1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/fs.h> 21 #include <linux/namei.h> 22 #include <linux/pagemap.h> 23 #include <linux/fsnotify.h> 24 #include <linux/personality.h> 25 #include <linux/security.h> 26 #include <linux/ima.h> 27 #include <linux/syscalls.h> 28 #include <linux/mount.h> 29 #include <linux/audit.h> 30 #include <linux/capability.h> 31 #include <linux/file.h> 32 #include <linux/fcntl.h> 33 #include <linux/device_cgroup.h> 34 #include <linux/fs_struct.h> 35 #include <asm/uaccess.h> 36 37 #include "internal.h" 38 39 /* [Feb-1997 T. Schoebel-Theuer] 40 * Fundamental changes in the pathname lookup mechanisms (namei) 41 * were necessary because of omirr. The reason is that omirr needs 42 * to know the _real_ pathname, not the user-supplied one, in case 43 * of symlinks (and also when transname replacements occur). 44 * 45 * The new code replaces the old recursive symlink resolution with 46 * an iterative one (in case of non-nested symlink chains). It does 47 * this with calls to <fs>_follow_link(). 48 * As a side effect, dir_namei(), _namei() and follow_link() are now 49 * replaced with a single function lookup_dentry() that can handle all 50 * the special cases of the former code. 51 * 52 * With the new dcache, the pathname is stored at each inode, at least as 53 * long as the refcount of the inode is positive. As a side effect, the 54 * size of the dcache depends on the inode cache and thus is dynamic. 55 * 56 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 57 * resolution to correspond with current state of the code. 58 * 59 * Note that the symlink resolution is not *completely* iterative. 60 * There is still a significant amount of tail- and mid- recursion in 61 * the algorithm. Also, note that <fs>_readlink() is not used in 62 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 63 * may return different results than <fs>_follow_link(). Many virtual 64 * filesystems (including /proc) exhibit this behavior. 65 */ 66 67 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 68 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 69 * and the name already exists in form of a symlink, try to create the new 70 * name indicated by the symlink. The old code always complained that the 71 * name already exists, due to not following the symlink even if its target 72 * is nonexistent. The new semantics affects also mknod() and link() when 73 * the name is a symlink pointing to a non-existant name. 74 * 75 * I don't know which semantics is the right one, since I have no access 76 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 77 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 78 * "old" one. Personally, I think the new semantics is much more logical. 79 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 80 * file does succeed in both HP-UX and SunOs, but not in Solaris 81 * and in the old Linux semantics. 82 */ 83 84 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 85 * semantics. See the comments in "open_namei" and "do_link" below. 86 * 87 * [10-Sep-98 Alan Modra] Another symlink change. 88 */ 89 90 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 91 * inside the path - always follow. 92 * in the last component in creation/removal/renaming - never follow. 93 * if LOOKUP_FOLLOW passed - follow. 94 * if the pathname has trailing slashes - follow. 95 * otherwise - don't follow. 96 * (applied in that order). 97 * 98 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 99 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 100 * During the 2.4 we need to fix the userland stuff depending on it - 101 * hopefully we will be able to get rid of that wart in 2.5. So far only 102 * XEmacs seems to be relying on it... 103 */ 104 /* 105 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 106 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 107 * any extra contention... 108 */ 109 110 /* In order to reduce some races, while at the same time doing additional 111 * checking and hopefully speeding things up, we copy filenames to the 112 * kernel data space before using them.. 113 * 114 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 115 * PATH_MAX includes the nul terminator --RR. 116 */ 117 static int do_getname(const char __user *filename, char *page) 118 { 119 int retval; 120 unsigned long len = PATH_MAX; 121 122 if (!segment_eq(get_fs(), KERNEL_DS)) { 123 if ((unsigned long) filename >= TASK_SIZE) 124 return -EFAULT; 125 if (TASK_SIZE - (unsigned long) filename < PATH_MAX) 126 len = TASK_SIZE - (unsigned long) filename; 127 } 128 129 retval = strncpy_from_user(page, filename, len); 130 if (retval > 0) { 131 if (retval < len) 132 return 0; 133 return -ENAMETOOLONG; 134 } else if (!retval) 135 retval = -ENOENT; 136 return retval; 137 } 138 139 char * getname(const char __user * filename) 140 { 141 char *tmp, *result; 142 143 result = ERR_PTR(-ENOMEM); 144 tmp = __getname(); 145 if (tmp) { 146 int retval = do_getname(filename, tmp); 147 148 result = tmp; 149 if (retval < 0) { 150 __putname(tmp); 151 result = ERR_PTR(retval); 152 } 153 } 154 audit_getname(result); 155 return result; 156 } 157 158 #ifdef CONFIG_AUDITSYSCALL 159 void putname(const char *name) 160 { 161 if (unlikely(!audit_dummy_context())) 162 audit_putname(name); 163 else 164 __putname(name); 165 } 166 EXPORT_SYMBOL(putname); 167 #endif 168 169 /* 170 * This does basic POSIX ACL permission checking 171 */ 172 static int acl_permission_check(struct inode *inode, int mask, unsigned int flags, 173 int (*check_acl)(struct inode *inode, int mask, unsigned int flags)) 174 { 175 umode_t mode = inode->i_mode; 176 177 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 178 179 if (current_fsuid() == inode->i_uid) 180 mode >>= 6; 181 else { 182 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) { 183 int error = check_acl(inode, mask, flags); 184 if (error != -EAGAIN) 185 return error; 186 } 187 188 if (in_group_p(inode->i_gid)) 189 mode >>= 3; 190 } 191 192 /* 193 * If the DACs are ok we don't need any capability check. 194 */ 195 if ((mask & ~mode) == 0) 196 return 0; 197 return -EACCES; 198 } 199 200 /** 201 * generic_permission - check for access rights on a Posix-like filesystem 202 * @inode: inode to check access rights for 203 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 204 * @check_acl: optional callback to check for Posix ACLs 205 * @flags: IPERM_FLAG_ flags. 206 * 207 * Used to check for read/write/execute permissions on a file. 208 * We use "fsuid" for this, letting us set arbitrary permissions 209 * for filesystem access without changing the "normal" uids which 210 * are used for other things. 211 * 212 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 213 * request cannot be satisfied (eg. requires blocking or too much complexity). 214 * It would then be called again in ref-walk mode. 215 */ 216 int generic_permission(struct inode *inode, int mask, unsigned int flags, 217 int (*check_acl)(struct inode *inode, int mask, unsigned int flags)) 218 { 219 int ret; 220 221 /* 222 * Do the basic POSIX ACL permission checks. 223 */ 224 ret = acl_permission_check(inode, mask, flags, check_acl); 225 if (ret != -EACCES) 226 return ret; 227 228 /* 229 * Read/write DACs are always overridable. 230 * Executable DACs are overridable if at least one exec bit is set. 231 */ 232 if (!(mask & MAY_EXEC) || execute_ok(inode)) 233 if (capable(CAP_DAC_OVERRIDE)) 234 return 0; 235 236 /* 237 * Searching includes executable on directories, else just read. 238 */ 239 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 240 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE))) 241 if (capable(CAP_DAC_READ_SEARCH)) 242 return 0; 243 244 return -EACCES; 245 } 246 247 /** 248 * inode_permission - check for access rights to a given inode 249 * @inode: inode to check permission on 250 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 251 * 252 * Used to check for read/write/execute permissions on an inode. 253 * We use "fsuid" for this, letting us set arbitrary permissions 254 * for filesystem access without changing the "normal" uids which 255 * are used for other things. 256 */ 257 int inode_permission(struct inode *inode, int mask) 258 { 259 int retval; 260 261 if (mask & MAY_WRITE) { 262 umode_t mode = inode->i_mode; 263 264 /* 265 * Nobody gets write access to a read-only fs. 266 */ 267 if (IS_RDONLY(inode) && 268 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 269 return -EROFS; 270 271 /* 272 * Nobody gets write access to an immutable file. 273 */ 274 if (IS_IMMUTABLE(inode)) 275 return -EACCES; 276 } 277 278 if (inode->i_op->permission) 279 retval = inode->i_op->permission(inode, mask, 0); 280 else 281 retval = generic_permission(inode, mask, 0, 282 inode->i_op->check_acl); 283 284 if (retval) 285 return retval; 286 287 retval = devcgroup_inode_permission(inode, mask); 288 if (retval) 289 return retval; 290 291 return security_inode_permission(inode, mask); 292 } 293 294 /** 295 * file_permission - check for additional access rights to a given file 296 * @file: file to check access rights for 297 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 298 * 299 * Used to check for read/write/execute permissions on an already opened 300 * file. 301 * 302 * Note: 303 * Do not use this function in new code. All access checks should 304 * be done using inode_permission(). 305 */ 306 int file_permission(struct file *file, int mask) 307 { 308 return inode_permission(file->f_path.dentry->d_inode, mask); 309 } 310 311 /* 312 * get_write_access() gets write permission for a file. 313 * put_write_access() releases this write permission. 314 * This is used for regular files. 315 * We cannot support write (and maybe mmap read-write shared) accesses and 316 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode 317 * can have the following values: 318 * 0: no writers, no VM_DENYWRITE mappings 319 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist 320 * > 0: (i_writecount) users are writing to the file. 321 * 322 * Normally we operate on that counter with atomic_{inc,dec} and it's safe 323 * except for the cases where we don't hold i_writecount yet. Then we need to 324 * use {get,deny}_write_access() - these functions check the sign and refuse 325 * to do the change if sign is wrong. Exclusion between them is provided by 326 * the inode->i_lock spinlock. 327 */ 328 329 int get_write_access(struct inode * inode) 330 { 331 spin_lock(&inode->i_lock); 332 if (atomic_read(&inode->i_writecount) < 0) { 333 spin_unlock(&inode->i_lock); 334 return -ETXTBSY; 335 } 336 atomic_inc(&inode->i_writecount); 337 spin_unlock(&inode->i_lock); 338 339 return 0; 340 } 341 342 int deny_write_access(struct file * file) 343 { 344 struct inode *inode = file->f_path.dentry->d_inode; 345 346 spin_lock(&inode->i_lock); 347 if (atomic_read(&inode->i_writecount) > 0) { 348 spin_unlock(&inode->i_lock); 349 return -ETXTBSY; 350 } 351 atomic_dec(&inode->i_writecount); 352 spin_unlock(&inode->i_lock); 353 354 return 0; 355 } 356 357 /** 358 * path_get - get a reference to a path 359 * @path: path to get the reference to 360 * 361 * Given a path increment the reference count to the dentry and the vfsmount. 362 */ 363 void path_get(struct path *path) 364 { 365 mntget(path->mnt); 366 dget(path->dentry); 367 } 368 EXPORT_SYMBOL(path_get); 369 370 /** 371 * path_put - put a reference to a path 372 * @path: path to put the reference to 373 * 374 * Given a path decrement the reference count to the dentry and the vfsmount. 375 */ 376 void path_put(struct path *path) 377 { 378 dput(path->dentry); 379 mntput(path->mnt); 380 } 381 EXPORT_SYMBOL(path_put); 382 383 /** 384 * nameidata_drop_rcu - drop this nameidata out of rcu-walk 385 * @nd: nameidata pathwalk data to drop 386 * Returns: 0 on success, -ECHILD on failure 387 * 388 * Path walking has 2 modes, rcu-walk and ref-walk (see 389 * Documentation/filesystems/path-lookup.txt). __drop_rcu* functions attempt 390 * to drop out of rcu-walk mode and take normal reference counts on dentries 391 * and vfsmounts to transition to rcu-walk mode. __drop_rcu* functions take 392 * refcounts at the last known good point before rcu-walk got stuck, so 393 * ref-walk may continue from there. If this is not successful (eg. a seqcount 394 * has changed), then failure is returned and path walk restarts from the 395 * beginning in ref-walk mode. 396 * 397 * nameidata_drop_rcu attempts to drop the current nd->path and nd->root into 398 * ref-walk. Must be called from rcu-walk context. 399 */ 400 static int nameidata_drop_rcu(struct nameidata *nd) 401 { 402 struct fs_struct *fs = current->fs; 403 struct dentry *dentry = nd->path.dentry; 404 405 BUG_ON(!