1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/fs.h> 21 #include <linux/namei.h> 22 #include <linux/pagemap.h> 23 #include <linux/fsnotify.h> 24 #include <linux/personality.h> 25 #include <linux/security.h> 26 #include <linux/ima.h> 27 #include <linux/syscalls.h> 28 #include <linux/mount.h> 29 #include <linux/audit.h> 30 #include <linux/capability.h> 31 #include <linux/file.h> 32 #include <linux/fcntl.h> 33 #include <linux/device_cgroup.h> 34 #include <linux/fs_struct.h> 35 #include <linux/posix_acl.h> 36 #include <asm/uaccess.h> 37 38 #include "internal.h" 39 40 /* [Feb-1997 T. Schoebel-Theuer] 41 * Fundamental changes in the pathname lookup mechanisms (namei) 42 * were necessary because of omirr. The reason is that omirr needs 43 * to know the _real_ pathname, not the user-supplied one, in case 44 * of symlinks (and also when transname replacements occur). 45 * 46 * The new code replaces the old recursive symlink resolution with 47 * an iterative one (in case of non-nested symlink chains). It does 48 * this with calls to <fs>_follow_link(). 49 * As a side effect, dir_namei(), _namei() and follow_link() are now 50 * replaced with a single function lookup_dentry() that can handle all 51 * the special cases of the former code. 52 * 53 * With the new dcache, the pathname is stored at each inode, at least as 54 * long as the refcount of the inode is positive. As a side effect, the 55 * size of the dcache depends on the inode cache and thus is dynamic. 56 * 57 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 58 * resolution to correspond with current state of the code. 59 * 60 * Note that the symlink resolution is not *completely* iterative. 61 * There is still a significant amount of tail- and mid- recursion in 62 * the algorithm. Also, note that <fs>_readlink() is not used in 63 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 64 * may return different results than <fs>_follow_link(). Many virtual 65 * filesystems (including /proc) exhibit this behavior. 66 */ 67 68 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 69 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 70 * and the name already exists in form of a symlink, try to create the new 71 * name indicated by the symlink. The old code always complained that the 72 * name already exists, due to not following the symlink even if its target 73 * is nonexistent. The new semantics affects also mknod() and link() when 74 * the name is a symlink pointing to a non-existent name. 75 * 76 * I don't know which semantics is the right one, since I have no access 77 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 78 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 79 * "old" one. Personally, I think the new semantics is much more logical. 80 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 81 * file does succeed in both HP-UX and SunOs, but not in Solaris 82 * and in the old Linux semantics. 83 */ 84 85 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 86 * semantics. See the comments in "open_namei" and "do_link" below. 87 * 88 * [10-Sep-98 Alan Modra] Another symlink change. 89 */ 90 91 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 92 * inside the path - always follow. 93 * in the last component in creation/removal/renaming - never follow. 94 * if LOOKUP_FOLLOW passed - follow. 95 * if the pathname has trailing slashes - follow. 96 * otherwise - don't follow. 97 * (applied in that order). 98 * 99 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 100 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 101 * During the 2.4 we need to fix the userland stuff depending on it - 102 * hopefully we will be able to get rid of that wart in 2.5. So far only 103 * XEmacs seems to be relying on it... 104 */ 105 /* 106 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 107 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 108 * any extra contention... 109 */ 110 111 /* In order to reduce some races, while at the same time doing additional 112 * checking and hopefully speeding things up, we copy filenames to the 113 * kernel data space before using them.. 114 * 115 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 116 * PATH_MAX includes the nul terminator --RR. 117 */ 118 static int do_getname(const char __user *filename, char *page) 119 { 120 int retval; 121 unsigned long len = PATH_MAX; 122 123 if (!segment_eq(get_fs(), KERNEL_DS)) { 124 if ((unsigned long) filename >= TASK_SIZE) 125 return -EFAULT; 126 if (TASK_SIZE - (unsigned long) filename < PATH_MAX) 127 len = TASK_SIZE - (unsigned long) filename; 128 } 129 130 retval = strncpy_from_user(page, filename, len); 131 if (retval > 0) { 132 if (retval < len) 133 return 0; 134 return -ENAMETOOLONG; 135 } else if (!retval) 136 retval = -ENOENT; 137 return retval; 138 } 139 140 static char *getname_flags(const char __user *filename, int flags, int *empty) 141 { 142 char *tmp, *result; 143 144 result = ERR_PTR(-ENOMEM); 145 tmp = __getname(); 146 if (tmp) { 147 int retval = do_getname(filename, tmp); 148 149 result = tmp; 150 if (retval < 0) { 151 if (retval == -ENOENT && empty) 152 *empty = 1; 153 if (retval != -ENOENT || !(flags & LOOKUP_EMPTY)) { 154 __putname(tmp); 155 result = ERR_PTR(retval); 156 } 157 } 158 } 159 audit_getname(result); 160 return result; 161 } 162 163 char *getname(const char __user * filename) 164 { 165 return getname_flags(filename, 0, 0); 166 } 167 168 #ifdef CONFIG_AUDITSYSCALL 169 void putname(const char *name) 170 { 171 if (unlikely(!audit_dummy_context())) 172 audit_putname(name); 173 else 174 __putname(name); 175 } 176 EXPORT_SYMBOL(putname); 177 #endif 178 179 static int check_acl(struct inode *inode, int mask) 180 { 181 #ifdef CONFIG_FS_POSIX_ACL 182 struct posix_acl *acl; 183 184 if (mask & MAY_NOT_BLOCK) { 185 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 186 if (!acl) 187 return -EAGAIN; 188 /* no ->get_acl() calls in RCU mode... */ 189 if (acl == ACL_NOT_CACHED) 190 return -ECHILD; 191 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK); 192 } 193 194 acl = get_cached_acl(inode, ACL_TYPE_ACCESS); 195 196 /* 197 * A filesystem can force a ACL callback by just never filling the 198 * ACL cache. But normally you'd fill the cache either at inode 199 * instantiation time, or on the first ->get_acl call. 200 * 201 * If the filesystem doesn't have a get_acl() function at all, we'll 202 * just create the negative cache entry. 203 */ 204 if (acl == ACL_NOT_CACHED) { 205 if (inode->i_op->get_acl) { 206 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS); 207 if (IS_ERR(acl)) 208 return PTR_ERR(acl); 209 } else { 210 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL); 211 return -EAGAIN; 212 } 213 } 214 215 if (acl) { 216 int error = posix_acl_permission(inode, acl, mask); 217 posix_acl_release(acl); 218 return error; 219 } 220 #endif 221 222 return -EAGAIN; 223 } 224 225 /* 226 * This does the basic permission checking 227 */ 228 static int acl_permission_check(struct inode *inode, int mask) 229 { 230 unsigned int mode = inode->i_mode; 231 232 if (current_user_ns() != inode_userns(inode)) 233 goto other_perms; 234 235 if (likely(current_fsuid() == inode->i_uid)) 236 mode >>= 6; 237 else { 238 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 239 int error = check_acl(inode, mask); 240 if (error != -EAGAIN) 241 return error; 242 } 243 244 if (in_group_p(inode->i_gid)) 245 mode >>= 3; 246 } 247 248 other_perms: 249 /* 250 * If the DACs are ok we don't need any capability check. 251 */ 252 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 253 return 0; 254 return -EACCES; 255 } 256 257 /** 258 * generic_permission - check for access rights on a Posix-like filesystem 259 * @inode: inode to check access rights for 260 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...) 261 * 262 * Used to check for read/write/execute permissions on a file. 263 * We use "fsuid" for this, letting us set arbitrary permissions 264 * for filesystem access without changing the "normal" uids which 265 * are used for other things. 266 * 267 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 268 * request cannot be satisfied (eg. requires blocking or too much complexity). 269 * It would then be called again in ref-walk mode. 270 */ 271 int generic_permission(struct inode *inode, int mask) 272 { 273 int ret; 274 275 /* 276 * Do the basic permission checks. 277 */ 278 ret = acl_permission_check(inode, mask); 279 if (ret != -EACCES) 280 return ret; 281 282 if (S_ISDIR(inode->i_mode)) { 283 /* DACs are overridable for directories */ 284 if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE)) 285 return 0; 286 if (!(mask & MAY_WRITE)) 287 if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH)) 288 return 0; 289 return -EACCES; 290 } 291 /* 292 * Read/write DACs are always overridable. 293 * Executable DACs are overridable when there is 294 * at least one exec bit set. 295 */ 296 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 297 if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE)) 298 return 0; 299 300 /* 301 * Searching includes executable on directories, else just read. 302 */ 303 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 304 if (mask == MAY_READ) 305 if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH)) 306 return 0; 307 308 return -EACCES; 309 } 310 311 /* 312 * We _really_ want to just do "generic_permission()" without 313 * even looking at the inode->i_op values. So we keep a cache 314 * flag in inode->i_opflags, that says "this has not special 315 * permission function, use the fast case". 316 */ 317 static inline int do_inode_permission(struct inode *inode, int mask) 318 { 319 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 320 if (likely(inode->i_op->permission)) 321 return inode->i_op->permission(inode, mask); 322 323 /* This gets set once for the inode lifetime */ 324 spin_lock(&inode->i_lock); 325 inode->i_opflags |= IOP_FASTPERM; 326 spin_unlock(&inode->i_lock); 327 } 328 return generic_permission(inode, mask); 329 } 330 331 /** 332 * inode_permission - check for access rights to a given inode 333 * @inode: inode to check permission on 334 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...) 335 * 336 * Used to check for read/write/execute permissions on an inode. 337 * We use "fsuid" for this, letting us set arbitrary permissions 338 * for filesystem access without changing the "normal" uids which 339 * are used for other things. 340 * 341 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 342 */ 343 int inode_permission(struct inode *inode, int mask) 344 { 345 int retval; 346 347 if (unlikely(mask & MAY_WRITE)) { 348 umode_t mode = inode->i_mode; 349 350 /* 351 * Nobody gets write access to a read-only fs. 352 */ 353 if (IS_RDONLY(inode) && 354 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 355 return -EROFS; 356 357 /* 358 * Nobody gets write access to an immutable file. 359 */ 360 if (IS_IMMUTABLE(inode)) 361 return -EACCES; 362 } 363 364 retval = do_inode_permission(inode, mask); 365 if (retval) 366 return retval; 367 368 retval = devcgroup_inode_permission(inode, mask); 369 if (retval) 370 return retval; 371 372 return security_inode_permission(inode, mask); 373 } 374 375 /** 376 * path_get - get a reference to a path 377 * @path: path to get the reference to 378 * 379 * Given a path increment the reference count to the dentry and the vfsmount. 380 */ 381 void path_get(struct path *path) 382 { 383 mntget(path->mnt); 384 dget(path->dentry); 385 } 386 EXPORT_SYMBOL(path_get); 387 388 /** 389 * path_put - put a reference to a path 390 * @path: path to put the reference to 391 * 392 * Given a path decrement the reference count to the dentry and the vfsmount. 