xref: /linux/fs/namei.c (revision 60e13231561b3a4c5269bfa1ef6c0569ad6f28ec)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <linux/posix_acl.h>
36 #include <asm/uaccess.h>
37 
38 #include "internal.h"
39 
40 /* [Feb-1997 T. Schoebel-Theuer]
41  * Fundamental changes in the pathname lookup mechanisms (namei)
42  * were necessary because of omirr.  The reason is that omirr needs
43  * to know the _real_ pathname, not the user-supplied one, in case
44  * of symlinks (and also when transname replacements occur).
45  *
46  * The new code replaces the old recursive symlink resolution with
47  * an iterative one (in case of non-nested symlink chains).  It does
48  * this with calls to <fs>_follow_link().
49  * As a side effect, dir_namei(), _namei() and follow_link() are now
50  * replaced with a single function lookup_dentry() that can handle all
51  * the special cases of the former code.
52  *
53  * With the new dcache, the pathname is stored at each inode, at least as
54  * long as the refcount of the inode is positive.  As a side effect, the
55  * size of the dcache depends on the inode cache and thus is dynamic.
56  *
57  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
58  * resolution to correspond with current state of the code.
59  *
60  * Note that the symlink resolution is not *completely* iterative.
61  * There is still a significant amount of tail- and mid- recursion in
62  * the algorithm.  Also, note that <fs>_readlink() is not used in
63  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
64  * may return different results than <fs>_follow_link().  Many virtual
65  * filesystems (including /proc) exhibit this behavior.
66  */
67 
68 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
69  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
70  * and the name already exists in form of a symlink, try to create the new
71  * name indicated by the symlink. The old code always complained that the
72  * name already exists, due to not following the symlink even if its target
73  * is nonexistent.  The new semantics affects also mknod() and link() when
74  * the name is a symlink pointing to a non-existent name.
75  *
76  * I don't know which semantics is the right one, since I have no access
77  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
78  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
79  * "old" one. Personally, I think the new semantics is much more logical.
80  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
81  * file does succeed in both HP-UX and SunOs, but not in Solaris
82  * and in the old Linux semantics.
83  */
84 
85 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
86  * semantics.  See the comments in "open_namei" and "do_link" below.
87  *
88  * [10-Sep-98 Alan Modra] Another symlink change.
89  */
90 
91 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
92  *	inside the path - always follow.
93  *	in the last component in creation/removal/renaming - never follow.
94  *	if LOOKUP_FOLLOW passed - follow.
95  *	if the pathname has trailing slashes - follow.
96  *	otherwise - don't follow.
97  * (applied in that order).
98  *
99  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
100  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
101  * During the 2.4 we need to fix the userland stuff depending on it -
102  * hopefully we will be able to get rid of that wart in 2.5. So far only
103  * XEmacs seems to be relying on it...
104  */
105 /*
106  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
107  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
108  * any extra contention...
109  */
110 
111 /* In order to reduce some races, while at the same time doing additional
112  * checking and hopefully speeding things up, we copy filenames to the
113  * kernel data space before using them..
114  *
115  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
116  * PATH_MAX includes the nul terminator --RR.
117  */
118 static int do_getname(const char __user *filename, char *page)
119 {
120 	int retval;
121 	unsigned long len = PATH_MAX;
122 
123 	if (!segment_eq(get_fs(), KERNEL_DS)) {
124 		if ((unsigned long) filename >= TASK_SIZE)
125 			return -EFAULT;
126 		if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
127 			len = TASK_SIZE - (unsigned long) filename;
128 	}
129 
130 	retval = strncpy_from_user(page, filename, len);
131 	if (retval > 0) {
132 		if (retval < len)
133 			return 0;
134 		return -ENAMETOOLONG;
135 	} else if (!retval)
136 		retval = -ENOENT;
137 	return retval;
138 }
139 
140 static char *getname_flags(const char __user * filename, int flags)
141 {
142 	char *tmp, *result;
143 
144 	result = ERR_PTR(-ENOMEM);
145 	tmp = __getname();
146 	if (tmp)  {
147 		int retval = do_getname(filename, tmp);
148 
149 		result = tmp;
150 		if (retval < 0) {
151 			if (retval != -ENOENT || !(flags & LOOKUP_EMPTY)) {
152 				__putname(tmp);
153 				result = ERR_PTR(retval);
154 			}
155 		}
156 	}
157 	audit_getname(result);
158 	return result;
159 }
160 
161 char *getname(const char __user * filename)
162 {
163 	return getname_flags(filename, 0);
164 }
165 
166 #ifdef CONFIG_AUDITSYSCALL
167 void putname(const char *name)
168 {
169 	if (unlikely(!audit_dummy_context()))
170 		audit_putname(name);
171 	else
172 		__putname(name);
173 }
174 EXPORT_SYMBOL(putname);
175 #endif
176 
177 static int check_acl(struct inode *inode, int mask)
178 {
179 #ifdef CONFIG_FS_POSIX_ACL
180 	struct posix_acl *acl;
181 
182 	if (mask & MAY_NOT_BLOCK) {
183 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
184 	        if (!acl)
185 	                return -EAGAIN;
186 		/* no ->get_acl() calls in RCU mode... */
187 		if (acl == ACL_NOT_CACHED)
188 			return -ECHILD;
189 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
190 	}
191 
192 	acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
193 
194 	/*
195 	 * A filesystem can force a ACL callback by just never filling the
196 	 * ACL cache. But normally you'd fill the cache either at inode
197 	 * instantiation time, or on the first ->get_acl call.
198 	 *
199 	 * If the filesystem doesn't have a get_acl() function at all, we'll
200 	 * just create the negative cache entry.
201 	 */
202 	if (acl == ACL_NOT_CACHED) {
203 	        if (inode->i_op->get_acl) {
204 			acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
205 			if (IS_ERR(acl))
206 				return PTR_ERR(acl);
207 		} else {
208 		        set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
209 		        return -EAGAIN;
210 		}
211 	}
212 
213 	if (acl) {
214 	        int error = posix_acl_permission(inode, acl, mask);
215 	        posix_acl_release(acl);
216 	        return error;
217 	}
218 #endif
219 
220 	return -EAGAIN;
221 }
222 
223 /*
224  * This does basic POSIX ACL permission checking
225  */
226 static int acl_permission_check(struct inode *inode, int mask)
227 {
228 	unsigned int mode = inode->i_mode;
229 
230 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC | MAY_NOT_BLOCK;
231 
232 	if (current_user_ns() != inode_userns(inode))
233 		goto other_perms;
234 
235 	if (likely(current_fsuid() == inode->i_uid))
236 		mode >>= 6;
237 	else {
238 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
239 			int error = check_acl(inode, mask);
240 			if (error != -EAGAIN)
241 				return error;
242 		}
243 
244 		if (in_group_p(inode->i_gid))
245 			mode >>= 3;
246 	}
247 
248 other_perms:
249 	/*
250 	 * If the DACs are ok we don't need any capability check.
251 	 */
252 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
253 		return 0;
254 	return -EACCES;
255 }
256 
257 /**
258  * generic_permission -  check for access rights on a Posix-like filesystem
259  * @inode:	inode to check access rights for
260  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
261  *
262  * Used to check for read/write/execute permissions on a file.
263  * We use "fsuid" for this, letting us set arbitrary permissions
264  * for filesystem access without changing the "normal" uids which
265  * are used for other things.
266  *
267  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
268  * request cannot be satisfied (eg. requires blocking or too much complexity).
269  * It would then be called again in ref-walk mode.
270  */
271 int generic_permission(struct inode *inode, int mask)
272 {
273 	int ret;
274 
275 	/*
276 	 * Do the basic POSIX ACL permission checks.
277 	 */
278 	ret = acl_permission_check(inode, mask);
279 	if (ret != -EACCES)
280 		return ret;
281 
282 	if (S_ISDIR(inode->i_mode)) {
283 		/* DACs are overridable for directories */
284 		if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
285 			return 0;
286 		if (!(mask & MAY_WRITE))
287 			if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
288 				return 0;
289 		return -EACCES;
290 	}
291 	/*
292 	 * Read/write DACs are always overridable.
293 	 * Executable DACs are overridable when there is
294 	 * at least one exec bit set.
295 	 */
296 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
297 		if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
298 			return 0;
299 
300 	/*
301 	 * Searching includes executable on directories, else just read.
302 	 */
303 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
304 	if (mask == MAY_READ)
305 		if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
306 			return 0;
307 
308 	return -EACCES;
309 }
310 
311 /*
312  * We _really_ want to just do "generic_permission()" without
313  * even looking at the inode->i_op values. So we keep a cache
314  * flag in inode->i_opflags, that says "this has not special
315  * permission function, use the fast case".
316  */
317 static inline int do_inode_permission(struct inode *inode, int mask)
318 {
319 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
320 		if (likely(inode->i_op->permission))
321 			return inode->i_op->permission(inode, mask);
322 
323 		/* This gets set once for the inode lifetime */
324 		spin_lock(&inode->i_lock);
325 		inode->i_opflags |= IOP_FASTPERM;
326 		spin_unlock(&inode->i_lock);
327 	}
328 	return generic_permission(inode, mask);
329 }
330 
331 /**
332  * inode_permission  -  check for access rights to a given inode
333  * @inode:	inode to check permission on
334  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
335  *
336  * Used to check for read/write/execute permissions on an inode.
337  * We use "fsuid" for this, letting us set arbitrary permissions
338  * for filesystem access without changing the "normal" uids which
339  * are used for other things.
340  */
341 int inode_permission(struct inode *inode, int mask)
342 {
343 	int retval;
344 
345 	if (unlikely(mask & MAY_WRITE)) {
346 		umode_t mode = inode->i_mode;
347 
348 		/*
349 		 * Nobody gets write access to a read-only fs.
350 		 */
351 		if (IS_RDONLY(inode) &&
352 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
353 			return -EROFS;
354 
355 		/*
356 		 * Nobody gets write access to an immutable file.
357 		 */
358 		if (IS_IMMUTABLE(inode))
359 			return -EACCES;
360 	}
361 
362 	retval = do_inode_permission(inode, mask);
363 	if (retval)
364 		return retval;
365 
366 	retval = devcgroup_inode_permission(inode, mask);
367 	if (retval)
368 		return retval;
369 
370 	return security_inode_permission(inode, mask);
371 }
372 
373 /**
374  * path_get - get a reference to a path
375  * @path: path to get the reference to
376  *
377  * Given a path increment the reference count to the dentry and the vfsmount.
378  */
379 void path_get(struct path *path)
380 {
381 	mntget(path->mnt);
382 	dget(path->dentry);
383 }
384 EXPORT_SYMBOL(path_get);
385 
386 /**
387  * path_put - put a reference to a path
388  * @path: path to put the reference to
389  *
390  * Given a path decrement the reference count to the dentry and the vfsmount.
391  */
392 void path_put(struct path *path)
393 {
394 	dput(path->dentry);
395 	mntput(path->mnt);
396 }
397 EXPORT_SYMBOL(path_put);
398 
399 /*
400  * Path walking has 2 modes, rcu-walk and ref-walk (see
401  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
402  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
403  * normal reference counts on dentries and vfsmounts to transition to rcu-walk
404  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
405  * got stuck, so ref-walk may continue from there. If this is not successful
406  * (eg. a seqcount has changed), then failure is returned and it's up to caller
407  * to restart the path walk from the beginning in ref-walk mode.
408  */
409 
410 /**
411  * unlazy_walk - try to switch to ref-walk mode.
412  * @nd: nameidata pathwalk data
413  * @dentry: child of nd->path.dentry or NULL
414  * Returns: 0 on success, -ECHILD on failure
415  *
416  * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
417  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
418  * @nd or NULL.  Must be called from rcu-walk context.
419  */
420 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
421 {
422 	struct fs_struct *fs = current->fs;
423 	struct dentry *parent = nd->path.dentry;
424 	int want_root = 0;
425 
426 	BUG_ON(!(nd->flags & LOOKUP_RCU));
427 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
428 		want_root = 1;
429 		spin_lock(&fs->lock);
430 		if (nd->root.mnt != fs->root.mnt ||
431 				nd->root.dentry != fs->root.dentry)
432 			goto err_root;
433 	}
434 	spin_lock(&parent->d_lock);
435 	if (!dentry) {
436 		if (!__d_rcu_to_refcount(parent, nd->seq))
437 			goto err_parent;
438 		BUG_ON(nd->inode != parent->d_inode);
439 	} else {
440 		if (dentry->d_parent != parent)
441 			goto err_parent;
442 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
443 		if (!__d_rcu_to_refcount(dentry, nd->seq))
444 			goto err_child;
445 		/*
446 		 * If the sequence check on the child dentry passed, then
447 		 * the child has not been removed from its parent. This
448 		 * means the parent dentry must be valid and able to take
449 		 * a reference at this point.
