1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/export.h> 19 #include <linux/kernel.h> 20 #include <linux/slab.h> 21 #include <linux/fs.h> 22 #include <linux/namei.h> 23 #include <linux/pagemap.h> 24 #include <linux/fsnotify.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/ima.h> 28 #include <linux/syscalls.h> 29 #include <linux/mount.h> 30 #include <linux/audit.h> 31 #include <linux/capability.h> 32 #include <linux/file.h> 33 #include <linux/fcntl.h> 34 #include <linux/device_cgroup.h> 35 #include <linux/fs_struct.h> 36 #include <linux/posix_acl.h> 37 #include <linux/hash.h> 38 #include <asm/uaccess.h> 39 40 #include "internal.h" 41 #include "mount.h" 42 43 /* [Feb-1997 T. Schoebel-Theuer] 44 * Fundamental changes in the pathname lookup mechanisms (namei) 45 * were necessary because of omirr. The reason is that omirr needs 46 * to know the _real_ pathname, not the user-supplied one, in case 47 * of symlinks (and also when transname replacements occur). 48 * 49 * The new code replaces the old recursive symlink resolution with 50 * an iterative one (in case of non-nested symlink chains). It does 51 * this with calls to <fs>_follow_link(). 52 * As a side effect, dir_namei(), _namei() and follow_link() are now 53 * replaced with a single function lookup_dentry() that can handle all 54 * the special cases of the former code. 55 * 56 * With the new dcache, the pathname is stored at each inode, at least as 57 * long as the refcount of the inode is positive. As a side effect, the 58 * size of the dcache depends on the inode cache and thus is dynamic. 59 * 60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 61 * resolution to correspond with current state of the code. 62 * 63 * Note that the symlink resolution is not *completely* iterative. 64 * There is still a significant amount of tail- and mid- recursion in 65 * the algorithm. Also, note that <fs>_readlink() is not used in 66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 67 * may return different results than <fs>_follow_link(). Many virtual 68 * filesystems (including /proc) exhibit this behavior. 69 */ 70 71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 73 * and the name already exists in form of a symlink, try to create the new 74 * name indicated by the symlink. The old code always complained that the 75 * name already exists, due to not following the symlink even if its target 76 * is nonexistent. The new semantics affects also mknod() and link() when 77 * the name is a symlink pointing to a non-existent name. 78 * 79 * I don't know which semantics is the right one, since I have no access 80 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 82 * "old" one. Personally, I think the new semantics is much more logical. 83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 84 * file does succeed in both HP-UX and SunOs, but not in Solaris 85 * and in the old Linux semantics. 86 */ 87 88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 89 * semantics. See the comments in "open_namei" and "do_link" below. 90 * 91 * [10-Sep-98 Alan Modra] Another symlink change. 92 */ 93 94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 95 * inside the path - always follow. 96 * in the last component in creation/removal/renaming - never follow. 97 * if LOOKUP_FOLLOW passed - follow. 98 * if the pathname has trailing slashes - follow. 99 * otherwise - don't follow. 100 * (applied in that order). 101 * 102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 104 * During the 2.4 we need to fix the userland stuff depending on it - 105 * hopefully we will be able to get rid of that wart in 2.5. So far only 106 * XEmacs seems to be relying on it... 107 */ 108 /* 109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 111 * any extra contention... 112 */ 113 114 /* In order to reduce some races, while at the same time doing additional 115 * checking and hopefully speeding things up, we copy filenames to the 116 * kernel data space before using them.. 117 * 118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 119 * PATH_MAX includes the nul terminator --RR. 120 */ 121 122 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) 123 124 struct filename * 125 getname_flags(const char __user *filename, int flags, int *empty) 126 { 127 struct filename *result; 128 char *kname; 129 int len; 130 131 result = audit_reusename(filename); 132 if (result) 133 return result; 134 135 result = __getname(); 136 if (unlikely(!result)) 137 return ERR_PTR(-ENOMEM); 138 139 /* 140 * First, try to embed the struct filename inside the names_cache 141 * allocation 142 */ 143 kname = (char *)result->iname; 144 result->name = kname; 145 146 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); 147 if (unlikely(len < 0)) { 148 __putname(result); 149 return ERR_PTR(len); 150 } 151 152 /* 153 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 154 * separate struct filename so we can dedicate the entire 155 * names_cache allocation for the pathname, and re-do the copy from 156 * userland. 157 */ 158 if (unlikely(len == EMBEDDED_NAME_MAX)) { 159 const size_t size = offsetof(struct filename, iname[1]); 160 kname = (char *)result; 161 162 /* 163 * size is chosen that way we to guarantee that 164 * result->iname[0] is within the same object and that 165 * kname can't be equal to result->iname, no matter what. 166 */ 167 result = kzalloc(size, GFP_KERNEL); 168 if (unlikely(!result)) { 169 __putname(kname); 170 return ERR_PTR(-ENOMEM); 171 } 172 result->name = kname; 173 len = strncpy_from_user(kname, filename, PATH_MAX); 174 if (unlikely(len < 0)) { 175 __putname(kname); 176 kfree(result); 177 return ERR_PTR(len); 178 } 179 if (unlikely(len == PATH_MAX)) { 180 __putname(kname); 181 kfree(result); 182 return ERR_PTR(-ENAMETOOLONG); 183 } 184 } 185 186 result->refcnt = 1; 187 /* The empty path is special. */ 188 if (unlikely(!len)) { 189 if (empty) 190 *empty = 1; 191 if (!(flags & LOOKUP_EMPTY)) { 192 putname(result); 193 return ERR_PTR(-ENOENT); 194 } 195 } 196 197 result->uptr = filename; 198 result->aname = NULL; 199 audit_getname(result); 200 return result; 201 } 202 203 struct filename * 204 getname(const char __user * filename) 205 { 206 return getname_flags(filename, 0, NULL); 207 } 208 209 struct filename * 210 getname_kernel(const char * filename) 211 { 212 struct filename *result; 213 int len = strlen(filename) + 1; 214 215 result = __getname(); 216 if (unlikely(!result)) 217 return ERR_PTR(-ENOMEM); 218 219 if (len <= EMBEDDED_NAME_MAX) { 220 result->name = (char *)result->iname; 221 } else if (len <= PATH_MAX) { 222 struct filename *tmp; 223 224 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL); 225 if (unlikely(!tmp)) { 226 __putname(result); 227 return ERR_PTR(-ENOMEM); 228 } 229 tmp->name = (char *)result; 230 result = tmp; 231 } else { 232 __putname(result); 233 return ERR_PTR(-ENAMETOOLONG); 234 } 235 memcpy((char *)result->name, filename, len); 236 result->uptr = NULL; 237 result->aname = NULL; 238 result->refcnt = 1; 239 audit_getname(result); 240 241 return result; 242 } 243 244 void putname(struct filename *name) 245 { 246 BUG_ON(name->refcnt <= 0); 247 248 if (--name->refcnt > 0) 249 return; 250 251 if (name->name != name->iname) { 252 __putname(name->name); 253 kfree(name); 254 } else 255 __putname(name); 256 } 257 258 static int check_acl(struct inode *inode, int mask) 259 { 260 #ifdef CONFIG_FS_POSIX_ACL 261 struct posix_acl *acl; 262 263 if (mask & MAY_NOT_BLOCK) { 264 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 265 if (!acl) 266 return -EAGAIN; 267 /* no ->get_acl() calls in RCU mode... */ 268 if (acl == ACL_NOT_CACHED) 269 return -ECHILD; 270 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK); 271 } 272 273 acl = get_acl(inode, ACL_TYPE_ACCESS); 274 if (IS_ERR(acl)) 275 return PTR_ERR(acl); 276 if (acl) { 277 int error = posix_acl_permission(inode, acl, mask); 278 posix_acl_release(acl); 279 return error; 280 } 281 #endif 282 283 return -EAGAIN; 284 } 285 286 /* 287 * This does the basic permission checking 288 */ 289 static int acl_permission_check(struct inode *inode, int mask) 290 { 291 unsigned int mode = inode->i_mode; 292 293 if (likely(uid_eq(current_fsuid(), inode->i_uid))) 294 mode >>= 6; 295 else { 296 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 297 int error = check_acl(inode, mask); 298 if (error != -EAGAIN) 299 return error; 300 } 301 302 if (in_group_p(inode->i_gid)) 303 mode >>= 3; 304 } 305 306 /* 307 * If the DACs are ok we don't need any capability check. 308 */ 309 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 310 return 0; 311 return -EACCES; 312 } 313 314 /** 315 * generic_permission - check for access rights on a Posix-like filesystem 316 * @inode: inode to check access rights for 317 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...) 318 * 319 * Used to check for read/write/execute permissions on a file. 320 * We use "fsuid" for this, letting us set arbitrary permissions 321 * for filesystem access without changing the "normal" uids which 322 * are used for other things. 323 * 324 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 325 * request cannot be satisfied (eg. requires blocking or too much complexity). 326 * It would then be called again in ref-walk mode. 327 */ 328 int generic_permission(struct inode *inode, int mask) 329 { 330 int ret; 331 332 /* 333 * Do the basic permission checks. 334 */ 335 ret = acl_permission_check(inode, mask); 336 if (ret != -EACCES) 337 return ret; 338 339 if (S_ISDIR(inode->i_mode)) { 340 /* DACs are overridable for directories */ 341 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 342 return 0; 343 if (!(mask & MAY_WRITE)) 344 if (capable_wrt_inode_uidgid(inode, 345 CAP_DAC_READ_SEARCH)) 346 return 0; 347 return -EACCES; 348 } 349 /* 350 * Read/write DACs are always overridable. 351 * Executable DACs are overridable when there is 352 * at least one exec bit set. 353 */ 354 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 355 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 356 return 0; 357 358 /* 359 * Searching includes executable on directories, else just read. 360 */ 361 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 362 if (mask == MAY_READ) 363 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH)) 364 return 0; 365 366 return -EACCES; 367 } 368 EXPORT_SYMBOL(generic_permission); 369 370 /* 371 * We _really_ want to just do "generic_permission()" without 372 * even looking at the inode->i_op values. So we keep a cache 373 * flag in inode->i_opflags, that says "this has not special 374 * permission function, use the fast case". 375 */ 376 static inline int do_inode_permission(struct inode *inode, int mask) 377 { 378 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 379 if (likely(inode->i_op->permission)) 380 return inode->i_op->permission(inode, mask); 381 382 /* This gets set once for the inode lifetime */ 383 spin_lock(&inode->i_lock); 384 inode->i_opflags |= IOP_FASTPERM; 385 spin_unlock(&inode->i_lock); 386 } 387 return generic_permission(inode, mask); 388 } 389 390 /** 391 * __inode_permission - Check for access rights to a given inode 392 * @inode: Inode to check permission on 393 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 394 * 395 * Check for read/write/execute permissions on an inode. 396 * 397 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 398 * 399 * This does not check for a read-only file system. You probably want 400 * inode_permission(). 401 */ 402 int __inode_permission(struct inode *inode, int mask) 403 { 404 int retval; 405 406 if (unlikely(mask & MAY_WRITE)) { 407 /* 408 * Nobody gets write access to an immutable file. 409 */ 410 if (IS_IMMUTABLE(inode)) 411 return -EACCES; 412 } 413 414 retval = do_inode_permission(inode, mask); 415 if (retval) 416 return retval; 417 418 retval = devcgroup_inode_permission(inode, mask); 419 if (retval) 420 return retval; 421 422 return security_inode_permission(inode, mask); 423 } 424 EXPORT_SYMBOL(__inode_permission); 425 426 /** 427 * sb_permission - Check superblock-level permissions 428 * @sb: Superblock of inode to check permission on 429 * @inode: Inode to check permission on 430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 431 * 432 * Separate out file-system wide checks from inode-specific permission checks. 433 */ 434 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 435 { 436 if (unlikely(mask & MAY_WRITE)) { 437 umode_t mode = inode->i_mode; 438 439 /* Nobody gets write access to a read-only fs. */ 440 if ((sb->s_flags & MS_RDONLY) && 441 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 442 return -EROFS; 443 } 444 return 0; 445 } 446 447 /** 448 * inode_permission - Check for access rights to a given inode 449 * @inode: Inode to check permission on 450 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 451 * 452 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 453 * this, letting us set arbitrary permissions for filesystem access without 454 * changing the "normal" UIDs which are used for other things. 455 * 456 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 457 */ 458 int inode_permission(struct inode *inode, int mask) 459 { 460 int retval; 461 462 retval = sb_permission(inode->i_sb, inode, mask); 463 if (retval) 464 return retval; 465 return __inode_permission(inode, mask); 466 } 467 EXPORT_SYMBOL(inode_permission); 468 469 /** 470 * path_get - get a reference to a path 471 * @path: path to get the reference to 472 * 473 * Given a path increment the reference count to the dentry and the vfsmount. 474 */ 475 void path_get(const struct path *path) 476 { 477 mntget(path->mnt); 478 dget(path->dentry); 479 } 480 EXPORT_SYMBOL(path_get); 481 482 /** 483 * path_put - put a reference to a path 484 * @path: path to put the reference to 485 * 486 * Given a path decrement the reference count to the dentry and the vfsmount. 487 */ 488 void path_put(const struct path *path) 489 { 490 dput(path->dentry); 491 mntput(path->mnt); 492 } 493 EXPORT_SYMBOL(path_put); 494 495 #define EMBEDDED_LEVELS 2 496 struct nameidata { 497 struct path path; 498 struct qstr last; 499 struct path root; 500 struct inode *inode; /* path.dentry.d_inode */ 501 unsigned int flags; 502 unsigned seq, m_seq; 503 int last_type; 504 unsigned depth; 505 int total_link_count; 506 struct saved { 507 struct path link; 508 struct delayed_call done; 509 const char *name; 510 unsigned seq; 511 } *stack, internal[EMBEDDED_LEVELS]; 512 struct filename *name; 513 struct nameidata *saved; 514 struct inode *link_inode; 515 unsigned root_seq; 516 int dfd; 517 }; 518 519 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name) 520 { 521 struct nameidata *old = current->nameidata; 522 p->stack = p->internal; 523 p->dfd = dfd; 524 p->name = name; 525 p->total_link_count = old ? old->total_link_count : 0; 526 p->saved = old; 527 current->nameidata = p; 528 } 529 530 static void restore_nameidata(void) 531 { 532 struct nameidata *now = current->nameidata, *old = now->saved; 533 534 current->nameidata = old; 535 if (old) 536 old->total_link_count = now->total_link_count; 537 if (now->stack != now->internal) 538 kfree(now->stack); 539 } 540 541 static int __nd_alloc_stack(struct nameidata *nd) 542 { 543 struct saved *p; 544 545 if (nd->flags & LOOKUP_RCU) { 546 p= kmalloc(MAXSYMLINKS * sizeof(struct saved), 547 GFP_ATOMIC); 548 if (unlikely(!p)) 549 return -ECHILD; 550 } else { 551 p= kmalloc(MAXSYMLINKS * sizeof(struct saved), 552 GFP_KERNEL); 553 if (unlikely(!p)) 554 return -ENOMEM; 555 } 556 memcpy(p, nd->internal, sizeof(nd->internal)); 557 nd->stack = p; 558 return 0; 559 } 560 561 /** 562 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root 563 * @path: nameidate to verify 564 * 565 * Rename can sometimes move a file or directory outside of a bind 566 * mount, path_connected allows those cases to be detected. 567 */ 568 static bool path_connected(const struct path *path) 569 { 570 struct vfsmount *mnt = path->mnt; 571 572 /* Only bind mounts can have disconnected paths */ 573 if (mnt->mnt_root == mnt->mnt_sb->s_root) 574 return true; 575 576 return is_subdir(path->dentry, mnt->mnt_root); 577 } 578 579 static inline int nd_alloc_stack(struct nameidata *nd) 580 { 581 if (likely(nd->depth != EMBEDDED_LEVELS)) 582 return 0; 583 if (likely(nd->stack != nd->internal)) 584 return 0; 585 return __nd_alloc_stack(nd); 586 } 587 588 static void drop_links(struct nameidata *nd) 589 { 590 int i = nd->depth; 591 while (i--) { 592 struct saved *last = nd->stack + i; 593 do_delayed_call(&last->done); 594 clear_delayed_call(&last->done); 595 } 596 } 597 598 static void terminate_walk(struct nameidata *nd) 599 { 600 drop_links(nd); 601 if (!