393 */ 394 void path_put(struct path *path) 395 { 396 dput(path->dentry); 397 mntput(path->mnt); 398 } 399 EXPORT_SYMBOL(path_put); 400 401 /* 402 * Path walking has 2 modes, rcu-walk and ref-walk (see 403 * Documentation/filesystems/path-lookup.txt). In situations when we can't 404 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 405 * normal reference counts on dentries and vfsmounts to transition to rcu-walk 406 * mode. Refcounts are grabbed at the last known good point before rcu-walk 407 * got stuck, so ref-walk may continue from there. If this is not successful 408 * (eg. a seqcount has changed), then failure is returned and it's up to caller 409 * to restart the path walk from the beginning in ref-walk mode. 410 */ 411 412 /** 413 * unlazy_walk - try to switch to ref-walk mode. 414 * @nd: nameidata pathwalk data 415 * @dentry: child of nd->path.dentry or NULL 416 * Returns: 0 on success, -ECHILD on failure 417 * 418 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry 419 * for ref-walk mode. @dentry must be a path found by a do_lookup call on 420 * @nd or NULL. Must be called from rcu-walk context. 421 */ 422 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry) 423 { 424 struct fs_struct *fs = current->fs; 425 struct dentry *parent = nd->path.dentry; 426 int want_root = 0; 427 428 BUG_ON(!(nd->flags & LOOKUP_RCU)); 429 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 430 want_root = 1; 431 spin_lock(&fs->lock); 432 if (nd->root.mnt != fs->root.mnt || 433 nd->root.dentry != fs->root.dentry) 434 goto err_root; 435 } 436 spin_lock(&parent->d_lock); 437 if (!dentry) { 438 if (!__d_rcu_to_refcount(parent, nd->seq)) 439 goto err_parent; 440 BUG_ON(nd->inode != parent->d_inode); 441 } else { 442 if (dentry->d_parent != parent) 443 goto err_parent; 444 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 445 if (!__d_rcu_to_refcount(dentry, nd->seq)) 446 goto err_child; 447 /* 448 * If the sequence check on the child dentry passed, then 449 * the child has not been removed from its parent. This 450 * means the parent dentry must be valid and able to take 451 * a reference at this point. 452 */ 453 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent); 454 BUG_ON(!parent->d_count); 455 parent->d_count++; 456 spin_unlock(&dentry->d_lock); 457 } 458 spin_unlock(&parent->d_lock); 459 if (want_root) { 460 path_get(&nd->root); 461 spin_unlock(&fs->lock); 462 } 463 mntget(nd->path.mnt); 464 465 rcu_read_unlock(); 466 br_read_unlock(vfsmount_lock); 467 nd->flags &= ~LOOKUP_RCU; 468 return 0; 469 470 err_child: 471 spin_unlock(&dentry->d_lock); 472 err_parent: 473 spin_unlock(&parent->d_lock); 474 err_root: 475 if (want_root) 476 spin_unlock(&fs->lock); 477 return -ECHILD; 478 } 479 480 /** 481 * release_open_intent - free up open intent resources 482 * @nd: pointer to nameidata 483 */ 484 void release_open_intent(struct nameidata *nd) 485 { 486 struct file *file = nd->intent.open.file; 487 488 if (file && !IS_ERR(file)) { 489 if (file->f_path.dentry == NULL) 490 put_filp(file); 491 else 492 fput(file); 493 } 494 } 495 496 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd) 497 { 498 return dentry->d_op->d_revalidate(dentry, nd); 499 } 500 501 /** 502 * complete_walk - successful completion of path walk 503 * @nd: pointer nameidata 504 * 505 * If we had been in RCU mode, drop out of it and legitimize nd->path. 506 * Revalidate the final result, unless we'd already done that during 507 * the path walk or the filesystem doesn't ask for it. Return 0 on 508 * success, -error on failure. In case of failure caller does not 509 * need to drop nd->path. 510 */ 511 static int complete_walk(struct nameidata *nd) 512 { 513 struct dentry *dentry = nd->path.dentry; 514 int status; 515 516 if (nd->flags & LOOKUP_RCU) { 517 nd->flags &= ~LOOKUP_RCU; 518 if (!(nd->flags & LOOKUP_ROOT)) 519 nd->root.mnt = NULL; 520 spin_lock(&dentry->d_lock); 521 if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) { 522 spin_unlock(&dentry->d_lock); 523 rcu_read_unlock(); 524 br_read_unlock(vfsmount_lock); 525 return -ECHILD; 526 } 527 BUG_ON(nd->inode != dentry->d_inode); 528 spin_unlock(&dentry->d_lock); 529 mntget(nd->path.mnt); 530 rcu_read_unlock(); 531 br_read_unlock(vfsmount_lock); 532 } 533 534 if (likely(!(nd->flags & LOOKUP_JUMPED))) 535 return 0; 536 537 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE))) 538 return 0; 539 540 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT))) 541 return 0; 542 543 /* Note: we do not d_invalidate() */ 544 status = d_revalidate(dentry, nd); 545 if (status > 0) 546 return 0; 547 548 if (!status) 549 status = -ESTALE; 550 551 path_put(&nd->path); 552 return status; 553 } 554 555 static __always_inline void set_root(struct nameidata *nd) 556 { 557 if (!nd->root.mnt) 558 get_fs_root(current->fs, &nd->root); 559 } 560 561 static int link_path_walk(const char *, struct nameidata *); 562 563 static __always_inline void set_root_rcu(struct nameidata *nd) 564 { 565 if (!nd->root.mnt) { 566 struct fs_struct *fs = current->fs; 567 unsigned seq; 568 569 do { 570 seq = read_seqcount_begin(&fs->seq); 571 nd->root = fs->root; 572 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 573 } while (read_seqcount_retry(&fs->seq, seq)); 574 } 575 } 576 577 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link) 578 { 579 int ret; 580 581 if (IS_ERR(link)) 582 goto fail; 583 584 if (*link == '/') { 585 set_root(nd); 586 path_put(&nd->path); 587 nd->path = nd->root; 588 path_get(&nd->root); 589 nd->flags |= LOOKUP_JUMPED; 590 } 591 nd->inode = nd->path.dentry->d_inode; 592 593 ret = link_path_walk(link, nd); 594 return ret; 595 fail: 596 path_put(&nd->path); 597 return PTR_ERR(link); 598 } 599 600 static void path_put_conditional(struct path *path, struct nameidata *nd) 601 { 602 dput(path->dentry); 603 if (path->mnt != nd->path.mnt) 604 mntput(path->mnt); 605 } 606 607 static inline void path_to_nameidata(const struct path *path, 608 struct nameidata *nd) 609 { 610 if (!(nd->flags & LOOKUP_RCU)) { 611 dput(nd->path.dentry); 612 if (nd->path.mnt != path->mnt) 613 mntput(nd->path.mnt); 614 } 615 nd->path.mnt = path->mnt; 616 nd->path.dentry = path->dentry; 617 } 618 619 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie) 620 { 621 struct inode *inode = link->dentry->d_inode; 622 if (!IS_ERR(cookie) && inode->i_op->put_link) 623 inode->i_op->put_link(link->dentry, nd, cookie); 624 path_put(link); 625 } 626 627 static __always_inline int 628 follow_link(struct path *link, struct nameidata *nd, void **p) 629 { 630 int error; 631 struct dentry *dentry = link->dentry; 632 633 BUG_ON(nd->flags & LOOKUP_RCU); 634 635 if (link->mnt == nd->path.mnt) 636 mntget(link->mnt); 637 638 if (unlikely(current->total_link_count >= 40)) { 639 *p = ERR_PTR(-ELOOP); /* no ->put_link(), please */ 640 path_put(&nd->path); 641 return -ELOOP; 642 } 643 cond_resched(); 644 current->total_link_count++; 645 646 touch_atime(link->mnt, dentry); 647 nd_set_link(nd, NULL); 648 649 error = security_inode_follow_link(link->dentry, nd); 650 if (error) { 651 *p = ERR_PTR(error); /* no ->put_link(), please */ 652 path_put(&nd->path); 653 return error; 654 } 655 656 nd->last_type = LAST_BIND; 657 *p = dentry->d_inode->i_op->follow_link(dentry, nd); 658 error = PTR_ERR(*p); 659 if (!IS_ERR(*p)) { 660 char *s = nd_get_link(nd); 661 error = 0; 662 if (s) 663 error = __vfs_follow_link(nd, s); 664 else if (nd->last_type == LAST_BIND) { 665 nd->flags |= LOOKUP_JUMPED; 666 nd->inode = nd->path.dentry->d_inode; 667 if (nd->inode->i_op->follow_link) { 668 /* stepped on a _really_ weird one */ 669 path_put(&nd->path); 670 error = -ELOOP; 671 } 672 } 673 } 674 return error; 675 } 676 677 static int follow_up_rcu(struct path *path) 678 { 679 struct vfsmount *parent; 680 struct dentry *mountpoint; 681 682 parent = path->mnt->mnt_parent; 683 if (parent == path->mnt) 684 return 0; 685 mountpoint = path->mnt->mnt_mountpoint; 686 path->dentry = mountpoint; 687 path->mnt = parent; 688 return 1; 689 } 690 691 int follow_up(struct path *path) 692 { 693 struct vfsmount *parent; 694 struct dentry *mountpoint; 695 696 br_read_lock(vfsmount_lock); 697 parent = path->mnt->mnt_parent; 698 if (parent == path->mnt) { 699 br_read_unlock(vfsmount_lock); 700 return 0; 701 } 702 mntget(parent); 703 mountpoint = dget(path->mnt->mnt_mountpoint); 704 br_read_unlock(vfsmount_lock); 705 dput(path->dentry); 706 path->dentry = mountpoint; 707 mntput(path->mnt); 708 path->mnt = parent; 709 return 1; 710 } 711 712 /* 713 * Perform an automount 714 * - return -EISDIR to tell follow_managed() to stop and return the path we 715 * were called with. 716 */ 717 static int follow_automount(struct path *path, unsigned flags, 718 bool *need_mntput) 719 { 720 struct vfsmount *mnt; 721 int err; 722 723 if (!path->dentry->d_op || !path->dentry->d_op->d_automount) 724 return -EREMOTE; 725 726 /* We don't want to mount if someone's just doing a stat - 727 * unless they're stat'ing a directory and appended a '/' to 728 * the name. 729 * 730 * We do, however, want to mount if someone wants to open or 731 * create a file of any type under the mountpoint, wants to 732 * traverse through the mountpoint or wants to open the 733 * mounted directory. Also, autofs may mark negative dentries 734 * as being automount points. These will need the attentions 735 * of the daemon to instantiate them before they can be used. 736 */ 737 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 738 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 739 path->dentry->d_inode) 740 return -EISDIR; 741 742 current->total_link_count++; 743 if (current->total_link_count >= 40) 744 return -ELOOP; 745 746 mnt = path->dentry->d_op->d_automount(path); 747 if (IS_ERR(mnt)) { 748 /* 749 * The filesystem is allowed to return -EISDIR here to indicate 750 * it doesn't want to automount. For instance, autofs would do 751 * this so that its userspace daemon can mount on this dentry. 752 * 753 * However, we can only permit this if it's a terminal point in 754 * the path being looked up; if it wasn't then the remainder of 755 * the path is inaccessible and we should say so. 756 */ 757 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT)) 758 return -EREMOTE; 759 return PTR_ERR(mnt); 760 } 761 762 if (!mnt) /* mount collision */ 763 return 0; 764 765 if (!