1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/fs.h> 21 #include <linux/namei.h> 22 #include <linux/pagemap.h> 23 #include <linux/fsnotify.h> 24 #include <linux/personality.h> 25 #include <linux/security.h> 26 #include <linux/ima.h> 27 #include <linux/syscalls.h> 28 #include <linux/mount.h> 29 #include <linux/audit.h> 30 #include <linux/capability.h> 31 #include <linux/file.h> 32 #include <linux/fcntl.h> 33 #include <linux/device_cgroup.h> 34 #include <linux/fs_struct.h> 35 #include <asm/uaccess.h> 36 37 #include "internal.h" 38 39 /* [Feb-1997 T. Schoebel-Theuer] 40 * Fundamental changes in the pathname lookup mechanisms (namei) 41 * were necessary because of omirr. The reason is that omirr needs 42 * to know the _real_ pathname, not the user-supplied one, in case 43 * of symlinks (and also when transname replacements occur). 44 * 45 * The new code replaces the old recursive symlink resolution with 46 * an iterative one (in case of non-nested symlink chains). It does 47 * this with calls to <fs>_follow_link(). 48 * As a side effect, dir_namei(), _namei() and follow_link() are now 49 * replaced with a single function lookup_dentry() that can handle all 50 * the special cases of the former code. 51 * 52 * With the new dcache, the pathname is stored at each inode, at least as 53 * long as the refcount of the inode is positive. As a side effect, the 54 * size of the dcache depends on the inode cache and thus is dynamic. 55 * 56 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 57 * resolution to correspond with current state of the code. 58 * 59 * Note that the symlink resolution is not *completely* iterative. 60 * There is still a significant amount of tail- and mid- recursion in 61 * the algorithm. Also, note that <fs>_readlink() is not used in 62 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 63 * may return different results than <fs>_follow_link(). Many virtual 64 * filesystems (including /proc) exhibit this behavior. 65 */ 66 67 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 68 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 69 * and the name already exists in form of a symlink, try to create the new 70 * name indicated by the symlink. The old code always complained that the 71 * name already exists, due to not following the symlink even if its target 72 * is nonexistent. The new semantics affects also mknod() and link() when 73 * the name is a symlink pointing to a non-existent name. 74 * 75 * I don't know which semantics is the right one, since I have no access 76 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 77 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 78 * "old" one. Personally, I think the new semantics is much more logical. 79 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 80 * file does succeed in both HP-UX and SunOs, but not in Solaris 81 * and in the old Linux semantics. 82 */ 83 84 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 85 * semantics. See the comments in "open_namei" and "do_link" below. 86 * 87 * [10-Sep-98 Alan Modra] Another symlink change. 88 */ 89 90 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 91 * inside the path - always follow. 92 * in the last component in creation/removal/renaming - never follow. 93 * if LOOKUP_FOLLOW passed - follow. 94 * if the pathname has trailing slashes - follow. 95 * otherwise - don't follow. 96 * (applied in that order). 97 * 98 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 99 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 100 * During the 2.4 we need to fix the userland stuff depending on it - 101 * hopefully we will be able to get rid of that wart in 2.5. So far only 102 * XEmacs seems to be relying on it... 103 */ 104 /* 105 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 106 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 107 * any extra contention... 108 */ 109 110 /* In order to reduce some races, while at the same time doing additional 111 * checking and hopefully speeding things up, we copy filenames to the 112 * kernel data space before using them.. 113 * 114 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 115 * PATH_MAX includes the nul terminator --RR. 116 */ 117 static int do_getname(const char __user *filename, char *page) 118 { 119 int retval; 120 unsigned long len = PATH_MAX; 121 122 if (!segment_eq(get_fs(), KERNEL_DS)) { 123 if ((unsigned long) filename >= TASK_SIZE) 124 return -EFAULT; 125 if (TASK_SIZE - (unsigned long) filename < PATH_MAX) 126 len = TASK_SIZE - (unsigned long) filename; 127 } 128 129 retval = strncpy_from_user(page, filename, len); 130 if (retval > 0) { 131 if (retval < len) 132 return 0; 133 return -ENAMETOOLONG; 134 } else if (!retval) 135 retval = -ENOENT; 136 return retval; 137 } 138 139 static char *getname_flags(const char __user * filename, int flags) 140 { 141 char *tmp, *result; 142 143 result = ERR_PTR(-ENOMEM); 144 tmp = __getname(); 145 if (tmp) { 146 int retval = do_getname(filename, tmp); 147 148 result = tmp; 149 if (retval < 0) { 150 if (retval != -ENOENT || !(flags & LOOKUP_EMPTY)) { 151 __putname(tmp); 152 result = ERR_PTR(retval); 153 } 154 } 155 } 156 audit_getname(result); 157 return result; 158 } 159 160 char *getname(const char __user * filename) 161 { 162 return getname_flags(filename, 0); 163 } 164 165 #ifdef CONFIG_AUDITSYSCALL 166 void putname(const char *name) 167 { 168 if (unlikely(!audit_dummy_context())) 169 audit_putname(name); 170 else 171 __putname(name); 172 } 173 EXPORT_SYMBOL(putname); 174 #endif 175 176 /* 177 * This does basic POSIX ACL permission checking 178 */ 179 static int acl_permission_check(struct inode *inode, int mask, unsigned int flags, 180 int (*check_acl)(struct inode *inode, int mask, unsigned int flags)) 181 { 182 unsigned int mode = inode->i_mode; 183 184 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 185 186 if (current_user_ns() != inode_userns(inode)) 187 goto other_perms; 188 189 if (current_fsuid() == inode->i_uid) 190 mode >>= 6; 191 else { 192 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) { 193 int error = check_acl(inode, mask, flags); 194 if (error != -EAGAIN) 195 return error; 196 } 197 198 if (in_group_p(inode->i_gid)) 199 mode >>= 3; 200 } 201 202 other_perms: 203 /* 204 * If the DACs are ok we don't need any capability check. 205 */ 206 if ((mask & ~mode) == 0) 207 return 0; 208 return -EACCES; 209 } 210 211 /** 212 * generic_permission - check for access rights on a Posix-like filesystem 213 * @inode: inode to check access rights for 214 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 215 * @check_acl: optional callback to check for Posix ACLs 216 * @flags: IPERM_FLAG_ flags. 217 * 218 * Used to check for read/write/execute permissions on a file. 219 * We use "fsuid" for this, letting us set arbitrary permissions 220 * for filesystem access without changing the "normal" uids which 221 * are used for other things. 222 * 223 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 224 * request cannot be satisfied (eg. requires blocking or too much complexity). 225 * It would then be called again in ref-walk mode. 226 */ 227 int generic_permission(struct inode *inode, int mask, unsigned int flags, 228 int (*check_acl)(struct inode *inode, int mask, unsigned int flags)) 229 { 230 int ret; 231 232 /* 233 * Do the basic POSIX ACL permission checks. 234 */ 235 ret = acl_permission_check(inode, mask, flags, check_acl); 236 if (ret != -EACCES) 237 return ret; 238 239 /* 240 * Read/write DACs are always overridable. 241 * Executable DACs are overridable if at least one exec bit is set. 242 */ 243 if (!(mask & MAY_EXEC) || execute_ok(inode)) 244 if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE)) 245 return 0; 246 247 /* 248 * Searching includes executable on directories, else just read. 249 */ 250 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 251 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE))) 252 if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH)) 253 return 0; 254 255 return -EACCES; 256 } 257 258 /** 259 * inode_permission - check for access rights to a given inode 260 * @inode: inode to check permission on 261 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 262 * 263 * Used to check for read/write/execute permissions on an inode. 264 * We use "fsuid" for this, letting us set arbitrary permissions 265 * for filesystem access without changing the "normal" uids which 266 * are used for other things. 267 */ 268 int inode_permission(struct inode *inode, int mask) 269 { 270 int retval; 271 272 if (mask & MAY_WRITE) { 273 umode_t mode = inode->i_mode; 274 275 /* 276 * Nobody gets write access to a read-only fs. 277 */ 278 if (IS_RDONLY(inode) && 279 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 280 return -EROFS; 281 282 /* 283 * Nobody gets write access to an immutable file. 284 */ 285 if (IS_IMMUTABLE(inode)) 286 return -EACCES; 287 } 288 289 if (inode->i_op->permission) 290 retval = inode->i_op->permission(inode, mask, 0); 291 else 292 retval = generic_permission(inode, mask, 0, 293 inode->i_op->check_acl); 294 295 if (retval) 296 return retval; 297 298 retval = devcgroup_inode_permission(inode, mask); 299 if (retval) 300 return retval; 301 302 return security_inode_permission(inode, mask); 303 } 304 305 /** 306 * file_permission - check for additional access rights to a given file 307 * @file: file to check access rights for 308 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 309 * 310 * Used to check for read/write/execute permissions on an already opened 311 * file. 312 * 313 * Note: 314 * Do not use this function in new code. All access checks should 315 * be done using inode_permission(). 316 */ 317 int file_permission(struct file *file, int mask) 318 { 319 return inode_permission(file->f_path.dentry->d_inode, mask); 320 } 321 322 /* 323 * get_write_access() gets write permission for a file. 324 * put_write_access() releases this write permission. 325 * This is used for regular files. 326 * We cannot support write (and maybe mmap read-write shared) accesses and 327 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode 328 * can have the following values: 329 * 0: no writers, no VM_DENYWRITE mappings 330 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist 331 * > 0: (i_writecount) users are writing to the file. 332 * 333 * Normally we operate on that counter with atomic_{inc,dec} and it's safe 334 * except for the cases where we don't hold i_writecount yet. Then we need to 335 * use {get,deny}_write_access() - these functions check the sign and refuse 336 * to do the change if sign is wrong. Exclusion between them is provided by 337 * the inode->i_lock spinlock. 338 */ 339 340 int get_write_access(struct inode * inode) 341 { 342 spin_lock(&inode->i_lock); 343 if (atomic_read(&inode->i_writecount) < 0) { 344 spin_unlock(&inode->i_lock); 345 return -ETXTBSY; 346 } 347 atomic_inc(&inode->i_writecount); 348 spin_unlock(&inode->i_lock); 349 350 return 0; 351 } 352 353 int deny_write_access(struct file * file) 354 { 355 struct inode *inode = file->f_path.dentry->d_inode; 356 357 spin_lock(&inode->i_lock); 358 if (atomic_read(&inode->i_writecount) > 0) { 359 spin_unlock(&inode->i_lock); 360 return -ETXTBSY; 361 } 362 atomic_dec(&inode->i_writecount); 363 spin_unlock(&inode->i_lock); 364 365 return 0; 366 } 367 368 /** 369 * path_get - get a reference to a path 370 * @path: path to get the reference to 371 * 372 * Given a path increment the reference count to the dentry and the vfsmount. 