xref: /linux/fs/namei.c (revision 492c826b9facefa84995f4dea917e301b5ee0884)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <asm/uaccess.h>
36 
37 #include "internal.h"
38 
39 /* [Feb-1997 T. Schoebel-Theuer]
40  * Fundamental changes in the pathname lookup mechanisms (namei)
41  * were necessary because of omirr.  The reason is that omirr needs
42  * to know the _real_ pathname, not the user-supplied one, in case
43  * of symlinks (and also when transname replacements occur).
44  *
45  * The new code replaces the old recursive symlink resolution with
46  * an iterative one (in case of non-nested symlink chains).  It does
47  * this with calls to <fs>_follow_link().
48  * As a side effect, dir_namei(), _namei() and follow_link() are now
49  * replaced with a single function lookup_dentry() that can handle all
50  * the special cases of the former code.
51  *
52  * With the new dcache, the pathname is stored at each inode, at least as
53  * long as the refcount of the inode is positive.  As a side effect, the
54  * size of the dcache depends on the inode cache and thus is dynamic.
55  *
56  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
57  * resolution to correspond with current state of the code.
58  *
59  * Note that the symlink resolution is not *completely* iterative.
60  * There is still a significant amount of tail- and mid- recursion in
61  * the algorithm.  Also, note that <fs>_readlink() is not used in
62  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
63  * may return different results than <fs>_follow_link().  Many virtual
64  * filesystems (including /proc) exhibit this behavior.
65  */
66 
67 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
68  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
69  * and the name already exists in form of a symlink, try to create the new
70  * name indicated by the symlink. The old code always complained that the
71  * name already exists, due to not following the symlink even if its target
72  * is nonexistent.  The new semantics affects also mknod() and link() when
73  * the name is a symlink pointing to a non-existent name.
74  *
75  * I don't know which semantics is the right one, since I have no access
76  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
77  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
78  * "old" one. Personally, I think the new semantics is much more logical.
79  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
80  * file does succeed in both HP-UX and SunOs, but not in Solaris
81  * and in the old Linux semantics.
82  */
83 
84 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
85  * semantics.  See the comments in "open_namei" and "do_link" below.
86  *
87  * [10-Sep-98 Alan Modra] Another symlink change.
88  */
89 
90 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
91  *	inside the path - always follow.
92  *	in the last component in creation/removal/renaming - never follow.
93  *	if LOOKUP_FOLLOW passed - follow.
94  *	if the pathname has trailing slashes - follow.
95  *	otherwise - don't follow.
96  * (applied in that order).
97  *
98  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
99  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
100  * During the 2.4 we need to fix the userland stuff depending on it -
101  * hopefully we will be able to get rid of that wart in 2.5. So far only
102  * XEmacs seems to be relying on it...
103  */
104 /*
105  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
106  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
107  * any extra contention...
108  */
109 
110 /* In order to reduce some races, while at the same time doing additional
111  * checking and hopefully speeding things up, we copy filenames to the
112  * kernel data space before using them..
113  *
114  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
115  * PATH_MAX includes the nul terminator --RR.
116  */
117 static int do_getname(const char __user *filename, char *page)
118 {
119 	int retval;
120 	unsigned long len = PATH_MAX;
121 
122 	if (!segment_eq(get_fs(), KERNEL_DS)) {
123 		if ((unsigned long) filename >= TASK_SIZE)
124 			return -EFAULT;
125 		if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
126 			len = TASK_SIZE - (unsigned long) filename;
127 	}
128 
129 	retval = strncpy_from_user(page, filename, len);
130 	if (retval > 0) {
131 		if (retval < len)
132 			return 0;
133 		return -ENAMETOOLONG;
134 	} else if (!retval)
135 		retval = -ENOENT;
136 	return retval;
137 }
138 
139 static char *getname_flags(const char __user * filename, int flags)
140 {
141 	char *tmp, *result;
142 
143 	result = ERR_PTR(-ENOMEM);
144 	tmp = __getname();
145 	if (tmp)  {
146 		int retval = do_getname(filename, tmp);
147 
148 		result = tmp;
149 		if (retval < 0) {
150 			if (retval != -ENOENT || !(flags & LOOKUP_EMPTY)) {
151 				__putname(tmp);
152 				result = ERR_PTR(retval);
153 			}
154 		}
155 	}
156 	audit_getname(result);
157 	return result;
158 }
159 
160 char *getname(const char __user * filename)
161 {
162 	return getname_flags(filename, 0);
163 }
164 
165 #ifdef CONFIG_AUDITSYSCALL
166 void putname(const char *name)
167 {
168 	if (unlikely(!audit_dummy_context()))
169 		audit_putname(name);
170 	else
171 		__putname(name);
172 }
173 EXPORT_SYMBOL(putname);
174 #endif
175 
176 /*
177  * This does basic POSIX ACL permission checking
178  */
179 static int acl_permission_check(struct inode *inode, int mask, unsigned int flags,
180 		int (*check_acl)(struct inode *inode, int mask, unsigned int flags))
181 {
182 	unsigned int mode = inode->i_mode;
183 
184 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
185 
186 	if (current_user_ns() != inode_userns(inode))
187 		goto other_perms;
188 
189 	if (current_fsuid() == inode->i_uid)
190 		mode >>= 6;
191 	else {
192 		if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
193 			int error = check_acl(inode, mask, flags);
194 			if (error != -EAGAIN)
195 				return error;
196 		}
197 
198 		if (in_group_p(inode->i_gid))
199 			mode >>= 3;
200 	}
201 
202 other_perms:
203 	/*
204 	 * If the DACs are ok we don't need any capability check.
205 	 */
206 	if ((mask & ~mode) == 0)
207 		return 0;
208 	return -EACCES;
209 }
210 
211 /**
212  * generic_permission -  check for access rights on a Posix-like filesystem
213  * @inode:	inode to check access rights for
214  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
215  * @check_acl:	optional callback to check for Posix ACLs
216  * @flags:	IPERM_FLAG_ flags.
217  *
218  * Used to check for read/write/execute permissions on a file.
219  * We use "fsuid" for this, letting us set arbitrary permissions
220  * for filesystem access without changing the "normal" uids which
221  * are used for other things.
222  *
223  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
224  * request cannot be satisfied (eg. requires blocking or too much complexity).
225  * It would then be called again in ref-walk mode.
226  */
227 int generic_permission(struct inode *inode, int mask, unsigned int flags,
228 	int (*check_acl)(struct inode *inode, int mask, unsigned int flags))
229 {
230 	int ret;
231 
232 	/*
233 	 * Do the basic POSIX ACL permission checks.
234 	 */
235 	ret = acl_permission_check(inode, mask, flags, check_acl);
236 	if (ret != -EACCES)
237 		return ret;
238 
239 	/*
240 	 * Read/write DACs are always overridable.
241 	 * Executable DACs are overridable if at least one exec bit is set.
242 	 */
243 	if (!(mask & MAY_EXEC) || execute_ok(inode))
244 		if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
245 			return 0;
246 
247 	/*
248 	 * Searching includes executable on directories, else just read.
249 	 */
250 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
251 	if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
252 		if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
253 			return 0;
254 
255 	return -EACCES;
256 }
257 
258 /**
259  * inode_permission  -  check for access rights to a given inode
260  * @inode:	inode to check permission on
261  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
262  *
263  * Used to check for read/write/execute permissions on an inode.
264  * We use "fsuid" for this, letting us set arbitrary permissions
265  * for filesystem access without changing the "normal" uids which
266  * are used for other things.
267  */
268 int inode_permission(struct inode *inode, int mask)
269 {
270 	int retval;
271 
272 	if (mask & MAY_WRITE) {
273 		umode_t mode = inode->i_mode;
274 
275 		/*
276 		 * Nobody gets write access to a read-only fs.
277 		 */
278 		if (IS_RDONLY(inode) &&
279 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
280 			return -EROFS;
281 
282 		/*
283 		 * Nobody gets write access to an immutable file.
284 		 */
285 		if (IS_IMMUTABLE(inode))
286 			return -EACCES;
287 	}
288 
289 	if (inode->i_op->permission)
290 		retval = inode->i_op->permission(inode, mask, 0);
291 	else
292 		retval = generic_permission(inode, mask, 0,
293 				inode->i_op->check_acl);
294 
295 	if (retval)
296 		return retval;
297 
298 	retval = devcgroup_inode_permission(inode, mask);
299 	if (retval)
300 		return retval;
301 
302 	return security_inode_permission(inode, mask);
303 }
304 
305 /**
306  * file_permission  -  check for additional access rights to a given file
307  * @file:	file to check access rights for
308  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
309  *
310  * Used to check for read/write/execute permissions on an already opened
311  * file.
312  *
313  * Note:
314  *	Do not use this function in new code.  All access checks should
315  *	be done using inode_permission().
316  */
317 int file_permission(struct file *file, int mask)
318 {
319 	return inode_permission(file->f_path.dentry->d_inode, mask);
320 }
321 
322 /*
323  * get_write_access() gets write permission for a file.
324  * put_write_access() releases this write permission.
325  * This is used for regular files.
326  * We cannot support write (and maybe mmap read-write shared) accesses and
327  * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
328  * can have the following values:
329  * 0: no writers, no VM_DENYWRITE mappings
330  * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
331  * > 0: (i_writecount) users are writing to the file.
332  *
333  * Normally we operate on that counter with atomic_{inc,dec} and it's safe
334  * except for the cases where we don't hold i_writecount yet. Then we need to
335  * use {get,deny}_write_access() - these functions check the sign and refuse
336  * to do the change if sign is wrong. Exclusion between them is provided by
337  * the inode->i_lock spinlock.
338  */
339 
340 int get_write_access(struct inode * inode)
341 {
342 	spin_lock(&inode->i_lock);
343 	if (atomic_read(&inode->i_writecount) < 0) {
344 		spin_unlock(&inode->i_lock);
345 		return -ETXTBSY;
346 	}
347 	atomic_inc(&inode->i_writecount);
348 	spin_unlock(&inode->i_lock);
349 
350 	return 0;
351 }
352 
353 int deny_write_access(struct file * file)
354 {
355 	struct inode *inode = file->f_path.dentry->d_inode;
356 
357 	spin_lock(&inode->i_lock);
358 	if (atomic_read(&inode->i_writecount) > 0) {
359 		spin_unlock(&inode->i_lock);
360 		return -ETXTBSY;
361 	}
362 	atomic_dec(&inode->i_writecount);
363 	spin_unlock(&inode->i_lock);
364 
365 	return 0;
366 }
367 
368 /**
369  * path_get - get a reference to a path
370  * @path: path to get the reference to
371  *
372  * Given a path increment the reference count to the dentry and the vfsmount.
373  */
374 void path_get(struct path *path)
375 {
376 	mntget(path->mnt);
377 	dget(path->dentry);
378 }
379 EXPORT_SYMBOL(path_get);
380 
381 /**
382  * path_put - put a reference to a path
383  * @path: path to put the reference to
384  *
385  * Given a path decrement the reference count to the dentry and the vfsmount.
386  */
387 void path_put(struct path *path)
388 {
389 	dput(path->dentry);
390 	mntput(path->mnt);
391 }
392 EXPORT_SYMBOL(path_put);
393 
394 /*
395  * Path walking has 2 modes, rcu-walk and ref-walk (see
396  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
397  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
398  * normal reference counts on dentries and vfsmounts to transition to rcu-walk
399  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
400  * got stuck, so ref-walk may continue from there. If this is not successful
401  * (eg. a seqcount has changed), then failure is returned and it's up to caller
402  * to restart the path walk from the beginning in ref-walk mode.
403  */
404 
405 /**
406  * unlazy_walk - try to switch to ref-walk mode.
407  * @nd: nameidata pathwalk data
408  * @dentry: child of nd->path.dentry or NULL
409  * Returns: 0 on success, -ECHILD on failure
410  *
411  * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
412  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
413  * @nd or NULL.  Must be called from rcu-walk context.
414  */
415 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
416 {
417 	struct fs_struct *fs = current->fs;
418 	struct dentry *parent = nd->path.dentry;
419 	int want_root = 0;
420 
421 	BUG_ON(!(nd->flags & LOOKUP_RCU));
422 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
423 		want_root = 1;
424 		spin_lock(&fs->lock);
425 		if (nd->root.mnt != fs->root.mnt ||
426 				nd->root.dentry != fs->root.dentry)
427 			goto err_root;
428 	}
429 	spin_lock(&parent->d_lock);
430 	if (!dentry) {
431 		if (!__d_rcu_to_refcount(parent, nd->seq))
432 			goto err_parent;
433 		BUG_ON(nd->inode != parent->d_inode);
434 	} else {
435 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
436 		if (!__d_rcu_to_refcount(dentry, nd->seq))
437 			goto err_child;
438 		/*
439 		 * If the sequence check on the child dentry passed, then
440 		 * the child has not been removed from its parent. This
441 		 * means the parent dentry must be valid and able to take
442 		 * a reference at this point.