(nd->flags & LOOKUP_RCU)) { 602 int i; 603 path_put(&nd->path); 604 for (i = 0; i < nd->depth; i++) 605 path_put(&nd->stack[i].link); 606 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 607 path_put(&nd->root); 608 nd->root.mnt = NULL; 609 } 610 } else { 611 nd->flags &= ~LOOKUP_RCU; 612 if (!(nd->flags & LOOKUP_ROOT)) 613 nd->root.mnt = NULL; 614 rcu_read_unlock(); 615 } 616 nd->depth = 0; 617 } 618 619 /* path_put is needed afterwards regardless of success or failure */ 620 static bool legitimize_path(struct nameidata *nd, 621 struct path *path, unsigned seq) 622 { 623 int res = __legitimize_mnt(path->mnt, nd->m_seq); 624 if (unlikely(res)) { 625 if (res > 0) 626 path->mnt = NULL; 627 path->dentry = NULL; 628 return false; 629 } 630 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) { 631 path->dentry = NULL; 632 return false; 633 } 634 return !read_seqcount_retry(&path->dentry->d_seq, seq); 635 } 636 637 static bool legitimize_links(struct nameidata *nd) 638 { 639 int i; 640 for (i = 0; i < nd->depth; i++) { 641 struct saved *last = nd->stack + i; 642 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) { 643 drop_links(nd); 644 nd->depth = i + 1; 645 return false; 646 } 647 } 648 return true; 649 } 650 651 /* 652 * Path walking has 2 modes, rcu-walk and ref-walk (see 653 * Documentation/filesystems/path-lookup.txt). In situations when we can't 654 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 655 * normal reference counts on dentries and vfsmounts to transition to ref-walk 656 * mode. Refcounts are grabbed at the last known good point before rcu-walk 657 * got stuck, so ref-walk may continue from there. If this is not successful 658 * (eg. a seqcount has changed), then failure is returned and it's up to caller 659 * to restart the path walk from the beginning in ref-walk mode. 660 */ 661 662 /** 663 * unlazy_walk - try to switch to ref-walk mode. 664 * @nd: nameidata pathwalk data 665 * @dentry: child of nd->path.dentry or NULL 666 * @seq: seq number to check dentry against 667 * Returns: 0 on success, -ECHILD on failure 668 * 669 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry 670 * for ref-walk mode. @dentry must be a path found by a do_lookup call on 671 * @nd or NULL. Must be called from rcu-walk context. 672 * Nothing should touch nameidata between unlazy_walk() failure and 673 * terminate_walk(). 674 */ 675 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq) 676 { 677 struct dentry *parent = nd->path.dentry; 678 679 BUG_ON(!(nd->flags & LOOKUP_RCU)); 680 681 nd->flags &= ~LOOKUP_RCU; 682 if (unlikely(!legitimize_links(nd))) 683 goto out2; 684 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq))) 685 goto out2; 686 if (unlikely(!lockref_get_not_dead(&parent->d_lockref))) 687 goto out1; 688 689 /* 690 * For a negative lookup, the lookup sequence point is the parents 691 * sequence point, and it only needs to revalidate the parent dentry. 692 * 693 * For a positive lookup, we need to move both the parent and the 694 * dentry from the RCU domain to be properly refcounted. And the 695 * sequence number in the dentry validates *both* dentry counters, 696 * since we checked the sequence number of the parent after we got 697 * the child sequence number. So we know the parent must still 698 * be valid if the child sequence number is still valid. 699 */ 700 if (!dentry) { 701 if (read_seqcount_retry(&parent->d_seq, nd->seq)) 702 goto out; 703 BUG_ON(nd->inode != parent->d_inode); 704 } else { 705 if (!lockref_get_not_dead(&dentry->d_lockref)) 706 goto out; 707 if (read_seqcount_retry(&dentry->d_seq, seq)) 708 goto drop_dentry; 709 } 710 711 /* 712 * Sequence counts matched. Now make sure that the root is 713 * still valid and get it if required. 714 */ 715 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 716 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) { 717 rcu_read_unlock(); 718 dput(dentry); 719 return -ECHILD; 720 } 721 } 722 723 rcu_read_unlock(); 724 return 0; 725 726 drop_dentry: 727 rcu_read_unlock(); 728 dput(dentry); 729 goto drop_root_mnt; 730 out2: 731 nd->path.mnt = NULL; 732 out1: 733 nd->path.dentry = NULL; 734 out: 735 rcu_read_unlock(); 736 drop_root_mnt: 737 if (!(nd->flags & LOOKUP_ROOT)) 738 nd->root.mnt = NULL; 739 return -ECHILD; 740 } 741 742 static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq) 743 { 744 if (unlikely(!legitimize_path(nd, link, seq))) { 745 drop_links(nd); 746 nd->depth = 0; 747 nd->flags &= ~LOOKUP_RCU; 748 nd->path.mnt = NULL; 749 nd->path.dentry = NULL; 750 if (!(nd->flags & LOOKUP_ROOT)) 751 nd->root.mnt = NULL; 752 rcu_read_unlock(); 753 } else if (likely(unlazy_walk(nd, NULL, 0)) == 0) { 754 return 0; 755 } 756 path_put(link); 757 return -ECHILD; 758 } 759 760 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 761 { 762 return dentry->d_op->d_revalidate(dentry, flags); 763 } 764 765 /** 766 * complete_walk - successful completion of path walk 767 * @nd: pointer nameidata 768 * 769 * If we had been in RCU mode, drop out of it and legitimize nd->path. 770 * Revalidate the final result, unless we'd already done that during 771 * the path walk or the filesystem doesn't ask for it. Return 0 on 772 * success, -error on failure. In case of failure caller does not 773 * need to drop nd->path. 774 */ 775 static int complete_walk(struct nameidata *nd) 776 { 777 struct dentry *dentry = nd->path.dentry; 778 int status; 779 780 if (nd->flags & LOOKUP_RCU) { 781 if (!(nd->flags & LOOKUP_ROOT)) 782 nd->root.mnt = NULL; 783 if (unlikely(unlazy_walk(nd, NULL, 0))) 784 return -ECHILD; 785 } 786 787 if (likely(!(nd->flags & LOOKUP_JUMPED))) 788 return 0; 789 790 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 791 return 0; 792 793 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 794 if (status > 0) 795 return 0; 796 797 if (!status) 798 status = -ESTALE; 799 800 return status; 801 } 802 803 static void set_root(struct nameidata *nd) 804 { 805 struct fs_struct *fs = current->fs; 806 807 if (nd->flags & LOOKUP_RCU) { 808 unsigned seq; 809 810 do { 811 seq = read_seqcount_begin(&fs->seq); 812 nd->root = fs->root; 813 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 814 } while (read_seqcount_retry(&fs->seq, seq)); 815 } else { 816 get_fs_root(fs, &nd->root); 817 } 818 } 819 820 static void path_put_conditional(struct path *path, struct nameidata *nd) 821 { 822 dput(path->dentry); 823 if (path->mnt != nd->path.mnt) 824 mntput(path->mnt); 825 } 826 827 static inline void path_to_nameidata(const struct path *path, 828 struct nameidata *nd) 829 { 830 if (!(nd->flags & LOOKUP_RCU)) { 831 dput(nd->path.dentry); 832 if (nd->path.mnt != path->mnt) 833 mntput(nd->path.mnt); 834 } 835 nd->path.mnt = path->mnt; 836 nd->path.dentry = path->dentry; 837 } 838 839 static int nd_jump_root(struct nameidata *nd) 840 { 841 if (nd->flags & LOOKUP_RCU) { 842 struct dentry *d; 843 nd->path = nd->root; 844 d = nd->path.dentry; 845 nd->inode = d->d_inode; 846 nd->seq = nd->root_seq; 847 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq))) 848 return -ECHILD; 849 } else { 850 path_put(&nd->path); 851 nd->path = nd->root; 852 path_get(&nd->path); 853 nd->inode = nd->path.dentry->d_inode; 854 } 855 nd->flags |= LOOKUP_JUMPED; 856 return 0; 857 } 858 859 /* 860 * Helper to directly jump to a known parsed path from ->get_link, 861 * caller must have taken a reference to path beforehand. 862 */ 863 void nd_jump_link(struct path *path) 864 { 865 struct nameidata *nd = current->nameidata; 866 path_put(&nd->path); 867 868 nd->path = *path; 869 nd->inode = nd->path.dentry->d_inode; 870 nd->flags |= LOOKUP_JUMPED; 871 } 872 873 static inline void put_link(struct nameidata *nd) 874 { 875 struct saved *last = nd->stack + --nd->depth; 876 do_delayed_call(&last->done); 877 if (!(nd->flags & LOOKUP_RCU)) 878 path_put(&last->link); 879 } 880 881 int sysctl_protected_symlinks __read_mostly = 0; 882 int sysctl_protected_hardlinks __read_mostly = 0; 883 884 /** 885 * may_follow_link - Check symlink following for unsafe situations 886 * @nd: nameidata pathwalk data 887 * 888 * In the case of the sysctl_protected_symlinks sysctl being enabled, 889 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 890 * in a sticky world-writable directory. This is to protect privileged 891 * processes from failing races against path names that may change out 892 * from under them by way of other users creating malicious symlinks. 893 * It will permit symlinks to be followed only when outside a sticky 894 * world-writable directory, or when the uid of the symlink and follower 895 * match, or when the directory owner matches the symlink's owner. 896 * 897 * Returns 0 if following the symlink is allowed, -ve on error. 898 */ 899 static inline int may_follow_link(struct nameidata *nd) 900 { 901 const struct inode *inode; 902 const struct inode *parent; 903 904 if (!sysctl_protected_symlinks) 905 return 0; 906 907 /* Allowed if owner and follower match. */ 908 inode = nd->link_inode; 909 if (uid_eq(current_cred()->fsuid, inode->i_uid)) 910 return 0; 911 912 /* Allowed if parent directory not sticky and world-writable. */ 913 parent = nd->inode; 914 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 915 return 0; 916 917 /* Allowed if parent directory and link owner match. */ 918 if (uid_eq(parent->i_uid, inode->i_uid)) 919 return 0; 920 921 if (nd->flags & LOOKUP_RCU) 922 return -ECHILD; 923 924 audit_log_link_denied("follow_link", &nd->stack[0].link); 925 return -EACCES; 926 } 927 928 /** 929 * safe_hardlink_source - Check for safe hardlink conditions 930 * @inode: the source inode to hardlink from 931 * 932 * Return false if at least one of the following conditions: 933 * - inode is not a regular file 934 * - inode is setuid 935 * - inode is setgid and group-exec 936 * - access failure for read and write 937 * 938 * Otherwise returns true. 939 */ 940 static bool safe_hardlink_source(struct inode *inode) 941 { 942 umode_t mode = inode->i_mode; 943 944 /* Special files should not get pinned to the filesystem. */ 945 if (!S_ISREG(mode)) 946 return false; 947 948 /* Setuid files should not get pinned to the filesystem. */ 949 if (mode & S_ISUID) 950 return false; 951 952 /* Executable setgid files should not get pinned to the filesystem. */ 953 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 954 return false; 955 956 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 957 if (inode_permission(inode, MAY_READ | MAY_WRITE)) 958 return false; 959 960 return true; 961 } 962 963 /** 964 * may_linkat - Check permissions for creating a hardlink 965 * @link: the source to hardlink from 966 * 967 * Block hardlink when all of: 968 * - sysctl_protected_hardlinks enabled 969 * - fsuid does not match inode 970 * - hardlink source is unsafe (see safe_hardlink_source() above) 971 * - not CAP_FOWNER in a namespace with the inode owner uid mapped 972 * 973 * Returns 0 if successful, -ve on error. 974 */ 975 static int may_linkat(struct path *link) 976 { 977 struct inode *inode; 978 979 if (!sysctl_protected_hardlinks) 980 return 0; 981 982 inode = link->dentry->d_inode; 983 984 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 985 * otherwise, it must be a safe source. 986 */ 987 if (inode_owner_or_capable(inode) || safe_hardlink_source(inode)) 988 return 0; 989 990 audit_log_link_denied("linkat", link); 991 return -EPERM; 992 } 993 994 static __always_inline 995 const char *get_link(struct nameidata *nd) 996 { 997 struct saved *last = nd->stack + nd->depth - 1; 998 struct dentry *dentry = last->link.dentry; 999 struct inode *inode = nd->link_inode; 1000 int error; 1001 const char *res; 1002 1003 if (!(nd->flags & LOOKUP_RCU)) { 1004 touch_atime(&last->link); 1005 cond_resched(); 1006 } else if (atime_needs_update(&last->link, inode)) { 1007 if (unlikely(unlazy_walk(nd, NULL, 0))) 1008 return ERR_PTR(-ECHILD); 1009 touch_atime(&last->link); 1010 } 1011 1012 error = security_inode_follow_link(dentry, inode, 1013 nd->flags & LOOKUP_RCU); 1014 if (unlikely(error)) 1015 return ERR_PTR(error); 1016 1017 nd->last_type = LAST_BIND; 1018 res = inode->i_link; 1019 if (!res) { 1020 const char * (*get)(struct dentry *, struct inode *, 1021 struct delayed_call *); 1022 get = inode->i_op->get_link; 1023 if (nd->flags & LOOKUP_RCU) { 1024 res = get(NULL, inode, &last->done); 1025 if (res == ERR_PTR(-ECHILD)) { 1026 if (unlikely(unlazy_walk(nd, NULL, 0))) 1027 return ERR_PTR(-ECHILD); 1028 res = get(dentry, inode, &last->done); 1029 } 1030 } else { 1031 res = get(dentry, inode, &last->done); 1032 } 1033 if (IS_ERR_OR_NULL(res)) 1034 return res; 1035 } 1036 if (*res == '/') { 1037 if (!nd->root.mnt) 1038 set_root(nd); 1039 if (unlikely(nd_jump_root(nd))) 1040 return ERR_PTR(-ECHILD); 1041 while (unlikely(*++res == '/')) 1042 ; 1043 } 1044 if (!*res) 1045 res = NULL; 1046 return res; 1047 } 1048 1049 /* 1050 * follow_up - Find the mountpoint of path's vfsmount 1051 * 1052 * Given a path, find the mountpoint of its source file system. 1053 * Replace @path with the path of the mountpoint in the parent mount. 1054 * Up is towards /. 1055 * 1056 * Return 1 if we went up a level and 0 if we were already at the 1057 * root. 1058 */ 1059 int follow_up(struct path *path) 1060 { 1061 struct mount *mnt = real_mount(path->mnt); 1062 struct mount *parent; 1063 struct dentry *mountpoint; 1064 1065 read_seqlock_excl(&mount_lock); 1066 parent = mnt->mnt_parent; 1067 if (parent == mnt) { 1068 read_sequnlock_excl(&mount_lock); 1069 return 0; 1070 } 1071 mntget(&parent->mnt); 1072 mountpoint = dget(mnt->mnt_mountpoint); 1073 read_sequnlock_excl(&mount_lock); 1074 dput(path->dentry); 1075 path->dentry = mountpoint; 1076 mntput(path->mnt); 1077 path->mnt = &parent->mnt; 1078 return 1; 1079 } 1080 EXPORT_SYMBOL(follow_up); 1081 1082 /* 1083 * Perform an automount 1084 * - return -EISDIR to tell follow_managed() to stop and return the path we 1085 * were called with. 1086 */ 1087 static int follow_automount(struct path *path, struct nameidata *nd, 1088 bool *need_mntput) 1089 { 1090 struct vfsmount *mnt; 1091 int err; 1092 1093 if (!path->dentry->d_op || !path->dentry->d_op->d_automount) 1094 return -EREMOTE; 1095 1096 /* We don't want to mount if someone's just doing a stat - 1097 * unless they're stat'ing a directory and appended a '/' to 1098 * the name. 1099 * 1100 * We do, however, want to mount if someone wants to open or 1101 * create a file of any type under the mountpoint, wants to 1102 * traverse through the mountpoint or wants to open the 1103 * mounted directory. Also, autofs may mark negative dentries 1104 * as being automount points. These will need the attentions 1105 * of the daemon to instantiate them before they can be used. 1106 */ 1107 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 1108 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 1109 path->dentry->d_inode) 1110 return -EISDIR; 1111 1112 nd->total_link_count++; 1113 if (nd->total_link_count >= 40) 1114 return -ELOOP; 1115 1116 mnt = path->dentry->d_op->d_automount(path); 1117 if (IS_ERR(mnt)) { 1118 /* 1119 * The filesystem is allowed to return -EISDIR here to indicate 1120 * it doesn't want to automount. For instance, autofs would do 1121 * this so that its userspace daemon can mount on this dentry. 1122 * 1123 * However, we can only permit this if it's a terminal point in 1124 * the path being looked up; if it wasn't then the remainder of 1125 * the path is inaccessible and we should say so. 1126 */ 1127 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT)) 1128 return -EREMOTE; 1129 return PTR_ERR(mnt); 1130 } 1131 1132 if (!mnt) /* mount collision */ 1133 return 0; 1134 1135 if (!