xref: /linux/fs/namei.c (revision 4b024225c4a8245e6ecc66ce1df1eaf2ebeb4acb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/namei.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * Some corrections by tytso.
10  */
11 
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13  * lookup logic.
14  */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16  */
17 
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/fsnotify.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/ima.h>
29 #include <linux/syscalls.h>
30 #include <linux/mount.h>
31 #include <linux/audit.h>
32 #include <linux/capability.h>
33 #include <linux/file.h>
34 #include <linux/fcntl.h>
35 #include <linux/device_cgroup.h>
36 #include <linux/fs_struct.h>
37 #include <linux/posix_acl.h>
38 #include <linux/hash.h>
39 #include <linux/bitops.h>
40 #include <linux/init_task.h>
41 #include <linux/uaccess.h>
42 
43 #include "internal.h"
44 #include "mount.h"
45 
46 /* [Feb-1997 T. Schoebel-Theuer]
47  * Fundamental changes in the pathname lookup mechanisms (namei)
48  * were necessary because of omirr.  The reason is that omirr needs
49  * to know the _real_ pathname, not the user-supplied one, in case
50  * of symlinks (and also when transname replacements occur).
51  *
52  * The new code replaces the old recursive symlink resolution with
53  * an iterative one (in case of non-nested symlink chains).  It does
54  * this with calls to <fs>_follow_link().
55  * As a side effect, dir_namei(), _namei() and follow_link() are now
56  * replaced with a single function lookup_dentry() that can handle all
57  * the special cases of the former code.
58  *
59  * With the new dcache, the pathname is stored at each inode, at least as
60  * long as the refcount of the inode is positive.  As a side effect, the
61  * size of the dcache depends on the inode cache and thus is dynamic.
62  *
63  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
64  * resolution to correspond with current state of the code.
65  *
66  * Note that the symlink resolution is not *completely* iterative.
67  * There is still a significant amount of tail- and mid- recursion in
68  * the algorithm.  Also, note that <fs>_readlink() is not used in
69  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
70  * may return different results than <fs>_follow_link().  Many virtual
71  * filesystems (including /proc) exhibit this behavior.
72  */
73 
74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
75  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
76  * and the name already exists in form of a symlink, try to create the new
77  * name indicated by the symlink. The old code always complained that the
78  * name already exists, due to not following the symlink even if its target
79  * is nonexistent.  The new semantics affects also mknod() and link() when
80  * the name is a symlink pointing to a non-existent name.
81  *
82  * I don't know which semantics is the right one, since I have no access
83  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
84  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
85  * "old" one. Personally, I think the new semantics is much more logical.
86  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
87  * file does succeed in both HP-UX and SunOs, but not in Solaris
88  * and in the old Linux semantics.
89  */
90 
91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
92  * semantics.  See the comments in "open_namei" and "do_link" below.
93  *
94  * [10-Sep-98 Alan Modra] Another symlink change.
95  */
96 
97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
98  *	inside the path - always follow.
99  *	in the last component in creation/removal/renaming - never follow.
100  *	if LOOKUP_FOLLOW passed - follow.
101  *	if the pathname has trailing slashes - follow.
102  *	otherwise - don't follow.
103  * (applied in that order).
104  *
105  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
106  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
107  * During the 2.4 we need to fix the userland stuff depending on it -
108  * hopefully we will be able to get rid of that wart in 2.5. So far only
109  * XEmacs seems to be relying on it...
110  */
111 /*
112  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
113  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
114  * any extra contention...
115  */
116 
117 /* In order to reduce some races, while at the same time doing additional
118  * checking and hopefully speeding things up, we copy filenames to the
119  * kernel data space before using them..
120  *
121  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
122  * PATH_MAX includes the nul terminator --RR.
123  */
124 
125 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
126 
127 struct filename *
128 getname_flags(const char __user *filename, int flags, int *empty)
129 {
130 	struct filename *result;
131 	char *kname;
132 	int len;
133 
134 	result = audit_reusename(filename);
135 	if (result)
136 		return result;
137 
138 	result = __getname();
139 	if (unlikely(!result))
140 		return ERR_PTR(-ENOMEM);
141 
142 	/*
143 	 * First, try to embed the struct filename inside the names_cache
144 	 * allocation
145 	 */
146 	kname = (char *)result->iname;
147 	result->name = kname;
148 
149 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
150 	if (unlikely(len < 0)) {
151 		__putname(result);
152 		return ERR_PTR(len);
153 	}
154 
155 	/*
156 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
157 	 * separate struct filename so we can dedicate the entire
158 	 * names_cache allocation for the pathname, and re-do the copy from
159 	 * userland.
160 	 */
161 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
162 		const size_t size = offsetof(struct filename, iname[1]);
163 		kname = (char *)result;
164 
165 		/*
166 		 * size is chosen that way we to guarantee that
167 		 * result->iname[0] is within the same object and that
168 		 * kname can't be equal to result->iname, no matter what.
169 		 */
170 		result = kzalloc(size, GFP_KERNEL);
171 		if (unlikely(!result)) {
172 			__putname(kname);
173 			return ERR_PTR(-ENOMEM);
174 		}
175 		result->name = kname;
176 		len = strncpy_from_user(kname, filename, PATH_MAX);
177 		if (unlikely(len < 0)) {
178 			__putname(kname);
179 			kfree(result);
180 			return ERR_PTR(len);
181 		}
182 		if (unlikely(len == PATH_MAX)) {
183 			__putname(kname);
184 			kfree(result);
185 			return ERR_PTR(-ENAMETOOLONG);
186 		}
187 	}
188 
189 	result->refcnt = 1;
190 	/* The empty path is special. */
191 	if (unlikely(!len)) {
192 		if (empty)
193 			*empty = 1;
194 		if (!(flags & LOOKUP_EMPTY)) {
195 			putname(result);
196 			return ERR_PTR(-ENOENT);
197 		}
198 	}
199 
200 	result->uptr = filename;
201 	result->aname = NULL;
202 	audit_getname(result);
203 	return result;
204 }
205 
206 struct filename *
207 getname(const char __user * filename)
208 {
209 	return getname_flags(filename, 0, NULL);
210 }
211 
212 struct filename *
213 getname_kernel(const char * filename)
214 {
215 	struct filename *result;
216 	int len = strlen(filename) + 1;
217 
218 	result = __getname();
219 	if (unlikely(!result))
220 		return ERR_PTR(-ENOMEM);
221 
222 	if (len <= EMBEDDED_NAME_MAX) {
223 		result->name = (char *)result->iname;
224 	} else if (len <= PATH_MAX) {
225 		const size_t size = offsetof(struct filename, iname[1]);
226 		struct filename *tmp;
227 
228 		tmp = kmalloc(size, GFP_KERNEL);
229 		if (unlikely(!tmp)) {
230 			__putname(result);
231 			return ERR_PTR(-ENOMEM);
232 		}
233 		tmp->name = (char *)result;
234 		result = tmp;
235 	} else {
236 		__putname(result);
237 		return ERR_PTR(-ENAMETOOLONG);
238 	}
239 	memcpy((char *)result->name, filename, len);
240 	result->uptr = NULL;
241 	result->aname = NULL;
242 	result->refcnt = 1;
243 	audit_getname(result);
244 
245 	return result;
246 }
247 
248 void putname(struct filename *name)
249 {
250 	BUG_ON(name->refcnt <= 0);
251 
252 	if (--name->refcnt > 0)
253 		return;
254 
255 	if (name->name != name->iname) {
256 		__putname(name->name);
257 		kfree(name);
258 	} else
259 		__putname(name);
260 }
261 
262 static int check_acl(struct inode *inode, int mask)
263 {
264 #ifdef CONFIG_FS_POSIX_ACL
265 	struct posix_acl *acl;
266 
267 	if (mask & MAY_NOT_BLOCK) {
268 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
269 	        if (!acl)
270 	                return -EAGAIN;
271 		/* no ->get_acl() calls in RCU mode... */
272 		if (is_uncached_acl(acl))
273 			return -ECHILD;
274 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
275 	}
276 
277 	acl = get_acl(inode, ACL_TYPE_ACCESS);
278 	if (IS_ERR(acl))
279 		return PTR_ERR(acl);
280 	if (acl) {
281 	        int error = posix_acl_permission(inode, acl, mask);
282 	        posix_acl_release(acl);
283 	        return error;
284 	}
285 #endif
286 
287 	return -EAGAIN;
288 }
289 
290 /*
291  * This does the basic permission checking
292  */
293 static int acl_permission_check(struct inode *inode, int mask)
294 {
295 	unsigned int mode = inode->i_mode;
296 
297 	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
298 		mode >>= 6;
299 	else {
300 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
301 			int error = check_acl(inode, mask);
302 			if (error != -EAGAIN)
303 				return error;
304 		}
305 
306 		if (in_group_p(inode->i_gid))
307 			mode >>= 3;
308 	}
309 
310 	/*
311 	 * If the DACs are ok we don't need any capability check.
312 	 */
313 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
314 		return 0;
315 	return -EACCES;
316 }
317 
318 /**
319  * generic_permission -  check for access rights on a Posix-like filesystem
320  * @inode:	inode to check access rights for
321  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
322  *
323  * Used to check for read/write/execute permissions on a file.
324  * We use "fsuid" for this, letting us set arbitrary permissions
325  * for filesystem access without changing the "normal" uids which
326  * are used for other things.
327  *
328  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
329  * request cannot be satisfied (eg. requires blocking or too much complexity).
330  * It would then be called again in ref-walk mode.
331  */
332 int generic_permission(struct inode *inode, int mask)
333 {
334 	int ret;
335 
336 	/*
337 	 * Do the basic permission checks.
338 	 */
339 	ret = acl_permission_check(inode, mask);
340 	if (ret != -EACCES)
341 		return ret;
342 
343 	if (S_ISDIR(inode->i_mode)) {
344 		/* DACs are overridable for directories */
345 		if (!(mask & MAY_WRITE))
346 			if (capable_wrt_inode_uidgid(inode,
347 						     CAP_DAC_READ_SEARCH))
348 				return 0;
349 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
350 			return 0;
351 		return -EACCES;
352 	}
353 
354 	/*
355 	 * Searching includes executable on directories, else just read.
356 	 */
357 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
358 	if (mask == MAY_READ)
359 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
360 			return 0;
361 	/*
362 	 * Read/write DACs are always overridable.
363 	 * Executable DACs are overridable when there is
364 	 * at least one exec bit set.
365 	 */
366 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
367 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
368 			return 0;
369 
370 	return -EACCES;
371 }
372 EXPORT_SYMBOL(generic_permission);
373 
374 /*
375  * We _really_ want to just do "generic_permission()" without
376  * even looking at the inode->i_op values. So we keep a cache
377  * flag in inode->i_opflags, that says "this has not special
378  * permission function, use the fast case".
379  */
380 static inline int do_inode_permission(struct inode *inode, int mask)
381 {
382 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
383 		if (likely(inode->i_op->permission))
384 			return inode->i_op->permission(inode, mask);
385 
386 		/* This gets set once for the inode lifetime */
387 		spin_lock(&inode->i_lock);
388 		inode->i_opflags |= IOP_FASTPERM;
389 		spin_unlock(&inode->i_lock);
390 	}
391 	return generic_permission(inode, mask);
392 }
393 
394 /**
395  * sb_permission - Check superblock-level permissions
396  * @sb: Superblock of inode to check permission on
397  * @inode: Inode to check permission on
398  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
399  *
400  * Separate out file-system wide checks from inode-specific permission checks.
401  */
402 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
403 {
404 	if (unlikely(mask & MAY_WRITE)) {
405 		umode_t mode = inode->i_mode;
406 
407 		/* Nobody gets write access to a read-only fs. */
408 		if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
409 			return -EROFS;
410 	}
411 	return 0;
412 }
413 
414 /**
415  * inode_permission - Check for access rights to a given inode
416  * @inode: Inode to check permission on
417  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
418  *
419  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
420  * this, letting us set arbitrary permissions for filesystem access without
421  * changing the "normal" UIDs which are used for other things.
422  *
423  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
424  */
425 int inode_permission(struct inode *inode, int mask)
426 {
427 	int retval;
428 
429 	retval = sb_permission(inode->i_sb, inode, mask);
430 	if (retval)
431 		return retval;
432 
433 	if (unlikely(mask & MAY_WRITE)) {
434 		/*
435 		 * Nobody gets write access to an immutable file.
436 		 */
437 		if (IS_IMMUTABLE(inode))
438 			return -EPERM;
439 
440 		/*
441 		 * Updating mtime will likely cause i_uid and i_gid to be
442 		 * written back improperly if their true value is unknown
443 		 * to the vfs.
444 		 */
445 		if (HAS_UNMAPPED_ID(inode))
446 			return -EACCES;
447 	}
448 
449 	retval = do_inode_permission(inode, mask);
450 	if (retval)
451 		return retval;
452 
453 	retval = devcgroup_inode_permission(inode, mask);
454 	if (retval)
455 		return retval;
456 
457 	return security_inode_permission(inode, mask);
458 }
459 EXPORT_SYMBOL(inode_permission);
460 
461 /**
462  * path_get - get a reference to a path
463  * @path: path to get the reference to
464  *
465  * Given a path increment the reference count to the dentry and the vfsmount.
466  */
467 void path_get(const struct path *path)
468 {
469 	mntget(path->mnt);
470 	dget(path->dentry);
471 }
472 EXPORT_SYMBOL(path_get);
473 
474 /**
475  * path_put - put a reference to a path
476  * @path: path to put the reference to
477  *
478  * Given a path decrement the reference count to the dentry and the vfsmount.
479  */
480 void path_put(const struct path *path)
481 {
482 	dput(path->dentry);
483 	mntput(path->mnt);
484 }
485 EXPORT_SYMBOL(path_put);
486 
487 #define EMBEDDED_LEVELS 2
488 struct nameidata {
489 	struct path	path;
490 	struct qstr	last;
491 	struct path	root;
492 	struct inode	*inode; /* path.dentry.d_inode */
493 	unsigned int	flags;
494 	unsigned	seq, m_seq;
495 	int		last_type;
496 	unsigned	depth;
497 	int		total_link_count;
498 	struct saved {
499 		struct path link;
500 		struct delayed_call done;
501 		const char *name;
502 		unsigned seq;
503 	} *stack, internal[EMBEDDED_LEVELS];
504 	struct filename	*name;
505 	struct nameidata *saved;
506 	struct inode	*link_inode;
507 	unsigned	root_seq;
508 	int		dfd;
509 } __randomize_layout;
510 
511 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
512 {
513 	struct nameidata *old = current->nameidata;
514 	p->stack = p->internal;
515 	p->dfd = dfd;
516 	p->name = name;
517 	p->total_link_count = old ? old->total_link_count : 0;
518 	p->saved = old;
519 	current->nameidata = p;
520 }
521 
522 static void restore_nameidata(void)
523 {
524 	struct nameidata *now = current->nameidata, *old = now->saved;
525 
526 	current->nameidata = old;
527 	if (old)
528 		old->total_link_count = now->total_link_count;
529 	if (now->stack != now->internal)
530 		kfree(now->stack);
531 }
532 
533 static int __nd_alloc_stack(struct nameidata *nd)
534 {
535 	struct saved *p;
536 
537 	if (nd->flags & LOOKUP_RCU) {
538 		p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
539 				  GFP_ATOMIC);
540 		if (unlikely(!p))
541 			return -ECHILD;
542 	} else {
543 		p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
544 				  GFP_KERNEL);
545 		if (unlikely(!p))
546 			return -ENOMEM;
547 	}
548 	memcpy(p, nd->internal, sizeof(nd->internal));
549 	nd->stack = p;
550 	return 0;
551 }
552 
553 /**
554  * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
555  * @path: nameidate to verify
556  *
557  * Rename can sometimes move a file or directory outside of a bind
558  * mount, path_connected allows those cases to be detected.
559  */
560 static bool path_connected(const struct path *path)
561 {
562 	struct vfsmount *mnt = path->mnt;
563 	struct super_block *sb = mnt->mnt_sb;
564 
565 	/* Bind mounts and multi-root filesystems can have disconnected paths */
566 	if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root))
567 		return true;
568 
569 	return is_subdir(path->dentry, mnt->mnt_root);
570 }
571 
572 static inline int nd_alloc_stack(struct nameidata *nd)
573 {
574 	if (likely(nd->depth != EMBEDDED_LEVELS))
575 		return 0;
576 	if (likely(nd->stack != nd->internal))
577 		return 0;
578 	return __nd_alloc_stack(nd);
579 }
580 
581 static void drop_links(struct nameidata *nd)
582 {
583 	int i = nd->depth;
584 	while (i--) {
585 		struct saved *last = nd->stack + i;
586 		do_delayed_call(&last->done);
587 		clear_delayed_call(&last->done);
588 	}
589 }
590 
591 static void terminate_walk(struct nameidata *nd)
592 {
593 	drop_links(nd);
594 	if (!(nd->flags & LOOKUP_RCU)) {
595 		int i;
596 		path_put(&nd->path);
597 		for (i = 0; i < nd->depth; i++)
598 			path_put(&nd->stack[i].link);
599 		if (nd->flags & LOOKUP_ROOT_GRABBED) {
600 			path_put(&nd->root);
601 			nd->flags &= ~LOOKUP_ROOT_GRABBED;
602 		}
603 	} else {
604 		nd->flags &= ~LOOKUP_RCU;
605 		rcu_read_unlock();
606 	}
607 	nd->depth = 0;
608 }
609 
610 /* path_put is needed afterwards regardless of success or failure */
611 static bool legitimize_path(struct nameidata *nd,
612 			    struct path *path, unsigned seq)
613 {
614 	int res = __legitimize_mnt(path->mnt, nd->m_seq);
615 	if (unlikely(res)) {
616 		if (res > 0)
617 			path->mnt = NULL;
618 		path->dentry = NULL;
619 		return false;
620 	}
621 	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
622 		path->dentry = NULL;
623 		return false;
624 	}
625 	return !read_seqcount_retry(&path->dentry->d_seq, seq);
626 }
627 
628 static bool legitimize_links(struct nameidata *nd)
629 {
630 	int i;
631 	for (i = 0; i < nd->depth; i++) {
632 		struct saved *last = nd->stack + i;
633 		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
634 			drop_links(nd);
635 			nd->depth = i + 1;
636 			return false;
637 		}
638 	}
639 	return true;
640 }
641 
642 static bool legitimize_root(struct nameidata *nd)
643 {
644 	if (!nd->root.mnt || (nd->flags & LOOKUP_ROOT))
645 		return true;
646 	nd->flags |= LOOKUP_ROOT_GRABBED;
647 	return legitimize_path(nd, &nd->root, nd->root_seq);
648 }
649 
650 /*
651  * Path walking has 2 modes, rcu-walk and ref-walk (see
652  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
653  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
654  * normal reference counts on dentries and vfsmounts to transition to ref-walk
655  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
656  * got stuck, so ref-walk may continue from there. If this is not successful
657  * (eg. a seqcount has changed), then failure is returned and it's up to caller
658  * to restart the path walk from the beginning in ref-walk mode.
659  */
660 
661 /**
662  * unlazy_walk - try to switch to ref-walk mode.
663  * @nd: nameidata pathwalk data
664  * Returns: 0 on success, -ECHILD on failure
665  *
666  * unlazy_walk attempts to legitimize the current nd->path and nd->root
667  * for ref-walk mode.
668  * Must be called from rcu-walk context.
669  * Nothing should touch nameidata between unlazy_walk() failure and
670  * terminate_walk().
