1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/namei.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * Some corrections by tytso. 10 */ 11 12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 13 * lookup logic. 14 */ 15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 16 */ 17 18 #include <linux/init.h> 19 #include <linux/export.h> 20 #include <linux/kernel.h> 21 #include <linux/slab.h> 22 #include <linux/fs.h> 23 #include <linux/namei.h> 24 #include <linux/pagemap.h> 25 #include <linux/fsnotify.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/ima.h> 29 #include <linux/syscalls.h> 30 #include <linux/mount.h> 31 #include <linux/audit.h> 32 #include <linux/capability.h> 33 #include <linux/file.h> 34 #include <linux/fcntl.h> 35 #include <linux/device_cgroup.h> 36 #include <linux/fs_struct.h> 37 #include <linux/posix_acl.h> 38 #include <linux/hash.h> 39 #include <linux/bitops.h> 40 #include <linux/init_task.h> 41 #include <linux/uaccess.h> 42 #include <linux/build_bug.h> 43 44 #include "internal.h" 45 #include "mount.h" 46 47 /* [Feb-1997 T. Schoebel-Theuer] 48 * Fundamental changes in the pathname lookup mechanisms (namei) 49 * were necessary because of omirr. The reason is that omirr needs 50 * to know the _real_ pathname, not the user-supplied one, in case 51 * of symlinks (and also when transname replacements occur). 52 * 53 * The new code replaces the old recursive symlink resolution with 54 * an iterative one (in case of non-nested symlink chains). It does 55 * this with calls to <fs>_follow_link(). 56 * As a side effect, dir_namei(), _namei() and follow_link() are now 57 * replaced with a single function lookup_dentry() that can handle all 58 * the special cases of the former code. 59 * 60 * With the new dcache, the pathname is stored at each inode, at least as 61 * long as the refcount of the inode is positive. As a side effect, the 62 * size of the dcache depends on the inode cache and thus is dynamic. 63 * 64 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 65 * resolution to correspond with current state of the code. 66 * 67 * Note that the symlink resolution is not *completely* iterative. 68 * There is still a significant amount of tail- and mid- recursion in 69 * the algorithm. Also, note that <fs>_readlink() is not used in 70 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 71 * may return different results than <fs>_follow_link(). Many virtual 72 * filesystems (including /proc) exhibit this behavior. 73 */ 74 75 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 76 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 77 * and the name already exists in form of a symlink, try to create the new 78 * name indicated by the symlink. The old code always complained that the 79 * name already exists, due to not following the symlink even if its target 80 * is nonexistent. The new semantics affects also mknod() and link() when 81 * the name is a symlink pointing to a non-existent name. 82 * 83 * I don't know which semantics is the right one, since I have no access 84 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 85 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 86 * "old" one. Personally, I think the new semantics is much more logical. 87 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 88 * file does succeed in both HP-UX and SunOs, but not in Solaris 89 * and in the old Linux semantics. 90 */ 91 92 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 93 * semantics. See the comments in "open_namei" and "do_link" below. 94 * 95 * [10-Sep-98 Alan Modra] Another symlink change. 96 */ 97 98 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 99 * inside the path - always follow. 100 * in the last component in creation/removal/renaming - never follow. 101 * if LOOKUP_FOLLOW passed - follow. 102 * if the pathname has trailing slashes - follow. 103 * otherwise - don't follow. 104 * (applied in that order). 105 * 106 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 107 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 108 * During the 2.4 we need to fix the userland stuff depending on it - 109 * hopefully we will be able to get rid of that wart in 2.5. So far only 110 * XEmacs seems to be relying on it... 111 */ 112 /* 113 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 114 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 115 * any extra contention... 116 */ 117 118 /* In order to reduce some races, while at the same time doing additional 119 * checking and hopefully speeding things up, we copy filenames to the 120 * kernel data space before using them.. 121 * 122 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 123 * PATH_MAX includes the nul terminator --RR. 124 */ 125 126 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) 127 128 struct filename * 129 getname_flags(const char __user *filename, int flags, int *empty) 130 { 131 struct filename *result; 132 char *kname; 133 int len; 134 BUILD_BUG_ON(offsetof(struct filename, iname) % sizeof(long) != 0); 135 136 result = audit_reusename(filename); 137 if (result) 138 return result; 139 140 result = __getname(); 141 if (unlikely(!result)) 142 return ERR_PTR(-ENOMEM); 143 144 /* 145 * First, try to embed the struct filename inside the names_cache 146 * allocation 147 */ 148 kname = (char *)result->iname; 149 result->name = kname; 150 151 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); 152 if (unlikely(len < 0)) { 153 __putname(result); 154 return ERR_PTR(len); 155 } 156 157 /* 158 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 159 * separate struct filename so we can dedicate the entire 160 * names_cache allocation for the pathname, and re-do the copy from 161 * userland. 162 */ 163 if (unlikely(len == EMBEDDED_NAME_MAX)) { 164 const size_t size = offsetof(struct filename, iname[1]); 165 kname = (char *)result; 166 167 /* 168 * size is chosen that way we to guarantee that 169 * result->iname[0] is within the same object and that 170 * kname can't be equal to result->iname, no matter what. 171 */ 172 result = kzalloc(size, GFP_KERNEL); 173 if (unlikely(!result)) { 174 __putname(kname); 175 return ERR_PTR(-ENOMEM); 176 } 177 result->name = kname; 178 len = strncpy_from_user(kname, filename, PATH_MAX); 179 if (unlikely(len < 0)) { 180 __putname(kname); 181 kfree(result); 182 return ERR_PTR(len); 183 } 184 if (unlikely(len == PATH_MAX)) { 185 __putname(kname); 186 kfree(result); 187 return ERR_PTR(-ENAMETOOLONG); 188 } 189 } 190 191 result->refcnt = 1; 192 /* The empty path is special. */ 193 if (unlikely(!len)) { 194 if (empty) 195 *empty = 1; 196 if (!(flags & LOOKUP_EMPTY)) { 197 putname(result); 198 return ERR_PTR(-ENOENT); 199 } 200 } 201 202 result->uptr = filename; 203 result->aname = NULL; 204 audit_getname(result); 205 return result; 206 } 207 208 struct filename * 209 getname(const char __user * filename) 210 { 211 return getname_flags(filename, 0, NULL); 212 } 213 214 struct filename * 215 getname_kernel(const char * filename) 216 { 217 struct filename *result; 218 int len = strlen(filename) + 1; 219 220 result = __getname(); 221 if (unlikely(!result)) 222 return ERR_PTR(-ENOMEM); 223 224 if (len <= EMBEDDED_NAME_MAX) { 225 result->name = (char *)result->iname; 226 } else if (len <= PATH_MAX) { 227 const size_t size = offsetof(struct filename, iname[1]); 228 struct filename *tmp; 229 230 tmp = kmalloc(size, GFP_KERNEL); 231 if (unlikely(!tmp)) { 232 __putname(result); 233 return ERR_PTR(-ENOMEM); 234 } 235 tmp->name = (char *)result; 236 result = tmp; 237 } else { 238 __putname(result); 239 return ERR_PTR(-ENAMETOOLONG); 240 } 241 memcpy((char *)result->name, filename, len); 242 result->uptr = NULL; 243 result->aname = NULL; 244 result->refcnt = 1; 245 audit_getname(result); 246 247 return result; 248 } 249 250 void putname(struct filename *name) 251 { 252 BUG_ON(name->refcnt <= 0); 253 254 if (--name->refcnt > 0) 255 return; 256 257 if (name->name != name->iname) { 258 __putname(name->name); 259 kfree(name); 260 } else 261 __putname(name); 262 } 263 264 static int check_acl(struct inode *inode, int mask) 265 { 266 #ifdef CONFIG_FS_POSIX_ACL 267 struct posix_acl *acl; 268 269 if (mask & MAY_NOT_BLOCK) { 270 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 271 if (!acl) 272 return -EAGAIN; 273 /* no ->get_acl() calls in RCU mode... */ 274 if (is_uncached_acl(acl)) 275 return -ECHILD; 276 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK); 277 } 278 279 acl = get_acl(inode, ACL_TYPE_ACCESS); 280 if (IS_ERR(acl)) 281 return PTR_ERR(acl); 282 if (acl) { 283 int error = posix_acl_permission(inode, acl, mask); 284 posix_acl_release(acl); 285 return error; 286 } 287 #endif 288 289 return -EAGAIN; 290 } 291 292 /* 293 * This does the basic permission checking 294 */ 295 static int acl_permission_check(struct inode *inode, int mask) 296 { 297 unsigned int mode = inode->i_mode; 298 299 if (likely(uid_eq(current_fsuid(), inode->i_uid))) 300 mode >>= 6; 301 else { 302 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 303 int error = check_acl(inode, mask); 304 if (error != -EAGAIN) 305 return error; 306 } 307 308 if (in_group_p(inode->i_gid)) 309 mode >>= 3; 310 } 311 312 /* 313 * If the DACs are ok we don't need any capability check. 314 */ 315 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 316 return 0; 317 return -EACCES; 318 } 319 320 /** 321 * generic_permission - check for access rights on a Posix-like filesystem 322 * @inode: inode to check access rights for 323 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...) 324 * 325 * Used to check for read/write/execute permissions on a file. 326 * We use "fsuid" for this, letting us set arbitrary permissions 327 * for filesystem access without changing the "normal" uids which 328 * are used for other things. 329 * 330 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 331 * request cannot be satisfied (eg. requires blocking or too much complexity). 332 * It would then be called again in ref-walk mode. 333 */ 334 int generic_permission(struct inode *inode, int mask) 335 { 336 int ret; 337 338 /* 339 * Do the basic permission checks. 340 */ 341 ret = acl_permission_check(inode, mask); 342 if (ret != -EACCES) 343 return ret; 344 345 if (S_ISDIR(inode->i_mode)) { 346 /* DACs are overridable for directories */ 347 if (!(mask & MAY_WRITE)) 348 if (capable_wrt_inode_uidgid(inode, 349 CAP_DAC_READ_SEARCH)) 350 return 0; 351 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 352 return 0; 353 return -EACCES; 354 } 355 356 /* 357 * Searching includes executable on directories, else just read. 358 */ 359 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 360 if (mask == MAY_READ) 361 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH)) 362 return 0; 363 /* 364 * Read/write DACs are always overridable. 365 * Executable DACs are overridable when there is 366 * at least one exec bit set. 367 */ 368 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 369 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 370 return 0; 371 372 return -EACCES; 373 } 374 EXPORT_SYMBOL(generic_permission); 375 376 /* 377 * We _really_ want to just do "generic_permission()" without 378 * even looking at the inode->i_op values. So we keep a cache 379 * flag in inode->i_opflags, that says "this has not special 380 * permission function, use the fast case". 381 */ 382 static inline int do_inode_permission(struct inode *inode, int mask) 383 { 384 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 385 if (likely(inode->i_op->permission)) 386 return inode->i_op->permission(inode, mask); 387 388 /* This gets set once for the inode lifetime */ 389 spin_lock(&inode->i_lock); 390 inode->i_opflags |= IOP_FASTPERM; 391 spin_unlock(&inode->i_lock); 392 } 393 return generic_permission(inode, mask); 394 } 395 396 /** 397 * sb_permission - Check superblock-level permissions 398 * @sb: Superblock of inode to check permission on 399 * @inode: Inode to check permission on 400 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 401 * 402 * Separate out file-system wide checks from inode-specific permission checks. 403 */ 404 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 405 { 406 if (unlikely(mask & MAY_WRITE)) { 407 umode_t mode = inode->i_mode; 408 409 /* Nobody gets write access to a read-only fs. */ 410 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 411 return -EROFS; 412 } 413 return 0; 414 } 415 416 /** 417 * inode_permission - Check for access rights to a given inode 418 * @inode: Inode to check permission on 419 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 420 * 421 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 422 * this, letting us set arbitrary permissions for filesystem access without 423 * changing the "normal" UIDs which are used for other things. 424 * 425 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 426 */ 427 int inode_permission(struct inode *inode, int mask) 428 { 429 int retval; 430 431 retval = sb_permission(inode->i_sb, inode, mask); 432 if (retval) 433 return retval; 434 435 if (unlikely(mask & MAY_WRITE)) { 436 /* 437 * Nobody gets write access to an immutable file. 438 */ 439 if (IS_IMMUTABLE(inode)) 440 return -EPERM; 441 442 /* 443 * Updating mtime will likely cause i_uid and i_gid to be 444 * written back improperly if their true value is unknown 445 * to the vfs. 446 */ 447 if (HAS_UNMAPPED_ID(inode)) 448 return -EACCES; 449 } 450 451 retval = do_inode_permission(inode, mask); 452 if (retval) 453 return retval; 454 455 retval = devcgroup_inode_permission(inode, mask); 456 if (retval) 457 return retval; 458 459 return security_inode_permission(inode, mask); 460 } 461 EXPORT_SYMBOL(inode_permission); 462 463 /** 464 * path_get - get a reference to a path 465 * @path: path to get the reference to 466 * 467 * Given a path increment the reference count to the dentry and the vfsmount. 468 */ 469 void path_get(const struct path *path) 470 { 471 mntget(path->mnt); 472 dget(path->dentry); 473 } 474 EXPORT_SYMBOL(path_get); 475 476 /** 477 * path_put - put a reference to a path 478 * @path: path to put the reference to 479 * 480 * Given a path decrement the reference count to the dentry and the vfsmount. 481 */ 482 void path_put(const struct path *path) 483 { 484 dput(path->dentry); 485 mntput(path->mnt); 486 } 487 EXPORT_SYMBOL(path_put); 488 489 #define EMBEDDED_LEVELS 2 490 struct nameidata { 491 struct path path; 492 struct qstr last; 493 struct path root; 494 struct inode *inode; /* path.dentry.d_inode */ 495 unsigned int flags; 496 unsigned seq, m_seq; 497 int last_type; 498 unsigned depth; 499 int total_link_count; 500 struct saved { 501 struct path link; 502 struct delayed_call done; 503 const char *name; 504 unsigned seq; 505 } *stack, internal[EMBEDDED_LEVELS]; 506 struct filename *name; 507 struct nameidata *saved; 508 struct inode *link_inode; 509 unsigned root_seq; 510 int dfd; 511 } __randomize_layout; 512 513 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name) 514 { 515 struct nameidata *old = current->nameidata; 516 p->stack = p->internal; 517 p->dfd = dfd; 518 p->name = name; 519 p->total_link_count = old ? old->total_link_count : 0; 520 p->saved = old; 521 current->nameidata = p; 522 } 523 524 static void restore_nameidata(void) 525 { 526 struct nameidata *now = current->nameidata, *old = now->saved; 527 528 current->nameidata = old; 529 if (old) 530 old->total_link_count = now->total_link_count; 531 if (now->stack != now->internal) 532 kfree(now->stack); 533 } 534 535 static int __nd_alloc_stack(struct nameidata *nd) 536 { 537 struct saved *p; 538 539 if (nd->flags & LOOKUP_RCU) { 540 p= kmalloc(MAXSYMLINKS * sizeof(struct saved), 541 GFP_ATOMIC); 542 if (unlikely(!p)) 543 return -ECHILD; 544 } else { 545 p= kmalloc(MAXSYMLINKS * sizeof(struct saved), 546 GFP_KERNEL); 547 if (unlikely(!p)) 548 return -ENOMEM; 549 } 550 memcpy(p, nd->internal, sizeof(nd->internal)); 551 nd->stack = p; 552 return 0; 553 } 554 555 /** 556 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root 557 * @path: nameidate to verify 558 * 559 * Rename can sometimes move a file or directory outside of a bind 560 * mount, path_connected allows those cases to be detected. 561 */ 562 static bool path_connected(const struct path *path) 563 { 564 struct vfsmount *mnt = path->mnt; 565 struct super_block *sb = mnt->mnt_sb; 566 567 /* Bind mounts and multi-root filesystems can have disconnected paths */ 568 if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root)) 569 return true; 570 571 return is_subdir(path->dentry, mnt->mnt_root); 572 } 573 574 static inline int nd_alloc_stack(struct nameidata *nd) 575 { 576 if (likely(nd->depth != EMBEDDED_LEVELS)) 577 return 0; 578 if (likely(nd->stack != nd->internal)) 579 return 0; 580 return __nd_alloc_stack(nd); 581 } 582 583 static void drop_links(struct nameidata *nd) 584 { 585 int i = nd->depth; 586 while (i--) { 587 struct saved *last = nd->stack + i; 588 do_delayed_call(&last->done); 589 clear_delayed_call(&last->done); 590 } 591 } 592 593 static void terminate_walk(struct nameidata *nd) 594 { 595 drop_links(nd); 596 if (!