1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/namei.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * Some corrections by tytso. 10 */ 11 12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 13 * lookup logic. 14 */ 15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 16 */ 17 18 #include <linux/init.h> 19 #include <linux/export.h> 20 #include <linux/kernel.h> 21 #include <linux/slab.h> 22 #include <linux/fs.h> 23 #include <linux/namei.h> 24 #include <linux/pagemap.h> 25 #include <linux/fsnotify.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/ima.h> 29 #include <linux/syscalls.h> 30 #include <linux/mount.h> 31 #include <linux/audit.h> 32 #include <linux/capability.h> 33 #include <linux/file.h> 34 #include <linux/fcntl.h> 35 #include <linux/device_cgroup.h> 36 #include <linux/fs_struct.h> 37 #include <linux/posix_acl.h> 38 #include <linux/hash.h> 39 #include <linux/bitops.h> 40 #include <linux/init_task.h> 41 #include <linux/uaccess.h> 42 43 #include "internal.h" 44 #include "mount.h" 45 46 /* [Feb-1997 T. Schoebel-Theuer] 47 * Fundamental changes in the pathname lookup mechanisms (namei) 48 * were necessary because of omirr. The reason is that omirr needs 49 * to know the _real_ pathname, not the user-supplied one, in case 50 * of symlinks (and also when transname replacements occur). 51 * 52 * The new code replaces the old recursive symlink resolution with 53 * an iterative one (in case of non-nested symlink chains). It does 54 * this with calls to <fs>_follow_link(). 55 * As a side effect, dir_namei(), _namei() and follow_link() are now 56 * replaced with a single function lookup_dentry() that can handle all 57 * the special cases of the former code. 58 * 59 * With the new dcache, the pathname is stored at each inode, at least as 60 * long as the refcount of the inode is positive. As a side effect, the 61 * size of the dcache depends on the inode cache and thus is dynamic. 62 * 63 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 64 * resolution to correspond with current state of the code. 65 * 66 * Note that the symlink resolution is not *completely* iterative. 67 * There is still a significant amount of tail- and mid- recursion in 68 * the algorithm. Also, note that <fs>_readlink() is not used in 69 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 70 * may return different results than <fs>_follow_link(). Many virtual 71 * filesystems (including /proc) exhibit this behavior. 72 */ 73 74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 75 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 76 * and the name already exists in form of a symlink, try to create the new 77 * name indicated by the symlink. The old code always complained that the 78 * name already exists, due to not following the symlink even if its target 79 * is nonexistent. The new semantics affects also mknod() and link() when 80 * the name is a symlink pointing to a non-existent name. 81 * 82 * I don't know which semantics is the right one, since I have no access 83 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 84 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 85 * "old" one. Personally, I think the new semantics is much more logical. 86 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 87 * file does succeed in both HP-UX and SunOs, but not in Solaris 88 * and in the old Linux semantics. 89 */ 90 91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 92 * semantics. See the comments in "open_namei" and "do_link" below. 93 * 94 * [10-Sep-98 Alan Modra] Another symlink change. 95 */ 96 97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 98 * inside the path - always follow. 99 * in the last component in creation/removal/renaming - never follow. 100 * if LOOKUP_FOLLOW passed - follow. 101 * if the pathname has trailing slashes - follow. 102 * otherwise - don't follow. 103 * (applied in that order). 104 * 105 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 106 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 107 * During the 2.4 we need to fix the userland stuff depending on it - 108 * hopefully we will be able to get rid of that wart in 2.5. So far only 109 * XEmacs seems to be relying on it... 110 */ 111 /* 112 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 113 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 114 * any extra contention... 115 */ 116 117 /* In order to reduce some races, while at the same time doing additional 118 * checking and hopefully speeding things up, we copy filenames to the 119 * kernel data space before using them.. 120 * 121 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 122 * PATH_MAX includes the nul terminator --RR. 123 */ 124 125 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) 126 127 struct filename * 128 getname_flags(const char __user *filename, int flags, int *empty) 129 { 130 struct filename *result; 131 char *kname; 132 int len; 133 134 result = audit_reusename(filename); 135 if (result) 136 return result; 137 138 result = __getname(); 139 if (unlikely(!result)) 140 return ERR_PTR(-ENOMEM); 141 142 /* 143 * First, try to embed the struct filename inside the names_cache 144 * allocation 145 */ 146 kname = (char *)result->iname; 147 result->name = kname; 148 149 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); 150 if (unlikely(len < 0)) { 151 __putname(result); 152 return ERR_PTR(len); 153 } 154 155 /* 156 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 157 * separate struct filename so we can dedicate the entire 158 * names_cache allocation for the pathname, and re-do the copy from 159 * userland. 160 */ 161 if (unlikely(len == EMBEDDED_NAME_MAX)) { 162 const size_t size = offsetof(struct filename, iname[1]); 163 kname = (char *)result; 164 165 /* 166 * size is chosen that way we to guarantee that 167 * result->iname[0] is within the same object and that 168 * kname can't be equal to result->iname, no matter what. 169 */ 170 result = kzalloc(size, GFP_KERNEL); 171 if (unlikely(!result)) { 172 __putname(kname); 173 return ERR_PTR(-ENOMEM); 174 } 175 result->name = kname; 176 len = strncpy_from_user(kname, filename, PATH_MAX); 177 if (unlikely(len < 0)) { 178 __putname(kname); 179 kfree(result); 180 return ERR_PTR(len); 181 } 182 if (unlikely(len == PATH_MAX)) { 183 __putname(kname); 184 kfree(result); 185 return ERR_PTR(-ENAMETOOLONG); 186 } 187 } 188 189 result->refcnt = 1; 190 /* The empty path is special. */ 191 if (unlikely(!len)) { 192 if (empty) 193 *empty = 1; 194 if (!(flags & LOOKUP_EMPTY)) { 195 putname(result); 196 return ERR_PTR(-ENOENT); 197 } 198 } 199 200 result->uptr = filename; 201 result->aname = NULL; 202 audit_getname(result); 203 return result; 204 } 205 206 struct filename * 207 getname(const char __user * filename) 208 { 209 return getname_flags(filename, 0, NULL); 210 } 211 212 struct filename * 213 getname_kernel(const char * filename) 214 { 215 struct filename *result; 216 int len = strlen(filename) + 1; 217 218 result = __getname(); 219 if (unlikely(!result)) 220 return ERR_PTR(-ENOMEM); 221 222 if (len <= EMBEDDED_NAME_MAX) { 223 result->name = (char *)result->iname; 224 } else if (len <= PATH_MAX) { 225 const size_t size = offsetof(struct filename, iname[1]); 226 struct filename *tmp; 227 228 tmp = kmalloc(size, GFP_KERNEL); 229 if (unlikely(!tmp)) { 230 __putname(result); 231 return ERR_PTR(-ENOMEM); 232 } 233 tmp->name = (char *)result; 234 result = tmp; 235 } else { 236 __putname(result); 237 return ERR_PTR(-ENAMETOOLONG); 238 } 239 memcpy((char *)result->name, filename, len); 240 result->uptr = NULL; 241 result->aname = NULL; 242 result->refcnt = 1; 243 audit_getname(result); 244 245 return result; 246 } 247 248 void putname(struct filename *name) 249 { 250 BUG_ON(name->refcnt <= 0); 251 252 if (--name->refcnt > 0) 253 return; 254 255 if (name->name != name->iname) { 256 __putname(name->name); 257 kfree(name); 258 } else 259 __putname(name); 260 } 261 262 /** 263 * check_acl - perform ACL permission checking 264 * @mnt_userns: user namespace of the mount the inode was found from 265 * @inode: inode to check permissions on 266 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 267 * 268 * This function performs the ACL permission checking. Since this function 269 * retrieve POSIX acls it needs to know whether it is called from a blocking or 270 * non-blocking context and thus cares about the MAY_NOT_BLOCK bit. 271 * 272 * If the inode has been found through an idmapped mount the user namespace of 273 * the vfsmount must be passed through @mnt_userns. This function will then take 274 * care to map the inode according to @mnt_userns before checking permissions. 275 * On non-idmapped mounts or if permission checking is to be performed on the 276 * raw inode simply passs init_user_ns. 277 */ 278 static int check_acl(struct user_namespace *mnt_userns, 279 struct inode *inode, int mask) 280 { 281 #ifdef CONFIG_FS_POSIX_ACL 282 struct posix_acl *acl; 283 284 if (mask & MAY_NOT_BLOCK) { 285 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 286 if (!acl) 287 return -EAGAIN; 288 /* no ->get_acl() calls in RCU mode... */ 289 if (is_uncached_acl(acl)) 290 return -ECHILD; 291 return posix_acl_permission(mnt_userns, inode, acl, mask); 292 } 293 294 acl = get_acl(inode, ACL_TYPE_ACCESS); 295 if (IS_ERR(acl)) 296 return PTR_ERR(acl); 297 if (acl) { 298 int error = posix_acl_permission(mnt_userns, inode, acl, mask); 299 posix_acl_release(acl); 300 return error; 301 } 302 #endif 303 304 return -EAGAIN; 305 } 306 307 /** 308 * acl_permission_check - perform basic UNIX permission checking 309 * @mnt_userns: user namespace of the mount the inode was found from 310 * @inode: inode to check permissions on 311 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 312 * 313 * This function performs the basic UNIX permission checking. Since this 314 * function may retrieve POSIX acls it needs to know whether it is called from a 315 * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit. 316 * 317 * If the inode has been found through an idmapped mount the user namespace of 318 * the vfsmount must be passed through @mnt_userns. This function will then take 319 * care to map the inode according to @mnt_userns before checking permissions. 320 * On non-idmapped mounts or if permission checking is to be performed on the 321 * raw inode simply passs init_user_ns. 322 */ 323 static int acl_permission_check(struct user_namespace *mnt_userns, 324 struct inode *inode, int mask) 325 { 326 unsigned int mode = inode->i_mode; 327 kuid_t i_uid; 328 329 /* Are we the owner? If so, ACL's don't matter */ 330 i_uid = i_uid_into_mnt(mnt_userns, inode); 331 if (likely(uid_eq(current_fsuid(), i_uid))) { 332 mask &= 7; 333 mode >>= 6; 334 return (mask & ~mode) ? -EACCES : 0; 335 } 336 337 /* Do we have ACL's? */ 338 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 339 int error = check_acl(mnt_userns, inode, mask); 340 if (error != -EAGAIN) 341 return error; 342 } 343 344 /* Only RWX matters for group/other mode bits */ 345 mask &= 7; 346 347 /* 348 * Are the group permissions different from 349 * the other permissions in the bits we care 350 * about? Need to check group ownership if so. 351 */ 352 if (mask & (mode ^ (mode >> 3))) { 353 kgid_t kgid = i_gid_into_mnt(mnt_userns, inode); 354 if (in_group_p(kgid)) 355 mode >>= 3; 356 } 357 358 /* Bits in 'mode' clear that we require? */ 359 return (mask & ~mode) ? -EACCES : 0; 360 } 361 362 /** 363 * generic_permission - check for access rights on a Posix-like filesystem 364 * @mnt_userns: user namespace of the mount the inode was found from 365 * @inode: inode to check access rights for 366 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, 367 * %MAY_NOT_BLOCK ...) 368 * 369 * Used to check for read/write/execute permissions on a file. 370 * We use "fsuid" for this, letting us set arbitrary permissions 371 * for filesystem access without changing the "normal" uids which 372 * are used for other things. 373 * 374 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 375 * request cannot be satisfied (eg. requires blocking or too much complexity). 376 * It would then be called again in ref-walk mode. 377 * 378 * If the inode has been found through an idmapped mount the user namespace of 379 * the vfsmount must be passed through @mnt_userns. This function will then take 380 * care to map the inode according to @mnt_userns before checking permissions. 381 * On non-idmapped mounts or if permission checking is to be performed on the 382 * raw inode simply passs init_user_ns. 383 */ 384 int generic_permission(struct user_namespace *mnt_userns, struct inode *inode, 385 int mask) 386 { 387 int ret; 388 389 /* 390 * Do the basic permission checks. 391 */ 392 ret = acl_permission_check(mnt_userns, inode, mask); 393 if (ret != -EACCES) 394 return ret; 395 396 if (S_ISDIR(inode->i_mode)) { 397 /* DACs are overridable for directories */ 398 if (!(mask & MAY_WRITE)) 399 if (capable_wrt_inode_uidgid(mnt_userns, inode, 400 CAP_DAC_READ_SEARCH)) 401 return 0; 402 if (capable_wrt_inode_uidgid(mnt_userns, inode, 403 CAP_DAC_OVERRIDE)) 404 return 0; 405 return -EACCES; 406 } 407 408 /* 409 * Searching includes executable on directories, else just read. 410 */ 411 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 412 if (mask == MAY_READ) 413 if (capable_wrt_inode_uidgid(mnt_userns, inode, 414 CAP_DAC_READ_SEARCH)) 415 return 0; 416 /* 417 * Read/write DACs are always overridable. 418 * Executable DACs are overridable when there is 419 * at least one exec bit set. 420 */ 421 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 422 if (capable_wrt_inode_uidgid(mnt_userns, inode, 423 CAP_DAC_OVERRIDE)) 424 return 0; 425 426 return -EACCES; 427 } 428 EXPORT_SYMBOL(generic_permission); 429 430 /** 431 * do_inode_permission - UNIX permission checking 432 * @mnt_userns: user namespace of the mount the inode was found from 433 * @inode: inode to check permissions on 434 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 435 * 436 * We _really_ want to just do "generic_permission()" without 437 * even looking at the inode->i_op values. So we keep a cache 438 * flag in inode->i_opflags, that says "this has not special 439 * permission function, use the fast case". 440 */ 441 static inline int do_inode_permission(struct user_namespace *mnt_userns, 442 struct inode *inode, int mask) 443 { 444 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 445 if (likely(inode->i_op->permission)) 446 return inode->i_op->permission(mnt_userns, inode, mask); 447 448 /* This gets set once for the inode lifetime */ 449 spin_lock(&inode->i_lock); 450 inode->i_opflags |= IOP_FASTPERM; 451 spin_unlock(&inode->i_lock); 452 } 453 return generic_permission(mnt_userns, inode, mask); 454 } 455 456 /** 457 * sb_permission - Check superblock-level permissions 458 * @sb: Superblock of inode to check permission on 459 * @inode: Inode to check permission on 460 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 461 * 462 * Separate out file-system wide checks from inode-specific permission checks. 463 */ 464 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 465 { 466 if (unlikely(mask & MAY_WRITE)) { 467 umode_t mode = inode->i_mode; 468 469 /* Nobody gets write access to a read-only fs. */ 470 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 471 return -EROFS; 472 } 473 return 0; 474 } 475 476 /** 477 * inode_permission - Check for access rights to a given inode 478 * @mnt_userns: User namespace of the mount the inode was found from 479 * @inode: Inode to check permission on 480 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 481 * 482 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 483 * this, letting us set arbitrary permissions for filesystem access without 484 * changing the "normal" UIDs which are used for other things. 485 * 486 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 487 */ 488 int inode_permission(struct user_namespace *mnt_userns, 489 struct inode *inode, int mask) 490 { 491 int retval; 492 493 retval = sb_permission(inode->i_sb, inode, mask); 494 if (retval) 495 return retval; 496 497 if (unlikely(mask & MAY_WRITE)) { 498 /* 499 * Nobody gets write access to an immutable file. 500 */ 501 if (IS_IMMUTABLE(inode)) 502 return -EPERM; 503 504 /* 505 * Updating mtime will likely cause i_uid and i_gid to be 506 * written back improperly if their true value is unknown 507 * to the vfs. 508 */ 509 if (HAS_UNMAPPED_ID(mnt_userns, inode)) 510 return -EACCES; 511 } 512 513 retval = do_inode_permission(mnt_userns, inode, mask); 514 if (retval) 515 return retval; 516 517 retval = devcgroup_inode_permission(inode, mask); 518 if (retval) 519 return retval; 520 521 return security_inode_permission(inode, mask); 522 } 523 EXPORT_SYMBOL(inode_permission); 524 525 /** 526 * path_get - get a reference to a path 527 * @path: path to get the reference to 528 * 529 * Given a path increment the reference count to the dentry and the vfsmount. 530 */ 531 void path_get(const struct path *path) 532 { 533 mntget(path->mnt); 534 dget(path->dentry); 535 } 536 EXPORT_SYMBOL(path_get); 537 538 /** 539 * path_put - put a reference to a path 540 * @path: path to put the reference to 541 * 542 * Given a path decrement the reference count to the dentry and the vfsmount. 543 */ 544 void path_put(const struct path *path) 545 { 546 dput(path->dentry); 547 mntput(path->mnt); 548 } 549 EXPORT_SYMBOL(path_put); 550 551 #define EMBEDDED_LEVELS 2 552 struct nameidata { 553 struct path path; 554 struct qstr last; 555 struct path root; 556 struct inode *inode; /* path.dentry.d_inode */ 557 unsigned int flags; 558 unsigned seq, m_seq, r_seq; 559 int last_type; 560 unsigned depth; 561 int total_link_count; 562 struct saved { 563 struct path link; 564 struct delayed_call done; 565 const char *name; 566 unsigned seq; 567 } *stack, internal[EMBEDDED_LEVELS]; 568 struct filename *name; 569 struct nameidata *saved; 570 unsigned root_seq; 571 int dfd; 572 kuid_t dir_uid; 573 umode_t dir_mode; 574 } __randomize_layout; 575 576 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name) 577 { 578 struct nameidata *old = current->nameidata; 579 p->stack = p->internal; 580 p->dfd = dfd; 581 p->name = name; 582 p->path.mnt = NULL; 583 p->path.dentry = NULL; 584 p->total_link_count = old ? old->total_link_count : 0; 585 p->saved = old; 586 current->nameidata = p; 587 } 588 589 static void restore_nameidata(void) 590 { 591 struct nameidata *now = current->nameidata, *old = now->saved; 592 593 current->nameidata = old; 594 if (old) 595 old->total_link_count = now->total_link_count; 596 if (now->stack != now->internal) 597 kfree(now->stack); 598 } 599 600 static bool nd_alloc_stack(struct nameidata *nd) 601 { 602 struct saved *p; 603 604 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved), 605 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL); 606 if (unlikely(!p)) 607 return false; 608 memcpy(p, nd->internal, sizeof(nd->internal)); 609 nd->stack = p; 610 return true; 611 } 612 613 /** 614 * path_connected - Verify that a dentry is below mnt.mnt_root 615 * 616 * Rename can sometimes move a file or directory outside of a bind 617 * mount, path_connected allows those cases to be detected. 