(filp);
2346 			if (error) {
2347 				fput(filp);
2348 				filp = ERR_PTR(error);
2349 			}
2350 		}
2351 	}
2352 out:
2353 	if (want_write)
2354 		mnt_drop_write(nd->path.mnt);
2355 	path_put(&nd->path);
2356 	return filp;
2357 
2358 exit_mutex_unlock:
2359 	mutex_unlock(&dir->d_inode->i_mutex);
2360 exit_dput:
2361 	path_put_conditional(path, nd);
2362 exit:
2363 	filp = ERR_PTR(error);
2364 	goto out;
2365 }
2366 
2367 static struct file *path_openat(int dfd, const char *pathname,
2368 		struct nameidata *nd, const struct open_flags *op, int flags)
2369 {
2370 	struct file *base = NULL;
2371 	struct file *filp;
2372 	struct path path;
2373 	int error;
2374 
2375 	filp = get_empty_filp();
2376 	if (!filp)
2377 		return ERR_PTR(-ENFILE);
2378 
2379 	filp->f_flags = op->open_flag;
2380 	nd->intent.open.file = filp;
2381 	nd->intent.open.flags = open_to_namei_flags(op->open_flag);
2382 	nd->intent.open.create_mode = op->mode;
2383 
2384 	error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base);
2385 	if (unlikely(error))
2386 		goto out_filp;
2387 
2388 	current->total_link_count = 0;
2389 	error = link_path_walk(pathname, nd);
2390 	if (unlikely(error))
2391 		goto out_filp;
2392 
2393 	filp = do_last(nd, &path, op, pathname);
2394 	while (unlikely(!filp)) { /* trailing symlink */
2395 		struct path link = path;
2396 		void *cookie;
2397 		if (!(nd->flags & LOOKUP_FOLLOW)) {
2398 			path_put_conditional(&path, nd);
2399 			path_put(&nd->path);
2400 			filp = ERR_PTR(-ELOOP);
2401 			break;
2402 		}
2403 		nd->flags |= LOOKUP_PARENT;
2404 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2405 		error = follow_link(&link, nd, &cookie);
2406 		if (unlikely(error))
2407 			filp = ERR_PTR(error);
2408 		else
2409 			filp = do_last(nd, &path, op, pathname);
2410 		put_link(nd, &link, cookie);
2411 	}
2412 out:
2413 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2414 		path_put(&nd->root);
2415 	if (base)
2416 		fput(base);
2417 	release_open_intent(nd);
2418 	return filp;
2419 
2420 out_filp:
2421 	filp = ERR_PTR(error);
2422 	goto out;
2423 }
2424 
2425 struct file *do_filp_open(int dfd, const char *pathname,
2426 		const struct open_flags *op, int flags)
2427 {
2428 	struct nameidata nd;
2429 	struct file *filp;
2430 
2431 	filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2432 	if (unlikely(filp == ERR_PTR(-ECHILD)))
2433 		filp = path_openat(dfd, pathname, &nd, op, flags);
2434 	if (unlikely(filp == ERR_PTR(-ESTALE)))
2435 		filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
2436 	return filp;
2437 }
2438 
2439 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
2440 		const char *name, const struct open_flags *op, int flags)
2441 {
2442 	struct nameidata nd;
2443 	struct file *file;
2444 
2445 	nd.root.mnt = mnt;
2446 	nd.root.dentry = dentry;
2447 
2448 	flags |= LOOKUP_ROOT;
2449 
2450 	if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
2451 		return ERR_PTR(-ELOOP);
2452 
2453 	file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU);
2454 	if (unlikely(file == ERR_PTR(-ECHILD)))
2455 		file = path_openat(-1, name, &nd, op, flags);
2456 	if (unlikely(file == ERR_PTR(-ESTALE)))
2457 		file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL);
2458 	return file;
2459 }
2460 
2461 struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, int is_dir)
2462 {
2463 	struct dentry *dentry = ERR_PTR(-EEXIST);
2464 	struct nameidata nd;
2465 	int error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
2466 	if (error)
2467 		return ERR_PTR(error);
2468 
2469 	/*
2470 	 * Yucky last component or no last component at all?
2471 	 * (foo/., foo/.., /////)
2472 	 */
2473 	if (nd.last_type != LAST_NORM)
2474 		goto out;
2475 	nd.flags &= ~LOOKUP_PARENT;
2476 	nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2477 	nd.intent.open.flags = O_EXCL;
2478 
2479 	/*
2480 	 * Do the final lookup.
