1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/export.h> 19 #include <linux/kernel.h> 20 #include <linux/slab.h> 21 #include <linux/fs.h> 22 #include <linux/namei.h> 23 #include <linux/pagemap.h> 24 #include <linux/fsnotify.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/ima.h> 28 #include <linux/syscalls.h> 29 #include <linux/mount.h> 30 #include <linux/audit.h> 31 #include <linux/capability.h> 32 #include <linux/file.h> 33 #include <linux/fcntl.h> 34 #include <linux/device_cgroup.h> 35 #include <linux/fs_struct.h> 36 #include <linux/posix_acl.h> 37 #include <linux/hash.h> 38 #include <asm/uaccess.h> 39 40 #include "internal.h" 41 #include "mount.h" 42 43 /* [Feb-1997 T. Schoebel-Theuer] 44 * Fundamental changes in the pathname lookup mechanisms (namei) 45 * were necessary because of omirr. The reason is that omirr needs 46 * to know the _real_ pathname, not the user-supplied one, in case 47 * of symlinks (and also when transname replacements occur). 48 * 49 * The new code replaces the old recursive symlink resolution with 50 * an iterative one (in case of non-nested symlink chains). It does 51 * this with calls to <fs>_follow_link(). 52 * As a side effect, dir_namei(), _namei() and follow_link() are now 53 * replaced with a single function lookup_dentry() that can handle all 54 * the special cases of the former code. 55 * 56 * With the new dcache, the pathname is stored at each inode, at least as 57 * long as the refcount of the inode is positive. As a side effect, the 58 * size of the dcache depends on the inode cache and thus is dynamic. 59 * 60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 61 * resolution to correspond with current state of the code. 62 * 63 * Note that the symlink resolution is not *completely* iterative. 64 * There is still a significant amount of tail- and mid- recursion in 65 * the algorithm. Also, note that <fs>_readlink() is not used in 66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 67 * may return different results than <fs>_follow_link(). Many virtual 68 * filesystems (including /proc) exhibit this behavior. 69 */ 70 71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 73 * and the name already exists in form of a symlink, try to create the new 74 * name indicated by the symlink. The old code always complained that the 75 * name already exists, due to not following the symlink even if its target 76 * is nonexistent. The new semantics affects also mknod() and link() when 77 * the name is a symlink pointing to a non-existent name. 78 * 79 * I don't know which semantics is the right one, since I have no access 80 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 82 * "old" one. Personally, I think the new semantics is much more logical. 83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 84 * file does succeed in both HP-UX and SunOs, but not in Solaris 85 * and in the old Linux semantics. 86 */ 87 88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 89 * semantics. See the comments in "open_namei" and "do_link" below. 90 * 91 * [10-Sep-98 Alan Modra] Another symlink change. 92 */ 93 94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 95 * inside the path - always follow. 96 * in the last component in creation/removal/renaming - never follow. 97 * if LOOKUP_FOLLOW passed - follow. 98 * if the pathname has trailing slashes - follow. 99 * otherwise - don't follow. 100 * (applied in that order). 101 * 102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 104 * During the 2.4 we need to fix the userland stuff depending on it - 105 * hopefully we will be able to get rid of that wart in 2.5. So far only 106 * XEmacs seems to be relying on it... 107 */ 108 /* 109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 111 * any extra contention... 112 */ 113 114 /* In order to reduce some races, while at the same time doing additional 115 * checking and hopefully speeding things up, we copy filenames to the 116 * kernel data space before using them.. 117 * 118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 119 * PATH_MAX includes the nul terminator --RR. 120 */ 121 122 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) 123 124 struct filename * 125 getname_flags(const char __user *filename, int flags, int *empty) 126 { 127 struct filename *result; 128 char *kname; 129 int len; 130 131 result = audit_reusename(filename); 132 if (result) 133 return result; 134 135 result = __getname(); 136 if (unlikely(!result)) 137 return ERR_PTR(-ENOMEM); 138 139 /* 140 * First, try to embed the struct filename inside the names_cache 141 * allocation 142 */ 143 kname = (char *)result->iname; 144 result->name = kname; 145 146 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); 147 if (unlikely(len < 0)) { 148 __putname(result); 149 return ERR_PTR(len); 150 } 151 152 /* 153 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 154 * separate struct filename so we can dedicate the entire 155 * names_cache allocation for the pathname, and re-do the copy from 156 * userland. 157 */ 158 if (unlikely(len == EMBEDDED_NAME_MAX)) { 159 const size_t size = offsetof(struct filename, iname[1]); 160 kname = (char *)result; 161 162 /* 163 * size is chosen that way we to guarantee that 164 * result->iname[0] is within the same object and that 165 * kname can't be equal to result->iname, no matter what. 166 */ 167 result = kzalloc(size, GFP_KERNEL); 168 if (unlikely(!result)) { 169 __putname(kname); 170 return ERR_PTR(-ENOMEM); 171 } 172 result->name = kname; 173 len = strncpy_from_user(kname, filename, PATH_MAX); 174 if (unlikely(len < 0)) { 175 __putname(kname); 176 kfree(result); 177 return ERR_PTR(len); 178 } 179 if (unlikely(len == PATH_MAX)) { 180 __putname(kname); 181 kfree(result); 182 return ERR_PTR(-ENAMETOOLONG); 183 } 184 } 185 186 result->refcnt = 1; 187 /* The empty path is special. */ 188 if (unlikely(!len)) { 189 if (empty) 190 *empty = 1; 191 if (!(flags & LOOKUP_EMPTY)) { 192 putname(result); 193 return ERR_PTR(-ENOENT); 194 } 195 } 196 197 result->uptr = filename; 198 result->aname = NULL; 199 audit_getname(result); 200 return result; 201 } 202 203 struct filename * 204 getname(const char __user * filename) 205 { 206 return getname_flags(filename, 0, NULL); 207 } 208 209 struct filename * 210 getname_kernel(const char * filename) 211 { 212 struct filename *result; 213 int len = strlen(filename) + 1; 214 215 result = __getname(); 216 if (unlikely(!result)) 217 return ERR_PTR(-ENOMEM); 218 219 if (len <= EMBEDDED_NAME_MAX) { 220 result->name = (char *)result->iname; 221 } else if (len <= PATH_MAX) { 222 struct filename *tmp; 223 224 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL); 225 if (unlikely(!tmp)) { 226 __putname(result); 227 return ERR_PTR(-ENOMEM); 228 } 229 tmp->name = (char *)result; 230 result = tmp; 231 } else { 232 __putname(result); 233 return ERR_PTR(-ENAMETOOLONG); 234 } 235 memcpy((char *)result->name, filename, len); 236 result->uptr = NULL; 237 result->aname = NULL; 238 result->refcnt = 1; 239 audit_getname(result); 240 241 return result; 242 } 243 244 void putname(struct filename *name) 245 { 246 BUG_ON(name->refcnt <= 0); 247 248 if (--name->refcnt > 0) 249 return; 250 251 if (name->name != name->iname) { 252 __putname(name->name); 253 kfree(name); 254 } else 255 __putname(name); 256 } 257 258 static int check_acl(struct inode *inode, int mask) 259 { 260 #ifdef CONFIG_FS_POSIX_ACL 261 struct posix_acl *acl; 262 263 if (mask & MAY_NOT_BLOCK) { 264 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 265 if (!acl) 266 return -EAGAIN; 267 /* no ->get_acl() calls in RCU mode... */ 268 if (acl == ACL_NOT_CACHED) 269 return -ECHILD; 270 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK); 271 } 272 273 acl = get_acl(inode, ACL_TYPE_ACCESS); 274 if (IS_ERR(acl)) 275 return PTR_ERR(acl); 276 if (acl) { 277 int error = posix_acl_permission(inode, acl, mask); 278 posix_acl_release(acl); 279 return error; 280 } 281 #endif 282 283 return -EAGAIN; 284 } 285 286 /* 287 * This does the basic permission checking 288 */ 289 static int acl_permission_check(struct inode *inode, int mask) 290 { 291 unsigned int mode = inode->i_mode; 292 293 if (likely(uid_eq(current_fsuid(), inode->i_uid))) 294 mode >>= 6; 295 else { 296 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 297 int error = check_acl(inode, mask); 298 if (error != -EAGAIN) 299 return error; 300 } 301 302 if (in_group_p(inode->i_gid)) 303 mode >>= 3; 304 } 305 306 /* 307 * If the DACs are ok we don't need any capability check. 308 */ 309 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 310 return 0; 311 return -EACCES; 312 } 313 314 /** 315 * generic_permission - check for access rights on a Posix-like filesystem 316 * @inode: inode to check access rights for 317 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...) 318 * 319 * Used to check for read/write/execute permissions on a file. 320 * We use "fsuid" for this, letting us set arbitrary permissions 321 * for filesystem access without changing the "normal" uids which 322 * are used for other things. 323 * 324 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 325 * request cannot be satisfied (eg. requires blocking or too much complexity). 326 * It would then be called again in ref-walk mode. 327 */ 328 int generic_permission(struct inode *inode, int mask) 329 { 330 int ret; 331 332 /* 333 * Do the basic permission checks. 334 */ 335 ret = acl_permission_check(inode, mask); 336 if (ret != -EACCES) 337 return ret; 338 339 if (S_ISDIR(inode->i_mode)) { 340 /* DACs are overridable for directories */ 341 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 342 return 0; 343 if (!(mask & MAY_WRITE)) 344 if (capable_wrt_inode_uidgid(inode, 345 CAP_DAC_READ_SEARCH)) 346 return 0; 347 return -EACCES; 348 } 349 /* 350 * Read/write DACs are always overridable. 351 * Executable DACs are overridable when there is 352 * at least one exec bit set. 353 */ 354 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 355 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 356 return 0; 357 358 /* 359 * Searching includes executable on directories, else just read. 360 */ 361 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 362 if (mask == MAY_READ) 363 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH)) 364 return 0; 365 366 return -EACCES; 367 } 368 EXPORT_SYMBOL(generic_permission); 369 370 /* 371 * We _really_ want to just do "generic_permission()" without 372 * even looking at the inode->i_op values. So we keep a cache 373 * flag in inode->i_opflags, that says "this has not special 374 * permission function, use the fast case". 375 */ 376 static inline int do_inode_permission(struct inode *inode, int mask) 377 { 378 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 379 if (likely(inode->i_op->permission)) 380 return inode->i_op->permission(inode, mask); 381 382 /* This gets set once for the inode lifetime */ 383 spin_lock(&inode->i_lock); 384 inode->i_opflags |= IOP_FASTPERM; 385 spin_unlock(&inode->i_lock); 386 } 387 return generic_permission(inode, mask); 388 } 389 390 /** 391 * __inode_permission - Check for access rights to a given inode 392 * @inode: Inode to check permission on 393 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 394 * 395 * Check for read/write/execute permissions on an inode. 396 * 397 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 398 * 399 * This does not check for a read-only file system. You probably want 400 * inode_permission(). 401 */ 402 int __inode_permission(struct inode *inode, int mask) 403 { 404 int retval; 405 406 if (unlikely(mask & MAY_WRITE)) { 407 /* 408 * Nobody gets write access to an immutable file. 409 */ 410 if (IS_IMMUTABLE(inode)) 411 return -EACCES; 412 } 413 414 retval = do_inode_permission(inode, mask); 415 if (retval) 416 return retval; 417 418 retval = devcgroup_inode_permission(inode, mask); 419 if (retval) 420 return retval; 421 422 return security_inode_permission(inode, mask); 423 } 424 EXPORT_SYMBOL(__inode_permission); 425 426 /** 427 * sb_permission - Check superblock-level permissions 428 * @sb: Superblock of inode to check permission on 429 * @inode: Inode to check permission on 430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 431 * 432 * Separate out file-system wide checks from inode-specific permission checks. 433 */ 434 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 435 { 436 if (unlikely(mask & MAY_WRITE)) { 437 umode_t mode = inode->i_mode; 438 439 /* Nobody gets write access to a read-only fs. */ 440 if ((sb->s_flags & MS_RDONLY) && 441 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 442 return -EROFS; 443 } 444 return 0; 445 } 446 447 /** 448 * inode_permission - Check for access rights to a given inode 449 * @inode: Inode to check permission on 450 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 451 * 452 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 453 * this, letting us set arbitrary permissions for filesystem access without 454 * changing the "normal" UIDs which are used for other things. 455 * 456 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 457 */ 458 int inode_permission(struct inode *inode, int mask) 459 { 460 int retval; 461 462 retval = sb_permission(inode->i_sb, inode, mask); 463 if (retval) 464 return retval; 465 return __inode_permission(inode, mask); 466 } 467 EXPORT_SYMBOL(inode_permission); 468 469 /** 470 * path_get - get a reference to a path 471 * @path: path to get the reference to 472 * 473 * Given a path increment the reference count to the dentry and the vfsmount. 474 */ 475 void path_get(const struct path *path) 476 { 477 mntget(path->mnt); 478 dget(path->dentry); 479 } 480 EXPORT_SYMBOL(path_get); 481 482 /** 483 * path_put - put a reference to a path 484 * @path: path to put the reference to 485 * 486 * Given a path decrement the reference count to the dentry and the vfsmount. 487 */ 488 void path_put(const struct path *path) 489 { 490 dput(path->dentry); 491 mntput(path->mnt); 492 } 493 EXPORT_SYMBOL(path_put); 494 495 #define EMBEDDED_LEVELS 2 496 struct nameidata { 497 struct path path; 498 struct qstr last; 499 struct path root; 500 struct inode *inode; /* path.dentry.d_inode */ 501 unsigned int flags; 502 unsigned seq, m_seq; 503 int last_type; 504 unsigned depth; 505 int total_link_count; 506 struct saved { 507 struct path link; 508 struct delayed_call done; 509 const char *name; 510 unsigned seq; 511 } *stack, internal[EMBEDDED_LEVELS]; 512 struct filename *name; 513 struct nameidata *saved; 514 struct inode *link_inode; 515 unsigned root_seq; 516 int dfd; 517 }; 518 519 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name) 520 { 521 struct nameidata *old = current->nameidata; 522 p->stack = p->internal; 523 p->dfd = dfd; 524 p->name = name; 525 p->total_link_count = old ? old->total_link_count : 0; 526 p->saved = old; 527 current->nameidata = p; 528 } 529 530 static void restore_nameidata(void) 531 { 532 struct nameidata *now = current->nameidata, *old = now->saved; 533 534 current->nameidata = old; 535 if (old) 536 old->total_link_count = now->total_link_count; 537 if (now->stack != now->internal) 538 kfree(now->stack); 539 } 540 541 static int __nd_alloc_stack(struct nameidata *nd) 542 { 543 struct saved *p; 544 545 if (nd->flags & LOOKUP_RCU) { 546 p= kmalloc(MAXSYMLINKS * sizeof(struct saved), 547 GFP_ATOMIC); 548 if (unlikely(!p)) 549 return -ECHILD; 550 } else { 551 p= kmalloc(MAXSYMLINKS * sizeof(struct saved), 552 GFP_KERNEL); 553 if (unlikely(!p)) 554 return -ENOMEM; 555 } 556 memcpy(p, nd->internal, sizeof(nd->internal)); 557 nd->stack = p; 558 return 0; 559 } 560 561 /** 562 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root 563 * @path: nameidate to verify 564 * 565 * Rename can sometimes move a file or directory outside of a bind 566 * mount, path_connected allows those cases to be detected. 567 */ 568 static bool path_connected(const struct path *path) 569 { 570 struct vfsmount *mnt = path->mnt; 571 572 /* Only bind mounts can have disconnected paths */ 573 if (mnt->mnt_root == mnt->mnt_sb->s_root) 574 return true; 575 576 return is_subdir(path->dentry, mnt->mnt_root); 577 } 578 579 static inline int nd_alloc_stack(struct nameidata *nd) 580 { 581 if (likely(nd->depth != EMBEDDED_LEVELS)) 582 return 0; 583 if (likely(nd->stack != nd->internal)) 584 return 0; 585 return __nd_alloc_stack(nd); 586 } 587 588 static void drop_links(struct nameidata *nd) 589 { 590 int i = nd->depth; 591 while (i--) { 592 struct saved *last = nd->stack + i; 593 do_delayed_call(&last->done); 594 clear_delayed_call(&last->done); 595 } 596 } 597 598 static void terminate_walk(struct nameidata *nd) 599 { 600 drop_links(nd); 601 if (!