443 		 */
444 		BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
445 		BUG_ON(!parent->d_count);
446 		parent->d_count++;
447 		spin_unlock(&dentry->d_lock);
448 	}
449 	spin_unlock(&parent->d_lock);
450 	if (want_root) {
451 		path_get(&nd->root);
452 		spin_unlock(&fs->lock);
453 	}
454 	mntget(nd->path.mnt);
455 
456 	rcu_read_unlock();
457 	br_read_unlock(vfsmount_lock);
458 	nd->flags &= ~LOOKUP_RCU;
459 	return 0;
460 
461 err_child:
462 	spin_unlock(&dentry->d_lock);
463 err_parent:
464 	spin_unlock(&parent->d_lock);
465 err_root:
466 	if (want_root)
467 		spin_unlock(&fs->lock);
468 	return -ECHILD;
469 }
470 
471 /**
472  * release_open_intent - free up open intent resources
473  * @nd: pointer to nameidata
474  */
475 void release_open_intent(struct nameidata *nd)
476 {
477 	struct file *file = nd->intent.open.file;
478 
479 	if (file && !IS_ERR(file)) {
480 		if (file->f_path.dentry == NULL)
481 			put_filp(file);
482 		else
483 			fput(file);
484 	}
485 }
486 
487 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd)
488 {
489 	return dentry->d_op->d_revalidate(dentry, nd);
490 }
491 
492 static struct dentry *
493 do_revalidate(struct dentry *dentry, struct nameidata *nd)
494 {
495 	int status = d_revalidate(dentry, nd);
496 	if (unlikely(status <= 0)) {
497 		/*
498 		 * The dentry failed validation.
499 		 * If d_revalidate returned 0 attempt to invalidate
500 		 * the dentry otherwise d_revalidate is asking us
501 		 * to return a fail status.
502 		 */
503 		if (status < 0) {
504 			dput(dentry);
505 			dentry = ERR_PTR(status);
506 		} else if (!d_invalidate(dentry)) {
507 			dput(dentry);
508 			dentry = NULL;
509 		}
510 	}
511 	return dentry;
512 }
513 
514 /**
515  * complete_walk - successful completion of path walk
516  * @nd:  pointer nameidata
517  *
518  * If we had been in RCU mode, drop out of it and legitimize nd->path.
519  * Revalidate the final result, unless we'd already done that during
520  * the path walk or the filesystem doesn't ask for it.  Return 0 on
521  * success, -error on failure.  In case of failure caller does not
522  * need to drop nd->path.
523  */
524 static int complete_walk(struct nameidata *nd)
525 {
526 	struct dentry *dentry = nd->path.dentry;
527 	int status;
528 
529 	if (nd->flags & LOOKUP_RCU) {
530 		nd->flags &= ~LOOKUP_RCU;
531 		if (!(nd->flags & LOOKUP_ROOT))
532 			nd->root.mnt = NULL;
533 		spin_lock(&dentry->d_lock);
534 		if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
535 			spin_unlock(&dentry->d_lock);
536 			rcu_read_unlock();
537 			br_read_unlock(vfsmount_lock);
538 			return -ECHILD;
539 		}
540 		BUG_ON(nd->inode != dentry->d_inode);
541 		spin_unlock(&dentry->d_lock);
542 		mntget(nd->path.mnt);
543 		rcu_read_unlock();
544 		br_read_unlock(vfsmount_lock);
545 	}
546 
547 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
548 		return 0;
549 
550 	if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
551 		return 0;
552 
553 	if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
554 		return 0;
555 
556 	/* Note: we do not d_invalidate() */
557 	status = d_revalidate(dentry, nd);
558 	if (status > 0)
559 		return 0;
560 
561 	if (!status)
562 		status = -ESTALE;
563 
564 	path_put(&nd->path);
565 	return status;
566 }
567 
568 /*
569  * Short-cut version of permission(), for calling on directories
570  * during pathname resolution.  Combines parts of permission()
571  * and generic_permission(), and tests ONLY for MAY_EXEC permission.
572  *
573  * If appropriate, check DAC only.  If not appropriate, or
574  * short-cut DAC fails, then call ->permission() to do more
575  * complete permission check.
576  */
577 static inline int exec_permission(struct inode *inode, unsigned int flags)
578 {
579 	int ret;
580 	struct user_namespace *ns = inode_userns(inode);
581 
582 	if (inode->i_op->permission) {
583 		ret = inode->i_op->permission(inode, MAY_EXEC, flags);
584 	} else {
585 		ret = acl_permission_check(inode, MAY_EXEC, flags,
586 				inode->i_op->check_acl);
587 	}
588 	if (likely(!ret))
589 		goto ok;
590 	if (ret == -ECHILD)
591 		return ret;
592 
593 	if (ns_capable(ns, CAP_DAC_OVERRIDE) ||
594 			ns_capable(ns, CAP_DAC_READ_SEARCH))
595 		goto ok;
596 
597 	return ret;
598 ok:
599 	return security_inode_exec_permission(inode, flags);
600 }
601 
602 static __always_inline void set_root(struct nameidata *nd)
603 {
604 	if (!nd->root.mnt)
605 		get_fs_root(current->fs, &nd->root);
606 }
607 
608 static int link_path_walk(const char *, struct nameidata *);
609 
610 static __always_inline void set_root_rcu(struct nameidata *nd)
611 {
612 	if (!nd->root.mnt) {
613 		struct fs_struct *fs = current->fs;
614 		unsigned seq;
615 
616 		do {
617 			seq = read_seqcount_begin(&fs->seq);
618 			nd->root = fs->root;
619 			nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
620 		} while (read_seqcount_retry(&fs->seq, seq));
621 	}
622 }
623 
624 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
625 {
626 	int ret;
627 
628 	if (IS_ERR(link))
629 		goto fail;
630 
631 	if (*link == '/') {
632 		set_root(nd);
633 		path_put(&nd->path);
634 		nd->path = nd->root;
635 		path_get(&nd->root);
636 		nd->flags |= LOOKUP_JUMPED;
637 	}
638 	nd->inode = nd->path.dentry->d_inode;
639 
640 	ret = link_path_walk(link, nd);
641 	return ret;
642 fail:
643 	path_put(&nd->path);
644 	return PTR_ERR(link);
645 }
646 
647 static void path_put_conditional(struct path *path, struct nameidata *nd)
648 {
649 	dput(path->dentry);
650 	if (path->mnt != nd->path.mnt)
651 		mntput(path->mnt);
652 }
653 
654 static inline void path_to_nameidata(const struct path *path,
655 					struct nameidata *nd)
656 {
657 	if (!(nd->flags & LOOKUP_RCU)) {
658 		dput(nd->path.dentry);
659 		if (nd->path.mnt != path->mnt)
660 			mntput(nd->path.mnt);
661 	}
662 	nd->path.mnt = path->mnt;
663 	nd->path.dentry = path->dentry;
664 }
665 
666 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
667 {
668 	struct inode *inode = link->dentry->d_inode;
669 	if (!IS_ERR(cookie) && inode->i_op->put_link)
670 		inode->i_op->put_link(link->dentry, nd, cookie);
671 	path_put(link);
672 }
673 
674 static __always_inline int
675 follow_link(struct path *link, struct nameidata *nd, void **p)
676 {
677 	int error;
678 	struct dentry *dentry = link->dentry;
679 
680 	BUG_ON(nd->flags & LOOKUP_RCU);
681 
682 	if (link->mnt == nd->path.mnt)
683 		mntget(link->mnt);
684 
685 	if (unlikely(current->total_link_count >= 40)) {
686 		*p = ERR_PTR(-ELOOP); /* no ->put_link(), please */
687 		path_put(&nd->path);
688 		return -ELOOP;
689 	}
690 	cond_resched();
691 	current->total_link_count++;
692 
693 	touch_atime(link->mnt, dentry);
694 	nd_set_link(nd, NULL);
695 
696 	error = security_inode_follow_link(link->dentry, nd);
697 	if (error) {
698 		*p = ERR_PTR(error); /* no ->put_link(), please */
699 		path_put(&nd->path);
700 		return error;
701 	}
702 
703 	nd->last_type = LAST_BIND;
704 	*p = dentry->d_inode->i_op->follow_link(dentry, nd);
705 	error = PTR_ERR(*p);
706 	if (!IS_ERR(*p)) {
707 		char *s = nd_get_link(nd);
708 		error = 0;
709 		if (s)
710 			error = __vfs_follow_link(nd, s);
711 		else if (nd->last_type == LAST_BIND) {
712 			nd->flags |= LOOKUP_JUMPED;
713 			nd->inode = nd->path.dentry->d_inode;
714 			if (nd->inode->i_op->follow_link) {
715 				/* stepped on a _really_ weird one */
716 				path_put(&nd->path);
717 				error = -ELOOP;
718 			}
719 		}
720 	}
721 	return error;
722 }
723 
724 static int follow_up_rcu(struct path *path)
725 {
726 	struct vfsmount *parent;
727 	struct dentry *mountpoint;
728 
729 	parent = path->mnt->mnt_parent;
730 	if (parent == path->mnt)
731 		return 0;
732 	mountpoint = path->mnt->mnt_mountpoint;
733 	path->dentry = mountpoint;
734 	path->mnt = parent;
735 	return 1;
736 }
737 
738 int follow_up(struct path *path)
739 {
740 	struct vfsmount *parent;
741 	struct dentry *mountpoint;
742 
743 	br_read_lock(vfsmount_lock);
744 	parent = path->mnt->mnt_parent;
745 	if (parent == path->mnt) {
746 		br_read_unlock(vfsmount_lock);
747 		return 0;
748 	}
749 	mntget(parent);
750 	mountpoint = dget(path->mnt->mnt_mountpoint);
751 	br_read_unlock(vfsmount_lock);
752 	dput(path->dentry);
753 	path->dentry = mountpoint;
754 	mntput(path->mnt);
755 	path->mnt = parent;
756 	return 1;
757 }
758 
759 /*
760  * Perform an automount
761  * - return -EISDIR to tell follow_managed() to stop and return the path we
762  *   were called with.
763  */
764 static int follow_automount(struct path *path, unsigned flags,
765 			    bool *need_mntput)
766 {
767 	struct vfsmount *mnt;
768 	int err;
769 
770 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
771 		return -EREMOTE;
772 
773 	/* We don't want to mount if someone supplied AT_NO_AUTOMOUNT
774 	 * and this is the terminal part of the path.
775 	 */
776 	if ((flags & LOOKUP_NO_AUTOMOUNT) && !(flags & LOOKUP_CONTINUE))
777 		return -EISDIR; /* we actually want to stop here */
778 
779 	/* We want to mount if someone is trying to open/create a file of any
780 	 * type under the mountpoint, wants to traverse through the mountpoint
781 	 * or wants to open the mounted directory.
782 	 *
783 	 * We don't want to mount if someone's just doing a stat and they've
784 	 * set AT_SYMLINK_NOFOLLOW - unless they're stat'ing a directory and
785 	 * appended a '/' to the name.
786 	 */
787 	if (!(flags & LOOKUP_FOLLOW) &&
788 	    !(flags & (LOOKUP_CONTINUE | LOOKUP_DIRECTORY |
789 		       LOOKUP_OPEN | LOOKUP_CREATE)))
790 		return -EISDIR;
791 
792 	current->total_link_count++;
793 	if (current->total_link_count >= 40)
794 		return -ELOOP;
795 
796 	mnt = path->dentry->d_op->d_automount(path);
797 	if (IS_ERR(mnt)) {
798 		/*
799 		 * The filesystem is allowed to return -EISDIR here to indicate
800 		 * it doesn't want to automount.  For instance, autofs would do
801 		 * this so that its userspace daemon can mount on this dentry.
802 		 *
803 		 * However, we can only permit this if it's a terminal point in
804 		 * the path being looked up; if it wasn't then the remainder of
805 		 * the path is inaccessible and we should say so.
806 		 */
807 		if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_CONTINUE))
808 			return -EREMOTE;
809 		return PTR_ERR(mnt);
810 	}
811 
812 	if (!mnt) /* mount collision */
813 		return 0;
814 
815 	err = finish_automount(mnt, path);
816 
817 	switch (err) {
818 	case -EBUSY:
819 		/* Someone else made a mount here whilst we were busy */
820 		return 0;
821 	case 0:
822 		dput(path->dentry);
823 		if (*need_mntput)
824 			mntput(path->mnt);
825 		path->mnt = mnt;
826 		path->dentry = dget(mnt->mnt_root);
827 		*need_mntput = true;
828 		return 0;
829 	default:
830 		return err;
831 	}
832 
833 }
834 
835 /*
836  * Handle a dentry that is managed in some way.
837  * - Flagged for transit management (autofs)
838  * - Flagged as mountpoint
839  * - Flagged as automount point
840  *
841  * This may only be called in refwalk mode.