671  */
672 static int unlazy_walk(struct nameidata *nd)
673 {
674 	struct dentry *parent = nd->path.dentry;
675 
676 	BUG_ON(!(nd->flags & LOOKUP_RCU));
677 
678 	nd->flags &= ~LOOKUP_RCU;
679 	if (unlikely(!legitimize_links(nd)))
680 		goto out1;
681 	if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
682 		goto out;
683 	if (unlikely(!legitimize_root(nd)))
684 		goto out;
685 	rcu_read_unlock();
686 	BUG_ON(nd->inode != parent->d_inode);
687 	return 0;
688 
689 out1:
690 	nd->path.mnt = NULL;
691 	nd->path.dentry = NULL;
692 out:
693 	rcu_read_unlock();
694 	return -ECHILD;
695 }
696 
697 /**
698  * unlazy_child - try to switch to ref-walk mode.
699  * @nd: nameidata pathwalk data
700  * @dentry: child of nd->path.dentry
701  * @seq: seq number to check dentry against
702  * Returns: 0 on success, -ECHILD on failure
703  *
704  * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
705  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
706  * @nd.  Must be called from rcu-walk context.
707  * Nothing should touch nameidata between unlazy_child() failure and
708  * terminate_walk().
709  */
710 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
711 {
712 	BUG_ON(!(nd->flags & LOOKUP_RCU));
713 
714 	nd->flags &= ~LOOKUP_RCU;
715 	if (unlikely(!legitimize_links(nd)))
716 		goto out2;
717 	if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
718 		goto out2;
719 	if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
720 		goto out1;
721 
722 	/*
723 	 * We need to move both the parent and the dentry from the RCU domain
724 	 * to be properly refcounted. And the sequence number in the dentry
725 	 * validates *both* dentry counters, since we checked the sequence
726 	 * number of the parent after we got the child sequence number. So we
727 	 * know the parent must still be valid if the child sequence number is
728 	 */
729 	if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
730 		goto out;
731 	if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
732 		goto out_dput;
733 	/*
734 	 * Sequence counts matched. Now make sure that the root is
735 	 * still valid and get it if required.
736 	 */
737 	if (unlikely(!legitimize_root(nd)))
738 		goto out_dput;
739 	rcu_read_unlock();
740 	return 0;
741 
742 out2:
743 	nd->path.mnt = NULL;
744 out1:
745 	nd->path.dentry = NULL;
746 out:
747 	rcu_read_unlock();
748 	return -ECHILD;
749 out_dput:
750 	rcu_read_unlock();
751 	dput(dentry);
752 	return -ECHILD;
753 }
754 
755 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
756 {
757 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
758 		return dentry->d_op->d_revalidate(dentry, flags);
759 	else
760 		return 1;
761 }
762 
763 /**
764  * complete_walk - successful completion of path walk
765  * @nd:  pointer nameidata
766  *
767  * If we had been in RCU mode, drop out of it and legitimize nd->path.
768  * Revalidate the final result, unless we'd already done that during
769  * the path walk or the filesystem doesn't ask for it.  Return 0 on
770  * success, -error on failure.  In case of failure caller does not
771  * need to drop nd->path.
772  */
773 static int complete_walk(struct nameidata *nd)
774 {
775 	struct dentry *dentry = nd->path.dentry;
776 	int status;
777 
778 	if (nd->flags & LOOKUP_RCU) {
779 		if (!(nd->flags & LOOKUP_ROOT))
780 			nd->root.mnt = NULL;
781 		if (unlikely(unlazy_walk(nd)))
782 			return -ECHILD;
783 	}
784 
785 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
786 		return 0;
787 
788 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
789 		return 0;
790 
791 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
792 	if (status > 0)
793 		return 0;
794 
795 	if (!status)
796 		status = -ESTALE;
797 
798 	return status;
799 }
800 
801 static void set_root(struct nameidata *nd)
802 {
803 	struct fs_struct *fs = current->fs;
804 
805 	if (nd->flags & LOOKUP_RCU) {
806 		unsigned seq;
807 
808 		do {
809 			seq = read_seqcount_begin(&fs->seq);
810 			nd->root = fs->root;
811 			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
812 		} while (read_seqcount_retry(&fs->seq, seq));
813 	} else {
814 		get_fs_root(fs, &nd->root);
815 		nd->flags |= LOOKUP_ROOT_GRABBED;
816 	}
817 }
818 
819 static void path_put_conditional(struct path *path, struct nameidata *nd)
820 {
821 	dput(path->dentry);
822 	if (path->mnt != nd->path.mnt)
823 		mntput(path->mnt);
824 }
825 
826 static inline void path_to_nameidata(const struct path *path,
827 					struct nameidata *nd)
828 {
829 	if (!(nd->flags & LOOKUP_RCU)) {
830 		dput(nd->path.dentry);
831 		if (nd->path.mnt != path->mnt)
832 			mntput(nd->path.mnt);
833 	}
834 	nd->path.mnt = path->mnt;
835 	nd->path.dentry = path->dentry;
836 }
837 
838 static int nd_jump_root(struct nameidata *nd)
839 {
840 	if (nd->flags & LOOKUP_RCU) {
841 		struct dentry *d;
842 		nd->path = nd->root;
843 		d = nd->path.dentry;
844 		nd->inode = d->d_inode;
845 		nd->seq = nd->root_seq;
846 		if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
847 			return -ECHILD;
848 	} else {
849 		path_put(&nd->path);
850 		nd->path = nd->root;
851 		path_get(&nd->path);
852 		nd->inode = nd->path.dentry->d_inode;
853 	}
854 	nd->flags |= LOOKUP_JUMPED;
855 	return 0;
856 }
857 
858 /*
859  * Helper to directly jump to a known parsed path from ->get_link,
860  * caller must have taken a reference to path beforehand.
861  */
862 void nd_jump_link(struct path *path)
863 {
864 	struct nameidata *nd = current->nameidata;
865 	path_put(&nd->path);
866 
867 	nd->path = *path;
868 	nd->inode = nd->path.dentry->d_inode;
869 	nd->flags |= LOOKUP_JUMPED;
870 }
871 
872 static inline void put_link(struct nameidata *nd)
873 {
874 	struct saved *last = nd->stack + --nd->depth;
875 	do_delayed_call(&last->done);
876 	if (!(nd->flags & LOOKUP_RCU))
877 		path_put(&last->link);
878 }
879 
880 int sysctl_protected_symlinks __read_mostly = 0;
881 int sysctl_protected_hardlinks __read_mostly = 0;
882 int sysctl_protected_fifos __read_mostly;
883 int sysctl_protected_regular __read_mostly;
884 
885 /**
886  * may_follow_link - Check symlink following for unsafe situations
887  * @nd: nameidata pathwalk data
888  *
889  * In the case of the sysctl_protected_symlinks sysctl being enabled,
890  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
891  * in a sticky world-writable directory. This is to protect privileged
892  * processes from failing races against path names that may change out
893  * from under them by way of other users creating malicious symlinks.
894  * It will permit symlinks to be followed only when outside a sticky
895  * world-writable directory, or when the uid of the symlink and follower
896  * match, or when the directory owner matches the symlink's owner.
897  *
898  * Returns 0 if following the symlink is allowed, -ve on error.
899  */
900 static inline int may_follow_link(struct nameidata *nd)
901 {
902 	const struct inode *inode;
903 	const struct inode *parent;
904 	kuid_t puid;
905 
906 	if (!sysctl_protected_symlinks)
907 		return 0;
908 
909 	/* Allowed if owner and follower match. */
910 	inode = nd->link_inode;
911 	if (uid_eq(current_cred()->fsuid, inode->i_uid))
912 		return 0;
913 
914 	/* Allowed if parent directory not sticky and world-writable. */
915 	parent = nd->inode;
916 	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
917 		return 0;
918 
919 	/* Allowed if parent directory and link owner match. */
920 	puid = parent->i_uid;
921 	if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
922 		return 0;
923 
924 	if (nd->flags & LOOKUP_RCU)
925 		return -ECHILD;
926 
927 	audit_inode(nd->name, nd->stack[0].link.dentry, 0);
928 	audit_log_link_denied("follow_link");
929 	return -EACCES;
930 }
931 
932 /**
933  * safe_hardlink_source - Check for safe hardlink conditions
934  * @inode: the source inode to hardlink from
935  *
936  * Return false if at least one of the following conditions:
937  *    - inode is not a regular file
938  *    - inode is setuid
939  *    - inode is setgid and group-exec
940  *    - access failure for read and write
941  *
942  * Otherwise returns true.
943  */
944 static bool safe_hardlink_source(struct inode *inode)
945 {
946 	umode_t mode = inode->i_mode;
947 
948 	/* Special files should not get pinned to the filesystem. */
949 	if (!S_ISREG(mode))
950 		return false;
951 
952 	/* Setuid files should not get pinned to the filesystem. */
953 	if (mode & S_ISUID)
954 		return false;
955 
956 	/* Executable setgid files should not get pinned to the filesystem. */
957 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
958 		return false;
959 
960 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
961 	if (inode_permission(inode, MAY_READ | MAY_WRITE))
962 		return false;
963 
964 	return true;
965 }
966 
967 /**
968  * may_linkat - Check permissions for creating a hardlink
969  * @link: the source to hardlink from
970  *
971  * Block hardlink when all of:
972  *  - sysctl_protected_hardlinks enabled
973  *  - fsuid does not match inode
974  *  - hardlink source is unsafe (see safe_hardlink_source() above)
975  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
976  *
977  * Returns 0 if successful, -ve on error.
978  */
979 static int may_linkat(struct path *link)
980 {
981 	struct inode *inode = link->dentry->d_inode;
982 
983 	/* Inode writeback is not safe when the uid or gid are invalid. */
984 	if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
985 		return -EOVERFLOW;
986 
987 	if (!sysctl_protected_hardlinks)
988 		return 0;
989 
990 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
991 	 * otherwise, it must be a safe source.
992 	 */
993 	if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
994 		return 0;
995 
996 	audit_log_link_denied("linkat");
997 	return -EPERM;
998 }
999 
1000 /**
1001  * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1002  *			  should be allowed, or not, on files that already
1003  *			  exist.
1004  * @dir: the sticky parent directory
1005  * @inode: the inode of the file to open
1006  *
1007  * Block an O_CREAT open of a FIFO (or a regular file) when:
1008  *   - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1009  *   - the file already exists
1010  *   - we are in a sticky directory
1011  *   - we don't own the file
1012  *   - the owner of the directory doesn't own the file
1013  *   - the directory is world writable
1014  * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1015  * the directory doesn't have to be world writable: being group writable will
1016  * be enough.
1017  *
1018  * Returns 0 if the open is allowed, -ve on error.
1019  */
1020 static int may_create_in_sticky(struct dentry * const dir,
1021 				struct inode * const inode)
1022 {
1023 	if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1024 	    (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1025 	    likely(!(dir->d_inode->i_mode & S_ISVTX)) ||
1026 	    uid_eq(inode->i_uid, dir->d_inode->i_uid) ||
1027 	    uid_eq(current_fsuid(), inode->i_uid))
1028 		return 0;
1029 
1030 	if (likely(dir->d_inode->i_mode & 0002) ||
1031 	    (dir->d_inode->i_mode & 0020 &&
1032 	     ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1033 	      (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1034 		return -EACCES;
1035 	}
1036 	return 0;
1037 }
1038 
1039 static __always_inline
1040 const char *get_link(struct nameidata *nd)
1041 {
1042 	struct saved *last = nd->stack + nd->depth - 1;
1043 	struct dentry *dentry = last->link.dentry;
1044 	struct inode *inode = nd->link_inode;
1045 	int error;
1046 	const char *res;
1047 
1048 	if (!(nd->flags & LOOKUP_RCU)) {
1049 		touch_atime(&last->link);
1050 		cond_resched();
1051 	} else if (atime_needs_update(&last->link, inode)) {
1052 		if (unlikely(unlazy_walk(nd)))
1053 			return ERR_PTR(-ECHILD);
1054 		touch_atime(&last->link);
1055 	}
1056 
1057 	error = security_inode_follow_link(dentry, inode,
1058 					   nd->flags & LOOKUP_RCU);
1059 	if (unlikely(error))
1060 		return ERR_PTR(error);
1061 
1062 	nd->last_type = LAST_BIND;
1063 	res = READ_ONCE(inode->i_link);
1064 	if (!res) {
1065 		const char * (*get)(struct dentry *, struct inode *,
1066 				struct delayed_call *);
1067 		get = inode->i_op->get_link;
1068 		if (nd->flags & LOOKUP_RCU) {
1069 			res = get(NULL, inode, &last->done);
1070 			if (res == ERR_PTR(-ECHILD)) {
1071 				if (unlikely(unlazy_walk(nd)))
1072 					return ERR_PTR(-ECHILD);
1073 				res = get(dentry, inode, &last->done);
1074 			}
1075 		} else {
1076 			res = get(dentry, inode, &last->done);
1077 		}
1078 		if (IS_ERR_OR_NULL(res))
1079 			return res;
1080 	}
1081 	if (*res == '/') {
1082 		if (!nd->root.mnt)
1083 			set_root(nd);
1084 		if (unlikely(nd_jump_root(nd)))
1085 			return ERR_PTR(-ECHILD);
1086 		while (unlikely(*++res == '/'))
1087 			;
1088 	}
1089 	if (!*res)
1090 		res = NULL;
1091 	return res;
1092 }
1093 
1094 /*
1095  * follow_up - Find the mountpoint of path's vfsmount
1096  *
1097  * Given a path, find the mountpoint of its source file system.
1098  * Replace @path with the path of the mountpoint in the parent mount.
1099  * Up is towards /.
1100  *
1101  * Return 1 if we went up a level and 0 if we were already at the
1102  * root.
1103  */
1104 int follow_up(struct path *path)
1105 {
1106 	struct mount *mnt = real_mount(path->mnt);
1107 	struct mount *parent;
1108 	struct dentry *mountpoint;
1109 
1110 	read_seqlock_excl(&mount_lock);
1111 	parent = mnt->mnt_parent;
1112 	if (parent == mnt) {
1113 		read_sequnlock_excl(&mount_lock);
1114 		return 0;
1115 	}
1116 	mntget(&parent->mnt);
1117 	mountpoint = dget(mnt->mnt_mountpoint);
1118 	read_sequnlock_excl(&mount_lock);
1119 	dput(path->dentry);
1120 	path->dentry = mountpoint;
1121 	mntput(path->mnt);
1122 	path->mnt = &parent->mnt;
1123 	return 1;
1124 }
1125 EXPORT_SYMBOL(follow_up);
1126 
1127 /*
1128  * Perform an automount
1129  * - return -EISDIR to tell follow_managed() to stop and return the path we
1130  *   were called with.
1131  */
1132 static int follow_automount(struct path *path, struct nameidata *nd,
1133 			    bool *need_mntput)
1134 {
1135 	struct vfsmount *mnt;
1136 	int err;
1137 
1138 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1139 		return -EREMOTE;
1140 
1141 	/* We don't want to mount if someone's just doing a stat -
1142 	 * unless they're stat'ing a directory and appended a '/' to
1143 	 * the name.
1144 	 *
1145 	 * We do, however, want to mount if someone wants to open or
1146 	 * create a file of any type under the mountpoint, wants to
1147 	 * traverse through the mountpoint or wants to open the
1148 	 * mounted directory.  Also, autofs may mark negative dentries
1149 	 * as being automount points.  These will need the attentions
1150 	 * of the daemon to instantiate them before they can be used.
1151 	 */
1152 	if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1153 			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1154 	    path->dentry->d_inode)
1155 		return -EISDIR;
1156 
1157 	nd->total_link_count++;
1158 	if (nd->total_link_count >= 40)
1159 		return -ELOOP;
1160 
1161 	mnt = path->dentry->d_op->d_automount(path);
1162 	if (IS_ERR(mnt)) {
1163 		/*
1164 		 * The filesystem is allowed to return -EISDIR here to indicate
1165 		 * it doesn't want to automount.  For instance, autofs would do
1166 		 * this so that its userspace daemon can mount on this dentry.
1167 		 *
1168 		 * However, we can only permit this if it's a terminal point in
1169 		 * the path being looked up; if it wasn't then the remainder of
1170 		 * the path is inaccessible and we should say so.
1171 		 */
1172 		if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1173 			return -EREMOTE;
1174 		return PTR_ERR(mnt);
1175 	}
1176 
1177 	if (!mnt) /* mount collision */
1178 		return 0;
1179 
1180 	if (!*need_mntput) {
1181 		/* lock_mount() may release path->mnt on error */
1182 		mntget(path->mnt);
1183 		*need_mntput = true;
1184 	}
1185 	err = finish_automount(mnt, path);
1186 
1187 	switch (err) {
1188 	case -EBUSY:
1189 		/* Someone else made a mount here whilst we were busy */
1190 		return 0;
1191 	case 0:
1192 		path_put(path);
1193 		path->mnt = mnt;
1194 		path->dentry = dget(mnt->mnt_root);
1195 		return 0;
1196 	default:
1197 		return err;
1198 	}
1199 
1200 }
1201 
1202 /*
1203  * Handle a dentry that is managed in some way.
1204  * - Flagged for transit management (autofs)
1205  * - Flagged as mountpoint
1206  * - Flagged as automount point
1207  *
1208  * This may only be called in refwalk mode.
1209  *
1210  * Serialization is taken care of in namespace.c
1211  */
1212 static int follow_managed(struct path *path, struct nameidata *nd)
1213 {
1214 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1215 	unsigned managed;
1216 	bool need_mntput = false;
1217 	int ret = 0;
1218 
1219 	/* Given that we're not holding a lock here, we retain the value in a
1220 	 * local variable for each dentry as we look at it so that we don't see
1221 	 * the components of that value change under us */
1222 	while (managed = READ_ONCE(path->dentry->d_flags),
1223 	       managed &= DCACHE_MANAGED_DENTRY,
1224 	       unlikely(managed != 0)) {
1225 		/* Allow the filesystem to manage the transit without i_mutex
1226 		 * being held. */
1227 		if (managed & DCACHE_MANAGE_TRANSIT) {
1228 			BUG_ON(!path->dentry->d_op);
1229 			BUG_ON(!path->dentry->d_op->d_manage);
1230 			ret = path->dentry->d_op->d_manage(path, false);
1231 			if (ret < 0)
1232 				break;
1233 		}
1234 
1235 		/* Transit to a mounted filesystem. */
1236 		if (managed & DCACHE_MOUNTED) {
1237 			struct vfsmount *mounted = lookup_mnt(path);
1238 			if (mounted) {
1239 				dput(path->dentry);
1240 				if (need_mntput)
1241 					mntput(path->mnt);
1242 				path->mnt = mounted;
1243 				path->dentry = dget(mounted->mnt_root);
1244 				need_mntput = true;
1245 				continue;
1246 			}
1247 
1248 			/* Something is mounted on this dentry in another
1249 			 * namespace and/or whatever was mounted there in this
1250 			 * namespace got unmounted before lookup_mnt() could
1251 			 * get it */
1252 		}
1253 
1254 		/* Handle an automount point */
1255 		if (managed & DCACHE_NEED_AUTOMOUNT) {
1256 			ret = follow_automount(path, nd, &need_mntput);
1257 			if (ret < 0)
1258 				break;
1259 			continue;
1260 		}
1261 
1262 		/* We didn't change the current path point */
1263 		break;
1264 	}
1265 
1266 	if (need_mntput && path->mnt == mnt)
1267 		mntput(path->mnt);
1268 	if (ret == -EISDIR || !ret)
1269 		ret = 1;
1270 	if (need_mntput)
1271 		nd->flags |= LOOKUP_JUMPED;
1272 	if (unlikely(ret < 0))
1273 		path_put_conditional(path, nd);
1274 	return ret;
1275 }
1276 
1277 int follow_down_one(struct path *path)
1278 {
1279 	struct vfsmount *mounted;
1280 
1281 	mounted = lookup_mnt(path);
1282 	if (mounted) {
1283 		dput(path->dentry);
1284 		mntput(path->mnt);
1285 		path->mnt = mounted;
1286 		path->dentry = dget(mounted->mnt_root);
1287 		return 1;
1288 	}
1289 	return 0;
1290 }
1291 EXPORT_SYMBOL(follow_down_one);
1292 
1293 static inline int managed_dentry_rcu(const struct path *path)
1294 {
1295 	return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1296 		path->dentry->d_op->d_manage(path, true) : 0;
1297 }
1298 
1299 /*
1300  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1301  * we meet a managed dentry that would need blocking.
