xref: /linux/fs/namei.c (revision 42b2aa86c6670347a2a07e6d7af0e0ecc8fdbff9)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <linux/posix_acl.h>
36 #include <asm/uaccess.h>
37 
38 #include "internal.h"
39 
40 /* [Feb-1997 T. Schoebel-Theuer]
41  * Fundamental changes in the pathname lookup mechanisms (namei)
42  * were necessary because of omirr.  The reason is that omirr needs
43  * to know the _real_ pathname, not the user-supplied one, in case
44  * of symlinks (and also when transname replacements occur).
45  *
46  * The new code replaces the old recursive symlink resolution with
47  * an iterative one (in case of non-nested symlink chains).  It does
48  * this with calls to <fs>_follow_link().
49  * As a side effect, dir_namei(), _namei() and follow_link() are now
50  * replaced with a single function lookup_dentry() that can handle all
51  * the special cases of the former code.
52  *
53  * With the new dcache, the pathname is stored at each inode, at least as
54  * long as the refcount of the inode is positive.  As a side effect, the
55  * size of the dcache depends on the inode cache and thus is dynamic.
56  *
57  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
58  * resolution to correspond with current state of the code.
59  *
60  * Note that the symlink resolution is not *completely* iterative.
61  * There is still a significant amount of tail- and mid- recursion in
62  * the algorithm.  Also, note that <fs>_readlink() is not used in
63  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
64  * may return different results than <fs>_follow_link().  Many virtual
65  * filesystems (including /proc) exhibit this behavior.
66  */
67 
68 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
69  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
70  * and the name already exists in form of a symlink, try to create the new
71  * name indicated by the symlink. The old code always complained that the
72  * name already exists, due to not following the symlink even if its target
73  * is nonexistent.  The new semantics affects also mknod() and link() when
74  * the name is a symlink pointing to a non-existent name.
75  *
76  * I don't know which semantics is the right one, since I have no access
77  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
78  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
79  * "old" one. Personally, I think the new semantics is much more logical.
80  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
81  * file does succeed in both HP-UX and SunOs, but not in Solaris
82  * and in the old Linux semantics.
83  */
84 
85 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
86  * semantics.  See the comments in "open_namei" and "do_link" below.
87  *
88  * [10-Sep-98 Alan Modra] Another symlink change.
89  */
90 
91 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
92  *	inside the path - always follow.
93  *	in the last component in creation/removal/renaming - never follow.
94  *	if LOOKUP_FOLLOW passed - follow.
95  *	if the pathname has trailing slashes - follow.
96  *	otherwise - don't follow.
97  * (applied in that order).
98  *
99  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
100  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
101  * During the 2.4 we need to fix the userland stuff depending on it -
102  * hopefully we will be able to get rid of that wart in 2.5. So far only
103  * XEmacs seems to be relying on it...
104  */
105 /*
106  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
107  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
108  * any extra contention...
109  */
110 
111 /* In order to reduce some races, while at the same time doing additional
112  * checking and hopefully speeding things up, we copy filenames to the
113  * kernel data space before using them..
114  *
115  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
116  * PATH_MAX includes the nul terminator --RR.
117  */
118 static int do_getname(const char __user *filename, char *page)
119 {
120 	int retval;
121 	unsigned long len = PATH_MAX;
122 
123 	if (!segment_eq(get_fs(), KERNEL_DS)) {
124 		if ((unsigned long) filename >= TASK_SIZE)
125 			return -EFAULT;
126 		if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
127 			len = TASK_SIZE - (unsigned long) filename;
128 	}
129 
130 	retval = strncpy_from_user(page, filename, len);
131 	if (retval > 0) {
132 		if (retval < len)
133 			return 0;
134 		return -ENAMETOOLONG;
135 	} else if (!retval)
136 		retval = -ENOENT;
137 	return retval;
138 }
139 
140 static char *getname_flags(const char __user *filename, int flags, int *empty)
141 {
142 	char *tmp, *result;
143 
144 	result = ERR_PTR(-ENOMEM);
145 	tmp = __getname();
146 	if (tmp)  {
147 		int retval = do_getname(filename, tmp);
148 
149 		result = tmp;
150 		if (retval < 0) {
151 			if (retval == -ENOENT && empty)
152 				*empty = 1;
153 			if (retval != -ENOENT || !(flags & LOOKUP_EMPTY)) {
154 				__putname(tmp);
155 				result = ERR_PTR(retval);
156 			}
157 		}
158 	}
159 	audit_getname(result);
160 	return result;
161 }
162 
163 char *getname(const char __user * filename)
164 {
165 	return getname_flags(filename, 0, 0);
166 }
167 
168 #ifdef CONFIG_AUDITSYSCALL
169 void putname(const char *name)
170 {
171 	if (unlikely(!audit_dummy_context()))
172 		audit_putname(name);
173 	else
174 		__putname(name);
175 }
176 EXPORT_SYMBOL(putname);
177 #endif
178 
179 static int check_acl(struct inode *inode, int mask)
180 {
181 #ifdef CONFIG_FS_POSIX_ACL
182 	struct posix_acl *acl;
183 
184 	if (mask & MAY_NOT_BLOCK) {
185 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
186 	        if (!acl)
187 	                return -EAGAIN;
188 		/* no ->get_acl() calls in RCU mode... */
189 		if (acl == ACL_NOT_CACHED)
190 			return -ECHILD;
191 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
192 	}
193 
194 	acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
195 
196 	/*
197 	 * A filesystem can force a ACL callback by just never filling the
198 	 * ACL cache. But normally you'd fill the cache either at inode
199 	 * instantiation time, or on the first ->get_acl call.
200 	 *
201 	 * If the filesystem doesn't have a get_acl() function at all, we'll
202 	 * just create the negative cache entry.
203 	 */
204 	if (acl == ACL_NOT_CACHED) {
205 	        if (inode->i_op->get_acl) {
206 			acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
207 			if (IS_ERR(acl))
208 				return PTR_ERR(acl);
209 		} else {
210 		        set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
211 		        return -EAGAIN;
212 		}
213 	}
214 
215 	if (acl) {
216 	        int error = posix_acl_permission(inode, acl, mask);
217 	        posix_acl_release(acl);
218 	        return error;
219 	}
220 #endif
221 
222 	return -EAGAIN;
223 }
224 
225 /*
226  * This does the basic permission checking
227  */
228 static int acl_permission_check(struct inode *inode, int mask)
229 {
230 	unsigned int mode = inode->i_mode;
231 
232 	if (current_user_ns() != inode_userns(inode))
233 		goto other_perms;
234 
235 	if (likely(current_fsuid() == inode->i_uid))
236 		mode >>= 6;
237 	else {
238 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
239 			int error = check_acl(inode, mask);
240 			if (error != -EAGAIN)
241 				return error;
242 		}
243 
244 		if (in_group_p(inode->i_gid))
245 			mode >>= 3;
246 	}
247 
248 other_perms:
249 	/*
250 	 * If the DACs are ok we don't need any capability check.
251 	 */
252 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
253 		return 0;
254 	return -EACCES;
255 }
256 
257 /**
258  * generic_permission -  check for access rights on a Posix-like filesystem
259  * @inode:	inode to check access rights for
260  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
261  *
262  * Used to check for read/write/execute permissions on a file.
263  * We use "fsuid" for this, letting us set arbitrary permissions
264  * for filesystem access without changing the "normal" uids which
265  * are used for other things.
266  *
267  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
268  * request cannot be satisfied (eg. requires blocking or too much complexity).
269  * It would then be called again in ref-walk mode.
270  */
271 int generic_permission(struct inode *inode, int mask)
272 {
273 	int ret;
274 
275 	/*
276 	 * Do the basic permission checks.
277 	 */
278 	ret = acl_permission_check(inode, mask);
279 	if (ret != -EACCES)
280 		return ret;
281 
282 	if (S_ISDIR(inode->i_mode)) {
283 		/* DACs are overridable for directories */
284 		if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
285 			return 0;
286 		if (!(mask & MAY_WRITE))
287 			if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
288 				return 0;
289 		return -EACCES;
290 	}
291 	/*
292 	 * Read/write DACs are always overridable.
293 	 * Executable DACs are overridable when there is
294 	 * at least one exec bit set.
295 	 */
296 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
297 		if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
298 			return 0;
299 
300 	/*
301 	 * Searching includes executable on directories, else just read.
302 	 */
303 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
304 	if (mask == MAY_READ)
305 		if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
306 			return 0;
307 
308 	return -EACCES;
309 }
310 
311 /*
312  * We _really_ want to just do "generic_permission()" without
313  * even looking at the inode->i_op values. So we keep a cache
314  * flag in inode->i_opflags, that says "this has not special
315  * permission function, use the fast case".
316  */
317 static inline int do_inode_permission(struct inode *inode, int mask)
318 {
319 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
320 		if (likely(inode->i_op->permission))
321 			return inode->i_op->permission(inode, mask);
322 
323 		/* This gets set once for the inode lifetime */
324 		spin_lock(&inode->i_lock);
325 		inode->i_opflags |= IOP_FASTPERM;
326 		spin_unlock(&inode->i_lock);
327 	}
328 	return generic_permission(inode, mask);
329 }
330 
331 /**
332  * inode_permission  -  check for access rights to a given inode
333  * @inode:	inode to check permission on
334  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
335  *
336  * Used to check for read/write/execute permissions on an inode.
337  * We use "fsuid" for this, letting us set arbitrary permissions
338  * for filesystem access without changing the "normal" uids which
339  * are used for other things.
340  *
341  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
342  */
343 int inode_permission(struct inode *inode, int mask)
344 {
345 	int retval;
346 
347 	if (unlikely(mask & MAY_WRITE)) {
348 		umode_t mode = inode->i_mode;
349 
350 		/*
351 		 * Nobody gets write access to a read-only fs.
352 		 */
353 		if (IS_RDONLY(inode) &&
354 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
355 			return -EROFS;
356 
357 		/*
358 		 * Nobody gets write access to an immutable file.
359 		 */
360 		if (IS_IMMUTABLE(inode))
361 			return -EACCES;
362 	}
363 
364 	retval = do_inode_permission(inode, mask);
365 	if (retval)
366 		return retval;
367 
368 	retval = devcgroup_inode_permission(inode, mask);
369 	if (retval)
370 		return retval;
371 
372 	return security_inode_permission(inode, mask);
373 }
374 
375 /**
376  * path_get - get a reference to a path
377  * @path: path to get the reference to
378  *
379  * Given a path increment the reference count to the dentry and the vfsmount.
380  */
381 void path_get(struct path *path)
382 {
383 	mntget(path->mnt);
384 	dget(path->dentry);
385 }
386 EXPORT_SYMBOL(path_get);
387 
388 /**
389  * path_put - put a reference to a path
390  * @path: path to put the reference to
391  *
392  * Given a path decrement the reference count to the dentry and the vfsmount.
393  */
394 void path_put(struct path *path)
395 {
396 	dput(path->dentry);
397 	mntput(path->mnt);
398 }
399 EXPORT_SYMBOL(path_put);
400 
401 /*
402  * Path walking has 2 modes, rcu-walk and ref-walk (see
403  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
404  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
405  * normal reference counts on dentries and vfsmounts to transition to rcu-walk
406  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
407  * got stuck, so ref-walk may continue from there. If this is not successful
408  * (eg. a seqcount has changed), then failure is returned and it's up to caller
409  * to restart the path walk from the beginning in ref-walk mode.
410  */
411 
412 /**
413  * unlazy_walk - try to switch to ref-walk mode.
414  * @nd: nameidata pathwalk data
415  * @dentry: child of nd->path.dentry or NULL
416  * Returns: 0 on success, -ECHILD on failure
417  *
418  * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
419  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
420  * @nd or NULL.  Must be called from rcu-walk context.
421  */
422 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
423 {
424 	struct fs_struct *fs = current->fs;
425 	struct dentry *parent = nd->path.dentry;
426 	int want_root = 0;
427 
428 	BUG_ON(!(nd->flags & LOOKUP_RCU));
429 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
430 		want_root = 1;
431 		spin_lock(&fs->lock);
432 		if (nd->root.mnt != fs->root.mnt ||
433 				nd->root.dentry != fs->root.dentry)
434 			goto err_root;
435 	}
436 	spin_lock(&parent->d_lock);
437 	if (!dentry) {
438 		if (!__d_rcu_to_refcount(parent, nd->seq))
439 			goto err_parent;
440 		BUG_ON(nd->inode != parent->d_inode);
441 	} else {
442 		if (dentry->d_parent != parent)
443 			goto err_parent;
444 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
445 		if (!__d_rcu_to_refcount(dentry, nd->seq))
446 			goto err_child;
447 		/*
448 		 * If the sequence check on the child dentry passed, then
449 		 * the child has not been removed from its parent. This
450 		 * means the parent dentry must be valid and able to take
451 		 * a reference at this point.