842  *
843  * Serialization is taken care of in namespace.c
844  */
845 static int follow_managed(struct path *path, unsigned flags)
846 {
847 	unsigned managed;
848 	bool need_mntput = false;
849 	int ret;
850 
851 	/* Given that we're not holding a lock here, we retain the value in a
852 	 * local variable for each dentry as we look at it so that we don't see
853 	 * the components of that value change under us */
854 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
855 	       managed &= DCACHE_MANAGED_DENTRY,
856 	       unlikely(managed != 0)) {
857 		/* Allow the filesystem to manage the transit without i_mutex
858 		 * being held. */
859 		if (managed & DCACHE_MANAGE_TRANSIT) {
860 			BUG_ON(!path->dentry->d_op);
861 			BUG_ON(!path->dentry->d_op->d_manage);
862 			ret = path->dentry->d_op->d_manage(path->dentry, false);
863 			if (ret < 0)
864 				return ret == -EISDIR ? 0 : ret;
865 		}
866 
867 		/* Transit to a mounted filesystem. */
868 		if (managed & DCACHE_MOUNTED) {
869 			struct vfsmount *mounted = lookup_mnt(path);
870 			if (mounted) {
871 				dput(path->dentry);
872 				if (need_mntput)
873 					mntput(path->mnt);
874 				path->mnt = mounted;
875 				path->dentry = dget(mounted->mnt_root);
876 				need_mntput = true;
877 				continue;
878 			}
879 
880 			/* Something is mounted on this dentry in another
881 			 * namespace and/or whatever was mounted there in this
882 			 * namespace got unmounted before we managed to get the
883 			 * vfsmount_lock */
884 		}
885 
886 		/* Handle an automount point */
887 		if (managed & DCACHE_NEED_AUTOMOUNT) {
888 			ret = follow_automount(path, flags, &need_mntput);
889 			if (ret < 0)
890 				return ret == -EISDIR ? 0 : ret;
891 			continue;
892 		}
893 
894 		/* We didn't change the current path point */
895 		break;
896 	}
897 	return 0;
898 }
899 
900 int follow_down_one(struct path *path)
901 {
902 	struct vfsmount *mounted;
903 
904 	mounted = lookup_mnt(path);
905 	if (mounted) {
906 		dput(path->dentry);
907 		mntput(path->mnt);
908 		path->mnt = mounted;
909 		path->dentry = dget(mounted->mnt_root);
910 		return 1;
911 	}
912 	return 0;
913 }
914 
915 static inline bool managed_dentry_might_block(struct dentry *dentry)
916 {
917 	return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
918 		dentry->d_op->d_manage(dentry, true) < 0);
919 }
920 
921 /*
922  * Skip to top of mountpoint pile in rcuwalk mode.  We abort the rcu-walk if we
923  * meet a managed dentry and we're not walking to "..".  True is returned to
924  * continue, false to abort.
925  */
926 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
927 			       struct inode **inode, bool reverse_transit)
928 {
929 	for (;;) {
930 		struct vfsmount *mounted;
931 		/*
932 		 * Don't forget we might have a non-mountpoint managed dentry
933 		 * that wants to block transit.
934 		 */
935 		*inode = path->dentry->d_inode;
936 		if (!reverse_transit &&
937 		     unlikely(managed_dentry_might_block(path->dentry)))
938 			return false;
939 
940 		if (!d_mountpoint(path->dentry))
941 			break;
942 
943 		mounted = __lookup_mnt(path->mnt, path->dentry, 1);
944 		if (!mounted)
945 			break;
946 		path->mnt = mounted;
947 		path->dentry = mounted->mnt_root;
948 		nd->seq = read_seqcount_begin(&path->dentry->d_seq);
949 	}
950 
951 	if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
952 		return reverse_transit;
953 	return true;
954 }
955 
956 static int follow_dotdot_rcu(struct nameidata *nd)
957 {
958 	struct inode *inode = nd->inode;
959 
960 	set_root_rcu(nd);
961 
962 	while (1) {
963 		if (nd->path.dentry == nd->root.dentry &&
964 		    nd->path.mnt == nd->root.mnt) {
965 			break;
966 		}
967 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
968 			struct dentry *old = nd->path.dentry;
969 			struct dentry *parent = old->d_parent;
970 			unsigned seq;
971 
972 			seq = read_seqcount_begin(&parent->d_seq);
973 			if (read_seqcount_retry(&old->d_seq, nd->seq))
974 				goto failed;
975 			inode = parent->d_inode;
976 			nd->path.dentry = parent;
977 			nd->seq = seq;
978 			break;
979 		}
980 		if (!follow_up_rcu(&nd->path))
981 			break;
982 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
983 		inode = nd->path.dentry->d_inode;
984 	}
985 	__follow_mount_rcu(nd, &nd->path, &inode, true);
986 	nd->inode = inode;
987 	return 0;
988 
989 failed:
990 	nd->flags &= ~LOOKUP_RCU;
991 	if (!(nd->flags & LOOKUP_ROOT))
992 		nd->root.mnt = NULL;
993 	rcu_read_unlock();
994 	br_read_unlock(vfsmount_lock);
995 	return -ECHILD;
996 }
997 
998 /*
999  * Follow down to the covering mount currently visible to userspace.  At each
1000  * point, the filesystem owning that dentry may be queried as to whether the
1001  * caller is permitted to proceed or not.
1002  *
1003  * Care must be taken as namespace_sem may be held (indicated by mounting_here
1004  * being true).
1005  */
1006 int follow_down(struct path *path)
1007 {
1008 	unsigned managed;
1009 	int ret;
1010 
1011 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1012 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1013 		/* Allow the filesystem to manage the transit without i_mutex
1014 		 * being held.
1015 		 *
1016 		 * We indicate to the filesystem if someone is trying to mount
1017 		 * something here.  This gives autofs the chance to deny anyone
1018 		 * other than its daemon the right to mount on its
1019 		 * superstructure.
1020 		 *
1021 		 * The filesystem may sleep at this point.
1022 		 */
1023 		if (managed & DCACHE_MANAGE_TRANSIT) {
1024 			BUG_ON(!path->dentry->d_op);
1025 			BUG_ON(!path->dentry->d_op->d_manage);
1026 			ret = path->dentry->d_op->d_manage(
1027 				path->dentry, false);
1028 			if (ret < 0)
1029 				return ret == -EISDIR ? 0 : ret;
1030 		}
1031 
1032 		/* Transit to a mounted filesystem. */
1033 		if (managed & DCACHE_MOUNTED) {
1034 			struct vfsmount *mounted = lookup_mnt(path);
1035 			if (!mounted)
1036 				break;
1037 			dput(path->dentry);
1038 			mntput(path->mnt);
1039 			path->mnt = mounted;
1040 			path->dentry = dget(mounted->mnt_root);
1041 			continue;
1042 		}
1043 
1044 		/* Don't handle automount points here */
1045 		break;
1046 	}
1047 	return 0;
1048 }
1049 
1050 /*
1051  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1052  */
1053 static void follow_mount(struct path *path)
1054 {
1055 	while (d_mountpoint(path->dentry)) {
1056 		struct vfsmount *mounted = lookup_mnt(path);
1057 		if (!mounted)
1058 			break;
1059 		dput(path->dentry);
1060 		mntput(path->mnt);
1061 		path->mnt = mounted;
1062 		path->dentry = dget(mounted->mnt_root);
1063 	}
1064 }
1065 
1066 static void follow_dotdot(struct nameidata *nd)
1067 {
1068 	set_root(nd);
1069 
1070 	while(1) {
1071 		struct dentry *old = nd->path.dentry;
1072 
1073 		if (nd->path.dentry == nd->root.dentry &&
1074 		    nd->path.mnt == nd->root.mnt) {
1075 			break;
1076 		}
1077 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1078 			/* rare case of legitimate dget_parent()... */
1079 			nd->path.dentry = dget_parent(nd->path.dentry);
1080 			dput(old);
1081 			break;
1082 		}
1083 		if (!follow_up(&nd->path))
1084 			break;
1085 	}
1086 	follow_mount(&nd->path);
1087 	nd->inode = nd->path.dentry->d_inode;
1088 }
1089 
1090 /*
1091  * Allocate a dentry with name and parent, and perform a parent
1092  * directory ->lookup on it. Returns the new dentry, or ERR_PTR
1093  * on error. parent->d_inode->i_mutex must be held. d_lookup must
1094  * have verified that no child exists while under i_mutex.
1095  */
1096 static struct dentry *d_alloc_and_lookup(struct dentry *parent,
1097 				struct qstr *name, struct nameidata *nd)
1098 {
1099 	struct inode *inode = parent->d_inode;
1100 	struct dentry *dentry;
1101 	struct dentry *old;
1102 
1103 	/* Don't create child dentry for a dead directory. */
1104 	if (unlikely(IS_DEADDIR(inode)))
1105 		return ERR_PTR(-ENOENT);
1106 
1107 	dentry = d_alloc(parent, name);
1108 	if (unlikely(!dentry))
1109 		return ERR_PTR(-ENOMEM);
1110 
1111 	old = inode->i_op->lookup(inode, dentry, nd);
1112 	if (unlikely(old)) {
1113 		dput(dentry);
1114 		dentry = old;
1115 	}
1116 	return dentry;
1117 }
1118 
1119 /*
1120  *  It's more convoluted than I'd like it to be, but... it's still fairly
1121  *  small and for now I'd prefer to have fast path as straight as possible.
1122  *  It _is_ time-critical.
1123  */
1124 static int do_lookup(struct nameidata *nd, struct qstr *name,
1125 			struct path *path, struct inode **inode)
1126 {
1127 	struct vfsmount *mnt = nd->path.mnt;
1128 	struct dentry *dentry, *parent = nd->path.dentry;
1129 	int need_reval = 1;
1130 	int status = 1;
1131 	int err;
1132 
1133 	/*
1134 	 * Rename seqlock is not required here because in the off chance
1135 	 * of a false negative due to a concurrent rename, we're going to
1136 	 * do the non-racy lookup, below.
1137 	 */
1138 	if (nd->flags & LOOKUP_RCU) {
1139 		unsigned seq;
1140 		*inode = nd->inode;
1141 		dentry = __d_lookup_rcu(parent, name, &seq, inode);
1142 		if (!dentry)
1143 			goto unlazy;
1144 
1145 		/* Memory barrier in read_seqcount_begin of child is enough */
1146 		if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1147 			return -ECHILD;
1148 		nd->seq = seq;
1149 
1150 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1151 			status = d_revalidate(dentry, nd);
1152 			if (unlikely(status <= 0)) {
1153 				if (status != -ECHILD)
1154 					need_reval = 0;
1155 				goto unlazy;
1156 			}
1157 		}
1158 		path->mnt = mnt;
1159 		path->dentry = dentry;
1160 		if (likely(__follow_mount_rcu(nd, path, inode, false)))
1161 			return 0;
1162 unlazy:
1163 		if (unlazy_walk(nd, dentry))
1164 			return -ECHILD;
1165 	} else {
1166 		dentry = __d_lookup(parent, name);
1167 	}
1168 
1169 retry:
1170 	if (unlikely(!dentry)) {
1171 		struct inode *dir = parent->d_inode;
1172 		BUG_ON(nd->inode != dir);
1173 
1174 		mutex_lock(&dir->i_mutex);
1175 		dentry = d_lookup(parent, name);
1176 		if (likely(!dentry)) {
1177 			dentry = d_alloc_and_lookup(parent, name, nd);
1178 			if (IS_ERR(dentry)) {
1179 				mutex_unlock(&dir->i_mutex);
1180 				return PTR_ERR(dentry);
1181 			}
1182 			/* known good */
1183 			need_reval = 0;
1184 			status = 1;
1185 		}
1186 		mutex_unlock(&dir->i_mutex);
1187 	}
1188 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1189 		status = d_revalidate(dentry, nd);
1190 	if (unlikely(status <= 0)) {
1191 		if (status < 0) {
1192 			dput(dentry);
1193 			return status;
1194 		}
1195 		if (!d_invalidate(dentry)) {
1196 			dput(dentry);
1197 			dentry = NULL;
1198 			need_reval = 1;
1199 			goto retry;
1200 		}
1201 	}
1202 
1203 	path->mnt = mnt;
1204 	path->dentry = dentry;
1205 	err = follow_managed(path, nd->flags);
1206 	if (unlikely(err < 0)) {
1207 		path_put_conditional(path, nd);
1208 		return err;
1209 	}
1210 	*inode = path->dentry->d_inode;
1211 	return 0;
1212 }
1213 
1214 static inline int may_lookup(struct nameidata *nd)
1215 {
1216 	if (nd->flags & LOOKUP_RCU) {
1217 		int err = exec_permission(nd->inode, IPERM_FLAG_RCU);
1218 		if (err != -ECHILD)
1219 			return err;
1220 		if (unlazy_walk(nd, NULL))
1221 			return -ECHILD;
1222 	}
1223 	return exec_permission(nd->inode, 0);
1224 }
1225 
1226 static inline int handle_dots(struct nameidata *nd, int type)
1227 {
1228 	if (type == LAST_DOTDOT) {
1229 		if (nd->flags & LOOKUP_RCU) {
1230 			if (follow_dotdot_rcu(nd))
1231 				return -ECHILD;
1232 		} else
1233 			follow_dotdot(nd);
1234 	}
1235 	return 0;
1236 }
1237 
1238 static void terminate_walk(struct nameidata *nd)
1239 {
1240 	if (!(nd->flags & LOOKUP_RCU)) {
1241 		path_put(&nd->path);
1242 	} else {
1243 		nd->flags &= ~LOOKUP_RCU;
1244 		if (!(nd->flags & LOOKUP_ROOT))
1245 			nd->root.mnt = NULL;
1246 		rcu_read_unlock();
1247 		br_read_unlock(vfsmount_lock);
1248 	}
1249 }
1250 
1251 static inline int walk_component(struct nameidata *nd, struct path *path,
1252 		struct qstr *name, int type, int follow)
1253 {
1254 	struct inode *inode;
1255 	int err;
1256 	/*
1257 	 * "." and ".." are special - ".." especially so because it has
1258 	 * to be able to know about the current root directory and
1259 	 * parent relationships.
