xref: /linux/fs/namei.c (revision 3a36281a17199737b468befb826d4a23eb774445)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   *  linux/fs/namei.c
4   *
5   *  Copyright (C) 1991, 1992  Linus Torvalds
6   */
7  
8  /*
9   * Some corrections by tytso.
10   */
11  
12  /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13   * lookup logic.
14   */
15  /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16   */
17  
18  #include <linux/init.h>
19  #include <linux/export.h>
20  #include <linux/kernel.h>
21  #include <linux/slab.h>
22  #include <linux/fs.h>
23  #include <linux/namei.h>
24  #include <linux/pagemap.h>
25  #include <linux/fsnotify.h>
26  #include <linux/personality.h>
27  #include <linux/security.h>
28  #include <linux/ima.h>
29  #include <linux/syscalls.h>
30  #include <linux/mount.h>
31  #include <linux/audit.h>
32  #include <linux/capability.h>
33  #include <linux/file.h>
34  #include <linux/fcntl.h>
35  #include <linux/device_cgroup.h>
36  #include <linux/fs_struct.h>
37  #include <linux/posix_acl.h>
38  #include <linux/hash.h>
39  #include <linux/bitops.h>
40  #include <linux/init_task.h>
41  #include <linux/uaccess.h>
42  
43  #include "internal.h"
44  #include "mount.h"
45  
46  /* [Feb-1997 T. Schoebel-Theuer]
47   * Fundamental changes in the pathname lookup mechanisms (namei)
48   * were necessary because of omirr.  The reason is that omirr needs
49   * to know the _real_ pathname, not the user-supplied one, in case
50   * of symlinks (and also when transname replacements occur).
51   *
52   * The new code replaces the old recursive symlink resolution with
53   * an iterative one (in case of non-nested symlink chains).  It does
54   * this with calls to <fs>_follow_link().
55   * As a side effect, dir_namei(), _namei() and follow_link() are now
56   * replaced with a single function lookup_dentry() that can handle all
57   * the special cases of the former code.
58   *
59   * With the new dcache, the pathname is stored at each inode, at least as
60   * long as the refcount of the inode is positive.  As a side effect, the
61   * size of the dcache depends on the inode cache and thus is dynamic.
62   *
63   * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
64   * resolution to correspond with current state of the code.
65   *
66   * Note that the symlink resolution is not *completely* iterative.
67   * There is still a significant amount of tail- and mid- recursion in
68   * the algorithm.  Also, note that <fs>_readlink() is not used in
69   * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
70   * may return different results than <fs>_follow_link().  Many virtual
71   * filesystems (including /proc) exhibit this behavior.
72   */
73  
74  /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
75   * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
76   * and the name already exists in form of a symlink, try to create the new
77   * name indicated by the symlink. The old code always complained that the
78   * name already exists, due to not following the symlink even if its target
79   * is nonexistent.  The new semantics affects also mknod() and link() when
80   * the name is a symlink pointing to a non-existent name.
81   *
82   * I don't know which semantics is the right one, since I have no access
83   * to standards. But I found by trial that HP-UX 9.0 has the full "new"
84   * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
85   * "old" one. Personally, I think the new semantics is much more logical.
86   * Note that "ln old new" where "new" is a symlink pointing to a non-existing
87   * file does succeed in both HP-UX and SunOs, but not in Solaris
88   * and in the old Linux semantics.
89   */
90  
91  /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
92   * semantics.  See the comments in "open_namei" and "do_link" below.
93   *
94   * [10-Sep-98 Alan Modra] Another symlink change.
95   */
96  
97  /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
98   *	inside the path - always follow.
99   *	in the last component in creation/removal/renaming - never follow.
100   *	if LOOKUP_FOLLOW passed - follow.
101   *	if the pathname has trailing slashes - follow.
102   *	otherwise - don't follow.
103   * (applied in that order).
104   *
105   * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
106   * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
107   * During the 2.4 we need to fix the userland stuff depending on it -
108   * hopefully we will be able to get rid of that wart in 2.5. So far only
109   * XEmacs seems to be relying on it...
110   */
111  /*
112   * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
113   * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
114   * any extra contention...
115   */
116  
117  /* In order to reduce some races, while at the same time doing additional
118   * checking and hopefully speeding things up, we copy filenames to the
119   * kernel data space before using them..
120   *
121   * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
122   * PATH_MAX includes the nul terminator --RR.
123   */
124  
125  #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
126  
127  struct filename *
128  getname_flags(const char __user *filename, int flags, int *empty)
129  {
130  	struct filename *result;
131  	char *kname;
132  	int len;
133  
134  	result = audit_reusename(filename);
135  	if (result)
136  		return result;
137  
138  	result = __getname();
139  	if (unlikely(!result))
140  		return ERR_PTR(-ENOMEM);
141  
142  	/*
143  	 * First, try to embed the struct filename inside the names_cache
144  	 * allocation
145  	 */
146  	kname = (char *)result->iname;
147  	result->name = kname;
148  
149  	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
150  	if (unlikely(len < 0)) {
151  		__putname(result);
152  		return ERR_PTR(len);
153  	}
154  
155  	/*
156  	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
157  	 * separate struct filename so we can dedicate the entire
158  	 * names_cache allocation for the pathname, and re-do the copy from
159  	 * userland.
160  	 */
161  	if (unlikely(len == EMBEDDED_NAME_MAX)) {
162  		const size_t size = offsetof(struct filename, iname[1]);
163  		kname = (char *)result;
164  
165  		/*
166  		 * size is chosen that way we to guarantee that
167  		 * result->iname[0] is within the same object and that
168  		 * kname can't be equal to result->iname, no matter what.
169  		 */
170  		result = kzalloc(size, GFP_KERNEL);
171  		if (unlikely(!result)) {
172  			__putname(kname);
173  			return ERR_PTR(-ENOMEM);
174  		}
175  		result->name = kname;
176  		len = strncpy_from_user(kname, filename, PATH_MAX);
177  		if (unlikely(len < 0)) {
178  			__putname(kname);
179  			kfree(result);
180  			return ERR_PTR(len);
181  		}
182  		if (unlikely(len == PATH_MAX)) {
183  			__putname(kname);
184  			kfree(result);
185  			return ERR_PTR(-ENAMETOOLONG);
186  		}
187  	}
188  
189  	result->refcnt = 1;
190  	/* The empty path is special. */
191  	if (unlikely(!len)) {
192  		if (empty)
193  			*empty = 1;
194  		if (!(flags & LOOKUP_EMPTY)) {
195  			putname(result);
196  			return ERR_PTR(-ENOENT);
197  		}
198  	}
199  
200  	result->uptr = filename;
201  	result->aname = NULL;
202  	audit_getname(result);
203  	return result;
204  }
205  
206  struct filename *
207  getname(const char __user * filename)
208  {
209  	return getname_flags(filename, 0, NULL);
210  }
211  
212  struct filename *
213  getname_kernel(const char * filename)
214  {
215  	struct filename *result;
216  	int len = strlen(filename) + 1;
217  
218  	result = __getname();
219  	if (unlikely(!result))
220  		return ERR_PTR(-ENOMEM);
221  
222  	if (len <= EMBEDDED_NAME_MAX) {
223  		result->name = (char *)result->iname;
224  	} else if (len <= PATH_MAX) {
225  		const size_t size = offsetof(struct filename, iname[1]);
226  		struct filename *tmp;
227  
228  		tmp = kmalloc(size, GFP_KERNEL);
229  		if (unlikely(!tmp)) {
230  			__putname(result);
231  			return ERR_PTR(-ENOMEM);
232  		}
233  		tmp->name = (char *)result;
234  		result = tmp;
235  	} else {
236  		__putname(result);
237  		return ERR_PTR(-ENAMETOOLONG);
238  	}
239  	memcpy((char *)result->name, filename, len);
240  	result->uptr = NULL;
241  	result->aname = NULL;
242  	result->refcnt = 1;
243  	audit_getname(result);
244  
245  	return result;
246  }
247  
248  void putname(struct filename *name)
249  {
250  	BUG_ON(name->refcnt <= 0);
251  
252  	if (--name->refcnt > 0)
253  		return;
254  
255  	if (name->name != name->iname) {
256  		__putname(name->name);
257  		kfree(name);
258  	} else
259  		__putname(name);
260  }
261  
262  static int check_acl(struct inode *inode, int mask)
263  {
264  #ifdef CONFIG_FS_POSIX_ACL
265  	struct posix_acl *acl;
266  
267  	if (mask & MAY_NOT_BLOCK) {
268  		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
269  	        if (!acl)
270  	                return -EAGAIN;
271  		/* no ->get_acl() calls in RCU mode... */
272  		if (is_uncached_acl(acl))
273  			return -ECHILD;
274  	        return posix_acl_permission(inode, acl, mask);
275  	}
276  
277  	acl = get_acl(inode, ACL_TYPE_ACCESS);
278  	if (IS_ERR(acl))
279  		return PTR_ERR(acl);
280  	if (acl) {
281  	        int error = posix_acl_permission(inode, acl, mask);
282  	        posix_acl_release(acl);
283  	        return error;
284  	}
285  #endif
286  
287  	return -EAGAIN;
288  }
289  
290  /*
291   * This does the basic UNIX permission checking.
292   *
293   * Note that the POSIX ACL check cares about the MAY_NOT_BLOCK bit,
294   * for RCU walking.
295   */
296  static int acl_permission_check(struct inode *inode, int mask)
297  {
298  	unsigned int mode = inode->i_mode;
299  
300  	/* Are we the owner? If so, ACL's don't matter */
301  	if (likely(uid_eq(current_fsuid(), inode->i_uid))) {
302  		mask &= 7;
303  		mode >>= 6;
304  		return (mask & ~mode) ? -EACCES : 0;
305  	}
306  
307  	/* Do we have ACL's? */
308  	if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
309  		int error = check_acl(inode, mask);
310  		if (error != -EAGAIN)
311  			return error;
312  	}
313  
314  	/* Only RWX matters for group/other mode bits */
315  	mask &= 7;
316  
317  	/*
318  	 * Are the group permissions different from
319  	 * the other permissions in the bits we care
320  	 * about? Need to check group ownership if so.
321  	 */
322  	if (mask & (mode ^ (mode >> 3))) {
323  		if (in_group_p(inode->i_gid))
324  			mode >>= 3;
325  	}
326  
327  	/* Bits in 'mode' clear that we require? */
328  	return (mask & ~mode) ? -EACCES : 0;
329  }
330  
331  /**
332   * generic_permission -  check for access rights on a Posix-like filesystem
333   * @inode:	inode to check access rights for
334   * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
335   *		%MAY_NOT_BLOCK ...)
336   *
337   * Used to check for read/write/execute permissions on a file.
338   * We use "fsuid" for this, letting us set arbitrary permissions
339   * for filesystem access without changing the "normal" uids which
340   * are used for other things.
341   *
342   * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
343   * request cannot be satisfied (eg. requires blocking or too much complexity).
344   * It would then be called again in ref-walk mode.
345   */
346  int generic_permission(struct inode *inode, int mask)
347  {
348  	int ret;
349  
350  	/*
351  	 * Do the basic permission checks.
352  	 */
353  	ret = acl_permission_check(inode, mask);
354  	if (ret != -EACCES)
355  		return ret;
356  
357  	if (S_ISDIR(inode->i_mode)) {
358  		/* DACs are overridable for directories */
359  		if (!(mask & MAY_WRITE))
360  			if (capable_wrt_inode_uidgid(inode,
361  						     CAP_DAC_READ_SEARCH))
362  				return 0;
363  		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
364  			return 0;
365  		return -EACCES;
366  	}
367  
368  	/*
369  	 * Searching includes executable on directories, else just read.
370  	 */
371  	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
372  	if (mask == MAY_READ)
373  		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
374  			return 0;
375  	/*
376  	 * Read/write DACs are always overridable.
377  	 * Executable DACs are overridable when there is
378  	 * at least one exec bit set.
379  	 */
380  	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
381  		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
382  			return 0;
383  
384  	return -EACCES;
385  }
386  EXPORT_SYMBOL(generic_permission);
387  
388  /*
389   * We _really_ want to just do "generic_permission()" without
390   * even looking at the inode->i_op values. So we keep a cache
391   * flag in inode->i_opflags, that says "this has not special
392   * permission function, use the fast case".
393   */
394  static inline int do_inode_permission(struct inode *inode, int mask)
395  {
396  	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
397  		if (likely(inode->i_op->permission))
398  			return inode->i_op->permission(inode, mask);
399  
400  		/* This gets set once for the inode lifetime */
401  		spin_lock(&inode->i_lock);
402  		inode->i_opflags |= IOP_FASTPERM;
403  		spin_unlock(&inode->i_lock);
404  	}
405  	return generic_permission(inode, mask);
406  }
407  
408  /**
409   * sb_permission - Check superblock-level permissions
410   * @sb: Superblock of inode to check permission on
411   * @inode: Inode to check permission on
412   * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
413   *
414   * Separate out file-system wide checks from inode-specific permission checks.
415   */
416  static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
417  {
418  	if (unlikely(mask & MAY_WRITE)) {
419  		umode_t mode = inode->i_mode;
420  
421  		/* Nobody gets write access to a read-only fs. */
422  		if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
423  			return -EROFS;
424  	}
425  	return 0;
426  }
427  
428  /**
429   * inode_permission - Check for access rights to a given inode
430   * @inode: Inode to check permission on
431   * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
432   *
433   * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
434   * this, letting us set arbitrary permissions for filesystem access without
435   * changing the "normal" UIDs which are used for other things.
436   *
437   * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
438   */
439  int inode_permission(struct inode *inode, int mask)
440  {
441  	int retval;
442  
443  	retval = sb_permission(inode->i_sb, inode, mask);
444  	if (retval)
445  		return retval;
446  
447  	if (unlikely(mask & MAY_WRITE)) {
448  		/*
449  		 * Nobody gets write access to an immutable file.
450  		 */
451  		if (IS_IMMUTABLE(inode))
452  			return -EPERM;
453  
454  		/*
455  		 * Updating mtime will likely cause i_uid and i_gid to be
456  		 * written back improperly if their true value is unknown
457  		 * to the vfs.
458  		 */
459  		if (HAS_UNMAPPED_ID(inode))
460  			return -EACCES;
461  	}
462  
463  	retval = do_inode_permission(inode, mask);
464  	if (retval)
465  		return retval;
466  
467  	retval = devcgroup_inode_permission(inode, mask);
468  	if (retval)
469  		return retval;
470  
471  	return security_inode_permission(inode, mask);
472  }
473  EXPORT_SYMBOL(inode_permission);
474  
475  /**
476   * path_get - get a reference to a path
477   * @path: path to get the reference to
478   *
479   * Given a path increment the reference count to the dentry and the vfsmount.
480   */
481  void path_get(const struct path *path)
482  {
483  	mntget(path->mnt);
484  	dget(path->dentry);
485  }
486  EXPORT_SYMBOL(path_get);
487  
488  /**
489   * path_put - put a reference to a path
490   * @path: path to put the reference to
491   *
492   * Given a path decrement the reference count to the dentry and the vfsmount.
493   */
494  void path_put(const struct path *path)
495  {
496  	dput(path->dentry);
497  	mntput(path->mnt);
498  }
499  EXPORT_SYMBOL(path_put);
500  
501  #define EMBEDDED_LEVELS 2
502  struct nameidata {
503  	struct path	path;
504  	struct qstr	last;
505  	struct path	root;
506  	struct inode	*inode; /* path.dentry.d_inode */
507  	unsigned int	flags;
508  	unsigned	seq, m_seq, r_seq;
509  	int		last_type;
510  	unsigned	depth;
511  	int		total_link_count;
512  	struct saved {
513  		struct path link;
514  		struct delayed_call done;
515  		const char *name;
516  		unsigned seq;
517  	} *stack, internal[EMBEDDED_LEVELS];
518  	struct filename	*name;
519  	struct nameidata *saved;
520  	unsigned	root_seq;
521  	int		dfd;
522  	kuid_t		dir_uid;
523  	umode_t		dir_mode;
524  } __randomize_layout;
525  
526  static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
527  {
528  	struct nameidata *old = current->nameidata;
529  	p->stack = p->internal;
530  	p->dfd = dfd;
531  	p->name = name;
532  	p->total_link_count = old ? old->total_link_count : 0;
533  	p->saved = old;
534  	current->nameidata = p;
535  }
536  
537  static void restore_nameidata(void)
538  {
539  	struct nameidata *now = current->nameidata, *old = now->saved;
540  
541  	current->nameidata = old;
542  	if (old)
543  		old->total_link_count = now->total_link_count;
544  	if (now->stack != now->internal)
545  		kfree(now->stack);
546  }
547  
548  static bool nd_alloc_stack(struct nameidata *nd)
549  {
550  	struct saved *p;
551  
552  	p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
553  			 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
554  	if (unlikely(!p))
555  		return false;
556  	memcpy(p, nd->internal, sizeof(nd->internal));
557  	nd->stack = p;
558  	return true;
559  }
560  
561  /**
562   * path_connected - Verify that a dentry is below mnt.mnt_root
563   *
564   * Rename can sometimes move a file or directory outside of a bind
565   * mount, path_connected allows those cases to be detected.
566   */
567  static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
568  {
569  	struct super_block *sb = mnt->mnt_sb;
570  
571  	/* Bind mounts can have disconnected paths */
572  	if (mnt->mnt_root == sb->s_root)
573  		return true;
574  
575  	return is_subdir(dentry, mnt->mnt_root);
576  }
577  
578  static void drop_links(struct nameidata *nd)
579  {
580  	int i = nd->depth;
581  	while (i--) {
582  		struct saved *last = nd->stack + i;
583  		do_delayed_call(&last->done);
584  		clear_delayed_call(&last->done);
585  	}
586  }
587  
588  static void terminate_walk(struct nameidata *nd)
589  {
590  	drop_links(nd);
591  	if (!(nd->flags & LOOKUP_RCU)) {
592  		int i;
593  		path_put(&nd->path);
594  		for (i = 0; i < nd->depth; i++)
595  			path_put(&nd->stack[i].link);
596  		if (nd->flags & LOOKUP_ROOT_GRABBED) {
597  			path_put(&nd->root);
598  			nd->flags &= ~LOOKUP_ROOT_GRABBED;
599  		}
600  	} else {
601  		nd->flags &= ~LOOKUP_RCU;
602  		rcu_read_unlock();
603  	}
604  	nd->depth = 0;
605  }
606  
607  /* path_put is needed afterwards regardless of success or failure */
608  static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
609  {
610  	int res = __legitimize_mnt(path->mnt, mseq);
611  	if (unlikely(res)) {
612  		if (res > 0)
613  			path->mnt = NULL;
614  		path->dentry = NULL;
615  		return false;
616  	}
617  	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
618  		path->dentry = NULL;
619  		return false;
620  	}
621  	return !read_seqcount_retry(&path->dentry->d_seq, seq);
622  }
623  
624  static inline bool legitimize_path(struct nameidata *nd,
625  			    struct path *path, unsigned seq)
626  {
627  	return __legitimize_path(path, seq, nd->m_seq);
628  }
629  
630  static bool legitimize_links(struct nameidata *nd)
631  {
632  	int i;
633  	if (unlikely(nd->flags & LOOKUP_CACHED)) {
634  		drop_links(nd);
635  		nd->depth = 0;
636  		return false;
637  	}
638  	for (i = 0; i < nd->depth; i++) {
639  		struct saved *last = nd->stack + i;
640  		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
641  			drop_links(nd);
642  			nd->depth = i + 1;
643  			return false;
644  		}
645  	}
646  	return true;
647  }
648  
649  static bool legitimize_root(struct nameidata *nd)
650  {
651  	/*
652  	 * For scoped-lookups (where nd->root has been zeroed), we need to
653  	 * restart the whole lookup from scratch -- because set_root() is wrong
654  	 * for these lookups (nd->dfd is the root, not the filesystem root).
