xref: /linux/fs/namei.c (revision 3c40dfeb044943d2323d39c7348c910746a81add)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   *  linux/fs/namei.c
4   *
5   *  Copyright (C) 1991, 1992  Linus Torvalds
6   */
7  
8  /*
9   * Some corrections by tytso.
10   */
11  
12  /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13   * lookup logic.
14   */
15  /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16   */
17  
18  #include <linux/init.h>
19  #include <linux/export.h>
20  #include <linux/kernel.h>
21  #include <linux/slab.h>
22  #include <linux/fs.h>
23  #include <linux/namei.h>
24  #include <linux/pagemap.h>
25  #include <linux/fsnotify.h>
26  #include <linux/personality.h>
27  #include <linux/security.h>
28  #include <linux/ima.h>
29  #include <linux/syscalls.h>
30  #include <linux/mount.h>
31  #include <linux/audit.h>
32  #include <linux/capability.h>
33  #include <linux/file.h>
34  #include <linux/fcntl.h>
35  #include <linux/device_cgroup.h>
36  #include <linux/fs_struct.h>
37  #include <linux/posix_acl.h>
38  #include <linux/hash.h>
39  #include <linux/bitops.h>
40  #include <linux/init_task.h>
41  #include <linux/uaccess.h>
42  #include <linux/build_bug.h>
43  
44  #include "internal.h"
45  #include "mount.h"
46  
47  /* [Feb-1997 T. Schoebel-Theuer]
48   * Fundamental changes in the pathname lookup mechanisms (namei)
49   * were necessary because of omirr.  The reason is that omirr needs
50   * to know the _real_ pathname, not the user-supplied one, in case
51   * of symlinks (and also when transname replacements occur).
52   *
53   * The new code replaces the old recursive symlink resolution with
54   * an iterative one (in case of non-nested symlink chains).  It does
55   * this with calls to <fs>_follow_link().
56   * As a side effect, dir_namei(), _namei() and follow_link() are now
57   * replaced with a single function lookup_dentry() that can handle all
58   * the special cases of the former code.
59   *
60   * With the new dcache, the pathname is stored at each inode, at least as
61   * long as the refcount of the inode is positive.  As a side effect, the
62   * size of the dcache depends on the inode cache and thus is dynamic.
63   *
64   * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
65   * resolution to correspond with current state of the code.
66   *
67   * Note that the symlink resolution is not *completely* iterative.
68   * There is still a significant amount of tail- and mid- recursion in
69   * the algorithm.  Also, note that <fs>_readlink() is not used in
70   * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
71   * may return different results than <fs>_follow_link().  Many virtual
72   * filesystems (including /proc) exhibit this behavior.
73   */
74  
75  /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
76   * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
77   * and the name already exists in form of a symlink, try to create the new
78   * name indicated by the symlink. The old code always complained that the
79   * name already exists, due to not following the symlink even if its target
80   * is nonexistent.  The new semantics affects also mknod() and link() when
81   * the name is a symlink pointing to a non-existent name.
82   *
83   * I don't know which semantics is the right one, since I have no access
84   * to standards. But I found by trial that HP-UX 9.0 has the full "new"
85   * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
86   * "old" one. Personally, I think the new semantics is much more logical.
87   * Note that "ln old new" where "new" is a symlink pointing to a non-existing
88   * file does succeed in both HP-UX and SunOs, but not in Solaris
89   * and in the old Linux semantics.
90   */
91  
92  /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
93   * semantics.  See the comments in "open_namei" and "do_link" below.
94   *
95   * [10-Sep-98 Alan Modra] Another symlink change.
96   */
97  
98  /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
99   *	inside the path - always follow.
100   *	in the last component in creation/removal/renaming - never follow.
101   *	if LOOKUP_FOLLOW passed - follow.
102   *	if the pathname has trailing slashes - follow.
103   *	otherwise - don't follow.
104   * (applied in that order).
105   *
106   * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
107   * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
108   * During the 2.4 we need to fix the userland stuff depending on it -
109   * hopefully we will be able to get rid of that wart in 2.5. So far only
110   * XEmacs seems to be relying on it...
111   */
112  /*
113   * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
114   * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
115   * any extra contention...
116   */
117  
118  /* In order to reduce some races, while at the same time doing additional
119   * checking and hopefully speeding things up, we copy filenames to the
120   * kernel data space before using them..
121   *
122   * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
123   * PATH_MAX includes the nul terminator --RR.
124   */
125  
126  #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
127  
128  struct filename *
129  getname_flags(const char __user *filename, int flags, int *empty)
130  {
131  	struct filename *result;
132  	char *kname;
133  	int len;
134  	BUILD_BUG_ON(offsetof(struct filename, iname) % sizeof(long) != 0);
135  
136  	result = audit_reusename(filename);
137  	if (result)
138  		return result;
139  
140  	result = __getname();
141  	if (unlikely(!result))
142  		return ERR_PTR(-ENOMEM);
143  
144  	/*
145  	 * First, try to embed the struct filename inside the names_cache
146  	 * allocation
147  	 */
148  	kname = (char *)result->iname;
149  	result->name = kname;
150  
151  	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
152  	if (unlikely(len < 0)) {
153  		__putname(result);
154  		return ERR_PTR(len);
155  	}
156  
157  	/*
158  	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
159  	 * separate struct filename so we can dedicate the entire
160  	 * names_cache allocation for the pathname, and re-do the copy from
161  	 * userland.
162  	 */
163  	if (unlikely(len == EMBEDDED_NAME_MAX)) {
164  		const size_t size = offsetof(struct filename, iname[1]);
165  		kname = (char *)result;
166  
167  		/*
168  		 * size is chosen that way we to guarantee that
169  		 * result->iname[0] is within the same object and that
170  		 * kname can't be equal to result->iname, no matter what.
171  		 */
172  		result = kzalloc(size, GFP_KERNEL);
173  		if (unlikely(!result)) {
174  			__putname(kname);
175  			return ERR_PTR(-ENOMEM);
176  		}
177  		result->name = kname;
178  		len = strncpy_from_user(kname, filename, PATH_MAX);
179  		if (unlikely(len < 0)) {
180  			__putname(kname);
181  			kfree(result);
182  			return ERR_PTR(len);
183  		}
184  		if (unlikely(len == PATH_MAX)) {
185  			__putname(kname);
186  			kfree(result);
187  			return ERR_PTR(-ENAMETOOLONG);
188  		}
189  	}
190  
191  	result->refcnt = 1;
192  	/* The empty path is special. */
193  	if (unlikely(!len)) {
194  		if (empty)
195  			*empty = 1;
196  		if (!(flags & LOOKUP_EMPTY)) {
197  			putname(result);
198  			return ERR_PTR(-ENOENT);
199  		}
200  	}
201  
202  	result->uptr = filename;
203  	result->aname = NULL;
204  	audit_getname(result);
205  	return result;
206  }
207  
208  struct filename *
209  getname(const char __user * filename)
210  {
211  	return getname_flags(filename, 0, NULL);
212  }
213  
214  struct filename *
215  getname_kernel(const char * filename)
216  {
217  	struct filename *result;
218  	int len = strlen(filename) + 1;
219  
220  	result = __getname();
221  	if (unlikely(!result))
222  		return ERR_PTR(-ENOMEM);
223  
224  	if (len <= EMBEDDED_NAME_MAX) {
225  		result->name = (char *)result->iname;
226  	} else if (len <= PATH_MAX) {
227  		const size_t size = offsetof(struct filename, iname[1]);
228  		struct filename *tmp;
229  
230  		tmp = kmalloc(size, GFP_KERNEL);
231  		if (unlikely(!tmp)) {
232  			__putname(result);
233  			return ERR_PTR(-ENOMEM);
234  		}
235  		tmp->name = (char *)result;
236  		result = tmp;
237  	} else {
238  		__putname(result);
239  		return ERR_PTR(-ENAMETOOLONG);
240  	}
241  	memcpy((char *)result->name, filename, len);
242  	result->uptr = NULL;
243  	result->aname = NULL;
244  	result->refcnt = 1;
245  	audit_getname(result);
246  
247  	return result;
248  }
249  
250  void putname(struct filename *name)
251  {
252  	BUG_ON(name->refcnt <= 0);
253  
254  	if (--name->refcnt > 0)
255  		return;
256  
257  	if (name->name != name->iname) {
258  		__putname(name->name);
259  		kfree(name);
260  	} else
261  		__putname(name);
262  }
263  
264  static int check_acl(struct inode *inode, int mask)
265  {
266  #ifdef CONFIG_FS_POSIX_ACL
267  	struct posix_acl *acl;
268  
269  	if (mask & MAY_NOT_BLOCK) {
270  		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
271  	        if (!acl)
272  	                return -EAGAIN;
273  		/* no ->get_acl() calls in RCU mode... */
274  		if (is_uncached_acl(acl))
275  			return -ECHILD;
276  	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
277  	}
278  
279  	acl = get_acl(inode, ACL_TYPE_ACCESS);
280  	if (IS_ERR(acl))
281  		return PTR_ERR(acl);
282  	if (acl) {
283  	        int error = posix_acl_permission(inode, acl, mask);
284  	        posix_acl_release(acl);
285  	        return error;
286  	}
287  #endif
288  
289  	return -EAGAIN;
290  }
291  
292  /*
293   * This does the basic permission checking
294   */
295  static int acl_permission_check(struct inode *inode, int mask)
296  {
297  	unsigned int mode = inode->i_mode;
298  
299  	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
300  		mode >>= 6;
301  	else {
302  		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
303  			int error = check_acl(inode, mask);
304  			if (error != -EAGAIN)
305  				return error;
306  		}
307  
308  		if (in_group_p(inode->i_gid))
309  			mode >>= 3;
310  	}
311  
312  	/*
313  	 * If the DACs are ok we don't need any capability check.
314  	 */
315  	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
316  		return 0;
317  	return -EACCES;
318  }
319  
320  /**
321   * generic_permission -  check for access rights on a Posix-like filesystem
322   * @inode:	inode to check access rights for
323   * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
324   *
325   * Used to check for read/write/execute permissions on a file.
326   * We use "fsuid" for this, letting us set arbitrary permissions
327   * for filesystem access without changing the "normal" uids which
328   * are used for other things.
329   *
330   * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
331   * request cannot be satisfied (eg. requires blocking or too much complexity).
332   * It would then be called again in ref-walk mode.
333   */
334  int generic_permission(struct inode *inode, int mask)
335  {
336  	int ret;
337  
338  	/*
339  	 * Do the basic permission checks.
340  	 */
341  	ret = acl_permission_check(inode, mask);
342  	if (ret != -EACCES)
343  		return ret;
344  
345  	if (S_ISDIR(inode->i_mode)) {
346  		/* DACs are overridable for directories */
347  		if (!(mask & MAY_WRITE))
348  			if (capable_wrt_inode_uidgid(inode,
349  						     CAP_DAC_READ_SEARCH))
350  				return 0;
351  		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
352  			return 0;
353  		return -EACCES;
354  	}
355  
356  	/*
357  	 * Searching includes executable on directories, else just read.
358  	 */
359  	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
360  	if (mask == MAY_READ)
361  		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
362  			return 0;
363  	/*
364  	 * Read/write DACs are always overridable.
365  	 * Executable DACs are overridable when there is
366  	 * at least one exec bit set.
367  	 */
368  	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
369  		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
370  			return 0;
371  
372  	return -EACCES;
373  }
374  EXPORT_SYMBOL(generic_permission);
375  
376  /*
377   * We _really_ want to just do "generic_permission()" without
378   * even looking at the inode->i_op values. So we keep a cache
379   * flag in inode->i_opflags, that says "this has not special
380   * permission function, use the fast case".
381   */
382  static inline int do_inode_permission(struct inode *inode, int mask)
383  {
384  	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
385  		if (likely(inode->i_op->permission))
386  			return inode->i_op->permission(inode, mask);
387  
388  		/* This gets set once for the inode lifetime */
389  		spin_lock(&inode->i_lock);
390  		inode->i_opflags |= IOP_FASTPERM;
391  		spin_unlock(&inode->i_lock);
392  	}
393  	return generic_permission(inode, mask);
394  }
395  
396  /**
397   * sb_permission - Check superblock-level permissions
398   * @sb: Superblock of inode to check permission on
399   * @inode: Inode to check permission on
400   * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
401   *
402   * Separate out file-system wide checks from inode-specific permission checks.
403   */
404  static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
405  {
406  	if (unlikely(mask & MAY_WRITE)) {
407  		umode_t mode = inode->i_mode;
408  
409  		/* Nobody gets write access to a read-only fs. */
410  		if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
411  			return -EROFS;
412  	}
413  	return 0;
414  }
415  
416  /**
417   * inode_permission - Check for access rights to a given inode
418   * @inode: Inode to check permission on
419   * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
420   *
421   * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
422   * this, letting us set arbitrary permissions for filesystem access without
423   * changing the "normal" UIDs which are used for other things.
424   *
425   * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
426   */
427  int inode_permission(struct inode *inode, int mask)
428  {
429  	int retval;
430  
431  	retval = sb_permission(inode->i_sb, inode, mask);
432  	if (retval)
433  		return retval;
434  
435  	if (unlikely(mask & MAY_WRITE)) {
436  		/*
437  		 * Nobody gets write access to an immutable file.
438  		 */
439  		if (IS_IMMUTABLE(inode))
440  			return -EPERM;
441  
442  		/*
443  		 * Updating mtime will likely cause i_uid and i_gid to be
444  		 * written back improperly if their true value is unknown
445  		 * to the vfs.
446  		 */
447  		if (HAS_UNMAPPED_ID(inode))
448  			return -EACCES;
449  	}
450  
451  	retval = do_inode_permission(inode, mask);
452  	if (retval)
453  		return retval;
454  
455  	retval = devcgroup_inode_permission(inode, mask);
456  	if (retval)
457  		return retval;
458  
459  	return security_inode_permission(inode, mask);
460  }
461  EXPORT_SYMBOL(inode_permission);
462  
463  /**
464   * path_get - get a reference to a path
465   * @path: path to get the reference to
466   *
467   * Given a path increment the reference count to the dentry and the vfsmount.
468   */
469  void path_get(const struct path *path)
470  {
471  	mntget(path->mnt);
472  	dget(path->dentry);
473  }
474  EXPORT_SYMBOL(path_get);
475  
476  /**
477   * path_put - put a reference to a path
478   * @path: path to put the reference to
479   *
480   * Given a path decrement the reference count to the dentry and the vfsmount.
481   */
482  void path_put(const struct path *path)
483  {
484  	dput(path->dentry);
485  	mntput(path->mnt);
486  }
487  EXPORT_SYMBOL(path_put);
488  
489  #define EMBEDDED_LEVELS 2
490  struct nameidata {
491  	struct path	path;
492  	struct qstr	last;
493  	struct path	root;
494  	struct inode	*inode; /* path.dentry.d_inode */
495  	unsigned int	flags;
496  	unsigned	seq, m_seq;
497  	int		last_type;
498  	unsigned	depth;
499  	int		total_link_count;
500  	struct saved {
501  		struct path link;
502  		struct delayed_call done;
503  		const char *name;
504  		unsigned seq;
505  	} *stack, internal[EMBEDDED_LEVELS];
506  	struct filename	*name;
507  	struct nameidata *saved;
508  	struct inode	*link_inode;
509  	unsigned	root_seq;
510  	int		dfd;
511  } __randomize_layout;
512  
513  static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
514  {
515  	struct nameidata *old = current->nameidata;
516  	p->stack = p->internal;
517  	p->dfd = dfd;
518  	p->name = name;
519  	p->total_link_count = old ? old->total_link_count : 0;
520  	p->saved = old;
521  	current->nameidata = p;
522  }
523  
524  static void restore_nameidata(void)
525  {
526  	struct nameidata *now = current->nameidata, *old = now->saved;
527  
528  	current->nameidata = old;
529  	if (old)
530  		old->total_link_count = now->total_link_count;
531  	if (now->stack != now->internal)
532  		kfree(now->stack);
533  }
534  
535  static int __nd_alloc_stack(struct nameidata *nd)
536  {
537  	struct saved *p;
538  
539  	if (nd->flags & LOOKUP_RCU) {
540  		p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
541  				  GFP_ATOMIC);
542  		if (unlikely(!p))
543  			return -ECHILD;
544  	} else {
545  		p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
546  				  GFP_KERNEL);
547  		if (unlikely(!p))
548  			return -ENOMEM;
549  	}
550  	memcpy(p, nd->internal, sizeof(nd->internal));
551  	nd->stack = p;
552  	return 0;
553  }
554  
555  /**
556   * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
557   * @path: nameidate to verify
558   *
559   * Rename can sometimes move a file or directory outside of a bind
560   * mount, path_connected allows those cases to be detected.
561   */
562  static bool path_connected(const struct path *path)
563  {
564  	struct vfsmount *mnt = path->mnt;
565  	struct super_block *sb = mnt->mnt_sb;
566  
567  	/* Bind mounts and multi-root filesystems can have disconnected paths */
568  	if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root))
569  		return true;
570  
571  	return is_subdir(path->dentry, mnt->mnt_root);
572  }
573  
574  static inline int nd_alloc_stack(struct nameidata *nd)
575  {
576  	if (likely(nd->depth != EMBEDDED_LEVELS))
577  		return 0;
578  	if (likely(nd->stack != nd->internal))
579  		return 0;
580  	return __nd_alloc_stack(nd);
581  }
582  
583  static void drop_links(struct nameidata *nd)
584  {
585  	int i = nd->depth;
586  	while (i--) {
587  		struct saved *last = nd->stack + i;
588  		do_delayed_call(&last->done);
589  		clear_delayed_call(&last->done);
590  	}
591  }
592  
593  static void terminate_walk(struct nameidata *nd)
594  {
595  	drop_links(nd);
596  	if (!(nd->flags & LOOKUP_RCU)) {
597  		int i;
598  		path_put(&nd->path);
599  		for (i = 0; i < nd->depth; i++)
600  			path_put(&nd->stack[i].link);
601  		if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
602  			path_put(&nd->root);
603  			nd->root.mnt = NULL;
604  		}
605  	} else {
606  		nd->flags &= ~LOOKUP_RCU;
607  		if (!(nd->flags & LOOKUP_ROOT))
608  			nd->root.mnt = NULL;
609  		rcu_read_unlock();
610  	}
611  	nd->depth = 0;
612  }
613  
614  /* path_put is needed afterwards regardless of success or failure */
615  static bool legitimize_path(struct nameidata *nd,
616  			    struct path *path, unsigned seq)
617  {
618  	int res = __legitimize_mnt(path->mnt, nd->m_seq);
619  	if (unlikely(res)) {
620  		if (res > 0)
621  			path->mnt = NULL;
622  		path->dentry = NULL;
623  		return false;
624  	}
625  	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
626  		path->dentry = NULL;
627  		return false;
628  	}
629  	return !read_seqcount_retry(&path->dentry->d_seq, seq);
630  }
631  
632  static bool legitimize_links(struct nameidata *nd)
633  {
634  	int i;
635  	for (i = 0; i < nd->depth; i++) {
636  		struct saved *last = nd->stack + i;
637  		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
638  			drop_links(nd);
639  			nd->depth = i + 1;
640  			return false;
641  		}
642  	}
643  	return true;
644  }
645  
646  /*
647   * Path walking has 2 modes, rcu-walk and ref-walk (see
648   * Documentation/filesystems/path-lookup.txt).  In situations when we can't
649   * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
650   * normal reference counts on dentries and vfsmounts to transition to ref-walk
651   * mode.  Refcounts are grabbed at the last known good point before rcu-walk
652   * got stuck, so ref-walk may continue from there. If this is not successful
653   * (eg. a seqcount has changed), then failure is returned and it's up to caller
654   * to restart the path walk from the beginning in ref-walk mode.