1260 	 */
1261 	if (unlikely(type != LAST_NORM))
1262 		return handle_dots(nd, type);
1263 	err = do_lookup(nd, name, path, &inode);
1264 	if (unlikely(err)) {
1265 		terminate_walk(nd);
1266 		return err;
1267 	}
1268 	if (!inode) {
1269 		path_to_nameidata(path, nd);
1270 		terminate_walk(nd);
1271 		return -ENOENT;
1272 	}
1273 	if (unlikely(inode->i_op->follow_link) && follow) {
1274 		if (nd->flags & LOOKUP_RCU) {
1275 			if (unlikely(unlazy_walk(nd, path->dentry))) {
1276 				terminate_walk(nd);
1277 				return -ECHILD;
1278 			}
1279 		}
1280 		BUG_ON(inode != path->dentry->d_inode);
1281 		return 1;
1282 	}
1283 	path_to_nameidata(path, nd);
1284 	nd->inode = inode;
1285 	return 0;
1286 }
1287 
1288 /*
1289  * This limits recursive symlink follows to 8, while
1290  * limiting consecutive symlinks to 40.
1291  *
1292  * Without that kind of total limit, nasty chains of consecutive
1293  * symlinks can cause almost arbitrarily long lookups.
1294  */
1295 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1296 {
1297 	int res;
1298 
1299 	if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1300 		path_put_conditional(path, nd);
1301 		path_put(&nd->path);
1302 		return -ELOOP;
1303 	}
1304 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1305 
1306 	nd->depth++;
1307 	current->link_count++;
1308 
1309 	do {
1310 		struct path link = *path;
1311 		void *cookie;
1312 
1313 		res = follow_link(&link, nd, &cookie);
1314 		if (!res)
1315 			res = walk_component(nd, path, &nd->last,
1316 					     nd->last_type, LOOKUP_FOLLOW);
1317 		put_link(nd, &link, cookie);
1318 	} while (res > 0);
1319 
1320 	current->link_count--;
1321 	nd->depth--;
1322 	return res;
1323 }
1324 
1325 /*
1326  * Name resolution.
1327  * This is the basic name resolution function, turning a pathname into
1328  * the final dentry. We expect 'base' to be positive and a directory.
1329  *
1330  * Returns 0 and nd will have valid dentry and mnt on success.
1331  * Returns error and drops reference to input namei data on failure.
1332  */
1333 static int link_path_walk(const char *name, struct nameidata *nd)
1334 {
1335 	struct path next;
1336 	int err;
1337 	unsigned int lookup_flags = nd->flags;
1338 
1339 	while (*name=='/')
1340 		name++;
1341 	if (!*name)
1342 		return 0;
1343 
1344 	/* At this point we know we have a real path component. */
1345 	for(;;) {
1346 		unsigned long hash;
1347 		struct qstr this;
1348 		unsigned int c;
1349 		int type;
1350 
1351 		nd->flags |= LOOKUP_CONTINUE;
1352 
1353 		err = may_lookup(nd);
1354  		if (err)
1355 			break;
1356 
1357 		this.name = name;
1358 		c = *(const unsigned char *)name;
1359 
1360 		hash = init_name_hash();
1361 		do {
1362 			name++;
1363 			hash = partial_name_hash(c, hash);
1364 			c = *(const unsigned char *)name;
1365 		} while (c && (c != '/'));
1366 		this.len = name - (const char *) this.name;
1367 		this.hash = end_name_hash(hash);
1368 
1369 		type = LAST_NORM;
1370 		if (this.name[0] == '.') switch (this.len) {
1371 			case 2:
1372 				if (this.name[1] == '.') {
1373 					type = LAST_DOTDOT;
1374 					nd->flags |= LOOKUP_JUMPED;
1375 				}
1376 				break;
1377 			case 1:
1378 				type = LAST_DOT;
1379 		}
1380 		if (likely(type == LAST_NORM)) {
1381 			struct dentry *parent = nd->path.dentry;
1382 			nd->flags &= ~LOOKUP_JUMPED;
1383 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1384 				err = parent->d_op->d_hash(parent, nd->inode,
1385 							   &this);
1386 				if (err < 0)
1387 					break;
1388 			}
1389 		}
1390 
1391 		/* remove trailing slashes? */
1392 		if (!c)
1393 			goto last_component;
1394 		while (*++name == '/');
1395 		if (!*name)
1396 			goto last_component;
1397 
1398 		err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1399 		if (err < 0)
1400 			return err;
1401 
1402 		if (err) {
1403 			err = nested_symlink(&next, nd);
1404 			if (err)
1405 				return err;
1406 		}
1407 		err = -ENOTDIR;
1408 		if (!nd->inode->i_op->lookup)
1409 			break;
1410 		continue;
1411 		/* here ends the main loop */
1412 
1413 last_component:
1414 		/* Clear LOOKUP_CONTINUE iff it was previously unset */
1415 		nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
1416 		nd->last = this;
1417 		nd->last_type = type;
1418 		return 0;
1419 	}
1420 	terminate_walk(nd);
1421 	return err;
1422 }
1423 
1424 static int path_init(int dfd, const char *name, unsigned int flags,
1425 		     struct nameidata *nd, struct file **fp)
1426 {
1427 	int retval = 0;
1428 	int fput_needed;
1429 	struct file *file;
1430 
1431 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1432 	nd->flags = flags | LOOKUP_JUMPED;
1433 	nd->depth = 0;
1434 	if (flags & LOOKUP_ROOT) {
1435 		struct inode *inode = nd->root.dentry->d_inode;
1436 		if (*name) {
1437 			if (!inode->i_op->lookup)
1438 				return -ENOTDIR;
1439 			retval = inode_permission(inode, MAY_EXEC);
1440 			if (retval)
1441 				return retval;
1442 		}
1443 		nd->path = nd->root;
1444 		nd->inode = inode;
1445 		if (flags & LOOKUP_RCU) {
1446 			br_read_lock(vfsmount_lock);
1447 			rcu_read_lock();
1448 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1449 		} else {
1450 			path_get(&nd->path);
1451 		}
1452 		return 0;
1453 	}
1454 
1455 	nd->root.mnt = NULL;
1456 
1457 	if (*name=='/') {
1458 		if (flags & LOOKUP_RCU) {
1459 			br_read_lock(vfsmount_lock);
1460 			rcu_read_lock();
1461 			set_root_rcu(nd);
1462 		} else {
1463 			set_root(nd);
1464 			path_get(&nd->root);
1465 		}
1466 		nd->path = nd->root;
1467 	} else if (dfd == AT_FDCWD) {
1468 		if (flags & LOOKUP_RCU) {
1469 			struct fs_struct *fs = current->fs;
1470 			unsigned seq;
1471 
1472 			br_read_lock(vfsmount_lock);
1473 			rcu_read_lock();
1474 
1475 			do {
1476 				seq = read_seqcount_begin(&fs->seq);
1477 				nd->path = fs->pwd;
1478 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1479 			} while (read_seqcount_retry(&fs->seq, seq));
1480 		} else {
1481 			get_fs_pwd(current->fs, &nd->path);
1482 		}
1483 	} else {
1484 		struct dentry *dentry;
1485 
1486 		file = fget_raw_light(dfd, &fput_needed);
1487 		retval = -EBADF;
1488 		if (!file)
1489 			goto out_fail;
1490 
1491 		dentry = file->f_path.dentry;
1492 
1493 		if (*name) {
1494 			retval = -ENOTDIR;
1495 			if (!S_ISDIR(dentry->d_inode->i_mode))
1496 				goto fput_fail;
1497 
1498 			retval = file_permission(file, MAY_EXEC);
1499 			if (retval)
1500 				goto fput_fail;
1501 		}
1502 
1503 		nd->path = file->f_path;
1504 		if (flags & LOOKUP_RCU) {
1505 			if (fput_needed)
1506 				*fp = file;
1507 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1508 			br_read_lock(vfsmount_lock);
1509 			rcu_read_lock();
1510 		} else {
1511 			path_get(&file->f_path);
1512 			fput_light(file, fput_needed);
1513 		}
1514 	}
1515 
1516 	nd->inode = nd->path.dentry->d_inode;
1517 	return 0;
1518 
1519 fput_fail:
1520 	fput_light(file, fput_needed);
1521 out_fail:
1522 	return retval;
1523 }
1524 
1525 static inline int lookup_last(struct nameidata *nd, struct path *path)
1526 {
1527 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1528 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1529 
1530 	nd->flags &= ~LOOKUP_PARENT;
1531 	return walk_component(nd, path, &nd->last, nd->last_type,
1532 					nd->flags & LOOKUP_FOLLOW);
1533 }
1534 
1535 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1536 static int path_lookupat(int dfd, const char *name,
1537 				unsigned int flags, struct nameidata *nd)
1538 {
1539 	struct file *base = NULL;
1540 	struct path path;
1541 	int err;
1542 
1543 	/*
1544 	 * Path walking is largely split up into 2 different synchronisation
1545 	 * schemes, rcu-walk and ref-walk (explained in
1546 	 * Documentation/filesystems/path-lookup.txt). These share much of the
1547 	 * path walk code, but some things particularly setup, cleanup, and
1548 	 * following mounts are sufficiently divergent that functions are
1549 	 * duplicated. Typically there is a function foo(), and its RCU
1550 	 * analogue, foo_rcu().
1551 	 *
1552 	 * -ECHILD is the error number of choice (just to avoid clashes) that
1553 	 * is returned if some aspect of an rcu-walk fails. Such an error must
1554 	 * be handled by restarting a traditional ref-walk (which will always
1555 	 * be able to complete).
1556 	 */
1557 	err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1558 
1559 	if (unlikely(err))
1560 		return err;
1561 
1562 	current->total_link_count = 0;
1563 	err = link_path_walk(name, nd);
1564 
1565 	if (!err && !(flags & LOOKUP_PARENT)) {
1566 		err = lookup_last(nd, &path);
1567 		while (err > 0) {
1568 			void *cookie;
1569 			struct path link = path;
1570 			nd->flags |= LOOKUP_PARENT;
1571 			err = follow_link(&link, nd, &cookie);
1572 			if (!err)
1573 				err = lookup_last(nd, &path);
1574 			put_link(nd, &link, cookie);
1575 		}
1576 	}
1577 
1578 	if (!err)
1579 		err = complete_walk(nd);
1580 
1581 	if (!err && nd->flags & LOOKUP_DIRECTORY) {
1582 		if (!nd->inode->i_op->lookup) {
1583 			path_put(&nd->path);
1584 			err = -ENOTDIR;
1585 		}
1586 	}
1587 
1588 	if (base)
1589 		fput(base);
1590 
1591 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1592 		path_put(&nd->root);
1593 		nd->root.mnt = NULL;
1594 	}
1595 	return err;
1596 }
1597 
1598 static int do_path_lookup(int dfd, const char *name,
1599 				unsigned int flags, struct nameidata *nd)
1600 {
1601 	int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
1602 	if (unlikely(retval == -ECHILD))
1603 		retval = path_lookupat(dfd, name, flags, nd);
1604 	if (unlikely(retval == -ESTALE))
1605 		retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1606 
1607 	if (likely(!retval)) {
1608 		if (unlikely(!audit_dummy_context())) {
1609 			if (nd->path.dentry && nd->inode)
1610 				audit_inode(name, nd->path.dentry);
1611 		}
1612 	}
1613 	return retval;
1614 }
1615 
1616 int kern_path_parent(const char *name, struct nameidata *nd)
1617 {
1618 	return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd);
1619 }
1620 
1621 int kern_path(const char *name, unsigned int flags, struct path *path)
1622 {
1623 	struct nameidata nd;
1624 	int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1625 	if (!res)
1626 		*path = nd.path;
1627 	return res;
1628 }
1629 
1630 /**
1631  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1632  * @dentry:  pointer to dentry of the base directory
1633  * @mnt: pointer to vfs mount of the base directory
1634  * @name: pointer to file name
1635  * @flags: lookup flags
1636  * @nd: pointer to nameidata
1637  */
1638 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1639 		    const char *name, unsigned int flags,
1640 		    struct nameidata *nd)
1641 {
1642 	nd->root.dentry = dentry;
1643 	nd->root.mnt = mnt;
1644 	/* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
1645 	return do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, nd);
1646 }
1647 
1648 static struct dentry *__lookup_hash(struct qstr *name,
1649 		struct dentry *base, struct nameidata *nd)
1650 {
1651 	struct inode *inode = base->d_inode;
1652 	struct dentry *dentry;
1653 	int err;
1654 
1655 	err = exec_permission(inode, 0);
1656 	if (err)
1657 		return ERR_PTR(err);
1658 
1659 	/*
1660 	 * Don't bother with __d_lookup: callers are for creat as
1661 	 * well as unlink, so a lot of the time it would cost
1662 	 * a double lookup.
