xref: /linux/fs/namei.c (revision 5bb6ba448fe3598a7668838942db1f008beb581b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/namei.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * Some corrections by tytso.
10  */
11 
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13  * lookup logic.
14  */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16  */
17 
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/slab.h>
21 #include <linux/wordpart.h>
22 #include <linux/fs.h>
23 #include <linux/filelock.h>
24 #include <linux/namei.h>
25 #include <linux/pagemap.h>
26 #include <linux/sched/mm.h>
27 #include <linux/fsnotify.h>
28 #include <linux/personality.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/mount.h>
32 #include <linux/audit.h>
33 #include <linux/capability.h>
34 #include <linux/file.h>
35 #include <linux/fcntl.h>
36 #include <linux/device_cgroup.h>
37 #include <linux/fs_struct.h>
38 #include <linux/posix_acl.h>
39 #include <linux/hash.h>
40 #include <linux/bitops.h>
41 #include <linux/init_task.h>
42 #include <linux/uaccess.h>
43 
44 #include "internal.h"
45 #include "mount.h"
46 
47 /* [Feb-1997 T. Schoebel-Theuer]
48  * Fundamental changes in the pathname lookup mechanisms (namei)
49  * were necessary because of omirr.  The reason is that omirr needs
50  * to know the _real_ pathname, not the user-supplied one, in case
51  * of symlinks (and also when transname replacements occur).
52  *
53  * The new code replaces the old recursive symlink resolution with
54  * an iterative one (in case of non-nested symlink chains).  It does
55  * this with calls to <fs>_follow_link().
56  * As a side effect, dir_namei(), _namei() and follow_link() are now
57  * replaced with a single function lookup_dentry() that can handle all
58  * the special cases of the former code.
59  *
60  * With the new dcache, the pathname is stored at each inode, at least as
61  * long as the refcount of the inode is positive.  As a side effect, the
62  * size of the dcache depends on the inode cache and thus is dynamic.
63  *
64  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
65  * resolution to correspond with current state of the code.
66  *
67  * Note that the symlink resolution is not *completely* iterative.
68  * There is still a significant amount of tail- and mid- recursion in
69  * the algorithm.  Also, note that <fs>_readlink() is not used in
70  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
71  * may return different results than <fs>_follow_link().  Many virtual
72  * filesystems (including /proc) exhibit this behavior.
73  */
74 
75 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
76  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
77  * and the name already exists in form of a symlink, try to create the new
78  * name indicated by the symlink. The old code always complained that the
79  * name already exists, due to not following the symlink even if its target
80  * is nonexistent.  The new semantics affects also mknod() and link() when
81  * the name is a symlink pointing to a non-existent name.
82  *
83  * I don't know which semantics is the right one, since I have no access
84  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
85  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
86  * "old" one. Personally, I think the new semantics is much more logical.
87  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
88  * file does succeed in both HP-UX and SunOs, but not in Solaris
89  * and in the old Linux semantics.
90  */
91 
92 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
93  * semantics.  See the comments in "open_namei" and "do_link" below.
94  *
95  * [10-Sep-98 Alan Modra] Another symlink change.
96  */
97 
98 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
99  *	inside the path - always follow.
100  *	in the last component in creation/removal/renaming - never follow.
101  *	if LOOKUP_FOLLOW passed - follow.
102  *	if the pathname has trailing slashes - follow.
103  *	otherwise - don't follow.
104  * (applied in that order).
105  *
106  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
107  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
108  * During the 2.4 we need to fix the userland stuff depending on it -
109  * hopefully we will be able to get rid of that wart in 2.5. So far only
110  * XEmacs seems to be relying on it...
111  */
112 /*
113  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
114  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
115  * any extra contention...
116  */
117 
118 /* In order to reduce some races, while at the same time doing additional
119  * checking and hopefully speeding things up, we copy filenames to the
120  * kernel data space before using them..
121  *
122  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
123  * PATH_MAX includes the nul terminator --RR.
124  */
125 
126 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
127 
128 struct filename *
129 getname_flags(const char __user *filename, int flags)
130 {
131 	struct filename *result;
132 	char *kname;
133 	int len;
134 
135 	result = audit_reusename(filename);
136 	if (result)
137 		return result;
138 
139 	result = __getname();
140 	if (unlikely(!result))
141 		return ERR_PTR(-ENOMEM);
142 
143 	/*
144 	 * First, try to embed the struct filename inside the names_cache
145 	 * allocation
146 	 */
147 	kname = (char *)result->iname;
148 	result->name = kname;
149 
150 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
151 	/*
152 	 * Handle both empty path and copy failure in one go.
153 	 */
154 	if (unlikely(len <= 0)) {
155 		if (unlikely(len < 0)) {
156 			__putname(result);
157 			return ERR_PTR(len);
158 		}
159 
160 		/* The empty path is special. */
161 		if (!(flags & LOOKUP_EMPTY)) {
162 			__putname(result);
163 			return ERR_PTR(-ENOENT);
164 		}
165 	}
166 
167 	/*
168 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
169 	 * separate struct filename so we can dedicate the entire
170 	 * names_cache allocation for the pathname, and re-do the copy from
171 	 * userland.
172 	 */
173 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
174 		const size_t size = offsetof(struct filename, iname[1]);
175 		kname = (char *)result;
176 
177 		/*
178 		 * size is chosen that way we to guarantee that
179 		 * result->iname[0] is within the same object and that
180 		 * kname can't be equal to result->iname, no matter what.
181 		 */
182 		result = kzalloc(size, GFP_KERNEL);
183 		if (unlikely(!result)) {
184 			__putname(kname);
185 			return ERR_PTR(-ENOMEM);
186 		}
187 		result->name = kname;
188 		len = strncpy_from_user(kname, filename, PATH_MAX);
189 		if (unlikely(len < 0)) {
190 			__putname(kname);
191 			kfree(result);
192 			return ERR_PTR(len);
193 		}
194 		/* The empty path is special. */
195 		if (unlikely(!len) && !(flags & LOOKUP_EMPTY)) {
196 			__putname(kname);
197 			kfree(result);
198 			return ERR_PTR(-ENOENT);
199 		}
200 		if (unlikely(len == PATH_MAX)) {
201 			__putname(kname);
202 			kfree(result);
203 			return ERR_PTR(-ENAMETOOLONG);
204 		}
205 	}
206 
207 	atomic_set(&result->refcnt, 1);
208 	result->uptr = filename;
209 	result->aname = NULL;
210 	audit_getname(result);
211 	return result;
212 }
213 
214 struct filename *
215 getname_uflags(const char __user *filename, int uflags)
216 {
217 	int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
218 
219 	return getname_flags(filename, flags);
220 }
221 
222 struct filename *
223 getname(const char __user * filename)
224 {
225 	return getname_flags(filename, 0);
226 }
227 
228 struct filename *
229 getname_kernel(const char * filename)
230 {
231 	struct filename *result;
232 	int len = strlen(filename) + 1;
233 
234 	result = __getname();
235 	if (unlikely(!result))
236 		return ERR_PTR(-ENOMEM);
237 
238 	if (len <= EMBEDDED_NAME_MAX) {
239 		result->name = (char *)result->iname;
240 	} else if (len <= PATH_MAX) {
241 		const size_t size = offsetof(struct filename, iname[1]);
242 		struct filename *tmp;
243 
244 		tmp = kmalloc(size, GFP_KERNEL);
245 		if (unlikely(!tmp)) {
246 			__putname(result);
247 			return ERR_PTR(-ENOMEM);
248 		}
249 		tmp->name = (char *)result;
250 		result = tmp;
251 	} else {
252 		__putname(result);
253 		return ERR_PTR(-ENAMETOOLONG);
254 	}
255 	memcpy((char *)result->name, filename, len);
256 	result->uptr = NULL;
257 	result->aname = NULL;
258 	atomic_set(&result->refcnt, 1);
259 	audit_getname(result);
260 
261 	return result;
262 }
263 EXPORT_SYMBOL(getname_kernel);
264 
265 void putname(struct filename *name)
266 {
267 	if (IS_ERR(name))
268 		return;
269 
270 	if (WARN_ON_ONCE(!atomic_read(&name->refcnt)))
271 		return;
272 
273 	if (!atomic_dec_and_test(&name->refcnt))
274 		return;
275 
276 	if (name->name != name->iname) {
277 		__putname(name->name);
278 		kfree(name);
279 	} else
280 		__putname(name);
281 }
282 EXPORT_SYMBOL(putname);
283 
284 /**
285  * check_acl - perform ACL permission checking
286  * @idmap:	idmap of the mount the inode was found from
287  * @inode:	inode to check permissions on
288  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
289  *
290  * This function performs the ACL permission checking. Since this function
291  * retrieve POSIX acls it needs to know whether it is called from a blocking or
292  * non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
293  *
294  * If the inode has been found through an idmapped mount the idmap of
295  * the vfsmount must be passed through @idmap. This function will then take
296  * care to map the inode according to @idmap before checking permissions.
297  * On non-idmapped mounts or if permission checking is to be performed on the
298  * raw inode simply pass @nop_mnt_idmap.
299  */
300 static int check_acl(struct mnt_idmap *idmap,
301 		     struct inode *inode, int mask)
302 {
303 #ifdef CONFIG_FS_POSIX_ACL
304 	struct posix_acl *acl;
305 
306 	if (mask & MAY_NOT_BLOCK) {
307 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
308 	        if (!acl)
309 	                return -EAGAIN;
310 		/* no ->get_inode_acl() calls in RCU mode... */
311 		if (is_uncached_acl(acl))
312 			return -ECHILD;
313 	        return posix_acl_permission(idmap, inode, acl, mask);
314 	}
315 
316 	acl = get_inode_acl(inode, ACL_TYPE_ACCESS);
317 	if (IS_ERR(acl))
318 		return PTR_ERR(acl);
319 	if (acl) {
320 	        int error = posix_acl_permission(idmap, inode, acl, mask);
321 	        posix_acl_release(acl);
322 	        return error;
323 	}
324 #endif
325 
326 	return -EAGAIN;
327 }
328 
329 /*
330  * Very quick optimistic "we know we have no ACL's" check.
331  *
332  * Note that this is purely for ACL_TYPE_ACCESS, and purely
333  * for the "we have cached that there are no ACLs" case.
334  *
335  * If this returns true, we know there are no ACLs. But if
336  * it returns false, we might still not have ACLs (it could
337  * be the is_uncached_acl() case).
338  */
339 static inline bool no_acl_inode(struct inode *inode)
340 {
341 #ifdef CONFIG_FS_POSIX_ACL
342 	return likely(!READ_ONCE(inode->i_acl));
343 #else
344 	return true;
345 #endif
346 }
347 
348 /**
349  * acl_permission_check - perform basic UNIX permission checking
350  * @idmap:	idmap of the mount the inode was found from
351  * @inode:	inode to check permissions on
352  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
353  *
354  * This function performs the basic UNIX permission checking. Since this
355  * function may retrieve POSIX acls it needs to know whether it is called from a
356  * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
357  *
358  * If the inode has been found through an idmapped mount the idmap of
359  * the vfsmount must be passed through @idmap. This function will then take
360  * care to map the inode according to @idmap before checking permissions.
361  * On non-idmapped mounts or if permission checking is to be performed on the
362  * raw inode simply pass @nop_mnt_idmap.
363  */
364 static int acl_permission_check(struct mnt_idmap *idmap,
365 				struct inode *inode, int mask)
366 {
367 	unsigned int mode = inode->i_mode;
368 	vfsuid_t vfsuid;
369 
370 	/*
371 	 * Common cheap case: everybody has the requested
372 	 * rights, and there are no ACLs to check. No need
373 	 * to do any owner/group checks in that case.
374 	 *
375 	 *  - 'mask&7' is the requested permission bit set
376 	 *  - multiplying by 0111 spreads them out to all of ugo
377 	 *  - '& ~mode' looks for missing inode permission bits
378 	 *  - the '!' is for "no missing permissions"
379 	 *
380 	 * After that, we just need to check that there are no
381 	 * ACL's on the inode - do the 'IS_POSIXACL()' check last
382 	 * because it will dereference the ->i_sb pointer and we
383 	 * want to avoid that if at all possible.
384 	 */
385 	if (!((mask & 7) * 0111 & ~mode)) {
386 		if (no_acl_inode(inode))
387 			return 0;
388 		if (!IS_POSIXACL(inode))
389 			return 0;
390 	}
391 
392 	/* Are we the owner? If so, ACL's don't matter */
393 	vfsuid = i_uid_into_vfsuid(idmap, inode);
394 	if (likely(vfsuid_eq_kuid(vfsuid, current_fsuid()))) {
395 		mask &= 7;
396 		mode >>= 6;
397 		return (mask & ~mode) ? -EACCES : 0;
398 	}
399 
400 	/* Do we have ACL's? */
401 	if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
402 		int error = check_acl(idmap, inode, mask);
403 		if (error != -EAGAIN)
404 			return error;
405 	}
406 
407 	/* Only RWX matters for group/other mode bits */
408 	mask &= 7;
409 
410 	/*
411 	 * Are the group permissions different from
412 	 * the other permissions in the bits we care
413 	 * about? Need to check group ownership if so.
414 	 */
415 	if (mask & (mode ^ (mode >> 3))) {
416 		vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
417 		if (vfsgid_in_group_p(vfsgid))
418 			mode >>= 3;
419 	}
420 
421 	/* Bits in 'mode' clear that we require? */
422 	return (mask & ~mode) ? -EACCES : 0;
423 }
424 
425 /**
426  * generic_permission -  check for access rights on a Posix-like filesystem
427  * @idmap:	idmap of the mount the inode was found from
428  * @inode:	inode to check access rights for
429  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
430  *		%MAY_NOT_BLOCK ...)
431  *
432  * Used to check for read/write/execute permissions on a file.
433  * We use "fsuid" for this, letting us set arbitrary permissions
434  * for filesystem access without changing the "normal" uids which
435  * are used for other things.
436  *
437  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
438  * request cannot be satisfied (eg. requires blocking or too much complexity).
439  * It would then be called again in ref-walk mode.
440  *
441  * If the inode has been found through an idmapped mount the idmap of
442  * the vfsmount must be passed through @idmap. This function will then take
443  * care to map the inode according to @idmap before checking permissions.
444  * On non-idmapped mounts or if permission checking is to be performed on the
445  * raw inode simply pass @nop_mnt_idmap.
446  */
447 int generic_permission(struct mnt_idmap *idmap, struct inode *inode,
448 		       int mask)
449 {
450 	int ret;
451 
452 	/*
453 	 * Do the basic permission checks.
454 	 */
455 	ret = acl_permission_check(idmap, inode, mask);
456 	if (ret != -EACCES)
457 		return ret;
458 
459 	if (S_ISDIR(inode->i_mode)) {
460 		/* DACs are overridable for directories */
461 		if (!(mask & MAY_WRITE))
462 			if (capable_wrt_inode_uidgid(idmap, inode,
463 						     CAP_DAC_READ_SEARCH))
464 				return 0;
465 		if (capable_wrt_inode_uidgid(idmap, inode,
466 					     CAP_DAC_OVERRIDE))
467 			return 0;
468 		return -EACCES;
469 	}
470 
471 	/*
472 	 * Searching includes executable on directories, else just read.
473 	 */
474 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
475 	if (mask == MAY_READ)
476 		if (capable_wrt_inode_uidgid(idmap, inode,
477 					     CAP_DAC_READ_SEARCH))
478 			return 0;
479 	/*
480 	 * Read/write DACs are always overridable.
481 	 * Executable DACs are overridable when there is
482 	 * at least one exec bit set.
483 	 */
484 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
485 		if (capable_wrt_inode_uidgid(idmap, inode,
486 					     CAP_DAC_OVERRIDE))
487 			return 0;
488 
489 	return -EACCES;
490 }
491 EXPORT_SYMBOL(generic_permission);
492 
493 /**
494  * do_inode_permission - UNIX permission checking
495  * @idmap:	idmap of the mount the inode was found from
496  * @inode:	inode to check permissions on
497  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
498  *
499  * We _really_ want to just do "generic_permission()" without
500  * even looking at the inode->i_op values. So we keep a cache
501  * flag in inode->i_opflags, that says "this has not special
502  * permission function, use the fast case".
503  */
504 static inline int do_inode_permission(struct mnt_idmap *idmap,
505 				      struct inode *inode, int mask)
506 {
507 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
508 		if (likely(inode->i_op->permission))
509 			return inode->i_op->permission(idmap, inode, mask);
510 
511 		/* This gets set once for the inode lifetime */
512 		spin_lock(&inode->i_lock);
513 		inode->i_opflags |= IOP_FASTPERM;
514 		spin_unlock(&inode->i_lock);
515 	}
516 	return generic_permission(idmap, inode, mask);
517 }
518 
519 /**
520  * sb_permission - Check superblock-level permissions
521  * @sb: Superblock of inode to check permission on
522  * @inode: Inode to check permission on
523  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
524  *
525  * Separate out file-system wide checks from inode-specific permission checks.
526  */
527 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
528 {
529 	if (unlikely(mask & MAY_WRITE)) {
530 		umode_t mode = inode->i_mode;
531 
532 		/* Nobody gets write access to a read-only fs. */
533 		if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
534 			return -EROFS;
535 	}
536 	return 0;
537 }
538 
539 /**
540  * inode_permission - Check for access rights to a given inode
541  * @idmap:	idmap of the mount the inode was found from
542  * @inode:	Inode to check permission on
543  * @mask:	Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
544  *
545  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
546  * this, letting us set arbitrary permissions for filesystem access without
547  * changing the "normal" UIDs which are used for other things.
548  *
549  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
550  */
551 int inode_permission(struct mnt_idmap *idmap,
552 		     struct inode *inode, int mask)
553 {
554 	int retval;
555 
556 	retval = sb_permission(inode->i_sb, inode, mask);
557 	if (retval)
558 		return retval;
559 
560 	if (unlikely(mask & MAY_WRITE)) {
561 		/*
562 		 * Nobody gets write access to an immutable file.
563 		 */
564 		if (IS_IMMUTABLE(inode))
565 			return -EPERM;
566 
567 		/*
568 		 * Updating mtime will likely cause i_uid and i_gid to be
569 		 * written back improperly if their true value is unknown
570 		 * to the vfs.
571 		 */
572 		if (HAS_UNMAPPED_ID(idmap, inode))
573 			return -EACCES;
574 	}
575 
576 	retval = do_inode_permission(idmap, inode, mask);
577 	if (retval)
578 		return retval;
579 
580 	retval = devcgroup_inode_permission(inode, mask);
581 	if (retval)
582 		return retval;
583 
584 	return security_inode_permission(inode, mask);
585 }
586 EXPORT_SYMBOL(inode_permission);
587 
588 /**
589  * path_get - get a reference to a path
590  * @path: path to get the reference to
591  *
592  * Given a path increment the reference count to the dentry and the vfsmount.
593  */
594 void path_get(const struct path *path)
595 {
596 	mntget(path->mnt);
597 	dget(path->dentry);
598 }
599 EXPORT_SYMBOL(path_get);
600 
601 /**
602  * path_put - put a reference to a path
603  * @path: path to put the reference to
604  *
605  * Given a path decrement the reference count to the dentry and the vfsmount.
606  */
607 void path_put(const struct path *path)
608 {
609 	dput(path->dentry);
610 	mntput(path->mnt);
611 }
612 EXPORT_SYMBOL(path_put);
613 
614 #define EMBEDDED_LEVELS 2
615 struct nameidata {
616 	struct path	path;
617 	struct qstr	last;
618 	struct path	root;
619 	struct inode	*inode; /* path.dentry.d_inode */
620 	unsigned int	flags, state;
621 	unsigned	seq, next_seq, m_seq, r_seq;
622 	int		last_type;
623 	unsigned	depth;
624 	int		total_link_count;
625 	struct saved {
626 		struct path link;
627 		struct delayed_call done;
628 		const char *name;
629 		unsigned seq;
630 	} *stack, internal[EMBEDDED_LEVELS];
631 	struct filename	*name;
632 	struct nameidata *saved;
633 	unsigned	root_seq;
634 	int		dfd;
635 	vfsuid_t	dir_vfsuid;
636 	umode_t		dir_mode;
637 } __randomize_layout;
638 
639 #define ND_ROOT_PRESET 1
640 #define ND_ROOT_GRABBED 2
641 #define ND_JUMPED 4
642 
643 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name)
644 {
645 	struct nameidata *old = current->nameidata;
646 	p->stack = p->internal;
647 	p->depth = 0;
648 	p->dfd = dfd;
649 	p->name = name;
650 	p->path.mnt = NULL;
651 	p->path.dentry = NULL;
652 	p->total_link_count = old ? old->total_link_count : 0;
653 	p->saved = old;
654 	current->nameidata = p;
655 }
656 
657 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name,
658 			  const struct path *root)
659 {
660 	__set_nameidata(p, dfd, name);
661 	p->state = 0;
662 	if (unlikely(root)) {
663 		p->state = ND_ROOT_PRESET;
664 		p->root = *root;
665 	}
666 }
667 
668 static void restore_nameidata(void)
669 {
670 	struct nameidata *now = current->nameidata, *old = now->saved;
671 
672 	current->nameidata = old;
673 	if (old)
674 		old->total_link_count = now->total_link_count;
675 	if (now->stack != now->internal)
676 		kfree(now->stack);
677 }
678 
679 static bool nd_alloc_stack(struct nameidata *nd)
680 {
681 	struct saved *p;
682 
683 	p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
684 			 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
685 	if (unlikely(!p))
686 		return false;
687 	memcpy(p, nd->internal, sizeof(nd->internal));
688 	nd->stack = p;
689 	return true;
690 }
691 
692 /**
693  * path_connected - Verify that a dentry is below mnt.mnt_root
694  * @mnt: The mountpoint to check.
695  * @dentry: The dentry to check.
696  *
697  * Rename can sometimes move a file or directory outside of a bind
698  * mount, path_connected allows those cases to be detected.