655  	 */
656  	if (!nd->root.mnt && (nd->flags & LOOKUP_IS_SCOPED))
657  		return false;
658  	/* Nothing to do if nd->root is zero or is managed by the VFS user. */
659  	if (!nd->root.mnt || (nd->flags & LOOKUP_ROOT))
660  		return true;
661  	nd->flags |= LOOKUP_ROOT_GRABBED;
662  	return legitimize_path(nd, &nd->root, nd->root_seq);
663  }
664  
665  /*
666   * Path walking has 2 modes, rcu-walk and ref-walk (see
667   * Documentation/filesystems/path-lookup.txt).  In situations when we can't
668   * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
669   * normal reference counts on dentries and vfsmounts to transition to ref-walk
670   * mode.  Refcounts are grabbed at the last known good point before rcu-walk
671   * got stuck, so ref-walk may continue from there. If this is not successful
672   * (eg. a seqcount has changed), then failure is returned and it's up to caller
673   * to restart the path walk from the beginning in ref-walk mode.
674   */
675  
676  /**
677   * try_to_unlazy - try to switch to ref-walk mode.
678   * @nd: nameidata pathwalk data
679   * Returns: true on success, false on failure
680   *
681   * try_to_unlazy attempts to legitimize the current nd->path and nd->root
682   * for ref-walk mode.
683   * Must be called from rcu-walk context.
684   * Nothing should touch nameidata between try_to_unlazy() failure and
685   * terminate_walk().
686   */
687  static bool try_to_unlazy(struct nameidata *nd)
688  {
689  	struct dentry *parent = nd->path.dentry;
690  
691  	BUG_ON(!(nd->flags & LOOKUP_RCU));
692  
693  	nd->flags &= ~LOOKUP_RCU;
694  	if (unlikely(!legitimize_links(nd)))
695  		goto out1;
696  	if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
697  		goto out;
698  	if (unlikely(!legitimize_root(nd)))
699  		goto out;
700  	rcu_read_unlock();
701  	BUG_ON(nd->inode != parent->d_inode);
702  	return true;
703  
704  out1:
705  	nd->path.mnt = NULL;
706  	nd->path.dentry = NULL;
707  out:
708  	rcu_read_unlock();
709  	return false;
710  }
711  
712  /**
713   * try_to_unlazy_next - try to switch to ref-walk mode.
714   * @nd: nameidata pathwalk data
715   * @dentry: next dentry to step into
716   * @seq: seq number to check @dentry against
717   * Returns: true on success, false on failure
718   *
719   * Similar to to try_to_unlazy(), but here we have the next dentry already
720   * picked by rcu-walk and want to legitimize that in addition to the current
721   * nd->path and nd->root for ref-walk mode.  Must be called from rcu-walk context.
722   * Nothing should touch nameidata between try_to_unlazy_next() failure and
723   * terminate_walk().
724   */
725  static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry, unsigned seq)
726  {
727  	BUG_ON(!(nd->flags & LOOKUP_RCU));
728  
729  	nd->flags &= ~LOOKUP_RCU;
730  	if (unlikely(!legitimize_links(nd)))
731  		goto out2;
732  	if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
733  		goto out2;
734  	if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
735  		goto out1;
736  
737  	/*
738  	 * We need to move both the parent and the dentry from the RCU domain
739  	 * to be properly refcounted. And the sequence number in the dentry
740  	 * validates *both* dentry counters, since we checked the sequence
741  	 * number of the parent after we got the child sequence number. So we
742  	 * know the parent must still be valid if the child sequence number is
743  	 */
744  	if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
745  		goto out;
746  	if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
747  		goto out_dput;
748  	/*
749  	 * Sequence counts matched. Now make sure that the root is
750  	 * still valid and get it if required.
751  	 */
752  	if (unlikely(!legitimize_root(nd)))
753  		goto out_dput;
754  	rcu_read_unlock();
755  	return true;
756  
757  out2:
758  	nd->path.mnt = NULL;
759  out1:
760  	nd->path.dentry = NULL;
761  out:
762  	rcu_read_unlock();
763  	return false;
764  out_dput:
765  	rcu_read_unlock();
766  	dput(dentry);
767  	return false;
768  }
769  
770  static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
771  {
772  	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
773  		return dentry->d_op->d_revalidate(dentry, flags);
774  	else
775  		return 1;
776  }
777  
778  /**
779   * complete_walk - successful completion of path walk
780   * @nd:  pointer nameidata
781   *
782   * If we had been in RCU mode, drop out of it and legitimize nd->path.
783   * Revalidate the final result, unless we'd already done that during
784   * the path walk or the filesystem doesn't ask for it.  Return 0 on
785   * success, -error on failure.  In case of failure caller does not
786   * need to drop nd->path.
787   */
788  static int complete_walk(struct nameidata *nd)
789  {
790  	struct dentry *dentry = nd->path.dentry;
791  	int status;
792  
793  	if (nd->flags & LOOKUP_RCU) {
794  		/*
795  		 * We don't want to zero nd->root for scoped-lookups or
796  		 * externally-managed nd->root.
797  		 */
798  		if (!(nd->flags & (LOOKUP_ROOT | LOOKUP_IS_SCOPED)))
799  			nd->root.mnt = NULL;
800  		nd->flags &= ~LOOKUP_CACHED;
801  		if (!try_to_unlazy(nd))
802  			return -ECHILD;
803  	}
804  
805  	if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
806  		/*
807  		 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
808  		 * ever step outside the root during lookup" and should already
809  		 * be guaranteed by the rest of namei, we want to avoid a namei
810  		 * BUG resulting in userspace being given a path that was not
811  		 * scoped within the root at some point during the lookup.
812  		 *
813  		 * So, do a final sanity-check to make sure that in the
814  		 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
815  		 * we won't silently return an fd completely outside of the
816  		 * requested root to userspace.
817  		 *
818  		 * Userspace could move the path outside the root after this
819  		 * check, but as discussed elsewhere this is not a concern (the
820  		 * resolved file was inside the root at some point).
821  		 */
822  		if (!path_is_under(&nd->path, &nd->root))
823  			return -EXDEV;
824  	}
825  
826  	if (likely(!(nd->flags & LOOKUP_JUMPED)))
827  		return 0;
828  
829  	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
830  		return 0;
831  
832  	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
833  	if (status > 0)
834  		return 0;
835  
836  	if (!status)
837  		status = -ESTALE;
838  
839  	return status;
840  }
841  
842  static int set_root(struct nameidata *nd)
843  {
844  	struct fs_struct *fs = current->fs;
845  
846  	/*
847  	 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
848  	 * still have to ensure it doesn't happen because it will cause a breakout
849  	 * from the dirfd.
850  	 */
851  	if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
852  		return -ENOTRECOVERABLE;
853  
854  	if (nd->flags & LOOKUP_RCU) {
855  		unsigned seq;
856  
857  		do {
858  			seq = read_seqcount_begin(&fs->seq);
859  			nd->root = fs->root;
860  			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
861  		} while (read_seqcount_retry(&fs->seq, seq));
862  	} else {
863  		get_fs_root(fs, &nd->root);
864  		nd->flags |= LOOKUP_ROOT_GRABBED;
865  	}
866  	return 0;
867  }
868  
869  static int nd_jump_root(struct nameidata *nd)
870  {
871  	if (unlikely(nd->flags & LOOKUP_BENEATH))
872  		return -EXDEV;
873  	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
874  		/* Absolute path arguments to path_init() are allowed. */
875  		if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
876  			return -EXDEV;
877  	}
878  	if (!nd->root.mnt) {
879  		int error = set_root(nd);
880  		if (error)
881  			return error;
882  	}
883  	if (nd->flags & LOOKUP_RCU) {
884  		struct dentry *d;
885  		nd->path = nd->root;
886  		d = nd->path.dentry;
887  		nd->inode = d->d_inode;
888  		nd->seq = nd->root_seq;
889  		if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
890  			return -ECHILD;
891  	} else {
892  		path_put(&nd->path);
893  		nd->path = nd->root;
894  		path_get(&nd->path);
895  		nd->inode = nd->path.dentry->d_inode;
896  	}
897  	nd->flags |= LOOKUP_JUMPED;
898  	return 0;
899  }
900  
901  /*
902   * Helper to directly jump to a known parsed path from ->get_link,
903   * caller must have taken a reference to path beforehand.
904   */
905  int nd_jump_link(struct path *path)
906  {
907  	int error = -ELOOP;
908  	struct nameidata *nd = current->nameidata;
909  
910  	if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
911  		goto err;
912  
913  	error = -EXDEV;
914  	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
915  		if (nd->path.mnt != path->mnt)
916  			goto err;
917  	}
918  	/* Not currently safe for scoped-lookups. */
919  	if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
920  		goto err;
921  
922  	path_put(&nd->path);
923  	nd->path = *path;
924  	nd->inode = nd->path.dentry->d_inode;
925  	nd->flags |= LOOKUP_JUMPED;
926  	return 0;
927  
928  err:
929  	path_put(path);
930  	return error;
931  }
932  
933  static inline void put_link(struct nameidata *nd)
934  {
935  	struct saved *last = nd->stack + --nd->depth;
936  	do_delayed_call(&last->done);
937  	if (!(nd->flags & LOOKUP_RCU))
938  		path_put(&last->link);
939  }
940  
941  int sysctl_protected_symlinks __read_mostly = 0;
942  int sysctl_protected_hardlinks __read_mostly = 0;
943  int sysctl_protected_fifos __read_mostly;
944  int sysctl_protected_regular __read_mostly;
945  
946  /**
947   * may_follow_link - Check symlink following for unsafe situations
948   * @nd: nameidata pathwalk data
949   *
950   * In the case of the sysctl_protected_symlinks sysctl being enabled,
951   * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
952   * in a sticky world-writable directory. This is to protect privileged
953   * processes from failing races against path names that may change out
954   * from under them by way of other users creating malicious symlinks.
955   * It will permit symlinks to be followed only when outside a sticky
956   * world-writable directory, or when the uid of the symlink and follower
957   * match, or when the directory owner matches the symlink's owner.
958   *
959   * Returns 0 if following the symlink is allowed, -ve on error.
960   */
961  static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
962  {
963  	if (!sysctl_protected_symlinks)
964  		return 0;
965  
966  	/* Allowed if owner and follower match. */
967  	if (uid_eq(current_cred()->fsuid, inode->i_uid))
968  		return 0;
969  
970  	/* Allowed if parent directory not sticky and world-writable. */
971  	if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
972  		return 0;
973  
974  	/* Allowed if parent directory and link owner match. */
975  	if (uid_valid(nd->dir_uid) && uid_eq(nd->dir_uid, inode->i_uid))
976  		return 0;
977  
978  	if (nd->flags & LOOKUP_RCU)
979  		return -ECHILD;
980  
981  	audit_inode(nd->name, nd->stack[0].link.dentry, 0);
982  	audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
983  	return -EACCES;
984  }
985  
986  /**
987   * safe_hardlink_source - Check for safe hardlink conditions
988   * @inode: the source inode to hardlink from
989   *
990   * Return false if at least one of the following conditions:
991   *    - inode is not a regular file
992   *    - inode is setuid
993   *    - inode is setgid and group-exec
994   *    - access failure for read and write
995   *
996   * Otherwise returns true.
997   */
998  static bool safe_hardlink_source(struct inode *inode)
999  {
1000  	umode_t mode = inode->i_mode;
1001  
1002  	/* Special files should not get pinned to the filesystem. */
1003  	if (!S_ISREG(mode))
1004  		return false;
1005  
1006  	/* Setuid files should not get pinned to the filesystem. */
1007  	if (mode & S_ISUID)
1008  		return false;
1009  
1010  	/* Executable setgid files should not get pinned to the filesystem. */
1011  	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1012  		return false;
1013  
1014  	/* Hardlinking to unreadable or unwritable sources is dangerous. */
1015  	if (inode_permission(inode, MAY_READ | MAY_WRITE))
1016  		return false;
1017  
1018  	return true;
1019  }
1020  
1021  /**
1022   * may_linkat - Check permissions for creating a hardlink
1023   * @link: the source to hardlink from
1024   *
1025   * Block hardlink when all of:
1026   *  - sysctl_protected_hardlinks enabled
1027   *  - fsuid does not match inode
1028   *  - hardlink source is unsafe (see safe_hardlink_source() above)
1029   *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
1030   *
1031   * Returns 0 if successful, -ve on error.
1032   */
1033  int may_linkat(struct path *link)
1034  {
1035  	struct inode *inode = link->dentry->d_inode;
1036  
1037  	/* Inode writeback is not safe when the uid or gid are invalid. */
1038  	if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
1039  		return -EOVERFLOW;
1040  
1041  	if (!sysctl_protected_hardlinks)
1042  		return 0;
1043  
1044  	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1045  	 * otherwise, it must be a safe source.
1046  	 */
1047  	if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
1048  		return 0;
1049  
1050  	audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1051  	return -EPERM;
1052  }
1053  
1054  /**
1055   * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1056   *			  should be allowed, or not, on files that already
1057   *			  exist.
1058   * @dir_mode: mode bits of directory
1059   * @dir_uid: owner of directory
1060   * @inode: the inode of the file to open
1061   *
1062   * Block an O_CREAT open of a FIFO (or a regular file) when:
1063   *   - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1064   *   - the file already exists
1065   *   - we are in a sticky directory
1066   *   - we don't own the file
1067   *   - the owner of the directory doesn't own the file
1068   *   - the directory is world writable
1069   * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1070   * the directory doesn't have to be world writable: being group writable will
1071   * be enough.
1072   *
1073   * Returns 0 if the open is allowed, -ve on error.
1074   */
1075  static int may_create_in_sticky(umode_t dir_mode, kuid_t dir_uid,
1076  				struct inode * const inode)
1077  {
1078  	if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1079  	    (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1080  	    likely(!(dir_mode & S_ISVTX)) ||
1081  	    uid_eq(inode->i_uid, dir_uid) ||
1082  	    uid_eq(current_fsuid(), inode->i_uid))
1083  		return 0;
1084  
1085  	if (likely(dir_mode & 0002) ||
1086  	    (dir_mode & 0020 &&
1087  	     ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1088  	      (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1089  		const char *operation = S_ISFIFO(inode->i_mode) ?
1090  					"sticky_create_fifo" :
1091  					"sticky_create_regular";
1092  		audit_log_path_denied(AUDIT_ANOM_CREAT, operation);
1093  		return -EACCES;
1094  	}
1095  	return 0;
1096  }
1097  
1098  /*
1099   * follow_up - Find the mountpoint of path's vfsmount
1100   *
1101   * Given a path, find the mountpoint of its source file system.
1102   * Replace @path with the path of the mountpoint in the parent mount.
1103   * Up is towards /.
1104   *
1105   * Return 1 if we went up a level and 0 if we were already at the
1106   * root.
1107   */
1108  int follow_up(struct path *path)
1109  {
1110  	struct mount *mnt = real_mount(path->mnt);
1111  	struct mount *parent;
1112  	struct dentry *mountpoint;
1113  
1114  	read_seqlock_excl(&mount_lock);
1115  	parent = mnt->mnt_parent;
1116  	if (parent == mnt) {
1117  		read_sequnlock_excl(&mount_lock);
1118  		return 0;
1119  	}
1120  	mntget(&parent->mnt);
1121  	mountpoint = dget(mnt->mnt_mountpoint);
1122  	read_sequnlock_excl(&mount_lock);
1123  	dput(path->dentry);
1124  	path->dentry = mountpoint;
1125  	mntput(path->mnt);
1126  	path->mnt = &parent->mnt;
1127  	return 1;
1128  }
1129  EXPORT_SYMBOL(follow_up);
1130  
1131  static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1132  				  struct path *path, unsigned *seqp)
1133  {
1134  	while (mnt_has_parent(m)) {
1135  		struct dentry *mountpoint = m->mnt_mountpoint;
1136  
1137  		m = m->mnt_parent;
1138  		if (unlikely(root->dentry == mountpoint &&
1139  			     root->mnt == &m->mnt))
1140  			break;
1141  		if (mountpoint != m->mnt.mnt_root) {
1142  			path->mnt = &m->mnt;
1143  			path->dentry = mountpoint;
1144  			*seqp = read_seqcount_begin(&mountpoint->d_seq);
1145  			return true;
1146  		}
1147  	}
1148  	return false;
1149  }
1150  
1151  static bool choose_mountpoint(struct mount *m, const struct path *root,
1152  			      struct path *path)
1153  {
1154  	bool found;
1155  
1156  	rcu_read_lock();
1157  	while (1) {
1158  		unsigned seq, mseq = read_seqbegin(&mount_lock);
1159  
1160  		found = choose_mountpoint_rcu(m, root, path, &seq);
1161  		if (unlikely(!found)) {
1162  			if (!read_seqretry(&mount_lock, mseq))
1163  				break;
1164  		} else {
1165  			if (likely(__legitimize_path(path, seq, mseq)))
1166  				break;
1167  			rcu_read_unlock();
1168  			path_put(path);
1169  			rcu_read_lock();
1170  		}
1171  	}
1172  	rcu_read_unlock();
1173  	return found;
1174  }
1175  
1176  /*
1177   * Perform an automount
1178   * - return -EISDIR to tell follow_managed() to stop and return the path we
1179   *   were called with.
1180   */
1181  static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1182  {
1183  	struct dentry *dentry = path->dentry;
1184  
1185  	/* We don't want to mount if someone's just doing a stat -
1186  	 * unless they're stat'ing a directory and appended a '/' to
1187  	 * the name.
1188  	 *
1189  	 * We do, however, want to mount if someone wants to open or
1190  	 * create a file of any type under the mountpoint, wants to
1191  	 * traverse through the mountpoint or wants to open the
1192  	 * mounted directory.  Also, autofs may mark negative dentries
1193  	 * as being automount points.  These will need the attentions
1194  	 * of the daemon to instantiate them before they can be used.
1195  	 */
1196  	if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1197  			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1198  	    dentry->d_inode)
1199  		return -EISDIR;
1200  
1201  	if (count && (*count)++ >= MAXSYMLINKS)
1202  		return -ELOOP;
1203  
1204  	return finish_automount(dentry->d_op->d_automount(path), path);
1205  }
1206  
1207  /*
1208   * mount traversal - out-of-line part.  One note on ->d_flags accesses -
1209   * dentries are pinned but not locked here, so negative dentry can go
1210   * positive right under us.  Use of smp_load_acquire() provides a barrier
1211   * sufficient for ->d_inode and ->d_flags consistency.
