xref: /linux/fs/namei.c (revision 52ffe0ff02fc053a025c381d5808e9ecd3206dfe)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39 
40 #include "internal.h"
41 #include "mount.h"
42 
43 /* [Feb-1997 T. Schoebel-Theuer]
44  * Fundamental changes in the pathname lookup mechanisms (namei)
45  * were necessary because of omirr.  The reason is that omirr needs
46  * to know the _real_ pathname, not the user-supplied one, in case
47  * of symlinks (and also when transname replacements occur).
48  *
49  * The new code replaces the old recursive symlink resolution with
50  * an iterative one (in case of non-nested symlink chains).  It does
51  * this with calls to <fs>_follow_link().
52  * As a side effect, dir_namei(), _namei() and follow_link() are now
53  * replaced with a single function lookup_dentry() that can handle all
54  * the special cases of the former code.
55  *
56  * With the new dcache, the pathname is stored at each inode, at least as
57  * long as the refcount of the inode is positive.  As a side effect, the
58  * size of the dcache depends on the inode cache and thus is dynamic.
59  *
60  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61  * resolution to correspond with current state of the code.
62  *
63  * Note that the symlink resolution is not *completely* iterative.
64  * There is still a significant amount of tail- and mid- recursion in
65  * the algorithm.  Also, note that <fs>_readlink() is not used in
66  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67  * may return different results than <fs>_follow_link().  Many virtual
68  * filesystems (including /proc) exhibit this behavior.
69  */
70 
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73  * and the name already exists in form of a symlink, try to create the new
74  * name indicated by the symlink. The old code always complained that the
75  * name already exists, due to not following the symlink even if its target
76  * is nonexistent.  The new semantics affects also mknod() and link() when
77  * the name is a symlink pointing to a non-existent name.
78  *
79  * I don't know which semantics is the right one, since I have no access
80  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82  * "old" one. Personally, I think the new semantics is much more logical.
83  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84  * file does succeed in both HP-UX and SunOs, but not in Solaris
85  * and in the old Linux semantics.
86  */
87 
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89  * semantics.  See the comments in "open_namei" and "do_link" below.
90  *
91  * [10-Sep-98 Alan Modra] Another symlink change.
92  */
93 
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95  *	inside the path - always follow.
96  *	in the last component in creation/removal/renaming - never follow.
97  *	if LOOKUP_FOLLOW passed - follow.
98  *	if the pathname has trailing slashes - follow.
99  *	otherwise - don't follow.
100  * (applied in that order).
101  *
102  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104  * During the 2.4 we need to fix the userland stuff depending on it -
105  * hopefully we will be able to get rid of that wart in 2.5. So far only
106  * XEmacs seems to be relying on it...
107  */
108 /*
109  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
111  * any extra contention...
112  */
113 
114 /* In order to reduce some races, while at the same time doing additional
115  * checking and hopefully speeding things up, we copy filenames to the
116  * kernel data space before using them..
117  *
118  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119  * PATH_MAX includes the nul terminator --RR.
120  */
121 
122 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
123 
124 struct filename *
125 getname_flags(const char __user *filename, int flags, int *empty)
126 {
127 	struct filename *result;
128 	char *kname;
129 	int len;
130 
131 	result = audit_reusename(filename);
132 	if (result)
133 		return result;
134 
135 	result = __getname();
136 	if (unlikely(!result))
137 		return ERR_PTR(-ENOMEM);
138 
139 	/*
140 	 * First, try to embed the struct filename inside the names_cache
141 	 * allocation
142 	 */
143 	kname = (char *)result->iname;
144 	result->name = kname;
145 
146 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
147 	if (unlikely(len < 0)) {
148 		__putname(result);
149 		return ERR_PTR(len);
150 	}
151 
152 	/*
153 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
154 	 * separate struct filename so we can dedicate the entire
155 	 * names_cache allocation for the pathname, and re-do the copy from
156 	 * userland.
157 	 */
158 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
159 		const size_t size = offsetof(struct filename, iname[1]);
160 		kname = (char *)result;
161 
162 		/*
163 		 * size is chosen that way we to guarantee that
164 		 * result->iname[0] is within the same object and that
165 		 * kname can't be equal to result->iname, no matter what.
166 		 */
167 		result = kzalloc(size, GFP_KERNEL);
168 		if (unlikely(!result)) {
169 			__putname(kname);
170 			return ERR_PTR(-ENOMEM);
171 		}
172 		result->name = kname;
173 		len = strncpy_from_user(kname, filename, PATH_MAX);
174 		if (unlikely(len < 0)) {
175 			__putname(kname);
176 			kfree(result);
177 			return ERR_PTR(len);
178 		}
179 		if (unlikely(len == PATH_MAX)) {
180 			__putname(kname);
181 			kfree(result);
182 			return ERR_PTR(-ENAMETOOLONG);
183 		}
184 	}
185 
186 	result->refcnt = 1;
187 	/* The empty path is special. */
188 	if (unlikely(!len)) {
189 		if (empty)
190 			*empty = 1;
191 		if (!(flags & LOOKUP_EMPTY)) {
192 			putname(result);
193 			return ERR_PTR(-ENOENT);
194 		}
195 	}
196 
197 	result->uptr = filename;
198 	result->aname = NULL;
199 	audit_getname(result);
200 	return result;
201 }
202 
203 struct filename *
204 getname(const char __user * filename)
205 {
206 	return getname_flags(filename, 0, NULL);
207 }
208 
209 struct filename *
210 getname_kernel(const char * filename)
211 {
212 	struct filename *result;
213 	int len = strlen(filename) + 1;
214 
215 	result = __getname();
216 	if (unlikely(!result))
217 		return ERR_PTR(-ENOMEM);
218 
219 	if (len <= EMBEDDED_NAME_MAX) {
220 		result->name = (char *)result->iname;
221 	} else if (len <= PATH_MAX) {
222 		struct filename *tmp;
223 
224 		tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
225 		if (unlikely(!tmp)) {
226 			__putname(result);
227 			return ERR_PTR(-ENOMEM);
228 		}
229 		tmp->name = (char *)result;
230 		result = tmp;
231 	} else {
232 		__putname(result);
233 		return ERR_PTR(-ENAMETOOLONG);
234 	}
235 	memcpy((char *)result->name, filename, len);
236 	result->uptr = NULL;
237 	result->aname = NULL;
238 	result->refcnt = 1;
239 	audit_getname(result);
240 
241 	return result;
242 }
243 
244 void putname(struct filename *name)
245 {
246 	BUG_ON(name->refcnt <= 0);
247 
248 	if (--name->refcnt > 0)
249 		return;
250 
251 	if (name->name != name->iname) {
252 		__putname(name->name);
253 		kfree(name);
254 	} else
255 		__putname(name);
256 }
257 
258 static int check_acl(struct inode *inode, int mask)
259 {
260 #ifdef CONFIG_FS_POSIX_ACL
261 	struct posix_acl *acl;
262 
263 	if (mask & MAY_NOT_BLOCK) {
264 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
265 	        if (!acl)
266 	                return -EAGAIN;
267 		/* no ->get_acl() calls in RCU mode... */
268 		if (acl == ACL_NOT_CACHED)
269 			return -ECHILD;
270 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
271 	}
272 
273 	acl = get_acl(inode, ACL_TYPE_ACCESS);
274 	if (IS_ERR(acl))
275 		return PTR_ERR(acl);
276 	if (acl) {
277 	        int error = posix_acl_permission(inode, acl, mask);
278 	        posix_acl_release(acl);
279 	        return error;
280 	}
281 #endif
282 
283 	return -EAGAIN;
284 }
285 
286 /*
287  * This does the basic permission checking
288  */
289 static int acl_permission_check(struct inode *inode, int mask)
290 {
291 	unsigned int mode = inode->i_mode;
292 
293 	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
294 		mode >>= 6;
295 	else {
296 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
297 			int error = check_acl(inode, mask);
298 			if (error != -EAGAIN)
299 				return error;
300 		}
301 
302 		if (in_group_p(inode->i_gid))
303 			mode >>= 3;
304 	}
305 
306 	/*
307 	 * If the DACs are ok we don't need any capability check.
308 	 */
309 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
310 		return 0;
311 	return -EACCES;
312 }
313 
314 /**
315  * generic_permission -  check for access rights on a Posix-like filesystem
316  * @inode:	inode to check access rights for
317  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
318  *
319  * Used to check for read/write/execute permissions on a file.
320  * We use "fsuid" for this, letting us set arbitrary permissions
321  * for filesystem access without changing the "normal" uids which
322  * are used for other things.
323  *
324  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
325  * request cannot be satisfied (eg. requires blocking or too much complexity).
326  * It would then be called again in ref-walk mode.
327  */
328 int generic_permission(struct inode *inode, int mask)
329 {
330 	int ret;
331 
332 	/*
333 	 * Do the basic permission checks.
334 	 */
335 	ret = acl_permission_check(inode, mask);
336 	if (ret != -EACCES)
337 		return ret;
338 
339 	if (S_ISDIR(inode->i_mode)) {
340 		/* DACs are overridable for directories */
341 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
342 			return 0;
343 		if (!(mask & MAY_WRITE))
344 			if (capable_wrt_inode_uidgid(inode,
345 						     CAP_DAC_READ_SEARCH))
346 				return 0;
347 		return -EACCES;
348 	}
349 	/*
350 	 * Read/write DACs are always overridable.
351 	 * Executable DACs are overridable when there is
352 	 * at least one exec bit set.
353 	 */
354 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
355 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
356 			return 0;
357 
358 	/*
359 	 * Searching includes executable on directories, else just read.
360 	 */
361 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
362 	if (mask == MAY_READ)
363 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
364 			return 0;
365 
366 	return -EACCES;
367 }
368 EXPORT_SYMBOL(generic_permission);
369 
370 /*
371  * We _really_ want to just do "generic_permission()" without
372  * even looking at the inode->i_op values. So we keep a cache
373  * flag in inode->i_opflags, that says "this has not special
374  * permission function, use the fast case".
375  */
376 static inline int do_inode_permission(struct inode *inode, int mask)
377 {
378 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
379 		if (likely(inode->i_op->permission))
380 			return inode->i_op->permission(inode, mask);
381 
382 		/* This gets set once for the inode lifetime */
383 		spin_lock(&inode->i_lock);
384 		inode->i_opflags |= IOP_FASTPERM;
385 		spin_unlock(&inode->i_lock);
386 	}
387 	return generic_permission(inode, mask);
388 }
389 
390 /**
391  * __inode_permission - Check for access rights to a given inode
392  * @inode: Inode to check permission on
393  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
394  *
395  * Check for read/write/execute permissions on an inode.
396  *
397  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
398  *
399  * This does not check for a read-only file system.  You probably want
400  * inode_permission().
401  */
402 int __inode_permission(struct inode *inode, int mask)
403 {
404 	int retval;
405 
406 	if (unlikely(mask & MAY_WRITE)) {
407 		/*
408 		 * Nobody gets write access to an immutable file.
409 		 */
410 		if (IS_IMMUTABLE(inode))
411 			return -EACCES;
412 	}
413 
414 	retval = do_inode_permission(inode, mask);
415 	if (retval)
416 		return retval;
417 
418 	retval = devcgroup_inode_permission(inode, mask);
419 	if (retval)
420 		return retval;
421 
422 	return security_inode_permission(inode, mask);
423 }
424 EXPORT_SYMBOL(__inode_permission);
425 
426 /**
427  * sb_permission - Check superblock-level permissions
428  * @sb: Superblock of inode to check permission on
429  * @inode: Inode to check permission on
430  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431  *
432  * Separate out file-system wide checks from inode-specific permission checks.
433  */
434 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
435 {
436 	if (unlikely(mask & MAY_WRITE)) {
437 		umode_t mode = inode->i_mode;
438 
439 		/* Nobody gets write access to a read-only fs. */
440 		if ((sb->s_flags & MS_RDONLY) &&
441 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
442 			return -EROFS;
443 	}
444 	return 0;
445 }
446 
447 /**
448  * inode_permission - Check for access rights to a given inode
449  * @inode: Inode to check permission on
450  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
451  *
452  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
453  * this, letting us set arbitrary permissions for filesystem access without
454  * changing the "normal" UIDs which are used for other things.
455  *
456  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
457  */
458 int inode_permission(struct inode *inode, int mask)
459 {
460 	int retval;
461 
462 	retval = sb_permission(inode->i_sb, inode, mask);
463 	if (retval)
464 		return retval;
465 	return __inode_permission(inode, mask);
466 }
467 EXPORT_SYMBOL(inode_permission);
468 
469 /**
470  * path_get - get a reference to a path
471  * @path: path to get the reference to
472  *
473  * Given a path increment the reference count to the dentry and the vfsmount.
474  */
475 void path_get(const struct path *path)
476 {
477 	mntget(path->mnt);
478 	dget(path->dentry);
479 }
480 EXPORT_SYMBOL(path_get);
481 
482 /**
483  * path_put - put a reference to a path
484  * @path: path to put the reference to
485  *
486  * Given a path decrement the reference count to the dentry and the vfsmount.
487  */
488 void path_put(const struct path *path)
489 {
490 	dput(path->dentry);
491 	mntput(path->mnt);
492 }
493 EXPORT_SYMBOL(path_put);
494 
495 #define EMBEDDED_LEVELS 2
496 struct nameidata {
497 	struct path	path;
498 	struct qstr	last;
499 	struct path	root;
500 	struct inode	*inode; /* path.dentry.d_inode */
501 	unsigned int	flags;
502 	unsigned	seq, m_seq;
503 	int		last_type;
504 	unsigned	depth;
505 	int		total_link_count;
506 	struct saved {
507 		struct path link;
508 		struct delayed_call done;
509 		const char *name;
510 		unsigned seq;
511 	} *stack, internal[EMBEDDED_LEVELS];
512 	struct filename	*name;
513 	struct nameidata *saved;
514 	struct inode	*link_inode;
515 	unsigned	root_seq;
516 	int		dfd;
517 };
518 
519 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
520 {
521 	struct nameidata *old = current->nameidata;
522 	p->stack = p->internal;
523 	p->dfd = dfd;
524 	p->name = name;
525 	p->total_link_count = old ? old->total_link_count : 0;
526 	p->saved = old;
527 	current->nameidata = p;
528 }
529 
530 static void restore_nameidata(void)
531 {
532 	struct nameidata *now = current->nameidata, *old = now->saved;
533 
534 	current->nameidata = old;
535 	if (old)
536 		old->total_link_count = now->total_link_count;
537 	if (now->stack != now->internal)
538 		kfree(now->stack);
539 }
540 
541 static int __nd_alloc_stack(struct nameidata *nd)
542 {
543 	struct saved *p;
544 
545 	if (nd->flags & LOOKUP_RCU) {
546 		p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
547 				  GFP_ATOMIC);
548 		if (unlikely(!p))
549 			return -ECHILD;
550 	} else {
551 		p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
552 				  GFP_KERNEL);
553 		if (unlikely(!p))
554 			return -ENOMEM;
555 	}
556 	memcpy(p, nd->internal, sizeof(nd->internal));
557 	nd->stack = p;
558 	return 0;
559 }
560 
561 /**
562  * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
563  * @path: nameidate to verify
564  *
565  * Rename can sometimes move a file or directory outside of a bind
566  * mount, path_connected allows those cases to be detected.
567  */
568 static bool path_connected(const struct path *path)
569 {
570 	struct vfsmount *mnt = path->mnt;
571 
572 	/* Only bind mounts can have disconnected paths */
573 	if (mnt->mnt_root == mnt->mnt_sb->s_root)
574 		return true;
575 
576 	return is_subdir(path->dentry, mnt->mnt_root);
577 }
578 
579 static inline int nd_alloc_stack(struct nameidata *nd)
580 {
581 	if (likely(nd->depth != EMBEDDED_LEVELS))
582 		return 0;
583 	if (likely(nd->stack != nd->internal))
584 		return 0;
585 	return __nd_alloc_stack(nd);
586 }
587 
588 static void drop_links(struct nameidata *nd)
589 {
590 	int i = nd->depth;
591 	while (i--) {
592 		struct saved *last = nd->stack + i;
593 		do_delayed_call(&last->done);
594 		clear_delayed_call(&last->done);
595 	}
596 }
597 
598 static void terminate_walk(struct nameidata *nd)
599 {
600 	drop_links(nd);
601 	if (!(nd->flags & LOOKUP_RCU)) {
602 		int i;
603 		path_put(&nd->path);
604 		for (i = 0; i < nd->depth; i++)
605 			path_put(&nd->stack[i].link);
606 		if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
607 			path_put(&nd->root);
608 			nd->root.mnt = NULL;
609 		}
610 	} else {
611 		nd->flags &= ~LOOKUP_RCU;
612 		if (!(nd->flags & LOOKUP_ROOT))
613 			nd->root.mnt = NULL;
614 		rcu_read_unlock();
615 	}
616 	nd->depth = 0;
617 }
618 
619 /* path_put is needed afterwards regardless of success or failure */
620 static bool legitimize_path(struct nameidata *nd,
621 			    struct path *path, unsigned seq)
622 {
623 	int res = __legitimize_mnt(path->mnt, nd->m_seq);
624 	if (unlikely(res)) {
625 		if (res > 0)
626 			path->mnt = NULL;
627 		path->dentry = NULL;
628 		return false;
629 	}
630 	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
631 		path->dentry = NULL;
632 		return false;
633 	}
634 	return !read_seqcount_retry(&path->dentry->d_seq, seq);
635 }
636 
637 static bool legitimize_links(struct nameidata *nd)
638 {
639 	int i;
640 	for (i = 0; i < nd->depth; i++) {
641 		struct saved *last = nd->stack + i;
642 		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
643 			drop_links(nd);
644 			nd->depth = i + 1;
645 			return false;
646 		}
647 	}
648 	return true;
649 }
650 
651 /*
652  * Path walking has 2 modes, rcu-walk and ref-walk (see
653  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
654  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
655  * normal reference counts on dentries and vfsmounts to transition to ref-walk
656  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
657  * got stuck, so ref-walk may continue from there. If this is not successful
658  * (eg. a seqcount has changed), then failure is returned and it's up to caller
659  * to restart the path walk from the beginning in ref-walk mode.
660  */
661 
662 /**
663  * unlazy_walk - try to switch to ref-walk mode.
664  * @nd: nameidata pathwalk data
665  * @dentry: child of nd->path.dentry or NULL
666  * @seq: seq number to check dentry against
667  * Returns: 0 on success, -ECHILD on failure
668  *
669  * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
670  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
671  * @nd or NULL.  Must be called from rcu-walk context.