450 		 */
451 		BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
452 		BUG_ON(!parent->d_count);
453 		parent->d_count++;
454 		spin_unlock(&dentry->d_lock);
455 	}
456 	spin_unlock(&parent->d_lock);
457 	if (want_root) {
458 		path_get(&nd->root);
459 		spin_unlock(&fs->lock);
460 	}
461 	mntget(nd->path.mnt);
462 
463 	rcu_read_unlock();
464 	br_read_unlock(vfsmount_lock);
465 	nd->flags &= ~LOOKUP_RCU;
466 	return 0;
467 
468 err_child:
469 	spin_unlock(&dentry->d_lock);
470 err_parent:
471 	spin_unlock(&parent->d_lock);
472 err_root:
473 	if (want_root)
474 		spin_unlock(&fs->lock);
475 	return -ECHILD;
476 }
477 
478 /**
479  * release_open_intent - free up open intent resources
480  * @nd: pointer to nameidata
481  */
482 void release_open_intent(struct nameidata *nd)
483 {
484 	struct file *file = nd->intent.open.file;
485 
486 	if (file && !IS_ERR(file)) {
487 		if (file->f_path.dentry == NULL)
488 			put_filp(file);
489 		else
490 			fput(file);
491 	}
492 }
493 
494 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd)
495 {
496 	return dentry->d_op->d_revalidate(dentry, nd);
497 }
498 
499 /**
500  * complete_walk - successful completion of path walk
501  * @nd:  pointer nameidata
502  *
503  * If we had been in RCU mode, drop out of it and legitimize nd->path.
504  * Revalidate the final result, unless we'd already done that during
505  * the path walk or the filesystem doesn't ask for it.  Return 0 on
506  * success, -error on failure.  In case of failure caller does not
507  * need to drop nd->path.
508  */
509 static int complete_walk(struct nameidata *nd)
510 {
511 	struct dentry *dentry = nd->path.dentry;
512 	int status;
513 
514 	if (nd->flags & LOOKUP_RCU) {
515 		nd->flags &= ~LOOKUP_RCU;
516 		if (!(nd->flags & LOOKUP_ROOT))
517 			nd->root.mnt = NULL;
518 		spin_lock(&dentry->d_lock);
519 		if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
520 			spin_unlock(&dentry->d_lock);
521 			rcu_read_unlock();
522 			br_read_unlock(vfsmount_lock);
523 			return -ECHILD;
524 		}
525 		BUG_ON(nd->inode != dentry->d_inode);
526 		spin_unlock(&dentry->d_lock);
527 		mntget(nd->path.mnt);
528 		rcu_read_unlock();
529 		br_read_unlock(vfsmount_lock);
530 	}
531 
532 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
533 		return 0;
534 
535 	if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
536 		return 0;
537 
538 	if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
539 		return 0;
540 
541 	/* Note: we do not d_invalidate() */
542 	status = d_revalidate(dentry, nd);
543 	if (status > 0)
544 		return 0;
545 
546 	if (!status)
547 		status = -ESTALE;
548 
549 	path_put(&nd->path);
550 	return status;
551 }
552 
553 static __always_inline void set_root(struct nameidata *nd)
554 {
555 	if (!nd->root.mnt)
556 		get_fs_root(current->fs, &nd->root);
557 }
558 
559 static int link_path_walk(const char *, struct nameidata *);
560 
561 static __always_inline void set_root_rcu(struct nameidata *nd)
562 {
563 	if (!nd->root.mnt) {
564 		struct fs_struct *fs = current->fs;
565 		unsigned seq;
566 
567 		do {
568 			seq = read_seqcount_begin(&fs->seq);
569 			nd->root = fs->root;
570 			nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
571 		} while (read_seqcount_retry(&fs->seq, seq));
572 	}
573 }
574 
575 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
576 {
577 	int ret;
578 
579 	if (IS_ERR(link))
580 		goto fail;
581 
582 	if (*link == '/') {
583 		set_root(nd);
584 		path_put(&nd->path);
585 		nd->path = nd->root;
586 		path_get(&nd->root);
587 		nd->flags |= LOOKUP_JUMPED;
588 	}
589 	nd->inode = nd->path.dentry->d_inode;
590 
591 	ret = link_path_walk(link, nd);
592 	return ret;
593 fail:
594 	path_put(&nd->path);
595 	return PTR_ERR(link);
596 }
597 
598 static void path_put_conditional(struct path *path, struct nameidata *nd)
599 {
600 	dput(path->dentry);
601 	if (path->mnt != nd->path.mnt)
602 		mntput(path->mnt);
603 }
604 
605 static inline void path_to_nameidata(const struct path *path,
606 					struct nameidata *nd)
607 {
608 	if (!(nd->flags & LOOKUP_RCU)) {
609 		dput(nd->path.dentry);
610 		if (nd->path.mnt != path->mnt)
611 			mntput(nd->path.mnt);
612 	}
613 	nd->path.mnt = path->mnt;
614 	nd->path.dentry = path->dentry;
615 }
616 
617 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
618 {
619 	struct inode *inode = link->dentry->d_inode;
620 	if (!IS_ERR(cookie) && inode->i_op->put_link)
621 		inode->i_op->put_link(link->dentry, nd, cookie);
622 	path_put(link);
623 }
624 
625 static __always_inline int
626 follow_link(struct path *link, struct nameidata *nd, void **p)
627 {
628 	int error;
629 	struct dentry *dentry = link->dentry;
630 
631 	BUG_ON(nd->flags & LOOKUP_RCU);
632 
633 	if (link->mnt == nd->path.mnt)
634 		mntget(link->mnt);
635 
636 	if (unlikely(current->total_link_count >= 40)) {
637 		*p = ERR_PTR(-ELOOP); /* no ->put_link(), please */
638 		path_put(&nd->path);
639 		return -ELOOP;
640 	}
641 	cond_resched();
642 	current->total_link_count++;
643 
644 	touch_atime(link->mnt, dentry);
645 	nd_set_link(nd, NULL);
646 
647 	error = security_inode_follow_link(link->dentry, nd);
648 	if (error) {
649 		*p = ERR_PTR(error); /* no ->put_link(), please */
650 		path_put(&nd->path);
651 		return error;
652 	}
653 
654 	nd->last_type = LAST_BIND;
655 	*p = dentry->d_inode->i_op->follow_link(dentry, nd);
656 	error = PTR_ERR(*p);
657 	if (!IS_ERR(*p)) {
658 		char *s = nd_get_link(nd);
659 		error = 0;
660 		if (s)
661 			error = __vfs_follow_link(nd, s);
662 		else if (nd->last_type == LAST_BIND) {
663 			nd->flags |= LOOKUP_JUMPED;
664 			nd->inode = nd->path.dentry->d_inode;
665 			if (nd->inode->i_op->follow_link) {
666 				/* stepped on a _really_ weird one */
667 				path_put(&nd->path);
668 				error = -ELOOP;
669 			}
670 		}
671 	}
672 	return error;
673 }
674 
675 static int follow_up_rcu(struct path *path)
676 {
677 	struct vfsmount *parent;
678 	struct dentry *mountpoint;
679 
680 	parent = path->mnt->mnt_parent;
681 	if (parent == path->mnt)
682 		return 0;
683 	mountpoint = path->mnt->mnt_mountpoint;
684 	path->dentry = mountpoint;
685 	path->mnt = parent;
686 	return 1;
687 }
688 
689 int follow_up(struct path *path)
690 {
691 	struct vfsmount *parent;
692 	struct dentry *mountpoint;
693 
694 	br_read_lock(vfsmount_lock);
695 	parent = path->mnt->mnt_parent;
696 	if (parent == path->mnt) {
697 		br_read_unlock(vfsmount_lock);
698 		return 0;
699 	}
700 	mntget(parent);
701 	mountpoint = dget(path->mnt->mnt_mountpoint);
702 	br_read_unlock(vfsmount_lock);
703 	dput(path->dentry);
704 	path->dentry = mountpoint;
705 	mntput(path->mnt);
706 	path->mnt = parent;
707 	return 1;
708 }
709 
710 /*
711  * Perform an automount
712  * - return -EISDIR to tell follow_managed() to stop and return the path we
713  *   were called with.
714  */
715 static int follow_automount(struct path *path, unsigned flags,
716 			    bool *need_mntput)
717 {
718 	struct vfsmount *mnt;
719 	int err;
720 
721 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
722 		return -EREMOTE;
723 
724 	/* We don't want to mount if someone's just doing a stat -
725 	 * unless they're stat'ing a directory and appended a '/' to
726 	 * the name.
727 	 *
728 	 * We do, however, want to mount if someone wants to open or
729 	 * create a file of any type under the mountpoint, wants to
730 	 * traverse through the mountpoint or wants to open the
731 	 * mounted directory.  Also, autofs may mark negative dentries
732 	 * as being automount points.  These will need the attentions
733 	 * of the daemon to instantiate them before they can be used.
734 	 */
735 	if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
736 		     LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
737 	    path->dentry->d_inode)
738 		return -EISDIR;
739 
740 	current->total_link_count++;
741 	if (current->total_link_count >= 40)
742 		return -ELOOP;
743 
744 	mnt = path->dentry->d_op->d_automount(path);
745 	if (IS_ERR(mnt)) {
746 		/*
747 		 * The filesystem is allowed to return -EISDIR here to indicate
748 		 * it doesn't want to automount.  For instance, autofs would do
749 		 * this so that its userspace daemon can mount on this dentry.
750 		 *
751 		 * However, we can only permit this if it's a terminal point in
752 		 * the path being looked up; if it wasn't then the remainder of
753 		 * the path is inaccessible and we should say so.
754 		 */
755 		if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
756 			return -EREMOTE;
757 		return PTR_ERR(mnt);
758 	}
759 
760 	if (!mnt) /* mount collision */
761 		return 0;
762 
763 	if (!*need_mntput) {
764 		/* lock_mount() may release path->mnt on error */
765 		mntget(path->mnt);
766 		*need_mntput = true;
767 	}
768 	err = finish_automount(mnt, path);
769 
770 	switch (err) {
771 	case -EBUSY:
772 		/* Someone else made a mount here whilst we were busy */
773 		return 0;
774 	case 0:
775 		path_put(path);
776 		path->mnt = mnt;
777 		path->dentry = dget(mnt->mnt_root);
778 		return 0;
779 	default:
780 		return err;
781 	}
782 
783 }
784 
785 /*
786  * Handle a dentry that is managed in some way.
787  * - Flagged for transit management (autofs)
788  * - Flagged as mountpoint
789  * - Flagged as automount point
790  *
791  * This may only be called in refwalk mode.
792  *
793  * Serialization is taken care of in namespace.c
794  */
795 static int follow_managed(struct path *path, unsigned flags)
796 {
797 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
798 	unsigned managed;
799 	bool need_mntput = false;
800 	int ret = 0;
801 
802 	/* Given that we're not holding a lock here, we retain the value in a
803 	 * local variable for each dentry as we look at it so that we don't see
804 	 * the components of that value change under us */
805 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
806 	       managed &= DCACHE_MANAGED_DENTRY,
807 	       unlikely(managed != 0)) {
808 		/* Allow the filesystem to manage the transit without i_mutex
809 		 * being held. */
810 		if (managed & DCACHE_MANAGE_TRANSIT) {
811 			BUG_ON(!path->dentry->d_op);
812 			BUG_ON(!path->dentry->d_op->d_manage);
813 			ret = path->dentry->d_op->d_manage(path->dentry, false);
814 			if (ret < 0)
815 				break;
816 		}
817 
818 		/* Transit to a mounted filesystem. */
819 		if (managed & DCACHE_MOUNTED) {
820 			struct vfsmount *mounted = lookup_mnt(path);
821 			if (mounted) {
822 				dput(path->dentry);
823 				if (need_mntput)
824 					mntput(path->mnt);
825 				path->mnt = mounted;
826 				path->dentry = dget(mounted->mnt_root);
827 				need_mntput = true;
828 				continue;
829 			}
830 
831 			/* Something is mounted on this dentry in another
832 			 * namespace and/or whatever was mounted there in this
833 			 * namespace got unmounted before we managed to get the
834 			 * vfsmount_lock */
835 		}
836 
837 		/* Handle an automount point */
838 		if (managed & DCACHE_NEED_AUTOMOUNT) {
839 			ret = follow_automount(path, flags, &need_mntput);
840 			if (ret < 0)
841 				break;
842 			continue;
843 		}
844 
845 		/* We didn't change the current path point */
846 		break;
847 	}
848 
849 	if (need_mntput && path->mnt == mnt)
850 		mntput(path->mnt);
851 	if (ret == -EISDIR)
852 		ret = 0;
853 	return ret;
854 }
855 
856 int follow_down_one(struct path *path)
857 {
858 	struct vfsmount *mounted;
859 
860 	mounted = lookup_mnt(path);
861 	if (mounted) {
862 		dput(path->dentry);
863 		mntput(path->mnt);
864 		path->mnt = mounted;
865 		path->dentry = dget(mounted->mnt_root);
866 		return 1;
867 	}
868 	return 0;
869 }
870 
871 static inline bool managed_dentry_might_block(struct dentry *dentry)
872 {
873 	return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
874 		dentry->d_op->d_manage(dentry, true) < 0);
875 }
876 
877 /*
878  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
879  * we meet a managed dentry that would need blocking.
880  */
881 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
882 			       struct inode **inode)
883 {
884 	for (;;) {
885 		struct vfsmount *mounted;
886 		/*
887 		 * Don't forget we might have a non-mountpoint managed dentry
888 		 * that wants to block transit.