1302  */
1303 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1304 			       struct inode **inode, unsigned *seqp)
1305 {
1306 	for (;;) {
1307 		struct mount *mounted;
1308 		/*
1309 		 * Don't forget we might have a non-mountpoint managed dentry
1310 		 * that wants to block transit.
1311 		 */
1312 		switch (managed_dentry_rcu(path)) {
1313 		case -ECHILD:
1314 		default:
1315 			return false;
1316 		case -EISDIR:
1317 			return true;
1318 		case 0:
1319 			break;
1320 		}
1321 
1322 		if (!d_mountpoint(path->dentry))
1323 			return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1324 
1325 		mounted = __lookup_mnt(path->mnt, path->dentry);
1326 		if (!mounted)
1327 			break;
1328 		path->mnt = &mounted->mnt;
1329 		path->dentry = mounted->mnt.mnt_root;
1330 		nd->flags |= LOOKUP_JUMPED;
1331 		*seqp = read_seqcount_begin(&path->dentry->d_seq);
1332 		/*
1333 		 * Update the inode too. We don't need to re-check the
1334 		 * dentry sequence number here after this d_inode read,
1335 		 * because a mount-point is always pinned.
1336 		 */
1337 		*inode = path->dentry->d_inode;
1338 	}
1339 	return !read_seqretry(&mount_lock, nd->m_seq) &&
1340 		!(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1341 }
1342 
1343 static int follow_dotdot_rcu(struct nameidata *nd)
1344 {
1345 	struct inode *inode = nd->inode;
1346 
1347 	while (1) {
1348 		if (path_equal(&nd->path, &nd->root))
1349 			break;
1350 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1351 			struct dentry *old = nd->path.dentry;
1352 			struct dentry *parent = old->d_parent;
1353 			unsigned seq;
1354 
1355 			inode = parent->d_inode;
1356 			seq = read_seqcount_begin(&parent->d_seq);
1357 			if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1358 				return -ECHILD;
1359 			nd->path.dentry = parent;
1360 			nd->seq = seq;
1361 			if (unlikely(!path_connected(&nd->path)))
1362 				return -ENOENT;
1363 			break;
1364 		} else {
1365 			struct mount *mnt = real_mount(nd->path.mnt);
1366 			struct mount *mparent = mnt->mnt_parent;
1367 			struct dentry *mountpoint = mnt->mnt_mountpoint;
1368 			struct inode *inode2 = mountpoint->d_inode;
1369 			unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1370 			if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1371 				return -ECHILD;
1372 			if (&mparent->mnt == nd->path.mnt)
1373 				break;
1374 			/* we know that mountpoint was pinned */
1375 			nd->path.dentry = mountpoint;
1376 			nd->path.mnt = &mparent->mnt;
1377 			inode = inode2;
1378 			nd->seq = seq;
1379 		}
1380 	}
1381 	while (unlikely(d_mountpoint(nd->path.dentry))) {
1382 		struct mount *mounted;
1383 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1384 		if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1385 			return -ECHILD;
1386 		if (!mounted)
1387 			break;
1388 		nd->path.mnt = &mounted->mnt;
1389 		nd->path.dentry = mounted->mnt.mnt_root;
1390 		inode = nd->path.dentry->d_inode;
1391 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1392 	}
1393 	nd->inode = inode;
1394 	return 0;
1395 }
1396 
1397 /*
1398  * Follow down to the covering mount currently visible to userspace.  At each
1399  * point, the filesystem owning that dentry may be queried as to whether the
1400  * caller is permitted to proceed or not.
1401  */
1402 int follow_down(struct path *path)
1403 {
1404 	unsigned managed;
1405 	int ret;
1406 
1407 	while (managed = READ_ONCE(path->dentry->d_flags),
1408 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1409 		/* Allow the filesystem to manage the transit without i_mutex
1410 		 * being held.
1411 		 *
1412 		 * We indicate to the filesystem if someone is trying to mount
1413 		 * something here.  This gives autofs the chance to deny anyone
1414 		 * other than its daemon the right to mount on its
1415 		 * superstructure.
1416 		 *
1417 		 * The filesystem may sleep at this point.
1418 		 */
1419 		if (managed & DCACHE_MANAGE_TRANSIT) {
1420 			BUG_ON(!path->dentry->d_op);
1421 			BUG_ON(!path->dentry->d_op->d_manage);
1422 			ret = path->dentry->d_op->d_manage(path, false);
1423 			if (ret < 0)
1424 				return ret == -EISDIR ? 0 : ret;
1425 		}
1426 
1427 		/* Transit to a mounted filesystem. */
1428 		if (managed & DCACHE_MOUNTED) {
1429 			struct vfsmount *mounted = lookup_mnt(path);
1430 			if (!mounted)
1431 				break;
1432 			dput(path->dentry);
1433 			mntput(path->mnt);
1434 			path->mnt = mounted;
1435 			path->dentry = dget(mounted->mnt_root);
1436 			continue;
1437 		}
1438 
1439 		/* Don't handle automount points here */
1440 		break;
1441 	}
1442 	return 0;
1443 }
1444 EXPORT_SYMBOL(follow_down);
1445 
1446 /*
1447  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1448  */
1449 static void follow_mount(struct path *path)
1450 {
1451 	while (d_mountpoint(path->dentry)) {
1452 		struct vfsmount *mounted = lookup_mnt(path);
1453 		if (!mounted)
1454 			break;
1455 		dput(path->dentry);
1456 		mntput(path->mnt);
1457 		path->mnt = mounted;
1458 		path->dentry = dget(mounted->mnt_root);
1459 	}
1460 }
1461 
1462 static int path_parent_directory(struct path *path)
1463 {
1464 	struct dentry *old = path->dentry;
1465 	/* rare case of legitimate dget_parent()... */
1466 	path->dentry = dget_parent(path->dentry);
1467 	dput(old);
1468 	if (unlikely(!path_connected(path)))
1469 		return -ENOENT;
1470 	return 0;
1471 }
1472 
1473 static int follow_dotdot(struct nameidata *nd)
1474 {
1475 	while(1) {
1476 		if (path_equal(&nd->path, &nd->root))
1477 			break;
1478 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1479 			int ret = path_parent_directory(&nd->path);
1480 			if (ret)
1481 				return ret;
1482 			break;
1483 		}
1484 		if (!follow_up(&nd->path))
1485 			break;
1486 	}
1487 	follow_mount(&nd->path);
1488 	nd->inode = nd->path.dentry->d_inode;
1489 	return 0;
1490 }
1491 
1492 /*
1493  * This looks up the name in dcache and possibly revalidates the found dentry.
1494  * NULL is returned if the dentry does not exist in the cache.
1495  */
1496 static struct dentry *lookup_dcache(const struct qstr *name,
1497 				    struct dentry *dir,
1498 				    unsigned int flags)
1499 {
1500 	struct dentry *dentry = d_lookup(dir, name);
1501 	if (dentry) {
1502 		int error = d_revalidate(dentry, flags);
1503 		if (unlikely(error <= 0)) {
1504 			if (!error)
1505 				d_invalidate(dentry);
1506 			dput(dentry);
1507 			return ERR_PTR(error);
1508 		}
1509 	}
1510 	return dentry;
1511 }
1512 
1513 /*
1514  * Parent directory has inode locked exclusive.  This is one
1515  * and only case when ->lookup() gets called on non in-lookup
1516  * dentries - as the matter of fact, this only gets called
1517  * when directory is guaranteed to have no in-lookup children
1518  * at all.
1519  */
1520 static struct dentry *__lookup_hash(const struct qstr *name,
1521 		struct dentry *base, unsigned int flags)
1522 {
1523 	struct dentry *dentry = lookup_dcache(name, base, flags);
1524 	struct dentry *old;
1525 	struct inode *dir = base->d_inode;
1526 
1527 	if (dentry)
1528 		return dentry;
1529 
1530 	/* Don't create child dentry for a dead directory. */
1531 	if (unlikely(IS_DEADDIR(dir)))
1532 		return ERR_PTR(-ENOENT);
1533 
1534 	dentry = d_alloc(base, name);
1535 	if (unlikely(!dentry))
1536 		return ERR_PTR(-ENOMEM);
1537 
1538 	old = dir->i_op->lookup(dir, dentry, flags);
1539 	if (unlikely(old)) {
1540 		dput(dentry);
1541 		dentry = old;
1542 	}
1543 	return dentry;
1544 }
1545 
1546 static int lookup_fast(struct nameidata *nd,
1547 		       struct path *path, struct inode **inode,
1548 		       unsigned *seqp)
1549 {
1550 	struct vfsmount *mnt = nd->path.mnt;
1551 	struct dentry *dentry, *parent = nd->path.dentry;
1552 	int status = 1;
1553 	int err;
1554 
1555 	/*
1556 	 * Rename seqlock is not required here because in the off chance
1557 	 * of a false negative due to a concurrent rename, the caller is
1558 	 * going to fall back to non-racy lookup.
1559 	 */
1560 	if (nd->flags & LOOKUP_RCU) {
1561 		unsigned seq;
1562 		bool negative;
1563 		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1564 		if (unlikely(!dentry)) {
1565 			if (unlazy_walk(nd))
1566 				return -ECHILD;
1567 			return 0;
1568 		}
1569 
1570 		/*
1571 		 * This sequence count validates that the inode matches
1572 		 * the dentry name information from lookup.
1573 		 */
1574 		*inode = d_backing_inode(dentry);
1575 		negative = d_is_negative(dentry);
1576 		if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1577 			return -ECHILD;
1578 
1579 		/*
1580 		 * This sequence count validates that the parent had no
1581 		 * changes while we did the lookup of the dentry above.
1582 		 *
1583 		 * The memory barrier in read_seqcount_begin of child is
1584 		 *  enough, we can use __read_seqcount_retry here.
1585 		 */
1586 		if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1587 			return -ECHILD;
1588 
1589 		*seqp = seq;
1590 		status = d_revalidate(dentry, nd->flags);
1591 		if (likely(status > 0)) {
1592 			/*
1593 			 * Note: do negative dentry check after revalidation in
1594 			 * case that drops it.
1595 			 */
1596 			if (unlikely(negative))
1597 				return -ENOENT;
1598 			path->mnt = mnt;
1599 			path->dentry = dentry;
1600 			if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1601 				return 1;
1602 		}
1603 		if (unlazy_child(nd, dentry, seq))
1604 			return -ECHILD;
1605 		if (unlikely(status == -ECHILD))
1606 			/* we'd been told to redo it in non-rcu mode */
1607 			status = d_revalidate(dentry, nd->flags);
1608 	} else {
1609 		dentry = __d_lookup(parent, &nd->last);
1610 		if (unlikely(!dentry))
1611 			return 0;
1612 		status = d_revalidate(dentry, nd->flags);
1613 	}
1614 	if (unlikely(status <= 0)) {
1615 		if (!status)
1616 			d_invalidate(dentry);
1617 		dput(dentry);
1618 		return status;
1619 	}
1620 	if (unlikely(d_is_negative(dentry))) {
1621 		dput(dentry);
1622 		return -ENOENT;
1623 	}
1624 
1625 	path->mnt = mnt;
1626 	path->dentry = dentry;
1627 	err = follow_managed(path, nd);
1628 	if (likely(err > 0))
1629 		*inode = d_backing_inode(path->dentry);
1630 	return err;
1631 }
1632 
1633 /* Fast lookup failed, do it the slow way */
1634 static struct dentry *__lookup_slow(const struct qstr *name,
1635 				    struct dentry *dir,
1636 				    unsigned int flags)
1637 {
1638 	struct dentry *dentry, *old;
1639 	struct inode *inode = dir->d_inode;
1640 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1641 
1642 	/* Don't go there if it's already dead */
1643 	if (unlikely(IS_DEADDIR(inode)))
1644 		return ERR_PTR(-ENOENT);
1645 again:
1646 	dentry = d_alloc_parallel(dir, name, &wq);
1647 	if (IS_ERR(dentry))
1648 		return dentry;
1649 	if (unlikely(!d_in_lookup(dentry))) {
1650 		if (!(flags & LOOKUP_NO_REVAL)) {
1651 			int error = d_revalidate(dentry, flags);
1652 			if (unlikely(error <= 0)) {
1653 				if (!error) {
1654 					d_invalidate(dentry);
1655 					dput(dentry);
1656 					goto again;
1657 				}
1658 				dput(dentry);
1659 				dentry = ERR_PTR(error);
1660 			}
1661 		}
1662 	} else {
1663 		old = inode->i_op->lookup(inode, dentry, flags);
1664 		d_lookup_done(dentry);
1665 		if (unlikely(old)) {
1666 			dput(dentry);
1667 			dentry = old;
1668 		}
1669 	}
1670 	return dentry;
1671 }
1672 
1673 static struct dentry *lookup_slow(const struct qstr *name,
1674 				  struct dentry *dir,
1675 				  unsigned int flags)
1676 {
1677 	struct inode *inode = dir->d_inode;
1678 	struct dentry *res;
1679 	inode_lock_shared(inode);
1680 	res = __lookup_slow(name, dir, flags);
1681 	inode_unlock_shared(inode);
1682 	return res;
1683 }
1684 
1685 static inline int may_lookup(struct nameidata *nd)
1686 {
1687 	if (nd->flags & LOOKUP_RCU) {
1688 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1689 		if (err != -ECHILD)
1690 			return err;
1691 		if (unlazy_walk(nd))
1692 			return -ECHILD;
1693 	}
1694 	return inode_permission(nd->inode, MAY_EXEC);
1695 }
1696 
1697 static inline int handle_dots(struct nameidata *nd, int type)
1698 {
1699 	if (type == LAST_DOTDOT) {
1700 		if (!nd->root.mnt)
1701 			set_root(nd);
1702 		if (nd->flags & LOOKUP_RCU) {
1703 			return follow_dotdot_rcu(nd);
1704 		} else
1705 			return follow_dotdot(nd);
1706 	}
1707 	return 0;
1708 }
1709 
1710 static int pick_link(struct nameidata *nd, struct path *link,
1711 		     struct inode *inode, unsigned seq)
1712 {
1713 	int error;
1714 	struct saved *last;
1715 	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1716 		path_to_nameidata(link, nd);
1717 		return -ELOOP;
1718 	}
1719 	if (!(nd->flags & LOOKUP_RCU)) {
1720 		if (link->mnt == nd->path.mnt)
1721 			mntget(link->mnt);
1722 	}
1723 	error = nd_alloc_stack(nd);
1724 	if (unlikely(error)) {
1725 		if (error == -ECHILD) {
1726 			if (unlikely(!legitimize_path(nd, link, seq))) {
1727 				drop_links(nd);
1728 				nd->depth = 0;
1729 				nd->flags &= ~LOOKUP_RCU;
1730 				nd->path.mnt = NULL;
1731 				nd->path.dentry = NULL;
1732 				rcu_read_unlock();
1733 			} else if (likely(unlazy_walk(nd)) == 0)
1734 				error = nd_alloc_stack(nd);
1735 		}
1736 		if (error) {
1737 			path_put(link);
1738 			return error;
1739 		}
1740 	}
1741 
1742 	last = nd->stack + nd->depth++;
1743 	last->link = *link;
1744 	clear_delayed_call(&last->done);
1745 	nd->link_inode = inode;
1746 	last->seq = seq;
1747 	return 1;
1748 }
1749 
1750 enum {WALK_FOLLOW = 1, WALK_MORE = 2};
1751 
1752 /*
1753  * Do we need to follow links? We _really_ want to be able
1754  * to do this check without having to look at inode->i_op,
1755  * so we keep a cache of "no, this doesn't need follow_link"
1756  * for the common case.
1757  */
1758 static inline int step_into(struct nameidata *nd, struct path *path,
1759 			    int flags, struct inode *inode, unsigned seq)
1760 {
1761 	if (!(flags & WALK_MORE) && nd->depth)
1762 		put_link(nd);
1763 	if (likely(!d_is_symlink(path->dentry)) ||
1764 	   !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) {
1765 		/* not a symlink or should not follow */
1766 		path_to_nameidata(path, nd);
1767 		nd->inode = inode;
1768 		nd->seq = seq;
1769 		return 0;
1770 	}
1771 	/* make sure that d_is_symlink above matches inode */
1772 	if (nd->flags & LOOKUP_RCU) {
1773 		if (read_seqcount_retry(&path->dentry->d_seq, seq))
1774 			return -ECHILD;
1775 	}
1776 	return pick_link(nd, path, inode, seq);
1777 }
1778 
1779 static int walk_component(struct nameidata *nd, int flags)
1780 {
1781 	struct path path;
1782 	struct inode *inode;
1783 	unsigned seq;
1784 	int err;
1785 	/*
1786 	 * "." and ".." are special - ".." especially so because it has
1787 	 * to be able to know about the current root directory and
1788 	 * parent relationships.
1789 	 */
1790 	if (unlikely(nd->last_type != LAST_NORM)) {
1791 		err = handle_dots(nd, nd->last_type);
1792 		if (!(flags & WALK_MORE) && nd->depth)
1793 			put_link(nd);
1794 		return err;
1795 	}
1796 	err = lookup_fast(nd, &path, &inode, &seq);
1797 	if (unlikely(err <= 0)) {
1798 		if (err < 0)
1799 			return err;
1800 		path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1801 					  nd->flags);
1802 		if (IS_ERR(path.dentry))
1803 			return PTR_ERR(path.dentry);
1804 
1805 		path.mnt = nd->path.mnt;
1806 		err = follow_managed(&path, nd);
1807 		if (unlikely(err < 0))
1808 			return err;
1809 
1810 		if (unlikely(d_is_negative(path.dentry))) {
1811 			path_to_nameidata(&path, nd);
1812 			return -ENOENT;
1813 		}
1814 
1815 		seq = 0;	/* we are already out of RCU mode */
1816 		inode = d_backing_inode(path.dentry);
1817 	}
1818 
1819 	return step_into(nd, &path, flags, inode, seq);
1820 }
1821 
1822 /*
1823  * We can do the critical dentry name comparison and hashing
1824  * operations one word at a time, but we are limited to:
1825  *
1826  * - Architectures with fast unaligned word accesses. We could
1827  *   do a "get_unaligned()" if this helps and is sufficiently
1828  *   fast.
1829  *
1830  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1831  *   do not trap on the (extremely unlikely) case of a page
1832  *   crossing operation.