655   */
656  
657  /**
658   * unlazy_walk - try to switch to ref-walk mode.
659   * @nd: nameidata pathwalk data
660   * Returns: 0 on success, -ECHILD on failure
661   *
662   * unlazy_walk attempts to legitimize the current nd->path and nd->root
663   * for ref-walk mode.
664   * Must be called from rcu-walk context.
665   * Nothing should touch nameidata between unlazy_walk() failure and
666   * terminate_walk().
667   */
668  static int unlazy_walk(struct nameidata *nd)
669  {
670  	struct dentry *parent = nd->path.dentry;
671  
672  	BUG_ON(!(nd->flags & LOOKUP_RCU));
673  
674  	nd->flags &= ~LOOKUP_RCU;
675  	if (unlikely(!legitimize_links(nd)))
676  		goto out2;
677  	if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
678  		goto out1;
679  	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
680  		if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq)))
681  			goto out;
682  	}
683  	rcu_read_unlock();
684  	BUG_ON(nd->inode != parent->d_inode);
685  	return 0;
686  
687  out2:
688  	nd->path.mnt = NULL;
689  	nd->path.dentry = NULL;
690  out1:
691  	if (!(nd->flags & LOOKUP_ROOT))
692  		nd->root.mnt = NULL;
693  out:
694  	rcu_read_unlock();
695  	return -ECHILD;
696  }
697  
698  /**
699   * unlazy_child - try to switch to ref-walk mode.
700   * @nd: nameidata pathwalk data
701   * @dentry: child of nd->path.dentry
702   * @seq: seq number to check dentry against
703   * Returns: 0 on success, -ECHILD on failure
704   *
705   * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
706   * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
707   * @nd.  Must be called from rcu-walk context.
708   * Nothing should touch nameidata between unlazy_child() failure and
709   * terminate_walk().
710   */
711  static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
712  {
713  	BUG_ON(!(nd->flags & LOOKUP_RCU));
714  
715  	nd->flags &= ~LOOKUP_RCU;
716  	if (unlikely(!legitimize_links(nd)))
717  		goto out2;
718  	if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
719  		goto out2;
720  	if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
721  		goto out1;
722  
723  	/*
724  	 * We need to move both the parent and the dentry from the RCU domain
725  	 * to be properly refcounted. And the sequence number in the dentry
726  	 * validates *both* dentry counters, since we checked the sequence
727  	 * number of the parent after we got the child sequence number. So we
728  	 * know the parent must still be valid if the child sequence number is
729  	 */
730  	if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
731  		goto out;
732  	if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) {
733  		rcu_read_unlock();
734  		dput(dentry);
735  		goto drop_root_mnt;
736  	}
737  	/*
738  	 * Sequence counts matched. Now make sure that the root is
739  	 * still valid and get it if required.
740  	 */
741  	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
742  		if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
743  			rcu_read_unlock();
744  			dput(dentry);
745  			return -ECHILD;
746  		}
747  	}
748  
749  	rcu_read_unlock();
750  	return 0;
751  
752  out2:
753  	nd->path.mnt = NULL;
754  out1:
755  	nd->path.dentry = NULL;
756  out:
757  	rcu_read_unlock();
758  drop_root_mnt:
759  	if (!(nd->flags & LOOKUP_ROOT))
760  		nd->root.mnt = NULL;
761  	return -ECHILD;
762  }
763  
764  static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
765  {
766  	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
767  		return dentry->d_op->d_revalidate(dentry, flags);
768  	else
769  		return 1;
770  }
771  
772  /**
773   * complete_walk - successful completion of path walk
774   * @nd:  pointer nameidata
775   *
776   * If we had been in RCU mode, drop out of it and legitimize nd->path.
777   * Revalidate the final result, unless we'd already done that during
778   * the path walk or the filesystem doesn't ask for it.  Return 0 on
779   * success, -error on failure.  In case of failure caller does not
780   * need to drop nd->path.
781   */
782  static int complete_walk(struct nameidata *nd)
783  {
784  	struct dentry *dentry = nd->path.dentry;
785  	int status;
786  
787  	if (nd->flags & LOOKUP_RCU) {
788  		if (!(nd->flags & LOOKUP_ROOT))
789  			nd->root.mnt = NULL;
790  		if (unlikely(unlazy_walk(nd)))
791  			return -ECHILD;
792  	}
793  
794  	if (likely(!(nd->flags & LOOKUP_JUMPED)))
795  		return 0;
796  
797  	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
798  		return 0;
799  
800  	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
801  	if (status > 0)
802  		return 0;
803  
804  	if (!status)
805  		status = -ESTALE;
806  
807  	return status;
808  }
809  
810  static void set_root(struct nameidata *nd)
811  {
812  	struct fs_struct *fs = current->fs;
813  
814  	if (nd->flags & LOOKUP_RCU) {
815  		unsigned seq;
816  
817  		do {
818  			seq = read_seqcount_begin(&fs->seq);
819  			nd->root = fs->root;
820  			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
821  		} while (read_seqcount_retry(&fs->seq, seq));
822  	} else {
823  		get_fs_root(fs, &nd->root);
824  	}
825  }
826  
827  static void path_put_conditional(struct path *path, struct nameidata *nd)
828  {
829  	dput(path->dentry);
830  	if (path->mnt != nd->path.mnt)
831  		mntput(path->mnt);
832  }
833  
834  static inline void path_to_nameidata(const struct path *path,
835  					struct nameidata *nd)
836  {
837  	if (!(nd->flags & LOOKUP_RCU)) {
838  		dput(nd->path.dentry);
839  		if (nd->path.mnt != path->mnt)
840  			mntput(nd->path.mnt);
841  	}
842  	nd->path.mnt = path->mnt;
843  	nd->path.dentry = path->dentry;
844  }
845  
846  static int nd_jump_root(struct nameidata *nd)
847  {
848  	if (nd->flags & LOOKUP_RCU) {
849  		struct dentry *d;
850  		nd->path = nd->root;
851  		d = nd->path.dentry;
852  		nd->inode = d->d_inode;
853  		nd->seq = nd->root_seq;
854  		if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
855  			return -ECHILD;
856  	} else {
857  		path_put(&nd->path);
858  		nd->path = nd->root;
859  		path_get(&nd->path);
860  		nd->inode = nd->path.dentry->d_inode;
861  	}
862  	nd->flags |= LOOKUP_JUMPED;
863  	return 0;
864  }
865  
866  /*
867   * Helper to directly jump to a known parsed path from ->get_link,
868   * caller must have taken a reference to path beforehand.
869   */
870  void nd_jump_link(struct path *path)
871  {
872  	struct nameidata *nd = current->nameidata;
873  	path_put(&nd->path);
874  
875  	nd->path = *path;
876  	nd->inode = nd->path.dentry->d_inode;
877  	nd->flags |= LOOKUP_JUMPED;
878  }
879  
880  static inline void put_link(struct nameidata *nd)
881  {
882  	struct saved *last = nd->stack + --nd->depth;
883  	do_delayed_call(&last->done);
884  	if (!(nd->flags & LOOKUP_RCU))
885  		path_put(&last->link);
886  }
887  
888  int sysctl_protected_symlinks __read_mostly = 0;
889  int sysctl_protected_hardlinks __read_mostly = 0;
890  int sysctl_protected_fifos __read_mostly;
891  int sysctl_protected_regular __read_mostly;
892  
893  /**
894   * may_follow_link - Check symlink following for unsafe situations
895   * @nd: nameidata pathwalk data
896   *
897   * In the case of the sysctl_protected_symlinks sysctl being enabled,
898   * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
899   * in a sticky world-writable directory. This is to protect privileged
900   * processes from failing races against path names that may change out
901   * from under them by way of other users creating malicious symlinks.
902   * It will permit symlinks to be followed only when outside a sticky
903   * world-writable directory, or when the uid of the symlink and follower
904   * match, or when the directory owner matches the symlink's owner.
905   *
906   * Returns 0 if following the symlink is allowed, -ve on error.
907   */
908  static inline int may_follow_link(struct nameidata *nd)
909  {
910  	const struct inode *inode;
911  	const struct inode *parent;
912  	kuid_t puid;
913  
914  	if (!sysctl_protected_symlinks)
915  		return 0;
916  
917  	/* Allowed if owner and follower match. */
918  	inode = nd->link_inode;
919  	if (uid_eq(current_cred()->fsuid, inode->i_uid))
920  		return 0;
921  
922  	/* Allowed if parent directory not sticky and world-writable. */
923  	parent = nd->inode;
924  	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
925  		return 0;
926  
927  	/* Allowed if parent directory and link owner match. */
928  	puid = parent->i_uid;
929  	if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
930  		return 0;
931  
932  	if (nd->flags & LOOKUP_RCU)
933  		return -ECHILD;
934  
935  	audit_inode(nd->name, nd->stack[0].link.dentry, 0);
936  	audit_log_link_denied("follow_link");
937  	return -EACCES;
938  }
939  
940  /**
941   * safe_hardlink_source - Check for safe hardlink conditions
942   * @inode: the source inode to hardlink from
943   *
944   * Return false if at least one of the following conditions:
945   *    - inode is not a regular file
946   *    - inode is setuid
947   *    - inode is setgid and group-exec
948   *    - access failure for read and write
949   *
950   * Otherwise returns true.
951   */
952  static bool safe_hardlink_source(struct inode *inode)
953  {
954  	umode_t mode = inode->i_mode;
955  
956  	/* Special files should not get pinned to the filesystem. */
957  	if (!S_ISREG(mode))
958  		return false;
959  
960  	/* Setuid files should not get pinned to the filesystem. */
961  	if (mode & S_ISUID)
962  		return false;
963  
964  	/* Executable setgid files should not get pinned to the filesystem. */
965  	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
966  		return false;
967  
968  	/* Hardlinking to unreadable or unwritable sources is dangerous. */
969  	if (inode_permission(inode, MAY_READ | MAY_WRITE))
970  		return false;
971  
972  	return true;
973  }
974  
975  /**
976   * may_linkat - Check permissions for creating a hardlink
977   * @link: the source to hardlink from
978   *
979   * Block hardlink when all of:
980   *  - sysctl_protected_hardlinks enabled
981   *  - fsuid does not match inode
982   *  - hardlink source is unsafe (see safe_hardlink_source() above)
983   *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
984   *
985   * Returns 0 if successful, -ve on error.
986   */
987  static int may_linkat(struct path *link)
988  {
989  	struct inode *inode = link->dentry->d_inode;
990  
991  	/* Inode writeback is not safe when the uid or gid are invalid. */
992  	if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
993  		return -EOVERFLOW;
994  
995  	if (!sysctl_protected_hardlinks)
996  		return 0;
997  
998  	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
999  	 * otherwise, it must be a safe source.
1000  	 */
1001  	if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
1002  		return 0;
1003  
1004  	audit_log_link_denied("linkat");
1005  	return -EPERM;
1006  }
1007  
1008  /**
1009   * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1010   *			  should be allowed, or not, on files that already
1011   *			  exist.
1012   * @dir: the sticky parent directory
1013   * @inode: the inode of the file to open
1014   *
1015   * Block an O_CREAT open of a FIFO (or a regular file) when:
1016   *   - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1017   *   - the file already exists
1018   *   - we are in a sticky directory
1019   *   - we don't own the file
1020   *   - the owner of the directory doesn't own the file
1021   *   - the directory is world writable
1022   * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1023   * the directory doesn't have to be world writable: being group writable will
1024   * be enough.
1025   *
1026   * Returns 0 if the open is allowed, -ve on error.
1027   */
1028  static int may_create_in_sticky(struct dentry * const dir,
1029  				struct inode * const inode)
1030  {
1031  	if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1032  	    (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1033  	    likely(!(dir->d_inode->i_mode & S_ISVTX)) ||
1034  	    uid_eq(inode->i_uid, dir->d_inode->i_uid) ||
1035  	    uid_eq(current_fsuid(), inode->i_uid))
1036  		return 0;
1037  
1038  	if (likely(dir->d_inode->i_mode & 0002) ||
1039  	    (dir->d_inode->i_mode & 0020 &&
1040  	     ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1041  	      (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1042  		return -EACCES;
1043  	}
1044  	return 0;
1045  }
1046  
1047  static __always_inline
1048  const char *get_link(struct nameidata *nd)
1049  {
1050  	struct saved *last = nd->stack + nd->depth - 1;
1051  	struct dentry *dentry = last->link.dentry;
1052  	struct inode *inode = nd->link_inode;
1053  	int error;
1054  	const char *res;
1055  
1056  	if (!(nd->flags & LOOKUP_RCU)) {
1057  		touch_atime(&last->link);
1058  		cond_resched();
1059  	} else if (atime_needs_update(&last->link, inode)) {
1060  		if (unlikely(unlazy_walk(nd)))
1061  			return ERR_PTR(-ECHILD);
1062  		touch_atime(&last->link);
1063  	}
1064  
1065  	error = security_inode_follow_link(dentry, inode,
1066  					   nd->flags & LOOKUP_RCU);
1067  	if (unlikely(error))
1068  		return ERR_PTR(error);
1069  
1070  	nd->last_type = LAST_BIND;
1071  	res = inode->i_link;
1072  	if (!res) {
1073  		const char * (*get)(struct dentry *, struct inode *,
1074  				struct delayed_call *);
1075  		get = inode->i_op->get_link;
1076  		if (nd->flags & LOOKUP_RCU) {
1077  			res = get(NULL, inode, &last->done);
1078  			if (res == ERR_PTR(-ECHILD)) {
1079  				if (unlikely(unlazy_walk(nd)))
1080  					return ERR_PTR(-ECHILD);
1081  				res = get(dentry, inode, &last->done);
1082  			}
1083  		} else {
1084  			res = get(dentry, inode, &last->done);
1085  		}
1086  		if (IS_ERR_OR_NULL(res))
1087  			return res;
1088  	}
1089  	if (*res == '/') {
1090  		if (!nd->root.mnt)
1091  			set_root(nd);
1092  		if (unlikely(nd_jump_root(nd)))
1093  			return ERR_PTR(-ECHILD);
1094  		while (unlikely(*++res == '/'))
1095  			;
1096  	}
1097  	if (!*res)
1098  		res = NULL;
1099  	return res;
1100  }
1101  
1102  /*
1103   * follow_up - Find the mountpoint of path's vfsmount
1104   *
1105   * Given a path, find the mountpoint of its source file system.
1106   * Replace @path with the path of the mountpoint in the parent mount.
1107   * Up is towards /.
1108   *
1109   * Return 1 if we went up a level and 0 if we were already at the
1110   * root.
1111   */
1112  int follow_up(struct path *path)
1113  {
1114  	struct mount *mnt = real_mount(path->mnt);
1115  	struct mount *parent;
1116  	struct dentry *mountpoint;
1117  
1118  	read_seqlock_excl(&mount_lock);
1119  	parent = mnt->mnt_parent;
1120  	if (parent == mnt) {
1121  		read_sequnlock_excl(&mount_lock);
1122  		return 0;
1123  	}
1124  	mntget(&parent->mnt);
1125  	mountpoint = dget(mnt->mnt_mountpoint);
1126  	read_sequnlock_excl(&mount_lock);
1127  	dput(path->dentry);
1128  	path->dentry = mountpoint;
1129  	mntput(path->mnt);
1130  	path->mnt = &parent->mnt;
1131  	return 1;
1132  }
1133  EXPORT_SYMBOL(follow_up);
1134  
1135  /*
1136   * Perform an automount
1137   * - return -EISDIR to tell follow_managed() to stop and return the path we
1138   *   were called with.
1139   */
1140  static int follow_automount(struct path *path, struct nameidata *nd,
1141  			    bool *need_mntput)
1142  {
1143  	struct vfsmount *mnt;
1144  	int err;
1145  
1146  	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1147  		return -EREMOTE;
1148  
1149  	/* We don't want to mount if someone's just doing a stat -
1150  	 * unless they're stat'ing a directory and appended a '/' to
1151  	 * the name.
1152  	 *
1153  	 * We do, however, want to mount if someone wants to open or
1154  	 * create a file of any type under the mountpoint, wants to
1155  	 * traverse through the mountpoint or wants to open the
1156  	 * mounted directory.  Also, autofs may mark negative dentries
1157  	 * as being automount points.  These will need the attentions
1158  	 * of the daemon to instantiate them before they can be used.
1159  	 */
1160  	if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1161  			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1162  	    path->dentry->d_inode)
1163  		return -EISDIR;
1164  
1165  	nd->total_link_count++;
1166  	if (nd->total_link_count >= 40)
1167  		return -ELOOP;
1168  
1169  	mnt = path->dentry->d_op->d_automount(path);
1170  	if (IS_ERR(mnt)) {
1171  		/*
1172  		 * The filesystem is allowed to return -EISDIR here to indicate
1173  		 * it doesn't want to automount.  For instance, autofs would do
1174  		 * this so that its userspace daemon can mount on this dentry.
1175  		 *
1176  		 * However, we can only permit this if it's a terminal point in
1177  		 * the path being looked up; if it wasn't then the remainder of
1178  		 * the path is inaccessible and we should say so.
1179  		 */
1180  		if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1181  			return -EREMOTE;
1182  		return PTR_ERR(mnt);
1183  	}
1184  
1185  	if (!mnt) /* mount collision */
1186  		return 0;
1187  
1188  	if (!*need_mntput) {
1189  		/* lock_mount() may release path->mnt on error */
1190  		mntget(path->mnt);
1191  		*need_mntput = true;
1192  	}
1193  	err = finish_automount(mnt, path);
1194  
1195  	switch (err) {
1196  	case -EBUSY:
1197  		/* Someone else made a mount here whilst we were busy */
1198  		return 0;
1199  	case 0:
1200  		path_put(path);
1201  		path->mnt = mnt;
1202  		path->dentry = dget(mnt->mnt_root);
1203  		return 0;
1204  	default:
1205  		return err;
1206  	}
1207  
1208  }
1209  
1210  /*
1211   * Handle a dentry that is managed in some way.
1212   * - Flagged for transit management (autofs)
1213   * - Flagged as mountpoint
1214   * - Flagged as automount point
1215   *
1216   * This may only be called in refwalk mode.
1217   *
1218   * Serialization is taken care of in namespace.c
1219   */
1220  static int follow_managed(struct path *path, struct nameidata *nd)
1221  {
1222  	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1223  	unsigned managed;
1224  	bool need_mntput = false;
1225  	int ret = 0;
1226  
1227  	/* Given that we're not holding a lock here, we retain the value in a
1228  	 * local variable for each dentry as we look at it so that we don't see
1229  	 * the components of that value change under us */
1230  	while (managed = READ_ONCE(path->dentry->d_flags),
1231  	       managed &= DCACHE_MANAGED_DENTRY,
1232  	       unlikely(managed != 0)) {
1233  		/* Allow the filesystem to manage the transit without i_mutex
1234  		 * being held. */
1235  		if (managed & DCACHE_MANAGE_TRANSIT) {
1236  			BUG_ON(!path->dentry->d_op);
1237  			BUG_ON(!path->dentry->d_op->d_manage);
1238  			ret = path->dentry->d_op->d_manage(path, false);
1239  			if (ret < 0)
1240  				break;
1241  		}
1242  
1243  		/* Transit to a mounted filesystem. */
1244  		if (managed & DCACHE_MOUNTED) {
1245  			struct vfsmount *mounted = lookup_mnt(path);
1246  			if (mounted) {
1247  				dput(path->dentry);
1248  				if (need_mntput)
1249  					mntput(path->mnt);
1250  				path->mnt = mounted;
1251  				path->dentry = dget(mounted->mnt_root);
1252  				need_mntput = true;
1253  				continue;
1254  			}
1255  
1256  			/* Something is mounted on this dentry in another
1257  			 * namespace and/or whatever was mounted there in this
1258  			 * namespace got unmounted before lookup_mnt() could
1259  			 * get it */
1260  		}
1261  
1262  		/* Handle an automount point */
1263  		if (managed & DCACHE_NEED_AUTOMOUNT) {
1264  			ret = follow_automount(path, nd, &need_mntput);
1265  			if (ret < 0)
1266  				break;
1267  			continue;
1268  		}
1269  
1270  		/* We didn't change the current path point */
1271  		break;
1272  	}
1273  
1274  	if (need_mntput && path->mnt == mnt)
1275  		mntput(path->mnt);
1276  	if (ret == -EISDIR || !ret)
1277  		ret = 1;
1278  	if (need_mntput)
1279  		nd->flags |= LOOKUP_JUMPED;
1280  	if (unlikely(ret < 0))
1281  		path_put_conditional(path, nd);
1282  	return ret;
1283  }
1284  
1285  int follow_down_one(struct path *path)
1286  {
1287  	struct vfsmount *mounted;
1288  
1289  	mounted = lookup_mnt(path);
1290  	if (mounted) {
1291  		dput(path->dentry);
1292  		mntput(path->mnt);
1293  		path->mnt = mounted;
1294  		path->dentry = dget(mounted->mnt_root);
1295  		return 1;
1296  	}
1297  	return 0;
1298  }
1299  EXPORT_SYMBOL(follow_down_one);
1300  
1301  static inline int managed_dentry_rcu(const struct path *path)
1302  {
1303  	return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1304  		path->dentry->d_op->d_manage(path, true) : 0;
1305  }
1306  
1307  /*
1308   * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1309   * we meet a managed dentry that would need blocking.
