xref: /linux/fs/namei.c (revision 505f6d22dbc63f333d1178dc80264e40b5c35268)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39 
40 #include "internal.h"
41 #include "mount.h"
42 
43 /* [Feb-1997 T. Schoebel-Theuer]
44  * Fundamental changes in the pathname lookup mechanisms (namei)
45  * were necessary because of omirr.  The reason is that omirr needs
46  * to know the _real_ pathname, not the user-supplied one, in case
47  * of symlinks (and also when transname replacements occur).
48  *
49  * The new code replaces the old recursive symlink resolution with
50  * an iterative one (in case of non-nested symlink chains).  It does
51  * this with calls to <fs>_follow_link().
52  * As a side effect, dir_namei(), _namei() and follow_link() are now
53  * replaced with a single function lookup_dentry() that can handle all
54  * the special cases of the former code.
55  *
56  * With the new dcache, the pathname is stored at each inode, at least as
57  * long as the refcount of the inode is positive.  As a side effect, the
58  * size of the dcache depends on the inode cache and thus is dynamic.
59  *
60  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61  * resolution to correspond with current state of the code.
62  *
63  * Note that the symlink resolution is not *completely* iterative.
64  * There is still a significant amount of tail- and mid- recursion in
65  * the algorithm.  Also, note that <fs>_readlink() is not used in
66  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67  * may return different results than <fs>_follow_link().  Many virtual
68  * filesystems (including /proc) exhibit this behavior.
69  */
70 
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73  * and the name already exists in form of a symlink, try to create the new
74  * name indicated by the symlink. The old code always complained that the
75  * name already exists, due to not following the symlink even if its target
76  * is nonexistent.  The new semantics affects also mknod() and link() when
77  * the name is a symlink pointing to a non-existent name.
78  *
79  * I don't know which semantics is the right one, since I have no access
80  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82  * "old" one. Personally, I think the new semantics is much more logical.
83  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84  * file does succeed in both HP-UX and SunOs, but not in Solaris
85  * and in the old Linux semantics.
86  */
87 
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89  * semantics.  See the comments in "open_namei" and "do_link" below.
90  *
91  * [10-Sep-98 Alan Modra] Another symlink change.
92  */
93 
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95  *	inside the path - always follow.
96  *	in the last component in creation/removal/renaming - never follow.
97  *	if LOOKUP_FOLLOW passed - follow.
98  *	if the pathname has trailing slashes - follow.
99  *	otherwise - don't follow.
100  * (applied in that order).
101  *
102  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104  * During the 2.4 we need to fix the userland stuff depending on it -
105  * hopefully we will be able to get rid of that wart in 2.5. So far only
106  * XEmacs seems to be relying on it...
107  */
108 /*
109  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
111  * any extra contention...
112  */
113 
114 /* In order to reduce some races, while at the same time doing additional
115  * checking and hopefully speeding things up, we copy filenames to the
116  * kernel data space before using them..
117  *
118  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119  * PATH_MAX includes the nul terminator --RR.
120  */
121 
122 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
123 
124 struct filename *
125 getname_flags(const char __user *filename, int flags, int *empty)
126 {
127 	struct filename *result;
128 	char *kname;
129 	int len;
130 
131 	result = audit_reusename(filename);
132 	if (result)
133 		return result;
134 
135 	result = __getname();
136 	if (unlikely(!result))
137 		return ERR_PTR(-ENOMEM);
138 
139 	/*
140 	 * First, try to embed the struct filename inside the names_cache
141 	 * allocation
142 	 */
143 	kname = (char *)result->iname;
144 	result->name = kname;
145 
146 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
147 	if (unlikely(len < 0)) {
148 		__putname(result);
149 		return ERR_PTR(len);
150 	}
151 
152 	/*
153 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
154 	 * separate struct filename so we can dedicate the entire
155 	 * names_cache allocation for the pathname, and re-do the copy from
156 	 * userland.
157 	 */
158 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
159 		const size_t size = offsetof(struct filename, iname[1]);
160 		kname = (char *)result;
161 
162 		/*
163 		 * size is chosen that way we to guarantee that
164 		 * result->iname[0] is within the same object and that
165 		 * kname can't be equal to result->iname, no matter what.
166 		 */
167 		result = kzalloc(size, GFP_KERNEL);
168 		if (unlikely(!result)) {
169 			__putname(kname);
170 			return ERR_PTR(-ENOMEM);
171 		}
172 		result->name = kname;
173 		len = strncpy_from_user(kname, filename, PATH_MAX);
174 		if (unlikely(len < 0)) {
175 			__putname(kname);
176 			kfree(result);
177 			return ERR_PTR(len);
178 		}
179 		if (unlikely(len == PATH_MAX)) {
180 			__putname(kname);
181 			kfree(result);
182 			return ERR_PTR(-ENAMETOOLONG);
183 		}
184 	}
185 
186 	result->refcnt = 1;
187 	/* The empty path is special. */
188 	if (unlikely(!len)) {
189 		if (empty)
190 			*empty = 1;
191 		if (!(flags & LOOKUP_EMPTY)) {
192 			putname(result);
193 			return ERR_PTR(-ENOENT);
194 		}
195 	}
196 
197 	result->uptr = filename;
198 	result->aname = NULL;
199 	audit_getname(result);
200 	return result;
201 }
202 
203 struct filename *
204 getname(const char __user * filename)
205 {
206 	return getname_flags(filename, 0, NULL);
207 }
208 
209 struct filename *
210 getname_kernel(const char * filename)
211 {
212 	struct filename *result;
213 	int len = strlen(filename) + 1;
214 
215 	result = __getname();
216 	if (unlikely(!result))
217 		return ERR_PTR(-ENOMEM);
218 
219 	if (len <= EMBEDDED_NAME_MAX) {
220 		result->name = (char *)result->iname;
221 	} else if (len <= PATH_MAX) {
222 		struct filename *tmp;
223 
224 		tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
225 		if (unlikely(!tmp)) {
226 			__putname(result);
227 			return ERR_PTR(-ENOMEM);
228 		}
229 		tmp->name = (char *)result;
230 		result = tmp;
231 	} else {
232 		__putname(result);
233 		return ERR_PTR(-ENAMETOOLONG);
234 	}
235 	memcpy((char *)result->name, filename, len);
236 	result->uptr = NULL;
237 	result->aname = NULL;
238 	result->refcnt = 1;
239 	audit_getname(result);
240 
241 	return result;
242 }
243 
244 void putname(struct filename *name)
245 {
246 	BUG_ON(name->refcnt <= 0);
247 
248 	if (--name->refcnt > 0)
249 		return;
250 
251 	if (name->name != name->iname) {
252 		__putname(name->name);
253 		kfree(name);
254 	} else
255 		__putname(name);
256 }
257 
258 static int check_acl(struct inode *inode, int mask)
259 {
260 #ifdef CONFIG_FS_POSIX_ACL
261 	struct posix_acl *acl;
262 
263 	if (mask & MAY_NOT_BLOCK) {
264 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
265 	        if (!acl)
266 	                return -EAGAIN;
267 		/* no ->get_acl() calls in RCU mode... */
268 		if (acl == ACL_NOT_CACHED)
269 			return -ECHILD;
270 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
271 	}
272 
273 	acl = get_acl(inode, ACL_TYPE_ACCESS);
274 	if (IS_ERR(acl))
275 		return PTR_ERR(acl);
276 	if (acl) {
277 	        int error = posix_acl_permission(inode, acl, mask);
278 	        posix_acl_release(acl);
279 	        return error;
280 	}
281 #endif
282 
283 	return -EAGAIN;
284 }
285 
286 /*
287  * This does the basic permission checking
288  */
289 static int acl_permission_check(struct inode *inode, int mask)
290 {
291 	unsigned int mode = inode->i_mode;
292 
293 	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
294 		mode >>= 6;
295 	else {
296 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
297 			int error = check_acl(inode, mask);
298 			if (error != -EAGAIN)
299 				return error;
300 		}
301 
302 		if (in_group_p(inode->i_gid))
303 			mode >>= 3;
304 	}
305 
306 	/*
307 	 * If the DACs are ok we don't need any capability check.
308 	 */
309 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
310 		return 0;
311 	return -EACCES;
312 }
313 
314 /**
315  * generic_permission -  check for access rights on a Posix-like filesystem
316  * @inode:	inode to check access rights for
317  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
318  *
319  * Used to check for read/write/execute permissions on a file.
320  * We use "fsuid" for this, letting us set arbitrary permissions
321  * for filesystem access without changing the "normal" uids which
322  * are used for other things.
323  *
324  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
325  * request cannot be satisfied (eg. requires blocking or too much complexity).
326  * It would then be called again in ref-walk mode.
327  */
328 int generic_permission(struct inode *inode, int mask)
329 {
330 	int ret;
331 
332 	/*
333 	 * Do the basic permission checks.
334 	 */
335 	ret = acl_permission_check(inode, mask);
336 	if (ret != -EACCES)
337 		return ret;
338 
339 	if (S_ISDIR(inode->i_mode)) {
340 		/* DACs are overridable for directories */
341 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
342 			return 0;
343 		if (!(mask & MAY_WRITE))
344 			if (capable_wrt_inode_uidgid(inode,
345 						     CAP_DAC_READ_SEARCH))
346 				return 0;
347 		return -EACCES;
348 	}
349 	/*
350 	 * Read/write DACs are always overridable.
351 	 * Executable DACs are overridable when there is
352 	 * at least one exec bit set.
353 	 */
354 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
355 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
356 			return 0;
357 
358 	/*
359 	 * Searching includes executable on directories, else just read.
360 	 */
361 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
362 	if (mask == MAY_READ)
363 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
364 			return 0;
365 
366 	return -EACCES;
367 }
368 EXPORT_SYMBOL(generic_permission);
369 
370 /*
371  * We _really_ want to just do "generic_permission()" without
372  * even looking at the inode->i_op values. So we keep a cache
373  * flag in inode->i_opflags, that says "this has not special
374  * permission function, use the fast case".
375  */
376 static inline int do_inode_permission(struct inode *inode, int mask)
377 {
378 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
379 		if (likely(inode->i_op->permission))
380 			return inode->i_op->permission(inode, mask);
381 
382 		/* This gets set once for the inode lifetime */
383 		spin_lock(&inode->i_lock);
384 		inode->i_opflags |= IOP_FASTPERM;
385 		spin_unlock(&inode->i_lock);
386 	}
387 	return generic_permission(inode, mask);
388 }
389 
390 /**
391  * __inode_permission - Check for access rights to a given inode
392  * @inode: Inode to check permission on
393  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
394  *
395  * Check for read/write/execute permissions on an inode.
396  *
397  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
398  *
399  * This does not check for a read-only file system.  You probably want
400  * inode_permission().
401  */
402 int __inode_permission(struct inode *inode, int mask)
403 {
404 	int retval;
405 
406 	if (unlikely(mask & MAY_WRITE)) {
407 		/*
408 		 * Nobody gets write access to an immutable file.
409 		 */
410 		if (IS_IMMUTABLE(inode))
411 			return -EACCES;
412 	}
413 
414 	retval = do_inode_permission(inode, mask);
415 	if (retval)
416 		return retval;
417 
418 	retval = devcgroup_inode_permission(inode, mask);
419 	if (retval)
420 		return retval;
421 
422 	return security_inode_permission(inode, mask);
423 }
424 EXPORT_SYMBOL(__inode_permission);
425 
426 /**
427  * sb_permission - Check superblock-level permissions
428  * @sb: Superblock of inode to check permission on
429  * @inode: Inode to check permission on
430  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431  *
432  * Separate out file-system wide checks from inode-specific permission checks.
433  */
434 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
435 {
436 	if (unlikely(mask & MAY_WRITE)) {
437 		umode_t mode = inode->i_mode;
438 
439 		/* Nobody gets write access to a read-only fs. */
440 		if ((sb->s_flags & MS_RDONLY) &&
441 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
442 			return -EROFS;
443 	}
444 	return 0;
445 }
446 
447 /**
448  * inode_permission - Check for access rights to a given inode
449  * @inode: Inode to check permission on
450  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
451  *
452  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
453  * this, letting us set arbitrary permissions for filesystem access without
454  * changing the "normal" UIDs which are used for other things.
455  *
456  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
457  */
458 int inode_permission(struct inode *inode, int mask)
459 {
460 	int retval;
461 
462 	retval = sb_permission(inode->i_sb, inode, mask);
463 	if (retval)
464 		return retval;
465 	return __inode_permission(inode, mask);
466 }
467 EXPORT_SYMBOL(inode_permission);
468 
469 /**
470  * path_get - get a reference to a path
471  * @path: path to get the reference to
472  *
473  * Given a path increment the reference count to the dentry and the vfsmount.
474  */
475 void path_get(const struct path *path)
476 {
477 	mntget(path->mnt);
478 	dget(path->dentry);
479 }
480 EXPORT_SYMBOL(path_get);
481 
482 /**
483  * path_put - put a reference to a path
484  * @path: path to put the reference to
485  *
486  * Given a path decrement the reference count to the dentry and the vfsmount.
487  */
488 void path_put(const struct path *path)
489 {
490 	dput(path->dentry);
491 	mntput(path->mnt);
492 }
493 EXPORT_SYMBOL(path_put);
494 
495 #define EMBEDDED_LEVELS 2
496 struct nameidata {
497 	struct path	path;
498 	struct qstr	last;
499 	struct path	root;
500 	struct inode	*inode; /* path.dentry.d_inode */
501 	unsigned int	flags;
502 	unsigned	seq, m_seq;
503 	int		last_type;
504 	unsigned	depth;
505 	int		total_link_count;
506 	struct saved {
507 		struct path link;
508 		struct delayed_call done;
509 		const char *name;
510 		unsigned seq;
511 	} *stack, internal[EMBEDDED_LEVELS];
512 	struct filename	*name;
513 	struct nameidata *saved;
514 	struct inode	*link_inode;
515 	unsigned	root_seq;
516 	int		dfd;
517 };
518 
519 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
520 {
521 	struct nameidata *old = current->nameidata;
522 	p->stack = p->internal;
523 	p->dfd = dfd;
524 	p->name = name;
525 	p->total_link_count = old ? old->total_link_count : 0;
526 	p->saved = old;
527 	current->nameidata = p;
528 }
529 
530 static void restore_nameidata(void)
531 {
532 	struct nameidata *now = current->nameidata, *old = now->saved;
533 
534 	current->nameidata = old;
535 	if (old)
536 		old->total_link_count = now->total_link_count;
537 	if (now->stack != now->internal)
538 		kfree(now->stack);
539 }
540 
541 static int __nd_alloc_stack(struct nameidata *nd)
542 {
543 	struct saved *p;
544 
545 	if (nd->flags & LOOKUP_RCU) {
546 		p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
547 				  GFP_ATOMIC);
548 		if (unlikely(!p))
549 			return -ECHILD;
550 	} else {
551 		p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
552 				  GFP_KERNEL);
553 		if (unlikely(!p))
554 			return -ENOMEM;
555 	}
556 	memcpy(p, nd->internal, sizeof(nd->internal));
557 	nd->stack = p;
558 	return 0;
559 }
560 
561 /**
562  * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
563  * @path: nameidate to verify
564  *
565  * Rename can sometimes move a file or directory outside of a bind
566  * mount, path_connected allows those cases to be detected.
567  */
568 static bool path_connected(const struct path *path)
569 {
570 	struct vfsmount *mnt = path->mnt;
571 
572 	/* Only bind mounts can have disconnected paths */
573 	if (mnt->mnt_root == mnt->mnt_sb->s_root)
574 		return true;
575 
576 	return is_subdir(path->dentry, mnt->mnt_root);
577 }
578 
579 static inline int nd_alloc_stack(struct nameidata *nd)
580 {
581 	if (likely(nd->depth != EMBEDDED_LEVELS))
582 		return 0;
583 	if (likely(nd->stack != nd->internal))
584 		return 0;
585 	return __nd_alloc_stack(nd);
586 }
587 
588 static void drop_links(struct nameidata *nd)
589 {
590 	int i = nd->depth;
591 	while (i--) {
592 		struct saved *last = nd->stack + i;
593 		do_delayed_call(&last->done);
594 		clear_delayed_call(&last->done);
595 	}
596 }
597 
598 static void terminate_walk(struct nameidata *nd)
599 {
600 	drop_links(nd);
601 	if (!(nd->flags & LOOKUP_RCU)) {
602 		int i;
603 		path_put(&nd->path);
604 		for (i = 0; i < nd->depth; i++)
605 			path_put(&nd->stack[i].link);
606 		if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
607 			path_put(&nd->root);
608 			nd->root.mnt = NULL;
609 		}
610 	} else {
611 		nd->flags &= ~LOOKUP_RCU;
612 		if (!(nd->flags & LOOKUP_ROOT))
613 			nd->root.mnt = NULL;
614 		rcu_read_unlock();
615 	}
616 	nd->depth = 0;
617 }
618 
619 /* path_put is needed afterwards regardless of success or failure */
620 static bool legitimize_path(struct nameidata *nd,
621 			    struct path *path, unsigned seq)
622 {
623 	int res = __legitimize_mnt(path->mnt, nd->m_seq);
624 	if (unlikely(res)) {
625 		if (res > 0)
626 			path->mnt = NULL;
627 		path->dentry = NULL;
628 		return false;
629 	}
630 	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
631 		path->dentry = NULL;
632 		return false;
633 	}
634 	return !read_seqcount_retry(&path->dentry->d_seq, seq);
635 }
636 
637 static bool legitimize_links(struct nameidata *nd)
638 {
639 	int i;
640 	for (i = 0; i < nd->depth; i++) {
641 		struct saved *last = nd->stack + i;
642 		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
643 			drop_links(nd);
644 			nd->depth = i + 1;
645 			return false;
646 		}
647 	}
648 	return true;
649 }
650 
651 /*
652  * Path walking has 2 modes, rcu-walk and ref-walk (see
653  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
654  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
655  * normal reference counts on dentries and vfsmounts to transition to ref-walk
656  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
657  * got stuck, so ref-walk may continue from there. If this is not successful
658  * (eg. a seqcount has changed), then failure is returned and it's up to caller
659  * to restart the path walk from the beginning in ref-walk mode.
660  */
661 
662 /**
663  * unlazy_walk - try to switch to ref-walk mode.
664  * @nd: nameidata pathwalk data
665  * @dentry: child of nd->path.dentry or NULL
666  * @seq: seq number to check dentry against
667  * Returns: 0 on success, -ECHILD on failure
668  *
669  * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
670  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
671  * @nd or NULL.  Must be called from rcu-walk context.
