1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/namei.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * Some corrections by tytso. 10 */ 11 12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 13 * lookup logic. 14 */ 15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 16 */ 17 18 #include <linux/init.h> 19 #include <linux/export.h> 20 #include <linux/kernel.h> 21 #include <linux/slab.h> 22 #include <linux/fs.h> 23 #include <linux/namei.h> 24 #include <linux/pagemap.h> 25 #include <linux/fsnotify.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/ima.h> 29 #include <linux/syscalls.h> 30 #include <linux/mount.h> 31 #include <linux/audit.h> 32 #include <linux/capability.h> 33 #include <linux/file.h> 34 #include <linux/fcntl.h> 35 #include <linux/device_cgroup.h> 36 #include <linux/fs_struct.h> 37 #include <linux/posix_acl.h> 38 #include <linux/hash.h> 39 #include <linux/bitops.h> 40 #include <linux/init_task.h> 41 #include <linux/uaccess.h> 42 43 #include "internal.h" 44 #include "mount.h" 45 46 /* [Feb-1997 T. Schoebel-Theuer] 47 * Fundamental changes in the pathname lookup mechanisms (namei) 48 * were necessary because of omirr. The reason is that omirr needs 49 * to know the _real_ pathname, not the user-supplied one, in case 50 * of symlinks (and also when transname replacements occur). 51 * 52 * The new code replaces the old recursive symlink resolution with 53 * an iterative one (in case of non-nested symlink chains). It does 54 * this with calls to <fs>_follow_link(). 55 * As a side effect, dir_namei(), _namei() and follow_link() are now 56 * replaced with a single function lookup_dentry() that can handle all 57 * the special cases of the former code. 58 * 59 * With the new dcache, the pathname is stored at each inode, at least as 60 * long as the refcount of the inode is positive. As a side effect, the 61 * size of the dcache depends on the inode cache and thus is dynamic. 62 * 63 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 64 * resolution to correspond with current state of the code. 65 * 66 * Note that the symlink resolution is not *completely* iterative. 67 * There is still a significant amount of tail- and mid- recursion in 68 * the algorithm. Also, note that <fs>_readlink() is not used in 69 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 70 * may return different results than <fs>_follow_link(). Many virtual 71 * filesystems (including /proc) exhibit this behavior. 72 */ 73 74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 75 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 76 * and the name already exists in form of a symlink, try to create the new 77 * name indicated by the symlink. The old code always complained that the 78 * name already exists, due to not following the symlink even if its target 79 * is nonexistent. The new semantics affects also mknod() and link() when 80 * the name is a symlink pointing to a non-existent name. 81 * 82 * I don't know which semantics is the right one, since I have no access 83 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 84 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 85 * "old" one. Personally, I think the new semantics is much more logical. 86 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 87 * file does succeed in both HP-UX and SunOs, but not in Solaris 88 * and in the old Linux semantics. 89 */ 90 91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 92 * semantics. See the comments in "open_namei" and "do_link" below. 93 * 94 * [10-Sep-98 Alan Modra] Another symlink change. 95 */ 96 97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 98 * inside the path - always follow. 99 * in the last component in creation/removal/renaming - never follow. 100 * if LOOKUP_FOLLOW passed - follow. 101 * if the pathname has trailing slashes - follow. 102 * otherwise - don't follow. 103 * (applied in that order). 104 * 105 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 106 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 107 * During the 2.4 we need to fix the userland stuff depending on it - 108 * hopefully we will be able to get rid of that wart in 2.5. So far only 109 * XEmacs seems to be relying on it... 110 */ 111 /* 112 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 113 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 114 * any extra contention... 115 */ 116 117 /* In order to reduce some races, while at the same time doing additional 118 * checking and hopefully speeding things up, we copy filenames to the 119 * kernel data space before using them.. 120 * 121 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 122 * PATH_MAX includes the nul terminator --RR. 123 */ 124 125 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) 126 127 struct filename * 128 getname_flags(const char __user *filename, int flags, int *empty) 129 { 130 struct filename *result; 131 char *kname; 132 int len; 133 134 result = audit_reusename(filename); 135 if (result) 136 return result; 137 138 result = __getname(); 139 if (unlikely(!result)) 140 return ERR_PTR(-ENOMEM); 141 142 /* 143 * First, try to embed the struct filename inside the names_cache 144 * allocation 145 */ 146 kname = (char *)result->iname; 147 result->name = kname; 148 149 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); 150 if (unlikely(len < 0)) { 151 __putname(result); 152 return ERR_PTR(len); 153 } 154 155 /* 156 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 157 * separate struct filename so we can dedicate the entire 158 * names_cache allocation for the pathname, and re-do the copy from 159 * userland. 160 */ 161 if (unlikely(len == EMBEDDED_NAME_MAX)) { 162 const size_t size = offsetof(struct filename, iname[1]); 163 kname = (char *)result; 164 165 /* 166 * size is chosen that way we to guarantee that 167 * result->iname[0] is within the same object and that 168 * kname can't be equal to result->iname, no matter what. 169 */ 170 result = kzalloc(size, GFP_KERNEL); 171 if (unlikely(!result)) { 172 __putname(kname); 173 return ERR_PTR(-ENOMEM); 174 } 175 result->name = kname; 176 len = strncpy_from_user(kname, filename, PATH_MAX); 177 if (unlikely(len < 0)) { 178 __putname(kname); 179 kfree(result); 180 return ERR_PTR(len); 181 } 182 if (unlikely(len == PATH_MAX)) { 183 __putname(kname); 184 kfree(result); 185 return ERR_PTR(-ENAMETOOLONG); 186 } 187 } 188 189 result->refcnt = 1; 190 /* The empty path is special. */ 191 if (unlikely(!len)) { 192 if (empty) 193 *empty = 1; 194 if (!(flags & LOOKUP_EMPTY)) { 195 putname(result); 196 return ERR_PTR(-ENOENT); 197 } 198 } 199 200 result->uptr = filename; 201 result->aname = NULL; 202 audit_getname(result); 203 return result; 204 } 205 206 struct filename * 207 getname(const char __user * filename) 208 { 209 return getname_flags(filename, 0, NULL); 210 } 211 212 struct filename * 213 getname_kernel(const char * filename) 214 { 215 struct filename *result; 216 int len = strlen(filename) + 1; 217 218 result = __getname(); 219 if (unlikely(!result)) 220 return ERR_PTR(-ENOMEM); 221 222 if (len <= EMBEDDED_NAME_MAX) { 223 result->name = (char *)result->iname; 224 } else if (len <= PATH_MAX) { 225 struct filename *tmp; 226 227 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL); 228 if (unlikely(!tmp)) { 229 __putname(result); 230 return ERR_PTR(-ENOMEM); 231 } 232 tmp->name = (char *)result; 233 result = tmp; 234 } else { 235 __putname(result); 236 return ERR_PTR(-ENAMETOOLONG); 237 } 238 memcpy((char *)result->name, filename, len); 239 result->uptr = NULL; 240 result->aname = NULL; 241 result->refcnt = 1; 242 audit_getname(result); 243 244 return result; 245 } 246 247 void putname(struct filename *name) 248 { 249 BUG_ON(name->refcnt <= 0); 250 251 if (--name->refcnt > 0) 252 return; 253 254 if (name->name != name->iname) { 255 __putname(name->name); 256 kfree(name); 257 } else 258 __putname(name); 259 } 260 261 static int check_acl(struct inode *inode, int mask) 262 { 263 #ifdef CONFIG_FS_POSIX_ACL 264 struct posix_acl *acl; 265 266 if (mask & MAY_NOT_BLOCK) { 267 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 268 if (!acl) 269 return -EAGAIN; 270 /* no ->get_acl() calls in RCU mode... */ 271 if (is_uncached_acl(acl)) 272 return -ECHILD; 273 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK); 274 } 275 276 acl = get_acl(inode, ACL_TYPE_ACCESS); 277 if (IS_ERR(acl)) 278 return PTR_ERR(acl); 279 if (acl) { 280 int error = posix_acl_permission(inode, acl, mask); 281 posix_acl_release(acl); 282 return error; 283 } 284 #endif 285 286 return -EAGAIN; 287 } 288 289 /* 290 * This does the basic permission checking 291 */ 292 static int acl_permission_check(struct inode *inode, int mask) 293 { 294 unsigned int mode = inode->i_mode; 295 296 if (likely(uid_eq(current_fsuid(), inode->i_uid))) 297 mode >>= 6; 298 else { 299 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 300 int error = check_acl(inode, mask); 301 if (error != -EAGAIN) 302 return error; 303 } 304 305 if (in_group_p(inode->i_gid)) 306 mode >>= 3; 307 } 308 309 /* 310 * If the DACs are ok we don't need any capability check. 311 */ 312 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 313 return 0; 314 return -EACCES; 315 } 316 317 /** 318 * generic_permission - check for access rights on a Posix-like filesystem 319 * @inode: inode to check access rights for 320 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...) 321 * 322 * Used to check for read/write/execute permissions on a file. 323 * We use "fsuid" for this, letting us set arbitrary permissions 324 * for filesystem access without changing the "normal" uids which 325 * are used for other things. 326 * 327 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 328 * request cannot be satisfied (eg. requires blocking or too much complexity). 329 * It would then be called again in ref-walk mode. 330 */ 331 int generic_permission(struct inode *inode, int mask) 332 { 333 int ret; 334 335 /* 336 * Do the basic permission checks. 337 */ 338 ret = acl_permission_check(inode, mask); 339 if (ret != -EACCES) 340 return ret; 341 342 if (S_ISDIR(inode->i_mode)) { 343 /* DACs are overridable for directories */ 344 if (!(mask & MAY_WRITE)) 345 if (capable_wrt_inode_uidgid(inode, 346 CAP_DAC_READ_SEARCH)) 347 return 0; 348 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 349 return 0; 350 return -EACCES; 351 } 352 353 /* 354 * Searching includes executable on directories, else just read. 355 */ 356 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 357 if (mask == MAY_READ) 358 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH)) 359 return 0; 360 /* 361 * Read/write DACs are always overridable. 362 * Executable DACs are overridable when there is 363 * at least one exec bit set. 364 */ 365 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 366 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 367 return 0; 368 369 return -EACCES; 370 } 371 EXPORT_SYMBOL(generic_permission); 372 373 /* 374 * We _really_ want to just do "generic_permission()" without 375 * even looking at the inode->i_op values. So we keep a cache 376 * flag in inode->i_opflags, that says "this has not special 377 * permission function, use the fast case". 378 */ 379 static inline int do_inode_permission(struct inode *inode, int mask) 380 { 381 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 382 if (likely(inode->i_op->permission)) 383 return inode->i_op->permission(inode, mask); 384 385 /* This gets set once for the inode lifetime */ 386 spin_lock(&inode->i_lock); 387 inode->i_opflags |= IOP_FASTPERM; 388 spin_unlock(&inode->i_lock); 389 } 390 return generic_permission(inode, mask); 391 } 392 393 /** 394 * __inode_permission - Check for access rights to a given inode 395 * @inode: Inode to check permission on 396 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 397 * 398 * Check for read/write/execute permissions on an inode. 399 * 400 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 401 * 402 * This does not check for a read-only file system. You probably want 403 * inode_permission(). 404 */ 405 int __inode_permission(struct inode *inode, int mask) 406 { 407 int retval; 408 409 if (unlikely(mask & MAY_WRITE)) { 410 /* 411 * Nobody gets write access to an immutable file. 412 */ 413 if (IS_IMMUTABLE(inode)) 414 return -EPERM; 415 416 /* 417 * Updating mtime will likely cause i_uid and i_gid to be 418 * written back improperly if their true value is unknown 419 * to the vfs. 420 */ 421 if (HAS_UNMAPPED_ID(inode)) 422 return -EACCES; 423 } 424 425 retval = do_inode_permission(inode, mask); 426 if (retval) 427 return retval; 428 429 retval = devcgroup_inode_permission(inode, mask); 430 if (retval) 431 return retval; 432 433 return security_inode_permission(inode, mask); 434 } 435 EXPORT_SYMBOL(__inode_permission); 436 437 /** 438 * sb_permission - Check superblock-level permissions 439 * @sb: Superblock of inode to check permission on 440 * @inode: Inode to check permission on 441 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 442 * 443 * Separate out file-system wide checks from inode-specific permission checks. 