1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/fs.h> 21 #include <linux/namei.h> 22 #include <linux/pagemap.h> 23 #include <linux/fsnotify.h> 24 #include <linux/personality.h> 25 #include <linux/security.h> 26 #include <linux/ima.h> 27 #include <linux/syscalls.h> 28 #include <linux/mount.h> 29 #include <linux/audit.h> 30 #include <linux/capability.h> 31 #include <linux/file.h> 32 #include <linux/fcntl.h> 33 #include <linux/device_cgroup.h> 34 #include <linux/fs_struct.h> 35 #include <linux/posix_acl.h> 36 #include <asm/uaccess.h> 37 38 #include "internal.h" 39 40 /* [Feb-1997 T. Schoebel-Theuer] 41 * Fundamental changes in the pathname lookup mechanisms (namei) 42 * were necessary because of omirr. The reason is that omirr needs 43 * to know the _real_ pathname, not the user-supplied one, in case 44 * of symlinks (and also when transname replacements occur). 45 * 46 * The new code replaces the old recursive symlink resolution with 47 * an iterative one (in case of non-nested symlink chains). It does 48 * this with calls to <fs>_follow_link(). 49 * As a side effect, dir_namei(), _namei() and follow_link() are now 50 * replaced with a single function lookup_dentry() that can handle all 51 * the special cases of the former code. 52 * 53 * With the new dcache, the pathname is stored at each inode, at least as 54 * long as the refcount of the inode is positive. As a side effect, the 55 * size of the dcache depends on the inode cache and thus is dynamic. 56 * 57 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 58 * resolution to correspond with current state of the code. 59 * 60 * Note that the symlink resolution is not *completely* iterative. 61 * There is still a significant amount of tail- and mid- recursion in 62 * the algorithm. Also, note that <fs>_readlink() is not used in 63 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 64 * may return different results than <fs>_follow_link(). Many virtual 65 * filesystems (including /proc) exhibit this behavior. 66 */ 67 68 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 69 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 70 * and the name already exists in form of a symlink, try to create the new 71 * name indicated by the symlink. The old code always complained that the 72 * name already exists, due to not following the symlink even if its target 73 * is nonexistent. The new semantics affects also mknod() and link() when 74 * the name is a symlink pointing to a non-existent name. 75 * 76 * I don't know which semantics is the right one, since I have no access 77 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 78 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 79 * "old" one. Personally, I think the new semantics is much more logical. 80 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 81 * file does succeed in both HP-UX and SunOs, but not in Solaris 82 * and in the old Linux semantics. 83 */ 84 85 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 86 * semantics. See the comments in "open_namei" and "do_link" below. 87 * 88 * [10-Sep-98 Alan Modra] Another symlink change. 89 */ 90 91 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 92 * inside the path - always follow. 93 * in the last component in creation/removal/renaming - never follow. 94 * if LOOKUP_FOLLOW passed - follow. 95 * if the pathname has trailing slashes - follow. 96 * otherwise - don't follow. 97 * (applied in that order). 98 * 99 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 100 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 101 * During the 2.4 we need to fix the userland stuff depending on it - 102 * hopefully we will be able to get rid of that wart in 2.5. So far only 103 * XEmacs seems to be relying on it... 104 */ 105 /* 106 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 107 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 108 * any extra contention... 109 */ 110 111 /* In order to reduce some races, while at the same time doing additional 112 * checking and hopefully speeding things up, we copy filenames to the 113 * kernel data space before using them.. 114 * 115 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 116 * PATH_MAX includes the nul terminator --RR. 117 */ 118 static int do_getname(const char __user *filename, char *page) 119 { 120 int retval; 121 unsigned long len = PATH_MAX; 122 123 if (!segment_eq(get_fs(), KERNEL_DS)) { 124 if ((unsigned long) filename >= TASK_SIZE) 125 return -EFAULT; 126 if (TASK_SIZE - (unsigned long) filename < PATH_MAX) 127 len = TASK_SIZE - (unsigned long) filename; 128 } 129 130 retval = strncpy_from_user(page, filename, len); 131 if (retval > 0) { 132 if (retval < len) 133 return 0; 134 return -ENAMETOOLONG; 135 } else if (!retval) 136 retval = -ENOENT; 137 return retval; 138 } 139 140 static char *getname_flags(const char __user * filename, int flags) 141 { 142 char *tmp, *result; 143 144 result = ERR_PTR(-ENOMEM); 145 tmp = __getname(); 146 if (tmp) { 147 int retval = do_getname(filename, tmp); 148 149 result = tmp; 150 if (retval < 0) { 151 if (retval != -ENOENT || !(flags & LOOKUP_EMPTY)) { 152 __putname(tmp); 153 result = ERR_PTR(retval); 154 } 155 } 156 } 157 audit_getname(result); 158 return result; 159 } 160 161 char *getname(const char __user * filename) 162 { 163 return getname_flags(filename, 0); 164 } 165 166 #ifdef CONFIG_AUDITSYSCALL 167 void putname(const char *name) 168 { 169 if (unlikely(!audit_dummy_context())) 170 audit_putname(name); 171 else 172 __putname(name); 173 } 174 EXPORT_SYMBOL(putname); 175 #endif 176 177 static int check_acl(struct inode *inode, int mask) 178 { 179 #ifdef CONFIG_FS_POSIX_ACL 180 struct posix_acl *acl; 181 182 if (mask & MAY_NOT_BLOCK) { 183 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 184 if (!acl) 185 return -EAGAIN; 186 /* no ->get_acl() calls in RCU mode... */ 187 if (acl == ACL_NOT_CACHED) 188 return -ECHILD; 189 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK); 190 } 191 192 acl = get_cached_acl(inode, ACL_TYPE_ACCESS); 193 194 /* 195 * A filesystem can force a ACL callback by just never filling the 196 * ACL cache. But normally you'd fill the cache either at inode 197 * instantiation time, or on the first ->get_acl call. 198 * 199 * If the filesystem doesn't have a get_acl() function at all, we'll 200 * just create the negative cache entry. 201 */ 202 if (acl == ACL_NOT_CACHED) { 203 if (inode->i_op->get_acl) { 204 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS); 205 if (IS_ERR(acl)) 206 return PTR_ERR(acl); 207 } else { 208 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL); 209 return -EAGAIN; 210 } 211 } 212 213 if (acl) { 214 int error = posix_acl_permission(inode, acl, mask); 215 posix_acl_release(acl); 216 return error; 217 } 218 #endif 219 220 return -EAGAIN; 221 } 222 223 /* 224 * This does basic POSIX ACL permission checking 225 */ 226 static int acl_permission_check(struct inode *inode, int mask) 227 { 228 unsigned int mode = inode->i_mode; 229 230 mask &= MAY_READ | MAY_WRITE | MAY_EXEC | MAY_NOT_BLOCK; 231 232 if (current_user_ns() != inode_userns(inode)) 233 goto other_perms; 234 235 if (likely(current_fsuid() == inode->i_uid)) 236 mode >>= 6; 237 else { 238 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 239 int error = check_acl(inode, mask); 240 if (error != -EAGAIN) 241 return error; 242 } 243 244 if (in_group_p(inode->i_gid)) 245 mode >>= 3; 246 } 247 248 other_perms: 249 /* 250 * If the DACs are ok we don't need any capability check. 251 */ 252 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 253 return 0; 254 return -EACCES; 255 } 256 257 /** 258 * generic_permission - check for access rights on a Posix-like filesystem 259 * @inode: inode to check access rights for 260 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 261 * 262 * Used to check for read/write/execute permissions on a file. 263 * We use "fsuid" for this, letting us set arbitrary permissions 264 * for filesystem access without changing the "normal" uids which 265 * are used for other things. 266 * 267 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 268 * request cannot be satisfied (eg. requires blocking or too much complexity). 269 * It would then be called again in ref-walk mode. 270 */ 271 int generic_permission(struct inode *inode, int mask) 272 { 273 int ret; 274 275 /* 276 * Do the basic POSIX ACL permission checks. 277 */ 278 ret = acl_permission_check(inode, mask); 279 if (ret != -EACCES) 280 return ret; 281 282 if (S_ISDIR(inode->i_mode)) { 283 /* DACs are overridable for directories */ 284 if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE)) 285 return 0; 286 if (!(mask & MAY_WRITE)) 287 if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH)) 288 return 0; 289 return -EACCES; 290 } 291 /* 292 * Read/write DACs are always overridable. 293 * Executable DACs are overridable when there is 294 * at least one exec bit set. 295 */ 296 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 297 if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE)) 298 return 0; 299 300 /* 301 * Searching includes executable on directories, else just read. 302 */ 303 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 304 if (mask == MAY_READ) 305 if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH)) 306 return 0; 307 308 return -EACCES; 309 } 310 311 /* 312 * We _really_ want to just do "generic_permission()" without 313 * even looking at the inode->i_op values. So we keep a cache 314 * flag in inode->i_opflags, that says "this has not special 315 * permission function, use the fast case". 316 */ 317 static inline int do_inode_permission(struct inode *inode, int mask) 318 { 319 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 320 if (likely(inode->i_op->permission)) 321 return inode->i_op->permission(inode, mask); 322 323 /* This gets set once for the inode lifetime */ 324 spin_lock(&inode->i_lock); 325 inode->i_opflags |= IOP_FASTPERM; 326 spin_unlock(&inode->i_lock); 327 } 328 return generic_permission(inode, mask); 329 } 330 331 /** 332 * inode_permission - check for access rights to a given inode 333 * @inode: inode to check permission on 334 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 335 * 336 * Used to check for read/write/execute permissions on an inode. 337 * We use "fsuid" for this, letting us set arbitrary permissions 338 * for filesystem access without changing the "normal" uids which 339 * are used for other things. 340 */ 341 int inode_permission(struct inode *inode, int mask) 342 { 343 int retval; 344 345 if (unlikely(mask & MAY_WRITE)) { 346 umode_t mode = inode->i_mode; 347 348 /* 349 * Nobody gets write access to a read-only fs. 350 */ 351 if (IS_RDONLY(inode) && 352 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 353 return -EROFS; 354 355 /* 356 * Nobody gets write access to an immutable file. 357 */ 358 if (IS_IMMUTABLE(inode)) 359 return -EACCES; 360 } 361 362 retval = do_inode_permission(inode, mask); 363 if (retval) 364 return retval; 365 366 retval = devcgroup_inode_permission(inode, mask); 367 if (retval) 368 return retval; 369 370 return security_inode_permission(inode, mask); 371 } 372 373 /** 374 * path_get - get a reference to a path 375 * @path: path to get the reference to 376 * 377 * Given a path increment the reference count to the dentry and the vfsmount. 378 */ 379 void path_get(struct path *path) 380 { 381 mntget(path->mnt); 382 dget(path->dentry); 383 } 384 EXPORT_SYMBOL(path_get); 385 386 /** 387 * path_put - put a reference to a path 388 * @path: path to put the reference to 389 * 390 * Given a path decrement the reference count to the dentry and the vfsmount. 