889 		 */
890 		if (unlikely(managed_dentry_might_block(path->dentry)))
891 			return false;
892 
893 		if (!d_mountpoint(path->dentry))
894 			break;
895 
896 		mounted = __lookup_mnt(path->mnt, path->dentry, 1);
897 		if (!mounted)
898 			break;
899 		path->mnt = mounted;
900 		path->dentry = mounted->mnt_root;
901 		nd->seq = read_seqcount_begin(&path->dentry->d_seq);
902 		/*
903 		 * Update the inode too. We don't need to re-check the
904 		 * dentry sequence number here after this d_inode read,
905 		 * because a mount-point is always pinned.
906 		 */
907 		*inode = path->dentry->d_inode;
908 	}
909 	return true;
910 }
911 
912 static void follow_mount_rcu(struct nameidata *nd)
913 {
914 	while (d_mountpoint(nd->path.dentry)) {
915 		struct vfsmount *mounted;
916 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
917 		if (!mounted)
918 			break;
919 		nd->path.mnt = mounted;
920 		nd->path.dentry = mounted->mnt_root;
921 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
922 	}
923 }
924 
925 static int follow_dotdot_rcu(struct nameidata *nd)
926 {
927 	set_root_rcu(nd);
928 
929 	while (1) {
930 		if (nd->path.dentry == nd->root.dentry &&
931 		    nd->path.mnt == nd->root.mnt) {
932 			break;
933 		}
934 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
935 			struct dentry *old = nd->path.dentry;
936 			struct dentry *parent = old->d_parent;
937 			unsigned seq;
938 
939 			seq = read_seqcount_begin(&parent->d_seq);
940 			if (read_seqcount_retry(&old->d_seq, nd->seq))
941 				goto failed;
942 			nd->path.dentry = parent;
943 			nd->seq = seq;
944 			break;
945 		}
946 		if (!follow_up_rcu(&nd->path))
947 			break;
948 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
949 	}
950 	follow_mount_rcu(nd);
951 	nd->inode = nd->path.dentry->d_inode;
952 	return 0;
953 
954 failed:
955 	nd->flags &= ~LOOKUP_RCU;
956 	if (!(nd->flags & LOOKUP_ROOT))
957 		nd->root.mnt = NULL;
958 	rcu_read_unlock();
959 	br_read_unlock(vfsmount_lock);
960 	return -ECHILD;
961 }
962 
963 /*
964  * Follow down to the covering mount currently visible to userspace.  At each
965  * point, the filesystem owning that dentry may be queried as to whether the
966  * caller is permitted to proceed or not.
967  */
968 int follow_down(struct path *path)
969 {
970 	unsigned managed;
971 	int ret;
972 
973 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
974 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
975 		/* Allow the filesystem to manage the transit without i_mutex
976 		 * being held.
977 		 *
978 		 * We indicate to the filesystem if someone is trying to mount
979 		 * something here.  This gives autofs the chance to deny anyone
980 		 * other than its daemon the right to mount on its
981 		 * superstructure.
982 		 *
983 		 * The filesystem may sleep at this point.
984 		 */
985 		if (managed & DCACHE_MANAGE_TRANSIT) {
986 			BUG_ON(!path->dentry->d_op);
987 			BUG_ON(!path->dentry->d_op->d_manage);
988 			ret = path->dentry->d_op->d_manage(
989 				path->dentry, false);
990 			if (ret < 0)
991 				return ret == -EISDIR ? 0 : ret;
992 		}
993 
994 		/* Transit to a mounted filesystem. */
995 		if (managed & DCACHE_MOUNTED) {
996 			struct vfsmount *mounted = lookup_mnt(path);
997 			if (!mounted)
998 				break;
999 			dput(path->dentry);
1000 			mntput(path->mnt);
1001 			path->mnt = mounted;
1002 			path->dentry = dget(mounted->mnt_root);
1003 			continue;
1004 		}
1005 
1006 		/* Don't handle automount points here */
1007 		break;
1008 	}
1009 	return 0;
1010 }
1011 
1012 /*
1013  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1014  */
1015 static void follow_mount(struct path *path)
1016 {
1017 	while (d_mountpoint(path->dentry)) {
1018 		struct vfsmount *mounted = lookup_mnt(path);
1019 		if (!mounted)
1020 			break;
1021 		dput(path->dentry);
1022 		mntput(path->mnt);
1023 		path->mnt = mounted;
1024 		path->dentry = dget(mounted->mnt_root);
1025 	}
1026 }
1027 
1028 static void follow_dotdot(struct nameidata *nd)
1029 {
1030 	set_root(nd);
1031 
1032 	while(1) {
1033 		struct dentry *old = nd->path.dentry;
1034 
1035 		if (nd->path.dentry == nd->root.dentry &&
1036 		    nd->path.mnt == nd->root.mnt) {
1037 			break;
1038 		}
1039 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1040 			/* rare case of legitimate dget_parent()... */
1041 			nd->path.dentry = dget_parent(nd->path.dentry);
1042 			dput(old);
1043 			break;
1044 		}
1045 		if (!follow_up(&nd->path))
1046 			break;
1047 	}
1048 	follow_mount(&nd->path);
1049 	nd->inode = nd->path.dentry->d_inode;
1050 }
1051 
1052 /*
1053  * Allocate a dentry with name and parent, and perform a parent
1054  * directory ->lookup on it. Returns the new dentry, or ERR_PTR
1055  * on error. parent->d_inode->i_mutex must be held. d_lookup must
1056  * have verified that no child exists while under i_mutex.
1057  */
1058 static struct dentry *d_alloc_and_lookup(struct dentry *parent,
1059 				struct qstr *name, struct nameidata *nd)
1060 {
1061 	struct inode *inode = parent->d_inode;
1062 	struct dentry *dentry;
1063 	struct dentry *old;
1064 
1065 	/* Don't create child dentry for a dead directory. */
1066 	if (unlikely(IS_DEADDIR(inode)))
1067 		return ERR_PTR(-ENOENT);
1068 
1069 	dentry = d_alloc(parent, name);
1070 	if (unlikely(!dentry))
1071 		return ERR_PTR(-ENOMEM);
1072 
1073 	old = inode->i_op->lookup(inode, dentry, nd);
1074 	if (unlikely(old)) {
1075 		dput(dentry);
1076 		dentry = old;
1077 	}
1078 	return dentry;
1079 }
1080 
1081 /*
1082  * We already have a dentry, but require a lookup to be performed on the parent
1083  * directory to fill in d_inode. Returns the new dentry, or ERR_PTR on error.
1084  * parent->d_inode->i_mutex must be held. d_lookup must have verified that no
1085  * child exists while under i_mutex.
1086  */
1087 static struct dentry *d_inode_lookup(struct dentry *parent, struct dentry *dentry,
1088 				     struct nameidata *nd)
1089 {
1090 	struct inode *inode = parent->d_inode;
1091 	struct dentry *old;
1092 
1093 	/* Don't create child dentry for a dead directory. */
1094 	if (unlikely(IS_DEADDIR(inode)))
1095 		return ERR_PTR(-ENOENT);
1096 
1097 	old = inode->i_op->lookup(inode, dentry, nd);
1098 	if (unlikely(old)) {
1099 		dput(dentry);
1100 		dentry = old;
1101 	}
1102 	return dentry;
1103 }
1104 
1105 /*
1106  *  It's more convoluted than I'd like it to be, but... it's still fairly
1107  *  small and for now I'd prefer to have fast path as straight as possible.
1108  *  It _is_ time-critical.
1109  */
1110 static int do_lookup(struct nameidata *nd, struct qstr *name,
1111 			struct path *path, struct inode **inode)
1112 {
1113 	struct vfsmount *mnt = nd->path.mnt;
1114 	struct dentry *dentry, *parent = nd->path.dentry;
1115 	int need_reval = 1;
1116 	int status = 1;
1117 	int err;
1118 
1119 	/*
1120 	 * Rename seqlock is not required here because in the off chance
1121 	 * of a false negative due to a concurrent rename, we're going to
1122 	 * do the non-racy lookup, below.
1123 	 */
1124 	if (nd->flags & LOOKUP_RCU) {
1125 		unsigned seq;
1126 		*inode = nd->inode;
1127 		dentry = __d_lookup_rcu(parent, name, &seq, inode);
1128 		if (!dentry)
1129 			goto unlazy;
1130 
1131 		/* Memory barrier in read_seqcount_begin of child is enough */
1132 		if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1133 			return -ECHILD;
1134 		nd->seq = seq;
1135 
1136 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1137 			status = d_revalidate(dentry, nd);
1138 			if (unlikely(status <= 0)) {
1139 				if (status != -ECHILD)
1140 					need_reval = 0;
1141 				goto unlazy;
1142 			}
1143 		}
1144 		if (unlikely(d_need_lookup(dentry)))
1145 			goto unlazy;
1146 		path->mnt = mnt;
1147 		path->dentry = dentry;
1148 		if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1149 			goto unlazy;
1150 		if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1151 			goto unlazy;
1152 		return 0;
1153 unlazy:
1154 		if (unlazy_walk(nd, dentry))
1155 			return -ECHILD;
1156 	} else {
1157 		dentry = __d_lookup(parent, name);
1158 	}
1159 
1160 	if (dentry && unlikely(d_need_lookup(dentry))) {
1161 		dput(dentry);
1162 		dentry = NULL;
1163 	}
1164 retry:
1165 	if (unlikely(!dentry)) {
1166 		struct inode *dir = parent->d_inode;
1167 		BUG_ON(nd->inode != dir);
1168 
1169 		mutex_lock(&dir->i_mutex);
1170 		dentry = d_lookup(parent, name);
1171 		if (likely(!dentry)) {
1172 			dentry = d_alloc_and_lookup(parent, name, nd);
1173 			if (IS_ERR(dentry)) {
1174 				mutex_unlock(&dir->i_mutex);
1175 				return PTR_ERR(dentry);
1176 			}
1177 			/* known good */
1178 			need_reval = 0;
1179 			status = 1;
1180 		} else if (unlikely(d_need_lookup(dentry))) {
1181 			dentry = d_inode_lookup(parent, dentry, nd);
1182 			if (IS_ERR(dentry)) {
1183 				mutex_unlock(&dir->i_mutex);
1184 				return PTR_ERR(dentry);
1185 			}
1186 			/* known good */
1187 			need_reval = 0;
1188 			status = 1;
1189 		}
1190 		mutex_unlock(&dir->i_mutex);
1191 	}
1192 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1193 		status = d_revalidate(dentry, nd);
1194 	if (unlikely(status <= 0)) {
1195 		if (status < 0) {
1196 			dput(dentry);
1197 			return status;
1198 		}
1199 		if (!d_invalidate(dentry)) {
1200 			dput(dentry);
1201 			dentry = NULL;
1202 			need_reval = 1;
1203 			goto retry;
1204 		}
1205 	}
1206 
1207 	path->mnt = mnt;
1208 	path->dentry = dentry;
1209 	err = follow_managed(path, nd->flags);
1210 	if (unlikely(err < 0)) {
1211 		path_put_conditional(path, nd);
1212 		return err;
1213 	}
1214 	*inode = path->dentry->d_inode;
1215 	return 0;
1216 }
1217 
1218 static inline int may_lookup(struct nameidata *nd)
1219 {
1220 	if (nd->flags & LOOKUP_RCU) {
1221 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1222 		if (err != -ECHILD)
1223 			return err;
1224 		if (unlazy_walk(nd, NULL))
1225 			return -ECHILD;
1226 	}
1227 	return inode_permission(nd->inode, MAY_EXEC);
1228 }
1229 
1230 static inline int handle_dots(struct nameidata *nd, int type)
1231 {
1232 	if (type == LAST_DOTDOT) {
1233 		if (nd->flags & LOOKUP_RCU) {
1234 			if (follow_dotdot_rcu(nd))
1235 				return -ECHILD;
1236 		} else
1237 			follow_dotdot(nd);
1238 	}
1239 	return 0;
1240 }
1241 
1242 static void terminate_walk(struct nameidata *nd)
1243 {
1244 	if (!(nd->flags & LOOKUP_RCU)) {
1245 		path_put(&nd->path);
1246 	} else {
1247 		nd->flags &= ~LOOKUP_RCU;
1248 		if (!(nd->flags & LOOKUP_ROOT))
1249 			nd->root.mnt = NULL;
1250 		rcu_read_unlock();
1251 		br_read_unlock(vfsmount_lock);
1252 	}
1253 }
1254 
1255 /*
1256  * Do we need to follow links? We _really_ want to be able
1257  * to do this check without having to look at inode->i_op,
1258  * so we keep a cache of "no, this doesn't need follow_link"
1259  * for the common case.
1260  */
1261 static inline int should_follow_link(struct inode *inode, int follow)
1262 {
1263 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1264 		if (likely(inode->i_op->follow_link))
1265 			return follow;
1266 
1267 		/* This gets set once for the inode lifetime */
1268 		spin_lock(&inode->i_lock);
1269 		inode->i_opflags |= IOP_NOFOLLOW;
1270 		spin_unlock(&inode->i_lock);
1271 	}
1272 	return 0;
1273 }
1274 
1275 static inline int walk_component(struct nameidata *nd, struct path *path,
1276 		struct qstr *name, int type, int follow)
1277 {
1278 	struct inode *inode;
1279 	int err;
1280 	/*
1281 	 * "." and ".." are special - ".." especially so because it has
1282 	 * to be able to know about the current root directory and
1283 	 * parent relationships.
