xref: /linux/fs/namei.c (revision 4d5e3b06e1fc1428be14cd4ebe3b37c1bb34f95d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/namei.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * Some corrections by tytso.
10  */
11 
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13  * lookup logic.
14  */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16  */
17 
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/sched/mm.h>
26 #include <linux/fsnotify.h>
27 #include <linux/personality.h>
28 #include <linux/security.h>
29 #include <linux/ima.h>
30 #include <linux/syscalls.h>
31 #include <linux/mount.h>
32 #include <linux/audit.h>
33 #include <linux/capability.h>
34 #include <linux/file.h>
35 #include <linux/fcntl.h>
36 #include <linux/device_cgroup.h>
37 #include <linux/fs_struct.h>
38 #include <linux/posix_acl.h>
39 #include <linux/hash.h>
40 #include <linux/bitops.h>
41 #include <linux/init_task.h>
42 #include <linux/uaccess.h>
43 
44 #include "internal.h"
45 #include "mount.h"
46 
47 /* [Feb-1997 T. Schoebel-Theuer]
48  * Fundamental changes in the pathname lookup mechanisms (namei)
49  * were necessary because of omirr.  The reason is that omirr needs
50  * to know the _real_ pathname, not the user-supplied one, in case
51  * of symlinks (and also when transname replacements occur).
52  *
53  * The new code replaces the old recursive symlink resolution with
54  * an iterative one (in case of non-nested symlink chains).  It does
55  * this with calls to <fs>_follow_link().
56  * As a side effect, dir_namei(), _namei() and follow_link() are now
57  * replaced with a single function lookup_dentry() that can handle all
58  * the special cases of the former code.
59  *
60  * With the new dcache, the pathname is stored at each inode, at least as
61  * long as the refcount of the inode is positive.  As a side effect, the
62  * size of the dcache depends on the inode cache and thus is dynamic.
63  *
64  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
65  * resolution to correspond with current state of the code.
66  *
67  * Note that the symlink resolution is not *completely* iterative.
68  * There is still a significant amount of tail- and mid- recursion in
69  * the algorithm.  Also, note that <fs>_readlink() is not used in
70  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
71  * may return different results than <fs>_follow_link().  Many virtual
72  * filesystems (including /proc) exhibit this behavior.
73  */
74 
75 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
76  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
77  * and the name already exists in form of a symlink, try to create the new
78  * name indicated by the symlink. The old code always complained that the
79  * name already exists, due to not following the symlink even if its target
80  * is nonexistent.  The new semantics affects also mknod() and link() when
81  * the name is a symlink pointing to a non-existent name.
82  *
83  * I don't know which semantics is the right one, since I have no access
84  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
85  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
86  * "old" one. Personally, I think the new semantics is much more logical.
87  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
88  * file does succeed in both HP-UX and SunOs, but not in Solaris
89  * and in the old Linux semantics.
90  */
91 
92 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
93  * semantics.  See the comments in "open_namei" and "do_link" below.
94  *
95  * [10-Sep-98 Alan Modra] Another symlink change.
96  */
97 
98 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
99  *	inside the path - always follow.
100  *	in the last component in creation/removal/renaming - never follow.
101  *	if LOOKUP_FOLLOW passed - follow.
102  *	if the pathname has trailing slashes - follow.
103  *	otherwise - don't follow.
104  * (applied in that order).
105  *
106  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
107  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
108  * During the 2.4 we need to fix the userland stuff depending on it -
109  * hopefully we will be able to get rid of that wart in 2.5. So far only
110  * XEmacs seems to be relying on it...
111  */
112 /*
113  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
114  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
115  * any extra contention...
116  */
117 
118 /* In order to reduce some races, while at the same time doing additional
119  * checking and hopefully speeding things up, we copy filenames to the
120  * kernel data space before using them..
121  *
122  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
123  * PATH_MAX includes the nul terminator --RR.
124  */
125 
126 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
127 
128 struct filename *
129 getname_flags(const char __user *filename, int flags, int *empty)
130 {
131 	struct filename *result;
132 	char *kname;
133 	int len;
134 
135 	result = audit_reusename(filename);
136 	if (result)
137 		return result;
138 
139 	result = __getname();
140 	if (unlikely(!result))
141 		return ERR_PTR(-ENOMEM);
142 
143 	/*
144 	 * First, try to embed the struct filename inside the names_cache
145 	 * allocation
146 	 */
147 	kname = (char *)result->iname;
148 	result->name = kname;
149 
150 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
151 	if (unlikely(len < 0)) {
152 		__putname(result);
153 		return ERR_PTR(len);
154 	}
155 
156 	/*
157 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
158 	 * separate struct filename so we can dedicate the entire
159 	 * names_cache allocation for the pathname, and re-do the copy from
160 	 * userland.
161 	 */
162 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
163 		const size_t size = offsetof(struct filename, iname[1]);
164 		kname = (char *)result;
165 
166 		/*
167 		 * size is chosen that way we to guarantee that
168 		 * result->iname[0] is within the same object and that
169 		 * kname can't be equal to result->iname, no matter what.
170 		 */
171 		result = kzalloc(size, GFP_KERNEL);
172 		if (unlikely(!result)) {
173 			__putname(kname);
174 			return ERR_PTR(-ENOMEM);
175 		}
176 		result->name = kname;
177 		len = strncpy_from_user(kname, filename, PATH_MAX);
178 		if (unlikely(len < 0)) {
179 			__putname(kname);
180 			kfree(result);
181 			return ERR_PTR(len);
182 		}
183 		if (unlikely(len == PATH_MAX)) {
184 			__putname(kname);
185 			kfree(result);
186 			return ERR_PTR(-ENAMETOOLONG);
187 		}
188 	}
189 
190 	result->refcnt = 1;
191 	/* The empty path is special. */
192 	if (unlikely(!len)) {
193 		if (empty)
194 			*empty = 1;
195 		if (!(flags & LOOKUP_EMPTY)) {
196 			putname(result);
197 			return ERR_PTR(-ENOENT);
198 		}
199 	}
200 
201 	result->uptr = filename;
202 	result->aname = NULL;
203 	audit_getname(result);
204 	return result;
205 }
206 
207 struct filename *
208 getname_uflags(const char __user *filename, int uflags)
209 {
210 	int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
211 
212 	return getname_flags(filename, flags, NULL);
213 }
214 
215 struct filename *
216 getname(const char __user * filename)
217 {
218 	return getname_flags(filename, 0, NULL);
219 }
220 
221 struct filename *
222 getname_kernel(const char * filename)
223 {
224 	struct filename *result;
225 	int len = strlen(filename) + 1;
226 
227 	result = __getname();
228 	if (unlikely(!result))
229 		return ERR_PTR(-ENOMEM);
230 
231 	if (len <= EMBEDDED_NAME_MAX) {
232 		result->name = (char *)result->iname;
233 	} else if (len <= PATH_MAX) {
234 		const size_t size = offsetof(struct filename, iname[1]);
235 		struct filename *tmp;
236 
237 		tmp = kmalloc(size, GFP_KERNEL);
238 		if (unlikely(!tmp)) {
239 			__putname(result);
240 			return ERR_PTR(-ENOMEM);
241 		}
242 		tmp->name = (char *)result;
243 		result = tmp;
244 	} else {
245 		__putname(result);
246 		return ERR_PTR(-ENAMETOOLONG);
247 	}
248 	memcpy((char *)result->name, filename, len);
249 	result->uptr = NULL;
250 	result->aname = NULL;
251 	result->refcnt = 1;
252 	audit_getname(result);
253 
254 	return result;
255 }
256 
257 void putname(struct filename *name)
258 {
259 	if (IS_ERR(name))
260 		return;
261 
262 	BUG_ON(name->refcnt <= 0);
263 
264 	if (--name->refcnt > 0)
265 		return;
266 
267 	if (name->name != name->iname) {
268 		__putname(name->name);
269 		kfree(name);
270 	} else
271 		__putname(name);
272 }
273 
274 /**
275  * check_acl - perform ACL permission checking
276  * @mnt_userns:	user namespace of the mount the inode was found from
277  * @inode:	inode to check permissions on
278  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
279  *
280  * This function performs the ACL permission checking. Since this function
281  * retrieve POSIX acls it needs to know whether it is called from a blocking or
282  * non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
283  *
284  * If the inode has been found through an idmapped mount the user namespace of
285  * the vfsmount must be passed through @mnt_userns. This function will then take
286  * care to map the inode according to @mnt_userns before checking permissions.
287  * On non-idmapped mounts or if permission checking is to be performed on the
288  * raw inode simply passs init_user_ns.
289  */
290 static int check_acl(struct user_namespace *mnt_userns,
291 		     struct inode *inode, int mask)
292 {
293 #ifdef CONFIG_FS_POSIX_ACL
294 	struct posix_acl *acl;
295 
296 	if (mask & MAY_NOT_BLOCK) {
297 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
298 	        if (!acl)
299 	                return -EAGAIN;
300 		/* no ->get_acl() calls in RCU mode... */
301 		if (is_uncached_acl(acl))
302 			return -ECHILD;
303 	        return posix_acl_permission(mnt_userns, inode, acl, mask);
304 	}
305 
306 	acl = get_acl(inode, ACL_TYPE_ACCESS);
307 	if (IS_ERR(acl))
308 		return PTR_ERR(acl);
309 	if (acl) {
310 	        int error = posix_acl_permission(mnt_userns, inode, acl, mask);
311 	        posix_acl_release(acl);
312 	        return error;
313 	}
314 #endif
315 
316 	return -EAGAIN;
317 }
318 
319 /**
320  * acl_permission_check - perform basic UNIX permission checking
321  * @mnt_userns:	user namespace of the mount the inode was found from
322  * @inode:	inode to check permissions on
323  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
324  *
325  * This function performs the basic UNIX permission checking. Since this
326  * function may retrieve POSIX acls it needs to know whether it is called from a
327  * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
328  *
329  * If the inode has been found through an idmapped mount the user namespace of
330  * the vfsmount must be passed through @mnt_userns. This function will then take
331  * care to map the inode according to @mnt_userns before checking permissions.
332  * On non-idmapped mounts or if permission checking is to be performed on the
333  * raw inode simply passs init_user_ns.
334  */
335 static int acl_permission_check(struct user_namespace *mnt_userns,
336 				struct inode *inode, int mask)
337 {
338 	unsigned int mode = inode->i_mode;
339 	kuid_t i_uid;
340 
341 	/* Are we the owner? If so, ACL's don't matter */
342 	i_uid = i_uid_into_mnt(mnt_userns, inode);
343 	if (likely(uid_eq(current_fsuid(), i_uid))) {
344 		mask &= 7;
345 		mode >>= 6;
346 		return (mask & ~mode) ? -EACCES : 0;
347 	}
348 
349 	/* Do we have ACL's? */
350 	if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
351 		int error = check_acl(mnt_userns, inode, mask);
352 		if (error != -EAGAIN)
353 			return error;
354 	}
355 
356 	/* Only RWX matters for group/other mode bits */
357 	mask &= 7;
358 
359 	/*
360 	 * Are the group permissions different from
361 	 * the other permissions in the bits we care
362 	 * about? Need to check group ownership if so.
363 	 */
364 	if (mask & (mode ^ (mode >> 3))) {
365 		kgid_t kgid = i_gid_into_mnt(mnt_userns, inode);
366 		if (in_group_p(kgid))
367 			mode >>= 3;
368 	}
369 
370 	/* Bits in 'mode' clear that we require? */
371 	return (mask & ~mode) ? -EACCES : 0;
372 }
373 
374 /**
375  * generic_permission -  check for access rights on a Posix-like filesystem
376  * @mnt_userns:	user namespace of the mount the inode was found from
377  * @inode:	inode to check access rights for
378  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
379  *		%MAY_NOT_BLOCK ...)
380  *
381  * Used to check for read/write/execute permissions on a file.
382  * We use "fsuid" for this, letting us set arbitrary permissions
383  * for filesystem access without changing the "normal" uids which
384  * are used for other things.
385  *
386  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
387  * request cannot be satisfied (eg. requires blocking or too much complexity).
388  * It would then be called again in ref-walk mode.
389  *
390  * If the inode has been found through an idmapped mount the user namespace of
391  * the vfsmount must be passed through @mnt_userns. This function will then take
392  * care to map the inode according to @mnt_userns before checking permissions.
393  * On non-idmapped mounts or if permission checking is to be performed on the
394  * raw inode simply passs init_user_ns.
395  */
396 int generic_permission(struct user_namespace *mnt_userns, struct inode *inode,
397 		       int mask)
398 {
399 	int ret;
400 
401 	/*
402 	 * Do the basic permission checks.
403 	 */
404 	ret = acl_permission_check(mnt_userns, inode, mask);
405 	if (ret != -EACCES)
406 		return ret;
407 
408 	if (S_ISDIR(inode->i_mode)) {
409 		/* DACs are overridable for directories */
410 		if (!(mask & MAY_WRITE))
411 			if (capable_wrt_inode_uidgid(mnt_userns, inode,
412 						     CAP_DAC_READ_SEARCH))
413 				return 0;
414 		if (capable_wrt_inode_uidgid(mnt_userns, inode,
415 					     CAP_DAC_OVERRIDE))
416 			return 0;
417 		return -EACCES;
418 	}
419 
420 	/*
421 	 * Searching includes executable on directories, else just read.
422 	 */
423 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
424 	if (mask == MAY_READ)
425 		if (capable_wrt_inode_uidgid(mnt_userns, inode,
426 					     CAP_DAC_READ_SEARCH))
427 			return 0;
428 	/*
429 	 * Read/write DACs are always overridable.
430 	 * Executable DACs are overridable when there is
431 	 * at least one exec bit set.
432 	 */
433 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
434 		if (capable_wrt_inode_uidgid(mnt_userns, inode,
435 					     CAP_DAC_OVERRIDE))
436 			return 0;
437 
438 	return -EACCES;
439 }
440 EXPORT_SYMBOL(generic_permission);
441 
442 /**
443  * do_inode_permission - UNIX permission checking
444  * @mnt_userns:	user namespace of the mount the inode was found from
445  * @inode:	inode to check permissions on
446  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
447  *
448  * We _really_ want to just do "generic_permission()" without
449  * even looking at the inode->i_op values. So we keep a cache
450  * flag in inode->i_opflags, that says "this has not special
451  * permission function, use the fast case".
452  */
453 static inline int do_inode_permission(struct user_namespace *mnt_userns,
454 				      struct inode *inode, int mask)
455 {
456 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
457 		if (likely(inode->i_op->permission))
458 			return inode->i_op->permission(mnt_userns, inode, mask);
459 
460 		/* This gets set once for the inode lifetime */
461 		spin_lock(&inode->i_lock);
462 		inode->i_opflags |= IOP_FASTPERM;
463 		spin_unlock(&inode->i_lock);
464 	}
465 	return generic_permission(mnt_userns, inode, mask);
466 }
467 
468 /**
469  * sb_permission - Check superblock-level permissions
470  * @sb: Superblock of inode to check permission on
471  * @inode: Inode to check permission on
472  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
473  *
474  * Separate out file-system wide checks from inode-specific permission checks.
475  */
476 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
477 {
478 	if (unlikely(mask & MAY_WRITE)) {
479 		umode_t mode = inode->i_mode;
480 
481 		/* Nobody gets write access to a read-only fs. */
482 		if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
483 			return -EROFS;
484 	}
485 	return 0;
486 }
487 
488 /**
489  * inode_permission - Check for access rights to a given inode
490  * @mnt_userns:	User namespace of the mount the inode was found from
491  * @inode:	Inode to check permission on
492  * @mask:	Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
493  *
494  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
495  * this, letting us set arbitrary permissions for filesystem access without
496  * changing the "normal" UIDs which are used for other things.
497  *
498  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
499  */
500 int inode_permission(struct user_namespace *mnt_userns,
501 		     struct inode *inode, int mask)
502 {
503 	int retval;
504 
505 	retval = sb_permission(inode->i_sb, inode, mask);
506 	if (retval)
507 		return retval;
508 
509 	if (unlikely(mask & MAY_WRITE)) {
510 		/*
511 		 * Nobody gets write access to an immutable file.
512 		 */
513 		if (IS_IMMUTABLE(inode))
514 			return -EPERM;
515 
516 		/*
517 		 * Updating mtime will likely cause i_uid and i_gid to be
518 		 * written back improperly if their true value is unknown
519 		 * to the vfs.
520 		 */
521 		if (HAS_UNMAPPED_ID(mnt_userns, inode))
522 			return -EACCES;
523 	}
524 
525 	retval = do_inode_permission(mnt_userns, inode, mask);
526 	if (retval)
527 		return retval;
528 
529 	retval = devcgroup_inode_permission(inode, mask);
530 	if (retval)
531 		return retval;
532 
533 	return security_inode_permission(inode, mask);
534 }
535 EXPORT_SYMBOL(inode_permission);
536 
537 /**
538  * path_get - get a reference to a path
539  * @path: path to get the reference to
540  *
541  * Given a path increment the reference count to the dentry and the vfsmount.
542  */
543 void path_get(const struct path *path)
544 {
545 	mntget(path->mnt);
546 	dget(path->dentry);
547 }
548 EXPORT_SYMBOL(path_get);
549 
550 /**
551  * path_put - put a reference to a path
552  * @path: path to put the reference to
553  *
554  * Given a path decrement the reference count to the dentry and the vfsmount.
555  */
556 void path_put(const struct path *path)
557 {
558 	dput(path->dentry);
559 	mntput(path->mnt);
560 }
561 EXPORT_SYMBOL(path_put);
562 
563 #define EMBEDDED_LEVELS 2
564 struct nameidata {
565 	struct path	path;
566 	struct qstr	last;
567 	struct path	root;
568 	struct inode	*inode; /* path.dentry.d_inode */
569 	unsigned int	flags, state;
570 	unsigned	seq, m_seq, r_seq;
571 	int		last_type;
572 	unsigned	depth;
573 	int		total_link_count;
574 	struct saved {
575 		struct path link;
576 		struct delayed_call done;
577 		const char *name;
578 		unsigned seq;
579 	} *stack, internal[EMBEDDED_LEVELS];
580 	struct filename	*name;
581 	struct nameidata *saved;
582 	unsigned	root_seq;
583 	int		dfd;
584 	kuid_t		dir_uid;
585 	umode_t		dir_mode;
586 } __randomize_layout;
587 
588 #define ND_ROOT_PRESET 1
589 #define ND_ROOT_GRABBED 2
590 #define ND_JUMPED 4
591 
592 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name)
593 {
594 	struct nameidata *old = current->nameidata;
595 	p->stack = p->internal;
596 	p->depth = 0;
597 	p->dfd = dfd;
598 	p->name = name;
599 	p->path.mnt = NULL;
600 	p->path.dentry = NULL;
601 	p->total_link_count = old ? old->total_link_count : 0;
602 	p->saved = old;
603 	current->nameidata = p;
604 }
605 
606 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name,
607 			  const struct path *root)
608 {
609 	__set_nameidata(p, dfd, name);
610 	p->state = 0;
611 	if (unlikely(root)) {
612 		p->state = ND_ROOT_PRESET;
613 		p->root = *root;
614 	}
615 }
616 
617 static void restore_nameidata(void)
618 {
619 	struct nameidata *now = current->nameidata, *old = now->saved;
620 
621 	current->nameidata = old;
622 	if (old)
623 		old->total_link_count = now->total_link_count;
624 	if (now->stack != now->internal)
625 		kfree(now->stack);
626 }
627 
628 static bool nd_alloc_stack(struct nameidata *nd)
629 {
630 	struct saved *p;
631 
632 	p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
633 			 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
634 	if (unlikely(!p))
635 		return false;
636 	memcpy(p, nd->internal, sizeof(nd->internal));
637 	nd->stack = p;
638 	return true;
639 }
640 
641 /**
642  * path_connected - Verify that a dentry is below mnt.mnt_root
643  *
644  * Rename can sometimes move a file or directory outside of a bind
645  * mount, path_connected allows those cases to be detected.
