1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/fs.h> 21 #include <linux/namei.h> 22 #include <linux/quotaops.h> 23 #include <linux/pagemap.h> 24 #include <linux/fsnotify.h> 25 #include <linux/smp_lock.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/syscalls.h> 29 #include <linux/mount.h> 30 #include <linux/audit.h> 31 #include <linux/capability.h> 32 #include <linux/file.h> 33 #include <linux/fcntl.h> 34 #include <linux/namei.h> 35 #include <asm/namei.h> 36 #include <asm/uaccess.h> 37 38 #define ACC_MODE(x) ("\000\004\002\006"[(x)&O_ACCMODE]) 39 40 /* [Feb-1997 T. Schoebel-Theuer] 41 * Fundamental changes in the pathname lookup mechanisms (namei) 42 * were necessary because of omirr. The reason is that omirr needs 43 * to know the _real_ pathname, not the user-supplied one, in case 44 * of symlinks (and also when transname replacements occur). 45 * 46 * The new code replaces the old recursive symlink resolution with 47 * an iterative one (in case of non-nested symlink chains). It does 48 * this with calls to <fs>_follow_link(). 49 * As a side effect, dir_namei(), _namei() and follow_link() are now 50 * replaced with a single function lookup_dentry() that can handle all 51 * the special cases of the former code. 52 * 53 * With the new dcache, the pathname is stored at each inode, at least as 54 * long as the refcount of the inode is positive. As a side effect, the 55 * size of the dcache depends on the inode cache and thus is dynamic. 56 * 57 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 58 * resolution to correspond with current state of the code. 59 * 60 * Note that the symlink resolution is not *completely* iterative. 61 * There is still a significant amount of tail- and mid- recursion in 62 * the algorithm. Also, note that <fs>_readlink() is not used in 63 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 64 * may return different results than <fs>_follow_link(). Many virtual 65 * filesystems (including /proc) exhibit this behavior. 66 */ 67 68 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 69 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 70 * and the name already exists in form of a symlink, try to create the new 71 * name indicated by the symlink. The old code always complained that the 72 * name already exists, due to not following the symlink even if its target 73 * is nonexistent. The new semantics affects also mknod() and link() when 74 * the name is a symlink pointing to a non-existant name. 75 * 76 * I don't know which semantics is the right one, since I have no access 77 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 78 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 79 * "old" one. Personally, I think the new semantics is much more logical. 80 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 81 * file does succeed in both HP-UX and SunOs, but not in Solaris 82 * and in the old Linux semantics. 83 */ 84 85 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 86 * semantics. See the comments in "open_namei" and "do_link" below. 87 * 88 * [10-Sep-98 Alan Modra] Another symlink change. 89 */ 90 91 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 92 * inside the path - always follow. 93 * in the last component in creation/removal/renaming - never follow. 94 * if LOOKUP_FOLLOW passed - follow. 95 * if the pathname has trailing slashes - follow. 96 * otherwise - don't follow. 97 * (applied in that order). 98 * 99 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 100 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 101 * During the 2.4 we need to fix the userland stuff depending on it - 102 * hopefully we will be able to get rid of that wart in 2.5. So far only 103 * XEmacs seems to be relying on it... 104 */ 105 /* 106 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 107 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 108 * any extra contention... 109 */ 110 111 /* In order to reduce some races, while at the same time doing additional 112 * checking and hopefully speeding things up, we copy filenames to the 113 * kernel data space before using them.. 114 * 115 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 116 * PATH_MAX includes the nul terminator --RR. 117 */ 118 static int do_getname(const char __user *filename, char *page) 119 { 120 int retval; 121 unsigned long len = PATH_MAX; 122 123 if (!segment_eq(get_fs(), KERNEL_DS)) { 124 if ((unsigned long) filename >= TASK_SIZE) 125 return -EFAULT; 126 if (TASK_SIZE - (unsigned long) filename < PATH_MAX) 127 len = TASK_SIZE - (unsigned long) filename; 128 } 129 130 retval = strncpy_from_user(page, filename, len); 131 if (retval > 0) { 132 if (retval < len) 133 return 0; 134 return -ENAMETOOLONG; 135 } else if (!retval) 136 retval = -ENOENT; 137 return retval; 138 } 139 140 char * getname(const char __user * filename) 141 { 142 char *tmp, *result; 143 144 result = ERR_PTR(-ENOMEM); 145 tmp = __getname(); 146 if (tmp) { 147 int retval = do_getname(filename, tmp); 148 149 result = tmp; 150 if (retval < 0) { 151 __putname(tmp); 152 result = ERR_PTR(retval); 153 } 154 } 155 audit_getname(result); 156 return result; 157 } 158 159 #ifdef CONFIG_AUDITSYSCALL 160 void putname(const char *name) 161 { 162 if (unlikely(current->audit_context)) 163 audit_putname(name); 164 else 165 __putname(name); 166 } 167 EXPORT_SYMBOL(putname); 168 #endif 169 170 171 /** 172 * generic_permission - check for access rights on a Posix-like filesystem 173 * @inode: inode to check access rights for 174 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 175 * @check_acl: optional callback to check for Posix ACLs 176 * 177 * Used to check for read/write/execute permissions on a file. 178 * We use "fsuid" for this, letting us set arbitrary permissions 179 * for filesystem access without changing the "normal" uids which 180 * are used for other things.. 181 */ 182 int generic_permission(struct inode *inode, int mask, 183 int (*check_acl)(struct inode *inode, int mask)) 184 { 185 umode_t mode = inode->i_mode; 186 187 if (current->fsuid == inode->i_uid) 188 mode >>= 6; 189 else { 190 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) { 191 int error = check_acl(inode, mask); 192 if (error == -EACCES) 193 goto check_capabilities; 194 else if (error != -EAGAIN) 195 return error; 196 } 197 198 if (in_group_p(inode->i_gid)) 199 mode >>= 3; 200 } 201 202 /* 203 * If the DACs are ok we don't need any capability check. 204 */ 205 if (((mode & mask & (MAY_READ|MAY_WRITE|MAY_EXEC)) == mask)) 206 return 0; 207 208 check_capabilities: 209 /* 210 * Read/write DACs are always overridable. 211 * Executable DACs are overridable if at least one exec bit is set. 212 */ 213 if (!(mask & MAY_EXEC) || 214 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode)) 215 if (capable(CAP_DAC_OVERRIDE)) 216 return 0; 217 218 /* 219 * Searching includes executable on directories, else just read. 220 */ 221 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE))) 222 if (capable(CAP_DAC_READ_SEARCH)) 223 return 0; 224 225 return -EACCES; 226 } 227 228 int permission(struct inode *inode, int mask, struct nameidata *nd) 229 { 230 int retval, submask; 231 232 if (mask & MAY_WRITE) { 233 umode_t mode = inode->i_mode; 234 235 /* 236 * Nobody gets write access to a read-only fs. 237 */ 238 if (IS_RDONLY(inode) && 239 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 240 return -EROFS; 241 242 /* 243 * Nobody gets write access to an immutable file. 244 */ 245 if (IS_IMMUTABLE(inode)) 246 return -EACCES; 247 } 248 249 250 /* Ordinary permission routines do not understand MAY_APPEND. */ 251 submask = mask & ~MAY_APPEND; 252 if (inode->i_op && inode->i_op->permission) 253 retval = inode->i_op->permission(inode, submask, nd); 254 else 255 retval = generic_permission(inode, submask, NULL); 256 if (retval) 257 return retval; 258 259 return security_inode_permission(inode, mask, nd); 260 } 261 262 /** 263 * vfs_permission - check for access rights to a given path 264 * @nd: lookup result that describes the path 265 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 266 * 267 * Used to check for read/write/execute permissions on a path. 268 * We use "fsuid" for this, letting us set arbitrary permissions 269 * for filesystem access without changing the "normal" uids which 270 * are used for other things. 271 */ 272 int vfs_permission(struct nameidata *nd, int mask) 273 { 274 return permission(nd->dentry->d_inode, mask, nd); 275 } 276 277 /** 278 * file_permission - check for additional access rights to a given file 279 * @file: file to check access rights for 280 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 281 * 282 * Used to check for read/write/execute permissions on an already opened 283 * file. 284 * 285 * Note: 286 * Do not use this function in new code. All access checks should 287 * be done using vfs_permission(). 288 */ 289 int file_permission(struct file *file, int mask) 290 { 291 return permission(file->f_dentry->d_inode, mask, NULL); 292 } 293 294 /* 295 * get_write_access() gets write permission for a file. 296 * put_write_access() releases this write permission. 297 * This is used for regular files. 