618 */ 619 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry) 620 { 621 struct super_block *sb = mnt->mnt_sb; 622 623 /* Bind mounts can have disconnected paths */ 624 if (mnt->mnt_root == sb->s_root) 625 return true; 626 627 return is_subdir(dentry, mnt->mnt_root); 628 } 629 630 static void drop_links(struct nameidata *nd) 631 { 632 int i = nd->depth; 633 while (i--) { 634 struct saved *last = nd->stack + i; 635 do_delayed_call(&last->done); 636 clear_delayed_call(&last->done); 637 } 638 } 639 640 static void terminate_walk(struct nameidata *nd) 641 { 642 drop_links(nd); 643 if (!(nd->flags & LOOKUP_RCU)) { 644 int i; 645 path_put(&nd->path); 646 for (i = 0; i < nd->depth; i++) 647 path_put(&nd->stack[i].link); 648 if (nd->flags & LOOKUP_ROOT_GRABBED) { 649 path_put(&nd->root); 650 nd->flags &= ~LOOKUP_ROOT_GRABBED; 651 } 652 } else { 653 nd->flags &= ~LOOKUP_RCU; 654 rcu_read_unlock(); 655 } 656 nd->depth = 0; 657 nd->path.mnt = NULL; 658 nd->path.dentry = NULL; 659 } 660 661 /* path_put is needed afterwards regardless of success or failure */ 662 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq) 663 { 664 int res = __legitimize_mnt(path->mnt, mseq); 665 if (unlikely(res)) { 666 if (res > 0) 667 path->mnt = NULL; 668 path->dentry = NULL; 669 return false; 670 } 671 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) { 672 path->dentry = NULL; 673 return false; 674 } 675 return !read_seqcount_retry(&path->dentry->d_seq, seq); 676 } 677 678 static inline bool legitimize_path(struct nameidata *nd, 679 struct path *path, unsigned seq) 680 { 681 return __legitimize_path(path, seq, nd->m_seq); 682 } 683 684 static bool legitimize_links(struct nameidata *nd) 685 { 686 int i; 687 if (unlikely(nd->flags & LOOKUP_CACHED)) { 688 drop_links(nd); 689 nd->depth = 0; 690 return false; 691 } 692 for (i = 0; i < nd->depth; i++) { 693 struct saved *last = nd->stack + i; 694 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) { 695 drop_links(nd); 696 nd->depth = i + 1; 697 return false; 698 } 699 } 700 return true; 701 } 702 703 static bool legitimize_root(struct nameidata *nd) 704 { 705 /* 706 * For scoped-lookups (where nd->root has been zeroed), we need to 707 * restart the whole lookup from scratch -- because set_root() is wrong 708 * for these lookups (nd->dfd is the root, not the filesystem root). 709 */ 710 if (!nd->root.mnt && (nd->flags & LOOKUP_IS_SCOPED)) 711 return false; 712 /* Nothing to do if nd->root is zero or is managed by the VFS user. */ 713 if (!nd->root.mnt || (nd->flags & LOOKUP_ROOT)) 714 return true; 715 nd->flags |= LOOKUP_ROOT_GRABBED; 716 return legitimize_path(nd, &nd->root, nd->root_seq); 717 } 718 719 /* 720 * Path walking has 2 modes, rcu-walk and ref-walk (see 721 * Documentation/filesystems/path-lookup.txt). In situations when we can't 722 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 723 * normal reference counts on dentries and vfsmounts to transition to ref-walk 724 * mode. Refcounts are grabbed at the last known good point before rcu-walk 725 * got stuck, so ref-walk may continue from there. If this is not successful 726 * (eg. a seqcount has changed), then failure is returned and it's up to caller 727 * to restart the path walk from the beginning in ref-walk mode. 728 */ 729 730 /** 731 * try_to_unlazy - try to switch to ref-walk mode. 732 * @nd: nameidata pathwalk data 733 * Returns: true on success, false on failure 734 * 735 * try_to_unlazy attempts to legitimize the current nd->path and nd->root 736 * for ref-walk mode. 737 * Must be called from rcu-walk context. 738 * Nothing should touch nameidata between try_to_unlazy() failure and 739 * terminate_walk(). 740 */ 741 static bool try_to_unlazy(struct nameidata *nd) 742 { 743 struct dentry *parent = nd->path.dentry; 744 745 BUG_ON(!(nd->flags & LOOKUP_RCU)); 746 747 nd->flags &= ~LOOKUP_RCU; 748 if (unlikely(!legitimize_links(nd))) 749 goto out1; 750 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq))) 751 goto out; 752 if (unlikely(!legitimize_root(nd))) 753 goto out; 754 rcu_read_unlock(); 755 BUG_ON(nd->inode != parent->d_inode); 756 return true; 757 758 out1: 759 nd->path.mnt = NULL; 760 nd->path.dentry = NULL; 761 out: 762 rcu_read_unlock(); 763 return false; 764 } 765 766 /** 767 * try_to_unlazy_next - try to switch to ref-walk mode. 768 * @nd: nameidata pathwalk data 769 * @dentry: next dentry to step into 770 * @seq: seq number to check @dentry against 771 * Returns: true on success, false on failure 772 * 773 * Similar to to try_to_unlazy(), but here we have the next dentry already 774 * picked by rcu-walk and want to legitimize that in addition to the current 775 * nd->path and nd->root for ref-walk mode. Must be called from rcu-walk context. 776 * Nothing should touch nameidata between try_to_unlazy_next() failure and 777 * terminate_walk(). 778 */ 779 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry, unsigned seq) 780 { 781 BUG_ON(!(nd->flags & LOOKUP_RCU)); 782 783 nd->flags &= ~LOOKUP_RCU; 784 if (unlikely(!legitimize_links(nd))) 785 goto out2; 786 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq))) 787 goto out2; 788 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref))) 789 goto out1; 790 791 /* 792 * We need to move both the parent and the dentry from the RCU domain 793 * to be properly refcounted. And the sequence number in the dentry 794 * validates *both* dentry counters, since we checked the sequence 795 * number of the parent after we got the child sequence number. So we 796 * know the parent must still be valid if the child sequence number is 797 */ 798 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) 799 goto out; 800 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) 801 goto out_dput; 802 /* 803 * Sequence counts matched. Now make sure that the root is 804 * still valid and get it if required. 805 */ 806 if (unlikely(!legitimize_root(nd))) 807 goto out_dput; 808 rcu_read_unlock(); 809 return true; 810 811 out2: 812 nd->path.mnt = NULL; 813 out1: 814 nd->path.dentry = NULL; 815 out: 816 rcu_read_unlock(); 817 return false; 818 out_dput: 819 rcu_read_unlock(); 820 dput(dentry); 821 return false; 822 } 823 824 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 825 { 826 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) 827 return dentry->d_op->d_revalidate(dentry, flags); 828 else 829 return 1; 830 } 831 832 /** 833 * complete_walk - successful completion of path walk 834 * @nd: pointer nameidata 835 * 836 * If we had been in RCU mode, drop out of it and legitimize nd->path. 837 * Revalidate the final result, unless we'd already done that during 838 * the path walk or the filesystem doesn't ask for it. Return 0 on 839 * success, -error on failure. In case of failure caller does not 840 * need to drop nd->path. 841 */ 842 static int complete_walk(struct nameidata *nd) 843 { 844 struct dentry *dentry = nd->path.dentry; 845 int status; 846 847 if (nd->flags & LOOKUP_RCU) { 848 /* 849 * We don't want to zero nd->root for scoped-lookups or 850 * externally-managed nd->root. 851 */ 852 if (!(nd->flags & (LOOKUP_ROOT | LOOKUP_IS_SCOPED))) 853 nd->root.mnt = NULL; 854 nd->flags &= ~LOOKUP_CACHED; 855 if (!try_to_unlazy(nd)) 856 return -ECHILD; 857 } 858 859 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { 860 /* 861 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't 862 * ever step outside the root during lookup" and should already 863 * be guaranteed by the rest of namei, we want to avoid a namei 864 * BUG resulting in userspace being given a path that was not 865 * scoped within the root at some point during the lookup. 866 * 867 * So, do a final sanity-check to make sure that in the 868 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED) 869 * we won't silently return an fd completely outside of the 870 * requested root to userspace. 871 * 872 * Userspace could move the path outside the root after this 873 * check, but as discussed elsewhere this is not a concern (the 874 * resolved file was inside the root at some point). 875 */ 876 if (!path_is_under(&nd->path, &nd->root)) 877 return -EXDEV; 878 } 879 880 if (likely(!(nd->flags & LOOKUP_JUMPED))) 881 return 0; 882 883 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 884 return 0; 885 886 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 887 if (status > 0) 888 return 0; 889 890 if (!status) 891 status = -ESTALE; 892 893 return status; 894 } 895 896 static int set_root(struct nameidata *nd) 897 { 898 struct fs_struct *fs = current->fs; 899 900 /* 901 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we 902 * still have to ensure it doesn't happen because it will cause a breakout 903 * from the dirfd. 904 */ 905 if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED)) 906 return -ENOTRECOVERABLE; 907 908 if (nd->flags & LOOKUP_RCU) { 909 unsigned seq; 910 911 do { 912 seq = read_seqcount_begin(&fs->seq); 913 nd->root = fs->root; 914 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 915 } while (read_seqcount_retry(&fs->seq, seq)); 916 } else { 917 get_fs_root(fs, &nd->root); 918 nd->flags |= LOOKUP_ROOT_GRABBED; 919 } 920 return 0; 921 } 922 923 static int nd_jump_root(struct nameidata *nd) 924 { 925 if (unlikely(nd->flags & LOOKUP_BENEATH)) 926 return -EXDEV; 927 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { 928 /* Absolute path arguments to path_init() are allowed. */ 929 if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt) 930 return -EXDEV; 931 } 932 if (!nd->root.mnt) { 933 int error = set_root(nd); 934 if (error) 935 return error; 936 } 937 if (nd->flags & LOOKUP_RCU) { 938 struct dentry *d; 939 nd->path = nd->root; 940 d = nd->path.dentry; 941 nd->inode = d->d_inode; 942 nd->seq = nd->root_seq; 943 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq))) 944 return -ECHILD; 945 } else { 946 path_put(&nd->path); 947 nd->path = nd->root; 948 path_get(&nd->path); 949 nd->inode = nd->path.dentry->d_inode; 950 } 951 nd->flags |= LOOKUP_JUMPED; 952 return 0; 953 } 954 955 /* 956 * Helper to directly jump to a known parsed path from ->get_link, 957 * caller must have taken a reference to path beforehand. 958 */ 959 int nd_jump_link(struct path *path) 960 { 961 int error = -ELOOP; 962 struct nameidata *nd = current->nameidata; 963 964 if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS)) 965 goto err; 966 967 error = -EXDEV; 968 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { 969 if (nd->path.mnt != path->mnt) 970 goto err; 971 } 972 /* Not currently safe for scoped-lookups. */ 973 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) 974 goto err; 975 976 path_put(&nd->path); 977 nd->path = *path; 978 nd->inode = nd->path.dentry->d_inode; 979 nd->flags |= LOOKUP_JUMPED; 980 return 0; 981 982 err: 983 path_put(path); 984 return error; 985 } 986 987 static inline void put_link(struct nameidata *nd) 988 { 989 struct saved *last = nd->stack + --nd->depth; 990 do_delayed_call(&last->done); 991 if (!(nd->flags & LOOKUP_RCU)) 992 path_put(&last->link); 993 } 994 995 int sysctl_protected_symlinks __read_mostly = 0; 996 int sysctl_protected_hardlinks __read_mostly = 0; 997 int sysctl_protected_fifos __read_mostly; 998 int sysctl_protected_regular __read_mostly; 999 1000 /** 1001 * may_follow_link - Check symlink following for unsafe situations 1002 * @nd: nameidata pathwalk data 1003 * 1004 * In the case of the sysctl_protected_symlinks sysctl being enabled, 1005 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 1006 * in a sticky world-writable directory. This is to protect privileged 1007 * processes from failing races against path names that may change out 1008 * from under them by way of other users creating malicious symlinks. 1009 * It will permit symlinks to be followed only when outside a sticky 1010 * world-writable directory, or when the uid of the symlink and follower 1011 * match, or when the directory owner matches the symlink's owner. 1012 * 1013 * Returns 0 if following the symlink is allowed, -ve on error. 1014 */ 1015 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode) 1016 { 1017 struct user_namespace *mnt_userns; 1018 kuid_t i_uid; 1019 1020 if (!sysctl_protected_symlinks) 1021 return 0; 1022 1023 mnt_userns = mnt_user_ns(nd->path.mnt); 1024 i_uid = i_uid_into_mnt(mnt_userns, inode); 1025 /* Allowed if owner and follower match. */ 1026 if (uid_eq(current_cred()->fsuid, i_uid)) 1027 return 0; 1028 1029 /* Allowed if parent directory not sticky and world-writable. */ 1030 if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 1031 return 0; 1032 1033 /* Allowed if parent directory and link owner match. */ 1034 if (uid_valid(nd->dir_uid) && uid_eq(nd->dir_uid, i_uid)) 1035 return 0; 1036 1037 if (nd->flags & LOOKUP_RCU) 1038 return -ECHILD; 1039 1040 audit_inode(nd->name, nd->stack[0].link.dentry, 0); 1041 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link"); 1042 return -EACCES; 1043 } 1044 1045 /** 1046 * safe_hardlink_source - Check for safe hardlink conditions 1047 * @mnt_userns: user namespace of the mount the inode was found from 1048 * @inode: the source inode to hardlink from 1049 * 1050 * Return false if at least one of the following conditions: 1051 * - inode is not a regular file 1052 * - inode is setuid 1053 * - inode is setgid and group-exec 1054 * - access failure for read and write 1055 * 1056 * Otherwise returns true. 1057 */ 1058 static bool safe_hardlink_source(struct user_namespace *mnt_userns, 1059 struct inode *inode) 1060 { 1061 umode_t mode = inode->i_mode; 1062 1063 /* Special files should not get pinned to the filesystem. */ 1064 if (!S_ISREG(mode)) 1065 return false; 1066 1067 /* Setuid files should not get pinned to the filesystem. */ 1068 if (mode & S_ISUID) 1069 return false; 1070 1071 /* Executable setgid files should not get pinned to the filesystem. */ 1072 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 1073 return false; 1074 1075 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 1076 if (inode_permission(mnt_userns, inode, MAY_READ | MAY_WRITE)) 1077 return false; 1078 1079 return true; 1080 } 1081 1082 /** 1083 * may_linkat - Check permissions for creating a hardlink 1084 * @mnt_userns: user namespace of the mount the inode was found from 1085 * @link: the source to hardlink from 1086 * 1087 * Block hardlink when all of: 1088 * - sysctl_protected_hardlinks enabled 1089 * - fsuid does not match inode 1090 * - hardlink source is unsafe (see safe_hardlink_source() above) 1091 * - not CAP_FOWNER in a namespace with the inode owner uid mapped 1092 * 1093 * If the inode has been found through an idmapped mount the user namespace of 1094 * the vfsmount must be passed through @mnt_userns. This function will then take 1095 * care to map the inode according to @mnt_userns before checking permissions. 1096 * On non-idmapped mounts or if permission checking is to be performed on the 1097 * raw inode simply passs init_user_ns. 1098 * 1099 * Returns 0 if successful, -ve on error. 1100 */ 1101 int may_linkat(struct user_namespace *mnt_userns, struct path *link) 1102 { 1103 struct inode *inode = link->dentry->d_inode; 1104 1105 /* Inode writeback is not safe when the uid or gid are invalid. */ 1106 if (!uid_valid(i_uid_into_mnt(mnt_userns, inode)) || 1107 !gid_valid(i_gid_into_mnt(mnt_userns, inode))) 1108 return -EOVERFLOW; 1109 1110 if (!sysctl_protected_hardlinks) 1111 return 0; 1112 1113 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 1114 * otherwise, it must be a safe source. 1115 */ 1116 if (safe_hardlink_source(mnt_userns, inode) || 1117 inode_owner_or_capable(mnt_userns, inode)) 1118 return 0; 1119 1120 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat"); 1121 return -EPERM; 1122 } 1123 1124 /** 1125 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory 1126 * should be allowed, or not, on files that already 1127 * exist. 1128 * @mnt_userns: user namespace of the mount the inode was found from 1129 * @nd: nameidata pathwalk data 1130 * @inode: the inode of the file to open 1131 * 1132 * Block an O_CREAT open of a FIFO (or a regular file) when: 1133 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled 1134 * - the file already exists 1135 * - we are in a sticky directory 1136 * - we don't own the file 1137 * - the owner of the directory doesn't own the file 1138 * - the directory is world writable 1139 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2 1140 * the directory doesn't have to be world writable: being group writable will 1141 * be enough. 1142 * 1143 * If the inode has been found through an idmapped mount the user namespace of 1144 * the vfsmount must be passed through @mnt_userns. This function will then take 1145 * care to map the inode according to @mnt_userns before checking permissions. 1146 * On non-idmapped mounts or if permission checking is to be performed on the 1147 * raw inode simply passs init_user_ns. 1148 * 1149 * Returns 0 if the open is allowed, -ve on error. 1150 */ 1151 static int may_create_in_sticky(struct user_namespace *mnt_userns, 1152 struct nameidata *nd, struct inode *const inode) 1153 { 1154 umode_t dir_mode = nd->dir_mode; 1155 kuid_t dir_uid = nd->dir_uid; 1156 1157 if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) || 1158 (!sysctl_protected_regular && S_ISREG(inode->i_mode)) || 1159 likely(!(dir_mode & S_ISVTX)) || 1160 uid_eq(i_uid_into_mnt(mnt_userns, inode), dir_uid) || 1161 uid_eq(current_fsuid(), i_uid_into_mnt(mnt_userns, inode))) 1162 return 0; 1163 1164 if (likely(dir_mode & 0002) || 1165 (dir_mode & 0020 && 1166 ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) || 1167 (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) { 1168 const char *operation = S_ISFIFO(inode->i_mode) ? 