646  */
647 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
648 {
649 	struct super_block *sb = mnt->mnt_sb;
650 
651 	/* Bind mounts can have disconnected paths */
652 	if (mnt->mnt_root == sb->s_root)
653 		return true;
654 
655 	return is_subdir(dentry, mnt->mnt_root);
656 }
657 
658 static void drop_links(struct nameidata *nd)
659 {
660 	int i = nd->depth;
661 	while (i--) {
662 		struct saved *last = nd->stack + i;
663 		do_delayed_call(&last->done);
664 		clear_delayed_call(&last->done);
665 	}
666 }
667 
668 static void terminate_walk(struct nameidata *nd)
669 {
670 	drop_links(nd);
671 	if (!(nd->flags & LOOKUP_RCU)) {
672 		int i;
673 		path_put(&nd->path);
674 		for (i = 0; i < nd->depth; i++)
675 			path_put(&nd->stack[i].link);
676 		if (nd->state & ND_ROOT_GRABBED) {
677 			path_put(&nd->root);
678 			nd->state &= ~ND_ROOT_GRABBED;
679 		}
680 	} else {
681 		nd->flags &= ~LOOKUP_RCU;
682 		rcu_read_unlock();
683 	}
684 	nd->depth = 0;
685 	nd->path.mnt = NULL;
686 	nd->path.dentry = NULL;
687 }
688 
689 /* path_put is needed afterwards regardless of success or failure */
690 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
691 {
692 	int res = __legitimize_mnt(path->mnt, mseq);
693 	if (unlikely(res)) {
694 		if (res > 0)
695 			path->mnt = NULL;
696 		path->dentry = NULL;
697 		return false;
698 	}
699 	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
700 		path->dentry = NULL;
701 		return false;
702 	}
703 	return !read_seqcount_retry(&path->dentry->d_seq, seq);
704 }
705 
706 static inline bool legitimize_path(struct nameidata *nd,
707 			    struct path *path, unsigned seq)
708 {
709 	return __legitimize_path(path, seq, nd->m_seq);
710 }
711 
712 static bool legitimize_links(struct nameidata *nd)
713 {
714 	int i;
715 	if (unlikely(nd->flags & LOOKUP_CACHED)) {
716 		drop_links(nd);
717 		nd->depth = 0;
718 		return false;
719 	}
720 	for (i = 0; i < nd->depth; i++) {
721 		struct saved *last = nd->stack + i;
722 		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
723 			drop_links(nd);
724 			nd->depth = i + 1;
725 			return false;
726 		}
727 	}
728 	return true;
729 }
730 
731 static bool legitimize_root(struct nameidata *nd)
732 {
733 	/* Nothing to do if nd->root is zero or is managed by the VFS user. */
734 	if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET))
735 		return true;
736 	nd->state |= ND_ROOT_GRABBED;
737 	return legitimize_path(nd, &nd->root, nd->root_seq);
738 }
739 
740 /*
741  * Path walking has 2 modes, rcu-walk and ref-walk (see
742  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
743  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
744  * normal reference counts on dentries and vfsmounts to transition to ref-walk
745  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
746  * got stuck, so ref-walk may continue from there. If this is not successful
747  * (eg. a seqcount has changed), then failure is returned and it's up to caller
748  * to restart the path walk from the beginning in ref-walk mode.
749  */
750 
751 /**
752  * try_to_unlazy - try to switch to ref-walk mode.
753  * @nd: nameidata pathwalk data
754  * Returns: true on success, false on failure
755  *
756  * try_to_unlazy attempts to legitimize the current nd->path and nd->root
757  * for ref-walk mode.
758  * Must be called from rcu-walk context.
759  * Nothing should touch nameidata between try_to_unlazy() failure and
760  * terminate_walk().
761  */
762 static bool try_to_unlazy(struct nameidata *nd)
763 {
764 	struct dentry *parent = nd->path.dentry;
765 
766 	BUG_ON(!(nd->flags & LOOKUP_RCU));
767 
768 	nd->flags &= ~LOOKUP_RCU;
769 	if (unlikely(!legitimize_links(nd)))
770 		goto out1;
771 	if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
772 		goto out;
773 	if (unlikely(!legitimize_root(nd)))
774 		goto out;
775 	rcu_read_unlock();
776 	BUG_ON(nd->inode != parent->d_inode);
777 	return true;
778 
779 out1:
780 	nd->path.mnt = NULL;
781 	nd->path.dentry = NULL;
782 out:
783 	rcu_read_unlock();
784 	return false;
785 }
786 
787 /**
788  * try_to_unlazy_next - try to switch to ref-walk mode.
789  * @nd: nameidata pathwalk data
790  * @dentry: next dentry to step into
791  * @seq: seq number to check @dentry against
792  * Returns: true on success, false on failure
793  *
794  * Similar to try_to_unlazy(), but here we have the next dentry already
795  * picked by rcu-walk and want to legitimize that in addition to the current
796  * nd->path and nd->root for ref-walk mode.  Must be called from rcu-walk context.
797  * Nothing should touch nameidata between try_to_unlazy_next() failure and
798  * terminate_walk().
799  */
800 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry, unsigned seq)
801 {
802 	BUG_ON(!(nd->flags & LOOKUP_RCU));
803 
804 	nd->flags &= ~LOOKUP_RCU;
805 	if (unlikely(!legitimize_links(nd)))
806 		goto out2;
807 	if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
808 		goto out2;
809 	if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
810 		goto out1;
811 
812 	/*
813 	 * We need to move both the parent and the dentry from the RCU domain
814 	 * to be properly refcounted. And the sequence number in the dentry
815 	 * validates *both* dentry counters, since we checked the sequence
816 	 * number of the parent after we got the child sequence number. So we
817 	 * know the parent must still be valid if the child sequence number is
818 	 */
819 	if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
820 		goto out;
821 	if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
822 		goto out_dput;
823 	/*
824 	 * Sequence counts matched. Now make sure that the root is
825 	 * still valid and get it if required.
826 	 */
827 	if (unlikely(!legitimize_root(nd)))
828 		goto out_dput;
829 	rcu_read_unlock();
830 	return true;
831 
832 out2:
833 	nd->path.mnt = NULL;
834 out1:
835 	nd->path.dentry = NULL;
836 out:
837 	rcu_read_unlock();
838 	return false;
839 out_dput:
840 	rcu_read_unlock();
841 	dput(dentry);
842 	return false;
843 }
844 
845 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
846 {
847 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
848 		return dentry->d_op->d_revalidate(dentry, flags);
849 	else
850 		return 1;
851 }
852 
853 /**
854  * complete_walk - successful completion of path walk
855  * @nd:  pointer nameidata
856  *
857  * If we had been in RCU mode, drop out of it and legitimize nd->path.
858  * Revalidate the final result, unless we'd already done that during
859  * the path walk or the filesystem doesn't ask for it.  Return 0 on
860  * success, -error on failure.  In case of failure caller does not
861  * need to drop nd->path.
862  */
863 static int complete_walk(struct nameidata *nd)
864 {
865 	struct dentry *dentry = nd->path.dentry;
866 	int status;
867 
868 	if (nd->flags & LOOKUP_RCU) {
869 		/*
870 		 * We don't want to zero nd->root for scoped-lookups or
871 		 * externally-managed nd->root.
872 		 */
873 		if (!(nd->state & ND_ROOT_PRESET))
874 			if (!(nd->flags & LOOKUP_IS_SCOPED))
875 				nd->root.mnt = NULL;
876 		nd->flags &= ~LOOKUP_CACHED;
877 		if (!try_to_unlazy(nd))
878 			return -ECHILD;
879 	}
880 
881 	if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
882 		/*
883 		 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
884 		 * ever step outside the root during lookup" and should already
885 		 * be guaranteed by the rest of namei, we want to avoid a namei
886 		 * BUG resulting in userspace being given a path that was not
887 		 * scoped within the root at some point during the lookup.
888 		 *
889 		 * So, do a final sanity-check to make sure that in the
890 		 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
891 		 * we won't silently return an fd completely outside of the
892 		 * requested root to userspace.
893 		 *
894 		 * Userspace could move the path outside the root after this
895 		 * check, but as discussed elsewhere this is not a concern (the
896 		 * resolved file was inside the root at some point).
897 		 */
898 		if (!path_is_under(&nd->path, &nd->root))
899 			return -EXDEV;
900 	}
901 
902 	if (likely(!(nd->state & ND_JUMPED)))
903 		return 0;
904 
905 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
906 		return 0;
907 
908 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
909 	if (status > 0)
910 		return 0;
911 
912 	if (!status)
913 		status = -ESTALE;
914 
915 	return status;
916 }
917 
918 static int set_root(struct nameidata *nd)
919 {
920 	struct fs_struct *fs = current->fs;
921 
922 	/*
923 	 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
924 	 * still have to ensure it doesn't happen because it will cause a breakout
925 	 * from the dirfd.
926 	 */
927 	if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
928 		return -ENOTRECOVERABLE;
929 
930 	if (nd->flags & LOOKUP_RCU) {
931 		unsigned seq;
932 
933 		do {
934 			seq = read_seqcount_begin(&fs->seq);
935 			nd->root = fs->root;
936 			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
937 		} while (read_seqcount_retry(&fs->seq, seq));
938 	} else {
939 		get_fs_root(fs, &nd->root);
940 		nd->state |= ND_ROOT_GRABBED;
941 	}
942 	return 0;
943 }
944 
945 static int nd_jump_root(struct nameidata *nd)
946 {
947 	if (unlikely(nd->flags & LOOKUP_BENEATH))
948 		return -EXDEV;
949 	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
950 		/* Absolute path arguments to path_init() are allowed. */
951 		if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
952 			return -EXDEV;
953 	}
954 	if (!nd->root.mnt) {
955 		int error = set_root(nd);
956 		if (error)
957 			return error;
958 	}
959 	if (nd->flags & LOOKUP_RCU) {
960 		struct dentry *d;
961 		nd->path = nd->root;
962 		d = nd->path.dentry;
963 		nd->inode = d->d_inode;
964 		nd->seq = nd->root_seq;
965 		if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
966 			return -ECHILD;
967 	} else {
968 		path_put(&nd->path);
969 		nd->path = nd->root;
970 		path_get(&nd->path);
971 		nd->inode = nd->path.dentry->d_inode;
972 	}
973 	nd->state |= ND_JUMPED;
974 	return 0;
975 }
976 
977 /*
978  * Helper to directly jump to a known parsed path from ->get_link,
979  * caller must have taken a reference to path beforehand.
980  */
981 int nd_jump_link(struct path *path)
982 {
983 	int error = -ELOOP;
984 	struct nameidata *nd = current->nameidata;
985 
986 	if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
987 		goto err;
988 
989 	error = -EXDEV;
990 	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
991 		if (nd->path.mnt != path->mnt)
992 			goto err;
993 	}
994 	/* Not currently safe for scoped-lookups. */
995 	if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
996 		goto err;
997 
998 	path_put(&nd->path);
999 	nd->path = *path;
1000 	nd->inode = nd->path.dentry->d_inode;
1001 	nd->state |= ND_JUMPED;
1002 	return 0;
1003 
1004 err:
1005 	path_put(path);
1006 	return error;
1007 }
1008 
1009 static inline void put_link(struct nameidata *nd)
1010 {
1011 	struct saved *last = nd->stack + --nd->depth;
1012 	do_delayed_call(&last->done);
1013 	if (!(nd->flags & LOOKUP_RCU))
1014 		path_put(&last->link);
1015 }
1016 
1017 static int sysctl_protected_symlinks __read_mostly;
1018 static int sysctl_protected_hardlinks __read_mostly;
1019 static int sysctl_protected_fifos __read_mostly;
1020 static int sysctl_protected_regular __read_mostly;
1021 
1022 #ifdef CONFIG_SYSCTL
1023 static struct ctl_table namei_sysctls[] = {
1024 	{
1025 		.procname	= "protected_symlinks",
1026 		.data		= &sysctl_protected_symlinks,
1027 		.maxlen		= sizeof(int),
1028 		.mode		= 0644,
1029 		.proc_handler	= proc_dointvec_minmax,
1030 		.extra1		= SYSCTL_ZERO,
1031 		.extra2		= SYSCTL_ONE,
1032 	},
1033 	{
1034 		.procname	= "protected_hardlinks",
1035 		.data		= &sysctl_protected_hardlinks,
1036 		.maxlen		= sizeof(int),
1037 		.mode		= 0644,
1038 		.proc_handler	= proc_dointvec_minmax,
1039 		.extra1		= SYSCTL_ZERO,
1040 		.extra2		= SYSCTL_ONE,
1041 	},
1042 	{
1043 		.procname	= "protected_fifos",
1044 		.data		= &sysctl_protected_fifos,
1045 		.maxlen		= sizeof(int),
1046 		.mode		= 0644,
1047 		.proc_handler	= proc_dointvec_minmax,
1048 		.extra1		= SYSCTL_ZERO,
1049 		.extra2		= SYSCTL_TWO,
1050 	},
1051 	{
1052 		.procname	= "protected_regular",
1053 		.data		= &sysctl_protected_regular,
1054 		.maxlen		= sizeof(int),
1055 		.mode		= 0644,
1056 		.proc_handler	= proc_dointvec_minmax,
1057 		.extra1		= SYSCTL_ZERO,
1058 		.extra2		= SYSCTL_TWO,
1059 	},
1060 	{ }
1061 };
1062 
1063 static int __init init_fs_namei_sysctls(void)
1064 {
1065 	register_sysctl_init("fs", namei_sysctls);
1066 	return 0;
1067 }
1068 fs_initcall(init_fs_namei_sysctls);
1069 
1070 #endif /* CONFIG_SYSCTL */
1071 
1072 /**
1073  * may_follow_link - Check symlink following for unsafe situations
1074  * @nd: nameidata pathwalk data
1075  *
1076  * In the case of the sysctl_protected_symlinks sysctl being enabled,
1077  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
1078  * in a sticky world-writable directory. This is to protect privileged
1079  * processes from failing races against path names that may change out
1080  * from under them by way of other users creating malicious symlinks.
1081  * It will permit symlinks to be followed only when outside a sticky
1082  * world-writable directory, or when the uid of the symlink and follower
1083  * match, or when the directory owner matches the symlink's owner.
1084  *
1085  * Returns 0 if following the symlink is allowed, -ve on error.
1086  */
1087 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
1088 {
1089 	struct user_namespace *mnt_userns;
1090 	kuid_t i_uid;
1091 
1092 	if (!sysctl_protected_symlinks)
1093 		return 0;
1094 
1095 	mnt_userns = mnt_user_ns(nd->path.mnt);
1096 	i_uid = i_uid_into_mnt(mnt_userns, inode);
1097 	/* Allowed if owner and follower match. */
1098 	if (uid_eq(current_cred()->fsuid, i_uid))
1099 		return 0;
1100 
1101 	/* Allowed if parent directory not sticky and world-writable. */
1102 	if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
1103 		return 0;
1104 
1105 	/* Allowed if parent directory and link owner match. */
1106 	if (uid_valid(nd->dir_uid) && uid_eq(nd->dir_uid, i_uid))
1107 		return 0;
1108 
1109 	if (nd->flags & LOOKUP_RCU)
1110 		return -ECHILD;
1111 
1112 	audit_inode(nd->name, nd->stack[0].link.dentry, 0);
1113 	audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
1114 	return -EACCES;
1115 }
1116 
1117 /**
1118  * safe_hardlink_source - Check for safe hardlink conditions
1119  * @mnt_userns:	user namespace of the mount the inode was found from
1120  * @inode: the source inode to hardlink from
1121  *
1122  * Return false if at least one of the following conditions:
1123  *    - inode is not a regular file
1124  *    - inode is setuid
1125  *    - inode is setgid and group-exec
1126  *    - access failure for read and write
1127  *
1128  * Otherwise returns true.
1129  */
1130 static bool safe_hardlink_source(struct user_namespace *mnt_userns,
1131 				 struct inode *inode)
1132 {
1133 	umode_t mode = inode->i_mode;
1134 
1135 	/* Special files should not get pinned to the filesystem. */
1136 	if (!S_ISREG(mode))
1137 		return false;
1138 
1139 	/* Setuid files should not get pinned to the filesystem. */
1140 	if (mode & S_ISUID)
1141 		return false;
1142 
1143 	/* Executable setgid files should not get pinned to the filesystem. */
1144 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1145 		return false;
1146 
1147 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
1148 	if (inode_permission(mnt_userns, inode, MAY_READ | MAY_WRITE))
1149 		return false;
1150 
1151 	return true;
1152 }
1153 
1154 /**
1155  * may_linkat - Check permissions for creating a hardlink
1156  * @mnt_userns:	user namespace of the mount the inode was found from
1157  * @link: the source to hardlink from
1158  *
1159  * Block hardlink when all of:
1160  *  - sysctl_protected_hardlinks enabled
1161  *  - fsuid does not match inode
1162  *  - hardlink source is unsafe (see safe_hardlink_source() above)
1163  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
1164  *
1165  * If the inode has been found through an idmapped mount the user namespace of
1166  * the vfsmount must be passed through @mnt_userns. This function will then take
1167  * care to map the inode according to @mnt_userns before checking permissions.
1168  * On non-idmapped mounts or if permission checking is to be performed on the
1169  * raw inode simply passs init_user_ns.
1170  *
1171  * Returns 0 if successful, -ve on error.
1172  */
1173 int may_linkat(struct user_namespace *mnt_userns, struct path *link)
1174 {
1175 	struct inode *inode = link->dentry->d_inode;
1176 
1177 	/* Inode writeback is not safe when the uid or gid are invalid. */
1178 	if (!uid_valid(i_uid_into_mnt(mnt_userns, inode)) ||
1179 	    !gid_valid(i_gid_into_mnt(mnt_userns, inode)))
1180 		return -EOVERFLOW;
1181 
1182 	if (!sysctl_protected_hardlinks)
1183 		return 0;
1184 
1185 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1186 	 * otherwise, it must be a safe source.
1187 	 */
1188 	if (safe_hardlink_source(mnt_userns, inode) ||
1189 	    inode_owner_or_capable(mnt_userns, inode))
1190 		return 0;
1191 
1192 	audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1193 	return -EPERM;
1194 }
1195 
1196 /**
1197  * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1198  *			  should be allowed, or not, on files that already
1199  *			  exist.
1200  * @mnt_userns:	user namespace of the mount the inode was found from
1201  * @nd: nameidata pathwalk data
1202  * @inode: the inode of the file to open
1203  *
1204  * Block an O_CREAT open of a FIFO (or a regular file) when:
1205  *   - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1206  *   - the file already exists
1207  *   - we are in a sticky directory
1208  *   - we don't own the file
1209  *   - the owner of the directory doesn't own the file
1210  *   - the directory is world writable
1211  * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1212  * the directory doesn't have to be world writable: being group writable will
1213  * be enough.
1214  *
1215  * If the inode has been found through an idmapped mount the user namespace of
1216  * the vfsmount must be passed through @mnt_userns. This function will then take
1217  * care to map the inode according to @mnt_userns before checking permissions.
1218  * On non-idmapped mounts or if permission checking is to be performed on the
1219  * raw inode simply passs init_user_ns.
1220  *
1221  * Returns 0 if the open is allowed, -ve on error.
1222  */
1223 static int may_create_in_sticky(struct user_namespace *mnt_userns,
1224 				struct nameidata *nd, struct inode *const inode)
1225 {
1226 	umode_t dir_mode = nd->dir_mode;
1227 	kuid_t dir_uid = nd->dir_uid;
1228 
1229 	if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1230 	    (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1231 	    likely(!(dir_mode & S_ISVTX)) ||
1232 	    uid_eq(i_uid_into_mnt(mnt_userns, inode), dir_uid) ||
1233 	    uid_eq(current_fsuid(), i_uid_into_mnt(mnt_userns, inode)))
1234 		return 0;
1235 
1236 	if (likely(dir_mode & 0002) ||
1237 	    (dir_mode & 0020 &&
1238 	     ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1239 	      (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1240 		const char *operation = S_ISFIFO(inode->i_mode) ?
1241 					"sticky_create_fifo" :
1242 					"sticky_create_regular";
1243 		audit_log_path_denied(AUDIT_ANOM_CREAT, operation);
1244 		return -EACCES;
1245 	}
1246 	return 0;
1247 }
1248 
1249 /*
1250  * follow_up - Find the mountpoint of path's vfsmount
1251  *
1252  * Given a path, find the mountpoint of its source file system.
1253  * Replace @path with the path of the mountpoint in the parent mount.
1254  * Up is towards /.
1255  *
1256  * Return 1 if we went up a level and 0 if we were already at the
1257  * root.
1258  */
1259 int follow_up(struct path *path)
1260 {
1261 	struct mount *mnt = real_mount(path->mnt);
1262 	struct mount *parent;
1263 	struct dentry *mountpoint;
1264 
1265 	read_seqlock_excl(&mount_lock);
1266 	parent = mnt->mnt_parent;
1267 	if (parent == mnt) {
1268 		read_sequnlock_excl(&mount_lock);
1269 		return 0;
1270 	}
1271 	mntget(&parent->mnt);
1272 	mountpoint = dget(mnt->mnt_mountpoint);
1273 	read_sequnlock_excl(&mount_lock);
1274 	dput(path->dentry);
1275 	path->dentry = mountpoint;
1276 	mntput(path->mnt);
1277 	path->mnt = &parent->mnt;
1278 	return 1;
1279 }
1280 EXPORT_SYMBOL(follow_up);
1281 
1282 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1283 				  struct path *path, unsigned *seqp)
1284 {
1285 	while (mnt_has_parent(m)) {
1286 		struct dentry *mountpoint = m->mnt_mountpoint;
1287 
1288 		m = m->mnt_parent;
1289 		if (unlikely(root->dentry == mountpoint &&
1290 			     root->mnt == &m->mnt))
1291 			break;
1292 		if (mountpoint != m->mnt.mnt_root) {
1293 			path->mnt = &m->mnt;
1294 			path->dentry = mountpoint;
1295 			*seqp = read_seqcount_begin(&mountpoint->d_seq);
1296 			return true;
1297 		}
1298 	}
1299 	return false;
1300 }
1301 
1302 static bool choose_mountpoint(struct mount *m, const struct path *root,
1303 			      struct path *path)
1304 {
1305 	bool found;
1306 
1307 	rcu_read_lock();
1308 	while (1) {
1309 		unsigned seq, mseq = read_seqbegin(&mount_lock);
1310 
1311 		found = choose_mountpoint_rcu(m, root, path, &seq);
1312 		if (unlikely(!found)) {
1313 			if (!read_seqretry(&mount_lock, mseq))
1314 				break;
1315 		} else {
1316 			if (likely(__legitimize_path(path, seq, mseq)))
1317 				break;
1318 			rcu_read_unlock();
1319 			path_put(path);
1320 			rcu_read_lock();
1321 		}
1322 	}
1323 	rcu_read_unlock();
1324 	return found;
1325 }
1326 
1327 /*
1328  * Perform an automount
1329  * - return -EISDIR to tell follow_managed() to stop and return the path we
1330  *   were called with.
