xref: /linux/fs/namei.c (revision 394d83c17fac2b7bcf05cb99d1e945135767bb6b)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <asm/uaccess.h>
36 
37 #include "internal.h"
38 
39 /* [Feb-1997 T. Schoebel-Theuer]
40  * Fundamental changes in the pathname lookup mechanisms (namei)
41  * were necessary because of omirr.  The reason is that omirr needs
42  * to know the _real_ pathname, not the user-supplied one, in case
43  * of symlinks (and also when transname replacements occur).
44  *
45  * The new code replaces the old recursive symlink resolution with
46  * an iterative one (in case of non-nested symlink chains).  It does
47  * this with calls to <fs>_follow_link().
48  * As a side effect, dir_namei(), _namei() and follow_link() are now
49  * replaced with a single function lookup_dentry() that can handle all
50  * the special cases of the former code.
51  *
52  * With the new dcache, the pathname is stored at each inode, at least as
53  * long as the refcount of the inode is positive.  As a side effect, the
54  * size of the dcache depends on the inode cache and thus is dynamic.
55  *
56  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
57  * resolution to correspond with current state of the code.
58  *
59  * Note that the symlink resolution is not *completely* iterative.
60  * There is still a significant amount of tail- and mid- recursion in
61  * the algorithm.  Also, note that <fs>_readlink() is not used in
62  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
63  * may return different results than <fs>_follow_link().  Many virtual
64  * filesystems (including /proc) exhibit this behavior.
65  */
66 
67 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
68  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
69  * and the name already exists in form of a symlink, try to create the new
70  * name indicated by the symlink. The old code always complained that the
71  * name already exists, due to not following the symlink even if its target
72  * is nonexistent.  The new semantics affects also mknod() and link() when
73  * the name is a symlink pointing to a non-existant name.
74  *
75  * I don't know which semantics is the right one, since I have no access
76  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
77  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
78  * "old" one. Personally, I think the new semantics is much more logical.
79  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
80  * file does succeed in both HP-UX and SunOs, but not in Solaris
81  * and in the old Linux semantics.
82  */
83 
84 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
85  * semantics.  See the comments in "open_namei" and "do_link" below.
86  *
87  * [10-Sep-98 Alan Modra] Another symlink change.
88  */
89 
90 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
91  *	inside the path - always follow.
92  *	in the last component in creation/removal/renaming - never follow.
93  *	if LOOKUP_FOLLOW passed - follow.
94  *	if the pathname has trailing slashes - follow.
95  *	otherwise - don't follow.
96  * (applied in that order).
97  *
98  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
99  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
100  * During the 2.4 we need to fix the userland stuff depending on it -
101  * hopefully we will be able to get rid of that wart in 2.5. So far only
102  * XEmacs seems to be relying on it...
103  */
104 /*
105  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
106  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
107  * any extra contention...
108  */
109 
110 /* In order to reduce some races, while at the same time doing additional
111  * checking and hopefully speeding things up, we copy filenames to the
112  * kernel data space before using them..
113  *
114  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
115  * PATH_MAX includes the nul terminator --RR.
116  */
117 static int do_getname(const char __user *filename, char *page)
118 {
119 	int retval;
120 	unsigned long len = PATH_MAX;
121 
122 	if (!segment_eq(get_fs(), KERNEL_DS)) {
123 		if ((unsigned long) filename >= TASK_SIZE)
124 			return -EFAULT;
125 		if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
126 			len = TASK_SIZE - (unsigned long) filename;
127 	}
128 
129 	retval = strncpy_from_user(page, filename, len);
130 	if (retval > 0) {
131 		if (retval < len)
132 			return 0;
133 		return -ENAMETOOLONG;
134 	} else if (!retval)
135 		retval = -ENOENT;
136 	return retval;
137 }
138 
139 char * getname(const char __user * filename)
140 {
141 	char *tmp, *result;
142 
143 	result = ERR_PTR(-ENOMEM);
144 	tmp = __getname();
145 	if (tmp)  {
146 		int retval = do_getname(filename, tmp);
147 
148 		result = tmp;
149 		if (retval < 0) {
150 			__putname(tmp);
151 			result = ERR_PTR(retval);
152 		}
153 	}
154 	audit_getname(result);
155 	return result;
156 }
157 
158 #ifdef CONFIG_AUDITSYSCALL
159 void putname(const char *name)
160 {
161 	if (unlikely(!audit_dummy_context()))
162 		audit_putname(name);
163 	else
164 		__putname(name);
165 }
166 EXPORT_SYMBOL(putname);
167 #endif
168 
169 /*
170  * This does basic POSIX ACL permission checking
171  */
172 static int acl_permission_check(struct inode *inode, int mask, unsigned int flags,
173 		int (*check_acl)(struct inode *inode, int mask, unsigned int flags))
174 {
175 	umode_t			mode = inode->i_mode;
176 
177 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
178 
179 	if (current_fsuid() == inode->i_uid)
180 		mode >>= 6;
181 	else {
182 		if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
183 			int error = check_acl(inode, mask, flags);
184 			if (error != -EAGAIN)
185 				return error;
186 		}
187 
188 		if (in_group_p(inode->i_gid))
189 			mode >>= 3;
190 	}
191 
192 	/*
193 	 * If the DACs are ok we don't need any capability check.
194 	 */
195 	if ((mask & ~mode) == 0)
196 		return 0;
197 	return -EACCES;
198 }
199 
200 /**
201  * generic_permission -  check for access rights on a Posix-like filesystem
202  * @inode:	inode to check access rights for
203  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
204  * @check_acl:	optional callback to check for Posix ACLs
205  * @flags:	IPERM_FLAG_ flags.
206  *
207  * Used to check for read/write/execute permissions on a file.
208  * We use "fsuid" for this, letting us set arbitrary permissions
209  * for filesystem access without changing the "normal" uids which
210  * are used for other things.
211  *
212  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
213  * request cannot be satisfied (eg. requires blocking or too much complexity).
214  * It would then be called again in ref-walk mode.
215  */
216 int generic_permission(struct inode *inode, int mask, unsigned int flags,
217 	int (*check_acl)(struct inode *inode, int mask, unsigned int flags))
218 {
219 	int ret;
220 
221 	/*
222 	 * Do the basic POSIX ACL permission checks.
223 	 */
224 	ret = acl_permission_check(inode, mask, flags, check_acl);
225 	if (ret != -EACCES)
226 		return ret;
227 
228 	/*
229 	 * Read/write DACs are always overridable.
230 	 * Executable DACs are overridable if at least one exec bit is set.
231 	 */
232 	if (!(mask & MAY_EXEC) || execute_ok(inode))
233 		if (capable(CAP_DAC_OVERRIDE))
234 			return 0;
235 
236 	/*
237 	 * Searching includes executable on directories, else just read.
238 	 */
239 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
240 	if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
241 		if (capable(CAP_DAC_READ_SEARCH))
242 			return 0;
243 
244 	return -EACCES;
245 }
246 
247 /**
248  * inode_permission  -  check for access rights to a given inode
249  * @inode:	inode to check permission on
250  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
251  *
252  * Used to check for read/write/execute permissions on an inode.
253  * We use "fsuid" for this, letting us set arbitrary permissions
254  * for filesystem access without changing the "normal" uids which
255  * are used for other things.
256  */
257 int inode_permission(struct inode *inode, int mask)
258 {
259 	int retval;
260 
261 	if (mask & MAY_WRITE) {
262 		umode_t mode = inode->i_mode;
263 
264 		/*
265 		 * Nobody gets write access to a read-only fs.
266 		 */
267 		if (IS_RDONLY(inode) &&
268 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
269 			return -EROFS;
270 
271 		/*
272 		 * Nobody gets write access to an immutable file.
273 		 */
274 		if (IS_IMMUTABLE(inode))
275 			return -EACCES;
276 	}
277 
278 	if (inode->i_op->permission)
279 		retval = inode->i_op->permission(inode, mask, 0);
280 	else
281 		retval = generic_permission(inode, mask, 0,
282 				inode->i_op->check_acl);
283 
284 	if (retval)
285 		return retval;
286 
287 	retval = devcgroup_inode_permission(inode, mask);
288 	if (retval)
289 		return retval;
290 
291 	return security_inode_permission(inode, mask);
292 }
293 
294 /**
295  * file_permission  -  check for additional access rights to a given file
296  * @file:	file to check access rights for
297  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
298  *
299  * Used to check for read/write/execute permissions on an already opened
300  * file.
301  *
302  * Note:
303  *	Do not use this function in new code.  All access checks should
304  *	be done using inode_permission().
305  */
306 int file_permission(struct file *file, int mask)
307 {
308 	return inode_permission(file->f_path.dentry->d_inode, mask);
309 }
310 
311 /*
312  * get_write_access() gets write permission for a file.
313  * put_write_access() releases this write permission.
314  * This is used for regular files.
315  * We cannot support write (and maybe mmap read-write shared) accesses and
316  * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
317  * can have the following values:
318  * 0: no writers, no VM_DENYWRITE mappings
319  * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
320  * > 0: (i_writecount) users are writing to the file.
321  *
322  * Normally we operate on that counter with atomic_{inc,dec} and it's safe
323  * except for the cases where we don't hold i_writecount yet. Then we need to
324  * use {get,deny}_write_access() - these functions check the sign and refuse
325  * to do the change if sign is wrong. Exclusion between them is provided by
326  * the inode->i_lock spinlock.
327  */
328 
329 int get_write_access(struct inode * inode)
330 {
331 	spin_lock(&inode->i_lock);
332 	if (atomic_read(&inode->i_writecount) < 0) {
333 		spin_unlock(&inode->i_lock);
334 		return -ETXTBSY;
335 	}
336 	atomic_inc(&inode->i_writecount);
337 	spin_unlock(&inode->i_lock);
338 
339 	return 0;
340 }
341 
342 int deny_write_access(struct file * file)
343 {
344 	struct inode *inode = file->f_path.dentry->d_inode;
345 
346 	spin_lock(&inode->i_lock);
347 	if (atomic_read(&inode->i_writecount) > 0) {
348 		spin_unlock(&inode->i_lock);
349 		return -ETXTBSY;
350 	}
351 	atomic_dec(&inode->i_writecount);
352 	spin_unlock(&inode->i_lock);
353 
354 	return 0;
355 }
356 
357 /**
358  * path_get - get a reference to a path
359  * @path: path to get the reference to
360  *
361  * Given a path increment the reference count to the dentry and the vfsmount.
362  */
363 void path_get(struct path *path)
364 {
365 	mntget(path->mnt);
366 	dget(path->dentry);
367 }
368 EXPORT_SYMBOL(path_get);
369 
370 /**
371  * path_put - put a reference to a path
372  * @path: path to put the reference to
373  *
374  * Given a path decrement the reference count to the dentry and the vfsmount.
375  */
376 void path_put(struct path *path)
377 {
378 	dput(path->dentry);
379 	mntput(path->mnt);
380 }
381 EXPORT_SYMBOL(path_put);
382 
383 /**
384  * nameidata_drop_rcu - drop this nameidata out of rcu-walk
385  * @nd: nameidata pathwalk data to drop
386  * Returns: 0 on success, -ECHILD on failure
387  *
388  * Path walking has 2 modes, rcu-walk and ref-walk (see
389  * Documentation/filesystems/path-lookup.txt). __drop_rcu* functions attempt
390  * to drop out of rcu-walk mode and take normal reference counts on dentries
391  * and vfsmounts to transition to rcu-walk mode. __drop_rcu* functions take
392  * refcounts at the last known good point before rcu-walk got stuck, so
393  * ref-walk may continue from there. If this is not successful (eg. a seqcount
394  * has changed), then failure is returned and path walk restarts from the
395  * beginning in ref-walk mode.
396  *
397  * nameidata_drop_rcu attempts to drop the current nd->path and nd->root into
398  * ref-walk. Must be called from rcu-walk context.
399  */
400 static int nameidata_drop_rcu(struct nameidata *nd)
401 {
402 	struct fs_struct *fs = current->fs;
403 	struct dentry *dentry = nd->path.dentry;
404 
405 	BUG_ON(!(nd->flags & LOOKUP_RCU));
406 	if (nd->root.mnt) {
407 		spin_lock(&fs->lock);
408 		if (nd->root.mnt != fs->root.mnt ||
409 				nd->root.dentry != fs->root.dentry)
410 			goto err_root;
411 	}
412 	spin_lock(&dentry->d_lock);
413 	if (!__d_rcu_to_refcount(dentry, nd->seq))
414 		goto err;
415 	BUG_ON(nd->inode != dentry->d_inode);
416 	spin_unlock(&dentry->d_lock);
417 	if (nd->root.mnt) {
418 		path_get(&nd->root);
419 		spin_unlock(&fs->lock);
420 	}
421 	mntget(nd->path.mnt);
422 
423 	rcu_read_unlock();
424 	br_read_unlock(vfsmount_lock);
425 	nd->flags &= ~LOOKUP_RCU;
426 	return 0;
427 err:
428 	spin_unlock(&dentry->d_lock);
429 err_root:
430 	if (nd->root.mnt)
431 		spin_unlock(&fs->lock);
432 	return -ECHILD;
433 }
434 
435 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing.  */
436 static inline int nameidata_drop_rcu_maybe(struct nameidata *nd)
437 {
438 	if (nd->flags & LOOKUP_RCU)
439 		return nameidata_drop_rcu(nd);
440 	return 0;
441 }
442 
443 /**
444  * nameidata_dentry_drop_rcu - drop nameidata and dentry out of rcu-walk
445  * @nd: nameidata pathwalk data to drop
446  * @dentry: dentry to drop
447  * Returns: 0 on success, -ECHILD on failure
448  *
449  * nameidata_dentry_drop_rcu attempts to drop the current nd->path and nd->root,
450  * and dentry into ref-walk. @dentry must be a path found by a do_lookup call on
451  * @nd. Must be called from rcu-walk context.
452  */
453 static int nameidata_dentry_drop_rcu(struct nameidata *nd, struct dentry *dentry)
454 {
455 	struct fs_struct *fs = current->fs;
456 	struct dentry *parent = nd->path.dentry;
457 
458 	/*
459 	 * It can be possible to revalidate the dentry that we started
460 	 * the path walk with. force_reval_path may also revalidate the
461 	 * dentry already committed to the nameidata.
462 	 */
463 	if (unlikely(parent == dentry))
464 		return nameidata_drop_rcu(nd);
465 
466 	BUG_ON(!(nd->flags & LOOKUP_RCU));
467 	if (nd->root.mnt) {
468 		spin_lock(&fs->lock);
469 		if (nd->root.mnt != fs->root.mnt ||
470 				nd->root.dentry != fs->root.dentry)
471 			goto err_root;
472 	}
473 	spin_lock(&parent->d_lock);
474 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
475 	if (!__d_rcu_to_refcount(dentry, nd->seq))
476 		goto err;
477 	/*
478 	 * If the sequence check on the child dentry passed, then the child has
479 	 * not been removed from its parent. This means the parent dentry must
480 	 * be valid and able to take a reference at this point.
