1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/namei.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * Some corrections by tytso. 10 */ 11 12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 13 * lookup logic. 14 */ 15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 16 */ 17 18 #include <linux/init.h> 19 #include <linux/export.h> 20 #include <linux/kernel.h> 21 #include <linux/slab.h> 22 #include <linux/fs.h> 23 #include <linux/namei.h> 24 #include <linux/pagemap.h> 25 #include <linux/fsnotify.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/ima.h> 29 #include <linux/syscalls.h> 30 #include <linux/mount.h> 31 #include <linux/audit.h> 32 #include <linux/capability.h> 33 #include <linux/file.h> 34 #include <linux/fcntl.h> 35 #include <linux/device_cgroup.h> 36 #include <linux/fs_struct.h> 37 #include <linux/posix_acl.h> 38 #include <linux/hash.h> 39 #include <linux/bitops.h> 40 #include <linux/init_task.h> 41 #include <linux/uaccess.h> 42 43 #include "internal.h" 44 #include "mount.h" 45 46 /* [Feb-1997 T. Schoebel-Theuer] 47 * Fundamental changes in the pathname lookup mechanisms (namei) 48 * were necessary because of omirr. The reason is that omirr needs 49 * to know the _real_ pathname, not the user-supplied one, in case 50 * of symlinks (and also when transname replacements occur). 51 * 52 * The new code replaces the old recursive symlink resolution with 53 * an iterative one (in case of non-nested symlink chains). It does 54 * this with calls to <fs>_follow_link(). 55 * As a side effect, dir_namei(), _namei() and follow_link() are now 56 * replaced with a single function lookup_dentry() that can handle all 57 * the special cases of the former code. 58 * 59 * With the new dcache, the pathname is stored at each inode, at least as 60 * long as the refcount of the inode is positive. As a side effect, the 61 * size of the dcache depends on the inode cache and thus is dynamic. 62 * 63 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 64 * resolution to correspond with current state of the code. 65 * 66 * Note that the symlink resolution is not *completely* iterative. 67 * There is still a significant amount of tail- and mid- recursion in 68 * the algorithm. Also, note that <fs>_readlink() is not used in 69 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 70 * may return different results than <fs>_follow_link(). Many virtual 71 * filesystems (including /proc) exhibit this behavior. 72 */ 73 74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 75 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 76 * and the name already exists in form of a symlink, try to create the new 77 * name indicated by the symlink. The old code always complained that the 78 * name already exists, due to not following the symlink even if its target 79 * is nonexistent. The new semantics affects also mknod() and link() when 80 * the name is a symlink pointing to a non-existent name. 81 * 82 * I don't know which semantics is the right one, since I have no access 83 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 84 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 85 * "old" one. Personally, I think the new semantics is much more logical. 86 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 87 * file does succeed in both HP-UX and SunOs, but not in Solaris 88 * and in the old Linux semantics. 89 */ 90 91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 92 * semantics. See the comments in "open_namei" and "do_link" below. 93 * 94 * [10-Sep-98 Alan Modra] Another symlink change. 95 */ 96 97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 98 * inside the path - always follow. 99 * in the last component in creation/removal/renaming - never follow. 100 * if LOOKUP_FOLLOW passed - follow. 101 * if the pathname has trailing slashes - follow. 102 * otherwise - don't follow. 103 * (applied in that order). 104 * 105 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 106 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 107 * During the 2.4 we need to fix the userland stuff depending on it - 108 * hopefully we will be able to get rid of that wart in 2.5. So far only 109 * XEmacs seems to be relying on it... 110 */ 111 /* 112 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 113 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 114 * any extra contention... 115 */ 116 117 /* In order to reduce some races, while at the same time doing additional 118 * checking and hopefully speeding things up, we copy filenames to the 119 * kernel data space before using them.. 120 * 121 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 122 * PATH_MAX includes the nul terminator --RR. 123 */ 124 125 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) 126 127 struct filename * 128 getname_flags(const char __user *filename, int flags, int *empty) 129 { 130 struct filename *result; 131 char *kname; 132 int len; 133 134 result = audit_reusename(filename); 135 if (result) 136 return result; 137 138 result = __getname(); 139 if (unlikely(!result)) 140 return ERR_PTR(-ENOMEM); 141 142 /* 143 * First, try to embed the struct filename inside the names_cache 144 * allocation 145 */ 146 kname = (char *)result->iname; 147 result->name = kname; 148 149 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); 150 if (unlikely(len < 0)) { 151 __putname(result); 152 return ERR_PTR(len); 153 } 154 155 /* 156 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 157 * separate struct filename so we can dedicate the entire 158 * names_cache allocation for the pathname, and re-do the copy from 159 * userland. 160 */ 161 if (unlikely(len == EMBEDDED_NAME_MAX)) { 162 const size_t size = offsetof(struct filename, iname[1]); 163 kname = (char *)result; 164 165 /* 166 * size is chosen that way we to guarantee that 167 * result->iname[0] is within the same object and that 168 * kname can't be equal to result->iname, no matter what. 169 */ 170 result = kzalloc(size, GFP_KERNEL); 171 if (unlikely(!result)) { 172 __putname(kname); 173 return ERR_PTR(-ENOMEM); 174 } 175 result->name = kname; 176 len = strncpy_from_user(kname, filename, PATH_MAX); 177 if (unlikely(len < 0)) { 178 __putname(kname); 179 kfree(result); 180 return ERR_PTR(len); 181 } 182 if (unlikely(len == PATH_MAX)) { 183 __putname(kname); 184 kfree(result); 185 return ERR_PTR(-ENAMETOOLONG); 186 } 187 } 188 189 result->refcnt = 1; 190 /* The empty path is special. */ 191 if (unlikely(!len)) { 192 if (empty) 193 *empty = 1; 194 if (!(flags & LOOKUP_EMPTY)) { 195 putname(result); 196 return ERR_PTR(-ENOENT); 197 } 198 } 199 200 result->uptr = filename; 201 result->aname = NULL; 202 audit_getname(result); 203 return result; 204 } 205 206 struct filename * 207 getname_uflags(const char __user *filename, int uflags) 208 { 209 int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 210 211 return getname_flags(filename, flags, NULL); 212 } 213 214 struct filename * 215 getname(const char __user * filename) 216 { 217 return getname_flags(filename, 0, NULL); 218 } 219 220 struct filename * 221 getname_kernel(const char * filename) 222 { 223 struct filename *result; 224 int len = strlen(filename) + 1; 225 226 result = __getname(); 227 if (unlikely(!result)) 228 return ERR_PTR(-ENOMEM); 229 230 if (len <= EMBEDDED_NAME_MAX) { 231 result->name = (char *)result->iname; 232 } else if (len <= PATH_MAX) { 233 const size_t size = offsetof(struct filename, iname[1]); 234 struct filename *tmp; 235 236 tmp = kmalloc(size, GFP_KERNEL); 237 if (unlikely(!tmp)) { 238 __putname(result); 239 return ERR_PTR(-ENOMEM); 240 } 241 tmp->name = (char *)result; 242 result = tmp; 243 } else { 244 __putname(result); 245 return ERR_PTR(-ENAMETOOLONG); 246 } 247 memcpy((char *)result->name, filename, len); 248 result->uptr = NULL; 249 result->aname = NULL; 250 result->refcnt = 1; 251 audit_getname(result); 252 253 return result; 254 } 255 256 void putname(struct filename *name) 257 { 258 if (IS_ERR(name)) 259 return; 260 261 BUG_ON(name->refcnt <= 0); 262 263 if (--name->refcnt > 0) 264 return; 265 266 if (name->name != name->iname) { 267 __putname(name->name); 268 kfree(name); 269 } else 270 __putname(name); 271 } 272 273 /** 274 * check_acl - perform ACL permission checking 275 * @mnt_userns: user namespace of the mount the inode was found from 276 * @inode: inode to check permissions on 277 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 278 * 279 * This function performs the ACL permission checking. Since this function 280 * retrieve POSIX acls it needs to know whether it is called from a blocking or 281 * non-blocking context and thus cares about the MAY_NOT_BLOCK bit. 282 * 283 * If the inode has been found through an idmapped mount the user namespace of 284 * the vfsmount must be passed through @mnt_userns. This function will then take 285 * care to map the inode according to @mnt_userns before checking permissions. 286 * On non-idmapped mounts or if permission checking is to be performed on the 287 * raw inode simply passs init_user_ns. 288 */ 289 static int check_acl(struct user_namespace *mnt_userns, 290 struct inode *inode, int mask) 291 { 292 #ifdef CONFIG_FS_POSIX_ACL 293 struct posix_acl *acl; 294 295 if (mask & MAY_NOT_BLOCK) { 296 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 297 if (!acl) 298 return -EAGAIN; 299 /* no ->get_acl() calls in RCU mode... */ 300 if (is_uncached_acl(acl)) 301 return -ECHILD; 302 return posix_acl_permission(mnt_userns, inode, acl, mask); 303 } 304 305 acl = get_acl(inode, ACL_TYPE_ACCESS); 306 if (IS_ERR(acl)) 307 return PTR_ERR(acl); 308 if (acl) { 309 int error = posix_acl_permission(mnt_userns, inode, acl, mask); 310 posix_acl_release(acl); 311 return error; 312 } 313 #endif 314 315 return -EAGAIN; 316 } 317 318 /** 319 * acl_permission_check - perform basic UNIX permission checking 320 * @mnt_userns: user namespace of the mount the inode was found from 321 * @inode: inode to check permissions on 322 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 323 * 324 * This function performs the basic UNIX permission checking. Since this 325 * function may retrieve POSIX acls it needs to know whether it is called from a 326 * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit. 327 * 328 * If the inode has been found through an idmapped mount the user namespace of 329 * the vfsmount must be passed through @mnt_userns. This function will then take 330 * care to map the inode according to @mnt_userns before checking permissions. 331 * On non-idmapped mounts or if permission checking is to be performed on the 332 * raw inode simply passs init_user_ns. 333 */ 334 static int acl_permission_check(struct user_namespace *mnt_userns, 335 struct inode *inode, int mask) 336 { 337 unsigned int mode = inode->i_mode; 338 kuid_t i_uid; 339 340 /* Are we the owner? If so, ACL's don't matter */ 341 i_uid = i_uid_into_mnt(mnt_userns, inode); 342 if (likely(uid_eq(current_fsuid(), i_uid))) { 343 mask &= 7; 344 mode >>= 6; 345 return (mask & ~mode) ? -EACCES : 0; 346 } 347 348 /* Do we have ACL's? */ 349 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 350 int error = check_acl(mnt_userns, inode, mask); 351 if (error != -EAGAIN) 352 return error; 353 } 354 355 /* Only RWX matters for group/other mode bits */ 356 mask &= 7; 357 358 /* 359 * Are the group permissions different from 360 * the other permissions in the bits we care 361 * about? Need to check group ownership if so. 362 */ 363 if (mask & (mode ^ (mode >> 3))) { 364 kgid_t kgid = i_gid_into_mnt(mnt_userns, inode); 365 if (in_group_p(kgid)) 366 mode >>= 3; 367 } 368 369 /* Bits in 'mode' clear that we require? */ 370 return (mask & ~mode) ? -EACCES : 0; 371 } 372 373 /** 374 * generic_permission - check for access rights on a Posix-like filesystem 375 * @mnt_userns: user namespace of the mount the inode was found from 376 * @inode: inode to check access rights for 377 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, 378 * %MAY_NOT_BLOCK ...) 379 * 380 * Used to check for read/write/execute permissions on a file. 381 * We use "fsuid" for this, letting us set arbitrary permissions 382 * for filesystem access without changing the "normal" uids which 383 * are used for other things. 384 * 385 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 386 * request cannot be satisfied (eg. requires blocking or too much complexity). 387 * It would then be called again in ref-walk mode. 388 * 389 * If the inode has been found through an idmapped mount the user namespace of 390 * the vfsmount must be passed through @mnt_userns. This function will then take 391 * care to map the inode according to @mnt_userns before checking permissions. 392 * On non-idmapped mounts or if permission checking is to be performed on the 393 * raw inode simply passs init_user_ns. 394 */ 395 int generic_permission(struct user_namespace *mnt_userns, struct inode *inode, 396 int mask) 397 { 398 int ret; 399 400 /* 401 * Do the basic permission checks. 402 */ 403 ret = acl_permission_check(mnt_userns, inode, mask); 404 if (ret != -EACCES) 405 return ret; 406 407 if (S_ISDIR(inode->i_mode)) { 408 /* DACs are overridable for directories */ 409 if (!(mask & MAY_WRITE)) 410 if (capable_wrt_inode_uidgid(mnt_userns, inode, 411 CAP_DAC_READ_SEARCH)) 412 return 0; 413 if (capable_wrt_inode_uidgid(mnt_userns, inode, 414 CAP_DAC_OVERRIDE)) 415 return 0; 416 return -EACCES; 417 } 418 419 /* 420 * Searching includes executable on directories, else just read. 421 */ 422 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 423 if (mask == MAY_READ) 424 if (capable_wrt_inode_uidgid(mnt_userns, inode, 425 CAP_DAC_READ_SEARCH)) 426 return 0; 427 /* 428 * Read/write DACs are always overridable. 429 * Executable DACs are overridable when there is 430 * at least one exec bit set. 431 */ 432 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 433 if (capable_wrt_inode_uidgid(mnt_userns, inode, 434 CAP_DAC_OVERRIDE)) 435 return 0; 436 437 return -EACCES; 438 } 439 EXPORT_SYMBOL(generic_permission); 440 441 /** 442 * do_inode_permission - UNIX permission checking 443 * @mnt_userns: user namespace of the mount the inode was found from 444 * @inode: inode to check permissions on 445 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 446 * 447 * We _really_ want to just do "generic_permission()" without 448 * even looking at the inode->i_op values. So we keep a cache 449 * flag in inode->i_opflags, that says "this has not special 450 * permission function, use the fast case". 451 */ 452 static inline int do_inode_permission(struct user_namespace *mnt_userns, 453 struct inode *inode, int mask) 454 { 455 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 456 if (likely(inode->i_op->permission)) 457 return inode->i_op->permission(mnt_userns, inode, mask); 458 459 /* This gets set once for the inode lifetime */ 460 spin_lock(&inode->i_lock); 461 inode->i_opflags |= IOP_FASTPERM; 462 spin_unlock(&inode->i_lock); 463 } 464 return generic_permission(mnt_userns, inode, mask); 465 } 466 467 /** 468 * sb_permission - Check superblock-level permissions 469 * @sb: Superblock of inode to check permission on 470 * @inode: Inode to check permission on 471 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 472 * 473 * Separate out file-system wide checks from inode-specific permission checks. 474 */ 475 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 476 { 477 if (unlikely(mask & MAY_WRITE)) { 478 umode_t mode = inode->i_mode; 479 480 /* Nobody gets write access to a read-only fs. */ 481 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 482 return -EROFS; 483 } 484 return 0; 485 } 486 487 /** 488 * inode_permission - Check for access rights to a given inode 489 * @mnt_userns: User namespace of the mount the inode was found from 490 * @inode: Inode to check permission on 491 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 492 * 493 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 494 * this, letting us set arbitrary permissions for filesystem access without 495 * changing the "normal" UIDs which are used for other things. 496 * 497 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 498 */ 499 int inode_permission(struct user_namespace *mnt_userns, 500 struct inode *inode, int mask) 501 { 502 int retval; 503 504 retval = sb_permission(inode->i_sb, inode, mask); 505 if (retval) 506 return retval; 507 508 if (unlikely(mask & MAY_WRITE)) { 509 /* 510 * Nobody gets write access to an immutable file. 511 */ 512 if (IS_IMMUTABLE(inode)) 513 return -EPERM; 514 515 /* 516 * Updating mtime will likely cause i_uid and i_gid to be 517 * written back improperly if their true value is unknown 518 * to the vfs. 519 */ 520 if (HAS_UNMAPPED_ID(mnt_userns, inode)) 521 return -EACCES; 522 } 523 524 retval = do_inode_permission(mnt_userns, inode, mask); 525 if (retval) 526 return retval; 527 528 retval = devcgroup_inode_permission(inode, mask); 529 if (retval) 530 return retval; 531 532 return security_inode_permission(inode, mask); 533 } 534 EXPORT_SYMBOL(inode_permission); 535 536 /** 537 * path_get - get a reference to a path 538 * @path: path to get the reference to 539 * 540 * Given a path increment the reference count to the dentry and the vfsmount. 541 */ 542 void path_get(const struct path *path) 543 { 544 mntget(path->mnt); 545 dget(path->dentry); 546 } 547 EXPORT_SYMBOL(path_get); 548 549 /** 550 * path_put - put a reference to a path 551 * @path: path to put the reference to 552 * 553 * Given a path decrement the reference count to the dentry and the vfsmount. 554 */ 555 void path_put(const struct path *path) 556 { 557 dput(path->dentry); 558 mntput(path->mnt); 559 } 560 EXPORT_SYMBOL(path_put); 561 562 #define EMBEDDED_LEVELS 2 563 struct nameidata { 564 struct path path; 565 struct qstr last; 566 struct path root; 567 struct inode *inode; /* path.dentry.d_inode */ 568 unsigned int flags, state; 569 unsigned seq, m_seq, r_seq; 570 int last_type; 571 unsigned depth; 572 int total_link_count; 573 struct saved { 574 struct path link; 575 struct delayed_call done; 576 const char *name; 577 unsigned seq; 578 } *stack, internal[EMBEDDED_LEVELS]; 579 struct filename *name; 580 struct nameidata *saved; 581 unsigned root_seq; 582 int dfd; 583 kuid_t dir_uid; 584 umode_t dir_mode; 585 } __randomize_layout; 586 587 #define ND_ROOT_PRESET 1 588 #define ND_ROOT_GRABBED 2 589 #define ND_JUMPED 4 590 591 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name) 592 { 593 struct nameidata *old = current->nameidata; 594 p->stack = p->internal; 595 p->depth = 0; 596 p->dfd = dfd; 597 p->name = name; 598 p->path.mnt = NULL; 599 p->path.dentry = NULL; 600 p->total_link_count = old ? old->total_link_count : 0; 601 p->saved = old; 602 current->nameidata = p; 603 } 604 605 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name, 606 const struct path *root) 607 { 608 __set_nameidata(p, dfd, name); 609 p->state = 0; 610 if (unlikely(root)) { 611 p->state = ND_ROOT_PRESET; 612 p->root = *root; 613 } 614 } 615 616 static void restore_nameidata(void) 617 { 618 struct nameidata *now = current->nameidata, *old = now->saved; 619 620 current->nameidata = old; 621 if (old) 622 old->total_link_count = now->total_link_count; 623 if (now->stack != now->internal) 624 kfree(now->stack); 625 } 626 627 static bool nd_alloc_stack(struct nameidata *nd) 628 { 629 struct saved *p; 630 631 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved), 632 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL); 633 if (unlikely(!p)) 634 return false; 635 memcpy(p, nd->internal, sizeof(nd->internal)); 636 nd->stack = p; 637 return true; 638 } 639 640 /** 641 * path_connected - Verify that a dentry is below mnt.mnt_root 642 * 643 * Rename can sometimes move a file or directory outside of a bind 644 * mount, path_connected allows those cases to be detected. 