452 		 */
453 		BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
454 		BUG_ON(!parent->d_count);
455 		parent->d_count++;
456 		spin_unlock(&dentry->d_lock);
457 	}
458 	spin_unlock(&parent->d_lock);
459 	if (want_root) {
460 		path_get(&nd->root);
461 		spin_unlock(&fs->lock);
462 	}
463 	mntget(nd->path.mnt);
464 
465 	rcu_read_unlock();
466 	br_read_unlock(vfsmount_lock);
467 	nd->flags &= ~LOOKUP_RCU;
468 	return 0;
469 
470 err_child:
471 	spin_unlock(&dentry->d_lock);
472 err_parent:
473 	spin_unlock(&parent->d_lock);
474 err_root:
475 	if (want_root)
476 		spin_unlock(&fs->lock);
477 	return -ECHILD;
478 }
479 
480 /**
481  * release_open_intent - free up open intent resources
482  * @nd: pointer to nameidata
483  */
484 void release_open_intent(struct nameidata *nd)
485 {
486 	struct file *file = nd->intent.open.file;
487 
488 	if (file && !IS_ERR(file)) {
489 		if (file->f_path.dentry == NULL)
490 			put_filp(file);
491 		else
492 			fput(file);
493 	}
494 }
495 
496 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd)
497 {
498 	return dentry->d_op->d_revalidate(dentry, nd);
499 }
500 
501 /**
502  * complete_walk - successful completion of path walk
503  * @nd:  pointer nameidata
504  *
505  * If we had been in RCU mode, drop out of it and legitimize nd->path.
506  * Revalidate the final result, unless we'd already done that during
507  * the path walk or the filesystem doesn't ask for it.  Return 0 on
508  * success, -error on failure.  In case of failure caller does not
509  * need to drop nd->path.
510  */
511 static int complete_walk(struct nameidata *nd)
512 {
513 	struct dentry *dentry = nd->path.dentry;
514 	int status;
515 
516 	if (nd->flags & LOOKUP_RCU) {
517 		nd->flags &= ~LOOKUP_RCU;
518 		if (!(nd->flags & LOOKUP_ROOT))
519 			nd->root.mnt = NULL;
520 		spin_lock(&dentry->d_lock);
521 		if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
522 			spin_unlock(&dentry->d_lock);
523 			rcu_read_unlock();
524 			br_read_unlock(vfsmount_lock);
525 			return -ECHILD;
526 		}
527 		BUG_ON(nd->inode != dentry->d_inode);
528 		spin_unlock(&dentry->d_lock);
529 		mntget(nd->path.mnt);
530 		rcu_read_unlock();
531 		br_read_unlock(vfsmount_lock);
532 	}
533 
534 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
535 		return 0;
536 
537 	if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
538 		return 0;
539 
540 	if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
541 		return 0;
542 
543 	/* Note: we do not d_invalidate() */
544 	status = d_revalidate(dentry, nd);
545 	if (status > 0)
546 		return 0;
547 
548 	if (!status)
549 		status = -ESTALE;
550 
551 	path_put(&nd->path);
552 	return status;
553 }
554 
555 static __always_inline void set_root(struct nameidata *nd)
556 {
557 	if (!nd->root.mnt)
558 		get_fs_root(current->fs, &nd->root);
559 }
560 
561 static int link_path_walk(const char *, struct nameidata *);
562 
563 static __always_inline void set_root_rcu(struct nameidata *nd)
564 {
565 	if (!nd->root.mnt) {
566 		struct fs_struct *fs = current->fs;
567 		unsigned seq;
568 
569 		do {
570 			seq = read_seqcount_begin(&fs->seq);
571 			nd->root = fs->root;
572 			nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
573 		} while (read_seqcount_retry(&fs->seq, seq));
574 	}
575 }
576 
577 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
578 {
579 	int ret;
580 
581 	if (IS_ERR(link))
582 		goto fail;
583 
584 	if (*link == '/') {
585 		set_root(nd);
586 		path_put(&nd->path);
587 		nd->path = nd->root;
588 		path_get(&nd->root);
589 		nd->flags |= LOOKUP_JUMPED;
590 	}
591 	nd->inode = nd->path.dentry->d_inode;
592 
593 	ret = link_path_walk(link, nd);
594 	return ret;
595 fail:
596 	path_put(&nd->path);
597 	return PTR_ERR(link);
598 }
599 
600 static void path_put_conditional(struct path *path, struct nameidata *nd)
601 {
602 	dput(path->dentry);
603 	if (path->mnt != nd->path.mnt)
604 		mntput(path->mnt);
605 }
606 
607 static inline void path_to_nameidata(const struct path *path,
608 					struct nameidata *nd)
609 {
610 	if (!(nd->flags & LOOKUP_RCU)) {
611 		dput(nd->path.dentry);
612 		if (nd->path.mnt != path->mnt)
613 			mntput(nd->path.mnt);
614 	}
615 	nd->path.mnt = path->mnt;
616 	nd->path.dentry = path->dentry;
617 }
618 
619 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
620 {
621 	struct inode *inode = link->dentry->d_inode;
622 	if (!IS_ERR(cookie) && inode->i_op->put_link)
623 		inode->i_op->put_link(link->dentry, nd, cookie);
624 	path_put(link);
625 }
626 
627 static __always_inline int
628 follow_link(struct path *link, struct nameidata *nd, void **p)
629 {
630 	int error;
631 	struct dentry *dentry = link->dentry;
632 
633 	BUG_ON(nd->flags & LOOKUP_RCU);
634 
635 	if (link->mnt == nd->path.mnt)
636 		mntget(link->mnt);
637 
638 	if (unlikely(current->total_link_count >= 40)) {
639 		*p = ERR_PTR(-ELOOP); /* no ->put_link(), please */
640 		path_put(&nd->path);
641 		return -ELOOP;
642 	}
643 	cond_resched();
644 	current->total_link_count++;
645 
646 	touch_atime(link->mnt, dentry);
647 	nd_set_link(nd, NULL);
648 
649 	error = security_inode_follow_link(link->dentry, nd);
650 	if (error) {
651 		*p = ERR_PTR(error); /* no ->put_link(), please */
652 		path_put(&nd->path);
653 		return error;
654 	}
655 
656 	nd->last_type = LAST_BIND;
657 	*p = dentry->d_inode->i_op->follow_link(dentry, nd);
658 	error = PTR_ERR(*p);
659 	if (!IS_ERR(*p)) {
660 		char *s = nd_get_link(nd);
661 		error = 0;
662 		if (s)
663 			error = __vfs_follow_link(nd, s);
664 		else if (nd->last_type == LAST_BIND) {
665 			nd->flags |= LOOKUP_JUMPED;
666 			nd->inode = nd->path.dentry->d_inode;
667 			if (nd->inode->i_op->follow_link) {
668 				/* stepped on a _really_ weird one */
669 				path_put(&nd->path);
670 				error = -ELOOP;
671 			}
672 		}
673 	}
674 	return error;
675 }
676 
677 static int follow_up_rcu(struct path *path)
678 {
679 	struct vfsmount *parent;
680 	struct dentry *mountpoint;
681 
682 	parent = path->mnt->mnt_parent;
683 	if (parent == path->mnt)
684 		return 0;
685 	mountpoint = path->mnt->mnt_mountpoint;
686 	path->dentry = mountpoint;
687 	path->mnt = parent;
688 	return 1;
689 }
690 
691 int follow_up(struct path *path)
692 {
693 	struct vfsmount *parent;
694 	struct dentry *mountpoint;
695 
696 	br_read_lock(vfsmount_lock);
697 	parent = path->mnt->mnt_parent;
698 	if (parent == path->mnt) {
699 		br_read_unlock(vfsmount_lock);
700 		return 0;
701 	}
702 	mntget(parent);
703 	mountpoint = dget(path->mnt->mnt_mountpoint);
704 	br_read_unlock(vfsmount_lock);
705 	dput(path->dentry);
706 	path->dentry = mountpoint;
707 	mntput(path->mnt);
708 	path->mnt = parent;
709 	return 1;
710 }
711 
712 /*
713  * Perform an automount
714  * - return -EISDIR to tell follow_managed() to stop and return the path we
715  *   were called with.
716  */
717 static int follow_automount(struct path *path, unsigned flags,
718 			    bool *need_mntput)
719 {
720 	struct vfsmount *mnt;
721 	int err;
722 
723 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
724 		return -EREMOTE;
725 
726 	/* We don't want to mount if someone's just doing a stat -
727 	 * unless they're stat'ing a directory and appended a '/' to
728 	 * the name.
729 	 *
730 	 * We do, however, want to mount if someone wants to open or
731 	 * create a file of any type under the mountpoint, wants to
732 	 * traverse through the mountpoint or wants to open the
733 	 * mounted directory.  Also, autofs may mark negative dentries
734 	 * as being automount points.  These will need the attentions
735 	 * of the daemon to instantiate them before they can be used.
736 	 */
737 	if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
738 		     LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
739 	    path->dentry->d_inode)
740 		return -EISDIR;
741 
742 	current->total_link_count++;
743 	if (current->total_link_count >= 40)
744 		return -ELOOP;
745 
746 	mnt = path->dentry->d_op->d_automount(path);
747 	if (IS_ERR(mnt)) {
748 		/*
749 		 * The filesystem is allowed to return -EISDIR here to indicate
750 		 * it doesn't want to automount.  For instance, autofs would do
751 		 * this so that its userspace daemon can mount on this dentry.
752 		 *
753 		 * However, we can only permit this if it's a terminal point in
754 		 * the path being looked up; if it wasn't then the remainder of
755 		 * the path is inaccessible and we should say so.
756 		 */
757 		if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
758 			return -EREMOTE;
759 		return PTR_ERR(mnt);
760 	}
761 
762 	if (!mnt) /* mount collision */
763 		return 0;
764 
765 	if (!*need_mntput) {
766 		/* lock_mount() may release path->mnt on error */
767 		mntget(path->mnt);
768 		*need_mntput = true;
769 	}
770 	err = finish_automount(mnt, path);
771 
772 	switch (err) {
773 	case -EBUSY:
774 		/* Someone else made a mount here whilst we were busy */
775 		return 0;
776 	case 0:
777 		path_put(path);
778 		path->mnt = mnt;
779 		path->dentry = dget(mnt->mnt_root);
780 		return 0;
781 	default:
782 		return err;
783 	}
784 
785 }
786 
787 /*
788  * Handle a dentry that is managed in some way.
789  * - Flagged for transit management (autofs)
790  * - Flagged as mountpoint
791  * - Flagged as automount point
792  *
793  * This may only be called in refwalk mode.
794  *
795  * Serialization is taken care of in namespace.c
796  */
797 static int follow_managed(struct path *path, unsigned flags)
798 {
799 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
800 	unsigned managed;
801 	bool need_mntput = false;
802 	int ret = 0;
803 
804 	/* Given that we're not holding a lock here, we retain the value in a
805 	 * local variable for each dentry as we look at it so that we don't see
806 	 * the components of that value change under us */
807 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
808 	       managed &= DCACHE_MANAGED_DENTRY,
809 	       unlikely(managed != 0)) {
810 		/* Allow the filesystem to manage the transit without i_mutex
811 		 * being held. */
812 		if (managed & DCACHE_MANAGE_TRANSIT) {
813 			BUG_ON(!path->dentry->d_op);
814 			BUG_ON(!path->dentry->d_op->d_manage);
815 			ret = path->dentry->d_op->d_manage(path->dentry, false);
816 			if (ret < 0)
817 				break;
818 		}
819 
820 		/* Transit to a mounted filesystem. */
821 		if (managed & DCACHE_MOUNTED) {
822 			struct vfsmount *mounted = lookup_mnt(path);
823 			if (mounted) {
824 				dput(path->dentry);
825 				if (need_mntput)
826 					mntput(path->mnt);
827 				path->mnt = mounted;
828 				path->dentry = dget(mounted->mnt_root);
829 				need_mntput = true;
830 				continue;
831 			}
832 
833 			/* Something is mounted on this dentry in another
834 			 * namespace and/or whatever was mounted there in this
835 			 * namespace got unmounted before we managed to get the
836 			 * vfsmount_lock */
837 		}
838 
839 		/* Handle an automount point */
840 		if (managed & DCACHE_NEED_AUTOMOUNT) {
841 			ret = follow_automount(path, flags, &need_mntput);
842 			if (ret < 0)
843 				break;
844 			continue;
845 		}
846 
847 		/* We didn't change the current path point */
848 		break;
849 	}
850 
851 	if (need_mntput && path->mnt == mnt)
852 		mntput(path->mnt);
853 	if (ret == -EISDIR)
854 		ret = 0;
855 	return ret < 0 ? ret : need_mntput;
856 }
857 
858 int follow_down_one(struct path *path)
859 {
860 	struct vfsmount *mounted;
861 
862 	mounted = lookup_mnt(path);
863 	if (mounted) {
864 		dput(path->dentry);
865 		mntput(path->mnt);
866 		path->mnt = mounted;
867 		path->dentry = dget(mounted->mnt_root);
868 		return 1;
869 	}
870 	return 0;
871 }
872 
873 static inline bool managed_dentry_might_block(struct dentry *dentry)
874 {
875 	return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
876 		dentry->d_op->d_manage(dentry, true) < 0);
877 }
878 
879 /*
880  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
881  * we meet a managed dentry that would need blocking.
882  */
883 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
884 			       struct inode **inode)
885 {
886 	for (;;) {
887 		struct vfsmount *mounted;
888 		/*
889 		 * Don't forget we might have a non-mountpoint managed dentry
890 		 * that wants to block transit.
891 		 */
892 		if (unlikely(managed_dentry_might_block(path->dentry)))
893 			return false;
894 
895 		if (!d_mountpoint(path->dentry))
896 			break;
897 
898 		mounted = __lookup_mnt(path->mnt, path->dentry, 1);
899 		if (!mounted)
900 			break;
901 		path->mnt = mounted;
902 		path->dentry = mounted->mnt_root;
903 		nd->flags |= LOOKUP_JUMPED;
904 		nd->seq = read_seqcount_begin(&path->dentry->d_seq);
905 		/*
906 		 * Update the inode too. We don't need to re-check the
907 		 * dentry sequence number here after this d_inode read,
908 		 * because a mount-point is always pinned.