1833  *
1834  * - Furthermore, we need an efficient 64-bit compile for the
1835  *   64-bit case in order to generate the "number of bytes in
1836  *   the final mask". Again, that could be replaced with a
1837  *   efficient population count instruction or similar.
1838  */
1839 #ifdef CONFIG_DCACHE_WORD_ACCESS
1840 
1841 #include <asm/word-at-a-time.h>
1842 
1843 #ifdef HASH_MIX
1844 
1845 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1846 
1847 #elif defined(CONFIG_64BIT)
1848 /*
1849  * Register pressure in the mixing function is an issue, particularly
1850  * on 32-bit x86, but almost any function requires one state value and
1851  * one temporary.  Instead, use a function designed for two state values
1852  * and no temporaries.
1853  *
1854  * This function cannot create a collision in only two iterations, so
1855  * we have two iterations to achieve avalanche.  In those two iterations,
1856  * we have six layers of mixing, which is enough to spread one bit's
1857  * influence out to 2^6 = 64 state bits.
1858  *
1859  * Rotate constants are scored by considering either 64 one-bit input
1860  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1861  * probability of that delta causing a change to each of the 128 output
1862  * bits, using a sample of random initial states.
1863  *
1864  * The Shannon entropy of the computed probabilities is then summed
1865  * to produce a score.  Ideally, any input change has a 50% chance of
1866  * toggling any given output bit.
1867  *
1868  * Mixing scores (in bits) for (12,45):
1869  * Input delta: 1-bit      2-bit
1870  * 1 round:     713.3    42542.6
1871  * 2 rounds:   2753.7   140389.8
1872  * 3 rounds:   5954.1   233458.2
1873  * 4 rounds:   7862.6   256672.2
1874  * Perfect:    8192     258048
1875  *            (64*128) (64*63/2 * 128)
1876  */
1877 #define HASH_MIX(x, y, a)	\
1878 	(	x ^= (a),	\
1879 	y ^= x,	x = rol64(x,12),\
1880 	x += y,	y = rol64(y,45),\
1881 	y *= 9			)
1882 
1883 /*
1884  * Fold two longs into one 32-bit hash value.  This must be fast, but
1885  * latency isn't quite as critical, as there is a fair bit of additional
1886  * work done before the hash value is used.
1887  */
1888 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1889 {
1890 	y ^= x * GOLDEN_RATIO_64;
1891 	y *= GOLDEN_RATIO_64;
1892 	return y >> 32;
1893 }
1894 
1895 #else	/* 32-bit case */
1896 
1897 /*
1898  * Mixing scores (in bits) for (7,20):
1899  * Input delta: 1-bit      2-bit
1900  * 1 round:     330.3     9201.6
1901  * 2 rounds:   1246.4    25475.4
1902  * 3 rounds:   1907.1    31295.1
1903  * 4 rounds:   2042.3    31718.6
1904  * Perfect:    2048      31744
1905  *            (32*64)   (32*31/2 * 64)
1906  */
1907 #define HASH_MIX(x, y, a)	\
1908 	(	x ^= (a),	\
1909 	y ^= x,	x = rol32(x, 7),\
1910 	x += y,	y = rol32(y,20),\
1911 	y *= 9			)
1912 
1913 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1914 {
1915 	/* Use arch-optimized multiply if one exists */
1916 	return __hash_32(y ^ __hash_32(x));
1917 }
1918 
1919 #endif
1920 
1921 /*
1922  * Return the hash of a string of known length.  This is carfully
1923  * designed to match hash_name(), which is the more critical function.
1924  * In particular, we must end by hashing a final word containing 0..7
1925  * payload bytes, to match the way that hash_name() iterates until it
1926  * finds the delimiter after the name.
1927  */
1928 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1929 {
1930 	unsigned long a, x = 0, y = (unsigned long)salt;
1931 
1932 	for (;;) {
1933 		if (!len)
1934 			goto done;
1935 		a = load_unaligned_zeropad(name);
1936 		if (len < sizeof(unsigned long))
1937 			break;
1938 		HASH_MIX(x, y, a);
1939 		name += sizeof(unsigned long);
1940 		len -= sizeof(unsigned long);
1941 	}
1942 	x ^= a & bytemask_from_count(len);
1943 done:
1944 	return fold_hash(x, y);
1945 }
1946 EXPORT_SYMBOL(full_name_hash);
1947 
1948 /* Return the "hash_len" (hash and length) of a null-terminated string */
1949 u64 hashlen_string(const void *salt, const char *name)
1950 {
1951 	unsigned long a = 0, x = 0, y = (unsigned long)salt;
1952 	unsigned long adata, mask, len;
1953 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1954 
1955 	len = 0;
1956 	goto inside;
1957 
1958 	do {
1959 		HASH_MIX(x, y, a);
1960 		len += sizeof(unsigned long);
1961 inside:
1962 		a = load_unaligned_zeropad(name+len);
1963 	} while (!has_zero(a, &adata, &constants));
1964 
1965 	adata = prep_zero_mask(a, adata, &constants);
1966 	mask = create_zero_mask(adata);
1967 	x ^= a & zero_bytemask(mask);
1968 
1969 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1970 }
1971 EXPORT_SYMBOL(hashlen_string);
1972 
1973 /*
1974  * Calculate the length and hash of the path component, and
1975  * return the "hash_len" as the result.
1976  */
1977 static inline u64 hash_name(const void *salt, const char *name)
1978 {
1979 	unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
1980 	unsigned long adata, bdata, mask, len;
1981 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1982 
1983 	len = 0;
1984 	goto inside;
1985 
1986 	do {
1987 		HASH_MIX(x, y, a);
1988 		len += sizeof(unsigned long);
1989 inside:
1990 		a = load_unaligned_zeropad(name+len);
1991 		b = a ^ REPEAT_BYTE('/');
1992 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1993 
1994 	adata = prep_zero_mask(a, adata, &constants);
1995 	bdata = prep_zero_mask(b, bdata, &constants);
1996 	mask = create_zero_mask(adata | bdata);
1997 	x ^= a & zero_bytemask(mask);
1998 
1999 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2000 }
2001 
2002 #else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2003 
2004 /* Return the hash of a string of known length */
2005 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2006 {
2007 	unsigned long hash = init_name_hash(salt);
2008 	while (len--)
2009 		hash = partial_name_hash((unsigned char)*name++, hash);
2010 	return end_name_hash(hash);
2011 }
2012 EXPORT_SYMBOL(full_name_hash);
2013 
2014 /* Return the "hash_len" (hash and length) of a null-terminated string */
2015 u64 hashlen_string(const void *salt, const char *name)
2016 {
2017 	unsigned long hash = init_name_hash(salt);
2018 	unsigned long len = 0, c;
2019 
2020 	c = (unsigned char)*name;
2021 	while (c) {
2022 		len++;
2023 		hash = partial_name_hash(c, hash);
2024 		c = (unsigned char)name[len];
2025 	}
2026 	return hashlen_create(end_name_hash(hash), len);
2027 }
2028 EXPORT_SYMBOL(hashlen_string);
2029 
2030 /*
2031  * We know there's a real path component here of at least
2032  * one character.
2033  */
2034 static inline u64 hash_name(const void *salt, const char *name)
2035 {
2036 	unsigned long hash = init_name_hash(salt);
2037 	unsigned long len = 0, c;
2038 
2039 	c = (unsigned char)*name;
2040 	do {
2041 		len++;
2042 		hash = partial_name_hash(c, hash);
2043 		c = (unsigned char)name[len];
2044 	} while (c && c != '/');
2045 	return hashlen_create(end_name_hash(hash), len);
2046 }
2047 
2048 #endif
2049 
2050 /*
2051  * Name resolution.
2052  * This is the basic name resolution function, turning a pathname into
2053  * the final dentry. We expect 'base' to be positive and a directory.
2054  *
2055  * Returns 0 and nd will have valid dentry and mnt on success.
2056  * Returns error and drops reference to input namei data on failure.
2057  */
2058 static int link_path_walk(const char *name, struct nameidata *nd)
2059 {
2060 	int err;
2061 
2062 	if (IS_ERR(name))
2063 		return PTR_ERR(name);
2064 	while (*name=='/')
2065 		name++;
2066 	if (!*name)
2067 		return 0;
2068 
2069 	/* At this point we know we have a real path component. */
2070 	for(;;) {
2071 		u64 hash_len;
2072 		int type;
2073 
2074 		err = may_lookup(nd);
2075 		if (err)
2076 			return err;
2077 
2078 		hash_len = hash_name(nd->path.dentry, name);
2079 
2080 		type = LAST_NORM;
2081 		if (name[0] == '.') switch (hashlen_len(hash_len)) {
2082 			case 2:
2083 				if (name[1] == '.') {
2084 					type = LAST_DOTDOT;
2085 					nd->flags |= LOOKUP_JUMPED;
2086 				}
2087 				break;
2088 			case 1:
2089 				type = LAST_DOT;
2090 		}
2091 		if (likely(type == LAST_NORM)) {
2092 			struct dentry *parent = nd->path.dentry;
2093 			nd->flags &= ~LOOKUP_JUMPED;
2094 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2095 				struct qstr this = { { .hash_len = hash_len }, .name = name };
2096 				err = parent->d_op->d_hash(parent, &this);
2097 				if (err < 0)
2098 					return err;
2099 				hash_len = this.hash_len;
2100 				name = this.name;
2101 			}
2102 		}
2103 
2104 		nd->last.hash_len = hash_len;
2105 		nd->last.name = name;
2106 		nd->last_type = type;
2107 
2108 		name += hashlen_len(hash_len);
2109 		if (!*name)
2110 			goto OK;
2111 		/*
2112 		 * If it wasn't NUL, we know it was '/'. Skip that
2113 		 * slash, and continue until no more slashes.
2114 		 */
2115 		do {
2116 			name++;
2117 		} while (unlikely(*name == '/'));
2118 		if (unlikely(!*name)) {
2119 OK:
2120 			/* pathname body, done */
2121 			if (!nd->depth)
2122 				return 0;
2123 			name = nd->stack[nd->depth - 1].name;
2124 			/* trailing symlink, done */
2125 			if (!name)
2126 				return 0;
2127 			/* last component of nested symlink */
2128 			err = walk_component(nd, WALK_FOLLOW);
2129 		} else {
2130 			/* not the last component */
2131 			err = walk_component(nd, WALK_FOLLOW | WALK_MORE);
2132 		}
2133 		if (err < 0)
2134 			return err;
2135 
2136 		if (err) {
2137 			const char *s = get_link(nd);
2138 
2139 			if (IS_ERR(s))
2140 				return PTR_ERR(s);
2141 			err = 0;
2142 			if (unlikely(!s)) {
2143 				/* jumped */
2144 				put_link(nd);
2145 			} else {
2146 				nd->stack[nd->depth - 1].name = name;
2147 				name = s;
2148 				continue;
2149 			}
2150 		}
2151 		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2152 			if (nd->flags & LOOKUP_RCU) {
2153 				if (unlazy_walk(nd))
2154 					return -ECHILD;
2155 			}
2156 			return -ENOTDIR;
2157 		}
2158 	}
2159 }
2160 
2161 /* must be paired with terminate_walk() */
2162 static const char *path_init(struct nameidata *nd, unsigned flags)
2163 {
2164 	const char *s = nd->name->name;
2165 
2166 	if (!*s)
2167 		flags &= ~LOOKUP_RCU;
2168 	if (flags & LOOKUP_RCU)
2169 		rcu_read_lock();
2170 
2171 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
2172 	nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2173 	nd->depth = 0;
2174 	if (flags & LOOKUP_ROOT) {
2175 		struct dentry *root = nd->root.dentry;
2176 		struct inode *inode = root->d_inode;
2177 		if (*s && unlikely(!d_can_lookup(root)))
2178 			return ERR_PTR(-ENOTDIR);
2179 		nd->path = nd->root;
2180 		nd->inode = inode;
2181 		if (flags & LOOKUP_RCU) {
2182 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2183 			nd->root_seq = nd->seq;
2184 			nd->m_seq = read_seqbegin(&mount_lock);
2185 		} else {
2186 			path_get(&nd->path);
2187 		}
2188 		return s;
2189 	}
2190 
2191 	nd->root.mnt = NULL;
2192 	nd->path.mnt = NULL;
2193 	nd->path.dentry = NULL;
2194 
2195 	nd->m_seq = read_seqbegin(&mount_lock);
2196 	if (*s == '/') {
2197 		set_root(nd);
2198 		if (likely(!nd_jump_root(nd)))
2199 			return s;
2200 		return ERR_PTR(-ECHILD);
2201 	} else if (nd->dfd == AT_FDCWD) {
2202 		if (flags & LOOKUP_RCU) {
2203 			struct fs_struct *fs = current->fs;
2204 			unsigned seq;
2205 
2206 			do {
2207 				seq = read_seqcount_begin(&fs->seq);
2208 				nd->path = fs->pwd;
2209 				nd->inode = nd->path.dentry->d_inode;
2210 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2211 			} while (read_seqcount_retry(&fs->seq, seq));
2212 		} else {
2213 			get_fs_pwd(current->fs, &nd->path);
2214 			nd->inode = nd->path.dentry->d_inode;
2215 		}
2216 		return s;
2217 	} else {
2218 		/* Caller must check execute permissions on the starting path component */
2219 		struct fd f = fdget_raw(nd->dfd);
2220 		struct dentry *dentry;
2221 
2222 		if (!f.file)
2223 			return ERR_PTR(-EBADF);
2224 
2225 		dentry = f.file->f_path.dentry;
2226 
2227 		if (*s && unlikely(!d_can_lookup(dentry))) {
2228 			fdput(f);
2229 			return ERR_PTR(-ENOTDIR);
2230 		}
2231 
2232 		nd->path = f.file->f_path;
2233 		if (flags & LOOKUP_RCU) {
2234 			nd->inode = nd->path.dentry->d_inode;
2235 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2236 		} else {
2237 			path_get(&nd->path);
2238 			nd->inode = nd->path.dentry->d_inode;
2239 		}
2240 		fdput(f);
2241 		return s;
2242 	}
2243 }
2244 
2245 static const char *trailing_symlink(struct nameidata *nd)
2246 {
2247 	const char *s;
2248 	int error = may_follow_link(nd);
2249 	if (unlikely(error))
2250 		return ERR_PTR(error);
2251 	nd->flags |= LOOKUP_PARENT;
2252 	nd->stack[0].name = NULL;
2253 	s = get_link(nd);
2254 	return s ? s : "";
2255 }
2256 
2257 static inline int lookup_last(struct nameidata *nd)
2258 {
2259 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2260 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2261 
2262 	nd->flags &= ~LOOKUP_PARENT;
2263 	return walk_component(nd, 0);
2264 }
2265 
2266 static int handle_lookup_down(struct nameidata *nd)
2267 {
2268 	struct path path = nd->path;
2269 	struct inode *inode = nd->inode;
2270 	unsigned seq = nd->seq;
2271 	int err;
2272 
2273 	if (nd->flags & LOOKUP_RCU) {
2274 		/*
2275 		 * don't bother with unlazy_walk on failure - we are
2276 		 * at the very beginning of walk, so we lose nothing
2277 		 * if we simply redo everything in non-RCU mode
2278 		 */
2279 		if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq)))
2280 			return -ECHILD;
2281 	} else {
2282 		dget(path.dentry);
2283 		err = follow_managed(&path, nd);
2284 		if (unlikely(err < 0))
2285 			return err;
2286 		inode = d_backing_inode(path.dentry);
2287 		seq = 0;
2288 	}
2289 	path_to_nameidata(&path, nd);
2290 	nd->inode = inode;
2291 	nd->seq = seq;
2292 	return 0;
2293 }
2294 
2295 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2296 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2297 {
2298 	const char *s = path_init(nd, flags);
2299 	int err;
2300 
2301 	if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2302 		err = handle_lookup_down(nd);
2303 		if (unlikely(err < 0))
2304 			s = ERR_PTR(err);
2305 	}
2306 
2307 	while (!(err = link_path_walk(s, nd))
2308 		&& ((err = lookup_last(nd)) > 0)) {
2309 		s = trailing_symlink(nd);
2310 	}
2311 	if (!err)
2312 		err = complete_walk(nd);
2313 
2314 	if (!err && nd->flags & LOOKUP_DIRECTORY)
2315 		if (!d_can_lookup(nd->path.dentry))
2316 			err = -ENOTDIR;
2317 	if (!err) {
2318 		*path = nd->path;
2319 		nd->path.mnt = NULL;
2320 		nd->path.dentry = NULL;
2321 	}
2322 	terminate_walk(nd);
2323 	return err;
2324 }
2325 
2326 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2327 		    struct path *path, struct path *root)
2328 {
2329 	int retval;
2330 	struct nameidata nd;
2331 	if (IS_ERR(name))
2332 		return PTR_ERR(name);
2333 	if (unlikely(root)) {
2334 		nd.root = *root;
2335 		flags |= LOOKUP_ROOT;
2336 	}
2337 	set_nameidata(&nd, dfd, name);
2338 	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2339 	if (unlikely(retval == -ECHILD))
2340 		retval = path_lookupat(&nd, flags, path);
2341 	if (unlikely(retval == -ESTALE))
2342 		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2343 
2344 	if (likely(!retval))
2345 		audit_inode(name, path->dentry, 0);
2346 	restore_nameidata();
2347 	putname(name);
2348 	return retval;
2349 }
2350 
2351 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2352 static int path_parentat(struct nameidata *nd, unsigned flags,
2353 				struct path *parent)
2354 {
2355 	const char *s = path_init(nd, flags);
2356 	int err = link_path_walk(s, nd);
2357 	if (!err)
2358 		err = complete_walk(nd);
2359 	if (!err) {
2360 		*parent = nd->path;
2361 		nd->path.mnt = NULL;
2362 		nd->path.dentry = NULL;
2363 	}
2364 	terminate_walk(nd);
2365 	return err;
2366 }
2367 
2368 static struct filename *filename_parentat(int dfd, struct filename *name,
2369 				unsigned int flags, struct path *parent,
2370 				struct qstr *last, int *type)
2371 {
2372 	int retval;
2373 	struct nameidata nd;
2374 
2375 	if (IS_ERR(name))
2376 		return name;
2377 	set_nameidata(&nd, dfd, name);
2378 	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2379 	if (unlikely(retval == -ECHILD))
2380 		retval = path_parentat(&nd, flags, parent);
2381 	if (unlikely(retval == -ESTALE))
2382 		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2383 	if (likely(!retval)) {
2384 		*last = nd.last;
2385 		*type = nd.last_type;
2386 		audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2387 	} else {
2388 		putname(name);
2389 		name = ERR_PTR(retval);
2390 	}
2391 	restore_nameidata();
2392 	return name;
2393 }
2394 
2395 /* does lookup, returns the object with parent locked */
2396 struct dentry *kern_path_locked(const char *name, struct path *path)
2397 {
2398 	struct filename *filename;
2399 	struct dentry *d;
2400 	struct qstr last;
2401 	int type;
2402 
2403 	filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2404 				    &last, &type);
2405 	if (IS_ERR(filename))
2406 		return ERR_CAST(filename);
2407 	if (unlikely(type != LAST_NORM)) {
2408 		path_put(path);
2409 		putname(filename);
2410 		return ERR_PTR(-EINVAL);
2411 	}
2412 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2413 	d = __lookup_hash(&last, path->dentry, 0);
2414 	if (IS_ERR(d)) {
2415 		inode_unlock(path->dentry->d_inode);
2416 		path_put(path);
2417 	}
2418 	putname(filename);
2419 	return d;
2420 }
2421 
2422 int kern_path(const char *name, unsigned int flags, struct path *path)
2423 {
2424 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2425 			       flags, path, NULL);
2426 }
2427 EXPORT_SYMBOL(kern_path);
2428 
2429 /**
2430  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2431  * @dentry:  pointer to dentry of the base directory
2432  * @mnt: pointer to vfs mount of the base directory
2433  * @name: pointer to file name
2434  * @flags: lookup flags
2435  * @path: pointer to struct path to fill
2436  */
2437 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2438 		    const char *name, unsigned int flags,
2439 		    struct path *path)
2440 {
2441 	struct path root = {.mnt = mnt, .dentry = dentry};
2442 	/* the first argument of filename_lookup() is ignored with root */
2443 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2444 			       flags , path, &root);
2445 }
2446 EXPORT_SYMBOL(vfs_path_lookup);
2447 
2448 static int lookup_one_len_common(const char *name, struct dentry *base,
2449 				 int len, struct qstr *this)
2450 {
2451 	this->name = name;
2452 	this->len = len;
2453 	this->hash = full_name_hash(base, name, len);
2454 	if (!len)
2455 		return -EACCES;
2456 
2457 	if (unlikely(name[0] == '.')) {
2458 		if (len < 2 || (len == 2 && name[1] == '.'))