391 */ 392 void path_put(struct path *path) 393 { 394 dput(path->dentry); 395 mntput(path->mnt); 396 } 397 EXPORT_SYMBOL(path_put); 398 399 /* 400 * Path walking has 2 modes, rcu-walk and ref-walk (see 401 * Documentation/filesystems/path-lookup.txt). In situations when we can't 402 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 403 * normal reference counts on dentries and vfsmounts to transition to rcu-walk 404 * mode. Refcounts are grabbed at the last known good point before rcu-walk 405 * got stuck, so ref-walk may continue from there. If this is not successful 406 * (eg. a seqcount has changed), then failure is returned and it's up to caller 407 * to restart the path walk from the beginning in ref-walk mode. 408 */ 409 410 /** 411 * unlazy_walk - try to switch to ref-walk mode. 412 * @nd: nameidata pathwalk data 413 * @dentry: child of nd->path.dentry or NULL 414 * Returns: 0 on success, -ECHILD on failure 415 * 416 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry 417 * for ref-walk mode. @dentry must be a path found by a do_lookup call on 418 * @nd or NULL. Must be called from rcu-walk context. 419 */ 420 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry) 421 { 422 struct fs_struct *fs = current->fs; 423 struct dentry *parent = nd->path.dentry; 424 int want_root = 0; 425 426 BUG_ON(!(nd->flags & LOOKUP_RCU)); 427 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 428 want_root = 1; 429 spin_lock(&fs->lock); 430 if (nd->root.mnt != fs->root.mnt || 431 nd->root.dentry != fs->root.dentry) 432 goto err_root; 433 } 434 spin_lock(&parent->d_lock); 435 if (!dentry) { 436 if (!__d_rcu_to_refcount(parent, nd->seq)) 437 goto err_parent; 438 BUG_ON(nd->inode != parent->d_inode); 439 } else { 440 if (dentry->d_parent != parent) 441 goto err_parent; 442 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 443 if (!__d_rcu_to_refcount(dentry, nd->seq)) 444 goto err_child; 445 /* 446 * If the sequence check on the child dentry passed, then 447 * the child has not been removed from its parent. This 448 * means the parent dentry must be valid and able to take 449 * a reference at this point. 450 */ 451 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent); 452 BUG_ON(!parent->d_count); 453 parent->d_count++; 454 spin_unlock(&dentry->d_lock); 455 } 456 spin_unlock(&parent->d_lock); 457 if (want_root) { 458 path_get(&nd->root); 459 spin_unlock(&fs->lock); 460 } 461 mntget(nd->path.mnt); 462 463 rcu_read_unlock(); 464 br_read_unlock(vfsmount_lock); 465 nd->flags &= ~LOOKUP_RCU; 466 return 0; 467 468 err_child: 469 spin_unlock(&dentry->d_lock); 470 err_parent: 471 spin_unlock(&parent->d_lock); 472 err_root: 473 if (want_root) 474 spin_unlock(&fs->lock); 475 return -ECHILD; 476 } 477 478 /** 479 * release_open_intent - free up open intent resources 480 * @nd: pointer to nameidata 481 */ 482 void release_open_intent(struct nameidata *nd) 483 { 484 struct file *file = nd->intent.open.file; 485 486 if (file && !IS_ERR(file)) { 487 if (file->f_path.dentry == NULL) 488 put_filp(file); 489 else 490 fput(file); 491 } 492 } 493 494 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd) 495 { 496 return dentry->d_op->d_revalidate(dentry, nd); 497 } 498 499 /** 500 * complete_walk - successful completion of path walk 501 * @nd: pointer nameidata 502 * 503 * If we had been in RCU mode, drop out of it and legitimize nd->path. 504 * Revalidate the final result, unless we'd already done that during 505 * the path walk or the filesystem doesn't ask for it. Return 0 on 506 * success, -error on failure. In case of failure caller does not 507 * need to drop nd->path. 508 */ 509 static int complete_walk(struct nameidata *nd) 510 { 511 struct dentry *dentry = nd->path.dentry; 512 int status; 513 514 if (nd->flags & LOOKUP_RCU) { 515 nd->flags &= ~LOOKUP_RCU; 516 if (!(nd->flags & LOOKUP_ROOT)) 517 nd->root.mnt = NULL; 518 spin_lock(&dentry->d_lock); 519 if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) { 520 spin_unlock(&dentry->d_lock); 521 rcu_read_unlock(); 522 br_read_unlock(vfsmount_lock); 523 return -ECHILD; 524 } 525 BUG_ON(nd->inode != dentry->d_inode); 526 spin_unlock(&dentry->d_lock); 527 mntget(nd->path.mnt); 528 rcu_read_unlock(); 529 br_read_unlock(vfsmount_lock); 530 } 531 532 if (likely(!(nd->flags & LOOKUP_JUMPED))) 533 return 0; 534 535 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE))) 536 return 0; 537 538 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT))) 539 return 0; 540 541 /* Note: we do not d_invalidate() */ 542 status = d_revalidate(dentry, nd); 543 if (status > 0) 544 return 0; 545 546 if (!status) 547 status = -ESTALE; 548 549 path_put(&nd->path); 550 return status; 551 } 552 553 static __always_inline void set_root(struct nameidata *nd) 554 { 555 if (!nd->root.mnt) 556 get_fs_root(current->fs, &nd->root); 557 } 558 559 static int link_path_walk(const char *, struct nameidata *); 560 561 static __always_inline void set_root_rcu(struct nameidata *nd) 562 { 563 if (!nd->root.mnt) { 564 struct fs_struct *fs = current->fs; 565 unsigned seq; 566 567 do { 568 seq = read_seqcount_begin(&fs->seq); 569 nd->root = fs->root; 570 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 571 } while (read_seqcount_retry(&fs->seq, seq)); 572 } 573 } 574 575 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link) 576 { 577 int ret; 578 579 if (IS_ERR(link)) 580 goto fail; 581 582 if (*link == '/') { 583 set_root(nd); 584 path_put(&nd->path); 585 nd->path = nd->root; 586 path_get(&nd->root); 587 nd->flags |= LOOKUP_JUMPED; 588 } 589 nd->inode = nd->path.dentry->d_inode; 590 591 ret = link_path_walk(link, nd); 592 return ret; 593 fail: 594 path_put(&nd->path); 595 return PTR_ERR(link); 596 } 597 598 static void path_put_conditional(struct path *path, struct nameidata *nd) 599 { 600 dput(path->dentry); 601 if (path->mnt != nd->path.mnt) 602 mntput(path->mnt); 603 } 604 605 static inline void path_to_nameidata(const struct path *path, 606 struct nameidata *nd) 607 { 608 if (!(nd->flags & LOOKUP_RCU)) { 609 dput(nd->path.dentry); 610 if (nd->path.mnt != path->mnt) 611 mntput(nd->path.mnt); 612 } 613 nd->path.mnt = path->mnt; 614 nd->path.dentry = path->dentry; 615 } 616 617 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie) 618 { 619 struct inode *inode = link->dentry->d_inode; 620 if (!IS_ERR(cookie) && inode->i_op->put_link) 621 inode->i_op->put_link(link->dentry, nd, cookie); 622 path_put(link); 623 } 624 625 static __always_inline int 626 follow_link(struct path *link, struct nameidata *nd, void **p) 627 { 628 int error; 629 struct dentry *dentry = link->dentry; 630 631 BUG_ON(nd->flags & LOOKUP_RCU); 632 633 if (link->mnt == nd->path.mnt) 634 mntget(link->mnt); 635 636 if (unlikely(current->total_link_count >= 40)) { 637 *p = ERR_PTR(-ELOOP); /* no ->put_link(), please */ 638 path_put(&nd->path); 639 return -ELOOP; 640 } 641 cond_resched(); 642 current->total_link_count++; 643 644 touch_atime(link->mnt, dentry); 645 nd_set_link(nd, NULL); 646 647 error = security_inode_follow_link(link->dentry, nd); 648 if (error) { 649 *p = ERR_PTR(error); /* no ->put_link(), please */ 650 path_put(&nd->path); 651 return error; 652 } 653 654 nd->last_type = LAST_BIND; 655 *p = dentry->d_inode->i_op->follow_link(dentry, nd); 656 error = PTR_ERR(*p); 657 if (!IS_ERR(*p)) { 658 char *s = nd_get_link(nd); 659 error = 0; 660 if (s) 661 error = __vfs_follow_link(nd, s); 662 else if (nd->last_type == LAST_BIND) { 663 nd->flags |= LOOKUP_JUMPED; 664 nd->inode = nd->path.dentry->d_inode; 665 if (nd->inode->i_op->follow_link) { 666 /* stepped on a _really_ weird one */ 667 path_put(&nd->path); 668 error = -ELOOP; 669 } 670 } 671 } 672 return error; 673 } 674 675 static int follow_up_rcu(struct path *path) 676 { 677 struct vfsmount *parent; 678 struct dentry *mountpoint; 679 680 parent = path->mnt->mnt_parent; 681 if (parent == path->mnt) 682 return 0; 683 mountpoint = path->mnt->mnt_mountpoint; 684 path->dentry = mountpoint; 685 path->mnt = parent; 686 return 1; 687 } 688 689 int follow_up(struct path *path) 690 { 691 struct vfsmount *parent; 692 struct dentry *mountpoint; 693 694 br_read_lock(vfsmount_lock); 695 parent = path->mnt->mnt_parent; 696 if (parent == path->mnt) { 697 br_read_unlock(vfsmount_lock); 698 return 0; 699 } 700 mntget(parent); 701 mountpoint = dget(path->mnt->mnt_mountpoint); 702 br_read_unlock(vfsmount_lock); 703 dput(path->dentry); 704 path->dentry = mountpoint; 705 mntput(path->mnt); 706 path->mnt = parent; 707 return 1; 708 } 709 710 /* 711 * Perform an automount 712 * - return -EISDIR to tell follow_managed() to stop and return the path we 713 * were called with. 714 */ 715 static int follow_automount(struct path *path, unsigned flags, 716 bool *need_mntput) 717 { 718 struct vfsmount *mnt; 719 int err; 720 721 if (!path->dentry->d_op || !path->dentry->d_op->d_automount) 722 return -EREMOTE; 723 724 /* We don't want to mount if someone's just doing a stat - 725 * unless they're stat'ing a directory and appended a '/' to 726 * the name. 727 * 728 * We do, however, want to mount if someone wants to open or 729 * create a file of any type under the mountpoint, wants to 730 * traverse through the mountpoint or wants to open the 731 * mounted directory. Also, autofs may mark negative dentries 732 * as being automount points. These will need the attentions 733 * of the daemon to instantiate them before they can be used. 734 */ 735 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 736 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 737 path->dentry->d_inode) 738 return -EISDIR; 739 740 current->total_link_count++; 741 if (current->total_link_count >= 40) 742 return -ELOOP; 743 744 mnt = path->dentry->d_op->d_automount(path); 745 if (IS_ERR(mnt)) { 746 /* 747 * The filesystem is allowed to return -EISDIR here to indicate 748 * it doesn't want to automount. For instance, autofs would do 749 * this so that its userspace daemon can mount on this dentry. 750 * 751 * However, we can only permit this if it's a terminal point in 752 * the path being looked up; if it wasn't then the remainder of 753 * the path is inaccessible and we should say so. 754 */ 755 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT)) 756 return -EREMOTE; 757 return PTR_ERR(mnt); 758 } 759 760 if (!mnt) /* mount collision */ 761 return 0; 762 763 if (!