(nd->flags & LOOKUP_RCU)) { 597 int i; 598 path_put(&nd->path); 599 for (i = 0; i < nd->depth; i++) 600 path_put(&nd->stack[i].link); 601 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 602 path_put(&nd->root); 603 nd->root.mnt = NULL; 604 } 605 } else { 606 nd->flags &= ~LOOKUP_RCU; 607 if (!(nd->flags & LOOKUP_ROOT)) 608 nd->root.mnt = NULL; 609 rcu_read_unlock(); 610 } 611 nd->depth = 0; 612 } 613 614 /* path_put is needed afterwards regardless of success or failure */ 615 static bool legitimize_path(struct nameidata *nd, 616 struct path *path, unsigned seq) 617 { 618 int res = __legitimize_mnt(path->mnt, nd->m_seq); 619 if (unlikely(res)) { 620 if (res > 0) 621 path->mnt = NULL; 622 path->dentry = NULL; 623 return false; 624 } 625 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) { 626 path->dentry = NULL; 627 return false; 628 } 629 return !read_seqcount_retry(&path->dentry->d_seq, seq); 630 } 631 632 static bool legitimize_links(struct nameidata *nd) 633 { 634 int i; 635 for (i = 0; i < nd->depth; i++) { 636 struct saved *last = nd->stack + i; 637 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) { 638 drop_links(nd); 639 nd->depth = i + 1; 640 return false; 641 } 642 } 643 return true; 644 } 645 646 /* 647 * Path walking has 2 modes, rcu-walk and ref-walk (see 648 * Documentation/filesystems/path-lookup.txt). In situations when we can't 649 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 650 * normal reference counts on dentries and vfsmounts to transition to ref-walk 651 * mode. Refcounts are grabbed at the last known good point before rcu-walk 652 * got stuck, so ref-walk may continue from there. If this is not successful 653 * (eg. a seqcount has changed), then failure is returned and it's up to caller 654 * to restart the path walk from the beginning in ref-walk mode. 655 */ 656 657 /** 658 * unlazy_walk - try to switch to ref-walk mode. 659 * @nd: nameidata pathwalk data 660 * Returns: 0 on success, -ECHILD on failure 661 * 662 * unlazy_walk attempts to legitimize the current nd->path and nd->root 663 * for ref-walk mode. 664 * Must be called from rcu-walk context. 665 * Nothing should touch nameidata between unlazy_walk() failure and 666 * terminate_walk(). 667 */ 668 static int unlazy_walk(struct nameidata *nd) 669 { 670 struct dentry *parent = nd->path.dentry; 671 672 BUG_ON(!(nd->flags & LOOKUP_RCU)); 673 674 nd->flags &= ~LOOKUP_RCU; 675 if (unlikely(!legitimize_links(nd))) 676 goto out2; 677 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq))) 678 goto out1; 679 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 680 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) 681 goto out; 682 } 683 rcu_read_unlock(); 684 BUG_ON(nd->inode != parent->d_inode); 685 return 0; 686 687 out2: 688 nd->path.mnt = NULL; 689 nd->path.dentry = NULL; 690 out1: 691 if (!(nd->flags & LOOKUP_ROOT)) 692 nd->root.mnt = NULL; 693 out: 694 rcu_read_unlock(); 695 return -ECHILD; 696 } 697 698 /** 699 * unlazy_child - try to switch to ref-walk mode. 700 * @nd: nameidata pathwalk data 701 * @dentry: child of nd->path.dentry 702 * @seq: seq number to check dentry against 703 * Returns: 0 on success, -ECHILD on failure 704 * 705 * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry 706 * for ref-walk mode. @dentry must be a path found by a do_lookup call on 707 * @nd. Must be called from rcu-walk context. 708 * Nothing should touch nameidata between unlazy_child() failure and 709 * terminate_walk(). 710 */ 711 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq) 712 { 713 BUG_ON(!(nd->flags & LOOKUP_RCU)); 714 715 nd->flags &= ~LOOKUP_RCU; 716 if (unlikely(!legitimize_links(nd))) 717 goto out2; 718 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq))) 719 goto out2; 720 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref))) 721 goto out1; 722 723 /* 724 * We need to move both the parent and the dentry from the RCU domain 725 * to be properly refcounted. And the sequence number in the dentry 726 * validates *both* dentry counters, since we checked the sequence 727 * number of the parent after we got the child sequence number. So we 728 * know the parent must still be valid if the child sequence number is 729 */ 730 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) 731 goto out; 732 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) { 733 rcu_read_unlock(); 734 dput(dentry); 735 goto drop_root_mnt; 736 } 737 /* 738 * Sequence counts matched. Now make sure that the root is 739 * still valid and get it if required. 740 */ 741 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 742 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) { 743 rcu_read_unlock(); 744 dput(dentry); 745 return -ECHILD; 746 } 747 } 748 749 rcu_read_unlock(); 750 return 0; 751 752 out2: 753 nd->path.mnt = NULL; 754 out1: 755 nd->path.dentry = NULL; 756 out: 757 rcu_read_unlock(); 758 drop_root_mnt: 759 if (!(nd->flags & LOOKUP_ROOT)) 760 nd->root.mnt = NULL; 761 return -ECHILD; 762 } 763 764 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 765 { 766 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) 767 return dentry->d_op->d_revalidate(dentry, flags); 768 else 769 return 1; 770 } 771 772 /** 773 * complete_walk - successful completion of path walk 774 * @nd: pointer nameidata 775 * 776 * If we had been in RCU mode, drop out of it and legitimize nd->path. 777 * Revalidate the final result, unless we'd already done that during 778 * the path walk or the filesystem doesn't ask for it. Return 0 on 779 * success, -error on failure. In case of failure caller does not 780 * need to drop nd->path. 781 */ 782 static int complete_walk(struct nameidata *nd) 783 { 784 struct dentry *dentry = nd->path.dentry; 785 int status; 786 787 if (nd->flags & LOOKUP_RCU) { 788 if (!(nd->flags & LOOKUP_ROOT)) 789 nd->root.mnt = NULL; 790 if (unlikely(unlazy_walk(nd))) 791 return -ECHILD; 792 } 793 794 if (likely(!(nd->flags & LOOKUP_JUMPED))) 795 return 0; 796 797 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 798 return 0; 799 800 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 801 if (status > 0) 802 return 0; 803 804 if (!status) 805 status = -ESTALE; 806 807 return status; 808 } 809 810 static void set_root(struct nameidata *nd) 811 { 812 struct fs_struct *fs = current->fs; 813 814 if (nd->flags & LOOKUP_RCU) { 815 unsigned seq; 816 817 do { 818 seq = read_seqcount_begin(&fs->seq); 819 nd->root = fs->root; 820 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 821 } while (read_seqcount_retry(&fs->seq, seq)); 822 } else { 823 get_fs_root(fs, &nd->root); 824 } 825 } 826 827 static void path_put_conditional(struct path *path, struct nameidata *nd) 828 { 829 dput(path->dentry); 830 if (path->mnt != nd->path.mnt) 831 mntput(path->mnt); 832 } 833 834 static inline void path_to_nameidata(const struct path *path, 835 struct nameidata *nd) 836 { 837 if (!(nd->flags & LOOKUP_RCU)) { 838 dput(nd->path.dentry); 839 if (nd->path.mnt != path->mnt) 840 mntput(nd->path.mnt); 841 } 842 nd->path.mnt = path->mnt; 843 nd->path.dentry = path->dentry; 844 } 845 846 static int nd_jump_root(struct nameidata *nd) 847 { 848 if (nd->flags & LOOKUP_RCU) { 849 struct dentry *d; 850 nd->path = nd->root; 851 d = nd->path.dentry; 852 nd->inode = d->d_inode; 853 nd->seq = nd->root_seq; 854 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq))) 855 return -ECHILD; 856 } else { 857 path_put(&nd->path); 858 nd->path = nd->root; 859 path_get(&nd->path); 860 nd->inode = nd->path.dentry->d_inode; 861 } 862 nd->flags |= LOOKUP_JUMPED; 863 return 0; 864 } 865 866 /* 867 * Helper to directly jump to a known parsed path from ->get_link, 868 * caller must have taken a reference to path beforehand. 869 */ 870 void nd_jump_link(struct path *path) 871 { 872 struct nameidata *nd = current->nameidata; 873 path_put(&nd->path); 874 875 nd->path = *path; 876 nd->inode = nd->path.dentry->d_inode; 877 nd->flags |= LOOKUP_JUMPED; 878 } 879 880 static inline void put_link(struct nameidata *nd) 881 { 882 struct saved *last = nd->stack + --nd->depth; 883 do_delayed_call(&last->done); 884 if (!(nd->flags & LOOKUP_RCU)) 885 path_put(&last->link); 886 } 887 888 int sysctl_protected_symlinks __read_mostly = 0; 889 int sysctl_protected_hardlinks __read_mostly = 0; 890 891 /** 892 * may_follow_link - Check symlink following for unsafe situations 893 * @nd: nameidata pathwalk data 894 * 895 * In the case of the sysctl_protected_symlinks sysctl being enabled, 896 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 897 * in a sticky world-writable directory. This is to protect privileged 898 * processes from failing races against path names that may change out 899 * from under them by way of other users creating malicious symlinks. 900 * It will permit symlinks to be followed only when outside a sticky 901 * world-writable directory, or when the uid of the symlink and follower 902 * match, or when the directory owner matches the symlink's owner. 903 * 904 * Returns 0 if following the symlink is allowed, -ve on error. 905 */ 906 static inline int may_follow_link(struct nameidata *nd) 907 { 908 const struct inode *inode; 909 const struct inode *parent; 910 kuid_t puid; 911 912 if (!sysctl_protected_symlinks) 913 return 0; 914 915 /* Allowed if owner and follower match. */ 916 inode = nd->link_inode; 917 if (uid_eq(current_cred()->fsuid, inode->i_uid)) 918 return 0; 919 920 /* Allowed if parent directory not sticky and world-writable. */ 921 parent = nd->inode; 922 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 923 return 0; 924 925 /* Allowed if parent directory and link owner match. */ 926 puid = parent->i_uid; 927 if (uid_valid(puid) && uid_eq(puid, inode->i_uid)) 928 return 0; 929 930 if (nd->flags & LOOKUP_RCU) 931 return -ECHILD; 932 933 audit_inode(nd->name, nd->stack[0].link.dentry, 0); 934 audit_log_link_denied("follow_link"); 935 return -EACCES; 936 } 937 938 /** 939 * safe_hardlink_source - Check for safe hardlink conditions 940 * @inode: the source inode to hardlink from 941 * 942 * Return false if at least one of the following conditions: 943 * - inode is not a regular file 944 * - inode is setuid 945 * - inode is setgid and group-exec 946 * - access failure for read and write 947 * 948 * Otherwise returns true. 949 */ 950 static bool safe_hardlink_source(struct inode *inode) 951 { 952 umode_t mode = inode->i_mode; 953 954 /* Special files should not get pinned to the filesystem. */ 955 if (!S_ISREG(mode)) 956 return false; 957 958 /* Setuid files should not get pinned to the filesystem. */ 959 if (mode & S_ISUID) 960 return false; 961 962 /* Executable setgid files should not get pinned to the filesystem. */ 963 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 964 return false; 965 966 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 967 if (inode_permission(inode, MAY_READ | MAY_WRITE)) 968 return false; 969 970 return true; 971 } 972 973 /** 974 * may_linkat - Check permissions for creating a hardlink 975 * @link: the source to hardlink from 976 * 977 * Block hardlink when all of: 978 * - sysctl_protected_hardlinks enabled 979 * - fsuid does not match inode 980 * - hardlink source is unsafe (see safe_hardlink_source() above) 981 * - not CAP_FOWNER in a namespace with the inode owner uid mapped 982 * 983 * Returns 0 if successful, -ve on error. 984 */ 985 static int may_linkat(struct path *link) 986 { 987 struct inode *inode; 988 989 if (!sysctl_protected_hardlinks) 990 return 0; 991 992 inode = link->dentry->d_inode; 993 994 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 995 * otherwise, it must be a safe source. 996 */ 997 if (safe_hardlink_source(inode) || inode_owner_or_capable(inode)) 998 return 0; 999 1000 audit_log_link_denied("linkat"); 1001 return -EPERM; 1002 } 1003 1004 static __always_inline 1005 const char *get_link(struct nameidata *nd) 1006 { 1007 struct saved *last = nd->stack + nd->depth - 1; 1008 struct dentry *dentry = last->link.dentry; 1009 struct inode *inode = nd->link_inode; 1010 int error; 1011 const char *res; 1012 1013 if (!(nd->flags & LOOKUP_RCU)) { 1014 touch_atime(&last->link); 1015 cond_resched(); 1016 } else if (atime_needs_update_rcu(&last->link, inode)) { 1017 if (unlikely(unlazy_walk(nd))) 1018 return ERR_PTR(-ECHILD); 1019 touch_atime(&last->link); 1020 } 1021 1022 error = security_inode_follow_link(dentry, inode, 1023 nd->flags & LOOKUP_RCU); 1024 if (unlikely(error)) 1025 return ERR_PTR(error); 1026 1027 nd->last_type = LAST_BIND; 1028 res = inode->i_link; 1029 if (!res) { 1030 const char * (*get)(struct dentry *, struct inode *, 1031 struct delayed_call *); 1032 get = inode->i_op->get_link; 1033 if (nd->flags & LOOKUP_RCU) { 1034 res = get(NULL, inode, &last->done); 1035 if (res == ERR_PTR(-ECHILD)) { 1036 if (unlikely(unlazy_walk(nd))) 1037 return ERR_PTR(-ECHILD); 1038 res = get(dentry, inode, &last->done); 1039 } 1040 } else { 1041 res = get(dentry, inode, &last->done); 1042 } 1043 if (IS_ERR_OR_NULL(res)) 1044 return res; 1045 } 1046 if (*res == '/') { 1047 if (!nd->root.mnt) 1048 set_root(nd); 1049 if (unlikely(nd_jump_root(nd))) 1050 return ERR_PTR(-ECHILD); 1051 while (unlikely(*++res == '/')) 1052 ; 1053 } 1054 if (!*res) 1055 res = NULL; 1056 return res; 1057 } 1058 1059 /* 1060 * follow_up - Find the mountpoint of path's vfsmount 1061 * 1062 * Given a path, find the mountpoint of its source file system. 1063 * Replace @path with the path of the mountpoint in the parent mount. 1064 * Up is towards /. 1065 * 1066 * Return 1 if we went up a level and 0 if we were already at the 1067 * root. 1068 */ 1069 int follow_up(struct path *path) 1070 { 1071 struct mount *mnt = real_mount(path->mnt); 1072 struct mount *parent; 1073 struct dentry *mountpoint; 1074 1075 read_seqlock_excl(&mount_lock); 1076 parent = mnt->mnt_parent; 1077 if (parent == mnt) { 1078 read_sequnlock_excl(&mount_lock); 1079 return 0; 1080 } 1081 mntget(&parent->mnt); 1082 mountpoint = dget(mnt->mnt_mountpoint); 1083 read_sequnlock_excl(&mount_lock); 1084 dput(path->dentry); 1085 path->dentry = mountpoint; 1086 mntput(path->mnt); 1087 path->mnt = &parent->mnt; 1088 return 1; 1089 } 1090 EXPORT_SYMBOL(follow_up); 1091 1092 /* 1093 * Perform an automount 1094 * - return -EISDIR to tell follow_managed() to stop and return the path we 1095 * were called with. 1096 */ 1097 static int follow_automount(struct path *path, struct nameidata *nd, 1098 bool *need_mntput) 1099 { 1100 struct vfsmount *mnt; 1101 int err; 1102 1103 if (!path->dentry->d_op || !path->dentry->d_op->d_automount) 1104 return -EREMOTE; 1105 1106 /* We don't want to mount if someone's just doing a stat - 1107 * unless they're stat'ing a directory and appended a '/' to 1108 * the name. 1109 * 1110 * We do, however, want to mount if someone wants to open or 1111 * create a file of any type under the mountpoint, wants to 1112 * traverse through the mountpoint or wants to open the 1113 * mounted directory. Also, autofs may mark negative dentries 1114 * as being automount points. These will need the attentions 1115 * of the daemon to instantiate them before they can be used. 1116 */ 1117 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 1118 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 1119 path->dentry->d_inode) 1120 return -EISDIR; 1121 1122 nd->total_link_count++; 1123 if (nd->total_link_count >= 40) 1124 return -ELOOP; 1125 1126 mnt = path->dentry->d_op->d_automount(path); 1127 if (IS_ERR(mnt)) { 1128 /* 1129 * The filesystem is allowed to return -EISDIR here to indicate 1130 * it doesn't want to automount. For instance, autofs would do 1131 * this so that its userspace daemon can mount on this dentry. 1132 * 1133 * However, we can only permit this if it's a terminal point in 1134 * the path being looked up; if it wasn't then the remainder of 1135 * the path is inaccessible and we should say so. 1136 */ 1137 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT)) 1138 return -EREMOTE; 1139 return PTR_ERR(mnt); 1140 } 1141 1142 if (!mnt) /* mount collision */ 1143 return 0; 1144 1145 if (!