298 * We cannot support write (and maybe mmap read-write shared) accesses and 299 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode 300 * can have the following values: 301 * 0: no writers, no VM_DENYWRITE mappings 302 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist 303 * > 0: (i_writecount) users are writing to the file. 304 * 305 * Normally we operate on that counter with atomic_{inc,dec} and it's safe 306 * except for the cases where we don't hold i_writecount yet. Then we need to 307 * use {get,deny}_write_access() - these functions check the sign and refuse 308 * to do the change if sign is wrong. Exclusion between them is provided by 309 * the inode->i_lock spinlock. 310 */ 311 312 int get_write_access(struct inode * inode) 313 { 314 spin_lock(&inode->i_lock); 315 if (atomic_read(&inode->i_writecount) < 0) { 316 spin_unlock(&inode->i_lock); 317 return -ETXTBSY; 318 } 319 atomic_inc(&inode->i_writecount); 320 spin_unlock(&inode->i_lock); 321 322 return 0; 323 } 324 325 int deny_write_access(struct file * file) 326 { 327 struct inode *inode = file->f_dentry->d_inode; 328 329 spin_lock(&inode->i_lock); 330 if (atomic_read(&inode->i_writecount) > 0) { 331 spin_unlock(&inode->i_lock); 332 return -ETXTBSY; 333 } 334 atomic_dec(&inode->i_writecount); 335 spin_unlock(&inode->i_lock); 336 337 return 0; 338 } 339 340 void path_release(struct nameidata *nd) 341 { 342 dput(nd->dentry); 343 mntput(nd->mnt); 344 } 345 346 /* 347 * umount() mustn't call path_release()/mntput() as that would clear 348 * mnt_expiry_mark 349 */ 350 void path_release_on_umount(struct nameidata *nd) 351 { 352 dput(nd->dentry); 353 mntput_no_expire(nd->mnt); 354 } 355 356 /** 357 * release_open_intent - free up open intent resources 358 * @nd: pointer to nameidata 359 */ 360 void release_open_intent(struct nameidata *nd) 361 { 362 if (nd->intent.open.file->f_dentry == NULL) 363 put_filp(nd->intent.open.file); 364 else 365 fput(nd->intent.open.file); 366 } 367 368 /* 369 * Internal lookup() using the new generic dcache. 370 * SMP-safe 371 */ 372 static struct dentry * cached_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd) 373 { 374 struct dentry * dentry = __d_lookup(parent, name); 375 376 /* lockess __d_lookup may fail due to concurrent d_move() 377 * in some unrelated directory, so try with d_lookup 378 */ 379 if (!dentry) 380 dentry = d_lookup(parent, name); 381 382 if (dentry && dentry->d_op && dentry->d_op->d_revalidate) { 383 if (!dentry->d_op->d_revalidate(dentry, nd) && !d_invalidate(dentry)) { 384 dput(dentry); 385 dentry = NULL; 386 } 387 } 388 return dentry; 389 } 390 391 /* 392 * Short-cut version of permission(), for calling by 393 * path_walk(), when dcache lock is held. Combines parts 394 * of permission() and generic_permission(), and tests ONLY for 395 * MAY_EXEC permission. 396 * 397 * If appropriate, check DAC only. If not appropriate, or 398 * short-cut DAC fails, then call permission() to do more 399 * complete permission check. 400 */ 401 static int exec_permission_lite(struct inode *inode, 402 struct nameidata *nd) 403 { 404 umode_t mode = inode->i_mode; 405 406 if (inode->i_op && inode->i_op->permission) 407 return -EAGAIN; 408 409 if (current->fsuid == inode->i_uid) 410 mode >>= 6; 411 else if (in_group_p(inode->i_gid)) 412 mode >>= 3; 413 414 if (mode & MAY_EXEC) 415 goto ok; 416 417 if ((inode->i_mode & S_IXUGO) && capable(CAP_DAC_OVERRIDE)) 418 goto ok; 419 420 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_OVERRIDE)) 421 goto ok; 422 423 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_READ_SEARCH)) 424 goto ok; 425 426 return -EACCES; 427 ok: 428 return security_inode_permission(inode, MAY_EXEC, nd); 429 } 430 431 /* 432 * This is called when everything else fails, and we actually have 433 * to go to the low-level filesystem to find out what we should do.. 434 * 435 * We get the directory semaphore, and after getting that we also 436 * make sure that nobody added the entry to the dcache in the meantime.. 437 * SMP-safe 438 */ 439 static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd) 440 { 441 struct dentry * result; 442 struct inode *dir = parent->d_inode; 443 444 mutex_lock(&dir->i_mutex); 445 /* 446 * First re-do the cached lookup just in case it was created 447 * while we waited for the directory semaphore.. 448 * 449 * FIXME! This could use version numbering or similar to 450 * avoid unnecessary cache lookups. 451 * 452 * The "dcache_lock" is purely to protect the RCU list walker 453 * from concurrent renames at this point (we mustn't get false 454 * negatives from the RCU list walk here, unlike the optimistic 455 * fast walk). 456 * 457 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup 458 */ 459 result = d_lookup(parent, name); 460 if (!result) { 461 struct dentry * dentry = d_alloc(parent, name); 462 result = ERR_PTR(-ENOMEM); 463 if (dentry) { 464 result = dir->i_op->lookup(dir, dentry, nd); 465 if (result) 466 dput(dentry); 467 else 468 result = dentry; 469 } 470 mutex_unlock(&dir->i_mutex); 471 return result; 472 } 473 474 /* 475 * Uhhuh! Nasty case: the cache was re-populated while 476 * we waited on the semaphore. Need to revalidate. 477 */ 478 mutex_unlock(&dir->i_mutex); 479 if (result->d_op && result->d_op->d_revalidate) { 480 if (!result->d_op->d_revalidate(result, nd) && !d_invalidate(result)) { 481 dput(result); 482 result = ERR_PTR(-ENOENT); 483 } 484 } 485 return result; 486 } 487 488 static int __emul_lookup_dentry(const char *, struct nameidata *); 489 490 /* SMP-safe */ 491 static __always_inline int 492 walk_init_root(const char *name, struct nameidata *nd) 493 { 494 read_lock(¤t->fs->lock); 495 if (current->fs->altroot && !(nd->flags & LOOKUP_NOALT)) { 496 nd->mnt = mntget(current->fs->altrootmnt); 497 nd->dentry = dget(current->fs->altroot); 498 read_unlock(¤t->fs->lock); 499 if (__emul_lookup_dentry(name,nd)) 500 return 0; 501 read_lock(¤t->fs->lock); 502 } 503 nd->mnt = mntget(current->fs->rootmnt); 504 nd->dentry = dget(current->fs->root); 505 read_unlock(¤t->fs->lock); 506 return 1; 507 } 508 509 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link) 510 { 511 int res = 0; 512 char *name; 513 if (IS_ERR(link)) 514 goto fail; 515 516 if (*link == '/') { 517 path_release(nd); 518 if (!walk_init_root(link, nd)) 519 /* weird __emul_prefix() stuff did it */ 520 goto out; 521 } 522 res = link_path_walk(link, nd); 523 out: 524 if (nd->depth || res || nd->last_type!=LAST_NORM) 525 return res; 526 /* 527 * If it is an iterative symlinks resolution in open_namei() we 528 * have to copy the last component. And all that crap because of 529 * bloody create() on broken symlinks. Furrfu... 530 */ 531 name = __getname(); 532 if (unlikely(!name)) { 533 path_release(nd); 534 return -ENOMEM; 535 } 536 strcpy(name, nd->last.name); 537 nd->last.name = name; 538 return 0; 539 fail: 540 path_release(nd); 541 return PTR_ERR(link); 542 } 543 544 struct path { 545 struct vfsmount *mnt; 546 struct dentry *dentry; 547 }; 548 549 static inline void dput_path(struct path *path, struct nameidata *nd) 550 { 551 dput(path->dentry); 552 if (path->mnt != nd->mnt) 553 mntput(path->mnt); 554 } 555 556 static inline void path_to_nameidata(struct path *path, struct nameidata *nd) 557 { 558 dput(nd->dentry); 559 if (nd->mnt != path->mnt) 560 mntput(nd->mnt); 561 nd->mnt = path->mnt; 562 nd->dentry = path->dentry; 563 } 564 565 static __always_inline int __do_follow_link(struct path *path, struct nameidata *nd) 566 { 567 int error; 568 void *cookie; 569 struct dentry *dentry = path->dentry; 570 571 touch_atime(path->mnt, dentry); 572 nd_set_link(nd, NULL); 573 574 if (path->mnt != nd->mnt) { 575 path_to_nameidata(path, nd); 576 dget(dentry); 577 } 578 mntget(path->mnt); 579 cookie = dentry->d_inode->i_op->follow_link(dentry, nd); 580 error = PTR_ERR(cookie); 581 if (!IS_ERR(cookie)) { 582 char *s = nd_get_link(nd); 583 error = 0; 584 if (s) 585 error = __vfs_follow_link(nd, s); 586 if (dentry->d_inode->i_op->put_link) 587 dentry->d_inode->i_op->put_link(dentry, nd, cookie); 588 } 589 dput(dentry); 590 mntput(path->mnt); 591 592 return error; 593 } 594 595 /* 596 * This limits recursive symlink follows to 8, while 597 * limiting consecutive symlinks to 40. 598 * 599 * Without that kind of total limit, nasty chains of consecutive 600 * symlinks can cause almost arbitrarily long lookups. 601 */ 602 static inline int do_follow_link(struct path *path, struct nameidata *nd) 603 { 604 int err = -ELOOP; 605 if (current->link_count >= MAX_NESTED_LINKS) 606 goto loop; 607 if (current->total_link_count >= 40) 608 goto loop; 609 BUG_ON(nd->depth >= MAX_NESTED_LINKS); 610 cond_resched(); 611 err = security_inode_follow_link(path->dentry, nd); 612 if (err) 613 goto loop; 614 current->link_count++; 615 current->total_link_count++; 616 nd->depth++; 617 err = __do_follow_link(path, nd); 618 current->link_count--; 619 nd->depth--; 620 return err; 621 loop: 622 dput_path(path, nd); 623 path_release(nd); 624 return err; 625 } 626 627 int follow_up(struct vfsmount **mnt, struct dentry **dentry) 628 { 629 struct vfsmount *parent; 630 struct dentry *mountpoint; 631 spin_lock(&vfsmount_lock); 632 parent=(*mnt)->mnt_parent; 633 if (parent == *mnt) { 634 spin_unlock(&vfsmount_lock); 635 return 0; 636 } 637 mntget(parent); 638 mountpoint=dget((*mnt)->mnt_mountpoint); 639 spin_unlock(&vfsmount_lock); 640 dput(*dentry); 641 *dentry = mountpoint; 642 mntput(*mnt); 643 *mnt = parent; 644 return 1; 645 } 646 647 /* no need for dcache_lock, as serialization is taken care in 648 * namespace.c 649 */ 650 static int __follow_mount(struct path *path) 651 { 652 int res = 0; 653 while (d_mountpoint(path->dentry)) { 654 struct vfsmount *mounted = lookup_mnt(path->mnt, path->dentry); 655 if (!mounted) 656 break; 657 