1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/fs.h> 21 #include <linux/namei.h> 22 #include <linux/pagemap.h> 23 #include <linux/fsnotify.h> 24 #include <linux/personality.h> 25 #include <linux/security.h> 26 #include <linux/ima.h> 27 #include <linux/syscalls.h> 28 #include <linux/mount.h> 29 #include <linux/audit.h> 30 #include <linux/capability.h> 31 #include <linux/file.h> 32 #include <linux/fcntl.h> 33 #include <linux/device_cgroup.h> 34 #include <linux/fs_struct.h> 35 #include <asm/uaccess.h> 36 37 #include "internal.h" 38 39 /* [Feb-1997 T. Schoebel-Theuer] 40 * Fundamental changes in the pathname lookup mechanisms (namei) 41 * were necessary because of omirr. The reason is that omirr needs 42 * to know the _real_ pathname, not the user-supplied one, in case 43 * of symlinks (and also when transname replacements occur). 44 * 45 * The new code replaces the old recursive symlink resolution with 46 * an iterative one (in case of non-nested symlink chains). It does 47 * this with calls to <fs>_follow_link(). 48 * As a side effect, dir_namei(), _namei() and follow_link() are now 49 * replaced with a single function lookup_dentry() that can handle all 50 * the special cases of the former code. 51 * 52 * With the new dcache, the pathname is stored at each inode, at least as 53 * long as the refcount of the inode is positive. As a side effect, the 54 * size of the dcache depends on the inode cache and thus is dynamic. 55 * 56 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 57 * resolution to correspond with current state of the code. 58 * 59 * Note that the symlink resolution is not *completely* iterative. 60 * There is still a significant amount of tail- and mid- recursion in 61 * the algorithm. Also, note that <fs>_readlink() is not used in 62 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 63 * may return different results than <fs>_follow_link(). Many virtual 64 * filesystems (including /proc) exhibit this behavior. 65 */ 66 67 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 68 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 69 * and the name already exists in form of a symlink, try to create the new 70 * name indicated by the symlink. The old code always complained that the 71 * name already exists, due to not following the symlink even if its target 72 * is nonexistent. The new semantics affects also mknod() and link() when 73 * the name is a symlink pointing to a non-existant name. 74 * 75 * I don't know which semantics is the right one, since I have no access 76 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 77 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 78 * "old" one. Personally, I think the new semantics is much more logical. 79 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 80 * file does succeed in both HP-UX and SunOs, but not in Solaris 81 * and in the old Linux semantics. 82 */ 83 84 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 85 * semantics. See the comments in "open_namei" and "do_link" below. 86 * 87 * [10-Sep-98 Alan Modra] Another symlink change. 88 */ 89 90 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 91 * inside the path - always follow. 92 * in the last component in creation/removal/renaming - never follow. 93 * if LOOKUP_FOLLOW passed - follow. 94 * if the pathname has trailing slashes - follow. 95 * otherwise - don't follow. 96 * (applied in that order). 97 * 98 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 99 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 100 * During the 2.4 we need to fix the userland stuff depending on it - 101 * hopefully we will be able to get rid of that wart in 2.5. So far only 102 * XEmacs seems to be relying on it... 103 */ 104 /* 105 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 106 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 107 * any extra contention... 108 */ 109 110 /* In order to reduce some races, while at the same time doing additional 111 * checking and hopefully speeding things up, we copy filenames to the 112 * kernel data space before using them.. 113 * 114 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 115 * PATH_MAX includes the nul terminator --RR. 116 */ 117 static int do_getname(const char __user *filename, char *page) 118 { 119 int retval; 120 unsigned long len = PATH_MAX; 121 122 if (!segment_eq(get_fs(), KERNEL_DS)) { 123 if ((unsigned long) filename >= TASK_SIZE) 124 return -EFAULT; 125 if (TASK_SIZE - (unsigned long) filename < PATH_MAX) 126 len = TASK_SIZE - (unsigned long) filename; 127 } 128 129 retval = strncpy_from_user(page, filename, len); 130 if (retval > 0) { 131 if (retval < len) 132 return 0; 133 return -ENAMETOOLONG; 134 } else if (!retval) 135 retval = -ENOENT; 136 return retval; 137 } 138 139 char * getname(const char __user * filename) 140 { 141 char *tmp, *result; 142 143 result = ERR_PTR(-ENOMEM); 144 tmp = __getname(); 145 if (tmp) { 146 int retval = do_getname(filename, tmp); 147 148 result = tmp; 149 if (retval < 0) { 150 __putname(tmp); 151 result = ERR_PTR(retval); 152 } 153 } 154 audit_getname(result); 155 return result; 156 } 157 158 #ifdef CONFIG_AUDITSYSCALL 159 void putname(const char *name) 160 { 161 if (unlikely(!audit_dummy_context())) 162 audit_putname(name); 163 else 164 __putname(name); 165 } 166 EXPORT_SYMBOL(putname); 167 #endif 168 169 /* 170 * This does basic POSIX ACL permission checking 171 */ 172 static int acl_permission_check(struct inode *inode, int mask, 173 int (*check_acl)(struct inode *inode, int mask)) 174 { 175 umode_t mode = inode->i_mode; 176 177 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 178 179 if (current_fsuid() == inode->i_uid) 180 mode >>= 6; 181 else { 182 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) { 183 int error = check_acl(inode, mask); 184 if (error != -EAGAIN) 185 return error; 186 } 187 188 if (in_group_p(inode->i_gid)) 189 mode >>= 3; 190 } 191 192 /* 193 * If the DACs are ok we don't need any capability check. 194 */ 195 if ((mask & ~mode) == 0) 196 return 0; 197 return -EACCES; 198 } 199 200 /** 201 * generic_permission - check for access rights on a Posix-like filesystem 202 * @inode: inode to check access rights for 203 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 204 * @check_acl: optional callback to check for Posix ACLs 205 * 206 * Used to check for read/write/execute permissions on a file. 207 * We use "fsuid" for this, letting us set arbitrary permissions 208 * for filesystem access without changing the "normal" uids which 209 * are used for other things.. 210 */ 211 int generic_permission(struct inode *inode, int mask, 212 int (*check_acl)(struct inode *inode, int mask)) 213 { 214 int ret; 215 216 /* 217 * Do the basic POSIX ACL permission checks. 218 */ 219 ret = acl_permission_check(inode, mask, check_acl); 220 if (ret != -EACCES) 221 return ret; 222 223 /* 224 * Read/write DACs are always overridable. 225 * Executable DACs are overridable if at least one exec bit is set. 226 */ 227 if (!(mask & MAY_EXEC) || execute_ok(inode)) 228 if (capable(CAP_DAC_OVERRIDE)) 229 return 0; 230 231 /* 232 * Searching includes executable on directories, else just read. 233 */ 234 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 235 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE))) 236 if (capable(CAP_DAC_READ_SEARCH)) 237 return 0; 238 239 return -EACCES; 240 } 241 242 /** 243 * inode_permission - check for access rights to a given inode 244 * @inode: inode to check permission on 245 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 246 * 247 * Used to check for read/write/execute permissions on an inode. 248 * We use "fsuid" for this, letting us set arbitrary permissions 249 * for filesystem access without changing the "normal" uids which 250 * are used for other things. 251 */ 252 int inode_permission(struct inode *inode, int mask) 253 { 254 int retval; 255 256 if (mask & MAY_WRITE) { 257 umode_t mode = inode->i_mode; 258 259 /* 260 * Nobody gets write access to a read-only fs. 261 */ 262 if (IS_RDONLY(inode) && 263 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 264 return -EROFS; 265 266 /* 267 * Nobody gets write access to an immutable file. 268 */ 269 if (IS_IMMUTABLE(inode)) 270 return -EACCES; 271 } 272 273 if (inode->i_op->permission) 274 retval = inode->i_op->permission(inode, mask); 275 else 276 retval = generic_permission(inode, mask, inode->i_op->check_acl); 277 278 if (retval) 279 return retval; 280 281 retval = devcgroup_inode_permission(inode, mask); 282 if (retval) 283 return retval; 284 285 return security_inode_permission(inode, mask); 286 } 287 288 /** 289 * file_permission - check for additional access rights to a given file 290 * @file: file to check access rights for 291 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 292 * 293 * Used to check for read/write/execute permissions on an already opened 294 * file. 295 * 296 * Note: 297 * Do not use this function in new code. All access checks should 298 * be done using inode_permission(). 299 */ 300 int file_permission(struct file *file, int mask) 301 { 302 return inode_permission(file->f_path.dentry->d_inode, mask); 303 } 304 305 /* 306 * get_write_access() gets write permission for a file. 307 * put_write_access() releases this write permission. 308 * This is used for regular files. 309 * We cannot support write (and maybe mmap read-write shared) accesses and 310 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode 311 * can have the following values: 312 * 0: no writers, no VM_DENYWRITE mappings 313 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist 314 * > 0: (i_writecount) users are writing to the file. 315 * 316 * Normally we operate on that counter with atomic_{inc,dec} and it's safe 317 * except for the cases where we don't hold i_writecount yet. Then we need to 318 * use {get,deny}_write_access() - these functions check the sign and refuse 319 * to do the change if sign is wrong. Exclusion between them is provided by 320 * the inode->i_lock spinlock. 