645 */ 646 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry) 647 { 648 struct super_block *sb = mnt->mnt_sb; 649 650 /* Bind mounts can have disconnected paths */ 651 if (mnt->mnt_root == sb->s_root) 652 return true; 653 654 return is_subdir(dentry, mnt->mnt_root); 655 } 656 657 static void drop_links(struct nameidata *nd) 658 { 659 int i = nd->depth; 660 while (i--) { 661 struct saved *last = nd->stack + i; 662 do_delayed_call(&last->done); 663 clear_delayed_call(&last->done); 664 } 665 } 666 667 static void terminate_walk(struct nameidata *nd) 668 { 669 drop_links(nd); 670 if (!(nd->flags & LOOKUP_RCU)) { 671 int i; 672 path_put(&nd->path); 673 for (i = 0; i < nd->depth; i++) 674 path_put(&nd->stack[i].link); 675 if (nd->state & ND_ROOT_GRABBED) { 676 path_put(&nd->root); 677 nd->state &= ~ND_ROOT_GRABBED; 678 } 679 } else { 680 nd->flags &= ~LOOKUP_RCU; 681 rcu_read_unlock(); 682 } 683 nd->depth = 0; 684 nd->path.mnt = NULL; 685 nd->path.dentry = NULL; 686 } 687 688 /* path_put is needed afterwards regardless of success or failure */ 689 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq) 690 { 691 int res = __legitimize_mnt(path->mnt, mseq); 692 if (unlikely(res)) { 693 if (res > 0) 694 path->mnt = NULL; 695 path->dentry = NULL; 696 return false; 697 } 698 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) { 699 path->dentry = NULL; 700 return false; 701 } 702 return !read_seqcount_retry(&path->dentry->d_seq, seq); 703 } 704 705 static inline bool legitimize_path(struct nameidata *nd, 706 struct path *path, unsigned seq) 707 { 708 return __legitimize_path(path, seq, nd->m_seq); 709 } 710 711 static bool legitimize_links(struct nameidata *nd) 712 { 713 int i; 714 if (unlikely(nd->flags & LOOKUP_CACHED)) { 715 drop_links(nd); 716 nd->depth = 0; 717 return false; 718 } 719 for (i = 0; i < nd->depth; i++) { 720 struct saved *last = nd->stack + i; 721 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) { 722 drop_links(nd); 723 nd->depth = i + 1; 724 return false; 725 } 726 } 727 return true; 728 } 729 730 static bool legitimize_root(struct nameidata *nd) 731 { 732 /* 733 * For scoped-lookups (where nd->root has been zeroed), we need to 734 * restart the whole lookup from scratch -- because set_root() is wrong 735 * for these lookups (nd->dfd is the root, not the filesystem root). 736 */ 737 if (!nd->root.mnt && (nd->flags & LOOKUP_IS_SCOPED)) 738 return false; 739 /* Nothing to do if nd->root is zero or is managed by the VFS user. */ 740 if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET)) 741 return true; 742 nd->state |= ND_ROOT_GRABBED; 743 return legitimize_path(nd, &nd->root, nd->root_seq); 744 } 745 746 /* 747 * Path walking has 2 modes, rcu-walk and ref-walk (see 748 * Documentation/filesystems/path-lookup.txt). In situations when we can't 749 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 750 * normal reference counts on dentries and vfsmounts to transition to ref-walk 751 * mode. Refcounts are grabbed at the last known good point before rcu-walk 752 * got stuck, so ref-walk may continue from there. If this is not successful 753 * (eg. a seqcount has changed), then failure is returned and it's up to caller 754 * to restart the path walk from the beginning in ref-walk mode. 755 */ 756 757 /** 758 * try_to_unlazy - try to switch to ref-walk mode. 759 * @nd: nameidata pathwalk data 760 * Returns: true on success, false on failure 761 * 762 * try_to_unlazy attempts to legitimize the current nd->path and nd->root 763 * for ref-walk mode. 764 * Must be called from rcu-walk context. 765 * Nothing should touch nameidata between try_to_unlazy() failure and 766 * terminate_walk(). 767 */ 768 static bool try_to_unlazy(struct nameidata *nd) 769 { 770 struct dentry *parent = nd->path.dentry; 771 772 BUG_ON(!(nd->flags & LOOKUP_RCU)); 773 774 nd->flags &= ~LOOKUP_RCU; 775 if (unlikely(!legitimize_links(nd))) 776 goto out1; 777 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq))) 778 goto out; 779 if (unlikely(!legitimize_root(nd))) 780 goto out; 781 rcu_read_unlock(); 782 BUG_ON(nd->inode != parent->d_inode); 783 return true; 784 785 out1: 786 nd->path.mnt = NULL; 787 nd->path.dentry = NULL; 788 out: 789 rcu_read_unlock(); 790 return false; 791 } 792 793 /** 794 * try_to_unlazy_next - try to switch to ref-walk mode. 795 * @nd: nameidata pathwalk data 796 * @dentry: next dentry to step into 797 * @seq: seq number to check @dentry against 798 * Returns: true on success, false on failure 799 * 800 * Similar to to try_to_unlazy(), but here we have the next dentry already 801 * picked by rcu-walk and want to legitimize that in addition to the current 802 * nd->path and nd->root for ref-walk mode. Must be called from rcu-walk context. 803 * Nothing should touch nameidata between try_to_unlazy_next() failure and 804 * terminate_walk(). 805 */ 806 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry, unsigned seq) 807 { 808 BUG_ON(!(nd->flags & LOOKUP_RCU)); 809 810 nd->flags &= ~LOOKUP_RCU; 811 if (unlikely(!legitimize_links(nd))) 812 goto out2; 813 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq))) 814 goto out2; 815 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref))) 816 goto out1; 817 818 /* 819 * We need to move both the parent and the dentry from the RCU domain 820 * to be properly refcounted. And the sequence number in the dentry 821 * validates *both* dentry counters, since we checked the sequence 822 * number of the parent after we got the child sequence number. So we 823 * know the parent must still be valid if the child sequence number is 824 */ 825 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) 826 goto out; 827 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) 828 goto out_dput; 829 /* 830 * Sequence counts matched. Now make sure that the root is 831 * still valid and get it if required. 832 */ 833 if (unlikely(!legitimize_root(nd))) 834 goto out_dput; 835 rcu_read_unlock(); 836 return true; 837 838 out2: 839 nd->path.mnt = NULL; 840 out1: 841 nd->path.dentry = NULL; 842 out: 843 rcu_read_unlock(); 844 return false; 845 out_dput: 846 rcu_read_unlock(); 847 dput(dentry); 848 return false; 849 } 850 851 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 852 { 853 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) 854 return dentry->d_op->d_revalidate(dentry, flags); 855 else 856 return 1; 857 } 858 859 /** 860 * complete_walk - successful completion of path walk 861 * @nd: pointer nameidata 862 * 863 * If we had been in RCU mode, drop out of it and legitimize nd->path. 864 * Revalidate the final result, unless we'd already done that during 865 * the path walk or the filesystem doesn't ask for it. Return 0 on 866 * success, -error on failure. In case of failure caller does not 867 * need to drop nd->path. 868 */ 869 static int complete_walk(struct nameidata *nd) 870 { 871 struct dentry *dentry = nd->path.dentry; 872 int status; 873 874 if (nd->flags & LOOKUP_RCU) { 875 /* 876 * We don't want to zero nd->root for scoped-lookups or 877 * externally-managed nd->root. 878 */ 879 if (!(nd->state & ND_ROOT_PRESET)) 880 if (!(nd->flags & LOOKUP_IS_SCOPED)) 881 nd->root.mnt = NULL; 882 nd->flags &= ~LOOKUP_CACHED; 883 if (!try_to_unlazy(nd)) 884 return -ECHILD; 885 } 886 887 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { 888 /* 889 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't 890 * ever step outside the root during lookup" and should already 891 * be guaranteed by the rest of namei, we want to avoid a namei 892 * BUG resulting in userspace being given a path that was not 893 * scoped within the root at some point during the lookup. 894 * 895 * So, do a final sanity-check to make sure that in the 896 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED) 897 * we won't silently return an fd completely outside of the 898 * requested root to userspace. 899 * 900 * Userspace could move the path outside the root after this 901 * check, but as discussed elsewhere this is not a concern (the 902 * resolved file was inside the root at some point). 903 */ 904 if (!path_is_under(&nd->path, &nd->root)) 905 return -EXDEV; 906 } 907 908 if (likely(!(nd->state & ND_JUMPED))) 909 return 0; 910 911 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 912 return 0; 913 914 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 915 if (status > 0) 916 return 0; 917 918 if (!status) 919 status = -ESTALE; 920 921 return status; 922 } 923 924 static int set_root(struct nameidata *nd) 925 { 926 struct fs_struct *fs = current->fs; 927 928 /* 929 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we 930 * still have to ensure it doesn't happen because it will cause a breakout 931 * from the dirfd. 932 */ 933 if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED)) 934 return -ENOTRECOVERABLE; 935 936 if (nd->flags & LOOKUP_RCU) { 937 unsigned seq; 938 939 do { 940 seq = read_seqcount_begin(&fs->seq); 941 nd->root = fs->root; 942 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 943 } while (read_seqcount_retry(&fs->seq, seq)); 944 } else { 945 get_fs_root(fs, &nd->root); 946 nd->state |= ND_ROOT_GRABBED; 947 } 948 return 0; 949 } 950 951 static int nd_jump_root(struct nameidata *nd) 952 { 953 if (unlikely(nd->flags & LOOKUP_BENEATH)) 954 return -EXDEV; 955 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { 956 /* Absolute path arguments to path_init() are allowed. */ 957 if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt) 958 return -EXDEV; 959 } 960 if (!nd->root.mnt) { 961 int error = set_root(nd); 962 if (error) 963 return error; 964 } 965 if (nd->flags & LOOKUP_RCU) { 966 struct dentry *d; 967 nd->path = nd->root; 968 d = nd->path.dentry; 969 nd->inode = d->d_inode; 970 nd->seq = nd->root_seq; 971 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq))) 972 return -ECHILD; 973 } else { 974 path_put(&nd->path); 975 nd->path = nd->root; 976 path_get(&nd->path); 977 nd->inode = nd->path.dentry->d_inode; 978 } 979 nd->state |= ND_JUMPED; 980 return 0; 981 } 982 983 /* 984 * Helper to directly jump to a known parsed path from ->get_link, 985 * caller must have taken a reference to path beforehand. 986 */ 987 int nd_jump_link(struct path *path) 988 { 989 int error = -ELOOP; 990 struct nameidata *nd = current->nameidata; 991 992 if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS)) 993 goto err; 994 995 error = -EXDEV; 996 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { 997 if (nd->path.mnt != path->mnt) 998 goto err; 999 } 1000 /* Not currently safe for scoped-lookups. */ 1001 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) 1002 goto err; 1003 1004 path_put(&nd->path); 1005 nd->path = *path; 1006 nd->inode = nd->path.dentry->d_inode; 1007 nd->state |= ND_JUMPED; 1008 return 0; 1009 1010 err: 1011 path_put(path); 1012 return error; 1013 } 1014 1015 static inline void put_link(struct nameidata *nd) 1016 { 1017 struct saved *last = nd->stack + --nd->depth; 1018 do_delayed_call(&last->done); 1019 if (!(nd->flags & LOOKUP_RCU)) 1020 path_put(&last->link); 1021 } 1022 1023 int sysctl_protected_symlinks __read_mostly = 0; 1024 int sysctl_protected_hardlinks __read_mostly = 0; 1025 int sysctl_protected_fifos __read_mostly; 1026 int sysctl_protected_regular __read_mostly; 1027 1028 /** 1029 * may_follow_link - Check symlink following for unsafe situations 1030 * @nd: nameidata pathwalk data 1031 * 1032 * In the case of the sysctl_protected_symlinks sysctl being enabled, 1033 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 1034 * in a sticky world-writable directory. This is to protect privileged 1035 * processes from failing races against path names that may change out 1036 * from under them by way of other users creating malicious symlinks. 1037 * It will permit symlinks to be followed only when outside a sticky 1038 * world-writable directory, or when the uid of the symlink and follower 1039 * match, or when the directory owner matches the symlink's owner. 1040 * 1041 * Returns 0 if following the symlink is allowed, -ve on error. 1042 */ 1043 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode) 1044 { 1045 struct user_namespace *mnt_userns; 1046 kuid_t i_uid; 1047 1048 if (!sysctl_protected_symlinks) 1049 return 0; 1050 1051 mnt_userns = mnt_user_ns(nd->path.mnt); 1052 i_uid = i_uid_into_mnt(mnt_userns, inode); 1053 /* Allowed if owner and follower match. */ 1054 if (uid_eq(current_cred()->fsuid, i_uid)) 1055 return 0; 1056 1057 /* Allowed if parent directory not sticky and world-writable. */ 1058 if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 1059 return 0; 1060 1061 /* Allowed if parent directory and link owner match. */ 1062 if (uid_valid(nd->dir_uid) && uid_eq(nd->dir_uid, i_uid)) 1063 return 0; 1064 1065 if (nd->flags & LOOKUP_RCU) 1066 return -ECHILD; 1067 1068 audit_inode(nd->name, nd->stack[0].link.dentry, 0); 1069 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link"); 1070 return -EACCES; 1071 } 1072 1073 /** 1074 * safe_hardlink_source - Check for safe hardlink conditions 1075 * @mnt_userns: user namespace of the mount the inode was found from 1076 * @inode: the source inode to hardlink from 1077 * 1078 * Return false if at least one of the following conditions: 1079 * - inode is not a regular file 1080 * - inode is setuid 1081 * - inode is setgid and group-exec 1082 * - access failure for read and write 1083 * 1084 * Otherwise returns true. 1085 */ 1086 static bool safe_hardlink_source(struct user_namespace *mnt_userns, 1087 struct inode *inode) 1088 { 1089 umode_t mode = inode->i_mode; 1090 1091 /* Special files should not get pinned to the filesystem. */ 1092 if (!S_ISREG(mode)) 1093 return false; 1094 1095 /* Setuid files should not get pinned to the filesystem. */ 1096 if (mode & S_ISUID) 1097 return false; 1098 1099 /* Executable setgid files should not get pinned to the filesystem. */ 1100 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 1101 return false; 1102 1103 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 1104 if (inode_permission(mnt_userns, inode, MAY_READ | MAY_WRITE)) 1105 return false; 1106 1107 return true; 1108 } 1109 1110 /** 1111 * may_linkat - Check permissions for creating a hardlink 1112 * @mnt_userns: user namespace of the mount the inode was found from 1113 * @link: the source to hardlink from 1114 * 1115 * Block hardlink when all of: 1116 * - sysctl_protected_hardlinks enabled 1117 * - fsuid does not match inode 1118 * - hardlink source is unsafe (see safe_hardlink_source() above) 1119 * - not CAP_FOWNER in a namespace with the inode owner uid mapped 1120 * 1121 * If the inode has been found through an idmapped mount the user namespace of 1122 * the vfsmount must be passed through @mnt_userns. This function will then take 1123 * care to map the inode according to @mnt_userns before checking permissions. 1124 * On non-idmapped mounts or if permission checking is to be performed on the 1125 * raw inode simply passs init_user_ns. 1126 * 1127 * Returns 0 if successful, -ve on error. 1128 */ 1129 int may_linkat(struct user_namespace *mnt_userns, struct path *link) 1130 { 1131 struct inode *inode = link->dentry->d_inode; 1132 1133 /* Inode writeback is not safe when the uid or gid are invalid. */ 1134 if (!uid_valid(i_uid_into_mnt(mnt_userns, inode)) || 1135 !gid_valid(i_gid_into_mnt(mnt_userns, inode))) 1136 return -EOVERFLOW; 1137 1138 if (!sysctl_protected_hardlinks) 1139 return 0; 1140 1141 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 1142 * otherwise, it must be a safe source. 1143 */ 1144 if (safe_hardlink_source(mnt_userns, inode) || 1145 inode_owner_or_capable(mnt_userns, inode)) 1146 return 0; 1147 1148 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat"); 1149 return -EPERM; 1150 } 1151 1152 /** 1153 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory 1154 * should be allowed, or not, on files that already 1155 * exist. 1156 * @mnt_userns: user namespace of the mount the inode was found from 1157 * @nd: nameidata pathwalk data 1158 * @inode: the inode of the file to open 1159 * 1160 * Block an O_CREAT open of a FIFO (or a regular file) when: 1161 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled 1162 * - the file already exists 1163 * - we are in a sticky directory 1164 * - we don't own the file 1165 * - the owner of the directory doesn't own the file 1166 * - the directory is world writable 1167 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2 1168 * the directory doesn't have to be world writable: being group writable will 1169 * be enough. 1170 * 1171 * If the inode has been found through an idmapped mount the user namespace of 1172 * the vfsmount must be passed through @mnt_userns. This function will then take 1173 * care to map the inode according to @mnt_userns before checking permissions. 1174 * On non-idmapped mounts or if permission checking is to be performed on the 1175 * raw inode simply passs init_user_ns. 1176 * 1177 * Returns 0 if the open is allowed, -ve on error. 1178 */ 1179 static int may_create_in_sticky(struct user_namespace *mnt_userns, 1180 struct nameidata *nd, struct inode *const inode) 1181 { 1182 umode_t dir_mode = nd->dir_mode; 1183 kuid_t dir_uid = nd->dir_uid; 1184 1185 if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) || 1186 (!sysctl_protected_regular && S_ISREG(inode->i_mode)) || 1187 likely(!(dir_mode & S_ISVTX)) || 1188 uid_eq(i_uid_into_mnt(mnt_userns, inode), dir_uid) || 1189 uid_eq(current_fsuid(), i_uid_into_mnt(mnt_userns, inode))) 1190 return 0; 1191 1192 if (likely(dir_mode & 0002) || 1193 (dir_mode & 0020 && 1194 ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) || 1195 (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) { 1196 const char *operation = S_ISFIFO(inode->i_mode) ? 