dput(path->dentry); 658 if (res) 659 mntput(path->mnt); 660 path->mnt = mounted; 661 path->dentry = dget(mounted->mnt_root); 662 res = 1; 663 } 664 return res; 665 } 666 667 static void follow_mount(struct vfsmount **mnt, struct dentry **dentry) 668 { 669 while (d_mountpoint(*dentry)) { 670 struct vfsmount *mounted = lookup_mnt(*mnt, *dentry); 671 if (!mounted) 672 break; 673 dput(*dentry); 674 mntput(*mnt); 675 *mnt = mounted; 676 *dentry = dget(mounted->mnt_root); 677 } 678 } 679 680 /* no need for dcache_lock, as serialization is taken care in 681 * namespace.c 682 */ 683 int follow_down(struct vfsmount **mnt, struct dentry **dentry) 684 { 685 struct vfsmount *mounted; 686 687 mounted = lookup_mnt(*mnt, *dentry); 688 if (mounted) { 689 dput(*dentry); 690 mntput(*mnt); 691 *mnt = mounted; 692 *dentry = dget(mounted->mnt_root); 693 return 1; 694 } 695 return 0; 696 } 697 698 static __always_inline void follow_dotdot(struct nameidata *nd) 699 { 700 while(1) { 701 struct vfsmount *parent; 702 struct dentry *old = nd->dentry; 703 704 read_lock(¤t->fs->lock); 705 if (nd->dentry == current->fs->root && 706 nd->mnt == current->fs->rootmnt) { 707 read_unlock(¤t->fs->lock); 708 break; 709 } 710 read_unlock(¤t->fs->lock); 711 spin_lock(&dcache_lock); 712 if (nd->dentry != nd->mnt->mnt_root) { 713 nd->dentry = dget(nd->dentry->d_parent); 714 spin_unlock(&dcache_lock); 715 dput(old); 716 break; 717 } 718 spin_unlock(&dcache_lock); 719 spin_lock(&vfsmount_lock); 720 parent = nd->mnt->mnt_parent; 721 if (parent == nd->mnt) { 722 spin_unlock(&vfsmount_lock); 723 break; 724 } 725 mntget(parent); 726 nd->dentry = dget(nd->mnt->mnt_mountpoint); 727 spin_unlock(&vfsmount_lock); 728 dput(old); 729 mntput(nd->mnt); 730 nd->mnt = parent; 731 } 732 follow_mount(&nd->mnt, &nd->dentry); 733 } 734 735 /* 736 * It's more convoluted than I'd like it to be, but... it's still fairly 737 * small and for now I'd prefer to have fast path as straight as possible. 738 * It _is_ time-critical. 739 */ 740 static int do_lookup(struct nameidata *nd, struct qstr *name, 741 struct path *path) 742 { 743 struct vfsmount *mnt = nd->mnt; 744 struct dentry *dentry = __d_lookup(nd->dentry, name); 745 746 if (!dentry) 747 goto need_lookup; 748 if (dentry->d_op && dentry->d_op->d_revalidate) 749 goto need_revalidate; 750 done: 751 path->mnt = mnt; 752 path->dentry = dentry; 753 __follow_mount(path); 754 return 0; 755 756 need_lookup: 757 dentry = real_lookup(nd->dentry, name, nd); 758 if (IS_ERR(dentry)) 759 goto fail; 760 goto done; 761 762 need_revalidate: 763 if (dentry->d_op->d_revalidate(dentry, nd)) 764 goto done; 765 if (d_invalidate(dentry)) 766 goto done; 767 dput(dentry); 768 goto need_lookup; 769 770 fail: 771 return PTR_ERR(dentry); 772 } 773 774 /* 775 * Name resolution. 776 * This is the basic name resolution function, turning a pathname into 777 * the final dentry. We expect 'base' to be positive and a directory. 778 * 779 * Returns 0 and nd will have valid dentry and mnt on success. 780 * Returns error and drops reference to input namei data on failure. 781 */ 782 static fastcall int __link_path_walk(const char * name, struct nameidata *nd) 783 { 784 struct path next; 785 struct inode *inode; 786 int err; 787 unsigned int lookup_flags = nd->flags; 788 789 while (*name=='/') 790 name++; 791 if (!*name) 792 goto return_reval; 793 794 inode = nd->dentry->d_inode; 795 if (nd->depth) 796 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE); 797 798 /* At this point we know we have a real path component. */ 799 for(;;) { 800 unsigned long hash; 801 struct qstr this; 802 unsigned int c; 803 804 nd->flags |= LOOKUP_CONTINUE; 805 err = exec_permission_lite(inode, nd); 806 if (err == -EAGAIN) 807 err = vfs_permission(nd, MAY_EXEC); 808 if (err) 809 break; 810 811 this.name = name; 812 c = *(const unsigned char *)name; 813 814 hash = init_name_hash(); 815 do { 816 name++; 817 hash = partial_name_hash(c, hash); 818 c = *(const unsigned char *)name; 819 } while (c && (c != '/')); 820 this.len = name - (const char *) this.name; 821 this.hash = end_name_hash(hash); 822 823 /* remove trailing slashes? */ 824 if (!c) 825 goto last_component; 826 while (*++name == '/'); 827 if (!*name) 828 goto last_with_slashes; 829 830 /* 831 * "." and ".." are special - ".." especially so because it has 832 * to be able to know about the current root directory and 833 * parent relationships. 834 */ 835 if (this.name[0] == '.') switch (this.len) { 836 default: 837 break; 838 case 2: 839 if (this.name[1] != '.') 840 break; 841 follow_dotdot(nd); 842 inode = nd->dentry->d_inode; 843 /* fallthrough */ 844 case 1: 845 continue; 846 } 847 /* 848 * See if the low-level filesystem might want 849 * to use its own hash.. 850 */ 851 if (nd->dentry->d_op && nd->dentry->d_op->d_hash) { 852 err = nd->dentry->d_op->d_hash(nd->dentry, &this); 853 if (err < 0) 854 break; 855 } 856 /* This does the actual lookups.. */ 857 err = do_lookup(nd, &this, &next); 858 if (err) 859 break; 860 861 err = -ENOENT; 862 inode = next.dentry->d_inode; 863 if (!inode) 864 goto out_dput; 865 err = -ENOTDIR; 866 if (!inode->i_op) 867 goto out_dput; 868 869 if (inode->i_op->follow_link) { 870 err = do_follow_link(&next, nd); 871 if (err) 872 goto return_err; 873 err = -ENOENT; 874 inode = nd->dentry->d_inode; 875 if (!inode) 876 break; 877 err = -ENOTDIR; 878 if (!inode->i_op) 879 break; 880 } else 881 path_to_nameidata(&next, nd); 882 err = -ENOTDIR; 883 if (!inode->i_op->lookup) 884 break; 885 continue; 886 /* here ends the main loop */ 887 888 last_with_slashes: 889 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 890 last_component: 891 /* Clear LOOKUP_CONTINUE iff it was previously unset */ 892 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE; 893 if (lookup_flags & LOOKUP_PARENT) 894 goto lookup_parent; 895 if (this.name[0] == '.') switch (this.len) { 896 default: 897 break; 898 case 2: 899 if (this.name[1] != '.') 900 break; 901 follow_dotdot(nd); 902 inode = nd->dentry->d_inode; 903 /* fallthrough */ 904 case 1: 905 goto return_reval; 906 } 907 if (nd->dentry->d_op && nd->dentry->d_op->d_hash) { 908 err = nd->dentry->d_op->d_hash(nd->dentry, &this); 909 if (err < 0) 910 break; 911 } 912 err = do_lookup(nd, &this, &next); 913 if (err) 914 break; 915 inode = next.dentry->d_inode; 916 if ((lookup_flags & LOOKUP_FOLLOW) 917 && inode && inode->i_op && inode->i_op->follow_link) { 918 err = do_follow_link(&next, nd); 919 if (err) 920 goto return_err; 921 inode = nd->dentry->d_inode; 922 } else 923 path_to_nameidata(&next, nd); 924 err = -ENOENT; 925 if (!inode) 926 break; 927 if (lookup_flags & LOOKUP_DIRECTORY) { 928 err = -ENOTDIR; 929 if (!inode->i_op || !inode->i_op->lookup) 930 break; 931 } 932 goto return_base; 933 lookup_parent: 934 nd->last = this; 935 nd->last_type = LAST_NORM; 936 if (this.name[0] != '.') 937 goto return_base; 938 if (this.len == 1) 939 nd->last_type = LAST_DOT; 940 else if (this.len == 2 && this.name[1] == '.') 941 nd->last_type = LAST_DOTDOT; 942 else 943 goto return_base; 944 return_reval: 945 /* 946 * We bypassed the ordinary revalidation routines. 947 * We may need to check the cached dentry for staleness. 948 */ 949 if (nd->dentry && nd->dentry->d_sb && 950 (nd->dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) { 951 err = -ESTALE; 952 /* Note: we do not d_invalidate() */ 953 if (!nd->dentry->d_op->d_revalidate(nd->dentry, nd)) 954 break; 955 } 956 return_base: 957 return 0; 958 out_dput: 959 dput_path(&next, nd); 960 break; 961 } 962 path_release(nd); 963 return_err: 964 return err; 965 } 966 967 /* 968 * Wrapper to retry pathname resolution whenever the underlying 969 * file system returns an ESTALE. 970 * 971 * Retry the whole path once, forcing real lookup requests 972 * instead of relying on the dcache. 973 */ 974 int fastcall link_path_walk(const char *name, struct nameidata *nd) 975 { 976 struct nameidata save = *nd; 977 int result; 978 979 /* make sure the stuff we saved doesn't go away */ 980 dget(save.dentry); 981 mntget(save.mnt); 982 983 result = __link_path_walk(name, nd); 984 if (result == -ESTALE) { 985 *nd = save; 986 dget(nd->dentry); 987 mntget(nd->mnt); 988 nd->flags |= LOOKUP_REVAL; 989 result = __link_path_walk(name, nd); 990 } 991 992 dput(save.dentry); 993 mntput(save.mnt); 994 995 return result; 996 } 997 998 int fastcall path_walk(const char * name, struct nameidata *nd) 999 { 1000 current->total_link_count = 0; 1001 return link_path_walk(name, nd); 1002 } 1003 1004 /* 1005 * SMP-safe: Returns 1 and nd will have valid dentry and mnt, if 1006 * everything is done. Returns 0 and drops input nd, if lookup failed; 1007 */ 1008 static int __emul_lookup_dentry(const char *name, struct nameidata *nd) 1009 { 1010 if (path_walk(name, nd)) 1011 return 0; /* something went wrong... */ 1012 1013 if (!nd->dentry->d_inode || S_ISDIR(nd->dentry->d_inode->i_mode)) { 1014 struct dentry *old_dentry = nd->dentry; 1015 struct vfsmount *old_mnt = nd->mnt; 1016 struct qstr last = nd->last; 1017 int last_type = nd->last_type; 1018 /* 1019 * NAME was not found in alternate root or it's a directory. Try to find 1020 * it in the normal root: 1021 */ 1022 nd->last_type = LAST_ROOT; 1023 read_lock(¤t->fs->lock); 1024 nd->mnt = mntget(current->fs->rootmnt); 1025 nd->dentry = dget(current->fs->root); 1026 read_unlock(¤t->fs->lock); 1027 if (path_walk(name, nd) == 0) { 1028 if (nd->dentry->d_inode) { 1029 dput(old_dentry); 1030 mntput(old_mnt); 1031 return 1; 1032 } 1033 path_release(nd); 1034 } 1035 nd->dentry = old_dentry; 1036 nd->mnt = old_mnt; 1037 nd->last = last; 1038 nd->last_type = last_type; 1039 } 1040 return 1; 1041 } 1042 1043 void set_fs_altroot(void) 1044 { 1045 char *emul = __emul_prefix(); 1046 struct nameidata nd; 1047 struct vfsmount *mnt = NULL, *oldmnt; 1048 struct dentry *dentry = NULL, *olddentry; 1049 int err; 1050 1051 if (!emul) 1052 goto set_it; 1053 err = path_lookup(emul, LOOKUP_FOLLOW|LOOKUP_DIRECTORY|LOOKUP_NOALT, &nd); 1054 if (!err) { 1055 mnt = nd.mnt; 1056 dentry = nd.dentry; 1057 } 1058 set_it: 1059 write_lock(¤t->fs->lock); 1060 oldmnt = current->fs->altrootmnt; 1061 olddentry = current->fs->altroot; 1062 current->fs->altrootmnt = mnt; 1063 current->fs->altroot = dentry; 1064 write_unlock(¤t->fs->lock); 1065 if (olddentry) { 1066 dput(olddentry); 1067 mntput(oldmnt); 1068 } 1069 } 1070 1071 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 1072 static int fastcall do_path_lookup(int dfd, const char *name, 1073 unsigned int flags, struct nameidata *nd) 1074 { 1075 int retval = 0; 1076 int fput_needed; 1077 struct file *file; 1078 1079 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 1080 nd->flags = flags; 1081 nd->depth = 0; 1082 1083 if (*name=='/') { 1084 read_lock(¤t->fs->lock); 1085 if (current->fs->altroot && !