(nd->flags & LOOKUP_RCU)) { 602 int i; 603 path_put(&nd->path); 604 for (i = 0; i < nd->depth; i++) 605 path_put(&nd->stack[i].link); 606 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 607 path_put(&nd->root); 608 nd->root.mnt = NULL; 609 } 610 } else { 611 nd->flags &= ~LOOKUP_RCU; 612 if (!(nd->flags & LOOKUP_ROOT)) 613 nd->root.mnt = NULL; 614 rcu_read_unlock(); 615 } 616 nd->depth = 0; 617 } 618 619 /* path_put is needed afterwards regardless of success or failure */ 620 static bool legitimize_path(struct nameidata *nd, 621 struct path *path, unsigned seq) 622 { 623 int res = __legitimize_mnt(path->mnt, nd->m_seq); 624 if (unlikely(res)) { 625 if (res > 0) 626 path->mnt = NULL; 627 path->dentry = NULL; 628 return false; 629 } 630 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) { 631 path->dentry = NULL; 632 return false; 633 } 634 return !read_seqcount_retry(&path->dentry->d_seq, seq); 635 } 636 637 static bool legitimize_links(struct nameidata *nd) 638 { 639 int i; 640 for (i = 0; i < nd->depth; i++) { 641 struct saved *last = nd->stack + i; 642 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) { 643 drop_links(nd); 644 nd->depth = i + 1; 645 return false; 646 } 647 } 648 return true; 649 } 650 651 /* 652 * Path walking has 2 modes, rcu-walk and ref-walk (see 653 * Documentation/filesystems/path-lookup.txt). In situations when we can't 654 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 655 * normal reference counts on dentries and vfsmounts to transition to ref-walk 656 * mode. Refcounts are grabbed at the last known good point before rcu-walk 657 * got stuck, so ref-walk may continue from there. If this is not successful 658 * (eg. a seqcount has changed), then failure is returned and it's up to caller 659 * to restart the path walk from the beginning in ref-walk mode. 660 */ 661 662 /** 663 * unlazy_walk - try to switch to ref-walk mode. 664 * @nd: nameidata pathwalk data 665 * @dentry: child of nd->path.dentry or NULL 666 * @seq: seq number to check dentry against 667 * Returns: 0 on success, -ECHILD on failure 668 * 669 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry 670 * for ref-walk mode. @dentry must be a path found by a do_lookup call on 671 * @nd or NULL. Must be called from rcu-walk context. 672 * Nothing should touch nameidata between unlazy_walk() failure and 673 * terminate_walk(). 674 */ 675 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq) 676 { 677 struct dentry *parent = nd->path.dentry; 678 679 BUG_ON(!(nd->flags & LOOKUP_RCU)); 680 681 nd->flags &= ~LOOKUP_RCU; 682 if (unlikely(!legitimize_links(nd))) 683 goto out2; 684 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq))) 685 goto out2; 686 if (unlikely(!lockref_get_not_dead(&parent->d_lockref))) 687 goto out1; 688 689 /* 690 * For a negative lookup, the lookup sequence point is the parents 691 * sequence point, and it only needs to revalidate the parent dentry. 692 * 693 * For a positive lookup, we need to move both the parent and the 694 * dentry from the RCU domain to be properly refcounted. And the 695 * sequence number in the dentry validates *both* dentry counters, 696 * since we checked the sequence number of the parent after we got 697 * the child sequence number. So we know the parent must still 698 * be valid if the child sequence number is still valid. 699 */ 700 if (!dentry) { 701 if (read_seqcount_retry(&parent->d_seq, nd->seq)) 702 goto out; 703 BUG_ON(nd->inode != parent->d_inode); 704 } else { 705 if (!lockref_get_not_dead(&dentry->d_lockref)) 706 goto out; 707 if (read_seqcount_retry(&dentry->d_seq, seq)) 708 goto drop_dentry; 709 } 710 711 /* 712 * Sequence counts matched. Now make sure that the root is 713 * still valid and get it if required. 714 */ 715 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 716 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) { 717 rcu_read_unlock(); 718 dput(dentry); 719 return -ECHILD; 720 } 721 } 722 723 rcu_read_unlock(); 724 return 0; 725 726 drop_dentry: 727 rcu_read_unlock(); 728 dput(dentry); 729 goto drop_root_mnt; 730 out2: 731 nd->path.mnt = NULL; 732 out1: 733 nd->path.dentry = NULL; 734 out: 735 rcu_read_unlock(); 736 drop_root_mnt: 737 if (!(nd->flags & LOOKUP_ROOT)) 738 nd->root.mnt = NULL; 739 return -ECHILD; 740 } 741 742 static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq) 743 { 744 if (unlikely(!legitimize_path(nd, link, seq))) { 745 drop_links(nd); 746 nd->depth = 0; 747 nd->flags &= ~LOOKUP_RCU; 748 nd->path.mnt = NULL; 749 nd->path.dentry = NULL; 750 if (!(nd->flags & LOOKUP_ROOT)) 751 nd->root.mnt = NULL; 752 rcu_read_unlock(); 753 } else if (likely(unlazy_walk(nd, NULL, 0)) == 0) { 754 return 0; 755 } 756 path_put(link); 757 return -ECHILD; 758 } 759 760 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 761 { 762 return dentry->d_op->d_revalidate(dentry, flags); 763 } 764 765 /** 766 * complete_walk - successful completion of path walk 767 * @nd: pointer nameidata 768 * 769 * If we had been in RCU mode, drop out of it and legitimize nd->path. 770 * Revalidate the final result, unless we'd already done that during 771 * the path walk or the filesystem doesn't ask for it. Return 0 on 772 * success, -error on failure. In case of failure caller does not 773 * need to drop nd->path. 774 */ 775 static int complete_walk(struct nameidata *nd) 776 { 777 struct dentry *dentry = nd->path.dentry; 778 int status; 779 780 if (nd->flags & LOOKUP_RCU) { 781 if (!(nd->flags & LOOKUP_ROOT)) 782 nd->root.mnt = NULL; 783 if (unlikely(unlazy_walk(nd, NULL, 0))) 784 return -ECHILD; 785 } 786 787 if (likely(!(nd->flags & LOOKUP_JUMPED))) 788 return 0; 789 790 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 791 return 0; 792 793 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 794 if (status > 0) 795 return 0; 796 797 if (!status) 798 status = -ESTALE; 799 800 return status; 801 } 802 803 static void set_root(struct nameidata *nd) 804 { 805 struct fs_struct *fs = current->fs; 806 807 if (nd->flags & LOOKUP_RCU) { 808 unsigned seq; 809 810 do { 811 seq = read_seqcount_begin(&fs->seq); 812 nd->root = fs->root; 813 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 814 } while (read_seqcount_retry(&fs->seq, seq)); 815 } else { 816 get_fs_root(fs, &nd->root); 817 } 818 } 819 820 static void path_put_conditional(struct path *path, struct nameidata *nd) 821 { 822 dput(path->dentry); 823 if (path->mnt != nd->path.mnt) 824 mntput(path->mnt); 825 } 826 827 static inline void path_to_nameidata(const struct path *path, 828 struct nameidata *nd) 829 { 830 if (!(nd->flags & LOOKUP_RCU)) { 831 dput(nd->path.dentry); 832 if (nd->path.mnt != path->mnt) 833 mntput(nd->path.mnt); 834 } 835 nd->path.mnt = path->mnt; 836 nd->path.dentry = path->dentry; 837 } 838 839 static int nd_jump_root(struct nameidata *nd) 840 { 841 if (nd->flags & LOOKUP_RCU) { 842 struct dentry *d; 843 nd->path = nd->root; 844 d = nd->path.dentry; 845 nd->inode = d->d_inode; 846 nd->seq = nd->root_seq; 847 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq))) 848 return -ECHILD; 849 } else { 850 path_put(&nd->path); 851 nd->path = nd->root; 852 path_get(&nd->path); 853 nd->inode = nd->path.dentry->d_inode; 854 } 855 nd->flags |= LOOKUP_JUMPED; 856 return 0; 857 } 858 859 /* 860 * Helper to directly jump to a known parsed path from ->get_link, 861 * caller must have taken a reference to path beforehand. 862 */ 863 void nd_jump_link(struct path *path) 864 { 865 struct nameidata *nd = current->nameidata; 866 path_put(&nd->path); 867 868 nd->path = *path; 869 nd->inode = nd->path.dentry->d_inode; 870 nd->flags |= LOOKUP_JUMPED; 871 } 872 873 static inline void put_link(struct nameidata *nd) 874 { 875 struct saved *last = nd->stack + --nd->depth; 876 do_delayed_call(&last->done); 877 if (!(nd->flags & LOOKUP_RCU)) 878 path_put(&last->link); 879 } 880 881 int sysctl_protected_symlinks __read_mostly = 0; 882 int sysctl_protected_hardlinks __read_mostly = 0; 883 884 /** 885 * may_follow_link - Check symlink following for unsafe situations 886 * @nd: nameidata pathwalk data 887 * 888 * In the case of the sysctl_protected_symlinks sysctl being enabled, 889 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 890 * in a sticky world-writable directory. This is to protect privileged 891 * processes from failing races against path names that may change out 892 * from under them by way of other users creating malicious symlinks. 893 * It will permit symlinks to be followed only when outside a sticky 894 * world-writable directory, or when the uid of the symlink and follower 895 * match, or when the directory owner matches the symlink's owner. 896 * 897 * Returns 0 if following the symlink is allowed, -ve on error. 898 */ 899 static inline int may_follow_link(struct nameidata *nd) 900 { 901 const struct inode *inode; 902 const struct inode *parent; 903 904 if (!sysctl_protected_symlinks) 905 return 0; 906 907 /* Allowed if owner and follower match. */ 908 inode = nd->link_inode; 909 if (uid_eq(current_cred()->fsuid, inode->i_uid)) 910 return 0; 911 912 /* Allowed if parent directory not sticky and world-writable. */ 913 parent = nd->inode; 914 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 915 return 0; 916 917 /* Allowed if parent directory and link owner match. */ 918 if (uid_eq(parent->i_uid, inode->i_uid)) 919 return 0; 920 921 if (nd->flags & LOOKUP_RCU) 922 return -ECHILD; 923 924 audit_log_link_denied("follow_link", &nd->stack[0].link); 925 return -EACCES; 926 } 927 928 /** 929 * safe_hardlink_source - Check for safe hardlink conditions 930 * @inode: the source inode to hardlink from 931 * 932 * Return false if at least one of the following conditions: 933 * - inode is not a regular file 934 * - inode is setuid 935 * - inode is setgid and group-exec 936 * - access failure for read and write 937 * 938 * Otherwise returns true. 939 */ 940 static bool safe_hardlink_source(struct inode *inode) 941 { 942 umode_t mode = inode->i_mode; 943 944 /* Special files should not get pinned to the filesystem. */ 945 if (!S_ISREG(mode)) 946 return false; 947 948 /* Setuid files should not get pinned to the filesystem. */ 949 if (mode & S_ISUID) 950 return false; 951 952 /* Executable setgid files should not get pinned to the filesystem. */ 953 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 954 return false; 955 956 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 957 if (inode_permission(inode, MAY_READ | MAY_WRITE)) 958 return false; 959 960 return true; 961 } 962 963 /** 964 * may_linkat - Check permissions for creating a hardlink 965 * @link: the source to hardlink from 966 * 967 * Block hardlink when all of: 968 * - sysctl_protected_hardlinks enabled 969 * - fsuid does not match inode 970 * - hardlink source is unsafe (see safe_hardlink_source() above) 971 * - not CAP_FOWNER in a namespace with the inode owner uid mapped 972 * 973 * Returns 0 if successful, -ve on error. 974 */ 975 static int may_linkat(struct path *link) 976 { 977 struct inode *inode; 978 979 if (!sysctl_protected_hardlinks) 980 return 0; 981 982 inode = link->dentry->d_inode; 983 984 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 985 * otherwise, it must be a safe source. 986 */ 987 if (inode_owner_or_capable(inode) || safe_hardlink_source(inode)) 988 return 0; 989 990 audit_log_link_denied("linkat", link); 991 return -EPERM; 992 } 993 994 static __always_inline 995 const char *get_link(struct nameidata *nd) 996 { 997 struct saved *last = nd->stack + nd->depth - 1; 998 struct dentry *dentry = last->link.dentry; 999 struct inode *inode = nd->link_inode; 1000 int error; 1001 const char *res; 1002 1003 if (!(nd->flags & LOOKUP_RCU)) { 1004 touch_atime(&last->link); 1005 cond_resched(); 1006 } else if (atime_needs_update(&last->link, inode)) { 1007 if (unlikely(unlazy_walk(nd, NULL, 0))) 1008 return ERR_PTR(-ECHILD); 1009 touch_atime(&last->link); 1010 } 1011 1012 error = security_inode_follow_link(dentry, inode, 1013 nd->flags & LOOKUP_RCU); 1014 if (unlikely(error)) 1015 return ERR_PTR(error); 1016 1017 nd->last_type = LAST_BIND; 1018 res = inode->i_link; 1019 if (!res) { 1020 const char * (*get)(struct dentry *, struct inode *, 1021 struct delayed_call *); 1022 get = inode->i_op->get_link; 1023 if (nd->flags & LOOKUP_RCU) { 1024 res = get(NULL, inode, &last->done); 1025 if (res == ERR_PTR(-ECHILD)) { 1026 if (unlikely(unlazy_walk(nd, NULL, 0))) 1027 return ERR_PTR(-ECHILD); 1028 res = get(dentry, inode, &last->done); 1029 } 1030 } else { 1031 res = get(dentry, inode, &last->done); 1032 } 1033 if (IS_ERR_OR_NULL(res)) 1034 return res; 1035 } 1036 if (*res == '/') { 1037 if (!nd->root.mnt) 1038 set_root(nd); 1039 if (unlikely(nd_jump_root(nd))) 1040 return ERR_PTR(-ECHILD); 1041 while (unlikely(*++res == '/')) 1042 ; 1043 } 1044 if (!*res) 1045 res = NULL; 1046 return res; 1047 } 1048 1049 /* 1050 * follow_up - Find the mountpoint of path's vfsmount 1051 * 1052 * Given a path, find the mountpoint of its source file system. 1053 * Replace @path with the path of the mountpoint in the parent mount. 1054 * Up is towards /. 1055 * 1056 * Return 1 if we went up a level and 0 if we were already at the 1057 * root. 1058 */ 1059 int follow_up(struct path *path) 1060 { 1061 struct mount *mnt = real_mount(path->mnt); 1062 struct mount *parent; 1063 struct dentry *mountpoint; 1064 1065 read_seqlock_excl(&mount_lock); 1066 parent = mnt->mnt_parent; 1067 if (parent == mnt) { 1068 read_sequnlock_excl(&mount_lock); 1069 return 0; 1070 } 1071 mntget(&parent->mnt); 1072 mountpoint = dget(mnt->mnt_mountpoint); 1073 read_sequnlock_excl(&mount_lock); 1074 dput(path->dentry); 1075 path->dentry = mountpoint; 1076 mntput(path->mnt); 1077 path->mnt = &parent->mnt; 1078 return 1; 1079 } 1080 EXPORT_SYMBOL(follow_up); 1081 1082 /* 1083 * Perform an automount 1084 * - return -EISDIR to tell follow_managed() to stop and return the path we 1085 * were called with. 1086 */ 1087 static int follow_automount(struct path *path, struct nameidata *nd, 1088 bool *need_mntput) 1089 { 1090 struct vfsmount *mnt; 1091 int err; 1092 1093 if (!path->dentry->d_op || !path->dentry->d_op->d_automount) 1094 return -EREMOTE; 1095 1096 /* We don't want to mount if someone's just doing a stat - 1097 * unless they're stat'ing a directory and appended a '/' to 1098 * the name. 1099 * 1100 * We do, however, want to mount if someone wants to open or 1101 * create a file of any type under the mountpoint, wants to 1102 * traverse through the mountpoint or wants to open the 1103 * mounted directory. Also, autofs may mark negative dentries 1104 * as being automount points. These will need the attentions 1105 * of the daemon to instantiate them before they can be used. 1106 */ 1107 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 1108 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 1109 path->dentry->d_inode) 1110 return -EISDIR; 1111 1112 nd->total_link_count++; 1113 if (nd->total_link_count >= 40) 1114 return -ELOOP; 1115 1116 mnt = path->dentry->d_op->d_automount(path); 1117 if (IS_ERR(mnt)) { 1118 /* 1119 * The filesystem is allowed to return -EISDIR here to indicate 1120 * it doesn't want to automount. For instance, autofs would do 1121 * this so that its userspace daemon can mount on this dentry. 1122 * 1123 * However, we can only permit this if it's a terminal point in 1124 * the path being looked up; if it wasn't then the remainder of 1125 * the path is inaccessible and we should say so. 1126 */ 1127 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT)) 1128 return -EREMOTE; 1129 return PTR_ERR(mnt); 1130 } 1131 1132 if (!mnt) /* mount collision */ 1133 return 0; 1134 1135 if (!