1197 "sticky_create_fifo" : 1198 "sticky_create_regular"; 1199 audit_log_path_denied(AUDIT_ANOM_CREAT, operation); 1200 return -EACCES; 1201 } 1202 return 0; 1203 } 1204 1205 /* 1206 * follow_up - Find the mountpoint of path's vfsmount 1207 * 1208 * Given a path, find the mountpoint of its source file system. 1209 * Replace @path with the path of the mountpoint in the parent mount. 1210 * Up is towards /. 1211 * 1212 * Return 1 if we went up a level and 0 if we were already at the 1213 * root. 1214 */ 1215 int follow_up(struct path *path) 1216 { 1217 struct mount *mnt = real_mount(path->mnt); 1218 struct mount *parent; 1219 struct dentry *mountpoint; 1220 1221 read_seqlock_excl(&mount_lock); 1222 parent = mnt->mnt_parent; 1223 if (parent == mnt) { 1224 read_sequnlock_excl(&mount_lock); 1225 return 0; 1226 } 1227 mntget(&parent->mnt); 1228 mountpoint = dget(mnt->mnt_mountpoint); 1229 read_sequnlock_excl(&mount_lock); 1230 dput(path->dentry); 1231 path->dentry = mountpoint; 1232 mntput(path->mnt); 1233 path->mnt = &parent->mnt; 1234 return 1; 1235 } 1236 EXPORT_SYMBOL(follow_up); 1237 1238 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root, 1239 struct path *path, unsigned *seqp) 1240 { 1241 while (mnt_has_parent(m)) { 1242 struct dentry *mountpoint = m->mnt_mountpoint; 1243 1244 m = m->mnt_parent; 1245 if (unlikely(root->dentry == mountpoint && 1246 root->mnt == &m->mnt)) 1247 break; 1248 if (mountpoint != m->mnt.mnt_root) { 1249 path->mnt = &m->mnt; 1250 path->dentry = mountpoint; 1251 *seqp = read_seqcount_begin(&mountpoint->d_seq); 1252 return true; 1253 } 1254 } 1255 return false; 1256 } 1257 1258 static bool choose_mountpoint(struct mount *m, const struct path *root, 1259 struct path *path) 1260 { 1261 bool found; 1262 1263 rcu_read_lock(); 1264 while (1) { 1265 unsigned seq, mseq = read_seqbegin(&mount_lock); 1266 1267 found = choose_mountpoint_rcu(m, root, path, &seq); 1268 if (unlikely(!found)) { 1269 if (!read_seqretry(&mount_lock, mseq)) 1270 break; 1271 } else { 1272 if (likely(__legitimize_path(path, seq, mseq))) 1273 break; 1274 rcu_read_unlock(); 1275 path_put(path); 1276 rcu_read_lock(); 1277 } 1278 } 1279 rcu_read_unlock(); 1280 return found; 1281 } 1282 1283 /* 1284 * Perform an automount 1285 * - return -EISDIR to tell follow_managed() to stop and return the path we 1286 * were called with. 1287 */ 1288 static int follow_automount(struct path *path, int *count, unsigned lookup_flags) 1289 { 1290 struct dentry *dentry = path->dentry; 1291 1292 /* We don't want to mount if someone's just doing a stat - 1293 * unless they're stat'ing a directory and appended a '/' to 1294 * the name. 1295 * 1296 * We do, however, want to mount if someone wants to open or 1297 * create a file of any type under the mountpoint, wants to 1298 * traverse through the mountpoint or wants to open the 1299 * mounted directory. Also, autofs may mark negative dentries 1300 * as being automount points. These will need the attentions 1301 * of the daemon to instantiate them before they can be used. 1302 */ 1303 if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 1304 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 1305 dentry->d_inode) 1306 return -EISDIR; 1307 1308 if (count && (*count)++ >= MAXSYMLINKS) 1309 return -ELOOP; 1310 1311 return finish_automount(dentry->d_op->d_automount(path), path); 1312 } 1313 1314 /* 1315 * mount traversal - out-of-line part. One note on ->d_flags accesses - 1316 * dentries are pinned but not locked here, so negative dentry can go 1317 * positive right under us. Use of smp_load_acquire() provides a barrier 1318 * sufficient for ->d_inode and ->d_flags consistency. 1319 */ 1320 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped, 1321 int *count, unsigned lookup_flags) 1322 { 1323 struct vfsmount *mnt = path->mnt; 1324 bool need_mntput = false; 1325 int ret = 0; 1326 1327 while (flags & DCACHE_MANAGED_DENTRY) { 1328 /* Allow the filesystem to manage the transit without i_mutex 1329 * being held. */ 1330 if (flags & DCACHE_MANAGE_TRANSIT) { 1331 ret = path->dentry->d_op->d_manage(path, false); 1332 flags = smp_load_acquire(&path->dentry->d_flags); 1333 if (ret < 0) 1334 break; 1335 } 1336 1337 if (flags & DCACHE_MOUNTED) { // something's mounted on it.. 1338 struct vfsmount *mounted = lookup_mnt(path); 1339 if (mounted) { // ... in our namespace 1340 dput(path->dentry); 1341 if (need_mntput) 1342 mntput(path->mnt); 1343 path->mnt = mounted; 1344 path->dentry = dget(mounted->mnt_root); 1345 // here we know it's positive 1346 flags = path->dentry->d_flags; 1347 need_mntput = true; 1348 continue; 1349 } 1350 } 1351 1352 if (!(flags & DCACHE_NEED_AUTOMOUNT)) 1353 break; 1354 1355 // uncovered automount point 1356 ret = follow_automount(path, count, lookup_flags); 1357 flags = smp_load_acquire(&path->dentry->d_flags); 1358 if (ret < 0) 1359 break; 1360 } 1361 1362 if (ret == -EISDIR) 1363 ret = 0; 1364 // possible if you race with several mount --move 1365 if (need_mntput && path->mnt == mnt) 1366 mntput(path->mnt); 1367 if (!ret && unlikely(d_flags_negative(flags))) 1368 ret = -ENOENT; 1369 *jumped = need_mntput; 1370 return ret; 1371 } 1372 1373 static inline int traverse_mounts(struct path *path, bool *jumped, 1374 int *count, unsigned lookup_flags) 1375 { 1376 unsigned flags = smp_load_acquire(&path->dentry->d_flags); 1377 1378 /* fastpath */ 1379 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) { 1380 *jumped = false; 1381 if (unlikely(d_flags_negative(flags))) 1382 return -ENOENT; 1383 return 0; 1384 } 1385 return __traverse_mounts(path, flags, jumped, count, lookup_flags); 1386 } 1387 1388 int follow_down_one(struct path *path) 1389 { 1390 struct vfsmount *mounted; 1391 1392 mounted = lookup_mnt(path); 1393 if (mounted) { 1394 dput(path->dentry); 1395 mntput(path->mnt); 1396 path->mnt = mounted; 1397 path->dentry = dget(mounted->mnt_root); 1398 return 1; 1399 } 1400 return 0; 1401 } 1402 EXPORT_SYMBOL(follow_down_one); 1403 1404 /* 1405 * Follow down to the covering mount currently visible to userspace. At each 1406 * point, the filesystem owning that dentry may be queried as to whether the 1407 * caller is permitted to proceed or not. 1408 */ 1409 int follow_down(struct path *path) 1410 { 1411 struct vfsmount *mnt = path->mnt; 1412 bool jumped; 1413 int ret = traverse_mounts(path, &jumped, NULL, 0); 1414 1415 if (path->mnt != mnt) 1416 mntput(mnt); 1417 return ret; 1418 } 1419 EXPORT_SYMBOL(follow_down); 1420 1421 /* 1422 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1423 * we meet a managed dentry that would need blocking. 1424 */ 1425 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1426 struct inode **inode, unsigned *seqp) 1427 { 1428 struct dentry *dentry = path->dentry; 1429 unsigned int flags = dentry->d_flags; 1430 1431 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) 1432 return true; 1433 1434 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1435 return false; 1436 1437 for (;;) { 1438 /* 1439 * Don't forget we might have a non-mountpoint managed dentry 1440 * that wants to block transit. 1441 */ 1442 if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) { 1443 int res = dentry->d_op->d_manage(path, true); 1444 if (res) 1445 return res == -EISDIR; 1446 flags = dentry->d_flags; 1447 } 1448 1449 if (flags & DCACHE_MOUNTED) { 1450 struct mount *mounted = __lookup_mnt(path->mnt, dentry); 1451 if (mounted) { 1452 path->mnt = &mounted->mnt; 1453 dentry = path->dentry = mounted->mnt.mnt_root; 1454 nd->state |= ND_JUMPED; 1455 *seqp = read_seqcount_begin(&dentry->d_seq); 1456 *inode = dentry->d_inode; 1457 /* 1458 * We don't need to re-check ->d_seq after this 1459 * ->d_inode read - there will be an RCU delay 1460 * between mount hash removal and ->mnt_root 1461 * becoming unpinned. 1462 */ 1463 flags = dentry->d_flags; 1464 continue; 1465 } 1466 if (read_seqretry(&mount_lock, nd->m_seq)) 1467 return false; 1468 } 1469 return !(flags & DCACHE_NEED_AUTOMOUNT); 1470 } 1471 } 1472 1473 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry, 1474 struct path *path, struct inode **inode, 1475 unsigned int *seqp) 1476 { 1477 bool jumped; 1478 int ret; 1479 1480 path->mnt = nd->path.mnt; 1481 path->dentry = dentry; 1482 if (nd->flags & LOOKUP_RCU) { 1483 unsigned int seq = *seqp; 1484 if (unlikely(!*inode)) 1485 return -ENOENT; 1486 if (likely(__follow_mount_rcu(nd, path, inode, seqp))) 1487 return 0; 1488 if (!try_to_unlazy_next(nd, dentry, seq)) 1489 return -ECHILD; 1490 // *path might've been clobbered by __follow_mount_rcu() 1491 path->mnt = nd->path.mnt; 1492 path->dentry = dentry; 1493 } 1494 ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags); 1495 if (jumped) { 1496 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1497 ret = -EXDEV; 1498 else 1499 nd->state |= ND_JUMPED; 1500 } 1501 if (unlikely(ret)) { 1502 dput(path->dentry); 1503 if (path->mnt != nd->path.mnt) 1504 mntput(path->mnt); 1505 } else { 1506 *inode = d_backing_inode(path->dentry); 1507 *seqp = 0; /* out of RCU mode, so the value doesn't matter */ 1508 } 1509 return ret; 1510 } 1511 1512 /* 1513 * This looks up the name in dcache and possibly revalidates the found dentry. 1514 * NULL is returned if the dentry does not exist in the cache. 1515 */ 1516 static struct dentry *lookup_dcache(const struct qstr *name, 1517 struct dentry *dir, 1518 unsigned int flags) 1519 { 1520 struct dentry *dentry = d_lookup(dir, name); 1521 if (dentry) { 1522 int error = d_revalidate(dentry, flags); 1523 if (unlikely(error <= 0)) { 1524 if (!error) 1525 d_invalidate(dentry); 1526 dput(dentry); 1527 return ERR_PTR(error); 1528 } 1529 } 1530 return dentry; 1531 } 1532 1533 /* 1534 * Parent directory has inode locked exclusive. This is one 1535 * and only case when ->lookup() gets called on non in-lookup 1536 * dentries - as the matter of fact, this only gets called 1537 * when directory is guaranteed to have no in-lookup children 1538 * at all. 1539 */ 1540 static struct dentry *__lookup_hash(const struct qstr *name, 1541 struct dentry *base, unsigned int flags) 1542 { 1543 struct dentry *dentry = lookup_dcache(name, base, flags); 1544 struct dentry *old; 1545 struct inode *dir = base->d_inode; 1546 1547 if (dentry) 1548 return dentry; 1549 1550 /* Don't create child dentry for a dead directory. */ 1551 if (unlikely(IS_DEADDIR(dir))) 1552 return ERR_PTR(-ENOENT); 1553 1554 dentry = d_alloc(base, name); 1555 if (unlikely(!dentry)) 1556 return ERR_PTR(-ENOMEM); 1557 1558 old = dir->i_op->lookup(dir, dentry, flags); 1559 if (unlikely(old)) { 1560 dput(dentry); 1561 dentry = old; 1562 } 1563 return dentry; 1564 } 1565 1566 static struct dentry *lookup_fast(struct nameidata *nd, 1567 struct inode **inode, 1568 unsigned *seqp) 1569 { 1570 struct dentry *dentry, *parent = nd->path.dentry; 1571 int status = 1; 1572 1573 /* 1574 * Rename seqlock is not required here because in the off chance 1575 * of a false negative due to a concurrent rename, the caller is 1576 * going to fall back to non-racy lookup. 1577 */ 1578 if (nd->flags & LOOKUP_RCU) { 1579 unsigned seq; 1580 dentry = __d_lookup_rcu(parent, &nd->last, &seq); 1581 if (unlikely(!dentry)) { 1582 if (!try_to_unlazy(nd)) 1583 return ERR_PTR(-ECHILD); 1584 return NULL; 1585 } 1586 1587 /* 1588 * This sequence count validates that the inode matches 1589 * the dentry name information from lookup. 1590 */ 1591 *inode = d_backing_inode(dentry); 1592 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) 1593 return ERR_PTR(-ECHILD); 1594 1595 /* 1596 * This sequence count validates that the parent had no 1597 * changes while we did the lookup of the dentry above. 1598 * 1599 * The memory barrier in read_seqcount_begin of child is 1600 * enough, we can use __read_seqcount_retry here. 1601 */ 1602 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq))) 1603 return ERR_PTR(-ECHILD); 1604 1605 *seqp = seq; 1606 status = d_revalidate(dentry, nd->flags); 1607 if (likely(status > 0)) 1608 return dentry; 1609 if (!try_to_unlazy_next(nd, dentry, seq)) 1610 return ERR_PTR(-ECHILD); 1611 if (status == -ECHILD) 1612 /* we'd been told to redo it in non-rcu mode */ 1613 status = d_revalidate(dentry, nd->flags); 1614 } else { 1615 dentry = __d_lookup(parent, &nd->last); 1616 if (unlikely(!dentry)) 1617 return NULL; 1618 status = d_revalidate(dentry, nd->flags); 1619 } 1620 if (unlikely(status <= 0)) { 1621 if (!status) 1622 d_invalidate(dentry); 1623 dput(dentry); 1624 return ERR_PTR(status); 1625 } 1626 return dentry; 1627 } 1628 1629 /* Fast lookup failed, do it the slow way */ 1630 static struct dentry *__lookup_slow(const struct qstr *name, 1631 struct dentry *dir, 1632 unsigned int flags) 1633 { 1634 struct dentry *dentry, *old; 1635 struct inode *inode = dir->d_inode; 1636 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1637 1638 /* Don't go there if it's already dead */ 1639 if (unlikely(IS_DEADDIR(inode))) 1640 return ERR_PTR(-ENOENT); 1641 again: 1642 dentry = d_alloc_parallel(dir, name, &wq); 1643 if (IS_ERR(dentry)) 1644 return dentry; 1645 if (unlikely(!d_in_lookup(dentry))) { 1646 int error = d_revalidate(dentry, flags); 1647 if (unlikely(error <= 0)) { 1648 if (!error) { 1649 d_invalidate(dentry); 1650 dput(dentry); 1651 goto again; 1652 } 1653 dput(dentry); 1654 dentry = ERR_PTR(error); 1655 } 1656 } else { 1657 old = inode->i_op->lookup(inode, dentry, flags); 1658 d_lookup_done(dentry); 1659 if (unlikely(old)) { 1660 dput(dentry); 1661 dentry = old; 1662 } 1663 } 1664 return dentry; 1665 } 1666 1667 static struct dentry *lookup_slow(const struct qstr *name, 1668 struct dentry *dir, 1669 unsigned int flags) 1670 { 1671 struct inode *inode = dir->d_inode; 1672 struct dentry *res; 1673 inode_lock_shared(inode); 1674 res = __lookup_slow(name, dir, flags); 1675 inode_unlock_shared(inode); 1676 return res; 1677 } 1678 1679 static inline int may_lookup(struct user_namespace *mnt_userns, 1680 struct nameidata *nd) 1681 { 1682 if (nd->flags & LOOKUP_RCU) { 1683 int err = inode_permission(mnt_userns, nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1684 if (err != -ECHILD || !try_to_unlazy(nd)) 1685 return err; 1686 } 1687 return inode_permission(mnt_userns, nd->inode, MAY_EXEC); 1688 } 1689 1690 static int reserve_stack(struct nameidata *nd, struct path *link, unsigned seq) 1691 { 1692 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) 1693 return -ELOOP; 1694 1695 if (likely(nd->depth != EMBEDDED_LEVELS)) 1696 return 0; 1697 if (likely(nd->stack != nd->internal)) 1698 return 0; 1699 if (likely(nd_alloc_stack(nd))) 1700 return 0; 1701 1702 if (nd->flags & LOOKUP_RCU) { 1703 // we need to grab link before we do unlazy. And we can't skip 1704 // unlazy even if we fail to grab the link - cleanup needs it 1705 bool grabbed_link = legitimize_path(nd, link, seq); 1706 1707 if (!try_to_unlazy(nd) != 0 || !grabbed_link) 1708 return -ECHILD; 1709 1710 if (nd_alloc_stack(nd)) 1711 return 0; 1712 } 1713 return -ENOMEM; 1714 } 1715 1716 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4}; 1717 1718 static const char *pick_link(struct nameidata *nd, struct path *link, 1719 struct inode *inode, unsigned seq, int flags) 1720 { 1721 struct saved *last; 1722 const char *res; 1723 int error = reserve_stack(nd, link, seq); 1724 1725 if (unlikely(error)) { 1726 if (!(nd->flags & LOOKUP_RCU)) 1727 path_put(link); 1728 return ERR_PTR(error); 1729 } 1730 last = nd->stack + nd->depth++; 1731 last->link = *link; 1732 clear_delayed_call(&last->done); 1733 last->seq = seq; 1734 1735 if (flags & WALK_TRAILING) { 1736 error = may_follow_link(nd, inode); 1737 if (unlikely(error)) 1738 return ERR_PTR(error); 1739 } 1740 1741 if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) || 1742 unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW)) 1743 return ERR_PTR(-ELOOP); 1744 1745 if (!(nd->flags & LOOKUP_RCU)) { 1746 touch_atime(&last->link); 1747 cond_resched(); 1748 } else if (atime_needs_update(&last->link, inode)) { 1749 if (!try_to_unlazy(nd)) 1750 return ERR_PTR(-ECHILD); 1751 touch_atime(&last->link); 1752 } 1753 1754 error = security_inode_follow_link(link->dentry, inode, 1755 nd->flags & LOOKUP_RCU); 1756 if (unlikely(error)) 1757 return ERR_PTR(error); 1758 1759 res = READ_ONCE(inode->i_link); 1760 if (!res) { 1761 const char * (*get)(struct dentry *, struct inode *, 1762 struct delayed_call *); 1763 get = inode->i_op->get_link; 1764 if (nd->flags & LOOKUP_RCU) { 1765 res = get(NULL, inode, &last->done); 1766 if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd)) 1767 res = get(link->dentry, inode, &last->done); 1768 } else { 1769 res = get(link->dentry, inode, &last->done); 1770 } 1771 if (!res) 1772 goto all_done; 1773 if (IS_ERR(res)) 1774 return res; 1775 } 1776 if (*res == '/') { 1777 error = nd_jump_root(nd); 1778 if (unlikely(error)) 1779 return ERR_PTR(error); 1780 while (unlikely(*++res == '/')) 1781 ; 1782 } 1783 if (*res) 1784 return res; 1785 all_done: // pure jump 1786 put_link(nd); 1787 return NULL; 1788 } 1789 1790 /* 1791 * Do we need to follow links? We _really_ want to be able 1792 * to do this check without having to look at inode->i_op, 1793 * so we keep a cache of "no, this doesn't need follow_link" 1794 * for the common case. 1795 */ 1796 static const char *step_into(struct nameidata *nd, int flags, 1797 struct dentry *dentry, struct inode *inode, unsigned seq) 1798 { 1799 struct path path; 1800 int err = handle_mounts(nd, dentry, &path, &inode, &seq); 1801 1802 if (err < 0) 1803 return ERR_PTR(err); 1804 if (likely(!d_is_symlink(path.dentry)) || 1805 ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) || 1806 (flags & WALK_NOFOLLOW)) { 1807 /* not a symlink or should not follow */ 1808 if (!