(nd->flags & LOOKUP_NOALT)) { 1086 nd->mnt = mntget(current->fs->altrootmnt); 1087 nd->dentry = dget(current->fs->altroot); 1088 read_unlock(¤t->fs->lock); 1089 if (__emul_lookup_dentry(name,nd)) 1090 goto out; /* found in altroot */ 1091 read_lock(¤t->fs->lock); 1092 } 1093 nd->mnt = mntget(current->fs->rootmnt); 1094 nd->dentry = dget(current->fs->root); 1095 read_unlock(¤t->fs->lock); 1096 } else if (dfd == AT_FDCWD) { 1097 read_lock(¤t->fs->lock); 1098 nd->mnt = mntget(current->fs->pwdmnt); 1099 nd->dentry = dget(current->fs->pwd); 1100 read_unlock(¤t->fs->lock); 1101 } else { 1102 struct dentry *dentry; 1103 1104 file = fget_light(dfd, &fput_needed); 1105 retval = -EBADF; 1106 if (!file) 1107 goto out_fail; 1108 1109 dentry = file->f_dentry; 1110 1111 retval = -ENOTDIR; 1112 if (!S_ISDIR(dentry->d_inode->i_mode)) 1113 goto fput_fail; 1114 1115 retval = file_permission(file, MAY_EXEC); 1116 if (retval) 1117 goto fput_fail; 1118 1119 nd->mnt = mntget(file->f_vfsmnt); 1120 nd->dentry = dget(dentry); 1121 1122 fput_light(file, fput_needed); 1123 } 1124 current->total_link_count = 0; 1125 retval = link_path_walk(name, nd); 1126 out: 1127 if (likely(retval == 0)) { 1128 if (unlikely(current->audit_context && nd && nd->dentry && 1129 nd->dentry->d_inode)) 1130 audit_inode(name, nd->dentry->d_inode); 1131 } 1132 out_fail: 1133 return retval; 1134 1135 fput_fail: 1136 fput_light(file, fput_needed); 1137 goto out_fail; 1138 } 1139 1140 int fastcall path_lookup(const char *name, unsigned int flags, 1141 struct nameidata *nd) 1142 { 1143 return do_path_lookup(AT_FDCWD, name, flags, nd); 1144 } 1145 1146 static int __path_lookup_intent_open(int dfd, const char *name, 1147 unsigned int lookup_flags, struct nameidata *nd, 1148 int open_flags, int create_mode) 1149 { 1150 struct file *filp = get_empty_filp(); 1151 int err; 1152 1153 if (filp == NULL) 1154 return -ENFILE; 1155 nd->intent.open.file = filp; 1156 nd->intent.open.flags = open_flags; 1157 nd->intent.open.create_mode = create_mode; 1158 err = do_path_lookup(dfd, name, lookup_flags|LOOKUP_OPEN, nd); 1159 if (IS_ERR(nd->intent.open.file)) { 1160 if (err == 0) { 1161 err = PTR_ERR(nd->intent.open.file); 1162 path_release(nd); 1163 } 1164 } else if (err != 0) 1165 release_open_intent(nd); 1166 return err; 1167 } 1168 1169 /** 1170 * path_lookup_open - lookup a file path with open intent 1171 * @dfd: the directory to use as base, or AT_FDCWD 1172 * @name: pointer to file name 1173 * @lookup_flags: lookup intent flags 1174 * @nd: pointer to nameidata 1175 * @open_flags: open intent flags 1176 */ 1177 int path_lookup_open(int dfd, const char *name, unsigned int lookup_flags, 1178 struct nameidata *nd, int open_flags) 1179 { 1180 return __path_lookup_intent_open(dfd, name, lookup_flags, nd, 1181 open_flags, 0); 1182 } 1183 1184 /** 1185 * path_lookup_create - lookup a file path with open + create intent 1186 * @dfd: the directory to use as base, or AT_FDCWD 1187 * @name: pointer to file name 1188 * @lookup_flags: lookup intent flags 1189 * @nd: pointer to nameidata 1190 * @open_flags: open intent flags 1191 * @create_mode: create intent flags 1192 */ 1193 static int path_lookup_create(int dfd, const char *name, 1194 unsigned int lookup_flags, struct nameidata *nd, 1195 int open_flags, int create_mode) 1196 { 1197 return __path_lookup_intent_open(dfd, name, lookup_flags|LOOKUP_CREATE, 1198 nd, open_flags, create_mode); 1199 } 1200 1201 int __user_path_lookup_open(const char __user *name, unsigned int lookup_flags, 1202 struct nameidata *nd, int open_flags) 1203 { 1204 char *tmp = getname(name); 1205 int err = PTR_ERR(tmp); 1206 1207 if (!IS_ERR(tmp)) { 1208 err = __path_lookup_intent_open(AT_FDCWD, tmp, lookup_flags, nd, open_flags, 0); 1209 putname(tmp); 1210 } 1211 return err; 1212 } 1213 1214 /* 1215 * Restricted form of lookup. Doesn't follow links, single-component only, 1216 * needs parent already locked. Doesn't follow mounts. 1217 * SMP-safe. 1218 */ 1219 static struct dentry * __lookup_hash(struct qstr *name, struct dentry * base, struct nameidata *nd) 1220 { 1221 struct dentry * dentry; 1222 struct inode *inode; 1223 int err; 1224 1225 inode = base->d_inode; 1226 err = permission(inode, MAY_EXEC, nd); 1227 dentry = ERR_PTR(err); 1228 if (err) 1229 goto out; 1230 1231 /* 1232 * See if the low-level filesystem might want 1233 * to use its own hash.. 1234 */ 1235 if (base->d_op && base->d_op->d_hash) { 1236 err = base->d_op->d_hash(base, name); 1237 dentry = ERR_PTR(err); 1238 if (err < 0) 1239 goto out; 1240 } 1241 1242 dentry = cached_lookup(base, name, nd); 1243 if (!dentry) { 1244 struct dentry *new = d_alloc(base, name); 1245 dentry = ERR_PTR(-ENOMEM); 1246 if (!new) 1247 goto out; 1248 dentry = inode->i_op->lookup(inode, new, nd); 1249 if (!dentry) 1250 dentry = new; 1251 else 1252 dput(new); 1253 } 1254 out: 1255 return dentry; 1256 } 1257 1258 static struct dentry *lookup_hash(struct nameidata *nd) 1259 { 1260 return __lookup_hash(&nd->last, nd->dentry, nd); 1261 } 1262 1263 /* SMP-safe */ 1264 struct dentry * lookup_one_len(const char * name, struct dentry * base, int len) 1265 { 1266 unsigned long hash; 1267 struct qstr this; 1268 unsigned int c; 1269 1270 this.name = name; 1271 this.len = len; 1272 if (!len) 1273 goto access; 1274 1275 hash = init_name_hash(); 1276 while (len--) { 1277 c = *(const unsigned char *)name++; 1278 if (c == '/' || c == '\0') 1279 goto access; 1280 hash = partial_name_hash(c, hash); 1281 } 1282 this.hash = end_name_hash(hash); 1283 1284 return __lookup_hash(&this, base, NULL); 1285 access: 1286 return ERR_PTR(-EACCES); 1287 } 1288 1289 /* 1290 * namei() 1291 * 1292 * is used by most simple commands to get the inode of a specified name. 1293 * Open, link etc use their own routines, but this is enough for things 1294 * like 'chmod' etc. 1295 * 1296 * namei exists in two versions: namei/lnamei. The only difference is 1297 * that namei follows links, while lnamei does not. 1298 * SMP-safe 1299 */ 1300 int fastcall __user_walk_fd(int dfd, const char __user *name, unsigned flags, 1301 struct nameidata *nd) 1302 { 1303 char *tmp = getname(name); 1304 int err = PTR_ERR(tmp); 1305 1306 if (!IS_ERR(tmp)) { 1307 err = do_path_lookup(dfd, tmp, flags, nd); 1308 putname(tmp); 1309 } 1310 return err; 1311 } 1312 1313 int fastcall __user_walk(const char __user *name, unsigned flags, struct nameidata *nd) 1314 { 1315 return __user_walk_fd(AT_FDCWD, name, flags, nd); 1316 } 1317 1318 /* 1319 * It's inline, so penalty for filesystems that don't use sticky bit is 1320 * minimal. 1321 */ 1322 static inline int check_sticky(struct inode *dir, struct inode *inode) 1323 { 1324 if (!(dir->i_mode & S_ISVTX)) 1325 return 0; 1326 if (inode->i_uid == current->fsuid) 1327 return 0; 1328 if (dir->i_uid == current->fsuid) 1329 return 0; 1330 return !capable(CAP_FOWNER); 1331 } 1332 1333 /* 1334 * Check whether we can remove a link victim from directory dir, check 1335 * whether the type of victim is right. 1336 * 1. We can't do it if dir is read-only (done in permission()) 1337 * 2. We should have write and exec permissions on dir 1338 * 3. We can't remove anything from append-only dir 1339 * 4. We can't do anything with immutable dir (done in permission()) 1340 * 5. If the sticky bit on dir is set we should either 1341 * a. be owner of dir, or 1342 * b. be owner of victim, or 1343 * c. have CAP_FOWNER capability 1344 * 6. If the victim is append-only or immutable we can't do antyhing with 1345 * links pointing to it. 1346 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 1347 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 1348 * 9. We can't remove a root or mountpoint. 1349 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 1350 * nfs_async_unlink(). 