*need_mntput) { 1146 /* lock_mount() may release path->mnt on error */ 1147 mntget(path->mnt); 1148 *need_mntput = true; 1149 } 1150 err = finish_automount(mnt, path); 1151 1152 switch (err) { 1153 case -EBUSY: 1154 /* Someone else made a mount here whilst we were busy */ 1155 return 0; 1156 case 0: 1157 path_put(path); 1158 path->mnt = mnt; 1159 path->dentry = dget(mnt->mnt_root); 1160 return 0; 1161 default: 1162 return err; 1163 } 1164 1165 } 1166 1167 /* 1168 * Handle a dentry that is managed in some way. 1169 * - Flagged for transit management (autofs) 1170 * - Flagged as mountpoint 1171 * - Flagged as automount point 1172 * 1173 * This may only be called in refwalk mode. 1174 * 1175 * Serialization is taken care of in namespace.c 1176 */ 1177 static int follow_managed(struct path *path, struct nameidata *nd) 1178 { 1179 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */ 1180 unsigned managed; 1181 bool need_mntput = false; 1182 int ret = 0; 1183 1184 /* Given that we're not holding a lock here, we retain the value in a 1185 * local variable for each dentry as we look at it so that we don't see 1186 * the components of that value change under us */ 1187 while (managed = READ_ONCE(path->dentry->d_flags), 1188 managed &= DCACHE_MANAGED_DENTRY, 1189 unlikely(managed != 0)) { 1190 /* Allow the filesystem to manage the transit without i_mutex 1191 * being held. */ 1192 if (managed & DCACHE_MANAGE_TRANSIT) { 1193 BUG_ON(!path->dentry->d_op); 1194 BUG_ON(!path->dentry->d_op->d_manage); 1195 ret = path->dentry->d_op->d_manage(path, false); 1196 if (ret < 0) 1197 break; 1198 } 1199 1200 /* Transit to a mounted filesystem. */ 1201 if (managed & DCACHE_MOUNTED) { 1202 struct vfsmount *mounted = lookup_mnt(path); 1203 if (mounted) { 1204 dput(path->dentry); 1205 if (need_mntput) 1206 mntput(path->mnt); 1207 path->mnt = mounted; 1208 path->dentry = dget(mounted->mnt_root); 1209 need_mntput = true; 1210 continue; 1211 } 1212 1213 /* Something is mounted on this dentry in another 1214 * namespace and/or whatever was mounted there in this 1215 * namespace got unmounted before lookup_mnt() could 1216 * get it */ 1217 } 1218 1219 /* Handle an automount point */ 1220 if (managed & DCACHE_NEED_AUTOMOUNT) { 1221 ret = follow_automount(path, nd, &need_mntput); 1222 if (ret < 0) 1223 break; 1224 continue; 1225 } 1226 1227 /* We didn't change the current path point */ 1228 break; 1229 } 1230 1231 if (need_mntput && path->mnt == mnt) 1232 mntput(path->mnt); 1233 if (ret == -EISDIR || !ret) 1234 ret = 1; 1235 if (need_mntput) 1236 nd->flags |= LOOKUP_JUMPED; 1237 if (unlikely(ret < 0)) 1238 path_put_conditional(path, nd); 1239 return ret; 1240 } 1241 1242 int follow_down_one(struct path *path) 1243 { 1244 struct vfsmount *mounted; 1245 1246 mounted = lookup_mnt(path); 1247 if (mounted) { 1248 dput(path->dentry); 1249 mntput(path->mnt); 1250 path->mnt = mounted; 1251 path->dentry = dget(mounted->mnt_root); 1252 return 1; 1253 } 1254 return 0; 1255 } 1256 EXPORT_SYMBOL(follow_down_one); 1257 1258 static inline int managed_dentry_rcu(const struct path *path) 1259 { 1260 return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ? 1261 path->dentry->d_op->d_manage(path, true) : 0; 1262 } 1263 1264 /* 1265 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1266 * we meet a managed dentry that would need blocking. 1267 */ 1268 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1269 struct inode **inode, unsigned *seqp) 1270 { 1271 for (;;) { 1272 struct mount *mounted; 1273 /* 1274 * Don't forget we might have a non-mountpoint managed dentry 1275 * that wants to block transit. 1276 */ 1277 switch (managed_dentry_rcu(path)) { 1278 case -ECHILD: 1279 default: 1280 return false; 1281 case -EISDIR: 1282 return true; 1283 case 0: 1284 break; 1285 } 1286 1287 if (!d_mountpoint(path->dentry)) 1288 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1289 1290 mounted = __lookup_mnt(path->mnt, path->dentry); 1291 if (!mounted) 1292 break; 1293 path->mnt = &mounted->mnt; 1294 path->dentry = mounted->mnt.mnt_root; 1295 nd->flags |= LOOKUP_JUMPED; 1296 *seqp = read_seqcount_begin(&path->dentry->d_seq); 1297 /* 1298 * Update the inode too. We don't need to re-check the 1299 * dentry sequence number here after this d_inode read, 1300 * because a mount-point is always pinned. 1301 */ 1302 *inode = path->dentry->d_inode; 1303 } 1304 return !read_seqretry(&mount_lock, nd->m_seq) && 1305 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1306 } 1307 1308 static int follow_dotdot_rcu(struct nameidata *nd) 1309 { 1310 struct inode *inode = nd->inode; 1311 1312 while (1) { 1313 if (path_equal(&nd->path, &nd->root)) 1314 break; 1315 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1316 struct dentry *old = nd->path.dentry; 1317 struct dentry *parent = old->d_parent; 1318 unsigned seq; 1319 1320 inode = parent->d_inode; 1321 seq = read_seqcount_begin(&parent->d_seq); 1322 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq))) 1323 return -ECHILD; 1324 nd->path.dentry = parent; 1325 nd->seq = seq; 1326 if (unlikely(!path_connected(&nd->path))) 1327 return -ENOENT; 1328 break; 1329 } else { 1330 struct mount *mnt = real_mount(nd->path.mnt); 1331 struct mount *mparent = mnt->mnt_parent; 1332 struct dentry *mountpoint = mnt->mnt_mountpoint; 1333 struct inode *inode2 = mountpoint->d_inode; 1334 unsigned seq = read_seqcount_begin(&mountpoint->d_seq); 1335 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1336 return -ECHILD; 1337 if (&mparent->mnt == nd->path.mnt) 1338 break; 1339 /* we know that mountpoint was pinned */ 1340 nd->path.dentry = mountpoint; 1341 nd->path.mnt = &mparent->mnt; 1342 inode = inode2; 1343 nd->seq = seq; 1344 } 1345 } 1346 while (unlikely(d_mountpoint(nd->path.dentry))) { 1347 struct mount *mounted; 1348 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry); 1349 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1350 return -ECHILD; 1351 if (!mounted) 1352 break; 1353 nd->path.mnt = &mounted->mnt; 1354 nd->path.dentry = mounted->mnt.mnt_root; 1355 inode = nd->path.dentry->d_inode; 1356 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1357 } 1358 nd->inode = inode; 1359 return 0; 1360 } 1361 1362 /* 1363 * Follow down to the covering mount currently visible to userspace. At each 1364 * point, the filesystem owning that dentry may be queried as to whether the 1365 * caller is permitted to proceed or not. 1366 */ 1367 int follow_down(struct path *path) 1368 { 1369 unsigned managed; 1370 int ret; 1371 1372 while (managed = READ_ONCE(path->dentry->d_flags), 1373 unlikely(managed & DCACHE_MANAGED_DENTRY)) { 1374 /* Allow the filesystem to manage the transit without i_mutex 1375 * being held. 1376 * 1377 * We indicate to the filesystem if someone is trying to mount 1378 * something here. This gives autofs the chance to deny anyone 1379 * other than its daemon the right to mount on its 1380 * superstructure. 1381 * 1382 * The filesystem may sleep at this point. 1383 */ 1384 if (managed & DCACHE_MANAGE_TRANSIT) { 1385 BUG_ON(!path->dentry->d_op); 1386 BUG_ON(!path->dentry->d_op->d_manage); 1387 ret = path->dentry->d_op->d_manage(path, false); 1388 if (ret < 0) 1389 return ret == -EISDIR ? 0 : ret; 1390 } 1391 1392 /* Transit to a mounted filesystem. */ 1393 if (managed & DCACHE_MOUNTED) { 1394 struct vfsmount *mounted = lookup_mnt(path); 1395 if (!mounted) 1396 break; 1397 dput(path->dentry); 1398 mntput(path->mnt); 1399 path->mnt = mounted; 1400 path->dentry = dget(mounted->mnt_root); 1401 continue; 1402 } 1403 1404 /* Don't handle automount points here */ 1405 break; 1406 } 1407 return 0; 1408 } 1409 EXPORT_SYMBOL(follow_down); 1410 1411 /* 1412 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() 1413 */ 1414 static void follow_mount(struct path *path) 1415 { 1416 while (d_mountpoint(path->dentry)) { 1417 struct vfsmount *mounted = lookup_mnt(path); 1418 if (!mounted) 1419 break; 1420 dput(path->dentry); 1421 mntput(path->mnt); 1422 path->mnt = mounted; 1423 path->dentry = dget(mounted->mnt_root); 1424 } 1425 } 1426 1427 static int path_parent_directory(struct path *path) 1428 { 1429 struct dentry *old = path->dentry; 1430 /* rare case of legitimate dget_parent()... */ 1431 path->dentry = dget_parent(path->dentry); 1432 dput(old); 1433 if (unlikely(!path_connected(path))) 1434 return -ENOENT; 1435 return 0; 1436 } 1437 1438 static int follow_dotdot(struct nameidata *nd) 1439 { 1440 while(1) { 1441 if (path_equal(&nd->path, &nd->root)) 1442 break; 1443 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1444 int ret = path_parent_directory(&nd->path); 1445 if (ret) 1446 return ret; 1447 break; 1448 } 1449 if (!follow_up(&nd->path)) 1450 break; 1451 } 1452 follow_mount(&nd->path); 1453 nd->inode = nd->path.dentry->d_inode; 1454 return 0; 1455 } 1456 1457 /* 1458 * This looks up the name in dcache and possibly revalidates the found dentry. 1459 * NULL is returned if the dentry does not exist in the cache. 1460 */ 1461 static struct dentry *lookup_dcache(const struct qstr *name, 1462 struct dentry *dir, 1463 unsigned int flags) 1464 { 1465 struct dentry *dentry = d_lookup(dir, name); 1466 if (dentry) { 1467 int error = d_revalidate(dentry, flags); 1468 if (unlikely(error <= 0)) { 1469 if (!error) 1470 d_invalidate(dentry); 1471 dput(dentry); 1472 return ERR_PTR(error); 1473 } 1474 } 1475 return dentry; 1476 } 1477 1478 /* 1479 * Parent directory has inode locked exclusive. This is one 1480 * and only case when ->lookup() gets called on non in-lookup 1481 * dentries - as the matter of fact, this only gets called 1482 * when directory is guaranteed to have no in-lookup children 1483 * at all. 1484 */ 1485 static struct dentry *__lookup_hash(const struct qstr *name, 1486 struct dentry *base, unsigned int flags) 1487 { 1488 struct dentry *dentry = lookup_dcache(name, base, flags); 1489 struct dentry *old; 1490 struct inode *dir = base->d_inode; 1491 1492 if (dentry) 1493 return dentry; 1494 1495 /* Don't create child dentry for a dead directory. */ 1496 if (unlikely(IS_DEADDIR(dir))) 1497 return ERR_PTR(-ENOENT); 1498 1499 dentry = d_alloc(base, name); 1500 if (unlikely(!dentry)) 1501 return ERR_PTR(-ENOMEM); 1502 1503 old = dir->i_op->lookup(dir, dentry, flags); 1504 if (unlikely(old)) { 1505 dput(dentry); 1506 dentry = old; 1507 } 1508 return dentry; 1509 } 1510 1511 static int lookup_fast(struct nameidata *nd, 1512 struct path *path, struct inode **inode, 1513 unsigned *seqp) 1514 { 1515 struct vfsmount *mnt = nd->path.mnt; 1516 struct dentry *dentry, *parent = nd->path.dentry; 1517 int status = 1; 1518 int err; 1519 1520 /* 1521 * Rename seqlock is not required here because in the off chance 1522 * of a false negative due to a concurrent rename, the caller is 1523 * going to fall back to non-racy lookup. 1524 */ 1525 if (nd->flags & LOOKUP_RCU) { 1526 unsigned seq; 1527 bool negative; 1528 dentry = __d_lookup_rcu(parent, &nd->last, &seq); 1529 if (unlikely(!dentry)) { 1530 if (unlazy_walk(nd)) 1531 return -ECHILD; 1532 return 0; 1533 } 1534 1535 /* 1536 * This sequence count validates that the inode matches 1537 * the dentry name information from lookup. 1538 */ 1539 *inode = d_backing_inode(dentry); 1540 negative = d_is_negative(dentry); 1541 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) 1542 return -ECHILD; 1543 1544 /* 1545 * This sequence count validates that the parent had no 1546 * changes while we did the lookup of the dentry above. 1547 * 1548 * The memory barrier in read_seqcount_begin of child is 1549 * enough, we can use __read_seqcount_retry here. 1550 */ 1551 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq))) 1552 return -ECHILD; 1553 1554 *seqp = seq; 1555 status = d_revalidate(dentry, nd->flags); 1556 if (likely(status > 0)) { 1557 /* 1558 * Note: do negative dentry check after revalidation in 1559 * case that drops it. 1560 */ 1561 if (unlikely(negative)) 1562 return -ENOENT; 1563 path->mnt = mnt; 1564 path->dentry = dentry; 1565 if (likely(__follow_mount_rcu(nd, path, inode, seqp))) 1566 return 1; 1567 } 1568 if (unlazy_child(nd, dentry, seq)) 1569 return -ECHILD; 1570 if (unlikely(status == -ECHILD)) 1571 /* we'd been told to redo it in non-rcu mode */ 1572 status = d_revalidate(dentry, nd->flags); 1573 } else { 1574 dentry = __d_lookup(parent, &nd->last); 1575 if (unlikely(!dentry)) 1576 return 0; 1577 status = d_revalidate(dentry, nd->flags); 1578 } 1579 if (unlikely(status <= 0)) { 1580 if (!status) 1581 d_invalidate(dentry); 1582 dput(dentry); 1583 return status; 1584 } 1585 if (unlikely(d_is_negative(dentry))) { 1586 dput(dentry); 1587 return -ENOENT; 1588 } 1589 1590 path->mnt = mnt; 1591 path->dentry = dentry; 1592 err = follow_managed(path, nd); 1593 if (likely(err > 0)) 1594 *inode = d_backing_inode(path->dentry); 1595 return err; 1596 } 1597 1598 /* Fast lookup failed, do it the slow way */ 1599 static struct dentry *__lookup_slow(const struct qstr *name, 1600 struct dentry *dir, 1601 unsigned int flags) 1602 { 1603 struct dentry *dentry, *old; 1604 struct inode *inode = dir->d_inode; 1605 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1606 1607 /* Don't go there if it's already dead */ 1608 if (unlikely(IS_DEADDIR(inode))) 1609 return ERR_PTR(-ENOENT); 1610 again: 1611 dentry = d_alloc_parallel(dir, name, &wq); 1612 if (IS_ERR(dentry)) 1613 return dentry; 1614 if (unlikely(!d_in_lookup(dentry))) { 1615 if (!(flags & LOOKUP_NO_REVAL)) { 1616 int error = d_revalidate(dentry, flags); 1617 if (unlikely(error <= 0)) { 1618 if (!error) { 1619 d_invalidate(dentry); 1620 dput(dentry); 1621 goto again; 1622 } 1623 dput(dentry); 1624 dentry = ERR_PTR(error); 1625 } 1626 } 1627 } else { 1628 old = inode->i_op->lookup(inode, dentry, flags); 1629 d_lookup_done(dentry); 1630 if (unlikely(old)) { 1631 dput(dentry); 1632 dentry = old; 1633 } 1634 } 1635 return dentry; 1636 } 1637 1638 static struct dentry *lookup_slow(const struct qstr *name, 1639 struct dentry *dir, 1640 unsigned int flags) 1641 { 1642 struct inode *inode = dir->d_inode; 1643 struct dentry *res; 1644 inode_lock_shared(inode); 1645 res = __lookup_slow(name, dir, flags); 1646 inode_unlock_shared(inode); 1647 return res; 1648 } 1649 1650 static inline int may_lookup(struct nameidata *nd) 1651 { 1652 if (nd->flags & LOOKUP_RCU) { 1653 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1654 if (err != -ECHILD) 1655 return err; 1656 if (unlazy_walk(nd)) 1657 return -ECHILD; 1658 } 1659 return inode_permission(nd->inode, MAY_EXEC); 1660 } 1661 1662 static inline int handle_dots(struct nameidata *nd, int type) 1663 { 1664 if (type == LAST_DOTDOT) { 1665 if (!nd->root.mnt) 1666 set_root(nd); 1667 if (nd->flags & LOOKUP_RCU) { 1668 return follow_dotdot_rcu(nd); 1669 } else 1670 return follow_dotdot(nd); 1671 } 1672 return 0; 1673 } 1674 1675 static int pick_link(struct nameidata *nd, struct path *link, 1676 struct inode *inode, unsigned seq) 1677 { 1678 int error; 1679 struct saved *last; 1680 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) { 1681 path_to_nameidata(link, nd); 1682 return -ELOOP; 1683 } 1684 if (!(nd->flags & LOOKUP_RCU)) { 1685 if (link->mnt == nd->path.mnt) 1686 mntget(link->mnt); 1687 } 1688 error = nd_alloc_stack(nd); 1689 if (unlikely(error)) { 1690 if (error == -ECHILD) { 1691 if (unlikely(!legitimize_path(nd, link, seq))) { 1692 drop_links(nd); 1693 nd->depth = 0; 1694 nd->flags &= ~LOOKUP_RCU; 1695 nd->path.mnt = NULL; 1696 nd->path.dentry = NULL; 1697 if (!(nd->flags & LOOKUP_ROOT)) 1698 nd->root.mnt = NULL; 1699 rcu_read_unlock(); 1700 } else if (likely(unlazy_walk(nd)) == 0) 1701 error = nd_alloc_stack(nd); 1702 } 1703 if (error) { 1704 path_put(link); 1705 return error; 1706 } 1707 } 1708 1709 last = nd->stack + nd->depth++; 1710 last->link = *link; 1711 clear_delayed_call(&last->done); 1712 nd->link_inode = inode; 1713 last->seq = seq; 1714 return 1; 1715 } 1716 1717 enum {WALK_FOLLOW = 1, WALK_MORE = 2}; 1718 1719 /* 1720 * Do we need to follow links? We _really_ want to be able 1721 * to do this check without having to look at inode->i_op, 1722 * so we keep a cache of "no, this doesn't need follow_link" 1723 * for the common case. 1724 */ 1725 static inline int step_into(struct nameidata *nd, struct path *path, 1726 int flags, struct inode *inode, unsigned seq) 1727 { 1728 if (!(flags & WALK_MORE) && nd->depth) 1729 put_link(nd); 1730 if (likely(!d_is_symlink(path->dentry)) || 1731 !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) { 1732 /* not a symlink or should not follow */ 1733 path_to_nameidata(path, nd); 1734 nd->inode = inode; 1735 nd->seq = seq; 1736 return 0; 1737 } 1738 /* make sure that d_is_symlink above matches inode */ 1739 if (nd->flags & LOOKUP_RCU) { 1740 if (read_seqcount_retry(&path->dentry->d_seq, seq)) 1741 return -ECHILD; 1742 } 1743 return pick_link(nd, path, inode, seq); 1744 } 1745 1746 static int walk_component(struct nameidata *nd, int flags) 1747 { 1748 struct path path; 1749 struct inode *inode; 1750 unsigned seq; 1751 int err; 1752 /* 1753 * "." and ".." are special - ".." especially so because it has 1754 * to be able to know about the current root directory and 1755 * parent relationships. 1756 */ 1757 if (unlikely(nd->last_type != LAST_NORM)) { 1758 err = handle_dots(nd, nd->last_type); 1759 if (!(flags & WALK_MORE) && nd->depth) 1760 put_link(nd); 1761 return err; 1762 } 1763 err = lookup_fast(nd, &path, &inode, &seq); 1764 if (unlikely(err <= 0)) { 1765 if (err < 0) 1766 return err; 1767 path.dentry = lookup_slow(&nd->last, nd->path.dentry, 1768 nd->flags); 1769 if (IS_ERR(path.dentry)) 1770 return PTR_ERR(path.dentry); 1771 1772 path.mnt = nd->path.mnt; 1773 err = follow_managed(&path, nd); 1774 if (unlikely(err < 0)) 1775 return err; 1776 1777 if (unlikely(d_is_negative(path.dentry))) { 1778 path_to_nameidata(&path, nd); 1779 return -ENOENT; 1780 } 1781 1782 seq = 0; /* we are already out of RCU mode */ 1783 inode = d_backing_inode(path.dentry); 1784 } 1785 1786 return step_into(nd, &path, flags, inode, seq); 1787 } 1788 1789 /* 1790 * We can do the critical dentry name comparison and hashing 1791 * operations one word at a time, but we are limited to: 1792 * 1793 * - Architectures with fast unaligned word accesses. We could 1794 * do a "get_unaligned()" if this helps and is sufficiently 1795 * fast. 1796 * 1797 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 1798 * do not trap on the (extremely unlikely) case of a page 1799 * crossing operation. 