1310   */
1311  static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1312  			       struct inode **inode, unsigned *seqp)
1313  {
1314  	for (;;) {
1315  		struct mount *mounted;
1316  		/*
1317  		 * Don't forget we might have a non-mountpoint managed dentry
1318  		 * that wants to block transit.
1319  		 */
1320  		switch (managed_dentry_rcu(path)) {
1321  		case -ECHILD:
1322  		default:
1323  			return false;
1324  		case -EISDIR:
1325  			return true;
1326  		case 0:
1327  			break;
1328  		}
1329  
1330  		if (!d_mountpoint(path->dentry))
1331  			return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1332  
1333  		mounted = __lookup_mnt(path->mnt, path->dentry);
1334  		if (!mounted)
1335  			break;
1336  		path->mnt = &mounted->mnt;
1337  		path->dentry = mounted->mnt.mnt_root;
1338  		nd->flags |= LOOKUP_JUMPED;
1339  		*seqp = read_seqcount_begin(&path->dentry->d_seq);
1340  		/*
1341  		 * Update the inode too. We don't need to re-check the
1342  		 * dentry sequence number here after this d_inode read,
1343  		 * because a mount-point is always pinned.
1344  		 */
1345  		*inode = path->dentry->d_inode;
1346  	}
1347  	return !read_seqretry(&mount_lock, nd->m_seq) &&
1348  		!(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1349  }
1350  
1351  static int follow_dotdot_rcu(struct nameidata *nd)
1352  {
1353  	struct inode *inode = nd->inode;
1354  
1355  	while (1) {
1356  		if (path_equal(&nd->path, &nd->root))
1357  			break;
1358  		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1359  			struct dentry *old = nd->path.dentry;
1360  			struct dentry *parent = old->d_parent;
1361  			unsigned seq;
1362  
1363  			inode = parent->d_inode;
1364  			seq = read_seqcount_begin(&parent->d_seq);
1365  			if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1366  				return -ECHILD;
1367  			nd->path.dentry = parent;
1368  			nd->seq = seq;
1369  			if (unlikely(!path_connected(&nd->path)))
1370  				return -ENOENT;
1371  			break;
1372  		} else {
1373  			struct mount *mnt = real_mount(nd->path.mnt);
1374  			struct mount *mparent = mnt->mnt_parent;
1375  			struct dentry *mountpoint = mnt->mnt_mountpoint;
1376  			struct inode *inode2 = mountpoint->d_inode;
1377  			unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1378  			if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1379  				return -ECHILD;
1380  			if (&mparent->mnt == nd->path.mnt)
1381  				break;
1382  			/* we know that mountpoint was pinned */
1383  			nd->path.dentry = mountpoint;
1384  			nd->path.mnt = &mparent->mnt;
1385  			inode = inode2;
1386  			nd->seq = seq;
1387  		}
1388  	}
1389  	while (unlikely(d_mountpoint(nd->path.dentry))) {
1390  		struct mount *mounted;
1391  		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1392  		if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1393  			return -ECHILD;
1394  		if (!mounted)
1395  			break;
1396  		nd->path.mnt = &mounted->mnt;
1397  		nd->path.dentry = mounted->mnt.mnt_root;
1398  		inode = nd->path.dentry->d_inode;
1399  		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1400  	}
1401  	nd->inode = inode;
1402  	return 0;
1403  }
1404  
1405  /*
1406   * Follow down to the covering mount currently visible to userspace.  At each
1407   * point, the filesystem owning that dentry may be queried as to whether the
1408   * caller is permitted to proceed or not.
1409   */
1410  int follow_down(struct path *path)
1411  {
1412  	unsigned managed;
1413  	int ret;
1414  
1415  	while (managed = READ_ONCE(path->dentry->d_flags),
1416  	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1417  		/* Allow the filesystem to manage the transit without i_mutex
1418  		 * being held.
1419  		 *
1420  		 * We indicate to the filesystem if someone is trying to mount
1421  		 * something here.  This gives autofs the chance to deny anyone
1422  		 * other than its daemon the right to mount on its
1423  		 * superstructure.
1424  		 *
1425  		 * The filesystem may sleep at this point.
1426  		 */
1427  		if (managed & DCACHE_MANAGE_TRANSIT) {
1428  			BUG_ON(!path->dentry->d_op);
1429  			BUG_ON(!path->dentry->d_op->d_manage);
1430  			ret = path->dentry->d_op->d_manage(path, false);
1431  			if (ret < 0)
1432  				return ret == -EISDIR ? 0 : ret;
1433  		}
1434  
1435  		/* Transit to a mounted filesystem. */
1436  		if (managed & DCACHE_MOUNTED) {
1437  			struct vfsmount *mounted = lookup_mnt(path);
1438  			if (!mounted)
1439  				break;
1440  			dput(path->dentry);
1441  			mntput(path->mnt);
1442  			path->mnt = mounted;
1443  			path->dentry = dget(mounted->mnt_root);
1444  			continue;
1445  		}
1446  
1447  		/* Don't handle automount points here */
1448  		break;
1449  	}
1450  	return 0;
1451  }
1452  EXPORT_SYMBOL(follow_down);
1453  
1454  /*
1455   * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1456   */
1457  static void follow_mount(struct path *path)
1458  {
1459  	while (d_mountpoint(path->dentry)) {
1460  		struct vfsmount *mounted = lookup_mnt(path);
1461  		if (!mounted)
1462  			break;
1463  		dput(path->dentry);
1464  		mntput(path->mnt);
1465  		path->mnt = mounted;
1466  		path->dentry = dget(mounted->mnt_root);
1467  	}
1468  }
1469  
1470  static int path_parent_directory(struct path *path)
1471  {
1472  	struct dentry *old = path->dentry;
1473  	/* rare case of legitimate dget_parent()... */
1474  	path->dentry = dget_parent(path->dentry);
1475  	dput(old);
1476  	if (unlikely(!path_connected(path)))
1477  		return -ENOENT;
1478  	return 0;
1479  }
1480  
1481  static int follow_dotdot(struct nameidata *nd)
1482  {
1483  	while(1) {
1484  		if (path_equal(&nd->path, &nd->root))
1485  			break;
1486  		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1487  			int ret = path_parent_directory(&nd->path);
1488  			if (ret)
1489  				return ret;
1490  			break;
1491  		}
1492  		if (!follow_up(&nd->path))
1493  			break;
1494  	}
1495  	follow_mount(&nd->path);
1496  	nd->inode = nd->path.dentry->d_inode;
1497  	return 0;
1498  }
1499  
1500  /*
1501   * This looks up the name in dcache and possibly revalidates the found dentry.
1502   * NULL is returned if the dentry does not exist in the cache.
1503   */
1504  static struct dentry *lookup_dcache(const struct qstr *name,
1505  				    struct dentry *dir,
1506  				    unsigned int flags)
1507  {
1508  	struct dentry *dentry = d_lookup(dir, name);
1509  	if (dentry) {
1510  		int error = d_revalidate(dentry, flags);
1511  		if (unlikely(error <= 0)) {
1512  			if (!error)
1513  				d_invalidate(dentry);
1514  			dput(dentry);
1515  			return ERR_PTR(error);
1516  		}
1517  	}
1518  	return dentry;
1519  }
1520  
1521  /*
1522   * Parent directory has inode locked exclusive.  This is one
1523   * and only case when ->lookup() gets called on non in-lookup
1524   * dentries - as the matter of fact, this only gets called
1525   * when directory is guaranteed to have no in-lookup children
1526   * at all.
1527   */
1528  static struct dentry *__lookup_hash(const struct qstr *name,
1529  		struct dentry *base, unsigned int flags)
1530  {
1531  	struct dentry *dentry = lookup_dcache(name, base, flags);
1532  	struct dentry *old;
1533  	struct inode *dir = base->d_inode;
1534  
1535  	if (dentry)
1536  		return dentry;
1537  
1538  	/* Don't create child dentry for a dead directory. */
1539  	if (unlikely(IS_DEADDIR(dir)))
1540  		return ERR_PTR(-ENOENT);
1541  
1542  	dentry = d_alloc(base, name);
1543  	if (unlikely(!dentry))
1544  		return ERR_PTR(-ENOMEM);
1545  
1546  	old = dir->i_op->lookup(dir, dentry, flags);
1547  	if (unlikely(old)) {
1548  		dput(dentry);
1549  		dentry = old;
1550  	}
1551  	return dentry;
1552  }
1553  
1554  static int lookup_fast(struct nameidata *nd,
1555  		       struct path *path, struct inode **inode,
1556  		       unsigned *seqp)
1557  {
1558  	struct vfsmount *mnt = nd->path.mnt;
1559  	struct dentry *dentry, *parent = nd->path.dentry;
1560  	int status = 1;
1561  	int err;
1562  
1563  	/*
1564  	 * Rename seqlock is not required here because in the off chance
1565  	 * of a false negative due to a concurrent rename, the caller is
1566  	 * going to fall back to non-racy lookup.
1567  	 */
1568  	if (nd->flags & LOOKUP_RCU) {
1569  		unsigned seq;
1570  		bool negative;
1571  		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1572  		if (unlikely(!dentry)) {
1573  			if (unlazy_walk(nd))
1574  				return -ECHILD;
1575  			return 0;
1576  		}
1577  
1578  		/*
1579  		 * This sequence count validates that the inode matches
1580  		 * the dentry name information from lookup.
1581  		 */
1582  		*inode = d_backing_inode(dentry);
1583  		negative = d_is_negative(dentry);
1584  		if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1585  			return -ECHILD;
1586  
1587  		/*
1588  		 * This sequence count validates that the parent had no
1589  		 * changes while we did the lookup of the dentry above.
1590  		 *
1591  		 * The memory barrier in read_seqcount_begin of child is
1592  		 *  enough, we can use __read_seqcount_retry here.
1593  		 */
1594  		if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1595  			return -ECHILD;
1596  
1597  		*seqp = seq;
1598  		status = d_revalidate(dentry, nd->flags);
1599  		if (likely(status > 0)) {
1600  			/*
1601  			 * Note: do negative dentry check after revalidation in
1602  			 * case that drops it.
1603  			 */
1604  			if (unlikely(negative))
1605  				return -ENOENT;
1606  			path->mnt = mnt;
1607  			path->dentry = dentry;
1608  			if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1609  				return 1;
1610  		}
1611  		if (unlazy_child(nd, dentry, seq))
1612  			return -ECHILD;
1613  		if (unlikely(status == -ECHILD))
1614  			/* we'd been told to redo it in non-rcu mode */
1615  			status = d_revalidate(dentry, nd->flags);
1616  	} else {
1617  		dentry = __d_lookup(parent, &nd->last);
1618  		if (unlikely(!dentry))
1619  			return 0;
1620  		status = d_revalidate(dentry, nd->flags);
1621  	}
1622  	if (unlikely(status <= 0)) {
1623  		if (!status)
1624  			d_invalidate(dentry);
1625  		dput(dentry);
1626  		return status;
1627  	}
1628  	if (unlikely(d_is_negative(dentry))) {
1629  		dput(dentry);
1630  		return -ENOENT;
1631  	}
1632  
1633  	path->mnt = mnt;
1634  	path->dentry = dentry;
1635  	err = follow_managed(path, nd);
1636  	if (likely(err > 0))
1637  		*inode = d_backing_inode(path->dentry);
1638  	return err;
1639  }
1640  
1641  /* Fast lookup failed, do it the slow way */
1642  static struct dentry *__lookup_slow(const struct qstr *name,
1643  				    struct dentry *dir,
1644  				    unsigned int flags)
1645  {
1646  	struct dentry *dentry, *old;
1647  	struct inode *inode = dir->d_inode;
1648  	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1649  
1650  	/* Don't go there if it's already dead */
1651  	if (unlikely(IS_DEADDIR(inode)))
1652  		return ERR_PTR(-ENOENT);
1653  again:
1654  	dentry = d_alloc_parallel(dir, name, &wq);
1655  	if (IS_ERR(dentry))
1656  		return dentry;
1657  	if (unlikely(!d_in_lookup(dentry))) {
1658  		if (!(flags & LOOKUP_NO_REVAL)) {
1659  			int error = d_revalidate(dentry, flags);
1660  			if (unlikely(error <= 0)) {
1661  				if (!error) {
1662  					d_invalidate(dentry);
1663  					dput(dentry);
1664  					goto again;
1665  				}
1666  				dput(dentry);
1667  				dentry = ERR_PTR(error);
1668  			}
1669  		}
1670  	} else {
1671  		old = inode->i_op->lookup(inode, dentry, flags);
1672  		d_lookup_done(dentry);
1673  		if (unlikely(old)) {
1674  			dput(dentry);
1675  			dentry = old;
1676  		}
1677  	}
1678  	return dentry;
1679  }
1680  
1681  static struct dentry *lookup_slow(const struct qstr *name,
1682  				  struct dentry *dir,
1683  				  unsigned int flags)
1684  {
1685  	struct inode *inode = dir->d_inode;
1686  	struct dentry *res;
1687  	inode_lock_shared(inode);
1688  	res = __lookup_slow(name, dir, flags);
1689  	inode_unlock_shared(inode);
1690  	return res;
1691  }
1692  
1693  static inline int may_lookup(struct nameidata *nd)
1694  {
1695  	if (nd->flags & LOOKUP_RCU) {
1696  		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1697  		if (err != -ECHILD)
1698  			return err;
1699  		if (unlazy_walk(nd))
1700  			return -ECHILD;
1701  	}
1702  	return inode_permission(nd->inode, MAY_EXEC);
1703  }
1704  
1705  static inline int handle_dots(struct nameidata *nd, int type)
1706  {
1707  	if (type == LAST_DOTDOT) {
1708  		if (!nd->root.mnt)
1709  			set_root(nd);
1710  		if (nd->flags & LOOKUP_RCU) {
1711  			return follow_dotdot_rcu(nd);
1712  		} else
1713  			return follow_dotdot(nd);
1714  	}
1715  	return 0;
1716  }
1717  
1718  static int pick_link(struct nameidata *nd, struct path *link,
1719  		     struct inode *inode, unsigned seq)
1720  {
1721  	int error;
1722  	struct saved *last;
1723  	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1724  		path_to_nameidata(link, nd);
1725  		return -ELOOP;
1726  	}
1727  	if (!(nd->flags & LOOKUP_RCU)) {
1728  		if (link->mnt == nd->path.mnt)
1729  			mntget(link->mnt);
1730  	}
1731  	error = nd_alloc_stack(nd);
1732  	if (unlikely(error)) {
1733  		if (error == -ECHILD) {
1734  			if (unlikely(!legitimize_path(nd, link, seq))) {
1735  				drop_links(nd);
1736  				nd->depth = 0;
1737  				nd->flags &= ~LOOKUP_RCU;
1738  				nd->path.mnt = NULL;
1739  				nd->path.dentry = NULL;
1740  				if (!(nd->flags & LOOKUP_ROOT))
1741  					nd->root.mnt = NULL;
1742  				rcu_read_unlock();
1743  			} else if (likely(unlazy_walk(nd)) == 0)
1744  				error = nd_alloc_stack(nd);
1745  		}
1746  		if (error) {
1747  			path_put(link);
1748  			return error;
1749  		}
1750  	}
1751  
1752  	last = nd->stack + nd->depth++;
1753  	last->link = *link;
1754  	clear_delayed_call(&last->done);
1755  	nd->link_inode = inode;
1756  	last->seq = seq;
1757  	return 1;
1758  }
1759  
1760  enum {WALK_FOLLOW = 1, WALK_MORE = 2};
1761  
1762  /*
1763   * Do we need to follow links? We _really_ want to be able
1764   * to do this check without having to look at inode->i_op,
1765   * so we keep a cache of "no, this doesn't need follow_link"
1766   * for the common case.
1767   */
1768  static inline int step_into(struct nameidata *nd, struct path *path,
1769  			    int flags, struct inode *inode, unsigned seq)
1770  {
1771  	if (!(flags & WALK_MORE) && nd->depth)
1772  		put_link(nd);
1773  	if (likely(!d_is_symlink(path->dentry)) ||
1774  	   !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) {
1775  		/* not a symlink or should not follow */
1776  		path_to_nameidata(path, nd);
1777  		nd->inode = inode;
1778  		nd->seq = seq;
1779  		return 0;
1780  	}
1781  	/* make sure that d_is_symlink above matches inode */
1782  	if (nd->flags & LOOKUP_RCU) {
1783  		if (read_seqcount_retry(&path->dentry->d_seq, seq))
1784  			return -ECHILD;
1785  	}
1786  	return pick_link(nd, path, inode, seq);
1787  }
1788  
1789  static int walk_component(struct nameidata *nd, int flags)
1790  {
1791  	struct path path;
1792  	struct inode *inode;
1793  	unsigned seq;
1794  	int err;
1795  	/*
1796  	 * "." and ".." are special - ".." especially so because it has
1797  	 * to be able to know about the current root directory and
1798  	 * parent relationships.
1799  	 */
1800  	if (unlikely(nd->last_type != LAST_NORM)) {
1801  		err = handle_dots(nd, nd->last_type);
1802  		if (!(flags & WALK_MORE) && nd->depth)
1803  			put_link(nd);
1804  		return err;
1805  	}
1806  	err = lookup_fast(nd, &path, &inode, &seq);
1807  	if (unlikely(err <= 0)) {
1808  		if (err < 0)
1809  			return err;
1810  		path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1811  					  nd->flags);
1812  		if (IS_ERR(path.dentry))
1813  			return PTR_ERR(path.dentry);
1814  
1815  		path.mnt = nd->path.mnt;
1816  		err = follow_managed(&path, nd);
1817  		if (unlikely(err < 0))
1818  			return err;
1819  
1820  		if (unlikely(d_is_negative(path.dentry))) {
1821  			path_to_nameidata(&path, nd);
1822  			return -ENOENT;
1823  		}
1824  
1825  		seq = 0;	/* we are already out of RCU mode */
1826  		inode = d_backing_inode(path.dentry);
1827  	}
1828  
1829  	return step_into(nd, &path, flags, inode, seq);
1830  }
1831  
1832  /*
1833   * We can do the critical dentry name comparison and hashing
1834   * operations one word at a time, but we are limited to:
1835   *
1836   * - Architectures with fast unaligned word accesses. We could
1837   *   do a "get_unaligned()" if this helps and is sufficiently
1838   *   fast.