909 		 */
910 		*inode = path->dentry->d_inode;
911 	}
912 	return true;
913 }
914 
915 static void follow_mount_rcu(struct nameidata *nd)
916 {
917 	while (d_mountpoint(nd->path.dentry)) {
918 		struct vfsmount *mounted;
919 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
920 		if (!mounted)
921 			break;
922 		nd->path.mnt = mounted;
923 		nd->path.dentry = mounted->mnt_root;
924 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
925 	}
926 }
927 
928 static int follow_dotdot_rcu(struct nameidata *nd)
929 {
930 	set_root_rcu(nd);
931 
932 	while (1) {
933 		if (nd->path.dentry == nd->root.dentry &&
934 		    nd->path.mnt == nd->root.mnt) {
935 			break;
936 		}
937 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
938 			struct dentry *old = nd->path.dentry;
939 			struct dentry *parent = old->d_parent;
940 			unsigned seq;
941 
942 			seq = read_seqcount_begin(&parent->d_seq);
943 			if (read_seqcount_retry(&old->d_seq, nd->seq))
944 				goto failed;
945 			nd->path.dentry = parent;
946 			nd->seq = seq;
947 			break;
948 		}
949 		if (!follow_up_rcu(&nd->path))
950 			break;
951 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
952 	}
953 	follow_mount_rcu(nd);
954 	nd->inode = nd->path.dentry->d_inode;
955 	return 0;
956 
957 failed:
958 	nd->flags &= ~LOOKUP_RCU;
959 	if (!(nd->flags & LOOKUP_ROOT))
960 		nd->root.mnt = NULL;
961 	rcu_read_unlock();
962 	br_read_unlock(vfsmount_lock);
963 	return -ECHILD;
964 }
965 
966 /*
967  * Follow down to the covering mount currently visible to userspace.  At each
968  * point, the filesystem owning that dentry may be queried as to whether the
969  * caller is permitted to proceed or not.
970  */
971 int follow_down(struct path *path)
972 {
973 	unsigned managed;
974 	int ret;
975 
976 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
977 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
978 		/* Allow the filesystem to manage the transit without i_mutex
979 		 * being held.
980 		 *
981 		 * We indicate to the filesystem if someone is trying to mount
982 		 * something here.  This gives autofs the chance to deny anyone
983 		 * other than its daemon the right to mount on its
984 		 * superstructure.
985 		 *
986 		 * The filesystem may sleep at this point.
987 		 */
988 		if (managed & DCACHE_MANAGE_TRANSIT) {
989 			BUG_ON(!path->dentry->d_op);
990 			BUG_ON(!path->dentry->d_op->d_manage);
991 			ret = path->dentry->d_op->d_manage(
992 				path->dentry, false);
993 			if (ret < 0)
994 				return ret == -EISDIR ? 0 : ret;
995 		}
996 
997 		/* Transit to a mounted filesystem. */
998 		if (managed & DCACHE_MOUNTED) {
999 			struct vfsmount *mounted = lookup_mnt(path);
1000 			if (!mounted)
1001 				break;
1002 			dput(path->dentry);
1003 			mntput(path->mnt);
1004 			path->mnt = mounted;
1005 			path->dentry = dget(mounted->mnt_root);
1006 			continue;
1007 		}
1008 
1009 		/* Don't handle automount points here */
1010 		break;
1011 	}
1012 	return 0;
1013 }
1014 
1015 /*
1016  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1017  */
1018 static void follow_mount(struct path *path)
1019 {
1020 	while (d_mountpoint(path->dentry)) {
1021 		struct vfsmount *mounted = lookup_mnt(path);
1022 		if (!mounted)
1023 			break;
1024 		dput(path->dentry);
1025 		mntput(path->mnt);
1026 		path->mnt = mounted;
1027 		path->dentry = dget(mounted->mnt_root);
1028 	}
1029 }
1030 
1031 static void follow_dotdot(struct nameidata *nd)
1032 {
1033 	set_root(nd);
1034 
1035 	while(1) {
1036 		struct dentry *old = nd->path.dentry;
1037 
1038 		if (nd->path.dentry == nd->root.dentry &&
1039 		    nd->path.mnt == nd->root.mnt) {
1040 			break;
1041 		}
1042 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1043 			/* rare case of legitimate dget_parent()... */
1044 			nd->path.dentry = dget_parent(nd->path.dentry);
1045 			dput(old);
1046 			break;
1047 		}
1048 		if (!follow_up(&nd->path))
1049 			break;
1050 	}
1051 	follow_mount(&nd->path);
1052 	nd->inode = nd->path.dentry->d_inode;
1053 }
1054 
1055 /*
1056  * Allocate a dentry with name and parent, and perform a parent
1057  * directory ->lookup on it. Returns the new dentry, or ERR_PTR
1058  * on error. parent->d_inode->i_mutex must be held. d_lookup must
1059  * have verified that no child exists while under i_mutex.
1060  */
1061 static struct dentry *d_alloc_and_lookup(struct dentry *parent,
1062 				struct qstr *name, struct nameidata *nd)
1063 {
1064 	struct inode *inode = parent->d_inode;
1065 	struct dentry *dentry;
1066 	struct dentry *old;
1067 
1068 	/* Don't create child dentry for a dead directory. */
1069 	if (unlikely(IS_DEADDIR(inode)))
1070 		return ERR_PTR(-ENOENT);
1071 
1072 	dentry = d_alloc(parent, name);
1073 	if (unlikely(!dentry))
1074 		return ERR_PTR(-ENOMEM);
1075 
1076 	old = inode->i_op->lookup(inode, dentry, nd);
1077 	if (unlikely(old)) {
1078 		dput(dentry);
1079 		dentry = old;
1080 	}
1081 	return dentry;
1082 }
1083 
1084 /*
1085  * We already have a dentry, but require a lookup to be performed on the parent
1086  * directory to fill in d_inode. Returns the new dentry, or ERR_PTR on error.
1087  * parent->d_inode->i_mutex must be held. d_lookup must have verified that no
1088  * child exists while under i_mutex.
1089  */
1090 static struct dentry *d_inode_lookup(struct dentry *parent, struct dentry *dentry,
1091 				     struct nameidata *nd)
1092 {
1093 	struct inode *inode = parent->d_inode;
1094 	struct dentry *old;
1095 
1096 	/* Don't create child dentry for a dead directory. */
1097 	if (unlikely(IS_DEADDIR(inode)))
1098 		return ERR_PTR(-ENOENT);
1099 
1100 	old = inode->i_op->lookup(inode, dentry, nd);
1101 	if (unlikely(old)) {
1102 		dput(dentry);
1103 		dentry = old;
1104 	}
1105 	return dentry;
1106 }
1107 
1108 /*
1109  *  It's more convoluted than I'd like it to be, but... it's still fairly
1110  *  small and for now I'd prefer to have fast path as straight as possible.
1111  *  It _is_ time-critical.
1112  */
1113 static int do_lookup(struct nameidata *nd, struct qstr *name,
1114 			struct path *path, struct inode **inode)
1115 {
1116 	struct vfsmount *mnt = nd->path.mnt;
1117 	struct dentry *dentry, *parent = nd->path.dentry;
1118 	int need_reval = 1;
1119 	int status = 1;
1120 	int err;
1121 
1122 	/*
1123 	 * Rename seqlock is not required here because in the off chance
1124 	 * of a false negative due to a concurrent rename, we're going to
1125 	 * do the non-racy lookup, below.
1126 	 */
1127 	if (nd->flags & LOOKUP_RCU) {
1128 		unsigned seq;
1129 		*inode = nd->inode;
1130 		dentry = __d_lookup_rcu(parent, name, &seq, inode);
1131 		if (!dentry)
1132 			goto unlazy;
1133 
1134 		/* Memory barrier in read_seqcount_begin of child is enough */
1135 		if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1136 			return -ECHILD;
1137 		nd->seq = seq;
1138 
1139 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1140 			status = d_revalidate(dentry, nd);
1141 			if (unlikely(status <= 0)) {
1142 				if (status != -ECHILD)
1143 					need_reval = 0;
1144 				goto unlazy;
1145 			}
1146 		}
1147 		if (unlikely(d_need_lookup(dentry)))
1148 			goto unlazy;
1149 		path->mnt = mnt;
1150 		path->dentry = dentry;
1151 		if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1152 			goto unlazy;
1153 		if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1154 			goto unlazy;
1155 		return 0;
1156 unlazy:
1157 		if (unlazy_walk(nd, dentry))
1158 			return -ECHILD;
1159 	} else {
1160 		dentry = __d_lookup(parent, name);
1161 	}
1162 
1163 	if (dentry && unlikely(d_need_lookup(dentry))) {
1164 		dput(dentry);
1165 		dentry = NULL;
1166 	}
1167 retry:
1168 	if (unlikely(!dentry)) {
1169 		struct inode *dir = parent->d_inode;
1170 		BUG_ON(nd->inode != dir);
1171 
1172 		mutex_lock(&dir->i_mutex);
1173 		dentry = d_lookup(parent, name);
1174 		if (likely(!dentry)) {
1175 			dentry = d_alloc_and_lookup(parent, name, nd);
1176 			if (IS_ERR(dentry)) {
1177 				mutex_unlock(&dir->i_mutex);
1178 				return PTR_ERR(dentry);
1179 			}
1180 			/* known good */
1181 			need_reval = 0;
1182 			status = 1;
1183 		} else if (unlikely(d_need_lookup(dentry))) {
1184 			dentry = d_inode_lookup(parent, dentry, nd);
1185 			if (IS_ERR(dentry)) {
1186 				mutex_unlock(&dir->i_mutex);
1187 				return PTR_ERR(dentry);
1188 			}
1189 			/* known good */
1190 			need_reval = 0;
1191 			status = 1;
1192 		}
1193 		mutex_unlock(&dir->i_mutex);
1194 	}
1195 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1196 		status = d_revalidate(dentry, nd);
1197 	if (unlikely(status <= 0)) {
1198 		if (status < 0) {
1199 			dput(dentry);
1200 			return status;
1201 		}
1202 		if (!d_invalidate(dentry)) {
1203 			dput(dentry);
1204 			dentry = NULL;
1205 			need_reval = 1;
1206 			goto retry;
1207 		}
1208 	}
1209 
1210 	path->mnt = mnt;
1211 	path->dentry = dentry;
1212 	err = follow_managed(path, nd->flags);
1213 	if (unlikely(err < 0)) {
1214 		path_put_conditional(path, nd);
1215 		return err;
1216 	}
1217 	if (err)
1218 		nd->flags |= LOOKUP_JUMPED;
1219 	*inode = path->dentry->d_inode;
1220 	return 0;
1221 }
1222 
1223 static inline int may_lookup(struct nameidata *nd)
1224 {
1225 	if (nd->flags & LOOKUP_RCU) {
1226 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1227 		if (err != -ECHILD)
1228 			return err;
1229 		if (unlazy_walk(nd, NULL))
1230 			return -ECHILD;
1231 	}
1232 	return inode_permission(nd->inode, MAY_EXEC);
1233 }
1234 
1235 static inline int handle_dots(struct nameidata *nd, int type)
1236 {
1237 	if (type == LAST_DOTDOT) {
1238 		if (nd->flags & LOOKUP_RCU) {
1239 			if (follow_dotdot_rcu(nd))
1240 				return -ECHILD;
1241 		} else
1242 			follow_dotdot(nd);
1243 	}
1244 	return 0;
1245 }
1246 
1247 static void terminate_walk(struct nameidata *nd)
1248 {
1249 	if (!(nd->flags & LOOKUP_RCU)) {
1250 		path_put(&nd->path);
1251 	} else {
1252 		nd->flags &= ~LOOKUP_RCU;
1253 		if (!(nd->flags & LOOKUP_ROOT))
1254 			nd->root.mnt = NULL;
1255 		rcu_read_unlock();
1256 		br_read_unlock(vfsmount_lock);
1257 	}
1258 }
1259 
1260 /*
1261  * Do we need to follow links? We _really_ want to be able
1262  * to do this check without having to look at inode->i_op,
1263  * so we keep a cache of "no, this doesn't need follow_link"
1264  * for the common case.
1265  */
1266 static inline int should_follow_link(struct inode *inode, int follow)
1267 {
1268 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1269 		if (likely(inode->i_op->follow_link))
1270 			return follow;
1271 
1272 		/* This gets set once for the inode lifetime */
1273 		spin_lock(&inode->i_lock);
1274 		inode->i_opflags |= IOP_NOFOLLOW;
1275 		spin_unlock(&inode->i_lock);
1276 	}
1277 	return 0;
1278 }
1279 
1280 static inline int walk_component(struct nameidata *nd, struct path *path,
1281 		struct qstr *name, int type, int follow)
1282 {
1283 	struct inode *inode;
1284 	int err;
1285 	/*
1286 	 * "." and ".." are special - ".." especially so because it has
1287 	 * to be able to know about the current root directory and
1288 	 * parent relationships.