(nd->flags & LOOKUP_RCU)) { 1809 dput(nd->path.dentry); 1810 if (nd->path.mnt != path.mnt) 1811 mntput(nd->path.mnt); 1812 } 1813 nd->path = path; 1814 nd->inode = inode; 1815 nd->seq = seq; 1816 return NULL; 1817 } 1818 if (nd->flags & LOOKUP_RCU) { 1819 /* make sure that d_is_symlink above matches inode */ 1820 if (read_seqcount_retry(&path.dentry->d_seq, seq)) 1821 return ERR_PTR(-ECHILD); 1822 } else { 1823 if (path.mnt == nd->path.mnt) 1824 mntget(path.mnt); 1825 } 1826 return pick_link(nd, &path, inode, seq, flags); 1827 } 1828 1829 static struct dentry *follow_dotdot_rcu(struct nameidata *nd, 1830 struct inode **inodep, 1831 unsigned *seqp) 1832 { 1833 struct dentry *parent, *old; 1834 1835 if (path_equal(&nd->path, &nd->root)) 1836 goto in_root; 1837 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { 1838 struct path path; 1839 unsigned seq; 1840 if (!choose_mountpoint_rcu(real_mount(nd->path.mnt), 1841 &nd->root, &path, &seq)) 1842 goto in_root; 1843 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1844 return ERR_PTR(-ECHILD); 1845 nd->path = path; 1846 nd->inode = path.dentry->d_inode; 1847 nd->seq = seq; 1848 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1849 return ERR_PTR(-ECHILD); 1850 /* we know that mountpoint was pinned */ 1851 } 1852 old = nd->path.dentry; 1853 parent = old->d_parent; 1854 *inodep = parent->d_inode; 1855 *seqp = read_seqcount_begin(&parent->d_seq); 1856 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq))) 1857 return ERR_PTR(-ECHILD); 1858 if (unlikely(!path_connected(nd->path.mnt, parent))) 1859 return ERR_PTR(-ECHILD); 1860 return parent; 1861 in_root: 1862 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1863 return ERR_PTR(-ECHILD); 1864 if (unlikely(nd->flags & LOOKUP_BENEATH)) 1865 return ERR_PTR(-ECHILD); 1866 return NULL; 1867 } 1868 1869 static struct dentry *follow_dotdot(struct nameidata *nd, 1870 struct inode **inodep, 1871 unsigned *seqp) 1872 { 1873 struct dentry *parent; 1874 1875 if (path_equal(&nd->path, &nd->root)) 1876 goto in_root; 1877 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { 1878 struct path path; 1879 1880 if (!choose_mountpoint(real_mount(nd->path.mnt), 1881 &nd->root, &path)) 1882 goto in_root; 1883 path_put(&nd->path); 1884 nd->path = path; 1885 nd->inode = path.dentry->d_inode; 1886 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1887 return ERR_PTR(-EXDEV); 1888 } 1889 /* rare case of legitimate dget_parent()... */ 1890 parent = dget_parent(nd->path.dentry); 1891 if (unlikely(!path_connected(nd->path.mnt, parent))) { 1892 dput(parent); 1893 return ERR_PTR(-ENOENT); 1894 } 1895 *seqp = 0; 1896 *inodep = parent->d_inode; 1897 return parent; 1898 1899 in_root: 1900 if (unlikely(nd->flags & LOOKUP_BENEATH)) 1901 return ERR_PTR(-EXDEV); 1902 dget(nd->path.dentry); 1903 return NULL; 1904 } 1905 1906 static const char *handle_dots(struct nameidata *nd, int type) 1907 { 1908 if (type == LAST_DOTDOT) { 1909 const char *error = NULL; 1910 struct dentry *parent; 1911 struct inode *inode; 1912 unsigned seq; 1913 1914 if (!nd->root.mnt) { 1915 error = ERR_PTR(set_root(nd)); 1916 if (error) 1917 return error; 1918 } 1919 if (nd->flags & LOOKUP_RCU) 1920 parent = follow_dotdot_rcu(nd, &inode, &seq); 1921 else 1922 parent = follow_dotdot(nd, &inode, &seq); 1923 if (IS_ERR(parent)) 1924 return ERR_CAST(parent); 1925 if (unlikely(!parent)) 1926 error = step_into(nd, WALK_NOFOLLOW, 1927 nd->path.dentry, nd->inode, nd->seq); 1928 else 1929 error = step_into(nd, WALK_NOFOLLOW, 1930 parent, inode, seq); 1931 if (unlikely(error)) 1932 return error; 1933 1934 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { 1935 /* 1936 * If there was a racing rename or mount along our 1937 * path, then we can't be sure that ".." hasn't jumped 1938 * above nd->root (and so userspace should retry or use 1939 * some fallback). 1940 */ 1941 smp_rmb(); 1942 if (unlikely(__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq))) 1943 return ERR_PTR(-EAGAIN); 1944 if (unlikely(__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq))) 1945 return ERR_PTR(-EAGAIN); 1946 } 1947 } 1948 return NULL; 1949 } 1950 1951 static const char *walk_component(struct nameidata *nd, int flags) 1952 { 1953 struct dentry *dentry; 1954 struct inode *inode; 1955 unsigned seq; 1956 /* 1957 * "." and ".." are special - ".." especially so because it has 1958 * to be able to know about the current root directory and 1959 * parent relationships. 1960 */ 1961 if (unlikely(nd->last_type != LAST_NORM)) { 1962 if (!(flags & WALK_MORE) && nd->depth) 1963 put_link(nd); 1964 return handle_dots(nd, nd->last_type); 1965 } 1966 dentry = lookup_fast(nd, &inode, &seq); 1967 if (IS_ERR(dentry)) 1968 return ERR_CAST(dentry); 1969 if (unlikely(!dentry)) { 1970 dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags); 1971 if (IS_ERR(dentry)) 1972 return ERR_CAST(dentry); 1973 } 1974 if (!(flags & WALK_MORE) && nd->depth) 1975 put_link(nd); 1976 return step_into(nd, flags, dentry, inode, seq); 1977 } 1978 1979 /* 1980 * We can do the critical dentry name comparison and hashing 1981 * operations one word at a time, but we are limited to: 1982 * 1983 * - Architectures with fast unaligned word accesses. We could 1984 * do a "get_unaligned()" if this helps and is sufficiently 1985 * fast. 1986 * 1987 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 1988 * do not trap on the (extremely unlikely) case of a page 1989 * crossing operation. 1990 * 1991 * - Furthermore, we need an efficient 64-bit compile for the 1992 * 64-bit case in order to generate the "number of bytes in 1993 * the final mask". Again, that could be replaced with a 1994 * efficient population count instruction or similar. 1995 */ 1996 #ifdef CONFIG_DCACHE_WORD_ACCESS 1997 1998 #include <asm/word-at-a-time.h> 1999 2000 #ifdef HASH_MIX 2001 2002 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */ 2003 2004 #elif defined(CONFIG_64BIT) 2005 /* 2006 * Register pressure in the mixing function is an issue, particularly 2007 * on 32-bit x86, but almost any function requires one state value and 2008 * one temporary. Instead, use a function designed for two state values 2009 * and no temporaries. 2010 * 2011 * This function cannot create a collision in only two iterations, so 2012 * we have two iterations to achieve avalanche. In those two iterations, 2013 * we have six layers of mixing, which is enough to spread one bit's 2014 * influence out to 2^6 = 64 state bits. 2015 * 2016 * Rotate constants are scored by considering either 64 one-bit input 2017 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the 2018 * probability of that delta causing a change to each of the 128 output 2019 * bits, using a sample of random initial states. 2020 * 2021 * The Shannon entropy of the computed probabilities is then summed 2022 * to produce a score. Ideally, any input change has a 50% chance of 2023 * toggling any given output bit. 2024 * 2025 * Mixing scores (in bits) for (12,45): 2026 * Input delta: 1-bit 2-bit 2027 * 1 round: 713.3 42542.6 2028 * 2 rounds: 2753.7 140389.8 2029 * 3 rounds: 5954.1 233458.2 2030 * 4 rounds: 7862.6 256672.2 2031 * Perfect: 8192 258048 2032 * (64*128) (64*63/2 * 128) 2033 */ 2034 #define HASH_MIX(x, y, a) \ 2035 ( x ^= (a), \ 2036 y ^= x, x = rol64(x,12),\ 2037 x += y, y = rol64(y,45),\ 2038 y *= 9 ) 2039 2040 /* 2041 * Fold two longs into one 32-bit hash value. This must be fast, but 2042 * latency isn't quite as critical, as there is a fair bit of additional 2043 * work done before the hash value is used. 2044 */ 2045 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 2046 { 2047 y ^= x * GOLDEN_RATIO_64; 2048 y *= GOLDEN_RATIO_64; 2049 return y >> 32; 2050 } 2051 2052 #else /* 32-bit case */ 2053 2054 /* 2055 * Mixing scores (in bits) for (7,20): 2056 * Input delta: 1-bit 2-bit 2057 * 1 round: 330.3 9201.6 2058 * 2 rounds: 1246.4 25475.4 2059 * 3 rounds: 1907.1 31295.1 2060 * 4 rounds: 2042.3 31718.6 2061 * Perfect: 2048 31744 2062 * (32*64) (32*31/2 * 64) 2063 */ 2064 #define HASH_MIX(x, y, a) \ 2065 ( x ^= (a), \ 2066 y ^= x, x = rol32(x, 7),\ 2067 x += y, y = rol32(y,20),\ 2068 y *= 9 ) 2069 2070 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 2071 { 2072 /* Use arch-optimized multiply if one exists */ 2073 return __hash_32(y ^ __hash_32(x)); 2074 } 2075 2076 #endif 2077 2078 /* 2079 * Return the hash of a string of known length. This is carfully 2080 * designed to match hash_name(), which is the more critical function. 2081 * In particular, we must end by hashing a final word containing 0..7 2082 * payload bytes, to match the way that hash_name() iterates until it 2083 * finds the delimiter after the name. 2084 */ 2085 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2086 { 2087 unsigned long a, x = 0, y = (unsigned long)salt; 2088 2089 for (;;) { 2090 if (!len) 2091 goto done; 2092 a = load_unaligned_zeropad(name); 2093 if (len < sizeof(unsigned long)) 2094 break; 2095 HASH_MIX(x, y, a); 2096 name += sizeof(unsigned long); 2097 len -= sizeof(unsigned long); 2098 } 2099 x ^= a & bytemask_from_count(len); 2100 done: 2101 return fold_hash(x, y); 2102 } 2103 EXPORT_SYMBOL(full_name_hash); 2104 2105 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2106 u64 hashlen_string(const void *salt, const char *name) 2107 { 2108 unsigned long a = 0, x = 0, y = (unsigned long)salt; 2109 unsigned long adata, mask, len; 2110 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 2111 2112 len = 0; 2113 goto inside; 2114 2115 do { 2116 HASH_MIX(x, y, a); 2117 len += sizeof(unsigned long); 2118 inside: 2119 a = load_unaligned_zeropad(name+len); 2120 } while (!has_zero(a, &adata, &constants)); 2121 2122 adata = prep_zero_mask(a, adata, &constants); 2123 mask = create_zero_mask(adata); 2124 x ^= a & zero_bytemask(mask); 2125 2126 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 2127 } 2128 EXPORT_SYMBOL(hashlen_string); 2129 2130 /* 2131 * Calculate the length and hash of the path component, and 2132 * return the "hash_len" as the result. 2133 */ 2134 static inline u64 hash_name(const void *salt, const char *name) 2135 { 2136 unsigned long a = 0, b, x = 0, y = (unsigned long)salt; 2137 unsigned long adata, bdata, mask, len; 2138 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 2139 2140 len = 0; 2141 goto inside; 2142 2143 do { 2144 HASH_MIX(x, y, a); 2145 len += sizeof(unsigned long); 2146 inside: 2147 a = load_unaligned_zeropad(name+len); 2148 b = a ^ REPEAT_BYTE('/'); 2149 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 2150 2151 adata = prep_zero_mask(a, adata, &constants); 2152 bdata = prep_zero_mask(b, bdata, &constants); 2153 mask = create_zero_mask(adata | bdata); 2154 x ^= a & zero_bytemask(mask); 2155 2156 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 2157 } 2158 2159 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */ 2160 2161 /* Return the hash of a string of known length */ 2162 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2163 { 2164 unsigned long hash = init_name_hash(salt); 2165 while (len--) 2166 hash = partial_name_hash((unsigned char)*name++, hash); 2167 return end_name_hash(hash); 2168 } 2169 EXPORT_SYMBOL(full_name_hash); 2170 2171 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2172 u64 hashlen_string(const void *salt, const char *name) 2173 { 2174 unsigned long hash = init_name_hash(salt); 2175 unsigned long len = 0, c; 2176 2177 c = (unsigned char)*name; 2178 while (c) { 2179 len++; 2180 hash = partial_name_hash(c, hash); 2181 c = (unsigned char)name[len]; 2182 } 2183 return hashlen_create(end_name_hash(hash), len); 2184 } 2185 EXPORT_SYMBOL(hashlen_string); 2186 2187 /* 2188 * We know there's a real path component here of at least 2189 * one character. 2190 */ 2191 static inline u64 hash_name(const void *salt, const char *name) 2192 { 2193 unsigned long hash = init_name_hash(salt); 2194 unsigned long len = 0, c; 2195 2196 c = (unsigned char)*name; 2197 do { 2198 len++; 2199 hash = partial_name_hash(c, hash); 2200 c = (unsigned char)name[len]; 2201 } while (c && c != '/'); 2202 return hashlen_create(end_name_hash(hash), len); 2203 } 2204 2205 #endif 2206 2207 /* 2208 * Name resolution. 2209 * This is the basic name resolution function, turning a pathname into 2210 * the final dentry. We expect 'base' to be positive and a directory. 2211 * 2212 * Returns 0 and nd will have valid dentry and mnt on success. 2213 * Returns error and drops reference to input namei data on failure. 2214 */ 2215 static int link_path_walk(const char *name, struct nameidata *nd) 2216 { 2217 int depth = 0; // depth <= nd->depth 2218 int err; 2219 2220 nd->last_type = LAST_ROOT; 2221 nd->flags |= LOOKUP_PARENT; 2222 if (IS_ERR(name)) 2223 return PTR_ERR(name); 2224 while (*name=='/') 2225 name++; 2226 if (!*name) { 2227 nd->dir_mode = 0; // short-circuit the 'hardening' idiocy 2228 return 0; 2229 } 2230 2231 /* At this point we know we have a real path component. */ 2232 for(;;) { 2233 struct user_namespace *mnt_userns; 2234 const char *link; 2235 u64 hash_len; 2236 int type; 2237 2238 mnt_userns = mnt_user_ns(nd->path.mnt); 2239 err = may_lookup(mnt_userns, nd); 2240 if (err) 2241 return err; 2242 2243 hash_len = hash_name(nd->path.dentry, name); 2244 2245 type = LAST_NORM; 2246 if (name[0] == '.') switch (hashlen_len(hash_len)) { 2247 case 2: 2248 if (name[1] == '.') { 2249 type = LAST_DOTDOT; 2250 nd->state |= ND_JUMPED; 2251 } 2252 break; 2253 case 1: 2254 type = LAST_DOT; 2255 } 2256 if (likely(type == LAST_NORM)) { 2257 struct dentry *parent = nd->path.dentry; 2258 nd->state &= ~ND_JUMPED; 2259 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 2260 struct qstr this = { { .hash_len = hash_len }, .name = name }; 2261 err = parent->d_op->d_hash(parent, &this); 2262 if (err < 0) 2263 return err; 2264 hash_len = this.hash_len; 2265 name = this.name; 2266 } 2267 } 2268 2269 nd->last.hash_len = hash_len; 2270 nd->last.name = name; 2271 nd->last_type = type; 2272 2273 name += hashlen_len(hash_len); 2274 if (!*name) 2275 goto OK; 2276 /* 2277 * If it wasn't NUL, we know it was '/'. Skip that 2278 * slash, and continue until no more slashes. 2279 */ 2280 do { 2281 name++; 2282 } while (unlikely(*name == '/')); 2283 if (unlikely(!*name)) { 2284 OK: 2285 /* pathname or trailing symlink, done */ 2286 if (!depth) { 2287 nd->dir_uid = i_uid_into_mnt(mnt_userns, nd->inode); 2288 nd->dir_mode = nd->inode->i_mode; 2289 nd->flags &= ~LOOKUP_PARENT; 2290 return 0; 2291 } 2292 /* last component of nested symlink */ 2293 name = nd->stack[--depth].name; 2294 link = walk_component(nd, 0); 2295 } else { 2296 /* not the last component */ 2297 link = walk_component(nd, WALK_MORE); 2298 } 2299 if (unlikely(link)) { 2300 if (IS_ERR(link)) 2301 return PTR_ERR(link); 2302 /* a symlink to follow */ 2303 nd->stack[depth++].name = name; 2304 name = link; 2305 continue; 2306 } 2307 if (unlikely(!d_can_lookup(nd->path.dentry))) { 2308 if (nd->flags & LOOKUP_RCU) { 2309 if (!try_to_unlazy(nd)) 2310 return -ECHILD; 2311 } 2312 return -ENOTDIR; 2313 } 2314 } 2315 } 2316 2317 /* must be paired with terminate_walk() */ 2318 static const char *path_init(struct nameidata *nd, unsigned flags) 2319 { 2320 int error; 2321 const char *s = nd->name->name; 2322 2323 /* LOOKUP_CACHED requires RCU, ask caller to retry */ 2324 if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED) 2325 return ERR_PTR(-EAGAIN); 2326 2327 if (!*s) 2328 flags &= ~LOOKUP_RCU; 2329 if (flags & LOOKUP_RCU) 2330 rcu_read_lock(); 2331 2332 nd->flags = flags; 2333 nd->state |= ND_JUMPED; 2334 2335 nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount); 2336 nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount); 2337 smp_rmb(); 2338 2339 if (nd->state & ND_ROOT_PRESET) { 2340 struct dentry *root = nd->root.dentry; 2341 struct inode *inode = root->d_inode; 2342 if (*s && unlikely(!d_can_lookup(root))) 2343 return ERR_PTR(-ENOTDIR); 2344 nd->path = nd->root; 2345 nd->inode = inode; 2346 if (flags & LOOKUP_RCU) { 2347 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2348 nd->root_seq = nd->seq; 2349 } else { 2350 path_get(&nd->path); 2351 } 2352 return s; 2353 } 2354 2355 nd->root.mnt = NULL; 2356 2357 /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */ 2358 if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) { 2359 error = nd_jump_root(nd); 2360 if (unlikely(error)) 2361 return ERR_PTR(error); 2362 return s; 2363 } 2364 2365 /* Relative pathname -- get the starting-point it is relative to. */ 2366 if (nd->dfd == AT_FDCWD) { 2367 if (flags & LOOKUP_RCU) { 2368 struct fs_struct *fs = current->fs; 2369 unsigned seq; 2370 2371 do { 2372 seq = read_seqcount_begin(&fs->seq); 2373 nd->path = fs->pwd; 2374 nd->inode = nd->path.dentry->d_inode; 2375 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2376 } while (read_seqcount_retry(&fs->seq, seq)); 2377 } else { 2378 get_fs_pwd(current->fs, &nd->path); 2379 nd->inode = nd->path.dentry->d_inode; 2380 } 2381 } else { 2382 /* Caller must check execute permissions on the starting path component */ 2383 struct fd f = fdget_raw(nd->dfd); 2384 struct dentry *dentry; 2385 2386 if (!f.file) 2387 return ERR_PTR(-EBADF); 2388 2389 dentry = f.file->f_path.dentry; 2390 2391 if (*s && unlikely(!d_can_lookup(dentry))) { 2392 fdput(f); 2393 return ERR_PTR(-ENOTDIR); 2394 } 2395 2396 nd->path = f.file->f_path; 2397 if (flags & LOOKUP_RCU) { 2398 nd->inode = nd->path.dentry->d_inode; 2399 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2400 } else { 2401 path_get(&nd->path); 2402 nd->inode = nd->path.dentry->d_inode; 2403 } 2404 fdput(f); 2405 } 2406 2407 /* For scoped-lookups we need to set the root to the dirfd as well. */ 2408 if (flags & LOOKUP_IS_SCOPED) { 2409 nd->root = nd->path; 2410 if (flags & LOOKUP_RCU) { 2411 nd->root_seq = nd->seq; 2412 } else { 2413 path_get(&nd->root); 2414 nd->state |= ND_ROOT_GRABBED; 2415 } 2416 } 2417 return s; 2418 } 2419 2420 static inline const char *lookup_last(struct nameidata *nd) 2421 { 2422 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 2423 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2424 2425 return walk_component(nd, WALK_TRAILING); 2426 } 2427 2428 static int handle_lookup_down(struct nameidata *nd) 2429 { 2430 if (!(nd->flags & LOOKUP_RCU)) 2431 dget(nd->path.dentry); 2432 return PTR_ERR(step_into(nd, WALK_NOFOLLOW, 2433 nd->path.dentry, nd->inode, nd->seq)); 2434 } 2435 2436 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2437 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path) 2438 { 2439 const char *s = path_init(nd, flags); 2440 int err; 2441 2442 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) { 2443 err = handle_lookup_down(nd); 2444 if (unlikely(err < 0)) 2445 s = ERR_PTR(err); 2446 } 2447 2448 while (!(err = link_path_walk(s, nd)) && 2449 (s = lookup_last(nd)) != NULL) 2450 ; 2451 if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) { 2452 err = handle_lookup_down(nd); 2453 nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please... 