1839   *
1840   * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1841   *   do not trap on the (extremely unlikely) case of a page
1842   *   crossing operation.
1843   *
1844   * - Furthermore, we need an efficient 64-bit compile for the
1845   *   64-bit case in order to generate the "number of bytes in
1846   *   the final mask". Again, that could be replaced with a
1847   *   efficient population count instruction or similar.
1848   */
1849  #ifdef CONFIG_DCACHE_WORD_ACCESS
1850  
1851  #include <asm/word-at-a-time.h>
1852  
1853  #ifdef HASH_MIX
1854  
1855  /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1856  
1857  #elif defined(CONFIG_64BIT)
1858  /*
1859   * Register pressure in the mixing function is an issue, particularly
1860   * on 32-bit x86, but almost any function requires one state value and
1861   * one temporary.  Instead, use a function designed for two state values
1862   * and no temporaries.
1863   *
1864   * This function cannot create a collision in only two iterations, so
1865   * we have two iterations to achieve avalanche.  In those two iterations,
1866   * we have six layers of mixing, which is enough to spread one bit's
1867   * influence out to 2^6 = 64 state bits.
1868   *
1869   * Rotate constants are scored by considering either 64 one-bit input
1870   * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1871   * probability of that delta causing a change to each of the 128 output
1872   * bits, using a sample of random initial states.
1873   *
1874   * The Shannon entropy of the computed probabilities is then summed
1875   * to produce a score.  Ideally, any input change has a 50% chance of
1876   * toggling any given output bit.
1877   *
1878   * Mixing scores (in bits) for (12,45):
1879   * Input delta: 1-bit      2-bit
1880   * 1 round:     713.3    42542.6
1881   * 2 rounds:   2753.7   140389.8
1882   * 3 rounds:   5954.1   233458.2
1883   * 4 rounds:   7862.6   256672.2
1884   * Perfect:    8192     258048
1885   *            (64*128) (64*63/2 * 128)
1886   */
1887  #define HASH_MIX(x, y, a)	\
1888  	(	x ^= (a),	\
1889  	y ^= x,	x = rol64(x,12),\
1890  	x += y,	y = rol64(y,45),\
1891  	y *= 9			)
1892  
1893  /*
1894   * Fold two longs into one 32-bit hash value.  This must be fast, but
1895   * latency isn't quite as critical, as there is a fair bit of additional
1896   * work done before the hash value is used.
1897   */
1898  static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1899  {
1900  	y ^= x * GOLDEN_RATIO_64;
1901  	y *= GOLDEN_RATIO_64;
1902  	return y >> 32;
1903  }
1904  
1905  #else	/* 32-bit case */
1906  
1907  /*
1908   * Mixing scores (in bits) for (7,20):
1909   * Input delta: 1-bit      2-bit
1910   * 1 round:     330.3     9201.6
1911   * 2 rounds:   1246.4    25475.4
1912   * 3 rounds:   1907.1    31295.1
1913   * 4 rounds:   2042.3    31718.6
1914   * Perfect:    2048      31744
1915   *            (32*64)   (32*31/2 * 64)
1916   */
1917  #define HASH_MIX(x, y, a)	\
1918  	(	x ^= (a),	\
1919  	y ^= x,	x = rol32(x, 7),\
1920  	x += y,	y = rol32(y,20),\
1921  	y *= 9			)
1922  
1923  static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1924  {
1925  	/* Use arch-optimized multiply if one exists */
1926  	return __hash_32(y ^ __hash_32(x));
1927  }
1928  
1929  #endif
1930  
1931  /*
1932   * Return the hash of a string of known length.  This is carfully
1933   * designed to match hash_name(), which is the more critical function.
1934   * In particular, we must end by hashing a final word containing 0..7
1935   * payload bytes, to match the way that hash_name() iterates until it
1936   * finds the delimiter after the name.
1937   */
1938  unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1939  {
1940  	unsigned long a, x = 0, y = (unsigned long)salt;
1941  
1942  	for (;;) {
1943  		if (!len)
1944  			goto done;
1945  		a = load_unaligned_zeropad(name);
1946  		if (len < sizeof(unsigned long))
1947  			break;
1948  		HASH_MIX(x, y, a);
1949  		name += sizeof(unsigned long);
1950  		len -= sizeof(unsigned long);
1951  	}
1952  	x ^= a & bytemask_from_count(len);
1953  done:
1954  	return fold_hash(x, y);
1955  }
1956  EXPORT_SYMBOL(full_name_hash);
1957  
1958  /* Return the "hash_len" (hash and length) of a null-terminated string */
1959  u64 hashlen_string(const void *salt, const char *name)
1960  {
1961  	unsigned long a = 0, x = 0, y = (unsigned long)salt;
1962  	unsigned long adata, mask, len;
1963  	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1964  
1965  	len = 0;
1966  	goto inside;
1967  
1968  	do {
1969  		HASH_MIX(x, y, a);
1970  		len += sizeof(unsigned long);
1971  inside:
1972  		a = load_unaligned_zeropad(name+len);
1973  	} while (!has_zero(a, &adata, &constants));
1974  
1975  	adata = prep_zero_mask(a, adata, &constants);
1976  	mask = create_zero_mask(adata);
1977  	x ^= a & zero_bytemask(mask);
1978  
1979  	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1980  }
1981  EXPORT_SYMBOL(hashlen_string);
1982  
1983  /*
1984   * Calculate the length and hash of the path component, and
1985   * return the "hash_len" as the result.
1986   */
1987  static inline u64 hash_name(const void *salt, const char *name)
1988  {
1989  	unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
1990  	unsigned long adata, bdata, mask, len;
1991  	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1992  
1993  	len = 0;
1994  	goto inside;
1995  
1996  	do {
1997  		HASH_MIX(x, y, a);
1998  		len += sizeof(unsigned long);
1999  inside:
2000  		a = load_unaligned_zeropad(name+len);
2001  		b = a ^ REPEAT_BYTE('/');
2002  	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2003  
2004  	adata = prep_zero_mask(a, adata, &constants);
2005  	bdata = prep_zero_mask(b, bdata, &constants);
2006  	mask = create_zero_mask(adata | bdata);
2007  	x ^= a & zero_bytemask(mask);
2008  
2009  	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2010  }
2011  
2012  #else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2013  
2014  /* Return the hash of a string of known length */
2015  unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2016  {
2017  	unsigned long hash = init_name_hash(salt);
2018  	while (len--)
2019  		hash = partial_name_hash((unsigned char)*name++, hash);
2020  	return end_name_hash(hash);
2021  }
2022  EXPORT_SYMBOL(full_name_hash);
2023  
2024  /* Return the "hash_len" (hash and length) of a null-terminated string */
2025  u64 hashlen_string(const void *salt, const char *name)
2026  {
2027  	unsigned long hash = init_name_hash(salt);
2028  	unsigned long len = 0, c;
2029  
2030  	c = (unsigned char)*name;
2031  	while (c) {
2032  		len++;
2033  		hash = partial_name_hash(c, hash);
2034  		c = (unsigned char)name[len];
2035  	}
2036  	return hashlen_create(end_name_hash(hash), len);
2037  }
2038  EXPORT_SYMBOL(hashlen_string);
2039  
2040  /*
2041   * We know there's a real path component here of at least
2042   * one character.
2043   */
2044  static inline u64 hash_name(const void *salt, const char *name)
2045  {
2046  	unsigned long hash = init_name_hash(salt);
2047  	unsigned long len = 0, c;
2048  
2049  	c = (unsigned char)*name;
2050  	do {
2051  		len++;
2052  		hash = partial_name_hash(c, hash);
2053  		c = (unsigned char)name[len];
2054  	} while (c && c != '/');
2055  	return hashlen_create(end_name_hash(hash), len);
2056  }
2057  
2058  #endif
2059  
2060  /*
2061   * Name resolution.
2062   * This is the basic name resolution function, turning a pathname into
2063   * the final dentry. We expect 'base' to be positive and a directory.
2064   *
2065   * Returns 0 and nd will have valid dentry and mnt on success.
2066   * Returns error and drops reference to input namei data on failure.
2067   */
2068  static int link_path_walk(const char *name, struct nameidata *nd)
2069  {
2070  	int err;
2071  
2072  	if (IS_ERR(name))
2073  		return PTR_ERR(name);
2074  	while (*name=='/')
2075  		name++;
2076  	if (!*name)
2077  		return 0;
2078  
2079  	/* At this point we know we have a real path component. */
2080  	for(;;) {
2081  		u64 hash_len;
2082  		int type;
2083  
2084  		err = may_lookup(nd);
2085  		if (err)
2086  			return err;
2087  
2088  		hash_len = hash_name(nd->path.dentry, name);
2089  
2090  		type = LAST_NORM;
2091  		if (name[0] == '.') switch (hashlen_len(hash_len)) {
2092  			case 2:
2093  				if (name[1] == '.') {
2094  					type = LAST_DOTDOT;
2095  					nd->flags |= LOOKUP_JUMPED;
2096  				}
2097  				break;
2098  			case 1:
2099  				type = LAST_DOT;
2100  		}
2101  		if (likely(type == LAST_NORM)) {
2102  			struct dentry *parent = nd->path.dentry;
2103  			nd->flags &= ~LOOKUP_JUMPED;
2104  			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2105  				struct qstr this = { { .hash_len = hash_len }, .name = name };
2106  				err = parent->d_op->d_hash(parent, &this);
2107  				if (err < 0)
2108  					return err;
2109  				hash_len = this.hash_len;
2110  				name = this.name;
2111  			}
2112  		}
2113  
2114  		nd->last.hash_len = hash_len;
2115  		nd->last.name = name;
2116  		nd->last_type = type;
2117  
2118  		name += hashlen_len(hash_len);
2119  		if (!*name)
2120  			goto OK;
2121  		/*
2122  		 * If it wasn't NUL, we know it was '/'. Skip that
2123  		 * slash, and continue until no more slashes.
2124  		 */
2125  		do {
2126  			name++;
2127  		} while (unlikely(*name == '/'));
2128  		if (unlikely(!*name)) {
2129  OK:
2130  			/* pathname body, done */
2131  			if (!nd->depth)
2132  				return 0;
2133  			name = nd->stack[nd->depth - 1].name;
2134  			/* trailing symlink, done */
2135  			if (!name)
2136  				return 0;
2137  			/* last component of nested symlink */
2138  			err = walk_component(nd, WALK_FOLLOW);
2139  		} else {
2140  			/* not the last component */
2141  			err = walk_component(nd, WALK_FOLLOW | WALK_MORE);
2142  		}
2143  		if (err < 0)
2144  			return err;
2145  
2146  		if (err) {
2147  			const char *s = get_link(nd);
2148  
2149  			if (IS_ERR(s))
2150  				return PTR_ERR(s);
2151  			err = 0;
2152  			if (unlikely(!s)) {
2153  				/* jumped */
2154  				put_link(nd);
2155  			} else {
2156  				nd->stack[nd->depth - 1].name = name;
2157  				name = s;
2158  				continue;
2159  			}
2160  		}
2161  		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2162  			if (nd->flags & LOOKUP_RCU) {
2163  				if (unlazy_walk(nd))
2164  					return -ECHILD;
2165  			}
2166  			return -ENOTDIR;
2167  		}
2168  	}
2169  }
2170  
2171  /* must be paired with terminate_walk() */
2172  static const char *path_init(struct nameidata *nd, unsigned flags)
2173  {
2174  	const char *s = nd->name->name;
2175  
2176  	if (!*s)
2177  		flags &= ~LOOKUP_RCU;
2178  	if (flags & LOOKUP_RCU)
2179  		rcu_read_lock();
2180  
2181  	nd->last_type = LAST_ROOT; /* if there are only slashes... */
2182  	nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2183  	nd->depth = 0;
2184  	if (flags & LOOKUP_ROOT) {
2185  		struct dentry *root = nd->root.dentry;
2186  		struct inode *inode = root->d_inode;
2187  		if (*s && unlikely(!d_can_lookup(root)))
2188  			return ERR_PTR(-ENOTDIR);
2189  		nd->path = nd->root;
2190  		nd->inode = inode;
2191  		if (flags & LOOKUP_RCU) {
2192  			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2193  			nd->root_seq = nd->seq;
2194  			nd->m_seq = read_seqbegin(&mount_lock);
2195  		} else {
2196  			path_get(&nd->path);
2197  		}
2198  		return s;
2199  	}
2200  
2201  	nd->root.mnt = NULL;
2202  	nd->path.mnt = NULL;
2203  	nd->path.dentry = NULL;
2204  
2205  	nd->m_seq = read_seqbegin(&mount_lock);
2206  	if (*s == '/') {
2207  		set_root(nd);
2208  		if (likely(!nd_jump_root(nd)))
2209  			return s;
2210  		return ERR_PTR(-ECHILD);
2211  	} else if (nd->dfd == AT_FDCWD) {
2212  		if (flags & LOOKUP_RCU) {
2213  			struct fs_struct *fs = current->fs;
2214  			unsigned seq;
2215  
2216  			do {
2217  				seq = read_seqcount_begin(&fs->seq);
2218  				nd->path = fs->pwd;
2219  				nd->inode = nd->path.dentry->d_inode;
2220  				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2221  			} while (read_seqcount_retry(&fs->seq, seq));
2222  		} else {
2223  			get_fs_pwd(current->fs, &nd->path);
2224  			nd->inode = nd->path.dentry->d_inode;
2225  		}
2226  		return s;
2227  	} else {
2228  		/* Caller must check execute permissions on the starting path component */
2229  		struct fd f = fdget_raw(nd->dfd);
2230  		struct dentry *dentry;
2231  
2232  		if (!f.file)
2233  			return ERR_PTR(-EBADF);
2234  
2235  		dentry = f.file->f_path.dentry;
2236  
2237  		if (*s && unlikely(!d_can_lookup(dentry))) {
2238  			fdput(f);
2239  			return ERR_PTR(-ENOTDIR);
2240  		}
2241  
2242  		nd->path = f.file->f_path;
2243  		if (flags & LOOKUP_RCU) {
2244  			nd->inode = nd->path.dentry->d_inode;
2245  			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2246  		} else {
2247  			path_get(&nd->path);
2248  			nd->inode = nd->path.dentry->d_inode;
2249  		}
2250  		fdput(f);
2251  		return s;
2252  	}
2253  }
2254  
2255  static const char *trailing_symlink(struct nameidata *nd)
2256  {
2257  	const char *s;
2258  	int error = may_follow_link(nd);
2259  	if (unlikely(error))
2260  		return ERR_PTR(error);
2261  	nd->flags |= LOOKUP_PARENT;
2262  	nd->stack[0].name = NULL;
2263  	s = get_link(nd);
2264  	return s ? s : "";
2265  }
2266  
2267  static inline int lookup_last(struct nameidata *nd)
2268  {
2269  	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2270  		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2271  
2272  	nd->flags &= ~LOOKUP_PARENT;
2273  	return walk_component(nd, 0);
2274  }
2275  
2276  static int handle_lookup_down(struct nameidata *nd)
2277  {
2278  	struct path path = nd->path;
2279  	struct inode *inode = nd->inode;
2280  	unsigned seq = nd->seq;
2281  	int err;
2282  
2283  	if (nd->flags & LOOKUP_RCU) {
2284  		/*
2285  		 * don't bother with unlazy_walk on failure - we are
2286  		 * at the very beginning of walk, so we lose nothing
2287  		 * if we simply redo everything in non-RCU mode
2288  		 */
2289  		if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq)))
2290  			return -ECHILD;
2291  	} else {
2292  		dget(path.dentry);
2293  		err = follow_managed(&path, nd);
2294  		if (unlikely(err < 0))
2295  			return err;
2296  		inode = d_backing_inode(path.dentry);
2297  		seq = 0;
2298  	}
2299  	path_to_nameidata(&path, nd);
2300  	nd->inode = inode;
2301  	nd->seq = seq;
2302  	return 0;
2303  }
2304  
2305  /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2306  static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2307  {
2308  	const char *s = path_init(nd, flags);
2309  	int err;
2310  
2311  	if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2312  		err = handle_lookup_down(nd);
2313  		if (unlikely(err < 0))
2314  			s = ERR_PTR(err);
2315  	}
2316  
2317  	while (!(err = link_path_walk(s, nd))
2318  		&& ((err = lookup_last(nd)) > 0)) {
2319  		s = trailing_symlink(nd);
2320  	}
2321  	if (!err)
2322  		err = complete_walk(nd);
2323  
2324  	if (!err && nd->flags & LOOKUP_DIRECTORY)
2325  		if (!d_can_lookup(nd->path.dentry))
2326  			err = -ENOTDIR;
2327  	if (!err) {
2328  		*path = nd->path;
2329  		nd->path.mnt = NULL;
2330  		nd->path.dentry = NULL;
2331  	}
2332  	terminate_walk(nd);
2333  	return err;
2334  }
2335  
2336  static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2337  			   struct path *path, struct path *root)
2338  {
2339  	int retval;
2340  	struct nameidata nd;
2341  	if (IS_ERR(name))
2342  		return PTR_ERR(name);
2343  	if (unlikely(root)) {
2344  		nd.root = *root;
2345  		flags |= LOOKUP_ROOT;
2346  	}
2347  	set_nameidata(&nd, dfd, name);
2348  	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2349  	if (unlikely(retval == -ECHILD))
2350  		retval = path_lookupat(&nd, flags, path);
2351  	if (unlikely(retval == -ESTALE))
2352  		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2353  
2354  	if (likely(!retval))
2355  		audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2356  	restore_nameidata();
2357  	putname(name);
2358  	return retval;
2359  }
2360  
2361  /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2362  static int path_parentat(struct nameidata *nd, unsigned flags,
2363  				struct path *parent)
2364  {
2365  	const char *s = path_init(nd, flags);
2366  	int err = link_path_walk(s, nd);
2367  	if (!err)
2368  		err = complete_walk(nd);
2369  	if (!err) {
2370  		*parent = nd->path;
2371  		nd->path.mnt = NULL;
2372  		nd->path.dentry = NULL;
2373  	}
2374  	terminate_walk(nd);
2375  	return err;
2376  }
2377  
2378  static struct filename *filename_parentat(int dfd, struct filename *name,
2379  				unsigned int flags, struct path *parent,
2380  				struct qstr *last, int *type)
2381  {
2382  	int retval;
2383  	struct nameidata nd;
2384  
2385  	if (IS_ERR(name))
2386  		return name;
2387  	set_nameidata(&nd, dfd, name);
2388  	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2389  	if (unlikely(retval == -ECHILD))
2390  		retval = path_parentat(&nd, flags, parent);
2391  	if (unlikely(retval == -ESTALE))
2392  		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2393  	if (likely(!retval)) {
2394  		*last = nd.last;
2395  		*type = nd.last_type;
2396  		audit_inode(name, parent->dentry, LOOKUP_PARENT);
2397  	} else {
2398  		putname(name);
2399  		name = ERR_PTR(retval);
2400  	}
2401  	restore_nameidata();
2402  	return name;
2403  }
2404  
2405  /* does lookup, returns the object with parent locked */
2406  struct dentry *kern_path_locked(const char *name, struct path *path)
2407  {
2408  	struct filename *filename;
2409  	struct dentry *d;
2410  	struct qstr last;
2411  	int type;
2412  
2413  	filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2414  				    &last, &type);
2415  	if (IS_ERR(filename))
2416  		return ERR_CAST(filename);
2417  	if (unlikely(type != LAST_NORM)) {
2418  		path_put(path);
2419  		putname(filename);
2420  		return ERR_PTR(-EINVAL);
2421  	}
2422  	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2423  	d = __lookup_hash(&last, path->dentry, 0);
2424  	if (IS_ERR(d)) {
2425  		inode_unlock(path->dentry->d_inode);
2426  		path_put(path);
2427  	}
2428  	putname(filename);
2429  	return d;
2430  }
2431  
2432  int kern_path(const char *name, unsigned int flags, struct path *path)
2433  {
2434  	return filename_lookup(AT_FDCWD, getname_kernel(name),
2435  			       flags, path, NULL);
2436  }
2437  EXPORT_SYMBOL(kern_path);
2438  
2439  /**
2440   * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2441   * @dentry:  pointer to dentry of the base directory
2442   * @mnt: pointer to vfs mount of the base directory
2443   * @name: pointer to file name
2444   * @flags: lookup flags
2445   * @path: pointer to struct path to fill
2446   */
2447  int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2448  		    const char *name, unsigned int flags,
2449  		    struct path *path)
2450  {
2451  	struct path root = {.mnt = mnt, .dentry = dentry};
2452  	/* the first argument of filename_lookup() is ignored with root */
2453  	return filename_lookup(AT_FDCWD, getname_kernel(name),
2454  			       flags , path, &root);
2455  }
2456  EXPORT_SYMBOL(vfs_path_lookup);
2457  
2458  static int lookup_one_len_common(const char *name, struct dentry *base,
2459  				 int len, struct qstr *this)
2460  {
2461  	this->name = name;
2462  	this->len = len;
2463  	this->hash = full_name_hash(base, name, len);
2464  	if (!len)
2465  		return -EACCES;
2466  
2467  	if (unlikely(name[0] == '.')) {
2468  		if (len < 2 || (len == 2 && name[1] == '.'))