481 	 */
482 	BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
483 	BUG_ON(!parent->d_count);
484 	parent->d_count++;
485 	spin_unlock(&dentry->d_lock);
486 	spin_unlock(&parent->d_lock);
487 	if (nd->root.mnt) {
488 		path_get(&nd->root);
489 		spin_unlock(&fs->lock);
490 	}
491 	mntget(nd->path.mnt);
492 
493 	rcu_read_unlock();
494 	br_read_unlock(vfsmount_lock);
495 	nd->flags &= ~LOOKUP_RCU;
496 	return 0;
497 err:
498 	spin_unlock(&dentry->d_lock);
499 	spin_unlock(&parent->d_lock);
500 err_root:
501 	if (nd->root.mnt)
502 		spin_unlock(&fs->lock);
503 	return -ECHILD;
504 }
505 
506 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing.  */
507 static inline int nameidata_dentry_drop_rcu_maybe(struct nameidata *nd, struct dentry *dentry)
508 {
509 	if (nd->flags & LOOKUP_RCU)
510 		return nameidata_dentry_drop_rcu(nd, dentry);
511 	return 0;
512 }
513 
514 /**
515  * nameidata_drop_rcu_last - drop nameidata ending path walk out of rcu-walk
516  * @nd: nameidata pathwalk data to drop
517  * Returns: 0 on success, -ECHILD on failure
518  *
519  * nameidata_drop_rcu_last attempts to drop the current nd->path into ref-walk.
520  * nd->path should be the final element of the lookup, so nd->root is discarded.
521  * Must be called from rcu-walk context.
522  */
523 static int nameidata_drop_rcu_last(struct nameidata *nd)
524 {
525 	struct dentry *dentry = nd->path.dentry;
526 
527 	BUG_ON(!(nd->flags & LOOKUP_RCU));
528 	nd->flags &= ~LOOKUP_RCU;
529 	nd->root.mnt = NULL;
530 	spin_lock(&dentry->d_lock);
531 	if (!__d_rcu_to_refcount(dentry, nd->seq))
532 		goto err_unlock;
533 	BUG_ON(nd->inode != dentry->d_inode);
534 	spin_unlock(&dentry->d_lock);
535 
536 	mntget(nd->path.mnt);
537 
538 	rcu_read_unlock();
539 	br_read_unlock(vfsmount_lock);
540 
541 	return 0;
542 
543 err_unlock:
544 	spin_unlock(&dentry->d_lock);
545 	rcu_read_unlock();
546 	br_read_unlock(vfsmount_lock);
547 	return -ECHILD;
548 }
549 
550 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing.  */
551 static inline int nameidata_drop_rcu_last_maybe(struct nameidata *nd)
552 {
553 	if (likely(nd->flags & LOOKUP_RCU))
554 		return nameidata_drop_rcu_last(nd);
555 	return 0;
556 }
557 
558 /**
559  * release_open_intent - free up open intent resources
560  * @nd: pointer to nameidata
561  */
562 void release_open_intent(struct nameidata *nd)
563 {
564 	if (nd->intent.open.file->f_path.dentry == NULL)
565 		put_filp(nd->intent.open.file);
566 	else
567 		fput(nd->intent.open.file);
568 }
569 
570 /*
571  * Call d_revalidate and handle filesystems that request rcu-walk
572  * to be dropped. This may be called and return in rcu-walk mode,
573  * regardless of success or error. If -ECHILD is returned, the caller
574  * must return -ECHILD back up the path walk stack so path walk may
575  * be restarted in ref-walk mode.
576  */
577 static int d_revalidate(struct dentry *dentry, struct nameidata *nd)
578 {
579 	int status;
580 
581 	status = dentry->d_op->d_revalidate(dentry, nd);
582 	if (status == -ECHILD) {
583 		if (nameidata_dentry_drop_rcu(nd, dentry))
584 			return status;
585 		status = dentry->d_op->d_revalidate(dentry, nd);
586 	}
587 
588 	return status;
589 }
590 
591 static inline struct dentry *
592 do_revalidate(struct dentry *dentry, struct nameidata *nd)
593 {
594 	int status;
595 
596 	status = d_revalidate(dentry, nd);
597 	if (unlikely(status <= 0)) {
598 		/*
599 		 * The dentry failed validation.
600 		 * If d_revalidate returned 0 attempt to invalidate
601 		 * the dentry otherwise d_revalidate is asking us
602 		 * to return a fail status.
603 		 */
604 		if (status < 0) {
605 			/* If we're in rcu-walk, we don't have a ref */
606 			if (!(nd->flags & LOOKUP_RCU))
607 				dput(dentry);
608 			dentry = ERR_PTR(status);
609 
610 		} else {
611 			/* Don't d_invalidate in rcu-walk mode */
612 			if (nameidata_dentry_drop_rcu_maybe(nd, dentry))
613 				return ERR_PTR(-ECHILD);
614 			if (!d_invalidate(dentry)) {
615 				dput(dentry);
616 				dentry = NULL;
617 			}
618 		}
619 	}
620 	return dentry;
621 }
622 
623 static inline int need_reval_dot(struct dentry *dentry)
624 {
625 	if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
626 		return 0;
627 
628 	if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
629 		return 0;
630 
631 	return 1;
632 }
633 
634 /*
635  * force_reval_path - force revalidation of a dentry
636  *
637  * In some situations the path walking code will trust dentries without
638  * revalidating them. This causes problems for filesystems that depend on
639  * d_revalidate to handle file opens (e.g. NFSv4). When FS_REVAL_DOT is set
640  * (which indicates that it's possible for the dentry to go stale), force
641  * a d_revalidate call before proceeding.
642  *
643  * Returns 0 if the revalidation was successful. If the revalidation fails,
644  * either return the error returned by d_revalidate or -ESTALE if the
645  * revalidation it just returned 0. If d_revalidate returns 0, we attempt to
646  * invalidate the dentry. It's up to the caller to handle putting references
647  * to the path if necessary.
648  */
649 static int
650 force_reval_path(struct path *path, struct nameidata *nd)
651 {
652 	int status;
653 	struct dentry *dentry = path->dentry;
654 
655 	/*
656 	 * only check on filesystems where it's possible for the dentry to
657 	 * become stale.
658 	 */
659 	if (!need_reval_dot(dentry))
660 		return 0;
661 
662 	status = d_revalidate(dentry, nd);
663 	if (status > 0)
664 		return 0;
665 
666 	if (!status) {
667 		/* Don't d_invalidate in rcu-walk mode */
668 		if (nameidata_drop_rcu(nd))
669 			return -ECHILD;
670 		d_invalidate(dentry);
671 		status = -ESTALE;
672 	}
673 	return status;
674 }
675 
676 /*
677  * Short-cut version of permission(), for calling on directories
678  * during pathname resolution.  Combines parts of permission()
679  * and generic_permission(), and tests ONLY for MAY_EXEC permission.
680  *
681  * If appropriate, check DAC only.  If not appropriate, or
682  * short-cut DAC fails, then call ->permission() to do more
683  * complete permission check.
684  */
685 static inline int exec_permission(struct inode *inode, unsigned int flags)
686 {
687 	int ret;
688 
689 	if (inode->i_op->permission) {
690 		ret = inode->i_op->permission(inode, MAY_EXEC, flags);
691 	} else {
692 		ret = acl_permission_check(inode, MAY_EXEC, flags,
693 				inode->i_op->check_acl);
694 	}
695 	if (likely(!ret))
696 		goto ok;
697 	if (ret == -ECHILD)
698 		return ret;
699 
700 	if (capable(CAP_DAC_OVERRIDE) || capable(CAP_DAC_READ_SEARCH))
701 		goto ok;
702 
703 	return ret;
704 ok:
705 	return security_inode_exec_permission(inode, flags);
706 }
707 
708 static __always_inline void set_root(struct nameidata *nd)
709 {
710 	if (!nd->root.mnt)
711 		get_fs_root(current->fs, &nd->root);
712 }
713 
714 static int link_path_walk(const char *, struct nameidata *);
715 
716 static __always_inline void set_root_rcu(struct nameidata *nd)
717 {
718 	if (!nd->root.mnt) {
719 		struct fs_struct *fs = current->fs;
720 		unsigned seq;
721 
722 		do {
723 			seq = read_seqcount_begin(&fs->seq);
724 			nd->root = fs->root;
725 		} while (read_seqcount_retry(&fs->seq, seq));
726 	}
727 }
728 
729 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
730 {
731 	int ret;
732 
733 	if (IS_ERR(link))
734 		goto fail;
735 
736 	if (*link == '/') {
737 		set_root(nd);
738 		path_put(&nd->path);
739 		nd->path = nd->root;
740 		path_get(&nd->root);
741 	}
742 	nd->inode = nd->path.dentry->d_inode;
743 
744 	ret = link_path_walk(link, nd);
745 	return ret;
746 fail:
747 	path_put(&nd->path);
748 	return PTR_ERR(link);
749 }
750 
751 static void path_put_conditional(struct path *path, struct nameidata *nd)
752 {
753 	dput(path->dentry);
754 	if (path->mnt != nd->path.mnt)
755 		mntput(path->mnt);
756 }
757 
758 static inline void path_to_nameidata(const struct path *path,
759 					struct nameidata *nd)
760 {
761 	if (!(nd->flags & LOOKUP_RCU)) {
762 		dput(nd->path.dentry);
763 		if (nd->path.mnt != path->mnt)
764 			mntput(nd->path.mnt);
765 	}
766 	nd->path.mnt = path->mnt;
767 	nd->path.dentry = path->dentry;
768 }
769 
770 static __always_inline int
771 __do_follow_link(const struct path *link, struct nameidata *nd, void **p)
772 {
773 	int error;
774 	struct dentry *dentry = link->dentry;
775 
776 	touch_atime(link->mnt, dentry);
777 	nd_set_link(nd, NULL);
778 
779 	if (link->mnt == nd->path.mnt)
780 		mntget(link->mnt);
781 
782 	nd->last_type = LAST_BIND;
783 	*p = dentry->d_inode->i_op->follow_link(dentry, nd);
784 	error = PTR_ERR(*p);
785 	if (!IS_ERR(*p)) {
786 		char *s = nd_get_link(nd);
787 		error = 0;
788 		if (s)
789 			error = __vfs_follow_link(nd, s);
790 		else if (nd->last_type == LAST_BIND) {
791 			error = force_reval_path(&nd->path, nd);
792 			if (error)
793 				path_put(&nd->path);
794 		}
795 	}
796 	return error;
797 }
798 
799 /*
800  * This limits recursive symlink follows to 8, while
801  * limiting consecutive symlinks to 40.
802  *
803  * Without that kind of total limit, nasty chains of consecutive
804  * symlinks can cause almost arbitrarily long lookups.
805  */
806 static inline int do_follow_link(struct path *path, struct nameidata *nd)
807 {
808 	void *cookie;
809 	int err = -ELOOP;
810 	if (current->link_count >= MAX_NESTED_LINKS)
811 		goto loop;
812 	if (current->total_link_count >= 40)
813 		goto loop;
814 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
815 	cond_resched();
816 	err = security_inode_follow_link(path->dentry, nd);
817 	if (err)
818 		goto loop;
819 	current->link_count++;
820 	current->total_link_count++;
821 	nd->depth++;
822 	err = __do_follow_link(path, nd, &cookie);
823 	if (!IS_ERR(cookie) && path->dentry->d_inode->i_op->put_link)
824 		path->dentry->d_inode->i_op->put_link(path->dentry, nd, cookie);
825 	path_put(path);
826 	current->link_count--;
827 	nd->depth--;
828 	return err;
829 loop:
830 	path_put_conditional(path, nd);
831 	path_put(&nd->path);
832 	return err;
833 }
834 
835 static int follow_up_rcu(struct path *path)
836 {
837 	struct vfsmount *parent;
838 	struct dentry *mountpoint;
839 
840 	parent = path->mnt->mnt_parent;
841 	if (parent == path->mnt)
842 		return 0;
843 	mountpoint = path->mnt->mnt_mountpoint;
844 	path->dentry = mountpoint;
845 	path->mnt = parent;
846 	return 1;
847 }
848 
849 int follow_up(struct path *path)
850 {
851 	struct vfsmount *parent;
852 	struct dentry *mountpoint;
853 
854 	br_read_lock(vfsmount_lock);
855 	parent = path->mnt->mnt_parent;
856 	if (parent == path->mnt) {
857 		br_read_unlock(vfsmount_lock);
858 		return 0;
859 	}
860 	mntget(parent);
861 	mountpoint = dget(path->mnt->mnt_mountpoint);
862 	br_read_unlock(vfsmount_lock);
863 	dput(path->dentry);
864 	path->dentry = mountpoint;
865 	mntput(path->mnt);
866 	path->mnt = parent;
867 	return 1;
868 }
869 
870 /*
871  * Perform an automount
872  * - return -EISDIR to tell follow_managed() to stop and return the path we
873  *   were called with.
874  */
875 static int follow_automount(struct path *path, unsigned flags,
876 			    bool *need_mntput)
877 {
878 	struct vfsmount *mnt;
879 	int err;
880 
881 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
882 		return -EREMOTE;
883 
884 	/* We don't want to mount if someone supplied AT_NO_AUTOMOUNT
885 	 * and this is the terminal part of the path.
886 	 */
887 	if ((flags & LOOKUP_NO_AUTOMOUNT) && !(flags & LOOKUP_CONTINUE))
888 		return -EISDIR; /* we actually want to stop here */
889 
890 	/* We want to mount if someone is trying to open/create a file of any
891 	 * type under the mountpoint, wants to traverse through the mountpoint
892 	 * or wants to open the mounted directory.
893 	 *
894 	 * We don't want to mount if someone's just doing a stat and they've
895 	 * set AT_SYMLINK_NOFOLLOW - unless they're stat'ing a directory and
896 	 * appended a '/' to the name.
897 	 */
898 	if (!(flags & LOOKUP_FOLLOW) &&
899 	    !(flags & (LOOKUP_CONTINUE | LOOKUP_DIRECTORY |
900 		       LOOKUP_OPEN | LOOKUP_CREATE)))
901 		return -EISDIR;
902 
903 	current->total_link_count++;
904 	if (current->total_link_count >= 40)
905 		return -ELOOP;
906 
907 	mnt = path->dentry->d_op->d_automount(path);
908 	if (IS_ERR(mnt)) {
909 		/*
910 		 * The filesystem is allowed to return -EISDIR here to indicate
911 		 * it doesn't want to automount.  For instance, autofs would do
912 		 * this so that its userspace daemon can mount on this dentry.
913 		 *
914 		 * However, we can only permit this if it's a terminal point in
915 		 * the path being looked up; if it wasn't then the remainder of
916 		 * the path is inaccessible and we should say so.