1800 * 1801 * - Furthermore, we need an efficient 64-bit compile for the 1802 * 64-bit case in order to generate the "number of bytes in 1803 * the final mask". Again, that could be replaced with a 1804 * efficient population count instruction or similar. 1805 */ 1806 #ifdef CONFIG_DCACHE_WORD_ACCESS 1807 1808 #include <asm/word-at-a-time.h> 1809 1810 #ifdef HASH_MIX 1811 1812 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */ 1813 1814 #elif defined(CONFIG_64BIT) 1815 /* 1816 * Register pressure in the mixing function is an issue, particularly 1817 * on 32-bit x86, but almost any function requires one state value and 1818 * one temporary. Instead, use a function designed for two state values 1819 * and no temporaries. 1820 * 1821 * This function cannot create a collision in only two iterations, so 1822 * we have two iterations to achieve avalanche. In those two iterations, 1823 * we have six layers of mixing, which is enough to spread one bit's 1824 * influence out to 2^6 = 64 state bits. 1825 * 1826 * Rotate constants are scored by considering either 64 one-bit input 1827 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the 1828 * probability of that delta causing a change to each of the 128 output 1829 * bits, using a sample of random initial states. 1830 * 1831 * The Shannon entropy of the computed probabilities is then summed 1832 * to produce a score. Ideally, any input change has a 50% chance of 1833 * toggling any given output bit. 1834 * 1835 * Mixing scores (in bits) for (12,45): 1836 * Input delta: 1-bit 2-bit 1837 * 1 round: 713.3 42542.6 1838 * 2 rounds: 2753.7 140389.8 1839 * 3 rounds: 5954.1 233458.2 1840 * 4 rounds: 7862.6 256672.2 1841 * Perfect: 8192 258048 1842 * (64*128) (64*63/2 * 128) 1843 */ 1844 #define HASH_MIX(x, y, a) \ 1845 ( x ^= (a), \ 1846 y ^= x, x = rol64(x,12),\ 1847 x += y, y = rol64(y,45),\ 1848 y *= 9 ) 1849 1850 /* 1851 * Fold two longs into one 32-bit hash value. This must be fast, but 1852 * latency isn't quite as critical, as there is a fair bit of additional 1853 * work done before the hash value is used. 1854 */ 1855 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 1856 { 1857 y ^= x * GOLDEN_RATIO_64; 1858 y *= GOLDEN_RATIO_64; 1859 return y >> 32; 1860 } 1861 1862 #else /* 32-bit case */ 1863 1864 /* 1865 * Mixing scores (in bits) for (7,20): 1866 * Input delta: 1-bit 2-bit 1867 * 1 round: 330.3 9201.6 1868 * 2 rounds: 1246.4 25475.4 1869 * 3 rounds: 1907.1 31295.1 1870 * 4 rounds: 2042.3 31718.6 1871 * Perfect: 2048 31744 1872 * (32*64) (32*31/2 * 64) 1873 */ 1874 #define HASH_MIX(x, y, a) \ 1875 ( x ^= (a), \ 1876 y ^= x, x = rol32(x, 7),\ 1877 x += y, y = rol32(y,20),\ 1878 y *= 9 ) 1879 1880 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 1881 { 1882 /* Use arch-optimized multiply if one exists */ 1883 return __hash_32(y ^ __hash_32(x)); 1884 } 1885 1886 #endif 1887 1888 /* 1889 * Return the hash of a string of known length. This is carfully 1890 * designed to match hash_name(), which is the more critical function. 1891 * In particular, we must end by hashing a final word containing 0..7 1892 * payload bytes, to match the way that hash_name() iterates until it 1893 * finds the delimiter after the name. 1894 */ 1895 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 1896 { 1897 unsigned long a, x = 0, y = (unsigned long)salt; 1898 1899 for (;;) { 1900 if (!len) 1901 goto done; 1902 a = load_unaligned_zeropad(name); 1903 if (len < sizeof(unsigned long)) 1904 break; 1905 HASH_MIX(x, y, a); 1906 name += sizeof(unsigned long); 1907 len -= sizeof(unsigned long); 1908 } 1909 x ^= a & bytemask_from_count(len); 1910 done: 1911 return fold_hash(x, y); 1912 } 1913 EXPORT_SYMBOL(full_name_hash); 1914 1915 /* Return the "hash_len" (hash and length) of a null-terminated string */ 1916 u64 hashlen_string(const void *salt, const char *name) 1917 { 1918 unsigned long a = 0, x = 0, y = (unsigned long)salt; 1919 unsigned long adata, mask, len; 1920 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1921 1922 len = 0; 1923 goto inside; 1924 1925 do { 1926 HASH_MIX(x, y, a); 1927 len += sizeof(unsigned long); 1928 inside: 1929 a = load_unaligned_zeropad(name+len); 1930 } while (!has_zero(a, &adata, &constants)); 1931 1932 adata = prep_zero_mask(a, adata, &constants); 1933 mask = create_zero_mask(adata); 1934 x ^= a & zero_bytemask(mask); 1935 1936 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 1937 } 1938 EXPORT_SYMBOL(hashlen_string); 1939 1940 /* 1941 * Calculate the length and hash of the path component, and 1942 * return the "hash_len" as the result. 1943 */ 1944 static inline u64 hash_name(const void *salt, const char *name) 1945 { 1946 unsigned long a = 0, b, x = 0, y = (unsigned long)salt; 1947 unsigned long adata, bdata, mask, len; 1948 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1949 1950 len = 0; 1951 goto inside; 1952 1953 do { 1954 HASH_MIX(x, y, a); 1955 len += sizeof(unsigned long); 1956 inside: 1957 a = load_unaligned_zeropad(name+len); 1958 b = a ^ REPEAT_BYTE('/'); 1959 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 1960 1961 adata = prep_zero_mask(a, adata, &constants); 1962 bdata = prep_zero_mask(b, bdata, &constants); 1963 mask = create_zero_mask(adata | bdata); 1964 x ^= a & zero_bytemask(mask); 1965 1966 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 1967 } 1968 1969 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */ 1970 1971 /* Return the hash of a string of known length */ 1972 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 1973 { 1974 unsigned long hash = init_name_hash(salt); 1975 while (len--) 1976 hash = partial_name_hash((unsigned char)*name++, hash); 1977 return end_name_hash(hash); 1978 } 1979 EXPORT_SYMBOL(full_name_hash); 1980 1981 /* Return the "hash_len" (hash and length) of a null-terminated string */ 1982 u64 hashlen_string(const void *salt, const char *name) 1983 { 1984 unsigned long hash = init_name_hash(salt); 1985 unsigned long len = 0, c; 1986 1987 c = (unsigned char)*name; 1988 while (c) { 1989 len++; 1990 hash = partial_name_hash(c, hash); 1991 c = (unsigned char)name[len]; 1992 } 1993 return hashlen_create(end_name_hash(hash), len); 1994 } 1995 EXPORT_SYMBOL(hashlen_string); 1996 1997 /* 1998 * We know there's a real path component here of at least 1999 * one character. 2000 */ 2001 static inline u64 hash_name(const void *salt, const char *name) 2002 { 2003 unsigned long hash = init_name_hash(salt); 2004 unsigned long len = 0, c; 2005 2006 c = (unsigned char)*name; 2007 do { 2008 len++; 2009 hash = partial_name_hash(c, hash); 2010 c = (unsigned char)name[len]; 2011 } while (c && c != '/'); 2012 return hashlen_create(end_name_hash(hash), len); 2013 } 2014 2015 #endif 2016 2017 /* 2018 * Name resolution. 2019 * This is the basic name resolution function, turning a pathname into 2020 * the final dentry. We expect 'base' to be positive and a directory. 2021 * 2022 * Returns 0 and nd will have valid dentry and mnt on success. 2023 * Returns error and drops reference to input namei data on failure. 2024 */ 2025 static int link_path_walk(const char *name, struct nameidata *nd) 2026 { 2027 int err; 2028 2029 while (*name=='/') 2030 name++; 2031 if (!*name) 2032 return 0; 2033 2034 /* At this point we know we have a real path component. */ 2035 for(;;) { 2036 u64 hash_len; 2037 int type; 2038 2039 err = may_lookup(nd); 2040 if (err) 2041 return err; 2042 2043 hash_len = hash_name(nd->path.dentry, name); 2044 2045 type = LAST_NORM; 2046 if (name[0] == '.') switch (hashlen_len(hash_len)) { 2047 case 2: 2048 if (name[1] == '.') { 2049 type = LAST_DOTDOT; 2050 nd->flags |= LOOKUP_JUMPED; 2051 } 2052 break; 2053 case 1: 2054 type = LAST_DOT; 2055 } 2056 if (likely(type == LAST_NORM)) { 2057 struct dentry *parent = nd->path.dentry; 2058 nd->flags &= ~LOOKUP_JUMPED; 2059 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 2060 struct qstr this = { { .hash_len = hash_len }, .name = name }; 2061 err = parent->d_op->d_hash(parent, &this); 2062 if (err < 0) 2063 return err; 2064 hash_len = this.hash_len; 2065 name = this.name; 2066 } 2067 } 2068 2069 nd->last.hash_len = hash_len; 2070 nd->last.name = name; 2071 nd->last_type = type; 2072 2073 name += hashlen_len(hash_len); 2074 if (!*name) 2075 goto OK; 2076 /* 2077 * If it wasn't NUL, we know it was '/'. Skip that 2078 * slash, and continue until no more slashes. 2079 */ 2080 do { 2081 name++; 2082 } while (unlikely(*name == '/')); 2083 if (unlikely(!*name)) { 2084 OK: 2085 /* pathname body, done */ 2086 if (!nd->depth) 2087 return 0; 2088 name = nd->stack[nd->depth - 1].name; 2089 /* trailing symlink, done */ 2090 if (!name) 2091 return 0; 2092 /* last component of nested symlink */ 2093 err = walk_component(nd, WALK_FOLLOW); 2094 } else { 2095 /* not the last component */ 2096 err = walk_component(nd, WALK_FOLLOW | WALK_MORE); 2097 } 2098 if (err < 0) 2099 return err; 2100 2101 if (err) { 2102 const char *s = get_link(nd); 2103 2104 if (IS_ERR(s)) 2105 return PTR_ERR(s); 2106 err = 0; 2107 if (unlikely(!s)) { 2108 /* jumped */ 2109 put_link(nd); 2110 } else { 2111 nd->stack[nd->depth - 1].name = name; 2112 name = s; 2113 continue; 2114 } 2115 } 2116 if (unlikely(!d_can_lookup(nd->path.dentry))) { 2117 if (nd->flags & LOOKUP_RCU) { 2118 if (unlazy_walk(nd)) 2119 return -ECHILD; 2120 } 2121 return -ENOTDIR; 2122 } 2123 } 2124 } 2125 2126 static const char *path_init(struct nameidata *nd, unsigned flags) 2127 { 2128 const char *s = nd->name->name; 2129 2130 if (!*s) 2131 flags &= ~LOOKUP_RCU; 2132 2133 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 2134 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT; 2135 nd->depth = 0; 2136 if (flags & LOOKUP_ROOT) { 2137 struct dentry *root = nd->root.dentry; 2138 struct inode *inode = root->d_inode; 2139 if (*s && unlikely(!d_can_lookup(root))) 2140 return ERR_PTR(-ENOTDIR); 2141 nd->path = nd->root; 2142 nd->inode = inode; 2143 if (flags & LOOKUP_RCU) { 2144 rcu_read_lock(); 2145 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2146 nd->root_seq = nd->seq; 2147 nd->m_seq = read_seqbegin(&mount_lock); 2148 } else { 2149 path_get(&nd->path); 2150 } 2151 return s; 2152 } 2153 2154 nd->root.mnt = NULL; 2155 nd->path.mnt = NULL; 2156 nd->path.dentry = NULL; 2157 2158 nd->m_seq = read_seqbegin(&mount_lock); 2159 if (*s == '/') { 2160 if (flags & LOOKUP_RCU) 2161 rcu_read_lock(); 2162 set_root(nd); 2163 if (likely(!nd_jump_root(nd))) 2164 return s; 2165 nd->root.mnt = NULL; 2166 rcu_read_unlock(); 2167 return ERR_PTR(-ECHILD); 2168 } else if (nd->dfd == AT_FDCWD) { 2169 if (flags & LOOKUP_RCU) { 2170 struct fs_struct *fs = current->fs; 2171 unsigned seq; 2172 2173 rcu_read_lock(); 2174 2175 do { 2176 seq = read_seqcount_begin(&fs->seq); 2177 nd->path = fs->pwd; 2178 nd->inode = nd->path.dentry->d_inode; 2179 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2180 } while (read_seqcount_retry(&fs->seq, seq)); 2181 } else { 2182 get_fs_pwd(current->fs, &nd->path); 2183 nd->inode = nd->path.dentry->d_inode; 2184 } 2185 return s; 2186 } else { 2187 /* Caller must check execute permissions on the starting path component */ 2188 struct fd f = fdget_raw(nd->dfd); 2189 struct dentry *dentry; 2190 2191 if (!f.file) 2192 return ERR_PTR(-EBADF); 2193 2194 dentry = f.file->f_path.dentry; 2195 2196 if (*s) { 2197 if (!d_can_lookup(dentry)) { 2198 fdput(f); 2199 return ERR_PTR(-ENOTDIR); 2200 } 2201 } 2202 2203 nd->path = f.file->f_path; 2204 if (flags & LOOKUP_RCU) { 2205 rcu_read_lock(); 2206 nd->inode = nd->path.dentry->d_inode; 2207 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2208 } else { 2209 path_get(&nd->path); 2210 nd->inode = nd->path.dentry->d_inode; 2211 } 2212 fdput(f); 2213 return s; 2214 } 2215 } 2216 2217 static const char *trailing_symlink(struct nameidata *nd) 2218 { 2219 const char *s; 2220 int error = may_follow_link(nd); 2221 if (unlikely(error)) 2222 return ERR_PTR(error); 2223 nd->flags |= LOOKUP_PARENT; 2224 nd->stack[0].name = NULL; 2225 s = get_link(nd); 2226 return s ? s : ""; 2227 } 2228 2229 static inline int lookup_last(struct nameidata *nd) 2230 { 2231 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 2232 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2233 2234 nd->flags &= ~LOOKUP_PARENT; 2235 return walk_component(nd, 0); 2236 } 2237 2238 static int handle_lookup_down(struct nameidata *nd) 2239 { 2240 struct path path = nd->path; 2241 struct inode *inode = nd->inode; 2242 unsigned seq = nd->seq; 2243 int err; 2244 2245 if (nd->flags & LOOKUP_RCU) { 2246 /* 2247 * don't bother with unlazy_walk on failure - we are 2248 * at the very beginning of walk, so we lose nothing 2249 * if we simply redo everything in non-RCU mode 2250 */ 2251 if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq))) 2252 return -ECHILD; 2253 } else { 2254 dget(path.dentry); 2255 err = follow_managed(&path, nd); 2256 if (unlikely(err < 0)) 2257 return err; 2258 inode = d_backing_inode(path.dentry); 2259 seq = 0; 2260 } 2261 path_to_nameidata(&path, nd); 2262 nd->inode = inode; 2263 nd->seq = seq; 2264 return 0; 2265 } 2266 2267 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2268 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path) 2269 { 2270 const char *s = path_init(nd, flags); 2271 int err; 2272 2273 if (IS_ERR(s)) 2274 return PTR_ERR(s); 2275 2276 if (unlikely(flags & LOOKUP_DOWN)) { 2277 err = handle_lookup_down(nd); 2278 if (unlikely(err < 0)) { 2279 terminate_walk(nd); 2280 return err; 2281 } 2282 } 2283 2284 while (!(err = link_path_walk(s, nd)) 2285 && ((err = lookup_last(nd)) > 0)) { 2286 s = trailing_symlink(nd); 2287 if (IS_ERR(s)) { 2288 err = PTR_ERR(s); 2289 break; 2290 } 2291 } 2292 if (!err) 2293 err = complete_walk(nd); 2294 2295 if (!err && nd->flags & LOOKUP_DIRECTORY) 2296 if (!d_can_lookup(nd->path.dentry)) 2297 err = -ENOTDIR; 2298 if (!err) { 2299 *path = nd->path; 2300 nd->path.mnt = NULL; 2301 nd->path.dentry = NULL; 2302 } 2303 terminate_walk(nd); 2304 return err; 2305 } 2306 2307 static int filename_lookup(int dfd, struct filename *name, unsigned flags, 2308 struct path *path, struct path *root) 2309 { 2310 int retval; 2311 struct nameidata nd; 2312 if (IS_ERR(name)) 2313 return PTR_ERR(name); 2314 if (unlikely(root)) { 2315 nd.root = *root; 2316 flags |= LOOKUP_ROOT; 2317 } 2318 set_nameidata(&nd, dfd, name); 2319 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path); 2320 if (unlikely(retval == -ECHILD)) 2321 retval = path_lookupat(&nd, flags, path); 2322 if (unlikely(retval == -ESTALE)) 2323 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path); 2324 2325 if (likely(!retval)) 2326 audit_inode(name, path->dentry, flags & LOOKUP_PARENT); 2327 restore_nameidata(); 2328 putname(name); 2329 return retval; 2330 } 2331 2332 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2333 static int path_parentat(struct nameidata *nd, unsigned flags, 2334 struct path *parent) 2335 { 2336 const char *s = path_init(nd, flags); 2337 int err; 2338 if (IS_ERR(s)) 2339 return PTR_ERR(s); 2340 err = link_path_walk(s, nd); 2341 if (!err) 2342 err = complete_walk(nd); 2343 if (!err) { 2344 *parent = nd->path; 2345 nd->path.mnt = NULL; 2346 nd->path.dentry = NULL; 2347 } 2348 terminate_walk(nd); 2349 return err; 2350 } 2351 2352 static struct filename *filename_parentat(int dfd, struct filename *name, 2353 unsigned int flags, struct path *parent, 2354 struct qstr *last, int *type) 2355 { 2356 int retval; 2357 struct nameidata nd; 2358 2359 if (IS_ERR(name)) 2360 return name; 2361 set_nameidata(&nd, dfd, name); 2362 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent); 2363 if (unlikely(retval == -ECHILD)) 2364 retval = path_parentat(&nd, flags, parent); 2365 if (unlikely(retval == -ESTALE)) 2366 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent); 2367 if (likely(!retval)) { 2368 *last = nd.last; 2369 *type = nd.last_type; 2370 audit_inode(name, parent->dentry, LOOKUP_PARENT); 2371 } else { 2372 putname(name); 2373 name = ERR_PTR(retval); 2374 } 2375 restore_nameidata(); 2376 return name; 2377 } 2378 2379 /* does lookup, returns the object with parent locked */ 2380 struct dentry *kern_path_locked(const char *name, struct path *path) 2381 { 2382 struct filename *filename; 2383 struct dentry *d; 2384 struct qstr last; 2385 int type; 2386 2387 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path, 2388 &last, &type); 2389 if (IS_ERR(filename)) 2390 return ERR_CAST(filename); 2391 if (unlikely(type != LAST_NORM)) { 2392 path_put(path); 2393 putname(filename); 2394 return ERR_PTR(-EINVAL); 2395 } 2396 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 2397 d = __lookup_hash(&last, path->dentry, 0); 2398 if (IS_ERR(d)) { 2399 inode_unlock(path->dentry->d_inode); 2400 path_put(path); 2401 } 2402 putname(filename); 2403 return d; 2404 } 2405 2406 int kern_path(const char *name, unsigned int flags, struct path *path) 2407 { 2408 return filename_lookup(AT_FDCWD, getname_kernel(name), 2409 flags, path, NULL); 2410 } 2411 EXPORT_SYMBOL(kern_path); 2412 2413 /** 2414 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2415 * @dentry: pointer to dentry of the base directory 2416 * @mnt: pointer to vfs mount of the base directory 2417 * @name: pointer to file name 2418 * @flags: lookup flags 2419 * @path: pointer to struct path to fill 2420 */ 2421 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2422 const char *name, unsigned int flags, 2423 struct path *path) 2424 { 2425 struct path root = {.mnt = mnt, .dentry = dentry}; 2426 /* the first argument of filename_lookup() is ignored with root */ 2427 return filename_lookup(AT_FDCWD, getname_kernel(name), 2428 flags , path, &root); 2429 } 2430 EXPORT_SYMBOL(vfs_path_lookup); 2431 2432 static int lookup_one_len_common(const char *name, struct dentry *base, 2433 int len, struct qstr *this) 2434 { 2435 this->name = name; 2436 this->len = len; 2437 this->hash = full_name_hash(base, name, len); 2438 if (!len) 2439 return -EACCES; 2440 2441 if (unlikely(name[0] == '.')) { 2442 if (len < 2 || (len == 2 && name[1] == '.')) 