*need_mntput) { 1136 /* lock_mount() may release path->mnt on error */ 1137 mntget(path->mnt); 1138 *need_mntput = true; 1139 } 1140 err = finish_automount(mnt, path); 1141 1142 switch (err) { 1143 case -EBUSY: 1144 /* Someone else made a mount here whilst we were busy */ 1145 return 0; 1146 case 0: 1147 path_put(path); 1148 path->mnt = mnt; 1149 path->dentry = dget(mnt->mnt_root); 1150 return 0; 1151 default: 1152 return err; 1153 } 1154 1155 } 1156 1157 /* 1158 * Handle a dentry that is managed in some way. 1159 * - Flagged for transit management (autofs) 1160 * - Flagged as mountpoint 1161 * - Flagged as automount point 1162 * 1163 * This may only be called in refwalk mode. 1164 * 1165 * Serialization is taken care of in namespace.c 1166 */ 1167 static int follow_managed(struct path *path, struct nameidata *nd) 1168 { 1169 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */ 1170 unsigned managed; 1171 bool need_mntput = false; 1172 int ret = 0; 1173 1174 /* Given that we're not holding a lock here, we retain the value in a 1175 * local variable for each dentry as we look at it so that we don't see 1176 * the components of that value change under us */ 1177 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1178 managed &= DCACHE_MANAGED_DENTRY, 1179 unlikely(managed != 0)) { 1180 /* Allow the filesystem to manage the transit without i_mutex 1181 * being held. */ 1182 if (managed & DCACHE_MANAGE_TRANSIT) { 1183 BUG_ON(!path->dentry->d_op); 1184 BUG_ON(!path->dentry->d_op->d_manage); 1185 ret = path->dentry->d_op->d_manage(path->dentry, false); 1186 if (ret < 0) 1187 break; 1188 } 1189 1190 /* Transit to a mounted filesystem. */ 1191 if (managed & DCACHE_MOUNTED) { 1192 struct vfsmount *mounted = lookup_mnt(path); 1193 if (mounted) { 1194 dput(path->dentry); 1195 if (need_mntput) 1196 mntput(path->mnt); 1197 path->mnt = mounted; 1198 path->dentry = dget(mounted->mnt_root); 1199 need_mntput = true; 1200 continue; 1201 } 1202 1203 /* Something is mounted on this dentry in another 1204 * namespace and/or whatever was mounted there in this 1205 * namespace got unmounted before lookup_mnt() could 1206 * get it */ 1207 } 1208 1209 /* Handle an automount point */ 1210 if (managed & DCACHE_NEED_AUTOMOUNT) { 1211 ret = follow_automount(path, nd, &need_mntput); 1212 if (ret < 0) 1213 break; 1214 continue; 1215 } 1216 1217 /* We didn't change the current path point */ 1218 break; 1219 } 1220 1221 if (need_mntput && path->mnt == mnt) 1222 mntput(path->mnt); 1223 if (ret == -EISDIR) 1224 ret = 0; 1225 if (need_mntput) 1226 nd->flags |= LOOKUP_JUMPED; 1227 if (unlikely(ret < 0)) 1228 path_put_conditional(path, nd); 1229 return ret; 1230 } 1231 1232 int follow_down_one(struct path *path) 1233 { 1234 struct vfsmount *mounted; 1235 1236 mounted = lookup_mnt(path); 1237 if (mounted) { 1238 dput(path->dentry); 1239 mntput(path->mnt); 1240 path->mnt = mounted; 1241 path->dentry = dget(mounted->mnt_root); 1242 return 1; 1243 } 1244 return 0; 1245 } 1246 EXPORT_SYMBOL(follow_down_one); 1247 1248 static inline int managed_dentry_rcu(struct dentry *dentry) 1249 { 1250 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ? 1251 dentry->d_op->d_manage(dentry, true) : 0; 1252 } 1253 1254 /* 1255 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1256 * we meet a managed dentry that would need blocking. 1257 */ 1258 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1259 struct inode **inode, unsigned *seqp) 1260 { 1261 for (;;) { 1262 struct mount *mounted; 1263 /* 1264 * Don't forget we might have a non-mountpoint managed dentry 1265 * that wants to block transit. 1266 */ 1267 switch (managed_dentry_rcu(path->dentry)) { 1268 case -ECHILD: 1269 default: 1270 return false; 1271 case -EISDIR: 1272 return true; 1273 case 0: 1274 break; 1275 } 1276 1277 if (!d_mountpoint(path->dentry)) 1278 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1279 1280 mounted = __lookup_mnt(path->mnt, path->dentry); 1281 if (!mounted) 1282 break; 1283 path->mnt = &mounted->mnt; 1284 path->dentry = mounted->mnt.mnt_root; 1285 nd->flags |= LOOKUP_JUMPED; 1286 *seqp = read_seqcount_begin(&path->dentry->d_seq); 1287 /* 1288 * Update the inode too. We don't need to re-check the 1289 * dentry sequence number here after this d_inode read, 1290 * because a mount-point is always pinned. 1291 */ 1292 *inode = path->dentry->d_inode; 1293 } 1294 return !read_seqretry(&mount_lock, nd->m_seq) && 1295 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1296 } 1297 1298 static int follow_dotdot_rcu(struct nameidata *nd) 1299 { 1300 struct inode *inode = nd->inode; 1301 1302 while (1) { 1303 if (path_equal(&nd->path, &nd->root)) 1304 break; 1305 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1306 struct dentry *old = nd->path.dentry; 1307 struct dentry *parent = old->d_parent; 1308 unsigned seq; 1309 1310 inode = parent->d_inode; 1311 seq = read_seqcount_begin(&parent->d_seq); 1312 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq))) 1313 return -ECHILD; 1314 nd->path.dentry = parent; 1315 nd->seq = seq; 1316 if (unlikely(!path_connected(&nd->path))) 1317 return -ENOENT; 1318 break; 1319 } else { 1320 struct mount *mnt = real_mount(nd->path.mnt); 1321 struct mount *mparent = mnt->mnt_parent; 1322 struct dentry *mountpoint = mnt->mnt_mountpoint; 1323 struct inode *inode2 = mountpoint->d_inode; 1324 unsigned seq = read_seqcount_begin(&mountpoint->d_seq); 1325 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1326 return -ECHILD; 1327 if (&mparent->mnt == nd->path.mnt) 1328 break; 1329 /* we know that mountpoint was pinned */ 1330 nd->path.dentry = mountpoint; 1331 nd->path.mnt = &mparent->mnt; 1332 inode = inode2; 1333 nd->seq = seq; 1334 } 1335 } 1336 while (unlikely(d_mountpoint(nd->path.dentry))) { 1337 struct mount *mounted; 1338 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry); 1339 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1340 return -ECHILD; 1341 if (!mounted) 1342 break; 1343 nd->path.mnt = &mounted->mnt; 1344 nd->path.dentry = mounted->mnt.mnt_root; 1345 inode = nd->path.dentry->d_inode; 1346 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1347 } 1348 nd->inode = inode; 1349 return 0; 1350 } 1351 1352 /* 1353 * Follow down to the covering mount currently visible to userspace. At each 1354 * point, the filesystem owning that dentry may be queried as to whether the 1355 * caller is permitted to proceed or not. 1356 */ 1357 int follow_down(struct path *path) 1358 { 1359 unsigned managed; 1360 int ret; 1361 1362 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1363 unlikely(managed & DCACHE_MANAGED_DENTRY)) { 1364 /* Allow the filesystem to manage the transit without i_mutex 1365 * being held. 1366 * 1367 * We indicate to the filesystem if someone is trying to mount 1368 * something here. This gives autofs the chance to deny anyone 1369 * other than its daemon the right to mount on its 1370 * superstructure. 1371 * 1372 * The filesystem may sleep at this point. 1373 */ 1374 if (managed & DCACHE_MANAGE_TRANSIT) { 1375 BUG_ON(!path->dentry->d_op); 1376 BUG_ON(!path->dentry->d_op->d_manage); 1377 ret = path->dentry->d_op->d_manage( 1378 path->dentry, false); 1379 if (ret < 0) 1380 return ret == -EISDIR ? 0 : ret; 1381 } 1382 1383 /* Transit to a mounted filesystem. */ 1384 if (managed & DCACHE_MOUNTED) { 1385 struct vfsmount *mounted = lookup_mnt(path); 1386 if (!mounted) 1387 break; 1388 dput(path->dentry); 1389 mntput(path->mnt); 1390 path->mnt = mounted; 1391 path->dentry = dget(mounted->mnt_root); 1392 continue; 1393 } 1394 1395 /* Don't handle automount points here */ 1396 break; 1397 } 1398 return 0; 1399 } 1400 EXPORT_SYMBOL(follow_down); 1401 1402 /* 1403 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() 1404 */ 1405 static void follow_mount(struct path *path) 1406 { 1407 while (d_mountpoint(path->dentry)) { 1408 struct vfsmount *mounted = lookup_mnt(path); 1409 if (!mounted) 1410 break; 1411 dput(path->dentry); 1412 mntput(path->mnt); 1413 path->mnt = mounted; 1414 path->dentry = dget(mounted->mnt_root); 1415 } 1416 } 1417 1418 static int follow_dotdot(struct nameidata *nd) 1419 { 1420 while(1) { 1421 struct dentry *old = nd->path.dentry; 1422 1423 if (nd->path.dentry == nd->root.dentry && 1424 nd->path.mnt == nd->root.mnt) { 1425 break; 1426 } 1427 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1428 /* rare case of legitimate dget_parent()... */ 1429 nd->path.dentry = dget_parent(nd->path.dentry); 1430 dput(old); 1431 if (unlikely(!path_connected(&nd->path))) 1432 return -ENOENT; 1433 break; 1434 } 1435 if (!follow_up(&nd->path)) 1436 break; 1437 } 1438 follow_mount(&nd->path); 1439 nd->inode = nd->path.dentry->d_inode; 1440 return 0; 1441 } 1442 1443 /* 1444 * This looks up the name in dcache, possibly revalidates the old dentry and 1445 * allocates a new one if not found or not valid. In the need_lookup argument 1446 * returns whether i_op->lookup is necessary. 1447 * 1448 * dir->d_inode->i_mutex must be held 1449 */ 1450 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir, 1451 unsigned int flags, bool *need_lookup) 1452 { 1453 struct dentry *dentry; 1454 int error; 1455 1456 *need_lookup = false; 1457 dentry = d_lookup(dir, name); 1458 if (dentry) { 1459 if (dentry->d_flags & DCACHE_OP_REVALIDATE) { 1460 error = d_revalidate(dentry, flags); 1461 if (unlikely(error <= 0)) { 1462 if (error < 0) { 1463 dput(dentry); 1464 return ERR_PTR(error); 1465 } else { 1466 d_invalidate(dentry); 1467 dput(dentry); 1468 dentry = NULL; 1469 } 1470 } 1471 } 1472 } 1473 1474 if (!dentry) { 1475 dentry = d_alloc(dir, name); 1476 if (unlikely(!dentry)) 1477 return ERR_PTR(-ENOMEM); 1478 1479 *need_lookup = true; 1480 } 1481 return dentry; 1482 } 1483 1484 /* 1485 * Call i_op->lookup on the dentry. The dentry must be negative and 1486 * unhashed. 1487 * 1488 * dir->d_inode->i_mutex must be held 1489 */ 1490 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry, 1491 unsigned int flags) 1492 { 1493 struct dentry *old; 1494 1495 /* Don't create child dentry for a dead directory. */ 1496 if (unlikely(IS_DEADDIR(dir))) { 1497 dput(dentry); 1498 return ERR_PTR(-ENOENT); 1499 } 1500 1501 old = dir->i_op->lookup(dir, dentry, flags); 1502 if (unlikely(old)) { 1503 dput(dentry); 1504 dentry = old; 1505 } 1506 return dentry; 1507 } 1508 1509 static struct dentry *__lookup_hash(struct qstr *name, 1510 struct dentry *base, unsigned int flags) 1511 { 1512 bool need_lookup; 1513 struct dentry *dentry; 1514 1515 dentry = lookup_dcache(name, base, flags, &need_lookup); 1516 if (!need_lookup) 1517 return dentry; 1518 1519 return lookup_real(base->d_inode, dentry, flags); 1520 } 1521 1522 /* 1523 * It's more convoluted than I'd like it to be, but... it's still fairly 1524 * small and for now I'd prefer to have fast path as straight as possible. 1525 * It _is_ time-critical. 1526 */ 1527 static int lookup_fast(struct nameidata *nd, 1528 struct path *path, struct inode **inode, 1529 unsigned *seqp) 1530 { 1531 struct vfsmount *mnt = nd->path.mnt; 1532 struct dentry *dentry, *parent = nd->path.dentry; 1533 int need_reval = 1; 1534 int status = 1; 1535 int err; 1536 1537 /* 1538 * Rename seqlock is not required here because in the off chance 1539 * of a false negative due to a concurrent rename, we're going to 1540 * do the non-racy lookup, below. 1541 */ 1542 if (nd->flags & LOOKUP_RCU) { 1543 unsigned seq; 1544 bool negative; 1545 dentry = __d_lookup_rcu(parent, &nd->last, &seq); 1546 if (!dentry) 1547 goto unlazy; 1548 1549 /* 1550 * This sequence count validates that the inode matches 1551 * the dentry name information from lookup. 1552 */ 1553 *inode = d_backing_inode(dentry); 1554 negative = d_is_negative(dentry); 1555 if (read_seqcount_retry(&dentry->d_seq, seq)) 1556 return -ECHILD; 1557 1558 /* 1559 * This sequence count validates that the parent had no 1560 * changes while we did the lookup of the dentry above. 1561 * 1562 * The memory barrier in read_seqcount_begin of child is 1563 * enough, we can use __read_seqcount_retry here. 1564 */ 1565 if (__read_seqcount_retry(&parent->d_seq, nd->seq)) 1566 return -ECHILD; 1567 1568 *seqp = seq; 1569 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) { 1570 status = d_revalidate(dentry, nd->flags); 1571 if (unlikely(status <= 0)) { 1572 if (status != -ECHILD) 1573 need_reval = 0; 1574 goto unlazy; 1575 } 1576 } 1577 /* 1578 * Note: do negative dentry check after revalidation in 1579 * case that drops it. 1580 */ 1581 if (negative) 1582 return -ENOENT; 1583 path->mnt = mnt; 1584 path->dentry = dentry; 1585 if (likely(__follow_mount_rcu(nd, path, inode, seqp))) 1586 return 0; 1587 unlazy: 1588 if (unlazy_walk(nd, dentry, seq)) 1589 return -ECHILD; 1590 } else { 1591 dentry = __d_lookup(parent, &nd->last); 1592 } 1593 1594 if (unlikely(!dentry)) 1595 goto need_lookup; 1596 1597 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval) 1598 status = d_revalidate(dentry, nd->flags); 1599 if (unlikely(status <= 0)) { 1600 if (status < 0) { 1601 dput(dentry); 1602 return status; 1603 } 1604 d_invalidate(dentry); 1605 dput(dentry); 1606 goto need_lookup; 1607 } 1608 1609 if (unlikely(d_is_negative(dentry))) { 1610 dput(dentry); 1611 return -ENOENT; 1612 } 1613 path->mnt = mnt; 1614 path->dentry = dentry; 1615 err = follow_managed(path, nd); 1616 if (likely(!err)) 1617 *inode = d_backing_inode(path->dentry); 1618 return err; 1619 1620 need_lookup: 1621 return 1; 1622 } 1623 1624 /* Fast lookup failed, do it the slow way */ 1625 static int lookup_slow(struct nameidata *nd, struct path *path) 1626 { 1627 struct dentry *dentry, *parent; 1628 1629 parent = nd->path.dentry; 1630 BUG_ON(nd->inode != parent->d_inode); 1631 1632 inode_lock(parent->d_inode); 1633 dentry = __lookup_hash(&nd->last, parent, nd->flags); 1634 inode_unlock(parent->d_inode); 1635 if (IS_ERR(dentry)) 1636 return PTR_ERR(dentry); 1637 path->mnt = nd->path.mnt; 1638 path->dentry = dentry; 1639 return follow_managed(path, nd); 1640 } 1641 1642 static inline int may_lookup(struct nameidata *nd) 1643 { 1644 if (nd->flags & LOOKUP_RCU) { 1645 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1646 if (err != -ECHILD) 1647 return err; 1648 if (unlazy_walk(nd, NULL, 0)) 1649 return -ECHILD; 1650 } 1651 return inode_permission(nd->inode, MAY_EXEC); 1652 } 1653 1654 static inline int handle_dots(struct nameidata *nd, int type) 1655 { 1656 if (type == LAST_DOTDOT) { 1657 if (!nd->root.mnt) 1658 set_root(nd); 1659 if (nd->flags & LOOKUP_RCU) { 1660 return follow_dotdot_rcu(nd); 1661 } else 1662 return follow_dotdot(nd); 1663 } 1664 return 0; 1665 } 1666 1667 static int pick_link(struct nameidata *nd, struct path *link, 1668 struct inode *inode, unsigned seq) 1669 { 1670 int error; 1671 struct saved *last; 1672 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) { 1673 path_to_nameidata(link, nd); 1674 return -ELOOP; 1675 } 1676 if (!(nd->flags & LOOKUP_RCU)) { 1677 if (link->mnt == nd->path.mnt) 1678 mntget(link->mnt); 1679 } 1680 error = nd_alloc_stack(nd); 1681 if (unlikely(error)) { 1682 if (error == -ECHILD) { 1683 if (unlikely(unlazy_link(nd, link, seq))) 1684 return -ECHILD; 1685 error = nd_alloc_stack(nd); 1686 } 1687 if (error) { 1688 path_put(link); 1689 return error; 1690 } 1691 } 1692 1693 last = nd->stack + nd->depth++; 1694 last->link = *link; 1695 clear_delayed_call(&last->done); 1696 nd->link_inode = inode; 1697 last->seq = seq; 1698 return 1; 1699 } 1700 1701 /* 1702 * Do we need to follow links? We _really_ want to be able 1703 * to do this check without having to look at inode->i_op, 1704 * so we keep a cache of "no, this doesn't need follow_link" 1705 * for the common case. 1706 */ 1707 static inline int should_follow_link(struct nameidata *nd, struct path *link, 1708 int follow, 1709 struct inode *inode, unsigned seq) 1710 { 1711 if (likely(!d_is_symlink(link->dentry))) 1712 return 0; 1713 if (!follow) 1714 return 0; 1715 /* make sure that d_is_symlink above matches inode */ 1716 if (nd->flags & LOOKUP_RCU) { 1717 if (read_seqcount_retry(&link->dentry->d_seq, seq)) 1718 return -ECHILD; 1719 } 1720 return pick_link(nd, link, inode, seq); 1721 } 1722 1723 enum {WALK_GET = 1, WALK_PUT = 2}; 1724 1725 static int walk_component(struct nameidata *nd, int flags) 1726 { 1727 struct path path; 1728 struct inode *inode; 1729 unsigned seq; 1730 int err; 1731 /* 1732 * "." and ".." are special - ".." especially so because it has 1733 * to be able to know about the current root directory and 1734 * parent relationships. 