672  * Nothing should touch nameidata between unlazy_walk() failure and
673  * terminate_walk().
674  */
675 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq)
676 {
677 	struct dentry *parent = nd->path.dentry;
678 
679 	BUG_ON(!(nd->flags & LOOKUP_RCU));
680 
681 	nd->flags &= ~LOOKUP_RCU;
682 	if (unlikely(!legitimize_links(nd)))
683 		goto out2;
684 	if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
685 		goto out2;
686 	if (unlikely(!lockref_get_not_dead(&parent->d_lockref)))
687 		goto out1;
688 
689 	/*
690 	 * For a negative lookup, the lookup sequence point is the parents
691 	 * sequence point, and it only needs to revalidate the parent dentry.
692 	 *
693 	 * For a positive lookup, we need to move both the parent and the
694 	 * dentry from the RCU domain to be properly refcounted. And the
695 	 * sequence number in the dentry validates *both* dentry counters,
696 	 * since we checked the sequence number of the parent after we got
697 	 * the child sequence number. So we know the parent must still
698 	 * be valid if the child sequence number is still valid.
699 	 */
700 	if (!dentry) {
701 		if (read_seqcount_retry(&parent->d_seq, nd->seq))
702 			goto out;
703 		BUG_ON(nd->inode != parent->d_inode);
704 	} else {
705 		if (!lockref_get_not_dead(&dentry->d_lockref))
706 			goto out;
707 		if (read_seqcount_retry(&dentry->d_seq, seq))
708 			goto drop_dentry;
709 	}
710 
711 	/*
712 	 * Sequence counts matched. Now make sure that the root is
713 	 * still valid and get it if required.
714 	 */
715 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
716 		if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
717 			rcu_read_unlock();
718 			dput(dentry);
719 			return -ECHILD;
720 		}
721 	}
722 
723 	rcu_read_unlock();
724 	return 0;
725 
726 drop_dentry:
727 	rcu_read_unlock();
728 	dput(dentry);
729 	goto drop_root_mnt;
730 out2:
731 	nd->path.mnt = NULL;
732 out1:
733 	nd->path.dentry = NULL;
734 out:
735 	rcu_read_unlock();
736 drop_root_mnt:
737 	if (!(nd->flags & LOOKUP_ROOT))
738 		nd->root.mnt = NULL;
739 	return -ECHILD;
740 }
741 
742 static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq)
743 {
744 	if (unlikely(!legitimize_path(nd, link, seq))) {
745 		drop_links(nd);
746 		nd->depth = 0;
747 		nd->flags &= ~LOOKUP_RCU;
748 		nd->path.mnt = NULL;
749 		nd->path.dentry = NULL;
750 		if (!(nd->flags & LOOKUP_ROOT))
751 			nd->root.mnt = NULL;
752 		rcu_read_unlock();
753 	} else if (likely(unlazy_walk(nd, NULL, 0)) == 0) {
754 		return 0;
755 	}
756 	path_put(link);
757 	return -ECHILD;
758 }
759 
760 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
761 {
762 	return dentry->d_op->d_revalidate(dentry, flags);
763 }
764 
765 /**
766  * complete_walk - successful completion of path walk
767  * @nd:  pointer nameidata
768  *
769  * If we had been in RCU mode, drop out of it and legitimize nd->path.
770  * Revalidate the final result, unless we'd already done that during
771  * the path walk or the filesystem doesn't ask for it.  Return 0 on
772  * success, -error on failure.  In case of failure caller does not
773  * need to drop nd->path.
774  */
775 static int complete_walk(struct nameidata *nd)
776 {
777 	struct dentry *dentry = nd->path.dentry;
778 	int status;
779 
780 	if (nd->flags & LOOKUP_RCU) {
781 		if (!(nd->flags & LOOKUP_ROOT))
782 			nd->root.mnt = NULL;
783 		if (unlikely(unlazy_walk(nd, NULL, 0)))
784 			return -ECHILD;
785 	}
786 
787 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
788 		return 0;
789 
790 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
791 		return 0;
792 
793 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
794 	if (status > 0)
795 		return 0;
796 
797 	if (!status)
798 		status = -ESTALE;
799 
800 	return status;
801 }
802 
803 static void set_root(struct nameidata *nd)
804 {
805 	struct fs_struct *fs = current->fs;
806 
807 	if (nd->flags & LOOKUP_RCU) {
808 		unsigned seq;
809 
810 		do {
811 			seq = read_seqcount_begin(&fs->seq);
812 			nd->root = fs->root;
813 			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
814 		} while (read_seqcount_retry(&fs->seq, seq));
815 	} else {
816 		get_fs_root(fs, &nd->root);
817 	}
818 }
819 
820 static void path_put_conditional(struct path *path, struct nameidata *nd)
821 {
822 	dput(path->dentry);
823 	if (path->mnt != nd->path.mnt)
824 		mntput(path->mnt);
825 }
826 
827 static inline void path_to_nameidata(const struct path *path,
828 					struct nameidata *nd)
829 {
830 	if (!(nd->flags & LOOKUP_RCU)) {
831 		dput(nd->path.dentry);
832 		if (nd->path.mnt != path->mnt)
833 			mntput(nd->path.mnt);
834 	}
835 	nd->path.mnt = path->mnt;
836 	nd->path.dentry = path->dentry;
837 }
838 
839 static int nd_jump_root(struct nameidata *nd)
840 {
841 	if (nd->flags & LOOKUP_RCU) {
842 		struct dentry *d;
843 		nd->path = nd->root;
844 		d = nd->path.dentry;
845 		nd->inode = d->d_inode;
846 		nd->seq = nd->root_seq;
847 		if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
848 			return -ECHILD;
849 	} else {
850 		path_put(&nd->path);
851 		nd->path = nd->root;
852 		path_get(&nd->path);
853 		nd->inode = nd->path.dentry->d_inode;
854 	}
855 	nd->flags |= LOOKUP_JUMPED;
856 	return 0;
857 }
858 
859 /*
860  * Helper to directly jump to a known parsed path from ->get_link,
861  * caller must have taken a reference to path beforehand.
862  */
863 void nd_jump_link(struct path *path)
864 {
865 	struct nameidata *nd = current->nameidata;
866 	path_put(&nd->path);
867 
868 	nd->path = *path;
869 	nd->inode = nd->path.dentry->d_inode;
870 	nd->flags |= LOOKUP_JUMPED;
871 }
872 
873 static inline void put_link(struct nameidata *nd)
874 {
875 	struct saved *last = nd->stack + --nd->depth;
876 	do_delayed_call(&last->done);
877 	if (!(nd->flags & LOOKUP_RCU))
878 		path_put(&last->link);
879 }
880 
881 int sysctl_protected_symlinks __read_mostly = 0;
882 int sysctl_protected_hardlinks __read_mostly = 0;
883 
884 /**
885  * may_follow_link - Check symlink following for unsafe situations
886  * @nd: nameidata pathwalk data
887  *
888  * In the case of the sysctl_protected_symlinks sysctl being enabled,
889  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
890  * in a sticky world-writable directory. This is to protect privileged
891  * processes from failing races against path names that may change out
892  * from under them by way of other users creating malicious symlinks.
893  * It will permit symlinks to be followed only when outside a sticky
894  * world-writable directory, or when the uid of the symlink and follower
895  * match, or when the directory owner matches the symlink's owner.
896  *
897  * Returns 0 if following the symlink is allowed, -ve on error.
898  */
899 static inline int may_follow_link(struct nameidata *nd)
900 {
901 	const struct inode *inode;
902 	const struct inode *parent;
903 
904 	if (!sysctl_protected_symlinks)
905 		return 0;
906 
907 	/* Allowed if owner and follower match. */
908 	inode = nd->link_inode;
909 	if (uid_eq(current_cred()->fsuid, inode->i_uid))
910 		return 0;
911 
912 	/* Allowed if parent directory not sticky and world-writable. */
913 	parent = nd->inode;
914 	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
915 		return 0;
916 
917 	/* Allowed if parent directory and link owner match. */
918 	if (uid_eq(parent->i_uid, inode->i_uid))
919 		return 0;
920 
921 	if (nd->flags & LOOKUP_RCU)
922 		return -ECHILD;
923 
924 	audit_log_link_denied("follow_link", &nd->stack[0].link);
925 	return -EACCES;
926 }
927 
928 /**
929  * safe_hardlink_source - Check for safe hardlink conditions
930  * @inode: the source inode to hardlink from
931  *
932  * Return false if at least one of the following conditions:
933  *    - inode is not a regular file
934  *    - inode is setuid
935  *    - inode is setgid and group-exec
936  *    - access failure for read and write
937  *
938  * Otherwise returns true.
939  */
940 static bool safe_hardlink_source(struct inode *inode)
941 {
942 	umode_t mode = inode->i_mode;
943 
944 	/* Special files should not get pinned to the filesystem. */
945 	if (!S_ISREG(mode))
946 		return false;
947 
948 	/* Setuid files should not get pinned to the filesystem. */
949 	if (mode & S_ISUID)
950 		return false;
951 
952 	/* Executable setgid files should not get pinned to the filesystem. */
953 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
954 		return false;
955 
956 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
957 	if (inode_permission(inode, MAY_READ | MAY_WRITE))
958 		return false;
959 
960 	return true;
961 }
962 
963 /**
964  * may_linkat - Check permissions for creating a hardlink
965  * @link: the source to hardlink from
966  *
967  * Block hardlink when all of:
968  *  - sysctl_protected_hardlinks enabled
969  *  - fsuid does not match inode
970  *  - hardlink source is unsafe (see safe_hardlink_source() above)
971  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
972  *
973  * Returns 0 if successful, -ve on error.
974  */
975 static int may_linkat(struct path *link)
976 {
977 	struct inode *inode;
978 
979 	if (!sysctl_protected_hardlinks)
980 		return 0;
981 
982 	inode = link->dentry->d_inode;
983 
984 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
985 	 * otherwise, it must be a safe source.
986 	 */
987 	if (inode_owner_or_capable(inode) || safe_hardlink_source(inode))
988 		return 0;
989 
990 	audit_log_link_denied("linkat", link);
991 	return -EPERM;
992 }
993 
994 static __always_inline
995 const char *get_link(struct nameidata *nd)
996 {
997 	struct saved *last = nd->stack + nd->depth - 1;
998 	struct dentry *dentry = last->link.dentry;
999 	struct inode *inode = nd->link_inode;
1000 	int error;
1001 	const char *res;
1002 
1003 	if (!(nd->flags & LOOKUP_RCU)) {
1004 		touch_atime(&last->link);
1005 		cond_resched();
1006 	} else if (atime_needs_update(&last->link, inode)) {
1007 		if (unlikely(unlazy_walk(nd, NULL, 0)))
1008 			return ERR_PTR(-ECHILD);
1009 		touch_atime(&last->link);
1010 	}
1011 
1012 	error = security_inode_follow_link(dentry, inode,
1013 					   nd->flags & LOOKUP_RCU);
1014 	if (unlikely(error))
1015 		return ERR_PTR(error);
1016 
1017 	nd->last_type = LAST_BIND;
1018 	res = inode->i_link;
1019 	if (!res) {
1020 		const char * (*get)(struct dentry *, struct inode *,
1021 				struct delayed_call *);
1022 		get = inode->i_op->get_link;
1023 		if (nd->flags & LOOKUP_RCU) {
1024 			res = get(NULL, inode, &last->done);
1025 			if (res == ERR_PTR(-ECHILD)) {
1026 				if (unlikely(unlazy_walk(nd, NULL, 0)))
1027 					return ERR_PTR(-ECHILD);
1028 				res = get(dentry, inode, &last->done);
1029 			}
1030 		} else {
1031 			res = get(dentry, inode, &last->done);
1032 		}
1033 		if (IS_ERR_OR_NULL(res))
1034 			return res;
1035 	}
1036 	if (*res == '/') {
1037 		if (!nd->root.mnt)
1038 			set_root(nd);
1039 		if (unlikely(nd_jump_root(nd)))
1040 			return ERR_PTR(-ECHILD);
1041 		while (unlikely(*++res == '/'))
1042 			;
1043 	}
1044 	if (!*res)
1045 		res = NULL;
1046 	return res;
1047 }
1048 
1049 /*
1050  * follow_up - Find the mountpoint of path's vfsmount
1051  *
1052  * Given a path, find the mountpoint of its source file system.
1053  * Replace @path with the path of the mountpoint in the parent mount.
1054  * Up is towards /.
1055  *
1056  * Return 1 if we went up a level and 0 if we were already at the
1057  * root.
1058  */
1059 int follow_up(struct path *path)
1060 {
1061 	struct mount *mnt = real_mount(path->mnt);
1062 	struct mount *parent;
1063 	struct dentry *mountpoint;
1064 
1065 	read_seqlock_excl(&mount_lock);
1066 	parent = mnt->mnt_parent;
1067 	if (parent == mnt) {
1068 		read_sequnlock_excl(&mount_lock);
1069 		return 0;
1070 	}
1071 	mntget(&parent->mnt);
1072 	mountpoint = dget(mnt->mnt_mountpoint);
1073 	read_sequnlock_excl(&mount_lock);
1074 	dput(path->dentry);
1075 	path->dentry = mountpoint;
1076 	mntput(path->mnt);
1077 	path->mnt = &parent->mnt;
1078 	return 1;
1079 }
1080 EXPORT_SYMBOL(follow_up);
1081 
1082 /*
1083  * Perform an automount
1084  * - return -EISDIR to tell follow_managed() to stop and return the path we
1085  *   were called with.
1086  */
1087 static int follow_automount(struct path *path, struct nameidata *nd,
1088 			    bool *need_mntput)
1089 {
1090 	struct vfsmount *mnt;
1091 	int err;
1092 
1093 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1094 		return -EREMOTE;
1095 
1096 	/* We don't want to mount if someone's just doing a stat -
1097 	 * unless they're stat'ing a directory and appended a '/' to
1098 	 * the name.
1099 	 *
1100 	 * We do, however, want to mount if someone wants to open or
1101 	 * create a file of any type under the mountpoint, wants to
1102 	 * traverse through the mountpoint or wants to open the
1103 	 * mounted directory.  Also, autofs may mark negative dentries
1104 	 * as being automount points.  These will need the attentions
1105 	 * of the daemon to instantiate them before they can be used.
1106 	 */
1107 	if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1108 			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1109 	    path->dentry->d_inode)
1110 		return -EISDIR;
1111 
1112 	nd->total_link_count++;
1113 	if (nd->total_link_count >= 40)
1114 		return -ELOOP;
1115 
1116 	mnt = path->dentry->d_op->d_automount(path);
1117 	if (IS_ERR(mnt)) {
1118 		/*
1119 		 * The filesystem is allowed to return -EISDIR here to indicate
1120 		 * it doesn't want to automount.  For instance, autofs would do
1121 		 * this so that its userspace daemon can mount on this dentry.
1122 		 *
1123 		 * However, we can only permit this if it's a terminal point in
1124 		 * the path being looked up; if it wasn't then the remainder of
1125 		 * the path is inaccessible and we should say so.
1126 		 */
1127 		if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1128 			return -EREMOTE;
1129 		return PTR_ERR(mnt);
1130 	}
1131 
1132 	if (!mnt) /* mount collision */
1133 		return 0;
1134 
1135 	if (!*need_mntput) {
1136 		/* lock_mount() may release path->mnt on error */
1137 		mntget(path->mnt);
1138 		*need_mntput = true;
1139 	}
1140 	err = finish_automount(mnt, path);
1141 
1142 	switch (err) {
1143 	case -EBUSY:
1144 		/* Someone else made a mount here whilst we were busy */
1145 		return 0;
1146 	case 0:
1147 		path_put(path);
1148 		path->mnt = mnt;
1149 		path->dentry = dget(mnt->mnt_root);
1150 		return 0;
1151 	default:
1152 		return err;
1153 	}
1154 
1155 }
1156 
1157 /*
1158  * Handle a dentry that is managed in some way.
1159  * - Flagged for transit management (autofs)
1160  * - Flagged as mountpoint
1161  * - Flagged as automount point
1162  *
1163  * This may only be called in refwalk mode.
1164  *
1165  * Serialization is taken care of in namespace.c
1166  */
1167 static int follow_managed(struct path *path, struct nameidata *nd)
1168 {
1169 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1170 	unsigned managed;
1171 	bool need_mntput = false;
1172 	int ret = 0;
1173 
1174 	/* Given that we're not holding a lock here, we retain the value in a
1175 	 * local variable for each dentry as we look at it so that we don't see
1176 	 * the components of that value change under us */
1177 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1178 	       managed &= DCACHE_MANAGED_DENTRY,
1179 	       unlikely(managed != 0)) {
1180 		/* Allow the filesystem to manage the transit without i_mutex
1181 		 * being held. */
1182 		if (managed & DCACHE_MANAGE_TRANSIT) {
1183 			BUG_ON(!path->dentry->d_op);
1184 			BUG_ON(!path->dentry->d_op->d_manage);
1185 			ret = path->dentry->d_op->d_manage(path->dentry, false);
1186 			if (ret < 0)
1187 				break;
1188 		}
1189 
1190 		/* Transit to a mounted filesystem. */
1191 		if (managed & DCACHE_MOUNTED) {
1192 			struct vfsmount *mounted = lookup_mnt(path);
1193 			if (mounted) {
1194 				dput(path->dentry);
1195 				if (need_mntput)
1196 					mntput(path->mnt);
1197 				path->mnt = mounted;
1198 				path->dentry = dget(mounted->mnt_root);
1199 				need_mntput = true;
1200 				continue;
1201 			}
1202 
1203 			/* Something is mounted on this dentry in another
1204 			 * namespace and/or whatever was mounted there in this
1205 			 * namespace got unmounted before lookup_mnt() could
1206 			 * get it */
1207 		}
1208 
1209 		/* Handle an automount point */
1210 		if (managed & DCACHE_NEED_AUTOMOUNT) {
1211 			ret = follow_automount(path, nd, &need_mntput);
1212 			if (ret < 0)
1213 				break;
1214 			continue;
1215 		}
1216 
1217 		/* We didn't change the current path point */
1218 		break;
1219 	}
1220 
1221 	if (need_mntput && path->mnt == mnt)
1222 		mntput(path->mnt);
1223 	if (ret == -EISDIR)
1224 		ret = 0;
1225 	if (need_mntput)
1226 		nd->flags |= LOOKUP_JUMPED;
1227 	if (unlikely(ret < 0))
1228 		path_put_conditional(path, nd);
1229 	return ret;
1230 }
1231 
1232 int follow_down_one(struct path *path)
1233 {
1234 	struct vfsmount *mounted;
1235 
1236 	mounted = lookup_mnt(path);
1237 	if (mounted) {
1238 		dput(path->dentry);
1239 		mntput(path->mnt);
1240 		path->mnt = mounted;
1241 		path->dentry = dget(mounted->mnt_root);
1242 		return 1;
1243 	}
1244 	return 0;
1245 }
1246 EXPORT_SYMBOL(follow_down_one);
1247 
1248 static inline int managed_dentry_rcu(struct dentry *dentry)
1249 {
1250 	return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1251 		dentry->d_op->d_manage(dentry, true) : 0;
1252 }
1253 
1254 /*
1255  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1256  * we meet a managed dentry that would need blocking.