2481 	 */
2482 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2483 	dentry = lookup_hash(&nd);
2484 	if (IS_ERR(dentry))
2485 		goto fail;
2486 
2487 	if (dentry->d_inode)
2488 		goto eexist;
2489 	/*
2490 	 * Special case - lookup gave negative, but... we had foo/bar/
2491 	 * From the vfs_mknod() POV we just have a negative dentry -
2492 	 * all is fine. Let's be bastards - you had / on the end, you've
2493 	 * been asking for (non-existent) directory. -ENOENT for you.
2494 	 */
2495 	if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
2496 		dput(dentry);
2497 		dentry = ERR_PTR(-ENOENT);
2498 		goto fail;
2499 	}
2500 	*path = nd.path;
2501 	return dentry;
2502 eexist:
2503 	dput(dentry);
2504 	dentry = ERR_PTR(-EEXIST);
2505 fail:
2506 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2507 out:
2508 	path_put(&nd.path);
2509 	return dentry;
2510 }
2511 EXPORT_SYMBOL(kern_path_create);
2512 
2513 struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, int is_dir)
2514 {
2515 	char *tmp = getname(pathname);
2516 	struct dentry *res;
2517 	if (IS_ERR(tmp))
2518 		return ERR_CAST(tmp);
2519 	res = kern_path_create(dfd, tmp, path, is_dir);
2520 	putname(tmp);
2521 	return res;
2522 }
2523 EXPORT_SYMBOL(user_path_create);
2524 
2525 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2526 {
2527 	int error = may_create(dir, dentry);
2528 
2529 	if (error)
2530 		return error;
2531 
2532 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
2533 		return -EPERM;
2534 
2535 	if (!dir->i_op->mknod)
2536 		return -EPERM;
2537 
2538 	error = devcgroup_inode_mknod(mode, dev);
2539 	if (error)
2540 		return error;
2541 
2542 	error = security_inode_mknod(dir, dentry, mode, dev);
2543 	if (error)
2544 		return error;
2545 
2546 	error = dir->i_op->mknod(dir, dentry, mode, dev);
2547 	if (!error)
2548 		fsnotify_create(dir, dentry);
2549 	return error;
2550 }
2551 
2552 static int may_mknod(umode_t mode)
2553 {
2554 	switch (mode & S_IFMT) {
2555 	case S_IFREG:
2556 	case S_IFCHR:
2557 	case S_IFBLK:
2558 	case S_IFIFO:
2559 	case S_IFSOCK:
2560 	case 0: /* zero mode translates to S_IFREG */
2561 		return 0;
2562 	case S_IFDIR:
2563 		return -EPERM;
2564 	default:
2565 		return -EINVAL;
2566 	}
2567 }
2568 
2569 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
2570 		unsigned, dev)
2571 {
2572 	struct dentry *dentry;
2573 	struct path path;
2574 	int error;
2575 
2576 	if (S_ISDIR(mode))
2577 		return -EPERM;
2578 
2579 	dentry = user_path_create(dfd, filename, &path, 0);
2580 	if (IS_ERR(dentry))
2581 		return PTR_ERR(dentry);
2582 
2583 	if (!IS_POSIXACL(path.dentry->d_inode))
2584 		mode &= ~current_umask();
2585 	error = may_mknod(mode);
2586 	if (error)
2587 		goto out_dput;
2588 	error = mnt_want_write(path.mnt);
2589 	if (error)
2590 		goto out_dput;
2591 	error = security_path_mknod(&path, dentry, mode, dev);
2592 	if (error)
2593 		goto out_drop_write;
2594 	switch (mode & S_IFMT) {
2595 		case 0: case S_IFREG:
2596 			error = vfs_create(path.dentry->d_inode,dentry,mode,NULL);
2597 			break;
2598 		case S_IFCHR: case S_IFBLK:
2599 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
2600 					new_decode_dev(dev));
2601 			break;
2602 		case S_IFIFO: case S_IFSOCK:
2603 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
2604 			break;
2605 	}
2606 out_drop_write:
2607 	mnt_drop_write(path.mnt);
2608 out_dput:
2609 	dput(dentry);
2610 	mutex_unlock(&path.dentry->d_inode->i_mutex);
2611 	path_put(&path);
2612 
2613 	return error;
2614 }
2615 
2616 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
2617 {
2618 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
2619 }
2620 
2621 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2622 {
2623 	int error = may_create(dir, dentry);
2624 	unsigned max_links = dir->i_sb->s_max_links;
2625 
2626 	if (error)
2627 		return error;
2628 
2629 	if (!dir->i_op->mkdir)
2630 		return -EPERM;
2631 
2632 	mode &= (S_IRWXUGO|S_ISVTX);
2633 	error = security_inode_mkdir(dir, dentry, mode);
2634 	if (error)