1212   */
1213  static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1214  			     int *count, unsigned lookup_flags)
1215  {
1216  	struct vfsmount *mnt = path->mnt;
1217  	bool need_mntput = false;
1218  	int ret = 0;
1219  
1220  	while (flags & DCACHE_MANAGED_DENTRY) {
1221  		/* Allow the filesystem to manage the transit without i_mutex
1222  		 * being held. */
1223  		if (flags & DCACHE_MANAGE_TRANSIT) {
1224  			ret = path->dentry->d_op->d_manage(path, false);
1225  			flags = smp_load_acquire(&path->dentry->d_flags);
1226  			if (ret < 0)
1227  				break;
1228  		}
1229  
1230  		if (flags & DCACHE_MOUNTED) {	// something's mounted on it..
1231  			struct vfsmount *mounted = lookup_mnt(path);
1232  			if (mounted) {		// ... in our namespace
1233  				dput(path->dentry);
1234  				if (need_mntput)
1235  					mntput(path->mnt);
1236  				path->mnt = mounted;
1237  				path->dentry = dget(mounted->mnt_root);
1238  				// here we know it's positive
1239  				flags = path->dentry->d_flags;
1240  				need_mntput = true;
1241  				continue;
1242  			}
1243  		}
1244  
1245  		if (!(flags & DCACHE_NEED_AUTOMOUNT))
1246  			break;
1247  
1248  		// uncovered automount point
1249  		ret = follow_automount(path, count, lookup_flags);
1250  		flags = smp_load_acquire(&path->dentry->d_flags);
1251  		if (ret < 0)
1252  			break;
1253  	}
1254  
1255  	if (ret == -EISDIR)
1256  		ret = 0;
1257  	// possible if you race with several mount --move
1258  	if (need_mntput && path->mnt == mnt)
1259  		mntput(path->mnt);
1260  	if (!ret && unlikely(d_flags_negative(flags)))
1261  		ret = -ENOENT;
1262  	*jumped = need_mntput;
1263  	return ret;
1264  }
1265  
1266  static inline int traverse_mounts(struct path *path, bool *jumped,
1267  				  int *count, unsigned lookup_flags)
1268  {
1269  	unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1270  
1271  	/* fastpath */
1272  	if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1273  		*jumped = false;
1274  		if (unlikely(d_flags_negative(flags)))
1275  			return -ENOENT;
1276  		return 0;
1277  	}
1278  	return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1279  }
1280  
1281  int follow_down_one(struct path *path)
1282  {
1283  	struct vfsmount *mounted;
1284  
1285  	mounted = lookup_mnt(path);
1286  	if (mounted) {
1287  		dput(path->dentry);
1288  		mntput(path->mnt);
1289  		path->mnt = mounted;
1290  		path->dentry = dget(mounted->mnt_root);
1291  		return 1;
1292  	}
1293  	return 0;
1294  }
1295  EXPORT_SYMBOL(follow_down_one);
1296  
1297  /*
1298   * Follow down to the covering mount currently visible to userspace.  At each
1299   * point, the filesystem owning that dentry may be queried as to whether the
1300   * caller is permitted to proceed or not.
1301   */
1302  int follow_down(struct path *path)
1303  {
1304  	struct vfsmount *mnt = path->mnt;
1305  	bool jumped;
1306  	int ret = traverse_mounts(path, &jumped, NULL, 0);
1307  
1308  	if (path->mnt != mnt)
1309  		mntput(mnt);
1310  	return ret;
1311  }
1312  EXPORT_SYMBOL(follow_down);
1313  
1314  /*
1315   * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1316   * we meet a managed dentry that would need blocking.
1317   */
1318  static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1319  			       struct inode **inode, unsigned *seqp)
1320  {
1321  	struct dentry *dentry = path->dentry;
1322  	unsigned int flags = dentry->d_flags;
1323  
1324  	if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1325  		return true;
1326  
1327  	if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1328  		return false;
1329  
1330  	for (;;) {
1331  		/*
1332  		 * Don't forget we might have a non-mountpoint managed dentry
1333  		 * that wants to block transit.
1334  		 */
1335  		if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1336  			int res = dentry->d_op->d_manage(path, true);
1337  			if (res)
1338  				return res == -EISDIR;
1339  			flags = dentry->d_flags;
1340  		}
1341  
1342  		if (flags & DCACHE_MOUNTED) {
1343  			struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1344  			if (mounted) {
1345  				path->mnt = &mounted->mnt;
1346  				dentry = path->dentry = mounted->mnt.mnt_root;
1347  				nd->flags |= LOOKUP_JUMPED;
1348  				*seqp = read_seqcount_begin(&dentry->d_seq);
1349  				*inode = dentry->d_inode;
1350  				/*
1351  				 * We don't need to re-check ->d_seq after this
1352  				 * ->d_inode read - there will be an RCU delay
1353  				 * between mount hash removal and ->mnt_root
1354  				 * becoming unpinned.
1355  				 */
1356  				flags = dentry->d_flags;
1357  				continue;
1358  			}
1359  			if (read_seqretry(&mount_lock, nd->m_seq))
1360  				return false;
1361  		}
1362  		return !(flags & DCACHE_NEED_AUTOMOUNT);
1363  	}
1364  }
1365  
1366  static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1367  			  struct path *path, struct inode **inode,
1368  			  unsigned int *seqp)
1369  {
1370  	bool jumped;
1371  	int ret;
1372  
1373  	path->mnt = nd->path.mnt;
1374  	path->dentry = dentry;
1375  	if (nd->flags & LOOKUP_RCU) {
1376  		unsigned int seq = *seqp;
1377  		if (unlikely(!*inode))
1378  			return -ENOENT;
1379  		if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1380  			return 0;
1381  		if (!try_to_unlazy_next(nd, dentry, seq))
1382  			return -ECHILD;
1383  		// *path might've been clobbered by __follow_mount_rcu()
1384  		path->mnt = nd->path.mnt;
1385  		path->dentry = dentry;
1386  	}
1387  	ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1388  	if (jumped) {
1389  		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1390  			ret = -EXDEV;
1391  		else
1392  			nd->flags |= LOOKUP_JUMPED;
1393  	}
1394  	if (unlikely(ret)) {
1395  		dput(path->dentry);
1396  		if (path->mnt != nd->path.mnt)
1397  			mntput(path->mnt);
1398  	} else {
1399  		*inode = d_backing_inode(path->dentry);
1400  		*seqp = 0; /* out of RCU mode, so the value doesn't matter */
1401  	}
1402  	return ret;
1403  }
1404  
1405  /*
1406   * This looks up the name in dcache and possibly revalidates the found dentry.
1407   * NULL is returned if the dentry does not exist in the cache.
1408   */
1409  static struct dentry *lookup_dcache(const struct qstr *name,
1410  				    struct dentry *dir,
1411  				    unsigned int flags)
1412  {
1413  	struct dentry *dentry = d_lookup(dir, name);
1414  	if (dentry) {
1415  		int error = d_revalidate(dentry, flags);
1416  		if (unlikely(error <= 0)) {
1417  			if (!error)
1418  				d_invalidate(dentry);
1419  			dput(dentry);
1420  			return ERR_PTR(error);
1421  		}
1422  	}
1423  	return dentry;
1424  }
1425  
1426  /*
1427   * Parent directory has inode locked exclusive.  This is one
1428   * and only case when ->lookup() gets called on non in-lookup
1429   * dentries - as the matter of fact, this only gets called
1430   * when directory is guaranteed to have no in-lookup children
1431   * at all.
1432   */
1433  static struct dentry *__lookup_hash(const struct qstr *name,
1434  		struct dentry *base, unsigned int flags)
1435  {
1436  	struct dentry *dentry = lookup_dcache(name, base, flags);
1437  	struct dentry *old;
1438  	struct inode *dir = base->d_inode;
1439  
1440  	if (dentry)
1441  		return dentry;
1442  
1443  	/* Don't create child dentry for a dead directory. */
1444  	if (unlikely(IS_DEADDIR(dir)))
1445  		return ERR_PTR(-ENOENT);
1446  
1447  	dentry = d_alloc(base, name);
1448  	if (unlikely(!dentry))
1449  		return ERR_PTR(-ENOMEM);
1450  
1451  	old = dir->i_op->lookup(dir, dentry, flags);
1452  	if (unlikely(old)) {
1453  		dput(dentry);
1454  		dentry = old;
1455  	}
1456  	return dentry;
1457  }
1458  
1459  static struct dentry *lookup_fast(struct nameidata *nd,
1460  				  struct inode **inode,
1461  			          unsigned *seqp)
1462  {
1463  	struct dentry *dentry, *parent = nd->path.dentry;
1464  	int status = 1;
1465  
1466  	/*
1467  	 * Rename seqlock is not required here because in the off chance
1468  	 * of a false negative due to a concurrent rename, the caller is
1469  	 * going to fall back to non-racy lookup.
1470  	 */
1471  	if (nd->flags & LOOKUP_RCU) {
1472  		unsigned seq;
1473  		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1474  		if (unlikely(!dentry)) {
1475  			if (!try_to_unlazy(nd))
1476  				return ERR_PTR(-ECHILD);
1477  			return NULL;
1478  		}
1479  
1480  		/*
1481  		 * This sequence count validates that the inode matches
1482  		 * the dentry name information from lookup.
1483  		 */
1484  		*inode = d_backing_inode(dentry);
1485  		if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1486  			return ERR_PTR(-ECHILD);
1487  
1488  		/*
1489  		 * This sequence count validates that the parent had no
1490  		 * changes while we did the lookup of the dentry above.
1491  		 *
1492  		 * The memory barrier in read_seqcount_begin of child is
1493  		 *  enough, we can use __read_seqcount_retry here.
1494  		 */
1495  		if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1496  			return ERR_PTR(-ECHILD);
1497  
1498  		*seqp = seq;
1499  		status = d_revalidate(dentry, nd->flags);
1500  		if (likely(status > 0))
1501  			return dentry;
1502  		if (!try_to_unlazy_next(nd, dentry, seq))
1503  			return ERR_PTR(-ECHILD);
1504  		if (status == -ECHILD)
1505  			/* we'd been told to redo it in non-rcu mode */
1506  			status = d_revalidate(dentry, nd->flags);
1507  	} else {
1508  		dentry = __d_lookup(parent, &nd->last);
1509  		if (unlikely(!dentry))
1510  			return NULL;
1511  		status = d_revalidate(dentry, nd->flags);
1512  	}
1513  	if (unlikely(status <= 0)) {
1514  		if (!status)
1515  			d_invalidate(dentry);
1516  		dput(dentry);
1517  		return ERR_PTR(status);
1518  	}
1519  	return dentry;
1520  }
1521  
1522  /* Fast lookup failed, do it the slow way */
1523  static struct dentry *__lookup_slow(const struct qstr *name,
1524  				    struct dentry *dir,
1525  				    unsigned int flags)
1526  {
1527  	struct dentry *dentry, *old;
1528  	struct inode *inode = dir->d_inode;
1529  	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1530  
1531  	/* Don't go there if it's already dead */
1532  	if (unlikely(IS_DEADDIR(inode)))
1533  		return ERR_PTR(-ENOENT);
1534  again:
1535  	dentry = d_alloc_parallel(dir, name, &wq);
1536  	if (IS_ERR(dentry))
1537  		return dentry;
1538  	if (unlikely(!d_in_lookup(dentry))) {
1539  		int error = d_revalidate(dentry, flags);
1540  		if (unlikely(error <= 0)) {
1541  			if (!error) {
1542  				d_invalidate(dentry);
1543  				dput(dentry);
1544  				goto again;
1545  			}
1546  			dput(dentry);
1547  			dentry = ERR_PTR(error);
1548  		}
1549  	} else {
1550  		old = inode->i_op->lookup(inode, dentry, flags);
1551  		d_lookup_done(dentry);
1552  		if (unlikely(old)) {
1553  			dput(dentry);
1554  			dentry = old;
1555  		}
1556  	}
1557  	return dentry;
1558  }
1559  
1560  static struct dentry *lookup_slow(const struct qstr *name,
1561  				  struct dentry *dir,
1562  				  unsigned int flags)
1563  {
1564  	struct inode *inode = dir->d_inode;
1565  	struct dentry *res;
1566  	inode_lock_shared(inode);
1567  	res = __lookup_slow(name, dir, flags);
1568  	inode_unlock_shared(inode);
1569  	return res;
1570  }
1571  
1572  static inline int may_lookup(struct nameidata *nd)
1573  {
1574  	if (nd->flags & LOOKUP_RCU) {
1575  		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1576  		if (err != -ECHILD || !try_to_unlazy(nd))
1577  			return err;
1578  	}
1579  	return inode_permission(nd->inode, MAY_EXEC);
1580  }
1581  
1582  static int reserve_stack(struct nameidata *nd, struct path *link, unsigned seq)
1583  {
1584  	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1585  		return -ELOOP;
1586  
1587  	if (likely(nd->depth != EMBEDDED_LEVELS))
1588  		return 0;
1589  	if (likely(nd->stack != nd->internal))
1590  		return 0;
1591  	if (likely(nd_alloc_stack(nd)))
1592  		return 0;
1593  
1594  	if (nd->flags & LOOKUP_RCU) {
1595  		// we need to grab link before we do unlazy.  And we can't skip
1596  		// unlazy even if we fail to grab the link - cleanup needs it
1597  		bool grabbed_link = legitimize_path(nd, link, seq);
1598  
1599  		if (!try_to_unlazy(nd) != 0 || !grabbed_link)
1600  			return -ECHILD;
1601  
1602  		if (nd_alloc_stack(nd))
1603  			return 0;
1604  	}
1605  	return -ENOMEM;
1606  }
1607  
1608  enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1609  
1610  static const char *pick_link(struct nameidata *nd, struct path *link,
1611  		     struct inode *inode, unsigned seq, int flags)
1612  {
1613  	struct saved *last;
1614  	const char *res;
1615  	int error = reserve_stack(nd, link, seq);
1616  
1617  	if (unlikely(error)) {
1618  		if (!(nd->flags & LOOKUP_RCU))
1619  			path_put(link);
1620  		return ERR_PTR(error);
1621  	}
1622  	last = nd->stack + nd->depth++;
1623  	last->link = *link;
1624  	clear_delayed_call(&last->done);
1625  	last->seq = seq;
1626  
1627  	if (flags & WALK_TRAILING) {
1628  		error = may_follow_link(nd, inode);
1629  		if (unlikely(error))
1630  			return ERR_PTR(error);
1631  	}
1632  
1633  	if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1634  			unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1635  		return ERR_PTR(-ELOOP);
1636  
1637  	if (!(nd->flags & LOOKUP_RCU)) {
1638  		touch_atime(&last->link);
1639  		cond_resched();
1640  	} else if (atime_needs_update(&last->link, inode)) {
1641  		if (!try_to_unlazy(nd))
1642  			return ERR_PTR(-ECHILD);
1643  		touch_atime(&last->link);
1644  	}
1645  
1646  	error = security_inode_follow_link(link->dentry, inode,
1647  					   nd->flags & LOOKUP_RCU);
1648  	if (unlikely(error))
1649  		return ERR_PTR(error);
1650  
1651  	res = READ_ONCE(inode->i_link);
1652  	if (!res) {
1653  		const char * (*get)(struct dentry *, struct inode *,
1654  				struct delayed_call *);
1655  		get = inode->i_op->get_link;
1656  		if (nd->flags & LOOKUP_RCU) {
1657  			res = get(NULL, inode, &last->done);
1658  			if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd))
1659  				res = get(link->dentry, inode, &last->done);
1660  		} else {
1661  			res = get(link->dentry, inode, &last->done);
1662  		}
1663  		if (!res)
1664  			goto all_done;
1665  		if (IS_ERR(res))
1666  			return res;
1667  	}
1668  	if (*res == '/') {
1669  		error = nd_jump_root(nd);
1670  		if (unlikely(error))
1671  			return ERR_PTR(error);
1672  		while (unlikely(*++res == '/'))
1673  			;
1674  	}
1675  	if (*res)
1676  		return res;
1677  all_done: // pure jump
1678  	put_link(nd);
1679  	return NULL;
1680  }
1681  
1682  /*
1683   * Do we need to follow links? We _really_ want to be able
1684   * to do this check without having to look at inode->i_op,
1685   * so we keep a cache of "no, this doesn't need follow_link"
1686   * for the common case.
1687   */
1688  static const char *step_into(struct nameidata *nd, int flags,
1689  		     struct dentry *dentry, struct inode *inode, unsigned seq)
1690  {
1691  	struct path path;
1692  	int err = handle_mounts(nd, dentry, &path, &inode, &seq);
1693  
1694  	if (err < 0)
1695  		return ERR_PTR(err);
1696  	if (likely(!d_is_symlink(path.dentry)) ||
1697  	   ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1698  	   (flags & WALK_NOFOLLOW)) {
1699  		/* not a symlink or should not follow */
1700  		if (!(nd->flags & LOOKUP_RCU)) {
1701  			dput(nd->path.dentry);
1702  			if (nd->path.mnt != path.mnt)
1703  				mntput(nd->path.mnt);
1704  		}
1705  		nd->path = path;
1706  		nd->inode = inode;
1707  		nd->seq = seq;
1708  		return NULL;
1709  	}
1710  	if (nd->flags & LOOKUP_RCU) {
1711  		/* make sure that d_is_symlink above matches inode */
1712  		if (read_seqcount_retry(&path.dentry->d_seq, seq))
1713  			return ERR_PTR(-ECHILD);
1714  	} else {
1715  		if (path.mnt == nd->path.mnt)
1716  			mntget(path.mnt);
1717  	}
1718  	return pick_link(nd, &path, inode, seq, flags);
1719  }
1720  
1721  static struct dentry *follow_dotdot_rcu(struct nameidata *nd,
1722  					struct inode **inodep,
1723  					unsigned *seqp)
1724  {
1725  	struct dentry *parent, *old;
1726  
1727  	if (path_equal(&nd->path, &nd->root))
1728  		goto in_root;
1729  	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1730  		struct path path;
1731  		unsigned seq;
1732  		if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
1733  					   &nd->root, &path, &seq))
1734  			goto in_root;
1735  		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1736  			return ERR_PTR(-ECHILD);
1737  		nd->path = path;
1738  		nd->inode = path.dentry->d_inode;
1739  		nd->seq = seq;
1740  		if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1741  			return ERR_PTR(-ECHILD);
1742  		/* we know that mountpoint was pinned */
1743  	}
1744  	old = nd->path.dentry;
1745  	parent = old->d_parent;
1746  	*inodep = parent->d_inode;
1747  	*seqp = read_seqcount_begin(&parent->d_seq);
1748  	if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1749  		return ERR_PTR(-ECHILD);
1750  	if (unlikely(!path_connected(nd->path.mnt, parent)))
1751  		return ERR_PTR(-ECHILD);
1752  	return parent;
1753  in_root:
1754  	if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1755  		return ERR_PTR(-ECHILD);
1756  	if (unlikely(nd->flags & LOOKUP_BENEATH))
1757  		return ERR_PTR(-ECHILD);
1758  	return NULL;
1759  }
1760  
1761  static struct dentry *follow_dotdot(struct nameidata *nd,
1762  				 struct inode **inodep,
1763  				 unsigned *seqp)
1764  {
1765  	struct dentry *parent;
1766  
1767  	if (path_equal(&nd->path, &nd->root))
1768  		goto in_root;
1769  	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1770  		struct path path;
1771  
1772  		if (!choose_mountpoint(real_mount(nd->path.mnt),
1773  				       &nd->root, &path))
1774  			goto in_root;
1775  		path_put(&nd->path);
1776  		nd->path = path;
1777  		nd->inode = path.dentry->d_inode;
1778  		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1779  			return ERR_PTR(-EXDEV);
1780  	}
1781  	/* rare case of legitimate dget_parent()... */
1782  	parent = dget_parent(nd->path.dentry);
1783  	if (unlikely(!path_connected(nd->path.mnt, parent))) {
1784  		dput(parent);
1785  		return ERR_PTR(-ENOENT);
1786  	}
1787  	*seqp = 0;
1788  	*inodep = parent->d_inode;
1789  	return parent;
1790  
1791  in_root:
1792  	if (unlikely(nd->flags & LOOKUP_BENEATH))
1793  		return ERR_PTR(-EXDEV);
1794  	dget(nd->path.dentry);
1795  	return NULL;
1796  }
1797  
1798  static const char *handle_dots(struct nameidata *nd, int type)
1799  {
1800  	if (type == LAST_DOTDOT) {
1801  		const char *error = NULL;
1802  		struct dentry *parent;
1803  		struct inode *inode;
1804  		unsigned seq;
1805  
1806  		if (!nd->root.mnt) {
1807  			error = ERR_PTR(set_root(nd));
1808  			if (error)
1809  				return error;
1810  		}
1811  		if (nd->flags & LOOKUP_RCU)
1812  			parent = follow_dotdot_rcu(nd, &inode, &seq);
1813  		else
1814  			parent = follow_dotdot(nd, &inode, &seq);
1815  		if (IS_ERR(parent))
1816  			return ERR_CAST(parent);
1817  		if (unlikely(!parent))
1818  			error = step_into(nd, WALK_NOFOLLOW,
1819  					 nd->path.dentry, nd->inode, nd->seq);
1820  		else
1821  			error = step_into(nd, WALK_NOFOLLOW,
1822  					 parent, inode, seq);
1823  		if (unlikely(error))
1824  			return error;
1825  
1826  		if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
1827  			/*
1828  			 * If there was a racing rename or mount along our
1829  			 * path, then we can't be sure that ".." hasn't jumped
1830  			 * above nd->root (and so userspace should retry or use
1831  			 * some fallback).