*need_mntput) { 766 /* lock_mount() may release path->mnt on error */ 767 mntget(path->mnt); 768 *need_mntput = true; 769 } 770 err = finish_automount(mnt, path); 771 772 switch (err) { 773 case -EBUSY: 774 /* Someone else made a mount here whilst we were busy */ 775 return 0; 776 case 0: 777 path_put(path); 778 path->mnt = mnt; 779 path->dentry = dget(mnt->mnt_root); 780 return 0; 781 default: 782 return err; 783 } 784 785 } 786 787 /* 788 * Handle a dentry that is managed in some way. 789 * - Flagged for transit management (autofs) 790 * - Flagged as mountpoint 791 * - Flagged as automount point 792 * 793 * This may only be called in refwalk mode. 794 * 795 * Serialization is taken care of in namespace.c 796 */ 797 static int follow_managed(struct path *path, unsigned flags) 798 { 799 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */ 800 unsigned managed; 801 bool need_mntput = false; 802 int ret = 0; 803 804 /* Given that we're not holding a lock here, we retain the value in a 805 * local variable for each dentry as we look at it so that we don't see 806 * the components of that value change under us */ 807 while (managed = ACCESS_ONCE(path->dentry->d_flags), 808 managed &= DCACHE_MANAGED_DENTRY, 809 unlikely(managed != 0)) { 810 /* Allow the filesystem to manage the transit without i_mutex 811 * being held. */ 812 if (managed & DCACHE_MANAGE_TRANSIT) { 813 BUG_ON(!path->dentry->d_op); 814 BUG_ON(!path->dentry->d_op->d_manage); 815 ret = path->dentry->d_op->d_manage(path->dentry, false); 816 if (ret < 0) 817 break; 818 } 819 820 /* Transit to a mounted filesystem. */ 821 if (managed & DCACHE_MOUNTED) { 822 struct vfsmount *mounted = lookup_mnt(path); 823 if (mounted) { 824 dput(path->dentry); 825 if (need_mntput) 826 mntput(path->mnt); 827 path->mnt = mounted; 828 path->dentry = dget(mounted->mnt_root); 829 need_mntput = true; 830 continue; 831 } 832 833 /* Something is mounted on this dentry in another 834 * namespace and/or whatever was mounted there in this 835 * namespace got unmounted before we managed to get the 836 * vfsmount_lock */ 837 } 838 839 /* Handle an automount point */ 840 if (managed & DCACHE_NEED_AUTOMOUNT) { 841 ret = follow_automount(path, flags, &need_mntput); 842 if (ret < 0) 843 break; 844 continue; 845 } 846 847 /* We didn't change the current path point */ 848 break; 849 } 850 851 if (need_mntput && path->mnt == mnt) 852 mntput(path->mnt); 853 if (ret == -EISDIR) 854 ret = 0; 855 return ret < 0 ? ret : need_mntput; 856 } 857 858 int follow_down_one(struct path *path) 859 { 860 struct vfsmount *mounted; 861 862 mounted = lookup_mnt(path); 863 if (mounted) { 864 dput(path->dentry); 865 mntput(path->mnt); 866 path->mnt = mounted; 867 path->dentry = dget(mounted->mnt_root); 868 return 1; 869 } 870 return 0; 871 } 872 873 static inline bool managed_dentry_might_block(struct dentry *dentry) 874 { 875 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT && 876 dentry->d_op->d_manage(dentry, true) < 0); 877 } 878 879 /* 880 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 881 * we meet a managed dentry that would need blocking. 882 */ 883 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 884 struct inode **inode) 885 { 886 for (;;) { 887 struct vfsmount *mounted; 888 /* 889 * Don't forget we might have a non-mountpoint managed dentry 890 * that wants to block transit. 891 */ 892 if (unlikely(managed_dentry_might_block(path->dentry))) 893 return false; 894 895 if (!d_mountpoint(path->dentry)) 896 break; 897 898 mounted = __lookup_mnt(path->mnt, path->dentry, 1); 899 if (!mounted) 900 break; 901 path->mnt = mounted; 902 path->dentry = mounted->mnt_root; 903 nd->flags |= LOOKUP_JUMPED; 904 nd->seq = read_seqcount_begin(&path->dentry->d_seq); 905 /* 906 * Update the inode too. We don't need to re-check the 907 * dentry sequence number here after this d_inode read, 908 * because a mount-point is always pinned. 909 */ 910 *inode = path->dentry->d_inode; 911 } 912 return true; 913 } 914 915 static void follow_mount_rcu(struct nameidata *nd) 916 { 917 while (d_mountpoint(nd->path.dentry)) { 918 struct vfsmount *mounted; 919 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1); 920 if (!mounted) 921 break; 922 nd->path.mnt = mounted; 923 nd->path.dentry = mounted->mnt_root; 924 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 925 } 926 } 927 928 static int follow_dotdot_rcu(struct nameidata *nd) 929 { 930 set_root_rcu(nd); 931 932 while (1) { 933 if (nd->path.dentry == nd->root.dentry && 934 nd->path.mnt == nd->root.mnt) { 935 break; 936 } 937 if (nd->path.dentry != nd->path.mnt->mnt_root) { 938 struct dentry *old = nd->path.dentry; 939 struct dentry *parent = old->d_parent; 940 unsigned seq; 941 942 seq = read_seqcount_begin(&parent->d_seq); 943 if (read_seqcount_retry(&old->d_seq, nd->seq)) 944 goto failed; 945 nd->path.dentry = parent; 946 nd->seq = seq; 947 break; 948 } 949 if (!follow_up_rcu(&nd->path)) 950 break; 951 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 952 } 953 follow_mount_rcu(nd); 954 nd->inode = nd->path.dentry->d_inode; 955 return 0; 956 957 failed: 958 nd->flags &= ~LOOKUP_RCU; 959 if (!(nd->flags & LOOKUP_ROOT)) 960 nd->root.mnt = NULL; 961 rcu_read_unlock(); 962 br_read_unlock(vfsmount_lock); 963 return -ECHILD; 964 } 965 966 /* 967 * Follow down to the covering mount currently visible to userspace. At each 968 * point, the filesystem owning that dentry may be queried as to whether the 969 * caller is permitted to proceed or not. 970 */ 971 int follow_down(struct path *path) 972 { 973 unsigned managed; 974 int ret; 975 976 while (managed = ACCESS_ONCE(path->dentry->d_flags), 977 unlikely(managed & DCACHE_MANAGED_DENTRY)) { 978 /* Allow the filesystem to manage the transit without i_mutex 979 * being held. 980 * 981 * We indicate to the filesystem if someone is trying to mount 982 * something here. This gives autofs the chance to deny anyone 983 * other than its daemon the right to mount on its 984 * superstructure. 985 * 986 * The filesystem may sleep at this point. 987 */ 988 if (managed & DCACHE_MANAGE_TRANSIT) { 989 BUG_ON(!path->dentry->d_op); 990 BUG_ON(!path->dentry->d_op->d_manage); 991 ret = path->dentry->d_op->d_manage( 992 path->dentry, false); 993 if (ret < 0) 994 return ret == -EISDIR ? 0 : ret; 995 } 996 997 /* Transit to a mounted filesystem. */ 998 if (managed & DCACHE_MOUNTED) { 999 struct vfsmount *mounted = lookup_mnt(path); 1000 if (!mounted) 1001 break; 1002 dput(path->dentry); 1003 mntput(path->mnt); 1004 path->mnt = mounted; 1005 path->dentry = dget(mounted->mnt_root); 1006 continue; 1007 } 1008 1009 /* Don't handle automount points here */ 1010 break; 1011 } 1012 return 0; 1013 } 1014 1015 /* 1016 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() 1017 */ 1018 static void follow_mount(struct path *path) 1019 { 1020 while (d_mountpoint(path->dentry)) { 1021 struct vfsmount *mounted = lookup_mnt(path); 1022 if (!mounted) 1023 break; 1024 dput(path->dentry); 1025 mntput(path->mnt); 1026 path->mnt = mounted; 1027 path->dentry = dget(mounted->mnt_root); 1028 } 1029 } 1030 1031 static void follow_dotdot(struct nameidata *nd) 1032 { 1033 set_root(nd); 1034 1035 while(1) { 1036 struct dentry *old = nd->path.dentry; 1037 1038 if (nd->path.dentry == nd->root.dentry && 1039 nd->path.mnt == nd->root.mnt) { 1040 break; 1041 } 1042 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1043 /* rare case of legitimate dget_parent()... */ 1044 nd->path.dentry = dget_parent(nd->path.dentry); 1045 dput(old); 1046 break; 1047 } 1048 if (!follow_up(&nd->path)) 1049 break; 1050 } 1051 follow_mount(&nd->path); 1052 nd->inode = nd->path.dentry->d_inode; 1053 } 1054 1055 /* 1056 * Allocate a dentry with name and parent, and perform a parent 1057 * directory ->lookup on it. Returns the new dentry, or ERR_PTR 1058 * on error. parent->d_inode->i_mutex must be held. d_lookup must 1059 * have verified that no child exists while under i_mutex. 1060 */ 1061 static struct dentry *d_alloc_and_lookup(struct dentry *parent, 1062 struct qstr *name, struct nameidata *nd) 1063 { 1064 struct inode *inode = parent->d_inode; 1065 struct dentry *dentry; 1066 struct dentry *old; 1067 1068 /* Don't create child dentry for a dead directory. */ 1069 if (unlikely(IS_DEADDIR(inode))) 1070 return ERR_PTR(-ENOENT); 1071 1072 dentry = d_alloc(parent, name); 1073 if (unlikely(!dentry)) 1074 return ERR_PTR(-ENOMEM); 1075 1076 old = inode->i_op->lookup(inode, dentry, nd); 1077 if (unlikely(old)) { 1078 dput(dentry); 1079 dentry = old; 1080 } 1081 return dentry; 1082 } 1083 1084 /* 1085 * We already have a dentry, but require a lookup to be performed on the parent 1086 * directory to fill in d_inode. Returns the new dentry, or ERR_PTR on error. 1087 * parent->d_inode->i_mutex must be held. d_lookup must have verified that no 1088 * child exists while under i_mutex. 1089 */ 1090 static struct dentry *d_inode_lookup(struct dentry *parent, struct dentry *dentry, 1091 struct nameidata *nd) 1092 { 1093 struct inode *inode = parent->d_inode; 1094 struct dentry *old; 1095 1096 /* Don't create child dentry for a dead directory. */ 1097 if (unlikely(IS_DEADDIR(inode))) 1098 return ERR_PTR(-ENOENT); 1099 1100 old = inode->i_op->lookup(inode, dentry, nd); 1101 if (unlikely(old)) { 1102 dput(dentry); 1103 dentry = old; 1104 } 1105 return dentry; 1106 } 1107 1108 /* 1109 * It's more convoluted than I'd like it to be, but... it's still fairly 1110 * small and for now I'd prefer to have fast path as straight as possible. 1111 * It _is_ time-critical. 1112 */ 1113 static int do_lookup(struct nameidata *nd, struct qstr *name, 1114 struct path *path, struct inode **inode) 1115 { 1116 struct vfsmount *mnt = nd->path.mnt; 1117 struct dentry *dentry, *parent = nd->path.dentry; 1118 int need_reval = 1; 1119 int status = 1; 1120 int err; 1121 1122 /* 1123 * Rename seqlock is not required here because in the off chance 1124 * of a false negative due to a concurrent rename, we're going to 1125 * do the non-racy lookup, below. 1126 */ 1127 if (nd->flags & LOOKUP_RCU) { 1128 unsigned seq; 1129 *inode = nd->inode; 1130 dentry = __d_lookup_rcu(parent, name, &seq, inode); 1131 if (!dentry) 1132 goto unlazy; 1133 1134 /* Memory barrier in read_seqcount_begin of child is enough */ 1135 if (__read_seqcount_retry(&parent->d_seq, nd->seq)) 1136 return -ECHILD; 1137 nd->seq = seq; 1138 1139 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) { 1140 status = d_revalidate(dentry, nd); 1141 if (unlikely(status <= 0)) { 1142 if (status != -ECHILD) 1143 need_reval = 0; 1144 goto unlazy; 1145 } 1146 } 1147 if (unlikely(d_need_lookup(dentry))) 1148 goto unlazy; 1149 path->mnt = mnt; 1150 path->dentry = dentry; 1151 if (unlikely(!__follow_mount_rcu(nd, path, inode))) 1152 goto unlazy; 1153 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT)) 1154 goto unlazy; 1155 return 0; 1156 unlazy: 1157 if (unlazy_walk(nd, dentry)) 1158 return -ECHILD; 1159 } else { 1160 dentry = __d_lookup(parent, name); 1161 } 1162 1163 if (dentry && unlikely(d_need_lookup(dentry))) { 1164 dput(dentry); 1165 dentry = NULL; 1166 } 1167 retry: 1168 if (unlikely(!dentry)) { 1169 struct inode *dir = parent->d_inode; 1170 BUG_ON(nd->inode != dir); 1171 1172 mutex_lock(&dir->i_mutex); 1173 dentry = d_lookup(parent, name); 1174 if (likely(!dentry)) { 1175 dentry = d_alloc_and_lookup(parent, name, nd); 1176 if (IS_ERR(dentry)) { 1177 mutex_unlock(&dir->i_mutex); 1178 return PTR_ERR(dentry); 1179 } 1180 /* known good */ 1181 need_reval = 0; 1182 status = 1; 1183 } else if (unlikely(d_need_lookup(dentry))) { 1184 dentry = d_inode_lookup(parent, dentry, nd); 1185 if (IS_ERR(dentry)) { 1186 mutex_unlock(&dir->i_mutex); 1187 return PTR_ERR(dentry); 1188 } 1189 /* known good */ 1190 need_reval = 0; 1191 status = 1; 1192 } 1193 mutex_unlock(&dir->i_mutex); 1194 } 1195 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval) 1196 status = d_revalidate(dentry, nd); 1197 if (unlikely(status <= 0)) { 1198 if (status < 0) { 1199 dput(dentry); 1200 return status; 1201 } 1202 if (!d_invalidate(dentry)) { 1203 dput(dentry); 1204 dentry = NULL; 1205 need_reval = 1; 1206 goto retry; 1207 } 1208 } 1209 1210 path->mnt = mnt; 1211 path->dentry = dentry; 1212 err = follow_managed(path, nd->flags); 1213 if (unlikely(err < 0)) { 1214 path_put_conditional(path, nd); 1215 return err; 1216 } 1217 if (err) 1218 nd->flags |= LOOKUP_JUMPED; 1219 *inode = path->dentry->d_inode; 1220 return 0; 1221 } 1222 1223 static inline int may_lookup(struct nameidata *nd) 1224 { 1225 if (nd->flags & LOOKUP_RCU) { 1226 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1227 if (err != -ECHILD) 1228 return err; 1229 if (unlazy_walk(nd, NULL)) 1230 return -ECHILD; 1231 } 1232 return inode_permission(nd->inode, MAY_EXEC); 1233 } 1234 1235 static inline int handle_dots(struct nameidata *nd, int type) 1236 { 1237 if (type == LAST_DOTDOT) { 1238 if (nd->flags & LOOKUP_RCU) { 1239 if (follow_dotdot_rcu(nd)) 1240 return -ECHILD; 1241 } else 1242 follow_dotdot(nd); 1243 } 1244 return 0; 1245 } 1246 1247 static void terminate_walk(struct nameidata *nd) 1248 { 1249 if (!