321 */ 322 323 int get_write_access(struct inode * inode) 324 { 325 spin_lock(&inode->i_lock); 326 if (atomic_read(&inode->i_writecount) < 0) { 327 spin_unlock(&inode->i_lock); 328 return -ETXTBSY; 329 } 330 atomic_inc(&inode->i_writecount); 331 spin_unlock(&inode->i_lock); 332 333 return 0; 334 } 335 336 int deny_write_access(struct file * file) 337 { 338 struct inode *inode = file->f_path.dentry->d_inode; 339 340 spin_lock(&inode->i_lock); 341 if (atomic_read(&inode->i_writecount) > 0) { 342 spin_unlock(&inode->i_lock); 343 return -ETXTBSY; 344 } 345 atomic_dec(&inode->i_writecount); 346 spin_unlock(&inode->i_lock); 347 348 return 0; 349 } 350 351 /** 352 * path_get - get a reference to a path 353 * @path: path to get the reference to 354 * 355 * Given a path increment the reference count to the dentry and the vfsmount. 356 */ 357 void path_get(struct path *path) 358 { 359 mntget(path->mnt); 360 dget(path->dentry); 361 } 362 EXPORT_SYMBOL(path_get); 363 364 /** 365 * path_put - put a reference to a path 366 * @path: path to put the reference to 367 * 368 * Given a path decrement the reference count to the dentry and the vfsmount. 369 */ 370 void path_put(struct path *path) 371 { 372 dput(path->dentry); 373 mntput(path->mnt); 374 } 375 EXPORT_SYMBOL(path_put); 376 377 /** 378 * release_open_intent - free up open intent resources 379 * @nd: pointer to nameidata 380 */ 381 void release_open_intent(struct nameidata *nd) 382 { 383 if (nd->intent.open.file->f_path.dentry == NULL) 384 put_filp(nd->intent.open.file); 385 else 386 fput(nd->intent.open.file); 387 } 388 389 static inline struct dentry * 390 do_revalidate(struct dentry *dentry, struct nameidata *nd) 391 { 392 int status = dentry->d_op->d_revalidate(dentry, nd); 393 if (unlikely(status <= 0)) { 394 /* 395 * The dentry failed validation. 396 * If d_revalidate returned 0 attempt to invalidate 397 * the dentry otherwise d_revalidate is asking us 398 * to return a fail status. 399 */ 400 if (!status) { 401 if (!d_invalidate(dentry)) { 402 dput(dentry); 403 dentry = NULL; 404 } 405 } else { 406 dput(dentry); 407 dentry = ERR_PTR(status); 408 } 409 } 410 return dentry; 411 } 412 413 /* 414 * force_reval_path - force revalidation of a dentry 415 * 416 * In some situations the path walking code will trust dentries without 417 * revalidating them. This causes problems for filesystems that depend on 418 * d_revalidate to handle file opens (e.g. NFSv4). When FS_REVAL_DOT is set 419 * (which indicates that it's possible for the dentry to go stale), force 420 * a d_revalidate call before proceeding. 421 * 422 * Returns 0 if the revalidation was successful. If the revalidation fails, 423 * either return the error returned by d_revalidate or -ESTALE if the 424 * revalidation it just returned 0. If d_revalidate returns 0, we attempt to 425 * invalidate the dentry. It's up to the caller to handle putting references 426 * to the path if necessary. 427 */ 428 static int 429 force_reval_path(struct path *path, struct nameidata *nd) 430 { 431 int status; 432 struct dentry *dentry = path->dentry; 433 434 /* 435 * only check on filesystems where it's possible for the dentry to 436 * become stale. It's assumed that if this flag is set then the 437 * d_revalidate op will also be defined. 438 */ 439 if (!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) 440 return 0; 441 442 status = dentry->d_op->d_revalidate(dentry, nd); 443 if (status > 0) 444 return 0; 445 446 if (!status) { 447 d_invalidate(dentry); 448 status = -ESTALE; 449 } 450 return status; 451 } 452 453 /* 454 * Short-cut version of permission(), for calling on directories 455 * during pathname resolution. Combines parts of permission() 456 * and generic_permission(), and tests ONLY for MAY_EXEC permission. 457 * 458 * If appropriate, check DAC only. If not appropriate, or 459 * short-cut DAC fails, then call ->permission() to do more 460 * complete permission check. 461 */ 462 static int exec_permission(struct inode *inode) 463 { 464 int ret; 465 466 if (inode->i_op->permission) { 467 ret = inode->i_op->permission(inode, MAY_EXEC); 468 if (!ret) 469 goto ok; 470 return ret; 471 } 472 ret = acl_permission_check(inode, MAY_EXEC, inode->i_op->check_acl); 473 if (!ret) 474 goto ok; 475 476 if (capable(CAP_DAC_OVERRIDE) || capable(CAP_DAC_READ_SEARCH)) 477 goto ok; 478 479 return ret; 480 ok: 481 return security_inode_permission(inode, MAY_EXEC); 482 } 483 484 static __always_inline void set_root(struct nameidata *nd) 485 { 486 if (!nd->root.mnt) { 487 struct fs_struct *fs = current->fs; 488 read_lock(&fs->lock); 489 nd->root = fs->root; 490 path_get(&nd->root); 491 read_unlock(&fs->lock); 492 } 493 } 494 495 static int link_path_walk(const char *, struct nameidata *); 496 497 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link) 498 { 499 if (IS_ERR(link)) 500 goto fail; 501 502 if (*link == '/') { 503 set_root(nd); 504 path_put(&nd->path); 505 nd->path = nd->root; 506 path_get(&nd->root); 507 } 508 509 return link_path_walk(link, nd); 510 fail: 511 path_put(&nd->path); 512 return PTR_ERR(link); 513 } 514 515 static void path_put_conditional(struct path *path, struct nameidata *nd) 516 { 517 dput(path->dentry); 518 if (path->mnt != nd->path.mnt) 519 mntput(path->mnt); 520 } 521 522 static inline void path_to_nameidata(struct path *path, struct nameidata *nd) 523 { 524 dput(nd->path.dentry); 525 if (nd->path.mnt != path->mnt) { 526 mntput(nd->path.mnt); 527 nd->path.mnt = path->mnt; 528 } 529 nd->path.dentry = path->dentry; 530 } 531 532 static __always_inline int 533 __do_follow_link(struct path *path, struct nameidata *nd, void **p) 534 { 535 int error; 536 struct dentry *dentry = path->dentry; 537 538 touch_atime(path->mnt, dentry); 539 nd_set_link(nd, NULL); 540 541 if (path->mnt != nd->path.mnt) { 542 path_to_nameidata(path, nd); 543 dget(dentry); 544 } 545 mntget(path->mnt); 546 nd->last_type = LAST_BIND; 547 *p = dentry->d_inode->i_op->follow_link(dentry, nd); 548 error = PTR_ERR(*p); 549 if (!IS_ERR(*p)) { 550 char *s = nd_get_link(nd); 551 error = 0; 552 if (s) 553 error = __vfs_follow_link(nd, s); 554 else if (nd->last_type == LAST_BIND) { 555 error = force_reval_path(&nd->path, nd); 556 if (error) 557 path_put(&nd->path); 558 } 559 } 560 return error; 561 } 562 563 /* 564 * This limits recursive symlink follows to 8, while 565 * limiting consecutive symlinks to 40. 566 * 567 * Without that kind of total limit, nasty chains of consecutive 568 * symlinks can cause almost arbitrarily long lookups. 569 */ 570 static inline int do_follow_link(struct path *path, struct nameidata *nd) 571 { 572 void *cookie; 573 int err = -ELOOP; 574 if (current->link_count >= MAX_NESTED_LINKS) 575 goto loop; 576 if (current->total_link_count >= 40) 577 goto loop; 578 BUG_ON(nd->depth >= MAX_NESTED_LINKS); 579 cond_resched(); 580 err = security_inode_follow_link(path->dentry, nd); 581 if (err) 582 goto loop; 583 current->link_count++; 584 current->total_link_count++; 585 nd->depth++; 586 err = __do_follow_link(path, nd, &cookie); 587 if (!IS_ERR(cookie) && path->dentry->d_inode->i_op->put_link) 588 path->dentry->d_inode->i_op->put_link(path->dentry, nd, cookie); 589 path_put(path); 590 current->link_count--; 591 nd->depth--; 592 return err; 593 loop: 594 path_put_conditional(path, nd); 595 path_put(&nd->path); 596 return err; 597 } 598 599 int follow_up(struct path *path) 600 { 601 struct vfsmount *parent; 602 struct dentry *mountpoint; 603 spin_lock(&vfsmount_lock); 604 parent = path->mnt->mnt_parent; 605 if (parent == path->mnt) { 606 spin_unlock(&vfsmount_lock); 607 return 0; 608 } 609 mntget(parent); 610 mountpoint = dget(path->mnt->mnt_mountpoint); 611 spin_unlock(&vfsmount_lock); 612 dput(path->dentry); 613 path->dentry = mountpoint; 614 mntput(path->mnt); 615 path->mnt = parent; 616 return 1; 617 } 618 619 /* no need for dcache_lock, as serialization is taken care in 620 * namespace.c 621 */ 622 static int __follow_mount(struct path *path) 623 { 624 int res = 0; 625 while (d_mountpoint(path->dentry)) { 626 struct vfsmount *mounted = lookup_mnt(path); 627 if (!mounted) 628 break; 629 dput(path->dentry); 630 if (res) 631 mntput(path->mnt); 632 path->mnt = mounted; 633 path->dentry = dget(mounted->mnt_root); 634 res = 1; 635 } 636 return res; 637 } 638 639 static void follow_mount(struct path *path) 640 { 641 while (d_mountpoint(path->dentry)) { 642 struct vfsmount *mounted = lookup_mnt(path); 643 if (!mounted) 644 break; 645 dput(path->dentry); 646 mntput(path->mnt); 647 path->mnt = mounted; 648 path->dentry = dget(mounted->mnt_root); 649 } 650 } 651 652 /* no need for dcache_lock, as serialization is taken care in 653 * namespace.c 654 */ 655 int follow_down(struct path *path) 656 { 657 struct vfsmount *mounted; 658 659 mounted = lookup_mnt(path); 660 if (mounted) { 661 dput(path->dentry); 662 mntput(path->mnt); 663 path->mnt = mounted; 664 path->dentry = dget(mounted->mnt_root); 665 return 1; 666 } 667 return 0; 668 } 669 670 static __always_inline void follow_dotdot(struct nameidata *nd) 671 { 672 set_root(nd); 673 674 while(1) { 675 struct dentry *old = nd->path.dentry; 676 677 if (nd->path.dentry == nd->root.dentry && 678 nd->path.mnt == nd->root.mnt) { 679 break; 680 } 681 if (nd->path.dentry != nd->path.mnt->mnt_root) { 682 /* rare case of legitimate dget_parent()... */ 683 nd->path.dentry = dget_parent(nd->path.dentry); 684 dput(old); 685 break; 686 } 687 if (!follow_up(&nd->path)) 688 break; 689 } 690 follow_mount(&nd->path); 691 } 692 693 /* 694 * It's more convoluted than I'd like it to be, but... it's still fairly 695 * small and for now I'd prefer to have fast path as straight as possible. 696 * It _is_ time-critical. 