917 		 */
918 		if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_CONTINUE))
919 			return -EREMOTE;
920 		return PTR_ERR(mnt);
921 	}
922 
923 	if (!mnt) /* mount collision */
924 		return 0;
925 
926 	/* The new mount record should have at least 2 refs to prevent it being
927 	 * expired before we get a chance to add it
928 	 */
929 	BUG_ON(mnt_get_count(mnt) < 2);
930 
931 	if (mnt->mnt_sb == path->mnt->mnt_sb &&
932 	    mnt->mnt_root == path->dentry) {
933 		mnt_clear_expiry(mnt);
934 		mntput(mnt);
935 		mntput(mnt);
936 		return -ELOOP;
937 	}
938 
939 	/* We need to add the mountpoint to the parent.  The filesystem may
940 	 * have placed it on an expiry list, and so we need to make sure it
941 	 * won't be expired under us if do_add_mount() fails (do_add_mount()
942 	 * will eat a reference unconditionally).
943 	 */
944 	mntget(mnt);
945 	err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
946 	switch (err) {
947 	case -EBUSY:
948 		/* Someone else made a mount here whilst we were busy */
949 		err = 0;
950 	default:
951 		mnt_clear_expiry(mnt);
952 		mntput(mnt);
953 		mntput(mnt);
954 		return err;
955 	case 0:
956 		mntput(mnt);
957 		dput(path->dentry);
958 		if (*need_mntput)
959 			mntput(path->mnt);
960 		path->mnt = mnt;
961 		path->dentry = dget(mnt->mnt_root);
962 		*need_mntput = true;
963 		return 0;
964 	}
965 }
966 
967 /*
968  * Handle a dentry that is managed in some way.
969  * - Flagged for transit management (autofs)
970  * - Flagged as mountpoint
971  * - Flagged as automount point
972  *
973  * This may only be called in refwalk mode.
974  *
975  * Serialization is taken care of in namespace.c
976  */
977 static int follow_managed(struct path *path, unsigned flags)
978 {
979 	unsigned managed;
980 	bool need_mntput = false;
981 	int ret;
982 
983 	/* Given that we're not holding a lock here, we retain the value in a
984 	 * local variable for each dentry as we look at it so that we don't see
985 	 * the components of that value change under us */
986 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
987 	       managed &= DCACHE_MANAGED_DENTRY,
988 	       unlikely(managed != 0)) {
989 		/* Allow the filesystem to manage the transit without i_mutex
990 		 * being held. */
991 		if (managed & DCACHE_MANAGE_TRANSIT) {
992 			BUG_ON(!path->dentry->d_op);
993 			BUG_ON(!path->dentry->d_op->d_manage);
994 			ret = path->dentry->d_op->d_manage(path->dentry,
995 							   false, false);
996 			if (ret < 0)
997 				return ret == -EISDIR ? 0 : ret;
998 		}
999 
1000 		/* Transit to a mounted filesystem. */
1001 		if (managed & DCACHE_MOUNTED) {
1002 			struct vfsmount *mounted = lookup_mnt(path);
1003 			if (mounted) {
1004 				dput(path->dentry);
1005 				if (need_mntput)
1006 					mntput(path->mnt);
1007 				path->mnt = mounted;
1008 				path->dentry = dget(mounted->mnt_root);
1009 				need_mntput = true;
1010 				continue;
1011 			}
1012 
1013 			/* Something is mounted on this dentry in another
1014 			 * namespace and/or whatever was mounted there in this
1015 			 * namespace got unmounted before we managed to get the
1016 			 * vfsmount_lock */
1017 		}
1018 
1019 		/* Handle an automount point */
1020 		if (managed & DCACHE_NEED_AUTOMOUNT) {
1021 			ret = follow_automount(path, flags, &need_mntput);
1022 			if (ret < 0)
1023 				return ret == -EISDIR ? 0 : ret;
1024 			continue;
1025 		}
1026 
1027 		/* We didn't change the current path point */
1028 		break;
1029 	}
1030 	return 0;
1031 }
1032 
1033 int follow_down_one(struct path *path)
1034 {
1035 	struct vfsmount *mounted;
1036 
1037 	mounted = lookup_mnt(path);
1038 	if (mounted) {
1039 		dput(path->dentry);
1040 		mntput(path->mnt);
1041 		path->mnt = mounted;
1042 		path->dentry = dget(mounted->mnt_root);
1043 		return 1;
1044 	}
1045 	return 0;
1046 }
1047 
1048 /*
1049  * Skip to top of mountpoint pile in rcuwalk mode.  We abort the rcu-walk if we
1050  * meet a managed dentry and we're not walking to "..".  True is returned to
1051  * continue, false to abort.
1052  */
1053 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1054 			       struct inode **inode, bool reverse_transit)
1055 {
1056 	while (d_mountpoint(path->dentry)) {
1057 		struct vfsmount *mounted;
1058 		if (unlikely(path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) &&
1059 		    !reverse_transit &&
1060 		    path->dentry->d_op->d_manage(path->dentry, false, true) < 0)
1061 			return false;
1062 		mounted = __lookup_mnt(path->mnt, path->dentry, 1);
1063 		if (!mounted)
1064 			break;
1065 		path->mnt = mounted;
1066 		path->dentry = mounted->mnt_root;
1067 		nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1068 		*inode = path->dentry->d_inode;
1069 	}
1070 
1071 	if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1072 		return reverse_transit;
1073 	return true;
1074 }
1075 
1076 static int follow_dotdot_rcu(struct nameidata *nd)
1077 {
1078 	struct inode *inode = nd->inode;
1079 
1080 	set_root_rcu(nd);
1081 
1082 	while (1) {
1083 		if (nd->path.dentry == nd->root.dentry &&
1084 		    nd->path.mnt == nd->root.mnt) {
1085 			break;
1086 		}
1087 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1088 			struct dentry *old = nd->path.dentry;
1089 			struct dentry *parent = old->d_parent;
1090 			unsigned seq;
1091 
1092 			seq = read_seqcount_begin(&parent->d_seq);
1093 			if (read_seqcount_retry(&old->d_seq, nd->seq))
1094 				return -ECHILD;
1095 			inode = parent->d_inode;
1096 			nd->path.dentry = parent;
1097 			nd->seq = seq;
1098 			break;
1099 		}
1100 		if (!follow_up_rcu(&nd->path))
1101 			break;
1102 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1103 		inode = nd->path.dentry->d_inode;
1104 	}
1105 	__follow_mount_rcu(nd, &nd->path, &inode, true);
1106 	nd->inode = inode;
1107 
1108 	return 0;
1109 }
1110 
1111 /*
1112  * Follow down to the covering mount currently visible to userspace.  At each
1113  * point, the filesystem owning that dentry may be queried as to whether the
1114  * caller is permitted to proceed or not.
1115  *
1116  * Care must be taken as namespace_sem may be held (indicated by mounting_here
1117  * being true).
1118  */
1119 int follow_down(struct path *path, bool mounting_here)
1120 {
1121 	unsigned managed;
1122 	int ret;
1123 
1124 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1125 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1126 		/* Allow the filesystem to manage the transit without i_mutex
1127 		 * being held.
1128 		 *
1129 		 * We indicate to the filesystem if someone is trying to mount
1130 		 * something here.  This gives autofs the chance to deny anyone
1131 		 * other than its daemon the right to mount on its
1132 		 * superstructure.
1133 		 *
1134 		 * The filesystem may sleep at this point.
1135 		 */
1136 		if (managed & DCACHE_MANAGE_TRANSIT) {
1137 			BUG_ON(!path->dentry->d_op);
1138 			BUG_ON(!path->dentry->d_op->d_manage);
1139 			ret = path->dentry->d_op->d_manage(
1140 				path->dentry, mounting_here, false);
1141 			if (ret < 0)
1142 				return ret == -EISDIR ? 0 : ret;
1143 		}
1144 
1145 		/* Transit to a mounted filesystem. */
1146 		if (managed & DCACHE_MOUNTED) {
1147 			struct vfsmount *mounted = lookup_mnt(path);
1148 			if (!mounted)
1149 				break;
1150 			dput(path->dentry);
1151 			mntput(path->mnt);
1152 			path->mnt = mounted;
1153 			path->dentry = dget(mounted->mnt_root);
1154 			continue;
1155 		}
1156 
1157 		/* Don't handle automount points here */
1158 		break;
1159 	}
1160 	return 0;
1161 }
1162 
1163 /*
1164  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1165  */
1166 static void follow_mount(struct path *path)
1167 {
1168 	while (d_mountpoint(path->dentry)) {
1169 		struct vfsmount *mounted = lookup_mnt(path);
1170 		if (!mounted)
1171 			break;
1172 		dput(path->dentry);
1173 		mntput(path->mnt);
1174 		path->mnt = mounted;
1175 		path->dentry = dget(mounted->mnt_root);
1176 	}
1177 }
1178 
1179 static void follow_dotdot(struct nameidata *nd)
1180 {
1181 	set_root(nd);
1182 
1183 	while(1) {
1184 		struct dentry *old = nd->path.dentry;
1185 
1186 		if (nd->path.dentry == nd->root.dentry &&
1187 		    nd->path.mnt == nd->root.mnt) {
1188 			break;
1189 		}
1190 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1191 			/* rare case of legitimate dget_parent()... */
1192 			nd->path.dentry = dget_parent(nd->path.dentry);
1193 			dput(old);
1194 			break;
1195 		}
1196 		if (!follow_up(&nd->path))
1197 			break;
1198 	}
1199 	follow_mount(&nd->path);
1200 	nd->inode = nd->path.dentry->d_inode;
1201 }
1202 
1203 /*
1204  * Allocate a dentry with name and parent, and perform a parent
1205  * directory ->lookup on it. Returns the new dentry, or ERR_PTR
1206  * on error. parent->d_inode->i_mutex must be held. d_lookup must
1207  * have verified that no child exists while under i_mutex.
1208  */
1209 static struct dentry *d_alloc_and_lookup(struct dentry *parent,
1210 				struct qstr *name, struct nameidata *nd)
1211 {
1212 	struct inode *inode = parent->d_inode;
1213 	struct dentry *dentry;
1214 	struct dentry *old;
1215 
1216 	/* Don't create child dentry for a dead directory. */
1217 	if (unlikely(IS_DEADDIR(inode)))
1218 		return ERR_PTR(-ENOENT);
1219 
1220 	dentry = d_alloc(parent, name);
1221 	if (unlikely(!dentry))
1222 		return ERR_PTR(-ENOMEM);
1223 
1224 	old = inode->i_op->lookup(inode, dentry, nd);
1225 	if (unlikely(old)) {
1226 		dput(dentry);
1227 		dentry = old;
1228 	}
1229 	return dentry;
1230 }
1231 
1232 /*
1233  *  It's more convoluted than I'd like it to be, but... it's still fairly
1234  *  small and for now I'd prefer to have fast path as straight as possible.
1235  *  It _is_ time-critical.
1236  */
1237 static int do_lookup(struct nameidata *nd, struct qstr *name,
1238 			struct path *path, struct inode **inode)
1239 {
1240 	struct vfsmount *mnt = nd->path.mnt;
1241 	struct dentry *dentry, *parent = nd->path.dentry;
1242 	struct inode *dir;
1243 	int err;
1244 
1245 	/*
1246 	 * See if the low-level filesystem might want
1247 	 * to use its own hash..
1248 	 */
1249 	if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1250 		err = parent->d_op->d_hash(parent, nd->inode, name);
1251 		if (err < 0)
1252 			return err;
1253 	}
1254 
1255 	/*
1256 	 * Rename seqlock is not required here because in the off chance
1257 	 * of a false negative due to a concurrent rename, we're going to
1258 	 * do the non-racy lookup, below.
1259 	 */
1260 	if (nd->flags & LOOKUP_RCU) {
1261 		unsigned seq;
1262 
1263 		*inode = nd->inode;
1264 		dentry = __d_lookup_rcu(parent, name, &seq, inode);
1265 		if (!dentry) {
1266 			if (nameidata_drop_rcu(nd))
1267 				return -ECHILD;
1268 			goto need_lookup;
1269 		}
1270 		/* Memory barrier in read_seqcount_begin of child is enough */
1271 		if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1272 			return -ECHILD;
1273 
1274 		nd->seq = seq;
1275 		if (dentry->d_flags & DCACHE_OP_REVALIDATE)
1276 			goto need_revalidate;
1277 done2:
1278 		path->mnt = mnt;
1279 		path->dentry = dentry;
1280 		if (likely(__follow_mount_rcu(nd, path, inode, false)))
1281 			return 0;
1282 		if (nameidata_drop_rcu(nd))
1283 			return -ECHILD;
1284 		/* fallthru */
1285 	}
1286 	dentry = __d_lookup(parent, name);
1287 	if (!dentry)
1288 		goto need_lookup;
1289 found:
1290 	if (dentry->d_flags & DCACHE_OP_REVALIDATE)
1291 		goto need_revalidate;
1292 done:
1293 	path->mnt = mnt;
1294 	path->dentry = dentry;
1295 	err = follow_managed(path, nd->flags);
1296 	if (unlikely(err < 0))
1297 		return err;
1298 	*inode = path->dentry->d_inode;
1299 	return 0;
1300 
1301 need_lookup:
1302 	dir = parent->d_inode;
1303 	BUG_ON(nd->inode != dir);
1304 
1305 	mutex_lock(&dir->i_mutex);
1306 	/*
1307 	 * First re-do the cached lookup just in case it was created
1308 	 * while we waited for the directory semaphore, or the first
1309 	 * lookup failed due to an unrelated rename.
1310 	 *
1311 	 * This could use version numbering or similar to avoid unnecessary
1312 	 * cache lookups, but then we'd have to do the first lookup in the
1313 	 * non-racy way. However in the common case here, everything should
1314 	 * be hot in cache, so would it be a big win?
1315 	 */
1316 	dentry = d_lookup(parent, name);
1317 	if (likely(!dentry)) {
1318 		dentry = d_alloc_and_lookup(parent, name, nd);
1319 		mutex_unlock(&dir->i_mutex);
1320 		if (IS_ERR(dentry))
1321 			goto fail;
1322 		goto done;
1323 	}
1324 	/*
1325 	 * Uhhuh! Nasty case: the cache was re-populated while
1326 	 * we waited on the semaphore. Need to revalidate.
1327 	 */
1328 	mutex_unlock(&dir->i_mutex);
1329 	goto found;
1330 
1331 need_revalidate:
1332 	dentry = do_revalidate(dentry, nd);
1333 	if (!dentry)
1334 		goto need_lookup;
1335 	if (IS_ERR(dentry))
1336 		goto fail;
1337 	if (nd->flags & LOOKUP_RCU)
1338 		goto done2;
1339 	goto done;
1340 
1341 fail:
1342 	return PTR_ERR(dentry);
1343 }
1344 
1345 /*
1346  * Name resolution.