672  * Nothing should touch nameidata between unlazy_walk() failure and
673  * terminate_walk().
674  */
675 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq)
676 {
677 	struct dentry *parent = nd->path.dentry;
678 
679 	BUG_ON(!(nd->flags & LOOKUP_RCU));
680 
681 	nd->flags &= ~LOOKUP_RCU;
682 	if (unlikely(!legitimize_links(nd)))
683 		goto out2;
684 	if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
685 		goto out2;
686 	if (unlikely(!lockref_get_not_dead(&parent->d_lockref)))
687 		goto out1;
688 
689 	/*
690 	 * For a negative lookup, the lookup sequence point is the parents
691 	 * sequence point, and it only needs to revalidate the parent dentry.
692 	 *
693 	 * For a positive lookup, we need to move both the parent and the
694 	 * dentry from the RCU domain to be properly refcounted. And the
695 	 * sequence number in the dentry validates *both* dentry counters,
696 	 * since we checked the sequence number of the parent after we got
697 	 * the child sequence number. So we know the parent must still
698 	 * be valid if the child sequence number is still valid.
699 	 */
700 	if (!dentry) {
701 		if (read_seqcount_retry(&parent->d_seq, nd->seq))
702 			goto out;
703 		BUG_ON(nd->inode != parent->d_inode);
704 	} else {
705 		if (!lockref_get_not_dead(&dentry->d_lockref))
706 			goto out;
707 		if (read_seqcount_retry(&dentry->d_seq, seq))
708 			goto drop_dentry;
709 	}
710 
711 	/*
712 	 * Sequence counts matched. Now make sure that the root is
713 	 * still valid and get it if required.
714 	 */
715 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
716 		if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
717 			rcu_read_unlock();
718 			dput(dentry);
719 			return -ECHILD;
720 		}
721 	}
722 
723 	rcu_read_unlock();
724 	return 0;
725 
726 drop_dentry:
727 	rcu_read_unlock();
728 	dput(dentry);
729 	goto drop_root_mnt;
730 out2:
731 	nd->path.mnt = NULL;
732 out1:
733 	nd->path.dentry = NULL;
734 out:
735 	rcu_read_unlock();
736 drop_root_mnt:
737 	if (!(nd->flags & LOOKUP_ROOT))
738 		nd->root.mnt = NULL;
739 	return -ECHILD;
740 }
741 
742 static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq)
743 {
744 	if (unlikely(!legitimize_path(nd, link, seq))) {
745 		drop_links(nd);
746 		nd->depth = 0;
747 		nd->flags &= ~LOOKUP_RCU;
748 		nd->path.mnt = NULL;
749 		nd->path.dentry = NULL;
750 		if (!(nd->flags & LOOKUP_ROOT))
751 			nd->root.mnt = NULL;
752 		rcu_read_unlock();
753 	} else if (likely(unlazy_walk(nd, NULL, 0)) == 0) {
754 		return 0;
755 	}
756 	path_put(link);
757 	return -ECHILD;
758 }
759 
760 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
761 {
762 	return dentry->d_op->d_revalidate(dentry, flags);
763 }
764 
765 /**
766  * complete_walk - successful completion of path walk
767  * @nd:  pointer nameidata
768  *
769  * If we had been in RCU mode, drop out of it and legitimize nd->path.
770  * Revalidate the final result, unless we'd already done that during
771  * the path walk or the filesystem doesn't ask for it.  Return 0 on
772  * success, -error on failure.  In case of failure caller does not
773  * need to drop nd->path.
774  */
775 static int complete_walk(struct nameidata *nd)
776 {
777 	struct dentry *dentry = nd->path.dentry;
778 	int status;
779 
780 	if (nd->flags & LOOKUP_RCU) {
781 		if (!(nd->flags & LOOKUP_ROOT))
782 			nd->root.mnt = NULL;
783 		if (unlikely(unlazy_walk(nd, NULL, 0)))
784 			return -ECHILD;
785 	}
786 
787 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
788 		return 0;
789 
790 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
791 		return 0;
792 
793 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
794 	if (status > 0)
795 		return 0;
796 
797 	if (!status)
798 		status = -ESTALE;
799 
800 	return status;
801 }
802 
803 static void set_root(struct nameidata *nd)
804 {
805 	struct fs_struct *fs = current->fs;
806 
807 	if (nd->flags & LOOKUP_RCU) {
808 		unsigned seq;
809 
810 		do {
811 			seq = read_seqcount_begin(&fs->seq);
812 			nd->root = fs->root;
813 			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
814 		} while (read_seqcount_retry(&fs->seq, seq));
815 	} else {
816 		get_fs_root(fs, &nd->root);
817 	}
818 }
819 
820 static void path_put_conditional(struct path *path, struct nameidata *nd)
821 {
822 	dput(path->dentry);
823 	if (path->mnt != nd->path.mnt)
824 		mntput(path->mnt);
825 }
826 
827 static inline void path_to_nameidata(const struct path *path,
828 					struct nameidata *nd)
829 {
830 	if (!(nd->flags & LOOKUP_RCU)) {
831 		dput(nd->path.dentry);
832 		if (nd->path.mnt != path->mnt)
833 			mntput(nd->path.mnt);
834 	}
835 	nd->path.mnt = path->mnt;
836 	nd->path.dentry = path->dentry;
837 }
838 
839 static int nd_jump_root(struct nameidata *nd)
840 {
841 	if (nd->flags & LOOKUP_RCU) {
842 		struct dentry *d;
843 		nd->path = nd->root;
844 		d = nd->path.dentry;
845 		nd->inode = d->d_inode;
846 		nd->seq = nd->root_seq;
847 		if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
848 			return -ECHILD;
849 	} else {
850 		path_put(&nd->path);
851 		nd->path = nd->root;
852 		path_get(&nd->path);
853 		nd->inode = nd->path.dentry->d_inode;
854 	}
855 	nd->flags |= LOOKUP_JUMPED;
856 	return 0;
857 }
858 
859 /*
860  * Helper to directly jump to a known parsed path from ->get_link,
861  * caller must have taken a reference to path beforehand.
862  */
863 void nd_jump_link(struct path *path)
864 {
865 	struct nameidata *nd = current->nameidata;
866 	path_put(&nd->path);
867 
868 	nd->path = *path;
869 	nd->inode = nd->path.dentry->d_inode;
870 	nd->flags |= LOOKUP_JUMPED;
871 }
872 
873 static inline void put_link(struct nameidata *nd)
874 {
875 	struct saved *last = nd->stack + --nd->depth;
876 	do_delayed_call(&last->done);
877 	if (!(nd->flags & LOOKUP_RCU))
878 		path_put(&last->link);
879 }
880 
881 int sysctl_protected_symlinks __read_mostly = 0;
882 int sysctl_protected_hardlinks __read_mostly = 0;
883 
884 /**
885  * may_follow_link - Check symlink following for unsafe situations
886  * @nd: nameidata pathwalk data
887  *
888  * In the case of the sysctl_protected_symlinks sysctl being enabled,
889  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
890  * in a sticky world-writable directory. This is to protect privileged
891  * processes from failing races against path names that may change out
892  * from under them by way of other users creating malicious symlinks.
893  * It will permit symlinks to be followed only when outside a sticky
894  * world-writable directory, or when the uid of the symlink and follower
895  * match, or when the directory owner matches the symlink's owner.
896  *
897  * Returns 0 if following the symlink is allowed, -ve on error.
898  */
899 static inline int may_follow_link(struct nameidata *nd)
900 {
901 	const struct inode *inode;
902 	const struct inode *parent;
903 
904 	if (!sysctl_protected_symlinks)
905 		return 0;
906 
907 	/* Allowed if owner and follower match. */
908 	inode = nd->link_inode;
909 	if (uid_eq(current_cred()->fsuid, inode->i_uid))
910 		return 0;
911 
912 	/* Allowed if parent directory not sticky and world-writable. */
913 	parent = nd->inode;
914 	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
915 		return 0;
916 
917 	/* Allowed if parent directory and link owner match. */
918 	if (uid_eq(parent->i_uid, inode->i_uid))
919 		return 0;
920 
921 	if (nd->flags & LOOKUP_RCU)
922 		return -ECHILD;
923 
924 	audit_log_link_denied("follow_link", &nd->stack[0].link);
925 	return -EACCES;
926 }
927 
928 /**
929  * safe_hardlink_source - Check for safe hardlink conditions
930  * @inode: the source inode to hardlink from
931  *
932  * Return false if at least one of the following conditions:
933  *    - inode is not a regular file
934  *    - inode is setuid
935  *    - inode is setgid and group-exec
936  *    - access failure for read and write
937  *
938  * Otherwise returns true.
939  */
940 static bool safe_hardlink_source(struct inode *inode)
941 {
942 	umode_t mode = inode->i_mode;
943 
944 	/* Special files should not get pinned to the filesystem. */
945 	if (!S_ISREG(mode))
946 		return false;
947 
948 	/* Setuid files should not get pinned to the filesystem. */
949 	if (mode & S_ISUID)
950 		return false;
951 
952 	/* Executable setgid files should not get pinned to the filesystem. */
953 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
954 		return false;
955 
956 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
957 	if (inode_permission(inode, MAY_READ | MAY_WRITE))
958 		return false;
959 
960 	return true;
961 }
962 
963 /**
964  * may_linkat - Check permissions for creating a hardlink
965  * @link: the source to hardlink from
966  *
967  * Block hardlink when all of:
968  *  - sysctl_protected_hardlinks enabled
969  *  - fsuid does not match inode
970  *  - hardlink source is unsafe (see safe_hardlink_source() above)
971  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
972  *
973  * Returns 0 if successful, -ve on error.
974  */
975 static int may_linkat(struct path *link)
976 {
977 	struct inode *inode;
978 
979 	if (!sysctl_protected_hardlinks)
980 		return 0;
981 
982 	inode = link->dentry->d_inode;
983 
984 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
985 	 * otherwise, it must be a safe source.
986 	 */
987 	if (inode_owner_or_capable(inode) || safe_hardlink_source(inode))
988 		return 0;
989 
990 	audit_log_link_denied("linkat", link);
991 	return -EPERM;
992 }
993 
994 static __always_inline
995 const char *get_link(struct nameidata *nd)
996 {
997 	struct saved *last = nd->stack + nd->depth - 1;
998 	struct dentry *dentry = last->link.dentry;
999 	struct inode *inode = nd->link_inode;
1000 	int error;
1001 	const char *res;
1002 
1003 	if (!(nd->flags & LOOKUP_RCU)) {
1004 		touch_atime(&last->link);
1005 		cond_resched();
1006 	} else if (atime_needs_update(&last->link, inode)) {
1007 		if (unlikely(unlazy_walk(nd, NULL, 0)))
1008 			return ERR_PTR(-ECHILD);
1009 		touch_atime(&last->link);
1010 	}
1011 
1012 	error = security_inode_follow_link(dentry, inode,
1013 					   nd->flags & LOOKUP_RCU);
1014 	if (unlikely(error))
1015 		return ERR_PTR(error);
1016 
1017 	nd->last_type = LAST_BIND;
1018 	res = inode->i_link;
1019 	if (!res) {
1020 		const char * (*get)(struct dentry *, struct inode *,
1021 				struct delayed_call *);
1022 		get = inode->i_op->get_link;
1023 		if (nd->flags & LOOKUP_RCU) {
1024 			res = get(NULL, inode, &last->done);
1025 			if (res == ERR_PTR(-ECHILD)) {
1026 				if (unlikely(unlazy_walk(nd, NULL, 0)))
1027 					return ERR_PTR(-ECHILD);
1028 				res = get(dentry, inode, &last->done);
1029 			}
1030 		} else {
1031 			res = get(dentry, inode, &last->done);
1032 		}
1033 		if (IS_ERR_OR_NULL(res))
1034 			return res;
1035 	}
1036 	if (*res == '/') {
1037 		if (!nd->root.mnt)
1038 			set_root(nd);
1039 		if (unlikely(nd_jump_root(nd)))
1040 			return ERR_PTR(-ECHILD);
1041 		while (unlikely(*++res == '/'))
1042 			;
1043 	}
1044 	if (!*res)
1045 		res = NULL;
1046 	return res;
1047 }
1048 
1049 /*
1050  * follow_up - Find the mountpoint of path's vfsmount
1051  *
1052  * Given a path, find the mountpoint of its source file system.
1053  * Replace @path with the path of the mountpoint in the parent mount.
1054  * Up is towards /.
1055  *
1056  * Return 1 if we went up a level and 0 if we were already at the
1057  * root.
1058  */
1059 int follow_up(struct path *path)
1060 {
1061 	struct mount *mnt = real_mount(path->mnt);
1062 	struct mount *parent;
1063 	struct dentry *mountpoint;
1064 
1065 	read_seqlock_excl(&mount_lock);
1066 	parent = mnt->mnt_parent;
1067 	if (parent == mnt) {
1068 		read_sequnlock_excl(&mount_lock);
1069 		return 0;
1070 	}
1071 	mntget(&parent->mnt);
1072 	mountpoint = dget(mnt->mnt_mountpoint);
1073 	read_sequnlock_excl(&mount_lock);
1074 	dput(path->dentry);
1075 	path->dentry = mountpoint;
1076 	mntput(path->mnt);
1077 	path->mnt = &parent->mnt;
1078 	return 1;
1079 }
1080 EXPORT_SYMBOL(follow_up);
1081 
1082 /*
1083  * Perform an automount
1084  * - return -EISDIR to tell follow_managed() to stop and return the path we
1085  *   were called with.
1086  */
1087 static int follow_automount(struct path *path, struct nameidata *nd,
1088 			    bool *need_mntput)
1089 {
1090 	struct vfsmount *mnt;
1091 	int err;
1092 
1093 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1094 		return -EREMOTE;
1095 
1096 	/* We don't want to mount if someone's just doing a stat -
1097 	 * unless they're stat'ing a directory and appended a '/' to
1098 	 * the name.
1099 	 *
1100 	 * We do, however, want to mount if someone wants to open or
1101 	 * create a file of any type under the mountpoint, wants to
1102 	 * traverse through the mountpoint or wants to open the
1103 	 * mounted directory.  Also, autofs may mark negative dentries
1104 	 * as being automount points.  These will need the attentions
1105 	 * of the daemon to instantiate them before they can be used.
1106 	 */
1107 	if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1108 			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1109 	    path->dentry->d_inode)
1110 		return -EISDIR;
1111 
1112 	nd->total_link_count++;
1113 	if (nd->total_link_count >= 40)
1114 		return -ELOOP;
1115 
1116 	mnt = path->dentry->d_op->d_automount(path);
1117 	if (IS_ERR(mnt)) {
1118 		/*
1119 		 * The filesystem is allowed to return -EISDIR here to indicate
1120 		 * it doesn't want to automount.  For instance, autofs would do
1121 		 * this so that its userspace daemon can mount on this dentry.
1122 		 *
1123 		 * However, we can only permit this if it's a terminal point in
1124 		 * the path being looked up; if it wasn't then the remainder of
1125 		 * the path is inaccessible and we should say so.
1126 		 */
1127 		if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1128 			return -EREMOTE;
1129 		return PTR_ERR(mnt);
1130 	}
1131 
1132 	if (!mnt) /* mount collision */
1133 		return 0;
1134 
1135 	if (!*need_mntput) {
1136 		/* lock_mount() may release path->mnt on error */
1137 		mntget(path->mnt);
1138 		*need_mntput = true;
1139 	}
1140 	err = finish_automount(mnt, path);
1141 
1142 	switch (err) {
1143 	case -EBUSY:
1144 		/* Someone else made a mount here whilst we were busy */
1145 		return 0;
1146 	case 0:
1147 		path_put(path);
1148 		path->mnt = mnt;
1149 		path->dentry = dget(mnt->mnt_root);
1150 		return 0;
1151 	default:
1152 		return err;
1153 	}
1154 
1155 }
1156 
1157 /*
1158  * Handle a dentry that is managed in some way.
1159  * - Flagged for transit management (autofs)
1160  * - Flagged as mountpoint
1161  * - Flagged as automount point
1162  *
1163  * This may only be called in refwalk mode.
1164  *
1165  * Serialization is taken care of in namespace.c
1166  */
1167 static int follow_managed(struct path *path, struct nameidata *nd)
1168 {
1169 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1170 	unsigned managed;
1171 	bool need_mntput = false;
1172 	int ret = 0;
1173 
1174 	/* Given that we're not holding a lock here, we retain the value in a
1175 	 * local variable for each dentry as we look at it so that we don't see
1176 	 * the components of that value change under us */
1177 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1178 	       managed &= DCACHE_MANAGED_DENTRY,
1179 	       unlikely(managed != 0)) {
1180 		/* Allow the filesystem to manage the transit without i_mutex
1181 		 * being held. */
1182 		if (managed & DCACHE_MANAGE_TRANSIT) {
1183 			BUG_ON(!path->dentry->d_op);
1184 			BUG_ON(!path->dentry->d_op->d_manage);
1185 			ret = path->dentry->d_op->d_manage(path->dentry, false);
1186 			if (ret < 0)
1187 				break;
1188 		}
1189 
1190 		/* Transit to a mounted filesystem. */
1191 		if (managed & DCACHE_MOUNTED) {
1192 			struct vfsmount *mounted = lookup_mnt(path);
1193 			if (mounted) {
1194 				dput(path->dentry);
1195 				if (need_mntput)
1196 					mntput(path->mnt);
1197 				path->mnt = mounted;
1198 				path->dentry = dget(mounted->mnt_root);
1199 				need_mntput = true;
1200 				continue;
1201 			}
1202 
1203 			/* Something is mounted on this dentry in another
1204 			 * namespace and/or whatever was mounted there in this
1205 			 * namespace got unmounted before lookup_mnt() could
1206 			 * get it */
1207 		}
1208 
1209 		/* Handle an automount point */
1210 		if (managed & DCACHE_NEED_AUTOMOUNT) {
1211 			ret = follow_automount(path, nd, &need_mntput);
1212 			if (ret < 0)
1213 				break;
1214 			continue;
1215 		}
1216 
1217 		/* We didn't change the current path point */
1218 		break;
1219 	}
1220 
1221 	if (need_mntput && path->mnt == mnt)
1222 		mntput(path->mnt);
1223 	if (ret == -EISDIR || !ret)
1224 		ret = 1;
1225 	if (need_mntput)
1226 		nd->flags |= LOOKUP_JUMPED;
1227 	if (unlikely(ret < 0))
1228 		path_put_conditional(path, nd);
1229 	return ret;
1230 }
1231 
1232 int follow_down_one(struct path *path)
1233 {
1234 	struct vfsmount *mounted;
1235 
1236 	mounted = lookup_mnt(path);
1237 	if (mounted) {
1238 		dput(path->dentry);
1239 		mntput(path->mnt);
1240 		path->mnt = mounted;
1241 		path->dentry = dget(mounted->mnt_root);
1242 		return 1;
1243 	}
1244 	return 0;
1245 }
1246 EXPORT_SYMBOL(follow_down_one);
1247 
1248 static inline int managed_dentry_rcu(struct dentry *dentry)
1249 {
1250 	return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1251 		dentry->d_op->d_manage(dentry, true) : 0;
1252 }
1253 
1254 /*
1255  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1256  * we meet a managed dentry that would need blocking.