444 */ 445 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 446 { 447 if (unlikely(mask & MAY_WRITE)) { 448 umode_t mode = inode->i_mode; 449 450 /* Nobody gets write access to a read-only fs. */ 451 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 452 return -EROFS; 453 } 454 return 0; 455 } 456 457 /** 458 * inode_permission - Check for access rights to a given inode 459 * @inode: Inode to check permission on 460 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 461 * 462 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 463 * this, letting us set arbitrary permissions for filesystem access without 464 * changing the "normal" UIDs which are used for other things. 465 * 466 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 467 */ 468 int inode_permission(struct inode *inode, int mask) 469 { 470 int retval; 471 472 retval = sb_permission(inode->i_sb, inode, mask); 473 if (retval) 474 return retval; 475 return __inode_permission(inode, mask); 476 } 477 EXPORT_SYMBOL(inode_permission); 478 479 /** 480 * path_get - get a reference to a path 481 * @path: path to get the reference to 482 * 483 * Given a path increment the reference count to the dentry and the vfsmount. 484 */ 485 void path_get(const struct path *path) 486 { 487 mntget(path->mnt); 488 dget(path->dentry); 489 } 490 EXPORT_SYMBOL(path_get); 491 492 /** 493 * path_put - put a reference to a path 494 * @path: path to put the reference to 495 * 496 * Given a path decrement the reference count to the dentry and the vfsmount. 497 */ 498 void path_put(const struct path *path) 499 { 500 dput(path->dentry); 501 mntput(path->mnt); 502 } 503 EXPORT_SYMBOL(path_put); 504 505 #define EMBEDDED_LEVELS 2 506 struct nameidata { 507 struct path path; 508 struct qstr last; 509 struct path root; 510 struct inode *inode; /* path.dentry.d_inode */ 511 unsigned int flags; 512 unsigned seq, m_seq; 513 int last_type; 514 unsigned depth; 515 int total_link_count; 516 struct saved { 517 struct path link; 518 struct delayed_call done; 519 const char *name; 520 unsigned seq; 521 } *stack, internal[EMBEDDED_LEVELS]; 522 struct filename *name; 523 struct nameidata *saved; 524 struct inode *link_inode; 525 unsigned root_seq; 526 int dfd; 527 } __randomize_layout; 528 529 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name) 530 { 531 struct nameidata *old = current->nameidata; 532 p->stack = p->internal; 533 p->dfd = dfd; 534 p->name = name; 535 p->total_link_count = old ? old->total_link_count : 0; 536 p->saved = old; 537 current->nameidata = p; 538 } 539 540 static void restore_nameidata(void) 541 { 542 struct nameidata *now = current->nameidata, *old = now->saved; 543 544 current->nameidata = old; 545 if (old) 546 old->total_link_count = now->total_link_count; 547 if (now->stack != now->internal) 548 kfree(now->stack); 549 } 550 551 static int __nd_alloc_stack(struct nameidata *nd) 552 { 553 struct saved *p; 554 555 if (nd->flags & LOOKUP_RCU) { 556 p= kmalloc(MAXSYMLINKS * sizeof(struct saved), 557 GFP_ATOMIC); 558 if (unlikely(!p)) 559 return -ECHILD; 560 } else { 561 p= kmalloc(MAXSYMLINKS * sizeof(struct saved), 562 GFP_KERNEL); 563 if (unlikely(!p)) 564 return -ENOMEM; 565 } 566 memcpy(p, nd->internal, sizeof(nd->internal)); 567 nd->stack = p; 568 return 0; 569 } 570 571 /** 572 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root 573 * @path: nameidate to verify 574 * 575 * Rename can sometimes move a file or directory outside of a bind 576 * mount, path_connected allows those cases to be detected. 577 */ 578 static bool path_connected(const struct path *path) 579 { 580 struct vfsmount *mnt = path->mnt; 581 582 /* Only bind mounts can have disconnected paths */ 583 if (mnt->mnt_root == mnt->mnt_sb->s_root) 584 return true; 585 586 return is_subdir(path->dentry, mnt->mnt_root); 587 } 588 589 static inline int nd_alloc_stack(struct nameidata *nd) 590 { 591 if (likely(nd->depth != EMBEDDED_LEVELS)) 592 return 0; 593 if (likely(nd->stack != nd->internal)) 594 return 0; 595 return __nd_alloc_stack(nd); 596 } 597 598 static void drop_links(struct nameidata *nd) 599 { 600 int i = nd->depth; 601 while (i--) { 602 struct saved *last = nd->stack + i; 603 do_delayed_call(&last->done); 604 clear_delayed_call(&last->done); 605 } 606 } 607 608 static void terminate_walk(struct nameidata *nd) 609 { 610 drop_links(nd); 611 if (!(nd->flags & LOOKUP_RCU)) { 612 int i; 613 path_put(&nd->path); 614 for (i = 0; i < nd->depth; i++) 615 path_put(&nd->stack[i].link); 616 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 617 path_put(&nd->root); 618 nd->root.mnt = NULL; 619 } 620 } else { 621 nd->flags &= ~LOOKUP_RCU; 622 if (!(nd->flags & LOOKUP_ROOT)) 623 nd->root.mnt = NULL; 624 rcu_read_unlock(); 625 } 626 nd->depth = 0; 627 } 628 629 /* path_put is needed afterwards regardless of success or failure */ 630 static bool legitimize_path(struct nameidata *nd, 631 struct path *path, unsigned seq) 632 { 633 int res = __legitimize_mnt(path->mnt, nd->m_seq); 634 if (unlikely(res)) { 635 if (res > 0) 636 path->mnt = NULL; 637 path->dentry = NULL; 638 return false; 639 } 640 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) { 641 path->dentry = NULL; 642 return false; 643 } 644 return !read_seqcount_retry(&path->dentry->d_seq, seq); 645 } 646 647 static bool legitimize_links(struct nameidata *nd) 648 { 649 int i; 650 for (i = 0; i < nd->depth; i++) { 651 struct saved *last = nd->stack + i; 652 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) { 653 drop_links(nd); 654 nd->depth = i + 1; 655 return false; 656 } 657 } 658 return true; 659 } 660 661 /* 662 * Path walking has 2 modes, rcu-walk and ref-walk (see 663 * Documentation/filesystems/path-lookup.txt). In situations when we can't 664 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 665 * normal reference counts on dentries and vfsmounts to transition to ref-walk 666 * mode. Refcounts are grabbed at the last known good point before rcu-walk 667 * got stuck, so ref-walk may continue from there. If this is not successful 668 * (eg. a seqcount has changed), then failure is returned and it's up to caller 669 * to restart the path walk from the beginning in ref-walk mode. 670 */ 671 672 /** 673 * unlazy_walk - try to switch to ref-walk mode. 674 * @nd: nameidata pathwalk data 675 * Returns: 0 on success, -ECHILD on failure 676 * 677 * unlazy_walk attempts to legitimize the current nd->path and nd->root 678 * for ref-walk mode. 679 * Must be called from rcu-walk context. 680 * Nothing should touch nameidata between unlazy_walk() failure and 681 * terminate_walk(). 682 */ 683 static int unlazy_walk(struct nameidata *nd) 684 { 685 struct dentry *parent = nd->path.dentry; 686 687 BUG_ON(!(nd->flags & LOOKUP_RCU)); 688 689 nd->flags &= ~LOOKUP_RCU; 690 if (unlikely(!legitimize_links(nd))) 691 goto out2; 692 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq))) 693 goto out1; 694 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 695 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) 696 goto out; 697 } 698 rcu_read_unlock(); 699 BUG_ON(nd->inode != parent->d_inode); 700 return 0; 701 702 out2: 703 nd->path.mnt = NULL; 704 nd->path.dentry = NULL; 705 out1: 706 if (!(nd->flags & LOOKUP_ROOT)) 707 nd->root.mnt = NULL; 708 out: 709 rcu_read_unlock(); 710 return -ECHILD; 711 } 712 713 /** 714 * unlazy_child - try to switch to ref-walk mode. 715 * @nd: nameidata pathwalk data 716 * @dentry: child of nd->path.dentry 717 * @seq: seq number to check dentry against 718 * Returns: 0 on success, -ECHILD on failure 719 * 720 * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry 721 * for ref-walk mode. @dentry must be a path found by a do_lookup call on 722 * @nd. Must be called from rcu-walk context. 723 * Nothing should touch nameidata between unlazy_child() failure and 724 * terminate_walk(). 725 */ 726 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq) 727 { 728 BUG_ON(!(nd->flags & LOOKUP_RCU)); 729 730 nd->flags &= ~LOOKUP_RCU; 731 if (unlikely(!legitimize_links(nd))) 732 goto out2; 733 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq))) 734 goto out2; 735 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref))) 736 goto out1; 737 738 /* 739 * We need to move both the parent and the dentry from the RCU domain 740 * to be properly refcounted. And the sequence number in the dentry 741 * validates *both* dentry counters, since we checked the sequence 742 * number of the parent after we got the child sequence number. So we 743 * know the parent must still be valid if the child sequence number is 744 */ 745 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) 746 goto out; 747 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) { 748 rcu_read_unlock(); 749 dput(dentry); 750 goto drop_root_mnt; 751 } 752 /* 753 * Sequence counts matched. Now make sure that the root is 754 * still valid and get it if required. 755 */ 756 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 757 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) { 758 rcu_read_unlock(); 759 dput(dentry); 760 return -ECHILD; 761 } 762 } 763 764 rcu_read_unlock(); 765 return 0; 766 767 out2: 768 nd->path.mnt = NULL; 769 out1: 770 nd->path.dentry = NULL; 771 out: 772 rcu_read_unlock(); 773 drop_root_mnt: 774 if (!(nd->flags & LOOKUP_ROOT)) 775 nd->root.mnt = NULL; 776 return -ECHILD; 777 } 778 779 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 780 { 781 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) 782 return dentry->d_op->d_revalidate(dentry, flags); 783 else 784 return 1; 785 } 786 787 /** 788 * complete_walk - successful completion of path walk 789 * @nd: pointer nameidata 790 * 791 * If we had been in RCU mode, drop out of it and legitimize nd->path. 792 * Revalidate the final result, unless we'd already done that during 793 * the path walk or the filesystem doesn't ask for it. Return 0 on 794 * success, -error on failure. In case of failure caller does not 795 * need to drop nd->path. 796 */ 797 static int complete_walk(struct nameidata *nd) 798 { 799 struct dentry *dentry = nd->path.dentry; 800 int status; 801 802 if (nd->flags & LOOKUP_RCU) { 803 if (!(nd->flags & LOOKUP_ROOT)) 804 nd->root.mnt = NULL; 805 if (unlikely(unlazy_walk(nd))) 806 return -ECHILD; 807 } 808 809 if (likely(!(nd->flags & LOOKUP_JUMPED))) 810 return 0; 811 812 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 813 return 0; 814 815 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 816 if (status > 0) 817 return 0; 818 819 if (!status) 820 status = -ESTALE; 821 822 return status; 823 } 824 825 static void set_root(struct nameidata *nd) 826 { 827 struct fs_struct *fs = current->fs; 828 829 if (nd->flags & LOOKUP_RCU) { 830 unsigned seq; 831 832 do { 833 seq = read_seqcount_begin(&fs->seq); 834 nd->root = fs->root; 835 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 836 } while (read_seqcount_retry(&fs->seq, seq)); 837 } else { 838 get_fs_root(fs, &nd->root); 839 } 840 } 841 842 static void path_put_conditional(struct path *path, struct nameidata *nd) 843 { 844 dput(path->dentry); 845 if (path->mnt != nd->path.mnt) 846 mntput(path->mnt); 847 } 848 849 static inline void path_to_nameidata(const struct path *path, 850 struct nameidata *nd) 851 { 852 if (!(nd->flags & LOOKUP_RCU)) { 853 dput(nd->path.dentry); 854 if (nd->path.mnt != path->mnt) 855 mntput(nd->path.mnt); 856 } 857 nd->path.mnt = path->mnt; 858 nd->path.dentry = path->dentry; 859 } 860 861 static int nd_jump_root(struct nameidata *nd) 862 { 863 if (nd->flags & LOOKUP_RCU) { 864 struct dentry *d; 865 nd->path = nd->root; 866 d = nd->path.dentry; 867 nd->inode = d->d_inode; 868 nd->seq = nd->root_seq; 869 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq))) 870 return -ECHILD; 871 } else { 872 path_put(&nd->path); 873 nd->path = nd->root; 874 path_get(&nd->path); 875 nd->inode = nd->path.dentry->d_inode; 876 } 877 nd->flags |= LOOKUP_JUMPED; 878 return 0; 879 } 880 881 /* 882 * Helper to directly jump to a known parsed path from ->get_link, 883 * caller must have taken a reference to path beforehand. 884 */ 885 void nd_jump_link(struct path *path) 886 { 887 struct nameidata *nd = current->nameidata; 888 path_put(&nd->path); 889 890 nd->path = *path; 891 nd->inode = nd->path.dentry->d_inode; 892 nd->flags |= LOOKUP_JUMPED; 893 } 894 895 static inline void put_link(struct nameidata *nd) 896 { 897 struct saved *last = nd->stack + --nd->depth; 898 do_delayed_call(&last->done); 899 if (!(nd->flags & LOOKUP_RCU)) 900 path_put(&last->link); 901 } 902 903 int sysctl_protected_symlinks __read_mostly = 0; 904 int sysctl_protected_hardlinks __read_mostly = 0; 905 906 /** 907 * may_follow_link - Check symlink following for unsafe situations 908 * @nd: nameidata pathwalk data 909 * 910 * In the case of the sysctl_protected_symlinks sysctl being enabled, 911 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 912 * in a sticky world-writable directory. This is to protect privileged 913 * processes from failing races against path names that may change out 914 * from under them by way of other users creating malicious symlinks. 915 * It will permit symlinks to be followed only when outside a sticky 916 * world-writable directory, or when the uid of the symlink and follower 917 * match, or when the directory owner matches the symlink's owner. 918 * 919 * Returns 0 if following the symlink is allowed, -ve on error. 