(nd->flags & LOOKUP_RCU)) { 1250 path_put(&nd->path); 1251 } else { 1252 nd->flags &= ~LOOKUP_RCU; 1253 if (!(nd->flags & LOOKUP_ROOT)) 1254 nd->root.mnt = NULL; 1255 rcu_read_unlock(); 1256 br_read_unlock(vfsmount_lock); 1257 } 1258 } 1259 1260 /* 1261 * Do we need to follow links? We _really_ want to be able 1262 * to do this check without having to look at inode->i_op, 1263 * so we keep a cache of "no, this doesn't need follow_link" 1264 * for the common case. 1265 */ 1266 static inline int should_follow_link(struct inode *inode, int follow) 1267 { 1268 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1269 if (likely(inode->i_op->follow_link)) 1270 return follow; 1271 1272 /* This gets set once for the inode lifetime */ 1273 spin_lock(&inode->i_lock); 1274 inode->i_opflags |= IOP_NOFOLLOW; 1275 spin_unlock(&inode->i_lock); 1276 } 1277 return 0; 1278 } 1279 1280 static inline int walk_component(struct nameidata *nd, struct path *path, 1281 struct qstr *name, int type, int follow) 1282 { 1283 struct inode *inode; 1284 int err; 1285 /* 1286 * "." and ".." are special - ".." especially so because it has 1287 * to be able to know about the current root directory and 1288 * parent relationships. 1289 */ 1290 if (unlikely(type != LAST_NORM)) 1291 return handle_dots(nd, type); 1292 err = do_lookup(nd, name, path, &inode); 1293 if (unlikely(err)) { 1294 terminate_walk(nd); 1295 return err; 1296 } 1297 if (!inode) { 1298 path_to_nameidata(path, nd); 1299 terminate_walk(nd); 1300 return -ENOENT; 1301 } 1302 if (should_follow_link(inode, follow)) { 1303 if (nd->flags & LOOKUP_RCU) { 1304 if (unlikely(unlazy_walk(nd, path->dentry))) { 1305 terminate_walk(nd); 1306 return -ECHILD; 1307 } 1308 } 1309 BUG_ON(inode != path->dentry->d_inode); 1310 return 1; 1311 } 1312 path_to_nameidata(path, nd); 1313 nd->inode = inode; 1314 return 0; 1315 } 1316 1317 /* 1318 * This limits recursive symlink follows to 8, while 1319 * limiting consecutive symlinks to 40. 1320 * 1321 * Without that kind of total limit, nasty chains of consecutive 1322 * symlinks can cause almost arbitrarily long lookups. 1323 */ 1324 static inline int nested_symlink(struct path *path, struct nameidata *nd) 1325 { 1326 int res; 1327 1328 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) { 1329 path_put_conditional(path, nd); 1330 path_put(&nd->path); 1331 return -ELOOP; 1332 } 1333 BUG_ON(nd->depth >= MAX_NESTED_LINKS); 1334 1335 nd->depth++; 1336 current->link_count++; 1337 1338 do { 1339 struct path link = *path; 1340 void *cookie; 1341 1342 res = follow_link(&link, nd, &cookie); 1343 if (!res) 1344 res = walk_component(nd, path, &nd->last, 1345 nd->last_type, LOOKUP_FOLLOW); 1346 put_link(nd, &link, cookie); 1347 } while (res > 0); 1348 1349 current->link_count--; 1350 nd->depth--; 1351 return res; 1352 } 1353 1354 /* 1355 * We really don't want to look at inode->i_op->lookup 1356 * when we don't have to. So we keep a cache bit in 1357 * the inode ->i_opflags field that says "yes, we can 1358 * do lookup on this inode". 1359 */ 1360 static inline int can_lookup(struct inode *inode) 1361 { 1362 if (likely(inode->i_opflags & IOP_LOOKUP)) 1363 return 1; 1364 if (likely(!inode->i_op->lookup)) 1365 return 0; 1366 1367 /* We do this once for the lifetime of the inode */ 1368 spin_lock(&inode->i_lock); 1369 inode->i_opflags |= IOP_LOOKUP; 1370 spin_unlock(&inode->i_lock); 1371 return 1; 1372 } 1373 1374 /* 1375 * Name resolution. 1376 * This is the basic name resolution function, turning a pathname into 1377 * the final dentry. We expect 'base' to be positive and a directory. 1378 * 1379 * Returns 0 and nd will have valid dentry and mnt on success. 1380 * Returns error and drops reference to input namei data on failure. 1381 */ 1382 static int link_path_walk(const char *name, struct nameidata *nd) 1383 { 1384 struct path next; 1385 int err; 1386 1387 while (*name=='/') 1388 name++; 1389 if (!*name) 1390 return 0; 1391 1392 /* At this point we know we have a real path component. */ 1393 for(;;) { 1394 unsigned long hash; 1395 struct qstr this; 1396 unsigned int c; 1397 int type; 1398 1399 err = may_lookup(nd); 1400 if (err) 1401 break; 1402 1403 this.name = name; 1404 c = *(const unsigned char *)name; 1405 1406 hash = init_name_hash(); 1407 do { 1408 name++; 1409 hash = partial_name_hash(c, hash); 1410 c = *(const unsigned char *)name; 1411 } while (c && (c != '/')); 1412 this.len = name - (const char *) this.name; 1413 this.hash = end_name_hash(hash); 1414 1415 type = LAST_NORM; 1416 if (this.name[0] == '.') switch (this.len) { 1417 case 2: 1418 if (this.name[1] == '.') { 1419 type = LAST_DOTDOT; 1420 nd->flags |= LOOKUP_JUMPED; 1421 } 1422 break; 1423 case 1: 1424 type = LAST_DOT; 1425 } 1426 if (likely(type == LAST_NORM)) { 1427 struct dentry *parent = nd->path.dentry; 1428 nd->flags &= ~LOOKUP_JUMPED; 1429 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 1430 err = parent->d_op->d_hash(parent, nd->inode, 1431 &this); 1432 if (err < 0) 1433 break; 1434 } 1435 } 1436 1437 /* remove trailing slashes? */ 1438 if (!c) 1439 goto last_component; 1440 while (*++name == '/'); 1441 if (!*name) 1442 goto last_component; 1443 1444 err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW); 1445 if (err < 0) 1446 return err; 1447 1448 if (err) { 1449 err = nested_symlink(&next, nd); 1450 if (err) 1451 return err; 1452 } 1453 if (can_lookup(nd->inode)) 1454 continue; 1455 err = -ENOTDIR; 1456 break; 1457 /* here ends the main loop */ 1458 1459 last_component: 1460 nd->last = this; 1461 nd->last_type = type; 1462 return 0; 1463 } 1464 terminate_walk(nd); 1465 return err; 1466 } 1467 1468 static int path_init(int dfd, const char *name, unsigned int flags, 1469 struct nameidata *nd, struct file **fp) 1470 { 1471 int retval = 0; 1472 int fput_needed; 1473 struct file *file; 1474 1475 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 1476 nd->flags = flags | LOOKUP_JUMPED; 1477 nd->depth = 0; 1478 if (flags & LOOKUP_ROOT) { 1479 struct inode *inode = nd->root.dentry->d_inode; 1480 if (*name) { 1481 if (!inode->i_op->lookup) 1482 return -ENOTDIR; 1483 retval = inode_permission(inode, MAY_EXEC); 1484 if (retval) 1485 return retval; 1486 } 1487 nd->path = nd->root; 1488 nd->inode = inode; 1489 if (flags & LOOKUP_RCU) { 1490 br_read_lock(vfsmount_lock); 1491 rcu_read_lock(); 1492 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1493 } else { 1494 path_get(&nd->path); 1495 } 1496 return 0; 1497 } 1498 1499 nd->root.mnt = NULL; 1500 1501 if (*name=='/') { 1502 if (flags & LOOKUP_RCU) { 1503 br_read_lock(vfsmount_lock); 1504 rcu_read_lock(); 1505 set_root_rcu(nd); 1506 } else { 1507 set_root(nd); 1508 path_get(&nd->root); 1509 } 1510 nd->path = nd->root; 1511 } else if (dfd == AT_FDCWD) { 1512 if (flags & LOOKUP_RCU) { 1513 struct fs_struct *fs = current->fs; 1514 unsigned seq; 1515 1516 br_read_lock(vfsmount_lock); 1517 rcu_read_lock(); 1518 1519 do { 1520 seq = read_seqcount_begin(&fs->seq); 1521 nd->path = fs->pwd; 1522 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1523 } while (read_seqcount_retry(&fs->seq, seq)); 1524 } else { 1525 get_fs_pwd(current->fs, &nd->path); 1526 } 1527 } else { 1528 struct dentry *dentry; 1529 1530 file = fget_raw_light(dfd, &fput_needed); 1531 retval = -EBADF; 1532 if (!file) 1533 goto out_fail; 1534 1535 dentry = file->f_path.dentry; 1536 1537 if (*name) { 1538 retval = -ENOTDIR; 1539 if (!S_ISDIR(dentry->d_inode->i_mode)) 1540 goto fput_fail; 1541 1542 retval = inode_permission(dentry->d_inode, MAY_EXEC); 1543 if (retval) 1544 goto fput_fail; 1545 } 1546 1547 nd->path = file->f_path; 1548 if (flags & LOOKUP_RCU) { 1549 if (fput_needed) 1550 *fp = file; 1551 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1552 br_read_lock(vfsmount_lock); 1553 rcu_read_lock(); 1554 } else { 1555 path_get(&file->f_path); 1556 fput_light(file, fput_needed); 1557 } 1558 } 1559 1560 nd->inode = nd->path.dentry->d_inode; 1561 return 0; 1562 1563 fput_fail: 1564 fput_light(file, fput_needed); 1565 out_fail: 1566 return retval; 1567 } 1568 1569 static inline int lookup_last(struct nameidata *nd, struct path *path) 1570 { 1571 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 1572 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 1573 1574 nd->flags &= ~LOOKUP_PARENT; 1575 return walk_component(nd, path, &nd->last, nd->last_type, 1576 nd->flags & LOOKUP_FOLLOW); 1577 } 1578 1579 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 1580 static int path_lookupat(int dfd, const char *name, 1581 unsigned int flags, struct nameidata *nd) 1582 { 1583 struct file *base = NULL; 1584 struct path path; 1585 int err; 1586 1587 /* 1588 * Path walking is largely split up into 2 different synchronisation 1589 * schemes, rcu-walk and ref-walk (explained in 1590 * Documentation/filesystems/path-lookup.txt). These share much of the 1591 * path walk code, but some things particularly setup, cleanup, and 1592 * following mounts are sufficiently divergent that functions are 1593 * duplicated. Typically there is a function foo(), and its RCU 1594 * analogue, foo_rcu(). 1595 * 1596 * -ECHILD is the error number of choice (just to avoid clashes) that 1597 * is returned if some aspect of an rcu-walk fails. Such an error must 1598 * be handled by restarting a traditional ref-walk (which will always 1599 * be able to complete). 1600 */ 1601 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base); 1602 1603 if (unlikely(err)) 1604 return err; 1605 1606 current->total_link_count = 0; 1607 err = link_path_walk(name, nd); 1608 1609 if (!err && !(flags & LOOKUP_PARENT)) { 1610 err = lookup_last(nd, &path); 1611 while (err > 0) { 1612 void *cookie; 1613 struct path link = path; 1614 nd->flags |= LOOKUP_PARENT; 1615 err = follow_link(&link, nd, &cookie); 1616 if (!err) 1617 err = lookup_last(nd, &path); 1618 put_link(nd, &link, cookie); 1619 } 1620 } 1621 1622 if (!err) 1623 err = complete_walk(nd); 1624 1625 if (!err && nd->flags & LOOKUP_DIRECTORY) { 1626 if (!nd->inode->i_op->lookup) { 1627 path_put(&nd->path); 1628 err = -ENOTDIR; 1629 } 1630 } 1631 1632 if (base) 1633 fput(base); 1634 1635 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 1636 path_put(&nd->root); 1637 nd->root.mnt = NULL; 1638 } 1639 return err; 1640 } 1641 1642 static int do_path_lookup(int dfd, const char *name, 1643 unsigned int flags, struct nameidata *nd) 1644 { 1645 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd); 1646 if (unlikely(retval == -ECHILD)) 1647 retval = path_lookupat(dfd, name, flags, nd); 1648 if (unlikely(retval == -ESTALE)) 1649 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd); 1650 1651 if (likely(!retval)) { 1652 if (unlikely(!audit_dummy_context())) { 1653 if (nd->path.dentry && nd->inode) 1654 audit_inode(name, nd->path.dentry); 1655 } 1656 } 1657 return retval; 1658 } 1659 1660 int kern_path_parent(const char *name, struct nameidata *nd) 1661 { 1662 return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd); 1663 } 1664 1665 int kern_path(const char *name, unsigned int flags, struct path *path) 1666 { 1667 struct nameidata nd; 1668 int res = do_path_lookup(AT_FDCWD, name, flags, &nd); 1669 if (!res) 1670 *path = nd.path; 1671 return res; 1672 } 1673 1674 /** 1675 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 1676 * @dentry: pointer to dentry of the base directory 1677 * @mnt: pointer to vfs mount of the base directory 1678 * @name: pointer to file name 1679 * @flags: lookup flags 1680 * @path: pointer to struct path to fill 1681 */ 1682 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 1683 const char *name, unsigned int flags, 1684 struct path *path) 1685 { 1686 struct nameidata nd; 1687 int err; 1688 nd.root.dentry = dentry; 1689 nd.root.mnt = mnt; 1690 BUG_ON(flags & LOOKUP_PARENT); 1691 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */ 1692 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd); 1693 if (!err) 1694 *path = nd.path; 1695 return err; 1696 } 1697 1698 static struct dentry *__lookup_hash(struct qstr *name, 1699 struct dentry *base, struct nameidata *nd) 1700 { 1701 struct inode *inode = base->d_inode; 1702 struct dentry *dentry; 1703 int err; 1704 1705 err = inode_permission(inode, MAY_EXEC); 1706 if (err) 1707 return ERR_PTR(err); 1708 1709 /* 1710 * Don't bother with __d_lookup: callers are for creat as 1711 * well as unlink, so a lot of the time it would cost 1712 * a double lookup. 