2469  			return -EACCES;
2470  	}
2471  
2472  	while (len--) {
2473  		unsigned int c = *(const unsigned char *)name++;
2474  		if (c == '/' || c == '\0')
2475  			return -EACCES;
2476  	}
2477  	/*
2478  	 * See if the low-level filesystem might want
2479  	 * to use its own hash..
2480  	 */
2481  	if (base->d_flags & DCACHE_OP_HASH) {
2482  		int err = base->d_op->d_hash(base, this);
2483  		if (err < 0)
2484  			return err;
2485  	}
2486  
2487  	return inode_permission(base->d_inode, MAY_EXEC);
2488  }
2489  
2490  /**
2491   * try_lookup_one_len - filesystem helper to lookup single pathname component
2492   * @name:	pathname component to lookup
2493   * @base:	base directory to lookup from
2494   * @len:	maximum length @len should be interpreted to
2495   *
2496   * Look up a dentry by name in the dcache, returning NULL if it does not
2497   * currently exist.  The function does not try to create a dentry.
2498   *
2499   * Note that this routine is purely a helper for filesystem usage and should
2500   * not be called by generic code.
2501   *
2502   * The caller must hold base->i_mutex.
2503   */
2504  struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2505  {
2506  	struct qstr this;
2507  	int err;
2508  
2509  	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2510  
2511  	err = lookup_one_len_common(name, base, len, &this);
2512  	if (err)
2513  		return ERR_PTR(err);
2514  
2515  	return lookup_dcache(&this, base, 0);
2516  }
2517  EXPORT_SYMBOL(try_lookup_one_len);
2518  
2519  /**
2520   * lookup_one_len - filesystem helper to lookup single pathname component
2521   * @name:	pathname component to lookup
2522   * @base:	base directory to lookup from
2523   * @len:	maximum length @len should be interpreted to
2524   *
2525   * Note that this routine is purely a helper for filesystem usage and should
2526   * not be called by generic code.
2527   *
2528   * The caller must hold base->i_mutex.
2529   */
2530  struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2531  {
2532  	struct dentry *dentry;
2533  	struct qstr this;
2534  	int err;
2535  
2536  	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2537  
2538  	err = lookup_one_len_common(name, base, len, &this);
2539  	if (err)
2540  		return ERR_PTR(err);
2541  
2542  	dentry = lookup_dcache(&this, base, 0);
2543  	return dentry ? dentry : __lookup_slow(&this, base, 0);
2544  }
2545  EXPORT_SYMBOL(lookup_one_len);
2546  
2547  /**
2548   * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2549   * @name:	pathname component to lookup
2550   * @base:	base directory to lookup from
2551   * @len:	maximum length @len should be interpreted to
2552   *
2553   * Note that this routine is purely a helper for filesystem usage and should
2554   * not be called by generic code.
2555   *
2556   * Unlike lookup_one_len, it should be called without the parent
2557   * i_mutex held, and will take the i_mutex itself if necessary.
2558   */
2559  struct dentry *lookup_one_len_unlocked(const char *name,
2560  				       struct dentry *base, int len)
2561  {
2562  	struct qstr this;
2563  	int err;
2564  	struct dentry *ret;
2565  
2566  	err = lookup_one_len_common(name, base, len, &this);
2567  	if (err)
2568  		return ERR_PTR(err);
2569  
2570  	ret = lookup_dcache(&this, base, 0);
2571  	if (!ret)
2572  		ret = lookup_slow(&this, base, 0);
2573  	return ret;
2574  }
2575  EXPORT_SYMBOL(lookup_one_len_unlocked);
2576  
2577  #ifdef CONFIG_UNIX98_PTYS
2578  int path_pts(struct path *path)
2579  {
2580  	/* Find something mounted on "pts" in the same directory as
2581  	 * the input path.
2582  	 */
2583  	struct dentry *child, *parent;
2584  	struct qstr this;
2585  	int ret;
2586  
2587  	ret = path_parent_directory(path);
2588  	if (ret)
2589  		return ret;
2590  
2591  	parent = path->dentry;
2592  	this.name = "pts";
2593  	this.len = 3;
2594  	child = d_hash_and_lookup(parent, &this);
2595  	if (!child)
2596  		return -ENOENT;
2597  
2598  	path->dentry = child;
2599  	dput(parent);
2600  	follow_mount(path);
2601  	return 0;
2602  }
2603  #endif
2604  
2605  int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2606  		 struct path *path, int *empty)
2607  {
2608  	return filename_lookup(dfd, getname_flags(name, flags, empty),
2609  			       flags, path, NULL);
2610  }
2611  EXPORT_SYMBOL(user_path_at_empty);
2612  
2613  /**
2614   * mountpoint_last - look up last component for umount
2615   * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2616   *
2617   * This is a special lookup_last function just for umount. In this case, we
2618   * need to resolve the path without doing any revalidation.
2619   *
2620   * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2621   * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2622   * in almost all cases, this lookup will be served out of the dcache. The only
2623   * cases where it won't are if nd->last refers to a symlink or the path is
2624   * bogus and it doesn't exist.
2625   *
2626   * Returns:
2627   * -error: if there was an error during lookup. This includes -ENOENT if the
2628   *         lookup found a negative dentry.
2629   *
2630   * 0:      if we successfully resolved nd->last and found it to not to be a
2631   *         symlink that needs to be followed.
2632   *
2633   * 1:      if we successfully resolved nd->last and found it to be a symlink
2634   *         that needs to be followed.
2635   */
2636  static int
2637  mountpoint_last(struct nameidata *nd)
2638  {
2639  	int error = 0;
2640  	struct dentry *dir = nd->path.dentry;
2641  	struct path path;
2642  
2643  	/* If we're in rcuwalk, drop out of it to handle last component */
2644  	if (nd->flags & LOOKUP_RCU) {
2645  		if (unlazy_walk(nd))
2646  			return -ECHILD;
2647  	}
2648  
2649  	nd->flags &= ~LOOKUP_PARENT;
2650  
2651  	if (unlikely(nd->last_type != LAST_NORM)) {
2652  		error = handle_dots(nd, nd->last_type);
2653  		if (error)
2654  			return error;
2655  		path.dentry = dget(nd->path.dentry);
2656  	} else {
2657  		path.dentry = d_lookup(dir, &nd->last);
2658  		if (!path.dentry) {
2659  			/*
2660  			 * No cached dentry. Mounted dentries are pinned in the
2661  			 * cache, so that means that this dentry is probably
2662  			 * a symlink or the path doesn't actually point
2663  			 * to a mounted dentry.
2664  			 */
2665  			path.dentry = lookup_slow(&nd->last, dir,
2666  					     nd->flags | LOOKUP_NO_REVAL);
2667  			if (IS_ERR(path.dentry))
2668  				return PTR_ERR(path.dentry);
2669  		}
2670  	}
2671  	if (d_is_negative(path.dentry)) {
2672  		dput(path.dentry);
2673  		return -ENOENT;
2674  	}
2675  	path.mnt = nd->path.mnt;
2676  	return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0);
2677  }
2678  
2679  /**
2680   * path_mountpoint - look up a path to be umounted
2681   * @nd:		lookup context
2682   * @flags:	lookup flags
2683   * @path:	pointer to container for result
2684   *
2685   * Look up the given name, but don't attempt to revalidate the last component.
2686   * Returns 0 and "path" will be valid on success; Returns error otherwise.
2687   */
2688  static int
2689  path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2690  {
2691  	const char *s = path_init(nd, flags);
2692  	int err;
2693  
2694  	while (!(err = link_path_walk(s, nd)) &&
2695  		(err = mountpoint_last(nd)) > 0) {
2696  		s = trailing_symlink(nd);
2697  	}
2698  	if (!err) {
2699  		*path = nd->path;
2700  		nd->path.mnt = NULL;
2701  		nd->path.dentry = NULL;
2702  		follow_mount(path);
2703  	}
2704  	terminate_walk(nd);
2705  	return err;
2706  }
2707  
2708  static int
2709  filename_mountpoint(int dfd, struct filename *name, struct path *path,
2710  			unsigned int flags)
2711  {
2712  	struct nameidata nd;
2713  	int error;
2714  	if (IS_ERR(name))
2715  		return PTR_ERR(name);
2716  	set_nameidata(&nd, dfd, name);
2717  	error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2718  	if (unlikely(error == -ECHILD))
2719  		error = path_mountpoint(&nd, flags, path);
2720  	if (unlikely(error == -ESTALE))
2721  		error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2722  	if (likely(!error))
2723  		audit_inode(name, path->dentry, 0);
2724  	restore_nameidata();
2725  	putname(name);
2726  	return error;
2727  }
2728  
2729  /**
2730   * user_path_mountpoint_at - lookup a path from userland in order to umount it
2731   * @dfd:	directory file descriptor
2732   * @name:	pathname from userland
2733   * @flags:	lookup flags
2734   * @path:	pointer to container to hold result
2735   *
2736   * A umount is a special case for path walking. We're not actually interested
2737   * in the inode in this situation, and ESTALE errors can be a problem. We
2738   * simply want track down the dentry and vfsmount attached at the mountpoint
2739   * and avoid revalidating the last component.
2740   *
2741   * Returns 0 and populates "path" on success.
2742   */
2743  int
2744  user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2745  			struct path *path)
2746  {
2747  	return filename_mountpoint(dfd, getname(name), path, flags);
2748  }
2749  
2750  int
2751  kern_path_mountpoint(int dfd, const char *name, struct path *path,
2752  			unsigned int flags)
2753  {
2754  	return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2755  }
2756  EXPORT_SYMBOL(kern_path_mountpoint);
2757  
2758  int __check_sticky(struct inode *dir, struct inode *inode)
2759  {
2760  	kuid_t fsuid = current_fsuid();
2761  
2762  	if (uid_eq(inode->i_uid, fsuid))
2763  		return 0;
2764  	if (uid_eq(dir->i_uid, fsuid))
2765  		return 0;
2766  	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2767  }
2768  EXPORT_SYMBOL(__check_sticky);
2769  
2770  /*
2771   *	Check whether we can remove a link victim from directory dir, check
2772   *  whether the type of victim is right.
2773   *  1. We can't do it if dir is read-only (done in permission())
2774   *  2. We should have write and exec permissions on dir
2775   *  3. We can't remove anything from append-only dir
2776   *  4. We can't do anything with immutable dir (done in permission())
2777   *  5. If the sticky bit on dir is set we should either
2778   *	a. be owner of dir, or
2779   *	b. be owner of victim, or
2780   *	c. have CAP_FOWNER capability
2781   *  6. If the victim is append-only or immutable we can't do antyhing with
2782   *     links pointing to it.
2783   *  7. If the victim has an unknown uid or gid we can't change the inode.
2784   *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2785   *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2786   * 10. We can't remove a root or mountpoint.
2787   * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2788   *     nfs_async_unlink().
2789   */
2790  static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2791  {
2792  	struct inode *inode = d_backing_inode(victim);
2793  	int error;
2794  
2795  	if (d_is_negative(victim))
2796  		return -ENOENT;
2797  	BUG_ON(!inode);
2798  
2799  	BUG_ON(victim->d_parent->d_inode != dir);
2800  
2801  	/* Inode writeback is not safe when the uid or gid are invalid. */
2802  	if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
2803  		return -EOVERFLOW;
2804  
2805  	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2806  
2807  	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2808  	if (error)
2809  		return error;
2810  	if (IS_APPEND(dir))
2811  		return -EPERM;
2812  
2813  	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2814  	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2815  		return -EPERM;
2816  	if (isdir) {
2817  		if (!d_is_dir(victim))
2818  			return -ENOTDIR;
2819  		if (IS_ROOT(victim))
2820  			return -EBUSY;
2821  	} else if (d_is_dir(victim))
2822  		return -EISDIR;
2823  	if (IS_DEADDIR(dir))
2824  		return -ENOENT;
2825  	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2826  		return -EBUSY;
2827  	return 0;
2828  }
2829  
2830  /*	Check whether we can create an object with dentry child in directory
2831   *  dir.
2832   *  1. We can't do it if child already exists (open has special treatment for
2833   *     this case, but since we are inlined it's OK)
2834   *  2. We can't do it if dir is read-only (done in permission())
2835   *  3. We can't do it if the fs can't represent the fsuid or fsgid.
2836   *  4. We should have write and exec permissions on dir
2837   *  5. We can't do it if dir is immutable (done in permission())
2838   */
2839  static inline int may_create(struct inode *dir, struct dentry *child)
2840  {
2841  	struct user_namespace *s_user_ns;
2842  	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2843  	if (child->d_inode)
2844  		return -EEXIST;
2845  	if (IS_DEADDIR(dir))
2846  		return -ENOENT;
2847  	s_user_ns = dir->i_sb->s_user_ns;
2848  	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2849  	    !kgid_has_mapping(s_user_ns, current_fsgid()))
2850  		return -EOVERFLOW;
2851  	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2852  }
2853  
2854  /*
2855   * p1 and p2 should be directories on the same fs.
2856   */
2857  struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2858  {
2859  	struct dentry *p;
2860  
2861  	if (p1 == p2) {
2862  		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2863  		return NULL;
2864  	}
2865  
2866  	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2867  
2868  	p = d_ancestor(p2, p1);
2869  	if (p) {
2870  		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2871  		inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2872  		return p;
2873  	}
2874  
2875  	p = d_ancestor(p1, p2);
2876  	if (p) {
2877  		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2878  		inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2879  		return p;
2880  	}
2881  
2882  	inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2883  	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2884  	return NULL;
2885  }
2886  EXPORT_SYMBOL(lock_rename);
2887  
2888  void unlock_rename(struct dentry *p1, struct dentry *p2)
2889  {
2890  	inode_unlock(p1->d_inode);
2891  	if (p1 != p2) {
2892  		inode_unlock(p2->d_inode);
2893  		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2894  	}
2895  }
2896  EXPORT_SYMBOL(unlock_rename);
2897  
2898  int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2899  		bool want_excl)
2900  {
2901  	int error = may_create(dir, dentry);
2902  	if (error)
2903  		return error;
2904  
2905  	if (!dir->i_op->create)
2906  		return -EACCES;	/* shouldn't it be ENOSYS? */
2907  	mode &= S_IALLUGO;
2908  	mode |= S_IFREG;
2909  	error = security_inode_create(dir, dentry, mode);
2910  	if (error)
2911  		return error;
2912  	error = dir->i_op->create(dir, dentry, mode, want_excl);
2913  	if (!error)
2914  		fsnotify_create(dir, dentry);
2915  	return error;
2916  }
2917  EXPORT_SYMBOL(vfs_create);
2918  
2919  int vfs_mkobj(struct dentry *dentry, umode_t mode,
2920  		int (*f)(struct dentry *, umode_t, void *),
2921  		void *arg)
2922  {
2923  	struct inode *dir = dentry->d_parent->d_inode;
2924  	int error = may_create(dir, dentry);
2925  	if (error)
2926  		return error;
2927  
2928  	mode &= S_IALLUGO;
2929  	mode |= S_IFREG;
2930  	error = security_inode_create(dir, dentry, mode);
2931  	if (error)
2932  		return error;
2933  	error = f(dentry, mode, arg);
2934  	if (!error)
2935  		fsnotify_create(dir, dentry);
2936  	return error;
2937  }
2938  EXPORT_SYMBOL(vfs_mkobj);
2939  
2940  bool may_open_dev(const struct path *path)
2941  {
2942  	return !(path->mnt->mnt_flags & MNT_NODEV) &&
2943  		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2944  }
2945  
2946  static int may_open(const struct path *path, int acc_mode, int flag)
2947  {
2948  	struct dentry *dentry = path->dentry;
2949  	struct inode *inode = dentry->d_inode;
2950  	int error;
2951  
2952  	if (!inode)
2953  		return -ENOENT;
2954  
2955  	switch (inode->i_mode & S_IFMT) {
2956  	case S_IFLNK:
2957  		return -ELOOP;
2958  	case S_IFDIR:
2959  		if (acc_mode & MAY_WRITE)
2960  			return -EISDIR;
2961  		break;
2962  	case S_IFBLK:
2963  	case S_IFCHR:
2964  		if (!may_open_dev(path))
2965  			return -EACCES;
2966  		/*FALLTHRU*/
2967  	case S_IFIFO:
2968  	case S_IFSOCK:
2969  		flag &= ~O_TRUNC;
2970  		break;
2971  	}
2972  
2973  	error = inode_permission(inode, MAY_OPEN | acc_mode);
2974  	if (error)
2975  		return error;
2976  
2977  	/*
2978  	 * An append-only file must be opened in append mode for writing.
2979  	 */
2980  	if (IS_APPEND(inode)) {
2981  		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2982  			return -EPERM;
2983  		if (flag & O_TRUNC)
2984  			return -EPERM;
2985  	}
2986  
2987  	/* O_NOATIME can only be set by the owner or superuser */
2988  	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2989  		return -EPERM;
2990  
2991  	return 0;
2992  }
2993  
2994  static int handle_truncate(struct file *filp)
2995  {
2996  	const struct path *path = &filp->f_path;
2997  	struct inode *inode = path->dentry->d_inode;
2998  	int error = get_write_access(inode);
2999  	if (error)
3000  		return error;
3001  	/*
3002  	 * Refuse to truncate files with mandatory locks held on them.
3003  	 */
3004  	error = locks_verify_locked(filp);
3005  	if (!error)
3006  		error = security_path_truncate(path);
3007  	if (!error) {
3008  		error = do_truncate(path->dentry, 0,
3009  				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3010  				    filp);
3011  	}
3012  	put_write_access(inode);
3013  	return error;
3014  }
3015  
3016  static inline int open_to_namei_flags(int flag)
3017  {
3018  	if ((flag & O_ACCMODE) == 3)
3019  		flag--;
3020  	return flag;
3021  }
3022  
3023  static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
3024  {
3025  	struct user_namespace *s_user_ns;
3026  	int error = security_path_mknod(dir, dentry, mode, 0);
3027  	if (error)
3028  		return error;
3029  
3030  	s_user_ns = dir->dentry->d_sb->s_user_ns;
3031  	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
3032  	    !kgid_has_mapping(s_user_ns, current_fsgid()))
3033  		return -EOVERFLOW;
3034  
3035  	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
3036  	if (error)
3037  		return error;
3038  
3039  	return security_inode_create(dir->dentry->d_inode, dentry, mode);
3040  }
3041  
3042  /*
3043   * Attempt to atomically look up, create and open a file from a negative
3044   * dentry.