1663 	 */
1664 	dentry = d_lookup(base, name);
1665 
1666 	if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE))
1667 		dentry = do_revalidate(dentry, nd);
1668 
1669 	if (!dentry)
1670 		dentry = d_alloc_and_lookup(base, name, nd);
1671 
1672 	return dentry;
1673 }
1674 
1675 /*
1676  * Restricted form of lookup. Doesn't follow links, single-component only,
1677  * needs parent already locked. Doesn't follow mounts.
1678  * SMP-safe.
1679  */
1680 static struct dentry *lookup_hash(struct nameidata *nd)
1681 {
1682 	return __lookup_hash(&nd->last, nd->path.dentry, nd);
1683 }
1684 
1685 /**
1686  * lookup_one_len - filesystem helper to lookup single pathname component
1687  * @name:	pathname component to lookup
1688  * @base:	base directory to lookup from
1689  * @len:	maximum length @len should be interpreted to
1690  *
1691  * Note that this routine is purely a helper for filesystem usage and should
1692  * not be called by generic code.  Also note that by using this function the
1693  * nameidata argument is passed to the filesystem methods and a filesystem
1694  * using this helper needs to be prepared for that.
1695  */
1696 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1697 {
1698 	struct qstr this;
1699 	unsigned long hash;
1700 	unsigned int c;
1701 
1702 	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1703 
1704 	this.name = name;
1705 	this.len = len;
1706 	if (!len)
1707 		return ERR_PTR(-EACCES);
1708 
1709 	hash = init_name_hash();
1710 	while (len--) {
1711 		c = *(const unsigned char *)name++;
1712 		if (c == '/' || c == '\0')
1713 			return ERR_PTR(-EACCES);
1714 		hash = partial_name_hash(c, hash);
1715 	}
1716 	this.hash = end_name_hash(hash);
1717 	/*
1718 	 * See if the low-level filesystem might want
1719 	 * to use its own hash..
1720 	 */
1721 	if (base->d_flags & DCACHE_OP_HASH) {
1722 		int err = base->d_op->d_hash(base, base->d_inode, &this);
1723 		if (err < 0)
1724 			return ERR_PTR(err);
1725 	}
1726 
1727 	return __lookup_hash(&this, base, NULL);
1728 }
1729 
1730 int user_path_at(int dfd, const char __user *name, unsigned flags,
1731 		 struct path *path)
1732 {
1733 	struct nameidata nd;
1734 	char *tmp = getname_flags(name, flags);
1735 	int err = PTR_ERR(tmp);
1736 	if (!IS_ERR(tmp)) {
1737 
1738 		BUG_ON(flags & LOOKUP_PARENT);
1739 
1740 		err = do_path_lookup(dfd, tmp, flags, &nd);
1741 		putname(tmp);
1742 		if (!err)
1743 			*path = nd.path;
1744 	}
1745 	return err;
1746 }
1747 
1748 static int user_path_parent(int dfd, const char __user *path,
1749 			struct nameidata *nd, char **name)
1750 {
1751 	char *s = getname(path);
1752 	int error;
1753 
1754 	if (IS_ERR(s))
1755 		return PTR_ERR(s);
1756 
1757 	error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1758 	if (error)
1759 		putname(s);
1760 	else
1761 		*name = s;
1762 
1763 	return error;
1764 }
1765 
1766 /*
1767  * It's inline, so penalty for filesystems that don't use sticky bit is
1768  * minimal.
1769  */
1770 static inline int check_sticky(struct inode *dir, struct inode *inode)
1771 {
1772 	uid_t fsuid = current_fsuid();
1773 
1774 	if (!(dir->i_mode & S_ISVTX))
1775 		return 0;
1776 	if (current_user_ns() != inode_userns(inode))
1777 		goto other_userns;
1778 	if (inode->i_uid == fsuid)
1779 		return 0;
1780 	if (dir->i_uid == fsuid)
1781 		return 0;
1782 
1783 other_userns:
1784 	return !ns_capable(inode_userns(inode), CAP_FOWNER);
1785 }
1786 
1787 /*
1788  *	Check whether we can remove a link victim from directory dir, check
1789  *  whether the type of victim is right.
1790  *  1. We can't do it if dir is read-only (done in permission())
1791  *  2. We should have write and exec permissions on dir
1792  *  3. We can't remove anything from append-only dir
1793  *  4. We can't do anything with immutable dir (done in permission())
1794  *  5. If the sticky bit on dir is set we should either
1795  *	a. be owner of dir, or
1796  *	b. be owner of victim, or
1797  *	c. have CAP_FOWNER capability
1798  *  6. If the victim is append-only or immutable we can't do antyhing with
1799  *     links pointing to it.
1800  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1801  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1802  *  9. We can't remove a root or mountpoint.
1803  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1804  *     nfs_async_unlink().
1805  */
1806 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1807 {
1808 	int error;
1809 
1810 	if (!victim->d_inode)
1811 		return -ENOENT;
1812 
1813 	BUG_ON(victim->d_parent->d_inode != dir);
1814 	audit_inode_child(victim, dir);
1815 
1816 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1817 	if (error)
1818 		return error;
1819 	if (IS_APPEND(dir))
1820 		return -EPERM;
1821 	if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1822 	    IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1823 		return -EPERM;
1824 	if (isdir) {
1825 		if (!S_ISDIR(victim->d_inode->i_mode))
1826 			return -ENOTDIR;
1827 		if (IS_ROOT(victim))
1828 			return -EBUSY;
1829 	} else if (S_ISDIR(victim->d_inode->i_mode))
1830 		return -EISDIR;
1831 	if (IS_DEADDIR(dir))
1832 		return -ENOENT;
1833 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1834 		return -EBUSY;
1835 	return 0;
1836 }
1837 
1838 /*	Check whether we can create an object with dentry child in directory
1839  *  dir.
1840  *  1. We can't do it if child already exists (open has special treatment for
1841  *     this case, but since we are inlined it's OK)
1842  *  2. We can't do it if dir is read-only (done in permission())
1843  *  3. We should have write and exec permissions on dir
1844  *  4. We can't do it if dir is immutable (done in permission())
1845  */
1846 static inline int may_create(struct inode *dir, struct dentry *child)
1847 {
1848 	if (child->d_inode)
1849 		return -EEXIST;
1850 	if (IS_DEADDIR(dir))
1851 		return -ENOENT;
1852 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1853 }
1854 
1855 /*
1856  * p1 and p2 should be directories on the same fs.
1857  */
1858 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1859 {
1860 	struct dentry *p;
1861 
1862 	if (p1 == p2) {
1863 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1864 		return NULL;
1865 	}
1866 
1867 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1868 
1869 	p = d_ancestor(p2, p1);
1870 	if (p) {
1871 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1872 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1873 		return p;
1874 	}
1875 
1876 	p = d_ancestor(p1, p2);
1877 	if (p) {
1878 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1879 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1880 		return p;
1881 	}
1882 
1883 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1884 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1885 	return NULL;
1886 }
1887 
1888 void unlock_rename(struct dentry *p1, struct dentry *p2)
1889 {
1890 	mutex_unlock(&p1->d_inode->i_mutex);
1891 	if (p1 != p2) {
1892 		mutex_unlock(&p2->d_inode->i_mutex);
1893 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1894 	}
1895 }
1896 
1897 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1898 		struct nameidata *nd)
1899 {
1900 	int error = may_create(dir, dentry);
1901 
1902 	if (error)
1903 		return error;
1904 
1905 	if (!dir->i_op->create)
1906 		return -EACCES;	/* shouldn't it be ENOSYS? */
1907 	mode &= S_IALLUGO;
1908 	mode |= S_IFREG;
1909 	error = security_inode_create(dir, dentry, mode);
1910 	if (error)
1911 		return error;
1912 	error = dir->i_op->create(dir, dentry, mode, nd);
1913 	if (!error)
1914 		fsnotify_create(dir, dentry);
1915 	return error;
1916 }
1917 
1918 static int may_open(struct path *path, int acc_mode, int flag)
1919 {
1920 	struct dentry *dentry = path->dentry;
1921 	struct inode *inode = dentry->d_inode;
1922 	int error;
1923 
1924 	/* O_PATH? */
1925 	if (!acc_mode)
1926 		return 0;
1927 
1928 	if (!inode)
1929 		return -ENOENT;
1930 
1931 	switch (inode->i_mode & S_IFMT) {
1932 	case S_IFLNK:
1933 		return -ELOOP;
1934 	case S_IFDIR:
1935 		if (acc_mode & MAY_WRITE)
1936 			return -EISDIR;
1937 		break;
1938 	case S_IFBLK:
1939 	case S_IFCHR:
1940 		if (path->mnt->mnt_flags & MNT_NODEV)
1941 			return -EACCES;
1942 		/*FALLTHRU*/
1943 	case S_IFIFO:
1944 	case S_IFSOCK:
1945 		flag &= ~O_TRUNC;
1946 		break;
1947 	}
1948 
1949 	error = inode_permission(inode, acc_mode);
1950 	if (error)
1951 		return error;
1952 
1953 	/*
1954 	 * An append-only file must be opened in append mode for writing.
1955 	 */
1956 	if (IS_APPEND(inode)) {
1957 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
1958 			return -EPERM;
1959 		if (flag & O_TRUNC)
1960 			return -EPERM;
1961 	}
1962 
1963 	/* O_NOATIME can only be set by the owner or superuser */
1964 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
1965 		return -EPERM;
1966 
1967 	/*
1968 	 * Ensure there are no outstanding leases on the file.
1969 	 */
1970 	return break_lease(inode, flag);
1971 }
1972 
1973 static int handle_truncate(struct file *filp)
1974 {
1975 	struct path *path = &filp->f_path;
1976 	struct inode *inode = path->dentry->d_inode;
1977 	int error = get_write_access(inode);
1978 	if (error)
1979 		return error;
1980 	/*
1981 	 * Refuse to truncate files with mandatory locks held on them.
1982 	 */
1983 	error = locks_verify_locked(inode);
1984 	if (!error)
1985 		error = security_path_truncate(path);
1986 	if (!error) {
1987 		error = do_truncate(path->dentry, 0,
1988 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
1989 				    filp);
1990 	}
1991 	put_write_access(inode);
1992 	return error;
1993 }
1994 
1995 /*
1996  * Note that while the flag value (low two bits) for sys_open means:
1997  *	00 - read-only
1998  *	01 - write-only
1999  *	10 - read-write
2000  *	11 - special
2001  * it is changed into
2002  *	00 - no permissions needed
2003  *	01 - read-permission
2004  *	10 - write-permission
2005  *	11 - read-write
2006  * for the internal routines (ie open_namei()/follow_link() etc)
2007  * This is more logical, and also allows the 00 "no perm needed"
2008  * to be used for symlinks (where the permissions are checked
2009  * later).
2010  *
2011 */
2012 static inline int open_to_namei_flags(int flag)
2013 {
2014 	if ((flag+1) & O_ACCMODE)
2015 		flag++;
2016 	return flag;
2017 }
2018 
2019 /*
2020  * Handle the last step of open()
2021  */
2022 static struct file *do_last(struct nameidata *nd, struct path *path,
2023 			    const struct open_flags *op, const char *pathname)
2024 {
2025 	struct dentry *dir = nd->path.dentry;
2026 	struct dentry *dentry;
2027 	int open_flag = op->open_flag;
2028 	int will_truncate = open_flag & O_TRUNC;
2029 	int want_write = 0;
2030 	int acc_mode = op->acc_mode;
2031 	struct file *filp;
2032 	int error;
2033 
2034 	nd->flags &= ~LOOKUP_PARENT;
2035 	nd->flags |= op->intent;
2036 
2037 	switch (nd->last_type) {
2038 	case LAST_DOTDOT:
2039 	case LAST_DOT:
2040 		error = handle_dots(nd, nd->last_type);
2041 		if (error)
2042 			return ERR_PTR(error);
2043 		/* fallthrough */
2044 	case LAST_ROOT:
2045 		error = complete_walk(nd);
2046 		if (error)
2047 			return ERR_PTR(error);
2048 		audit_inode(pathname, nd->path.dentry);
2049 		if (open_flag & O_CREAT) {
2050 			error = -EISDIR;
2051 			goto exit;
2052 		}
2053 		goto ok;
2054 	case LAST_BIND:
2055 		error = complete_walk(nd);
2056 		if (error)
2057 			return ERR_PTR(error);
2058 		audit_inode(pathname, dir);
2059 		goto ok;
2060 	}
2061 
2062 	if (!(open_flag & O_CREAT)) {
2063 		int symlink_ok = 0;
2064 		if (nd->last.name[nd->last.len])
2065 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2066 		if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2067 			symlink_ok = 1;
2068 		/* we _can_ be in RCU mode here */
2069 		error = walk_component(nd, path, &nd->last, LAST_NORM,
2070 					!symlink_ok);
2071 		if (error < 0)
2072 			return ERR_PTR(error);
2073 		if (error) /* symlink */
2074 			return NULL;
2075 		/* sayonara */
2076 		error = complete_walk(nd);
2077 		if (error)
2078 			return ERR_PTR(-ECHILD);
2079 
2080 		error = -ENOTDIR;
2081 		if (nd->flags & LOOKUP_DIRECTORY) {
2082 			if (!nd->inode->i_op->lookup)
2083 				goto exit;
2084 		}
2085 		audit_inode(pathname, nd->path.dentry);
2086 		goto ok;
2087 	}
2088 
2089 	/* create side of things */
2090 	error = complete_walk(nd);
2091 	if (error)
2092 		return ERR_PTR(error);
2093 
2094 	audit_inode(pathname, dir);
2095 	error = -EISDIR;
2096 	/* trailing slashes? */
2097 	if (nd->last.name[nd->last.len])
2098 		goto exit;
2099 
2100 	mutex_lock(&dir->d_inode->i_mutex);
2101 
2102 	dentry = lookup_hash(nd);
2103 	error = PTR_ERR(dentry);
2104 	if (IS_ERR(dentry)) {
2105 		mutex_unlock(&dir->d_inode->i_mutex);
2106 		goto exit;
2107 	}
2108 
2109 	path->dentry = dentry;
2110 	path->mnt = nd->path.mnt;
2111 
2112 	/* Negative dentry, just create the file */
2113 	if (!dentry->d_inode) {
2114 		int mode = op->mode;
2115 		if (!IS_POSIXACL(dir->d_inode))
2116 			mode &= ~current_umask();
2117 		/*
2118 		 * This write is needed to ensure that a
2119 		 * rw->ro transition does not occur between
2120 		 * the time when the file is created and when
2121 		 * a permanent write count is taken through
2122 		 * the 'struct file' in nameidata_to_filp().