*need_mntput) { 764 /* lock_mount() may release path->mnt on error */ 765 mntget(path->mnt); 766 *need_mntput = true; 767 } 768 err = finish_automount(mnt, path); 769 770 switch (err) { 771 case -EBUSY: 772 /* Someone else made a mount here whilst we were busy */ 773 return 0; 774 case 0: 775 path_put(path); 776 path->mnt = mnt; 777 path->dentry = dget(mnt->mnt_root); 778 return 0; 779 default: 780 return err; 781 } 782 783 } 784 785 /* 786 * Handle a dentry that is managed in some way. 787 * - Flagged for transit management (autofs) 788 * - Flagged as mountpoint 789 * - Flagged as automount point 790 * 791 * This may only be called in refwalk mode. 792 * 793 * Serialization is taken care of in namespace.c 794 */ 795 static int follow_managed(struct path *path, unsigned flags) 796 { 797 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */ 798 unsigned managed; 799 bool need_mntput = false; 800 int ret = 0; 801 802 /* Given that we're not holding a lock here, we retain the value in a 803 * local variable for each dentry as we look at it so that we don't see 804 * the components of that value change under us */ 805 while (managed = ACCESS_ONCE(path->dentry->d_flags), 806 managed &= DCACHE_MANAGED_DENTRY, 807 unlikely(managed != 0)) { 808 /* Allow the filesystem to manage the transit without i_mutex 809 * being held. */ 810 if (managed & DCACHE_MANAGE_TRANSIT) { 811 BUG_ON(!path->dentry->d_op); 812 BUG_ON(!path->dentry->d_op->d_manage); 813 ret = path->dentry->d_op->d_manage(path->dentry, false); 814 if (ret < 0) 815 break; 816 } 817 818 /* Transit to a mounted filesystem. */ 819 if (managed & DCACHE_MOUNTED) { 820 struct vfsmount *mounted = lookup_mnt(path); 821 if (mounted) { 822 dput(path->dentry); 823 if (need_mntput) 824 mntput(path->mnt); 825 path->mnt = mounted; 826 path->dentry = dget(mounted->mnt_root); 827 need_mntput = true; 828 continue; 829 } 830 831 /* Something is mounted on this dentry in another 832 * namespace and/or whatever was mounted there in this 833 * namespace got unmounted before we managed to get the 834 * vfsmount_lock */ 835 } 836 837 /* Handle an automount point */ 838 if (managed & DCACHE_NEED_AUTOMOUNT) { 839 ret = follow_automount(path, flags, &need_mntput); 840 if (ret < 0) 841 break; 842 continue; 843 } 844 845 /* We didn't change the current path point */ 846 break; 847 } 848 849 if (need_mntput && path->mnt == mnt) 850 mntput(path->mnt); 851 if (ret == -EISDIR) 852 ret = 0; 853 return ret; 854 } 855 856 int follow_down_one(struct path *path) 857 { 858 struct vfsmount *mounted; 859 860 mounted = lookup_mnt(path); 861 if (mounted) { 862 dput(path->dentry); 863 mntput(path->mnt); 864 path->mnt = mounted; 865 path->dentry = dget(mounted->mnt_root); 866 return 1; 867 } 868 return 0; 869 } 870 871 static inline bool managed_dentry_might_block(struct dentry *dentry) 872 { 873 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT && 874 dentry->d_op->d_manage(dentry, true) < 0); 875 } 876 877 /* 878 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 879 * we meet a managed dentry that would need blocking. 880 */ 881 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 882 struct inode **inode) 883 { 884 for (;;) { 885 struct vfsmount *mounted; 886 /* 887 * Don't forget we might have a non-mountpoint managed dentry 888 * that wants to block transit. 889 */ 890 if (unlikely(managed_dentry_might_block(path->dentry))) 891 return false; 892 893 if (!d_mountpoint(path->dentry)) 894 break; 895 896 mounted = __lookup_mnt(path->mnt, path->dentry, 1); 897 if (!mounted) 898 break; 899 path->mnt = mounted; 900 path->dentry = mounted->mnt_root; 901 nd->seq = read_seqcount_begin(&path->dentry->d_seq); 902 /* 903 * Update the inode too. We don't need to re-check the 904 * dentry sequence number here after this d_inode read, 905 * because a mount-point is always pinned. 906 */ 907 *inode = path->dentry->d_inode; 908 } 909 return true; 910 } 911 912 static void follow_mount_rcu(struct nameidata *nd) 913 { 914 while (d_mountpoint(nd->path.dentry)) { 915 struct vfsmount *mounted; 916 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1); 917 if (!mounted) 918 break; 919 nd->path.mnt = mounted; 920 nd->path.dentry = mounted->mnt_root; 921 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 922 } 923 } 924 925 static int follow_dotdot_rcu(struct nameidata *nd) 926 { 927 set_root_rcu(nd); 928 929 while (1) { 930 if (nd->path.dentry == nd->root.dentry && 931 nd->path.mnt == nd->root.mnt) { 932 break; 933 } 934 if (nd->path.dentry != nd->path.mnt->mnt_root) { 935 struct dentry *old = nd->path.dentry; 936 struct dentry *parent = old->d_parent; 937 unsigned seq; 938 939 seq = read_seqcount_begin(&parent->d_seq); 940 if (read_seqcount_retry(&old->d_seq, nd->seq)) 941 goto failed; 942 nd->path.dentry = parent; 943 nd->seq = seq; 944 break; 945 } 946 if (!follow_up_rcu(&nd->path)) 947 break; 948 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 949 } 950 follow_mount_rcu(nd); 951 nd->inode = nd->path.dentry->d_inode; 952 return 0; 953 954 failed: 955 nd->flags &= ~LOOKUP_RCU; 956 if (!(nd->flags & LOOKUP_ROOT)) 957 nd->root.mnt = NULL; 958 rcu_read_unlock(); 959 br_read_unlock(vfsmount_lock); 960 return -ECHILD; 961 } 962 963 /* 964 * Follow down to the covering mount currently visible to userspace. At each 965 * point, the filesystem owning that dentry may be queried as to whether the 966 * caller is permitted to proceed or not. 967 */ 968 int follow_down(struct path *path) 969 { 970 unsigned managed; 971 int ret; 972 973 while (managed = ACCESS_ONCE(path->dentry->d_flags), 974 unlikely(managed & DCACHE_MANAGED_DENTRY)) { 975 /* Allow the filesystem to manage the transit without i_mutex 976 * being held. 977 * 978 * We indicate to the filesystem if someone is trying to mount 979 * something here. This gives autofs the chance to deny anyone 980 * other than its daemon the right to mount on its 981 * superstructure. 982 * 983 * The filesystem may sleep at this point. 984 */ 985 if (managed & DCACHE_MANAGE_TRANSIT) { 986 BUG_ON(!path->dentry->d_op); 987 BUG_ON(!path->dentry->d_op->d_manage); 988 ret = path->dentry->d_op->d_manage( 989 path->dentry, false); 990 if (ret < 0) 991 return ret == -EISDIR ? 0 : ret; 992 } 993 994 /* Transit to a mounted filesystem. */ 995 if (managed & DCACHE_MOUNTED) { 996 struct vfsmount *mounted = lookup_mnt(path); 997 if (!mounted) 998 break; 999 dput(path->dentry); 1000 mntput(path->mnt); 1001 path->mnt = mounted; 1002 path->dentry = dget(mounted->mnt_root); 1003 continue; 1004 } 1005 1006 /* Don't handle automount points here */ 1007 break; 1008 } 1009 return 0; 1010 } 1011 1012 /* 1013 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() 1014 */ 1015 static void follow_mount(struct path *path) 1016 { 1017 while (d_mountpoint(path->dentry)) { 1018 struct vfsmount *mounted = lookup_mnt(path); 1019 if (!mounted) 1020 break; 1021 dput(path->dentry); 1022 mntput(path->mnt); 1023 path->mnt = mounted; 1024 path->dentry = dget(mounted->mnt_root); 1025 } 1026 } 1027 1028 static void follow_dotdot(struct nameidata *nd) 1029 { 1030 set_root(nd); 1031 1032 while(1) { 1033 struct dentry *old = nd->path.dentry; 1034 1035 if (nd->path.dentry == nd->root.dentry && 1036 nd->path.mnt == nd->root.mnt) { 1037 break; 1038 } 1039 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1040 /* rare case of legitimate dget_parent()... */ 1041 nd->path.dentry = dget_parent(nd->path.dentry); 1042 dput(old); 1043 break; 1044 } 1045 if (!follow_up(&nd->path)) 1046 break; 1047 } 1048 follow_mount(&nd->path); 1049 nd->inode = nd->path.dentry->d_inode; 1050 } 1051 1052 /* 1053 * Allocate a dentry with name and parent, and perform a parent 1054 * directory ->lookup on it. Returns the new dentry, or ERR_PTR 1055 * on error. parent->d_inode->i_mutex must be held. d_lookup must 1056 * have verified that no child exists while under i_mutex. 1057 */ 1058 static struct dentry *d_alloc_and_lookup(struct dentry *parent, 1059 struct qstr *name, struct nameidata *nd) 1060 { 1061 struct inode *inode = parent->d_inode; 1062 struct dentry *dentry; 1063 struct dentry *old; 1064 1065 /* Don't create child dentry for a dead directory. */ 1066 if (unlikely(IS_DEADDIR(inode))) 1067 return ERR_PTR(-ENOENT); 1068 1069 dentry = d_alloc(parent, name); 1070 if (unlikely(!dentry)) 1071 return ERR_PTR(-ENOMEM); 1072 1073 old = inode->i_op->lookup(inode, dentry, nd); 1074 if (unlikely(old)) { 1075 dput(dentry); 1076 dentry = old; 1077 } 1078 return dentry; 1079 } 1080 1081 /* 1082 * We already have a dentry, but require a lookup to be performed on the parent 1083 * directory to fill in d_inode. Returns the new dentry, or ERR_PTR on error. 1084 * parent->d_inode->i_mutex must be held. d_lookup must have verified that no 1085 * child exists while under i_mutex. 1086 */ 1087 static struct dentry *d_inode_lookup(struct dentry *parent, struct dentry *dentry, 1088 struct nameidata *nd) 1089 { 1090 struct inode *inode = parent->d_inode; 1091 struct dentry *old; 1092 1093 /* Don't create child dentry for a dead directory. */ 1094 if (unlikely(IS_DEADDIR(inode))) 1095 return ERR_PTR(-ENOENT); 1096 1097 old = inode->i_op->lookup(inode, dentry, nd); 1098 if (unlikely(old)) { 1099 dput(dentry); 1100 dentry = old; 1101 } 1102 return dentry; 1103 } 1104 1105 /* 1106 * It's more convoluted than I'd like it to be, but... it's still fairly 1107 * small and for now I'd prefer to have fast path as straight as possible. 1108 * It _is_ time-critical. 1109 */ 1110 static int do_lookup(struct nameidata *nd, struct qstr *name, 1111 struct path *path, struct inode **inode) 1112 { 1113 struct vfsmount *mnt = nd->path.mnt; 1114 struct dentry *dentry, *parent = nd->path.dentry; 1115 int need_reval = 1; 1116 int status = 1; 1117 int err; 1118 1119 /* 1120 * Rename seqlock is not required here because in the off chance 1121 * of a false negative due to a concurrent rename, we're going to 1122 * do the non-racy lookup, below. 1123 */ 1124 if (nd->flags & LOOKUP_RCU) { 1125 unsigned seq; 1126 *inode = nd->inode; 1127 dentry = __d_lookup_rcu(parent, name, &seq, inode); 1128 if (!dentry) 1129 goto unlazy; 1130 1131 /* Memory barrier in read_seqcount_begin of child is enough */ 1132 if (__read_seqcount_retry(&parent->d_seq, nd->seq)) 1133 return -ECHILD; 1134 nd->seq = seq; 1135 1136 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) { 1137 status = d_revalidate(dentry, nd); 1138 if (unlikely(status <= 0)) { 1139 if (status != -ECHILD) 1140 need_reval = 0; 1141 goto unlazy; 1142 } 1143 } 1144 if (unlikely(d_need_lookup(dentry))) 1145 goto unlazy; 1146 path->mnt = mnt; 1147 path->dentry = dentry; 1148 if (unlikely(!__follow_mount_rcu(nd, path, inode))) 1149 goto unlazy; 1150 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT)) 1151 goto unlazy; 1152 return 0; 1153 unlazy: 1154 if (unlazy_walk(nd, dentry)) 1155 return -ECHILD; 1156 } else { 1157 dentry = __d_lookup(parent, name); 1158 } 1159 1160 if (dentry && unlikely(d_need_lookup(dentry))) { 1161 dput(dentry); 1162 dentry = NULL; 1163 } 1164 retry: 1165 if (unlikely(!dentry)) { 1166 struct inode *dir = parent->d_inode; 1167 BUG_ON(nd->inode != dir); 1168 1169 mutex_lock(&dir->i_mutex); 1170 dentry = d_lookup(parent, name); 1171 if (likely(!dentry)) { 1172 dentry = d_alloc_and_lookup(parent, name, nd); 1173 if (IS_ERR(dentry)) { 1174 mutex_unlock(&dir->i_mutex); 1175 return PTR_ERR(dentry); 1176 } 1177 /* known good */ 1178 need_reval = 0; 1179 status = 1; 1180 } else if (unlikely(d_need_lookup(dentry))) { 1181 dentry = d_inode_lookup(parent, dentry, nd); 1182 if (IS_ERR(dentry)) { 1183 mutex_unlock(&dir->i_mutex); 1184 return PTR_ERR(dentry); 1185 } 1186 /* known good */ 1187 need_reval = 0; 1188 status = 1; 1189 } 1190 mutex_unlock(&dir->i_mutex); 1191 } 1192 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval) 1193 status = d_revalidate(dentry, nd); 1194 if (unlikely(status <= 0)) { 1195 if (status < 0) { 1196 dput(dentry); 1197 return status; 1198 } 1199 if (!d_invalidate(dentry)) { 1200 dput(dentry); 1201 dentry = NULL; 1202 need_reval = 1; 1203 goto retry; 1204 } 1205 } 1206 1207 path->mnt = mnt; 1208 path->dentry = dentry; 1209 err = follow_managed(path, nd->flags); 1210 if (unlikely(err < 0)) { 1211 path_put_conditional(path, nd); 1212 return err; 1213 } 1214 *inode = path->dentry->d_inode; 1215 return 0; 1216 } 1217 1218 static inline int may_lookup(struct nameidata *nd) 1219 { 1220 if (nd->flags & LOOKUP_RCU) { 1221 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1222 if (err != -ECHILD) 1223 return err; 1224 if (unlazy_walk(nd, NULL)) 1225 return -ECHILD; 1226 } 1227 return inode_permission(nd->inode, MAY_EXEC); 1228 } 1229 1230 static inline int handle_dots(struct nameidata *nd, int type) 1231 { 1232 if (type == LAST_DOTDOT) { 1233 if (nd->flags & LOOKUP_RCU) { 1234 if (follow_dotdot_rcu(nd)) 1235 return -ECHILD; 1236 } else 1237 follow_dotdot(nd); 1238 } 1239 return 0; 1240 } 1241 1242 static void terminate_walk(struct nameidata *nd) 1243 { 1244 if (!