2454 } 2455 if (!err) 2456 err = complete_walk(nd); 2457 2458 if (!err && nd->flags & LOOKUP_DIRECTORY) 2459 if (!d_can_lookup(nd->path.dentry)) 2460 err = -ENOTDIR; 2461 if (!err) { 2462 *path = nd->path; 2463 nd->path.mnt = NULL; 2464 nd->path.dentry = NULL; 2465 } 2466 terminate_walk(nd); 2467 return err; 2468 } 2469 2470 int filename_lookup(int dfd, struct filename *name, unsigned flags, 2471 struct path *path, struct path *root) 2472 { 2473 int retval; 2474 struct nameidata nd; 2475 if (IS_ERR(name)) 2476 return PTR_ERR(name); 2477 set_nameidata(&nd, dfd, name, root); 2478 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path); 2479 if (unlikely(retval == -ECHILD)) 2480 retval = path_lookupat(&nd, flags, path); 2481 if (unlikely(retval == -ESTALE)) 2482 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path); 2483 2484 if (likely(!retval)) 2485 audit_inode(name, path->dentry, 2486 flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0); 2487 restore_nameidata(); 2488 return retval; 2489 } 2490 2491 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2492 static int path_parentat(struct nameidata *nd, unsigned flags, 2493 struct path *parent) 2494 { 2495 const char *s = path_init(nd, flags); 2496 int err = link_path_walk(s, nd); 2497 if (!err) 2498 err = complete_walk(nd); 2499 if (!err) { 2500 *parent = nd->path; 2501 nd->path.mnt = NULL; 2502 nd->path.dentry = NULL; 2503 } 2504 terminate_walk(nd); 2505 return err; 2506 } 2507 2508 /* Note: this does not consume "name" */ 2509 static int filename_parentat(int dfd, struct filename *name, 2510 unsigned int flags, struct path *parent, 2511 struct qstr *last, int *type) 2512 { 2513 int retval; 2514 struct nameidata nd; 2515 2516 if (IS_ERR(name)) 2517 return PTR_ERR(name); 2518 set_nameidata(&nd, dfd, name, NULL); 2519 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent); 2520 if (unlikely(retval == -ECHILD)) 2521 retval = path_parentat(&nd, flags, parent); 2522 if (unlikely(retval == -ESTALE)) 2523 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent); 2524 if (likely(!retval)) { 2525 *last = nd.last; 2526 *type = nd.last_type; 2527 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT); 2528 } 2529 restore_nameidata(); 2530 return retval; 2531 } 2532 2533 /* does lookup, returns the object with parent locked */ 2534 static struct dentry *__kern_path_locked(struct filename *name, struct path *path) 2535 { 2536 struct dentry *d; 2537 struct qstr last; 2538 int type, error; 2539 2540 error = filename_parentat(AT_FDCWD, name, 0, path, &last, &type); 2541 if (error) 2542 return ERR_PTR(error); 2543 if (unlikely(type != LAST_NORM)) { 2544 path_put(path); 2545 return ERR_PTR(-EINVAL); 2546 } 2547 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 2548 d = __lookup_hash(&last, path->dentry, 0); 2549 if (IS_ERR(d)) { 2550 inode_unlock(path->dentry->d_inode); 2551 path_put(path); 2552 } 2553 return d; 2554 } 2555 2556 struct dentry *kern_path_locked(const char *name, struct path *path) 2557 { 2558 struct filename *filename = getname_kernel(name); 2559 struct dentry *res = __kern_path_locked(filename, path); 2560 2561 putname(filename); 2562 return res; 2563 } 2564 2565 int kern_path(const char *name, unsigned int flags, struct path *path) 2566 { 2567 struct filename *filename = getname_kernel(name); 2568 int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL); 2569 2570 putname(filename); 2571 return ret; 2572 2573 } 2574 EXPORT_SYMBOL(kern_path); 2575 2576 /** 2577 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2578 * @dentry: pointer to dentry of the base directory 2579 * @mnt: pointer to vfs mount of the base directory 2580 * @name: pointer to file name 2581 * @flags: lookup flags 2582 * @path: pointer to struct path to fill 2583 */ 2584 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2585 const char *name, unsigned int flags, 2586 struct path *path) 2587 { 2588 struct filename *filename; 2589 struct path root = {.mnt = mnt, .dentry = dentry}; 2590 int ret; 2591 2592 filename = getname_kernel(name); 2593 /* the first argument of filename_lookup() is ignored with root */ 2594 ret = filename_lookup(AT_FDCWD, filename, flags, path, &root); 2595 putname(filename); 2596 return ret; 2597 } 2598 EXPORT_SYMBOL(vfs_path_lookup); 2599 2600 static int lookup_one_common(struct user_namespace *mnt_userns, 2601 const char *name, struct dentry *base, int len, 2602 struct qstr *this) 2603 { 2604 this->name = name; 2605 this->len = len; 2606 this->hash = full_name_hash(base, name, len); 2607 if (!len) 2608 return -EACCES; 2609 2610 if (unlikely(name[0] == '.')) { 2611 if (len < 2 || (len == 2 && name[1] == '.')) 2612 return -EACCES; 2613 } 2614 2615 while (len--) { 2616 unsigned int c = *(const unsigned char *)name++; 2617 if (c == '/' || c == '\0') 2618 return -EACCES; 2619 } 2620 /* 2621 * See if the low-level filesystem might want 2622 * to use its own hash.. 2623 */ 2624 if (base->d_flags & DCACHE_OP_HASH) { 2625 int err = base->d_op->d_hash(base, this); 2626 if (err < 0) 2627 return err; 2628 } 2629 2630 return inode_permission(mnt_userns, base->d_inode, MAY_EXEC); 2631 } 2632 2633 /** 2634 * try_lookup_one_len - filesystem helper to lookup single pathname component 2635 * @name: pathname component to lookup 2636 * @base: base directory to lookup from 2637 * @len: maximum length @len should be interpreted to 2638 * 2639 * Look up a dentry by name in the dcache, returning NULL if it does not 2640 * currently exist. The function does not try to create a dentry. 2641 * 2642 * Note that this routine is purely a helper for filesystem usage and should 2643 * not be called by generic code. 2644 * 2645 * The caller must hold base->i_mutex. 2646 */ 2647 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len) 2648 { 2649 struct qstr this; 2650 int err; 2651 2652 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2653 2654 err = lookup_one_common(&init_user_ns, name, base, len, &this); 2655 if (err) 2656 return ERR_PTR(err); 2657 2658 return lookup_dcache(&this, base, 0); 2659 } 2660 EXPORT_SYMBOL(try_lookup_one_len); 2661 2662 /** 2663 * lookup_one_len - filesystem helper to lookup single pathname component 2664 * @name: pathname component to lookup 2665 * @base: base directory to lookup from 2666 * @len: maximum length @len should be interpreted to 2667 * 2668 * Note that this routine is purely a helper for filesystem usage and should 2669 * not be called by generic code. 2670 * 2671 * The caller must hold base->i_mutex. 2672 */ 2673 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2674 { 2675 struct dentry *dentry; 2676 struct qstr this; 2677 int err; 2678 2679 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2680 2681 err = lookup_one_common(&init_user_ns, name, base, len, &this); 2682 if (err) 2683 return ERR_PTR(err); 2684 2685 dentry = lookup_dcache(&this, base, 0); 2686 return dentry ? dentry : __lookup_slow(&this, base, 0); 2687 } 2688 EXPORT_SYMBOL(lookup_one_len); 2689 2690 /** 2691 * lookup_one - filesystem helper to lookup single pathname component 2692 * @mnt_userns: user namespace of the mount the lookup is performed from 2693 * @name: pathname component to lookup 2694 * @base: base directory to lookup from 2695 * @len: maximum length @len should be interpreted to 2696 * 2697 * Note that this routine is purely a helper for filesystem usage and should 2698 * not be called by generic code. 2699 * 2700 * The caller must hold base->i_mutex. 2701 */ 2702 struct dentry *lookup_one(struct user_namespace *mnt_userns, const char *name, 2703 struct dentry *base, int len) 2704 { 2705 struct dentry *dentry; 2706 struct qstr this; 2707 int err; 2708 2709 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2710 2711 err = lookup_one_common(mnt_userns, name, base, len, &this); 2712 if (err) 2713 return ERR_PTR(err); 2714 2715 dentry = lookup_dcache(&this, base, 0); 2716 return dentry ? dentry : __lookup_slow(&this, base, 0); 2717 } 2718 EXPORT_SYMBOL(lookup_one); 2719 2720 /** 2721 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component 2722 * @name: pathname component to lookup 2723 * @base: base directory to lookup from 2724 * @len: maximum length @len should be interpreted to 2725 * 2726 * Note that this routine is purely a helper for filesystem usage and should 2727 * not be called by generic code. 2728 * 2729 * Unlike lookup_one_len, it should be called without the parent 2730 * i_mutex held, and will take the i_mutex itself if necessary. 2731 */ 2732 struct dentry *lookup_one_len_unlocked(const char *name, 2733 struct dentry *base, int len) 2734 { 2735 struct qstr this; 2736 int err; 2737 struct dentry *ret; 2738 2739 err = lookup_one_common(&init_user_ns, name, base, len, &this); 2740 if (err) 2741 return ERR_PTR(err); 2742 2743 ret = lookup_dcache(&this, base, 0); 2744 if (!ret) 2745 ret = lookup_slow(&this, base, 0); 2746 return ret; 2747 } 2748 EXPORT_SYMBOL(lookup_one_len_unlocked); 2749 2750 /* 2751 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT) 2752 * on negatives. Returns known positive or ERR_PTR(); that's what 2753 * most of the users want. Note that pinned negative with unlocked parent 2754 * _can_ become positive at any time, so callers of lookup_one_len_unlocked() 2755 * need to be very careful; pinned positives have ->d_inode stable, so 2756 * this one avoids such problems. 2757 */ 2758 struct dentry *lookup_positive_unlocked(const char *name, 2759 struct dentry *base, int len) 2760 { 2761 struct dentry *ret = lookup_one_len_unlocked(name, base, len); 2762 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) { 2763 dput(ret); 2764 ret = ERR_PTR(-ENOENT); 2765 } 2766 return ret; 2767 } 2768 EXPORT_SYMBOL(lookup_positive_unlocked); 2769 2770 #ifdef CONFIG_UNIX98_PTYS 2771 int path_pts(struct path *path) 2772 { 2773 /* Find something mounted on "pts" in the same directory as 2774 * the input path. 2775 */ 2776 struct dentry *parent = dget_parent(path->dentry); 2777 struct dentry *child; 2778 struct qstr this = QSTR_INIT("pts", 3); 2779 2780 if (unlikely(!path_connected(path->mnt, parent))) { 2781 dput(parent); 2782 return -ENOENT; 2783 } 2784 dput(path->dentry); 2785 path->dentry = parent; 2786 child = d_hash_and_lookup(parent, &this); 2787 if (!child) 2788 return -ENOENT; 2789 2790 path->dentry = child; 2791 dput(parent); 2792 follow_down(path); 2793 return 0; 2794 } 2795 #endif 2796 2797 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2798 struct path *path, int *empty) 2799 { 2800 struct filename *filename = getname_flags(name, flags, empty); 2801 int ret = filename_lookup(dfd, filename, flags, path, NULL); 2802 2803 putname(filename); 2804 return ret; 2805 } 2806 EXPORT_SYMBOL(user_path_at_empty); 2807 2808 int __check_sticky(struct user_namespace *mnt_userns, struct inode *dir, 2809 struct inode *inode) 2810 { 2811 kuid_t fsuid = current_fsuid(); 2812 2813 if (uid_eq(i_uid_into_mnt(mnt_userns, inode), fsuid)) 2814 return 0; 2815 if (uid_eq(i_uid_into_mnt(mnt_userns, dir), fsuid)) 2816 return 0; 2817 return !capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FOWNER); 2818 } 2819 EXPORT_SYMBOL(__check_sticky); 2820 2821 /* 2822 * Check whether we can remove a link victim from directory dir, check 2823 * whether the type of victim is right. 2824 * 1. We can't do it if dir is read-only (done in permission()) 2825 * 2. We should have write and exec permissions on dir 2826 * 3. We can't remove anything from append-only dir 2827 * 4. We can't do anything with immutable dir (done in permission()) 2828 * 5. If the sticky bit on dir is set we should either 2829 * a. be owner of dir, or 2830 * b. be owner of victim, or 2831 * c. have CAP_FOWNER capability 2832 * 6. If the victim is append-only or immutable we can't do antyhing with 2833 * links pointing to it. 2834 * 7. If the victim has an unknown uid or gid we can't change the inode. 2835 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2836 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2837 * 10. We can't remove a root or mountpoint. 2838 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by 2839 * nfs_async_unlink(). 2840 */ 2841 static int may_delete(struct user_namespace *mnt_userns, struct inode *dir, 2842 struct dentry *victim, bool isdir) 2843 { 2844 struct inode *inode = d_backing_inode(victim); 2845 int error; 2846 2847 if (d_is_negative(victim)) 2848 return -ENOENT; 2849 BUG_ON(!inode); 2850 2851 BUG_ON(victim->d_parent->d_inode != dir); 2852 2853 /* Inode writeback is not safe when the uid or gid are invalid. */ 2854 if (!uid_valid(i_uid_into_mnt(mnt_userns, inode)) || 2855 !gid_valid(i_gid_into_mnt(mnt_userns, inode))) 2856 return -EOVERFLOW; 2857 2858 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2859 2860 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); 2861 if (error) 2862 return error; 2863 if (IS_APPEND(dir)) 2864 return -EPERM; 2865 2866 if (check_sticky(mnt_userns, dir, inode) || IS_APPEND(inode) || 2867 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || 2868 HAS_UNMAPPED_ID(mnt_userns, inode)) 2869 return -EPERM; 2870 if (isdir) { 2871 if (!d_is_dir(victim)) 2872 return -ENOTDIR; 2873 if (IS_ROOT(victim)) 2874 return -EBUSY; 2875 } else if (d_is_dir(victim)) 2876 return -EISDIR; 2877 if (IS_DEADDIR(dir)) 2878 return -ENOENT; 2879 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2880 return -EBUSY; 2881 return 0; 2882 } 2883 2884 /* Check whether we can create an object with dentry child in directory 2885 * dir. 2886 * 1. We can't do it if child already exists (open has special treatment for 2887 * this case, but since we are inlined it's OK) 2888 * 2. We can't do it if dir is read-only (done in permission()) 2889 * 3. We can't do it if the fs can't represent the fsuid or fsgid. 2890 * 4. We should have write and exec permissions on dir 2891 * 5. We can't do it if dir is immutable (done in permission()) 2892 */ 2893 static inline int may_create(struct user_namespace *mnt_userns, 2894 struct inode *dir, struct dentry *child) 2895 { 2896 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 2897 if (child->d_inode) 2898 return -EEXIST; 2899 if (IS_DEADDIR(dir)) 2900 return -ENOENT; 2901 if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns)) 2902 return -EOVERFLOW; 2903 2904 return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); 2905 } 2906 2907 /* 2908 * p1 and p2 should be directories on the same fs. 2909 */ 2910 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2911 { 2912 struct dentry *p; 2913 2914 if (p1 == p2) { 2915 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2916 return NULL; 2917 } 2918 2919 mutex_lock(&p1->d_sb->s_vfs_rename_mutex); 2920 2921 p = d_ancestor(p2, p1); 2922 if (p) { 2923 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 2924 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD); 2925 return p; 2926 } 2927 2928 p = d_ancestor(p1, p2); 2929 if (p) { 2930 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2931 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD); 2932 return p; 2933 } 2934 2935 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2936 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 2937 return NULL; 2938 } 2939 EXPORT_SYMBOL(lock_rename); 2940 2941 void unlock_rename(struct dentry *p1, struct dentry *p2) 2942 { 2943 inode_unlock(p1->d_inode); 2944 if (p1 != p2) { 2945 inode_unlock(p2->d_inode); 2946 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 2947 } 2948 } 2949 EXPORT_SYMBOL(unlock_rename); 2950 2951 /** 2952 * vfs_create - create new file 2953 * @mnt_userns: user namespace of the mount the inode was found from 2954 * @dir: inode of @dentry 2955 * @dentry: pointer to dentry of the base directory 2956 * @mode: mode of the new file 2957 * @want_excl: whether the file must not yet exist 2958 * 2959 * Create a new file. 2960 * 2961 * If the inode has been found through an idmapped mount the user namespace of 2962 * the vfsmount must be passed through @mnt_userns. This function will then take 2963 * care to map the inode according to @mnt_userns before checking permissions. 2964 * On non-idmapped mounts or if permission checking is to be performed on the 2965 * raw inode simply passs init_user_ns. 2966 */ 2967 int vfs_create(struct user_namespace *mnt_userns, struct inode *dir, 2968 struct dentry *dentry, umode_t mode, bool want_excl) 2969 { 2970 int error = may_create(mnt_userns, dir, dentry); 2971 if (error) 2972 return error; 2973 2974 if (!dir->i_op->create) 2975 return -EACCES; /* shouldn't it be ENOSYS? */ 2976 mode &= S_IALLUGO; 2977 mode |= S_IFREG; 2978 error = security_inode_create(dir, dentry, mode); 2979 if (error) 2980 return error; 2981 error = dir->i_op->create(mnt_userns, dir, dentry, mode, want_excl); 2982 if (!error) 2983 fsnotify_create(dir, dentry); 2984 return error; 2985 } 2986 EXPORT_SYMBOL(vfs_create); 2987 2988 int vfs_mkobj(struct dentry *dentry, umode_t mode, 2989 int (*f)(struct dentry *, umode_t, void *), 2990 void *arg) 2991 { 2992 struct inode *dir = dentry->d_parent->d_inode; 2993 int error = may_create(&init_user_ns, dir, dentry); 2994 if (error) 2995 return error; 2996 2997 mode &= S_IALLUGO; 2998 mode |= S_IFREG; 2999 error = security_inode_create(dir, dentry, mode); 3000 if (error) 3001 return error; 3002 error = f(dentry, mode, arg); 3003 if (!error) 3004 fsnotify_create(dir, dentry); 3005 return error; 3006 } 3007 EXPORT_SYMBOL(vfs_mkobj); 3008 3009 bool may_open_dev(const struct path *path) 3010 { 3011 return !(path->mnt->mnt_flags & MNT_NODEV) && 3012 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV); 3013 } 3014 3015 static int may_open(struct user_namespace *mnt_userns, const struct path *path, 3016 int acc_mode, int flag) 3017 { 3018 struct dentry *dentry = path->dentry; 3019 struct inode *inode = dentry->d_inode; 3020 int error; 3021 3022 if (!inode) 3023 return -ENOENT; 3024 3025 switch (inode->i_mode & S_IFMT) { 3026 case S_IFLNK: 3027 return -ELOOP; 3028 case S_IFDIR: 3029 if (acc_mode & MAY_WRITE) 3030 return -EISDIR; 3031 if (acc_mode & MAY_EXEC) 3032 return -EACCES; 3033 break; 3034 case S_IFBLK: 3035 case S_IFCHR: 3036 if (!may_open_dev(path)) 3037 return -EACCES; 3038 fallthrough; 3039 case S_IFIFO: 3040 case S_IFSOCK: 3041 if (acc_mode & MAY_EXEC) 3042 return -EACCES; 3043 flag &= ~O_TRUNC; 3044 break; 3045 case S_IFREG: 3046 if ((acc_mode & MAY_EXEC) && path_noexec(path)) 3047 return -EACCES; 3048 break; 3049 } 3050 3051 error = inode_permission(mnt_userns, inode, MAY_OPEN | acc_mode); 3052 if (error) 3053 return error; 3054 3055 /* 3056 * An append-only file must be opened in append mode for writing. 3057 */ 3058 if (IS_APPEND(inode)) { 3059 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 3060 return -EPERM; 3061 if (flag & O_TRUNC) 3062 return -EPERM; 3063 } 3064 3065 /* O_NOATIME can only be set by the owner or superuser */ 3066 if (flag & O_NOATIME && !inode_owner_or_capable(mnt_userns, inode)) 3067 return -EPERM; 3068 3069 return 0; 3070 } 3071 3072 static int handle_truncate(struct user_namespace *mnt_userns, struct file *filp) 3073 { 3074 const struct path *path = &filp->f_path; 3075 struct inode *inode = path->dentry->d_inode; 3076 int error = get_write_access(inode); 3077 if (error) 3078 return error; 3079 /* 3080 * Refuse to truncate files with mandatory locks held on them. 3081 */ 3082 error = security_path_truncate(path); 3083 if (!error) { 3084 error = do_truncate(mnt_userns, path->dentry, 0, 3085 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 3086 filp); 3087 } 3088 put_write_access(inode); 3089 return error; 3090 } 3091 3092 static inline int open_to_namei_flags(int flag) 3093 { 3094 if ((flag & O_ACCMODE) == 3) 3095 flag--; 3096 return flag; 3097 } 3098 3099 static int may_o_create(struct user_namespace *mnt_userns, 3100 const struct path *dir, struct dentry *dentry, 3101 umode_t mode) 3102 { 3103 int error = security_path_mknod(dir, dentry, mode, 0); 3104 if (error) 3105 return error; 3106 3107 if (!fsuidgid_has_mapping(dir->dentry->d_sb, mnt_userns)) 3108 return -EOVERFLOW; 3109 3110 error = inode_permission(mnt_userns, dir->dentry->d_inode, 3111 MAY_WRITE | MAY_EXEC); 3112 if (error) 3113 return error; 3114 3115 return security_inode_create(dir->dentry->d_inode, dentry, mode); 3116 } 3117 3118 /* 3119 * Attempt to atomically look up, create and open a file from a negative 3120 * dentry. 