1351 */ 1352 static int may_delete(struct inode *dir,struct dentry *victim,int isdir) 1353 { 1354 int error; 1355 1356 if (!victim->d_inode) 1357 return -ENOENT; 1358 1359 BUG_ON(victim->d_parent->d_inode != dir); 1360 audit_inode_child(victim->d_name.name, victim->d_inode, dir->i_ino); 1361 1362 error = permission(dir,MAY_WRITE | MAY_EXEC, NULL); 1363 if (error) 1364 return error; 1365 if (IS_APPEND(dir)) 1366 return -EPERM; 1367 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)|| 1368 IS_IMMUTABLE(victim->d_inode)) 1369 return -EPERM; 1370 if (isdir) { 1371 if (!S_ISDIR(victim->d_inode->i_mode)) 1372 return -ENOTDIR; 1373 if (IS_ROOT(victim)) 1374 return -EBUSY; 1375 } else if (S_ISDIR(victim->d_inode->i_mode)) 1376 return -EISDIR; 1377 if (IS_DEADDIR(dir)) 1378 return -ENOENT; 1379 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 1380 return -EBUSY; 1381 return 0; 1382 } 1383 1384 /* Check whether we can create an object with dentry child in directory 1385 * dir. 1386 * 1. We can't do it if child already exists (open has special treatment for 1387 * this case, but since we are inlined it's OK) 1388 * 2. We can't do it if dir is read-only (done in permission()) 1389 * 3. We should have write and exec permissions on dir 1390 * 4. We can't do it if dir is immutable (done in permission()) 1391 */ 1392 static inline int may_create(struct inode *dir, struct dentry *child, 1393 struct nameidata *nd) 1394 { 1395 if (child->d_inode) 1396 return -EEXIST; 1397 if (IS_DEADDIR(dir)) 1398 return -ENOENT; 1399 return permission(dir,MAY_WRITE | MAY_EXEC, nd); 1400 } 1401 1402 /* 1403 * O_DIRECTORY translates into forcing a directory lookup. 1404 */ 1405 static inline int lookup_flags(unsigned int f) 1406 { 1407 unsigned long retval = LOOKUP_FOLLOW; 1408 1409 if (f & O_NOFOLLOW) 1410 retval &= ~LOOKUP_FOLLOW; 1411 1412 if (f & O_DIRECTORY) 1413 retval |= LOOKUP_DIRECTORY; 1414 1415 return retval; 1416 } 1417 1418 /* 1419 * p1 and p2 should be directories on the same fs. 1420 */ 1421 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 1422 { 1423 struct dentry *p; 1424 1425 if (p1 == p2) { 1426 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1427 return NULL; 1428 } 1429 1430 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 1431 1432 for (p = p1; p->d_parent != p; p = p->d_parent) { 1433 if (p->d_parent == p2) { 1434 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT); 1435 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD); 1436 return p; 1437 } 1438 } 1439 1440 for (p = p2; p->d_parent != p; p = p->d_parent) { 1441 if (p->d_parent == p1) { 1442 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1443 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 1444 return p; 1445 } 1446 } 1447 1448 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1449 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 1450 return NULL; 1451 } 1452 1453 void unlock_rename(struct dentry *p1, struct dentry *p2) 1454 { 1455 mutex_unlock(&p1->d_inode->i_mutex); 1456 if (p1 != p2) { 1457 mutex_unlock(&p2->d_inode->i_mutex); 1458 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 1459 } 1460 } 1461 1462 int vfs_create(struct inode *dir, struct dentry *dentry, int mode, 1463 struct nameidata *nd) 1464 { 1465 int error = may_create(dir, dentry, nd); 1466 1467 if (error) 1468 return error; 1469 1470 if (!dir->i_op || !dir->i_op->create) 1471 return -EACCES; /* shouldn't it be ENOSYS? */ 1472 mode &= S_IALLUGO; 1473 mode |= S_IFREG; 1474 error = security_inode_create(dir, dentry, mode); 1475 if (error) 1476 return error; 1477 DQUOT_INIT(dir); 1478 error = dir->i_op->create(dir, dentry, mode, nd); 1479 if (!error) 1480 fsnotify_create(dir, dentry); 1481 return error; 1482 } 1483 1484 int may_open(struct nameidata *nd, int acc_mode, int flag) 1485 { 1486 struct dentry *dentry = nd->dentry; 1487 struct inode *inode = dentry->d_inode; 1488 int error; 1489 1490 if (!inode) 1491 return -ENOENT; 1492 1493 if (S_ISLNK(inode->i_mode)) 1494 return -ELOOP; 1495 1496 if (S_ISDIR(inode->i_mode) && (flag & FMODE_WRITE)) 1497 return -EISDIR; 1498 1499 error = vfs_permission(nd, acc_mode); 1500 if (error) 1501 return error; 1502 1503 /* 1504 * FIFO's, sockets and device files are special: they don't 1505 * actually live on the filesystem itself, and as such you 1506 * can write to them even if the filesystem is read-only. 1507 */ 1508 if (S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 1509 flag &= ~O_TRUNC; 1510 } else if (S_ISBLK(inode->i_mode) || S_ISCHR(inode->i_mode)) { 1511 if (nd->mnt->mnt_flags & MNT_NODEV) 1512 return -EACCES; 1513 1514 flag &= ~O_TRUNC; 1515 } else if (IS_RDONLY(inode) && (flag & FMODE_WRITE)) 1516 return -EROFS; 1517 /* 1518 * An append-only file must be opened in append mode for writing. 1519 */ 1520 if (IS_APPEND(inode)) { 1521 if ((flag & FMODE_WRITE) && !(flag & O_APPEND)) 1522 return -EPERM; 1523 if (flag & O_TRUNC) 1524 return -EPERM; 1525 } 1526 1527 /* O_NOATIME can only be set by the owner or superuser */ 1528 if (flag & O_NOATIME) 1529 if (current->fsuid != inode->i_uid && !capable(CAP_FOWNER)) 1530 return -EPERM; 1531 1532 /* 1533 * Ensure there are no outstanding leases on the file. 1534 */ 1535 error = break_lease(inode, flag); 1536 if (error) 1537 return error; 1538 1539 if (flag & O_TRUNC) { 1540 error = get_write_access(inode); 1541 if (error) 1542 return error; 1543 1544 /* 1545 * Refuse to truncate files with mandatory locks held on them. 1546 */ 1547 error = locks_verify_locked(inode); 1548 if (!error) { 1549 DQUOT_INIT(inode); 1550 1551 error = do_truncate(dentry, 0, ATTR_MTIME|ATTR_CTIME, NULL); 1552 } 1553 put_write_access(inode); 1554 if (error) 1555 return error; 1556 } else 1557 if (flag & FMODE_WRITE) 1558 DQUOT_INIT(inode); 1559 1560 return 0; 1561 } 1562 1563 /* 1564 * open_namei() 1565 * 1566 * namei for open - this is in fact almost the whole open-routine. 1567 * 1568 * Note that the low bits of "flag" aren't the same as in the open 1569 * system call - they are 00 - no permissions needed 1570 * 01 - read permission needed 1571 * 10 - write permission needed 1572 * 11 - read/write permissions needed 1573 * which is a lot more logical, and also allows the "no perm" needed 1574 * for symlinks (where the permissions are checked later). 1575 * SMP-safe 1576 */ 1577 int open_namei(int dfd, const char *pathname, int flag, 1578 int mode, struct nameidata *nd) 1579 { 1580 int acc_mode, error; 1581 struct path path; 1582 struct dentry *dir; 1583 int count = 0; 1584 1585 acc_mode = ACC_MODE(flag); 1586 1587 /* O_TRUNC implies we need access checks for write permissions */ 1588 if (flag & O_TRUNC) 1589 acc_mode |= MAY_WRITE; 1590 1591 /* Allow the LSM permission hook to distinguish append 1592 access from general write access. */ 1593 if (flag & O_APPEND) 1594 acc_mode |= MAY_APPEND; 1595 1596 /* 1597 * The simplest case - just a plain lookup. 1598 */ 1599 if (!(flag & O_CREAT)) { 1600 error = path_lookup_open(dfd, pathname, lookup_flags(flag), 1601 nd, flag); 1602 if (error) 1603 return error; 1604 goto ok; 1605 } 1606 1607 /* 1608 * Create - we need to know the parent. 1609 */ 1610 error = path_lookup_create(dfd,pathname,LOOKUP_PARENT,nd,flag,mode); 1611 if (error) 1612 return error; 1613 1614 /* 1615 * We have the parent and last component. First of all, check 1616 * that we are not asked to creat(2) an obvious directory - that 1617 * will not do. 1618 */ 1619 error = -EISDIR; 1620 if (nd->last_type != LAST_NORM || nd->last.name[nd->last.len]) 1621 goto exit; 1622 1623 dir = nd->dentry; 1624 nd->flags &= ~LOOKUP_PARENT; 1625 mutex_lock(&dir->d_inode->i_mutex); 1626 path.dentry = lookup_hash(nd); 1627 path.mnt = nd->mnt; 1628 1629 do_last: 1630 error = PTR_ERR(path.dentry); 1631 if (IS_ERR(path.dentry)) { 1632 mutex_unlock(&dir->d_inode->i_mutex); 1633 goto exit; 1634 } 1635 1636 if (IS_ERR(nd->intent.open.file)) { 1637 mutex_unlock(&dir->d_inode->i_mutex); 1638 error = PTR_ERR(nd->intent.open.file); 1639 goto exit_dput; 1640 } 1641 1642 /* Negative dentry, just create the file */ 1643 if (!path.dentry->d_inode) { 1644 if (!IS_POSIXACL(dir->d_inode)) 1645 mode &= ~current->fs->umask; 1646 error = vfs_create(dir->d_inode, path.dentry, mode, nd); 1647 mutex_unlock(&dir->d_inode->i_mutex); 1648 dput(nd->dentry); 1649 nd->dentry = path.dentry; 1650 if (error) 1651 goto exit; 1652 /* Don't check for write permission, don't truncate */ 1653 acc_mode = 0; 1654 flag &= ~O_TRUNC; 1655 goto ok; 1656 } 1657 1658 /* 1659 * It already exists. 1660 */ 1661 mutex_unlock(&dir->d_inode->i_mutex); 1662 1663 error = -EEXIST; 1664 if (flag & O_EXCL) 1665 goto exit_dput; 1666 1667 if (__follow_mount(&path)) { 1668 error = -ELOOP; 1669 if (flag & O_NOFOLLOW) 1670 goto exit_dput; 1671 } 1672 error = -ENOENT; 1673 if (!path.dentry->d_inode) 1674 goto exit_dput; 1675 if (path.dentry->d_inode->i_op && path.dentry->d_inode->i_op->follow_link) 1676 goto do_link; 1677 1678 path_to_nameidata(&path, nd); 1679 error = -EISDIR; 1680 if (path.dentry->d_inode && S_ISDIR(path.dentry->d_inode->i_mode)) 1681 goto exit; 1682 ok: 1683 error = may_open(nd, acc_mode, flag); 1684 if (error) 1685 goto exit; 1686 return 0; 1687 1688 exit_dput: 1689 dput_path(&path, nd); 1690 exit: 1691 if (!IS_ERR(nd->intent.open.file)) 1692 release_open_intent(nd); 1693 path_release(nd); 1694 return error; 1695 1696 do_link: 1697 error = -ELOOP; 1698 if (flag & O_NOFOLLOW) 1699 goto exit_dput; 1700 /* 1701 * This is subtle. Instead of calling do_follow_link() we do the 1702 * thing by hands. The reason is that this way we have zero link_count 1703 * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT. 1704 * After that we have the parent and last component, i.e. 1705 * we are in the same situation as after the first path_walk(). 