*need_mntput) { 1136 /* lock_mount() may release path->mnt on error */ 1137 mntget(path->mnt); 1138 *need_mntput = true; 1139 } 1140 err = finish_automount(mnt, path); 1141 1142 switch (err) { 1143 case -EBUSY: 1144 /* Someone else made a mount here whilst we were busy */ 1145 return 0; 1146 case 0: 1147 path_put(path); 1148 path->mnt = mnt; 1149 path->dentry = dget(mnt->mnt_root); 1150 return 0; 1151 default: 1152 return err; 1153 } 1154 1155 } 1156 1157 /* 1158 * Handle a dentry that is managed in some way. 1159 * - Flagged for transit management (autofs) 1160 * - Flagged as mountpoint 1161 * - Flagged as automount point 1162 * 1163 * This may only be called in refwalk mode. 1164 * 1165 * Serialization is taken care of in namespace.c 1166 */ 1167 static int follow_managed(struct path *path, struct nameidata *nd) 1168 { 1169 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */ 1170 unsigned managed; 1171 bool need_mntput = false; 1172 int ret = 0; 1173 1174 /* Given that we're not holding a lock here, we retain the value in a 1175 * local variable for each dentry as we look at it so that we don't see 1176 * the components of that value change under us */ 1177 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1178 managed &= DCACHE_MANAGED_DENTRY, 1179 unlikely(managed != 0)) { 1180 /* Allow the filesystem to manage the transit without i_mutex 1181 * being held. */ 1182 if (managed & DCACHE_MANAGE_TRANSIT) { 1183 BUG_ON(!path->dentry->d_op); 1184 BUG_ON(!path->dentry->d_op->d_manage); 1185 ret = path->dentry->d_op->d_manage(path->dentry, false); 1186 if (ret < 0) 1187 break; 1188 } 1189 1190 /* Transit to a mounted filesystem. */ 1191 if (managed & DCACHE_MOUNTED) { 1192 struct vfsmount *mounted = lookup_mnt(path); 1193 if (mounted) { 1194 dput(path->dentry); 1195 if (need_mntput) 1196 mntput(path->mnt); 1197 path->mnt = mounted; 1198 path->dentry = dget(mounted->mnt_root); 1199 need_mntput = true; 1200 continue; 1201 } 1202 1203 /* Something is mounted on this dentry in another 1204 * namespace and/or whatever was mounted there in this 1205 * namespace got unmounted before lookup_mnt() could 1206 * get it */ 1207 } 1208 1209 /* Handle an automount point */ 1210 if (managed & DCACHE_NEED_AUTOMOUNT) { 1211 ret = follow_automount(path, nd, &need_mntput); 1212 if (ret < 0) 1213 break; 1214 continue; 1215 } 1216 1217 /* We didn't change the current path point */ 1218 break; 1219 } 1220 1221 if (need_mntput && path->mnt == mnt) 1222 mntput(path->mnt); 1223 if (ret == -EISDIR || !ret) 1224 ret = 1; 1225 if (need_mntput) 1226 nd->flags |= LOOKUP_JUMPED; 1227 if (unlikely(ret < 0)) 1228 path_put_conditional(path, nd); 1229 return ret; 1230 } 1231 1232 int follow_down_one(struct path *path) 1233 { 1234 struct vfsmount *mounted; 1235 1236 mounted = lookup_mnt(path); 1237 if (mounted) { 1238 dput(path->dentry); 1239 mntput(path->mnt); 1240 path->mnt = mounted; 1241 path->dentry = dget(mounted->mnt_root); 1242 return 1; 1243 } 1244 return 0; 1245 } 1246 EXPORT_SYMBOL(follow_down_one); 1247 1248 static inline int managed_dentry_rcu(struct dentry *dentry) 1249 { 1250 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ? 1251 dentry->d_op->d_manage(dentry, true) : 0; 1252 } 1253 1254 /* 1255 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1256 * we meet a managed dentry that would need blocking. 1257 */ 1258 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1259 struct inode **inode, unsigned *seqp) 1260 { 1261 for (;;) { 1262 struct mount *mounted; 1263 /* 1264 * Don't forget we might have a non-mountpoint managed dentry 1265 * that wants to block transit. 1266 */ 1267 switch (managed_dentry_rcu(path->dentry)) { 1268 case -ECHILD: 1269 default: 1270 return false; 1271 case -EISDIR: 1272 return true; 1273 case 0: 1274 break; 1275 } 1276 1277 if (!d_mountpoint(path->dentry)) 1278 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1279 1280 mounted = __lookup_mnt(path->mnt, path->dentry); 1281 if (!mounted) 1282 break; 1283 path->mnt = &mounted->mnt; 1284 path->dentry = mounted->mnt.mnt_root; 1285 nd->flags |= LOOKUP_JUMPED; 1286 *seqp = read_seqcount_begin(&path->dentry->d_seq); 1287 /* 1288 * Update the inode too. We don't need to re-check the 1289 * dentry sequence number here after this d_inode read, 1290 * because a mount-point is always pinned. 1291 */ 1292 *inode = path->dentry->d_inode; 1293 } 1294 return !read_seqretry(&mount_lock, nd->m_seq) && 1295 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1296 } 1297 1298 static int follow_dotdot_rcu(struct nameidata *nd) 1299 { 1300 struct inode *inode = nd->inode; 1301 1302 while (1) { 1303 if (path_equal(&nd->path, &nd->root)) 1304 break; 1305 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1306 struct dentry *old = nd->path.dentry; 1307 struct dentry *parent = old->d_parent; 1308 unsigned seq; 1309 1310 inode = parent->d_inode; 1311 seq = read_seqcount_begin(&parent->d_seq); 1312 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq))) 1313 return -ECHILD; 1314 nd->path.dentry = parent; 1315 nd->seq = seq; 1316 if (unlikely(!path_connected(&nd->path))) 1317 return -ENOENT; 1318 break; 1319 } else { 1320 struct mount *mnt = real_mount(nd->path.mnt); 1321 struct mount *mparent = mnt->mnt_parent; 1322 struct dentry *mountpoint = mnt->mnt_mountpoint; 1323 struct inode *inode2 = mountpoint->d_inode; 1324 unsigned seq = read_seqcount_begin(&mountpoint->d_seq); 1325 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1326 return -ECHILD; 1327 if (&mparent->mnt == nd->path.mnt) 1328 break; 1329 /* we know that mountpoint was pinned */ 1330 nd->path.dentry = mountpoint; 1331 nd->path.mnt = &mparent->mnt; 1332 inode = inode2; 1333 nd->seq = seq; 1334 } 1335 } 1336 while (unlikely(d_mountpoint(nd->path.dentry))) { 1337 struct mount *mounted; 1338 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry); 1339 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1340 return -ECHILD; 1341 if (!mounted) 1342 break; 1343 nd->path.mnt = &mounted->mnt; 1344 nd->path.dentry = mounted->mnt.mnt_root; 1345 inode = nd->path.dentry->d_inode; 1346 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1347 } 1348 nd->inode = inode; 1349 return 0; 1350 } 1351 1352 /* 1353 * Follow down to the covering mount currently visible to userspace. At each 1354 * point, the filesystem owning that dentry may be queried as to whether the 1355 * caller is permitted to proceed or not. 1356 */ 1357 int follow_down(struct path *path) 1358 { 1359 unsigned managed; 1360 int ret; 1361 1362 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1363 unlikely(managed & DCACHE_MANAGED_DENTRY)) { 1364 /* Allow the filesystem to manage the transit without i_mutex 1365 * being held. 1366 * 1367 * We indicate to the filesystem if someone is trying to mount 1368 * something here. This gives autofs the chance to deny anyone 1369 * other than its daemon the right to mount on its 1370 * superstructure. 1371 * 1372 * The filesystem may sleep at this point. 1373 */ 1374 if (managed & DCACHE_MANAGE_TRANSIT) { 1375 BUG_ON(!path->dentry->d_op); 1376 BUG_ON(!path->dentry->d_op->d_manage); 1377 ret = path->dentry->d_op->d_manage( 1378 path->dentry, false); 1379 if (ret < 0) 1380 return ret == -EISDIR ? 0 : ret; 1381 } 1382 1383 /* Transit to a mounted filesystem. */ 1384 if (managed & DCACHE_MOUNTED) { 1385 struct vfsmount *mounted = lookup_mnt(path); 1386 if (!mounted) 1387 break; 1388 dput(path->dentry); 1389 mntput(path->mnt); 1390 path->mnt = mounted; 1391 path->dentry = dget(mounted->mnt_root); 1392 continue; 1393 } 1394 1395 /* Don't handle automount points here */ 1396 break; 1397 } 1398 return 0; 1399 } 1400 EXPORT_SYMBOL(follow_down); 1401 1402 /* 1403 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() 1404 */ 1405 static void follow_mount(struct path *path) 1406 { 1407 while (d_mountpoint(path->dentry)) { 1408 struct vfsmount *mounted = lookup_mnt(path); 1409 if (!mounted) 1410 break; 1411 dput(path->dentry); 1412 mntput(path->mnt); 1413 path->mnt = mounted; 1414 path->dentry = dget(mounted->mnt_root); 1415 } 1416 } 1417 1418 static int follow_dotdot(struct nameidata *nd) 1419 { 1420 while(1) { 1421 struct dentry *old = nd->path.dentry; 1422 1423 if (nd->path.dentry == nd->root.dentry && 1424 nd->path.mnt == nd->root.mnt) { 1425 break; 1426 } 1427 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1428 /* rare case of legitimate dget_parent()... */ 1429 nd->path.dentry = dget_parent(nd->path.dentry); 1430 dput(old); 1431 if (unlikely(!path_connected(&nd->path))) 1432 return -ENOENT; 1433 break; 1434 } 1435 if (!follow_up(&nd->path)) 1436 break; 1437 } 1438 follow_mount(&nd->path); 1439 nd->inode = nd->path.dentry->d_inode; 1440 return 0; 1441 } 1442 1443 /* 1444 * This looks up the name in dcache, possibly revalidates the old dentry and 1445 * allocates a new one if not found or not valid. In the need_lookup argument 1446 * returns whether i_op->lookup is necessary. 1447 */ 1448 static struct dentry *lookup_dcache(const struct qstr *name, 1449 struct dentry *dir, 1450 unsigned int flags) 1451 { 1452 struct dentry *dentry; 1453 int error; 1454 1455 dentry = d_lookup(dir, name); 1456 if (dentry) { 1457 if (dentry->d_flags & DCACHE_OP_REVALIDATE) { 1458 error = d_revalidate(dentry, flags); 1459 if (unlikely(error <= 0)) { 1460 if (!error) 1461 d_invalidate(dentry); 1462 dput(dentry); 1463 return ERR_PTR(error); 1464 } 1465 } 1466 } 1467 return dentry; 1468 } 1469 1470 /* 1471 * Call i_op->lookup on the dentry. The dentry must be negative and 1472 * unhashed. 1473 * 1474 * dir->d_inode->i_mutex must be held 1475 */ 1476 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry, 1477 unsigned int flags) 1478 { 1479 struct dentry *old; 1480 1481 /* Don't create child dentry for a dead directory. */ 1482 if (unlikely(IS_DEADDIR(dir))) { 1483 dput(dentry); 1484 return ERR_PTR(-ENOENT); 1485 } 1486 1487 old = dir->i_op->lookup(dir, dentry, flags); 1488 if (unlikely(old)) { 1489 dput(dentry); 1490 dentry = old; 1491 } 1492 return dentry; 1493 } 1494 1495 static struct dentry *__lookup_hash(const struct qstr *name, 1496 struct dentry *base, unsigned int flags) 1497 { 1498 struct dentry *dentry = lookup_dcache(name, base, flags); 1499 1500 if (dentry) 1501 return dentry; 1502 1503 dentry = d_alloc(base, name); 1504 if (unlikely(!dentry)) 1505 return ERR_PTR(-ENOMEM); 1506 1507 return lookup_real(base->d_inode, dentry, flags); 1508 } 1509 1510 static int lookup_fast(struct nameidata *nd, 1511 struct path *path, struct inode **inode, 1512 unsigned *seqp) 1513 { 1514 struct vfsmount *mnt = nd->path.mnt; 1515 struct dentry *dentry, *parent = nd->path.dentry; 1516 int status = 1; 1517 int err; 1518 1519 /* 1520 * Rename seqlock is not required here because in the off chance 1521 * of a false negative due to a concurrent rename, the caller is 1522 * going to fall back to non-racy lookup. 1523 */ 1524 if (nd->flags & LOOKUP_RCU) { 1525 unsigned seq; 1526 bool negative; 1527 dentry = __d_lookup_rcu(parent, &nd->last, &seq); 1528 if (unlikely(!dentry)) { 1529 if (unlazy_walk(nd, NULL, 0)) 1530 return -ECHILD; 1531 return 0; 1532 } 1533 1534 /* 1535 * This sequence count validates that the inode matches 1536 * the dentry name information from lookup. 1537 */ 1538 *inode = d_backing_inode(dentry); 1539 negative = d_is_negative(dentry); 1540 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) 1541 return -ECHILD; 1542 1543 /* 1544 * This sequence count validates that the parent had no 1545 * changes while we did the lookup of the dentry above. 1546 * 1547 * The memory barrier in read_seqcount_begin of child is 1548 * enough, we can use __read_seqcount_retry here. 1549 */ 1550 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq))) 1551 return -ECHILD; 1552 1553 *seqp = seq; 1554 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) 1555 status = d_revalidate(dentry, nd->flags); 1556 if (unlikely(status <= 0)) { 1557 if (unlazy_walk(nd, dentry, seq)) 1558 return -ECHILD; 1559 if (status == -ECHILD) 1560 status = d_revalidate(dentry, nd->flags); 1561 } else { 1562 /* 1563 * Note: do negative dentry check after revalidation in 1564 * case that drops it. 1565 */ 1566 if (unlikely(negative)) 1567 return -ENOENT; 1568 path->mnt = mnt; 1569 path->dentry = dentry; 1570 if (likely(__follow_mount_rcu(nd, path, inode, seqp))) 1571 return 1; 1572 if (unlazy_walk(nd, dentry, seq)) 1573 return -ECHILD; 1574 } 1575 } else { 1576 dentry = __d_lookup(parent, &nd->last); 1577 if (unlikely(!dentry)) 1578 return 0; 1579 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) 1580 status = d_revalidate(dentry, nd->flags); 1581 } 1582 if (unlikely(status <= 0)) { 1583 if (!status) 1584 d_invalidate(dentry); 1585 dput(dentry); 1586 return status; 1587 } 1588 if (unlikely(d_is_negative(dentry))) { 1589 dput(dentry); 1590 return -ENOENT; 1591 } 1592 1593 path->mnt = mnt; 1594 path->dentry = dentry; 1595 err = follow_managed(path, nd); 1596 if (likely(err > 0)) 1597 *inode = d_backing_inode(path->dentry); 1598 return err; 1599 } 1600 1601 /* Fast lookup failed, do it the slow way */ 1602 static struct dentry *lookup_slow(const struct qstr *name, 1603 struct dentry *dir, 1604 unsigned int flags) 1605 { 1606 struct dentry *dentry; 1607 inode_lock(dir->d_inode); 1608 dentry = d_lookup(dir, name); 1609 if (unlikely(dentry)) { 1610 if ((dentry->d_flags & DCACHE_OP_REVALIDATE) && 1611 !(flags & LOOKUP_NO_REVAL)) { 1612 int error = d_revalidate(dentry, flags); 1613 if (unlikely(error <= 0)) { 1614 if (!error) 1615 d_invalidate(dentry); 1616 dput(dentry); 1617 dentry = ERR_PTR(error); 1618 } 1619 } 1620 if (dentry) { 1621 inode_unlock(dir->d_inode); 1622 return dentry; 1623 } 1624 } 1625 dentry = d_alloc(dir, name); 1626 if (unlikely(!dentry)) { 1627 inode_unlock(dir->d_inode); 1628 return ERR_PTR(-ENOMEM); 1629 } 1630 dentry = lookup_real(dir->d_inode, dentry, flags); 1631 inode_unlock(dir->d_inode); 1632 return dentry; 1633 } 1634 1635 static inline int may_lookup(struct nameidata *nd) 1636 { 1637 if (nd->flags & LOOKUP_RCU) { 1638 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1639 if (err != -ECHILD) 1640 return err; 1641 if (unlazy_walk(nd, NULL, 0)) 1642 return -ECHILD; 1643 } 1644 return inode_permission(nd->inode, MAY_EXEC); 1645 } 1646 1647 static inline int handle_dots(struct nameidata *nd, int type) 1648 { 1649 if (type == LAST_DOTDOT) { 1650 if (!nd->root.mnt) 1651 set_root(nd); 1652 if (nd->flags & LOOKUP_RCU) { 1653 return follow_dotdot_rcu(nd); 1654 } else 1655 return follow_dotdot(nd); 1656 } 1657 return 0; 1658 } 1659 1660 static int pick_link(struct nameidata *nd, struct path *link, 1661 struct inode *inode, unsigned seq) 1662 { 1663 int error; 1664 struct saved *last; 1665 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) { 1666 path_to_nameidata(link, nd); 1667 return -ELOOP; 1668 } 1669 if (!(nd->flags & LOOKUP_RCU)) { 1670 if (link->mnt == nd->path.mnt) 1671 mntget(link->mnt); 1672 } 1673 error = nd_alloc_stack(nd); 1674 if (unlikely(error)) { 1675 if (error == -ECHILD) { 1676 if (unlikely(unlazy_link(nd, link, seq))) 1677 return -ECHILD; 1678 error = nd_alloc_stack(nd); 1679 } 1680 if (error) { 1681 path_put(link); 1682 return error; 1683 } 1684 } 1685 1686 last = nd->stack + nd->depth++; 1687 last->link = *link; 1688 clear_delayed_call(&last->done); 1689 nd->link_inode = inode; 1690 last->seq = seq; 1691 return 1; 1692 } 1693 1694 /* 1695 * Do we need to follow links? We _really_ want to be able 1696 * to do this check without having to look at inode->i_op, 1697 * so we keep a cache of "no, this doesn't need follow_link" 1698 * for the common case. 1699 */ 1700 static inline int should_follow_link(struct nameidata *nd, struct path *link, 1701 int follow, 1702 struct inode *inode, unsigned seq) 1703 { 1704 if (likely(!d_is_symlink(link->dentry))) 1705 return 0; 1706 if (!follow) 1707 return 0; 1708 /* make sure that d_is_symlink above matches inode */ 1709 if (nd->flags & LOOKUP_RCU) { 1710 if (read_seqcount_retry(&link->dentry->d_seq, seq)) 1711 return -ECHILD; 1712 } 1713 return pick_link(nd, link, inode, seq); 1714 } 1715 1716 enum {WALK_GET = 1, WALK_PUT = 2}; 1717 1718 static int walk_component(struct nameidata *nd, int flags) 1719 { 1720 struct path path; 1721 struct inode *inode; 1722 unsigned seq; 1723 int err; 1724 /* 1725 * "." and ".." are special - ".." especially so because it has 1726 * to be able to know about the current root directory and 1727 * parent relationships. 