920 */ 921 static inline int may_follow_link(struct nameidata *nd) 922 { 923 const struct inode *inode; 924 const struct inode *parent; 925 kuid_t puid; 926 927 if (!sysctl_protected_symlinks) 928 return 0; 929 930 /* Allowed if owner and follower match. */ 931 inode = nd->link_inode; 932 if (uid_eq(current_cred()->fsuid, inode->i_uid)) 933 return 0; 934 935 /* Allowed if parent directory not sticky and world-writable. */ 936 parent = nd->inode; 937 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 938 return 0; 939 940 /* Allowed if parent directory and link owner match. */ 941 puid = parent->i_uid; 942 if (uid_valid(puid) && uid_eq(puid, inode->i_uid)) 943 return 0; 944 945 if (nd->flags & LOOKUP_RCU) 946 return -ECHILD; 947 948 audit_log_link_denied("follow_link", &nd->stack[0].link); 949 return -EACCES; 950 } 951 952 /** 953 * safe_hardlink_source - Check for safe hardlink conditions 954 * @inode: the source inode to hardlink from 955 * 956 * Return false if at least one of the following conditions: 957 * - inode is not a regular file 958 * - inode is setuid 959 * - inode is setgid and group-exec 960 * - access failure for read and write 961 * 962 * Otherwise returns true. 963 */ 964 static bool safe_hardlink_source(struct inode *inode) 965 { 966 umode_t mode = inode->i_mode; 967 968 /* Special files should not get pinned to the filesystem. */ 969 if (!S_ISREG(mode)) 970 return false; 971 972 /* Setuid files should not get pinned to the filesystem. */ 973 if (mode & S_ISUID) 974 return false; 975 976 /* Executable setgid files should not get pinned to the filesystem. */ 977 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 978 return false; 979 980 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 981 if (inode_permission(inode, MAY_READ | MAY_WRITE)) 982 return false; 983 984 return true; 985 } 986 987 /** 988 * may_linkat - Check permissions for creating a hardlink 989 * @link: the source to hardlink from 990 * 991 * Block hardlink when all of: 992 * - sysctl_protected_hardlinks enabled 993 * - fsuid does not match inode 994 * - hardlink source is unsafe (see safe_hardlink_source() above) 995 * - not CAP_FOWNER in a namespace with the inode owner uid mapped 996 * 997 * Returns 0 if successful, -ve on error. 998 */ 999 static int may_linkat(struct path *link) 1000 { 1001 struct inode *inode; 1002 1003 if (!sysctl_protected_hardlinks) 1004 return 0; 1005 1006 inode = link->dentry->d_inode; 1007 1008 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 1009 * otherwise, it must be a safe source. 1010 */ 1011 if (safe_hardlink_source(inode) || inode_owner_or_capable(inode)) 1012 return 0; 1013 1014 audit_log_link_denied("linkat", link); 1015 return -EPERM; 1016 } 1017 1018 static __always_inline 1019 const char *get_link(struct nameidata *nd) 1020 { 1021 struct saved *last = nd->stack + nd->depth - 1; 1022 struct dentry *dentry = last->link.dentry; 1023 struct inode *inode = nd->link_inode; 1024 int error; 1025 const char *res; 1026 1027 if (!(nd->flags & LOOKUP_RCU)) { 1028 touch_atime(&last->link); 1029 cond_resched(); 1030 } else if (atime_needs_update_rcu(&last->link, inode)) { 1031 if (unlikely(unlazy_walk(nd))) 1032 return ERR_PTR(-ECHILD); 1033 touch_atime(&last->link); 1034 } 1035 1036 error = security_inode_follow_link(dentry, inode, 1037 nd->flags & LOOKUP_RCU); 1038 if (unlikely(error)) 1039 return ERR_PTR(error); 1040 1041 nd->last_type = LAST_BIND; 1042 res = inode->i_link; 1043 if (!res) { 1044 const char * (*get)(struct dentry *, struct inode *, 1045 struct delayed_call *); 1046 get = inode->i_op->get_link; 1047 if (nd->flags & LOOKUP_RCU) { 1048 res = get(NULL, inode, &last->done); 1049 if (res == ERR_PTR(-ECHILD)) { 1050 if (unlikely(unlazy_walk(nd))) 1051 return ERR_PTR(-ECHILD); 1052 res = get(dentry, inode, &last->done); 1053 } 1054 } else { 1055 res = get(dentry, inode, &last->done); 1056 } 1057 if (IS_ERR_OR_NULL(res)) 1058 return res; 1059 } 1060 if (*res == '/') { 1061 if (!nd->root.mnt) 1062 set_root(nd); 1063 if (unlikely(nd_jump_root(nd))) 1064 return ERR_PTR(-ECHILD); 1065 while (unlikely(*++res == '/')) 1066 ; 1067 } 1068 if (!*res) 1069 res = NULL; 1070 return res; 1071 } 1072 1073 /* 1074 * follow_up - Find the mountpoint of path's vfsmount 1075 * 1076 * Given a path, find the mountpoint of its source file system. 1077 * Replace @path with the path of the mountpoint in the parent mount. 1078 * Up is towards /. 1079 * 1080 * Return 1 if we went up a level and 0 if we were already at the 1081 * root. 1082 */ 1083 int follow_up(struct path *path) 1084 { 1085 struct mount *mnt = real_mount(path->mnt); 1086 struct mount *parent; 1087 struct dentry *mountpoint; 1088 1089 read_seqlock_excl(&mount_lock); 1090 parent = mnt->mnt_parent; 1091 if (parent == mnt) { 1092 read_sequnlock_excl(&mount_lock); 1093 return 0; 1094 } 1095 mntget(&parent->mnt); 1096 mountpoint = dget(mnt->mnt_mountpoint); 1097 read_sequnlock_excl(&mount_lock); 1098 dput(path->dentry); 1099 path->dentry = mountpoint; 1100 mntput(path->mnt); 1101 path->mnt = &parent->mnt; 1102 return 1; 1103 } 1104 EXPORT_SYMBOL(follow_up); 1105 1106 /* 1107 * Perform an automount 1108 * - return -EISDIR to tell follow_managed() to stop and return the path we 1109 * were called with. 1110 */ 1111 static int follow_automount(struct path *path, struct nameidata *nd, 1112 bool *need_mntput) 1113 { 1114 struct vfsmount *mnt; 1115 int err; 1116 1117 if (!path->dentry->d_op || !path->dentry->d_op->d_automount) 1118 return -EREMOTE; 1119 1120 /* We don't want to mount if someone's just doing a stat - 1121 * unless they're stat'ing a directory and appended a '/' to 1122 * the name. 1123 * 1124 * We do, however, want to mount if someone wants to open or 1125 * create a file of any type under the mountpoint, wants to 1126 * traverse through the mountpoint or wants to open the 1127 * mounted directory. Also, autofs may mark negative dentries 1128 * as being automount points. These will need the attentions 1129 * of the daemon to instantiate them before they can be used. 1130 */ 1131 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 1132 LOOKUP_OPEN | LOOKUP_CREATE | 1133 LOOKUP_AUTOMOUNT))) { 1134 /* Positive dentry that isn't meant to trigger an 1135 * automount, EISDIR will allow it to be used, 1136 * otherwise there's no mount here "now" so return 1137 * ENOENT. 1138 */ 1139 if (path->dentry->d_inode) 1140 return -EISDIR; 1141 else 1142 return -ENOENT; 1143 } 1144 1145 if (path->dentry->d_sb->s_user_ns != &init_user_ns) 1146 return -EACCES; 1147 1148 nd->total_link_count++; 1149 if (nd->total_link_count >= 40) 1150 return -ELOOP; 1151 1152 mnt = path->dentry->d_op->d_automount(path); 1153 if (IS_ERR(mnt)) { 1154 /* 1155 * The filesystem is allowed to return -EISDIR here to indicate 1156 * it doesn't want to automount. For instance, autofs would do 1157 * this so that its userspace daemon can mount on this dentry. 1158 * 1159 * However, we can only permit this if it's a terminal point in 1160 * the path being looked up; if it wasn't then the remainder of 1161 * the path is inaccessible and we should say so. 1162 */ 1163 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT)) 1164 return -EREMOTE; 1165 return PTR_ERR(mnt); 1166 } 1167 1168 if (!mnt) /* mount collision */ 1169 return 0; 1170 1171 if (!*need_mntput) { 1172 /* lock_mount() may release path->mnt on error */ 1173 mntget(path->mnt); 1174 *need_mntput = true; 1175 } 1176 err = finish_automount(mnt, path); 1177 1178 switch (err) { 1179 case -EBUSY: 1180 /* Someone else made a mount here whilst we were busy */ 1181 return 0; 1182 case 0: 1183 path_put(path); 1184 path->mnt = mnt; 1185 path->dentry = dget(mnt->mnt_root); 1186 return 0; 1187 default: 1188 return err; 1189 } 1190 1191 } 1192 1193 /* 1194 * Handle a dentry that is managed in some way. 1195 * - Flagged for transit management (autofs) 1196 * - Flagged as mountpoint 1197 * - Flagged as automount point 1198 * 1199 * This may only be called in refwalk mode. 1200 * 1201 * Serialization is taken care of in namespace.c 1202 */ 1203 static int follow_managed(struct path *path, struct nameidata *nd) 1204 { 1205 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */ 1206 unsigned managed; 1207 bool need_mntput = false; 1208 int ret = 0; 1209 1210 /* Given that we're not holding a lock here, we retain the value in a 1211 * local variable for each dentry as we look at it so that we don't see 1212 * the components of that value change under us */ 1213 while (managed = READ_ONCE(path->dentry->d_flags), 1214 managed &= DCACHE_MANAGED_DENTRY, 1215 unlikely(managed != 0)) { 1216 /* Allow the filesystem to manage the transit without i_mutex 1217 * being held. */ 1218 if (managed & DCACHE_MANAGE_TRANSIT) { 1219 BUG_ON(!path->dentry->d_op); 1220 BUG_ON(!path->dentry->d_op->d_manage); 1221 ret = path->dentry->d_op->d_manage(path, false); 1222 if (ret < 0) 1223 break; 1224 } 1225 1226 /* Transit to a mounted filesystem. */ 1227 if (managed & DCACHE_MOUNTED) { 1228 struct vfsmount *mounted = lookup_mnt(path); 1229 if (mounted) { 1230 dput(path->dentry); 1231 if (need_mntput) 1232 mntput(path->mnt); 1233 path->mnt = mounted; 1234 path->dentry = dget(mounted->mnt_root); 1235 need_mntput = true; 1236 continue; 1237 } 1238 1239 /* Something is mounted on this dentry in another 1240 * namespace and/or whatever was mounted there in this 1241 * namespace got unmounted before lookup_mnt() could 1242 * get it */ 1243 } 1244 1245 /* Handle an automount point */ 1246 if (managed & DCACHE_NEED_AUTOMOUNT) { 1247 ret = follow_automount(path, nd, &need_mntput); 1248 if (ret < 0) 1249 break; 1250 continue; 1251 } 1252 1253 /* We didn't change the current path point */ 1254 break; 1255 } 1256 1257 if (need_mntput && path->mnt == mnt) 1258 mntput(path->mnt); 1259 if (ret == -EISDIR || !ret) 1260 ret = 1; 1261 if (need_mntput) 1262 nd->flags |= LOOKUP_JUMPED; 1263 if (unlikely(ret < 0)) 1264 path_put_conditional(path, nd); 1265 return ret; 1266 } 1267 1268 int follow_down_one(struct path *path) 1269 { 1270 struct vfsmount *mounted; 1271 1272 mounted = lookup_mnt(path); 1273 if (mounted) { 1274 dput(path->dentry); 1275 mntput(path->mnt); 1276 path->mnt = mounted; 1277 path->dentry = dget(mounted->mnt_root); 1278 return 1; 1279 } 1280 return 0; 1281 } 1282 EXPORT_SYMBOL(follow_down_one); 1283 1284 static inline int managed_dentry_rcu(const struct path *path) 1285 { 1286 return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ? 1287 path->dentry->d_op->d_manage(path, true) : 0; 1288 } 1289 1290 /* 1291 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1292 * we meet a managed dentry that would need blocking. 1293 */ 1294 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1295 struct inode **inode, unsigned *seqp) 1296 { 1297 for (;;) { 1298 struct mount *mounted; 1299 /* 1300 * Don't forget we might have a non-mountpoint managed dentry 1301 * that wants to block transit. 1302 */ 1303 switch (managed_dentry_rcu(path)) { 1304 case -ECHILD: 1305 default: 1306 return false; 1307 case -EISDIR: 1308 return true; 1309 case 0: 1310 break; 1311 } 1312 1313 if (!d_mountpoint(path->dentry)) 1314 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1315 1316 mounted = __lookup_mnt(path->mnt, path->dentry); 1317 if (!mounted) 1318 break; 1319 path->mnt = &mounted->mnt; 1320 path->dentry = mounted->mnt.mnt_root; 1321 nd->flags |= LOOKUP_JUMPED; 1322 *seqp = read_seqcount_begin(&path->dentry->d_seq); 1323 /* 1324 * Update the inode too. We don't need to re-check the 1325 * dentry sequence number here after this d_inode read, 1326 * because a mount-point is always pinned. 1327 */ 1328 *inode = path->dentry->d_inode; 1329 } 1330 return !read_seqretry(&mount_lock, nd->m_seq) && 1331 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1332 } 1333 1334 static int follow_dotdot_rcu(struct nameidata *nd) 1335 { 1336 struct inode *inode = nd->inode; 1337 1338 while (1) { 1339 if (path_equal(&nd->path, &nd->root)) 1340 break; 1341 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1342 struct dentry *old = nd->path.dentry; 1343 struct dentry *parent = old->d_parent; 1344 unsigned seq; 1345 1346 inode = parent->d_inode; 1347 seq = read_seqcount_begin(&parent->d_seq); 1348 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq))) 1349 return -ECHILD; 1350 nd->path.dentry = parent; 1351 nd->seq = seq; 1352 if (unlikely(!path_connected(&nd->path))) 1353 return -ENOENT; 1354 break; 1355 } else { 1356 struct mount *mnt = real_mount(nd->path.mnt); 1357 struct mount *mparent = mnt->mnt_parent; 1358 struct dentry *mountpoint = mnt->mnt_mountpoint; 1359 struct inode *inode2 = mountpoint->d_inode; 1360 unsigned seq = read_seqcount_begin(&mountpoint->d_seq); 1361 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1362 return -ECHILD; 1363 if (&mparent->mnt == nd->path.mnt) 1364 break; 1365 /* we know that mountpoint was pinned */ 1366 nd->path.dentry = mountpoint; 1367 nd->path.mnt = &mparent->mnt; 1368 inode = inode2; 1369 nd->seq = seq; 1370 } 1371 } 1372 while (unlikely(d_mountpoint(nd->path.dentry))) { 1373 struct mount *mounted; 1374 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry); 1375 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1376 return -ECHILD; 1377 if (!mounted) 1378 break; 1379 nd->path.mnt = &mounted->mnt; 1380 nd->path.dentry = mounted->mnt.mnt_root; 1381 inode = nd->path.dentry->d_inode; 1382 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1383 } 1384 nd->inode = inode; 1385 return 0; 1386 } 1387 1388 /* 1389 * Follow down to the covering mount currently visible to userspace. At each 1390 * point, the filesystem owning that dentry may be queried as to whether the 1391 * caller is permitted to proceed or not. 1392 */ 1393 int follow_down(struct path *path) 1394 { 1395 unsigned managed; 1396 int ret; 1397 1398 while (managed = READ_ONCE(path->dentry->d_flags), 1399 unlikely(managed & DCACHE_MANAGED_DENTRY)) { 1400 /* Allow the filesystem to manage the transit without i_mutex 1401 * being held. 1402 * 1403 * We indicate to the filesystem if someone is trying to mount 1404 * something here. This gives autofs the chance to deny anyone 1405 * other than its daemon the right to mount on its 1406 * superstructure. 