1331  */
1332 static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1333 {
1334 	struct dentry *dentry = path->dentry;
1335 
1336 	/* We don't want to mount if someone's just doing a stat -
1337 	 * unless they're stat'ing a directory and appended a '/' to
1338 	 * the name.
1339 	 *
1340 	 * We do, however, want to mount if someone wants to open or
1341 	 * create a file of any type under the mountpoint, wants to
1342 	 * traverse through the mountpoint or wants to open the
1343 	 * mounted directory.  Also, autofs may mark negative dentries
1344 	 * as being automount points.  These will need the attentions
1345 	 * of the daemon to instantiate them before they can be used.
1346 	 */
1347 	if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1348 			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1349 	    dentry->d_inode)
1350 		return -EISDIR;
1351 
1352 	if (count && (*count)++ >= MAXSYMLINKS)
1353 		return -ELOOP;
1354 
1355 	return finish_automount(dentry->d_op->d_automount(path), path);
1356 }
1357 
1358 /*
1359  * mount traversal - out-of-line part.  One note on ->d_flags accesses -
1360  * dentries are pinned but not locked here, so negative dentry can go
1361  * positive right under us.  Use of smp_load_acquire() provides a barrier
1362  * sufficient for ->d_inode and ->d_flags consistency.
1363  */
1364 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1365 			     int *count, unsigned lookup_flags)
1366 {
1367 	struct vfsmount *mnt = path->mnt;
1368 	bool need_mntput = false;
1369 	int ret = 0;
1370 
1371 	while (flags & DCACHE_MANAGED_DENTRY) {
1372 		/* Allow the filesystem to manage the transit without i_mutex
1373 		 * being held. */
1374 		if (flags & DCACHE_MANAGE_TRANSIT) {
1375 			ret = path->dentry->d_op->d_manage(path, false);
1376 			flags = smp_load_acquire(&path->dentry->d_flags);
1377 			if (ret < 0)
1378 				break;
1379 		}
1380 
1381 		if (flags & DCACHE_MOUNTED) {	// something's mounted on it..
1382 			struct vfsmount *mounted = lookup_mnt(path);
1383 			if (mounted) {		// ... in our namespace
1384 				dput(path->dentry);
1385 				if (need_mntput)
1386 					mntput(path->mnt);
1387 				path->mnt = mounted;
1388 				path->dentry = dget(mounted->mnt_root);
1389 				// here we know it's positive
1390 				flags = path->dentry->d_flags;
1391 				need_mntput = true;
1392 				continue;
1393 			}
1394 		}
1395 
1396 		if (!(flags & DCACHE_NEED_AUTOMOUNT))
1397 			break;
1398 
1399 		// uncovered automount point
1400 		ret = follow_automount(path, count, lookup_flags);
1401 		flags = smp_load_acquire(&path->dentry->d_flags);
1402 		if (ret < 0)
1403 			break;
1404 	}
1405 
1406 	if (ret == -EISDIR)
1407 		ret = 0;
1408 	// possible if you race with several mount --move
1409 	if (need_mntput && path->mnt == mnt)
1410 		mntput(path->mnt);
1411 	if (!ret && unlikely(d_flags_negative(flags)))
1412 		ret = -ENOENT;
1413 	*jumped = need_mntput;
1414 	return ret;
1415 }
1416 
1417 static inline int traverse_mounts(struct path *path, bool *jumped,
1418 				  int *count, unsigned lookup_flags)
1419 {
1420 	unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1421 
1422 	/* fastpath */
1423 	if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1424 		*jumped = false;
1425 		if (unlikely(d_flags_negative(flags)))
1426 			return -ENOENT;
1427 		return 0;
1428 	}
1429 	return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1430 }
1431 
1432 int follow_down_one(struct path *path)
1433 {
1434 	struct vfsmount *mounted;
1435 
1436 	mounted = lookup_mnt(path);
1437 	if (mounted) {
1438 		dput(path->dentry);
1439 		mntput(path->mnt);
1440 		path->mnt = mounted;
1441 		path->dentry = dget(mounted->mnt_root);
1442 		return 1;
1443 	}
1444 	return 0;
1445 }
1446 EXPORT_SYMBOL(follow_down_one);
1447 
1448 /*
1449  * Follow down to the covering mount currently visible to userspace.  At each
1450  * point, the filesystem owning that dentry may be queried as to whether the
1451  * caller is permitted to proceed or not.
1452  */
1453 int follow_down(struct path *path)
1454 {
1455 	struct vfsmount *mnt = path->mnt;
1456 	bool jumped;
1457 	int ret = traverse_mounts(path, &jumped, NULL, 0);
1458 
1459 	if (path->mnt != mnt)
1460 		mntput(mnt);
1461 	return ret;
1462 }
1463 EXPORT_SYMBOL(follow_down);
1464 
1465 /*
1466  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1467  * we meet a managed dentry that would need blocking.
1468  */
1469 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1470 			       struct inode **inode, unsigned *seqp)
1471 {
1472 	struct dentry *dentry = path->dentry;
1473 	unsigned int flags = dentry->d_flags;
1474 
1475 	if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1476 		return true;
1477 
1478 	if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1479 		return false;
1480 
1481 	for (;;) {
1482 		/*
1483 		 * Don't forget we might have a non-mountpoint managed dentry
1484 		 * that wants to block transit.
1485 		 */
1486 		if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1487 			int res = dentry->d_op->d_manage(path, true);
1488 			if (res)
1489 				return res == -EISDIR;
1490 			flags = dentry->d_flags;
1491 		}
1492 
1493 		if (flags & DCACHE_MOUNTED) {
1494 			struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1495 			if (mounted) {
1496 				path->mnt = &mounted->mnt;
1497 				dentry = path->dentry = mounted->mnt.mnt_root;
1498 				nd->state |= ND_JUMPED;
1499 				*seqp = read_seqcount_begin(&dentry->d_seq);
1500 				*inode = dentry->d_inode;
1501 				/*
1502 				 * We don't need to re-check ->d_seq after this
1503 				 * ->d_inode read - there will be an RCU delay
1504 				 * between mount hash removal and ->mnt_root
1505 				 * becoming unpinned.
1506 				 */
1507 				flags = dentry->d_flags;
1508 				continue;
1509 			}
1510 			if (read_seqretry(&mount_lock, nd->m_seq))
1511 				return false;
1512 		}
1513 		return !(flags & DCACHE_NEED_AUTOMOUNT);
1514 	}
1515 }
1516 
1517 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1518 			  struct path *path, struct inode **inode,
1519 			  unsigned int *seqp)
1520 {
1521 	bool jumped;
1522 	int ret;
1523 
1524 	path->mnt = nd->path.mnt;
1525 	path->dentry = dentry;
1526 	if (nd->flags & LOOKUP_RCU) {
1527 		unsigned int seq = *seqp;
1528 		if (unlikely(!*inode))
1529 			return -ENOENT;
1530 		if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1531 			return 0;
1532 		if (!try_to_unlazy_next(nd, dentry, seq))
1533 			return -ECHILD;
1534 		// *path might've been clobbered by __follow_mount_rcu()
1535 		path->mnt = nd->path.mnt;
1536 		path->dentry = dentry;
1537 	}
1538 	ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1539 	if (jumped) {
1540 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1541 			ret = -EXDEV;
1542 		else
1543 			nd->state |= ND_JUMPED;
1544 	}
1545 	if (unlikely(ret)) {
1546 		dput(path->dentry);
1547 		if (path->mnt != nd->path.mnt)
1548 			mntput(path->mnt);
1549 	} else {
1550 		*inode = d_backing_inode(path->dentry);
1551 		*seqp = 0; /* out of RCU mode, so the value doesn't matter */
1552 	}
1553 	return ret;
1554 }
1555 
1556 /*
1557  * This looks up the name in dcache and possibly revalidates the found dentry.
1558  * NULL is returned if the dentry does not exist in the cache.
1559  */
1560 static struct dentry *lookup_dcache(const struct qstr *name,
1561 				    struct dentry *dir,
1562 				    unsigned int flags)
1563 {
1564 	struct dentry *dentry = d_lookup(dir, name);
1565 	if (dentry) {
1566 		int error = d_revalidate(dentry, flags);
1567 		if (unlikely(error <= 0)) {
1568 			if (!error)
1569 				d_invalidate(dentry);
1570 			dput(dentry);
1571 			return ERR_PTR(error);
1572 		}
1573 	}
1574 	return dentry;
1575 }
1576 
1577 /*
1578  * Parent directory has inode locked exclusive.  This is one
1579  * and only case when ->lookup() gets called on non in-lookup
1580  * dentries - as the matter of fact, this only gets called
1581  * when directory is guaranteed to have no in-lookup children
1582  * at all.
1583  */
1584 static struct dentry *__lookup_hash(const struct qstr *name,
1585 		struct dentry *base, unsigned int flags)
1586 {
1587 	struct dentry *dentry = lookup_dcache(name, base, flags);
1588 	struct dentry *old;
1589 	struct inode *dir = base->d_inode;
1590 
1591 	if (dentry)
1592 		return dentry;
1593 
1594 	/* Don't create child dentry for a dead directory. */
1595 	if (unlikely(IS_DEADDIR(dir)))
1596 		return ERR_PTR(-ENOENT);
1597 
1598 	dentry = d_alloc(base, name);
1599 	if (unlikely(!dentry))
1600 		return ERR_PTR(-ENOMEM);
1601 
1602 	old = dir->i_op->lookup(dir, dentry, flags);
1603 	if (unlikely(old)) {
1604 		dput(dentry);
1605 		dentry = old;
1606 	}
1607 	return dentry;
1608 }
1609 
1610 static struct dentry *lookup_fast(struct nameidata *nd,
1611 				  struct inode **inode,
1612 			          unsigned *seqp)
1613 {
1614 	struct dentry *dentry, *parent = nd->path.dentry;
1615 	int status = 1;
1616 
1617 	/*
1618 	 * Rename seqlock is not required here because in the off chance
1619 	 * of a false negative due to a concurrent rename, the caller is
1620 	 * going to fall back to non-racy lookup.
1621 	 */
1622 	if (nd->flags & LOOKUP_RCU) {
1623 		unsigned seq;
1624 		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1625 		if (unlikely(!dentry)) {
1626 			if (!try_to_unlazy(nd))
1627 				return ERR_PTR(-ECHILD);
1628 			return NULL;
1629 		}
1630 
1631 		/*
1632 		 * This sequence count validates that the inode matches
1633 		 * the dentry name information from lookup.
1634 		 */
1635 		*inode = d_backing_inode(dentry);
1636 		if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1637 			return ERR_PTR(-ECHILD);
1638 
1639 		/*
1640 		 * This sequence count validates that the parent had no
1641 		 * changes while we did the lookup of the dentry above.
1642 		 *
1643 		 * The memory barrier in read_seqcount_begin of child is
1644 		 *  enough, we can use __read_seqcount_retry here.
1645 		 */
1646 		if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1647 			return ERR_PTR(-ECHILD);
1648 
1649 		*seqp = seq;
1650 		status = d_revalidate(dentry, nd->flags);
1651 		if (likely(status > 0))
1652 			return dentry;
1653 		if (!try_to_unlazy_next(nd, dentry, seq))
1654 			return ERR_PTR(-ECHILD);
1655 		if (status == -ECHILD)
1656 			/* we'd been told to redo it in non-rcu mode */
1657 			status = d_revalidate(dentry, nd->flags);
1658 	} else {
1659 		dentry = __d_lookup(parent, &nd->last);
1660 		if (unlikely(!dentry))
1661 			return NULL;
1662 		status = d_revalidate(dentry, nd->flags);
1663 	}
1664 	if (unlikely(status <= 0)) {
1665 		if (!status)
1666 			d_invalidate(dentry);
1667 		dput(dentry);
1668 		return ERR_PTR(status);
1669 	}
1670 	return dentry;
1671 }
1672 
1673 /* Fast lookup failed, do it the slow way */
1674 static struct dentry *__lookup_slow(const struct qstr *name,
1675 				    struct dentry *dir,
1676 				    unsigned int flags)
1677 {
1678 	struct dentry *dentry, *old;
1679 	struct inode *inode = dir->d_inode;
1680 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1681 
1682 	/* Don't go there if it's already dead */
1683 	if (unlikely(IS_DEADDIR(inode)))
1684 		return ERR_PTR(-ENOENT);
1685 again:
1686 	dentry = d_alloc_parallel(dir, name, &wq);
1687 	if (IS_ERR(dentry))
1688 		return dentry;
1689 	if (unlikely(!d_in_lookup(dentry))) {
1690 		int error = d_revalidate(dentry, flags);
1691 		if (unlikely(error <= 0)) {
1692 			if (!error) {
1693 				d_invalidate(dentry);
1694 				dput(dentry);
1695 				goto again;
1696 			}
1697 			dput(dentry);
1698 			dentry = ERR_PTR(error);
1699 		}
1700 	} else {
1701 		old = inode->i_op->lookup(inode, dentry, flags);
1702 		d_lookup_done(dentry);
1703 		if (unlikely(old)) {
1704 			dput(dentry);
1705 			dentry = old;
1706 		}
1707 	}
1708 	return dentry;
1709 }
1710 
1711 static struct dentry *lookup_slow(const struct qstr *name,
1712 				  struct dentry *dir,
1713 				  unsigned int flags)
1714 {
1715 	struct inode *inode = dir->d_inode;
1716 	struct dentry *res;
1717 	inode_lock_shared(inode);
1718 	res = __lookup_slow(name, dir, flags);
1719 	inode_unlock_shared(inode);
1720 	return res;
1721 }
1722 
1723 static inline int may_lookup(struct user_namespace *mnt_userns,
1724 			     struct nameidata *nd)
1725 {
1726 	if (nd->flags & LOOKUP_RCU) {
1727 		int err = inode_permission(mnt_userns, nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1728 		if (err != -ECHILD || !try_to_unlazy(nd))
1729 			return err;
1730 	}
1731 	return inode_permission(mnt_userns, nd->inode, MAY_EXEC);
1732 }
1733 
1734 static int reserve_stack(struct nameidata *nd, struct path *link, unsigned seq)
1735 {
1736 	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1737 		return -ELOOP;
1738 
1739 	if (likely(nd->depth != EMBEDDED_LEVELS))
1740 		return 0;
1741 	if (likely(nd->stack != nd->internal))
1742 		return 0;
1743 	if (likely(nd_alloc_stack(nd)))
1744 		return 0;
1745 
1746 	if (nd->flags & LOOKUP_RCU) {
1747 		// we need to grab link before we do unlazy.  And we can't skip
1748 		// unlazy even if we fail to grab the link - cleanup needs it
1749 		bool grabbed_link = legitimize_path(nd, link, seq);
1750 
1751 		if (!try_to_unlazy(nd) || !grabbed_link)
1752 			return -ECHILD;
1753 
1754 		if (nd_alloc_stack(nd))
1755 			return 0;
1756 	}
1757 	return -ENOMEM;
1758 }
1759 
1760 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1761 
1762 static const char *pick_link(struct nameidata *nd, struct path *link,
1763 		     struct inode *inode, unsigned seq, int flags)
1764 {
1765 	struct saved *last;
1766 	const char *res;
1767 	int error = reserve_stack(nd, link, seq);
1768 
1769 	if (unlikely(error)) {
1770 		if (!(nd->flags & LOOKUP_RCU))
1771 			path_put(link);
1772 		return ERR_PTR(error);
1773 	}
1774 	last = nd->stack + nd->depth++;
1775 	last->link = *link;
1776 	clear_delayed_call(&last->done);
1777 	last->seq = seq;
1778 
1779 	if (flags & WALK_TRAILING) {
1780 		error = may_follow_link(nd, inode);
1781 		if (unlikely(error))
1782 			return ERR_PTR(error);
1783 	}
1784 
1785 	if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1786 			unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1787 		return ERR_PTR(-ELOOP);
1788 
1789 	if (!(nd->flags & LOOKUP_RCU)) {
1790 		touch_atime(&last->link);
1791 		cond_resched();
1792 	} else if (atime_needs_update(&last->link, inode)) {
1793 		if (!try_to_unlazy(nd))
1794 			return ERR_PTR(-ECHILD);
1795 		touch_atime(&last->link);
1796 	}
1797 
1798 	error = security_inode_follow_link(link->dentry, inode,
1799 					   nd->flags & LOOKUP_RCU);
1800 	if (unlikely(error))
1801 		return ERR_PTR(error);
1802 
1803 	res = READ_ONCE(inode->i_link);
1804 	if (!res) {
1805 		const char * (*get)(struct dentry *, struct inode *,
1806 				struct delayed_call *);
1807 		get = inode->i_op->get_link;
1808 		if (nd->flags & LOOKUP_RCU) {
1809 			res = get(NULL, inode, &last->done);
1810 			if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd))
1811 				res = get(link->dentry, inode, &last->done);
1812 		} else {
1813 			res = get(link->dentry, inode, &last->done);
1814 		}
1815 		if (!res)
1816 			goto all_done;
1817 		if (IS_ERR(res))
1818 			return res;
1819 	}
1820 	if (*res == '/') {
1821 		error = nd_jump_root(nd);
1822 		if (unlikely(error))
1823 			return ERR_PTR(error);
1824 		while (unlikely(*++res == '/'))
1825 			;
1826 	}
1827 	if (*res)
1828 		return res;
1829 all_done: // pure jump
1830 	put_link(nd);
1831 	return NULL;
1832 }
1833 
1834 /*
1835  * Do we need to follow links? We _really_ want to be able
1836  * to do this check without having to look at inode->i_op,
1837  * so we keep a cache of "no, this doesn't need follow_link"
1838  * for the common case.
1839  */
1840 static const char *step_into(struct nameidata *nd, int flags,
1841 		     struct dentry *dentry, struct inode *inode, unsigned seq)
1842 {
1843 	struct path path;
1844 	int err = handle_mounts(nd, dentry, &path, &inode, &seq);
1845 
1846 	if (err < 0)
1847 		return ERR_PTR(err);
1848 	if (likely(!d_is_symlink(path.dentry)) ||
1849 	   ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1850 	   (flags & WALK_NOFOLLOW)) {
1851 		/* not a symlink or should not follow */
1852 		if (!(nd->flags & LOOKUP_RCU)) {
1853 			dput(nd->path.dentry);
1854 			if (nd->path.mnt != path.mnt)
1855 				mntput(nd->path.mnt);
1856 		}
1857 		nd->path = path;
1858 		nd->inode = inode;
1859 		nd->seq = seq;
1860 		return NULL;
1861 	}
1862 	if (nd->flags & LOOKUP_RCU) {
1863 		/* make sure that d_is_symlink above matches inode */
1864 		if (read_seqcount_retry(&path.dentry->d_seq, seq))
1865 			return ERR_PTR(-ECHILD);
1866 	} else {
1867 		if (path.mnt == nd->path.mnt)
1868 			mntget(path.mnt);
1869 	}
1870 	return pick_link(nd, &path, inode, seq, flags);
1871 }
1872 
1873 static struct dentry *follow_dotdot_rcu(struct nameidata *nd,
1874 					struct inode **inodep,
1875 					unsigned *seqp)
1876 {
1877 	struct dentry *parent, *old;
1878 
1879 	if (path_equal(&nd->path, &nd->root))
1880 		goto in_root;
1881 	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1882 		struct path path;
1883 		unsigned seq;
1884 		if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
1885 					   &nd->root, &path, &seq))
1886 			goto in_root;
1887 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1888 			return ERR_PTR(-ECHILD);
1889 		nd->path = path;
1890 		nd->inode = path.dentry->d_inode;
1891 		nd->seq = seq;
1892 		if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1893 			return ERR_PTR(-ECHILD);
1894 		/* we know that mountpoint was pinned */
1895 	}
1896 	old = nd->path.dentry;
1897 	parent = old->d_parent;
1898 	*inodep = parent->d_inode;
1899 	*seqp = read_seqcount_begin(&parent->d_seq);
1900 	if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1901 		return ERR_PTR(-ECHILD);
1902 	if (unlikely(!path_connected(nd->path.mnt, parent)))
1903 		return ERR_PTR(-ECHILD);
1904 	return parent;
1905 in_root:
1906 	if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1907 		return ERR_PTR(-ECHILD);
1908 	if (unlikely(nd->flags & LOOKUP_BENEATH))
1909 		return ERR_PTR(-ECHILD);
1910 	return NULL;
1911 }
1912 
1913 static struct dentry *follow_dotdot(struct nameidata *nd,
1914 				 struct inode **inodep,
1915 				 unsigned *seqp)
1916 {
1917 	struct dentry *parent;
1918 
1919 	if (path_equal(&nd->path, &nd->root))
1920 		goto in_root;
1921 	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1922 		struct path path;
1923 
1924 		if (!choose_mountpoint(real_mount(nd->path.mnt),
1925 				       &nd->root, &path))
1926 			goto in_root;
1927 		path_put(&nd->path);
1928 		nd->path = path;
1929 		nd->inode = path.dentry->d_inode;
1930 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1931 			return ERR_PTR(-EXDEV);
1932 	}
1933 	/* rare case of legitimate dget_parent()... */
1934 	parent = dget_parent(nd->path.dentry);
1935 	if (unlikely(!path_connected(nd->path.mnt, parent))) {
1936 		dput(parent);
1937 		return ERR_PTR(-ENOENT);
1938 	}
1939 	*seqp = 0;
1940 	*inodep = parent->d_inode;
1941 	return parent;
1942 
1943 in_root:
1944 	if (unlikely(nd->flags & LOOKUP_BENEATH))
1945 		return ERR_PTR(-EXDEV);
1946 	dget(nd->path.dentry);
1947 	return NULL;
1948 }
1949 
1950 static const char *handle_dots(struct nameidata *nd, int type)
1951 {
1952 	if (type == LAST_DOTDOT) {
1953 		const char *error = NULL;
1954 		struct dentry *parent;
1955 		struct inode *inode;
1956 		unsigned seq;
1957 
1958 		if (!nd->root.mnt) {
1959 			error = ERR_PTR(set_root(nd));
1960 			if (error)
1961 				return error;
1962 		}
1963 		if (nd->flags & LOOKUP_RCU)
1964 			parent = follow_dotdot_rcu(nd, &inode, &seq);
1965 		else
1966 			parent = follow_dotdot(nd, &inode, &seq);
1967 		if (IS_ERR(parent))
1968 			return ERR_CAST(parent);
1969 		if (unlikely(!parent))
1970 			error = step_into(nd, WALK_NOFOLLOW,
1971 					 nd->path.dentry, nd->inode, nd->seq);
1972 		else
1973 			error = step_into(nd, WALK_NOFOLLOW,
1974 					 parent, inode, seq);
1975 		if (unlikely(error))
1976 			return error;
1977 
1978 		if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
1979 			/*
1980 			 * If there was a racing rename or mount along our
1981 			 * path, then we can't be sure that ".." hasn't jumped
1982 			 * above nd->root (and so userspace should retry or use
1983 			 * some fallback).