697 */ 698 static int do_lookup(struct nameidata *nd, struct qstr *name, 699 struct path *path) 700 { 701 struct vfsmount *mnt = nd->path.mnt; 702 struct dentry *dentry, *parent; 703 struct inode *dir; 704 /* 705 * See if the low-level filesystem might want 706 * to use its own hash.. 707 */ 708 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) { 709 int err = nd->path.dentry->d_op->d_hash(nd->path.dentry, name); 710 if (err < 0) 711 return err; 712 } 713 714 dentry = __d_lookup(nd->path.dentry, name); 715 if (!dentry) 716 goto need_lookup; 717 if (dentry->d_op && dentry->d_op->d_revalidate) 718 goto need_revalidate; 719 done: 720 path->mnt = mnt; 721 path->dentry = dentry; 722 __follow_mount(path); 723 return 0; 724 725 need_lookup: 726 parent = nd->path.dentry; 727 dir = parent->d_inode; 728 729 mutex_lock(&dir->i_mutex); 730 /* 731 * First re-do the cached lookup just in case it was created 732 * while we waited for the directory semaphore.. 733 * 734 * FIXME! This could use version numbering or similar to 735 * avoid unnecessary cache lookups. 736 * 737 * The "dcache_lock" is purely to protect the RCU list walker 738 * from concurrent renames at this point (we mustn't get false 739 * negatives from the RCU list walk here, unlike the optimistic 740 * fast walk). 741 * 742 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup 743 */ 744 dentry = d_lookup(parent, name); 745 if (!dentry) { 746 struct dentry *new; 747 748 /* Don't create child dentry for a dead directory. */ 749 dentry = ERR_PTR(-ENOENT); 750 if (IS_DEADDIR(dir)) 751 goto out_unlock; 752 753 new = d_alloc(parent, name); 754 dentry = ERR_PTR(-ENOMEM); 755 if (new) { 756 dentry = dir->i_op->lookup(dir, new, nd); 757 if (dentry) 758 dput(new); 759 else 760 dentry = new; 761 } 762 out_unlock: 763 mutex_unlock(&dir->i_mutex); 764 if (IS_ERR(dentry)) 765 goto fail; 766 goto done; 767 } 768 769 /* 770 * Uhhuh! Nasty case: the cache was re-populated while 771 * we waited on the semaphore. Need to revalidate. 772 */ 773 mutex_unlock(&dir->i_mutex); 774 if (dentry->d_op && dentry->d_op->d_revalidate) { 775 dentry = do_revalidate(dentry, nd); 776 if (!dentry) 777 dentry = ERR_PTR(-ENOENT); 778 } 779 if (IS_ERR(dentry)) 780 goto fail; 781 goto done; 782 783 need_revalidate: 784 dentry = do_revalidate(dentry, nd); 785 if (!dentry) 786 goto need_lookup; 787 if (IS_ERR(dentry)) 788 goto fail; 789 goto done; 790 791 fail: 792 return PTR_ERR(dentry); 793 } 794 795 /* 796 * This is a temporary kludge to deal with "automount" symlinks; proper 797 * solution is to trigger them on follow_mount(), so that do_lookup() 798 * would DTRT. To be killed before 2.6.34-final. 799 */ 800 static inline int follow_on_final(struct inode *inode, unsigned lookup_flags) 801 { 802 return inode && unlikely(inode->i_op->follow_link) && 803 ((lookup_flags & LOOKUP_FOLLOW) || S_ISDIR(inode->i_mode)); 804 } 805 806 /* 807 * Name resolution. 808 * This is the basic name resolution function, turning a pathname into 809 * the final dentry. We expect 'base' to be positive and a directory. 810 * 811 * Returns 0 and nd will have valid dentry and mnt on success. 812 * Returns error and drops reference to input namei data on failure. 813 */ 814 static int link_path_walk(const char *name, struct nameidata *nd) 815 { 816 struct path next; 817 struct inode *inode; 818 int err; 819 unsigned int lookup_flags = nd->flags; 820 821 while (*name=='/') 822 name++; 823 if (!*name) 824 goto return_reval; 825 826 inode = nd->path.dentry->d_inode; 827 if (nd->depth) 828 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE); 829 830 /* At this point we know we have a real path component. */ 831 for(;;) { 832 unsigned long hash; 833 struct qstr this; 834 unsigned int c; 835 836 nd->flags |= LOOKUP_CONTINUE; 837 err = exec_permission(inode); 838 if (err) 839 break; 840 841 this.name = name; 842 c = *(const unsigned char *)name; 843 844 hash = init_name_hash(); 845 do { 846 name++; 847 hash = partial_name_hash(c, hash); 848 c = *(const unsigned char *)name; 849 } while (c && (c != '/')); 850 this.len = name - (const char *) this.name; 851 this.hash = end_name_hash(hash); 852 853 /* remove trailing slashes? */ 854 if (!c) 855 goto last_component; 856 while (*++name == '/'); 857 if (!*name) 858 goto last_with_slashes; 859 860 /* 861 * "." and ".." are special - ".." especially so because it has 862 * to be able to know about the current root directory and 863 * parent relationships. 864 */ 865 if (this.name[0] == '.') switch (this.len) { 866 default: 867 break; 868 case 2: 869 if (this.name[1] != '.') 870 break; 871 follow_dotdot(nd); 872 inode = nd->path.dentry->d_inode; 873 /* fallthrough */ 874 case 1: 875 continue; 876 } 877 /* This does the actual lookups.. */ 878 err = do_lookup(nd, &this, &next); 879 if (err) 880 break; 881 882 err = -ENOENT; 883 inode = next.dentry->d_inode; 884 if (!inode) 885 goto out_dput; 886 887 if (inode->i_op->follow_link) { 888 err = do_follow_link(&next, nd); 889 if (err) 890 goto return_err; 891 err = -ENOENT; 892 inode = nd->path.dentry->d_inode; 893 if (!inode) 894 break; 895 } else 896 path_to_nameidata(&next, nd); 897 err = -ENOTDIR; 898 if (!inode->i_op->lookup) 899 break; 900 continue; 901 /* here ends the main loop */ 902 903 last_with_slashes: 904 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 905 last_component: 906 /* Clear LOOKUP_CONTINUE iff it was previously unset */ 907 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE; 908 if (lookup_flags & LOOKUP_PARENT) 909 goto lookup_parent; 910 if (this.name[0] == '.') switch (this.len) { 911 default: 912 break; 913 case 2: 914 if (this.name[1] != '.') 915 break; 916 follow_dotdot(nd); 917 inode = nd->path.dentry->d_inode; 918 /* fallthrough */ 919 case 1: 920 goto return_reval; 921 } 922 err = do_lookup(nd, &this, &next); 923 if (err) 924 break; 925 inode = next.dentry->d_inode; 926 if (follow_on_final(inode, lookup_flags)) { 927 err = do_follow_link(&next, nd); 928 if (err) 929 goto return_err; 930 inode = nd->path.dentry->d_inode; 931 } else 932 path_to_nameidata(&next, nd); 933 err = -ENOENT; 934 if (!inode) 935 break; 936 if (lookup_flags & LOOKUP_DIRECTORY) { 937 err = -ENOTDIR; 938 if (!inode->i_op->lookup) 939 break; 940 } 941 goto return_base; 942 lookup_parent: 943 nd->last = this; 944 nd->last_type = LAST_NORM; 945 if (this.name[0] != '.') 946 goto return_base; 947 if (this.len == 1) 948 nd->last_type = LAST_DOT; 949 else if (this.len == 2 && this.name[1] == '.') 950 nd->last_type = LAST_DOTDOT; 951 else 952 goto return_base; 953 return_reval: 954 /* 955 * We bypassed the ordinary revalidation routines. 956 * We may need to check the cached dentry for staleness. 957 */ 958 if (nd->path.dentry && nd->path.dentry->d_sb && 959 (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) { 960 err = -ESTALE; 961 /* Note: we do not d_invalidate() */ 962 if (!nd->path.dentry->d_op->d_revalidate( 963 nd->path.dentry, nd)) 964 break; 965 } 966 return_base: 967 return 0; 968 out_dput: 969 path_put_conditional(&next, nd); 970 break; 971 } 972 path_put(&nd->path); 973 return_err: 974 return err; 975 } 976 977 static int path_walk(const char *name, struct nameidata *nd) 978 { 979 struct path save = nd->path; 980 int result; 981 982 current->total_link_count = 0; 983 984 /* make sure the stuff we saved doesn't go away */ 985 path_get(&save); 986 987 result = link_path_walk(name, nd); 988 if (result == -ESTALE) { 989 /* nd->path had been dropped */ 990 current->total_link_count = 0; 991 nd->path = save; 992 path_get(&nd->path); 993 nd->flags |= LOOKUP_REVAL; 994 result = link_path_walk(name, nd); 995 } 996 997 path_put(&save); 998 999 return result; 1000 } 1001 1002 static int path_init(int dfd, const char *name, unsigned int flags, struct nameidata *nd) 1003 { 1004 int retval = 0; 1005 int fput_needed; 1006 struct file *file; 1007 1008 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 1009 nd->flags = flags; 1010 nd->depth = 0; 1011 nd->root.mnt = NULL; 1012 1013 if (*name=='/') { 1014 set_root(nd); 1015 nd->path = nd->root; 1016 path_get(&nd->root); 1017 } else if (dfd == AT_FDCWD) { 1018 struct fs_struct *fs = current->fs; 1019 read_lock(&fs->lock); 1020 nd->path = fs->pwd; 1021 path_get(&fs->pwd); 1022 read_unlock(&fs->lock); 1023 } else { 1024 struct dentry *dentry; 1025 1026 file = fget_light(dfd, &fput_needed); 1027 retval = -EBADF; 1028 if (!file) 1029 goto out_fail; 1030 1031 dentry = file->f_path.dentry; 1032 1033 retval = -ENOTDIR; 1034 if (!S_ISDIR(dentry->d_inode->i_mode)) 1035 goto fput_fail; 1036 1037 retval = file_permission(file, MAY_EXEC); 1038 if (retval) 1039 goto fput_fail; 1040 1041 nd->path = file->f_path; 1042 path_get(&file->f_path); 1043 1044 fput_light(file, fput_needed); 1045 } 1046 return 0; 1047 1048 fput_fail: 1049 fput_light(file, fput_needed); 1050 out_fail: 1051 return retval; 1052 } 1053 1054 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 1055 static int do_path_lookup(int dfd, const char *name, 1056 unsigned int flags, struct nameidata *nd) 1057 { 1058 int retval = path_init(dfd, name, flags, nd); 1059 if (!retval) 1060 retval = path_walk(name, nd); 1061 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry && 1062 nd->path.dentry->d_inode)) 1063 audit_inode(name, nd->path.dentry); 1064 if (nd->root.mnt) { 1065 path_put(&nd->root); 1066 nd->root.mnt = NULL; 1067 } 1068 return retval; 1069 } 1070 1071 int path_lookup(const char *name, unsigned int flags, 1072 struct nameidata *nd) 1073 { 1074 return do_path_lookup(AT_FDCWD, name, flags, nd); 1075 } 1076 1077 int kern_path(const char *name, unsigned int flags, struct path *path) 1078 { 1079 struct nameidata nd; 1080 int res = do_path_lookup(AT_FDCWD, name, flags, &nd); 1081 if (!res) 1082 *path = nd.path; 1083 return res; 1084 } 1085 1086 /** 1087 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 1088 * @dentry: pointer to dentry of the base directory 1089 * @mnt: pointer to vfs mount of the base directory 1090 * @name: pointer to file name 1091 * @flags: lookup flags 1092 * @nd: pointer to nameidata 1093 */ 1094 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 1095 const char *name, unsigned int flags, 1096 struct nameidata *nd) 1097 { 1098 int retval; 1099 1100 /* same as do_path_lookup */ 1101 nd->last_type = LAST_ROOT; 1102 nd->flags = flags; 1103 nd->depth = 0; 1104 1105 