1257  */
1258 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1259 			       struct inode **inode, unsigned *seqp)
1260 {
1261 	for (;;) {
1262 		struct mount *mounted;
1263 		/*
1264 		 * Don't forget we might have a non-mountpoint managed dentry
1265 		 * that wants to block transit.
1266 		 */
1267 		switch (managed_dentry_rcu(path->dentry)) {
1268 		case -ECHILD:
1269 		default:
1270 			return false;
1271 		case -EISDIR:
1272 			return true;
1273 		case 0:
1274 			break;
1275 		}
1276 
1277 		if (!d_mountpoint(path->dentry))
1278 			return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1279 
1280 		mounted = __lookup_mnt(path->mnt, path->dentry);
1281 		if (!mounted)
1282 			break;
1283 		path->mnt = &mounted->mnt;
1284 		path->dentry = mounted->mnt.mnt_root;
1285 		nd->flags |= LOOKUP_JUMPED;
1286 		*seqp = read_seqcount_begin(&path->dentry->d_seq);
1287 		/*
1288 		 * Update the inode too. We don't need to re-check the
1289 		 * dentry sequence number here after this d_inode read,
1290 		 * because a mount-point is always pinned.
1291 		 */
1292 		*inode = path->dentry->d_inode;
1293 	}
1294 	return !read_seqretry(&mount_lock, nd->m_seq) &&
1295 		!(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1296 }
1297 
1298 static int follow_dotdot_rcu(struct nameidata *nd)
1299 {
1300 	struct inode *inode = nd->inode;
1301 
1302 	while (1) {
1303 		if (path_equal(&nd->path, &nd->root))
1304 			break;
1305 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1306 			struct dentry *old = nd->path.dentry;
1307 			struct dentry *parent = old->d_parent;
1308 			unsigned seq;
1309 
1310 			inode = parent->d_inode;
1311 			seq = read_seqcount_begin(&parent->d_seq);
1312 			if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1313 				return -ECHILD;
1314 			nd->path.dentry = parent;
1315 			nd->seq = seq;
1316 			if (unlikely(!path_connected(&nd->path)))
1317 				return -ENOENT;
1318 			break;
1319 		} else {
1320 			struct mount *mnt = real_mount(nd->path.mnt);
1321 			struct mount *mparent = mnt->mnt_parent;
1322 			struct dentry *mountpoint = mnt->mnt_mountpoint;
1323 			struct inode *inode2 = mountpoint->d_inode;
1324 			unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1325 			if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1326 				return -ECHILD;
1327 			if (&mparent->mnt == nd->path.mnt)
1328 				break;
1329 			/* we know that mountpoint was pinned */
1330 			nd->path.dentry = mountpoint;
1331 			nd->path.mnt = &mparent->mnt;
1332 			inode = inode2;
1333 			nd->seq = seq;
1334 		}
1335 	}
1336 	while (unlikely(d_mountpoint(nd->path.dentry))) {
1337 		struct mount *mounted;
1338 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1339 		if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1340 			return -ECHILD;
1341 		if (!mounted)
1342 			break;
1343 		nd->path.mnt = &mounted->mnt;
1344 		nd->path.dentry = mounted->mnt.mnt_root;
1345 		inode = nd->path.dentry->d_inode;
1346 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1347 	}
1348 	nd->inode = inode;
1349 	return 0;
1350 }
1351 
1352 /*
1353  * Follow down to the covering mount currently visible to userspace.  At each
1354  * point, the filesystem owning that dentry may be queried as to whether the
1355  * caller is permitted to proceed or not.
1356  */
1357 int follow_down(struct path *path)
1358 {
1359 	unsigned managed;
1360 	int ret;
1361 
1362 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1363 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1364 		/* Allow the filesystem to manage the transit without i_mutex
1365 		 * being held.
1366 		 *
1367 		 * We indicate to the filesystem if someone is trying to mount
1368 		 * something here.  This gives autofs the chance to deny anyone
1369 		 * other than its daemon the right to mount on its
1370 		 * superstructure.
1371 		 *
1372 		 * The filesystem may sleep at this point.
1373 		 */
1374 		if (managed & DCACHE_MANAGE_TRANSIT) {
1375 			BUG_ON(!path->dentry->d_op);
1376 			BUG_ON(!path->dentry->d_op->d_manage);
1377 			ret = path->dentry->d_op->d_manage(
1378 				path->dentry, false);
1379 			if (ret < 0)
1380 				return ret == -EISDIR ? 0 : ret;
1381 		}
1382 
1383 		/* Transit to a mounted filesystem. */
1384 		if (managed & DCACHE_MOUNTED) {
1385 			struct vfsmount *mounted = lookup_mnt(path);
1386 			if (!mounted)
1387 				break;
1388 			dput(path->dentry);
1389 			mntput(path->mnt);
1390 			path->mnt = mounted;
1391 			path->dentry = dget(mounted->mnt_root);
1392 			continue;
1393 		}
1394 
1395 		/* Don't handle automount points here */
1396 		break;
1397 	}
1398 	return 0;
1399 }
1400 EXPORT_SYMBOL(follow_down);
1401 
1402 /*
1403  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1404  */
1405 static void follow_mount(struct path *path)
1406 {
1407 	while (d_mountpoint(path->dentry)) {
1408 		struct vfsmount *mounted = lookup_mnt(path);
1409 		if (!mounted)
1410 			break;
1411 		dput(path->dentry);
1412 		mntput(path->mnt);
1413 		path->mnt = mounted;
1414 		path->dentry = dget(mounted->mnt_root);
1415 	}
1416 }
1417 
1418 static int follow_dotdot(struct nameidata *nd)
1419 {
1420 	while(1) {
1421 		struct dentry *old = nd->path.dentry;
1422 
1423 		if (nd->path.dentry == nd->root.dentry &&
1424 		    nd->path.mnt == nd->root.mnt) {
1425 			break;
1426 		}
1427 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1428 			/* rare case of legitimate dget_parent()... */
1429 			nd->path.dentry = dget_parent(nd->path.dentry);
1430 			dput(old);
1431 			if (unlikely(!path_connected(&nd->path)))
1432 				return -ENOENT;
1433 			break;
1434 		}
1435 		if (!follow_up(&nd->path))
1436 			break;
1437 	}
1438 	follow_mount(&nd->path);
1439 	nd->inode = nd->path.dentry->d_inode;
1440 	return 0;
1441 }
1442 
1443 /*
1444  * This looks up the name in dcache, possibly revalidates the old dentry and
1445  * allocates a new one if not found or not valid.  In the need_lookup argument
1446  * returns whether i_op->lookup is necessary.
1447  *
1448  * dir->d_inode->i_mutex must be held
1449  */
1450 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1451 				    unsigned int flags, bool *need_lookup)
1452 {
1453 	struct dentry *dentry;
1454 	int error;
1455 
1456 	*need_lookup = false;
1457 	dentry = d_lookup(dir, name);
1458 	if (dentry) {
1459 		if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1460 			error = d_revalidate(dentry, flags);
1461 			if (unlikely(error <= 0)) {
1462 				if (error < 0) {
1463 					dput(dentry);
1464 					return ERR_PTR(error);
1465 				} else {
1466 					d_invalidate(dentry);
1467 					dput(dentry);
1468 					dentry = NULL;
1469 				}
1470 			}
1471 		}
1472 	}
1473 
1474 	if (!dentry) {
1475 		dentry = d_alloc(dir, name);
1476 		if (unlikely(!dentry))
1477 			return ERR_PTR(-ENOMEM);
1478 
1479 		*need_lookup = true;
1480 	}
1481 	return dentry;
1482 }
1483 
1484 /*
1485  * Call i_op->lookup on the dentry.  The dentry must be negative and
1486  * unhashed.
1487  *
1488  * dir->d_inode->i_mutex must be held
1489  */
1490 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1491 				  unsigned int flags)
1492 {
1493 	struct dentry *old;
1494 
1495 	/* Don't create child dentry for a dead directory. */
1496 	if (unlikely(IS_DEADDIR(dir))) {
1497 		dput(dentry);
1498 		return ERR_PTR(-ENOENT);
1499 	}
1500 
1501 	old = dir->i_op->lookup(dir, dentry, flags);
1502 	if (unlikely(old)) {
1503 		dput(dentry);
1504 		dentry = old;
1505 	}
1506 	return dentry;
1507 }
1508 
1509 static struct dentry *__lookup_hash(struct qstr *name,
1510 		struct dentry *base, unsigned int flags)
1511 {
1512 	bool need_lookup;
1513 	struct dentry *dentry;
1514 
1515 	dentry = lookup_dcache(name, base, flags, &need_lookup);
1516 	if (!need_lookup)
1517 		return dentry;
1518 
1519 	return lookup_real(base->d_inode, dentry, flags);
1520 }
1521 
1522 /*
1523  *  It's more convoluted than I'd like it to be, but... it's still fairly
1524  *  small and for now I'd prefer to have fast path as straight as possible.
1525  *  It _is_ time-critical.
1526  */
1527 static int lookup_fast(struct nameidata *nd,
1528 		       struct path *path, struct inode **inode,
1529 		       unsigned *seqp)
1530 {
1531 	struct vfsmount *mnt = nd->path.mnt;
1532 	struct dentry *dentry, *parent = nd->path.dentry;
1533 	int need_reval = 1;
1534 	int status = 1;
1535 	int err;
1536 
1537 	/*
1538 	 * Rename seqlock is not required here because in the off chance
1539 	 * of a false negative due to a concurrent rename, we're going to
1540 	 * do the non-racy lookup, below.
1541 	 */
1542 	if (nd->flags & LOOKUP_RCU) {
1543 		unsigned seq;
1544 		bool negative;
1545 		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1546 		if (!dentry)
1547 			goto unlazy;
1548 
1549 		/*
1550 		 * This sequence count validates that the inode matches
1551 		 * the dentry name information from lookup.
1552 		 */
1553 		*inode = d_backing_inode(dentry);
1554 		negative = d_is_negative(dentry);
1555 		if (read_seqcount_retry(&dentry->d_seq, seq))
1556 			return -ECHILD;
1557 
1558 		/*
1559 		 * This sequence count validates that the parent had no
1560 		 * changes while we did the lookup of the dentry above.
1561 		 *
1562 		 * The memory barrier in read_seqcount_begin of child is
1563 		 *  enough, we can use __read_seqcount_retry here.
1564 		 */
1565 		if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1566 			return -ECHILD;
1567 
1568 		*seqp = seq;
1569 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1570 			status = d_revalidate(dentry, nd->flags);
1571 			if (unlikely(status <= 0)) {
1572 				if (status != -ECHILD)
1573 					need_reval = 0;
1574 				goto unlazy;
1575 			}
1576 		}
1577 		/*
1578 		 * Note: do negative dentry check after revalidation in
1579 		 * case that drops it.
1580 		 */
1581 		if (negative)
1582 			return -ENOENT;
1583 		path->mnt = mnt;
1584 		path->dentry = dentry;
1585 		if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1586 			return 0;
1587 unlazy:
1588 		if (unlazy_walk(nd, dentry, seq))
1589 			return -ECHILD;
1590 	} else {
1591 		dentry = __d_lookup(parent, &nd->last);
1592 	}
1593 
1594 	if (unlikely(!dentry))
1595 		goto need_lookup;
1596 
1597 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1598 		status = d_revalidate(dentry, nd->flags);
1599 	if (unlikely(status <= 0)) {
1600 		if (status < 0) {
1601 			dput(dentry);
1602 			return status;
1603 		}
1604 		d_invalidate(dentry);
1605 		dput(dentry);
1606 		goto need_lookup;
1607 	}
1608 
1609 	if (unlikely(d_is_negative(dentry))) {
1610 		dput(dentry);
1611 		return -ENOENT;
1612 	}
1613 	path->mnt = mnt;
1614 	path->dentry = dentry;
1615 	err = follow_managed(path, nd);
1616 	if (likely(!err))
1617 		*inode = d_backing_inode(path->dentry);
1618 	return err;
1619 
1620 need_lookup:
1621 	return 1;
1622 }
1623 
1624 /* Fast lookup failed, do it the slow way */
1625 static int lookup_slow(struct nameidata *nd, struct path *path)
1626 {
1627 	struct dentry *dentry, *parent;
1628 
1629 	parent = nd->path.dentry;
1630 	BUG_ON(nd->inode != parent->d_inode);
1631 
1632 	inode_lock(parent->d_inode);
1633 	dentry = __lookup_hash(&nd->last, parent, nd->flags);
1634 	inode_unlock(parent->d_inode);
1635 	if (IS_ERR(dentry))
1636 		return PTR_ERR(dentry);
1637 	path->mnt = nd->path.mnt;
1638 	path->dentry = dentry;
1639 	return follow_managed(path, nd);
1640 }
1641 
1642 static inline int may_lookup(struct nameidata *nd)
1643 {
1644 	if (nd->flags & LOOKUP_RCU) {
1645 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1646 		if (err != -ECHILD)
1647 			return err;
1648 		if (unlazy_walk(nd, NULL, 0))
1649 			return -ECHILD;
1650 	}
1651 	return inode_permission(nd->inode, MAY_EXEC);
1652 }
1653 
1654 static inline int handle_dots(struct nameidata *nd, int type)
1655 {
1656 	if (type == LAST_DOTDOT) {
1657 		if (!nd->root.mnt)
1658 			set_root(nd);
1659 		if (nd->flags & LOOKUP_RCU) {
1660 			return follow_dotdot_rcu(nd);
1661 		} else
1662 			return follow_dotdot(nd);
1663 	}
1664 	return 0;
1665 }
1666 
1667 static int pick_link(struct nameidata *nd, struct path *link,
1668 		     struct inode *inode, unsigned seq)
1669 {
1670 	int error;
1671 	struct saved *last;
1672 	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1673 		path_to_nameidata(link, nd);
1674 		return -ELOOP;
1675 	}
1676 	if (!(nd->flags & LOOKUP_RCU)) {
1677 		if (link->mnt == nd->path.mnt)
1678 			mntget(link->mnt);
1679 	}
1680 	error = nd_alloc_stack(nd);
1681 	if (unlikely(error)) {
1682 		if (error == -ECHILD) {
1683 			if (unlikely(unlazy_link(nd, link, seq)))
1684 				return -ECHILD;
1685 			error = nd_alloc_stack(nd);
1686 		}
1687 		if (error) {
1688 			path_put(link);
1689 			return error;
1690 		}
1691 	}
1692 
1693 	last = nd->stack + nd->depth++;
1694 	last->link = *link;
1695 	clear_delayed_call(&last->done);
1696 	nd->link_inode = inode;
1697 	last->seq = seq;
1698 	return 1;
1699 }
1700 
1701 /*
1702  * Do we need to follow links? We _really_ want to be able
1703  * to do this check without having to look at inode->i_op,
1704  * so we keep a cache of "no, this doesn't need follow_link"
1705  * for the common case.
1706  */
1707 static inline int should_follow_link(struct nameidata *nd, struct path *link,
1708 				     int follow,
1709 				     struct inode *inode, unsigned seq)
1710 {
1711 	if (likely(!d_is_symlink(link->dentry)))
1712 		return 0;
1713 	if (!follow)
1714 		return 0;
1715 	/* make sure that d_is_symlink above matches inode */
1716 	if (nd->flags & LOOKUP_RCU) {
1717 		if (read_seqcount_retry(&link->dentry->d_seq, seq))
1718 			return -ECHILD;
1719 	}
1720 	return pick_link(nd, link, inode, seq);
1721 }
1722 
1723 enum {WALK_GET = 1, WALK_PUT = 2};
1724 
1725 static int walk_component(struct nameidata *nd, int flags)
1726 {
1727 	struct path path;
1728 	struct inode *inode;
1729 	unsigned seq;
1730 	int err;
1731 	/*
1732 	 * "." and ".." are special - ".." especially so because it has
1733 	 * to be able to know about the current root directory and
1734 	 * parent relationships.
1735 	 */
1736 	if (unlikely(nd->last_type != LAST_NORM)) {
1737 		err = handle_dots(nd, nd->last_type);
1738 		if (flags & WALK_PUT)
1739 			put_link(nd);
1740 		return err;
1741 	}
1742 	err = lookup_fast(nd, &path, &inode, &seq);
1743 	if (unlikely(err)) {
1744 		if (err < 0)
1745 			return err;
1746 
1747 		err = lookup_slow(nd, &path);
1748 		if (err < 0)
1749 			return err;
1750 
1751 		seq = 0;	/* we are already out of RCU mode */
1752 		err = -ENOENT;
1753 		if (d_is_negative(path.dentry))
1754 			goto out_path_put;
1755 		inode = d_backing_inode(path.dentry);
1756 	}
1757 
1758 	if (flags & WALK_PUT)
1759 		put_link(nd);
1760 	err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq);
1761 	if (unlikely(err))
1762 		return err;
1763 	path_to_nameidata(&path, nd);
1764 	nd->inode = inode;
1765 	nd->seq = seq;
1766 	return 0;
1767 
1768 out_path_put:
1769 	path_to_nameidata(&path, nd);
1770 	return err;
1771 }
1772 
1773 /*
1774  * We can do the critical dentry name comparison and hashing
1775  * operations one word at a time, but we are limited to:
1776  *
1777  * - Architectures with fast unaligned word accesses. We could
1778  *   do a "get_unaligned()" if this helps and is sufficiently
1779  *   fast.
1780  *
1781  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1782  *   do not trap on the (extremely unlikely) case of a page
1783  *   crossing operation.