(nd->flags & LOOKUP_RCU)) { 1245 path_put(&nd->path); 1246 } else { 1247 nd->flags &= ~LOOKUP_RCU; 1248 if (!(nd->flags & LOOKUP_ROOT)) 1249 nd->root.mnt = NULL; 1250 rcu_read_unlock(); 1251 br_read_unlock(vfsmount_lock); 1252 } 1253 } 1254 1255 /* 1256 * Do we need to follow links? We _really_ want to be able 1257 * to do this check without having to look at inode->i_op, 1258 * so we keep a cache of "no, this doesn't need follow_link" 1259 * for the common case. 1260 */ 1261 static inline int should_follow_link(struct inode *inode, int follow) 1262 { 1263 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1264 if (likely(inode->i_op->follow_link)) 1265 return follow; 1266 1267 /* This gets set once for the inode lifetime */ 1268 spin_lock(&inode->i_lock); 1269 inode->i_opflags |= IOP_NOFOLLOW; 1270 spin_unlock(&inode->i_lock); 1271 } 1272 return 0; 1273 } 1274 1275 static inline int walk_component(struct nameidata *nd, struct path *path, 1276 struct qstr *name, int type, int follow) 1277 { 1278 struct inode *inode; 1279 int err; 1280 /* 1281 * "." and ".." are special - ".." especially so because it has 1282 * to be able to know about the current root directory and 1283 * parent relationships. 1284 */ 1285 if (unlikely(type != LAST_NORM)) 1286 return handle_dots(nd, type); 1287 err = do_lookup(nd, name, path, &inode); 1288 if (unlikely(err)) { 1289 terminate_walk(nd); 1290 return err; 1291 } 1292 if (!inode) { 1293 path_to_nameidata(path, nd); 1294 terminate_walk(nd); 1295 return -ENOENT; 1296 } 1297 if (should_follow_link(inode, follow)) { 1298 if (nd->flags & LOOKUP_RCU) { 1299 if (unlikely(unlazy_walk(nd, path->dentry))) { 1300 terminate_walk(nd); 1301 return -ECHILD; 1302 } 1303 } 1304 BUG_ON(inode != path->dentry->d_inode); 1305 return 1; 1306 } 1307 path_to_nameidata(path, nd); 1308 nd->inode = inode; 1309 return 0; 1310 } 1311 1312 /* 1313 * This limits recursive symlink follows to 8, while 1314 * limiting consecutive symlinks to 40. 1315 * 1316 * Without that kind of total limit, nasty chains of consecutive 1317 * symlinks can cause almost arbitrarily long lookups. 1318 */ 1319 static inline int nested_symlink(struct path *path, struct nameidata *nd) 1320 { 1321 int res; 1322 1323 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) { 1324 path_put_conditional(path, nd); 1325 path_put(&nd->path); 1326 return -ELOOP; 1327 } 1328 BUG_ON(nd->depth >= MAX_NESTED_LINKS); 1329 1330 nd->depth++; 1331 current->link_count++; 1332 1333 do { 1334 struct path link = *path; 1335 void *cookie; 1336 1337 res = follow_link(&link, nd, &cookie); 1338 if (!res) 1339 res = walk_component(nd, path, &nd->last, 1340 nd->last_type, LOOKUP_FOLLOW); 1341 put_link(nd, &link, cookie); 1342 } while (res > 0); 1343 1344 current->link_count--; 1345 nd->depth--; 1346 return res; 1347 } 1348 1349 /* 1350 * We really don't want to look at inode->i_op->lookup 1351 * when we don't have to. So we keep a cache bit in 1352 * the inode ->i_opflags field that says "yes, we can 1353 * do lookup on this inode". 1354 */ 1355 static inline int can_lookup(struct inode *inode) 1356 { 1357 if (likely(inode->i_opflags & IOP_LOOKUP)) 1358 return 1; 1359 if (likely(!inode->i_op->lookup)) 1360 return 0; 1361 1362 /* We do this once for the lifetime of the inode */ 1363 spin_lock(&inode->i_lock); 1364 inode->i_opflags |= IOP_LOOKUP; 1365 spin_unlock(&inode->i_lock); 1366 return 1; 1367 } 1368 1369 /* 1370 * Name resolution. 1371 * This is the basic name resolution function, turning a pathname into 1372 * the final dentry. We expect 'base' to be positive and a directory. 1373 * 1374 * Returns 0 and nd will have valid dentry and mnt on success. 1375 * Returns error and drops reference to input namei data on failure. 1376 */ 1377 static int link_path_walk(const char *name, struct nameidata *nd) 1378 { 1379 struct path next; 1380 int err; 1381 1382 while (*name=='/') 1383 name++; 1384 if (!*name) 1385 return 0; 1386 1387 /* At this point we know we have a real path component. */ 1388 for(;;) { 1389 unsigned long hash; 1390 struct qstr this; 1391 unsigned int c; 1392 int type; 1393 1394 err = may_lookup(nd); 1395 if (err) 1396 break; 1397 1398 this.name = name; 1399 c = *(const unsigned char *)name; 1400 1401 hash = init_name_hash(); 1402 do { 1403 name++; 1404 hash = partial_name_hash(c, hash); 1405 c = *(const unsigned char *)name; 1406 } while (c && (c != '/')); 1407 this.len = name - (const char *) this.name; 1408 this.hash = end_name_hash(hash); 1409 1410 type = LAST_NORM; 1411 if (this.name[0] == '.') switch (this.len) { 1412 case 2: 1413 if (this.name[1] == '.') { 1414 type = LAST_DOTDOT; 1415 nd->flags |= LOOKUP_JUMPED; 1416 } 1417 break; 1418 case 1: 1419 type = LAST_DOT; 1420 } 1421 if (likely(type == LAST_NORM)) { 1422 struct dentry *parent = nd->path.dentry; 1423 nd->flags &= ~LOOKUP_JUMPED; 1424 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 1425 err = parent->d_op->d_hash(parent, nd->inode, 1426 &this); 1427 if (err < 0) 1428 break; 1429 } 1430 } 1431 1432 /* remove trailing slashes? */ 1433 if (!c) 1434 goto last_component; 1435 while (*++name == '/'); 1436 if (!*name) 1437 goto last_component; 1438 1439 err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW); 1440 if (err < 0) 1441 return err; 1442 1443 if (err) { 1444 err = nested_symlink(&next, nd); 1445 if (err) 1446 return err; 1447 } 1448 if (can_lookup(nd->inode)) 1449 continue; 1450 err = -ENOTDIR; 1451 break; 1452 /* here ends the main loop */ 1453 1454 last_component: 1455 nd->last = this; 1456 nd->last_type = type; 1457 return 0; 1458 } 1459 terminate_walk(nd); 1460 return err; 1461 } 1462 1463 static int path_init(int dfd, const char *name, unsigned int flags, 1464 struct nameidata *nd, struct file **fp) 1465 { 1466 int retval = 0; 1467 int fput_needed; 1468 struct file *file; 1469 1470 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 1471 nd->flags = flags | LOOKUP_JUMPED; 1472 nd->depth = 0; 1473 if (flags & LOOKUP_ROOT) { 1474 struct inode *inode = nd->root.dentry->d_inode; 1475 if (*name) { 1476 if (!inode->i_op->lookup) 1477 return -ENOTDIR; 1478 retval = inode_permission(inode, MAY_EXEC); 1479 if (retval) 1480 return retval; 1481 } 1482 nd->path = nd->root; 1483 nd->inode = inode; 1484 if (flags & LOOKUP_RCU) { 1485 br_read_lock(vfsmount_lock); 1486 rcu_read_lock(); 1487 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1488 } else { 1489 path_get(&nd->path); 1490 } 1491 return 0; 1492 } 1493 1494 nd->root.mnt = NULL; 1495 1496 if (*name=='/') { 1497 if (flags & LOOKUP_RCU) { 1498 br_read_lock(vfsmount_lock); 1499 rcu_read_lock(); 1500 set_root_rcu(nd); 1501 } else { 1502 set_root(nd); 1503 path_get(&nd->root); 1504 } 1505 nd->path = nd->root; 1506 } else if (dfd == AT_FDCWD) { 1507 if (flags & LOOKUP_RCU) { 1508 struct fs_struct *fs = current->fs; 1509 unsigned seq; 1510 1511 br_read_lock(vfsmount_lock); 1512 rcu_read_lock(); 1513 1514 do { 1515 seq = read_seqcount_begin(&fs->seq); 1516 nd->path = fs->pwd; 1517 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1518 } while (read_seqcount_retry(&fs->seq, seq)); 1519 } else { 1520 get_fs_pwd(current->fs, &nd->path); 1521 } 1522 } else { 1523 struct dentry *dentry; 1524 1525 file = fget_raw_light(dfd, &fput_needed); 1526 retval = -EBADF; 1527 if (!file) 1528 goto out_fail; 1529 1530 dentry = file->f_path.dentry; 1531 1532 if (*name) { 1533 retval = -ENOTDIR; 1534 if (!S_ISDIR(dentry->d_inode->i_mode)) 1535 goto fput_fail; 1536 1537 retval = inode_permission(dentry->d_inode, MAY_EXEC); 1538 if (retval) 1539 goto fput_fail; 1540 } 1541 1542 nd->path = file->f_path; 1543 if (flags & LOOKUP_RCU) { 1544 if (fput_needed) 1545 *fp = file; 1546 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1547 br_read_lock(vfsmount_lock); 1548 rcu_read_lock(); 1549 } else { 1550 path_get(&file->f_path); 1551 fput_light(file, fput_needed); 1552 } 1553 } 1554 1555 nd->inode = nd->path.dentry->d_inode; 1556 return 0; 1557 1558 fput_fail: 1559 fput_light(file, fput_needed); 1560 out_fail: 1561 return retval; 1562 } 1563 1564 static inline int lookup_last(struct nameidata *nd, struct path *path) 1565 { 1566 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 1567 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 1568 1569 nd->flags &= ~LOOKUP_PARENT; 1570 return walk_component(nd, path, &nd->last, nd->last_type, 1571 nd->flags & LOOKUP_FOLLOW); 1572 } 1573 1574 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 1575 static int path_lookupat(int dfd, const char *name, 1576 unsigned int flags, struct nameidata *nd) 1577 { 1578 struct file *base = NULL; 1579 struct path path; 1580 int err; 1581 1582 /* 1583 * Path walking is largely split up into 2 different synchronisation 1584 * schemes, rcu-walk and ref-walk (explained in 1585 * Documentation/filesystems/path-lookup.txt). These share much of the 1586 * path walk code, but some things particularly setup, cleanup, and 1587 * following mounts are sufficiently divergent that functions are 1588 * duplicated. Typically there is a function foo(), and its RCU 1589 * analogue, foo_rcu(). 1590 * 1591 * -ECHILD is the error number of choice (just to avoid clashes) that 1592 * is returned if some aspect of an rcu-walk fails. Such an error must 1593 * be handled by restarting a traditional ref-walk (which will always 1594 * be able to complete). 1595 */ 1596 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base); 1597 1598 if (unlikely(err)) 1599 return err; 1600 1601 current->total_link_count = 0; 1602 err = link_path_walk(name, nd); 1603 1604 if (!err && !(flags & LOOKUP_PARENT)) { 1605 err = lookup_last(nd, &path); 1606 while (err > 0) { 1607 void *cookie; 1608 struct path link = path; 1609 nd->flags |= LOOKUP_PARENT; 1610 err = follow_link(&link, nd, &cookie); 1611 if (!err) 1612 err = lookup_last(nd, &path); 1613 put_link(nd, &link, cookie); 1614 } 1615 } 1616 1617 if (!err) 1618 err = complete_walk(nd); 1619 1620 if (!err && nd->flags & LOOKUP_DIRECTORY) { 1621 if (!nd->inode->i_op->lookup) { 1622 path_put(&nd->path); 1623 err = -ENOTDIR; 1624 } 1625 } 1626 1627 if (base) 1628 fput(base); 1629 1630 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 1631 path_put(&nd->root); 1632 nd->root.mnt = NULL; 1633 } 1634 return err; 1635 } 1636 1637 static int do_path_lookup(int dfd, const char *name, 1638 unsigned int flags, struct nameidata *nd) 1639 { 1640 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd); 1641 if (unlikely(retval == -ECHILD)) 1642 retval = path_lookupat(dfd, name, flags, nd); 1643 if (unlikely(retval == -ESTALE)) 1644 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd); 1645 1646 if (likely(!retval)) { 1647 if (unlikely(!audit_dummy_context())) { 1648 if (nd->path.dentry && nd->inode) 1649 audit_inode(name, nd->path.dentry); 1650 } 1651 } 1652 return retval; 1653 } 1654 1655 int kern_path_parent(const char *name, struct nameidata *nd) 1656 { 1657 return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd); 1658 } 1659 1660 int kern_path(const char *name, unsigned int flags, struct path *path) 1661 { 1662 struct nameidata nd; 1663 int res = do_path_lookup(AT_FDCWD, name, flags, &nd); 1664 if (!res) 1665 *path = nd.path; 1666 return res; 1667 } 1668 1669 /** 1670 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 1671 * @dentry: pointer to dentry of the base directory 1672 * @mnt: pointer to vfs mount of the base directory 1673 * @name: pointer to file name 1674 * @flags: lookup flags 1675 * @path: pointer to struct path to fill 1676 */ 1677 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 1678 const char *name, unsigned int flags, 1679 struct path *path) 1680 { 1681 struct nameidata nd; 1682 int err; 1683 nd.root.dentry = dentry; 1684 nd.root.mnt = mnt; 1685 BUG_ON(flags & LOOKUP_PARENT); 1686 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */ 1687 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd); 1688 if (!err) 1689 *path = nd.path; 1690 return err; 1691 } 1692 1693 static struct dentry *__lookup_hash(struct qstr *name, 1694 struct dentry *base, struct nameidata *nd) 1695 { 1696 struct inode *inode = base->d_inode; 1697 struct dentry *dentry; 1698 int err; 1699 1700 err = inode_permission(inode, MAY_EXEC); 1701 if (err) 1702 return ERR_PTR(err); 1703 1704 /* 1705 * Don't bother with __d_lookup: callers are for creat as 1706 * well as unlink, so a lot of the time it would cost 1707 * a double lookup. 