1728 */ 1729 if (unlikely(nd->last_type != LAST_NORM)) { 1730 err = handle_dots(nd, nd->last_type); 1731 if (flags & WALK_PUT) 1732 put_link(nd); 1733 return err; 1734 } 1735 err = lookup_fast(nd, &path, &inode, &seq); 1736 if (unlikely(err <= 0)) { 1737 if (err < 0) 1738 return err; 1739 path.dentry = lookup_slow(&nd->last, nd->path.dentry, 1740 nd->flags); 1741 if (IS_ERR(path.dentry)) 1742 return PTR_ERR(path.dentry); 1743 1744 path.mnt = nd->path.mnt; 1745 err = follow_managed(&path, nd); 1746 if (unlikely(err < 0)) 1747 return err; 1748 1749 if (unlikely(d_is_negative(path.dentry))) { 1750 path_to_nameidata(&path, nd); 1751 return -ENOENT; 1752 } 1753 1754 seq = 0; /* we are already out of RCU mode */ 1755 inode = d_backing_inode(path.dentry); 1756 } 1757 1758 if (flags & WALK_PUT) 1759 put_link(nd); 1760 err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq); 1761 if (unlikely(err)) 1762 return err; 1763 path_to_nameidata(&path, nd); 1764 nd->inode = inode; 1765 nd->seq = seq; 1766 return 0; 1767 } 1768 1769 /* 1770 * We can do the critical dentry name comparison and hashing 1771 * operations one word at a time, but we are limited to: 1772 * 1773 * - Architectures with fast unaligned word accesses. We could 1774 * do a "get_unaligned()" if this helps and is sufficiently 1775 * fast. 1776 * 1777 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 1778 * do not trap on the (extremely unlikely) case of a page 1779 * crossing operation. 1780 * 1781 * - Furthermore, we need an efficient 64-bit compile for the 1782 * 64-bit case in order to generate the "number of bytes in 1783 * the final mask". Again, that could be replaced with a 1784 * efficient population count instruction or similar. 1785 */ 1786 #ifdef CONFIG_DCACHE_WORD_ACCESS 1787 1788 #include <asm/word-at-a-time.h> 1789 1790 #ifdef CONFIG_64BIT 1791 1792 static inline unsigned int fold_hash(unsigned long hash) 1793 { 1794 return hash_64(hash, 32); 1795 } 1796 1797 /* 1798 * This is George Marsaglia's XORSHIFT generator. 1799 * It implements a maximum-period LFSR in only a few 1800 * instructions. It also has the property (required 1801 * by hash_name()) that mix_hash(0) = 0. 1802 */ 1803 static inline unsigned long mix_hash(unsigned long hash) 1804 { 1805 hash ^= hash << 13; 1806 hash ^= hash >> 7; 1807 hash ^= hash << 17; 1808 return hash; 1809 } 1810 1811 #else /* 32-bit case */ 1812 1813 #define fold_hash(x) (x) 1814 1815 static inline unsigned long mix_hash(unsigned long hash) 1816 { 1817 hash ^= hash << 13; 1818 hash ^= hash >> 17; 1819 hash ^= hash << 5; 1820 return hash; 1821 } 1822 1823 #endif 1824 1825 unsigned int full_name_hash(const unsigned char *name, unsigned int len) 1826 { 1827 unsigned long a, hash = 0; 1828 1829 for (;;) { 1830 a = load_unaligned_zeropad(name); 1831 if (len < sizeof(unsigned long)) 1832 break; 1833 hash = mix_hash(hash + a); 1834 name += sizeof(unsigned long); 1835 len -= sizeof(unsigned long); 1836 if (!len) 1837 goto done; 1838 } 1839 hash += a & bytemask_from_count(len); 1840 done: 1841 return fold_hash(hash); 1842 } 1843 EXPORT_SYMBOL(full_name_hash); 1844 1845 /* 1846 * Calculate the length and hash of the path component, and 1847 * return the "hash_len" as the result. 1848 */ 1849 static inline u64 hash_name(const char *name) 1850 { 1851 unsigned long a, b, adata, bdata, mask, hash, len; 1852 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1853 1854 hash = a = 0; 1855 len = -sizeof(unsigned long); 1856 do { 1857 hash = mix_hash(hash + a); 1858 len += sizeof(unsigned long); 1859 a = load_unaligned_zeropad(name+len); 1860 b = a ^ REPEAT_BYTE('/'); 1861 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 1862 1863 adata = prep_zero_mask(a, adata, &constants); 1864 bdata = prep_zero_mask(b, bdata, &constants); 1865 1866 mask = create_zero_mask(adata | bdata); 1867 1868 hash += a & zero_bytemask(mask); 1869 len += find_zero(mask); 1870 return hashlen_create(fold_hash(hash), len); 1871 } 1872 1873 #else 1874 1875 unsigned int full_name_hash(const unsigned char *name, unsigned int len) 1876 { 1877 unsigned long hash = init_name_hash(); 1878 while (len--) 1879 hash = partial_name_hash(*name++, hash); 1880 return end_name_hash(hash); 1881 } 1882 EXPORT_SYMBOL(full_name_hash); 1883 1884 /* 1885 * We know there's a real path component here of at least 1886 * one character. 1887 */ 1888 static inline u64 hash_name(const char *name) 1889 { 1890 unsigned long hash = init_name_hash(); 1891 unsigned long len = 0, c; 1892 1893 c = (unsigned char)*name; 1894 do { 1895 len++; 1896 hash = partial_name_hash(c, hash); 1897 c = (unsigned char)name[len]; 1898 } while (c && c != '/'); 1899 return hashlen_create(end_name_hash(hash), len); 1900 } 1901 1902 #endif 1903 1904 /* 1905 * Name resolution. 1906 * This is the basic name resolution function, turning a pathname into 1907 * the final dentry. We expect 'base' to be positive and a directory. 1908 * 1909 * Returns 0 and nd will have valid dentry and mnt on success. 1910 * Returns error and drops reference to input namei data on failure. 1911 */ 1912 static int link_path_walk(const char *name, struct nameidata *nd) 1913 { 1914 int err; 1915 1916 while (*name=='/') 1917 name++; 1918 if (!*name) 1919 return 0; 1920 1921 /* At this point we know we have a real path component. */ 1922 for(;;) { 1923 u64 hash_len; 1924 int type; 1925 1926 err = may_lookup(nd); 1927 if (err) 1928 return err; 1929 1930 hash_len = hash_name(name); 1931 1932 type = LAST_NORM; 1933 if (name[0] == '.') switch (hashlen_len(hash_len)) { 1934 case 2: 1935 if (name[1] == '.') { 1936 type = LAST_DOTDOT; 1937 nd->flags |= LOOKUP_JUMPED; 1938 } 1939 break; 1940 case 1: 1941 type = LAST_DOT; 1942 } 1943 if (likely(type == LAST_NORM)) { 1944 struct dentry *parent = nd->path.dentry; 1945 nd->flags &= ~LOOKUP_JUMPED; 1946 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 1947 struct qstr this = { { .hash_len = hash_len }, .name = name }; 1948 err = parent->d_op->d_hash(parent, &this); 1949 if (err < 0) 1950 return err; 1951 hash_len = this.hash_len; 1952 name = this.name; 1953 } 1954 } 1955 1956 nd->last.hash_len = hash_len; 1957 nd->last.name = name; 1958 nd->last_type = type; 1959 1960 name += hashlen_len(hash_len); 1961 if (!*name) 1962 goto OK; 1963 /* 1964 * If it wasn't NUL, we know it was '/'. Skip that 1965 * slash, and continue until no more slashes. 1966 */ 1967 do { 1968 name++; 1969 } while (unlikely(*name == '/')); 1970 if (unlikely(!*name)) { 1971 OK: 1972 /* pathname body, done */ 1973 if (!nd->depth) 1974 return 0; 1975 name = nd->stack[nd->depth - 1].name; 1976 /* trailing symlink, done */ 1977 if (!name) 1978 return 0; 1979 /* last component of nested symlink */ 1980 err = walk_component(nd, WALK_GET | WALK_PUT); 1981 } else { 1982 err = walk_component(nd, WALK_GET); 1983 } 1984 if (err < 0) 1985 return err; 1986 1987 if (err) { 1988 const char *s = get_link(nd); 1989 1990 if (IS_ERR(s)) 1991 return PTR_ERR(s); 1992 err = 0; 1993 if (unlikely(!s)) { 1994 /* jumped */ 1995 put_link(nd); 1996 } else { 1997 nd->stack[nd->depth - 1].name = name; 1998 name = s; 1999 continue; 2000 } 2001 } 2002 if (unlikely(!d_can_lookup(nd->path.dentry))) { 2003 if (nd->flags & LOOKUP_RCU) { 2004 if (unlazy_walk(nd, NULL, 0)) 2005 return -ECHILD; 2006 } 2007 return -ENOTDIR; 2008 } 2009 } 2010 } 2011 2012 static const char *path_init(struct nameidata *nd, unsigned flags) 2013 { 2014 int retval = 0; 2015 const char *s = nd->name->name; 2016 2017 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 2018 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT; 2019 nd->depth = 0; 2020 if (flags & LOOKUP_ROOT) { 2021 struct dentry *root = nd->root.dentry; 2022 struct inode *inode = root->d_inode; 2023 if (*s) { 2024 if (!d_can_lookup(root)) 2025 return ERR_PTR(-ENOTDIR); 2026 retval = inode_permission(inode, MAY_EXEC); 2027 if (retval) 2028 return ERR_PTR(retval); 2029 } 2030 nd->path = nd->root; 2031 nd->inode = inode; 2032 if (flags & LOOKUP_RCU) { 2033 rcu_read_lock(); 2034 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2035 nd->root_seq = nd->seq; 2036 nd->m_seq = read_seqbegin(&mount_lock); 2037 } else { 2038 path_get(&nd->path); 2039 } 2040 return s; 2041 } 2042 2043 nd->root.mnt = NULL; 2044 nd->path.mnt = NULL; 2045 nd->path.dentry = NULL; 2046 2047 nd->m_seq = read_seqbegin(&mount_lock); 2048 if (*s == '/') { 2049 if (flags & LOOKUP_RCU) 2050 rcu_read_lock(); 2051 set_root(nd); 2052 if (likely(!nd_jump_root(nd))) 2053 return s; 2054 nd->root.mnt = NULL; 2055 rcu_read_unlock(); 2056 return ERR_PTR(-ECHILD); 2057 } else if (nd->dfd == AT_FDCWD) { 2058 if (flags & LOOKUP_RCU) { 2059 struct fs_struct *fs = current->fs; 2060 unsigned seq; 2061 2062 rcu_read_lock(); 2063 2064 do { 2065 seq = read_seqcount_begin(&fs->seq); 2066 nd->path = fs->pwd; 2067 nd->inode = nd->path.dentry->d_inode; 2068 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2069 } while (read_seqcount_retry(&fs->seq, seq)); 2070 } else { 2071 get_fs_pwd(current->fs, &nd->path); 2072 nd->inode = nd->path.dentry->d_inode; 2073 } 2074 return s; 2075 } else { 2076 /* Caller must check execute permissions on the starting path component */ 2077 struct fd f = fdget_raw(nd->dfd); 2078 struct dentry *dentry; 2079 2080 if (!f.file) 2081 return ERR_PTR(-EBADF); 2082 2083 dentry = f.file->f_path.dentry; 2084 2085 if (*s) { 2086 if (!d_can_lookup(dentry)) { 2087 fdput(f); 2088 return ERR_PTR(-ENOTDIR); 2089 } 2090 } 2091 2092 nd->path = f.file->f_path; 2093 if (flags & LOOKUP_RCU) { 2094 rcu_read_lock(); 2095 nd->inode = nd->path.dentry->d_inode; 2096 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2097 } else { 2098 path_get(&nd->path); 2099 nd->inode = nd->path.dentry->d_inode; 2100 } 2101 fdput(f); 2102 return s; 2103 } 2104 } 2105 2106 static const char *trailing_symlink(struct nameidata *nd) 2107 { 2108 const char *s; 2109 int error = may_follow_link(nd); 2110 if (unlikely(error)) 2111 return ERR_PTR(error); 2112 nd->flags |= LOOKUP_PARENT; 2113 nd->stack[0].name = NULL; 2114 s = get_link(nd); 2115 return s ? s : ""; 2116 } 2117 2118 static inline int lookup_last(struct nameidata *nd) 2119 { 2120 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 2121 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2122 2123 nd->flags &= ~LOOKUP_PARENT; 2124 return walk_component(nd, 2125 nd->flags & LOOKUP_FOLLOW 2126 ? nd->depth 2127 ? WALK_PUT | WALK_GET 2128 : WALK_GET 2129 : 0); 2130 } 2131 2132 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2133 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path) 2134 { 2135 const char *s = path_init(nd, flags); 2136 int err; 2137 2138 if (IS_ERR(s)) 2139 return PTR_ERR(s); 2140 while (!(err = link_path_walk(s, nd)) 2141 && ((err = lookup_last(nd)) > 0)) { 2142 s = trailing_symlink(nd); 2143 if (IS_ERR(s)) { 2144 err = PTR_ERR(s); 2145 break; 2146 } 2147 } 2148 if (!err) 2149 err = complete_walk(nd); 2150 2151 if (!err && nd->flags & LOOKUP_DIRECTORY) 2152 if (!d_can_lookup(nd->path.dentry)) 2153 err = -ENOTDIR; 2154 if (!err) { 2155 *path = nd->path; 2156 nd->path.mnt = NULL; 2157 nd->path.dentry = NULL; 2158 } 2159 terminate_walk(nd); 2160 return err; 2161 } 2162 2163 static int filename_lookup(int dfd, struct filename *name, unsigned flags, 2164 struct path *path, struct path *root) 2165 { 2166 int retval; 2167 struct nameidata nd; 2168 if (IS_ERR(name)) 2169 return PTR_ERR(name); 2170 if (unlikely(root)) { 2171 nd.root = *root; 2172 flags |= LOOKUP_ROOT; 2173 } 2174 set_nameidata(&nd, dfd, name); 2175 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path); 2176 if (unlikely(retval == -ECHILD)) 2177 retval = path_lookupat(&nd, flags, path); 2178 if (unlikely(retval == -ESTALE)) 2179 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path); 2180 2181 if (likely(!retval)) 2182 audit_inode(name, path->dentry, flags & LOOKUP_PARENT); 2183 restore_nameidata(); 2184 putname(name); 2185 return retval; 2186 } 2187 2188 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2189 static int path_parentat(struct nameidata *nd, unsigned flags, 2190 struct path *parent) 2191 { 2192 const char *s = path_init(nd, flags); 2193 int err; 2194 if (IS_ERR(s)) 2195 return PTR_ERR(s); 2196 err = link_path_walk(s, nd); 2197 if (!err) 2198 err = complete_walk(nd); 2199 if (!err) { 2200 *parent = nd->path; 2201 nd->path.mnt = NULL; 2202 nd->path.dentry = NULL; 2203 } 2204 terminate_walk(nd); 2205 return err; 2206 } 2207 2208 static struct filename *filename_parentat(int dfd, struct filename *name, 2209 unsigned int flags, struct path *parent, 2210 struct qstr *last, int *type) 2211 { 2212 int retval; 2213 struct nameidata nd; 2214 2215 if (IS_ERR(name)) 2216 return name; 2217 set_nameidata(&nd, dfd, name); 2218 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent); 2219 if (unlikely(retval == -ECHILD)) 2220 retval = path_parentat(&nd, flags, parent); 2221 if (unlikely(retval == -ESTALE)) 2222 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent); 2223 if (likely(!retval)) { 2224 *last = nd.last; 2225 *type = nd.last_type; 2226 audit_inode(name, parent->dentry, LOOKUP_PARENT); 2227 } else { 2228 putname(name); 2229 name = ERR_PTR(retval); 2230 } 2231 restore_nameidata(); 2232 return name; 2233 } 2234 2235 /* does lookup, returns the object with parent locked */ 2236 struct dentry *kern_path_locked(const char *name, struct path *path) 2237 { 2238 struct filename *filename; 2239 struct dentry *d; 2240 struct qstr last; 2241 int type; 2242 2243 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path, 2244 &last, &type); 2245 if (IS_ERR(filename)) 2246 return ERR_CAST(filename); 2247 if (unlikely(type != LAST_NORM)) { 2248 path_put(path); 2249 putname(filename); 2250 return ERR_PTR(-EINVAL); 2251 } 2252 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 2253 d = __lookup_hash(&last, path->dentry, 0); 2254 if (IS_ERR(d)) { 2255 inode_unlock(path->dentry->d_inode); 2256 path_put(path); 2257 } 2258 putname(filename); 2259 return d; 2260 } 2261 2262 int kern_path(const char *name, unsigned int flags, struct path *path) 2263 { 2264 return filename_lookup(AT_FDCWD, getname_kernel(name), 2265 flags, path, NULL); 2266 } 2267 EXPORT_SYMBOL(kern_path); 2268 2269 /** 2270 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2271 * @dentry: pointer to dentry of the base directory 2272 * @mnt: pointer to vfs mount of the base directory 2273 * @name: pointer to file name 2274 * @flags: lookup flags 2275 * @path: pointer to struct path to fill 2276 */ 2277 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2278 const char *name, unsigned int flags, 2279 struct path *path) 2280 { 2281 struct path root = {.mnt = mnt, .dentry = dentry}; 2282 /* the first argument of filename_lookup() is ignored with root */ 2283 return filename_lookup(AT_FDCWD, getname_kernel(name), 2284 flags , path, &root); 2285 } 2286 EXPORT_SYMBOL(vfs_path_lookup); 2287 2288 /** 2289 * lookup_hash - lookup single pathname component on already hashed name 2290 * @name: name and hash to lookup 2291 * @base: base directory to lookup from 2292 * 2293 * The name must have been verified and hashed (see lookup_one_len()). Using 2294 * this after just full_name_hash() is unsafe. 2295 * 2296 * This function also doesn't check for search permission on base directory. 2297 * 2298 * Use lookup_one_len_unlocked() instead, unless you really know what you are 2299 * doing. 2300 * 2301 * Do not hold i_mutex; this helper takes i_mutex if necessary. 2302 */ 2303 struct dentry *lookup_hash(const struct qstr *name, struct dentry *base) 2304 { 2305 struct dentry *ret; 2306 2307 ret = lookup_dcache(name, base, 0); 2308 if (!ret) 2309 ret = lookup_slow(name, base, 0); 2310 2311 return ret; 2312 } 2313 EXPORT_SYMBOL(lookup_hash); 2314 2315 /** 2316 * lookup_one_len - filesystem helper to lookup single pathname component 2317 * @name: pathname component to lookup 2318 * @base: base directory to lookup from 2319 * @len: maximum length @len should be interpreted to 2320 * 2321 * Note that this routine is purely a helper for filesystem usage and should 2322 * not be called by generic code. 2323 * 2324 * The caller must hold base->i_mutex. 2325 */ 2326 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2327 { 2328 struct qstr this; 2329 unsigned int c; 2330 int err; 2331 2332 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2333 2334 this.name = name; 2335 this.len = len; 2336 this.hash = full_name_hash(name, len); 2337 if (!len) 2338 return ERR_PTR(-EACCES); 2339 2340 if (unlikely(name[0] == '.')) { 2341 if (len < 2 || (len == 2 && name[1] == '.')) 