699  */
700 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
701 {
702 	struct super_block *sb = mnt->mnt_sb;
703 
704 	/* Bind mounts can have disconnected paths */
705 	if (mnt->mnt_root == sb->s_root)
706 		return true;
707 
708 	return is_subdir(dentry, mnt->mnt_root);
709 }
710 
711 static void drop_links(struct nameidata *nd)
712 {
713 	int i = nd->depth;
714 	while (i--) {
715 		struct saved *last = nd->stack + i;
716 		do_delayed_call(&last->done);
717 		clear_delayed_call(&last->done);
718 	}
719 }
720 
721 static void leave_rcu(struct nameidata *nd)
722 {
723 	nd->flags &= ~LOOKUP_RCU;
724 	nd->seq = nd->next_seq = 0;
725 	rcu_read_unlock();
726 }
727 
728 static void terminate_walk(struct nameidata *nd)
729 {
730 	drop_links(nd);
731 	if (!(nd->flags & LOOKUP_RCU)) {
732 		int i;
733 		path_put(&nd->path);
734 		for (i = 0; i < nd->depth; i++)
735 			path_put(&nd->stack[i].link);
736 		if (nd->state & ND_ROOT_GRABBED) {
737 			path_put(&nd->root);
738 			nd->state &= ~ND_ROOT_GRABBED;
739 		}
740 	} else {
741 		leave_rcu(nd);
742 	}
743 	nd->depth = 0;
744 	nd->path.mnt = NULL;
745 	nd->path.dentry = NULL;
746 }
747 
748 /* path_put is needed afterwards regardless of success or failure */
749 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
750 {
751 	int res = __legitimize_mnt(path->mnt, mseq);
752 	if (unlikely(res)) {
753 		if (res > 0)
754 			path->mnt = NULL;
755 		path->dentry = NULL;
756 		return false;
757 	}
758 	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
759 		path->dentry = NULL;
760 		return false;
761 	}
762 	return !read_seqcount_retry(&path->dentry->d_seq, seq);
763 }
764 
765 static inline bool legitimize_path(struct nameidata *nd,
766 			    struct path *path, unsigned seq)
767 {
768 	return __legitimize_path(path, seq, nd->m_seq);
769 }
770 
771 static bool legitimize_links(struct nameidata *nd)
772 {
773 	int i;
774 	if (unlikely(nd->flags & LOOKUP_CACHED)) {
775 		drop_links(nd);
776 		nd->depth = 0;
777 		return false;
778 	}
779 	for (i = 0; i < nd->depth; i++) {
780 		struct saved *last = nd->stack + i;
781 		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
782 			drop_links(nd);
783 			nd->depth = i + 1;
784 			return false;
785 		}
786 	}
787 	return true;
788 }
789 
790 static bool legitimize_root(struct nameidata *nd)
791 {
792 	/* Nothing to do if nd->root is zero or is managed by the VFS user. */
793 	if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET))
794 		return true;
795 	nd->state |= ND_ROOT_GRABBED;
796 	return legitimize_path(nd, &nd->root, nd->root_seq);
797 }
798 
799 /*
800  * Path walking has 2 modes, rcu-walk and ref-walk (see
801  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
802  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
803  * normal reference counts on dentries and vfsmounts to transition to ref-walk
804  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
805  * got stuck, so ref-walk may continue from there. If this is not successful
806  * (eg. a seqcount has changed), then failure is returned and it's up to caller
807  * to restart the path walk from the beginning in ref-walk mode.
808  */
809 
810 /**
811  * try_to_unlazy - try to switch to ref-walk mode.
812  * @nd: nameidata pathwalk data
813  * Returns: true on success, false on failure
814  *
815  * try_to_unlazy attempts to legitimize the current nd->path and nd->root
816  * for ref-walk mode.
817  * Must be called from rcu-walk context.
818  * Nothing should touch nameidata between try_to_unlazy() failure and
819  * terminate_walk().
820  */
821 static bool try_to_unlazy(struct nameidata *nd)
822 {
823 	struct dentry *parent = nd->path.dentry;
824 
825 	BUG_ON(!(nd->flags & LOOKUP_RCU));
826 
827 	if (unlikely(!legitimize_links(nd)))
828 		goto out1;
829 	if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
830 		goto out;
831 	if (unlikely(!legitimize_root(nd)))
832 		goto out;
833 	leave_rcu(nd);
834 	BUG_ON(nd->inode != parent->d_inode);
835 	return true;
836 
837 out1:
838 	nd->path.mnt = NULL;
839 	nd->path.dentry = NULL;
840 out:
841 	leave_rcu(nd);
842 	return false;
843 }
844 
845 /**
846  * try_to_unlazy_next - try to switch to ref-walk mode.
847  * @nd: nameidata pathwalk data
848  * @dentry: next dentry to step into
849  * Returns: true on success, false on failure
850  *
851  * Similar to try_to_unlazy(), but here we have the next dentry already
852  * picked by rcu-walk and want to legitimize that in addition to the current
853  * nd->path and nd->root for ref-walk mode.  Must be called from rcu-walk context.
854  * Nothing should touch nameidata between try_to_unlazy_next() failure and
855  * terminate_walk().
856  */
857 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry)
858 {
859 	int res;
860 	BUG_ON(!(nd->flags & LOOKUP_RCU));
861 
862 	if (unlikely(!legitimize_links(nd)))
863 		goto out2;
864 	res = __legitimize_mnt(nd->path.mnt, nd->m_seq);
865 	if (unlikely(res)) {
866 		if (res > 0)
867 			goto out2;
868 		goto out1;
869 	}
870 	if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
871 		goto out1;
872 
873 	/*
874 	 * We need to move both the parent and the dentry from the RCU domain
875 	 * to be properly refcounted. And the sequence number in the dentry
876 	 * validates *both* dentry counters, since we checked the sequence
877 	 * number of the parent after we got the child sequence number. So we
878 	 * know the parent must still be valid if the child sequence number is
879 	 */
880 	if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
881 		goto out;
882 	if (read_seqcount_retry(&dentry->d_seq, nd->next_seq))
883 		goto out_dput;
884 	/*
885 	 * Sequence counts matched. Now make sure that the root is
886 	 * still valid and get it if required.
887 	 */
888 	if (unlikely(!legitimize_root(nd)))
889 		goto out_dput;
890 	leave_rcu(nd);
891 	return true;
892 
893 out2:
894 	nd->path.mnt = NULL;
895 out1:
896 	nd->path.dentry = NULL;
897 out:
898 	leave_rcu(nd);
899 	return false;
900 out_dput:
901 	leave_rcu(nd);
902 	dput(dentry);
903 	return false;
904 }
905 
906 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
907 {
908 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
909 		return dentry->d_op->d_revalidate(dentry, flags);
910 	else
911 		return 1;
912 }
913 
914 /**
915  * complete_walk - successful completion of path walk
916  * @nd:  pointer nameidata
917  *
918  * If we had been in RCU mode, drop out of it and legitimize nd->path.
919  * Revalidate the final result, unless we'd already done that during
920  * the path walk or the filesystem doesn't ask for it.  Return 0 on
921  * success, -error on failure.  In case of failure caller does not
922  * need to drop nd->path.
923  */
924 static int complete_walk(struct nameidata *nd)
925 {
926 	struct dentry *dentry = nd->path.dentry;
927 	int status;
928 
929 	if (nd->flags & LOOKUP_RCU) {
930 		/*
931 		 * We don't want to zero nd->root for scoped-lookups or
932 		 * externally-managed nd->root.
933 		 */
934 		if (!(nd->state & ND_ROOT_PRESET))
935 			if (!(nd->flags & LOOKUP_IS_SCOPED))
936 				nd->root.mnt = NULL;
937 		nd->flags &= ~LOOKUP_CACHED;
938 		if (!try_to_unlazy(nd))
939 			return -ECHILD;
940 	}
941 
942 	if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
943 		/*
944 		 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
945 		 * ever step outside the root during lookup" and should already
946 		 * be guaranteed by the rest of namei, we want to avoid a namei
947 		 * BUG resulting in userspace being given a path that was not
948 		 * scoped within the root at some point during the lookup.
949 		 *
950 		 * So, do a final sanity-check to make sure that in the
951 		 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
952 		 * we won't silently return an fd completely outside of the
953 		 * requested root to userspace.
954 		 *
955 		 * Userspace could move the path outside the root after this
956 		 * check, but as discussed elsewhere this is not a concern (the
957 		 * resolved file was inside the root at some point).
958 		 */
959 		if (!path_is_under(&nd->path, &nd->root))
960 			return -EXDEV;
961 	}
962 
963 	if (likely(!(nd->state & ND_JUMPED)))
964 		return 0;
965 
966 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
967 		return 0;
968 
969 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
970 	if (status > 0)
971 		return 0;
972 
973 	if (!status)
974 		status = -ESTALE;
975 
976 	return status;
977 }
978 
979 static int set_root(struct nameidata *nd)
980 {
981 	struct fs_struct *fs = current->fs;
982 
983 	/*
984 	 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
985 	 * still have to ensure it doesn't happen because it will cause a breakout
986 	 * from the dirfd.
987 	 */
988 	if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
989 		return -ENOTRECOVERABLE;
990 
991 	if (nd->flags & LOOKUP_RCU) {
992 		unsigned seq;
993 
994 		do {
995 			seq = read_seqcount_begin(&fs->seq);
996 			nd->root = fs->root;
997 			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
998 		} while (read_seqcount_retry(&fs->seq, seq));
999 	} else {
1000 		get_fs_root(fs, &nd->root);
1001 		nd->state |= ND_ROOT_GRABBED;
1002 	}
1003 	return 0;
1004 }
1005 
1006 static int nd_jump_root(struct nameidata *nd)
1007 {
1008 	if (unlikely(nd->flags & LOOKUP_BENEATH))
1009 		return -EXDEV;
1010 	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
1011 		/* Absolute path arguments to path_init() are allowed. */
1012 		if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
1013 			return -EXDEV;
1014 	}
1015 	if (!nd->root.mnt) {
1016 		int error = set_root(nd);
1017 		if (error)
1018 			return error;
1019 	}
1020 	if (nd->flags & LOOKUP_RCU) {
1021 		struct dentry *d;
1022 		nd->path = nd->root;
1023 		d = nd->path.dentry;
1024 		nd->inode = d->d_inode;
1025 		nd->seq = nd->root_seq;
1026 		if (read_seqcount_retry(&d->d_seq, nd->seq))
1027 			return -ECHILD;
1028 	} else {
1029 		path_put(&nd->path);
1030 		nd->path = nd->root;
1031 		path_get(&nd->path);
1032 		nd->inode = nd->path.dentry->d_inode;
1033 	}
1034 	nd->state |= ND_JUMPED;
1035 	return 0;
1036 }
1037 
1038 /*
1039  * Helper to directly jump to a known parsed path from ->get_link,
1040  * caller must have taken a reference to path beforehand.
1041  */
1042 int nd_jump_link(const struct path *path)
1043 {
1044 	int error = -ELOOP;
1045 	struct nameidata *nd = current->nameidata;
1046 
1047 	if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
1048 		goto err;
1049 
1050 	error = -EXDEV;
1051 	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
1052 		if (nd->path.mnt != path->mnt)
1053 			goto err;
1054 	}
1055 	/* Not currently safe for scoped-lookups. */
1056 	if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
1057 		goto err;
1058 
1059 	path_put(&nd->path);
1060 	nd->path = *path;
1061 	nd->inode = nd->path.dentry->d_inode;
1062 	nd->state |= ND_JUMPED;
1063 	return 0;
1064 
1065 err:
1066 	path_put(path);
1067 	return error;
1068 }
1069 
1070 static inline void put_link(struct nameidata *nd)
1071 {
1072 	struct saved *last = nd->stack + --nd->depth;
1073 	do_delayed_call(&last->done);
1074 	if (!(nd->flags & LOOKUP_RCU))
1075 		path_put(&last->link);
1076 }
1077 
1078 static int sysctl_protected_symlinks __read_mostly;
1079 static int sysctl_protected_hardlinks __read_mostly;
1080 static int sysctl_protected_fifos __read_mostly;
1081 static int sysctl_protected_regular __read_mostly;
1082 
1083 #ifdef CONFIG_SYSCTL
1084 static struct ctl_table namei_sysctls[] = {
1085 	{
1086 		.procname	= "protected_symlinks",
1087 		.data		= &sysctl_protected_symlinks,
1088 		.maxlen		= sizeof(int),
1089 		.mode		= 0644,
1090 		.proc_handler	= proc_dointvec_minmax,
1091 		.extra1		= SYSCTL_ZERO,
1092 		.extra2		= SYSCTL_ONE,
1093 	},
1094 	{
1095 		.procname	= "protected_hardlinks",
1096 		.data		= &sysctl_protected_hardlinks,
1097 		.maxlen		= sizeof(int),
1098 		.mode		= 0644,
1099 		.proc_handler	= proc_dointvec_minmax,
1100 		.extra1		= SYSCTL_ZERO,
1101 		.extra2		= SYSCTL_ONE,
1102 	},
1103 	{
1104 		.procname	= "protected_fifos",
1105 		.data		= &sysctl_protected_fifos,
1106 		.maxlen		= sizeof(int),
1107 		.mode		= 0644,
1108 		.proc_handler	= proc_dointvec_minmax,
1109 		.extra1		= SYSCTL_ZERO,
1110 		.extra2		= SYSCTL_TWO,
1111 	},
1112 	{
1113 		.procname	= "protected_regular",
1114 		.data		= &sysctl_protected_regular,
1115 		.maxlen		= sizeof(int),
1116 		.mode		= 0644,
1117 		.proc_handler	= proc_dointvec_minmax,
1118 		.extra1		= SYSCTL_ZERO,
1119 		.extra2		= SYSCTL_TWO,
1120 	},
1121 };
1122 
1123 static int __init init_fs_namei_sysctls(void)
1124 {
1125 	register_sysctl_init("fs", namei_sysctls);
1126 	return 0;
1127 }
1128 fs_initcall(init_fs_namei_sysctls);
1129 
1130 #endif /* CONFIG_SYSCTL */
1131 
1132 /**
1133  * may_follow_link - Check symlink following for unsafe situations
1134  * @nd: nameidata pathwalk data
1135  * @inode: Used for idmapping.
1136  *
1137  * In the case of the sysctl_protected_symlinks sysctl being enabled,
1138  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
1139  * in a sticky world-writable directory. This is to protect privileged
1140  * processes from failing races against path names that may change out
1141  * from under them by way of other users creating malicious symlinks.
1142  * It will permit symlinks to be followed only when outside a sticky
1143  * world-writable directory, or when the uid of the symlink and follower
1144  * match, or when the directory owner matches the symlink's owner.
1145  *
1146  * Returns 0 if following the symlink is allowed, -ve on error.
1147  */
1148 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
1149 {
1150 	struct mnt_idmap *idmap;
1151 	vfsuid_t vfsuid;
1152 
1153 	if (!sysctl_protected_symlinks)
1154 		return 0;
1155 
1156 	idmap = mnt_idmap(nd->path.mnt);
1157 	vfsuid = i_uid_into_vfsuid(idmap, inode);
1158 	/* Allowed if owner and follower match. */
1159 	if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
1160 		return 0;
1161 
1162 	/* Allowed if parent directory not sticky and world-writable. */
1163 	if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
1164 		return 0;
1165 
1166 	/* Allowed if parent directory and link owner match. */
1167 	if (vfsuid_valid(nd->dir_vfsuid) && vfsuid_eq(nd->dir_vfsuid, vfsuid))
1168 		return 0;
1169 
1170 	if (nd->flags & LOOKUP_RCU)
1171 		return -ECHILD;
1172 
1173 	audit_inode(nd->name, nd->stack[0].link.dentry, 0);
1174 	audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
1175 	return -EACCES;
1176 }
1177 
1178 /**
1179  * safe_hardlink_source - Check for safe hardlink conditions
1180  * @idmap: idmap of the mount the inode was found from
1181  * @inode: the source inode to hardlink from
1182  *
1183  * Return false if at least one of the following conditions:
1184  *    - inode is not a regular file
1185  *    - inode is setuid
1186  *    - inode is setgid and group-exec
1187  *    - access failure for read and write
1188  *
1189  * Otherwise returns true.
1190  */
1191 static bool safe_hardlink_source(struct mnt_idmap *idmap,
1192 				 struct inode *inode)
1193 {
1194 	umode_t mode = inode->i_mode;
1195 
1196 	/* Special files should not get pinned to the filesystem. */
1197 	if (!S_ISREG(mode))
1198 		return false;
1199 
1200 	/* Setuid files should not get pinned to the filesystem. */
1201 	if (mode & S_ISUID)
1202 		return false;
1203 
1204 	/* Executable setgid files should not get pinned to the filesystem. */
1205 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1206 		return false;
1207 
1208 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
1209 	if (inode_permission(idmap, inode, MAY_READ | MAY_WRITE))
1210 		return false;
1211 
1212 	return true;
1213 }
1214 
1215 /**
1216  * may_linkat - Check permissions for creating a hardlink
1217  * @idmap: idmap of the mount the inode was found from
1218  * @link:  the source to hardlink from
1219  *
1220  * Block hardlink when all of:
1221  *  - sysctl_protected_hardlinks enabled
1222  *  - fsuid does not match inode
1223  *  - hardlink source is unsafe (see safe_hardlink_source() above)
1224  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
1225  *
1226  * If the inode has been found through an idmapped mount the idmap of
1227  * the vfsmount must be passed through @idmap. This function will then take
1228  * care to map the inode according to @idmap before checking permissions.
1229  * On non-idmapped mounts or if permission checking is to be performed on the
1230  * raw inode simply pass @nop_mnt_idmap.
1231  *
1232  * Returns 0 if successful, -ve on error.
1233  */
1234 int may_linkat(struct mnt_idmap *idmap, const struct path *link)
1235 {
1236 	struct inode *inode = link->dentry->d_inode;
1237 
1238 	/* Inode writeback is not safe when the uid or gid are invalid. */
1239 	if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
1240 	    !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
1241 		return -EOVERFLOW;
1242 
1243 	if (!sysctl_protected_hardlinks)
1244 		return 0;
1245 
1246 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1247 	 * otherwise, it must be a safe source.
1248 	 */
1249 	if (safe_hardlink_source(idmap, inode) ||
1250 	    inode_owner_or_capable(idmap, inode))
1251 		return 0;
1252 
1253 	audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1254 	return -EPERM;
1255 }
1256 
1257 /**
1258  * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1259  *			  should be allowed, or not, on files that already
1260  *			  exist.
1261  * @idmap: idmap of the mount the inode was found from
1262  * @nd: nameidata pathwalk data
1263  * @inode: the inode of the file to open
1264  *
1265  * Block an O_CREAT open of a FIFO (or a regular file) when:
1266  *   - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1267  *   - the file already exists
1268  *   - we are in a sticky directory
1269  *   - we don't own the file
1270  *   - the owner of the directory doesn't own the file
1271  *   - the directory is world writable
1272  * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1273  * the directory doesn't have to be world writable: being group writable will
1274  * be enough.
1275  *
1276  * If the inode has been found through an idmapped mount the idmap of
1277  * the vfsmount must be passed through @idmap. This function will then take
1278  * care to map the inode according to @idmap before checking permissions.
1279  * On non-idmapped mounts or if permission checking is to be performed on the
1280  * raw inode simply pass @nop_mnt_idmap.
1281  *
1282  * Returns 0 if the open is allowed, -ve on error.
1283  */
1284 static int may_create_in_sticky(struct mnt_idmap *idmap, struct nameidata *nd,
1285 				struct inode *const inode)
1286 {
1287 	umode_t dir_mode = nd->dir_mode;
1288 	vfsuid_t dir_vfsuid = nd->dir_vfsuid, i_vfsuid;
1289 
1290 	if (likely(!(dir_mode & S_ISVTX)))
1291 		return 0;
1292 
1293 	if (S_ISREG(inode->i_mode) && !sysctl_protected_regular)
1294 		return 0;
1295 
1296 	if (S_ISFIFO(inode->i_mode) && !sysctl_protected_fifos)
1297 		return 0;
1298 
1299 	i_vfsuid = i_uid_into_vfsuid(idmap, inode);
1300 
1301 	if (vfsuid_eq(i_vfsuid, dir_vfsuid))
1302 		return 0;
1303 
1304 	if (vfsuid_eq_kuid(i_vfsuid, current_fsuid()))
1305 		return 0;
1306 
1307 	if (likely(dir_mode & 0002)) {
1308 		audit_log_path_denied(AUDIT_ANOM_CREAT, "sticky_create");
1309 		return -EACCES;
1310 	}
1311 
1312 	if (dir_mode & 0020) {
1313 		if (sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) {
1314 			audit_log_path_denied(AUDIT_ANOM_CREAT,
1315 					      "sticky_create_fifo");
1316 			return -EACCES;
1317 		}
1318 
1319 		if (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode)) {
1320 			audit_log_path_denied(AUDIT_ANOM_CREAT,
1321 					      "sticky_create_regular");
1322 			return -EACCES;
1323 		}
1324 	}
1325 
1326 	return 0;
1327 }
1328 
1329 /*
1330  * follow_up - Find the mountpoint of path's vfsmount
1331  *
1332  * Given a path, find the mountpoint of its source file system.
1333  * Replace @path with the path of the mountpoint in the parent mount.
1334  * Up is towards /.
1335  *
1336  * Return 1 if we went up a level and 0 if we were already at the
1337  * root.
1338  */
1339 int follow_up(struct path *path)
1340 {
1341 	struct mount *mnt = real_mount(path->mnt);
1342 	struct mount *parent;
1343 	struct dentry *mountpoint;
1344 
1345 	read_seqlock_excl(&mount_lock);
1346 	parent = mnt->mnt_parent;
1347 	if (parent == mnt) {
1348 		read_sequnlock_excl(&mount_lock);
1349 		return 0;
1350 	}
1351 	mntget(&parent->mnt);
1352 	mountpoint = dget(mnt->mnt_mountpoint);
1353 	read_sequnlock_excl(&mount_lock);
1354 	dput(path->dentry);
1355 	path->dentry = mountpoint;
1356 	mntput(path->mnt);
1357 	path->mnt = &parent->mnt;
1358 	return 1;
1359 }
1360 EXPORT_SYMBOL(follow_up);
1361 
1362 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1363 				  struct path *path, unsigned *seqp)
1364 {
1365 	while (mnt_has_parent(m)) {
1366 		struct dentry *mountpoint = m->mnt_mountpoint;
1367 
1368 		m = m->mnt_parent;
1369 		if (unlikely(root->dentry == mountpoint &&
1370 			     root->mnt == &m->mnt))
1371 			break;
1372 		if (mountpoint != m->mnt.mnt_root) {
1373 			path->mnt = &m->mnt;
1374 			path->dentry = mountpoint;
1375 			*seqp = read_seqcount_begin(&mountpoint->d_seq);
1376 			return true;
1377 		}
1378 	}
1379 	return false;
1380 }
1381 
1382 static bool choose_mountpoint(struct mount *m, const struct path *root,
1383 			      struct path *path)
1384 {
1385 	bool found;
1386 
1387 	rcu_read_lock();
1388 	while (1) {
1389 		unsigned seq, mseq = read_seqbegin(&mount_lock);
1390 
1391 		found = choose_mountpoint_rcu(m, root, path, &seq);
1392 		if (unlikely(!found)) {
1393 			if (!read_seqretry(&mount_lock, mseq))
1394 				break;
1395 		} else {
1396 			if (likely(__legitimize_path(path, seq, mseq)))
1397 				break;
1398 			rcu_read_unlock();
1399 			path_put(path);
1400 			rcu_read_lock();
1401 		}
1402 	}
1403 	rcu_read_unlock();
1404 	return found;
1405 }
1406 
1407 /*
1408  * Perform an automount
1409  * - return -EISDIR to tell follow_managed() to stop and return the path we
1410  *   were called with.
1411  */
1412 static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1413 {
1414 	struct dentry *dentry = path->dentry;
1415 
1416 	/* We don't want to mount if someone's just doing a stat -
1417 	 * unless they're stat'ing a directory and appended a '/' to
1418 	 * the name.
1419 	 *
1420 	 * We do, however, want to mount if someone wants to open or
1421 	 * create a file of any type under the mountpoint, wants to
1422 	 * traverse through the mountpoint or wants to open the
1423 	 * mounted directory.  Also, autofs may mark negative dentries
1424 	 * as being automount points.  These will need the attentions
1425 	 * of the daemon to instantiate them before they can be used.