1784  *
1785  * - Furthermore, we need an efficient 64-bit compile for the
1786  *   64-bit case in order to generate the "number of bytes in
1787  *   the final mask". Again, that could be replaced with a
1788  *   efficient population count instruction or similar.
1789  */
1790 #ifdef CONFIG_DCACHE_WORD_ACCESS
1791 
1792 #include <asm/word-at-a-time.h>
1793 
1794 #ifdef CONFIG_64BIT
1795 
1796 static inline unsigned int fold_hash(unsigned long hash)
1797 {
1798 	return hash_64(hash, 32);
1799 }
1800 
1801 #else	/* 32-bit case */
1802 
1803 #define fold_hash(x) (x)
1804 
1805 #endif
1806 
1807 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1808 {
1809 	unsigned long a, mask;
1810 	unsigned long hash = 0;
1811 
1812 	for (;;) {
1813 		a = load_unaligned_zeropad(name);
1814 		if (len < sizeof(unsigned long))
1815 			break;
1816 		hash += a;
1817 		hash *= 9;
1818 		name += sizeof(unsigned long);
1819 		len -= sizeof(unsigned long);
1820 		if (!len)
1821 			goto done;
1822 	}
1823 	mask = bytemask_from_count(len);
1824 	hash += mask & a;
1825 done:
1826 	return fold_hash(hash);
1827 }
1828 EXPORT_SYMBOL(full_name_hash);
1829 
1830 /*
1831  * Calculate the length and hash of the path component, and
1832  * return the "hash_len" as the result.
1833  */
1834 static inline u64 hash_name(const char *name)
1835 {
1836 	unsigned long a, b, adata, bdata, mask, hash, len;
1837 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1838 
1839 	hash = a = 0;
1840 	len = -sizeof(unsigned long);
1841 	do {
1842 		hash = (hash + a) * 9;
1843 		len += sizeof(unsigned long);
1844 		a = load_unaligned_zeropad(name+len);
1845 		b = a ^ REPEAT_BYTE('/');
1846 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1847 
1848 	adata = prep_zero_mask(a, adata, &constants);
1849 	bdata = prep_zero_mask(b, bdata, &constants);
1850 
1851 	mask = create_zero_mask(adata | bdata);
1852 
1853 	hash += a & zero_bytemask(mask);
1854 	len += find_zero(mask);
1855 	return hashlen_create(fold_hash(hash), len);
1856 }
1857 
1858 #else
1859 
1860 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1861 {
1862 	unsigned long hash = init_name_hash();
1863 	while (len--)
1864 		hash = partial_name_hash(*name++, hash);
1865 	return end_name_hash(hash);
1866 }
1867 EXPORT_SYMBOL(full_name_hash);
1868 
1869 /*
1870  * We know there's a real path component here of at least
1871  * one character.
1872  */
1873 static inline u64 hash_name(const char *name)
1874 {
1875 	unsigned long hash = init_name_hash();
1876 	unsigned long len = 0, c;
1877 
1878 	c = (unsigned char)*name;
1879 	do {
1880 		len++;
1881 		hash = partial_name_hash(c, hash);
1882 		c = (unsigned char)name[len];
1883 	} while (c && c != '/');
1884 	return hashlen_create(end_name_hash(hash), len);
1885 }
1886 
1887 #endif
1888 
1889 /*
1890  * Name resolution.
1891  * This is the basic name resolution function, turning a pathname into
1892  * the final dentry. We expect 'base' to be positive and a directory.
1893  *
1894  * Returns 0 and nd will have valid dentry and mnt on success.
1895  * Returns error and drops reference to input namei data on failure.
1896  */
1897 static int link_path_walk(const char *name, struct nameidata *nd)
1898 {
1899 	int err;
1900 
1901 	while (*name=='/')
1902 		name++;
1903 	if (!*name)
1904 		return 0;
1905 
1906 	/* At this point we know we have a real path component. */
1907 	for(;;) {
1908 		u64 hash_len;
1909 		int type;
1910 
1911 		err = may_lookup(nd);
1912  		if (err)
1913 			return err;
1914 
1915 		hash_len = hash_name(name);
1916 
1917 		type = LAST_NORM;
1918 		if (name[0] == '.') switch (hashlen_len(hash_len)) {
1919 			case 2:
1920 				if (name[1] == '.') {
1921 					type = LAST_DOTDOT;
1922 					nd->flags |= LOOKUP_JUMPED;
1923 				}
1924 				break;
1925 			case 1:
1926 				type = LAST_DOT;
1927 		}
1928 		if (likely(type == LAST_NORM)) {
1929 			struct dentry *parent = nd->path.dentry;
1930 			nd->flags &= ~LOOKUP_JUMPED;
1931 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1932 				struct qstr this = { { .hash_len = hash_len }, .name = name };
1933 				err = parent->d_op->d_hash(parent, &this);
1934 				if (err < 0)
1935 					return err;
1936 				hash_len = this.hash_len;
1937 				name = this.name;
1938 			}
1939 		}
1940 
1941 		nd->last.hash_len = hash_len;
1942 		nd->last.name = name;
1943 		nd->last_type = type;
1944 
1945 		name += hashlen_len(hash_len);
1946 		if (!*name)
1947 			goto OK;
1948 		/*
1949 		 * If it wasn't NUL, we know it was '/'. Skip that
1950 		 * slash, and continue until no more slashes.
1951 		 */
1952 		do {
1953 			name++;
1954 		} while (unlikely(*name == '/'));
1955 		if (unlikely(!*name)) {
1956 OK:
1957 			/* pathname body, done */
1958 			if (!nd->depth)
1959 				return 0;
1960 			name = nd->stack[nd->depth - 1].name;
1961 			/* trailing symlink, done */
1962 			if (!name)
1963 				return 0;
1964 			/* last component of nested symlink */
1965 			err = walk_component(nd, WALK_GET | WALK_PUT);
1966 		} else {
1967 			err = walk_component(nd, WALK_GET);
1968 		}
1969 		if (err < 0)
1970 			return err;
1971 
1972 		if (err) {
1973 			const char *s = get_link(nd);
1974 
1975 			if (IS_ERR(s))
1976 				return PTR_ERR(s);
1977 			err = 0;
1978 			if (unlikely(!s)) {
1979 				/* jumped */
1980 				put_link(nd);
1981 			} else {
1982 				nd->stack[nd->depth - 1].name = name;
1983 				name = s;
1984 				continue;
1985 			}
1986 		}
1987 		if (unlikely(!d_can_lookup(nd->path.dentry))) {
1988 			if (nd->flags & LOOKUP_RCU) {
1989 				if (unlazy_walk(nd, NULL, 0))
1990 					return -ECHILD;
1991 			}
1992 			return -ENOTDIR;
1993 		}
1994 	}
1995 }
1996 
1997 static const char *path_init(struct nameidata *nd, unsigned flags)
1998 {
1999 	int retval = 0;
2000 	const char *s = nd->name->name;
2001 
2002 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
2003 	nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2004 	nd->depth = 0;
2005 	if (flags & LOOKUP_ROOT) {
2006 		struct dentry *root = nd->root.dentry;
2007 		struct inode *inode = root->d_inode;
2008 		if (*s) {
2009 			if (!d_can_lookup(root))
2010 				return ERR_PTR(-ENOTDIR);
2011 			retval = inode_permission(inode, MAY_EXEC);
2012 			if (retval)
2013 				return ERR_PTR(retval);
2014 		}
2015 		nd->path = nd->root;
2016 		nd->inode = inode;
2017 		if (flags & LOOKUP_RCU) {
2018 			rcu_read_lock();
2019 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2020 			nd->root_seq = nd->seq;
2021 			nd->m_seq = read_seqbegin(&mount_lock);
2022 		} else {
2023 			path_get(&nd->path);
2024 		}
2025 		return s;
2026 	}
2027 
2028 	nd->root.mnt = NULL;
2029 	nd->path.mnt = NULL;
2030 	nd->path.dentry = NULL;
2031 
2032 	nd->m_seq = read_seqbegin(&mount_lock);
2033 	if (*s == '/') {
2034 		if (flags & LOOKUP_RCU)
2035 			rcu_read_lock();
2036 		set_root(nd);
2037 		if (likely(!nd_jump_root(nd)))
2038 			return s;
2039 		nd->root.mnt = NULL;
2040 		rcu_read_unlock();
2041 		return ERR_PTR(-ECHILD);
2042 	} else if (nd->dfd == AT_FDCWD) {
2043 		if (flags & LOOKUP_RCU) {
2044 			struct fs_struct *fs = current->fs;
2045 			unsigned seq;
2046 
2047 			rcu_read_lock();
2048 
2049 			do {
2050 				seq = read_seqcount_begin(&fs->seq);
2051 				nd->path = fs->pwd;
2052 				nd->inode = nd->path.dentry->d_inode;
2053 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2054 			} while (read_seqcount_retry(&fs->seq, seq));
2055 		} else {
2056 			get_fs_pwd(current->fs, &nd->path);
2057 			nd->inode = nd->path.dentry->d_inode;
2058 		}
2059 		return s;
2060 	} else {
2061 		/* Caller must check execute permissions on the starting path component */
2062 		struct fd f = fdget_raw(nd->dfd);
2063 		struct dentry *dentry;
2064 
2065 		if (!f.file)
2066 			return ERR_PTR(-EBADF);
2067 
2068 		dentry = f.file->f_path.dentry;
2069 
2070 		if (*s) {
2071 			if (!d_can_lookup(dentry)) {
2072 				fdput(f);
2073 				return ERR_PTR(-ENOTDIR);
2074 			}
2075 		}
2076 
2077 		nd->path = f.file->f_path;
2078 		if (flags & LOOKUP_RCU) {
2079 			rcu_read_lock();
2080 			nd->inode = nd->path.dentry->d_inode;
2081 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2082 		} else {
2083 			path_get(&nd->path);
2084 			nd->inode = nd->path.dentry->d_inode;
2085 		}
2086 		fdput(f);
2087 		return s;
2088 	}
2089 }
2090 
2091 static const char *trailing_symlink(struct nameidata *nd)
2092 {
2093 	const char *s;
2094 	int error = may_follow_link(nd);
2095 	if (unlikely(error))
2096 		return ERR_PTR(error);
2097 	nd->flags |= LOOKUP_PARENT;
2098 	nd->stack[0].name = NULL;
2099 	s = get_link(nd);
2100 	return s ? s : "";
2101 }
2102 
2103 static inline int lookup_last(struct nameidata *nd)
2104 {
2105 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2106 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2107 
2108 	nd->flags &= ~LOOKUP_PARENT;
2109 	return walk_component(nd,
2110 			nd->flags & LOOKUP_FOLLOW
2111 				? nd->depth
2112 					? WALK_PUT | WALK_GET
2113 					: WALK_GET
2114 				: 0);
2115 }
2116 
2117 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2118 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2119 {
2120 	const char *s = path_init(nd, flags);
2121 	int err;
2122 
2123 	if (IS_ERR(s))
2124 		return PTR_ERR(s);
2125 	while (!(err = link_path_walk(s, nd))
2126 		&& ((err = lookup_last(nd)) > 0)) {
2127 		s = trailing_symlink(nd);
2128 		if (IS_ERR(s)) {
2129 			err = PTR_ERR(s);
2130 			break;
2131 		}
2132 	}
2133 	if (!err)
2134 		err = complete_walk(nd);
2135 
2136 	if (!err && nd->flags & LOOKUP_DIRECTORY)
2137 		if (!d_can_lookup(nd->path.dentry))
2138 			err = -ENOTDIR;
2139 	if (!err) {
2140 		*path = nd->path;
2141 		nd->path.mnt = NULL;
2142 		nd->path.dentry = NULL;
2143 	}
2144 	terminate_walk(nd);
2145 	return err;
2146 }
2147 
2148 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2149 			   struct path *path, struct path *root)
2150 {
2151 	int retval;
2152 	struct nameidata nd;
2153 	if (IS_ERR(name))
2154 		return PTR_ERR(name);
2155 	if (unlikely(root)) {
2156 		nd.root = *root;
2157 		flags |= LOOKUP_ROOT;
2158 	}
2159 	set_nameidata(&nd, dfd, name);
2160 	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2161 	if (unlikely(retval == -ECHILD))
2162 		retval = path_lookupat(&nd, flags, path);
2163 	if (unlikely(retval == -ESTALE))
2164 		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2165 
2166 	if (likely(!retval))
2167 		audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2168 	restore_nameidata();
2169 	putname(name);
2170 	return retval;
2171 }
2172 
2173 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2174 static int path_parentat(struct nameidata *nd, unsigned flags,
2175 				struct path *parent)
2176 {
2177 	const char *s = path_init(nd, flags);
2178 	int err;
2179 	if (IS_ERR(s))
2180 		return PTR_ERR(s);
2181 	err = link_path_walk(s, nd);
2182 	if (!err)
2183 		err = complete_walk(nd);
2184 	if (!err) {
2185 		*parent = nd->path;
2186 		nd->path.mnt = NULL;
2187 		nd->path.dentry = NULL;
2188 	}
2189 	terminate_walk(nd);
2190 	return err;
2191 }
2192 
2193 static struct filename *filename_parentat(int dfd, struct filename *name,
2194 				unsigned int flags, struct path *parent,
2195 				struct qstr *last, int *type)
2196 {
2197 	int retval;
2198 	struct nameidata nd;
2199 
2200 	if (IS_ERR(name))
2201 		return name;
2202 	set_nameidata(&nd, dfd, name);
2203 	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2204 	if (unlikely(retval == -ECHILD))
2205 		retval = path_parentat(&nd, flags, parent);
2206 	if (unlikely(retval == -ESTALE))
2207 		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2208 	if (likely(!retval)) {
2209 		*last = nd.last;
2210 		*type = nd.last_type;
2211 		audit_inode(name, parent->dentry, LOOKUP_PARENT);
2212 	} else {
2213 		putname(name);
2214 		name = ERR_PTR(retval);
2215 	}
2216 	restore_nameidata();
2217 	return name;
2218 }
2219 
2220 /* does lookup, returns the object with parent locked */
2221 struct dentry *kern_path_locked(const char *name, struct path *path)
2222 {
2223 	struct filename *filename;
2224 	struct dentry *d;
2225 	struct qstr last;
2226 	int type;
2227 
2228 	filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2229 				    &last, &type);
2230 	if (IS_ERR(filename))
2231 		return ERR_CAST(filename);
2232 	if (unlikely(type != LAST_NORM)) {
2233 		path_put(path);
2234 		putname(filename);
2235 		return ERR_PTR(-EINVAL);
2236 	}
2237 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2238 	d = __lookup_hash(&last, path->dentry, 0);
2239 	if (IS_ERR(d)) {
2240 		inode_unlock(path->dentry->d_inode);
2241 		path_put(path);
2242 	}
2243 	putname(filename);
2244 	return d;
2245 }
2246 
2247 int kern_path(const char *name, unsigned int flags, struct path *path)
2248 {
2249 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2250 			       flags, path, NULL);
2251 }
2252 EXPORT_SYMBOL(kern_path);
2253 
2254 /**
2255  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2256  * @dentry:  pointer to dentry of the base directory
2257  * @mnt: pointer to vfs mount of the base directory
2258  * @name: pointer to file name
2259  * @flags: lookup flags
2260  * @path: pointer to struct path to fill
2261  */
2262 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2263 		    const char *name, unsigned int flags,
2264 		    struct path *path)
2265 {
2266 	struct path root = {.mnt = mnt, .dentry = dentry};
2267 	/* the first argument of filename_lookup() is ignored with root */
2268 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2269 			       flags , path, &root);
2270 }
2271 EXPORT_SYMBOL(vfs_path_lookup);
2272 
2273 /**
2274  * lookup_one_len - filesystem helper to lookup single pathname component
2275  * @name:	pathname component to lookup
2276  * @base:	base directory to lookup from
2277  * @len:	maximum length @len should be interpreted to
2278  *
2279  * Note that this routine is purely a helper for filesystem usage and should
2280  * not be called by generic code.
2281  *
2282  * The caller must hold base->i_mutex.
2283  */
2284 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2285 {
2286 	struct qstr this;
2287 	unsigned int c;
2288 	int err;
2289 
2290 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2291 
2292 	this.name = name;
2293 	this.len = len;
2294 	this.hash = full_name_hash(name, len);
2295 	if (!len)
2296 		return ERR_PTR(-EACCES);
2297 
2298 	if (unlikely(name[0] == '.')) {
2299 		if (len < 2 || (len == 2 && name[1] == '.'))
2300 			return ERR_PTR(-EACCES);
2301 	}
2302 
2303 	while (len--) {
2304 		c = *(const unsigned char *)name++;
2305 		if (c == '/' || c == '\0')
2306 			return ERR_PTR(-EACCES);
2307 	}
2308 	/*
2309 	 * See if the low-level filesystem might want
2310 	 * to use its own hash..
2311 	 */
2312 	if (base->d_flags & DCACHE_OP_HASH) {
2313 		int err = base->d_op->d_hash(base, &this);
2314 		if (err < 0)
2315 			return ERR_PTR(err);
2316 	}
2317 
2318 	err = inode_permission(base->d_inode, MAY_EXEC);
2319 	if (err)
2320 		return ERR_PTR(err);
2321 
2322 	return __lookup_hash(&this, base, 0);
2323 }
2324 EXPORT_SYMBOL(lookup_one_len);
2325 
2326 /**
2327  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2328  * @name:	pathname component to lookup
2329  * @base:	base directory to lookup from
2330  * @len:	maximum length @len should be interpreted to
2331  *
2332  * Note that this routine is purely a helper for filesystem usage and should
2333  * not be called by generic code.
2334  *
2335  * Unlike lookup_one_len, it should be called without the parent
2336  * i_mutex held, and will take the i_mutex itself if necessary.
2337  */
2338 struct dentry *lookup_one_len_unlocked(const char *name,
2339 				       struct dentry *base, int len)
2340 {
2341 	struct qstr this;
2342 	unsigned int c;
2343 	int err;
2344 	struct dentry *ret;
2345 
2346 	this.name = name;
2347 	this.len = len;
2348 	this.hash = full_name_hash(name, len);
2349 	if (!len)
2350 		return ERR_PTR(-EACCES);
2351 
2352 	if (unlikely(name[0] == '.')) {
2353 		if (len < 2 || (len == 2 && name[1] == '.'))
2354 			return ERR_PTR(-EACCES);
2355 	}
2356 
2357 	while (len--) {
2358 		c = *(const unsigned char *)name++;
2359 		if (c == '/' || c == '\0')
2360 			return ERR_PTR(-EACCES);
2361 	}
2362 	/*
2363 	 * See if the low-level filesystem might want
2364 	 * to use its own hash..