2443 return -EACCES; 2444 } 2445 2446 while (len--) { 2447 unsigned int c = *(const unsigned char *)name++; 2448 if (c == '/' || c == '\0') 2449 return -EACCES; 2450 } 2451 /* 2452 * See if the low-level filesystem might want 2453 * to use its own hash.. 2454 */ 2455 if (base->d_flags & DCACHE_OP_HASH) { 2456 int err = base->d_op->d_hash(base, this); 2457 if (err < 0) 2458 return err; 2459 } 2460 2461 return inode_permission(base->d_inode, MAY_EXEC); 2462 } 2463 2464 /** 2465 * lookup_one_len - filesystem helper to lookup single pathname component 2466 * @name: pathname component to lookup 2467 * @base: base directory to lookup from 2468 * @len: maximum length @len should be interpreted to 2469 * 2470 * Note that this routine is purely a helper for filesystem usage and should 2471 * not be called by generic code. 2472 * 2473 * The caller must hold base->i_mutex. 2474 */ 2475 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2476 { 2477 struct dentry *dentry; 2478 struct qstr this; 2479 int err; 2480 2481 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2482 2483 err = lookup_one_len_common(name, base, len, &this); 2484 if (err) 2485 return ERR_PTR(err); 2486 2487 dentry = lookup_dcache(&this, base, 0); 2488 return dentry ? dentry : __lookup_slow(&this, base, 0); 2489 } 2490 EXPORT_SYMBOL(lookup_one_len); 2491 2492 /** 2493 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component 2494 * @name: pathname component to lookup 2495 * @base: base directory to lookup from 2496 * @len: maximum length @len should be interpreted to 2497 * 2498 * Note that this routine is purely a helper for filesystem usage and should 2499 * not be called by generic code. 2500 * 2501 * Unlike lookup_one_len, it should be called without the parent 2502 * i_mutex held, and will take the i_mutex itself if necessary. 2503 */ 2504 struct dentry *lookup_one_len_unlocked(const char *name, 2505 struct dentry *base, int len) 2506 { 2507 struct qstr this; 2508 int err; 2509 struct dentry *ret; 2510 2511 err = lookup_one_len_common(name, base, len, &this); 2512 if (err) 2513 return ERR_PTR(err); 2514 2515 ret = lookup_dcache(&this, base, 0); 2516 if (!ret) 2517 ret = lookup_slow(&this, base, 0); 2518 return ret; 2519 } 2520 EXPORT_SYMBOL(lookup_one_len_unlocked); 2521 2522 #ifdef CONFIG_UNIX98_PTYS 2523 int path_pts(struct path *path) 2524 { 2525 /* Find something mounted on "pts" in the same directory as 2526 * the input path. 2527 */ 2528 struct dentry *child, *parent; 2529 struct qstr this; 2530 int ret; 2531 2532 ret = path_parent_directory(path); 2533 if (ret) 2534 return ret; 2535 2536 parent = path->dentry; 2537 this.name = "pts"; 2538 this.len = 3; 2539 child = d_hash_and_lookup(parent, &this); 2540 if (!child) 2541 return -ENOENT; 2542 2543 path->dentry = child; 2544 dput(parent); 2545 follow_mount(path); 2546 return 0; 2547 } 2548 #endif 2549 2550 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2551 struct path *path, int *empty) 2552 { 2553 return filename_lookup(dfd, getname_flags(name, flags, empty), 2554 flags, path, NULL); 2555 } 2556 EXPORT_SYMBOL(user_path_at_empty); 2557 2558 /** 2559 * mountpoint_last - look up last component for umount 2560 * @nd: pathwalk nameidata - currently pointing at parent directory of "last" 2561 * 2562 * This is a special lookup_last function just for umount. In this case, we 2563 * need to resolve the path without doing any revalidation. 2564 * 2565 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since 2566 * mountpoints are always pinned in the dcache, their ancestors are too. Thus, 2567 * in almost all cases, this lookup will be served out of the dcache. The only 2568 * cases where it won't are if nd->last refers to a symlink or the path is 2569 * bogus and it doesn't exist. 2570 * 2571 * Returns: 2572 * -error: if there was an error during lookup. This includes -ENOENT if the 2573 * lookup found a negative dentry. 2574 * 2575 * 0: if we successfully resolved nd->last and found it to not to be a 2576 * symlink that needs to be followed. 2577 * 2578 * 1: if we successfully resolved nd->last and found it to be a symlink 2579 * that needs to be followed. 2580 */ 2581 static int 2582 mountpoint_last(struct nameidata *nd) 2583 { 2584 int error = 0; 2585 struct dentry *dir = nd->path.dentry; 2586 struct path path; 2587 2588 /* If we're in rcuwalk, drop out of it to handle last component */ 2589 if (nd->flags & LOOKUP_RCU) { 2590 if (unlazy_walk(nd)) 2591 return -ECHILD; 2592 } 2593 2594 nd->flags &= ~LOOKUP_PARENT; 2595 2596 if (unlikely(nd->last_type != LAST_NORM)) { 2597 error = handle_dots(nd, nd->last_type); 2598 if (error) 2599 return error; 2600 path.dentry = dget(nd->path.dentry); 2601 } else { 2602 path.dentry = d_lookup(dir, &nd->last); 2603 if (!path.dentry) { 2604 /* 2605 * No cached dentry. Mounted dentries are pinned in the 2606 * cache, so that means that this dentry is probably 2607 * a symlink or the path doesn't actually point 2608 * to a mounted dentry. 2609 */ 2610 path.dentry = lookup_slow(&nd->last, dir, 2611 nd->flags | LOOKUP_NO_REVAL); 2612 if (IS_ERR(path.dentry)) 2613 return PTR_ERR(path.dentry); 2614 } 2615 } 2616 if (d_is_negative(path.dentry)) { 2617 dput(path.dentry); 2618 return -ENOENT; 2619 } 2620 path.mnt = nd->path.mnt; 2621 return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0); 2622 } 2623 2624 /** 2625 * path_mountpoint - look up a path to be umounted 2626 * @nd: lookup context 2627 * @flags: lookup flags 2628 * @path: pointer to container for result 2629 * 2630 * Look up the given name, but don't attempt to revalidate the last component. 2631 * Returns 0 and "path" will be valid on success; Returns error otherwise. 2632 */ 2633 static int 2634 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path) 2635 { 2636 const char *s = path_init(nd, flags); 2637 int err; 2638 if (IS_ERR(s)) 2639 return PTR_ERR(s); 2640 while (!(err = link_path_walk(s, nd)) && 2641 (err = mountpoint_last(nd)) > 0) { 2642 s = trailing_symlink(nd); 2643 if (IS_ERR(s)) { 2644 err = PTR_ERR(s); 2645 break; 2646 } 2647 } 2648 if (!err) { 2649 *path = nd->path; 2650 nd->path.mnt = NULL; 2651 nd->path.dentry = NULL; 2652 follow_mount(path); 2653 } 2654 terminate_walk(nd); 2655 return err; 2656 } 2657 2658 static int 2659 filename_mountpoint(int dfd, struct filename *name, struct path *path, 2660 unsigned int flags) 2661 { 2662 struct nameidata nd; 2663 int error; 2664 if (IS_ERR(name)) 2665 return PTR_ERR(name); 2666 set_nameidata(&nd, dfd, name); 2667 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path); 2668 if (unlikely(error == -ECHILD)) 2669 error = path_mountpoint(&nd, flags, path); 2670 if (unlikely(error == -ESTALE)) 2671 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path); 2672 if (likely(!error)) 2673 audit_inode(name, path->dentry, 0); 2674 restore_nameidata(); 2675 putname(name); 2676 return error; 2677 } 2678 2679 /** 2680 * user_path_mountpoint_at - lookup a path from userland in order to umount it 2681 * @dfd: directory file descriptor 2682 * @name: pathname from userland 2683 * @flags: lookup flags 2684 * @path: pointer to container to hold result 2685 * 2686 * A umount is a special case for path walking. We're not actually interested 2687 * in the inode in this situation, and ESTALE errors can be a problem. We 2688 * simply want track down the dentry and vfsmount attached at the mountpoint 2689 * and avoid revalidating the last component. 2690 * 2691 * Returns 0 and populates "path" on success. 2692 */ 2693 int 2694 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags, 2695 struct path *path) 2696 { 2697 return filename_mountpoint(dfd, getname(name), path, flags); 2698 } 2699 2700 int 2701 kern_path_mountpoint(int dfd, const char *name, struct path *path, 2702 unsigned int flags) 2703 { 2704 return filename_mountpoint(dfd, getname_kernel(name), path, flags); 2705 } 2706 EXPORT_SYMBOL(kern_path_mountpoint); 2707 2708 int __check_sticky(struct inode *dir, struct inode *inode) 2709 { 2710 kuid_t fsuid = current_fsuid(); 2711 2712 if (uid_eq(inode->i_uid, fsuid)) 2713 return 0; 2714 if (uid_eq(dir->i_uid, fsuid)) 2715 return 0; 2716 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER); 2717 } 2718 EXPORT_SYMBOL(__check_sticky); 2719 2720 /* 2721 * Check whether we can remove a link victim from directory dir, check 2722 * whether the type of victim is right. 2723 * 1. We can't do it if dir is read-only (done in permission()) 2724 * 2. We should have write and exec permissions on dir 2725 * 3. We can't remove anything from append-only dir 2726 * 4. We can't do anything with immutable dir (done in permission()) 2727 * 5. If the sticky bit on dir is set we should either 2728 * a. be owner of dir, or 2729 * b. be owner of victim, or 2730 * c. have CAP_FOWNER capability 2731 * 6. If the victim is append-only or immutable we can't do antyhing with 2732 * links pointing to it. 2733 * 7. If the victim has an unknown uid or gid we can't change the inode. 2734 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2735 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2736 * 10. We can't remove a root or mountpoint. 2737 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by 2738 * nfs_async_unlink(). 2739 */ 2740 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir) 2741 { 2742 struct inode *inode = d_backing_inode(victim); 2743 int error; 2744 2745 if (d_is_negative(victim)) 2746 return -ENOENT; 2747 BUG_ON(!inode); 2748 2749 BUG_ON(victim->d_parent->d_inode != dir); 2750 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2751 2752 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 2753 if (error) 2754 return error; 2755 if (IS_APPEND(dir)) 2756 return -EPERM; 2757 2758 if (check_sticky(dir, inode) || IS_APPEND(inode) || 2759 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode)) 2760 return -EPERM; 2761 if (isdir) { 2762 if (!d_is_dir(victim)) 2763 return -ENOTDIR; 2764 if (IS_ROOT(victim)) 2765 return -EBUSY; 2766 } else if (d_is_dir(victim)) 2767 return -EISDIR; 2768 if (IS_DEADDIR(dir)) 2769 return -ENOENT; 2770 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2771 return -EBUSY; 2772 return 0; 2773 } 2774 2775 /* Check whether we can create an object with dentry child in directory 2776 * dir. 2777 * 1. We can't do it if child already exists (open has special treatment for 2778 * this case, but since we are inlined it's OK) 2779 * 2. We can't do it if dir is read-only (done in permission()) 2780 * 3. We can't do it if the fs can't represent the fsuid or fsgid. 2781 * 4. We should have write and exec permissions on dir 2782 * 5. We can't do it if dir is immutable (done in permission()) 2783 */ 2784 static inline int may_create(struct inode *dir, struct dentry *child) 2785 { 2786 struct user_namespace *s_user_ns; 2787 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 2788 if (child->d_inode) 2789 return -EEXIST; 2790 if (IS_DEADDIR(dir)) 2791 return -ENOENT; 2792 s_user_ns = dir->i_sb->s_user_ns; 2793 if (!kuid_has_mapping(s_user_ns, current_fsuid()) || 2794 !kgid_has_mapping(s_user_ns, current_fsgid())) 2795 return -EOVERFLOW; 2796 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 2797 } 2798 2799 /* 2800 * p1 and p2 should be directories on the same fs. 2801 */ 2802 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2803 { 2804 struct dentry *p; 2805 2806 if (p1 == p2) { 2807 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2808 return NULL; 2809 } 2810 2811 mutex_lock(&p1->d_sb->s_vfs_rename_mutex); 2812 2813 p = d_ancestor(p2, p1); 2814 if (p) { 2815 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 2816 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD); 2817 return p; 2818 } 2819 2820 p = d_ancestor(p1, p2); 2821 if (p) { 2822 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2823 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD); 2824 return p; 2825 } 2826 2827 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2828 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 2829 return NULL; 2830 } 2831 EXPORT_SYMBOL(lock_rename); 2832 2833 void unlock_rename(struct dentry *p1, struct dentry *p2) 2834 { 2835 inode_unlock(p1->d_inode); 2836 if (p1 != p2) { 2837 inode_unlock(p2->d_inode); 2838 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 2839 } 2840 } 2841 EXPORT_SYMBOL(unlock_rename); 2842 2843 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2844 bool want_excl) 2845 { 2846 int error = may_create(dir, dentry); 2847 if (error) 2848 return error; 2849 2850 if (!dir->i_op->create) 2851 return -EACCES; /* shouldn't it be ENOSYS? */ 2852 mode &= S_IALLUGO; 2853 mode |= S_IFREG; 2854 error = security_inode_create(dir, dentry, mode); 2855 if (error) 2856 return error; 2857 error = dir->i_op->create(dir, dentry, mode, want_excl); 2858 if (!error) 2859 fsnotify_create(dir, dentry); 2860 return error; 2861 } 2862 EXPORT_SYMBOL(vfs_create); 2863 2864 int vfs_mkobj(struct dentry *dentry, umode_t mode, 2865 int (*f)(struct dentry *, umode_t, void *), 2866 void *arg) 2867 { 2868 struct inode *dir = dentry->d_parent->d_inode; 2869 int error = may_create(dir, dentry); 2870 if (error) 2871 return error; 2872 2873 mode &= S_IALLUGO; 2874 mode |= S_IFREG; 2875 error = security_inode_create(dir, dentry, mode); 2876 if (error) 2877 return error; 2878 error = f(dentry, mode, arg); 2879 if (!error) 2880 fsnotify_create(dir, dentry); 2881 return error; 2882 } 2883 EXPORT_SYMBOL(vfs_mkobj); 2884 2885 bool may_open_dev(const struct path *path) 2886 { 2887 return !(path->mnt->mnt_flags & MNT_NODEV) && 2888 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV); 2889 } 2890 2891 static int may_open(const struct path *path, int acc_mode, int flag) 2892 { 2893 struct dentry *dentry = path->dentry; 2894 struct inode *inode = dentry->d_inode; 2895 int error; 2896 2897 if (!inode) 2898 return -ENOENT; 2899 2900 switch (inode->i_mode & S_IFMT) { 2901 case S_IFLNK: 2902 return -ELOOP; 2903 case S_IFDIR: 2904 if (acc_mode & MAY_WRITE) 2905 return -EISDIR; 2906 break; 2907 case S_IFBLK: 2908 case S_IFCHR: 2909 if (!may_open_dev(path)) 2910 return -EACCES; 2911 /*FALLTHRU*/ 2912 case S_IFIFO: 2913 case S_IFSOCK: 2914 flag &= ~O_TRUNC; 2915 break; 2916 } 2917 2918 error = inode_permission(inode, MAY_OPEN | acc_mode); 2919 if (error) 2920 return error; 2921 2922 /* 2923 * An append-only file must be opened in append mode for writing. 2924 */ 2925 if (IS_APPEND(inode)) { 2926 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2927 return -EPERM; 2928 if (flag & O_TRUNC) 2929 return -EPERM; 2930 } 2931 2932 /* O_NOATIME can only be set by the owner or superuser */ 2933 if (flag & O_NOATIME && !inode_owner_or_capable(inode)) 2934 return -EPERM; 2935 2936 return 0; 2937 } 2938 2939 static int handle_truncate(struct file *filp) 2940 { 2941 const struct path *path = &filp->f_path; 2942 struct inode *inode = path->dentry->d_inode; 2943 int error = get_write_access(inode); 2944 if (error) 2945 return error; 2946 /* 2947 * Refuse to truncate files with mandatory locks held on them. 2948 */ 2949 error = locks_verify_locked(filp); 2950 if (!error) 2951 error = security_path_truncate(path); 2952 if (!error) { 2953 error = do_truncate(path->dentry, 0, 2954 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 2955 filp); 2956 } 2957 put_write_access(inode); 2958 return error; 2959 } 2960 2961 static inline int open_to_namei_flags(int flag) 2962 { 2963 if ((flag & O_ACCMODE) == 3) 2964 flag--; 2965 return flag; 2966 } 2967 2968 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode) 2969 { 2970 struct user_namespace *s_user_ns; 2971 int error = security_path_mknod(dir, dentry, mode, 0); 2972 if (error) 2973 return error; 2974 2975 s_user_ns = dir->dentry->d_sb->s_user_ns; 2976 if (!kuid_has_mapping(s_user_ns, current_fsuid()) || 2977 !kgid_has_mapping(s_user_ns, current_fsgid())) 2978 return -EOVERFLOW; 2979 2980 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC); 2981 if (error) 2982 return error; 2983 2984 return security_inode_create(dir->dentry->d_inode, dentry, mode); 2985 } 2986 2987 /* 2988 * Attempt to atomically look up, create and open a file from a negative 2989 * dentry. 2990 * 2991 * Returns 0 if successful. The file will have been created and attached to 2992 * @file by the filesystem calling finish_open(). 2993 * 2994 * Returns 1 if the file was looked up only or didn't need creating. The 2995 * caller will need to perform the open themselves. @path will have been 2996 * updated to point to the new dentry. This may be negative. 