1713 */ 1714 dentry = d_lookup(base, name); 1715 1716 if (dentry && d_need_lookup(dentry)) { 1717 /* 1718 * __lookup_hash is called with the parent dir's i_mutex already 1719 * held, so we are good to go here. 1720 */ 1721 dentry = d_inode_lookup(base, dentry, nd); 1722 if (IS_ERR(dentry)) 1723 return dentry; 1724 } 1725 1726 if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE)) { 1727 int status = d_revalidate(dentry, nd); 1728 if (unlikely(status <= 0)) { 1729 /* 1730 * The dentry failed validation. 1731 * If d_revalidate returned 0 attempt to invalidate 1732 * the dentry otherwise d_revalidate is asking us 1733 * to return a fail status. 1734 */ 1735 if (status < 0) { 1736 dput(dentry); 1737 return ERR_PTR(status); 1738 } else if (!d_invalidate(dentry)) { 1739 dput(dentry); 1740 dentry = NULL; 1741 } 1742 } 1743 } 1744 1745 if (!dentry) 1746 dentry = d_alloc_and_lookup(base, name, nd); 1747 1748 return dentry; 1749 } 1750 1751 /* 1752 * Restricted form of lookup. Doesn't follow links, single-component only, 1753 * needs parent already locked. Doesn't follow mounts. 1754 * SMP-safe. 1755 */ 1756 static struct dentry *lookup_hash(struct nameidata *nd) 1757 { 1758 return __lookup_hash(&nd->last, nd->path.dentry, nd); 1759 } 1760 1761 /** 1762 * lookup_one_len - filesystem helper to lookup single pathname component 1763 * @name: pathname component to lookup 1764 * @base: base directory to lookup from 1765 * @len: maximum length @len should be interpreted to 1766 * 1767 * Note that this routine is purely a helper for filesystem usage and should 1768 * not be called by generic code. Also note that by using this function the 1769 * nameidata argument is passed to the filesystem methods and a filesystem 1770 * using this helper needs to be prepared for that. 1771 */ 1772 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 1773 { 1774 struct qstr this; 1775 unsigned long hash; 1776 unsigned int c; 1777 1778 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex)); 1779 1780 this.name = name; 1781 this.len = len; 1782 if (!len) 1783 return ERR_PTR(-EACCES); 1784 1785 hash = init_name_hash(); 1786 while (len--) { 1787 c = *(const unsigned char *)name++; 1788 if (c == '/' || c == '\0') 1789 return ERR_PTR(-EACCES); 1790 hash = partial_name_hash(c, hash); 1791 } 1792 this.hash = end_name_hash(hash); 1793 /* 1794 * See if the low-level filesystem might want 1795 * to use its own hash.. 1796 */ 1797 if (base->d_flags & DCACHE_OP_HASH) { 1798 int err = base->d_op->d_hash(base, base->d_inode, &this); 1799 if (err < 0) 1800 return ERR_PTR(err); 1801 } 1802 1803 return __lookup_hash(&this, base, NULL); 1804 } 1805 1806 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 1807 struct path *path, int *empty) 1808 { 1809 struct nameidata nd; 1810 char *tmp = getname_flags(name, flags, empty); 1811 int err = PTR_ERR(tmp); 1812 if (!IS_ERR(tmp)) { 1813 1814 BUG_ON(flags & LOOKUP_PARENT); 1815 1816 err = do_path_lookup(dfd, tmp, flags, &nd); 1817 putname(tmp); 1818 if (!err) 1819 *path = nd.path; 1820 } 1821 return err; 1822 } 1823 1824 int user_path_at(int dfd, const char __user *name, unsigned flags, 1825 struct path *path) 1826 { 1827 return user_path_at_empty(dfd, name, flags, path, 0); 1828 } 1829 1830 static int user_path_parent(int dfd, const char __user *path, 1831 struct nameidata *nd, char **name) 1832 { 1833 char *s = getname(path); 1834 int error; 1835 1836 if (IS_ERR(s)) 1837 return PTR_ERR(s); 1838 1839 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd); 1840 if (error) 1841 putname(s); 1842 else 1843 *name = s; 1844 1845 return error; 1846 } 1847 1848 /* 1849 * It's inline, so penalty for filesystems that don't use sticky bit is 1850 * minimal. 1851 */ 1852 static inline int check_sticky(struct inode *dir, struct inode *inode) 1853 { 1854 uid_t fsuid = current_fsuid(); 1855 1856 if (!(dir->i_mode & S_ISVTX)) 1857 return 0; 1858 if (current_user_ns() != inode_userns(inode)) 1859 goto other_userns; 1860 if (inode->i_uid == fsuid) 1861 return 0; 1862 if (dir->i_uid == fsuid) 1863 return 0; 1864 1865 other_userns: 1866 return !ns_capable(inode_userns(inode), CAP_FOWNER); 1867 } 1868 1869 /* 1870 * Check whether we can remove a link victim from directory dir, check 1871 * whether the type of victim is right. 1872 * 1. We can't do it if dir is read-only (done in permission()) 1873 * 2. We should have write and exec permissions on dir 1874 * 3. We can't remove anything from append-only dir 1875 * 4. We can't do anything with immutable dir (done in permission()) 1876 * 5. If the sticky bit on dir is set we should either 1877 * a. be owner of dir, or 1878 * b. be owner of victim, or 1879 * c. have CAP_FOWNER capability 1880 * 6. If the victim is append-only or immutable we can't do antyhing with 1881 * links pointing to it. 1882 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 1883 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 1884 * 9. We can't remove a root or mountpoint. 1885 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 1886 * nfs_async_unlink(). 1887 */ 1888 static int may_delete(struct inode *dir,struct dentry *victim,int isdir) 1889 { 1890 int error; 1891 1892 if (!victim->d_inode) 1893 return -ENOENT; 1894 1895 BUG_ON(victim->d_parent->d_inode != dir); 1896 audit_inode_child(victim, dir); 1897 1898 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 1899 if (error) 1900 return error; 1901 if (IS_APPEND(dir)) 1902 return -EPERM; 1903 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)|| 1904 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode)) 1905 return -EPERM; 1906 if (isdir) { 1907 if (!S_ISDIR(victim->d_inode->i_mode)) 1908 return -ENOTDIR; 1909 if (IS_ROOT(victim)) 1910 return -EBUSY; 1911 } else if (S_ISDIR(victim->d_inode->i_mode)) 1912 return -EISDIR; 1913 if (IS_DEADDIR(dir)) 1914 return -ENOENT; 1915 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 1916 return -EBUSY; 1917 return 0; 1918 } 1919 1920 /* Check whether we can create an object with dentry child in directory 1921 * dir. 1922 * 1. We can't do it if child already exists (open has special treatment for 1923 * this case, but since we are inlined it's OK) 1924 * 2. We can't do it if dir is read-only (done in permission()) 1925 * 3. We should have write and exec permissions on dir 1926 * 4. We can't do it if dir is immutable (done in permission()) 1927 */ 1928 static inline int may_create(struct inode *dir, struct dentry *child) 1929 { 1930 if (child->d_inode) 1931 return -EEXIST; 1932 if (IS_DEADDIR(dir)) 1933 return -ENOENT; 1934 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 1935 } 1936 1937 /* 1938 * p1 and p2 should be directories on the same fs. 1939 */ 1940 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 1941 { 1942 struct dentry *p; 1943 1944 if (p1 == p2) { 1945 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1946 return NULL; 1947 } 1948 1949 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 1950 1951 p = d_ancestor(p2, p1); 1952 if (p) { 1953 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT); 1954 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD); 1955 return p; 1956 } 1957 1958 p = d_ancestor(p1, p2); 1959 if (p) { 1960 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1961 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 1962 return p; 1963 } 1964 1965 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1966 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 1967 return NULL; 1968 } 1969 1970 void unlock_rename(struct dentry *p1, struct dentry *p2) 1971 { 1972 mutex_unlock(&p1->d_inode->i_mutex); 1973 if (p1 != p2) { 1974 mutex_unlock(&p2->d_inode->i_mutex); 1975 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 1976 } 1977 } 1978 1979 int vfs_create(struct inode *dir, struct dentry *dentry, int mode, 1980 struct nameidata *nd) 1981 { 1982 int error = may_create(dir, dentry); 1983 1984 if (error) 1985 return error; 1986 1987 if (!dir->i_op->create) 1988 return -EACCES; /* shouldn't it be ENOSYS? */ 1989 mode &= S_IALLUGO; 1990 mode |= S_IFREG; 1991 error = security_inode_create(dir, dentry, mode); 1992 if (error) 1993 return error; 1994 error = dir->i_op->create(dir, dentry, mode, nd); 1995 if (!error) 1996 fsnotify_create(dir, dentry); 1997 return error; 1998 } 1999 2000 static int may_open(struct path *path, int acc_mode, int flag) 2001 { 2002 struct dentry *dentry = path->dentry; 2003 struct inode *inode = dentry->d_inode; 2004 int error; 2005 2006 /* O_PATH? */ 2007 if (!acc_mode) 2008 return 0; 2009 2010 if (!inode) 2011 return -ENOENT; 2012 2013 switch (inode->i_mode & S_IFMT) { 2014 case S_IFLNK: 2015 return -ELOOP; 2016 case S_IFDIR: 2017 if (acc_mode & MAY_WRITE) 2018 return -EISDIR; 2019 break; 2020 case S_IFBLK: 2021 case S_IFCHR: 2022 if (path->mnt->mnt_flags & MNT_NODEV) 2023 return -EACCES; 2024 /*FALLTHRU*/ 2025 case S_IFIFO: 2026 case S_IFSOCK: 2027 flag &= ~O_TRUNC; 2028 break; 2029 } 2030 2031 error = inode_permission(inode, acc_mode); 2032 if (error) 2033 return error; 2034 2035 /* 2036 * An append-only file must be opened in append mode for writing. 2037 */ 2038 if (IS_APPEND(inode)) { 2039 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2040 return -EPERM; 2041 if (flag & O_TRUNC) 2042 return -EPERM; 2043 } 2044 2045 /* O_NOATIME can only be set by the owner or superuser */ 2046 if (flag & O_NOATIME && !inode_owner_or_capable(inode)) 2047 return -EPERM; 2048 2049 return 0; 2050 } 2051 2052 static int handle_truncate(struct file *filp) 2053 { 2054 struct path *path = &filp->f_path; 2055 struct inode *inode = path->dentry->d_inode; 2056 int error = get_write_access(inode); 2057 if (error) 2058 return error; 2059 /* 2060 * Refuse to truncate files with mandatory locks held on them. 2061 */ 2062 error = locks_verify_locked(inode); 2063 if (!error) 2064 error = security_path_truncate(path); 2065 if (!error) { 2066 error = do_truncate(path->dentry, 0, 2067 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 2068 filp); 2069 } 2070 put_write_access(inode); 2071 return error; 2072 } 2073 2074 static inline int open_to_namei_flags(int flag) 2075 { 2076 if ((flag & O_ACCMODE) == 3) 2077 flag--; 2078 return flag; 2079 } 2080 2081 /* 2082 * Handle the last step of open() 2083 */ 2084 static struct file *do_last(struct nameidata *nd, struct path *path, 2085 const struct open_flags *op, const char *pathname) 2086 { 2087 struct dentry *dir = nd->path.dentry; 2088 struct dentry *dentry; 2089 int open_flag = op->open_flag; 2090 int will_truncate = open_flag & O_TRUNC; 2091 int want_write = 0; 2092 int acc_mode = op->acc_mode; 2093 struct file *filp; 2094 int error; 2095 2096 nd->flags &= ~LOOKUP_PARENT; 2097 nd->flags |= op->intent; 2098 2099 switch (nd->last_type) { 2100 case LAST_DOTDOT: 2101 case LAST_DOT: 2102 error = handle_dots(nd, nd->last_type); 2103 if (error) 2104 return ERR_PTR(error); 2105 /* fallthrough */ 2106 case LAST_ROOT: 2107 error = complete_walk(nd); 2108 if (error) 2109 return ERR_PTR(error); 2110 audit_inode(pathname, nd->path.dentry); 2111 if (open_flag & O_CREAT) { 2112 error = -EISDIR; 2113 goto exit; 2114 } 2115 goto ok; 2116 case LAST_BIND: 2117 error = complete_walk(nd); 2118 if (error) 2119 return ERR_PTR(error); 2120 audit_inode(pathname, dir); 2121 goto ok; 2122 } 2123 2124 if (!