2365 	 */
2366 	if (base->d_flags & DCACHE_OP_HASH) {
2367 		int err = base->d_op->d_hash(base, &this);
2368 		if (err < 0)
2369 			return ERR_PTR(err);
2370 	}
2371 
2372 	err = inode_permission(base->d_inode, MAY_EXEC);
2373 	if (err)
2374 		return ERR_PTR(err);
2375 
2376 	/*
2377 	 * __d_lookup() is used to try to get a quick answer and avoid the
2378 	 * mutex.  A false-negative does no harm.
2379 	 */
2380 	ret = __d_lookup(base, &this);
2381 	if (ret && unlikely(ret->d_flags & DCACHE_OP_REVALIDATE)) {
2382 		dput(ret);
2383 		ret = NULL;
2384 	}
2385 	if (ret)
2386 		return ret;
2387 
2388 	inode_lock(base->d_inode);
2389 	ret =  __lookup_hash(&this, base, 0);
2390 	inode_unlock(base->d_inode);
2391 	return ret;
2392 }
2393 EXPORT_SYMBOL(lookup_one_len_unlocked);
2394 
2395 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2396 		 struct path *path, int *empty)
2397 {
2398 	return filename_lookup(dfd, getname_flags(name, flags, empty),
2399 			       flags, path, NULL);
2400 }
2401 EXPORT_SYMBOL(user_path_at_empty);
2402 
2403 /*
2404  * NB: most callers don't do anything directly with the reference to the
2405  *     to struct filename, but the nd->last pointer points into the name string
2406  *     allocated by getname. So we must hold the reference to it until all
2407  *     path-walking is complete.
2408  */
2409 static inline struct filename *
2410 user_path_parent(int dfd, const char __user *path,
2411 		 struct path *parent,
2412 		 struct qstr *last,
2413 		 int *type,
2414 		 unsigned int flags)
2415 {
2416 	/* only LOOKUP_REVAL is allowed in extra flags */
2417 	return filename_parentat(dfd, getname(path), flags & LOOKUP_REVAL,
2418 				 parent, last, type);
2419 }
2420 
2421 /**
2422  * mountpoint_last - look up last component for umount
2423  * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2424  * @path: pointer to container for result
2425  *
2426  * This is a special lookup_last function just for umount. In this case, we
2427  * need to resolve the path without doing any revalidation.
2428  *
2429  * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2430  * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2431  * in almost all cases, this lookup will be served out of the dcache. The only
2432  * cases where it won't are if nd->last refers to a symlink or the path is
2433  * bogus and it doesn't exist.
2434  *
2435  * Returns:
2436  * -error: if there was an error during lookup. This includes -ENOENT if the
2437  *         lookup found a negative dentry. The nd->path reference will also be
2438  *         put in this case.
2439  *
2440  * 0:      if we successfully resolved nd->path and found it to not to be a
2441  *         symlink that needs to be followed. "path" will also be populated.
2442  *         The nd->path reference will also be put.
2443  *
2444  * 1:      if we successfully resolved nd->last and found it to be a symlink
2445  *         that needs to be followed. "path" will be populated with the path
2446  *         to the link, and nd->path will *not* be put.
2447  */
2448 static int
2449 mountpoint_last(struct nameidata *nd, struct path *path)
2450 {
2451 	int error = 0;
2452 	struct dentry *dentry;
2453 	struct dentry *dir = nd->path.dentry;
2454 
2455 	/* If we're in rcuwalk, drop out of it to handle last component */
2456 	if (nd->flags & LOOKUP_RCU) {
2457 		if (unlazy_walk(nd, NULL, 0))
2458 			return -ECHILD;
2459 	}
2460 
2461 	nd->flags &= ~LOOKUP_PARENT;
2462 
2463 	if (unlikely(nd->last_type != LAST_NORM)) {
2464 		error = handle_dots(nd, nd->last_type);
2465 		if (error)
2466 			return error;
2467 		dentry = dget(nd->path.dentry);
2468 		goto done;
2469 	}
2470 
2471 	inode_lock(dir->d_inode);
2472 	dentry = d_lookup(dir, &nd->last);
2473 	if (!dentry) {
2474 		/*
2475 		 * No cached dentry. Mounted dentries are pinned in the cache,
2476 		 * so that means that this dentry is probably a symlink or the
2477 		 * path doesn't actually point to a mounted dentry.
2478 		 */
2479 		dentry = d_alloc(dir, &nd->last);
2480 		if (!dentry) {
2481 			inode_unlock(dir->d_inode);
2482 			return -ENOMEM;
2483 		}
2484 		dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2485 		if (IS_ERR(dentry)) {
2486 			inode_unlock(dir->d_inode);
2487 			return PTR_ERR(dentry);
2488 		}
2489 	}
2490 	inode_unlock(dir->d_inode);
2491 
2492 done:
2493 	if (d_is_negative(dentry)) {
2494 		dput(dentry);
2495 		return -ENOENT;
2496 	}
2497 	if (nd->depth)
2498 		put_link(nd);
2499 	path->dentry = dentry;
2500 	path->mnt = nd->path.mnt;
2501 	error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW,
2502 				   d_backing_inode(dentry), 0);
2503 	if (unlikely(error))
2504 		return error;
2505 	mntget(path->mnt);
2506 	follow_mount(path);
2507 	return 0;
2508 }
2509 
2510 /**
2511  * path_mountpoint - look up a path to be umounted
2512  * @nd:		lookup context
2513  * @flags:	lookup flags
2514  * @path:	pointer to container for result
2515  *
2516  * Look up the given name, but don't attempt to revalidate the last component.
2517  * Returns 0 and "path" will be valid on success; Returns error otherwise.
2518  */
2519 static int
2520 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2521 {
2522 	const char *s = path_init(nd, flags);
2523 	int err;
2524 	if (IS_ERR(s))
2525 		return PTR_ERR(s);
2526 	while (!(err = link_path_walk(s, nd)) &&
2527 		(err = mountpoint_last(nd, path)) > 0) {
2528 		s = trailing_symlink(nd);
2529 		if (IS_ERR(s)) {
2530 			err = PTR_ERR(s);
2531 			break;
2532 		}
2533 	}
2534 	terminate_walk(nd);
2535 	return err;
2536 }
2537 
2538 static int
2539 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2540 			unsigned int flags)
2541 {
2542 	struct nameidata nd;
2543 	int error;
2544 	if (IS_ERR(name))
2545 		return PTR_ERR(name);
2546 	set_nameidata(&nd, dfd, name);
2547 	error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2548 	if (unlikely(error == -ECHILD))
2549 		error = path_mountpoint(&nd, flags, path);
2550 	if (unlikely(error == -ESTALE))
2551 		error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2552 	if (likely(!error))
2553 		audit_inode(name, path->dentry, 0);
2554 	restore_nameidata();
2555 	putname(name);
2556 	return error;
2557 }
2558 
2559 /**
2560  * user_path_mountpoint_at - lookup a path from userland in order to umount it
2561  * @dfd:	directory file descriptor
2562  * @name:	pathname from userland
2563  * @flags:	lookup flags
2564  * @path:	pointer to container to hold result
2565  *
2566  * A umount is a special case for path walking. We're not actually interested
2567  * in the inode in this situation, and ESTALE errors can be a problem. We
2568  * simply want track down the dentry and vfsmount attached at the mountpoint
2569  * and avoid revalidating the last component.
2570  *
2571  * Returns 0 and populates "path" on success.
2572  */
2573 int
2574 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2575 			struct path *path)
2576 {
2577 	return filename_mountpoint(dfd, getname(name), path, flags);
2578 }
2579 
2580 int
2581 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2582 			unsigned int flags)
2583 {
2584 	return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2585 }
2586 EXPORT_SYMBOL(kern_path_mountpoint);
2587 
2588 int __check_sticky(struct inode *dir, struct inode *inode)
2589 {
2590 	kuid_t fsuid = current_fsuid();
2591 
2592 	if (uid_eq(inode->i_uid, fsuid))
2593 		return 0;
2594 	if (uid_eq(dir->i_uid, fsuid))
2595 		return 0;
2596 	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2597 }
2598 EXPORT_SYMBOL(__check_sticky);
2599 
2600 /*
2601  *	Check whether we can remove a link victim from directory dir, check
2602  *  whether the type of victim is right.
2603  *  1. We can't do it if dir is read-only (done in permission())
2604  *  2. We should have write and exec permissions on dir
2605  *  3. We can't remove anything from append-only dir
2606  *  4. We can't do anything with immutable dir (done in permission())
2607  *  5. If the sticky bit on dir is set we should either
2608  *	a. be owner of dir, or
2609  *	b. be owner of victim, or
2610  *	c. have CAP_FOWNER capability
2611  *  6. If the victim is append-only or immutable we can't do antyhing with
2612  *     links pointing to it.
2613  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2614  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2615  *  9. We can't remove a root or mountpoint.
2616  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2617  *     nfs_async_unlink().
2618  */
2619 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2620 {
2621 	struct inode *inode = d_backing_inode(victim);
2622 	int error;
2623 
2624 	if (d_is_negative(victim))
2625 		return -ENOENT;
2626 	BUG_ON(!inode);
2627 
2628 	BUG_ON(victim->d_parent->d_inode != dir);
2629 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2630 
2631 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2632 	if (error)
2633 		return error;
2634 	if (IS_APPEND(dir))
2635 		return -EPERM;
2636 
2637 	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2638 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2639 		return -EPERM;
2640 	if (isdir) {
2641 		if (!d_is_dir(victim))
2642 			return -ENOTDIR;
2643 		if (IS_ROOT(victim))
2644 			return -EBUSY;
2645 	} else if (d_is_dir(victim))
2646 		return -EISDIR;
2647 	if (IS_DEADDIR(dir))
2648 		return -ENOENT;
2649 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2650 		return -EBUSY;
2651 	return 0;
2652 }
2653 
2654 /*	Check whether we can create an object with dentry child in directory
2655  *  dir.
2656  *  1. We can't do it if child already exists (open has special treatment for
2657  *     this case, but since we are inlined it's OK)
2658  *  2. We can't do it if dir is read-only (done in permission())
2659  *  3. We should have write and exec permissions on dir
2660  *  4. We can't do it if dir is immutable (done in permission())
2661  */
2662 static inline int may_create(struct inode *dir, struct dentry *child)
2663 {
2664 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2665 	if (child->d_inode)
2666 		return -EEXIST;
2667 	if (IS_DEADDIR(dir))
2668 		return -ENOENT;
2669 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2670 }
2671 
2672 /*
2673  * p1 and p2 should be directories on the same fs.
2674  */
2675 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2676 {
2677 	struct dentry *p;
2678 
2679 	if (p1 == p2) {
2680 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2681 		return NULL;
2682 	}
2683 
2684 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2685 
2686 	p = d_ancestor(p2, p1);
2687 	if (p) {
2688 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2689 		inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2690 		return p;
2691 	}
2692 
2693 	p = d_ancestor(p1, p2);
2694 	if (p) {
2695 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2696 		inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2697 		return p;
2698 	}
2699 
2700 	inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2701 	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2702 	return NULL;
2703 }
2704 EXPORT_SYMBOL(lock_rename);
2705 
2706 void unlock_rename(struct dentry *p1, struct dentry *p2)
2707 {
2708 	inode_unlock(p1->d_inode);
2709 	if (p1 != p2) {
2710 		inode_unlock(p2->d_inode);
2711 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2712 	}
2713 }
2714 EXPORT_SYMBOL(unlock_rename);
2715 
2716 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2717 		bool want_excl)
2718 {
2719 	int error = may_create(dir, dentry);
2720 	if (error)
2721 		return error;
2722 
2723 	if (!dir->i_op->create)
2724 		return -EACCES;	/* shouldn't it be ENOSYS? */
2725 	mode &= S_IALLUGO;
2726 	mode |= S_IFREG;
2727 	error = security_inode_create(dir, dentry, mode);
2728 	if (error)
2729 		return error;
2730 	error = dir->i_op->create(dir, dentry, mode, want_excl);
2731 	if (!error)
2732 		fsnotify_create(dir, dentry);
2733 	return error;
2734 }
2735 EXPORT_SYMBOL(vfs_create);
2736 
2737 static int may_open(struct path *path, int acc_mode, int flag)
2738 {
2739 	struct dentry *dentry = path->dentry;
2740 	struct inode *inode = dentry->d_inode;
2741 	int error;
2742 
2743 	if (!inode)
2744 		return -ENOENT;
2745 
2746 	switch (inode->i_mode & S_IFMT) {
2747 	case S_IFLNK:
2748 		return -ELOOP;
2749 	case S_IFDIR:
2750 		if (acc_mode & MAY_WRITE)
2751 			return -EISDIR;
2752 		break;
2753 	case S_IFBLK:
2754 	case S_IFCHR:
2755 		if (path->mnt->mnt_flags & MNT_NODEV)
2756 			return -EACCES;
2757 		/*FALLTHRU*/
2758 	case S_IFIFO:
2759 	case S_IFSOCK:
2760 		flag &= ~O_TRUNC;
2761 		break;
2762 	}
2763 
2764 	error = inode_permission(inode, MAY_OPEN | acc_mode);
2765 	if (error)
2766 		return error;
2767 
2768 	/*
2769 	 * An append-only file must be opened in append mode for writing.
2770 	 */
2771 	if (IS_APPEND(inode)) {
2772 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2773 			return -EPERM;
2774 		if (flag & O_TRUNC)
2775 			return -EPERM;
2776 	}
2777 
2778 	/* O_NOATIME can only be set by the owner or superuser */
2779 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2780 		return -EPERM;
2781 
2782 	return 0;
2783 }
2784 
2785 static int handle_truncate(struct file *filp)
2786 {
2787 	struct path *path = &filp->f_path;
2788 	struct inode *inode = path->dentry->d_inode;
2789 	int error = get_write_access(inode);
2790 	if (error)
2791 		return error;
2792 	/*
2793 	 * Refuse to truncate files with mandatory locks held on them.
2794 	 */
2795 	error = locks_verify_locked(filp);
2796 	if (!error)
2797 		error = security_path_truncate(path);
2798 	if (!error) {
2799 		error = do_truncate(path->dentry, 0,
2800 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2801 				    filp);
2802 	}
2803 	put_write_access(inode);
2804 	return error;
2805 }
2806 
2807 static inline int open_to_namei_flags(int flag)
2808 {
2809 	if ((flag & O_ACCMODE) == 3)
2810 		flag--;
2811 	return flag;
2812 }
2813 
2814 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2815 {
2816 	int error = security_path_mknod(dir, dentry, mode, 0);
2817 	if (error)
2818 		return error;
2819 
2820 	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2821 	if (error)
2822 		return error;
2823 
2824 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
2825 }
2826 
2827 /*
2828  * Attempt to atomically look up, create and open a file from a negative
2829  * dentry.
2830  *
2831  * Returns 0 if successful.  The file will have been created and attached to
2832  * @file by the filesystem calling finish_open().
2833  *
2834  * Returns 1 if the file was looked up only or didn't need creating.  The
2835  * caller will need to perform the open themselves.  @path will have been
2836  * updated to point to the new dentry.  This may be negative.
2837  *
2838  * Returns an error code otherwise.
2839  */
2840 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2841 			struct path *path, struct file *file,
2842 			const struct open_flags *op,
2843 			bool got_write, bool need_lookup,
2844 			int *opened)
2845 {
2846 	struct inode *dir =  nd->path.dentry->d_inode;
2847 	unsigned open_flag = open_to_namei_flags(op->open_flag);
2848 	umode_t mode;
2849 	int error;
2850 	int acc_mode;
2851 	int create_error = 0;
2852 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2853 	bool excl;
2854 
2855 	BUG_ON(dentry->d_inode);
2856 
2857 	/* Don't create child dentry for a dead directory. */
2858 	if (unlikely(IS_DEADDIR(dir))) {
2859 		error = -ENOENT;
2860 		goto out;
2861 	}
2862 
2863 	mode = op->mode;
2864 	if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2865 		mode &= ~current_umask();
2866 
2867 	excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2868 	if (excl)
2869 		open_flag &= ~O_TRUNC;
2870 
2871 	/*
2872 	 * Checking write permission is tricky, bacuse we don't know if we are
2873 	 * going to actually need it: O_CREAT opens should work as long as the
2874 	 * file exists.  But checking existence breaks atomicity.  The trick is
2875 	 * to check access and if not granted clear O_CREAT from the flags.
2876 	 *
2877 	 * Another problem is returing the "right" error value (e.g. for an
2878 	 * O_EXCL open we want to return EEXIST not EROFS).
2879 	 */
2880 	if (((open_flag & (O_CREAT | O_TRUNC)) ||
2881 	    (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2882 		if (!(open_flag & O_CREAT)) {
2883 			/*
2884 			 * No O_CREATE -> atomicity not a requirement -> fall
2885 			 * back to lookup + open
2886 			 */
2887 			goto no_open;
2888 		} else if (open_flag & (O_EXCL | O_TRUNC)) {
2889 			/* Fall back and fail with the right error */
2890 			create_error = -EROFS;
2891 			goto no_open;
2892 		} else {
2893 			/* No side effects, safe to clear O_CREAT */
2894 			create_error = -EROFS;
2895 			open_flag &= ~O_CREAT;
2896 		}
2897 	}
2898 
2899 	if (open_flag & O_CREAT) {
2900 		error = may_o_create(&nd->path, dentry, mode);
2901 		if (error) {
2902 			create_error = error;
2903 			if (open_flag & O_EXCL)
2904 				goto no_open;
2905 			open_flag &= ~O_CREAT;
2906 		}
2907 	}
2908 
2909 	if (nd->flags & LOOKUP_DIRECTORY)
2910 		open_flag |= O_DIRECTORY;
2911 
2912 	file->f_path.dentry = DENTRY_NOT_SET;
2913 	file->f_path.mnt = nd->path.mnt;
2914 	error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2915 				      opened);
2916 	if (error < 0) {
2917 		if (create_error && error == -ENOENT)
2918 			error = create_error;
2919 		goto out;
2920 	}
2921 
2922 	if (error) {	/* returned 1, that is */
2923 		if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2924 			error = -EIO;
2925 			goto out;
2926 		}
2927 		if (file->f_path.dentry) {
2928 			dput(dentry);
2929 			dentry = file->f_path.dentry;
2930 		}
2931 		if (*opened & FILE_CREATED)
2932 			fsnotify_create(dir, dentry);
2933 		if (!dentry->d_inode) {
2934 			WARN_ON(*opened & FILE_CREATED);
2935 			if (create_error) {
2936 				error = create_error;
2937 				goto out;
2938 			}
2939 		} else {
2940 			if (excl && !(*opened & FILE_CREATED)) {
2941 				error = -EEXIST;
2942 				goto out;
2943 			}
2944 		}
2945 		goto looked_up;
2946 	}
2947 
2948 	/*
2949 	 * We didn't have the inode before the open, so check open permission
2950 	 * here.