2997 * 2998 * Returns an error code otherwise. 2999 */ 3000 static int atomic_open(struct nameidata *nd, struct dentry *dentry, 3001 struct path *path, struct file *file, 3002 const struct open_flags *op, 3003 int open_flag, umode_t mode, 3004 int *opened) 3005 { 3006 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 3007 struct inode *dir = nd->path.dentry->d_inode; 3008 int error; 3009 3010 if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */ 3011 open_flag &= ~O_TRUNC; 3012 3013 if (nd->flags & LOOKUP_DIRECTORY) 3014 open_flag |= O_DIRECTORY; 3015 3016 file->f_path.dentry = DENTRY_NOT_SET; 3017 file->f_path.mnt = nd->path.mnt; 3018 error = dir->i_op->atomic_open(dir, dentry, file, 3019 open_to_namei_flags(open_flag), 3020 mode, opened); 3021 d_lookup_done(dentry); 3022 if (!error) { 3023 /* 3024 * We didn't have the inode before the open, so check open 3025 * permission here. 3026 */ 3027 int acc_mode = op->acc_mode; 3028 if (*opened & FILE_CREATED) { 3029 WARN_ON(!(open_flag & O_CREAT)); 3030 fsnotify_create(dir, dentry); 3031 acc_mode = 0; 3032 } 3033 error = may_open(&file->f_path, acc_mode, open_flag); 3034 if (WARN_ON(error > 0)) 3035 error = -EINVAL; 3036 } else if (error > 0) { 3037 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 3038 error = -EIO; 3039 } else { 3040 if (file->f_path.dentry) { 3041 dput(dentry); 3042 dentry = file->f_path.dentry; 3043 } 3044 if (*opened & FILE_CREATED) 3045 fsnotify_create(dir, dentry); 3046 if (unlikely(d_is_negative(dentry))) { 3047 error = -ENOENT; 3048 } else { 3049 path->dentry = dentry; 3050 path->mnt = nd->path.mnt; 3051 return 1; 3052 } 3053 } 3054 } 3055 dput(dentry); 3056 return error; 3057 } 3058 3059 /* 3060 * Look up and maybe create and open the last component. 3061 * 3062 * Must be called with i_mutex held on parent. 3063 * 3064 * Returns 0 if the file was successfully atomically created (if necessary) and 3065 * opened. In this case the file will be returned attached to @file. 3066 * 3067 * Returns 1 if the file was not completely opened at this time, though lookups 3068 * and creations will have been performed and the dentry returned in @path will 3069 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't 3070 * specified then a negative dentry may be returned. 3071 * 3072 * An error code is returned otherwise. 3073 * 3074 * FILE_CREATE will be set in @*opened if the dentry was created and will be 3075 * cleared otherwise prior to returning. 3076 */ 3077 static int lookup_open(struct nameidata *nd, struct path *path, 3078 struct file *file, 3079 const struct open_flags *op, 3080 bool got_write, int *opened) 3081 { 3082 struct dentry *dir = nd->path.dentry; 3083 struct inode *dir_inode = dir->d_inode; 3084 int open_flag = op->open_flag; 3085 struct dentry *dentry; 3086 int error, create_error = 0; 3087 umode_t mode = op->mode; 3088 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 3089 3090 if (unlikely(IS_DEADDIR(dir_inode))) 3091 return -ENOENT; 3092 3093 *opened &= ~FILE_CREATED; 3094 dentry = d_lookup(dir, &nd->last); 3095 for (;;) { 3096 if (!dentry) { 3097 dentry = d_alloc_parallel(dir, &nd->last, &wq); 3098 if (IS_ERR(dentry)) 3099 return PTR_ERR(dentry); 3100 } 3101 if (d_in_lookup(dentry)) 3102 break; 3103 3104 error = d_revalidate(dentry, nd->flags); 3105 if (likely(error > 0)) 3106 break; 3107 if (error) 3108 goto out_dput; 3109 d_invalidate(dentry); 3110 dput(dentry); 3111 dentry = NULL; 3112 } 3113 if (dentry->d_inode) { 3114 /* Cached positive dentry: will open in f_op->open */ 3115 goto out_no_open; 3116 } 3117 3118 /* 3119 * Checking write permission is tricky, bacuse we don't know if we are 3120 * going to actually need it: O_CREAT opens should work as long as the 3121 * file exists. But checking existence breaks atomicity. The trick is 3122 * to check access and if not granted clear O_CREAT from the flags. 3123 * 3124 * Another problem is returing the "right" error value (e.g. for an 3125 * O_EXCL open we want to return EEXIST not EROFS). 3126 */ 3127 if (open_flag & O_CREAT) { 3128 if (!IS_POSIXACL(dir->d_inode)) 3129 mode &= ~current_umask(); 3130 if (unlikely(!got_write)) { 3131 create_error = -EROFS; 3132 open_flag &= ~O_CREAT; 3133 if (open_flag & (O_EXCL | O_TRUNC)) 3134 goto no_open; 3135 /* No side effects, safe to clear O_CREAT */ 3136 } else { 3137 create_error = may_o_create(&nd->path, dentry, mode); 3138 if (create_error) { 3139 open_flag &= ~O_CREAT; 3140 if (open_flag & O_EXCL) 3141 goto no_open; 3142 } 3143 } 3144 } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) && 3145 unlikely(!got_write)) { 3146 /* 3147 * No O_CREATE -> atomicity not a requirement -> fall 3148 * back to lookup + open 3149 */ 3150 goto no_open; 3151 } 3152 3153 if (dir_inode->i_op->atomic_open) { 3154 error = atomic_open(nd, dentry, path, file, op, open_flag, 3155 mode, opened); 3156 if (unlikely(error == -ENOENT) && create_error) 3157 error = create_error; 3158 return error; 3159 } 3160 3161 no_open: 3162 if (d_in_lookup(dentry)) { 3163 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry, 3164 nd->flags); 3165 d_lookup_done(dentry); 3166 if (unlikely(res)) { 3167 if (IS_ERR(res)) { 3168 error = PTR_ERR(res); 3169 goto out_dput; 3170 } 3171 dput(dentry); 3172 dentry = res; 3173 } 3174 } 3175 3176 /* Negative dentry, just create the file */ 3177 if (!dentry->d_inode && (open_flag & O_CREAT)) { 3178 *opened |= FILE_CREATED; 3179 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE); 3180 if (!dir_inode->i_op->create) { 3181 error = -EACCES; 3182 goto out_dput; 3183 } 3184 error = dir_inode->i_op->create(dir_inode, dentry, mode, 3185 open_flag & O_EXCL); 3186 if (error) 3187 goto out_dput; 3188 fsnotify_create(dir_inode, dentry); 3189 } 3190 if (unlikely(create_error) && !dentry->d_inode) { 3191 error = create_error; 3192 goto out_dput; 3193 } 3194 out_no_open: 3195 path->dentry = dentry; 3196 path->mnt = nd->path.mnt; 3197 return 1; 3198 3199 out_dput: 3200 dput(dentry); 3201 return error; 3202 } 3203 3204 /* 3205 * Handle the last step of open() 3206 */ 3207 static int do_last(struct nameidata *nd, 3208 struct file *file, const struct open_flags *op, 3209 int *opened) 3210 { 3211 struct dentry *dir = nd->path.dentry; 3212 int open_flag = op->open_flag; 3213 bool will_truncate = (open_flag & O_TRUNC) != 0; 3214 bool got_write = false; 3215 int acc_mode = op->acc_mode; 3216 unsigned seq; 3217 struct inode *inode; 3218 struct path path; 3219 int error; 3220 3221 nd->flags &= ~LOOKUP_PARENT; 3222 nd->flags |= op->intent; 3223 3224 if (nd->last_type != LAST_NORM) { 3225 error = handle_dots(nd, nd->last_type); 3226 if (unlikely(error)) 3227 return error; 3228 goto finish_open; 3229 } 3230 3231 if (!(open_flag & O_CREAT)) { 3232 if (nd->last.name[nd->last.len]) 3233 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 3234 /* we _can_ be in RCU mode here */ 3235 error = lookup_fast(nd, &path, &inode, &seq); 3236 if (likely(error > 0)) 3237 goto finish_lookup; 3238 3239 if (error < 0) 3240 return error; 3241 3242 BUG_ON(nd->inode != dir->d_inode); 3243 BUG_ON(nd->flags & LOOKUP_RCU); 3244 } else { 3245 /* create side of things */ 3246 /* 3247 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED 3248 * has been cleared when we got to the last component we are 3249 * about to look up 3250 */ 3251 error = complete_walk(nd); 3252 if (error) 3253 return error; 3254 3255 audit_inode(nd->name, dir, LOOKUP_PARENT); 3256 /* trailing slashes? */ 3257 if (unlikely(nd->last.name[nd->last.len])) 3258 return -EISDIR; 3259 } 3260 3261 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 3262 error = mnt_want_write(nd->path.mnt); 3263 if (!error) 3264 got_write = true; 3265 /* 3266 * do _not_ fail yet - we might not need that or fail with 3267 * a different error; let lookup_open() decide; we'll be 3268 * dropping this one anyway. 3269 */ 3270 } 3271 if (open_flag & O_CREAT) 3272 inode_lock(dir->d_inode); 3273 else 3274 inode_lock_shared(dir->d_inode); 3275 error = lookup_open(nd, &path, file, op, got_write, opened); 3276 if (open_flag & O_CREAT) 3277 inode_unlock(dir->d_inode); 3278 else 3279 inode_unlock_shared(dir->d_inode); 3280 3281 if (error <= 0) { 3282 if (error) 3283 goto out; 3284 3285 if ((*opened & FILE_CREATED) || 3286 !S_ISREG(file_inode(file)->i_mode)) 3287 will_truncate = false; 3288 3289 audit_inode(nd->name, file->f_path.dentry, 0); 3290 goto opened; 3291 } 3292 3293 if (*opened & FILE_CREATED) { 3294 /* Don't check for write permission, don't truncate */ 3295 open_flag &= ~O_TRUNC; 3296 will_truncate = false; 3297 acc_mode = 0; 3298 path_to_nameidata(&path, nd); 3299 goto finish_open_created; 3300 } 3301 3302 /* 3303 * If atomic_open() acquired write access it is dropped now due to 3304 * possible mount and symlink following (this might be optimized away if 3305 * necessary...) 3306 */ 3307 if (got_write) { 3308 mnt_drop_write(nd->path.mnt); 3309 got_write = false; 3310 } 3311 3312 error = follow_managed(&path, nd); 3313 if (unlikely(error < 0)) 3314 return error; 3315 3316 if (unlikely(d_is_negative(path.dentry))) { 3317 path_to_nameidata(&path, nd); 3318 return -ENOENT; 3319 } 3320 3321 /* 3322 * create/update audit record if it already exists. 3323 */ 3324 audit_inode(nd->name, path.dentry, 0); 3325 3326 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) { 3327 path_to_nameidata(&path, nd); 3328 return -EEXIST; 3329 } 3330 3331 seq = 0; /* out of RCU mode, so the value doesn't matter */ 3332 inode = d_backing_inode(path.dentry); 3333 finish_lookup: 3334 error = step_into(nd, &path, 0, inode, seq); 3335 if (unlikely(error)) 3336 return error; 3337 finish_open: 3338 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */ 3339 error = complete_walk(nd); 3340 if (error) 3341 return error; 3342 audit_inode(nd->name, nd->path.dentry, 0); 3343 error = -EISDIR; 3344 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry)) 3345 goto out; 3346 error = -ENOTDIR; 3347 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3348 goto out; 3349 if (!d_is_reg(nd->path.dentry)) 3350 will_truncate = false; 3351 3352 if (will_truncate) { 3353 error = mnt_want_write(nd->path.mnt); 3354 if (error) 3355 goto out; 3356 got_write = true; 3357 } 3358 finish_open_created: 3359 error = may_open(&nd->path, acc_mode, open_flag); 3360 if (error) 3361 goto out; 3362 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */ 3363 error = vfs_open(&nd->path, file, current_cred()); 3364 if (error) 3365 goto out; 3366 *opened |= FILE_OPENED; 3367 opened: 3368 error = open_check_o_direct(file); 3369 if (!error) 3370 error = ima_file_check(file, op->acc_mode, *opened); 3371 if (!error && will_truncate) 3372 error = handle_truncate(file); 3373 out: 3374 if (unlikely(error) && (*opened & FILE_OPENED)) 3375 fput(file); 3376 if (unlikely(error > 0)) { 3377 WARN_ON(1); 3378 error = -EINVAL; 3379 } 3380 if (got_write) 3381 mnt_drop_write(nd->path.mnt); 3382 return error; 3383 } 3384 3385 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag) 3386 { 3387 struct dentry *child = NULL; 3388 struct inode *dir = dentry->d_inode; 3389 struct inode *inode; 3390 int error; 3391 3392 /* we want directory to be writable */ 3393 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 3394 if (error) 3395 goto out_err; 3396 error = -EOPNOTSUPP; 3397 if (!dir->i_op->tmpfile) 3398 goto out_err; 3399 error = -ENOMEM; 3400 child = d_alloc(dentry, &slash_name); 3401 if (unlikely(!child)) 3402 goto out_err; 3403 error = dir->i_op->tmpfile(dir, child, mode); 3404 if (error) 3405 goto out_err; 3406 error = -ENOENT; 3407 inode = child->d_inode; 3408 if (unlikely(!inode)) 3409 goto out_err; 3410 if (!(open_flag & O_EXCL)) { 3411 spin_lock(&inode->i_lock); 3412 inode->i_state |= I_LINKABLE; 3413 spin_unlock(&inode->i_lock); 3414 } 3415 return child; 3416 3417 out_err: 3418 dput(child); 3419 return ERR_PTR(error); 3420 } 3421 EXPORT_SYMBOL(vfs_tmpfile); 3422 3423 static int do_tmpfile(struct nameidata *nd, unsigned flags, 3424 const struct open_flags *op, 3425 struct file *file, int *opened) 3426 { 3427 struct dentry *child; 3428 struct path path; 3429 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path); 3430 if (unlikely(error)) 3431 return error; 3432 error = mnt_want_write(path.mnt); 3433 if (unlikely(error)) 3434 goto out; 3435 child = vfs_tmpfile(path.dentry, op->mode, op->open_flag); 3436 error = PTR_ERR(child); 3437 if (IS_ERR(child)) 3438 goto out2; 3439 dput(path.dentry); 3440 path.dentry = child; 3441 audit_inode(nd->name, child, 0); 3442 /* Don't check for other permissions, the inode was just created */ 3443 error = may_open(&path, 0, op->open_flag); 3444 if (error) 3445 goto out2; 3446 file->f_path.mnt = path.mnt; 3447 error = finish_open(file, child, NULL, opened); 3448 if (error) 3449 goto out2; 3450 error = open_check_o_direct(file); 3451 if (error) 3452 fput(file); 3453 out2: 3454 mnt_drop_write(path.mnt); 3455 out: 3456 path_put(&path); 3457 return error; 3458 } 3459 3460 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file) 3461 { 3462 struct path path; 3463 int error = path_lookupat(nd, flags, &path); 3464 if (!error) { 3465 audit_inode(nd->name, path.dentry, 0); 3466 error = vfs_open(&path, file, current_cred()); 3467 path_put(&path); 3468 } 3469 return error; 3470 } 3471 3472 static struct file *path_openat(struct nameidata *nd, 3473 const struct open_flags *op, unsigned flags) 3474 { 3475 const char *s; 3476 struct file *file; 3477 int opened = 0; 3478 int error; 3479 3480 file = get_empty_filp(); 3481 if (IS_ERR(file)) 3482 return file; 3483 3484 file->f_flags = op->open_flag; 3485 3486 if (unlikely(file->f_flags & __O_TMPFILE)) { 3487 error = do_tmpfile(nd, flags, op, file, &opened); 3488 goto out2; 3489 } 3490 3491 if (unlikely(file->f_flags & O_PATH)) { 3492 error = do_o_path(nd, flags, file); 3493 if (!error) 3494 opened |= FILE_OPENED; 3495 goto out2; 3496 } 3497 3498 s = path_init(nd, flags); 3499 if (IS_ERR(s)) { 3500 put_filp(file); 3501 return ERR_CAST(s); 3502 } 3503 while (!(error = link_path_walk(s, nd)) && 3504 (error = do_last(nd, file, op, &opened)) > 0) { 3505 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3506 s = trailing_symlink(nd); 3507 if (IS_ERR(s)) { 3508 error = PTR_ERR(s); 3509 break; 3510 } 3511 } 3512 terminate_walk(nd); 3513 out2: 3514 if (!(opened & FILE_OPENED)) { 3515 BUG_ON(!error); 3516 put_filp(file); 3517 } 3518 if (unlikely(error)) { 3519 if (error == -EOPENSTALE) { 3520 if (flags & LOOKUP_RCU) 3521 error = -ECHILD; 3522 else 3523 error = -ESTALE; 3524 } 3525 file = ERR_PTR(error); 3526 } 3527 return file; 3528 } 3529 3530 struct file *do_filp_open(int dfd, struct filename *pathname, 3531 const struct open_flags *op) 3532 { 3533 struct nameidata nd; 3534 int flags = op->lookup_flags; 3535 struct file *filp; 3536 3537 set_nameidata(&nd, dfd, pathname); 3538 filp = path_openat(&nd, op, flags | LOOKUP_RCU); 3539 if (unlikely(filp == ERR_PTR(-ECHILD))) 3540 filp = path_openat(&nd, op, flags); 3541 if (unlikely(filp == ERR_PTR(-ESTALE))) 3542 filp = path_openat(&nd, op, flags | LOOKUP_REVAL); 3543 restore_nameidata(); 3544 return filp; 3545 } 3546 3547 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 3548 const char *name, const struct open_flags *op) 3549 { 3550 struct nameidata nd; 3551 struct file *file; 3552 struct filename *filename; 3553 int flags = op->lookup_flags | LOOKUP_ROOT; 3554 3555 nd.root.mnt = mnt; 3556 nd.root.dentry = dentry; 3557 3558 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN) 3559 return ERR_PTR(-ELOOP); 3560 3561 filename = getname_kernel(name); 3562 if (IS_ERR(filename)) 3563 return ERR_CAST(filename); 3564 3565 set_nameidata(&nd, -1, filename); 3566 file = path_openat(&nd, op, flags | LOOKUP_RCU); 3567 if (unlikely(file == ERR_PTR(-ECHILD))) 3568 file = path_openat(&nd, op, flags); 3569 if (unlikely(file == ERR_PTR(-ESTALE))) 3570 file = path_openat(&nd, op, flags | LOOKUP_REVAL); 3571 restore_nameidata(); 3572 putname(filename); 3573 return file; 3574 } 3575 3576 static struct dentry *filename_create(int dfd, struct filename *name, 3577 struct path *path, unsigned int lookup_flags) 3578 { 3579 struct dentry *dentry = ERR_PTR(-EEXIST); 3580 struct qstr last; 3581 int type; 3582 int err2; 3583 int error; 3584 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY); 3585 3586 /* 3587 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any 3588 * other flags passed in are ignored! 3589 */ 3590 lookup_flags &= LOOKUP_REVAL; 3591 3592 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type); 3593 if (IS_ERR(name)) 3594 return ERR_CAST(name); 3595 3596 /* 3597 * Yucky last component or no last component at all? 3598 * (foo/., foo/.., /////) 3599 */ 3600 if (unlikely(type != LAST_NORM)) 3601 goto out; 3602 3603 /* don't fail immediately if it's r/o, at least try to report other errors */ 3604 err2 = mnt_want_write(path->mnt); 3605 /* 3606 * Do the final lookup. 