1407 * 1408 * The filesystem may sleep at this point. 1409 */ 1410 if (managed & DCACHE_MANAGE_TRANSIT) { 1411 BUG_ON(!path->dentry->d_op); 1412 BUG_ON(!path->dentry->d_op->d_manage); 1413 ret = path->dentry->d_op->d_manage(path, false); 1414 if (ret < 0) 1415 return ret == -EISDIR ? 0 : ret; 1416 } 1417 1418 /* Transit to a mounted filesystem. */ 1419 if (managed & DCACHE_MOUNTED) { 1420 struct vfsmount *mounted = lookup_mnt(path); 1421 if (!mounted) 1422 break; 1423 dput(path->dentry); 1424 mntput(path->mnt); 1425 path->mnt = mounted; 1426 path->dentry = dget(mounted->mnt_root); 1427 continue; 1428 } 1429 1430 /* Don't handle automount points here */ 1431 break; 1432 } 1433 return 0; 1434 } 1435 EXPORT_SYMBOL(follow_down); 1436 1437 /* 1438 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() 1439 */ 1440 static void follow_mount(struct path *path) 1441 { 1442 while (d_mountpoint(path->dentry)) { 1443 struct vfsmount *mounted = lookup_mnt(path); 1444 if (!mounted) 1445 break; 1446 dput(path->dentry); 1447 mntput(path->mnt); 1448 path->mnt = mounted; 1449 path->dentry = dget(mounted->mnt_root); 1450 } 1451 } 1452 1453 static int path_parent_directory(struct path *path) 1454 { 1455 struct dentry *old = path->dentry; 1456 /* rare case of legitimate dget_parent()... */ 1457 path->dentry = dget_parent(path->dentry); 1458 dput(old); 1459 if (unlikely(!path_connected(path))) 1460 return -ENOENT; 1461 return 0; 1462 } 1463 1464 static int follow_dotdot(struct nameidata *nd) 1465 { 1466 while(1) { 1467 if (nd->path.dentry == nd->root.dentry && 1468 nd->path.mnt == nd->root.mnt) { 1469 break; 1470 } 1471 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1472 int ret = path_parent_directory(&nd->path); 1473 if (ret) 1474 return ret; 1475 break; 1476 } 1477 if (!follow_up(&nd->path)) 1478 break; 1479 } 1480 follow_mount(&nd->path); 1481 nd->inode = nd->path.dentry->d_inode; 1482 return 0; 1483 } 1484 1485 /* 1486 * This looks up the name in dcache and possibly revalidates the found dentry. 1487 * NULL is returned if the dentry does not exist in the cache. 1488 */ 1489 static struct dentry *lookup_dcache(const struct qstr *name, 1490 struct dentry *dir, 1491 unsigned int flags) 1492 { 1493 struct dentry *dentry = d_lookup(dir, name); 1494 if (dentry) { 1495 int error = d_revalidate(dentry, flags); 1496 if (unlikely(error <= 0)) { 1497 if (!error) 1498 d_invalidate(dentry); 1499 dput(dentry); 1500 return ERR_PTR(error); 1501 } 1502 } 1503 return dentry; 1504 } 1505 1506 /* 1507 * Call i_op->lookup on the dentry. The dentry must be negative and 1508 * unhashed. 1509 * 1510 * dir->d_inode->i_mutex must be held 1511 */ 1512 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry, 1513 unsigned int flags) 1514 { 1515 struct dentry *old; 1516 1517 /* Don't create child dentry for a dead directory. */ 1518 if (unlikely(IS_DEADDIR(dir))) { 1519 dput(dentry); 1520 return ERR_PTR(-ENOENT); 1521 } 1522 1523 old = dir->i_op->lookup(dir, dentry, flags); 1524 if (unlikely(old)) { 1525 dput(dentry); 1526 dentry = old; 1527 } 1528 return dentry; 1529 } 1530 1531 static struct dentry *__lookup_hash(const struct qstr *name, 1532 struct dentry *base, unsigned int flags) 1533 { 1534 struct dentry *dentry = lookup_dcache(name, base, flags); 1535 1536 if (dentry) 1537 return dentry; 1538 1539 dentry = d_alloc(base, name); 1540 if (unlikely(!dentry)) 1541 return ERR_PTR(-ENOMEM); 1542 1543 return lookup_real(base->d_inode, dentry, flags); 1544 } 1545 1546 static int lookup_fast(struct nameidata *nd, 1547 struct path *path, struct inode **inode, 1548 unsigned *seqp) 1549 { 1550 struct vfsmount *mnt = nd->path.mnt; 1551 struct dentry *dentry, *parent = nd->path.dentry; 1552 int status = 1; 1553 int err; 1554 1555 /* 1556 * Rename seqlock is not required here because in the off chance 1557 * of a false negative due to a concurrent rename, the caller is 1558 * going to fall back to non-racy lookup. 1559 */ 1560 if (nd->flags & LOOKUP_RCU) { 1561 unsigned seq; 1562 bool negative; 1563 dentry = __d_lookup_rcu(parent, &nd->last, &seq); 1564 if (unlikely(!dentry)) { 1565 if (unlazy_walk(nd)) 1566 return -ECHILD; 1567 return 0; 1568 } 1569 1570 /* 1571 * This sequence count validates that the inode matches 1572 * the dentry name information from lookup. 1573 */ 1574 *inode = d_backing_inode(dentry); 1575 negative = d_is_negative(dentry); 1576 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) 1577 return -ECHILD; 1578 1579 /* 1580 * This sequence count validates that the parent had no 1581 * changes while we did the lookup of the dentry above. 1582 * 1583 * The memory barrier in read_seqcount_begin of child is 1584 * enough, we can use __read_seqcount_retry here. 1585 */ 1586 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq))) 1587 return -ECHILD; 1588 1589 *seqp = seq; 1590 status = d_revalidate(dentry, nd->flags); 1591 if (likely(status > 0)) { 1592 /* 1593 * Note: do negative dentry check after revalidation in 1594 * case that drops it. 1595 */ 1596 if (unlikely(negative)) 1597 return -ENOENT; 1598 path->mnt = mnt; 1599 path->dentry = dentry; 1600 if (likely(__follow_mount_rcu(nd, path, inode, seqp))) 1601 return 1; 1602 } 1603 if (unlazy_child(nd, dentry, seq)) 1604 return -ECHILD; 1605 if (unlikely(status == -ECHILD)) 1606 /* we'd been told to redo it in non-rcu mode */ 1607 status = d_revalidate(dentry, nd->flags); 1608 } else { 1609 dentry = __d_lookup(parent, &nd->last); 1610 if (unlikely(!dentry)) 1611 return 0; 1612 status = d_revalidate(dentry, nd->flags); 1613 } 1614 if (unlikely(status <= 0)) { 1615 if (!status) 1616 d_invalidate(dentry); 1617 dput(dentry); 1618 return status; 1619 } 1620 if (unlikely(d_is_negative(dentry))) { 1621 dput(dentry); 1622 return -ENOENT; 1623 } 1624 1625 path->mnt = mnt; 1626 path->dentry = dentry; 1627 err = follow_managed(path, nd); 1628 if (likely(err > 0)) 1629 *inode = d_backing_inode(path->dentry); 1630 return err; 1631 } 1632 1633 /* Fast lookup failed, do it the slow way */ 1634 static struct dentry *lookup_slow(const struct qstr *name, 1635 struct dentry *dir, 1636 unsigned int flags) 1637 { 1638 struct dentry *dentry = ERR_PTR(-ENOENT), *old; 1639 struct inode *inode = dir->d_inode; 1640 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1641 1642 inode_lock_shared(inode); 1643 /* Don't go there if it's already dead */ 1644 if (unlikely(IS_DEADDIR(inode))) 1645 goto out; 1646 again: 1647 dentry = d_alloc_parallel(dir, name, &wq); 1648 if (IS_ERR(dentry)) 1649 goto out; 1650 if (unlikely(!d_in_lookup(dentry))) { 1651 if (!(flags & LOOKUP_NO_REVAL)) { 1652 int error = d_revalidate(dentry, flags); 1653 if (unlikely(error <= 0)) { 1654 if (!error) { 1655 d_invalidate(dentry); 1656 dput(dentry); 1657 goto again; 1658 } 1659 dput(dentry); 1660 dentry = ERR_PTR(error); 1661 } 1662 } 1663 } else { 1664 old = inode->i_op->lookup(inode, dentry, flags); 1665 d_lookup_done(dentry); 1666 if (unlikely(old)) { 1667 dput(dentry); 1668 dentry = old; 1669 } 1670 } 1671 out: 1672 inode_unlock_shared(inode); 1673 return dentry; 1674 } 1675 1676 static inline int may_lookup(struct nameidata *nd) 1677 { 1678 if (nd->flags & LOOKUP_RCU) { 1679 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1680 if (err != -ECHILD) 1681 return err; 1682 if (unlazy_walk(nd)) 1683 return -ECHILD; 1684 } 1685 return inode_permission(nd->inode, MAY_EXEC); 1686 } 1687 1688 static inline int handle_dots(struct nameidata *nd, int type) 1689 { 1690 if (type == LAST_DOTDOT) { 1691 if (!nd->root.mnt) 1692 set_root(nd); 1693 if (nd->flags & LOOKUP_RCU) { 1694 return follow_dotdot_rcu(nd); 1695 } else 1696 return follow_dotdot(nd); 1697 } 1698 return 0; 1699 } 1700 1701 static int pick_link(struct nameidata *nd, struct path *link, 1702 struct inode *inode, unsigned seq) 1703 { 1704 int error; 1705 struct saved *last; 1706 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) { 1707 path_to_nameidata(link, nd); 1708 return -ELOOP; 1709 } 1710 if (!(nd->flags & LOOKUP_RCU)) { 1711 if (link->mnt == nd->path.mnt) 1712 mntget(link->mnt); 1713 } 1714 error = nd_alloc_stack(nd); 1715 if (unlikely(error)) { 1716 if (error == -ECHILD) { 1717 if (unlikely(!legitimize_path(nd, link, seq))) { 1718 drop_links(nd); 1719 nd->depth = 0; 1720 nd->flags &= ~LOOKUP_RCU; 1721 nd->path.mnt = NULL; 1722 nd->path.dentry = NULL; 1723 if (!(nd->flags & LOOKUP_ROOT)) 1724 nd->root.mnt = NULL; 1725 rcu_read_unlock(); 1726 } else if (likely(unlazy_walk(nd)) == 0) 1727 error = nd_alloc_stack(nd); 1728 } 1729 if (error) { 1730 path_put(link); 1731 return error; 1732 } 1733 } 1734 1735 last = nd->stack + nd->depth++; 1736 last->link = *link; 1737 clear_delayed_call(&last->done); 1738 nd->link_inode = inode; 1739 last->seq = seq; 1740 return 1; 1741 } 1742 1743 enum {WALK_FOLLOW = 1, WALK_MORE = 2}; 1744 1745 /* 1746 * Do we need to follow links? We _really_ want to be able 1747 * to do this check without having to look at inode->i_op, 1748 * so we keep a cache of "no, this doesn't need follow_link" 1749 * for the common case. 1750 */ 1751 static inline int step_into(struct nameidata *nd, struct path *path, 1752 int flags, struct inode *inode, unsigned seq) 1753 { 1754 if (!(flags & WALK_MORE) && nd->depth) 1755 put_link(nd); 1756 if (likely(!d_is_symlink(path->dentry)) || 1757 !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) { 1758 /* not a symlink or should not follow */ 1759 path_to_nameidata(path, nd); 1760 nd->inode = inode; 1761 nd->seq = seq; 1762 return 0; 1763 } 1764 /* make sure that d_is_symlink above matches inode */ 1765 if (nd->flags & LOOKUP_RCU) { 1766 if (read_seqcount_retry(&path->dentry->d_seq, seq)) 1767 return -ECHILD; 1768 } 1769 return pick_link(nd, path, inode, seq); 1770 } 1771 1772 static int walk_component(struct nameidata *nd, int flags) 1773 { 1774 struct path path; 1775 struct inode *inode; 1776 unsigned seq; 1777 int err; 1778 /* 1779 * "." and ".." are special - ".." especially so because it has 1780 * to be able to know about the current root directory and 1781 * parent relationships. 1782 */ 1783 if (unlikely(nd->last_type != LAST_NORM)) { 1784 err = handle_dots(nd, nd->last_type); 1785 if (!(flags & WALK_MORE) && nd->depth) 1786 put_link(nd); 1787 return err; 1788 } 1789 err = lookup_fast(nd, &path, &inode, &seq); 1790 if (unlikely(err <= 0)) { 1791 if (err < 0) 1792 return err; 1793 path.dentry = lookup_slow(&nd->last, nd->path.dentry, 1794 nd->flags); 1795 if (IS_ERR(path.dentry)) 1796 return PTR_ERR(path.dentry); 1797 1798 path.mnt = nd->path.mnt; 1799 err = follow_managed(&path, nd); 1800 if (unlikely(err < 0)) 1801 return err; 1802 1803 if (unlikely(d_is_negative(path.dentry))) { 1804 path_to_nameidata(&path, nd); 1805 return -ENOENT; 1806 } 1807 1808 seq = 0; /* we are already out of RCU mode */ 1809 inode = d_backing_inode(path.dentry); 1810 } 1811 1812 return step_into(nd, &path, flags, inode, seq); 1813 } 1814 1815 /* 1816 * We can do the critical dentry name comparison and hashing 1817 * operations one word at a time, but we are limited to: 1818 * 1819 * - Architectures with fast unaligned word accesses. We could 1820 * do a "get_unaligned()" if this helps and is sufficiently 1821 * fast. 1822 * 1823 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 1824 * do not trap on the (extremely unlikely) case of a page 1825 * crossing operation. 1826 * 1827 * - Furthermore, we need an efficient 64-bit compile for the 1828 * 64-bit case in order to generate the "number of bytes in 1829 * the final mask". Again, that could be replaced with a 1830 * efficient population count instruction or similar. 1831 */ 1832 #ifdef CONFIG_DCACHE_WORD_ACCESS 1833 1834 #include <asm/word-at-a-time.h> 1835 1836 #ifdef HASH_MIX 1837 1838 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */ 1839 1840 #elif defined(CONFIG_64BIT) 1841 /* 1842 * Register pressure in the mixing function is an issue, particularly 1843 * on 32-bit x86, but almost any function requires one state value and 1844 * one temporary. Instead, use a function designed for two state values 1845 * and no temporaries. 1846 * 1847 * This function cannot create a collision in only two iterations, so 1848 * we have two iterations to achieve avalanche. In those two iterations, 1849 * we have six layers of mixing, which is enough to spread one bit's 1850 * influence out to 2^6 = 64 state bits. 1851 * 1852 * Rotate constants are scored by considering either 64 one-bit input 1853 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the 1854 * probability of that delta causing a change to each of the 128 output 1855 * bits, using a sample of random initial states. 