1984 			 */
1985 			smp_rmb();
1986 			if (unlikely(__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq)))
1987 				return ERR_PTR(-EAGAIN);
1988 			if (unlikely(__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq)))
1989 				return ERR_PTR(-EAGAIN);
1990 		}
1991 	}
1992 	return NULL;
1993 }
1994 
1995 static const char *walk_component(struct nameidata *nd, int flags)
1996 {
1997 	struct dentry *dentry;
1998 	struct inode *inode;
1999 	unsigned seq;
2000 	/*
2001 	 * "." and ".." are special - ".." especially so because it has
2002 	 * to be able to know about the current root directory and
2003 	 * parent relationships.
2004 	 */
2005 	if (unlikely(nd->last_type != LAST_NORM)) {
2006 		if (!(flags & WALK_MORE) && nd->depth)
2007 			put_link(nd);
2008 		return handle_dots(nd, nd->last_type);
2009 	}
2010 	dentry = lookup_fast(nd, &inode, &seq);
2011 	if (IS_ERR(dentry))
2012 		return ERR_CAST(dentry);
2013 	if (unlikely(!dentry)) {
2014 		dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
2015 		if (IS_ERR(dentry))
2016 			return ERR_CAST(dentry);
2017 	}
2018 	if (!(flags & WALK_MORE) && nd->depth)
2019 		put_link(nd);
2020 	return step_into(nd, flags, dentry, inode, seq);
2021 }
2022 
2023 /*
2024  * We can do the critical dentry name comparison and hashing
2025  * operations one word at a time, but we are limited to:
2026  *
2027  * - Architectures with fast unaligned word accesses. We could
2028  *   do a "get_unaligned()" if this helps and is sufficiently
2029  *   fast.
2030  *
2031  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
2032  *   do not trap on the (extremely unlikely) case of a page
2033  *   crossing operation.
2034  *
2035  * - Furthermore, we need an efficient 64-bit compile for the
2036  *   64-bit case in order to generate the "number of bytes in
2037  *   the final mask". Again, that could be replaced with a
2038  *   efficient population count instruction or similar.
2039  */
2040 #ifdef CONFIG_DCACHE_WORD_ACCESS
2041 
2042 #include <asm/word-at-a-time.h>
2043 
2044 #ifdef HASH_MIX
2045 
2046 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
2047 
2048 #elif defined(CONFIG_64BIT)
2049 /*
2050  * Register pressure in the mixing function is an issue, particularly
2051  * on 32-bit x86, but almost any function requires one state value and
2052  * one temporary.  Instead, use a function designed for two state values
2053  * and no temporaries.
2054  *
2055  * This function cannot create a collision in only two iterations, so
2056  * we have two iterations to achieve avalanche.  In those two iterations,
2057  * we have six layers of mixing, which is enough to spread one bit's
2058  * influence out to 2^6 = 64 state bits.
2059  *
2060  * Rotate constants are scored by considering either 64 one-bit input
2061  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
2062  * probability of that delta causing a change to each of the 128 output
2063  * bits, using a sample of random initial states.
2064  *
2065  * The Shannon entropy of the computed probabilities is then summed
2066  * to produce a score.  Ideally, any input change has a 50% chance of
2067  * toggling any given output bit.
2068  *
2069  * Mixing scores (in bits) for (12,45):
2070  * Input delta: 1-bit      2-bit
2071  * 1 round:     713.3    42542.6
2072  * 2 rounds:   2753.7   140389.8
2073  * 3 rounds:   5954.1   233458.2
2074  * 4 rounds:   7862.6   256672.2
2075  * Perfect:    8192     258048
2076  *            (64*128) (64*63/2 * 128)
2077  */
2078 #define HASH_MIX(x, y, a)	\
2079 	(	x ^= (a),	\
2080 	y ^= x,	x = rol64(x,12),\
2081 	x += y,	y = rol64(y,45),\
2082 	y *= 9			)
2083 
2084 /*
2085  * Fold two longs into one 32-bit hash value.  This must be fast, but
2086  * latency isn't quite as critical, as there is a fair bit of additional
2087  * work done before the hash value is used.
2088  */
2089 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2090 {
2091 	y ^= x * GOLDEN_RATIO_64;
2092 	y *= GOLDEN_RATIO_64;
2093 	return y >> 32;
2094 }
2095 
2096 #else	/* 32-bit case */
2097 
2098 /*
2099  * Mixing scores (in bits) for (7,20):
2100  * Input delta: 1-bit      2-bit
2101  * 1 round:     330.3     9201.6
2102  * 2 rounds:   1246.4    25475.4
2103  * 3 rounds:   1907.1    31295.1
2104  * 4 rounds:   2042.3    31718.6
2105  * Perfect:    2048      31744
2106  *            (32*64)   (32*31/2 * 64)
2107  */
2108 #define HASH_MIX(x, y, a)	\
2109 	(	x ^= (a),	\
2110 	y ^= x,	x = rol32(x, 7),\
2111 	x += y,	y = rol32(y,20),\
2112 	y *= 9			)
2113 
2114 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2115 {
2116 	/* Use arch-optimized multiply if one exists */
2117 	return __hash_32(y ^ __hash_32(x));
2118 }
2119 
2120 #endif
2121 
2122 /*
2123  * Return the hash of a string of known length.  This is carfully
2124  * designed to match hash_name(), which is the more critical function.
2125  * In particular, we must end by hashing a final word containing 0..7
2126  * payload bytes, to match the way that hash_name() iterates until it
2127  * finds the delimiter after the name.
2128  */
2129 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2130 {
2131 	unsigned long a, x = 0, y = (unsigned long)salt;
2132 
2133 	for (;;) {
2134 		if (!len)
2135 			goto done;
2136 		a = load_unaligned_zeropad(name);
2137 		if (len < sizeof(unsigned long))
2138 			break;
2139 		HASH_MIX(x, y, a);
2140 		name += sizeof(unsigned long);
2141 		len -= sizeof(unsigned long);
2142 	}
2143 	x ^= a & bytemask_from_count(len);
2144 done:
2145 	return fold_hash(x, y);
2146 }
2147 EXPORT_SYMBOL(full_name_hash);
2148 
2149 /* Return the "hash_len" (hash and length) of a null-terminated string */
2150 u64 hashlen_string(const void *salt, const char *name)
2151 {
2152 	unsigned long a = 0, x = 0, y = (unsigned long)salt;
2153 	unsigned long adata, mask, len;
2154 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2155 
2156 	len = 0;
2157 	goto inside;
2158 
2159 	do {
2160 		HASH_MIX(x, y, a);
2161 		len += sizeof(unsigned long);
2162 inside:
2163 		a = load_unaligned_zeropad(name+len);
2164 	} while (!has_zero(a, &adata, &constants));
2165 
2166 	adata = prep_zero_mask(a, adata, &constants);
2167 	mask = create_zero_mask(adata);
2168 	x ^= a & zero_bytemask(mask);
2169 
2170 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2171 }
2172 EXPORT_SYMBOL(hashlen_string);
2173 
2174 /*
2175  * Calculate the length and hash of the path component, and
2176  * return the "hash_len" as the result.
2177  */
2178 static inline u64 hash_name(const void *salt, const char *name)
2179 {
2180 	unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
2181 	unsigned long adata, bdata, mask, len;
2182 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2183 
2184 	len = 0;
2185 	goto inside;
2186 
2187 	do {
2188 		HASH_MIX(x, y, a);
2189 		len += sizeof(unsigned long);
2190 inside:
2191 		a = load_unaligned_zeropad(name+len);
2192 		b = a ^ REPEAT_BYTE('/');
2193 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2194 
2195 	adata = prep_zero_mask(a, adata, &constants);
2196 	bdata = prep_zero_mask(b, bdata, &constants);
2197 	mask = create_zero_mask(adata | bdata);
2198 	x ^= a & zero_bytemask(mask);
2199 
2200 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2201 }
2202 
2203 #else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2204 
2205 /* Return the hash of a string of known length */
2206 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2207 {
2208 	unsigned long hash = init_name_hash(salt);
2209 	while (len--)
2210 		hash = partial_name_hash((unsigned char)*name++, hash);
2211 	return end_name_hash(hash);
2212 }
2213 EXPORT_SYMBOL(full_name_hash);
2214 
2215 /* Return the "hash_len" (hash and length) of a null-terminated string */
2216 u64 hashlen_string(const void *salt, const char *name)
2217 {
2218 	unsigned long hash = init_name_hash(salt);
2219 	unsigned long len = 0, c;
2220 
2221 	c = (unsigned char)*name;
2222 	while (c) {
2223 		len++;
2224 		hash = partial_name_hash(c, hash);
2225 		c = (unsigned char)name[len];
2226 	}
2227 	return hashlen_create(end_name_hash(hash), len);
2228 }
2229 EXPORT_SYMBOL(hashlen_string);
2230 
2231 /*
2232  * We know there's a real path component here of at least
2233  * one character.
2234  */
2235 static inline u64 hash_name(const void *salt, const char *name)
2236 {
2237 	unsigned long hash = init_name_hash(salt);
2238 	unsigned long len = 0, c;
2239 
2240 	c = (unsigned char)*name;
2241 	do {
2242 		len++;
2243 		hash = partial_name_hash(c, hash);
2244 		c = (unsigned char)name[len];
2245 	} while (c && c != '/');
2246 	return hashlen_create(end_name_hash(hash), len);
2247 }
2248 
2249 #endif
2250 
2251 /*
2252  * Name resolution.
2253  * This is the basic name resolution function, turning a pathname into
2254  * the final dentry. We expect 'base' to be positive and a directory.
2255  *
2256  * Returns 0 and nd will have valid dentry and mnt on success.
2257  * Returns error and drops reference to input namei data on failure.
2258  */
2259 static int link_path_walk(const char *name, struct nameidata *nd)
2260 {
2261 	int depth = 0; // depth <= nd->depth
2262 	int err;
2263 
2264 	nd->last_type = LAST_ROOT;
2265 	nd->flags |= LOOKUP_PARENT;
2266 	if (IS_ERR(name))
2267 		return PTR_ERR(name);
2268 	while (*name=='/')
2269 		name++;
2270 	if (!*name) {
2271 		nd->dir_mode = 0; // short-circuit the 'hardening' idiocy
2272 		return 0;
2273 	}
2274 
2275 	/* At this point we know we have a real path component. */
2276 	for(;;) {
2277 		struct user_namespace *mnt_userns;
2278 		const char *link;
2279 		u64 hash_len;
2280 		int type;
2281 
2282 		mnt_userns = mnt_user_ns(nd->path.mnt);
2283 		err = may_lookup(mnt_userns, nd);
2284 		if (err)
2285 			return err;
2286 
2287 		hash_len = hash_name(nd->path.dentry, name);
2288 
2289 		type = LAST_NORM;
2290 		if (name[0] == '.') switch (hashlen_len(hash_len)) {
2291 			case 2:
2292 				if (name[1] == '.') {
2293 					type = LAST_DOTDOT;
2294 					nd->state |= ND_JUMPED;
2295 				}
2296 				break;
2297 			case 1:
2298 				type = LAST_DOT;
2299 		}
2300 		if (likely(type == LAST_NORM)) {
2301 			struct dentry *parent = nd->path.dentry;
2302 			nd->state &= ~ND_JUMPED;
2303 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2304 				struct qstr this = { { .hash_len = hash_len }, .name = name };
2305 				err = parent->d_op->d_hash(parent, &this);
2306 				if (err < 0)
2307 					return err;
2308 				hash_len = this.hash_len;
2309 				name = this.name;
2310 			}
2311 		}
2312 
2313 		nd->last.hash_len = hash_len;
2314 		nd->last.name = name;
2315 		nd->last_type = type;
2316 
2317 		name += hashlen_len(hash_len);
2318 		if (!*name)
2319 			goto OK;
2320 		/*
2321 		 * If it wasn't NUL, we know it was '/'. Skip that
2322 		 * slash, and continue until no more slashes.
2323 		 */
2324 		do {
2325 			name++;
2326 		} while (unlikely(*name == '/'));
2327 		if (unlikely(!*name)) {
2328 OK:
2329 			/* pathname or trailing symlink, done */
2330 			if (!depth) {
2331 				nd->dir_uid = i_uid_into_mnt(mnt_userns, nd->inode);
2332 				nd->dir_mode = nd->inode->i_mode;
2333 				nd->flags &= ~LOOKUP_PARENT;
2334 				return 0;
2335 			}
2336 			/* last component of nested symlink */
2337 			name = nd->stack[--depth].name;
2338 			link = walk_component(nd, 0);
2339 		} else {
2340 			/* not the last component */
2341 			link = walk_component(nd, WALK_MORE);
2342 		}
2343 		if (unlikely(link)) {
2344 			if (IS_ERR(link))
2345 				return PTR_ERR(link);
2346 			/* a symlink to follow */
2347 			nd->stack[depth++].name = name;
2348 			name = link;
2349 			continue;
2350 		}
2351 		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2352 			if (nd->flags & LOOKUP_RCU) {
2353 				if (!try_to_unlazy(nd))
2354 					return -ECHILD;
2355 			}
2356 			return -ENOTDIR;
2357 		}
2358 	}
2359 }
2360 
2361 /* must be paired with terminate_walk() */
2362 static const char *path_init(struct nameidata *nd, unsigned flags)
2363 {
2364 	int error;
2365 	const char *s = nd->name->name;
2366 
2367 	/* LOOKUP_CACHED requires RCU, ask caller to retry */
2368 	if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED)
2369 		return ERR_PTR(-EAGAIN);
2370 
2371 	if (!*s)
2372 		flags &= ~LOOKUP_RCU;
2373 	if (flags & LOOKUP_RCU)
2374 		rcu_read_lock();
2375 
2376 	nd->flags = flags;
2377 	nd->state |= ND_JUMPED;
2378 
2379 	nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2380 	nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2381 	smp_rmb();
2382 
2383 	if (nd->state & ND_ROOT_PRESET) {
2384 		struct dentry *root = nd->root.dentry;
2385 		struct inode *inode = root->d_inode;
2386 		if (*s && unlikely(!d_can_lookup(root)))
2387 			return ERR_PTR(-ENOTDIR);
2388 		nd->path = nd->root;
2389 		nd->inode = inode;
2390 		if (flags & LOOKUP_RCU) {
2391 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2392 			nd->root_seq = nd->seq;
2393 		} else {
2394 			path_get(&nd->path);
2395 		}
2396 		return s;
2397 	}
2398 
2399 	nd->root.mnt = NULL;
2400 
2401 	/* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2402 	if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2403 		error = nd_jump_root(nd);
2404 		if (unlikely(error))
2405 			return ERR_PTR(error);
2406 		return s;
2407 	}
2408 
2409 	/* Relative pathname -- get the starting-point it is relative to. */
2410 	if (nd->dfd == AT_FDCWD) {
2411 		if (flags & LOOKUP_RCU) {
2412 			struct fs_struct *fs = current->fs;
2413 			unsigned seq;
2414 
2415 			do {
2416 				seq = read_seqcount_begin(&fs->seq);
2417 				nd->path = fs->pwd;
2418 				nd->inode = nd->path.dentry->d_inode;
2419 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2420 			} while (read_seqcount_retry(&fs->seq, seq));
2421 		} else {
2422 			get_fs_pwd(current->fs, &nd->path);
2423 			nd->inode = nd->path.dentry->d_inode;
2424 		}
2425 	} else {
2426 		/* Caller must check execute permissions on the starting path component */
2427 		struct fd f = fdget_raw(nd->dfd);
2428 		struct dentry *dentry;
2429 
2430 		if (!f.file)
2431 			return ERR_PTR(-EBADF);
2432 
2433 		dentry = f.file->f_path.dentry;
2434 
2435 		if (*s && unlikely(!d_can_lookup(dentry))) {
2436 			fdput(f);
2437 			return ERR_PTR(-ENOTDIR);
2438 		}
2439 
2440 		nd->path = f.file->f_path;
2441 		if (flags & LOOKUP_RCU) {
2442 			nd->inode = nd->path.dentry->d_inode;
2443 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2444 		} else {
2445 			path_get(&nd->path);
2446 			nd->inode = nd->path.dentry->d_inode;
2447 		}
2448 		fdput(f);
2449 	}
2450 
2451 	/* For scoped-lookups we need to set the root to the dirfd as well. */
2452 	if (flags & LOOKUP_IS_SCOPED) {
2453 		nd->root = nd->path;
2454 		if (flags & LOOKUP_RCU) {
2455 			nd->root_seq = nd->seq;
2456 		} else {
2457 			path_get(&nd->root);
2458 			nd->state |= ND_ROOT_GRABBED;
2459 		}
2460 	}
2461 	return s;
2462 }
2463 
2464 static inline const char *lookup_last(struct nameidata *nd)
2465 {
2466 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2467 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2468 
2469 	return walk_component(nd, WALK_TRAILING);
2470 }
2471 
2472 static int handle_lookup_down(struct nameidata *nd)
2473 {
2474 	if (!(nd->flags & LOOKUP_RCU))
2475 		dget(nd->path.dentry);
2476 	return PTR_ERR(step_into(nd, WALK_NOFOLLOW,
2477 			nd->path.dentry, nd->inode, nd->seq));
2478 }
2479 
2480 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2481 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2482 {
2483 	const char *s = path_init(nd, flags);
2484 	int err;
2485 
2486 	if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2487 		err = handle_lookup_down(nd);
2488 		if (unlikely(err < 0))
2489 			s = ERR_PTR(err);
2490 	}
2491 
2492 	while (!(err = link_path_walk(s, nd)) &&
2493 	       (s = lookup_last(nd)) != NULL)
2494 		;
2495 	if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2496 		err = handle_lookup_down(nd);
2497 		nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please...