373 */ 374 void path_get(struct path *path) 375 { 376 mntget(path->mnt); 377 dget(path->dentry); 378 } 379 EXPORT_SYMBOL(path_get); 380 381 /** 382 * path_put - put a reference to a path 383 * @path: path to put the reference to 384 * 385 * Given a path decrement the reference count to the dentry and the vfsmount. 386 */ 387 void path_put(struct path *path) 388 { 389 dput(path->dentry); 390 mntput(path->mnt); 391 } 392 EXPORT_SYMBOL(path_put); 393 394 /* 395 * Path walking has 2 modes, rcu-walk and ref-walk (see 396 * Documentation/filesystems/path-lookup.txt). In situations when we can't 397 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 398 * normal reference counts on dentries and vfsmounts to transition to rcu-walk 399 * mode. Refcounts are grabbed at the last known good point before rcu-walk 400 * got stuck, so ref-walk may continue from there. If this is not successful 401 * (eg. a seqcount has changed), then failure is returned and it's up to caller 402 * to restart the path walk from the beginning in ref-walk mode. 403 */ 404 405 /** 406 * unlazy_walk - try to switch to ref-walk mode. 407 * @nd: nameidata pathwalk data 408 * @dentry: child of nd->path.dentry or NULL 409 * Returns: 0 on success, -ECHILD on failure 410 * 411 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry 412 * for ref-walk mode. @dentry must be a path found by a do_lookup call on 413 * @nd or NULL. Must be called from rcu-walk context. 414 */ 415 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry) 416 { 417 struct fs_struct *fs = current->fs; 418 struct dentry *parent = nd->path.dentry; 419 int want_root = 0; 420 421 BUG_ON(!(nd->flags & LOOKUP_RCU)); 422 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 423 want_root = 1; 424 spin_lock(&fs->lock); 425 if (nd->root.mnt != fs->root.mnt || 426 nd->root.dentry != fs->root.dentry) 427 goto err_root; 428 } 429 spin_lock(&parent->d_lock); 430 if (!dentry) { 431 if (!__d_rcu_to_refcount(parent, nd->seq)) 432 goto err_parent; 433 BUG_ON(nd->inode != parent->d_inode); 434 } else { 435 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 436 if (!__d_rcu_to_refcount(dentry, nd->seq)) 437 goto err_child; 438 /* 439 * If the sequence check on the child dentry passed, then 440 * the child has not been removed from its parent. This 441 * means the parent dentry must be valid and able to take 442 * a reference at this point. 443 */ 444 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent); 445 BUG_ON(!parent->d_count); 446 parent->d_count++; 447 spin_unlock(&dentry->d_lock); 448 } 449 spin_unlock(&parent->d_lock); 450 if (want_root) { 451 path_get(&nd->root); 452 spin_unlock(&fs->lock); 453 } 454 mntget(nd->path.mnt); 455 456 rcu_read_unlock(); 457 br_read_unlock(vfsmount_lock); 458 nd->flags &= ~LOOKUP_RCU; 459 return 0; 460 461 err_child: 462 spin_unlock(&dentry->d_lock); 463 err_parent: 464 spin_unlock(&parent->d_lock); 465 err_root: 466 if (want_root) 467 spin_unlock(&fs->lock); 468 return -ECHILD; 469 } 470 471 /** 472 * release_open_intent - free up open intent resources 473 * @nd: pointer to nameidata 474 */ 475 void release_open_intent(struct nameidata *nd) 476 { 477 struct file *file = nd->intent.open.file; 478 479 if (file && !IS_ERR(file)) { 480 if (file->f_path.dentry == NULL) 481 put_filp(file); 482 else 483 fput(file); 484 } 485 } 486 487 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd) 488 { 489 return dentry->d_op->d_revalidate(dentry, nd); 490 } 491 492 static struct dentry * 493 do_revalidate(struct dentry *dentry, struct nameidata *nd) 494 { 495 int status = d_revalidate(dentry, nd); 496 if (unlikely(status <= 0)) { 497 /* 498 * The dentry failed validation. 499 * If d_revalidate returned 0 attempt to invalidate 500 * the dentry otherwise d_revalidate is asking us 501 * to return a fail status. 502 */ 503 if (status < 0) { 504 dput(dentry); 505 dentry = ERR_PTR(status); 506 } else if (!d_invalidate(dentry)) { 507 dput(dentry); 508 dentry = NULL; 509 } 510 } 511 return dentry; 512 } 513 514 /** 515 * complete_walk - successful completion of path walk 516 * @nd: pointer nameidata 517 * 518 * If we had been in RCU mode, drop out of it and legitimize nd->path. 519 * Revalidate the final result, unless we'd already done that during 520 * the path walk or the filesystem doesn't ask for it. Return 0 on 521 * success, -error on failure. In case of failure caller does not 522 * need to drop nd->path. 523 */ 524 static int complete_walk(struct nameidata *nd) 525 { 526 struct dentry *dentry = nd->path.dentry; 527 int status; 528 529 if (nd->flags & LOOKUP_RCU) { 530 nd->flags &= ~LOOKUP_RCU; 531 if (!(nd->flags & LOOKUP_ROOT)) 532 nd->root.mnt = NULL; 533 spin_lock(&dentry->d_lock); 534 if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) { 535 spin_unlock(&dentry->d_lock); 536 rcu_read_unlock(); 537 br_read_unlock(vfsmount_lock); 538 return -ECHILD; 539 } 540 BUG_ON(nd->inode != dentry->d_inode); 541 spin_unlock(&dentry->d_lock); 542 mntget(nd->path.mnt); 543 rcu_read_unlock(); 544 br_read_unlock(vfsmount_lock); 545 } 546 547 if (likely(!(nd->flags & LOOKUP_JUMPED))) 548 return 0; 549 550 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE))) 551 return 0; 552 553 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT))) 554 return 0; 555 556 /* Note: we do not d_invalidate() */ 557 status = d_revalidate(dentry, nd); 558 if (status > 0) 559 return 0; 560 561 if (!status) 562 status = -ESTALE; 563 564 path_put(&nd->path); 565 return status; 566 } 567 568 /* 569 * Short-cut version of permission(), for calling on directories 570 * during pathname resolution. Combines parts of permission() 571 * and generic_permission(), and tests ONLY for MAY_EXEC permission. 572 * 573 * If appropriate, check DAC only. If not appropriate, or 574 * short-cut DAC fails, then call ->permission() to do more 575 * complete permission check. 576 */ 577 static inline int exec_permission(struct inode *inode, unsigned int flags) 578 { 579 int ret; 580 struct user_namespace *ns = inode_userns(inode); 581 582 if (inode->i_op->permission) { 583 ret = inode->i_op->permission(inode, MAY_EXEC, flags); 584 } else { 585 ret = acl_permission_check(inode, MAY_EXEC, flags, 586 inode->i_op->check_acl); 587 } 588 if (likely(!ret)) 589 goto ok; 590 if (ret == -ECHILD) 591 return ret; 592 593 if (ns_capable(ns, CAP_DAC_OVERRIDE) || 594 ns_capable(ns, CAP_DAC_READ_SEARCH)) 595 goto ok; 596 597 return ret; 598 ok: 599 return security_inode_exec_permission(inode, flags); 600 } 601 602 static __always_inline void set_root(struct nameidata *nd) 603 { 604 if (!nd->root.mnt) 605 get_fs_root(current->fs, &nd->root); 606 } 607 608 static int link_path_walk(const char *, struct nameidata *); 609 610 static __always_inline void set_root_rcu(struct nameidata *nd) 611 { 612 if (!nd->root.mnt) { 613 struct fs_struct *fs = current->fs; 614 unsigned seq; 615 616 do { 617 seq = read_seqcount_begin(&fs->seq); 618 nd->root = fs->root; 619 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 620 } while (read_seqcount_retry(&fs->seq, seq)); 621 } 622 } 623 624 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link) 625 { 626 int ret; 627 628 if (IS_ERR(link)) 629 goto fail; 630 631 if (*link == '/') { 632 set_root(nd); 633 path_put(&nd->path); 634 nd->path = nd->root; 635 path_get(&nd->root); 636 nd->flags |= LOOKUP_JUMPED; 637 } 638 nd->inode = nd->path.dentry->d_inode; 639 640 ret = link_path_walk(link, nd); 641 return ret; 642 fail: 643 path_put(&nd->path); 644 return PTR_ERR(link); 645 } 646 647 static void path_put_conditional(struct path *path, struct nameidata *nd) 648 { 649 dput(path->dentry); 650 if (path->mnt != nd->path.mnt) 651 mntput(path->mnt); 652 } 653 654 static inline void path_to_nameidata(const struct path *path, 655 struct nameidata *nd) 656 { 657 if (!(nd->flags & LOOKUP_RCU)) { 658 dput(nd->path.dentry); 659 if (nd->path.mnt != path->mnt) 660 mntput(nd->path.mnt); 661 } 662 nd->path.mnt = path->mnt; 663 nd->path.dentry = path->dentry; 664 } 665 666 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie) 667 { 668 struct inode *inode = link->dentry->d_inode; 669 if (!IS_ERR(cookie) && inode->i_op->put_link) 670 inode->i_op->put_link(link->dentry, nd, cookie); 671 path_put(link); 672 } 673 674 static __always_inline int 675 follow_link(struct path *link, struct nameidata *nd, void **p) 676 { 677 int error; 678 struct dentry *dentry = link->dentry; 679 680 BUG_ON(nd->flags & LOOKUP_RCU); 681 682 if (link->mnt == nd->path.mnt) 683 mntget(link->mnt); 684 685 if (unlikely(current->total_link_count >= 40)) { 686 *p = ERR_PTR(-ELOOP); /* no ->put_link(), please */ 687 path_put(&nd->path); 688 return -ELOOP; 689 } 690 cond_resched(); 691 current->total_link_count++; 692 693 touch_atime(link->mnt, dentry); 694 nd_set_link(nd, NULL); 695 696 error = security_inode_follow_link(link->dentry, nd); 697 if (error) { 698 *p = ERR_PTR(error); /* no ->put_link(), please */ 699 path_put(&nd->path); 700 return error; 701 } 702 703 nd->last_type = LAST_BIND; 704 *p = dentry->d_inode->i_op->follow_link(dentry, nd); 705 error = PTR_ERR(*p); 706 if (!IS_ERR(*p)) { 707 char *s = nd_get_link(nd); 708 error = 0; 709 if (s) 710 error = __vfs_follow_link(nd, s); 711 else if (nd->last_type == LAST_BIND) { 712 nd->flags |= LOOKUP_JUMPED; 713 nd->inode = nd->path.dentry->d_inode; 714 if (nd->inode->i_op->follow_link) { 715 /* stepped on a _really_ weird one */ 716 path_put(&nd->path); 717 error = -ELOOP; 718 } 719 } 720 } 721 return error; 722 } 723 724 static int follow_up_rcu(struct path *path) 725 { 726 struct vfsmount *parent; 727 struct dentry *mountpoint; 728 729 parent = path->mnt->mnt_parent; 730 if (parent == path->mnt) 731 return 0; 732 mountpoint = path->mnt->mnt_mountpoint; 733 path->dentry = mountpoint; 734 path->mnt = parent; 735 return 1; 736 } 737 738 int follow_up(struct path *path) 739 { 740 struct vfsmount *parent; 741 struct dentry *mountpoint; 742 743 br_read_lock(vfsmount_lock); 744 parent = path->mnt->mnt_parent; 745 if (parent == path->mnt) { 746 br_read_unlock(vfsmount_lock); 747 return 0; 748 } 749 mntget(parent); 750 mountpoint = dget(path->mnt->mnt_mountpoint); 751 br_read_unlock(vfsmount_lock); 752 dput(path->dentry); 753 path->dentry = mountpoint; 754 mntput(path->mnt); 755 path->mnt = parent; 756 return 1; 757 } 758 759 /* 760 * Perform an automount 761 * - return -EISDIR to tell follow_managed() to stop and return the path we 762 * were called with. 763 */ 764 static int follow_automount(struct path *path, unsigned flags, 765 bool *need_mntput) 766 { 767 struct vfsmount *mnt; 768 int err; 769 770 if (!path->dentry->d_op || !path->dentry->d_op->d_automount) 771 return -EREMOTE; 772 773 /* We don't want to mount if someone supplied AT_NO_AUTOMOUNT 774 * and this is the terminal part of the path. 775 */ 776 if ((flags & LOOKUP_NO_AUTOMOUNT) && !(flags & LOOKUP_CONTINUE)) 777 return -EISDIR; /* we actually want to stop here */ 778 779 /* We want to mount if someone is trying to open/create a file of any 780 * type under the mountpoint, wants to traverse through the mountpoint 781 * or wants to open the mounted directory. 782 * 783 * We don't want to mount if someone's just doing a stat and they've 784 * set AT_SYMLINK_NOFOLLOW - unless they're stat'ing a directory and 785 * appended a '/' to the name. 786 */ 787 if (!(flags & LOOKUP_FOLLOW) && 788 !