1706 * Well, almost - if the last component is normal we get its copy 1707 * stored in nd->last.name and we will have to putname() it when we 1708 * are done. Procfs-like symlinks just set LAST_BIND. 1709 */ 1710 nd->flags |= LOOKUP_PARENT; 1711 error = security_inode_follow_link(path.dentry, nd); 1712 if (error) 1713 goto exit_dput; 1714 error = __do_follow_link(&path, nd); 1715 if (error) { 1716 /* Does someone understand code flow here? Or it is only 1717 * me so stupid? Anathema to whoever designed this non-sense 1718 * with "intent.open". 1719 */ 1720 release_open_intent(nd); 1721 return error; 1722 } 1723 nd->flags &= ~LOOKUP_PARENT; 1724 if (nd->last_type == LAST_BIND) 1725 goto ok; 1726 error = -EISDIR; 1727 if (nd->last_type != LAST_NORM) 1728 goto exit; 1729 if (nd->last.name[nd->last.len]) { 1730 __putname(nd->last.name); 1731 goto exit; 1732 } 1733 error = -ELOOP; 1734 if (count++==32) { 1735 __putname(nd->last.name); 1736 goto exit; 1737 } 1738 dir = nd->dentry; 1739 mutex_lock(&dir->d_inode->i_mutex); 1740 path.dentry = lookup_hash(nd); 1741 path.mnt = nd->mnt; 1742 __putname(nd->last.name); 1743 goto do_last; 1744 } 1745 1746 /** 1747 * lookup_create - lookup a dentry, creating it if it doesn't exist 1748 * @nd: nameidata info 1749 * @is_dir: directory flag 1750 * 1751 * Simple function to lookup and return a dentry and create it 1752 * if it doesn't exist. Is SMP-safe. 1753 * 1754 * Returns with nd->dentry->d_inode->i_mutex locked. 1755 */ 1756 struct dentry *lookup_create(struct nameidata *nd, int is_dir) 1757 { 1758 struct dentry *dentry = ERR_PTR(-EEXIST); 1759 1760 mutex_lock_nested(&nd->dentry->d_inode->i_mutex, I_MUTEX_PARENT); 1761 /* 1762 * Yucky last component or no last component at all? 1763 * (foo/., foo/.., /////) 1764 */ 1765 if (nd->last_type != LAST_NORM) 1766 goto fail; 1767 nd->flags &= ~LOOKUP_PARENT; 1768 1769 /* 1770 * Do the final lookup. 1771 */ 1772 dentry = lookup_hash(nd); 1773 if (IS_ERR(dentry)) 1774 goto fail; 1775 1776 /* 1777 * Special case - lookup gave negative, but... we had foo/bar/ 1778 * From the vfs_mknod() POV we just have a negative dentry - 1779 * all is fine. Let's be bastards - you had / on the end, you've 1780 * been asking for (non-existent) directory. -ENOENT for you. 1781 */ 1782 if (!is_dir && nd->last.name[nd->last.len] && !dentry->d_inode) 1783 goto enoent; 1784 return dentry; 1785 enoent: 1786 dput(dentry); 1787 dentry = ERR_PTR(-ENOENT); 1788 fail: 1789 return dentry; 1790 } 1791 EXPORT_SYMBOL_GPL(lookup_create); 1792 1793 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 1794 { 1795 int error = may_create(dir, dentry, NULL); 1796 1797 if (error) 1798 return error; 1799 1800 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 1801 return -EPERM; 1802 1803 if (!dir->i_op || !dir->i_op->mknod) 1804 return -EPERM; 1805 1806 error = security_inode_mknod(dir, dentry, mode, dev); 1807 if (error) 1808 return error; 1809 1810 DQUOT_INIT(dir); 1811 error = dir->i_op->mknod(dir, dentry, mode, dev); 1812 if (!error) 1813 fsnotify_create(dir, dentry); 1814 return error; 1815 } 1816 1817 asmlinkage long sys_mknodat(int dfd, const char __user *filename, int mode, 1818 unsigned dev) 1819 { 1820 int error = 0; 1821 char * tmp; 1822 struct dentry * dentry; 1823 struct nameidata nd; 1824 1825 if (S_ISDIR(mode)) 1826 return -EPERM; 1827 tmp = getname(filename); 1828 if (IS_ERR(tmp)) 1829 return PTR_ERR(tmp); 1830 1831 error = do_path_lookup(dfd, tmp, LOOKUP_PARENT, &nd); 1832 if (error) 1833 goto out; 1834 dentry = lookup_create(&nd, 0); 1835 error = PTR_ERR(dentry); 1836 1837 if (!IS_POSIXACL(nd.dentry->d_inode)) 1838 mode &= ~current->fs->umask; 1839 if (!IS_ERR(dentry)) { 1840 switch (mode & S_IFMT) { 1841 case 0: case S_IFREG: 1842 error = vfs_create(nd.dentry->d_inode,dentry,mode,&nd); 1843 break; 1844 case S_IFCHR: case S_IFBLK: 1845 error = vfs_mknod(nd.dentry->d_inode,dentry,mode, 1846 new_decode_dev(dev)); 1847 break; 1848 case S_IFIFO: case S_IFSOCK: 1849 error = vfs_mknod(nd.dentry->d_inode,dentry,mode,0); 1850 break; 1851 case S_IFDIR: 1852 error = -EPERM; 1853 break; 1854 default: 1855 error = -EINVAL; 1856 } 1857 dput(dentry); 1858 } 1859 mutex_unlock(&nd.dentry->d_inode->i_mutex); 1860 path_release(&nd); 1861 out: 1862 putname(tmp); 1863 1864 return error; 1865 } 1866 1867 asmlinkage long sys_mknod(const char __user *filename, int mode, unsigned dev) 1868 { 1869 return sys_mknodat(AT_FDCWD, filename, mode, dev); 1870 } 1871 1872 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 1873 { 1874 int error = may_create(dir, dentry, NULL); 1875 1876 if (error) 1877 return error; 1878 1879 if (!dir->i_op || !dir->i_op->mkdir) 1880 return -EPERM; 1881 1882 mode &= (S_IRWXUGO|S_ISVTX); 1883 error = security_inode_mkdir(dir, dentry, mode); 1884 if (error) 1885 return error; 1886 1887 DQUOT_INIT(dir); 1888 error = dir->i_op->mkdir(dir, dentry, mode); 1889 if (!error) 1890 fsnotify_mkdir(dir, dentry); 1891 return error; 1892 } 1893 1894 asmlinkage long sys_mkdirat(int dfd, const char __user *pathname, int mode) 1895 { 1896 int error = 0; 1897 char * tmp; 1898 1899 tmp = getname(pathname); 1900 error = PTR_ERR(tmp); 1901 if (!IS_ERR(tmp)) { 1902 struct dentry *dentry; 1903 struct nameidata nd; 1904 1905 error = do_path_lookup(dfd, tmp, LOOKUP_PARENT, &nd); 1906 if (error) 1907 goto out; 1908 dentry = lookup_create(&nd, 1); 1909 error = PTR_ERR(dentry); 1910 if (!IS_ERR(dentry)) { 1911 if (!IS_POSIXACL(nd.dentry->d_inode)) 1912 mode &= ~current->fs->umask; 1913 error = vfs_mkdir(nd.dentry->d_inode, dentry, mode); 1914 dput(dentry); 1915 } 1916 mutex_unlock(&nd.dentry->d_inode->i_mutex); 1917 path_release(&nd); 1918 out: 1919 putname(tmp); 1920 } 1921 1922 return error; 1923 } 1924 1925 asmlinkage long sys_mkdir(const char __user *pathname, int mode) 1926 { 1927 return sys_mkdirat(AT_FDCWD, pathname, mode); 1928 } 1929 1930 /* 1931 * We try to drop the dentry early: we should have 1932 * a usage count of 2 if we're the only user of this 1933 * dentry, and if that is true (possibly after pruning 1934 * the dcache), then we drop the dentry now. 1935 * 1936 * A low-level filesystem can, if it choses, legally 1937 * do a 1938 * 1939 * if (!d_unhashed(dentry)) 1940 * return -EBUSY; 1941 * 1942 * if it cannot handle the case of removing a directory 1943 * that is still in use by something else.. 1944 */ 1945 void dentry_unhash(struct dentry *dentry) 1946 { 1947 dget(dentry); 1948 if (atomic_read(&dentry->d_count)) 1949 shrink_dcache_parent(dentry); 1950 spin_lock(&dcache_lock); 1951 spin_lock(&dentry->d_lock); 1952 if (atomic_read(&dentry->d_count) == 2) 1953 __d_drop(dentry); 1954 spin_unlock(&dentry->d_lock); 1955 spin_unlock(&dcache_lock); 1956 } 1957 1958 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 1959 { 1960 int error = may_delete(dir, dentry, 1); 1961 1962 if (error) 1963 return error; 1964 1965 if (!dir->i_op || !dir->i_op->rmdir) 1966 return -EPERM; 1967 1968 DQUOT_INIT(dir); 1969 1970 mutex_lock(&dentry->d_inode->i_mutex); 1971 dentry_unhash(dentry); 1972 if (d_mountpoint(dentry)) 1973 error = -EBUSY; 1974 else { 1975 error = security_inode_rmdir(dir, dentry); 1976 if (!error) { 1977 error = dir->i_op->rmdir(dir, dentry); 1978 if (!error) 1979 dentry->d_inode->i_flags |= S_DEAD; 1980 } 1981 } 1982 mutex_unlock(&dentry->d_inode->i_mutex); 1983 if (!error) { 1984 d_delete(dentry); 1985 } 1986 dput(dentry); 1987 1988 return error; 1989 } 1990 1991 static long do_rmdir(int dfd, const char __user *pathname) 1992 { 1993 int error = 0; 1994 char * name; 1995 struct dentry *dentry; 1996 struct nameidata nd; 1997 1998 name = getname(pathname); 1999 if(IS_ERR(name)) 2000 return PTR_ERR(name); 2001 2002 error = do_path_lookup(dfd, name, LOOKUP_PARENT, &nd); 2003 if (error) 2004 goto exit; 2005 2006 switch(nd.last_type) { 2007 case LAST_DOTDOT: 2008 error = -ENOTEMPTY; 2009 goto exit1; 2010 case LAST_DOT: 2011 error = -EINVAL; 2012 goto exit1; 2013 case LAST_ROOT: 2014 error = -EBUSY; 2015 goto exit1; 2016 } 2017 mutex_lock_nested(&nd.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2018 dentry = lookup_hash(&nd); 2019 error = PTR_ERR(dentry); 2020 if (!IS_ERR(dentry)) { 2021 error = vfs_rmdir(nd.dentry->d_inode, dentry); 2022 dput(dentry); 2023 } 2024 mutex_unlock(&nd.dentry->d_inode->i_mutex); 2025 exit1: 2026 path_release(&nd); 2027 exit: 2028 putname(name); 2029 return error; 2030 } 2031 2032 asmlinkage long sys_rmdir(const char __user *pathname) 2033 { 2034 return do_rmdir(AT_FDCWD, pathname); 2035 } 2036 2037 int vfs_unlink(struct inode *dir, struct dentry *dentry) 2038 { 2039 int error = may_delete(dir, dentry, 0); 2040 2041 if (error) 2042 return error; 2043 2044 if (!dir->i_op || !dir->i_op->unlink) 2045 return -EPERM; 2046 2047 DQUOT_INIT(dir); 2048 2049 mutex_lock(&dentry->d_inode->i_mutex); 2050 if (d_mountpoint(dentry)) 2051 error = -EBUSY; 2052 else { 2053 error = security_inode_unlink(dir, dentry); 2054 if (!error) 2055 error = dir->i_op->unlink(dir, dentry); 2056 } 2057 mutex_unlock(&dentry->d_inode->i_mutex); 2058 2059 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 2060 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 2061 d_delete(dentry); 2062 } 2063 2064 return error; 2065 } 2066 2067 /* 2068 * Make sure that the actual truncation of the file will occur outside its 2069 * directory's i_mutex. Truncate can take a long time if there is a lot of 2070 * writeout happening, and we don't want to prevent access to the directory 2071 * while waiting on the I/O. 2072 */ 2073 static long do_unlinkat(int dfd, const char __user *pathname) 2074 { 2075 int error = 0; 2076 char * name; 2077 struct dentry *dentry; 2078 struct nameidata nd; 2079 struct inode *inode = NULL; 2080 2081 name = getname(pathname); 2082 if(IS_ERR(name)) 2083 return PTR_ERR(name); 2084 2085 error = do_path_lookup(dfd, name, LOOKUP_PARENT, &nd); 2086 if (error) 2087 goto exit; 2088 error = -EISDIR; 2089 if (nd.last_type != LAST_NORM) 2090 goto exit1; 2091 mutex_lock_nested(&nd.