(nd->flags & LOOKUP_RCU)); 406 if (nd->root.mnt) { 407 spin_lock(&fs->lock); 408 if (nd->root.mnt != fs->root.mnt || 409 nd->root.dentry != fs->root.dentry) 410 goto err_root; 411 } 412 spin_lock(&dentry->d_lock); 413 if (!__d_rcu_to_refcount(dentry, nd->seq)) 414 goto err; 415 BUG_ON(nd->inode != dentry->d_inode); 416 spin_unlock(&dentry->d_lock); 417 if (nd->root.mnt) { 418 path_get(&nd->root); 419 spin_unlock(&fs->lock); 420 } 421 mntget(nd->path.mnt); 422 423 rcu_read_unlock(); 424 br_read_unlock(vfsmount_lock); 425 nd->flags &= ~LOOKUP_RCU; 426 return 0; 427 err: 428 spin_unlock(&dentry->d_lock); 429 err_root: 430 if (nd->root.mnt) 431 spin_unlock(&fs->lock); 432 return -ECHILD; 433 } 434 435 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing. */ 436 static inline int nameidata_drop_rcu_maybe(struct nameidata *nd) 437 { 438 if (nd->flags & LOOKUP_RCU) 439 return nameidata_drop_rcu(nd); 440 return 0; 441 } 442 443 /** 444 * nameidata_dentry_drop_rcu - drop nameidata and dentry out of rcu-walk 445 * @nd: nameidata pathwalk data to drop 446 * @dentry: dentry to drop 447 * Returns: 0 on success, -ECHILD on failure 448 * 449 * nameidata_dentry_drop_rcu attempts to drop the current nd->path and nd->root, 450 * and dentry into ref-walk. @dentry must be a path found by a do_lookup call on 451 * @nd. Must be called from rcu-walk context. 452 */ 453 static int nameidata_dentry_drop_rcu(struct nameidata *nd, struct dentry *dentry) 454 { 455 struct fs_struct *fs = current->fs; 456 struct dentry *parent = nd->path.dentry; 457 458 /* 459 * It can be possible to revalidate the dentry that we started 460 * the path walk with. force_reval_path may also revalidate the 461 * dentry already committed to the nameidata. 462 */ 463 if (unlikely(parent == dentry)) 464 return nameidata_drop_rcu(nd); 465 466 BUG_ON(!(nd->flags & LOOKUP_RCU)); 467 if (nd->root.mnt) { 468 spin_lock(&fs->lock); 469 if (nd->root.mnt != fs->root.mnt || 470 nd->root.dentry != fs->root.dentry) 471 goto err_root; 472 } 473 spin_lock(&parent->d_lock); 474 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 475 if (!__d_rcu_to_refcount(dentry, nd->seq)) 476 goto err; 477 /* 478 * If the sequence check on the child dentry passed, then the child has 479 * not been removed from its parent. This means the parent dentry must 480 * be valid and able to take a reference at this point. 481 */ 482 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent); 483 BUG_ON(!parent->d_count); 484 parent->d_count++; 485 spin_unlock(&dentry->d_lock); 486 spin_unlock(&parent->d_lock); 487 if (nd->root.mnt) { 488 path_get(&nd->root); 489 spin_unlock(&fs->lock); 490 } 491 mntget(nd->path.mnt); 492 493 rcu_read_unlock(); 494 br_read_unlock(vfsmount_lock); 495 nd->flags &= ~LOOKUP_RCU; 496 return 0; 497 err: 498 spin_unlock(&dentry->d_lock); 499 spin_unlock(&parent->d_lock); 500 err_root: 501 if (nd->root.mnt) 502 spin_unlock(&fs->lock); 503 return -ECHILD; 504 } 505 506 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing. */ 507 static inline int nameidata_dentry_drop_rcu_maybe(struct nameidata *nd, struct dentry *dentry) 508 { 509 if (nd->flags & LOOKUP_RCU) 510 return nameidata_dentry_drop_rcu(nd, dentry); 511 return 0; 512 } 513 514 /** 515 * nameidata_drop_rcu_last - drop nameidata ending path walk out of rcu-walk 516 * @nd: nameidata pathwalk data to drop 517 * Returns: 0 on success, -ECHILD on failure 518 * 519 * nameidata_drop_rcu_last attempts to drop the current nd->path into ref-walk. 520 * nd->path should be the final element of the lookup, so nd->root is discarded. 521 * Must be called from rcu-walk context. 522 */ 523 static int nameidata_drop_rcu_last(struct nameidata *nd) 524 { 525 struct dentry *dentry = nd->path.dentry; 526 527 BUG_ON(!(nd->flags & LOOKUP_RCU)); 528 nd->flags &= ~LOOKUP_RCU; 529 nd->root.mnt = NULL; 530 spin_lock(&dentry->d_lock); 531 if (!__d_rcu_to_refcount(dentry, nd->seq)) 532 goto err_unlock; 533 BUG_ON(nd->inode != dentry->d_inode); 534 spin_unlock(&dentry->d_lock); 535 536 mntget(nd->path.mnt); 537 538 rcu_read_unlock(); 539 br_read_unlock(vfsmount_lock); 540 541 return 0; 542 543 err_unlock: 544 spin_unlock(&dentry->d_lock); 545 rcu_read_unlock(); 546 br_read_unlock(vfsmount_lock); 547 return -ECHILD; 548 } 549 550 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing. */ 551 static inline int nameidata_drop_rcu_last_maybe(struct nameidata *nd) 552 { 553 if (likely(nd->flags & LOOKUP_RCU)) 554 return nameidata_drop_rcu_last(nd); 555 return 0; 556 } 557 558 /** 559 * release_open_intent - free up open intent resources 560 * @nd: pointer to nameidata 561 */ 562 void release_open_intent(struct nameidata *nd) 563 { 564 if (nd->intent.open.file->f_path.dentry == NULL) 565 put_filp(nd->intent.open.file); 566 else 567 fput(nd->intent.open.file); 568 } 569 570 /* 571 * Call d_revalidate and handle filesystems that request rcu-walk 572 * to be dropped. This may be called and return in rcu-walk mode, 573 * regardless of success or error. If -ECHILD is returned, the caller 574 * must return -ECHILD back up the path walk stack so path walk may 575 * be restarted in ref-walk mode. 576 */ 577 static int d_revalidate(struct dentry *dentry, struct nameidata *nd) 578 { 579 int status; 580 581 status = dentry->d_op->d_revalidate(dentry, nd); 582 if (status == -ECHILD) { 583 if (nameidata_dentry_drop_rcu(nd, dentry)) 584 return status; 585 status = dentry->d_op->d_revalidate(dentry, nd); 586 } 587 588 return status; 589 } 590 591 static inline struct dentry * 592 do_revalidate(struct dentry *dentry, struct nameidata *nd) 593 { 594 int status; 595 596 status = d_revalidate(dentry, nd); 597 if (unlikely(status <= 0)) { 598 /* 599 * The dentry failed validation. 600 * If d_revalidate returned 0 attempt to invalidate 601 * the dentry otherwise d_revalidate is asking us 602 * to return a fail status. 603 */ 604 if (status < 0) { 605 /* If we're in rcu-walk, we don't have a ref */ 606 if (!(nd->flags & LOOKUP_RCU)) 607 dput(dentry); 608 dentry = ERR_PTR(status); 609 610 } else { 611 /* Don't d_invalidate in rcu-walk mode */ 612 if (nameidata_dentry_drop_rcu_maybe(nd, dentry)) 613 return ERR_PTR(-ECHILD); 614 if (!d_invalidate(dentry)) { 615 dput(dentry); 616 dentry = NULL; 617 } 618 } 619 } 620 return dentry; 621 } 622 623 static inline int need_reval_dot(struct dentry *dentry) 624 { 625 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE))) 626 return 0; 627 628 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT))) 629 return 0; 630 631 return 1; 632 } 633 634 /* 635 * force_reval_path - force revalidation of a dentry 636 * 637 * In some situations the path walking code will trust dentries without 638 * revalidating them. This causes problems for filesystems that depend on 639 * d_revalidate to handle file opens (e.g. NFSv4). When FS_REVAL_DOT is set 640 * (which indicates that it's possible for the dentry to go stale), force 641 * a d_revalidate call before proceeding. 642 * 643 * Returns 0 if the revalidation was successful. If the revalidation fails, 644 * either return the error returned by d_revalidate or -ESTALE if the 645 * revalidation it just returned 0. If d_revalidate returns 0, we attempt to 646 * invalidate the dentry. It's up to the caller to handle putting references 647 * to the path if necessary. 648 */ 649 static int 650 force_reval_path(struct path *path, struct nameidata *nd) 651 { 652 int status; 653 struct dentry *dentry = path->dentry; 654 655 /* 656 * only check on filesystems where it's possible for the dentry to 657 * become stale. 658 */ 659 if (!need_reval_dot(dentry)) 660 return 0; 661 662 status = d_revalidate(dentry, nd); 663 if (status > 0) 664 return 0; 665 666 if (!status) { 667 /* Don't d_invalidate in rcu-walk mode */ 668 if (nameidata_drop_rcu(nd)) 669 return -ECHILD; 670 d_invalidate(dentry); 671 status = -ESTALE; 672 } 673 return status; 674 } 675 676 /* 677 * Short-cut version of permission(), for calling on directories 678 * during pathname resolution. Combines parts of permission() 679 * and generic_permission(), and tests ONLY for MAY_EXEC permission. 680 * 681 * If appropriate, check DAC only. If not appropriate, or 682 * short-cut DAC fails, then call ->permission() to do more 683 * complete permission check. 684 */ 685 static inline int exec_permission(struct inode *inode, unsigned int flags) 686 { 687 int ret; 688 689 if (inode->i_op->permission) { 690 ret = inode->i_op->permission(inode, MAY_EXEC, flags); 691 } else { 692 ret = acl_permission_check(inode, MAY_EXEC, flags, 693 inode->i_op->check_acl); 694 } 695 if (likely(!ret)) 696 goto ok; 697 if (ret == -ECHILD) 698 return ret; 699 700 if (capable(CAP_DAC_OVERRIDE) || capable(CAP_DAC_READ_SEARCH)) 701 goto ok; 702 703 return ret; 704 ok: 705 return security_inode_exec_permission(inode, flags); 706 } 707 708 static __always_inline void set_root(struct nameidata *nd) 709 { 710 if (!nd->root.mnt) 711 get_fs_root(current->fs, &nd->root); 712 } 713 714 static int link_path_walk(const char *, struct nameidata *); 715 716 static __always_inline void set_root_rcu(struct nameidata *nd) 717 { 718 if (!nd->root.mnt) { 719 struct fs_struct *fs = current->fs; 720 unsigned seq; 721 722 do { 723 seq = read_seqcount_begin(&fs->seq); 724 nd->root = fs->root; 725 } while (read_seqcount_retry(&fs->seq, seq)); 726 } 727 } 728 729 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link) 730 { 731 int ret; 732 733 if (IS_ERR(link)) 734 goto fail; 735 736 if (*link == '/') { 737 set_root(nd); 738 path_put(&nd->path); 739 nd->path = nd->root; 740 path_get(&nd->root); 741 } 742 nd->inode = nd->path.dentry->d_inode; 743 744 ret = link_path_walk(link, nd); 745 return ret; 746 fail: 747 path_put(&nd->path); 748 return PTR_ERR(link); 749 } 750 751 static void path_put_conditional(struct path *path, struct nameidata *nd) 752 { 753 dput(path->dentry); 754 if (path->mnt != nd->path.mnt) 755 mntput(path->mnt); 756 } 757 758 static inline void path_to_nameidata(const struct path *path, 759 struct nameidata *nd) 760 { 761 if (!(nd->flags & LOOKUP_RCU)) { 762 dput(nd->path.dentry); 763 if (nd->path.mnt != path->mnt) 764 mntput(nd->path.mnt); 765 } 766 nd->path.mnt = path->mnt; 767 nd->path.dentry = path->dentry; 768 } 769 770 static __always_inline int 771 __do_follow_link(const struct path *link, struct nameidata *nd, void **p) 772 { 773 int error; 774 struct dentry *dentry = link->dentry; 775 776 touch_atime(link->mnt, dentry); 777 nd_set_link(nd, NULL); 778 779 if (link->mnt == nd->path.mnt) 780 mntget(link->mnt); 781 782 nd->last_type = LAST_BIND; 783 *p = dentry->d_inode->i_op->follow_link(dentry, nd); 784 error = PTR_ERR(*p); 785 if (!IS_ERR(*p)) { 786 char *s = nd_get_link(nd); 787 error = 0; 788 if (s) 789 error = __vfs_follow_link(nd, s); 790 else if (nd->last_type == LAST_BIND) { 791 error = force_reval_path(&nd->path, nd); 792 if (error) 793 path_put(&nd->path); 794 } 795 } 796 return error; 797 } 798 799 /* 800 * This limits recursive symlink follows to 8, while 801 * limiting consecutive symlinks to 40. 802 * 803 * Without that kind of total limit, nasty chains of consecutive 804 * symlinks can cause almost arbitrarily long lookups. 805 */ 806 static inline int do_follow_link(struct path *path, struct nameidata *nd) 807 { 808 void *cookie; 809 int err = -ELOOP; 810 if (current->link_count >= MAX_NESTED_LINKS) 811 goto loop; 812 if (current->total_link_count >= 40) 813 goto loop; 814 BUG_ON(nd->depth >= MAX_NESTED_LINKS); 815 cond_resched(); 816 err = security_inode_follow_link(path->dentry, nd); 817 if (err) 818 goto loop; 819 current->link_count++; 820 current->total_link_count++; 821 nd->depth++; 822 err = __do_follow_link(path, nd, &cookie); 823 if (!IS_ERR(cookie) && path->dentry->d_inode->i_op->put_link) 824 path->dentry->d_inode->i_op->put_link(path->dentry, nd, cookie); 825 path_put(path); 826 current->link_count--; 827 nd->depth--; 828 return err; 829 loop: 830 path_put_conditional(path, nd); 831 path_put(&nd->path); 832 return err; 833 } 834 835 static int follow_up_rcu(struct path *path) 836 { 837 struct vfsmount *parent; 838 struct dentry *mountpoint; 839 840 parent = path->mnt->mnt_parent; 841 if (parent == path->mnt) 842 return 0; 843 mountpoint = path->mnt->mnt_mountpoint; 844 path->dentry = mountpoint; 845 path->mnt = parent; 846 return 1; 847 } 848 849 int follow_up(struct path *path) 850 { 851 struct vfsmount *parent; 852 struct dentry *mountpoint; 853 854 br_read_lock(vfsmount_lock); 855 parent = path->mnt->mnt_parent; 856 if (parent == path->mnt) { 857 br_read_unlock(vfsmount_lock); 858 return 0; 859 } 860 mntget(parent); 861 mountpoint = dget(path->mnt->mnt_mountpoint); 862 br_read_unlock(vfsmount_lock); 863 dput(path->dentry); 864 path->dentry = mountpoint; 865 mntput(path->mnt); 866 path->mnt = parent; 867 return 1; 868 } 869 870 /* 871 * Perform an automount 872 * - return -EISDIR to tell follow_managed() to stop and return the path we 873 * were called with. 874 */ 875 static int follow_automount(struct path *path, unsigned flags, 876 bool *need_mntput) 877 { 878 struct vfsmount *mnt; 879 int err; 880 881 if (!path->dentry->d_op || !path->dentry->d_op->d_automount) 882 return -EREMOTE; 883 884 /* We don't want to mount if someone supplied AT_NO_AUTOMOUNT 885 * and this is the terminal part of the path. 886 */ 887 if ((flags & LOOKUP_NO_AUTOMOUNT) && !