(open_flag & O_CREAT)) { 2125 int symlink_ok = 0; 2126 if (nd->last.name[nd->last.len]) 2127 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2128 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW)) 2129 symlink_ok = 1; 2130 /* we _can_ be in RCU mode here */ 2131 error = walk_component(nd, path, &nd->last, LAST_NORM, 2132 !symlink_ok); 2133 if (error < 0) 2134 return ERR_PTR(error); 2135 if (error) /* symlink */ 2136 return NULL; 2137 /* sayonara */ 2138 error = complete_walk(nd); 2139 if (error) 2140 return ERR_PTR(-ECHILD); 2141 2142 error = -ENOTDIR; 2143 if (nd->flags & LOOKUP_DIRECTORY) { 2144 if (!nd->inode->i_op->lookup) 2145 goto exit; 2146 } 2147 audit_inode(pathname, nd->path.dentry); 2148 goto ok; 2149 } 2150 2151 /* create side of things */ 2152 /* 2153 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED has been 2154 * cleared when we got to the last component we are about to look up 2155 */ 2156 error = complete_walk(nd); 2157 if (error) 2158 return ERR_PTR(error); 2159 2160 audit_inode(pathname, dir); 2161 error = -EISDIR; 2162 /* trailing slashes? */ 2163 if (nd->last.name[nd->last.len]) 2164 goto exit; 2165 2166 mutex_lock(&dir->d_inode->i_mutex); 2167 2168 dentry = lookup_hash(nd); 2169 error = PTR_ERR(dentry); 2170 if (IS_ERR(dentry)) { 2171 mutex_unlock(&dir->d_inode->i_mutex); 2172 goto exit; 2173 } 2174 2175 path->dentry = dentry; 2176 path->mnt = nd->path.mnt; 2177 2178 /* Negative dentry, just create the file */ 2179 if (!dentry->d_inode) { 2180 int mode = op->mode; 2181 if (!IS_POSIXACL(dir->d_inode)) 2182 mode &= ~current_umask(); 2183 /* 2184 * This write is needed to ensure that a 2185 * rw->ro transition does not occur between 2186 * the time when the file is created and when 2187 * a permanent write count is taken through 2188 * the 'struct file' in nameidata_to_filp(). 2189 */ 2190 error = mnt_want_write(nd->path.mnt); 2191 if (error) 2192 goto exit_mutex_unlock; 2193 want_write = 1; 2194 /* Don't check for write permission, don't truncate */ 2195 open_flag &= ~O_TRUNC; 2196 will_truncate = 0; 2197 acc_mode = MAY_OPEN; 2198 error = security_path_mknod(&nd->path, dentry, mode, 0); 2199 if (error) 2200 goto exit_mutex_unlock; 2201 error = vfs_create(dir->d_inode, dentry, mode, nd); 2202 if (error) 2203 goto exit_mutex_unlock; 2204 mutex_unlock(&dir->d_inode->i_mutex); 2205 dput(nd->path.dentry); 2206 nd->path.dentry = dentry; 2207 goto common; 2208 } 2209 2210 /* 2211 * It already exists. 2212 */ 2213 mutex_unlock(&dir->d_inode->i_mutex); 2214 audit_inode(pathname, path->dentry); 2215 2216 error = -EEXIST; 2217 if (open_flag & O_EXCL) 2218 goto exit_dput; 2219 2220 error = follow_managed(path, nd->flags); 2221 if (error < 0) 2222 goto exit_dput; 2223 2224 if (error) 2225 nd->flags |= LOOKUP_JUMPED; 2226 2227 error = -ENOENT; 2228 if (!path->dentry->d_inode) 2229 goto exit_dput; 2230 2231 if (path->dentry->d_inode->i_op->follow_link) 2232 return NULL; 2233 2234 path_to_nameidata(path, nd); 2235 nd->inode = path->dentry->d_inode; 2236 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */ 2237 error = complete_walk(nd); 2238 if (error) 2239 goto exit; 2240 error = -EISDIR; 2241 if (S_ISDIR(nd->inode->i_mode)) 2242 goto exit; 2243 ok: 2244 if (!S_ISREG(nd->inode->i_mode)) 2245 will_truncate = 0; 2246 2247 if (will_truncate) { 2248 error = mnt_want_write(nd->path.mnt); 2249 if (error) 2250 goto exit; 2251 want_write = 1; 2252 } 2253 common: 2254 error = may_open(&nd->path, acc_mode, open_flag); 2255 if (error) 2256 goto exit; 2257 filp = nameidata_to_filp(nd); 2258 if (!IS_ERR(filp)) { 2259 error = ima_file_check(filp, op->acc_mode); 2260 if (error) { 2261 fput(filp); 2262 filp = ERR_PTR(error); 2263 } 2264 } 2265 if (!IS_ERR(filp)) { 2266 if (will_truncate) { 2267 error = handle_truncate(filp); 2268 if (error) { 2269 fput(filp); 2270 filp = ERR_PTR(error); 2271 } 2272 } 2273 } 2274 out: 2275 if (want_write) 2276 mnt_drop_write(nd->path.mnt); 2277 path_put(&nd->path); 2278 return filp; 2279 2280 exit_mutex_unlock: 2281 mutex_unlock(&dir->d_inode->i_mutex); 2282 exit_dput: 2283 path_put_conditional(path, nd); 2284 exit: 2285 filp = ERR_PTR(error); 2286 goto out; 2287 } 2288 2289 static struct file *path_openat(int dfd, const char *pathname, 2290 struct nameidata *nd, const struct open_flags *op, int flags) 2291 { 2292 struct file *base = NULL; 2293 struct file *filp; 2294 struct path path; 2295 int error; 2296 2297 filp = get_empty_filp(); 2298 if (!filp) 2299 return ERR_PTR(-ENFILE); 2300 2301 filp->f_flags = op->open_flag; 2302 nd->intent.open.file = filp; 2303 nd->intent.open.flags = open_to_namei_flags(op->open_flag); 2304 nd->intent.open.create_mode = op->mode; 2305 2306 error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base); 2307 if (unlikely(error)) 2308 goto out_filp; 2309 2310 current->total_link_count = 0; 2311 error = link_path_walk(pathname, nd); 2312 if (unlikely(error)) 2313 goto out_filp; 2314 2315 filp = do_last(nd, &path, op, pathname); 2316 while (unlikely(!filp)) { /* trailing symlink */ 2317 struct path link = path; 2318 void *cookie; 2319 if (!(nd->flags & LOOKUP_FOLLOW)) { 2320 path_put_conditional(&path, nd); 2321 path_put(&nd->path); 2322 filp = ERR_PTR(-ELOOP); 2323 break; 2324 } 2325 nd->flags |= LOOKUP_PARENT; 2326 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 2327 error = follow_link(&link, nd, &cookie); 2328 if (unlikely(error)) 2329 filp = ERR_PTR(error); 2330 else 2331 filp = do_last(nd, &path, op, pathname); 2332 put_link(nd, &link, cookie); 2333 } 2334 out: 2335 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) 2336 path_put(&nd->root); 2337 if (base) 2338 fput(base); 2339 release_open_intent(nd); 2340 return filp; 2341 2342 out_filp: 2343 filp = ERR_PTR(error); 2344 goto out; 2345 } 2346 2347 struct file *do_filp_open(int dfd, const char *pathname, 2348 const struct open_flags *op, int flags) 2349 { 2350 struct nameidata nd; 2351 struct file *filp; 2352 2353 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU); 2354 if (unlikely(filp == ERR_PTR(-ECHILD))) 2355 filp = path_openat(dfd, pathname, &nd, op, flags); 2356 if (unlikely(filp == ERR_PTR(-ESTALE))) 2357 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL); 2358 return filp; 2359 } 2360 2361 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 2362 const char *name, const struct open_flags *op, int flags) 2363 { 2364 struct nameidata nd; 2365 struct file *file; 2366 2367 nd.root.mnt = mnt; 2368 nd.root.dentry = dentry; 2369 2370 flags |= LOOKUP_ROOT; 2371 2372 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN) 2373 return ERR_PTR(-ELOOP); 2374 2375 file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU); 2376 if (unlikely(file == ERR_PTR(-ECHILD))) 2377 file = path_openat(-1, name, &nd, op, flags); 2378 if (unlikely(file == ERR_PTR(-ESTALE))) 2379 file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL); 2380 return file; 2381 } 2382 2383 struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, int is_dir) 2384 { 2385 struct dentry *dentry = ERR_PTR(-EEXIST); 2386 struct nameidata nd; 2387 int error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd); 2388 if (error) 2389 return ERR_PTR(error); 2390 2391 /* 2392 * Yucky last component or no last component at all? 2393 * (foo/., foo/.., /////) 2394 */ 2395 if (nd.last_type != LAST_NORM) 2396 goto out; 2397 nd.flags &= ~LOOKUP_PARENT; 2398 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL; 2399 nd.intent.open.flags = O_EXCL; 2400 2401 /* 2402 * Do the final lookup. 2403 */ 2404 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2405 dentry = lookup_hash(&nd); 2406 if (IS_ERR(dentry)) 2407 goto fail; 2408 2409 if (dentry->d_inode) 2410 goto eexist; 2411 /* 2412 * Special case - lookup gave negative, but... we had foo/bar/ 2413 * From the vfs_mknod() POV we just have a negative dentry - 2414 * all is fine. Let's be bastards - you had / on the end, you've 2415 * been asking for (non-existent) directory. -ENOENT for you. 2416 */ 2417 if (unlikely(!is_dir && nd.last.name[nd.last.len])) { 2418 dput(dentry); 2419 dentry = ERR_PTR(-ENOENT); 2420 goto fail; 2421 } 2422 *path = nd.path; 2423 return dentry; 2424 eexist: 2425 dput(dentry); 2426 dentry = ERR_PTR(-EEXIST); 2427 fail: 2428 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2429 out: 2430 path_put(&nd.path); 2431 return dentry; 2432 } 2433 EXPORT_SYMBOL(kern_path_create); 2434 2435 struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, int is_dir) 2436 { 2437 char *tmp = getname(pathname); 2438 struct dentry *res; 2439 if (IS_ERR(tmp)) 2440 return ERR_CAST(tmp); 2441 res = kern_path_create(dfd, tmp, path, is_dir); 2442 putname(tmp); 2443 return res; 2444 } 2445 EXPORT_SYMBOL(user_path_create); 2446 2447 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 2448 { 2449 int error = may_create(dir, dentry); 2450 2451 if (error) 2452 return error; 2453 2454 if ((S_ISCHR(mode) || S_ISBLK(mode)) && 2455 !ns_capable(inode_userns(dir), CAP_MKNOD)) 2456 return -EPERM; 2457 2458 if (!dir->i_op->mknod) 2459 return -EPERM; 2460 2461 error = devcgroup_inode_mknod(mode, dev); 2462 if (error) 2463 return error; 2464 2465 error = security_inode_mknod(dir, dentry, mode, dev); 2466 if (error) 2467 return error; 2468 2469 error = dir->i_op->mknod(dir, dentry, mode, dev); 2470 if (!error) 2471 fsnotify_create(dir, dentry); 2472 return error; 2473 } 2474 2475 static int may_mknod(mode_t mode) 2476 { 2477 switch (mode & S_IFMT) { 2478 case S_IFREG: 2479 case S_IFCHR: 2480 case S_IFBLK: 2481 case S_IFIFO: 2482 case S_IFSOCK: 2483 case 0: /* zero mode translates to S_IFREG */ 2484 return 0; 2485 case S_IFDIR: 2486 return -EPERM; 2487 default: 2488 return -EINVAL; 2489 } 2490 } 2491 2492 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode, 2493 unsigned, dev) 2494 { 2495 struct dentry *dentry; 2496 struct path path; 2497 int error; 2498 2499 if (S_ISDIR(mode)) 2500 return -EPERM; 2501 2502 dentry = user_path_create(dfd, filename, &path, 0); 2503 if (IS_ERR(dentry)) 2504 return PTR_ERR(dentry); 2505 2506 if (!IS_POSIXACL(path.dentry->d_inode)) 2507 mode &= ~current_umask(); 2508 error = may_mknod(mode); 2509 if (error) 2510 goto out_dput; 2511 error = mnt_want_write(path.mnt); 2512 if (error) 2513 goto out_dput; 2514 error = security_path_mknod(&path, dentry, mode, dev); 2515 if (error) 2516 goto out_drop_write; 2517 switch (mode & S_IFMT) { 2518 case 0: case S_IFREG: 2519 error = vfs_create(path.dentry->d_inode,dentry,mode,NULL); 2520 break; 2521 case S_IFCHR: case S_IFBLK: 2522 error = vfs_mknod(path.dentry->d_inode,dentry,mode, 2523 new_decode_dev(dev)); 2524 break; 2525 case S_IFIFO: case S_IFSOCK: 2526 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0); 2527 break; 2528 } 2529 out_drop_write: 2530 mnt_drop_write(path.mnt); 2531 out_dput: 2532 dput(dentry); 2533 mutex_unlock(&path.dentry->d_inode->i_mutex); 2534 path_put(&path); 2535 2536 return error; 2537 } 2538 2539 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev) 2540 { 2541 return sys_mknodat(AT_FDCWD, filename, mode, dev); 2542 } 2543 2544 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 2545 { 2546 int error = may_create(dir, dentry); 2547 2548 if (error) 2549 return