1856 * 1857 * The Shannon entropy of the computed probabilities is then summed 1858 * to produce a score. Ideally, any input change has a 50% chance of 1859 * toggling any given output bit. 1860 * 1861 * Mixing scores (in bits) for (12,45): 1862 * Input delta: 1-bit 2-bit 1863 * 1 round: 713.3 42542.6 1864 * 2 rounds: 2753.7 140389.8 1865 * 3 rounds: 5954.1 233458.2 1866 * 4 rounds: 7862.6 256672.2 1867 * Perfect: 8192 258048 1868 * (64*128) (64*63/2 * 128) 1869 */ 1870 #define HASH_MIX(x, y, a) \ 1871 ( x ^= (a), \ 1872 y ^= x, x = rol64(x,12),\ 1873 x += y, y = rol64(y,45),\ 1874 y *= 9 ) 1875 1876 /* 1877 * Fold two longs into one 32-bit hash value. This must be fast, but 1878 * latency isn't quite as critical, as there is a fair bit of additional 1879 * work done before the hash value is used. 1880 */ 1881 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 1882 { 1883 y ^= x * GOLDEN_RATIO_64; 1884 y *= GOLDEN_RATIO_64; 1885 return y >> 32; 1886 } 1887 1888 #else /* 32-bit case */ 1889 1890 /* 1891 * Mixing scores (in bits) for (7,20): 1892 * Input delta: 1-bit 2-bit 1893 * 1 round: 330.3 9201.6 1894 * 2 rounds: 1246.4 25475.4 1895 * 3 rounds: 1907.1 31295.1 1896 * 4 rounds: 2042.3 31718.6 1897 * Perfect: 2048 31744 1898 * (32*64) (32*31/2 * 64) 1899 */ 1900 #define HASH_MIX(x, y, a) \ 1901 ( x ^= (a), \ 1902 y ^= x, x = rol32(x, 7),\ 1903 x += y, y = rol32(y,20),\ 1904 y *= 9 ) 1905 1906 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 1907 { 1908 /* Use arch-optimized multiply if one exists */ 1909 return __hash_32(y ^ __hash_32(x)); 1910 } 1911 1912 #endif 1913 1914 /* 1915 * Return the hash of a string of known length. This is carfully 1916 * designed to match hash_name(), which is the more critical function. 1917 * In particular, we must end by hashing a final word containing 0..7 1918 * payload bytes, to match the way that hash_name() iterates until it 1919 * finds the delimiter after the name. 1920 */ 1921 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 1922 { 1923 unsigned long a, x = 0, y = (unsigned long)salt; 1924 1925 for (;;) { 1926 if (!len) 1927 goto done; 1928 a = load_unaligned_zeropad(name); 1929 if (len < sizeof(unsigned long)) 1930 break; 1931 HASH_MIX(x, y, a); 1932 name += sizeof(unsigned long); 1933 len -= sizeof(unsigned long); 1934 } 1935 x ^= a & bytemask_from_count(len); 1936 done: 1937 return fold_hash(x, y); 1938 } 1939 EXPORT_SYMBOL(full_name_hash); 1940 1941 /* Return the "hash_len" (hash and length) of a null-terminated string */ 1942 u64 hashlen_string(const void *salt, const char *name) 1943 { 1944 unsigned long a = 0, x = 0, y = (unsigned long)salt; 1945 unsigned long adata, mask, len; 1946 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1947 1948 len = 0; 1949 goto inside; 1950 1951 do { 1952 HASH_MIX(x, y, a); 1953 len += sizeof(unsigned long); 1954 inside: 1955 a = load_unaligned_zeropad(name+len); 1956 } while (!has_zero(a, &adata, &constants)); 1957 1958 adata = prep_zero_mask(a, adata, &constants); 1959 mask = create_zero_mask(adata); 1960 x ^= a & zero_bytemask(mask); 1961 1962 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 1963 } 1964 EXPORT_SYMBOL(hashlen_string); 1965 1966 /* 1967 * Calculate the length and hash of the path component, and 1968 * return the "hash_len" as the result. 1969 */ 1970 static inline u64 hash_name(const void *salt, const char *name) 1971 { 1972 unsigned long a = 0, b, x = 0, y = (unsigned long)salt; 1973 unsigned long adata, bdata, mask, len; 1974 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1975 1976 len = 0; 1977 goto inside; 1978 1979 do { 1980 HASH_MIX(x, y, a); 1981 len += sizeof(unsigned long); 1982 inside: 1983 a = load_unaligned_zeropad(name+len); 1984 b = a ^ REPEAT_BYTE('/'); 1985 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 1986 1987 adata = prep_zero_mask(a, adata, &constants); 1988 bdata = prep_zero_mask(b, bdata, &constants); 1989 mask = create_zero_mask(adata | bdata); 1990 x ^= a & zero_bytemask(mask); 1991 1992 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 1993 } 1994 1995 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */ 1996 1997 /* Return the hash of a string of known length */ 1998 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 1999 { 2000 unsigned long hash = init_name_hash(salt); 2001 while (len--) 2002 hash = partial_name_hash((unsigned char)*name++, hash); 2003 return end_name_hash(hash); 2004 } 2005 EXPORT_SYMBOL(full_name_hash); 2006 2007 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2008 u64 hashlen_string(const void *salt, const char *name) 2009 { 2010 unsigned long hash = init_name_hash(salt); 2011 unsigned long len = 0, c; 2012 2013 c = (unsigned char)*name; 2014 while (c) { 2015 len++; 2016 hash = partial_name_hash(c, hash); 2017 c = (unsigned char)name[len]; 2018 } 2019 return hashlen_create(end_name_hash(hash), len); 2020 } 2021 EXPORT_SYMBOL(hashlen_string); 2022 2023 /* 2024 * We know there's a real path component here of at least 2025 * one character. 2026 */ 2027 static inline u64 hash_name(const void *salt, const char *name) 2028 { 2029 unsigned long hash = init_name_hash(salt); 2030 unsigned long len = 0, c; 2031 2032 c = (unsigned char)*name; 2033 do { 2034 len++; 2035 hash = partial_name_hash(c, hash); 2036 c = (unsigned char)name[len]; 2037 } while (c && c != '/'); 2038 return hashlen_create(end_name_hash(hash), len); 2039 } 2040 2041 #endif 2042 2043 /* 2044 * Name resolution. 2045 * This is the basic name resolution function, turning a pathname into 2046 * the final dentry. We expect 'base' to be positive and a directory. 2047 * 2048 * Returns 0 and nd will have valid dentry and mnt on success. 2049 * Returns error and drops reference to input namei data on failure. 2050 */ 2051 static int link_path_walk(const char *name, struct nameidata *nd) 2052 { 2053 int err; 2054 2055 while (*name=='/') 2056 name++; 2057 if (!*name) 2058 return 0; 2059 2060 /* At this point we know we have a real path component. */ 2061 for(;;) { 2062 u64 hash_len; 2063 int type; 2064 2065 err = may_lookup(nd); 2066 if (err) 2067 return err; 2068 2069 hash_len = hash_name(nd->path.dentry, name); 2070 2071 type = LAST_NORM; 2072 if (name[0] == '.') switch (hashlen_len(hash_len)) { 2073 case 2: 2074 if (name[1] == '.') { 2075 type = LAST_DOTDOT; 2076 nd->flags |= LOOKUP_JUMPED; 2077 } 2078 break; 2079 case 1: 2080 type = LAST_DOT; 2081 } 2082 if (likely(type == LAST_NORM)) { 2083 struct dentry *parent = nd->path.dentry; 2084 nd->flags &= ~LOOKUP_JUMPED; 2085 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 2086 struct qstr this = { { .hash_len = hash_len }, .name = name }; 2087 err = parent->d_op->d_hash(parent, &this); 2088 if (err < 0) 2089 return err; 2090 hash_len = this.hash_len; 2091 name = this.name; 2092 } 2093 } 2094 2095 nd->last.hash_len = hash_len; 2096 nd->last.name = name; 2097 nd->last_type = type; 2098 2099 name += hashlen_len(hash_len); 2100 if (!*name) 2101 goto OK; 2102 /* 2103 * If it wasn't NUL, we know it was '/'. Skip that 2104 * slash, and continue until no more slashes. 2105 */ 2106 do { 2107 name++; 2108 } while (unlikely(*name == '/')); 2109 if (unlikely(!*name)) { 2110 OK: 2111 /* pathname body, done */ 2112 if (!nd->depth) 2113 return 0; 2114 name = nd->stack[nd->depth - 1].name; 2115 /* trailing symlink, done */ 2116 if (!name) 2117 return 0; 2118 /* last component of nested symlink */ 2119 err = walk_component(nd, WALK_FOLLOW); 2120 } else { 2121 /* not the last component */ 2122 err = walk_component(nd, WALK_FOLLOW | WALK_MORE); 2123 } 2124 if (err < 0) 2125 return err; 2126 2127 if (err) { 2128 const char *s = get_link(nd); 2129 2130 if (IS_ERR(s)) 2131 return PTR_ERR(s); 2132 err = 0; 2133 if (unlikely(!s)) { 2134 /* jumped */ 2135 put_link(nd); 2136 } else { 2137 nd->stack[nd->depth - 1].name = name; 2138 name = s; 2139 continue; 2140 } 2141 } 2142 if (unlikely(!d_can_lookup(nd->path.dentry))) { 2143 if (nd->flags & LOOKUP_RCU) { 2144 if (unlazy_walk(nd)) 2145 return -ECHILD; 2146 } 2147 return -ENOTDIR; 2148 } 2149 } 2150 } 2151 2152 static const char *path_init(struct nameidata *nd, unsigned flags) 2153 { 2154 const char *s = nd->name->name; 2155 2156 if (!*s) 2157 flags &= ~LOOKUP_RCU; 2158 2159 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 2160 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT; 2161 nd->depth = 0; 2162 if (flags & LOOKUP_ROOT) { 2163 struct dentry *root = nd->root.dentry; 2164 struct inode *inode = root->d_inode; 2165 if (*s && unlikely(!d_can_lookup(root))) 2166 return ERR_PTR(-ENOTDIR); 2167 nd->path = nd->root; 2168 nd->inode = inode; 2169 if (flags & LOOKUP_RCU) { 2170 rcu_read_lock(); 2171 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2172 nd->root_seq = nd->seq; 2173 nd->m_seq = read_seqbegin(&mount_lock); 2174 } else { 2175 path_get(&nd->path); 2176 } 2177 return s; 2178 } 2179 2180 nd->root.mnt = NULL; 2181 nd->path.mnt = NULL; 2182 nd->path.dentry = NULL; 2183 2184 nd->m_seq = read_seqbegin(&mount_lock); 2185 if (*s == '/') { 2186 if (flags & LOOKUP_RCU) 2187 rcu_read_lock(); 2188 set_root(nd); 2189 if (likely(!nd_jump_root(nd))) 2190 return s; 2191 nd->root.mnt = NULL; 2192 rcu_read_unlock(); 2193 return ERR_PTR(-ECHILD); 2194 } else if (nd->dfd == AT_FDCWD) { 2195 if (flags & LOOKUP_RCU) { 2196 struct fs_struct *fs = current->fs; 2197 unsigned seq; 2198 2199 rcu_read_lock(); 2200 2201 do { 2202 seq = read_seqcount_begin(&fs->seq); 2203 nd->path = fs->pwd; 2204 nd->inode = nd->path.dentry->d_inode; 2205 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2206 } while (read_seqcount_retry(&fs->seq, seq)); 2207 } else { 2208 get_fs_pwd(current->fs, &nd->path); 2209 nd->inode = nd->path.dentry->d_inode; 2210 } 2211 return s; 2212 } else { 2213 /* Caller must check execute permissions on the starting path component */ 2214 struct fd f = fdget_raw(nd->dfd); 2215 struct dentry *dentry; 2216 2217 if (!f.file) 2218 return ERR_PTR(-EBADF); 2219 2220 dentry = f.file->f_path.dentry; 2221 2222 if (*s) { 2223 if (!d_can_lookup(dentry)) { 2224 fdput(f); 2225 return ERR_PTR(-ENOTDIR); 2226 } 2227 } 2228 2229 nd->path = f.file->f_path; 2230 if (flags & LOOKUP_RCU) { 2231 rcu_read_lock(); 2232 nd->inode = nd->path.dentry->d_inode; 2233 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2234 } else { 2235 path_get(&nd->path); 2236 nd->inode = nd->path.dentry->d_inode; 2237 } 2238 fdput(f); 2239 return s; 2240 } 2241 } 2242 2243 static const char *trailing_symlink(struct nameidata *nd) 2244 { 2245 const char *s; 2246 int error = may_follow_link(nd); 2247 if (unlikely(error)) 2248 return ERR_PTR(error); 2249 nd->flags |= LOOKUP_PARENT; 2250 nd->stack[0].name = NULL; 2251 s = get_link(nd); 2252 return s ? s : ""; 2253 } 2254 2255 static inline int lookup_last(struct nameidata *nd) 2256 { 2257 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 2258 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2259 2260 nd->flags &= ~LOOKUP_PARENT; 2261 return walk_component(nd, 0); 2262 } 2263 2264 static int handle_lookup_down(struct nameidata *nd) 2265 { 2266 struct path path = nd->path; 2267 struct inode *inode = nd->inode; 2268 unsigned seq = nd->seq; 2269 int err; 2270 2271 if (nd->flags & LOOKUP_RCU) { 2272 /* 2273 * don't bother with unlazy_walk on failure - we are 2274 * at the very beginning of walk, so we lose nothing 2275 * if we simply redo everything in non-RCU mode 2276 */ 2277 if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq))) 2278 return -ECHILD; 2279 } else { 2280 dget(path.dentry); 2281 err = follow_managed(&path, nd); 2282 if (unlikely(err < 0)) 2283 return err; 2284 inode = d_backing_inode(path.dentry); 2285 seq = 0; 2286 } 2287 path_to_nameidata(&path, nd); 2288 nd->inode = inode; 2289 nd->seq = seq; 2290 return 0; 2291 } 2292 2293 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2294 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path) 2295 { 2296 const char *s = path_init(nd, flags); 2297 int err; 2298 2299 if (IS_ERR(s)) 2300 return PTR_ERR(s); 2301 2302 if (unlikely(flags & LOOKUP_DOWN)) { 2303 err = handle_lookup_down(nd); 2304 if (unlikely(err < 0)) { 2305 terminate_walk(nd); 2306 return err; 2307 } 2308 } 2309 2310 while (!