(flags & LOOKUP_CONTINUE)) 888 return -EISDIR; /* we actually want to stop here */ 889 890 /* We want to mount if someone is trying to open/create a file of any 891 * type under the mountpoint, wants to traverse through the mountpoint 892 * or wants to open the mounted directory. 893 * 894 * We don't want to mount if someone's just doing a stat and they've 895 * set AT_SYMLINK_NOFOLLOW - unless they're stat'ing a directory and 896 * appended a '/' to the name. 897 */ 898 if (!(flags & LOOKUP_FOLLOW) && 899 !(flags & (LOOKUP_CONTINUE | LOOKUP_DIRECTORY | 900 LOOKUP_OPEN | LOOKUP_CREATE))) 901 return -EISDIR; 902 903 current->total_link_count++; 904 if (current->total_link_count >= 40) 905 return -ELOOP; 906 907 mnt = path->dentry->d_op->d_automount(path); 908 if (IS_ERR(mnt)) { 909 /* 910 * The filesystem is allowed to return -EISDIR here to indicate 911 * it doesn't want to automount. For instance, autofs would do 912 * this so that its userspace daemon can mount on this dentry. 913 * 914 * However, we can only permit this if it's a terminal point in 915 * the path being looked up; if it wasn't then the remainder of 916 * the path is inaccessible and we should say so. 917 */ 918 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_CONTINUE)) 919 return -EREMOTE; 920 return PTR_ERR(mnt); 921 } 922 923 if (!mnt) /* mount collision */ 924 return 0; 925 926 /* The new mount record should have at least 2 refs to prevent it being 927 * expired before we get a chance to add it 928 */ 929 BUG_ON(mnt_get_count(mnt) < 2); 930 931 if (mnt->mnt_sb == path->mnt->mnt_sb && 932 mnt->mnt_root == path->dentry) { 933 mnt_clear_expiry(mnt); 934 mntput(mnt); 935 mntput(mnt); 936 return -ELOOP; 937 } 938 939 /* We need to add the mountpoint to the parent. The filesystem may 940 * have placed it on an expiry list, and so we need to make sure it 941 * won't be expired under us if do_add_mount() fails (do_add_mount() 942 * will eat a reference unconditionally). 943 */ 944 mntget(mnt); 945 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 946 switch (err) { 947 case -EBUSY: 948 /* Someone else made a mount here whilst we were busy */ 949 err = 0; 950 default: 951 mnt_clear_expiry(mnt); 952 mntput(mnt); 953 mntput(mnt); 954 return err; 955 case 0: 956 mntput(mnt); 957 dput(path->dentry); 958 if (*need_mntput) 959 mntput(path->mnt); 960 path->mnt = mnt; 961 path->dentry = dget(mnt->mnt_root); 962 *need_mntput = true; 963 return 0; 964 } 965 } 966 967 /* 968 * Handle a dentry that is managed in some way. 969 * - Flagged for transit management (autofs) 970 * - Flagged as mountpoint 971 * - Flagged as automount point 972 * 973 * This may only be called in refwalk mode. 974 * 975 * Serialization is taken care of in namespace.c 976 */ 977 static int follow_managed(struct path *path, unsigned flags) 978 { 979 unsigned managed; 980 bool need_mntput = false; 981 int ret; 982 983 /* Given that we're not holding a lock here, we retain the value in a 984 * local variable for each dentry as we look at it so that we don't see 985 * the components of that value change under us */ 986 while (managed = ACCESS_ONCE(path->dentry->d_flags), 987 managed &= DCACHE_MANAGED_DENTRY, 988 unlikely(managed != 0)) { 989 /* Allow the filesystem to manage the transit without i_mutex 990 * being held. */ 991 if (managed & DCACHE_MANAGE_TRANSIT) { 992 BUG_ON(!path->dentry->d_op); 993 BUG_ON(!path->dentry->d_op->d_manage); 994 ret = path->dentry->d_op->d_manage(path->dentry, 995 false, false); 996 if (ret < 0) 997 return ret == -EISDIR ? 0 : ret; 998 } 999 1000 /* Transit to a mounted filesystem. */ 1001 if (managed & DCACHE_MOUNTED) { 1002 struct vfsmount *mounted = lookup_mnt(path); 1003 if (mounted) { 1004 dput(path->dentry); 1005 if (need_mntput) 1006 mntput(path->mnt); 1007 path->mnt = mounted; 1008 path->dentry = dget(mounted->mnt_root); 1009 need_mntput = true; 1010 continue; 1011 } 1012 1013 /* Something is mounted on this dentry in another 1014 * namespace and/or whatever was mounted there in this 1015 * namespace got unmounted before we managed to get the 1016 * vfsmount_lock */ 1017 } 1018 1019 /* Handle an automount point */ 1020 if (managed & DCACHE_NEED_AUTOMOUNT) { 1021 ret = follow_automount(path, flags, &need_mntput); 1022 if (ret < 0) 1023 return ret == -EISDIR ? 0 : ret; 1024 continue; 1025 } 1026 1027 /* We didn't change the current path point */ 1028 break; 1029 } 1030 return 0; 1031 } 1032 1033 int follow_down_one(struct path *path) 1034 { 1035 struct vfsmount *mounted; 1036 1037 mounted = lookup_mnt(path); 1038 if (mounted) { 1039 dput(path->dentry); 1040 mntput(path->mnt); 1041 path->mnt = mounted; 1042 path->dentry = dget(mounted->mnt_root); 1043 return 1; 1044 } 1045 return 0; 1046 } 1047 1048 /* 1049 * Skip to top of mountpoint pile in rcuwalk mode. We abort the rcu-walk if we 1050 * meet a managed dentry and we're not walking to "..". True is returned to 1051 * continue, false to abort. 1052 */ 1053 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1054 struct inode **inode, bool reverse_transit) 1055 { 1056 while (d_mountpoint(path->dentry)) { 1057 struct vfsmount *mounted; 1058 if (unlikely(path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) && 1059 !reverse_transit && 1060 path->dentry->d_op->d_manage(path->dentry, false, true) < 0) 1061 return false; 1062 mounted = __lookup_mnt(path->mnt, path->dentry, 1); 1063 if (!mounted) 1064 break; 1065 path->mnt = mounted; 1066 path->dentry = mounted->mnt_root; 1067 nd->seq = read_seqcount_begin(&path->dentry->d_seq); 1068 *inode = path->dentry->d_inode; 1069 } 1070 1071 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT)) 1072 return reverse_transit; 1073 return true; 1074 } 1075 1076 static int follow_dotdot_rcu(struct nameidata *nd) 1077 { 1078 struct inode *inode = nd->inode; 1079 1080 set_root_rcu(nd); 1081 1082 while (1) { 1083 if (nd->path.dentry == nd->root.dentry && 1084 nd->path.mnt == nd->root.mnt) { 1085 break; 1086 } 1087 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1088 struct dentry *old = nd->path.dentry; 1089 struct dentry *parent = old->d_parent; 1090 unsigned seq; 1091 1092 seq = read_seqcount_begin(&parent->d_seq); 1093 if (read_seqcount_retry(&old->d_seq, nd->seq)) 1094 return -ECHILD; 1095 inode = parent->d_inode; 1096 nd->path.dentry = parent; 1097 nd->seq = seq; 1098 break; 1099 } 1100 if (!follow_up_rcu(&nd->path)) 1101 break; 1102 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1103 inode = nd->path.dentry->d_inode; 1104 } 1105 __follow_mount_rcu(nd, &nd->path, &inode, true); 1106 nd->inode = inode; 1107 1108 return 0; 1109 } 1110 1111 /* 1112 * Follow down to the covering mount currently visible to userspace. At each 1113 * point, the filesystem owning that dentry may be queried as to whether the 1114 * caller is permitted to proceed or not. 1115 * 1116 * Care must be taken as namespace_sem may be held (indicated by mounting_here 1117 * being true). 1118 */ 1119 int follow_down(struct path *path, bool mounting_here) 1120 { 1121 unsigned managed; 1122 int ret; 1123 1124 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1125 unlikely(managed & DCACHE_MANAGED_DENTRY)) { 1126 /* Allow the filesystem to manage the transit without i_mutex 1127 * being held. 1128 * 1129 * We indicate to the filesystem if someone is trying to mount 1130 * something here. This gives autofs the chance to deny anyone 1131 * other than its daemon the right to mount on its 1132 * superstructure. 1133 * 1134 * The filesystem may sleep at this point. 1135 */ 1136 if (managed & DCACHE_MANAGE_TRANSIT) { 1137 BUG_ON(!path->dentry->d_op); 1138 BUG_ON(!path->dentry->d_op->d_manage); 1139 ret = path->dentry->d_op->d_manage( 1140 path->dentry, mounting_here, false); 1141 if (ret < 0) 1142 return ret == -EISDIR ? 0 : ret; 1143 } 1144 1145 /* Transit to a mounted filesystem. */ 1146 if (managed & DCACHE_MOUNTED) { 1147 struct vfsmount *mounted = lookup_mnt(path); 1148 if (!mounted) 1149 break; 1150 dput(path->dentry); 1151 mntput(path->mnt); 1152 path->mnt = mounted; 1153 path->dentry = dget(mounted->mnt_root); 1154 continue; 1155 } 1156 1157 /* Don't handle automount points here */ 1158 break; 1159 } 1160 return 0; 1161 } 1162 1163 /* 1164 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() 1165 */ 1166 static void follow_mount(struct path *path) 1167 { 1168 while (d_mountpoint(path->dentry)) { 1169 struct vfsmount *mounted = lookup_mnt(path); 1170 if (!mounted) 1171 break; 1172 dput(path->dentry); 1173 mntput(path->mnt); 1174 path->mnt = mounted; 1175 path->dentry = dget(mounted->mnt_root); 1176 } 1177 } 1178 1179 static void follow_dotdot(struct nameidata *nd) 1180 { 1181 set_root(nd); 1182 1183 while(1) { 1184 struct dentry *old = nd->path.dentry; 1185 1186 if (nd->path.dentry == nd->root.dentry && 1187 nd->path.mnt == nd->root.mnt) { 1188 break; 1189 } 1190 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1191 /* rare case of legitimate dget_parent()... */ 1192 nd->path.dentry = dget_parent(nd->path.dentry); 1193 dput(old); 1194 break; 1195 } 1196 if (!follow_up(&nd->path)) 1197 break; 1198 } 1199 follow_mount(&nd->path); 1200 nd->inode = nd->path.dentry->d_inode; 1201 } 1202 1203 /* 1204 * Allocate a dentry with name and parent, and perform a parent 1205 * directory ->lookup on it. Returns the new dentry, or ERR_PTR 1206 * on error. parent->d_inode->i_mutex must be held. d_lookup must 1207 * have verified that no child exists while under i_mutex. 1208 */ 1209 static struct dentry *d_alloc_and_lookup(struct dentry *parent, 1210 struct qstr *name, struct nameidata *nd) 1211 { 1212 struct inode *inode = parent->d_inode; 1213 struct dentry *dentry; 1214 struct dentry *old; 1215 1216 /* Don't create child dentry for a dead directory. */ 1217 if (unlikely(IS_DEADDIR(inode))) 1218 return ERR_PTR(-ENOENT); 1219 1220 dentry = d_alloc(parent, name); 1221 if (unlikely(!dentry)) 1222 return ERR_PTR(-ENOMEM); 1223 1224 old = inode->i_op->lookup(inode, dentry, nd); 1225 if (unlikely(old)) { 1226 dput(dentry); 1227 dentry = old; 1228 } 1229 return dentry; 1230 } 1231 1232 /* 1233 * It's more convoluted than I'd like it to be, but... it's still fairly 1234 * small and for now I'd prefer to have fast path as straight as possible. 1235 * It _is_ time-critical. 1236 */ 1237 static int do_lookup(struct nameidata *nd, struct qstr *name, 1238 struct path *path, struct inode **inode) 1239 { 1240 struct vfsmount *mnt = nd->path.mnt; 1241 struct dentry *dentry, *parent = nd->path.dentry; 1242 struct inode *dir; 1243 int err; 1244 1245 /* 1246 * See if the low-level filesystem might want 1247 * to use its own hash.. 1248 */ 1249 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 1250 err = parent->d_op->d_hash(parent, nd->inode, name); 1251 if (err < 0) 1252 return err; 1253 } 1254 1255 /* 1256 * Rename seqlock is not required here because in the off chance 1257 * of a false negative due to a concurrent rename, we're going to 1258 * do the non-racy lookup, below. 1259 */ 1260 if (nd->flags & LOOKUP_RCU) { 1261 unsigned seq; 1262 1263 *inode = nd->inode; 1264 dentry = __d_lookup_rcu(parent, name, &seq, inode); 1265 if (!dentry) { 1266 if (nameidata_drop_rcu(nd)) 1267 return -ECHILD; 1268 goto need_lookup; 1269 } 1270 /* Memory barrier in read_seqcount_begin of child is enough */ 1271 if (__read_seqcount_retry(&parent->d_seq, nd->seq)) 1272 return -ECHILD; 1273 1274 nd->seq = seq; 1275 if (dentry->d_flags & DCACHE_OP_REVALIDATE) 1276 goto need_revalidate; 1277 done2: 1278 path->mnt = mnt; 1279 path->dentry = dentry; 1280 if (likely(__follow_mount_rcu(nd, path, inode, false))) 1281 return 0; 1282 if (nameidata_drop_rcu(nd)) 1283 return -ECHILD; 1284 /* fallthru */ 1285 } 1286 dentry = __d_lookup(parent, name); 1287 if (!dentry) 1288 goto need_lookup; 1289 found: 1290 if (dentry->d_flags & DCACHE_OP_REVALIDATE) 1291 goto need_revalidate; 1292 done: 1293 path->mnt = mnt; 1294 path->dentry = dentry; 1295 err = follow_managed(path, nd->flags); 1296 if (unlikely(err < 0)) 1297 return err; 1298 *inode = path->dentry->d_inode; 1299 return 0; 1300 1301 need_lookup: 1302 dir = parent->d_inode; 1303 BUG_ON(nd->inode != dir); 1304 1305 mutex_lock(&dir->i_mutex); 1306 /* 1307 * First re-do the cached lookup just in case it was created 1308 * while we waited for the directory semaphore, or the first 1309 * lookup failed due to an unrelated rename. 