3607 */ 3608 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL; 3609 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 3610 dentry = __lookup_hash(&last, path->dentry, lookup_flags); 3611 if (IS_ERR(dentry)) 3612 goto unlock; 3613 3614 error = -EEXIST; 3615 if (d_is_positive(dentry)) 3616 goto fail; 3617 3618 /* 3619 * Special case - lookup gave negative, but... we had foo/bar/ 3620 * From the vfs_mknod() POV we just have a negative dentry - 3621 * all is fine. Let's be bastards - you had / on the end, you've 3622 * been asking for (non-existent) directory. -ENOENT for you. 3623 */ 3624 if (unlikely(!is_dir && last.name[last.len])) { 3625 error = -ENOENT; 3626 goto fail; 3627 } 3628 if (unlikely(err2)) { 3629 error = err2; 3630 goto fail; 3631 } 3632 putname(name); 3633 return dentry; 3634 fail: 3635 dput(dentry); 3636 dentry = ERR_PTR(error); 3637 unlock: 3638 inode_unlock(path->dentry->d_inode); 3639 if (!err2) 3640 mnt_drop_write(path->mnt); 3641 out: 3642 path_put(path); 3643 putname(name); 3644 return dentry; 3645 } 3646 3647 struct dentry *kern_path_create(int dfd, const char *pathname, 3648 struct path *path, unsigned int lookup_flags) 3649 { 3650 return filename_create(dfd, getname_kernel(pathname), 3651 path, lookup_flags); 3652 } 3653 EXPORT_SYMBOL(kern_path_create); 3654 3655 void done_path_create(struct path *path, struct dentry *dentry) 3656 { 3657 dput(dentry); 3658 inode_unlock(path->dentry->d_inode); 3659 mnt_drop_write(path->mnt); 3660 path_put(path); 3661 } 3662 EXPORT_SYMBOL(done_path_create); 3663 3664 inline struct dentry *user_path_create(int dfd, const char __user *pathname, 3665 struct path *path, unsigned int lookup_flags) 3666 { 3667 return filename_create(dfd, getname(pathname), path, lookup_flags); 3668 } 3669 EXPORT_SYMBOL(user_path_create); 3670 3671 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 3672 { 3673 int error = may_create(dir, dentry); 3674 3675 if (error) 3676 return error; 3677 3678 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 3679 return -EPERM; 3680 3681 if (!dir->i_op->mknod) 3682 return -EPERM; 3683 3684 error = devcgroup_inode_mknod(mode, dev); 3685 if (error) 3686 return error; 3687 3688 error = security_inode_mknod(dir, dentry, mode, dev); 3689 if (error) 3690 return error; 3691 3692 error = dir->i_op->mknod(dir, dentry, mode, dev); 3693 if (!error) 3694 fsnotify_create(dir, dentry); 3695 return error; 3696 } 3697 EXPORT_SYMBOL(vfs_mknod); 3698 3699 static int may_mknod(umode_t mode) 3700 { 3701 switch (mode & S_IFMT) { 3702 case S_IFREG: 3703 case S_IFCHR: 3704 case S_IFBLK: 3705 case S_IFIFO: 3706 case S_IFSOCK: 3707 case 0: /* zero mode translates to S_IFREG */ 3708 return 0; 3709 case S_IFDIR: 3710 return -EPERM; 3711 default: 3712 return -EINVAL; 3713 } 3714 } 3715 3716 long do_mknodat(int dfd, const char __user *filename, umode_t mode, 3717 unsigned int dev) 3718 { 3719 struct dentry *dentry; 3720 struct path path; 3721 int error; 3722 unsigned int lookup_flags = 0; 3723 3724 error = may_mknod(mode); 3725 if (error) 3726 return error; 3727 retry: 3728 dentry = user_path_create(dfd, filename, &path, lookup_flags); 3729 if (IS_ERR(dentry)) 3730 return PTR_ERR(dentry); 3731 3732 if (!IS_POSIXACL(path.dentry->d_inode)) 3733 mode &= ~current_umask(); 3734 error = security_path_mknod(&path, dentry, mode, dev); 3735 if (error) 3736 goto out; 3737 switch (mode & S_IFMT) { 3738 case 0: case S_IFREG: 3739 error = vfs_create(path.dentry->d_inode,dentry,mode,true); 3740 if (!error) 3741 ima_post_path_mknod(dentry); 3742 break; 3743 case S_IFCHR: case S_IFBLK: 3744 error = vfs_mknod(path.dentry->d_inode,dentry,mode, 3745 new_decode_dev(dev)); 3746 break; 3747 case S_IFIFO: case S_IFSOCK: 3748 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0); 3749 break; 3750 } 3751 out: 3752 done_path_create(&path, dentry); 3753 if (retry_estale(error, lookup_flags)) { 3754 lookup_flags |= LOOKUP_REVAL; 3755 goto retry; 3756 } 3757 return error; 3758 } 3759 3760 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3761 unsigned int, dev) 3762 { 3763 return do_mknodat(dfd, filename, mode, dev); 3764 } 3765 3766 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3767 { 3768 return do_mknodat(AT_FDCWD, filename, mode, dev); 3769 } 3770 3771 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 3772 { 3773 int error = may_create(dir, dentry); 3774 unsigned max_links = dir->i_sb->s_max_links; 3775 3776 if (error) 3777 return error; 3778 3779 if (!dir->i_op->mkdir) 3780 return -EPERM; 3781 3782 mode &= (S_IRWXUGO|S_ISVTX); 3783 error = security_inode_mkdir(dir, dentry, mode); 3784 if (error) 3785 return error; 3786 3787 if (max_links && dir->i_nlink >= max_links) 3788 return -EMLINK; 3789 3790 error = dir->i_op->mkdir(dir, dentry, mode); 3791 if (!error) 3792 fsnotify_mkdir(dir, dentry); 3793 return error; 3794 } 3795 EXPORT_SYMBOL(vfs_mkdir); 3796 3797 long do_mkdirat(int dfd, const char __user *pathname, umode_t mode) 3798 { 3799 struct dentry *dentry; 3800 struct path path; 3801 int error; 3802 unsigned int lookup_flags = LOOKUP_DIRECTORY; 3803 3804 retry: 3805 dentry = user_path_create(dfd, pathname, &path, lookup_flags); 3806 if (IS_ERR(dentry)) 3807 return PTR_ERR(dentry); 3808 3809 if (!IS_POSIXACL(path.dentry->d_inode)) 3810 mode &= ~current_umask(); 3811 error = security_path_mkdir(&path, dentry, mode); 3812 if (!error) 3813 error = vfs_mkdir(path.dentry->d_inode, dentry, mode); 3814 done_path_create(&path, dentry); 3815 if (retry_estale(error, lookup_flags)) { 3816 lookup_flags |= LOOKUP_REVAL; 3817 goto retry; 3818 } 3819 return error; 3820 } 3821 3822 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 3823 { 3824 return do_mkdirat(dfd, pathname, mode); 3825 } 3826 3827 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 3828 { 3829 return do_mkdirat(AT_FDCWD, pathname, mode); 3830 } 3831 3832 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 3833 { 3834 int error = may_delete(dir, dentry, 1); 3835 3836 if (error) 3837 return error; 3838 3839 if (!dir->i_op->rmdir) 3840 return -EPERM; 3841 3842 dget(dentry); 3843 inode_lock(dentry->d_inode); 3844 3845 error = -EBUSY; 3846 if (is_local_mountpoint(dentry)) 3847 goto out; 3848 3849 error = security_inode_rmdir(dir, dentry); 3850 if (error) 3851 goto out; 3852 3853 error = dir->i_op->rmdir(dir, dentry); 3854 if (error) 3855 goto out; 3856 3857 shrink_dcache_parent(dentry); 3858 dentry->d_inode->i_flags |= S_DEAD; 3859 dont_mount(dentry); 3860 detach_mounts(dentry); 3861 3862 out: 3863 inode_unlock(dentry->d_inode); 3864 dput(dentry); 3865 if (!error) 3866 d_delete(dentry); 3867 return error; 3868 } 3869 EXPORT_SYMBOL(vfs_rmdir); 3870 3871 long do_rmdir(int dfd, const char __user *pathname) 3872 { 3873 int error = 0; 3874 struct filename *name; 3875 struct dentry *dentry; 3876 struct path path; 3877 struct qstr last; 3878 int type; 3879 unsigned int lookup_flags = 0; 3880 retry: 3881 name = filename_parentat(dfd, getname(pathname), lookup_flags, 3882 &path, &last, &type); 3883 if (IS_ERR(name)) 3884 return PTR_ERR(name); 3885 3886 switch (type) { 3887 case LAST_DOTDOT: 3888 error = -ENOTEMPTY; 3889 goto exit1; 3890 case LAST_DOT: 3891 error = -EINVAL; 3892 goto exit1; 3893 case LAST_ROOT: 3894 error = -EBUSY; 3895 goto exit1; 3896 } 3897 3898 error = mnt_want_write(path.mnt); 3899 if (error) 3900 goto exit1; 3901 3902 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 3903 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 3904 error = PTR_ERR(dentry); 3905 if (IS_ERR(dentry)) 3906 goto exit2; 3907 if (!dentry->d_inode) { 3908 error = -ENOENT; 3909 goto exit3; 3910 } 3911 error = security_path_rmdir(&path, dentry); 3912 if (error) 3913 goto exit3; 3914 error = vfs_rmdir(path.dentry->d_inode, dentry); 3915 exit3: 3916 dput(dentry); 3917 exit2: 3918 inode_unlock(path.dentry->d_inode); 3919 mnt_drop_write(path.mnt); 3920 exit1: 3921 path_put(&path); 3922 putname(name); 3923 if (retry_estale(error, lookup_flags)) { 3924 lookup_flags |= LOOKUP_REVAL; 3925 goto retry; 3926 } 3927 return error; 3928 } 3929 3930 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 3931 { 3932 return do_rmdir(AT_FDCWD, pathname); 3933 } 3934 3935 /** 3936 * vfs_unlink - unlink a filesystem object 3937 * @dir: parent directory 3938 * @dentry: victim 3939 * @delegated_inode: returns victim inode, if the inode is delegated. 3940 * 3941 * The caller must hold dir->i_mutex. 3942 * 3943 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 3944 * return a reference to the inode in delegated_inode. The caller 3945 * should then break the delegation on that inode and retry. Because 3946 * breaking a delegation may take a long time, the caller should drop 3947 * dir->i_mutex before doing so. 3948 * 3949 * Alternatively, a caller may pass NULL for delegated_inode. This may 3950 * be appropriate for callers that expect the underlying filesystem not 3951 * to be NFS exported. 3952 */ 3953 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode) 3954 { 3955 struct inode *target = dentry->d_inode; 3956 int error = may_delete(dir, dentry, 0); 3957 3958 if (error) 3959 return error; 3960 3961 if (!dir->i_op->unlink) 3962 return -EPERM; 3963 3964 inode_lock(target); 3965 if (is_local_mountpoint(dentry)) 3966 error = -EBUSY; 3967 else { 3968 error = security_inode_unlink(dir, dentry); 3969 if (!error) { 3970 error = try_break_deleg(target, delegated_inode); 3971 if (error) 3972 goto out; 3973 error = dir->i_op->unlink(dir, dentry); 3974 if (!error) { 3975 dont_mount(dentry); 3976 detach_mounts(dentry); 3977 } 3978 } 3979 } 3980 out: 3981 inode_unlock(target); 3982 3983 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 3984 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 3985 fsnotify_link_count(target); 3986 d_delete(dentry); 3987 } 3988 3989 return error; 3990 } 3991 EXPORT_SYMBOL(vfs_unlink); 3992 3993 /* 3994 * Make sure that the actual truncation of the file will occur outside its 3995 * directory's i_mutex. Truncate can take a long time if there is a lot of 3996 * writeout happening, and we don't want to prevent access to the directory 3997 * while waiting on the I/O. 3998 */ 3999 long do_unlinkat(int dfd, struct filename *name) 4000 { 4001 int error; 4002 struct dentry *dentry; 4003 struct path path; 4004 struct qstr last; 4005 int type; 4006 struct inode *inode = NULL; 4007 struct inode *delegated_inode = NULL; 4008 unsigned int lookup_flags = 0; 4009 retry: 4010 name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 4011 if (IS_ERR(name)) 4012 return PTR_ERR(name); 4013 4014 error = -EISDIR; 4015 if (type != LAST_NORM) 4016 goto exit1; 4017 4018 error = mnt_want_write(path.mnt); 4019 if (error) 4020 goto exit1; 4021 retry_deleg: 4022 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4023 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 4024 error = PTR_ERR(dentry); 4025 if (!IS_ERR(dentry)) { 4026 /* Why not before? Because we want correct error value */ 4027 if (last.name[last.len]) 4028 goto slashes; 4029 inode = dentry->d_inode; 4030 if (d_is_negative(dentry)) 4031 goto slashes; 4032 ihold(inode); 4033 error = security_path_unlink(&path, dentry); 4034 if (error) 4035 goto exit2; 4036 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode); 4037 exit2: 4038 dput(dentry); 4039 } 4040 inode_unlock(path.dentry->d_inode); 4041 if (inode) 4042 iput(inode); /* truncate the inode here */ 4043 inode = NULL; 4044 if (delegated_inode) { 4045 error = break_deleg_wait(&delegated_inode); 4046 if (!error) 4047 goto retry_deleg; 4048 } 4049 mnt_drop_write(path.mnt); 4050 exit1: 4051 path_put(&path); 4052 if (retry_estale(error, lookup_flags)) { 4053 lookup_flags |= LOOKUP_REVAL; 4054 inode = NULL; 4055 goto retry; 4056 } 4057 putname(name); 4058 return error; 4059 4060 slashes: 4061 if (d_is_negative(dentry)) 4062 error = -ENOENT; 4063 else if (d_is_dir(dentry)) 4064 error = -EISDIR; 4065 else 4066 error = -ENOTDIR; 4067 goto exit2; 4068 } 4069 4070 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 4071 { 4072 if ((flag & ~AT_REMOVEDIR) != 0) 4073 return -EINVAL; 4074 4075 if (flag & AT_REMOVEDIR) 4076 return do_rmdir(dfd, pathname); 4077 4078 return do_unlinkat(dfd, getname(pathname)); 4079 } 4080 4081 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 4082 { 4083 return do_unlinkat(AT_FDCWD, getname(pathname)); 4084 } 4085 4086 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 4087 { 4088 int error = may_create(dir, dentry); 4089 4090 if (error) 4091 return error; 4092 4093 if (!dir->i_op->symlink) 4094 return -EPERM; 4095 4096 error = security_inode_symlink(dir, dentry, oldname); 4097 if (error) 4098 return error; 4099 4100 error = dir->i_op->symlink(dir, dentry, oldname); 4101 if (!error) 4102 fsnotify_create(dir, dentry); 4103 return error; 4104 } 4105 EXPORT_SYMBOL(vfs_symlink); 4106 4107 long do_symlinkat(const char __user *oldname, int newdfd, 4108 const char __user *newname) 4109 { 4110 int error; 4111 struct filename *from; 4112 struct dentry *dentry; 4113 struct path path; 4114 unsigned int lookup_flags = 0; 4115 4116 from = getname(oldname); 4117 if (IS_ERR(from)) 4118 return PTR_ERR(from); 4119 retry: 4120 dentry = user_path_create(newdfd, newname, &path, lookup_flags); 4121 error = PTR_ERR(dentry); 4122 if (IS_ERR(dentry)) 4123 goto out_putname; 4124 4125 error = security_path_symlink(&path, dentry, from->name); 4126 if (!error) 4127 error = vfs_symlink(path.dentry->d_inode, dentry, from->name); 4128 done_path_create(&path, dentry); 4129 if (retry_estale(error, lookup_flags)) { 4130 lookup_flags |= LOOKUP_REVAL; 4131 goto retry; 4132 } 4133 out_putname: 4134 putname(from); 4135 return error; 4136 } 4137 4138 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 4139 int, newdfd, const char __user *, newname) 4140 { 4141 return do_symlinkat(oldname, newdfd, newname); 4142 } 4143 4144 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 4145 { 4146 return do_symlinkat(oldname, AT_FDCWD, newname); 4147 } 4148 4149 /** 4150 * vfs_link - create a new link 4151 * @old_dentry: object to be linked 4152 * @dir: new parent 4153 * @new_dentry: where to create the new link 4154 * @delegated_inode: returns inode needing a delegation break 4155 * 4156 * The caller must hold dir->i_mutex 4157 * 4158 * If vfs_link discovers a delegation on the to-be-linked file in need 4159 * of breaking, it will return -EWOULDBLOCK and return a reference to the 4160 * inode in delegated_inode. The caller should then break the delegation 4161 * and retry. Because breaking a delegation may take a long time, the 4162 * caller should drop the i_mutex before doing so. 4163 * 4164 * Alternatively, a caller may pass NULL for delegated_inode. This may 4165 * be appropriate for callers that expect the underlying filesystem not 4166 * to be NFS exported. 4167 */ 4168 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode) 4169 { 4170 struct inode *inode = old_dentry->d_inode; 4171 unsigned max_links = dir->i_sb->s_max_links; 4172 int error; 4173 4174 if (!inode) 4175 return -ENOENT; 4176 4177 error = may_create(dir, new_dentry); 4178 if (error) 4179 return error; 4180 4181 if (dir->i_sb != inode->i_sb) 4182 return -EXDEV; 4183 4184 /* 4185 * A link to an append-only or immutable file cannot be created. 4186 */ 4187 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4188 return -EPERM; 4189 /* 4190 * Updating the link count will likely cause i_uid and i_gid to 4191 * be writen back improperly if their true value is unknown to 4192 * the vfs. 4193 */ 4194 if (HAS_UNMAPPED_ID(inode)) 4195 return -EPERM; 4196 if (!dir->i_op->link) 4197 return -EPERM; 4198 if (S_ISDIR(inode->i_mode)) 4199 return -EPERM; 4200 4201 error = security_inode_link(old_dentry, dir, new_dentry); 4202 if (error) 4203 return error; 4204 4205 inode_lock(inode); 4206 /* Make sure we don't allow creating hardlink to an unlinked file */ 4207 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 4208 error = -ENOENT; 4209 else if (max_links && inode->i_nlink >= max_links) 4210 error = -EMLINK; 4211 else { 4212 error = try_break_deleg(inode, delegated_inode); 4213 if (!error) 4214 error = dir->i_op->link(old_dentry, dir, new_dentry); 4215 } 4216 4217 if (!error && (inode->i_state & I_LINKABLE)) { 4218 spin_lock(&inode->i_lock); 4219 inode->i_state &= ~I_LINKABLE; 4220 spin_unlock(&inode->i_lock); 4221 } 4222 inode_unlock(inode); 4223 if (!error) 4224 fsnotify_link(dir, inode, new_dentry); 4225 return error; 4226 } 4227 EXPORT_SYMBOL(vfs_link); 4228 4229 /* 4230 * Hardlinks are often used in delicate situations. We avoid 4231 * security-related surprises by not following symlinks on the 4232 * newname. --KAB 4233 * 4234 * We don't follow them on the oldname either to be compatible 4235 * with linux 2.0, and to avoid hard-linking to directories 4236 * and other special files. --ADM 4237 */ 4238 int do_linkat(int olddfd, const char __user *oldname, int newdfd, 4239 const char __user *newname, int flags) 4240 { 4241 struct dentry *new_dentry; 4242 struct path old_path, new_path; 4243 struct inode *delegated_inode = NULL; 4244 int how = 0; 4245 int error; 4246 4247 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 4248 return -EINVAL; 4249 /* 4250 * To use null names we require CAP_DAC_READ_SEARCH 4251 * This ensures that not everyone will be able to create 4252 * handlink using the passed filedescriptor. 