2342 return ERR_PTR(-EACCES); 2343 } 2344 2345 while (len--) { 2346 c = *(const unsigned char *)name++; 2347 if (c == '/' || c == '\0') 2348 return ERR_PTR(-EACCES); 2349 } 2350 /* 2351 * See if the low-level filesystem might want 2352 * to use its own hash.. 2353 */ 2354 if (base->d_flags & DCACHE_OP_HASH) { 2355 int err = base->d_op->d_hash(base, &this); 2356 if (err < 0) 2357 return ERR_PTR(err); 2358 } 2359 2360 err = inode_permission(base->d_inode, MAY_EXEC); 2361 if (err) 2362 return ERR_PTR(err); 2363 2364 return __lookup_hash(&this, base, 0); 2365 } 2366 EXPORT_SYMBOL(lookup_one_len); 2367 2368 /** 2369 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component 2370 * @name: pathname component to lookup 2371 * @base: base directory to lookup from 2372 * @len: maximum length @len should be interpreted to 2373 * 2374 * Note that this routine is purely a helper for filesystem usage and should 2375 * not be called by generic code. 2376 * 2377 * Unlike lookup_one_len, it should be called without the parent 2378 * i_mutex held, and will take the i_mutex itself if necessary. 2379 */ 2380 struct dentry *lookup_one_len_unlocked(const char *name, 2381 struct dentry *base, int len) 2382 { 2383 struct qstr this; 2384 unsigned int c; 2385 int err; 2386 2387 this.name = name; 2388 this.len = len; 2389 this.hash = full_name_hash(name, len); 2390 if (!len) 2391 return ERR_PTR(-EACCES); 2392 2393 if (unlikely(name[0] == '.')) { 2394 if (len < 2 || (len == 2 && name[1] == '.')) 2395 return ERR_PTR(-EACCES); 2396 } 2397 2398 while (len--) { 2399 c = *(const unsigned char *)name++; 2400 if (c == '/' || c == '\0') 2401 return ERR_PTR(-EACCES); 2402 } 2403 /* 2404 * See if the low-level filesystem might want 2405 * to use its own hash.. 2406 */ 2407 if (base->d_flags & DCACHE_OP_HASH) { 2408 int err = base->d_op->d_hash(base, &this); 2409 if (err < 0) 2410 return ERR_PTR(err); 2411 } 2412 2413 err = inode_permission(base->d_inode, MAY_EXEC); 2414 if (err) 2415 return ERR_PTR(err); 2416 2417 return lookup_hash(&this, base); 2418 } 2419 EXPORT_SYMBOL(lookup_one_len_unlocked); 2420 2421 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2422 struct path *path, int *empty) 2423 { 2424 return filename_lookup(dfd, getname_flags(name, flags, empty), 2425 flags, path, NULL); 2426 } 2427 EXPORT_SYMBOL(user_path_at_empty); 2428 2429 /* 2430 * NB: most callers don't do anything directly with the reference to the 2431 * to struct filename, but the nd->last pointer points into the name string 2432 * allocated by getname. So we must hold the reference to it until all 2433 * path-walking is complete. 2434 */ 2435 static inline struct filename * 2436 user_path_parent(int dfd, const char __user *path, 2437 struct path *parent, 2438 struct qstr *last, 2439 int *type, 2440 unsigned int flags) 2441 { 2442 /* only LOOKUP_REVAL is allowed in extra flags */ 2443 return filename_parentat(dfd, getname(path), flags & LOOKUP_REVAL, 2444 parent, last, type); 2445 } 2446 2447 /** 2448 * mountpoint_last - look up last component for umount 2449 * @nd: pathwalk nameidata - currently pointing at parent directory of "last" 2450 * @path: pointer to container for result 2451 * 2452 * This is a special lookup_last function just for umount. In this case, we 2453 * need to resolve the path without doing any revalidation. 2454 * 2455 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since 2456 * mountpoints are always pinned in the dcache, their ancestors are too. Thus, 2457 * in almost all cases, this lookup will be served out of the dcache. The only 2458 * cases where it won't are if nd->last refers to a symlink or the path is 2459 * bogus and it doesn't exist. 2460 * 2461 * Returns: 2462 * -error: if there was an error during lookup. This includes -ENOENT if the 2463 * lookup found a negative dentry. The nd->path reference will also be 2464 * put in this case. 2465 * 2466 * 0: if we successfully resolved nd->path and found it to not to be a 2467 * symlink that needs to be followed. "path" will also be populated. 2468 * The nd->path reference will also be put. 2469 * 2470 * 1: if we successfully resolved nd->last and found it to be a symlink 2471 * that needs to be followed. "path" will be populated with the path 2472 * to the link, and nd->path will *not* be put. 2473 */ 2474 static int 2475 mountpoint_last(struct nameidata *nd, struct path *path) 2476 { 2477 int error = 0; 2478 struct dentry *dentry; 2479 struct dentry *dir = nd->path.dentry; 2480 2481 /* If we're in rcuwalk, drop out of it to handle last component */ 2482 if (nd->flags & LOOKUP_RCU) { 2483 if (unlazy_walk(nd, NULL, 0)) 2484 return -ECHILD; 2485 } 2486 2487 nd->flags &= ~LOOKUP_PARENT; 2488 2489 if (unlikely(nd->last_type != LAST_NORM)) { 2490 error = handle_dots(nd, nd->last_type); 2491 if (error) 2492 return error; 2493 dentry = dget(nd->path.dentry); 2494 } else { 2495 dentry = d_lookup(dir, &nd->last); 2496 if (!dentry) { 2497 /* 2498 * No cached dentry. Mounted dentries are pinned in the 2499 * cache, so that means that this dentry is probably 2500 * a symlink or the path doesn't actually point 2501 * to a mounted dentry. 2502 */ 2503 dentry = lookup_slow(&nd->last, dir, 2504 nd->flags | LOOKUP_NO_REVAL); 2505 if (IS_ERR(dentry)) 2506 return PTR_ERR(dentry); 2507 } 2508 } 2509 if (d_is_negative(dentry)) { 2510 dput(dentry); 2511 return -ENOENT; 2512 } 2513 if (nd->depth) 2514 put_link(nd); 2515 path->dentry = dentry; 2516 path->mnt = nd->path.mnt; 2517 error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW, 2518 d_backing_inode(dentry), 0); 2519 if (unlikely(error)) 2520 return error; 2521 mntget(path->mnt); 2522 follow_mount(path); 2523 return 0; 2524 } 2525 2526 /** 2527 * path_mountpoint - look up a path to be umounted 2528 * @nd: lookup context 2529 * @flags: lookup flags 2530 * @path: pointer to container for result 2531 * 2532 * Look up the given name, but don't attempt to revalidate the last component. 2533 * Returns 0 and "path" will be valid on success; Returns error otherwise. 2534 */ 2535 static int 2536 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path) 2537 { 2538 const char *s = path_init(nd, flags); 2539 int err; 2540 if (IS_ERR(s)) 2541 return PTR_ERR(s); 2542 while (!(err = link_path_walk(s, nd)) && 2543 (err = mountpoint_last(nd, path)) > 0) { 2544 s = trailing_symlink(nd); 2545 if (IS_ERR(s)) { 2546 err = PTR_ERR(s); 2547 break; 2548 } 2549 } 2550 terminate_walk(nd); 2551 return err; 2552 } 2553 2554 static int 2555 filename_mountpoint(int dfd, struct filename *name, struct path *path, 2556 unsigned int flags) 2557 { 2558 struct nameidata nd; 2559 int error; 2560 if (IS_ERR(name)) 2561 return PTR_ERR(name); 2562 set_nameidata(&nd, dfd, name); 2563 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path); 2564 if (unlikely(error == -ECHILD)) 2565 error = path_mountpoint(&nd, flags, path); 2566 if (unlikely(error == -ESTALE)) 2567 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path); 2568 if (likely(!error)) 2569 audit_inode(name, path->dentry, 0); 2570 restore_nameidata(); 2571 putname(name); 2572 return error; 2573 } 2574 2575 /** 2576 * user_path_mountpoint_at - lookup a path from userland in order to umount it 2577 * @dfd: directory file descriptor 2578 * @name: pathname from userland 2579 * @flags: lookup flags 2580 * @path: pointer to container to hold result 2581 * 2582 * A umount is a special case for path walking. We're not actually interested 2583 * in the inode in this situation, and ESTALE errors can be a problem. We 2584 * simply want track down the dentry and vfsmount attached at the mountpoint 2585 * and avoid revalidating the last component. 2586 * 2587 * Returns 0 and populates "path" on success. 2588 */ 2589 int 2590 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags, 2591 struct path *path) 2592 { 2593 return filename_mountpoint(dfd, getname(name), path, flags); 2594 } 2595 2596 int 2597 kern_path_mountpoint(int dfd, const char *name, struct path *path, 2598 unsigned int flags) 2599 { 2600 return filename_mountpoint(dfd, getname_kernel(name), path, flags); 2601 } 2602 EXPORT_SYMBOL(kern_path_mountpoint); 2603 2604 int __check_sticky(struct inode *dir, struct inode *inode) 2605 { 2606 kuid_t fsuid = current_fsuid(); 2607 2608 if (uid_eq(inode->i_uid, fsuid)) 2609 return 0; 2610 if (uid_eq(dir->i_uid, fsuid)) 2611 return 0; 2612 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER); 2613 } 2614 EXPORT_SYMBOL(__check_sticky); 2615 2616 /* 2617 * Check whether we can remove a link victim from directory dir, check 2618 * whether the type of victim is right. 2619 * 1. We can't do it if dir is read-only (done in permission()) 2620 * 2. We should have write and exec permissions on dir 2621 * 3. We can't remove anything from append-only dir 2622 * 4. We can't do anything with immutable dir (done in permission()) 2623 * 5. If the sticky bit on dir is set we should either 2624 * a. be owner of dir, or 2625 * b. be owner of victim, or 2626 * c. have CAP_FOWNER capability 2627 * 6. If the victim is append-only or immutable we can't do antyhing with 2628 * links pointing to it. 2629 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2630 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2631 * 9. We can't remove a root or mountpoint. 2632 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 2633 * nfs_async_unlink(). 2634 */ 2635 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir) 2636 { 2637 struct inode *inode = d_backing_inode(victim); 2638 int error; 2639 2640 if (d_is_negative(victim)) 2641 return -ENOENT; 2642 BUG_ON(!inode); 2643 2644 BUG_ON(victim->d_parent->d_inode != dir); 2645 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2646 2647 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 2648 if (error) 2649 return error; 2650 if (IS_APPEND(dir)) 2651 return -EPERM; 2652 2653 if (check_sticky(dir, inode) || IS_APPEND(inode) || 2654 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode)) 2655 return -EPERM; 2656 if (isdir) { 2657 if (!d_is_dir(victim)) 2658 return -ENOTDIR; 2659 if (IS_ROOT(victim)) 2660 return -EBUSY; 2661 } else if (d_is_dir(victim)) 2662 return -EISDIR; 2663 if (IS_DEADDIR(dir)) 2664 return -ENOENT; 2665 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2666 return -EBUSY; 2667 return 0; 2668 } 2669 2670 /* Check whether we can create an object with dentry child in directory 2671 * dir. 2672 * 1. We can't do it if child already exists (open has special treatment for 2673 * this case, but since we are inlined it's OK) 2674 * 2. We can't do it if dir is read-only (done in permission()) 2675 * 3. We should have write and exec permissions on dir 2676 * 4. We can't do it if dir is immutable (done in permission()) 2677 */ 2678 static inline int may_create(struct inode *dir, struct dentry *child) 2679 { 2680 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 2681 if (child->d_inode) 2682 return -EEXIST; 2683 if (IS_DEADDIR(dir)) 2684 return -ENOENT; 2685 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 2686 } 2687 2688 /* 2689 * p1 and p2 should be directories on the same fs. 2690 */ 2691 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2692 { 2693 struct dentry *p; 2694 2695 if (p1 == p2) { 2696 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2697 return NULL; 2698 } 2699 2700 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2701 2702 p = d_ancestor(p2, p1); 2703 if (p) { 2704 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 2705 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD); 2706 return p; 2707 } 2708 2709 p = d_ancestor(p1, p2); 2710 if (p) { 2711 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2712 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD); 2713 return p; 2714 } 2715 2716 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2717 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 2718 return NULL; 2719 } 2720 EXPORT_SYMBOL(lock_rename); 2721 2722 void unlock_rename(struct dentry *p1, struct dentry *p2) 2723 { 2724 inode_unlock(p1->d_inode); 2725 if (p1 != p2) { 2726 inode_unlock(p2->d_inode); 2727 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2728 } 2729 } 2730 EXPORT_SYMBOL(unlock_rename); 2731 2732 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2733 bool want_excl) 2734 { 2735 int error = may_create(dir, dentry); 2736 if (error) 2737 return error; 2738 2739 if (!dir->i_op->create) 2740 return -EACCES; /* shouldn't it be ENOSYS? */ 2741 mode &= S_IALLUGO; 2742 mode |= S_IFREG; 2743 error = security_inode_create(dir, dentry, mode); 2744 if (error) 2745 return error; 2746 error = dir->i_op->create(dir, dentry, mode, want_excl); 2747 if (!error) 2748 fsnotify_create(dir, dentry); 2749 return error; 2750 } 2751 EXPORT_SYMBOL(vfs_create); 2752 2753 static int may_open(struct path *path, int acc_mode, int flag) 2754 { 2755 struct dentry *dentry = path->dentry; 2756 struct inode *inode = dentry->d_inode; 2757 int error; 2758 2759 if (!inode) 2760 return -ENOENT; 2761 2762 switch (inode->i_mode & S_IFMT) { 2763 case S_IFLNK: 2764 return -ELOOP; 2765 case S_IFDIR: 2766 if (acc_mode & MAY_WRITE) 2767 return -EISDIR; 2768 break; 2769 case S_IFBLK: 2770 case S_IFCHR: 2771 if (path->mnt->mnt_flags & MNT_NODEV) 2772 return -EACCES; 2773 /*FALLTHRU*/ 2774 case S_IFIFO: 2775 case S_IFSOCK: 2776 flag &= ~O_TRUNC; 2777 break; 2778 } 2779 2780 error = inode_permission(inode, MAY_OPEN | acc_mode); 2781 if (error) 2782 return error; 2783 2784 /* 2785 * An append-only file must be opened in append mode for writing. 2786 */ 2787 if (IS_APPEND(inode)) { 2788 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2789 return -EPERM; 2790 if (flag & O_TRUNC) 2791 return -EPERM; 2792 } 2793 2794 /* O_NOATIME can only be set by the owner or superuser */ 2795 if (flag & O_NOATIME && !inode_owner_or_capable(inode)) 2796 return -EPERM; 2797 2798 return 0; 2799 } 2800 2801 static int handle_truncate(struct file *filp) 2802 { 2803 struct path *path = &filp->f_path; 2804 struct inode *inode = path->dentry->d_inode; 2805 int error = get_write_access(inode); 2806 if (error) 2807 return error; 2808 /* 2809 * Refuse to truncate files with mandatory locks held on them. 2810 */ 2811 error = locks_verify_locked(filp); 2812 if (!error) 2813 error = security_path_truncate(path); 2814 if (!error) { 2815 error = do_truncate(path->dentry, 0, 2816 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 2817 filp); 2818 } 2819 put_write_access(inode); 2820 return error; 2821 } 2822 2823 static inline int open_to_namei_flags(int flag) 2824 { 2825 if ((flag & O_ACCMODE) == 3) 2826 flag--; 2827 return flag; 2828 } 2829 2830 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode) 2831 { 2832 int error = security_path_mknod(dir, dentry, mode, 0); 2833 if (error) 2834 return error; 2835 2836 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC); 2837 if (error) 2838 return error; 2839 2840 return security_inode_create(dir->dentry->d_inode, dentry, mode); 2841 } 2842 2843 /* 2844 * Attempt to atomically look up, create and open a file from a negative 2845 * dentry. 2846 * 2847 * Returns 0 if successful. The file will have been created and attached to 2848 * @file by the filesystem calling finish_open(). 2849 * 2850 * Returns 1 if the file was looked up only or didn't need creating. The 2851 * caller will need to perform the open themselves. @path will have been 2852 * updated to point to the new dentry. This may be negative. 2853 * 2854 * Returns an error code otherwise. 2855 */ 2856 static int atomic_open(struct nameidata *nd, struct dentry *dentry, 2857 struct path *path, struct file *file, 2858 const struct open_flags *op, 2859 bool got_write, bool need_lookup, 2860 int *opened) 2861 { 2862 struct inode *dir = nd->path.dentry->d_inode; 2863 unsigned open_flag = open_to_namei_flags(op->open_flag); 2864 umode_t mode; 2865 int error; 2866 int acc_mode; 2867 int create_error = 0; 2868 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 2869 bool excl; 2870 2871 BUG_ON(dentry->d_inode); 2872 2873 /* Don't create child dentry for a dead directory. */ 2874 if (unlikely(IS_DEADDIR(dir))) { 2875 error = -ENOENT; 2876 goto out; 2877 } 2878 2879 mode = op->mode; 2880 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir)) 2881 mode &= ~current_umask(); 2882 2883 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT); 2884 if (excl) 2885 open_flag &= ~O_TRUNC; 2886 2887 /* 2888 * Checking write permission is tricky, bacuse we don't know if we are 2889 * going to actually need it: O_CREAT opens should work as long as the 2890 * file exists. But checking existence breaks atomicity. The trick is 2891 * to check access and if not granted clear O_CREAT from the flags. 