1310 * 1311 * This could use version numbering or similar to avoid unnecessary 1312 * cache lookups, but then we'd have to do the first lookup in the 1313 * non-racy way. However in the common case here, everything should 1314 * be hot in cache, so would it be a big win? 1315 */ 1316 dentry = d_lookup(parent, name); 1317 if (likely(!dentry)) { 1318 dentry = d_alloc_and_lookup(parent, name, nd); 1319 mutex_unlock(&dir->i_mutex); 1320 if (IS_ERR(dentry)) 1321 goto fail; 1322 goto done; 1323 } 1324 /* 1325 * Uhhuh! Nasty case: the cache was re-populated while 1326 * we waited on the semaphore. Need to revalidate. 1327 */ 1328 mutex_unlock(&dir->i_mutex); 1329 goto found; 1330 1331 need_revalidate: 1332 dentry = do_revalidate(dentry, nd); 1333 if (!dentry) 1334 goto need_lookup; 1335 if (IS_ERR(dentry)) 1336 goto fail; 1337 if (nd->flags & LOOKUP_RCU) 1338 goto done2; 1339 goto done; 1340 1341 fail: 1342 return PTR_ERR(dentry); 1343 } 1344 1345 /* 1346 * Name resolution. 1347 * This is the basic name resolution function, turning a pathname into 1348 * the final dentry. We expect 'base' to be positive and a directory. 1349 * 1350 * Returns 0 and nd will have valid dentry and mnt on success. 1351 * Returns error and drops reference to input namei data on failure. 1352 */ 1353 static int link_path_walk(const char *name, struct nameidata *nd) 1354 { 1355 struct path next; 1356 int err; 1357 unsigned int lookup_flags = nd->flags; 1358 1359 while (*name=='/') 1360 name++; 1361 if (!*name) 1362 goto return_reval; 1363 1364 if (nd->depth) 1365 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE); 1366 1367 /* At this point we know we have a real path component. */ 1368 for(;;) { 1369 struct inode *inode; 1370 unsigned long hash; 1371 struct qstr this; 1372 unsigned int c; 1373 1374 nd->flags |= LOOKUP_CONTINUE; 1375 if (nd->flags & LOOKUP_RCU) { 1376 err = exec_permission(nd->inode, IPERM_FLAG_RCU); 1377 if (err == -ECHILD) { 1378 if (nameidata_drop_rcu(nd)) 1379 return -ECHILD; 1380 goto exec_again; 1381 } 1382 } else { 1383 exec_again: 1384 err = exec_permission(nd->inode, 0); 1385 } 1386 if (err) 1387 break; 1388 1389 this.name = name; 1390 c = *(const unsigned char *)name; 1391 1392 hash = init_name_hash(); 1393 do { 1394 name++; 1395 hash = partial_name_hash(c, hash); 1396 c = *(const unsigned char *)name; 1397 } while (c && (c != '/')); 1398 this.len = name - (const char *) this.name; 1399 this.hash = end_name_hash(hash); 1400 1401 /* remove trailing slashes? */ 1402 if (!c) 1403 goto last_component; 1404 while (*++name == '/'); 1405 if (!*name) 1406 goto last_with_slashes; 1407 1408 /* 1409 * "." and ".." are special - ".." especially so because it has 1410 * to be able to know about the current root directory and 1411 * parent relationships. 1412 */ 1413 if (this.name[0] == '.') switch (this.len) { 1414 default: 1415 break; 1416 case 2: 1417 if (this.name[1] != '.') 1418 break; 1419 if (nd->flags & LOOKUP_RCU) { 1420 if (follow_dotdot_rcu(nd)) 1421 return -ECHILD; 1422 } else 1423 follow_dotdot(nd); 1424 /* fallthrough */ 1425 case 1: 1426 continue; 1427 } 1428 /* This does the actual lookups.. */ 1429 err = do_lookup(nd, &this, &next, &inode); 1430 if (err) 1431 break; 1432 err = -ENOENT; 1433 if (!inode) 1434 goto out_dput; 1435 1436 if (inode->i_op->follow_link) { 1437 /* We commonly drop rcu-walk here */ 1438 if (nameidata_dentry_drop_rcu_maybe(nd, next.dentry)) 1439 return -ECHILD; 1440 BUG_ON(inode != next.dentry->d_inode); 1441 err = do_follow_link(&next, nd); 1442 if (err) 1443 goto return_err; 1444 nd->inode = nd->path.dentry->d_inode; 1445 err = -ENOENT; 1446 if (!nd->inode) 1447 break; 1448 } else { 1449 path_to_nameidata(&next, nd); 1450 nd->inode = inode; 1451 } 1452 err = -ENOTDIR; 1453 if (!nd->inode->i_op->lookup) 1454 break; 1455 continue; 1456 /* here ends the main loop */ 1457 1458 last_with_slashes: 1459 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 1460 last_component: 1461 /* Clear LOOKUP_CONTINUE iff it was previously unset */ 1462 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE; 1463 if (lookup_flags & LOOKUP_PARENT) 1464 goto lookup_parent; 1465 if (this.name[0] == '.') switch (this.len) { 1466 default: 1467 break; 1468 case 2: 1469 if (this.name[1] != '.') 1470 break; 1471 if (nd->flags & LOOKUP_RCU) { 1472 if (follow_dotdot_rcu(nd)) 1473 return -ECHILD; 1474 } else 1475 follow_dotdot(nd); 1476 /* fallthrough */ 1477 case 1: 1478 goto return_reval; 1479 } 1480 err = do_lookup(nd, &this, &next, &inode); 1481 if (err) 1482 break; 1483 if (inode && unlikely(inode->i_op->follow_link) && 1484 (lookup_flags & LOOKUP_FOLLOW)) { 1485 if (nameidata_dentry_drop_rcu_maybe(nd, next.dentry)) 1486 return -ECHILD; 1487 BUG_ON(inode != next.dentry->d_inode); 1488 err = do_follow_link(&next, nd); 1489 if (err) 1490 goto return_err; 1491 nd->inode = nd->path.dentry->d_inode; 1492 } else { 1493 path_to_nameidata(&next, nd); 1494 nd->inode = inode; 1495 } 1496 err = -ENOENT; 1497 if (!nd->inode) 1498 break; 1499 if (lookup_flags & LOOKUP_DIRECTORY) { 1500 err = -ENOTDIR; 1501 if (!nd->inode->i_op->lookup) 1502 break; 1503 } 1504 goto return_base; 1505 lookup_parent: 1506 nd->last = this; 1507 nd->last_type = LAST_NORM; 1508 if (this.name[0] != '.') 1509 goto return_base; 1510 if (this.len == 1) 1511 nd->last_type = LAST_DOT; 1512 else if (this.len == 2 && this.name[1] == '.') 1513 nd->last_type = LAST_DOTDOT; 1514 else 1515 goto return_base; 1516 return_reval: 1517 /* 1518 * We bypassed the ordinary revalidation routines. 1519 * We may need to check the cached dentry for staleness. 1520 */ 1521 if (need_reval_dot(nd->path.dentry)) { 1522 /* Note: we do not d_invalidate() */ 1523 err = d_revalidate(nd->path.dentry, nd); 1524 if (!err) 1525 err = -ESTALE; 1526 if (err < 0) 1527 break; 1528 } 1529 return_base: 1530 if (nameidata_drop_rcu_last_maybe(nd)) 1531 return -ECHILD; 1532 return 0; 1533 out_dput: 1534 if (!(nd->flags & LOOKUP_RCU)) 1535 path_put_conditional(&next, nd); 1536 break; 1537 } 1538 if (!(nd->flags & LOOKUP_RCU)) 1539 path_put(&nd->path); 1540 return_err: 1541 return err; 1542 } 1543 1544 static inline int path_walk_rcu(const char *name, struct nameidata *nd) 1545 { 1546 current->total_link_count = 0; 1547 1548 return link_path_walk(name, nd); 1549 } 1550 1551 static inline int path_walk_simple(const char *name, struct nameidata *nd) 1552 { 1553 current->total_link_count = 0; 1554 1555 return link_path_walk(name, nd); 1556 } 1557 1558 static int path_walk(const char *name, struct nameidata *nd) 1559 { 1560 struct path save = nd->path; 1561 int result; 1562 1563 current->total_link_count = 0; 1564 1565 /* make sure the stuff we saved doesn't go away */ 1566 path_get(&save); 1567 1568 result = link_path_walk(name, nd); 1569 if (result == -ESTALE) { 1570 /* nd->path had been dropped */ 1571 current->total_link_count = 0; 1572 nd->path = save; 1573 path_get(&nd->path); 1574 nd->flags |= LOOKUP_REVAL; 1575 result = link_path_walk(name, nd); 1576 } 1577 1578 path_put(&save); 1579 1580 return result; 1581 } 1582 1583 static void path_finish_rcu(struct nameidata *nd) 1584 { 1585 if (nd->flags & LOOKUP_RCU) { 1586 /* RCU dangling. Cancel it. */ 1587 nd->flags &= ~LOOKUP_RCU; 1588 nd->root.mnt = NULL; 1589 rcu_read_unlock(); 1590 br_read_unlock(vfsmount_lock); 1591 } 1592 if (nd->file) 1593 fput(nd->file); 1594 } 1595 1596 static int path_init_rcu(int dfd, const char *name, unsigned int flags, struct nameidata *nd) 1597 { 1598 int retval = 0; 1599 int fput_needed; 1600 struct file *file; 1601 1602 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 1603 nd->flags = flags | LOOKUP_RCU; 1604 nd->depth = 0; 1605 nd->root.mnt = NULL; 1606 nd->file = NULL; 1607 1608 if (*name=='/') { 1609 struct fs_struct *fs = current->fs; 1610 unsigned seq; 1611 1612 br_read_lock(vfsmount_lock); 1613 rcu_read_lock(); 1614 1615 do { 1616 seq = read_seqcount_begin(&fs->seq); 1617 nd->root = fs->root; 1618 nd->path = nd->root; 1619 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1620 } while (read_seqcount_retry(&fs->seq, seq)); 1621 1622 } else if (dfd == AT_FDCWD) { 1623 struct fs_struct *fs = current->fs; 1624 unsigned seq; 1625 1626 br_read_lock(vfsmount_lock); 1627 rcu_read_lock(); 1628 1629 do { 1630 seq = read_seqcount_begin(&fs->seq); 1631 nd->path = fs->pwd; 1632 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1633 } while (read_seqcount_retry(&fs->seq, seq)); 1634 1635 } else { 1636 struct dentry *dentry; 1637 1638 file = fget_light(dfd, &fput_needed); 1639 retval = -EBADF; 1640 if (!file) 1641 goto out_fail; 1642 1643 dentry = file->f_path.dentry; 1644 1645 retval = -ENOTDIR; 1646 if (!S_ISDIR(dentry->d_inode->i_mode)) 1647 goto fput_fail; 1648 1649 retval = file_permission(file, MAY_EXEC); 1650 if (retval) 1651 goto fput_fail; 1652 1653 nd->path = file->f_path; 1654 if (fput_needed) 1655 nd->file = file; 1656 1657 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1658 br_read_lock(vfsmount_lock); 1659 rcu_read_lock(); 1660 } 1661 nd->inode = nd->path.dentry->d_inode; 1662 return 0; 1663 1664 fput_fail: 1665 fput_light(file, fput_needed); 1666 out_fail: 1667 return retval; 1668 } 1669 1670 static int path_init(int dfd, const char *name, unsigned int flags, struct nameidata *nd) 1671 { 1672 int retval = 0; 1673 int fput_needed; 1674 struct file *file; 1675 1676 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 1677 nd->flags = flags; 1678 nd->depth = 0; 1679 nd->root.mnt = NULL; 1680 1681 if (*name=='/') { 1682 set_root(nd); 1683 nd->path = nd->root; 1684 path_get(&nd->root); 1685 } else if (dfd == AT_FDCWD) { 1686 get_fs_pwd(current->fs, &nd->path); 1687 } else { 1688 struct dentry *dentry; 1689 1690 file = fget_light(dfd, &fput_needed); 1691 retval = -EBADF; 1692 if (!file) 1693 goto out_fail; 1694 1695 dentry = file->f_path.dentry; 1696 1697 retval = -ENOTDIR; 1698 if (!S_ISDIR(dentry->d_inode->i_mode)) 1699 goto fput_fail; 1700 1701 retval = file_permission(file, MAY_EXEC); 1702 if (retval) 1703 goto fput_fail; 1704 1705 nd->path = file->f_path; 1706 path_get(&file->f_path); 1707 1708 fput_light(file, fput_needed); 1709 } 1710 nd->inode = nd->path.dentry->d_inode; 1711 return 0; 1712 1713 fput_fail: 1714 fput_light(file, fput_needed); 1715 out_fail: 1716 return retval; 1717 } 1718 1719 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 1720 static int do_path_lookup(int dfd, const char *name, 1721 unsigned int flags, struct nameidata *nd) 1722 { 1723 int retval; 1724 1725 /* 1726 * Path walking is largely split up into 2 different synchronisation 1727 * schemes, rcu-walk and ref-walk (explained in 1728 * Documentation/filesystems/path-lookup.txt). These share much of the 1729 * path walk code, but some things particularly setup, cleanup, and 1730 * following mounts are sufficiently divergent that functions are 1731 * duplicated. Typically there is a function foo(), and its RCU 1732 * analogue, foo_rcu(). 1733 * 1734 * -ECHILD is the error number of choice (just to avoid clashes) that 1735 * is returned if some aspect of an rcu-walk fails. Such an error must 1736 * be handled by restarting a traditional ref-walk (which will always 1737 * be able to complete). 