2459 			return -EACCES;
2460 	}
2461 
2462 	while (len--) {
2463 		unsigned int c = *(const unsigned char *)name++;
2464 		if (c == '/' || c == '\0')
2465 			return -EACCES;
2466 	}
2467 	/*
2468 	 * See if the low-level filesystem might want
2469 	 * to use its own hash..
2470 	 */
2471 	if (base->d_flags & DCACHE_OP_HASH) {
2472 		int err = base->d_op->d_hash(base, this);
2473 		if (err < 0)
2474 			return err;
2475 	}
2476 
2477 	return inode_permission(base->d_inode, MAY_EXEC);
2478 }
2479 
2480 /**
2481  * try_lookup_one_len - filesystem helper to lookup single pathname component
2482  * @name:	pathname component to lookup
2483  * @base:	base directory to lookup from
2484  * @len:	maximum length @len should be interpreted to
2485  *
2486  * Look up a dentry by name in the dcache, returning NULL if it does not
2487  * currently exist.  The function does not try to create a dentry.
2488  *
2489  * Note that this routine is purely a helper for filesystem usage and should
2490  * not be called by generic code.
2491  *
2492  * The caller must hold base->i_mutex.
2493  */
2494 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2495 {
2496 	struct qstr this;
2497 	int err;
2498 
2499 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2500 
2501 	err = lookup_one_len_common(name, base, len, &this);
2502 	if (err)
2503 		return ERR_PTR(err);
2504 
2505 	return lookup_dcache(&this, base, 0);
2506 }
2507 EXPORT_SYMBOL(try_lookup_one_len);
2508 
2509 /**
2510  * lookup_one_len - filesystem helper to lookup single pathname component
2511  * @name:	pathname component to lookup
2512  * @base:	base directory to lookup from
2513  * @len:	maximum length @len should be interpreted to
2514  *
2515  * Note that this routine is purely a helper for filesystem usage and should
2516  * not be called by generic code.
2517  *
2518  * The caller must hold base->i_mutex.
2519  */
2520 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2521 {
2522 	struct dentry *dentry;
2523 	struct qstr this;
2524 	int err;
2525 
2526 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2527 
2528 	err = lookup_one_len_common(name, base, len, &this);
2529 	if (err)
2530 		return ERR_PTR(err);
2531 
2532 	dentry = lookup_dcache(&this, base, 0);
2533 	return dentry ? dentry : __lookup_slow(&this, base, 0);
2534 }
2535 EXPORT_SYMBOL(lookup_one_len);
2536 
2537 /**
2538  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2539  * @name:	pathname component to lookup
2540  * @base:	base directory to lookup from
2541  * @len:	maximum length @len should be interpreted to
2542  *
2543  * Note that this routine is purely a helper for filesystem usage and should
2544  * not be called by generic code.
2545  *
2546  * Unlike lookup_one_len, it should be called without the parent
2547  * i_mutex held, and will take the i_mutex itself if necessary.
2548  */
2549 struct dentry *lookup_one_len_unlocked(const char *name,
2550 				       struct dentry *base, int len)
2551 {
2552 	struct qstr this;
2553 	int err;
2554 	struct dentry *ret;
2555 
2556 	err = lookup_one_len_common(name, base, len, &this);
2557 	if (err)
2558 		return ERR_PTR(err);
2559 
2560 	ret = lookup_dcache(&this, base, 0);
2561 	if (!ret)
2562 		ret = lookup_slow(&this, base, 0);
2563 	return ret;
2564 }
2565 EXPORT_SYMBOL(lookup_one_len_unlocked);
2566 
2567 #ifdef CONFIG_UNIX98_PTYS
2568 int path_pts(struct path *path)
2569 {
2570 	/* Find something mounted on "pts" in the same directory as
2571 	 * the input path.
2572 	 */
2573 	struct dentry *child, *parent;
2574 	struct qstr this;
2575 	int ret;
2576 
2577 	ret = path_parent_directory(path);
2578 	if (ret)
2579 		return ret;
2580 
2581 	parent = path->dentry;
2582 	this.name = "pts";
2583 	this.len = 3;
2584 	child = d_hash_and_lookup(parent, &this);
2585 	if (!child)
2586 		return -ENOENT;
2587 
2588 	path->dentry = child;
2589 	dput(parent);
2590 	follow_mount(path);
2591 	return 0;
2592 }
2593 #endif
2594 
2595 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2596 		 struct path *path, int *empty)
2597 {
2598 	return filename_lookup(dfd, getname_flags(name, flags, empty),
2599 			       flags, path, NULL);
2600 }
2601 EXPORT_SYMBOL(user_path_at_empty);
2602 
2603 /**
2604  * mountpoint_last - look up last component for umount
2605  * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2606  *
2607  * This is a special lookup_last function just for umount. In this case, we
2608  * need to resolve the path without doing any revalidation.
2609  *
2610  * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2611  * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2612  * in almost all cases, this lookup will be served out of the dcache. The only
2613  * cases where it won't are if nd->last refers to a symlink or the path is
2614  * bogus and it doesn't exist.
2615  *
2616  * Returns:
2617  * -error: if there was an error during lookup. This includes -ENOENT if the
2618  *         lookup found a negative dentry.
2619  *
2620  * 0:      if we successfully resolved nd->last and found it to not to be a
2621  *         symlink that needs to be followed.
2622  *
2623  * 1:      if we successfully resolved nd->last and found it to be a symlink
2624  *         that needs to be followed.
2625  */
2626 static int
2627 mountpoint_last(struct nameidata *nd)
2628 {
2629 	int error = 0;
2630 	struct dentry *dir = nd->path.dentry;
2631 	struct path path;
2632 
2633 	/* If we're in rcuwalk, drop out of it to handle last component */
2634 	if (nd->flags & LOOKUP_RCU) {
2635 		if (unlazy_walk(nd))
2636 			return -ECHILD;
2637 	}
2638 
2639 	nd->flags &= ~LOOKUP_PARENT;
2640 
2641 	if (unlikely(nd->last_type != LAST_NORM)) {
2642 		error = handle_dots(nd, nd->last_type);
2643 		if (error)
2644 			return error;
2645 		path.dentry = dget(nd->path.dentry);
2646 	} else {
2647 		path.dentry = d_lookup(dir, &nd->last);
2648 		if (!path.dentry) {
2649 			/*
2650 			 * No cached dentry. Mounted dentries are pinned in the
2651 			 * cache, so that means that this dentry is probably
2652 			 * a symlink or the path doesn't actually point
2653 			 * to a mounted dentry.
2654 			 */
2655 			path.dentry = lookup_slow(&nd->last, dir,
2656 					     nd->flags | LOOKUP_NO_REVAL);
2657 			if (IS_ERR(path.dentry))
2658 				return PTR_ERR(path.dentry);
2659 		}
2660 	}
2661 	if (d_is_negative(path.dentry)) {
2662 		dput(path.dentry);
2663 		return -ENOENT;
2664 	}
2665 	path.mnt = nd->path.mnt;
2666 	return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0);
2667 }
2668 
2669 /**
2670  * path_mountpoint - look up a path to be umounted
2671  * @nd:		lookup context
2672  * @flags:	lookup flags
2673  * @path:	pointer to container for result
2674  *
2675  * Look up the given name, but don't attempt to revalidate the last component.
2676  * Returns 0 and "path" will be valid on success; Returns error otherwise.
2677  */
2678 static int
2679 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2680 {
2681 	const char *s = path_init(nd, flags);
2682 	int err;
2683 
2684 	while (!(err = link_path_walk(s, nd)) &&
2685 		(err = mountpoint_last(nd)) > 0) {
2686 		s = trailing_symlink(nd);
2687 	}
2688 	if (!err) {
2689 		*path = nd->path;
2690 		nd->path.mnt = NULL;
2691 		nd->path.dentry = NULL;
2692 		follow_mount(path);
2693 	}
2694 	terminate_walk(nd);
2695 	return err;
2696 }
2697 
2698 static int
2699 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2700 			unsigned int flags)
2701 {
2702 	struct nameidata nd;
2703 	int error;
2704 	if (IS_ERR(name))
2705 		return PTR_ERR(name);
2706 	set_nameidata(&nd, dfd, name);
2707 	error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2708 	if (unlikely(error == -ECHILD))
2709 		error = path_mountpoint(&nd, flags, path);
2710 	if (unlikely(error == -ESTALE))
2711 		error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2712 	if (likely(!error))
2713 		audit_inode(name, path->dentry, AUDIT_INODE_NOEVAL);
2714 	restore_nameidata();
2715 	putname(name);
2716 	return error;
2717 }
2718 
2719 /**
2720  * user_path_mountpoint_at - lookup a path from userland in order to umount it
2721  * @dfd:	directory file descriptor
2722  * @name:	pathname from userland
2723  * @flags:	lookup flags
2724  * @path:	pointer to container to hold result
2725  *
2726  * A umount is a special case for path walking. We're not actually interested
2727  * in the inode in this situation, and ESTALE errors can be a problem. We
2728  * simply want track down the dentry and vfsmount attached at the mountpoint
2729  * and avoid revalidating the last component.
2730  *
2731  * Returns 0 and populates "path" on success.
2732  */
2733 int
2734 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2735 			struct path *path)
2736 {
2737 	return filename_mountpoint(dfd, getname(name), path, flags);
2738 }
2739 
2740 int
2741 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2742 			unsigned int flags)
2743 {
2744 	return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2745 }
2746 EXPORT_SYMBOL(kern_path_mountpoint);
2747 
2748 int __check_sticky(struct inode *dir, struct inode *inode)
2749 {
2750 	kuid_t fsuid = current_fsuid();
2751 
2752 	if (uid_eq(inode->i_uid, fsuid))
2753 		return 0;
2754 	if (uid_eq(dir->i_uid, fsuid))
2755 		return 0;
2756 	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2757 }
2758 EXPORT_SYMBOL(__check_sticky);
2759 
2760 /*
2761  *	Check whether we can remove a link victim from directory dir, check
2762  *  whether the type of victim is right.
2763  *  1. We can't do it if dir is read-only (done in permission())
2764  *  2. We should have write and exec permissions on dir
2765  *  3. We can't remove anything from append-only dir
2766  *  4. We can't do anything with immutable dir (done in permission())
2767  *  5. If the sticky bit on dir is set we should either
2768  *	a. be owner of dir, or
2769  *	b. be owner of victim, or
2770  *	c. have CAP_FOWNER capability
2771  *  6. If the victim is append-only or immutable we can't do antyhing with
2772  *     links pointing to it.
2773  *  7. If the victim has an unknown uid or gid we can't change the inode.
2774  *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2775  *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2776  * 10. We can't remove a root or mountpoint.
2777  * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2778  *     nfs_async_unlink().
2779  */
2780 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2781 {
2782 	struct inode *inode = d_backing_inode(victim);
2783 	int error;
2784 
2785 	if (d_is_negative(victim))
2786 		return -ENOENT;
2787 	BUG_ON(!inode);
2788 
2789 	BUG_ON(victim->d_parent->d_inode != dir);
2790 
2791 	/* Inode writeback is not safe when the uid or gid are invalid. */
2792 	if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
2793 		return -EOVERFLOW;
2794 
2795 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2796 
2797 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2798 	if (error)
2799 		return error;
2800 	if (IS_APPEND(dir))
2801 		return -EPERM;
2802 
2803 	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2804 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2805 		return -EPERM;
2806 	if (isdir) {
2807 		if (!d_is_dir(victim))
2808 			return -ENOTDIR;
2809 		if (IS_ROOT(victim))
2810 			return -EBUSY;
2811 	} else if (d_is_dir(victim))
2812 		return -EISDIR;
2813 	if (IS_DEADDIR(dir))
2814 		return -ENOENT;
2815 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2816 		return -EBUSY;
2817 	return 0;
2818 }
2819 
2820 /*	Check whether we can create an object with dentry child in directory
2821  *  dir.
2822  *  1. We can't do it if child already exists (open has special treatment for
2823  *     this case, but since we are inlined it's OK)
2824  *  2. We can't do it if dir is read-only (done in permission())
2825  *  3. We can't do it if the fs can't represent the fsuid or fsgid.
2826  *  4. We should have write and exec permissions on dir
2827  *  5. We can't do it if dir is immutable (done in permission())
2828  */
2829 static inline int may_create(struct inode *dir, struct dentry *child)
2830 {
2831 	struct user_namespace *s_user_ns;
2832 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2833 	if (child->d_inode)
2834 		return -EEXIST;
2835 	if (IS_DEADDIR(dir))
2836 		return -ENOENT;
2837 	s_user_ns = dir->i_sb->s_user_ns;
2838 	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2839 	    !kgid_has_mapping(s_user_ns, current_fsgid()))
2840 		return -EOVERFLOW;
2841 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2842 }
2843 
2844 /*
2845  * p1 and p2 should be directories on the same fs.
2846  */
2847 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2848 {
2849 	struct dentry *p;
2850 
2851 	if (p1 == p2) {
2852 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2853 		return NULL;
2854 	}
2855 
2856 	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2857 
2858 	p = d_ancestor(p2, p1);
2859 	if (p) {
2860 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2861 		inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2862 		return p;
2863 	}
2864 
2865 	p = d_ancestor(p1, p2);
2866 	if (p) {
2867 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2868 		inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2869 		return p;
2870 	}
2871 
2872 	inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2873 	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2874 	return NULL;
2875 }
2876 EXPORT_SYMBOL(lock_rename);
2877 
2878 void unlock_rename(struct dentry *p1, struct dentry *p2)
2879 {
2880 	inode_unlock(p1->d_inode);
2881 	if (p1 != p2) {
2882 		inode_unlock(p2->d_inode);
2883 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2884 	}
2885 }
2886 EXPORT_SYMBOL(unlock_rename);
2887 
2888 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2889 		bool want_excl)
2890 {
2891 	int error = may_create(dir, dentry);
2892 	if (error)
2893 		return error;
2894 
2895 	if (!dir->i_op->create)
2896 		return -EACCES;	/* shouldn't it be ENOSYS? */
2897 	mode &= S_IALLUGO;
2898 	mode |= S_IFREG;
2899 	error = security_inode_create(dir, dentry, mode);
2900 	if (error)
2901 		return error;
2902 	error = dir->i_op->create(dir, dentry, mode, want_excl);
2903 	if (!error)
2904 		fsnotify_create(dir, dentry);
2905 	return error;
2906 }
2907 EXPORT_SYMBOL(vfs_create);
2908 
2909 int vfs_mkobj(struct dentry *dentry, umode_t mode,
2910 		int (*f)(struct dentry *, umode_t, void *),
2911 		void *arg)
2912 {
2913 	struct inode *dir = dentry->d_parent->d_inode;
2914 	int error = may_create(dir, dentry);
2915 	if (error)
2916 		return error;
2917 
2918 	mode &= S_IALLUGO;
2919 	mode |= S_IFREG;
2920 	error = security_inode_create(dir, dentry, mode);
2921 	if (error)
2922 		return error;
2923 	error = f(dentry, mode, arg);
2924 	if (!error)
2925 		fsnotify_create(dir, dentry);
2926 	return error;
2927 }
2928 EXPORT_SYMBOL(vfs_mkobj);
2929 
2930 bool may_open_dev(const struct path *path)
2931 {
2932 	return !(path->mnt->mnt_flags & MNT_NODEV) &&
2933 		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2934 }
2935 
2936 static int may_open(const struct path *path, int acc_mode, int flag)
2937 {
2938 	struct dentry *dentry = path->dentry;
2939 	struct inode *inode = dentry->d_inode;
2940 	int error;
2941 
2942 	if (!inode)
2943 		return -ENOENT;
2944 
2945 	switch (inode->i_mode & S_IFMT) {
2946 	case S_IFLNK:
2947 		return -ELOOP;
2948 	case S_IFDIR:
2949 		if (acc_mode & MAY_WRITE)
2950 			return -EISDIR;
2951 		break;
2952 	case S_IFBLK:
2953 	case S_IFCHR:
2954 		if (!may_open_dev(path))
2955 			return -EACCES;
2956 		/*FALLTHRU*/
2957 	case S_IFIFO:
2958 	case S_IFSOCK:
2959 		flag &= ~O_TRUNC;
2960 		break;
2961 	}
2962 
2963 	error = inode_permission(inode, MAY_OPEN | acc_mode);
2964 	if (error)
2965 		return error;
2966 
2967 	/*
2968 	 * An append-only file must be opened in append mode for writing.
2969 	 */
2970 	if (IS_APPEND(inode)) {
2971 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2972 			return -EPERM;
2973 		if (flag & O_TRUNC)
2974 			return -EPERM;
2975 	}
2976 
2977 	/* O_NOATIME can only be set by the owner or superuser */
2978 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2979 		return -EPERM;
2980 
2981 	return 0;
2982 }
2983 
2984 static int handle_truncate(struct file *filp)
2985 {
2986 	const struct path *path = &filp->f_path;
2987 	struct inode *inode = path->dentry->d_inode;
2988 	int error = get_write_access(inode);
2989 	if (error)
2990 		return error;
2991 	/*
2992 	 * Refuse to truncate files with mandatory locks held on them.
2993 	 */
2994 	error = locks_verify_locked(filp);
2995 	if (!error)
2996 		error = security_path_truncate(path);
2997 	if (!error) {
2998 		error = do_truncate(path->dentry, 0,
2999 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3000 				    filp);
3001 	}
3002 	put_write_access(inode);
3003 	return error;
3004 }
3005 
3006 static inline int open_to_namei_flags(int flag)
3007 {
3008 	if ((flag & O_ACCMODE) == 3)
3009 		flag--;
3010 	return flag;
3011 }
3012 
3013 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
3014 {
3015 	struct user_namespace *s_user_ns;
3016 	int error = security_path_mknod(dir, dentry, mode, 0);
3017 	if (error)
3018 		return error;
3019 
3020 	s_user_ns = dir->dentry->d_sb->s_user_ns;
3021 	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
3022 	    !kgid_has_mapping(s_user_ns, current_fsgid()))
3023 		return -EOVERFLOW;
3024 
3025 	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
3026 	if (error)
3027 		return error;
3028 
3029 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
3030 }
3031 
3032 /*
3033  * Attempt to atomically look up, create and open a file from a negative
3034  * dentry.