1169 "sticky_create_fifo" : 1170 "sticky_create_regular"; 1171 audit_log_path_denied(AUDIT_ANOM_CREAT, operation); 1172 return -EACCES; 1173 } 1174 return 0; 1175 } 1176 1177 /* 1178 * follow_up - Find the mountpoint of path's vfsmount 1179 * 1180 * Given a path, find the mountpoint of its source file system. 1181 * Replace @path with the path of the mountpoint in the parent mount. 1182 * Up is towards /. 1183 * 1184 * Return 1 if we went up a level and 0 if we were already at the 1185 * root. 1186 */ 1187 int follow_up(struct path *path) 1188 { 1189 struct mount *mnt = real_mount(path->mnt); 1190 struct mount *parent; 1191 struct dentry *mountpoint; 1192 1193 read_seqlock_excl(&mount_lock); 1194 parent = mnt->mnt_parent; 1195 if (parent == mnt) { 1196 read_sequnlock_excl(&mount_lock); 1197 return 0; 1198 } 1199 mntget(&parent->mnt); 1200 mountpoint = dget(mnt->mnt_mountpoint); 1201 read_sequnlock_excl(&mount_lock); 1202 dput(path->dentry); 1203 path->dentry = mountpoint; 1204 mntput(path->mnt); 1205 path->mnt = &parent->mnt; 1206 return 1; 1207 } 1208 EXPORT_SYMBOL(follow_up); 1209 1210 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root, 1211 struct path *path, unsigned *seqp) 1212 { 1213 while (mnt_has_parent(m)) { 1214 struct dentry *mountpoint = m->mnt_mountpoint; 1215 1216 m = m->mnt_parent; 1217 if (unlikely(root->dentry == mountpoint && 1218 root->mnt == &m->mnt)) 1219 break; 1220 if (mountpoint != m->mnt.mnt_root) { 1221 path->mnt = &m->mnt; 1222 path->dentry = mountpoint; 1223 *seqp = read_seqcount_begin(&mountpoint->d_seq); 1224 return true; 1225 } 1226 } 1227 return false; 1228 } 1229 1230 static bool choose_mountpoint(struct mount *m, const struct path *root, 1231 struct path *path) 1232 { 1233 bool found; 1234 1235 rcu_read_lock(); 1236 while (1) { 1237 unsigned seq, mseq = read_seqbegin(&mount_lock); 1238 1239 found = choose_mountpoint_rcu(m, root, path, &seq); 1240 if (unlikely(!found)) { 1241 if (!read_seqretry(&mount_lock, mseq)) 1242 break; 1243 } else { 1244 if (likely(__legitimize_path(path, seq, mseq))) 1245 break; 1246 rcu_read_unlock(); 1247 path_put(path); 1248 rcu_read_lock(); 1249 } 1250 } 1251 rcu_read_unlock(); 1252 return found; 1253 } 1254 1255 /* 1256 * Perform an automount 1257 * - return -EISDIR to tell follow_managed() to stop and return the path we 1258 * were called with. 1259 */ 1260 static int follow_automount(struct path *path, int *count, unsigned lookup_flags) 1261 { 1262 struct dentry *dentry = path->dentry; 1263 1264 /* We don't want to mount if someone's just doing a stat - 1265 * unless they're stat'ing a directory and appended a '/' to 1266 * the name. 1267 * 1268 * We do, however, want to mount if someone wants to open or 1269 * create a file of any type under the mountpoint, wants to 1270 * traverse through the mountpoint or wants to open the 1271 * mounted directory. Also, autofs may mark negative dentries 1272 * as being automount points. These will need the attentions 1273 * of the daemon to instantiate them before they can be used. 1274 */ 1275 if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 1276 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 1277 dentry->d_inode) 1278 return -EISDIR; 1279 1280 if (count && (*count)++ >= MAXSYMLINKS) 1281 return -ELOOP; 1282 1283 return finish_automount(dentry->d_op->d_automount(path), path); 1284 } 1285 1286 /* 1287 * mount traversal - out-of-line part. One note on ->d_flags accesses - 1288 * dentries are pinned but not locked here, so negative dentry can go 1289 * positive right under us. Use of smp_load_acquire() provides a barrier 1290 * sufficient for ->d_inode and ->d_flags consistency. 1291 */ 1292 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped, 1293 int *count, unsigned lookup_flags) 1294 { 1295 struct vfsmount *mnt = path->mnt; 1296 bool need_mntput = false; 1297 int ret = 0; 1298 1299 while (flags & DCACHE_MANAGED_DENTRY) { 1300 /* Allow the filesystem to manage the transit without i_mutex 1301 * being held. */ 1302 if (flags & DCACHE_MANAGE_TRANSIT) { 1303 ret = path->dentry->d_op->d_manage(path, false); 1304 flags = smp_load_acquire(&path->dentry->d_flags); 1305 if (ret < 0) 1306 break; 1307 } 1308 1309 if (flags & DCACHE_MOUNTED) { // something's mounted on it.. 1310 struct vfsmount *mounted = lookup_mnt(path); 1311 if (mounted) { // ... in our namespace 1312 dput(path->dentry); 1313 if (need_mntput) 1314 mntput(path->mnt); 1315 path->mnt = mounted; 1316 path->dentry = dget(mounted->mnt_root); 1317 // here we know it's positive 1318 flags = path->dentry->d_flags; 1319 need_mntput = true; 1320 continue; 1321 } 1322 } 1323 1324 if (!(flags & DCACHE_NEED_AUTOMOUNT)) 1325 break; 1326 1327 // uncovered automount point 1328 ret = follow_automount(path, count, lookup_flags); 1329 flags = smp_load_acquire(&path->dentry->d_flags); 1330 if (ret < 0) 1331 break; 1332 } 1333 1334 if (ret == -EISDIR) 1335 ret = 0; 1336 // possible if you race with several mount --move 1337 if (need_mntput && path->mnt == mnt) 1338 mntput(path->mnt); 1339 if (!ret && unlikely(d_flags_negative(flags))) 1340 ret = -ENOENT; 1341 *jumped = need_mntput; 1342 return ret; 1343 } 1344 1345 static inline int traverse_mounts(struct path *path, bool *jumped, 1346 int *count, unsigned lookup_flags) 1347 { 1348 unsigned flags = smp_load_acquire(&path->dentry->d_flags); 1349 1350 /* fastpath */ 1351 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) { 1352 *jumped = false; 1353 if (unlikely(d_flags_negative(flags))) 1354 return -ENOENT; 1355 return 0; 1356 } 1357 return __traverse_mounts(path, flags, jumped, count, lookup_flags); 1358 } 1359 1360 int follow_down_one(struct path *path) 1361 { 1362 struct vfsmount *mounted; 1363 1364 mounted = lookup_mnt(path); 1365 if (mounted) { 1366 dput(path->dentry); 1367 mntput(path->mnt); 1368 path->mnt = mounted; 1369 path->dentry = dget(mounted->mnt_root); 1370 return 1; 1371 } 1372 return 0; 1373 } 1374 EXPORT_SYMBOL(follow_down_one); 1375 1376 /* 1377 * Follow down to the covering mount currently visible to userspace. At each 1378 * point, the filesystem owning that dentry may be queried as to whether the 1379 * caller is permitted to proceed or not. 1380 */ 1381 int follow_down(struct path *path) 1382 { 1383 struct vfsmount *mnt = path->mnt; 1384 bool jumped; 1385 int ret = traverse_mounts(path, &jumped, NULL, 0); 1386 1387 if (path->mnt != mnt) 1388 mntput(mnt); 1389 return ret; 1390 } 1391 EXPORT_SYMBOL(follow_down); 1392 1393 /* 1394 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1395 * we meet a managed dentry that would need blocking. 1396 */ 1397 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1398 struct inode **inode, unsigned *seqp) 1399 { 1400 struct dentry *dentry = path->dentry; 1401 unsigned int flags = dentry->d_flags; 1402 1403 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) 1404 return true; 1405 1406 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1407 return false; 1408 1409 for (;;) { 1410 /* 1411 * Don't forget we might have a non-mountpoint managed dentry 1412 * that wants to block transit. 1413 */ 1414 if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) { 1415 int res = dentry->d_op->d_manage(path, true); 1416 if (res) 1417 return res == -EISDIR; 1418 flags = dentry->d_flags; 1419 } 1420 1421 if (flags & DCACHE_MOUNTED) { 1422 struct mount *mounted = __lookup_mnt(path->mnt, dentry); 1423 if (mounted) { 1424 path->mnt = &mounted->mnt; 1425 dentry = path->dentry = mounted->mnt.mnt_root; 1426 nd->flags |= LOOKUP_JUMPED; 1427 *seqp = read_seqcount_begin(&dentry->d_seq); 1428 *inode = dentry->d_inode; 1429 /* 1430 * We don't need to re-check ->d_seq after this 1431 * ->d_inode read - there will be an RCU delay 1432 * between mount hash removal and ->mnt_root 1433 * becoming unpinned. 1434 */ 1435 flags = dentry->d_flags; 1436 continue; 1437 } 1438 if (read_seqretry(&mount_lock, nd->m_seq)) 1439 return false; 1440 } 1441 return !(flags & DCACHE_NEED_AUTOMOUNT); 1442 } 1443 } 1444 1445 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry, 1446 struct path *path, struct inode **inode, 1447 unsigned int *seqp) 1448 { 1449 bool jumped; 1450 int ret; 1451 1452 path->mnt = nd->path.mnt; 1453 path->dentry = dentry; 1454 if (nd->flags & LOOKUP_RCU) { 1455 unsigned int seq = *seqp; 1456 if (unlikely(!*inode)) 1457 return -ENOENT; 1458 if (likely(__follow_mount_rcu(nd, path, inode, seqp))) 1459 return 0; 1460 if (!try_to_unlazy_next(nd, dentry, seq)) 1461 return -ECHILD; 1462 // *path might've been clobbered by __follow_mount_rcu() 1463 path->mnt = nd->path.mnt; 1464 path->dentry = dentry; 1465 } 1466 ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags); 1467 if (jumped) { 1468 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1469 ret = -EXDEV; 1470 else 1471 nd->flags |= LOOKUP_JUMPED; 1472 } 1473 if (unlikely(ret)) { 1474 dput(path->dentry); 1475 if (path->mnt != nd->path.mnt) 1476 mntput(path->mnt); 1477 } else { 1478 *inode = d_backing_inode(path->dentry); 1479 *seqp = 0; /* out of RCU mode, so the value doesn't matter */ 1480 } 1481 return ret; 1482 } 1483 1484 /* 1485 * This looks up the name in dcache and possibly revalidates the found dentry. 1486 * NULL is returned if the dentry does not exist in the cache. 1487 */ 1488 static struct dentry *lookup_dcache(const struct qstr *name, 1489 struct dentry *dir, 1490 unsigned int flags) 1491 { 1492 struct dentry *dentry = d_lookup(dir, name); 1493 if (dentry) { 1494 int error = d_revalidate(dentry, flags); 1495 if (unlikely(error <= 0)) { 1496 if (!error) 1497 d_invalidate(dentry); 1498 dput(dentry); 1499 return ERR_PTR(error); 1500 } 1501 } 1502 return dentry; 1503 } 1504 1505 /* 1506 * Parent directory has inode locked exclusive. This is one 1507 * and only case when ->lookup() gets called on non in-lookup 1508 * dentries - as the matter of fact, this only gets called 1509 * when directory is guaranteed to have no in-lookup children 1510 * at all. 1511 */ 1512 static struct dentry *__lookup_hash(const struct qstr *name, 1513 struct dentry *base, unsigned int flags) 1514 { 1515 struct dentry *dentry = lookup_dcache(name, base, flags); 1516 struct dentry *old; 1517 struct inode *dir = base->d_inode; 1518 1519 if (dentry) 1520 return dentry; 1521 1522 /* Don't create child dentry for a dead directory. */ 1523 if (unlikely(IS_DEADDIR(dir))) 1524 return ERR_PTR(-ENOENT); 1525 1526 dentry = d_alloc(base, name); 1527 if (unlikely(!dentry)) 1528 return ERR_PTR(-ENOMEM); 1529 1530 old = dir->i_op->lookup(dir, dentry, flags); 1531 if (unlikely(old)) { 1532 dput(dentry); 1533 dentry = old; 1534 } 1535 return dentry; 1536 } 1537 1538 static struct dentry *lookup_fast(struct nameidata *nd, 1539 struct inode **inode, 1540 unsigned *seqp) 1541 { 1542 struct dentry *dentry, *parent = nd->path.dentry; 1543 int status = 1; 1544 1545 /* 1546 * Rename seqlock is not required here because in the off chance 1547 * of a false negative due to a concurrent rename, the caller is 1548 * going to fall back to non-racy lookup. 1549 */ 1550 if (nd->flags & LOOKUP_RCU) { 1551 unsigned seq; 1552 dentry = __d_lookup_rcu(parent, &nd->last, &seq); 1553 if (unlikely(!dentry)) { 1554 if (!try_to_unlazy(nd)) 1555 return ERR_PTR(-ECHILD); 1556 return NULL; 1557 } 1558 1559 /* 1560 * This sequence count validates that the inode matches 1561 * the dentry name information from lookup. 1562 */ 1563 *inode = d_backing_inode(dentry); 1564 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) 1565 return ERR_PTR(-ECHILD); 1566 1567 /* 1568 * This sequence count validates that the parent had no 1569 * changes while we did the lookup of the dentry above. 1570 * 1571 * The memory barrier in read_seqcount_begin of child is 1572 * enough, we can use __read_seqcount_retry here. 1573 */ 1574 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq))) 1575 return ERR_PTR(-ECHILD); 1576 1577 *seqp = seq; 1578 status = d_revalidate(dentry, nd->flags); 1579 if (likely(status > 0)) 1580 return dentry; 1581 if (!try_to_unlazy_next(nd, dentry, seq)) 1582 return ERR_PTR(-ECHILD); 1583 if (status == -ECHILD) 1584 /* we'd been told to redo it in non-rcu mode */ 1585 status = d_revalidate(dentry, nd->flags); 1586 } else { 1587 dentry = __d_lookup(parent, &nd->last); 1588 if (unlikely(!dentry)) 1589 return NULL; 1590 status = d_revalidate(dentry, nd->flags); 1591 } 1592 if (unlikely(status <= 0)) { 1593 if (!status) 1594 d_invalidate(dentry); 1595 dput(dentry); 1596 return ERR_PTR(status); 1597 } 1598 return dentry; 1599 } 1600 1601 /* Fast lookup failed, do it the slow way */ 1602 static struct dentry *__lookup_slow(const struct qstr *name, 1603 struct dentry *dir, 1604 unsigned int flags) 1605 { 1606 struct dentry *dentry, *old; 1607 struct inode *inode = dir->d_inode; 1608 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1609 1610 /* Don't go there if it's already dead */ 1611 if (unlikely(IS_DEADDIR(inode))) 1612 return ERR_PTR(-ENOENT); 1613 again: 1614 dentry = d_alloc_parallel(dir, name, &wq); 1615 if (IS_ERR(dentry)) 1616 return dentry; 1617 if (unlikely(!d_in_lookup(dentry))) { 1618 int error = d_revalidate(dentry, flags); 1619 if (unlikely(error <= 0)) { 1620 if (!error) { 1621 d_invalidate(dentry); 1622 dput(dentry); 1623 goto again; 1624 } 1625 dput(dentry); 1626 dentry = ERR_PTR(error); 1627 } 1628 } else { 1629 old = inode->i_op->lookup(inode, dentry, flags); 1630 d_lookup_done(dentry); 1631 if (unlikely(old)) { 1632 dput(dentry); 1633 dentry = old; 1634 } 1635 } 1636 return dentry; 1637 } 1638 1639 static struct dentry *lookup_slow(const struct qstr *name, 1640 struct dentry *dir, 1641 unsigned int flags) 1642 { 1643 struct inode *inode = dir->d_inode; 1644 struct dentry *res; 1645 inode_lock_shared(inode); 1646 res = __lookup_slow(name, dir, flags); 1647 inode_unlock_shared(inode); 1648 return res; 1649 } 1650 1651 static inline int may_lookup(struct user_namespace *mnt_userns, 1652 struct nameidata *nd) 1653 { 1654 if (nd->flags & LOOKUP_RCU) { 1655 int err = inode_permission(mnt_userns, nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1656 if (err != -ECHILD || !try_to_unlazy(nd)) 1657 return err; 1658 } 1659 return inode_permission(mnt_userns, nd->inode, MAY_EXEC); 1660 } 1661 1662 static int reserve_stack(struct nameidata *nd, struct path *link, unsigned seq) 1663 { 1664 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) 1665 return -ELOOP; 1666 1667 if (likely(nd->depth != EMBEDDED_LEVELS)) 1668 return 0; 1669 if (likely(nd->stack != nd->internal)) 1670 return 0; 1671 if (likely(nd_alloc_stack(nd))) 1672 return 0; 1673 1674 if (nd->flags & LOOKUP_RCU) { 1675 // we need to grab link before we do unlazy. And we can't skip 1676 // unlazy even if we fail to grab the link - cleanup needs it 1677 bool grabbed_link = legitimize_path(nd, link, seq); 1678 1679 if (!try_to_unlazy(nd) != 0 || !grabbed_link) 1680 return -ECHILD; 1681 1682 if (nd_alloc_stack(nd)) 1683 return 0; 1684 } 1685 return -ENOMEM; 1686 } 1687 1688 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4}; 1689 1690 static const char *pick_link(struct nameidata *nd, struct path *link, 1691 struct inode *inode, unsigned seq, int flags) 1692 { 1693 struct saved *last; 1694 const char *res; 1695 int error = reserve_stack(nd, link, seq); 1696 1697 if (unlikely(error)) { 1698 if (!(nd->flags & LOOKUP_RCU)) 1699 path_put(link); 1700 return ERR_PTR(error); 1701 } 1702 last = nd->stack + nd->depth++; 1703 last->link = *link; 1704 clear_delayed_call(&last->done); 1705 last->seq = seq; 1706 1707 if (flags & WALK_TRAILING) { 1708 error = may_follow_link(nd, inode); 1709 if (unlikely(error)) 1710 return ERR_PTR(error); 1711 } 1712 1713 if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) || 1714 unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW)) 1715 return ERR_PTR(-ELOOP); 1716 1717 if (!(nd->flags & LOOKUP_RCU)) { 1718 touch_atime(&last->link); 1719 cond_resched(); 1720 } else if (atime_needs_update(&last->link, inode)) { 1721 if (!try_to_unlazy(nd)) 1722 return ERR_PTR(-ECHILD); 1723 touch_atime(&last->link); 1724 } 1725 1726 error = security_inode_follow_link(link->dentry, inode, 1727 nd->flags & LOOKUP_RCU); 1728 if (unlikely(error)) 1729 return ERR_PTR(error); 1730 1731 res = READ_ONCE(inode->i_link); 1732 if (!res) { 1733 const char * (*get)(struct dentry *, struct inode *, 1734 struct delayed_call *); 1735 get = inode->i_op->get_link; 1736 if (nd->flags & LOOKUP_RCU) { 1737 res = get(NULL, inode, &last->done); 1738 if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd)) 1739 res = get(link->dentry, inode, &last->done); 1740 } else { 1741 res = get(link->dentry, inode, &last->done); 1742 } 1743 if (!res) 1744 goto all_done; 1745 if (IS_ERR(res)) 1746 return res; 1747 } 1748 if (*res == '/') { 1749 error = nd_jump_root(nd); 1750 if (unlikely(error)) 1751 return ERR_PTR(error); 1752 while (unlikely(*++res == '/')) 1753 ; 1754 } 1755 if (*res) 1756 return res; 1757 all_done: // pure jump 1758 put_link(nd); 1759 return NULL; 1760 } 1761 1762 /* 1763 * Do we need to follow links? We _really_ want to be able 1764 * to do this check without having to look at inode->i_op, 1765 * so we keep a cache of "no, this doesn't need follow_link" 1766 * for the common case. 1767 */ 1768 static const char *step_into(struct nameidata *nd, int flags, 1769 struct dentry *dentry, struct inode *inode, unsigned seq) 1770 { 1771 struct path path; 1772 int err = handle_mounts(nd, dentry, &path, &inode, &seq); 1773 1774 if (err < 0) 1775 return ERR_PTR(err); 1776 if (likely(!d_is_symlink(path.dentry)) || 1777 ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) || 1778 (flags & WALK_NOFOLLOW)) { 1779 /* not a symlink or should not follow */ 1780 if (!