1738 */ 1739 retval = path_init_rcu(dfd, name, flags, nd); 1740 if (unlikely(retval)) 1741 return retval; 1742 retval = path_walk_rcu(name, nd); 1743 path_finish_rcu(nd); 1744 if (nd->root.mnt) { 1745 path_put(&nd->root); 1746 nd->root.mnt = NULL; 1747 } 1748 1749 if (unlikely(retval == -ECHILD || retval == -ESTALE)) { 1750 /* slower, locked walk */ 1751 if (retval == -ESTALE) 1752 flags |= LOOKUP_REVAL; 1753 retval = path_init(dfd, name, flags, nd); 1754 if (unlikely(retval)) 1755 return retval; 1756 retval = path_walk(name, nd); 1757 if (nd->root.mnt) { 1758 path_put(&nd->root); 1759 nd->root.mnt = NULL; 1760 } 1761 } 1762 1763 if (likely(!retval)) { 1764 if (unlikely(!audit_dummy_context())) { 1765 if (nd->path.dentry && nd->inode) 1766 audit_inode(name, nd->path.dentry); 1767 } 1768 } 1769 1770 return retval; 1771 } 1772 1773 int path_lookup(const char *name, unsigned int flags, 1774 struct nameidata *nd) 1775 { 1776 return do_path_lookup(AT_FDCWD, name, flags, nd); 1777 } 1778 1779 int kern_path(const char *name, unsigned int flags, struct path *path) 1780 { 1781 struct nameidata nd; 1782 int res = do_path_lookup(AT_FDCWD, name, flags, &nd); 1783 if (!res) 1784 *path = nd.path; 1785 return res; 1786 } 1787 1788 /** 1789 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 1790 * @dentry: pointer to dentry of the base directory 1791 * @mnt: pointer to vfs mount of the base directory 1792 * @name: pointer to file name 1793 * @flags: lookup flags 1794 * @nd: pointer to nameidata 1795 */ 1796 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 1797 const char *name, unsigned int flags, 1798 struct nameidata *nd) 1799 { 1800 int retval; 1801 1802 /* same as do_path_lookup */ 1803 nd->last_type = LAST_ROOT; 1804 nd->flags = flags; 1805 nd->depth = 0; 1806 1807 nd->path.dentry = dentry; 1808 nd->path.mnt = mnt; 1809 path_get(&nd->path); 1810 nd->root = nd->path; 1811 path_get(&nd->root); 1812 nd->inode = nd->path.dentry->d_inode; 1813 1814 retval = path_walk(name, nd); 1815 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry && 1816 nd->inode)) 1817 audit_inode(name, nd->path.dentry); 1818 1819 path_put(&nd->root); 1820 nd->root.mnt = NULL; 1821 1822 return retval; 1823 } 1824 1825 static struct dentry *__lookup_hash(struct qstr *name, 1826 struct dentry *base, struct nameidata *nd) 1827 { 1828 struct inode *inode = base->d_inode; 1829 struct dentry *dentry; 1830 int err; 1831 1832 err = exec_permission(inode, 0); 1833 if (err) 1834 return ERR_PTR(err); 1835 1836 /* 1837 * See if the low-level filesystem might want 1838 * to use its own hash.. 1839 */ 1840 if (base->d_flags & DCACHE_OP_HASH) { 1841 err = base->d_op->d_hash(base, inode, name); 1842 dentry = ERR_PTR(err); 1843 if (err < 0) 1844 goto out; 1845 } 1846 1847 /* 1848 * Don't bother with __d_lookup: callers are for creat as 1849 * well as unlink, so a lot of the time it would cost 1850 * a double lookup. 1851 */ 1852 dentry = d_lookup(base, name); 1853 1854 if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE)) 1855 dentry = do_revalidate(dentry, nd); 1856 1857 if (!dentry) 1858 dentry = d_alloc_and_lookup(base, name, nd); 1859 out: 1860 return dentry; 1861 } 1862 1863 /* 1864 * Restricted form of lookup. Doesn't follow links, single-component only, 1865 * needs parent already locked. Doesn't follow mounts. 1866 * SMP-safe. 1867 */ 1868 static struct dentry *lookup_hash(struct nameidata *nd) 1869 { 1870 return __lookup_hash(&nd->last, nd->path.dentry, nd); 1871 } 1872 1873 static int __lookup_one_len(const char *name, struct qstr *this, 1874 struct dentry *base, int len) 1875 { 1876 unsigned long hash; 1877 unsigned int c; 1878 1879 this->name = name; 1880 this->len = len; 1881 if (!len) 1882 return -EACCES; 1883 1884 hash = init_name_hash(); 1885 while (len--) { 1886 c = *(const unsigned char *)name++; 1887 if (c == '/' || c == '\0') 1888 return -EACCES; 1889 hash = partial_name_hash(c, hash); 1890 } 1891 this->hash = end_name_hash(hash); 1892 return 0; 1893 } 1894 1895 /** 1896 * lookup_one_len - filesystem helper to lookup single pathname component 1897 * @name: pathname component to lookup 1898 * @base: base directory to lookup from 1899 * @len: maximum length @len should be interpreted to 1900 * 1901 * Note that this routine is purely a helper for filesystem usage and should 1902 * not be called by generic code. Also note that by using this function the 1903 * nameidata argument is passed to the filesystem methods and a filesystem 1904 * using this helper needs to be prepared for that. 1905 */ 1906 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 1907 { 1908 int err; 1909 struct qstr this; 1910 1911 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex)); 1912 1913 err = __lookup_one_len(name, &this, base, len); 1914 if (err) 1915 return ERR_PTR(err); 1916 1917 return __lookup_hash(&this, base, NULL); 1918 } 1919 1920 int user_path_at(int dfd, const char __user *name, unsigned flags, 1921 struct path *path) 1922 { 1923 struct nameidata nd; 1924 char *tmp = getname(name); 1925 int err = PTR_ERR(tmp); 1926 if (!IS_ERR(tmp)) { 1927 1928 BUG_ON(flags & LOOKUP_PARENT); 1929 1930 err = do_path_lookup(dfd, tmp, flags, &nd); 1931 putname(tmp); 1932 if (!err) 1933 *path = nd.path; 1934 } 1935 return err; 1936 } 1937 1938 static int user_path_parent(int dfd, const char __user *path, 1939 struct nameidata *nd, char **name) 1940 { 1941 char *s = getname(path); 1942 int error; 1943 1944 if (IS_ERR(s)) 1945 return PTR_ERR(s); 1946 1947 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd); 1948 if (error) 1949 putname(s); 1950 else 1951 *name = s; 1952 1953 return error; 1954 } 1955 1956 /* 1957 * It's inline, so penalty for filesystems that don't use sticky bit is 1958 * minimal. 1959 */ 1960 static inline int check_sticky(struct inode *dir, struct inode *inode) 1961 { 1962 uid_t fsuid = current_fsuid(); 1963 1964 if (!(dir->i_mode & S_ISVTX)) 1965 return 0; 1966 if (inode->i_uid == fsuid) 1967 return 0; 1968 if (dir->i_uid == fsuid) 1969 return 0; 1970 return !capable(CAP_FOWNER); 1971 } 1972 1973 /* 1974 * Check whether we can remove a link victim from directory dir, check 1975 * whether the type of victim is right. 1976 * 1. We can't do it if dir is read-only (done in permission()) 1977 * 2. We should have write and exec permissions on dir 1978 * 3. We can't remove anything from append-only dir 1979 * 4. We can't do anything with immutable dir (done in permission()) 1980 * 5. If the sticky bit on dir is set we should either 1981 * a. be owner of dir, or 1982 * b. be owner of victim, or 1983 * c. have CAP_FOWNER capability 1984 * 6. If the victim is append-only or immutable we can't do antyhing with 1985 * links pointing to it. 1986 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 1987 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 1988 * 9. We can't remove a root or mountpoint. 1989 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 1990 * nfs_async_unlink(). 1991 */ 1992 static int may_delete(struct inode *dir,struct dentry *victim,int isdir) 1993 { 1994 int error; 1995 1996 if (!victim->d_inode) 1997 return -ENOENT; 1998 1999 BUG_ON(victim->d_parent->d_inode != dir); 2000 audit_inode_child(victim, dir); 2001 2002 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 2003 if (error) 2004 return error; 2005 if (IS_APPEND(dir)) 2006 return -EPERM; 2007 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)|| 2008 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode)) 2009 return -EPERM; 2010 if (isdir) { 2011 if (!S_ISDIR(victim->d_inode->i_mode)) 2012 return -ENOTDIR; 2013 if (IS_ROOT(victim)) 2014 return -EBUSY; 2015 } else if (S_ISDIR(victim->d_inode->i_mode)) 2016 return -EISDIR; 2017 if (IS_DEADDIR(dir)) 2018 return -ENOENT; 2019 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2020 return -EBUSY; 2021 return 0; 2022 } 2023 2024 /* Check whether we can create an object with dentry child in directory 2025 * dir. 2026 * 1. We can't do it if child already exists (open has special treatment for 2027 * this case, but since we are inlined it's OK) 2028 * 2. We can't do it if dir is read-only (done in permission()) 2029 * 3. We should have write and exec permissions on dir 2030 * 4. We can't do it if dir is immutable (done in permission()) 2031 */ 2032 static inline int may_create(struct inode *dir, struct dentry *child) 2033 { 2034 if (child->d_inode) 2035 return -EEXIST; 2036 if (IS_DEADDIR(dir)) 2037 return -ENOENT; 2038 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 2039 } 2040 2041 /* 2042 * p1 and p2 should be directories on the same fs. 2043 */ 2044 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2045 { 2046 struct dentry *p; 2047 2048 if (p1 == p2) { 2049 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2050 return NULL; 2051 } 2052 2053 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2054 2055 p = d_ancestor(p2, p1); 2056 if (p) { 2057 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT); 2058 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD); 2059 return p; 2060 } 2061 2062 p = d_ancestor(p1, p2); 2063 if (p) { 2064 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2065 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 2066 return p; 2067 } 2068 2069 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2070 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 2071 return NULL; 2072 } 2073 2074 void unlock_rename(struct dentry *p1, struct dentry *p2) 2075 { 2076 mutex_unlock(&p1->d_inode->i_mutex); 2077 if (p1 != p2) { 2078 mutex_unlock(&p2->d_inode->i_mutex); 2079 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2080 } 2081 } 2082 2083 int vfs_create(struct inode *dir, struct dentry *dentry, int mode, 2084 struct nameidata *nd) 2085 { 2086 int error = may_create(dir, dentry); 2087 2088 if (error) 2089 return error; 2090 2091 if (!dir->i_op->create) 2092 return -EACCES; /* shouldn't it be ENOSYS? */ 2093 mode &= S_IALLUGO; 2094 mode |= S_IFREG; 2095 error = security_inode_create(dir, dentry, mode); 2096 if (error) 2097 return error; 2098 error = dir->i_op->create(dir, dentry, mode, nd); 2099 if (!error) 2100 fsnotify_create(dir, dentry); 2101 return error; 2102 } 2103 2104 int may_open(struct path *path, int acc_mode, int flag) 2105 { 2106 struct dentry *dentry = path->dentry; 2107 struct inode *inode = dentry->d_inode; 2108 int error; 2109 2110 if (!inode) 2111 return -ENOENT; 2112 2113 switch (inode->i_mode & S_IFMT) { 2114 case S_IFLNK: 2115 return -ELOOP; 2116 case S_IFDIR: 2117 if (acc_mode & MAY_WRITE) 2118 return -EISDIR; 2119 break; 2120 case S_IFBLK: 2121 case S_IFCHR: 2122 if (path->mnt->mnt_flags & MNT_NODEV) 2123 return -EACCES; 2124 /*FALLTHRU*/ 2125 case S_IFIFO: 2126 case S_IFSOCK: 2127 flag &= ~O_TRUNC; 2128 break; 2129 } 2130 2131 error = inode_permission(inode, acc_mode); 2132 if (error) 2133 return error; 2134 2135 /* 2136 * An append-only file must be opened in append mode for writing. 2137 */ 2138 if (IS_APPEND(inode)) { 2139 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2140 return -EPERM; 2141 if (flag & O_TRUNC) 2142 return -EPERM; 2143 } 2144 2145 /* O_NOATIME can only be set by the owner or superuser */ 2146 if (flag & O_NOATIME && !is_owner_or_cap(inode)) 2147 return -EPERM; 2148 2149 /* 2150 * Ensure there are no outstanding leases on the file. 2151 */ 2152 return break_lease(inode, flag); 2153 } 2154 2155 static int handle_truncate(struct file *filp) 2156 { 2157 struct path *path = &filp->f_path; 2158 struct inode *inode = path->dentry->d_inode; 2159 int error = get_write_access(inode); 2160 if (error) 2161 return error; 2162 /* 2163 * Refuse to truncate files with mandatory locks held on them. 2164 */ 2165 error = locks_verify_locked(inode); 2166 if (!error) 2167 error = security_path_truncate(path); 2168 if (!error) { 2169 error = do_truncate(path->dentry, 0, 2170 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 2171 filp); 2172 } 2173 put_write_access(inode); 2174 return error; 2175 } 2176 2177 /* 2178 * Be careful about ever adding any more callers of this 2179 * function. Its flags must be in the namei format, not 2180 * what get passed to sys_open(). 2181 */ 2182 static int __open_namei_create(struct nameidata *nd, struct path *path, 2183 int open_flag, int mode) 2184 { 2185 int error; 2186 struct dentry *dir = nd->path.dentry; 2187 2188 if (!IS_POSIXACL(dir->d_inode)) 2189 mode &= ~current_umask(); 2190 error = security_path_mknod(&nd->path, path->dentry, mode, 0); 2191 if (error) 2192 goto out_unlock; 2193 error = vfs_create(dir->d_inode, path->dentry, mode, nd); 2194 out_unlock: 2195 mutex_unlock(&dir->d_inode->i_mutex); 2196 dput(nd->path.dentry); 2197 nd->path.dentry = path->dentry; 2198 2199 if (error) 2200 return error; 2201 /* Don't check for write permission, don't truncate */ 2202 return may_open(&nd->path, 0, open_flag & ~O_TRUNC); 2203 } 2204 2205 /* 2206 * Note that while the flag value (low two bits) for sys_open means: 2207 * 00 - read-only 2208 * 01 - write-only 2209 * 10 - read-write 2210 * 11 - special 2211 * it is changed into 2212 * 00 - no permissions needed 2213 * 01 - read-permission 2214 * 10 - write-permission 2215 * 11 - read-write 2216 * for the internal routines (ie open_namei()/follow_link() etc) 2217 * This is more logical, and also allows the 00 "no perm needed" 2218 * to be used for symlinks (where the permissions are checked 2219 * later). 