error; 2550 2551 if (!dir->i_op->mkdir) 2552 return -EPERM; 2553 2554 mode &= (S_IRWXUGO|S_ISVTX); 2555 error = security_inode_mkdir(dir, dentry, mode); 2556 if (error) 2557 return error; 2558 2559 error = dir->i_op->mkdir(dir, dentry, mode); 2560 if (!error) 2561 fsnotify_mkdir(dir, dentry); 2562 return error; 2563 } 2564 2565 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode) 2566 { 2567 struct dentry *dentry; 2568 struct path path; 2569 int error; 2570 2571 dentry = user_path_create(dfd, pathname, &path, 1); 2572 if (IS_ERR(dentry)) 2573 return PTR_ERR(dentry); 2574 2575 if (!IS_POSIXACL(path.dentry->d_inode)) 2576 mode &= ~current_umask(); 2577 error = mnt_want_write(path.mnt); 2578 if (error) 2579 goto out_dput; 2580 error = security_path_mkdir(&path, dentry, mode); 2581 if (error) 2582 goto out_drop_write; 2583 error = vfs_mkdir(path.dentry->d_inode, dentry, mode); 2584 out_drop_write: 2585 mnt_drop_write(path.mnt); 2586 out_dput: 2587 dput(dentry); 2588 mutex_unlock(&path.dentry->d_inode->i_mutex); 2589 path_put(&path); 2590 return error; 2591 } 2592 2593 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode) 2594 { 2595 return sys_mkdirat(AT_FDCWD, pathname, mode); 2596 } 2597 2598 /* 2599 * The dentry_unhash() helper will try to drop the dentry early: we 2600 * should have a usage count of 2 if we're the only user of this 2601 * dentry, and if that is true (possibly after pruning the dcache), 2602 * then we drop the dentry now. 2603 * 2604 * A low-level filesystem can, if it choses, legally 2605 * do a 2606 * 2607 * if (!d_unhashed(dentry)) 2608 * return -EBUSY; 2609 * 2610 * if it cannot handle the case of removing a directory 2611 * that is still in use by something else.. 2612 */ 2613 void dentry_unhash(struct dentry *dentry) 2614 { 2615 shrink_dcache_parent(dentry); 2616 spin_lock(&dentry->d_lock); 2617 if (dentry->d_count == 1) 2618 __d_drop(dentry); 2619 spin_unlock(&dentry->d_lock); 2620 } 2621 2622 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 2623 { 2624 int error = may_delete(dir, dentry, 1); 2625 2626 if (error) 2627 return error; 2628 2629 if (!dir->i_op->rmdir) 2630 return -EPERM; 2631 2632 dget(dentry); 2633 mutex_lock(&dentry->d_inode->i_mutex); 2634 2635 error = -EBUSY; 2636 if (d_mountpoint(dentry)) 2637 goto out; 2638 2639 error = security_inode_rmdir(dir, dentry); 2640 if (error) 2641 goto out; 2642 2643 shrink_dcache_parent(dentry); 2644 error = dir->i_op->rmdir(dir, dentry); 2645 if (error) 2646 goto out; 2647 2648 dentry->d_inode->i_flags |= S_DEAD; 2649 dont_mount(dentry); 2650 2651 out: 2652 mutex_unlock(&dentry->d_inode->i_mutex); 2653 dput(dentry); 2654 if (!error) 2655 d_delete(dentry); 2656 return error; 2657 } 2658 2659 static long do_rmdir(int dfd, const char __user *pathname) 2660 { 2661 int error = 0; 2662 char * name; 2663 struct dentry *dentry; 2664 struct nameidata nd; 2665 2666 error = user_path_parent(dfd, pathname, &nd, &name); 2667 if (error) 2668 return error; 2669 2670 switch(nd.last_type) { 2671 case LAST_DOTDOT: 2672 error = -ENOTEMPTY; 2673 goto exit1; 2674 case LAST_DOT: 2675 error = -EINVAL; 2676 goto exit1; 2677 case LAST_ROOT: 2678 error = -EBUSY; 2679 goto exit1; 2680 } 2681 2682 nd.flags &= ~LOOKUP_PARENT; 2683 2684 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2685 dentry = lookup_hash(&nd); 2686 error = PTR_ERR(dentry); 2687 if (IS_ERR(dentry)) 2688 goto exit2; 2689 if (!dentry->d_inode) { 2690 error = -ENOENT; 2691 goto exit3; 2692 } 2693 error = mnt_want_write(nd.path.mnt); 2694 if (error) 2695 goto exit3; 2696 error = security_path_rmdir(&nd.path, dentry); 2697 if (error) 2698 goto exit4; 2699 error = vfs_rmdir(nd.path.dentry->d_inode, dentry); 2700 exit4: 2701 mnt_drop_write(nd.path.mnt); 2702 exit3: 2703 dput(dentry); 2704 exit2: 2705 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2706 exit1: 2707 path_put(&nd.path); 2708 putname(name); 2709 return error; 2710 } 2711 2712 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 2713 { 2714 return do_rmdir(AT_FDCWD, pathname); 2715 } 2716 2717 int vfs_unlink(struct inode *dir, struct dentry *dentry) 2718 { 2719 int error = may_delete(dir, dentry, 0); 2720 2721 if (error) 2722 return error; 2723 2724 if (!dir->i_op->unlink) 2725 return -EPERM; 2726 2727 mutex_lock(&dentry->d_inode->i_mutex); 2728 if (d_mountpoint(dentry)) 2729 error = -EBUSY; 2730 else { 2731 error = security_inode_unlink(dir, dentry); 2732 if (!error) { 2733 error = dir->i_op->unlink(dir, dentry); 2734 if (!error) 2735 dont_mount(dentry); 2736 } 2737 } 2738 mutex_unlock(&dentry->d_inode->i_mutex); 2739 2740 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 2741 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 2742 fsnotify_link_count(dentry->d_inode); 2743 d_delete(dentry); 2744 } 2745 2746 return error; 2747 } 2748 2749 /* 2750 * Make sure that the actual truncation of the file will occur outside its 2751 * directory's i_mutex. Truncate can take a long time if there is a lot of 2752 * writeout happening, and we don't want to prevent access to the directory 2753 * while waiting on the I/O. 2754 */ 2755 static long do_unlinkat(int dfd, const char __user *pathname) 2756 { 2757 int error; 2758 char *name; 2759 struct dentry *dentry; 2760 struct nameidata nd; 2761 struct inode *inode = NULL; 2762 2763 error = user_path_parent(dfd, pathname, &nd, &name); 2764 if (error) 2765 return error; 2766 2767 error = -EISDIR; 2768 if (nd.last_type != LAST_NORM) 2769 goto exit1; 2770 2771 nd.flags &= ~LOOKUP_PARENT; 2772 2773 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2774 dentry = lookup_hash(&nd); 2775 error = PTR_ERR(dentry); 2776 if (!IS_ERR(dentry)) { 2777 /* Why not before? Because we want correct error value */ 2778 if (nd.last.name[nd.last.len]) 2779 goto slashes; 2780 inode = dentry->d_inode; 2781 if (!inode) 2782 goto slashes; 2783 ihold(inode); 2784 error = mnt_want_write(nd.path.mnt); 2785 if (error) 2786 goto exit2; 2787 error = security_path_unlink(&nd.path, dentry); 2788 if (error) 2789 goto exit3; 2790 error = vfs_unlink(nd.path.dentry->d_inode, dentry); 2791 exit3: 2792 mnt_drop_write(nd.path.mnt); 2793 exit2: 2794 dput(dentry); 2795 } 2796 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2797 if (inode) 2798 iput(inode); /* truncate the inode here */ 2799 exit1: 2800 path_put(&nd.path); 2801 putname(name); 2802 return error; 2803 2804 slashes: 2805 error = !dentry->d_inode ? -ENOENT : 2806 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR; 2807 goto exit2; 2808 } 2809 2810 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 2811 { 2812 if ((flag & ~AT_REMOVEDIR) != 0) 2813 return -EINVAL; 2814 2815 if (flag & AT_REMOVEDIR) 2816 return do_rmdir(dfd, pathname); 2817 2818 return do_unlinkat(dfd, pathname); 2819 } 2820 2821 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 2822 { 2823 return do_unlinkat(AT_FDCWD, pathname); 2824 } 2825 2826 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 2827 { 2828 int error = may_create(dir, dentry); 2829 2830 if (error) 2831 return error; 2832 2833 if (!dir->i_op->symlink) 2834 return -EPERM; 2835 2836 error = security_inode_symlink(dir, dentry, oldname); 2837 if (error) 2838 return error; 2839 2840 error = dir->i_op->symlink(dir, dentry, oldname); 2841 if (!error) 2842 fsnotify_create(dir, dentry); 2843 return error; 2844 } 2845 2846 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 2847 int, newdfd, const char __user *, newname) 2848 { 2849 int error; 2850 char *from; 2851 struct dentry *dentry; 2852 struct path path; 2853 2854 from = getname(oldname); 2855 if (IS_ERR(from)) 2856 return PTR_ERR(from); 2857 2858 dentry = user_path_create(newdfd, newname, &path, 0); 2859 error = PTR_ERR(dentry); 2860 if (IS_ERR(dentry)) 2861 goto out_putname; 2862 2863 error = mnt_want_write(path.mnt); 2864 if (error) 2865 goto out_dput; 2866 error = security_path_symlink(&path, dentry, from); 2867 if (error) 2868 goto out_drop_write; 2869 error = vfs_symlink(path.dentry->d_inode, dentry, from); 2870 out_drop_write: 2871 mnt_drop_write(path.mnt); 2872 out_dput: 2873 dput(dentry); 2874 mutex_unlock(&path.dentry->d_inode->i_mutex); 2875 path_put(&path); 2876 out_putname: 2877 putname(from); 2878 return error; 2879 } 2880 2881 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 2882 { 2883 return sys_symlinkat(oldname, AT_FDCWD, newname); 2884 } 2885 2886 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2887 { 2888 struct inode *inode = old_dentry->d_inode; 2889 int error; 2890 2891 if (!inode) 2892 return -ENOENT; 2893 2894 error = may_create(dir, new_dentry); 2895 if (error) 2896 return error; 2897 2898 if (dir->i_sb != inode->i_sb) 2899 return -EXDEV; 2900 2901 /* 2902 * A link to an append-only or immutable file cannot be created. 2903 */ 2904 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 2905 return -EPERM; 2906 if (!dir->i_op->link) 2907 return -EPERM; 2908 if (S_ISDIR(inode->i_mode)) 2909 return -EPERM; 2910 2911 error = security_inode_link(old_dentry, dir, new_dentry); 2912 if (error) 2913 return error; 2914 2915 mutex_lock(&inode->i_mutex); 2916 /* Make sure we don't allow creating hardlink to an unlinked file */ 2917 if (inode->i_nlink == 0) 2918 error = -ENOENT; 2919 else 2920 error = dir->i_op->link(old_dentry, dir, new_dentry); 2921 mutex_unlock(&inode->i_mutex); 2922 if (!error) 2923 fsnotify_link(dir, inode, new_dentry); 2924 return error; 2925 } 2926 2927 /* 2928 * Hardlinks are often used in delicate situations. We avoid 2929 * security-related surprises by not following symlinks on the 2930 * newname. --KAB 2931 * 2932 * We don't follow them on the oldname either to be compatible 2933 * with linux 2.0, and to avoid hard-linking to directories 2934 * and other special files. --ADM 2935 */ 2936 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 2937 int, newdfd, const char __user *, newname, int, flags) 2938 { 2939 struct dentry *new_dentry; 2940 struct path old_path, new_path; 2941 int how = 0; 2942 int error; 2943 2944 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 2945 return -EINVAL; 2946 /* 2947 * To use null names we require CAP_DAC_READ_SEARCH 2948 * This ensures that not everyone will be able to create 2949 * handlink using the passed filedescriptor. 2950 */ 2951 if (flags & AT_EMPTY_PATH) { 2952 if (!capable(CAP_DAC_READ_SEARCH)) 2953 return -ENOENT; 2954 how = LOOKUP_EMPTY; 2955 } 2956 2957 if (flags & AT_SYMLINK_FOLLOW) 2958 how |= LOOKUP_FOLLOW; 2959 2960 error = user_path_at(olddfd, oldname, how, &old_path); 2961 if (error) 2962 return error; 2963 2964 new_dentry = user_path_create(newdfd, newname, &new_path, 0); 2965 error = PTR_ERR(new_dentry); 2966 if (IS_ERR(new_dentry)) 2967 goto out; 2968 2969 error = -EXDEV; 2970 if (old_path.mnt != new_path.mnt) 2971 goto out_dput; 2972 error = mnt_want_write(new_path.mnt); 2973 if (error) 2974 goto out_dput; 2975 error = security_path_link(old_path.dentry, &new_path, new_dentry); 2976 if (error) 2977 goto out_drop_write; 2978 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry); 2979 out_drop_write: 2980 mnt_drop_write(new_path.mnt); 2981 out_dput: 2982 dput(new_dentry); 2983 mutex_unlock(&new_path.dentry->d_inode->i_mutex); 2984 path_put(&new_path); 2985 out: 2986 path_put(&old_path); 2987 2988 return error; 2989 } 2990 2991 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 2992 { 2993 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 2994 } 2995 2996 /* 2997 * The worst of all namespace operations - renaming directory. "Perverted" 2998 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 2999 * Problems: 3000 * a) we can get into loop creation. Check is done in is_subdir(). 