3045   *
3046   * Returns 0 if successful.  The file will have been created and attached to
3047   * @file by the filesystem calling finish_open().
3048   *
3049   * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3050   * be set.  The caller will need to perform the open themselves.  @path will
3051   * have been updated to point to the new dentry.  This may be negative.
3052   *
3053   * Returns an error code otherwise.
3054   */
3055  static int atomic_open(struct nameidata *nd, struct dentry *dentry,
3056  			struct path *path, struct file *file,
3057  			const struct open_flags *op,
3058  			int open_flag, umode_t mode)
3059  {
3060  	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3061  	struct inode *dir =  nd->path.dentry->d_inode;
3062  	int error;
3063  
3064  	if (!(~open_flag & (O_EXCL | O_CREAT)))	/* both O_EXCL and O_CREAT */
3065  		open_flag &= ~O_TRUNC;
3066  
3067  	if (nd->flags & LOOKUP_DIRECTORY)
3068  		open_flag |= O_DIRECTORY;
3069  
3070  	file->f_path.dentry = DENTRY_NOT_SET;
3071  	file->f_path.mnt = nd->path.mnt;
3072  	error = dir->i_op->atomic_open(dir, dentry, file,
3073  				       open_to_namei_flags(open_flag), mode);
3074  	d_lookup_done(dentry);
3075  	if (!error) {
3076  		if (file->f_mode & FMODE_OPENED) {
3077  			/*
3078  			 * We didn't have the inode before the open, so check open
3079  			 * permission here.
3080  			 */
3081  			int acc_mode = op->acc_mode;
3082  			if (file->f_mode & FMODE_CREATED) {
3083  				WARN_ON(!(open_flag & O_CREAT));
3084  				fsnotify_create(dir, dentry);
3085  				acc_mode = 0;
3086  			}
3087  			error = may_open(&file->f_path, acc_mode, open_flag);
3088  			if (WARN_ON(error > 0))
3089  				error = -EINVAL;
3090  		} else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3091  			error = -EIO;
3092  		} else {
3093  			if (file->f_path.dentry) {
3094  				dput(dentry);
3095  				dentry = file->f_path.dentry;
3096  			}
3097  			if (file->f_mode & FMODE_CREATED)
3098  				fsnotify_create(dir, dentry);
3099  			if (unlikely(d_is_negative(dentry))) {
3100  				error = -ENOENT;
3101  			} else {
3102  				path->dentry = dentry;
3103  				path->mnt = nd->path.mnt;
3104  				return 0;
3105  			}
3106  		}
3107  	}
3108  	dput(dentry);
3109  	return error;
3110  }
3111  
3112  /*
3113   * Look up and maybe create and open the last component.
3114   *
3115   * Must be called with parent locked (exclusive in O_CREAT case).
3116   *
3117   * Returns 0 on success, that is, if
3118   *  the file was successfully atomically created (if necessary) and opened, or
3119   *  the file was not completely opened at this time, though lookups and
3120   *  creations were performed.
3121   * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3122   * In the latter case dentry returned in @path might be negative if O_CREAT
3123   * hadn't been specified.
3124   *
3125   * An error code is returned on failure.
3126   */
3127  static int lookup_open(struct nameidata *nd, struct path *path,
3128  			struct file *file,
3129  			const struct open_flags *op,
3130  			bool got_write)
3131  {
3132  	struct dentry *dir = nd->path.dentry;
3133  	struct inode *dir_inode = dir->d_inode;
3134  	int open_flag = op->open_flag;
3135  	struct dentry *dentry;
3136  	int error, create_error = 0;
3137  	umode_t mode = op->mode;
3138  	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3139  
3140  	if (unlikely(IS_DEADDIR(dir_inode)))
3141  		return -ENOENT;
3142  
3143  	file->f_mode &= ~FMODE_CREATED;
3144  	dentry = d_lookup(dir, &nd->last);
3145  	for (;;) {
3146  		if (!dentry) {
3147  			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3148  			if (IS_ERR(dentry))
3149  				return PTR_ERR(dentry);
3150  		}
3151  		if (d_in_lookup(dentry))
3152  			break;
3153  
3154  		error = d_revalidate(dentry, nd->flags);
3155  		if (likely(error > 0))
3156  			break;
3157  		if (error)
3158  			goto out_dput;
3159  		d_invalidate(dentry);
3160  		dput(dentry);
3161  		dentry = NULL;
3162  	}
3163  	if (dentry->d_inode) {
3164  		/* Cached positive dentry: will open in f_op->open */
3165  		goto out_no_open;
3166  	}
3167  
3168  	/*
3169  	 * Checking write permission is tricky, bacuse we don't know if we are
3170  	 * going to actually need it: O_CREAT opens should work as long as the
3171  	 * file exists.  But checking existence breaks atomicity.  The trick is
3172  	 * to check access and if not granted clear O_CREAT from the flags.
3173  	 *
3174  	 * Another problem is returing the "right" error value (e.g. for an
3175  	 * O_EXCL open we want to return EEXIST not EROFS).
3176  	 */
3177  	if (open_flag & O_CREAT) {
3178  		if (!IS_POSIXACL(dir->d_inode))
3179  			mode &= ~current_umask();
3180  		if (unlikely(!got_write)) {
3181  			create_error = -EROFS;
3182  			open_flag &= ~O_CREAT;
3183  			if (open_flag & (O_EXCL | O_TRUNC))
3184  				goto no_open;
3185  			/* No side effects, safe to clear O_CREAT */
3186  		} else {
3187  			create_error = may_o_create(&nd->path, dentry, mode);
3188  			if (create_error) {
3189  				open_flag &= ~O_CREAT;
3190  				if (open_flag & O_EXCL)
3191  					goto no_open;
3192  			}
3193  		}
3194  	} else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3195  		   unlikely(!got_write)) {
3196  		/*
3197  		 * No O_CREATE -> atomicity not a requirement -> fall
3198  		 * back to lookup + open
3199  		 */
3200  		goto no_open;
3201  	}
3202  
3203  	if (dir_inode->i_op->atomic_open) {
3204  		error = atomic_open(nd, dentry, path, file, op, open_flag,
3205  				    mode);
3206  		if (unlikely(error == -ENOENT) && create_error)
3207  			error = create_error;
3208  		return error;
3209  	}
3210  
3211  no_open:
3212  	if (d_in_lookup(dentry)) {
3213  		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3214  							     nd->flags);
3215  		d_lookup_done(dentry);
3216  		if (unlikely(res)) {
3217  			if (IS_ERR(res)) {
3218  				error = PTR_ERR(res);
3219  				goto out_dput;
3220  			}
3221  			dput(dentry);
3222  			dentry = res;
3223  		}
3224  	}
3225  
3226  	/* Negative dentry, just create the file */
3227  	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3228  		file->f_mode |= FMODE_CREATED;
3229  		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3230  		if (!dir_inode->i_op->create) {
3231  			error = -EACCES;
3232  			goto out_dput;
3233  		}
3234  		error = dir_inode->i_op->create(dir_inode, dentry, mode,
3235  						open_flag & O_EXCL);
3236  		if (error)
3237  			goto out_dput;
3238  		fsnotify_create(dir_inode, dentry);
3239  	}
3240  	if (unlikely(create_error) && !dentry->d_inode) {
3241  		error = create_error;
3242  		goto out_dput;
3243  	}
3244  out_no_open:
3245  	path->dentry = dentry;
3246  	path->mnt = nd->path.mnt;
3247  	return 0;
3248  
3249  out_dput:
3250  	dput(dentry);
3251  	return error;
3252  }
3253  
3254  /*
3255   * Handle the last step of open()
3256   */
3257  static int do_last(struct nameidata *nd,
3258  		   struct file *file, const struct open_flags *op)
3259  {
3260  	struct dentry *dir = nd->path.dentry;
3261  	int open_flag = op->open_flag;
3262  	bool will_truncate = (open_flag & O_TRUNC) != 0;
3263  	bool got_write = false;
3264  	int acc_mode = op->acc_mode;
3265  	unsigned seq;
3266  	struct inode *inode;
3267  	struct path path;
3268  	int error;
3269  
3270  	nd->flags &= ~LOOKUP_PARENT;
3271  	nd->flags |= op->intent;
3272  
3273  	if (nd->last_type != LAST_NORM) {
3274  		error = handle_dots(nd, nd->last_type);
3275  		if (unlikely(error))
3276  			return error;
3277  		goto finish_open;
3278  	}
3279  
3280  	if (!(open_flag & O_CREAT)) {
3281  		if (nd->last.name[nd->last.len])
3282  			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3283  		/* we _can_ be in RCU mode here */
3284  		error = lookup_fast(nd, &path, &inode, &seq);
3285  		if (likely(error > 0))
3286  			goto finish_lookup;
3287  
3288  		if (error < 0)
3289  			return error;
3290  
3291  		BUG_ON(nd->inode != dir->d_inode);
3292  		BUG_ON(nd->flags & LOOKUP_RCU);
3293  	} else {
3294  		/* create side of things */
3295  		/*
3296  		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3297  		 * has been cleared when we got to the last component we are
3298  		 * about to look up
3299  		 */
3300  		error = complete_walk(nd);
3301  		if (error)
3302  			return error;
3303  
3304  		audit_inode(nd->name, dir, LOOKUP_PARENT);
3305  		/* trailing slashes? */
3306  		if (unlikely(nd->last.name[nd->last.len]))
3307  			return -EISDIR;
3308  	}
3309  
3310  	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3311  		error = mnt_want_write(nd->path.mnt);
3312  		if (!error)
3313  			got_write = true;
3314  		/*
3315  		 * do _not_ fail yet - we might not need that or fail with
3316  		 * a different error; let lookup_open() decide; we'll be
3317  		 * dropping this one anyway.
3318  		 */
3319  	}
3320  	if (open_flag & O_CREAT)
3321  		inode_lock(dir->d_inode);
3322  	else
3323  		inode_lock_shared(dir->d_inode);
3324  	error = lookup_open(nd, &path, file, op, got_write);
3325  	if (open_flag & O_CREAT)
3326  		inode_unlock(dir->d_inode);
3327  	else
3328  		inode_unlock_shared(dir->d_inode);
3329  
3330  	if (error)
3331  		goto out;
3332  
3333  	if (file->f_mode & FMODE_OPENED) {
3334  		if ((file->f_mode & FMODE_CREATED) ||
3335  		    !S_ISREG(file_inode(file)->i_mode))
3336  			will_truncate = false;
3337  
3338  		audit_inode(nd->name, file->f_path.dentry, 0);
3339  		goto opened;
3340  	}
3341  
3342  	if (file->f_mode & FMODE_CREATED) {
3343  		/* Don't check for write permission, don't truncate */
3344  		open_flag &= ~O_TRUNC;
3345  		will_truncate = false;
3346  		acc_mode = 0;
3347  		path_to_nameidata(&path, nd);
3348  		goto finish_open_created;
3349  	}
3350  
3351  	/*
3352  	 * If atomic_open() acquired write access it is dropped now due to
3353  	 * possible mount and symlink following (this might be optimized away if
3354  	 * necessary...)
3355  	 */
3356  	if (got_write) {
3357  		mnt_drop_write(nd->path.mnt);
3358  		got_write = false;
3359  	}
3360  
3361  	error = follow_managed(&path, nd);
3362  	if (unlikely(error < 0))
3363  		return error;
3364  
3365  	if (unlikely(d_is_negative(path.dentry))) {
3366  		path_to_nameidata(&path, nd);
3367  		return -ENOENT;
3368  	}
3369  
3370  	/*
3371  	 * create/update audit record if it already exists.
3372  	 */
3373  	audit_inode(nd->name, path.dentry, 0);
3374  
3375  	if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3376  		path_to_nameidata(&path, nd);
3377  		return -EEXIST;
3378  	}
3379  
3380  	seq = 0;	/* out of RCU mode, so the value doesn't matter */
3381  	inode = d_backing_inode(path.dentry);
3382  finish_lookup:
3383  	error = step_into(nd, &path, 0, inode, seq);
3384  	if (unlikely(error))
3385  		return error;
3386  finish_open:
3387  	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3388  	error = complete_walk(nd);
3389  	if (error)
3390  		return error;
3391  	audit_inode(nd->name, nd->path.dentry, 0);
3392  	if (open_flag & O_CREAT) {
3393  		error = -EISDIR;
3394  		if (d_is_dir(nd->path.dentry))
3395  			goto out;
3396  		error = may_create_in_sticky(dir,
3397  					     d_backing_inode(nd->path.dentry));
3398  		if (unlikely(error))
3399  			goto out;
3400  	}
3401  	error = -ENOTDIR;
3402  	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3403  		goto out;
3404  	if (!d_is_reg(nd->path.dentry))
3405  		will_truncate = false;
3406  
3407  	if (will_truncate) {
3408  		error = mnt_want_write(nd->path.mnt);
3409  		if (error)
3410  			goto out;
3411  		got_write = true;
3412  	}
3413  finish_open_created:
3414  	error = may_open(&nd->path, acc_mode, open_flag);
3415  	if (error)
3416  		goto out;
3417  	BUG_ON(file->f_mode & FMODE_OPENED); /* once it's opened, it's opened */
3418  	error = vfs_open(&nd->path, file);
3419  	if (error)
3420  		goto out;
3421  opened:
3422  	error = ima_file_check(file, op->acc_mode);
3423  	if (!error && will_truncate)
3424  		error = handle_truncate(file);
3425  out:
3426  	if (unlikely(error > 0)) {
3427  		WARN_ON(1);
3428  		error = -EINVAL;
3429  	}
3430  	if (got_write)
3431  		mnt_drop_write(nd->path.mnt);
3432  	return error;
3433  }
3434  
3435  struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3436  {
3437  	struct dentry *child = NULL;
3438  	struct inode *dir = dentry->d_inode;
3439  	struct inode *inode;
3440  	int error;
3441  
3442  	/* we want directory to be writable */
3443  	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3444  	if (error)
3445  		goto out_err;
3446  	error = -EOPNOTSUPP;
3447  	if (!dir->i_op->tmpfile)
3448  		goto out_err;
3449  	error = -ENOMEM;
3450  	child = d_alloc(dentry, &slash_name);
3451  	if (unlikely(!child))
3452  		goto out_err;
3453  	error = dir->i_op->tmpfile(dir, child, mode);
3454  	if (error)
3455  		goto out_err;
3456  	error = -ENOENT;
3457  	inode = child->d_inode;
3458  	if (unlikely(!inode))
3459  		goto out_err;
3460  	if (!(open_flag & O_EXCL)) {
3461  		spin_lock(&inode->i_lock);
3462  		inode->i_state |= I_LINKABLE;
3463  		spin_unlock(&inode->i_lock);
3464  	}
3465  	return child;
3466  
3467  out_err:
3468  	dput(child);
3469  	return ERR_PTR(error);
3470  }
3471  EXPORT_SYMBOL(vfs_tmpfile);
3472  
3473  static int do_tmpfile(struct nameidata *nd, unsigned flags,
3474  		const struct open_flags *op,
3475  		struct file *file)
3476  {
3477  	struct dentry *child;
3478  	struct path path;
3479  	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3480  	if (unlikely(error))
3481  		return error;
3482  	error = mnt_want_write(path.mnt);
3483  	if (unlikely(error))
3484  		goto out;
3485  	child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3486  	error = PTR_ERR(child);
3487  	if (IS_ERR(child))
3488  		goto out2;
3489  	dput(path.dentry);
3490  	path.dentry = child;
3491  	audit_inode(nd->name, child, 0);
3492  	/* Don't check for other permissions, the inode was just created */
3493  	error = may_open(&path, 0, op->open_flag);
3494  	if (error)
3495  		goto out2;
3496  	file->f_path.mnt = path.mnt;
3497  	error = finish_open(file, child, NULL);
3498  out2:
3499  	mnt_drop_write(path.mnt);
3500  out:
3501  	path_put(&path);
3502  	return error;
3503  }
3504  
3505  static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3506  {
3507  	struct path path;
3508  	int error = path_lookupat(nd, flags, &path);
3509  	if (!error) {
3510  		audit_inode(nd->name, path.dentry, 0);
3511  		error = vfs_open(&path, file);
3512  		path_put(&path);
3513  	}
3514  	return error;
3515  }
3516  
3517  static struct file *path_openat(struct nameidata *nd,
3518  			const struct open_flags *op, unsigned flags)
3519  {
3520  	struct file *file;
3521  	int error;
3522  
3523  	file = alloc_empty_file(op->open_flag, current_cred());
3524  	if (IS_ERR(file))
3525  		return file;
3526  
3527  	if (unlikely(file->f_flags & __O_TMPFILE)) {
3528  		error = do_tmpfile(nd, flags, op, file);
3529  	} else if (unlikely(file->f_flags & O_PATH)) {
3530  		error = do_o_path(nd, flags, file);
3531  	} else {
3532  		const char *s = path_init(nd, flags);
3533  		while (!(error = link_path_walk(s, nd)) &&
3534  			(error = do_last(nd, file, op)) > 0) {
3535  			nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3536  			s = trailing_symlink(nd);
3537  		}
3538  		terminate_walk(nd);
3539  	}
3540  	if (likely(!error)) {
3541  		if (likely(file->f_mode & FMODE_OPENED))
3542  			return file;
3543  		WARN_ON(1);
3544  		error = -EINVAL;
3545  	}
3546  	fput(file);
3547  	if (error == -EOPENSTALE) {
3548  		if (flags & LOOKUP_RCU)
3549  			error = -ECHILD;
3550  		else
3551  			error = -ESTALE;
3552  	}
3553  	return ERR_PTR(error);
3554  }
3555  
3556  struct file *do_filp_open(int dfd, struct filename *pathname,
3557  		const struct open_flags *op)
3558  {
3559  	struct nameidata nd;
3560  	int flags = op->lookup_flags;
3561  	struct file *filp;
3562  
3563  	set_nameidata(&nd, dfd, pathname);
3564  	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3565  	if (unlikely(filp == ERR_PTR(-ECHILD)))
3566  		filp = path_openat(&nd, op, flags);
3567  	if (unlikely(filp == ERR_PTR(-ESTALE)))
3568  		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3569  	restore_nameidata();
3570  	return filp;
3571  }
3572  
3573  struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3574  		const char *name, const struct open_flags *op)
3575  {
3576  	struct nameidata nd;
3577  	struct file *file;
3578  	struct filename *filename;
3579  	int flags = op->lookup_flags | LOOKUP_ROOT;
3580  
3581  	nd.root.mnt = mnt;
3582  	nd.root.dentry = dentry;
3583  
3584  	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3585  		return ERR_PTR(-ELOOP);
3586  
3587  	filename = getname_kernel(name);
3588  	if (IS_ERR(filename))
3589  		return ERR_CAST(filename);
3590  
3591  	set_nameidata(&nd, -1, filename);
3592  	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3593  	if (unlikely(file == ERR_PTR(-ECHILD)))
3594  		file = path_openat(&nd, op, flags);
3595  	if (unlikely(file == ERR_PTR(-ESTALE)))
3596  		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3597  	restore_nameidata();
3598  	putname(filename);
3599  	return file;
3600  }
3601  
3602  static struct dentry *filename_create(int dfd, struct filename *name,
3603  				struct path *path, unsigned int lookup_flags)
3604  {
3605  	struct dentry *dentry = ERR_PTR(-EEXIST);
3606  	struct qstr last;
3607  	int type;
3608  	int err2;
3609  	int error;
3610  	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3611  
3612  	/*
3613  	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3614  	 * other flags passed in are ignored!
3615  	 */
3616  	lookup_flags &= LOOKUP_REVAL;
3617  
3618  	name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3619  	if (IS_ERR(name))
3620  		return ERR_CAST(name);
3621  
3622  	/*
3623  	 * Yucky last component or no last component at all?