3121 * 3122 * Returns 0 if successful. The file will have been created and attached to 3123 * @file by the filesystem calling finish_open(). 3124 * 3125 * If the file was looked up only or didn't need creating, FMODE_OPENED won't 3126 * be set. The caller will need to perform the open themselves. @path will 3127 * have been updated to point to the new dentry. This may be negative. 3128 * 3129 * Returns an error code otherwise. 3130 */ 3131 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry, 3132 struct file *file, 3133 int open_flag, umode_t mode) 3134 { 3135 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 3136 struct inode *dir = nd->path.dentry->d_inode; 3137 int error; 3138 3139 if (nd->flags & LOOKUP_DIRECTORY) 3140 open_flag |= O_DIRECTORY; 3141 3142 file->f_path.dentry = DENTRY_NOT_SET; 3143 file->f_path.mnt = nd->path.mnt; 3144 error = dir->i_op->atomic_open(dir, dentry, file, 3145 open_to_namei_flags(open_flag), mode); 3146 d_lookup_done(dentry); 3147 if (!error) { 3148 if (file->f_mode & FMODE_OPENED) { 3149 if (unlikely(dentry != file->f_path.dentry)) { 3150 dput(dentry); 3151 dentry = dget(file->f_path.dentry); 3152 } 3153 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 3154 error = -EIO; 3155 } else { 3156 if (file->f_path.dentry) { 3157 dput(dentry); 3158 dentry = file->f_path.dentry; 3159 } 3160 if (unlikely(d_is_negative(dentry))) 3161 error = -ENOENT; 3162 } 3163 } 3164 if (error) { 3165 dput(dentry); 3166 dentry = ERR_PTR(error); 3167 } 3168 return dentry; 3169 } 3170 3171 /* 3172 * Look up and maybe create and open the last component. 3173 * 3174 * Must be called with parent locked (exclusive in O_CREAT case). 3175 * 3176 * Returns 0 on success, that is, if 3177 * the file was successfully atomically created (if necessary) and opened, or 3178 * the file was not completely opened at this time, though lookups and 3179 * creations were performed. 3180 * These case are distinguished by presence of FMODE_OPENED on file->f_mode. 3181 * In the latter case dentry returned in @path might be negative if O_CREAT 3182 * hadn't been specified. 3183 * 3184 * An error code is returned on failure. 3185 */ 3186 static struct dentry *lookup_open(struct nameidata *nd, struct file *file, 3187 const struct open_flags *op, 3188 bool got_write) 3189 { 3190 struct user_namespace *mnt_userns; 3191 struct dentry *dir = nd->path.dentry; 3192 struct inode *dir_inode = dir->d_inode; 3193 int open_flag = op->open_flag; 3194 struct dentry *dentry; 3195 int error, create_error = 0; 3196 umode_t mode = op->mode; 3197 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 3198 3199 if (unlikely(IS_DEADDIR(dir_inode))) 3200 return ERR_PTR(-ENOENT); 3201 3202 file->f_mode &= ~FMODE_CREATED; 3203 dentry = d_lookup(dir, &nd->last); 3204 for (;;) { 3205 if (!dentry) { 3206 dentry = d_alloc_parallel(dir, &nd->last, &wq); 3207 if (IS_ERR(dentry)) 3208 return dentry; 3209 } 3210 if (d_in_lookup(dentry)) 3211 break; 3212 3213 error = d_revalidate(dentry, nd->flags); 3214 if (likely(error > 0)) 3215 break; 3216 if (error) 3217 goto out_dput; 3218 d_invalidate(dentry); 3219 dput(dentry); 3220 dentry = NULL; 3221 } 3222 if (dentry->d_inode) { 3223 /* Cached positive dentry: will open in f_op->open */ 3224 return dentry; 3225 } 3226 3227 /* 3228 * Checking write permission is tricky, bacuse we don't know if we are 3229 * going to actually need it: O_CREAT opens should work as long as the 3230 * file exists. But checking existence breaks atomicity. The trick is 3231 * to check access and if not granted clear O_CREAT from the flags. 3232 * 3233 * Another problem is returing the "right" error value (e.g. for an 3234 * O_EXCL open we want to return EEXIST not EROFS). 3235 */ 3236 if (unlikely(!got_write)) 3237 open_flag &= ~O_TRUNC; 3238 mnt_userns = mnt_user_ns(nd->path.mnt); 3239 if (open_flag & O_CREAT) { 3240 if (open_flag & O_EXCL) 3241 open_flag &= ~O_TRUNC; 3242 if (!IS_POSIXACL(dir->d_inode)) 3243 mode &= ~current_umask(); 3244 if (likely(got_write)) 3245 create_error = may_o_create(mnt_userns, &nd->path, 3246 dentry, mode); 3247 else 3248 create_error = -EROFS; 3249 } 3250 if (create_error) 3251 open_flag &= ~O_CREAT; 3252 if (dir_inode->i_op->atomic_open) { 3253 dentry = atomic_open(nd, dentry, file, open_flag, mode); 3254 if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT)) 3255 dentry = ERR_PTR(create_error); 3256 return dentry; 3257 } 3258 3259 if (d_in_lookup(dentry)) { 3260 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry, 3261 nd->flags); 3262 d_lookup_done(dentry); 3263 if (unlikely(res)) { 3264 if (IS_ERR(res)) { 3265 error = PTR_ERR(res); 3266 goto out_dput; 3267 } 3268 dput(dentry); 3269 dentry = res; 3270 } 3271 } 3272 3273 /* Negative dentry, just create the file */ 3274 if (!dentry->d_inode && (open_flag & O_CREAT)) { 3275 file->f_mode |= FMODE_CREATED; 3276 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE); 3277 if (!dir_inode->i_op->create) { 3278 error = -EACCES; 3279 goto out_dput; 3280 } 3281 3282 error = dir_inode->i_op->create(mnt_userns, dir_inode, dentry, 3283 mode, open_flag & O_EXCL); 3284 if (error) 3285 goto out_dput; 3286 } 3287 if (unlikely(create_error) && !dentry->d_inode) { 3288 error = create_error; 3289 goto out_dput; 3290 } 3291 return dentry; 3292 3293 out_dput: 3294 dput(dentry); 3295 return ERR_PTR(error); 3296 } 3297 3298 static const char *open_last_lookups(struct nameidata *nd, 3299 struct file *file, const struct open_flags *op) 3300 { 3301 struct dentry *dir = nd->path.dentry; 3302 int open_flag = op->open_flag; 3303 bool got_write = false; 3304 unsigned seq; 3305 struct inode *inode; 3306 struct dentry *dentry; 3307 const char *res; 3308 3309 nd->flags |= op->intent; 3310 3311 if (nd->last_type != LAST_NORM) { 3312 if (nd->depth) 3313 put_link(nd); 3314 return handle_dots(nd, nd->last_type); 3315 } 3316 3317 if (!(open_flag & O_CREAT)) { 3318 if (nd->last.name[nd->last.len]) 3319 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 3320 /* we _can_ be in RCU mode here */ 3321 dentry = lookup_fast(nd, &inode, &seq); 3322 if (IS_ERR(dentry)) 3323 return ERR_CAST(dentry); 3324 if (likely(dentry)) 3325 goto finish_lookup; 3326 3327 BUG_ON(nd->flags & LOOKUP_RCU); 3328 } else { 3329 /* create side of things */ 3330 if (nd->flags & LOOKUP_RCU) { 3331 if (!try_to_unlazy(nd)) 3332 return ERR_PTR(-ECHILD); 3333 } 3334 audit_inode(nd->name, dir, AUDIT_INODE_PARENT); 3335 /* trailing slashes? */ 3336 if (unlikely(nd->last.name[nd->last.len])) 3337 return ERR_PTR(-EISDIR); 3338 } 3339 3340 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 3341 got_write = !mnt_want_write(nd->path.mnt); 3342 /* 3343 * do _not_ fail yet - we might not need that or fail with 3344 * a different error; let lookup_open() decide; we'll be 3345 * dropping this one anyway. 3346 */ 3347 } 3348 if (open_flag & O_CREAT) 3349 inode_lock(dir->d_inode); 3350 else 3351 inode_lock_shared(dir->d_inode); 3352 dentry = lookup_open(nd, file, op, got_write); 3353 if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED)) 3354 fsnotify_create(dir->d_inode, dentry); 3355 if (open_flag & O_CREAT) 3356 inode_unlock(dir->d_inode); 3357 else 3358 inode_unlock_shared(dir->d_inode); 3359 3360 if (got_write) 3361 mnt_drop_write(nd->path.mnt); 3362 3363 if (IS_ERR(dentry)) 3364 return ERR_CAST(dentry); 3365 3366 if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) { 3367 dput(nd->path.dentry); 3368 nd->path.dentry = dentry; 3369 return NULL; 3370 } 3371 3372 finish_lookup: 3373 if (nd->depth) 3374 put_link(nd); 3375 res = step_into(nd, WALK_TRAILING, dentry, inode, seq); 3376 if (unlikely(res)) 3377 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3378 return res; 3379 } 3380 3381 /* 3382 * Handle the last step of open() 3383 */ 3384 static int do_open(struct nameidata *nd, 3385 struct file *file, const struct open_flags *op) 3386 { 3387 struct user_namespace *mnt_userns; 3388 int open_flag = op->open_flag; 3389 bool do_truncate; 3390 int acc_mode; 3391 int error; 3392 3393 if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) { 3394 error = complete_walk(nd); 3395 if (error) 3396 return error; 3397 } 3398 if (!(file->f_mode & FMODE_CREATED)) 3399 audit_inode(nd->name, nd->path.dentry, 0); 3400 mnt_userns = mnt_user_ns(nd->path.mnt); 3401 if (open_flag & O_CREAT) { 3402 if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED)) 3403 return -EEXIST; 3404 if (d_is_dir(nd->path.dentry)) 3405 return -EISDIR; 3406 error = may_create_in_sticky(mnt_userns, nd, 3407 d_backing_inode(nd->path.dentry)); 3408 if (unlikely(error)) 3409 return error; 3410 } 3411 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3412 return -ENOTDIR; 3413 3414 do_truncate = false; 3415 acc_mode = op->acc_mode; 3416 if (file->f_mode & FMODE_CREATED) { 3417 /* Don't check for write permission, don't truncate */ 3418 open_flag &= ~O_TRUNC; 3419 acc_mode = 0; 3420 } else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) { 3421 error = mnt_want_write(nd->path.mnt); 3422 if (error) 3423 return error; 3424 do_truncate = true; 3425 } 3426 error = may_open(mnt_userns, &nd->path, acc_mode, open_flag); 3427 if (!error && !(file->f_mode & FMODE_OPENED)) 3428 error = vfs_open(&nd->path, file); 3429 if (!error) 3430 error = ima_file_check(file, op->acc_mode); 3431 if (!error && do_truncate) 3432 error = handle_truncate(mnt_userns, file); 3433 if (unlikely(error > 0)) { 3434 WARN_ON(1); 3435 error = -EINVAL; 3436 } 3437 if (do_truncate) 3438 mnt_drop_write(nd->path.mnt); 3439 return error; 3440 } 3441 3442 /** 3443 * vfs_tmpfile - create tmpfile 3444 * @mnt_userns: user namespace of the mount the inode was found from 3445 * @dentry: pointer to dentry of the base directory 3446 * @mode: mode of the new tmpfile 3447 * @open_flag: flags 3448 * 3449 * Create a temporary file. 3450 * 3451 * If the inode has been found through an idmapped mount the user namespace of 3452 * the vfsmount must be passed through @mnt_userns. This function will then take 3453 * care to map the inode according to @mnt_userns before checking permissions. 3454 * On non-idmapped mounts or if permission checking is to be performed on the 3455 * raw inode simply passs init_user_ns. 3456 */ 3457 struct dentry *vfs_tmpfile(struct user_namespace *mnt_userns, 3458 struct dentry *dentry, umode_t mode, int open_flag) 3459 { 3460 struct dentry *child = NULL; 3461 struct inode *dir = dentry->d_inode; 3462 struct inode *inode; 3463 int error; 3464 3465 /* we want directory to be writable */ 3466 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); 3467 if (error) 3468 goto out_err; 3469 error = -EOPNOTSUPP; 3470 if (!dir->i_op->tmpfile) 3471 goto out_err; 3472 error = -ENOMEM; 3473 child = d_alloc(dentry, &slash_name); 3474 if (unlikely(!child)) 3475 goto out_err; 3476 error = dir->i_op->tmpfile(mnt_userns, dir, child, mode); 3477 if (error) 3478 goto out_err; 3479 error = -ENOENT; 3480 inode = child->d_inode; 3481 if (unlikely(!inode)) 3482 goto out_err; 3483 if (!(open_flag & O_EXCL)) { 3484 spin_lock(&inode->i_lock); 3485 inode->i_state |= I_LINKABLE; 3486 spin_unlock(&inode->i_lock); 3487 } 3488 ima_post_create_tmpfile(mnt_userns, inode); 3489 return child; 3490 3491 out_err: 3492 dput(child); 3493 return ERR_PTR(error); 3494 } 3495 EXPORT_SYMBOL(vfs_tmpfile); 3496 3497 static int do_tmpfile(struct nameidata *nd, unsigned flags, 3498 const struct open_flags *op, 3499 struct file *file) 3500 { 3501 struct user_namespace *mnt_userns; 3502 struct dentry *child; 3503 struct path path; 3504 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path); 3505 if (unlikely(error)) 3506 return error; 3507 error = mnt_want_write(path.mnt); 3508 if (unlikely(error)) 3509 goto out; 3510 mnt_userns = mnt_user_ns(path.mnt); 3511 child = vfs_tmpfile(mnt_userns, path.dentry, op->mode, op->open_flag); 3512 error = PTR_ERR(child); 3513 if (IS_ERR(child)) 3514 goto out2; 3515 dput(path.dentry); 3516 path.dentry = child; 3517 audit_inode(nd->name, child, 0); 3518 /* Don't check for other permissions, the inode was just created */ 3519 error = may_open(mnt_userns, &path, 0, op->open_flag); 3520 if (!error) 3521 error = vfs_open(&path, file); 3522 out2: 3523 mnt_drop_write(path.mnt); 3524 out: 3525 path_put(&path); 3526 return error; 3527 } 3528 3529 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file) 3530 { 3531 struct path path; 3532 int error = path_lookupat(nd, flags, &path); 3533 if (!error) { 3534 audit_inode(nd->name, path.dentry, 0); 3535 error = vfs_open(&path, file); 3536 path_put(&path); 3537 } 3538 return error; 3539 } 3540 3541 static struct file *path_openat(struct nameidata *nd, 3542 const struct open_flags *op, unsigned flags) 3543 { 3544 struct file *file; 3545 int error; 3546 3547 file = alloc_empty_file(op->open_flag, current_cred()); 3548 if (IS_ERR(file)) 3549 return file; 3550 3551 if (unlikely(file->f_flags & __O_TMPFILE)) { 3552 error = do_tmpfile(nd, flags, op, file); 3553 } else if (unlikely(file->f_flags & O_PATH)) { 3554 error = do_o_path(nd, flags, file); 3555 } else { 3556 const char *s = path_init(nd, flags); 3557 while (!(error = link_path_walk(s, nd)) && 3558 (s = open_last_lookups(nd, file, op)) != NULL) 3559 ; 3560 if (!error) 3561 error = do_open(nd, file, op); 3562 terminate_walk(nd); 3563 } 3564 if (likely(!error)) { 3565 if (likely(file->f_mode & FMODE_OPENED)) 3566 return file; 3567 WARN_ON(1); 3568 error = -EINVAL; 3569 } 3570 fput(file); 3571 if (error == -EOPENSTALE) { 3572 if (flags & LOOKUP_RCU) 3573 error = -ECHILD; 3574 else 3575 error = -ESTALE; 3576 } 3577 return ERR_PTR(error); 3578 } 3579 3580 struct file *do_filp_open(int dfd, struct filename *pathname, 3581 const struct open_flags *op) 3582 { 3583 struct nameidata nd; 3584 int flags = op->lookup_flags; 3585 struct file *filp; 3586 3587 set_nameidata(&nd, dfd, pathname, NULL); 3588 filp = path_openat(&nd, op, flags | LOOKUP_RCU); 3589 if (unlikely(filp == ERR_PTR(-ECHILD))) 3590 filp = path_openat(&nd, op, flags); 3591 if (unlikely(filp == ERR_PTR(-ESTALE))) 3592 filp = path_openat(&nd, op, flags | LOOKUP_REVAL); 3593 restore_nameidata(); 3594 return filp; 3595 } 3596 3597 struct file *do_file_open_root(const struct path *root, 3598 const char *name, const struct open_flags *op) 3599 { 3600 struct nameidata nd; 3601 struct file *file; 3602 struct filename *filename; 3603 int flags = op->lookup_flags; 3604 3605 if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN) 3606 return ERR_PTR(-ELOOP); 3607 3608 filename = getname_kernel(name); 3609 if (IS_ERR(filename)) 3610 return ERR_CAST(filename); 3611 3612 set_nameidata(&nd, -1, filename, root); 3613 file = path_openat(&nd, op, flags | LOOKUP_RCU); 3614 if (unlikely(file == ERR_PTR(-ECHILD))) 3615 file = path_openat(&nd, op, flags); 3616 if (unlikely(file == ERR_PTR(-ESTALE))) 3617 file = path_openat(&nd, op, flags | LOOKUP_REVAL); 3618 restore_nameidata(); 3619 putname(filename); 3620 return file; 3621 } 3622 3623 static struct dentry *filename_create(int dfd, struct filename *name, 3624 struct path *path, unsigned int lookup_flags) 3625 { 3626 struct dentry *dentry = ERR_PTR(-EEXIST); 3627 struct qstr last; 3628 int type; 3629 int err2; 3630 int error; 3631 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY); 3632 3633 /* 3634 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any 3635 * other flags passed in are ignored! 3636 */ 3637 lookup_flags &= LOOKUP_REVAL; 3638 3639 error = filename_parentat(dfd, name, lookup_flags, path, &last, &type); 3640 if (error) 3641 return ERR_PTR(error); 3642 3643 /* 3644 * Yucky last component or no last component at all? 3645 * (foo/., foo/.., /////) 3646 */ 3647 if (unlikely(type != LAST_NORM)) 3648 goto out; 3649 3650 /* don't fail immediately if it's r/o, at least try to report other errors */ 3651 err2 = mnt_want_write(path->mnt); 3652 /* 3653 * Do the final lookup. 3654 */ 3655 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL; 3656 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 3657 dentry = __lookup_hash(&last, path->dentry, lookup_flags); 3658 if (IS_ERR(dentry)) 3659 goto unlock; 3660 3661 error = -EEXIST; 3662 if (d_is_positive(dentry)) 3663 goto fail; 3664 3665 /* 3666 * Special case - lookup gave negative, but... we had foo/bar/ 3667 * From the vfs_mknod() POV we just have a negative dentry - 3668 * all is fine. Let's be bastards - you had / on the end, you've 3669 * been asking for (non-existent) directory. -ENOENT for you. 3670 */ 3671 if (unlikely(!is_dir && last.name[last.len])) { 3672 error = -ENOENT; 3673 goto fail; 3674 } 3675 if (unlikely(err2)) { 3676 error = err2; 3677 goto fail; 3678 } 3679 return dentry; 3680 fail: 3681 dput(dentry); 3682 dentry = ERR_PTR(error); 3683 unlock: 3684 inode_unlock(path->dentry->d_inode); 3685 if (!err2) 3686 mnt_drop_write(path->mnt); 3687 out: 3688 path_put(path); 3689 return dentry; 3690 } 3691 3692 struct dentry *kern_path_create(int dfd, const char *pathname, 3693 struct path *path, unsigned int lookup_flags) 3694 { 3695 struct filename *filename = getname_kernel(pathname); 3696 struct dentry *res = filename_create(dfd, filename, path, lookup_flags); 3697 3698 putname(filename); 3699 return res; 3700 } 3701 EXPORT_SYMBOL(kern_path_create); 3702 3703 void done_path_create(struct path *path, struct dentry *dentry) 3704 { 3705 dput(dentry); 3706 inode_unlock(path->dentry->d_inode); 3707 mnt_drop_write(path->mnt); 3708 path_put(path); 3709 } 3710 EXPORT_SYMBOL(done_path_create); 3711 3712 inline struct dentry *user_path_create(int dfd, const char __user *pathname, 3713 struct path *path, unsigned int lookup_flags) 3714 { 3715 struct filename *filename = getname(pathname); 3716 struct dentry *res = filename_create(dfd, filename, path, lookup_flags); 3717 3718 putname(filename); 3719 return res; 3720 } 3721 EXPORT_SYMBOL(user_path_create); 3722 3723 /** 3724 * vfs_mknod - create device node or file 3725 * @mnt_userns: user namespace of the mount the inode was found from 3726 * @dir: inode of @dentry 3727 * @dentry: pointer to dentry of the base directory 3728 * @mode: mode of the new device node or file 3729 * @dev: device number of device to create 3730 * 3731 * Create a device node or file. 3732 * 3733 * If the inode has been found through an idmapped mount the user namespace of 3734 * the vfsmount must be passed through @mnt_userns. This function will then take 3735 * care to map the inode according to @mnt_userns before checking permissions. 