1735 */ 1736 if (unlikely(nd->last_type != LAST_NORM)) { 1737 err = handle_dots(nd, nd->last_type); 1738 if (flags & WALK_PUT) 1739 put_link(nd); 1740 return err; 1741 } 1742 err = lookup_fast(nd, &path, &inode, &seq); 1743 if (unlikely(err)) { 1744 if (err < 0) 1745 return err; 1746 1747 err = lookup_slow(nd, &path); 1748 if (err < 0) 1749 return err; 1750 1751 seq = 0; /* we are already out of RCU mode */ 1752 err = -ENOENT; 1753 if (d_is_negative(path.dentry)) 1754 goto out_path_put; 1755 inode = d_backing_inode(path.dentry); 1756 } 1757 1758 if (flags & WALK_PUT) 1759 put_link(nd); 1760 err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq); 1761 if (unlikely(err)) 1762 return err; 1763 path_to_nameidata(&path, nd); 1764 nd->inode = inode; 1765 nd->seq = seq; 1766 return 0; 1767 1768 out_path_put: 1769 path_to_nameidata(&path, nd); 1770 return err; 1771 } 1772 1773 /* 1774 * We can do the critical dentry name comparison and hashing 1775 * operations one word at a time, but we are limited to: 1776 * 1777 * - Architectures with fast unaligned word accesses. We could 1778 * do a "get_unaligned()" if this helps and is sufficiently 1779 * fast. 1780 * 1781 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 1782 * do not trap on the (extremely unlikely) case of a page 1783 * crossing operation. 1784 * 1785 * - Furthermore, we need an efficient 64-bit compile for the 1786 * 64-bit case in order to generate the "number of bytes in 1787 * the final mask". Again, that could be replaced with a 1788 * efficient population count instruction or similar. 1789 */ 1790 #ifdef CONFIG_DCACHE_WORD_ACCESS 1791 1792 #include <asm/word-at-a-time.h> 1793 1794 #ifdef CONFIG_64BIT 1795 1796 static inline unsigned int fold_hash(unsigned long hash) 1797 { 1798 return hash_64(hash, 32); 1799 } 1800 1801 #else /* 32-bit case */ 1802 1803 #define fold_hash(x) (x) 1804 1805 #endif 1806 1807 unsigned int full_name_hash(const unsigned char *name, unsigned int len) 1808 { 1809 unsigned long a, mask; 1810 unsigned long hash = 0; 1811 1812 for (;;) { 1813 a = load_unaligned_zeropad(name); 1814 if (len < sizeof(unsigned long)) 1815 break; 1816 hash += a; 1817 hash *= 9; 1818 name += sizeof(unsigned long); 1819 len -= sizeof(unsigned long); 1820 if (!len) 1821 goto done; 1822 } 1823 mask = bytemask_from_count(len); 1824 hash += mask & a; 1825 done: 1826 return fold_hash(hash); 1827 } 1828 EXPORT_SYMBOL(full_name_hash); 1829 1830 /* 1831 * Calculate the length and hash of the path component, and 1832 * return the "hash_len" as the result. 1833 */ 1834 static inline u64 hash_name(const char *name) 1835 { 1836 unsigned long a, b, adata, bdata, mask, hash, len; 1837 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1838 1839 hash = a = 0; 1840 len = -sizeof(unsigned long); 1841 do { 1842 hash = (hash + a) * 9; 1843 len += sizeof(unsigned long); 1844 a = load_unaligned_zeropad(name+len); 1845 b = a ^ REPEAT_BYTE('/'); 1846 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 1847 1848 adata = prep_zero_mask(a, adata, &constants); 1849 bdata = prep_zero_mask(b, bdata, &constants); 1850 1851 mask = create_zero_mask(adata | bdata); 1852 1853 hash += a & zero_bytemask(mask); 1854 len += find_zero(mask); 1855 return hashlen_create(fold_hash(hash), len); 1856 } 1857 1858 #else 1859 1860 unsigned int full_name_hash(const unsigned char *name, unsigned int len) 1861 { 1862 unsigned long hash = init_name_hash(); 1863 while (len--) 1864 hash = partial_name_hash(*name++, hash); 1865 return end_name_hash(hash); 1866 } 1867 EXPORT_SYMBOL(full_name_hash); 1868 1869 /* 1870 * We know there's a real path component here of at least 1871 * one character. 1872 */ 1873 static inline u64 hash_name(const char *name) 1874 { 1875 unsigned long hash = init_name_hash(); 1876 unsigned long len = 0, c; 1877 1878 c = (unsigned char)*name; 1879 do { 1880 len++; 1881 hash = partial_name_hash(c, hash); 1882 c = (unsigned char)name[len]; 1883 } while (c && c != '/'); 1884 return hashlen_create(end_name_hash(hash), len); 1885 } 1886 1887 #endif 1888 1889 /* 1890 * Name resolution. 1891 * This is the basic name resolution function, turning a pathname into 1892 * the final dentry. We expect 'base' to be positive and a directory. 1893 * 1894 * Returns 0 and nd will have valid dentry and mnt on success. 1895 * Returns error and drops reference to input namei data on failure. 1896 */ 1897 static int link_path_walk(const char *name, struct nameidata *nd) 1898 { 1899 int err; 1900 1901 while (*name=='/') 1902 name++; 1903 if (!*name) 1904 return 0; 1905 1906 /* At this point we know we have a real path component. */ 1907 for(;;) { 1908 u64 hash_len; 1909 int type; 1910 1911 err = may_lookup(nd); 1912 if (err) 1913 return err; 1914 1915 hash_len = hash_name(name); 1916 1917 type = LAST_NORM; 1918 if (name[0] == '.') switch (hashlen_len(hash_len)) { 1919 case 2: 1920 if (name[1] == '.') { 1921 type = LAST_DOTDOT; 1922 nd->flags |= LOOKUP_JUMPED; 1923 } 1924 break; 1925 case 1: 1926 type = LAST_DOT; 1927 } 1928 if (likely(type == LAST_NORM)) { 1929 struct dentry *parent = nd->path.dentry; 1930 nd->flags &= ~LOOKUP_JUMPED; 1931 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 1932 struct qstr this = { { .hash_len = hash_len }, .name = name }; 1933 err = parent->d_op->d_hash(parent, &this); 1934 if (err < 0) 1935 return err; 1936 hash_len = this.hash_len; 1937 name = this.name; 1938 } 1939 } 1940 1941 nd->last.hash_len = hash_len; 1942 nd->last.name = name; 1943 nd->last_type = type; 1944 1945 name += hashlen_len(hash_len); 1946 if (!*name) 1947 goto OK; 1948 /* 1949 * If it wasn't NUL, we know it was '/'. Skip that 1950 * slash, and continue until no more slashes. 1951 */ 1952 do { 1953 name++; 1954 } while (unlikely(*name == '/')); 1955 if (unlikely(!*name)) { 1956 OK: 1957 /* pathname body, done */ 1958 if (!nd->depth) 1959 return 0; 1960 name = nd->stack[nd->depth - 1].name; 1961 /* trailing symlink, done */ 1962 if (!name) 1963 return 0; 1964 /* last component of nested symlink */ 1965 err = walk_component(nd, WALK_GET | WALK_PUT); 1966 } else { 1967 err = walk_component(nd, WALK_GET); 1968 } 1969 if (err < 0) 1970 return err; 1971 1972 if (err) { 1973 const char *s = get_link(nd); 1974 1975 if (IS_ERR(s)) 1976 return PTR_ERR(s); 1977 err = 0; 1978 if (unlikely(!s)) { 1979 /* jumped */ 1980 put_link(nd); 1981 } else { 1982 nd->stack[nd->depth - 1].name = name; 1983 name = s; 1984 continue; 1985 } 1986 } 1987 if (unlikely(!d_can_lookup(nd->path.dentry))) { 1988 if (nd->flags & LOOKUP_RCU) { 1989 if (unlazy_walk(nd, NULL, 0)) 1990 return -ECHILD; 1991 } 1992 return -ENOTDIR; 1993 } 1994 } 1995 } 1996 1997 static const char *path_init(struct nameidata *nd, unsigned flags) 1998 { 1999 int retval = 0; 2000 const char *s = nd->name->name; 2001 2002 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 2003 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT; 2004 nd->depth = 0; 2005 if (flags & LOOKUP_ROOT) { 2006 struct dentry *root = nd->root.dentry; 2007 struct inode *inode = root->d_inode; 2008 if (*s) { 2009 if (!d_can_lookup(root)) 2010 return ERR_PTR(-ENOTDIR); 2011 retval = inode_permission(inode, MAY_EXEC); 2012 if (retval) 2013 return ERR_PTR(retval); 2014 } 2015 nd->path = nd->root; 2016 nd->inode = inode; 2017 if (flags & LOOKUP_RCU) { 2018 rcu_read_lock(); 2019 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2020 nd->root_seq = nd->seq; 2021 nd->m_seq = read_seqbegin(&mount_lock); 2022 } else { 2023 path_get(&nd->path); 2024 } 2025 return s; 2026 } 2027 2028 nd->root.mnt = NULL; 2029 nd->path.mnt = NULL; 2030 nd->path.dentry = NULL; 2031 2032 nd->m_seq = read_seqbegin(&mount_lock); 2033 if (*s == '/') { 2034 if (flags & LOOKUP_RCU) 2035 rcu_read_lock(); 2036 set_root(nd); 2037 if (likely(!nd_jump_root(nd))) 2038 return s; 2039 nd->root.mnt = NULL; 2040 rcu_read_unlock(); 2041 return ERR_PTR(-ECHILD); 2042 } else if (nd->dfd == AT_FDCWD) { 2043 if (flags & LOOKUP_RCU) { 2044 struct fs_struct *fs = current->fs; 2045 unsigned seq; 2046 2047 rcu_read_lock(); 2048 2049 do { 2050 seq = read_seqcount_begin(&fs->seq); 2051 nd->path = fs->pwd; 2052 nd->inode = nd->path.dentry->d_inode; 2053 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2054 } while (read_seqcount_retry(&fs->seq, seq)); 2055 } else { 2056 get_fs_pwd(current->fs, &nd->path); 2057 nd->inode = nd->path.dentry->d_inode; 2058 } 2059 return s; 2060 } else { 2061 /* Caller must check execute permissions on the starting path component */ 2062 struct fd f = fdget_raw(nd->dfd); 2063 struct dentry *dentry; 2064 2065 if (!f.file) 2066 return ERR_PTR(-EBADF); 2067 2068 dentry = f.file->f_path.dentry; 2069 2070 if (*s) { 2071 if (!d_can_lookup(dentry)) { 2072 fdput(f); 2073 return ERR_PTR(-ENOTDIR); 2074 } 2075 } 2076 2077 nd->path = f.file->f_path; 2078 if (flags & LOOKUP_RCU) { 2079 rcu_read_lock(); 2080 nd->inode = nd->path.dentry->d_inode; 2081 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2082 } else { 2083 path_get(&nd->path); 2084 nd->inode = nd->path.dentry->d_inode; 2085 } 2086 fdput(f); 2087 return s; 2088 } 2089 } 2090 2091 static const char *trailing_symlink(struct nameidata *nd) 2092 { 2093 const char *s; 2094 int error = may_follow_link(nd); 2095 if (unlikely(error)) 2096 return ERR_PTR(error); 2097 nd->flags |= LOOKUP_PARENT; 2098 nd->stack[0].name = NULL; 2099 s = get_link(nd); 2100 return s ? s : ""; 2101 } 2102 2103 static inline int lookup_last(struct nameidata *nd) 2104 { 2105 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 2106 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2107 2108 nd->flags &= ~LOOKUP_PARENT; 2109 return walk_component(nd, 2110 nd->flags & LOOKUP_FOLLOW 2111 ? nd->depth 2112 ? WALK_PUT | WALK_GET 2113 : WALK_GET 2114 : 0); 2115 } 2116 2117 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2118 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path) 2119 { 2120 const char *s = path_init(nd, flags); 2121 int err; 2122 2123 if (IS_ERR(s)) 2124 return PTR_ERR(s); 2125 while (!(err = link_path_walk(s, nd)) 2126 && ((err = lookup_last(nd)) > 0)) { 2127 s = trailing_symlink(nd); 2128 if (IS_ERR(s)) { 2129 err = PTR_ERR(s); 2130 break; 2131 } 2132 } 2133 if (!err) 2134 err = complete_walk(nd); 2135 2136 if (!err && nd->flags & LOOKUP_DIRECTORY) 2137 if (!d_can_lookup(nd->path.dentry)) 2138 err = -ENOTDIR; 2139 if (!err) { 2140 *path = nd->path; 2141 nd->path.mnt = NULL; 2142 nd->path.dentry = NULL; 2143 } 2144 terminate_walk(nd); 2145 return err; 2146 } 2147 2148 static int filename_lookup(int dfd, struct filename *name, unsigned flags, 2149 struct path *path, struct path *root) 2150 { 2151 int retval; 2152 struct nameidata nd; 2153 if (IS_ERR(name)) 2154 return PTR_ERR(name); 2155 if (unlikely(root)) { 2156 nd.root = *root; 2157 flags |= LOOKUP_ROOT; 2158 } 2159 set_nameidata(&nd, dfd, name); 2160 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path); 2161 if (unlikely(retval == -ECHILD)) 2162 retval = path_lookupat(&nd, flags, path); 2163 if (unlikely(retval == -ESTALE)) 2164 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path); 2165 2166 if (likely(!retval)) 2167 audit_inode(name, path->dentry, flags & LOOKUP_PARENT); 2168 restore_nameidata(); 2169 putname(name); 2170 return retval; 2171 } 2172 2173 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2174 static int path_parentat(struct nameidata *nd, unsigned flags, 2175 struct path *parent) 2176 { 2177 const char *s = path_init(nd, flags); 2178 int err; 2179 if (IS_ERR(s)) 2180 return PTR_ERR(s); 2181 err = link_path_walk(s, nd); 2182 if (!err) 2183 err = complete_walk(nd); 2184 if (!err) { 2185 *parent = nd->path; 2186 nd->path.mnt = NULL; 2187 nd->path.dentry = NULL; 2188 } 2189 terminate_walk(nd); 2190 return err; 2191 } 2192 2193 static struct filename *filename_parentat(int dfd, struct filename *name, 2194 unsigned int flags, struct path *parent, 2195 struct qstr *last, int *type) 2196 { 2197 int retval; 2198 struct nameidata nd; 2199 2200 if (IS_ERR(name)) 2201 return name; 2202 set_nameidata(&nd, dfd, name); 2203 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent); 2204 if (unlikely(retval == -ECHILD)) 2205 retval = path_parentat(&nd, flags, parent); 2206 if (unlikely(retval == -ESTALE)) 2207 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent); 2208 if (likely(!retval)) { 2209 *last = nd.last; 2210 *type = nd.last_type; 2211 audit_inode(name, parent->dentry, LOOKUP_PARENT); 2212 } else { 2213 putname(name); 2214 name = ERR_PTR(retval); 2215 } 2216 restore_nameidata(); 2217 return name; 2218 } 2219 2220 /* does lookup, returns the object with parent locked */ 2221 struct dentry *kern_path_locked(const char *name, struct path *path) 2222 { 2223 struct filename *filename; 2224 struct dentry *d; 2225 struct qstr last; 2226 int type; 2227 2228 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path, 2229 &last, &type); 2230 if (IS_ERR(filename)) 2231 return ERR_CAST(filename); 2232 if (unlikely(type != LAST_NORM)) { 2233 path_put(path); 2234 putname(filename); 2235 return ERR_PTR(-EINVAL); 2236 } 2237 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 2238 d = __lookup_hash(&last, path->dentry, 0); 2239 if (IS_ERR(d)) { 2240 inode_unlock(path->dentry->d_inode); 2241 path_put(path); 2242 } 2243 putname(filename); 2244 return d; 2245 } 2246 2247 int kern_path(const char *name, unsigned int flags, struct path *path) 2248 { 2249 return filename_lookup(AT_FDCWD, getname_kernel(name), 2250 flags, path, NULL); 2251 } 2252 EXPORT_SYMBOL(kern_path); 2253 2254 /** 2255 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2256 * @dentry: pointer to dentry of the base directory 2257 * @mnt: pointer to vfs mount of the base directory 2258 * @name: pointer to file name 2259 * @flags: lookup flags 2260 * @path: pointer to struct path to fill 2261 */ 2262 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2263 const char *name, unsigned int flags, 2264 struct path *path) 2265 { 2266 struct path root = {.mnt = mnt, .dentry = dentry}; 2267 /* the first argument of filename_lookup() is ignored with root */ 2268 return filename_lookup(AT_FDCWD, getname_kernel(name), 2269 flags , path, &root); 2270 } 2271 EXPORT_SYMBOL(vfs_path_lookup); 2272 2273 /** 2274 * lookup_one_len - filesystem helper to lookup single pathname component 2275 * @name: pathname component to lookup 2276 * @base: base directory to lookup from 2277 * @len: maximum length @len should be interpreted to 2278 * 2279 * Note that this routine is purely a helper for filesystem usage and should 2280 * not be called by generic code. 2281 * 2282 * The caller must hold base->i_mutex. 2283 */ 2284 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2285 { 2286 struct qstr this; 2287 unsigned int c; 2288 int err; 2289 2290 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2291 2292 this.name = name; 2293 this.len = len; 2294 this.hash = full_name_hash(name, len); 2295 if (!len) 2296 return ERR_PTR(-EACCES); 2297 2298 if (unlikely(name[0] == '.')) { 2299 if (len < 2 || (len == 2 && name[1] == '.')) 2300 return ERR_PTR(-EACCES); 2301 } 2302 2303 while (len--) { 2304 c = *(const unsigned char *)name++; 2305 if (c == '/' || c == '\0') 2306 return ERR_PTR(-EACCES); 2307 } 2308 /* 2309 * See if the low-level filesystem might want 2310 * to use its own hash.. 2311 */ 2312 if (base->d_flags & DCACHE_OP_HASH) { 2313 int err = base->d_op->d_hash(base, &this); 2314 if (err < 0) 2315 return ERR_PTR(err); 2316 } 2317 2318 err = inode_permission(base->d_inode, MAY_EXEC); 2319 if (err) 2320 return ERR_PTR(err); 2321 2322 return __lookup_hash(&this, base, 0); 2323 } 2324 EXPORT_SYMBOL(lookup_one_len); 2325 2326 /** 2327 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component 2328 * @name: pathname component to lookup 2329 * @base: base directory to lookup from 2330 * @len: maximum length @len should be interpreted to 2331 * 2332 * Note that this routine is purely a helper for filesystem usage and should 2333 * not be called by generic code. 2334 * 2335 * Unlike lookup_one_len, it should be called without the parent 2336 * i_mutex held, and will take the i_mutex itself if necessary. 2337 */ 2338 struct dentry *lookup_one_len_unlocked(const char *name, 2339 struct dentry *base, int len) 2340 { 2341 struct qstr this; 2342 unsigned int c; 2343 int err; 2344 struct dentry *ret; 2345 2346 this.name = name; 2347 this.len = len; 2348 this.hash = full_name_hash(name, len); 2349 if (!len) 2350 return ERR_PTR(-EACCES); 2351 2352 if (unlikely(name[0] == '.')) { 2353 if (len < 2 || (len == 2 && name[1] == '.')) 