2498 	}
2499 	if (!err)
2500 		err = complete_walk(nd);
2501 
2502 	if (!err && nd->flags & LOOKUP_DIRECTORY)
2503 		if (!d_can_lookup(nd->path.dentry))
2504 			err = -ENOTDIR;
2505 	if (!err) {
2506 		*path = nd->path;
2507 		nd->path.mnt = NULL;
2508 		nd->path.dentry = NULL;
2509 	}
2510 	terminate_walk(nd);
2511 	return err;
2512 }
2513 
2514 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2515 		    struct path *path, struct path *root)
2516 {
2517 	int retval;
2518 	struct nameidata nd;
2519 	if (IS_ERR(name))
2520 		return PTR_ERR(name);
2521 	set_nameidata(&nd, dfd, name, root);
2522 	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2523 	if (unlikely(retval == -ECHILD))
2524 		retval = path_lookupat(&nd, flags, path);
2525 	if (unlikely(retval == -ESTALE))
2526 		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2527 
2528 	if (likely(!retval))
2529 		audit_inode(name, path->dentry,
2530 			    flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2531 	restore_nameidata();
2532 	return retval;
2533 }
2534 
2535 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2536 static int path_parentat(struct nameidata *nd, unsigned flags,
2537 				struct path *parent)
2538 {
2539 	const char *s = path_init(nd, flags);
2540 	int err = link_path_walk(s, nd);
2541 	if (!err)
2542 		err = complete_walk(nd);
2543 	if (!err) {
2544 		*parent = nd->path;
2545 		nd->path.mnt = NULL;
2546 		nd->path.dentry = NULL;
2547 	}
2548 	terminate_walk(nd);
2549 	return err;
2550 }
2551 
2552 /* Note: this does not consume "name" */
2553 static int filename_parentat(int dfd, struct filename *name,
2554 			     unsigned int flags, struct path *parent,
2555 			     struct qstr *last, int *type)
2556 {
2557 	int retval;
2558 	struct nameidata nd;
2559 
2560 	if (IS_ERR(name))
2561 		return PTR_ERR(name);
2562 	set_nameidata(&nd, dfd, name, NULL);
2563 	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2564 	if (unlikely(retval == -ECHILD))
2565 		retval = path_parentat(&nd, flags, parent);
2566 	if (unlikely(retval == -ESTALE))
2567 		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2568 	if (likely(!retval)) {
2569 		*last = nd.last;
2570 		*type = nd.last_type;
2571 		audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2572 	}
2573 	restore_nameidata();
2574 	return retval;
2575 }
2576 
2577 /* does lookup, returns the object with parent locked */
2578 static struct dentry *__kern_path_locked(struct filename *name, struct path *path)
2579 {
2580 	struct dentry *d;
2581 	struct qstr last;
2582 	int type, error;
2583 
2584 	error = filename_parentat(AT_FDCWD, name, 0, path, &last, &type);
2585 	if (error)
2586 		return ERR_PTR(error);
2587 	if (unlikely(type != LAST_NORM)) {
2588 		path_put(path);
2589 		return ERR_PTR(-EINVAL);
2590 	}
2591 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2592 	d = __lookup_hash(&last, path->dentry, 0);
2593 	if (IS_ERR(d)) {
2594 		inode_unlock(path->dentry->d_inode);
2595 		path_put(path);
2596 	}
2597 	return d;
2598 }
2599 
2600 struct dentry *kern_path_locked(const char *name, struct path *path)
2601 {
2602 	struct filename *filename = getname_kernel(name);
2603 	struct dentry *res = __kern_path_locked(filename, path);
2604 
2605 	putname(filename);
2606 	return res;
2607 }
2608 
2609 int kern_path(const char *name, unsigned int flags, struct path *path)
2610 {
2611 	struct filename *filename = getname_kernel(name);
2612 	int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL);
2613 
2614 	putname(filename);
2615 	return ret;
2616 
2617 }
2618 EXPORT_SYMBOL(kern_path);
2619 
2620 /**
2621  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2622  * @dentry:  pointer to dentry of the base directory
2623  * @mnt: pointer to vfs mount of the base directory
2624  * @name: pointer to file name
2625  * @flags: lookup flags
2626  * @path: pointer to struct path to fill
2627  */
2628 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2629 		    const char *name, unsigned int flags,
2630 		    struct path *path)
2631 {
2632 	struct filename *filename;
2633 	struct path root = {.mnt = mnt, .dentry = dentry};
2634 	int ret;
2635 
2636 	filename = getname_kernel(name);
2637 	/* the first argument of filename_lookup() is ignored with root */
2638 	ret = filename_lookup(AT_FDCWD, filename, flags, path, &root);
2639 	putname(filename);
2640 	return ret;
2641 }
2642 EXPORT_SYMBOL(vfs_path_lookup);
2643 
2644 static int lookup_one_common(struct user_namespace *mnt_userns,
2645 			     const char *name, struct dentry *base, int len,
2646 			     struct qstr *this)
2647 {
2648 	this->name = name;
2649 	this->len = len;
2650 	this->hash = full_name_hash(base, name, len);
2651 	if (!len)
2652 		return -EACCES;
2653 
2654 	if (unlikely(name[0] == '.')) {
2655 		if (len < 2 || (len == 2 && name[1] == '.'))
2656 			return -EACCES;
2657 	}
2658 
2659 	while (len--) {
2660 		unsigned int c = *(const unsigned char *)name++;
2661 		if (c == '/' || c == '\0')
2662 			return -EACCES;
2663 	}
2664 	/*
2665 	 * See if the low-level filesystem might want
2666 	 * to use its own hash..
2667 	 */
2668 	if (base->d_flags & DCACHE_OP_HASH) {
2669 		int err = base->d_op->d_hash(base, this);
2670 		if (err < 0)
2671 			return err;
2672 	}
2673 
2674 	return inode_permission(mnt_userns, base->d_inode, MAY_EXEC);
2675 }
2676 
2677 /**
2678  * try_lookup_one_len - filesystem helper to lookup single pathname component
2679  * @name:	pathname component to lookup
2680  * @base:	base directory to lookup from
2681  * @len:	maximum length @len should be interpreted to
2682  *
2683  * Look up a dentry by name in the dcache, returning NULL if it does not
2684  * currently exist.  The function does not try to create a dentry.
2685  *
2686  * Note that this routine is purely a helper for filesystem usage and should
2687  * not be called by generic code.
2688  *
2689  * The caller must hold base->i_mutex.
2690  */
2691 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2692 {
2693 	struct qstr this;
2694 	int err;
2695 
2696 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2697 
2698 	err = lookup_one_common(&init_user_ns, name, base, len, &this);
2699 	if (err)
2700 		return ERR_PTR(err);
2701 
2702 	return lookup_dcache(&this, base, 0);
2703 }
2704 EXPORT_SYMBOL(try_lookup_one_len);
2705 
2706 /**
2707  * lookup_one_len - filesystem helper to lookup single pathname component
2708  * @name:	pathname component to lookup
2709  * @base:	base directory to lookup from
2710  * @len:	maximum length @len should be interpreted to
2711  *
2712  * Note that this routine is purely a helper for filesystem usage and should
2713  * not be called by generic code.
2714  *
2715  * The caller must hold base->i_mutex.
2716  */
2717 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2718 {
2719 	struct dentry *dentry;
2720 	struct qstr this;
2721 	int err;
2722 
2723 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2724 
2725 	err = lookup_one_common(&init_user_ns, name, base, len, &this);
2726 	if (err)
2727 		return ERR_PTR(err);
2728 
2729 	dentry = lookup_dcache(&this, base, 0);
2730 	return dentry ? dentry : __lookup_slow(&this, base, 0);
2731 }
2732 EXPORT_SYMBOL(lookup_one_len);
2733 
2734 /**
2735  * lookup_one - filesystem helper to lookup single pathname component
2736  * @mnt_userns:	user namespace of the mount the lookup is performed from
2737  * @name:	pathname component to lookup
2738  * @base:	base directory to lookup from
2739  * @len:	maximum length @len should be interpreted to
2740  *
2741  * Note that this routine is purely a helper for filesystem usage and should
2742  * not be called by generic code.
2743  *
2744  * The caller must hold base->i_mutex.
2745  */
2746 struct dentry *lookup_one(struct user_namespace *mnt_userns, const char *name,
2747 			  struct dentry *base, int len)
2748 {
2749 	struct dentry *dentry;
2750 	struct qstr this;
2751 	int err;
2752 
2753 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2754 
2755 	err = lookup_one_common(mnt_userns, name, base, len, &this);
2756 	if (err)
2757 		return ERR_PTR(err);
2758 
2759 	dentry = lookup_dcache(&this, base, 0);
2760 	return dentry ? dentry : __lookup_slow(&this, base, 0);
2761 }
2762 EXPORT_SYMBOL(lookup_one);
2763 
2764 /**
2765  * lookup_one_unlocked - filesystem helper to lookup single pathname component
2766  * @mnt_userns:	idmapping of the mount the lookup is performed from
2767  * @name:	pathname component to lookup
2768  * @base:	base directory to lookup from
2769  * @len:	maximum length @len should be interpreted to
2770  *
2771  * Note that this routine is purely a helper for filesystem usage and should
2772  * not be called by generic code.
2773  *
2774  * Unlike lookup_one_len, it should be called without the parent
2775  * i_mutex held, and will take the i_mutex itself if necessary.
2776  */
2777 struct dentry *lookup_one_unlocked(struct user_namespace *mnt_userns,
2778 				   const char *name, struct dentry *base,
2779 				   int len)
2780 {
2781 	struct qstr this;
2782 	int err;
2783 	struct dentry *ret;
2784 
2785 	err = lookup_one_common(mnt_userns, name, base, len, &this);
2786 	if (err)
2787 		return ERR_PTR(err);
2788 
2789 	ret = lookup_dcache(&this, base, 0);
2790 	if (!ret)
2791 		ret = lookup_slow(&this, base, 0);
2792 	return ret;
2793 }
2794 EXPORT_SYMBOL(lookup_one_unlocked);
2795 
2796 /**
2797  * lookup_one_positive_unlocked - filesystem helper to lookup single
2798  *				  pathname component
2799  * @mnt_userns:	idmapping of the mount the lookup is performed from
2800  * @name:	pathname component to lookup
2801  * @base:	base directory to lookup from
2802  * @len:	maximum length @len should be interpreted to
2803  *
2804  * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns
2805  * known positive or ERR_PTR(). This is what most of the users want.
2806  *
2807  * Note that pinned negative with unlocked parent _can_ become positive at any
2808  * time, so callers of lookup_one_unlocked() need to be very careful; pinned
2809  * positives have >d_inode stable, so this one avoids such problems.
2810  *
2811  * Note that this routine is purely a helper for filesystem usage and should
2812  * not be called by generic code.
2813  *
2814  * The helper should be called without i_mutex held.
2815  */
2816 struct dentry *lookup_one_positive_unlocked(struct user_namespace *mnt_userns,
2817 					    const char *name,
2818 					    struct dentry *base, int len)
2819 {
2820 	struct dentry *ret = lookup_one_unlocked(mnt_userns, name, base, len);
2821 
2822 	if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
2823 		dput(ret);
2824 		ret = ERR_PTR(-ENOENT);
2825 	}
2826 	return ret;
2827 }
2828 EXPORT_SYMBOL(lookup_one_positive_unlocked);
2829 
2830 /**
2831  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2832  * @name:	pathname component to lookup
2833  * @base:	base directory to lookup from
2834  * @len:	maximum length @len should be interpreted to
2835  *
2836  * Note that this routine is purely a helper for filesystem usage and should
2837  * not be called by generic code.
2838  *
2839  * Unlike lookup_one_len, it should be called without the parent
2840  * i_mutex held, and will take the i_mutex itself if necessary.
2841  */
2842 struct dentry *lookup_one_len_unlocked(const char *name,
2843 				       struct dentry *base, int len)
2844 {
2845 	return lookup_one_unlocked(&init_user_ns, name, base, len);
2846 }
2847 EXPORT_SYMBOL(lookup_one_len_unlocked);
2848 
2849 /*
2850  * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2851  * on negatives.  Returns known positive or ERR_PTR(); that's what
2852  * most of the users want.  Note that pinned negative with unlocked parent
2853  * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2854  * need to be very careful; pinned positives have ->d_inode stable, so
2855  * this one avoids such problems.
2856  */
2857 struct dentry *lookup_positive_unlocked(const char *name,
2858 				       struct dentry *base, int len)
2859 {
2860 	return lookup_one_positive_unlocked(&init_user_ns, name, base, len);
2861 }
2862 EXPORT_SYMBOL(lookup_positive_unlocked);
2863 
2864 #ifdef CONFIG_UNIX98_PTYS
2865 int path_pts(struct path *path)
2866 {
2867 	/* Find something mounted on "pts" in the same directory as
2868 	 * the input path.
2869 	 */
2870 	struct dentry *parent = dget_parent(path->dentry);
2871 	struct dentry *child;
2872 	struct qstr this = QSTR_INIT("pts", 3);
2873 
2874 	if (unlikely(!path_connected(path->mnt, parent))) {
2875 		dput(parent);
2876 		return -ENOENT;
2877 	}
2878 	dput(path->dentry);
2879 	path->dentry = parent;
2880 	child = d_hash_and_lookup(parent, &this);
2881 	if (!child)
2882 		return -ENOENT;
2883 
2884 	path->dentry = child;
2885 	dput(parent);
2886 	follow_down(path);
2887 	return 0;
2888 }
2889 #endif
2890 
2891 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2892 		 struct path *path, int *empty)
2893 {
2894 	struct filename *filename = getname_flags(name, flags, empty);
2895 	int ret = filename_lookup(dfd, filename, flags, path, NULL);
2896 
2897 	putname(filename);
2898 	return ret;
2899 }
2900 EXPORT_SYMBOL(user_path_at_empty);
2901 
2902 int __check_sticky(struct user_namespace *mnt_userns, struct inode *dir,
2903 		   struct inode *inode)
2904 {
2905 	kuid_t fsuid = current_fsuid();
2906 
2907 	if (uid_eq(i_uid_into_mnt(mnt_userns, inode), fsuid))
2908 		return 0;
2909 	if (uid_eq(i_uid_into_mnt(mnt_userns, dir), fsuid))
2910 		return 0;
2911 	return !capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FOWNER);
2912 }
2913 EXPORT_SYMBOL(__check_sticky);
2914 
2915 /*
2916  *	Check whether we can remove a link victim from directory dir, check
2917  *  whether the type of victim is right.
2918  *  1. We can't do it if dir is read-only (done in permission())
2919  *  2. We should have write and exec permissions on dir
2920  *  3. We can't remove anything from append-only dir
2921  *  4. We can't do anything with immutable dir (done in permission())
2922  *  5. If the sticky bit on dir is set we should either
2923  *	a. be owner of dir, or
2924  *	b. be owner of victim, or
2925  *	c. have CAP_FOWNER capability
2926  *  6. If the victim is append-only or immutable we can't do antyhing with
2927  *     links pointing to it.
2928  *  7. If the victim has an unknown uid or gid we can't change the inode.
2929  *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2930  *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2931  * 10. We can't remove a root or mountpoint.
2932  * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2933  *     nfs_async_unlink().
2934  */
2935 static int may_delete(struct user_namespace *mnt_userns, struct inode *dir,
2936 		      struct dentry *victim, bool isdir)
2937 {
2938 	struct inode *inode = d_backing_inode(victim);
2939 	int error;
2940 
2941 	if (d_is_negative(victim))
2942 		return -ENOENT;
2943 	BUG_ON(!inode);
2944 
2945 	BUG_ON(victim->d_parent->d_inode != dir);
2946 
2947 	/* Inode writeback is not safe when the uid or gid are invalid. */
2948 	if (!uid_valid(i_uid_into_mnt(mnt_userns, inode)) ||
2949 	    !gid_valid(i_gid_into_mnt(mnt_userns, inode)))
2950 		return -EOVERFLOW;
2951 
2952 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2953 
2954 	error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
2955 	if (error)
2956 		return error;
2957 	if (IS_APPEND(dir))
2958 		return -EPERM;
2959 
2960 	if (check_sticky(mnt_userns, dir, inode) || IS_APPEND(inode) ||
2961 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) ||
2962 	    HAS_UNMAPPED_ID(mnt_userns, inode))
2963 		return -EPERM;
2964 	if (isdir) {
2965 		if (!d_is_dir(victim))
2966 			return -ENOTDIR;
2967 		if (IS_ROOT(victim))
2968 			return -EBUSY;
2969 	} else if (d_is_dir(victim))
2970 		return -EISDIR;
2971 	if (IS_DEADDIR(dir))
2972 		return -ENOENT;
2973 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2974 		return -EBUSY;
2975 	return 0;
2976 }
2977 
2978 /*	Check whether we can create an object with dentry child in directory
2979  *  dir.
2980  *  1. We can't do it if child already exists (open has special treatment for
2981  *     this case, but since we are inlined it's OK)
2982  *  2. We can't do it if dir is read-only (done in permission())
2983  *  3. We can't do it if the fs can't represent the fsuid or fsgid.
2984  *  4. We should have write and exec permissions on dir
2985  *  5. We can't do it if dir is immutable (done in permission())
2986  */
2987 static inline int may_create(struct user_namespace *mnt_userns,
2988 			     struct inode *dir, struct dentry *child)
2989 {
2990 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2991 	if (child->d_inode)
2992 		return -EEXIST;
2993 	if (IS_DEADDIR(dir))
2994 		return -ENOENT;
2995 	if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns))
2996 		return -EOVERFLOW;
2997 
2998 	return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
2999 }
3000 
3001 /*
3002  * p1 and p2 should be directories on the same fs.
3003  */
3004 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
3005 {
3006 	struct dentry *p;
3007 
3008 	if (p1 == p2) {
3009 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3010 		return NULL;
3011 	}
3012 
3013 	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
3014 
3015 	p = d_ancestor(p2, p1);
3016 	if (p) {
3017 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3018 		inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
3019 		return p;
3020 	}
3021 
3022 	p = d_ancestor(p1, p2);
3023 	if (p) {
3024 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3025 		inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
3026 		return p;
3027 	}
3028 
3029 	inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3030 	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3031 	return NULL;
3032 }
3033 EXPORT_SYMBOL(lock_rename);
3034 
3035 void unlock_rename(struct dentry *p1, struct dentry *p2)
3036 {
3037 	inode_unlock(p1->d_inode);
3038 	if (p1 != p2) {
3039 		inode_unlock(p2->d_inode);
3040 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3041 	}
3042 }
3043 EXPORT_SYMBOL(unlock_rename);
3044 
3045 /**
3046  * vfs_create - create new file
3047  * @mnt_userns:	user namespace of the mount the inode was found from
3048  * @dir:	inode of @dentry
3049  * @dentry:	pointer to dentry of the base directory
3050  * @mode:	mode of the new file
3051  * @want_excl:	whether the file must not yet exist
3052  *
3053  * Create a new file.
3054  *
3055  * If the inode has been found through an idmapped mount the user namespace of
3056  * the vfsmount must be passed through @mnt_userns. This function will then take
3057  * care to map the inode according to @mnt_userns before checking permissions.
3058  * On non-idmapped mounts or if permission checking is to be performed on the
3059  * raw inode simply passs init_user_ns.
3060  */
3061 int vfs_create(struct user_namespace *mnt_userns, struct inode *dir,
3062 	       struct dentry *dentry, umode_t mode, bool want_excl)
3063 {
3064 	int error = may_create(mnt_userns, dir, dentry);
3065 	if (error)
3066 		return error;
3067 
3068 	if (!dir->i_op->create)
3069 		return -EACCES;	/* shouldn't it be ENOSYS? */
3070 	mode &= S_IALLUGO;
3071 	mode |= S_IFREG;
3072 	error = security_inode_create(dir, dentry, mode);
3073 	if (error)
3074 		return error;
3075 	error = dir->i_op->create(mnt_userns, dir, dentry, mode, want_excl);
3076 	if (!error)
3077 		fsnotify_create(dir, dentry);
3078 	return error;
3079 }
3080 EXPORT_SYMBOL(vfs_create);
3081 
3082 int vfs_mkobj(struct dentry *dentry, umode_t mode,
3083 		int (*f)(struct dentry *, umode_t, void *),
3084 		void *arg)
3085 {
3086 	struct inode *dir = dentry->d_parent->d_inode;
3087 	int error = may_create(&init_user_ns, dir, dentry);
3088 	if (error)
3089 		return error;
3090 
3091 	mode &= S_IALLUGO;
3092 	mode |= S_IFREG;
3093 	error = security_inode_create(dir, dentry, mode);
3094 	if (error)
3095 		return error;
3096 	error = f(dentry, mode, arg);
3097 	if (!error)
3098 		fsnotify_create(dir, dentry);
3099 	return error;
3100 }
3101 EXPORT_SYMBOL(vfs_mkobj);
3102 
3103 bool may_open_dev(const struct path *path)
3104 {
3105 	return !(path->mnt->mnt_flags & MNT_NODEV) &&
3106 		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
3107 }
3108 
3109 static int may_open(struct user_namespace *mnt_userns, const struct path *path,
3110 		    int acc_mode, int flag)
3111 {
3112 	struct dentry *dentry = path->dentry;
3113 	struct inode *inode = dentry->d_inode;
3114 	int error;
3115 
3116 	if (!inode)
3117 		return -ENOENT;
3118 
3119 	switch (inode->i_mode & S_IFMT) {
3120 	case S_IFLNK:
3121 		return -ELOOP;
3122 	case S_IFDIR:
3123 		if (acc_mode & MAY_WRITE)
3124 			return -EISDIR;
3125 		if (acc_mode & MAY_EXEC)
3126 			return -EACCES;
3127 		break;
3128 	case S_IFBLK:
3129 	case S_IFCHR:
3130 		if (!may_open_dev(path))
3131 			return -EACCES;
3132 		fallthrough;
3133 	case S_IFIFO:
3134 	case S_IFSOCK:
3135 		if (acc_mode & MAY_EXEC)
3136 			return -EACCES;
3137 		flag &= ~O_TRUNC;
3138 		break;
3139 	case S_IFREG:
3140 		if ((acc_mode & MAY_EXEC) && path_noexec(path))
3141 			return -EACCES;
3142 		break;
3143 	}
3144 
3145 	error = inode_permission(mnt_userns, inode, MAY_OPEN | acc_mode);
3146 	if (error)
3147 		return error;
3148 
3149 	/*
3150 	 * An append-only file must be opened in append mode for writing.
3151 	 */
3152 	if (IS_APPEND(inode)) {
3153 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
3154 			return -EPERM;
3155 		if (flag & O_TRUNC)
3156 			return -EPERM;
3157 	}
3158 
3159 	/* O_NOATIME can only be set by the owner or superuser */
3160 	if (flag & O_NOATIME && !inode_owner_or_capable(mnt_userns, inode))
3161 		return -EPERM;
3162 
3163 	return 0;
3164 }
3165 
3166 static int handle_truncate(struct user_namespace *mnt_userns, struct file *filp)
3167 {
3168 	const struct path *path = &filp->f_path;
3169 	struct inode *inode = path->dentry->d_inode;
3170 	int error = get_write_access(inode);
3171 	if (error)
3172 		return error;
3173 
3174 	error = security_path_truncate(path);
3175 	if (!error) {
3176 		error = do_truncate(mnt_userns, path->dentry, 0,
3177 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3178 				    filp);
3179 	}
3180 	put_write_access(inode);
3181 	return error;
3182 }
3183 
3184 static inline int open_to_namei_flags(int flag)
3185 {
3186 	if ((flag & O_ACCMODE) == 3)
3187 		flag--;
3188 	return flag;
3189 }
3190 
3191 static int may_o_create(struct user_namespace *mnt_userns,
3192 			const struct path *dir, struct dentry *dentry,
3193 			umode_t mode)
3194 {
3195 	int error = security_path_mknod(dir, dentry, mode, 0);
3196 	if (error)
3197 		return error;
3198 
3199 	if (!fsuidgid_has_mapping(dir->dentry->d_sb, mnt_userns))
3200 		return -EOVERFLOW;
3201 
3202 	error = inode_permission(mnt_userns, dir->dentry->d_inode,
3203 				 MAY_WRITE | MAY_EXEC);
3204 	if (error)
3205 		return error;
3206 
3207 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
3208 }
3209 
3210 /*
3211  * Attempt to atomically look up, create and open a file from a negative
3212  * dentry.