(flags & (LOOKUP_CONTINUE | LOOKUP_DIRECTORY | 789 LOOKUP_OPEN | LOOKUP_CREATE))) 790 return -EISDIR; 791 792 current->total_link_count++; 793 if (current->total_link_count >= 40) 794 return -ELOOP; 795 796 mnt = path->dentry->d_op->d_automount(path); 797 if (IS_ERR(mnt)) { 798 /* 799 * The filesystem is allowed to return -EISDIR here to indicate 800 * it doesn't want to automount. For instance, autofs would do 801 * this so that its userspace daemon can mount on this dentry. 802 * 803 * However, we can only permit this if it's a terminal point in 804 * the path being looked up; if it wasn't then the remainder of 805 * the path is inaccessible and we should say so. 806 */ 807 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_CONTINUE)) 808 return -EREMOTE; 809 return PTR_ERR(mnt); 810 } 811 812 if (!mnt) /* mount collision */ 813 return 0; 814 815 err = finish_automount(mnt, path); 816 817 switch (err) { 818 case -EBUSY: 819 /* Someone else made a mount here whilst we were busy */ 820 return 0; 821 case 0: 822 dput(path->dentry); 823 if (*need_mntput) 824 mntput(path->mnt); 825 path->mnt = mnt; 826 path->dentry = dget(mnt->mnt_root); 827 *need_mntput = true; 828 return 0; 829 default: 830 return err; 831 } 832 833 } 834 835 /* 836 * Handle a dentry that is managed in some way. 837 * - Flagged for transit management (autofs) 838 * - Flagged as mountpoint 839 * - Flagged as automount point 840 * 841 * This may only be called in refwalk mode. 842 * 843 * Serialization is taken care of in namespace.c 844 */ 845 static int follow_managed(struct path *path, unsigned flags) 846 { 847 unsigned managed; 848 bool need_mntput = false; 849 int ret; 850 851 /* Given that we're not holding a lock here, we retain the value in a 852 * local variable for each dentry as we look at it so that we don't see 853 * the components of that value change under us */ 854 while (managed = ACCESS_ONCE(path->dentry->d_flags), 855 managed &= DCACHE_MANAGED_DENTRY, 856 unlikely(managed != 0)) { 857 /* Allow the filesystem to manage the transit without i_mutex 858 * being held. */ 859 if (managed & DCACHE_MANAGE_TRANSIT) { 860 BUG_ON(!path->dentry->d_op); 861 BUG_ON(!path->dentry->d_op->d_manage); 862 ret = path->dentry->d_op->d_manage(path->dentry, false); 863 if (ret < 0) 864 return ret == -EISDIR ? 0 : ret; 865 } 866 867 /* Transit to a mounted filesystem. */ 868 if (managed & DCACHE_MOUNTED) { 869 struct vfsmount *mounted = lookup_mnt(path); 870 if (mounted) { 871 dput(path->dentry); 872 if (need_mntput) 873 mntput(path->mnt); 874 path->mnt = mounted; 875 path->dentry = dget(mounted->mnt_root); 876 need_mntput = true; 877 continue; 878 } 879 880 /* Something is mounted on this dentry in another 881 * namespace and/or whatever was mounted there in this 882 * namespace got unmounted before we managed to get the 883 * vfsmount_lock */ 884 } 885 886 /* Handle an automount point */ 887 if (managed & DCACHE_NEED_AUTOMOUNT) { 888 ret = follow_automount(path, flags, &need_mntput); 889 if (ret < 0) 890 return ret == -EISDIR ? 0 : ret; 891 continue; 892 } 893 894 /* We didn't change the current path point */ 895 break; 896 } 897 return 0; 898 } 899 900 int follow_down_one(struct path *path) 901 { 902 struct vfsmount *mounted; 903 904 mounted = lookup_mnt(path); 905 if (mounted) { 906 dput(path->dentry); 907 mntput(path->mnt); 908 path->mnt = mounted; 909 path->dentry = dget(mounted->mnt_root); 910 return 1; 911 } 912 return 0; 913 } 914 915 static inline bool managed_dentry_might_block(struct dentry *dentry) 916 { 917 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT && 918 dentry->d_op->d_manage(dentry, true) < 0); 919 } 920 921 /* 922 * Skip to top of mountpoint pile in rcuwalk mode. We abort the rcu-walk if we 923 * meet a managed dentry and we're not walking to "..". True is returned to 924 * continue, false to abort. 925 */ 926 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 927 struct inode **inode, bool reverse_transit) 928 { 929 for (;;) { 930 struct vfsmount *mounted; 931 /* 932 * Don't forget we might have a non-mountpoint managed dentry 933 * that wants to block transit. 934 */ 935 *inode = path->dentry->d_inode; 936 if (!reverse_transit && 937 unlikely(managed_dentry_might_block(path->dentry))) 938 return false; 939 940 if (!d_mountpoint(path->dentry)) 941 break; 942 943 mounted = __lookup_mnt(path->mnt, path->dentry, 1); 944 if (!mounted) 945 break; 946 path->mnt = mounted; 947 path->dentry = mounted->mnt_root; 948 nd->seq = read_seqcount_begin(&path->dentry->d_seq); 949 } 950 951 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT)) 952 return reverse_transit; 953 return true; 954 } 955 956 static int follow_dotdot_rcu(struct nameidata *nd) 957 { 958 struct inode *inode = nd->inode; 959 960 set_root_rcu(nd); 961 962 while (1) { 963 if (nd->path.dentry == nd->root.dentry && 964 nd->path.mnt == nd->root.mnt) { 965 break; 966 } 967 if (nd->path.dentry != nd->path.mnt->mnt_root) { 968 struct dentry *old = nd->path.dentry; 969 struct dentry *parent = old->d_parent; 970 unsigned seq; 971 972 seq = read_seqcount_begin(&parent->d_seq); 973 if (read_seqcount_retry(&old->d_seq, nd->seq)) 974 goto failed; 975 inode = parent->d_inode; 976 nd->path.dentry = parent; 977 nd->seq = seq; 978 break; 979 } 980 if (!follow_up_rcu(&nd->path)) 981 break; 982 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 983 inode = nd->path.dentry->d_inode; 984 } 985 __follow_mount_rcu(nd, &nd->path, &inode, true); 986 nd->inode = inode; 987 return 0; 988 989 failed: 990 nd->flags &= ~LOOKUP_RCU; 991 if (!(nd->flags & LOOKUP_ROOT)) 992 nd->root.mnt = NULL; 993 rcu_read_unlock(); 994 br_read_unlock(vfsmount_lock); 995 return -ECHILD; 996 } 997 998 /* 999 * Follow down to the covering mount currently visible to userspace. At each 1000 * point, the filesystem owning that dentry may be queried as to whether the 1001 * caller is permitted to proceed or not. 1002 * 1003 * Care must be taken as namespace_sem may be held (indicated by mounting_here 1004 * being true). 1005 */ 1006 int follow_down(struct path *path) 1007 { 1008 unsigned managed; 1009 int ret; 1010 1011 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1012 unlikely(managed & DCACHE_MANAGED_DENTRY)) { 1013 /* Allow the filesystem to manage the transit without i_mutex 1014 * being held. 1015 * 1016 * We indicate to the filesystem if someone is trying to mount 1017 * something here. This gives autofs the chance to deny anyone 1018 * other than its daemon the right to mount on its 1019 * superstructure. 1020 * 1021 * The filesystem may sleep at this point. 1022 */ 1023 if (managed & DCACHE_MANAGE_TRANSIT) { 1024 BUG_ON(!path->dentry->d_op); 1025 BUG_ON(!path->dentry->d_op->d_manage); 1026 ret = path->dentry->d_op->d_manage( 1027 path->dentry, false); 1028 if (ret < 0) 1029 return ret == -EISDIR ? 0 : ret; 1030 } 1031 1032 /* Transit to a mounted filesystem. */ 1033 if (managed & DCACHE_MOUNTED) { 1034 struct vfsmount *mounted = lookup_mnt(path); 1035 if (!mounted) 1036 break; 1037 dput(path->dentry); 1038 mntput(path->mnt); 1039 path->mnt = mounted; 1040 path->dentry = dget(mounted->mnt_root); 1041 continue; 1042 } 1043 1044 /* Don't handle automount points here */ 1045 break; 1046 } 1047 return 0; 1048 } 1049 1050 /* 1051 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() 1052 */ 1053 static void follow_mount(struct path *path) 1054 { 1055 while (d_mountpoint(path->dentry)) { 1056 struct vfsmount *mounted = lookup_mnt(path); 1057 if (!mounted) 1058 break; 1059 dput(path->dentry); 1060 mntput(path->mnt); 1061 path->mnt = mounted; 1062 path->dentry = dget(mounted->mnt_root); 1063 } 1064 } 1065 1066 static void follow_dotdot(struct nameidata *nd) 1067 { 1068 set_root(nd); 1069 1070 while(1) { 1071 struct dentry *old = nd->path.dentry; 1072 1073 if (nd->path.dentry == nd->root.dentry && 1074 nd->path.mnt == nd->root.mnt) { 1075 break; 1076 } 1077 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1078 /* rare case of legitimate dget_parent()... */ 1079 nd->path.dentry = dget_parent(nd->path.dentry); 1080 dput(old); 1081 break; 1082 } 1083 if (!follow_up(&nd->path)) 1084 break; 1085 } 1086 follow_mount(&nd->path); 1087 nd->inode = nd->path.dentry->d_inode; 1088 } 1089 1090 /* 1091 * Allocate a dentry with name and parent, and perform a parent 1092 * directory ->lookup on it. Returns the new dentry, or ERR_PTR 1093 * on error. parent->d_inode->i_mutex must be held. d_lookup must 1094 * have verified that no child exists while under i_mutex. 1095 */ 1096 static struct dentry *d_alloc_and_lookup(struct dentry *parent, 1097 struct qstr *name, struct nameidata *nd) 1098 { 1099 struct inode *inode = parent->d_inode; 1100 struct dentry *dentry; 1101 struct dentry *old; 1102 1103 /* Don't create child dentry for a dead directory. */ 1104 if (unlikely(IS_DEADDIR(inode))) 1105 return ERR_PTR(-ENOENT); 1106 1107 dentry = d_alloc(parent, name); 1108 if (unlikely(!dentry)) 1109 return ERR_PTR(-ENOMEM); 1110 1111 old = inode->i_op->lookup(inode, dentry, nd); 1112 if (unlikely(old)) { 1113 dput(dentry); 1114 dentry = old; 1115 } 1116 return dentry; 1117 } 1118 1119 /* 1120 * It's more convoluted than I'd like it to be, but... it's still fairly 1121 * small and for now I'd prefer to have fast path as straight as possible. 1122 * It _is_ time-critical. 1123 */ 1124 static int do_lookup(struct nameidata *nd, struct qstr *name, 1125 struct path *path, struct inode **inode) 1126 { 1127 struct vfsmount *mnt = nd->path.mnt; 1128 struct dentry *dentry, *parent = nd->path.dentry; 1129 int need_reval = 1; 1130 int status = 1; 1131 int err; 1132 1133 /* 1134 * Rename seqlock is not required here because in the off chance 1135 * of a false negative due to a concurrent rename, we're going to 1136 * do the non-racy lookup, below. 1137 */ 1138 if (nd->flags & LOOKUP_RCU) { 1139 unsigned seq; 1140 *inode = nd->inode; 1141 dentry = __d_lookup_rcu(parent, name, &seq, inode); 1142 if (!dentry) 1143 goto unlazy; 1144 1145 /* Memory barrier in read_seqcount_begin of child is enough */ 1146 if (__read_seqcount_retry(&parent->d_seq, nd->seq)) 1147 return -ECHILD; 1148 nd->seq = seq; 1149 1150 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) { 1151 status = d_revalidate(dentry, nd); 1152 if (unlikely(status <= 0)) { 1153 if (status != -ECHILD) 1154 need_reval = 0; 1155 goto unlazy; 1156 } 1157 } 1158 path->mnt = mnt; 1159 path->dentry = dentry; 1160 if (likely(__follow_mount_rcu(nd, path, inode, false))) 1161 return 0; 1162 unlazy: 1163 if (unlazy_walk(nd, dentry)) 1164 return -ECHILD; 1165 } else { 1166 dentry = __d_lookup(parent, name); 1167 } 1168 1169 retry: 1170 if (unlikely(!dentry)) { 1171 struct inode *dir = parent->d_inode; 1172 BUG_ON(nd->inode != dir); 1173 1174 mutex_lock(&dir->i_mutex); 1175 dentry = d_lookup(parent, name); 1176 if (likely(!dentry)) { 1177 dentry = d_alloc_and_lookup(parent, name, nd); 1178 if (IS_ERR(dentry)) { 1179 mutex_unlock(&dir->i_mutex); 1180 return PTR_ERR(dentry); 1181 } 1182 /* known good */ 1183 need_reval = 0; 1184 status = 1; 1185 } 1186 mutex_unlock(&dir->i_mutex); 1187 } 1188 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval) 1189 status = d_revalidate(dentry, nd); 1190 if (unlikely(status <= 0)) { 1191 if (status < 0) { 1192 dput(dentry); 1193 return status; 1194 } 1195 if (!d_invalidate(dentry)) { 1196 dput(dentry); 1197 dentry = NULL; 1198 need_reval = 1; 1199 goto retry; 1200 } 1201 } 1202 1203 path->mnt = mnt; 1204 path->dentry = dentry; 1205 err = follow_managed(path, nd->flags); 1206 if (unlikely(err < 0)) { 1207 path_put_conditional(path, nd); 1208 return err; 1209 } 1210 *inode = path->dentry->d_inode; 1211 return 0; 1212 } 1213 1214 static inline int may_lookup(struct nameidata *nd) 1215 { 1216 if (nd->flags & LOOKUP_RCU) { 1217 int err = exec_permission(nd->inode, IPERM_FLAG_RCU); 1218 if (err != -ECHILD) 1219 return err; 1220 if (unlazy_walk(nd, NULL)) 1221 return -ECHILD; 1222 } 1223 return exec_permission(nd->inode, 0); 1224 } 1225 1226 static inline int handle_dots(struct nameidata *nd, int type) 1227 { 1228 if (type == LAST_DOTDOT) { 1229 if (nd->flags & LOOKUP_RCU) { 1230 if (follow_dotdot_rcu(nd)) 1231 return -ECHILD; 1232 } else 1233 follow_dotdot(nd); 1234 } 1235 return 0; 1236 } 1237 1238 static void terminate_walk(struct nameidata *nd) 1239 { 1240 if (!