2892 * 2893 * Another problem is returing the "right" error value (e.g. for an 2894 * O_EXCL open we want to return EEXIST not EROFS). 2895 */ 2896 if (((open_flag & (O_CREAT | O_TRUNC)) || 2897 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) { 2898 if (!(open_flag & O_CREAT)) { 2899 /* 2900 * No O_CREATE -> atomicity not a requirement -> fall 2901 * back to lookup + open 2902 */ 2903 goto no_open; 2904 } else if (open_flag & (O_EXCL | O_TRUNC)) { 2905 /* Fall back and fail with the right error */ 2906 create_error = -EROFS; 2907 goto no_open; 2908 } else { 2909 /* No side effects, safe to clear O_CREAT */ 2910 create_error = -EROFS; 2911 open_flag &= ~O_CREAT; 2912 } 2913 } 2914 2915 if (open_flag & O_CREAT) { 2916 error = may_o_create(&nd->path, dentry, mode); 2917 if (error) { 2918 create_error = error; 2919 if (open_flag & O_EXCL) 2920 goto no_open; 2921 open_flag &= ~O_CREAT; 2922 } 2923 } 2924 2925 if (nd->flags & LOOKUP_DIRECTORY) 2926 open_flag |= O_DIRECTORY; 2927 2928 file->f_path.dentry = DENTRY_NOT_SET; 2929 file->f_path.mnt = nd->path.mnt; 2930 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode, 2931 opened); 2932 if (error < 0) { 2933 if (create_error && error == -ENOENT) 2934 error = create_error; 2935 goto out; 2936 } 2937 2938 if (error) { /* returned 1, that is */ 2939 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 2940 error = -EIO; 2941 goto out; 2942 } 2943 if (file->f_path.dentry) { 2944 dput(dentry); 2945 dentry = file->f_path.dentry; 2946 } 2947 if (*opened & FILE_CREATED) 2948 fsnotify_create(dir, dentry); 2949 if (!dentry->d_inode) { 2950 WARN_ON(*opened & FILE_CREATED); 2951 if (create_error) { 2952 error = create_error; 2953 goto out; 2954 } 2955 } else { 2956 if (excl && !(*opened & FILE_CREATED)) { 2957 error = -EEXIST; 2958 goto out; 2959 } 2960 } 2961 goto looked_up; 2962 } 2963 2964 /* 2965 * We didn't have the inode before the open, so check open permission 2966 * here. 2967 */ 2968 acc_mode = op->acc_mode; 2969 if (*opened & FILE_CREATED) { 2970 WARN_ON(!(open_flag & O_CREAT)); 2971 fsnotify_create(dir, dentry); 2972 acc_mode = 0; 2973 } 2974 error = may_open(&file->f_path, acc_mode, open_flag); 2975 if (error) 2976 fput(file); 2977 2978 out: 2979 dput(dentry); 2980 return error; 2981 2982 no_open: 2983 if (need_lookup) { 2984 dentry = lookup_real(dir, dentry, nd->flags); 2985 if (IS_ERR(dentry)) 2986 return PTR_ERR(dentry); 2987 } 2988 if (create_error && !dentry->d_inode) { 2989 error = create_error; 2990 goto out; 2991 } 2992 looked_up: 2993 path->dentry = dentry; 2994 path->mnt = nd->path.mnt; 2995 return 1; 2996 } 2997 2998 /* 2999 * Look up and maybe create and open the last component. 3000 * 3001 * Must be called with i_mutex held on parent. 3002 * 3003 * Returns 0 if the file was successfully atomically created (if necessary) and 3004 * opened. In this case the file will be returned attached to @file. 3005 * 3006 * Returns 1 if the file was not completely opened at this time, though lookups 3007 * and creations will have been performed and the dentry returned in @path will 3008 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't 3009 * specified then a negative dentry may be returned. 3010 * 3011 * An error code is returned otherwise. 3012 * 3013 * FILE_CREATE will be set in @*opened if the dentry was created and will be 3014 * cleared otherwise prior to returning. 3015 */ 3016 static int lookup_open(struct nameidata *nd, struct path *path, 3017 struct file *file, 3018 const struct open_flags *op, 3019 bool got_write, int *opened) 3020 { 3021 struct dentry *dir = nd->path.dentry; 3022 struct inode *dir_inode = dir->d_inode; 3023 struct dentry *dentry; 3024 int error; 3025 bool need_lookup = false; 3026 3027 *opened &= ~FILE_CREATED; 3028 dentry = lookup_dcache(&nd->last, dir, nd->flags); 3029 if (IS_ERR(dentry)) 3030 return PTR_ERR(dentry); 3031 3032 if (!dentry) { 3033 dentry = d_alloc(dir, &nd->last); 3034 if (unlikely(!dentry)) 3035 return -ENOMEM; 3036 need_lookup = true; 3037 } else if (dentry->d_inode) { 3038 /* Cached positive dentry: will open in f_op->open */ 3039 goto out_no_open; 3040 } 3041 3042 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) { 3043 return atomic_open(nd, dentry, path, file, op, got_write, 3044 need_lookup, opened); 3045 } 3046 3047 if (need_lookup) { 3048 BUG_ON(dentry->d_inode); 3049 3050 dentry = lookup_real(dir_inode, dentry, nd->flags); 3051 if (IS_ERR(dentry)) 3052 return PTR_ERR(dentry); 3053 } 3054 3055 /* Negative dentry, just create the file */ 3056 if (!dentry->d_inode && (op->open_flag & O_CREAT)) { 3057 umode_t mode = op->mode; 3058 if (!IS_POSIXACL(dir->d_inode)) 3059 mode &= ~current_umask(); 3060 /* 3061 * This write is needed to ensure that a 3062 * rw->ro transition does not occur between 3063 * the time when the file is created and when 3064 * a permanent write count is taken through 3065 * the 'struct file' in finish_open(). 3066 */ 3067 if (!got_write) { 3068 error = -EROFS; 3069 goto out_dput; 3070 } 3071 *opened |= FILE_CREATED; 3072 error = security_path_mknod(&nd->path, dentry, mode, 0); 3073 if (error) 3074 goto out_dput; 3075 error = vfs_create(dir->d_inode, dentry, mode, 3076 nd->flags & LOOKUP_EXCL); 3077 if (error) 3078 goto out_dput; 3079 } 3080 out_no_open: 3081 path->dentry = dentry; 3082 path->mnt = nd->path.mnt; 3083 return 1; 3084 3085 out_dput: 3086 dput(dentry); 3087 return error; 3088 } 3089 3090 /* 3091 * Handle the last step of open() 3092 */ 3093 static int do_last(struct nameidata *nd, 3094 struct file *file, const struct open_flags *op, 3095 int *opened) 3096 { 3097 struct dentry *dir = nd->path.dentry; 3098 int open_flag = op->open_flag; 3099 bool will_truncate = (open_flag & O_TRUNC) != 0; 3100 bool got_write = false; 3101 int acc_mode = op->acc_mode; 3102 unsigned seq; 3103 struct inode *inode; 3104 struct path save_parent = { .dentry = NULL, .mnt = NULL }; 3105 struct path path; 3106 bool retried = false; 3107 int error; 3108 3109 nd->flags &= ~LOOKUP_PARENT; 3110 nd->flags |= op->intent; 3111 3112 if (nd->last_type != LAST_NORM) { 3113 error = handle_dots(nd, nd->last_type); 3114 if (unlikely(error)) 3115 return error; 3116 goto finish_open; 3117 } 3118 3119 if (!(open_flag & O_CREAT)) { 3120 if (nd->last.name[nd->last.len]) 3121 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 3122 /* we _can_ be in RCU mode here */ 3123 error = lookup_fast(nd, &path, &inode, &seq); 3124 if (likely(error > 0)) 3125 goto finish_lookup; 3126 3127 if (error < 0) 3128 return error; 3129 3130 BUG_ON(nd->inode != dir->d_inode); 3131 BUG_ON(nd->flags & LOOKUP_RCU); 3132 } else { 3133 /* create side of things */ 3134 /* 3135 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED 3136 * has been cleared when we got to the last component we are 3137 * about to look up 3138 */ 3139 error = complete_walk(nd); 3140 if (error) 3141 return error; 3142 3143 audit_inode(nd->name, dir, LOOKUP_PARENT); 3144 /* trailing slashes? */ 3145 if (unlikely(nd->last.name[nd->last.len])) 3146 return -EISDIR; 3147 } 3148 3149 retry_lookup: 3150 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 3151 error = mnt_want_write(nd->path.mnt); 3152 if (!error) 3153 got_write = true; 3154 /* 3155 * do _not_ fail yet - we might not need that or fail with 3156 * a different error; let lookup_open() decide; we'll be 3157 * dropping this one anyway. 3158 */ 3159 } 3160 inode_lock(dir->d_inode); 3161 error = lookup_open(nd, &path, file, op, got_write, opened); 3162 inode_unlock(dir->d_inode); 3163 3164 if (error <= 0) { 3165 if (error) 3166 goto out; 3167 3168 if ((*opened & FILE_CREATED) || 3169 !S_ISREG(file_inode(file)->i_mode)) 3170 will_truncate = false; 3171 3172 audit_inode(nd->name, file->f_path.dentry, 0); 3173 goto opened; 3174 } 3175 3176 if (*opened & FILE_CREATED) { 3177 /* Don't check for write permission, don't truncate */ 3178 open_flag &= ~O_TRUNC; 3179 will_truncate = false; 3180 acc_mode = 0; 3181 path_to_nameidata(&path, nd); 3182 goto finish_open_created; 3183 } 3184 3185 /* 3186 * If atomic_open() acquired write access it is dropped now due to 3187 * possible mount and symlink following (this might be optimized away if 3188 * necessary...) 3189 */ 3190 if (got_write) { 3191 mnt_drop_write(nd->path.mnt); 3192 got_write = false; 3193 } 3194 3195 if (unlikely(d_is_negative(path.dentry))) { 3196 path_to_nameidata(&path, nd); 3197 return -ENOENT; 3198 } 3199 3200 /* 3201 * create/update audit record if it already exists. 3202 */ 3203 audit_inode(nd->name, path.dentry, 0); 3204 3205 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) { 3206 path_to_nameidata(&path, nd); 3207 return -EEXIST; 3208 } 3209 3210 error = follow_managed(&path, nd); 3211 if (unlikely(error < 0)) 3212 return error; 3213 3214 seq = 0; /* out of RCU mode, so the value doesn't matter */ 3215 inode = d_backing_inode(path.dentry); 3216 finish_lookup: 3217 if (nd->depth) 3218 put_link(nd); 3219 error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW, 3220 inode, seq); 3221 if (unlikely(error)) 3222 return error; 3223 3224 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) { 3225 path_to_nameidata(&path, nd); 3226 } else { 3227 save_parent.dentry = nd->path.dentry; 3228 save_parent.mnt = mntget(path.mnt); 3229 nd->path.dentry = path.dentry; 3230 3231 } 3232 nd->inode = inode; 3233 nd->seq = seq; 3234 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */ 3235 finish_open: 3236 error = complete_walk(nd); 3237 if (error) { 3238 path_put(&save_parent); 3239 return error; 3240 } 3241 audit_inode(nd->name, nd->path.dentry, 0); 3242 if (unlikely(d_is_symlink(nd->path.dentry)) && !(open_flag & O_PATH)) { 3243 error = -ELOOP; 3244 goto out; 3245 } 3246 error = -EISDIR; 3247 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry)) 3248 goto out; 3249 error = -ENOTDIR; 3250 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3251 goto out; 3252 if (!d_is_reg(nd->path.dentry)) 3253 will_truncate = false; 3254 3255 if (will_truncate) { 3256 error = mnt_want_write(nd->path.mnt); 3257 if (error) 3258 goto out; 3259 got_write = true; 3260 } 3261 finish_open_created: 3262 if (likely(!(open_flag & O_PATH))) { 3263 error = may_open(&nd->path, acc_mode, open_flag); 3264 if (error) 3265 goto out; 3266 } 3267 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */ 3268 error = vfs_open(&nd->path, file, current_cred()); 3269 if (!error) { 3270 *opened |= FILE_OPENED; 3271 } else { 3272 if (error == -EOPENSTALE) 3273 goto stale_open; 3274 goto out; 3275 } 3276 opened: 3277 error = open_check_o_direct(file); 3278 if (error) 3279 goto exit_fput; 3280 error = ima_file_check(file, op->acc_mode, *opened); 3281 if (error) 3282 goto exit_fput; 3283 3284 if (will_truncate) { 3285 error = handle_truncate(file); 3286 if (error) 3287 goto exit_fput; 3288 } 3289 out: 3290 if (unlikely(error > 0)) { 3291 WARN_ON(1); 3292 error = -EINVAL; 3293 } 3294 if (got_write) 3295 mnt_drop_write(nd->path.mnt); 3296 path_put(&save_parent); 3297 return error; 3298 3299 exit_fput: 3300 fput(file); 3301 goto out; 3302 3303 stale_open: 3304 /* If no saved parent or already retried then can't retry */ 3305 if (!save_parent.dentry || retried) 3306 goto out; 3307 3308 BUG_ON(save_parent.dentry != dir); 3309 path_put(&nd->path); 3310 nd->path = save_parent; 3311 nd->inode = dir->d_inode; 3312 save_parent.mnt = NULL; 3313 save_parent.dentry = NULL; 3314 if (got_write) { 3315 mnt_drop_write(nd->path.mnt); 3316 got_write = false; 3317 } 3318 retried = true; 3319 goto retry_lookup; 3320 } 3321 3322 static int do_tmpfile(struct nameidata *nd, unsigned flags, 3323 const struct open_flags *op, 3324 struct file *file, int *opened) 3325 { 3326 static const struct qstr name = QSTR_INIT("/", 1); 3327 struct dentry *child; 3328 struct inode *dir; 3329 struct path path; 3330 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path); 3331 if (unlikely(error)) 3332 return error; 3333 error = mnt_want_write(path.mnt); 3334 if (unlikely(error)) 3335 goto out; 3336 dir = path.dentry->d_inode; 3337 /* we want directory to be writable */ 3338 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 3339 if (error) 3340 goto out2; 3341 if (!dir->i_op->tmpfile) { 3342 error = -EOPNOTSUPP; 3343 goto out2; 3344 } 3345 child = d_alloc(path.dentry, &name); 3346 if (unlikely(!child)) { 3347 error = -ENOMEM; 3348 goto out2; 3349 } 3350 dput(path.dentry); 3351 path.dentry = child; 3352 error = dir->i_op->tmpfile(dir, child, op->mode); 3353 if (error) 3354 goto out2; 3355 audit_inode(nd->name, child, 0); 3356 /* Don't check for other permissions, the inode was just created */ 3357 error = may_open(&path, 0, op->open_flag); 3358 if (error) 3359 goto out2; 3360 file->f_path.mnt = path.mnt; 3361 error = finish_open(file, child, NULL, opened); 3362 if (error) 3363 goto out2; 3364 error = open_check_o_direct(file); 3365 if (error) { 3366 fput(file); 3367 } else if (!(op->open_flag & O_EXCL)) { 3368 struct inode *inode = file_inode(file); 3369 spin_lock(&inode->i_lock); 3370 inode->i_state |= I_LINKABLE; 3371 spin_unlock(&inode->i_lock); 3372 } 3373 out2: 3374 mnt_drop_write(path.mnt); 3375 out: 3376 path_put(&path); 3377 return error; 3378 } 3379 3380 static struct file *path_openat(struct nameidata *nd, 3381 const struct open_flags *op, unsigned flags) 3382 { 3383 const char *s; 3384 struct file *file; 3385 int opened = 0; 3386 int error; 3387 3388 file = get_empty_filp(); 3389 if (IS_ERR(file)) 3390 return file; 3391 3392 file->f_flags = op->open_flag; 3393 3394 if (unlikely(file->f_flags & __O_TMPFILE)) { 3395 error = do_tmpfile(nd, flags, op, file, &opened); 3396 goto out2; 3397 } 3398 3399 s = path_init(nd, flags); 3400 if (IS_ERR(s)) { 3401 put_filp(file); 3402 return ERR_CAST(s); 3403 } 3404 while (!(error = link_path_walk(s, nd)) && 3405 (error = do_last(nd, file, op, &opened)) > 0) { 3406 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3407 s = trailing_symlink(nd); 3408 if (IS_ERR(s)) { 3409 error = PTR_ERR(s); 3410 break; 3411 } 3412 } 3413 terminate_walk(nd); 3414 out2: 3415 if (!(opened & FILE_OPENED)) { 3416 BUG_ON(!error); 3417 put_filp(file); 3418 } 3419 if (unlikely(error)) { 3420 if (error == -EOPENSTALE) { 3421 if (flags & LOOKUP_RCU) 3422 error = -ECHILD; 3423 else 3424 error = -ESTALE; 3425 } 3426 file = ERR_PTR(error); 3427 } 3428 return file; 3429 } 3430 3431 struct file *do_filp_open(int dfd, struct filename *pathname, 3432 const struct open_flags *op) 3433 { 3434 struct nameidata nd; 3435 int flags = op->lookup_flags; 3436 struct file *filp; 3437 3438 set_nameidata(&nd, dfd, pathname); 3439 filp = path_openat(&nd, op, flags | LOOKUP_RCU); 3440 if (unlikely(filp == ERR_PTR(-ECHILD))) 3441 filp = path_openat(&nd, op, flags); 3442 if (unlikely(filp == ERR_PTR(-ESTALE))) 3443 filp = path_openat(&nd, op, flags | LOOKUP_REVAL); 3444 restore_nameidata(); 3445 return filp; 3446 } 3447 3448 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 3449 const char *name, const struct open_flags *op) 3450 { 3451 struct nameidata nd; 3452 struct file *file; 3453 struct filename *filename; 3454 int flags = op->lookup_flags | LOOKUP_ROOT; 3455 3456 nd.root.mnt = mnt; 3457 nd.root.dentry = dentry; 3458 3459 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN) 3460 return ERR_PTR(-ELOOP); 3461 3462 filename = getname_kernel(name); 3463 if (IS_ERR(filename)) 3464 return ERR_CAST(filename); 3465 3466 set_nameidata(&nd, -1, filename); 3467 file = path_openat(&nd, op, flags | LOOKUP_RCU); 3468 if (unlikely(file == ERR_PTR(-ECHILD))) 3469 file = path_openat(&nd, op, flags); 3470 if (unlikely(file == ERR_PTR(-ESTALE))) 3471 file = path_openat(&nd, op, flags | LOOKUP_REVAL); 3472 restore_nameidata(); 3473 putname(filename); 3474 return file; 3475 } 3476 3477 static struct dentry *filename_create(int dfd, struct filename *name, 3478 struct path *path, unsigned int lookup_flags) 3479 { 3480 struct dentry *dentry = ERR_PTR(-EEXIST); 3481 struct qstr last; 3482 int type; 3483 int err2; 3484 int error; 3485 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY); 3486 3487 /* 3488 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any 3489 * other flags passed in are ignored! 