3035  *
3036  * Returns 0 if successful.  The file will have been created and attached to
3037  * @file by the filesystem calling finish_open().
3038  *
3039  * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3040  * be set.  The caller will need to perform the open themselves.  @path will
3041  * have been updated to point to the new dentry.  This may be negative.
3042  *
3043  * Returns an error code otherwise.
3044  */
3045 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
3046 			struct path *path, struct file *file,
3047 			const struct open_flags *op,
3048 			int open_flag, umode_t mode)
3049 {
3050 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3051 	struct inode *dir =  nd->path.dentry->d_inode;
3052 	int error;
3053 
3054 	if (!(~open_flag & (O_EXCL | O_CREAT)))	/* both O_EXCL and O_CREAT */
3055 		open_flag &= ~O_TRUNC;
3056 
3057 	if (nd->flags & LOOKUP_DIRECTORY)
3058 		open_flag |= O_DIRECTORY;
3059 
3060 	file->f_path.dentry = DENTRY_NOT_SET;
3061 	file->f_path.mnt = nd->path.mnt;
3062 	error = dir->i_op->atomic_open(dir, dentry, file,
3063 				       open_to_namei_flags(open_flag), mode);
3064 	d_lookup_done(dentry);
3065 	if (!error) {
3066 		if (file->f_mode & FMODE_OPENED) {
3067 			/*
3068 			 * We didn't have the inode before the open, so check open
3069 			 * permission here.
3070 			 */
3071 			int acc_mode = op->acc_mode;
3072 			if (file->f_mode & FMODE_CREATED) {
3073 				WARN_ON(!(open_flag & O_CREAT));
3074 				fsnotify_create(dir, dentry);
3075 				acc_mode = 0;
3076 			}
3077 			error = may_open(&file->f_path, acc_mode, open_flag);
3078 			if (WARN_ON(error > 0))
3079 				error = -EINVAL;
3080 		} else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3081 			error = -EIO;
3082 		} else {
3083 			if (file->f_path.dentry) {
3084 				dput(dentry);
3085 				dentry = file->f_path.dentry;
3086 			}
3087 			if (file->f_mode & FMODE_CREATED)
3088 				fsnotify_create(dir, dentry);
3089 			if (unlikely(d_is_negative(dentry))) {
3090 				error = -ENOENT;
3091 			} else {
3092 				path->dentry = dentry;
3093 				path->mnt = nd->path.mnt;
3094 				return 0;
3095 			}
3096 		}
3097 	}
3098 	dput(dentry);
3099 	return error;
3100 }
3101 
3102 /*
3103  * Look up and maybe create and open the last component.
3104  *
3105  * Must be called with parent locked (exclusive in O_CREAT case).
3106  *
3107  * Returns 0 on success, that is, if
3108  *  the file was successfully atomically created (if necessary) and opened, or
3109  *  the file was not completely opened at this time, though lookups and
3110  *  creations were performed.
3111  * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3112  * In the latter case dentry returned in @path might be negative if O_CREAT
3113  * hadn't been specified.
3114  *
3115  * An error code is returned on failure.
3116  */
3117 static int lookup_open(struct nameidata *nd, struct path *path,
3118 			struct file *file,
3119 			const struct open_flags *op,
3120 			bool got_write)
3121 {
3122 	struct dentry *dir = nd->path.dentry;
3123 	struct inode *dir_inode = dir->d_inode;
3124 	int open_flag = op->open_flag;
3125 	struct dentry *dentry;
3126 	int error, create_error = 0;
3127 	umode_t mode = op->mode;
3128 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3129 
3130 	if (unlikely(IS_DEADDIR(dir_inode)))
3131 		return -ENOENT;
3132 
3133 	file->f_mode &= ~FMODE_CREATED;
3134 	dentry = d_lookup(dir, &nd->last);
3135 	for (;;) {
3136 		if (!dentry) {
3137 			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3138 			if (IS_ERR(dentry))
3139 				return PTR_ERR(dentry);
3140 		}
3141 		if (d_in_lookup(dentry))
3142 			break;
3143 
3144 		error = d_revalidate(dentry, nd->flags);
3145 		if (likely(error > 0))
3146 			break;
3147 		if (error)
3148 			goto out_dput;
3149 		d_invalidate(dentry);
3150 		dput(dentry);
3151 		dentry = NULL;
3152 	}
3153 	if (dentry->d_inode) {
3154 		/* Cached positive dentry: will open in f_op->open */
3155 		goto out_no_open;
3156 	}
3157 
3158 	/*
3159 	 * Checking write permission is tricky, bacuse we don't know if we are
3160 	 * going to actually need it: O_CREAT opens should work as long as the
3161 	 * file exists.  But checking existence breaks atomicity.  The trick is
3162 	 * to check access and if not granted clear O_CREAT from the flags.
3163 	 *
3164 	 * Another problem is returing the "right" error value (e.g. for an
3165 	 * O_EXCL open we want to return EEXIST not EROFS).
3166 	 */
3167 	if (open_flag & O_CREAT) {
3168 		if (!IS_POSIXACL(dir->d_inode))
3169 			mode &= ~current_umask();
3170 		if (unlikely(!got_write)) {
3171 			create_error = -EROFS;
3172 			open_flag &= ~O_CREAT;
3173 			if (open_flag & (O_EXCL | O_TRUNC))
3174 				goto no_open;
3175 			/* No side effects, safe to clear O_CREAT */
3176 		} else {
3177 			create_error = may_o_create(&nd->path, dentry, mode);
3178 			if (create_error) {
3179 				open_flag &= ~O_CREAT;
3180 				if (open_flag & O_EXCL)
3181 					goto no_open;
3182 			}
3183 		}
3184 	} else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3185 		   unlikely(!got_write)) {
3186 		/*
3187 		 * No O_CREATE -> atomicity not a requirement -> fall
3188 		 * back to lookup + open
3189 		 */
3190 		goto no_open;
3191 	}
3192 
3193 	if (dir_inode->i_op->atomic_open) {
3194 		error = atomic_open(nd, dentry, path, file, op, open_flag,
3195 				    mode);
3196 		if (unlikely(error == -ENOENT) && create_error)
3197 			error = create_error;
3198 		return error;
3199 	}
3200 
3201 no_open:
3202 	if (d_in_lookup(dentry)) {
3203 		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3204 							     nd->flags);
3205 		d_lookup_done(dentry);
3206 		if (unlikely(res)) {
3207 			if (IS_ERR(res)) {
3208 				error = PTR_ERR(res);
3209 				goto out_dput;
3210 			}
3211 			dput(dentry);
3212 			dentry = res;
3213 		}
3214 	}
3215 
3216 	/* Negative dentry, just create the file */
3217 	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3218 		file->f_mode |= FMODE_CREATED;
3219 		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3220 		if (!dir_inode->i_op->create) {
3221 			error = -EACCES;
3222 			goto out_dput;
3223 		}
3224 		error = dir_inode->i_op->create(dir_inode, dentry, mode,
3225 						open_flag & O_EXCL);
3226 		if (error)
3227 			goto out_dput;
3228 		fsnotify_create(dir_inode, dentry);
3229 	}
3230 	if (unlikely(create_error) && !dentry->d_inode) {
3231 		error = create_error;
3232 		goto out_dput;
3233 	}
3234 out_no_open:
3235 	path->dentry = dentry;
3236 	path->mnt = nd->path.mnt;
3237 	return 0;
3238 
3239 out_dput:
3240 	dput(dentry);
3241 	return error;
3242 }
3243 
3244 /*
3245  * Handle the last step of open()
3246  */
3247 static int do_last(struct nameidata *nd,
3248 		   struct file *file, const struct open_flags *op)
3249 {
3250 	struct dentry *dir = nd->path.dentry;
3251 	int open_flag = op->open_flag;
3252 	bool will_truncate = (open_flag & O_TRUNC) != 0;
3253 	bool got_write = false;
3254 	int acc_mode = op->acc_mode;
3255 	unsigned seq;
3256 	struct inode *inode;
3257 	struct path path;
3258 	int error;
3259 
3260 	nd->flags &= ~LOOKUP_PARENT;
3261 	nd->flags |= op->intent;
3262 
3263 	if (nd->last_type != LAST_NORM) {
3264 		error = handle_dots(nd, nd->last_type);
3265 		if (unlikely(error))
3266 			return error;
3267 		goto finish_open;
3268 	}
3269 
3270 	if (!(open_flag & O_CREAT)) {
3271 		if (nd->last.name[nd->last.len])
3272 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3273 		/* we _can_ be in RCU mode here */
3274 		error = lookup_fast(nd, &path, &inode, &seq);
3275 		if (likely(error > 0))
3276 			goto finish_lookup;
3277 
3278 		if (error < 0)
3279 			return error;
3280 
3281 		BUG_ON(nd->inode != dir->d_inode);
3282 		BUG_ON(nd->flags & LOOKUP_RCU);
3283 	} else {
3284 		/* create side of things */
3285 		/*
3286 		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3287 		 * has been cleared when we got to the last component we are
3288 		 * about to look up
3289 		 */
3290 		error = complete_walk(nd);
3291 		if (error)
3292 			return error;
3293 
3294 		audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3295 		/* trailing slashes? */
3296 		if (unlikely(nd->last.name[nd->last.len]))
3297 			return -EISDIR;
3298 	}
3299 
3300 	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3301 		error = mnt_want_write(nd->path.mnt);
3302 		if (!error)
3303 			got_write = true;
3304 		/*
3305 		 * do _not_ fail yet - we might not need that or fail with
3306 		 * a different error; let lookup_open() decide; we'll be
3307 		 * dropping this one anyway.
3308 		 */
3309 	}
3310 	if (open_flag & O_CREAT)
3311 		inode_lock(dir->d_inode);
3312 	else
3313 		inode_lock_shared(dir->d_inode);
3314 	error = lookup_open(nd, &path, file, op, got_write);
3315 	if (open_flag & O_CREAT)
3316 		inode_unlock(dir->d_inode);
3317 	else
3318 		inode_unlock_shared(dir->d_inode);
3319 
3320 	if (error)
3321 		goto out;
3322 
3323 	if (file->f_mode & FMODE_OPENED) {
3324 		if ((file->f_mode & FMODE_CREATED) ||
3325 		    !S_ISREG(file_inode(file)->i_mode))
3326 			will_truncate = false;
3327 
3328 		audit_inode(nd->name, file->f_path.dentry, 0);
3329 		goto opened;
3330 	}
3331 
3332 	if (file->f_mode & FMODE_CREATED) {
3333 		/* Don't check for write permission, don't truncate */
3334 		open_flag &= ~O_TRUNC;
3335 		will_truncate = false;
3336 		acc_mode = 0;
3337 		path_to_nameidata(&path, nd);
3338 		goto finish_open_created;
3339 	}
3340 
3341 	/*
3342 	 * If atomic_open() acquired write access it is dropped now due to
3343 	 * possible mount and symlink following (this might be optimized away if
3344 	 * necessary...)
3345 	 */
3346 	if (got_write) {
3347 		mnt_drop_write(nd->path.mnt);
3348 		got_write = false;
3349 	}
3350 
3351 	error = follow_managed(&path, nd);
3352 	if (unlikely(error < 0))
3353 		return error;
3354 
3355 	if (unlikely(d_is_negative(path.dentry))) {
3356 		path_to_nameidata(&path, nd);
3357 		return -ENOENT;
3358 	}
3359 
3360 	/*
3361 	 * create/update audit record if it already exists.
3362 	 */
3363 	audit_inode(nd->name, path.dentry, 0);
3364 
3365 	if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3366 		path_to_nameidata(&path, nd);
3367 		return -EEXIST;
3368 	}
3369 
3370 	seq = 0;	/* out of RCU mode, so the value doesn't matter */
3371 	inode = d_backing_inode(path.dentry);
3372 finish_lookup:
3373 	error = step_into(nd, &path, 0, inode, seq);
3374 	if (unlikely(error))
3375 		return error;
3376 finish_open:
3377 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3378 	error = complete_walk(nd);
3379 	if (error)
3380 		return error;
3381 	audit_inode(nd->name, nd->path.dentry, 0);
3382 	if (open_flag & O_CREAT) {
3383 		error = -EISDIR;
3384 		if (d_is_dir(nd->path.dentry))
3385 			goto out;
3386 		error = may_create_in_sticky(dir,
3387 					     d_backing_inode(nd->path.dentry));
3388 		if (unlikely(error))
3389 			goto out;
3390 	}
3391 	error = -ENOTDIR;
3392 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3393 		goto out;
3394 	if (!d_is_reg(nd->path.dentry))
3395 		will_truncate = false;
3396 
3397 	if (will_truncate) {
3398 		error = mnt_want_write(nd->path.mnt);
3399 		if (error)
3400 			goto out;
3401 		got_write = true;
3402 	}
3403 finish_open_created:
3404 	error = may_open(&nd->path, acc_mode, open_flag);
3405 	if (error)
3406 		goto out;
3407 	BUG_ON(file->f_mode & FMODE_OPENED); /* once it's opened, it's opened */
3408 	error = vfs_open(&nd->path, file);
3409 	if (error)
3410 		goto out;
3411 opened:
3412 	error = ima_file_check(file, op->acc_mode);
3413 	if (!error && will_truncate)
3414 		error = handle_truncate(file);
3415 out:
3416 	if (unlikely(error > 0)) {
3417 		WARN_ON(1);
3418 		error = -EINVAL;
3419 	}
3420 	if (got_write)
3421 		mnt_drop_write(nd->path.mnt);
3422 	return error;
3423 }
3424 
3425 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3426 {
3427 	struct dentry *child = NULL;
3428 	struct inode *dir = dentry->d_inode;
3429 	struct inode *inode;
3430 	int error;
3431 
3432 	/* we want directory to be writable */
3433 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3434 	if (error)
3435 		goto out_err;
3436 	error = -EOPNOTSUPP;
3437 	if (!dir->i_op->tmpfile)
3438 		goto out_err;
3439 	error = -ENOMEM;
3440 	child = d_alloc(dentry, &slash_name);
3441 	if (unlikely(!child))
3442 		goto out_err;
3443 	error = dir->i_op->tmpfile(dir, child, mode);
3444 	if (error)
3445 		goto out_err;
3446 	error = -ENOENT;
3447 	inode = child->d_inode;
3448 	if (unlikely(!inode))
3449 		goto out_err;
3450 	if (!(open_flag & O_EXCL)) {
3451 		spin_lock(&inode->i_lock);
3452 		inode->i_state |= I_LINKABLE;
3453 		spin_unlock(&inode->i_lock);
3454 	}
3455 	ima_post_create_tmpfile(inode);
3456 	return child;
3457 
3458 out_err:
3459 	dput(child);
3460 	return ERR_PTR(error);
3461 }
3462 EXPORT_SYMBOL(vfs_tmpfile);
3463 
3464 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3465 		const struct open_flags *op,
3466 		struct file *file)
3467 {
3468 	struct dentry *child;
3469 	struct path path;
3470 	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3471 	if (unlikely(error))
3472 		return error;
3473 	error = mnt_want_write(path.mnt);
3474 	if (unlikely(error))
3475 		goto out;
3476 	child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3477 	error = PTR_ERR(child);
3478 	if (IS_ERR(child))
3479 		goto out2;
3480 	dput(path.dentry);
3481 	path.dentry = child;
3482 	audit_inode(nd->name, child, 0);
3483 	/* Don't check for other permissions, the inode was just created */
3484 	error = may_open(&path, 0, op->open_flag);
3485 	if (error)
3486 		goto out2;
3487 	file->f_path.mnt = path.mnt;
3488 	error = finish_open(file, child, NULL);
3489 out2:
3490 	mnt_drop_write(path.mnt);
3491 out:
3492 	path_put(&path);
3493 	return error;
3494 }
3495 
3496 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3497 {
3498 	struct path path;
3499 	int error = path_lookupat(nd, flags, &path);
3500 	if (!error) {
3501 		audit_inode(nd->name, path.dentry, 0);
3502 		error = vfs_open(&path, file);
3503 		path_put(&path);
3504 	}
3505 	return error;
3506 }
3507 
3508 static struct file *path_openat(struct nameidata *nd,
3509 			const struct open_flags *op, unsigned flags)
3510 {
3511 	struct file *file;
3512 	int error;
3513 
3514 	file = alloc_empty_file(op->open_flag, current_cred());
3515 	if (IS_ERR(file))
3516 		return file;
3517 
3518 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3519 		error = do_tmpfile(nd, flags, op, file);
3520 	} else if (unlikely(file->f_flags & O_PATH)) {
3521 		error = do_o_path(nd, flags, file);
3522 	} else {
3523 		const char *s = path_init(nd, flags);
3524 		while (!(error = link_path_walk(s, nd)) &&
3525 			(error = do_last(nd, file, op)) > 0) {
3526 			nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3527 			s = trailing_symlink(nd);
3528 		}
3529 		terminate_walk(nd);
3530 	}
3531 	if (likely(!error)) {
3532 		if (likely(file->f_mode & FMODE_OPENED))
3533 			return file;
3534 		WARN_ON(1);
3535 		error = -EINVAL;
3536 	}
3537 	fput(file);
3538 	if (error == -EOPENSTALE) {
3539 		if (flags & LOOKUP_RCU)
3540 			error = -ECHILD;
3541 		else
3542 			error = -ESTALE;
3543 	}
3544 	return ERR_PTR(error);
3545 }
3546 
3547 struct file *do_filp_open(int dfd, struct filename *pathname,
3548 		const struct open_flags *op)
3549 {
3550 	struct nameidata nd;
3551 	int flags = op->lookup_flags;
3552 	struct file *filp;
3553 
3554 	set_nameidata(&nd, dfd, pathname);
3555 	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3556 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3557 		filp = path_openat(&nd, op, flags);
3558 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3559 		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3560 	restore_nameidata();
3561 	return filp;
3562 }
3563 
3564 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3565 		const char *name, const struct open_flags *op)
3566 {
3567 	struct nameidata nd;
3568 	struct file *file;
3569 	struct filename *filename;
3570 	int flags = op->lookup_flags | LOOKUP_ROOT;
3571 
3572 	nd.root.mnt = mnt;
3573 	nd.root.dentry = dentry;
3574 
3575 	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3576 		return ERR_PTR(-ELOOP);
3577 
3578 	filename = getname_kernel(name);
3579 	if (IS_ERR(filename))
3580 		return ERR_CAST(filename);
3581 
3582 	set_nameidata(&nd, -1, filename);
3583 	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3584 	if (unlikely(file == ERR_PTR(-ECHILD)))
3585 		file = path_openat(&nd, op, flags);
3586 	if (unlikely(file == ERR_PTR(-ESTALE)))
3587 		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3588 	restore_nameidata();
3589 	putname(filename);
3590 	return file;
3591 }
3592 
3593 static struct dentry *filename_create(int dfd, struct filename *name,
3594 				struct path *path, unsigned int lookup_flags)
3595 {
3596 	struct dentry *dentry = ERR_PTR(-EEXIST);
3597 	struct qstr last;
3598 	int type;
3599 	int err2;
3600 	int error;
3601 	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3602 
3603 	/*
3604 	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3605 	 * other flags passed in are ignored!
3606 	 */
3607 	lookup_flags &= LOOKUP_REVAL;
3608 
3609 	name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3610 	if (IS_ERR(name))
3611 		return ERR_CAST(name);
3612 
3613 	/*
3614 	 * Yucky last component or no last component at all?