1257  */
1258 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1259 			       struct inode **inode, unsigned *seqp)
1260 {
1261 	for (;;) {
1262 		struct mount *mounted;
1263 		/*
1264 		 * Don't forget we might have a non-mountpoint managed dentry
1265 		 * that wants to block transit.
1266 		 */
1267 		switch (managed_dentry_rcu(path->dentry)) {
1268 		case -ECHILD:
1269 		default:
1270 			return false;
1271 		case -EISDIR:
1272 			return true;
1273 		case 0:
1274 			break;
1275 		}
1276 
1277 		if (!d_mountpoint(path->dentry))
1278 			return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1279 
1280 		mounted = __lookup_mnt(path->mnt, path->dentry);
1281 		if (!mounted)
1282 			break;
1283 		path->mnt = &mounted->mnt;
1284 		path->dentry = mounted->mnt.mnt_root;
1285 		nd->flags |= LOOKUP_JUMPED;
1286 		*seqp = read_seqcount_begin(&path->dentry->d_seq);
1287 		/*
1288 		 * Update the inode too. We don't need to re-check the
1289 		 * dentry sequence number here after this d_inode read,
1290 		 * because a mount-point is always pinned.
1291 		 */
1292 		*inode = path->dentry->d_inode;
1293 	}
1294 	return !read_seqretry(&mount_lock, nd->m_seq) &&
1295 		!(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1296 }
1297 
1298 static int follow_dotdot_rcu(struct nameidata *nd)
1299 {
1300 	struct inode *inode = nd->inode;
1301 
1302 	while (1) {
1303 		if (path_equal(&nd->path, &nd->root))
1304 			break;
1305 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1306 			struct dentry *old = nd->path.dentry;
1307 			struct dentry *parent = old->d_parent;
1308 			unsigned seq;
1309 
1310 			inode = parent->d_inode;
1311 			seq = read_seqcount_begin(&parent->d_seq);
1312 			if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1313 				return -ECHILD;
1314 			nd->path.dentry = parent;
1315 			nd->seq = seq;
1316 			if (unlikely(!path_connected(&nd->path)))
1317 				return -ENOENT;
1318 			break;
1319 		} else {
1320 			struct mount *mnt = real_mount(nd->path.mnt);
1321 			struct mount *mparent = mnt->mnt_parent;
1322 			struct dentry *mountpoint = mnt->mnt_mountpoint;
1323 			struct inode *inode2 = mountpoint->d_inode;
1324 			unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1325 			if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1326 				return -ECHILD;
1327 			if (&mparent->mnt == nd->path.mnt)
1328 				break;
1329 			/* we know that mountpoint was pinned */
1330 			nd->path.dentry = mountpoint;
1331 			nd->path.mnt = &mparent->mnt;
1332 			inode = inode2;
1333 			nd->seq = seq;
1334 		}
1335 	}
1336 	while (unlikely(d_mountpoint(nd->path.dentry))) {
1337 		struct mount *mounted;
1338 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1339 		if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1340 			return -ECHILD;
1341 		if (!mounted)
1342 			break;
1343 		nd->path.mnt = &mounted->mnt;
1344 		nd->path.dentry = mounted->mnt.mnt_root;
1345 		inode = nd->path.dentry->d_inode;
1346 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1347 	}
1348 	nd->inode = inode;
1349 	return 0;
1350 }
1351 
1352 /*
1353  * Follow down to the covering mount currently visible to userspace.  At each
1354  * point, the filesystem owning that dentry may be queried as to whether the
1355  * caller is permitted to proceed or not.
1356  */
1357 int follow_down(struct path *path)
1358 {
1359 	unsigned managed;
1360 	int ret;
1361 
1362 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1363 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1364 		/* Allow the filesystem to manage the transit without i_mutex
1365 		 * being held.
1366 		 *
1367 		 * We indicate to the filesystem if someone is trying to mount
1368 		 * something here.  This gives autofs the chance to deny anyone
1369 		 * other than its daemon the right to mount on its
1370 		 * superstructure.
1371 		 *
1372 		 * The filesystem may sleep at this point.
1373 		 */
1374 		if (managed & DCACHE_MANAGE_TRANSIT) {
1375 			BUG_ON(!path->dentry->d_op);
1376 			BUG_ON(!path->dentry->d_op->d_manage);
1377 			ret = path->dentry->d_op->d_manage(
1378 				path->dentry, false);
1379 			if (ret < 0)
1380 				return ret == -EISDIR ? 0 : ret;
1381 		}
1382 
1383 		/* Transit to a mounted filesystem. */
1384 		if (managed & DCACHE_MOUNTED) {
1385 			struct vfsmount *mounted = lookup_mnt(path);
1386 			if (!mounted)
1387 				break;
1388 			dput(path->dentry);
1389 			mntput(path->mnt);
1390 			path->mnt = mounted;
1391 			path->dentry = dget(mounted->mnt_root);
1392 			continue;
1393 		}
1394 
1395 		/* Don't handle automount points here */
1396 		break;
1397 	}
1398 	return 0;
1399 }
1400 EXPORT_SYMBOL(follow_down);
1401 
1402 /*
1403  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1404  */
1405 static void follow_mount(struct path *path)
1406 {
1407 	while (d_mountpoint(path->dentry)) {
1408 		struct vfsmount *mounted = lookup_mnt(path);
1409 		if (!mounted)
1410 			break;
1411 		dput(path->dentry);
1412 		mntput(path->mnt);
1413 		path->mnt = mounted;
1414 		path->dentry = dget(mounted->mnt_root);
1415 	}
1416 }
1417 
1418 static int follow_dotdot(struct nameidata *nd)
1419 {
1420 	while(1) {
1421 		struct dentry *old = nd->path.dentry;
1422 
1423 		if (nd->path.dentry == nd->root.dentry &&
1424 		    nd->path.mnt == nd->root.mnt) {
1425 			break;
1426 		}
1427 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1428 			/* rare case of legitimate dget_parent()... */
1429 			nd->path.dentry = dget_parent(nd->path.dentry);
1430 			dput(old);
1431 			if (unlikely(!path_connected(&nd->path)))
1432 				return -ENOENT;
1433 			break;
1434 		}
1435 		if (!follow_up(&nd->path))
1436 			break;
1437 	}
1438 	follow_mount(&nd->path);
1439 	nd->inode = nd->path.dentry->d_inode;
1440 	return 0;
1441 }
1442 
1443 /*
1444  * This looks up the name in dcache, possibly revalidates the old dentry and
1445  * allocates a new one if not found or not valid.  In the need_lookup argument
1446  * returns whether i_op->lookup is necessary.
1447  */
1448 static struct dentry *lookup_dcache(const struct qstr *name,
1449 				    struct dentry *dir,
1450 				    unsigned int flags)
1451 {
1452 	struct dentry *dentry;
1453 	int error;
1454 
1455 	dentry = d_lookup(dir, name);
1456 	if (dentry) {
1457 		if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1458 			error = d_revalidate(dentry, flags);
1459 			if (unlikely(error <= 0)) {
1460 				if (!error)
1461 					d_invalidate(dentry);
1462 				dput(dentry);
1463 				return ERR_PTR(error);
1464 			}
1465 		}
1466 	}
1467 	return dentry;
1468 }
1469 
1470 /*
1471  * Call i_op->lookup on the dentry.  The dentry must be negative and
1472  * unhashed.
1473  *
1474  * dir->d_inode->i_mutex must be held
1475  */
1476 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1477 				  unsigned int flags)
1478 {
1479 	struct dentry *old;
1480 
1481 	/* Don't create child dentry for a dead directory. */
1482 	if (unlikely(IS_DEADDIR(dir))) {
1483 		dput(dentry);
1484 		return ERR_PTR(-ENOENT);
1485 	}
1486 
1487 	old = dir->i_op->lookup(dir, dentry, flags);
1488 	if (unlikely(old)) {
1489 		dput(dentry);
1490 		dentry = old;
1491 	}
1492 	return dentry;
1493 }
1494 
1495 static struct dentry *__lookup_hash(const struct qstr *name,
1496 		struct dentry *base, unsigned int flags)
1497 {
1498 	struct dentry *dentry = lookup_dcache(name, base, flags);
1499 
1500 	if (dentry)
1501 		return dentry;
1502 
1503 	dentry = d_alloc(base, name);
1504 	if (unlikely(!dentry))
1505 		return ERR_PTR(-ENOMEM);
1506 
1507 	return lookup_real(base->d_inode, dentry, flags);
1508 }
1509 
1510 static int lookup_fast(struct nameidata *nd,
1511 		       struct path *path, struct inode **inode,
1512 		       unsigned *seqp)
1513 {
1514 	struct vfsmount *mnt = nd->path.mnt;
1515 	struct dentry *dentry, *parent = nd->path.dentry;
1516 	int status = 1;
1517 	int err;
1518 
1519 	/*
1520 	 * Rename seqlock is not required here because in the off chance
1521 	 * of a false negative due to a concurrent rename, the caller is
1522 	 * going to fall back to non-racy lookup.
1523 	 */
1524 	if (nd->flags & LOOKUP_RCU) {
1525 		unsigned seq;
1526 		bool negative;
1527 		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1528 		if (unlikely(!dentry)) {
1529 			if (unlazy_walk(nd, NULL, 0))
1530 				return -ECHILD;
1531 			return 0;
1532 		}
1533 
1534 		/*
1535 		 * This sequence count validates that the inode matches
1536 		 * the dentry name information from lookup.
1537 		 */
1538 		*inode = d_backing_inode(dentry);
1539 		negative = d_is_negative(dentry);
1540 		if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1541 			return -ECHILD;
1542 
1543 		/*
1544 		 * This sequence count validates that the parent had no
1545 		 * changes while we did the lookup of the dentry above.
1546 		 *
1547 		 * The memory barrier in read_seqcount_begin of child is
1548 		 *  enough, we can use __read_seqcount_retry here.
1549 		 */
1550 		if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1551 			return -ECHILD;
1552 
1553 		*seqp = seq;
1554 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1555 			status = d_revalidate(dentry, nd->flags);
1556 		if (unlikely(status <= 0)) {
1557 			if (unlazy_walk(nd, dentry, seq))
1558 				return -ECHILD;
1559 			if (status == -ECHILD)
1560 				status = d_revalidate(dentry, nd->flags);
1561 		} else {
1562 			/*
1563 			 * Note: do negative dentry check after revalidation in
1564 			 * case that drops it.
1565 			 */
1566 			if (unlikely(negative))
1567 				return -ENOENT;
1568 			path->mnt = mnt;
1569 			path->dentry = dentry;
1570 			if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1571 				return 1;
1572 			if (unlazy_walk(nd, dentry, seq))
1573 				return -ECHILD;
1574 		}
1575 	} else {
1576 		dentry = __d_lookup(parent, &nd->last);
1577 		if (unlikely(!dentry))
1578 			return 0;
1579 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1580 			status = d_revalidate(dentry, nd->flags);
1581 	}
1582 	if (unlikely(status <= 0)) {
1583 		if (!status)
1584 			d_invalidate(dentry);
1585 		dput(dentry);
1586 		return status;
1587 	}
1588 	if (unlikely(d_is_negative(dentry))) {
1589 		dput(dentry);
1590 		return -ENOENT;
1591 	}
1592 
1593 	path->mnt = mnt;
1594 	path->dentry = dentry;
1595 	err = follow_managed(path, nd);
1596 	if (likely(err > 0))
1597 		*inode = d_backing_inode(path->dentry);
1598 	return err;
1599 }
1600 
1601 /* Fast lookup failed, do it the slow way */
1602 static struct dentry *lookup_slow(const struct qstr *name,
1603 				  struct dentry *dir,
1604 				  unsigned int flags)
1605 {
1606 	struct dentry *dentry;
1607 	inode_lock(dir->d_inode);
1608 	dentry = d_lookup(dir, name);
1609 	if (unlikely(dentry)) {
1610 		if ((dentry->d_flags & DCACHE_OP_REVALIDATE) &&
1611 		    !(flags & LOOKUP_NO_REVAL)) {
1612 			int error = d_revalidate(dentry, flags);
1613 			if (unlikely(error <= 0)) {
1614 				if (!error)
1615 					d_invalidate(dentry);
1616 				dput(dentry);
1617 				dentry = ERR_PTR(error);
1618 			}
1619 		}
1620 		if (dentry) {
1621 			inode_unlock(dir->d_inode);
1622 			return dentry;
1623 		}
1624 	}
1625 	dentry = d_alloc(dir, name);
1626 	if (unlikely(!dentry)) {
1627 		inode_unlock(dir->d_inode);
1628 		return ERR_PTR(-ENOMEM);
1629 	}
1630 	dentry = lookup_real(dir->d_inode, dentry, flags);
1631 	inode_unlock(dir->d_inode);
1632 	return dentry;
1633 }
1634 
1635 static inline int may_lookup(struct nameidata *nd)
1636 {
1637 	if (nd->flags & LOOKUP_RCU) {
1638 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1639 		if (err != -ECHILD)
1640 			return err;
1641 		if (unlazy_walk(nd, NULL, 0))
1642 			return -ECHILD;
1643 	}
1644 	return inode_permission(nd->inode, MAY_EXEC);
1645 }
1646 
1647 static inline int handle_dots(struct nameidata *nd, int type)
1648 {
1649 	if (type == LAST_DOTDOT) {
1650 		if (!nd->root.mnt)
1651 			set_root(nd);
1652 		if (nd->flags & LOOKUP_RCU) {
1653 			return follow_dotdot_rcu(nd);
1654 		} else
1655 			return follow_dotdot(nd);
1656 	}
1657 	return 0;
1658 }
1659 
1660 static int pick_link(struct nameidata *nd, struct path *link,
1661 		     struct inode *inode, unsigned seq)
1662 {
1663 	int error;
1664 	struct saved *last;
1665 	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1666 		path_to_nameidata(link, nd);
1667 		return -ELOOP;
1668 	}
1669 	if (!(nd->flags & LOOKUP_RCU)) {
1670 		if (link->mnt == nd->path.mnt)
1671 			mntget(link->mnt);
1672 	}
1673 	error = nd_alloc_stack(nd);
1674 	if (unlikely(error)) {
1675 		if (error == -ECHILD) {
1676 			if (unlikely(unlazy_link(nd, link, seq)))
1677 				return -ECHILD;
1678 			error = nd_alloc_stack(nd);
1679 		}
1680 		if (error) {
1681 			path_put(link);
1682 			return error;
1683 		}
1684 	}
1685 
1686 	last = nd->stack + nd->depth++;
1687 	last->link = *link;
1688 	clear_delayed_call(&last->done);
1689 	nd->link_inode = inode;
1690 	last->seq = seq;
1691 	return 1;
1692 }
1693 
1694 /*
1695  * Do we need to follow links? We _really_ want to be able
1696  * to do this check without having to look at inode->i_op,
1697  * so we keep a cache of "no, this doesn't need follow_link"
1698  * for the common case.
1699  */
1700 static inline int should_follow_link(struct nameidata *nd, struct path *link,
1701 				     int follow,
1702 				     struct inode *inode, unsigned seq)
1703 {
1704 	if (likely(!d_is_symlink(link->dentry)))
1705 		return 0;
1706 	if (!follow)
1707 		return 0;
1708 	/* make sure that d_is_symlink above matches inode */
1709 	if (nd->flags & LOOKUP_RCU) {
1710 		if (read_seqcount_retry(&link->dentry->d_seq, seq))
1711 			return -ECHILD;
1712 	}
1713 	return pick_link(nd, link, inode, seq);
1714 }
1715 
1716 enum {WALK_GET = 1, WALK_PUT = 2};
1717 
1718 static int walk_component(struct nameidata *nd, int flags)
1719 {
1720 	struct path path;
1721 	struct inode *inode;
1722 	unsigned seq;
1723 	int err;
1724 	/*
1725 	 * "." and ".." are special - ".." especially so because it has
1726 	 * to be able to know about the current root directory and
1727 	 * parent relationships.
1728 	 */
1729 	if (unlikely(nd->last_type != LAST_NORM)) {
1730 		err = handle_dots(nd, nd->last_type);
1731 		if (flags & WALK_PUT)
1732 			put_link(nd);
1733 		return err;
1734 	}
1735 	err = lookup_fast(nd, &path, &inode, &seq);
1736 	if (unlikely(err <= 0)) {
1737 		if (err < 0)
1738 			return err;
1739 		path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1740 					  nd->flags);
1741 		if (IS_ERR(path.dentry))
1742 			return PTR_ERR(path.dentry);
1743 
1744 		path.mnt = nd->path.mnt;
1745 		err = follow_managed(&path, nd);
1746 		if (unlikely(err < 0))
1747 			return err;
1748 
1749 		if (unlikely(d_is_negative(path.dentry))) {
1750 			path_to_nameidata(&path, nd);
1751 			return -ENOENT;
1752 		}
1753 
1754 		seq = 0;	/* we are already out of RCU mode */
1755 		inode = d_backing_inode(path.dentry);
1756 	}
1757 
1758 	if (flags & WALK_PUT)
1759 		put_link(nd);
1760 	err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq);
1761 	if (unlikely(err))
1762 		return err;
1763 	path_to_nameidata(&path, nd);
1764 	nd->inode = inode;
1765 	nd->seq = seq;
1766 	return 0;
1767 }
1768 
1769 /*
1770  * We can do the critical dentry name comparison and hashing
1771  * operations one word at a time, but we are limited to:
1772  *
1773  * - Architectures with fast unaligned word accesses. We could
1774  *   do a "get_unaligned()" if this helps and is sufficiently
1775  *   fast.