1284 	 */
1285 	if (unlikely(type != LAST_NORM))
1286 		return handle_dots(nd, type);
1287 	err = do_lookup(nd, name, path, &inode);
1288 	if (unlikely(err)) {
1289 		terminate_walk(nd);
1290 		return err;
1291 	}
1292 	if (!inode) {
1293 		path_to_nameidata(path, nd);
1294 		terminate_walk(nd);
1295 		return -ENOENT;
1296 	}
1297 	if (should_follow_link(inode, follow)) {
1298 		if (nd->flags & LOOKUP_RCU) {
1299 			if (unlikely(unlazy_walk(nd, path->dentry))) {
1300 				terminate_walk(nd);
1301 				return -ECHILD;
1302 			}
1303 		}
1304 		BUG_ON(inode != path->dentry->d_inode);
1305 		return 1;
1306 	}
1307 	path_to_nameidata(path, nd);
1308 	nd->inode = inode;
1309 	return 0;
1310 }
1311 
1312 /*
1313  * This limits recursive symlink follows to 8, while
1314  * limiting consecutive symlinks to 40.
1315  *
1316  * Without that kind of total limit, nasty chains of consecutive
1317  * symlinks can cause almost arbitrarily long lookups.
1318  */
1319 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1320 {
1321 	int res;
1322 
1323 	if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1324 		path_put_conditional(path, nd);
1325 		path_put(&nd->path);
1326 		return -ELOOP;
1327 	}
1328 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1329 
1330 	nd->depth++;
1331 	current->link_count++;
1332 
1333 	do {
1334 		struct path link = *path;
1335 		void *cookie;
1336 
1337 		res = follow_link(&link, nd, &cookie);
1338 		if (!res)
1339 			res = walk_component(nd, path, &nd->last,
1340 					     nd->last_type, LOOKUP_FOLLOW);
1341 		put_link(nd, &link, cookie);
1342 	} while (res > 0);
1343 
1344 	current->link_count--;
1345 	nd->depth--;
1346 	return res;
1347 }
1348 
1349 /*
1350  * We really don't want to look at inode->i_op->lookup
1351  * when we don't have to. So we keep a cache bit in
1352  * the inode ->i_opflags field that says "yes, we can
1353  * do lookup on this inode".
1354  */
1355 static inline int can_lookup(struct inode *inode)
1356 {
1357 	if (likely(inode->i_opflags & IOP_LOOKUP))
1358 		return 1;
1359 	if (likely(!inode->i_op->lookup))
1360 		return 0;
1361 
1362 	/* We do this once for the lifetime of the inode */
1363 	spin_lock(&inode->i_lock);
1364 	inode->i_opflags |= IOP_LOOKUP;
1365 	spin_unlock(&inode->i_lock);
1366 	return 1;
1367 }
1368 
1369 /*
1370  * Name resolution.
1371  * This is the basic name resolution function, turning a pathname into
1372  * the final dentry. We expect 'base' to be positive and a directory.
1373  *
1374  * Returns 0 and nd will have valid dentry and mnt on success.
1375  * Returns error and drops reference to input namei data on failure.
1376  */
1377 static int link_path_walk(const char *name, struct nameidata *nd)
1378 {
1379 	struct path next;
1380 	int err;
1381 
1382 	while (*name=='/')
1383 		name++;
1384 	if (!*name)
1385 		return 0;
1386 
1387 	/* At this point we know we have a real path component. */
1388 	for(;;) {
1389 		unsigned long hash;
1390 		struct qstr this;
1391 		unsigned int c;
1392 		int type;
1393 
1394 		err = may_lookup(nd);
1395  		if (err)
1396 			break;
1397 
1398 		this.name = name;
1399 		c = *(const unsigned char *)name;
1400 
1401 		hash = init_name_hash();
1402 		do {
1403 			name++;
1404 			hash = partial_name_hash(c, hash);
1405 			c = *(const unsigned char *)name;
1406 		} while (c && (c != '/'));
1407 		this.len = name - (const char *) this.name;
1408 		this.hash = end_name_hash(hash);
1409 
1410 		type = LAST_NORM;
1411 		if (this.name[0] == '.') switch (this.len) {
1412 			case 2:
1413 				if (this.name[1] == '.') {
1414 					type = LAST_DOTDOT;
1415 					nd->flags |= LOOKUP_JUMPED;
1416 				}
1417 				break;
1418 			case 1:
1419 				type = LAST_DOT;
1420 		}
1421 		if (likely(type == LAST_NORM)) {
1422 			struct dentry *parent = nd->path.dentry;
1423 			nd->flags &= ~LOOKUP_JUMPED;
1424 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1425 				err = parent->d_op->d_hash(parent, nd->inode,
1426 							   &this);
1427 				if (err < 0)
1428 					break;
1429 			}
1430 		}
1431 
1432 		/* remove trailing slashes? */
1433 		if (!c)
1434 			goto last_component;
1435 		while (*++name == '/');
1436 		if (!*name)
1437 			goto last_component;
1438 
1439 		err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1440 		if (err < 0)
1441 			return err;
1442 
1443 		if (err) {
1444 			err = nested_symlink(&next, nd);
1445 			if (err)
1446 				return err;
1447 		}
1448 		if (can_lookup(nd->inode))
1449 			continue;
1450 		err = -ENOTDIR;
1451 		break;
1452 		/* here ends the main loop */
1453 
1454 last_component:
1455 		nd->last = this;
1456 		nd->last_type = type;
1457 		return 0;
1458 	}
1459 	terminate_walk(nd);
1460 	return err;
1461 }
1462 
1463 static int path_init(int dfd, const char *name, unsigned int flags,
1464 		     struct nameidata *nd, struct file **fp)
1465 {
1466 	int retval = 0;
1467 	int fput_needed;
1468 	struct file *file;
1469 
1470 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1471 	nd->flags = flags | LOOKUP_JUMPED;
1472 	nd->depth = 0;
1473 	if (flags & LOOKUP_ROOT) {
1474 		struct inode *inode = nd->root.dentry->d_inode;
1475 		if (*name) {
1476 			if (!inode->i_op->lookup)
1477 				return -ENOTDIR;
1478 			retval = inode_permission(inode, MAY_EXEC);
1479 			if (retval)
1480 				return retval;
1481 		}
1482 		nd->path = nd->root;
1483 		nd->inode = inode;
1484 		if (flags & LOOKUP_RCU) {
1485 			br_read_lock(vfsmount_lock);
1486 			rcu_read_lock();
1487 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1488 		} else {
1489 			path_get(&nd->path);
1490 		}
1491 		return 0;
1492 	}
1493 
1494 	nd->root.mnt = NULL;
1495 
1496 	if (*name=='/') {
1497 		if (flags & LOOKUP_RCU) {
1498 			br_read_lock(vfsmount_lock);
1499 			rcu_read_lock();
1500 			set_root_rcu(nd);
1501 		} else {
1502 			set_root(nd);
1503 			path_get(&nd->root);
1504 		}
1505 		nd->path = nd->root;
1506 	} else if (dfd == AT_FDCWD) {
1507 		if (flags & LOOKUP_RCU) {
1508 			struct fs_struct *fs = current->fs;
1509 			unsigned seq;
1510 
1511 			br_read_lock(vfsmount_lock);
1512 			rcu_read_lock();
1513 
1514 			do {
1515 				seq = read_seqcount_begin(&fs->seq);
1516 				nd->path = fs->pwd;
1517 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1518 			} while (read_seqcount_retry(&fs->seq, seq));
1519 		} else {
1520 			get_fs_pwd(current->fs, &nd->path);
1521 		}
1522 	} else {
1523 		struct dentry *dentry;
1524 
1525 		file = fget_raw_light(dfd, &fput_needed);
1526 		retval = -EBADF;
1527 		if (!file)
1528 			goto out_fail;
1529 
1530 		dentry = file->f_path.dentry;
1531 
1532 		if (*name) {
1533 			retval = -ENOTDIR;
1534 			if (!S_ISDIR(dentry->d_inode->i_mode))
1535 				goto fput_fail;
1536 
1537 			retval = inode_permission(dentry->d_inode, MAY_EXEC);
1538 			if (retval)
1539 				goto fput_fail;
1540 		}
1541 
1542 		nd->path = file->f_path;
1543 		if (flags & LOOKUP_RCU) {
1544 			if (fput_needed)
1545 				*fp = file;
1546 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1547 			br_read_lock(vfsmount_lock);
1548 			rcu_read_lock();
1549 		} else {
1550 			path_get(&file->f_path);
1551 			fput_light(file, fput_needed);
1552 		}
1553 	}
1554 
1555 	nd->inode = nd->path.dentry->d_inode;
1556 	return 0;
1557 
1558 fput_fail:
1559 	fput_light(file, fput_needed);
1560 out_fail:
1561 	return retval;
1562 }
1563 
1564 static inline int lookup_last(struct nameidata *nd, struct path *path)
1565 {
1566 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1567 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1568 
1569 	nd->flags &= ~LOOKUP_PARENT;
1570 	return walk_component(nd, path, &nd->last, nd->last_type,
1571 					nd->flags & LOOKUP_FOLLOW);
1572 }
1573 
1574 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1575 static int path_lookupat(int dfd, const char *name,
1576 				unsigned int flags, struct nameidata *nd)
1577 {
1578 	struct file *base = NULL;
1579 	struct path path;
1580 	int err;
1581 
1582 	/*
1583 	 * Path walking is largely split up into 2 different synchronisation
1584 	 * schemes, rcu-walk and ref-walk (explained in
1585 	 * Documentation/filesystems/path-lookup.txt). These share much of the
1586 	 * path walk code, but some things particularly setup, cleanup, and
1587 	 * following mounts are sufficiently divergent that functions are
1588 	 * duplicated. Typically there is a function foo(), and its RCU
1589 	 * analogue, foo_rcu().
1590 	 *
1591 	 * -ECHILD is the error number of choice (just to avoid clashes) that
1592 	 * is returned if some aspect of an rcu-walk fails. Such an error must
1593 	 * be handled by restarting a traditional ref-walk (which will always
1594 	 * be able to complete).
1595 	 */
1596 	err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1597 
1598 	if (unlikely(err))
1599 		return err;
1600 
1601 	current->total_link_count = 0;
1602 	err = link_path_walk(name, nd);
1603 
1604 	if (!err && !(flags & LOOKUP_PARENT)) {
1605 		err = lookup_last(nd, &path);
1606 		while (err > 0) {
1607 			void *cookie;
1608 			struct path link = path;
1609 			nd->flags |= LOOKUP_PARENT;
1610 			err = follow_link(&link, nd, &cookie);
1611 			if (!err)
1612 				err = lookup_last(nd, &path);
1613 			put_link(nd, &link, cookie);
1614 		}
1615 	}
1616 
1617 	if (!err)
1618 		err = complete_walk(nd);
1619 
1620 	if (!err && nd->flags & LOOKUP_DIRECTORY) {
1621 		if (!nd->inode->i_op->lookup) {
1622 			path_put(&nd->path);
1623 			err = -ENOTDIR;
1624 		}
1625 	}
1626 
1627 	if (base)
1628 		fput(base);
1629 
1630 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1631 		path_put(&nd->root);
1632 		nd->root.mnt = NULL;
1633 	}
1634 	return err;
1635 }
1636 
1637 static int do_path_lookup(int dfd, const char *name,
1638 				unsigned int flags, struct nameidata *nd)
1639 {
1640 	int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
1641 	if (unlikely(retval == -ECHILD))
1642 		retval = path_lookupat(dfd, name, flags, nd);
1643 	if (unlikely(retval == -ESTALE))
1644 		retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1645 
1646 	if (likely(!retval)) {
1647 		if (unlikely(!audit_dummy_context())) {
1648 			if (nd->path.dentry && nd->inode)
1649 				audit_inode(name, nd->path.dentry);
1650 		}
1651 	}
1652 	return retval;
1653 }
1654 
1655 int kern_path_parent(const char *name, struct nameidata *nd)
1656 {
1657 	return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd);
1658 }
1659 
1660 int kern_path(const char *name, unsigned int flags, struct path *path)
1661 {
1662 	struct nameidata nd;
1663 	int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1664 	if (!res)
1665 		*path = nd.path;
1666 	return res;
1667 }
1668 
1669 /**
1670  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1671  * @dentry:  pointer to dentry of the base directory
1672  * @mnt: pointer to vfs mount of the base directory
1673  * @name: pointer to file name
1674  * @flags: lookup flags
1675  * @path: pointer to struct path to fill
1676  */
1677 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1678 		    const char *name, unsigned int flags,
1679 		    struct path *path)
1680 {
1681 	struct nameidata nd;
1682 	int err;
1683 	nd.root.dentry = dentry;
1684 	nd.root.mnt = mnt;
1685 	BUG_ON(flags & LOOKUP_PARENT);
1686 	/* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
1687 	err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
1688 	if (!err)
1689 		*path = nd.path;
1690 	return err;
1691 }
1692 
1693 static struct dentry *__lookup_hash(struct qstr *name,
1694 		struct dentry *base, struct nameidata *nd)
1695 {
1696 	struct inode *inode = base->d_inode;
1697 	struct dentry *dentry;
1698 	int err;
1699 
1700 	err = inode_permission(inode, MAY_EXEC);
1701 	if (err)
1702 		return ERR_PTR(err);
1703 
1704 	/*
1705 	 * Don't bother with __d_lookup: callers are for creat as
1706 	 * well as unlink, so a lot of the time it would cost
1707 	 * a double lookup.