1426 	 */
1427 	if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1428 			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1429 	    dentry->d_inode)
1430 		return -EISDIR;
1431 
1432 	if (count && (*count)++ >= MAXSYMLINKS)
1433 		return -ELOOP;
1434 
1435 	return finish_automount(dentry->d_op->d_automount(path), path);
1436 }
1437 
1438 /*
1439  * mount traversal - out-of-line part.  One note on ->d_flags accesses -
1440  * dentries are pinned but not locked here, so negative dentry can go
1441  * positive right under us.  Use of smp_load_acquire() provides a barrier
1442  * sufficient for ->d_inode and ->d_flags consistency.
1443  */
1444 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1445 			     int *count, unsigned lookup_flags)
1446 {
1447 	struct vfsmount *mnt = path->mnt;
1448 	bool need_mntput = false;
1449 	int ret = 0;
1450 
1451 	while (flags & DCACHE_MANAGED_DENTRY) {
1452 		/* Allow the filesystem to manage the transit without i_mutex
1453 		 * being held. */
1454 		if (flags & DCACHE_MANAGE_TRANSIT) {
1455 			ret = path->dentry->d_op->d_manage(path, false);
1456 			flags = smp_load_acquire(&path->dentry->d_flags);
1457 			if (ret < 0)
1458 				break;
1459 		}
1460 
1461 		if (flags & DCACHE_MOUNTED) {	// something's mounted on it..
1462 			struct vfsmount *mounted = lookup_mnt(path);
1463 			if (mounted) {		// ... in our namespace
1464 				dput(path->dentry);
1465 				if (need_mntput)
1466 					mntput(path->mnt);
1467 				path->mnt = mounted;
1468 				path->dentry = dget(mounted->mnt_root);
1469 				// here we know it's positive
1470 				flags = path->dentry->d_flags;
1471 				need_mntput = true;
1472 				continue;
1473 			}
1474 		}
1475 
1476 		if (!(flags & DCACHE_NEED_AUTOMOUNT))
1477 			break;
1478 
1479 		// uncovered automount point
1480 		ret = follow_automount(path, count, lookup_flags);
1481 		flags = smp_load_acquire(&path->dentry->d_flags);
1482 		if (ret < 0)
1483 			break;
1484 	}
1485 
1486 	if (ret == -EISDIR)
1487 		ret = 0;
1488 	// possible if you race with several mount --move
1489 	if (need_mntput && path->mnt == mnt)
1490 		mntput(path->mnt);
1491 	if (!ret && unlikely(d_flags_negative(flags)))
1492 		ret = -ENOENT;
1493 	*jumped = need_mntput;
1494 	return ret;
1495 }
1496 
1497 static inline int traverse_mounts(struct path *path, bool *jumped,
1498 				  int *count, unsigned lookup_flags)
1499 {
1500 	unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1501 
1502 	/* fastpath */
1503 	if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1504 		*jumped = false;
1505 		if (unlikely(d_flags_negative(flags)))
1506 			return -ENOENT;
1507 		return 0;
1508 	}
1509 	return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1510 }
1511 
1512 int follow_down_one(struct path *path)
1513 {
1514 	struct vfsmount *mounted;
1515 
1516 	mounted = lookup_mnt(path);
1517 	if (mounted) {
1518 		dput(path->dentry);
1519 		mntput(path->mnt);
1520 		path->mnt = mounted;
1521 		path->dentry = dget(mounted->mnt_root);
1522 		return 1;
1523 	}
1524 	return 0;
1525 }
1526 EXPORT_SYMBOL(follow_down_one);
1527 
1528 /*
1529  * Follow down to the covering mount currently visible to userspace.  At each
1530  * point, the filesystem owning that dentry may be queried as to whether the
1531  * caller is permitted to proceed or not.
1532  */
1533 int follow_down(struct path *path, unsigned int flags)
1534 {
1535 	struct vfsmount *mnt = path->mnt;
1536 	bool jumped;
1537 	int ret = traverse_mounts(path, &jumped, NULL, flags);
1538 
1539 	if (path->mnt != mnt)
1540 		mntput(mnt);
1541 	return ret;
1542 }
1543 EXPORT_SYMBOL(follow_down);
1544 
1545 /*
1546  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1547  * we meet a managed dentry that would need blocking.
1548  */
1549 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path)
1550 {
1551 	struct dentry *dentry = path->dentry;
1552 	unsigned int flags = dentry->d_flags;
1553 
1554 	if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1555 		return true;
1556 
1557 	if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1558 		return false;
1559 
1560 	for (;;) {
1561 		/*
1562 		 * Don't forget we might have a non-mountpoint managed dentry
1563 		 * that wants to block transit.
1564 		 */
1565 		if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1566 			int res = dentry->d_op->d_manage(path, true);
1567 			if (res)
1568 				return res == -EISDIR;
1569 			flags = dentry->d_flags;
1570 		}
1571 
1572 		if (flags & DCACHE_MOUNTED) {
1573 			struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1574 			if (mounted) {
1575 				path->mnt = &mounted->mnt;
1576 				dentry = path->dentry = mounted->mnt.mnt_root;
1577 				nd->state |= ND_JUMPED;
1578 				nd->next_seq = read_seqcount_begin(&dentry->d_seq);
1579 				flags = dentry->d_flags;
1580 				// makes sure that non-RCU pathwalk could reach
1581 				// this state.
1582 				if (read_seqretry(&mount_lock, nd->m_seq))
1583 					return false;
1584 				continue;
1585 			}
1586 			if (read_seqretry(&mount_lock, nd->m_seq))
1587 				return false;
1588 		}
1589 		return !(flags & DCACHE_NEED_AUTOMOUNT);
1590 	}
1591 }
1592 
1593 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1594 			  struct path *path)
1595 {
1596 	bool jumped;
1597 	int ret;
1598 
1599 	path->mnt = nd->path.mnt;
1600 	path->dentry = dentry;
1601 	if (nd->flags & LOOKUP_RCU) {
1602 		unsigned int seq = nd->next_seq;
1603 		if (likely(__follow_mount_rcu(nd, path)))
1604 			return 0;
1605 		// *path and nd->next_seq might've been clobbered
1606 		path->mnt = nd->path.mnt;
1607 		path->dentry = dentry;
1608 		nd->next_seq = seq;
1609 		if (!try_to_unlazy_next(nd, dentry))
1610 			return -ECHILD;
1611 	}
1612 	ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1613 	if (jumped) {
1614 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1615 			ret = -EXDEV;
1616 		else
1617 			nd->state |= ND_JUMPED;
1618 	}
1619 	if (unlikely(ret)) {
1620 		dput(path->dentry);
1621 		if (path->mnt != nd->path.mnt)
1622 			mntput(path->mnt);
1623 	}
1624 	return ret;
1625 }
1626 
1627 /*
1628  * This looks up the name in dcache and possibly revalidates the found dentry.
1629  * NULL is returned if the dentry does not exist in the cache.
1630  */
1631 static struct dentry *lookup_dcache(const struct qstr *name,
1632 				    struct dentry *dir,
1633 				    unsigned int flags)
1634 {
1635 	struct dentry *dentry = d_lookup(dir, name);
1636 	if (dentry) {
1637 		int error = d_revalidate(dentry, flags);
1638 		if (unlikely(error <= 0)) {
1639 			if (!error)
1640 				d_invalidate(dentry);
1641 			dput(dentry);
1642 			return ERR_PTR(error);
1643 		}
1644 	}
1645 	return dentry;
1646 }
1647 
1648 /*
1649  * Parent directory has inode locked exclusive.  This is one
1650  * and only case when ->lookup() gets called on non in-lookup
1651  * dentries - as the matter of fact, this only gets called
1652  * when directory is guaranteed to have no in-lookup children
1653  * at all.
1654  */
1655 struct dentry *lookup_one_qstr_excl(const struct qstr *name,
1656 				    struct dentry *base,
1657 				    unsigned int flags)
1658 {
1659 	struct dentry *dentry = lookup_dcache(name, base, flags);
1660 	struct dentry *old;
1661 	struct inode *dir = base->d_inode;
1662 
1663 	if (dentry)
1664 		return dentry;
1665 
1666 	/* Don't create child dentry for a dead directory. */
1667 	if (unlikely(IS_DEADDIR(dir)))
1668 		return ERR_PTR(-ENOENT);
1669 
1670 	dentry = d_alloc(base, name);
1671 	if (unlikely(!dentry))
1672 		return ERR_PTR(-ENOMEM);
1673 
1674 	old = dir->i_op->lookup(dir, dentry, flags);
1675 	if (unlikely(old)) {
1676 		dput(dentry);
1677 		dentry = old;
1678 	}
1679 	return dentry;
1680 }
1681 EXPORT_SYMBOL(lookup_one_qstr_excl);
1682 
1683 /**
1684  * lookup_fast - do fast lockless (but racy) lookup of a dentry
1685  * @nd: current nameidata
1686  *
1687  * Do a fast, but racy lookup in the dcache for the given dentry, and
1688  * revalidate it. Returns a valid dentry pointer or NULL if one wasn't
1689  * found. On error, an ERR_PTR will be returned.
1690  *
1691  * If this function returns a valid dentry and the walk is no longer
1692  * lazy, the dentry will carry a reference that must later be put. If
1693  * RCU mode is still in force, then this is not the case and the dentry
1694  * must be legitimized before use. If this returns NULL, then the walk
1695  * will no longer be in RCU mode.
1696  */
1697 static struct dentry *lookup_fast(struct nameidata *nd)
1698 {
1699 	struct dentry *dentry, *parent = nd->path.dentry;
1700 	int status = 1;
1701 
1702 	/*
1703 	 * Rename seqlock is not required here because in the off chance
1704 	 * of a false negative due to a concurrent rename, the caller is
1705 	 * going to fall back to non-racy lookup.
1706 	 */
1707 	if (nd->flags & LOOKUP_RCU) {
1708 		dentry = __d_lookup_rcu(parent, &nd->last, &nd->next_seq);
1709 		if (unlikely(!dentry)) {
1710 			if (!try_to_unlazy(nd))
1711 				return ERR_PTR(-ECHILD);
1712 			return NULL;
1713 		}
1714 
1715 		/*
1716 		 * This sequence count validates that the parent had no
1717 		 * changes while we did the lookup of the dentry above.
1718 		 */
1719 		if (read_seqcount_retry(&parent->d_seq, nd->seq))
1720 			return ERR_PTR(-ECHILD);
1721 
1722 		status = d_revalidate(dentry, nd->flags);
1723 		if (likely(status > 0))
1724 			return dentry;
1725 		if (!try_to_unlazy_next(nd, dentry))
1726 			return ERR_PTR(-ECHILD);
1727 		if (status == -ECHILD)
1728 			/* we'd been told to redo it in non-rcu mode */
1729 			status = d_revalidate(dentry, nd->flags);
1730 	} else {
1731 		dentry = __d_lookup(parent, &nd->last);
1732 		if (unlikely(!dentry))
1733 			return NULL;
1734 		status = d_revalidate(dentry, nd->flags);
1735 	}
1736 	if (unlikely(status <= 0)) {
1737 		if (!status)
1738 			d_invalidate(dentry);
1739 		dput(dentry);
1740 		return ERR_PTR(status);
1741 	}
1742 	return dentry;
1743 }
1744 
1745 /* Fast lookup failed, do it the slow way */
1746 static struct dentry *__lookup_slow(const struct qstr *name,
1747 				    struct dentry *dir,
1748 				    unsigned int flags)
1749 {
1750 	struct dentry *dentry, *old;
1751 	struct inode *inode = dir->d_inode;
1752 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1753 
1754 	/* Don't go there if it's already dead */
1755 	if (unlikely(IS_DEADDIR(inode)))
1756 		return ERR_PTR(-ENOENT);
1757 again:
1758 	dentry = d_alloc_parallel(dir, name, &wq);
1759 	if (IS_ERR(dentry))
1760 		return dentry;
1761 	if (unlikely(!d_in_lookup(dentry))) {
1762 		int error = d_revalidate(dentry, flags);
1763 		if (unlikely(error <= 0)) {
1764 			if (!error) {
1765 				d_invalidate(dentry);
1766 				dput(dentry);
1767 				goto again;
1768 			}
1769 			dput(dentry);
1770 			dentry = ERR_PTR(error);
1771 		}
1772 	} else {
1773 		old = inode->i_op->lookup(inode, dentry, flags);
1774 		d_lookup_done(dentry);
1775 		if (unlikely(old)) {
1776 			dput(dentry);
1777 			dentry = old;
1778 		}
1779 	}
1780 	return dentry;
1781 }
1782 
1783 static struct dentry *lookup_slow(const struct qstr *name,
1784 				  struct dentry *dir,
1785 				  unsigned int flags)
1786 {
1787 	struct inode *inode = dir->d_inode;
1788 	struct dentry *res;
1789 	inode_lock_shared(inode);
1790 	res = __lookup_slow(name, dir, flags);
1791 	inode_unlock_shared(inode);
1792 	return res;
1793 }
1794 
1795 static inline int may_lookup(struct mnt_idmap *idmap,
1796 			     struct nameidata *restrict nd)
1797 {
1798 	int err, mask;
1799 
1800 	mask = nd->flags & LOOKUP_RCU ? MAY_NOT_BLOCK : 0;
1801 	err = inode_permission(idmap, nd->inode, mask | MAY_EXEC);
1802 	if (likely(!err))
1803 		return 0;
1804 
1805 	// If we failed, and we weren't in LOOKUP_RCU, it's final
1806 	if (!(nd->flags & LOOKUP_RCU))
1807 		return err;
1808 
1809 	// Drop out of RCU mode to make sure it wasn't transient
1810 	if (!try_to_unlazy(nd))
1811 		return -ECHILD;	// redo it all non-lazy
1812 
1813 	if (err != -ECHILD)	// hard error
1814 		return err;
1815 
1816 	return inode_permission(idmap, nd->inode, MAY_EXEC);
1817 }
1818 
1819 static int reserve_stack(struct nameidata *nd, struct path *link)
1820 {
1821 	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1822 		return -ELOOP;
1823 
1824 	if (likely(nd->depth != EMBEDDED_LEVELS))
1825 		return 0;
1826 	if (likely(nd->stack != nd->internal))
1827 		return 0;
1828 	if (likely(nd_alloc_stack(nd)))
1829 		return 0;
1830 
1831 	if (nd->flags & LOOKUP_RCU) {
1832 		// we need to grab link before we do unlazy.  And we can't skip
1833 		// unlazy even if we fail to grab the link - cleanup needs it
1834 		bool grabbed_link = legitimize_path(nd, link, nd->next_seq);
1835 
1836 		if (!try_to_unlazy(nd) || !grabbed_link)
1837 			return -ECHILD;
1838 
1839 		if (nd_alloc_stack(nd))
1840 			return 0;
1841 	}
1842 	return -ENOMEM;
1843 }
1844 
1845 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1846 
1847 static const char *pick_link(struct nameidata *nd, struct path *link,
1848 		     struct inode *inode, int flags)
1849 {
1850 	struct saved *last;
1851 	const char *res;
1852 	int error = reserve_stack(nd, link);
1853 
1854 	if (unlikely(error)) {
1855 		if (!(nd->flags & LOOKUP_RCU))
1856 			path_put(link);
1857 		return ERR_PTR(error);
1858 	}
1859 	last = nd->stack + nd->depth++;
1860 	last->link = *link;
1861 	clear_delayed_call(&last->done);
1862 	last->seq = nd->next_seq;
1863 
1864 	if (flags & WALK_TRAILING) {
1865 		error = may_follow_link(nd, inode);
1866 		if (unlikely(error))
1867 			return ERR_PTR(error);
1868 	}
1869 
1870 	if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1871 			unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1872 		return ERR_PTR(-ELOOP);
1873 
1874 	if (!(nd->flags & LOOKUP_RCU)) {
1875 		touch_atime(&last->link);
1876 		cond_resched();
1877 	} else if (atime_needs_update(&last->link, inode)) {
1878 		if (!try_to_unlazy(nd))
1879 			return ERR_PTR(-ECHILD);
1880 		touch_atime(&last->link);
1881 	}
1882 
1883 	error = security_inode_follow_link(link->dentry, inode,
1884 					   nd->flags & LOOKUP_RCU);
1885 	if (unlikely(error))
1886 		return ERR_PTR(error);
1887 
1888 	res = READ_ONCE(inode->i_link);
1889 	if (!res) {
1890 		const char * (*get)(struct dentry *, struct inode *,
1891 				struct delayed_call *);
1892 		get = inode->i_op->get_link;
1893 		if (nd->flags & LOOKUP_RCU) {
1894 			res = get(NULL, inode, &last->done);
1895 			if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd))
1896 				res = get(link->dentry, inode, &last->done);
1897 		} else {
1898 			res = get(link->dentry, inode, &last->done);
1899 		}
1900 		if (!res)
1901 			goto all_done;
1902 		if (IS_ERR(res))
1903 			return res;
1904 	}
1905 	if (*res == '/') {
1906 		error = nd_jump_root(nd);
1907 		if (unlikely(error))
1908 			return ERR_PTR(error);
1909 		while (unlikely(*++res == '/'))
1910 			;
1911 	}
1912 	if (*res)
1913 		return res;
1914 all_done: // pure jump
1915 	put_link(nd);
1916 	return NULL;
1917 }
1918 
1919 /*
1920  * Do we need to follow links? We _really_ want to be able
1921  * to do this check without having to look at inode->i_op,
1922  * so we keep a cache of "no, this doesn't need follow_link"
1923  * for the common case.
1924  *
1925  * NOTE: dentry must be what nd->next_seq had been sampled from.
1926  */
1927 static const char *step_into(struct nameidata *nd, int flags,
1928 		     struct dentry *dentry)
1929 {
1930 	struct path path;
1931 	struct inode *inode;
1932 	int err = handle_mounts(nd, dentry, &path);
1933 
1934 	if (err < 0)
1935 		return ERR_PTR(err);
1936 	inode = path.dentry->d_inode;
1937 	if (likely(!d_is_symlink(path.dentry)) ||
1938 	   ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1939 	   (flags & WALK_NOFOLLOW)) {
1940 		/* not a symlink or should not follow */
1941 		if (nd->flags & LOOKUP_RCU) {
1942 			if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1943 				return ERR_PTR(-ECHILD);
1944 			if (unlikely(!inode))
1945 				return ERR_PTR(-ENOENT);
1946 		} else {
1947 			dput(nd->path.dentry);
1948 			if (nd->path.mnt != path.mnt)
1949 				mntput(nd->path.mnt);
1950 		}
1951 		nd->path = path;
1952 		nd->inode = inode;
1953 		nd->seq = nd->next_seq;
1954 		return NULL;
1955 	}
1956 	if (nd->flags & LOOKUP_RCU) {
1957 		/* make sure that d_is_symlink above matches inode */
1958 		if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1959 			return ERR_PTR(-ECHILD);
1960 	} else {
1961 		if (path.mnt == nd->path.mnt)
1962 			mntget(path.mnt);
1963 	}
1964 	return pick_link(nd, &path, inode, flags);
1965 }
1966 
1967 static struct dentry *follow_dotdot_rcu(struct nameidata *nd)
1968 {
1969 	struct dentry *parent, *old;
1970 
1971 	if (path_equal(&nd->path, &nd->root))
1972 		goto in_root;
1973 	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1974 		struct path path;
1975 		unsigned seq;
1976 		if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
1977 					   &nd->root, &path, &seq))
1978 			goto in_root;
1979 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1980 			return ERR_PTR(-ECHILD);
1981 		nd->path = path;
1982 		nd->inode = path.dentry->d_inode;
1983 		nd->seq = seq;
1984 		// makes sure that non-RCU pathwalk could reach this state
1985 		if (read_seqretry(&mount_lock, nd->m_seq))
1986 			return ERR_PTR(-ECHILD);
1987 		/* we know that mountpoint was pinned */
1988 	}
1989 	old = nd->path.dentry;
1990 	parent = old->d_parent;
1991 	nd->next_seq = read_seqcount_begin(&parent->d_seq);
1992 	// makes sure that non-RCU pathwalk could reach this state
1993 	if (read_seqcount_retry(&old->d_seq, nd->seq))
1994 		return ERR_PTR(-ECHILD);
1995 	if (unlikely(!path_connected(nd->path.mnt, parent)))
1996 		return ERR_PTR(-ECHILD);
1997 	return parent;
1998 in_root:
1999 	if (read_seqretry(&mount_lock, nd->m_seq))
2000 		return ERR_PTR(-ECHILD);
2001 	if (unlikely(nd->flags & LOOKUP_BENEATH))
2002 		return ERR_PTR(-ECHILD);
2003 	nd->next_seq = nd->seq;
2004 	return nd->path.dentry;
2005 }
2006 
2007 static struct dentry *follow_dotdot(struct nameidata *nd)
2008 {
2009 	struct dentry *parent;
2010 
2011 	if (path_equal(&nd->path, &nd->root))
2012 		goto in_root;
2013 	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
2014 		struct path path;
2015 
2016 		if (!choose_mountpoint(real_mount(nd->path.mnt),
2017 				       &nd->root, &path))
2018 			goto in_root;
2019 		path_put(&nd->path);
2020 		nd->path = path;
2021 		nd->inode = path.dentry->d_inode;
2022 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
2023 			return ERR_PTR(-EXDEV);
2024 	}
2025 	/* rare case of legitimate dget_parent()... */
2026 	parent = dget_parent(nd->path.dentry);
2027 	if (unlikely(!path_connected(nd->path.mnt, parent))) {
2028 		dput(parent);
2029 		return ERR_PTR(-ENOENT);
2030 	}
2031 	return parent;
2032 
2033 in_root:
2034 	if (unlikely(nd->flags & LOOKUP_BENEATH))
2035 		return ERR_PTR(-EXDEV);
2036 	return dget(nd->path.dentry);
2037 }
2038 
2039 static const char *handle_dots(struct nameidata *nd, int type)
2040 {
2041 	if (type == LAST_DOTDOT) {
2042 		const char *error = NULL;
2043 		struct dentry *parent;
2044 
2045 		if (!nd->root.mnt) {
2046 			error = ERR_PTR(set_root(nd));
2047 			if (error)
2048 				return error;
2049 		}
2050 		if (nd->flags & LOOKUP_RCU)
2051 			parent = follow_dotdot_rcu(nd);
2052 		else
2053 			parent = follow_dotdot(nd);
2054 		if (IS_ERR(parent))
2055 			return ERR_CAST(parent);
2056 		error = step_into(nd, WALK_NOFOLLOW, parent);
2057 		if (unlikely(error))
2058 			return error;
2059 
2060 		if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
2061 			/*
2062 			 * If there was a racing rename or mount along our
2063 			 * path, then we can't be sure that ".." hasn't jumped
2064 			 * above nd->root (and so userspace should retry or use
2065 			 * some fallback).
2066 			 */
2067 			smp_rmb();
2068 			if (__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq))
2069 				return ERR_PTR(-EAGAIN);
2070 			if (__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq))
2071 				return ERR_PTR(-EAGAIN);
2072 		}
2073 	}
2074 	return NULL;
2075 }
2076 
2077 static const char *walk_component(struct nameidata *nd, int flags)
2078 {
2079 	struct dentry *dentry;
2080 	/*
2081 	 * "." and ".." are special - ".." especially so because it has
2082 	 * to be able to know about the current root directory and
2083 	 * parent relationships.