1776  *
1777  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1778  *   do not trap on the (extremely unlikely) case of a page
1779  *   crossing operation.
1780  *
1781  * - Furthermore, we need an efficient 64-bit compile for the
1782  *   64-bit case in order to generate the "number of bytes in
1783  *   the final mask". Again, that could be replaced with a
1784  *   efficient population count instruction or similar.
1785  */
1786 #ifdef CONFIG_DCACHE_WORD_ACCESS
1787 
1788 #include <asm/word-at-a-time.h>
1789 
1790 #ifdef CONFIG_64BIT
1791 
1792 static inline unsigned int fold_hash(unsigned long hash)
1793 {
1794 	return hash_64(hash, 32);
1795 }
1796 
1797 /*
1798  * This is George Marsaglia's XORSHIFT generator.
1799  * It implements a maximum-period LFSR in only a few
1800  * instructions.  It also has the property (required
1801  * by hash_name()) that mix_hash(0) = 0.
1802  */
1803 static inline unsigned long mix_hash(unsigned long hash)
1804 {
1805 	hash ^= hash << 13;
1806 	hash ^= hash >> 7;
1807 	hash ^= hash << 17;
1808 	return hash;
1809 }
1810 
1811 #else	/* 32-bit case */
1812 
1813 #define fold_hash(x) (x)
1814 
1815 static inline unsigned long mix_hash(unsigned long hash)
1816 {
1817 	hash ^= hash << 13;
1818 	hash ^= hash >> 17;
1819 	hash ^= hash << 5;
1820 	return hash;
1821 }
1822 
1823 #endif
1824 
1825 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1826 {
1827 	unsigned long a, hash = 0;
1828 
1829 	for (;;) {
1830 		a = load_unaligned_zeropad(name);
1831 		if (len < sizeof(unsigned long))
1832 			break;
1833 		hash = mix_hash(hash + a);
1834 		name += sizeof(unsigned long);
1835 		len -= sizeof(unsigned long);
1836 		if (!len)
1837 			goto done;
1838 	}
1839 	hash += a & bytemask_from_count(len);
1840 done:
1841 	return fold_hash(hash);
1842 }
1843 EXPORT_SYMBOL(full_name_hash);
1844 
1845 /*
1846  * Calculate the length and hash of the path component, and
1847  * return the "hash_len" as the result.
1848  */
1849 static inline u64 hash_name(const char *name)
1850 {
1851 	unsigned long a, b, adata, bdata, mask, hash, len;
1852 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1853 
1854 	hash = a = 0;
1855 	len = -sizeof(unsigned long);
1856 	do {
1857 		hash = mix_hash(hash + a);
1858 		len += sizeof(unsigned long);
1859 		a = load_unaligned_zeropad(name+len);
1860 		b = a ^ REPEAT_BYTE('/');
1861 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1862 
1863 	adata = prep_zero_mask(a, adata, &constants);
1864 	bdata = prep_zero_mask(b, bdata, &constants);
1865 
1866 	mask = create_zero_mask(adata | bdata);
1867 
1868 	hash += a & zero_bytemask(mask);
1869 	len += find_zero(mask);
1870 	return hashlen_create(fold_hash(hash), len);
1871 }
1872 
1873 #else
1874 
1875 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1876 {
1877 	unsigned long hash = init_name_hash();
1878 	while (len--)
1879 		hash = partial_name_hash(*name++, hash);
1880 	return end_name_hash(hash);
1881 }
1882 EXPORT_SYMBOL(full_name_hash);
1883 
1884 /*
1885  * We know there's a real path component here of at least
1886  * one character.
1887  */
1888 static inline u64 hash_name(const char *name)
1889 {
1890 	unsigned long hash = init_name_hash();
1891 	unsigned long len = 0, c;
1892 
1893 	c = (unsigned char)*name;
1894 	do {
1895 		len++;
1896 		hash = partial_name_hash(c, hash);
1897 		c = (unsigned char)name[len];
1898 	} while (c && c != '/');
1899 	return hashlen_create(end_name_hash(hash), len);
1900 }
1901 
1902 #endif
1903 
1904 /*
1905  * Name resolution.
1906  * This is the basic name resolution function, turning a pathname into
1907  * the final dentry. We expect 'base' to be positive and a directory.
1908  *
1909  * Returns 0 and nd will have valid dentry and mnt on success.
1910  * Returns error and drops reference to input namei data on failure.
1911  */
1912 static int link_path_walk(const char *name, struct nameidata *nd)
1913 {
1914 	int err;
1915 
1916 	while (*name=='/')
1917 		name++;
1918 	if (!*name)
1919 		return 0;
1920 
1921 	/* At this point we know we have a real path component. */
1922 	for(;;) {
1923 		u64 hash_len;
1924 		int type;
1925 
1926 		err = may_lookup(nd);
1927  		if (err)
1928 			return err;
1929 
1930 		hash_len = hash_name(name);
1931 
1932 		type = LAST_NORM;
1933 		if (name[0] == '.') switch (hashlen_len(hash_len)) {
1934 			case 2:
1935 				if (name[1] == '.') {
1936 					type = LAST_DOTDOT;
1937 					nd->flags |= LOOKUP_JUMPED;
1938 				}
1939 				break;
1940 			case 1:
1941 				type = LAST_DOT;
1942 		}
1943 		if (likely(type == LAST_NORM)) {
1944 			struct dentry *parent = nd->path.dentry;
1945 			nd->flags &= ~LOOKUP_JUMPED;
1946 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1947 				struct qstr this = { { .hash_len = hash_len }, .name = name };
1948 				err = parent->d_op->d_hash(parent, &this);
1949 				if (err < 0)
1950 					return err;
1951 				hash_len = this.hash_len;
1952 				name = this.name;
1953 			}
1954 		}
1955 
1956 		nd->last.hash_len = hash_len;
1957 		nd->last.name = name;
1958 		nd->last_type = type;
1959 
1960 		name += hashlen_len(hash_len);
1961 		if (!*name)
1962 			goto OK;
1963 		/*
1964 		 * If it wasn't NUL, we know it was '/'. Skip that
1965 		 * slash, and continue until no more slashes.
1966 		 */
1967 		do {
1968 			name++;
1969 		} while (unlikely(*name == '/'));
1970 		if (unlikely(!*name)) {
1971 OK:
1972 			/* pathname body, done */
1973 			if (!nd->depth)
1974 				return 0;
1975 			name = nd->stack[nd->depth - 1].name;
1976 			/* trailing symlink, done */
1977 			if (!name)
1978 				return 0;
1979 			/* last component of nested symlink */
1980 			err = walk_component(nd, WALK_GET | WALK_PUT);
1981 		} else {
1982 			err = walk_component(nd, WALK_GET);
1983 		}
1984 		if (err < 0)
1985 			return err;
1986 
1987 		if (err) {
1988 			const char *s = get_link(nd);
1989 
1990 			if (IS_ERR(s))
1991 				return PTR_ERR(s);
1992 			err = 0;
1993 			if (unlikely(!s)) {
1994 				/* jumped */
1995 				put_link(nd);
1996 			} else {
1997 				nd->stack[nd->depth - 1].name = name;
1998 				name = s;
1999 				continue;
2000 			}
2001 		}
2002 		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2003 			if (nd->flags & LOOKUP_RCU) {
2004 				if (unlazy_walk(nd, NULL, 0))
2005 					return -ECHILD;
2006 			}
2007 			return -ENOTDIR;
2008 		}
2009 	}
2010 }
2011 
2012 static const char *path_init(struct nameidata *nd, unsigned flags)
2013 {
2014 	int retval = 0;
2015 	const char *s = nd->name->name;
2016 
2017 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
2018 	nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2019 	nd->depth = 0;
2020 	if (flags & LOOKUP_ROOT) {
2021 		struct dentry *root = nd->root.dentry;
2022 		struct inode *inode = root->d_inode;
2023 		if (*s) {
2024 			if (!d_can_lookup(root))
2025 				return ERR_PTR(-ENOTDIR);
2026 			retval = inode_permission(inode, MAY_EXEC);
2027 			if (retval)
2028 				return ERR_PTR(retval);
2029 		}
2030 		nd->path = nd->root;
2031 		nd->inode = inode;
2032 		if (flags & LOOKUP_RCU) {
2033 			rcu_read_lock();
2034 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2035 			nd->root_seq = nd->seq;
2036 			nd->m_seq = read_seqbegin(&mount_lock);
2037 		} else {
2038 			path_get(&nd->path);
2039 		}
2040 		return s;
2041 	}
2042 
2043 	nd->root.mnt = NULL;
2044 	nd->path.mnt = NULL;
2045 	nd->path.dentry = NULL;
2046 
2047 	nd->m_seq = read_seqbegin(&mount_lock);
2048 	if (*s == '/') {
2049 		if (flags & LOOKUP_RCU)
2050 			rcu_read_lock();
2051 		set_root(nd);
2052 		if (likely(!nd_jump_root(nd)))
2053 			return s;
2054 		nd->root.mnt = NULL;
2055 		rcu_read_unlock();
2056 		return ERR_PTR(-ECHILD);
2057 	} else if (nd->dfd == AT_FDCWD) {
2058 		if (flags & LOOKUP_RCU) {
2059 			struct fs_struct *fs = current->fs;
2060 			unsigned seq;
2061 
2062 			rcu_read_lock();
2063 
2064 			do {
2065 				seq = read_seqcount_begin(&fs->seq);
2066 				nd->path = fs->pwd;
2067 				nd->inode = nd->path.dentry->d_inode;
2068 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2069 			} while (read_seqcount_retry(&fs->seq, seq));
2070 		} else {
2071 			get_fs_pwd(current->fs, &nd->path);
2072 			nd->inode = nd->path.dentry->d_inode;
2073 		}
2074 		return s;
2075 	} else {
2076 		/* Caller must check execute permissions on the starting path component */
2077 		struct fd f = fdget_raw(nd->dfd);
2078 		struct dentry *dentry;
2079 
2080 		if (!f.file)
2081 			return ERR_PTR(-EBADF);
2082 
2083 		dentry = f.file->f_path.dentry;
2084 
2085 		if (*s) {
2086 			if (!d_can_lookup(dentry)) {
2087 				fdput(f);
2088 				return ERR_PTR(-ENOTDIR);
2089 			}
2090 		}
2091 
2092 		nd->path = f.file->f_path;
2093 		if (flags & LOOKUP_RCU) {
2094 			rcu_read_lock();
2095 			nd->inode = nd->path.dentry->d_inode;
2096 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2097 		} else {
2098 			path_get(&nd->path);
2099 			nd->inode = nd->path.dentry->d_inode;
2100 		}
2101 		fdput(f);
2102 		return s;
2103 	}
2104 }
2105 
2106 static const char *trailing_symlink(struct nameidata *nd)
2107 {
2108 	const char *s;
2109 	int error = may_follow_link(nd);
2110 	if (unlikely(error))
2111 		return ERR_PTR(error);
2112 	nd->flags |= LOOKUP_PARENT;
2113 	nd->stack[0].name = NULL;
2114 	s = get_link(nd);
2115 	return s ? s : "";
2116 }
2117 
2118 static inline int lookup_last(struct nameidata *nd)
2119 {
2120 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2121 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2122 
2123 	nd->flags &= ~LOOKUP_PARENT;
2124 	return walk_component(nd,
2125 			nd->flags & LOOKUP_FOLLOW
2126 				? nd->depth
2127 					? WALK_PUT | WALK_GET
2128 					: WALK_GET
2129 				: 0);
2130 }
2131 
2132 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2133 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2134 {
2135 	const char *s = path_init(nd, flags);
2136 	int err;
2137 
2138 	if (IS_ERR(s))
2139 		return PTR_ERR(s);
2140 	while (!(err = link_path_walk(s, nd))
2141 		&& ((err = lookup_last(nd)) > 0)) {
2142 		s = trailing_symlink(nd);
2143 		if (IS_ERR(s)) {
2144 			err = PTR_ERR(s);
2145 			break;
2146 		}
2147 	}
2148 	if (!err)
2149 		err = complete_walk(nd);
2150 
2151 	if (!err && nd->flags & LOOKUP_DIRECTORY)
2152 		if (!d_can_lookup(nd->path.dentry))
2153 			err = -ENOTDIR;
2154 	if (!err) {
2155 		*path = nd->path;
2156 		nd->path.mnt = NULL;
2157 		nd->path.dentry = NULL;
2158 	}
2159 	terminate_walk(nd);
2160 	return err;
2161 }
2162 
2163 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2164 			   struct path *path, struct path *root)
2165 {
2166 	int retval;
2167 	struct nameidata nd;
2168 	if (IS_ERR(name))
2169 		return PTR_ERR(name);
2170 	if (unlikely(root)) {
2171 		nd.root = *root;
2172 		flags |= LOOKUP_ROOT;
2173 	}
2174 	set_nameidata(&nd, dfd, name);
2175 	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2176 	if (unlikely(retval == -ECHILD))
2177 		retval = path_lookupat(&nd, flags, path);
2178 	if (unlikely(retval == -ESTALE))
2179 		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2180 
2181 	if (likely(!retval))
2182 		audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2183 	restore_nameidata();
2184 	putname(name);
2185 	return retval;
2186 }
2187 
2188 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2189 static int path_parentat(struct nameidata *nd, unsigned flags,
2190 				struct path *parent)
2191 {
2192 	const char *s = path_init(nd, flags);
2193 	int err;
2194 	if (IS_ERR(s))
2195 		return PTR_ERR(s);
2196 	err = link_path_walk(s, nd);
2197 	if (!err)
2198 		err = complete_walk(nd);
2199 	if (!err) {
2200 		*parent = nd->path;
2201 		nd->path.mnt = NULL;
2202 		nd->path.dentry = NULL;
2203 	}
2204 	terminate_walk(nd);
2205 	return err;
2206 }
2207 
2208 static struct filename *filename_parentat(int dfd, struct filename *name,
2209 				unsigned int flags, struct path *parent,
2210 				struct qstr *last, int *type)
2211 {
2212 	int retval;
2213 	struct nameidata nd;
2214 
2215 	if (IS_ERR(name))
2216 		return name;
2217 	set_nameidata(&nd, dfd, name);
2218 	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2219 	if (unlikely(retval == -ECHILD))
2220 		retval = path_parentat(&nd, flags, parent);
2221 	if (unlikely(retval == -ESTALE))
2222 		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2223 	if (likely(!retval)) {
2224 		*last = nd.last;
2225 		*type = nd.last_type;
2226 		audit_inode(name, parent->dentry, LOOKUP_PARENT);
2227 	} else {
2228 		putname(name);
2229 		name = ERR_PTR(retval);
2230 	}
2231 	restore_nameidata();
2232 	return name;
2233 }
2234 
2235 /* does lookup, returns the object with parent locked */
2236 struct dentry *kern_path_locked(const char *name, struct path *path)
2237 {
2238 	struct filename *filename;
2239 	struct dentry *d;
2240 	struct qstr last;
2241 	int type;
2242 
2243 	filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2244 				    &last, &type);
2245 	if (IS_ERR(filename))
2246 		return ERR_CAST(filename);
2247 	if (unlikely(type != LAST_NORM)) {
2248 		path_put(path);
2249 		putname(filename);
2250 		return ERR_PTR(-EINVAL);
2251 	}
2252 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2253 	d = __lookup_hash(&last, path->dentry, 0);
2254 	if (IS_ERR(d)) {
2255 		inode_unlock(path->dentry->d_inode);
2256 		path_put(path);
2257 	}
2258 	putname(filename);
2259 	return d;
2260 }
2261 
2262 int kern_path(const char *name, unsigned int flags, struct path *path)
2263 {
2264 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2265 			       flags, path, NULL);
2266 }
2267 EXPORT_SYMBOL(kern_path);
2268 
2269 /**
2270  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2271  * @dentry:  pointer to dentry of the base directory
2272  * @mnt: pointer to vfs mount of the base directory
2273  * @name: pointer to file name
2274  * @flags: lookup flags
2275  * @path: pointer to struct path to fill
2276  */
2277 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2278 		    const char *name, unsigned int flags,
2279 		    struct path *path)
2280 {
2281 	struct path root = {.mnt = mnt, .dentry = dentry};
2282 	/* the first argument of filename_lookup() is ignored with root */
2283 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2284 			       flags , path, &root);
2285 }
2286 EXPORT_SYMBOL(vfs_path_lookup);
2287 
2288 /**
2289  * lookup_hash - lookup single pathname component on already hashed name
2290  * @name:	name and hash to lookup
2291  * @base:	base directory to lookup from
2292  *
2293  * The name must have been verified and hashed (see lookup_one_len()).  Using
2294  * this after just full_name_hash() is unsafe.
2295  *
2296  * This function also doesn't check for search permission on base directory.
2297  *
2298  * Use lookup_one_len_unlocked() instead, unless you really know what you are
2299  * doing.
2300  *
2301  * Do not hold i_mutex; this helper takes i_mutex if necessary.
2302  */
2303 struct dentry *lookup_hash(const struct qstr *name, struct dentry *base)
2304 {
2305 	struct dentry *ret;
2306 
2307 	ret = lookup_dcache(name, base, 0);
2308 	if (!ret)
2309 		ret = lookup_slow(name, base, 0);
2310 
2311 	return ret;
2312 }
2313 EXPORT_SYMBOL(lookup_hash);
2314 
2315 /**
2316  * lookup_one_len - filesystem helper to lookup single pathname component
2317  * @name:	pathname component to lookup
2318  * @base:	base directory to lookup from
2319  * @len:	maximum length @len should be interpreted to
2320  *
2321  * Note that this routine is purely a helper for filesystem usage and should
2322  * not be called by generic code.
2323  *
2324  * The caller must hold base->i_mutex.
2325  */
2326 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2327 {
2328 	struct qstr this;
2329 	unsigned int c;
2330 	int err;
2331 
2332 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2333 
2334 	this.name = name;
2335 	this.len = len;
2336 	this.hash = full_name_hash(name, len);
2337 	if (!len)
2338 		return ERR_PTR(-EACCES);
2339 
2340 	if (unlikely(name[0] == '.')) {
2341 		if (len < 2 || (len == 2 && name[1] == '.'))
2342 			return ERR_PTR(-EACCES);
2343 	}
2344 
2345 	while (len--) {
2346 		c = *(const unsigned char *)name++;
2347 		if (c == '/' || c == '\0')
2348 			return ERR_PTR(-EACCES);
2349 	}
2350 	/*
2351 	 * See if the low-level filesystem might want
2352 	 * to use its own hash..