(err = link_path_walk(s, nd)) 2311 && ((err = lookup_last(nd)) > 0)) { 2312 s = trailing_symlink(nd); 2313 if (IS_ERR(s)) { 2314 err = PTR_ERR(s); 2315 break; 2316 } 2317 } 2318 if (!err) 2319 err = complete_walk(nd); 2320 2321 if (!err && nd->flags & LOOKUP_DIRECTORY) 2322 if (!d_can_lookup(nd->path.dentry)) 2323 err = -ENOTDIR; 2324 if (!err) { 2325 *path = nd->path; 2326 nd->path.mnt = NULL; 2327 nd->path.dentry = NULL; 2328 } 2329 terminate_walk(nd); 2330 return err; 2331 } 2332 2333 static int filename_lookup(int dfd, struct filename *name, unsigned flags, 2334 struct path *path, struct path *root) 2335 { 2336 int retval; 2337 struct nameidata nd; 2338 if (IS_ERR(name)) 2339 return PTR_ERR(name); 2340 if (unlikely(root)) { 2341 nd.root = *root; 2342 flags |= LOOKUP_ROOT; 2343 } 2344 set_nameidata(&nd, dfd, name); 2345 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path); 2346 if (unlikely(retval == -ECHILD)) 2347 retval = path_lookupat(&nd, flags, path); 2348 if (unlikely(retval == -ESTALE)) 2349 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path); 2350 2351 if (likely(!retval)) 2352 audit_inode(name, path->dentry, flags & LOOKUP_PARENT); 2353 restore_nameidata(); 2354 putname(name); 2355 return retval; 2356 } 2357 2358 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2359 static int path_parentat(struct nameidata *nd, unsigned flags, 2360 struct path *parent) 2361 { 2362 const char *s = path_init(nd, flags); 2363 int err; 2364 if (IS_ERR(s)) 2365 return PTR_ERR(s); 2366 err = link_path_walk(s, nd); 2367 if (!err) 2368 err = complete_walk(nd); 2369 if (!err) { 2370 *parent = nd->path; 2371 nd->path.mnt = NULL; 2372 nd->path.dentry = NULL; 2373 } 2374 terminate_walk(nd); 2375 return err; 2376 } 2377 2378 static struct filename *filename_parentat(int dfd, struct filename *name, 2379 unsigned int flags, struct path *parent, 2380 struct qstr *last, int *type) 2381 { 2382 int retval; 2383 struct nameidata nd; 2384 2385 if (IS_ERR(name)) 2386 return name; 2387 set_nameidata(&nd, dfd, name); 2388 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent); 2389 if (unlikely(retval == -ECHILD)) 2390 retval = path_parentat(&nd, flags, parent); 2391 if (unlikely(retval == -ESTALE)) 2392 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent); 2393 if (likely(!retval)) { 2394 *last = nd.last; 2395 *type = nd.last_type; 2396 audit_inode(name, parent->dentry, LOOKUP_PARENT); 2397 } else { 2398 putname(name); 2399 name = ERR_PTR(retval); 2400 } 2401 restore_nameidata(); 2402 return name; 2403 } 2404 2405 /* does lookup, returns the object with parent locked */ 2406 struct dentry *kern_path_locked(const char *name, struct path *path) 2407 { 2408 struct filename *filename; 2409 struct dentry *d; 2410 struct qstr last; 2411 int type; 2412 2413 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path, 2414 &last, &type); 2415 if (IS_ERR(filename)) 2416 return ERR_CAST(filename); 2417 if (unlikely(type != LAST_NORM)) { 2418 path_put(path); 2419 putname(filename); 2420 return ERR_PTR(-EINVAL); 2421 } 2422 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 2423 d = __lookup_hash(&last, path->dentry, 0); 2424 if (IS_ERR(d)) { 2425 inode_unlock(path->dentry->d_inode); 2426 path_put(path); 2427 } 2428 putname(filename); 2429 return d; 2430 } 2431 2432 int kern_path(const char *name, unsigned int flags, struct path *path) 2433 { 2434 return filename_lookup(AT_FDCWD, getname_kernel(name), 2435 flags, path, NULL); 2436 } 2437 EXPORT_SYMBOL(kern_path); 2438 2439 /** 2440 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2441 * @dentry: pointer to dentry of the base directory 2442 * @mnt: pointer to vfs mount of the base directory 2443 * @name: pointer to file name 2444 * @flags: lookup flags 2445 * @path: pointer to struct path to fill 2446 */ 2447 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2448 const char *name, unsigned int flags, 2449 struct path *path) 2450 { 2451 struct path root = {.mnt = mnt, .dentry = dentry}; 2452 /* the first argument of filename_lookup() is ignored with root */ 2453 return filename_lookup(AT_FDCWD, getname_kernel(name), 2454 flags , path, &root); 2455 } 2456 EXPORT_SYMBOL(vfs_path_lookup); 2457 2458 /** 2459 * lookup_one_len - filesystem helper to lookup single pathname component 2460 * @name: pathname component to lookup 2461 * @base: base directory to lookup from 2462 * @len: maximum length @len should be interpreted to 2463 * 2464 * Note that this routine is purely a helper for filesystem usage and should 2465 * not be called by generic code. 2466 * 2467 * The caller must hold base->i_mutex. 2468 */ 2469 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2470 { 2471 struct qstr this; 2472 unsigned int c; 2473 int err; 2474 2475 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2476 2477 this.name = name; 2478 this.len = len; 2479 this.hash = full_name_hash(base, name, len); 2480 if (!len) 2481 return ERR_PTR(-EACCES); 2482 2483 if (unlikely(name[0] == '.')) { 2484 if (len < 2 || (len == 2 && name[1] == '.')) 2485 return ERR_PTR(-EACCES); 2486 } 2487 2488 while (len--) { 2489 c = *(const unsigned char *)name++; 2490 if (c == '/' || c == '\0') 2491 return ERR_PTR(-EACCES); 2492 } 2493 /* 2494 * See if the low-level filesystem might want 2495 * to use its own hash.. 2496 */ 2497 if (base->d_flags & DCACHE_OP_HASH) { 2498 int err = base->d_op->d_hash(base, &this); 2499 if (err < 0) 2500 return ERR_PTR(err); 2501 } 2502 2503 err = inode_permission(base->d_inode, MAY_EXEC); 2504 if (err) 2505 return ERR_PTR(err); 2506 2507 return __lookup_hash(&this, base, 0); 2508 } 2509 EXPORT_SYMBOL(lookup_one_len); 2510 2511 /** 2512 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component 2513 * @name: pathname component to lookup 2514 * @base: base directory to lookup from 2515 * @len: maximum length @len should be interpreted to 2516 * 2517 * Note that this routine is purely a helper for filesystem usage and should 2518 * not be called by generic code. 2519 * 2520 * Unlike lookup_one_len, it should be called without the parent 2521 * i_mutex held, and will take the i_mutex itself if necessary. 2522 */ 2523 struct dentry *lookup_one_len_unlocked(const char *name, 2524 struct dentry *base, int len) 2525 { 2526 struct qstr this; 2527 unsigned int c; 2528 int err; 2529 struct dentry *ret; 2530 2531 this.name = name; 2532 this.len = len; 2533 this.hash = full_name_hash(base, name, len); 2534 if (!len) 2535 return ERR_PTR(-EACCES); 2536 2537 if (unlikely(name[0] == '.')) { 2538 if (len < 2 || (len == 2 && name[1] == '.')) 2539 return ERR_PTR(-EACCES); 2540 } 2541 2542 while (len--) { 2543 c = *(const unsigned char *)name++; 2544 if (c == '/' || c == '\0') 2545 return ERR_PTR(-EACCES); 2546 } 2547 /* 2548 * See if the low-level filesystem might want 2549 * to use its own hash.. 2550 */ 2551 if (base->d_flags & DCACHE_OP_HASH) { 2552 int err = base->d_op->d_hash(base, &this); 2553 if (err < 0) 2554 return ERR_PTR(err); 2555 } 2556 2557 err = inode_permission(base->d_inode, MAY_EXEC); 2558 if (err) 2559 return ERR_PTR(err); 2560 2561 ret = lookup_dcache(&this, base, 0); 2562 if (!ret) 2563 ret = lookup_slow(&this, base, 0); 2564 return ret; 2565 } 2566 EXPORT_SYMBOL(lookup_one_len_unlocked); 2567 2568 #ifdef CONFIG_UNIX98_PTYS 2569 int path_pts(struct path *path) 2570 { 2571 /* Find something mounted on "pts" in the same directory as 2572 * the input path. 2573 */ 2574 struct dentry *child, *parent; 2575 struct qstr this; 2576 int ret; 2577 2578 ret = path_parent_directory(path); 2579 if (ret) 2580 return ret; 2581 2582 parent = path->dentry; 2583 this.name = "pts"; 2584 this.len = 3; 2585 child = d_hash_and_lookup(parent, &this); 2586 if (!child) 2587 return -ENOENT; 2588 2589 path->dentry = child; 2590 dput(parent); 2591 follow_mount(path); 2592 return 0; 2593 } 2594 #endif 2595 2596 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2597 struct path *path, int *empty) 2598 { 2599 return filename_lookup(dfd, getname_flags(name, flags, empty), 2600 flags, path, NULL); 2601 } 2602 EXPORT_SYMBOL(user_path_at_empty); 2603 2604 /** 2605 * mountpoint_last - look up last component for umount 2606 * @nd: pathwalk nameidata - currently pointing at parent directory of "last" 2607 * 2608 * This is a special lookup_last function just for umount. In this case, we 2609 * need to resolve the path without doing any revalidation. 2610 * 2611 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since 2612 * mountpoints are always pinned in the dcache, their ancestors are too. Thus, 2613 * in almost all cases, this lookup will be served out of the dcache. The only 2614 * cases where it won't are if nd->last refers to a symlink or the path is 2615 * bogus and it doesn't exist. 2616 * 2617 * Returns: 2618 * -error: if there was an error during lookup. This includes -ENOENT if the 2619 * lookup found a negative dentry. 2620 * 2621 * 0: if we successfully resolved nd->last and found it to not to be a 2622 * symlink that needs to be followed. 2623 * 2624 * 1: if we successfully resolved nd->last and found it to be a symlink 2625 * that needs to be followed. 2626 */ 2627 static int 2628 mountpoint_last(struct nameidata *nd) 2629 { 2630 int error = 0; 2631 struct dentry *dir = nd->path.dentry; 2632 struct path path; 2633 2634 /* If we're in rcuwalk, drop out of it to handle last component */ 2635 if (nd->flags & LOOKUP_RCU) { 2636 if (unlazy_walk(nd)) 2637 return -ECHILD; 2638 } 2639 2640 nd->flags &= ~LOOKUP_PARENT; 2641 2642 if (unlikely(nd->last_type != LAST_NORM)) { 2643 error = handle_dots(nd, nd->last_type); 2644 if (error) 2645 return error; 2646 path.dentry = dget(nd->path.dentry); 2647 } else { 2648 path.dentry = d_lookup(dir, &nd->last); 2649 if (!path.dentry) { 2650 /* 2651 * No cached dentry. Mounted dentries are pinned in the 2652 * cache, so that means that this dentry is probably 2653 * a symlink or the path doesn't actually point 2654 * to a mounted dentry. 2655 */ 2656 path.dentry = lookup_slow(&nd->last, dir, 2657 nd->flags | LOOKUP_NO_REVAL); 2658 if (IS_ERR(path.dentry)) 2659 return PTR_ERR(path.dentry); 2660 } 2661 } 2662 if (d_is_negative(path.dentry)) { 2663 dput(path.dentry); 2664 return -ENOENT; 2665 } 2666 path.mnt = nd->path.mnt; 2667 return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0); 2668 } 2669 2670 /** 2671 * path_mountpoint - look up a path to be umounted 2672 * @nd: lookup context 2673 * @flags: lookup flags 2674 * @path: pointer to container for result 2675 * 2676 * Look up the given name, but don't attempt to revalidate the last component. 2677 * Returns 0 and "path" will be valid on success; Returns error otherwise. 2678 */ 2679 static int 2680 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path) 2681 { 2682 const char *s = path_init(nd, flags); 2683 int err; 2684 if (IS_ERR(s)) 2685 return PTR_ERR(s); 2686 while (!(err = link_path_walk(s, nd)) && 2687 (err = mountpoint_last(nd)) > 0) { 2688 s = trailing_symlink(nd); 2689 if (IS_ERR(s)) { 2690 err = PTR_ERR(s); 2691 break; 2692 } 2693 } 2694 if (!err) { 2695 *path = nd->path; 2696 nd->path.mnt = NULL; 2697 nd->path.dentry = NULL; 2698 follow_mount(path); 2699 } 2700 terminate_walk(nd); 2701 return err; 2702 } 2703 2704 static int 2705 filename_mountpoint(int dfd, struct filename *name, struct path *path, 2706 unsigned int flags) 2707 { 2708 struct nameidata nd; 2709 int error; 2710 if (IS_ERR(name)) 2711 return PTR_ERR(name); 2712 set_nameidata(&nd, dfd, name); 2713 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path); 2714 if (unlikely(error == -ECHILD)) 2715 error = path_mountpoint(&nd, flags, path); 2716 if (unlikely(error == -ESTALE)) 2717 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path); 2718 if (likely(!error)) 2719 audit_inode(name, path->dentry, 0); 2720 restore_nameidata(); 2721 putname(name); 2722 return error; 2723 } 2724 2725 /** 2726 * user_path_mountpoint_at - lookup a path from userland in order to umount it 2727 * @dfd: directory file descriptor 2728 * @name: pathname from userland 2729 * @flags: lookup flags 2730 * @path: pointer to container to hold result 2731 * 2732 * A umount is a special case for path walking. We're not actually interested 2733 * in the inode in this situation, and ESTALE errors can be a problem. We 2734 * simply want track down the dentry and vfsmount attached at the mountpoint 2735 * and avoid revalidating the last component. 2736 * 2737 * Returns 0 and populates "path" on success. 2738 */ 2739 int 2740 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags, 2741 struct path *path) 2742 { 2743 return filename_mountpoint(dfd, getname(name), path, flags); 2744 } 2745 2746 int 2747 kern_path_mountpoint(int dfd, const char *name, struct path *path, 2748 unsigned int flags) 2749 { 2750 return filename_mountpoint(dfd, getname_kernel(name), path, flags); 2751 } 2752 EXPORT_SYMBOL(kern_path_mountpoint); 2753 2754 int __check_sticky(struct inode *dir, struct inode *inode) 2755 { 2756 kuid_t fsuid = current_fsuid(); 2757 2758 if (uid_eq(inode->i_uid, fsuid)) 2759 return 0; 2760 if (uid_eq(dir->i_uid, fsuid)) 2761 return 0; 2762 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER); 2763 } 2764 EXPORT_SYMBOL(__check_sticky); 2765 2766 /* 2767 * Check whether we can remove a link victim from directory dir, check 2768 * whether the type of victim is right. 2769 * 1. We can't do it if dir is read-only (done in permission()) 2770 * 2. We should have write and exec permissions on dir 2771 * 3. We can't remove anything from append-only dir 2772 * 4. We can't do anything with immutable dir (done in permission()) 2773 * 5. If the sticky bit on dir is set we should either 2774 * a. be owner of dir, or 2775 * b. be owner of victim, or 2776 * c. have CAP_FOWNER capability 2777 * 6. If the victim is append-only or immutable we can't do antyhing with 2778 * links pointing to it. 2779 * 7. If the victim has an unknown uid or gid we can't change the inode. 2780 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2781 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2782 * 10. We can't remove a root or mountpoint. 2783 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by 2784 * nfs_async_unlink(). 