1708 */ 1709 dentry = d_lookup(base, name); 1710 1711 if (dentry && d_need_lookup(dentry)) { 1712 /* 1713 * __lookup_hash is called with the parent dir's i_mutex already 1714 * held, so we are good to go here. 1715 */ 1716 dentry = d_inode_lookup(base, dentry, nd); 1717 if (IS_ERR(dentry)) 1718 return dentry; 1719 } 1720 1721 if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE)) { 1722 int status = d_revalidate(dentry, nd); 1723 if (unlikely(status <= 0)) { 1724 /* 1725 * The dentry failed validation. 1726 * If d_revalidate returned 0 attempt to invalidate 1727 * the dentry otherwise d_revalidate is asking us 1728 * to return a fail status. 1729 */ 1730 if (status < 0) { 1731 dput(dentry); 1732 return ERR_PTR(status); 1733 } else if (!d_invalidate(dentry)) { 1734 dput(dentry); 1735 dentry = NULL; 1736 } 1737 } 1738 } 1739 1740 if (!dentry) 1741 dentry = d_alloc_and_lookup(base, name, nd); 1742 1743 return dentry; 1744 } 1745 1746 /* 1747 * Restricted form of lookup. Doesn't follow links, single-component only, 1748 * needs parent already locked. Doesn't follow mounts. 1749 * SMP-safe. 1750 */ 1751 static struct dentry *lookup_hash(struct nameidata *nd) 1752 { 1753 return __lookup_hash(&nd->last, nd->path.dentry, nd); 1754 } 1755 1756 /** 1757 * lookup_one_len - filesystem helper to lookup single pathname component 1758 * @name: pathname component to lookup 1759 * @base: base directory to lookup from 1760 * @len: maximum length @len should be interpreted to 1761 * 1762 * Note that this routine is purely a helper for filesystem usage and should 1763 * not be called by generic code. Also note that by using this function the 1764 * nameidata argument is passed to the filesystem methods and a filesystem 1765 * using this helper needs to be prepared for that. 1766 */ 1767 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 1768 { 1769 struct qstr this; 1770 unsigned long hash; 1771 unsigned int c; 1772 1773 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex)); 1774 1775 this.name = name; 1776 this.len = len; 1777 if (!len) 1778 return ERR_PTR(-EACCES); 1779 1780 hash = init_name_hash(); 1781 while (len--) { 1782 c = *(const unsigned char *)name++; 1783 if (c == '/' || c == '\0') 1784 return ERR_PTR(-EACCES); 1785 hash = partial_name_hash(c, hash); 1786 } 1787 this.hash = end_name_hash(hash); 1788 /* 1789 * See if the low-level filesystem might want 1790 * to use its own hash.. 1791 */ 1792 if (base->d_flags & DCACHE_OP_HASH) { 1793 int err = base->d_op->d_hash(base, base->d_inode, &this); 1794 if (err < 0) 1795 return ERR_PTR(err); 1796 } 1797 1798 return __lookup_hash(&this, base, NULL); 1799 } 1800 1801 int user_path_at(int dfd, const char __user *name, unsigned flags, 1802 struct path *path) 1803 { 1804 struct nameidata nd; 1805 char *tmp = getname_flags(name, flags); 1806 int err = PTR_ERR(tmp); 1807 if (!IS_ERR(tmp)) { 1808 1809 BUG_ON(flags & LOOKUP_PARENT); 1810 1811 err = do_path_lookup(dfd, tmp, flags, &nd); 1812 putname(tmp); 1813 if (!err) 1814 *path = nd.path; 1815 } 1816 return err; 1817 } 1818 1819 static int user_path_parent(int dfd, const char __user *path, 1820 struct nameidata *nd, char **name) 1821 { 1822 char *s = getname(path); 1823 int error; 1824 1825 if (IS_ERR(s)) 1826 return PTR_ERR(s); 1827 1828 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd); 1829 if (error) 1830 putname(s); 1831 else 1832 *name = s; 1833 1834 return error; 1835 } 1836 1837 /* 1838 * It's inline, so penalty for filesystems that don't use sticky bit is 1839 * minimal. 1840 */ 1841 static inline int check_sticky(struct inode *dir, struct inode *inode) 1842 { 1843 uid_t fsuid = current_fsuid(); 1844 1845 if (!(dir->i_mode & S_ISVTX)) 1846 return 0; 1847 if (current_user_ns() != inode_userns(inode)) 1848 goto other_userns; 1849 if (inode->i_uid == fsuid) 1850 return 0; 1851 if (dir->i_uid == fsuid) 1852 return 0; 1853 1854 other_userns: 1855 return !ns_capable(inode_userns(inode), CAP_FOWNER); 1856 } 1857 1858 /* 1859 * Check whether we can remove a link victim from directory dir, check 1860 * whether the type of victim is right. 1861 * 1. We can't do it if dir is read-only (done in permission()) 1862 * 2. We should have write and exec permissions on dir 1863 * 3. We can't remove anything from append-only dir 1864 * 4. We can't do anything with immutable dir (done in permission()) 1865 * 5. If the sticky bit on dir is set we should either 1866 * a. be owner of dir, or 1867 * b. be owner of victim, or 1868 * c. have CAP_FOWNER capability 1869 * 6. If the victim is append-only or immutable we can't do antyhing with 1870 * links pointing to it. 1871 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 1872 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 1873 * 9. We can't remove a root or mountpoint. 1874 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 1875 * nfs_async_unlink(). 1876 */ 1877 static int may_delete(struct inode *dir,struct dentry *victim,int isdir) 1878 { 1879 int error; 1880 1881 if (!victim->d_inode) 1882 return -ENOENT; 1883 1884 BUG_ON(victim->d_parent->d_inode != dir); 1885 audit_inode_child(victim, dir); 1886 1887 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 1888 if (error) 1889 return error; 1890 if (IS_APPEND(dir)) 1891 return -EPERM; 1892 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)|| 1893 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode)) 1894 return -EPERM; 1895 if (isdir) { 1896 if (!S_ISDIR(victim->d_inode->i_mode)) 1897 return -ENOTDIR; 1898 if (IS_ROOT(victim)) 1899 return -EBUSY; 1900 } else if (S_ISDIR(victim->d_inode->i_mode)) 1901 return -EISDIR; 1902 if (IS_DEADDIR(dir)) 1903 return -ENOENT; 1904 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 1905 return -EBUSY; 1906 return 0; 1907 } 1908 1909 /* Check whether we can create an object with dentry child in directory 1910 * dir. 1911 * 1. We can't do it if child already exists (open has special treatment for 1912 * this case, but since we are inlined it's OK) 1913 * 2. We can't do it if dir is read-only (done in permission()) 1914 * 3. We should have write and exec permissions on dir 1915 * 4. We can't do it if dir is immutable (done in permission()) 1916 */ 1917 static inline int may_create(struct inode *dir, struct dentry *child) 1918 { 1919 if (child->d_inode) 1920 return -EEXIST; 1921 if (IS_DEADDIR(dir)) 1922 return -ENOENT; 1923 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 1924 } 1925 1926 /* 1927 * p1 and p2 should be directories on the same fs. 1928 */ 1929 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 1930 { 1931 struct dentry *p; 1932 1933 if (p1 == p2) { 1934 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1935 return NULL; 1936 } 1937 1938 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 1939 1940 p = d_ancestor(p2, p1); 1941 if (p) { 1942 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT); 1943 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD); 1944 return p; 1945 } 1946 1947 p = d_ancestor(p1, p2); 1948 if (p) { 1949 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1950 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 1951 return p; 1952 } 1953 1954 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1955 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 1956 return NULL; 1957 } 1958 1959 void unlock_rename(struct dentry *p1, struct dentry *p2) 1960 { 1961 mutex_unlock(&p1->d_inode->i_mutex); 1962 if (p1 != p2) { 1963 mutex_unlock(&p2->d_inode->i_mutex); 1964 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 1965 } 1966 } 1967 1968 int vfs_create(struct inode *dir, struct dentry *dentry, int mode, 1969 struct nameidata *nd) 1970 { 1971 int error = may_create(dir, dentry); 1972 1973 if (error) 1974 return error; 1975 1976 if (!dir->i_op->create) 1977 return -EACCES; /* shouldn't it be ENOSYS? */ 1978 mode &= S_IALLUGO; 1979 mode |= S_IFREG; 1980 error = security_inode_create(dir, dentry, mode); 1981 if (error) 1982 return error; 1983 error = dir->i_op->create(dir, dentry, mode, nd); 1984 if (!error) 1985 fsnotify_create(dir, dentry); 1986 return error; 1987 } 1988 1989 static int may_open(struct path *path, int acc_mode, int flag) 1990 { 1991 struct dentry *dentry = path->dentry; 1992 struct inode *inode = dentry->d_inode; 1993 int error; 1994 1995 /* O_PATH? */ 1996 if (!acc_mode) 1997 return 0; 1998 1999 if (!inode) 2000 return -ENOENT; 2001 2002 switch (inode->i_mode & S_IFMT) { 2003 case S_IFLNK: 2004 return -ELOOP; 2005 case S_IFDIR: 2006 if (acc_mode & MAY_WRITE) 2007 return -EISDIR; 2008 break; 2009 case S_IFBLK: 2010 case S_IFCHR: 2011 if (path->mnt->mnt_flags & MNT_NODEV) 2012 return -EACCES; 2013 /*FALLTHRU*/ 2014 case S_IFIFO: 2015 case S_IFSOCK: 2016 flag &= ~O_TRUNC; 2017 break; 2018 } 2019 2020 error = inode_permission(inode, acc_mode); 2021 if (error) 2022 return error; 2023 2024 /* 2025 * An append-only file must be opened in append mode for writing. 2026 */ 2027 if (IS_APPEND(inode)) { 2028 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2029 return -EPERM; 2030 if (flag & O_TRUNC) 2031 return -EPERM; 2032 } 2033 2034 /* O_NOATIME can only be set by the owner or superuser */ 2035 if (flag & O_NOATIME && !inode_owner_or_capable(inode)) 2036 return -EPERM; 2037 2038 /* 2039 * Ensure there are no outstanding leases on the file. 2040 */ 2041 return break_lease(inode, flag); 2042 } 2043 2044 static int handle_truncate(struct file *filp) 2045 { 2046 struct path *path = &filp->f_path; 2047 struct inode *inode = path->dentry->d_inode; 2048 int error = get_write_access(inode); 2049 if (error) 2050 return error; 2051 /* 2052 * Refuse to truncate files with mandatory locks held on them. 2053 */ 2054 error = locks_verify_locked(inode); 2055 if (!error) 2056 error = security_path_truncate(path); 2057 if (!error) { 2058 error = do_truncate(path->dentry, 0, 2059 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 2060 filp); 2061 } 2062 put_write_access(inode); 2063 return error; 2064 } 2065 2066 static inline int open_to_namei_flags(int flag) 2067 { 2068 if ((flag & O_ACCMODE) == 3) 2069 flag--; 2070 return flag; 2071 } 2072 2073 /* 2074 * Handle the last step of open() 2075 */ 2076 static struct file *do_last(struct nameidata *nd, struct path *path, 2077 const struct open_flags *op, const char *pathname) 2078 { 2079 struct dentry *dir = nd->path.dentry; 2080 struct dentry *dentry; 2081 int open_flag = op->open_flag; 2082 int will_truncate = open_flag & O_TRUNC; 2083 int want_write = 0; 2084 int acc_mode = op->acc_mode; 2085 struct file *filp; 2086 int error; 2087 2088 nd->flags &= ~LOOKUP_PARENT; 2089 nd->flags |= op->intent; 2090 2091 switch (nd->last_type) { 2092 case LAST_DOTDOT: 2093 case LAST_DOT: 2094 error = handle_dots(nd, nd->last_type); 2095 if (error) 2096 return ERR_PTR(error); 2097 /* fallthrough */ 2098 case LAST_ROOT: 2099 error = complete_walk(nd); 2100 if (error) 2101 return ERR_PTR(error); 2102 audit_inode(pathname, nd->path.dentry); 2103 if (open_flag & O_CREAT) { 2104 error = -EISDIR; 2105 goto exit; 2106 } 2107 goto ok; 2108 case LAST_BIND: 2109 error = complete_walk(nd); 2110 if (error) 2111 return ERR_PTR(error); 2112 audit_inode(pathname, dir); 2113 goto ok; 2114 } 2115 2116 if (!