(nd->flags & LOOKUP_RCU)) { 1241 path_put(&nd->path); 1242 } else { 1243 nd->flags &= ~LOOKUP_RCU; 1244 if (!(nd->flags & LOOKUP_ROOT)) 1245 nd->root.mnt = NULL; 1246 rcu_read_unlock(); 1247 br_read_unlock(vfsmount_lock); 1248 } 1249 } 1250 1251 static inline int walk_component(struct nameidata *nd, struct path *path, 1252 struct qstr *name, int type, int follow) 1253 { 1254 struct inode *inode; 1255 int err; 1256 /* 1257 * "." and ".." are special - ".." especially so because it has 1258 * to be able to know about the current root directory and 1259 * parent relationships. 1260 */ 1261 if (unlikely(type != LAST_NORM)) 1262 return handle_dots(nd, type); 1263 err = do_lookup(nd, name, path, &inode); 1264 if (unlikely(err)) { 1265 terminate_walk(nd); 1266 return err; 1267 } 1268 if (!inode) { 1269 path_to_nameidata(path, nd); 1270 terminate_walk(nd); 1271 return -ENOENT; 1272 } 1273 if (unlikely(inode->i_op->follow_link) && follow) { 1274 if (nd->flags & LOOKUP_RCU) { 1275 if (unlikely(unlazy_walk(nd, path->dentry))) { 1276 terminate_walk(nd); 1277 return -ECHILD; 1278 } 1279 } 1280 BUG_ON(inode != path->dentry->d_inode); 1281 return 1; 1282 } 1283 path_to_nameidata(path, nd); 1284 nd->inode = inode; 1285 return 0; 1286 } 1287 1288 /* 1289 * This limits recursive symlink follows to 8, while 1290 * limiting consecutive symlinks to 40. 1291 * 1292 * Without that kind of total limit, nasty chains of consecutive 1293 * symlinks can cause almost arbitrarily long lookups. 1294 */ 1295 static inline int nested_symlink(struct path *path, struct nameidata *nd) 1296 { 1297 int res; 1298 1299 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) { 1300 path_put_conditional(path, nd); 1301 path_put(&nd->path); 1302 return -ELOOP; 1303 } 1304 BUG_ON(nd->depth >= MAX_NESTED_LINKS); 1305 1306 nd->depth++; 1307 current->link_count++; 1308 1309 do { 1310 struct path link = *path; 1311 void *cookie; 1312 1313 res = follow_link(&link, nd, &cookie); 1314 if (!res) 1315 res = walk_component(nd, path, &nd->last, 1316 nd->last_type, LOOKUP_FOLLOW); 1317 put_link(nd, &link, cookie); 1318 } while (res > 0); 1319 1320 current->link_count--; 1321 nd->depth--; 1322 return res; 1323 } 1324 1325 /* 1326 * Name resolution. 1327 * This is the basic name resolution function, turning a pathname into 1328 * the final dentry. We expect 'base' to be positive and a directory. 1329 * 1330 * Returns 0 and nd will have valid dentry and mnt on success. 1331 * Returns error and drops reference to input namei data on failure. 1332 */ 1333 static int link_path_walk(const char *name, struct nameidata *nd) 1334 { 1335 struct path next; 1336 int err; 1337 unsigned int lookup_flags = nd->flags; 1338 1339 while (*name=='/') 1340 name++; 1341 if (!*name) 1342 return 0; 1343 1344 /* At this point we know we have a real path component. */ 1345 for(;;) { 1346 unsigned long hash; 1347 struct qstr this; 1348 unsigned int c; 1349 int type; 1350 1351 nd->flags |= LOOKUP_CONTINUE; 1352 1353 err = may_lookup(nd); 1354 if (err) 1355 break; 1356 1357 this.name = name; 1358 c = *(const unsigned char *)name; 1359 1360 hash = init_name_hash(); 1361 do { 1362 name++; 1363 hash = partial_name_hash(c, hash); 1364 c = *(const unsigned char *)name; 1365 } while (c && (c != '/')); 1366 this.len = name - (const char *) this.name; 1367 this.hash = end_name_hash(hash); 1368 1369 type = LAST_NORM; 1370 if (this.name[0] == '.') switch (this.len) { 1371 case 2: 1372 if (this.name[1] == '.') { 1373 type = LAST_DOTDOT; 1374 nd->flags |= LOOKUP_JUMPED; 1375 } 1376 break; 1377 case 1: 1378 type = LAST_DOT; 1379 } 1380 if (likely(type == LAST_NORM)) { 1381 struct dentry *parent = nd->path.dentry; 1382 nd->flags &= ~LOOKUP_JUMPED; 1383 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 1384 err = parent->d_op->d_hash(parent, nd->inode, 1385 &this); 1386 if (err < 0) 1387 break; 1388 } 1389 } 1390 1391 /* remove trailing slashes? */ 1392 if (!c) 1393 goto last_component; 1394 while (*++name == '/'); 1395 if (!*name) 1396 goto last_component; 1397 1398 err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW); 1399 if (err < 0) 1400 return err; 1401 1402 if (err) { 1403 err = nested_symlink(&next, nd); 1404 if (err) 1405 return err; 1406 } 1407 err = -ENOTDIR; 1408 if (!nd->inode->i_op->lookup) 1409 break; 1410 continue; 1411 /* here ends the main loop */ 1412 1413 last_component: 1414 /* Clear LOOKUP_CONTINUE iff it was previously unset */ 1415 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE; 1416 nd->last = this; 1417 nd->last_type = type; 1418 return 0; 1419 } 1420 terminate_walk(nd); 1421 return err; 1422 } 1423 1424 static int path_init(int dfd, const char *name, unsigned int flags, 1425 struct nameidata *nd, struct file **fp) 1426 { 1427 int retval = 0; 1428 int fput_needed; 1429 struct file *file; 1430 1431 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 1432 nd->flags = flags | LOOKUP_JUMPED; 1433 nd->depth = 0; 1434 if (flags & LOOKUP_ROOT) { 1435 struct inode *inode = nd->root.dentry->d_inode; 1436 if (*name) { 1437 if (!inode->i_op->lookup) 1438 return -ENOTDIR; 1439 retval = inode_permission(inode, MAY_EXEC); 1440 if (retval) 1441 return retval; 1442 } 1443 nd->path = nd->root; 1444 nd->inode = inode; 1445 if (flags & LOOKUP_RCU) { 1446 br_read_lock(vfsmount_lock); 1447 rcu_read_lock(); 1448 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1449 } else { 1450 path_get(&nd->path); 1451 } 1452 return 0; 1453 } 1454 1455 nd->root.mnt = NULL; 1456 1457 if (*name=='/') { 1458 if (flags & LOOKUP_RCU) { 1459 br_read_lock(vfsmount_lock); 1460 rcu_read_lock(); 1461 set_root_rcu(nd); 1462 } else { 1463 set_root(nd); 1464 path_get(&nd->root); 1465 } 1466 nd->path = nd->root; 1467 } else if (dfd == AT_FDCWD) { 1468 if (flags & LOOKUP_RCU) { 1469 struct fs_struct *fs = current->fs; 1470 unsigned seq; 1471 1472 br_read_lock(vfsmount_lock); 1473 rcu_read_lock(); 1474 1475 do { 1476 seq = read_seqcount_begin(&fs->seq); 1477 nd->path = fs->pwd; 1478 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1479 } while (read_seqcount_retry(&fs->seq, seq)); 1480 } else { 1481 get_fs_pwd(current->fs, &nd->path); 1482 } 1483 } else { 1484 struct dentry *dentry; 1485 1486 file = fget_raw_light(dfd, &fput_needed); 1487 retval = -EBADF; 1488 if (!file) 1489 goto out_fail; 1490 1491 dentry = file->f_path.dentry; 1492 1493 if (*name) { 1494 retval = -ENOTDIR; 1495 if (!S_ISDIR(dentry->d_inode->i_mode)) 1496 goto fput_fail; 1497 1498 retval = file_permission(file, MAY_EXEC); 1499 if (retval) 1500 goto fput_fail; 1501 } 1502 1503 nd->path = file->f_path; 1504 if (flags & LOOKUP_RCU) { 1505 if (fput_needed) 1506 *fp = file; 1507 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1508 br_read_lock(vfsmount_lock); 1509 rcu_read_lock(); 1510 } else { 1511 path_get(&file->f_path); 1512 fput_light(file, fput_needed); 1513 } 1514 } 1515 1516 nd->inode = nd->path.dentry->d_inode; 1517 return 0; 1518 1519 fput_fail: 1520 fput_light(file, fput_needed); 1521 out_fail: 1522 return retval; 1523 } 1524 1525 static inline int lookup_last(struct nameidata *nd, struct path *path) 1526 { 1527 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 1528 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 1529 1530 nd->flags &= ~LOOKUP_PARENT; 1531 return walk_component(nd, path, &nd->last, nd->last_type, 1532 nd->flags & LOOKUP_FOLLOW); 1533 } 1534 1535 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 1536 static int path_lookupat(int dfd, const char *name, 1537 unsigned int flags, struct nameidata *nd) 1538 { 1539 struct file *base = NULL; 1540 struct path path; 1541 int err; 1542 1543 /* 1544 * Path walking is largely split up into 2 different synchronisation 1545 * schemes, rcu-walk and ref-walk (explained in 1546 * Documentation/filesystems/path-lookup.txt). These share much of the 1547 * path walk code, but some things particularly setup, cleanup, and 1548 * following mounts are sufficiently divergent that functions are 1549 * duplicated. Typically there is a function foo(), and its RCU 1550 * analogue, foo_rcu(). 1551 * 1552 * -ECHILD is the error number of choice (just to avoid clashes) that 1553 * is returned if some aspect of an rcu-walk fails. Such an error must 1554 * be handled by restarting a traditional ref-walk (which will always 1555 * be able to complete). 1556 */ 1557 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base); 1558 1559 if (unlikely(err)) 1560 return err; 1561 1562 current->total_link_count = 0; 1563 err = link_path_walk(name, nd); 1564 1565 if (!err && !(flags & LOOKUP_PARENT)) { 1566 err = lookup_last(nd, &path); 1567 while (err > 0) { 1568 void *cookie; 1569 struct path link = path; 1570 nd->flags |= LOOKUP_PARENT; 1571 err = follow_link(&link, nd, &cookie); 1572 if (!err) 1573 err = lookup_last(nd, &path); 1574 put_link(nd, &link, cookie); 1575 } 1576 } 1577 1578 if (!err) 1579 err = complete_walk(nd); 1580 1581 if (!err && nd->flags & LOOKUP_DIRECTORY) { 1582 if (!nd->inode->i_op->lookup) { 1583 path_put(&nd->path); 1584 err = -ENOTDIR; 1585 } 1586 } 1587 1588 if (base) 1589 fput(base); 1590 1591 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 1592 path_put(&nd->root); 1593 nd->root.mnt = NULL; 1594 } 1595 return err; 1596 } 1597 1598 static int do_path_lookup(int dfd, const char *name, 1599 unsigned int flags, struct nameidata *nd) 1600 { 1601 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd); 1602 if (unlikely(retval == -ECHILD)) 1603 retval = path_lookupat(dfd, name, flags, nd); 1604 if (unlikely(retval == -ESTALE)) 1605 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd); 1606 1607 if (likely(!retval)) { 1608 if (unlikely(!audit_dummy_context())) { 1609 if (nd->path.dentry && nd->inode) 1610 audit_inode(name, nd->path.dentry); 1611 } 1612 } 1613 return retval; 1614 } 1615 1616 int kern_path_parent(const char *name, struct nameidata *nd) 1617 { 1618 return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd); 1619 } 1620 1621 int kern_path(const char *name, unsigned int flags, struct path *path) 1622 { 1623 struct nameidata nd; 1624 int res = do_path_lookup(AT_FDCWD, name, flags, &nd); 1625 if (!res) 1626 *path = nd.path; 1627 return res; 1628 } 1629 1630 /** 1631 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 1632 * @dentry: pointer to dentry of the base directory 1633 * @mnt: pointer to vfs mount of the base directory 1634 * @name: pointer to file name 1635 * @flags: lookup flags 1636 * @nd: pointer to nameidata 1637 */ 1638 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 1639 const char *name, unsigned int flags, 1640 struct nameidata *nd) 1641 { 1642 nd->root.dentry = dentry; 1643 nd->root.mnt = mnt; 1644 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */ 1645 return do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, nd); 1646 } 1647 1648 static struct dentry *__lookup_hash(struct qstr *name, 1649 struct dentry *base, struct nameidata *nd) 1650 { 1651 struct inode *inode = base->d_inode; 1652 struct dentry *dentry; 1653 int err; 1654 1655 err = exec_permission(inode, 0); 1656 if (err) 1657 return ERR_PTR(err); 1658 1659 /* 1660 * Don't bother with __d_lookup: callers are for creat as 1661 * well as unlink, so a lot of the time it would cost 1662 * a double lookup. 