2635 		return error;
2636 
2637 	if (max_links && dir->i_nlink >= max_links)
2638 		return -EMLINK;
2639 
2640 	error = dir->i_op->mkdir(dir, dentry, mode);
2641 	if (!error)
2642 		fsnotify_mkdir(dir, dentry);
2643 	return error;
2644 }
2645 
2646 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
2647 {
2648 	struct dentry *dentry;
2649 	struct path path;
2650 	int error;
2651 
2652 	dentry = user_path_create(dfd, pathname, &path, 1);
2653 	if (IS_ERR(dentry))
2654 		return PTR_ERR(dentry);
2655 
2656 	if (!IS_POSIXACL(path.dentry->d_inode))
2657 		mode &= ~current_umask();
2658 	error = mnt_want_write(path.mnt);
2659 	if (error)
2660 		goto out_dput;
2661 	error = security_path_mkdir(&path, dentry, mode);
2662 	if (error)
2663 		goto out_drop_write;
2664 	error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
2665 out_drop_write:
2666 	mnt_drop_write(path.mnt);
2667 out_dput:
2668 	dput(dentry);
2669 	mutex_unlock(&path.dentry->d_inode->i_mutex);
2670 	path_put(&path);
2671 	return error;
2672 }
2673 
2674 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
2675 {
2676 	return sys_mkdirat(AT_FDCWD, pathname, mode);
2677 }
2678 
2679 /*
2680  * The dentry_unhash() helper will try to drop the dentry early: we
2681  * should have a usage count of 1 if we're the only user of this
2682  * dentry, and if that is true (possibly after pruning the dcache),
2683  * then we drop the dentry now.
2684  *
2685  * A low-level filesystem can, if it choses, legally
2686  * do a
2687  *
2688  *	if (!d_unhashed(dentry))
2689  *		return -EBUSY;
2690  *
2691  * if it cannot handle the case of removing a directory
2692  * that is still in use by something else..
2693  */
2694 void dentry_unhash(struct dentry *dentry)
2695 {
2696 	shrink_dcache_parent(dentry);
2697 	spin_lock(&dentry->d_lock);
2698 	if (dentry->d_count == 1)
2699 		__d_drop(dentry);
2700 	spin_unlock(&dentry->d_lock);
2701 }
2702 
2703 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2704 {
2705 	int error = may_delete(dir, dentry, 1);
2706 
2707 	if (error)
2708 		return error;
2709 
2710 	if (!dir->i_op->rmdir)
2711 		return -EPERM;
2712 
2713 	dget(dentry);
2714 	mutex_lock(&dentry->d_inode->i_mutex);
2715 
2716 	error = -EBUSY;
2717 	if (d_mountpoint(dentry))
2718 		goto out;
2719 
2720 	error = security_inode_rmdir(dir, dentry);
2721 	if (error)
2722 		goto out;
2723 
2724 	shrink_dcache_parent(dentry);
2725 	error = dir->i_op->rmdir(dir, dentry);
2726 	if (error)
2727 		goto out;
2728 
2729 	dentry->d_inode->i_flags |= S_DEAD;
2730 	dont_mount(dentry);
2731 
2732 out:
2733 	mutex_unlock(&dentry->d_inode->i_mutex);
2734 	dput(dentry);
2735 	if (!error)
2736 		d_delete(dentry);
2737 	return error;
2738 }
2739 
2740 static long do_rmdir(int dfd, const char __user *pathname)
2741 {
2742 	int error = 0;
2743 	char * name;
2744 	struct dentry *dentry;
2745 	struct nameidata nd;
2746 
2747 	error = user_path_parent(dfd, pathname, &nd, &name);
2748 	if (error)
2749 		return error;
2750 
2751 	switch(nd.last_type) {
2752 	case LAST_DOTDOT:
2753 		error = -ENOTEMPTY;
2754 		goto exit1;
2755 	case LAST_DOT:
2756 		error = -EINVAL;
2757 		goto exit1;
2758 	case LAST_ROOT:
2759 		error = -EBUSY;
2760 		goto exit1;
2761 	}
2762 
2763 	nd.flags &= ~LOOKUP_PARENT;
2764 
2765 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2766 	dentry = lookup_hash(&nd);
2767 	error = PTR_ERR(dentry);
2768 	if (IS_ERR(dentry))
2769 		goto exit2;
2770 	if (!dentry->d_inode) {
2771 		error = -ENOENT;
2772 		goto exit3;
2773 	}
2774 	error = mnt_want_write(nd.path.mnt);
2775 	if (error)
2776 		goto exit3;
2777 	error = security_path_rmdir(&nd.path, dentry);
2778 	if (error)
2779 		goto exit4;
2780 	error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2781 exit4:
2782 	mnt_drop_write(nd.path.mnt);
2783 exit3:
2784 	dput(dentry);
2785 exit2:
2786 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2787 exit1:
2788 	path_put(&nd.path);
2789 	putname(name);
2790 	return error;
2791 }
2792 
2793 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2794 {