3490 */ 3491 lookup_flags &= LOOKUP_REVAL; 3492 3493 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type); 3494 if (IS_ERR(name)) 3495 return ERR_CAST(name); 3496 3497 /* 3498 * Yucky last component or no last component at all? 3499 * (foo/., foo/.., /////) 3500 */ 3501 if (unlikely(type != LAST_NORM)) 3502 goto out; 3503 3504 /* don't fail immediately if it's r/o, at least try to report other errors */ 3505 err2 = mnt_want_write(path->mnt); 3506 /* 3507 * Do the final lookup. 3508 */ 3509 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL; 3510 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 3511 dentry = __lookup_hash(&last, path->dentry, lookup_flags); 3512 if (IS_ERR(dentry)) 3513 goto unlock; 3514 3515 error = -EEXIST; 3516 if (d_is_positive(dentry)) 3517 goto fail; 3518 3519 /* 3520 * Special case - lookup gave negative, but... we had foo/bar/ 3521 * From the vfs_mknod() POV we just have a negative dentry - 3522 * all is fine. Let's be bastards - you had / on the end, you've 3523 * been asking for (non-existent) directory. -ENOENT for you. 3524 */ 3525 if (unlikely(!is_dir && last.name[last.len])) { 3526 error = -ENOENT; 3527 goto fail; 3528 } 3529 if (unlikely(err2)) { 3530 error = err2; 3531 goto fail; 3532 } 3533 putname(name); 3534 return dentry; 3535 fail: 3536 dput(dentry); 3537 dentry = ERR_PTR(error); 3538 unlock: 3539 inode_unlock(path->dentry->d_inode); 3540 if (!err2) 3541 mnt_drop_write(path->mnt); 3542 out: 3543 path_put(path); 3544 putname(name); 3545 return dentry; 3546 } 3547 3548 struct dentry *kern_path_create(int dfd, const char *pathname, 3549 struct path *path, unsigned int lookup_flags) 3550 { 3551 return filename_create(dfd, getname_kernel(pathname), 3552 path, lookup_flags); 3553 } 3554 EXPORT_SYMBOL(kern_path_create); 3555 3556 void done_path_create(struct path *path, struct dentry *dentry) 3557 { 3558 dput(dentry); 3559 inode_unlock(path->dentry->d_inode); 3560 mnt_drop_write(path->mnt); 3561 path_put(path); 3562 } 3563 EXPORT_SYMBOL(done_path_create); 3564 3565 inline struct dentry *user_path_create(int dfd, const char __user *pathname, 3566 struct path *path, unsigned int lookup_flags) 3567 { 3568 return filename_create(dfd, getname(pathname), path, lookup_flags); 3569 } 3570 EXPORT_SYMBOL(user_path_create); 3571 3572 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 3573 { 3574 int error = may_create(dir, dentry); 3575 3576 if (error) 3577 return error; 3578 3579 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 3580 return -EPERM; 3581 3582 if (!dir->i_op->mknod) 3583 return -EPERM; 3584 3585 error = devcgroup_inode_mknod(mode, dev); 3586 if (error) 3587 return error; 3588 3589 error = security_inode_mknod(dir, dentry, mode, dev); 3590 if (error) 3591 return error; 3592 3593 error = dir->i_op->mknod(dir, dentry, mode, dev); 3594 if (!error) 3595 fsnotify_create(dir, dentry); 3596 return error; 3597 } 3598 EXPORT_SYMBOL(vfs_mknod); 3599 3600 static int may_mknod(umode_t mode) 3601 { 3602 switch (mode & S_IFMT) { 3603 case S_IFREG: 3604 case S_IFCHR: 3605 case S_IFBLK: 3606 case S_IFIFO: 3607 case S_IFSOCK: 3608 case 0: /* zero mode translates to S_IFREG */ 3609 return 0; 3610 case S_IFDIR: 3611 return -EPERM; 3612 default: 3613 return -EINVAL; 3614 } 3615 } 3616 3617 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3618 unsigned, dev) 3619 { 3620 struct dentry *dentry; 3621 struct path path; 3622 int error; 3623 unsigned int lookup_flags = 0; 3624 3625 error = may_mknod(mode); 3626 if (error) 3627 return error; 3628 retry: 3629 dentry = user_path_create(dfd, filename, &path, lookup_flags); 3630 if (IS_ERR(dentry)) 3631 return PTR_ERR(dentry); 3632 3633 if (!IS_POSIXACL(path.dentry->d_inode)) 3634 mode &= ~current_umask(); 3635 error = security_path_mknod(&path, dentry, mode, dev); 3636 if (error) 3637 goto out; 3638 switch (mode & S_IFMT) { 3639 case 0: case S_IFREG: 3640 error = vfs_create(path.dentry->d_inode,dentry,mode,true); 3641 break; 3642 case S_IFCHR: case S_IFBLK: 3643 error = vfs_mknod(path.dentry->d_inode,dentry,mode, 3644 new_decode_dev(dev)); 3645 break; 3646 case S_IFIFO: case S_IFSOCK: 3647 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0); 3648 break; 3649 } 3650 out: 3651 done_path_create(&path, dentry); 3652 if (retry_estale(error, lookup_flags)) { 3653 lookup_flags |= LOOKUP_REVAL; 3654 goto retry; 3655 } 3656 return error; 3657 } 3658 3659 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3660 { 3661 return sys_mknodat(AT_FDCWD, filename, mode, dev); 3662 } 3663 3664 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 3665 { 3666 int error = may_create(dir, dentry); 3667 unsigned max_links = dir->i_sb->s_max_links; 3668 3669 if (error) 3670 return error; 3671 3672 if (!dir->i_op->mkdir) 3673 return -EPERM; 3674 3675 mode &= (S_IRWXUGO|S_ISVTX); 3676 error = security_inode_mkdir(dir, dentry, mode); 3677 if (error) 3678 return error; 3679 3680 if (max_links && dir->i_nlink >= max_links) 3681 return -EMLINK; 3682 3683 error = dir->i_op->mkdir(dir, dentry, mode); 3684 if (!error) 3685 fsnotify_mkdir(dir, dentry); 3686 return error; 3687 } 3688 EXPORT_SYMBOL(vfs_mkdir); 3689 3690 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 3691 { 3692 struct dentry *dentry; 3693 struct path path; 3694 int error; 3695 unsigned int lookup_flags = LOOKUP_DIRECTORY; 3696 3697 retry: 3698 dentry = user_path_create(dfd, pathname, &path, lookup_flags); 3699 if (IS_ERR(dentry)) 3700 return PTR_ERR(dentry); 3701 3702 if (!IS_POSIXACL(path.dentry->d_inode)) 3703 mode &= ~current_umask(); 3704 error = security_path_mkdir(&path, dentry, mode); 3705 if (!error) 3706 error = vfs_mkdir(path.dentry->d_inode, dentry, mode); 3707 done_path_create(&path, dentry); 3708 if (retry_estale(error, lookup_flags)) { 3709 lookup_flags |= LOOKUP_REVAL; 3710 goto retry; 3711 } 3712 return error; 3713 } 3714 3715 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 3716 { 3717 return sys_mkdirat(AT_FDCWD, pathname, mode); 3718 } 3719 3720 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 3721 { 3722 int error = may_delete(dir, dentry, 1); 3723 3724 if (error) 3725 return error; 3726 3727 if (!dir->i_op->rmdir) 3728 return -EPERM; 3729 3730 dget(dentry); 3731 inode_lock(dentry->d_inode); 3732 3733 error = -EBUSY; 3734 if (is_local_mountpoint(dentry)) 3735 goto out; 3736 3737 error = security_inode_rmdir(dir, dentry); 3738 if (error) 3739 goto out; 3740 3741 shrink_dcache_parent(dentry); 3742 error = dir->i_op->rmdir(dir, dentry); 3743 if (error) 3744 goto out; 3745 3746 dentry->d_inode->i_flags |= S_DEAD; 3747 dont_mount(dentry); 3748 detach_mounts(dentry); 3749 3750 out: 3751 inode_unlock(dentry->d_inode); 3752 dput(dentry); 3753 if (!error) 3754 d_delete(dentry); 3755 return error; 3756 } 3757 EXPORT_SYMBOL(vfs_rmdir); 3758 3759 static long do_rmdir(int dfd, const char __user *pathname) 3760 { 3761 int error = 0; 3762 struct filename *name; 3763 struct dentry *dentry; 3764 struct path path; 3765 struct qstr last; 3766 int type; 3767 unsigned int lookup_flags = 0; 3768 retry: 3769 name = user_path_parent(dfd, pathname, 3770 &path, &last, &type, lookup_flags); 3771 if (IS_ERR(name)) 3772 return PTR_ERR(name); 3773 3774 switch (type) { 3775 case LAST_DOTDOT: 3776 error = -ENOTEMPTY; 3777 goto exit1; 3778 case LAST_DOT: 3779 error = -EINVAL; 3780 goto exit1; 3781 case LAST_ROOT: 3782 error = -EBUSY; 3783 goto exit1; 3784 } 3785 3786 error = mnt_want_write(path.mnt); 3787 if (error) 3788 goto exit1; 3789 3790 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 3791 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 3792 error = PTR_ERR(dentry); 3793 if (IS_ERR(dentry)) 3794 goto exit2; 3795 if (!dentry->d_inode) { 3796 error = -ENOENT; 3797 goto exit3; 3798 } 3799 error = security_path_rmdir(&path, dentry); 3800 if (error) 3801 goto exit3; 3802 error = vfs_rmdir(path.dentry->d_inode, dentry); 3803 exit3: 3804 dput(dentry); 3805 exit2: 3806 inode_unlock(path.dentry->d_inode); 3807 mnt_drop_write(path.mnt); 3808 exit1: 3809 path_put(&path); 3810 putname(name); 3811 if (retry_estale(error, lookup_flags)) { 3812 lookup_flags |= LOOKUP_REVAL; 3813 goto retry; 3814 } 3815 return error; 3816 } 3817 3818 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 3819 { 3820 return do_rmdir(AT_FDCWD, pathname); 3821 } 3822 3823 /** 3824 * vfs_unlink - unlink a filesystem object 3825 * @dir: parent directory 3826 * @dentry: victim 3827 * @delegated_inode: returns victim inode, if the inode is delegated. 3828 * 3829 * The caller must hold dir->i_mutex. 3830 * 3831 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 3832 * return a reference to the inode in delegated_inode. The caller 3833 * should then break the delegation on that inode and retry. Because 3834 * breaking a delegation may take a long time, the caller should drop 3835 * dir->i_mutex before doing so. 3836 * 3837 * Alternatively, a caller may pass NULL for delegated_inode. This may 3838 * be appropriate for callers that expect the underlying filesystem not 3839 * to be NFS exported. 3840 */ 3841 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode) 3842 { 3843 struct inode *target = dentry->d_inode; 3844 int error = may_delete(dir, dentry, 0); 3845 3846 if (error) 3847 return error; 3848 3849 if (!dir->i_op->unlink) 3850 return -EPERM; 3851 3852 inode_lock(target); 3853 if (is_local_mountpoint(dentry)) 3854 error = -EBUSY; 3855 else { 3856 error = security_inode_unlink(dir, dentry); 3857 if (!error) { 3858 error = try_break_deleg(target, delegated_inode); 3859 if (error) 3860 goto out; 3861 error = dir->i_op->unlink(dir, dentry); 3862 if (!error) { 3863 dont_mount(dentry); 3864 detach_mounts(dentry); 3865 } 3866 } 3867 } 3868 out: 3869 inode_unlock(target); 3870 3871 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 3872 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 3873 fsnotify_link_count(target); 3874 d_delete(dentry); 3875 } 3876 3877 return error; 3878 } 3879 EXPORT_SYMBOL(vfs_unlink); 3880 3881 /* 3882 * Make sure that the actual truncation of the file will occur outside its 3883 * directory's i_mutex. Truncate can take a long time if there is a lot of 3884 * writeout happening, and we don't want to prevent access to the directory 3885 * while waiting on the I/O. 3886 */ 3887 static long do_unlinkat(int dfd, const char __user *pathname) 3888 { 3889 int error; 3890 struct filename *name; 3891 struct dentry *dentry; 3892 struct path path; 3893 struct qstr last; 3894 int type; 3895 struct inode *inode = NULL; 3896 struct inode *delegated_inode = NULL; 3897 unsigned int lookup_flags = 0; 3898 retry: 3899 name = user_path_parent(dfd, pathname, 3900 &path, &last, &type, lookup_flags); 3901 if (IS_ERR(name)) 3902 return PTR_ERR(name); 3903 3904 error = -EISDIR; 3905 if (type != LAST_NORM) 3906 goto exit1; 3907 3908 error = mnt_want_write(path.mnt); 3909 if (error) 3910 goto exit1; 3911 retry_deleg: 3912 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 3913 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 3914 error = PTR_ERR(dentry); 3915 if (!IS_ERR(dentry)) { 3916 /* Why not before? Because we want correct error value */ 3917 if (last.name[last.len]) 3918 goto slashes; 3919 inode = dentry->d_inode; 3920 if (d_is_negative(dentry)) 3921 goto slashes; 3922 ihold(inode); 3923 error = security_path_unlink(&path, dentry); 3924 if (error) 3925 goto exit2; 3926 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode); 3927 exit2: 3928 dput(dentry); 3929 } 3930 inode_unlock(path.dentry->d_inode); 3931 if (inode) 3932 iput(inode); /* truncate the inode here */ 3933 inode = NULL; 3934 if (delegated_inode) { 3935 error = break_deleg_wait(&delegated_inode); 3936 if (!error) 3937 goto retry_deleg; 3938 } 3939 mnt_drop_write(path.mnt); 3940 exit1: 3941 path_put(&path); 3942 putname(name); 3943 if (retry_estale(error, lookup_flags)) { 3944 lookup_flags |= LOOKUP_REVAL; 3945 inode = NULL; 3946 goto retry; 3947 } 3948 return error; 3949 3950 slashes: 3951 if (d_is_negative(dentry)) 3952 error = -ENOENT; 3953 else if (d_is_dir(dentry)) 3954 error = -EISDIR; 3955 else 3956 error = -ENOTDIR; 3957 goto exit2; 3958 } 3959 3960 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 3961 { 3962 if ((flag & ~AT_REMOVEDIR) != 0) 3963 return -EINVAL; 3964 3965 if (flag & AT_REMOVEDIR) 3966 return do_rmdir(dfd, pathname); 3967 3968 return do_unlinkat(dfd, pathname); 3969 } 3970 3971 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 3972 { 3973 return do_unlinkat(AT_FDCWD, pathname); 3974 } 3975 3976 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 3977 { 3978 int error = may_create(dir, dentry); 3979 3980 if (error) 3981 return error; 3982 3983 if (!dir->i_op->symlink) 3984 return -EPERM; 3985 3986 error = security_inode_symlink(dir, dentry, oldname); 3987 if (error) 3988 return error; 3989 3990 error = dir->i_op->symlink(dir, dentry, oldname); 3991 if (!error) 3992 fsnotify_create(dir, dentry); 3993 return error; 3994 } 3995 EXPORT_SYMBOL(vfs_symlink); 3996 3997 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 3998 int, newdfd, const char __user *, newname) 3999 { 4000 int error; 4001 struct filename *from; 4002 struct dentry *dentry; 4003 struct path path; 4004 unsigned int lookup_flags = 0; 4005 4006 from = getname(oldname); 4007 if (IS_ERR(from)) 4008 return PTR_ERR(from); 4009 retry: 4010 dentry = user_path_create(newdfd, newname, &path, lookup_flags); 4011 error = PTR_ERR(dentry); 4012 if (IS_ERR(dentry)) 4013 goto out_putname; 4014 4015 error = security_path_symlink(&path, dentry, from->name); 4016 if (!error) 4017 error = vfs_symlink(path.dentry->d_inode, dentry, from->name); 4018 done_path_create(&path, dentry); 4019 if (retry_estale(error, lookup_flags)) { 4020 lookup_flags |= LOOKUP_REVAL; 4021 goto retry; 4022 } 4023 out_putname: 4024 putname(from); 4025 return error; 4026 } 4027 4028 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 4029 { 4030 return sys_symlinkat(oldname, AT_FDCWD, newname); 4031 } 4032 4033 /** 4034 * vfs_link - create a new link 4035 * @old_dentry: object to be linked 4036 * @dir: new parent 4037 * @new_dentry: where to create the new link 4038 * @delegated_inode: returns inode needing a delegation break 4039 * 4040 * The caller must hold dir->i_mutex 4041 * 4042 * If vfs_link discovers a delegation on the to-be-linked file in need 4043 * of breaking, it will return -EWOULDBLOCK and return a reference to the 4044 * inode in delegated_inode. The caller should then break the delegation 4045 * and retry. Because breaking a delegation may take a long time, the 4046 * caller should drop the i_mutex before doing so. 4047 * 4048 * Alternatively, a caller may pass NULL for delegated_inode. This may 4049 * be appropriate for callers that expect the underlying filesystem not 4050 * to be NFS exported. 4051 */ 4052 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode) 4053 { 4054 struct inode *inode = old_dentry->d_inode; 4055 unsigned max_links = dir->i_sb->s_max_links; 4056 int error; 4057 4058 if (!inode) 4059 return -ENOENT; 4060 4061 error = may_create(dir, new_dentry); 4062 if (error) 4063 return error; 4064 4065 if (dir->i_sb != inode->i_sb) 4066 return -EXDEV; 4067 4068 /* 4069 * A link to an append-only or immutable file cannot be created. 4070 */ 4071 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4072 return -EPERM; 4073 if (!dir->i_op->link) 4074 return -EPERM; 4075 if (S_ISDIR(inode->i_mode)) 4076 return -EPERM; 4077 4078 error = security_inode_link(old_dentry, dir, new_dentry); 4079 if (error) 4080 return error; 4081 4082 inode_lock(inode); 4083 /* Make sure we don't allow creating hardlink to an unlinked file */ 4084 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 4085 error = -ENOENT; 4086 else if (max_links && inode->i_nlink >= max_links) 4087 error = -EMLINK; 4088 else { 4089 error = try_break_deleg(inode, delegated_inode); 4090 if (!error) 4091 error = dir->i_op->link(old_dentry, dir, new_dentry); 4092 } 4093 4094 if (!error && (inode->i_state & I_LINKABLE)) { 4095 spin_lock(&inode->i_lock); 4096 inode->i_state &= ~I_LINKABLE; 4097 spin_unlock(&inode->i_lock); 4098 } 4099 inode_unlock(inode); 4100 if (!error) 4101 fsnotify_link(dir, inode, new_dentry); 4102 return error; 4103 } 4104 EXPORT_SYMBOL(vfs_link); 4105 4106 /* 4107 * Hardlinks are often used in delicate situations. We avoid 4108 * security-related surprises by not following symlinks on the 4109 * newname. --KAB 4110 * 4111 * We don't follow them on the oldname either to be compatible 4112 * with linux 2.0, and to avoid hard-linking to directories 4113 * and other special files. --ADM 4114 */ 4115 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 4116 int, newdfd, const char __user *, newname, int, flags) 4117 { 4118 struct dentry *new_dentry; 4119 struct path old_path, new_path; 4120 struct inode *delegated_inode = NULL; 4121 int how = 0; 4122 int error; 4123 4124 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 4125 return -EINVAL; 4126 /* 4127 * To use null names we require CAP_DAC_READ_SEARCH 4128 * This ensures that not everyone will be able to create 4129 * handlink using the passed filedescriptor. 