1832  			 */
1833  			smp_rmb();
1834  			if (unlikely(__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq)))
1835  				return ERR_PTR(-EAGAIN);
1836  			if (unlikely(__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq)))
1837  				return ERR_PTR(-EAGAIN);
1838  		}
1839  	}
1840  	return NULL;
1841  }
1842  
1843  static const char *walk_component(struct nameidata *nd, int flags)
1844  {
1845  	struct dentry *dentry;
1846  	struct inode *inode;
1847  	unsigned seq;
1848  	/*
1849  	 * "." and ".." are special - ".." especially so because it has
1850  	 * to be able to know about the current root directory and
1851  	 * parent relationships.
1852  	 */
1853  	if (unlikely(nd->last_type != LAST_NORM)) {
1854  		if (!(flags & WALK_MORE) && nd->depth)
1855  			put_link(nd);
1856  		return handle_dots(nd, nd->last_type);
1857  	}
1858  	dentry = lookup_fast(nd, &inode, &seq);
1859  	if (IS_ERR(dentry))
1860  		return ERR_CAST(dentry);
1861  	if (unlikely(!dentry)) {
1862  		dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
1863  		if (IS_ERR(dentry))
1864  			return ERR_CAST(dentry);
1865  	}
1866  	if (!(flags & WALK_MORE) && nd->depth)
1867  		put_link(nd);
1868  	return step_into(nd, flags, dentry, inode, seq);
1869  }
1870  
1871  /*
1872   * We can do the critical dentry name comparison and hashing
1873   * operations one word at a time, but we are limited to:
1874   *
1875   * - Architectures with fast unaligned word accesses. We could
1876   *   do a "get_unaligned()" if this helps and is sufficiently
1877   *   fast.
1878   *
1879   * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1880   *   do not trap on the (extremely unlikely) case of a page
1881   *   crossing operation.
1882   *
1883   * - Furthermore, we need an efficient 64-bit compile for the
1884   *   64-bit case in order to generate the "number of bytes in
1885   *   the final mask". Again, that could be replaced with a
1886   *   efficient population count instruction or similar.
1887   */
1888  #ifdef CONFIG_DCACHE_WORD_ACCESS
1889  
1890  #include <asm/word-at-a-time.h>
1891  
1892  #ifdef HASH_MIX
1893  
1894  /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1895  
1896  #elif defined(CONFIG_64BIT)
1897  /*
1898   * Register pressure in the mixing function is an issue, particularly
1899   * on 32-bit x86, but almost any function requires one state value and
1900   * one temporary.  Instead, use a function designed for two state values
1901   * and no temporaries.
1902   *
1903   * This function cannot create a collision in only two iterations, so
1904   * we have two iterations to achieve avalanche.  In those two iterations,
1905   * we have six layers of mixing, which is enough to spread one bit's
1906   * influence out to 2^6 = 64 state bits.
1907   *
1908   * Rotate constants are scored by considering either 64 one-bit input
1909   * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1910   * probability of that delta causing a change to each of the 128 output
1911   * bits, using a sample of random initial states.
1912   *
1913   * The Shannon entropy of the computed probabilities is then summed
1914   * to produce a score.  Ideally, any input change has a 50% chance of
1915   * toggling any given output bit.
1916   *
1917   * Mixing scores (in bits) for (12,45):
1918   * Input delta: 1-bit      2-bit
1919   * 1 round:     713.3    42542.6
1920   * 2 rounds:   2753.7   140389.8
1921   * 3 rounds:   5954.1   233458.2
1922   * 4 rounds:   7862.6   256672.2
1923   * Perfect:    8192     258048
1924   *            (64*128) (64*63/2 * 128)
1925   */
1926  #define HASH_MIX(x, y, a)	\
1927  	(	x ^= (a),	\
1928  	y ^= x,	x = rol64(x,12),\
1929  	x += y,	y = rol64(y,45),\
1930  	y *= 9			)
1931  
1932  /*
1933   * Fold two longs into one 32-bit hash value.  This must be fast, but
1934   * latency isn't quite as critical, as there is a fair bit of additional
1935   * work done before the hash value is used.
1936   */
1937  static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1938  {
1939  	y ^= x * GOLDEN_RATIO_64;
1940  	y *= GOLDEN_RATIO_64;
1941  	return y >> 32;
1942  }
1943  
1944  #else	/* 32-bit case */
1945  
1946  /*
1947   * Mixing scores (in bits) for (7,20):
1948   * Input delta: 1-bit      2-bit
1949   * 1 round:     330.3     9201.6
1950   * 2 rounds:   1246.4    25475.4
1951   * 3 rounds:   1907.1    31295.1
1952   * 4 rounds:   2042.3    31718.6
1953   * Perfect:    2048      31744
1954   *            (32*64)   (32*31/2 * 64)
1955   */
1956  #define HASH_MIX(x, y, a)	\
1957  	(	x ^= (a),	\
1958  	y ^= x,	x = rol32(x, 7),\
1959  	x += y,	y = rol32(y,20),\
1960  	y *= 9			)
1961  
1962  static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1963  {
1964  	/* Use arch-optimized multiply if one exists */
1965  	return __hash_32(y ^ __hash_32(x));
1966  }
1967  
1968  #endif
1969  
1970  /*
1971   * Return the hash of a string of known length.  This is carfully
1972   * designed to match hash_name(), which is the more critical function.
1973   * In particular, we must end by hashing a final word containing 0..7
1974   * payload bytes, to match the way that hash_name() iterates until it
1975   * finds the delimiter after the name.
1976   */
1977  unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1978  {
1979  	unsigned long a, x = 0, y = (unsigned long)salt;
1980  
1981  	for (;;) {
1982  		if (!len)
1983  			goto done;
1984  		a = load_unaligned_zeropad(name);
1985  		if (len < sizeof(unsigned long))
1986  			break;
1987  		HASH_MIX(x, y, a);
1988  		name += sizeof(unsigned long);
1989  		len -= sizeof(unsigned long);
1990  	}
1991  	x ^= a & bytemask_from_count(len);
1992  done:
1993  	return fold_hash(x, y);
1994  }
1995  EXPORT_SYMBOL(full_name_hash);
1996  
1997  /* Return the "hash_len" (hash and length) of a null-terminated string */
1998  u64 hashlen_string(const void *salt, const char *name)
1999  {
2000  	unsigned long a = 0, x = 0, y = (unsigned long)salt;
2001  	unsigned long adata, mask, len;
2002  	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2003  
2004  	len = 0;
2005  	goto inside;
2006  
2007  	do {
2008  		HASH_MIX(x, y, a);
2009  		len += sizeof(unsigned long);
2010  inside:
2011  		a = load_unaligned_zeropad(name+len);
2012  	} while (!has_zero(a, &adata, &constants));
2013  
2014  	adata = prep_zero_mask(a, adata, &constants);
2015  	mask = create_zero_mask(adata);
2016  	x ^= a & zero_bytemask(mask);
2017  
2018  	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2019  }
2020  EXPORT_SYMBOL(hashlen_string);
2021  
2022  /*
2023   * Calculate the length and hash of the path component, and
2024   * return the "hash_len" as the result.
2025   */
2026  static inline u64 hash_name(const void *salt, const char *name)
2027  {
2028  	unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
2029  	unsigned long adata, bdata, mask, len;
2030  	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2031  
2032  	len = 0;
2033  	goto inside;
2034  
2035  	do {
2036  		HASH_MIX(x, y, a);
2037  		len += sizeof(unsigned long);
2038  inside:
2039  		a = load_unaligned_zeropad(name+len);
2040  		b = a ^ REPEAT_BYTE('/');
2041  	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2042  
2043  	adata = prep_zero_mask(a, adata, &constants);
2044  	bdata = prep_zero_mask(b, bdata, &constants);
2045  	mask = create_zero_mask(adata | bdata);
2046  	x ^= a & zero_bytemask(mask);
2047  
2048  	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2049  }
2050  
2051  #else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2052  
2053  /* Return the hash of a string of known length */
2054  unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2055  {
2056  	unsigned long hash = init_name_hash(salt);
2057  	while (len--)
2058  		hash = partial_name_hash((unsigned char)*name++, hash);
2059  	return end_name_hash(hash);
2060  }
2061  EXPORT_SYMBOL(full_name_hash);
2062  
2063  /* Return the "hash_len" (hash and length) of a null-terminated string */
2064  u64 hashlen_string(const void *salt, const char *name)
2065  {
2066  	unsigned long hash = init_name_hash(salt);
2067  	unsigned long len = 0, c;
2068  
2069  	c = (unsigned char)*name;
2070  	while (c) {
2071  		len++;
2072  		hash = partial_name_hash(c, hash);
2073  		c = (unsigned char)name[len];
2074  	}
2075  	return hashlen_create(end_name_hash(hash), len);
2076  }
2077  EXPORT_SYMBOL(hashlen_string);
2078  
2079  /*
2080   * We know there's a real path component here of at least
2081   * one character.
2082   */
2083  static inline u64 hash_name(const void *salt, const char *name)
2084  {
2085  	unsigned long hash = init_name_hash(salt);
2086  	unsigned long len = 0, c;
2087  
2088  	c = (unsigned char)*name;
2089  	do {
2090  		len++;
2091  		hash = partial_name_hash(c, hash);
2092  		c = (unsigned char)name[len];
2093  	} while (c && c != '/');
2094  	return hashlen_create(end_name_hash(hash), len);
2095  }
2096  
2097  #endif
2098  
2099  /*
2100   * Name resolution.
2101   * This is the basic name resolution function, turning a pathname into
2102   * the final dentry. We expect 'base' to be positive and a directory.
2103   *
2104   * Returns 0 and nd will have valid dentry and mnt on success.
2105   * Returns error and drops reference to input namei data on failure.
2106   */
2107  static int link_path_walk(const char *name, struct nameidata *nd)
2108  {
2109  	int depth = 0; // depth <= nd->depth
2110  	int err;
2111  
2112  	nd->last_type = LAST_ROOT;
2113  	nd->flags |= LOOKUP_PARENT;
2114  	if (IS_ERR(name))
2115  		return PTR_ERR(name);
2116  	while (*name=='/')
2117  		name++;
2118  	if (!*name) {
2119  		nd->dir_mode = 0; // short-circuit the 'hardening' idiocy
2120  		return 0;
2121  	}
2122  
2123  	/* At this point we know we have a real path component. */
2124  	for(;;) {
2125  		const char *link;
2126  		u64 hash_len;
2127  		int type;
2128  
2129  		err = may_lookup(nd);
2130  		if (err)
2131  			return err;
2132  
2133  		hash_len = hash_name(nd->path.dentry, name);
2134  
2135  		type = LAST_NORM;
2136  		if (name[0] == '.') switch (hashlen_len(hash_len)) {
2137  			case 2:
2138  				if (name[1] == '.') {
2139  					type = LAST_DOTDOT;
2140  					nd->flags |= LOOKUP_JUMPED;
2141  				}
2142  				break;
2143  			case 1:
2144  				type = LAST_DOT;
2145  		}
2146  		if (likely(type == LAST_NORM)) {
2147  			struct dentry *parent = nd->path.dentry;
2148  			nd->flags &= ~LOOKUP_JUMPED;
2149  			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2150  				struct qstr this = { { .hash_len = hash_len }, .name = name };
2151  				err = parent->d_op->d_hash(parent, &this);
2152  				if (err < 0)
2153  					return err;
2154  				hash_len = this.hash_len;
2155  				name = this.name;
2156  			}
2157  		}
2158  
2159  		nd->last.hash_len = hash_len;
2160  		nd->last.name = name;
2161  		nd->last_type = type;
2162  
2163  		name += hashlen_len(hash_len);
2164  		if (!*name)
2165  			goto OK;
2166  		/*
2167  		 * If it wasn't NUL, we know it was '/'. Skip that
2168  		 * slash, and continue until no more slashes.
2169  		 */
2170  		do {
2171  			name++;
2172  		} while (unlikely(*name == '/'));
2173  		if (unlikely(!*name)) {
2174  OK:
2175  			/* pathname or trailing symlink, done */
2176  			if (!depth) {
2177  				nd->dir_uid = nd->inode->i_uid;
2178  				nd->dir_mode = nd->inode->i_mode;
2179  				nd->flags &= ~LOOKUP_PARENT;
2180  				return 0;
2181  			}
2182  			/* last component of nested symlink */
2183  			name = nd->stack[--depth].name;
2184  			link = walk_component(nd, 0);
2185  		} else {
2186  			/* not the last component */
2187  			link = walk_component(nd, WALK_MORE);
2188  		}
2189  		if (unlikely(link)) {
2190  			if (IS_ERR(link))
2191  				return PTR_ERR(link);
2192  			/* a symlink to follow */
2193  			nd->stack[depth++].name = name;
2194  			name = link;
2195  			continue;
2196  		}
2197  		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2198  			if (nd->flags & LOOKUP_RCU) {
2199  				if (!try_to_unlazy(nd))
2200  					return -ECHILD;
2201  			}
2202  			return -ENOTDIR;
2203  		}
2204  	}
2205  }
2206  
2207  /* must be paired with terminate_walk() */
2208  static const char *path_init(struct nameidata *nd, unsigned flags)
2209  {
2210  	int error;
2211  	const char *s = nd->name->name;
2212  
2213  	/* LOOKUP_CACHED requires RCU, ask caller to retry */
2214  	if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED)
2215  		return ERR_PTR(-EAGAIN);
2216  
2217  	if (!*s)
2218  		flags &= ~LOOKUP_RCU;
2219  	if (flags & LOOKUP_RCU)
2220  		rcu_read_lock();
2221  
2222  	nd->flags = flags | LOOKUP_JUMPED;
2223  	nd->depth = 0;
2224  
2225  	nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2226  	nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2227  	smp_rmb();
2228  
2229  	if (flags & LOOKUP_ROOT) {
2230  		struct dentry *root = nd->root.dentry;
2231  		struct inode *inode = root->d_inode;
2232  		if (*s && unlikely(!d_can_lookup(root)))
2233  			return ERR_PTR(-ENOTDIR);
2234  		nd->path = nd->root;
2235  		nd->inode = inode;
2236  		if (flags & LOOKUP_RCU) {
2237  			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2238  			nd->root_seq = nd->seq;
2239  		} else {
2240  			path_get(&nd->path);
2241  		}
2242  		return s;
2243  	}
2244  
2245  	nd->root.mnt = NULL;
2246  	nd->path.mnt = NULL;
2247  	nd->path.dentry = NULL;
2248  
2249  	/* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2250  	if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2251  		error = nd_jump_root(nd);
2252  		if (unlikely(error))
2253  			return ERR_PTR(error);
2254  		return s;
2255  	}
2256  
2257  	/* Relative pathname -- get the starting-point it is relative to. */
2258  	if (nd->dfd == AT_FDCWD) {
2259  		if (flags & LOOKUP_RCU) {
2260  			struct fs_struct *fs = current->fs;
2261  			unsigned seq;
2262  
2263  			do {
2264  				seq = read_seqcount_begin(&fs->seq);
2265  				nd->path = fs->pwd;
2266  				nd->inode = nd->path.dentry->d_inode;
2267  				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2268  			} while (read_seqcount_retry(&fs->seq, seq));
2269  		} else {
2270  			get_fs_pwd(current->fs, &nd->path);
2271  			nd->inode = nd->path.dentry->d_inode;
2272  		}
2273  	} else {
2274  		/* Caller must check execute permissions on the starting path component */
2275  		struct fd f = fdget_raw(nd->dfd);
2276  		struct dentry *dentry;
2277  
2278  		if (!f.file)
2279  			return ERR_PTR(-EBADF);
2280  
2281  		dentry = f.file->f_path.dentry;
2282  
2283  		if (*s && unlikely(!d_can_lookup(dentry))) {
2284  			fdput(f);
2285  			return ERR_PTR(-ENOTDIR);
2286  		}
2287  
2288  		nd->path = f.file->f_path;
2289  		if (flags & LOOKUP_RCU) {
2290  			nd->inode = nd->path.dentry->d_inode;
2291  			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2292  		} else {
2293  			path_get(&nd->path);
2294  			nd->inode = nd->path.dentry->d_inode;
2295  		}
2296  		fdput(f);
2297  	}
2298  
2299  	/* For scoped-lookups we need to set the root to the dirfd as well. */
2300  	if (flags & LOOKUP_IS_SCOPED) {
2301  		nd->root = nd->path;
2302  		if (flags & LOOKUP_RCU) {
2303  			nd->root_seq = nd->seq;
2304  		} else {
2305  			path_get(&nd->root);
2306  			nd->flags |= LOOKUP_ROOT_GRABBED;
2307  		}
2308  	}
2309  	return s;
2310  }
2311  
2312  static inline const char *lookup_last(struct nameidata *nd)
2313  {
2314  	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2315  		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2316  
2317  	return walk_component(nd, WALK_TRAILING);
2318  }
2319  
2320  static int handle_lookup_down(struct nameidata *nd)
2321  {
2322  	if (!(nd->flags & LOOKUP_RCU))
2323  		dget(nd->path.dentry);
2324  	return PTR_ERR(step_into(nd, WALK_NOFOLLOW,
2325  			nd->path.dentry, nd->inode, nd->seq));
2326  }
2327  
2328  /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2329  static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2330  {
2331  	const char *s = path_init(nd, flags);
2332  	int err;
2333  
2334  	if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2335  		err = handle_lookup_down(nd);
2336  		if (unlikely(err < 0))
2337  			s = ERR_PTR(err);
2338  	}
2339  
2340  	while (!(err = link_path_walk(s, nd)) &&
2341  	       (s = lookup_last(nd)) != NULL)
2342  		;
2343  	if (!err)
2344  		err = complete_walk(nd);
2345  
2346  	if (!err && nd->flags & LOOKUP_DIRECTORY)
2347  		if (!d_can_lookup(nd->path.dentry))
2348  			err = -ENOTDIR;
2349  	if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2350  		err = handle_lookup_down(nd);
2351  		nd->flags &= ~LOOKUP_JUMPED; // no d_weak_revalidate(), please...