(nd->flags & LOOKUP_RCU)) { 1781 dput(nd->path.dentry); 1782 if (nd->path.mnt != path.mnt) 1783 mntput(nd->path.mnt); 1784 } 1785 nd->path = path; 1786 nd->inode = inode; 1787 nd->seq = seq; 1788 return NULL; 1789 } 1790 if (nd->flags & LOOKUP_RCU) { 1791 /* make sure that d_is_symlink above matches inode */ 1792 if (read_seqcount_retry(&path.dentry->d_seq, seq)) 1793 return ERR_PTR(-ECHILD); 1794 } else { 1795 if (path.mnt == nd->path.mnt) 1796 mntget(path.mnt); 1797 } 1798 return pick_link(nd, &path, inode, seq, flags); 1799 } 1800 1801 static struct dentry *follow_dotdot_rcu(struct nameidata *nd, 1802 struct inode **inodep, 1803 unsigned *seqp) 1804 { 1805 struct dentry *parent, *old; 1806 1807 if (path_equal(&nd->path, &nd->root)) 1808 goto in_root; 1809 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { 1810 struct path path; 1811 unsigned seq; 1812 if (!choose_mountpoint_rcu(real_mount(nd->path.mnt), 1813 &nd->root, &path, &seq)) 1814 goto in_root; 1815 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1816 return ERR_PTR(-ECHILD); 1817 nd->path = path; 1818 nd->inode = path.dentry->d_inode; 1819 nd->seq = seq; 1820 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1821 return ERR_PTR(-ECHILD); 1822 /* we know that mountpoint was pinned */ 1823 } 1824 old = nd->path.dentry; 1825 parent = old->d_parent; 1826 *inodep = parent->d_inode; 1827 *seqp = read_seqcount_begin(&parent->d_seq); 1828 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq))) 1829 return ERR_PTR(-ECHILD); 1830 if (unlikely(!path_connected(nd->path.mnt, parent))) 1831 return ERR_PTR(-ECHILD); 1832 return parent; 1833 in_root: 1834 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1835 return ERR_PTR(-ECHILD); 1836 if (unlikely(nd->flags & LOOKUP_BENEATH)) 1837 return ERR_PTR(-ECHILD); 1838 return NULL; 1839 } 1840 1841 static struct dentry *follow_dotdot(struct nameidata *nd, 1842 struct inode **inodep, 1843 unsigned *seqp) 1844 { 1845 struct dentry *parent; 1846 1847 if (path_equal(&nd->path, &nd->root)) 1848 goto in_root; 1849 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { 1850 struct path path; 1851 1852 if (!choose_mountpoint(real_mount(nd->path.mnt), 1853 &nd->root, &path)) 1854 goto in_root; 1855 path_put(&nd->path); 1856 nd->path = path; 1857 nd->inode = path.dentry->d_inode; 1858 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1859 return ERR_PTR(-EXDEV); 1860 } 1861 /* rare case of legitimate dget_parent()... */ 1862 parent = dget_parent(nd->path.dentry); 1863 if (unlikely(!path_connected(nd->path.mnt, parent))) { 1864 dput(parent); 1865 return ERR_PTR(-ENOENT); 1866 } 1867 *seqp = 0; 1868 *inodep = parent->d_inode; 1869 return parent; 1870 1871 in_root: 1872 if (unlikely(nd->flags & LOOKUP_BENEATH)) 1873 return ERR_PTR(-EXDEV); 1874 dget(nd->path.dentry); 1875 return NULL; 1876 } 1877 1878 static const char *handle_dots(struct nameidata *nd, int type) 1879 { 1880 if (type == LAST_DOTDOT) { 1881 const char *error = NULL; 1882 struct dentry *parent; 1883 struct inode *inode; 1884 unsigned seq; 1885 1886 if (!nd->root.mnt) { 1887 error = ERR_PTR(set_root(nd)); 1888 if (error) 1889 return error; 1890 } 1891 if (nd->flags & LOOKUP_RCU) 1892 parent = follow_dotdot_rcu(nd, &inode, &seq); 1893 else 1894 parent = follow_dotdot(nd, &inode, &seq); 1895 if (IS_ERR(parent)) 1896 return ERR_CAST(parent); 1897 if (unlikely(!parent)) 1898 error = step_into(nd, WALK_NOFOLLOW, 1899 nd->path.dentry, nd->inode, nd->seq); 1900 else 1901 error = step_into(nd, WALK_NOFOLLOW, 1902 parent, inode, seq); 1903 if (unlikely(error)) 1904 return error; 1905 1906 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { 1907 /* 1908 * If there was a racing rename or mount along our 1909 * path, then we can't be sure that ".." hasn't jumped 1910 * above nd->root (and so userspace should retry or use 1911 * some fallback). 1912 */ 1913 smp_rmb(); 1914 if (unlikely(__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq))) 1915 return ERR_PTR(-EAGAIN); 1916 if (unlikely(__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq))) 1917 return ERR_PTR(-EAGAIN); 1918 } 1919 } 1920 return NULL; 1921 } 1922 1923 static const char *walk_component(struct nameidata *nd, int flags) 1924 { 1925 struct dentry *dentry; 1926 struct inode *inode; 1927 unsigned seq; 1928 /* 1929 * "." and ".." are special - ".." especially so because it has 1930 * to be able to know about the current root directory and 1931 * parent relationships. 1932 */ 1933 if (unlikely(nd->last_type != LAST_NORM)) { 1934 if (!(flags & WALK_MORE) && nd->depth) 1935 put_link(nd); 1936 return handle_dots(nd, nd->last_type); 1937 } 1938 dentry = lookup_fast(nd, &inode, &seq); 1939 if (IS_ERR(dentry)) 1940 return ERR_CAST(dentry); 1941 if (unlikely(!dentry)) { 1942 dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags); 1943 if (IS_ERR(dentry)) 1944 return ERR_CAST(dentry); 1945 } 1946 if (!(flags & WALK_MORE) && nd->depth) 1947 put_link(nd); 1948 return step_into(nd, flags, dentry, inode, seq); 1949 } 1950 1951 /* 1952 * We can do the critical dentry name comparison and hashing 1953 * operations one word at a time, but we are limited to: 1954 * 1955 * - Architectures with fast unaligned word accesses. We could 1956 * do a "get_unaligned()" if this helps and is sufficiently 1957 * fast. 1958 * 1959 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 1960 * do not trap on the (extremely unlikely) case of a page 1961 * crossing operation. 1962 * 1963 * - Furthermore, we need an efficient 64-bit compile for the 1964 * 64-bit case in order to generate the "number of bytes in 1965 * the final mask". Again, that could be replaced with a 1966 * efficient population count instruction or similar. 1967 */ 1968 #ifdef CONFIG_DCACHE_WORD_ACCESS 1969 1970 #include <asm/word-at-a-time.h> 1971 1972 #ifdef HASH_MIX 1973 1974 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */ 1975 1976 #elif defined(CONFIG_64BIT) 1977 /* 1978 * Register pressure in the mixing function is an issue, particularly 1979 * on 32-bit x86, but almost any function requires one state value and 1980 * one temporary. Instead, use a function designed for two state values 1981 * and no temporaries. 1982 * 1983 * This function cannot create a collision in only two iterations, so 1984 * we have two iterations to achieve avalanche. In those two iterations, 1985 * we have six layers of mixing, which is enough to spread one bit's 1986 * influence out to 2^6 = 64 state bits. 1987 * 1988 * Rotate constants are scored by considering either 64 one-bit input 1989 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the 1990 * probability of that delta causing a change to each of the 128 output 1991 * bits, using a sample of random initial states. 1992 * 1993 * The Shannon entropy of the computed probabilities is then summed 1994 * to produce a score. Ideally, any input change has a 50% chance of 1995 * toggling any given output bit. 1996 * 1997 * Mixing scores (in bits) for (12,45): 1998 * Input delta: 1-bit 2-bit 1999 * 1 round: 713.3 42542.6 2000 * 2 rounds: 2753.7 140389.8 2001 * 3 rounds: 5954.1 233458.2 2002 * 4 rounds: 7862.6 256672.2 2003 * Perfect: 8192 258048 2004 * (64*128) (64*63/2 * 128) 2005 */ 2006 #define HASH_MIX(x, y, a) \ 2007 ( x ^= (a), \ 2008 y ^= x, x = rol64(x,12),\ 2009 x += y, y = rol64(y,45),\ 2010 y *= 9 ) 2011 2012 /* 2013 * Fold two longs into one 32-bit hash value. This must be fast, but 2014 * latency isn't quite as critical, as there is a fair bit of additional 2015 * work done before the hash value is used. 2016 */ 2017 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 2018 { 2019 y ^= x * GOLDEN_RATIO_64; 2020 y *= GOLDEN_RATIO_64; 2021 return y >> 32; 2022 } 2023 2024 #else /* 32-bit case */ 2025 2026 /* 2027 * Mixing scores (in bits) for (7,20): 2028 * Input delta: 1-bit 2-bit 2029 * 1 round: 330.3 9201.6 2030 * 2 rounds: 1246.4 25475.4 2031 * 3 rounds: 1907.1 31295.1 2032 * 4 rounds: 2042.3 31718.6 2033 * Perfect: 2048 31744 2034 * (32*64) (32*31/2 * 64) 2035 */ 2036 #define HASH_MIX(x, y, a) \ 2037 ( x ^= (a), \ 2038 y ^= x, x = rol32(x, 7),\ 2039 x += y, y = rol32(y,20),\ 2040 y *= 9 ) 2041 2042 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 2043 { 2044 /* Use arch-optimized multiply if one exists */ 2045 return __hash_32(y ^ __hash_32(x)); 2046 } 2047 2048 #endif 2049 2050 /* 2051 * Return the hash of a string of known length. This is carfully 2052 * designed to match hash_name(), which is the more critical function. 2053 * In particular, we must end by hashing a final word containing 0..7 2054 * payload bytes, to match the way that hash_name() iterates until it 2055 * finds the delimiter after the name. 2056 */ 2057 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2058 { 2059 unsigned long a, x = 0, y = (unsigned long)salt; 2060 2061 for (;;) { 2062 if (!len) 2063 goto done; 2064 a = load_unaligned_zeropad(name); 2065 if (len < sizeof(unsigned long)) 2066 break; 2067 HASH_MIX(x, y, a); 2068 name += sizeof(unsigned long); 2069 len -= sizeof(unsigned long); 2070 } 2071 x ^= a & bytemask_from_count(len); 2072 done: 2073 return fold_hash(x, y); 2074 } 2075 EXPORT_SYMBOL(full_name_hash); 2076 2077 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2078 u64 hashlen_string(const void *salt, const char *name) 2079 { 2080 unsigned long a = 0, x = 0, y = (unsigned long)salt; 2081 unsigned long adata, mask, len; 2082 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 2083 2084 len = 0; 2085 goto inside; 2086 2087 do { 2088 HASH_MIX(x, y, a); 2089 len += sizeof(unsigned long); 2090 inside: 2091 a = load_unaligned_zeropad(name+len); 2092 } while (!has_zero(a, &adata, &constants)); 2093 2094 adata = prep_zero_mask(a, adata, &constants); 2095 mask = create_zero_mask(adata); 2096 x ^= a & zero_bytemask(mask); 2097 2098 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 2099 } 2100 EXPORT_SYMBOL(hashlen_string); 2101 2102 /* 2103 * Calculate the length and hash of the path component, and 2104 * return the "hash_len" as the result. 2105 */ 2106 static inline u64 hash_name(const void *salt, const char *name) 2107 { 2108 unsigned long a = 0, b, x = 0, y = (unsigned long)salt; 2109 unsigned long adata, bdata, mask, len; 2110 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 2111 2112 len = 0; 2113 goto inside; 2114 2115 do { 2116 HASH_MIX(x, y, a); 2117 len += sizeof(unsigned long); 2118 inside: 2119 a = load_unaligned_zeropad(name+len); 2120 b = a ^ REPEAT_BYTE('/'); 2121 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 2122 2123 adata = prep_zero_mask(a, adata, &constants); 2124 bdata = prep_zero_mask(b, bdata, &constants); 2125 mask = create_zero_mask(adata | bdata); 2126 x ^= a & zero_bytemask(mask); 2127 2128 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 2129 } 2130 2131 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */ 2132 2133 /* Return the hash of a string of known length */ 2134 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2135 { 2136 unsigned long hash = init_name_hash(salt); 2137 while (len--) 2138 hash = partial_name_hash((unsigned char)*name++, hash); 2139 return end_name_hash(hash); 2140 } 2141 EXPORT_SYMBOL(full_name_hash); 2142 2143 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2144 u64 hashlen_string(const void *salt, const char *name) 2145 { 2146 unsigned long hash = init_name_hash(salt); 2147 unsigned long len = 0, c; 2148 2149 c = (unsigned char)*name; 2150 while (c) { 2151 len++; 2152 hash = partial_name_hash(c, hash); 2153 c = (unsigned char)name[len]; 2154 } 2155 return hashlen_create(end_name_hash(hash), len); 2156 } 2157 EXPORT_SYMBOL(hashlen_string); 2158 2159 /* 2160 * We know there's a real path component here of at least 2161 * one character. 2162 */ 2163 static inline u64 hash_name(const void *salt, const char *name) 2164 { 2165 unsigned long hash = init_name_hash(salt); 2166 unsigned long len = 0, c; 2167 2168 c = (unsigned char)*name; 2169 do { 2170 len++; 2171 hash = partial_name_hash(c, hash); 2172 c = (unsigned char)name[len]; 2173 } while (c && c != '/'); 2174 return hashlen_create(end_name_hash(hash), len); 2175 } 2176 2177 #endif 2178 2179 /* 2180 * Name resolution. 2181 * This is the basic name resolution function, turning a pathname into 2182 * the final dentry. We expect 'base' to be positive and a directory. 2183 * 2184 * Returns 0 and nd will have valid dentry and mnt on success. 2185 * Returns error and drops reference to input namei data on failure. 2186 */ 2187 static int link_path_walk(const char *name, struct nameidata *nd) 2188 { 2189 int depth = 0; // depth <= nd->depth 2190 int err; 2191 2192 nd->last_type = LAST_ROOT; 2193 nd->flags |= LOOKUP_PARENT; 2194 if (IS_ERR(name)) 2195 return PTR_ERR(name); 2196 while (*name=='/') 2197 name++; 2198 if (!*name) { 2199 nd->dir_mode = 0; // short-circuit the 'hardening' idiocy 2200 return 0; 2201 } 2202 2203 /* At this point we know we have a real path component. */ 2204 for(;;) { 2205 struct user_namespace *mnt_userns; 2206 const char *link; 2207 u64 hash_len; 2208 int type; 2209 2210 mnt_userns = mnt_user_ns(nd->path.mnt); 2211 err = may_lookup(mnt_userns, nd); 2212 if (err) 2213 return err; 2214 2215 hash_len = hash_name(nd->path.dentry, name); 2216 2217 type = LAST_NORM; 2218 if (name[0] == '.') switch (hashlen_len(hash_len)) { 2219 case 2: 2220 if (name[1] == '.') { 2221 type = LAST_DOTDOT; 2222 nd->flags |= LOOKUP_JUMPED; 2223 } 2224 break; 2225 case 1: 2226 type = LAST_DOT; 2227 } 2228 if (likely(type == LAST_NORM)) { 2229 struct dentry *parent = nd->path.dentry; 2230 nd->flags &= ~LOOKUP_JUMPED; 2231 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 2232 struct qstr this = { { .hash_len = hash_len }, .name = name }; 2233 err = parent->d_op->d_hash(parent, &this); 2234 if (err < 0) 2235 return err; 2236 hash_len = this.hash_len; 2237 name = this.name; 2238 } 2239 } 2240 2241 nd->last.hash_len = hash_len; 2242 nd->last.name = name; 2243 nd->last_type = type; 2244 2245 name += hashlen_len(hash_len); 2246 if (!*name) 2247 goto OK; 2248 /* 2249 * If it wasn't NUL, we know it was '/'. Skip that 2250 * slash, and continue until no more slashes. 2251 */ 2252 do { 2253 name++; 2254 } while (unlikely(*name == '/')); 2255 if (unlikely(!*name)) { 2256 OK: 2257 /* pathname or trailing symlink, done */ 2258 if (!depth) { 2259 nd->dir_uid = i_uid_into_mnt(mnt_userns, nd->inode); 2260 nd->dir_mode = nd->inode->i_mode; 2261 nd->flags &= ~LOOKUP_PARENT; 2262 return 0; 2263 } 2264 /* last component of nested symlink */ 2265 name = nd->stack[--depth].name; 2266 link = walk_component(nd, 0); 2267 } else { 2268 /* not the last component */ 2269 link = walk_component(nd, WALK_MORE); 2270 } 2271 if (unlikely(link)) { 2272 if (IS_ERR(link)) 2273 return PTR_ERR(link); 2274 /* a symlink to follow */ 2275 nd->stack[depth++].name = name; 2276 name = link; 2277 continue; 2278 } 2279 if (unlikely(!d_can_lookup(nd->path.dentry))) { 2280 if (nd->flags & LOOKUP_RCU) { 2281 if (!try_to_unlazy(nd)) 2282 return -ECHILD; 2283 } 2284 return -ENOTDIR; 2285 } 2286 } 2287 } 2288 2289 /* must be paired with terminate_walk() */ 2290 static const char *path_init(struct nameidata *nd, unsigned flags) 2291 { 2292 int error; 2293 const char *s = nd->name->name; 2294 2295 /* LOOKUP_CACHED requires RCU, ask caller to retry */ 2296 if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED) 2297 return ERR_PTR(-EAGAIN); 2298 2299 if (!*s) 2300 flags &= ~LOOKUP_RCU; 2301 if (flags & LOOKUP_RCU) 2302 rcu_read_lock(); 2303 2304 nd->flags = flags | LOOKUP_JUMPED; 2305 nd->depth = 0; 2306 2307 nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount); 2308 nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount); 2309 smp_rmb(); 2310 2311 if (flags & LOOKUP_ROOT) { 2312 struct dentry *root = nd->root.dentry; 2313 struct inode *inode = root->d_inode; 2314 if (*s && unlikely(!d_can_lookup(root))) 2315 return ERR_PTR(-ENOTDIR); 2316 nd->path = nd->root; 2317 nd->inode = inode; 2318 if (flags & LOOKUP_RCU) { 2319 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2320 nd->root_seq = nd->seq; 2321 } else { 2322 path_get(&nd->path); 2323 } 2324 return s; 2325 } 2326 2327 nd->root.mnt = NULL; 2328 2329 /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */ 2330 if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) { 2331 error = nd_jump_root(nd); 2332 if (unlikely(error)) 2333 return ERR_PTR(error); 2334 return s; 2335 } 2336 2337 /* Relative pathname -- get the starting-point it is relative to. */ 2338 if (nd->dfd == AT_FDCWD) { 2339 if (flags & LOOKUP_RCU) { 2340 struct fs_struct *fs = current->fs; 2341 unsigned seq; 2342 2343 do { 2344 seq = read_seqcount_begin(&fs->seq); 2345 nd->path = fs->pwd; 2346 nd->inode = nd->path.dentry->d_inode; 2347 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2348 } while (read_seqcount_retry(&fs->seq, seq)); 2349 } else { 2350 get_fs_pwd(current->fs, &nd->path); 2351 nd->inode = nd->path.dentry->d_inode; 2352 } 2353 } else { 2354 /* Caller must check execute permissions on the starting path component */ 2355 struct fd f = fdget_raw(nd->dfd); 2356 struct dentry *dentry; 2357 2358 if (!f.file) 2359 return ERR_PTR(-EBADF); 2360 2361 dentry = f.file->f_path.dentry; 2362 2363 if (*s && unlikely(!d_can_lookup(dentry))) { 2364 fdput(f); 2365 return ERR_PTR(-ENOTDIR); 2366 } 2367 2368 nd->path = f.file->f_path; 2369 if (flags & LOOKUP_RCU) { 2370 nd->inode = nd->path.dentry->d_inode; 2371 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2372 } else { 2373 path_get(&nd->path); 2374 nd->inode = nd->path.dentry->d_inode; 2375 } 2376 fdput(f); 2377 } 2378 2379 /* For scoped-lookups we need to set the root to the dirfd as well. */ 2380 if (flags & LOOKUP_IS_SCOPED) { 2381 nd->root = nd->path; 2382 if (flags & LOOKUP_RCU) { 2383 nd->root_seq = nd->seq; 2384 } else { 2385 path_get(&nd->root); 2386 nd->flags |= LOOKUP_ROOT_GRABBED; 2387 } 2388 } 2389 return s; 2390 } 2391 2392 static inline const char *lookup_last(struct nameidata *nd) 2393 { 2394 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 2395 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2396 2397 return walk_component(nd, WALK_TRAILING); 2398 } 2399 2400 static int handle_lookup_down(struct nameidata *nd) 2401 { 2402 if (!(nd->flags & LOOKUP_RCU)) 2403 dget(nd->path.dentry); 2404 return PTR_ERR(step_into(nd, WALK_NOFOLLOW, 2405 nd->path.dentry, nd->inode, nd->seq)); 2406 } 2407 2408 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2409 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path) 2410 { 2411 const char *s = path_init(nd, flags); 2412 int err; 2413 2414 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) { 2415 err = handle_lookup_down(nd); 2416 if (unlikely(err < 0)) 2417 s = ERR_PTR(err); 2418 } 2419 2420 while (!(err = link_path_walk(s, nd)) && 2421 (s = lookup_last(nd)) != NULL) 2422 ; 2423 if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) { 2424 err = handle_lookup_down(nd); 2425 nd->flags &= ~LOOKUP_JUMPED; // no d_weak_revalidate(), please... 