1347  * This is the basic name resolution function, turning a pathname into
1348  * the final dentry. We expect 'base' to be positive and a directory.
1349  *
1350  * Returns 0 and nd will have valid dentry and mnt on success.
1351  * Returns error and drops reference to input namei data on failure.
1352  */
1353 static int link_path_walk(const char *name, struct nameidata *nd)
1354 {
1355 	struct path next;
1356 	int err;
1357 	unsigned int lookup_flags = nd->flags;
1358 
1359 	while (*name=='/')
1360 		name++;
1361 	if (!*name)
1362 		goto return_reval;
1363 
1364 	if (nd->depth)
1365 		lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
1366 
1367 	/* At this point we know we have a real path component. */
1368 	for(;;) {
1369 		struct inode *inode;
1370 		unsigned long hash;
1371 		struct qstr this;
1372 		unsigned int c;
1373 
1374 		nd->flags |= LOOKUP_CONTINUE;
1375 		if (nd->flags & LOOKUP_RCU) {
1376 			err = exec_permission(nd->inode, IPERM_FLAG_RCU);
1377 			if (err == -ECHILD) {
1378 				if (nameidata_drop_rcu(nd))
1379 					return -ECHILD;
1380 				goto exec_again;
1381 			}
1382 		} else {
1383 exec_again:
1384 			err = exec_permission(nd->inode, 0);
1385 		}
1386  		if (err)
1387 			break;
1388 
1389 		this.name = name;
1390 		c = *(const unsigned char *)name;
1391 
1392 		hash = init_name_hash();
1393 		do {
1394 			name++;
1395 			hash = partial_name_hash(c, hash);
1396 			c = *(const unsigned char *)name;
1397 		} while (c && (c != '/'));
1398 		this.len = name - (const char *) this.name;
1399 		this.hash = end_name_hash(hash);
1400 
1401 		/* remove trailing slashes? */
1402 		if (!c)
1403 			goto last_component;
1404 		while (*++name == '/');
1405 		if (!*name)
1406 			goto last_with_slashes;
1407 
1408 		/*
1409 		 * "." and ".." are special - ".." especially so because it has
1410 		 * to be able to know about the current root directory and
1411 		 * parent relationships.
1412 		 */
1413 		if (this.name[0] == '.') switch (this.len) {
1414 			default:
1415 				break;
1416 			case 2:
1417 				if (this.name[1] != '.')
1418 					break;
1419 				if (nd->flags & LOOKUP_RCU) {
1420 					if (follow_dotdot_rcu(nd))
1421 						return -ECHILD;
1422 				} else
1423 					follow_dotdot(nd);
1424 				/* fallthrough */
1425 			case 1:
1426 				continue;
1427 		}
1428 		/* This does the actual lookups.. */
1429 		err = do_lookup(nd, &this, &next, &inode);
1430 		if (err)
1431 			break;
1432 		err = -ENOENT;
1433 		if (!inode)
1434 			goto out_dput;
1435 
1436 		if (inode->i_op->follow_link) {
1437 			/* We commonly drop rcu-walk here */
1438 			if (nameidata_dentry_drop_rcu_maybe(nd, next.dentry))
1439 				return -ECHILD;
1440 			BUG_ON(inode != next.dentry->d_inode);
1441 			err = do_follow_link(&next, nd);
1442 			if (err)
1443 				goto return_err;
1444 			nd->inode = nd->path.dentry->d_inode;
1445 			err = -ENOENT;
1446 			if (!nd->inode)
1447 				break;
1448 		} else {
1449 			path_to_nameidata(&next, nd);
1450 			nd->inode = inode;
1451 		}
1452 		err = -ENOTDIR;
1453 		if (!nd->inode->i_op->lookup)
1454 			break;
1455 		continue;
1456 		/* here ends the main loop */
1457 
1458 last_with_slashes:
1459 		lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1460 last_component:
1461 		/* Clear LOOKUP_CONTINUE iff it was previously unset */
1462 		nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
1463 		if (lookup_flags & LOOKUP_PARENT)
1464 			goto lookup_parent;
1465 		if (this.name[0] == '.') switch (this.len) {
1466 			default:
1467 				break;
1468 			case 2:
1469 				if (this.name[1] != '.')
1470 					break;
1471 				if (nd->flags & LOOKUP_RCU) {
1472 					if (follow_dotdot_rcu(nd))
1473 						return -ECHILD;
1474 				} else
1475 					follow_dotdot(nd);
1476 				/* fallthrough */
1477 			case 1:
1478 				goto return_reval;
1479 		}
1480 		err = do_lookup(nd, &this, &next, &inode);
1481 		if (err)
1482 			break;
1483 		if (inode && unlikely(inode->i_op->follow_link) &&
1484 		    (lookup_flags & LOOKUP_FOLLOW)) {
1485 			if (nameidata_dentry_drop_rcu_maybe(nd, next.dentry))
1486 				return -ECHILD;
1487 			BUG_ON(inode != next.dentry->d_inode);
1488 			err = do_follow_link(&next, nd);
1489 			if (err)
1490 				goto return_err;
1491 			nd->inode = nd->path.dentry->d_inode;
1492 		} else {
1493 			path_to_nameidata(&next, nd);
1494 			nd->inode = inode;
1495 		}
1496 		err = -ENOENT;
1497 		if (!nd->inode)
1498 			break;
1499 		if (lookup_flags & LOOKUP_DIRECTORY) {
1500 			err = -ENOTDIR;
1501 			if (!nd->inode->i_op->lookup)
1502 				break;
1503 		}
1504 		goto return_base;
1505 lookup_parent:
1506 		nd->last = this;
1507 		nd->last_type = LAST_NORM;
1508 		if (this.name[0] != '.')
1509 			goto return_base;
1510 		if (this.len == 1)
1511 			nd->last_type = LAST_DOT;
1512 		else if (this.len == 2 && this.name[1] == '.')
1513 			nd->last_type = LAST_DOTDOT;
1514 		else
1515 			goto return_base;
1516 return_reval:
1517 		/*
1518 		 * We bypassed the ordinary revalidation routines.
1519 		 * We may need to check the cached dentry for staleness.
1520 		 */
1521 		if (need_reval_dot(nd->path.dentry)) {
1522 			/* Note: we do not d_invalidate() */
1523 			err = d_revalidate(nd->path.dentry, nd);
1524 			if (!err)
1525 				err = -ESTALE;
1526 			if (err < 0)
1527 				break;
1528 		}
1529 return_base:
1530 		if (nameidata_drop_rcu_last_maybe(nd))
1531 			return -ECHILD;
1532 		return 0;
1533 out_dput:
1534 		if (!(nd->flags & LOOKUP_RCU))
1535 			path_put_conditional(&next, nd);
1536 		break;
1537 	}
1538 	if (!(nd->flags & LOOKUP_RCU))
1539 		path_put(&nd->path);
1540 return_err:
1541 	return err;
1542 }
1543 
1544 static inline int path_walk_rcu(const char *name, struct nameidata *nd)
1545 {
1546 	current->total_link_count = 0;
1547 
1548 	return link_path_walk(name, nd);
1549 }
1550 
1551 static inline int path_walk_simple(const char *name, struct nameidata *nd)
1552 {
1553 	current->total_link_count = 0;
1554 
1555 	return link_path_walk(name, nd);
1556 }
1557 
1558 static int path_walk(const char *name, struct nameidata *nd)
1559 {
1560 	struct path save = nd->path;
1561 	int result;
1562 
1563 	current->total_link_count = 0;
1564 
1565 	/* make sure the stuff we saved doesn't go away */
1566 	path_get(&save);
1567 
1568 	result = link_path_walk(name, nd);
1569 	if (result == -ESTALE) {
1570 		/* nd->path had been dropped */
1571 		current->total_link_count = 0;
1572 		nd->path = save;
1573 		path_get(&nd->path);
1574 		nd->flags |= LOOKUP_REVAL;
1575 		result = link_path_walk(name, nd);
1576 	}
1577 
1578 	path_put(&save);
1579 
1580 	return result;
1581 }
1582 
1583 static void path_finish_rcu(struct nameidata *nd)
1584 {
1585 	if (nd->flags & LOOKUP_RCU) {
1586 		/* RCU dangling. Cancel it. */
1587 		nd->flags &= ~LOOKUP_RCU;
1588 		nd->root.mnt = NULL;
1589 		rcu_read_unlock();
1590 		br_read_unlock(vfsmount_lock);
1591 	}
1592 	if (nd->file)
1593 		fput(nd->file);
1594 }
1595 
1596 static int path_init_rcu(int dfd, const char *name, unsigned int flags, struct nameidata *nd)
1597 {
1598 	int retval = 0;
1599 	int fput_needed;
1600 	struct file *file;
1601 
1602 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1603 	nd->flags = flags | LOOKUP_RCU;
1604 	nd->depth = 0;
1605 	nd->root.mnt = NULL;
1606 	nd->file = NULL;
1607 
1608 	if (*name=='/') {
1609 		struct fs_struct *fs = current->fs;
1610 		unsigned seq;
1611 
1612 		br_read_lock(vfsmount_lock);
1613 		rcu_read_lock();
1614 
1615 		do {
1616 			seq = read_seqcount_begin(&fs->seq);
1617 			nd->root = fs->root;
1618 			nd->path = nd->root;
1619 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1620 		} while (read_seqcount_retry(&fs->seq, seq));
1621 
1622 	} else if (dfd == AT_FDCWD) {
1623 		struct fs_struct *fs = current->fs;
1624 		unsigned seq;
1625 
1626 		br_read_lock(vfsmount_lock);
1627 		rcu_read_lock();
1628 
1629 		do {
1630 			seq = read_seqcount_begin(&fs->seq);
1631 			nd->path = fs->pwd;
1632 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1633 		} while (read_seqcount_retry(&fs->seq, seq));
1634 
1635 	} else {
1636 		struct dentry *dentry;
1637 
1638 		file = fget_light(dfd, &fput_needed);
1639 		retval = -EBADF;
1640 		if (!file)
1641 			goto out_fail;
1642 
1643 		dentry = file->f_path.dentry;
1644 
1645 		retval = -ENOTDIR;
1646 		if (!S_ISDIR(dentry->d_inode->i_mode))
1647 			goto fput_fail;
1648 
1649 		retval = file_permission(file, MAY_EXEC);
1650 		if (retval)
1651 			goto fput_fail;
1652 
1653 		nd->path = file->f_path;
1654 		if (fput_needed)
1655 			nd->file = file;
1656 
1657 		nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1658 		br_read_lock(vfsmount_lock);
1659 		rcu_read_lock();
1660 	}
1661 	nd->inode = nd->path.dentry->d_inode;
1662 	return 0;
1663 
1664 fput_fail:
1665 	fput_light(file, fput_needed);
1666 out_fail:
1667 	return retval;
1668 }
1669 
1670 static int path_init(int dfd, const char *name, unsigned int flags, struct nameidata *nd)
1671 {
1672 	int retval = 0;
1673 	int fput_needed;
1674 	struct file *file;
1675 
1676 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1677 	nd->flags = flags;
1678 	nd->depth = 0;
1679 	nd->root.mnt = NULL;
1680 
1681 	if (*name=='/') {
1682 		set_root(nd);
1683 		nd->path = nd->root;
1684 		path_get(&nd->root);
1685 	} else if (dfd == AT_FDCWD) {
1686 		get_fs_pwd(current->fs, &nd->path);
1687 	} else {
1688 		struct dentry *dentry;
1689 
1690 		file = fget_light(dfd, &fput_needed);
1691 		retval = -EBADF;
1692 		if (!file)
1693 			goto out_fail;
1694 
1695 		dentry = file->f_path.dentry;
1696 
1697 		retval = -ENOTDIR;
1698 		if (!S_ISDIR(dentry->d_inode->i_mode))
1699 			goto fput_fail;
1700 
1701 		retval = file_permission(file, MAY_EXEC);
1702 		if (retval)
1703 			goto fput_fail;
1704 
1705 		nd->path = file->f_path;
1706 		path_get(&file->f_path);
1707 
1708 		fput_light(file, fput_needed);
1709 	}
1710 	nd->inode = nd->path.dentry->d_inode;
1711 	return 0;
1712 
1713 fput_fail:
1714 	fput_light(file, fput_needed);
1715 out_fail:
1716 	return retval;
1717 }
1718 
1719 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1720 static int do_path_lookup(int dfd, const char *name,
1721 				unsigned int flags, struct nameidata *nd)
1722 {
1723 	int retval;
1724 
1725 	/*
1726 	 * Path walking is largely split up into 2 different synchronisation
1727 	 * schemes, rcu-walk and ref-walk (explained in
1728 	 * Documentation/filesystems/path-lookup.txt). These share much of the
1729 	 * path walk code, but some things particularly setup, cleanup, and
1730 	 * following mounts are sufficiently divergent that functions are
1731 	 * duplicated. Typically there is a function foo(), and its RCU
1732 	 * analogue, foo_rcu().
1733 	 *
1734 	 * -ECHILD is the error number of choice (just to avoid clashes) that
1735 	 * is returned if some aspect of an rcu-walk fails. Such an error must
1736 	 * be handled by restarting a traditional ref-walk (which will always
1737 	 * be able to complete).