(open_flag & O_CREAT)) { 2117 int symlink_ok = 0; 2118 if (nd->last.name[nd->last.len]) 2119 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2120 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW)) 2121 symlink_ok = 1; 2122 /* we _can_ be in RCU mode here */ 2123 error = walk_component(nd, path, &nd->last, LAST_NORM, 2124 !symlink_ok); 2125 if (error < 0) 2126 return ERR_PTR(error); 2127 if (error) /* symlink */ 2128 return NULL; 2129 /* sayonara */ 2130 error = complete_walk(nd); 2131 if (error) 2132 return ERR_PTR(-ECHILD); 2133 2134 error = -ENOTDIR; 2135 if (nd->flags & LOOKUP_DIRECTORY) { 2136 if (!nd->inode->i_op->lookup) 2137 goto exit; 2138 } 2139 audit_inode(pathname, nd->path.dentry); 2140 goto ok; 2141 } 2142 2143 /* create side of things */ 2144 error = complete_walk(nd); 2145 if (error) 2146 return ERR_PTR(error); 2147 2148 audit_inode(pathname, dir); 2149 error = -EISDIR; 2150 /* trailing slashes? */ 2151 if (nd->last.name[nd->last.len]) 2152 goto exit; 2153 2154 mutex_lock(&dir->d_inode->i_mutex); 2155 2156 dentry = lookup_hash(nd); 2157 error = PTR_ERR(dentry); 2158 if (IS_ERR(dentry)) { 2159 mutex_unlock(&dir->d_inode->i_mutex); 2160 goto exit; 2161 } 2162 2163 path->dentry = dentry; 2164 path->mnt = nd->path.mnt; 2165 2166 /* Negative dentry, just create the file */ 2167 if (!dentry->d_inode) { 2168 int mode = op->mode; 2169 if (!IS_POSIXACL(dir->d_inode)) 2170 mode &= ~current_umask(); 2171 /* 2172 * This write is needed to ensure that a 2173 * rw->ro transition does not occur between 2174 * the time when the file is created and when 2175 * a permanent write count is taken through 2176 * the 'struct file' in nameidata_to_filp(). 2177 */ 2178 error = mnt_want_write(nd->path.mnt); 2179 if (error) 2180 goto exit_mutex_unlock; 2181 want_write = 1; 2182 /* Don't check for write permission, don't truncate */ 2183 open_flag &= ~O_TRUNC; 2184 will_truncate = 0; 2185 acc_mode = MAY_OPEN; 2186 error = security_path_mknod(&nd->path, dentry, mode, 0); 2187 if (error) 2188 goto exit_mutex_unlock; 2189 error = vfs_create(dir->d_inode, dentry, mode, nd); 2190 if (error) 2191 goto exit_mutex_unlock; 2192 mutex_unlock(&dir->d_inode->i_mutex); 2193 dput(nd->path.dentry); 2194 nd->path.dentry = dentry; 2195 goto common; 2196 } 2197 2198 /* 2199 * It already exists. 2200 */ 2201 mutex_unlock(&dir->d_inode->i_mutex); 2202 audit_inode(pathname, path->dentry); 2203 2204 error = -EEXIST; 2205 if (open_flag & O_EXCL) 2206 goto exit_dput; 2207 2208 error = follow_managed(path, nd->flags); 2209 if (error < 0) 2210 goto exit_dput; 2211 2212 error = -ENOENT; 2213 if (!path->dentry->d_inode) 2214 goto exit_dput; 2215 2216 if (path->dentry->d_inode->i_op->follow_link) 2217 return NULL; 2218 2219 path_to_nameidata(path, nd); 2220 nd->inode = path->dentry->d_inode; 2221 error = -EISDIR; 2222 if (S_ISDIR(nd->inode->i_mode)) 2223 goto exit; 2224 ok: 2225 if (!S_ISREG(nd->inode->i_mode)) 2226 will_truncate = 0; 2227 2228 if (will_truncate) { 2229 error = mnt_want_write(nd->path.mnt); 2230 if (error) 2231 goto exit; 2232 want_write = 1; 2233 } 2234 common: 2235 error = may_open(&nd->path, acc_mode, open_flag); 2236 if (error) 2237 goto exit; 2238 filp = nameidata_to_filp(nd); 2239 if (!IS_ERR(filp)) { 2240 error = ima_file_check(filp, op->acc_mode); 2241 if (error) { 2242 fput(filp); 2243 filp = ERR_PTR(error); 2244 } 2245 } 2246 if (!IS_ERR(filp)) { 2247 if (will_truncate) { 2248 error = handle_truncate(filp); 2249 if (error) { 2250 fput(filp); 2251 filp = ERR_PTR(error); 2252 } 2253 } 2254 } 2255 out: 2256 if (want_write) 2257 mnt_drop_write(nd->path.mnt); 2258 path_put(&nd->path); 2259 return filp; 2260 2261 exit_mutex_unlock: 2262 mutex_unlock(&dir->d_inode->i_mutex); 2263 exit_dput: 2264 path_put_conditional(path, nd); 2265 exit: 2266 filp = ERR_PTR(error); 2267 goto out; 2268 } 2269 2270 static struct file *path_openat(int dfd, const char *pathname, 2271 struct nameidata *nd, const struct open_flags *op, int flags) 2272 { 2273 struct file *base = NULL; 2274 struct file *filp; 2275 struct path path; 2276 int error; 2277 2278 filp = get_empty_filp(); 2279 if (!filp) 2280 return ERR_PTR(-ENFILE); 2281 2282 filp->f_flags = op->open_flag; 2283 nd->intent.open.file = filp; 2284 nd->intent.open.flags = open_to_namei_flags(op->open_flag); 2285 nd->intent.open.create_mode = op->mode; 2286 2287 error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base); 2288 if (unlikely(error)) 2289 goto out_filp; 2290 2291 current->total_link_count = 0; 2292 error = link_path_walk(pathname, nd); 2293 if (unlikely(error)) 2294 goto out_filp; 2295 2296 filp = do_last(nd, &path, op, pathname); 2297 while (unlikely(!filp)) { /* trailing symlink */ 2298 struct path link = path; 2299 void *cookie; 2300 if (!(nd->flags & LOOKUP_FOLLOW)) { 2301 path_put_conditional(&path, nd); 2302 path_put(&nd->path); 2303 filp = ERR_PTR(-ELOOP); 2304 break; 2305 } 2306 nd->flags |= LOOKUP_PARENT; 2307 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 2308 error = follow_link(&link, nd, &cookie); 2309 if (unlikely(error)) 2310 filp = ERR_PTR(error); 2311 else 2312 filp = do_last(nd, &path, op, pathname); 2313 put_link(nd, &link, cookie); 2314 } 2315 out: 2316 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) 2317 path_put(&nd->root); 2318 if (base) 2319 fput(base); 2320 release_open_intent(nd); 2321 return filp; 2322 2323 out_filp: 2324 filp = ERR_PTR(error); 2325 goto out; 2326 } 2327 2328 struct file *do_filp_open(int dfd, const char *pathname, 2329 const struct open_flags *op, int flags) 2330 { 2331 struct nameidata nd; 2332 struct file *filp; 2333 2334 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU); 2335 if (unlikely(filp == ERR_PTR(-ECHILD))) 2336 filp = path_openat(dfd, pathname, &nd, op, flags); 2337 if (unlikely(filp == ERR_PTR(-ESTALE))) 2338 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL); 2339 return filp; 2340 } 2341 2342 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 2343 const char *name, const struct open_flags *op, int flags) 2344 { 2345 struct nameidata nd; 2346 struct file *file; 2347 2348 nd.root.mnt = mnt; 2349 nd.root.dentry = dentry; 2350 2351 flags |= LOOKUP_ROOT; 2352 2353 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN) 2354 return ERR_PTR(-ELOOP); 2355 2356 file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU); 2357 if (unlikely(file == ERR_PTR(-ECHILD))) 2358 file = path_openat(-1, name, &nd, op, flags); 2359 if (unlikely(file == ERR_PTR(-ESTALE))) 2360 file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL); 2361 return file; 2362 } 2363 2364 struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, int is_dir) 2365 { 2366 struct dentry *dentry = ERR_PTR(-EEXIST); 2367 struct nameidata nd; 2368 int error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd); 2369 if (error) 2370 return ERR_PTR(error); 2371 2372 /* 2373 * Yucky last component or no last component at all? 2374 * (foo/., foo/.., /////) 2375 */ 2376 if (nd.last_type != LAST_NORM) 2377 goto out; 2378 nd.flags &= ~LOOKUP_PARENT; 2379 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL; 2380 nd.intent.open.flags = O_EXCL; 2381 2382 /* 2383 * Do the final lookup. 2384 */ 2385 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2386 dentry = lookup_hash(&nd); 2387 if (IS_ERR(dentry)) 2388 goto fail; 2389 2390 if (dentry->d_inode) 2391 goto eexist; 2392 /* 2393 * Special case - lookup gave negative, but... we had foo/bar/ 2394 * From the vfs_mknod() POV we just have a negative dentry - 2395 * all is fine. Let's be bastards - you had / on the end, you've 2396 * been asking for (non-existent) directory. -ENOENT for you. 2397 */ 2398 if (unlikely(!is_dir && nd.last.name[nd.last.len])) { 2399 dput(dentry); 2400 dentry = ERR_PTR(-ENOENT); 2401 goto fail; 2402 } 2403 *path = nd.path; 2404 return dentry; 2405 eexist: 2406 dput(dentry); 2407 dentry = ERR_PTR(-EEXIST); 2408 fail: 2409 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2410 out: 2411 path_put(&nd.path); 2412 return dentry; 2413 } 2414 EXPORT_SYMBOL(kern_path_create); 2415 2416 struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, int is_dir) 2417 { 2418 char *tmp = getname(pathname); 2419 struct dentry *res; 2420 if (IS_ERR(tmp)) 2421 return ERR_CAST(tmp); 2422 res = kern_path_create(dfd, tmp, path, is_dir); 2423 putname(tmp); 2424 return res; 2425 } 2426 EXPORT_SYMBOL(user_path_create); 2427 2428 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 2429 { 2430 int error = may_create(dir, dentry); 2431 2432 if (error) 2433 return error; 2434 2435 if ((S_ISCHR(mode) || S_ISBLK(mode)) && 2436 !ns_capable(inode_userns(dir), CAP_MKNOD)) 2437 return -EPERM; 2438 2439 if (!dir->i_op->mknod) 2440 return -EPERM; 2441 2442 error = devcgroup_inode_mknod(mode, dev); 2443 if (error) 2444 return error; 2445 2446 error = security_inode_mknod(dir, dentry, mode, dev); 2447 if (error) 2448 return error; 2449 2450 error = dir->i_op->mknod(dir, dentry, mode, dev); 2451 if (!error) 2452 fsnotify_create(dir, dentry); 2453 return error; 2454 } 2455 2456 static int may_mknod(mode_t mode) 2457 { 2458 switch (mode & S_IFMT) { 2459 case S_IFREG: 2460 case S_IFCHR: 2461 case S_IFBLK: 2462 case S_IFIFO: 2463 case S_IFSOCK: 2464 case 0: /* zero mode translates to S_IFREG */ 2465 return 0; 2466 case S_IFDIR: 2467 return -EPERM; 2468 default: 2469 return -EINVAL; 2470 } 2471 } 2472 2473 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode, 2474 unsigned, dev) 2475 { 2476 struct dentry *dentry; 2477 struct path path; 2478 int error; 2479 2480 if (S_ISDIR(mode)) 2481 return -EPERM; 2482 2483 dentry = user_path_create(dfd, filename, &path, 0); 2484 if (IS_ERR(dentry)) 2485 return PTR_ERR(dentry); 2486 2487 if (!IS_POSIXACL(path.dentry->d_inode)) 2488 mode &= ~current_umask(); 2489 error = may_mknod(mode); 2490 if (error) 2491 goto out_dput; 2492 error = mnt_want_write(path.mnt); 2493 if (error) 2494 goto out_dput; 2495 error = security_path_mknod(&path, dentry, mode, dev); 2496 if (error) 2497 goto out_drop_write; 2498 switch (mode & S_IFMT) { 2499 case 0: case S_IFREG: 2500 error = vfs_create(path.dentry->d_inode,dentry,mode,NULL); 2501 break; 2502 case S_IFCHR: case S_IFBLK: 2503 error = vfs_mknod(path.dentry->d_inode,dentry,mode, 2504 new_decode_dev(dev)); 2505 break; 2506 case S_IFIFO: case S_IFSOCK: 2507 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0); 2508 break; 2509 } 2510 out_drop_write: 2511 mnt_drop_write(path.mnt); 2512 out_dput: 2513 dput(dentry); 2514 mutex_unlock(&path.dentry->d_inode->i_mutex); 2515 path_put(&path); 2516 2517 return error; 2518 } 2519 2520 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev) 2521 { 2522 return sys_mknodat(AT_FDCWD, filename, mode, dev); 2523 } 2524 2525 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 2526 { 2527 int error = may_create(dir, dentry); 2528 2529 if (error) 2530 return error; 2531 2532 if (!dir->i_op->mkdir) 2533 return -EPERM; 2534 2535 mode &= (S_IRWXUGO|S_ISVTX); 2536 error = security_inode_mkdir(dir, dentry, mode); 