3213  *
3214  * Returns 0 if successful.  The file will have been created and attached to
3215  * @file by the filesystem calling finish_open().
3216  *
3217  * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3218  * be set.  The caller will need to perform the open themselves.  @path will
3219  * have been updated to point to the new dentry.  This may be negative.
3220  *
3221  * Returns an error code otherwise.
3222  */
3223 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
3224 				  struct file *file,
3225 				  int open_flag, umode_t mode)
3226 {
3227 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3228 	struct inode *dir =  nd->path.dentry->d_inode;
3229 	int error;
3230 
3231 	if (nd->flags & LOOKUP_DIRECTORY)
3232 		open_flag |= O_DIRECTORY;
3233 
3234 	file->f_path.dentry = DENTRY_NOT_SET;
3235 	file->f_path.mnt = nd->path.mnt;
3236 	error = dir->i_op->atomic_open(dir, dentry, file,
3237 				       open_to_namei_flags(open_flag), mode);
3238 	d_lookup_done(dentry);
3239 	if (!error) {
3240 		if (file->f_mode & FMODE_OPENED) {
3241 			if (unlikely(dentry != file->f_path.dentry)) {
3242 				dput(dentry);
3243 				dentry = dget(file->f_path.dentry);
3244 			}
3245 		} else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3246 			error = -EIO;
3247 		} else {
3248 			if (file->f_path.dentry) {
3249 				dput(dentry);
3250 				dentry = file->f_path.dentry;
3251 			}
3252 			if (unlikely(d_is_negative(dentry)))
3253 				error = -ENOENT;
3254 		}
3255 	}
3256 	if (error) {
3257 		dput(dentry);
3258 		dentry = ERR_PTR(error);
3259 	}
3260 	return dentry;
3261 }
3262 
3263 /*
3264  * Look up and maybe create and open the last component.
3265  *
3266  * Must be called with parent locked (exclusive in O_CREAT case).
3267  *
3268  * Returns 0 on success, that is, if
3269  *  the file was successfully atomically created (if necessary) and opened, or
3270  *  the file was not completely opened at this time, though lookups and
3271  *  creations were performed.
3272  * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3273  * In the latter case dentry returned in @path might be negative if O_CREAT
3274  * hadn't been specified.
3275  *
3276  * An error code is returned on failure.
3277  */
3278 static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3279 				  const struct open_flags *op,
3280 				  bool got_write)
3281 {
3282 	struct user_namespace *mnt_userns;
3283 	struct dentry *dir = nd->path.dentry;
3284 	struct inode *dir_inode = dir->d_inode;
3285 	int open_flag = op->open_flag;
3286 	struct dentry *dentry;
3287 	int error, create_error = 0;
3288 	umode_t mode = op->mode;
3289 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3290 
3291 	if (unlikely(IS_DEADDIR(dir_inode)))
3292 		return ERR_PTR(-ENOENT);
3293 
3294 	file->f_mode &= ~FMODE_CREATED;
3295 	dentry = d_lookup(dir, &nd->last);
3296 	for (;;) {
3297 		if (!dentry) {
3298 			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3299 			if (IS_ERR(dentry))
3300 				return dentry;
3301 		}
3302 		if (d_in_lookup(dentry))
3303 			break;
3304 
3305 		error = d_revalidate(dentry, nd->flags);
3306 		if (likely(error > 0))
3307 			break;
3308 		if (error)
3309 			goto out_dput;
3310 		d_invalidate(dentry);
3311 		dput(dentry);
3312 		dentry = NULL;
3313 	}
3314 	if (dentry->d_inode) {
3315 		/* Cached positive dentry: will open in f_op->open */
3316 		return dentry;
3317 	}
3318 
3319 	/*
3320 	 * Checking write permission is tricky, bacuse we don't know if we are
3321 	 * going to actually need it: O_CREAT opens should work as long as the
3322 	 * file exists.  But checking existence breaks atomicity.  The trick is
3323 	 * to check access and if not granted clear O_CREAT from the flags.
3324 	 *
3325 	 * Another problem is returing the "right" error value (e.g. for an
3326 	 * O_EXCL open we want to return EEXIST not EROFS).
3327 	 */
3328 	if (unlikely(!got_write))
3329 		open_flag &= ~O_TRUNC;
3330 	mnt_userns = mnt_user_ns(nd->path.mnt);
3331 	if (open_flag & O_CREAT) {
3332 		if (open_flag & O_EXCL)
3333 			open_flag &= ~O_TRUNC;
3334 		if (!IS_POSIXACL(dir->d_inode))
3335 			mode &= ~current_umask();
3336 		if (likely(got_write))
3337 			create_error = may_o_create(mnt_userns, &nd->path,
3338 						    dentry, mode);
3339 		else
3340 			create_error = -EROFS;
3341 	}
3342 	if (create_error)
3343 		open_flag &= ~O_CREAT;
3344 	if (dir_inode->i_op->atomic_open) {
3345 		dentry = atomic_open(nd, dentry, file, open_flag, mode);
3346 		if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3347 			dentry = ERR_PTR(create_error);
3348 		return dentry;
3349 	}
3350 
3351 	if (d_in_lookup(dentry)) {
3352 		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3353 							     nd->flags);
3354 		d_lookup_done(dentry);
3355 		if (unlikely(res)) {
3356 			if (IS_ERR(res)) {
3357 				error = PTR_ERR(res);
3358 				goto out_dput;
3359 			}
3360 			dput(dentry);
3361 			dentry = res;
3362 		}
3363 	}
3364 
3365 	/* Negative dentry, just create the file */
3366 	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3367 		file->f_mode |= FMODE_CREATED;
3368 		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3369 		if (!dir_inode->i_op->create) {
3370 			error = -EACCES;
3371 			goto out_dput;
3372 		}
3373 
3374 		error = dir_inode->i_op->create(mnt_userns, dir_inode, dentry,
3375 						mode, open_flag & O_EXCL);
3376 		if (error)
3377 			goto out_dput;
3378 	}
3379 	if (unlikely(create_error) && !dentry->d_inode) {
3380 		error = create_error;
3381 		goto out_dput;
3382 	}
3383 	return dentry;
3384 
3385 out_dput:
3386 	dput(dentry);
3387 	return ERR_PTR(error);
3388 }
3389 
3390 static const char *open_last_lookups(struct nameidata *nd,
3391 		   struct file *file, const struct open_flags *op)
3392 {
3393 	struct dentry *dir = nd->path.dentry;
3394 	int open_flag = op->open_flag;
3395 	bool got_write = false;
3396 	unsigned seq;
3397 	struct inode *inode;
3398 	struct dentry *dentry;
3399 	const char *res;
3400 
3401 	nd->flags |= op->intent;
3402 
3403 	if (nd->last_type != LAST_NORM) {
3404 		if (nd->depth)
3405 			put_link(nd);
3406 		return handle_dots(nd, nd->last_type);
3407 	}
3408 
3409 	if (!(open_flag & O_CREAT)) {
3410 		if (nd->last.name[nd->last.len])
3411 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3412 		/* we _can_ be in RCU mode here */
3413 		dentry = lookup_fast(nd, &inode, &seq);
3414 		if (IS_ERR(dentry))
3415 			return ERR_CAST(dentry);
3416 		if (likely(dentry))
3417 			goto finish_lookup;
3418 
3419 		BUG_ON(nd->flags & LOOKUP_RCU);
3420 	} else {
3421 		/* create side of things */
3422 		if (nd->flags & LOOKUP_RCU) {
3423 			if (!try_to_unlazy(nd))
3424 				return ERR_PTR(-ECHILD);
3425 		}
3426 		audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3427 		/* trailing slashes? */
3428 		if (unlikely(nd->last.name[nd->last.len]))
3429 			return ERR_PTR(-EISDIR);
3430 	}
3431 
3432 	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3433 		got_write = !mnt_want_write(nd->path.mnt);
3434 		/*
3435 		 * do _not_ fail yet - we might not need that or fail with
3436 		 * a different error; let lookup_open() decide; we'll be
3437 		 * dropping this one anyway.
3438 		 */
3439 	}
3440 	if (open_flag & O_CREAT)
3441 		inode_lock(dir->d_inode);
3442 	else
3443 		inode_lock_shared(dir->d_inode);
3444 	dentry = lookup_open(nd, file, op, got_write);
3445 	if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED))
3446 		fsnotify_create(dir->d_inode, dentry);
3447 	if (open_flag & O_CREAT)
3448 		inode_unlock(dir->d_inode);
3449 	else
3450 		inode_unlock_shared(dir->d_inode);
3451 
3452 	if (got_write)
3453 		mnt_drop_write(nd->path.mnt);
3454 
3455 	if (IS_ERR(dentry))
3456 		return ERR_CAST(dentry);
3457 
3458 	if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3459 		dput(nd->path.dentry);
3460 		nd->path.dentry = dentry;
3461 		return NULL;
3462 	}
3463 
3464 finish_lookup:
3465 	if (nd->depth)
3466 		put_link(nd);
3467 	res = step_into(nd, WALK_TRAILING, dentry, inode, seq);
3468 	if (unlikely(res))
3469 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3470 	return res;
3471 }
3472 
3473 /*
3474  * Handle the last step of open()
3475  */
3476 static int do_open(struct nameidata *nd,
3477 		   struct file *file, const struct open_flags *op)
3478 {
3479 	struct user_namespace *mnt_userns;
3480 	int open_flag = op->open_flag;
3481 	bool do_truncate;
3482 	int acc_mode;
3483 	int error;
3484 
3485 	if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3486 		error = complete_walk(nd);
3487 		if (error)
3488 			return error;
3489 	}
3490 	if (!(file->f_mode & FMODE_CREATED))
3491 		audit_inode(nd->name, nd->path.dentry, 0);
3492 	mnt_userns = mnt_user_ns(nd->path.mnt);
3493 	if (open_flag & O_CREAT) {
3494 		if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3495 			return -EEXIST;
3496 		if (d_is_dir(nd->path.dentry))
3497 			return -EISDIR;
3498 		error = may_create_in_sticky(mnt_userns, nd,
3499 					     d_backing_inode(nd->path.dentry));
3500 		if (unlikely(error))
3501 			return error;
3502 	}
3503 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3504 		return -ENOTDIR;
3505 
3506 	do_truncate = false;
3507 	acc_mode = op->acc_mode;
3508 	if (file->f_mode & FMODE_CREATED) {
3509 		/* Don't check for write permission, don't truncate */
3510 		open_flag &= ~O_TRUNC;
3511 		acc_mode = 0;
3512 	} else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3513 		error = mnt_want_write(nd->path.mnt);
3514 		if (error)
3515 			return error;
3516 		do_truncate = true;
3517 	}
3518 	error = may_open(mnt_userns, &nd->path, acc_mode, open_flag);
3519 	if (!error && !(file->f_mode & FMODE_OPENED))
3520 		error = vfs_open(&nd->path, file);
3521 	if (!error)
3522 		error = ima_file_check(file, op->acc_mode);
3523 	if (!error && do_truncate)
3524 		error = handle_truncate(mnt_userns, file);
3525 	if (unlikely(error > 0)) {
3526 		WARN_ON(1);
3527 		error = -EINVAL;
3528 	}
3529 	if (do_truncate)
3530 		mnt_drop_write(nd->path.mnt);
3531 	return error;
3532 }
3533 
3534 /**
3535  * vfs_tmpfile - create tmpfile
3536  * @mnt_userns:	user namespace of the mount the inode was found from
3537  * @dentry:	pointer to dentry of the base directory
3538  * @mode:	mode of the new tmpfile
3539  * @open_flag:	flags
3540  *
3541  * Create a temporary file.
3542  *
3543  * If the inode has been found through an idmapped mount the user namespace of
3544  * the vfsmount must be passed through @mnt_userns. This function will then take
3545  * care to map the inode according to @mnt_userns before checking permissions.
3546  * On non-idmapped mounts or if permission checking is to be performed on the
3547  * raw inode simply passs init_user_ns.
3548  */
3549 struct dentry *vfs_tmpfile(struct user_namespace *mnt_userns,
3550 			   struct dentry *dentry, umode_t mode, int open_flag)
3551 {
3552 	struct dentry *child = NULL;
3553 	struct inode *dir = dentry->d_inode;
3554 	struct inode *inode;
3555 	int error;
3556 
3557 	/* we want directory to be writable */
3558 	error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
3559 	if (error)
3560 		goto out_err;
3561 	error = -EOPNOTSUPP;
3562 	if (!dir->i_op->tmpfile)
3563 		goto out_err;
3564 	error = -ENOMEM;
3565 	child = d_alloc(dentry, &slash_name);
3566 	if (unlikely(!child))
3567 		goto out_err;
3568 	error = dir->i_op->tmpfile(mnt_userns, dir, child, mode);
3569 	if (error)
3570 		goto out_err;
3571 	error = -ENOENT;
3572 	inode = child->d_inode;
3573 	if (unlikely(!inode))
3574 		goto out_err;
3575 	if (!(open_flag & O_EXCL)) {
3576 		spin_lock(&inode->i_lock);
3577 		inode->i_state |= I_LINKABLE;
3578 		spin_unlock(&inode->i_lock);
3579 	}
3580 	ima_post_create_tmpfile(mnt_userns, inode);
3581 	return child;
3582 
3583 out_err:
3584 	dput(child);
3585 	return ERR_PTR(error);
3586 }
3587 EXPORT_SYMBOL(vfs_tmpfile);
3588 
3589 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3590 		const struct open_flags *op,
3591 		struct file *file)
3592 {
3593 	struct user_namespace *mnt_userns;
3594 	struct dentry *child;
3595 	struct path path;
3596 	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3597 	if (unlikely(error))
3598 		return error;
3599 	error = mnt_want_write(path.mnt);
3600 	if (unlikely(error))
3601 		goto out;
3602 	mnt_userns = mnt_user_ns(path.mnt);
3603 	child = vfs_tmpfile(mnt_userns, path.dentry, op->mode, op->open_flag);
3604 	error = PTR_ERR(child);
3605 	if (IS_ERR(child))
3606 		goto out2;
3607 	dput(path.dentry);
3608 	path.dentry = child;
3609 	audit_inode(nd->name, child, 0);
3610 	/* Don't check for other permissions, the inode was just created */
3611 	error = may_open(mnt_userns, &path, 0, op->open_flag);
3612 	if (!error)
3613 		error = vfs_open(&path, file);
3614 out2:
3615 	mnt_drop_write(path.mnt);
3616 out:
3617 	path_put(&path);
3618 	return error;
3619 }
3620 
3621 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3622 {
3623 	struct path path;
3624 	int error = path_lookupat(nd, flags, &path);
3625 	if (!error) {
3626 		audit_inode(nd->name, path.dentry, 0);
3627 		error = vfs_open(&path, file);
3628 		path_put(&path);
3629 	}
3630 	return error;
3631 }
3632 
3633 static struct file *path_openat(struct nameidata *nd,
3634 			const struct open_flags *op, unsigned flags)
3635 {
3636 	struct file *file;
3637 	int error;
3638 
3639 	file = alloc_empty_file(op->open_flag, current_cred());
3640 	if (IS_ERR(file))
3641 		return file;
3642 
3643 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3644 		error = do_tmpfile(nd, flags, op, file);
3645 	} else if (unlikely(file->f_flags & O_PATH)) {
3646 		error = do_o_path(nd, flags, file);
3647 	} else {
3648 		const char *s = path_init(nd, flags);
3649 		while (!(error = link_path_walk(s, nd)) &&
3650 		       (s = open_last_lookups(nd, file, op)) != NULL)
3651 			;
3652 		if (!error)
3653 			error = do_open(nd, file, op);
3654 		terminate_walk(nd);
3655 	}
3656 	if (likely(!error)) {
3657 		if (likely(file->f_mode & FMODE_OPENED))
3658 			return file;
3659 		WARN_ON(1);
3660 		error = -EINVAL;
3661 	}
3662 	fput(file);
3663 	if (error == -EOPENSTALE) {
3664 		if (flags & LOOKUP_RCU)
3665 			error = -ECHILD;
3666 		else
3667 			error = -ESTALE;
3668 	}
3669 	return ERR_PTR(error);
3670 }
3671 
3672 struct file *do_filp_open(int dfd, struct filename *pathname,
3673 		const struct open_flags *op)
3674 {
3675 	struct nameidata nd;
3676 	int flags = op->lookup_flags;
3677 	struct file *filp;
3678 
3679 	set_nameidata(&nd, dfd, pathname, NULL);
3680 	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3681 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3682 		filp = path_openat(&nd, op, flags);
3683 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3684 		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3685 	restore_nameidata();
3686 	return filp;
3687 }
3688 
3689 struct file *do_file_open_root(const struct path *root,
3690 		const char *name, const struct open_flags *op)
3691 {
3692 	struct nameidata nd;
3693 	struct file *file;
3694 	struct filename *filename;
3695 	int flags = op->lookup_flags;
3696 
3697 	if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN)
3698 		return ERR_PTR(-ELOOP);
3699 
3700 	filename = getname_kernel(name);
3701 	if (IS_ERR(filename))
3702 		return ERR_CAST(filename);
3703 
3704 	set_nameidata(&nd, -1, filename, root);
3705 	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3706 	if (unlikely(file == ERR_PTR(-ECHILD)))
3707 		file = path_openat(&nd, op, flags);
3708 	if (unlikely(file == ERR_PTR(-ESTALE)))
3709 		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3710 	restore_nameidata();
3711 	putname(filename);
3712 	return file;
3713 }
3714 
3715 static struct dentry *filename_create(int dfd, struct filename *name,
3716 				      struct path *path, unsigned int lookup_flags)
3717 {
3718 	struct dentry *dentry = ERR_PTR(-EEXIST);
3719 	struct qstr last;
3720 	bool want_dir = lookup_flags & LOOKUP_DIRECTORY;
3721 	unsigned int reval_flag = lookup_flags & LOOKUP_REVAL;
3722 	unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL;
3723 	int type;
3724 	int err2;
3725 	int error;
3726 
3727 	error = filename_parentat(dfd, name, reval_flag, path, &last, &type);
3728 	if (error)
3729 		return ERR_PTR(error);
3730 
3731 	/*
3732 	 * Yucky last component or no last component at all?
3733 	 * (foo/., foo/.., /////)
3734 	 */
3735 	if (unlikely(type != LAST_NORM))
3736 		goto out;
3737 
3738 	/* don't fail immediately if it's r/o, at least try to report other errors */
3739 	err2 = mnt_want_write(path->mnt);
3740 	/*
3741 	 * Do the final lookup.  Suppress 'create' if there is a trailing
3742 	 * '/', and a directory wasn't requested.
3743 	 */
3744 	if (last.name[last.len] && !want_dir)
3745 		create_flags = 0;
3746 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3747 	dentry = __lookup_hash(&last, path->dentry, reval_flag | create_flags);
3748 	if (IS_ERR(dentry))
3749 		goto unlock;
3750 
3751 	error = -EEXIST;
3752 	if (d_is_positive(dentry))
3753 		goto fail;
3754 
3755 	/*
3756 	 * Special case - lookup gave negative, but... we had foo/bar/
3757 	 * From the vfs_mknod() POV we just have a negative dentry -
3758 	 * all is fine. Let's be bastards - you had / on the end, you've
3759 	 * been asking for (non-existent) directory. -ENOENT for you.
3760 	 */
3761 	if (unlikely(!create_flags)) {
3762 		error = -ENOENT;
3763 		goto fail;
3764 	}
3765 	if (unlikely(err2)) {
3766 		error = err2;
3767 		goto fail;
3768 	}
3769 	return dentry;
3770 fail:
3771 	dput(dentry);
3772 	dentry = ERR_PTR(error);
3773 unlock:
3774 	inode_unlock(path->dentry->d_inode);
3775 	if (!err2)
3776 		mnt_drop_write(path->mnt);
3777 out:
3778 	path_put(path);
3779 	return dentry;
3780 }
3781 
3782 struct dentry *kern_path_create(int dfd, const char *pathname,
3783 				struct path *path, unsigned int lookup_flags)
3784 {
3785 	struct filename *filename = getname_kernel(pathname);
3786 	struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
3787 
3788 	putname(filename);
3789 	return res;
3790 }
3791 EXPORT_SYMBOL(kern_path_create);
3792 
3793 void done_path_create(struct path *path, struct dentry *dentry)
3794 {
3795 	dput(dentry);
3796 	inode_unlock(path->dentry->d_inode);
3797 	mnt_drop_write(path->mnt);
3798 	path_put(path);
3799 }
3800 EXPORT_SYMBOL(done_path_create);
3801 
3802 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3803 				struct path *path, unsigned int lookup_flags)
3804 {
3805 	struct filename *filename = getname(pathname);
3806 	struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
3807 
3808 	putname(filename);
3809 	return res;
3810 }
3811 EXPORT_SYMBOL(user_path_create);
3812 
3813 /**
3814  * vfs_mknod - create device node or file
3815  * @mnt_userns:	user namespace of the mount the inode was found from
3816  * @dir:	inode of @dentry
3817  * @dentry:	pointer to dentry of the base directory
3818  * @mode:	mode of the new device node or file
3819  * @dev:	device number of device to create
3820  *
3821  * Create a device node or file.