2123 		 */
2124 		error = mnt_want_write(nd->path.mnt);
2125 		if (error)
2126 			goto exit_mutex_unlock;
2127 		want_write = 1;
2128 		/* Don't check for write permission, don't truncate */
2129 		open_flag &= ~O_TRUNC;
2130 		will_truncate = 0;
2131 		acc_mode = MAY_OPEN;
2132 		error = security_path_mknod(&nd->path, dentry, mode, 0);
2133 		if (error)
2134 			goto exit_mutex_unlock;
2135 		error = vfs_create(dir->d_inode, dentry, mode, nd);
2136 		if (error)
2137 			goto exit_mutex_unlock;
2138 		mutex_unlock(&dir->d_inode->i_mutex);
2139 		dput(nd->path.dentry);
2140 		nd->path.dentry = dentry;
2141 		goto common;
2142 	}
2143 
2144 	/*
2145 	 * It already exists.
2146 	 */
2147 	mutex_unlock(&dir->d_inode->i_mutex);
2148 	audit_inode(pathname, path->dentry);
2149 
2150 	error = -EEXIST;
2151 	if (open_flag & O_EXCL)
2152 		goto exit_dput;
2153 
2154 	error = follow_managed(path, nd->flags);
2155 	if (error < 0)
2156 		goto exit_dput;
2157 
2158 	error = -ENOENT;
2159 	if (!path->dentry->d_inode)
2160 		goto exit_dput;
2161 
2162 	if (path->dentry->d_inode->i_op->follow_link)
2163 		return NULL;
2164 
2165 	path_to_nameidata(path, nd);
2166 	nd->inode = path->dentry->d_inode;
2167 	error = -EISDIR;
2168 	if (S_ISDIR(nd->inode->i_mode))
2169 		goto exit;
2170 ok:
2171 	if (!S_ISREG(nd->inode->i_mode))
2172 		will_truncate = 0;
2173 
2174 	if (will_truncate) {
2175 		error = mnt_want_write(nd->path.mnt);
2176 		if (error)
2177 			goto exit;
2178 		want_write = 1;
2179 	}
2180 common:
2181 	error = may_open(&nd->path, acc_mode, open_flag);
2182 	if (error)
2183 		goto exit;
2184 	filp = nameidata_to_filp(nd);
2185 	if (!IS_ERR(filp)) {
2186 		error = ima_file_check(filp, op->acc_mode);
2187 		if (error) {
2188 			fput(filp);
2189 			filp = ERR_PTR(error);
2190 		}
2191 	}
2192 	if (!IS_ERR(filp)) {
2193 		if (will_truncate) {
2194 			error = handle_truncate(filp);
2195 			if (error) {
2196 				fput(filp);
2197 				filp = ERR_PTR(error);
2198 			}
2199 		}
2200 	}
2201 out:
2202 	if (want_write)
2203 		mnt_drop_write(nd->path.mnt);
2204 	path_put(&nd->path);
2205 	return filp;
2206 
2207 exit_mutex_unlock:
2208 	mutex_unlock(&dir->d_inode->i_mutex);
2209 exit_dput:
2210 	path_put_conditional(path, nd);
2211 exit:
2212 	filp = ERR_PTR(error);
2213 	goto out;
2214 }
2215 
2216 static struct file *path_openat(int dfd, const char *pathname,
2217 		struct nameidata *nd, const struct open_flags *op, int flags)
2218 {
2219 	struct file *base = NULL;
2220 	struct file *filp;
2221 	struct path path;
2222 	int error;
2223 
2224 	filp = get_empty_filp();
2225 	if (!filp)
2226 		return ERR_PTR(-ENFILE);
2227 
2228 	filp->f_flags = op->open_flag;
2229 	nd->intent.open.file = filp;
2230 	nd->intent.open.flags = open_to_namei_flags(op->open_flag);
2231 	nd->intent.open.create_mode = op->mode;
2232 
2233 	error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base);
2234 	if (unlikely(error))
2235 		goto out_filp;
2236 
2237 	current->total_link_count = 0;
2238 	error = link_path_walk(pathname, nd);
2239 	if (unlikely(error))
2240 		goto out_filp;
2241 
2242 	filp = do_last(nd, &path, op, pathname);
2243 	while (unlikely(!filp)) { /* trailing symlink */
2244 		struct path link = path;
2245 		void *cookie;
2246 		if (!(nd->flags & LOOKUP_FOLLOW)) {
2247 			path_put_conditional(&path, nd);
2248 			path_put(&nd->path);
2249 			filp = ERR_PTR(-ELOOP);
2250 			break;
2251 		}
2252 		nd->flags |= LOOKUP_PARENT;
2253 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2254 		error = follow_link(&link, nd, &cookie);
2255 		if (unlikely(error))
2256 			filp = ERR_PTR(error);
2257 		else
2258 			filp = do_last(nd, &path, op, pathname);
2259 		put_link(nd, &link, cookie);
2260 	}
2261 out:
2262 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2263 		path_put(&nd->root);
2264 	if (base)
2265 		fput(base);
2266 	release_open_intent(nd);
2267 	return filp;
2268 
2269 out_filp:
2270 	filp = ERR_PTR(error);
2271 	goto out;
2272 }
2273 
2274 struct file *do_filp_open(int dfd, const char *pathname,
2275 		const struct open_flags *op, int flags)
2276 {
2277 	struct nameidata nd;
2278 	struct file *filp;
2279 
2280 	filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2281 	if (unlikely(filp == ERR_PTR(-ECHILD)))
2282 		filp = path_openat(dfd, pathname, &nd, op, flags);
2283 	if (unlikely(filp == ERR_PTR(-ESTALE)))
2284 		filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
2285 	return filp;
2286 }
2287 
2288 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
2289 		const char *name, const struct open_flags *op, int flags)
2290 {
2291 	struct nameidata nd;
2292 	struct file *file;
2293 
2294 	nd.root.mnt = mnt;
2295 	nd.root.dentry = dentry;
2296 
2297 	flags |= LOOKUP_ROOT;
2298 
2299 	if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
2300 		return ERR_PTR(-ELOOP);
2301 
2302 	file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU);
2303 	if (unlikely(file == ERR_PTR(-ECHILD)))
2304 		file = path_openat(-1, name, &nd, op, flags);
2305 	if (unlikely(file == ERR_PTR(-ESTALE)))
2306 		file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL);
2307 	return file;
2308 }
2309 
2310 /**
2311  * lookup_create - lookup a dentry, creating it if it doesn't exist
2312  * @nd: nameidata info
2313  * @is_dir: directory flag
2314  *
2315  * Simple function to lookup and return a dentry and create it
2316  * if it doesn't exist.  Is SMP-safe.
2317  *
2318  * Returns with nd->path.dentry->d_inode->i_mutex locked.
2319  */
2320 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
2321 {
2322 	struct dentry *dentry = ERR_PTR(-EEXIST);
2323 
2324 	mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2325 	/*
2326 	 * Yucky last component or no last component at all?
2327 	 * (foo/., foo/.., /////)
2328 	 */
2329 	if (nd->last_type != LAST_NORM)
2330 		goto fail;
2331 	nd->flags &= ~LOOKUP_PARENT;
2332 	nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2333 	nd->intent.open.flags = O_EXCL;
2334 
2335 	/*
2336 	 * Do the final lookup.
2337 	 */
2338 	dentry = lookup_hash(nd);
2339 	if (IS_ERR(dentry))
2340 		goto fail;
2341 
2342 	if (dentry->d_inode)
2343 		goto eexist;
2344 	/*
2345 	 * Special case - lookup gave negative, but... we had foo/bar/
2346 	 * From the vfs_mknod() POV we just have a negative dentry -
2347 	 * all is fine. Let's be bastards - you had / on the end, you've
2348 	 * been asking for (non-existent) directory. -ENOENT for you.
2349 	 */
2350 	if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
2351 		dput(dentry);
2352 		dentry = ERR_PTR(-ENOENT);
2353 	}
2354 	return dentry;
2355 eexist:
2356 	dput(dentry);
2357 	dentry = ERR_PTR(-EEXIST);
2358 fail:
2359 	return dentry;
2360 }
2361 EXPORT_SYMBOL_GPL(lookup_create);
2362 
2363 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2364 {
2365 	int error = may_create(dir, dentry);
2366 
2367 	if (error)
2368 		return error;
2369 
2370 	if ((S_ISCHR(mode) || S_ISBLK(mode)) &&
2371 	    !ns_capable(inode_userns(dir), CAP_MKNOD))
2372 		return -EPERM;
2373 
2374 	if (!dir->i_op->mknod)
2375 		return -EPERM;
2376 
2377 	error = devcgroup_inode_mknod(mode, dev);
2378 	if (error)
2379 		return error;
2380 
2381 	error = security_inode_mknod(dir, dentry, mode, dev);
2382 	if (error)
2383 		return error;
2384 
2385 	error = dir->i_op->mknod(dir, dentry, mode, dev);
2386 	if (!error)
2387 		fsnotify_create(dir, dentry);
2388 	return error;
2389 }
2390 
2391 static int may_mknod(mode_t mode)
2392 {
2393 	switch (mode & S_IFMT) {
2394 	case S_IFREG:
2395 	case S_IFCHR:
2396 	case S_IFBLK:
2397 	case S_IFIFO:
2398 	case S_IFSOCK:
2399 	case 0: /* zero mode translates to S_IFREG */
2400 		return 0;
2401 	case S_IFDIR:
2402 		return -EPERM;
2403 	default:
2404 		return -EINVAL;
2405 	}
2406 }
2407 
2408 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2409 		unsigned, dev)
2410 {
2411 	int error;
2412 	char *tmp;
2413 	struct dentry *dentry;
2414 	struct nameidata nd;
2415 
2416 	if (S_ISDIR(mode))
2417 		return -EPERM;
2418 
2419 	error = user_path_parent(dfd, filename, &nd, &tmp);
2420 	if (error)
2421 		return error;
2422 
2423 	dentry = lookup_create(&nd, 0);
2424 	if (IS_ERR(dentry)) {
2425 		error = PTR_ERR(dentry);
2426 		goto out_unlock;
2427 	}
2428 	if (!IS_POSIXACL(nd.path.dentry->d_inode))
2429 		mode &= ~current_umask();
2430 	error = may_mknod(mode);
2431 	if (error)
2432 		goto out_dput;
2433 	error = mnt_want_write(nd.path.mnt);
2434 	if (error)
2435 		goto out_dput;
2436 	error = security_path_mknod(&nd.path, dentry, mode, dev);
2437 	if (error)
2438 		goto out_drop_write;
2439 	switch (mode & S_IFMT) {
2440 		case 0: case S_IFREG:
2441 			error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2442 			break;
2443 		case S_IFCHR: case S_IFBLK:
2444 			error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2445 					new_decode_dev(dev));
2446 			break;
2447 		case S_IFIFO: case S_IFSOCK:
2448 			error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2449 			break;
2450 	}
2451 out_drop_write:
2452 	mnt_drop_write(nd.path.mnt);
2453 out_dput:
2454 	dput(dentry);
2455 out_unlock:
2456 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2457 	path_put(&nd.path);
2458 	putname(tmp);
2459 
2460 	return error;
2461 }
2462 
2463 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2464 {
2465 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
2466 }
2467 
2468 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2469 {
2470 	int error = may_create(dir, dentry);
2471 
2472 	if (error)
2473 		return error;
2474 
2475 	if (!dir->i_op->mkdir)
2476 		return -EPERM;
2477 
2478 	mode &= (S_IRWXUGO|S_ISVTX);
2479 	error = security_inode_mkdir(dir, dentry, mode);
2480 	if (error)
2481 		return error;
2482 
2483 	error = dir->i_op->mkdir(dir, dentry, mode);
2484 	if (!error)
2485 		fsnotify_mkdir(dir, dentry);
2486 	return error;
2487 }
2488 
2489 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2490 {
2491 	int error = 0;
2492 	char * tmp;
2493 	struct dentry *dentry;
2494 	struct nameidata nd;
2495 
2496 	error = user_path_parent(dfd, pathname, &nd, &tmp);
2497 	if (error)
2498 		goto out_err;
2499 
2500 	dentry = lookup_create(&nd, 1);
2501 	error = PTR_ERR(dentry);
2502 	if (IS_ERR(dentry))
2503 		goto out_unlock;
2504 
2505 	if (!IS_POSIXACL(nd.path.dentry->d_inode))
2506 		mode &= ~current_umask();
2507 	error = mnt_want_write(nd.path.mnt);
2508 	if (error)
2509 		goto out_dput;
2510 	error = security_path_mkdir(&nd.path, dentry, mode);
2511 	if (error)
2512 		goto out_drop_write;
2513 	error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2514 out_drop_write:
2515 	mnt_drop_write(nd.path.mnt);
2516 out_dput:
2517 	dput(dentry);
2518 out_unlock:
2519 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2520 	path_put(&nd.path);
2521 	putname(tmp);
2522 out_err:
2523 	return error;
2524 }
2525 
2526 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2527 {
2528 	return sys_mkdirat(AT_FDCWD, pathname, mode);
2529 }
2530 
2531 /*
2532  * The dentry_unhash() helper will try to drop the dentry early: we
2533  * should have a usage count of 2 if we're the only user of this
2534  * dentry, and if that is true (possibly after pruning the dcache),
2535  * then we drop the dentry now.