1289 	 */
1290 	if (unlikely(type != LAST_NORM))
1291 		return handle_dots(nd, type);
1292 	err = do_lookup(nd, name, path, &inode);
1293 	if (unlikely(err)) {
1294 		terminate_walk(nd);
1295 		return err;
1296 	}
1297 	if (!inode) {
1298 		path_to_nameidata(path, nd);
1299 		terminate_walk(nd);
1300 		return -ENOENT;
1301 	}
1302 	if (should_follow_link(inode, follow)) {
1303 		if (nd->flags & LOOKUP_RCU) {
1304 			if (unlikely(unlazy_walk(nd, path->dentry))) {
1305 				terminate_walk(nd);
1306 				return -ECHILD;
1307 			}
1308 		}
1309 		BUG_ON(inode != path->dentry->d_inode);
1310 		return 1;
1311 	}
1312 	path_to_nameidata(path, nd);
1313 	nd->inode = inode;
1314 	return 0;
1315 }
1316 
1317 /*
1318  * This limits recursive symlink follows to 8, while
1319  * limiting consecutive symlinks to 40.
1320  *
1321  * Without that kind of total limit, nasty chains of consecutive
1322  * symlinks can cause almost arbitrarily long lookups.
1323  */
1324 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1325 {
1326 	int res;
1327 
1328 	if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1329 		path_put_conditional(path, nd);
1330 		path_put(&nd->path);
1331 		return -ELOOP;
1332 	}
1333 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1334 
1335 	nd->depth++;
1336 	current->link_count++;
1337 
1338 	do {
1339 		struct path link = *path;
1340 		void *cookie;
1341 
1342 		res = follow_link(&link, nd, &cookie);
1343 		if (!res)
1344 			res = walk_component(nd, path, &nd->last,
1345 					     nd->last_type, LOOKUP_FOLLOW);
1346 		put_link(nd, &link, cookie);
1347 	} while (res > 0);
1348 
1349 	current->link_count--;
1350 	nd->depth--;
1351 	return res;
1352 }
1353 
1354 /*
1355  * We really don't want to look at inode->i_op->lookup
1356  * when we don't have to. So we keep a cache bit in
1357  * the inode ->i_opflags field that says "yes, we can
1358  * do lookup on this inode".
1359  */
1360 static inline int can_lookup(struct inode *inode)
1361 {
1362 	if (likely(inode->i_opflags & IOP_LOOKUP))
1363 		return 1;
1364 	if (likely(!inode->i_op->lookup))
1365 		return 0;
1366 
1367 	/* We do this once for the lifetime of the inode */
1368 	spin_lock(&inode->i_lock);
1369 	inode->i_opflags |= IOP_LOOKUP;
1370 	spin_unlock(&inode->i_lock);
1371 	return 1;
1372 }
1373 
1374 /*
1375  * Name resolution.
1376  * This is the basic name resolution function, turning a pathname into
1377  * the final dentry. We expect 'base' to be positive and a directory.
1378  *
1379  * Returns 0 and nd will have valid dentry and mnt on success.
1380  * Returns error and drops reference to input namei data on failure.
1381  */
1382 static int link_path_walk(const char *name, struct nameidata *nd)
1383 {
1384 	struct path next;
1385 	int err;
1386 
1387 	while (*name=='/')
1388 		name++;
1389 	if (!*name)
1390 		return 0;
1391 
1392 	/* At this point we know we have a real path component. */
1393 	for(;;) {
1394 		unsigned long hash;
1395 		struct qstr this;
1396 		unsigned int c;
1397 		int type;
1398 
1399 		err = may_lookup(nd);
1400  		if (err)
1401 			break;
1402 
1403 		this.name = name;
1404 		c = *(const unsigned char *)name;
1405 
1406 		hash = init_name_hash();
1407 		do {
1408 			name++;
1409 			hash = partial_name_hash(c, hash);
1410 			c = *(const unsigned char *)name;
1411 		} while (c && (c != '/'));
1412 		this.len = name - (const char *) this.name;
1413 		this.hash = end_name_hash(hash);
1414 
1415 		type = LAST_NORM;
1416 		if (this.name[0] == '.') switch (this.len) {
1417 			case 2:
1418 				if (this.name[1] == '.') {
1419 					type = LAST_DOTDOT;
1420 					nd->flags |= LOOKUP_JUMPED;
1421 				}
1422 				break;
1423 			case 1:
1424 				type = LAST_DOT;
1425 		}
1426 		if (likely(type == LAST_NORM)) {
1427 			struct dentry *parent = nd->path.dentry;
1428 			nd->flags &= ~LOOKUP_JUMPED;
1429 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1430 				err = parent->d_op->d_hash(parent, nd->inode,
1431 							   &this);
1432 				if (err < 0)
1433 					break;
1434 			}
1435 		}
1436 
1437 		/* remove trailing slashes? */
1438 		if (!c)
1439 			goto last_component;
1440 		while (*++name == '/');
1441 		if (!*name)
1442 			goto last_component;
1443 
1444 		err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1445 		if (err < 0)
1446 			return err;
1447 
1448 		if (err) {
1449 			err = nested_symlink(&next, nd);
1450 			if (err)
1451 				return err;
1452 		}
1453 		if (can_lookup(nd->inode))
1454 			continue;
1455 		err = -ENOTDIR;
1456 		break;
1457 		/* here ends the main loop */
1458 
1459 last_component:
1460 		nd->last = this;
1461 		nd->last_type = type;
1462 		return 0;
1463 	}
1464 	terminate_walk(nd);
1465 	return err;
1466 }
1467 
1468 static int path_init(int dfd, const char *name, unsigned int flags,
1469 		     struct nameidata *nd, struct file **fp)
1470 {
1471 	int retval = 0;
1472 	int fput_needed;
1473 	struct file *file;
1474 
1475 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1476 	nd->flags = flags | LOOKUP_JUMPED;
1477 	nd->depth = 0;
1478 	if (flags & LOOKUP_ROOT) {
1479 		struct inode *inode = nd->root.dentry->d_inode;
1480 		if (*name) {
1481 			if (!inode->i_op->lookup)
1482 				return -ENOTDIR;
1483 			retval = inode_permission(inode, MAY_EXEC);
1484 			if (retval)
1485 				return retval;
1486 		}
1487 		nd->path = nd->root;
1488 		nd->inode = inode;
1489 		if (flags & LOOKUP_RCU) {
1490 			br_read_lock(vfsmount_lock);
1491 			rcu_read_lock();
1492 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1493 		} else {
1494 			path_get(&nd->path);
1495 		}
1496 		return 0;
1497 	}
1498 
1499 	nd->root.mnt = NULL;
1500 
1501 	if (*name=='/') {
1502 		if (flags & LOOKUP_RCU) {
1503 			br_read_lock(vfsmount_lock);
1504 			rcu_read_lock();
1505 			set_root_rcu(nd);
1506 		} else {
1507 			set_root(nd);
1508 			path_get(&nd->root);
1509 		}
1510 		nd->path = nd->root;
1511 	} else if (dfd == AT_FDCWD) {
1512 		if (flags & LOOKUP_RCU) {
1513 			struct fs_struct *fs = current->fs;
1514 			unsigned seq;
1515 
1516 			br_read_lock(vfsmount_lock);
1517 			rcu_read_lock();
1518 
1519 			do {
1520 				seq = read_seqcount_begin(&fs->seq);
1521 				nd->path = fs->pwd;
1522 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1523 			} while (read_seqcount_retry(&fs->seq, seq));
1524 		} else {
1525 			get_fs_pwd(current->fs, &nd->path);
1526 		}
1527 	} else {
1528 		struct dentry *dentry;
1529 
1530 		file = fget_raw_light(dfd, &fput_needed);
1531 		retval = -EBADF;
1532 		if (!file)
1533 			goto out_fail;
1534 
1535 		dentry = file->f_path.dentry;
1536 
1537 		if (*name) {
1538 			retval = -ENOTDIR;
1539 			if (!S_ISDIR(dentry->d_inode->i_mode))
1540 				goto fput_fail;
1541 
1542 			retval = inode_permission(dentry->d_inode, MAY_EXEC);
1543 			if (retval)
1544 				goto fput_fail;
1545 		}
1546 
1547 		nd->path = file->f_path;
1548 		if (flags & LOOKUP_RCU) {
1549 			if (fput_needed)
1550 				*fp = file;
1551 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1552 			br_read_lock(vfsmount_lock);
1553 			rcu_read_lock();
1554 		} else {
1555 			path_get(&file->f_path);
1556 			fput_light(file, fput_needed);
1557 		}
1558 	}
1559 
1560 	nd->inode = nd->path.dentry->d_inode;
1561 	return 0;
1562 
1563 fput_fail:
1564 	fput_light(file, fput_needed);
1565 out_fail:
1566 	return retval;
1567 }
1568 
1569 static inline int lookup_last(struct nameidata *nd, struct path *path)
1570 {
1571 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1572 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1573 
1574 	nd->flags &= ~LOOKUP_PARENT;
1575 	return walk_component(nd, path, &nd->last, nd->last_type,
1576 					nd->flags & LOOKUP_FOLLOW);
1577 }
1578 
1579 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1580 static int path_lookupat(int dfd, const char *name,
1581 				unsigned int flags, struct nameidata *nd)
1582 {
1583 	struct file *base = NULL;
1584 	struct path path;
1585 	int err;
1586 
1587 	/*
1588 	 * Path walking is largely split up into 2 different synchronisation
1589 	 * schemes, rcu-walk and ref-walk (explained in
1590 	 * Documentation/filesystems/path-lookup.txt). These share much of the
1591 	 * path walk code, but some things particularly setup, cleanup, and
1592 	 * following mounts are sufficiently divergent that functions are
1593 	 * duplicated. Typically there is a function foo(), and its RCU
1594 	 * analogue, foo_rcu().
1595 	 *
1596 	 * -ECHILD is the error number of choice (just to avoid clashes) that
1597 	 * is returned if some aspect of an rcu-walk fails. Such an error must
1598 	 * be handled by restarting a traditional ref-walk (which will always
1599 	 * be able to complete).
1600 	 */
1601 	err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1602 
1603 	if (unlikely(err))
1604 		return err;
1605 
1606 	current->total_link_count = 0;
1607 	err = link_path_walk(name, nd);
1608 
1609 	if (!err && !(flags & LOOKUP_PARENT)) {
1610 		err = lookup_last(nd, &path);
1611 		while (err > 0) {
1612 			void *cookie;
1613 			struct path link = path;
1614 			nd->flags |= LOOKUP_PARENT;
1615 			err = follow_link(&link, nd, &cookie);
1616 			if (!err)
1617 				err = lookup_last(nd, &path);
1618 			put_link(nd, &link, cookie);
1619 		}
1620 	}
1621 
1622 	if (!err)
1623 		err = complete_walk(nd);
1624 
1625 	if (!err && nd->flags & LOOKUP_DIRECTORY) {
1626 		if (!nd->inode->i_op->lookup) {
1627 			path_put(&nd->path);
1628 			err = -ENOTDIR;
1629 		}
1630 	}
1631 
1632 	if (base)
1633 		fput(base);
1634 
1635 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1636 		path_put(&nd->root);
1637 		nd->root.mnt = NULL;
1638 	}
1639 	return err;
1640 }
1641 
1642 static int do_path_lookup(int dfd, const char *name,
1643 				unsigned int flags, struct nameidata *nd)
1644 {
1645 	int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
1646 	if (unlikely(retval == -ECHILD))
1647 		retval = path_lookupat(dfd, name, flags, nd);
1648 	if (unlikely(retval == -ESTALE))
1649 		retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1650 
1651 	if (likely(!retval)) {
1652 		if (unlikely(!audit_dummy_context())) {
1653 			if (nd->path.dentry && nd->inode)
1654 				audit_inode(name, nd->path.dentry);
1655 		}
1656 	}
1657 	return retval;
1658 }
1659 
1660 int kern_path_parent(const char *name, struct nameidata *nd)
1661 {
1662 	return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd);
1663 }
1664 
1665 int kern_path(const char *name, unsigned int flags, struct path *path)
1666 {
1667 	struct nameidata nd;
1668 	int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1669 	if (!res)
1670 		*path = nd.path;
1671 	return res;
1672 }
1673 
1674 /**
1675  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1676  * @dentry:  pointer to dentry of the base directory
1677  * @mnt: pointer to vfs mount of the base directory
1678  * @name: pointer to file name
1679  * @flags: lookup flags
1680  * @path: pointer to struct path to fill
1681  */
1682 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1683 		    const char *name, unsigned int flags,
1684 		    struct path *path)
1685 {
1686 	struct nameidata nd;
1687 	int err;
1688 	nd.root.dentry = dentry;
1689 	nd.root.mnt = mnt;
1690 	BUG_ON(flags & LOOKUP_PARENT);
1691 	/* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
1692 	err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
1693 	if (!err)
1694 		*path = nd.path;
1695 	return err;
1696 }
1697 
1698 static struct dentry *__lookup_hash(struct qstr *name,
1699 		struct dentry *base, struct nameidata *nd)
1700 {
1701 	struct inode *inode = base->d_inode;
1702 	struct dentry *dentry;
1703 	int err;
1704 
1705 	err = inode_permission(inode, MAY_EXEC);
1706 	if (err)
1707 		return ERR_PTR(err);
1708 
1709 	/*
1710 	 * Don't bother with __d_lookup: callers are for creat as
1711 	 * well as unlink, so a lot of the time it would cost
1712 	 * a double lookup.