2785 */ 2786 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir) 2787 { 2788 struct inode *inode = d_backing_inode(victim); 2789 int error; 2790 2791 if (d_is_negative(victim)) 2792 return -ENOENT; 2793 BUG_ON(!inode); 2794 2795 BUG_ON(victim->d_parent->d_inode != dir); 2796 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2797 2798 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 2799 if (error) 2800 return error; 2801 if (IS_APPEND(dir)) 2802 return -EPERM; 2803 2804 if (check_sticky(dir, inode) || IS_APPEND(inode) || 2805 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode)) 2806 return -EPERM; 2807 if (isdir) { 2808 if (!d_is_dir(victim)) 2809 return -ENOTDIR; 2810 if (IS_ROOT(victim)) 2811 return -EBUSY; 2812 } else if (d_is_dir(victim)) 2813 return -EISDIR; 2814 if (IS_DEADDIR(dir)) 2815 return -ENOENT; 2816 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2817 return -EBUSY; 2818 return 0; 2819 } 2820 2821 /* Check whether we can create an object with dentry child in directory 2822 * dir. 2823 * 1. We can't do it if child already exists (open has special treatment for 2824 * this case, but since we are inlined it's OK) 2825 * 2. We can't do it if dir is read-only (done in permission()) 2826 * 3. We can't do it if the fs can't represent the fsuid or fsgid. 2827 * 4. We should have write and exec permissions on dir 2828 * 5. We can't do it if dir is immutable (done in permission()) 2829 */ 2830 static inline int may_create(struct inode *dir, struct dentry *child) 2831 { 2832 struct user_namespace *s_user_ns; 2833 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 2834 if (child->d_inode) 2835 return -EEXIST; 2836 if (IS_DEADDIR(dir)) 2837 return -ENOENT; 2838 s_user_ns = dir->i_sb->s_user_ns; 2839 if (!kuid_has_mapping(s_user_ns, current_fsuid()) || 2840 !kgid_has_mapping(s_user_ns, current_fsgid())) 2841 return -EOVERFLOW; 2842 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 2843 } 2844 2845 /* 2846 * p1 and p2 should be directories on the same fs. 2847 */ 2848 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2849 { 2850 struct dentry *p; 2851 2852 if (p1 == p2) { 2853 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2854 return NULL; 2855 } 2856 2857 mutex_lock(&p1->d_sb->s_vfs_rename_mutex); 2858 2859 p = d_ancestor(p2, p1); 2860 if (p) { 2861 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 2862 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD); 2863 return p; 2864 } 2865 2866 p = d_ancestor(p1, p2); 2867 if (p) { 2868 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2869 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD); 2870 return p; 2871 } 2872 2873 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2874 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 2875 return NULL; 2876 } 2877 EXPORT_SYMBOL(lock_rename); 2878 2879 void unlock_rename(struct dentry *p1, struct dentry *p2) 2880 { 2881 inode_unlock(p1->d_inode); 2882 if (p1 != p2) { 2883 inode_unlock(p2->d_inode); 2884 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 2885 } 2886 } 2887 EXPORT_SYMBOL(unlock_rename); 2888 2889 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2890 bool want_excl) 2891 { 2892 int error = may_create(dir, dentry); 2893 if (error) 2894 return error; 2895 2896 if (!dir->i_op->create) 2897 return -EACCES; /* shouldn't it be ENOSYS? */ 2898 mode &= S_IALLUGO; 2899 mode |= S_IFREG; 2900 error = security_inode_create(dir, dentry, mode); 2901 if (error) 2902 return error; 2903 error = dir->i_op->create(dir, dentry, mode, want_excl); 2904 if (!error) 2905 fsnotify_create(dir, dentry); 2906 return error; 2907 } 2908 EXPORT_SYMBOL(vfs_create); 2909 2910 bool may_open_dev(const struct path *path) 2911 { 2912 return !(path->mnt->mnt_flags & MNT_NODEV) && 2913 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV); 2914 } 2915 2916 static int may_open(const struct path *path, int acc_mode, int flag) 2917 { 2918 struct dentry *dentry = path->dentry; 2919 struct inode *inode = dentry->d_inode; 2920 int error; 2921 2922 if (!inode) 2923 return -ENOENT; 2924 2925 switch (inode->i_mode & S_IFMT) { 2926 case S_IFLNK: 2927 return -ELOOP; 2928 case S_IFDIR: 2929 if (acc_mode & MAY_WRITE) 2930 return -EISDIR; 2931 break; 2932 case S_IFBLK: 2933 case S_IFCHR: 2934 if (!may_open_dev(path)) 2935 return -EACCES; 2936 /*FALLTHRU*/ 2937 case S_IFIFO: 2938 case S_IFSOCK: 2939 flag &= ~O_TRUNC; 2940 break; 2941 } 2942 2943 error = inode_permission(inode, MAY_OPEN | acc_mode); 2944 if (error) 2945 return error; 2946 2947 /* 2948 * An append-only file must be opened in append mode for writing. 2949 */ 2950 if (IS_APPEND(inode)) { 2951 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2952 return -EPERM; 2953 if (flag & O_TRUNC) 2954 return -EPERM; 2955 } 2956 2957 /* O_NOATIME can only be set by the owner or superuser */ 2958 if (flag & O_NOATIME && !inode_owner_or_capable(inode)) 2959 return -EPERM; 2960 2961 return 0; 2962 } 2963 2964 static int handle_truncate(struct file *filp) 2965 { 2966 const struct path *path = &filp->f_path; 2967 struct inode *inode = path->dentry->d_inode; 2968 int error = get_write_access(inode); 2969 if (error) 2970 return error; 2971 /* 2972 * Refuse to truncate files with mandatory locks held on them. 2973 */ 2974 error = locks_verify_locked(filp); 2975 if (!error) 2976 error = security_path_truncate(path); 2977 if (!error) { 2978 error = do_truncate(path->dentry, 0, 2979 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 2980 filp); 2981 } 2982 put_write_access(inode); 2983 return error; 2984 } 2985 2986 static inline int open_to_namei_flags(int flag) 2987 { 2988 if ((flag & O_ACCMODE) == 3) 2989 flag--; 2990 return flag; 2991 } 2992 2993 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode) 2994 { 2995 struct user_namespace *s_user_ns; 2996 int error = security_path_mknod(dir, dentry, mode, 0); 2997 if (error) 2998 return error; 2999 3000 s_user_ns = dir->dentry->d_sb->s_user_ns; 3001 if (!kuid_has_mapping(s_user_ns, current_fsuid()) || 3002 !kgid_has_mapping(s_user_ns, current_fsgid())) 3003 return -EOVERFLOW; 3004 3005 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC); 3006 if (error) 3007 return error; 3008 3009 return security_inode_create(dir->dentry->d_inode, dentry, mode); 3010 } 3011 3012 /* 3013 * Attempt to atomically look up, create and open a file from a negative 3014 * dentry. 3015 * 3016 * Returns 0 if successful. The file will have been created and attached to 3017 * @file by the filesystem calling finish_open(). 3018 * 3019 * Returns 1 if the file was looked up only or didn't need creating. The 3020 * caller will need to perform the open themselves. @path will have been 3021 * updated to point to the new dentry. This may be negative. 3022 * 3023 * Returns an error code otherwise. 3024 */ 3025 static int atomic_open(struct nameidata *nd, struct dentry *dentry, 3026 struct path *path, struct file *file, 3027 const struct open_flags *op, 3028 int open_flag, umode_t mode, 3029 int *opened) 3030 { 3031 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 3032 struct inode *dir = nd->path.dentry->d_inode; 3033 int error; 3034 3035 if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */ 3036 open_flag &= ~O_TRUNC; 3037 3038 if (nd->flags & LOOKUP_DIRECTORY) 3039 open_flag |= O_DIRECTORY; 3040 3041 file->f_path.dentry = DENTRY_NOT_SET; 3042 file->f_path.mnt = nd->path.mnt; 3043 error = dir->i_op->atomic_open(dir, dentry, file, 3044 open_to_namei_flags(open_flag), 3045 mode, opened); 3046 d_lookup_done(dentry); 3047 if (!error) { 3048 /* 3049 * We didn't have the inode before the open, so check open 3050 * permission here. 3051 */ 3052 int acc_mode = op->acc_mode; 3053 if (*opened & FILE_CREATED) { 3054 WARN_ON(!(open_flag & O_CREAT)); 3055 fsnotify_create(dir, dentry); 3056 acc_mode = 0; 3057 } 3058 error = may_open(&file->f_path, acc_mode, open_flag); 3059 if (WARN_ON(error > 0)) 3060 error = -EINVAL; 3061 } else if (error > 0) { 3062 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 3063 error = -EIO; 3064 } else { 3065 if (file->f_path.dentry) { 3066 dput(dentry); 3067 dentry = file->f_path.dentry; 3068 } 3069 if (*opened & FILE_CREATED) 3070 fsnotify_create(dir, dentry); 3071 if (unlikely(d_is_negative(dentry))) { 3072 error = -ENOENT; 3073 } else { 3074 path->dentry = dentry; 3075 path->mnt = nd->path.mnt; 3076 return 1; 3077 } 3078 } 3079 } 3080 dput(dentry); 3081 return error; 3082 } 3083 3084 /* 3085 * Look up and maybe create and open the last component. 3086 * 3087 * Must be called with i_mutex held on parent. 3088 * 3089 * Returns 0 if the file was successfully atomically created (if necessary) and 3090 * opened. In this case the file will be returned attached to @file. 3091 * 3092 * Returns 1 if the file was not completely opened at this time, though lookups 3093 * and creations will have been performed and the dentry returned in @path will 3094 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't 3095 * specified then a negative dentry may be returned. 3096 * 3097 * An error code is returned otherwise. 3098 * 3099 * FILE_CREATE will be set in @*opened if the dentry was created and will be 3100 * cleared otherwise prior to returning. 3101 */ 3102 static int lookup_open(struct nameidata *nd, struct path *path, 3103 struct file *file, 3104 const struct open_flags *op, 3105 bool got_write, int *opened) 3106 { 3107 struct dentry *dir = nd->path.dentry; 3108 struct inode *dir_inode = dir->d_inode; 3109 int open_flag = op->open_flag; 3110 struct dentry *dentry; 3111 int error, create_error = 0; 3112 umode_t mode = op->mode; 3113 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 3114 3115 if (unlikely(IS_DEADDIR(dir_inode))) 3116 return -ENOENT; 3117 3118 *opened &= ~FILE_CREATED; 3119 dentry = d_lookup(dir, &nd->last); 3120 for (;;) { 3121 if (!dentry) { 3122 dentry = d_alloc_parallel(dir, &nd->last, &wq); 3123 if (IS_ERR(dentry)) 3124 return PTR_ERR(dentry); 3125 } 3126 if (d_in_lookup(dentry)) 3127 break; 3128 3129 error = d_revalidate(dentry, nd->flags); 3130 if (likely(error > 0)) 3131 break; 3132 if (error) 3133 goto out_dput; 3134 d_invalidate(dentry); 3135 dput(dentry); 3136 dentry = NULL; 3137 } 3138 if (dentry->d_inode) { 3139 /* Cached positive dentry: will open in f_op->open */ 3140 goto out_no_open; 3141 } 3142 3143 /* 3144 * Checking write permission is tricky, bacuse we don't know if we are 3145 * going to actually need it: O_CREAT opens should work as long as the 3146 * file exists. But checking existence breaks atomicity. The trick is 3147 * to check access and if not granted clear O_CREAT from the flags. 3148 * 3149 * Another problem is returing the "right" error value (e.g. for an 3150 * O_EXCL open we want to return EEXIST not EROFS). 3151 */ 3152 if (open_flag & O_CREAT) { 3153 if (!IS_POSIXACL(dir->d_inode)) 3154 mode &= ~current_umask(); 3155 if (unlikely(!got_write)) { 3156 create_error = -EROFS; 3157 open_flag &= ~O_CREAT; 3158 if (open_flag & (O_EXCL | O_TRUNC)) 3159 goto no_open; 3160 /* No side effects, safe to clear O_CREAT */ 3161 } else { 3162 create_error = may_o_create(&nd->path, dentry, mode); 3163 if (create_error) { 3164 open_flag &= ~O_CREAT; 3165 if (open_flag & O_EXCL) 3166 goto no_open; 3167 } 3168 } 3169 } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) && 3170 unlikely(!got_write)) { 3171 /* 3172 * No O_CREATE -> atomicity not a requirement -> fall 3173 * back to lookup + open 3174 */ 3175 goto no_open; 3176 } 3177 3178 if (dir_inode->i_op->atomic_open) { 3179 error = atomic_open(nd, dentry, path, file, op, open_flag, 3180 mode, opened); 3181 if (unlikely(error == -ENOENT) && create_error) 3182 error = create_error; 3183 return error; 3184 } 3185 3186 no_open: 3187 if (d_in_lookup(dentry)) { 3188 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry, 3189 nd->flags); 3190 d_lookup_done(dentry); 3191 if (unlikely(res)) { 3192 if (IS_ERR(res)) { 3193 error = PTR_ERR(res); 3194 goto out_dput; 3195 } 3196 dput(dentry); 3197 dentry = res; 3198 } 3199 } 3200 3201 /* Negative dentry, just create the file */ 3202 if (!dentry->d_inode && (open_flag & O_CREAT)) { 3203 *opened |= FILE_CREATED; 3204 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE); 3205 if (!dir_inode->i_op->create) { 3206 error = -EACCES; 3207 goto out_dput; 3208 } 3209 error = dir_inode->i_op->create(dir_inode, dentry, mode, 3210 open_flag & O_EXCL); 3211 if (error) 3212 goto out_dput; 3213 fsnotify_create(dir_inode, dentry); 3214 } 3215 if (unlikely(create_error) && !dentry->d_inode) { 3216 error = create_error; 3217 goto out_dput; 3218 } 3219 out_no_open: 3220 path->dentry = dentry; 3221 path->mnt = nd->path.mnt; 3222 return 1; 3223 3224 out_dput: 3225 dput(dentry); 3226 return error; 3227 } 3228 3229 /* 3230 * Handle the last step of open() 3231 */ 3232 static int do_last(struct nameidata *nd, 3233 struct file *file, const struct open_flags *op, 3234 int *opened) 3235 { 3236 struct dentry *dir = nd->path.dentry; 3237 int open_flag = op->open_flag; 3238 bool will_truncate = (open_flag & O_TRUNC) != 0; 3239 bool got_write = false; 3240 int acc_mode = op->acc_mode; 3241 unsigned seq; 3242 struct inode *inode; 3243 struct path path; 3244 int error; 3245 3246 nd->flags &= ~LOOKUP_PARENT; 3247 nd->flags |= op->intent; 3248 3249 if (nd->last_type != LAST_NORM) { 3250 error = handle_dots(nd, nd->last_type); 3251 if (unlikely(error)) 3252 return error; 3253 goto finish_open; 3254 } 3255 3256 if (!