nd->path.dentry = dentry; 1106 nd->path.mnt = mnt; 1107 path_get(&nd->path); 1108 nd->root = nd->path; 1109 path_get(&nd->root); 1110 1111 retval = path_walk(name, nd); 1112 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry && 1113 nd->path.dentry->d_inode)) 1114 audit_inode(name, nd->path.dentry); 1115 1116 path_put(&nd->root); 1117 nd->root.mnt = NULL; 1118 1119 return retval; 1120 } 1121 1122 static struct dentry *__lookup_hash(struct qstr *name, 1123 struct dentry *base, struct nameidata *nd) 1124 { 1125 struct dentry *dentry; 1126 struct inode *inode; 1127 int err; 1128 1129 inode = base->d_inode; 1130 1131 /* 1132 * See if the low-level filesystem might want 1133 * to use its own hash.. 1134 */ 1135 if (base->d_op && base->d_op->d_hash) { 1136 err = base->d_op->d_hash(base, name); 1137 dentry = ERR_PTR(err); 1138 if (err < 0) 1139 goto out; 1140 } 1141 1142 dentry = __d_lookup(base, name); 1143 1144 /* lockess __d_lookup may fail due to concurrent d_move() 1145 * in some unrelated directory, so try with d_lookup 1146 */ 1147 if (!dentry) 1148 dentry = d_lookup(base, name); 1149 1150 if (dentry && dentry->d_op && dentry->d_op->d_revalidate) 1151 dentry = do_revalidate(dentry, nd); 1152 1153 if (!dentry) { 1154 struct dentry *new; 1155 1156 /* Don't create child dentry for a dead directory. */ 1157 dentry = ERR_PTR(-ENOENT); 1158 if (IS_DEADDIR(inode)) 1159 goto out; 1160 1161 new = d_alloc(base, name); 1162 dentry = ERR_PTR(-ENOMEM); 1163 if (!new) 1164 goto out; 1165 dentry = inode->i_op->lookup(inode, new, nd); 1166 if (!dentry) 1167 dentry = new; 1168 else 1169 dput(new); 1170 } 1171 out: 1172 return dentry; 1173 } 1174 1175 /* 1176 * Restricted form of lookup. Doesn't follow links, single-component only, 1177 * needs parent already locked. Doesn't follow mounts. 1178 * SMP-safe. 1179 */ 1180 static struct dentry *lookup_hash(struct nameidata *nd) 1181 { 1182 int err; 1183 1184 err = exec_permission(nd->path.dentry->d_inode); 1185 if (err) 1186 return ERR_PTR(err); 1187 return __lookup_hash(&nd->last, nd->path.dentry, nd); 1188 } 1189 1190 static int __lookup_one_len(const char *name, struct qstr *this, 1191 struct dentry *base, int len) 1192 { 1193 unsigned long hash; 1194 unsigned int c; 1195 1196 this->name = name; 1197 this->len = len; 1198 if (!len) 1199 return -EACCES; 1200 1201 hash = init_name_hash(); 1202 while (len--) { 1203 c = *(const unsigned char *)name++; 1204 if (c == '/' || c == '\0') 1205 return -EACCES; 1206 hash = partial_name_hash(c, hash); 1207 } 1208 this->hash = end_name_hash(hash); 1209 return 0; 1210 } 1211 1212 /** 1213 * lookup_one_len - filesystem helper to lookup single pathname component 1214 * @name: pathname component to lookup 1215 * @base: base directory to lookup from 1216 * @len: maximum length @len should be interpreted to 1217 * 1218 * Note that this routine is purely a helper for filesystem usage and should 1219 * not be called by generic code. Also note that by using this function the 1220 * nameidata argument is passed to the filesystem methods and a filesystem 1221 * using this helper needs to be prepared for that. 1222 */ 1223 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 1224 { 1225 int err; 1226 struct qstr this; 1227 1228 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex)); 1229 1230 err = __lookup_one_len(name, &this, base, len); 1231 if (err) 1232 return ERR_PTR(err); 1233 1234 err = exec_permission(base->d_inode); 1235 if (err) 1236 return ERR_PTR(err); 1237 return __lookup_hash(&this, base, NULL); 1238 } 1239 1240 int user_path_at(int dfd, const char __user *name, unsigned flags, 1241 struct path *path) 1242 { 1243 struct nameidata nd; 1244 char *tmp = getname(name); 1245 int err = PTR_ERR(tmp); 1246 if (!IS_ERR(tmp)) { 1247 1248 BUG_ON(flags & LOOKUP_PARENT); 1249 1250 err = do_path_lookup(dfd, tmp, flags, &nd); 1251 putname(tmp); 1252 if (!err) 1253 *path = nd.path; 1254 } 1255 return err; 1256 } 1257 1258 static int user_path_parent(int dfd, const char __user *path, 1259 struct nameidata *nd, char **name) 1260 { 1261 char *s = getname(path); 1262 int error; 1263 1264 if (IS_ERR(s)) 1265 return PTR_ERR(s); 1266 1267 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd); 1268 if (error) 1269 putname(s); 1270 else 1271 *name = s; 1272 1273 return error; 1274 } 1275 1276 /* 1277 * It's inline, so penalty for filesystems that don't use sticky bit is 1278 * minimal. 1279 */ 1280 static inline int check_sticky(struct inode *dir, struct inode *inode) 1281 { 1282 uid_t fsuid = current_fsuid(); 1283 1284 if (!(dir->i_mode & S_ISVTX)) 1285 return 0; 1286 if (inode->i_uid == fsuid) 1287 return 0; 1288 if (dir->i_uid == fsuid) 1289 return 0; 1290 return !capable(CAP_FOWNER); 1291 } 1292 1293 /* 1294 * Check whether we can remove a link victim from directory dir, check 1295 * whether the type of victim is right. 1296 * 1. We can't do it if dir is read-only (done in permission()) 1297 * 2. We should have write and exec permissions on dir 1298 * 3. We can't remove anything from append-only dir 1299 * 4. We can't do anything with immutable dir (done in permission()) 1300 * 5. If the sticky bit on dir is set we should either 1301 * a. be owner of dir, or 1302 * b. be owner of victim, or 1303 * c. have CAP_FOWNER capability 1304 * 6. If the victim is append-only or immutable we can't do antyhing with 1305 * links pointing to it. 1306 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 1307 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 1308 * 9. We can't remove a root or mountpoint. 1309 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 1310 * nfs_async_unlink(). 1311 */ 1312 static int may_delete(struct inode *dir,struct dentry *victim,int isdir) 1313 { 1314 int error; 1315 1316 if (!victim->d_inode) 1317 return -ENOENT; 1318 1319 BUG_ON(victim->d_parent->d_inode != dir); 1320 audit_inode_child(victim, dir); 1321 1322 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 1323 if (error) 1324 return error; 1325 if (IS_APPEND(dir)) 1326 return -EPERM; 1327 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)|| 1328 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode)) 1329 return -EPERM; 1330 if (isdir) { 1331 if (!S_ISDIR(victim->d_inode->i_mode)) 1332 return -ENOTDIR; 1333 if (IS_ROOT(victim)) 1334 return -EBUSY; 1335 } else if (S_ISDIR(victim->d_inode->i_mode)) 1336 return -EISDIR; 1337 if (IS_DEADDIR(dir)) 1338 return -ENOENT; 1339 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 1340 return -EBUSY; 1341 return 0; 1342 } 1343 1344 /* Check whether we can create an object with dentry child in directory 1345 * dir. 1346 * 1. We can't do it if child already exists (open has special treatment for 1347 * this case, but since we are inlined it's OK) 1348 * 2. We can't do it if dir is read-only (done in permission()) 1349 * 3. We should have write and exec permissions on dir 1350 * 4. We can't do it if dir is immutable (done in permission()) 1351 */ 1352 static inline int may_create(struct inode *dir, struct dentry *child) 1353 { 1354 if (child->d_inode) 1355 return -EEXIST; 1356 if (IS_DEADDIR(dir)) 1357 return -ENOENT; 1358 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 1359 } 1360 1361 /* 1362 * p1 and p2 should be directories on the same fs. 1363 */ 1364 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 1365 { 1366 struct dentry *p; 1367 1368 if (p1 == p2) { 1369 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1370 return NULL; 1371 } 1372 1373 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 1374 1375 p = d_ancestor(p2, p1); 1376 if (p) { 1377 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT); 1378 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD); 1379 return p; 1380 } 1381 1382 p = d_ancestor(p1, p2); 1383 if (p) { 1384 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1385 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 1386 return p; 1387 } 1388 1389 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1390 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 1391 return NULL; 1392 } 1393 1394 void unlock_rename(struct dentry *p1, struct dentry *p2) 1395 { 1396 mutex_unlock(&p1->d_inode->i_mutex); 1397 if (p1 != p2) { 1398 mutex_unlock(&p2->d_inode->i_mutex); 1399 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 1400 } 1401 } 1402 1403 int vfs_create(struct inode *dir, struct dentry *dentry, int mode, 1404 struct nameidata *nd) 1405 { 1406 int error = may_create(dir, dentry); 1407 1408 if (error) 1409 return error; 1410 1411 if (!dir->i_op->create) 1412 return -EACCES; /* shouldn't it be ENOSYS? */ 1413 mode &= S_IALLUGO; 1414 mode |= S_IFREG; 1415 error = security_inode_create(dir, dentry, mode); 1416 if (error) 1417 return error; 1418 error = dir->i_op->create(dir, dentry, mode, nd); 1419 if (!error) 1420 fsnotify_create(dir, dentry); 1421 return error; 1422 } 1423 1424 int may_open(struct path *path, int acc_mode, int flag) 1425 { 1426 struct dentry *dentry = path->dentry; 1427 struct inode *inode = dentry->d_inode; 1428 int error; 1429 1430 if (!inode) 1431 return -ENOENT; 1432 1433 switch (inode->i_mode & S_IFMT) { 1434 case S_IFLNK: 1435 return -ELOOP; 1436 case S_IFDIR: 1437 if (acc_mode & MAY_WRITE) 1438 return -EISDIR; 1439 break; 1440 case S_IFBLK: 1441 case S_IFCHR: 1442 if (path->mnt->mnt_flags & MNT_NODEV) 1443 return -EACCES; 1444 /*FALLTHRU*/ 1445 case S_IFIFO: 1446 case S_IFSOCK: 1447 flag &= ~O_TRUNC; 1448 break; 1449 } 1450 1451 error = inode_permission(inode, acc_mode); 1452 if (error) 1453 return error; 1454 1455 /* 1456 * An append-only file must be opened in append mode for writing. 