2795 	return do_rmdir(AT_FDCWD, pathname);
2796 }
2797 
2798 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2799 {
2800 	int error = may_delete(dir, dentry, 0);
2801 
2802 	if (error)
2803 		return error;
2804 
2805 	if (!dir->i_op->unlink)
2806 		return -EPERM;
2807 
2808 	mutex_lock(&dentry->d_inode->i_mutex);
2809 	if (d_mountpoint(dentry))
2810 		error = -EBUSY;
2811 	else {
2812 		error = security_inode_unlink(dir, dentry);
2813 		if (!error) {
2814 			error = dir->i_op->unlink(dir, dentry);
2815 			if (!error)
2816 				dont_mount(dentry);
2817 		}
2818 	}
2819 	mutex_unlock(&dentry->d_inode->i_mutex);
2820 
2821 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
2822 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2823 		fsnotify_link_count(dentry->d_inode);
2824 		d_delete(dentry);
2825 	}
2826 
2827 	return error;
2828 }
2829 
2830 /*
2831  * Make sure that the actual truncation of the file will occur outside its
2832  * directory's i_mutex.  Truncate can take a long time if there is a lot of
2833  * writeout happening, and we don't want to prevent access to the directory
2834  * while waiting on the I/O.
2835  */
2836 static long do_unlinkat(int dfd, const char __user *pathname)
2837 {
2838 	int error;
2839 	char *name;
2840 	struct dentry *dentry;
2841 	struct nameidata nd;
2842 	struct inode *inode = NULL;
2843 
2844 	error = user_path_parent(dfd, pathname, &nd, &name);
2845 	if (error)
2846 		return error;
2847 
2848 	error = -EISDIR;
2849 	if (nd.last_type != LAST_NORM)
2850 		goto exit1;
2851 
2852 	nd.flags &= ~LOOKUP_PARENT;
2853 
2854 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2855 	dentry = lookup_hash(&nd);
2856 	error = PTR_ERR(dentry);
2857 	if (!IS_ERR(dentry)) {
2858 		/* Why not before? Because we want correct error value */
2859 		if (nd.last.name[nd.last.len])
2860 			goto slashes;
2861 		inode = dentry->d_inode;
2862 		if (!inode)
2863 			goto slashes;
2864 		ihold(inode);
2865 		error = mnt_want_write(nd.path.mnt);
2866 		if (error)
2867 			goto exit2;
2868 		error = security_path_unlink(&nd.path, dentry);
2869 		if (error)
2870 			goto exit3;
2871 		error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2872 exit3:
2873 		mnt_drop_write(nd.path.mnt);
2874 	exit2:
2875 		dput(dentry);
2876 	}
2877 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2878 	if (inode)
2879 		iput(inode);	/* truncate the inode here */
2880 exit1:
2881 	path_put(&nd.path);
2882 	putname(name);
2883 	return error;
2884 
2885 slashes:
2886 	error = !dentry->d_inode ? -ENOENT :
2887 		S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2888 	goto exit2;
2889 }
2890 
2891 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2892 {
2893 	if ((flag & ~AT_REMOVEDIR) != 0)
2894 		return -EINVAL;
2895 
2896 	if (flag & AT_REMOVEDIR)
2897 		return do_rmdir(dfd, pathname);
2898 
2899 	return do_unlinkat(dfd, pathname);
2900 }
2901 
2902 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2903 {
2904 	return do_unlinkat(AT_FDCWD, pathname);
2905 }
2906 
2907 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2908 {
2909 	int error = may_create(dir, dentry);
2910 
2911 	if (error)
2912 		return error;
2913 
2914 	if (!dir->i_op->symlink)
2915 		return -EPERM;
2916 
2917 	error = security_inode_symlink(dir, dentry, oldname);
2918 	if (error)
2919 		return error;
2920 
2921 	error = dir->i_op->symlink(dir, dentry, oldname);
2922 	if (!error)
2923 		fsnotify_create(dir, dentry);
2924 	return error;
2925 }
2926 
2927 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2928 		int, newdfd, const char __user *, newname)
2929 {
2930 	int error;
2931 	char *from;
2932 	struct dentry *dentry;
2933 	struct path path;
2934 
2935 	from = getname(oldname);
2936 	if (IS_ERR(from))
2937 		return PTR_ERR(from);
2938 
2939 	dentry = user_path_create(newdfd, newname, &path, 0);
2940 	error = PTR_ERR(dentry);
2941 	if (IS_ERR(dentry))
2942 		goto out_putname;
2943 
2944 	error = mnt_want_write(path.mnt);
2945 	if (error)
2946 		goto out_dput;