2426 } 2427 if (!err) 2428 err = complete_walk(nd); 2429 2430 if (!err && nd->flags & LOOKUP_DIRECTORY) 2431 if (!d_can_lookup(nd->path.dentry)) 2432 err = -ENOTDIR; 2433 if (!err) { 2434 *path = nd->path; 2435 nd->path.mnt = NULL; 2436 nd->path.dentry = NULL; 2437 } 2438 terminate_walk(nd); 2439 return err; 2440 } 2441 2442 int filename_lookup(int dfd, struct filename *name, unsigned flags, 2443 struct path *path, struct path *root) 2444 { 2445 int retval; 2446 struct nameidata nd; 2447 if (IS_ERR(name)) 2448 return PTR_ERR(name); 2449 if (unlikely(root)) { 2450 nd.root = *root; 2451 flags |= LOOKUP_ROOT; 2452 } 2453 set_nameidata(&nd, dfd, name); 2454 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path); 2455 if (unlikely(retval == -ECHILD)) 2456 retval = path_lookupat(&nd, flags, path); 2457 if (unlikely(retval == -ESTALE)) 2458 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path); 2459 2460 if (likely(!retval)) 2461 audit_inode(name, path->dentry, 2462 flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0); 2463 restore_nameidata(); 2464 putname(name); 2465 return retval; 2466 } 2467 2468 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2469 static int path_parentat(struct nameidata *nd, unsigned flags, 2470 struct path *parent) 2471 { 2472 const char *s = path_init(nd, flags); 2473 int err = link_path_walk(s, nd); 2474 if (!err) 2475 err = complete_walk(nd); 2476 if (!err) { 2477 *parent = nd->path; 2478 nd->path.mnt = NULL; 2479 nd->path.dentry = NULL; 2480 } 2481 terminate_walk(nd); 2482 return err; 2483 } 2484 2485 static struct filename *filename_parentat(int dfd, struct filename *name, 2486 unsigned int flags, struct path *parent, 2487 struct qstr *last, int *type) 2488 { 2489 int retval; 2490 struct nameidata nd; 2491 2492 if (IS_ERR(name)) 2493 return name; 2494 set_nameidata(&nd, dfd, name); 2495 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent); 2496 if (unlikely(retval == -ECHILD)) 2497 retval = path_parentat(&nd, flags, parent); 2498 if (unlikely(retval == -ESTALE)) 2499 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent); 2500 if (likely(!retval)) { 2501 *last = nd.last; 2502 *type = nd.last_type; 2503 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT); 2504 } else { 2505 putname(name); 2506 name = ERR_PTR(retval); 2507 } 2508 restore_nameidata(); 2509 return name; 2510 } 2511 2512 /* does lookup, returns the object with parent locked */ 2513 struct dentry *kern_path_locked(const char *name, struct path *path) 2514 { 2515 struct filename *filename; 2516 struct dentry *d; 2517 struct qstr last; 2518 int type; 2519 2520 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path, 2521 &last, &type); 2522 if (IS_ERR(filename)) 2523 return ERR_CAST(filename); 2524 if (unlikely(type != LAST_NORM)) { 2525 path_put(path); 2526 putname(filename); 2527 return ERR_PTR(-EINVAL); 2528 } 2529 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 2530 d = __lookup_hash(&last, path->dentry, 0); 2531 if (IS_ERR(d)) { 2532 inode_unlock(path->dentry->d_inode); 2533 path_put(path); 2534 } 2535 putname(filename); 2536 return d; 2537 } 2538 2539 int kern_path(const char *name, unsigned int flags, struct path *path) 2540 { 2541 return filename_lookup(AT_FDCWD, getname_kernel(name), 2542 flags, path, NULL); 2543 } 2544 EXPORT_SYMBOL(kern_path); 2545 2546 /** 2547 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2548 * @dentry: pointer to dentry of the base directory 2549 * @mnt: pointer to vfs mount of the base directory 2550 * @name: pointer to file name 2551 * @flags: lookup flags 2552 * @path: pointer to struct path to fill 2553 */ 2554 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2555 const char *name, unsigned int flags, 2556 struct path *path) 2557 { 2558 struct path root = {.mnt = mnt, .dentry = dentry}; 2559 /* the first argument of filename_lookup() is ignored with root */ 2560 return filename_lookup(AT_FDCWD, getname_kernel(name), 2561 flags , path, &root); 2562 } 2563 EXPORT_SYMBOL(vfs_path_lookup); 2564 2565 static int lookup_one_len_common(const char *name, struct dentry *base, 2566 int len, struct qstr *this) 2567 { 2568 this->name = name; 2569 this->len = len; 2570 this->hash = full_name_hash(base, name, len); 2571 if (!len) 2572 return -EACCES; 2573 2574 if (unlikely(name[0] == '.')) { 2575 if (len < 2 || (len == 2 && name[1] == '.')) 2576 return -EACCES; 2577 } 2578 2579 while (len--) { 2580 unsigned int c = *(const unsigned char *)name++; 2581 if (c == '/' || c == '\0') 2582 return -EACCES; 2583 } 2584 /* 2585 * See if the low-level filesystem might want 2586 * to use its own hash.. 2587 */ 2588 if (base->d_flags & DCACHE_OP_HASH) { 2589 int err = base->d_op->d_hash(base, this); 2590 if (err < 0) 2591 return err; 2592 } 2593 2594 return inode_permission(&init_user_ns, base->d_inode, MAY_EXEC); 2595 } 2596 2597 /** 2598 * try_lookup_one_len - filesystem helper to lookup single pathname component 2599 * @name: pathname component to lookup 2600 * @base: base directory to lookup from 2601 * @len: maximum length @len should be interpreted to 2602 * 2603 * Look up a dentry by name in the dcache, returning NULL if it does not 2604 * currently exist. The function does not try to create a dentry. 2605 * 2606 * Note that this routine is purely a helper for filesystem usage and should 2607 * not be called by generic code. 2608 * 2609 * The caller must hold base->i_mutex. 2610 */ 2611 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len) 2612 { 2613 struct qstr this; 2614 int err; 2615 2616 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2617 2618 err = lookup_one_len_common(name, base, len, &this); 2619 if (err) 2620 return ERR_PTR(err); 2621 2622 return lookup_dcache(&this, base, 0); 2623 } 2624 EXPORT_SYMBOL(try_lookup_one_len); 2625 2626 /** 2627 * lookup_one_len - filesystem helper to lookup single pathname component 2628 * @name: pathname component to lookup 2629 * @base: base directory to lookup from 2630 * @len: maximum length @len should be interpreted to 2631 * 2632 * Note that this routine is purely a helper for filesystem usage and should 2633 * not be called by generic code. 2634 * 2635 * The caller must hold base->i_mutex. 2636 */ 2637 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2638 { 2639 struct dentry *dentry; 2640 struct qstr this; 2641 int err; 2642 2643 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2644 2645 err = lookup_one_len_common(name, base, len, &this); 2646 if (err) 2647 return ERR_PTR(err); 2648 2649 dentry = lookup_dcache(&this, base, 0); 2650 return dentry ? dentry : __lookup_slow(&this, base, 0); 2651 } 2652 EXPORT_SYMBOL(lookup_one_len); 2653 2654 /** 2655 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component 2656 * @name: pathname component to lookup 2657 * @base: base directory to lookup from 2658 * @len: maximum length @len should be interpreted to 2659 * 2660 * Note that this routine is purely a helper for filesystem usage and should 2661 * not be called by generic code. 2662 * 2663 * Unlike lookup_one_len, it should be called without the parent 2664 * i_mutex held, and will take the i_mutex itself if necessary. 2665 */ 2666 struct dentry *lookup_one_len_unlocked(const char *name, 2667 struct dentry *base, int len) 2668 { 2669 struct qstr this; 2670 int err; 2671 struct dentry *ret; 2672 2673 err = lookup_one_len_common(name, base, len, &this); 2674 if (err) 2675 return ERR_PTR(err); 2676 2677 ret = lookup_dcache(&this, base, 0); 2678 if (!ret) 2679 ret = lookup_slow(&this, base, 0); 2680 return ret; 2681 } 2682 EXPORT_SYMBOL(lookup_one_len_unlocked); 2683 2684 /* 2685 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT) 2686 * on negatives. Returns known positive or ERR_PTR(); that's what 2687 * most of the users want. Note that pinned negative with unlocked parent 2688 * _can_ become positive at any time, so callers of lookup_one_len_unlocked() 2689 * need to be very careful; pinned positives have ->d_inode stable, so 2690 * this one avoids such problems. 2691 */ 2692 struct dentry *lookup_positive_unlocked(const char *name, 2693 struct dentry *base, int len) 2694 { 2695 struct dentry *ret = lookup_one_len_unlocked(name, base, len); 2696 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) { 2697 dput(ret); 2698 ret = ERR_PTR(-ENOENT); 2699 } 2700 return ret; 2701 } 2702 EXPORT_SYMBOL(lookup_positive_unlocked); 2703 2704 #ifdef CONFIG_UNIX98_PTYS 2705 int path_pts(struct path *path) 2706 { 2707 /* Find something mounted on "pts" in the same directory as 2708 * the input path. 2709 */ 2710 struct dentry *parent = dget_parent(path->dentry); 2711 struct dentry *child; 2712 struct qstr this = QSTR_INIT("pts", 3); 2713 2714 if (unlikely(!path_connected(path->mnt, parent))) { 2715 dput(parent); 2716 return -ENOENT; 2717 } 2718 dput(path->dentry); 2719 path->dentry = parent; 2720 child = d_hash_and_lookup(parent, &this); 2721 if (!child) 2722 return -ENOENT; 2723 2724 path->dentry = child; 2725 dput(parent); 2726 follow_down(path); 2727 return 0; 2728 } 2729 #endif 2730 2731 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2732 struct path *path, int *empty) 2733 { 2734 return filename_lookup(dfd, getname_flags(name, flags, empty), 2735 flags, path, NULL); 2736 } 2737 EXPORT_SYMBOL(user_path_at_empty); 2738 2739 int __check_sticky(struct user_namespace *mnt_userns, struct inode *dir, 2740 struct inode *inode) 2741 { 2742 kuid_t fsuid = current_fsuid(); 2743 2744 if (uid_eq(i_uid_into_mnt(mnt_userns, inode), fsuid)) 2745 return 0; 2746 if (uid_eq(i_uid_into_mnt(mnt_userns, dir), fsuid)) 2747 return 0; 2748 return !capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FOWNER); 2749 } 2750 EXPORT_SYMBOL(__check_sticky); 2751 2752 /* 2753 * Check whether we can remove a link victim from directory dir, check 2754 * whether the type of victim is right. 2755 * 1. We can't do it if dir is read-only (done in permission()) 2756 * 2. We should have write and exec permissions on dir 2757 * 3. We can't remove anything from append-only dir 2758 * 4. We can't do anything with immutable dir (done in permission()) 2759 * 5. If the sticky bit on dir is set we should either 2760 * a. be owner of dir, or 2761 * b. be owner of victim, or 2762 * c. have CAP_FOWNER capability 2763 * 6. If the victim is append-only or immutable we can't do antyhing with 2764 * links pointing to it. 2765 * 7. If the victim has an unknown uid or gid we can't change the inode. 2766 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2767 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2768 * 10. We can't remove a root or mountpoint. 2769 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by 2770 * nfs_async_unlink(). 2771 */ 2772 static int may_delete(struct user_namespace *mnt_userns, struct inode *dir, 2773 struct dentry *victim, bool isdir) 2774 { 2775 struct inode *inode = d_backing_inode(victim); 2776 int error; 2777 2778 if (d_is_negative(victim)) 2779 return -ENOENT; 2780 BUG_ON(!inode); 2781 2782 BUG_ON(victim->d_parent->d_inode != dir); 2783 2784 /* Inode writeback is not safe when the uid or gid are invalid. */ 2785 if (!uid_valid(i_uid_into_mnt(mnt_userns, inode)) || 2786 !gid_valid(i_gid_into_mnt(mnt_userns, inode))) 2787 return -EOVERFLOW; 2788 2789 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2790 2791 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); 2792 if (error) 2793 return error; 2794 if (IS_APPEND(dir)) 2795 return -EPERM; 2796 2797 if (check_sticky(mnt_userns, dir, inode) || IS_APPEND(inode) || 2798 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || 2799 HAS_UNMAPPED_ID(mnt_userns, inode)) 2800 return -EPERM; 2801 if (isdir) { 2802 if (!d_is_dir(victim)) 2803 return -ENOTDIR; 2804 if (IS_ROOT(victim)) 2805 return -EBUSY; 2806 } else if (d_is_dir(victim)) 2807 return -EISDIR; 2808 if (IS_DEADDIR(dir)) 2809 return -ENOENT; 2810 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2811 return -EBUSY; 2812 return 0; 2813 } 2814 2815 /* Check whether we can create an object with dentry child in directory 2816 * dir. 2817 * 1. We can't do it if child already exists (open has special treatment for 2818 * this case, but since we are inlined it's OK) 2819 * 2. We can't do it if dir is read-only (done in permission()) 2820 * 3. We can't do it if the fs can't represent the fsuid or fsgid. 2821 * 4. We should have write and exec permissions on dir 2822 * 5. We can't do it if dir is immutable (done in permission()) 2823 */ 2824 static inline int may_create(struct user_namespace *mnt_userns, 2825 struct inode *dir, struct dentry *child) 2826 { 2827 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 2828 if (child->d_inode) 2829 return -EEXIST; 2830 if (IS_DEADDIR(dir)) 2831 return -ENOENT; 2832 if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns)) 2833 return -EOVERFLOW; 2834 2835 return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); 2836 } 2837 2838 /* 2839 * p1 and p2 should be directories on the same fs. 2840 */ 2841 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2842 { 2843 struct dentry *p; 2844 2845 if (p1 == p2) { 2846 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2847 return NULL; 2848 } 2849 2850 mutex_lock(&p1->d_sb->s_vfs_rename_mutex); 2851 2852 p = d_ancestor(p2, p1); 2853 if (p) { 2854 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 2855 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD); 2856 return p; 2857 } 2858 2859 p = d_ancestor(p1, p2); 2860 if (p) { 2861 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2862 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD); 2863 return p; 2864 } 2865 2866 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2867 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 2868 return NULL; 2869 } 2870 EXPORT_SYMBOL(lock_rename); 2871 2872 void unlock_rename(struct dentry *p1, struct dentry *p2) 2873 { 2874 inode_unlock(p1->d_inode); 2875 if (p1 != p2) { 2876 inode_unlock(p2->d_inode); 2877 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 2878 } 2879 } 2880 EXPORT_SYMBOL(unlock_rename); 2881 2882 /** 2883 * vfs_create - create new file 2884 * @mnt_userns: user namespace of the mount the inode was found from 2885 * @dir: inode of @dentry 2886 * @dentry: pointer to dentry of the base directory 2887 * @mode: mode of the new file 2888 * @want_excl: whether the file must not yet exist 2889 * 2890 * Create a new file. 2891 * 2892 * If the inode has been found through an idmapped mount the user namespace of 2893 * the vfsmount must be passed through @mnt_userns. This function will then take 2894 * care to map the inode according to @mnt_userns before checking permissions. 2895 * On non-idmapped mounts or if permission checking is to be performed on the 2896 * raw inode simply passs init_user_ns. 2897 */ 2898 int vfs_create(struct user_namespace *mnt_userns, struct inode *dir, 2899 struct dentry *dentry, umode_t mode, bool want_excl) 2900 { 2901 int error = may_create(mnt_userns, dir, dentry); 2902 if (error) 2903 return error; 2904 2905 if (!dir->i_op->create) 2906 return -EACCES; /* shouldn't it be ENOSYS? */ 2907 mode &= S_IALLUGO; 2908 mode |= S_IFREG; 2909 error = security_inode_create(dir, dentry, mode); 2910 if (error) 2911 return error; 2912 error = dir->i_op->create(mnt_userns, dir, dentry, mode, want_excl); 2913 if (!error) 2914 fsnotify_create(dir, dentry); 2915 return error; 2916 } 2917 EXPORT_SYMBOL(vfs_create); 2918 2919 int vfs_mkobj(struct dentry *dentry, umode_t mode, 2920 int (*f)(struct dentry *, umode_t, void *), 2921 void *arg) 2922 { 2923 struct inode *dir = dentry->d_parent->d_inode; 2924 int error = may_create(&init_user_ns, dir, dentry); 2925 if (error) 2926 return error; 2927 2928 mode &= S_IALLUGO; 2929 mode |= S_IFREG; 2930 error = security_inode_create(dir, dentry, mode); 2931 if (error) 2932 return error; 2933 error = f(dentry, mode, arg); 2934 if (!error) 2935 fsnotify_create(dir, dentry); 2936 return error; 2937 } 2938 EXPORT_SYMBOL(vfs_mkobj); 2939 2940 bool may_open_dev(const struct path *path) 2941 { 2942 return !(path->mnt->mnt_flags & MNT_NODEV) && 2943 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV); 2944 } 2945 2946 static int may_open(struct user_namespace *mnt_userns, const struct path *path, 2947 int acc_mode, int flag) 2948 { 2949 struct dentry *dentry = path->dentry; 2950 struct inode *inode = dentry->d_inode; 2951 int error; 2952 2953 if (!inode) 2954 return -ENOENT; 2955 2956 switch (inode->i_mode & S_IFMT) { 2957 case S_IFLNK: 2958 return -ELOOP; 2959 case S_IFDIR: 2960 if (acc_mode & MAY_WRITE) 2961 return -EISDIR; 2962 if (acc_mode & MAY_EXEC) 2963 return -EACCES; 2964 break; 2965 case S_IFBLK: 2966 case S_IFCHR: 2967 if (!may_open_dev(path)) 2968 return -EACCES; 2969 fallthrough; 2970 case S_IFIFO: 2971 case S_IFSOCK: 2972 if (acc_mode & MAY_EXEC) 2973 return -EACCES; 2974 flag &= ~O_TRUNC; 2975 break; 2976 case S_IFREG: 2977 if ((acc_mode & MAY_EXEC) && path_noexec(path)) 2978 return -EACCES; 2979 break; 2980 } 2981 2982 error = inode_permission(mnt_userns, inode, MAY_OPEN | acc_mode); 2983 if (error) 2984 return error; 2985 2986 /* 2987 * An append-only file must be opened in append mode for writing. 2988 */ 2989 if (IS_APPEND(inode)) { 2990 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2991 return -EPERM; 2992 if (flag & O_TRUNC) 2993 return -EPERM; 2994 } 2995 2996 /* O_NOATIME can only be set by the owner or superuser */ 2997 if (flag & O_NOATIME && !inode_owner_or_capable(mnt_userns, inode)) 2998 return -EPERM; 2999 3000 return 0; 3001 } 3002 3003 static int handle_truncate(struct user_namespace *mnt_userns, struct file *filp) 3004 { 3005 const struct path *path = &filp->f_path; 3006 struct inode *inode = path->dentry->d_inode; 3007 int error = get_write_access(inode); 3008 if (error) 3009 return error; 3010 /* 3011 * Refuse to truncate files with mandatory locks held on them. 3012 */ 3013 error = locks_verify_locked(filp); 3014 if (!error) 3015 error = security_path_truncate(path); 3016 if (!error) { 3017 error = do_truncate(mnt_userns, path->dentry, 0, 3018 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 3019 filp); 3020 } 3021 put_write_access(inode); 3022 return error; 3023 } 3024 3025 static inline int open_to_namei_flags(int flag) 3026 { 3027 if ((flag & O_ACCMODE) == 3) 3028 flag--; 3029 return flag; 3030 } 3031 3032 static int may_o_create(struct user_namespace *mnt_userns, 3033 const struct path *dir, struct dentry *dentry, 3034 umode_t mode) 3035 { 3036 int error = security_path_mknod(dir, dentry, mode, 0); 3037 if (error) 3038 return error; 3039 3040 if (!fsuidgid_has_mapping(dir->dentry->d_sb, mnt_userns)) 3041 return -EOVERFLOW; 3042 3043 error = inode_permission(mnt_userns, dir->dentry->d_inode, 3044 MAY_WRITE | MAY_EXEC); 3045 if (error) 3046 return error; 3047 3048 return security_inode_create(dir->dentry->d_inode, dentry, mode); 3049 } 3050 3051 /* 3052 * Attempt to atomically look up, create and open a file from a negative 3053 * dentry. 