4253 */ 4254 if (flags & AT_EMPTY_PATH) { 4255 if (!capable(CAP_DAC_READ_SEARCH)) 4256 return -ENOENT; 4257 how = LOOKUP_EMPTY; 4258 } 4259 4260 if (flags & AT_SYMLINK_FOLLOW) 4261 how |= LOOKUP_FOLLOW; 4262 retry: 4263 error = user_path_at(olddfd, oldname, how, &old_path); 4264 if (error) 4265 return error; 4266 4267 new_dentry = user_path_create(newdfd, newname, &new_path, 4268 (how & LOOKUP_REVAL)); 4269 error = PTR_ERR(new_dentry); 4270 if (IS_ERR(new_dentry)) 4271 goto out; 4272 4273 error = -EXDEV; 4274 if (old_path.mnt != new_path.mnt) 4275 goto out_dput; 4276 error = may_linkat(&old_path); 4277 if (unlikely(error)) 4278 goto out_dput; 4279 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4280 if (error) 4281 goto out_dput; 4282 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode); 4283 out_dput: 4284 done_path_create(&new_path, new_dentry); 4285 if (delegated_inode) { 4286 error = break_deleg_wait(&delegated_inode); 4287 if (!error) { 4288 path_put(&old_path); 4289 goto retry; 4290 } 4291 } 4292 if (retry_estale(error, how)) { 4293 path_put(&old_path); 4294 how |= LOOKUP_REVAL; 4295 goto retry; 4296 } 4297 out: 4298 path_put(&old_path); 4299 4300 return error; 4301 } 4302 4303 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 4304 int, newdfd, const char __user *, newname, int, flags) 4305 { 4306 return do_linkat(olddfd, oldname, newdfd, newname, flags); 4307 } 4308 4309 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4310 { 4311 return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4312 } 4313 4314 /** 4315 * vfs_rename - rename a filesystem object 4316 * @old_dir: parent of source 4317 * @old_dentry: source 4318 * @new_dir: parent of destination 4319 * @new_dentry: destination 4320 * @delegated_inode: returns an inode needing a delegation break 4321 * @flags: rename flags 4322 * 4323 * The caller must hold multiple mutexes--see lock_rename()). 4324 * 4325 * If vfs_rename discovers a delegation in need of breaking at either 4326 * the source or destination, it will return -EWOULDBLOCK and return a 4327 * reference to the inode in delegated_inode. The caller should then 4328 * break the delegation and retry. Because breaking a delegation may 4329 * take a long time, the caller should drop all locks before doing 4330 * so. 4331 * 4332 * Alternatively, a caller may pass NULL for delegated_inode. This may 4333 * be appropriate for callers that expect the underlying filesystem not 4334 * to be NFS exported. 4335 * 4336 * The worst of all namespace operations - renaming directory. "Perverted" 4337 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4338 * Problems: 4339 * 4340 * a) we can get into loop creation. 4341 * b) race potential - two innocent renames can create a loop together. 4342 * That's where 4.4 screws up. Current fix: serialization on 4343 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4344 * story. 4345 * c) we have to lock _four_ objects - parents and victim (if it exists), 4346 * and source (if it is not a directory). 4347 * And that - after we got ->i_mutex on parents (until then we don't know 4348 * whether the target exists). Solution: try to be smart with locking 4349 * order for inodes. We rely on the fact that tree topology may change 4350 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4351 * move will be locked. Thus we can rank directories by the tree 4352 * (ancestors first) and rank all non-directories after them. 4353 * That works since everybody except rename does "lock parent, lookup, 4354 * lock child" and rename is under ->s_vfs_rename_mutex. 4355 * HOWEVER, it relies on the assumption that any object with ->lookup() 4356 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4357 * we'd better make sure that there's no link(2) for them. 4358 * d) conversion from fhandle to dentry may come in the wrong moment - when 4359 * we are removing the target. Solution: we will have to grab ->i_mutex 4360 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4361 * ->i_mutex on parents, which works but leads to some truly excessive 4362 * locking]. 4363 */ 4364 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 4365 struct inode *new_dir, struct dentry *new_dentry, 4366 struct inode **delegated_inode, unsigned int flags) 4367 { 4368 int error; 4369 bool is_dir = d_is_dir(old_dentry); 4370 struct inode *source = old_dentry->d_inode; 4371 struct inode *target = new_dentry->d_inode; 4372 bool new_is_dir = false; 4373 unsigned max_links = new_dir->i_sb->s_max_links; 4374 struct name_snapshot old_name; 4375 4376 if (source == target) 4377 return 0; 4378 4379 error = may_delete(old_dir, old_dentry, is_dir); 4380 if (error) 4381 return error; 4382 4383 if (!target) { 4384 error = may_create(new_dir, new_dentry); 4385 } else { 4386 new_is_dir = d_is_dir(new_dentry); 4387 4388 if (!(flags & RENAME_EXCHANGE)) 4389 error = may_delete(new_dir, new_dentry, is_dir); 4390 else 4391 error = may_delete(new_dir, new_dentry, new_is_dir); 4392 } 4393 if (error) 4394 return error; 4395 4396 if (!old_dir->i_op->rename) 4397 return -EPERM; 4398 4399 /* 4400 * If we are going to change the parent - check write permissions, 4401 * we'll need to flip '..'. 4402 */ 4403 if (new_dir != old_dir) { 4404 if (is_dir) { 4405 error = inode_permission(source, MAY_WRITE); 4406 if (error) 4407 return error; 4408 } 4409 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4410 error = inode_permission(target, MAY_WRITE); 4411 if (error) 4412 return error; 4413 } 4414 } 4415 4416 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 4417 flags); 4418 if (error) 4419 return error; 4420 4421 take_dentry_name_snapshot(&old_name, old_dentry); 4422 dget(new_dentry); 4423 if (!is_dir || (flags & RENAME_EXCHANGE)) 4424 lock_two_nondirectories(source, target); 4425 else if (target) 4426 inode_lock(target); 4427 4428 error = -EBUSY; 4429 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 4430 goto out; 4431 4432 if (max_links && new_dir != old_dir) { 4433 error = -EMLINK; 4434 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 4435 goto out; 4436 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 4437 old_dir->i_nlink >= max_links) 4438 goto out; 4439 } 4440 if (!is_dir) { 4441 error = try_break_deleg(source, delegated_inode); 4442 if (error) 4443 goto out; 4444 } 4445 if (target && !new_is_dir) { 4446 error = try_break_deleg(target, delegated_inode); 4447 if (error) 4448 goto out; 4449 } 4450 error = old_dir->i_op->rename(old_dir, old_dentry, 4451 new_dir, new_dentry, flags); 4452 if (error) 4453 goto out; 4454 4455 if (!(flags & RENAME_EXCHANGE) && target) { 4456 if (is_dir) { 4457 shrink_dcache_parent(new_dentry); 4458 target->i_flags |= S_DEAD; 4459 } 4460 dont_mount(new_dentry); 4461 detach_mounts(new_dentry); 4462 } 4463 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 4464 if (!(flags & RENAME_EXCHANGE)) 4465 d_move(old_dentry, new_dentry); 4466 else 4467 d_exchange(old_dentry, new_dentry); 4468 } 4469 out: 4470 if (!is_dir || (flags & RENAME_EXCHANGE)) 4471 unlock_two_nondirectories(source, target); 4472 else if (target) 4473 inode_unlock(target); 4474 dput(new_dentry); 4475 if (!error) { 4476 fsnotify_move(old_dir, new_dir, old_name.name, is_dir, 4477 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 4478 if (flags & RENAME_EXCHANGE) { 4479 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name, 4480 new_is_dir, NULL, new_dentry); 4481 } 4482 } 4483 release_dentry_name_snapshot(&old_name); 4484 4485 return error; 4486 } 4487 EXPORT_SYMBOL(vfs_rename); 4488 4489 static int do_renameat2(int olddfd, const char __user *oldname, int newdfd, 4490 const char __user *newname, unsigned int flags) 4491 { 4492 struct dentry *old_dentry, *new_dentry; 4493 struct dentry *trap; 4494 struct path old_path, new_path; 4495 struct qstr old_last, new_last; 4496 int old_type, new_type; 4497 struct inode *delegated_inode = NULL; 4498 struct filename *from; 4499 struct filename *to; 4500 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET; 4501 bool should_retry = false; 4502 int error; 4503 4504 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4505 return -EINVAL; 4506 4507 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 4508 (flags & RENAME_EXCHANGE)) 4509 return -EINVAL; 4510 4511 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD)) 4512 return -EPERM; 4513 4514 if (flags & RENAME_EXCHANGE) 4515 target_flags = 0; 4516 4517 retry: 4518 from = filename_parentat(olddfd, getname(oldname), lookup_flags, 4519 &old_path, &old_last, &old_type); 4520 if (IS_ERR(from)) { 4521 error = PTR_ERR(from); 4522 goto exit; 4523 } 4524 4525 to = filename_parentat(newdfd, getname(newname), lookup_flags, 4526 &new_path, &new_last, &new_type); 4527 if (IS_ERR(to)) { 4528 error = PTR_ERR(to); 4529 goto exit1; 4530 } 4531 4532 error = -EXDEV; 4533 if (old_path.mnt != new_path.mnt) 4534 goto exit2; 4535 4536 error = -EBUSY; 4537 if (old_type != LAST_NORM) 4538 goto exit2; 4539 4540 if (flags & RENAME_NOREPLACE) 4541 error = -EEXIST; 4542 if (new_type != LAST_NORM) 4543 goto exit2; 4544 4545 error = mnt_want_write(old_path.mnt); 4546 if (error) 4547 goto exit2; 4548 4549 retry_deleg: 4550 trap = lock_rename(new_path.dentry, old_path.dentry); 4551 4552 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags); 4553 error = PTR_ERR(old_dentry); 4554 if (IS_ERR(old_dentry)) 4555 goto exit3; 4556 /* source must exist */ 4557 error = -ENOENT; 4558 if (d_is_negative(old_dentry)) 4559 goto exit4; 4560 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags); 4561 error = PTR_ERR(new_dentry); 4562 if (IS_ERR(new_dentry)) 4563 goto exit4; 4564 error = -EEXIST; 4565 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 4566 goto exit5; 4567 if (flags & RENAME_EXCHANGE) { 4568 error = -ENOENT; 4569 if (d_is_negative(new_dentry)) 4570 goto exit5; 4571 4572 if (!d_is_dir(new_dentry)) { 4573 error = -ENOTDIR; 4574 if (new_last.name[new_last.len]) 4575 goto exit5; 4576 } 4577 } 4578 /* unless the source is a directory trailing slashes give -ENOTDIR */ 4579 if (!d_is_dir(old_dentry)) { 4580 error = -ENOTDIR; 4581 if (old_last.name[old_last.len]) 4582 goto exit5; 4583 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len]) 4584 goto exit5; 4585 } 4586 /* source should not be ancestor of target */ 4587 error = -EINVAL; 4588 if (old_dentry == trap) 4589 goto exit5; 4590 /* target should not be an ancestor of source */ 4591 if (!(flags & RENAME_EXCHANGE)) 4592 error = -ENOTEMPTY; 4593 if (new_dentry == trap) 4594 goto exit5; 4595 4596 error = security_path_rename(&old_path, old_dentry, 4597 &new_path, new_dentry, flags); 4598 if (error) 4599 goto exit5; 4600 error = vfs_rename(old_path.dentry->d_inode, old_dentry, 4601 new_path.dentry->d_inode, new_dentry, 4602 &delegated_inode, flags); 4603 exit5: 4604 dput(new_dentry); 4605 exit4: 4606 dput(old_dentry); 4607 exit3: 4608 unlock_rename(new_path.dentry, old_path.dentry); 4609 if (delegated_inode) { 4610 error = break_deleg_wait(&delegated_inode); 4611 if (!error) 4612 goto retry_deleg; 4613 } 4614 mnt_drop_write(old_path.mnt); 4615 exit2: 4616 if (retry_estale(error, lookup_flags)) 4617 should_retry = true; 4618 path_put(&new_path); 4619 putname(to); 4620 exit1: 4621 path_put(&old_path); 4622 putname(from); 4623 if (should_retry) { 4624 should_retry = false; 4625 lookup_flags |= LOOKUP_REVAL; 4626 goto retry; 4627 } 4628 exit: 4629 return error; 4630 } 4631 4632 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 4633 int, newdfd, const char __user *, newname, unsigned int, flags) 4634 { 4635 return do_renameat2(olddfd, oldname, newdfd, newname, flags); 4636 } 4637 4638 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 4639 int, newdfd, const char __user *, newname) 4640 { 4641 return do_renameat2(olddfd, oldname, newdfd, newname, 0); 4642 } 4643 4644 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 4645 { 4646 return do_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4647 } 4648 4649 int vfs_whiteout(struct inode *dir, struct dentry *dentry) 4650 { 4651 int error = may_create(dir, dentry); 4652 if (error) 4653 return error; 4654 4655 if (!dir->i_op->mknod) 4656 return -EPERM; 4657 4658 return dir->i_op->mknod(dir, dentry, 4659 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 4660 } 4661 EXPORT_SYMBOL(vfs_whiteout); 4662 4663 int readlink_copy(char __user *buffer, int buflen, const char *link) 4664 { 4665 int len = PTR_ERR(link); 4666 if (IS_ERR(link)) 4667 goto out; 4668 4669 len = strlen(link); 4670 if (len > (unsigned) buflen) 4671 len = buflen; 4672 if (copy_to_user(buffer, link, len)) 4673 len = -EFAULT; 4674 out: 4675 return len; 4676 } 4677 4678 /* 4679 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 4680 * have ->get_link() not calling nd_jump_link(). Using (or not using) it 4681 * for any given inode is up to filesystem. 4682 */ 4683 static int generic_readlink(struct dentry *dentry, char __user *buffer, 4684 int buflen) 4685 { 4686 DEFINE_DELAYED_CALL(done); 4687 struct inode *inode = d_inode(dentry); 4688 const char *link = inode->i_link; 4689 int res; 4690 4691 if (!link) { 4692 link = inode->i_op->get_link(dentry, inode, &done); 4693 if (IS_ERR(link)) 4694 return PTR_ERR(link); 4695 } 4696 res = readlink_copy(buffer, buflen, link); 4697 do_delayed_call(&done); 4698 return res; 4699 } 4700 4701 /** 4702 * vfs_readlink - copy symlink body into userspace buffer 4703 * @dentry: dentry on which to get symbolic link 4704 * @buffer: user memory pointer 4705 * @buflen: size of buffer 4706 * 4707 * Does not touch atime. That's up to the caller if necessary 4708 * 4709 * Does not call security hook. 4710 */ 4711 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4712 { 4713 struct inode *inode = d_inode(dentry); 4714 4715 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) { 4716 if (unlikely(inode->i_op->readlink)) 4717 return inode->i_op->readlink(dentry, buffer, buflen); 4718 4719 if (!d_is_symlink(dentry)) 4720 return -EINVAL; 4721 4722 spin_lock(&inode->i_lock); 4723 inode->i_opflags |= IOP_DEFAULT_READLINK; 4724 spin_unlock(&inode->i_lock); 4725 } 4726 4727 return generic_readlink(dentry, buffer, buflen); 4728 } 4729 EXPORT_SYMBOL(vfs_readlink); 4730 4731 /** 4732 * vfs_get_link - get symlink body 4733 * @dentry: dentry on which to get symbolic link 4734 * @done: caller needs to free returned data with this 4735 * 4736 * Calls security hook and i_op->get_link() on the supplied inode. 4737 * 4738 * It does not touch atime. That's up to the caller if necessary. 4739 * 4740 * Does not work on "special" symlinks like /proc/$$/fd/N 4741 */ 4742 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done) 4743 { 4744 const char *res = ERR_PTR(-EINVAL); 4745 struct inode *inode = d_inode(dentry); 4746 4747 if (d_is_symlink(dentry)) { 4748 res = ERR_PTR(security_inode_readlink(dentry)); 4749 if (!res) 4750 res = inode->i_op->get_link(dentry, inode, done); 4751 } 4752 return res; 4753 } 4754 EXPORT_SYMBOL(vfs_get_link); 4755 4756 /* get the link contents into pagecache */ 4757 const char *page_get_link(struct dentry *dentry, struct inode *inode, 4758 struct delayed_call *callback) 4759 { 4760 char *kaddr; 4761 struct page *page; 4762 struct address_space *mapping = inode->i_mapping; 4763 4764 if (!dentry) { 4765 page = find_get_page(mapping, 0); 4766 if (!page) 4767 return ERR_PTR(-ECHILD); 4768 if (!PageUptodate(page)) { 4769 put_page(page); 4770 return ERR_PTR(-ECHILD); 4771 } 4772 } else { 4773 page = read_mapping_page(mapping, 0, NULL); 4774 if (IS_ERR(page)) 4775 return (char*)page; 4776 } 4777 set_delayed_call(callback, page_put_link, page); 4778 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM); 4779 kaddr = page_address(page); 4780 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1); 4781 return kaddr; 4782 } 4783 4784 EXPORT_SYMBOL(page_get_link); 4785 4786 void page_put_link(void *arg) 4787 { 4788 put_page(arg); 4789 } 4790 EXPORT_SYMBOL(page_put_link); 4791 4792 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4793 { 4794 DEFINE_DELAYED_CALL(done); 4795 int res = readlink_copy(buffer, buflen, 4796 page_get_link(dentry, d_inode(dentry), 4797 &done)); 4798 do_delayed_call(&done); 4799 return res; 4800 } 4801 EXPORT_SYMBOL(page_readlink); 4802 4803 /* 4804 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 4805 */ 4806 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 4807 { 4808 struct address_space *mapping = inode->i_mapping; 4809 struct page *page; 4810 void *fsdata; 4811 int err; 4812 unsigned int flags = 0; 4813 if (nofs) 4814 flags |= AOP_FLAG_NOFS; 4815 4816 retry: 4817 err = pagecache_write_begin(NULL, mapping, 0, len-1, 4818 flags, &page, &fsdata); 4819 if (err) 4820 goto fail; 4821 4822 memcpy(page_address(page), symname, len-1); 4823 4824 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 4825 page, fsdata); 4826 if (err < 0) 4827 goto fail; 4828 if (err < len-1) 4829 goto retry; 4830 4831 mark_inode_dirty(inode); 4832 return 0; 4833 fail: 4834 return err; 4835 } 4836 EXPORT_SYMBOL(__page_symlink); 4837 4838 int page_symlink(struct inode *inode, const char *symname, int len) 4839 { 4840 return __page_symlink(inode, symname, len, 4841 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS)); 4842 } 4843 EXPORT_SYMBOL(page_symlink); 4844 4845 const struct inode_operations page_symlink_inode_operations = { 4846 .get_link = page_get_link, 4847 }; 4848 EXPORT_SYMBOL(page_symlink_inode_operations); 4849