1713 	 */
1714 	dentry = d_lookup(base, name);
1715 
1716 	if (dentry && d_need_lookup(dentry)) {
1717 		/*
1718 		 * __lookup_hash is called with the parent dir's i_mutex already
1719 		 * held, so we are good to go here.
1720 		 */
1721 		dentry = d_inode_lookup(base, dentry, nd);
1722 		if (IS_ERR(dentry))
1723 			return dentry;
1724 	}
1725 
1726 	if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1727 		int status = d_revalidate(dentry, nd);
1728 		if (unlikely(status <= 0)) {
1729 			/*
1730 			 * The dentry failed validation.
1731 			 * If d_revalidate returned 0 attempt to invalidate
1732 			 * the dentry otherwise d_revalidate is asking us
1733 			 * to return a fail status.
1734 			 */
1735 			if (status < 0) {
1736 				dput(dentry);
1737 				return ERR_PTR(status);
1738 			} else if (!d_invalidate(dentry)) {
1739 				dput(dentry);
1740 				dentry = NULL;
1741 			}
1742 		}
1743 	}
1744 
1745 	if (!dentry)
1746 		dentry = d_alloc_and_lookup(base, name, nd);
1747 
1748 	return dentry;
1749 }
1750 
1751 /*
1752  * Restricted form of lookup. Doesn't follow links, single-component only,
1753  * needs parent already locked. Doesn't follow mounts.
1754  * SMP-safe.
1755  */
1756 static struct dentry *lookup_hash(struct nameidata *nd)
1757 {
1758 	return __lookup_hash(&nd->last, nd->path.dentry, nd);
1759 }
1760 
1761 /**
1762  * lookup_one_len - filesystem helper to lookup single pathname component
1763  * @name:	pathname component to lookup
1764  * @base:	base directory to lookup from
1765  * @len:	maximum length @len should be interpreted to
1766  *
1767  * Note that this routine is purely a helper for filesystem usage and should
1768  * not be called by generic code.  Also note that by using this function the
1769  * nameidata argument is passed to the filesystem methods and a filesystem
1770  * using this helper needs to be prepared for that.
1771  */
1772 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1773 {
1774 	struct qstr this;
1775 	unsigned long hash;
1776 	unsigned int c;
1777 
1778 	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1779 
1780 	this.name = name;
1781 	this.len = len;
1782 	if (!len)
1783 		return ERR_PTR(-EACCES);
1784 
1785 	hash = init_name_hash();
1786 	while (len--) {
1787 		c = *(const unsigned char *)name++;
1788 		if (c == '/' || c == '\0')
1789 			return ERR_PTR(-EACCES);
1790 		hash = partial_name_hash(c, hash);
1791 	}
1792 	this.hash = end_name_hash(hash);
1793 	/*
1794 	 * See if the low-level filesystem might want
1795 	 * to use its own hash..
1796 	 */
1797 	if (base->d_flags & DCACHE_OP_HASH) {
1798 		int err = base->d_op->d_hash(base, base->d_inode, &this);
1799 		if (err < 0)
1800 			return ERR_PTR(err);
1801 	}
1802 
1803 	return __lookup_hash(&this, base, NULL);
1804 }
1805 
1806 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
1807 		 struct path *path, int *empty)
1808 {
1809 	struct nameidata nd;
1810 	char *tmp = getname_flags(name, flags, empty);
1811 	int err = PTR_ERR(tmp);
1812 	if (!IS_ERR(tmp)) {
1813 
1814 		BUG_ON(flags & LOOKUP_PARENT);
1815 
1816 		err = do_path_lookup(dfd, tmp, flags, &nd);
1817 		putname(tmp);
1818 		if (!err)
1819 			*path = nd.path;
1820 	}
1821 	return err;
1822 }
1823 
1824 int user_path_at(int dfd, const char __user *name, unsigned flags,
1825 		 struct path *path)
1826 {
1827 	return user_path_at_empty(dfd, name, flags, path, 0);
1828 }
1829 
1830 static int user_path_parent(int dfd, const char __user *path,
1831 			struct nameidata *nd, char **name)
1832 {
1833 	char *s = getname(path);
1834 	int error;
1835 
1836 	if (IS_ERR(s))
1837 		return PTR_ERR(s);
1838 
1839 	error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1840 	if (error)
1841 		putname(s);
1842 	else
1843 		*name = s;
1844 
1845 	return error;
1846 }
1847 
1848 /*
1849  * It's inline, so penalty for filesystems that don't use sticky bit is
1850  * minimal.
1851  */
1852 static inline int check_sticky(struct inode *dir, struct inode *inode)
1853 {
1854 	uid_t fsuid = current_fsuid();
1855 
1856 	if (!(dir->i_mode & S_ISVTX))
1857 		return 0;
1858 	if (current_user_ns() != inode_userns(inode))
1859 		goto other_userns;
1860 	if (inode->i_uid == fsuid)
1861 		return 0;
1862 	if (dir->i_uid == fsuid)
1863 		return 0;
1864 
1865 other_userns:
1866 	return !ns_capable(inode_userns(inode), CAP_FOWNER);
1867 }
1868 
1869 /*
1870  *	Check whether we can remove a link victim from directory dir, check
1871  *  whether the type of victim is right.
1872  *  1. We can't do it if dir is read-only (done in permission())
1873  *  2. We should have write and exec permissions on dir
1874  *  3. We can't remove anything from append-only dir
1875  *  4. We can't do anything with immutable dir (done in permission())
1876  *  5. If the sticky bit on dir is set we should either
1877  *	a. be owner of dir, or
1878  *	b. be owner of victim, or
1879  *	c. have CAP_FOWNER capability
1880  *  6. If the victim is append-only or immutable we can't do antyhing with
1881  *     links pointing to it.
1882  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1883  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1884  *  9. We can't remove a root or mountpoint.
1885  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1886  *     nfs_async_unlink().
1887  */
1888 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1889 {
1890 	int error;
1891 
1892 	if (!victim->d_inode)
1893 		return -ENOENT;
1894 
1895 	BUG_ON(victim->d_parent->d_inode != dir);
1896 	audit_inode_child(victim, dir);
1897 
1898 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1899 	if (error)
1900 		return error;
1901 	if (IS_APPEND(dir))
1902 		return -EPERM;
1903 	if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1904 	    IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1905 		return -EPERM;
1906 	if (isdir) {
1907 		if (!S_ISDIR(victim->d_inode->i_mode))
1908 			return -ENOTDIR;
1909 		if (IS_ROOT(victim))
1910 			return -EBUSY;
1911 	} else if (S_ISDIR(victim->d_inode->i_mode))
1912 		return -EISDIR;
1913 	if (IS_DEADDIR(dir))
1914 		return -ENOENT;
1915 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1916 		return -EBUSY;
1917 	return 0;
1918 }
1919 
1920 /*	Check whether we can create an object with dentry child in directory
1921  *  dir.
1922  *  1. We can't do it if child already exists (open has special treatment for
1923  *     this case, but since we are inlined it's OK)
1924  *  2. We can't do it if dir is read-only (done in permission())
1925  *  3. We should have write and exec permissions on dir
1926  *  4. We can't do it if dir is immutable (done in permission())
1927  */
1928 static inline int may_create(struct inode *dir, struct dentry *child)
1929 {
1930 	if (child->d_inode)
1931 		return -EEXIST;
1932 	if (IS_DEADDIR(dir))
1933 		return -ENOENT;
1934 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1935 }
1936 
1937 /*
1938  * p1 and p2 should be directories on the same fs.
1939  */
1940 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1941 {
1942 	struct dentry *p;
1943 
1944 	if (p1 == p2) {
1945 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1946 		return NULL;
1947 	}
1948 
1949 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1950 
1951 	p = d_ancestor(p2, p1);
1952 	if (p) {
1953 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1954 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1955 		return p;
1956 	}
1957 
1958 	p = d_ancestor(p1, p2);
1959 	if (p) {
1960 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1961 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1962 		return p;
1963 	}
1964 
1965 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1966 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1967 	return NULL;
1968 }
1969 
1970 void unlock_rename(struct dentry *p1, struct dentry *p2)
1971 {
1972 	mutex_unlock(&p1->d_inode->i_mutex);
1973 	if (p1 != p2) {
1974 		mutex_unlock(&p2->d_inode->i_mutex);
1975 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1976 	}
1977 }
1978 
1979 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1980 		struct nameidata *nd)
1981 {
1982 	int error = may_create(dir, dentry);
1983 
1984 	if (error)
1985 		return error;
1986 
1987 	if (!dir->i_op->create)
1988 		return -EACCES;	/* shouldn't it be ENOSYS? */
1989 	mode &= S_IALLUGO;
1990 	mode |= S_IFREG;
1991 	error = security_inode_create(dir, dentry, mode);
1992 	if (error)
1993 		return error;
1994 	error = dir->i_op->create(dir, dentry, mode, nd);
1995 	if (!error)
1996 		fsnotify_create(dir, dentry);
1997 	return error;
1998 }
1999 
2000 static int may_open(struct path *path, int acc_mode, int flag)
2001 {
2002 	struct dentry *dentry = path->dentry;
2003 	struct inode *inode = dentry->d_inode;
2004 	int error;
2005 
2006 	/* O_PATH? */
2007 	if (!acc_mode)
2008 		return 0;
2009 
2010 	if (!inode)
2011 		return -ENOENT;
2012 
2013 	switch (inode->i_mode & S_IFMT) {
2014 	case S_IFLNK:
2015 		return -ELOOP;
2016 	case S_IFDIR:
2017 		if (acc_mode & MAY_WRITE)
2018 			return -EISDIR;
2019 		break;
2020 	case S_IFBLK:
2021 	case S_IFCHR:
2022 		if (path->mnt->mnt_flags & MNT_NODEV)
2023 			return -EACCES;
2024 		/*FALLTHRU*/
2025 	case S_IFIFO:
2026 	case S_IFSOCK:
2027 		flag &= ~O_TRUNC;
2028 		break;
2029 	}
2030 
2031 	error = inode_permission(inode, acc_mode);
2032 	if (error)
2033 		return error;
2034 
2035 	/*
2036 	 * An append-only file must be opened in append mode for writing.
2037 	 */
2038 	if (IS_APPEND(inode)) {
2039 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2040 			return -EPERM;
2041 		if (flag & O_TRUNC)
2042 			return -EPERM;
2043 	}
2044 
2045 	/* O_NOATIME can only be set by the owner or superuser */
2046 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2047 		return -EPERM;
2048 
2049 	return 0;
2050 }
2051 
2052 static int handle_truncate(struct file *filp)
2053 {
2054 	struct path *path = &filp->f_path;
2055 	struct inode *inode = path->dentry->d_inode;
2056 	int error = get_write_access(inode);
2057 	if (error)
2058 		return error;
2059 	/*
2060 	 * Refuse to truncate files with mandatory locks held on them.
2061 	 */
2062 	error = locks_verify_locked(inode);
2063 	if (!error)
2064 		error = security_path_truncate(path);
2065 	if (!error) {
2066 		error = do_truncate(path->dentry, 0,
2067 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2068 				    filp);
2069 	}
2070 	put_write_access(inode);
2071 	return error;
2072 }
2073 
2074 static inline int open_to_namei_flags(int flag)
2075 {
2076 	if ((flag & O_ACCMODE) == 3)
2077 		flag--;
2078 	return flag;
2079 }
2080 
2081 /*
2082  * Handle the last step of open()
2083  */
2084 static struct file *do_last(struct nameidata *nd, struct path *path,
2085 			    const struct open_flags *op, const char *pathname)
2086 {
2087 	struct dentry *dir = nd->path.dentry;
2088 	struct dentry *dentry;
2089 	int open_flag = op->open_flag;
2090 	int will_truncate = open_flag & O_TRUNC;
2091 	int want_write = 0;
2092 	int acc_mode = op->acc_mode;
2093 	struct file *filp;
2094 	int error;
2095 
2096 	nd->flags &= ~LOOKUP_PARENT;
2097 	nd->flags |= op->intent;
2098 
2099 	switch (nd->last_type) {
2100 	case LAST_DOTDOT:
2101 	case LAST_DOT:
2102 		error = handle_dots(nd, nd->last_type);
2103 		if (error)
2104 			return ERR_PTR(error);
2105 		/* fallthrough */
2106 	case LAST_ROOT:
2107 		error = complete_walk(nd);
2108 		if (error)
2109 			return ERR_PTR(error);
2110 		audit_inode(pathname, nd->path.dentry);
2111 		if (open_flag & O_CREAT) {
2112 			error = -EISDIR;
2113 			goto exit;
2114 		}
2115 		goto ok;
2116 	case LAST_BIND:
2117 		error = complete_walk(nd);
2118 		if (error)
2119 			return ERR_PTR(error);
2120 		audit_inode(pathname, dir);
2121 		goto ok;
2122 	}
2123 
2124 	if (!(open_flag & O_CREAT)) {
2125 		int symlink_ok = 0;
2126 		if (nd->last.name[nd->last.len])
2127 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2128 		if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2129 			symlink_ok = 1;
2130 		/* we _can_ be in RCU mode here */
2131 		error = walk_component(nd, path, &nd->last, LAST_NORM,
2132 					!symlink_ok);
2133 		if (error < 0)
2134 			return ERR_PTR(error);
2135 		if (error) /* symlink */
2136 			return NULL;
2137 		/* sayonara */
2138 		error = complete_walk(nd);
2139 		if (error)
2140 			return ERR_PTR(-ECHILD);
2141 
2142 		error = -ENOTDIR;
2143 		if (nd->flags & LOOKUP_DIRECTORY) {
2144 			if (!nd->inode->i_op->lookup)
2145 				goto exit;
2146 		}
2147 		audit_inode(pathname, nd->path.dentry);
2148 		goto ok;
2149 	}
2150 
2151 	/* create side of things */
2152 	/*
2153 	 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED has been
2154 	 * cleared when we got to the last component we are about to look up
2155 	 */
2156 	error = complete_walk(nd);
2157 	if (error)
2158 		return ERR_PTR(error);
2159 
2160 	audit_inode(pathname, dir);
2161 	error = -EISDIR;
2162 	/* trailing slashes? */
2163 	if (nd->last.name[nd->last.len])
2164 		goto exit;
2165 
2166 	mutex_lock(&dir->d_inode->i_mutex);
2167 
2168 	dentry = lookup_hash(nd);
2169 	error = PTR_ERR(dentry);
2170 	if (IS_ERR(dentry)) {
2171 		mutex_unlock(&dir->d_inode->i_mutex);
2172 		goto exit;
2173 	}
2174 
2175 	path->dentry = dentry;
2176 	path->mnt = nd->path.mnt;
2177 
2178 	/* Negative dentry, just create the file */
2179 	if (!dentry->d_inode) {
2180 		int mode = op->mode;
2181 		if (!IS_POSIXACL(dir->d_inode))
2182 			mode &= ~current_umask();
2183 		/*
2184 		 * This write is needed to ensure that a
2185 		 * rw->ro transition does not occur between
2186 		 * the time when the file is created and when
2187 		 * a permanent write count is taken through
2188 		 * the 'struct file' in nameidata_to_filp().