2353 	 */
2354 	if (base->d_flags & DCACHE_OP_HASH) {
2355 		int err = base->d_op->d_hash(base, &this);
2356 		if (err < 0)
2357 			return ERR_PTR(err);
2358 	}
2359 
2360 	err = inode_permission(base->d_inode, MAY_EXEC);
2361 	if (err)
2362 		return ERR_PTR(err);
2363 
2364 	return __lookup_hash(&this, base, 0);
2365 }
2366 EXPORT_SYMBOL(lookup_one_len);
2367 
2368 /**
2369  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2370  * @name:	pathname component to lookup
2371  * @base:	base directory to lookup from
2372  * @len:	maximum length @len should be interpreted to
2373  *
2374  * Note that this routine is purely a helper for filesystem usage and should
2375  * not be called by generic code.
2376  *
2377  * Unlike lookup_one_len, it should be called without the parent
2378  * i_mutex held, and will take the i_mutex itself if necessary.
2379  */
2380 struct dentry *lookup_one_len_unlocked(const char *name,
2381 				       struct dentry *base, int len)
2382 {
2383 	struct qstr this;
2384 	unsigned int c;
2385 	int err;
2386 
2387 	this.name = name;
2388 	this.len = len;
2389 	this.hash = full_name_hash(name, len);
2390 	if (!len)
2391 		return ERR_PTR(-EACCES);
2392 
2393 	if (unlikely(name[0] == '.')) {
2394 		if (len < 2 || (len == 2 && name[1] == '.'))
2395 			return ERR_PTR(-EACCES);
2396 	}
2397 
2398 	while (len--) {
2399 		c = *(const unsigned char *)name++;
2400 		if (c == '/' || c == '\0')
2401 			return ERR_PTR(-EACCES);
2402 	}
2403 	/*
2404 	 * See if the low-level filesystem might want
2405 	 * to use its own hash..
2406 	 */
2407 	if (base->d_flags & DCACHE_OP_HASH) {
2408 		int err = base->d_op->d_hash(base, &this);
2409 		if (err < 0)
2410 			return ERR_PTR(err);
2411 	}
2412 
2413 	err = inode_permission(base->d_inode, MAY_EXEC);
2414 	if (err)
2415 		return ERR_PTR(err);
2416 
2417 	return lookup_hash(&this, base);
2418 }
2419 EXPORT_SYMBOL(lookup_one_len_unlocked);
2420 
2421 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2422 		 struct path *path, int *empty)
2423 {
2424 	return filename_lookup(dfd, getname_flags(name, flags, empty),
2425 			       flags, path, NULL);
2426 }
2427 EXPORT_SYMBOL(user_path_at_empty);
2428 
2429 /*
2430  * NB: most callers don't do anything directly with the reference to the
2431  *     to struct filename, but the nd->last pointer points into the name string
2432  *     allocated by getname. So we must hold the reference to it until all
2433  *     path-walking is complete.
2434  */
2435 static inline struct filename *
2436 user_path_parent(int dfd, const char __user *path,
2437 		 struct path *parent,
2438 		 struct qstr *last,
2439 		 int *type,
2440 		 unsigned int flags)
2441 {
2442 	/* only LOOKUP_REVAL is allowed in extra flags */
2443 	return filename_parentat(dfd, getname(path), flags & LOOKUP_REVAL,
2444 				 parent, last, type);
2445 }
2446 
2447 /**
2448  * mountpoint_last - look up last component for umount
2449  * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2450  * @path: pointer to container for result
2451  *
2452  * This is a special lookup_last function just for umount. In this case, we
2453  * need to resolve the path without doing any revalidation.
2454  *
2455  * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2456  * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2457  * in almost all cases, this lookup will be served out of the dcache. The only
2458  * cases where it won't are if nd->last refers to a symlink or the path is
2459  * bogus and it doesn't exist.
2460  *
2461  * Returns:
2462  * -error: if there was an error during lookup. This includes -ENOENT if the
2463  *         lookup found a negative dentry. The nd->path reference will also be
2464  *         put in this case.
2465  *
2466  * 0:      if we successfully resolved nd->path and found it to not to be a
2467  *         symlink that needs to be followed. "path" will also be populated.
2468  *         The nd->path reference will also be put.
2469  *
2470  * 1:      if we successfully resolved nd->last and found it to be a symlink
2471  *         that needs to be followed. "path" will be populated with the path
2472  *         to the link, and nd->path will *not* be put.
2473  */
2474 static int
2475 mountpoint_last(struct nameidata *nd, struct path *path)
2476 {
2477 	int error = 0;
2478 	struct dentry *dentry;
2479 	struct dentry *dir = nd->path.dentry;
2480 
2481 	/* If we're in rcuwalk, drop out of it to handle last component */
2482 	if (nd->flags & LOOKUP_RCU) {
2483 		if (unlazy_walk(nd, NULL, 0))
2484 			return -ECHILD;
2485 	}
2486 
2487 	nd->flags &= ~LOOKUP_PARENT;
2488 
2489 	if (unlikely(nd->last_type != LAST_NORM)) {
2490 		error = handle_dots(nd, nd->last_type);
2491 		if (error)
2492 			return error;
2493 		dentry = dget(nd->path.dentry);
2494 	} else {
2495 		dentry = d_lookup(dir, &nd->last);
2496 		if (!dentry) {
2497 			/*
2498 			 * No cached dentry. Mounted dentries are pinned in the
2499 			 * cache, so that means that this dentry is probably
2500 			 * a symlink or the path doesn't actually point
2501 			 * to a mounted dentry.
2502 			 */
2503 			dentry = lookup_slow(&nd->last, dir,
2504 					     nd->flags | LOOKUP_NO_REVAL);
2505 			if (IS_ERR(dentry))
2506 				return PTR_ERR(dentry);
2507 		}
2508 	}
2509 	if (d_is_negative(dentry)) {
2510 		dput(dentry);
2511 		return -ENOENT;
2512 	}
2513 	if (nd->depth)
2514 		put_link(nd);
2515 	path->dentry = dentry;
2516 	path->mnt = nd->path.mnt;
2517 	error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW,
2518 				   d_backing_inode(dentry), 0);
2519 	if (unlikely(error))
2520 		return error;
2521 	mntget(path->mnt);
2522 	follow_mount(path);
2523 	return 0;
2524 }
2525 
2526 /**
2527  * path_mountpoint - look up a path to be umounted
2528  * @nd:		lookup context
2529  * @flags:	lookup flags
2530  * @path:	pointer to container for result
2531  *
2532  * Look up the given name, but don't attempt to revalidate the last component.
2533  * Returns 0 and "path" will be valid on success; Returns error otherwise.
2534  */
2535 static int
2536 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2537 {
2538 	const char *s = path_init(nd, flags);
2539 	int err;
2540 	if (IS_ERR(s))
2541 		return PTR_ERR(s);
2542 	while (!(err = link_path_walk(s, nd)) &&
2543 		(err = mountpoint_last(nd, path)) > 0) {
2544 		s = trailing_symlink(nd);
2545 		if (IS_ERR(s)) {
2546 			err = PTR_ERR(s);
2547 			break;
2548 		}
2549 	}
2550 	terminate_walk(nd);
2551 	return err;
2552 }
2553 
2554 static int
2555 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2556 			unsigned int flags)
2557 {
2558 	struct nameidata nd;
2559 	int error;
2560 	if (IS_ERR(name))
2561 		return PTR_ERR(name);
2562 	set_nameidata(&nd, dfd, name);
2563 	error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2564 	if (unlikely(error == -ECHILD))
2565 		error = path_mountpoint(&nd, flags, path);
2566 	if (unlikely(error == -ESTALE))
2567 		error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2568 	if (likely(!error))
2569 		audit_inode(name, path->dentry, 0);
2570 	restore_nameidata();
2571 	putname(name);
2572 	return error;
2573 }
2574 
2575 /**
2576  * user_path_mountpoint_at - lookup a path from userland in order to umount it
2577  * @dfd:	directory file descriptor
2578  * @name:	pathname from userland
2579  * @flags:	lookup flags
2580  * @path:	pointer to container to hold result
2581  *
2582  * A umount is a special case for path walking. We're not actually interested
2583  * in the inode in this situation, and ESTALE errors can be a problem. We
2584  * simply want track down the dentry and vfsmount attached at the mountpoint
2585  * and avoid revalidating the last component.
2586  *
2587  * Returns 0 and populates "path" on success.
2588  */
2589 int
2590 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2591 			struct path *path)
2592 {
2593 	return filename_mountpoint(dfd, getname(name), path, flags);
2594 }
2595 
2596 int
2597 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2598 			unsigned int flags)
2599 {
2600 	return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2601 }
2602 EXPORT_SYMBOL(kern_path_mountpoint);
2603 
2604 int __check_sticky(struct inode *dir, struct inode *inode)
2605 {
2606 	kuid_t fsuid = current_fsuid();
2607 
2608 	if (uid_eq(inode->i_uid, fsuid))
2609 		return 0;
2610 	if (uid_eq(dir->i_uid, fsuid))
2611 		return 0;
2612 	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2613 }
2614 EXPORT_SYMBOL(__check_sticky);
2615 
2616 /*
2617  *	Check whether we can remove a link victim from directory dir, check
2618  *  whether the type of victim is right.
2619  *  1. We can't do it if dir is read-only (done in permission())
2620  *  2. We should have write and exec permissions on dir
2621  *  3. We can't remove anything from append-only dir
2622  *  4. We can't do anything with immutable dir (done in permission())
2623  *  5. If the sticky bit on dir is set we should either
2624  *	a. be owner of dir, or
2625  *	b. be owner of victim, or
2626  *	c. have CAP_FOWNER capability
2627  *  6. If the victim is append-only or immutable we can't do antyhing with
2628  *     links pointing to it.
2629  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2630  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2631  *  9. We can't remove a root or mountpoint.
2632  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2633  *     nfs_async_unlink().
2634  */
2635 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2636 {
2637 	struct inode *inode = d_backing_inode(victim);
2638 	int error;
2639 
2640 	if (d_is_negative(victim))
2641 		return -ENOENT;
2642 	BUG_ON(!inode);
2643 
2644 	BUG_ON(victim->d_parent->d_inode != dir);
2645 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2646 
2647 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2648 	if (error)
2649 		return error;
2650 	if (IS_APPEND(dir))
2651 		return -EPERM;
2652 
2653 	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2654 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2655 		return -EPERM;
2656 	if (isdir) {
2657 		if (!d_is_dir(victim))
2658 			return -ENOTDIR;
2659 		if (IS_ROOT(victim))
2660 			return -EBUSY;
2661 	} else if (d_is_dir(victim))
2662 		return -EISDIR;
2663 	if (IS_DEADDIR(dir))
2664 		return -ENOENT;
2665 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2666 		return -EBUSY;
2667 	return 0;
2668 }
2669 
2670 /*	Check whether we can create an object with dentry child in directory
2671  *  dir.
2672  *  1. We can't do it if child already exists (open has special treatment for
2673  *     this case, but since we are inlined it's OK)
2674  *  2. We can't do it if dir is read-only (done in permission())
2675  *  3. We should have write and exec permissions on dir
2676  *  4. We can't do it if dir is immutable (done in permission())
2677  */
2678 static inline int may_create(struct inode *dir, struct dentry *child)
2679 {
2680 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2681 	if (child->d_inode)
2682 		return -EEXIST;
2683 	if (IS_DEADDIR(dir))
2684 		return -ENOENT;
2685 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2686 }
2687 
2688 /*
2689  * p1 and p2 should be directories on the same fs.
2690  */
2691 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2692 {
2693 	struct dentry *p;
2694 
2695 	if (p1 == p2) {
2696 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2697 		return NULL;
2698 	}
2699 
2700 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2701 
2702 	p = d_ancestor(p2, p1);
2703 	if (p) {
2704 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2705 		inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2706 		return p;
2707 	}
2708 
2709 	p = d_ancestor(p1, p2);
2710 	if (p) {
2711 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2712 		inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2713 		return p;
2714 	}
2715 
2716 	inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2717 	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2718 	return NULL;
2719 }
2720 EXPORT_SYMBOL(lock_rename);
2721 
2722 void unlock_rename(struct dentry *p1, struct dentry *p2)
2723 {
2724 	inode_unlock(p1->d_inode);
2725 	if (p1 != p2) {
2726 		inode_unlock(p2->d_inode);
2727 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2728 	}
2729 }
2730 EXPORT_SYMBOL(unlock_rename);
2731 
2732 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2733 		bool want_excl)
2734 {
2735 	int error = may_create(dir, dentry);
2736 	if (error)
2737 		return error;
2738 
2739 	if (!dir->i_op->create)
2740 		return -EACCES;	/* shouldn't it be ENOSYS? */
2741 	mode &= S_IALLUGO;
2742 	mode |= S_IFREG;
2743 	error = security_inode_create(dir, dentry, mode);
2744 	if (error)
2745 		return error;
2746 	error = dir->i_op->create(dir, dentry, mode, want_excl);
2747 	if (!error)
2748 		fsnotify_create(dir, dentry);
2749 	return error;
2750 }
2751 EXPORT_SYMBOL(vfs_create);
2752 
2753 static int may_open(struct path *path, int acc_mode, int flag)
2754 {
2755 	struct dentry *dentry = path->dentry;
2756 	struct inode *inode = dentry->d_inode;
2757 	int error;
2758 
2759 	if (!inode)
2760 		return -ENOENT;
2761 
2762 	switch (inode->i_mode & S_IFMT) {
2763 	case S_IFLNK:
2764 		return -ELOOP;
2765 	case S_IFDIR:
2766 		if (acc_mode & MAY_WRITE)
2767 			return -EISDIR;
2768 		break;
2769 	case S_IFBLK:
2770 	case S_IFCHR:
2771 		if (path->mnt->mnt_flags & MNT_NODEV)
2772 			return -EACCES;
2773 		/*FALLTHRU*/
2774 	case S_IFIFO:
2775 	case S_IFSOCK:
2776 		flag &= ~O_TRUNC;
2777 		break;
2778 	}
2779 
2780 	error = inode_permission(inode, MAY_OPEN | acc_mode);
2781 	if (error)
2782 		return error;
2783 
2784 	/*
2785 	 * An append-only file must be opened in append mode for writing.
2786 	 */
2787 	if (IS_APPEND(inode)) {
2788 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2789 			return -EPERM;
2790 		if (flag & O_TRUNC)
2791 			return -EPERM;
2792 	}
2793 
2794 	/* O_NOATIME can only be set by the owner or superuser */
2795 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2796 		return -EPERM;
2797 
2798 	return 0;
2799 }
2800 
2801 static int handle_truncate(struct file *filp)
2802 {
2803 	struct path *path = &filp->f_path;
2804 	struct inode *inode = path->dentry->d_inode;
2805 	int error = get_write_access(inode);
2806 	if (error)
2807 		return error;
2808 	/*
2809 	 * Refuse to truncate files with mandatory locks held on them.
2810 	 */
2811 	error = locks_verify_locked(filp);
2812 	if (!error)
2813 		error = security_path_truncate(path);
2814 	if (!error) {
2815 		error = do_truncate(path->dentry, 0,
2816 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2817 				    filp);
2818 	}
2819 	put_write_access(inode);
2820 	return error;
2821 }
2822 
2823 static inline int open_to_namei_flags(int flag)
2824 {
2825 	if ((flag & O_ACCMODE) == 3)
2826 		flag--;
2827 	return flag;
2828 }
2829 
2830 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2831 {
2832 	int error = security_path_mknod(dir, dentry, mode, 0);
2833 	if (error)
2834 		return error;
2835 
2836 	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2837 	if (error)
2838 		return error;
2839 
2840 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
2841 }
2842 
2843 /*
2844  * Attempt to atomically look up, create and open a file from a negative
2845  * dentry.
2846  *
2847  * Returns 0 if successful.  The file will have been created and attached to
2848  * @file by the filesystem calling finish_open().
2849  *
2850  * Returns 1 if the file was looked up only or didn't need creating.  The
2851  * caller will need to perform the open themselves.  @path will have been
2852  * updated to point to the new dentry.  This may be negative.
2853  *
2854  * Returns an error code otherwise.
2855  */
2856 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2857 			struct path *path, struct file *file,
2858 			const struct open_flags *op,
2859 			bool got_write, bool need_lookup,
2860 			int *opened)
2861 {
2862 	struct inode *dir =  nd->path.dentry->d_inode;
2863 	unsigned open_flag = open_to_namei_flags(op->open_flag);
2864 	umode_t mode;
2865 	int error;
2866 	int acc_mode;
2867 	int create_error = 0;
2868 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2869 	bool excl;
2870 
2871 	BUG_ON(dentry->d_inode);
2872 
2873 	/* Don't create child dentry for a dead directory. */
2874 	if (unlikely(IS_DEADDIR(dir))) {
2875 		error = -ENOENT;
2876 		goto out;
2877 	}
2878 
2879 	mode = op->mode;
2880 	if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2881 		mode &= ~current_umask();
2882 
2883 	excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2884 	if (excl)
2885 		open_flag &= ~O_TRUNC;
2886 
2887 	/*
2888 	 * Checking write permission is tricky, bacuse we don't know if we are
2889 	 * going to actually need it: O_CREAT opens should work as long as the
2890 	 * file exists.  But checking existence breaks atomicity.  The trick is
2891 	 * to check access and if not granted clear O_CREAT from the flags.
2892 	 *
2893 	 * Another problem is returing the "right" error value (e.g. for an
2894 	 * O_EXCL open we want to return EEXIST not EROFS).