3615 	 * (foo/., foo/.., /////)
3616 	 */
3617 	if (unlikely(type != LAST_NORM))
3618 		goto out;
3619 
3620 	/* don't fail immediately if it's r/o, at least try to report other errors */
3621 	err2 = mnt_want_write(path->mnt);
3622 	/*
3623 	 * Do the final lookup.
3624 	 */
3625 	lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3626 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3627 	dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3628 	if (IS_ERR(dentry))
3629 		goto unlock;
3630 
3631 	error = -EEXIST;
3632 	if (d_is_positive(dentry))
3633 		goto fail;
3634 
3635 	/*
3636 	 * Special case - lookup gave negative, but... we had foo/bar/
3637 	 * From the vfs_mknod() POV we just have a negative dentry -
3638 	 * all is fine. Let's be bastards - you had / on the end, you've
3639 	 * been asking for (non-existent) directory. -ENOENT for you.
3640 	 */
3641 	if (unlikely(!is_dir && last.name[last.len])) {
3642 		error = -ENOENT;
3643 		goto fail;
3644 	}
3645 	if (unlikely(err2)) {
3646 		error = err2;
3647 		goto fail;
3648 	}
3649 	putname(name);
3650 	return dentry;
3651 fail:
3652 	dput(dentry);
3653 	dentry = ERR_PTR(error);
3654 unlock:
3655 	inode_unlock(path->dentry->d_inode);
3656 	if (!err2)
3657 		mnt_drop_write(path->mnt);
3658 out:
3659 	path_put(path);
3660 	putname(name);
3661 	return dentry;
3662 }
3663 
3664 struct dentry *kern_path_create(int dfd, const char *pathname,
3665 				struct path *path, unsigned int lookup_flags)
3666 {
3667 	return filename_create(dfd, getname_kernel(pathname),
3668 				path, lookup_flags);
3669 }
3670 EXPORT_SYMBOL(kern_path_create);
3671 
3672 void done_path_create(struct path *path, struct dentry *dentry)
3673 {
3674 	dput(dentry);
3675 	inode_unlock(path->dentry->d_inode);
3676 	mnt_drop_write(path->mnt);
3677 	path_put(path);
3678 }
3679 EXPORT_SYMBOL(done_path_create);
3680 
3681 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3682 				struct path *path, unsigned int lookup_flags)
3683 {
3684 	return filename_create(dfd, getname(pathname), path, lookup_flags);
3685 }
3686 EXPORT_SYMBOL(user_path_create);
3687 
3688 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3689 {
3690 	int error = may_create(dir, dentry);
3691 
3692 	if (error)
3693 		return error;
3694 
3695 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3696 		return -EPERM;
3697 
3698 	if (!dir->i_op->mknod)
3699 		return -EPERM;
3700 
3701 	error = devcgroup_inode_mknod(mode, dev);
3702 	if (error)
3703 		return error;
3704 
3705 	error = security_inode_mknod(dir, dentry, mode, dev);
3706 	if (error)
3707 		return error;
3708 
3709 	error = dir->i_op->mknod(dir, dentry, mode, dev);
3710 	if (!error)
3711 		fsnotify_create(dir, dentry);
3712 	return error;
3713 }
3714 EXPORT_SYMBOL(vfs_mknod);
3715 
3716 static int may_mknod(umode_t mode)
3717 {
3718 	switch (mode & S_IFMT) {
3719 	case S_IFREG:
3720 	case S_IFCHR:
3721 	case S_IFBLK:
3722 	case S_IFIFO:
3723 	case S_IFSOCK:
3724 	case 0: /* zero mode translates to S_IFREG */
3725 		return 0;
3726 	case S_IFDIR:
3727 		return -EPERM;
3728 	default:
3729 		return -EINVAL;
3730 	}
3731 }
3732 
3733 long do_mknodat(int dfd, const char __user *filename, umode_t mode,
3734 		unsigned int dev)
3735 {
3736 	struct dentry *dentry;
3737 	struct path path;
3738 	int error;
3739 	unsigned int lookup_flags = 0;
3740 
3741 	error = may_mknod(mode);
3742 	if (error)
3743 		return error;
3744 retry:
3745 	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3746 	if (IS_ERR(dentry))
3747 		return PTR_ERR(dentry);
3748 
3749 	if (!IS_POSIXACL(path.dentry->d_inode))
3750 		mode &= ~current_umask();
3751 	error = security_path_mknod(&path, dentry, mode, dev);
3752 	if (error)
3753 		goto out;
3754 	switch (mode & S_IFMT) {
3755 		case 0: case S_IFREG:
3756 			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3757 			if (!error)
3758 				ima_post_path_mknod(dentry);
3759 			break;
3760 		case S_IFCHR: case S_IFBLK:
3761 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3762 					new_decode_dev(dev));
3763 			break;
3764 		case S_IFIFO: case S_IFSOCK:
3765 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3766 			break;
3767 	}
3768 out:
3769 	done_path_create(&path, dentry);
3770 	if (retry_estale(error, lookup_flags)) {
3771 		lookup_flags |= LOOKUP_REVAL;
3772 		goto retry;
3773 	}
3774 	return error;
3775 }
3776 
3777 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3778 		unsigned int, dev)
3779 {
3780 	return do_mknodat(dfd, filename, mode, dev);
3781 }
3782 
3783 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3784 {
3785 	return do_mknodat(AT_FDCWD, filename, mode, dev);
3786 }
3787 
3788 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3789 {
3790 	int error = may_create(dir, dentry);
3791 	unsigned max_links = dir->i_sb->s_max_links;
3792 
3793 	if (error)
3794 		return error;
3795 
3796 	if (!dir->i_op->mkdir)
3797 		return -EPERM;
3798 
3799 	mode &= (S_IRWXUGO|S_ISVTX);
3800 	error = security_inode_mkdir(dir, dentry, mode);
3801 	if (error)
3802 		return error;
3803 
3804 	if (max_links && dir->i_nlink >= max_links)
3805 		return -EMLINK;
3806 
3807 	error = dir->i_op->mkdir(dir, dentry, mode);
3808 	if (!error)
3809 		fsnotify_mkdir(dir, dentry);
3810 	return error;
3811 }
3812 EXPORT_SYMBOL(vfs_mkdir);
3813 
3814 long do_mkdirat(int dfd, const char __user *pathname, umode_t mode)
3815 {
3816 	struct dentry *dentry;
3817 	struct path path;
3818 	int error;
3819 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3820 
3821 retry:
3822 	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3823 	if (IS_ERR(dentry))
3824 		return PTR_ERR(dentry);
3825 
3826 	if (!IS_POSIXACL(path.dentry->d_inode))
3827 		mode &= ~current_umask();
3828 	error = security_path_mkdir(&path, dentry, mode);
3829 	if (!error)
3830 		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3831 	done_path_create(&path, dentry);
3832 	if (retry_estale(error, lookup_flags)) {
3833 		lookup_flags |= LOOKUP_REVAL;
3834 		goto retry;
3835 	}
3836 	return error;
3837 }
3838 
3839 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3840 {
3841 	return do_mkdirat(dfd, pathname, mode);
3842 }
3843 
3844 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3845 {
3846 	return do_mkdirat(AT_FDCWD, pathname, mode);
3847 }
3848 
3849 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3850 {
3851 	int error = may_delete(dir, dentry, 1);
3852 
3853 	if (error)
3854 		return error;
3855 
3856 	if (!dir->i_op->rmdir)
3857 		return -EPERM;
3858 
3859 	dget(dentry);
3860 	inode_lock(dentry->d_inode);
3861 
3862 	error = -EBUSY;
3863 	if (is_local_mountpoint(dentry))
3864 		goto out;
3865 
3866 	error = security_inode_rmdir(dir, dentry);
3867 	if (error)
3868 		goto out;
3869 
3870 	error = dir->i_op->rmdir(dir, dentry);
3871 	if (error)
3872 		goto out;
3873 
3874 	shrink_dcache_parent(dentry);
3875 	dentry->d_inode->i_flags |= S_DEAD;
3876 	dont_mount(dentry);
3877 	detach_mounts(dentry);
3878 	fsnotify_rmdir(dir, dentry);
3879 
3880 out:
3881 	inode_unlock(dentry->d_inode);
3882 	dput(dentry);
3883 	if (!error)
3884 		d_delete(dentry);
3885 	return error;
3886 }
3887 EXPORT_SYMBOL(vfs_rmdir);
3888 
3889 long do_rmdir(int dfd, const char __user *pathname)
3890 {
3891 	int error = 0;
3892 	struct filename *name;
3893 	struct dentry *dentry;
3894 	struct path path;
3895 	struct qstr last;
3896 	int type;
3897 	unsigned int lookup_flags = 0;
3898 retry:
3899 	name = filename_parentat(dfd, getname(pathname), lookup_flags,
3900 				&path, &last, &type);
3901 	if (IS_ERR(name))
3902 		return PTR_ERR(name);
3903 
3904 	switch (type) {
3905 	case LAST_DOTDOT:
3906 		error = -ENOTEMPTY;
3907 		goto exit1;
3908 	case LAST_DOT:
3909 		error = -EINVAL;
3910 		goto exit1;
3911 	case LAST_ROOT:
3912 		error = -EBUSY;
3913 		goto exit1;
3914 	}
3915 
3916 	error = mnt_want_write(path.mnt);
3917 	if (error)
3918 		goto exit1;
3919 
3920 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3921 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3922 	error = PTR_ERR(dentry);
3923 	if (IS_ERR(dentry))
3924 		goto exit2;
3925 	if (!dentry->d_inode) {
3926 		error = -ENOENT;
3927 		goto exit3;
3928 	}
3929 	error = security_path_rmdir(&path, dentry);
3930 	if (error)
3931 		goto exit3;
3932 	error = vfs_rmdir(path.dentry->d_inode, dentry);
3933 exit3:
3934 	dput(dentry);
3935 exit2:
3936 	inode_unlock(path.dentry->d_inode);
3937 	mnt_drop_write(path.mnt);
3938 exit1:
3939 	path_put(&path);
3940 	putname(name);
3941 	if (retry_estale(error, lookup_flags)) {
3942 		lookup_flags |= LOOKUP_REVAL;
3943 		goto retry;
3944 	}
3945 	return error;
3946 }
3947 
3948 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3949 {
3950 	return do_rmdir(AT_FDCWD, pathname);
3951 }
3952 
3953 /**
3954  * vfs_unlink - unlink a filesystem object
3955  * @dir:	parent directory
3956  * @dentry:	victim
3957  * @delegated_inode: returns victim inode, if the inode is delegated.
3958  *
3959  * The caller must hold dir->i_mutex.
3960  *
3961  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3962  * return a reference to the inode in delegated_inode.  The caller
3963  * should then break the delegation on that inode and retry.  Because
3964  * breaking a delegation may take a long time, the caller should drop
3965  * dir->i_mutex before doing so.
3966  *
3967  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3968  * be appropriate for callers that expect the underlying filesystem not
3969  * to be NFS exported.
3970  */
3971 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3972 {
3973 	struct inode *target = dentry->d_inode;
3974 	int error = may_delete(dir, dentry, 0);
3975 
3976 	if (error)
3977 		return error;
3978 
3979 	if (!dir->i_op->unlink)
3980 		return -EPERM;
3981 
3982 	inode_lock(target);
3983 	if (is_local_mountpoint(dentry))
3984 		error = -EBUSY;
3985 	else {
3986 		error = security_inode_unlink(dir, dentry);
3987 		if (!error) {
3988 			error = try_break_deleg(target, delegated_inode);
3989 			if (error)
3990 				goto out;
3991 			error = dir->i_op->unlink(dir, dentry);
3992 			if (!error) {
3993 				dont_mount(dentry);
3994 				detach_mounts(dentry);
3995 				fsnotify_unlink(dir, dentry);
3996 			}
3997 		}
3998 	}
3999 out:
4000 	inode_unlock(target);
4001 
4002 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
4003 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
4004 		fsnotify_link_count(target);
4005 		d_delete(dentry);
4006 	}
4007 
4008 	return error;
4009 }
4010 EXPORT_SYMBOL(vfs_unlink);
4011 
4012 /*
4013  * Make sure that the actual truncation of the file will occur outside its
4014  * directory's i_mutex.  Truncate can take a long time if there is a lot of
4015  * writeout happening, and we don't want to prevent access to the directory
4016  * while waiting on the I/O.
4017  */
4018 long do_unlinkat(int dfd, struct filename *name)
4019 {
4020 	int error;
4021 	struct dentry *dentry;
4022 	struct path path;
4023 	struct qstr last;
4024 	int type;
4025 	struct inode *inode = NULL;
4026 	struct inode *delegated_inode = NULL;
4027 	unsigned int lookup_flags = 0;
4028 retry:
4029 	name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4030 	if (IS_ERR(name))
4031 		return PTR_ERR(name);
4032 
4033 	error = -EISDIR;
4034 	if (type != LAST_NORM)
4035 		goto exit1;
4036 
4037 	error = mnt_want_write(path.mnt);
4038 	if (error)
4039 		goto exit1;
4040 retry_deleg:
4041 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4042 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4043 	error = PTR_ERR(dentry);
4044 	if (!IS_ERR(dentry)) {
4045 		/* Why not before? Because we want correct error value */
4046 		if (last.name[last.len])
4047 			goto slashes;
4048 		inode = dentry->d_inode;
4049 		if (d_is_negative(dentry))
4050 			goto slashes;
4051 		ihold(inode);
4052 		error = security_path_unlink(&path, dentry);
4053 		if (error)
4054 			goto exit2;
4055 		error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4056 exit2:
4057 		dput(dentry);
4058 	}
4059 	inode_unlock(path.dentry->d_inode);
4060 	if (inode)
4061 		iput(inode);	/* truncate the inode here */
4062 	inode = NULL;
4063 	if (delegated_inode) {
4064 		error = break_deleg_wait(&delegated_inode);
4065 		if (!error)
4066 			goto retry_deleg;
4067 	}
4068 	mnt_drop_write(path.mnt);
4069 exit1:
4070 	path_put(&path);
4071 	if (retry_estale(error, lookup_flags)) {
4072 		lookup_flags |= LOOKUP_REVAL;
4073 		inode = NULL;
4074 		goto retry;
4075 	}
4076 	putname(name);
4077 	return error;
4078 
4079 slashes:
4080 	if (d_is_negative(dentry))
4081 		error = -ENOENT;
4082 	else if (d_is_dir(dentry))
4083 		error = -EISDIR;
4084 	else
4085 		error = -ENOTDIR;
4086 	goto exit2;
4087 }
4088 
4089 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4090 {
4091 	if ((flag & ~AT_REMOVEDIR) != 0)
4092 		return -EINVAL;
4093 
4094 	if (flag & AT_REMOVEDIR)
4095 		return do_rmdir(dfd, pathname);
4096 
4097 	return do_unlinkat(dfd, getname(pathname));
4098 }
4099 
4100 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4101 {
4102 	return do_unlinkat(AT_FDCWD, getname(pathname));
4103 }
4104 
4105 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4106 {
4107 	int error = may_create(dir, dentry);
4108 
4109 	if (error)
4110 		return error;
4111 
4112 	if (!dir->i_op->symlink)
4113 		return -EPERM;
4114 
4115 	error = security_inode_symlink(dir, dentry, oldname);
4116 	if (error)
4117 		return error;
4118 
4119 	error = dir->i_op->symlink(dir, dentry, oldname);
4120 	if (!error)
4121 		fsnotify_create(dir, dentry);
4122 	return error;
4123 }
4124 EXPORT_SYMBOL(vfs_symlink);
4125 
4126 long do_symlinkat(const char __user *oldname, int newdfd,
4127 		  const char __user *newname)
4128 {
4129 	int error;
4130 	struct filename *from;
4131 	struct dentry *dentry;
4132 	struct path path;
4133 	unsigned int lookup_flags = 0;
4134 
4135 	from = getname(oldname);
4136 	if (IS_ERR(from))
4137 		return PTR_ERR(from);
4138 retry:
4139 	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4140 	error = PTR_ERR(dentry);
4141 	if (IS_ERR(dentry))
4142 		goto out_putname;
4143 
4144 	error = security_path_symlink(&path, dentry, from->name);
4145 	if (!error)
4146 		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4147 	done_path_create(&path, dentry);
4148 	if (retry_estale(error, lookup_flags)) {
4149 		lookup_flags |= LOOKUP_REVAL;
4150 		goto retry;
4151 	}
4152 out_putname:
4153 	putname(from);
4154 	return error;
4155 }
4156 
4157 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4158 		int, newdfd, const char __user *, newname)
4159 {
4160 	return do_symlinkat(oldname, newdfd, newname);
4161 }
4162 
4163 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4164 {
4165 	return do_symlinkat(oldname, AT_FDCWD, newname);
4166 }
4167 
4168 /**
4169  * vfs_link - create a new link
4170  * @old_dentry:	object to be linked
4171  * @dir:	new parent
4172  * @new_dentry:	where to create the new link
4173  * @delegated_inode: returns inode needing a delegation break
4174  *
4175  * The caller must hold dir->i_mutex
4176  *
4177  * If vfs_link discovers a delegation on the to-be-linked file in need
4178  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4179  * inode in delegated_inode.  The caller should then break the delegation
4180  * and retry.  Because breaking a delegation may take a long time, the
4181  * caller should drop the i_mutex before doing so.
4182  *
4183  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4184  * be appropriate for callers that expect the underlying filesystem not
4185  * to be NFS exported.
4186  */
4187 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4188 {
4189 	struct inode *inode = old_dentry->d_inode;
4190 	unsigned max_links = dir->i_sb->s_max_links;
4191 	int error;
4192 
4193 	if (!inode)
4194 		return -ENOENT;
4195 
4196 	error = may_create(dir, new_dentry);
4197 	if (error)
4198 		return error;
4199 
4200 	if (dir->i_sb != inode->i_sb)
4201 		return -EXDEV;
4202 
4203 	/*
4204 	 * A link to an append-only or immutable file cannot be created.
4205 	 */
4206 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4207 		return -EPERM;
4208 	/*
4209 	 * Updating the link count will likely cause i_uid and i_gid to
4210 	 * be writen back improperly if their true value is unknown to
4211 	 * the vfs.
4212 	 */
4213 	if (HAS_UNMAPPED_ID(inode))
4214 		return -EPERM;
4215 	if (!dir->i_op->link)
4216 		return -EPERM;
4217 	if (S_ISDIR(inode->i_mode))
4218 		return -EPERM;
4219 
4220 	error = security_inode_link(old_dentry, dir, new_dentry);
4221 	if (error)
4222 		return error;
4223 
4224 	inode_lock(inode);
4225 	/* Make sure we don't allow creating hardlink to an unlinked file */
4226 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4227 		error =  -ENOENT;
4228 	else if (max_links && inode->i_nlink >= max_links)
4229 		error = -EMLINK;
4230 	else {
4231 		error = try_break_deleg(inode, delegated_inode);
4232 		if (!error)
4233 			error = dir->i_op->link(old_dentry, dir, new_dentry);
4234 	}
4235 
4236 	if (!error && (inode->i_state & I_LINKABLE)) {
4237 		spin_lock(&inode->i_lock);
4238 		inode->i_state &= ~I_LINKABLE;
4239 		spin_unlock(&inode->i_lock);
4240 	}
4241 	inode_unlock(inode);
4242 	if (!error)
4243 		fsnotify_link(dir, inode, new_dentry);
4244 	return error;
4245 }
4246 EXPORT_SYMBOL(vfs_link);
4247 
4248 /*
4249  * Hardlinks are often used in delicate situations.  We avoid
4250  * security-related surprises by not following symlinks on the
4251  * newname.  --KAB
4252  *
4253  * We don't follow them on the oldname either to be compatible
4254  * with linux 2.0, and to avoid hard-linking to directories
4255  * and other special files.  --ADM
4256  */
4257 int do_linkat(int olddfd, const char __user *oldname, int newdfd,
4258 	      const char __user *newname, int flags)
4259 {
4260 	struct dentry *new_dentry;
4261 	struct path old_path, new_path;
4262 	struct inode *delegated_inode = NULL;
4263 	int how = 0;
4264 	int error;
4265 
4266 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4267 		return -EINVAL;
4268 	/*
4269 	 * To use null names we require CAP_DAC_READ_SEARCH
4270 	 * This ensures that not everyone will be able to create
4271 	 * handlink using the passed filedescriptor.