3054 * 3055 * Returns 0 if successful. The file will have been created and attached to 3056 * @file by the filesystem calling finish_open(). 3057 * 3058 * If the file was looked up only or didn't need creating, FMODE_OPENED won't 3059 * be set. The caller will need to perform the open themselves. @path will 3060 * have been updated to point to the new dentry. This may be negative. 3061 * 3062 * Returns an error code otherwise. 3063 */ 3064 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry, 3065 struct file *file, 3066 int open_flag, umode_t mode) 3067 { 3068 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 3069 struct inode *dir = nd->path.dentry->d_inode; 3070 int error; 3071 3072 if (nd->flags & LOOKUP_DIRECTORY) 3073 open_flag |= O_DIRECTORY; 3074 3075 file->f_path.dentry = DENTRY_NOT_SET; 3076 file->f_path.mnt = nd->path.mnt; 3077 error = dir->i_op->atomic_open(dir, dentry, file, 3078 open_to_namei_flags(open_flag), mode); 3079 d_lookup_done(dentry); 3080 if (!error) { 3081 if (file->f_mode & FMODE_OPENED) { 3082 if (unlikely(dentry != file->f_path.dentry)) { 3083 dput(dentry); 3084 dentry = dget(file->f_path.dentry); 3085 } 3086 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 3087 error = -EIO; 3088 } else { 3089 if (file->f_path.dentry) { 3090 dput(dentry); 3091 dentry = file->f_path.dentry; 3092 } 3093 if (unlikely(d_is_negative(dentry))) 3094 error = -ENOENT; 3095 } 3096 } 3097 if (error) { 3098 dput(dentry); 3099 dentry = ERR_PTR(error); 3100 } 3101 return dentry; 3102 } 3103 3104 /* 3105 * Look up and maybe create and open the last component. 3106 * 3107 * Must be called with parent locked (exclusive in O_CREAT case). 3108 * 3109 * Returns 0 on success, that is, if 3110 * the file was successfully atomically created (if necessary) and opened, or 3111 * the file was not completely opened at this time, though lookups and 3112 * creations were performed. 3113 * These case are distinguished by presence of FMODE_OPENED on file->f_mode. 3114 * In the latter case dentry returned in @path might be negative if O_CREAT 3115 * hadn't been specified. 3116 * 3117 * An error code is returned on failure. 3118 */ 3119 static struct dentry *lookup_open(struct nameidata *nd, struct file *file, 3120 const struct open_flags *op, 3121 bool got_write) 3122 { 3123 struct user_namespace *mnt_userns; 3124 struct dentry *dir = nd->path.dentry; 3125 struct inode *dir_inode = dir->d_inode; 3126 int open_flag = op->open_flag; 3127 struct dentry *dentry; 3128 int error, create_error = 0; 3129 umode_t mode = op->mode; 3130 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 3131 3132 if (unlikely(IS_DEADDIR(dir_inode))) 3133 return ERR_PTR(-ENOENT); 3134 3135 file->f_mode &= ~FMODE_CREATED; 3136 dentry = d_lookup(dir, &nd->last); 3137 for (;;) { 3138 if (!dentry) { 3139 dentry = d_alloc_parallel(dir, &nd->last, &wq); 3140 if (IS_ERR(dentry)) 3141 return dentry; 3142 } 3143 if (d_in_lookup(dentry)) 3144 break; 3145 3146 error = d_revalidate(dentry, nd->flags); 3147 if (likely(error > 0)) 3148 break; 3149 if (error) 3150 goto out_dput; 3151 d_invalidate(dentry); 3152 dput(dentry); 3153 dentry = NULL; 3154 } 3155 if (dentry->d_inode) { 3156 /* Cached positive dentry: will open in f_op->open */ 3157 return dentry; 3158 } 3159 3160 /* 3161 * Checking write permission is tricky, bacuse we don't know if we are 3162 * going to actually need it: O_CREAT opens should work as long as the 3163 * file exists. But checking existence breaks atomicity. The trick is 3164 * to check access and if not granted clear O_CREAT from the flags. 3165 * 3166 * Another problem is returing the "right" error value (e.g. for an 3167 * O_EXCL open we want to return EEXIST not EROFS). 3168 */ 3169 if (unlikely(!got_write)) 3170 open_flag &= ~O_TRUNC; 3171 mnt_userns = mnt_user_ns(nd->path.mnt); 3172 if (open_flag & O_CREAT) { 3173 if (open_flag & O_EXCL) 3174 open_flag &= ~O_TRUNC; 3175 if (!IS_POSIXACL(dir->d_inode)) 3176 mode &= ~current_umask(); 3177 if (likely(got_write)) 3178 create_error = may_o_create(mnt_userns, &nd->path, 3179 dentry, mode); 3180 else 3181 create_error = -EROFS; 3182 } 3183 if (create_error) 3184 open_flag &= ~O_CREAT; 3185 if (dir_inode->i_op->atomic_open) { 3186 dentry = atomic_open(nd, dentry, file, open_flag, mode); 3187 if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT)) 3188 dentry = ERR_PTR(create_error); 3189 return dentry; 3190 } 3191 3192 if (d_in_lookup(dentry)) { 3193 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry, 3194 nd->flags); 3195 d_lookup_done(dentry); 3196 if (unlikely(res)) { 3197 if (IS_ERR(res)) { 3198 error = PTR_ERR(res); 3199 goto out_dput; 3200 } 3201 dput(dentry); 3202 dentry = res; 3203 } 3204 } 3205 3206 /* Negative dentry, just create the file */ 3207 if (!dentry->d_inode && (open_flag & O_CREAT)) { 3208 file->f_mode |= FMODE_CREATED; 3209 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE); 3210 if (!dir_inode->i_op->create) { 3211 error = -EACCES; 3212 goto out_dput; 3213 } 3214 3215 error = dir_inode->i_op->create(mnt_userns, dir_inode, dentry, 3216 mode, open_flag & O_EXCL); 3217 if (error) 3218 goto out_dput; 3219 } 3220 if (unlikely(create_error) && !dentry->d_inode) { 3221 error = create_error; 3222 goto out_dput; 3223 } 3224 return dentry; 3225 3226 out_dput: 3227 dput(dentry); 3228 return ERR_PTR(error); 3229 } 3230 3231 static const char *open_last_lookups(struct nameidata *nd, 3232 struct file *file, const struct open_flags *op) 3233 { 3234 struct dentry *dir = nd->path.dentry; 3235 int open_flag = op->open_flag; 3236 bool got_write = false; 3237 unsigned seq; 3238 struct inode *inode; 3239 struct dentry *dentry; 3240 const char *res; 3241 3242 nd->flags |= op->intent; 3243 3244 if (nd->last_type != LAST_NORM) { 3245 if (nd->depth) 3246 put_link(nd); 3247 return handle_dots(nd, nd->last_type); 3248 } 3249 3250 if (!(open_flag & O_CREAT)) { 3251 if (nd->last.name[nd->last.len]) 3252 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 3253 /* we _can_ be in RCU mode here */ 3254 dentry = lookup_fast(nd, &inode, &seq); 3255 if (IS_ERR(dentry)) 3256 return ERR_CAST(dentry); 3257 if (likely(dentry)) 3258 goto finish_lookup; 3259 3260 BUG_ON(nd->flags & LOOKUP_RCU); 3261 } else { 3262 /* create side of things */ 3263 if (nd->flags & LOOKUP_RCU) { 3264 if (!try_to_unlazy(nd)) 3265 return ERR_PTR(-ECHILD); 3266 } 3267 audit_inode(nd->name, dir, AUDIT_INODE_PARENT); 3268 /* trailing slashes? */ 3269 if (unlikely(nd->last.name[nd->last.len])) 3270 return ERR_PTR(-EISDIR); 3271 } 3272 3273 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 3274 got_write = !mnt_want_write(nd->path.mnt); 3275 /* 3276 * do _not_ fail yet - we might not need that or fail with 3277 * a different error; let lookup_open() decide; we'll be 3278 * dropping this one anyway. 3279 */ 3280 } 3281 if (open_flag & O_CREAT) 3282 inode_lock(dir->d_inode); 3283 else 3284 inode_lock_shared(dir->d_inode); 3285 dentry = lookup_open(nd, file, op, got_write); 3286 if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED)) 3287 fsnotify_create(dir->d_inode, dentry); 3288 if (open_flag & O_CREAT) 3289 inode_unlock(dir->d_inode); 3290 else 3291 inode_unlock_shared(dir->d_inode); 3292 3293 if (got_write) 3294 mnt_drop_write(nd->path.mnt); 3295 3296 if (IS_ERR(dentry)) 3297 return ERR_CAST(dentry); 3298 3299 if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) { 3300 dput(nd->path.dentry); 3301 nd->path.dentry = dentry; 3302 return NULL; 3303 } 3304 3305 finish_lookup: 3306 if (nd->depth) 3307 put_link(nd); 3308 res = step_into(nd, WALK_TRAILING, dentry, inode, seq); 3309 if (unlikely(res)) 3310 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3311 return res; 3312 } 3313 3314 /* 3315 * Handle the last step of open() 3316 */ 3317 static int do_open(struct nameidata *nd, 3318 struct file *file, const struct open_flags *op) 3319 { 3320 struct user_namespace *mnt_userns; 3321 int open_flag = op->open_flag; 3322 bool do_truncate; 3323 int acc_mode; 3324 int error; 3325 3326 if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) { 3327 error = complete_walk(nd); 3328 if (error) 3329 return error; 3330 } 3331 if (!(file->f_mode & FMODE_CREATED)) 3332 audit_inode(nd->name, nd->path.dentry, 0); 3333 mnt_userns = mnt_user_ns(nd->path.mnt); 3334 if (open_flag & O_CREAT) { 3335 if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED)) 3336 return -EEXIST; 3337 if (d_is_dir(nd->path.dentry)) 3338 return -EISDIR; 3339 error = may_create_in_sticky(mnt_userns, nd, 3340 d_backing_inode(nd->path.dentry)); 3341 if (unlikely(error)) 3342 return error; 3343 } 3344 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3345 return -ENOTDIR; 3346 3347 do_truncate = false; 3348 acc_mode = op->acc_mode; 3349 if (file->f_mode & FMODE_CREATED) { 3350 /* Don't check for write permission, don't truncate */ 3351 open_flag &= ~O_TRUNC; 3352 acc_mode = 0; 3353 } else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) { 3354 error = mnt_want_write(nd->path.mnt); 3355 if (error) 3356 return error; 3357 do_truncate = true; 3358 } 3359 error = may_open(mnt_userns, &nd->path, acc_mode, open_flag); 3360 if (!error && !(file->f_mode & FMODE_OPENED)) 3361 error = vfs_open(&nd->path, file); 3362 if (!error) 3363 error = ima_file_check(file, op->acc_mode); 3364 if (!error && do_truncate) 3365 error = handle_truncate(mnt_userns, file); 3366 if (unlikely(error > 0)) { 3367 WARN_ON(1); 3368 error = -EINVAL; 3369 } 3370 if (do_truncate) 3371 mnt_drop_write(nd->path.mnt); 3372 return error; 3373 } 3374 3375 /** 3376 * vfs_tmpfile - create tmpfile 3377 * @mnt_userns: user namespace of the mount the inode was found from 3378 * @dentry: pointer to dentry of the base directory 3379 * @mode: mode of the new tmpfile 3380 * @open_flag: flags 3381 * 3382 * Create a temporary file. 3383 * 3384 * If the inode has been found through an idmapped mount the user namespace of 3385 * the vfsmount must be passed through @mnt_userns. This function will then take 3386 * care to map the inode according to @mnt_userns before checking permissions. 3387 * On non-idmapped mounts or if permission checking is to be performed on the 3388 * raw inode simply passs init_user_ns. 3389 */ 3390 struct dentry *vfs_tmpfile(struct user_namespace *mnt_userns, 3391 struct dentry *dentry, umode_t mode, int open_flag) 3392 { 3393 struct dentry *child = NULL; 3394 struct inode *dir = dentry->d_inode; 3395 struct inode *inode; 3396 int error; 3397 3398 /* we want directory to be writable */ 3399 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); 3400 if (error) 3401 goto out_err; 3402 error = -EOPNOTSUPP; 3403 if (!dir->i_op->tmpfile) 3404 goto out_err; 3405 error = -ENOMEM; 3406 child = d_alloc(dentry, &slash_name); 3407 if (unlikely(!child)) 3408 goto out_err; 3409 error = dir->i_op->tmpfile(mnt_userns, dir, child, mode); 3410 if (error) 3411 goto out_err; 3412 error = -ENOENT; 3413 inode = child->d_inode; 3414 if (unlikely(!inode)) 3415 goto out_err; 3416 if (!(open_flag & O_EXCL)) { 3417 spin_lock(&inode->i_lock); 3418 inode->i_state |= I_LINKABLE; 3419 spin_unlock(&inode->i_lock); 3420 } 3421 ima_post_create_tmpfile(mnt_userns, inode); 3422 return child; 3423 3424 out_err: 3425 dput(child); 3426 return ERR_PTR(error); 3427 } 3428 EXPORT_SYMBOL(vfs_tmpfile); 3429 3430 static int do_tmpfile(struct nameidata *nd, unsigned flags, 3431 const struct open_flags *op, 3432 struct file *file) 3433 { 3434 struct user_namespace *mnt_userns; 3435 struct dentry *child; 3436 struct path path; 3437 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path); 3438 if (unlikely(error)) 3439 return error; 3440 error = mnt_want_write(path.mnt); 3441 if (unlikely(error)) 3442 goto out; 3443 mnt_userns = mnt_user_ns(path.mnt); 3444 child = vfs_tmpfile(mnt_userns, path.dentry, op->mode, op->open_flag); 3445 error = PTR_ERR(child); 3446 if (IS_ERR(child)) 3447 goto out2; 3448 dput(path.dentry); 3449 path.dentry = child; 3450 audit_inode(nd->name, child, 0); 3451 /* Don't check for other permissions, the inode was just created */ 3452 error = may_open(mnt_userns, &path, 0, op->open_flag); 3453 if (!error) 3454 error = vfs_open(&path, file); 3455 out2: 3456 mnt_drop_write(path.mnt); 3457 out: 3458 path_put(&path); 3459 return error; 3460 } 3461 3462 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file) 3463 { 3464 struct path path; 3465 int error = path_lookupat(nd, flags, &path); 3466 if (!error) { 3467 audit_inode(nd->name, path.dentry, 0); 3468 error = vfs_open(&path, file); 3469 path_put(&path); 3470 } 3471 return error; 3472 } 3473 3474 static struct file *path_openat(struct nameidata *nd, 3475 const struct open_flags *op, unsigned flags) 3476 { 3477 struct file *file; 3478 int error; 3479 3480 file = alloc_empty_file(op->open_flag, current_cred()); 3481 if (IS_ERR(file)) 3482 return file; 3483 3484 if (unlikely(file->f_flags & __O_TMPFILE)) { 3485 error = do_tmpfile(nd, flags, op, file); 3486 } else if (unlikely(file->f_flags & O_PATH)) { 3487 error = do_o_path(nd, flags, file); 3488 } else { 3489 const char *s = path_init(nd, flags); 3490 while (!(error = link_path_walk(s, nd)) && 3491 (s = open_last_lookups(nd, file, op)) != NULL) 3492 ; 3493 if (!error) 3494 error = do_open(nd, file, op); 3495 terminate_walk(nd); 3496 } 3497 if (likely(!error)) { 3498 if (likely(file->f_mode & FMODE_OPENED)) 3499 return file; 3500 WARN_ON(1); 3501 error = -EINVAL; 3502 } 3503 fput(file); 3504 if (error == -EOPENSTALE) { 3505 if (flags & LOOKUP_RCU) 3506 error = -ECHILD; 3507 else 3508 error = -ESTALE; 3509 } 3510 return ERR_PTR(error); 3511 } 3512 3513 struct file *do_filp_open(int dfd, struct filename *pathname, 3514 const struct open_flags *op) 3515 { 3516 struct nameidata nd; 3517 int flags = op->lookup_flags; 3518 struct file *filp; 3519 3520 set_nameidata(&nd, dfd, pathname); 3521 filp = path_openat(&nd, op, flags | LOOKUP_RCU); 3522 if (unlikely(filp == ERR_PTR(-ECHILD))) 3523 filp = path_openat(&nd, op, flags); 3524 if (unlikely(filp == ERR_PTR(-ESTALE))) 3525 filp = path_openat(&nd, op, flags | LOOKUP_REVAL); 3526 restore_nameidata(); 3527 return filp; 3528 } 3529 3530 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 3531 const char *name, const struct open_flags *op) 3532 { 3533 struct nameidata nd; 3534 struct file *file; 3535 struct filename *filename; 3536 int flags = op->lookup_flags | LOOKUP_ROOT; 3537 3538 nd.root.mnt = mnt; 3539 nd.root.dentry = dentry; 3540 3541 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN) 3542 return ERR_PTR(-ELOOP); 3543 3544 filename = getname_kernel(name); 3545 if (IS_ERR(filename)) 3546 return ERR_CAST(filename); 3547 3548 set_nameidata(&nd, -1, filename); 3549 file = path_openat(&nd, op, flags | LOOKUP_RCU); 3550 if (unlikely(file == ERR_PTR(-ECHILD))) 3551 file = path_openat(&nd, op, flags); 3552 if (unlikely(file == ERR_PTR(-ESTALE))) 3553 file = path_openat(&nd, op, flags | LOOKUP_REVAL); 3554 restore_nameidata(); 3555 putname(filename); 3556 return file; 3557 } 3558 3559 static struct dentry *filename_create(int dfd, struct filename *name, 3560 struct path *path, unsigned int lookup_flags) 3561 { 3562 struct dentry *dentry = ERR_PTR(-EEXIST); 3563 struct qstr last; 3564 int type; 3565 int err2; 3566 int error; 3567 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY); 3568 3569 /* 3570 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any 3571 * other flags passed in are ignored! 3572 */ 3573 lookup_flags &= LOOKUP_REVAL; 3574 3575 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type); 3576 if (IS_ERR(name)) 3577 return ERR_CAST(name); 3578 3579 /* 3580 * Yucky last component or no last component at all? 3581 * (foo/., foo/.., /////) 3582 */ 3583 if (unlikely(type != LAST_NORM)) 3584 goto out; 3585 3586 /* don't fail immediately if it's r/o, at least try to report other errors */ 3587 err2 = mnt_want_write(path->mnt); 3588 /* 3589 * Do the final lookup. 3590 */ 3591 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL; 3592 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 3593 dentry = __lookup_hash(&last, path->dentry, lookup_flags); 3594 if (IS_ERR(dentry)) 3595 goto unlock; 3596 3597 error = -EEXIST; 3598 if (d_is_positive(dentry)) 3599 goto fail; 3600 3601 /* 3602 * Special case - lookup gave negative, but... we had foo/bar/ 3603 * From the vfs_mknod() POV we just have a negative dentry - 3604 * all is fine. Let's be bastards - you had / on the end, you've 3605 * been asking for (non-existent) directory. -ENOENT for you. 3606 */ 3607 if (unlikely(!is_dir && last.name[last.len])) { 3608 error = -ENOENT; 3609 goto fail; 3610 } 3611 if (unlikely(err2)) { 3612 error = err2; 3613 goto fail; 3614 } 3615 putname(name); 3616 return dentry; 3617 fail: 3618 dput(dentry); 3619 dentry = ERR_PTR(error); 3620 unlock: 3621 inode_unlock(path->dentry->d_inode); 3622 if (!err2) 3623 mnt_drop_write(path->mnt); 3624 out: 3625 path_put(path); 3626 putname(name); 3627 return dentry; 3628 } 3629 3630 struct dentry *kern_path_create(int dfd, const char *pathname, 3631 struct path *path, unsigned int lookup_flags) 3632 { 3633 return filename_create(dfd, getname_kernel(pathname), 3634 path, lookup_flags); 3635 } 3636 EXPORT_SYMBOL(kern_path_create); 3637 3638 void done_path_create(struct path *path, struct dentry *dentry) 3639 { 3640 dput(dentry); 3641 inode_unlock(path->dentry->d_inode); 3642 mnt_drop_write(path->mnt); 3643 path_put(path); 3644 } 3645 EXPORT_SYMBOL(done_path_create); 3646 3647 inline struct dentry *user_path_create(int dfd, const char __user *pathname, 3648 struct path *path, unsigned int lookup_flags) 3649 { 3650 return filename_create(dfd, getname(pathname), path, lookup_flags); 3651 } 3652 EXPORT_SYMBOL(user_path_create); 3653 3654 /** 3655 * vfs_mknod - create device node or file 3656 * @mnt_userns: user namespace of the mount the inode was found from 3657 * @dir: inode of @dentry 3658 * @dentry: pointer to dentry of the base directory 3659 * @mode: mode of the new device node or file 3660 * @dev: device number of device to create 3661 * 3662 * Create a device node or file. 3663 * 3664 * If the inode has been found through an idmapped mount the user namespace of 3665 * the vfsmount must be passed through @mnt_userns. This function will then take 3666 * care to map the inode according to @mnt_userns before checking permissions. 