2947 	error = security_path_symlink(&path, dentry, from);
2948 	if (error)
2949 		goto out_drop_write;
2950 	error = vfs_symlink(path.dentry->d_inode, dentry, from);
2951 out_drop_write:
2952 	mnt_drop_write(path.mnt);
2953 out_dput:
2954 	dput(dentry);
2955 	mutex_unlock(&path.dentry->d_inode->i_mutex);
2956 	path_put(&path);
2957 out_putname:
2958 	putname(from);
2959 	return error;
2960 }
2961 
2962 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2963 {
2964 	return sys_symlinkat(oldname, AT_FDCWD, newname);
2965 }
2966 
2967 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2968 {
2969 	struct inode *inode = old_dentry->d_inode;
2970 	unsigned max_links = dir->i_sb->s_max_links;
2971 	int error;
2972 
2973 	if (!inode)
2974 		return -ENOENT;
2975 
2976 	error = may_create(dir, new_dentry);
2977 	if (error)
2978 		return error;
2979 
2980 	if (dir->i_sb != inode->i_sb)
2981 		return -EXDEV;
2982 
2983 	/*
2984 	 * A link to an append-only or immutable file cannot be created.
2985 	 */
2986 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2987 		return -EPERM;
2988 	if (!dir->i_op->link)
2989 		return -EPERM;
2990 	if (S_ISDIR(inode->i_mode))
2991 		return -EPERM;
2992 
2993 	error = security_inode_link(old_dentry, dir, new_dentry);
2994 	if (error)
2995 		return error;
2996 
2997 	mutex_lock(&inode->i_mutex);
2998 	/* Make sure we don't allow creating hardlink to an unlinked file */
2999 	if (inode->i_nlink == 0)
3000 		error =  -ENOENT;
3001 	else if (max_links && inode->i_nlink >= max_links)
3002 		error = -EMLINK;
3003 	else
3004 		error = dir->i_op->link(old_dentry, dir, new_dentry);
3005 	mutex_unlock(&inode->i_mutex);
3006 	if (!error)
3007 		fsnotify_link(dir, inode, new_dentry);
3008 	return error;
3009 }
3010 
3011 /*
3012  * Hardlinks are often used in delicate situations.  We avoid
3013  * security-related surprises by not following symlinks on the
3014  * newname.  --KAB
3015  *
3016  * We don't follow them on the oldname either to be compatible
3017  * with linux 2.0, and to avoid hard-linking to directories
3018  * and other special files.  --ADM
3019  */
3020 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3021 		int, newdfd, const char __user *, newname, int, flags)
3022 {
3023 	struct dentry *new_dentry;
3024 	struct path old_path, new_path;
3025 	int how = 0;
3026 	int error;
3027 
3028 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3029 		return -EINVAL;
3030 	/*
3031 	 * To use null names we require CAP_DAC_READ_SEARCH
3032 	 * This ensures that not everyone will be able to create
3033 	 * handlink using the passed filedescriptor.
3034 	 */
3035 	if (flags & AT_EMPTY_PATH) {
3036 		if (!capable(CAP_DAC_READ_SEARCH))
3037 			return -ENOENT;
3038 		how = LOOKUP_EMPTY;
3039 	}
3040 
3041 	if (flags & AT_SYMLINK_FOLLOW)
3042 		how |= LOOKUP_FOLLOW;
3043 
3044 	error = user_path_at(olddfd, oldname, how, &old_path);
3045 	if (error)
3046 		return error;
3047 
3048 	new_dentry = user_path_create(newdfd, newname, &new_path, 0);
3049 	error = PTR_ERR(new_dentry);
3050 	if (IS_ERR(new_dentry))
3051 		goto out;
3052 
3053 	error = -EXDEV;
3054 	if (old_path.mnt != new_path.mnt)
3055 		goto out_dput;
3056 	error = mnt_want_write(new_path.mnt);
3057 	if (error)
3058 		goto out_dput;
3059 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
3060 	if (error)
3061 		goto out_drop_write;
3062 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
3063 out_drop_write:
3064 	mnt_drop_write(new_path.mnt);
3065 out_dput:
3066 	dput(new_dentry);
3067 	mutex_unlock(&new_path.dentry->d_inode->i_mutex);
3068 	path_put(&new_path);
3069 out:
3070 	path_put(&old_path);
3071 
3072 	return error;
3073 }
3074 
3075 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3076 {
3077 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3078 }
3079 
3080 /*
3081  * The worst of all namespace operations - renaming directory. "Perverted"
3082  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3083  * Problems:
3084  *	a) we can get into loop creation. Check is done in is_subdir().