3624  	 * (foo/., foo/.., /////)
3625  	 */
3626  	if (unlikely(type != LAST_NORM))
3627  		goto out;
3628  
3629  	/* don't fail immediately if it's r/o, at least try to report other errors */
3630  	err2 = mnt_want_write(path->mnt);
3631  	/*
3632  	 * Do the final lookup.
3633  	 */
3634  	lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3635  	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3636  	dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3637  	if (IS_ERR(dentry))
3638  		goto unlock;
3639  
3640  	error = -EEXIST;
3641  	if (d_is_positive(dentry))
3642  		goto fail;
3643  
3644  	/*
3645  	 * Special case - lookup gave negative, but... we had foo/bar/
3646  	 * From the vfs_mknod() POV we just have a negative dentry -
3647  	 * all is fine. Let's be bastards - you had / on the end, you've
3648  	 * been asking for (non-existent) directory. -ENOENT for you.
3649  	 */
3650  	if (unlikely(!is_dir && last.name[last.len])) {
3651  		error = -ENOENT;
3652  		goto fail;
3653  	}
3654  	if (unlikely(err2)) {
3655  		error = err2;
3656  		goto fail;
3657  	}
3658  	putname(name);
3659  	return dentry;
3660  fail:
3661  	dput(dentry);
3662  	dentry = ERR_PTR(error);
3663  unlock:
3664  	inode_unlock(path->dentry->d_inode);
3665  	if (!err2)
3666  		mnt_drop_write(path->mnt);
3667  out:
3668  	path_put(path);
3669  	putname(name);
3670  	return dentry;
3671  }
3672  
3673  struct dentry *kern_path_create(int dfd, const char *pathname,
3674  				struct path *path, unsigned int lookup_flags)
3675  {
3676  	return filename_create(dfd, getname_kernel(pathname),
3677  				path, lookup_flags);
3678  }
3679  EXPORT_SYMBOL(kern_path_create);
3680  
3681  void done_path_create(struct path *path, struct dentry *dentry)
3682  {
3683  	dput(dentry);
3684  	inode_unlock(path->dentry->d_inode);
3685  	mnt_drop_write(path->mnt);
3686  	path_put(path);
3687  }
3688  EXPORT_SYMBOL(done_path_create);
3689  
3690  inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3691  				struct path *path, unsigned int lookup_flags)
3692  {
3693  	return filename_create(dfd, getname(pathname), path, lookup_flags);
3694  }
3695  EXPORT_SYMBOL(user_path_create);
3696  
3697  int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3698  {
3699  	int error = may_create(dir, dentry);
3700  
3701  	if (error)
3702  		return error;
3703  
3704  	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3705  		return -EPERM;
3706  
3707  	if (!dir->i_op->mknod)
3708  		return -EPERM;
3709  
3710  	error = devcgroup_inode_mknod(mode, dev);
3711  	if (error)
3712  		return error;
3713  
3714  	error = security_inode_mknod(dir, dentry, mode, dev);
3715  	if (error)
3716  		return error;
3717  
3718  	error = dir->i_op->mknod(dir, dentry, mode, dev);
3719  	if (!error)
3720  		fsnotify_create(dir, dentry);
3721  	return error;
3722  }
3723  EXPORT_SYMBOL(vfs_mknod);
3724  
3725  static int may_mknod(umode_t mode)
3726  {
3727  	switch (mode & S_IFMT) {
3728  	case S_IFREG:
3729  	case S_IFCHR:
3730  	case S_IFBLK:
3731  	case S_IFIFO:
3732  	case S_IFSOCK:
3733  	case 0: /* zero mode translates to S_IFREG */
3734  		return 0;
3735  	case S_IFDIR:
3736  		return -EPERM;
3737  	default:
3738  		return -EINVAL;
3739  	}
3740  }
3741  
3742  long do_mknodat(int dfd, const char __user *filename, umode_t mode,
3743  		unsigned int dev)
3744  {
3745  	struct dentry *dentry;
3746  	struct path path;
3747  	int error;
3748  	unsigned int lookup_flags = 0;
3749  
3750  	error = may_mknod(mode);
3751  	if (error)
3752  		return error;
3753  retry:
3754  	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3755  	if (IS_ERR(dentry))
3756  		return PTR_ERR(dentry);
3757  
3758  	if (!IS_POSIXACL(path.dentry->d_inode))
3759  		mode &= ~current_umask();
3760  	error = security_path_mknod(&path, dentry, mode, dev);
3761  	if (error)
3762  		goto out;
3763  	switch (mode & S_IFMT) {
3764  		case 0: case S_IFREG:
3765  			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3766  			if (!error)
3767  				ima_post_path_mknod(dentry);
3768  			break;
3769  		case S_IFCHR: case S_IFBLK:
3770  			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3771  					new_decode_dev(dev));
3772  			break;
3773  		case S_IFIFO: case S_IFSOCK:
3774  			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3775  			break;
3776  	}
3777  out:
3778  	done_path_create(&path, dentry);
3779  	if (retry_estale(error, lookup_flags)) {
3780  		lookup_flags |= LOOKUP_REVAL;
3781  		goto retry;
3782  	}
3783  	return error;
3784  }
3785  
3786  SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3787  		unsigned int, dev)
3788  {
3789  	return do_mknodat(dfd, filename, mode, dev);
3790  }
3791  
3792  SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3793  {
3794  	return do_mknodat(AT_FDCWD, filename, mode, dev);
3795  }
3796  
3797  int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3798  {
3799  	int error = may_create(dir, dentry);
3800  	unsigned max_links = dir->i_sb->s_max_links;
3801  
3802  	if (error)
3803  		return error;
3804  
3805  	if (!dir->i_op->mkdir)
3806  		return -EPERM;
3807  
3808  	mode &= (S_IRWXUGO|S_ISVTX);
3809  	error = security_inode_mkdir(dir, dentry, mode);
3810  	if (error)
3811  		return error;
3812  
3813  	if (max_links && dir->i_nlink >= max_links)
3814  		return -EMLINK;
3815  
3816  	error = dir->i_op->mkdir(dir, dentry, mode);
3817  	if (!error)
3818  		fsnotify_mkdir(dir, dentry);
3819  	return error;
3820  }
3821  EXPORT_SYMBOL(vfs_mkdir);
3822  
3823  long do_mkdirat(int dfd, const char __user *pathname, umode_t mode)
3824  {
3825  	struct dentry *dentry;
3826  	struct path path;
3827  	int error;
3828  	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3829  
3830  retry:
3831  	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3832  	if (IS_ERR(dentry))
3833  		return PTR_ERR(dentry);
3834  
3835  	if (!IS_POSIXACL(path.dentry->d_inode))
3836  		mode &= ~current_umask();
3837  	error = security_path_mkdir(&path, dentry, mode);
3838  	if (!error)
3839  		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3840  	done_path_create(&path, dentry);
3841  	if (retry_estale(error, lookup_flags)) {
3842  		lookup_flags |= LOOKUP_REVAL;
3843  		goto retry;
3844  	}
3845  	return error;
3846  }
3847  
3848  SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3849  {
3850  	return do_mkdirat(dfd, pathname, mode);
3851  }
3852  
3853  SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3854  {
3855  	return do_mkdirat(AT_FDCWD, pathname, mode);
3856  }
3857  
3858  int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3859  {
3860  	int error = may_delete(dir, dentry, 1);
3861  
3862  	if (error)
3863  		return error;
3864  
3865  	if (!dir->i_op->rmdir)
3866  		return -EPERM;
3867  
3868  	dget(dentry);
3869  	inode_lock(dentry->d_inode);
3870  
3871  	error = -EBUSY;
3872  	if (is_local_mountpoint(dentry))
3873  		goto out;
3874  
3875  	error = security_inode_rmdir(dir, dentry);
3876  	if (error)
3877  		goto out;
3878  
3879  	error = dir->i_op->rmdir(dir, dentry);
3880  	if (error)
3881  		goto out;
3882  
3883  	shrink_dcache_parent(dentry);
3884  	dentry->d_inode->i_flags |= S_DEAD;
3885  	dont_mount(dentry);
3886  	detach_mounts(dentry);
3887  
3888  out:
3889  	inode_unlock(dentry->d_inode);
3890  	dput(dentry);
3891  	if (!error)
3892  		d_delete(dentry);
3893  	return error;
3894  }
3895  EXPORT_SYMBOL(vfs_rmdir);
3896  
3897  long do_rmdir(int dfd, const char __user *pathname)
3898  {
3899  	int error = 0;
3900  	struct filename *name;
3901  	struct dentry *dentry;
3902  	struct path path;
3903  	struct qstr last;
3904  	int type;
3905  	unsigned int lookup_flags = 0;
3906  retry:
3907  	name = filename_parentat(dfd, getname(pathname), lookup_flags,
3908  				&path, &last, &type);
3909  	if (IS_ERR(name))
3910  		return PTR_ERR(name);
3911  
3912  	switch (type) {
3913  	case LAST_DOTDOT:
3914  		error = -ENOTEMPTY;
3915  		goto exit1;
3916  	case LAST_DOT:
3917  		error = -EINVAL;
3918  		goto exit1;
3919  	case LAST_ROOT:
3920  		error = -EBUSY;
3921  		goto exit1;
3922  	}
3923  
3924  	error = mnt_want_write(path.mnt);
3925  	if (error)
3926  		goto exit1;
3927  
3928  	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3929  	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3930  	error = PTR_ERR(dentry);
3931  	if (IS_ERR(dentry))
3932  		goto exit2;
3933  	if (!dentry->d_inode) {
3934  		error = -ENOENT;
3935  		goto exit3;
3936  	}
3937  	error = security_path_rmdir(&path, dentry);
3938  	if (error)
3939  		goto exit3;
3940  	error = vfs_rmdir(path.dentry->d_inode, dentry);
3941  exit3:
3942  	dput(dentry);
3943  exit2:
3944  	inode_unlock(path.dentry->d_inode);
3945  	mnt_drop_write(path.mnt);
3946  exit1:
3947  	path_put(&path);
3948  	putname(name);
3949  	if (retry_estale(error, lookup_flags)) {
3950  		lookup_flags |= LOOKUP_REVAL;
3951  		goto retry;
3952  	}
3953  	return error;
3954  }
3955  
3956  SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3957  {
3958  	return do_rmdir(AT_FDCWD, pathname);
3959  }
3960  
3961  /**
3962   * vfs_unlink - unlink a filesystem object
3963   * @dir:	parent directory
3964   * @dentry:	victim
3965   * @delegated_inode: returns victim inode, if the inode is delegated.
3966   *
3967   * The caller must hold dir->i_mutex.
3968   *
3969   * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3970   * return a reference to the inode in delegated_inode.  The caller
3971   * should then break the delegation on that inode and retry.  Because
3972   * breaking a delegation may take a long time, the caller should drop
3973   * dir->i_mutex before doing so.
3974   *
3975   * Alternatively, a caller may pass NULL for delegated_inode.  This may
3976   * be appropriate for callers that expect the underlying filesystem not
3977   * to be NFS exported.
3978   */
3979  int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3980  {
3981  	struct inode *target = dentry->d_inode;
3982  	int error = may_delete(dir, dentry, 0);
3983  
3984  	if (error)
3985  		return error;
3986  
3987  	if (!dir->i_op->unlink)
3988  		return -EPERM;
3989  
3990  	inode_lock(target);
3991  	if (is_local_mountpoint(dentry))
3992  		error = -EBUSY;
3993  	else {
3994  		error = security_inode_unlink(dir, dentry);
3995  		if (!error) {
3996  			error = try_break_deleg(target, delegated_inode);
3997  			if (error)
3998  				goto out;
3999  			error = dir->i_op->unlink(dir, dentry);
4000  			if (!error) {
4001  				dont_mount(dentry);
4002  				detach_mounts(dentry);
4003  			}
4004  		}
4005  	}
4006  out:
4007  	inode_unlock(target);
4008  
4009  	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
4010  	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
4011  		fsnotify_link_count(target);
4012  		d_delete(dentry);
4013  	}
4014  
4015  	return error;
4016  }
4017  EXPORT_SYMBOL(vfs_unlink);
4018  
4019  /*
4020   * Make sure that the actual truncation of the file will occur outside its
4021   * directory's i_mutex.  Truncate can take a long time if there is a lot of
4022   * writeout happening, and we don't want to prevent access to the directory
4023   * while waiting on the I/O.
4024   */
4025  long do_unlinkat(int dfd, struct filename *name)
4026  {
4027  	int error;
4028  	struct dentry *dentry;
4029  	struct path path;
4030  	struct qstr last;
4031  	int type;
4032  	struct inode *inode = NULL;
4033  	struct inode *delegated_inode = NULL;
4034  	unsigned int lookup_flags = 0;
4035  retry:
4036  	name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4037  	if (IS_ERR(name))
4038  		return PTR_ERR(name);
4039  
4040  	error = -EISDIR;
4041  	if (type != LAST_NORM)
4042  		goto exit1;
4043  
4044  	error = mnt_want_write(path.mnt);
4045  	if (error)
4046  		goto exit1;
4047  retry_deleg:
4048  	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4049  	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4050  	error = PTR_ERR(dentry);
4051  	if (!IS_ERR(dentry)) {
4052  		/* Why not before? Because we want correct error value */
4053  		if (last.name[last.len])
4054  			goto slashes;
4055  		inode = dentry->d_inode;
4056  		if (d_is_negative(dentry))
4057  			goto slashes;
4058  		ihold(inode);
4059  		error = security_path_unlink(&path, dentry);
4060  		if (error)
4061  			goto exit2;
4062  		error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4063  exit2:
4064  		dput(dentry);
4065  	}
4066  	inode_unlock(path.dentry->d_inode);
4067  	if (inode)
4068  		iput(inode);	/* truncate the inode here */
4069  	inode = NULL;
4070  	if (delegated_inode) {
4071  		error = break_deleg_wait(&delegated_inode);
4072  		if (!error)
4073  			goto retry_deleg;
4074  	}
4075  	mnt_drop_write(path.mnt);
4076  exit1:
4077  	path_put(&path);
4078  	if (retry_estale(error, lookup_flags)) {
4079  		lookup_flags |= LOOKUP_REVAL;
4080  		inode = NULL;
4081  		goto retry;
4082  	}
4083  	putname(name);
4084  	return error;
4085  
4086  slashes:
4087  	if (d_is_negative(dentry))
4088  		error = -ENOENT;
4089  	else if (d_is_dir(dentry))
4090  		error = -EISDIR;
4091  	else
4092  		error = -ENOTDIR;
4093  	goto exit2;
4094  }
4095  
4096  SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4097  {
4098  	if ((flag & ~AT_REMOVEDIR) != 0)
4099  		return -EINVAL;
4100  
4101  	if (flag & AT_REMOVEDIR)
4102  		return do_rmdir(dfd, pathname);
4103  
4104  	return do_unlinkat(dfd, getname(pathname));
4105  }
4106  
4107  SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4108  {
4109  	return do_unlinkat(AT_FDCWD, getname(pathname));
4110  }
4111  
4112  int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4113  {
4114  	int error = may_create(dir, dentry);
4115  
4116  	if (error)
4117  		return error;
4118  
4119  	if (!dir->i_op->symlink)
4120  		return -EPERM;
4121  
4122  	error = security_inode_symlink(dir, dentry, oldname);
4123  	if (error)
4124  		return error;
4125  
4126  	error = dir->i_op->symlink(dir, dentry, oldname);
4127  	if (!error)
4128  		fsnotify_create(dir, dentry);
4129  	return error;
4130  }
4131  EXPORT_SYMBOL(vfs_symlink);
4132  
4133  long do_symlinkat(const char __user *oldname, int newdfd,
4134  		  const char __user *newname)
4135  {
4136  	int error;
4137  	struct filename *from;
4138  	struct dentry *dentry;
4139  	struct path path;
4140  	unsigned int lookup_flags = 0;
4141  
4142  	from = getname(oldname);
4143  	if (IS_ERR(from))
4144  		return PTR_ERR(from);
4145  retry:
4146  	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4147  	error = PTR_ERR(dentry);
4148  	if (IS_ERR(dentry))
4149  		goto out_putname;
4150  
4151  	error = security_path_symlink(&path, dentry, from->name);
4152  	if (!error)
4153  		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4154  	done_path_create(&path, dentry);
4155  	if (retry_estale(error, lookup_flags)) {
4156  		lookup_flags |= LOOKUP_REVAL;
4157  		goto retry;
4158  	}
4159  out_putname:
4160  	putname(from);
4161  	return error;
4162  }
4163  
4164  SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4165  		int, newdfd, const char __user *, newname)
4166  {
4167  	return do_symlinkat(oldname, newdfd, newname);
4168  }
4169  
4170  SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4171  {
4172  	return do_symlinkat(oldname, AT_FDCWD, newname);
4173  }
4174  
4175  /**
4176   * vfs_link - create a new link
4177   * @old_dentry:	object to be linked
4178   * @dir:	new parent
4179   * @new_dentry:	where to create the new link
4180   * @delegated_inode: returns inode needing a delegation break
4181   *
4182   * The caller must hold dir->i_mutex
4183   *
4184   * If vfs_link discovers a delegation on the to-be-linked file in need
4185   * of breaking, it will return -EWOULDBLOCK and return a reference to the
4186   * inode in delegated_inode.  The caller should then break the delegation
4187   * and retry.  Because breaking a delegation may take a long time, the
4188   * caller should drop the i_mutex before doing so.
4189   *
4190   * Alternatively, a caller may pass NULL for delegated_inode.  This may
4191   * be appropriate for callers that expect the underlying filesystem not
4192   * to be NFS exported.
4193   */
4194  int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4195  {
4196  	struct inode *inode = old_dentry->d_inode;
4197  	unsigned max_links = dir->i_sb->s_max_links;
4198  	int error;
4199  
4200  	if (!inode)
4201  		return -ENOENT;
4202  
4203  	error = may_create(dir, new_dentry);
4204  	if (error)
4205  		return error;
4206  
4207  	if (dir->i_sb != inode->i_sb)
4208  		return -EXDEV;
4209  
4210  	/*
4211  	 * A link to an append-only or immutable file cannot be created.
4212  	 */
4213  	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4214  		return -EPERM;
4215  	/*
4216  	 * Updating the link count will likely cause i_uid and i_gid to
4217  	 * be writen back improperly if their true value is unknown to
4218  	 * the vfs.
4219  	 */
4220  	if (HAS_UNMAPPED_ID(inode))
4221  		return -EPERM;
4222  	if (!dir->i_op->link)
4223  		return -EPERM;
4224  	if (S_ISDIR(inode->i_mode))
4225  		return -EPERM;
4226  
4227  	error = security_inode_link(old_dentry, dir, new_dentry);
4228  	if (error)
4229  		return error;
4230  
4231  	inode_lock(inode);
4232  	/* Make sure we don't allow creating hardlink to an unlinked file */
4233  	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4234  		error =  -ENOENT;
4235  	else if (max_links && inode->i_nlink >= max_links)
4236  		error = -EMLINK;
4237  	else {
4238  		error = try_break_deleg(inode, delegated_inode);
4239  		if (!error)
4240  			error = dir->i_op->link(old_dentry, dir, new_dentry);
4241  	}
4242  
4243  	if (!error && (inode->i_state & I_LINKABLE)) {
4244  		spin_lock(&inode->i_lock);
4245  		inode->i_state &= ~I_LINKABLE;
4246  		spin_unlock(&inode->i_lock);
4247  	}
4248  	inode_unlock(inode);
4249  	if (!error)
4250  		fsnotify_link(dir, inode, new_dentry);
4251  	return error;
4252  }
4253  EXPORT_SYMBOL(vfs_link);
4254  
4255  /*
4256   * Hardlinks are often used in delicate situations.  We avoid
4257   * security-related surprises by not following symlinks on the
4258   * newname.  --KAB
4259   *
4260   * We don't follow them on the oldname either to be compatible
4261   * with linux 2.0, and to avoid hard-linking to directories
4262   * and other special files.  --ADM
4263   */
4264  int do_linkat(int olddfd, const char __user *oldname, int newdfd,
4265  	      const char __user *newname, int flags)
4266  {
4267  	struct dentry *new_dentry;
4268  	struct path old_path, new_path;
4269  	struct inode *delegated_inode = NULL;
4270  	int how = 0;
4271  	int error;
4272  
4273  	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4274  		return -EINVAL;
4275  	/*
4276  	 * To use null names we require CAP_DAC_READ_SEARCH
4277  	 * This ensures that not everyone will be able to create
4278  	 * handlink using the passed filedescriptor.