2084 	 */
2085 	if (unlikely(nd->last_type != LAST_NORM)) {
2086 		if (!(flags & WALK_MORE) && nd->depth)
2087 			put_link(nd);
2088 		return handle_dots(nd, nd->last_type);
2089 	}
2090 	dentry = lookup_fast(nd);
2091 	if (IS_ERR(dentry))
2092 		return ERR_CAST(dentry);
2093 	if (unlikely(!dentry)) {
2094 		dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
2095 		if (IS_ERR(dentry))
2096 			return ERR_CAST(dentry);
2097 	}
2098 	if (!(flags & WALK_MORE) && nd->depth)
2099 		put_link(nd);
2100 	return step_into(nd, flags, dentry);
2101 }
2102 
2103 /*
2104  * We can do the critical dentry name comparison and hashing
2105  * operations one word at a time, but we are limited to:
2106  *
2107  * - Architectures with fast unaligned word accesses. We could
2108  *   do a "get_unaligned()" if this helps and is sufficiently
2109  *   fast.
2110  *
2111  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
2112  *   do not trap on the (extremely unlikely) case of a page
2113  *   crossing operation.
2114  *
2115  * - Furthermore, we need an efficient 64-bit compile for the
2116  *   64-bit case in order to generate the "number of bytes in
2117  *   the final mask". Again, that could be replaced with a
2118  *   efficient population count instruction or similar.
2119  */
2120 #ifdef CONFIG_DCACHE_WORD_ACCESS
2121 
2122 #include <asm/word-at-a-time.h>
2123 
2124 #ifdef HASH_MIX
2125 
2126 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
2127 
2128 #elif defined(CONFIG_64BIT)
2129 /*
2130  * Register pressure in the mixing function is an issue, particularly
2131  * on 32-bit x86, but almost any function requires one state value and
2132  * one temporary.  Instead, use a function designed for two state values
2133  * and no temporaries.
2134  *
2135  * This function cannot create a collision in only two iterations, so
2136  * we have two iterations to achieve avalanche.  In those two iterations,
2137  * we have six layers of mixing, which is enough to spread one bit's
2138  * influence out to 2^6 = 64 state bits.
2139  *
2140  * Rotate constants are scored by considering either 64 one-bit input
2141  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
2142  * probability of that delta causing a change to each of the 128 output
2143  * bits, using a sample of random initial states.
2144  *
2145  * The Shannon entropy of the computed probabilities is then summed
2146  * to produce a score.  Ideally, any input change has a 50% chance of
2147  * toggling any given output bit.
2148  *
2149  * Mixing scores (in bits) for (12,45):
2150  * Input delta: 1-bit      2-bit
2151  * 1 round:     713.3    42542.6
2152  * 2 rounds:   2753.7   140389.8
2153  * 3 rounds:   5954.1   233458.2
2154  * 4 rounds:   7862.6   256672.2
2155  * Perfect:    8192     258048
2156  *            (64*128) (64*63/2 * 128)
2157  */
2158 #define HASH_MIX(x, y, a)	\
2159 	(	x ^= (a),	\
2160 	y ^= x,	x = rol64(x,12),\
2161 	x += y,	y = rol64(y,45),\
2162 	y *= 9			)
2163 
2164 /*
2165  * Fold two longs into one 32-bit hash value.  This must be fast, but
2166  * latency isn't quite as critical, as there is a fair bit of additional
2167  * work done before the hash value is used.
2168  */
2169 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2170 {
2171 	y ^= x * GOLDEN_RATIO_64;
2172 	y *= GOLDEN_RATIO_64;
2173 	return y >> 32;
2174 }
2175 
2176 #else	/* 32-bit case */
2177 
2178 /*
2179  * Mixing scores (in bits) for (7,20):
2180  * Input delta: 1-bit      2-bit
2181  * 1 round:     330.3     9201.6
2182  * 2 rounds:   1246.4    25475.4
2183  * 3 rounds:   1907.1    31295.1
2184  * 4 rounds:   2042.3    31718.6
2185  * Perfect:    2048      31744
2186  *            (32*64)   (32*31/2 * 64)
2187  */
2188 #define HASH_MIX(x, y, a)	\
2189 	(	x ^= (a),	\
2190 	y ^= x,	x = rol32(x, 7),\
2191 	x += y,	y = rol32(y,20),\
2192 	y *= 9			)
2193 
2194 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2195 {
2196 	/* Use arch-optimized multiply if one exists */
2197 	return __hash_32(y ^ __hash_32(x));
2198 }
2199 
2200 #endif
2201 
2202 /*
2203  * Return the hash of a string of known length.  This is carfully
2204  * designed to match hash_name(), which is the more critical function.
2205  * In particular, we must end by hashing a final word containing 0..7
2206  * payload bytes, to match the way that hash_name() iterates until it
2207  * finds the delimiter after the name.
2208  */
2209 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2210 {
2211 	unsigned long a, x = 0, y = (unsigned long)salt;
2212 
2213 	for (;;) {
2214 		if (!len)
2215 			goto done;
2216 		a = load_unaligned_zeropad(name);
2217 		if (len < sizeof(unsigned long))
2218 			break;
2219 		HASH_MIX(x, y, a);
2220 		name += sizeof(unsigned long);
2221 		len -= sizeof(unsigned long);
2222 	}
2223 	x ^= a & bytemask_from_count(len);
2224 done:
2225 	return fold_hash(x, y);
2226 }
2227 EXPORT_SYMBOL(full_name_hash);
2228 
2229 /* Return the "hash_len" (hash and length) of a null-terminated string */
2230 u64 hashlen_string(const void *salt, const char *name)
2231 {
2232 	unsigned long a = 0, x = 0, y = (unsigned long)salt;
2233 	unsigned long adata, mask, len;
2234 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2235 
2236 	len = 0;
2237 	goto inside;
2238 
2239 	do {
2240 		HASH_MIX(x, y, a);
2241 		len += sizeof(unsigned long);
2242 inside:
2243 		a = load_unaligned_zeropad(name+len);
2244 	} while (!has_zero(a, &adata, &constants));
2245 
2246 	adata = prep_zero_mask(a, adata, &constants);
2247 	mask = create_zero_mask(adata);
2248 	x ^= a & zero_bytemask(mask);
2249 
2250 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2251 }
2252 EXPORT_SYMBOL(hashlen_string);
2253 
2254 /*
2255  * Calculate the length and hash of the path component, and
2256  * return the length as the result.
2257  */
2258 static inline const char *hash_name(struct nameidata *nd,
2259 				    const char *name,
2260 				    unsigned long *lastword)
2261 {
2262 	unsigned long a, b, x, y = (unsigned long)nd->path.dentry;
2263 	unsigned long adata, bdata, mask, len;
2264 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2265 
2266 	/*
2267 	 * The first iteration is special, because it can result in
2268 	 * '.' and '..' and has no mixing other than the final fold.
2269 	 */
2270 	a = load_unaligned_zeropad(name);
2271 	b = a ^ REPEAT_BYTE('/');
2272 	if (has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)) {
2273 		adata = prep_zero_mask(a, adata, &constants);
2274 		bdata = prep_zero_mask(b, bdata, &constants);
2275 		mask = create_zero_mask(adata | bdata);
2276 		a &= zero_bytemask(mask);
2277 		*lastword = a;
2278 		len = find_zero(mask);
2279 		nd->last.hash = fold_hash(a, y);
2280 		nd->last.len = len;
2281 		return name + len;
2282 	}
2283 
2284 	len = 0;
2285 	x = 0;
2286 	do {
2287 		HASH_MIX(x, y, a);
2288 		len += sizeof(unsigned long);
2289 		a = load_unaligned_zeropad(name+len);
2290 		b = a ^ REPEAT_BYTE('/');
2291 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2292 
2293 	adata = prep_zero_mask(a, adata, &constants);
2294 	bdata = prep_zero_mask(b, bdata, &constants);
2295 	mask = create_zero_mask(adata | bdata);
2296 	a &= zero_bytemask(mask);
2297 	x ^= a;
2298 	len += find_zero(mask);
2299 	*lastword = 0;		// Multi-word components cannot be DOT or DOTDOT
2300 
2301 	nd->last.hash = fold_hash(x, y);
2302 	nd->last.len = len;
2303 	return name + len;
2304 }
2305 
2306 /*
2307  * Note that the 'last' word is always zero-masked, but
2308  * was loaded as a possibly big-endian word.
2309  */
2310 #ifdef __BIG_ENDIAN
2311   #define LAST_WORD_IS_DOT	(0x2eul << (BITS_PER_LONG-8))
2312   #define LAST_WORD_IS_DOTDOT	(0x2e2eul << (BITS_PER_LONG-16))
2313 #endif
2314 
2315 #else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2316 
2317 /* Return the hash of a string of known length */
2318 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2319 {
2320 	unsigned long hash = init_name_hash(salt);
2321 	while (len--)
2322 		hash = partial_name_hash((unsigned char)*name++, hash);
2323 	return end_name_hash(hash);
2324 }
2325 EXPORT_SYMBOL(full_name_hash);
2326 
2327 /* Return the "hash_len" (hash and length) of a null-terminated string */
2328 u64 hashlen_string(const void *salt, const char *name)
2329 {
2330 	unsigned long hash = init_name_hash(salt);
2331 	unsigned long len = 0, c;
2332 
2333 	c = (unsigned char)*name;
2334 	while (c) {
2335 		len++;
2336 		hash = partial_name_hash(c, hash);
2337 		c = (unsigned char)name[len];
2338 	}
2339 	return hashlen_create(end_name_hash(hash), len);
2340 }
2341 EXPORT_SYMBOL(hashlen_string);
2342 
2343 /*
2344  * We know there's a real path component here of at least
2345  * one character.
2346  */
2347 static inline const char *hash_name(struct nameidata *nd, const char *name, unsigned long *lastword)
2348 {
2349 	unsigned long hash = init_name_hash(nd->path.dentry);
2350 	unsigned long len = 0, c, last = 0;
2351 
2352 	c = (unsigned char)*name;
2353 	do {
2354 		last = (last << 8) + c;
2355 		len++;
2356 		hash = partial_name_hash(c, hash);
2357 		c = (unsigned char)name[len];
2358 	} while (c && c != '/');
2359 
2360 	// This is reliable for DOT or DOTDOT, since the component
2361 	// cannot contain NUL characters - top bits being zero means
2362 	// we cannot have had any other pathnames.
2363 	*lastword = last;
2364 	nd->last.hash = end_name_hash(hash);
2365 	nd->last.len = len;
2366 	return name + len;
2367 }
2368 
2369 #endif
2370 
2371 #ifndef LAST_WORD_IS_DOT
2372   #define LAST_WORD_IS_DOT	0x2e
2373   #define LAST_WORD_IS_DOTDOT	0x2e2e
2374 #endif
2375 
2376 /*
2377  * Name resolution.
2378  * This is the basic name resolution function, turning a pathname into
2379  * the final dentry. We expect 'base' to be positive and a directory.
2380  *
2381  * Returns 0 and nd will have valid dentry and mnt on success.
2382  * Returns error and drops reference to input namei data on failure.
2383  */
2384 static int link_path_walk(const char *name, struct nameidata *nd)
2385 {
2386 	int depth = 0; // depth <= nd->depth
2387 	int err;
2388 
2389 	nd->last_type = LAST_ROOT;
2390 	nd->flags |= LOOKUP_PARENT;
2391 	if (IS_ERR(name))
2392 		return PTR_ERR(name);
2393 	while (*name=='/')
2394 		name++;
2395 	if (!*name) {
2396 		nd->dir_mode = 0; // short-circuit the 'hardening' idiocy
2397 		return 0;
2398 	}
2399 
2400 	/* At this point we know we have a real path component. */
2401 	for(;;) {
2402 		struct mnt_idmap *idmap;
2403 		const char *link;
2404 		unsigned long lastword;
2405 
2406 		idmap = mnt_idmap(nd->path.mnt);
2407 		err = may_lookup(idmap, nd);
2408 		if (err)
2409 			return err;
2410 
2411 		nd->last.name = name;
2412 		name = hash_name(nd, name, &lastword);
2413 
2414 		switch(lastword) {
2415 		case LAST_WORD_IS_DOTDOT:
2416 			nd->last_type = LAST_DOTDOT;
2417 			nd->state |= ND_JUMPED;
2418 			break;
2419 
2420 		case LAST_WORD_IS_DOT:
2421 			nd->last_type = LAST_DOT;
2422 			break;
2423 
2424 		default:
2425 			nd->last_type = LAST_NORM;
2426 			nd->state &= ~ND_JUMPED;
2427 
2428 			struct dentry *parent = nd->path.dentry;
2429 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2430 				err = parent->d_op->d_hash(parent, &nd->last);
2431 				if (err < 0)
2432 					return err;
2433 			}
2434 		}
2435 
2436 		if (!*name)
2437 			goto OK;
2438 		/*
2439 		 * If it wasn't NUL, we know it was '/'. Skip that
2440 		 * slash, and continue until no more slashes.
2441 		 */
2442 		do {
2443 			name++;
2444 		} while (unlikely(*name == '/'));
2445 		if (unlikely(!*name)) {
2446 OK:
2447 			/* pathname or trailing symlink, done */
2448 			if (!depth) {
2449 				nd->dir_vfsuid = i_uid_into_vfsuid(idmap, nd->inode);
2450 				nd->dir_mode = nd->inode->i_mode;
2451 				nd->flags &= ~LOOKUP_PARENT;
2452 				return 0;
2453 			}
2454 			/* last component of nested symlink */
2455 			name = nd->stack[--depth].name;
2456 			link = walk_component(nd, 0);
2457 		} else {
2458 			/* not the last component */
2459 			link = walk_component(nd, WALK_MORE);
2460 		}
2461 		if (unlikely(link)) {
2462 			if (IS_ERR(link))
2463 				return PTR_ERR(link);
2464 			/* a symlink to follow */
2465 			nd->stack[depth++].name = name;
2466 			name = link;
2467 			continue;
2468 		}
2469 		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2470 			if (nd->flags & LOOKUP_RCU) {
2471 				if (!try_to_unlazy(nd))
2472 					return -ECHILD;
2473 			}
2474 			return -ENOTDIR;
2475 		}
2476 	}
2477 }
2478 
2479 /* must be paired with terminate_walk() */
2480 static const char *path_init(struct nameidata *nd, unsigned flags)
2481 {
2482 	int error;
2483 	const char *s = nd->name->name;
2484 
2485 	/* LOOKUP_CACHED requires RCU, ask caller to retry */
2486 	if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED)
2487 		return ERR_PTR(-EAGAIN);
2488 
2489 	if (!*s)
2490 		flags &= ~LOOKUP_RCU;
2491 	if (flags & LOOKUP_RCU)
2492 		rcu_read_lock();
2493 	else
2494 		nd->seq = nd->next_seq = 0;
2495 
2496 	nd->flags = flags;
2497 	nd->state |= ND_JUMPED;
2498 
2499 	nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2500 	nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2501 	smp_rmb();
2502 
2503 	if (nd->state & ND_ROOT_PRESET) {
2504 		struct dentry *root = nd->root.dentry;
2505 		struct inode *inode = root->d_inode;
2506 		if (*s && unlikely(!d_can_lookup(root)))
2507 			return ERR_PTR(-ENOTDIR);
2508 		nd->path = nd->root;
2509 		nd->inode = inode;
2510 		if (flags & LOOKUP_RCU) {
2511 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2512 			nd->root_seq = nd->seq;
2513 		} else {
2514 			path_get(&nd->path);
2515 		}
2516 		return s;
2517 	}
2518 
2519 	nd->root.mnt = NULL;
2520 
2521 	/* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2522 	if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2523 		error = nd_jump_root(nd);
2524 		if (unlikely(error))
2525 			return ERR_PTR(error);
2526 		return s;
2527 	}
2528 
2529 	/* Relative pathname -- get the starting-point it is relative to. */
2530 	if (nd->dfd == AT_FDCWD) {
2531 		if (flags & LOOKUP_RCU) {
2532 			struct fs_struct *fs = current->fs;
2533 			unsigned seq;
2534 
2535 			do {
2536 				seq = read_seqcount_begin(&fs->seq);
2537 				nd->path = fs->pwd;
2538 				nd->inode = nd->path.dentry->d_inode;
2539 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2540 			} while (read_seqcount_retry(&fs->seq, seq));
2541 		} else {
2542 			get_fs_pwd(current->fs, &nd->path);
2543 			nd->inode = nd->path.dentry->d_inode;
2544 		}
2545 	} else {
2546 		/* Caller must check execute permissions on the starting path component */
2547 		struct fd f = fdget_raw(nd->dfd);
2548 		struct dentry *dentry;
2549 
2550 		if (!fd_file(f))
2551 			return ERR_PTR(-EBADF);
2552 
2553 		if (flags & LOOKUP_LINKAT_EMPTY) {
2554 			if (fd_file(f)->f_cred != current_cred() &&
2555 			    !ns_capable(fd_file(f)->f_cred->user_ns, CAP_DAC_READ_SEARCH)) {
2556 				fdput(f);
2557 				return ERR_PTR(-ENOENT);
2558 			}
2559 		}
2560 
2561 		dentry = fd_file(f)->f_path.dentry;
2562 
2563 		if (*s && unlikely(!d_can_lookup(dentry))) {
2564 			fdput(f);
2565 			return ERR_PTR(-ENOTDIR);
2566 		}
2567 
2568 		nd->path = fd_file(f)->f_path;
2569 		if (flags & LOOKUP_RCU) {
2570 			nd->inode = nd->path.dentry->d_inode;
2571 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2572 		} else {
2573 			path_get(&nd->path);
2574 			nd->inode = nd->path.dentry->d_inode;
2575 		}
2576 		fdput(f);
2577 	}
2578 
2579 	/* For scoped-lookups we need to set the root to the dirfd as well. */
2580 	if (flags & LOOKUP_IS_SCOPED) {
2581 		nd->root = nd->path;
2582 		if (flags & LOOKUP_RCU) {
2583 			nd->root_seq = nd->seq;
2584 		} else {
2585 			path_get(&nd->root);
2586 			nd->state |= ND_ROOT_GRABBED;
2587 		}
2588 	}
2589 	return s;
2590 }
2591 
2592 static inline const char *lookup_last(struct nameidata *nd)
2593 {
2594 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2595 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2596 
2597 	return walk_component(nd, WALK_TRAILING);
2598 }
2599 
2600 static int handle_lookup_down(struct nameidata *nd)
2601 {
2602 	if (!(nd->flags & LOOKUP_RCU))
2603 		dget(nd->path.dentry);
2604 	nd->next_seq = nd->seq;
2605 	return PTR_ERR(step_into(nd, WALK_NOFOLLOW, nd->path.dentry));
2606 }
2607 
2608 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */
2609 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2610 {
2611 	const char *s = path_init(nd, flags);
2612 	int err;
2613 
2614 	if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2615 		err = handle_lookup_down(nd);
2616 		if (unlikely(err < 0))
2617 			s = ERR_PTR(err);
2618 	}
2619 
2620 	while (!(err = link_path_walk(s, nd)) &&
2621 	       (s = lookup_last(nd)) != NULL)
2622 		;
2623 	if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2624 		err = handle_lookup_down(nd);
2625 		nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please...
2626 	}
2627 	if (!err)
2628 		err = complete_walk(nd);
2629 
2630 	if (!err && nd->flags & LOOKUP_DIRECTORY)
2631 		if (!d_can_lookup(nd->path.dentry))
2632 			err = -ENOTDIR;
2633 	if (!err) {
2634 		*path = nd->path;
2635 		nd->path.mnt = NULL;
2636 		nd->path.dentry = NULL;
2637 	}
2638 	terminate_walk(nd);
2639 	return err;
2640 }
2641 
2642 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2643 		    struct path *path, struct path *root)
2644 {
2645 	int retval;
2646 	struct nameidata nd;
2647 	if (IS_ERR(name))
2648 		return PTR_ERR(name);
2649 	set_nameidata(&nd, dfd, name, root);
2650 	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2651 	if (unlikely(retval == -ECHILD))
2652 		retval = path_lookupat(&nd, flags, path);
2653 	if (unlikely(retval == -ESTALE))
2654 		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2655 
2656 	if (likely(!retval))
2657 		audit_inode(name, path->dentry,
2658 			    flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2659 	restore_nameidata();
2660 	return retval;
2661 }
2662 
2663 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */
2664 static int path_parentat(struct nameidata *nd, unsigned flags,
2665 				struct path *parent)
2666 {
2667 	const char *s = path_init(nd, flags);
2668 	int err = link_path_walk(s, nd);
2669 	if (!err)
2670 		err = complete_walk(nd);
2671 	if (!err) {
2672 		*parent = nd->path;
2673 		nd->path.mnt = NULL;
2674 		nd->path.dentry = NULL;
2675 	}
2676 	terminate_walk(nd);
2677 	return err;
2678 }
2679 
2680 /* Note: this does not consume "name" */
2681 static int __filename_parentat(int dfd, struct filename *name,
2682 			       unsigned int flags, struct path *parent,
2683 			       struct qstr *last, int *type,
2684 			       const struct path *root)
2685 {
2686 	int retval;
2687 	struct nameidata nd;
2688 
2689 	if (IS_ERR(name))
2690 		return PTR_ERR(name);
2691 	set_nameidata(&nd, dfd, name, root);
2692 	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2693 	if (unlikely(retval == -ECHILD))
2694 		retval = path_parentat(&nd, flags, parent);
2695 	if (unlikely(retval == -ESTALE))
2696 		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2697 	if (likely(!retval)) {
2698 		*last = nd.last;
2699 		*type = nd.last_type;
2700 		audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2701 	}
2702 	restore_nameidata();
2703 	return retval;
2704 }
2705 
2706 static int filename_parentat(int dfd, struct filename *name,
2707 			     unsigned int flags, struct path *parent,
2708 			     struct qstr *last, int *type)
2709 {
2710 	return __filename_parentat(dfd, name, flags, parent, last, type, NULL);
2711 }
2712 
2713 /* does lookup, returns the object with parent locked */
2714 static struct dentry *__kern_path_locked(int dfd, struct filename *name, struct path *path)
2715 {
2716 	struct dentry *d;
2717 	struct qstr last;
2718 	int type, error;
2719 
2720 	error = filename_parentat(dfd, name, 0, path, &last, &type);
2721 	if (error)
2722 		return ERR_PTR(error);
2723 	if (unlikely(type != LAST_NORM)) {
2724 		path_put(path);
2725 		return ERR_PTR(-EINVAL);
2726 	}
2727 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2728 	d = lookup_one_qstr_excl(&last, path->dentry, 0);
2729 	if (IS_ERR(d)) {
2730 		inode_unlock(path->dentry->d_inode);
2731 		path_put(path);
2732 	}
2733 	return d;
2734 }
2735 
2736 struct dentry *kern_path_locked(const char *name, struct path *path)
2737 {
2738 	struct filename *filename = getname_kernel(name);
2739 	struct dentry *res = __kern_path_locked(AT_FDCWD, filename, path);
2740 
2741 	putname(filename);
2742 	return res;
2743 }
2744 
2745 struct dentry *user_path_locked_at(int dfd, const char __user *name, struct path *path)
2746 {
2747 	struct filename *filename = getname(name);
2748 	struct dentry *res = __kern_path_locked(dfd, filename, path);
2749 
2750 	putname(filename);
2751 	return res;
2752 }
2753 EXPORT_SYMBOL(user_path_locked_at);
2754 
2755 int kern_path(const char *name, unsigned int flags, struct path *path)
2756 {
2757 	struct filename *filename = getname_kernel(name);
2758 	int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL);
2759 
2760 	putname(filename);
2761 	return ret;
2762 
2763 }
2764 EXPORT_SYMBOL(kern_path);
2765 
2766 /**
2767  * vfs_path_parent_lookup - lookup a parent path relative to a dentry-vfsmount pair
2768  * @filename: filename structure
2769  * @flags: lookup flags
2770  * @parent: pointer to struct path to fill
2771  * @last: last component
2772  * @type: type of the last component
2773  * @root: pointer to struct path of the base directory
2774  */
2775 int vfs_path_parent_lookup(struct filename *filename, unsigned int flags,
2776 			   struct path *parent, struct qstr *last, int *type,
2777 			   const struct path *root)
2778 {
2779 	return  __filename_parentat(AT_FDCWD, filename, flags, parent, last,
2780 				    type, root);
2781 }
2782 EXPORT_SYMBOL(vfs_path_parent_lookup);
2783 
2784 /**
2785  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2786  * @dentry:  pointer to dentry of the base directory
2787  * @mnt: pointer to vfs mount of the base directory
2788  * @name: pointer to file name
2789  * @flags: lookup flags
2790  * @path: pointer to struct path to fill
2791  */
2792 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2793 		    const char *name, unsigned int flags,
2794 		    struct path *path)
2795 {
2796 	struct filename *filename;
2797 	struct path root = {.mnt = mnt, .dentry = dentry};
2798 	int ret;
2799 
2800 	filename = getname_kernel(name);
2801 	/* the first argument of filename_lookup() is ignored with root */
2802 	ret = filename_lookup(AT_FDCWD, filename, flags, path, &root);
2803 	putname(filename);
2804 	return ret;
2805 }
2806 EXPORT_SYMBOL(vfs_path_lookup);
2807 
2808 static int lookup_one_common(struct mnt_idmap *idmap,
2809 			     const char *name, struct dentry *base, int len,
2810 			     struct qstr *this)
2811 {
2812 	this->name = name;
2813 	this->len = len;
2814 	this->hash = full_name_hash(base, name, len);
2815 	if (!len)
2816 		return -EACCES;
2817 
2818 	if (is_dot_dotdot(name, len))
2819 		return -EACCES;
2820 
2821 	while (len--) {
2822 		unsigned int c = *(const unsigned char *)name++;
2823 		if (c == '/' || c == '\0')
2824 			return -EACCES;
2825 	}
2826 	/*
2827 	 * See if the low-level filesystem might want
2828 	 * to use its own hash..