3085  *	b) race potential - two innocent renames can create a loop together.
3086  *	   That's where 4.4 screws up. Current fix: serialization on
3087  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3088  *	   story.
3089  *	c) we have to lock _three_ objects - parents and victim (if it exists).
3090  *	   And that - after we got ->i_mutex on parents (until then we don't know
3091  *	   whether the target exists).  Solution: try to be smart with locking
3092  *	   order for inodes.  We rely on the fact that tree topology may change
3093  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
3094  *	   move will be locked.  Thus we can rank directories by the tree
3095  *	   (ancestors first) and rank all non-directories after them.
3096  *	   That works since everybody except rename does "lock parent, lookup,
3097  *	   lock child" and rename is under ->s_vfs_rename_mutex.
3098  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
3099  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
3100  *	   we'd better make sure that there's no link(2) for them.
3101  *	d) conversion from fhandle to dentry may come in the wrong moment - when
3102  *	   we are removing the target. Solution: we will have to grab ->i_mutex
3103  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3104  *	   ->i_mutex on parents, which works but leads to some truly excessive
3105  *	   locking].
3106  */
3107 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3108 			  struct inode *new_dir, struct dentry *new_dentry)
3109 {
3110 	int error = 0;
3111 	struct inode *target = new_dentry->d_inode;
3112 	unsigned max_links = new_dir->i_sb->s_max_links;
3113 
3114 	/*
3115 	 * If we are going to change the parent - check write permissions,
3116 	 * we'll need to flip '..'.
3117 	 */
3118 	if (new_dir != old_dir) {
3119 		error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3120 		if (error)
3121 			return error;
3122 	}
3123 
3124 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3125 	if (error)
3126 		return error;
3127 
3128 	dget(new_dentry);
3129 	if (target)
3130 		mutex_lock(&target->i_mutex);
3131 
3132 	error = -EBUSY;
3133 	if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3134 		goto out;
3135 
3136 	error = -EMLINK;
3137 	if (max_links && !target && new_dir != old_dir &&
3138 	    new_dir->i_nlink >= max_links)
3139 		goto out;
3140 
3141 	if (target)
3142 		shrink_dcache_parent(new_dentry);
3143 	error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3144 	if (error)
3145 		goto out;
3146 
3147 	if (target) {
3148 		target->i_flags |= S_DEAD;
3149 		dont_mount(new_dentry);
3150 	}
3151 out:
3152 	if (target)
3153 		mutex_unlock(&target->i_mutex);
3154 	dput(new_dentry);
3155 	if (!error)
3156 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3157 			d_move(old_dentry,new_dentry);
3158 	return error;
3159 }
3160 
3161 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3162 			    struct inode *new_dir, struct dentry *new_dentry)
3163 {
3164 	struct inode *target = new_dentry->d_inode;
3165 	int error;
3166 
3167 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3168 	if (error)
3169 		return error;
3170 
3171 	dget(new_dentry);
3172 	if (target)
3173 		mutex_lock(&target->i_mutex);
3174 
3175 	error = -EBUSY;
3176 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3177 		goto out;
3178 
3179 	error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3180 	if (error)
3181 		goto out;
3182 
3183 	if (target)
3184 		dont_mount(new_dentry);
3185 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3186 		d_move(old_dentry, new_dentry);
3187 out:
3188 	if (target)
3189 		mutex_unlock(&target->i_mutex);
3190 	dput(new_dentry);
3191 	return error;
3192 }
3193 
3194 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3195 	       struct inode *new_dir, struct dentry *new_dentry)
3196 {
3197 	int error;
3198 	int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3199 	const unsigned char *old_name;
3200 
3201 	if (old_dentry->d_inode == new_dentry->d_inode)
3202  		return 0;