1663 */ 1664 dentry = d_lookup(base, name); 1665 1666 if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE)) 1667 dentry = do_revalidate(dentry, nd); 1668 1669 if (!dentry) 1670 dentry = d_alloc_and_lookup(base, name, nd); 1671 1672 return dentry; 1673 } 1674 1675 /* 1676 * Restricted form of lookup. Doesn't follow links, single-component only, 1677 * needs parent already locked. Doesn't follow mounts. 1678 * SMP-safe. 1679 */ 1680 static struct dentry *lookup_hash(struct nameidata *nd) 1681 { 1682 return __lookup_hash(&nd->last, nd->path.dentry, nd); 1683 } 1684 1685 /** 1686 * lookup_one_len - filesystem helper to lookup single pathname component 1687 * @name: pathname component to lookup 1688 * @base: base directory to lookup from 1689 * @len: maximum length @len should be interpreted to 1690 * 1691 * Note that this routine is purely a helper for filesystem usage and should 1692 * not be called by generic code. Also note that by using this function the 1693 * nameidata argument is passed to the filesystem methods and a filesystem 1694 * using this helper needs to be prepared for that. 1695 */ 1696 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 1697 { 1698 struct qstr this; 1699 unsigned long hash; 1700 unsigned int c; 1701 1702 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex)); 1703 1704 this.name = name; 1705 this.len = len; 1706 if (!len) 1707 return ERR_PTR(-EACCES); 1708 1709 hash = init_name_hash(); 1710 while (len--) { 1711 c = *(const unsigned char *)name++; 1712 if (c == '/' || c == '\0') 1713 return ERR_PTR(-EACCES); 1714 hash = partial_name_hash(c, hash); 1715 } 1716 this.hash = end_name_hash(hash); 1717 /* 1718 * See if the low-level filesystem might want 1719 * to use its own hash.. 1720 */ 1721 if (base->d_flags & DCACHE_OP_HASH) { 1722 int err = base->d_op->d_hash(base, base->d_inode, &this); 1723 if (err < 0) 1724 return ERR_PTR(err); 1725 } 1726 1727 return __lookup_hash(&this, base, NULL); 1728 } 1729 1730 int user_path_at(int dfd, const char __user *name, unsigned flags, 1731 struct path *path) 1732 { 1733 struct nameidata nd; 1734 char *tmp = getname_flags(name, flags); 1735 int err = PTR_ERR(tmp); 1736 if (!IS_ERR(tmp)) { 1737 1738 BUG_ON(flags & LOOKUP_PARENT); 1739 1740 err = do_path_lookup(dfd, tmp, flags, &nd); 1741 putname(tmp); 1742 if (!err) 1743 *path = nd.path; 1744 } 1745 return err; 1746 } 1747 1748 static int user_path_parent(int dfd, const char __user *path, 1749 struct nameidata *nd, char **name) 1750 { 1751 char *s = getname(path); 1752 int error; 1753 1754 if (IS_ERR(s)) 1755 return PTR_ERR(s); 1756 1757 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd); 1758 if (error) 1759 putname(s); 1760 else 1761 *name = s; 1762 1763 return error; 1764 } 1765 1766 /* 1767 * It's inline, so penalty for filesystems that don't use sticky bit is 1768 * minimal. 1769 */ 1770 static inline int check_sticky(struct inode *dir, struct inode *inode) 1771 { 1772 uid_t fsuid = current_fsuid(); 1773 1774 if (!(dir->i_mode & S_ISVTX)) 1775 return 0; 1776 if (current_user_ns() != inode_userns(inode)) 1777 goto other_userns; 1778 if (inode->i_uid == fsuid) 1779 return 0; 1780 if (dir->i_uid == fsuid) 1781 return 0; 1782 1783 other_userns: 1784 return !ns_capable(inode_userns(inode), CAP_FOWNER); 1785 } 1786 1787 /* 1788 * Check whether we can remove a link victim from directory dir, check 1789 * whether the type of victim is right. 1790 * 1. We can't do it if dir is read-only (done in permission()) 1791 * 2. We should have write and exec permissions on dir 1792 * 3. We can't remove anything from append-only dir 1793 * 4. We can't do anything with immutable dir (done in permission()) 1794 * 5. If the sticky bit on dir is set we should either 1795 * a. be owner of dir, or 1796 * b. be owner of victim, or 1797 * c. have CAP_FOWNER capability 1798 * 6. If the victim is append-only or immutable we can't do antyhing with 1799 * links pointing to it. 1800 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 1801 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 1802 * 9. We can't remove a root or mountpoint. 1803 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 1804 * nfs_async_unlink(). 1805 */ 1806 static int may_delete(struct inode *dir,struct dentry *victim,int isdir) 1807 { 1808 int error; 1809 1810 if (!victim->d_inode) 1811 return -ENOENT; 1812 1813 BUG_ON(victim->d_parent->d_inode != dir); 1814 audit_inode_child(victim, dir); 1815 1816 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 1817 if (error) 1818 return error; 1819 if (IS_APPEND(dir)) 1820 return -EPERM; 1821 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)|| 1822 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode)) 1823 return -EPERM; 1824 if (isdir) { 1825 if (!S_ISDIR(victim->d_inode->i_mode)) 1826 return -ENOTDIR; 1827 if (IS_ROOT(victim)) 1828 return -EBUSY; 1829 } else if (S_ISDIR(victim->d_inode->i_mode)) 1830 return -EISDIR; 1831 if (IS_DEADDIR(dir)) 1832 return -ENOENT; 1833 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 1834 return -EBUSY; 1835 return 0; 1836 } 1837 1838 /* Check whether we can create an object with dentry child in directory 1839 * dir. 1840 * 1. We can't do it if child already exists (open has special treatment for 1841 * this case, but since we are inlined it's OK) 1842 * 2. We can't do it if dir is read-only (done in permission()) 1843 * 3. We should have write and exec permissions on dir 1844 * 4. We can't do it if dir is immutable (done in permission()) 1845 */ 1846 static inline int may_create(struct inode *dir, struct dentry *child) 1847 { 1848 if (child->d_inode) 1849 return -EEXIST; 1850 if (IS_DEADDIR(dir)) 1851 return -ENOENT; 1852 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 1853 } 1854 1855 /* 1856 * p1 and p2 should be directories on the same fs. 1857 */ 1858 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 1859 { 1860 struct dentry *p; 1861 1862 if (p1 == p2) { 1863 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1864 return NULL; 1865 } 1866 1867 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 1868 1869 p = d_ancestor(p2, p1); 1870 if (p) { 1871 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT); 1872 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD); 1873 return p; 1874 } 1875 1876 p = d_ancestor(p1, p2); 1877 if (p) { 1878 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1879 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 1880 return p; 1881 } 1882 1883 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1884 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 1885 return NULL; 1886 } 1887 1888 void unlock_rename(struct dentry *p1, struct dentry *p2) 1889 { 1890 mutex_unlock(&p1->d_inode->i_mutex); 1891 if (p1 != p2) { 1892 mutex_unlock(&p2->d_inode->i_mutex); 1893 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 1894 } 1895 } 1896 1897 int vfs_create(struct inode *dir, struct dentry *dentry, int mode, 1898 struct nameidata *nd) 1899 { 1900 int error = may_create(dir, dentry); 1901 1902 if (error) 1903 return error; 1904 1905 if (!dir->i_op->create) 1906 return -EACCES; /* shouldn't it be ENOSYS? */ 1907 mode &= S_IALLUGO; 1908 mode |= S_IFREG; 1909 error = security_inode_create(dir, dentry, mode); 1910 if (error) 1911 return error; 1912 error = dir->i_op->create(dir, dentry, mode, nd); 1913 if (!error) 1914 fsnotify_create(dir, dentry); 1915 return error; 1916 } 1917 1918 static int may_open(struct path *path, int acc_mode, int flag) 1919 { 1920 struct dentry *dentry = path->dentry; 1921 struct inode *inode = dentry->d_inode; 1922 int error; 1923 1924 /* O_PATH? */ 1925 if (!acc_mode) 1926 return 0; 1927 1928 if (!inode) 1929 return -ENOENT; 1930 1931 switch (inode->i_mode & S_IFMT) { 1932 case S_IFLNK: 1933 return -ELOOP; 1934 case S_IFDIR: 1935 if (acc_mode & MAY_WRITE) 1936 return -EISDIR; 1937 break; 1938 case S_IFBLK: 1939 case S_IFCHR: 1940 if (path->mnt->mnt_flags & MNT_NODEV) 1941 return -EACCES; 1942 /*FALLTHRU*/ 1943 case S_IFIFO: 1944 case S_IFSOCK: 1945 flag &= ~O_TRUNC; 1946 break; 1947 } 1948 1949 error = inode_permission(inode, acc_mode); 1950 if (error) 1951 return error; 1952 1953 /* 1954 * An append-only file must be opened in append mode for writing. 1955 */ 1956 if (IS_APPEND(inode)) { 1957 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 1958 return -EPERM; 1959 if (flag & O_TRUNC) 1960 return -EPERM; 1961 } 1962 1963 /* O_NOATIME can only be set by the owner or superuser */ 1964 if (flag & O_NOATIME && !inode_owner_or_capable(inode)) 1965 return -EPERM; 1966 1967 /* 1968 * Ensure there are no outstanding leases on the file. 1969 */ 1970 return break_lease(inode, flag); 1971 } 1972 1973 static int handle_truncate(struct file *filp) 1974 { 1975 struct path *path = &filp->f_path; 1976 struct inode *inode = path->dentry->d_inode; 1977 int error = get_write_access(inode); 1978 if (error) 1979 return error; 1980 /* 1981 * Refuse to truncate files with mandatory locks held on them. 1982 */ 1983 error = locks_verify_locked(inode); 1984 if (!error) 1985 error = security_path_truncate(path); 1986 if (!error) { 1987 error = do_truncate(path->dentry, 0, 1988 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 1989 filp); 1990 } 1991 put_write_access(inode); 1992 return error; 1993 } 1994 1995 /* 1996 * Note that while the flag value (low two bits) for sys_open means: 1997 * 00 - read-only 1998 * 01 - write-only 1999 * 10 - read-write 2000 * 11 - special 2001 * it is changed into 2002 * 00 - no permissions needed 2003 * 01 - read-permission 2004 * 10 - write-permission 2005 * 11 - read-write 2006 * for the internal routines (ie open_namei()/follow_link() etc) 2007 * This is more logical, and also allows the 00 "no perm needed" 2008 * to be used for symlinks (where the permissions are checked 2009 * later). 2010 * 2011 */ 2012 static inline int open_to_namei_flags(int flag) 2013 { 2014 if ((flag+1) & O_ACCMODE) 2015 flag++; 2016 return flag; 2017 } 2018 2019 /* 2020 * Handle the last step of open() 2021 */ 2022 static struct file *do_last(struct nameidata *nd, struct path *path, 2023 const struct open_flags *op, const char *pathname) 2024 { 2025 struct dentry *dir = nd->path.dentry; 2026 struct dentry *dentry; 2027 int open_flag = op->open_flag; 2028 int will_truncate = open_flag & O_TRUNC; 2029 int want_write = 0; 2030 int acc_mode = op->acc_mode; 2031 struct file *filp; 2032 int error; 2033 2034 nd->flags &= ~LOOKUP_PARENT; 2035 nd->flags |= op->intent; 2036 2037 switch (nd->last_type) { 2038 case LAST_DOTDOT: 2039 case LAST_DOT: 2040 error = handle_dots(nd, nd->last_type); 2041 if (error) 2042 return ERR_PTR(error); 2043 /* fallthrough */ 2044 case LAST_ROOT: 2045 error = complete_walk(nd); 2046 if (error) 2047 return ERR_PTR(error); 2048 audit_inode(pathname, nd->path.dentry); 2049 if (open_flag & O_CREAT) { 2050 error = -EISDIR; 2051 goto exit; 2052 } 2053 goto ok; 2054 case LAST_BIND: 2055 error = complete_walk(nd); 2056 if (error) 2057 return ERR_PTR(error); 2058 audit_inode(pathname, dir); 2059 goto ok; 2060 } 2061 2062 if (!