1708 	 */
1709 	dentry = d_lookup(base, name);
1710 
1711 	if (dentry && d_need_lookup(dentry)) {
1712 		/*
1713 		 * __lookup_hash is called with the parent dir's i_mutex already
1714 		 * held, so we are good to go here.
1715 		 */
1716 		dentry = d_inode_lookup(base, dentry, nd);
1717 		if (IS_ERR(dentry))
1718 			return dentry;
1719 	}
1720 
1721 	if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1722 		int status = d_revalidate(dentry, nd);
1723 		if (unlikely(status <= 0)) {
1724 			/*
1725 			 * The dentry failed validation.
1726 			 * If d_revalidate returned 0 attempt to invalidate
1727 			 * the dentry otherwise d_revalidate is asking us
1728 			 * to return a fail status.
1729 			 */
1730 			if (status < 0) {
1731 				dput(dentry);
1732 				return ERR_PTR(status);
1733 			} else if (!d_invalidate(dentry)) {
1734 				dput(dentry);
1735 				dentry = NULL;
1736 			}
1737 		}
1738 	}
1739 
1740 	if (!dentry)
1741 		dentry = d_alloc_and_lookup(base, name, nd);
1742 
1743 	return dentry;
1744 }
1745 
1746 /*
1747  * Restricted form of lookup. Doesn't follow links, single-component only,
1748  * needs parent already locked. Doesn't follow mounts.
1749  * SMP-safe.
1750  */
1751 static struct dentry *lookup_hash(struct nameidata *nd)
1752 {
1753 	return __lookup_hash(&nd->last, nd->path.dentry, nd);
1754 }
1755 
1756 /**
1757  * lookup_one_len - filesystem helper to lookup single pathname component
1758  * @name:	pathname component to lookup
1759  * @base:	base directory to lookup from
1760  * @len:	maximum length @len should be interpreted to
1761  *
1762  * Note that this routine is purely a helper for filesystem usage and should
1763  * not be called by generic code.  Also note that by using this function the
1764  * nameidata argument is passed to the filesystem methods and a filesystem
1765  * using this helper needs to be prepared for that.
1766  */
1767 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1768 {
1769 	struct qstr this;
1770 	unsigned long hash;
1771 	unsigned int c;
1772 
1773 	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1774 
1775 	this.name = name;
1776 	this.len = len;
1777 	if (!len)
1778 		return ERR_PTR(-EACCES);
1779 
1780 	hash = init_name_hash();
1781 	while (len--) {
1782 		c = *(const unsigned char *)name++;
1783 		if (c == '/' || c == '\0')
1784 			return ERR_PTR(-EACCES);
1785 		hash = partial_name_hash(c, hash);
1786 	}
1787 	this.hash = end_name_hash(hash);
1788 	/*
1789 	 * See if the low-level filesystem might want
1790 	 * to use its own hash..
1791 	 */
1792 	if (base->d_flags & DCACHE_OP_HASH) {
1793 		int err = base->d_op->d_hash(base, base->d_inode, &this);
1794 		if (err < 0)
1795 			return ERR_PTR(err);
1796 	}
1797 
1798 	return __lookup_hash(&this, base, NULL);
1799 }
1800 
1801 int user_path_at(int dfd, const char __user *name, unsigned flags,
1802 		 struct path *path)
1803 {
1804 	struct nameidata nd;
1805 	char *tmp = getname_flags(name, flags);
1806 	int err = PTR_ERR(tmp);
1807 	if (!IS_ERR(tmp)) {
1808 
1809 		BUG_ON(flags & LOOKUP_PARENT);
1810 
1811 		err = do_path_lookup(dfd, tmp, flags, &nd);
1812 		putname(tmp);
1813 		if (!err)
1814 			*path = nd.path;
1815 	}
1816 	return err;
1817 }
1818 
1819 static int user_path_parent(int dfd, const char __user *path,
1820 			struct nameidata *nd, char **name)
1821 {
1822 	char *s = getname(path);
1823 	int error;
1824 
1825 	if (IS_ERR(s))
1826 		return PTR_ERR(s);
1827 
1828 	error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1829 	if (error)
1830 		putname(s);
1831 	else
1832 		*name = s;
1833 
1834 	return error;
1835 }
1836 
1837 /*
1838  * It's inline, so penalty for filesystems that don't use sticky bit is
1839  * minimal.
1840  */
1841 static inline int check_sticky(struct inode *dir, struct inode *inode)
1842 {
1843 	uid_t fsuid = current_fsuid();
1844 
1845 	if (!(dir->i_mode & S_ISVTX))
1846 		return 0;
1847 	if (current_user_ns() != inode_userns(inode))
1848 		goto other_userns;
1849 	if (inode->i_uid == fsuid)
1850 		return 0;
1851 	if (dir->i_uid == fsuid)
1852 		return 0;
1853 
1854 other_userns:
1855 	return !ns_capable(inode_userns(inode), CAP_FOWNER);
1856 }
1857 
1858 /*
1859  *	Check whether we can remove a link victim from directory dir, check
1860  *  whether the type of victim is right.
1861  *  1. We can't do it if dir is read-only (done in permission())
1862  *  2. We should have write and exec permissions on dir
1863  *  3. We can't remove anything from append-only dir
1864  *  4. We can't do anything with immutable dir (done in permission())
1865  *  5. If the sticky bit on dir is set we should either
1866  *	a. be owner of dir, or
1867  *	b. be owner of victim, or
1868  *	c. have CAP_FOWNER capability
1869  *  6. If the victim is append-only or immutable we can't do antyhing with
1870  *     links pointing to it.
1871  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1872  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1873  *  9. We can't remove a root or mountpoint.
1874  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1875  *     nfs_async_unlink().
1876  */
1877 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1878 {
1879 	int error;
1880 
1881 	if (!victim->d_inode)
1882 		return -ENOENT;
1883 
1884 	BUG_ON(victim->d_parent->d_inode != dir);
1885 	audit_inode_child(victim, dir);
1886 
1887 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1888 	if (error)
1889 		return error;
1890 	if (IS_APPEND(dir))
1891 		return -EPERM;
1892 	if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1893 	    IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1894 		return -EPERM;
1895 	if (isdir) {
1896 		if (!S_ISDIR(victim->d_inode->i_mode))
1897 			return -ENOTDIR;
1898 		if (IS_ROOT(victim))
1899 			return -EBUSY;
1900 	} else if (S_ISDIR(victim->d_inode->i_mode))
1901 		return -EISDIR;
1902 	if (IS_DEADDIR(dir))
1903 		return -ENOENT;
1904 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1905 		return -EBUSY;
1906 	return 0;
1907 }
1908 
1909 /*	Check whether we can create an object with dentry child in directory
1910  *  dir.
1911  *  1. We can't do it if child already exists (open has special treatment for
1912  *     this case, but since we are inlined it's OK)
1913  *  2. We can't do it if dir is read-only (done in permission())
1914  *  3. We should have write and exec permissions on dir
1915  *  4. We can't do it if dir is immutable (done in permission())
1916  */
1917 static inline int may_create(struct inode *dir, struct dentry *child)
1918 {
1919 	if (child->d_inode)
1920 		return -EEXIST;
1921 	if (IS_DEADDIR(dir))
1922 		return -ENOENT;
1923 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1924 }
1925 
1926 /*
1927  * p1 and p2 should be directories on the same fs.
1928  */
1929 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1930 {
1931 	struct dentry *p;
1932 
1933 	if (p1 == p2) {
1934 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1935 		return NULL;
1936 	}
1937 
1938 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1939 
1940 	p = d_ancestor(p2, p1);
1941 	if (p) {
1942 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1943 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1944 		return p;
1945 	}
1946 
1947 	p = d_ancestor(p1, p2);
1948 	if (p) {
1949 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1950 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1951 		return p;
1952 	}
1953 
1954 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1955 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1956 	return NULL;
1957 }
1958 
1959 void unlock_rename(struct dentry *p1, struct dentry *p2)
1960 {
1961 	mutex_unlock(&p1->d_inode->i_mutex);
1962 	if (p1 != p2) {
1963 		mutex_unlock(&p2->d_inode->i_mutex);
1964 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1965 	}
1966 }
1967 
1968 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1969 		struct nameidata *nd)
1970 {
1971 	int error = may_create(dir, dentry);
1972 
1973 	if (error)
1974 		return error;
1975 
1976 	if (!dir->i_op->create)
1977 		return -EACCES;	/* shouldn't it be ENOSYS? */
1978 	mode &= S_IALLUGO;
1979 	mode |= S_IFREG;
1980 	error = security_inode_create(dir, dentry, mode);
1981 	if (error)
1982 		return error;
1983 	error = dir->i_op->create(dir, dentry, mode, nd);
1984 	if (!error)
1985 		fsnotify_create(dir, dentry);
1986 	return error;
1987 }
1988 
1989 static int may_open(struct path *path, int acc_mode, int flag)
1990 {
1991 	struct dentry *dentry = path->dentry;
1992 	struct inode *inode = dentry->d_inode;
1993 	int error;
1994 
1995 	/* O_PATH? */
1996 	if (!acc_mode)
1997 		return 0;
1998 
1999 	if (!inode)
2000 		return -ENOENT;
2001 
2002 	switch (inode->i_mode & S_IFMT) {
2003 	case S_IFLNK:
2004 		return -ELOOP;
2005 	case S_IFDIR:
2006 		if (acc_mode & MAY_WRITE)
2007 			return -EISDIR;
2008 		break;
2009 	case S_IFBLK:
2010 	case S_IFCHR:
2011 		if (path->mnt->mnt_flags & MNT_NODEV)
2012 			return -EACCES;
2013 		/*FALLTHRU*/
2014 	case S_IFIFO:
2015 	case S_IFSOCK:
2016 		flag &= ~O_TRUNC;
2017 		break;
2018 	}
2019 
2020 	error = inode_permission(inode, acc_mode);
2021 	if (error)
2022 		return error;
2023 
2024 	/*
2025 	 * An append-only file must be opened in append mode for writing.
2026 	 */
2027 	if (IS_APPEND(inode)) {
2028 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2029 			return -EPERM;
2030 		if (flag & O_TRUNC)
2031 			return -EPERM;
2032 	}
2033 
2034 	/* O_NOATIME can only be set by the owner or superuser */
2035 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2036 		return -EPERM;
2037 
2038 	/*
2039 	 * Ensure there are no outstanding leases on the file.
2040 	 */
2041 	return break_lease(inode, flag);
2042 }
2043 
2044 static int handle_truncate(struct file *filp)
2045 {
2046 	struct path *path = &filp->f_path;
2047 	struct inode *inode = path->dentry->d_inode;
2048 	int error = get_write_access(inode);
2049 	if (error)
2050 		return error;
2051 	/*
2052 	 * Refuse to truncate files with mandatory locks held on them.
2053 	 */
2054 	error = locks_verify_locked(inode);
2055 	if (!error)
2056 		error = security_path_truncate(path);
2057 	if (!error) {
2058 		error = do_truncate(path->dentry, 0,
2059 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2060 				    filp);
2061 	}
2062 	put_write_access(inode);
2063 	return error;
2064 }
2065 
2066 static inline int open_to_namei_flags(int flag)
2067 {
2068 	if ((flag & O_ACCMODE) == 3)
2069 		flag--;
2070 	return flag;
2071 }
2072 
2073 /*
2074  * Handle the last step of open()
2075  */
2076 static struct file *do_last(struct nameidata *nd, struct path *path,
2077 			    const struct open_flags *op, const char *pathname)
2078 {
2079 	struct dentry *dir = nd->path.dentry;
2080 	struct dentry *dentry;
2081 	int open_flag = op->open_flag;
2082 	int will_truncate = open_flag & O_TRUNC;
2083 	int want_write = 0;
2084 	int acc_mode = op->acc_mode;
2085 	struct file *filp;
2086 	int error;
2087 
2088 	nd->flags &= ~LOOKUP_PARENT;
2089 	nd->flags |= op->intent;
2090 
2091 	switch (nd->last_type) {
2092 	case LAST_DOTDOT:
2093 	case LAST_DOT:
2094 		error = handle_dots(nd, nd->last_type);
2095 		if (error)
2096 			return ERR_PTR(error);
2097 		/* fallthrough */
2098 	case LAST_ROOT:
2099 		error = complete_walk(nd);
2100 		if (error)
2101 			return ERR_PTR(error);
2102 		audit_inode(pathname, nd->path.dentry);
2103 		if (open_flag & O_CREAT) {
2104 			error = -EISDIR;
2105 			goto exit;
2106 		}
2107 		goto ok;
2108 	case LAST_BIND:
2109 		error = complete_walk(nd);
2110 		if (error)
2111 			return ERR_PTR(error);
2112 		audit_inode(pathname, dir);
2113 		goto ok;
2114 	}
2115 
2116 	if (!(open_flag & O_CREAT)) {
2117 		int symlink_ok = 0;
2118 		if (nd->last.name[nd->last.len])
2119 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2120 		if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2121 			symlink_ok = 1;
2122 		/* we _can_ be in RCU mode here */
2123 		error = walk_component(nd, path, &nd->last, LAST_NORM,
2124 					!symlink_ok);
2125 		if (error < 0)
2126 			return ERR_PTR(error);
2127 		if (error) /* symlink */
2128 			return NULL;
2129 		/* sayonara */
2130 		error = complete_walk(nd);
2131 		if (error)
2132 			return ERR_PTR(-ECHILD);
2133 
2134 		error = -ENOTDIR;
2135 		if (nd->flags & LOOKUP_DIRECTORY) {
2136 			if (!nd->inode->i_op->lookup)
2137 				goto exit;
2138 		}
2139 		audit_inode(pathname, nd->path.dentry);
2140 		goto ok;
2141 	}
2142 
2143 	/* create side of things */
2144 	error = complete_walk(nd);
2145 	if (error)
2146 		return ERR_PTR(error);
2147 
2148 	audit_inode(pathname, dir);
2149 	error = -EISDIR;
2150 	/* trailing slashes? */
2151 	if (nd->last.name[nd->last.len])
2152 		goto exit;
2153 
2154 	mutex_lock(&dir->d_inode->i_mutex);
2155 
2156 	dentry = lookup_hash(nd);
2157 	error = PTR_ERR(dentry);
2158 	if (IS_ERR(dentry)) {
2159 		mutex_unlock(&dir->d_inode->i_mutex);
2160 		goto exit;
2161 	}
2162 
2163 	path->dentry = dentry;
2164 	path->mnt = nd->path.mnt;
2165 
2166 	/* Negative dentry, just create the file */
2167 	if (!dentry->d_inode) {
2168 		int mode = op->mode;
2169 		if (!IS_POSIXACL(dir->d_inode))
2170 			mode &= ~current_umask();
2171 		/*
2172 		 * This write is needed to ensure that a
2173 		 * rw->ro transition does not occur between
2174 		 * the time when the file is created and when
2175 		 * a permanent write count is taken through
2176 		 * the 'struct file' in nameidata_to_filp().