3822  *
3823  * If the inode has been found through an idmapped mount the user namespace of
3824  * the vfsmount must be passed through @mnt_userns. This function will then take
3825  * care to map the inode according to @mnt_userns before checking permissions.
3826  * On non-idmapped mounts or if permission checking is to be performed on the
3827  * raw inode simply passs init_user_ns.
3828  */
3829 int vfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
3830 	      struct dentry *dentry, umode_t mode, dev_t dev)
3831 {
3832 	bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
3833 	int error = may_create(mnt_userns, dir, dentry);
3834 
3835 	if (error)
3836 		return error;
3837 
3838 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
3839 	    !capable(CAP_MKNOD))
3840 		return -EPERM;
3841 
3842 	if (!dir->i_op->mknod)
3843 		return -EPERM;
3844 
3845 	error = devcgroup_inode_mknod(mode, dev);
3846 	if (error)
3847 		return error;
3848 
3849 	error = security_inode_mknod(dir, dentry, mode, dev);
3850 	if (error)
3851 		return error;
3852 
3853 	error = dir->i_op->mknod(mnt_userns, dir, dentry, mode, dev);
3854 	if (!error)
3855 		fsnotify_create(dir, dentry);
3856 	return error;
3857 }
3858 EXPORT_SYMBOL(vfs_mknod);
3859 
3860 static int may_mknod(umode_t mode)
3861 {
3862 	switch (mode & S_IFMT) {
3863 	case S_IFREG:
3864 	case S_IFCHR:
3865 	case S_IFBLK:
3866 	case S_IFIFO:
3867 	case S_IFSOCK:
3868 	case 0: /* zero mode translates to S_IFREG */
3869 		return 0;
3870 	case S_IFDIR:
3871 		return -EPERM;
3872 	default:
3873 		return -EINVAL;
3874 	}
3875 }
3876 
3877 static int do_mknodat(int dfd, struct filename *name, umode_t mode,
3878 		unsigned int dev)
3879 {
3880 	struct user_namespace *mnt_userns;
3881 	struct dentry *dentry;
3882 	struct path path;
3883 	int error;
3884 	unsigned int lookup_flags = 0;
3885 
3886 	error = may_mknod(mode);
3887 	if (error)
3888 		goto out1;
3889 retry:
3890 	dentry = filename_create(dfd, name, &path, lookup_flags);
3891 	error = PTR_ERR(dentry);
3892 	if (IS_ERR(dentry))
3893 		goto out1;
3894 
3895 	if (!IS_POSIXACL(path.dentry->d_inode))
3896 		mode &= ~current_umask();
3897 	error = security_path_mknod(&path, dentry, mode, dev);
3898 	if (error)
3899 		goto out2;
3900 
3901 	mnt_userns = mnt_user_ns(path.mnt);
3902 	switch (mode & S_IFMT) {
3903 		case 0: case S_IFREG:
3904 			error = vfs_create(mnt_userns, path.dentry->d_inode,
3905 					   dentry, mode, true);
3906 			if (!error)
3907 				ima_post_path_mknod(mnt_userns, dentry);
3908 			break;
3909 		case S_IFCHR: case S_IFBLK:
3910 			error = vfs_mknod(mnt_userns, path.dentry->d_inode,
3911 					  dentry, mode, new_decode_dev(dev));
3912 			break;
3913 		case S_IFIFO: case S_IFSOCK:
3914 			error = vfs_mknod(mnt_userns, path.dentry->d_inode,
3915 					  dentry, mode, 0);
3916 			break;
3917 	}
3918 out2:
3919 	done_path_create(&path, dentry);
3920 	if (retry_estale(error, lookup_flags)) {
3921 		lookup_flags |= LOOKUP_REVAL;
3922 		goto retry;
3923 	}
3924 out1:
3925 	putname(name);
3926 	return error;
3927 }
3928 
3929 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3930 		unsigned int, dev)
3931 {
3932 	return do_mknodat(dfd, getname(filename), mode, dev);
3933 }
3934 
3935 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3936 {
3937 	return do_mknodat(AT_FDCWD, getname(filename), mode, dev);
3938 }
3939 
3940 /**
3941  * vfs_mkdir - create directory
3942  * @mnt_userns:	user namespace of the mount the inode was found from
3943  * @dir:	inode of @dentry
3944  * @dentry:	pointer to dentry of the base directory
3945  * @mode:	mode of the new directory
3946  *
3947  * Create a directory.
3948  *
3949  * If the inode has been found through an idmapped mount the user namespace of
3950  * the vfsmount must be passed through @mnt_userns. This function will then take
3951  * care to map the inode according to @mnt_userns before checking permissions.
3952  * On non-idmapped mounts or if permission checking is to be performed on the
3953  * raw inode simply passs init_user_ns.
3954  */
3955 int vfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
3956 	      struct dentry *dentry, umode_t mode)
3957 {
3958 	int error = may_create(mnt_userns, dir, dentry);
3959 	unsigned max_links = dir->i_sb->s_max_links;
3960 
3961 	if (error)
3962 		return error;
3963 
3964 	if (!dir->i_op->mkdir)
3965 		return -EPERM;
3966 
3967 	mode &= (S_IRWXUGO|S_ISVTX);
3968 	error = security_inode_mkdir(dir, dentry, mode);
3969 	if (error)
3970 		return error;
3971 
3972 	if (max_links && dir->i_nlink >= max_links)
3973 		return -EMLINK;
3974 
3975 	error = dir->i_op->mkdir(mnt_userns, dir, dentry, mode);
3976 	if (!error)
3977 		fsnotify_mkdir(dir, dentry);
3978 	return error;
3979 }
3980 EXPORT_SYMBOL(vfs_mkdir);
3981 
3982 int do_mkdirat(int dfd, struct filename *name, umode_t mode)
3983 {
3984 	struct dentry *dentry;
3985 	struct path path;
3986 	int error;
3987 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3988 
3989 retry:
3990 	dentry = filename_create(dfd, name, &path, lookup_flags);
3991 	error = PTR_ERR(dentry);
3992 	if (IS_ERR(dentry))
3993 		goto out_putname;
3994 
3995 	if (!IS_POSIXACL(path.dentry->d_inode))
3996 		mode &= ~current_umask();
3997 	error = security_path_mkdir(&path, dentry, mode);
3998 	if (!error) {
3999 		struct user_namespace *mnt_userns;
4000 		mnt_userns = mnt_user_ns(path.mnt);
4001 		error = vfs_mkdir(mnt_userns, path.dentry->d_inode, dentry,
4002 				  mode);
4003 	}
4004 	done_path_create(&path, dentry);
4005 	if (retry_estale(error, lookup_flags)) {
4006 		lookup_flags |= LOOKUP_REVAL;
4007 		goto retry;
4008 	}
4009 out_putname:
4010 	putname(name);
4011 	return error;
4012 }
4013 
4014 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
4015 {
4016 	return do_mkdirat(dfd, getname(pathname), mode);
4017 }
4018 
4019 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
4020 {
4021 	return do_mkdirat(AT_FDCWD, getname(pathname), mode);
4022 }
4023 
4024 /**
4025  * vfs_rmdir - remove directory
4026  * @mnt_userns:	user namespace of the mount the inode was found from
4027  * @dir:	inode of @dentry
4028  * @dentry:	pointer to dentry of the base directory
4029  *
4030  * Remove a directory.
4031  *
4032  * If the inode has been found through an idmapped mount the user namespace of
4033  * the vfsmount must be passed through @mnt_userns. This function will then take
4034  * care to map the inode according to @mnt_userns before checking permissions.
4035  * On non-idmapped mounts or if permission checking is to be performed on the
4036  * raw inode simply passs init_user_ns.
4037  */
4038 int vfs_rmdir(struct user_namespace *mnt_userns, struct inode *dir,
4039 		     struct dentry *dentry)
4040 {
4041 	int error = may_delete(mnt_userns, dir, dentry, 1);
4042 
4043 	if (error)
4044 		return error;
4045 
4046 	if (!dir->i_op->rmdir)
4047 		return -EPERM;
4048 
4049 	dget(dentry);
4050 	inode_lock(dentry->d_inode);
4051 
4052 	error = -EBUSY;
4053 	if (is_local_mountpoint(dentry) ||
4054 	    (dentry->d_inode->i_flags & S_KERNEL_FILE))
4055 		goto out;
4056 
4057 	error = security_inode_rmdir(dir, dentry);
4058 	if (error)
4059 		goto out;
4060 
4061 	error = dir->i_op->rmdir(dir, dentry);
4062 	if (error)
4063 		goto out;
4064 
4065 	shrink_dcache_parent(dentry);
4066 	dentry->d_inode->i_flags |= S_DEAD;
4067 	dont_mount(dentry);
4068 	detach_mounts(dentry);
4069 
4070 out:
4071 	inode_unlock(dentry->d_inode);
4072 	dput(dentry);
4073 	if (!error)
4074 		d_delete_notify(dir, dentry);
4075 	return error;
4076 }
4077 EXPORT_SYMBOL(vfs_rmdir);
4078 
4079 int do_rmdir(int dfd, struct filename *name)
4080 {
4081 	struct user_namespace *mnt_userns;
4082 	int error;
4083 	struct dentry *dentry;
4084 	struct path path;
4085 	struct qstr last;
4086 	int type;
4087 	unsigned int lookup_flags = 0;
4088 retry:
4089 	error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4090 	if (error)
4091 		goto exit1;
4092 
4093 	switch (type) {
4094 	case LAST_DOTDOT:
4095 		error = -ENOTEMPTY;
4096 		goto exit2;
4097 	case LAST_DOT:
4098 		error = -EINVAL;
4099 		goto exit2;
4100 	case LAST_ROOT:
4101 		error = -EBUSY;
4102 		goto exit2;
4103 	}
4104 
4105 	error = mnt_want_write(path.mnt);
4106 	if (error)
4107 		goto exit2;
4108 
4109 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4110 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4111 	error = PTR_ERR(dentry);
4112 	if (IS_ERR(dentry))
4113 		goto exit3;
4114 	if (!dentry->d_inode) {
4115 		error = -ENOENT;
4116 		goto exit4;
4117 	}
4118 	error = security_path_rmdir(&path, dentry);
4119 	if (error)
4120 		goto exit4;
4121 	mnt_userns = mnt_user_ns(path.mnt);
4122 	error = vfs_rmdir(mnt_userns, path.dentry->d_inode, dentry);
4123 exit4:
4124 	dput(dentry);
4125 exit3:
4126 	inode_unlock(path.dentry->d_inode);
4127 	mnt_drop_write(path.mnt);
4128 exit2:
4129 	path_put(&path);
4130 	if (retry_estale(error, lookup_flags)) {
4131 		lookup_flags |= LOOKUP_REVAL;
4132 		goto retry;
4133 	}
4134 exit1:
4135 	putname(name);
4136 	return error;
4137 }
4138 
4139 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
4140 {
4141 	return do_rmdir(AT_FDCWD, getname(pathname));
4142 }
4143 
4144 /**
4145  * vfs_unlink - unlink a filesystem object
4146  * @mnt_userns:	user namespace of the mount the inode was found from
4147  * @dir:	parent directory
4148  * @dentry:	victim
4149  * @delegated_inode: returns victim inode, if the inode is delegated.
4150  *
4151  * The caller must hold dir->i_mutex.
4152  *
4153  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
4154  * return a reference to the inode in delegated_inode.  The caller
4155  * should then break the delegation on that inode and retry.  Because
4156  * breaking a delegation may take a long time, the caller should drop
4157  * dir->i_mutex before doing so.
4158  *
4159  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4160  * be appropriate for callers that expect the underlying filesystem not
4161  * to be NFS exported.
4162  *
4163  * If the inode has been found through an idmapped mount the user namespace of
4164  * the vfsmount must be passed through @mnt_userns. This function will then take
4165  * care to map the inode according to @mnt_userns before checking permissions.
4166  * On non-idmapped mounts or if permission checking is to be performed on the
4167  * raw inode simply passs init_user_ns.
4168  */
4169 int vfs_unlink(struct user_namespace *mnt_userns, struct inode *dir,
4170 	       struct dentry *dentry, struct inode **delegated_inode)
4171 {
4172 	struct inode *target = dentry->d_inode;
4173 	int error = may_delete(mnt_userns, dir, dentry, 0);
4174 
4175 	if (error)
4176 		return error;
4177 
4178 	if (!dir->i_op->unlink)
4179 		return -EPERM;
4180 
4181 	inode_lock(target);
4182 	if (IS_SWAPFILE(target))
4183 		error = -EPERM;
4184 	else if (is_local_mountpoint(dentry))
4185 		error = -EBUSY;
4186 	else {
4187 		error = security_inode_unlink(dir, dentry);
4188 		if (!error) {
4189 			error = try_break_deleg(target, delegated_inode);
4190 			if (error)
4191 				goto out;
4192 			error = dir->i_op->unlink(dir, dentry);
4193 			if (!error) {
4194 				dont_mount(dentry);
4195 				detach_mounts(dentry);
4196 			}
4197 		}
4198 	}
4199 out:
4200 	inode_unlock(target);
4201 
4202 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
4203 	if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) {
4204 		fsnotify_unlink(dir, dentry);
4205 	} else if (!error) {
4206 		fsnotify_link_count(target);
4207 		d_delete_notify(dir, dentry);
4208 	}
4209 
4210 	return error;
4211 }
4212 EXPORT_SYMBOL(vfs_unlink);
4213 
4214 /*
4215  * Make sure that the actual truncation of the file will occur outside its
4216  * directory's i_mutex.  Truncate can take a long time if there is a lot of
4217  * writeout happening, and we don't want to prevent access to the directory
4218  * while waiting on the I/O.
4219  */
4220 int do_unlinkat(int dfd, struct filename *name)
4221 {
4222 	int error;
4223 	struct dentry *dentry;
4224 	struct path path;
4225 	struct qstr last;
4226 	int type;
4227 	struct inode *inode = NULL;
4228 	struct inode *delegated_inode = NULL;
4229 	unsigned int lookup_flags = 0;
4230 retry:
4231 	error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4232 	if (error)
4233 		goto exit1;
4234 
4235 	error = -EISDIR;
4236 	if (type != LAST_NORM)
4237 		goto exit2;
4238 
4239 	error = mnt_want_write(path.mnt);
4240 	if (error)
4241 		goto exit2;
4242 retry_deleg:
4243 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4244 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4245 	error = PTR_ERR(dentry);
4246 	if (!IS_ERR(dentry)) {
4247 		struct user_namespace *mnt_userns;
4248 
4249 		/* Why not before? Because we want correct error value */
4250 		if (last.name[last.len])
4251 			goto slashes;
4252 		inode = dentry->d_inode;
4253 		if (d_is_negative(dentry))
4254 			goto slashes;
4255 		ihold(inode);
4256 		error = security_path_unlink(&path, dentry);
4257 		if (error)
4258 			goto exit3;
4259 		mnt_userns = mnt_user_ns(path.mnt);
4260 		error = vfs_unlink(mnt_userns, path.dentry->d_inode, dentry,
4261 				   &delegated_inode);
4262 exit3:
4263 		dput(dentry);
4264 	}
4265 	inode_unlock(path.dentry->d_inode);
4266 	if (inode)
4267 		iput(inode);	/* truncate the inode here */
4268 	inode = NULL;
4269 	if (delegated_inode) {
4270 		error = break_deleg_wait(&delegated_inode);
4271 		if (!error)
4272 			goto retry_deleg;
4273 	}
4274 	mnt_drop_write(path.mnt);
4275 exit2:
4276 	path_put(&path);
4277 	if (retry_estale(error, lookup_flags)) {
4278 		lookup_flags |= LOOKUP_REVAL;
4279 		inode = NULL;
4280 		goto retry;
4281 	}
4282 exit1:
4283 	putname(name);
4284 	return error;
4285 
4286 slashes:
4287 	if (d_is_negative(dentry))
4288 		error = -ENOENT;
4289 	else if (d_is_dir(dentry))
4290 		error = -EISDIR;
4291 	else
4292 		error = -ENOTDIR;
4293 	goto exit3;
4294 }
4295 
4296 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4297 {
4298 	if ((flag & ~AT_REMOVEDIR) != 0)
4299 		return -EINVAL;
4300 
4301 	if (flag & AT_REMOVEDIR)
4302 		return do_rmdir(dfd, getname(pathname));
4303 	return do_unlinkat(dfd, getname(pathname));
4304 }
4305 
4306 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4307 {
4308 	return do_unlinkat(AT_FDCWD, getname(pathname));
4309 }
4310 
4311 /**
4312  * vfs_symlink - create symlink
4313  * @mnt_userns:	user namespace of the mount the inode was found from
4314  * @dir:	inode of @dentry
4315  * @dentry:	pointer to dentry of the base directory
4316  * @oldname:	name of the file to link to
4317  *
4318  * Create a symlink.
4319  *
4320  * If the inode has been found through an idmapped mount the user namespace of
4321  * the vfsmount must be passed through @mnt_userns. This function will then take
4322  * care to map the inode according to @mnt_userns before checking permissions.
4323  * On non-idmapped mounts or if permission checking is to be performed on the
4324  * raw inode simply passs init_user_ns.
4325  */
4326 int vfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
4327 		struct dentry *dentry, const char *oldname)
4328 {
4329 	int error = may_create(mnt_userns, dir, dentry);
4330 
4331 	if (error)
4332 		return error;
4333 
4334 	if (!dir->i_op->symlink)
4335 		return -EPERM;
4336 
4337 	error = security_inode_symlink(dir, dentry, oldname);
4338 	if (error)
4339 		return error;
4340 
4341 	error = dir->i_op->symlink(mnt_userns, dir, dentry, oldname);
4342 	if (!error)
4343 		fsnotify_create(dir, dentry);
4344 	return error;
4345 }
4346 EXPORT_SYMBOL(vfs_symlink);
4347 
4348 int do_symlinkat(struct filename *from, int newdfd, struct filename *to)
4349 {
4350 	int error;
4351 	struct dentry *dentry;
4352 	struct path path;
4353 	unsigned int lookup_flags = 0;
4354 
4355 	if (IS_ERR(from)) {
4356 		error = PTR_ERR(from);
4357 		goto out_putnames;
4358 	}
4359 retry:
4360 	dentry = filename_create(newdfd, to, &path, lookup_flags);
4361 	error = PTR_ERR(dentry);
4362 	if (IS_ERR(dentry))
4363 		goto out_putnames;
4364 
4365 	error = security_path_symlink(&path, dentry, from->name);
4366 	if (!error) {
4367 		struct user_namespace *mnt_userns;
4368 
4369 		mnt_userns = mnt_user_ns(path.mnt);
4370 		error = vfs_symlink(mnt_userns, path.dentry->d_inode, dentry,
4371 				    from->name);
4372 	}
4373 	done_path_create(&path, dentry);
4374 	if (retry_estale(error, lookup_flags)) {
4375 		lookup_flags |= LOOKUP_REVAL;
4376 		goto retry;
4377 	}
4378 out_putnames:
4379 	putname(to);
4380 	putname(from);
4381 	return error;
4382 }
4383 
4384 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4385 		int, newdfd, const char __user *, newname)
4386 {
4387 	return do_symlinkat(getname(oldname), newdfd, getname(newname));
4388 }
4389 
4390 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4391 {
4392 	return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname));
4393 }
4394 
4395 /**
4396  * vfs_link - create a new link
4397  * @old_dentry:	object to be linked
4398  * @mnt_userns:	the user namespace of the mount
4399  * @dir:	new parent
4400  * @new_dentry:	where to create the new link
4401  * @delegated_inode: returns inode needing a delegation break
4402  *
4403  * The caller must hold dir->i_mutex
4404  *
4405  * If vfs_link discovers a delegation on the to-be-linked file in need
4406  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4407  * inode in delegated_inode.  The caller should then break the delegation
4408  * and retry.  Because breaking a delegation may take a long time, the
4409  * caller should drop the i_mutex before doing so.
4410  *
4411  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4412  * be appropriate for callers that expect the underlying filesystem not
4413  * to be NFS exported.
4414  *
4415  * If the inode has been found through an idmapped mount the user namespace of
4416  * the vfsmount must be passed through @mnt_userns. This function will then take
4417  * care to map the inode according to @mnt_userns before checking permissions.
4418  * On non-idmapped mounts or if permission checking is to be performed on the
4419  * raw inode simply passs init_user_ns.
4420  */
4421 int vfs_link(struct dentry *old_dentry, struct user_namespace *mnt_userns,
4422 	     struct inode *dir, struct dentry *new_dentry,
4423 	     struct inode **delegated_inode)
4424 {
4425 	struct inode *inode = old_dentry->d_inode;
4426 	unsigned max_links = dir->i_sb->s_max_links;
4427 	int error;
4428 
4429 	if (!inode)
4430 		return -ENOENT;
4431 
4432 	error = may_create(mnt_userns, dir, new_dentry);
4433 	if (error)
4434 		return error;
4435 
4436 	if (dir->i_sb != inode->i_sb)
4437 		return -EXDEV;
4438 
4439 	/*
4440 	 * A link to an append-only or immutable file cannot be created.
4441 	 */
4442 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4443 		return -EPERM;
4444 	/*
4445 	 * Updating the link count will likely cause i_uid and i_gid to
4446 	 * be writen back improperly if their true value is unknown to
4447 	 * the vfs.