2829 	 */
2830 	if (base->d_flags & DCACHE_OP_HASH) {
2831 		int err = base->d_op->d_hash(base, this);
2832 		if (err < 0)
2833 			return err;
2834 	}
2835 
2836 	return inode_permission(idmap, base->d_inode, MAY_EXEC);
2837 }
2838 
2839 /**
2840  * try_lookup_one_len - filesystem helper to lookup single pathname component
2841  * @name:	pathname component to lookup
2842  * @base:	base directory to lookup from
2843  * @len:	maximum length @len should be interpreted to
2844  *
2845  * Look up a dentry by name in the dcache, returning NULL if it does not
2846  * currently exist.  The function does not try to create a dentry.
2847  *
2848  * Note that this routine is purely a helper for filesystem usage and should
2849  * not be called by generic code.
2850  *
2851  * The caller must hold base->i_mutex.
2852  */
2853 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2854 {
2855 	struct qstr this;
2856 	int err;
2857 
2858 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2859 
2860 	err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this);
2861 	if (err)
2862 		return ERR_PTR(err);
2863 
2864 	return lookup_dcache(&this, base, 0);
2865 }
2866 EXPORT_SYMBOL(try_lookup_one_len);
2867 
2868 /**
2869  * lookup_one_len - filesystem helper to lookup single pathname component
2870  * @name:	pathname component to lookup
2871  * @base:	base directory to lookup from
2872  * @len:	maximum length @len should be interpreted to
2873  *
2874  * Note that this routine is purely a helper for filesystem usage and should
2875  * not be called by generic code.
2876  *
2877  * The caller must hold base->i_mutex.
2878  */
2879 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2880 {
2881 	struct dentry *dentry;
2882 	struct qstr this;
2883 	int err;
2884 
2885 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2886 
2887 	err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this);
2888 	if (err)
2889 		return ERR_PTR(err);
2890 
2891 	dentry = lookup_dcache(&this, base, 0);
2892 	return dentry ? dentry : __lookup_slow(&this, base, 0);
2893 }
2894 EXPORT_SYMBOL(lookup_one_len);
2895 
2896 /**
2897  * lookup_one - filesystem helper to lookup single pathname component
2898  * @idmap:	idmap of the mount the lookup is performed from
2899  * @name:	pathname component to lookup
2900  * @base:	base directory to lookup from
2901  * @len:	maximum length @len should be interpreted to
2902  *
2903  * Note that this routine is purely a helper for filesystem usage and should
2904  * not be called by generic code.
2905  *
2906  * The caller must hold base->i_mutex.
2907  */
2908 struct dentry *lookup_one(struct mnt_idmap *idmap, const char *name,
2909 			  struct dentry *base, int len)
2910 {
2911 	struct dentry *dentry;
2912 	struct qstr this;
2913 	int err;
2914 
2915 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2916 
2917 	err = lookup_one_common(idmap, name, base, len, &this);
2918 	if (err)
2919 		return ERR_PTR(err);
2920 
2921 	dentry = lookup_dcache(&this, base, 0);
2922 	return dentry ? dentry : __lookup_slow(&this, base, 0);
2923 }
2924 EXPORT_SYMBOL(lookup_one);
2925 
2926 /**
2927  * lookup_one_unlocked - filesystem helper to lookup single pathname component
2928  * @idmap:	idmap of the mount the lookup is performed from
2929  * @name:	pathname component to lookup
2930  * @base:	base directory to lookup from
2931  * @len:	maximum length @len should be interpreted to
2932  *
2933  * Note that this routine is purely a helper for filesystem usage and should
2934  * not be called by generic code.
2935  *
2936  * Unlike lookup_one_len, it should be called without the parent
2937  * i_mutex held, and will take the i_mutex itself if necessary.
2938  */
2939 struct dentry *lookup_one_unlocked(struct mnt_idmap *idmap,
2940 				   const char *name, struct dentry *base,
2941 				   int len)
2942 {
2943 	struct qstr this;
2944 	int err;
2945 	struct dentry *ret;
2946 
2947 	err = lookup_one_common(idmap, name, base, len, &this);
2948 	if (err)
2949 		return ERR_PTR(err);
2950 
2951 	ret = lookup_dcache(&this, base, 0);
2952 	if (!ret)
2953 		ret = lookup_slow(&this, base, 0);
2954 	return ret;
2955 }
2956 EXPORT_SYMBOL(lookup_one_unlocked);
2957 
2958 /**
2959  * lookup_one_positive_unlocked - filesystem helper to lookup single
2960  *				  pathname component
2961  * @idmap:	idmap of the mount the lookup is performed from
2962  * @name:	pathname component to lookup
2963  * @base:	base directory to lookup from
2964  * @len:	maximum length @len should be interpreted to
2965  *
2966  * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns
2967  * known positive or ERR_PTR(). This is what most of the users want.
2968  *
2969  * Note that pinned negative with unlocked parent _can_ become positive at any
2970  * time, so callers of lookup_one_unlocked() need to be very careful; pinned
2971  * positives have >d_inode stable, so this one avoids such problems.
2972  *
2973  * Note that this routine is purely a helper for filesystem usage and should
2974  * not be called by generic code.
2975  *
2976  * The helper should be called without i_mutex held.
2977  */
2978 struct dentry *lookup_one_positive_unlocked(struct mnt_idmap *idmap,
2979 					    const char *name,
2980 					    struct dentry *base, int len)
2981 {
2982 	struct dentry *ret = lookup_one_unlocked(idmap, name, base, len);
2983 
2984 	if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
2985 		dput(ret);
2986 		ret = ERR_PTR(-ENOENT);
2987 	}
2988 	return ret;
2989 }
2990 EXPORT_SYMBOL(lookup_one_positive_unlocked);
2991 
2992 /**
2993  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2994  * @name:	pathname component to lookup
2995  * @base:	base directory to lookup from
2996  * @len:	maximum length @len should be interpreted to
2997  *
2998  * Note that this routine is purely a helper for filesystem usage and should
2999  * not be called by generic code.
3000  *
3001  * Unlike lookup_one_len, it should be called without the parent
3002  * i_mutex held, and will take the i_mutex itself if necessary.
3003  */
3004 struct dentry *lookup_one_len_unlocked(const char *name,
3005 				       struct dentry *base, int len)
3006 {
3007 	return lookup_one_unlocked(&nop_mnt_idmap, name, base, len);
3008 }
3009 EXPORT_SYMBOL(lookup_one_len_unlocked);
3010 
3011 /*
3012  * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
3013  * on negatives.  Returns known positive or ERR_PTR(); that's what
3014  * most of the users want.  Note that pinned negative with unlocked parent
3015  * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
3016  * need to be very careful; pinned positives have ->d_inode stable, so
3017  * this one avoids such problems.
3018  */
3019 struct dentry *lookup_positive_unlocked(const char *name,
3020 				       struct dentry *base, int len)
3021 {
3022 	return lookup_one_positive_unlocked(&nop_mnt_idmap, name, base, len);
3023 }
3024 EXPORT_SYMBOL(lookup_positive_unlocked);
3025 
3026 #ifdef CONFIG_UNIX98_PTYS
3027 int path_pts(struct path *path)
3028 {
3029 	/* Find something mounted on "pts" in the same directory as
3030 	 * the input path.
3031 	 */
3032 	struct dentry *parent = dget_parent(path->dentry);
3033 	struct dentry *child;
3034 	struct qstr this = QSTR_INIT("pts", 3);
3035 
3036 	if (unlikely(!path_connected(path->mnt, parent))) {
3037 		dput(parent);
3038 		return -ENOENT;
3039 	}
3040 	dput(path->dentry);
3041 	path->dentry = parent;
3042 	child = d_hash_and_lookup(parent, &this);
3043 	if (IS_ERR_OR_NULL(child))
3044 		return -ENOENT;
3045 
3046 	path->dentry = child;
3047 	dput(parent);
3048 	follow_down(path, 0);
3049 	return 0;
3050 }
3051 #endif
3052 
3053 int user_path_at(int dfd, const char __user *name, unsigned flags,
3054 		 struct path *path)
3055 {
3056 	struct filename *filename = getname_flags(name, flags);
3057 	int ret = filename_lookup(dfd, filename, flags, path, NULL);
3058 
3059 	putname(filename);
3060 	return ret;
3061 }
3062 EXPORT_SYMBOL(user_path_at);
3063 
3064 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir,
3065 		   struct inode *inode)
3066 {
3067 	kuid_t fsuid = current_fsuid();
3068 
3069 	if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), fsuid))
3070 		return 0;
3071 	if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, dir), fsuid))
3072 		return 0;
3073 	return !capable_wrt_inode_uidgid(idmap, inode, CAP_FOWNER);
3074 }
3075 EXPORT_SYMBOL(__check_sticky);
3076 
3077 /*
3078  *	Check whether we can remove a link victim from directory dir, check
3079  *  whether the type of victim is right.
3080  *  1. We can't do it if dir is read-only (done in permission())
3081  *  2. We should have write and exec permissions on dir
3082  *  3. We can't remove anything from append-only dir
3083  *  4. We can't do anything with immutable dir (done in permission())
3084  *  5. If the sticky bit on dir is set we should either
3085  *	a. be owner of dir, or
3086  *	b. be owner of victim, or
3087  *	c. have CAP_FOWNER capability
3088  *  6. If the victim is append-only or immutable we can't do antyhing with
3089  *     links pointing to it.
3090  *  7. If the victim has an unknown uid or gid we can't change the inode.
3091  *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
3092  *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
3093  * 10. We can't remove a root or mountpoint.
3094  * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
3095  *     nfs_async_unlink().
3096  */
3097 static int may_delete(struct mnt_idmap *idmap, struct inode *dir,
3098 		      struct dentry *victim, bool isdir)
3099 {
3100 	struct inode *inode = d_backing_inode(victim);
3101 	int error;
3102 
3103 	if (d_is_negative(victim))
3104 		return -ENOENT;
3105 	BUG_ON(!inode);
3106 
3107 	BUG_ON(victim->d_parent->d_inode != dir);
3108 
3109 	/* Inode writeback is not safe when the uid or gid are invalid. */
3110 	if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
3111 	    !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
3112 		return -EOVERFLOW;
3113 
3114 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
3115 
3116 	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3117 	if (error)
3118 		return error;
3119 	if (IS_APPEND(dir))
3120 		return -EPERM;
3121 
3122 	if (check_sticky(idmap, dir, inode) || IS_APPEND(inode) ||
3123 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) ||
3124 	    HAS_UNMAPPED_ID(idmap, inode))
3125 		return -EPERM;
3126 	if (isdir) {
3127 		if (!d_is_dir(victim))
3128 			return -ENOTDIR;
3129 		if (IS_ROOT(victim))
3130 			return -EBUSY;
3131 	} else if (d_is_dir(victim))
3132 		return -EISDIR;
3133 	if (IS_DEADDIR(dir))
3134 		return -ENOENT;
3135 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
3136 		return -EBUSY;
3137 	return 0;
3138 }
3139 
3140 /*	Check whether we can create an object with dentry child in directory
3141  *  dir.
3142  *  1. We can't do it if child already exists (open has special treatment for
3143  *     this case, but since we are inlined it's OK)
3144  *  2. We can't do it if dir is read-only (done in permission())
3145  *  3. We can't do it if the fs can't represent the fsuid or fsgid.
3146  *  4. We should have write and exec permissions on dir
3147  *  5. We can't do it if dir is immutable (done in permission())
3148  */
3149 static inline int may_create(struct mnt_idmap *idmap,
3150 			     struct inode *dir, struct dentry *child)
3151 {
3152 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
3153 	if (child->d_inode)
3154 		return -EEXIST;
3155 	if (IS_DEADDIR(dir))
3156 		return -ENOENT;
3157 	if (!fsuidgid_has_mapping(dir->i_sb, idmap))
3158 		return -EOVERFLOW;
3159 
3160 	return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3161 }
3162 
3163 // p1 != p2, both are on the same filesystem, ->s_vfs_rename_mutex is held
3164 static struct dentry *lock_two_directories(struct dentry *p1, struct dentry *p2)
3165 {
3166 	struct dentry *p = p1, *q = p2, *r;
3167 
3168 	while ((r = p->d_parent) != p2 && r != p)
3169 		p = r;
3170 	if (r == p2) {
3171 		// p is a child of p2 and an ancestor of p1 or p1 itself
3172 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3173 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT2);
3174 		return p;
3175 	}
3176 	// p is the root of connected component that contains p1
3177 	// p2 does not occur on the path from p to p1
3178 	while ((r = q->d_parent) != p1 && r != p && r != q)
3179 		q = r;
3180 	if (r == p1) {
3181 		// q is a child of p1 and an ancestor of p2 or p2 itself
3182 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3183 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3184 		return q;
3185 	} else if (likely(r == p)) {
3186 		// both p2 and p1 are descendents of p
3187 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3188 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3189 		return NULL;
3190 	} else { // no common ancestor at the time we'd been called
3191 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3192 		return ERR_PTR(-EXDEV);
3193 	}
3194 }
3195 
3196 /*
3197  * p1 and p2 should be directories on the same fs.
3198  */
3199 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
3200 {
3201 	if (p1 == p2) {
3202 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3203 		return NULL;
3204 	}
3205 
3206 	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
3207 	return lock_two_directories(p1, p2);
3208 }
3209 EXPORT_SYMBOL(lock_rename);
3210 
3211 /*
3212  * c1 and p2 should be on the same fs.
3213  */
3214 struct dentry *lock_rename_child(struct dentry *c1, struct dentry *p2)
3215 {
3216 	if (READ_ONCE(c1->d_parent) == p2) {
3217 		/*
3218 		 * hopefully won't need to touch ->s_vfs_rename_mutex at all.
3219 		 */
3220 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3221 		/*
3222 		 * now that p2 is locked, nobody can move in or out of it,
3223 		 * so the test below is safe.
3224 		 */
3225 		if (likely(c1->d_parent == p2))
3226 			return NULL;
3227 
3228 		/*
3229 		 * c1 got moved out of p2 while we'd been taking locks;
3230 		 * unlock and fall back to slow case.
3231 		 */
3232 		inode_unlock(p2->d_inode);
3233 	}
3234 
3235 	mutex_lock(&c1->d_sb->s_vfs_rename_mutex);
3236 	/*
3237 	 * nobody can move out of any directories on this fs.
3238 	 */
3239 	if (likely(c1->d_parent != p2))
3240 		return lock_two_directories(c1->d_parent, p2);
3241 
3242 	/*
3243 	 * c1 got moved into p2 while we were taking locks;
3244 	 * we need p2 locked and ->s_vfs_rename_mutex unlocked,
3245 	 * for consistency with lock_rename().
3246 	 */
3247 	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3248 	mutex_unlock(&c1->d_sb->s_vfs_rename_mutex);
3249 	return NULL;
3250 }
3251 EXPORT_SYMBOL(lock_rename_child);
3252 
3253 void unlock_rename(struct dentry *p1, struct dentry *p2)
3254 {
3255 	inode_unlock(p1->d_inode);
3256 	if (p1 != p2) {
3257 		inode_unlock(p2->d_inode);
3258 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3259 	}
3260 }
3261 EXPORT_SYMBOL(unlock_rename);
3262 
3263 /**
3264  * vfs_prepare_mode - prepare the mode to be used for a new inode
3265  * @idmap:	idmap of the mount the inode was found from
3266  * @dir:	parent directory of the new inode
3267  * @mode:	mode of the new inode
3268  * @mask_perms:	allowed permission by the vfs
3269  * @type:	type of file to be created
3270  *
3271  * This helper consolidates and enforces vfs restrictions on the @mode of a new
3272  * object to be created.
3273  *
3274  * Umask stripping depends on whether the filesystem supports POSIX ACLs (see
3275  * the kernel documentation for mode_strip_umask()). Moving umask stripping
3276  * after setgid stripping allows the same ordering for both non-POSIX ACL and
3277  * POSIX ACL supporting filesystems.
3278  *
3279  * Note that it's currently valid for @type to be 0 if a directory is created.
3280  * Filesystems raise that flag individually and we need to check whether each
3281  * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a
3282  * non-zero type.
3283  *
3284  * Returns: mode to be passed to the filesystem
3285  */
3286 static inline umode_t vfs_prepare_mode(struct mnt_idmap *idmap,
3287 				       const struct inode *dir, umode_t mode,
3288 				       umode_t mask_perms, umode_t type)
3289 {
3290 	mode = mode_strip_sgid(idmap, dir, mode);
3291 	mode = mode_strip_umask(dir, mode);
3292 
3293 	/*
3294 	 * Apply the vfs mandated allowed permission mask and set the type of
3295 	 * file to be created before we call into the filesystem.
3296 	 */
3297 	mode &= (mask_perms & ~S_IFMT);
3298 	mode |= (type & S_IFMT);
3299 
3300 	return mode;
3301 }
3302 
3303 /**
3304  * vfs_create - create new file
3305  * @idmap:	idmap of the mount the inode was found from
3306  * @dir:	inode of the parent directory
3307  * @dentry:	dentry of the child file
3308  * @mode:	mode of the child file
3309  * @want_excl:	whether the file must not yet exist
3310  *
3311  * Create a new file.
3312  *
3313  * If the inode has been found through an idmapped mount the idmap of
3314  * the vfsmount must be passed through @idmap. This function will then take
3315  * care to map the inode according to @idmap before checking permissions.
3316  * On non-idmapped mounts or if permission checking is to be performed on the
3317  * raw inode simply pass @nop_mnt_idmap.
3318  */
3319 int vfs_create(struct mnt_idmap *idmap, struct inode *dir,
3320 	       struct dentry *dentry, umode_t mode, bool want_excl)
3321 {
3322 	int error;
3323 
3324 	error = may_create(idmap, dir, dentry);
3325 	if (error)
3326 		return error;
3327 
3328 	if (!dir->i_op->create)
3329 		return -EACCES;	/* shouldn't it be ENOSYS? */
3330 
3331 	mode = vfs_prepare_mode(idmap, dir, mode, S_IALLUGO, S_IFREG);
3332 	error = security_inode_create(dir, dentry, mode);
3333 	if (error)
3334 		return error;
3335 	error = dir->i_op->create(idmap, dir, dentry, mode, want_excl);
3336 	if (!error)
3337 		fsnotify_create(dir, dentry);
3338 	return error;
3339 }
3340 EXPORT_SYMBOL(vfs_create);
3341 
3342 int vfs_mkobj(struct dentry *dentry, umode_t mode,
3343 		int (*f)(struct dentry *, umode_t, void *),
3344 		void *arg)
3345 {
3346 	struct inode *dir = dentry->d_parent->d_inode;
3347 	int error = may_create(&nop_mnt_idmap, dir, dentry);
3348 	if (error)
3349 		return error;
3350 
3351 	mode &= S_IALLUGO;
3352 	mode |= S_IFREG;
3353 	error = security_inode_create(dir, dentry, mode);
3354 	if (error)
3355 		return error;
3356 	error = f(dentry, mode, arg);
3357 	if (!error)
3358 		fsnotify_create(dir, dentry);
3359 	return error;
3360 }
3361 EXPORT_SYMBOL(vfs_mkobj);
3362 
3363 bool may_open_dev(const struct path *path)
3364 {
3365 	return !(path->mnt->mnt_flags & MNT_NODEV) &&
3366 		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
3367 }
3368 
3369 static int may_open(struct mnt_idmap *idmap, const struct path *path,
3370 		    int acc_mode, int flag)
3371 {
3372 	struct dentry *dentry = path->dentry;
3373 	struct inode *inode = dentry->d_inode;
3374 	int error;
3375 
3376 	if (!inode)
3377 		return -ENOENT;
3378 
3379 	switch (inode->i_mode & S_IFMT) {
3380 	case S_IFLNK:
3381 		return -ELOOP;
3382 	case S_IFDIR:
3383 		if (acc_mode & MAY_WRITE)
3384 			return -EISDIR;
3385 		if (acc_mode & MAY_EXEC)
3386 			return -EACCES;
3387 		break;
3388 	case S_IFBLK:
3389 	case S_IFCHR:
3390 		if (!may_open_dev(path))
3391 			return -EACCES;
3392 		fallthrough;
3393 	case S_IFIFO:
3394 	case S_IFSOCK:
3395 		if (acc_mode & MAY_EXEC)
3396 			return -EACCES;
3397 		flag &= ~O_TRUNC;
3398 		break;
3399 	case S_IFREG:
3400 		if ((acc_mode & MAY_EXEC) && path_noexec(path))
3401 			return -EACCES;
3402 		break;
3403 	}
3404 
3405 	error = inode_permission(idmap, inode, MAY_OPEN | acc_mode);
3406 	if (error)
3407 		return error;
3408 
3409 	/*
3410 	 * An append-only file must be opened in append mode for writing.