2352  	}
2353  	if (!err) {
2354  		*path = nd->path;
2355  		nd->path.mnt = NULL;
2356  		nd->path.dentry = NULL;
2357  	}
2358  	terminate_walk(nd);
2359  	return err;
2360  }
2361  
2362  int filename_lookup(int dfd, struct filename *name, unsigned flags,
2363  		    struct path *path, struct path *root)
2364  {
2365  	int retval;
2366  	struct nameidata nd;
2367  	if (IS_ERR(name))
2368  		return PTR_ERR(name);
2369  	if (unlikely(root)) {
2370  		nd.root = *root;
2371  		flags |= LOOKUP_ROOT;
2372  	}
2373  	set_nameidata(&nd, dfd, name);
2374  	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2375  	if (unlikely(retval == -ECHILD))
2376  		retval = path_lookupat(&nd, flags, path);
2377  	if (unlikely(retval == -ESTALE))
2378  		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2379  
2380  	if (likely(!retval))
2381  		audit_inode(name, path->dentry,
2382  			    flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2383  	restore_nameidata();
2384  	putname(name);
2385  	return retval;
2386  }
2387  
2388  /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2389  static int path_parentat(struct nameidata *nd, unsigned flags,
2390  				struct path *parent)
2391  {
2392  	const char *s = path_init(nd, flags);
2393  	int err = link_path_walk(s, nd);
2394  	if (!err)
2395  		err = complete_walk(nd);
2396  	if (!err) {
2397  		*parent = nd->path;
2398  		nd->path.mnt = NULL;
2399  		nd->path.dentry = NULL;
2400  	}
2401  	terminate_walk(nd);
2402  	return err;
2403  }
2404  
2405  static struct filename *filename_parentat(int dfd, struct filename *name,
2406  				unsigned int flags, struct path *parent,
2407  				struct qstr *last, int *type)
2408  {
2409  	int retval;
2410  	struct nameidata nd;
2411  
2412  	if (IS_ERR(name))
2413  		return name;
2414  	set_nameidata(&nd, dfd, name);
2415  	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2416  	if (unlikely(retval == -ECHILD))
2417  		retval = path_parentat(&nd, flags, parent);
2418  	if (unlikely(retval == -ESTALE))
2419  		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2420  	if (likely(!retval)) {
2421  		*last = nd.last;
2422  		*type = nd.last_type;
2423  		audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2424  	} else {
2425  		putname(name);
2426  		name = ERR_PTR(retval);
2427  	}
2428  	restore_nameidata();
2429  	return name;
2430  }
2431  
2432  /* does lookup, returns the object with parent locked */
2433  struct dentry *kern_path_locked(const char *name, struct path *path)
2434  {
2435  	struct filename *filename;
2436  	struct dentry *d;
2437  	struct qstr last;
2438  	int type;
2439  
2440  	filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2441  				    &last, &type);
2442  	if (IS_ERR(filename))
2443  		return ERR_CAST(filename);
2444  	if (unlikely(type != LAST_NORM)) {
2445  		path_put(path);
2446  		putname(filename);
2447  		return ERR_PTR(-EINVAL);
2448  	}
2449  	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2450  	d = __lookup_hash(&last, path->dentry, 0);
2451  	if (IS_ERR(d)) {
2452  		inode_unlock(path->dentry->d_inode);
2453  		path_put(path);
2454  	}
2455  	putname(filename);
2456  	return d;
2457  }
2458  
2459  int kern_path(const char *name, unsigned int flags, struct path *path)
2460  {
2461  	return filename_lookup(AT_FDCWD, getname_kernel(name),
2462  			       flags, path, NULL);
2463  }
2464  EXPORT_SYMBOL(kern_path);
2465  
2466  /**
2467   * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2468   * @dentry:  pointer to dentry of the base directory
2469   * @mnt: pointer to vfs mount of the base directory
2470   * @name: pointer to file name
2471   * @flags: lookup flags
2472   * @path: pointer to struct path to fill
2473   */
2474  int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2475  		    const char *name, unsigned int flags,
2476  		    struct path *path)
2477  {
2478  	struct path root = {.mnt = mnt, .dentry = dentry};
2479  	/* the first argument of filename_lookup() is ignored with root */
2480  	return filename_lookup(AT_FDCWD, getname_kernel(name),
2481  			       flags , path, &root);
2482  }
2483  EXPORT_SYMBOL(vfs_path_lookup);
2484  
2485  static int lookup_one_len_common(const char *name, struct dentry *base,
2486  				 int len, struct qstr *this)
2487  {
2488  	this->name = name;
2489  	this->len = len;
2490  	this->hash = full_name_hash(base, name, len);
2491  	if (!len)
2492  		return -EACCES;
2493  
2494  	if (unlikely(name[0] == '.')) {
2495  		if (len < 2 || (len == 2 && name[1] == '.'))
2496  			return -EACCES;
2497  	}
2498  
2499  	while (len--) {
2500  		unsigned int c = *(const unsigned char *)name++;
2501  		if (c == '/' || c == '\0')
2502  			return -EACCES;
2503  	}
2504  	/*
2505  	 * See if the low-level filesystem might want
2506  	 * to use its own hash..
2507  	 */
2508  	if (base->d_flags & DCACHE_OP_HASH) {
2509  		int err = base->d_op->d_hash(base, this);
2510  		if (err < 0)
2511  			return err;
2512  	}
2513  
2514  	return inode_permission(base->d_inode, MAY_EXEC);
2515  }
2516  
2517  /**
2518   * try_lookup_one_len - filesystem helper to lookup single pathname component
2519   * @name:	pathname component to lookup
2520   * @base:	base directory to lookup from
2521   * @len:	maximum length @len should be interpreted to
2522   *
2523   * Look up a dentry by name in the dcache, returning NULL if it does not
2524   * currently exist.  The function does not try to create a dentry.
2525   *
2526   * Note that this routine is purely a helper for filesystem usage and should
2527   * not be called by generic code.
2528   *
2529   * The caller must hold base->i_mutex.
2530   */
2531  struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2532  {
2533  	struct qstr this;
2534  	int err;
2535  
2536  	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2537  
2538  	err = lookup_one_len_common(name, base, len, &this);
2539  	if (err)
2540  		return ERR_PTR(err);
2541  
2542  	return lookup_dcache(&this, base, 0);
2543  }
2544  EXPORT_SYMBOL(try_lookup_one_len);
2545  
2546  /**
2547   * lookup_one_len - filesystem helper to lookup single pathname component
2548   * @name:	pathname component to lookup
2549   * @base:	base directory to lookup from
2550   * @len:	maximum length @len should be interpreted to
2551   *
2552   * Note that this routine is purely a helper for filesystem usage and should
2553   * not be called by generic code.
2554   *
2555   * The caller must hold base->i_mutex.
2556   */
2557  struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2558  {
2559  	struct dentry *dentry;
2560  	struct qstr this;
2561  	int err;
2562  
2563  	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2564  
2565  	err = lookup_one_len_common(name, base, len, &this);
2566  	if (err)
2567  		return ERR_PTR(err);
2568  
2569  	dentry = lookup_dcache(&this, base, 0);
2570  	return dentry ? dentry : __lookup_slow(&this, base, 0);
2571  }
2572  EXPORT_SYMBOL(lookup_one_len);
2573  
2574  /**
2575   * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2576   * @name:	pathname component to lookup
2577   * @base:	base directory to lookup from
2578   * @len:	maximum length @len should be interpreted to
2579   *
2580   * Note that this routine is purely a helper for filesystem usage and should
2581   * not be called by generic code.
2582   *
2583   * Unlike lookup_one_len, it should be called without the parent
2584   * i_mutex held, and will take the i_mutex itself if necessary.
2585   */
2586  struct dentry *lookup_one_len_unlocked(const char *name,
2587  				       struct dentry *base, int len)
2588  {
2589  	struct qstr this;
2590  	int err;
2591  	struct dentry *ret;
2592  
2593  	err = lookup_one_len_common(name, base, len, &this);
2594  	if (err)
2595  		return ERR_PTR(err);
2596  
2597  	ret = lookup_dcache(&this, base, 0);
2598  	if (!ret)
2599  		ret = lookup_slow(&this, base, 0);
2600  	return ret;
2601  }
2602  EXPORT_SYMBOL(lookup_one_len_unlocked);
2603  
2604  /*
2605   * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2606   * on negatives.  Returns known positive or ERR_PTR(); that's what
2607   * most of the users want.  Note that pinned negative with unlocked parent
2608   * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2609   * need to be very careful; pinned positives have ->d_inode stable, so
2610   * this one avoids such problems.
2611   */
2612  struct dentry *lookup_positive_unlocked(const char *name,
2613  				       struct dentry *base, int len)
2614  {
2615  	struct dentry *ret = lookup_one_len_unlocked(name, base, len);
2616  	if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
2617  		dput(ret);
2618  		ret = ERR_PTR(-ENOENT);
2619  	}
2620  	return ret;
2621  }
2622  EXPORT_SYMBOL(lookup_positive_unlocked);
2623  
2624  #ifdef CONFIG_UNIX98_PTYS
2625  int path_pts(struct path *path)
2626  {
2627  	/* Find something mounted on "pts" in the same directory as
2628  	 * the input path.
2629  	 */
2630  	struct dentry *parent = dget_parent(path->dentry);
2631  	struct dentry *child;
2632  	struct qstr this = QSTR_INIT("pts", 3);
2633  
2634  	if (unlikely(!path_connected(path->mnt, parent))) {
2635  		dput(parent);
2636  		return -ENOENT;
2637  	}
2638  	dput(path->dentry);
2639  	path->dentry = parent;
2640  	child = d_hash_and_lookup(parent, &this);
2641  	if (!child)
2642  		return -ENOENT;
2643  
2644  	path->dentry = child;
2645  	dput(parent);
2646  	follow_down(path);
2647  	return 0;
2648  }
2649  #endif
2650  
2651  int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2652  		 struct path *path, int *empty)
2653  {
2654  	return filename_lookup(dfd, getname_flags(name, flags, empty),
2655  			       flags, path, NULL);
2656  }
2657  EXPORT_SYMBOL(user_path_at_empty);
2658  
2659  int __check_sticky(struct inode *dir, struct inode *inode)
2660  {
2661  	kuid_t fsuid = current_fsuid();
2662  
2663  	if (uid_eq(inode->i_uid, fsuid))
2664  		return 0;
2665  	if (uid_eq(dir->i_uid, fsuid))
2666  		return 0;
2667  	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2668  }
2669  EXPORT_SYMBOL(__check_sticky);
2670  
2671  /*
2672   *	Check whether we can remove a link victim from directory dir, check
2673   *  whether the type of victim is right.
2674   *  1. We can't do it if dir is read-only (done in permission())
2675   *  2. We should have write and exec permissions on dir
2676   *  3. We can't remove anything from append-only dir
2677   *  4. We can't do anything with immutable dir (done in permission())
2678   *  5. If the sticky bit on dir is set we should either
2679   *	a. be owner of dir, or
2680   *	b. be owner of victim, or
2681   *	c. have CAP_FOWNER capability
2682   *  6. If the victim is append-only or immutable we can't do antyhing with
2683   *     links pointing to it.
2684   *  7. If the victim has an unknown uid or gid we can't change the inode.
2685   *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2686   *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2687   * 10. We can't remove a root or mountpoint.
2688   * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2689   *     nfs_async_unlink().
2690   */
2691  static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2692  {
2693  	struct inode *inode = d_backing_inode(victim);
2694  	int error;
2695  
2696  	if (d_is_negative(victim))
2697  		return -ENOENT;
2698  	BUG_ON(!inode);
2699  
2700  	BUG_ON(victim->d_parent->d_inode != dir);
2701  
2702  	/* Inode writeback is not safe when the uid or gid are invalid. */
2703  	if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
2704  		return -EOVERFLOW;
2705  
2706  	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2707  
2708  	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2709  	if (error)
2710  		return error;
2711  	if (IS_APPEND(dir))
2712  		return -EPERM;
2713  
2714  	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2715  	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2716  		return -EPERM;
2717  	if (isdir) {
2718  		if (!d_is_dir(victim))
2719  			return -ENOTDIR;
2720  		if (IS_ROOT(victim))
2721  			return -EBUSY;
2722  	} else if (d_is_dir(victim))
2723  		return -EISDIR;
2724  	if (IS_DEADDIR(dir))
2725  		return -ENOENT;
2726  	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2727  		return -EBUSY;
2728  	return 0;
2729  }
2730  
2731  /*	Check whether we can create an object with dentry child in directory
2732   *  dir.
2733   *  1. We can't do it if child already exists (open has special treatment for
2734   *     this case, but since we are inlined it's OK)
2735   *  2. We can't do it if dir is read-only (done in permission())
2736   *  3. We can't do it if the fs can't represent the fsuid or fsgid.
2737   *  4. We should have write and exec permissions on dir
2738   *  5. We can't do it if dir is immutable (done in permission())
2739   */
2740  static inline int may_create(struct inode *dir, struct dentry *child)
2741  {
2742  	struct user_namespace *s_user_ns;
2743  	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2744  	if (child->d_inode)
2745  		return -EEXIST;
2746  	if (IS_DEADDIR(dir))
2747  		return -ENOENT;
2748  	s_user_ns = dir->i_sb->s_user_ns;
2749  	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2750  	    !kgid_has_mapping(s_user_ns, current_fsgid()))
2751  		return -EOVERFLOW;
2752  	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2753  }
2754  
2755  /*
2756   * p1 and p2 should be directories on the same fs.
2757   */
2758  struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2759  {
2760  	struct dentry *p;
2761  
2762  	if (p1 == p2) {
2763  		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2764  		return NULL;
2765  	}
2766  
2767  	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2768  
2769  	p = d_ancestor(p2, p1);
2770  	if (p) {
2771  		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2772  		inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2773  		return p;
2774  	}
2775  
2776  	p = d_ancestor(p1, p2);
2777  	if (p) {
2778  		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2779  		inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2780  		return p;
2781  	}
2782  
2783  	inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2784  	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2785  	return NULL;
2786  }
2787  EXPORT_SYMBOL(lock_rename);
2788  
2789  void unlock_rename(struct dentry *p1, struct dentry *p2)
2790  {
2791  	inode_unlock(p1->d_inode);
2792  	if (p1 != p2) {
2793  		inode_unlock(p2->d_inode);
2794  		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2795  	}
2796  }
2797  EXPORT_SYMBOL(unlock_rename);
2798  
2799  int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2800  		bool want_excl)
2801  {
2802  	int error = may_create(dir, dentry);
2803  	if (error)
2804  		return error;
2805  
2806  	if (!dir->i_op->create)
2807  		return -EACCES;	/* shouldn't it be ENOSYS? */
2808  	mode &= S_IALLUGO;
2809  	mode |= S_IFREG;
2810  	error = security_inode_create(dir, dentry, mode);
2811  	if (error)
2812  		return error;
2813  	error = dir->i_op->create(dir, dentry, mode, want_excl);
2814  	if (!error)
2815  		fsnotify_create(dir, dentry);
2816  	return error;
2817  }
2818  EXPORT_SYMBOL(vfs_create);
2819  
2820  int vfs_mkobj(struct dentry *dentry, umode_t mode,
2821  		int (*f)(struct dentry *, umode_t, void *),
2822  		void *arg)
2823  {
2824  	struct inode *dir = dentry->d_parent->d_inode;
2825  	int error = may_create(dir, dentry);
2826  	if (error)
2827  		return error;
2828  
2829  	mode &= S_IALLUGO;
2830  	mode |= S_IFREG;
2831  	error = security_inode_create(dir, dentry, mode);
2832  	if (error)
2833  		return error;
2834  	error = f(dentry, mode, arg);
2835  	if (!error)
2836  		fsnotify_create(dir, dentry);
2837  	return error;
2838  }
2839  EXPORT_SYMBOL(vfs_mkobj);
2840  
2841  bool may_open_dev(const struct path *path)
2842  {
2843  	return !(path->mnt->mnt_flags & MNT_NODEV) &&
2844  		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2845  }
2846  
2847  static int may_open(const struct path *path, int acc_mode, int flag)
2848  {
2849  	struct dentry *dentry = path->dentry;
2850  	struct inode *inode = dentry->d_inode;
2851  	int error;
2852  
2853  	if (!inode)
2854  		return -ENOENT;
2855  
2856  	switch (inode->i_mode & S_IFMT) {
2857  	case S_IFLNK:
2858  		return -ELOOP;
2859  	case S_IFDIR:
2860  		if (acc_mode & MAY_WRITE)
2861  			return -EISDIR;
2862  		if (acc_mode & MAY_EXEC)
2863  			return -EACCES;
2864  		break;
2865  	case S_IFBLK:
2866  	case S_IFCHR:
2867  		if (!may_open_dev(path))
2868  			return -EACCES;
2869  		fallthrough;
2870  	case S_IFIFO:
2871  	case S_IFSOCK:
2872  		if (acc_mode & MAY_EXEC)
2873  			return -EACCES;
2874  		flag &= ~O_TRUNC;
2875  		break;
2876  	case S_IFREG:
2877  		if ((acc_mode & MAY_EXEC) && path_noexec(path))
2878  			return -EACCES;
2879  		break;
2880  	}
2881  
2882  	error = inode_permission(inode, MAY_OPEN | acc_mode);
2883  	if (error)
2884  		return error;
2885  
2886  	/*
2887  	 * An append-only file must be opened in append mode for writing.
2888  	 */
2889  	if (IS_APPEND(inode)) {
2890  		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2891  			return -EPERM;
2892  		if (flag & O_TRUNC)
2893  			return -EPERM;
2894  	}
2895  
2896  	/* O_NOATIME can only be set by the owner or superuser */
2897  	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2898  		return -EPERM;
2899  
2900  	return 0;
2901  }
2902  
2903  static int handle_truncate(struct file *filp)
2904  {
2905  	const struct path *path = &filp->f_path;
2906  	struct inode *inode = path->dentry->d_inode;
2907  	int error = get_write_access(inode);
2908  	if (error)
2909  		return error;
2910  	/*
2911  	 * Refuse to truncate files with mandatory locks held on them.