2537 if (error) 2538 return error; 2539 2540 error = dir->i_op->mkdir(dir, dentry, mode); 2541 if (!error) 2542 fsnotify_mkdir(dir, dentry); 2543 return error; 2544 } 2545 2546 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode) 2547 { 2548 struct dentry *dentry; 2549 struct path path; 2550 int error; 2551 2552 dentry = user_path_create(dfd, pathname, &path, 1); 2553 if (IS_ERR(dentry)) 2554 return PTR_ERR(dentry); 2555 2556 if (!IS_POSIXACL(path.dentry->d_inode)) 2557 mode &= ~current_umask(); 2558 error = mnt_want_write(path.mnt); 2559 if (error) 2560 goto out_dput; 2561 error = security_path_mkdir(&path, dentry, mode); 2562 if (error) 2563 goto out_drop_write; 2564 error = vfs_mkdir(path.dentry->d_inode, dentry, mode); 2565 out_drop_write: 2566 mnt_drop_write(path.mnt); 2567 out_dput: 2568 dput(dentry); 2569 mutex_unlock(&path.dentry->d_inode->i_mutex); 2570 path_put(&path); 2571 return error; 2572 } 2573 2574 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode) 2575 { 2576 return sys_mkdirat(AT_FDCWD, pathname, mode); 2577 } 2578 2579 /* 2580 * The dentry_unhash() helper will try to drop the dentry early: we 2581 * should have a usage count of 2 if we're the only user of this 2582 * dentry, and if that is true (possibly after pruning the dcache), 2583 * then we drop the dentry now. 2584 * 2585 * A low-level filesystem can, if it choses, legally 2586 * do a 2587 * 2588 * if (!d_unhashed(dentry)) 2589 * return -EBUSY; 2590 * 2591 * if it cannot handle the case of removing a directory 2592 * that is still in use by something else.. 2593 */ 2594 void dentry_unhash(struct dentry *dentry) 2595 { 2596 shrink_dcache_parent(dentry); 2597 spin_lock(&dentry->d_lock); 2598 if (dentry->d_count == 1) 2599 __d_drop(dentry); 2600 spin_unlock(&dentry->d_lock); 2601 } 2602 2603 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 2604 { 2605 int error = may_delete(dir, dentry, 1); 2606 2607 if (error) 2608 return error; 2609 2610 if (!dir->i_op->rmdir) 2611 return -EPERM; 2612 2613 dget(dentry); 2614 mutex_lock(&dentry->d_inode->i_mutex); 2615 2616 error = -EBUSY; 2617 if (d_mountpoint(dentry)) 2618 goto out; 2619 2620 error = security_inode_rmdir(dir, dentry); 2621 if (error) 2622 goto out; 2623 2624 shrink_dcache_parent(dentry); 2625 error = dir->i_op->rmdir(dir, dentry); 2626 if (error) 2627 goto out; 2628 2629 dentry->d_inode->i_flags |= S_DEAD; 2630 dont_mount(dentry); 2631 2632 out: 2633 mutex_unlock(&dentry->d_inode->i_mutex); 2634 dput(dentry); 2635 if (!error) 2636 d_delete(dentry); 2637 return error; 2638 } 2639 2640 static long do_rmdir(int dfd, const char __user *pathname) 2641 { 2642 int error = 0; 2643 char * name; 2644 struct dentry *dentry; 2645 struct nameidata nd; 2646 2647 error = user_path_parent(dfd, pathname, &nd, &name); 2648 if (error) 2649 return error; 2650 2651 switch(nd.last_type) { 2652 case LAST_DOTDOT: 2653 error = -ENOTEMPTY; 2654 goto exit1; 2655 case LAST_DOT: 2656 error = -EINVAL; 2657 goto exit1; 2658 case LAST_ROOT: 2659 error = -EBUSY; 2660 goto exit1; 2661 } 2662 2663 nd.flags &= ~LOOKUP_PARENT; 2664 2665 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2666 dentry = lookup_hash(&nd); 2667 error = PTR_ERR(dentry); 2668 if (IS_ERR(dentry)) 2669 goto exit2; 2670 if (!dentry->d_inode) { 2671 error = -ENOENT; 2672 goto exit3; 2673 } 2674 error = mnt_want_write(nd.path.mnt); 2675 if (error) 2676 goto exit3; 2677 error = security_path_rmdir(&nd.path, dentry); 2678 if (error) 2679 goto exit4; 2680 error = vfs_rmdir(nd.path.dentry->d_inode, dentry); 2681 exit4: 2682 mnt_drop_write(nd.path.mnt); 2683 exit3: 2684 dput(dentry); 2685 exit2: 2686 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2687 exit1: 2688 path_put(&nd.path); 2689 putname(name); 2690 return error; 2691 } 2692 2693 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 2694 { 2695 return do_rmdir(AT_FDCWD, pathname); 2696 } 2697 2698 int vfs_unlink(struct inode *dir, struct dentry *dentry) 2699 { 2700 int error = may_delete(dir, dentry, 0); 2701 2702 if (error) 2703 return error; 2704 2705 if (!dir->i_op->unlink) 2706 return -EPERM; 2707 2708 mutex_lock(&dentry->d_inode->i_mutex); 2709 if (d_mountpoint(dentry)) 2710 error = -EBUSY; 2711 else { 2712 error = security_inode_unlink(dir, dentry); 2713 if (!error) { 2714 error = dir->i_op->unlink(dir, dentry); 2715 if (!error) 2716 dont_mount(dentry); 2717 } 2718 } 2719 mutex_unlock(&dentry->d_inode->i_mutex); 2720 2721 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 2722 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 2723 fsnotify_link_count(dentry->d_inode); 2724 d_delete(dentry); 2725 } 2726 2727 return error; 2728 } 2729 2730 /* 2731 * Make sure that the actual truncation of the file will occur outside its 2732 * directory's i_mutex. Truncate can take a long time if there is a lot of 2733 * writeout happening, and we don't want to prevent access to the directory 2734 * while waiting on the I/O. 2735 */ 2736 static long do_unlinkat(int dfd, const char __user *pathname) 2737 { 2738 int error; 2739 char *name; 2740 struct dentry *dentry; 2741 struct nameidata nd; 2742 struct inode *inode = NULL; 2743 2744 error = user_path_parent(dfd, pathname, &nd, &name); 2745 if (error) 2746 return error; 2747 2748 error = -EISDIR; 2749 if (nd.last_type != LAST_NORM) 2750 goto exit1; 2751 2752 nd.flags &= ~LOOKUP_PARENT; 2753 2754 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2755 dentry = lookup_hash(&nd); 2756 error = PTR_ERR(dentry); 2757 if (!IS_ERR(dentry)) { 2758 /* Why not before? Because we want correct error value */ 2759 if (nd.last.name[nd.last.len]) 2760 goto slashes; 2761 inode = dentry->d_inode; 2762 if (!inode) 2763 goto slashes; 2764 ihold(inode); 2765 error = mnt_want_write(nd.path.mnt); 2766 if (error) 2767 goto exit2; 2768 error = security_path_unlink(&nd.path, dentry); 2769 if (error) 2770 goto exit3; 2771 error = vfs_unlink(nd.path.dentry->d_inode, dentry); 2772 exit3: 2773 mnt_drop_write(nd.path.mnt); 2774 exit2: 2775 dput(dentry); 2776 } 2777 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2778 if (inode) 2779 iput(inode); /* truncate the inode here */ 2780 exit1: 2781 path_put(&nd.path); 2782 putname(name); 2783 return error; 2784 2785 slashes: 2786 error = !dentry->d_inode ? -ENOENT : 2787 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR; 2788 goto exit2; 2789 } 2790 2791 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 2792 { 2793 if ((flag & ~AT_REMOVEDIR) != 0) 2794 return -EINVAL; 2795 2796 if (flag & AT_REMOVEDIR) 2797 return do_rmdir(dfd, pathname); 2798 2799 return do_unlinkat(dfd, pathname); 2800 } 2801 2802 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 2803 { 2804 return do_unlinkat(AT_FDCWD, pathname); 2805 } 2806 2807 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 2808 { 2809 int error = may_create(dir, dentry); 2810 2811 if (error) 2812 return error; 2813 2814 if (!dir->i_op->symlink) 2815 return -EPERM; 2816 2817 error = security_inode_symlink(dir, dentry, oldname); 2818 if (error) 2819 return error; 2820 2821 error = dir->i_op->symlink(dir, dentry, oldname); 2822 if (!error) 2823 fsnotify_create(dir, dentry); 2824 return error; 2825 } 2826 2827 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 2828 int, newdfd, const char __user *, newname) 2829 { 2830 int error; 2831 char *from; 2832 struct dentry *dentry; 2833 struct path path; 2834 2835 from = getname(oldname); 2836 if (IS_ERR(from)) 2837 return PTR_ERR(from); 2838 2839 dentry = user_path_create(newdfd, newname, &path, 0); 2840 error = PTR_ERR(dentry); 2841 if (IS_ERR(dentry)) 2842 goto out_putname; 2843 2844 error = mnt_want_write(path.mnt); 2845 if (error) 2846 goto out_dput; 2847 error = security_path_symlink(&path, dentry, from); 2848 if (error) 2849 goto out_drop_write; 2850 error = vfs_symlink(path.dentry->d_inode, dentry, from); 2851 out_drop_write: 2852 mnt_drop_write(path.mnt); 2853 out_dput: 2854 dput(dentry); 2855 mutex_unlock(&path.dentry->d_inode->i_mutex); 2856 path_put(&path); 2857 out_putname: 2858 putname(from); 2859 return error; 2860 } 2861 2862 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 2863 { 2864 return sys_symlinkat(oldname, AT_FDCWD, newname); 2865 } 2866 2867 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2868 { 2869 struct inode *inode = old_dentry->d_inode; 2870 int error; 2871 2872 if (!inode) 2873 return -ENOENT; 2874 2875 error = may_create(dir, new_dentry); 2876 if (error) 2877 return error; 2878 2879 if (dir->i_sb != inode->i_sb) 2880 return -EXDEV; 2881 2882 /* 2883 * A link to an append-only or immutable file cannot be created. 2884 */ 2885 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 2886 return -EPERM; 2887 if (!dir->i_op->link) 2888 return -EPERM; 2889 if (S_ISDIR(inode->i_mode)) 2890 return -EPERM; 2891 2892 error = security_inode_link(old_dentry, dir, new_dentry); 2893 if (error) 2894 return error; 2895 2896 mutex_lock(&inode->i_mutex); 2897 /* Make sure we don't allow creating hardlink to an unlinked file */ 2898 if (inode->i_nlink == 0) 2899 error = -ENOENT; 2900 else 2901 error = dir->i_op->link(old_dentry, dir, new_dentry); 2902 mutex_unlock(&inode->i_mutex); 2903 if (!error) 2904 fsnotify_link(dir, inode, new_dentry); 2905 return error; 2906 } 2907 2908 /* 2909 * Hardlinks are often used in delicate situations. We avoid 2910 * security-related surprises by not following symlinks on the 2911 * newname. --KAB 2912 * 2913 * We don't follow them on the oldname either to be compatible 2914 * with linux 2.0, and to avoid hard-linking to directories 2915 * and other special files. --ADM 2916 */ 2917 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 2918 int, newdfd, const char __user *, newname, int, flags) 2919 { 2920 struct dentry *new_dentry; 2921 struct path old_path, new_path; 2922 int how = 0; 2923 int error; 2924 2925 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 2926 return -EINVAL; 2927 /* 2928 * To use null names we require CAP_DAC_READ_SEARCH 2929 * This ensures that not everyone will be able to create 2930 * handlink using the passed filedescriptor. 2931 */ 2932 if (flags & AT_EMPTY_PATH) { 2933 if (!capable(CAP_DAC_READ_SEARCH)) 2934 return -ENOENT; 2935 how = LOOKUP_EMPTY; 2936 } 2937 2938 if (flags & AT_SYMLINK_FOLLOW) 2939 how |= LOOKUP_FOLLOW; 2940 2941 error = user_path_at(olddfd, oldname, how, &old_path); 2942 if (error) 2943 return error; 2944 2945 new_dentry = user_path_create(newdfd, newname, &new_path, 0); 2946 error = PTR_ERR(new_dentry); 2947 if (IS_ERR(new_dentry)) 2948 goto out; 2949 2950 error = -EXDEV; 2951 if (old_path.mnt != new_path.mnt) 2952 goto out_dput; 2953 error = mnt_want_write(new_path.mnt); 2954 if (error) 2955 goto out_dput; 2956 error = security_path_link(old_path.dentry, &new_path, new_dentry); 2957 if (error) 2958 goto out_drop_write; 2959 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry); 2960 out_drop_write: 2961 mnt_drop_write(new_path.mnt); 2962 out_dput: 2963 dput(new_dentry); 2964 mutex_unlock(&new_path.dentry->d_inode->i_mutex); 2965 path_put(&new_path); 2966 out: 2967 path_put(&old_path); 2968 2969 return error; 2970 } 2971 2972 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 2973 { 2974 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 2975 } 2976 2977 /* 2978 * The worst of all namespace operations - renaming directory. "Perverted" 2979 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 2980 * Problems: 2981 * a) we can get into loop creation. Check is done in is_subdir(). 2982 * b) race potential - two innocent renames can create a loop together. 