2354 return ERR_PTR(-EACCES); 2355 } 2356 2357 while (len--) { 2358 c = *(const unsigned char *)name++; 2359 if (c == '/' || c == '\0') 2360 return ERR_PTR(-EACCES); 2361 } 2362 /* 2363 * See if the low-level filesystem might want 2364 * to use its own hash.. 2365 */ 2366 if (base->d_flags & DCACHE_OP_HASH) { 2367 int err = base->d_op->d_hash(base, &this); 2368 if (err < 0) 2369 return ERR_PTR(err); 2370 } 2371 2372 err = inode_permission(base->d_inode, MAY_EXEC); 2373 if (err) 2374 return ERR_PTR(err); 2375 2376 /* 2377 * __d_lookup() is used to try to get a quick answer and avoid the 2378 * mutex. A false-negative does no harm. 2379 */ 2380 ret = __d_lookup(base, &this); 2381 if (ret && unlikely(ret->d_flags & DCACHE_OP_REVALIDATE)) { 2382 dput(ret); 2383 ret = NULL; 2384 } 2385 if (ret) 2386 return ret; 2387 2388 inode_lock(base->d_inode); 2389 ret = __lookup_hash(&this, base, 0); 2390 inode_unlock(base->d_inode); 2391 return ret; 2392 } 2393 EXPORT_SYMBOL(lookup_one_len_unlocked); 2394 2395 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2396 struct path *path, int *empty) 2397 { 2398 return filename_lookup(dfd, getname_flags(name, flags, empty), 2399 flags, path, NULL); 2400 } 2401 EXPORT_SYMBOL(user_path_at_empty); 2402 2403 /* 2404 * NB: most callers don't do anything directly with the reference to the 2405 * to struct filename, but the nd->last pointer points into the name string 2406 * allocated by getname. So we must hold the reference to it until all 2407 * path-walking is complete. 2408 */ 2409 static inline struct filename * 2410 user_path_parent(int dfd, const char __user *path, 2411 struct path *parent, 2412 struct qstr *last, 2413 int *type, 2414 unsigned int flags) 2415 { 2416 /* only LOOKUP_REVAL is allowed in extra flags */ 2417 return filename_parentat(dfd, getname(path), flags & LOOKUP_REVAL, 2418 parent, last, type); 2419 } 2420 2421 /** 2422 * mountpoint_last - look up last component for umount 2423 * @nd: pathwalk nameidata - currently pointing at parent directory of "last" 2424 * @path: pointer to container for result 2425 * 2426 * This is a special lookup_last function just for umount. In this case, we 2427 * need to resolve the path without doing any revalidation. 2428 * 2429 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since 2430 * mountpoints are always pinned in the dcache, their ancestors are too. Thus, 2431 * in almost all cases, this lookup will be served out of the dcache. The only 2432 * cases where it won't are if nd->last refers to a symlink or the path is 2433 * bogus and it doesn't exist. 2434 * 2435 * Returns: 2436 * -error: if there was an error during lookup. This includes -ENOENT if the 2437 * lookup found a negative dentry. The nd->path reference will also be 2438 * put in this case. 2439 * 2440 * 0: if we successfully resolved nd->path and found it to not to be a 2441 * symlink that needs to be followed. "path" will also be populated. 2442 * The nd->path reference will also be put. 2443 * 2444 * 1: if we successfully resolved nd->last and found it to be a symlink 2445 * that needs to be followed. "path" will be populated with the path 2446 * to the link, and nd->path will *not* be put. 2447 */ 2448 static int 2449 mountpoint_last(struct nameidata *nd, struct path *path) 2450 { 2451 int error = 0; 2452 struct dentry *dentry; 2453 struct dentry *dir = nd->path.dentry; 2454 2455 /* If we're in rcuwalk, drop out of it to handle last component */ 2456 if (nd->flags & LOOKUP_RCU) { 2457 if (unlazy_walk(nd, NULL, 0)) 2458 return -ECHILD; 2459 } 2460 2461 nd->flags &= ~LOOKUP_PARENT; 2462 2463 if (unlikely(nd->last_type != LAST_NORM)) { 2464 error = handle_dots(nd, nd->last_type); 2465 if (error) 2466 return error; 2467 dentry = dget(nd->path.dentry); 2468 goto done; 2469 } 2470 2471 inode_lock(dir->d_inode); 2472 dentry = d_lookup(dir, &nd->last); 2473 if (!dentry) { 2474 /* 2475 * No cached dentry. Mounted dentries are pinned in the cache, 2476 * so that means that this dentry is probably a symlink or the 2477 * path doesn't actually point to a mounted dentry. 2478 */ 2479 dentry = d_alloc(dir, &nd->last); 2480 if (!dentry) { 2481 inode_unlock(dir->d_inode); 2482 return -ENOMEM; 2483 } 2484 dentry = lookup_real(dir->d_inode, dentry, nd->flags); 2485 if (IS_ERR(dentry)) { 2486 inode_unlock(dir->d_inode); 2487 return PTR_ERR(dentry); 2488 } 2489 } 2490 inode_unlock(dir->d_inode); 2491 2492 done: 2493 if (d_is_negative(dentry)) { 2494 dput(dentry); 2495 return -ENOENT; 2496 } 2497 if (nd->depth) 2498 put_link(nd); 2499 path->dentry = dentry; 2500 path->mnt = nd->path.mnt; 2501 error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW, 2502 d_backing_inode(dentry), 0); 2503 if (unlikely(error)) 2504 return error; 2505 mntget(path->mnt); 2506 follow_mount(path); 2507 return 0; 2508 } 2509 2510 /** 2511 * path_mountpoint - look up a path to be umounted 2512 * @nd: lookup context 2513 * @flags: lookup flags 2514 * @path: pointer to container for result 2515 * 2516 * Look up the given name, but don't attempt to revalidate the last component. 2517 * Returns 0 and "path" will be valid on success; Returns error otherwise. 2518 */ 2519 static int 2520 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path) 2521 { 2522 const char *s = path_init(nd, flags); 2523 int err; 2524 if (IS_ERR(s)) 2525 return PTR_ERR(s); 2526 while (!(err = link_path_walk(s, nd)) && 2527 (err = mountpoint_last(nd, path)) > 0) { 2528 s = trailing_symlink(nd); 2529 if (IS_ERR(s)) { 2530 err = PTR_ERR(s); 2531 break; 2532 } 2533 } 2534 terminate_walk(nd); 2535 return err; 2536 } 2537 2538 static int 2539 filename_mountpoint(int dfd, struct filename *name, struct path *path, 2540 unsigned int flags) 2541 { 2542 struct nameidata nd; 2543 int error; 2544 if (IS_ERR(name)) 2545 return PTR_ERR(name); 2546 set_nameidata(&nd, dfd, name); 2547 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path); 2548 if (unlikely(error == -ECHILD)) 2549 error = path_mountpoint(&nd, flags, path); 2550 if (unlikely(error == -ESTALE)) 2551 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path); 2552 if (likely(!error)) 2553 audit_inode(name, path->dentry, 0); 2554 restore_nameidata(); 2555 putname(name); 2556 return error; 2557 } 2558 2559 /** 2560 * user_path_mountpoint_at - lookup a path from userland in order to umount it 2561 * @dfd: directory file descriptor 2562 * @name: pathname from userland 2563 * @flags: lookup flags 2564 * @path: pointer to container to hold result 2565 * 2566 * A umount is a special case for path walking. We're not actually interested 2567 * in the inode in this situation, and ESTALE errors can be a problem. We 2568 * simply want track down the dentry and vfsmount attached at the mountpoint 2569 * and avoid revalidating the last component. 2570 * 2571 * Returns 0 and populates "path" on success. 2572 */ 2573 int 2574 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags, 2575 struct path *path) 2576 { 2577 return filename_mountpoint(dfd, getname(name), path, flags); 2578 } 2579 2580 int 2581 kern_path_mountpoint(int dfd, const char *name, struct path *path, 2582 unsigned int flags) 2583 { 2584 return filename_mountpoint(dfd, getname_kernel(name), path, flags); 2585 } 2586 EXPORT_SYMBOL(kern_path_mountpoint); 2587 2588 int __check_sticky(struct inode *dir, struct inode *inode) 2589 { 2590 kuid_t fsuid = current_fsuid(); 2591 2592 if (uid_eq(inode->i_uid, fsuid)) 2593 return 0; 2594 if (uid_eq(dir->i_uid, fsuid)) 2595 return 0; 2596 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER); 2597 } 2598 EXPORT_SYMBOL(__check_sticky); 2599 2600 /* 2601 * Check whether we can remove a link victim from directory dir, check 2602 * whether the type of victim is right. 2603 * 1. We can't do it if dir is read-only (done in permission()) 2604 * 2. We should have write and exec permissions on dir 2605 * 3. We can't remove anything from append-only dir 2606 * 4. We can't do anything with immutable dir (done in permission()) 2607 * 5. If the sticky bit on dir is set we should either 2608 * a. be owner of dir, or 2609 * b. be owner of victim, or 2610 * c. have CAP_FOWNER capability 2611 * 6. If the victim is append-only or immutable we can't do antyhing with 2612 * links pointing to it. 2613 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2614 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2615 * 9. We can't remove a root or mountpoint. 2616 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 2617 * nfs_async_unlink(). 2618 */ 2619 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir) 2620 { 2621 struct inode *inode = d_backing_inode(victim); 2622 int error; 2623 2624 if (d_is_negative(victim)) 2625 return -ENOENT; 2626 BUG_ON(!inode); 2627 2628 BUG_ON(victim->d_parent->d_inode != dir); 2629 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2630 2631 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 2632 if (error) 2633 return error; 2634 if (IS_APPEND(dir)) 2635 return -EPERM; 2636 2637 if (check_sticky(dir, inode) || IS_APPEND(inode) || 2638 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode)) 2639 return -EPERM; 2640 if (isdir) { 2641 if (!d_is_dir(victim)) 2642 return -ENOTDIR; 2643 if (IS_ROOT(victim)) 2644 return -EBUSY; 2645 } else if (d_is_dir(victim)) 2646 return -EISDIR; 2647 if (IS_DEADDIR(dir)) 2648 return -ENOENT; 2649 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2650 return -EBUSY; 2651 return 0; 2652 } 2653 2654 /* Check whether we can create an object with dentry child in directory 2655 * dir. 2656 * 1. We can't do it if child already exists (open has special treatment for 2657 * this case, but since we are inlined it's OK) 2658 * 2. We can't do it if dir is read-only (done in permission()) 2659 * 3. We should have write and exec permissions on dir 2660 * 4. We can't do it if dir is immutable (done in permission()) 2661 */ 2662 static inline int may_create(struct inode *dir, struct dentry *child) 2663 { 2664 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 2665 if (child->d_inode) 2666 return -EEXIST; 2667 if (IS_DEADDIR(dir)) 2668 return -ENOENT; 2669 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 2670 } 2671 2672 /* 2673 * p1 and p2 should be directories on the same fs. 2674 */ 2675 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2676 { 2677 struct dentry *p; 2678 2679 if (p1 == p2) { 2680 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2681 return NULL; 2682 } 2683 2684 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2685 2686 p = d_ancestor(p2, p1); 2687 if (p) { 2688 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 2689 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD); 2690 return p; 2691 } 2692 2693 p = d_ancestor(p1, p2); 2694 if (p) { 2695 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2696 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD); 2697 return p; 2698 } 2699 2700 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2701 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 2702 return NULL; 2703 } 2704 EXPORT_SYMBOL(lock_rename); 2705 2706 void unlock_rename(struct dentry *p1, struct dentry *p2) 2707 { 2708 inode_unlock(p1->d_inode); 2709 if (p1 != p2) { 2710 inode_unlock(p2->d_inode); 2711 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2712 } 2713 } 2714 EXPORT_SYMBOL(unlock_rename); 2715 2716 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2717 bool want_excl) 2718 { 2719 int error = may_create(dir, dentry); 2720 if (error) 2721 return error; 2722 2723 if (!dir->i_op->create) 2724 return -EACCES; /* shouldn't it be ENOSYS? */ 2725 mode &= S_IALLUGO; 2726 mode |= S_IFREG; 2727 error = security_inode_create(dir, dentry, mode); 2728 if (error) 2729 return error; 2730 error = dir->i_op->create(dir, dentry, mode, want_excl); 2731 if (!error) 2732 fsnotify_create(dir, dentry); 2733 return error; 2734 } 2735 EXPORT_SYMBOL(vfs_create); 2736 2737 static int may_open(struct path *path, int acc_mode, int flag) 2738 { 2739 struct dentry *dentry = path->dentry; 2740 struct inode *inode = dentry->d_inode; 2741 int error; 2742 2743 if (!inode) 2744 return -ENOENT; 2745 2746 switch (inode->i_mode & S_IFMT) { 2747 case S_IFLNK: 2748 return -ELOOP; 2749 case S_IFDIR: 2750 if (acc_mode & MAY_WRITE) 2751 return -EISDIR; 2752 break; 2753 case S_IFBLK: 2754 case S_IFCHR: 2755 if (path->mnt->mnt_flags & MNT_NODEV) 2756 return -EACCES; 2757 /*FALLTHRU*/ 2758 case S_IFIFO: 2759 case S_IFSOCK: 2760 flag &= ~O_TRUNC; 2761 break; 2762 } 2763 2764 error = inode_permission(inode, MAY_OPEN | acc_mode); 2765 if (error) 2766 return error; 2767 2768 /* 2769 * An append-only file must be opened in append mode for writing. 2770 */ 2771 if (IS_APPEND(inode)) { 2772 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2773 return -EPERM; 2774 if (flag & O_TRUNC) 2775 return -EPERM; 2776 } 2777 2778 /* O_NOATIME can only be set by the owner or superuser */ 2779 if (flag & O_NOATIME && !inode_owner_or_capable(inode)) 2780 return -EPERM; 2781 2782 return 0; 2783 } 2784 2785 static int handle_truncate(struct file *filp) 2786 { 2787 struct path *path = &filp->f_path; 2788 struct inode *inode = path->dentry->d_inode; 2789 int error = get_write_access(inode); 2790 if (error) 2791 return error; 2792 /* 2793 * Refuse to truncate files with mandatory locks held on them. 2794 */ 2795 error = locks_verify_locked(filp); 2796 if (!error) 2797 error = security_path_truncate(path); 2798 if (!error) { 2799 error = do_truncate(path->dentry, 0, 2800 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 2801 filp); 2802 } 2803 put_write_access(inode); 2804 return error; 2805 } 2806 2807 static inline int open_to_namei_flags(int flag) 2808 { 2809 if ((flag & O_ACCMODE) == 3) 2810 flag--; 2811 return flag; 2812 } 2813 2814 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode) 2815 { 2816 int error = security_path_mknod(dir, dentry, mode, 0); 2817 if (error) 2818 return error; 2819 2820 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC); 2821 if (error) 2822 return error; 2823 2824 return security_inode_create(dir->dentry->d_inode, dentry, mode); 2825 } 2826 2827 /* 2828 * Attempt to atomically look up, create and open a file from a negative 2829 * dentry. 2830 * 2831 * Returns 0 if successful. The file will have been created and attached to 2832 * @file by the filesystem calling finish_open(). 2833 * 2834 * Returns 1 if the file was looked up only or didn't need creating. The 2835 * caller will need to perform the open themselves. @path will have been 2836 * updated to point to the new dentry. This may be negative. 2837 * 2838 * Returns an error code otherwise. 2839 */ 2840 static int atomic_open(struct nameidata *nd, struct dentry *dentry, 2841 struct path *path, struct file *file, 2842 const struct open_flags *op, 2843 bool got_write, bool need_lookup, 2844 int *opened) 2845 { 2846 struct inode *dir = nd->path.dentry->d_inode; 2847 unsigned open_flag = open_to_namei_flags(op->open_flag); 2848 umode_t mode; 2849 int error; 2850 int acc_mode; 2851 int create_error = 0; 2852 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 2853 bool excl; 2854 2855 BUG_ON(dentry->d_inode); 2856 2857 /* Don't create child dentry for a dead directory. */ 2858 if (unlikely(IS_DEADDIR(dir))) { 2859 error = -ENOENT; 2860 goto out; 2861 } 2862 2863 mode = op->mode; 2864 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir)) 2865 mode &= ~current_umask(); 2866 2867 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT); 2868 if (excl) 2869 open_flag &= ~O_TRUNC; 2870 2871 /* 2872 * Checking write permission is tricky, bacuse we don't know if we are 2873 * going to actually need it: O_CREAT opens should work as long as the 2874 * file exists. But checking existence breaks atomicity. The trick is 2875 * to check access and if not granted clear O_CREAT from the flags. 2876 * 2877 * Another problem is returing the "right" error value (e.g. for an 2878 * O_EXCL open we want to return EEXIST not EROFS). 2879 */ 2880 if (((open_flag & (O_CREAT | O_TRUNC)) || 2881 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) { 2882 if (!