2189 		 */
2190 		error = mnt_want_write(nd->path.mnt);
2191 		if (error)
2192 			goto exit_mutex_unlock;
2193 		want_write = 1;
2194 		/* Don't check for write permission, don't truncate */
2195 		open_flag &= ~O_TRUNC;
2196 		will_truncate = 0;
2197 		acc_mode = MAY_OPEN;
2198 		error = security_path_mknod(&nd->path, dentry, mode, 0);
2199 		if (error)
2200 			goto exit_mutex_unlock;
2201 		error = vfs_create(dir->d_inode, dentry, mode, nd);
2202 		if (error)
2203 			goto exit_mutex_unlock;
2204 		mutex_unlock(&dir->d_inode->i_mutex);
2205 		dput(nd->path.dentry);
2206 		nd->path.dentry = dentry;
2207 		goto common;
2208 	}
2209 
2210 	/*
2211 	 * It already exists.
2212 	 */
2213 	mutex_unlock(&dir->d_inode->i_mutex);
2214 	audit_inode(pathname, path->dentry);
2215 
2216 	error = -EEXIST;
2217 	if (open_flag & O_EXCL)
2218 		goto exit_dput;
2219 
2220 	error = follow_managed(path, nd->flags);
2221 	if (error < 0)
2222 		goto exit_dput;
2223 
2224 	if (error)
2225 		nd->flags |= LOOKUP_JUMPED;
2226 
2227 	error = -ENOENT;
2228 	if (!path->dentry->d_inode)
2229 		goto exit_dput;
2230 
2231 	if (path->dentry->d_inode->i_op->follow_link)
2232 		return NULL;
2233 
2234 	path_to_nameidata(path, nd);
2235 	nd->inode = path->dentry->d_inode;
2236 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
2237 	error = complete_walk(nd);
2238 	if (error)
2239 		goto exit;
2240 	error = -EISDIR;
2241 	if (S_ISDIR(nd->inode->i_mode))
2242 		goto exit;
2243 ok:
2244 	if (!S_ISREG(nd->inode->i_mode))
2245 		will_truncate = 0;
2246 
2247 	if (will_truncate) {
2248 		error = mnt_want_write(nd->path.mnt);
2249 		if (error)
2250 			goto exit;
2251 		want_write = 1;
2252 	}
2253 common:
2254 	error = may_open(&nd->path, acc_mode, open_flag);
2255 	if (error)
2256 		goto exit;
2257 	filp = nameidata_to_filp(nd);
2258 	if (!IS_ERR(filp)) {
2259 		error = ima_file_check(filp, op->acc_mode);
2260 		if (error) {
2261 			fput(filp);
2262 			filp = ERR_PTR(error);
2263 		}
2264 	}
2265 	if (!IS_ERR(filp)) {
2266 		if (will_truncate) {
2267 			error = handle_truncate(filp);
2268 			if (error) {
2269 				fput(filp);
2270 				filp = ERR_PTR(error);
2271 			}
2272 		}
2273 	}
2274 out:
2275 	if (want_write)
2276 		mnt_drop_write(nd->path.mnt);
2277 	path_put(&nd->path);
2278 	return filp;
2279 
2280 exit_mutex_unlock:
2281 	mutex_unlock(&dir->d_inode->i_mutex);
2282 exit_dput:
2283 	path_put_conditional(path, nd);
2284 exit:
2285 	filp = ERR_PTR(error);
2286 	goto out;
2287 }
2288 
2289 static struct file *path_openat(int dfd, const char *pathname,
2290 		struct nameidata *nd, const struct open_flags *op, int flags)
2291 {
2292 	struct file *base = NULL;
2293 	struct file *filp;
2294 	struct path path;
2295 	int error;
2296 
2297 	filp = get_empty_filp();
2298 	if (!filp)
2299 		return ERR_PTR(-ENFILE);
2300 
2301 	filp->f_flags = op->open_flag;
2302 	nd->intent.open.file = filp;
2303 	nd->intent.open.flags = open_to_namei_flags(op->open_flag);
2304 	nd->intent.open.create_mode = op->mode;
2305 
2306 	error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base);
2307 	if (unlikely(error))
2308 		goto out_filp;
2309 
2310 	current->total_link_count = 0;
2311 	error = link_path_walk(pathname, nd);
2312 	if (unlikely(error))
2313 		goto out_filp;
2314 
2315 	filp = do_last(nd, &path, op, pathname);
2316 	while (unlikely(!filp)) { /* trailing symlink */
2317 		struct path link = path;
2318 		void *cookie;
2319 		if (!(nd->flags & LOOKUP_FOLLOW)) {
2320 			path_put_conditional(&path, nd);
2321 			path_put(&nd->path);
2322 			filp = ERR_PTR(-ELOOP);
2323 			break;
2324 		}
2325 		nd->flags |= LOOKUP_PARENT;
2326 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2327 		error = follow_link(&link, nd, &cookie);
2328 		if (unlikely(error))
2329 			filp = ERR_PTR(error);
2330 		else
2331 			filp = do_last(nd, &path, op, pathname);
2332 		put_link(nd, &link, cookie);
2333 	}
2334 out:
2335 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2336 		path_put(&nd->root);
2337 	if (base)
2338 		fput(base);
2339 	release_open_intent(nd);
2340 	return filp;
2341 
2342 out_filp:
2343 	filp = ERR_PTR(error);
2344 	goto out;
2345 }
2346 
2347 struct file *do_filp_open(int dfd, const char *pathname,
2348 		const struct open_flags *op, int flags)
2349 {
2350 	struct nameidata nd;
2351 	struct file *filp;
2352 
2353 	filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2354 	if (unlikely(filp == ERR_PTR(-ECHILD)))
2355 		filp = path_openat(dfd, pathname, &nd, op, flags);
2356 	if (unlikely(filp == ERR_PTR(-ESTALE)))
2357 		filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
2358 	return filp;
2359 }
2360 
2361 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
2362 		const char *name, const struct open_flags *op, int flags)
2363 {
2364 	struct nameidata nd;
2365 	struct file *file;
2366 
2367 	nd.root.mnt = mnt;
2368 	nd.root.dentry = dentry;
2369 
2370 	flags |= LOOKUP_ROOT;
2371 
2372 	if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
2373 		return ERR_PTR(-ELOOP);
2374 
2375 	file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU);
2376 	if (unlikely(file == ERR_PTR(-ECHILD)))
2377 		file = path_openat(-1, name, &nd, op, flags);
2378 	if (unlikely(file == ERR_PTR(-ESTALE)))
2379 		file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL);
2380 	return file;
2381 }
2382 
2383 struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, int is_dir)
2384 {
2385 	struct dentry *dentry = ERR_PTR(-EEXIST);
2386 	struct nameidata nd;
2387 	int error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
2388 	if (error)
2389 		return ERR_PTR(error);
2390 
2391 	/*
2392 	 * Yucky last component or no last component at all?
2393 	 * (foo/., foo/.., /////)
2394 	 */
2395 	if (nd.last_type != LAST_NORM)
2396 		goto out;
2397 	nd.flags &= ~LOOKUP_PARENT;
2398 	nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2399 	nd.intent.open.flags = O_EXCL;
2400 
2401 	/*
2402 	 * Do the final lookup.
2403 	 */
2404 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2405 	dentry = lookup_hash(&nd);
2406 	if (IS_ERR(dentry))
2407 		goto fail;
2408 
2409 	if (dentry->d_inode)
2410 		goto eexist;
2411 	/*
2412 	 * Special case - lookup gave negative, but... we had foo/bar/
2413 	 * From the vfs_mknod() POV we just have a negative dentry -
2414 	 * all is fine. Let's be bastards - you had / on the end, you've
2415 	 * been asking for (non-existent) directory. -ENOENT for you.
2416 	 */
2417 	if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
2418 		dput(dentry);
2419 		dentry = ERR_PTR(-ENOENT);
2420 		goto fail;
2421 	}
2422 	*path = nd.path;
2423 	return dentry;
2424 eexist:
2425 	dput(dentry);
2426 	dentry = ERR_PTR(-EEXIST);
2427 fail:
2428 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2429 out:
2430 	path_put(&nd.path);
2431 	return dentry;
2432 }
2433 EXPORT_SYMBOL(kern_path_create);
2434 
2435 struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, int is_dir)
2436 {
2437 	char *tmp = getname(pathname);
2438 	struct dentry *res;
2439 	if (IS_ERR(tmp))
2440 		return ERR_CAST(tmp);
2441 	res = kern_path_create(dfd, tmp, path, is_dir);
2442 	putname(tmp);
2443 	return res;
2444 }
2445 EXPORT_SYMBOL(user_path_create);
2446 
2447 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2448 {
2449 	int error = may_create(dir, dentry);
2450 
2451 	if (error)
2452 		return error;
2453 
2454 	if ((S_ISCHR(mode) || S_ISBLK(mode)) &&
2455 	    !ns_capable(inode_userns(dir), CAP_MKNOD))
2456 		return -EPERM;
2457 
2458 	if (!dir->i_op->mknod)
2459 		return -EPERM;
2460 
2461 	error = devcgroup_inode_mknod(mode, dev);
2462 	if (error)
2463 		return error;
2464 
2465 	error = security_inode_mknod(dir, dentry, mode, dev);
2466 	if (error)
2467 		return error;
2468 
2469 	error = dir->i_op->mknod(dir, dentry, mode, dev);
2470 	if (!error)
2471 		fsnotify_create(dir, dentry);
2472 	return error;
2473 }
2474 
2475 static int may_mknod(mode_t mode)
2476 {
2477 	switch (mode & S_IFMT) {
2478 	case S_IFREG:
2479 	case S_IFCHR:
2480 	case S_IFBLK:
2481 	case S_IFIFO:
2482 	case S_IFSOCK:
2483 	case 0: /* zero mode translates to S_IFREG */
2484 		return 0;
2485 	case S_IFDIR:
2486 		return -EPERM;
2487 	default:
2488 		return -EINVAL;
2489 	}
2490 }
2491 
2492 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2493 		unsigned, dev)
2494 {
2495 	struct dentry *dentry;
2496 	struct path path;
2497 	int error;
2498 
2499 	if (S_ISDIR(mode))
2500 		return -EPERM;
2501 
2502 	dentry = user_path_create(dfd, filename, &path, 0);
2503 	if (IS_ERR(dentry))
2504 		return PTR_ERR(dentry);
2505 
2506 	if (!IS_POSIXACL(path.dentry->d_inode))
2507 		mode &= ~current_umask();
2508 	error = may_mknod(mode);
2509 	if (error)
2510 		goto out_dput;
2511 	error = mnt_want_write(path.mnt);
2512 	if (error)
2513 		goto out_dput;
2514 	error = security_path_mknod(&path, dentry, mode, dev);
2515 	if (error)
2516 		goto out_drop_write;
2517 	switch (mode & S_IFMT) {
2518 		case 0: case S_IFREG:
2519 			error = vfs_create(path.dentry->d_inode,dentry,mode,NULL);
2520 			break;
2521 		case S_IFCHR: case S_IFBLK:
2522 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
2523 					new_decode_dev(dev));
2524 			break;
2525 		case S_IFIFO: case S_IFSOCK:
2526 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
2527 			break;
2528 	}
2529 out_drop_write:
2530 	mnt_drop_write(path.mnt);
2531 out_dput:
2532 	dput(dentry);
2533 	mutex_unlock(&path.dentry->d_inode->i_mutex);
2534 	path_put(&path);
2535 
2536 	return error;
2537 }
2538 
2539 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2540 {
2541 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
2542 }
2543 
2544 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2545 {
2546 	int error = may_create(dir, dentry);
2547 
2548 	if (error)
2549 		return error;
2550 
2551 	if (!dir->i_op->mkdir)
2552 		return -EPERM;
2553 
2554 	mode &= (S_IRWXUGO|S_ISVTX);
2555 	error = security_inode_mkdir(dir, dentry, mode);
2556 	if (error)
2557 		return error;
2558 
2559 	error = dir->i_op->mkdir(dir, dentry, mode);
2560 	if (!error)
2561 		fsnotify_mkdir(dir, dentry);
2562 	return error;
2563 }
2564 
2565 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2566 {
2567 	struct dentry *dentry;
2568 	struct path path;
2569 	int error;
2570 
2571 	dentry = user_path_create(dfd, pathname, &path, 1);
2572 	if (IS_ERR(dentry))
2573 		return PTR_ERR(dentry);
2574 
2575 	if (!IS_POSIXACL(path.dentry->d_inode))
2576 		mode &= ~current_umask();
2577 	error = mnt_want_write(path.mnt);
2578 	if (error)
2579 		goto out_dput;
2580 	error = security_path_mkdir(&path, dentry, mode);
2581 	if (error)
2582 		goto out_drop_write;
2583 	error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
2584 out_drop_write:
2585 	mnt_drop_write(path.mnt);
2586 out_dput:
2587 	dput(dentry);
2588 	mutex_unlock(&path.dentry->d_inode->i_mutex);
2589 	path_put(&path);
2590 	return error;
2591 }
2592 
2593 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2594 {
2595 	return sys_mkdirat(AT_FDCWD, pathname, mode);
2596 }
2597 
2598 /*
2599  * The dentry_unhash() helper will try to drop the dentry early: we
2600  * should have a usage count of 2 if we're the only user of this
2601  * dentry, and if that is true (possibly after pruning the dcache),
2602  * then we drop the dentry now.