4279  	 */
4280  	if (flags & AT_EMPTY_PATH) {
4281  		if (!capable(CAP_DAC_READ_SEARCH))
4282  			return -ENOENT;
4283  		how = LOOKUP_EMPTY;
4284  	}
4285  
4286  	if (flags & AT_SYMLINK_FOLLOW)
4287  		how |= LOOKUP_FOLLOW;
4288  retry:
4289  	error = user_path_at(olddfd, oldname, how, &old_path);
4290  	if (error)
4291  		return error;
4292  
4293  	new_dentry = user_path_create(newdfd, newname, &new_path,
4294  					(how & LOOKUP_REVAL));
4295  	error = PTR_ERR(new_dentry);
4296  	if (IS_ERR(new_dentry))
4297  		goto out;
4298  
4299  	error = -EXDEV;
4300  	if (old_path.mnt != new_path.mnt)
4301  		goto out_dput;
4302  	error = may_linkat(&old_path);
4303  	if (unlikely(error))
4304  		goto out_dput;
4305  	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4306  	if (error)
4307  		goto out_dput;
4308  	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4309  out_dput:
4310  	done_path_create(&new_path, new_dentry);
4311  	if (delegated_inode) {
4312  		error = break_deleg_wait(&delegated_inode);
4313  		if (!error) {
4314  			path_put(&old_path);
4315  			goto retry;
4316  		}
4317  	}
4318  	if (retry_estale(error, how)) {
4319  		path_put(&old_path);
4320  		how |= LOOKUP_REVAL;
4321  		goto retry;
4322  	}
4323  out:
4324  	path_put(&old_path);
4325  
4326  	return error;
4327  }
4328  
4329  SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4330  		int, newdfd, const char __user *, newname, int, flags)
4331  {
4332  	return do_linkat(olddfd, oldname, newdfd, newname, flags);
4333  }
4334  
4335  SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4336  {
4337  	return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4338  }
4339  
4340  /**
4341   * vfs_rename - rename a filesystem object
4342   * @old_dir:	parent of source
4343   * @old_dentry:	source
4344   * @new_dir:	parent of destination
4345   * @new_dentry:	destination
4346   * @delegated_inode: returns an inode needing a delegation break
4347   * @flags:	rename flags
4348   *
4349   * The caller must hold multiple mutexes--see lock_rename()).
4350   *
4351   * If vfs_rename discovers a delegation in need of breaking at either
4352   * the source or destination, it will return -EWOULDBLOCK and return a
4353   * reference to the inode in delegated_inode.  The caller should then
4354   * break the delegation and retry.  Because breaking a delegation may
4355   * take a long time, the caller should drop all locks before doing
4356   * so.
4357   *
4358   * Alternatively, a caller may pass NULL for delegated_inode.  This may
4359   * be appropriate for callers that expect the underlying filesystem not
4360   * to be NFS exported.
4361   *
4362   * The worst of all namespace operations - renaming directory. "Perverted"
4363   * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4364   * Problems:
4365   *
4366   *	a) we can get into loop creation.
4367   *	b) race potential - two innocent renames can create a loop together.
4368   *	   That's where 4.4 screws up. Current fix: serialization on
4369   *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4370   *	   story.
4371   *	c) we have to lock _four_ objects - parents and victim (if it exists),
4372   *	   and source (if it is not a directory).
4373   *	   And that - after we got ->i_mutex on parents (until then we don't know
4374   *	   whether the target exists).  Solution: try to be smart with locking
4375   *	   order for inodes.  We rely on the fact that tree topology may change
4376   *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4377   *	   move will be locked.  Thus we can rank directories by the tree
4378   *	   (ancestors first) and rank all non-directories after them.
4379   *	   That works since everybody except rename does "lock parent, lookup,
4380   *	   lock child" and rename is under ->s_vfs_rename_mutex.
4381   *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4382   *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4383   *	   we'd better make sure that there's no link(2) for them.
4384   *	d) conversion from fhandle to dentry may come in the wrong moment - when
4385   *	   we are removing the target. Solution: we will have to grab ->i_mutex
4386   *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4387   *	   ->i_mutex on parents, which works but leads to some truly excessive
4388   *	   locking].
4389   */
4390  int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4391  	       struct inode *new_dir, struct dentry *new_dentry,
4392  	       struct inode **delegated_inode, unsigned int flags)
4393  {
4394  	int error;
4395  	bool is_dir = d_is_dir(old_dentry);
4396  	struct inode *source = old_dentry->d_inode;
4397  	struct inode *target = new_dentry->d_inode;
4398  	bool new_is_dir = false;
4399  	unsigned max_links = new_dir->i_sb->s_max_links;
4400  	struct name_snapshot old_name;
4401  
4402  	if (source == target)
4403  		return 0;
4404  
4405  	error = may_delete(old_dir, old_dentry, is_dir);
4406  	if (error)
4407  		return error;
4408  
4409  	if (!target) {
4410  		error = may_create(new_dir, new_dentry);
4411  	} else {
4412  		new_is_dir = d_is_dir(new_dentry);
4413  
4414  		if (!(flags & RENAME_EXCHANGE))
4415  			error = may_delete(new_dir, new_dentry, is_dir);
4416  		else
4417  			error = may_delete(new_dir, new_dentry, new_is_dir);
4418  	}
4419  	if (error)
4420  		return error;
4421  
4422  	if (!old_dir->i_op->rename)
4423  		return -EPERM;
4424  
4425  	/*
4426  	 * If we are going to change the parent - check write permissions,
4427  	 * we'll need to flip '..'.
4428  	 */
4429  	if (new_dir != old_dir) {
4430  		if (is_dir) {
4431  			error = inode_permission(source, MAY_WRITE);
4432  			if (error)
4433  				return error;
4434  		}
4435  		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4436  			error = inode_permission(target, MAY_WRITE);
4437  			if (error)
4438  				return error;
4439  		}
4440  	}
4441  
4442  	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4443  				      flags);
4444  	if (error)
4445  		return error;
4446  
4447  	take_dentry_name_snapshot(&old_name, old_dentry);
4448  	dget(new_dentry);
4449  	if (!is_dir || (flags & RENAME_EXCHANGE))
4450  		lock_two_nondirectories(source, target);
4451  	else if (target)
4452  		inode_lock(target);
4453  
4454  	error = -EBUSY;
4455  	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4456  		goto out;
4457  
4458  	if (max_links && new_dir != old_dir) {
4459  		error = -EMLINK;
4460  		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4461  			goto out;
4462  		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4463  		    old_dir->i_nlink >= max_links)
4464  			goto out;
4465  	}
4466  	if (!is_dir) {
4467  		error = try_break_deleg(source, delegated_inode);
4468  		if (error)
4469  			goto out;
4470  	}
4471  	if (target && !new_is_dir) {
4472  		error = try_break_deleg(target, delegated_inode);
4473  		if (error)
4474  			goto out;
4475  	}
4476  	error = old_dir->i_op->rename(old_dir, old_dentry,
4477  				       new_dir, new_dentry, flags);
4478  	if (error)
4479  		goto out;
4480  
4481  	if (!(flags & RENAME_EXCHANGE) && target) {
4482  		if (is_dir) {
4483  			shrink_dcache_parent(new_dentry);
4484  			target->i_flags |= S_DEAD;
4485  		}
4486  		dont_mount(new_dentry);
4487  		detach_mounts(new_dentry);
4488  	}
4489  	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4490  		if (!(flags & RENAME_EXCHANGE))
4491  			d_move(old_dentry, new_dentry);
4492  		else
4493  			d_exchange(old_dentry, new_dentry);
4494  	}
4495  out:
4496  	if (!is_dir || (flags & RENAME_EXCHANGE))
4497  		unlock_two_nondirectories(source, target);
4498  	else if (target)
4499  		inode_unlock(target);
4500  	dput(new_dentry);
4501  	if (!error) {
4502  		fsnotify_move(old_dir, new_dir, old_name.name, is_dir,
4503  			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4504  		if (flags & RENAME_EXCHANGE) {
4505  			fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4506  				      new_is_dir, NULL, new_dentry);
4507  		}
4508  	}
4509  	release_dentry_name_snapshot(&old_name);
4510  
4511  	return error;
4512  }
4513  EXPORT_SYMBOL(vfs_rename);
4514  
4515  static int do_renameat2(int olddfd, const char __user *oldname, int newdfd,
4516  			const char __user *newname, unsigned int flags)
4517  {
4518  	struct dentry *old_dentry, *new_dentry;
4519  	struct dentry *trap;
4520  	struct path old_path, new_path;
4521  	struct qstr old_last, new_last;
4522  	int old_type, new_type;
4523  	struct inode *delegated_inode = NULL;
4524  	struct filename *from;
4525  	struct filename *to;
4526  	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4527  	bool should_retry = false;
4528  	int error;
4529  
4530  	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4531  		return -EINVAL;
4532  
4533  	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4534  	    (flags & RENAME_EXCHANGE))
4535  		return -EINVAL;
4536  
4537  	if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4538  		return -EPERM;
4539  
4540  	if (flags & RENAME_EXCHANGE)
4541  		target_flags = 0;
4542  
4543  retry:
4544  	from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4545  				&old_path, &old_last, &old_type);
4546  	if (IS_ERR(from)) {
4547  		error = PTR_ERR(from);
4548  		goto exit;
4549  	}
4550  
4551  	to = filename_parentat(newdfd, getname(newname), lookup_flags,
4552  				&new_path, &new_last, &new_type);
4553  	if (IS_ERR(to)) {
4554  		error = PTR_ERR(to);
4555  		goto exit1;
4556  	}
4557  
4558  	error = -EXDEV;
4559  	if (old_path.mnt != new_path.mnt)
4560  		goto exit2;
4561  
4562  	error = -EBUSY;
4563  	if (old_type != LAST_NORM)
4564  		goto exit2;
4565  
4566  	if (flags & RENAME_NOREPLACE)
4567  		error = -EEXIST;
4568  	if (new_type != LAST_NORM)
4569  		goto exit2;
4570  
4571  	error = mnt_want_write(old_path.mnt);
4572  	if (error)
4573  		goto exit2;
4574  
4575  retry_deleg:
4576  	trap = lock_rename(new_path.dentry, old_path.dentry);
4577  
4578  	old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4579  	error = PTR_ERR(old_dentry);
4580  	if (IS_ERR(old_dentry))
4581  		goto exit3;
4582  	/* source must exist */
4583  	error = -ENOENT;
4584  	if (d_is_negative(old_dentry))
4585  		goto exit4;
4586  	new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4587  	error = PTR_ERR(new_dentry);
4588  	if (IS_ERR(new_dentry))
4589  		goto exit4;
4590  	error = -EEXIST;
4591  	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4592  		goto exit5;
4593  	if (flags & RENAME_EXCHANGE) {
4594  		error = -ENOENT;
4595  		if (d_is_negative(new_dentry))
4596  			goto exit5;
4597  
4598  		if (!d_is_dir(new_dentry)) {
4599  			error = -ENOTDIR;
4600  			if (new_last.name[new_last.len])
4601  				goto exit5;
4602  		}
4603  	}
4604  	/* unless the source is a directory trailing slashes give -ENOTDIR */
4605  	if (!d_is_dir(old_dentry)) {
4606  		error = -ENOTDIR;
4607  		if (old_last.name[old_last.len])
4608  			goto exit5;
4609  		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4610  			goto exit5;
4611  	}
4612  	/* source should not be ancestor of target */
4613  	error = -EINVAL;
4614  	if (old_dentry == trap)
4615  		goto exit5;
4616  	/* target should not be an ancestor of source */
4617  	if (!(flags & RENAME_EXCHANGE))
4618  		error = -ENOTEMPTY;
4619  	if (new_dentry == trap)
4620  		goto exit5;
4621  
4622  	error = security_path_rename(&old_path, old_dentry,
4623  				     &new_path, new_dentry, flags);
4624  	if (error)
4625  		goto exit5;
4626  	error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4627  			   new_path.dentry->d_inode, new_dentry,
4628  			   &delegated_inode, flags);
4629  exit5:
4630  	dput(new_dentry);
4631  exit4:
4632  	dput(old_dentry);
4633  exit3:
4634  	unlock_rename(new_path.dentry, old_path.dentry);
4635  	if (delegated_inode) {
4636  		error = break_deleg_wait(&delegated_inode);
4637  		if (!error)
4638  			goto retry_deleg;
4639  	}
4640  	mnt_drop_write(old_path.mnt);
4641  exit2:
4642  	if (retry_estale(error, lookup_flags))
4643  		should_retry = true;
4644  	path_put(&new_path);
4645  	putname(to);
4646  exit1:
4647  	path_put(&old_path);
4648  	putname(from);
4649  	if (should_retry) {
4650  		should_retry = false;
4651  		lookup_flags |= LOOKUP_REVAL;
4652  		goto retry;
4653  	}
4654  exit:
4655  	return error;
4656  }
4657  
4658  SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4659  		int, newdfd, const char __user *, newname, unsigned int, flags)
4660  {
4661  	return do_renameat2(olddfd, oldname, newdfd, newname, flags);
4662  }
4663  
4664  SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4665  		int, newdfd, const char __user *, newname)
4666  {
4667  	return do_renameat2(olddfd, oldname, newdfd, newname, 0);
4668  }
4669  
4670  SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4671  {
4672  	return do_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4673  }
4674  
4675  int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4676  {
4677  	int error = may_create(dir, dentry);
4678  	if (error)
4679  		return error;
4680  
4681  	if (!dir->i_op->mknod)
4682  		return -EPERM;
4683  
4684  	return dir->i_op->mknod(dir, dentry,
4685  				S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4686  }
4687  EXPORT_SYMBOL(vfs_whiteout);
4688  
4689  int readlink_copy(char __user *buffer, int buflen, const char *link)
4690  {
4691  	int len = PTR_ERR(link);
4692  	if (IS_ERR(link))
4693  		goto out;
4694  
4695  	len = strlen(link);
4696  	if (len > (unsigned) buflen)
4697  		len = buflen;
4698  	if (copy_to_user(buffer, link, len))
4699  		len = -EFAULT;
4700  out:
4701  	return len;
4702  }
4703  
4704  /**
4705   * vfs_readlink - copy symlink body into userspace buffer
4706   * @dentry: dentry on which to get symbolic link
4707   * @buffer: user memory pointer
4708   * @buflen: size of buffer
4709   *
4710   * Does not touch atime.  That's up to the caller if necessary
4711   *
4712   * Does not call security hook.
4713   */
4714  int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4715  {
4716  	struct inode *inode = d_inode(dentry);
4717  	DEFINE_DELAYED_CALL(done);
4718  	const char *link;
4719  	int res;
4720  
4721  	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4722  		if (unlikely(inode->i_op->readlink))
4723  			return inode->i_op->readlink(dentry, buffer, buflen);
4724  
4725  		if (!d_is_symlink(dentry))
4726  			return -EINVAL;
4727  
4728  		spin_lock(&inode->i_lock);
4729  		inode->i_opflags |= IOP_DEFAULT_READLINK;
4730  		spin_unlock(&inode->i_lock);
4731  	}
4732  
4733  	link = inode->i_link;
4734  	if (!link) {
4735  		link = inode->i_op->get_link(dentry, inode, &done);
4736  		if (IS_ERR(link))
4737  			return PTR_ERR(link);
4738  	}
4739  	res = readlink_copy(buffer, buflen, link);
4740  	do_delayed_call(&done);
4741  	return res;
4742  }
4743  EXPORT_SYMBOL(vfs_readlink);
4744  
4745  /**
4746   * vfs_get_link - get symlink body
4747   * @dentry: dentry on which to get symbolic link
4748   * @done: caller needs to free returned data with this
4749   *
4750   * Calls security hook and i_op->get_link() on the supplied inode.
4751   *
4752   * It does not touch atime.  That's up to the caller if necessary.
4753   *
4754   * Does not work on "special" symlinks like /proc/$$/fd/N
4755   */
4756  const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4757  {
4758  	const char *res = ERR_PTR(-EINVAL);
4759  	struct inode *inode = d_inode(dentry);
4760  
4761  	if (d_is_symlink(dentry)) {
4762  		res = ERR_PTR(security_inode_readlink(dentry));
4763  		if (!res)
4764  			res = inode->i_op->get_link(dentry, inode, done);
4765  	}
4766  	return res;
4767  }
4768  EXPORT_SYMBOL(vfs_get_link);
4769  
4770  /* get the link contents into pagecache */
4771  const char *page_get_link(struct dentry *dentry, struct inode *inode,
4772  			  struct delayed_call *callback)
4773  {
4774  	char *kaddr;
4775  	struct page *page;
4776  	struct address_space *mapping = inode->i_mapping;
4777  
4778  	if (!dentry) {
4779  		page = find_get_page(mapping, 0);
4780  		if (!page)
4781  			return ERR_PTR(-ECHILD);
4782  		if (!PageUptodate(page)) {
4783  			put_page(page);
4784  			return ERR_PTR(-ECHILD);
4785  		}
4786  	} else {
4787  		page = read_mapping_page(mapping, 0, NULL);
4788  		if (IS_ERR(page))
4789  			return (char*)page;
4790  	}
4791  	set_delayed_call(callback, page_put_link, page);
4792  	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4793  	kaddr = page_address(page);
4794  	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4795  	return kaddr;
4796  }
4797  
4798  EXPORT_SYMBOL(page_get_link);
4799  
4800  void page_put_link(void *arg)
4801  {
4802  	put_page(arg);
4803  }
4804  EXPORT_SYMBOL(page_put_link);
4805  
4806  int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4807  {
4808  	DEFINE_DELAYED_CALL(done);
4809  	int res = readlink_copy(buffer, buflen,
4810  				page_get_link(dentry, d_inode(dentry),
4811  					      &done));
4812  	do_delayed_call(&done);
4813  	return res;
4814  }
4815  EXPORT_SYMBOL(page_readlink);
4816  
4817  /*
4818   * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4819   */
4820  int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4821  {
4822  	struct address_space *mapping = inode->i_mapping;
4823  	struct page *page;
4824  	void *fsdata;
4825  	int err;
4826  	unsigned int flags = 0;
4827  	if (nofs)
4828  		flags |= AOP_FLAG_NOFS;
4829  
4830  retry:
4831  	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4832  				flags, &page, &fsdata);
4833  	if (err)
4834  		goto fail;
4835  
4836  	memcpy(page_address(page), symname, len-1);
4837  
4838  	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4839  							page, fsdata);
4840  	if (err < 0)
4841  		goto fail;
4842  	if (err < len-1)
4843  		goto retry;
4844  
4845  	mark_inode_dirty(inode);
4846  	return 0;
4847  fail:
4848  	return err;
4849  }
4850  EXPORT_SYMBOL(__page_symlink);
4851  
4852  int page_symlink(struct inode *inode, const char *symname, int len)
4853  {
4854  	return __page_symlink(inode, symname, len,
4855  			!mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4856  }
4857  EXPORT_SYMBOL(page_symlink);
4858  
4859  const struct inode_operations page_symlink_inode_operations = {
4860  	.get_link	= page_get_link,
4861  };
4862  EXPORT_SYMBOL(page_symlink_inode_operations);
4863