1457 */ 1458 if (IS_APPEND(inode)) { 1459 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 1460 return -EPERM; 1461 if (flag & O_TRUNC) 1462 return -EPERM; 1463 } 1464 1465 /* O_NOATIME can only be set by the owner or superuser */ 1466 if (flag & O_NOATIME && !is_owner_or_cap(inode)) 1467 return -EPERM; 1468 1469 /* 1470 * Ensure there are no outstanding leases on the file. 1471 */ 1472 return break_lease(inode, flag); 1473 } 1474 1475 static int handle_truncate(struct path *path) 1476 { 1477 struct inode *inode = path->dentry->d_inode; 1478 int error = get_write_access(inode); 1479 if (error) 1480 return error; 1481 /* 1482 * Refuse to truncate files with mandatory locks held on them. 1483 */ 1484 error = locks_verify_locked(inode); 1485 if (!error) 1486 error = security_path_truncate(path); 1487 if (!error) { 1488 error = do_truncate(path->dentry, 0, 1489 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 1490 NULL); 1491 } 1492 put_write_access(inode); 1493 return error; 1494 } 1495 1496 /* 1497 * Be careful about ever adding any more callers of this 1498 * function. Its flags must be in the namei format, not 1499 * what get passed to sys_open(). 1500 */ 1501 static int __open_namei_create(struct nameidata *nd, struct path *path, 1502 int open_flag, int mode) 1503 { 1504 int error; 1505 struct dentry *dir = nd->path.dentry; 1506 1507 if (!IS_POSIXACL(dir->d_inode)) 1508 mode &= ~current_umask(); 1509 error = security_path_mknod(&nd->path, path->dentry, mode, 0); 1510 if (error) 1511 goto out_unlock; 1512 error = vfs_create(dir->d_inode, path->dentry, mode, nd); 1513 out_unlock: 1514 mutex_unlock(&dir->d_inode->i_mutex); 1515 dput(nd->path.dentry); 1516 nd->path.dentry = path->dentry; 1517 if (error) 1518 return error; 1519 /* Don't check for write permission, don't truncate */ 1520 return may_open(&nd->path, 0, open_flag & ~O_TRUNC); 1521 } 1522 1523 /* 1524 * Note that while the flag value (low two bits) for sys_open means: 1525 * 00 - read-only 1526 * 01 - write-only 1527 * 10 - read-write 1528 * 11 - special 1529 * it is changed into 1530 * 00 - no permissions needed 1531 * 01 - read-permission 1532 * 10 - write-permission 1533 * 11 - read-write 1534 * for the internal routines (ie open_namei()/follow_link() etc) 1535 * This is more logical, and also allows the 00 "no perm needed" 1536 * to be used for symlinks (where the permissions are checked 1537 * later). 1538 * 1539 */ 1540 static inline int open_to_namei_flags(int flag) 1541 { 1542 if ((flag+1) & O_ACCMODE) 1543 flag++; 1544 return flag; 1545 } 1546 1547 static int open_will_truncate(int flag, struct inode *inode) 1548 { 1549 /* 1550 * We'll never write to the fs underlying 1551 * a device file. 1552 */ 1553 if (special_file(inode->i_mode)) 1554 return 0; 1555 return (flag & O_TRUNC); 1556 } 1557 1558 static struct file *finish_open(struct nameidata *nd, 1559 int open_flag, int acc_mode) 1560 { 1561 struct file *filp; 1562 int will_truncate; 1563 int error; 1564 1565 will_truncate = open_will_truncate(open_flag, nd->path.dentry->d_inode); 1566 if (will_truncate) { 1567 error = mnt_want_write(nd->path.mnt); 1568 if (error) 1569 goto exit; 1570 } 1571 error = may_open(&nd->path, acc_mode, open_flag); 1572 if (error) { 1573 if (will_truncate) 1574 mnt_drop_write(nd->path.mnt); 1575 goto exit; 1576 } 1577 filp = nameidata_to_filp(nd); 1578 if (!IS_ERR(filp)) { 1579 error = ima_file_check(filp, acc_mode); 1580 if (error) { 1581 fput(filp); 1582 filp = ERR_PTR(error); 1583 } 1584 } 1585 if (!IS_ERR(filp)) { 1586 if (will_truncate) { 1587 error = handle_truncate(&nd->path); 1588 if (error) { 1589 fput(filp); 1590 filp = ERR_PTR(error); 1591 } 1592 } 1593 } 1594 /* 1595 * It is now safe to drop the mnt write 1596 * because the filp has had a write taken 1597 * on its behalf. 1598 */ 1599 if (will_truncate) 1600 mnt_drop_write(nd->path.mnt); 1601 return filp; 1602 1603 exit: 1604 if (!IS_ERR(nd->intent.open.file)) 1605 release_open_intent(nd); 1606 path_put(&nd->path); 1607 return ERR_PTR(error); 1608 } 1609 1610 static struct file *do_last(struct nameidata *nd, struct path *path, 1611 int open_flag, int acc_mode, 1612 int mode, const char *pathname) 1613 { 1614 struct dentry *dir = nd->path.dentry; 1615 struct file *filp; 1616 int error = -EISDIR; 1617 1618 switch (nd->last_type) { 1619 case LAST_DOTDOT: 1620 follow_dotdot(nd); 1621 dir = nd->path.dentry; 1622 case LAST_DOT: 1623 if (nd->path.mnt->mnt_sb->s_type->fs_flags & FS_REVAL_DOT) { 1624 if (!dir->d_op->d_revalidate(dir, nd)) { 1625 error = -ESTALE; 1626 goto exit; 1627 } 1628 } 1629 /* fallthrough */ 1630 case LAST_ROOT: 1631 if (open_flag & O_CREAT) 1632 goto exit; 1633 /* fallthrough */ 1634 case LAST_BIND: 1635 audit_inode(pathname, dir); 1636 goto ok; 1637 } 1638 1639 /* trailing slashes? */ 1640 if (nd->last.name[nd->last.len]) { 1641 if (open_flag & O_CREAT) 1642 goto exit; 1643 nd->flags |= LOOKUP_DIRECTORY | LOOKUP_FOLLOW; 1644 } 1645 1646 /* just plain open? */ 1647 if (!(open_flag & O_CREAT)) { 1648 error = do_lookup(nd, &nd->last, path); 1649 if (error) 1650 goto exit; 1651 error = -ENOENT; 1652 if (!path->dentry->d_inode) 1653 goto exit_dput; 1654 if (path->dentry->d_inode->i_op->follow_link) 1655 return NULL; 1656 error = -ENOTDIR; 1657 if (nd->flags & LOOKUP_DIRECTORY) { 1658 if (!path->dentry->d_inode->i_op->lookup) 1659 goto exit_dput; 1660 } 1661 path_to_nameidata(path, nd); 1662 audit_inode(pathname, nd->path.dentry); 1663 goto ok; 1664 } 1665 1666 /* OK, it's O_CREAT */ 1667 mutex_lock(&dir->d_inode->i_mutex); 1668 1669 path->dentry = lookup_hash(nd); 1670 path->mnt = nd->path.mnt; 1671 1672 error = PTR_ERR(path->dentry); 1673 if (IS_ERR(path->dentry)) { 1674 mutex_unlock(&dir->d_inode->i_mutex); 1675 goto exit; 1676 } 1677 1678 if (IS_ERR(nd->intent.open.file)) { 1679 error = PTR_ERR(nd->intent.open.file); 1680 goto exit_mutex_unlock; 1681 } 1682 1683 /* Negative dentry, just create the file */ 1684 if (!path->dentry->d_inode) { 1685 /* 1686 * This write is needed to ensure that a 1687 * ro->rw transition does not occur between 1688 * the time when the file is created and when 1689 * a permanent write count is taken through 1690 * the 'struct file' in nameidata_to_filp(). 1691 */ 1692 error = mnt_want_write(nd->path.mnt); 1693 if (error) 1694 goto exit_mutex_unlock; 1695 error = __open_namei_create(nd, path, open_flag, mode); 1696 if (error) { 1697 mnt_drop_write(nd->path.mnt); 1698 goto exit; 1699 } 1700 filp = nameidata_to_filp(nd); 1701 mnt_drop_write(nd->path.mnt); 1702 if (!IS_ERR(filp)) { 1703 error = ima_file_check(filp, acc_mode); 1704 if (error) { 1705 fput(filp); 1706 filp = ERR_PTR(error); 1707 } 1708 } 1709 return filp; 1710 } 1711 1712 /* 1713 * It already exists. 1714 */ 1715 mutex_unlock(&dir->d_inode->i_mutex); 1716 audit_inode(pathname, path->dentry); 1717 1718 error = -EEXIST; 1719 if (open_flag & O_EXCL) 1720 goto exit_dput; 1721 1722 if (__follow_mount(path)) { 1723 error = -ELOOP; 1724 if (open_flag & O_NOFOLLOW) 1725 goto exit_dput; 1726 } 1727 1728 error = -ENOENT; 1729 if (!path->dentry->d_inode) 1730 goto exit_dput; 1731 1732 if (path->dentry->d_inode->i_op->follow_link) 1733 return NULL; 1734 1735 path_to_nameidata(path, nd); 1736 error = -EISDIR; 1737 if (S_ISDIR(path->dentry->d_inode->i_mode)) 1738 goto exit; 1739 ok: 1740 filp = finish_open(nd, open_flag, acc_mode); 1741 return filp; 1742 1743 exit_mutex_unlock: 1744 mutex_unlock(&dir->d_inode->i_mutex); 1745 exit_dput: 1746 path_put_conditional(path, nd); 1747 exit: 1748 if (!IS_ERR(nd->intent.open.file)) 1749 release_open_intent(nd); 1750 path_put(&nd->path); 1751 return ERR_PTR(error); 1752 } 1753 1754 /* 1755 * Note that the low bits of the passed in "open_flag" 1756 * are not the same as in the local variable "flag". See 1757 * open_to_namei_flags() for more details. 1758 */ 1759 struct file *do_filp_open(int dfd, const char *pathname, 1760 int open_flag, int mode, int acc_mode) 1761 { 1762 struct file *filp; 1763 struct nameidata nd; 1764 int error; 1765 struct path path; 1766 int count = 0; 1767 int flag = open_to_namei_flags(open_flag); 1768 int force_reval = 0; 1769 1770 if (!(open_flag & O_CREAT)) 1771 mode = 0; 1772 1773 /* 1774 * O_SYNC is implemented as __O_SYNC|O_DSYNC. As many places only 1775 * check for O_DSYNC if the need any syncing at all we enforce it's 1776 * always set instead of having to deal with possibly weird behaviour 1777 * for malicious applications setting only __O_SYNC. 1778 */ 1779 if (open_flag & __O_SYNC) 1780 open_flag |= O_DSYNC; 1781 1782 if (!acc_mode) 1783 acc_mode = MAY_OPEN | ACC_MODE(open_flag); 1784 1785 /* O_TRUNC implies we need access checks for write permissions */ 1786 if (open_flag & O_TRUNC) 1787 acc_mode |= MAY_WRITE; 1788 1789 /* Allow the LSM permission hook to distinguish append 1790 access from general write access. */ 1791 if (open_flag & O_APPEND) 1792 acc_mode |= MAY_APPEND; 1793 1794 /* find the parent */ 1795 reval: 1796 error = path_init(dfd, pathname, LOOKUP_PARENT, &nd); 1797 if (error) 1798 return ERR_PTR(error); 1799 if (force_reval) 1800 nd.flags |= LOOKUP_REVAL; 1801 1802 current->total_link_count = 0; 1803 error = link_path_walk(pathname, &nd); 1804 if (error) { 1805 filp = ERR_PTR(error); 1806 goto out; 1807 } 1808 if (unlikely(!audit_dummy_context()) && (open_flag & O_CREAT)) 1809 audit_inode(pathname, nd.path.dentry); 1810 1811 /* 1812 * We have the parent and last component. 1813 */ 1814 1815 error = -ENFILE; 1816 filp = get_empty_filp(); 1817 if (filp == NULL) 1818 goto exit_parent; 1819 nd.intent.open.file = filp; 1820 filp->f_flags = open_flag; 1821 nd.intent.open.flags = flag; 1822 nd.intent.open.create_mode = mode; 1823 nd.flags &= ~LOOKUP_PARENT; 1824 nd.flags |= LOOKUP_OPEN; 1825 if (open_flag & O_CREAT) { 1826 nd.flags |= LOOKUP_CREATE; 1827 if (open_flag & O_EXCL) 1828 nd.flags |= LOOKUP_EXCL; 1829 } 1830 if (open_flag & O_DIRECTORY) 1831 nd.flags |= LOOKUP_DIRECTORY; 1832 if (!(open_flag & O_NOFOLLOW)) 1833 nd.flags |= LOOKUP_FOLLOW; 1834 filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname); 1835 while (unlikely(!filp)) { /* trailing symlink */ 1836 struct path holder; 1837 struct inode *inode = path.dentry->d_inode; 1838 void *cookie; 1839 error = -ELOOP; 1840 /* S_ISDIR part is a temporary automount kludge */ 1841 if (!