3667 * On non-idmapped mounts or if permission checking is to be performed on the 3668 * raw inode simply passs init_user_ns. 3669 */ 3670 int vfs_mknod(struct user_namespace *mnt_userns, struct inode *dir, 3671 struct dentry *dentry, umode_t mode, dev_t dev) 3672 { 3673 bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV; 3674 int error = may_create(mnt_userns, dir, dentry); 3675 3676 if (error) 3677 return error; 3678 3679 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout && 3680 !capable(CAP_MKNOD)) 3681 return -EPERM; 3682 3683 if (!dir->i_op->mknod) 3684 return -EPERM; 3685 3686 error = devcgroup_inode_mknod(mode, dev); 3687 if (error) 3688 return error; 3689 3690 error = security_inode_mknod(dir, dentry, mode, dev); 3691 if (error) 3692 return error; 3693 3694 error = dir->i_op->mknod(mnt_userns, dir, dentry, mode, dev); 3695 if (!error) 3696 fsnotify_create(dir, dentry); 3697 return error; 3698 } 3699 EXPORT_SYMBOL(vfs_mknod); 3700 3701 static int may_mknod(umode_t mode) 3702 { 3703 switch (mode & S_IFMT) { 3704 case S_IFREG: 3705 case S_IFCHR: 3706 case S_IFBLK: 3707 case S_IFIFO: 3708 case S_IFSOCK: 3709 case 0: /* zero mode translates to S_IFREG */ 3710 return 0; 3711 case S_IFDIR: 3712 return -EPERM; 3713 default: 3714 return -EINVAL; 3715 } 3716 } 3717 3718 static long do_mknodat(int dfd, const char __user *filename, umode_t mode, 3719 unsigned int dev) 3720 { 3721 struct user_namespace *mnt_userns; 3722 struct dentry *dentry; 3723 struct path path; 3724 int error; 3725 unsigned int lookup_flags = 0; 3726 3727 error = may_mknod(mode); 3728 if (error) 3729 return error; 3730 retry: 3731 dentry = user_path_create(dfd, filename, &path, lookup_flags); 3732 if (IS_ERR(dentry)) 3733 return PTR_ERR(dentry); 3734 3735 if (!IS_POSIXACL(path.dentry->d_inode)) 3736 mode &= ~current_umask(); 3737 error = security_path_mknod(&path, dentry, mode, dev); 3738 if (error) 3739 goto out; 3740 3741 mnt_userns = mnt_user_ns(path.mnt); 3742 switch (mode & S_IFMT) { 3743 case 0: case S_IFREG: 3744 error = vfs_create(mnt_userns, path.dentry->d_inode, 3745 dentry, mode, true); 3746 if (!error) 3747 ima_post_path_mknod(mnt_userns, dentry); 3748 break; 3749 case S_IFCHR: case S_IFBLK: 3750 error = vfs_mknod(mnt_userns, path.dentry->d_inode, 3751 dentry, mode, new_decode_dev(dev)); 3752 break; 3753 case S_IFIFO: case S_IFSOCK: 3754 error = vfs_mknod(mnt_userns, path.dentry->d_inode, 3755 dentry, mode, 0); 3756 break; 3757 } 3758 out: 3759 done_path_create(&path, dentry); 3760 if (retry_estale(error, lookup_flags)) { 3761 lookup_flags |= LOOKUP_REVAL; 3762 goto retry; 3763 } 3764 return error; 3765 } 3766 3767 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3768 unsigned int, dev) 3769 { 3770 return do_mknodat(dfd, filename, mode, dev); 3771 } 3772 3773 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3774 { 3775 return do_mknodat(AT_FDCWD, filename, mode, dev); 3776 } 3777 3778 /** 3779 * vfs_mkdir - create directory 3780 * @mnt_userns: user namespace of the mount the inode was found from 3781 * @dir: inode of @dentry 3782 * @dentry: pointer to dentry of the base directory 3783 * @mode: mode of the new directory 3784 * 3785 * Create a directory. 3786 * 3787 * If the inode has been found through an idmapped mount the user namespace of 3788 * the vfsmount must be passed through @mnt_userns. This function will then take 3789 * care to map the inode according to @mnt_userns before checking permissions. 3790 * On non-idmapped mounts or if permission checking is to be performed on the 3791 * raw inode simply passs init_user_ns. 3792 */ 3793 int vfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 3794 struct dentry *dentry, umode_t mode) 3795 { 3796 int error = may_create(mnt_userns, dir, dentry); 3797 unsigned max_links = dir->i_sb->s_max_links; 3798 3799 if (error) 3800 return error; 3801 3802 if (!dir->i_op->mkdir) 3803 return -EPERM; 3804 3805 mode &= (S_IRWXUGO|S_ISVTX); 3806 error = security_inode_mkdir(dir, dentry, mode); 3807 if (error) 3808 return error; 3809 3810 if (max_links && dir->i_nlink >= max_links) 3811 return -EMLINK; 3812 3813 error = dir->i_op->mkdir(mnt_userns, dir, dentry, mode); 3814 if (!error) 3815 fsnotify_mkdir(dir, dentry); 3816 return error; 3817 } 3818 EXPORT_SYMBOL(vfs_mkdir); 3819 3820 static long do_mkdirat(int dfd, const char __user *pathname, umode_t mode) 3821 { 3822 struct dentry *dentry; 3823 struct path path; 3824 int error; 3825 unsigned int lookup_flags = LOOKUP_DIRECTORY; 3826 3827 retry: 3828 dentry = user_path_create(dfd, pathname, &path, lookup_flags); 3829 if (IS_ERR(dentry)) 3830 return PTR_ERR(dentry); 3831 3832 if (!IS_POSIXACL(path.dentry->d_inode)) 3833 mode &= ~current_umask(); 3834 error = security_path_mkdir(&path, dentry, mode); 3835 if (!error) { 3836 struct user_namespace *mnt_userns; 3837 mnt_userns = mnt_user_ns(path.mnt); 3838 error = vfs_mkdir(mnt_userns, path.dentry->d_inode, dentry, 3839 mode); 3840 } 3841 done_path_create(&path, dentry); 3842 if (retry_estale(error, lookup_flags)) { 3843 lookup_flags |= LOOKUP_REVAL; 3844 goto retry; 3845 } 3846 return error; 3847 } 3848 3849 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 3850 { 3851 return do_mkdirat(dfd, pathname, mode); 3852 } 3853 3854 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 3855 { 3856 return do_mkdirat(AT_FDCWD, pathname, mode); 3857 } 3858 3859 /** 3860 * vfs_rmdir - remove directory 3861 * @mnt_userns: user namespace of the mount the inode was found from 3862 * @dir: inode of @dentry 3863 * @dentry: pointer to dentry of the base directory 3864 * 3865 * Remove a directory. 3866 * 3867 * If the inode has been found through an idmapped mount the user namespace of 3868 * the vfsmount must be passed through @mnt_userns. This function will then take 3869 * care to map the inode according to @mnt_userns before checking permissions. 3870 * On non-idmapped mounts or if permission checking is to be performed on the 3871 * raw inode simply passs init_user_ns. 3872 */ 3873 int vfs_rmdir(struct user_namespace *mnt_userns, struct inode *dir, 3874 struct dentry *dentry) 3875 { 3876 int error = may_delete(mnt_userns, dir, dentry, 1); 3877 3878 if (error) 3879 return error; 3880 3881 if (!dir->i_op->rmdir) 3882 return -EPERM; 3883 3884 dget(dentry); 3885 inode_lock(dentry->d_inode); 3886 3887 error = -EBUSY; 3888 if (is_local_mountpoint(dentry)) 3889 goto out; 3890 3891 error = security_inode_rmdir(dir, dentry); 3892 if (error) 3893 goto out; 3894 3895 error = dir->i_op->rmdir(dir, dentry); 3896 if (error) 3897 goto out; 3898 3899 shrink_dcache_parent(dentry); 3900 dentry->d_inode->i_flags |= S_DEAD; 3901 dont_mount(dentry); 3902 detach_mounts(dentry); 3903 fsnotify_rmdir(dir, dentry); 3904 3905 out: 3906 inode_unlock(dentry->d_inode); 3907 dput(dentry); 3908 if (!error) 3909 d_delete(dentry); 3910 return error; 3911 } 3912 EXPORT_SYMBOL(vfs_rmdir); 3913 3914 long do_rmdir(int dfd, struct filename *name) 3915 { 3916 struct user_namespace *mnt_userns; 3917 int error = 0; 3918 struct dentry *dentry; 3919 struct path path; 3920 struct qstr last; 3921 int type; 3922 unsigned int lookup_flags = 0; 3923 retry: 3924 name = filename_parentat(dfd, name, lookup_flags, 3925 &path, &last, &type); 3926 if (IS_ERR(name)) 3927 return PTR_ERR(name); 3928 3929 switch (type) { 3930 case LAST_DOTDOT: 3931 error = -ENOTEMPTY; 3932 goto exit1; 3933 case LAST_DOT: 3934 error = -EINVAL; 3935 goto exit1; 3936 case LAST_ROOT: 3937 error = -EBUSY; 3938 goto exit1; 3939 } 3940 3941 error = mnt_want_write(path.mnt); 3942 if (error) 3943 goto exit1; 3944 3945 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 3946 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 3947 error = PTR_ERR(dentry); 3948 if (IS_ERR(dentry)) 3949 goto exit2; 3950 if (!dentry->d_inode) { 3951 error = -ENOENT; 3952 goto exit3; 3953 } 3954 error = security_path_rmdir(&path, dentry); 3955 if (error) 3956 goto exit3; 3957 mnt_userns = mnt_user_ns(path.mnt); 3958 error = vfs_rmdir(mnt_userns, path.dentry->d_inode, dentry); 3959 exit3: 3960 dput(dentry); 3961 exit2: 3962 inode_unlock(path.dentry->d_inode); 3963 mnt_drop_write(path.mnt); 3964 exit1: 3965 path_put(&path); 3966 if (retry_estale(error, lookup_flags)) { 3967 lookup_flags |= LOOKUP_REVAL; 3968 goto retry; 3969 } 3970 putname(name); 3971 return error; 3972 } 3973 3974 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 3975 { 3976 return do_rmdir(AT_FDCWD, getname(pathname)); 3977 } 3978 3979 /** 3980 * vfs_unlink - unlink a filesystem object 3981 * @mnt_userns: user namespace of the mount the inode was found from 3982 * @dir: parent directory 3983 * @dentry: victim 3984 * @delegated_inode: returns victim inode, if the inode is delegated. 3985 * 3986 * The caller must hold dir->i_mutex. 3987 * 3988 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 3989 * return a reference to the inode in delegated_inode. The caller 3990 * should then break the delegation on that inode and retry. Because 3991 * breaking a delegation may take a long time, the caller should drop 3992 * dir->i_mutex before doing so. 3993 * 3994 * Alternatively, a caller may pass NULL for delegated_inode. This may 3995 * be appropriate for callers that expect the underlying filesystem not 3996 * to be NFS exported. 3997 * 3998 * If the inode has been found through an idmapped mount the user namespace of 3999 * the vfsmount must be passed through @mnt_userns. This function will then take 4000 * care to map the inode according to @mnt_userns before checking permissions. 4001 * On non-idmapped mounts or if permission checking is to be performed on the 4002 * raw inode simply passs init_user_ns. 4003 */ 4004 int vfs_unlink(struct user_namespace *mnt_userns, struct inode *dir, 4005 struct dentry *dentry, struct inode **delegated_inode) 4006 { 4007 struct inode *target = dentry->d_inode; 4008 int error = may_delete(mnt_userns, dir, dentry, 0); 4009 4010 if (error) 4011 return error; 4012 4013 if (!dir->i_op->unlink) 4014 return -EPERM; 4015 4016 inode_lock(target); 4017 if (is_local_mountpoint(dentry)) 4018 error = -EBUSY; 4019 else { 4020 error = security_inode_unlink(dir, dentry); 4021 if (!error) { 4022 error = try_break_deleg(target, delegated_inode); 4023 if (error) 4024 goto out; 4025 error = dir->i_op->unlink(dir, dentry); 4026 if (!error) { 4027 dont_mount(dentry); 4028 detach_mounts(dentry); 4029 fsnotify_unlink(dir, dentry); 4030 } 4031 } 4032 } 4033 out: 4034 inode_unlock(target); 4035 4036 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 4037 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 4038 fsnotify_link_count(target); 4039 d_delete(dentry); 4040 } 4041 4042 return error; 4043 } 4044 EXPORT_SYMBOL(vfs_unlink); 4045 4046 /* 4047 * Make sure that the actual truncation of the file will occur outside its 4048 * directory's i_mutex. Truncate can take a long time if there is a lot of 4049 * writeout happening, and we don't want to prevent access to the directory 4050 * while waiting on the I/O. 4051 */ 4052 long do_unlinkat(int dfd, struct filename *name) 4053 { 4054 int error; 4055 struct dentry *dentry; 4056 struct path path; 4057 struct qstr last; 4058 int type; 4059 struct inode *inode = NULL; 4060 struct inode *delegated_inode = NULL; 4061 unsigned int lookup_flags = 0; 4062 retry: 4063 name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 4064 if (IS_ERR(name)) 4065 return PTR_ERR(name); 4066 4067 error = -EISDIR; 4068 if (type != LAST_NORM) 4069 goto exit1; 4070 4071 error = mnt_want_write(path.mnt); 4072 if (error) 4073 goto exit1; 4074 retry_deleg: 4075 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4076 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 4077 error = PTR_ERR(dentry); 4078 if (!IS_ERR(dentry)) { 4079 struct user_namespace *mnt_userns; 4080 4081 /* Why not before? Because we want correct error value */ 4082 if (last.name[last.len]) 4083 goto slashes; 4084 inode = dentry->d_inode; 4085 if (d_is_negative(dentry)) 4086 goto slashes; 4087 ihold(inode); 4088 error = security_path_unlink(&path, dentry); 4089 if (error) 4090 goto exit2; 4091 mnt_userns = mnt_user_ns(path.mnt); 4092 error = vfs_unlink(mnt_userns, path.dentry->d_inode, dentry, 4093 &delegated_inode); 4094 exit2: 4095 dput(dentry); 4096 } 4097 inode_unlock(path.dentry->d_inode); 4098 if (inode) 4099 iput(inode); /* truncate the inode here */ 4100 inode = NULL; 4101 if (delegated_inode) { 4102 error = break_deleg_wait(&delegated_inode); 4103 if (!error) 4104 goto retry_deleg; 4105 } 4106 mnt_drop_write(path.mnt); 4107 exit1: 4108 path_put(&path); 4109 if (retry_estale(error, lookup_flags)) { 4110 lookup_flags |= LOOKUP_REVAL; 4111 inode = NULL; 4112 goto retry; 4113 } 4114 putname(name); 4115 return error; 4116 4117 slashes: 4118 if (d_is_negative(dentry)) 4119 error = -ENOENT; 4120 else if (d_is_dir(dentry)) 4121 error = -EISDIR; 4122 else 4123 error = -ENOTDIR; 4124 goto exit2; 4125 } 4126 4127 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 4128 { 4129 if ((flag & ~AT_REMOVEDIR) != 0) 4130 return -EINVAL; 4131 4132 if (flag & AT_REMOVEDIR) 4133 return do_rmdir(dfd, getname(pathname)); 4134 return do_unlinkat(dfd, getname(pathname)); 4135 } 4136 4137 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 4138 { 4139 return do_unlinkat(AT_FDCWD, getname(pathname)); 4140 } 4141 4142 /** 4143 * vfs_symlink - create symlink 4144 * @mnt_userns: user namespace of the mount the inode was found from 4145 * @dir: inode of @dentry 4146 * @dentry: pointer to dentry of the base directory 4147 * @oldname: name of the file to link to 4148 * 4149 * Create a symlink. 4150 * 4151 * If the inode has been found through an idmapped mount the user namespace of 4152 * the vfsmount must be passed through @mnt_userns. This function will then take 4153 * care to map the inode according to @mnt_userns before checking permissions. 4154 * On non-idmapped mounts or if permission checking is to be performed on the 4155 * raw inode simply passs init_user_ns. 4156 */ 4157 int vfs_symlink(struct user_namespace *mnt_userns, struct inode *dir, 4158 struct dentry *dentry, const char *oldname) 4159 { 4160 int error = may_create(mnt_userns, dir, dentry); 4161 4162 if (error) 4163 return error; 4164 4165 if (!dir->i_op->symlink) 4166 return -EPERM; 4167 4168 error = security_inode_symlink(dir, dentry, oldname); 4169 if (error) 4170 return error; 4171 4172 error = dir->i_op->symlink(mnt_userns, dir, dentry, oldname); 4173 if (!error) 4174 fsnotify_create(dir, dentry); 4175 return error; 4176 } 4177 EXPORT_SYMBOL(vfs_symlink); 4178 4179 static long do_symlinkat(const char __user *oldname, int newdfd, 4180 const char __user *newname) 4181 { 4182 int error; 4183 struct filename *from; 4184 struct dentry *dentry; 4185 struct path path; 4186 unsigned int lookup_flags = 0; 4187 4188 from = getname(oldname); 4189 if (IS_ERR(from)) 4190 return PTR_ERR(from); 4191 retry: 4192 dentry = user_path_create(newdfd, newname, &path, lookup_flags); 4193 error = PTR_ERR(dentry); 4194 if (IS_ERR(dentry)) 4195 goto out_putname; 4196 4197 error = security_path_symlink(&path, dentry, from->name); 4198 if (!error) { 4199 struct user_namespace *mnt_userns; 4200 4201 mnt_userns = mnt_user_ns(path.mnt); 4202 error = vfs_symlink(mnt_userns, path.dentry->d_inode, dentry, 4203 from->name); 4204 } 4205 done_path_create(&path, dentry); 4206 if (retry_estale(error, lookup_flags)) { 4207 lookup_flags |= LOOKUP_REVAL; 4208 goto retry; 4209 } 4210 out_putname: 4211 putname(from); 4212 return error; 4213 } 4214 4215 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 4216 int, newdfd, const char __user *, newname) 4217 { 4218 return do_symlinkat(oldname, newdfd, newname); 4219 } 4220 4221 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 4222 { 4223 return do_symlinkat(oldname, AT_FDCWD, newname); 4224 } 4225 4226 /** 4227 * vfs_link - create a new link 4228 * @old_dentry: object to be linked 4229 * @mnt_userns: the user namespace of the mount 4230 * @dir: new parent 4231 * @new_dentry: where to create the new link 4232 * @delegated_inode: returns inode needing a delegation break 4233 * 4234 * The caller must hold dir->i_mutex 4235 * 4236 * If vfs_link discovers a delegation on the to-be-linked file in need 4237 * of breaking, it will return -EWOULDBLOCK and return a reference to the 4238 * inode in delegated_inode. The caller should then break the delegation 4239 * and retry. Because breaking a delegation may take a long time, the 4240 * caller should drop the i_mutex before doing so. 4241 * 4242 * Alternatively, a caller may pass NULL for delegated_inode. This may 4243 * be appropriate for callers that expect the underlying filesystem not 4244 * to be NFS exported. 4245 * 4246 * If the inode has been found through an idmapped mount the user namespace of 4247 * the vfsmount must be passed through @mnt_userns. This function will then take 4248 * care to map the inode according to @mnt_userns before checking permissions. 4249 * On non-idmapped mounts or if permission checking is to be performed on the 4250 * raw inode simply passs init_user_ns. 4251 */ 4252 int vfs_link(struct dentry *old_dentry, struct user_namespace *mnt_userns, 4253 struct inode *dir, struct dentry *new_dentry, 4254 struct inode **delegated_inode) 4255 { 4256 struct inode *inode = old_dentry->d_inode; 4257 unsigned max_links = dir->i_sb->s_max_links; 4258 int error; 4259 4260 if (!inode) 4261 return -ENOENT; 4262 4263 error = may_create(mnt_userns, dir, new_dentry); 4264 if (error) 4265 return error; 4266 4267 if (dir->i_sb != inode->i_sb) 4268 return -EXDEV; 4269 4270 /* 4271 * A link to an append-only or immutable file cannot be created. 