3203 
3204 	error = may_delete(old_dir, old_dentry, is_dir);
3205 	if (error)
3206 		return error;
3207 
3208 	if (!new_dentry->d_inode)
3209 		error = may_create(new_dir, new_dentry);
3210 	else
3211 		error = may_delete(new_dir, new_dentry, is_dir);
3212 	if (error)
3213 		return error;
3214 
3215 	if (!old_dir->i_op->rename)
3216 		return -EPERM;
3217 
3218 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3219 
3220 	if (is_dir)
3221 		error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3222 	else
3223 		error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3224 	if (!error)
3225 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
3226 			      new_dentry->d_inode, old_dentry);
3227 	fsnotify_oldname_free(old_name);
3228 
3229 	return error;
3230 }
3231 
3232 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3233 		int, newdfd, const char __user *, newname)
3234 {
3235 	struct dentry *old_dir, *new_dir;
3236 	struct dentry *old_dentry, *new_dentry;
3237 	struct dentry *trap;
3238 	struct nameidata oldnd, newnd;
3239 	char *from;
3240 	char *to;
3241 	int error;
3242 
3243 	error = user_path_parent(olddfd, oldname, &oldnd, &from);
3244 	if (error)
3245 		goto exit;
3246 
3247 	error = user_path_parent(newdfd, newname, &newnd, &to);
3248 	if (error)
3249 		goto exit1;
3250 
3251 	error = -EXDEV;
3252 	if (oldnd.path.mnt != newnd.path.mnt)
3253 		goto exit2;
3254 
3255 	old_dir = oldnd.path.dentry;
3256 	error = -EBUSY;
3257 	if (oldnd.last_type != LAST_NORM)
3258 		goto exit2;
3259 
3260 	new_dir = newnd.path.dentry;
3261 	if (newnd.last_type != LAST_NORM)
3262 		goto exit2;
3263 
3264 	oldnd.flags &= ~LOOKUP_PARENT;
3265 	newnd.flags &= ~LOOKUP_PARENT;
3266 	newnd.flags |= LOOKUP_RENAME_TARGET;
3267 
3268 	trap = lock_rename(new_dir, old_dir);
3269 
3270 	old_dentry = lookup_hash(&oldnd);
3271 	error = PTR_ERR(old_dentry);
3272 	if (IS_ERR(old_dentry))
3273 		goto exit3;
3274 	/* source must exist */
3275 	error = -ENOENT;
3276 	if (!old_dentry->d_inode)
3277 		goto exit4;
3278 	/* unless the source is a directory trailing slashes give -ENOTDIR */
3279 	if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3280 		error = -ENOTDIR;
3281 		if (oldnd.last.name[oldnd.last.len])
3282 			goto exit4;
3283 		if (newnd.last.name[newnd.last.len])
3284 			goto exit4;
3285 	}
3286 	/* source should not be ancestor of target */
3287 	error = -EINVAL;
3288 	if (old_dentry == trap)
3289 		goto exit4;
3290 	new_dentry = lookup_hash(&newnd);
3291 	error = PTR_ERR(new_dentry);
3292 	if (IS_ERR(new_dentry))
3293 		goto exit4;
3294 	/* target should not be an ancestor of source */
3295 	error = -ENOTEMPTY;
3296 	if (new_dentry == trap)
3297 		goto exit5;
3298 
3299 	error = mnt_want_write(oldnd.path.mnt);
3300 	if (error)
3301 		goto exit5;
3302 	error = security_path_rename(&oldnd.path, old_dentry,
3303 				     &newnd.path, new_dentry);
3304 	if (error)
3305 		goto exit6;
3306 	error = vfs_rename(old_dir->d_inode, old_dentry,
3307 				   new_dir->d_inode, new_dentry);
3308 exit6:
3309 	mnt_drop_write(oldnd.path.mnt);
3310 exit5:
3311 	dput(new_dentry);
3312 exit4:
3313 	dput(old_dentry);
3314 exit3:
3315 	unlock_rename(new_dir, old_dir);
3316 exit2:
3317 	path_put(&newnd.path);
3318 	putname(to);
3319 exit1:
3320 	path_put(&oldnd.path);
3321 	putname(from);
3322 exit:
3323 	return error;
3324 }
3325 
3326 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3327 {
3328 	return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3329 }
3330 
3331 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3332 {
3333 	int len;
3334 
3335 	len = PTR_ERR(link);
3336 	if (IS_ERR(link))
3337 		goto out;
3338 
3339 	len = strlen(link);
3340 	if (len > (unsigned) buflen)
3341 		len = buflen;
3342 	if (copy_to_user(buffer, link, len))
3343 		len = -EFAULT;
3344 out:
3345 	return len;
3346 }
3347 
3348 /*
3349  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
3350  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
3351  * using) it for any given inode is up to filesystem.