(open_flag & O_CREAT)) { 2883 /* 2884 * No O_CREATE -> atomicity not a requirement -> fall 2885 * back to lookup + open 2886 */ 2887 goto no_open; 2888 } else if (open_flag & (O_EXCL | O_TRUNC)) { 2889 /* Fall back and fail with the right error */ 2890 create_error = -EROFS; 2891 goto no_open; 2892 } else { 2893 /* No side effects, safe to clear O_CREAT */ 2894 create_error = -EROFS; 2895 open_flag &= ~O_CREAT; 2896 } 2897 } 2898 2899 if (open_flag & O_CREAT) { 2900 error = may_o_create(&nd->path, dentry, mode); 2901 if (error) { 2902 create_error = error; 2903 if (open_flag & O_EXCL) 2904 goto no_open; 2905 open_flag &= ~O_CREAT; 2906 } 2907 } 2908 2909 if (nd->flags & LOOKUP_DIRECTORY) 2910 open_flag |= O_DIRECTORY; 2911 2912 file->f_path.dentry = DENTRY_NOT_SET; 2913 file->f_path.mnt = nd->path.mnt; 2914 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode, 2915 opened); 2916 if (error < 0) { 2917 if (create_error && error == -ENOENT) 2918 error = create_error; 2919 goto out; 2920 } 2921 2922 if (error) { /* returned 1, that is */ 2923 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 2924 error = -EIO; 2925 goto out; 2926 } 2927 if (file->f_path.dentry) { 2928 dput(dentry); 2929 dentry = file->f_path.dentry; 2930 } 2931 if (*opened & FILE_CREATED) 2932 fsnotify_create(dir, dentry); 2933 if (!dentry->d_inode) { 2934 WARN_ON(*opened & FILE_CREATED); 2935 if (create_error) { 2936 error = create_error; 2937 goto out; 2938 } 2939 } else { 2940 if (excl && !(*opened & FILE_CREATED)) { 2941 error = -EEXIST; 2942 goto out; 2943 } 2944 } 2945 goto looked_up; 2946 } 2947 2948 /* 2949 * We didn't have the inode before the open, so check open permission 2950 * here. 2951 */ 2952 acc_mode = op->acc_mode; 2953 if (*opened & FILE_CREATED) { 2954 WARN_ON(!(open_flag & O_CREAT)); 2955 fsnotify_create(dir, dentry); 2956 acc_mode = 0; 2957 } 2958 error = may_open(&file->f_path, acc_mode, open_flag); 2959 if (error) 2960 fput(file); 2961 2962 out: 2963 dput(dentry); 2964 return error; 2965 2966 no_open: 2967 if (need_lookup) { 2968 dentry = lookup_real(dir, dentry, nd->flags); 2969 if (IS_ERR(dentry)) 2970 return PTR_ERR(dentry); 2971 2972 if (create_error) { 2973 int open_flag = op->open_flag; 2974 2975 error = create_error; 2976 if ((open_flag & O_EXCL)) { 2977 if (!dentry->d_inode) 2978 goto out; 2979 } else if (!dentry->d_inode) { 2980 goto out; 2981 } else if ((open_flag & O_TRUNC) && 2982 d_is_reg(dentry)) { 2983 goto out; 2984 } 2985 /* will fail later, go on to get the right error */ 2986 } 2987 } 2988 looked_up: 2989 path->dentry = dentry; 2990 path->mnt = nd->path.mnt; 2991 return 1; 2992 } 2993 2994 /* 2995 * Look up and maybe create and open the last component. 2996 * 2997 * Must be called with i_mutex held on parent. 2998 * 2999 * Returns 0 if the file was successfully atomically created (if necessary) and 3000 * opened. In this case the file will be returned attached to @file. 3001 * 3002 * Returns 1 if the file was not completely opened at this time, though lookups 3003 * and creations will have been performed and the dentry returned in @path will 3004 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't 3005 * specified then a negative dentry may be returned. 3006 * 3007 * An error code is returned otherwise. 3008 * 3009 * FILE_CREATE will be set in @*opened if the dentry was created and will be 3010 * cleared otherwise prior to returning. 3011 */ 3012 static int lookup_open(struct nameidata *nd, struct path *path, 3013 struct file *file, 3014 const struct open_flags *op, 3015 bool got_write, int *opened) 3016 { 3017 struct dentry *dir = nd->path.dentry; 3018 struct inode *dir_inode = dir->d_inode; 3019 struct dentry *dentry; 3020 int error; 3021 bool need_lookup; 3022 3023 *opened &= ~FILE_CREATED; 3024 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup); 3025 if (IS_ERR(dentry)) 3026 return PTR_ERR(dentry); 3027 3028 /* Cached positive dentry: will open in f_op->open */ 3029 if (!need_lookup && dentry->d_inode) 3030 goto out_no_open; 3031 3032 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) { 3033 return atomic_open(nd, dentry, path, file, op, got_write, 3034 need_lookup, opened); 3035 } 3036 3037 if (need_lookup) { 3038 BUG_ON(dentry->d_inode); 3039 3040 dentry = lookup_real(dir_inode, dentry, nd->flags); 3041 if (IS_ERR(dentry)) 3042 return PTR_ERR(dentry); 3043 } 3044 3045 /* Negative dentry, just create the file */ 3046 if (!dentry->d_inode && (op->open_flag & O_CREAT)) { 3047 umode_t mode = op->mode; 3048 if (!IS_POSIXACL(dir->d_inode)) 3049 mode &= ~current_umask(); 3050 /* 3051 * This write is needed to ensure that a 3052 * rw->ro transition does not occur between 3053 * the time when the file is created and when 3054 * a permanent write count is taken through 3055 * the 'struct file' in finish_open(). 3056 */ 3057 if (!got_write) { 3058 error = -EROFS; 3059 goto out_dput; 3060 } 3061 *opened |= FILE_CREATED; 3062 error = security_path_mknod(&nd->path, dentry, mode, 0); 3063 if (error) 3064 goto out_dput; 3065 error = vfs_create(dir->d_inode, dentry, mode, 3066 nd->flags & LOOKUP_EXCL); 3067 if (error) 3068 goto out_dput; 3069 } 3070 out_no_open: 3071 path->dentry = dentry; 3072 path->mnt = nd->path.mnt; 3073 return 1; 3074 3075 out_dput: 3076 dput(dentry); 3077 return error; 3078 } 3079 3080 /* 3081 * Handle the last step of open() 3082 */ 3083 static int do_last(struct nameidata *nd, 3084 struct file *file, const struct open_flags *op, 3085 int *opened) 3086 { 3087 struct dentry *dir = nd->path.dentry; 3088 int open_flag = op->open_flag; 3089 bool will_truncate = (open_flag & O_TRUNC) != 0; 3090 bool got_write = false; 3091 int acc_mode = op->acc_mode; 3092 unsigned seq; 3093 struct inode *inode; 3094 struct path save_parent = { .dentry = NULL, .mnt = NULL }; 3095 struct path path; 3096 bool retried = false; 3097 int error; 3098 3099 nd->flags &= ~LOOKUP_PARENT; 3100 nd->flags |= op->intent; 3101 3102 if (nd->last_type != LAST_NORM) { 3103 error = handle_dots(nd, nd->last_type); 3104 if (unlikely(error)) 3105 return error; 3106 goto finish_open; 3107 } 3108 3109 if (!(open_flag & O_CREAT)) { 3110 if (nd->last.name[nd->last.len]) 3111 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 3112 /* we _can_ be in RCU mode here */ 3113 error = lookup_fast(nd, &path, &inode, &seq); 3114 if (likely(!error)) 3115 goto finish_lookup; 3116 3117 if (error < 0) 3118 return error; 3119 3120 BUG_ON(nd->inode != dir->d_inode); 3121 } else { 3122 /* create side of things */ 3123 /* 3124 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED 3125 * has been cleared when we got to the last component we are 3126 * about to look up 3127 */ 3128 error = complete_walk(nd); 3129 if (error) 3130 return error; 3131 3132 audit_inode(nd->name, dir, LOOKUP_PARENT); 3133 /* trailing slashes? */ 3134 if (unlikely(nd->last.name[nd->last.len])) 3135 return -EISDIR; 3136 } 3137 3138 retry_lookup: 3139 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 3140 error = mnt_want_write(nd->path.mnt); 3141 if (!error) 3142 got_write = true; 3143 /* 3144 * do _not_ fail yet - we might not need that or fail with 3145 * a different error; let lookup_open() decide; we'll be 3146 * dropping this one anyway. 3147 */ 3148 } 3149 inode_lock(dir->d_inode); 3150 error = lookup_open(nd, &path, file, op, got_write, opened); 3151 inode_unlock(dir->d_inode); 3152 3153 if (error <= 0) { 3154 if (error) 3155 goto out; 3156 3157 if ((*opened & FILE_CREATED) || 3158 !S_ISREG(file_inode(file)->i_mode)) 3159 will_truncate = false; 3160 3161 audit_inode(nd->name, file->f_path.dentry, 0); 3162 goto opened; 3163 } 3164 3165 if (*opened & FILE_CREATED) { 3166 /* Don't check for write permission, don't truncate */ 3167 open_flag &= ~O_TRUNC; 3168 will_truncate = false; 3169 acc_mode = 0; 3170 path_to_nameidata(&path, nd); 3171 goto finish_open_created; 3172 } 3173 3174 /* 3175 * create/update audit record if it already exists. 3176 */ 3177 if (d_is_positive(path.dentry)) 3178 audit_inode(nd->name, path.dentry, 0); 3179 3180 /* 3181 * If atomic_open() acquired write access it is dropped now due to 3182 * possible mount and symlink following (this might be optimized away if 3183 * necessary...) 3184 */ 3185 if (got_write) { 3186 mnt_drop_write(nd->path.mnt); 3187 got_write = false; 3188 } 3189 3190 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) { 3191 path_to_nameidata(&path, nd); 3192 return -EEXIST; 3193 } 3194 3195 error = follow_managed(&path, nd); 3196 if (unlikely(error < 0)) 3197 return error; 3198 3199 BUG_ON(nd->flags & LOOKUP_RCU); 3200 seq = 0; /* out of RCU mode, so the value doesn't matter */ 3201 if (unlikely(d_is_negative(path.dentry))) { 3202 path_to_nameidata(&path, nd); 3203 return -ENOENT; 3204 } 3205 inode = d_backing_inode(path.dentry); 3206 finish_lookup: 3207 if (nd->depth) 3208 put_link(nd); 3209 error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW, 3210 inode, seq); 3211 if (unlikely(error)) 3212 return error; 3213 3214 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) { 3215 path_to_nameidata(&path, nd); 3216 } else { 3217 save_parent.dentry = nd->path.dentry; 3218 save_parent.mnt = mntget(path.mnt); 3219 nd->path.dentry = path.dentry; 3220 3221 } 3222 nd->inode = inode; 3223 nd->seq = seq; 3224 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */ 3225 finish_open: 3226 error = complete_walk(nd); 3227 if (error) { 3228 path_put(&save_parent); 3229 return error; 3230 } 3231 audit_inode(nd->name, nd->path.dentry, 0); 3232 if (unlikely(d_is_symlink(nd->path.dentry)) && !(open_flag & O_PATH)) { 3233 error = -ELOOP; 3234 goto out; 3235 } 3236 error = -EISDIR; 3237 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry)) 3238 goto out; 3239 error = -ENOTDIR; 3240 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3241 goto out; 3242 if (!d_is_reg(nd->path.dentry)) 3243 will_truncate = false; 3244 3245 if (will_truncate) { 3246 error = mnt_want_write(nd->path.mnt); 3247 if (error) 3248 goto out; 3249 got_write = true; 3250 } 3251 finish_open_created: 3252 if (likely(!(open_flag & O_PATH))) { 3253 error = may_open(&nd->path, acc_mode, open_flag); 3254 if (error) 3255 goto out; 3256 } 3257 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */ 3258 error = vfs_open(&nd->path, file, current_cred()); 3259 if (!error) { 3260 *opened |= FILE_OPENED; 3261 } else { 3262 if (error == -EOPENSTALE) 3263 goto stale_open; 3264 goto out; 3265 } 3266 opened: 3267 error = open_check_o_direct(file); 3268 if (error) 3269 goto exit_fput; 3270 error = ima_file_check(file, op->acc_mode, *opened); 3271 if (error) 3272 goto exit_fput; 3273 3274 if (will_truncate) { 3275 error = handle_truncate(file); 3276 if (error) 3277 goto exit_fput; 3278 } 3279 out: 3280 if (unlikely(error > 0)) { 3281 WARN_ON(1); 3282 error = -EINVAL; 3283 } 3284 if (got_write) 3285 mnt_drop_write(nd->path.mnt); 3286 path_put(&save_parent); 3287 return error; 3288 3289 exit_fput: 3290 fput(file); 3291 goto out; 3292 3293 stale_open: 3294 /* If no saved parent or already retried then can't retry */ 3295 if (!save_parent.dentry || retried) 3296 goto out; 3297 3298 BUG_ON(save_parent.dentry != dir); 3299 path_put(&nd->path); 3300 nd->path = save_parent; 3301 nd->inode = dir->d_inode; 3302 save_parent.mnt = NULL; 3303 save_parent.dentry = NULL; 3304 if (got_write) { 3305 mnt_drop_write(nd->path.mnt); 3306 got_write = false; 3307 } 3308 retried = true; 3309 goto retry_lookup; 3310 } 3311 3312 static int do_tmpfile(struct nameidata *nd, unsigned flags, 3313 const struct open_flags *op, 3314 struct file *file, int *opened) 3315 { 3316 static const struct qstr name = QSTR_INIT("/", 1); 3317 struct dentry *child; 3318 struct inode *dir; 3319 struct path path; 3320 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path); 3321 if (unlikely(error)) 3322 return error; 3323 error = mnt_want_write(path.mnt); 3324 if (unlikely(error)) 3325 goto out; 3326 dir = path.dentry->d_inode; 3327 /* we want directory to be writable */ 3328 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 3329 if (error) 3330 goto out2; 3331 if (!dir->i_op->tmpfile) { 3332 error = -EOPNOTSUPP; 3333 goto out2; 3334 } 3335 child = d_alloc(path.dentry, &name); 3336 if (unlikely(!child)) { 3337 error = -ENOMEM; 3338 goto out2; 3339 } 3340 dput(path.dentry); 3341 path.dentry = child; 3342 error = dir->i_op->tmpfile(dir, child, op->mode); 3343 if (error) 3344 goto out2; 3345 audit_inode(nd->name, child, 0); 3346 /* Don't check for other permissions, the inode was just created */ 3347 error = may_open(&path, 0, op->open_flag); 3348 if (error) 3349 goto out2; 3350 file->f_path.mnt = path.mnt; 3351 error = finish_open(file, child, NULL, opened); 3352 if (error) 3353 goto out2; 3354 error = open_check_o_direct(file); 3355 if (error) { 3356 fput(file); 3357 } else if (!(op->open_flag & O_EXCL)) { 3358 struct inode *inode = file_inode(file); 3359 spin_lock(&inode->i_lock); 3360 inode->i_state |= I_LINKABLE; 3361 spin_unlock(&inode->i_lock); 3362 } 3363 out2: 3364 mnt_drop_write(path.mnt); 3365 out: 3366 path_put(&path); 3367 return error; 3368 } 3369 3370 static struct file *path_openat(struct nameidata *nd, 3371 const struct open_flags *op, unsigned flags) 3372 { 3373 const char *s; 3374 struct file *file; 3375 int opened = 0; 3376 int error; 3377 3378 file = get_empty_filp(); 3379 if (IS_ERR(file)) 3380 return file; 3381 3382 file->f_flags = op->open_flag; 3383 3384 if (unlikely(file->f_flags & __O_TMPFILE)) { 3385 error = do_tmpfile(nd, flags, op, file, &opened); 3386 goto out2; 3387 } 3388 3389 s = path_init(nd, flags); 3390 if (IS_ERR(s)) { 3391 put_filp(file); 3392 return ERR_CAST(s); 3393 } 3394 while (!(error = link_path_walk(s, nd)) && 3395 (error = do_last(nd, file, op, &opened)) > 0) { 3396 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3397 s = trailing_symlink(nd); 3398 if (IS_ERR(s)) { 3399 error = PTR_ERR(s); 3400 break; 3401 } 3402 } 3403 terminate_walk(nd); 3404 out2: 3405 if (!(opened & FILE_OPENED)) { 3406 BUG_ON(!error); 3407 put_filp(file); 3408 } 3409 if (unlikely(error)) { 3410 if (error == -EOPENSTALE) { 3411 if (flags & LOOKUP_RCU) 3412 error = -ECHILD; 3413 else 3414 error = -ESTALE; 3415 } 3416 file = ERR_PTR(error); 3417 } 3418 return file; 3419 } 3420 3421 struct file *do_filp_open(int dfd, struct filename *pathname, 3422 const struct open_flags *op) 3423 { 3424 struct nameidata nd; 3425 int flags = op->lookup_flags; 3426 struct file *filp; 3427 3428 set_nameidata(&nd, dfd, pathname); 3429 filp = path_openat(&nd, op, flags | LOOKUP_RCU); 3430 if (unlikely(filp == ERR_PTR(-ECHILD))) 3431 filp = path_openat(&nd, op, flags); 3432 if (unlikely(filp == ERR_PTR(-ESTALE))) 3433 filp = path_openat(&nd, op, flags | LOOKUP_REVAL); 3434 restore_nameidata(); 3435 return filp; 3436 } 3437 3438 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 3439 const char *name, const struct open_flags *op) 3440 { 3441 struct nameidata nd; 3442 struct file *file; 3443 struct filename *filename; 3444 int flags = op->lookup_flags | LOOKUP_ROOT; 3445 3446 nd.root.mnt = mnt; 3447 nd.root.dentry = dentry; 3448 3449 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN) 3450 return ERR_PTR(-ELOOP); 3451 3452 filename = getname_kernel(name); 3453 if (IS_ERR(filename)) 3454 return ERR_CAST(filename); 3455 3456 set_nameidata(&nd, -1, filename); 3457 file = path_openat(&nd, op, flags | LOOKUP_RCU); 3458 if (unlikely(file == ERR_PTR(-ECHILD))) 3459 file = path_openat(&nd, op, flags); 3460 if (unlikely(file == ERR_PTR(-ESTALE))) 3461 file = path_openat(&nd, op, flags | LOOKUP_REVAL); 3462 restore_nameidata(); 3463 putname(filename); 3464 return file; 3465 } 3466 3467 static struct dentry *filename_create(int dfd, struct filename *name, 3468 struct path *path, unsigned int lookup_flags) 3469 { 3470 struct dentry *dentry = ERR_PTR(-EEXIST); 3471 struct qstr last; 3472 int type; 3473 int err2; 3474 int error; 3475 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY); 3476 3477 /* 3478 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any 3479 * other flags passed in are ignored! 3480 */ 3481 lookup_flags &= LOOKUP_REVAL; 3482 3483 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type); 3484 if (IS_ERR(name)) 3485 return ERR_CAST(name); 3486 3487 /* 3488 * Yucky last component or no last component at all? 3489 * (foo/., foo/.., /////) 3490 */ 3491 if (unlikely(type != LAST_NORM)) 3492 goto out; 3493 3494 /* don't fail immediately if it's r/o, at least try to report other errors */ 3495 err2 = mnt_want_write(path->mnt); 3496 /* 3497 * Do the final lookup. 