2603  *
2604  * A low-level filesystem can, if it choses, legally
2605  * do a
2606  *
2607  *	if (!d_unhashed(dentry))
2608  *		return -EBUSY;
2609  *
2610  * if it cannot handle the case of removing a directory
2611  * that is still in use by something else..
2612  */
2613 void dentry_unhash(struct dentry *dentry)
2614 {
2615 	shrink_dcache_parent(dentry);
2616 	spin_lock(&dentry->d_lock);
2617 	if (dentry->d_count == 1)
2618 		__d_drop(dentry);
2619 	spin_unlock(&dentry->d_lock);
2620 }
2621 
2622 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2623 {
2624 	int error = may_delete(dir, dentry, 1);
2625 
2626 	if (error)
2627 		return error;
2628 
2629 	if (!dir->i_op->rmdir)
2630 		return -EPERM;
2631 
2632 	dget(dentry);
2633 	mutex_lock(&dentry->d_inode->i_mutex);
2634 
2635 	error = -EBUSY;
2636 	if (d_mountpoint(dentry))
2637 		goto out;
2638 
2639 	error = security_inode_rmdir(dir, dentry);
2640 	if (error)
2641 		goto out;
2642 
2643 	shrink_dcache_parent(dentry);
2644 	error = dir->i_op->rmdir(dir, dentry);
2645 	if (error)
2646 		goto out;
2647 
2648 	dentry->d_inode->i_flags |= S_DEAD;
2649 	dont_mount(dentry);
2650 
2651 out:
2652 	mutex_unlock(&dentry->d_inode->i_mutex);
2653 	dput(dentry);
2654 	if (!error)
2655 		d_delete(dentry);
2656 	return error;
2657 }
2658 
2659 static long do_rmdir(int dfd, const char __user *pathname)
2660 {
2661 	int error = 0;
2662 	char * name;
2663 	struct dentry *dentry;
2664 	struct nameidata nd;
2665 
2666 	error = user_path_parent(dfd, pathname, &nd, &name);
2667 	if (error)
2668 		return error;
2669 
2670 	switch(nd.last_type) {
2671 	case LAST_DOTDOT:
2672 		error = -ENOTEMPTY;
2673 		goto exit1;
2674 	case LAST_DOT:
2675 		error = -EINVAL;
2676 		goto exit1;
2677 	case LAST_ROOT:
2678 		error = -EBUSY;
2679 		goto exit1;
2680 	}
2681 
2682 	nd.flags &= ~LOOKUP_PARENT;
2683 
2684 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2685 	dentry = lookup_hash(&nd);
2686 	error = PTR_ERR(dentry);
2687 	if (IS_ERR(dentry))
2688 		goto exit2;
2689 	if (!dentry->d_inode) {
2690 		error = -ENOENT;
2691 		goto exit3;
2692 	}
2693 	error = mnt_want_write(nd.path.mnt);
2694 	if (error)
2695 		goto exit3;
2696 	error = security_path_rmdir(&nd.path, dentry);
2697 	if (error)
2698 		goto exit4;
2699 	error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2700 exit4:
2701 	mnt_drop_write(nd.path.mnt);
2702 exit3:
2703 	dput(dentry);
2704 exit2:
2705 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2706 exit1:
2707 	path_put(&nd.path);
2708 	putname(name);
2709 	return error;
2710 }
2711 
2712 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2713 {
2714 	return do_rmdir(AT_FDCWD, pathname);
2715 }
2716 
2717 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2718 {
2719 	int error = may_delete(dir, dentry, 0);
2720 
2721 	if (error)
2722 		return error;
2723 
2724 	if (!dir->i_op->unlink)
2725 		return -EPERM;
2726 
2727 	mutex_lock(&dentry->d_inode->i_mutex);
2728 	if (d_mountpoint(dentry))
2729 		error = -EBUSY;
2730 	else {
2731 		error = security_inode_unlink(dir, dentry);
2732 		if (!error) {
2733 			error = dir->i_op->unlink(dir, dentry);
2734 			if (!error)
2735 				dont_mount(dentry);
2736 		}
2737 	}
2738 	mutex_unlock(&dentry->d_inode->i_mutex);
2739 
2740 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
2741 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2742 		fsnotify_link_count(dentry->d_inode);
2743 		d_delete(dentry);
2744 	}
2745 
2746 	return error;
2747 }
2748 
2749 /*
2750  * Make sure that the actual truncation of the file will occur outside its
2751  * directory's i_mutex.  Truncate can take a long time if there is a lot of
2752  * writeout happening, and we don't want to prevent access to the directory
2753  * while waiting on the I/O.
2754  */
2755 static long do_unlinkat(int dfd, const char __user *pathname)
2756 {
2757 	int error;
2758 	char *name;
2759 	struct dentry *dentry;
2760 	struct nameidata nd;
2761 	struct inode *inode = NULL;
2762 
2763 	error = user_path_parent(dfd, pathname, &nd, &name);
2764 	if (error)
2765 		return error;
2766 
2767 	error = -EISDIR;
2768 	if (nd.last_type != LAST_NORM)
2769 		goto exit1;
2770 
2771 	nd.flags &= ~LOOKUP_PARENT;
2772 
2773 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2774 	dentry = lookup_hash(&nd);
2775 	error = PTR_ERR(dentry);
2776 	if (!IS_ERR(dentry)) {
2777 		/* Why not before? Because we want correct error value */
2778 		if (nd.last.name[nd.last.len])
2779 			goto slashes;
2780 		inode = dentry->d_inode;
2781 		if (!inode)
2782 			goto slashes;
2783 		ihold(inode);
2784 		error = mnt_want_write(nd.path.mnt);
2785 		if (error)
2786 			goto exit2;
2787 		error = security_path_unlink(&nd.path, dentry);
2788 		if (error)
2789 			goto exit3;
2790 		error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2791 exit3:
2792 		mnt_drop_write(nd.path.mnt);
2793 	exit2:
2794 		dput(dentry);
2795 	}
2796 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2797 	if (inode)
2798 		iput(inode);	/* truncate the inode here */
2799 exit1:
2800 	path_put(&nd.path);
2801 	putname(name);
2802 	return error;
2803 
2804 slashes:
2805 	error = !dentry->d_inode ? -ENOENT :
2806 		S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2807 	goto exit2;
2808 }
2809 
2810 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2811 {
2812 	if ((flag & ~AT_REMOVEDIR) != 0)
2813 		return -EINVAL;
2814 
2815 	if (flag & AT_REMOVEDIR)
2816 		return do_rmdir(dfd, pathname);
2817 
2818 	return do_unlinkat(dfd, pathname);
2819 }
2820 
2821 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2822 {
2823 	return do_unlinkat(AT_FDCWD, pathname);
2824 }
2825 
2826 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2827 {
2828 	int error = may_create(dir, dentry);
2829 
2830 	if (error)
2831 		return error;
2832 
2833 	if (!dir->i_op->symlink)
2834 		return -EPERM;
2835 
2836 	error = security_inode_symlink(dir, dentry, oldname);
2837 	if (error)
2838 		return error;
2839 
2840 	error = dir->i_op->symlink(dir, dentry, oldname);
2841 	if (!error)
2842 		fsnotify_create(dir, dentry);
2843 	return error;
2844 }
2845 
2846 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2847 		int, newdfd, const char __user *, newname)
2848 {
2849 	int error;
2850 	char *from;
2851 	struct dentry *dentry;
2852 	struct path path;
2853 
2854 	from = getname(oldname);
2855 	if (IS_ERR(from))
2856 		return PTR_ERR(from);
2857 
2858 	dentry = user_path_create(newdfd, newname, &path, 0);
2859 	error = PTR_ERR(dentry);
2860 	if (IS_ERR(dentry))
2861 		goto out_putname;
2862 
2863 	error = mnt_want_write(path.mnt);
2864 	if (error)
2865 		goto out_dput;
2866 	error = security_path_symlink(&path, dentry, from);
2867 	if (error)
2868 		goto out_drop_write;
2869 	error = vfs_symlink(path.dentry->d_inode, dentry, from);
2870 out_drop_write:
2871 	mnt_drop_write(path.mnt);
2872 out_dput:
2873 	dput(dentry);
2874 	mutex_unlock(&path.dentry->d_inode->i_mutex);
2875 	path_put(&path);
2876 out_putname:
2877 	putname(from);
2878 	return error;
2879 }
2880 
2881 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2882 {
2883 	return sys_symlinkat(oldname, AT_FDCWD, newname);
2884 }
2885 
2886 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2887 {
2888 	struct inode *inode = old_dentry->d_inode;
2889 	int error;
2890 
2891 	if (!inode)
2892 		return -ENOENT;
2893 
2894 	error = may_create(dir, new_dentry);
2895 	if (error)
2896 		return error;
2897 
2898 	if (dir->i_sb != inode->i_sb)
2899 		return -EXDEV;
2900 
2901 	/*
2902 	 * A link to an append-only or immutable file cannot be created.
2903 	 */
2904 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2905 		return -EPERM;
2906 	if (!dir->i_op->link)
2907 		return -EPERM;
2908 	if (S_ISDIR(inode->i_mode))
2909 		return -EPERM;
2910 
2911 	error = security_inode_link(old_dentry, dir, new_dentry);
2912 	if (error)
2913 		return error;
2914 
2915 	mutex_lock(&inode->i_mutex);
2916 	/* Make sure we don't allow creating hardlink to an unlinked file */
2917 	if (inode->i_nlink == 0)
2918 		error =  -ENOENT;
2919 	else
2920 		error = dir->i_op->link(old_dentry, dir, new_dentry);
2921 	mutex_unlock(&inode->i_mutex);
2922 	if (!error)
2923 		fsnotify_link(dir, inode, new_dentry);
2924 	return error;
2925 }
2926 
2927 /*
2928  * Hardlinks are often used in delicate situations.  We avoid
2929  * security-related surprises by not following symlinks on the
2930  * newname.  --KAB
2931  *
2932  * We don't follow them on the oldname either to be compatible
2933  * with linux 2.0, and to avoid hard-linking to directories
2934  * and other special files.  --ADM
2935  */
2936 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2937 		int, newdfd, const char __user *, newname, int, flags)
2938 {
2939 	struct dentry *new_dentry;
2940 	struct path old_path, new_path;
2941 	int how = 0;
2942 	int error;
2943 
2944 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
2945 		return -EINVAL;
2946 	/*
2947 	 * To use null names we require CAP_DAC_READ_SEARCH
2948 	 * This ensures that not everyone will be able to create
2949 	 * handlink using the passed filedescriptor.
2950 	 */
2951 	if (flags & AT_EMPTY_PATH) {
2952 		if (!capable(CAP_DAC_READ_SEARCH))
2953 			return -ENOENT;
2954 		how = LOOKUP_EMPTY;
2955 	}
2956 
2957 	if (flags & AT_SYMLINK_FOLLOW)
2958 		how |= LOOKUP_FOLLOW;
2959 
2960 	error = user_path_at(olddfd, oldname, how, &old_path);
2961 	if (error)
2962 		return error;
2963 
2964 	new_dentry = user_path_create(newdfd, newname, &new_path, 0);
2965 	error = PTR_ERR(new_dentry);
2966 	if (IS_ERR(new_dentry))
2967 		goto out;
2968 
2969 	error = -EXDEV;
2970 	if (old_path.mnt != new_path.mnt)
2971 		goto out_dput;
2972 	error = mnt_want_write(new_path.mnt);
2973 	if (error)
2974 		goto out_dput;
2975 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
2976 	if (error)
2977 		goto out_drop_write;
2978 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
2979 out_drop_write:
2980 	mnt_drop_write(new_path.mnt);
2981 out_dput:
2982 	dput(new_dentry);
2983 	mutex_unlock(&new_path.dentry->d_inode->i_mutex);
2984 	path_put(&new_path);
2985 out:
2986 	path_put(&old_path);
2987 
2988 	return error;
2989 }
2990 
2991 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
2992 {
2993 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2994 }
2995 
2996 /*
2997  * The worst of all namespace operations - renaming directory. "Perverted"
2998  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2999  * Problems:
3000  *	a) we can get into loop creation. Check is done in is_subdir().