3411 	 */
3412 	if (IS_APPEND(inode)) {
3413 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
3414 			return -EPERM;
3415 		if (flag & O_TRUNC)
3416 			return -EPERM;
3417 	}
3418 
3419 	/* O_NOATIME can only be set by the owner or superuser */
3420 	if (flag & O_NOATIME && !inode_owner_or_capable(idmap, inode))
3421 		return -EPERM;
3422 
3423 	return 0;
3424 }
3425 
3426 static int handle_truncate(struct mnt_idmap *idmap, struct file *filp)
3427 {
3428 	const struct path *path = &filp->f_path;
3429 	struct inode *inode = path->dentry->d_inode;
3430 	int error = get_write_access(inode);
3431 	if (error)
3432 		return error;
3433 
3434 	error = security_file_truncate(filp);
3435 	if (!error) {
3436 		error = do_truncate(idmap, path->dentry, 0,
3437 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3438 				    filp);
3439 	}
3440 	put_write_access(inode);
3441 	return error;
3442 }
3443 
3444 static inline int open_to_namei_flags(int flag)
3445 {
3446 	if ((flag & O_ACCMODE) == 3)
3447 		flag--;
3448 	return flag;
3449 }
3450 
3451 static int may_o_create(struct mnt_idmap *idmap,
3452 			const struct path *dir, struct dentry *dentry,
3453 			umode_t mode)
3454 {
3455 	int error = security_path_mknod(dir, dentry, mode, 0);
3456 	if (error)
3457 		return error;
3458 
3459 	if (!fsuidgid_has_mapping(dir->dentry->d_sb, idmap))
3460 		return -EOVERFLOW;
3461 
3462 	error = inode_permission(idmap, dir->dentry->d_inode,
3463 				 MAY_WRITE | MAY_EXEC);
3464 	if (error)
3465 		return error;
3466 
3467 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
3468 }
3469 
3470 /*
3471  * Attempt to atomically look up, create and open a file from a negative
3472  * dentry.
3473  *
3474  * Returns 0 if successful.  The file will have been created and attached to
3475  * @file by the filesystem calling finish_open().
3476  *
3477  * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3478  * be set.  The caller will need to perform the open themselves.  @path will
3479  * have been updated to point to the new dentry.  This may be negative.
3480  *
3481  * Returns an error code otherwise.
3482  */
3483 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
3484 				  struct file *file,
3485 				  int open_flag, umode_t mode)
3486 {
3487 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3488 	struct inode *dir =  nd->path.dentry->d_inode;
3489 	int error;
3490 
3491 	if (nd->flags & LOOKUP_DIRECTORY)
3492 		open_flag |= O_DIRECTORY;
3493 
3494 	file->f_path.dentry = DENTRY_NOT_SET;
3495 	file->f_path.mnt = nd->path.mnt;
3496 	error = dir->i_op->atomic_open(dir, dentry, file,
3497 				       open_to_namei_flags(open_flag), mode);
3498 	d_lookup_done(dentry);
3499 	if (!error) {
3500 		if (file->f_mode & FMODE_OPENED) {
3501 			if (unlikely(dentry != file->f_path.dentry)) {
3502 				dput(dentry);
3503 				dentry = dget(file->f_path.dentry);
3504 			}
3505 		} else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3506 			error = -EIO;
3507 		} else {
3508 			if (file->f_path.dentry) {
3509 				dput(dentry);
3510 				dentry = file->f_path.dentry;
3511 			}
3512 			if (unlikely(d_is_negative(dentry)))
3513 				error = -ENOENT;
3514 		}
3515 	}
3516 	if (error) {
3517 		dput(dentry);
3518 		dentry = ERR_PTR(error);
3519 	}
3520 	return dentry;
3521 }
3522 
3523 /*
3524  * Look up and maybe create and open the last component.
3525  *
3526  * Must be called with parent locked (exclusive in O_CREAT case).
3527  *
3528  * Returns 0 on success, that is, if
3529  *  the file was successfully atomically created (if necessary) and opened, or
3530  *  the file was not completely opened at this time, though lookups and
3531  *  creations were performed.
3532  * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3533  * In the latter case dentry returned in @path might be negative if O_CREAT
3534  * hadn't been specified.
3535  *
3536  * An error code is returned on failure.
3537  */
3538 static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3539 				  const struct open_flags *op,
3540 				  bool got_write)
3541 {
3542 	struct mnt_idmap *idmap;
3543 	struct dentry *dir = nd->path.dentry;
3544 	struct inode *dir_inode = dir->d_inode;
3545 	int open_flag = op->open_flag;
3546 	struct dentry *dentry;
3547 	int error, create_error = 0;
3548 	umode_t mode = op->mode;
3549 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3550 
3551 	if (unlikely(IS_DEADDIR(dir_inode)))
3552 		return ERR_PTR(-ENOENT);
3553 
3554 	file->f_mode &= ~FMODE_CREATED;
3555 	dentry = d_lookup(dir, &nd->last);
3556 	for (;;) {
3557 		if (!dentry) {
3558 			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3559 			if (IS_ERR(dentry))
3560 				return dentry;
3561 		}
3562 		if (d_in_lookup(dentry))
3563 			break;
3564 
3565 		error = d_revalidate(dentry, nd->flags);
3566 		if (likely(error > 0))
3567 			break;
3568 		if (error)
3569 			goto out_dput;
3570 		d_invalidate(dentry);
3571 		dput(dentry);
3572 		dentry = NULL;
3573 	}
3574 	if (dentry->d_inode) {
3575 		/* Cached positive dentry: will open in f_op->open */
3576 		return dentry;
3577 	}
3578 
3579 	if (open_flag & O_CREAT)
3580 		audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3581 
3582 	/*
3583 	 * Checking write permission is tricky, bacuse we don't know if we are
3584 	 * going to actually need it: O_CREAT opens should work as long as the
3585 	 * file exists.  But checking existence breaks atomicity.  The trick is
3586 	 * to check access and if not granted clear O_CREAT from the flags.
3587 	 *
3588 	 * Another problem is returing the "right" error value (e.g. for an
3589 	 * O_EXCL open we want to return EEXIST not EROFS).
3590 	 */
3591 	if (unlikely(!got_write))
3592 		open_flag &= ~O_TRUNC;
3593 	idmap = mnt_idmap(nd->path.mnt);
3594 	if (open_flag & O_CREAT) {
3595 		if (open_flag & O_EXCL)
3596 			open_flag &= ~O_TRUNC;
3597 		mode = vfs_prepare_mode(idmap, dir->d_inode, mode, mode, mode);
3598 		if (likely(got_write))
3599 			create_error = may_o_create(idmap, &nd->path,
3600 						    dentry, mode);
3601 		else
3602 			create_error = -EROFS;
3603 	}
3604 	if (create_error)
3605 		open_flag &= ~O_CREAT;
3606 	if (dir_inode->i_op->atomic_open) {
3607 		dentry = atomic_open(nd, dentry, file, open_flag, mode);
3608 		if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3609 			dentry = ERR_PTR(create_error);
3610 		return dentry;
3611 	}
3612 
3613 	if (d_in_lookup(dentry)) {
3614 		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3615 							     nd->flags);
3616 		d_lookup_done(dentry);
3617 		if (unlikely(res)) {
3618 			if (IS_ERR(res)) {
3619 				error = PTR_ERR(res);
3620 				goto out_dput;
3621 			}
3622 			dput(dentry);
3623 			dentry = res;
3624 		}
3625 	}
3626 
3627 	/* Negative dentry, just create the file */
3628 	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3629 		file->f_mode |= FMODE_CREATED;
3630 		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3631 		if (!dir_inode->i_op->create) {
3632 			error = -EACCES;
3633 			goto out_dput;
3634 		}
3635 
3636 		error = dir_inode->i_op->create(idmap, dir_inode, dentry,
3637 						mode, open_flag & O_EXCL);
3638 		if (error)
3639 			goto out_dput;
3640 	}
3641 	if (unlikely(create_error) && !dentry->d_inode) {
3642 		error = create_error;
3643 		goto out_dput;
3644 	}
3645 	return dentry;
3646 
3647 out_dput:
3648 	dput(dentry);
3649 	return ERR_PTR(error);
3650 }
3651 
3652 static inline bool trailing_slashes(struct nameidata *nd)
3653 {
3654 	return (bool)nd->last.name[nd->last.len];
3655 }
3656 
3657 static struct dentry *lookup_fast_for_open(struct nameidata *nd, int open_flag)
3658 {
3659 	struct dentry *dentry;
3660 
3661 	if (open_flag & O_CREAT) {
3662 		if (trailing_slashes(nd))
3663 			return ERR_PTR(-EISDIR);
3664 
3665 		/* Don't bother on an O_EXCL create */
3666 		if (open_flag & O_EXCL)
3667 			return NULL;
3668 	}
3669 
3670 	if (trailing_slashes(nd))
3671 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3672 
3673 	dentry = lookup_fast(nd);
3674 	if (IS_ERR_OR_NULL(dentry))
3675 		return dentry;
3676 
3677 	if (open_flag & O_CREAT) {
3678 		/* Discard negative dentries. Need inode_lock to do the create */
3679 		if (!dentry->d_inode) {
3680 			if (!(nd->flags & LOOKUP_RCU))
3681 				dput(dentry);
3682 			dentry = NULL;
3683 		}
3684 	}
3685 	return dentry;
3686 }
3687 
3688 static const char *open_last_lookups(struct nameidata *nd,
3689 		   struct file *file, const struct open_flags *op)
3690 {
3691 	struct dentry *dir = nd->path.dentry;
3692 	int open_flag = op->open_flag;
3693 	bool got_write = false;
3694 	struct dentry *dentry;
3695 	const char *res;
3696 
3697 	nd->flags |= op->intent;
3698 
3699 	if (nd->last_type != LAST_NORM) {
3700 		if (nd->depth)
3701 			put_link(nd);
3702 		return handle_dots(nd, nd->last_type);
3703 	}
3704 
3705 	/* We _can_ be in RCU mode here */
3706 	dentry = lookup_fast_for_open(nd, open_flag);
3707 	if (IS_ERR(dentry))
3708 		return ERR_CAST(dentry);
3709 
3710 	if (likely(dentry))
3711 		goto finish_lookup;
3712 
3713 	if (!(open_flag & O_CREAT)) {
3714 		if (WARN_ON_ONCE(nd->flags & LOOKUP_RCU))
3715 			return ERR_PTR(-ECHILD);
3716 	} else {
3717 		if (nd->flags & LOOKUP_RCU) {
3718 			if (!try_to_unlazy(nd))
3719 				return ERR_PTR(-ECHILD);
3720 		}
3721 	}
3722 
3723 	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3724 		got_write = !mnt_want_write(nd->path.mnt);
3725 		/*
3726 		 * do _not_ fail yet - we might not need that or fail with
3727 		 * a different error; let lookup_open() decide; we'll be
3728 		 * dropping this one anyway.
3729 		 */
3730 	}
3731 	if (open_flag & O_CREAT)
3732 		inode_lock(dir->d_inode);
3733 	else
3734 		inode_lock_shared(dir->d_inode);
3735 	dentry = lookup_open(nd, file, op, got_write);
3736 	if (!IS_ERR(dentry)) {
3737 		if (file->f_mode & FMODE_CREATED)
3738 			fsnotify_create(dir->d_inode, dentry);
3739 		if (file->f_mode & FMODE_OPENED)
3740 			fsnotify_open(file);
3741 	}
3742 	if (open_flag & O_CREAT)
3743 		inode_unlock(dir->d_inode);
3744 	else
3745 		inode_unlock_shared(dir->d_inode);
3746 
3747 	if (got_write)
3748 		mnt_drop_write(nd->path.mnt);
3749 
3750 	if (IS_ERR(dentry))
3751 		return ERR_CAST(dentry);
3752 
3753 	if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3754 		dput(nd->path.dentry);
3755 		nd->path.dentry = dentry;
3756 		return NULL;
3757 	}
3758 
3759 finish_lookup:
3760 	if (nd->depth)
3761 		put_link(nd);
3762 	res = step_into(nd, WALK_TRAILING, dentry);
3763 	if (unlikely(res))
3764 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3765 	return res;
3766 }
3767 
3768 /*
3769  * Handle the last step of open()
3770  */
3771 static int do_open(struct nameidata *nd,
3772 		   struct file *file, const struct open_flags *op)
3773 {
3774 	struct mnt_idmap *idmap;
3775 	int open_flag = op->open_flag;
3776 	bool do_truncate;
3777 	int acc_mode;
3778 	int error;
3779 
3780 	if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3781 		error = complete_walk(nd);
3782 		if (error)
3783 			return error;
3784 	}
3785 	if (!(file->f_mode & FMODE_CREATED))
3786 		audit_inode(nd->name, nd->path.dentry, 0);
3787 	idmap = mnt_idmap(nd->path.mnt);
3788 	if (open_flag & O_CREAT) {
3789 		if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3790 			return -EEXIST;
3791 		if (d_is_dir(nd->path.dentry))
3792 			return -EISDIR;
3793 		error = may_create_in_sticky(idmap, nd,
3794 					     d_backing_inode(nd->path.dentry));
3795 		if (unlikely(error))
3796 			return error;
3797 	}
3798 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3799 		return -ENOTDIR;
3800 
3801 	do_truncate = false;
3802 	acc_mode = op->acc_mode;
3803 	if (file->f_mode & FMODE_CREATED) {
3804 		/* Don't check for write permission, don't truncate */
3805 		open_flag &= ~O_TRUNC;
3806 		acc_mode = 0;
3807 	} else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3808 		error = mnt_want_write(nd->path.mnt);
3809 		if (error)
3810 			return error;
3811 		do_truncate = true;
3812 	}
3813 	error = may_open(idmap, &nd->path, acc_mode, open_flag);
3814 	if (!error && !(file->f_mode & FMODE_OPENED))
3815 		error = vfs_open(&nd->path, file);
3816 	if (!error)
3817 		error = security_file_post_open(file, op->acc_mode);
3818 	if (!error && do_truncate)
3819 		error = handle_truncate(idmap, file);
3820 	if (unlikely(error > 0)) {
3821 		WARN_ON(1);
3822 		error = -EINVAL;
3823 	}
3824 	if (do_truncate)
3825 		mnt_drop_write(nd->path.mnt);
3826 	return error;
3827 }
3828 
3829 /**
3830  * vfs_tmpfile - create tmpfile
3831  * @idmap:	idmap of the mount the inode was found from
3832  * @parentpath:	pointer to the path of the base directory
3833  * @file:	file descriptor of the new tmpfile
3834  * @mode:	mode of the new tmpfile
3835  *
3836  * Create a temporary file.
3837  *
3838  * If the inode has been found through an idmapped mount the idmap of
3839  * the vfsmount must be passed through @idmap. This function will then take
3840  * care to map the inode according to @idmap before checking permissions.
3841  * On non-idmapped mounts or if permission checking is to be performed on the
3842  * raw inode simply pass @nop_mnt_idmap.
3843  */
3844 int vfs_tmpfile(struct mnt_idmap *idmap,
3845 		const struct path *parentpath,
3846 		struct file *file, umode_t mode)
3847 {
3848 	struct dentry *child;
3849 	struct inode *dir = d_inode(parentpath->dentry);
3850 	struct inode *inode;
3851 	int error;
3852 	int open_flag = file->f_flags;
3853 
3854 	/* we want directory to be writable */
3855 	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3856 	if (error)
3857 		return error;
3858 	if (!dir->i_op->tmpfile)
3859 		return -EOPNOTSUPP;
3860 	child = d_alloc(parentpath->dentry, &slash_name);
3861 	if (unlikely(!child))
3862 		return -ENOMEM;
3863 	file->f_path.mnt = parentpath->mnt;
3864 	file->f_path.dentry = child;
3865 	mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
3866 	error = dir->i_op->tmpfile(idmap, dir, file, mode);
3867 	dput(child);
3868 	if (file->f_mode & FMODE_OPENED)
3869 		fsnotify_open(file);
3870 	if (error)
3871 		return error;
3872 	/* Don't check for other permissions, the inode was just created */
3873 	error = may_open(idmap, &file->f_path, 0, file->f_flags);
3874 	if (error)
3875 		return error;
3876 	inode = file_inode(file);
3877 	if (!(open_flag & O_EXCL)) {
3878 		spin_lock(&inode->i_lock);
3879 		inode->i_state |= I_LINKABLE;
3880 		spin_unlock(&inode->i_lock);
3881 	}
3882 	security_inode_post_create_tmpfile(idmap, inode);
3883 	return 0;
3884 }
3885 
3886 /**
3887  * kernel_tmpfile_open - open a tmpfile for kernel internal use
3888  * @idmap:	idmap of the mount the inode was found from
3889  * @parentpath:	path of the base directory
3890  * @mode:	mode of the new tmpfile
3891  * @open_flag:	flags
3892  * @cred:	credentials for open
3893  *
3894  * Create and open a temporary file.  The file is not accounted in nr_files,
3895  * hence this is only for kernel internal use, and must not be installed into
3896  * file tables or such.
3897  */
3898 struct file *kernel_tmpfile_open(struct mnt_idmap *idmap,
3899 				 const struct path *parentpath,
3900 				 umode_t mode, int open_flag,
3901 				 const struct cred *cred)
3902 {
3903 	struct file *file;
3904 	int error;
3905 
3906 	file = alloc_empty_file_noaccount(open_flag, cred);
3907 	if (IS_ERR(file))
3908 		return file;
3909 
3910 	error = vfs_tmpfile(idmap, parentpath, file, mode);
3911 	if (error) {
3912 		fput(file);
3913 		file = ERR_PTR(error);
3914 	}
3915 	return file;
3916 }
3917 EXPORT_SYMBOL(kernel_tmpfile_open);
3918 
3919 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3920 		const struct open_flags *op,
3921 		struct file *file)
3922 {
3923 	struct path path;
3924 	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3925 
3926 	if (unlikely(error))
3927 		return error;
3928 	error = mnt_want_write(path.mnt);
3929 	if (unlikely(error))
3930 		goto out;
3931 	error = vfs_tmpfile(mnt_idmap(path.mnt), &path, file, op->mode);
3932 	if (error)
3933 		goto out2;
3934 	audit_inode(nd->name, file->f_path.dentry, 0);
3935 out2:
3936 	mnt_drop_write(path.mnt);
3937 out:
3938 	path_put(&path);
3939 	return error;
3940 }
3941 
3942 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3943 {
3944 	struct path path;
3945 	int error = path_lookupat(nd, flags, &path);
3946 	if (!error) {
3947 		audit_inode(nd->name, path.dentry, 0);
3948 		error = vfs_open(&path, file);
3949 		path_put(&path);
3950 	}
3951 	return error;
3952 }
3953 
3954 static struct file *path_openat(struct nameidata *nd,
3955 			const struct open_flags *op, unsigned flags)
3956 {
3957 	struct file *file;
3958 	int error;
3959 
3960 	file = alloc_empty_file(op->open_flag, current_cred());
3961 	if (IS_ERR(file))
3962 		return file;
3963 
3964 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3965 		error = do_tmpfile(nd, flags, op, file);
3966 	} else if (unlikely(file->f_flags & O_PATH)) {
3967 		error = do_o_path(nd, flags, file);
3968 	} else {
3969 		const char *s = path_init(nd, flags);
3970 		while (!(error = link_path_walk(s, nd)) &&
3971 		       (s = open_last_lookups(nd, file, op)) != NULL)
3972 			;
3973 		if (!error)
3974 			error = do_open(nd, file, op);
3975 		terminate_walk(nd);
3976 	}
3977 	if (likely(!error)) {
3978 		if (likely(file->f_mode & FMODE_OPENED))
3979 			return file;
3980 		WARN_ON(1);
3981 		error = -EINVAL;
3982 	}
3983 	fput(file);
3984 	if (error == -EOPENSTALE) {
3985 		if (flags & LOOKUP_RCU)
3986 			error = -ECHILD;
3987 		else
3988 			error = -ESTALE;
3989 	}
3990 	return ERR_PTR(error);
3991 }
3992 
3993 struct file *do_filp_open(int dfd, struct filename *pathname,
3994 		const struct open_flags *op)
3995 {
3996 	struct nameidata nd;
3997 	int flags = op->lookup_flags;
3998 	struct file *filp;
3999 
4000 	set_nameidata(&nd, dfd, pathname, NULL);
4001 	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
4002 	if (unlikely(filp == ERR_PTR(-ECHILD)))
4003 		filp = path_openat(&nd, op, flags);
4004 	if (unlikely(filp == ERR_PTR(-ESTALE)))
4005 		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
4006 	restore_nameidata();
4007 	return filp;
4008 }
4009 
4010 struct file *do_file_open_root(const struct path *root,
4011 		const char *name, const struct open_flags *op)
4012 {
4013 	struct nameidata nd;
4014 	struct file *file;
4015 	struct filename *filename;
4016 	int flags = op->lookup_flags;
4017 
4018 	if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN)
4019 		return ERR_PTR(-ELOOP);
4020 
4021 	filename = getname_kernel(name);
4022 	if (IS_ERR(filename))
4023 		return ERR_CAST(filename);
4024 
4025 	set_nameidata(&nd, -1, filename, root);
4026 	file = path_openat(&nd, op, flags | LOOKUP_RCU);
4027 	if (unlikely(file == ERR_PTR(-ECHILD)))
4028 		file = path_openat(&nd, op, flags);
4029 	if (unlikely(file == ERR_PTR(-ESTALE)))
4030 		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
4031 	restore_nameidata();
4032 	putname(filename);
4033 	return file;
4034 }
4035 
4036 static struct dentry *filename_create(int dfd, struct filename *name,
4037 				      struct path *path, unsigned int lookup_flags)
4038 {
4039 	struct dentry *dentry = ERR_PTR(-EEXIST);
4040 	struct qstr last;
4041 	bool want_dir = lookup_flags & LOOKUP_DIRECTORY;
4042 	unsigned int reval_flag = lookup_flags & LOOKUP_REVAL;
4043 	unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL;
4044 	int type;
4045 	int err2;
4046 	int error;
4047 
4048 	error = filename_parentat(dfd, name, reval_flag, path, &last, &type);
4049 	if (error)
4050 		return ERR_PTR(error);
4051 
4052 	/*
4053 	 * Yucky last component or no last component at all?
4054 	 * (foo/., foo/.., /////)
4055 	 */
4056 	if (unlikely(type != LAST_NORM))
4057 		goto out;
4058 
4059 	/* don't fail immediately if it's r/o, at least try to report other errors */
4060 	err2 = mnt_want_write(path->mnt);
4061 	/*
4062 	 * Do the final lookup.  Suppress 'create' if there is a trailing
4063 	 * '/', and a directory wasn't requested.