2177 		 */
2178 		error = mnt_want_write(nd->path.mnt);
2179 		if (error)
2180 			goto exit_mutex_unlock;
2181 		want_write = 1;
2182 		/* Don't check for write permission, don't truncate */
2183 		open_flag &= ~O_TRUNC;
2184 		will_truncate = 0;
2185 		acc_mode = MAY_OPEN;
2186 		error = security_path_mknod(&nd->path, dentry, mode, 0);
2187 		if (error)
2188 			goto exit_mutex_unlock;
2189 		error = vfs_create(dir->d_inode, dentry, mode, nd);
2190 		if (error)
2191 			goto exit_mutex_unlock;
2192 		mutex_unlock(&dir->d_inode->i_mutex);
2193 		dput(nd->path.dentry);
2194 		nd->path.dentry = dentry;
2195 		goto common;
2196 	}
2197 
2198 	/*
2199 	 * It already exists.
2200 	 */
2201 	mutex_unlock(&dir->d_inode->i_mutex);
2202 	audit_inode(pathname, path->dentry);
2203 
2204 	error = -EEXIST;
2205 	if (open_flag & O_EXCL)
2206 		goto exit_dput;
2207 
2208 	error = follow_managed(path, nd->flags);
2209 	if (error < 0)
2210 		goto exit_dput;
2211 
2212 	error = -ENOENT;
2213 	if (!path->dentry->d_inode)
2214 		goto exit_dput;
2215 
2216 	if (path->dentry->d_inode->i_op->follow_link)
2217 		return NULL;
2218 
2219 	path_to_nameidata(path, nd);
2220 	nd->inode = path->dentry->d_inode;
2221 	error = -EISDIR;
2222 	if (S_ISDIR(nd->inode->i_mode))
2223 		goto exit;
2224 ok:
2225 	if (!S_ISREG(nd->inode->i_mode))
2226 		will_truncate = 0;
2227 
2228 	if (will_truncate) {
2229 		error = mnt_want_write(nd->path.mnt);
2230 		if (error)
2231 			goto exit;
2232 		want_write = 1;
2233 	}
2234 common:
2235 	error = may_open(&nd->path, acc_mode, open_flag);
2236 	if (error)
2237 		goto exit;
2238 	filp = nameidata_to_filp(nd);
2239 	if (!IS_ERR(filp)) {
2240 		error = ima_file_check(filp, op->acc_mode);
2241 		if (error) {
2242 			fput(filp);
2243 			filp = ERR_PTR(error);
2244 		}
2245 	}
2246 	if (!IS_ERR(filp)) {
2247 		if (will_truncate) {
2248 			error = handle_truncate(filp);
2249 			if (error) {
2250 				fput(filp);
2251 				filp = ERR_PTR(error);
2252 			}
2253 		}
2254 	}
2255 out:
2256 	if (want_write)
2257 		mnt_drop_write(nd->path.mnt);
2258 	path_put(&nd->path);
2259 	return filp;
2260 
2261 exit_mutex_unlock:
2262 	mutex_unlock(&dir->d_inode->i_mutex);
2263 exit_dput:
2264 	path_put_conditional(path, nd);
2265 exit:
2266 	filp = ERR_PTR(error);
2267 	goto out;
2268 }
2269 
2270 static struct file *path_openat(int dfd, const char *pathname,
2271 		struct nameidata *nd, const struct open_flags *op, int flags)
2272 {
2273 	struct file *base = NULL;
2274 	struct file *filp;
2275 	struct path path;
2276 	int error;
2277 
2278 	filp = get_empty_filp();
2279 	if (!filp)
2280 		return ERR_PTR(-ENFILE);
2281 
2282 	filp->f_flags = op->open_flag;
2283 	nd->intent.open.file = filp;
2284 	nd->intent.open.flags = open_to_namei_flags(op->open_flag);
2285 	nd->intent.open.create_mode = op->mode;
2286 
2287 	error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base);
2288 	if (unlikely(error))
2289 		goto out_filp;
2290 
2291 	current->total_link_count = 0;
2292 	error = link_path_walk(pathname, nd);
2293 	if (unlikely(error))
2294 		goto out_filp;
2295 
2296 	filp = do_last(nd, &path, op, pathname);
2297 	while (unlikely(!filp)) { /* trailing symlink */
2298 		struct path link = path;
2299 		void *cookie;
2300 		if (!(nd->flags & LOOKUP_FOLLOW)) {
2301 			path_put_conditional(&path, nd);
2302 			path_put(&nd->path);
2303 			filp = ERR_PTR(-ELOOP);
2304 			break;
2305 		}
2306 		nd->flags |= LOOKUP_PARENT;
2307 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2308 		error = follow_link(&link, nd, &cookie);
2309 		if (unlikely(error))
2310 			filp = ERR_PTR(error);
2311 		else
2312 			filp = do_last(nd, &path, op, pathname);
2313 		put_link(nd, &link, cookie);
2314 	}
2315 out:
2316 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2317 		path_put(&nd->root);
2318 	if (base)
2319 		fput(base);
2320 	release_open_intent(nd);
2321 	return filp;
2322 
2323 out_filp:
2324 	filp = ERR_PTR(error);
2325 	goto out;
2326 }
2327 
2328 struct file *do_filp_open(int dfd, const char *pathname,
2329 		const struct open_flags *op, int flags)
2330 {
2331 	struct nameidata nd;
2332 	struct file *filp;
2333 
2334 	filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2335 	if (unlikely(filp == ERR_PTR(-ECHILD)))
2336 		filp = path_openat(dfd, pathname, &nd, op, flags);
2337 	if (unlikely(filp == ERR_PTR(-ESTALE)))
2338 		filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
2339 	return filp;
2340 }
2341 
2342 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
2343 		const char *name, const struct open_flags *op, int flags)
2344 {
2345 	struct nameidata nd;
2346 	struct file *file;
2347 
2348 	nd.root.mnt = mnt;
2349 	nd.root.dentry = dentry;
2350 
2351 	flags |= LOOKUP_ROOT;
2352 
2353 	if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
2354 		return ERR_PTR(-ELOOP);
2355 
2356 	file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU);
2357 	if (unlikely(file == ERR_PTR(-ECHILD)))
2358 		file = path_openat(-1, name, &nd, op, flags);
2359 	if (unlikely(file == ERR_PTR(-ESTALE)))
2360 		file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL);
2361 	return file;
2362 }
2363 
2364 struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, int is_dir)
2365 {
2366 	struct dentry *dentry = ERR_PTR(-EEXIST);
2367 	struct nameidata nd;
2368 	int error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
2369 	if (error)
2370 		return ERR_PTR(error);
2371 
2372 	/*
2373 	 * Yucky last component or no last component at all?
2374 	 * (foo/., foo/.., /////)
2375 	 */
2376 	if (nd.last_type != LAST_NORM)
2377 		goto out;
2378 	nd.flags &= ~LOOKUP_PARENT;
2379 	nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2380 	nd.intent.open.flags = O_EXCL;
2381 
2382 	/*
2383 	 * Do the final lookup.
2384 	 */
2385 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2386 	dentry = lookup_hash(&nd);
2387 	if (IS_ERR(dentry))
2388 		goto fail;
2389 
2390 	if (dentry->d_inode)
2391 		goto eexist;
2392 	/*
2393 	 * Special case - lookup gave negative, but... we had foo/bar/
2394 	 * From the vfs_mknod() POV we just have a negative dentry -
2395 	 * all is fine. Let's be bastards - you had / on the end, you've
2396 	 * been asking for (non-existent) directory. -ENOENT for you.
2397 	 */
2398 	if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
2399 		dput(dentry);
2400 		dentry = ERR_PTR(-ENOENT);
2401 		goto fail;
2402 	}
2403 	*path = nd.path;
2404 	return dentry;
2405 eexist:
2406 	dput(dentry);
2407 	dentry = ERR_PTR(-EEXIST);
2408 fail:
2409 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2410 out:
2411 	path_put(&nd.path);
2412 	return dentry;
2413 }
2414 EXPORT_SYMBOL(kern_path_create);
2415 
2416 struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, int is_dir)
2417 {
2418 	char *tmp = getname(pathname);
2419 	struct dentry *res;
2420 	if (IS_ERR(tmp))
2421 		return ERR_CAST(tmp);
2422 	res = kern_path_create(dfd, tmp, path, is_dir);
2423 	putname(tmp);
2424 	return res;
2425 }
2426 EXPORT_SYMBOL(user_path_create);
2427 
2428 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2429 {
2430 	int error = may_create(dir, dentry);
2431 
2432 	if (error)
2433 		return error;
2434 
2435 	if ((S_ISCHR(mode) || S_ISBLK(mode)) &&
2436 	    !ns_capable(inode_userns(dir), CAP_MKNOD))
2437 		return -EPERM;
2438 
2439 	if (!dir->i_op->mknod)
2440 		return -EPERM;
2441 
2442 	error = devcgroup_inode_mknod(mode, dev);
2443 	if (error)
2444 		return error;
2445 
2446 	error = security_inode_mknod(dir, dentry, mode, dev);
2447 	if (error)
2448 		return error;
2449 
2450 	error = dir->i_op->mknod(dir, dentry, mode, dev);
2451 	if (!error)
2452 		fsnotify_create(dir, dentry);
2453 	return error;
2454 }
2455 
2456 static int may_mknod(mode_t mode)
2457 {
2458 	switch (mode & S_IFMT) {
2459 	case S_IFREG:
2460 	case S_IFCHR:
2461 	case S_IFBLK:
2462 	case S_IFIFO:
2463 	case S_IFSOCK:
2464 	case 0: /* zero mode translates to S_IFREG */
2465 		return 0;
2466 	case S_IFDIR:
2467 		return -EPERM;
2468 	default:
2469 		return -EINVAL;
2470 	}
2471 }
2472 
2473 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2474 		unsigned, dev)
2475 {
2476 	struct dentry *dentry;
2477 	struct path path;
2478 	int error;
2479 
2480 	if (S_ISDIR(mode))
2481 		return -EPERM;
2482 
2483 	dentry = user_path_create(dfd, filename, &path, 0);
2484 	if (IS_ERR(dentry))
2485 		return PTR_ERR(dentry);
2486 
2487 	if (!IS_POSIXACL(path.dentry->d_inode))
2488 		mode &= ~current_umask();
2489 	error = may_mknod(mode);
2490 	if (error)
2491 		goto out_dput;
2492 	error = mnt_want_write(path.mnt);
2493 	if (error)
2494 		goto out_dput;
2495 	error = security_path_mknod(&path, dentry, mode, dev);
2496 	if (error)
2497 		goto out_drop_write;
2498 	switch (mode & S_IFMT) {
2499 		case 0: case S_IFREG:
2500 			error = vfs_create(path.dentry->d_inode,dentry,mode,NULL);
2501 			break;
2502 		case S_IFCHR: case S_IFBLK:
2503 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
2504 					new_decode_dev(dev));
2505 			break;
2506 		case S_IFIFO: case S_IFSOCK:
2507 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
2508 			break;
2509 	}
2510 out_drop_write:
2511 	mnt_drop_write(path.mnt);
2512 out_dput:
2513 	dput(dentry);
2514 	mutex_unlock(&path.dentry->d_inode->i_mutex);
2515 	path_put(&path);
2516 
2517 	return error;
2518 }
2519 
2520 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2521 {
2522 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
2523 }
2524 
2525 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2526 {
2527 	int error = may_create(dir, dentry);
2528 
2529 	if (error)
2530 		return error;
2531 
2532 	if (!dir->i_op->mkdir)
2533 		return -EPERM;
2534 
2535 	mode &= (S_IRWXUGO|S_ISVTX);
2536 	error = security_inode_mkdir(dir, dentry, mode);
2537 	if (error)
2538 		return error;
2539 
2540 	error = dir->i_op->mkdir(dir, dentry, mode);
2541 	if (!error)
2542 		fsnotify_mkdir(dir, dentry);
2543 	return error;
2544 }
2545 
2546 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2547 {
2548 	struct dentry *dentry;
2549 	struct path path;
2550 	int error;
2551 
2552 	dentry = user_path_create(dfd, pathname, &path, 1);
2553 	if (IS_ERR(dentry))
2554 		return PTR_ERR(dentry);
2555 
2556 	if (!IS_POSIXACL(path.dentry->d_inode))
2557 		mode &= ~current_umask();
2558 	error = mnt_want_write(path.mnt);
2559 	if (error)
2560 		goto out_dput;
2561 	error = security_path_mkdir(&path, dentry, mode);
2562 	if (error)
2563 		goto out_drop_write;
2564 	error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
2565 out_drop_write:
2566 	mnt_drop_write(path.mnt);
2567 out_dput:
2568 	dput(dentry);
2569 	mutex_unlock(&path.dentry->d_inode->i_mutex);
2570 	path_put(&path);
2571 	return error;
2572 }
2573 
2574 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2575 {
2576 	return sys_mkdirat(AT_FDCWD, pathname, mode);
2577 }
2578 
2579 /*
2580  * The dentry_unhash() helper will try to drop the dentry early: we
2581  * should have a usage count of 2 if we're the only user of this
2582  * dentry, and if that is true (possibly after pruning the dcache),
2583  * then we drop the dentry now.