4272 	 */
4273 	if (flags & AT_EMPTY_PATH) {
4274 		if (!capable(CAP_DAC_READ_SEARCH))
4275 			return -ENOENT;
4276 		how = LOOKUP_EMPTY;
4277 	}
4278 
4279 	if (flags & AT_SYMLINK_FOLLOW)
4280 		how |= LOOKUP_FOLLOW;
4281 retry:
4282 	error = user_path_at(olddfd, oldname, how, &old_path);
4283 	if (error)
4284 		return error;
4285 
4286 	new_dentry = user_path_create(newdfd, newname, &new_path,
4287 					(how & LOOKUP_REVAL));
4288 	error = PTR_ERR(new_dentry);
4289 	if (IS_ERR(new_dentry))
4290 		goto out;
4291 
4292 	error = -EXDEV;
4293 	if (old_path.mnt != new_path.mnt)
4294 		goto out_dput;
4295 	error = may_linkat(&old_path);
4296 	if (unlikely(error))
4297 		goto out_dput;
4298 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4299 	if (error)
4300 		goto out_dput;
4301 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4302 out_dput:
4303 	done_path_create(&new_path, new_dentry);
4304 	if (delegated_inode) {
4305 		error = break_deleg_wait(&delegated_inode);
4306 		if (!error) {
4307 			path_put(&old_path);
4308 			goto retry;
4309 		}
4310 	}
4311 	if (retry_estale(error, how)) {
4312 		path_put(&old_path);
4313 		how |= LOOKUP_REVAL;
4314 		goto retry;
4315 	}
4316 out:
4317 	path_put(&old_path);
4318 
4319 	return error;
4320 }
4321 
4322 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4323 		int, newdfd, const char __user *, newname, int, flags)
4324 {
4325 	return do_linkat(olddfd, oldname, newdfd, newname, flags);
4326 }
4327 
4328 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4329 {
4330 	return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4331 }
4332 
4333 /**
4334  * vfs_rename - rename a filesystem object
4335  * @old_dir:	parent of source
4336  * @old_dentry:	source
4337  * @new_dir:	parent of destination
4338  * @new_dentry:	destination
4339  * @delegated_inode: returns an inode needing a delegation break
4340  * @flags:	rename flags
4341  *
4342  * The caller must hold multiple mutexes--see lock_rename()).
4343  *
4344  * If vfs_rename discovers a delegation in need of breaking at either
4345  * the source or destination, it will return -EWOULDBLOCK and return a
4346  * reference to the inode in delegated_inode.  The caller should then
4347  * break the delegation and retry.  Because breaking a delegation may
4348  * take a long time, the caller should drop all locks before doing
4349  * so.
4350  *
4351  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4352  * be appropriate for callers that expect the underlying filesystem not
4353  * to be NFS exported.
4354  *
4355  * The worst of all namespace operations - renaming directory. "Perverted"
4356  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4357  * Problems:
4358  *
4359  *	a) we can get into loop creation.
4360  *	b) race potential - two innocent renames can create a loop together.
4361  *	   That's where 4.4 screws up. Current fix: serialization on
4362  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4363  *	   story.
4364  *	c) we have to lock _four_ objects - parents and victim (if it exists),
4365  *	   and source (if it is not a directory).
4366  *	   And that - after we got ->i_mutex on parents (until then we don't know
4367  *	   whether the target exists).  Solution: try to be smart with locking
4368  *	   order for inodes.  We rely on the fact that tree topology may change
4369  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4370  *	   move will be locked.  Thus we can rank directories by the tree
4371  *	   (ancestors first) and rank all non-directories after them.
4372  *	   That works since everybody except rename does "lock parent, lookup,
4373  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4374  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4375  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4376  *	   we'd better make sure that there's no link(2) for them.
4377  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4378  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4379  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4380  *	   ->i_mutex on parents, which works but leads to some truly excessive
4381  *	   locking].
4382  */
4383 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4384 	       struct inode *new_dir, struct dentry *new_dentry,
4385 	       struct inode **delegated_inode, unsigned int flags)
4386 {
4387 	int error;
4388 	bool is_dir = d_is_dir(old_dentry);
4389 	struct inode *source = old_dentry->d_inode;
4390 	struct inode *target = new_dentry->d_inode;
4391 	bool new_is_dir = false;
4392 	unsigned max_links = new_dir->i_sb->s_max_links;
4393 	struct name_snapshot old_name;
4394 
4395 	if (source == target)
4396 		return 0;
4397 
4398 	error = may_delete(old_dir, old_dentry, is_dir);
4399 	if (error)
4400 		return error;
4401 
4402 	if (!target) {
4403 		error = may_create(new_dir, new_dentry);
4404 	} else {
4405 		new_is_dir = d_is_dir(new_dentry);
4406 
4407 		if (!(flags & RENAME_EXCHANGE))
4408 			error = may_delete(new_dir, new_dentry, is_dir);
4409 		else
4410 			error = may_delete(new_dir, new_dentry, new_is_dir);
4411 	}
4412 	if (error)
4413 		return error;
4414 
4415 	if (!old_dir->i_op->rename)
4416 		return -EPERM;
4417 
4418 	/*
4419 	 * If we are going to change the parent - check write permissions,
4420 	 * we'll need to flip '..'.
4421 	 */
4422 	if (new_dir != old_dir) {
4423 		if (is_dir) {
4424 			error = inode_permission(source, MAY_WRITE);
4425 			if (error)
4426 				return error;
4427 		}
4428 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4429 			error = inode_permission(target, MAY_WRITE);
4430 			if (error)
4431 				return error;
4432 		}
4433 	}
4434 
4435 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4436 				      flags);
4437 	if (error)
4438 		return error;
4439 
4440 	take_dentry_name_snapshot(&old_name, old_dentry);
4441 	dget(new_dentry);
4442 	if (!is_dir || (flags & RENAME_EXCHANGE))
4443 		lock_two_nondirectories(source, target);
4444 	else if (target)
4445 		inode_lock(target);
4446 
4447 	error = -EBUSY;
4448 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4449 		goto out;
4450 
4451 	if (max_links && new_dir != old_dir) {
4452 		error = -EMLINK;
4453 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4454 			goto out;
4455 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4456 		    old_dir->i_nlink >= max_links)
4457 			goto out;
4458 	}
4459 	if (!is_dir) {
4460 		error = try_break_deleg(source, delegated_inode);
4461 		if (error)
4462 			goto out;
4463 	}
4464 	if (target && !new_is_dir) {
4465 		error = try_break_deleg(target, delegated_inode);
4466 		if (error)
4467 			goto out;
4468 	}
4469 	error = old_dir->i_op->rename(old_dir, old_dentry,
4470 				       new_dir, new_dentry, flags);
4471 	if (error)
4472 		goto out;
4473 
4474 	if (!(flags & RENAME_EXCHANGE) && target) {
4475 		if (is_dir) {
4476 			shrink_dcache_parent(new_dentry);
4477 			target->i_flags |= S_DEAD;
4478 		}
4479 		dont_mount(new_dentry);
4480 		detach_mounts(new_dentry);
4481 	}
4482 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4483 		if (!(flags & RENAME_EXCHANGE))
4484 			d_move(old_dentry, new_dentry);
4485 		else
4486 			d_exchange(old_dentry, new_dentry);
4487 	}
4488 out:
4489 	if (!is_dir || (flags & RENAME_EXCHANGE))
4490 		unlock_two_nondirectories(source, target);
4491 	else if (target)
4492 		inode_unlock(target);
4493 	dput(new_dentry);
4494 	if (!error) {
4495 		fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4496 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4497 		if (flags & RENAME_EXCHANGE) {
4498 			fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4499 				      new_is_dir, NULL, new_dentry);
4500 		}
4501 	}
4502 	release_dentry_name_snapshot(&old_name);
4503 
4504 	return error;
4505 }
4506 EXPORT_SYMBOL(vfs_rename);
4507 
4508 static int do_renameat2(int olddfd, const char __user *oldname, int newdfd,
4509 			const char __user *newname, unsigned int flags)
4510 {
4511 	struct dentry *old_dentry, *new_dentry;
4512 	struct dentry *trap;
4513 	struct path old_path, new_path;
4514 	struct qstr old_last, new_last;
4515 	int old_type, new_type;
4516 	struct inode *delegated_inode = NULL;
4517 	struct filename *from;
4518 	struct filename *to;
4519 	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4520 	bool should_retry = false;
4521 	int error;
4522 
4523 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4524 		return -EINVAL;
4525 
4526 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4527 	    (flags & RENAME_EXCHANGE))
4528 		return -EINVAL;
4529 
4530 	if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4531 		return -EPERM;
4532 
4533 	if (flags & RENAME_EXCHANGE)
4534 		target_flags = 0;
4535 
4536 retry:
4537 	from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4538 				&old_path, &old_last, &old_type);
4539 	if (IS_ERR(from)) {
4540 		error = PTR_ERR(from);
4541 		goto exit;
4542 	}
4543 
4544 	to = filename_parentat(newdfd, getname(newname), lookup_flags,
4545 				&new_path, &new_last, &new_type);
4546 	if (IS_ERR(to)) {
4547 		error = PTR_ERR(to);
4548 		goto exit1;
4549 	}
4550 
4551 	error = -EXDEV;
4552 	if (old_path.mnt != new_path.mnt)
4553 		goto exit2;
4554 
4555 	error = -EBUSY;
4556 	if (old_type != LAST_NORM)
4557 		goto exit2;
4558 
4559 	if (flags & RENAME_NOREPLACE)
4560 		error = -EEXIST;
4561 	if (new_type != LAST_NORM)
4562 		goto exit2;
4563 
4564 	error = mnt_want_write(old_path.mnt);
4565 	if (error)
4566 		goto exit2;
4567 
4568 retry_deleg:
4569 	trap = lock_rename(new_path.dentry, old_path.dentry);
4570 
4571 	old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4572 	error = PTR_ERR(old_dentry);
4573 	if (IS_ERR(old_dentry))
4574 		goto exit3;
4575 	/* source must exist */
4576 	error = -ENOENT;
4577 	if (d_is_negative(old_dentry))
4578 		goto exit4;
4579 	new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4580 	error = PTR_ERR(new_dentry);
4581 	if (IS_ERR(new_dentry))
4582 		goto exit4;
4583 	error = -EEXIST;
4584 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4585 		goto exit5;
4586 	if (flags & RENAME_EXCHANGE) {
4587 		error = -ENOENT;
4588 		if (d_is_negative(new_dentry))
4589 			goto exit5;
4590 
4591 		if (!d_is_dir(new_dentry)) {
4592 			error = -ENOTDIR;
4593 			if (new_last.name[new_last.len])
4594 				goto exit5;
4595 		}
4596 	}
4597 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4598 	if (!d_is_dir(old_dentry)) {
4599 		error = -ENOTDIR;
4600 		if (old_last.name[old_last.len])
4601 			goto exit5;
4602 		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4603 			goto exit5;
4604 	}
4605 	/* source should not be ancestor of target */
4606 	error = -EINVAL;
4607 	if (old_dentry == trap)
4608 		goto exit5;
4609 	/* target should not be an ancestor of source */
4610 	if (!(flags & RENAME_EXCHANGE))
4611 		error = -ENOTEMPTY;
4612 	if (new_dentry == trap)
4613 		goto exit5;
4614 
4615 	error = security_path_rename(&old_path, old_dentry,
4616 				     &new_path, new_dentry, flags);
4617 	if (error)
4618 		goto exit5;
4619 	error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4620 			   new_path.dentry->d_inode, new_dentry,
4621 			   &delegated_inode, flags);
4622 exit5:
4623 	dput(new_dentry);
4624 exit4:
4625 	dput(old_dentry);
4626 exit3:
4627 	unlock_rename(new_path.dentry, old_path.dentry);
4628 	if (delegated_inode) {
4629 		error = break_deleg_wait(&delegated_inode);
4630 		if (!error)
4631 			goto retry_deleg;
4632 	}
4633 	mnt_drop_write(old_path.mnt);
4634 exit2:
4635 	if (retry_estale(error, lookup_flags))
4636 		should_retry = true;
4637 	path_put(&new_path);
4638 	putname(to);
4639 exit1:
4640 	path_put(&old_path);
4641 	putname(from);
4642 	if (should_retry) {
4643 		should_retry = false;
4644 		lookup_flags |= LOOKUP_REVAL;
4645 		goto retry;
4646 	}
4647 exit:
4648 	return error;
4649 }
4650 
4651 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4652 		int, newdfd, const char __user *, newname, unsigned int, flags)
4653 {
4654 	return do_renameat2(olddfd, oldname, newdfd, newname, flags);
4655 }
4656 
4657 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4658 		int, newdfd, const char __user *, newname)
4659 {
4660 	return do_renameat2(olddfd, oldname, newdfd, newname, 0);
4661 }
4662 
4663 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4664 {
4665 	return do_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4666 }
4667 
4668 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4669 {
4670 	int error = may_create(dir, dentry);
4671 	if (error)
4672 		return error;
4673 
4674 	if (!dir->i_op->mknod)
4675 		return -EPERM;
4676 
4677 	return dir->i_op->mknod(dir, dentry,
4678 				S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4679 }
4680 EXPORT_SYMBOL(vfs_whiteout);
4681 
4682 int readlink_copy(char __user *buffer, int buflen, const char *link)
4683 {
4684 	int len = PTR_ERR(link);
4685 	if (IS_ERR(link))
4686 		goto out;
4687 
4688 	len = strlen(link);
4689 	if (len > (unsigned) buflen)
4690 		len = buflen;
4691 	if (copy_to_user(buffer, link, len))
4692 		len = -EFAULT;
4693 out:
4694 	return len;
4695 }
4696 
4697 /**
4698  * vfs_readlink - copy symlink body into userspace buffer
4699  * @dentry: dentry on which to get symbolic link
4700  * @buffer: user memory pointer
4701  * @buflen: size of buffer
4702  *
4703  * Does not touch atime.  That's up to the caller if necessary
4704  *
4705  * Does not call security hook.
4706  */
4707 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4708 {
4709 	struct inode *inode = d_inode(dentry);
4710 	DEFINE_DELAYED_CALL(done);
4711 	const char *link;
4712 	int res;
4713 
4714 	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4715 		if (unlikely(inode->i_op->readlink))
4716 			return inode->i_op->readlink(dentry, buffer, buflen);
4717 
4718 		if (!d_is_symlink(dentry))
4719 			return -EINVAL;
4720 
4721 		spin_lock(&inode->i_lock);
4722 		inode->i_opflags |= IOP_DEFAULT_READLINK;
4723 		spin_unlock(&inode->i_lock);
4724 	}
4725 
4726 	link = READ_ONCE(inode->i_link);
4727 	if (!link) {
4728 		link = inode->i_op->get_link(dentry, inode, &done);
4729 		if (IS_ERR(link))
4730 			return PTR_ERR(link);
4731 	}
4732 	res = readlink_copy(buffer, buflen, link);
4733 	do_delayed_call(&done);
4734 	return res;
4735 }
4736 EXPORT_SYMBOL(vfs_readlink);
4737 
4738 /**
4739  * vfs_get_link - get symlink body
4740  * @dentry: dentry on which to get symbolic link
4741  * @done: caller needs to free returned data with this
4742  *
4743  * Calls security hook and i_op->get_link() on the supplied inode.
4744  *
4745  * It does not touch atime.  That's up to the caller if necessary.
4746  *
4747  * Does not work on "special" symlinks like /proc/$$/fd/N
4748  */
4749 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4750 {
4751 	const char *res = ERR_PTR(-EINVAL);
4752 	struct inode *inode = d_inode(dentry);
4753 
4754 	if (d_is_symlink(dentry)) {
4755 		res = ERR_PTR(security_inode_readlink(dentry));
4756 		if (!res)
4757 			res = inode->i_op->get_link(dentry, inode, done);
4758 	}
4759 	return res;
4760 }
4761 EXPORT_SYMBOL(vfs_get_link);
4762 
4763 /* get the link contents into pagecache */
4764 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4765 			  struct delayed_call *callback)
4766 {
4767 	char *kaddr;
4768 	struct page *page;
4769 	struct address_space *mapping = inode->i_mapping;
4770 
4771 	if (!dentry) {
4772 		page = find_get_page(mapping, 0);
4773 		if (!page)
4774 			return ERR_PTR(-ECHILD);
4775 		if (!PageUptodate(page)) {
4776 			put_page(page);
4777 			return ERR_PTR(-ECHILD);
4778 		}
4779 	} else {
4780 		page = read_mapping_page(mapping, 0, NULL);
4781 		if (IS_ERR(page))
4782 			return (char*)page;
4783 	}
4784 	set_delayed_call(callback, page_put_link, page);
4785 	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4786 	kaddr = page_address(page);
4787 	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4788 	return kaddr;
4789 }
4790 
4791 EXPORT_SYMBOL(page_get_link);
4792 
4793 void page_put_link(void *arg)
4794 {
4795 	put_page(arg);
4796 }
4797 EXPORT_SYMBOL(page_put_link);
4798 
4799 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4800 {
4801 	DEFINE_DELAYED_CALL(done);
4802 	int res = readlink_copy(buffer, buflen,
4803 				page_get_link(dentry, d_inode(dentry),
4804 					      &done));
4805 	do_delayed_call(&done);
4806 	return res;
4807 }
4808 EXPORT_SYMBOL(page_readlink);
4809 
4810 /*
4811  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4812  */
4813 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4814 {
4815 	struct address_space *mapping = inode->i_mapping;
4816 	struct page *page;
4817 	void *fsdata;
4818 	int err;
4819 	unsigned int flags = 0;
4820 	if (nofs)
4821 		flags |= AOP_FLAG_NOFS;
4822 
4823 retry:
4824 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4825 				flags, &page, &fsdata);
4826 	if (err)
4827 		goto fail;
4828 
4829 	memcpy(page_address(page), symname, len-1);
4830 
4831 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4832 							page, fsdata);
4833 	if (err < 0)
4834 		goto fail;
4835 	if (err < len-1)
4836 		goto retry;
4837 
4838 	mark_inode_dirty(inode);
4839 	return 0;
4840 fail:
4841 	return err;
4842 }
4843 EXPORT_SYMBOL(__page_symlink);
4844 
4845 int page_symlink(struct inode *inode, const char *symname, int len)
4846 {
4847 	return __page_symlink(inode, symname, len,
4848 			!mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4849 }
4850 EXPORT_SYMBOL(page_symlink);
4851 
4852 const struct inode_operations page_symlink_inode_operations = {
4853 	.get_link	= page_get_link,
4854 };
4855 EXPORT_SYMBOL(page_symlink_inode_operations);
4856