3001  *	b) race potential - two innocent renames can create a loop together.
3002  *	   That's where 4.4 screws up. Current fix: serialization on
3003  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3004  *	   story.
3005  *	c) we have to lock _three_ objects - parents and victim (if it exists).
3006  *	   And that - after we got ->i_mutex on parents (until then we don't know
3007  *	   whether the target exists).  Solution: try to be smart with locking
3008  *	   order for inodes.  We rely on the fact that tree topology may change
3009  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
3010  *	   move will be locked.  Thus we can rank directories by the tree
3011  *	   (ancestors first) and rank all non-directories after them.
3012  *	   That works since everybody except rename does "lock parent, lookup,
3013  *	   lock child" and rename is under ->s_vfs_rename_mutex.
3014  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
3015  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
3016  *	   we'd better make sure that there's no link(2) for them.
3017  *	d) conversion from fhandle to dentry may come in the wrong moment - when
3018  *	   we are removing the target. Solution: we will have to grab ->i_mutex
3019  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3020  *	   ->i_mutex on parents, which works but leads to some truly excessive
3021  *	   locking].
3022  */
3023 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3024 			  struct inode *new_dir, struct dentry *new_dentry)
3025 {
3026 	int error = 0;
3027 	struct inode *target = new_dentry->d_inode;
3028 
3029 	/*
3030 	 * If we are going to change the parent - check write permissions,
3031 	 * we'll need to flip '..'.
3032 	 */
3033 	if (new_dir != old_dir) {
3034 		error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3035 		if (error)
3036 			return error;
3037 	}
3038 
3039 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3040 	if (error)
3041 		return error;
3042 
3043 	dget(new_dentry);
3044 	if (target)
3045 		mutex_lock(&target->i_mutex);
3046 
3047 	error = -EBUSY;
3048 	if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3049 		goto out;
3050 
3051 	if (target)
3052 		shrink_dcache_parent(new_dentry);
3053 	error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3054 	if (error)
3055 		goto out;
3056 
3057 	if (target) {
3058 		target->i_flags |= S_DEAD;
3059 		dont_mount(new_dentry);
3060 	}
3061 out:
3062 	if (target)
3063 		mutex_unlock(&target->i_mutex);
3064 	dput(new_dentry);
3065 	if (!error)
3066 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3067 			d_move(old_dentry,new_dentry);
3068 	return error;
3069 }
3070 
3071 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3072 			    struct inode *new_dir, struct dentry *new_dentry)
3073 {
3074 	struct inode *target = new_dentry->d_inode;
3075 	int error;
3076 
3077 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3078 	if (error)
3079 		return error;
3080 
3081 	dget(new_dentry);
3082 	if (target)
3083 		mutex_lock(&target->i_mutex);
3084 
3085 	error = -EBUSY;
3086 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3087 		goto out;
3088 
3089 	error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3090 	if (error)
3091 		goto out;
3092 
3093 	if (target)
3094 		dont_mount(new_dentry);
3095 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3096 		d_move(old_dentry, new_dentry);
3097 out:
3098 	if (target)
3099 		mutex_unlock(&target->i_mutex);
3100 	dput(new_dentry);
3101 	return error;
3102 }
3103 
3104 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3105 	       struct inode *new_dir, struct dentry *new_dentry)
3106 {
3107 	int error;
3108 	int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3109 	const unsigned char *old_name;
3110 
3111 	if (old_dentry->d_inode == new_dentry->d_inode)
3112  		return 0;
3113 
3114 	error = may_delete(old_dir, old_dentry, is_dir);
3115 	if (error)
3116 		return error;
3117 
3118 	if (!new_dentry->d_inode)
3119 		error = may_create(new_dir, new_dentry);
3120 	else
3121 		error = may_delete(new_dir, new_dentry, is_dir);
3122 	if (error)
3123 		return error;
3124 
3125 	if (!old_dir->i_op->rename)
3126 		return -EPERM;
3127 
3128 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3129 
3130 	if (is_dir)
3131 		error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3132 	else
3133 		error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3134 	if (!error)
3135 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
3136 			      new_dentry->d_inode, old_dentry);
3137 	fsnotify_oldname_free(old_name);
3138 
3139 	return error;
3140 }
3141 
3142 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3143 		int, newdfd, const char __user *, newname)
3144 {
3145 	struct dentry *old_dir, *new_dir;
3146 	struct dentry *old_dentry, *new_dentry;
3147 	struct dentry *trap;
3148 	struct nameidata oldnd, newnd;
3149 	char *from;
3150 	char *to;
3151 	int error;
3152 
3153 	error = user_path_parent(olddfd, oldname, &oldnd, &from);
3154 	if (error)
3155 		goto exit;
3156 
3157 	error = user_path_parent(newdfd, newname, &newnd, &to);
3158 	if (error)
3159 		goto exit1;
3160 
3161 	error = -EXDEV;
3162 	if (oldnd.path.mnt != newnd.path.mnt)
3163 		goto exit2;
3164 
3165 	old_dir = oldnd.path.dentry;
3166 	error = -EBUSY;
3167 	if (oldnd.last_type != LAST_NORM)
3168 		goto exit2;
3169 
3170 	new_dir = newnd.path.dentry;
3171 	if (newnd.last_type != LAST_NORM)
3172 		goto exit2;
3173 
3174 	oldnd.flags &= ~LOOKUP_PARENT;
3175 	newnd.flags &= ~LOOKUP_PARENT;
3176 	newnd.flags |= LOOKUP_RENAME_TARGET;
3177 
3178 	trap = lock_rename(new_dir, old_dir);
3179 
3180 	old_dentry = lookup_hash(&oldnd);
3181 	error = PTR_ERR(old_dentry);
3182 	if (IS_ERR(old_dentry))
3183 		goto exit3;
3184 	/* source must exist */
3185 	error = -ENOENT;
3186 	if (!old_dentry->d_inode)
3187 		goto exit4;
3188 	/* unless the source is a directory trailing slashes give -ENOTDIR */
3189 	if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3190 		error = -ENOTDIR;
3191 		if (oldnd.last.name[oldnd.last.len])
3192 			goto exit4;
3193 		if (newnd.last.name[newnd.last.len])
3194 			goto exit4;
3195 	}
3196 	/* source should not be ancestor of target */
3197 	error = -EINVAL;
3198 	if (old_dentry == trap)
3199 		goto exit4;
3200 	new_dentry = lookup_hash(&newnd);
3201 	error = PTR_ERR(new_dentry);
3202 	if (IS_ERR(new_dentry))
3203 		goto exit4;
3204 	/* target should not be an ancestor of source */
3205 	error = -ENOTEMPTY;
3206 	if (new_dentry == trap)
3207 		goto exit5;
3208 
3209 	error = mnt_want_write(oldnd.path.mnt);
3210 	if (error)
3211 		goto exit5;
3212 	error = security_path_rename(&oldnd.path, old_dentry,
3213 				     &newnd.path, new_dentry);
3214 	if (error)
3215 		goto exit6;
3216 	error = vfs_rename(old_dir->d_inode, old_dentry,
3217 				   new_dir->d_inode, new_dentry);
3218 exit6:
3219 	mnt_drop_write(oldnd.path.mnt);
3220 exit5:
3221 	dput(new_dentry);
3222 exit4:
3223 	dput(old_dentry);
3224 exit3:
3225 	unlock_rename(new_dir, old_dir);
3226 exit2:
3227 	path_put(&newnd.path);
3228 	putname(to);
3229 exit1:
3230 	path_put(&oldnd.path);
3231 	putname(from);
3232 exit:
3233 	return error;
3234 }
3235 
3236 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3237 {
3238 	return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3239 }
3240 
3241 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3242 {
3243 	int len;
3244 
3245 	len = PTR_ERR(link);
3246 	if (IS_ERR(link))
3247 		goto out;
3248 
3249 	len = strlen(link);
3250 	if (len > (unsigned) buflen)
3251 		len = buflen;
3252 	if (copy_to_user(buffer, link, len))
3253 		len = -EFAULT;
3254 out:
3255 	return len;
3256 }
3257 
3258 /*
3259  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
3260  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
3261  * using) it for any given inode is up to filesystem.
3262  */
3263 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3264 {
3265 	struct nameidata nd;
3266 	void *cookie;
3267 	int res;
3268 
3269 	nd.depth = 0;
3270 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3271 	if (IS_ERR(cookie))
3272 		return PTR_ERR(cookie);
3273 
3274 	res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3275 	if (dentry->d_inode->i_op->put_link)
3276 		dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3277 	return res;
3278 }
3279 
3280 int vfs_follow_link(struct nameidata *nd, const char *link)
3281 {
3282 	return __vfs_follow_link(nd, link);
3283 }
3284 
3285 /* get the link contents into pagecache */
3286 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3287 {
3288 	char *kaddr;
3289 	struct page *page;
3290 	struct address_space *mapping = dentry->d_inode->i_mapping;
3291 	page = read_mapping_page(mapping, 0, NULL);
3292 	if (IS_ERR(page))
3293 		return (char*)page;
3294 	*ppage = page;
3295 	kaddr = kmap(page);
3296 	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3297 	return kaddr;
3298 }
3299 
3300 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3301 {
3302 	struct page *page = NULL;
3303 	char *s = page_getlink(dentry, &page);
3304 	int res = vfs_readlink(dentry,buffer,buflen,s);
3305 	if (page) {
3306 		kunmap(page);
3307 		page_cache_release(page);
3308 	}
3309 	return res;
3310 }
3311 
3312 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3313 {
3314 	struct page *page = NULL;
3315 	nd_set_link(nd, page_getlink(dentry, &page));
3316 	return page;
3317 }
3318 
3319 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3320 {
3321 	struct page *page = cookie;
3322 
3323 	if (page) {
3324 		kunmap(page);
3325 		page_cache_release(page);
3326 	}
3327 }
3328 
3329 /*
3330  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3331  */
3332 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3333 {
3334 	struct address_space *mapping = inode->i_mapping;
3335 	struct page *page;
3336 	void *fsdata;
3337 	int err;
3338 	char *kaddr;
3339 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3340 	if (nofs)
3341 		flags |= AOP_FLAG_NOFS;
3342 
3343 retry:
3344 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
3345 				flags, &page, &fsdata);
3346 	if (err)
3347 		goto fail;
3348 
3349 	kaddr = kmap_atomic(page, KM_USER0);
3350 	memcpy(kaddr, symname, len-1);
3351 	kunmap_atomic(kaddr, KM_USER0);
3352 
3353 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3354 							page, fsdata);
3355 	if (err < 0)
3356 		goto fail;
3357 	if (err < len-1)
3358 		goto retry;
3359 
3360 	mark_inode_dirty(inode);
3361 	return 0;
3362 fail:
3363 	return err;
3364 }
3365 
3366 int page_symlink(struct inode *inode, const char *symname, int len)
3367 {
3368 	return __page_symlink(inode, symname, len,
3369 			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3370 }
3371 
3372 const struct inode_operations page_symlink_inode_operations = {
3373 	.readlink	= generic_readlink,
3374 	.follow_link	= page_follow_link_light,
3375 	.put_link	= page_put_link,
3376 };
3377 
3378 EXPORT_SYMBOL(user_path_at);
3379 EXPORT_SYMBOL(follow_down_one);
3380 EXPORT_SYMBOL(follow_down);
3381 EXPORT_SYMBOL(follow_up);
3382 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3383 EXPORT_SYMBOL(getname);
3384 EXPORT_SYMBOL(lock_rename);
3385 EXPORT_SYMBOL(lookup_one_len);
3386 EXPORT_SYMBOL(page_follow_link_light);
3387 EXPORT_SYMBOL(page_put_link);
3388 EXPORT_SYMBOL(page_readlink);
3389 EXPORT_SYMBOL(__page_symlink);
3390 EXPORT_SYMBOL(page_symlink);
3391 EXPORT_SYMBOL(page_symlink_inode_operations);
3392 EXPORT_SYMBOL(kern_path);
3393 EXPORT_SYMBOL(vfs_path_lookup);
3394 EXPORT_SYMBOL(inode_permission);
3395 EXPORT_SYMBOL(unlock_rename);
3396 EXPORT_SYMBOL(vfs_create);
3397 EXPORT_SYMBOL(vfs_follow_link);
3398 EXPORT_SYMBOL(vfs_link);
3399 EXPORT_SYMBOL(vfs_mkdir);
3400 EXPORT_SYMBOL(vfs_mknod);
3401 EXPORT_SYMBOL(generic_permission);
3402 EXPORT_SYMBOL(vfs_readlink);
3403 EXPORT_SYMBOL(vfs_rename);
3404 EXPORT_SYMBOL(vfs_rmdir);
3405 EXPORT_SYMBOL(vfs_symlink);
3406 EXPORT_SYMBOL(vfs_unlink);
3407 EXPORT_SYMBOL(dentry_unhash);
3408 EXPORT_SYMBOL(generic_readlink);
3409