2895 	 */
2896 	if (((open_flag & (O_CREAT | O_TRUNC)) ||
2897 	    (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2898 		if (!(open_flag & O_CREAT)) {
2899 			/*
2900 			 * No O_CREATE -> atomicity not a requirement -> fall
2901 			 * back to lookup + open
2902 			 */
2903 			goto no_open;
2904 		} else if (open_flag & (O_EXCL | O_TRUNC)) {
2905 			/* Fall back and fail with the right error */
2906 			create_error = -EROFS;
2907 			goto no_open;
2908 		} else {
2909 			/* No side effects, safe to clear O_CREAT */
2910 			create_error = -EROFS;
2911 			open_flag &= ~O_CREAT;
2912 		}
2913 	}
2914 
2915 	if (open_flag & O_CREAT) {
2916 		error = may_o_create(&nd->path, dentry, mode);
2917 		if (error) {
2918 			create_error = error;
2919 			if (open_flag & O_EXCL)
2920 				goto no_open;
2921 			open_flag &= ~O_CREAT;
2922 		}
2923 	}
2924 
2925 	if (nd->flags & LOOKUP_DIRECTORY)
2926 		open_flag |= O_DIRECTORY;
2927 
2928 	file->f_path.dentry = DENTRY_NOT_SET;
2929 	file->f_path.mnt = nd->path.mnt;
2930 	error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2931 				      opened);
2932 	if (error < 0) {
2933 		if (create_error && error == -ENOENT)
2934 			error = create_error;
2935 		goto out;
2936 	}
2937 
2938 	if (error) {	/* returned 1, that is */
2939 		if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2940 			error = -EIO;
2941 			goto out;
2942 		}
2943 		if (file->f_path.dentry) {
2944 			dput(dentry);
2945 			dentry = file->f_path.dentry;
2946 		}
2947 		if (*opened & FILE_CREATED)
2948 			fsnotify_create(dir, dentry);
2949 		if (!dentry->d_inode) {
2950 			WARN_ON(*opened & FILE_CREATED);
2951 			if (create_error) {
2952 				error = create_error;
2953 				goto out;
2954 			}
2955 		} else {
2956 			if (excl && !(*opened & FILE_CREATED)) {
2957 				error = -EEXIST;
2958 				goto out;
2959 			}
2960 		}
2961 		goto looked_up;
2962 	}
2963 
2964 	/*
2965 	 * We didn't have the inode before the open, so check open permission
2966 	 * here.
2967 	 */
2968 	acc_mode = op->acc_mode;
2969 	if (*opened & FILE_CREATED) {
2970 		WARN_ON(!(open_flag & O_CREAT));
2971 		fsnotify_create(dir, dentry);
2972 		acc_mode = 0;
2973 	}
2974 	error = may_open(&file->f_path, acc_mode, open_flag);
2975 	if (error)
2976 		fput(file);
2977 
2978 out:
2979 	dput(dentry);
2980 	return error;
2981 
2982 no_open:
2983 	if (need_lookup) {
2984 		dentry = lookup_real(dir, dentry, nd->flags);
2985 		if (IS_ERR(dentry))
2986 			return PTR_ERR(dentry);
2987 	}
2988 	if (create_error && !dentry->d_inode) {
2989 		error = create_error;
2990 		goto out;
2991 	}
2992 looked_up:
2993 	path->dentry = dentry;
2994 	path->mnt = nd->path.mnt;
2995 	return 1;
2996 }
2997 
2998 /*
2999  * Look up and maybe create and open the last component.
3000  *
3001  * Must be called with i_mutex held on parent.
3002  *
3003  * Returns 0 if the file was successfully atomically created (if necessary) and
3004  * opened.  In this case the file will be returned attached to @file.
3005  *
3006  * Returns 1 if the file was not completely opened at this time, though lookups
3007  * and creations will have been performed and the dentry returned in @path will
3008  * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
3009  * specified then a negative dentry may be returned.
3010  *
3011  * An error code is returned otherwise.
3012  *
3013  * FILE_CREATE will be set in @*opened if the dentry was created and will be
3014  * cleared otherwise prior to returning.
3015  */
3016 static int lookup_open(struct nameidata *nd, struct path *path,
3017 			struct file *file,
3018 			const struct open_flags *op,
3019 			bool got_write, int *opened)
3020 {
3021 	struct dentry *dir = nd->path.dentry;
3022 	struct inode *dir_inode = dir->d_inode;
3023 	struct dentry *dentry;
3024 	int error;
3025 	bool need_lookup = false;
3026 
3027 	*opened &= ~FILE_CREATED;
3028 	dentry = lookup_dcache(&nd->last, dir, nd->flags);
3029 	if (IS_ERR(dentry))
3030 		return PTR_ERR(dentry);
3031 
3032 	if (!dentry) {
3033 		dentry = d_alloc(dir, &nd->last);
3034 		if (unlikely(!dentry))
3035 			return -ENOMEM;
3036 		need_lookup = true;
3037 	} else if (dentry->d_inode) {
3038 		/* Cached positive dentry: will open in f_op->open */
3039 		goto out_no_open;
3040 	}
3041 
3042 	if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
3043 		return atomic_open(nd, dentry, path, file, op, got_write,
3044 				   need_lookup, opened);
3045 	}
3046 
3047 	if (need_lookup) {
3048 		BUG_ON(dentry->d_inode);
3049 
3050 		dentry = lookup_real(dir_inode, dentry, nd->flags);
3051 		if (IS_ERR(dentry))
3052 			return PTR_ERR(dentry);
3053 	}
3054 
3055 	/* Negative dentry, just create the file */
3056 	if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
3057 		umode_t mode = op->mode;
3058 		if (!IS_POSIXACL(dir->d_inode))
3059 			mode &= ~current_umask();
3060 		/*
3061 		 * This write is needed to ensure that a
3062 		 * rw->ro transition does not occur between
3063 		 * the time when the file is created and when
3064 		 * a permanent write count is taken through
3065 		 * the 'struct file' in finish_open().
3066 		 */
3067 		if (!got_write) {
3068 			error = -EROFS;
3069 			goto out_dput;
3070 		}
3071 		*opened |= FILE_CREATED;
3072 		error = security_path_mknod(&nd->path, dentry, mode, 0);
3073 		if (error)
3074 			goto out_dput;
3075 		error = vfs_create(dir->d_inode, dentry, mode,
3076 				   nd->flags & LOOKUP_EXCL);
3077 		if (error)
3078 			goto out_dput;
3079 	}
3080 out_no_open:
3081 	path->dentry = dentry;
3082 	path->mnt = nd->path.mnt;
3083 	return 1;
3084 
3085 out_dput:
3086 	dput(dentry);
3087 	return error;
3088 }
3089 
3090 /*
3091  * Handle the last step of open()
3092  */
3093 static int do_last(struct nameidata *nd,
3094 		   struct file *file, const struct open_flags *op,
3095 		   int *opened)
3096 {
3097 	struct dentry *dir = nd->path.dentry;
3098 	int open_flag = op->open_flag;
3099 	bool will_truncate = (open_flag & O_TRUNC) != 0;
3100 	bool got_write = false;
3101 	int acc_mode = op->acc_mode;
3102 	unsigned seq;
3103 	struct inode *inode;
3104 	struct path save_parent = { .dentry = NULL, .mnt = NULL };
3105 	struct path path;
3106 	bool retried = false;
3107 	int error;
3108 
3109 	nd->flags &= ~LOOKUP_PARENT;
3110 	nd->flags |= op->intent;
3111 
3112 	if (nd->last_type != LAST_NORM) {
3113 		error = handle_dots(nd, nd->last_type);
3114 		if (unlikely(error))
3115 			return error;
3116 		goto finish_open;
3117 	}
3118 
3119 	if (!(open_flag & O_CREAT)) {
3120 		if (nd->last.name[nd->last.len])
3121 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3122 		/* we _can_ be in RCU mode here */
3123 		error = lookup_fast(nd, &path, &inode, &seq);
3124 		if (likely(error > 0))
3125 			goto finish_lookup;
3126 
3127 		if (error < 0)
3128 			return error;
3129 
3130 		BUG_ON(nd->inode != dir->d_inode);
3131 		BUG_ON(nd->flags & LOOKUP_RCU);
3132 	} else {
3133 		/* create side of things */
3134 		/*
3135 		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3136 		 * has been cleared when we got to the last component we are
3137 		 * about to look up
3138 		 */
3139 		error = complete_walk(nd);
3140 		if (error)
3141 			return error;
3142 
3143 		audit_inode(nd->name, dir, LOOKUP_PARENT);
3144 		/* trailing slashes? */
3145 		if (unlikely(nd->last.name[nd->last.len]))
3146 			return -EISDIR;
3147 	}
3148 
3149 retry_lookup:
3150 	if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3151 		error = mnt_want_write(nd->path.mnt);
3152 		if (!error)
3153 			got_write = true;
3154 		/*
3155 		 * do _not_ fail yet - we might not need that or fail with
3156 		 * a different error; let lookup_open() decide; we'll be
3157 		 * dropping this one anyway.
3158 		 */
3159 	}
3160 	inode_lock(dir->d_inode);
3161 	error = lookup_open(nd, &path, file, op, got_write, opened);
3162 	inode_unlock(dir->d_inode);
3163 
3164 	if (error <= 0) {
3165 		if (error)
3166 			goto out;
3167 
3168 		if ((*opened & FILE_CREATED) ||
3169 		    !S_ISREG(file_inode(file)->i_mode))
3170 			will_truncate = false;
3171 
3172 		audit_inode(nd->name, file->f_path.dentry, 0);
3173 		goto opened;
3174 	}
3175 
3176 	if (*opened & FILE_CREATED) {
3177 		/* Don't check for write permission, don't truncate */
3178 		open_flag &= ~O_TRUNC;
3179 		will_truncate = false;
3180 		acc_mode = 0;
3181 		path_to_nameidata(&path, nd);
3182 		goto finish_open_created;
3183 	}
3184 
3185 	/*
3186 	 * If atomic_open() acquired write access it is dropped now due to
3187 	 * possible mount and symlink following (this might be optimized away if
3188 	 * necessary...)
3189 	 */
3190 	if (got_write) {
3191 		mnt_drop_write(nd->path.mnt);
3192 		got_write = false;
3193 	}
3194 
3195 	if (unlikely(d_is_negative(path.dentry))) {
3196 		path_to_nameidata(&path, nd);
3197 		return -ENOENT;
3198 	}
3199 
3200 	/*
3201 	 * create/update audit record if it already exists.
3202 	 */
3203 	audit_inode(nd->name, path.dentry, 0);
3204 
3205 	if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3206 		path_to_nameidata(&path, nd);
3207 		return -EEXIST;
3208 	}
3209 
3210 	error = follow_managed(&path, nd);
3211 	if (unlikely(error < 0))
3212 		return error;
3213 
3214 	seq = 0;	/* out of RCU mode, so the value doesn't matter */
3215 	inode = d_backing_inode(path.dentry);
3216 finish_lookup:
3217 	if (nd->depth)
3218 		put_link(nd);
3219 	error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW,
3220 				   inode, seq);
3221 	if (unlikely(error))
3222 		return error;
3223 
3224 	if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) {
3225 		path_to_nameidata(&path, nd);
3226 	} else {
3227 		save_parent.dentry = nd->path.dentry;
3228 		save_parent.mnt = mntget(path.mnt);
3229 		nd->path.dentry = path.dentry;
3230 
3231 	}
3232 	nd->inode = inode;
3233 	nd->seq = seq;
3234 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3235 finish_open:
3236 	error = complete_walk(nd);
3237 	if (error) {
3238 		path_put(&save_parent);
3239 		return error;
3240 	}
3241 	audit_inode(nd->name, nd->path.dentry, 0);
3242 	if (unlikely(d_is_symlink(nd->path.dentry)) && !(open_flag & O_PATH)) {
3243 		error = -ELOOP;
3244 		goto out;
3245 	}
3246 	error = -EISDIR;
3247 	if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3248 		goto out;
3249 	error = -ENOTDIR;
3250 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3251 		goto out;
3252 	if (!d_is_reg(nd->path.dentry))
3253 		will_truncate = false;
3254 
3255 	if (will_truncate) {
3256 		error = mnt_want_write(nd->path.mnt);
3257 		if (error)
3258 			goto out;
3259 		got_write = true;
3260 	}
3261 finish_open_created:
3262 	if (likely(!(open_flag & O_PATH))) {
3263 		error = may_open(&nd->path, acc_mode, open_flag);
3264 		if (error)
3265 			goto out;
3266 	}
3267 	BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3268 	error = vfs_open(&nd->path, file, current_cred());
3269 	if (!error) {
3270 		*opened |= FILE_OPENED;
3271 	} else {
3272 		if (error == -EOPENSTALE)
3273 			goto stale_open;
3274 		goto out;
3275 	}
3276 opened:
3277 	error = open_check_o_direct(file);
3278 	if (error)
3279 		goto exit_fput;
3280 	error = ima_file_check(file, op->acc_mode, *opened);
3281 	if (error)
3282 		goto exit_fput;
3283 
3284 	if (will_truncate) {
3285 		error = handle_truncate(file);
3286 		if (error)
3287 			goto exit_fput;
3288 	}
3289 out:
3290 	if (unlikely(error > 0)) {
3291 		WARN_ON(1);
3292 		error = -EINVAL;
3293 	}
3294 	if (got_write)
3295 		mnt_drop_write(nd->path.mnt);
3296 	path_put(&save_parent);
3297 	return error;
3298 
3299 exit_fput:
3300 	fput(file);
3301 	goto out;
3302 
3303 stale_open:
3304 	/* If no saved parent or already retried then can't retry */
3305 	if (!save_parent.dentry || retried)
3306 		goto out;
3307 
3308 	BUG_ON(save_parent.dentry != dir);
3309 	path_put(&nd->path);
3310 	nd->path = save_parent;
3311 	nd->inode = dir->d_inode;
3312 	save_parent.mnt = NULL;
3313 	save_parent.dentry = NULL;
3314 	if (got_write) {
3315 		mnt_drop_write(nd->path.mnt);
3316 		got_write = false;
3317 	}
3318 	retried = true;
3319 	goto retry_lookup;
3320 }
3321 
3322 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3323 		const struct open_flags *op,
3324 		struct file *file, int *opened)
3325 {
3326 	static const struct qstr name = QSTR_INIT("/", 1);
3327 	struct dentry *child;
3328 	struct inode *dir;
3329 	struct path path;
3330 	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3331 	if (unlikely(error))
3332 		return error;
3333 	error = mnt_want_write(path.mnt);
3334 	if (unlikely(error))
3335 		goto out;
3336 	dir = path.dentry->d_inode;
3337 	/* we want directory to be writable */
3338 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3339 	if (error)
3340 		goto out2;
3341 	if (!dir->i_op->tmpfile) {
3342 		error = -EOPNOTSUPP;
3343 		goto out2;
3344 	}
3345 	child = d_alloc(path.dentry, &name);
3346 	if (unlikely(!child)) {
3347 		error = -ENOMEM;
3348 		goto out2;
3349 	}
3350 	dput(path.dentry);
3351 	path.dentry = child;
3352 	error = dir->i_op->tmpfile(dir, child, op->mode);
3353 	if (error)
3354 		goto out2;
3355 	audit_inode(nd->name, child, 0);
3356 	/* Don't check for other permissions, the inode was just created */
3357 	error = may_open(&path, 0, op->open_flag);
3358 	if (error)
3359 		goto out2;
3360 	file->f_path.mnt = path.mnt;
3361 	error = finish_open(file, child, NULL, opened);
3362 	if (error)
3363 		goto out2;
3364 	error = open_check_o_direct(file);
3365 	if (error) {
3366 		fput(file);
3367 	} else if (!(op->open_flag & O_EXCL)) {
3368 		struct inode *inode = file_inode(file);
3369 		spin_lock(&inode->i_lock);
3370 		inode->i_state |= I_LINKABLE;
3371 		spin_unlock(&inode->i_lock);
3372 	}
3373 out2:
3374 	mnt_drop_write(path.mnt);
3375 out:
3376 	path_put(&path);
3377 	return error;
3378 }
3379 
3380 static struct file *path_openat(struct nameidata *nd,
3381 			const struct open_flags *op, unsigned flags)
3382 {
3383 	const char *s;
3384 	struct file *file;
3385 	int opened = 0;
3386 	int error;
3387 
3388 	file = get_empty_filp();
3389 	if (IS_ERR(file))
3390 		return file;
3391 
3392 	file->f_flags = op->open_flag;
3393 
3394 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3395 		error = do_tmpfile(nd, flags, op, file, &opened);
3396 		goto out2;
3397 	}
3398 
3399 	s = path_init(nd, flags);
3400 	if (IS_ERR(s)) {
3401 		put_filp(file);
3402 		return ERR_CAST(s);
3403 	}
3404 	while (!(error = link_path_walk(s, nd)) &&
3405 		(error = do_last(nd, file, op, &opened)) > 0) {
3406 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3407 		s = trailing_symlink(nd);
3408 		if (IS_ERR(s)) {
3409 			error = PTR_ERR(s);
3410 			break;
3411 		}
3412 	}
3413 	terminate_walk(nd);
3414 out2:
3415 	if (!(opened & FILE_OPENED)) {
3416 		BUG_ON(!error);
3417 		put_filp(file);
3418 	}
3419 	if (unlikely(error)) {
3420 		if (error == -EOPENSTALE) {
3421 			if (flags & LOOKUP_RCU)
3422 				error = -ECHILD;
3423 			else
3424 				error = -ESTALE;
3425 		}
3426 		file = ERR_PTR(error);
3427 	}
3428 	return file;
3429 }
3430 
3431 struct file *do_filp_open(int dfd, struct filename *pathname,
3432 		const struct open_flags *op)
3433 {
3434 	struct nameidata nd;
3435 	int flags = op->lookup_flags;
3436 	struct file *filp;
3437 
3438 	set_nameidata(&nd, dfd, pathname);
3439 	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3440 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3441 		filp = path_openat(&nd, op, flags);
3442 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3443 		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3444 	restore_nameidata();
3445 	return filp;
3446 }
3447 
3448 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3449 		const char *name, const struct open_flags *op)
3450 {
3451 	struct nameidata nd;
3452 	struct file *file;
3453 	struct filename *filename;
3454 	int flags = op->lookup_flags | LOOKUP_ROOT;
3455 
3456 	nd.root.mnt = mnt;
3457 	nd.root.dentry = dentry;
3458 
3459 	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3460 		return ERR_PTR(-ELOOP);
3461 
3462 	filename = getname_kernel(name);
3463 	if (IS_ERR(filename))
3464 		return ERR_CAST(filename);
3465 
3466 	set_nameidata(&nd, -1, filename);
3467 	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3468 	if (unlikely(file == ERR_PTR(-ECHILD)))
3469 		file = path_openat(&nd, op, flags);
3470 	if (unlikely(file == ERR_PTR(-ESTALE)))
3471 		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3472 	restore_nameidata();
3473 	putname(filename);
3474 	return file;
3475 }
3476 
3477 static struct dentry *filename_create(int dfd, struct filename *name,
3478 				struct path *path, unsigned int lookup_flags)
3479 {
3480 	struct dentry *dentry = ERR_PTR(-EEXIST);
3481 	struct qstr last;
3482 	int type;
3483 	int err2;
3484 	int error;
3485 	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3486 
3487 	/*
3488 	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3489 	 * other flags passed in are ignored!