2220 * 2221 */ 2222 static inline int open_to_namei_flags(int flag) 2223 { 2224 if ((flag+1) & O_ACCMODE) 2225 flag++; 2226 return flag; 2227 } 2228 2229 static int open_will_truncate(int flag, struct inode *inode) 2230 { 2231 /* 2232 * We'll never write to the fs underlying 2233 * a device file. 2234 */ 2235 if (special_file(inode->i_mode)) 2236 return 0; 2237 return (flag & O_TRUNC); 2238 } 2239 2240 static struct file *finish_open(struct nameidata *nd, 2241 int open_flag, int acc_mode) 2242 { 2243 struct file *filp; 2244 int will_truncate; 2245 int error; 2246 2247 will_truncate = open_will_truncate(open_flag, nd->path.dentry->d_inode); 2248 if (will_truncate) { 2249 error = mnt_want_write(nd->path.mnt); 2250 if (error) 2251 goto exit; 2252 } 2253 error = may_open(&nd->path, acc_mode, open_flag); 2254 if (error) { 2255 if (will_truncate) 2256 mnt_drop_write(nd->path.mnt); 2257 goto exit; 2258 } 2259 filp = nameidata_to_filp(nd); 2260 if (!IS_ERR(filp)) { 2261 error = ima_file_check(filp, acc_mode); 2262 if (error) { 2263 fput(filp); 2264 filp = ERR_PTR(error); 2265 } 2266 } 2267 if (!IS_ERR(filp)) { 2268 if (will_truncate) { 2269 error = handle_truncate(filp); 2270 if (error) { 2271 fput(filp); 2272 filp = ERR_PTR(error); 2273 } 2274 } 2275 } 2276 /* 2277 * It is now safe to drop the mnt write 2278 * because the filp has had a write taken 2279 * on its behalf. 2280 */ 2281 if (will_truncate) 2282 mnt_drop_write(nd->path.mnt); 2283 path_put(&nd->path); 2284 return filp; 2285 2286 exit: 2287 if (!IS_ERR(nd->intent.open.file)) 2288 release_open_intent(nd); 2289 path_put(&nd->path); 2290 return ERR_PTR(error); 2291 } 2292 2293 /* 2294 * Handle O_CREAT case for do_filp_open 2295 */ 2296 static struct file *do_last(struct nameidata *nd, struct path *path, 2297 int open_flag, int acc_mode, 2298 int mode, const char *pathname) 2299 { 2300 struct dentry *dir = nd->path.dentry; 2301 struct file *filp; 2302 int error = -EISDIR; 2303 2304 switch (nd->last_type) { 2305 case LAST_DOTDOT: 2306 follow_dotdot(nd); 2307 dir = nd->path.dentry; 2308 case LAST_DOT: 2309 if (need_reval_dot(dir)) { 2310 int status = d_revalidate(nd->path.dentry, nd); 2311 if (!status) 2312 status = -ESTALE; 2313 if (status < 0) { 2314 error = status; 2315 goto exit; 2316 } 2317 } 2318 /* fallthrough */ 2319 case LAST_ROOT: 2320 goto exit; 2321 case LAST_BIND: 2322 audit_inode(pathname, dir); 2323 goto ok; 2324 } 2325 2326 /* trailing slashes? */ 2327 if (nd->last.name[nd->last.len]) 2328 goto exit; 2329 2330 mutex_lock(&dir->d_inode->i_mutex); 2331 2332 path->dentry = lookup_hash(nd); 2333 path->mnt = nd->path.mnt; 2334 2335 error = PTR_ERR(path->dentry); 2336 if (IS_ERR(path->dentry)) { 2337 mutex_unlock(&dir->d_inode->i_mutex); 2338 goto exit; 2339 } 2340 2341 if (IS_ERR(nd->intent.open.file)) { 2342 error = PTR_ERR(nd->intent.open.file); 2343 goto exit_mutex_unlock; 2344 } 2345 2346 /* Negative dentry, just create the file */ 2347 if (!path->dentry->d_inode) { 2348 /* 2349 * This write is needed to ensure that a 2350 * ro->rw transition does not occur between 2351 * the time when the file is created and when 2352 * a permanent write count is taken through 2353 * the 'struct file' in nameidata_to_filp(). 2354 */ 2355 error = mnt_want_write(nd->path.mnt); 2356 if (error) 2357 goto exit_mutex_unlock; 2358 error = __open_namei_create(nd, path, open_flag, mode); 2359 if (error) { 2360 mnt_drop_write(nd->path.mnt); 2361 goto exit; 2362 } 2363 filp = nameidata_to_filp(nd); 2364 mnt_drop_write(nd->path.mnt); 2365 path_put(&nd->path); 2366 if (!IS_ERR(filp)) { 2367 error = ima_file_check(filp, acc_mode); 2368 if (error) { 2369 fput(filp); 2370 filp = ERR_PTR(error); 2371 } 2372 } 2373 return filp; 2374 } 2375 2376 /* 2377 * It already exists. 2378 */ 2379 mutex_unlock(&dir->d_inode->i_mutex); 2380 audit_inode(pathname, path->dentry); 2381 2382 error = -EEXIST; 2383 if (open_flag & O_EXCL) 2384 goto exit_dput; 2385 2386 error = follow_managed(path, nd->flags); 2387 if (error < 0) 2388 goto exit_dput; 2389 2390 error = -ENOENT; 2391 if (!path->dentry->d_inode) 2392 goto exit_dput; 2393 2394 if (path->dentry->d_inode->i_op->follow_link) 2395 return NULL; 2396 2397 path_to_nameidata(path, nd); 2398 nd->inode = path->dentry->d_inode; 2399 error = -EISDIR; 2400 if (S_ISDIR(nd->inode->i_mode)) 2401 goto exit; 2402 ok: 2403 filp = finish_open(nd, open_flag, acc_mode); 2404 return filp; 2405 2406 exit_mutex_unlock: 2407 mutex_unlock(&dir->d_inode->i_mutex); 2408 exit_dput: 2409 path_put_conditional(path, nd); 2410 exit: 2411 if (!IS_ERR(nd->intent.open.file)) 2412 release_open_intent(nd); 2413 path_put(&nd->path); 2414 return ERR_PTR(error); 2415 } 2416 2417 /* 2418 * Note that the low bits of the passed in "open_flag" 2419 * are not the same as in the local variable "flag". See 2420 * open_to_namei_flags() for more details. 2421 */ 2422 struct file *do_filp_open(int dfd, const char *pathname, 2423 int open_flag, int mode, int acc_mode) 2424 { 2425 struct file *filp; 2426 struct nameidata nd; 2427 int error; 2428 struct path path; 2429 int count = 0; 2430 int flag = open_to_namei_flags(open_flag); 2431 int flags; 2432 2433 if (!(open_flag & O_CREAT)) 2434 mode = 0; 2435 2436 /* Must never be set by userspace */ 2437 open_flag &= ~FMODE_NONOTIFY; 2438 2439 /* 2440 * O_SYNC is implemented as __O_SYNC|O_DSYNC. As many places only 2441 * check for O_DSYNC if the need any syncing at all we enforce it's 2442 * always set instead of having to deal with possibly weird behaviour 2443 * for malicious applications setting only __O_SYNC. 2444 */ 2445 if (open_flag & __O_SYNC) 2446 open_flag |= O_DSYNC; 2447 2448 if (!acc_mode) 2449 acc_mode = MAY_OPEN | ACC_MODE(open_flag); 2450 2451 /* O_TRUNC implies we need access checks for write permissions */ 2452 if (open_flag & O_TRUNC) 2453 acc_mode |= MAY_WRITE; 2454 2455 /* Allow the LSM permission hook to distinguish append 2456 access from general write access. */ 2457 if (open_flag & O_APPEND) 2458 acc_mode |= MAY_APPEND; 2459 2460 flags = LOOKUP_OPEN; 2461 if (open_flag & O_CREAT) { 2462 flags |= LOOKUP_CREATE; 2463 if (open_flag & O_EXCL) 2464 flags |= LOOKUP_EXCL; 2465 } 2466 if (open_flag & O_DIRECTORY) 2467 flags |= LOOKUP_DIRECTORY; 2468 if (!(open_flag & O_NOFOLLOW)) 2469 flags |= LOOKUP_FOLLOW; 2470 2471 filp = get_empty_filp(); 2472 if (!filp) 2473 return ERR_PTR(-ENFILE); 2474 2475 filp->f_flags = open_flag; 2476 nd.intent.open.file = filp; 2477 nd.intent.open.flags = flag; 2478 nd.intent.open.create_mode = mode; 2479 2480 if (open_flag & O_CREAT) 2481 goto creat; 2482 2483 /* !O_CREAT, simple open */ 2484 error = do_path_lookup(dfd, pathname, flags, &nd); 2485 if (unlikely(error)) 2486 goto out_filp; 2487 error = -ELOOP; 2488 if (!(nd.flags & LOOKUP_FOLLOW)) { 2489 if (nd.inode->i_op->follow_link) 2490 goto out_path; 2491 } 2492 error = -ENOTDIR; 2493 if (nd.flags & LOOKUP_DIRECTORY) { 2494 if (!nd.inode->i_op->lookup) 2495 goto out_path; 2496 } 2497 audit_inode(pathname, nd.path.dentry); 2498 filp = finish_open(&nd, open_flag, acc_mode); 2499 return filp; 2500 2501 creat: 2502 /* OK, have to create the file. Find the parent. */ 2503 error = path_init_rcu(dfd, pathname, 2504 LOOKUP_PARENT | (flags & LOOKUP_REVAL), &nd); 2505 if (error) 2506 goto out_filp; 2507 error = path_walk_rcu(pathname, &nd); 2508 path_finish_rcu(&nd); 2509 if (unlikely(error == -ECHILD || error == -ESTALE)) { 2510 /* slower, locked walk */ 2511 if (error == -ESTALE) { 2512 reval: 2513 flags |= LOOKUP_REVAL; 2514 } 2515 error = path_init(dfd, pathname, 2516 LOOKUP_PARENT | (flags & LOOKUP_REVAL), &nd); 2517 if (error) 2518 goto out_filp; 2519 2520 error = path_walk_simple(pathname, &nd); 2521 } 2522 if (unlikely(error)) 2523 goto out_filp; 2524 if (unlikely(!audit_dummy_context())) 2525 audit_inode(pathname, nd.path.dentry); 2526 2527 /* 2528 * We have the parent and last component. 2529 */ 2530 nd.flags = flags; 2531 filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname); 2532 while (unlikely(!filp)) { /* trailing symlink */ 2533 struct path link = path; 2534 struct inode *linki = link.dentry->d_inode; 2535 void *cookie; 2536 error = -ELOOP; 2537 if (!(nd.flags & LOOKUP_FOLLOW)) 2538 goto exit_dput; 2539 if (count++ == 32) 2540 goto exit_dput; 2541 /* 2542 * This is subtle. Instead of calling do_follow_link() we do 2543 * the thing by hands. The reason is that this way we have zero 2544 * link_count and path_walk() (called from ->follow_link) 2545 * honoring LOOKUP_PARENT. After that we have the parent and 2546 * last component, i.e. we are in the same situation as after 2547 * the first path_walk(). Well, almost - if the last component 2548 * is normal we get its copy stored in nd->last.name and we will 2549 * have to putname() it when we are done. Procfs-like symlinks 2550 * just set LAST_BIND. 2551 */ 2552 nd.flags |= LOOKUP_PARENT; 2553 error = security_inode_follow_link(link.dentry, &nd); 2554 if (error) 2555 goto exit_dput; 2556 error = __do_follow_link(&link, &nd, &cookie); 2557 if (unlikely(error)) { 2558 if (!IS_ERR(cookie) && linki->i_op->put_link) 2559 linki->i_op->put_link(link.dentry, &nd, cookie); 2560 /* nd.path had been dropped */ 2561 nd.path = link; 2562 goto out_path; 2563 } 2564 nd.flags &= ~LOOKUP_PARENT; 2565 filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname); 2566 if (linki->i_op->put_link) 2567 linki->i_op->put_link(link.dentry, &nd, cookie); 2568 path_put(&link); 2569 } 2570 out: 2571 if (nd.root.mnt) 2572 path_put(&nd.root); 2573 if (filp == ERR_PTR(-ESTALE) && !(flags & LOOKUP_REVAL)) 2574 goto reval; 2575 return filp; 2576 2577 exit_dput: 2578 path_put_conditional(&path, &nd); 2579 out_path: 2580 path_put(&nd.path); 2581 out_filp: 2582 if (!IS_ERR(nd.intent.open.file)) 2583 release_open_intent(&nd); 2584 filp = ERR_PTR(error); 2585 goto out; 2586 } 2587 2588 /** 2589 * filp_open - open file and return file pointer 2590 * 2591 * @filename: path to open 2592 * @flags: open flags as per the open(2) second argument 2593 * @mode: mode for the new file if O_CREAT is set, else ignored 2594 * 2595 * This is the helper to open a file from kernelspace if you really 2596 * have to. But in generally you should not do this, so please move 2597 * along, nothing to see here.. 2598 */ 2599 struct file *filp_open(const char *filename, int flags, int mode) 2600 { 2601 return do_filp_open(AT_FDCWD, filename, flags, mode, 0); 2602 } 2603 EXPORT_SYMBOL(filp_open); 2604 2605 /** 2606 * lookup_create - lookup a dentry, creating it if it doesn't exist 2607 * @nd: nameidata info 2608 * @is_dir: directory flag 2609 * 2610 * Simple function to lookup and return a dentry and create it 2611 * if it doesn't exist. Is SMP-safe. 2612 * 2613 * Returns with nd->path.dentry->d_inode->i_mutex locked. 2614 */ 2615 struct dentry *lookup_create(struct nameidata *nd, int is_dir) 2616 { 2617 struct dentry *dentry = ERR_PTR(-EEXIST); 2618 2619 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2620 /* 2621 * Yucky last component or no last component at all? 2622 * (foo/., foo/.., /////) 2623 */ 2624 if (nd->last_type != LAST_NORM) 2625 goto fail; 2626 nd->flags &= ~LOOKUP_PARENT; 2627 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL; 2628 nd->intent.open.flags = O_EXCL; 2629 2630 /* 2631 * Do the final lookup. 