3001 * b) race potential - two innocent renames can create a loop together. 3002 * That's where 4.4 screws up. Current fix: serialization on 3003 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 3004 * story. 3005 * c) we have to lock _three_ objects - parents and victim (if it exists). 3006 * And that - after we got ->i_mutex on parents (until then we don't know 3007 * whether the target exists). Solution: try to be smart with locking 3008 * order for inodes. We rely on the fact that tree topology may change 3009 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 3010 * move will be locked. Thus we can rank directories by the tree 3011 * (ancestors first) and rank all non-directories after them. 3012 * That works since everybody except rename does "lock parent, lookup, 3013 * lock child" and rename is under ->s_vfs_rename_mutex. 3014 * HOWEVER, it relies on the assumption that any object with ->lookup() 3015 * has no more than 1 dentry. If "hybrid" objects will ever appear, 3016 * we'd better make sure that there's no link(2) for them. 3017 * d) conversion from fhandle to dentry may come in the wrong moment - when 3018 * we are removing the target. Solution: we will have to grab ->i_mutex 3019 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 3020 * ->i_mutex on parents, which works but leads to some truly excessive 3021 * locking]. 3022 */ 3023 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry, 3024 struct inode *new_dir, struct dentry *new_dentry) 3025 { 3026 int error = 0; 3027 struct inode *target = new_dentry->d_inode; 3028 3029 /* 3030 * If we are going to change the parent - check write permissions, 3031 * we'll need to flip '..'. 3032 */ 3033 if (new_dir != old_dir) { 3034 error = inode_permission(old_dentry->d_inode, MAY_WRITE); 3035 if (error) 3036 return error; 3037 } 3038 3039 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 3040 if (error) 3041 return error; 3042 3043 dget(new_dentry); 3044 if (target) 3045 mutex_lock(&target->i_mutex); 3046 3047 error = -EBUSY; 3048 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry)) 3049 goto out; 3050 3051 if (target) 3052 shrink_dcache_parent(new_dentry); 3053 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 3054 if (error) 3055 goto out; 3056 3057 if (target) { 3058 target->i_flags |= S_DEAD; 3059 dont_mount(new_dentry); 3060 } 3061 out: 3062 if (target) 3063 mutex_unlock(&target->i_mutex); 3064 dput(new_dentry); 3065 if (!error) 3066 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 3067 d_move(old_dentry,new_dentry); 3068 return error; 3069 } 3070 3071 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry, 3072 struct inode *new_dir, struct dentry *new_dentry) 3073 { 3074 struct inode *target = new_dentry->d_inode; 3075 int error; 3076 3077 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 3078 if (error) 3079 return error; 3080 3081 dget(new_dentry); 3082 if (target) 3083 mutex_lock(&target->i_mutex); 3084 3085 error = -EBUSY; 3086 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) 3087 goto out; 3088 3089 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 3090 if (error) 3091 goto out; 3092 3093 if (target) 3094 dont_mount(new_dentry); 3095 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 3096 d_move(old_dentry, new_dentry); 3097 out: 3098 if (target) 3099 mutex_unlock(&target->i_mutex); 3100 dput(new_dentry); 3101 return error; 3102 } 3103 3104 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 3105 struct inode *new_dir, struct dentry *new_dentry) 3106 { 3107 int error; 3108 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode); 3109 const unsigned char *old_name; 3110 3111 if (old_dentry->d_inode == new_dentry->d_inode) 3112 return 0; 3113 3114 error = may_delete(old_dir, old_dentry, is_dir); 3115 if (error) 3116 return error; 3117 3118 if (!new_dentry->d_inode) 3119 error = may_create(new_dir, new_dentry); 3120 else 3121 error = may_delete(new_dir, new_dentry, is_dir); 3122 if (error) 3123 return error; 3124 3125 if (!old_dir->i_op->rename) 3126 return -EPERM; 3127 3128 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 3129 3130 if (is_dir) 3131 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry); 3132 else 3133 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry); 3134 if (!error) 3135 fsnotify_move(old_dir, new_dir, old_name, is_dir, 3136 new_dentry->d_inode, old_dentry); 3137 fsnotify_oldname_free(old_name); 3138 3139 return error; 3140 } 3141 3142 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 3143 int, newdfd, const char __user *, newname) 3144 { 3145 struct dentry *old_dir, *new_dir; 3146 struct dentry *old_dentry, *new_dentry; 3147 struct dentry *trap; 3148 struct nameidata oldnd, newnd; 3149 char *from; 3150 char *to; 3151 int error; 3152 3153 error = user_path_parent(olddfd, oldname, &oldnd, &from); 3154 if (error) 3155 goto exit; 3156 3157 error = user_path_parent(newdfd, newname, &newnd, &to); 3158 if (error) 3159 goto exit1; 3160 3161 error = -EXDEV; 3162 if (oldnd.path.mnt != newnd.path.mnt) 3163 goto exit2; 3164 3165 old_dir = oldnd.path.dentry; 3166 error = -EBUSY; 3167 if (oldnd.last_type != LAST_NORM) 3168 goto exit2; 3169 3170 new_dir = newnd.path.dentry; 3171 if (newnd.last_type != LAST_NORM) 3172 goto exit2; 3173 3174 oldnd.flags &= ~LOOKUP_PARENT; 3175 newnd.flags &= ~LOOKUP_PARENT; 3176 newnd.flags |= LOOKUP_RENAME_TARGET; 3177 3178 trap = lock_rename(new_dir, old_dir); 3179 3180 old_dentry = lookup_hash(&oldnd); 3181 error = PTR_ERR(old_dentry); 3182 if (IS_ERR(old_dentry)) 3183 goto exit3; 3184 /* source must exist */ 3185 error = -ENOENT; 3186 if (!old_dentry->d_inode) 3187 goto exit4; 3188 /* unless the source is a directory trailing slashes give -ENOTDIR */ 3189 if (!S_ISDIR(old_dentry->d_inode->i_mode)) { 3190 error = -ENOTDIR; 3191 if (oldnd.last.name[oldnd.last.len]) 3192 goto exit4; 3193 if (newnd.last.name[newnd.last.len]) 3194 goto exit4; 3195 } 3196 /* source should not be ancestor of target */ 3197 error = -EINVAL; 3198 if (old_dentry == trap) 3199 goto exit4; 3200 new_dentry = lookup_hash(&newnd); 3201 error = PTR_ERR(new_dentry); 3202 if (IS_ERR(new_dentry)) 3203 goto exit4; 3204 /* target should not be an ancestor of source */ 3205 error = -ENOTEMPTY; 3206 if (new_dentry == trap) 3207 goto exit5; 3208 3209 error = mnt_want_write(oldnd.path.mnt); 3210 if (error) 3211 goto exit5; 3212 error = security_path_rename(&oldnd.path, old_dentry, 3213 &newnd.path, new_dentry); 3214 if (error) 3215 goto exit6; 3216 error = vfs_rename(old_dir->d_inode, old_dentry, 3217 new_dir->d_inode, new_dentry); 3218 exit6: 3219 mnt_drop_write(oldnd.path.mnt); 3220 exit5: 3221 dput(new_dentry); 3222 exit4: 3223 dput(old_dentry); 3224 exit3: 3225 unlock_rename(new_dir, old_dir); 3226 exit2: 3227 path_put(&newnd.path); 3228 putname(to); 3229 exit1: 3230 path_put(&oldnd.path); 3231 putname(from); 3232 exit: 3233 return error; 3234 } 3235 3236 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 3237 { 3238 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname); 3239 } 3240 3241 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link) 3242 { 3243 int len; 3244 3245 len = PTR_ERR(link); 3246 if (IS_ERR(link)) 3247 goto out; 3248 3249 len = strlen(link); 3250 if (len > (unsigned) buflen) 3251 len = buflen; 3252 if (copy_to_user(buffer, link, len)) 3253 len = -EFAULT; 3254 out: 3255 return len; 3256 } 3257 3258 /* 3259 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 3260 * have ->follow_link() touching nd only in nd_set_link(). Using (or not 3261 * using) it for any given inode is up to filesystem. 3262 */ 3263 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) 3264 { 3265 struct nameidata nd; 3266 void *cookie; 3267 int res; 3268 3269 nd.depth = 0; 3270 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd); 3271 if (IS_ERR(cookie)) 3272 return PTR_ERR(cookie); 3273 3274 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd)); 3275 if (dentry->d_inode->i_op->put_link) 3276 dentry->d_inode->i_op->put_link(dentry, &nd, cookie); 3277 return res; 3278 } 3279 3280 int vfs_follow_link(struct nameidata *nd, const char *link) 3281 { 3282 return __vfs_follow_link(nd, link); 3283 } 3284 3285 /* get the link contents into pagecache */ 3286 static char *page_getlink(struct dentry * dentry, struct page **ppage) 3287 { 3288 char *kaddr; 3289 struct page *page; 3290 struct address_space *mapping = dentry->d_inode->i_mapping; 3291 page = read_mapping_page(mapping, 0, NULL); 3292 if (IS_ERR(page)) 3293 return (char*)page; 3294 *ppage = page; 3295 kaddr = kmap(page); 3296 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1); 3297 return kaddr; 3298 } 3299 3300 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 3301 { 3302 struct page *page = NULL; 3303 char *s = page_getlink(dentry, &page); 3304 int res = vfs_readlink(dentry,buffer,buflen,s); 3305 if (page) { 3306 kunmap(page); 3307 page_cache_release(page); 3308 } 3309 return res; 3310 } 3311 3312 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd) 3313 { 3314 struct page *page = NULL; 3315 nd_set_link(nd, page_getlink(dentry, &page)); 3316 return page; 3317 } 3318 3319 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 3320 { 3321 struct page *page = cookie; 3322 3323 if (page) { 3324 kunmap(page); 3325 page_cache_release(page); 3326 } 3327 } 3328 3329 /* 3330 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 3331 */ 3332 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 3333 { 3334 struct address_space *mapping = inode->i_mapping; 3335 struct page *page; 3336 void *fsdata; 3337 int err; 3338 char *kaddr; 3339 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE; 3340 if (nofs) 3341 flags |= AOP_FLAG_NOFS; 3342 3343 retry: 3344 err = pagecache_write_begin(NULL, mapping, 0, len-1, 3345 flags, &page, &fsdata); 3346 if (err) 3347 goto fail; 3348 3349 kaddr = kmap_atomic(page, KM_USER0); 3350 memcpy(kaddr, symname, len-1); 3351 kunmap_atomic(kaddr, KM_USER0); 3352 3353 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 3354 page, fsdata); 3355 if (err < 0) 3356 goto fail; 3357 if (err < len-1) 3358 goto retry; 3359 3360 mark_inode_dirty(inode); 3361 return 0; 3362 fail: 3363 return err; 3364 } 3365 3366 int page_symlink(struct inode *inode, const char *symname, int len) 3367 { 3368 return __page_symlink(inode, symname, len, 3369 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS)); 3370 } 3371 3372 const struct inode_operations page_symlink_inode_operations = { 3373 .readlink = generic_readlink, 3374 .follow_link = page_follow_link_light, 3375 .put_link = page_put_link, 3376 }; 3377 3378 EXPORT_SYMBOL(user_path_at); 3379 EXPORT_SYMBOL(follow_down_one); 3380 EXPORT_SYMBOL(follow_down); 3381 EXPORT_SYMBOL(follow_up); 3382 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */ 3383 EXPORT_SYMBOL(getname); 3384 EXPORT_SYMBOL(lock_rename); 3385 EXPORT_SYMBOL(lookup_one_len); 3386 EXPORT_SYMBOL(page_follow_link_light); 3387 EXPORT_SYMBOL(page_put_link); 3388 EXPORT_SYMBOL(page_readlink); 3389 EXPORT_SYMBOL(__page_symlink); 3390 EXPORT_SYMBOL(page_symlink); 3391 EXPORT_SYMBOL(page_symlink_inode_operations); 3392 EXPORT_SYMBOL(kern_path); 3393 EXPORT_SYMBOL(vfs_path_lookup); 3394 EXPORT_SYMBOL(inode_permission); 3395 EXPORT_SYMBOL(unlock_rename); 3396 EXPORT_SYMBOL(vfs_create); 3397 EXPORT_SYMBOL(vfs_follow_link); 3398 EXPORT_SYMBOL(vfs_link); 3399 EXPORT_SYMBOL(vfs_mkdir); 3400 EXPORT_SYMBOL(vfs_mknod); 3401 EXPORT_SYMBOL(generic_permission); 3402 EXPORT_SYMBOL(vfs_readlink); 3403 EXPORT_SYMBOL(vfs_rename); 3404 EXPORT_SYMBOL(vfs_rmdir); 3405 EXPORT_SYMBOL(vfs_symlink); 3406 EXPORT_SYMBOL(vfs_unlink); 3407 EXPORT_SYMBOL(dentry_unhash); 3408 EXPORT_SYMBOL(generic_readlink); 3409