2536  *
2537  * A low-level filesystem can, if it choses, legally
2538  * do a
2539  *
2540  *	if (!d_unhashed(dentry))
2541  *		return -EBUSY;
2542  *
2543  * if it cannot handle the case of removing a directory
2544  * that is still in use by something else..
2545  */
2546 void dentry_unhash(struct dentry *dentry)
2547 {
2548 	shrink_dcache_parent(dentry);
2549 	spin_lock(&dentry->d_lock);
2550 	if (dentry->d_count == 1)
2551 		__d_drop(dentry);
2552 	spin_unlock(&dentry->d_lock);
2553 }
2554 
2555 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2556 {
2557 	int error = may_delete(dir, dentry, 1);
2558 
2559 	if (error)
2560 		return error;
2561 
2562 	if (!dir->i_op->rmdir)
2563 		return -EPERM;
2564 
2565 	mutex_lock(&dentry->d_inode->i_mutex);
2566 
2567 	error = -EBUSY;
2568 	if (d_mountpoint(dentry))
2569 		goto out;
2570 
2571 	error = security_inode_rmdir(dir, dentry);
2572 	if (error)
2573 		goto out;
2574 
2575 	error = dir->i_op->rmdir(dir, dentry);
2576 	if (error)
2577 		goto out;
2578 
2579 	dentry->d_inode->i_flags |= S_DEAD;
2580 	dont_mount(dentry);
2581 
2582 out:
2583 	mutex_unlock(&dentry->d_inode->i_mutex);
2584 	if (!error)
2585 		d_delete(dentry);
2586 	return error;
2587 }
2588 
2589 static long do_rmdir(int dfd, const char __user *pathname)
2590 {
2591 	int error = 0;
2592 	char * name;
2593 	struct dentry *dentry;
2594 	struct nameidata nd;
2595 
2596 	error = user_path_parent(dfd, pathname, &nd, &name);
2597 	if (error)
2598 		return error;
2599 
2600 	switch(nd.last_type) {
2601 	case LAST_DOTDOT:
2602 		error = -ENOTEMPTY;
2603 		goto exit1;
2604 	case LAST_DOT:
2605 		error = -EINVAL;
2606 		goto exit1;
2607 	case LAST_ROOT:
2608 		error = -EBUSY;
2609 		goto exit1;
2610 	}
2611 
2612 	nd.flags &= ~LOOKUP_PARENT;
2613 
2614 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2615 	dentry = lookup_hash(&nd);
2616 	error = PTR_ERR(dentry);
2617 	if (IS_ERR(dentry))
2618 		goto exit2;
2619 	error = mnt_want_write(nd.path.mnt);
2620 	if (error)
2621 		goto exit3;
2622 	error = security_path_rmdir(&nd.path, dentry);
2623 	if (error)
2624 		goto exit4;
2625 	error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2626 exit4:
2627 	mnt_drop_write(nd.path.mnt);
2628 exit3:
2629 	dput(dentry);
2630 exit2:
2631 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2632 exit1:
2633 	path_put(&nd.path);
2634 	putname(name);
2635 	return error;
2636 }
2637 
2638 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2639 {
2640 	return do_rmdir(AT_FDCWD, pathname);
2641 }
2642 
2643 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2644 {
2645 	int error = may_delete(dir, dentry, 0);
2646 
2647 	if (error)
2648 		return error;
2649 
2650 	if (!dir->i_op->unlink)
2651 		return -EPERM;
2652 
2653 	mutex_lock(&dentry->d_inode->i_mutex);
2654 	if (d_mountpoint(dentry))
2655 		error = -EBUSY;
2656 	else {
2657 		error = security_inode_unlink(dir, dentry);
2658 		if (!error) {
2659 			error = dir->i_op->unlink(dir, dentry);
2660 			if (!error)
2661 				dont_mount(dentry);
2662 		}
2663 	}
2664 	mutex_unlock(&dentry->d_inode->i_mutex);
2665 
2666 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
2667 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2668 		fsnotify_link_count(dentry->d_inode);
2669 		d_delete(dentry);
2670 	}
2671 
2672 	return error;
2673 }
2674 
2675 /*
2676  * Make sure that the actual truncation of the file will occur outside its
2677  * directory's i_mutex.  Truncate can take a long time if there is a lot of
2678  * writeout happening, and we don't want to prevent access to the directory
2679  * while waiting on the I/O.
2680  */
2681 static long do_unlinkat(int dfd, const char __user *pathname)
2682 {
2683 	int error;
2684 	char *name;
2685 	struct dentry *dentry;
2686 	struct nameidata nd;
2687 	struct inode *inode = NULL;
2688 
2689 	error = user_path_parent(dfd, pathname, &nd, &name);
2690 	if (error)
2691 		return error;
2692 
2693 	error = -EISDIR;
2694 	if (nd.last_type != LAST_NORM)
2695 		goto exit1;
2696 
2697 	nd.flags &= ~LOOKUP_PARENT;
2698 
2699 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2700 	dentry = lookup_hash(&nd);
2701 	error = PTR_ERR(dentry);
2702 	if (!IS_ERR(dentry)) {
2703 		/* Why not before? Because we want correct error value */
2704 		if (nd.last.name[nd.last.len])
2705 			goto slashes;
2706 		inode = dentry->d_inode;
2707 		if (inode)
2708 			ihold(inode);
2709 		error = mnt_want_write(nd.path.mnt);
2710 		if (error)
2711 			goto exit2;
2712 		error = security_path_unlink(&nd.path, dentry);
2713 		if (error)
2714 			goto exit3;
2715 		error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2716 exit3:
2717 		mnt_drop_write(nd.path.mnt);
2718 	exit2:
2719 		dput(dentry);
2720 	}
2721 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2722 	if (inode)
2723 		iput(inode);	/* truncate the inode here */
2724 exit1:
2725 	path_put(&nd.path);
2726 	putname(name);
2727 	return error;
2728 
2729 slashes:
2730 	error = !dentry->d_inode ? -ENOENT :
2731 		S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2732 	goto exit2;
2733 }
2734 
2735 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2736 {
2737 	if ((flag & ~AT_REMOVEDIR) != 0)
2738 		return -EINVAL;
2739 
2740 	if (flag & AT_REMOVEDIR)
2741 		return do_rmdir(dfd, pathname);
2742 
2743 	return do_unlinkat(dfd, pathname);
2744 }
2745 
2746 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2747 {
2748 	return do_unlinkat(AT_FDCWD, pathname);
2749 }
2750 
2751 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2752 {
2753 	int error = may_create(dir, dentry);
2754 
2755 	if (error)
2756 		return error;
2757 
2758 	if (!dir->i_op->symlink)
2759 		return -EPERM;
2760 
2761 	error = security_inode_symlink(dir, dentry, oldname);
2762 	if (error)
2763 		return error;
2764 
2765 	error = dir->i_op->symlink(dir, dentry, oldname);
2766 	if (!error)
2767 		fsnotify_create(dir, dentry);
2768 	return error;
2769 }
2770 
2771 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2772 		int, newdfd, const char __user *, newname)
2773 {
2774 	int error;
2775 	char *from;
2776 	char *to;
2777 	struct dentry *dentry;
2778 	struct nameidata nd;
2779 
2780 	from = getname(oldname);
2781 	if (IS_ERR(from))
2782 		return PTR_ERR(from);
2783 
2784 	error = user_path_parent(newdfd, newname, &nd, &to);
2785 	if (error)
2786 		goto out_putname;
2787 
2788 	dentry = lookup_create(&nd, 0);
2789 	error = PTR_ERR(dentry);
2790 	if (IS_ERR(dentry))
2791 		goto out_unlock;
2792 
2793 	error = mnt_want_write(nd.path.mnt);
2794 	if (error)
2795 		goto out_dput;
2796 	error = security_path_symlink(&nd.path, dentry, from);
2797 	if (error)
2798 		goto out_drop_write;
2799 	error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2800 out_drop_write:
2801 	mnt_drop_write(nd.path.mnt);
2802 out_dput:
2803 	dput(dentry);
2804 out_unlock:
2805 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2806 	path_put(&nd.path);
2807 	putname(to);
2808 out_putname:
2809 	putname(from);
2810 	return error;
2811 }
2812 
2813 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2814 {
2815 	return sys_symlinkat(oldname, AT_FDCWD, newname);
2816 }
2817 
2818 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2819 {
2820 	struct inode *inode = old_dentry->d_inode;
2821 	int error;
2822 
2823 	if (!inode)
2824 		return -ENOENT;
2825 
2826 	error = may_create(dir, new_dentry);
2827 	if (error)
2828 		return error;
2829 
2830 	if (dir->i_sb != inode->i_sb)
2831 		return -EXDEV;
2832 
2833 	/*
2834 	 * A link to an append-only or immutable file cannot be created.
2835 	 */
2836 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2837 		return -EPERM;
2838 	if (!dir->i_op->link)
2839 		return -EPERM;
2840 	if (S_ISDIR(inode->i_mode))
2841 		return -EPERM;
2842 
2843 	error = security_inode_link(old_dentry, dir, new_dentry);
2844 	if (error)
2845 		return error;
2846 
2847 	mutex_lock(&inode->i_mutex);
2848 	/* Make sure we don't allow creating hardlink to an unlinked file */
2849 	if (inode->i_nlink == 0)
2850 		error =  -ENOENT;
2851 	else
2852 		error = dir->i_op->link(old_dentry, dir, new_dentry);
2853 	mutex_unlock(&inode->i_mutex);
2854 	if (!error)
2855 		fsnotify_link(dir, inode, new_dentry);
2856 	return error;
2857 }
2858 
2859 /*
2860  * Hardlinks are often used in delicate situations.  We avoid
2861  * security-related surprises by not following symlinks on the
2862  * newname.  --KAB
2863  *
2864  * We don't follow them on the oldname either to be compatible
2865  * with linux 2.0, and to avoid hard-linking to directories
2866  * and other special files.  --ADM
2867  */
2868 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2869 		int, newdfd, const char __user *, newname, int, flags)
2870 {
2871 	struct dentry *new_dentry;
2872 	struct nameidata nd;
2873 	struct path old_path;
2874 	int how = 0;
2875 	int error;
2876 	char *to;
2877 
2878 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
2879 		return -EINVAL;
2880 	/*
2881 	 * To use null names we require CAP_DAC_READ_SEARCH
2882 	 * This ensures that not everyone will be able to create
2883 	 * handlink using the passed filedescriptor.
2884 	 */
2885 	if (flags & AT_EMPTY_PATH) {
2886 		if (!capable(CAP_DAC_READ_SEARCH))
2887 			return -ENOENT;
2888 		how = LOOKUP_EMPTY;
2889 	}
2890 
2891 	if (flags & AT_SYMLINK_FOLLOW)
2892 		how |= LOOKUP_FOLLOW;
2893 
2894 	error = user_path_at(olddfd, oldname, how, &old_path);
2895 	if (error)
2896 		return error;
2897 
2898 	error = user_path_parent(newdfd, newname, &nd, &to);
2899 	if (error)
2900 		goto out;
2901 	error = -EXDEV;
2902 	if (old_path.mnt != nd.path.mnt)
2903 		goto out_release;
2904 	new_dentry = lookup_create(&nd, 0);
2905 	error = PTR_ERR(new_dentry);
2906 	if (IS_ERR(new_dentry))
2907 		goto out_unlock;
2908 	error = mnt_want_write(nd.path.mnt);
2909 	if (error)
2910 		goto out_dput;
2911 	error = security_path_link(old_path.dentry, &nd.path, new_dentry);
2912 	if (error)
2913 		goto out_drop_write;
2914 	error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
2915 out_drop_write:
2916 	mnt_drop_write(nd.path.mnt);
2917 out_dput:
2918 	dput(new_dentry);
2919 out_unlock:
2920 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2921 out_release:
2922 	path_put(&nd.path);
2923 	putname(to);
2924 out:
2925 	path_put(&old_path);
2926 
2927 	return error;
2928 }
2929 
2930 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
2931 {
2932 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2933 }
2934 
2935 /*
2936  * The worst of all namespace operations - renaming directory. "Perverted"
2937  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2938  * Problems:
2939  *	a) we can get into loop creation. Check is done in is_subdir().