2912  	 */
2913  	error = locks_verify_locked(filp);
2914  	if (!error)
2915  		error = security_path_truncate(path);
2916  	if (!error) {
2917  		error = do_truncate(path->dentry, 0,
2918  				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2919  				    filp);
2920  	}
2921  	put_write_access(inode);
2922  	return error;
2923  }
2924  
2925  static inline int open_to_namei_flags(int flag)
2926  {
2927  	if ((flag & O_ACCMODE) == 3)
2928  		flag--;
2929  	return flag;
2930  }
2931  
2932  static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
2933  {
2934  	struct user_namespace *s_user_ns;
2935  	int error = security_path_mknod(dir, dentry, mode, 0);
2936  	if (error)
2937  		return error;
2938  
2939  	s_user_ns = dir->dentry->d_sb->s_user_ns;
2940  	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2941  	    !kgid_has_mapping(s_user_ns, current_fsgid()))
2942  		return -EOVERFLOW;
2943  
2944  	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2945  	if (error)
2946  		return error;
2947  
2948  	return security_inode_create(dir->dentry->d_inode, dentry, mode);
2949  }
2950  
2951  /*
2952   * Attempt to atomically look up, create and open a file from a negative
2953   * dentry.
2954   *
2955   * Returns 0 if successful.  The file will have been created and attached to
2956   * @file by the filesystem calling finish_open().
2957   *
2958   * If the file was looked up only or didn't need creating, FMODE_OPENED won't
2959   * be set.  The caller will need to perform the open themselves.  @path will
2960   * have been updated to point to the new dentry.  This may be negative.
2961   *
2962   * Returns an error code otherwise.
2963   */
2964  static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
2965  				  struct file *file,
2966  				  int open_flag, umode_t mode)
2967  {
2968  	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2969  	struct inode *dir =  nd->path.dentry->d_inode;
2970  	int error;
2971  
2972  	if (nd->flags & LOOKUP_DIRECTORY)
2973  		open_flag |= O_DIRECTORY;
2974  
2975  	file->f_path.dentry = DENTRY_NOT_SET;
2976  	file->f_path.mnt = nd->path.mnt;
2977  	error = dir->i_op->atomic_open(dir, dentry, file,
2978  				       open_to_namei_flags(open_flag), mode);
2979  	d_lookup_done(dentry);
2980  	if (!error) {
2981  		if (file->f_mode & FMODE_OPENED) {
2982  			if (unlikely(dentry != file->f_path.dentry)) {
2983  				dput(dentry);
2984  				dentry = dget(file->f_path.dentry);
2985  			}
2986  		} else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2987  			error = -EIO;
2988  		} else {
2989  			if (file->f_path.dentry) {
2990  				dput(dentry);
2991  				dentry = file->f_path.dentry;
2992  			}
2993  			if (unlikely(d_is_negative(dentry)))
2994  				error = -ENOENT;
2995  		}
2996  	}
2997  	if (error) {
2998  		dput(dentry);
2999  		dentry = ERR_PTR(error);
3000  	}
3001  	return dentry;
3002  }
3003  
3004  /*
3005   * Look up and maybe create and open the last component.
3006   *
3007   * Must be called with parent locked (exclusive in O_CREAT case).
3008   *
3009   * Returns 0 on success, that is, if
3010   *  the file was successfully atomically created (if necessary) and opened, or
3011   *  the file was not completely opened at this time, though lookups and
3012   *  creations were performed.
3013   * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3014   * In the latter case dentry returned in @path might be negative if O_CREAT
3015   * hadn't been specified.
3016   *
3017   * An error code is returned on failure.
3018   */
3019  static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3020  				  const struct open_flags *op,
3021  				  bool got_write)
3022  {
3023  	struct dentry *dir = nd->path.dentry;
3024  	struct inode *dir_inode = dir->d_inode;
3025  	int open_flag = op->open_flag;
3026  	struct dentry *dentry;
3027  	int error, create_error = 0;
3028  	umode_t mode = op->mode;
3029  	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3030  
3031  	if (unlikely(IS_DEADDIR(dir_inode)))
3032  		return ERR_PTR(-ENOENT);
3033  
3034  	file->f_mode &= ~FMODE_CREATED;
3035  	dentry = d_lookup(dir, &nd->last);
3036  	for (;;) {
3037  		if (!dentry) {
3038  			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3039  			if (IS_ERR(dentry))
3040  				return dentry;
3041  		}
3042  		if (d_in_lookup(dentry))
3043  			break;
3044  
3045  		error = d_revalidate(dentry, nd->flags);
3046  		if (likely(error > 0))
3047  			break;
3048  		if (error)
3049  			goto out_dput;
3050  		d_invalidate(dentry);
3051  		dput(dentry);
3052  		dentry = NULL;
3053  	}
3054  	if (dentry->d_inode) {
3055  		/* Cached positive dentry: will open in f_op->open */
3056  		return dentry;
3057  	}
3058  
3059  	/*
3060  	 * Checking write permission is tricky, bacuse we don't know if we are
3061  	 * going to actually need it: O_CREAT opens should work as long as the
3062  	 * file exists.  But checking existence breaks atomicity.  The trick is
3063  	 * to check access and if not granted clear O_CREAT from the flags.
3064  	 *
3065  	 * Another problem is returing the "right" error value (e.g. for an
3066  	 * O_EXCL open we want to return EEXIST not EROFS).
3067  	 */
3068  	if (unlikely(!got_write))
3069  		open_flag &= ~O_TRUNC;
3070  	if (open_flag & O_CREAT) {
3071  		if (open_flag & O_EXCL)
3072  			open_flag &= ~O_TRUNC;
3073  		if (!IS_POSIXACL(dir->d_inode))
3074  			mode &= ~current_umask();
3075  		if (likely(got_write))
3076  			create_error = may_o_create(&nd->path, dentry, mode);
3077  		else
3078  			create_error = -EROFS;
3079  	}
3080  	if (create_error)
3081  		open_flag &= ~O_CREAT;
3082  	if (dir_inode->i_op->atomic_open) {
3083  		dentry = atomic_open(nd, dentry, file, open_flag, mode);
3084  		if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3085  			dentry = ERR_PTR(create_error);
3086  		return dentry;
3087  	}
3088  
3089  	if (d_in_lookup(dentry)) {
3090  		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3091  							     nd->flags);
3092  		d_lookup_done(dentry);
3093  		if (unlikely(res)) {
3094  			if (IS_ERR(res)) {
3095  				error = PTR_ERR(res);
3096  				goto out_dput;
3097  			}
3098  			dput(dentry);
3099  			dentry = res;
3100  		}
3101  	}
3102  
3103  	/* Negative dentry, just create the file */
3104  	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3105  		file->f_mode |= FMODE_CREATED;
3106  		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3107  		if (!dir_inode->i_op->create) {
3108  			error = -EACCES;
3109  			goto out_dput;
3110  		}
3111  		error = dir_inode->i_op->create(dir_inode, dentry, mode,
3112  						open_flag & O_EXCL);
3113  		if (error)
3114  			goto out_dput;
3115  	}
3116  	if (unlikely(create_error) && !dentry->d_inode) {
3117  		error = create_error;
3118  		goto out_dput;
3119  	}
3120  	return dentry;
3121  
3122  out_dput:
3123  	dput(dentry);
3124  	return ERR_PTR(error);
3125  }
3126  
3127  static const char *open_last_lookups(struct nameidata *nd,
3128  		   struct file *file, const struct open_flags *op)
3129  {
3130  	struct dentry *dir = nd->path.dentry;
3131  	int open_flag = op->open_flag;
3132  	bool got_write = false;
3133  	unsigned seq;
3134  	struct inode *inode;
3135  	struct dentry *dentry;
3136  	const char *res;
3137  
3138  	nd->flags |= op->intent;
3139  
3140  	if (nd->last_type != LAST_NORM) {
3141  		if (nd->depth)
3142  			put_link(nd);
3143  		return handle_dots(nd, nd->last_type);
3144  	}
3145  
3146  	if (!(open_flag & O_CREAT)) {
3147  		if (nd->last.name[nd->last.len])
3148  			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3149  		/* we _can_ be in RCU mode here */
3150  		dentry = lookup_fast(nd, &inode, &seq);
3151  		if (IS_ERR(dentry))
3152  			return ERR_CAST(dentry);
3153  		if (likely(dentry))
3154  			goto finish_lookup;
3155  
3156  		BUG_ON(nd->flags & LOOKUP_RCU);
3157  	} else {
3158  		/* create side of things */
3159  		if (nd->flags & LOOKUP_RCU) {
3160  			if (!try_to_unlazy(nd))
3161  				return ERR_PTR(-ECHILD);
3162  		}
3163  		audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3164  		/* trailing slashes? */
3165  		if (unlikely(nd->last.name[nd->last.len]))
3166  			return ERR_PTR(-EISDIR);
3167  	}
3168  
3169  	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3170  		got_write = !mnt_want_write(nd->path.mnt);
3171  		/*
3172  		 * do _not_ fail yet - we might not need that or fail with
3173  		 * a different error; let lookup_open() decide; we'll be
3174  		 * dropping this one anyway.
3175  		 */
3176  	}
3177  	if (open_flag & O_CREAT)
3178  		inode_lock(dir->d_inode);
3179  	else
3180  		inode_lock_shared(dir->d_inode);
3181  	dentry = lookup_open(nd, file, op, got_write);
3182  	if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED))
3183  		fsnotify_create(dir->d_inode, dentry);
3184  	if (open_flag & O_CREAT)
3185  		inode_unlock(dir->d_inode);
3186  	else
3187  		inode_unlock_shared(dir->d_inode);
3188  
3189  	if (got_write)
3190  		mnt_drop_write(nd->path.mnt);
3191  
3192  	if (IS_ERR(dentry))
3193  		return ERR_CAST(dentry);
3194  
3195  	if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3196  		dput(nd->path.dentry);
3197  		nd->path.dentry = dentry;
3198  		return NULL;
3199  	}
3200  
3201  finish_lookup:
3202  	if (nd->depth)
3203  		put_link(nd);
3204  	res = step_into(nd, WALK_TRAILING, dentry, inode, seq);
3205  	if (unlikely(res))
3206  		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3207  	return res;
3208  }
3209  
3210  /*
3211   * Handle the last step of open()
3212   */
3213  static int do_open(struct nameidata *nd,
3214  		   struct file *file, const struct open_flags *op)
3215  {
3216  	int open_flag = op->open_flag;
3217  	bool do_truncate;
3218  	int acc_mode;
3219  	int error;
3220  
3221  	if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3222  		error = complete_walk(nd);
3223  		if (error)
3224  			return error;
3225  	}
3226  	if (!(file->f_mode & FMODE_CREATED))
3227  		audit_inode(nd->name, nd->path.dentry, 0);
3228  	if (open_flag & O_CREAT) {
3229  		if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3230  			return -EEXIST;
3231  		if (d_is_dir(nd->path.dentry))
3232  			return -EISDIR;
3233  		error = may_create_in_sticky(nd->dir_mode, nd->dir_uid,
3234  					     d_backing_inode(nd->path.dentry));
3235  		if (unlikely(error))
3236  			return error;
3237  	}
3238  	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3239  		return -ENOTDIR;
3240  
3241  	do_truncate = false;
3242  	acc_mode = op->acc_mode;
3243  	if (file->f_mode & FMODE_CREATED) {
3244  		/* Don't check for write permission, don't truncate */
3245  		open_flag &= ~O_TRUNC;
3246  		acc_mode = 0;
3247  	} else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3248  		error = mnt_want_write(nd->path.mnt);
3249  		if (error)
3250  			return error;
3251  		do_truncate = true;
3252  	}
3253  	error = may_open(&nd->path, acc_mode, open_flag);
3254  	if (!error && !(file->f_mode & FMODE_OPENED))
3255  		error = vfs_open(&nd->path, file);
3256  	if (!error)
3257  		error = ima_file_check(file, op->acc_mode);
3258  	if (!error && do_truncate)
3259  		error = handle_truncate(file);
3260  	if (unlikely(error > 0)) {
3261  		WARN_ON(1);
3262  		error = -EINVAL;
3263  	}
3264  	if (do_truncate)
3265  		mnt_drop_write(nd->path.mnt);
3266  	return error;
3267  }
3268  
3269  struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3270  {
3271  	struct dentry *child = NULL;
3272  	struct inode *dir = dentry->d_inode;
3273  	struct inode *inode;
3274  	int error;
3275  
3276  	/* we want directory to be writable */
3277  	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3278  	if (error)
3279  		goto out_err;
3280  	error = -EOPNOTSUPP;
3281  	if (!dir->i_op->tmpfile)
3282  		goto out_err;
3283  	error = -ENOMEM;
3284  	child = d_alloc(dentry, &slash_name);
3285  	if (unlikely(!child))
3286  		goto out_err;
3287  	error = dir->i_op->tmpfile(dir, child, mode);
3288  	if (error)
3289  		goto out_err;
3290  	error = -ENOENT;
3291  	inode = child->d_inode;
3292  	if (unlikely(!inode))
3293  		goto out_err;
3294  	if (!(open_flag & O_EXCL)) {
3295  		spin_lock(&inode->i_lock);
3296  		inode->i_state |= I_LINKABLE;
3297  		spin_unlock(&inode->i_lock);
3298  	}
3299  	ima_post_create_tmpfile(inode);
3300  	return child;
3301  
3302  out_err:
3303  	dput(child);
3304  	return ERR_PTR(error);
3305  }
3306  EXPORT_SYMBOL(vfs_tmpfile);
3307  
3308  static int do_tmpfile(struct nameidata *nd, unsigned flags,
3309  		const struct open_flags *op,
3310  		struct file *file)
3311  {
3312  	struct dentry *child;
3313  	struct path path;
3314  	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3315  	if (unlikely(error))
3316  		return error;
3317  	error = mnt_want_write(path.mnt);
3318  	if (unlikely(error))
3319  		goto out;
3320  	child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3321  	error = PTR_ERR(child);
3322  	if (IS_ERR(child))
3323  		goto out2;
3324  	dput(path.dentry);
3325  	path.dentry = child;
3326  	audit_inode(nd->name, child, 0);
3327  	/* Don't check for other permissions, the inode was just created */
3328  	error = may_open(&path, 0, op->open_flag);
3329  	if (!error)
3330  		error = vfs_open(&path, file);
3331  out2:
3332  	mnt_drop_write(path.mnt);
3333  out:
3334  	path_put(&path);
3335  	return error;
3336  }
3337  
3338  static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3339  {
3340  	struct path path;
3341  	int error = path_lookupat(nd, flags, &path);
3342  	if (!error) {
3343  		audit_inode(nd->name, path.dentry, 0);
3344  		error = vfs_open(&path, file);
3345  		path_put(&path);
3346  	}
3347  	return error;
3348  }
3349  
3350  static struct file *path_openat(struct nameidata *nd,
3351  			const struct open_flags *op, unsigned flags)
3352  {
3353  	struct file *file;
3354  	int error;
3355  
3356  	file = alloc_empty_file(op->open_flag, current_cred());
3357  	if (IS_ERR(file))
3358  		return file;
3359  
3360  	if (unlikely(file->f_flags & __O_TMPFILE)) {
3361  		error = do_tmpfile(nd, flags, op, file);
3362  	} else if (unlikely(file->f_flags & O_PATH)) {
3363  		error = do_o_path(nd, flags, file);
3364  	} else {
3365  		const char *s = path_init(nd, flags);
3366  		while (!(error = link_path_walk(s, nd)) &&
3367  		       (s = open_last_lookups(nd, file, op)) != NULL)
3368  			;
3369  		if (!error)
3370  			error = do_open(nd, file, op);
3371  		terminate_walk(nd);
3372  	}
3373  	if (likely(!error)) {
3374  		if (likely(file->f_mode & FMODE_OPENED))
3375  			return file;
3376  		WARN_ON(1);
3377  		error = -EINVAL;
3378  	}
3379  	fput(file);
3380  	if (error == -EOPENSTALE) {
3381  		if (flags & LOOKUP_RCU)
3382  			error = -ECHILD;
3383  		else
3384  			error = -ESTALE;
3385  	}
3386  	return ERR_PTR(error);
3387  }
3388  
3389  struct file *do_filp_open(int dfd, struct filename *pathname,
3390  		const struct open_flags *op)
3391  {
3392  	struct nameidata nd;
3393  	int flags = op->lookup_flags;
3394  	struct file *filp;
3395  
3396  	set_nameidata(&nd, dfd, pathname);
3397  	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3398  	if (unlikely(filp == ERR_PTR(-ECHILD)))
3399  		filp = path_openat(&nd, op, flags);
3400  	if (unlikely(filp == ERR_PTR(-ESTALE)))
3401  		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3402  	restore_nameidata();
3403  	return filp;
3404  }
3405  
3406  struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3407  		const char *name, const struct open_flags *op)
3408  {
3409  	struct nameidata nd;
3410  	struct file *file;
3411  	struct filename *filename;
3412  	int flags = op->lookup_flags | LOOKUP_ROOT;
3413  
3414  	nd.root.mnt = mnt;
3415  	nd.root.dentry = dentry;
3416  
3417  	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3418  		return ERR_PTR(-ELOOP);
3419  
3420  	filename = getname_kernel(name);
3421  	if (IS_ERR(filename))
3422  		return ERR_CAST(filename);
3423  
3424  	set_nameidata(&nd, -1, filename);
3425  	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3426  	if (unlikely(file == ERR_PTR(-ECHILD)))
3427  		file = path_openat(&nd, op, flags);
3428  	if (unlikely(file == ERR_PTR(-ESTALE)))
3429  		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3430  	restore_nameidata();
3431  	putname(filename);
3432  	return file;
3433  }
3434  
3435  static struct dentry *filename_create(int dfd, struct filename *name,
3436  				struct path *path, unsigned int lookup_flags)
3437  {
3438  	struct dentry *dentry = ERR_PTR(-EEXIST);
3439  	struct qstr last;
3440  	int type;
3441  	int err2;
3442  	int error;
3443  	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3444  
3445  	/*
3446  	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3447  	 * other flags passed in are ignored!
3448  	 */
3449  	lookup_flags &= LOOKUP_REVAL;
3450  
3451  	name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3452  	if (IS_ERR(name))
3453  		return ERR_CAST(name);
3454  
3455  	/*
3456  	 * Yucky last component or no last component at all?
3457  	 * (foo/., foo/.., /////)
3458  	 */
3459  	if (unlikely(type != LAST_NORM))
3460  		goto out;
3461  
3462  	/* don't fail immediately if it's r/o, at least try to report other errors */
3463  	err2 = mnt_want_write(path->mnt);
3464  	/*
3465  	 * Do the final lookup.
3466  	 */
3467  	lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3468  	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3469  	dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3470  	if (IS_ERR(dentry))
3471  		goto unlock;
3472  
3473  	error = -EEXIST;
3474  	if (d_is_positive(dentry))
3475  		goto fail;
3476  
3477  	/*
3478  	 * Special case - lookup gave negative, but... we had foo/bar/
3479  	 * From the vfs_mknod() POV we just have a negative dentry -
3480  	 * all is fine. Let's be bastards - you had / on the end, you've
3481  	 * been asking for (non-existent) directory. -ENOENT for you.