2951 	 */
2952 	acc_mode = op->acc_mode;
2953 	if (*opened & FILE_CREATED) {
2954 		WARN_ON(!(open_flag & O_CREAT));
2955 		fsnotify_create(dir, dentry);
2956 		acc_mode = 0;
2957 	}
2958 	error = may_open(&file->f_path, acc_mode, open_flag);
2959 	if (error)
2960 		fput(file);
2961 
2962 out:
2963 	dput(dentry);
2964 	return error;
2965 
2966 no_open:
2967 	if (need_lookup) {
2968 		dentry = lookup_real(dir, dentry, nd->flags);
2969 		if (IS_ERR(dentry))
2970 			return PTR_ERR(dentry);
2971 
2972 		if (create_error) {
2973 			int open_flag = op->open_flag;
2974 
2975 			error = create_error;
2976 			if ((open_flag & O_EXCL)) {
2977 				if (!dentry->d_inode)
2978 					goto out;
2979 			} else if (!dentry->d_inode) {
2980 				goto out;
2981 			} else if ((open_flag & O_TRUNC) &&
2982 				   d_is_reg(dentry)) {
2983 				goto out;
2984 			}
2985 			/* will fail later, go on to get the right error */
2986 		}
2987 	}
2988 looked_up:
2989 	path->dentry = dentry;
2990 	path->mnt = nd->path.mnt;
2991 	return 1;
2992 }
2993 
2994 /*
2995  * Look up and maybe create and open the last component.
2996  *
2997  * Must be called with i_mutex held on parent.
2998  *
2999  * Returns 0 if the file was successfully atomically created (if necessary) and
3000  * opened.  In this case the file will be returned attached to @file.
3001  *
3002  * Returns 1 if the file was not completely opened at this time, though lookups
3003  * and creations will have been performed and the dentry returned in @path will
3004  * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
3005  * specified then a negative dentry may be returned.
3006  *
3007  * An error code is returned otherwise.
3008  *
3009  * FILE_CREATE will be set in @*opened if the dentry was created and will be
3010  * cleared otherwise prior to returning.
3011  */
3012 static int lookup_open(struct nameidata *nd, struct path *path,
3013 			struct file *file,
3014 			const struct open_flags *op,
3015 			bool got_write, int *opened)
3016 {
3017 	struct dentry *dir = nd->path.dentry;
3018 	struct inode *dir_inode = dir->d_inode;
3019 	struct dentry *dentry;
3020 	int error;
3021 	bool need_lookup;
3022 
3023 	*opened &= ~FILE_CREATED;
3024 	dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
3025 	if (IS_ERR(dentry))
3026 		return PTR_ERR(dentry);
3027 
3028 	/* Cached positive dentry: will open in f_op->open */
3029 	if (!need_lookup && dentry->d_inode)
3030 		goto out_no_open;
3031 
3032 	if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
3033 		return atomic_open(nd, dentry, path, file, op, got_write,
3034 				   need_lookup, opened);
3035 	}
3036 
3037 	if (need_lookup) {
3038 		BUG_ON(dentry->d_inode);
3039 
3040 		dentry = lookup_real(dir_inode, dentry, nd->flags);
3041 		if (IS_ERR(dentry))
3042 			return PTR_ERR(dentry);
3043 	}
3044 
3045 	/* Negative dentry, just create the file */
3046 	if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
3047 		umode_t mode = op->mode;
3048 		if (!IS_POSIXACL(dir->d_inode))
3049 			mode &= ~current_umask();
3050 		/*
3051 		 * This write is needed to ensure that a
3052 		 * rw->ro transition does not occur between
3053 		 * the time when the file is created and when
3054 		 * a permanent write count is taken through
3055 		 * the 'struct file' in finish_open().
3056 		 */
3057 		if (!got_write) {
3058 			error = -EROFS;
3059 			goto out_dput;
3060 		}
3061 		*opened |= FILE_CREATED;
3062 		error = security_path_mknod(&nd->path, dentry, mode, 0);
3063 		if (error)
3064 			goto out_dput;
3065 		error = vfs_create(dir->d_inode, dentry, mode,
3066 				   nd->flags & LOOKUP_EXCL);
3067 		if (error)
3068 			goto out_dput;
3069 	}
3070 out_no_open:
3071 	path->dentry = dentry;
3072 	path->mnt = nd->path.mnt;
3073 	return 1;
3074 
3075 out_dput:
3076 	dput(dentry);
3077 	return error;
3078 }
3079 
3080 /*
3081  * Handle the last step of open()
3082  */
3083 static int do_last(struct nameidata *nd,
3084 		   struct file *file, const struct open_flags *op,
3085 		   int *opened)
3086 {
3087 	struct dentry *dir = nd->path.dentry;
3088 	int open_flag = op->open_flag;
3089 	bool will_truncate = (open_flag & O_TRUNC) != 0;
3090 	bool got_write = false;
3091 	int acc_mode = op->acc_mode;
3092 	unsigned seq;
3093 	struct inode *inode;
3094 	struct path save_parent = { .dentry = NULL, .mnt = NULL };
3095 	struct path path;
3096 	bool retried = false;
3097 	int error;
3098 
3099 	nd->flags &= ~LOOKUP_PARENT;
3100 	nd->flags |= op->intent;
3101 
3102 	if (nd->last_type != LAST_NORM) {
3103 		error = handle_dots(nd, nd->last_type);
3104 		if (unlikely(error))
3105 			return error;
3106 		goto finish_open;
3107 	}
3108 
3109 	if (!(open_flag & O_CREAT)) {
3110 		if (nd->last.name[nd->last.len])
3111 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3112 		/* we _can_ be in RCU mode here */
3113 		error = lookup_fast(nd, &path, &inode, &seq);
3114 		if (likely(!error))
3115 			goto finish_lookup;
3116 
3117 		if (error < 0)
3118 			return error;
3119 
3120 		BUG_ON(nd->inode != dir->d_inode);
3121 	} else {
3122 		/* create side of things */
3123 		/*
3124 		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3125 		 * has been cleared when we got to the last component we are
3126 		 * about to look up
3127 		 */
3128 		error = complete_walk(nd);
3129 		if (error)
3130 			return error;
3131 
3132 		audit_inode(nd->name, dir, LOOKUP_PARENT);
3133 		/* trailing slashes? */
3134 		if (unlikely(nd->last.name[nd->last.len]))
3135 			return -EISDIR;
3136 	}
3137 
3138 retry_lookup:
3139 	if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3140 		error = mnt_want_write(nd->path.mnt);
3141 		if (!error)
3142 			got_write = true;
3143 		/*
3144 		 * do _not_ fail yet - we might not need that or fail with
3145 		 * a different error; let lookup_open() decide; we'll be
3146 		 * dropping this one anyway.
3147 		 */
3148 	}
3149 	inode_lock(dir->d_inode);
3150 	error = lookup_open(nd, &path, file, op, got_write, opened);
3151 	inode_unlock(dir->d_inode);
3152 
3153 	if (error <= 0) {
3154 		if (error)
3155 			goto out;
3156 
3157 		if ((*opened & FILE_CREATED) ||
3158 		    !S_ISREG(file_inode(file)->i_mode))
3159 			will_truncate = false;
3160 
3161 		audit_inode(nd->name, file->f_path.dentry, 0);
3162 		goto opened;
3163 	}
3164 
3165 	if (*opened & FILE_CREATED) {
3166 		/* Don't check for write permission, don't truncate */
3167 		open_flag &= ~O_TRUNC;
3168 		will_truncate = false;
3169 		acc_mode = 0;
3170 		path_to_nameidata(&path, nd);
3171 		goto finish_open_created;
3172 	}
3173 
3174 	/*
3175 	 * create/update audit record if it already exists.
3176 	 */
3177 	if (d_is_positive(path.dentry))
3178 		audit_inode(nd->name, path.dentry, 0);
3179 
3180 	/*
3181 	 * If atomic_open() acquired write access it is dropped now due to
3182 	 * possible mount and symlink following (this might be optimized away if
3183 	 * necessary...)
3184 	 */
3185 	if (got_write) {
3186 		mnt_drop_write(nd->path.mnt);
3187 		got_write = false;
3188 	}
3189 
3190 	if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3191 		path_to_nameidata(&path, nd);
3192 		return -EEXIST;
3193 	}
3194 
3195 	error = follow_managed(&path, nd);
3196 	if (unlikely(error < 0))
3197 		return error;
3198 
3199 	BUG_ON(nd->flags & LOOKUP_RCU);
3200 	seq = 0;	/* out of RCU mode, so the value doesn't matter */
3201 	if (unlikely(d_is_negative(path.dentry))) {
3202 		path_to_nameidata(&path, nd);
3203 		return -ENOENT;
3204 	}
3205 	inode = d_backing_inode(path.dentry);
3206 finish_lookup:
3207 	if (nd->depth)
3208 		put_link(nd);
3209 	error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW,
3210 				   inode, seq);
3211 	if (unlikely(error))
3212 		return error;
3213 
3214 	if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) {
3215 		path_to_nameidata(&path, nd);
3216 	} else {
3217 		save_parent.dentry = nd->path.dentry;
3218 		save_parent.mnt = mntget(path.mnt);
3219 		nd->path.dentry = path.dentry;
3220 
3221 	}
3222 	nd->inode = inode;
3223 	nd->seq = seq;
3224 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3225 finish_open:
3226 	error = complete_walk(nd);
3227 	if (error) {
3228 		path_put(&save_parent);
3229 		return error;
3230 	}
3231 	audit_inode(nd->name, nd->path.dentry, 0);
3232 	if (unlikely(d_is_symlink(nd->path.dentry)) && !(open_flag & O_PATH)) {
3233 		error = -ELOOP;
3234 		goto out;
3235 	}
3236 	error = -EISDIR;
3237 	if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3238 		goto out;
3239 	error = -ENOTDIR;
3240 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3241 		goto out;
3242 	if (!d_is_reg(nd->path.dentry))
3243 		will_truncate = false;
3244 
3245 	if (will_truncate) {
3246 		error = mnt_want_write(nd->path.mnt);
3247 		if (error)
3248 			goto out;
3249 		got_write = true;
3250 	}
3251 finish_open_created:
3252 	if (likely(!(open_flag & O_PATH))) {
3253 		error = may_open(&nd->path, acc_mode, open_flag);
3254 		if (error)
3255 			goto out;
3256 	}
3257 	BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3258 	error = vfs_open(&nd->path, file, current_cred());
3259 	if (!error) {
3260 		*opened |= FILE_OPENED;
3261 	} else {
3262 		if (error == -EOPENSTALE)
3263 			goto stale_open;
3264 		goto out;
3265 	}
3266 opened:
3267 	error = open_check_o_direct(file);
3268 	if (error)
3269 		goto exit_fput;
3270 	error = ima_file_check(file, op->acc_mode, *opened);
3271 	if (error)
3272 		goto exit_fput;
3273 
3274 	if (will_truncate) {
3275 		error = handle_truncate(file);
3276 		if (error)
3277 			goto exit_fput;
3278 	}
3279 out:
3280 	if (unlikely(error > 0)) {
3281 		WARN_ON(1);
3282 		error = -EINVAL;
3283 	}
3284 	if (got_write)
3285 		mnt_drop_write(nd->path.mnt);
3286 	path_put(&save_parent);
3287 	return error;
3288 
3289 exit_fput:
3290 	fput(file);
3291 	goto out;
3292 
3293 stale_open:
3294 	/* If no saved parent or already retried then can't retry */
3295 	if (!save_parent.dentry || retried)
3296 		goto out;
3297 
3298 	BUG_ON(save_parent.dentry != dir);
3299 	path_put(&nd->path);
3300 	nd->path = save_parent;
3301 	nd->inode = dir->d_inode;
3302 	save_parent.mnt = NULL;
3303 	save_parent.dentry = NULL;
3304 	if (got_write) {
3305 		mnt_drop_write(nd->path.mnt);
3306 		got_write = false;
3307 	}
3308 	retried = true;
3309 	goto retry_lookup;
3310 }
3311 
3312 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3313 		const struct open_flags *op,
3314 		struct file *file, int *opened)
3315 {
3316 	static const struct qstr name = QSTR_INIT("/", 1);
3317 	struct dentry *child;
3318 	struct inode *dir;
3319 	struct path path;
3320 	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3321 	if (unlikely(error))
3322 		return error;
3323 	error = mnt_want_write(path.mnt);
3324 	if (unlikely(error))
3325 		goto out;
3326 	dir = path.dentry->d_inode;
3327 	/* we want directory to be writable */
3328 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3329 	if (error)
3330 		goto out2;
3331 	if (!dir->i_op->tmpfile) {
3332 		error = -EOPNOTSUPP;
3333 		goto out2;
3334 	}
3335 	child = d_alloc(path.dentry, &name);
3336 	if (unlikely(!child)) {
3337 		error = -ENOMEM;
3338 		goto out2;
3339 	}
3340 	dput(path.dentry);
3341 	path.dentry = child;
3342 	error = dir->i_op->tmpfile(dir, child, op->mode);
3343 	if (error)
3344 		goto out2;
3345 	audit_inode(nd->name, child, 0);
3346 	/* Don't check for other permissions, the inode was just created */
3347 	error = may_open(&path, 0, op->open_flag);
3348 	if (error)
3349 		goto out2;
3350 	file->f_path.mnt = path.mnt;
3351 	error = finish_open(file, child, NULL, opened);
3352 	if (error)
3353 		goto out2;
3354 	error = open_check_o_direct(file);
3355 	if (error) {
3356 		fput(file);
3357 	} else if (!(op->open_flag & O_EXCL)) {
3358 		struct inode *inode = file_inode(file);
3359 		spin_lock(&inode->i_lock);
3360 		inode->i_state |= I_LINKABLE;
3361 		spin_unlock(&inode->i_lock);
3362 	}
3363 out2:
3364 	mnt_drop_write(path.mnt);
3365 out:
3366 	path_put(&path);
3367 	return error;
3368 }
3369 
3370 static struct file *path_openat(struct nameidata *nd,
3371 			const struct open_flags *op, unsigned flags)
3372 {
3373 	const char *s;
3374 	struct file *file;
3375 	int opened = 0;
3376 	int error;
3377 
3378 	file = get_empty_filp();
3379 	if (IS_ERR(file))
3380 		return file;
3381 
3382 	file->f_flags = op->open_flag;
3383 
3384 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3385 		error = do_tmpfile(nd, flags, op, file, &opened);
3386 		goto out2;
3387 	}
3388 
3389 	s = path_init(nd, flags);
3390 	if (IS_ERR(s)) {
3391 		put_filp(file);
3392 		return ERR_CAST(s);
3393 	}
3394 	while (!(error = link_path_walk(s, nd)) &&
3395 		(error = do_last(nd, file, op, &opened)) > 0) {
3396 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3397 		s = trailing_symlink(nd);
3398 		if (IS_ERR(s)) {
3399 			error = PTR_ERR(s);
3400 			break;
3401 		}
3402 	}
3403 	terminate_walk(nd);
3404 out2:
3405 	if (!(opened & FILE_OPENED)) {
3406 		BUG_ON(!error);
3407 		put_filp(file);
3408 	}
3409 	if (unlikely(error)) {
3410 		if (error == -EOPENSTALE) {
3411 			if (flags & LOOKUP_RCU)
3412 				error = -ECHILD;
3413 			else
3414 				error = -ESTALE;
3415 		}
3416 		file = ERR_PTR(error);
3417 	}
3418 	return file;
3419 }
3420 
3421 struct file *do_filp_open(int dfd, struct filename *pathname,
3422 		const struct open_flags *op)
3423 {
3424 	struct nameidata nd;
3425 	int flags = op->lookup_flags;
3426 	struct file *filp;
3427 
3428 	set_nameidata(&nd, dfd, pathname);
3429 	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3430 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3431 		filp = path_openat(&nd, op, flags);
3432 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3433 		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3434 	restore_nameidata();
3435 	return filp;
3436 }
3437 
3438 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3439 		const char *name, const struct open_flags *op)
3440 {
3441 	struct nameidata nd;
3442 	struct file *file;
3443 	struct filename *filename;
3444 	int flags = op->lookup_flags | LOOKUP_ROOT;
3445 
3446 	nd.root.mnt = mnt;
3447 	nd.root.dentry = dentry;
3448 
3449 	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3450 		return ERR_PTR(-ELOOP);
3451 
3452 	filename = getname_kernel(name);
3453 	if (IS_ERR(filename))
3454 		return ERR_CAST(filename);
3455 
3456 	set_nameidata(&nd, -1, filename);
3457 	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3458 	if (unlikely(file == ERR_PTR(-ECHILD)))
3459 		file = path_openat(&nd, op, flags);
3460 	if (unlikely(file == ERR_PTR(-ESTALE)))
3461 		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3462 	restore_nameidata();
3463 	putname(filename);
3464 	return file;
3465 }
3466 
3467 static struct dentry *filename_create(int dfd, struct filename *name,
3468 				struct path *path, unsigned int lookup_flags)
3469 {
3470 	struct dentry *dentry = ERR_PTR(-EEXIST);
3471 	struct qstr last;
3472 	int type;
3473 	int err2;
3474 	int error;
3475 	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3476 
3477 	/*
3478 	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3479 	 * other flags passed in are ignored!
3480 	 */
3481 	lookup_flags &= LOOKUP_REVAL;
3482 
3483 	name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3484 	if (IS_ERR(name))
3485 		return ERR_CAST(name);
3486 
3487 	/*
3488 	 * Yucky last component or no last component at all?
3489 	 * (foo/., foo/.., /////)
3490 	 */
3491 	if (unlikely(type != LAST_NORM))
3492 		goto out;
3493 
3494 	/* don't fail immediately if it's r/o, at least try to report other errors */
3495 	err2 = mnt_want_write(path->mnt);
3496 	/*
3497 	 * Do the final lookup.