4272 */ 4273 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4274 return -EPERM; 4275 /* 4276 * Updating the link count will likely cause i_uid and i_gid to 4277 * be writen back improperly if their true value is unknown to 4278 * the vfs. 4279 */ 4280 if (HAS_UNMAPPED_ID(mnt_userns, inode)) 4281 return -EPERM; 4282 if (!dir->i_op->link) 4283 return -EPERM; 4284 if (S_ISDIR(inode->i_mode)) 4285 return -EPERM; 4286 4287 error = security_inode_link(old_dentry, dir, new_dentry); 4288 if (error) 4289 return error; 4290 4291 inode_lock(inode); 4292 /* Make sure we don't allow creating hardlink to an unlinked file */ 4293 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 4294 error = -ENOENT; 4295 else if (max_links && inode->i_nlink >= max_links) 4296 error = -EMLINK; 4297 else { 4298 error = try_break_deleg(inode, delegated_inode); 4299 if (!error) 4300 error = dir->i_op->link(old_dentry, dir, new_dentry); 4301 } 4302 4303 if (!error && (inode->i_state & I_LINKABLE)) { 4304 spin_lock(&inode->i_lock); 4305 inode->i_state &= ~I_LINKABLE; 4306 spin_unlock(&inode->i_lock); 4307 } 4308 inode_unlock(inode); 4309 if (!error) 4310 fsnotify_link(dir, inode, new_dentry); 4311 return error; 4312 } 4313 EXPORT_SYMBOL(vfs_link); 4314 4315 /* 4316 * Hardlinks are often used in delicate situations. We avoid 4317 * security-related surprises by not following symlinks on the 4318 * newname. --KAB 4319 * 4320 * We don't follow them on the oldname either to be compatible 4321 * with linux 2.0, and to avoid hard-linking to directories 4322 * and other special files. --ADM 4323 */ 4324 static int do_linkat(int olddfd, const char __user *oldname, int newdfd, 4325 const char __user *newname, int flags) 4326 { 4327 struct user_namespace *mnt_userns; 4328 struct dentry *new_dentry; 4329 struct path old_path, new_path; 4330 struct inode *delegated_inode = NULL; 4331 int how = 0; 4332 int error; 4333 4334 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 4335 return -EINVAL; 4336 /* 4337 * To use null names we require CAP_DAC_READ_SEARCH 4338 * This ensures that not everyone will be able to create 4339 * handlink using the passed filedescriptor. 4340 */ 4341 if (flags & AT_EMPTY_PATH) { 4342 if (!capable(CAP_DAC_READ_SEARCH)) 4343 return -ENOENT; 4344 how = LOOKUP_EMPTY; 4345 } 4346 4347 if (flags & AT_SYMLINK_FOLLOW) 4348 how |= LOOKUP_FOLLOW; 4349 retry: 4350 error = user_path_at(olddfd, oldname, how, &old_path); 4351 if (error) 4352 return error; 4353 4354 new_dentry = user_path_create(newdfd, newname, &new_path, 4355 (how & LOOKUP_REVAL)); 4356 error = PTR_ERR(new_dentry); 4357 if (IS_ERR(new_dentry)) 4358 goto out; 4359 4360 error = -EXDEV; 4361 if (old_path.mnt != new_path.mnt) 4362 goto out_dput; 4363 mnt_userns = mnt_user_ns(new_path.mnt); 4364 error = may_linkat(mnt_userns, &old_path); 4365 if (unlikely(error)) 4366 goto out_dput; 4367 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4368 if (error) 4369 goto out_dput; 4370 error = vfs_link(old_path.dentry, mnt_userns, new_path.dentry->d_inode, 4371 new_dentry, &delegated_inode); 4372 out_dput: 4373 done_path_create(&new_path, new_dentry); 4374 if (delegated_inode) { 4375 error = break_deleg_wait(&delegated_inode); 4376 if (!error) { 4377 path_put(&old_path); 4378 goto retry; 4379 } 4380 } 4381 if (retry_estale(error, how)) { 4382 path_put(&old_path); 4383 how |= LOOKUP_REVAL; 4384 goto retry; 4385 } 4386 out: 4387 path_put(&old_path); 4388 4389 return error; 4390 } 4391 4392 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 4393 int, newdfd, const char __user *, newname, int, flags) 4394 { 4395 return do_linkat(olddfd, oldname, newdfd, newname, flags); 4396 } 4397 4398 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4399 { 4400 return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4401 } 4402 4403 /** 4404 * vfs_rename - rename a filesystem object 4405 * @rd: pointer to &struct renamedata info 4406 * 4407 * The caller must hold multiple mutexes--see lock_rename()). 4408 * 4409 * If vfs_rename discovers a delegation in need of breaking at either 4410 * the source or destination, it will return -EWOULDBLOCK and return a 4411 * reference to the inode in delegated_inode. The caller should then 4412 * break the delegation and retry. Because breaking a delegation may 4413 * take a long time, the caller should drop all locks before doing 4414 * so. 4415 * 4416 * Alternatively, a caller may pass NULL for delegated_inode. This may 4417 * be appropriate for callers that expect the underlying filesystem not 4418 * to be NFS exported. 4419 * 4420 * The worst of all namespace operations - renaming directory. "Perverted" 4421 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4422 * Problems: 4423 * 4424 * a) we can get into loop creation. 4425 * b) race potential - two innocent renames can create a loop together. 4426 * That's where 4.4 screws up. Current fix: serialization on 4427 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4428 * story. 4429 * c) we have to lock _four_ objects - parents and victim (if it exists), 4430 * and source (if it is not a directory). 4431 * And that - after we got ->i_mutex on parents (until then we don't know 4432 * whether the target exists). Solution: try to be smart with locking 4433 * order for inodes. We rely on the fact that tree topology may change 4434 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4435 * move will be locked. Thus we can rank directories by the tree 4436 * (ancestors first) and rank all non-directories after them. 4437 * That works since everybody except rename does "lock parent, lookup, 4438 * lock child" and rename is under ->s_vfs_rename_mutex. 4439 * HOWEVER, it relies on the assumption that any object with ->lookup() 4440 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4441 * we'd better make sure that there's no link(2) for them. 4442 * d) conversion from fhandle to dentry may come in the wrong moment - when 4443 * we are removing the target. Solution: we will have to grab ->i_mutex 4444 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4445 * ->i_mutex on parents, which works but leads to some truly excessive 4446 * locking]. 4447 */ 4448 int vfs_rename(struct renamedata *rd) 4449 { 4450 int error; 4451 struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir; 4452 struct dentry *old_dentry = rd->old_dentry; 4453 struct dentry *new_dentry = rd->new_dentry; 4454 struct inode **delegated_inode = rd->delegated_inode; 4455 unsigned int flags = rd->flags; 4456 bool is_dir = d_is_dir(old_dentry); 4457 struct inode *source = old_dentry->d_inode; 4458 struct inode *target = new_dentry->d_inode; 4459 bool new_is_dir = false; 4460 unsigned max_links = new_dir->i_sb->s_max_links; 4461 struct name_snapshot old_name; 4462 4463 if (source == target) 4464 return 0; 4465 4466 error = may_delete(rd->old_mnt_userns, old_dir, old_dentry, is_dir); 4467 if (error) 4468 return error; 4469 4470 if (!target) { 4471 error = may_create(rd->new_mnt_userns, new_dir, new_dentry); 4472 } else { 4473 new_is_dir = d_is_dir(new_dentry); 4474 4475 if (!(flags & RENAME_EXCHANGE)) 4476 error = may_delete(rd->new_mnt_userns, new_dir, 4477 new_dentry, is_dir); 4478 else 4479 error = may_delete(rd->new_mnt_userns, new_dir, 4480 new_dentry, new_is_dir); 4481 } 4482 if (error) 4483 return error; 4484 4485 if (!old_dir->i_op->rename) 4486 return -EPERM; 4487 4488 /* 4489 * If we are going to change the parent - check write permissions, 4490 * we'll need to flip '..'. 4491 */ 4492 if (new_dir != old_dir) { 4493 if (is_dir) { 4494 error = inode_permission(rd->old_mnt_userns, source, 4495 MAY_WRITE); 4496 if (error) 4497 return error; 4498 } 4499 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4500 error = inode_permission(rd->new_mnt_userns, target, 4501 MAY_WRITE); 4502 if (error) 4503 return error; 4504 } 4505 } 4506 4507 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 4508 flags); 4509 if (error) 4510 return error; 4511 4512 take_dentry_name_snapshot(&old_name, old_dentry); 4513 dget(new_dentry); 4514 if (!is_dir || (flags & RENAME_EXCHANGE)) 4515 lock_two_nondirectories(source, target); 4516 else if (target) 4517 inode_lock(target); 4518 4519 error = -EBUSY; 4520 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 4521 goto out; 4522 4523 if (max_links && new_dir != old_dir) { 4524 error = -EMLINK; 4525 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 4526 goto out; 4527 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 4528 old_dir->i_nlink >= max_links) 4529 goto out; 4530 } 4531 if (!is_dir) { 4532 error = try_break_deleg(source, delegated_inode); 4533 if (error) 4534 goto out; 4535 } 4536 if (target && !new_is_dir) { 4537 error = try_break_deleg(target, delegated_inode); 4538 if (error) 4539 goto out; 4540 } 4541 error = old_dir->i_op->rename(rd->new_mnt_userns, old_dir, old_dentry, 4542 new_dir, new_dentry, flags); 4543 if (error) 4544 goto out; 4545 4546 if (!(flags & RENAME_EXCHANGE) && target) { 4547 if (is_dir) { 4548 shrink_dcache_parent(new_dentry); 4549 target->i_flags |= S_DEAD; 4550 } 4551 dont_mount(new_dentry); 4552 detach_mounts(new_dentry); 4553 } 4554 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 4555 if (!(flags & RENAME_EXCHANGE)) 4556 d_move(old_dentry, new_dentry); 4557 else 4558 d_exchange(old_dentry, new_dentry); 4559 } 4560 out: 4561 if (!is_dir || (flags & RENAME_EXCHANGE)) 4562 unlock_two_nondirectories(source, target); 4563 else if (target) 4564 inode_unlock(target); 4565 dput(new_dentry); 4566 if (!error) { 4567 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir, 4568 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 4569 if (flags & RENAME_EXCHANGE) { 4570 fsnotify_move(new_dir, old_dir, &old_dentry->d_name, 4571 new_is_dir, NULL, new_dentry); 4572 } 4573 } 4574 release_dentry_name_snapshot(&old_name); 4575 4576 return error; 4577 } 4578 EXPORT_SYMBOL(vfs_rename); 4579 4580 int do_renameat2(int olddfd, struct filename *from, int newdfd, 4581 struct filename *to, unsigned int flags) 4582 { 4583 struct renamedata rd; 4584 struct dentry *old_dentry, *new_dentry; 4585 struct dentry *trap; 4586 struct path old_path, new_path; 4587 struct qstr old_last, new_last; 4588 int old_type, new_type; 4589 struct inode *delegated_inode = NULL; 4590 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET; 4591 bool should_retry = false; 4592 int error = -EINVAL; 4593 4594 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4595 goto put_both; 4596 4597 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 4598 (flags & RENAME_EXCHANGE)) 4599 goto put_both; 4600 4601 if (flags & RENAME_EXCHANGE) 4602 target_flags = 0; 4603 4604 retry: 4605 from = filename_parentat(olddfd, from, lookup_flags, &old_path, 4606 &old_last, &old_type); 4607 if (IS_ERR(from)) { 4608 error = PTR_ERR(from); 4609 goto put_new; 4610 } 4611 4612 to = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last, 4613 &new_type); 4614 if (IS_ERR(to)) { 4615 error = PTR_ERR(to); 4616 goto exit1; 4617 } 4618 4619 error = -EXDEV; 4620 if (old_path.mnt != new_path.mnt) 4621 goto exit2; 4622 4623 error = -EBUSY; 4624 if (old_type != LAST_NORM) 4625 goto exit2; 4626 4627 if (flags & RENAME_NOREPLACE) 4628 error = -EEXIST; 4629 if (new_type != LAST_NORM) 4630 goto exit2; 4631 4632 error = mnt_want_write(old_path.mnt); 4633 if (error) 4634 goto exit2; 4635 4636 retry_deleg: 4637 trap = lock_rename(new_path.dentry, old_path.dentry); 4638 4639 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags); 4640 error = PTR_ERR(old_dentry); 4641 if (IS_ERR(old_dentry)) 4642 goto exit3; 4643 /* source must exist */ 4644 error = -ENOENT; 4645 if (d_is_negative(old_dentry)) 4646 goto exit4; 4647 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags); 4648 error = PTR_ERR(new_dentry); 4649 if (IS_ERR(new_dentry)) 4650 goto exit4; 4651 error = -EEXIST; 4652 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 4653 goto exit5; 4654 if (flags & RENAME_EXCHANGE) { 4655 error = -ENOENT; 4656 if (d_is_negative(new_dentry)) 4657 goto exit5; 4658 4659 if (!d_is_dir(new_dentry)) { 4660 error = -ENOTDIR; 4661 if (new_last.name[new_last.len]) 4662 goto exit5; 4663 } 4664 } 4665 /* unless the source is a directory trailing slashes give -ENOTDIR */ 4666 if (!d_is_dir(old_dentry)) { 4667 error = -ENOTDIR; 4668 if (old_last.name[old_last.len]) 4669 goto exit5; 4670 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len]) 4671 goto exit5; 4672 } 4673 /* source should not be ancestor of target */ 4674 error = -EINVAL; 4675 if (old_dentry == trap) 4676 goto exit5; 4677 /* target should not be an ancestor of source */ 4678 if (!(flags & RENAME_EXCHANGE)) 4679 error = -ENOTEMPTY; 4680 if (new_dentry == trap) 4681 goto exit5; 4682 4683 error = security_path_rename(&old_path, old_dentry, 4684 &new_path, new_dentry, flags); 4685 if (error) 4686 goto exit5; 4687 4688 rd.old_dir = old_path.dentry->d_inode; 4689 rd.old_dentry = old_dentry; 4690 rd.old_mnt_userns = mnt_user_ns(old_path.mnt); 4691 rd.new_dir = new_path.dentry->d_inode; 4692 rd.new_dentry = new_dentry; 4693 rd.new_mnt_userns = mnt_user_ns(new_path.mnt); 4694 rd.delegated_inode = &delegated_inode; 4695 rd.flags = flags; 4696 error = vfs_rename(&rd); 4697 exit5: 4698 dput(new_dentry); 4699 exit4: 4700 dput(old_dentry); 4701 exit3: 4702 unlock_rename(new_path.dentry, old_path.dentry); 4703 if (delegated_inode) { 4704 error = break_deleg_wait(&delegated_inode); 4705 if (!error) 4706 goto retry_deleg; 4707 } 4708 mnt_drop_write(old_path.mnt); 4709 exit2: 4710 if (retry_estale(error, lookup_flags)) 4711 should_retry = true; 4712 path_put(&new_path); 4713 exit1: 4714 path_put(&old_path); 4715 if (should_retry) { 4716 should_retry = false; 4717 lookup_flags |= LOOKUP_REVAL; 4718 goto retry; 4719 } 4720 put_both: 4721 if (!IS_ERR(from)) 4722 putname(from); 4723 put_new: 4724 if (!IS_ERR(to)) 4725 putname(to); 4726 return error; 4727 } 4728 4729 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 4730 int, newdfd, const char __user *, newname, unsigned int, flags) 4731 { 4732 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname), 4733 flags); 4734 } 4735 4736 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 4737 int, newdfd, const char __user *, newname) 4738 { 4739 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname), 4740 0); 4741 } 4742 4743 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 4744 { 4745 return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD, 4746 getname(newname), 0); 4747 } 4748 4749 int readlink_copy(char __user *buffer, int buflen, const char *link) 4750 { 4751 int len = PTR_ERR(link); 4752 if (IS_ERR(link)) 4753 goto out; 4754 4755 len = strlen(link); 4756 if (len > (unsigned) buflen) 4757 len = buflen; 4758 if (copy_to_user(buffer, link, len)) 4759 len = -EFAULT; 4760 out: 4761 return len; 4762 } 4763 4764 /** 4765 * vfs_readlink - copy symlink body into userspace buffer 4766 * @dentry: dentry on which to get symbolic link 4767 * @buffer: user memory pointer 4768 * @buflen: size of buffer 4769 * 4770 * Does not touch atime. That's up to the caller if necessary 4771 * 4772 * Does not call security hook. 4773 */ 4774 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4775 { 4776 struct inode *inode = d_inode(dentry); 4777 DEFINE_DELAYED_CALL(done); 4778 const char *link; 4779 int res; 4780 4781 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) { 4782 if (unlikely(inode->i_op->readlink)) 4783 return inode->i_op->readlink(dentry, buffer, buflen); 4784 4785 if (!d_is_symlink(dentry)) 4786 return -EINVAL; 4787 4788 spin_lock(&inode->i_lock); 4789 inode->i_opflags |= IOP_DEFAULT_READLINK; 4790 spin_unlock(&inode->i_lock); 4791 } 4792 4793 link = READ_ONCE(inode->i_link); 4794 if (!link) { 4795 link = inode->i_op->get_link(dentry, inode, &done); 4796 if (IS_ERR(link)) 4797 return PTR_ERR(link); 4798 } 4799 res = readlink_copy(buffer, buflen, link); 4800 do_delayed_call(&done); 4801 return res; 4802 } 4803 EXPORT_SYMBOL(vfs_readlink); 4804 4805 /** 4806 * vfs_get_link - get symlink body 4807 * @dentry: dentry on which to get symbolic link 4808 * @done: caller needs to free returned data with this 4809 * 4810 * Calls security hook and i_op->get_link() on the supplied inode. 4811 * 4812 * It does not touch atime. That's up to the caller if necessary. 4813 * 4814 * Does not work on "special" symlinks like /proc/$$/fd/N 4815 */ 4816 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done) 4817 { 4818 const char *res = ERR_PTR(-EINVAL); 4819 struct inode *inode = d_inode(dentry); 4820 4821 if (d_is_symlink(dentry)) { 4822 res = ERR_PTR(security_inode_readlink(dentry)); 4823 if (!res) 4824 res = inode->i_op->get_link(dentry, inode, done); 4825 } 4826 return res; 4827 } 4828 EXPORT_SYMBOL(vfs_get_link); 4829 4830 /* get the link contents into pagecache */ 4831 const char *page_get_link(struct dentry *dentry, struct inode *inode, 4832 struct delayed_call *callback) 4833 { 4834 char *kaddr; 4835 struct page *page; 4836 struct address_space *mapping = inode->i_mapping; 4837 4838 if (!dentry) { 4839 page = find_get_page(mapping, 0); 4840 if (!page) 4841 return ERR_PTR(-ECHILD); 4842 if (!PageUptodate(page)) { 4843 put_page(page); 4844 return ERR_PTR(-ECHILD); 4845 } 4846 } else { 4847 page = read_mapping_page(mapping, 0, NULL); 4848 if (IS_ERR(page)) 4849 return (char*)page; 4850 } 4851 set_delayed_call(callback, page_put_link, page); 4852 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM); 4853 kaddr = page_address(page); 4854 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1); 4855 return kaddr; 4856 } 4857 4858 EXPORT_SYMBOL(page_get_link); 4859 4860 void page_put_link(void *arg) 4861 { 4862 put_page(arg); 4863 } 4864 EXPORT_SYMBOL(page_put_link); 4865 4866 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4867 { 4868 DEFINE_DELAYED_CALL(done); 4869 int res = readlink_copy(buffer, buflen, 4870 page_get_link(dentry, d_inode(dentry), 4871 &done)); 4872 do_delayed_call(&done); 4873 return res; 4874 } 4875 EXPORT_SYMBOL(page_readlink); 4876 4877 /* 4878 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 4879 */ 4880 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 4881 { 4882 struct address_space *mapping = inode->i_mapping; 4883 struct page *page; 4884 void *fsdata; 4885 int err; 4886 unsigned int flags = 0; 4887 if (nofs) 4888 flags |= AOP_FLAG_NOFS; 4889 4890 retry: 4891 err = pagecache_write_begin(NULL, mapping, 0, len-1, 4892 flags, &page, &fsdata); 4893 if (err) 4894 goto fail; 4895 4896 memcpy(page_address(page), symname, len-1); 4897 4898 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 4899 page, fsdata); 4900 if (err < 0) 4901 goto fail; 4902 if (err < len-1) 4903 goto retry; 4904 4905 mark_inode_dirty(inode); 4906 return 0; 4907 fail: 4908 return err; 4909 } 4910 EXPORT_SYMBOL(__page_symlink); 4911 4912 int page_symlink(struct inode *inode, const char *symname, int len) 4913 { 4914 return __page_symlink(inode, symname, len, 4915 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS)); 4916 } 4917 EXPORT_SYMBOL(page_symlink); 4918 4919 const struct inode_operations page_symlink_inode_operations = { 4920 .get_link = page_get_link, 4921 }; 4922 EXPORT_SYMBOL(page_symlink_inode_operations); 4923