4130 */ 4131 if (flags & AT_EMPTY_PATH) { 4132 if (!capable(CAP_DAC_READ_SEARCH)) 4133 return -ENOENT; 4134 how = LOOKUP_EMPTY; 4135 } 4136 4137 if (flags & AT_SYMLINK_FOLLOW) 4138 how |= LOOKUP_FOLLOW; 4139 retry: 4140 error = user_path_at(olddfd, oldname, how, &old_path); 4141 if (error) 4142 return error; 4143 4144 new_dentry = user_path_create(newdfd, newname, &new_path, 4145 (how & LOOKUP_REVAL)); 4146 error = PTR_ERR(new_dentry); 4147 if (IS_ERR(new_dentry)) 4148 goto out; 4149 4150 error = -EXDEV; 4151 if (old_path.mnt != new_path.mnt) 4152 goto out_dput; 4153 error = may_linkat(&old_path); 4154 if (unlikely(error)) 4155 goto out_dput; 4156 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4157 if (error) 4158 goto out_dput; 4159 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode); 4160 out_dput: 4161 done_path_create(&new_path, new_dentry); 4162 if (delegated_inode) { 4163 error = break_deleg_wait(&delegated_inode); 4164 if (!error) { 4165 path_put(&old_path); 4166 goto retry; 4167 } 4168 } 4169 if (retry_estale(error, how)) { 4170 path_put(&old_path); 4171 how |= LOOKUP_REVAL; 4172 goto retry; 4173 } 4174 out: 4175 path_put(&old_path); 4176 4177 return error; 4178 } 4179 4180 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4181 { 4182 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4183 } 4184 4185 /** 4186 * vfs_rename - rename a filesystem object 4187 * @old_dir: parent of source 4188 * @old_dentry: source 4189 * @new_dir: parent of destination 4190 * @new_dentry: destination 4191 * @delegated_inode: returns an inode needing a delegation break 4192 * @flags: rename flags 4193 * 4194 * The caller must hold multiple mutexes--see lock_rename()). 4195 * 4196 * If vfs_rename discovers a delegation in need of breaking at either 4197 * the source or destination, it will return -EWOULDBLOCK and return a 4198 * reference to the inode in delegated_inode. The caller should then 4199 * break the delegation and retry. Because breaking a delegation may 4200 * take a long time, the caller should drop all locks before doing 4201 * so. 4202 * 4203 * Alternatively, a caller may pass NULL for delegated_inode. This may 4204 * be appropriate for callers that expect the underlying filesystem not 4205 * to be NFS exported. 4206 * 4207 * The worst of all namespace operations - renaming directory. "Perverted" 4208 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4209 * Problems: 4210 * a) we can get into loop creation. 4211 * b) race potential - two innocent renames can create a loop together. 4212 * That's where 4.4 screws up. Current fix: serialization on 4213 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4214 * story. 4215 * c) we have to lock _four_ objects - parents and victim (if it exists), 4216 * and source (if it is not a directory). 4217 * And that - after we got ->i_mutex on parents (until then we don't know 4218 * whether the target exists). Solution: try to be smart with locking 4219 * order for inodes. We rely on the fact that tree topology may change 4220 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4221 * move will be locked. Thus we can rank directories by the tree 4222 * (ancestors first) and rank all non-directories after them. 4223 * That works since everybody except rename does "lock parent, lookup, 4224 * lock child" and rename is under ->s_vfs_rename_mutex. 4225 * HOWEVER, it relies on the assumption that any object with ->lookup() 4226 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4227 * we'd better make sure that there's no link(2) for them. 4228 * d) conversion from fhandle to dentry may come in the wrong moment - when 4229 * we are removing the target. Solution: we will have to grab ->i_mutex 4230 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4231 * ->i_mutex on parents, which works but leads to some truly excessive 4232 * locking]. 4233 */ 4234 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 4235 struct inode *new_dir, struct dentry *new_dentry, 4236 struct inode **delegated_inode, unsigned int flags) 4237 { 4238 int error; 4239 bool is_dir = d_is_dir(old_dentry); 4240 const unsigned char *old_name; 4241 struct inode *source = old_dentry->d_inode; 4242 struct inode *target = new_dentry->d_inode; 4243 bool new_is_dir = false; 4244 unsigned max_links = new_dir->i_sb->s_max_links; 4245 4246 /* 4247 * Check source == target. 4248 * On overlayfs need to look at underlying inodes. 4249 */ 4250 if (vfs_select_inode(old_dentry, 0) == vfs_select_inode(new_dentry, 0)) 4251 return 0; 4252 4253 error = may_delete(old_dir, old_dentry, is_dir); 4254 if (error) 4255 return error; 4256 4257 if (!target) { 4258 error = may_create(new_dir, new_dentry); 4259 } else { 4260 new_is_dir = d_is_dir(new_dentry); 4261 4262 if (!(flags & RENAME_EXCHANGE)) 4263 error = may_delete(new_dir, new_dentry, is_dir); 4264 else 4265 error = may_delete(new_dir, new_dentry, new_is_dir); 4266 } 4267 if (error) 4268 return error; 4269 4270 if (!old_dir->i_op->rename && !old_dir->i_op->rename2) 4271 return -EPERM; 4272 4273 if (flags && !old_dir->i_op->rename2) 4274 return -EINVAL; 4275 4276 /* 4277 * If we are going to change the parent - check write permissions, 4278 * we'll need to flip '..'. 4279 */ 4280 if (new_dir != old_dir) { 4281 if (is_dir) { 4282 error = inode_permission(source, MAY_WRITE); 4283 if (error) 4284 return error; 4285 } 4286 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4287 error = inode_permission(target, MAY_WRITE); 4288 if (error) 4289 return error; 4290 } 4291 } 4292 4293 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 4294 flags); 4295 if (error) 4296 return error; 4297 4298 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 4299 dget(new_dentry); 4300 if (!is_dir || (flags & RENAME_EXCHANGE)) 4301 lock_two_nondirectories(source, target); 4302 else if (target) 4303 inode_lock(target); 4304 4305 error = -EBUSY; 4306 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 4307 goto out; 4308 4309 if (max_links && new_dir != old_dir) { 4310 error = -EMLINK; 4311 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 4312 goto out; 4313 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 4314 old_dir->i_nlink >= max_links) 4315 goto out; 4316 } 4317 if (is_dir && !(flags & RENAME_EXCHANGE) && target) 4318 shrink_dcache_parent(new_dentry); 4319 if (!is_dir) { 4320 error = try_break_deleg(source, delegated_inode); 4321 if (error) 4322 goto out; 4323 } 4324 if (target && !new_is_dir) { 4325 error = try_break_deleg(target, delegated_inode); 4326 if (error) 4327 goto out; 4328 } 4329 if (!old_dir->i_op->rename2) { 4330 error = old_dir->i_op->rename(old_dir, old_dentry, 4331 new_dir, new_dentry); 4332 } else { 4333 WARN_ON(old_dir->i_op->rename != NULL); 4334 error = old_dir->i_op->rename2(old_dir, old_dentry, 4335 new_dir, new_dentry, flags); 4336 } 4337 if (error) 4338 goto out; 4339 4340 if (!(flags & RENAME_EXCHANGE) && target) { 4341 if (is_dir) 4342 target->i_flags |= S_DEAD; 4343 dont_mount(new_dentry); 4344 detach_mounts(new_dentry); 4345 } 4346 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 4347 if (!(flags & RENAME_EXCHANGE)) 4348 d_move(old_dentry, new_dentry); 4349 else 4350 d_exchange(old_dentry, new_dentry); 4351 } 4352 out: 4353 if (!is_dir || (flags & RENAME_EXCHANGE)) 4354 unlock_two_nondirectories(source, target); 4355 else if (target) 4356 inode_unlock(target); 4357 dput(new_dentry); 4358 if (!error) { 4359 fsnotify_move(old_dir, new_dir, old_name, is_dir, 4360 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 4361 if (flags & RENAME_EXCHANGE) { 4362 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name, 4363 new_is_dir, NULL, new_dentry); 4364 } 4365 } 4366 fsnotify_oldname_free(old_name); 4367 4368 return error; 4369 } 4370 EXPORT_SYMBOL(vfs_rename); 4371 4372 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 4373 int, newdfd, const char __user *, newname, unsigned int, flags) 4374 { 4375 struct dentry *old_dentry, *new_dentry; 4376 struct dentry *trap; 4377 struct path old_path, new_path; 4378 struct qstr old_last, new_last; 4379 int old_type, new_type; 4380 struct inode *delegated_inode = NULL; 4381 struct filename *from; 4382 struct filename *to; 4383 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET; 4384 bool should_retry = false; 4385 int error; 4386 4387 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4388 return -EINVAL; 4389 4390 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 4391 (flags & RENAME_EXCHANGE)) 4392 return -EINVAL; 4393 4394 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD)) 4395 return -EPERM; 4396 4397 if (flags & RENAME_EXCHANGE) 4398 target_flags = 0; 4399 4400 retry: 4401 from = user_path_parent(olddfd, oldname, 4402 &old_path, &old_last, &old_type, lookup_flags); 4403 if (IS_ERR(from)) { 4404 error = PTR_ERR(from); 4405 goto exit; 4406 } 4407 4408 to = user_path_parent(newdfd, newname, 4409 &new_path, &new_last, &new_type, lookup_flags); 4410 if (IS_ERR(to)) { 4411 error = PTR_ERR(to); 4412 goto exit1; 4413 } 4414 4415 error = -EXDEV; 4416 if (old_path.mnt != new_path.mnt) 4417 goto exit2; 4418 4419 error = -EBUSY; 4420 if (old_type != LAST_NORM) 4421 goto exit2; 4422 4423 if (flags & RENAME_NOREPLACE) 4424 error = -EEXIST; 4425 if (new_type != LAST_NORM) 4426 goto exit2; 4427 4428 error = mnt_want_write(old_path.mnt); 4429 if (error) 4430 goto exit2; 4431 4432 retry_deleg: 4433 trap = lock_rename(new_path.dentry, old_path.dentry); 4434 4435 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags); 4436 error = PTR_ERR(old_dentry); 4437 if (IS_ERR(old_dentry)) 4438 goto exit3; 4439 /* source must exist */ 4440 error = -ENOENT; 4441 if (d_is_negative(old_dentry)) 4442 goto exit4; 4443 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags); 4444 error = PTR_ERR(new_dentry); 4445 if (IS_ERR(new_dentry)) 4446 goto exit4; 4447 error = -EEXIST; 4448 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 4449 goto exit5; 4450 if (flags & RENAME_EXCHANGE) { 4451 error = -ENOENT; 4452 if (d_is_negative(new_dentry)) 4453 goto exit5; 4454 4455 if (!d_is_dir(new_dentry)) { 4456 error = -ENOTDIR; 4457 if (new_last.name[new_last.len]) 4458 goto exit5; 4459 } 4460 } 4461 /* unless the source is a directory trailing slashes give -ENOTDIR */ 4462 if (!d_is_dir(old_dentry)) { 4463 error = -ENOTDIR; 4464 if (old_last.name[old_last.len]) 4465 goto exit5; 4466 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len]) 4467 goto exit5; 4468 } 4469 /* source should not be ancestor of target */ 4470 error = -EINVAL; 4471 if (old_dentry == trap) 4472 goto exit5; 4473 /* target should not be an ancestor of source */ 4474 if (!(flags & RENAME_EXCHANGE)) 4475 error = -ENOTEMPTY; 4476 if (new_dentry == trap) 4477 goto exit5; 4478 4479 error = security_path_rename(&old_path, old_dentry, 4480 &new_path, new_dentry, flags); 4481 if (error) 4482 goto exit5; 4483 error = vfs_rename(old_path.dentry->d_inode, old_dentry, 4484 new_path.dentry->d_inode, new_dentry, 4485 &delegated_inode, flags); 4486 exit5: 4487 dput(new_dentry); 4488 exit4: 4489 dput(old_dentry); 4490 exit3: 4491 unlock_rename(new_path.dentry, old_path.dentry); 4492 if (delegated_inode) { 4493 error = break_deleg_wait(&delegated_inode); 4494 if (!error) 4495 goto retry_deleg; 4496 } 4497 mnt_drop_write(old_path.mnt); 4498 exit2: 4499 if (retry_estale(error, lookup_flags)) 4500 should_retry = true; 4501 path_put(&new_path); 4502 putname(to); 4503 exit1: 4504 path_put(&old_path); 4505 putname(from); 4506 if (should_retry) { 4507 should_retry = false; 4508 lookup_flags |= LOOKUP_REVAL; 4509 goto retry; 4510 } 4511 exit: 4512 return error; 4513 } 4514 4515 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 4516 int, newdfd, const char __user *, newname) 4517 { 4518 return sys_renameat2(olddfd, oldname, newdfd, newname, 0); 4519 } 4520 4521 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 4522 { 4523 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4524 } 4525 4526 int vfs_whiteout(struct inode *dir, struct dentry *dentry) 4527 { 4528 int error = may_create(dir, dentry); 4529 if (error) 4530 return error; 4531 4532 if (!dir->i_op->mknod) 4533 return -EPERM; 4534 4535 return dir->i_op->mknod(dir, dentry, 4536 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 4537 } 4538 EXPORT_SYMBOL(vfs_whiteout); 4539 4540 int readlink_copy(char __user *buffer, int buflen, const char *link) 4541 { 4542 int len = PTR_ERR(link); 4543 if (IS_ERR(link)) 4544 goto out; 4545 4546 len = strlen(link); 4547 if (len > (unsigned) buflen) 4548 len = buflen; 4549 if (copy_to_user(buffer, link, len)) 4550 len = -EFAULT; 4551 out: 4552 return len; 4553 } 4554 EXPORT_SYMBOL(readlink_copy); 4555 4556 /* 4557 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 4558 * have ->get_link() not calling nd_jump_link(). Using (or not using) it 4559 * for any given inode is up to filesystem. 4560 */ 4561 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4562 { 4563 DEFINE_DELAYED_CALL(done); 4564 struct inode *inode = d_inode(dentry); 4565 const char *link = inode->i_link; 4566 int res; 4567 4568 if (!link) { 4569 link = inode->i_op->get_link(dentry, inode, &done); 4570 if (IS_ERR(link)) 4571 return PTR_ERR(link); 4572 } 4573 res = readlink_copy(buffer, buflen, link); 4574 do_delayed_call(&done); 4575 return res; 4576 } 4577 EXPORT_SYMBOL(generic_readlink); 4578 4579 /* get the link contents into pagecache */ 4580 const char *page_get_link(struct dentry *dentry, struct inode *inode, 4581 struct delayed_call *callback) 4582 { 4583 char *kaddr; 4584 struct page *page; 4585 struct address_space *mapping = inode->i_mapping; 4586 4587 if (!dentry) { 4588 page = find_get_page(mapping, 0); 4589 if (!page) 4590 return ERR_PTR(-ECHILD); 4591 if (!PageUptodate(page)) { 4592 put_page(page); 4593 return ERR_PTR(-ECHILD); 4594 } 4595 } else { 4596 page = read_mapping_page(mapping, 0, NULL); 4597 if (IS_ERR(page)) 4598 return (char*)page; 4599 } 4600 set_delayed_call(callback, page_put_link, page); 4601 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM); 4602 kaddr = page_address(page); 4603 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1); 4604 return kaddr; 4605 } 4606 4607 EXPORT_SYMBOL(page_get_link); 4608 4609 void page_put_link(void *arg) 4610 { 4611 put_page(arg); 4612 } 4613 EXPORT_SYMBOL(page_put_link); 4614 4615 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4616 { 4617 DEFINE_DELAYED_CALL(done); 4618 int res = readlink_copy(buffer, buflen, 4619 page_get_link(dentry, d_inode(dentry), 4620 &done)); 4621 do_delayed_call(&done); 4622 return res; 4623 } 4624 EXPORT_SYMBOL(page_readlink); 4625 4626 /* 4627 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 4628 */ 4629 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 4630 { 4631 struct address_space *mapping = inode->i_mapping; 4632 struct page *page; 4633 void *fsdata; 4634 int err; 4635 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE; 4636 if (nofs) 4637 flags |= AOP_FLAG_NOFS; 4638 4639 retry: 4640 err = pagecache_write_begin(NULL, mapping, 0, len-1, 4641 flags, &page, &fsdata); 4642 if (err) 4643 goto fail; 4644 4645 memcpy(page_address(page), symname, len-1); 4646 4647 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 4648 page, fsdata); 4649 if (err < 0) 4650 goto fail; 4651 if (err < len-1) 4652 goto retry; 4653 4654 mark_inode_dirty(inode); 4655 return 0; 4656 fail: 4657 return err; 4658 } 4659 EXPORT_SYMBOL(__page_symlink); 4660 4661 int page_symlink(struct inode *inode, const char *symname, int len) 4662 { 4663 return __page_symlink(inode, symname, len, 4664 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS)); 4665 } 4666 EXPORT_SYMBOL(page_symlink); 4667 4668 const struct inode_operations page_symlink_inode_operations = { 4669 .readlink = generic_readlink, 4670 .get_link = page_get_link, 4671 }; 4672 EXPORT_SYMBOL(page_symlink_inode_operations); 4673