3352  */
3353 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3354 {
3355 	struct nameidata nd;
3356 	void *cookie;
3357 	int res;
3358 
3359 	nd.depth = 0;
3360 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3361 	if (IS_ERR(cookie))
3362 		return PTR_ERR(cookie);
3363 
3364 	res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3365 	if (dentry->d_inode->i_op->put_link)
3366 		dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3367 	return res;
3368 }
3369 
3370 int vfs_follow_link(struct nameidata *nd, const char *link)
3371 {
3372 	return __vfs_follow_link(nd, link);
3373 }
3374 
3375 /* get the link contents into pagecache */
3376 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3377 {
3378 	char *kaddr;
3379 	struct page *page;
3380 	struct address_space *mapping = dentry->d_inode->i_mapping;
3381 	page = read_mapping_page(mapping, 0, NULL);
3382 	if (IS_ERR(page))
3383 		return (char*)page;
3384 	*ppage = page;
3385 	kaddr = kmap(page);
3386 	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3387 	return kaddr;
3388 }
3389 
3390 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3391 {
3392 	struct page *page = NULL;
3393 	char *s = page_getlink(dentry, &page);
3394 	int res = vfs_readlink(dentry,buffer,buflen,s);
3395 	if (page) {
3396 		kunmap(page);
3397 		page_cache_release(page);
3398 	}
3399 	return res;
3400 }
3401 
3402 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3403 {
3404 	struct page *page = NULL;
3405 	nd_set_link(nd, page_getlink(dentry, &page));
3406 	return page;
3407 }
3408 
3409 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3410 {
3411 	struct page *page = cookie;
3412 
3413 	if (page) {
3414 		kunmap(page);
3415 		page_cache_release(page);
3416 	}
3417 }
3418 
3419 /*
3420  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3421  */
3422 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3423 {
3424 	struct address_space *mapping = inode->i_mapping;
3425 	struct page *page;
3426 	void *fsdata;
3427 	int err;
3428 	char *kaddr;
3429 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3430 	if (nofs)
3431 		flags |= AOP_FLAG_NOFS;
3432 
3433 retry:
3434 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
3435 				flags, &page, &fsdata);
3436 	if (err)
3437 		goto fail;
3438 
3439 	kaddr = kmap_atomic(page);
3440 	memcpy(kaddr, symname, len-1);
3441 	kunmap_atomic(kaddr);
3442 
3443 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3444 							page, fsdata);
3445 	if (err < 0)
3446 		goto fail;
3447 	if (err < len-1)
3448 		goto retry;
3449 
3450 	mark_inode_dirty(inode);
3451 	return 0;
3452 fail:
3453 	return err;
3454 }
3455 
3456 int page_symlink(struct inode *inode, const char *symname, int len)
3457 {
3458 	return __page_symlink(inode, symname, len,
3459 			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3460 }
3461 
3462 const struct inode_operations page_symlink_inode_operations = {
3463 	.readlink	= generic_readlink,
3464 	.follow_link	= page_follow_link_light,
3465 	.put_link	= page_put_link,
3466 };
3467 
3468 EXPORT_SYMBOL(user_path_at);
3469 EXPORT_SYMBOL(follow_down_one);
3470 EXPORT_SYMBOL(follow_down);
3471 EXPORT_SYMBOL(follow_up);
3472 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3473 EXPORT_SYMBOL(getname);
3474 EXPORT_SYMBOL(lock_rename);
3475 EXPORT_SYMBOL(lookup_one_len);
3476 EXPORT_SYMBOL(page_follow_link_light);
3477 EXPORT_SYMBOL(page_put_link);
3478 EXPORT_SYMBOL(page_readlink);
3479 EXPORT_SYMBOL(__page_symlink);
3480 EXPORT_SYMBOL(page_symlink);
3481 EXPORT_SYMBOL(page_symlink_inode_operations);
3482 EXPORT_SYMBOL(kern_path);
3483 EXPORT_SYMBOL(vfs_path_lookup);
3484 EXPORT_SYMBOL(inode_permission);
3485 EXPORT_SYMBOL(unlock_rename);
3486 EXPORT_SYMBOL(vfs_create);
3487 EXPORT_SYMBOL(vfs_follow_link);
3488 EXPORT_SYMBOL(vfs_link);
3489 EXPORT_SYMBOL(vfs_mkdir);
3490 EXPORT_SYMBOL(vfs_mknod);
3491 EXPORT_SYMBOL(generic_permission);
3492 EXPORT_SYMBOL(vfs_readlink);
3493 EXPORT_SYMBOL(vfs_rename);
3494 EXPORT_SYMBOL(vfs_rmdir);
3495 EXPORT_SYMBOL(vfs_symlink);
3496 EXPORT_SYMBOL(vfs_unlink);
3497 EXPORT_SYMBOL(dentry_unhash);
3498 EXPORT_SYMBOL(generic_readlink);
3499