1738 	 */
1739 	retval = path_init_rcu(dfd, name, flags, nd);
1740 	if (unlikely(retval))
1741 		return retval;
1742 	retval = path_walk_rcu(name, nd);
1743 	path_finish_rcu(nd);
1744 	if (nd->root.mnt) {
1745 		path_put(&nd->root);
1746 		nd->root.mnt = NULL;
1747 	}
1748 
1749 	if (unlikely(retval == -ECHILD || retval == -ESTALE)) {
1750 		/* slower, locked walk */
1751 		if (retval == -ESTALE)
1752 			flags |= LOOKUP_REVAL;
1753 		retval = path_init(dfd, name, flags, nd);
1754 		if (unlikely(retval))
1755 			return retval;
1756 		retval = path_walk(name, nd);
1757 		if (nd->root.mnt) {
1758 			path_put(&nd->root);
1759 			nd->root.mnt = NULL;
1760 		}
1761 	}
1762 
1763 	if (likely(!retval)) {
1764 		if (unlikely(!audit_dummy_context())) {
1765 			if (nd->path.dentry && nd->inode)
1766 				audit_inode(name, nd->path.dentry);
1767 		}
1768 	}
1769 
1770 	return retval;
1771 }
1772 
1773 int path_lookup(const char *name, unsigned int flags,
1774 			struct nameidata *nd)
1775 {
1776 	return do_path_lookup(AT_FDCWD, name, flags, nd);
1777 }
1778 
1779 int kern_path(const char *name, unsigned int flags, struct path *path)
1780 {
1781 	struct nameidata nd;
1782 	int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1783 	if (!res)
1784 		*path = nd.path;
1785 	return res;
1786 }
1787 
1788 /**
1789  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1790  * @dentry:  pointer to dentry of the base directory
1791  * @mnt: pointer to vfs mount of the base directory
1792  * @name: pointer to file name
1793  * @flags: lookup flags
1794  * @nd: pointer to nameidata
1795  */
1796 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1797 		    const char *name, unsigned int flags,
1798 		    struct nameidata *nd)
1799 {
1800 	int retval;
1801 
1802 	/* same as do_path_lookup */
1803 	nd->last_type = LAST_ROOT;
1804 	nd->flags = flags;
1805 	nd->depth = 0;
1806 
1807 	nd->path.dentry = dentry;
1808 	nd->path.mnt = mnt;
1809 	path_get(&nd->path);
1810 	nd->root = nd->path;
1811 	path_get(&nd->root);
1812 	nd->inode = nd->path.dentry->d_inode;
1813 
1814 	retval = path_walk(name, nd);
1815 	if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1816 				nd->inode))
1817 		audit_inode(name, nd->path.dentry);
1818 
1819 	path_put(&nd->root);
1820 	nd->root.mnt = NULL;
1821 
1822 	return retval;
1823 }
1824 
1825 static struct dentry *__lookup_hash(struct qstr *name,
1826 		struct dentry *base, struct nameidata *nd)
1827 {
1828 	struct inode *inode = base->d_inode;
1829 	struct dentry *dentry;
1830 	int err;
1831 
1832 	err = exec_permission(inode, 0);
1833 	if (err)
1834 		return ERR_PTR(err);
1835 
1836 	/*
1837 	 * See if the low-level filesystem might want
1838 	 * to use its own hash..
1839 	 */
1840 	if (base->d_flags & DCACHE_OP_HASH) {
1841 		err = base->d_op->d_hash(base, inode, name);
1842 		dentry = ERR_PTR(err);
1843 		if (err < 0)
1844 			goto out;
1845 	}
1846 
1847 	/*
1848 	 * Don't bother with __d_lookup: callers are for creat as
1849 	 * well as unlink, so a lot of the time it would cost
1850 	 * a double lookup.
1851 	 */
1852 	dentry = d_lookup(base, name);
1853 
1854 	if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE))
1855 		dentry = do_revalidate(dentry, nd);
1856 
1857 	if (!dentry)
1858 		dentry = d_alloc_and_lookup(base, name, nd);
1859 out:
1860 	return dentry;
1861 }
1862 
1863 /*
1864  * Restricted form of lookup. Doesn't follow links, single-component only,
1865  * needs parent already locked. Doesn't follow mounts.
1866  * SMP-safe.
1867  */
1868 static struct dentry *lookup_hash(struct nameidata *nd)
1869 {
1870 	return __lookup_hash(&nd->last, nd->path.dentry, nd);
1871 }
1872 
1873 static int __lookup_one_len(const char *name, struct qstr *this,
1874 		struct dentry *base, int len)
1875 {
1876 	unsigned long hash;
1877 	unsigned int c;
1878 
1879 	this->name = name;
1880 	this->len = len;
1881 	if (!len)
1882 		return -EACCES;
1883 
1884 	hash = init_name_hash();
1885 	while (len--) {
1886 		c = *(const unsigned char *)name++;
1887 		if (c == '/' || c == '\0')
1888 			return -EACCES;
1889 		hash = partial_name_hash(c, hash);
1890 	}
1891 	this->hash = end_name_hash(hash);
1892 	return 0;
1893 }
1894 
1895 /**
1896  * lookup_one_len - filesystem helper to lookup single pathname component
1897  * @name:	pathname component to lookup
1898  * @base:	base directory to lookup from
1899  * @len:	maximum length @len should be interpreted to
1900  *
1901  * Note that this routine is purely a helper for filesystem usage and should
1902  * not be called by generic code.  Also note that by using this function the
1903  * nameidata argument is passed to the filesystem methods and a filesystem
1904  * using this helper needs to be prepared for that.
1905  */
1906 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1907 {
1908 	int err;
1909 	struct qstr this;
1910 
1911 	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1912 
1913 	err = __lookup_one_len(name, &this, base, len);
1914 	if (err)
1915 		return ERR_PTR(err);
1916 
1917 	return __lookup_hash(&this, base, NULL);
1918 }
1919 
1920 int user_path_at(int dfd, const char __user *name, unsigned flags,
1921 		 struct path *path)
1922 {
1923 	struct nameidata nd;
1924 	char *tmp = getname(name);
1925 	int err = PTR_ERR(tmp);
1926 	if (!IS_ERR(tmp)) {
1927 
1928 		BUG_ON(flags & LOOKUP_PARENT);
1929 
1930 		err = do_path_lookup(dfd, tmp, flags, &nd);
1931 		putname(tmp);
1932 		if (!err)
1933 			*path = nd.path;
1934 	}
1935 	return err;
1936 }
1937 
1938 static int user_path_parent(int dfd, const char __user *path,
1939 			struct nameidata *nd, char **name)
1940 {
1941 	char *s = getname(path);
1942 	int error;
1943 
1944 	if (IS_ERR(s))
1945 		return PTR_ERR(s);
1946 
1947 	error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1948 	if (error)
1949 		putname(s);
1950 	else
1951 		*name = s;
1952 
1953 	return error;
1954 }
1955 
1956 /*
1957  * It's inline, so penalty for filesystems that don't use sticky bit is
1958  * minimal.
1959  */
1960 static inline int check_sticky(struct inode *dir, struct inode *inode)
1961 {
1962 	uid_t fsuid = current_fsuid();
1963 
1964 	if (!(dir->i_mode & S_ISVTX))
1965 		return 0;
1966 	if (inode->i_uid == fsuid)
1967 		return 0;
1968 	if (dir->i_uid == fsuid)
1969 		return 0;
1970 	return !capable(CAP_FOWNER);
1971 }
1972 
1973 /*
1974  *	Check whether we can remove a link victim from directory dir, check
1975  *  whether the type of victim is right.
1976  *  1. We can't do it if dir is read-only (done in permission())
1977  *  2. We should have write and exec permissions on dir
1978  *  3. We can't remove anything from append-only dir
1979  *  4. We can't do anything with immutable dir (done in permission())
1980  *  5. If the sticky bit on dir is set we should either
1981  *	a. be owner of dir, or
1982  *	b. be owner of victim, or
1983  *	c. have CAP_FOWNER capability
1984  *  6. If the victim is append-only or immutable we can't do antyhing with
1985  *     links pointing to it.
1986  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1987  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1988  *  9. We can't remove a root or mountpoint.
1989  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1990  *     nfs_async_unlink().
1991  */
1992 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1993 {
1994 	int error;
1995 
1996 	if (!victim->d_inode)
1997 		return -ENOENT;
1998 
1999 	BUG_ON(victim->d_parent->d_inode != dir);
2000 	audit_inode_child(victim, dir);
2001 
2002 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2003 	if (error)
2004 		return error;
2005 	if (IS_APPEND(dir))
2006 		return -EPERM;
2007 	if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
2008 	    IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
2009 		return -EPERM;
2010 	if (isdir) {
2011 		if (!S_ISDIR(victim->d_inode->i_mode))
2012 			return -ENOTDIR;
2013 		if (IS_ROOT(victim))
2014 			return -EBUSY;
2015 	} else if (S_ISDIR(victim->d_inode->i_mode))
2016 		return -EISDIR;
2017 	if (IS_DEADDIR(dir))
2018 		return -ENOENT;
2019 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2020 		return -EBUSY;
2021 	return 0;
2022 }
2023 
2024 /*	Check whether we can create an object with dentry child in directory
2025  *  dir.
2026  *  1. We can't do it if child already exists (open has special treatment for
2027  *     this case, but since we are inlined it's OK)
2028  *  2. We can't do it if dir is read-only (done in permission())
2029  *  3. We should have write and exec permissions on dir
2030  *  4. We can't do it if dir is immutable (done in permission())
2031  */
2032 static inline int may_create(struct inode *dir, struct dentry *child)
2033 {
2034 	if (child->d_inode)
2035 		return -EEXIST;
2036 	if (IS_DEADDIR(dir))
2037 		return -ENOENT;
2038 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2039 }
2040 
2041 /*
2042  * p1 and p2 should be directories on the same fs.
2043  */
2044 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2045 {
2046 	struct dentry *p;
2047 
2048 	if (p1 == p2) {
2049 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2050 		return NULL;
2051 	}
2052 
2053 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2054 
2055 	p = d_ancestor(p2, p1);
2056 	if (p) {
2057 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2058 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2059 		return p;
2060 	}
2061 
2062 	p = d_ancestor(p1, p2);
2063 	if (p) {
2064 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2065 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2066 		return p;
2067 	}
2068 
2069 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2070 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2071 	return NULL;
2072 }
2073 
2074 void unlock_rename(struct dentry *p1, struct dentry *p2)
2075 {
2076 	mutex_unlock(&p1->d_inode->i_mutex);
2077 	if (p1 != p2) {
2078 		mutex_unlock(&p2->d_inode->i_mutex);
2079 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2080 	}
2081 }
2082 
2083 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
2084 		struct nameidata *nd)
2085 {
2086 	int error = may_create(dir, dentry);
2087 
2088 	if (error)
2089 		return error;
2090 
2091 	if (!dir->i_op->create)
2092 		return -EACCES;	/* shouldn't it be ENOSYS? */
2093 	mode &= S_IALLUGO;
2094 	mode |= S_IFREG;
2095 	error = security_inode_create(dir, dentry, mode);
2096 	if (error)
2097 		return error;
2098 	error = dir->i_op->create(dir, dentry, mode, nd);
2099 	if (!error)
2100 		fsnotify_create(dir, dentry);
2101 	return error;
2102 }
2103 
2104 int may_open(struct path *path, int acc_mode, int flag)
2105 {
2106 	struct dentry *dentry = path->dentry;
2107 	struct inode *inode = dentry->d_inode;
2108 	int error;
2109 
2110 	if (!inode)
2111 		return -ENOENT;
2112 
2113 	switch (inode->i_mode & S_IFMT) {
2114 	case S_IFLNK:
2115 		return -ELOOP;
2116 	case S_IFDIR:
2117 		if (acc_mode & MAY_WRITE)
2118 			return -EISDIR;
2119 		break;
2120 	case S_IFBLK:
2121 	case S_IFCHR:
2122 		if (path->mnt->mnt_flags & MNT_NODEV)
2123 			return -EACCES;
2124 		/*FALLTHRU*/
2125 	case S_IFIFO:
2126 	case S_IFSOCK:
2127 		flag &= ~O_TRUNC;
2128 		break;
2129 	}
2130 
2131 	error = inode_permission(inode, acc_mode);
2132 	if (error)
2133 		return error;
2134 
2135 	/*
2136 	 * An append-only file must be opened in append mode for writing.
2137 	 */
2138 	if (IS_APPEND(inode)) {
2139 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2140 			return -EPERM;
2141 		if (flag & O_TRUNC)
2142 			return -EPERM;
2143 	}
2144 
2145 	/* O_NOATIME can only be set by the owner or superuser */
2146 	if (flag & O_NOATIME && !is_owner_or_cap(inode))
2147 		return -EPERM;
2148 
2149 	/*
2150 	 * Ensure there are no outstanding leases on the file.
2151 	 */
2152 	return break_lease(inode, flag);
2153 }
2154 
2155 static int handle_truncate(struct file *filp)
2156 {
2157 	struct path *path = &filp->f_path;
2158 	struct inode *inode = path->dentry->d_inode;
2159 	int error = get_write_access(inode);
2160 	if (error)
2161 		return error;
2162 	/*
2163 	 * Refuse to truncate files with mandatory locks held on them.
2164 	 */
2165 	error = locks_verify_locked(inode);
2166 	if (!error)
2167 		error = security_path_truncate(path);
2168 	if (!error) {
2169 		error = do_truncate(path->dentry, 0,
2170 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2171 				    filp);
2172 	}
2173 	put_write_access(inode);
2174 	return error;
2175 }
2176 
2177 /*
2178  * Be careful about ever adding any more callers of this
2179  * function.  Its flags must be in the namei format, not
2180  * what get passed to sys_open().
2181  */
2182 static int __open_namei_create(struct nameidata *nd, struct path *path,
2183 				int open_flag, int mode)
2184 {
2185 	int error;
2186 	struct dentry *dir = nd->path.dentry;
2187 
2188 	if (!IS_POSIXACL(dir->d_inode))
2189 		mode &= ~current_umask();
2190 	error = security_path_mknod(&nd->path, path->dentry, mode, 0);
2191 	if (error)
2192 		goto out_unlock;
2193 	error = vfs_create(dir->d_inode, path->dentry, mode, nd);
2194 out_unlock:
2195 	mutex_unlock(&dir->d_inode->i_mutex);
2196 	dput(nd->path.dentry);
2197 	nd->path.dentry = path->dentry;
2198 
2199 	if (error)
2200 		return error;
2201 	/* Don't check for write permission, don't truncate */
2202 	return may_open(&nd->path, 0, open_flag & ~O_TRUNC);
2203 }
2204 
2205 /*
2206  * Note that while the flag value (low two bits) for sys_open means:
2207  *	00 - read-only
2208  *	01 - write-only
2209  *	10 - read-write
2210  *	11 - special
2211  * it is changed into
2212  *	00 - no permissions needed
2213  *	01 - read-permission
2214  *	10 - write-permission
2215  *	11 - read-write
2216  * for the internal routines (ie open_namei()/follow_link() etc)
2217  * This is more logical, and also allows the 00 "no perm needed"
2218  * to be used for symlinks (where the permissions are checked
2219  * later).
2220  *
2221 */
2222 static inline int open_to_namei_flags(int flag)
2223 {
2224 	if ((flag+1) & O_ACCMODE)
2225 		flag++;
2226 	return flag;
2227 }
2228 
2229 static int open_will_truncate(int flag, struct inode *inode)
2230 {
2231 	/*
2232 	 * We'll never write to the fs underlying
2233 	 * a device file.
2234 	 */
2235 	if (special_file(inode->i_mode))
2236 		return 0;
2237 	return (flag & O_TRUNC);
2238 }
2239 
2240 static struct file *finish_open(struct nameidata *nd,
2241 				int open_flag, int acc_mode)
2242 {
2243 	struct file *filp;
2244 	int will_truncate;
2245 	int error;
2246 
2247 	will_truncate = open_will_truncate(open_flag, nd->path.dentry->d_inode);
2248 	if (will_truncate) {
2249 		error = mnt_want_write(nd->path.mnt);
2250 		if (error)
2251 			goto exit;
2252 	}
2253 	error = may_open(&nd->path, acc_mode, open_flag);
2254 	if (error) {
2255 		if (will_truncate)
2256 			mnt_drop_write(nd->path.mnt);
2257 		goto exit;
2258 	}
2259 	filp = nameidata_to_filp(nd);
2260 	if (!IS_ERR(filp)) {
2261 		error = ima_file_check(filp, acc_mode);
2262 		if (error) {
2263 			fput(filp);
2264 			filp = ERR_PTR(error);
2265 		}
2266 	}
2267 	if (!IS_ERR(filp)) {
2268 		if (will_truncate) {
2269 			error = handle_truncate(filp);
2270 			if (error) {
2271 				fput(filp);
2272 				filp = ERR_PTR(error);
2273 			}
2274 		}
2275 	}
2276 	/*
2277 	 * It is now safe to drop the mnt write
2278 	 * because the filp has had a write taken
2279 	 * on its behalf.