3498 	 */
3499 	lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3500 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3501 	dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3502 	if (IS_ERR(dentry))
3503 		goto unlock;
3504 
3505 	error = -EEXIST;
3506 	if (d_is_positive(dentry))
3507 		goto fail;
3508 
3509 	/*
3510 	 * Special case - lookup gave negative, but... we had foo/bar/
3511 	 * From the vfs_mknod() POV we just have a negative dentry -
3512 	 * all is fine. Let's be bastards - you had / on the end, you've
3513 	 * been asking for (non-existent) directory. -ENOENT for you.
3514 	 */
3515 	if (unlikely(!is_dir && last.name[last.len])) {
3516 		error = -ENOENT;
3517 		goto fail;
3518 	}
3519 	if (unlikely(err2)) {
3520 		error = err2;
3521 		goto fail;
3522 	}
3523 	putname(name);
3524 	return dentry;
3525 fail:
3526 	dput(dentry);
3527 	dentry = ERR_PTR(error);
3528 unlock:
3529 	inode_unlock(path->dentry->d_inode);
3530 	if (!err2)
3531 		mnt_drop_write(path->mnt);
3532 out:
3533 	path_put(path);
3534 	putname(name);
3535 	return dentry;
3536 }
3537 
3538 struct dentry *kern_path_create(int dfd, const char *pathname,
3539 				struct path *path, unsigned int lookup_flags)
3540 {
3541 	return filename_create(dfd, getname_kernel(pathname),
3542 				path, lookup_flags);
3543 }
3544 EXPORT_SYMBOL(kern_path_create);
3545 
3546 void done_path_create(struct path *path, struct dentry *dentry)
3547 {
3548 	dput(dentry);
3549 	inode_unlock(path->dentry->d_inode);
3550 	mnt_drop_write(path->mnt);
3551 	path_put(path);
3552 }
3553 EXPORT_SYMBOL(done_path_create);
3554 
3555 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3556 				struct path *path, unsigned int lookup_flags)
3557 {
3558 	return filename_create(dfd, getname(pathname), path, lookup_flags);
3559 }
3560 EXPORT_SYMBOL(user_path_create);
3561 
3562 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3563 {
3564 	int error = may_create(dir, dentry);
3565 
3566 	if (error)
3567 		return error;
3568 
3569 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3570 		return -EPERM;
3571 
3572 	if (!dir->i_op->mknod)
3573 		return -EPERM;
3574 
3575 	error = devcgroup_inode_mknod(mode, dev);
3576 	if (error)
3577 		return error;
3578 
3579 	error = security_inode_mknod(dir, dentry, mode, dev);
3580 	if (error)
3581 		return error;
3582 
3583 	error = dir->i_op->mknod(dir, dentry, mode, dev);
3584 	if (!error)
3585 		fsnotify_create(dir, dentry);
3586 	return error;
3587 }
3588 EXPORT_SYMBOL(vfs_mknod);
3589 
3590 static int may_mknod(umode_t mode)
3591 {
3592 	switch (mode & S_IFMT) {
3593 	case S_IFREG:
3594 	case S_IFCHR:
3595 	case S_IFBLK:
3596 	case S_IFIFO:
3597 	case S_IFSOCK:
3598 	case 0: /* zero mode translates to S_IFREG */
3599 		return 0;
3600 	case S_IFDIR:
3601 		return -EPERM;
3602 	default:
3603 		return -EINVAL;
3604 	}
3605 }
3606 
3607 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3608 		unsigned, dev)
3609 {
3610 	struct dentry *dentry;
3611 	struct path path;
3612 	int error;
3613 	unsigned int lookup_flags = 0;
3614 
3615 	error = may_mknod(mode);
3616 	if (error)
3617 		return error;
3618 retry:
3619 	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3620 	if (IS_ERR(dentry))
3621 		return PTR_ERR(dentry);
3622 
3623 	if (!IS_POSIXACL(path.dentry->d_inode))
3624 		mode &= ~current_umask();
3625 	error = security_path_mknod(&path, dentry, mode, dev);
3626 	if (error)
3627 		goto out;
3628 	switch (mode & S_IFMT) {
3629 		case 0: case S_IFREG:
3630 			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3631 			break;
3632 		case S_IFCHR: case S_IFBLK:
3633 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3634 					new_decode_dev(dev));
3635 			break;
3636 		case S_IFIFO: case S_IFSOCK:
3637 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3638 			break;
3639 	}
3640 out:
3641 	done_path_create(&path, dentry);
3642 	if (retry_estale(error, lookup_flags)) {
3643 		lookup_flags |= LOOKUP_REVAL;
3644 		goto retry;
3645 	}
3646 	return error;
3647 }
3648 
3649 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3650 {
3651 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
3652 }
3653 
3654 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3655 {
3656 	int error = may_create(dir, dentry);
3657 	unsigned max_links = dir->i_sb->s_max_links;
3658 
3659 	if (error)
3660 		return error;
3661 
3662 	if (!dir->i_op->mkdir)
3663 		return -EPERM;
3664 
3665 	mode &= (S_IRWXUGO|S_ISVTX);
3666 	error = security_inode_mkdir(dir, dentry, mode);
3667 	if (error)
3668 		return error;
3669 
3670 	if (max_links && dir->i_nlink >= max_links)
3671 		return -EMLINK;
3672 
3673 	error = dir->i_op->mkdir(dir, dentry, mode);
3674 	if (!error)
3675 		fsnotify_mkdir(dir, dentry);
3676 	return error;
3677 }
3678 EXPORT_SYMBOL(vfs_mkdir);
3679 
3680 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3681 {
3682 	struct dentry *dentry;
3683 	struct path path;
3684 	int error;
3685 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3686 
3687 retry:
3688 	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3689 	if (IS_ERR(dentry))
3690 		return PTR_ERR(dentry);
3691 
3692 	if (!IS_POSIXACL(path.dentry->d_inode))
3693 		mode &= ~current_umask();
3694 	error = security_path_mkdir(&path, dentry, mode);
3695 	if (!error)
3696 		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3697 	done_path_create(&path, dentry);
3698 	if (retry_estale(error, lookup_flags)) {
3699 		lookup_flags |= LOOKUP_REVAL;
3700 		goto retry;
3701 	}
3702 	return error;
3703 }
3704 
3705 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3706 {
3707 	return sys_mkdirat(AT_FDCWD, pathname, mode);
3708 }
3709 
3710 /*
3711  * The dentry_unhash() helper will try to drop the dentry early: we
3712  * should have a usage count of 1 if we're the only user of this
3713  * dentry, and if that is true (possibly after pruning the dcache),
3714  * then we drop the dentry now.
3715  *
3716  * A low-level filesystem can, if it choses, legally
3717  * do a
3718  *
3719  *	if (!d_unhashed(dentry))
3720  *		return -EBUSY;
3721  *
3722  * if it cannot handle the case of removing a directory
3723  * that is still in use by something else..
3724  */
3725 void dentry_unhash(struct dentry *dentry)
3726 {
3727 	shrink_dcache_parent(dentry);
3728 	spin_lock(&dentry->d_lock);
3729 	if (dentry->d_lockref.count == 1)
3730 		__d_drop(dentry);
3731 	spin_unlock(&dentry->d_lock);
3732 }
3733 EXPORT_SYMBOL(dentry_unhash);
3734 
3735 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3736 {
3737 	int error = may_delete(dir, dentry, 1);
3738 
3739 	if (error)
3740 		return error;
3741 
3742 	if (!dir->i_op->rmdir)
3743 		return -EPERM;
3744 
3745 	dget(dentry);
3746 	inode_lock(dentry->d_inode);
3747 
3748 	error = -EBUSY;
3749 	if (is_local_mountpoint(dentry))
3750 		goto out;
3751 
3752 	error = security_inode_rmdir(dir, dentry);
3753 	if (error)
3754 		goto out;
3755 
3756 	shrink_dcache_parent(dentry);
3757 	error = dir->i_op->rmdir(dir, dentry);
3758 	if (error)
3759 		goto out;
3760 
3761 	dentry->d_inode->i_flags |= S_DEAD;
3762 	dont_mount(dentry);
3763 	detach_mounts(dentry);
3764 
3765 out:
3766 	inode_unlock(dentry->d_inode);
3767 	dput(dentry);
3768 	if (!error)
3769 		d_delete(dentry);
3770 	return error;
3771 }
3772 EXPORT_SYMBOL(vfs_rmdir);
3773 
3774 static long do_rmdir(int dfd, const char __user *pathname)
3775 {
3776 	int error = 0;
3777 	struct filename *name;
3778 	struct dentry *dentry;
3779 	struct path path;
3780 	struct qstr last;
3781 	int type;
3782 	unsigned int lookup_flags = 0;
3783 retry:
3784 	name = user_path_parent(dfd, pathname,
3785 				&path, &last, &type, lookup_flags);
3786 	if (IS_ERR(name))
3787 		return PTR_ERR(name);
3788 
3789 	switch (type) {
3790 	case LAST_DOTDOT:
3791 		error = -ENOTEMPTY;
3792 		goto exit1;
3793 	case LAST_DOT:
3794 		error = -EINVAL;
3795 		goto exit1;
3796 	case LAST_ROOT:
3797 		error = -EBUSY;
3798 		goto exit1;
3799 	}
3800 
3801 	error = mnt_want_write(path.mnt);
3802 	if (error)
3803 		goto exit1;
3804 
3805 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3806 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3807 	error = PTR_ERR(dentry);
3808 	if (IS_ERR(dentry))
3809 		goto exit2;
3810 	if (!dentry->d_inode) {
3811 		error = -ENOENT;
3812 		goto exit3;
3813 	}
3814 	error = security_path_rmdir(&path, dentry);
3815 	if (error)
3816 		goto exit3;
3817 	error = vfs_rmdir(path.dentry->d_inode, dentry);
3818 exit3:
3819 	dput(dentry);
3820 exit2:
3821 	inode_unlock(path.dentry->d_inode);
3822 	mnt_drop_write(path.mnt);
3823 exit1:
3824 	path_put(&path);
3825 	putname(name);
3826 	if (retry_estale(error, lookup_flags)) {
3827 		lookup_flags |= LOOKUP_REVAL;
3828 		goto retry;
3829 	}
3830 	return error;
3831 }
3832 
3833 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3834 {
3835 	return do_rmdir(AT_FDCWD, pathname);
3836 }
3837 
3838 /**
3839  * vfs_unlink - unlink a filesystem object
3840  * @dir:	parent directory
3841  * @dentry:	victim
3842  * @delegated_inode: returns victim inode, if the inode is delegated.
3843  *
3844  * The caller must hold dir->i_mutex.
3845  *
3846  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3847  * return a reference to the inode in delegated_inode.  The caller
3848  * should then break the delegation on that inode and retry.  Because
3849  * breaking a delegation may take a long time, the caller should drop
3850  * dir->i_mutex before doing so.
3851  *
3852  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3853  * be appropriate for callers that expect the underlying filesystem not
3854  * to be NFS exported.
3855  */
3856 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3857 {
3858 	struct inode *target = dentry->d_inode;
3859 	int error = may_delete(dir, dentry, 0);
3860 
3861 	if (error)
3862 		return error;
3863 
3864 	if (!dir->i_op->unlink)
3865 		return -EPERM;
3866 
3867 	inode_lock(target);
3868 	if (is_local_mountpoint(dentry))
3869 		error = -EBUSY;
3870 	else {
3871 		error = security_inode_unlink(dir, dentry);
3872 		if (!error) {
3873 			error = try_break_deleg(target, delegated_inode);
3874 			if (error)
3875 				goto out;
3876 			error = dir->i_op->unlink(dir, dentry);
3877 			if (!error) {
3878 				dont_mount(dentry);
3879 				detach_mounts(dentry);
3880 			}
3881 		}
3882 	}
3883 out:
3884 	inode_unlock(target);
3885 
3886 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
3887 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3888 		fsnotify_link_count(target);
3889 		d_delete(dentry);
3890 	}
3891 
3892 	return error;
3893 }
3894 EXPORT_SYMBOL(vfs_unlink);
3895 
3896 /*
3897  * Make sure that the actual truncation of the file will occur outside its
3898  * directory's i_mutex.  Truncate can take a long time if there is a lot of
3899  * writeout happening, and we don't want to prevent access to the directory
3900  * while waiting on the I/O.
3901  */
3902 static long do_unlinkat(int dfd, const char __user *pathname)
3903 {
3904 	int error;
3905 	struct filename *name;
3906 	struct dentry *dentry;
3907 	struct path path;
3908 	struct qstr last;
3909 	int type;
3910 	struct inode *inode = NULL;
3911 	struct inode *delegated_inode = NULL;
3912 	unsigned int lookup_flags = 0;
3913 retry:
3914 	name = user_path_parent(dfd, pathname,
3915 				&path, &last, &type, lookup_flags);
3916 	if (IS_ERR(name))
3917 		return PTR_ERR(name);
3918 
3919 	error = -EISDIR;
3920 	if (type != LAST_NORM)
3921 		goto exit1;
3922 
3923 	error = mnt_want_write(path.mnt);
3924 	if (error)
3925 		goto exit1;
3926 retry_deleg:
3927 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3928 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3929 	error = PTR_ERR(dentry);
3930 	if (!IS_ERR(dentry)) {
3931 		/* Why not before? Because we want correct error value */
3932 		if (last.name[last.len])
3933 			goto slashes;
3934 		inode = dentry->d_inode;
3935 		if (d_is_negative(dentry))
3936 			goto slashes;
3937 		ihold(inode);
3938 		error = security_path_unlink(&path, dentry);
3939 		if (error)
3940 			goto exit2;
3941 		error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3942 exit2:
3943 		dput(dentry);
3944 	}
3945 	inode_unlock(path.dentry->d_inode);
3946 	if (inode)
3947 		iput(inode);	/* truncate the inode here */
3948 	inode = NULL;
3949 	if (delegated_inode) {
3950 		error = break_deleg_wait(&delegated_inode);
3951 		if (!error)
3952 			goto retry_deleg;
3953 	}
3954 	mnt_drop_write(path.mnt);
3955 exit1:
3956 	path_put(&path);
3957 	putname(name);
3958 	if (retry_estale(error, lookup_flags)) {
3959 		lookup_flags |= LOOKUP_REVAL;
3960 		inode = NULL;
3961 		goto retry;
3962 	}
3963 	return error;
3964 
3965 slashes:
3966 	if (d_is_negative(dentry))
3967 		error = -ENOENT;
3968 	else if (d_is_dir(dentry))
3969 		error = -EISDIR;
3970 	else
3971 		error = -ENOTDIR;
3972 	goto exit2;
3973 }
3974 
3975 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3976 {
3977 	if ((flag & ~AT_REMOVEDIR) != 0)
3978 		return -EINVAL;
3979 
3980 	if (flag & AT_REMOVEDIR)
3981 		return do_rmdir(dfd, pathname);
3982 
3983 	return do_unlinkat(dfd, pathname);
3984 }
3985 
3986 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3987 {
3988 	return do_unlinkat(AT_FDCWD, pathname);
3989 }
3990 
3991 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3992 {
3993 	int error = may_create(dir, dentry);
3994 
3995 	if (error)
3996 		return error;
3997 
3998 	if (!dir->i_op->symlink)
3999 		return -EPERM;
4000 
4001 	error = security_inode_symlink(dir, dentry, oldname);
4002 	if (error)
4003 		return error;
4004 
4005 	error = dir->i_op->symlink(dir, dentry, oldname);
4006 	if (!error)
4007 		fsnotify_create(dir, dentry);
4008 	return error;
4009 }
4010 EXPORT_SYMBOL(vfs_symlink);
4011 
4012 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4013 		int, newdfd, const char __user *, newname)
4014 {
4015 	int error;
4016 	struct filename *from;
4017 	struct dentry *dentry;
4018 	struct path path;
4019 	unsigned int lookup_flags = 0;
4020 
4021 	from = getname(oldname);
4022 	if (IS_ERR(from))
4023 		return PTR_ERR(from);
4024 retry:
4025 	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4026 	error = PTR_ERR(dentry);
4027 	if (IS_ERR(dentry))
4028 		goto out_putname;
4029 
4030 	error = security_path_symlink(&path, dentry, from->name);
4031 	if (!error)
4032 		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4033 	done_path_create(&path, dentry);
4034 	if (retry_estale(error, lookup_flags)) {
4035 		lookup_flags |= LOOKUP_REVAL;
4036 		goto retry;
4037 	}
4038 out_putname:
4039 	putname(from);
4040 	return error;
4041 }
4042 
4043 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4044 {
4045 	return sys_symlinkat(oldname, AT_FDCWD, newname);
4046 }
4047 
4048 /**
4049  * vfs_link - create a new link
4050  * @old_dentry:	object to be linked
4051  * @dir:	new parent
4052  * @new_dentry:	where to create the new link
4053  * @delegated_inode: returns inode needing a delegation break
4054  *
4055  * The caller must hold dir->i_mutex
4056  *
4057  * If vfs_link discovers a delegation on the to-be-linked file in need
4058  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4059  * inode in delegated_inode.  The caller should then break the delegation
4060  * and retry.  Because breaking a delegation may take a long time, the
4061  * caller should drop the i_mutex before doing so.
4062  *
4063  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4064  * be appropriate for callers that expect the underlying filesystem not
4065  * to be NFS exported.
4066  */
4067 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4068 {
4069 	struct inode *inode = old_dentry->d_inode;
4070 	unsigned max_links = dir->i_sb->s_max_links;
4071 	int error;
4072 
4073 	if (!inode)
4074 		return -ENOENT;
4075 
4076 	error = may_create(dir, new_dentry);
4077 	if (error)
4078 		return error;
4079 
4080 	if (dir->i_sb != inode->i_sb)
4081 		return -EXDEV;
4082 
4083 	/*
4084 	 * A link to an append-only or immutable file cannot be created.