4064 	 */
4065 	if (last.name[last.len] && !want_dir)
4066 		create_flags = 0;
4067 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
4068 	dentry = lookup_one_qstr_excl(&last, path->dentry,
4069 				      reval_flag | create_flags);
4070 	if (IS_ERR(dentry))
4071 		goto unlock;
4072 
4073 	error = -EEXIST;
4074 	if (d_is_positive(dentry))
4075 		goto fail;
4076 
4077 	/*
4078 	 * Special case - lookup gave negative, but... we had foo/bar/
4079 	 * From the vfs_mknod() POV we just have a negative dentry -
4080 	 * all is fine. Let's be bastards - you had / on the end, you've
4081 	 * been asking for (non-existent) directory. -ENOENT for you.
4082 	 */
4083 	if (unlikely(!create_flags)) {
4084 		error = -ENOENT;
4085 		goto fail;
4086 	}
4087 	if (unlikely(err2)) {
4088 		error = err2;
4089 		goto fail;
4090 	}
4091 	return dentry;
4092 fail:
4093 	dput(dentry);
4094 	dentry = ERR_PTR(error);
4095 unlock:
4096 	inode_unlock(path->dentry->d_inode);
4097 	if (!err2)
4098 		mnt_drop_write(path->mnt);
4099 out:
4100 	path_put(path);
4101 	return dentry;
4102 }
4103 
4104 struct dentry *kern_path_create(int dfd, const char *pathname,
4105 				struct path *path, unsigned int lookup_flags)
4106 {
4107 	struct filename *filename = getname_kernel(pathname);
4108 	struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
4109 
4110 	putname(filename);
4111 	return res;
4112 }
4113 EXPORT_SYMBOL(kern_path_create);
4114 
4115 void done_path_create(struct path *path, struct dentry *dentry)
4116 {
4117 	dput(dentry);
4118 	inode_unlock(path->dentry->d_inode);
4119 	mnt_drop_write(path->mnt);
4120 	path_put(path);
4121 }
4122 EXPORT_SYMBOL(done_path_create);
4123 
4124 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
4125 				struct path *path, unsigned int lookup_flags)
4126 {
4127 	struct filename *filename = getname(pathname);
4128 	struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
4129 
4130 	putname(filename);
4131 	return res;
4132 }
4133 EXPORT_SYMBOL(user_path_create);
4134 
4135 /**
4136  * vfs_mknod - create device node or file
4137  * @idmap:	idmap of the mount the inode was found from
4138  * @dir:	inode of the parent directory
4139  * @dentry:	dentry of the child device node
4140  * @mode:	mode of the child device node
4141  * @dev:	device number of device to create
4142  *
4143  * Create a device node or file.
4144  *
4145  * If the inode has been found through an idmapped mount the idmap of
4146  * the vfsmount must be passed through @idmap. This function will then take
4147  * care to map the inode according to @idmap before checking permissions.
4148  * On non-idmapped mounts or if permission checking is to be performed on the
4149  * raw inode simply pass @nop_mnt_idmap.
4150  */
4151 int vfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
4152 	      struct dentry *dentry, umode_t mode, dev_t dev)
4153 {
4154 	bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
4155 	int error = may_create(idmap, dir, dentry);
4156 
4157 	if (error)
4158 		return error;
4159 
4160 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
4161 	    !capable(CAP_MKNOD))
4162 		return -EPERM;
4163 
4164 	if (!dir->i_op->mknod)
4165 		return -EPERM;
4166 
4167 	mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
4168 	error = devcgroup_inode_mknod(mode, dev);
4169 	if (error)
4170 		return error;
4171 
4172 	error = security_inode_mknod(dir, dentry, mode, dev);
4173 	if (error)
4174 		return error;
4175 
4176 	error = dir->i_op->mknod(idmap, dir, dentry, mode, dev);
4177 	if (!error)
4178 		fsnotify_create(dir, dentry);
4179 	return error;
4180 }
4181 EXPORT_SYMBOL(vfs_mknod);
4182 
4183 static int may_mknod(umode_t mode)
4184 {
4185 	switch (mode & S_IFMT) {
4186 	case S_IFREG:
4187 	case S_IFCHR:
4188 	case S_IFBLK:
4189 	case S_IFIFO:
4190 	case S_IFSOCK:
4191 	case 0: /* zero mode translates to S_IFREG */
4192 		return 0;
4193 	case S_IFDIR:
4194 		return -EPERM;
4195 	default:
4196 		return -EINVAL;
4197 	}
4198 }
4199 
4200 static int do_mknodat(int dfd, struct filename *name, umode_t mode,
4201 		unsigned int dev)
4202 {
4203 	struct mnt_idmap *idmap;
4204 	struct dentry *dentry;
4205 	struct path path;
4206 	int error;
4207 	unsigned int lookup_flags = 0;
4208 
4209 	error = may_mknod(mode);
4210 	if (error)
4211 		goto out1;
4212 retry:
4213 	dentry = filename_create(dfd, name, &path, lookup_flags);
4214 	error = PTR_ERR(dentry);
4215 	if (IS_ERR(dentry))
4216 		goto out1;
4217 
4218 	error = security_path_mknod(&path, dentry,
4219 			mode_strip_umask(path.dentry->d_inode, mode), dev);
4220 	if (error)
4221 		goto out2;
4222 
4223 	idmap = mnt_idmap(path.mnt);
4224 	switch (mode & S_IFMT) {
4225 		case 0: case S_IFREG:
4226 			error = vfs_create(idmap, path.dentry->d_inode,
4227 					   dentry, mode, true);
4228 			if (!error)
4229 				security_path_post_mknod(idmap, dentry);
4230 			break;
4231 		case S_IFCHR: case S_IFBLK:
4232 			error = vfs_mknod(idmap, path.dentry->d_inode,
4233 					  dentry, mode, new_decode_dev(dev));
4234 			break;
4235 		case S_IFIFO: case S_IFSOCK:
4236 			error = vfs_mknod(idmap, path.dentry->d_inode,
4237 					  dentry, mode, 0);
4238 			break;
4239 	}
4240 out2:
4241 	done_path_create(&path, dentry);
4242 	if (retry_estale(error, lookup_flags)) {
4243 		lookup_flags |= LOOKUP_REVAL;
4244 		goto retry;
4245 	}
4246 out1:
4247 	putname(name);
4248 	return error;
4249 }
4250 
4251 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
4252 		unsigned int, dev)
4253 {
4254 	return do_mknodat(dfd, getname(filename), mode, dev);
4255 }
4256 
4257 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
4258 {
4259 	return do_mknodat(AT_FDCWD, getname(filename), mode, dev);
4260 }
4261 
4262 /**
4263  * vfs_mkdir - create directory
4264  * @idmap:	idmap of the mount the inode was found from
4265  * @dir:	inode of the parent directory
4266  * @dentry:	dentry of the child directory
4267  * @mode:	mode of the child directory
4268  *
4269  * Create a directory.
4270  *
4271  * If the inode has been found through an idmapped mount the idmap of
4272  * the vfsmount must be passed through @idmap. This function will then take
4273  * care to map the inode according to @idmap before checking permissions.
4274  * On non-idmapped mounts or if permission checking is to be performed on the
4275  * raw inode simply pass @nop_mnt_idmap.
4276  */
4277 int vfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
4278 	      struct dentry *dentry, umode_t mode)
4279 {
4280 	int error;
4281 	unsigned max_links = dir->i_sb->s_max_links;
4282 
4283 	error = may_create(idmap, dir, dentry);
4284 	if (error)
4285 		return error;
4286 
4287 	if (!dir->i_op->mkdir)
4288 		return -EPERM;
4289 
4290 	mode = vfs_prepare_mode(idmap, dir, mode, S_IRWXUGO | S_ISVTX, 0);
4291 	error = security_inode_mkdir(dir, dentry, mode);
4292 	if (error)
4293 		return error;
4294 
4295 	if (max_links && dir->i_nlink >= max_links)
4296 		return -EMLINK;
4297 
4298 	error = dir->i_op->mkdir(idmap, dir, dentry, mode);
4299 	if (!error)
4300 		fsnotify_mkdir(dir, dentry);
4301 	return error;
4302 }
4303 EXPORT_SYMBOL(vfs_mkdir);
4304 
4305 int do_mkdirat(int dfd, struct filename *name, umode_t mode)
4306 {
4307 	struct dentry *dentry;
4308 	struct path path;
4309 	int error;
4310 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
4311 
4312 retry:
4313 	dentry = filename_create(dfd, name, &path, lookup_flags);
4314 	error = PTR_ERR(dentry);
4315 	if (IS_ERR(dentry))
4316 		goto out_putname;
4317 
4318 	error = security_path_mkdir(&path, dentry,
4319 			mode_strip_umask(path.dentry->d_inode, mode));
4320 	if (!error) {
4321 		error = vfs_mkdir(mnt_idmap(path.mnt), path.dentry->d_inode,
4322 				  dentry, mode);
4323 	}
4324 	done_path_create(&path, dentry);
4325 	if (retry_estale(error, lookup_flags)) {
4326 		lookup_flags |= LOOKUP_REVAL;
4327 		goto retry;
4328 	}
4329 out_putname:
4330 	putname(name);
4331 	return error;
4332 }
4333 
4334 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
4335 {
4336 	return do_mkdirat(dfd, getname(pathname), mode);
4337 }
4338 
4339 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
4340 {
4341 	return do_mkdirat(AT_FDCWD, getname(pathname), mode);
4342 }
4343 
4344 /**
4345  * vfs_rmdir - remove directory
4346  * @idmap:	idmap of the mount the inode was found from
4347  * @dir:	inode of the parent directory
4348  * @dentry:	dentry of the child directory
4349  *
4350  * Remove a directory.
4351  *
4352  * If the inode has been found through an idmapped mount the idmap of
4353  * the vfsmount must be passed through @idmap. This function will then take
4354  * care to map the inode according to @idmap before checking permissions.
4355  * On non-idmapped mounts or if permission checking is to be performed on the
4356  * raw inode simply pass @nop_mnt_idmap.
4357  */
4358 int vfs_rmdir(struct mnt_idmap *idmap, struct inode *dir,
4359 		     struct dentry *dentry)
4360 {
4361 	int error = may_delete(idmap, dir, dentry, 1);
4362 
4363 	if (error)
4364 		return error;
4365 
4366 	if (!dir->i_op->rmdir)
4367 		return -EPERM;
4368 
4369 	dget(dentry);
4370 	inode_lock(dentry->d_inode);
4371 
4372 	error = -EBUSY;
4373 	if (is_local_mountpoint(dentry) ||
4374 	    (dentry->d_inode->i_flags & S_KERNEL_FILE))
4375 		goto out;
4376 
4377 	error = security_inode_rmdir(dir, dentry);
4378 	if (error)
4379 		goto out;
4380 
4381 	error = dir->i_op->rmdir(dir, dentry);
4382 	if (error)
4383 		goto out;
4384 
4385 	shrink_dcache_parent(dentry);
4386 	dentry->d_inode->i_flags |= S_DEAD;
4387 	dont_mount(dentry);
4388 	detach_mounts(dentry);
4389 
4390 out:
4391 	inode_unlock(dentry->d_inode);
4392 	dput(dentry);
4393 	if (!error)
4394 		d_delete_notify(dir, dentry);
4395 	return error;
4396 }
4397 EXPORT_SYMBOL(vfs_rmdir);
4398 
4399 int do_rmdir(int dfd, struct filename *name)
4400 {
4401 	int error;
4402 	struct dentry *dentry;
4403 	struct path path;
4404 	struct qstr last;
4405 	int type;
4406 	unsigned int lookup_flags = 0;
4407 retry:
4408 	error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4409 	if (error)
4410 		goto exit1;
4411 
4412 	switch (type) {
4413 	case LAST_DOTDOT:
4414 		error = -ENOTEMPTY;
4415 		goto exit2;
4416 	case LAST_DOT:
4417 		error = -EINVAL;
4418 		goto exit2;
4419 	case LAST_ROOT:
4420 		error = -EBUSY;
4421 		goto exit2;
4422 	}
4423 
4424 	error = mnt_want_write(path.mnt);
4425 	if (error)
4426 		goto exit2;
4427 
4428 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4429 	dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4430 	error = PTR_ERR(dentry);
4431 	if (IS_ERR(dentry))
4432 		goto exit3;
4433 	if (!dentry->d_inode) {
4434 		error = -ENOENT;
4435 		goto exit4;
4436 	}
4437 	error = security_path_rmdir(&path, dentry);
4438 	if (error)
4439 		goto exit4;
4440 	error = vfs_rmdir(mnt_idmap(path.mnt), path.dentry->d_inode, dentry);
4441 exit4:
4442 	dput(dentry);
4443 exit3:
4444 	inode_unlock(path.dentry->d_inode);
4445 	mnt_drop_write(path.mnt);
4446 exit2:
4447 	path_put(&path);
4448 	if (retry_estale(error, lookup_flags)) {
4449 		lookup_flags |= LOOKUP_REVAL;
4450 		goto retry;
4451 	}
4452 exit1:
4453 	putname(name);
4454 	return error;
4455 }
4456 
4457 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
4458 {
4459 	return do_rmdir(AT_FDCWD, getname(pathname));
4460 }
4461 
4462 /**
4463  * vfs_unlink - unlink a filesystem object
4464  * @idmap:	idmap of the mount the inode was found from
4465  * @dir:	parent directory
4466  * @dentry:	victim
4467  * @delegated_inode: returns victim inode, if the inode is delegated.
4468  *
4469  * The caller must hold dir->i_mutex.
4470  *
4471  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
4472  * return a reference to the inode in delegated_inode.  The caller
4473  * should then break the delegation on that inode and retry.  Because
4474  * breaking a delegation may take a long time, the caller should drop
4475  * dir->i_mutex before doing so.
4476  *
4477  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4478  * be appropriate for callers that expect the underlying filesystem not
4479  * to be NFS exported.
4480  *
4481  * If the inode has been found through an idmapped mount the idmap of
4482  * the vfsmount must be passed through @idmap. This function will then take
4483  * care to map the inode according to @idmap before checking permissions.
4484  * On non-idmapped mounts or if permission checking is to be performed on the
4485  * raw inode simply pass @nop_mnt_idmap.
4486  */
4487 int vfs_unlink(struct mnt_idmap *idmap, struct inode *dir,
4488 	       struct dentry *dentry, struct inode **delegated_inode)
4489 {
4490 	struct inode *target = dentry->d_inode;
4491 	int error = may_delete(idmap, dir, dentry, 0);
4492 
4493 	if (error)
4494 		return error;
4495 
4496 	if (!dir->i_op->unlink)
4497 		return -EPERM;
4498 
4499 	inode_lock(target);
4500 	if (IS_SWAPFILE(target))
4501 		error = -EPERM;
4502 	else if (is_local_mountpoint(dentry))
4503 		error = -EBUSY;
4504 	else {
4505 		error = security_inode_unlink(dir, dentry);
4506 		if (!error) {
4507 			error = try_break_deleg(target, delegated_inode);
4508 			if (error)
4509 				goto out;
4510 			error = dir->i_op->unlink(dir, dentry);
4511 			if (!error) {
4512 				dont_mount(dentry);
4513 				detach_mounts(dentry);
4514 			}
4515 		}
4516 	}
4517 out:
4518 	inode_unlock(target);
4519 
4520 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
4521 	if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) {
4522 		fsnotify_unlink(dir, dentry);
4523 	} else if (!error) {
4524 		fsnotify_link_count(target);
4525 		d_delete_notify(dir, dentry);
4526 	}
4527 
4528 	return error;
4529 }
4530 EXPORT_SYMBOL(vfs_unlink);
4531 
4532 /*
4533  * Make sure that the actual truncation of the file will occur outside its
4534  * directory's i_mutex.  Truncate can take a long time if there is a lot of
4535  * writeout happening, and we don't want to prevent access to the directory
4536  * while waiting on the I/O.
4537  */
4538 int do_unlinkat(int dfd, struct filename *name)
4539 {
4540 	int error;
4541 	struct dentry *dentry;
4542 	struct path path;
4543 	struct qstr last;
4544 	int type;
4545 	struct inode *inode = NULL;
4546 	struct inode *delegated_inode = NULL;
4547 	unsigned int lookup_flags = 0;
4548 retry:
4549 	error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4550 	if (error)
4551 		goto exit1;
4552 
4553 	error = -EISDIR;
4554 	if (type != LAST_NORM)
4555 		goto exit2;
4556 
4557 	error = mnt_want_write(path.mnt);
4558 	if (error)
4559 		goto exit2;
4560 retry_deleg:
4561 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4562 	dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4563 	error = PTR_ERR(dentry);
4564 	if (!IS_ERR(dentry)) {
4565 
4566 		/* Why not before? Because we want correct error value */
4567 		if (last.name[last.len] || d_is_negative(dentry))
4568 			goto slashes;
4569 		inode = dentry->d_inode;
4570 		ihold(inode);
4571 		error = security_path_unlink(&path, dentry);
4572 		if (error)
4573 			goto exit3;
4574 		error = vfs_unlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4575 				   dentry, &delegated_inode);
4576 exit3:
4577 		dput(dentry);
4578 	}
4579 	inode_unlock(path.dentry->d_inode);
4580 	if (inode)
4581 		iput(inode);	/* truncate the inode here */
4582 	inode = NULL;
4583 	if (delegated_inode) {
4584 		error = break_deleg_wait(&delegated_inode);
4585 		if (!error)
4586 			goto retry_deleg;
4587 	}
4588 	mnt_drop_write(path.mnt);
4589 exit2:
4590 	path_put(&path);
4591 	if (retry_estale(error, lookup_flags)) {
4592 		lookup_flags |= LOOKUP_REVAL;
4593 		inode = NULL;
4594 		goto retry;
4595 	}
4596 exit1:
4597 	putname(name);
4598 	return error;
4599 
4600 slashes:
4601 	if (d_is_negative(dentry))
4602 		error = -ENOENT;
4603 	else if (d_is_dir(dentry))
4604 		error = -EISDIR;
4605 	else
4606 		error = -ENOTDIR;
4607 	goto exit3;
4608 }
4609 
4610 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4611 {
4612 	if ((flag & ~AT_REMOVEDIR) != 0)
4613 		return -EINVAL;
4614 
4615 	if (flag & AT_REMOVEDIR)
4616 		return do_rmdir(dfd, getname(pathname));
4617 	return do_unlinkat(dfd, getname(pathname));
4618 }
4619 
4620 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4621 {
4622 	return do_unlinkat(AT_FDCWD, getname(pathname));
4623 }
4624 
4625 /**
4626  * vfs_symlink - create symlink
4627  * @idmap:	idmap of the mount the inode was found from
4628  * @dir:	inode of the parent directory
4629  * @dentry:	dentry of the child symlink file
4630  * @oldname:	name of the file to link to
4631  *
4632  * Create a symlink.
4633  *
4634  * If the inode has been found through an idmapped mount the idmap of
4635  * the vfsmount must be passed through @idmap. This function will then take
4636  * care to map the inode according to @idmap before checking permissions.
4637  * On non-idmapped mounts or if permission checking is to be performed on the
4638  * raw inode simply pass @nop_mnt_idmap.
4639  */
4640 int vfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
4641 		struct dentry *dentry, const char *oldname)
4642 {
4643 	int error;
4644 
4645 	error = may_create(idmap, dir, dentry);
4646 	if (error)
4647 		return error;
4648 
4649 	if (!dir->i_op->symlink)
4650 		return -EPERM;
4651 
4652 	error = security_inode_symlink(dir, dentry, oldname);
4653 	if (error)
4654 		return error;
4655 
4656 	error = dir->i_op->symlink(idmap, dir, dentry, oldname);
4657 	if (!error)
4658 		fsnotify_create(dir, dentry);
4659 	return error;
4660 }
4661 EXPORT_SYMBOL(vfs_symlink);
4662 
4663 int do_symlinkat(struct filename *from, int newdfd, struct filename *to)
4664 {
4665 	int error;
4666 	struct dentry *dentry;
4667 	struct path path;
4668 	unsigned int lookup_flags = 0;
4669 
4670 	if (IS_ERR(from)) {
4671 		error = PTR_ERR(from);
4672 		goto out_putnames;
4673 	}
4674 retry:
4675 	dentry = filename_create(newdfd, to, &path, lookup_flags);
4676 	error = PTR_ERR(dentry);
4677 	if (IS_ERR(dentry))
4678 		goto out_putnames;
4679 
4680 	error = security_path_symlink(&path, dentry, from->name);
4681 	if (!error)
4682 		error = vfs_symlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4683 				    dentry, from->name);
4684 	done_path_create(&path, dentry);
4685 	if (retry_estale(error, lookup_flags)) {
4686 		lookup_flags |= LOOKUP_REVAL;
4687 		goto retry;
4688 	}
4689 out_putnames:
4690 	putname(to);
4691 	putname(from);
4692 	return error;
4693 }
4694 
4695 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4696 		int, newdfd, const char __user *, newname)
4697 {
4698 	return do_symlinkat(getname(oldname), newdfd, getname(newname));
4699 }
4700 
4701 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4702 {
4703 	return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname));
4704 }
4705 
4706 /**
4707  * vfs_link - create a new link
4708  * @old_dentry:	object to be linked
4709  * @idmap:	idmap of the mount
4710  * @dir:	new parent
4711  * @new_dentry:	where to create the new link
4712  * @delegated_inode: returns inode needing a delegation break
4713  *
4714  * The caller must hold dir->i_mutex
4715  *
4716  * If vfs_link discovers a delegation on the to-be-linked file in need
4717  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4718  * inode in delegated_inode.  The caller should then break the delegation
4719  * and retry.  Because breaking a delegation may take a long time, the
4720  * caller should drop the i_mutex before doing so.
4721  *
4722  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4723  * be appropriate for callers that expect the underlying filesystem not
4724  * to be NFS exported.
4725  *
4726  * If the inode has been found through an idmapped mount the idmap of
4727  * the vfsmount must be passed through @idmap. This function will then take
4728  * care to map the inode according to @idmap before checking permissions.
4729  * On non-idmapped mounts or if permission checking is to be performed on the
4730  * raw inode simply pass @nop_mnt_idmap.
4731  */
4732 int vfs_link(struct dentry *old_dentry, struct mnt_idmap *idmap,
4733 	     struct inode *dir, struct dentry *new_dentry,
4734 	     struct inode **delegated_inode)
4735 {
4736 	struct inode *inode = old_dentry->d_inode;
4737 	unsigned max_links = dir->i_sb->s_max_links;
4738 	int error;
4739 
4740 	if (!inode)
4741 		return -ENOENT;
4742 
4743 	error = may_create(idmap, dir, new_dentry);
4744 	if (error)
4745 		return error;
4746 
4747 	if (dir->i_sb != inode->i_sb)
4748 		return -EXDEV;
4749 
4750 	/*
4751 	 * A link to an append-only or immutable file cannot be created.
4752 	 */
4753 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4754 		return -EPERM;
4755 	/*
4756 	 * Updating the link count will likely cause i_uid and i_gid to
4757 	 * be writen back improperly if their true value is unknown to
4758 	 * the vfs.