(nd.flags & LOOKUP_FOLLOW) && !S_ISDIR(inode->i_mode)) 1842 goto exit_dput; 1843 if (count++ == 32) 1844 goto exit_dput; 1845 /* 1846 * This is subtle. Instead of calling do_follow_link() we do 1847 * the thing by hands. The reason is that this way we have zero 1848 * link_count and path_walk() (called from ->follow_link) 1849 * honoring LOOKUP_PARENT. After that we have the parent and 1850 * last component, i.e. we are in the same situation as after 1851 * the first path_walk(). Well, almost - if the last component 1852 * is normal we get its copy stored in nd->last.name and we will 1853 * have to putname() it when we are done. Procfs-like symlinks 1854 * just set LAST_BIND. 1855 */ 1856 nd.flags |= LOOKUP_PARENT; 1857 error = security_inode_follow_link(path.dentry, &nd); 1858 if (error) 1859 goto exit_dput; 1860 error = __do_follow_link(&path, &nd, &cookie); 1861 if (unlikely(error)) { 1862 /* nd.path had been dropped */ 1863 if (!IS_ERR(cookie) && inode->i_op->put_link) 1864 inode->i_op->put_link(path.dentry, &nd, cookie); 1865 path_put(&path); 1866 release_open_intent(&nd); 1867 filp = ERR_PTR(error); 1868 goto out; 1869 } 1870 holder = path; 1871 nd.flags &= ~LOOKUP_PARENT; 1872 filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname); 1873 if (inode->i_op->put_link) 1874 inode->i_op->put_link(holder.dentry, &nd, cookie); 1875 path_put(&holder); 1876 } 1877 out: 1878 if (nd.root.mnt) 1879 path_put(&nd.root); 1880 if (filp == ERR_PTR(-ESTALE) && !force_reval) { 1881 force_reval = 1; 1882 goto reval; 1883 } 1884 return filp; 1885 1886 exit_dput: 1887 path_put_conditional(&path, &nd); 1888 if (!IS_ERR(nd.intent.open.file)) 1889 release_open_intent(&nd); 1890 exit_parent: 1891 path_put(&nd.path); 1892 filp = ERR_PTR(error); 1893 goto out; 1894 } 1895 1896 /** 1897 * filp_open - open file and return file pointer 1898 * 1899 * @filename: path to open 1900 * @flags: open flags as per the open(2) second argument 1901 * @mode: mode for the new file if O_CREAT is set, else ignored 1902 * 1903 * This is the helper to open a file from kernelspace if you really 1904 * have to. But in generally you should not do this, so please move 1905 * along, nothing to see here.. 1906 */ 1907 struct file *filp_open(const char *filename, int flags, int mode) 1908 { 1909 return do_filp_open(AT_FDCWD, filename, flags, mode, 0); 1910 } 1911 EXPORT_SYMBOL(filp_open); 1912 1913 /** 1914 * lookup_create - lookup a dentry, creating it if it doesn't exist 1915 * @nd: nameidata info 1916 * @is_dir: directory flag 1917 * 1918 * Simple function to lookup and return a dentry and create it 1919 * if it doesn't exist. Is SMP-safe. 1920 * 1921 * Returns with nd->path.dentry->d_inode->i_mutex locked. 1922 */ 1923 struct dentry *lookup_create(struct nameidata *nd, int is_dir) 1924 { 1925 struct dentry *dentry = ERR_PTR(-EEXIST); 1926 1927 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 1928 /* 1929 * Yucky last component or no last component at all? 1930 * (foo/., foo/.., /////) 1931 */ 1932 if (nd->last_type != LAST_NORM) 1933 goto fail; 1934 nd->flags &= ~LOOKUP_PARENT; 1935 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL; 1936 nd->intent.open.flags = O_EXCL; 1937 1938 /* 1939 * Do the final lookup. 1940 */ 1941 dentry = lookup_hash(nd); 1942 if (IS_ERR(dentry)) 1943 goto fail; 1944 1945 if (dentry->d_inode) 1946 goto eexist; 1947 /* 1948 * Special case - lookup gave negative, but... we had foo/bar/ 1949 * From the vfs_mknod() POV we just have a negative dentry - 1950 * all is fine. Let's be bastards - you had / on the end, you've 1951 * been asking for (non-existent) directory. -ENOENT for you. 1952 */ 1953 if (unlikely(!is_dir && nd->last.name[nd->last.len])) { 1954 dput(dentry); 1955 dentry = ERR_PTR(-ENOENT); 1956 } 1957 return dentry; 1958 eexist: 1959 dput(dentry); 1960 dentry = ERR_PTR(-EEXIST); 1961 fail: 1962 return dentry; 1963 } 1964 EXPORT_SYMBOL_GPL(lookup_create); 1965 1966 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 1967 { 1968 int error = may_create(dir, dentry); 1969 1970 if (error) 1971 return error; 1972 1973 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 1974 return -EPERM; 1975 1976 if (!dir->i_op->mknod) 1977 return -EPERM; 1978 1979 error = devcgroup_inode_mknod(mode, dev); 1980 if (error) 1981 return error; 1982 1983 error = security_inode_mknod(dir, dentry, mode, dev); 1984 if (error) 1985 return error; 1986 1987 error = dir->i_op->mknod(dir, dentry, mode, dev); 1988 if (!error) 1989 fsnotify_create(dir, dentry); 1990 return error; 1991 } 1992 1993 static int may_mknod(mode_t mode) 1994 { 1995 switch (mode & S_IFMT) { 1996 case S_IFREG: 1997 case S_IFCHR: 1998 case S_IFBLK: 1999 case S_IFIFO: 2000 case S_IFSOCK: 2001 case 0: /* zero mode translates to S_IFREG */ 2002 return 0; 2003 case S_IFDIR: 2004 return -EPERM; 2005 default: 2006 return -EINVAL; 2007 } 2008 } 2009 2010 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode, 2011 unsigned, dev) 2012 { 2013 int error; 2014 char *tmp; 2015 struct dentry *dentry; 2016 struct nameidata nd; 2017 2018 if (S_ISDIR(mode)) 2019 return -EPERM; 2020 2021 error = user_path_parent(dfd, filename, &nd, &tmp); 2022 if (error) 2023 return error; 2024 2025 dentry = lookup_create(&nd, 0); 2026 if (IS_ERR(dentry)) { 2027 error = PTR_ERR(dentry); 2028 goto out_unlock; 2029 } 2030 if (!IS_POSIXACL(nd.path.dentry->d_inode)) 2031 mode &= ~current_umask(); 2032 error = may_mknod(mode); 2033 if (error) 2034 goto out_dput; 2035 error = mnt_want_write(nd.path.mnt); 2036 if (error) 2037 goto out_dput; 2038 error = security_path_mknod(&nd.path, dentry, mode, dev); 2039 if (error) 2040 goto out_drop_write; 2041 switch (mode & S_IFMT) { 2042 case 0: case S_IFREG: 2043 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd); 2044 break; 2045 case S_IFCHR: case S_IFBLK: 2046 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode, 2047 new_decode_dev(dev)); 2048 break; 2049 case S_IFIFO: case S_IFSOCK: 2050 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0); 2051 break; 2052 } 2053 out_drop_write: 2054 mnt_drop_write(nd.path.mnt); 2055 out_dput: 2056 dput(dentry); 2057 out_unlock: 2058 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2059 path_put(&nd.path); 2060 putname(tmp); 2061 2062 return error; 2063 } 2064 2065 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev) 2066 { 2067 return sys_mknodat(AT_FDCWD, filename, mode, dev); 2068 } 2069 2070 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 2071 { 2072 int error = may_create(dir, dentry); 2073 2074 if (error) 2075 return error; 2076 2077 if (!dir->i_op->mkdir) 2078 return -EPERM; 2079 2080 mode &= (S_IRWXUGO|S_ISVTX); 2081 error = security_inode_mkdir(dir, dentry, mode); 2082 if (error) 2083 return error; 2084 2085 error = dir->i_op->mkdir(dir, dentry, mode); 2086 if (!error) 2087 fsnotify_mkdir(dir, dentry); 2088 return error; 2089 } 2090 2091 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode) 2092 { 2093 int error = 0; 2094 char * tmp; 2095 struct dentry *dentry; 2096 struct nameidata nd; 2097 2098 error = user_path_parent(dfd, pathname, &nd, &tmp); 2099 if (error) 2100 goto out_err; 2101 2102 dentry = lookup_create(&nd, 1); 2103 error = PTR_ERR(dentry); 2104 if (IS_ERR(dentry)) 2105 goto out_unlock; 2106 2107 if (!IS_POSIXACL(nd.path.dentry->d_inode)) 2108 mode &= ~current_umask(); 2109 error = mnt_want_write(nd.path.mnt); 2110 if (error) 2111 goto out_dput; 2112 error = security_path_mkdir(&nd.path, dentry, mode); 2113 if (error) 2114 goto out_drop_write; 2115 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode); 2116 out_drop_write: 2117 mnt_drop_write(nd.path.mnt); 2118 out_dput: 2119 dput(dentry); 2120 out_unlock: 2121 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2122 path_put(&nd.path); 2123 putname(tmp); 2124 out_err: 2125 return error; 2126 } 2127 2128 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode) 2129 { 2130 return sys_mkdirat(AT_FDCWD, pathname, mode); 2131 } 2132 2133 /* 2134 * We try to drop the dentry early: we should have 2135 * a usage count of 2 if we're the only user of this 2136 * dentry, and if that is true (possibly after pruning 2137 * the dcache), then we drop the dentry now. 2138 * 2139 * A low-level filesystem can, if it choses, legally 2140 * do a 2141 * 2142 * if (!d_unhashed(dentry)) 2143 * return -EBUSY; 2144 * 2145 * if it cannot handle the case of removing a directory 2146 * that is still in use by something else.. 2147 */ 2148 void dentry_unhash(struct dentry *dentry) 2149 { 2150 dget(dentry); 2151 shrink_dcache_parent(dentry); 2152 spin_lock(&dcache_lock); 2153 spin_lock(&dentry->d_lock); 2154 if (atomic_read(&dentry->d_count) == 2) 2155 __d_drop(dentry); 2156 spin_unlock(&dentry->d_lock); 2157 spin_unlock(&dcache_lock); 2158 } 2159 2160 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 2161 { 2162 int error = may_delete(dir, dentry, 1); 2163 2164 if (error) 2165 return error; 2166 2167 if (!dir->i_op->rmdir) 2168 return -EPERM; 2169 2170 mutex_lock(&dentry->d_inode->i_mutex); 2171 dentry_unhash(dentry); 2172 if (d_mountpoint(dentry)) 2173 error = -EBUSY; 2174 else { 2175 error = security_inode_rmdir(dir, dentry); 2176 if (!error) { 2177 error = dir->i_op->rmdir(dir, dentry); 2178 if (!error) { 2179 dentry->d_inode->i_flags |= S_DEAD; 2180 dont_mount(dentry); 2181 } 2182 } 2183 } 2184 mutex_unlock(&dentry->d_inode->i_mutex); 2185 if (!error) { 2186 d_delete(dentry); 2187 } 2188 dput(dentry); 2189 2190 return error; 2191 } 2192 2193 static long do_rmdir(int dfd, const char __user *pathname) 2194 { 2195 int error = 0; 2196 char * name; 2197 struct dentry *dentry; 2198 struct nameidata nd; 2199 2200 error = user_path_parent(dfd, pathname, &nd, &name); 2201 if (error) 2202 return error; 2203 2204 switch(nd.last_type) { 2205 case LAST_DOTDOT: 2206 error = -ENOTEMPTY; 2207 goto exit1; 2208 case LAST_DOT: 2209 error = -EINVAL; 2210 goto exit1; 2211 case LAST_ROOT: 2212 error = -EBUSY; 2213 goto exit1; 2214 } 2215 2216 nd.flags &= ~LOOKUP_PARENT; 2217 2218 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2219 dentry = lookup_hash(&nd); 2220 error = PTR_ERR(dentry); 2221 if (IS_ERR(dentry)) 