2983 * That's where 4.4 screws up. Current fix: serialization on 2984 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 2985 * story. 2986 * c) we have to lock _three_ objects - parents and victim (if it exists). 2987 * And that - after we got ->i_mutex on parents (until then we don't know 2988 * whether the target exists). Solution: try to be smart with locking 2989 * order for inodes. We rely on the fact that tree topology may change 2990 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 2991 * move will be locked. Thus we can rank directories by the tree 2992 * (ancestors first) and rank all non-directories after them. 2993 * That works since everybody except rename does "lock parent, lookup, 2994 * lock child" and rename is under ->s_vfs_rename_mutex. 2995 * HOWEVER, it relies on the assumption that any object with ->lookup() 2996 * has no more than 1 dentry. If "hybrid" objects will ever appear, 2997 * we'd better make sure that there's no link(2) for them. 2998 * d) conversion from fhandle to dentry may come in the wrong moment - when 2999 * we are removing the target. Solution: we will have to grab ->i_mutex 3000 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 3001 * ->i_mutex on parents, which works but leads to some truly excessive 3002 * locking]. 3003 */ 3004 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry, 3005 struct inode *new_dir, struct dentry *new_dentry) 3006 { 3007 int error = 0; 3008 struct inode *target = new_dentry->d_inode; 3009 3010 /* 3011 * If we are going to change the parent - check write permissions, 3012 * we'll need to flip '..'. 3013 */ 3014 if (new_dir != old_dir) { 3015 error = inode_permission(old_dentry->d_inode, MAY_WRITE); 3016 if (error) 3017 return error; 3018 } 3019 3020 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 3021 if (error) 3022 return error; 3023 3024 dget(new_dentry); 3025 if (target) 3026 mutex_lock(&target->i_mutex); 3027 3028 error = -EBUSY; 3029 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry)) 3030 goto out; 3031 3032 if (target) 3033 shrink_dcache_parent(new_dentry); 3034 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 3035 if (error) 3036 goto out; 3037 3038 if (target) { 3039 target->i_flags |= S_DEAD; 3040 dont_mount(new_dentry); 3041 } 3042 out: 3043 if (target) 3044 mutex_unlock(&target->i_mutex); 3045 dput(new_dentry); 3046 if (!error) 3047 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 3048 d_move(old_dentry,new_dentry); 3049 return error; 3050 } 3051 3052 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry, 3053 struct inode *new_dir, struct dentry *new_dentry) 3054 { 3055 struct inode *target = new_dentry->d_inode; 3056 int error; 3057 3058 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 3059 if (error) 3060 return error; 3061 3062 dget(new_dentry); 3063 if (target) 3064 mutex_lock(&target->i_mutex); 3065 3066 error = -EBUSY; 3067 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) 3068 goto out; 3069 3070 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 3071 if (error) 3072 goto out; 3073 3074 if (target) 3075 dont_mount(new_dentry); 3076 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 3077 d_move(old_dentry, new_dentry); 3078 out: 3079 if (target) 3080 mutex_unlock(&target->i_mutex); 3081 dput(new_dentry); 3082 return error; 3083 } 3084 3085 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 3086 struct inode *new_dir, struct dentry *new_dentry) 3087 { 3088 int error; 3089 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode); 3090 const unsigned char *old_name; 3091 3092 if (old_dentry->d_inode == new_dentry->d_inode) 3093 return 0; 3094 3095 error = may_delete(old_dir, old_dentry, is_dir); 3096 if (error) 3097 return error; 3098 3099 if (!new_dentry->d_inode) 3100 error = may_create(new_dir, new_dentry); 3101 else 3102 error = may_delete(new_dir, new_dentry, is_dir); 3103 if (error) 3104 return error; 3105 3106 if (!old_dir->i_op->rename) 3107 return -EPERM; 3108 3109 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 3110 3111 if (is_dir) 3112 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry); 3113 else 3114 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry); 3115 if (!error) 3116 fsnotify_move(old_dir, new_dir, old_name, is_dir, 3117 new_dentry->d_inode, old_dentry); 3118 fsnotify_oldname_free(old_name); 3119 3120 return error; 3121 } 3122 3123 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 3124 int, newdfd, const char __user *, newname) 3125 { 3126 struct dentry *old_dir, *new_dir; 3127 struct dentry *old_dentry, *new_dentry; 3128 struct dentry *trap; 3129 struct nameidata oldnd, newnd; 3130 char *from; 3131 char *to; 3132 int error; 3133 3134 error = user_path_parent(olddfd, oldname, &oldnd, &from); 3135 if (error) 3136 goto exit; 3137 3138 error = user_path_parent(newdfd, newname, &newnd, &to); 3139 if (error) 3140 goto exit1; 3141 3142 error = -EXDEV; 3143 if (oldnd.path.mnt != newnd.path.mnt) 3144 goto exit2; 3145 3146 old_dir = oldnd.path.dentry; 3147 error = -EBUSY; 3148 if (oldnd.last_type != LAST_NORM) 3149 goto exit2; 3150 3151 new_dir = newnd.path.dentry; 3152 if (newnd.last_type != LAST_NORM) 3153 goto exit2; 3154 3155 oldnd.flags &= ~LOOKUP_PARENT; 3156 newnd.flags &= ~LOOKUP_PARENT; 3157 newnd.flags |= LOOKUP_RENAME_TARGET; 3158 3159 trap = lock_rename(new_dir, old_dir); 3160 3161 old_dentry = lookup_hash(&oldnd); 3162 error = PTR_ERR(old_dentry); 3163 if (IS_ERR(old_dentry)) 3164 goto exit3; 3165 /* source must exist */ 3166 error = -ENOENT; 3167 if (!old_dentry->d_inode) 3168 goto exit4; 3169 /* unless the source is a directory trailing slashes give -ENOTDIR */ 3170 if (!S_ISDIR(old_dentry->d_inode->i_mode)) { 3171 error = -ENOTDIR; 3172 if (oldnd.last.name[oldnd.last.len]) 3173 goto exit4; 3174 if (newnd.last.name[newnd.last.len]) 3175 goto exit4; 3176 } 3177 /* source should not be ancestor of target */ 3178 error = -EINVAL; 3179 if (old_dentry == trap) 3180 goto exit4; 3181 new_dentry = lookup_hash(&newnd); 3182 error = PTR_ERR(new_dentry); 3183 if (IS_ERR(new_dentry)) 3184 goto exit4; 3185 /* target should not be an ancestor of source */ 3186 error = -ENOTEMPTY; 3187 if (new_dentry == trap) 3188 goto exit5; 3189 3190 error = mnt_want_write(oldnd.path.mnt); 3191 if (error) 3192 goto exit5; 3193 error = security_path_rename(&oldnd.path, old_dentry, 3194 &newnd.path, new_dentry); 3195 if (error) 3196 goto exit6; 3197 error = vfs_rename(old_dir->d_inode, old_dentry, 3198 new_dir->d_inode, new_dentry); 3199 exit6: 3200 mnt_drop_write(oldnd.path.mnt); 3201 exit5: 3202 dput(new_dentry); 3203 exit4: 3204 dput(old_dentry); 3205 exit3: 3206 unlock_rename(new_dir, old_dir); 3207 exit2: 3208 path_put(&newnd.path); 3209 putname(to); 3210 exit1: 3211 path_put(&oldnd.path); 3212 putname(from); 3213 exit: 3214 return error; 3215 } 3216 3217 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 3218 { 3219 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname); 3220 } 3221 3222 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link) 3223 { 3224 int len; 3225 3226 len = PTR_ERR(link); 3227 if (IS_ERR(link)) 3228 goto out; 3229 3230 len = strlen(link); 3231 if (len > (unsigned) buflen) 3232 len = buflen; 3233 if (copy_to_user(buffer, link, len)) 3234 len = -EFAULT; 3235 out: 3236 return len; 3237 } 3238 3239 /* 3240 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 3241 * have ->follow_link() touching nd only in nd_set_link(). Using (or not 3242 * using) it for any given inode is up to filesystem. 3243 */ 3244 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) 3245 { 3246 struct nameidata nd; 3247 void *cookie; 3248 int res; 3249 3250 nd.depth = 0; 3251 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd); 3252 if (IS_ERR(cookie)) 3253 return PTR_ERR(cookie); 3254 3255 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd)); 3256 if (dentry->d_inode->i_op->put_link) 3257 dentry->d_inode->i_op->put_link(dentry, &nd, cookie); 3258 return res; 3259 } 3260 3261 int vfs_follow_link(struct nameidata *nd, const char *link) 3262 { 3263 return __vfs_follow_link(nd, link); 3264 } 3265 3266 /* get the link contents into pagecache */ 3267 static char *page_getlink(struct dentry * dentry, struct page **ppage) 3268 { 3269 char *kaddr; 3270 struct page *page; 3271 struct address_space *mapping = dentry->d_inode->i_mapping; 3272 page = read_mapping_page(mapping, 0, NULL); 3273 if (IS_ERR(page)) 3274 return (char*)page; 3275 *ppage = page; 3276 kaddr = kmap(page); 3277 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1); 3278 return kaddr; 3279 } 3280 3281 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 3282 { 3283 struct page *page = NULL; 3284 char *s = page_getlink(dentry, &page); 3285 int res = vfs_readlink(dentry,buffer,buflen,s); 3286 if (page) { 3287 kunmap(page); 3288 page_cache_release(page); 3289 } 3290 return res; 3291 } 3292 3293 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd) 3294 { 3295 struct page *page = NULL; 3296 nd_set_link(nd, page_getlink(dentry, &page)); 3297 return page; 3298 } 3299 3300 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 3301 { 3302 struct page *page = cookie; 3303 3304 if (page) { 3305 kunmap(page); 3306 page_cache_release(page); 3307 } 3308 } 3309 3310 /* 3311 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 3312 */ 3313 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 3314 { 3315 struct address_space *mapping = inode->i_mapping; 3316 struct page *page; 3317 void *fsdata; 3318 int err; 3319 char *kaddr; 3320 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE; 3321 if (nofs) 3322 flags |= AOP_FLAG_NOFS; 3323 3324 retry: 3325 err = pagecache_write_begin(NULL, mapping, 0, len-1, 3326 flags, &page, &fsdata); 3327 if (err) 3328 goto fail; 3329 3330 kaddr = kmap_atomic(page, KM_USER0); 3331 memcpy(kaddr, symname, len-1); 3332 kunmap_atomic(kaddr, KM_USER0); 3333 3334 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 3335 page, fsdata); 3336 if (err < 0) 3337 goto fail; 3338 if (err < len-1) 3339 goto retry; 3340 3341 mark_inode_dirty(inode); 3342 return 0; 3343 fail: 3344 return err; 3345 } 3346 3347 int page_symlink(struct inode *inode, const char *symname, int len) 3348 { 3349 return __page_symlink(inode, symname, len, 3350 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS)); 3351 } 3352 3353 const struct inode_operations page_symlink_inode_operations = { 3354 .readlink = generic_readlink, 3355 .follow_link = page_follow_link_light, 3356 .put_link = page_put_link, 3357 }; 3358 3359 EXPORT_SYMBOL(user_path_at); 3360 EXPORT_SYMBOL(follow_down_one); 3361 EXPORT_SYMBOL(follow_down); 3362 EXPORT_SYMBOL(follow_up); 3363 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */ 3364 EXPORT_SYMBOL(getname); 3365 EXPORT_SYMBOL(lock_rename); 3366 EXPORT_SYMBOL(lookup_one_len); 3367 EXPORT_SYMBOL(page_follow_link_light); 3368 EXPORT_SYMBOL(page_put_link); 3369 EXPORT_SYMBOL(page_readlink); 3370 EXPORT_SYMBOL(__page_symlink); 3371 EXPORT_SYMBOL(page_symlink); 3372 EXPORT_SYMBOL(page_symlink_inode_operations); 3373 EXPORT_SYMBOL(kern_path); 3374 EXPORT_SYMBOL(vfs_path_lookup); 3375 EXPORT_SYMBOL(inode_permission); 3376 EXPORT_SYMBOL(unlock_rename); 3377 EXPORT_SYMBOL(vfs_create); 3378 EXPORT_SYMBOL(vfs_follow_link); 3379 EXPORT_SYMBOL(vfs_link); 3380 EXPORT_SYMBOL(vfs_mkdir); 3381 EXPORT_SYMBOL(vfs_mknod); 3382 EXPORT_SYMBOL(generic_permission); 3383 EXPORT_SYMBOL(vfs_readlink); 3384 EXPORT_SYMBOL(vfs_rename); 3385 EXPORT_SYMBOL(vfs_rmdir); 3386 EXPORT_SYMBOL(vfs_symlink); 3387 EXPORT_SYMBOL(vfs_unlink); 3388 EXPORT_SYMBOL(dentry_unhash); 3389 EXPORT_SYMBOL(generic_readlink); 3390