3736 * On non-idmapped mounts or if permission checking is to be performed on the 3737 * raw inode simply passs init_user_ns. 3738 */ 3739 int vfs_mknod(struct user_namespace *mnt_userns, struct inode *dir, 3740 struct dentry *dentry, umode_t mode, dev_t dev) 3741 { 3742 bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV; 3743 int error = may_create(mnt_userns, dir, dentry); 3744 3745 if (error) 3746 return error; 3747 3748 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout && 3749 !capable(CAP_MKNOD)) 3750 return -EPERM; 3751 3752 if (!dir->i_op->mknod) 3753 return -EPERM; 3754 3755 error = devcgroup_inode_mknod(mode, dev); 3756 if (error) 3757 return error; 3758 3759 error = security_inode_mknod(dir, dentry, mode, dev); 3760 if (error) 3761 return error; 3762 3763 error = dir->i_op->mknod(mnt_userns, dir, dentry, mode, dev); 3764 if (!error) 3765 fsnotify_create(dir, dentry); 3766 return error; 3767 } 3768 EXPORT_SYMBOL(vfs_mknod); 3769 3770 static int may_mknod(umode_t mode) 3771 { 3772 switch (mode & S_IFMT) { 3773 case S_IFREG: 3774 case S_IFCHR: 3775 case S_IFBLK: 3776 case S_IFIFO: 3777 case S_IFSOCK: 3778 case 0: /* zero mode translates to S_IFREG */ 3779 return 0; 3780 case S_IFDIR: 3781 return -EPERM; 3782 default: 3783 return -EINVAL; 3784 } 3785 } 3786 3787 static int do_mknodat(int dfd, struct filename *name, umode_t mode, 3788 unsigned int dev) 3789 { 3790 struct user_namespace *mnt_userns; 3791 struct dentry *dentry; 3792 struct path path; 3793 int error; 3794 unsigned int lookup_flags = 0; 3795 3796 error = may_mknod(mode); 3797 if (error) 3798 goto out1; 3799 retry: 3800 dentry = filename_create(dfd, name, &path, lookup_flags); 3801 error = PTR_ERR(dentry); 3802 if (IS_ERR(dentry)) 3803 goto out1; 3804 3805 if (!IS_POSIXACL(path.dentry->d_inode)) 3806 mode &= ~current_umask(); 3807 error = security_path_mknod(&path, dentry, mode, dev); 3808 if (error) 3809 goto out2; 3810 3811 mnt_userns = mnt_user_ns(path.mnt); 3812 switch (mode & S_IFMT) { 3813 case 0: case S_IFREG: 3814 error = vfs_create(mnt_userns, path.dentry->d_inode, 3815 dentry, mode, true); 3816 if (!error) 3817 ima_post_path_mknod(mnt_userns, dentry); 3818 break; 3819 case S_IFCHR: case S_IFBLK: 3820 error = vfs_mknod(mnt_userns, path.dentry->d_inode, 3821 dentry, mode, new_decode_dev(dev)); 3822 break; 3823 case S_IFIFO: case S_IFSOCK: 3824 error = vfs_mknod(mnt_userns, path.dentry->d_inode, 3825 dentry, mode, 0); 3826 break; 3827 } 3828 out2: 3829 done_path_create(&path, dentry); 3830 if (retry_estale(error, lookup_flags)) { 3831 lookup_flags |= LOOKUP_REVAL; 3832 goto retry; 3833 } 3834 out1: 3835 putname(name); 3836 return error; 3837 } 3838 3839 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3840 unsigned int, dev) 3841 { 3842 return do_mknodat(dfd, getname(filename), mode, dev); 3843 } 3844 3845 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3846 { 3847 return do_mknodat(AT_FDCWD, getname(filename), mode, dev); 3848 } 3849 3850 /** 3851 * vfs_mkdir - create directory 3852 * @mnt_userns: user namespace of the mount the inode was found from 3853 * @dir: inode of @dentry 3854 * @dentry: pointer to dentry of the base directory 3855 * @mode: mode of the new directory 3856 * 3857 * Create a directory. 3858 * 3859 * If the inode has been found through an idmapped mount the user namespace of 3860 * the vfsmount must be passed through @mnt_userns. This function will then take 3861 * care to map the inode according to @mnt_userns before checking permissions. 3862 * On non-idmapped mounts or if permission checking is to be performed on the 3863 * raw inode simply passs init_user_ns. 3864 */ 3865 int vfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 3866 struct dentry *dentry, umode_t mode) 3867 { 3868 int error = may_create(mnt_userns, dir, dentry); 3869 unsigned max_links = dir->i_sb->s_max_links; 3870 3871 if (error) 3872 return error; 3873 3874 if (!dir->i_op->mkdir) 3875 return -EPERM; 3876 3877 mode &= (S_IRWXUGO|S_ISVTX); 3878 error = security_inode_mkdir(dir, dentry, mode); 3879 if (error) 3880 return error; 3881 3882 if (max_links && dir->i_nlink >= max_links) 3883 return -EMLINK; 3884 3885 error = dir->i_op->mkdir(mnt_userns, dir, dentry, mode); 3886 if (!error) 3887 fsnotify_mkdir(dir, dentry); 3888 return error; 3889 } 3890 EXPORT_SYMBOL(vfs_mkdir); 3891 3892 int do_mkdirat(int dfd, struct filename *name, umode_t mode) 3893 { 3894 struct dentry *dentry; 3895 struct path path; 3896 int error; 3897 unsigned int lookup_flags = LOOKUP_DIRECTORY; 3898 3899 retry: 3900 dentry = filename_create(dfd, name, &path, lookup_flags); 3901 error = PTR_ERR(dentry); 3902 if (IS_ERR(dentry)) 3903 goto out_putname; 3904 3905 if (!IS_POSIXACL(path.dentry->d_inode)) 3906 mode &= ~current_umask(); 3907 error = security_path_mkdir(&path, dentry, mode); 3908 if (!error) { 3909 struct user_namespace *mnt_userns; 3910 mnt_userns = mnt_user_ns(path.mnt); 3911 error = vfs_mkdir(mnt_userns, path.dentry->d_inode, dentry, 3912 mode); 3913 } 3914 done_path_create(&path, dentry); 3915 if (retry_estale(error, lookup_flags)) { 3916 lookup_flags |= LOOKUP_REVAL; 3917 goto retry; 3918 } 3919 out_putname: 3920 putname(name); 3921 return error; 3922 } 3923 3924 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 3925 { 3926 return do_mkdirat(dfd, getname(pathname), mode); 3927 } 3928 3929 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 3930 { 3931 return do_mkdirat(AT_FDCWD, getname(pathname), mode); 3932 } 3933 3934 /** 3935 * vfs_rmdir - remove directory 3936 * @mnt_userns: user namespace of the mount the inode was found from 3937 * @dir: inode of @dentry 3938 * @dentry: pointer to dentry of the base directory 3939 * 3940 * Remove a directory. 3941 * 3942 * If the inode has been found through an idmapped mount the user namespace of 3943 * the vfsmount must be passed through @mnt_userns. This function will then take 3944 * care to map the inode according to @mnt_userns before checking permissions. 3945 * On non-idmapped mounts or if permission checking is to be performed on the 3946 * raw inode simply passs init_user_ns. 3947 */ 3948 int vfs_rmdir(struct user_namespace *mnt_userns, struct inode *dir, 3949 struct dentry *dentry) 3950 { 3951 int error = may_delete(mnt_userns, dir, dentry, 1); 3952 3953 if (error) 3954 return error; 3955 3956 if (!dir->i_op->rmdir) 3957 return -EPERM; 3958 3959 dget(dentry); 3960 inode_lock(dentry->d_inode); 3961 3962 error = -EBUSY; 3963 if (is_local_mountpoint(dentry)) 3964 goto out; 3965 3966 error = security_inode_rmdir(dir, dentry); 3967 if (error) 3968 goto out; 3969 3970 error = dir->i_op->rmdir(dir, dentry); 3971 if (error) 3972 goto out; 3973 3974 shrink_dcache_parent(dentry); 3975 dentry->d_inode->i_flags |= S_DEAD; 3976 dont_mount(dentry); 3977 detach_mounts(dentry); 3978 fsnotify_rmdir(dir, dentry); 3979 3980 out: 3981 inode_unlock(dentry->d_inode); 3982 dput(dentry); 3983 if (!error) 3984 d_delete(dentry); 3985 return error; 3986 } 3987 EXPORT_SYMBOL(vfs_rmdir); 3988 3989 int do_rmdir(int dfd, struct filename *name) 3990 { 3991 struct user_namespace *mnt_userns; 3992 int error; 3993 struct dentry *dentry; 3994 struct path path; 3995 struct qstr last; 3996 int type; 3997 unsigned int lookup_flags = 0; 3998 retry: 3999 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 4000 if (error) 4001 goto exit1; 4002 4003 switch (type) { 4004 case LAST_DOTDOT: 4005 error = -ENOTEMPTY; 4006 goto exit2; 4007 case LAST_DOT: 4008 error = -EINVAL; 4009 goto exit2; 4010 case LAST_ROOT: 4011 error = -EBUSY; 4012 goto exit2; 4013 } 4014 4015 error = mnt_want_write(path.mnt); 4016 if (error) 4017 goto exit2; 4018 4019 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4020 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 4021 error = PTR_ERR(dentry); 4022 if (IS_ERR(dentry)) 4023 goto exit3; 4024 if (!dentry->d_inode) { 4025 error = -ENOENT; 4026 goto exit4; 4027 } 4028 error = security_path_rmdir(&path, dentry); 4029 if (error) 4030 goto exit4; 4031 mnt_userns = mnt_user_ns(path.mnt); 4032 error = vfs_rmdir(mnt_userns, path.dentry->d_inode, dentry); 4033 exit4: 4034 dput(dentry); 4035 exit3: 4036 inode_unlock(path.dentry->d_inode); 4037 mnt_drop_write(path.mnt); 4038 exit2: 4039 path_put(&path); 4040 if (retry_estale(error, lookup_flags)) { 4041 lookup_flags |= LOOKUP_REVAL; 4042 goto retry; 4043 } 4044 exit1: 4045 putname(name); 4046 return error; 4047 } 4048 4049 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 4050 { 4051 return do_rmdir(AT_FDCWD, getname(pathname)); 4052 } 4053 4054 /** 4055 * vfs_unlink - unlink a filesystem object 4056 * @mnt_userns: user namespace of the mount the inode was found from 4057 * @dir: parent directory 4058 * @dentry: victim 4059 * @delegated_inode: returns victim inode, if the inode is delegated. 4060 * 4061 * The caller must hold dir->i_mutex. 4062 * 4063 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 4064 * return a reference to the inode in delegated_inode. The caller 4065 * should then break the delegation on that inode and retry. Because 4066 * breaking a delegation may take a long time, the caller should drop 4067 * dir->i_mutex before doing so. 4068 * 4069 * Alternatively, a caller may pass NULL for delegated_inode. This may 4070 * be appropriate for callers that expect the underlying filesystem not 4071 * to be NFS exported. 4072 * 4073 * If the inode has been found through an idmapped mount the user namespace of 4074 * the vfsmount must be passed through @mnt_userns. This function will then take 4075 * care to map the inode according to @mnt_userns before checking permissions. 4076 * On non-idmapped mounts or if permission checking is to be performed on the 4077 * raw inode simply passs init_user_ns. 4078 */ 4079 int vfs_unlink(struct user_namespace *mnt_userns, struct inode *dir, 4080 struct dentry *dentry, struct inode **delegated_inode) 4081 { 4082 struct inode *target = dentry->d_inode; 4083 int error = may_delete(mnt_userns, dir, dentry, 0); 4084 4085 if (error) 4086 return error; 4087 4088 if (!dir->i_op->unlink) 4089 return -EPERM; 4090 4091 inode_lock(target); 4092 if (IS_SWAPFILE(target)) 4093 error = -EPERM; 4094 else if (is_local_mountpoint(dentry)) 4095 error = -EBUSY; 4096 else { 4097 error = security_inode_unlink(dir, dentry); 4098 if (!error) { 4099 error = try_break_deleg(target, delegated_inode); 4100 if (error) 4101 goto out; 4102 error = dir->i_op->unlink(dir, dentry); 4103 if (!error) { 4104 dont_mount(dentry); 4105 detach_mounts(dentry); 4106 fsnotify_unlink(dir, dentry); 4107 } 4108 } 4109 } 4110 out: 4111 inode_unlock(target); 4112 4113 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 4114 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 4115 fsnotify_link_count(target); 4116 d_delete(dentry); 4117 } 4118 4119 return error; 4120 } 4121 EXPORT_SYMBOL(vfs_unlink); 4122 4123 /* 4124 * Make sure that the actual truncation of the file will occur outside its 4125 * directory's i_mutex. Truncate can take a long time if there is a lot of 4126 * writeout happening, and we don't want to prevent access to the directory 4127 * while waiting on the I/O. 4128 */ 4129 int do_unlinkat(int dfd, struct filename *name) 4130 { 4131 int error; 4132 struct dentry *dentry; 4133 struct path path; 4134 struct qstr last; 4135 int type; 4136 struct inode *inode = NULL; 4137 struct inode *delegated_inode = NULL; 4138 unsigned int lookup_flags = 0; 4139 retry: 4140 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 4141 if (error) 4142 goto exit1; 4143 4144 error = -EISDIR; 4145 if (type != LAST_NORM) 4146 goto exit2; 4147 4148 error = mnt_want_write(path.mnt); 4149 if (error) 4150 goto exit2; 4151 retry_deleg: 4152 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4153 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 4154 error = PTR_ERR(dentry); 4155 if (!IS_ERR(dentry)) { 4156 struct user_namespace *mnt_userns; 4157 4158 /* Why not before? Because we want correct error value */ 4159 if (last.name[last.len]) 4160 goto slashes; 4161 inode = dentry->d_inode; 4162 if (d_is_negative(dentry)) 4163 goto slashes; 4164 ihold(inode); 4165 error = security_path_unlink(&path, dentry); 4166 if (error) 4167 goto exit3; 4168 mnt_userns = mnt_user_ns(path.mnt); 4169 error = vfs_unlink(mnt_userns, path.dentry->d_inode, dentry, 4170 &delegated_inode); 4171 exit3: 4172 dput(dentry); 4173 } 4174 inode_unlock(path.dentry->d_inode); 4175 if (inode) 4176 iput(inode); /* truncate the inode here */ 4177 inode = NULL; 4178 if (delegated_inode) { 4179 error = break_deleg_wait(&delegated_inode); 4180 if (!error) 4181 goto retry_deleg; 4182 } 4183 mnt_drop_write(path.mnt); 4184 exit2: 4185 path_put(&path); 4186 if (retry_estale(error, lookup_flags)) { 4187 lookup_flags |= LOOKUP_REVAL; 4188 inode = NULL; 4189 goto retry; 4190 } 4191 exit1: 4192 putname(name); 4193 return error; 4194 4195 slashes: 4196 if (d_is_negative(dentry)) 4197 error = -ENOENT; 4198 else if (d_is_dir(dentry)) 4199 error = -EISDIR; 4200 else 4201 error = -ENOTDIR; 4202 goto exit3; 4203 } 4204 4205 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 4206 { 4207 if ((flag & ~AT_REMOVEDIR) != 0) 4208 return -EINVAL; 4209 4210 if (flag & AT_REMOVEDIR) 4211 return do_rmdir(dfd, getname(pathname)); 4212 return do_unlinkat(dfd, getname(pathname)); 4213 } 4214 4215 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 4216 { 4217 return do_unlinkat(AT_FDCWD, getname(pathname)); 4218 } 4219 4220 /** 4221 * vfs_symlink - create symlink 4222 * @mnt_userns: user namespace of the mount the inode was found from 4223 * @dir: inode of @dentry 4224 * @dentry: pointer to dentry of the base directory 4225 * @oldname: name of the file to link to 4226 * 4227 * Create a symlink. 4228 * 4229 * If the inode has been found through an idmapped mount the user namespace of 4230 * the vfsmount must be passed through @mnt_userns. This function will then take 4231 * care to map the inode according to @mnt_userns before checking permissions. 4232 * On non-idmapped mounts or if permission checking is to be performed on the 4233 * raw inode simply passs init_user_ns. 4234 */ 4235 int vfs_symlink(struct user_namespace *mnt_userns, struct inode *dir, 4236 struct dentry *dentry, const char *oldname) 4237 { 4238 int error = may_create(mnt_userns, dir, dentry); 4239 4240 if (error) 4241 return error; 4242 4243 if (!dir->i_op->symlink) 4244 return -EPERM; 4245 4246 error = security_inode_symlink(dir, dentry, oldname); 4247 if (error) 4248 return error; 4249 4250 error = dir->i_op->symlink(mnt_userns, dir, dentry, oldname); 4251 if (!error) 4252 fsnotify_create(dir, dentry); 4253 return error; 4254 } 4255 EXPORT_SYMBOL(vfs_symlink); 4256 4257 int do_symlinkat(struct filename *from, int newdfd, struct filename *to) 4258 { 4259 int error; 4260 struct dentry *dentry; 4261 struct path path; 4262 unsigned int lookup_flags = 0; 4263 4264 if (IS_ERR(from)) { 4265 error = PTR_ERR(from); 4266 goto out_putnames; 4267 } 4268 retry: 4269 dentry = filename_create(newdfd, to, &path, lookup_flags); 4270 error = PTR_ERR(dentry); 4271 if (IS_ERR(dentry)) 4272 goto out_putnames; 4273 4274 error = security_path_symlink(&path, dentry, from->name); 4275 if (!error) { 4276 struct user_namespace *mnt_userns; 4277 4278 mnt_userns = mnt_user_ns(path.mnt); 4279 error = vfs_symlink(mnt_userns, path.dentry->d_inode, dentry, 4280 from->name); 4281 } 4282 done_path_create(&path, dentry); 4283 if (retry_estale(error, lookup_flags)) { 4284 lookup_flags |= LOOKUP_REVAL; 4285 goto retry; 4286 } 4287 out_putnames: 4288 putname(to); 4289 putname(from); 4290 return error; 4291 } 4292 4293 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 4294 int, newdfd, const char __user *, newname) 4295 { 4296 return do_symlinkat(getname(oldname), newdfd, getname(newname)); 4297 } 4298 4299 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 4300 { 4301 return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname)); 4302 } 4303 4304 /** 4305 * vfs_link - create a new link 4306 * @old_dentry: object to be linked 4307 * @mnt_userns: the user namespace of the mount 4308 * @dir: new parent 4309 * @new_dentry: where to create the new link 4310 * @delegated_inode: returns inode needing a delegation break 4311 * 4312 * The caller must hold dir->i_mutex 4313 * 4314 * If vfs_link discovers a delegation on the to-be-linked file in need 4315 * of breaking, it will return -EWOULDBLOCK and return a reference to the 4316 * inode in delegated_inode. The caller should then break the delegation 4317 * and retry. Because breaking a delegation may take a long time, the 4318 * caller should drop the i_mutex before doing so. 4319 * 4320 * Alternatively, a caller may pass NULL for delegated_inode. This may 4321 * be appropriate for callers that expect the underlying filesystem not 4322 * to be NFS exported. 4323 * 4324 * If the inode has been found through an idmapped mount the user namespace of 4325 * the vfsmount must be passed through @mnt_userns. This function will then take 4326 * care to map the inode according to @mnt_userns before checking permissions. 4327 * On non-idmapped mounts or if permission checking is to be performed on the 4328 * raw inode simply passs init_user_ns. 4329 */ 4330 int vfs_link(struct dentry *old_dentry, struct user_namespace *mnt_userns, 4331 struct inode *dir, struct dentry *new_dentry, 4332 struct inode **delegated_inode) 4333 { 4334 struct inode *inode = old_dentry->d_inode; 4335 unsigned max_links = dir->i_sb->s_max_links; 4336 int error; 4337 4338 if (!inode) 4339 return -ENOENT; 4340 4341 error = may_create(mnt_userns, dir, new_dentry); 4342 if (error) 4343 return error; 4344 4345 if (dir->i_sb != inode->i_sb) 4346 return -EXDEV; 4347 4348 /* 4349 * A link to an append-only or immutable file cannot be created. 