3498 */ 3499 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL; 3500 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 3501 dentry = __lookup_hash(&last, path->dentry, lookup_flags); 3502 if (IS_ERR(dentry)) 3503 goto unlock; 3504 3505 error = -EEXIST; 3506 if (d_is_positive(dentry)) 3507 goto fail; 3508 3509 /* 3510 * Special case - lookup gave negative, but... we had foo/bar/ 3511 * From the vfs_mknod() POV we just have a negative dentry - 3512 * all is fine. Let's be bastards - you had / on the end, you've 3513 * been asking for (non-existent) directory. -ENOENT for you. 3514 */ 3515 if (unlikely(!is_dir && last.name[last.len])) { 3516 error = -ENOENT; 3517 goto fail; 3518 } 3519 if (unlikely(err2)) { 3520 error = err2; 3521 goto fail; 3522 } 3523 putname(name); 3524 return dentry; 3525 fail: 3526 dput(dentry); 3527 dentry = ERR_PTR(error); 3528 unlock: 3529 inode_unlock(path->dentry->d_inode); 3530 if (!err2) 3531 mnt_drop_write(path->mnt); 3532 out: 3533 path_put(path); 3534 putname(name); 3535 return dentry; 3536 } 3537 3538 struct dentry *kern_path_create(int dfd, const char *pathname, 3539 struct path *path, unsigned int lookup_flags) 3540 { 3541 return filename_create(dfd, getname_kernel(pathname), 3542 path, lookup_flags); 3543 } 3544 EXPORT_SYMBOL(kern_path_create); 3545 3546 void done_path_create(struct path *path, struct dentry *dentry) 3547 { 3548 dput(dentry); 3549 inode_unlock(path->dentry->d_inode); 3550 mnt_drop_write(path->mnt); 3551 path_put(path); 3552 } 3553 EXPORT_SYMBOL(done_path_create); 3554 3555 inline struct dentry *user_path_create(int dfd, const char __user *pathname, 3556 struct path *path, unsigned int lookup_flags) 3557 { 3558 return filename_create(dfd, getname(pathname), path, lookup_flags); 3559 } 3560 EXPORT_SYMBOL(user_path_create); 3561 3562 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 3563 { 3564 int error = may_create(dir, dentry); 3565 3566 if (error) 3567 return error; 3568 3569 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 3570 return -EPERM; 3571 3572 if (!dir->i_op->mknod) 3573 return -EPERM; 3574 3575 error = devcgroup_inode_mknod(mode, dev); 3576 if (error) 3577 return error; 3578 3579 error = security_inode_mknod(dir, dentry, mode, dev); 3580 if (error) 3581 return error; 3582 3583 error = dir->i_op->mknod(dir, dentry, mode, dev); 3584 if (!error) 3585 fsnotify_create(dir, dentry); 3586 return error; 3587 } 3588 EXPORT_SYMBOL(vfs_mknod); 3589 3590 static int may_mknod(umode_t mode) 3591 { 3592 switch (mode & S_IFMT) { 3593 case S_IFREG: 3594 case S_IFCHR: 3595 case S_IFBLK: 3596 case S_IFIFO: 3597 case S_IFSOCK: 3598 case 0: /* zero mode translates to S_IFREG */ 3599 return 0; 3600 case S_IFDIR: 3601 return -EPERM; 3602 default: 3603 return -EINVAL; 3604 } 3605 } 3606 3607 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3608 unsigned, dev) 3609 { 3610 struct dentry *dentry; 3611 struct path path; 3612 int error; 3613 unsigned int lookup_flags = 0; 3614 3615 error = may_mknod(mode); 3616 if (error) 3617 return error; 3618 retry: 3619 dentry = user_path_create(dfd, filename, &path, lookup_flags); 3620 if (IS_ERR(dentry)) 3621 return PTR_ERR(dentry); 3622 3623 if (!IS_POSIXACL(path.dentry->d_inode)) 3624 mode &= ~current_umask(); 3625 error = security_path_mknod(&path, dentry, mode, dev); 3626 if (error) 3627 goto out; 3628 switch (mode & S_IFMT) { 3629 case 0: case S_IFREG: 3630 error = vfs_create(path.dentry->d_inode,dentry,mode,true); 3631 break; 3632 case S_IFCHR: case S_IFBLK: 3633 error = vfs_mknod(path.dentry->d_inode,dentry,mode, 3634 new_decode_dev(dev)); 3635 break; 3636 case S_IFIFO: case S_IFSOCK: 3637 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0); 3638 break; 3639 } 3640 out: 3641 done_path_create(&path, dentry); 3642 if (retry_estale(error, lookup_flags)) { 3643 lookup_flags |= LOOKUP_REVAL; 3644 goto retry; 3645 } 3646 return error; 3647 } 3648 3649 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3650 { 3651 return sys_mknodat(AT_FDCWD, filename, mode, dev); 3652 } 3653 3654 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 3655 { 3656 int error = may_create(dir, dentry); 3657 unsigned max_links = dir->i_sb->s_max_links; 3658 3659 if (error) 3660 return error; 3661 3662 if (!dir->i_op->mkdir) 3663 return -EPERM; 3664 3665 mode &= (S_IRWXUGO|S_ISVTX); 3666 error = security_inode_mkdir(dir, dentry, mode); 3667 if (error) 3668 return error; 3669 3670 if (max_links && dir->i_nlink >= max_links) 3671 return -EMLINK; 3672 3673 error = dir->i_op->mkdir(dir, dentry, mode); 3674 if (!error) 3675 fsnotify_mkdir(dir, dentry); 3676 return error; 3677 } 3678 EXPORT_SYMBOL(vfs_mkdir); 3679 3680 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 3681 { 3682 struct dentry *dentry; 3683 struct path path; 3684 int error; 3685 unsigned int lookup_flags = LOOKUP_DIRECTORY; 3686 3687 retry: 3688 dentry = user_path_create(dfd, pathname, &path, lookup_flags); 3689 if (IS_ERR(dentry)) 3690 return PTR_ERR(dentry); 3691 3692 if (!IS_POSIXACL(path.dentry->d_inode)) 3693 mode &= ~current_umask(); 3694 error = security_path_mkdir(&path, dentry, mode); 3695 if (!error) 3696 error = vfs_mkdir(path.dentry->d_inode, dentry, mode); 3697 done_path_create(&path, dentry); 3698 if (retry_estale(error, lookup_flags)) { 3699 lookup_flags |= LOOKUP_REVAL; 3700 goto retry; 3701 } 3702 return error; 3703 } 3704 3705 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 3706 { 3707 return sys_mkdirat(AT_FDCWD, pathname, mode); 3708 } 3709 3710 /* 3711 * The dentry_unhash() helper will try to drop the dentry early: we 3712 * should have a usage count of 1 if we're the only user of this 3713 * dentry, and if that is true (possibly after pruning the dcache), 3714 * then we drop the dentry now. 3715 * 3716 * A low-level filesystem can, if it choses, legally 3717 * do a 3718 * 3719 * if (!d_unhashed(dentry)) 3720 * return -EBUSY; 3721 * 3722 * if it cannot handle the case of removing a directory 3723 * that is still in use by something else.. 3724 */ 3725 void dentry_unhash(struct dentry *dentry) 3726 { 3727 shrink_dcache_parent(dentry); 3728 spin_lock(&dentry->d_lock); 3729 if (dentry->d_lockref.count == 1) 3730 __d_drop(dentry); 3731 spin_unlock(&dentry->d_lock); 3732 } 3733 EXPORT_SYMBOL(dentry_unhash); 3734 3735 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 3736 { 3737 int error = may_delete(dir, dentry, 1); 3738 3739 if (error) 3740 return error; 3741 3742 if (!dir->i_op->rmdir) 3743 return -EPERM; 3744 3745 dget(dentry); 3746 inode_lock(dentry->d_inode); 3747 3748 error = -EBUSY; 3749 if (is_local_mountpoint(dentry)) 3750 goto out; 3751 3752 error = security_inode_rmdir(dir, dentry); 3753 if (error) 3754 goto out; 3755 3756 shrink_dcache_parent(dentry); 3757 error = dir->i_op->rmdir(dir, dentry); 3758 if (error) 3759 goto out; 3760 3761 dentry->d_inode->i_flags |= S_DEAD; 3762 dont_mount(dentry); 3763 detach_mounts(dentry); 3764 3765 out: 3766 inode_unlock(dentry->d_inode); 3767 dput(dentry); 3768 if (!error) 3769 d_delete(dentry); 3770 return error; 3771 } 3772 EXPORT_SYMBOL(vfs_rmdir); 3773 3774 static long do_rmdir(int dfd, const char __user *pathname) 3775 { 3776 int error = 0; 3777 struct filename *name; 3778 struct dentry *dentry; 3779 struct path path; 3780 struct qstr last; 3781 int type; 3782 unsigned int lookup_flags = 0; 3783 retry: 3784 name = user_path_parent(dfd, pathname, 3785 &path, &last, &type, lookup_flags); 3786 if (IS_ERR(name)) 3787 return PTR_ERR(name); 3788 3789 switch (type) { 3790 case LAST_DOTDOT: 3791 error = -ENOTEMPTY; 3792 goto exit1; 3793 case LAST_DOT: 3794 error = -EINVAL; 3795 goto exit1; 3796 case LAST_ROOT: 3797 error = -EBUSY; 3798 goto exit1; 3799 } 3800 3801 error = mnt_want_write(path.mnt); 3802 if (error) 3803 goto exit1; 3804 3805 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 3806 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 3807 error = PTR_ERR(dentry); 3808 if (IS_ERR(dentry)) 3809 goto exit2; 3810 if (!dentry->d_inode) { 3811 error = -ENOENT; 3812 goto exit3; 3813 } 3814 error = security_path_rmdir(&path, dentry); 3815 if (error) 3816 goto exit3; 3817 error = vfs_rmdir(path.dentry->d_inode, dentry); 3818 exit3: 3819 dput(dentry); 3820 exit2: 3821 inode_unlock(path.dentry->d_inode); 3822 mnt_drop_write(path.mnt); 3823 exit1: 3824 path_put(&path); 3825 putname(name); 3826 if (retry_estale(error, lookup_flags)) { 3827 lookup_flags |= LOOKUP_REVAL; 3828 goto retry; 3829 } 3830 return error; 3831 } 3832 3833 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 3834 { 3835 return do_rmdir(AT_FDCWD, pathname); 3836 } 3837 3838 /** 3839 * vfs_unlink - unlink a filesystem object 3840 * @dir: parent directory 3841 * @dentry: victim 3842 * @delegated_inode: returns victim inode, if the inode is delegated. 3843 * 3844 * The caller must hold dir->i_mutex. 3845 * 3846 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 3847 * return a reference to the inode in delegated_inode. The caller 3848 * should then break the delegation on that inode and retry. Because 3849 * breaking a delegation may take a long time, the caller should drop 3850 * dir->i_mutex before doing so. 3851 * 3852 * Alternatively, a caller may pass NULL for delegated_inode. This may 3853 * be appropriate for callers that expect the underlying filesystem not 3854 * to be NFS exported. 3855 */ 3856 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode) 3857 { 3858 struct inode *target = dentry->d_inode; 3859 int error = may_delete(dir, dentry, 0); 3860 3861 if (error) 3862 return error; 3863 3864 if (!dir->i_op->unlink) 3865 return -EPERM; 3866 3867 inode_lock(target); 3868 if (is_local_mountpoint(dentry)) 3869 error = -EBUSY; 3870 else { 3871 error = security_inode_unlink(dir, dentry); 3872 if (!error) { 3873 error = try_break_deleg(target, delegated_inode); 3874 if (error) 3875 goto out; 3876 error = dir->i_op->unlink(dir, dentry); 3877 if (!error) { 3878 dont_mount(dentry); 3879 detach_mounts(dentry); 3880 } 3881 } 3882 } 3883 out: 3884 inode_unlock(target); 3885 3886 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 3887 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 3888 fsnotify_link_count(target); 3889 d_delete(dentry); 3890 } 3891 3892 return error; 3893 } 3894 EXPORT_SYMBOL(vfs_unlink); 3895 3896 /* 3897 * Make sure that the actual truncation of the file will occur outside its 3898 * directory's i_mutex. Truncate can take a long time if there is a lot of 3899 * writeout happening, and we don't want to prevent access to the directory 3900 * while waiting on the I/O. 3901 */ 3902 static long do_unlinkat(int dfd, const char __user *pathname) 3903 { 3904 int error; 3905 struct filename *name; 3906 struct dentry *dentry; 3907 struct path path; 3908 struct qstr last; 3909 int type; 3910 struct inode *inode = NULL; 3911 struct inode *delegated_inode = NULL; 3912 unsigned int lookup_flags = 0; 3913 retry: 3914 name = user_path_parent(dfd, pathname, 3915 &path, &last, &type, lookup_flags); 3916 if (IS_ERR(name)) 3917 return PTR_ERR(name); 3918 3919 error = -EISDIR; 3920 if (type != LAST_NORM) 3921 goto exit1; 3922 3923 error = mnt_want_write(path.mnt); 3924 if (error) 3925 goto exit1; 3926 retry_deleg: 3927 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 3928 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 3929 error = PTR_ERR(dentry); 3930 if (!IS_ERR(dentry)) { 3931 /* Why not before? Because we want correct error value */ 3932 if (last.name[last.len]) 3933 goto slashes; 3934 inode = dentry->d_inode; 3935 if (d_is_negative(dentry)) 3936 goto slashes; 3937 ihold(inode); 3938 error = security_path_unlink(&path, dentry); 3939 if (error) 3940 goto exit2; 3941 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode); 3942 exit2: 3943 dput(dentry); 3944 } 3945 inode_unlock(path.dentry->d_inode); 3946 if (inode) 3947 iput(inode); /* truncate the inode here */ 3948 inode = NULL; 3949 if (delegated_inode) { 3950 error = break_deleg_wait(&delegated_inode); 3951 if (!error) 3952 goto retry_deleg; 3953 } 3954 mnt_drop_write(path.mnt); 3955 exit1: 3956 path_put(&path); 3957 putname(name); 3958 if (retry_estale(error, lookup_flags)) { 3959 lookup_flags |= LOOKUP_REVAL; 3960 inode = NULL; 3961 goto retry; 3962 } 3963 return error; 3964 3965 slashes: 3966 if (d_is_negative(dentry)) 3967 error = -ENOENT; 3968 else if (d_is_dir(dentry)) 3969 error = -EISDIR; 3970 else 3971 error = -ENOTDIR; 3972 goto exit2; 3973 } 3974 3975 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 3976 { 3977 if ((flag & ~AT_REMOVEDIR) != 0) 3978 return -EINVAL; 3979 3980 if (flag & AT_REMOVEDIR) 3981 return do_rmdir(dfd, pathname); 3982 3983 return do_unlinkat(dfd, pathname); 3984 } 3985 3986 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 3987 { 3988 return do_unlinkat(AT_FDCWD, pathname); 3989 } 3990 3991 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 3992 { 3993 int error = may_create(dir, dentry); 3994 3995 if (error) 3996 return error; 3997 3998 if (!dir->i_op->symlink) 3999 return -EPERM; 4000 4001 error = security_inode_symlink(dir, dentry, oldname); 4002 if (error) 4003 return error; 4004 4005 error = dir->i_op->symlink(dir, dentry, oldname); 4006 if (!error) 4007 fsnotify_create(dir, dentry); 4008 return error; 4009 } 4010 EXPORT_SYMBOL(vfs_symlink); 4011 4012 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 4013 int, newdfd, const char __user *, newname) 4014 { 4015 int error; 4016 struct filename *from; 4017 struct dentry *dentry; 4018 struct path path; 4019 unsigned int lookup_flags = 0; 4020 4021 from = getname(oldname); 4022 if (IS_ERR(from)) 4023 return PTR_ERR(from); 4024 retry: 4025 dentry = user_path_create(newdfd, newname, &path, lookup_flags); 4026 error = PTR_ERR(dentry); 4027 if (IS_ERR(dentry)) 4028 goto out_putname; 4029 4030 error = security_path_symlink(&path, dentry, from->name); 4031 if (!error) 4032 error = vfs_symlink(path.dentry->d_inode, dentry, from->name); 4033 done_path_create(&path, dentry); 4034 if (retry_estale(error, lookup_flags)) { 4035 lookup_flags |= LOOKUP_REVAL; 4036 goto retry; 4037 } 4038 out_putname: 4039 putname(from); 4040 return error; 4041 } 4042 4043 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 4044 { 4045 return sys_symlinkat(oldname, AT_FDCWD, newname); 4046 } 4047 4048 /** 4049 * vfs_link - create a new link 4050 * @old_dentry: object to be linked 4051 * @dir: new parent 4052 * @new_dentry: where to create the new link 4053 * @delegated_inode: returns inode needing a delegation break 4054 * 4055 * The caller must hold dir->i_mutex 4056 * 4057 * If vfs_link discovers a delegation on the to-be-linked file in need 4058 * of breaking, it will return -EWOULDBLOCK and return a reference to the 4059 * inode in delegated_inode. The caller should then break the delegation 4060 * and retry. Because breaking a delegation may take a long time, the 4061 * caller should drop the i_mutex before doing so. 4062 * 4063 * Alternatively, a caller may pass NULL for delegated_inode. This may 4064 * be appropriate for callers that expect the underlying filesystem not 4065 * to be NFS exported. 4066 */ 4067 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode) 4068 { 4069 struct inode *inode = old_dentry->d_inode; 4070 unsigned max_links = dir->i_sb->s_max_links; 4071 int error; 4072 4073 if (!inode) 4074 return -ENOENT; 4075 4076 error = may_create(dir, new_dentry); 4077 if (error) 4078 return error; 4079 4080 if (dir->i_sb != inode->i_sb) 4081 return -EXDEV; 4082 4083 /* 4084 * A link to an append-only or immutable file cannot be created. 4085 */ 4086 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4087 return -EPERM; 4088 if (!dir->i_op->link) 4089 return -EPERM; 4090 if (S_ISDIR(inode->i_mode)) 4091 return -EPERM; 4092 4093 error = security_inode_link(old_dentry, dir, new_dentry); 4094 if (error) 4095 return error; 4096 4097 inode_lock(inode); 4098 /* Make sure we don't allow creating hardlink to an unlinked file */ 4099 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 4100 error = -ENOENT; 4101 else if (max_links && inode->i_nlink >= max_links) 4102 error = -EMLINK; 4103 else { 4104 error = try_break_deleg(inode, delegated_inode); 4105 if (!error) 4106 error = dir->i_op->link(old_dentry, dir, new_dentry); 4107 } 4108 4109 if (!error && (inode->i_state & I_LINKABLE)) { 4110 spin_lock(&inode->i_lock); 4111 inode->i_state &= ~I_LINKABLE; 4112 spin_unlock(&inode->i_lock); 4113 } 4114 inode_unlock(inode); 4115 if (!error) 4116 fsnotify_link(dir, inode, new_dentry); 4117 return error; 4118 } 4119 EXPORT_SYMBOL(vfs_link); 4120 4121 /* 4122 * Hardlinks are often used in delicate situations. We avoid 4123 * security-related surprises by not following symlinks on the 4124 * newname. --KAB 4125 * 4126 * We don't follow them on the oldname either to be compatible 4127 * with linux 2.0, and to avoid hard-linking to directories 4128 * and other special files. --ADM 4129 */ 4130 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 4131 int, newdfd, const char __user *, newname, int, flags) 4132 { 4133 struct dentry *new_dentry; 4134 struct path old_path, new_path; 4135 struct inode *delegated_inode = NULL; 4136 int how = 0; 4137 int error; 4138 4139 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 4140 return -EINVAL; 4141 /* 4142 * To use null names we require CAP_DAC_READ_SEARCH 4143 * This ensures that not everyone will be able to create 4144 * handlink using the passed filedescriptor. 