3490 	 */
3491 	lookup_flags &= LOOKUP_REVAL;
3492 
3493 	name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3494 	if (IS_ERR(name))
3495 		return ERR_CAST(name);
3496 
3497 	/*
3498 	 * Yucky last component or no last component at all?
3499 	 * (foo/., foo/.., /////)
3500 	 */
3501 	if (unlikely(type != LAST_NORM))
3502 		goto out;
3503 
3504 	/* don't fail immediately if it's r/o, at least try to report other errors */
3505 	err2 = mnt_want_write(path->mnt);
3506 	/*
3507 	 * Do the final lookup.
3508 	 */
3509 	lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3510 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3511 	dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3512 	if (IS_ERR(dentry))
3513 		goto unlock;
3514 
3515 	error = -EEXIST;
3516 	if (d_is_positive(dentry))
3517 		goto fail;
3518 
3519 	/*
3520 	 * Special case - lookup gave negative, but... we had foo/bar/
3521 	 * From the vfs_mknod() POV we just have a negative dentry -
3522 	 * all is fine. Let's be bastards - you had / on the end, you've
3523 	 * been asking for (non-existent) directory. -ENOENT for you.
3524 	 */
3525 	if (unlikely(!is_dir && last.name[last.len])) {
3526 		error = -ENOENT;
3527 		goto fail;
3528 	}
3529 	if (unlikely(err2)) {
3530 		error = err2;
3531 		goto fail;
3532 	}
3533 	putname(name);
3534 	return dentry;
3535 fail:
3536 	dput(dentry);
3537 	dentry = ERR_PTR(error);
3538 unlock:
3539 	inode_unlock(path->dentry->d_inode);
3540 	if (!err2)
3541 		mnt_drop_write(path->mnt);
3542 out:
3543 	path_put(path);
3544 	putname(name);
3545 	return dentry;
3546 }
3547 
3548 struct dentry *kern_path_create(int dfd, const char *pathname,
3549 				struct path *path, unsigned int lookup_flags)
3550 {
3551 	return filename_create(dfd, getname_kernel(pathname),
3552 				path, lookup_flags);
3553 }
3554 EXPORT_SYMBOL(kern_path_create);
3555 
3556 void done_path_create(struct path *path, struct dentry *dentry)
3557 {
3558 	dput(dentry);
3559 	inode_unlock(path->dentry->d_inode);
3560 	mnt_drop_write(path->mnt);
3561 	path_put(path);
3562 }
3563 EXPORT_SYMBOL(done_path_create);
3564 
3565 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3566 				struct path *path, unsigned int lookup_flags)
3567 {
3568 	return filename_create(dfd, getname(pathname), path, lookup_flags);
3569 }
3570 EXPORT_SYMBOL(user_path_create);
3571 
3572 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3573 {
3574 	int error = may_create(dir, dentry);
3575 
3576 	if (error)
3577 		return error;
3578 
3579 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3580 		return -EPERM;
3581 
3582 	if (!dir->i_op->mknod)
3583 		return -EPERM;
3584 
3585 	error = devcgroup_inode_mknod(mode, dev);
3586 	if (error)
3587 		return error;
3588 
3589 	error = security_inode_mknod(dir, dentry, mode, dev);
3590 	if (error)
3591 		return error;
3592 
3593 	error = dir->i_op->mknod(dir, dentry, mode, dev);
3594 	if (!error)
3595 		fsnotify_create(dir, dentry);
3596 	return error;
3597 }
3598 EXPORT_SYMBOL(vfs_mknod);
3599 
3600 static int may_mknod(umode_t mode)
3601 {
3602 	switch (mode & S_IFMT) {
3603 	case S_IFREG:
3604 	case S_IFCHR:
3605 	case S_IFBLK:
3606 	case S_IFIFO:
3607 	case S_IFSOCK:
3608 	case 0: /* zero mode translates to S_IFREG */
3609 		return 0;
3610 	case S_IFDIR:
3611 		return -EPERM;
3612 	default:
3613 		return -EINVAL;
3614 	}
3615 }
3616 
3617 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3618 		unsigned, dev)
3619 {
3620 	struct dentry *dentry;
3621 	struct path path;
3622 	int error;
3623 	unsigned int lookup_flags = 0;
3624 
3625 	error = may_mknod(mode);
3626 	if (error)
3627 		return error;
3628 retry:
3629 	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3630 	if (IS_ERR(dentry))
3631 		return PTR_ERR(dentry);
3632 
3633 	if (!IS_POSIXACL(path.dentry->d_inode))
3634 		mode &= ~current_umask();
3635 	error = security_path_mknod(&path, dentry, mode, dev);
3636 	if (error)
3637 		goto out;
3638 	switch (mode & S_IFMT) {
3639 		case 0: case S_IFREG:
3640 			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3641 			break;
3642 		case S_IFCHR: case S_IFBLK:
3643 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3644 					new_decode_dev(dev));
3645 			break;
3646 		case S_IFIFO: case S_IFSOCK:
3647 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3648 			break;
3649 	}
3650 out:
3651 	done_path_create(&path, dentry);
3652 	if (retry_estale(error, lookup_flags)) {
3653 		lookup_flags |= LOOKUP_REVAL;
3654 		goto retry;
3655 	}
3656 	return error;
3657 }
3658 
3659 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3660 {
3661 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
3662 }
3663 
3664 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3665 {
3666 	int error = may_create(dir, dentry);
3667 	unsigned max_links = dir->i_sb->s_max_links;
3668 
3669 	if (error)
3670 		return error;
3671 
3672 	if (!dir->i_op->mkdir)
3673 		return -EPERM;
3674 
3675 	mode &= (S_IRWXUGO|S_ISVTX);
3676 	error = security_inode_mkdir(dir, dentry, mode);
3677 	if (error)
3678 		return error;
3679 
3680 	if (max_links && dir->i_nlink >= max_links)
3681 		return -EMLINK;
3682 
3683 	error = dir->i_op->mkdir(dir, dentry, mode);
3684 	if (!error)
3685 		fsnotify_mkdir(dir, dentry);
3686 	return error;
3687 }
3688 EXPORT_SYMBOL(vfs_mkdir);
3689 
3690 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3691 {
3692 	struct dentry *dentry;
3693 	struct path path;
3694 	int error;
3695 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3696 
3697 retry:
3698 	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3699 	if (IS_ERR(dentry))
3700 		return PTR_ERR(dentry);
3701 
3702 	if (!IS_POSIXACL(path.dentry->d_inode))
3703 		mode &= ~current_umask();
3704 	error = security_path_mkdir(&path, dentry, mode);
3705 	if (!error)
3706 		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3707 	done_path_create(&path, dentry);
3708 	if (retry_estale(error, lookup_flags)) {
3709 		lookup_flags |= LOOKUP_REVAL;
3710 		goto retry;
3711 	}
3712 	return error;
3713 }
3714 
3715 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3716 {
3717 	return sys_mkdirat(AT_FDCWD, pathname, mode);
3718 }
3719 
3720 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3721 {
3722 	int error = may_delete(dir, dentry, 1);
3723 
3724 	if (error)
3725 		return error;
3726 
3727 	if (!dir->i_op->rmdir)
3728 		return -EPERM;
3729 
3730 	dget(dentry);
3731 	inode_lock(dentry->d_inode);
3732 
3733 	error = -EBUSY;
3734 	if (is_local_mountpoint(dentry))
3735 		goto out;
3736 
3737 	error = security_inode_rmdir(dir, dentry);
3738 	if (error)
3739 		goto out;
3740 
3741 	shrink_dcache_parent(dentry);
3742 	error = dir->i_op->rmdir(dir, dentry);
3743 	if (error)
3744 		goto out;
3745 
3746 	dentry->d_inode->i_flags |= S_DEAD;
3747 	dont_mount(dentry);
3748 	detach_mounts(dentry);
3749 
3750 out:
3751 	inode_unlock(dentry->d_inode);
3752 	dput(dentry);
3753 	if (!error)
3754 		d_delete(dentry);
3755 	return error;
3756 }
3757 EXPORT_SYMBOL(vfs_rmdir);
3758 
3759 static long do_rmdir(int dfd, const char __user *pathname)
3760 {
3761 	int error = 0;
3762 	struct filename *name;
3763 	struct dentry *dentry;
3764 	struct path path;
3765 	struct qstr last;
3766 	int type;
3767 	unsigned int lookup_flags = 0;
3768 retry:
3769 	name = user_path_parent(dfd, pathname,
3770 				&path, &last, &type, lookup_flags);
3771 	if (IS_ERR(name))
3772 		return PTR_ERR(name);
3773 
3774 	switch (type) {
3775 	case LAST_DOTDOT:
3776 		error = -ENOTEMPTY;
3777 		goto exit1;
3778 	case LAST_DOT:
3779 		error = -EINVAL;
3780 		goto exit1;
3781 	case LAST_ROOT:
3782 		error = -EBUSY;
3783 		goto exit1;
3784 	}
3785 
3786 	error = mnt_want_write(path.mnt);
3787 	if (error)
3788 		goto exit1;
3789 
3790 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3791 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3792 	error = PTR_ERR(dentry);
3793 	if (IS_ERR(dentry))
3794 		goto exit2;
3795 	if (!dentry->d_inode) {
3796 		error = -ENOENT;
3797 		goto exit3;
3798 	}
3799 	error = security_path_rmdir(&path, dentry);
3800 	if (error)
3801 		goto exit3;
3802 	error = vfs_rmdir(path.dentry->d_inode, dentry);
3803 exit3:
3804 	dput(dentry);
3805 exit2:
3806 	inode_unlock(path.dentry->d_inode);
3807 	mnt_drop_write(path.mnt);
3808 exit1:
3809 	path_put(&path);
3810 	putname(name);
3811 	if (retry_estale(error, lookup_flags)) {
3812 		lookup_flags |= LOOKUP_REVAL;
3813 		goto retry;
3814 	}
3815 	return error;
3816 }
3817 
3818 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3819 {
3820 	return do_rmdir(AT_FDCWD, pathname);
3821 }
3822 
3823 /**
3824  * vfs_unlink - unlink a filesystem object
3825  * @dir:	parent directory
3826  * @dentry:	victim
3827  * @delegated_inode: returns victim inode, if the inode is delegated.
3828  *
3829  * The caller must hold dir->i_mutex.
3830  *
3831  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3832  * return a reference to the inode in delegated_inode.  The caller
3833  * should then break the delegation on that inode and retry.  Because
3834  * breaking a delegation may take a long time, the caller should drop
3835  * dir->i_mutex before doing so.
3836  *
3837  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3838  * be appropriate for callers that expect the underlying filesystem not
3839  * to be NFS exported.
3840  */
3841 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3842 {
3843 	struct inode *target = dentry->d_inode;
3844 	int error = may_delete(dir, dentry, 0);
3845 
3846 	if (error)
3847 		return error;
3848 
3849 	if (!dir->i_op->unlink)
3850 		return -EPERM;
3851 
3852 	inode_lock(target);
3853 	if (is_local_mountpoint(dentry))
3854 		error = -EBUSY;
3855 	else {
3856 		error = security_inode_unlink(dir, dentry);
3857 		if (!error) {
3858 			error = try_break_deleg(target, delegated_inode);
3859 			if (error)
3860 				goto out;
3861 			error = dir->i_op->unlink(dir, dentry);
3862 			if (!error) {
3863 				dont_mount(dentry);
3864 				detach_mounts(dentry);
3865 			}
3866 		}
3867 	}
3868 out:
3869 	inode_unlock(target);
3870 
3871 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
3872 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3873 		fsnotify_link_count(target);
3874 		d_delete(dentry);
3875 	}
3876 
3877 	return error;
3878 }
3879 EXPORT_SYMBOL(vfs_unlink);
3880 
3881 /*
3882  * Make sure that the actual truncation of the file will occur outside its
3883  * directory's i_mutex.  Truncate can take a long time if there is a lot of
3884  * writeout happening, and we don't want to prevent access to the directory
3885  * while waiting on the I/O.
3886  */
3887 static long do_unlinkat(int dfd, const char __user *pathname)
3888 {
3889 	int error;
3890 	struct filename *name;
3891 	struct dentry *dentry;
3892 	struct path path;
3893 	struct qstr last;
3894 	int type;
3895 	struct inode *inode = NULL;
3896 	struct inode *delegated_inode = NULL;
3897 	unsigned int lookup_flags = 0;
3898 retry:
3899 	name = user_path_parent(dfd, pathname,
3900 				&path, &last, &type, lookup_flags);
3901 	if (IS_ERR(name))
3902 		return PTR_ERR(name);
3903 
3904 	error = -EISDIR;
3905 	if (type != LAST_NORM)
3906 		goto exit1;
3907 
3908 	error = mnt_want_write(path.mnt);
3909 	if (error)
3910 		goto exit1;
3911 retry_deleg:
3912 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3913 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3914 	error = PTR_ERR(dentry);
3915 	if (!IS_ERR(dentry)) {
3916 		/* Why not before? Because we want correct error value */
3917 		if (last.name[last.len])
3918 			goto slashes;
3919 		inode = dentry->d_inode;
3920 		if (d_is_negative(dentry))
3921 			goto slashes;
3922 		ihold(inode);
3923 		error = security_path_unlink(&path, dentry);
3924 		if (error)
3925 			goto exit2;
3926 		error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3927 exit2:
3928 		dput(dentry);
3929 	}
3930 	inode_unlock(path.dentry->d_inode);
3931 	if (inode)
3932 		iput(inode);	/* truncate the inode here */
3933 	inode = NULL;
3934 	if (delegated_inode) {
3935 		error = break_deleg_wait(&delegated_inode);
3936 		if (!error)
3937 			goto retry_deleg;
3938 	}
3939 	mnt_drop_write(path.mnt);
3940 exit1:
3941 	path_put(&path);
3942 	putname(name);
3943 	if (retry_estale(error, lookup_flags)) {
3944 		lookup_flags |= LOOKUP_REVAL;
3945 		inode = NULL;
3946 		goto retry;
3947 	}
3948 	return error;
3949 
3950 slashes:
3951 	if (d_is_negative(dentry))
3952 		error = -ENOENT;
3953 	else if (d_is_dir(dentry))
3954 		error = -EISDIR;
3955 	else
3956 		error = -ENOTDIR;
3957 	goto exit2;
3958 }
3959 
3960 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3961 {
3962 	if ((flag & ~AT_REMOVEDIR) != 0)
3963 		return -EINVAL;
3964 
3965 	if (flag & AT_REMOVEDIR)
3966 		return do_rmdir(dfd, pathname);
3967 
3968 	return do_unlinkat(dfd, pathname);
3969 }
3970 
3971 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3972 {
3973 	return do_unlinkat(AT_FDCWD, pathname);
3974 }
3975 
3976 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3977 {
3978 	int error = may_create(dir, dentry);
3979 
3980 	if (error)
3981 		return error;
3982 
3983 	if (!dir->i_op->symlink)
3984 		return -EPERM;
3985 
3986 	error = security_inode_symlink(dir, dentry, oldname);
3987 	if (error)
3988 		return error;
3989 
3990 	error = dir->i_op->symlink(dir, dentry, oldname);
3991 	if (!error)
3992 		fsnotify_create(dir, dentry);
3993 	return error;
3994 }
3995 EXPORT_SYMBOL(vfs_symlink);
3996 
3997 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3998 		int, newdfd, const char __user *, newname)
3999 {
4000 	int error;
4001 	struct filename *from;
4002 	struct dentry *dentry;
4003 	struct path path;
4004 	unsigned int lookup_flags = 0;
4005 
4006 	from = getname(oldname);
4007 	if (IS_ERR(from))
4008 		return PTR_ERR(from);
4009 retry:
4010 	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4011 	error = PTR_ERR(dentry);
4012 	if (IS_ERR(dentry))
4013 		goto out_putname;
4014 
4015 	error = security_path_symlink(&path, dentry, from->name);
4016 	if (!error)
4017 		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4018 	done_path_create(&path, dentry);
4019 	if (retry_estale(error, lookup_flags)) {
4020 		lookup_flags |= LOOKUP_REVAL;
4021 		goto retry;
4022 	}
4023 out_putname:
4024 	putname(from);
4025 	return error;
4026 }
4027 
4028 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4029 {
4030 	return sys_symlinkat(oldname, AT_FDCWD, newname);
4031 }
4032 
4033 /**
4034  * vfs_link - create a new link
4035  * @old_dentry:	object to be linked
4036  * @dir:	new parent
4037  * @new_dentry:	where to create the new link
4038  * @delegated_inode: returns inode needing a delegation break
4039  *
4040  * The caller must hold dir->i_mutex
4041  *
4042  * If vfs_link discovers a delegation on the to-be-linked file in need
4043  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4044  * inode in delegated_inode.  The caller should then break the delegation
4045  * and retry.  Because breaking a delegation may take a long time, the
4046  * caller should drop the i_mutex before doing so.
4047  *
4048  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4049  * be appropriate for callers that expect the underlying filesystem not
4050  * to be NFS exported.
4051  */
4052 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4053 {
4054 	struct inode *inode = old_dentry->d_inode;
4055 	unsigned max_links = dir->i_sb->s_max_links;
4056 	int error;
4057 
4058 	if (!inode)
4059 		return -ENOENT;
4060 
4061 	error = may_create(dir, new_dentry);
4062 	if (error)
4063 		return error;
4064 
4065 	if (dir->i_sb != inode->i_sb)
4066 		return -EXDEV;
4067 
4068 	/*
4069 	 * A link to an append-only or immutable file cannot be created.