2280 	 */
2281 	if (will_truncate)
2282 		mnt_drop_write(nd->path.mnt);
2283 	path_put(&nd->path);
2284 	return filp;
2285 
2286 exit:
2287 	if (!IS_ERR(nd->intent.open.file))
2288 		release_open_intent(nd);
2289 	path_put(&nd->path);
2290 	return ERR_PTR(error);
2291 }
2292 
2293 /*
2294  * Handle O_CREAT case for do_filp_open
2295  */
2296 static struct file *do_last(struct nameidata *nd, struct path *path,
2297 			    int open_flag, int acc_mode,
2298 			    int mode, const char *pathname)
2299 {
2300 	struct dentry *dir = nd->path.dentry;
2301 	struct file *filp;
2302 	int error = -EISDIR;
2303 
2304 	switch (nd->last_type) {
2305 	case LAST_DOTDOT:
2306 		follow_dotdot(nd);
2307 		dir = nd->path.dentry;
2308 	case LAST_DOT:
2309 		if (need_reval_dot(dir)) {
2310 			int status = d_revalidate(nd->path.dentry, nd);
2311 			if (!status)
2312 				status = -ESTALE;
2313 			if (status < 0) {
2314 				error = status;
2315 				goto exit;
2316 			}
2317 		}
2318 		/* fallthrough */
2319 	case LAST_ROOT:
2320 		goto exit;
2321 	case LAST_BIND:
2322 		audit_inode(pathname, dir);
2323 		goto ok;
2324 	}
2325 
2326 	/* trailing slashes? */
2327 	if (nd->last.name[nd->last.len])
2328 		goto exit;
2329 
2330 	mutex_lock(&dir->d_inode->i_mutex);
2331 
2332 	path->dentry = lookup_hash(nd);
2333 	path->mnt = nd->path.mnt;
2334 
2335 	error = PTR_ERR(path->dentry);
2336 	if (IS_ERR(path->dentry)) {
2337 		mutex_unlock(&dir->d_inode->i_mutex);
2338 		goto exit;
2339 	}
2340 
2341 	if (IS_ERR(nd->intent.open.file)) {
2342 		error = PTR_ERR(nd->intent.open.file);
2343 		goto exit_mutex_unlock;
2344 	}
2345 
2346 	/* Negative dentry, just create the file */
2347 	if (!path->dentry->d_inode) {
2348 		/*
2349 		 * This write is needed to ensure that a
2350 		 * ro->rw transition does not occur between
2351 		 * the time when the file is created and when
2352 		 * a permanent write count is taken through
2353 		 * the 'struct file' in nameidata_to_filp().
2354 		 */
2355 		error = mnt_want_write(nd->path.mnt);
2356 		if (error)
2357 			goto exit_mutex_unlock;
2358 		error = __open_namei_create(nd, path, open_flag, mode);
2359 		if (error) {
2360 			mnt_drop_write(nd->path.mnt);
2361 			goto exit;
2362 		}
2363 		filp = nameidata_to_filp(nd);
2364 		mnt_drop_write(nd->path.mnt);
2365 		path_put(&nd->path);
2366 		if (!IS_ERR(filp)) {
2367 			error = ima_file_check(filp, acc_mode);
2368 			if (error) {
2369 				fput(filp);
2370 				filp = ERR_PTR(error);
2371 			}
2372 		}
2373 		return filp;
2374 	}
2375 
2376 	/*
2377 	 * It already exists.
2378 	 */
2379 	mutex_unlock(&dir->d_inode->i_mutex);
2380 	audit_inode(pathname, path->dentry);
2381 
2382 	error = -EEXIST;
2383 	if (open_flag & O_EXCL)
2384 		goto exit_dput;
2385 
2386 	error = follow_managed(path, nd->flags);
2387 	if (error < 0)
2388 		goto exit_dput;
2389 
2390 	error = -ENOENT;
2391 	if (!path->dentry->d_inode)
2392 		goto exit_dput;
2393 
2394 	if (path->dentry->d_inode->i_op->follow_link)
2395 		return NULL;
2396 
2397 	path_to_nameidata(path, nd);
2398 	nd->inode = path->dentry->d_inode;
2399 	error = -EISDIR;
2400 	if (S_ISDIR(nd->inode->i_mode))
2401 		goto exit;
2402 ok:
2403 	filp = finish_open(nd, open_flag, acc_mode);
2404 	return filp;
2405 
2406 exit_mutex_unlock:
2407 	mutex_unlock(&dir->d_inode->i_mutex);
2408 exit_dput:
2409 	path_put_conditional(path, nd);
2410 exit:
2411 	if (!IS_ERR(nd->intent.open.file))
2412 		release_open_intent(nd);
2413 	path_put(&nd->path);
2414 	return ERR_PTR(error);
2415 }
2416 
2417 /*
2418  * Note that the low bits of the passed in "open_flag"
2419  * are not the same as in the local variable "flag". See
2420  * open_to_namei_flags() for more details.
2421  */
2422 struct file *do_filp_open(int dfd, const char *pathname,
2423 		int open_flag, int mode, int acc_mode)
2424 {
2425 	struct file *filp;
2426 	struct nameidata nd;
2427 	int error;
2428 	struct path path;
2429 	int count = 0;
2430 	int flag = open_to_namei_flags(open_flag);
2431 	int flags;
2432 
2433 	if (!(open_flag & O_CREAT))
2434 		mode = 0;
2435 
2436 	/* Must never be set by userspace */
2437 	open_flag &= ~FMODE_NONOTIFY;
2438 
2439 	/*
2440 	 * O_SYNC is implemented as __O_SYNC|O_DSYNC.  As many places only
2441 	 * check for O_DSYNC if the need any syncing at all we enforce it's
2442 	 * always set instead of having to deal with possibly weird behaviour
2443 	 * for malicious applications setting only __O_SYNC.
2444 	 */
2445 	if (open_flag & __O_SYNC)
2446 		open_flag |= O_DSYNC;
2447 
2448 	if (!acc_mode)
2449 		acc_mode = MAY_OPEN | ACC_MODE(open_flag);
2450 
2451 	/* O_TRUNC implies we need access checks for write permissions */
2452 	if (open_flag & O_TRUNC)
2453 		acc_mode |= MAY_WRITE;
2454 
2455 	/* Allow the LSM permission hook to distinguish append
2456 	   access from general write access. */
2457 	if (open_flag & O_APPEND)
2458 		acc_mode |= MAY_APPEND;
2459 
2460 	flags = LOOKUP_OPEN;
2461 	if (open_flag & O_CREAT) {
2462 		flags |= LOOKUP_CREATE;
2463 		if (open_flag & O_EXCL)
2464 			flags |= LOOKUP_EXCL;
2465 	}
2466 	if (open_flag & O_DIRECTORY)
2467 		flags |= LOOKUP_DIRECTORY;
2468 	if (!(open_flag & O_NOFOLLOW))
2469 		flags |= LOOKUP_FOLLOW;
2470 
2471 	filp = get_empty_filp();
2472 	if (!filp)
2473 		return ERR_PTR(-ENFILE);
2474 
2475 	filp->f_flags = open_flag;
2476 	nd.intent.open.file = filp;
2477 	nd.intent.open.flags = flag;
2478 	nd.intent.open.create_mode = mode;
2479 
2480 	if (open_flag & O_CREAT)
2481 		goto creat;
2482 
2483 	/* !O_CREAT, simple open */
2484 	error = do_path_lookup(dfd, pathname, flags, &nd);
2485 	if (unlikely(error))
2486 		goto out_filp;
2487 	error = -ELOOP;
2488 	if (!(nd.flags & LOOKUP_FOLLOW)) {
2489 		if (nd.inode->i_op->follow_link)
2490 			goto out_path;
2491 	}
2492 	error = -ENOTDIR;
2493 	if (nd.flags & LOOKUP_DIRECTORY) {
2494 		if (!nd.inode->i_op->lookup)
2495 			goto out_path;
2496 	}
2497 	audit_inode(pathname, nd.path.dentry);
2498 	filp = finish_open(&nd, open_flag, acc_mode);
2499 	return filp;
2500 
2501 creat:
2502 	/* OK, have to create the file. Find the parent. */
2503 	error = path_init_rcu(dfd, pathname,
2504 			LOOKUP_PARENT | (flags & LOOKUP_REVAL), &nd);
2505 	if (error)
2506 		goto out_filp;
2507 	error = path_walk_rcu(pathname, &nd);
2508 	path_finish_rcu(&nd);
2509 	if (unlikely(error == -ECHILD || error == -ESTALE)) {
2510 		/* slower, locked walk */
2511 		if (error == -ESTALE) {
2512 reval:
2513 			flags |= LOOKUP_REVAL;
2514 		}
2515 		error = path_init(dfd, pathname,
2516 				LOOKUP_PARENT | (flags & LOOKUP_REVAL), &nd);
2517 		if (error)
2518 			goto out_filp;
2519 
2520 		error = path_walk_simple(pathname, &nd);
2521 	}
2522 	if (unlikely(error))
2523 		goto out_filp;
2524 	if (unlikely(!audit_dummy_context()))
2525 		audit_inode(pathname, nd.path.dentry);
2526 
2527 	/*
2528 	 * We have the parent and last component.
2529 	 */
2530 	nd.flags = flags;
2531 	filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname);
2532 	while (unlikely(!filp)) { /* trailing symlink */
2533 		struct path link = path;
2534 		struct inode *linki = link.dentry->d_inode;
2535 		void *cookie;
2536 		error = -ELOOP;
2537 		if (!(nd.flags & LOOKUP_FOLLOW))
2538 			goto exit_dput;
2539 		if (count++ == 32)
2540 			goto exit_dput;
2541 		/*
2542 		 * This is subtle. Instead of calling do_follow_link() we do
2543 		 * the thing by hands. The reason is that this way we have zero
2544 		 * link_count and path_walk() (called from ->follow_link)
2545 		 * honoring LOOKUP_PARENT.  After that we have the parent and
2546 		 * last component, i.e. we are in the same situation as after
2547 		 * the first path_walk().  Well, almost - if the last component
2548 		 * is normal we get its copy stored in nd->last.name and we will
2549 		 * have to putname() it when we are done. Procfs-like symlinks
2550 		 * just set LAST_BIND.
2551 		 */
2552 		nd.flags |= LOOKUP_PARENT;
2553 		error = security_inode_follow_link(link.dentry, &nd);
2554 		if (error)
2555 			goto exit_dput;
2556 		error = __do_follow_link(&link, &nd, &cookie);
2557 		if (unlikely(error)) {
2558 			if (!IS_ERR(cookie) && linki->i_op->put_link)
2559 				linki->i_op->put_link(link.dentry, &nd, cookie);
2560 			/* nd.path had been dropped */
2561 			nd.path = link;
2562 			goto out_path;
2563 		}
2564 		nd.flags &= ~LOOKUP_PARENT;
2565 		filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname);
2566 		if (linki->i_op->put_link)
2567 			linki->i_op->put_link(link.dentry, &nd, cookie);
2568 		path_put(&link);
2569 	}
2570 out:
2571 	if (nd.root.mnt)
2572 		path_put(&nd.root);
2573 	if (filp == ERR_PTR(-ESTALE) && !(flags & LOOKUP_REVAL))
2574 		goto reval;
2575 	return filp;
2576 
2577 exit_dput:
2578 	path_put_conditional(&path, &nd);
2579 out_path:
2580 	path_put(&nd.path);
2581 out_filp:
2582 	if (!IS_ERR(nd.intent.open.file))
2583 		release_open_intent(&nd);
2584 	filp = ERR_PTR(error);
2585 	goto out;
2586 }
2587 
2588 /**
2589  * filp_open - open file and return file pointer
2590  *
2591  * @filename:	path to open
2592  * @flags:	open flags as per the open(2) second argument
2593  * @mode:	mode for the new file if O_CREAT is set, else ignored
2594  *
2595  * This is the helper to open a file from kernelspace if you really
2596  * have to.  But in generally you should not do this, so please move
2597  * along, nothing to see here..
2598  */
2599 struct file *filp_open(const char *filename, int flags, int mode)
2600 {
2601 	return do_filp_open(AT_FDCWD, filename, flags, mode, 0);
2602 }
2603 EXPORT_SYMBOL(filp_open);
2604 
2605 /**
2606  * lookup_create - lookup a dentry, creating it if it doesn't exist
2607  * @nd: nameidata info
2608  * @is_dir: directory flag
2609  *
2610  * Simple function to lookup and return a dentry and create it
2611  * if it doesn't exist.  Is SMP-safe.
2612  *
2613  * Returns with nd->path.dentry->d_inode->i_mutex locked.
2614  */
2615 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
2616 {
2617 	struct dentry *dentry = ERR_PTR(-EEXIST);
2618 
2619 	mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2620 	/*
2621 	 * Yucky last component or no last component at all?
2622 	 * (foo/., foo/.., /////)
2623 	 */
2624 	if (nd->last_type != LAST_NORM)
2625 		goto fail;
2626 	nd->flags &= ~LOOKUP_PARENT;
2627 	nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2628 	nd->intent.open.flags = O_EXCL;
2629 
2630 	/*
2631 	 * Do the final lookup.
2632 	 */
2633 	dentry = lookup_hash(nd);
2634 	if (IS_ERR(dentry))
2635 		goto fail;
2636 
2637 	if (dentry->d_inode)
2638 		goto eexist;
2639 	/*
2640 	 * Special case - lookup gave negative, but... we had foo/bar/
2641 	 * From the vfs_mknod() POV we just have a negative dentry -
2642 	 * all is fine. Let's be bastards - you had / on the end, you've
2643 	 * been asking for (non-existent) directory. -ENOENT for you.