2632 */ 2633 dentry = lookup_hash(nd); 2634 if (IS_ERR(dentry)) 2635 goto fail; 2636 2637 if (dentry->d_inode) 2638 goto eexist; 2639 /* 2640 * Special case - lookup gave negative, but... we had foo/bar/ 2641 * From the vfs_mknod() POV we just have a negative dentry - 2642 * all is fine. Let's be bastards - you had / on the end, you've 2643 * been asking for (non-existent) directory. -ENOENT for you. 2644 */ 2645 if (unlikely(!is_dir && nd->last.name[nd->last.len])) { 2646 dput(dentry); 2647 dentry = ERR_PTR(-ENOENT); 2648 } 2649 return dentry; 2650 eexist: 2651 dput(dentry); 2652 dentry = ERR_PTR(-EEXIST); 2653 fail: 2654 return dentry; 2655 } 2656 EXPORT_SYMBOL_GPL(lookup_create); 2657 2658 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 2659 { 2660 int error = may_create(dir, dentry); 2661 2662 if (error) 2663 return error; 2664 2665 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 2666 return -EPERM; 2667 2668 if (!dir->i_op->mknod) 2669 return -EPERM; 2670 2671 error = devcgroup_inode_mknod(mode, dev); 2672 if (error) 2673 return error; 2674 2675 error = security_inode_mknod(dir, dentry, mode, dev); 2676 if (error) 2677 return error; 2678 2679 error = dir->i_op->mknod(dir, dentry, mode, dev); 2680 if (!error) 2681 fsnotify_create(dir, dentry); 2682 return error; 2683 } 2684 2685 static int may_mknod(mode_t mode) 2686 { 2687 switch (mode & S_IFMT) { 2688 case S_IFREG: 2689 case S_IFCHR: 2690 case S_IFBLK: 2691 case S_IFIFO: 2692 case S_IFSOCK: 2693 case 0: /* zero mode translates to S_IFREG */ 2694 return 0; 2695 case S_IFDIR: 2696 return -EPERM; 2697 default: 2698 return -EINVAL; 2699 } 2700 } 2701 2702 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode, 2703 unsigned, dev) 2704 { 2705 int error; 2706 char *tmp; 2707 struct dentry *dentry; 2708 struct nameidata nd; 2709 2710 if (S_ISDIR(mode)) 2711 return -EPERM; 2712 2713 error = user_path_parent(dfd, filename, &nd, &tmp); 2714 if (error) 2715 return error; 2716 2717 dentry = lookup_create(&nd, 0); 2718 if (IS_ERR(dentry)) { 2719 error = PTR_ERR(dentry); 2720 goto out_unlock; 2721 } 2722 if (!IS_POSIXACL(nd.path.dentry->d_inode)) 2723 mode &= ~current_umask(); 2724 error = may_mknod(mode); 2725 if (error) 2726 goto out_dput; 2727 error = mnt_want_write(nd.path.mnt); 2728 if (error) 2729 goto out_dput; 2730 error = security_path_mknod(&nd.path, dentry, mode, dev); 2731 if (error) 2732 goto out_drop_write; 2733 switch (mode & S_IFMT) { 2734 case 0: case S_IFREG: 2735 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd); 2736 break; 2737 case S_IFCHR: case S_IFBLK: 2738 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode, 2739 new_decode_dev(dev)); 2740 break; 2741 case S_IFIFO: case S_IFSOCK: 2742 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0); 2743 break; 2744 } 2745 out_drop_write: 2746 mnt_drop_write(nd.path.mnt); 2747 out_dput: 2748 dput(dentry); 2749 out_unlock: 2750 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2751 path_put(&nd.path); 2752 putname(tmp); 2753 2754 return error; 2755 } 2756 2757 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev) 2758 { 2759 return sys_mknodat(AT_FDCWD, filename, mode, dev); 2760 } 2761 2762 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 2763 { 2764 int error = may_create(dir, dentry); 2765 2766 if (error) 2767 return error; 2768 2769 if (!dir->i_op->mkdir) 2770 return -EPERM; 2771 2772 mode &= (S_IRWXUGO|S_ISVTX); 2773 error = security_inode_mkdir(dir, dentry, mode); 2774 if (error) 2775 return error; 2776 2777 error = dir->i_op->mkdir(dir, dentry, mode); 2778 if (!error) 2779 fsnotify_mkdir(dir, dentry); 2780 return error; 2781 } 2782 2783 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode) 2784 { 2785 int error = 0; 2786 char * tmp; 2787 struct dentry *dentry; 2788 struct nameidata nd; 2789 2790 error = user_path_parent(dfd, pathname, &nd, &tmp); 2791 if (error) 2792 goto out_err; 2793 2794 dentry = lookup_create(&nd, 1); 2795 error = PTR_ERR(dentry); 2796 if (IS_ERR(dentry)) 2797 goto out_unlock; 2798 2799 if (!IS_POSIXACL(nd.path.dentry->d_inode)) 2800 mode &= ~current_umask(); 2801 error = mnt_want_write(nd.path.mnt); 2802 if (error) 2803 goto out_dput; 2804 error = security_path_mkdir(&nd.path, dentry, mode); 2805 if (error) 2806 goto out_drop_write; 2807 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode); 2808 out_drop_write: 2809 mnt_drop_write(nd.path.mnt); 2810 out_dput: 2811 dput(dentry); 2812 out_unlock: 2813 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2814 path_put(&nd.path); 2815 putname(tmp); 2816 out_err: 2817 return error; 2818 } 2819 2820 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode) 2821 { 2822 return sys_mkdirat(AT_FDCWD, pathname, mode); 2823 } 2824 2825 /* 2826 * We try to drop the dentry early: we should have 2827 * a usage count of 2 if we're the only user of this 2828 * dentry, and if that is true (possibly after pruning 2829 * the dcache), then we drop the dentry now. 2830 * 2831 * A low-level filesystem can, if it choses, legally 2832 * do a 2833 * 2834 * if (!d_unhashed(dentry)) 2835 * return -EBUSY; 2836 * 2837 * if it cannot handle the case of removing a directory 2838 * that is still in use by something else.. 2839 */ 2840 void dentry_unhash(struct dentry *dentry) 2841 { 2842 dget(dentry); 2843 shrink_dcache_parent(dentry); 2844 spin_lock(&dentry->d_lock); 2845 if (dentry->d_count == 2) 2846 __d_drop(dentry); 2847 spin_unlock(&dentry->d_lock); 2848 } 2849 2850 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 2851 { 2852 int error = may_delete(dir, dentry, 1); 2853 2854 if (error) 2855 return error; 2856 2857 if (!dir->i_op->rmdir) 2858 return -EPERM; 2859 2860 mutex_lock(&dentry->d_inode->i_mutex); 2861 dentry_unhash(dentry); 2862 if (d_mountpoint(dentry)) 2863 error = -EBUSY; 2864 else { 2865 error = security_inode_rmdir(dir, dentry); 2866 if (!error) { 2867 error = dir->i_op->rmdir(dir, dentry); 2868 if (!error) { 2869 dentry->d_inode->i_flags |= S_DEAD; 2870 dont_mount(dentry); 2871 } 2872 } 2873 } 2874 mutex_unlock(&dentry->d_inode->i_mutex); 2875 if (!error) { 2876 d_delete(dentry); 2877 } 2878 dput(dentry); 2879 2880 return error; 2881 } 2882 2883 static long do_rmdir(int dfd, const char __user *pathname) 2884 { 2885 int error = 0; 2886 char * name; 2887 struct dentry *dentry; 2888 struct nameidata nd; 2889 2890 error = user_path_parent(dfd, pathname, &nd, &name); 2891 if (error) 2892 return error; 2893 2894 switch(nd.last_type) { 2895 case LAST_DOTDOT: 2896 error = -ENOTEMPTY; 2897 goto exit1; 2898 case LAST_DOT: 2899 error = -EINVAL; 2900 goto exit1; 2901 case LAST_ROOT: 2902 error = -EBUSY; 2903 goto exit1; 2904 } 2905 2906 nd.flags &= ~LOOKUP_PARENT; 2907 2908 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2909 dentry = lookup_hash(&nd); 2910 error = PTR_ERR(dentry); 2911 if (IS_ERR(dentry)) 2912 goto exit2; 2913 error = mnt_want_write(nd.path.mnt); 2914 if (error) 2915 goto exit3; 2916 error = security_path_rmdir(&nd.path, dentry); 2917 if (error) 2918 goto exit4; 2919 error = vfs_rmdir(nd.path.dentry->d_inode, dentry); 2920 exit4: 2921 mnt_drop_write(nd.path.mnt); 2922 exit3: 2923 dput(dentry); 2924 exit2: 2925 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2926 exit1: 2927 path_put(&nd.path); 2928 putname(name); 2929 return error; 2930 } 2931 2932 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 2933 { 2934 return do_rmdir(AT_FDCWD, pathname); 2935 } 2936 2937 int vfs_unlink(struct inode *dir, struct dentry *dentry) 2938 { 2939 int error = may_delete(dir, dentry, 0); 2940 2941 if (error) 2942 return error; 2943 2944 if (!dir->i_op->unlink) 2945 return -EPERM; 2946 2947 mutex_lock(&dentry->d_inode->i_mutex); 2948 if (d_mountpoint(dentry)) 2949 error = -EBUSY; 2950 else { 2951 error = security_inode_unlink(dir, dentry); 2952 if (!error) { 2953 error = dir->i_op->unlink(dir, dentry); 2954 if (!error) 2955 dont_mount(dentry); 2956 } 2957 } 2958 mutex_unlock(&dentry->d_inode->i_mutex); 2959 2960 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 2961 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 2962 fsnotify_link_count(dentry->d_inode); 2963 d_delete(dentry); 2964 } 2965 2966 return error; 2967 } 2968 2969 /* 2970 * Make sure that the actual truncation of the file will occur outside its 2971 * directory's i_mutex. Truncate can take a long time if there is a lot of 2972 * writeout happening, and we don't want to prevent access to the directory 2973 * while waiting on the I/O. 2974 */ 2975 static long do_unlinkat(int dfd, const char __user *pathname) 2976 { 2977 int error; 2978 char *name; 2979 struct dentry *dentry; 2980 struct nameidata nd; 2981 struct inode *inode = NULL; 2982 2983 error = user_path_parent(dfd, pathname, &nd, &name); 2984 if (error) 2985 return error; 2986 2987 error = -EISDIR; 2988 if (nd.last_type != LAST_NORM) 2989 goto exit1; 2990 2991 nd.flags &= ~LOOKUP_PARENT; 2992 2993 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2994 dentry = lookup_hash(&nd); 2995 error = PTR_ERR(dentry); 2996 if (!IS_ERR(dentry)) { 2997 /* Why not before? Because we want correct error value */ 2998 if (nd.last.name[nd.last.len]) 2999 goto slashes; 3000 inode = dentry->d_inode; 3001 if (inode) 3002 ihold(inode); 3003 error = mnt_want_write(nd.path.mnt); 3004 if (error) 3005 goto exit2; 3006 error = security_path_unlink(&nd.path, dentry); 3007 if (error) 3008 goto exit3; 3009 error = vfs_unlink(nd.path.dentry->d_inode, dentry); 3010 exit3: 3011 mnt_drop_write(nd.path.mnt); 3012 exit2: 3013 dput(dentry); 3014 } 3015 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 3016 if (inode) 3017 iput(inode); /* truncate the inode here */ 3018 exit1: 3019 path_put(&nd.path); 3020 putname(name); 3021 return error; 3022 3023 slashes: 3024 error = !dentry->d_inode ? -ENOENT : 3025 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR; 3026 goto exit2; 3027 } 3028 3029 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 3030 { 3031 if ((flag & ~AT_REMOVEDIR) != 0) 3032 return -EINVAL; 3033 3034 if (flag & AT_REMOVEDIR) 3035 return do_rmdir(dfd, pathname); 3036 3037 return do_unlinkat(dfd, pathname); 3038 } 3039 3040 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 3041 { 3042 return do_unlinkat(AT_FDCWD, pathname); 3043 } 3044 3045 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 3046 { 3047 int error = may_create(dir, dentry); 3048 3049 if (error) 3050 return error; 3051 3052 if (!dir->i_op->symlink) 3053 return -EPERM; 3054 3055 error = security_inode_symlink(dir, dentry, oldname); 3056 if (error) 3057 return error; 3058 3059 error = dir->i_op->symlink(dir, dentry, oldname); 3060 if (!error) 3061 fsnotify_create(dir, dentry); 3062 return error; 3063 } 3064 3065 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 3066 int, newdfd, const char __user *, newname) 3067 { 3068 int error; 3069 char *from; 3070 char *to; 3071 struct dentry *dentry; 3072 struct nameidata nd; 3073 3074 from = getname(oldname); 3075 if (IS_ERR(from)) 3076 return PTR_ERR(from); 3077 3078 error = user_path_parent(newdfd, newname, &nd, &to); 3079 if (error) 3080 goto out_putname; 3081 3082 dentry = lookup_create(&nd, 0); 3083 error = PTR_ERR(dentry); 3084 if (IS_ERR(dentry)) 3085 goto out_unlock; 3086 3087 error = mnt_want_write(nd.path.mnt); 3088 if (error) 3089 goto out_dput; 3090 error = security_path_symlink(&nd.path, dentry, from); 3091 if (error) 3092 goto out_drop_write; 3093 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from); 3094 out_drop_write: 3095 mnt_drop_write(nd.path.mnt); 3096 out_dput: 3097 dput(dentry); 3098 out_unlock: 3099 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 3100 path_put(&nd.path); 3101 putname(to); 3102 out_putname: 3103 putname(from); 3104 return error; 3105 } 3106 3107 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 3108 { 3109 return sys_symlinkat(oldname, AT_FDCWD, newname); 3110 } 3111 3112 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 3113 { 3114 struct inode *inode = old_dentry->d_inode; 3115 int error; 3116 3117 if (!inode) 3118 return -ENOENT; 3119 3120 error = may_create(dir, new_dentry); 3121 if (error) 3122 return error; 3123 3124 if (dir->i_sb != inode->i_sb) 3125 return -EXDEV; 3126 3127 /* 3128 * A link to an append-only or immutable file cannot be created. 3129 */ 3130 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 3131 return -EPERM; 3132 if (!dir->i_op->link) 3133 return -EPERM; 3134 if (S_ISDIR(inode->i_mode)) 3135 return -EPERM; 3136 3137 error = security_inode_link(old_dentry, dir, new_dentry); 3138 if (error) 3139 return error; 3140 3141 mutex_lock(&inode->i_mutex); 3142 error = dir->i_op->link(old_dentry, dir, new_dentry); 3143 mutex_unlock(&inode->i_mutex); 3144 if (!error) 3145 fsnotify_link(dir, inode, new_dentry); 3146 return error; 3147 } 3148 3149 /* 3150 * Hardlinks are often used in delicate situations. We avoid 3151 * security-related surprises by not following symlinks on the 3152 * newname. --KAB 3153 * 3154 * We don't follow them on the oldname either to be compatible 3155 * with linux 2.0, and to avoid hard-linking to directories 3156 * and other special files. --ADM 3157 */ 3158 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 3159 int, newdfd, const char __user *, newname, int, flags) 3160 { 3161 struct dentry *new_dentry; 3162 struct nameidata nd; 3163 struct path old_path; 3164 int error; 3165 char *to; 3166 3167 if ((flags & ~AT_SYMLINK_FOLLOW) != 0) 3168 return -EINVAL; 3169 3170 error = user_path_at(olddfd, oldname, 3171 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0, 3172 &old_path); 3173 if (error) 3174 return error; 3175 3176 error = user_path_parent(newdfd, newname, &nd, &to); 3177 if (error) 3178 goto out; 3179 error = -EXDEV; 3180 if (old_path.mnt != nd.path.mnt) 3181 goto out_release; 3182 new_dentry = lookup_create(&nd, 0); 3183 error = PTR_ERR(new_dentry); 3184 if (IS_ERR(new_dentry)) 3185 goto out_unlock; 3186 error = mnt_want_write(nd.path.mnt); 3187 if (error) 3188 goto out_dput; 3189 error = security_path_link(old_path.dentry, &nd.path, new_dentry); 3190 if (error) 3191 goto out_drop_write; 3192 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry); 3193 out_drop_write: 3194 mnt_drop_write(nd.path.mnt); 3195 out_dput: 3196 dput(new_dentry); 3197 out_unlock: 3198 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 3199 out_release: 3200 path_put(&nd.path); 3201 putname(to); 3202 out: 3203 path_put(&old_path); 3204 3205 return error; 3206 } 3207 3208 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 3209 { 3210 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 3211 } 3212 3213 /* 3214 * The worst of all namespace operations - renaming directory. "Perverted" 3215 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 3216 * Problems: 3217 * a) we can get into loop creation. Check is done in is_subdir(). 