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2092 dentry = lookup_hash(&nd); 2093 error = PTR_ERR(dentry); 2094 if (!IS_ERR(dentry)) { 2095 /* Why not before? Because we want correct error value */ 2096 if (nd.last.name[nd.last.len]) 2097 goto slashes; 2098 inode = dentry->d_inode; 2099 if (inode) 2100 atomic_inc(&inode->i_count); 2101 error = vfs_unlink(nd.dentry->d_inode, dentry); 2102 exit2: 2103 dput(dentry); 2104 } 2105 mutex_unlock(&nd.dentry->d_inode->i_mutex); 2106 if (inode) 2107 iput(inode); /* truncate the inode here */ 2108 exit1: 2109 path_release(&nd); 2110 exit: 2111 putname(name); 2112 return error; 2113 2114 slashes: 2115 error = !dentry->d_inode ? -ENOENT : 2116 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR; 2117 goto exit2; 2118 } 2119 2120 asmlinkage long sys_unlinkat(int dfd, const char __user *pathname, int flag) 2121 { 2122 if ((flag & ~AT_REMOVEDIR) != 0) 2123 return -EINVAL; 2124 2125 if (flag & AT_REMOVEDIR) 2126 return do_rmdir(dfd, pathname); 2127 2128 return do_unlinkat(dfd, pathname); 2129 } 2130 2131 asmlinkage long sys_unlink(const char __user *pathname) 2132 { 2133 return do_unlinkat(AT_FDCWD, pathname); 2134 } 2135 2136 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname, int mode) 2137 { 2138 int error = may_create(dir, dentry, NULL); 2139 2140 if (error) 2141 return error; 2142 2143 if (!dir->i_op || !dir->i_op->symlink) 2144 return -EPERM; 2145 2146 error = security_inode_symlink(dir, dentry, oldname); 2147 if (error) 2148 return error; 2149 2150 DQUOT_INIT(dir); 2151 error = dir->i_op->symlink(dir, dentry, oldname); 2152 if (!error) 2153 fsnotify_create(dir, dentry); 2154 return error; 2155 } 2156 2157 asmlinkage long sys_symlinkat(const char __user *oldname, 2158 int newdfd, const char __user *newname) 2159 { 2160 int error = 0; 2161 char * from; 2162 char * to; 2163 2164 from = getname(oldname); 2165 if(IS_ERR(from)) 2166 return PTR_ERR(from); 2167 to = getname(newname); 2168 error = PTR_ERR(to); 2169 if (!IS_ERR(to)) { 2170 struct dentry *dentry; 2171 struct nameidata nd; 2172 2173 error = do_path_lookup(newdfd, to, LOOKUP_PARENT, &nd); 2174 if (error) 2175 goto out; 2176 dentry = lookup_create(&nd, 0); 2177 error = PTR_ERR(dentry); 2178 if (!IS_ERR(dentry)) { 2179 error = vfs_symlink(nd.dentry->d_inode, dentry, from, S_IALLUGO); 2180 dput(dentry); 2181 } 2182 mutex_unlock(&nd.dentry->d_inode->i_mutex); 2183 path_release(&nd); 2184 out: 2185 putname(to); 2186 } 2187 putname(from); 2188 return error; 2189 } 2190 2191 asmlinkage long sys_symlink(const char __user *oldname, const char __user *newname) 2192 { 2193 return sys_symlinkat(oldname, AT_FDCWD, newname); 2194 } 2195 2196 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2197 { 2198 struct inode *inode = old_dentry->d_inode; 2199 int error; 2200 2201 if (!inode) 2202 return -ENOENT; 2203 2204 error = may_create(dir, new_dentry, NULL); 2205 if (error) 2206 return error; 2207 2208 if (dir->i_sb != inode->i_sb) 2209 return -EXDEV; 2210 2211 /* 2212 * A link to an append-only or immutable file cannot be created. 2213 */ 2214 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 2215 return -EPERM; 2216 if (!dir->i_op || !dir->i_op->link) 2217 return -EPERM; 2218 if (S_ISDIR(old_dentry->d_inode->i_mode)) 2219 return -EPERM; 2220 2221 error = security_inode_link(old_dentry, dir, new_dentry); 2222 if (error) 2223 return error; 2224 2225 mutex_lock(&old_dentry->d_inode->i_mutex); 2226 DQUOT_INIT(dir); 2227 error = dir->i_op->link(old_dentry, dir, new_dentry); 2228 mutex_unlock(&old_dentry->d_inode->i_mutex); 2229 if (!error) 2230 fsnotify_create(dir, new_dentry); 2231 return error; 2232 } 2233 2234 /* 2235 * Hardlinks are often used in delicate situations. We avoid 2236 * security-related surprises by not following symlinks on the 2237 * newname. --KAB 2238 * 2239 * We don't follow them on the oldname either to be compatible 2240 * with linux 2.0, and to avoid hard-linking to directories 2241 * and other special files. --ADM 2242 */ 2243 asmlinkage long sys_linkat(int olddfd, const char __user *oldname, 2244 int newdfd, const char __user *newname, 2245 int flags) 2246 { 2247 struct dentry *new_dentry; 2248 struct nameidata nd, old_nd; 2249 int error; 2250 char * to; 2251 2252 if ((flags & ~AT_SYMLINK_FOLLOW) != 0) 2253 return -EINVAL; 2254 2255 to = getname(newname); 2256 if (IS_ERR(to)) 2257 return PTR_ERR(to); 2258 2259 error = __user_walk_fd(olddfd, oldname, 2260 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0, 2261 &old_nd); 2262 if (error) 2263 goto exit; 2264 error = do_path_lookup(newdfd, to, LOOKUP_PARENT, &nd); 2265 if (error) 2266 goto out; 2267 error = -EXDEV; 2268 if (old_nd.mnt != nd.mnt) 2269 goto out_release; 2270 new_dentry = lookup_create(&nd, 0); 2271 error = PTR_ERR(new_dentry); 2272 if (!IS_ERR(new_dentry)) { 2273 error = vfs_link(old_nd.dentry, nd.dentry->d_inode, new_dentry); 2274 dput(new_dentry); 2275 } 2276 mutex_unlock(&nd.dentry->d_inode->i_mutex); 2277 out_release: 2278 path_release(&nd); 2279 out: 2280 path_release(&old_nd); 2281 exit: 2282 putname(to); 2283 2284 return error; 2285 } 2286 2287 asmlinkage long sys_link(const char __user *oldname, const char __user *newname) 2288 { 2289 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 2290 } 2291 2292 /* 2293 * The worst of all namespace operations - renaming directory. "Perverted" 2294 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 2295 * Problems: 2296 * a) we can get into loop creation. Check is done in is_subdir(). 2297 * b) race potential - two innocent renames can create a loop together. 2298 * That's where 4.4 screws up. Current fix: serialization on 2299 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 2300 * story. 2301 * c) we have to lock _three_ objects - parents and victim (if it exists). 2302 * And that - after we got ->i_mutex on parents (until then we don't know 2303 * whether the target exists). Solution: try to be smart with locking 2304 * order for inodes. We rely on the fact that tree topology may change 2305 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 2306 * move will be locked. Thus we can rank directories by the tree 2307 * (ancestors first) and rank all non-directories after them. 2308 * That works since everybody except rename does "lock parent, lookup, 2309 * lock child" and rename is under ->s_vfs_rename_mutex. 2310 * HOWEVER, it relies on the assumption that any object with ->lookup() 2311 * has no more than 1 dentry. If "hybrid" objects will ever appear, 2312 * we'd better make sure that there's no link(2) for them. 2313 * d) some filesystems don't support opened-but-unlinked directories, 2314 * either because of layout or because they are not ready to deal with 2315 * all cases correctly. The latter will be fixed (taking this sort of 2316 * stuff into VFS), but the former is not going away. Solution: the same 2317 * trick as in rmdir(). 2318 * e) conversion from fhandle to dentry may come in the wrong moment - when 2319 * we are removing the target. Solution: we will have to grab ->i_mutex 2320 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 2321 * ->i_mutex on parents, which works but leads to some truely excessive 2322 * locking]. 2323 */ 2324 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry, 2325 struct inode *new_dir, struct dentry *new_dentry) 2326 { 2327 int error = 0; 2328 struct inode *target; 2329 2330 /* 2331 * If we are going to change the parent - check write permissions, 2332 * we'll need to flip '..'. 2333 */ 2334 if (new_dir != old_dir) { 2335 error = permission(old_dentry->d_inode, MAY_WRITE, NULL); 2336 if (error) 2337 return error; 2338 } 2339 2340 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 2341 if (error) 2342 return error; 2343 2344 target = new_dentry->d_inode; 2345 if (target) { 2346 mutex_lock(&target->i_mutex); 2347 dentry_unhash(new_dentry); 2348 } 2349 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) 2350 error = -EBUSY; 2351 else 2352 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 2353 if (target) { 2354 if (!error) 2355 target->i_flags |= S_DEAD; 2356 mutex_unlock(&target->i_mutex); 2357 if (d_unhashed(new_dentry)) 2358 d_rehash(new_dentry); 2359 dput(new_dentry); 2360 } 2361 if (!error) 2362 d_move(old_dentry,new_dentry); 2363 return error; 2364 } 2365 2366 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry, 2367 struct inode *new_dir, struct dentry *new_dentry) 2368 { 2369 struct inode *target; 2370 int error; 2371 2372 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 2373 if (error) 2374 return error; 2375 2376 dget(new_dentry); 2377 target = new_dentry->d_inode; 2378 if (target) 2379 mutex_lock(&target->i_mutex); 2380 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) 2381 error = -EBUSY; 2382 else 2383 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 2384 if (!error) { 2385 /* The following d_move() should become unconditional */ 2386 if (!