4070 	 */
4071 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4072 		return -EPERM;
4073 	if (!dir->i_op->link)
4074 		return -EPERM;
4075 	if (S_ISDIR(inode->i_mode))
4076 		return -EPERM;
4077 
4078 	error = security_inode_link(old_dentry, dir, new_dentry);
4079 	if (error)
4080 		return error;
4081 
4082 	inode_lock(inode);
4083 	/* Make sure we don't allow creating hardlink to an unlinked file */
4084 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4085 		error =  -ENOENT;
4086 	else if (max_links && inode->i_nlink >= max_links)
4087 		error = -EMLINK;
4088 	else {
4089 		error = try_break_deleg(inode, delegated_inode);
4090 		if (!error)
4091 			error = dir->i_op->link(old_dentry, dir, new_dentry);
4092 	}
4093 
4094 	if (!error && (inode->i_state & I_LINKABLE)) {
4095 		spin_lock(&inode->i_lock);
4096 		inode->i_state &= ~I_LINKABLE;
4097 		spin_unlock(&inode->i_lock);
4098 	}
4099 	inode_unlock(inode);
4100 	if (!error)
4101 		fsnotify_link(dir, inode, new_dentry);
4102 	return error;
4103 }
4104 EXPORT_SYMBOL(vfs_link);
4105 
4106 /*
4107  * Hardlinks are often used in delicate situations.  We avoid
4108  * security-related surprises by not following symlinks on the
4109  * newname.  --KAB
4110  *
4111  * We don't follow them on the oldname either to be compatible
4112  * with linux 2.0, and to avoid hard-linking to directories
4113  * and other special files.  --ADM
4114  */
4115 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4116 		int, newdfd, const char __user *, newname, int, flags)
4117 {
4118 	struct dentry *new_dentry;
4119 	struct path old_path, new_path;
4120 	struct inode *delegated_inode = NULL;
4121 	int how = 0;
4122 	int error;
4123 
4124 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4125 		return -EINVAL;
4126 	/*
4127 	 * To use null names we require CAP_DAC_READ_SEARCH
4128 	 * This ensures that not everyone will be able to create
4129 	 * handlink using the passed filedescriptor.
4130 	 */
4131 	if (flags & AT_EMPTY_PATH) {
4132 		if (!capable(CAP_DAC_READ_SEARCH))
4133 			return -ENOENT;
4134 		how = LOOKUP_EMPTY;
4135 	}
4136 
4137 	if (flags & AT_SYMLINK_FOLLOW)
4138 		how |= LOOKUP_FOLLOW;
4139 retry:
4140 	error = user_path_at(olddfd, oldname, how, &old_path);
4141 	if (error)
4142 		return error;
4143 
4144 	new_dentry = user_path_create(newdfd, newname, &new_path,
4145 					(how & LOOKUP_REVAL));
4146 	error = PTR_ERR(new_dentry);
4147 	if (IS_ERR(new_dentry))
4148 		goto out;
4149 
4150 	error = -EXDEV;
4151 	if (old_path.mnt != new_path.mnt)
4152 		goto out_dput;
4153 	error = may_linkat(&old_path);
4154 	if (unlikely(error))
4155 		goto out_dput;
4156 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4157 	if (error)
4158 		goto out_dput;
4159 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4160 out_dput:
4161 	done_path_create(&new_path, new_dentry);
4162 	if (delegated_inode) {
4163 		error = break_deleg_wait(&delegated_inode);
4164 		if (!error) {
4165 			path_put(&old_path);
4166 			goto retry;
4167 		}
4168 	}
4169 	if (retry_estale(error, how)) {
4170 		path_put(&old_path);
4171 		how |= LOOKUP_REVAL;
4172 		goto retry;
4173 	}
4174 out:
4175 	path_put(&old_path);
4176 
4177 	return error;
4178 }
4179 
4180 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4181 {
4182 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4183 }
4184 
4185 /**
4186  * vfs_rename - rename a filesystem object
4187  * @old_dir:	parent of source
4188  * @old_dentry:	source
4189  * @new_dir:	parent of destination
4190  * @new_dentry:	destination
4191  * @delegated_inode: returns an inode needing a delegation break
4192  * @flags:	rename flags
4193  *
4194  * The caller must hold multiple mutexes--see lock_rename()).
4195  *
4196  * If vfs_rename discovers a delegation in need of breaking at either
4197  * the source or destination, it will return -EWOULDBLOCK and return a
4198  * reference to the inode in delegated_inode.  The caller should then
4199  * break the delegation and retry.  Because breaking a delegation may
4200  * take a long time, the caller should drop all locks before doing
4201  * so.
4202  *
4203  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4204  * be appropriate for callers that expect the underlying filesystem not
4205  * to be NFS exported.
4206  *
4207  * The worst of all namespace operations - renaming directory. "Perverted"
4208  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4209  * Problems:
4210  *	a) we can get into loop creation.
4211  *	b) race potential - two innocent renames can create a loop together.
4212  *	   That's where 4.4 screws up. Current fix: serialization on
4213  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4214  *	   story.
4215  *	c) we have to lock _four_ objects - parents and victim (if it exists),
4216  *	   and source (if it is not a directory).
4217  *	   And that - after we got ->i_mutex on parents (until then we don't know
4218  *	   whether the target exists).  Solution: try to be smart with locking
4219  *	   order for inodes.  We rely on the fact that tree topology may change
4220  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4221  *	   move will be locked.  Thus we can rank directories by the tree
4222  *	   (ancestors first) and rank all non-directories after them.
4223  *	   That works since everybody except rename does "lock parent, lookup,
4224  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4225  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4226  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4227  *	   we'd better make sure that there's no link(2) for them.
4228  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4229  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4230  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4231  *	   ->i_mutex on parents, which works but leads to some truly excessive
4232  *	   locking].
4233  */
4234 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4235 	       struct inode *new_dir, struct dentry *new_dentry,
4236 	       struct inode **delegated_inode, unsigned int flags)
4237 {
4238 	int error;
4239 	bool is_dir = d_is_dir(old_dentry);
4240 	const unsigned char *old_name;
4241 	struct inode *source = old_dentry->d_inode;
4242 	struct inode *target = new_dentry->d_inode;
4243 	bool new_is_dir = false;
4244 	unsigned max_links = new_dir->i_sb->s_max_links;
4245 
4246 	/*
4247 	 * Check source == target.
4248 	 * On overlayfs need to look at underlying inodes.
4249 	 */
4250 	if (vfs_select_inode(old_dentry, 0) == vfs_select_inode(new_dentry, 0))
4251 		return 0;
4252 
4253 	error = may_delete(old_dir, old_dentry, is_dir);
4254 	if (error)
4255 		return error;
4256 
4257 	if (!target) {
4258 		error = may_create(new_dir, new_dentry);
4259 	} else {
4260 		new_is_dir = d_is_dir(new_dentry);
4261 
4262 		if (!(flags & RENAME_EXCHANGE))
4263 			error = may_delete(new_dir, new_dentry, is_dir);
4264 		else
4265 			error = may_delete(new_dir, new_dentry, new_is_dir);
4266 	}
4267 	if (error)
4268 		return error;
4269 
4270 	if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4271 		return -EPERM;
4272 
4273 	if (flags && !old_dir->i_op->rename2)
4274 		return -EINVAL;
4275 
4276 	/*
4277 	 * If we are going to change the parent - check write permissions,
4278 	 * we'll need to flip '..'.
4279 	 */
4280 	if (new_dir != old_dir) {
4281 		if (is_dir) {
4282 			error = inode_permission(source, MAY_WRITE);
4283 			if (error)
4284 				return error;
4285 		}
4286 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4287 			error = inode_permission(target, MAY_WRITE);
4288 			if (error)
4289 				return error;
4290 		}
4291 	}
4292 
4293 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4294 				      flags);
4295 	if (error)
4296 		return error;
4297 
4298 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4299 	dget(new_dentry);
4300 	if (!is_dir || (flags & RENAME_EXCHANGE))
4301 		lock_two_nondirectories(source, target);
4302 	else if (target)
4303 		inode_lock(target);
4304 
4305 	error = -EBUSY;
4306 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4307 		goto out;
4308 
4309 	if (max_links && new_dir != old_dir) {
4310 		error = -EMLINK;
4311 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4312 			goto out;
4313 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4314 		    old_dir->i_nlink >= max_links)
4315 			goto out;
4316 	}
4317 	if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4318 		shrink_dcache_parent(new_dentry);
4319 	if (!is_dir) {
4320 		error = try_break_deleg(source, delegated_inode);
4321 		if (error)
4322 			goto out;
4323 	}
4324 	if (target && !new_is_dir) {
4325 		error = try_break_deleg(target, delegated_inode);
4326 		if (error)
4327 			goto out;
4328 	}
4329 	if (!old_dir->i_op->rename2) {
4330 		error = old_dir->i_op->rename(old_dir, old_dentry,
4331 					      new_dir, new_dentry);
4332 	} else {
4333 		WARN_ON(old_dir->i_op->rename != NULL);
4334 		error = old_dir->i_op->rename2(old_dir, old_dentry,
4335 					       new_dir, new_dentry, flags);
4336 	}
4337 	if (error)
4338 		goto out;
4339 
4340 	if (!(flags & RENAME_EXCHANGE) && target) {
4341 		if (is_dir)
4342 			target->i_flags |= S_DEAD;
4343 		dont_mount(new_dentry);
4344 		detach_mounts(new_dentry);
4345 	}
4346 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4347 		if (!(flags & RENAME_EXCHANGE))
4348 			d_move(old_dentry, new_dentry);
4349 		else
4350 			d_exchange(old_dentry, new_dentry);
4351 	}
4352 out:
4353 	if (!is_dir || (flags & RENAME_EXCHANGE))
4354 		unlock_two_nondirectories(source, target);
4355 	else if (target)
4356 		inode_unlock(target);
4357 	dput(new_dentry);
4358 	if (!error) {
4359 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
4360 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4361 		if (flags & RENAME_EXCHANGE) {
4362 			fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4363 				      new_is_dir, NULL, new_dentry);
4364 		}
4365 	}
4366 	fsnotify_oldname_free(old_name);
4367 
4368 	return error;
4369 }
4370 EXPORT_SYMBOL(vfs_rename);
4371 
4372 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4373 		int, newdfd, const char __user *, newname, unsigned int, flags)
4374 {
4375 	struct dentry *old_dentry, *new_dentry;
4376 	struct dentry *trap;
4377 	struct path old_path, new_path;
4378 	struct qstr old_last, new_last;
4379 	int old_type, new_type;
4380 	struct inode *delegated_inode = NULL;
4381 	struct filename *from;
4382 	struct filename *to;
4383 	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4384 	bool should_retry = false;
4385 	int error;
4386 
4387 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4388 		return -EINVAL;
4389 
4390 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4391 	    (flags & RENAME_EXCHANGE))
4392 		return -EINVAL;
4393 
4394 	if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4395 		return -EPERM;
4396 
4397 	if (flags & RENAME_EXCHANGE)
4398 		target_flags = 0;
4399 
4400 retry:
4401 	from = user_path_parent(olddfd, oldname,
4402 				&old_path, &old_last, &old_type, lookup_flags);
4403 	if (IS_ERR(from)) {
4404 		error = PTR_ERR(from);
4405 		goto exit;
4406 	}
4407 
4408 	to = user_path_parent(newdfd, newname,
4409 				&new_path, &new_last, &new_type, lookup_flags);
4410 	if (IS_ERR(to)) {
4411 		error = PTR_ERR(to);
4412 		goto exit1;
4413 	}
4414 
4415 	error = -EXDEV;
4416 	if (old_path.mnt != new_path.mnt)
4417 		goto exit2;
4418 
4419 	error = -EBUSY;
4420 	if (old_type != LAST_NORM)
4421 		goto exit2;
4422 
4423 	if (flags & RENAME_NOREPLACE)
4424 		error = -EEXIST;
4425 	if (new_type != LAST_NORM)
4426 		goto exit2;
4427 
4428 	error = mnt_want_write(old_path.mnt);
4429 	if (error)
4430 		goto exit2;
4431 
4432 retry_deleg:
4433 	trap = lock_rename(new_path.dentry, old_path.dentry);
4434 
4435 	old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4436 	error = PTR_ERR(old_dentry);
4437 	if (IS_ERR(old_dentry))
4438 		goto exit3;
4439 	/* source must exist */
4440 	error = -ENOENT;
4441 	if (d_is_negative(old_dentry))
4442 		goto exit4;
4443 	new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4444 	error = PTR_ERR(new_dentry);
4445 	if (IS_ERR(new_dentry))
4446 		goto exit4;
4447 	error = -EEXIST;
4448 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4449 		goto exit5;
4450 	if (flags & RENAME_EXCHANGE) {
4451 		error = -ENOENT;
4452 		if (d_is_negative(new_dentry))
4453 			goto exit5;
4454 
4455 		if (!d_is_dir(new_dentry)) {
4456 			error = -ENOTDIR;
4457 			if (new_last.name[new_last.len])
4458 				goto exit5;
4459 		}
4460 	}
4461 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4462 	if (!d_is_dir(old_dentry)) {
4463 		error = -ENOTDIR;
4464 		if (old_last.name[old_last.len])
4465 			goto exit5;
4466 		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4467 			goto exit5;
4468 	}
4469 	/* source should not be ancestor of target */
4470 	error = -EINVAL;
4471 	if (old_dentry == trap)
4472 		goto exit5;
4473 	/* target should not be an ancestor of source */
4474 	if (!(flags & RENAME_EXCHANGE))
4475 		error = -ENOTEMPTY;
4476 	if (new_dentry == trap)
4477 		goto exit5;
4478 
4479 	error = security_path_rename(&old_path, old_dentry,
4480 				     &new_path, new_dentry, flags);
4481 	if (error)
4482 		goto exit5;
4483 	error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4484 			   new_path.dentry->d_inode, new_dentry,
4485 			   &delegated_inode, flags);
4486 exit5:
4487 	dput(new_dentry);
4488 exit4:
4489 	dput(old_dentry);
4490 exit3:
4491 	unlock_rename(new_path.dentry, old_path.dentry);
4492 	if (delegated_inode) {
4493 		error = break_deleg_wait(&delegated_inode);
4494 		if (!error)
4495 			goto retry_deleg;
4496 	}
4497 	mnt_drop_write(old_path.mnt);
4498 exit2:
4499 	if (retry_estale(error, lookup_flags))
4500 		should_retry = true;
4501 	path_put(&new_path);
4502 	putname(to);
4503 exit1:
4504 	path_put(&old_path);
4505 	putname(from);
4506 	if (should_retry) {
4507 		should_retry = false;
4508 		lookup_flags |= LOOKUP_REVAL;
4509 		goto retry;
4510 	}
4511 exit:
4512 	return error;
4513 }
4514 
4515 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4516 		int, newdfd, const char __user *, newname)
4517 {
4518 	return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4519 }
4520 
4521 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4522 {
4523 	return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4524 }
4525 
4526 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4527 {
4528 	int error = may_create(dir, dentry);
4529 	if (error)
4530 		return error;
4531 
4532 	if (!dir->i_op->mknod)
4533 		return -EPERM;
4534 
4535 	return dir->i_op->mknod(dir, dentry,
4536 				S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4537 }
4538 EXPORT_SYMBOL(vfs_whiteout);
4539 
4540 int readlink_copy(char __user *buffer, int buflen, const char *link)
4541 {
4542 	int len = PTR_ERR(link);
4543 	if (IS_ERR(link))
4544 		goto out;
4545 
4546 	len = strlen(link);
4547 	if (len > (unsigned) buflen)
4548 		len = buflen;
4549 	if (copy_to_user(buffer, link, len))
4550 		len = -EFAULT;
4551 out:
4552 	return len;
4553 }
4554 EXPORT_SYMBOL(readlink_copy);
4555 
4556 /*
4557  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
4558  * have ->get_link() not calling nd_jump_link().  Using (or not using) it
4559  * for any given inode is up to filesystem.
4560  */
4561 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4562 {
4563 	DEFINE_DELAYED_CALL(done);
4564 	struct inode *inode = d_inode(dentry);
4565 	const char *link = inode->i_link;
4566 	int res;
4567 
4568 	if (!link) {
4569 		link = inode->i_op->get_link(dentry, inode, &done);
4570 		if (IS_ERR(link))
4571 			return PTR_ERR(link);
4572 	}
4573 	res = readlink_copy(buffer, buflen, link);
4574 	do_delayed_call(&done);
4575 	return res;
4576 }
4577 EXPORT_SYMBOL(generic_readlink);
4578 
4579 /* get the link contents into pagecache */
4580 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4581 			  struct delayed_call *callback)
4582 {
4583 	char *kaddr;
4584 	struct page *page;
4585 	struct address_space *mapping = inode->i_mapping;
4586 
4587 	if (!dentry) {
4588 		page = find_get_page(mapping, 0);
4589 		if (!page)
4590 			return ERR_PTR(-ECHILD);
4591 		if (!PageUptodate(page)) {
4592 			put_page(page);
4593 			return ERR_PTR(-ECHILD);
4594 		}
4595 	} else {
4596 		page = read_mapping_page(mapping, 0, NULL);
4597 		if (IS_ERR(page))
4598 			return (char*)page;
4599 	}
4600 	set_delayed_call(callback, page_put_link, page);
4601 	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4602 	kaddr = page_address(page);
4603 	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4604 	return kaddr;
4605 }
4606 
4607 EXPORT_SYMBOL(page_get_link);
4608 
4609 void page_put_link(void *arg)
4610 {
4611 	put_page(arg);
4612 }
4613 EXPORT_SYMBOL(page_put_link);
4614 
4615 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4616 {
4617 	DEFINE_DELAYED_CALL(done);
4618 	int res = readlink_copy(buffer, buflen,
4619 				page_get_link(dentry, d_inode(dentry),
4620 					      &done));
4621 	do_delayed_call(&done);
4622 	return res;
4623 }
4624 EXPORT_SYMBOL(page_readlink);
4625 
4626 /*
4627  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4628  */
4629 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4630 {
4631 	struct address_space *mapping = inode->i_mapping;
4632 	struct page *page;
4633 	void *fsdata;
4634 	int err;
4635 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4636 	if (nofs)
4637 		flags |= AOP_FLAG_NOFS;
4638 
4639 retry:
4640 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4641 				flags, &page, &fsdata);
4642 	if (err)
4643 		goto fail;
4644 
4645 	memcpy(page_address(page), symname, len-1);
4646 
4647 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4648 							page, fsdata);
4649 	if (err < 0)
4650 		goto fail;
4651 	if (err < len-1)
4652 		goto retry;
4653 
4654 	mark_inode_dirty(inode);
4655 	return 0;
4656 fail:
4657 	return err;
4658 }
4659 EXPORT_SYMBOL(__page_symlink);
4660 
4661 int page_symlink(struct inode *inode, const char *symname, int len)
4662 {
4663 	return __page_symlink(inode, symname, len,
4664 			!mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4665 }
4666 EXPORT_SYMBOL(page_symlink);
4667 
4668 const struct inode_operations page_symlink_inode_operations = {
4669 	.readlink	= generic_readlink,
4670 	.get_link	= page_get_link,
4671 };
4672 EXPORT_SYMBOL(page_symlink_inode_operations);
4673