(open_flag & O_CREAT)) { 2063 int symlink_ok = 0; 2064 if (nd->last.name[nd->last.len]) 2065 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2066 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW)) 2067 symlink_ok = 1; 2068 /* we _can_ be in RCU mode here */ 2069 error = walk_component(nd, path, &nd->last, LAST_NORM, 2070 !symlink_ok); 2071 if (error < 0) 2072 return ERR_PTR(error); 2073 if (error) /* symlink */ 2074 return NULL; 2075 /* sayonara */ 2076 error = complete_walk(nd); 2077 if (error) 2078 return ERR_PTR(-ECHILD); 2079 2080 error = -ENOTDIR; 2081 if (nd->flags & LOOKUP_DIRECTORY) { 2082 if (!nd->inode->i_op->lookup) 2083 goto exit; 2084 } 2085 audit_inode(pathname, nd->path.dentry); 2086 goto ok; 2087 } 2088 2089 /* create side of things */ 2090 error = complete_walk(nd); 2091 if (error) 2092 return ERR_PTR(error); 2093 2094 audit_inode(pathname, dir); 2095 error = -EISDIR; 2096 /* trailing slashes? */ 2097 if (nd->last.name[nd->last.len]) 2098 goto exit; 2099 2100 mutex_lock(&dir->d_inode->i_mutex); 2101 2102 dentry = lookup_hash(nd); 2103 error = PTR_ERR(dentry); 2104 if (IS_ERR(dentry)) { 2105 mutex_unlock(&dir->d_inode->i_mutex); 2106 goto exit; 2107 } 2108 2109 path->dentry = dentry; 2110 path->mnt = nd->path.mnt; 2111 2112 /* Negative dentry, just create the file */ 2113 if (!dentry->d_inode) { 2114 int mode = op->mode; 2115 if (!IS_POSIXACL(dir->d_inode)) 2116 mode &= ~current_umask(); 2117 /* 2118 * This write is needed to ensure that a 2119 * rw->ro transition does not occur between 2120 * the time when the file is created and when 2121 * a permanent write count is taken through 2122 * the 'struct file' in nameidata_to_filp(). 2123 */ 2124 error = mnt_want_write(nd->path.mnt); 2125 if (error) 2126 goto exit_mutex_unlock; 2127 want_write = 1; 2128 /* Don't check for write permission, don't truncate */ 2129 open_flag &= ~O_TRUNC; 2130 will_truncate = 0; 2131 acc_mode = MAY_OPEN; 2132 error = security_path_mknod(&nd->path, dentry, mode, 0); 2133 if (error) 2134 goto exit_mutex_unlock; 2135 error = vfs_create(dir->d_inode, dentry, mode, nd); 2136 if (error) 2137 goto exit_mutex_unlock; 2138 mutex_unlock(&dir->d_inode->i_mutex); 2139 dput(nd->path.dentry); 2140 nd->path.dentry = dentry; 2141 goto common; 2142 } 2143 2144 /* 2145 * It already exists. 2146 */ 2147 mutex_unlock(&dir->d_inode->i_mutex); 2148 audit_inode(pathname, path->dentry); 2149 2150 error = -EEXIST; 2151 if (open_flag & O_EXCL) 2152 goto exit_dput; 2153 2154 error = follow_managed(path, nd->flags); 2155 if (error < 0) 2156 goto exit_dput; 2157 2158 error = -ENOENT; 2159 if (!path->dentry->d_inode) 2160 goto exit_dput; 2161 2162 if (path->dentry->d_inode->i_op->follow_link) 2163 return NULL; 2164 2165 path_to_nameidata(path, nd); 2166 nd->inode = path->dentry->d_inode; 2167 error = -EISDIR; 2168 if (S_ISDIR(nd->inode->i_mode)) 2169 goto exit; 2170 ok: 2171 if (!S_ISREG(nd->inode->i_mode)) 2172 will_truncate = 0; 2173 2174 if (will_truncate) { 2175 error = mnt_want_write(nd->path.mnt); 2176 if (error) 2177 goto exit; 2178 want_write = 1; 2179 } 2180 common: 2181 error = may_open(&nd->path, acc_mode, open_flag); 2182 if (error) 2183 goto exit; 2184 filp = nameidata_to_filp(nd); 2185 if (!IS_ERR(filp)) { 2186 error = ima_file_check(filp, op->acc_mode); 2187 if (error) { 2188 fput(filp); 2189 filp = ERR_PTR(error); 2190 } 2191 } 2192 if (!IS_ERR(filp)) { 2193 if (will_truncate) { 2194 error = handle_truncate(filp); 2195 if (error) { 2196 fput(filp); 2197 filp = ERR_PTR(error); 2198 } 2199 } 2200 } 2201 out: 2202 if (want_write) 2203 mnt_drop_write(nd->path.mnt); 2204 path_put(&nd->path); 2205 return filp; 2206 2207 exit_mutex_unlock: 2208 mutex_unlock(&dir->d_inode->i_mutex); 2209 exit_dput: 2210 path_put_conditional(path, nd); 2211 exit: 2212 filp = ERR_PTR(error); 2213 goto out; 2214 } 2215 2216 static struct file *path_openat(int dfd, const char *pathname, 2217 struct nameidata *nd, const struct open_flags *op, int flags) 2218 { 2219 struct file *base = NULL; 2220 struct file *filp; 2221 struct path path; 2222 int error; 2223 2224 filp = get_empty_filp(); 2225 if (!filp) 2226 return ERR_PTR(-ENFILE); 2227 2228 filp->f_flags = op->open_flag; 2229 nd->intent.open.file = filp; 2230 nd->intent.open.flags = open_to_namei_flags(op->open_flag); 2231 nd->intent.open.create_mode = op->mode; 2232 2233 error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base); 2234 if (unlikely(error)) 2235 goto out_filp; 2236 2237 current->total_link_count = 0; 2238 error = link_path_walk(pathname, nd); 2239 if (unlikely(error)) 2240 goto out_filp; 2241 2242 filp = do_last(nd, &path, op, pathname); 2243 while (unlikely(!filp)) { /* trailing symlink */ 2244 struct path link = path; 2245 void *cookie; 2246 if (!(nd->flags & LOOKUP_FOLLOW)) { 2247 path_put_conditional(&path, nd); 2248 path_put(&nd->path); 2249 filp = ERR_PTR(-ELOOP); 2250 break; 2251 } 2252 nd->flags |= LOOKUP_PARENT; 2253 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 2254 error = follow_link(&link, nd, &cookie); 2255 if (unlikely(error)) 2256 filp = ERR_PTR(error); 2257 else 2258 filp = do_last(nd, &path, op, pathname); 2259 put_link(nd, &link, cookie); 2260 } 2261 out: 2262 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) 2263 path_put(&nd->root); 2264 if (base) 2265 fput(base); 2266 release_open_intent(nd); 2267 return filp; 2268 2269 out_filp: 2270 filp = ERR_PTR(error); 2271 goto out; 2272 } 2273 2274 struct file *do_filp_open(int dfd, const char *pathname, 2275 const struct open_flags *op, int flags) 2276 { 2277 struct nameidata nd; 2278 struct file *filp; 2279 2280 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU); 2281 if (unlikely(filp == ERR_PTR(-ECHILD))) 2282 filp = path_openat(dfd, pathname, &nd, op, flags); 2283 if (unlikely(filp == ERR_PTR(-ESTALE))) 2284 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL); 2285 return filp; 2286 } 2287 2288 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 2289 const char *name, const struct open_flags *op, int flags) 2290 { 2291 struct nameidata nd; 2292 struct file *file; 2293 2294 nd.root.mnt = mnt; 2295 nd.root.dentry = dentry; 2296 2297 flags |= LOOKUP_ROOT; 2298 2299 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN) 2300 return ERR_PTR(-ELOOP); 2301 2302 file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU); 2303 if (unlikely(file == ERR_PTR(-ECHILD))) 2304 file = path_openat(-1, name, &nd, op, flags); 2305 if (unlikely(file == ERR_PTR(-ESTALE))) 2306 file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL); 2307 return file; 2308 } 2309 2310 /** 2311 * lookup_create - lookup a dentry, creating it if it doesn't exist 2312 * @nd: nameidata info 2313 * @is_dir: directory flag 2314 * 2315 * Simple function to lookup and return a dentry and create it 2316 * if it doesn't exist. Is SMP-safe. 2317 * 2318 * Returns with nd->path.dentry->d_inode->i_mutex locked. 2319 */ 2320 struct dentry *lookup_create(struct nameidata *nd, int is_dir) 2321 { 2322 struct dentry *dentry = ERR_PTR(-EEXIST); 2323 2324 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2325 /* 2326 * Yucky last component or no last component at all? 2327 * (foo/., foo/.., /////) 2328 */ 2329 if (nd->last_type != LAST_NORM) 2330 goto fail; 2331 nd->flags &= ~LOOKUP_PARENT; 2332 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL; 2333 nd->intent.open.flags = O_EXCL; 2334 2335 /* 2336 * Do the final lookup. 2337 */ 2338 dentry = lookup_hash(nd); 2339 if (IS_ERR(dentry)) 2340 goto fail; 2341 2342 if (dentry->d_inode) 2343 goto eexist; 2344 /* 2345 * Special case - lookup gave negative, but... we had foo/bar/ 2346 * From the vfs_mknod() POV we just have a negative dentry - 2347 * all is fine. Let's be bastards - you had / on the end, you've 2348 * been asking for (non-existent) directory. -ENOENT for you. 2349 */ 2350 if (unlikely(!is_dir && nd->last.name[nd->last.len])) { 2351 dput(dentry); 2352 dentry = ERR_PTR(-ENOENT); 2353 } 2354 return dentry; 2355 eexist: 2356 dput(dentry); 2357 dentry = ERR_PTR(-EEXIST); 2358 fail: 2359 return dentry; 2360 } 2361 EXPORT_SYMBOL_GPL(lookup_create); 2362 2363 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 2364 { 2365 int error = may_create(dir, dentry); 2366 2367 if (error) 2368 return error; 2369 2370 if ((S_ISCHR(mode) || S_ISBLK(mode)) && 2371 !ns_capable(inode_userns(dir), CAP_MKNOD)) 2372 return -EPERM; 2373 2374 if (!dir->i_op->mknod) 2375 return -EPERM; 2376 2377 error = devcgroup_inode_mknod(mode, dev); 2378 if (error) 2379 return error; 2380 2381 error = security_inode_mknod(dir, dentry, mode, dev); 2382 if (error) 2383 return error; 2384 2385 error = dir->i_op->mknod(dir, dentry, mode, dev); 2386 if (!error) 2387 fsnotify_create(dir, dentry); 2388 return error; 2389 } 2390 2391 static int may_mknod(mode_t mode) 2392 { 2393 switch (mode & S_IFMT) { 2394 case S_IFREG: 2395 case S_IFCHR: 2396 case S_IFBLK: 2397 case S_IFIFO: 2398 case S_IFSOCK: 2399 case 0: /* zero mode translates to S_IFREG */ 2400 return 0; 2401 case S_IFDIR: 2402 return -EPERM; 2403 default: 2404 return -EINVAL; 2405 } 2406 } 2407 2408 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode, 2409 unsigned, dev) 2410 { 2411 int error; 2412 char *tmp; 2413 struct dentry *dentry; 2414 struct nameidata nd; 2415 2416 if (S_ISDIR(mode)) 2417 return -EPERM; 2418 2419 error = user_path_parent(dfd, filename, &nd, &tmp); 2420 if (error) 2421 return error; 2422 2423 dentry = lookup_create(&nd, 0); 2424 if (IS_ERR(dentry)) { 2425 error = PTR_ERR(dentry); 2426 goto out_unlock; 2427 } 2428 if (!IS_POSIXACL(nd.path.dentry->d_inode)) 2429 mode &= ~current_umask(); 2430 error = may_mknod(mode); 2431 if (error) 2432 goto out_dput; 2433 error = mnt_want_write(nd.path.mnt); 2434 if (error) 2435 goto out_dput; 2436 error = security_path_mknod(&nd.path, dentry, mode, dev); 2437 if (error) 2438 goto out_drop_write; 2439 switch (mode & S_IFMT) { 2440 case 0: case S_IFREG: 2441 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd); 2442 break; 2443 case S_IFCHR: case S_IFBLK: 2444 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode, 2445 new_decode_dev(dev)); 2446 break; 2447 case S_IFIFO: case S_IFSOCK: 2448 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0); 2449 break; 2450 } 2451 out_drop_write: 2452 mnt_drop_write(nd.path.mnt); 2453 out_dput: 2454 dput(dentry); 2455 out_unlock: 2456 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2457 path_put(&nd.path); 2458 putname(tmp); 2459 2460 return error; 2461 } 2462 2463 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev) 2464 { 2465 return sys_mknodat(AT_FDCWD, filename, mode, dev); 2466 } 2467 2468 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 2469 { 2470 int error = may_create(dir, dentry); 2471 2472 if (error) 2473 return error; 2474 2475 if (!dir->i_op->mkdir) 2476 return -EPERM; 2477 2478 mode &= (S_IRWXUGO|S_ISVTX); 2479 error = security_inode_mkdir(dir, dentry, mode); 2480 if (error) 2481 return error; 2482 2483 error = dir->i_op->mkdir(dir, dentry, mode); 2484 if (!error) 2485 fsnotify_mkdir(dir, dentry); 2486 return error; 2487 } 2488 2489 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode) 2490 { 2491 int error = 0; 2492 char * tmp; 2493 struct dentry *dentry; 2494 struct nameidata nd; 2495 2496 error = user_path_parent(dfd, pathname, &nd, &tmp); 2497 if (error) 2498 goto out_err; 2499 2500 dentry = lookup_create(&nd, 1); 2501 error = PTR_ERR(dentry); 2502 if (IS_ERR(dentry)) 2503 goto out_unlock; 2504 2505 if (!IS_POSIXACL(nd.path.dentry->d_inode)) 2506 mode &= ~current_umask(); 2507 error = mnt_want_write(nd.path.mnt); 2508 if (error) 2509 goto out_dput; 2510 error = security_path_mkdir(&nd.path, dentry, mode); 2511 if (error) 2512 goto out_drop_write; 2513 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode); 2514 out_drop_write: 2515 mnt_drop_write(nd.path.mnt); 2516 out_dput: 2517 dput(dentry); 2518 out_unlock: 2519 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2520 path_put(&nd.path); 2521 putname(tmp); 2522 out_err: 2523 return error; 2524 } 2525 2526 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode) 2527 { 2528 return sys_mkdirat(AT_FDCWD, pathname, mode); 2529 } 2530 2531 /* 2532 * The dentry_unhash() helper will try to drop the dentry early: we 2533 * should have a usage count of 2 if we're the only user of this 2534 * dentry, and if that is true (possibly after pruning the dcache), 2535 * then we drop the dentry now. 2536 * 2537 * A low-level filesystem can, if it choses, legally 2538 * do a 2539 * 2540 * if (!d_unhashed(dentry)) 2541 * return -EBUSY; 2542 * 2543 * if it cannot handle the case of removing a directory 2544 * that is still in use by something else.. 2545 */ 2546 void dentry_unhash(struct dentry *dentry) 2547 { 2548 shrink_dcache_parent(dentry); 2549 spin_lock(&dentry->d_lock); 2550 if (dentry->d_count == 1) 2551 __d_drop(dentry); 2552 spin_unlock(&dentry->d_lock); 2553 } 2554 2555 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 2556 { 2557 int error = may_delete(dir, dentry, 1); 2558 2559 if (error) 2560 return error; 2561 2562 if (!dir->i_op->rmdir) 2563 return -EPERM; 2564 2565 mutex_lock(&dentry->d_inode->i_mutex); 2566 2567 error = -EBUSY; 2568 if (d_mountpoint(dentry)) 2569 goto out; 2570 2571 error = security_inode_rmdir(dir, dentry); 2572 if (error) 2573 goto out; 2574 2575 error = dir->i_op->rmdir(dir, dentry); 2576 if (error) 2577 goto out; 2578 2579 dentry->d_inode->i_flags |= S_DEAD; 2580 dont_mount(dentry); 2581 2582 out: 2583 mutex_unlock(&dentry->d_inode->i_mutex); 2584 if (!error) 2585 d_delete(dentry); 2586 return error; 2587 } 2588 2589 static long do_rmdir(int dfd, const char __user *pathname) 2590 { 2591 int error = 0; 2592 char * name; 2593 struct dentry *dentry; 2594 struct nameidata nd; 2595 2596 error = user_path_parent(dfd, pathname, &nd, &name); 2597 if (error) 2598 return error; 2599 2600 switch(nd.last_type) { 2601 case LAST_DOTDOT: 2602 error = -ENOTEMPTY; 2603 goto exit1; 2604 case LAST_DOT: 2605 error = -EINVAL; 2606 goto exit1; 2607 case LAST_ROOT: 2608 error = -EBUSY; 2609 goto exit1; 2610 } 2611 2612 nd.flags &= ~LOOKUP_PARENT; 2613 2614 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2615 dentry = lookup_hash(&nd); 2616 error = PTR_ERR(dentry); 2617 if (IS_ERR(dentry)) 2618 goto exit2; 2619 error = mnt_want_write(nd.path.mnt); 2620 if (error) 2621 goto exit3; 2622 error = security_path_rmdir(&nd.path, dentry); 2623 if (error) 2624 goto exit4; 2625 error = vfs_rmdir(nd.path.dentry->d_inode, dentry); 2626 exit4: 2627 mnt_drop_write(nd.path.mnt); 2628 exit3: 2629 dput(dentry); 2630 exit2: 2631 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2632 exit1: 2633 path_put(&nd.path); 2634 putname(name); 2635 return error; 2636 } 2637 2638 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 2639 { 2640 return do_rmdir(AT_FDCWD, pathname); 2641 } 2642 2643 int vfs_unlink(struct inode *dir, struct dentry *dentry) 2644 { 2645 int error = may_delete(dir, dentry, 0); 2646 2647 if (error) 2648 return error; 2649 2650 if (!dir->i_op->unlink) 2651 return -EPERM; 2652 2653 mutex_lock(&dentry->d_inode->i_mutex); 2654 if (d_mountpoint(dentry)) 2655 error = -EBUSY; 2656 else { 2657 error = security_inode_unlink(dir, dentry); 2658 if (!error) { 2659 error = dir->i_op->unlink(dir, dentry); 2660 if (!error) 2661 dont_mount(dentry); 2662 } 2663 } 2664 mutex_unlock(&dentry->d_inode->i_mutex); 2665 2666 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 2667 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 2668 fsnotify_link_count(dentry->d_inode); 2669 d_delete(dentry); 2670 } 2671 2672 return error; 2673 } 2674 2675 /* 2676 * Make sure that the actual truncation of the file will occur outside its 2677 * directory's i_mutex. Truncate can take a long time if there is a lot of 2678 * writeout happening, and we don't want to prevent access to the directory 2679 * while waiting on the I/O. 2680 */ 2681 static long do_unlinkat(int dfd, const char __user *pathname) 2682 { 2683 int error; 2684 char *name; 2685 struct dentry *dentry; 2686 struct nameidata nd; 2687 struct inode *inode = NULL; 2688 2689 error = user_path_parent(dfd, pathname, &nd, &name); 2690 if (error) 2691 return error; 2692 2693 error = -EISDIR; 2694 if (nd.last_type != LAST_NORM) 2695 goto exit1; 2696 2697 nd.flags &= ~LOOKUP_PARENT; 2698 2699 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2700 dentry = lookup_hash(&nd); 2701 error = PTR_ERR(dentry); 2702 if (!IS_ERR(dentry)) { 2703 /* Why not before? Because we want correct error value */ 2704 if (nd.last.name[nd.last.len]) 2705 goto slashes; 2706 inode = dentry->d_inode; 2707 if (inode) 2708 ihold(inode); 2709 error = mnt_want_write(nd.path.mnt); 2710 if (error) 2711 goto exit2; 2712 error = security_path_unlink(&nd.path, dentry); 2713 if (error) 2714 goto exit3; 2715 error = vfs_unlink(nd.path.dentry->d_inode, dentry); 2716 exit3: 2717 mnt_drop_write(nd.path.mnt); 2718 exit2: 2719 dput(dentry); 2720 } 2721 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2722 if (inode) 2723 iput(inode); /* truncate the inode here */ 2724 exit1: 2725 path_put(&nd.path); 2726 putname(name); 2727 return error; 2728 2729 slashes: 2730 error = !dentry->d_inode ? -ENOENT : 2731 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR; 2732 goto exit2; 2733 } 2734 2735 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 2736 { 2737 if ((flag & ~AT_REMOVEDIR) != 0) 2738 return -EINVAL; 2739 2740 if (flag & AT_REMOVEDIR) 2741 return do_rmdir(dfd, pathname); 2742 2743 return do_unlinkat(dfd, pathname); 2744 } 2745 2746 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 2747 { 2748 return do_unlinkat(AT_FDCWD, pathname); 2749 } 2750 2751 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 2752 { 2753 int error = may_create(dir, dentry); 2754 2755 if (error) 2756 return error; 2757 2758 if (!dir->i_op->symlink) 2759 return -EPERM; 2760 2761 error = security_inode_symlink(dir, dentry, oldname); 2762 if (error) 2763 return error; 2764 2765 error = dir->i_op->symlink(dir, dentry, oldname); 2766 if (!error) 2767 fsnotify_create(dir, dentry); 2768 return error; 2769 } 2770 2771 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 2772 int, newdfd, const char __user *, newname) 2773 { 2774 int error; 2775 char *from; 2776 char *to; 2777 struct dentry *dentry; 2778 struct nameidata nd; 2779 2780 from = getname(oldname); 2781 if (IS_ERR(from)) 2782 return PTR_ERR(from); 2783 2784 error = user_path_parent(newdfd, newname, &nd, &to); 2785 if (error) 2786 goto out_putname; 2787 2788 dentry = lookup_create(&nd, 0); 2789 error = PTR_ERR(dentry); 2790 if (IS_ERR(dentry)) 2791 goto out_unlock; 2792 2793 error = mnt_want_write(nd.path.mnt); 2794 if (error) 2795 goto out_dput; 2796 error = security_path_symlink(&nd.path, dentry, from); 2797 if (error) 2798 goto out_drop_write; 2799 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from); 2800 out_drop_write: 2801 mnt_drop_write(nd.path.mnt); 2802 out_dput: 2803 dput(dentry); 2804 out_unlock: 2805 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2806 path_put(&nd.path); 2807 putname(to); 2808 out_putname: 2809 putname(from); 2810 return error; 2811 } 2812 2813 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 2814 { 2815 return sys_symlinkat(oldname, AT_FDCWD, newname); 2816 } 2817 2818 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2819 { 2820 struct inode *inode = old_dentry->d_inode; 2821 int error; 2822 2823 if (!inode) 2824 return -ENOENT; 2825 2826 error = may_create(dir, new_dentry); 2827 if (error) 2828 return error; 2829 2830 if (dir->i_sb != inode->i_sb) 2831 return -EXDEV; 2832 2833 /* 2834 * A link to an append-only or immutable file cannot be created. 2835 */ 2836 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 2837 return -EPERM; 2838 if (!dir->i_op->link) 2839 return -EPERM; 2840 if (S_ISDIR(inode->i_mode)) 2841 return -EPERM; 2842 2843 error = security_inode_link(old_dentry, dir, new_dentry); 2844 if (error) 2845 return error; 2846 2847 mutex_lock(&inode->i_mutex); 2848 /* Make sure we don't allow creating hardlink to an unlinked file */ 2849 if (inode->i_nlink == 0) 2850 error = -ENOENT; 2851 else 2852 error = dir->i_op->link(old_dentry, dir, new_dentry); 2853 mutex_unlock(&inode->i_mutex); 2854 if (!error) 2855 fsnotify_link(dir, inode, new_dentry); 2856 return error; 2857 } 2858 2859 /* 2860 * Hardlinks are often used in delicate situations. We avoid 2861 * security-related surprises by not following symlinks on the 2862 * newname. --KAB 2863 * 2864 * We don't follow them on the oldname either to be compatible 2865 * with linux 2.0, and to avoid hard-linking to directories 2866 * and other special files. --ADM 2867 */ 2868 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 2869 int, newdfd, const char __user *, newname, int, flags) 2870 { 2871 struct dentry *new_dentry; 2872 struct nameidata nd; 2873 struct path old_path; 2874 int how = 0; 2875 int error; 2876 char *to; 2877 2878 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 2879 return -EINVAL; 2880 /* 2881 * To use null names we require CAP_DAC_READ_SEARCH 2882 * This ensures that not everyone will be able to create 2883 * handlink using the passed filedescriptor. 2884 */ 2885 if (flags & AT_EMPTY_PATH) { 2886 if (!capable(CAP_DAC_READ_SEARCH)) 2887 return -ENOENT; 2888 how = LOOKUP_EMPTY; 2889 } 2890 2891 if (flags & AT_SYMLINK_FOLLOW) 2892 how |= LOOKUP_FOLLOW; 2893 2894 error = user_path_at(olddfd, oldname, how, &old_path); 2895 if (error) 2896 return error; 2897 2898 error = user_path_parent(newdfd, newname, &nd, &to); 2899 if (error) 2900 goto out; 2901 error = -EXDEV; 2902 if (old_path.mnt != nd.path.mnt) 2903 goto out_release; 2904 new_dentry = lookup_create(&nd, 0); 2905 error = PTR_ERR(new_dentry); 2906 if (IS_ERR(new_dentry)) 2907 goto out_unlock; 2908 error = mnt_want_write(nd.path.mnt); 2909 if (error) 2910 goto out_dput; 2911 error = security_path_link(old_path.dentry, &nd.path, new_dentry); 2912 if (error) 2913 goto out_drop_write; 2914 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry); 2915 out_drop_write: 2916 mnt_drop_write(nd.path.mnt); 2917 out_dput: 2918 dput(new_dentry); 2919 out_unlock: 2920 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2921 out_release: 2922 path_put(&nd.path); 2923 putname(to); 2924 out: 2925 path_put(&old_path); 2926 2927 return error; 2928 } 2929 2930 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 2931 { 2932 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 2933 } 2934 2935 /* 2936 * The worst of all namespace operations - renaming directory. "Perverted" 2937 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 2938 * Problems: 2939 * a) we can get into loop creation. Check is done in is_subdir(). 2940 * b) race potential - two innocent renames can create a loop together. 2941 * That's where 4.4 screws up. Current fix: serialization on 2942 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 2943 * story. 