3482  	 */
3483  	if (unlikely(!is_dir && last.name[last.len])) {
3484  		error = -ENOENT;
3485  		goto fail;
3486  	}
3487  	if (unlikely(err2)) {
3488  		error = err2;
3489  		goto fail;
3490  	}
3491  	putname(name);
3492  	return dentry;
3493  fail:
3494  	dput(dentry);
3495  	dentry = ERR_PTR(error);
3496  unlock:
3497  	inode_unlock(path->dentry->d_inode);
3498  	if (!err2)
3499  		mnt_drop_write(path->mnt);
3500  out:
3501  	path_put(path);
3502  	putname(name);
3503  	return dentry;
3504  }
3505  
3506  struct dentry *kern_path_create(int dfd, const char *pathname,
3507  				struct path *path, unsigned int lookup_flags)
3508  {
3509  	return filename_create(dfd, getname_kernel(pathname),
3510  				path, lookup_flags);
3511  }
3512  EXPORT_SYMBOL(kern_path_create);
3513  
3514  void done_path_create(struct path *path, struct dentry *dentry)
3515  {
3516  	dput(dentry);
3517  	inode_unlock(path->dentry->d_inode);
3518  	mnt_drop_write(path->mnt);
3519  	path_put(path);
3520  }
3521  EXPORT_SYMBOL(done_path_create);
3522  
3523  inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3524  				struct path *path, unsigned int lookup_flags)
3525  {
3526  	return filename_create(dfd, getname(pathname), path, lookup_flags);
3527  }
3528  EXPORT_SYMBOL(user_path_create);
3529  
3530  int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3531  {
3532  	bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
3533  	int error = may_create(dir, dentry);
3534  
3535  	if (error)
3536  		return error;
3537  
3538  	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
3539  	    !capable(CAP_MKNOD))
3540  		return -EPERM;
3541  
3542  	if (!dir->i_op->mknod)
3543  		return -EPERM;
3544  
3545  	error = devcgroup_inode_mknod(mode, dev);
3546  	if (error)
3547  		return error;
3548  
3549  	error = security_inode_mknod(dir, dentry, mode, dev);
3550  	if (error)
3551  		return error;
3552  
3553  	error = dir->i_op->mknod(dir, dentry, mode, dev);
3554  	if (!error)
3555  		fsnotify_create(dir, dentry);
3556  	return error;
3557  }
3558  EXPORT_SYMBOL(vfs_mknod);
3559  
3560  static int may_mknod(umode_t mode)
3561  {
3562  	switch (mode & S_IFMT) {
3563  	case S_IFREG:
3564  	case S_IFCHR:
3565  	case S_IFBLK:
3566  	case S_IFIFO:
3567  	case S_IFSOCK:
3568  	case 0: /* zero mode translates to S_IFREG */
3569  		return 0;
3570  	case S_IFDIR:
3571  		return -EPERM;
3572  	default:
3573  		return -EINVAL;
3574  	}
3575  }
3576  
3577  static long do_mknodat(int dfd, const char __user *filename, umode_t mode,
3578  		unsigned int dev)
3579  {
3580  	struct dentry *dentry;
3581  	struct path path;
3582  	int error;
3583  	unsigned int lookup_flags = 0;
3584  
3585  	error = may_mknod(mode);
3586  	if (error)
3587  		return error;
3588  retry:
3589  	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3590  	if (IS_ERR(dentry))
3591  		return PTR_ERR(dentry);
3592  
3593  	if (!IS_POSIXACL(path.dentry->d_inode))
3594  		mode &= ~current_umask();
3595  	error = security_path_mknod(&path, dentry, mode, dev);
3596  	if (error)
3597  		goto out;
3598  	switch (mode & S_IFMT) {
3599  		case 0: case S_IFREG:
3600  			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3601  			if (!error)
3602  				ima_post_path_mknod(dentry);
3603  			break;
3604  		case S_IFCHR: case S_IFBLK:
3605  			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3606  					new_decode_dev(dev));
3607  			break;
3608  		case S_IFIFO: case S_IFSOCK:
3609  			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3610  			break;
3611  	}
3612  out:
3613  	done_path_create(&path, dentry);
3614  	if (retry_estale(error, lookup_flags)) {
3615  		lookup_flags |= LOOKUP_REVAL;
3616  		goto retry;
3617  	}
3618  	return error;
3619  }
3620  
3621  SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3622  		unsigned int, dev)
3623  {
3624  	return do_mknodat(dfd, filename, mode, dev);
3625  }
3626  
3627  SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3628  {
3629  	return do_mknodat(AT_FDCWD, filename, mode, dev);
3630  }
3631  
3632  int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3633  {
3634  	int error = may_create(dir, dentry);
3635  	unsigned max_links = dir->i_sb->s_max_links;
3636  
3637  	if (error)
3638  		return error;
3639  
3640  	if (!dir->i_op->mkdir)
3641  		return -EPERM;
3642  
3643  	mode &= (S_IRWXUGO|S_ISVTX);
3644  	error = security_inode_mkdir(dir, dentry, mode);
3645  	if (error)
3646  		return error;
3647  
3648  	if (max_links && dir->i_nlink >= max_links)
3649  		return -EMLINK;
3650  
3651  	error = dir->i_op->mkdir(dir, dentry, mode);
3652  	if (!error)
3653  		fsnotify_mkdir(dir, dentry);
3654  	return error;
3655  }
3656  EXPORT_SYMBOL(vfs_mkdir);
3657  
3658  static long do_mkdirat(int dfd, const char __user *pathname, umode_t mode)
3659  {
3660  	struct dentry *dentry;
3661  	struct path path;
3662  	int error;
3663  	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3664  
3665  retry:
3666  	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3667  	if (IS_ERR(dentry))
3668  		return PTR_ERR(dentry);
3669  
3670  	if (!IS_POSIXACL(path.dentry->d_inode))
3671  		mode &= ~current_umask();
3672  	error = security_path_mkdir(&path, dentry, mode);
3673  	if (!error)
3674  		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3675  	done_path_create(&path, dentry);
3676  	if (retry_estale(error, lookup_flags)) {
3677  		lookup_flags |= LOOKUP_REVAL;
3678  		goto retry;
3679  	}
3680  	return error;
3681  }
3682  
3683  SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3684  {
3685  	return do_mkdirat(dfd, pathname, mode);
3686  }
3687  
3688  SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3689  {
3690  	return do_mkdirat(AT_FDCWD, pathname, mode);
3691  }
3692  
3693  int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3694  {
3695  	int error = may_delete(dir, dentry, 1);
3696  
3697  	if (error)
3698  		return error;
3699  
3700  	if (!dir->i_op->rmdir)
3701  		return -EPERM;
3702  
3703  	dget(dentry);
3704  	inode_lock(dentry->d_inode);
3705  
3706  	error = -EBUSY;
3707  	if (is_local_mountpoint(dentry))
3708  		goto out;
3709  
3710  	error = security_inode_rmdir(dir, dentry);
3711  	if (error)
3712  		goto out;
3713  
3714  	error = dir->i_op->rmdir(dir, dentry);
3715  	if (error)
3716  		goto out;
3717  
3718  	shrink_dcache_parent(dentry);
3719  	dentry->d_inode->i_flags |= S_DEAD;
3720  	dont_mount(dentry);
3721  	detach_mounts(dentry);
3722  	fsnotify_rmdir(dir, dentry);
3723  
3724  out:
3725  	inode_unlock(dentry->d_inode);
3726  	dput(dentry);
3727  	if (!error)
3728  		d_delete(dentry);
3729  	return error;
3730  }
3731  EXPORT_SYMBOL(vfs_rmdir);
3732  
3733  long do_rmdir(int dfd, struct filename *name)
3734  {
3735  	int error = 0;
3736  	struct dentry *dentry;
3737  	struct path path;
3738  	struct qstr last;
3739  	int type;
3740  	unsigned int lookup_flags = 0;
3741  retry:
3742  	name = filename_parentat(dfd, name, lookup_flags,
3743  				&path, &last, &type);
3744  	if (IS_ERR(name))
3745  		return PTR_ERR(name);
3746  
3747  	switch (type) {
3748  	case LAST_DOTDOT:
3749  		error = -ENOTEMPTY;
3750  		goto exit1;
3751  	case LAST_DOT:
3752  		error = -EINVAL;
3753  		goto exit1;
3754  	case LAST_ROOT:
3755  		error = -EBUSY;
3756  		goto exit1;
3757  	}
3758  
3759  	error = mnt_want_write(path.mnt);
3760  	if (error)
3761  		goto exit1;
3762  
3763  	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3764  	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3765  	error = PTR_ERR(dentry);
3766  	if (IS_ERR(dentry))
3767  		goto exit2;
3768  	if (!dentry->d_inode) {
3769  		error = -ENOENT;
3770  		goto exit3;
3771  	}
3772  	error = security_path_rmdir(&path, dentry);
3773  	if (error)
3774  		goto exit3;
3775  	error = vfs_rmdir(path.dentry->d_inode, dentry);
3776  exit3:
3777  	dput(dentry);
3778  exit2:
3779  	inode_unlock(path.dentry->d_inode);
3780  	mnt_drop_write(path.mnt);
3781  exit1:
3782  	path_put(&path);
3783  	if (retry_estale(error, lookup_flags)) {
3784  		lookup_flags |= LOOKUP_REVAL;
3785  		goto retry;
3786  	}
3787  	putname(name);
3788  	return error;
3789  }
3790  
3791  SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3792  {
3793  	return do_rmdir(AT_FDCWD, getname(pathname));
3794  }
3795  
3796  /**
3797   * vfs_unlink - unlink a filesystem object
3798   * @dir:	parent directory
3799   * @dentry:	victim
3800   * @delegated_inode: returns victim inode, if the inode is delegated.
3801   *
3802   * The caller must hold dir->i_mutex.
3803   *
3804   * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3805   * return a reference to the inode in delegated_inode.  The caller
3806   * should then break the delegation on that inode and retry.  Because
3807   * breaking a delegation may take a long time, the caller should drop
3808   * dir->i_mutex before doing so.
3809   *
3810   * Alternatively, a caller may pass NULL for delegated_inode.  This may
3811   * be appropriate for callers that expect the underlying filesystem not
3812   * to be NFS exported.
3813   */
3814  int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3815  {
3816  	struct inode *target = dentry->d_inode;
3817  	int error = may_delete(dir, dentry, 0);
3818  
3819  	if (error)
3820  		return error;
3821  
3822  	if (!dir->i_op->unlink)
3823  		return -EPERM;
3824  
3825  	inode_lock(target);
3826  	if (is_local_mountpoint(dentry))
3827  		error = -EBUSY;
3828  	else {
3829  		error = security_inode_unlink(dir, dentry);
3830  		if (!error) {
3831  			error = try_break_deleg(target, delegated_inode);
3832  			if (error)
3833  				goto out;
3834  			error = dir->i_op->unlink(dir, dentry);
3835  			if (!error) {
3836  				dont_mount(dentry);
3837  				detach_mounts(dentry);
3838  				fsnotify_unlink(dir, dentry);
3839  			}
3840  		}
3841  	}
3842  out:
3843  	inode_unlock(target);
3844  
3845  	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
3846  	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3847  		fsnotify_link_count(target);
3848  		d_delete(dentry);
3849  	}
3850  
3851  	return error;
3852  }
3853  EXPORT_SYMBOL(vfs_unlink);
3854  
3855  /*
3856   * Make sure that the actual truncation of the file will occur outside its
3857   * directory's i_mutex.  Truncate can take a long time if there is a lot of
3858   * writeout happening, and we don't want to prevent access to the directory
3859   * while waiting on the I/O.
3860   */
3861  long do_unlinkat(int dfd, struct filename *name)
3862  {
3863  	int error;
3864  	struct dentry *dentry;
3865  	struct path path;
3866  	struct qstr last;
3867  	int type;
3868  	struct inode *inode = NULL;
3869  	struct inode *delegated_inode = NULL;
3870  	unsigned int lookup_flags = 0;
3871  retry:
3872  	name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
3873  	if (IS_ERR(name))
3874  		return PTR_ERR(name);
3875  
3876  	error = -EISDIR;
3877  	if (type != LAST_NORM)
3878  		goto exit1;
3879  
3880  	error = mnt_want_write(path.mnt);
3881  	if (error)
3882  		goto exit1;
3883  retry_deleg:
3884  	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3885  	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3886  	error = PTR_ERR(dentry);
3887  	if (!IS_ERR(dentry)) {
3888  		/* Why not before? Because we want correct error value */
3889  		if (last.name[last.len])
3890  			goto slashes;
3891  		inode = dentry->d_inode;
3892  		if (d_is_negative(dentry))
3893  			goto slashes;
3894  		ihold(inode);
3895  		error = security_path_unlink(&path, dentry);
3896  		if (error)
3897  			goto exit2;
3898  		error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3899  exit2:
3900  		dput(dentry);
3901  	}
3902  	inode_unlock(path.dentry->d_inode);
3903  	if (inode)
3904  		iput(inode);	/* truncate the inode here */
3905  	inode = NULL;
3906  	if (delegated_inode) {
3907  		error = break_deleg_wait(&delegated_inode);
3908  		if (!error)
3909  			goto retry_deleg;
3910  	}
3911  	mnt_drop_write(path.mnt);
3912  exit1:
3913  	path_put(&path);
3914  	if (retry_estale(error, lookup_flags)) {
3915  		lookup_flags |= LOOKUP_REVAL;
3916  		inode = NULL;
3917  		goto retry;
3918  	}
3919  	putname(name);
3920  	return error;
3921  
3922  slashes:
3923  	if (d_is_negative(dentry))
3924  		error = -ENOENT;
3925  	else if (d_is_dir(dentry))
3926  		error = -EISDIR;
3927  	else
3928  		error = -ENOTDIR;
3929  	goto exit2;
3930  }
3931  
3932  SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3933  {
3934  	if ((flag & ~AT_REMOVEDIR) != 0)
3935  		return -EINVAL;
3936  
3937  	if (flag & AT_REMOVEDIR)
3938  		return do_rmdir(dfd, getname(pathname));
3939  	return do_unlinkat(dfd, getname(pathname));
3940  }
3941  
3942  SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3943  {
3944  	return do_unlinkat(AT_FDCWD, getname(pathname));
3945  }
3946  
3947  int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3948  {
3949  	int error = may_create(dir, dentry);
3950  
3951  	if (error)
3952  		return error;
3953  
3954  	if (!dir->i_op->symlink)
3955  		return -EPERM;
3956  
3957  	error = security_inode_symlink(dir, dentry, oldname);
3958  	if (error)
3959  		return error;
3960  
3961  	error = dir->i_op->symlink(dir, dentry, oldname);
3962  	if (!error)
3963  		fsnotify_create(dir, dentry);
3964  	return error;
3965  }
3966  EXPORT_SYMBOL(vfs_symlink);
3967  
3968  static long do_symlinkat(const char __user *oldname, int newdfd,
3969  		  const char __user *newname)
3970  {
3971  	int error;
3972  	struct filename *from;
3973  	struct dentry *dentry;
3974  	struct path path;
3975  	unsigned int lookup_flags = 0;
3976  
3977  	from = getname(oldname);
3978  	if (IS_ERR(from))
3979  		return PTR_ERR(from);
3980  retry:
3981  	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3982  	error = PTR_ERR(dentry);
3983  	if (IS_ERR(dentry))
3984  		goto out_putname;
3985  
3986  	error = security_path_symlink(&path, dentry, from->name);
3987  	if (!error)
3988  		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3989  	done_path_create(&path, dentry);
3990  	if (retry_estale(error, lookup_flags)) {
3991  		lookup_flags |= LOOKUP_REVAL;
3992  		goto retry;
3993  	}
3994  out_putname:
3995  	putname(from);
3996  	return error;
3997  }
3998  
3999  SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4000  		int, newdfd, const char __user *, newname)
4001  {
4002  	return do_symlinkat(oldname, newdfd, newname);
4003  }
4004  
4005  SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4006  {
4007  	return do_symlinkat(oldname, AT_FDCWD, newname);
4008  }
4009  
4010  /**
4011   * vfs_link - create a new link
4012   * @old_dentry:	object to be linked
4013   * @dir:	new parent
4014   * @new_dentry:	where to create the new link
4015   * @delegated_inode: returns inode needing a delegation break
4016   *
4017   * The caller must hold dir->i_mutex
4018   *
4019   * If vfs_link discovers a delegation on the to-be-linked file in need
4020   * of breaking, it will return -EWOULDBLOCK and return a reference to the
4021   * inode in delegated_inode.  The caller should then break the delegation
4022   * and retry.  Because breaking a delegation may take a long time, the
4023   * caller should drop the i_mutex before doing so.
4024   *
4025   * Alternatively, a caller may pass NULL for delegated_inode.  This may
4026   * be appropriate for callers that expect the underlying filesystem not
4027   * to be NFS exported.
4028   */
4029  int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4030  {
4031  	struct inode *inode = old_dentry->d_inode;
4032  	unsigned max_links = dir->i_sb->s_max_links;
4033  	int error;
4034  
4035  	if (!inode)
4036  		return -ENOENT;
4037  
4038  	error = may_create(dir, new_dentry);
4039  	if (error)
4040  		return error;
4041  
4042  	if (dir->i_sb != inode->i_sb)
4043  		return -EXDEV;
4044  
4045  	/*
4046  	 * A link to an append-only or immutable file cannot be created.
4047  	 */
4048  	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4049  		return -EPERM;
4050  	/*
4051  	 * Updating the link count will likely cause i_uid and i_gid to
4052  	 * be writen back improperly if their true value is unknown to
4053  	 * the vfs.
4054  	 */
4055  	if (HAS_UNMAPPED_ID(inode))
4056  		return -EPERM;
4057  	if (!dir->i_op->link)
4058  		return -EPERM;
4059  	if (S_ISDIR(inode->i_mode))
4060  		return -EPERM;
4061  
4062  	error = security_inode_link(old_dentry, dir, new_dentry);
4063  	if (error)
4064  		return error;
4065  
4066  	inode_lock(inode);
4067  	/* Make sure we don't allow creating hardlink to an unlinked file */
4068  	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4069  		error =  -ENOENT;
4070  	else if (max_links && inode->i_nlink >= max_links)
4071  		error = -EMLINK;
4072  	else {
4073  		error = try_break_deleg(inode, delegated_inode);
4074  		if (!error)
4075  			error = dir->i_op->link(old_dentry, dir, new_dentry);
4076  	}
4077  
4078  	if (!error && (inode->i_state & I_LINKABLE)) {
4079  		spin_lock(&inode->i_lock);
4080  		inode->i_state &= ~I_LINKABLE;
4081  		spin_unlock(&inode->i_lock);
4082  	}
4083  	inode_unlock(inode);
4084  	if (!error)
4085  		fsnotify_link(dir, inode, new_dentry);
4086  	return error;
4087  }
4088  EXPORT_SYMBOL(vfs_link);
4089  
4090  /*
4091   * Hardlinks are often used in delicate situations.  We avoid
4092   * security-related surprises by not following symlinks on the
4093   * newname.  --KAB
4094   *
4095   * We don't follow them on the oldname either to be compatible
4096   * with linux 2.0, and to avoid hard-linking to directories
4097   * and other special files.  --ADM
4098   */
4099  static int do_linkat(int olddfd, const char __user *oldname, int newdfd,
4100  	      const char __user *newname, int flags)
4101  {
4102  	struct dentry *new_dentry;
4103  	struct path old_path, new_path;
4104  	struct inode *delegated_inode = NULL;
4105  	int how = 0;
4106  	int error;
4107  
4108  	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4109  		return -EINVAL;
4110  	/*
4111  	 * To use null names we require CAP_DAC_READ_SEARCH
4112  	 * This ensures that not everyone will be able to create
4113  	 * handlink using the passed filedescriptor.