4350 */ 4351 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4352 return -EPERM; 4353 /* 4354 * Updating the link count will likely cause i_uid and i_gid to 4355 * be writen back improperly if their true value is unknown to 4356 * the vfs. 4357 */ 4358 if (HAS_UNMAPPED_ID(mnt_userns, inode)) 4359 return -EPERM; 4360 if (!dir->i_op->link) 4361 return -EPERM; 4362 if (S_ISDIR(inode->i_mode)) 4363 return -EPERM; 4364 4365 error = security_inode_link(old_dentry, dir, new_dentry); 4366 if (error) 4367 return error; 4368 4369 inode_lock(inode); 4370 /* Make sure we don't allow creating hardlink to an unlinked file */ 4371 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 4372 error = -ENOENT; 4373 else if (max_links && inode->i_nlink >= max_links) 4374 error = -EMLINK; 4375 else { 4376 error = try_break_deleg(inode, delegated_inode); 4377 if (!error) 4378 error = dir->i_op->link(old_dentry, dir, new_dentry); 4379 } 4380 4381 if (!error && (inode->i_state & I_LINKABLE)) { 4382 spin_lock(&inode->i_lock); 4383 inode->i_state &= ~I_LINKABLE; 4384 spin_unlock(&inode->i_lock); 4385 } 4386 inode_unlock(inode); 4387 if (!error) 4388 fsnotify_link(dir, inode, new_dentry); 4389 return error; 4390 } 4391 EXPORT_SYMBOL(vfs_link); 4392 4393 /* 4394 * Hardlinks are often used in delicate situations. We avoid 4395 * security-related surprises by not following symlinks on the 4396 * newname. --KAB 4397 * 4398 * We don't follow them on the oldname either to be compatible 4399 * with linux 2.0, and to avoid hard-linking to directories 4400 * and other special files. --ADM 4401 */ 4402 int do_linkat(int olddfd, struct filename *old, int newdfd, 4403 struct filename *new, int flags) 4404 { 4405 struct user_namespace *mnt_userns; 4406 struct dentry *new_dentry; 4407 struct path old_path, new_path; 4408 struct inode *delegated_inode = NULL; 4409 int how = 0; 4410 int error; 4411 4412 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) { 4413 error = -EINVAL; 4414 goto out_putnames; 4415 } 4416 /* 4417 * To use null names we require CAP_DAC_READ_SEARCH 4418 * This ensures that not everyone will be able to create 4419 * handlink using the passed filedescriptor. 4420 */ 4421 if (flags & AT_EMPTY_PATH && !capable(CAP_DAC_READ_SEARCH)) { 4422 error = -ENOENT; 4423 goto out_putnames; 4424 } 4425 4426 if (flags & AT_SYMLINK_FOLLOW) 4427 how |= LOOKUP_FOLLOW; 4428 retry: 4429 error = filename_lookup(olddfd, old, how, &old_path, NULL); 4430 if (error) 4431 goto out_putnames; 4432 4433 new_dentry = filename_create(newdfd, new, &new_path, 4434 (how & LOOKUP_REVAL)); 4435 error = PTR_ERR(new_dentry); 4436 if (IS_ERR(new_dentry)) 4437 goto out_putpath; 4438 4439 error = -EXDEV; 4440 if (old_path.mnt != new_path.mnt) 4441 goto out_dput; 4442 mnt_userns = mnt_user_ns(new_path.mnt); 4443 error = may_linkat(mnt_userns, &old_path); 4444 if (unlikely(error)) 4445 goto out_dput; 4446 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4447 if (error) 4448 goto out_dput; 4449 error = vfs_link(old_path.dentry, mnt_userns, new_path.dentry->d_inode, 4450 new_dentry, &delegated_inode); 4451 out_dput: 4452 done_path_create(&new_path, new_dentry); 4453 if (delegated_inode) { 4454 error = break_deleg_wait(&delegated_inode); 4455 if (!error) { 4456 path_put(&old_path); 4457 goto retry; 4458 } 4459 } 4460 if (retry_estale(error, how)) { 4461 path_put(&old_path); 4462 how |= LOOKUP_REVAL; 4463 goto retry; 4464 } 4465 out_putpath: 4466 path_put(&old_path); 4467 out_putnames: 4468 putname(old); 4469 putname(new); 4470 4471 return error; 4472 } 4473 4474 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 4475 int, newdfd, const char __user *, newname, int, flags) 4476 { 4477 return do_linkat(olddfd, getname_uflags(oldname, flags), 4478 newdfd, getname(newname), flags); 4479 } 4480 4481 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4482 { 4483 return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0); 4484 } 4485 4486 /** 4487 * vfs_rename - rename a filesystem object 4488 * @rd: pointer to &struct renamedata info 4489 * 4490 * The caller must hold multiple mutexes--see lock_rename()). 4491 * 4492 * If vfs_rename discovers a delegation in need of breaking at either 4493 * the source or destination, it will return -EWOULDBLOCK and return a 4494 * reference to the inode in delegated_inode. The caller should then 4495 * break the delegation and retry. Because breaking a delegation may 4496 * take a long time, the caller should drop all locks before doing 4497 * so. 4498 * 4499 * Alternatively, a caller may pass NULL for delegated_inode. This may 4500 * be appropriate for callers that expect the underlying filesystem not 4501 * to be NFS exported. 4502 * 4503 * The worst of all namespace operations - renaming directory. "Perverted" 4504 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4505 * Problems: 4506 * 4507 * a) we can get into loop creation. 4508 * b) race potential - two innocent renames can create a loop together. 4509 * That's where 4.4 screws up. Current fix: serialization on 4510 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4511 * story. 4512 * c) we have to lock _four_ objects - parents and victim (if it exists), 4513 * and source (if it is not a directory). 4514 * And that - after we got ->i_mutex on parents (until then we don't know 4515 * whether the target exists). Solution: try to be smart with locking 4516 * order for inodes. We rely on the fact that tree topology may change 4517 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4518 * move will be locked. Thus we can rank directories by the tree 4519 * (ancestors first) and rank all non-directories after them. 4520 * That works since everybody except rename does "lock parent, lookup, 4521 * lock child" and rename is under ->s_vfs_rename_mutex. 4522 * HOWEVER, it relies on the assumption that any object with ->lookup() 4523 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4524 * we'd better make sure that there's no link(2) for them. 4525 * d) conversion from fhandle to dentry may come in the wrong moment - when 4526 * we are removing the target. Solution: we will have to grab ->i_mutex 4527 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4528 * ->i_mutex on parents, which works but leads to some truly excessive 4529 * locking]. 4530 */ 4531 int vfs_rename(struct renamedata *rd) 4532 { 4533 int error; 4534 struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir; 4535 struct dentry *old_dentry = rd->old_dentry; 4536 struct dentry *new_dentry = rd->new_dentry; 4537 struct inode **delegated_inode = rd->delegated_inode; 4538 unsigned int flags = rd->flags; 4539 bool is_dir = d_is_dir(old_dentry); 4540 struct inode *source = old_dentry->d_inode; 4541 struct inode *target = new_dentry->d_inode; 4542 bool new_is_dir = false; 4543 unsigned max_links = new_dir->i_sb->s_max_links; 4544 struct name_snapshot old_name; 4545 4546 if (source == target) 4547 return 0; 4548 4549 error = may_delete(rd->old_mnt_userns, old_dir, old_dentry, is_dir); 4550 if (error) 4551 return error; 4552 4553 if (!target) { 4554 error = may_create(rd->new_mnt_userns, new_dir, new_dentry); 4555 } else { 4556 new_is_dir = d_is_dir(new_dentry); 4557 4558 if (!(flags & RENAME_EXCHANGE)) 4559 error = may_delete(rd->new_mnt_userns, new_dir, 4560 new_dentry, is_dir); 4561 else 4562 error = may_delete(rd->new_mnt_userns, new_dir, 4563 new_dentry, new_is_dir); 4564 } 4565 if (error) 4566 return error; 4567 4568 if (!old_dir->i_op->rename) 4569 return -EPERM; 4570 4571 /* 4572 * If we are going to change the parent - check write permissions, 4573 * we'll need to flip '..'. 4574 */ 4575 if (new_dir != old_dir) { 4576 if (is_dir) { 4577 error = inode_permission(rd->old_mnt_userns, source, 4578 MAY_WRITE); 4579 if (error) 4580 return error; 4581 } 4582 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4583 error = inode_permission(rd->new_mnt_userns, target, 4584 MAY_WRITE); 4585 if (error) 4586 return error; 4587 } 4588 } 4589 4590 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 4591 flags); 4592 if (error) 4593 return error; 4594 4595 take_dentry_name_snapshot(&old_name, old_dentry); 4596 dget(new_dentry); 4597 if (!is_dir || (flags & RENAME_EXCHANGE)) 4598 lock_two_nondirectories(source, target); 4599 else if (target) 4600 inode_lock(target); 4601 4602 error = -EPERM; 4603 if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target))) 4604 goto out; 4605 4606 error = -EBUSY; 4607 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 4608 goto out; 4609 4610 if (max_links && new_dir != old_dir) { 4611 error = -EMLINK; 4612 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 4613 goto out; 4614 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 4615 old_dir->i_nlink >= max_links) 4616 goto out; 4617 } 4618 if (!is_dir) { 4619 error = try_break_deleg(source, delegated_inode); 4620 if (error) 4621 goto out; 4622 } 4623 if (target && !new_is_dir) { 4624 error = try_break_deleg(target, delegated_inode); 4625 if (error) 4626 goto out; 4627 } 4628 error = old_dir->i_op->rename(rd->new_mnt_userns, old_dir, old_dentry, 4629 new_dir, new_dentry, flags); 4630 if (error) 4631 goto out; 4632 4633 if (!(flags & RENAME_EXCHANGE) && target) { 4634 if (is_dir) { 4635 shrink_dcache_parent(new_dentry); 4636 target->i_flags |= S_DEAD; 4637 } 4638 dont_mount(new_dentry); 4639 detach_mounts(new_dentry); 4640 } 4641 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 4642 if (!(flags & RENAME_EXCHANGE)) 4643 d_move(old_dentry, new_dentry); 4644 else 4645 d_exchange(old_dentry, new_dentry); 4646 } 4647 out: 4648 if (!is_dir || (flags & RENAME_EXCHANGE)) 4649 unlock_two_nondirectories(source, target); 4650 else if (target) 4651 inode_unlock(target); 4652 dput(new_dentry); 4653 if (!error) { 4654 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir, 4655 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 4656 if (flags & RENAME_EXCHANGE) { 4657 fsnotify_move(new_dir, old_dir, &old_dentry->d_name, 4658 new_is_dir, NULL, new_dentry); 4659 } 4660 } 4661 release_dentry_name_snapshot(&old_name); 4662 4663 return error; 4664 } 4665 EXPORT_SYMBOL(vfs_rename); 4666 4667 int do_renameat2(int olddfd, struct filename *from, int newdfd, 4668 struct filename *to, unsigned int flags) 4669 { 4670 struct renamedata rd; 4671 struct dentry *old_dentry, *new_dentry; 4672 struct dentry *trap; 4673 struct path old_path, new_path; 4674 struct qstr old_last, new_last; 4675 int old_type, new_type; 4676 struct inode *delegated_inode = NULL; 4677 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET; 4678 bool should_retry = false; 4679 int error = -EINVAL; 4680 4681 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4682 goto put_names; 4683 4684 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 4685 (flags & RENAME_EXCHANGE)) 4686 goto put_names; 4687 4688 if (flags & RENAME_EXCHANGE) 4689 target_flags = 0; 4690 4691 retry: 4692 error = filename_parentat(olddfd, from, lookup_flags, &old_path, 4693 &old_last, &old_type); 4694 if (error) 4695 goto put_names; 4696 4697 error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last, 4698 &new_type); 4699 if (error) 4700 goto exit1; 4701 4702 error = -EXDEV; 4703 if (old_path.mnt != new_path.mnt) 4704 goto exit2; 4705 4706 error = -EBUSY; 4707 if (old_type != LAST_NORM) 4708 goto exit2; 4709 4710 if (flags & RENAME_NOREPLACE) 4711 error = -EEXIST; 4712 if (new_type != LAST_NORM) 4713 goto exit2; 4714 4715 error = mnt_want_write(old_path.mnt); 4716 if (error) 4717 goto exit2; 4718 4719 retry_deleg: 4720 trap = lock_rename(new_path.dentry, old_path.dentry); 4721 4722 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags); 4723 error = PTR_ERR(old_dentry); 4724 if (IS_ERR(old_dentry)) 4725 goto exit3; 4726 /* source must exist */ 4727 error = -ENOENT; 4728 if (d_is_negative(old_dentry)) 4729 goto exit4; 4730 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags); 4731 error = PTR_ERR(new_dentry); 4732 if (IS_ERR(new_dentry)) 4733 goto exit4; 4734 error = -EEXIST; 4735 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 4736 goto exit5; 4737 if (flags & RENAME_EXCHANGE) { 4738 error = -ENOENT; 4739 if (d_is_negative(new_dentry)) 4740 goto exit5; 4741 4742 if (!d_is_dir(new_dentry)) { 4743 error = -ENOTDIR; 4744 if (new_last.name[new_last.len]) 4745 goto exit5; 4746 } 4747 } 4748 /* unless the source is a directory trailing slashes give -ENOTDIR */ 4749 if (!d_is_dir(old_dentry)) { 4750 error = -ENOTDIR; 4751 if (old_last.name[old_last.len]) 4752 goto exit5; 4753 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len]) 4754 goto exit5; 4755 } 4756 /* source should not be ancestor of target */ 4757 error = -EINVAL; 4758 if (old_dentry == trap) 4759 goto exit5; 4760 /* target should not be an ancestor of source */ 4761 if (!(flags & RENAME_EXCHANGE)) 4762 error = -ENOTEMPTY; 4763 if (new_dentry == trap) 4764 goto exit5; 4765 4766 error = security_path_rename(&old_path, old_dentry, 4767 &new_path, new_dentry, flags); 4768 if (error) 4769 goto exit5; 4770 4771 rd.old_dir = old_path.dentry->d_inode; 4772 rd.old_dentry = old_dentry; 4773 rd.old_mnt_userns = mnt_user_ns(old_path.mnt); 4774 rd.new_dir = new_path.dentry->d_inode; 4775 rd.new_dentry = new_dentry; 4776 rd.new_mnt_userns = mnt_user_ns(new_path.mnt); 4777 rd.delegated_inode = &delegated_inode; 4778 rd.flags = flags; 4779 error = vfs_rename(&rd); 4780 exit5: 4781 dput(new_dentry); 4782 exit4: 4783 dput(old_dentry); 4784 exit3: 4785 unlock_rename(new_path.dentry, old_path.dentry); 4786 if (delegated_inode) { 4787 error = break_deleg_wait(&delegated_inode); 4788 if (!error) 4789 goto retry_deleg; 4790 } 4791 mnt_drop_write(old_path.mnt); 4792 exit2: 4793 if (retry_estale(error, lookup_flags)) 4794 should_retry = true; 4795 path_put(&new_path); 4796 exit1: 4797 path_put(&old_path); 4798 if (should_retry) { 4799 should_retry = false; 4800 lookup_flags |= LOOKUP_REVAL; 4801 goto retry; 4802 } 4803 put_names: 4804 putname(from); 4805 putname(to); 4806 return error; 4807 } 4808 4809 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 4810 int, newdfd, const char __user *, newname, unsigned int, flags) 4811 { 4812 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname), 4813 flags); 4814 } 4815 4816 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 4817 int, newdfd, const char __user *, newname) 4818 { 4819 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname), 4820 0); 4821 } 4822 4823 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 4824 { 4825 return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD, 4826 getname(newname), 0); 4827 } 4828 4829 int readlink_copy(char __user *buffer, int buflen, const char *link) 4830 { 4831 int len = PTR_ERR(link); 4832 if (IS_ERR(link)) 4833 goto out; 4834 4835 len = strlen(link); 4836 if (len > (unsigned) buflen) 4837 len = buflen; 4838 if (copy_to_user(buffer, link, len)) 4839 len = -EFAULT; 4840 out: 4841 return len; 4842 } 4843 4844 /** 4845 * vfs_readlink - copy symlink body into userspace buffer 4846 * @dentry: dentry on which to get symbolic link 4847 * @buffer: user memory pointer 4848 * @buflen: size of buffer 4849 * 4850 * Does not touch atime. That's up to the caller if necessary 4851 * 4852 * Does not call security hook. 4853 */ 4854 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4855 { 4856 struct inode *inode = d_inode(dentry); 4857 DEFINE_DELAYED_CALL(done); 4858 const char *link; 4859 int res; 4860 4861 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) { 4862 if (unlikely(inode->i_op->readlink)) 4863 return inode->i_op->readlink(dentry, buffer, buflen); 4864 4865 if (!d_is_symlink(dentry)) 4866 return -EINVAL; 4867 4868 spin_lock(&inode->i_lock); 4869 inode->i_opflags |= IOP_DEFAULT_READLINK; 4870 spin_unlock(&inode->i_lock); 4871 } 4872 4873 link = READ_ONCE(inode->i_link); 4874 if (!link) { 4875 link = inode->i_op->get_link(dentry, inode, &done); 4876 if (IS_ERR(link)) 4877 return PTR_ERR(link); 4878 } 4879 res = readlink_copy(buffer, buflen, link); 4880 do_delayed_call(&done); 4881 return res; 4882 } 4883 EXPORT_SYMBOL(vfs_readlink); 4884 4885 /** 4886 * vfs_get_link - get symlink body 4887 * @dentry: dentry on which to get symbolic link 4888 * @done: caller needs to free returned data with this 4889 * 4890 * Calls security hook and i_op->get_link() on the supplied inode. 4891 * 4892 * It does not touch atime. That's up to the caller if necessary. 4893 * 4894 * Does not work on "special" symlinks like /proc/$$/fd/N 4895 */ 4896 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done) 4897 { 4898 const char *res = ERR_PTR(-EINVAL); 4899 struct inode *inode = d_inode(dentry); 4900 4901 if (d_is_symlink(dentry)) { 4902 res = ERR_PTR(security_inode_readlink(dentry)); 4903 if (!res) 4904 res = inode->i_op->get_link(dentry, inode, done); 4905 } 4906 return res; 4907 } 4908 EXPORT_SYMBOL(vfs_get_link); 4909 4910 /* get the link contents into pagecache */ 4911 const char *page_get_link(struct dentry *dentry, struct inode *inode, 4912 struct delayed_call *callback) 4913 { 4914 char *kaddr; 4915 struct page *page; 4916 struct address_space *mapping = inode->i_mapping; 4917 4918 if (!dentry) { 4919 page = find_get_page(mapping, 0); 4920 if (!page) 4921 return ERR_PTR(-ECHILD); 4922 if (!PageUptodate(page)) { 4923 put_page(page); 4924 return ERR_PTR(-ECHILD); 4925 } 4926 } else { 4927 page = read_mapping_page(mapping, 0, NULL); 4928 if (IS_ERR(page)) 4929 return (char*)page; 4930 } 4931 set_delayed_call(callback, page_put_link, page); 4932 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM); 4933 kaddr = page_address(page); 4934 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1); 4935 return kaddr; 4936 } 4937 4938 EXPORT_SYMBOL(page_get_link); 4939 4940 void page_put_link(void *arg) 4941 { 4942 put_page(arg); 4943 } 4944 EXPORT_SYMBOL(page_put_link); 4945 4946 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4947 { 4948 DEFINE_DELAYED_CALL(done); 4949 int res = readlink_copy(buffer, buflen, 4950 page_get_link(dentry, d_inode(dentry), 4951 &done)); 4952 do_delayed_call(&done); 4953 return res; 4954 } 4955 EXPORT_SYMBOL(page_readlink); 4956 4957 /* 4958 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 4959 */ 4960 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 4961 { 4962 struct address_space *mapping = inode->i_mapping; 4963 struct page *page; 4964 void *fsdata; 4965 int err; 4966 unsigned int flags = 0; 4967 if (nofs) 4968 flags |= AOP_FLAG_NOFS; 4969 4970 retry: 4971 err = pagecache_write_begin(NULL, mapping, 0, len-1, 4972 flags, &page, &fsdata); 4973 if (err) 4974 goto fail; 4975 4976 memcpy(page_address(page), symname, len-1); 4977 4978 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 4979 page, fsdata); 4980 if (err < 0) 4981 goto fail; 4982 if (err < len-1) 4983 goto retry; 4984 4985 mark_inode_dirty(inode); 4986 return 0; 4987 fail: 4988 return err; 4989 } 4990 EXPORT_SYMBOL(__page_symlink); 4991 4992 int page_symlink(struct inode *inode, const char *symname, int len) 4993 { 4994 return __page_symlink(inode, symname, len, 4995 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS)); 4996 } 4997 EXPORT_SYMBOL(page_symlink); 4998 4999 const struct inode_operations page_symlink_inode_operations = { 5000 .get_link = page_get_link, 5001 }; 5002 EXPORT_SYMBOL(page_symlink_inode_operations); 5003