2940  *	b) race potential - two innocent renames can create a loop together.
2941  *	   That's where 4.4 screws up. Current fix: serialization on
2942  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2943  *	   story.
2944  *	c) we have to lock _three_ objects - parents and victim (if it exists).
2945  *	   And that - after we got ->i_mutex on parents (until then we don't know
2946  *	   whether the target exists).  Solution: try to be smart with locking
2947  *	   order for inodes.  We rely on the fact that tree topology may change
2948  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
2949  *	   move will be locked.  Thus we can rank directories by the tree
2950  *	   (ancestors first) and rank all non-directories after them.
2951  *	   That works since everybody except rename does "lock parent, lookup,
2952  *	   lock child" and rename is under ->s_vfs_rename_mutex.
2953  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
2954  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
2955  *	   we'd better make sure that there's no link(2) for them.
2956  *	d) conversion from fhandle to dentry may come in the wrong moment - when
2957  *	   we are removing the target. Solution: we will have to grab ->i_mutex
2958  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2959  *	   ->i_mutex on parents, which works but leads to some truly excessive
2960  *	   locking].
2961  */
2962 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2963 			  struct inode *new_dir, struct dentry *new_dentry)
2964 {
2965 	int error = 0;
2966 	struct inode *target = new_dentry->d_inode;
2967 
2968 	/*
2969 	 * If we are going to change the parent - check write permissions,
2970 	 * we'll need to flip '..'.
2971 	 */
2972 	if (new_dir != old_dir) {
2973 		error = inode_permission(old_dentry->d_inode, MAY_WRITE);
2974 		if (error)
2975 			return error;
2976 	}
2977 
2978 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2979 	if (error)
2980 		return error;
2981 
2982 	if (target)
2983 		mutex_lock(&target->i_mutex);
2984 
2985 	error = -EBUSY;
2986 	if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
2987 		goto out;
2988 
2989 	error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2990 	if (error)
2991 		goto out;
2992 
2993 	if (target) {
2994 		target->i_flags |= S_DEAD;
2995 		dont_mount(new_dentry);
2996 	}
2997 out:
2998 	if (target)
2999 		mutex_unlock(&target->i_mutex);
3000 	if (!error)
3001 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3002 			d_move(old_dentry,new_dentry);
3003 	return error;
3004 }
3005 
3006 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3007 			    struct inode *new_dir, struct dentry *new_dentry)
3008 {
3009 	struct inode *target = new_dentry->d_inode;
3010 	int error;
3011 
3012 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3013 	if (error)
3014 		return error;
3015 
3016 	dget(new_dentry);
3017 	if (target)
3018 		mutex_lock(&target->i_mutex);
3019 
3020 	error = -EBUSY;
3021 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3022 		goto out;
3023 
3024 	error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3025 	if (error)
3026 		goto out;
3027 
3028 	if (target)
3029 		dont_mount(new_dentry);
3030 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3031 		d_move(old_dentry, new_dentry);
3032 out:
3033 	if (target)
3034 		mutex_unlock(&target->i_mutex);
3035 	dput(new_dentry);
3036 	return error;
3037 }
3038 
3039 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3040 	       struct inode *new_dir, struct dentry *new_dentry)
3041 {
3042 	int error;
3043 	int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3044 	const unsigned char *old_name;
3045 
3046 	if (old_dentry->d_inode == new_dentry->d_inode)
3047  		return 0;
3048 
3049 	error = may_delete(old_dir, old_dentry, is_dir);
3050 	if (error)
3051 		return error;
3052 
3053 	if (!new_dentry->d_inode)
3054 		error = may_create(new_dir, new_dentry);
3055 	else
3056 		error = may_delete(new_dir, new_dentry, is_dir);
3057 	if (error)
3058 		return error;
3059 
3060 	if (!old_dir->i_op->rename)
3061 		return -EPERM;
3062 
3063 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3064 
3065 	if (is_dir)
3066 		error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3067 	else
3068 		error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3069 	if (!error)
3070 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
3071 			      new_dentry->d_inode, old_dentry);
3072 	fsnotify_oldname_free(old_name);
3073 
3074 	return error;
3075 }
3076 
3077 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3078 		int, newdfd, const char __user *, newname)
3079 {
3080 	struct dentry *old_dir, *new_dir;
3081 	struct dentry *old_dentry, *new_dentry;
3082 	struct dentry *trap;
3083 	struct nameidata oldnd, newnd;
3084 	char *from;
3085 	char *to;
3086 	int error;
3087 
3088 	error = user_path_parent(olddfd, oldname, &oldnd, &from);
3089 	if (error)
3090 		goto exit;
3091 
3092 	error = user_path_parent(newdfd, newname, &newnd, &to);
3093 	if (error)
3094 		goto exit1;
3095 
3096 	error = -EXDEV;
3097 	if (oldnd.path.mnt != newnd.path.mnt)
3098 		goto exit2;
3099 
3100 	old_dir = oldnd.path.dentry;
3101 	error = -EBUSY;
3102 	if (oldnd.last_type != LAST_NORM)
3103 		goto exit2;
3104 
3105 	new_dir = newnd.path.dentry;
3106 	if (newnd.last_type != LAST_NORM)
3107 		goto exit2;
3108 
3109 	oldnd.flags &= ~LOOKUP_PARENT;
3110 	newnd.flags &= ~LOOKUP_PARENT;
3111 	newnd.flags |= LOOKUP_RENAME_TARGET;
3112 
3113 	trap = lock_rename(new_dir, old_dir);
3114 
3115 	old_dentry = lookup_hash(&oldnd);
3116 	error = PTR_ERR(old_dentry);
3117 	if (IS_ERR(old_dentry))
3118 		goto exit3;
3119 	/* source must exist */
3120 	error = -ENOENT;
3121 	if (!old_dentry->d_inode)
3122 		goto exit4;
3123 	/* unless the source is a directory trailing slashes give -ENOTDIR */
3124 	if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3125 		error = -ENOTDIR;
3126 		if (oldnd.last.name[oldnd.last.len])
3127 			goto exit4;
3128 		if (newnd.last.name[newnd.last.len])
3129 			goto exit4;
3130 	}
3131 	/* source should not be ancestor of target */
3132 	error = -EINVAL;
3133 	if (old_dentry == trap)
3134 		goto exit4;
3135 	new_dentry = lookup_hash(&newnd);
3136 	error = PTR_ERR(new_dentry);
3137 	if (IS_ERR(new_dentry))
3138 		goto exit4;
3139 	/* target should not be an ancestor of source */
3140 	error = -ENOTEMPTY;
3141 	if (new_dentry == trap)
3142 		goto exit5;
3143 
3144 	error = mnt_want_write(oldnd.path.mnt);
3145 	if (error)
3146 		goto exit5;
3147 	error = security_path_rename(&oldnd.path, old_dentry,
3148 				     &newnd.path, new_dentry);
3149 	if (error)
3150 		goto exit6;
3151 	error = vfs_rename(old_dir->d_inode, old_dentry,
3152 				   new_dir->d_inode, new_dentry);
3153 exit6:
3154 	mnt_drop_write(oldnd.path.mnt);
3155 exit5:
3156 	dput(new_dentry);
3157 exit4:
3158 	dput(old_dentry);
3159 exit3:
3160 	unlock_rename(new_dir, old_dir);
3161 exit2:
3162 	path_put(&newnd.path);
3163 	putname(to);
3164 exit1:
3165 	path_put(&oldnd.path);
3166 	putname(from);
3167 exit:
3168 	return error;
3169 }
3170 
3171 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3172 {
3173 	return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3174 }
3175 
3176 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3177 {
3178 	int len;
3179 
3180 	len = PTR_ERR(link);
3181 	if (IS_ERR(link))
3182 		goto out;
3183 
3184 	len = strlen(link);
3185 	if (len > (unsigned) buflen)
3186 		len = buflen;
3187 	if (copy_to_user(buffer, link, len))
3188 		len = -EFAULT;
3189 out:
3190 	return len;
3191 }
3192 
3193 /*
3194  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
3195  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
3196  * using) it for any given inode is up to filesystem.
3197  */
3198 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3199 {
3200 	struct nameidata nd;
3201 	void *cookie;
3202 	int res;
3203 
3204 	nd.depth = 0;
3205 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3206 	if (IS_ERR(cookie))
3207 		return PTR_ERR(cookie);
3208 
3209 	res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3210 	if (dentry->d_inode->i_op->put_link)
3211 		dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3212 	return res;
3213 }
3214 
3215 int vfs_follow_link(struct nameidata *nd, const char *link)
3216 {
3217 	return __vfs_follow_link(nd, link);
3218 }
3219 
3220 /* get the link contents into pagecache */
3221 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3222 {
3223 	char *kaddr;
3224 	struct page *page;
3225 	struct address_space *mapping = dentry->d_inode->i_mapping;
3226 	page = read_mapping_page(mapping, 0, NULL);
3227 	if (IS_ERR(page))
3228 		return (char*)page;
3229 	*ppage = page;
3230 	kaddr = kmap(page);
3231 	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3232 	return kaddr;
3233 }
3234 
3235 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3236 {
3237 	struct page *page = NULL;
3238 	char *s = page_getlink(dentry, &page);
3239 	int res = vfs_readlink(dentry,buffer,buflen,s);
3240 	if (page) {
3241 		kunmap(page);
3242 		page_cache_release(page);
3243 	}
3244 	return res;
3245 }
3246 
3247 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3248 {
3249 	struct page *page = NULL;
3250 	nd_set_link(nd, page_getlink(dentry, &page));
3251 	return page;
3252 }
3253 
3254 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3255 {
3256 	struct page *page = cookie;
3257 
3258 	if (page) {
3259 		kunmap(page);
3260 		page_cache_release(page);
3261 	}
3262 }
3263 
3264 /*
3265  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3266  */
3267 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3268 {
3269 	struct address_space *mapping = inode->i_mapping;
3270 	struct page *page;
3271 	void *fsdata;
3272 	int err;
3273 	char *kaddr;
3274 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3275 	if (nofs)
3276 		flags |= AOP_FLAG_NOFS;
3277 
3278 retry:
3279 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
3280 				flags, &page, &fsdata);
3281 	if (err)
3282 		goto fail;
3283 
3284 	kaddr = kmap_atomic(page, KM_USER0);
3285 	memcpy(kaddr, symname, len-1);
3286 	kunmap_atomic(kaddr, KM_USER0);
3287 
3288 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3289 							page, fsdata);
3290 	if (err < 0)
3291 		goto fail;
3292 	if (err < len-1)
3293 		goto retry;
3294 
3295 	mark_inode_dirty(inode);
3296 	return 0;
3297 fail:
3298 	return err;
3299 }
3300 
3301 int page_symlink(struct inode *inode, const char *symname, int len)
3302 {
3303 	return __page_symlink(inode, symname, len,
3304 			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3305 }
3306 
3307 const struct inode_operations page_symlink_inode_operations = {
3308 	.readlink	= generic_readlink,
3309 	.follow_link	= page_follow_link_light,
3310 	.put_link	= page_put_link,
3311 };
3312 
3313 EXPORT_SYMBOL(user_path_at);
3314 EXPORT_SYMBOL(follow_down_one);
3315 EXPORT_SYMBOL(follow_down);
3316 EXPORT_SYMBOL(follow_up);
3317 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3318 EXPORT_SYMBOL(getname);
3319 EXPORT_SYMBOL(lock_rename);
3320 EXPORT_SYMBOL(lookup_one_len);
3321 EXPORT_SYMBOL(page_follow_link_light);
3322 EXPORT_SYMBOL(page_put_link);
3323 EXPORT_SYMBOL(page_readlink);
3324 EXPORT_SYMBOL(__page_symlink);
3325 EXPORT_SYMBOL(page_symlink);
3326 EXPORT_SYMBOL(page_symlink_inode_operations);
3327 EXPORT_SYMBOL(kern_path_parent);
3328 EXPORT_SYMBOL(kern_path);
3329 EXPORT_SYMBOL(vfs_path_lookup);
3330 EXPORT_SYMBOL(inode_permission);
3331 EXPORT_SYMBOL(file_permission);
3332 EXPORT_SYMBOL(unlock_rename);
3333 EXPORT_SYMBOL(vfs_create);
3334 EXPORT_SYMBOL(vfs_follow_link);
3335 EXPORT_SYMBOL(vfs_link);
3336 EXPORT_SYMBOL(vfs_mkdir);
3337 EXPORT_SYMBOL(vfs_mknod);
3338 EXPORT_SYMBOL(generic_permission);
3339 EXPORT_SYMBOL(vfs_readlink);
3340 EXPORT_SYMBOL(vfs_rename);
3341 EXPORT_SYMBOL(vfs_rmdir);
3342 EXPORT_SYMBOL(vfs_symlink);
3343 EXPORT_SYMBOL(vfs_unlink);
3344 EXPORT_SYMBOL(dentry_unhash);
3345 EXPORT_SYMBOL(generic_readlink);
3346