4114  	 */
4115  	if (flags & AT_EMPTY_PATH) {
4116  		if (!capable(CAP_DAC_READ_SEARCH))
4117  			return -ENOENT;
4118  		how = LOOKUP_EMPTY;
4119  	}
4120  
4121  	if (flags & AT_SYMLINK_FOLLOW)
4122  		how |= LOOKUP_FOLLOW;
4123  retry:
4124  	error = user_path_at(olddfd, oldname, how, &old_path);
4125  	if (error)
4126  		return error;
4127  
4128  	new_dentry = user_path_create(newdfd, newname, &new_path,
4129  					(how & LOOKUP_REVAL));
4130  	error = PTR_ERR(new_dentry);
4131  	if (IS_ERR(new_dentry))
4132  		goto out;
4133  
4134  	error = -EXDEV;
4135  	if (old_path.mnt != new_path.mnt)
4136  		goto out_dput;
4137  	error = may_linkat(&old_path);
4138  	if (unlikely(error))
4139  		goto out_dput;
4140  	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4141  	if (error)
4142  		goto out_dput;
4143  	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4144  out_dput:
4145  	done_path_create(&new_path, new_dentry);
4146  	if (delegated_inode) {
4147  		error = break_deleg_wait(&delegated_inode);
4148  		if (!error) {
4149  			path_put(&old_path);
4150  			goto retry;
4151  		}
4152  	}
4153  	if (retry_estale(error, how)) {
4154  		path_put(&old_path);
4155  		how |= LOOKUP_REVAL;
4156  		goto retry;
4157  	}
4158  out:
4159  	path_put(&old_path);
4160  
4161  	return error;
4162  }
4163  
4164  SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4165  		int, newdfd, const char __user *, newname, int, flags)
4166  {
4167  	return do_linkat(olddfd, oldname, newdfd, newname, flags);
4168  }
4169  
4170  SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4171  {
4172  	return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4173  }
4174  
4175  /**
4176   * vfs_rename - rename a filesystem object
4177   * @old_dir:	parent of source
4178   * @old_dentry:	source
4179   * @new_dir:	parent of destination
4180   * @new_dentry:	destination
4181   * @delegated_inode: returns an inode needing a delegation break
4182   * @flags:	rename flags
4183   *
4184   * The caller must hold multiple mutexes--see lock_rename()).
4185   *
4186   * If vfs_rename discovers a delegation in need of breaking at either
4187   * the source or destination, it will return -EWOULDBLOCK and return a
4188   * reference to the inode in delegated_inode.  The caller should then
4189   * break the delegation and retry.  Because breaking a delegation may
4190   * take a long time, the caller should drop all locks before doing
4191   * so.
4192   *
4193   * Alternatively, a caller may pass NULL for delegated_inode.  This may
4194   * be appropriate for callers that expect the underlying filesystem not
4195   * to be NFS exported.
4196   *
4197   * The worst of all namespace operations - renaming directory. "Perverted"
4198   * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4199   * Problems:
4200   *
4201   *	a) we can get into loop creation.
4202   *	b) race potential - two innocent renames can create a loop together.
4203   *	   That's where 4.4 screws up. Current fix: serialization on
4204   *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4205   *	   story.
4206   *	c) we have to lock _four_ objects - parents and victim (if it exists),
4207   *	   and source (if it is not a directory).
4208   *	   And that - after we got ->i_mutex on parents (until then we don't know
4209   *	   whether the target exists).  Solution: try to be smart with locking
4210   *	   order for inodes.  We rely on the fact that tree topology may change
4211   *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4212   *	   move will be locked.  Thus we can rank directories by the tree
4213   *	   (ancestors first) and rank all non-directories after them.
4214   *	   That works since everybody except rename does "lock parent, lookup,
4215   *	   lock child" and rename is under ->s_vfs_rename_mutex.
4216   *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4217   *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4218   *	   we'd better make sure that there's no link(2) for them.
4219   *	d) conversion from fhandle to dentry may come in the wrong moment - when
4220   *	   we are removing the target. Solution: we will have to grab ->i_mutex
4221   *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4222   *	   ->i_mutex on parents, which works but leads to some truly excessive
4223   *	   locking].
4224   */
4225  int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4226  	       struct inode *new_dir, struct dentry *new_dentry,
4227  	       struct inode **delegated_inode, unsigned int flags)
4228  {
4229  	int error;
4230  	bool is_dir = d_is_dir(old_dentry);
4231  	struct inode *source = old_dentry->d_inode;
4232  	struct inode *target = new_dentry->d_inode;
4233  	bool new_is_dir = false;
4234  	unsigned max_links = new_dir->i_sb->s_max_links;
4235  	struct name_snapshot old_name;
4236  
4237  	if (source == target)
4238  		return 0;
4239  
4240  	error = may_delete(old_dir, old_dentry, is_dir);
4241  	if (error)
4242  		return error;
4243  
4244  	if (!target) {
4245  		error = may_create(new_dir, new_dentry);
4246  	} else {
4247  		new_is_dir = d_is_dir(new_dentry);
4248  
4249  		if (!(flags & RENAME_EXCHANGE))
4250  			error = may_delete(new_dir, new_dentry, is_dir);
4251  		else
4252  			error = may_delete(new_dir, new_dentry, new_is_dir);
4253  	}
4254  	if (error)
4255  		return error;
4256  
4257  	if (!old_dir->i_op->rename)
4258  		return -EPERM;
4259  
4260  	/*
4261  	 * If we are going to change the parent - check write permissions,
4262  	 * we'll need to flip '..'.
4263  	 */
4264  	if (new_dir != old_dir) {
4265  		if (is_dir) {
4266  			error = inode_permission(source, MAY_WRITE);
4267  			if (error)
4268  				return error;
4269  		}
4270  		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4271  			error = inode_permission(target, MAY_WRITE);
4272  			if (error)
4273  				return error;
4274  		}
4275  	}
4276  
4277  	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4278  				      flags);
4279  	if (error)
4280  		return error;
4281  
4282  	take_dentry_name_snapshot(&old_name, old_dentry);
4283  	dget(new_dentry);
4284  	if (!is_dir || (flags & RENAME_EXCHANGE))
4285  		lock_two_nondirectories(source, target);
4286  	else if (target)
4287  		inode_lock(target);
4288  
4289  	error = -EBUSY;
4290  	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4291  		goto out;
4292  
4293  	if (max_links && new_dir != old_dir) {
4294  		error = -EMLINK;
4295  		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4296  			goto out;
4297  		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4298  		    old_dir->i_nlink >= max_links)
4299  			goto out;
4300  	}
4301  	if (!is_dir) {
4302  		error = try_break_deleg(source, delegated_inode);
4303  		if (error)
4304  			goto out;
4305  	}
4306  	if (target && !new_is_dir) {
4307  		error = try_break_deleg(target, delegated_inode);
4308  		if (error)
4309  			goto out;
4310  	}
4311  	error = old_dir->i_op->rename(old_dir, old_dentry,
4312  				       new_dir, new_dentry, flags);
4313  	if (error)
4314  		goto out;
4315  
4316  	if (!(flags & RENAME_EXCHANGE) && target) {
4317  		if (is_dir) {
4318  			shrink_dcache_parent(new_dentry);
4319  			target->i_flags |= S_DEAD;
4320  		}
4321  		dont_mount(new_dentry);
4322  		detach_mounts(new_dentry);
4323  	}
4324  	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4325  		if (!(flags & RENAME_EXCHANGE))
4326  			d_move(old_dentry, new_dentry);
4327  		else
4328  			d_exchange(old_dentry, new_dentry);
4329  	}
4330  out:
4331  	if (!is_dir || (flags & RENAME_EXCHANGE))
4332  		unlock_two_nondirectories(source, target);
4333  	else if (target)
4334  		inode_unlock(target);
4335  	dput(new_dentry);
4336  	if (!error) {
4337  		fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4338  			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4339  		if (flags & RENAME_EXCHANGE) {
4340  			fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4341  				      new_is_dir, NULL, new_dentry);
4342  		}
4343  	}
4344  	release_dentry_name_snapshot(&old_name);
4345  
4346  	return error;
4347  }
4348  EXPORT_SYMBOL(vfs_rename);
4349  
4350  int do_renameat2(int olddfd, struct filename *from, int newdfd,
4351  		 struct filename *to, unsigned int flags)
4352  {
4353  	struct dentry *old_dentry, *new_dentry;
4354  	struct dentry *trap;
4355  	struct path old_path, new_path;
4356  	struct qstr old_last, new_last;
4357  	int old_type, new_type;
4358  	struct inode *delegated_inode = NULL;
4359  	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4360  	bool should_retry = false;
4361  	int error = -EINVAL;
4362  
4363  	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4364  		goto put_both;
4365  
4366  	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4367  	    (flags & RENAME_EXCHANGE))
4368  		goto put_both;
4369  
4370  	if (flags & RENAME_EXCHANGE)
4371  		target_flags = 0;
4372  
4373  retry:
4374  	from = filename_parentat(olddfd, from, lookup_flags, &old_path,
4375  					&old_last, &old_type);
4376  	if (IS_ERR(from)) {
4377  		error = PTR_ERR(from);
4378  		goto put_new;
4379  	}
4380  
4381  	to = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
4382  				&new_type);
4383  	if (IS_ERR(to)) {
4384  		error = PTR_ERR(to);
4385  		goto exit1;
4386  	}
4387  
4388  	error = -EXDEV;
4389  	if (old_path.mnt != new_path.mnt)
4390  		goto exit2;
4391  
4392  	error = -EBUSY;
4393  	if (old_type != LAST_NORM)
4394  		goto exit2;
4395  
4396  	if (flags & RENAME_NOREPLACE)
4397  		error = -EEXIST;
4398  	if (new_type != LAST_NORM)
4399  		goto exit2;
4400  
4401  	error = mnt_want_write(old_path.mnt);
4402  	if (error)
4403  		goto exit2;
4404  
4405  retry_deleg:
4406  	trap = lock_rename(new_path.dentry, old_path.dentry);
4407  
4408  	old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4409  	error = PTR_ERR(old_dentry);
4410  	if (IS_ERR(old_dentry))
4411  		goto exit3;
4412  	/* source must exist */
4413  	error = -ENOENT;
4414  	if (d_is_negative(old_dentry))
4415  		goto exit4;
4416  	new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4417  	error = PTR_ERR(new_dentry);
4418  	if (IS_ERR(new_dentry))
4419  		goto exit4;
4420  	error = -EEXIST;
4421  	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4422  		goto exit5;
4423  	if (flags & RENAME_EXCHANGE) {
4424  		error = -ENOENT;
4425  		if (d_is_negative(new_dentry))
4426  			goto exit5;
4427  
4428  		if (!d_is_dir(new_dentry)) {
4429  			error = -ENOTDIR;
4430  			if (new_last.name[new_last.len])
4431  				goto exit5;
4432  		}
4433  	}
4434  	/* unless the source is a directory trailing slashes give -ENOTDIR */
4435  	if (!d_is_dir(old_dentry)) {
4436  		error = -ENOTDIR;
4437  		if (old_last.name[old_last.len])
4438  			goto exit5;
4439  		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4440  			goto exit5;
4441  	}
4442  	/* source should not be ancestor of target */
4443  	error = -EINVAL;
4444  	if (old_dentry == trap)
4445  		goto exit5;
4446  	/* target should not be an ancestor of source */
4447  	if (!(flags & RENAME_EXCHANGE))
4448  		error = -ENOTEMPTY;
4449  	if (new_dentry == trap)
4450  		goto exit5;
4451  
4452  	error = security_path_rename(&old_path, old_dentry,
4453  				     &new_path, new_dentry, flags);
4454  	if (error)
4455  		goto exit5;
4456  	error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4457  			   new_path.dentry->d_inode, new_dentry,
4458  			   &delegated_inode, flags);
4459  exit5:
4460  	dput(new_dentry);
4461  exit4:
4462  	dput(old_dentry);
4463  exit3:
4464  	unlock_rename(new_path.dentry, old_path.dentry);
4465  	if (delegated_inode) {
4466  		error = break_deleg_wait(&delegated_inode);
4467  		if (!error)
4468  			goto retry_deleg;
4469  	}
4470  	mnt_drop_write(old_path.mnt);
4471  exit2:
4472  	if (retry_estale(error, lookup_flags))
4473  		should_retry = true;
4474  	path_put(&new_path);
4475  exit1:
4476  	path_put(&old_path);
4477  	if (should_retry) {
4478  		should_retry = false;
4479  		lookup_flags |= LOOKUP_REVAL;
4480  		goto retry;
4481  	}
4482  put_both:
4483  	if (!IS_ERR(from))
4484  		putname(from);
4485  put_new:
4486  	if (!IS_ERR(to))
4487  		putname(to);
4488  	return error;
4489  }
4490  
4491  SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4492  		int, newdfd, const char __user *, newname, unsigned int, flags)
4493  {
4494  	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
4495  				flags);
4496  }
4497  
4498  SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4499  		int, newdfd, const char __user *, newname)
4500  {
4501  	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
4502  				0);
4503  }
4504  
4505  SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4506  {
4507  	return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
4508  				getname(newname), 0);
4509  }
4510  
4511  int readlink_copy(char __user *buffer, int buflen, const char *link)
4512  {
4513  	int len = PTR_ERR(link);
4514  	if (IS_ERR(link))
4515  		goto out;
4516  
4517  	len = strlen(link);
4518  	if (len > (unsigned) buflen)
4519  		len = buflen;
4520  	if (copy_to_user(buffer, link, len))
4521  		len = -EFAULT;
4522  out:
4523  	return len;
4524  }
4525  
4526  /**
4527   * vfs_readlink - copy symlink body into userspace buffer
4528   * @dentry: dentry on which to get symbolic link
4529   * @buffer: user memory pointer
4530   * @buflen: size of buffer
4531   *
4532   * Does not touch atime.  That's up to the caller if necessary
4533   *
4534   * Does not call security hook.
4535   */
4536  int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4537  {
4538  	struct inode *inode = d_inode(dentry);
4539  	DEFINE_DELAYED_CALL(done);
4540  	const char *link;
4541  	int res;
4542  
4543  	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4544  		if (unlikely(inode->i_op->readlink))
4545  			return inode->i_op->readlink(dentry, buffer, buflen);
4546  
4547  		if (!d_is_symlink(dentry))
4548  			return -EINVAL;
4549  
4550  		spin_lock(&inode->i_lock);
4551  		inode->i_opflags |= IOP_DEFAULT_READLINK;
4552  		spin_unlock(&inode->i_lock);
4553  	}
4554  
4555  	link = READ_ONCE(inode->i_link);
4556  	if (!link) {
4557  		link = inode->i_op->get_link(dentry, inode, &done);
4558  		if (IS_ERR(link))
4559  			return PTR_ERR(link);
4560  	}
4561  	res = readlink_copy(buffer, buflen, link);
4562  	do_delayed_call(&done);
4563  	return res;
4564  }
4565  EXPORT_SYMBOL(vfs_readlink);
4566  
4567  /**
4568   * vfs_get_link - get symlink body
4569   * @dentry: dentry on which to get symbolic link
4570   * @done: caller needs to free returned data with this
4571   *
4572   * Calls security hook and i_op->get_link() on the supplied inode.
4573   *
4574   * It does not touch atime.  That's up to the caller if necessary.
4575   *
4576   * Does not work on "special" symlinks like /proc/$$/fd/N
4577   */
4578  const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4579  {
4580  	const char *res = ERR_PTR(-EINVAL);
4581  	struct inode *inode = d_inode(dentry);
4582  
4583  	if (d_is_symlink(dentry)) {
4584  		res = ERR_PTR(security_inode_readlink(dentry));
4585  		if (!res)
4586  			res = inode->i_op->get_link(dentry, inode, done);
4587  	}
4588  	return res;
4589  }
4590  EXPORT_SYMBOL(vfs_get_link);
4591  
4592  /* get the link contents into pagecache */
4593  const char *page_get_link(struct dentry *dentry, struct inode *inode,
4594  			  struct delayed_call *callback)
4595  {
4596  	char *kaddr;
4597  	struct page *page;
4598  	struct address_space *mapping = inode->i_mapping;
4599  
4600  	if (!dentry) {
4601  		page = find_get_page(mapping, 0);
4602  		if (!page)
4603  			return ERR_PTR(-ECHILD);
4604  		if (!PageUptodate(page)) {
4605  			put_page(page);
4606  			return ERR_PTR(-ECHILD);
4607  		}
4608  	} else {
4609  		page = read_mapping_page(mapping, 0, NULL);
4610  		if (IS_ERR(page))
4611  			return (char*)page;
4612  	}
4613  	set_delayed_call(callback, page_put_link, page);
4614  	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4615  	kaddr = page_address(page);
4616  	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4617  	return kaddr;
4618  }
4619  
4620  EXPORT_SYMBOL(page_get_link);
4621  
4622  void page_put_link(void *arg)
4623  {
4624  	put_page(arg);
4625  }
4626  EXPORT_SYMBOL(page_put_link);
4627  
4628  int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4629  {
4630  	DEFINE_DELAYED_CALL(done);
4631  	int res = readlink_copy(buffer, buflen,
4632  				page_get_link(dentry, d_inode(dentry),
4633  					      &done));
4634  	do_delayed_call(&done);
4635  	return res;
4636  }
4637  EXPORT_SYMBOL(page_readlink);
4638  
4639  /*
4640   * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4641   */
4642  int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4643  {
4644  	struct address_space *mapping = inode->i_mapping;
4645  	struct page *page;
4646  	void *fsdata;
4647  	int err;
4648  	unsigned int flags = 0;
4649  	if (nofs)
4650  		flags |= AOP_FLAG_NOFS;
4651  
4652  retry:
4653  	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4654  				flags, &page, &fsdata);
4655  	if (err)
4656  		goto fail;
4657  
4658  	memcpy(page_address(page), symname, len-1);
4659  
4660  	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4661  							page, fsdata);
4662  	if (err < 0)
4663  		goto fail;
4664  	if (err < len-1)
4665  		goto retry;
4666  
4667  	mark_inode_dirty(inode);
4668  	return 0;
4669  fail:
4670  	return err;
4671  }
4672  EXPORT_SYMBOL(__page_symlink);
4673  
4674  int page_symlink(struct inode *inode, const char *symname, int len)
4675  {
4676  	return __page_symlink(inode, symname, len,
4677  			!mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4678  }
4679  EXPORT_SYMBOL(page_symlink);
4680  
4681  const struct inode_operations page_symlink_inode_operations = {
4682  	.get_link	= page_get_link,
4683  };
4684  EXPORT_SYMBOL(page_symlink_inode_operations);
4685