2222 goto exit2; 2223 error = mnt_want_write(nd.path.mnt); 2224 if (error) 2225 goto exit3; 2226 error = security_path_rmdir(&nd.path, dentry); 2227 if (error) 2228 goto exit4; 2229 error = vfs_rmdir(nd.path.dentry->d_inode, dentry); 2230 exit4: 2231 mnt_drop_write(nd.path.mnt); 2232 exit3: 2233 dput(dentry); 2234 exit2: 2235 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2236 exit1: 2237 path_put(&nd.path); 2238 putname(name); 2239 return error; 2240 } 2241 2242 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 2243 { 2244 return do_rmdir(AT_FDCWD, pathname); 2245 } 2246 2247 int vfs_unlink(struct inode *dir, struct dentry *dentry) 2248 { 2249 int error = may_delete(dir, dentry, 0); 2250 2251 if (error) 2252 return error; 2253 2254 if (!dir->i_op->unlink) 2255 return -EPERM; 2256 2257 mutex_lock(&dentry->d_inode->i_mutex); 2258 if (d_mountpoint(dentry)) 2259 error = -EBUSY; 2260 else { 2261 error = security_inode_unlink(dir, dentry); 2262 if (!error) { 2263 error = dir->i_op->unlink(dir, dentry); 2264 if (!error) 2265 dont_mount(dentry); 2266 } 2267 } 2268 mutex_unlock(&dentry->d_inode->i_mutex); 2269 2270 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 2271 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 2272 fsnotify_link_count(dentry->d_inode); 2273 d_delete(dentry); 2274 } 2275 2276 return error; 2277 } 2278 2279 /* 2280 * Make sure that the actual truncation of the file will occur outside its 2281 * directory's i_mutex. Truncate can take a long time if there is a lot of 2282 * writeout happening, and we don't want to prevent access to the directory 2283 * while waiting on the I/O. 2284 */ 2285 static long do_unlinkat(int dfd, const char __user *pathname) 2286 { 2287 int error; 2288 char *name; 2289 struct dentry *dentry; 2290 struct nameidata nd; 2291 struct inode *inode = NULL; 2292 2293 error = user_path_parent(dfd, pathname, &nd, &name); 2294 if (error) 2295 return error; 2296 2297 error = -EISDIR; 2298 if (nd.last_type != LAST_NORM) 2299 goto exit1; 2300 2301 nd.flags &= ~LOOKUP_PARENT; 2302 2303 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2304 dentry = lookup_hash(&nd); 2305 error = PTR_ERR(dentry); 2306 if (!IS_ERR(dentry)) { 2307 /* Why not before? Because we want correct error value */ 2308 if (nd.last.name[nd.last.len]) 2309 goto slashes; 2310 inode = dentry->d_inode; 2311 if (inode) 2312 atomic_inc(&inode->i_count); 2313 error = mnt_want_write(nd.path.mnt); 2314 if (error) 2315 goto exit2; 2316 error = security_path_unlink(&nd.path, dentry); 2317 if (error) 2318 goto exit3; 2319 error = vfs_unlink(nd.path.dentry->d_inode, dentry); 2320 exit3: 2321 mnt_drop_write(nd.path.mnt); 2322 exit2: 2323 dput(dentry); 2324 } 2325 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2326 if (inode) 2327 iput(inode); /* truncate the inode here */ 2328 exit1: 2329 path_put(&nd.path); 2330 putname(name); 2331 return error; 2332 2333 slashes: 2334 error = !dentry->d_inode ? -ENOENT : 2335 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR; 2336 goto exit2; 2337 } 2338 2339 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 2340 { 2341 if ((flag & ~AT_REMOVEDIR) != 0) 2342 return -EINVAL; 2343 2344 if (flag & AT_REMOVEDIR) 2345 return do_rmdir(dfd, pathname); 2346 2347 return do_unlinkat(dfd, pathname); 2348 } 2349 2350 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 2351 { 2352 return do_unlinkat(AT_FDCWD, pathname); 2353 } 2354 2355 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 2356 { 2357 int error = may_create(dir, dentry); 2358 2359 if (error) 2360 return error; 2361 2362 if (!dir->i_op->symlink) 2363 return -EPERM; 2364 2365 error = security_inode_symlink(dir, dentry, oldname); 2366 if (error) 2367 return error; 2368 2369 error = dir->i_op->symlink(dir, dentry, oldname); 2370 if (!error) 2371 fsnotify_create(dir, dentry); 2372 return error; 2373 } 2374 2375 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 2376 int, newdfd, const char __user *, newname) 2377 { 2378 int error; 2379 char *from; 2380 char *to; 2381 struct dentry *dentry; 2382 struct nameidata nd; 2383 2384 from = getname(oldname); 2385 if (IS_ERR(from)) 2386 return PTR_ERR(from); 2387 2388 error = user_path_parent(newdfd, newname, &nd, &to); 2389 if (error) 2390 goto out_putname; 2391 2392 dentry = lookup_create(&nd, 0); 2393 error = PTR_ERR(dentry); 2394 if (IS_ERR(dentry)) 2395 goto out_unlock; 2396 2397 error = mnt_want_write(nd.path.mnt); 2398 if (error) 2399 goto out_dput; 2400 error = security_path_symlink(&nd.path, dentry, from); 2401 if (error) 2402 goto out_drop_write; 2403 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from); 2404 out_drop_write: 2405 mnt_drop_write(nd.path.mnt); 2406 out_dput: 2407 dput(dentry); 2408 out_unlock: 2409 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2410 path_put(&nd.path); 2411 putname(to); 2412 out_putname: 2413 putname(from); 2414 return error; 2415 } 2416 2417 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 2418 { 2419 return sys_symlinkat(oldname, AT_FDCWD, newname); 2420 } 2421 2422 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2423 { 2424 struct inode *inode = old_dentry->d_inode; 2425 int error; 2426 2427 if (!inode) 2428 return -ENOENT; 2429 2430 error = may_create(dir, new_dentry); 2431 if (error) 2432 return error; 2433 2434 if (dir->i_sb != inode->i_sb) 2435 return -EXDEV; 2436 2437 /* 2438 * A link to an append-only or immutable file cannot be created. 2439 */ 2440 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 2441 return -EPERM; 2442 if (!dir->i_op->link) 2443 return -EPERM; 2444 if (S_ISDIR(inode->i_mode)) 2445 return -EPERM; 2446 2447 error = security_inode_link(old_dentry, dir, new_dentry); 2448 if (error) 2449 return error; 2450 2451 mutex_lock(&inode->i_mutex); 2452 error = dir->i_op->link(old_dentry, dir, new_dentry); 2453 mutex_unlock(&inode->i_mutex); 2454 if (!error) 2455 fsnotify_link(dir, inode, new_dentry); 2456 return error; 2457 } 2458 2459 /* 2460 * Hardlinks are often used in delicate situations. We avoid 2461 * security-related surprises by not following symlinks on the 2462 * newname. --KAB 2463 * 2464 * We don't follow them on the oldname either to be compatible 2465 * with linux 2.0, and to avoid hard-linking to directories 2466 * and other special files. --ADM 2467 */ 2468 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 2469 int, newdfd, const char __user *, newname, int, flags) 2470 { 2471 struct dentry *new_dentry; 2472 struct nameidata nd; 2473 struct path old_path; 2474 int error; 2475 char *to; 2476 2477 if ((flags & ~AT_SYMLINK_FOLLOW) != 0) 2478 return -EINVAL; 2479 2480 error = user_path_at(olddfd, oldname, 2481 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0, 2482 &old_path); 2483 if (error) 2484 return error; 2485 2486 error = user_path_parent(newdfd, newname, &nd, &to); 2487 if (error) 2488 goto out; 2489 error = -EXDEV; 2490 if (old_path.mnt != nd.path.mnt) 2491 goto out_release; 2492 new_dentry = lookup_create(&nd, 0); 2493 error = PTR_ERR(new_dentry); 2494 if (IS_ERR(new_dentry)) 2495 goto out_unlock; 2496 error = mnt_want_write(nd.path.mnt); 2497 if (error) 2498 goto out_dput; 2499 error = security_path_link(old_path.dentry, &nd.path, new_dentry); 2500 if (error) 2501 goto out_drop_write; 2502 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry); 2503 out_drop_write: 2504 mnt_drop_write(nd.path.mnt); 2505 out_dput: 2506 dput(new_dentry); 2507 out_unlock: 2508 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2509 out_release: 2510 path_put(&nd.path); 2511 putname(to); 2512 out: 2513 path_put(&old_path); 2514 2515 return error; 2516 } 2517 2518 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 2519 { 2520 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 2521 } 2522 2523 /* 2524 * The worst of all namespace operations - renaming directory. "Perverted" 2525 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 2526 * Problems: 2527 * a) we can get into loop creation. Check is done in is_subdir(). 2528 * b) race potential - two innocent renames can create a loop together. 2529 * That's where 4.4 screws up. Current fix: serialization on 2530 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 2531 * story. 2532 * c) we have to lock _three_ objects - parents and victim (if it exists). 2533 * And that - after we got ->i_mutex on parents (until then we don't know 2534 * whether the target exists). Solution: try to be smart with locking 2535 * order for inodes. We rely on the fact that tree topology may change 2536 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 2537 * move will be locked. Thus we can rank directories by the tree 2538 * (ancestors first) and rank all non-directories after them. 2539 * That works since everybody except rename does "lock parent, lookup, 2540 * lock child" and rename is under ->s_vfs_rename_mutex. 2541 * HOWEVER, it relies on the assumption that any object with ->lookup() 2542 * has no more than 1 dentry. If "hybrid" objects will ever appear, 2543 * we'd better make sure that there's no link(2) for them. 2544 * d) some filesystems don't support opened-but-unlinked directories, 2545 * either because of layout or because they are not ready to deal with 2546 * all cases correctly. The latter will be fixed (taking this sort of 2547 * stuff into VFS), but the former is not going away. Solution: the same 2548 * trick as in rmdir(). 2549 * e) conversion from fhandle to dentry may come in the wrong moment - when 2550 * we are removing the target. Solution: we will have to grab ->i_mutex 2551 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 2552 * ->i_mutex on parents, which works but leads to some truly excessive 2553 * locking]. 2554 */ 2555 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry, 2556 struct inode *new_dir, struct dentry *new_dentry) 2557 { 2558 int error = 0; 2559 struct inode *target; 2560 2561 /* 2562 * If we are going to change the parent - check write permissions, 2563 * we'll need to flip '..'. 