(old_dir->i_sb->s_type->fs_flags & FS_ODD_RENAME)) 2387 d_move(old_dentry, new_dentry); 2388 } 2389 if (target) 2390 mutex_unlock(&target->i_mutex); 2391 dput(new_dentry); 2392 return error; 2393 } 2394 2395 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 2396 struct inode *new_dir, struct dentry *new_dentry) 2397 { 2398 int error; 2399 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode); 2400 const char *old_name; 2401 2402 if (old_dentry->d_inode == new_dentry->d_inode) 2403 return 0; 2404 2405 error = may_delete(old_dir, old_dentry, is_dir); 2406 if (error) 2407 return error; 2408 2409 if (!new_dentry->d_inode) 2410 error = may_create(new_dir, new_dentry, NULL); 2411 else 2412 error = may_delete(new_dir, new_dentry, is_dir); 2413 if (error) 2414 return error; 2415 2416 if (!old_dir->i_op || !old_dir->i_op->rename) 2417 return -EPERM; 2418 2419 DQUOT_INIT(old_dir); 2420 DQUOT_INIT(new_dir); 2421 2422 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 2423 2424 if (is_dir) 2425 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry); 2426 else 2427 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry); 2428 if (!error) { 2429 const char *new_name = old_dentry->d_name.name; 2430 fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir, 2431 new_dentry->d_inode, old_dentry->d_inode); 2432 } 2433 fsnotify_oldname_free(old_name); 2434 2435 return error; 2436 } 2437 2438 static int do_rename(int olddfd, const char *oldname, 2439 int newdfd, const char *newname) 2440 { 2441 int error = 0; 2442 struct dentry * old_dir, * new_dir; 2443 struct dentry * old_dentry, *new_dentry; 2444 struct dentry * trap; 2445 struct nameidata oldnd, newnd; 2446 2447 error = do_path_lookup(olddfd, oldname, LOOKUP_PARENT, &oldnd); 2448 if (error) 2449 goto exit; 2450 2451 error = do_path_lookup(newdfd, newname, LOOKUP_PARENT, &newnd); 2452 if (error) 2453 goto exit1; 2454 2455 error = -EXDEV; 2456 if (oldnd.mnt != newnd.mnt) 2457 goto exit2; 2458 2459 old_dir = oldnd.dentry; 2460 error = -EBUSY; 2461 if (oldnd.last_type != LAST_NORM) 2462 goto exit2; 2463 2464 new_dir = newnd.dentry; 2465 if (newnd.last_type != LAST_NORM) 2466 goto exit2; 2467 2468 trap = lock_rename(new_dir, old_dir); 2469 2470 old_dentry = lookup_hash(&oldnd); 2471 error = PTR_ERR(old_dentry); 2472 if (IS_ERR(old_dentry)) 2473 goto exit3; 2474 /* source must exist */ 2475 error = -ENOENT; 2476 if (!old_dentry->d_inode) 2477 goto exit4; 2478 /* unless the source is a directory trailing slashes give -ENOTDIR */ 2479 if (!S_ISDIR(old_dentry->d_inode->i_mode)) { 2480 error = -ENOTDIR; 2481 if (oldnd.last.name[oldnd.last.len]) 2482 goto exit4; 2483 if (newnd.last.name[newnd.last.len]) 2484 goto exit4; 2485 } 2486 /* source should not be ancestor of target */ 2487 error = -EINVAL; 2488 if (old_dentry == trap) 2489 goto exit4; 2490 new_dentry = lookup_hash(&newnd); 2491 error = PTR_ERR(new_dentry); 2492 if (IS_ERR(new_dentry)) 2493 goto exit4; 2494 /* target should not be an ancestor of source */ 2495 error = -ENOTEMPTY; 2496 if (new_dentry == trap) 2497 goto exit5; 2498 2499 error = vfs_rename(old_dir->d_inode, old_dentry, 2500 new_dir->d_inode, new_dentry); 2501 exit5: 2502 dput(new_dentry); 2503 exit4: 2504 dput(old_dentry); 2505 exit3: 2506 unlock_rename(new_dir, old_dir); 2507 exit2: 2508 path_release(&newnd); 2509 exit1: 2510 path_release(&oldnd); 2511 exit: 2512 return error; 2513 } 2514 2515 asmlinkage long sys_renameat(int olddfd, const char __user *oldname, 2516 int newdfd, const char __user *newname) 2517 { 2518 int error; 2519 char * from; 2520 char * to; 2521 2522 from = getname(oldname); 2523 if(IS_ERR(from)) 2524 return PTR_ERR(from); 2525 to = getname(newname); 2526 error = PTR_ERR(to); 2527 if (!IS_ERR(to)) { 2528 error = do_rename(olddfd, from, newdfd, to); 2529 putname(to); 2530 } 2531 putname(from); 2532 return error; 2533 } 2534 2535 asmlinkage long sys_rename(const char __user *oldname, const char __user *newname) 2536 { 2537 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname); 2538 } 2539 2540 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link) 2541 { 2542 int len; 2543 2544 len = PTR_ERR(link); 2545 if (IS_ERR(link)) 2546 goto out; 2547 2548 len = strlen(link); 2549 if (len > (unsigned) buflen) 2550 len = buflen; 2551 if (copy_to_user(buffer, link, len)) 2552 len = -EFAULT; 2553 out: 2554 return len; 2555 } 2556 2557 /* 2558 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 2559 * have ->follow_link() touching nd only in nd_set_link(). Using (or not 2560 * using) it for any given inode is up to filesystem. 2561 */ 2562 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) 2563 { 2564 struct nameidata nd; 2565 void *cookie; 2566 2567 nd.depth = 0; 2568 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd); 2569 if (!IS_ERR(cookie)) { 2570 int res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd)); 2571 if (dentry->d_inode->i_op->put_link) 2572 dentry->d_inode->i_op->put_link(dentry, &nd, cookie); 2573 cookie = ERR_PTR(res); 2574 } 2575 return PTR_ERR(cookie); 2576 } 2577 2578 int vfs_follow_link(struct nameidata *nd, const char *link) 2579 { 2580 return __vfs_follow_link(nd, link); 2581 } 2582 2583 /* get the link contents into pagecache */ 2584 static char *page_getlink(struct dentry * dentry, struct page **ppage) 2585 { 2586 struct page * page; 2587 struct address_space *mapping = dentry->d_inode->i_mapping; 2588 page = read_mapping_page(mapping, 0, NULL); 2589 if (IS_ERR(page)) 2590 goto sync_fail; 2591 wait_on_page_locked(page); 2592 if (!PageUptodate(page)) 2593 goto async_fail; 2594 *ppage = page; 2595 return kmap(page); 2596 2597 async_fail: 2598 page_cache_release(page); 2599 return ERR_PTR(-EIO); 2600 2601 sync_fail: 2602 return (char*)page; 2603 } 2604 2605 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 2606 { 2607 struct page *page = NULL; 2608 char *s = page_getlink(dentry, &page); 2609 int res = vfs_readlink(dentry,buffer,buflen,s); 2610 if (page) { 2611 kunmap(page); 2612 page_cache_release(page); 2613 } 2614 return res; 2615 } 2616 2617 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd) 2618 { 2619 struct page *page = NULL; 2620 nd_set_link(nd, page_getlink(dentry, &page)); 2621 return page; 2622 } 2623 2624 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 2625 { 2626 struct page *page = cookie; 2627 2628 if (page) { 2629 kunmap(page); 2630 page_cache_release(page); 2631 } 2632 } 2633 2634 int __page_symlink(struct inode *inode, const char *symname, int len, 2635 gfp_t gfp_mask) 2636 { 2637 struct address_space *mapping = inode->i_mapping; 2638 struct page *page; 2639 int err = -ENOMEM; 2640 char *kaddr; 2641 2642 retry: 2643 page = find_or_create_page(mapping, 0, gfp_mask); 2644 if (!page) 2645 goto fail; 2646 err = mapping->a_ops->prepare_write(NULL, page, 0, len-1); 2647 if (err == AOP_TRUNCATED_PAGE) { 2648 page_cache_release(page); 2649 goto retry; 2650 } 2651 if (err) 2652 goto fail_map; 2653 kaddr = kmap_atomic(page, KM_USER0); 2654 memcpy(kaddr, symname, len-1); 2655 kunmap_atomic(kaddr, KM_USER0); 2656 err = mapping->a_ops->commit_write(NULL, page, 0, len-1); 2657 if (err == AOP_TRUNCATED_PAGE) { 2658 page_cache_release(page); 2659 goto retry; 2660 } 2661 if (err) 2662 goto fail_map; 2663 /* 2664 * Notice that we are _not_ going to block here - end of page is 2665 * unmapped, so this will only try to map the rest of page, see 2666 * that it is unmapped (typically even will not look into inode - 2667 * ->i_size will be enough for everything) and zero it out. 2668 * OTOH it's obviously correct and should make the page up-to-date. 2669 */ 2670 if (!PageUptodate(page)) { 2671 err = mapping->a_ops->readpage(NULL, page); 2672 if (err != AOP_TRUNCATED_PAGE) 2673 wait_on_page_locked(page); 2674 } else { 2675 unlock_page(page); 2676 } 2677 page_cache_release(page); 2678 if (err < 0) 2679 goto fail; 2680 mark_inode_dirty(inode); 2681 return 0; 2682 fail_map: 2683 unlock_page(page); 2684 page_cache_release(page); 2685 fail: 2686 return err; 2687 } 2688 2689 int page_symlink(struct inode *inode, const char *symname, int len) 2690 { 2691 return __page_symlink(inode, symname, len, 2692 mapping_gfp_mask(inode->i_mapping)); 2693 } 2694 2695 struct inode_operations page_symlink_inode_operations = { 2696 .readlink = generic_readlink, 2697 .follow_link = page_follow_link_light, 2698 .put_link = page_put_link, 2699 }; 2700 2701 EXPORT_SYMBOL(__user_walk); 2702 EXPORT_SYMBOL(__user_walk_fd); 2703 EXPORT_SYMBOL(follow_down); 2704 EXPORT_SYMBOL(follow_up); 2705 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */ 2706 EXPORT_SYMBOL(getname); 2707 EXPORT_SYMBOL(lock_rename); 2708 EXPORT_SYMBOL(lookup_one_len); 2709 EXPORT_SYMBOL(page_follow_link_light); 2710 EXPORT_SYMBOL(page_put_link); 2711 EXPORT_SYMBOL(page_readlink); 2712 EXPORT_SYMBOL(__page_symlink); 2713 EXPORT_SYMBOL(page_symlink); 2714 EXPORT_SYMBOL(page_symlink_inode_operations); 2715 EXPORT_SYMBOL(path_lookup); 2716 EXPORT_SYMBOL(path_release); 2717 EXPORT_SYMBOL(path_walk); 2718 EXPORT_SYMBOL(permission); 2719 EXPORT_SYMBOL(vfs_permission); 2720 EXPORT_SYMBOL(file_permission); 2721 EXPORT_SYMBOL(unlock_rename); 2722 EXPORT_SYMBOL(vfs_create); 2723 EXPORT_SYMBOL(vfs_follow_link); 2724 EXPORT_SYMBOL(vfs_link); 2725 EXPORT_SYMBOL(vfs_mkdir); 2726 EXPORT_SYMBOL(vfs_mknod); 2727 EXPORT_SYMBOL(generic_permission); 2728 EXPORT_SYMBOL(vfs_readlink); 2729 EXPORT_SYMBOL(vfs_rename); 2730 EXPORT_SYMBOL(vfs_rmdir); 2731 EXPORT_SYMBOL(vfs_symlink); 2732 EXPORT_SYMBOL(vfs_unlink); 2733 EXPORT_SYMBOL(dentry_unhash); 2734 EXPORT_SYMBOL(generic_readlink); 2735