2584  *
2585  * A low-level filesystem can, if it choses, legally
2586  * do a
2587  *
2588  *	if (!d_unhashed(dentry))
2589  *		return -EBUSY;
2590  *
2591  * if it cannot handle the case of removing a directory
2592  * that is still in use by something else..
2593  */
2594 void dentry_unhash(struct dentry *dentry)
2595 {
2596 	shrink_dcache_parent(dentry);
2597 	spin_lock(&dentry->d_lock);
2598 	if (dentry->d_count == 1)
2599 		__d_drop(dentry);
2600 	spin_unlock(&dentry->d_lock);
2601 }
2602 
2603 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2604 {
2605 	int error = may_delete(dir, dentry, 1);
2606 
2607 	if (error)
2608 		return error;
2609 
2610 	if (!dir->i_op->rmdir)
2611 		return -EPERM;
2612 
2613 	dget(dentry);
2614 	mutex_lock(&dentry->d_inode->i_mutex);
2615 
2616 	error = -EBUSY;
2617 	if (d_mountpoint(dentry))
2618 		goto out;
2619 
2620 	error = security_inode_rmdir(dir, dentry);
2621 	if (error)
2622 		goto out;
2623 
2624 	shrink_dcache_parent(dentry);
2625 	error = dir->i_op->rmdir(dir, dentry);
2626 	if (error)
2627 		goto out;
2628 
2629 	dentry->d_inode->i_flags |= S_DEAD;
2630 	dont_mount(dentry);
2631 
2632 out:
2633 	mutex_unlock(&dentry->d_inode->i_mutex);
2634 	dput(dentry);
2635 	if (!error)
2636 		d_delete(dentry);
2637 	return error;
2638 }
2639 
2640 static long do_rmdir(int dfd, const char __user *pathname)
2641 {
2642 	int error = 0;
2643 	char * name;
2644 	struct dentry *dentry;
2645 	struct nameidata nd;
2646 
2647 	error = user_path_parent(dfd, pathname, &nd, &name);
2648 	if (error)
2649 		return error;
2650 
2651 	switch(nd.last_type) {
2652 	case LAST_DOTDOT:
2653 		error = -ENOTEMPTY;
2654 		goto exit1;
2655 	case LAST_DOT:
2656 		error = -EINVAL;
2657 		goto exit1;
2658 	case LAST_ROOT:
2659 		error = -EBUSY;
2660 		goto exit1;
2661 	}
2662 
2663 	nd.flags &= ~LOOKUP_PARENT;
2664 
2665 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2666 	dentry = lookup_hash(&nd);
2667 	error = PTR_ERR(dentry);
2668 	if (IS_ERR(dentry))
2669 		goto exit2;
2670 	if (!dentry->d_inode) {
2671 		error = -ENOENT;
2672 		goto exit3;
2673 	}
2674 	error = mnt_want_write(nd.path.mnt);
2675 	if (error)
2676 		goto exit3;
2677 	error = security_path_rmdir(&nd.path, dentry);
2678 	if (error)
2679 		goto exit4;
2680 	error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2681 exit4:
2682 	mnt_drop_write(nd.path.mnt);
2683 exit3:
2684 	dput(dentry);
2685 exit2:
2686 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2687 exit1:
2688 	path_put(&nd.path);
2689 	putname(name);
2690 	return error;
2691 }
2692 
2693 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2694 {
2695 	return do_rmdir(AT_FDCWD, pathname);
2696 }
2697 
2698 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2699 {
2700 	int error = may_delete(dir, dentry, 0);
2701 
2702 	if (error)
2703 		return error;
2704 
2705 	if (!dir->i_op->unlink)
2706 		return -EPERM;
2707 
2708 	mutex_lock(&dentry->d_inode->i_mutex);
2709 	if (d_mountpoint(dentry))
2710 		error = -EBUSY;
2711 	else {
2712 		error = security_inode_unlink(dir, dentry);
2713 		if (!error) {
2714 			error = dir->i_op->unlink(dir, dentry);
2715 			if (!error)
2716 				dont_mount(dentry);
2717 		}
2718 	}
2719 	mutex_unlock(&dentry->d_inode->i_mutex);
2720 
2721 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
2722 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2723 		fsnotify_link_count(dentry->d_inode);
2724 		d_delete(dentry);
2725 	}
2726 
2727 	return error;
2728 }
2729 
2730 /*
2731  * Make sure that the actual truncation of the file will occur outside its
2732  * directory's i_mutex.  Truncate can take a long time if there is a lot of
2733  * writeout happening, and we don't want to prevent access to the directory
2734  * while waiting on the I/O.
2735  */
2736 static long do_unlinkat(int dfd, const char __user *pathname)
2737 {
2738 	int error;
2739 	char *name;
2740 	struct dentry *dentry;
2741 	struct nameidata nd;
2742 	struct inode *inode = NULL;
2743 
2744 	error = user_path_parent(dfd, pathname, &nd, &name);
2745 	if (error)
2746 		return error;
2747 
2748 	error = -EISDIR;
2749 	if (nd.last_type != LAST_NORM)
2750 		goto exit1;
2751 
2752 	nd.flags &= ~LOOKUP_PARENT;
2753 
2754 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2755 	dentry = lookup_hash(&nd);
2756 	error = PTR_ERR(dentry);
2757 	if (!IS_ERR(dentry)) {
2758 		/* Why not before? Because we want correct error value */
2759 		if (nd.last.name[nd.last.len])
2760 			goto slashes;
2761 		inode = dentry->d_inode;
2762 		if (!inode)
2763 			goto slashes;
2764 		ihold(inode);
2765 		error = mnt_want_write(nd.path.mnt);
2766 		if (error)
2767 			goto exit2;
2768 		error = security_path_unlink(&nd.path, dentry);
2769 		if (error)
2770 			goto exit3;
2771 		error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2772 exit3:
2773 		mnt_drop_write(nd.path.mnt);
2774 	exit2:
2775 		dput(dentry);
2776 	}
2777 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2778 	if (inode)
2779 		iput(inode);	/* truncate the inode here */
2780 exit1:
2781 	path_put(&nd.path);
2782 	putname(name);
2783 	return error;
2784 
2785 slashes:
2786 	error = !dentry->d_inode ? -ENOENT :
2787 		S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2788 	goto exit2;
2789 }
2790 
2791 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2792 {
2793 	if ((flag & ~AT_REMOVEDIR) != 0)
2794 		return -EINVAL;
2795 
2796 	if (flag & AT_REMOVEDIR)
2797 		return do_rmdir(dfd, pathname);
2798 
2799 	return do_unlinkat(dfd, pathname);
2800 }
2801 
2802 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2803 {
2804 	return do_unlinkat(AT_FDCWD, pathname);
2805 }
2806 
2807 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2808 {
2809 	int error = may_create(dir, dentry);
2810 
2811 	if (error)
2812 		return error;
2813 
2814 	if (!dir->i_op->symlink)
2815 		return -EPERM;
2816 
2817 	error = security_inode_symlink(dir, dentry, oldname);
2818 	if (error)
2819 		return error;
2820 
2821 	error = dir->i_op->symlink(dir, dentry, oldname);
2822 	if (!error)
2823 		fsnotify_create(dir, dentry);
2824 	return error;
2825 }
2826 
2827 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2828 		int, newdfd, const char __user *, newname)
2829 {
2830 	int error;
2831 	char *from;
2832 	struct dentry *dentry;
2833 	struct path path;
2834 
2835 	from = getname(oldname);
2836 	if (IS_ERR(from))
2837 		return PTR_ERR(from);
2838 
2839 	dentry = user_path_create(newdfd, newname, &path, 0);
2840 	error = PTR_ERR(dentry);
2841 	if (IS_ERR(dentry))
2842 		goto out_putname;
2843 
2844 	error = mnt_want_write(path.mnt);
2845 	if (error)
2846 		goto out_dput;
2847 	error = security_path_symlink(&path, dentry, from);
2848 	if (error)
2849 		goto out_drop_write;
2850 	error = vfs_symlink(path.dentry->d_inode, dentry, from);
2851 out_drop_write:
2852 	mnt_drop_write(path.mnt);
2853 out_dput:
2854 	dput(dentry);
2855 	mutex_unlock(&path.dentry->d_inode->i_mutex);
2856 	path_put(&path);
2857 out_putname:
2858 	putname(from);
2859 	return error;
2860 }
2861 
2862 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2863 {
2864 	return sys_symlinkat(oldname, AT_FDCWD, newname);
2865 }
2866 
2867 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2868 {
2869 	struct inode *inode = old_dentry->d_inode;
2870 	int error;
2871 
2872 	if (!inode)
2873 		return -ENOENT;
2874 
2875 	error = may_create(dir, new_dentry);
2876 	if (error)
2877 		return error;
2878 
2879 	if (dir->i_sb != inode->i_sb)
2880 		return -EXDEV;
2881 
2882 	/*
2883 	 * A link to an append-only or immutable file cannot be created.
2884 	 */
2885 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2886 		return -EPERM;
2887 	if (!dir->i_op->link)
2888 		return -EPERM;
2889 	if (S_ISDIR(inode->i_mode))
2890 		return -EPERM;
2891 
2892 	error = security_inode_link(old_dentry, dir, new_dentry);
2893 	if (error)
2894 		return error;
2895 
2896 	mutex_lock(&inode->i_mutex);
2897 	/* Make sure we don't allow creating hardlink to an unlinked file */
2898 	if (inode->i_nlink == 0)
2899 		error =  -ENOENT;
2900 	else
2901 		error = dir->i_op->link(old_dentry, dir, new_dentry);
2902 	mutex_unlock(&inode->i_mutex);
2903 	if (!error)
2904 		fsnotify_link(dir, inode, new_dentry);
2905 	return error;
2906 }
2907 
2908 /*
2909  * Hardlinks are often used in delicate situations.  We avoid
2910  * security-related surprises by not following symlinks on the
2911  * newname.  --KAB
2912  *
2913  * We don't follow them on the oldname either to be compatible
2914  * with linux 2.0, and to avoid hard-linking to directories
2915  * and other special files.  --ADM
2916  */
2917 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2918 		int, newdfd, const char __user *, newname, int, flags)
2919 {
2920 	struct dentry *new_dentry;
2921 	struct path old_path, new_path;
2922 	int how = 0;
2923 	int error;
2924 
2925 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
2926 		return -EINVAL;
2927 	/*
2928 	 * To use null names we require CAP_DAC_READ_SEARCH
2929 	 * This ensures that not everyone will be able to create
2930 	 * handlink using the passed filedescriptor.
2931 	 */
2932 	if (flags & AT_EMPTY_PATH) {
2933 		if (!capable(CAP_DAC_READ_SEARCH))
2934 			return -ENOENT;
2935 		how = LOOKUP_EMPTY;
2936 	}
2937 
2938 	if (flags & AT_SYMLINK_FOLLOW)
2939 		how |= LOOKUP_FOLLOW;
2940 
2941 	error = user_path_at(olddfd, oldname, how, &old_path);
2942 	if (error)
2943 		return error;
2944 
2945 	new_dentry = user_path_create(newdfd, newname, &new_path, 0);
2946 	error = PTR_ERR(new_dentry);
2947 	if (IS_ERR(new_dentry))
2948 		goto out;
2949 
2950 	error = -EXDEV;
2951 	if (old_path.mnt != new_path.mnt)
2952 		goto out_dput;
2953 	error = mnt_want_write(new_path.mnt);
2954 	if (error)
2955 		goto out_dput;
2956 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
2957 	if (error)
2958 		goto out_drop_write;
2959 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
2960 out_drop_write:
2961 	mnt_drop_write(new_path.mnt);
2962 out_dput:
2963 	dput(new_dentry);
2964 	mutex_unlock(&new_path.dentry->d_inode->i_mutex);
2965 	path_put(&new_path);
2966 out:
2967 	path_put(&old_path);
2968 
2969 	return error;
2970 }
2971 
2972 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
2973 {
2974 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2975 }
2976 
2977 /*
2978  * The worst of all namespace operations - renaming directory. "Perverted"
2979  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2980  * Problems:
2981  *	a) we can get into loop creation. Check is done in is_subdir().