2644 	 */
2645 	if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
2646 		dput(dentry);
2647 		dentry = ERR_PTR(-ENOENT);
2648 	}
2649 	return dentry;
2650 eexist:
2651 	dput(dentry);
2652 	dentry = ERR_PTR(-EEXIST);
2653 fail:
2654 	return dentry;
2655 }
2656 EXPORT_SYMBOL_GPL(lookup_create);
2657 
2658 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2659 {
2660 	int error = may_create(dir, dentry);
2661 
2662 	if (error)
2663 		return error;
2664 
2665 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
2666 		return -EPERM;
2667 
2668 	if (!dir->i_op->mknod)
2669 		return -EPERM;
2670 
2671 	error = devcgroup_inode_mknod(mode, dev);
2672 	if (error)
2673 		return error;
2674 
2675 	error = security_inode_mknod(dir, dentry, mode, dev);
2676 	if (error)
2677 		return error;
2678 
2679 	error = dir->i_op->mknod(dir, dentry, mode, dev);
2680 	if (!error)
2681 		fsnotify_create(dir, dentry);
2682 	return error;
2683 }
2684 
2685 static int may_mknod(mode_t mode)
2686 {
2687 	switch (mode & S_IFMT) {
2688 	case S_IFREG:
2689 	case S_IFCHR:
2690 	case S_IFBLK:
2691 	case S_IFIFO:
2692 	case S_IFSOCK:
2693 	case 0: /* zero mode translates to S_IFREG */
2694 		return 0;
2695 	case S_IFDIR:
2696 		return -EPERM;
2697 	default:
2698 		return -EINVAL;
2699 	}
2700 }
2701 
2702 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2703 		unsigned, dev)
2704 {
2705 	int error;
2706 	char *tmp;
2707 	struct dentry *dentry;
2708 	struct nameidata nd;
2709 
2710 	if (S_ISDIR(mode))
2711 		return -EPERM;
2712 
2713 	error = user_path_parent(dfd, filename, &nd, &tmp);
2714 	if (error)
2715 		return error;
2716 
2717 	dentry = lookup_create(&nd, 0);
2718 	if (IS_ERR(dentry)) {
2719 		error = PTR_ERR(dentry);
2720 		goto out_unlock;
2721 	}
2722 	if (!IS_POSIXACL(nd.path.dentry->d_inode))
2723 		mode &= ~current_umask();
2724 	error = may_mknod(mode);
2725 	if (error)
2726 		goto out_dput;
2727 	error = mnt_want_write(nd.path.mnt);
2728 	if (error)
2729 		goto out_dput;
2730 	error = security_path_mknod(&nd.path, dentry, mode, dev);
2731 	if (error)
2732 		goto out_drop_write;
2733 	switch (mode & S_IFMT) {
2734 		case 0: case S_IFREG:
2735 			error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2736 			break;
2737 		case S_IFCHR: case S_IFBLK:
2738 			error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2739 					new_decode_dev(dev));
2740 			break;
2741 		case S_IFIFO: case S_IFSOCK:
2742 			error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2743 			break;
2744 	}
2745 out_drop_write:
2746 	mnt_drop_write(nd.path.mnt);
2747 out_dput:
2748 	dput(dentry);
2749 out_unlock:
2750 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2751 	path_put(&nd.path);
2752 	putname(tmp);
2753 
2754 	return error;
2755 }
2756 
2757 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2758 {
2759 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
2760 }
2761 
2762 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2763 {
2764 	int error = may_create(dir, dentry);
2765 
2766 	if (error)
2767 		return error;
2768 
2769 	if (!dir->i_op->mkdir)
2770 		return -EPERM;
2771 
2772 	mode &= (S_IRWXUGO|S_ISVTX);
2773 	error = security_inode_mkdir(dir, dentry, mode);
2774 	if (error)
2775 		return error;
2776 
2777 	error = dir->i_op->mkdir(dir, dentry, mode);
2778 	if (!error)
2779 		fsnotify_mkdir(dir, dentry);
2780 	return error;
2781 }
2782 
2783 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2784 {
2785 	int error = 0;
2786 	char * tmp;
2787 	struct dentry *dentry;
2788 	struct nameidata nd;
2789 
2790 	error = user_path_parent(dfd, pathname, &nd, &tmp);
2791 	if (error)
2792 		goto out_err;
2793 
2794 	dentry = lookup_create(&nd, 1);
2795 	error = PTR_ERR(dentry);
2796 	if (IS_ERR(dentry))
2797 		goto out_unlock;
2798 
2799 	if (!IS_POSIXACL(nd.path.dentry->d_inode))
2800 		mode &= ~current_umask();
2801 	error = mnt_want_write(nd.path.mnt);
2802 	if (error)
2803 		goto out_dput;
2804 	error = security_path_mkdir(&nd.path, dentry, mode);
2805 	if (error)
2806 		goto out_drop_write;
2807 	error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2808 out_drop_write:
2809 	mnt_drop_write(nd.path.mnt);
2810 out_dput:
2811 	dput(dentry);
2812 out_unlock:
2813 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2814 	path_put(&nd.path);
2815 	putname(tmp);
2816 out_err:
2817 	return error;
2818 }
2819 
2820 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2821 {
2822 	return sys_mkdirat(AT_FDCWD, pathname, mode);
2823 }
2824 
2825 /*
2826  * We try to drop the dentry early: we should have
2827  * a usage count of 2 if we're the only user of this
2828  * dentry, and if that is true (possibly after pruning
2829  * the dcache), then we drop the dentry now.
2830  *
2831  * A low-level filesystem can, if it choses, legally
2832  * do a
2833  *
2834  *	if (!d_unhashed(dentry))
2835  *		return -EBUSY;
2836  *
2837  * if it cannot handle the case of removing a directory
2838  * that is still in use by something else..
2839  */
2840 void dentry_unhash(struct dentry *dentry)
2841 {
2842 	dget(dentry);
2843 	shrink_dcache_parent(dentry);
2844 	spin_lock(&dentry->d_lock);
2845 	if (dentry->d_count == 2)
2846 		__d_drop(dentry);
2847 	spin_unlock(&dentry->d_lock);
2848 }
2849 
2850 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2851 {
2852 	int error = may_delete(dir, dentry, 1);
2853 
2854 	if (error)
2855 		return error;
2856 
2857 	if (!dir->i_op->rmdir)
2858 		return -EPERM;
2859 
2860 	mutex_lock(&dentry->d_inode->i_mutex);
2861 	dentry_unhash(dentry);
2862 	if (d_mountpoint(dentry))
2863 		error = -EBUSY;
2864 	else {
2865 		error = security_inode_rmdir(dir, dentry);
2866 		if (!error) {
2867 			error = dir->i_op->rmdir(dir, dentry);
2868 			if (!error) {
2869 				dentry->d_inode->i_flags |= S_DEAD;
2870 				dont_mount(dentry);
2871 			}
2872 		}
2873 	}
2874 	mutex_unlock(&dentry->d_inode->i_mutex);
2875 	if (!error) {
2876 		d_delete(dentry);
2877 	}
2878 	dput(dentry);
2879 
2880 	return error;
2881 }
2882 
2883 static long do_rmdir(int dfd, const char __user *pathname)
2884 {
2885 	int error = 0;
2886 	char * name;
2887 	struct dentry *dentry;
2888 	struct nameidata nd;
2889 
2890 	error = user_path_parent(dfd, pathname, &nd, &name);
2891 	if (error)
2892 		return error;
2893 
2894 	switch(nd.last_type) {
2895 	case LAST_DOTDOT:
2896 		error = -ENOTEMPTY;
2897 		goto exit1;
2898 	case LAST_DOT:
2899 		error = -EINVAL;
2900 		goto exit1;
2901 	case LAST_ROOT:
2902 		error = -EBUSY;
2903 		goto exit1;
2904 	}
2905 
2906 	nd.flags &= ~LOOKUP_PARENT;
2907 
2908 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2909 	dentry = lookup_hash(&nd);
2910 	error = PTR_ERR(dentry);
2911 	if (IS_ERR(dentry))
2912 		goto exit2;
2913 	error = mnt_want_write(nd.path.mnt);
2914 	if (error)
2915 		goto exit3;
2916 	error = security_path_rmdir(&nd.path, dentry);
2917 	if (error)
2918 		goto exit4;
2919 	error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2920 exit4:
2921 	mnt_drop_write(nd.path.mnt);
2922 exit3:
2923 	dput(dentry);
2924 exit2:
2925 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2926 exit1:
2927 	path_put(&nd.path);
2928 	putname(name);
2929 	return error;
2930 }
2931 
2932 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2933 {
2934 	return do_rmdir(AT_FDCWD, pathname);
2935 }
2936 
2937 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2938 {
2939 	int error = may_delete(dir, dentry, 0);
2940 
2941 	if (error)
2942 		return error;
2943 
2944 	if (!dir->i_op->unlink)
2945 		return -EPERM;
2946 
2947 	mutex_lock(&dentry->d_inode->i_mutex);
2948 	if (d_mountpoint(dentry))
2949 		error = -EBUSY;
2950 	else {
2951 		error = security_inode_unlink(dir, dentry);
2952 		if (!error) {
2953 			error = dir->i_op->unlink(dir, dentry);
2954 			if (!error)
2955 				dont_mount(dentry);
2956 		}
2957 	}
2958 	mutex_unlock(&dentry->d_inode->i_mutex);
2959 
2960 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
2961 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2962 		fsnotify_link_count(dentry->d_inode);
2963 		d_delete(dentry);
2964 	}
2965 
2966 	return error;
2967 }
2968 
2969 /*
2970  * Make sure that the actual truncation of the file will occur outside its
2971  * directory's i_mutex.  Truncate can take a long time if there is a lot of
2972  * writeout happening, and we don't want to prevent access to the directory
2973  * while waiting on the I/O.
2974  */
2975 static long do_unlinkat(int dfd, const char __user *pathname)
2976 {
2977 	int error;
2978 	char *name;
2979 	struct dentry *dentry;
2980 	struct nameidata nd;
2981 	struct inode *inode = NULL;
2982 
2983 	error = user_path_parent(dfd, pathname, &nd, &name);
2984 	if (error)
2985 		return error;
2986 
2987 	error = -EISDIR;
2988 	if (nd.last_type != LAST_NORM)
2989 		goto exit1;
2990 
2991 	nd.flags &= ~LOOKUP_PARENT;
2992 
2993 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2994 	dentry = lookup_hash(&nd);
2995 	error = PTR_ERR(dentry);
2996 	if (!IS_ERR(dentry)) {
2997 		/* Why not before? Because we want correct error value */
2998 		if (nd.last.name[nd.last.len])
2999 			goto slashes;
3000 		inode = dentry->d_inode;
3001 		if (inode)
3002 			ihold(inode);
3003 		error = mnt_want_write(nd.path.mnt);
3004 		if (error)
3005 			goto exit2;
3006 		error = security_path_unlink(&nd.path, dentry);
3007 		if (error)
3008 			goto exit3;
3009 		error = vfs_unlink(nd.path.dentry->d_inode, dentry);
3010 exit3:
3011 		mnt_drop_write(nd.path.mnt);
3012 	exit2:
3013 		dput(dentry);
3014 	}
3015 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3016 	if (inode)
3017 		iput(inode);	/* truncate the inode here */
3018 exit1:
3019 	path_put(&nd.path);
3020 	putname(name);
3021 	return error;
3022 
3023 slashes:
3024 	error = !dentry->d_inode ? -ENOENT :
3025 		S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
3026 	goto exit2;
3027 }
3028 
3029 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3030 {
3031 	if ((flag & ~AT_REMOVEDIR) != 0)
3032 		return -EINVAL;
3033 
3034 	if (flag & AT_REMOVEDIR)
3035 		return do_rmdir(dfd, pathname);
3036 
3037 	return do_unlinkat(dfd, pathname);
3038 }
3039 
3040 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3041 {
3042 	return do_unlinkat(AT_FDCWD, pathname);
3043 }
3044 
3045 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3046 {
3047 	int error = may_create(dir, dentry);
3048 
3049 	if (error)
3050 		return error;
3051 
3052 	if (!dir->i_op->symlink)
3053 		return -EPERM;
3054 
3055 	error = security_inode_symlink(dir, dentry, oldname);
3056 	if (error)
3057 		return error;
3058 
3059 	error = dir->i_op->symlink(dir, dentry, oldname);
3060 	if (!error)
3061 		fsnotify_create(dir, dentry);
3062 	return error;
3063 }
3064 
3065 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3066 		int, newdfd, const char __user *, newname)
3067 {
3068 	int error;
3069 	char *from;
3070 	char *to;
3071 	struct dentry *dentry;
3072 	struct nameidata nd;
3073 
3074 	from = getname(oldname);
3075 	if (IS_ERR(from))
3076 		return PTR_ERR(from);
3077 
3078 	error = user_path_parent(newdfd, newname, &nd, &to);
3079 	if (error)
3080 		goto out_putname;
3081 
3082 	dentry = lookup_create(&nd, 0);
3083 	error = PTR_ERR(dentry);
3084 	if (IS_ERR(dentry))
3085 		goto out_unlock;
3086 
3087 	error = mnt_want_write(nd.path.mnt);
3088 	if (error)
3089 		goto out_dput;
3090 	error = security_path_symlink(&nd.path, dentry, from);
3091 	if (error)
3092 		goto out_drop_write;
3093 	error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
3094 out_drop_write:
3095 	mnt_drop_write(nd.path.mnt);
3096 out_dput:
3097 	dput(dentry);
3098 out_unlock:
3099 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3100 	path_put(&nd.path);
3101 	putname(to);
3102 out_putname:
3103 	putname(from);
3104 	return error;
3105 }
3106 
3107 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3108 {
3109 	return sys_symlinkat(oldname, AT_FDCWD, newname);
3110 }
3111 
3112 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3113 {
3114 	struct inode *inode = old_dentry->d_inode;
3115 	int error;
3116 
3117 	if (!inode)
3118 		return -ENOENT;
3119 
3120 	error = may_create(dir, new_dentry);
3121 	if (error)
3122 		return error;
3123 
3124 	if (dir->i_sb != inode->i_sb)
3125 		return -EXDEV;
3126 
3127 	/*
3128 	 * A link to an append-only or immutable file cannot be created.