3218 * b) race potential - two innocent renames can create a loop together. 3219 * That's where 4.4 screws up. Current fix: serialization on 3220 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 3221 * story. 3222 * c) we have to lock _three_ objects - parents and victim (if it exists). 3223 * And that - after we got ->i_mutex on parents (until then we don't know 3224 * whether the target exists). Solution: try to be smart with locking 3225 * order for inodes. We rely on the fact that tree topology may change 3226 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 3227 * move will be locked. Thus we can rank directories by the tree 3228 * (ancestors first) and rank all non-directories after them. 3229 * That works since everybody except rename does "lock parent, lookup, 3230 * lock child" and rename is under ->s_vfs_rename_mutex. 3231 * HOWEVER, it relies on the assumption that any object with ->lookup() 3232 * has no more than 1 dentry. If "hybrid" objects will ever appear, 3233 * we'd better make sure that there's no link(2) for them. 3234 * d) some filesystems don't support opened-but-unlinked directories, 3235 * either because of layout or because they are not ready to deal with 3236 * all cases correctly. The latter will be fixed (taking this sort of 3237 * stuff into VFS), but the former is not going away. Solution: the same 3238 * trick as in rmdir(). 3239 * e) conversion from fhandle to dentry may come in the wrong moment - when 3240 * we are removing the target. Solution: we will have to grab ->i_mutex 3241 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 3242 * ->i_mutex on parents, which works but leads to some truly excessive 3243 * locking]. 3244 */ 3245 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry, 3246 struct inode *new_dir, struct dentry *new_dentry) 3247 { 3248 int error = 0; 3249 struct inode *target; 3250 3251 /* 3252 * If we are going to change the parent - check write permissions, 3253 * we'll need to flip '..'. 3254 */ 3255 if (new_dir != old_dir) { 3256 error = inode_permission(old_dentry->d_inode, MAY_WRITE); 3257 if (error) 3258 return error; 3259 } 3260 3261 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 3262 if (error) 3263 return error; 3264 3265 target = new_dentry->d_inode; 3266 if (target) 3267 mutex_lock(&target->i_mutex); 3268 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) 3269 error = -EBUSY; 3270 else { 3271 if (target) 3272 dentry_unhash(new_dentry); 3273 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 3274 } 3275 if (target) { 3276 if (!error) { 3277 target->i_flags |= S_DEAD; 3278 dont_mount(new_dentry); 3279 } 3280 mutex_unlock(&target->i_mutex); 3281 if (d_unhashed(new_dentry)) 3282 d_rehash(new_dentry); 3283 dput(new_dentry); 3284 } 3285 if (!error) 3286 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 3287 d_move(old_dentry,new_dentry); 3288 return error; 3289 } 3290 3291 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry, 3292 struct inode *new_dir, struct dentry *new_dentry) 3293 { 3294 struct inode *target; 3295 int error; 3296 3297 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 3298 if (error) 3299 return error; 3300 3301 dget(new_dentry); 3302 target = new_dentry->d_inode; 3303 if (target) 3304 mutex_lock(&target->i_mutex); 3305 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) 3306 error = -EBUSY; 3307 else 3308 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 3309 if (!error) { 3310 if (target) 3311 dont_mount(new_dentry); 3312 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 3313 d_move(old_dentry, new_dentry); 3314 } 3315 if (target) 3316 mutex_unlock(&target->i_mutex); 3317 dput(new_dentry); 3318 return error; 3319 } 3320 3321 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 3322 struct inode *new_dir, struct dentry *new_dentry) 3323 { 3324 int error; 3325 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode); 3326 const unsigned char *old_name; 3327 3328 if (old_dentry->d_inode == new_dentry->d_inode) 3329 return 0; 3330 3331 error = may_delete(old_dir, old_dentry, is_dir); 3332 if (error) 3333 return error; 3334 3335 if (!new_dentry->d_inode) 3336 error = may_create(new_dir, new_dentry); 3337 else 3338 error = may_delete(new_dir, new_dentry, is_dir); 3339 if (error) 3340 return error; 3341 3342 if (!old_dir->i_op->rename) 3343 return -EPERM; 3344 3345 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 3346 3347 if (is_dir) 3348 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry); 3349 else 3350 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry); 3351 if (!error) 3352 fsnotify_move(old_dir, new_dir, old_name, is_dir, 3353 new_dentry->d_inode, old_dentry); 3354 fsnotify_oldname_free(old_name); 3355 3356 return error; 3357 } 3358 3359 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 3360 int, newdfd, const char __user *, newname) 3361 { 3362 struct dentry *old_dir, *new_dir; 3363 struct dentry *old_dentry, *new_dentry; 3364 struct dentry *trap; 3365 struct nameidata oldnd, newnd; 3366 char *from; 3367 char *to; 3368 int error; 3369 3370 error = user_path_parent(olddfd, oldname, &oldnd, &from); 3371 if (error) 3372 goto exit; 3373 3374 error = user_path_parent(newdfd, newname, &newnd, &to); 3375 if (error) 3376 goto exit1; 3377 3378 error = -EXDEV; 3379 if (oldnd.path.mnt != newnd.path.mnt) 3380 goto exit2; 3381 3382 old_dir = oldnd.path.dentry; 3383 error = -EBUSY; 3384 if (oldnd.last_type != LAST_NORM) 3385 goto exit2; 3386 3387 new_dir = newnd.path.dentry; 3388 if (newnd.last_type != LAST_NORM) 3389 goto exit2; 3390 3391 oldnd.flags &= ~LOOKUP_PARENT; 3392 newnd.flags &= ~LOOKUP_PARENT; 3393 newnd.flags |= LOOKUP_RENAME_TARGET; 3394 3395 trap = lock_rename(new_dir, old_dir); 3396 3397 old_dentry = lookup_hash(&oldnd); 3398 error = PTR_ERR(old_dentry); 3399 if (IS_ERR(old_dentry)) 3400 goto exit3; 3401 /* source must exist */ 3402 error = -ENOENT; 3403 if (!old_dentry->d_inode) 3404 goto exit4; 3405 /* unless the source is a directory trailing slashes give -ENOTDIR */ 3406 if (!S_ISDIR(old_dentry->d_inode->i_mode)) { 3407 error = -ENOTDIR; 3408 if (oldnd.last.name[oldnd.last.len]) 3409 goto exit4; 3410 if (newnd.last.name[newnd.last.len]) 3411 goto exit4; 3412 } 3413 /* source should not be ancestor of target */ 3414 error = -EINVAL; 3415 if (old_dentry == trap) 3416 goto exit4; 3417 new_dentry = lookup_hash(&newnd); 3418 error = PTR_ERR(new_dentry); 3419 if (IS_ERR(new_dentry)) 3420 goto exit4; 3421 /* target should not be an ancestor of source */ 3422 error = -ENOTEMPTY; 3423 if (new_dentry == trap) 3424 goto exit5; 3425 3426 error = mnt_want_write(oldnd.path.mnt); 3427 if (error) 3428 goto exit5; 3429 error = security_path_rename(&oldnd.path, old_dentry, 3430 &newnd.path, new_dentry); 3431 if (error) 3432 goto exit6; 3433 error = vfs_rename(old_dir->d_inode, old_dentry, 3434 new_dir->d_inode, new_dentry); 3435 exit6: 3436 mnt_drop_write(oldnd.path.mnt); 3437 exit5: 3438 dput(new_dentry); 3439 exit4: 3440 dput(old_dentry); 3441 exit3: 3442 unlock_rename(new_dir, old_dir); 3443 exit2: 3444 path_put(&newnd.path); 3445 putname(to); 3446 exit1: 3447 path_put(&oldnd.path); 3448 putname(from); 3449 exit: 3450 return error; 3451 } 3452 3453 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 3454 { 3455 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname); 3456 } 3457 3458 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link) 3459 { 3460 int len; 3461 3462 len = PTR_ERR(link); 3463 if (IS_ERR(link)) 3464 goto out; 3465 3466 len = strlen(link); 3467 if (len > (unsigned) buflen) 3468 len = buflen; 3469 if (copy_to_user(buffer, link, len)) 3470 len = -EFAULT; 3471 out: 3472 return len; 3473 } 3474 3475 /* 3476 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 3477 * have ->follow_link() touching nd only in nd_set_link(). Using (or not 3478 * using) it for any given inode is up to filesystem. 3479 */ 3480 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) 3481 { 3482 struct nameidata nd; 3483 void *cookie; 3484 int res; 3485 3486 nd.depth = 0; 3487 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd); 3488 if (IS_ERR(cookie)) 3489 return PTR_ERR(cookie); 3490 3491 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd)); 3492 if (dentry->d_inode->i_op->put_link) 3493 dentry->d_inode->i_op->put_link(dentry, &nd, cookie); 3494 return res; 3495 } 3496 3497 int vfs_follow_link(struct nameidata *nd, const char *link) 3498 { 3499 return __vfs_follow_link(nd, link); 3500 } 3501 3502 /* get the link contents into pagecache */ 3503 static char *page_getlink(struct dentry * dentry, struct page **ppage) 3504 { 3505 char *kaddr; 3506 struct page *page; 3507 struct address_space *mapping = dentry->d_inode->i_mapping; 3508 page = read_mapping_page(mapping, 0, NULL); 3509 if (IS_ERR(page)) 3510 return (char*)page; 3511 *ppage = page; 3512 kaddr = kmap(page); 3513 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1); 3514 return kaddr; 3515 } 3516 3517 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 3518 { 3519 struct page *page = NULL; 3520 char *s = page_getlink(dentry, &page); 3521 int res = vfs_readlink(dentry,buffer,buflen,s); 3522 if (page) { 3523 kunmap(page); 3524 page_cache_release(page); 3525 } 3526 return res; 3527 } 3528 3529 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd) 3530 { 3531 struct page *page = NULL; 3532 nd_set_link(nd, page_getlink(dentry, &page)); 3533 return page; 3534 } 3535 3536 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 3537 { 3538 struct page *page = cookie; 3539 3540 if (page) { 3541 kunmap(page); 3542 page_cache_release(page); 3543 } 3544 } 3545 3546 /* 3547 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 3548 */ 3549 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 3550 { 3551 struct address_space *mapping = inode->i_mapping; 3552 struct page *page; 3553 void *fsdata; 3554 int err; 3555 char *kaddr; 3556 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE; 3557 if (nofs) 3558 flags |= AOP_FLAG_NOFS; 3559 3560 retry: 3561 err = pagecache_write_begin(NULL, mapping, 0, len-1, 3562 flags, &page, &fsdata); 3563 if (err) 3564 goto fail; 3565 3566 kaddr = kmap_atomic(page, KM_USER0); 3567 memcpy(kaddr, symname, len-1); 3568 kunmap_atomic(kaddr, KM_USER0); 3569 3570 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 3571 page, fsdata); 3572 if (err < 0) 3573 goto fail; 3574 if (err < len-1) 3575 goto retry; 3576 3577 mark_inode_dirty(inode); 3578 return 0; 3579 fail: 3580 return err; 3581 } 3582 3583 int page_symlink(struct inode *inode, const char *symname, int len) 3584 { 3585 return __page_symlink(inode, symname, len, 3586 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS)); 3587 } 3588 3589 const struct inode_operations page_symlink_inode_operations = { 3590 .readlink = generic_readlink, 3591 .follow_link = page_follow_link_light, 3592 .put_link = page_put_link, 3593 }; 3594 3595 EXPORT_SYMBOL(user_path_at); 3596 EXPORT_SYMBOL(follow_down_one); 3597 EXPORT_SYMBOL(follow_down); 3598 EXPORT_SYMBOL(follow_up); 3599 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */ 3600 EXPORT_SYMBOL(getname); 3601 EXPORT_SYMBOL(lock_rename); 3602 EXPORT_SYMBOL(lookup_one_len); 3603 EXPORT_SYMBOL(page_follow_link_light); 3604 EXPORT_SYMBOL(page_put_link); 3605 EXPORT_SYMBOL(page_readlink); 3606 EXPORT_SYMBOL(__page_symlink); 3607 EXPORT_SYMBOL(page_symlink); 3608 EXPORT_SYMBOL(page_symlink_inode_operations); 3609 EXPORT_SYMBOL(path_lookup); 3610 EXPORT_SYMBOL(kern_path); 3611 EXPORT_SYMBOL(vfs_path_lookup); 3612 EXPORT_SYMBOL(inode_permission); 3613 EXPORT_SYMBOL(file_permission); 3614 EXPORT_SYMBOL(unlock_rename); 3615 EXPORT_SYMBOL(vfs_create); 3616 EXPORT_SYMBOL(vfs_follow_link); 3617 EXPORT_SYMBOL(vfs_link); 3618 EXPORT_SYMBOL(vfs_mkdir); 3619 EXPORT_SYMBOL(vfs_mknod); 3620 EXPORT_SYMBOL(generic_permission); 3621 EXPORT_SYMBOL(vfs_readlink); 3622 EXPORT_SYMBOL(vfs_rename); 3623 EXPORT_SYMBOL(vfs_rmdir); 3624 EXPORT_SYMBOL(vfs_symlink); 3625 EXPORT_SYMBOL(vfs_unlink); 3626 EXPORT_SYMBOL(dentry_unhash); 3627 EXPORT_SYMBOL(generic_readlink); 3628