4448 	 */
4449 	if (HAS_UNMAPPED_ID(mnt_userns, inode))
4450 		return -EPERM;
4451 	if (!dir->i_op->link)
4452 		return -EPERM;
4453 	if (S_ISDIR(inode->i_mode))
4454 		return -EPERM;
4455 
4456 	error = security_inode_link(old_dentry, dir, new_dentry);
4457 	if (error)
4458 		return error;
4459 
4460 	inode_lock(inode);
4461 	/* Make sure we don't allow creating hardlink to an unlinked file */
4462 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4463 		error =  -ENOENT;
4464 	else if (max_links && inode->i_nlink >= max_links)
4465 		error = -EMLINK;
4466 	else {
4467 		error = try_break_deleg(inode, delegated_inode);
4468 		if (!error)
4469 			error = dir->i_op->link(old_dentry, dir, new_dentry);
4470 	}
4471 
4472 	if (!error && (inode->i_state & I_LINKABLE)) {
4473 		spin_lock(&inode->i_lock);
4474 		inode->i_state &= ~I_LINKABLE;
4475 		spin_unlock(&inode->i_lock);
4476 	}
4477 	inode_unlock(inode);
4478 	if (!error)
4479 		fsnotify_link(dir, inode, new_dentry);
4480 	return error;
4481 }
4482 EXPORT_SYMBOL(vfs_link);
4483 
4484 /*
4485  * Hardlinks are often used in delicate situations.  We avoid
4486  * security-related surprises by not following symlinks on the
4487  * newname.  --KAB
4488  *
4489  * We don't follow them on the oldname either to be compatible
4490  * with linux 2.0, and to avoid hard-linking to directories
4491  * and other special files.  --ADM
4492  */
4493 int do_linkat(int olddfd, struct filename *old, int newdfd,
4494 	      struct filename *new, int flags)
4495 {
4496 	struct user_namespace *mnt_userns;
4497 	struct dentry *new_dentry;
4498 	struct path old_path, new_path;
4499 	struct inode *delegated_inode = NULL;
4500 	int how = 0;
4501 	int error;
4502 
4503 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) {
4504 		error = -EINVAL;
4505 		goto out_putnames;
4506 	}
4507 	/*
4508 	 * To use null names we require CAP_DAC_READ_SEARCH
4509 	 * This ensures that not everyone will be able to create
4510 	 * handlink using the passed filedescriptor.
4511 	 */
4512 	if (flags & AT_EMPTY_PATH && !capable(CAP_DAC_READ_SEARCH)) {
4513 		error = -ENOENT;
4514 		goto out_putnames;
4515 	}
4516 
4517 	if (flags & AT_SYMLINK_FOLLOW)
4518 		how |= LOOKUP_FOLLOW;
4519 retry:
4520 	error = filename_lookup(olddfd, old, how, &old_path, NULL);
4521 	if (error)
4522 		goto out_putnames;
4523 
4524 	new_dentry = filename_create(newdfd, new, &new_path,
4525 					(how & LOOKUP_REVAL));
4526 	error = PTR_ERR(new_dentry);
4527 	if (IS_ERR(new_dentry))
4528 		goto out_putpath;
4529 
4530 	error = -EXDEV;
4531 	if (old_path.mnt != new_path.mnt)
4532 		goto out_dput;
4533 	mnt_userns = mnt_user_ns(new_path.mnt);
4534 	error = may_linkat(mnt_userns, &old_path);
4535 	if (unlikely(error))
4536 		goto out_dput;
4537 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4538 	if (error)
4539 		goto out_dput;
4540 	error = vfs_link(old_path.dentry, mnt_userns, new_path.dentry->d_inode,
4541 			 new_dentry, &delegated_inode);
4542 out_dput:
4543 	done_path_create(&new_path, new_dentry);
4544 	if (delegated_inode) {
4545 		error = break_deleg_wait(&delegated_inode);
4546 		if (!error) {
4547 			path_put(&old_path);
4548 			goto retry;
4549 		}
4550 	}
4551 	if (retry_estale(error, how)) {
4552 		path_put(&old_path);
4553 		how |= LOOKUP_REVAL;
4554 		goto retry;
4555 	}
4556 out_putpath:
4557 	path_put(&old_path);
4558 out_putnames:
4559 	putname(old);
4560 	putname(new);
4561 
4562 	return error;
4563 }
4564 
4565 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4566 		int, newdfd, const char __user *, newname, int, flags)
4567 {
4568 	return do_linkat(olddfd, getname_uflags(oldname, flags),
4569 		newdfd, getname(newname), flags);
4570 }
4571 
4572 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4573 {
4574 	return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0);
4575 }
4576 
4577 /**
4578  * vfs_rename - rename a filesystem object
4579  * @rd:		pointer to &struct renamedata info
4580  *
4581  * The caller must hold multiple mutexes--see lock_rename()).
4582  *
4583  * If vfs_rename discovers a delegation in need of breaking at either
4584  * the source or destination, it will return -EWOULDBLOCK and return a
4585  * reference to the inode in delegated_inode.  The caller should then
4586  * break the delegation and retry.  Because breaking a delegation may
4587  * take a long time, the caller should drop all locks before doing
4588  * so.
4589  *
4590  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4591  * be appropriate for callers that expect the underlying filesystem not
4592  * to be NFS exported.
4593  *
4594  * The worst of all namespace operations - renaming directory. "Perverted"
4595  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4596  * Problems:
4597  *
4598  *	a) we can get into loop creation.
4599  *	b) race potential - two innocent renames can create a loop together.
4600  *	   That's where 4.4 screws up. Current fix: serialization on
4601  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4602  *	   story.
4603  *	c) we have to lock _four_ objects - parents and victim (if it exists),
4604  *	   and source (if it is not a directory).
4605  *	   And that - after we got ->i_mutex on parents (until then we don't know
4606  *	   whether the target exists).  Solution: try to be smart with locking
4607  *	   order for inodes.  We rely on the fact that tree topology may change
4608  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4609  *	   move will be locked.  Thus we can rank directories by the tree
4610  *	   (ancestors first) and rank all non-directories after them.
4611  *	   That works since everybody except rename does "lock parent, lookup,
4612  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4613  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4614  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4615  *	   we'd better make sure that there's no link(2) for them.
4616  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4617  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4618  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4619  *	   ->i_mutex on parents, which works but leads to some truly excessive
4620  *	   locking].
4621  */
4622 int vfs_rename(struct renamedata *rd)
4623 {
4624 	int error;
4625 	struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir;
4626 	struct dentry *old_dentry = rd->old_dentry;
4627 	struct dentry *new_dentry = rd->new_dentry;
4628 	struct inode **delegated_inode = rd->delegated_inode;
4629 	unsigned int flags = rd->flags;
4630 	bool is_dir = d_is_dir(old_dentry);
4631 	struct inode *source = old_dentry->d_inode;
4632 	struct inode *target = new_dentry->d_inode;
4633 	bool new_is_dir = false;
4634 	unsigned max_links = new_dir->i_sb->s_max_links;
4635 	struct name_snapshot old_name;
4636 
4637 	if (source == target)
4638 		return 0;
4639 
4640 	error = may_delete(rd->old_mnt_userns, old_dir, old_dentry, is_dir);
4641 	if (error)
4642 		return error;
4643 
4644 	if (!target) {
4645 		error = may_create(rd->new_mnt_userns, new_dir, new_dentry);
4646 	} else {
4647 		new_is_dir = d_is_dir(new_dentry);
4648 
4649 		if (!(flags & RENAME_EXCHANGE))
4650 			error = may_delete(rd->new_mnt_userns, new_dir,
4651 					   new_dentry, is_dir);
4652 		else
4653 			error = may_delete(rd->new_mnt_userns, new_dir,
4654 					   new_dentry, new_is_dir);
4655 	}
4656 	if (error)
4657 		return error;
4658 
4659 	if (!old_dir->i_op->rename)
4660 		return -EPERM;
4661 
4662 	/*
4663 	 * If we are going to change the parent - check write permissions,
4664 	 * we'll need to flip '..'.
4665 	 */
4666 	if (new_dir != old_dir) {
4667 		if (is_dir) {
4668 			error = inode_permission(rd->old_mnt_userns, source,
4669 						 MAY_WRITE);
4670 			if (error)
4671 				return error;
4672 		}
4673 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4674 			error = inode_permission(rd->new_mnt_userns, target,
4675 						 MAY_WRITE);
4676 			if (error)
4677 				return error;
4678 		}
4679 	}
4680 
4681 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4682 				      flags);
4683 	if (error)
4684 		return error;
4685 
4686 	take_dentry_name_snapshot(&old_name, old_dentry);
4687 	dget(new_dentry);
4688 	if (!is_dir || (flags & RENAME_EXCHANGE))
4689 		lock_two_nondirectories(source, target);
4690 	else if (target)
4691 		inode_lock(target);
4692 
4693 	error = -EPERM;
4694 	if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target)))
4695 		goto out;
4696 
4697 	error = -EBUSY;
4698 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4699 		goto out;
4700 
4701 	if (max_links && new_dir != old_dir) {
4702 		error = -EMLINK;
4703 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4704 			goto out;
4705 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4706 		    old_dir->i_nlink >= max_links)
4707 			goto out;
4708 	}
4709 	if (!is_dir) {
4710 		error = try_break_deleg(source, delegated_inode);
4711 		if (error)
4712 			goto out;
4713 	}
4714 	if (target && !new_is_dir) {
4715 		error = try_break_deleg(target, delegated_inode);
4716 		if (error)
4717 			goto out;
4718 	}
4719 	error = old_dir->i_op->rename(rd->new_mnt_userns, old_dir, old_dentry,
4720 				      new_dir, new_dentry, flags);
4721 	if (error)
4722 		goto out;
4723 
4724 	if (!(flags & RENAME_EXCHANGE) && target) {
4725 		if (is_dir) {
4726 			shrink_dcache_parent(new_dentry);
4727 			target->i_flags |= S_DEAD;
4728 		}
4729 		dont_mount(new_dentry);
4730 		detach_mounts(new_dentry);
4731 	}
4732 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4733 		if (!(flags & RENAME_EXCHANGE))
4734 			d_move(old_dentry, new_dentry);
4735 		else
4736 			d_exchange(old_dentry, new_dentry);
4737 	}
4738 out:
4739 	if (!is_dir || (flags & RENAME_EXCHANGE))
4740 		unlock_two_nondirectories(source, target);
4741 	else if (target)
4742 		inode_unlock(target);
4743 	dput(new_dentry);
4744 	if (!error) {
4745 		fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4746 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4747 		if (flags & RENAME_EXCHANGE) {
4748 			fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4749 				      new_is_dir, NULL, new_dentry);
4750 		}
4751 	}
4752 	release_dentry_name_snapshot(&old_name);
4753 
4754 	return error;
4755 }
4756 EXPORT_SYMBOL(vfs_rename);
4757 
4758 int do_renameat2(int olddfd, struct filename *from, int newdfd,
4759 		 struct filename *to, unsigned int flags)
4760 {
4761 	struct renamedata rd;
4762 	struct dentry *old_dentry, *new_dentry;
4763 	struct dentry *trap;
4764 	struct path old_path, new_path;
4765 	struct qstr old_last, new_last;
4766 	int old_type, new_type;
4767 	struct inode *delegated_inode = NULL;
4768 	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4769 	bool should_retry = false;
4770 	int error = -EINVAL;
4771 
4772 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4773 		goto put_names;
4774 
4775 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4776 	    (flags & RENAME_EXCHANGE))
4777 		goto put_names;
4778 
4779 	if (flags & RENAME_EXCHANGE)
4780 		target_flags = 0;
4781 
4782 retry:
4783 	error = filename_parentat(olddfd, from, lookup_flags, &old_path,
4784 				  &old_last, &old_type);
4785 	if (error)
4786 		goto put_names;
4787 
4788 	error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
4789 				  &new_type);
4790 	if (error)
4791 		goto exit1;
4792 
4793 	error = -EXDEV;
4794 	if (old_path.mnt != new_path.mnt)
4795 		goto exit2;
4796 
4797 	error = -EBUSY;
4798 	if (old_type != LAST_NORM)
4799 		goto exit2;
4800 
4801 	if (flags & RENAME_NOREPLACE)
4802 		error = -EEXIST;
4803 	if (new_type != LAST_NORM)
4804 		goto exit2;
4805 
4806 	error = mnt_want_write(old_path.mnt);
4807 	if (error)
4808 		goto exit2;
4809 
4810 retry_deleg:
4811 	trap = lock_rename(new_path.dentry, old_path.dentry);
4812 
4813 	old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4814 	error = PTR_ERR(old_dentry);
4815 	if (IS_ERR(old_dentry))
4816 		goto exit3;
4817 	/* source must exist */
4818 	error = -ENOENT;
4819 	if (d_is_negative(old_dentry))
4820 		goto exit4;
4821 	new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4822 	error = PTR_ERR(new_dentry);
4823 	if (IS_ERR(new_dentry))
4824 		goto exit4;
4825 	error = -EEXIST;
4826 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4827 		goto exit5;
4828 	if (flags & RENAME_EXCHANGE) {
4829 		error = -ENOENT;
4830 		if (d_is_negative(new_dentry))
4831 			goto exit5;
4832 
4833 		if (!d_is_dir(new_dentry)) {
4834 			error = -ENOTDIR;
4835 			if (new_last.name[new_last.len])
4836 				goto exit5;
4837 		}
4838 	}
4839 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4840 	if (!d_is_dir(old_dentry)) {
4841 		error = -ENOTDIR;
4842 		if (old_last.name[old_last.len])
4843 			goto exit5;
4844 		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4845 			goto exit5;
4846 	}
4847 	/* source should not be ancestor of target */
4848 	error = -EINVAL;
4849 	if (old_dentry == trap)
4850 		goto exit5;
4851 	/* target should not be an ancestor of source */
4852 	if (!(flags & RENAME_EXCHANGE))
4853 		error = -ENOTEMPTY;
4854 	if (new_dentry == trap)
4855 		goto exit5;
4856 
4857 	error = security_path_rename(&old_path, old_dentry,
4858 				     &new_path, new_dentry, flags);
4859 	if (error)
4860 		goto exit5;
4861 
4862 	rd.old_dir	   = old_path.dentry->d_inode;
4863 	rd.old_dentry	   = old_dentry;
4864 	rd.old_mnt_userns  = mnt_user_ns(old_path.mnt);
4865 	rd.new_dir	   = new_path.dentry->d_inode;
4866 	rd.new_dentry	   = new_dentry;
4867 	rd.new_mnt_userns  = mnt_user_ns(new_path.mnt);
4868 	rd.delegated_inode = &delegated_inode;
4869 	rd.flags	   = flags;
4870 	error = vfs_rename(&rd);
4871 exit5:
4872 	dput(new_dentry);
4873 exit4:
4874 	dput(old_dentry);
4875 exit3:
4876 	unlock_rename(new_path.dentry, old_path.dentry);
4877 	if (delegated_inode) {
4878 		error = break_deleg_wait(&delegated_inode);
4879 		if (!error)
4880 			goto retry_deleg;
4881 	}
4882 	mnt_drop_write(old_path.mnt);
4883 exit2:
4884 	if (retry_estale(error, lookup_flags))
4885 		should_retry = true;
4886 	path_put(&new_path);
4887 exit1:
4888 	path_put(&old_path);
4889 	if (should_retry) {
4890 		should_retry = false;
4891 		lookup_flags |= LOOKUP_REVAL;
4892 		goto retry;
4893 	}
4894 put_names:
4895 	putname(from);
4896 	putname(to);
4897 	return error;
4898 }
4899 
4900 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4901 		int, newdfd, const char __user *, newname, unsigned int, flags)
4902 {
4903 	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
4904 				flags);
4905 }
4906 
4907 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4908 		int, newdfd, const char __user *, newname)
4909 {
4910 	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
4911 				0);
4912 }
4913 
4914 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4915 {
4916 	return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
4917 				getname(newname), 0);
4918 }
4919 
4920 int readlink_copy(char __user *buffer, int buflen, const char *link)
4921 {
4922 	int len = PTR_ERR(link);
4923 	if (IS_ERR(link))
4924 		goto out;
4925 
4926 	len = strlen(link);
4927 	if (len > (unsigned) buflen)
4928 		len = buflen;
4929 	if (copy_to_user(buffer, link, len))
4930 		len = -EFAULT;
4931 out:
4932 	return len;
4933 }
4934 
4935 /**
4936  * vfs_readlink - copy symlink body into userspace buffer
4937  * @dentry: dentry on which to get symbolic link
4938  * @buffer: user memory pointer
4939  * @buflen: size of buffer
4940  *
4941  * Does not touch atime.  That's up to the caller if necessary
4942  *
4943  * Does not call security hook.
4944  */
4945 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4946 {
4947 	struct inode *inode = d_inode(dentry);
4948 	DEFINE_DELAYED_CALL(done);
4949 	const char *link;
4950 	int res;
4951 
4952 	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4953 		if (unlikely(inode->i_op->readlink))
4954 			return inode->i_op->readlink(dentry, buffer, buflen);
4955 
4956 		if (!d_is_symlink(dentry))
4957 			return -EINVAL;
4958 
4959 		spin_lock(&inode->i_lock);
4960 		inode->i_opflags |= IOP_DEFAULT_READLINK;
4961 		spin_unlock(&inode->i_lock);
4962 	}
4963 
4964 	link = READ_ONCE(inode->i_link);
4965 	if (!link) {
4966 		link = inode->i_op->get_link(dentry, inode, &done);
4967 		if (IS_ERR(link))
4968 			return PTR_ERR(link);
4969 	}
4970 	res = readlink_copy(buffer, buflen, link);
4971 	do_delayed_call(&done);
4972 	return res;
4973 }
4974 EXPORT_SYMBOL(vfs_readlink);
4975 
4976 /**
4977  * vfs_get_link - get symlink body
4978  * @dentry: dentry on which to get symbolic link
4979  * @done: caller needs to free returned data with this
4980  *
4981  * Calls security hook and i_op->get_link() on the supplied inode.
4982  *
4983  * It does not touch atime.  That's up to the caller if necessary.
4984  *
4985  * Does not work on "special" symlinks like /proc/$$/fd/N
4986  */
4987 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4988 {
4989 	const char *res = ERR_PTR(-EINVAL);
4990 	struct inode *inode = d_inode(dentry);
4991 
4992 	if (d_is_symlink(dentry)) {
4993 		res = ERR_PTR(security_inode_readlink(dentry));
4994 		if (!res)
4995 			res = inode->i_op->get_link(dentry, inode, done);
4996 	}
4997 	return res;
4998 }
4999 EXPORT_SYMBOL(vfs_get_link);
5000 
5001 /* get the link contents into pagecache */
5002 const char *page_get_link(struct dentry *dentry, struct inode *inode,
5003 			  struct delayed_call *callback)
5004 {
5005 	char *kaddr;
5006 	struct page *page;
5007 	struct address_space *mapping = inode->i_mapping;
5008 
5009 	if (!dentry) {
5010 		page = find_get_page(mapping, 0);
5011 		if (!page)
5012 			return ERR_PTR(-ECHILD);
5013 		if (!PageUptodate(page)) {
5014 			put_page(page);
5015 			return ERR_PTR(-ECHILD);
5016 		}
5017 	} else {
5018 		page = read_mapping_page(mapping, 0, NULL);
5019 		if (IS_ERR(page))
5020 			return (char*)page;
5021 	}
5022 	set_delayed_call(callback, page_put_link, page);
5023 	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
5024 	kaddr = page_address(page);
5025 	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
5026 	return kaddr;
5027 }
5028 
5029 EXPORT_SYMBOL(page_get_link);
5030 
5031 void page_put_link(void *arg)
5032 {
5033 	put_page(arg);
5034 }
5035 EXPORT_SYMBOL(page_put_link);
5036 
5037 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5038 {
5039 	DEFINE_DELAYED_CALL(done);
5040 	int res = readlink_copy(buffer, buflen,
5041 				page_get_link(dentry, d_inode(dentry),
5042 					      &done));
5043 	do_delayed_call(&done);
5044 	return res;
5045 }
5046 EXPORT_SYMBOL(page_readlink);
5047 
5048 int page_symlink(struct inode *inode, const char *symname, int len)
5049 {
5050 	struct address_space *mapping = inode->i_mapping;
5051 	const struct address_space_operations *aops = mapping->a_ops;
5052 	bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS);
5053 	struct page *page;
5054 	void *fsdata;
5055 	int err;
5056 	unsigned int flags;
5057 
5058 retry:
5059 	if (nofs)
5060 		flags = memalloc_nofs_save();
5061 	err = aops->write_begin(NULL, mapping, 0, len-1, &page, &fsdata);
5062 	if (nofs)
5063 		memalloc_nofs_restore(flags);
5064 	if (err)
5065 		goto fail;
5066 
5067 	memcpy(page_address(page), symname, len-1);
5068 
5069 	err = aops->write_end(NULL, mapping, 0, len-1, len-1,
5070 							page, fsdata);
5071 	if (err < 0)
5072 		goto fail;
5073 	if (err < len-1)
5074 		goto retry;
5075 
5076 	mark_inode_dirty(inode);
5077 	return 0;
5078 fail:
5079 	return err;
5080 }
5081 EXPORT_SYMBOL(page_symlink);
5082 
5083 const struct inode_operations page_symlink_inode_operations = {
5084 	.get_link	= page_get_link,
5085 };
5086 EXPORT_SYMBOL(page_symlink_inode_operations);
5087