4085 	 */
4086 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4087 		return -EPERM;
4088 	if (!dir->i_op->link)
4089 		return -EPERM;
4090 	if (S_ISDIR(inode->i_mode))
4091 		return -EPERM;
4092 
4093 	error = security_inode_link(old_dentry, dir, new_dentry);
4094 	if (error)
4095 		return error;
4096 
4097 	inode_lock(inode);
4098 	/* Make sure we don't allow creating hardlink to an unlinked file */
4099 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4100 		error =  -ENOENT;
4101 	else if (max_links && inode->i_nlink >= max_links)
4102 		error = -EMLINK;
4103 	else {
4104 		error = try_break_deleg(inode, delegated_inode);
4105 		if (!error)
4106 			error = dir->i_op->link(old_dentry, dir, new_dentry);
4107 	}
4108 
4109 	if (!error && (inode->i_state & I_LINKABLE)) {
4110 		spin_lock(&inode->i_lock);
4111 		inode->i_state &= ~I_LINKABLE;
4112 		spin_unlock(&inode->i_lock);
4113 	}
4114 	inode_unlock(inode);
4115 	if (!error)
4116 		fsnotify_link(dir, inode, new_dentry);
4117 	return error;
4118 }
4119 EXPORT_SYMBOL(vfs_link);
4120 
4121 /*
4122  * Hardlinks are often used in delicate situations.  We avoid
4123  * security-related surprises by not following symlinks on the
4124  * newname.  --KAB
4125  *
4126  * We don't follow them on the oldname either to be compatible
4127  * with linux 2.0, and to avoid hard-linking to directories
4128  * and other special files.  --ADM
4129  */
4130 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4131 		int, newdfd, const char __user *, newname, int, flags)
4132 {
4133 	struct dentry *new_dentry;
4134 	struct path old_path, new_path;
4135 	struct inode *delegated_inode = NULL;
4136 	int how = 0;
4137 	int error;
4138 
4139 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4140 		return -EINVAL;
4141 	/*
4142 	 * To use null names we require CAP_DAC_READ_SEARCH
4143 	 * This ensures that not everyone will be able to create
4144 	 * handlink using the passed filedescriptor.
4145 	 */
4146 	if (flags & AT_EMPTY_PATH) {
4147 		if (!capable(CAP_DAC_READ_SEARCH))
4148 			return -ENOENT;
4149 		how = LOOKUP_EMPTY;
4150 	}
4151 
4152 	if (flags & AT_SYMLINK_FOLLOW)
4153 		how |= LOOKUP_FOLLOW;
4154 retry:
4155 	error = user_path_at(olddfd, oldname, how, &old_path);
4156 	if (error)
4157 		return error;
4158 
4159 	new_dentry = user_path_create(newdfd, newname, &new_path,
4160 					(how & LOOKUP_REVAL));
4161 	error = PTR_ERR(new_dentry);
4162 	if (IS_ERR(new_dentry))
4163 		goto out;
4164 
4165 	error = -EXDEV;
4166 	if (old_path.mnt != new_path.mnt)
4167 		goto out_dput;
4168 	error = may_linkat(&old_path);
4169 	if (unlikely(error))
4170 		goto out_dput;
4171 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4172 	if (error)
4173 		goto out_dput;
4174 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4175 out_dput:
4176 	done_path_create(&new_path, new_dentry);
4177 	if (delegated_inode) {
4178 		error = break_deleg_wait(&delegated_inode);
4179 		if (!error) {
4180 			path_put(&old_path);
4181 			goto retry;
4182 		}
4183 	}
4184 	if (retry_estale(error, how)) {
4185 		path_put(&old_path);
4186 		how |= LOOKUP_REVAL;
4187 		goto retry;
4188 	}
4189 out:
4190 	path_put(&old_path);
4191 
4192 	return error;
4193 }
4194 
4195 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4196 {
4197 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4198 }
4199 
4200 /**
4201  * vfs_rename - rename a filesystem object
4202  * @old_dir:	parent of source
4203  * @old_dentry:	source
4204  * @new_dir:	parent of destination
4205  * @new_dentry:	destination
4206  * @delegated_inode: returns an inode needing a delegation break
4207  * @flags:	rename flags
4208  *
4209  * The caller must hold multiple mutexes--see lock_rename()).
4210  *
4211  * If vfs_rename discovers a delegation in need of breaking at either
4212  * the source or destination, it will return -EWOULDBLOCK and return a
4213  * reference to the inode in delegated_inode.  The caller should then
4214  * break the delegation and retry.  Because breaking a delegation may
4215  * take a long time, the caller should drop all locks before doing
4216  * so.
4217  *
4218  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4219  * be appropriate for callers that expect the underlying filesystem not
4220  * to be NFS exported.
4221  *
4222  * The worst of all namespace operations - renaming directory. "Perverted"
4223  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4224  * Problems:
4225  *	a) we can get into loop creation.
4226  *	b) race potential - two innocent renames can create a loop together.
4227  *	   That's where 4.4 screws up. Current fix: serialization on
4228  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4229  *	   story.
4230  *	c) we have to lock _four_ objects - parents and victim (if it exists),
4231  *	   and source (if it is not a directory).
4232  *	   And that - after we got ->i_mutex on parents (until then we don't know
4233  *	   whether the target exists).  Solution: try to be smart with locking
4234  *	   order for inodes.  We rely on the fact that tree topology may change
4235  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4236  *	   move will be locked.  Thus we can rank directories by the tree
4237  *	   (ancestors first) and rank all non-directories after them.
4238  *	   That works since everybody except rename does "lock parent, lookup,
4239  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4240  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4241  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4242  *	   we'd better make sure that there's no link(2) for them.
4243  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4244  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4245  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4246  *	   ->i_mutex on parents, which works but leads to some truly excessive
4247  *	   locking].
4248  */
4249 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4250 	       struct inode *new_dir, struct dentry *new_dentry,
4251 	       struct inode **delegated_inode, unsigned int flags)
4252 {
4253 	int error;
4254 	bool is_dir = d_is_dir(old_dentry);
4255 	const unsigned char *old_name;
4256 	struct inode *source = old_dentry->d_inode;
4257 	struct inode *target = new_dentry->d_inode;
4258 	bool new_is_dir = false;
4259 	unsigned max_links = new_dir->i_sb->s_max_links;
4260 
4261 	if (source == target)
4262 		return 0;
4263 
4264 	error = may_delete(old_dir, old_dentry, is_dir);
4265 	if (error)
4266 		return error;
4267 
4268 	if (!target) {
4269 		error = may_create(new_dir, new_dentry);
4270 	} else {
4271 		new_is_dir = d_is_dir(new_dentry);
4272 
4273 		if (!(flags & RENAME_EXCHANGE))
4274 			error = may_delete(new_dir, new_dentry, is_dir);
4275 		else
4276 			error = may_delete(new_dir, new_dentry, new_is_dir);
4277 	}
4278 	if (error)
4279 		return error;
4280 
4281 	if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4282 		return -EPERM;
4283 
4284 	if (flags && !old_dir->i_op->rename2)
4285 		return -EINVAL;
4286 
4287 	/*
4288 	 * If we are going to change the parent - check write permissions,
4289 	 * we'll need to flip '..'.
4290 	 */
4291 	if (new_dir != old_dir) {
4292 		if (is_dir) {
4293 			error = inode_permission(source, MAY_WRITE);
4294 			if (error)
4295 				return error;
4296 		}
4297 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4298 			error = inode_permission(target, MAY_WRITE);
4299 			if (error)
4300 				return error;
4301 		}
4302 	}
4303 
4304 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4305 				      flags);
4306 	if (error)
4307 		return error;
4308 
4309 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4310 	dget(new_dentry);
4311 	if (!is_dir || (flags & RENAME_EXCHANGE))
4312 		lock_two_nondirectories(source, target);
4313 	else if (target)
4314 		inode_lock(target);
4315 
4316 	error = -EBUSY;
4317 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4318 		goto out;
4319 
4320 	if (max_links && new_dir != old_dir) {
4321 		error = -EMLINK;
4322 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4323 			goto out;
4324 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4325 		    old_dir->i_nlink >= max_links)
4326 			goto out;
4327 	}
4328 	if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4329 		shrink_dcache_parent(new_dentry);
4330 	if (!is_dir) {
4331 		error = try_break_deleg(source, delegated_inode);
4332 		if (error)
4333 			goto out;
4334 	}
4335 	if (target && !new_is_dir) {
4336 		error = try_break_deleg(target, delegated_inode);
4337 		if (error)
4338 			goto out;
4339 	}
4340 	if (!old_dir->i_op->rename2) {
4341 		error = old_dir->i_op->rename(old_dir, old_dentry,
4342 					      new_dir, new_dentry);
4343 	} else {
4344 		WARN_ON(old_dir->i_op->rename != NULL);
4345 		error = old_dir->i_op->rename2(old_dir, old_dentry,
4346 					       new_dir, new_dentry, flags);
4347 	}
4348 	if (error)
4349 		goto out;
4350 
4351 	if (!(flags & RENAME_EXCHANGE) && target) {
4352 		if (is_dir)
4353 			target->i_flags |= S_DEAD;
4354 		dont_mount(new_dentry);
4355 		detach_mounts(new_dentry);
4356 	}
4357 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4358 		if (!(flags & RENAME_EXCHANGE))
4359 			d_move(old_dentry, new_dentry);
4360 		else
4361 			d_exchange(old_dentry, new_dentry);
4362 	}
4363 out:
4364 	if (!is_dir || (flags & RENAME_EXCHANGE))
4365 		unlock_two_nondirectories(source, target);
4366 	else if (target)
4367 		inode_unlock(target);
4368 	dput(new_dentry);
4369 	if (!error) {
4370 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
4371 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4372 		if (flags & RENAME_EXCHANGE) {
4373 			fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4374 				      new_is_dir, NULL, new_dentry);
4375 		}
4376 	}
4377 	fsnotify_oldname_free(old_name);
4378 
4379 	return error;
4380 }
4381 EXPORT_SYMBOL(vfs_rename);
4382 
4383 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4384 		int, newdfd, const char __user *, newname, unsigned int, flags)
4385 {
4386 	struct dentry *old_dentry, *new_dentry;
4387 	struct dentry *trap;
4388 	struct path old_path, new_path;
4389 	struct qstr old_last, new_last;
4390 	int old_type, new_type;
4391 	struct inode *delegated_inode = NULL;
4392 	struct filename *from;
4393 	struct filename *to;
4394 	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4395 	bool should_retry = false;
4396 	int error;
4397 
4398 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4399 		return -EINVAL;
4400 
4401 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4402 	    (flags & RENAME_EXCHANGE))
4403 		return -EINVAL;
4404 
4405 	if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4406 		return -EPERM;
4407 
4408 	if (flags & RENAME_EXCHANGE)
4409 		target_flags = 0;
4410 
4411 retry:
4412 	from = user_path_parent(olddfd, oldname,
4413 				&old_path, &old_last, &old_type, lookup_flags);
4414 	if (IS_ERR(from)) {
4415 		error = PTR_ERR(from);
4416 		goto exit;
4417 	}
4418 
4419 	to = user_path_parent(newdfd, newname,
4420 				&new_path, &new_last, &new_type, lookup_flags);
4421 	if (IS_ERR(to)) {
4422 		error = PTR_ERR(to);
4423 		goto exit1;
4424 	}
4425 
4426 	error = -EXDEV;
4427 	if (old_path.mnt != new_path.mnt)
4428 		goto exit2;
4429 
4430 	error = -EBUSY;
4431 	if (old_type != LAST_NORM)
4432 		goto exit2;
4433 
4434 	if (flags & RENAME_NOREPLACE)
4435 		error = -EEXIST;
4436 	if (new_type != LAST_NORM)
4437 		goto exit2;
4438 
4439 	error = mnt_want_write(old_path.mnt);
4440 	if (error)
4441 		goto exit2;
4442 
4443 retry_deleg:
4444 	trap = lock_rename(new_path.dentry, old_path.dentry);
4445 
4446 	old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4447 	error = PTR_ERR(old_dentry);
4448 	if (IS_ERR(old_dentry))
4449 		goto exit3;
4450 	/* source must exist */
4451 	error = -ENOENT;
4452 	if (d_is_negative(old_dentry))
4453 		goto exit4;
4454 	new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4455 	error = PTR_ERR(new_dentry);
4456 	if (IS_ERR(new_dentry))
4457 		goto exit4;
4458 	error = -EEXIST;
4459 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4460 		goto exit5;
4461 	if (flags & RENAME_EXCHANGE) {
4462 		error = -ENOENT;
4463 		if (d_is_negative(new_dentry))
4464 			goto exit5;
4465 
4466 		if (!d_is_dir(new_dentry)) {
4467 			error = -ENOTDIR;
4468 			if (new_last.name[new_last.len])
4469 				goto exit5;
4470 		}
4471 	}
4472 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4473 	if (!d_is_dir(old_dentry)) {
4474 		error = -ENOTDIR;
4475 		if (old_last.name[old_last.len])
4476 			goto exit5;
4477 		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4478 			goto exit5;
4479 	}
4480 	/* source should not be ancestor of target */
4481 	error = -EINVAL;
4482 	if (old_dentry == trap)
4483 		goto exit5;
4484 	/* target should not be an ancestor of source */
4485 	if (!(flags & RENAME_EXCHANGE))
4486 		error = -ENOTEMPTY;
4487 	if (new_dentry == trap)
4488 		goto exit5;
4489 
4490 	error = security_path_rename(&old_path, old_dentry,
4491 				     &new_path, new_dentry, flags);
4492 	if (error)
4493 		goto exit5;
4494 	error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4495 			   new_path.dentry->d_inode, new_dentry,
4496 			   &delegated_inode, flags);
4497 exit5:
4498 	dput(new_dentry);
4499 exit4:
4500 	dput(old_dentry);
4501 exit3:
4502 	unlock_rename(new_path.dentry, old_path.dentry);
4503 	if (delegated_inode) {
4504 		error = break_deleg_wait(&delegated_inode);
4505 		if (!error)
4506 			goto retry_deleg;
4507 	}
4508 	mnt_drop_write(old_path.mnt);
4509 exit2:
4510 	if (retry_estale(error, lookup_flags))
4511 		should_retry = true;
4512 	path_put(&new_path);
4513 	putname(to);
4514 exit1:
4515 	path_put(&old_path);
4516 	putname(from);
4517 	if (should_retry) {
4518 		should_retry = false;
4519 		lookup_flags |= LOOKUP_REVAL;
4520 		goto retry;
4521 	}
4522 exit:
4523 	return error;
4524 }
4525 
4526 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4527 		int, newdfd, const char __user *, newname)
4528 {
4529 	return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4530 }
4531 
4532 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4533 {
4534 	return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4535 }
4536 
4537 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4538 {
4539 	int error = may_create(dir, dentry);
4540 	if (error)
4541 		return error;
4542 
4543 	if (!dir->i_op->mknod)
4544 		return -EPERM;
4545 
4546 	return dir->i_op->mknod(dir, dentry,
4547 				S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4548 }
4549 EXPORT_SYMBOL(vfs_whiteout);
4550 
4551 int readlink_copy(char __user *buffer, int buflen, const char *link)
4552 {
4553 	int len = PTR_ERR(link);
4554 	if (IS_ERR(link))
4555 		goto out;
4556 
4557 	len = strlen(link);
4558 	if (len > (unsigned) buflen)
4559 		len = buflen;
4560 	if (copy_to_user(buffer, link, len))
4561 		len = -EFAULT;
4562 out:
4563 	return len;
4564 }
4565 EXPORT_SYMBOL(readlink_copy);
4566 
4567 /*
4568  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
4569  * have ->get_link() not calling nd_jump_link().  Using (or not using) it
4570  * for any given inode is up to filesystem.
4571  */
4572 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4573 {
4574 	DEFINE_DELAYED_CALL(done);
4575 	struct inode *inode = d_inode(dentry);
4576 	const char *link = inode->i_link;
4577 	int res;
4578 
4579 	if (!link) {
4580 		link = inode->i_op->get_link(dentry, inode, &done);
4581 		if (IS_ERR(link))
4582 			return PTR_ERR(link);
4583 	}
4584 	res = readlink_copy(buffer, buflen, link);
4585 	do_delayed_call(&done);
4586 	return res;
4587 }
4588 EXPORT_SYMBOL(generic_readlink);
4589 
4590 /* get the link contents into pagecache */
4591 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4592 			  struct delayed_call *callback)
4593 {
4594 	char *kaddr;
4595 	struct page *page;
4596 	struct address_space *mapping = inode->i_mapping;
4597 
4598 	if (!dentry) {
4599 		page = find_get_page(mapping, 0);
4600 		if (!page)
4601 			return ERR_PTR(-ECHILD);
4602 		if (!PageUptodate(page)) {
4603 			put_page(page);
4604 			return ERR_PTR(-ECHILD);
4605 		}
4606 	} else {
4607 		page = read_mapping_page(mapping, 0, NULL);
4608 		if (IS_ERR(page))
4609 			return (char*)page;
4610 	}
4611 	set_delayed_call(callback, page_put_link, page);
4612 	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4613 	kaddr = page_address(page);
4614 	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4615 	return kaddr;
4616 }
4617 
4618 EXPORT_SYMBOL(page_get_link);
4619 
4620 void page_put_link(void *arg)
4621 {
4622 	put_page(arg);
4623 }
4624 EXPORT_SYMBOL(page_put_link);
4625 
4626 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4627 {
4628 	DEFINE_DELAYED_CALL(done);
4629 	int res = readlink_copy(buffer, buflen,
4630 				page_get_link(dentry, d_inode(dentry),
4631 					      &done));
4632 	do_delayed_call(&done);
4633 	return res;
4634 }
4635 EXPORT_SYMBOL(page_readlink);
4636 
4637 /*
4638  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4639  */
4640 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4641 {
4642 	struct address_space *mapping = inode->i_mapping;
4643 	struct page *page;
4644 	void *fsdata;
4645 	int err;
4646 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4647 	if (nofs)
4648 		flags |= AOP_FLAG_NOFS;
4649 
4650 retry:
4651 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4652 				flags, &page, &fsdata);
4653 	if (err)
4654 		goto fail;
4655 
4656 	memcpy(page_address(page), symname, len-1);
4657 
4658 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4659 							page, fsdata);
4660 	if (err < 0)
4661 		goto fail;
4662 	if (err < len-1)
4663 		goto retry;
4664 
4665 	mark_inode_dirty(inode);
4666 	return 0;
4667 fail:
4668 	return err;
4669 }
4670 EXPORT_SYMBOL(__page_symlink);
4671 
4672 int page_symlink(struct inode *inode, const char *symname, int len)
4673 {
4674 	return __page_symlink(inode, symname, len,
4675 			!mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4676 }
4677 EXPORT_SYMBOL(page_symlink);
4678 
4679 const struct inode_operations page_symlink_inode_operations = {
4680 	.readlink	= generic_readlink,
4681 	.get_link	= page_get_link,
4682 };
4683 EXPORT_SYMBOL(page_symlink_inode_operations);
4684