3129 	 */
3130 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3131 		return -EPERM;
3132 	if (!dir->i_op->link)
3133 		return -EPERM;
3134 	if (S_ISDIR(inode->i_mode))
3135 		return -EPERM;
3136 
3137 	error = security_inode_link(old_dentry, dir, new_dentry);
3138 	if (error)
3139 		return error;
3140 
3141 	mutex_lock(&inode->i_mutex);
3142 	error = dir->i_op->link(old_dentry, dir, new_dentry);
3143 	mutex_unlock(&inode->i_mutex);
3144 	if (!error)
3145 		fsnotify_link(dir, inode, new_dentry);
3146 	return error;
3147 }
3148 
3149 /*
3150  * Hardlinks are often used in delicate situations.  We avoid
3151  * security-related surprises by not following symlinks on the
3152  * newname.  --KAB
3153  *
3154  * We don't follow them on the oldname either to be compatible
3155  * with linux 2.0, and to avoid hard-linking to directories
3156  * and other special files.  --ADM
3157  */
3158 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3159 		int, newdfd, const char __user *, newname, int, flags)
3160 {
3161 	struct dentry *new_dentry;
3162 	struct nameidata nd;
3163 	struct path old_path;
3164 	int error;
3165 	char *to;
3166 
3167 	if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
3168 		return -EINVAL;
3169 
3170 	error = user_path_at(olddfd, oldname,
3171 			     flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
3172 			     &old_path);
3173 	if (error)
3174 		return error;
3175 
3176 	error = user_path_parent(newdfd, newname, &nd, &to);
3177 	if (error)
3178 		goto out;
3179 	error = -EXDEV;
3180 	if (old_path.mnt != nd.path.mnt)
3181 		goto out_release;
3182 	new_dentry = lookup_create(&nd, 0);
3183 	error = PTR_ERR(new_dentry);
3184 	if (IS_ERR(new_dentry))
3185 		goto out_unlock;
3186 	error = mnt_want_write(nd.path.mnt);
3187 	if (error)
3188 		goto out_dput;
3189 	error = security_path_link(old_path.dentry, &nd.path, new_dentry);
3190 	if (error)
3191 		goto out_drop_write;
3192 	error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
3193 out_drop_write:
3194 	mnt_drop_write(nd.path.mnt);
3195 out_dput:
3196 	dput(new_dentry);
3197 out_unlock:
3198 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3199 out_release:
3200 	path_put(&nd.path);
3201 	putname(to);
3202 out:
3203 	path_put(&old_path);
3204 
3205 	return error;
3206 }
3207 
3208 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3209 {
3210 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3211 }
3212 
3213 /*
3214  * The worst of all namespace operations - renaming directory. "Perverted"
3215  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3216  * Problems:
3217  *	a) we can get into loop creation. Check is done in is_subdir().
3218  *	b) race potential - two innocent renames can create a loop together.
3219  *	   That's where 4.4 screws up. Current fix: serialization on
3220  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3221  *	   story.
3222  *	c) we have to lock _three_ objects - parents and victim (if it exists).
3223  *	   And that - after we got ->i_mutex on parents (until then we don't know
3224  *	   whether the target exists).  Solution: try to be smart with locking
3225  *	   order for inodes.  We rely on the fact that tree topology may change
3226  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
3227  *	   move will be locked.  Thus we can rank directories by the tree
3228  *	   (ancestors first) and rank all non-directories after them.
3229  *	   That works since everybody except rename does "lock parent, lookup,
3230  *	   lock child" and rename is under ->s_vfs_rename_mutex.
3231  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
3232  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
3233  *	   we'd better make sure that there's no link(2) for them.
3234  *	d) some filesystems don't support opened-but-unlinked directories,
3235  *	   either because of layout or because they are not ready to deal with
3236  *	   all cases correctly. The latter will be fixed (taking this sort of
3237  *	   stuff into VFS), but the former is not going away. Solution: the same
3238  *	   trick as in rmdir().
3239  *	e) conversion from fhandle to dentry may come in the wrong moment - when
3240  *	   we are removing the target. Solution: we will have to grab ->i_mutex
3241  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3242  *	   ->i_mutex on parents, which works but leads to some truly excessive
3243  *	   locking].
3244  */
3245 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3246 			  struct inode *new_dir, struct dentry *new_dentry)
3247 {
3248 	int error = 0;
3249 	struct inode *target;
3250 
3251 	/*
3252 	 * If we are going to change the parent - check write permissions,
3253 	 * we'll need to flip '..'.
3254 	 */
3255 	if (new_dir != old_dir) {
3256 		error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3257 		if (error)
3258 			return error;
3259 	}
3260 
3261 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3262 	if (error)
3263 		return error;
3264 
3265 	target = new_dentry->d_inode;
3266 	if (target)
3267 		mutex_lock(&target->i_mutex);
3268 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3269 		error = -EBUSY;
3270 	else {
3271 		if (target)
3272 			dentry_unhash(new_dentry);
3273 		error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3274 	}
3275 	if (target) {
3276 		if (!error) {
3277 			target->i_flags |= S_DEAD;
3278 			dont_mount(new_dentry);
3279 		}
3280 		mutex_unlock(&target->i_mutex);
3281 		if (d_unhashed(new_dentry))
3282 			d_rehash(new_dentry);
3283 		dput(new_dentry);
3284 	}
3285 	if (!error)
3286 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3287 			d_move(old_dentry,new_dentry);
3288 	return error;
3289 }
3290 
3291 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3292 			    struct inode *new_dir, struct dentry *new_dentry)
3293 {
3294 	struct inode *target;
3295 	int error;
3296 
3297 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3298 	if (error)
3299 		return error;
3300 
3301 	dget(new_dentry);
3302 	target = new_dentry->d_inode;
3303 	if (target)
3304 		mutex_lock(&target->i_mutex);
3305 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3306 		error = -EBUSY;
3307 	else
3308 		error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3309 	if (!error) {
3310 		if (target)
3311 			dont_mount(new_dentry);
3312 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3313 			d_move(old_dentry, new_dentry);
3314 	}
3315 	if (target)
3316 		mutex_unlock(&target->i_mutex);
3317 	dput(new_dentry);
3318 	return error;
3319 }
3320 
3321 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3322 	       struct inode *new_dir, struct dentry *new_dentry)
3323 {
3324 	int error;
3325 	int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3326 	const unsigned char *old_name;
3327 
3328 	if (old_dentry->d_inode == new_dentry->d_inode)
3329  		return 0;
3330 
3331 	error = may_delete(old_dir, old_dentry, is_dir);
3332 	if (error)
3333 		return error;
3334 
3335 	if (!new_dentry->d_inode)
3336 		error = may_create(new_dir, new_dentry);
3337 	else
3338 		error = may_delete(new_dir, new_dentry, is_dir);
3339 	if (error)
3340 		return error;
3341 
3342 	if (!old_dir->i_op->rename)
3343 		return -EPERM;
3344 
3345 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3346 
3347 	if (is_dir)
3348 		error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3349 	else
3350 		error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3351 	if (!error)
3352 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
3353 			      new_dentry->d_inode, old_dentry);
3354 	fsnotify_oldname_free(old_name);
3355 
3356 	return error;
3357 }
3358 
3359 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3360 		int, newdfd, const char __user *, newname)
3361 {
3362 	struct dentry *old_dir, *new_dir;
3363 	struct dentry *old_dentry, *new_dentry;
3364 	struct dentry *trap;
3365 	struct nameidata oldnd, newnd;
3366 	char *from;
3367 	char *to;
3368 	int error;
3369 
3370 	error = user_path_parent(olddfd, oldname, &oldnd, &from);
3371 	if (error)
3372 		goto exit;
3373 
3374 	error = user_path_parent(newdfd, newname, &newnd, &to);
3375 	if (error)
3376 		goto exit1;
3377 
3378 	error = -EXDEV;
3379 	if (oldnd.path.mnt != newnd.path.mnt)
3380 		goto exit2;
3381 
3382 	old_dir = oldnd.path.dentry;
3383 	error = -EBUSY;
3384 	if (oldnd.last_type != LAST_NORM)
3385 		goto exit2;
3386 
3387 	new_dir = newnd.path.dentry;
3388 	if (newnd.last_type != LAST_NORM)
3389 		goto exit2;
3390 
3391 	oldnd.flags &= ~LOOKUP_PARENT;
3392 	newnd.flags &= ~LOOKUP_PARENT;
3393 	newnd.flags |= LOOKUP_RENAME_TARGET;
3394 
3395 	trap = lock_rename(new_dir, old_dir);
3396 
3397 	old_dentry = lookup_hash(&oldnd);
3398 	error = PTR_ERR(old_dentry);
3399 	if (IS_ERR(old_dentry))
3400 		goto exit3;
3401 	/* source must exist */
3402 	error = -ENOENT;
3403 	if (!old_dentry->d_inode)
3404 		goto exit4;
3405 	/* unless the source is a directory trailing slashes give -ENOTDIR */
3406 	if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3407 		error = -ENOTDIR;
3408 		if (oldnd.last.name[oldnd.last.len])
3409 			goto exit4;
3410 		if (newnd.last.name[newnd.last.len])
3411 			goto exit4;
3412 	}
3413 	/* source should not be ancestor of target */
3414 	error = -EINVAL;
3415 	if (old_dentry == trap)
3416 		goto exit4;
3417 	new_dentry = lookup_hash(&newnd);
3418 	error = PTR_ERR(new_dentry);
3419 	if (IS_ERR(new_dentry))
3420 		goto exit4;
3421 	/* target should not be an ancestor of source */
3422 	error = -ENOTEMPTY;
3423 	if (new_dentry == trap)
3424 		goto exit5;
3425 
3426 	error = mnt_want_write(oldnd.path.mnt);
3427 	if (error)
3428 		goto exit5;
3429 	error = security_path_rename(&oldnd.path, old_dentry,
3430 				     &newnd.path, new_dentry);
3431 	if (error)
3432 		goto exit6;
3433 	error = vfs_rename(old_dir->d_inode, old_dentry,
3434 				   new_dir->d_inode, new_dentry);
3435 exit6:
3436 	mnt_drop_write(oldnd.path.mnt);
3437 exit5:
3438 	dput(new_dentry);
3439 exit4:
3440 	dput(old_dentry);
3441 exit3:
3442 	unlock_rename(new_dir, old_dir);
3443 exit2:
3444 	path_put(&newnd.path);
3445 	putname(to);
3446 exit1:
3447 	path_put(&oldnd.path);
3448 	putname(from);
3449 exit:
3450 	return error;
3451 }
3452 
3453 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3454 {
3455 	return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3456 }
3457 
3458 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3459 {
3460 	int len;
3461 
3462 	len = PTR_ERR(link);
3463 	if (IS_ERR(link))
3464 		goto out;
3465 
3466 	len = strlen(link);
3467 	if (len > (unsigned) buflen)
3468 		len = buflen;
3469 	if (copy_to_user(buffer, link, len))
3470 		len = -EFAULT;
3471 out:
3472 	return len;
3473 }
3474 
3475 /*
3476  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
3477  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
3478  * using) it for any given inode is up to filesystem.
3479  */
3480 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3481 {
3482 	struct nameidata nd;
3483 	void *cookie;
3484 	int res;
3485 
3486 	nd.depth = 0;
3487 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3488 	if (IS_ERR(cookie))
3489 		return PTR_ERR(cookie);
3490 
3491 	res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3492 	if (dentry->d_inode->i_op->put_link)
3493 		dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3494 	return res;
3495 }
3496 
3497 int vfs_follow_link(struct nameidata *nd, const char *link)
3498 {
3499 	return __vfs_follow_link(nd, link);
3500 }
3501 
3502 /* get the link contents into pagecache */
3503 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3504 {
3505 	char *kaddr;
3506 	struct page *page;
3507 	struct address_space *mapping = dentry->d_inode->i_mapping;
3508 	page = read_mapping_page(mapping, 0, NULL);
3509 	if (IS_ERR(page))
3510 		return (char*)page;
3511 	*ppage = page;
3512 	kaddr = kmap(page);
3513 	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3514 	return kaddr;
3515 }
3516 
3517 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3518 {
3519 	struct page *page = NULL;
3520 	char *s = page_getlink(dentry, &page);
3521 	int res = vfs_readlink(dentry,buffer,buflen,s);
3522 	if (page) {
3523 		kunmap(page);
3524 		page_cache_release(page);
3525 	}
3526 	return res;
3527 }
3528 
3529 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3530 {
3531 	struct page *page = NULL;
3532 	nd_set_link(nd, page_getlink(dentry, &page));
3533 	return page;
3534 }
3535 
3536 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3537 {
3538 	struct page *page = cookie;
3539 
3540 	if (page) {
3541 		kunmap(page);
3542 		page_cache_release(page);
3543 	}
3544 }
3545 
3546 /*
3547  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3548  */
3549 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3550 {
3551 	struct address_space *mapping = inode->i_mapping;
3552 	struct page *page;
3553 	void *fsdata;
3554 	int err;
3555 	char *kaddr;
3556 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3557 	if (nofs)
3558 		flags |= AOP_FLAG_NOFS;
3559 
3560 retry:
3561 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
3562 				flags, &page, &fsdata);
3563 	if (err)
3564 		goto fail;
3565 
3566 	kaddr = kmap_atomic(page, KM_USER0);
3567 	memcpy(kaddr, symname, len-1);
3568 	kunmap_atomic(kaddr, KM_USER0);
3569 
3570 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3571 							page, fsdata);
3572 	if (err < 0)
3573 		goto fail;
3574 	if (err < len-1)
3575 		goto retry;
3576 
3577 	mark_inode_dirty(inode);
3578 	return 0;
3579 fail:
3580 	return err;
3581 }
3582 
3583 int page_symlink(struct inode *inode, const char *symname, int len)
3584 {
3585 	return __page_symlink(inode, symname, len,
3586 			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3587 }
3588 
3589 const struct inode_operations page_symlink_inode_operations = {
3590 	.readlink	= generic_readlink,
3591 	.follow_link	= page_follow_link_light,
3592 	.put_link	= page_put_link,
3593 };
3594 
3595 EXPORT_SYMBOL(user_path_at);
3596 EXPORT_SYMBOL(follow_down_one);
3597 EXPORT_SYMBOL(follow_down);
3598 EXPORT_SYMBOL(follow_up);
3599 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3600 EXPORT_SYMBOL(getname);
3601 EXPORT_SYMBOL(lock_rename);
3602 EXPORT_SYMBOL(lookup_one_len);
3603 EXPORT_SYMBOL(page_follow_link_light);
3604 EXPORT_SYMBOL(page_put_link);
3605 EXPORT_SYMBOL(page_readlink);
3606 EXPORT_SYMBOL(__page_symlink);
3607 EXPORT_SYMBOL(page_symlink);
3608 EXPORT_SYMBOL(page_symlink_inode_operations);
3609 EXPORT_SYMBOL(path_lookup);
3610 EXPORT_SYMBOL(kern_path);
3611 EXPORT_SYMBOL(vfs_path_lookup);
3612 EXPORT_SYMBOL(inode_permission);
3613 EXPORT_SYMBOL(file_permission);
3614 EXPORT_SYMBOL(unlock_rename);
3615 EXPORT_SYMBOL(vfs_create);
3616 EXPORT_SYMBOL(vfs_follow_link);
3617 EXPORT_SYMBOL(vfs_link);
3618 EXPORT_SYMBOL(vfs_mkdir);
3619 EXPORT_SYMBOL(vfs_mknod);
3620 EXPORT_SYMBOL(generic_permission);
3621 EXPORT_SYMBOL(vfs_readlink);
3622 EXPORT_SYMBOL(vfs_rename);
3623 EXPORT_SYMBOL(vfs_rmdir);
3624 EXPORT_SYMBOL(vfs_symlink);
3625 EXPORT_SYMBOL(vfs_unlink);
3626 EXPORT_SYMBOL(dentry_unhash);
3627 EXPORT_SYMBOL(generic_readlink);
3628