4759 	 */
4760 	if (HAS_UNMAPPED_ID(idmap, inode))
4761 		return -EPERM;
4762 	if (!dir->i_op->link)
4763 		return -EPERM;
4764 	if (S_ISDIR(inode->i_mode))
4765 		return -EPERM;
4766 
4767 	error = security_inode_link(old_dentry, dir, new_dentry);
4768 	if (error)
4769 		return error;
4770 
4771 	inode_lock(inode);
4772 	/* Make sure we don't allow creating hardlink to an unlinked file */
4773 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4774 		error =  -ENOENT;
4775 	else if (max_links && inode->i_nlink >= max_links)
4776 		error = -EMLINK;
4777 	else {
4778 		error = try_break_deleg(inode, delegated_inode);
4779 		if (!error)
4780 			error = dir->i_op->link(old_dentry, dir, new_dentry);
4781 	}
4782 
4783 	if (!error && (inode->i_state & I_LINKABLE)) {
4784 		spin_lock(&inode->i_lock);
4785 		inode->i_state &= ~I_LINKABLE;
4786 		spin_unlock(&inode->i_lock);
4787 	}
4788 	inode_unlock(inode);
4789 	if (!error)
4790 		fsnotify_link(dir, inode, new_dentry);
4791 	return error;
4792 }
4793 EXPORT_SYMBOL(vfs_link);
4794 
4795 /*
4796  * Hardlinks are often used in delicate situations.  We avoid
4797  * security-related surprises by not following symlinks on the
4798  * newname.  --KAB
4799  *
4800  * We don't follow them on the oldname either to be compatible
4801  * with linux 2.0, and to avoid hard-linking to directories
4802  * and other special files.  --ADM
4803  */
4804 int do_linkat(int olddfd, struct filename *old, int newdfd,
4805 	      struct filename *new, int flags)
4806 {
4807 	struct mnt_idmap *idmap;
4808 	struct dentry *new_dentry;
4809 	struct path old_path, new_path;
4810 	struct inode *delegated_inode = NULL;
4811 	int how = 0;
4812 	int error;
4813 
4814 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) {
4815 		error = -EINVAL;
4816 		goto out_putnames;
4817 	}
4818 	/*
4819 	 * To use null names we require CAP_DAC_READ_SEARCH or
4820 	 * that the open-time creds of the dfd matches current.
4821 	 * This ensures that not everyone will be able to create
4822 	 * a hardlink using the passed file descriptor.
4823 	 */
4824 	if (flags & AT_EMPTY_PATH)
4825 		how |= LOOKUP_LINKAT_EMPTY;
4826 
4827 	if (flags & AT_SYMLINK_FOLLOW)
4828 		how |= LOOKUP_FOLLOW;
4829 retry:
4830 	error = filename_lookup(olddfd, old, how, &old_path, NULL);
4831 	if (error)
4832 		goto out_putnames;
4833 
4834 	new_dentry = filename_create(newdfd, new, &new_path,
4835 					(how & LOOKUP_REVAL));
4836 	error = PTR_ERR(new_dentry);
4837 	if (IS_ERR(new_dentry))
4838 		goto out_putpath;
4839 
4840 	error = -EXDEV;
4841 	if (old_path.mnt != new_path.mnt)
4842 		goto out_dput;
4843 	idmap = mnt_idmap(new_path.mnt);
4844 	error = may_linkat(idmap, &old_path);
4845 	if (unlikely(error))
4846 		goto out_dput;
4847 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4848 	if (error)
4849 		goto out_dput;
4850 	error = vfs_link(old_path.dentry, idmap, new_path.dentry->d_inode,
4851 			 new_dentry, &delegated_inode);
4852 out_dput:
4853 	done_path_create(&new_path, new_dentry);
4854 	if (delegated_inode) {
4855 		error = break_deleg_wait(&delegated_inode);
4856 		if (!error) {
4857 			path_put(&old_path);
4858 			goto retry;
4859 		}
4860 	}
4861 	if (retry_estale(error, how)) {
4862 		path_put(&old_path);
4863 		how |= LOOKUP_REVAL;
4864 		goto retry;
4865 	}
4866 out_putpath:
4867 	path_put(&old_path);
4868 out_putnames:
4869 	putname(old);
4870 	putname(new);
4871 
4872 	return error;
4873 }
4874 
4875 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4876 		int, newdfd, const char __user *, newname, int, flags)
4877 {
4878 	return do_linkat(olddfd, getname_uflags(oldname, flags),
4879 		newdfd, getname(newname), flags);
4880 }
4881 
4882 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4883 {
4884 	return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0);
4885 }
4886 
4887 /**
4888  * vfs_rename - rename a filesystem object
4889  * @rd:		pointer to &struct renamedata info
4890  *
4891  * The caller must hold multiple mutexes--see lock_rename()).
4892  *
4893  * If vfs_rename discovers a delegation in need of breaking at either
4894  * the source or destination, it will return -EWOULDBLOCK and return a
4895  * reference to the inode in delegated_inode.  The caller should then
4896  * break the delegation and retry.  Because breaking a delegation may
4897  * take a long time, the caller should drop all locks before doing
4898  * so.
4899  *
4900  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4901  * be appropriate for callers that expect the underlying filesystem not
4902  * to be NFS exported.
4903  *
4904  * The worst of all namespace operations - renaming directory. "Perverted"
4905  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4906  * Problems:
4907  *
4908  *	a) we can get into loop creation.
4909  *	b) race potential - two innocent renames can create a loop together.
4910  *	   That's where 4.4BSD screws up. Current fix: serialization on
4911  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4912  *	   story.
4913  *	c) we may have to lock up to _four_ objects - parents and victim (if it exists),
4914  *	   and source (if it's a non-directory or a subdirectory that moves to
4915  *	   different parent).
4916  *	   And that - after we got ->i_mutex on parents (until then we don't know
4917  *	   whether the target exists).  Solution: try to be smart with locking
4918  *	   order for inodes.  We rely on the fact that tree topology may change
4919  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4920  *	   move will be locked.  Thus we can rank directories by the tree
4921  *	   (ancestors first) and rank all non-directories after them.
4922  *	   That works since everybody except rename does "lock parent, lookup,
4923  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4924  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4925  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4926  *	   we'd better make sure that there's no link(2) for them.
4927  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4928  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4929  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4930  *	   ->i_mutex on parents, which works but leads to some truly excessive
4931  *	   locking].
4932  */
4933 int vfs_rename(struct renamedata *rd)
4934 {
4935 	int error;
4936 	struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir;
4937 	struct dentry *old_dentry = rd->old_dentry;
4938 	struct dentry *new_dentry = rd->new_dentry;
4939 	struct inode **delegated_inode = rd->delegated_inode;
4940 	unsigned int flags = rd->flags;
4941 	bool is_dir = d_is_dir(old_dentry);
4942 	struct inode *source = old_dentry->d_inode;
4943 	struct inode *target = new_dentry->d_inode;
4944 	bool new_is_dir = false;
4945 	unsigned max_links = new_dir->i_sb->s_max_links;
4946 	struct name_snapshot old_name;
4947 	bool lock_old_subdir, lock_new_subdir;
4948 
4949 	if (source == target)
4950 		return 0;
4951 
4952 	error = may_delete(rd->old_mnt_idmap, old_dir, old_dentry, is_dir);
4953 	if (error)
4954 		return error;
4955 
4956 	if (!target) {
4957 		error = may_create(rd->new_mnt_idmap, new_dir, new_dentry);
4958 	} else {
4959 		new_is_dir = d_is_dir(new_dentry);
4960 
4961 		if (!(flags & RENAME_EXCHANGE))
4962 			error = may_delete(rd->new_mnt_idmap, new_dir,
4963 					   new_dentry, is_dir);
4964 		else
4965 			error = may_delete(rd->new_mnt_idmap, new_dir,
4966 					   new_dentry, new_is_dir);
4967 	}
4968 	if (error)
4969 		return error;
4970 
4971 	if (!old_dir->i_op->rename)
4972 		return -EPERM;
4973 
4974 	/*
4975 	 * If we are going to change the parent - check write permissions,
4976 	 * we'll need to flip '..'.
4977 	 */
4978 	if (new_dir != old_dir) {
4979 		if (is_dir) {
4980 			error = inode_permission(rd->old_mnt_idmap, source,
4981 						 MAY_WRITE);
4982 			if (error)
4983 				return error;
4984 		}
4985 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4986 			error = inode_permission(rd->new_mnt_idmap, target,
4987 						 MAY_WRITE);
4988 			if (error)
4989 				return error;
4990 		}
4991 	}
4992 
4993 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4994 				      flags);
4995 	if (error)
4996 		return error;
4997 
4998 	take_dentry_name_snapshot(&old_name, old_dentry);
4999 	dget(new_dentry);
5000 	/*
5001 	 * Lock children.
5002 	 * The source subdirectory needs to be locked on cross-directory
5003 	 * rename or cross-directory exchange since its parent changes.
5004 	 * The target subdirectory needs to be locked on cross-directory
5005 	 * exchange due to parent change and on any rename due to becoming
5006 	 * a victim.
5007 	 * Non-directories need locking in all cases (for NFS reasons);
5008 	 * they get locked after any subdirectories (in inode address order).
5009 	 *
5010 	 * NOTE: WE ONLY LOCK UNRELATED DIRECTORIES IN CROSS-DIRECTORY CASE.
5011 	 * NEVER, EVER DO THAT WITHOUT ->s_vfs_rename_mutex.
5012 	 */
5013 	lock_old_subdir = new_dir != old_dir;
5014 	lock_new_subdir = new_dir != old_dir || !(flags & RENAME_EXCHANGE);
5015 	if (is_dir) {
5016 		if (lock_old_subdir)
5017 			inode_lock_nested(source, I_MUTEX_CHILD);
5018 		if (target && (!new_is_dir || lock_new_subdir))
5019 			inode_lock(target);
5020 	} else if (new_is_dir) {
5021 		if (lock_new_subdir)
5022 			inode_lock_nested(target, I_MUTEX_CHILD);
5023 		inode_lock(source);
5024 	} else {
5025 		lock_two_nondirectories(source, target);
5026 	}
5027 
5028 	error = -EPERM;
5029 	if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target)))
5030 		goto out;
5031 
5032 	error = -EBUSY;
5033 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
5034 		goto out;
5035 
5036 	if (max_links && new_dir != old_dir) {
5037 		error = -EMLINK;
5038 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
5039 			goto out;
5040 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
5041 		    old_dir->i_nlink >= max_links)
5042 			goto out;
5043 	}
5044 	if (!is_dir) {
5045 		error = try_break_deleg(source, delegated_inode);
5046 		if (error)
5047 			goto out;
5048 	}
5049 	if (target && !new_is_dir) {
5050 		error = try_break_deleg(target, delegated_inode);
5051 		if (error)
5052 			goto out;
5053 	}
5054 	error = old_dir->i_op->rename(rd->new_mnt_idmap, old_dir, old_dentry,
5055 				      new_dir, new_dentry, flags);
5056 	if (error)
5057 		goto out;
5058 
5059 	if (!(flags & RENAME_EXCHANGE) && target) {
5060 		if (is_dir) {
5061 			shrink_dcache_parent(new_dentry);
5062 			target->i_flags |= S_DEAD;
5063 		}
5064 		dont_mount(new_dentry);
5065 		detach_mounts(new_dentry);
5066 	}
5067 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
5068 		if (!(flags & RENAME_EXCHANGE))
5069 			d_move(old_dentry, new_dentry);
5070 		else
5071 			d_exchange(old_dentry, new_dentry);
5072 	}
5073 out:
5074 	if (!is_dir || lock_old_subdir)
5075 		inode_unlock(source);
5076 	if (target && (!new_is_dir || lock_new_subdir))
5077 		inode_unlock(target);
5078 	dput(new_dentry);
5079 	if (!error) {
5080 		fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
5081 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
5082 		if (flags & RENAME_EXCHANGE) {
5083 			fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
5084 				      new_is_dir, NULL, new_dentry);
5085 		}
5086 	}
5087 	release_dentry_name_snapshot(&old_name);
5088 
5089 	return error;
5090 }
5091 EXPORT_SYMBOL(vfs_rename);
5092 
5093 int do_renameat2(int olddfd, struct filename *from, int newdfd,
5094 		 struct filename *to, unsigned int flags)
5095 {
5096 	struct renamedata rd;
5097 	struct dentry *old_dentry, *new_dentry;
5098 	struct dentry *trap;
5099 	struct path old_path, new_path;
5100 	struct qstr old_last, new_last;
5101 	int old_type, new_type;
5102 	struct inode *delegated_inode = NULL;
5103 	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
5104 	bool should_retry = false;
5105 	int error = -EINVAL;
5106 
5107 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
5108 		goto put_names;
5109 
5110 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
5111 	    (flags & RENAME_EXCHANGE))
5112 		goto put_names;
5113 
5114 	if (flags & RENAME_EXCHANGE)
5115 		target_flags = 0;
5116 
5117 retry:
5118 	error = filename_parentat(olddfd, from, lookup_flags, &old_path,
5119 				  &old_last, &old_type);
5120 	if (error)
5121 		goto put_names;
5122 
5123 	error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
5124 				  &new_type);
5125 	if (error)
5126 		goto exit1;
5127 
5128 	error = -EXDEV;
5129 	if (old_path.mnt != new_path.mnt)
5130 		goto exit2;
5131 
5132 	error = -EBUSY;
5133 	if (old_type != LAST_NORM)
5134 		goto exit2;
5135 
5136 	if (flags & RENAME_NOREPLACE)
5137 		error = -EEXIST;
5138 	if (new_type != LAST_NORM)
5139 		goto exit2;
5140 
5141 	error = mnt_want_write(old_path.mnt);
5142 	if (error)
5143 		goto exit2;
5144 
5145 retry_deleg:
5146 	trap = lock_rename(new_path.dentry, old_path.dentry);
5147 	if (IS_ERR(trap)) {
5148 		error = PTR_ERR(trap);
5149 		goto exit_lock_rename;
5150 	}
5151 
5152 	old_dentry = lookup_one_qstr_excl(&old_last, old_path.dentry,
5153 					  lookup_flags);
5154 	error = PTR_ERR(old_dentry);
5155 	if (IS_ERR(old_dentry))
5156 		goto exit3;
5157 	/* source must exist */
5158 	error = -ENOENT;
5159 	if (d_is_negative(old_dentry))
5160 		goto exit4;
5161 	new_dentry = lookup_one_qstr_excl(&new_last, new_path.dentry,
5162 					  lookup_flags | target_flags);
5163 	error = PTR_ERR(new_dentry);
5164 	if (IS_ERR(new_dentry))
5165 		goto exit4;
5166 	error = -EEXIST;
5167 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
5168 		goto exit5;
5169 	if (flags & RENAME_EXCHANGE) {
5170 		error = -ENOENT;
5171 		if (d_is_negative(new_dentry))
5172 			goto exit5;
5173 
5174 		if (!d_is_dir(new_dentry)) {
5175 			error = -ENOTDIR;
5176 			if (new_last.name[new_last.len])
5177 				goto exit5;
5178 		}
5179 	}
5180 	/* unless the source is a directory trailing slashes give -ENOTDIR */
5181 	if (!d_is_dir(old_dentry)) {
5182 		error = -ENOTDIR;
5183 		if (old_last.name[old_last.len])
5184 			goto exit5;
5185 		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
5186 			goto exit5;
5187 	}
5188 	/* source should not be ancestor of target */
5189 	error = -EINVAL;
5190 	if (old_dentry == trap)
5191 		goto exit5;
5192 	/* target should not be an ancestor of source */
5193 	if (!(flags & RENAME_EXCHANGE))
5194 		error = -ENOTEMPTY;
5195 	if (new_dentry == trap)
5196 		goto exit5;
5197 
5198 	error = security_path_rename(&old_path, old_dentry,
5199 				     &new_path, new_dentry, flags);
5200 	if (error)
5201 		goto exit5;
5202 
5203 	rd.old_dir	   = old_path.dentry->d_inode;
5204 	rd.old_dentry	   = old_dentry;
5205 	rd.old_mnt_idmap   = mnt_idmap(old_path.mnt);
5206 	rd.new_dir	   = new_path.dentry->d_inode;
5207 	rd.new_dentry	   = new_dentry;
5208 	rd.new_mnt_idmap   = mnt_idmap(new_path.mnt);
5209 	rd.delegated_inode = &delegated_inode;
5210 	rd.flags	   = flags;
5211 	error = vfs_rename(&rd);
5212 exit5:
5213 	dput(new_dentry);
5214 exit4:
5215 	dput(old_dentry);
5216 exit3:
5217 	unlock_rename(new_path.dentry, old_path.dentry);
5218 exit_lock_rename:
5219 	if (delegated_inode) {
5220 		error = break_deleg_wait(&delegated_inode);
5221 		if (!error)
5222 			goto retry_deleg;
5223 	}
5224 	mnt_drop_write(old_path.mnt);
5225 exit2:
5226 	if (retry_estale(error, lookup_flags))
5227 		should_retry = true;
5228 	path_put(&new_path);
5229 exit1:
5230 	path_put(&old_path);
5231 	if (should_retry) {
5232 		should_retry = false;
5233 		lookup_flags |= LOOKUP_REVAL;
5234 		goto retry;
5235 	}
5236 put_names:
5237 	putname(from);
5238 	putname(to);
5239 	return error;
5240 }
5241 
5242 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
5243 		int, newdfd, const char __user *, newname, unsigned int, flags)
5244 {
5245 	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5246 				flags);
5247 }
5248 
5249 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
5250 		int, newdfd, const char __user *, newname)
5251 {
5252 	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5253 				0);
5254 }
5255 
5256 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
5257 {
5258 	return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
5259 				getname(newname), 0);
5260 }
5261 
5262 int readlink_copy(char __user *buffer, int buflen, const char *link)
5263 {
5264 	int len = PTR_ERR(link);
5265 	if (IS_ERR(link))
5266 		goto out;
5267 
5268 	len = strlen(link);
5269 	if (len > (unsigned) buflen)
5270 		len = buflen;
5271 	if (copy_to_user(buffer, link, len))
5272 		len = -EFAULT;
5273 out:
5274 	return len;
5275 }
5276 
5277 /**
5278  * vfs_readlink - copy symlink body into userspace buffer
5279  * @dentry: dentry on which to get symbolic link
5280  * @buffer: user memory pointer
5281  * @buflen: size of buffer
5282  *
5283  * Does not touch atime.  That's up to the caller if necessary
5284  *
5285  * Does not call security hook.
5286  */
5287 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5288 {
5289 	struct inode *inode = d_inode(dentry);
5290 	DEFINE_DELAYED_CALL(done);
5291 	const char *link;
5292 	int res;
5293 
5294 	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
5295 		if (unlikely(inode->i_op->readlink))
5296 			return inode->i_op->readlink(dentry, buffer, buflen);
5297 
5298 		if (!d_is_symlink(dentry))
5299 			return -EINVAL;
5300 
5301 		spin_lock(&inode->i_lock);
5302 		inode->i_opflags |= IOP_DEFAULT_READLINK;
5303 		spin_unlock(&inode->i_lock);
5304 	}
5305 
5306 	link = READ_ONCE(inode->i_link);
5307 	if (!link) {
5308 		link = inode->i_op->get_link(dentry, inode, &done);
5309 		if (IS_ERR(link))
5310 			return PTR_ERR(link);
5311 	}
5312 	res = readlink_copy(buffer, buflen, link);
5313 	do_delayed_call(&done);
5314 	return res;
5315 }
5316 EXPORT_SYMBOL(vfs_readlink);
5317 
5318 /**
5319  * vfs_get_link - get symlink body
5320  * @dentry: dentry on which to get symbolic link
5321  * @done: caller needs to free returned data with this
5322  *
5323  * Calls security hook and i_op->get_link() on the supplied inode.
5324  *
5325  * It does not touch atime.  That's up to the caller if necessary.
5326  *
5327  * Does not work on "special" symlinks like /proc/$$/fd/N
5328  */
5329 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
5330 {
5331 	const char *res = ERR_PTR(-EINVAL);
5332 	struct inode *inode = d_inode(dentry);
5333 
5334 	if (d_is_symlink(dentry)) {
5335 		res = ERR_PTR(security_inode_readlink(dentry));
5336 		if (!res)
5337 			res = inode->i_op->get_link(dentry, inode, done);
5338 	}
5339 	return res;
5340 }
5341 EXPORT_SYMBOL(vfs_get_link);
5342 
5343 /* get the link contents into pagecache */
5344 const char *page_get_link(struct dentry *dentry, struct inode *inode,
5345 			  struct delayed_call *callback)
5346 {
5347 	char *kaddr;
5348 	struct page *page;
5349 	struct address_space *mapping = inode->i_mapping;
5350 
5351 	if (!dentry) {
5352 		page = find_get_page(mapping, 0);
5353 		if (!page)
5354 			return ERR_PTR(-ECHILD);
5355 		if (!PageUptodate(page)) {
5356 			put_page(page);
5357 			return ERR_PTR(-ECHILD);
5358 		}
5359 	} else {
5360 		page = read_mapping_page(mapping, 0, NULL);
5361 		if (IS_ERR(page))
5362 			return (char*)page;
5363 	}
5364 	set_delayed_call(callback, page_put_link, page);
5365 	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
5366 	kaddr = page_address(page);
5367 	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
5368 	return kaddr;
5369 }
5370 
5371 EXPORT_SYMBOL(page_get_link);
5372 
5373 void page_put_link(void *arg)
5374 {
5375 	put_page(arg);
5376 }
5377 EXPORT_SYMBOL(page_put_link);
5378 
5379 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5380 {
5381 	DEFINE_DELAYED_CALL(done);
5382 	int res = readlink_copy(buffer, buflen,
5383 				page_get_link(dentry, d_inode(dentry),
5384 					      &done));
5385 	do_delayed_call(&done);
5386 	return res;
5387 }
5388 EXPORT_SYMBOL(page_readlink);
5389 
5390 int page_symlink(struct inode *inode, const char *symname, int len)
5391 {
5392 	struct address_space *mapping = inode->i_mapping;
5393 	const struct address_space_operations *aops = mapping->a_ops;
5394 	bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS);
5395 	struct folio *folio;
5396 	void *fsdata = NULL;
5397 	int err;
5398 	unsigned int flags;
5399 
5400 retry:
5401 	if (nofs)
5402 		flags = memalloc_nofs_save();
5403 	err = aops->write_begin(NULL, mapping, 0, len-1, &folio, &fsdata);
5404 	if (nofs)
5405 		memalloc_nofs_restore(flags);
5406 	if (err)
5407 		goto fail;
5408 
5409 	memcpy(folio_address(folio), symname, len - 1);
5410 
5411 	err = aops->write_end(NULL, mapping, 0, len - 1, len - 1,
5412 						folio, fsdata);
5413 	if (err < 0)
5414 		goto fail;
5415 	if (err < len-1)
5416 		goto retry;
5417 
5418 	mark_inode_dirty(inode);
5419 	return 0;
5420 fail:
5421 	return err;
5422 }
5423 EXPORT_SYMBOL(page_symlink);
5424 
5425 const struct inode_operations page_symlink_inode_operations = {
5426 	.get_link	= page_get_link,
5427 };
5428 EXPORT_SYMBOL(page_symlink_inode_operations);
5429