2944 * c) we have to lock _three_ objects - parents and victim (if it exists). 2945 * And that - after we got ->i_mutex on parents (until then we don't know 2946 * whether the target exists). Solution: try to be smart with locking 2947 * order for inodes. We rely on the fact that tree topology may change 2948 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 2949 * move will be locked. Thus we can rank directories by the tree 2950 * (ancestors first) and rank all non-directories after them. 2951 * That works since everybody except rename does "lock parent, lookup, 2952 * lock child" and rename is under ->s_vfs_rename_mutex. 2953 * HOWEVER, it relies on the assumption that any object with ->lookup() 2954 * has no more than 1 dentry. If "hybrid" objects will ever appear, 2955 * we'd better make sure that there's no link(2) for them. 2956 * d) conversion from fhandle to dentry may come in the wrong moment - when 2957 * we are removing the target. Solution: we will have to grab ->i_mutex 2958 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 2959 * ->i_mutex on parents, which works but leads to some truly excessive 2960 * locking]. 2961 */ 2962 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry, 2963 struct inode *new_dir, struct dentry *new_dentry) 2964 { 2965 int error = 0; 2966 struct inode *target = new_dentry->d_inode; 2967 2968 /* 2969 * If we are going to change the parent - check write permissions, 2970 * we'll need to flip '..'. 2971 */ 2972 if (new_dir != old_dir) { 2973 error = inode_permission(old_dentry->d_inode, MAY_WRITE); 2974 if (error) 2975 return error; 2976 } 2977 2978 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 2979 if (error) 2980 return error; 2981 2982 if (target) 2983 mutex_lock(&target->i_mutex); 2984 2985 error = -EBUSY; 2986 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry)) 2987 goto out; 2988 2989 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 2990 if (error) 2991 goto out; 2992 2993 if (target) { 2994 target->i_flags |= S_DEAD; 2995 dont_mount(new_dentry); 2996 } 2997 out: 2998 if (target) 2999 mutex_unlock(&target->i_mutex); 3000 if (!error) 3001 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 3002 d_move(old_dentry,new_dentry); 3003 return error; 3004 } 3005 3006 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry, 3007 struct inode *new_dir, struct dentry *new_dentry) 3008 { 3009 struct inode *target = new_dentry->d_inode; 3010 int error; 3011 3012 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 3013 if (error) 3014 return error; 3015 3016 dget(new_dentry); 3017 if (target) 3018 mutex_lock(&target->i_mutex); 3019 3020 error = -EBUSY; 3021 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) 3022 goto out; 3023 3024 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 3025 if (error) 3026 goto out; 3027 3028 if (target) 3029 dont_mount(new_dentry); 3030 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 3031 d_move(old_dentry, new_dentry); 3032 out: 3033 if (target) 3034 mutex_unlock(&target->i_mutex); 3035 dput(new_dentry); 3036 return error; 3037 } 3038 3039 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 3040 struct inode *new_dir, struct dentry *new_dentry) 3041 { 3042 int error; 3043 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode); 3044 const unsigned char *old_name; 3045 3046 if (old_dentry->d_inode == new_dentry->d_inode) 3047 return 0; 3048 3049 error = may_delete(old_dir, old_dentry, is_dir); 3050 if (error) 3051 return error; 3052 3053 if (!new_dentry->d_inode) 3054 error = may_create(new_dir, new_dentry); 3055 else 3056 error = may_delete(new_dir, new_dentry, is_dir); 3057 if (error) 3058 return error; 3059 3060 if (!old_dir->i_op->rename) 3061 return -EPERM; 3062 3063 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 3064 3065 if (is_dir) 3066 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry); 3067 else 3068 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry); 3069 if (!error) 3070 fsnotify_move(old_dir, new_dir, old_name, is_dir, 3071 new_dentry->d_inode, old_dentry); 3072 fsnotify_oldname_free(old_name); 3073 3074 return error; 3075 } 3076 3077 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 3078 int, newdfd, const char __user *, newname) 3079 { 3080 struct dentry *old_dir, *new_dir; 3081 struct dentry *old_dentry, *new_dentry; 3082 struct dentry *trap; 3083 struct nameidata oldnd, newnd; 3084 char *from; 3085 char *to; 3086 int error; 3087 3088 error = user_path_parent(olddfd, oldname, &oldnd, &from); 3089 if (error) 3090 goto exit; 3091 3092 error = user_path_parent(newdfd, newname, &newnd, &to); 3093 if (error) 3094 goto exit1; 3095 3096 error = -EXDEV; 3097 if (oldnd.path.mnt != newnd.path.mnt) 3098 goto exit2; 3099 3100 old_dir = oldnd.path.dentry; 3101 error = -EBUSY; 3102 if (oldnd.last_type != LAST_NORM) 3103 goto exit2; 3104 3105 new_dir = newnd.path.dentry; 3106 if (newnd.last_type != LAST_NORM) 3107 goto exit2; 3108 3109 oldnd.flags &= ~LOOKUP_PARENT; 3110 newnd.flags &= ~LOOKUP_PARENT; 3111 newnd.flags |= LOOKUP_RENAME_TARGET; 3112 3113 trap = lock_rename(new_dir, old_dir); 3114 3115 old_dentry = lookup_hash(&oldnd); 3116 error = PTR_ERR(old_dentry); 3117 if (IS_ERR(old_dentry)) 3118 goto exit3; 3119 /* source must exist */ 3120 error = -ENOENT; 3121 if (!old_dentry->d_inode) 3122 goto exit4; 3123 /* unless the source is a directory trailing slashes give -ENOTDIR */ 3124 if (!S_ISDIR(old_dentry->d_inode->i_mode)) { 3125 error = -ENOTDIR; 3126 if (oldnd.last.name[oldnd.last.len]) 3127 goto exit4; 3128 if (newnd.last.name[newnd.last.len]) 3129 goto exit4; 3130 } 3131 /* source should not be ancestor of target */ 3132 error = -EINVAL; 3133 if (old_dentry == trap) 3134 goto exit4; 3135 new_dentry = lookup_hash(&newnd); 3136 error = PTR_ERR(new_dentry); 3137 if (IS_ERR(new_dentry)) 3138 goto exit4; 3139 /* target should not be an ancestor of source */ 3140 error = -ENOTEMPTY; 3141 if (new_dentry == trap) 3142 goto exit5; 3143 3144 error = mnt_want_write(oldnd.path.mnt); 3145 if (error) 3146 goto exit5; 3147 error = security_path_rename(&oldnd.path, old_dentry, 3148 &newnd.path, new_dentry); 3149 if (error) 3150 goto exit6; 3151 error = vfs_rename(old_dir->d_inode, old_dentry, 3152 new_dir->d_inode, new_dentry); 3153 exit6: 3154 mnt_drop_write(oldnd.path.mnt); 3155 exit5: 3156 dput(new_dentry); 3157 exit4: 3158 dput(old_dentry); 3159 exit3: 3160 unlock_rename(new_dir, old_dir); 3161 exit2: 3162 path_put(&newnd.path); 3163 putname(to); 3164 exit1: 3165 path_put(&oldnd.path); 3166 putname(from); 3167 exit: 3168 return error; 3169 } 3170 3171 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 3172 { 3173 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname); 3174 } 3175 3176 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link) 3177 { 3178 int len; 3179 3180 len = PTR_ERR(link); 3181 if (IS_ERR(link)) 3182 goto out; 3183 3184 len = strlen(link); 3185 if (len > (unsigned) buflen) 3186 len = buflen; 3187 if (copy_to_user(buffer, link, len)) 3188 len = -EFAULT; 3189 out: 3190 return len; 3191 } 3192 3193 /* 3194 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 3195 * have ->follow_link() touching nd only in nd_set_link(). Using (or not 3196 * using) it for any given inode is up to filesystem. 3197 */ 3198 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) 3199 { 3200 struct nameidata nd; 3201 void *cookie; 3202 int res; 3203 3204 nd.depth = 0; 3205 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd); 3206 if (IS_ERR(cookie)) 3207 return PTR_ERR(cookie); 3208 3209 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd)); 3210 if (dentry->d_inode->i_op->put_link) 3211 dentry->d_inode->i_op->put_link(dentry, &nd, cookie); 3212 return res; 3213 } 3214 3215 int vfs_follow_link(struct nameidata *nd, const char *link) 3216 { 3217 return __vfs_follow_link(nd, link); 3218 } 3219 3220 /* get the link contents into pagecache */ 3221 static char *page_getlink(struct dentry * dentry, struct page **ppage) 3222 { 3223 char *kaddr; 3224 struct page *page; 3225 struct address_space *mapping = dentry->d_inode->i_mapping; 3226 page = read_mapping_page(mapping, 0, NULL); 3227 if (IS_ERR(page)) 3228 return (char*)page; 3229 *ppage = page; 3230 kaddr = kmap(page); 3231 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1); 3232 return kaddr; 3233 } 3234 3235 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 3236 { 3237 struct page *page = NULL; 3238 char *s = page_getlink(dentry, &page); 3239 int res = vfs_readlink(dentry,buffer,buflen,s); 3240 if (page) { 3241 kunmap(page); 3242 page_cache_release(page); 3243 } 3244 return res; 3245 } 3246 3247 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd) 3248 { 3249 struct page *page = NULL; 3250 nd_set_link(nd, page_getlink(dentry, &page)); 3251 return page; 3252 } 3253 3254 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 3255 { 3256 struct page *page = cookie; 3257 3258 if (page) { 3259 kunmap(page); 3260 page_cache_release(page); 3261 } 3262 } 3263 3264 /* 3265 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 3266 */ 3267 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 3268 { 3269 struct address_space *mapping = inode->i_mapping; 3270 struct page *page; 3271 void *fsdata; 3272 int err; 3273 char *kaddr; 3274 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE; 3275 if (nofs) 3276 flags |= AOP_FLAG_NOFS; 3277 3278 retry: 3279 err = pagecache_write_begin(NULL, mapping, 0, len-1, 3280 flags, &page, &fsdata); 3281 if (err) 3282 goto fail; 3283 3284 kaddr = kmap_atomic(page, KM_USER0); 3285 memcpy(kaddr, symname, len-1); 3286 kunmap_atomic(kaddr, KM_USER0); 3287 3288 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 3289 page, fsdata); 3290 if (err < 0) 3291 goto fail; 3292 if (err < len-1) 3293 goto retry; 3294 3295 mark_inode_dirty(inode); 3296 return 0; 3297 fail: 3298 return err; 3299 } 3300 3301 int page_symlink(struct inode *inode, const char *symname, int len) 3302 { 3303 return __page_symlink(inode, symname, len, 3304 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS)); 3305 } 3306 3307 const struct inode_operations page_symlink_inode_operations = { 3308 .readlink = generic_readlink, 3309 .follow_link = page_follow_link_light, 3310 .put_link = page_put_link, 3311 }; 3312 3313 EXPORT_SYMBOL(user_path_at); 3314 EXPORT_SYMBOL(follow_down_one); 3315 EXPORT_SYMBOL(follow_down); 3316 EXPORT_SYMBOL(follow_up); 3317 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */ 3318 EXPORT_SYMBOL(getname); 3319 EXPORT_SYMBOL(lock_rename); 3320 EXPORT_SYMBOL(lookup_one_len); 3321 EXPORT_SYMBOL(page_follow_link_light); 3322 EXPORT_SYMBOL(page_put_link); 3323 EXPORT_SYMBOL(page_readlink); 3324 EXPORT_SYMBOL(__page_symlink); 3325 EXPORT_SYMBOL(page_symlink); 3326 EXPORT_SYMBOL(page_symlink_inode_operations); 3327 EXPORT_SYMBOL(kern_path_parent); 3328 EXPORT_SYMBOL(kern_path); 3329 EXPORT_SYMBOL(vfs_path_lookup); 3330 EXPORT_SYMBOL(inode_permission); 3331 EXPORT_SYMBOL(file_permission); 3332 EXPORT_SYMBOL(unlock_rename); 3333 EXPORT_SYMBOL(vfs_create); 3334 EXPORT_SYMBOL(vfs_follow_link); 3335 EXPORT_SYMBOL(vfs_link); 3336 EXPORT_SYMBOL(vfs_mkdir); 3337 EXPORT_SYMBOL(vfs_mknod); 3338 EXPORT_SYMBOL(generic_permission); 3339 EXPORT_SYMBOL(vfs_readlink); 3340 EXPORT_SYMBOL(vfs_rename); 3341 EXPORT_SYMBOL(vfs_rmdir); 3342 EXPORT_SYMBOL(vfs_symlink); 3343 EXPORT_SYMBOL(vfs_unlink); 3344 EXPORT_SYMBOL(dentry_unhash); 3345 EXPORT_SYMBOL(generic_readlink); 3346