4145 */ 4146 if (flags & AT_EMPTY_PATH) { 4147 if (!capable(CAP_DAC_READ_SEARCH)) 4148 return -ENOENT; 4149 how = LOOKUP_EMPTY; 4150 } 4151 4152 if (flags & AT_SYMLINK_FOLLOW) 4153 how |= LOOKUP_FOLLOW; 4154 retry: 4155 error = user_path_at(olddfd, oldname, how, &old_path); 4156 if (error) 4157 return error; 4158 4159 new_dentry = user_path_create(newdfd, newname, &new_path, 4160 (how & LOOKUP_REVAL)); 4161 error = PTR_ERR(new_dentry); 4162 if (IS_ERR(new_dentry)) 4163 goto out; 4164 4165 error = -EXDEV; 4166 if (old_path.mnt != new_path.mnt) 4167 goto out_dput; 4168 error = may_linkat(&old_path); 4169 if (unlikely(error)) 4170 goto out_dput; 4171 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4172 if (error) 4173 goto out_dput; 4174 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode); 4175 out_dput: 4176 done_path_create(&new_path, new_dentry); 4177 if (delegated_inode) { 4178 error = break_deleg_wait(&delegated_inode); 4179 if (!error) { 4180 path_put(&old_path); 4181 goto retry; 4182 } 4183 } 4184 if (retry_estale(error, how)) { 4185 path_put(&old_path); 4186 how |= LOOKUP_REVAL; 4187 goto retry; 4188 } 4189 out: 4190 path_put(&old_path); 4191 4192 return error; 4193 } 4194 4195 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4196 { 4197 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4198 } 4199 4200 /** 4201 * vfs_rename - rename a filesystem object 4202 * @old_dir: parent of source 4203 * @old_dentry: source 4204 * @new_dir: parent of destination 4205 * @new_dentry: destination 4206 * @delegated_inode: returns an inode needing a delegation break 4207 * @flags: rename flags 4208 * 4209 * The caller must hold multiple mutexes--see lock_rename()). 4210 * 4211 * If vfs_rename discovers a delegation in need of breaking at either 4212 * the source or destination, it will return -EWOULDBLOCK and return a 4213 * reference to the inode in delegated_inode. The caller should then 4214 * break the delegation and retry. Because breaking a delegation may 4215 * take a long time, the caller should drop all locks before doing 4216 * so. 4217 * 4218 * Alternatively, a caller may pass NULL for delegated_inode. This may 4219 * be appropriate for callers that expect the underlying filesystem not 4220 * to be NFS exported. 4221 * 4222 * The worst of all namespace operations - renaming directory. "Perverted" 4223 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4224 * Problems: 4225 * a) we can get into loop creation. 4226 * b) race potential - two innocent renames can create a loop together. 4227 * That's where 4.4 screws up. Current fix: serialization on 4228 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4229 * story. 4230 * c) we have to lock _four_ objects - parents and victim (if it exists), 4231 * and source (if it is not a directory). 4232 * And that - after we got ->i_mutex on parents (until then we don't know 4233 * whether the target exists). Solution: try to be smart with locking 4234 * order for inodes. We rely on the fact that tree topology may change 4235 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4236 * move will be locked. Thus we can rank directories by the tree 4237 * (ancestors first) and rank all non-directories after them. 4238 * That works since everybody except rename does "lock parent, lookup, 4239 * lock child" and rename is under ->s_vfs_rename_mutex. 4240 * HOWEVER, it relies on the assumption that any object with ->lookup() 4241 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4242 * we'd better make sure that there's no link(2) for them. 4243 * d) conversion from fhandle to dentry may come in the wrong moment - when 4244 * we are removing the target. Solution: we will have to grab ->i_mutex 4245 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4246 * ->i_mutex on parents, which works but leads to some truly excessive 4247 * locking]. 4248 */ 4249 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 4250 struct inode *new_dir, struct dentry *new_dentry, 4251 struct inode **delegated_inode, unsigned int flags) 4252 { 4253 int error; 4254 bool is_dir = d_is_dir(old_dentry); 4255 const unsigned char *old_name; 4256 struct inode *source = old_dentry->d_inode; 4257 struct inode *target = new_dentry->d_inode; 4258 bool new_is_dir = false; 4259 unsigned max_links = new_dir->i_sb->s_max_links; 4260 4261 if (source == target) 4262 return 0; 4263 4264 error = may_delete(old_dir, old_dentry, is_dir); 4265 if (error) 4266 return error; 4267 4268 if (!target) { 4269 error = may_create(new_dir, new_dentry); 4270 } else { 4271 new_is_dir = d_is_dir(new_dentry); 4272 4273 if (!(flags & RENAME_EXCHANGE)) 4274 error = may_delete(new_dir, new_dentry, is_dir); 4275 else 4276 error = may_delete(new_dir, new_dentry, new_is_dir); 4277 } 4278 if (error) 4279 return error; 4280 4281 if (!old_dir->i_op->rename && !old_dir->i_op->rename2) 4282 return -EPERM; 4283 4284 if (flags && !old_dir->i_op->rename2) 4285 return -EINVAL; 4286 4287 /* 4288 * If we are going to change the parent - check write permissions, 4289 * we'll need to flip '..'. 4290 */ 4291 if (new_dir != old_dir) { 4292 if (is_dir) { 4293 error = inode_permission(source, MAY_WRITE); 4294 if (error) 4295 return error; 4296 } 4297 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4298 error = inode_permission(target, MAY_WRITE); 4299 if (error) 4300 return error; 4301 } 4302 } 4303 4304 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 4305 flags); 4306 if (error) 4307 return error; 4308 4309 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 4310 dget(new_dentry); 4311 if (!is_dir || (flags & RENAME_EXCHANGE)) 4312 lock_two_nondirectories(source, target); 4313 else if (target) 4314 inode_lock(target); 4315 4316 error = -EBUSY; 4317 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 4318 goto out; 4319 4320 if (max_links && new_dir != old_dir) { 4321 error = -EMLINK; 4322 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 4323 goto out; 4324 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 4325 old_dir->i_nlink >= max_links) 4326 goto out; 4327 } 4328 if (is_dir && !(flags & RENAME_EXCHANGE) && target) 4329 shrink_dcache_parent(new_dentry); 4330 if (!is_dir) { 4331 error = try_break_deleg(source, delegated_inode); 4332 if (error) 4333 goto out; 4334 } 4335 if (target && !new_is_dir) { 4336 error = try_break_deleg(target, delegated_inode); 4337 if (error) 4338 goto out; 4339 } 4340 if (!old_dir->i_op->rename2) { 4341 error = old_dir->i_op->rename(old_dir, old_dentry, 4342 new_dir, new_dentry); 4343 } else { 4344 WARN_ON(old_dir->i_op->rename != NULL); 4345 error = old_dir->i_op->rename2(old_dir, old_dentry, 4346 new_dir, new_dentry, flags); 4347 } 4348 if (error) 4349 goto out; 4350 4351 if (!(flags & RENAME_EXCHANGE) && target) { 4352 if (is_dir) 4353 target->i_flags |= S_DEAD; 4354 dont_mount(new_dentry); 4355 detach_mounts(new_dentry); 4356 } 4357 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 4358 if (!(flags & RENAME_EXCHANGE)) 4359 d_move(old_dentry, new_dentry); 4360 else 4361 d_exchange(old_dentry, new_dentry); 4362 } 4363 out: 4364 if (!is_dir || (flags & RENAME_EXCHANGE)) 4365 unlock_two_nondirectories(source, target); 4366 else if (target) 4367 inode_unlock(target); 4368 dput(new_dentry); 4369 if (!error) { 4370 fsnotify_move(old_dir, new_dir, old_name, is_dir, 4371 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 4372 if (flags & RENAME_EXCHANGE) { 4373 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name, 4374 new_is_dir, NULL, new_dentry); 4375 } 4376 } 4377 fsnotify_oldname_free(old_name); 4378 4379 return error; 4380 } 4381 EXPORT_SYMBOL(vfs_rename); 4382 4383 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 4384 int, newdfd, const char __user *, newname, unsigned int, flags) 4385 { 4386 struct dentry *old_dentry, *new_dentry; 4387 struct dentry *trap; 4388 struct path old_path, new_path; 4389 struct qstr old_last, new_last; 4390 int old_type, new_type; 4391 struct inode *delegated_inode = NULL; 4392 struct filename *from; 4393 struct filename *to; 4394 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET; 4395 bool should_retry = false; 4396 int error; 4397 4398 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4399 return -EINVAL; 4400 4401 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 4402 (flags & RENAME_EXCHANGE)) 4403 return -EINVAL; 4404 4405 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD)) 4406 return -EPERM; 4407 4408 if (flags & RENAME_EXCHANGE) 4409 target_flags = 0; 4410 4411 retry: 4412 from = user_path_parent(olddfd, oldname, 4413 &old_path, &old_last, &old_type, lookup_flags); 4414 if (IS_ERR(from)) { 4415 error = PTR_ERR(from); 4416 goto exit; 4417 } 4418 4419 to = user_path_parent(newdfd, newname, 4420 &new_path, &new_last, &new_type, lookup_flags); 4421 if (IS_ERR(to)) { 4422 error = PTR_ERR(to); 4423 goto exit1; 4424 } 4425 4426 error = -EXDEV; 4427 if (old_path.mnt != new_path.mnt) 4428 goto exit2; 4429 4430 error = -EBUSY; 4431 if (old_type != LAST_NORM) 4432 goto exit2; 4433 4434 if (flags & RENAME_NOREPLACE) 4435 error = -EEXIST; 4436 if (new_type != LAST_NORM) 4437 goto exit2; 4438 4439 error = mnt_want_write(old_path.mnt); 4440 if (error) 4441 goto exit2; 4442 4443 retry_deleg: 4444 trap = lock_rename(new_path.dentry, old_path.dentry); 4445 4446 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags); 4447 error = PTR_ERR(old_dentry); 4448 if (IS_ERR(old_dentry)) 4449 goto exit3; 4450 /* source must exist */ 4451 error = -ENOENT; 4452 if (d_is_negative(old_dentry)) 4453 goto exit4; 4454 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags); 4455 error = PTR_ERR(new_dentry); 4456 if (IS_ERR(new_dentry)) 4457 goto exit4; 4458 error = -EEXIST; 4459 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 4460 goto exit5; 4461 if (flags & RENAME_EXCHANGE) { 4462 error = -ENOENT; 4463 if (d_is_negative(new_dentry)) 4464 goto exit5; 4465 4466 if (!d_is_dir(new_dentry)) { 4467 error = -ENOTDIR; 4468 if (new_last.name[new_last.len]) 4469 goto exit5; 4470 } 4471 } 4472 /* unless the source is a directory trailing slashes give -ENOTDIR */ 4473 if (!d_is_dir(old_dentry)) { 4474 error = -ENOTDIR; 4475 if (old_last.name[old_last.len]) 4476 goto exit5; 4477 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len]) 4478 goto exit5; 4479 } 4480 /* source should not be ancestor of target */ 4481 error = -EINVAL; 4482 if (old_dentry == trap) 4483 goto exit5; 4484 /* target should not be an ancestor of source */ 4485 if (!(flags & RENAME_EXCHANGE)) 4486 error = -ENOTEMPTY; 4487 if (new_dentry == trap) 4488 goto exit5; 4489 4490 error = security_path_rename(&old_path, old_dentry, 4491 &new_path, new_dentry, flags); 4492 if (error) 4493 goto exit5; 4494 error = vfs_rename(old_path.dentry->d_inode, old_dentry, 4495 new_path.dentry->d_inode, new_dentry, 4496 &delegated_inode, flags); 4497 exit5: 4498 dput(new_dentry); 4499 exit4: 4500 dput(old_dentry); 4501 exit3: 4502 unlock_rename(new_path.dentry, old_path.dentry); 4503 if (delegated_inode) { 4504 error = break_deleg_wait(&delegated_inode); 4505 if (!error) 4506 goto retry_deleg; 4507 } 4508 mnt_drop_write(old_path.mnt); 4509 exit2: 4510 if (retry_estale(error, lookup_flags)) 4511 should_retry = true; 4512 path_put(&new_path); 4513 putname(to); 4514 exit1: 4515 path_put(&old_path); 4516 putname(from); 4517 if (should_retry) { 4518 should_retry = false; 4519 lookup_flags |= LOOKUP_REVAL; 4520 goto retry; 4521 } 4522 exit: 4523 return error; 4524 } 4525 4526 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 4527 int, newdfd, const char __user *, newname) 4528 { 4529 return sys_renameat2(olddfd, oldname, newdfd, newname, 0); 4530 } 4531 4532 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 4533 { 4534 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4535 } 4536 4537 int vfs_whiteout(struct inode *dir, struct dentry *dentry) 4538 { 4539 int error = may_create(dir, dentry); 4540 if (error) 4541 return error; 4542 4543 if (!dir->i_op->mknod) 4544 return -EPERM; 4545 4546 return dir->i_op->mknod(dir, dentry, 4547 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 4548 } 4549 EXPORT_SYMBOL(vfs_whiteout); 4550 4551 int readlink_copy(char __user *buffer, int buflen, const char *link) 4552 { 4553 int len = PTR_ERR(link); 4554 if (IS_ERR(link)) 4555 goto out; 4556 4557 len = strlen(link); 4558 if (len > (unsigned) buflen) 4559 len = buflen; 4560 if (copy_to_user(buffer, link, len)) 4561 len = -EFAULT; 4562 out: 4563 return len; 4564 } 4565 EXPORT_SYMBOL(readlink_copy); 4566 4567 /* 4568 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 4569 * have ->get_link() not calling nd_jump_link(). Using (or not using) it 4570 * for any given inode is up to filesystem. 4571 */ 4572 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4573 { 4574 DEFINE_DELAYED_CALL(done); 4575 struct inode *inode = d_inode(dentry); 4576 const char *link = inode->i_link; 4577 int res; 4578 4579 if (!link) { 4580 link = inode->i_op->get_link(dentry, inode, &done); 4581 if (IS_ERR(link)) 4582 return PTR_ERR(link); 4583 } 4584 res = readlink_copy(buffer, buflen, link); 4585 do_delayed_call(&done); 4586 return res; 4587 } 4588 EXPORT_SYMBOL(generic_readlink); 4589 4590 /* get the link contents into pagecache */ 4591 const char *page_get_link(struct dentry *dentry, struct inode *inode, 4592 struct delayed_call *callback) 4593 { 4594 char *kaddr; 4595 struct page *page; 4596 struct address_space *mapping = inode->i_mapping; 4597 4598 if (!dentry) { 4599 page = find_get_page(mapping, 0); 4600 if (!page) 4601 return ERR_PTR(-ECHILD); 4602 if (!PageUptodate(page)) { 4603 put_page(page); 4604 return ERR_PTR(-ECHILD); 4605 } 4606 } else { 4607 page = read_mapping_page(mapping, 0, NULL); 4608 if (IS_ERR(page)) 4609 return (char*)page; 4610 } 4611 set_delayed_call(callback, page_put_link, page); 4612 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM); 4613 kaddr = page_address(page); 4614 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1); 4615 return kaddr; 4616 } 4617 4618 EXPORT_SYMBOL(page_get_link); 4619 4620 void page_put_link(void *arg) 4621 { 4622 put_page(arg); 4623 } 4624 EXPORT_SYMBOL(page_put_link); 4625 4626 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4627 { 4628 DEFINE_DELAYED_CALL(done); 4629 int res = readlink_copy(buffer, buflen, 4630 page_get_link(dentry, d_inode(dentry), 4631 &done)); 4632 do_delayed_call(&done); 4633 return res; 4634 } 4635 EXPORT_SYMBOL(page_readlink); 4636 4637 /* 4638 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 4639 */ 4640 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 4641 { 4642 struct address_space *mapping = inode->i_mapping; 4643 struct page *page; 4644 void *fsdata; 4645 int err; 4646 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE; 4647 if (nofs) 4648 flags |= AOP_FLAG_NOFS; 4649 4650 retry: 4651 err = pagecache_write_begin(NULL, mapping, 0, len-1, 4652 flags, &page, &fsdata); 4653 if (err) 4654 goto fail; 4655 4656 memcpy(page_address(page), symname, len-1); 4657 4658 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 4659 page, fsdata); 4660 if (err < 0) 4661 goto fail; 4662 if (err < len-1) 4663 goto retry; 4664 4665 mark_inode_dirty(inode); 4666 return 0; 4667 fail: 4668 return err; 4669 } 4670 EXPORT_SYMBOL(__page_symlink); 4671 4672 int page_symlink(struct inode *inode, const char *symname, int len) 4673 { 4674 return __page_symlink(inode, symname, len, 4675 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS)); 4676 } 4677 EXPORT_SYMBOL(page_symlink); 4678 4679 const struct inode_operations page_symlink_inode_operations = { 4680 .readlink = generic_readlink, 4681 .get_link = page_get_link, 4682 }; 4683 EXPORT_SYMBOL(page_symlink_inode_operations); 4684