2564 */ 2565 if (new_dir != old_dir) { 2566 error = inode_permission(old_dentry->d_inode, MAY_WRITE); 2567 if (error) 2568 return error; 2569 } 2570 2571 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 2572 if (error) 2573 return error; 2574 2575 target = new_dentry->d_inode; 2576 if (target) 2577 mutex_lock(&target->i_mutex); 2578 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) 2579 error = -EBUSY; 2580 else { 2581 if (target) 2582 dentry_unhash(new_dentry); 2583 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 2584 } 2585 if (target) { 2586 if (!error) { 2587 target->i_flags |= S_DEAD; 2588 dont_mount(new_dentry); 2589 } 2590 mutex_unlock(&target->i_mutex); 2591 if (d_unhashed(new_dentry)) 2592 d_rehash(new_dentry); 2593 dput(new_dentry); 2594 } 2595 if (!error) 2596 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 2597 d_move(old_dentry,new_dentry); 2598 return error; 2599 } 2600 2601 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry, 2602 struct inode *new_dir, struct dentry *new_dentry) 2603 { 2604 struct inode *target; 2605 int error; 2606 2607 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 2608 if (error) 2609 return error; 2610 2611 dget(new_dentry); 2612 target = new_dentry->d_inode; 2613 if (target) 2614 mutex_lock(&target->i_mutex); 2615 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) 2616 error = -EBUSY; 2617 else 2618 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 2619 if (!error) { 2620 if (target) 2621 dont_mount(new_dentry); 2622 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 2623 d_move(old_dentry, new_dentry); 2624 } 2625 if (target) 2626 mutex_unlock(&target->i_mutex); 2627 dput(new_dentry); 2628 return error; 2629 } 2630 2631 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 2632 struct inode *new_dir, struct dentry *new_dentry) 2633 { 2634 int error; 2635 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode); 2636 const unsigned char *old_name; 2637 2638 if (old_dentry->d_inode == new_dentry->d_inode) 2639 return 0; 2640 2641 error = may_delete(old_dir, old_dentry, is_dir); 2642 if (error) 2643 return error; 2644 2645 if (!new_dentry->d_inode) 2646 error = may_create(new_dir, new_dentry); 2647 else 2648 error = may_delete(new_dir, new_dentry, is_dir); 2649 if (error) 2650 return error; 2651 2652 if (!old_dir->i_op->rename) 2653 return -EPERM; 2654 2655 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 2656 2657 if (is_dir) 2658 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry); 2659 else 2660 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry); 2661 if (!error) 2662 fsnotify_move(old_dir, new_dir, old_name, is_dir, 2663 new_dentry->d_inode, old_dentry); 2664 fsnotify_oldname_free(old_name); 2665 2666 return error; 2667 } 2668 2669 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 2670 int, newdfd, const char __user *, newname) 2671 { 2672 struct dentry *old_dir, *new_dir; 2673 struct dentry *old_dentry, *new_dentry; 2674 struct dentry *trap; 2675 struct nameidata oldnd, newnd; 2676 char *from; 2677 char *to; 2678 int error; 2679 2680 error = user_path_parent(olddfd, oldname, &oldnd, &from); 2681 if (error) 2682 goto exit; 2683 2684 error = user_path_parent(newdfd, newname, &newnd, &to); 2685 if (error) 2686 goto exit1; 2687 2688 error = -EXDEV; 2689 if (oldnd.path.mnt != newnd.path.mnt) 2690 goto exit2; 2691 2692 old_dir = oldnd.path.dentry; 2693 error = -EBUSY; 2694 if (oldnd.last_type != LAST_NORM) 2695 goto exit2; 2696 2697 new_dir = newnd.path.dentry; 2698 if (newnd.last_type != LAST_NORM) 2699 goto exit2; 2700 2701 oldnd.flags &= ~LOOKUP_PARENT; 2702 newnd.flags &= ~LOOKUP_PARENT; 2703 newnd.flags |= LOOKUP_RENAME_TARGET; 2704 2705 trap = lock_rename(new_dir, old_dir); 2706 2707 old_dentry = lookup_hash(&oldnd); 2708 error = PTR_ERR(old_dentry); 2709 if (IS_ERR(old_dentry)) 2710 goto exit3; 2711 /* source must exist */ 2712 error = -ENOENT; 2713 if (!old_dentry->d_inode) 2714 goto exit4; 2715 /* unless the source is a directory trailing slashes give -ENOTDIR */ 2716 if (!S_ISDIR(old_dentry->d_inode->i_mode)) { 2717 error = -ENOTDIR; 2718 if (oldnd.last.name[oldnd.last.len]) 2719 goto exit4; 2720 if (newnd.last.name[newnd.last.len]) 2721 goto exit4; 2722 } 2723 /* source should not be ancestor of target */ 2724 error = -EINVAL; 2725 if (old_dentry == trap) 2726 goto exit4; 2727 new_dentry = lookup_hash(&newnd); 2728 error = PTR_ERR(new_dentry); 2729 if (IS_ERR(new_dentry)) 2730 goto exit4; 2731 /* target should not be an ancestor of source */ 2732 error = -ENOTEMPTY; 2733 if (new_dentry == trap) 2734 goto exit5; 2735 2736 error = mnt_want_write(oldnd.path.mnt); 2737 if (error) 2738 goto exit5; 2739 error = security_path_rename(&oldnd.path, old_dentry, 2740 &newnd.path, new_dentry); 2741 if (error) 2742 goto exit6; 2743 error = vfs_rename(old_dir->d_inode, old_dentry, 2744 new_dir->d_inode, new_dentry); 2745 exit6: 2746 mnt_drop_write(oldnd.path.mnt); 2747 exit5: 2748 dput(new_dentry); 2749 exit4: 2750 dput(old_dentry); 2751 exit3: 2752 unlock_rename(new_dir, old_dir); 2753 exit2: 2754 path_put(&newnd.path); 2755 putname(to); 2756 exit1: 2757 path_put(&oldnd.path); 2758 putname(from); 2759 exit: 2760 return error; 2761 } 2762 2763 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 2764 { 2765 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname); 2766 } 2767 2768 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link) 2769 { 2770 int len; 2771 2772 len = PTR_ERR(link); 2773 if (IS_ERR(link)) 2774 goto out; 2775 2776 len = strlen(link); 2777 if (len > (unsigned) buflen) 2778 len = buflen; 2779 if (copy_to_user(buffer, link, len)) 2780 len = -EFAULT; 2781 out: 2782 return len; 2783 } 2784 2785 /* 2786 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 2787 * have ->follow_link() touching nd only in nd_set_link(). Using (or not 2788 * using) it for any given inode is up to filesystem. 2789 */ 2790 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) 2791 { 2792 struct nameidata nd; 2793 void *cookie; 2794 int res; 2795 2796 nd.depth = 0; 2797 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd); 2798 if (IS_ERR(cookie)) 2799 return PTR_ERR(cookie); 2800 2801 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd)); 2802 if (dentry->d_inode->i_op->put_link) 2803 dentry->d_inode->i_op->put_link(dentry, &nd, cookie); 2804 return res; 2805 } 2806 2807 int vfs_follow_link(struct nameidata *nd, const char *link) 2808 { 2809 return __vfs_follow_link(nd, link); 2810 } 2811 2812 /* get the link contents into pagecache */ 2813 static char *page_getlink(struct dentry * dentry, struct page **ppage) 2814 { 2815 char *kaddr; 2816 struct page *page; 2817 struct address_space *mapping = dentry->d_inode->i_mapping; 2818 page = read_mapping_page(mapping, 0, NULL); 2819 if (IS_ERR(page)) 2820 return (char*)page; 2821 *ppage = page; 2822 kaddr = kmap(page); 2823 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1); 2824 return kaddr; 2825 } 2826 2827 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 2828 { 2829 struct page *page = NULL; 2830 char *s = page_getlink(dentry, &page); 2831 int res = vfs_readlink(dentry,buffer,buflen,s); 2832 if (page) { 2833 kunmap(page); 2834 page_cache_release(page); 2835 } 2836 return res; 2837 } 2838 2839 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd) 2840 { 2841 struct page *page = NULL; 2842 nd_set_link(nd, page_getlink(dentry, &page)); 2843 return page; 2844 } 2845 2846 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 2847 { 2848 struct page *page = cookie; 2849 2850 if (page) { 2851 kunmap(page); 2852 page_cache_release(page); 2853 } 2854 } 2855 2856 /* 2857 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 2858 */ 2859 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 2860 { 2861 struct address_space *mapping = inode->i_mapping; 2862 struct page *page; 2863 void *fsdata; 2864 int err; 2865 char *kaddr; 2866 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE; 2867 if (nofs) 2868 flags |= AOP_FLAG_NOFS; 2869 2870 retry: 2871 err = pagecache_write_begin(NULL, mapping, 0, len-1, 2872 flags, &page, &fsdata); 2873 if (err) 2874 goto fail; 2875 2876 kaddr = kmap_atomic(page, KM_USER0); 2877 memcpy(kaddr, symname, len-1); 2878 kunmap_atomic(kaddr, KM_USER0); 2879 2880 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 2881 page, fsdata); 2882 if (err < 0) 2883 goto fail; 2884 if (err < len-1) 2885 goto retry; 2886 2887 mark_inode_dirty(inode); 2888 return 0; 2889 fail: 2890 return err; 2891 } 2892 2893 int page_symlink(struct inode *inode, const char *symname, int len) 2894 { 2895 return __page_symlink(inode, symname, len, 2896 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS)); 2897 } 2898 2899 const struct inode_operations page_symlink_inode_operations = { 2900 .readlink = generic_readlink, 2901 .follow_link = page_follow_link_light, 2902 .put_link = page_put_link, 2903 }; 2904 2905 EXPORT_SYMBOL(user_path_at); 2906 EXPORT_SYMBOL(follow_down); 2907 EXPORT_SYMBOL(follow_up); 2908 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */ 2909 EXPORT_SYMBOL(getname); 2910 EXPORT_SYMBOL(lock_rename); 2911 EXPORT_SYMBOL(lookup_one_len); 2912 EXPORT_SYMBOL(page_follow_link_light); 2913 EXPORT_SYMBOL(page_put_link); 2914 EXPORT_SYMBOL(page_readlink); 2915 EXPORT_SYMBOL(__page_symlink); 2916 EXPORT_SYMBOL(page_symlink); 2917 EXPORT_SYMBOL(page_symlink_inode_operations); 2918 EXPORT_SYMBOL(path_lookup); 2919 EXPORT_SYMBOL(kern_path); 2920 EXPORT_SYMBOL(vfs_path_lookup); 2921 EXPORT_SYMBOL(inode_permission); 2922 EXPORT_SYMBOL(file_permission); 2923 EXPORT_SYMBOL(unlock_rename); 2924 EXPORT_SYMBOL(vfs_create); 2925 EXPORT_SYMBOL(vfs_follow_link); 2926 EXPORT_SYMBOL(vfs_link); 2927 EXPORT_SYMBOL(vfs_mkdir); 2928 EXPORT_SYMBOL(vfs_mknod); 2929 EXPORT_SYMBOL(generic_permission); 2930 EXPORT_SYMBOL(vfs_readlink); 2931 EXPORT_SYMBOL(vfs_rename); 2932 EXPORT_SYMBOL(vfs_rmdir); 2933 EXPORT_SYMBOL(vfs_symlink); 2934 EXPORT_SYMBOL(vfs_unlink); 2935 EXPORT_SYMBOL(dentry_unhash); 2936 EXPORT_SYMBOL(generic_readlink); 2937