2982  *	b) race potential - two innocent renames can create a loop together.
2983  *	   That's where 4.4 screws up. Current fix: serialization on
2984  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2985  *	   story.
2986  *	c) we have to lock _three_ objects - parents and victim (if it exists).
2987  *	   And that - after we got ->i_mutex on parents (until then we don't know
2988  *	   whether the target exists).  Solution: try to be smart with locking
2989  *	   order for inodes.  We rely on the fact that tree topology may change
2990  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
2991  *	   move will be locked.  Thus we can rank directories by the tree
2992  *	   (ancestors first) and rank all non-directories after them.
2993  *	   That works since everybody except rename does "lock parent, lookup,
2994  *	   lock child" and rename is under ->s_vfs_rename_mutex.
2995  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
2996  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
2997  *	   we'd better make sure that there's no link(2) for them.
2998  *	d) conversion from fhandle to dentry may come in the wrong moment - when
2999  *	   we are removing the target. Solution: we will have to grab ->i_mutex
3000  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3001  *	   ->i_mutex on parents, which works but leads to some truly excessive
3002  *	   locking].
3003  */
3004 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3005 			  struct inode *new_dir, struct dentry *new_dentry)
3006 {
3007 	int error = 0;
3008 	struct inode *target = new_dentry->d_inode;
3009 
3010 	/*
3011 	 * If we are going to change the parent - check write permissions,
3012 	 * we'll need to flip '..'.
3013 	 */
3014 	if (new_dir != old_dir) {
3015 		error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3016 		if (error)
3017 			return error;
3018 	}
3019 
3020 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3021 	if (error)
3022 		return error;
3023 
3024 	dget(new_dentry);
3025 	if (target)
3026 		mutex_lock(&target->i_mutex);
3027 
3028 	error = -EBUSY;
3029 	if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3030 		goto out;
3031 
3032 	if (target)
3033 		shrink_dcache_parent(new_dentry);
3034 	error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3035 	if (error)
3036 		goto out;
3037 
3038 	if (target) {
3039 		target->i_flags |= S_DEAD;
3040 		dont_mount(new_dentry);
3041 	}
3042 out:
3043 	if (target)
3044 		mutex_unlock(&target->i_mutex);
3045 	dput(new_dentry);
3046 	if (!error)
3047 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3048 			d_move(old_dentry,new_dentry);
3049 	return error;
3050 }
3051 
3052 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3053 			    struct inode *new_dir, struct dentry *new_dentry)
3054 {
3055 	struct inode *target = new_dentry->d_inode;
3056 	int error;
3057 
3058 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3059 	if (error)
3060 		return error;
3061 
3062 	dget(new_dentry);
3063 	if (target)
3064 		mutex_lock(&target->i_mutex);
3065 
3066 	error = -EBUSY;
3067 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3068 		goto out;
3069 
3070 	error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3071 	if (error)
3072 		goto out;
3073 
3074 	if (target)
3075 		dont_mount(new_dentry);
3076 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3077 		d_move(old_dentry, new_dentry);
3078 out:
3079 	if (target)
3080 		mutex_unlock(&target->i_mutex);
3081 	dput(new_dentry);
3082 	return error;
3083 }
3084 
3085 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3086 	       struct inode *new_dir, struct dentry *new_dentry)
3087 {
3088 	int error;
3089 	int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3090 	const unsigned char *old_name;
3091 
3092 	if (old_dentry->d_inode == new_dentry->d_inode)
3093  		return 0;
3094 
3095 	error = may_delete(old_dir, old_dentry, is_dir);
3096 	if (error)
3097 		return error;
3098 
3099 	if (!new_dentry->d_inode)
3100 		error = may_create(new_dir, new_dentry);
3101 	else
3102 		error = may_delete(new_dir, new_dentry, is_dir);
3103 	if (error)
3104 		return error;
3105 
3106 	if (!old_dir->i_op->rename)
3107 		return -EPERM;
3108 
3109 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3110 
3111 	if (is_dir)
3112 		error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3113 	else
3114 		error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3115 	if (!error)
3116 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
3117 			      new_dentry->d_inode, old_dentry);
3118 	fsnotify_oldname_free(old_name);
3119 
3120 	return error;
3121 }
3122 
3123 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3124 		int, newdfd, const char __user *, newname)
3125 {
3126 	struct dentry *old_dir, *new_dir;
3127 	struct dentry *old_dentry, *new_dentry;
3128 	struct dentry *trap;
3129 	struct nameidata oldnd, newnd;
3130 	char *from;
3131 	char *to;
3132 	int error;
3133 
3134 	error = user_path_parent(olddfd, oldname, &oldnd, &from);
3135 	if (error)
3136 		goto exit;
3137 
3138 	error = user_path_parent(newdfd, newname, &newnd, &to);
3139 	if (error)
3140 		goto exit1;
3141 
3142 	error = -EXDEV;
3143 	if (oldnd.path.mnt != newnd.path.mnt)
3144 		goto exit2;
3145 
3146 	old_dir = oldnd.path.dentry;
3147 	error = -EBUSY;
3148 	if (oldnd.last_type != LAST_NORM)
3149 		goto exit2;
3150 
3151 	new_dir = newnd.path.dentry;
3152 	if (newnd.last_type != LAST_NORM)
3153 		goto exit2;
3154 
3155 	oldnd.flags &= ~LOOKUP_PARENT;
3156 	newnd.flags &= ~LOOKUP_PARENT;
3157 	newnd.flags |= LOOKUP_RENAME_TARGET;
3158 
3159 	trap = lock_rename(new_dir, old_dir);
3160 
3161 	old_dentry = lookup_hash(&oldnd);
3162 	error = PTR_ERR(old_dentry);
3163 	if (IS_ERR(old_dentry))
3164 		goto exit3;
3165 	/* source must exist */
3166 	error = -ENOENT;
3167 	if (!old_dentry->d_inode)
3168 		goto exit4;
3169 	/* unless the source is a directory trailing slashes give -ENOTDIR */
3170 	if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3171 		error = -ENOTDIR;
3172 		if (oldnd.last.name[oldnd.last.len])
3173 			goto exit4;
3174 		if (newnd.last.name[newnd.last.len])
3175 			goto exit4;
3176 	}
3177 	/* source should not be ancestor of target */
3178 	error = -EINVAL;
3179 	if (old_dentry == trap)
3180 		goto exit4;
3181 	new_dentry = lookup_hash(&newnd);
3182 	error = PTR_ERR(new_dentry);
3183 	if (IS_ERR(new_dentry))
3184 		goto exit4;
3185 	/* target should not be an ancestor of source */
3186 	error = -ENOTEMPTY;
3187 	if (new_dentry == trap)
3188 		goto exit5;
3189 
3190 	error = mnt_want_write(oldnd.path.mnt);
3191 	if (error)
3192 		goto exit5;
3193 	error = security_path_rename(&oldnd.path, old_dentry,
3194 				     &newnd.path, new_dentry);
3195 	if (error)
3196 		goto exit6;
3197 	error = vfs_rename(old_dir->d_inode, old_dentry,
3198 				   new_dir->d_inode, new_dentry);
3199 exit6:
3200 	mnt_drop_write(oldnd.path.mnt);
3201 exit5:
3202 	dput(new_dentry);
3203 exit4:
3204 	dput(old_dentry);
3205 exit3:
3206 	unlock_rename(new_dir, old_dir);
3207 exit2:
3208 	path_put(&newnd.path);
3209 	putname(to);
3210 exit1:
3211 	path_put(&oldnd.path);
3212 	putname(from);
3213 exit:
3214 	return error;
3215 }
3216 
3217 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3218 {
3219 	return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3220 }
3221 
3222 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3223 {
3224 	int len;
3225 
3226 	len = PTR_ERR(link);
3227 	if (IS_ERR(link))
3228 		goto out;
3229 
3230 	len = strlen(link);
3231 	if (len > (unsigned) buflen)
3232 		len = buflen;
3233 	if (copy_to_user(buffer, link, len))
3234 		len = -EFAULT;
3235 out:
3236 	return len;
3237 }
3238 
3239 /*
3240  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
3241  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
3242  * using) it for any given inode is up to filesystem.
3243  */
3244 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3245 {
3246 	struct nameidata nd;
3247 	void *cookie;
3248 	int res;
3249 
3250 	nd.depth = 0;
3251 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3252 	if (IS_ERR(cookie))
3253 		return PTR_ERR(cookie);
3254 
3255 	res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3256 	if (dentry->d_inode->i_op->put_link)
3257 		dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3258 	return res;
3259 }
3260 
3261 int vfs_follow_link(struct nameidata *nd, const char *link)
3262 {
3263 	return __vfs_follow_link(nd, link);
3264 }
3265 
3266 /* get the link contents into pagecache */
3267 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3268 {
3269 	char *kaddr;
3270 	struct page *page;
3271 	struct address_space *mapping = dentry->d_inode->i_mapping;
3272 	page = read_mapping_page(mapping, 0, NULL);
3273 	if (IS_ERR(page))
3274 		return (char*)page;
3275 	*ppage = page;
3276 	kaddr = kmap(page);
3277 	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3278 	return kaddr;
3279 }
3280 
3281 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3282 {
3283 	struct page *page = NULL;
3284 	char *s = page_getlink(dentry, &page);
3285 	int res = vfs_readlink(dentry,buffer,buflen,s);
3286 	if (page) {
3287 		kunmap(page);
3288 		page_cache_release(page);
3289 	}
3290 	return res;
3291 }
3292 
3293 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3294 {
3295 	struct page *page = NULL;
3296 	nd_set_link(nd, page_getlink(dentry, &page));
3297 	return page;
3298 }
3299 
3300 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3301 {
3302 	struct page *page = cookie;
3303 
3304 	if (page) {
3305 		kunmap(page);
3306 		page_cache_release(page);
3307 	}
3308 }
3309 
3310 /*
3311  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3312  */
3313 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3314 {
3315 	struct address_space *mapping = inode->i_mapping;
3316 	struct page *page;
3317 	void *fsdata;
3318 	int err;
3319 	char *kaddr;
3320 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3321 	if (nofs)
3322 		flags |= AOP_FLAG_NOFS;
3323 
3324 retry:
3325 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
3326 				flags, &page, &fsdata);
3327 	if (err)
3328 		goto fail;
3329 
3330 	kaddr = kmap_atomic(page, KM_USER0);
3331 	memcpy(kaddr, symname, len-1);
3332 	kunmap_atomic(kaddr, KM_USER0);
3333 
3334 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3335 							page, fsdata);
3336 	if (err < 0)
3337 		goto fail;
3338 	if (err < len-1)
3339 		goto retry;
3340 
3341 	mark_inode_dirty(inode);
3342 	return 0;
3343 fail:
3344 	return err;
3345 }
3346 
3347 int page_symlink(struct inode *inode, const char *symname, int len)
3348 {
3349 	return __page_symlink(inode, symname, len,
3350 			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3351 }
3352 
3353 const struct inode_operations page_symlink_inode_operations = {
3354 	.readlink	= generic_readlink,
3355 	.follow_link	= page_follow_link_light,
3356 	.put_link	= page_put_link,
3357 };
3358 
3359 EXPORT_SYMBOL(user_path_at);
3360 EXPORT_SYMBOL(follow_down_one);
3361 EXPORT_SYMBOL(follow_down);
3362 EXPORT_SYMBOL(follow_up);
3363 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3364 EXPORT_SYMBOL(getname);
3365 EXPORT_SYMBOL(lock_rename);
3366 EXPORT_SYMBOL(lookup_one_len);
3367 EXPORT_SYMBOL(page_follow_link_light);
3368 EXPORT_SYMBOL(page_put_link);
3369 EXPORT_SYMBOL(page_readlink);
3370 EXPORT_SYMBOL(__page_symlink);
3371 EXPORT_SYMBOL(page_symlink);
3372 EXPORT_SYMBOL(page_symlink_inode_operations);
3373 EXPORT_SYMBOL(kern_path);
3374 EXPORT_SYMBOL(vfs_path_lookup);
3375 EXPORT_SYMBOL(inode_permission);
3376 EXPORT_SYMBOL(unlock_rename);
3377 EXPORT_SYMBOL(vfs_create);
3378 EXPORT_SYMBOL(vfs_follow_link);
3379 EXPORT_SYMBOL(vfs_link);
3380 EXPORT_SYMBOL(vfs_mkdir);
3381 EXPORT_SYMBOL(vfs_mknod);
3382 EXPORT_SYMBOL(generic_permission);
3383 EXPORT_SYMBOL(vfs_readlink);
3384 EXPORT_SYMBOL(vfs_rename);
3385 EXPORT_SYMBOL(vfs_rmdir);
3386 EXPORT_SYMBOL(vfs_symlink);
3387 EXPORT_SYMBOL(vfs_unlink);
3388 EXPORT_SYMBOL(dentry_unhash);
3389 EXPORT_SYMBOL(generic_readlink);
3390