(open_flag & O_CREAT)) { 3257 if (nd->last.name[nd->last.len]) 3258 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 3259 /* we _can_ be in RCU mode here */ 3260 error = lookup_fast(nd, &path, &inode, &seq); 3261 if (likely(error > 0)) 3262 goto finish_lookup; 3263 3264 if (error < 0) 3265 return error; 3266 3267 BUG_ON(nd->inode != dir->d_inode); 3268 BUG_ON(nd->flags & LOOKUP_RCU); 3269 } else { 3270 /* create side of things */ 3271 /* 3272 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED 3273 * has been cleared when we got to the last component we are 3274 * about to look up 3275 */ 3276 error = complete_walk(nd); 3277 if (error) 3278 return error; 3279 3280 audit_inode(nd->name, dir, LOOKUP_PARENT); 3281 /* trailing slashes? */ 3282 if (unlikely(nd->last.name[nd->last.len])) 3283 return -EISDIR; 3284 } 3285 3286 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 3287 error = mnt_want_write(nd->path.mnt); 3288 if (!error) 3289 got_write = true; 3290 /* 3291 * do _not_ fail yet - we might not need that or fail with 3292 * a different error; let lookup_open() decide; we'll be 3293 * dropping this one anyway. 3294 */ 3295 } 3296 if (open_flag & O_CREAT) 3297 inode_lock(dir->d_inode); 3298 else 3299 inode_lock_shared(dir->d_inode); 3300 error = lookup_open(nd, &path, file, op, got_write, opened); 3301 if (open_flag & O_CREAT) 3302 inode_unlock(dir->d_inode); 3303 else 3304 inode_unlock_shared(dir->d_inode); 3305 3306 if (error <= 0) { 3307 if (error) 3308 goto out; 3309 3310 if ((*opened & FILE_CREATED) || 3311 !S_ISREG(file_inode(file)->i_mode)) 3312 will_truncate = false; 3313 3314 audit_inode(nd->name, file->f_path.dentry, 0); 3315 goto opened; 3316 } 3317 3318 if (*opened & FILE_CREATED) { 3319 /* Don't check for write permission, don't truncate */ 3320 open_flag &= ~O_TRUNC; 3321 will_truncate = false; 3322 acc_mode = 0; 3323 path_to_nameidata(&path, nd); 3324 goto finish_open_created; 3325 } 3326 3327 /* 3328 * If atomic_open() acquired write access it is dropped now due to 3329 * possible mount and symlink following (this might be optimized away if 3330 * necessary...) 3331 */ 3332 if (got_write) { 3333 mnt_drop_write(nd->path.mnt); 3334 got_write = false; 3335 } 3336 3337 error = follow_managed(&path, nd); 3338 if (unlikely(error < 0)) 3339 return error; 3340 3341 if (unlikely(d_is_negative(path.dentry))) { 3342 path_to_nameidata(&path, nd); 3343 return -ENOENT; 3344 } 3345 3346 /* 3347 * create/update audit record if it already exists. 3348 */ 3349 audit_inode(nd->name, path.dentry, 0); 3350 3351 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) { 3352 path_to_nameidata(&path, nd); 3353 return -EEXIST; 3354 } 3355 3356 seq = 0; /* out of RCU mode, so the value doesn't matter */ 3357 inode = d_backing_inode(path.dentry); 3358 finish_lookup: 3359 error = step_into(nd, &path, 0, inode, seq); 3360 if (unlikely(error)) 3361 return error; 3362 finish_open: 3363 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */ 3364 error = complete_walk(nd); 3365 if (error) 3366 return error; 3367 audit_inode(nd->name, nd->path.dentry, 0); 3368 error = -EISDIR; 3369 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry)) 3370 goto out; 3371 error = -ENOTDIR; 3372 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3373 goto out; 3374 if (!d_is_reg(nd->path.dentry)) 3375 will_truncate = false; 3376 3377 if (will_truncate) { 3378 error = mnt_want_write(nd->path.mnt); 3379 if (error) 3380 goto out; 3381 got_write = true; 3382 } 3383 finish_open_created: 3384 error = may_open(&nd->path, acc_mode, open_flag); 3385 if (error) 3386 goto out; 3387 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */ 3388 error = vfs_open(&nd->path, file, current_cred()); 3389 if (error) 3390 goto out; 3391 *opened |= FILE_OPENED; 3392 opened: 3393 error = open_check_o_direct(file); 3394 if (!error) 3395 error = ima_file_check(file, op->acc_mode, *opened); 3396 if (!error && will_truncate) 3397 error = handle_truncate(file); 3398 out: 3399 if (unlikely(error) && (*opened & FILE_OPENED)) 3400 fput(file); 3401 if (unlikely(error > 0)) { 3402 WARN_ON(1); 3403 error = -EINVAL; 3404 } 3405 if (got_write) 3406 mnt_drop_write(nd->path.mnt); 3407 return error; 3408 } 3409 3410 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag) 3411 { 3412 struct dentry *child = NULL; 3413 struct inode *dir = dentry->d_inode; 3414 struct inode *inode; 3415 int error; 3416 3417 /* we want directory to be writable */ 3418 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 3419 if (error) 3420 goto out_err; 3421 error = -EOPNOTSUPP; 3422 if (!dir->i_op->tmpfile) 3423 goto out_err; 3424 error = -ENOMEM; 3425 child = d_alloc(dentry, &slash_name); 3426 if (unlikely(!child)) 3427 goto out_err; 3428 error = dir->i_op->tmpfile(dir, child, mode); 3429 if (error) 3430 goto out_err; 3431 error = -ENOENT; 3432 inode = child->d_inode; 3433 if (unlikely(!inode)) 3434 goto out_err; 3435 if (!(open_flag & O_EXCL)) { 3436 spin_lock(&inode->i_lock); 3437 inode->i_state |= I_LINKABLE; 3438 spin_unlock(&inode->i_lock); 3439 } 3440 return child; 3441 3442 out_err: 3443 dput(child); 3444 return ERR_PTR(error); 3445 } 3446 EXPORT_SYMBOL(vfs_tmpfile); 3447 3448 static int do_tmpfile(struct nameidata *nd, unsigned flags, 3449 const struct open_flags *op, 3450 struct file *file, int *opened) 3451 { 3452 struct dentry *child; 3453 struct path path; 3454 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path); 3455 if (unlikely(error)) 3456 return error; 3457 error = mnt_want_write(path.mnt); 3458 if (unlikely(error)) 3459 goto out; 3460 child = vfs_tmpfile(path.dentry, op->mode, op->open_flag); 3461 error = PTR_ERR(child); 3462 if (unlikely(IS_ERR(child))) 3463 goto out2; 3464 dput(path.dentry); 3465 path.dentry = child; 3466 audit_inode(nd->name, child, 0); 3467 /* Don't check for other permissions, the inode was just created */ 3468 error = may_open(&path, 0, op->open_flag); 3469 if (error) 3470 goto out2; 3471 file->f_path.mnt = path.mnt; 3472 error = finish_open(file, child, NULL, opened); 3473 if (error) 3474 goto out2; 3475 error = open_check_o_direct(file); 3476 if (error) 3477 fput(file); 3478 out2: 3479 mnt_drop_write(path.mnt); 3480 out: 3481 path_put(&path); 3482 return error; 3483 } 3484 3485 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file) 3486 { 3487 struct path path; 3488 int error = path_lookupat(nd, flags, &path); 3489 if (!error) { 3490 audit_inode(nd->name, path.dentry, 0); 3491 error = vfs_open(&path, file, current_cred()); 3492 path_put(&path); 3493 } 3494 return error; 3495 } 3496 3497 static struct file *path_openat(struct nameidata *nd, 3498 const struct open_flags *op, unsigned flags) 3499 { 3500 const char *s; 3501 struct file *file; 3502 int opened = 0; 3503 int error; 3504 3505 file = get_empty_filp(); 3506 if (IS_ERR(file)) 3507 return file; 3508 3509 file->f_flags = op->open_flag; 3510 3511 if (unlikely(file->f_flags & __O_TMPFILE)) { 3512 error = do_tmpfile(nd, flags, op, file, &opened); 3513 goto out2; 3514 } 3515 3516 if (unlikely(file->f_flags & O_PATH)) { 3517 error = do_o_path(nd, flags, file); 3518 if (!error) 3519 opened |= FILE_OPENED; 3520 goto out2; 3521 } 3522 3523 s = path_init(nd, flags); 3524 if (IS_ERR(s)) { 3525 put_filp(file); 3526 return ERR_CAST(s); 3527 } 3528 while (!(error = link_path_walk(s, nd)) && 3529 (error = do_last(nd, file, op, &opened)) > 0) { 3530 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3531 s = trailing_symlink(nd); 3532 if (IS_ERR(s)) { 3533 error = PTR_ERR(s); 3534 break; 3535 } 3536 } 3537 terminate_walk(nd); 3538 out2: 3539 if (!(opened & FILE_OPENED)) { 3540 BUG_ON(!error); 3541 put_filp(file); 3542 } 3543 if (unlikely(error)) { 3544 if (error == -EOPENSTALE) { 3545 if (flags & LOOKUP_RCU) 3546 error = -ECHILD; 3547 else 3548 error = -ESTALE; 3549 } 3550 file = ERR_PTR(error); 3551 } 3552 return file; 3553 } 3554 3555 struct file *do_filp_open(int dfd, struct filename *pathname, 3556 const struct open_flags *op) 3557 { 3558 struct nameidata nd; 3559 int flags = op->lookup_flags; 3560 struct file *filp; 3561 3562 set_nameidata(&nd, dfd, pathname); 3563 filp = path_openat(&nd, op, flags | LOOKUP_RCU); 3564 if (unlikely(filp == ERR_PTR(-ECHILD))) 3565 filp = path_openat(&nd, op, flags); 3566 if (unlikely(filp == ERR_PTR(-ESTALE))) 3567 filp = path_openat(&nd, op, flags | LOOKUP_REVAL); 3568 restore_nameidata(); 3569 return filp; 3570 } 3571 3572 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 3573 const char *name, const struct open_flags *op) 3574 { 3575 struct nameidata nd; 3576 struct file *file; 3577 struct filename *filename; 3578 int flags = op->lookup_flags | LOOKUP_ROOT; 3579 3580 nd.root.mnt = mnt; 3581 nd.root.dentry = dentry; 3582 3583 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN) 3584 return ERR_PTR(-ELOOP); 3585 3586 filename = getname_kernel(name); 3587 if (IS_ERR(filename)) 3588 return ERR_CAST(filename); 3589 3590 set_nameidata(&nd, -1, filename); 3591 file = path_openat(&nd, op, flags | LOOKUP_RCU); 3592 if (unlikely(file == ERR_PTR(-ECHILD))) 3593 file = path_openat(&nd, op, flags); 3594 if (unlikely(file == ERR_PTR(-ESTALE))) 3595 file = path_openat(&nd, op, flags | LOOKUP_REVAL); 3596 restore_nameidata(); 3597 putname(filename); 3598 return file; 3599 } 3600 3601 static struct dentry *filename_create(int dfd, struct filename *name, 3602 struct path *path, unsigned int lookup_flags) 3603 { 3604 struct dentry *dentry = ERR_PTR(-EEXIST); 3605 struct qstr last; 3606 int type; 3607 int err2; 3608 int error; 3609 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY); 3610 3611 /* 3612 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any 3613 * other flags passed in are ignored! 3614 */ 3615 lookup_flags &= LOOKUP_REVAL; 3616 3617 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type); 3618 if (IS_ERR(name)) 3619 return ERR_CAST(name); 3620 3621 /* 3622 * Yucky last component or no last component at all? 3623 * (foo/., foo/.., /////) 3624 */ 3625 if (unlikely(type != LAST_NORM)) 3626 goto out; 3627 3628 /* don't fail immediately if it's r/o, at least try to report other errors */ 3629 err2 = mnt_want_write(path->mnt); 3630 /* 3631 * Do the final lookup. 3632 */ 3633 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL; 3634 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 3635 dentry = __lookup_hash(&last, path->dentry, lookup_flags); 3636 if (IS_ERR(dentry)) 3637 goto unlock; 3638 3639 error = -EEXIST; 3640 if (d_is_positive(dentry)) 3641 goto fail; 3642 3643 /* 3644 * Special case - lookup gave negative, but... we had foo/bar/ 3645 * From the vfs_mknod() POV we just have a negative dentry - 3646 * all is fine. Let's be bastards - you had / on the end, you've 3647 * been asking for (non-existent) directory. -ENOENT for you. 3648 */ 3649 if (unlikely(!is_dir && last.name[last.len])) { 3650 error = -ENOENT; 3651 goto fail; 3652 } 3653 if (unlikely(err2)) { 3654 error = err2; 3655 goto fail; 3656 } 3657 putname(name); 3658 return dentry; 3659 fail: 3660 dput(dentry); 3661 dentry = ERR_PTR(error); 3662 unlock: 3663 inode_unlock(path->dentry->d_inode); 3664 if (!err2) 3665 mnt_drop_write(path->mnt); 3666 out: 3667 path_put(path); 3668 putname(name); 3669 return dentry; 3670 } 3671 3672 struct dentry *kern_path_create(int dfd, const char *pathname, 3673 struct path *path, unsigned int lookup_flags) 3674 { 3675 return filename_create(dfd, getname_kernel(pathname), 3676 path, lookup_flags); 3677 } 3678 EXPORT_SYMBOL(kern_path_create); 3679 3680 void done_path_create(struct path *path, struct dentry *dentry) 3681 { 3682 dput(dentry); 3683 inode_unlock(path->dentry->d_inode); 3684 mnt_drop_write(path->mnt); 3685 path_put(path); 3686 } 3687 EXPORT_SYMBOL(done_path_create); 3688 3689 inline struct dentry *user_path_create(int dfd, const char __user *pathname, 3690 struct path *path, unsigned int lookup_flags) 3691 { 3692 return filename_create(dfd, getname(pathname), path, lookup_flags); 3693 } 3694 EXPORT_SYMBOL(user_path_create); 3695 3696 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 3697 { 3698 int error = may_create(dir, dentry); 3699 3700 if (error) 3701 return error; 3702 3703 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 3704 return -EPERM; 3705 3706 if (!dir->i_op->mknod) 3707 return -EPERM; 3708 3709 error = devcgroup_inode_mknod(mode, dev); 3710 if (error) 3711 return error; 3712 3713 error = security_inode_mknod(dir, dentry, mode, dev); 3714 if (error) 3715 return error; 3716 3717 error = dir->i_op->mknod(dir, dentry, mode, dev); 3718 if (!error) 3719 fsnotify_create(dir, dentry); 3720 return error; 3721 } 3722 EXPORT_SYMBOL(vfs_mknod); 3723 3724 static int may_mknod(umode_t mode) 3725 { 3726 switch (mode & S_IFMT) { 3727 case S_IFREG: 3728 case S_IFCHR: 3729 case S_IFBLK: 3730 case S_IFIFO: 3731 case S_IFSOCK: 3732 case 0: /* zero mode translates to S_IFREG */ 3733 return 0; 3734 case S_IFDIR: 3735 return -EPERM; 3736 default: 3737 return -EINVAL; 3738 } 3739 } 3740 3741 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3742 unsigned, dev) 3743 { 3744 struct dentry *dentry; 3745 struct path path; 3746 int error; 3747 unsigned int lookup_flags = 0; 3748 3749 error = may_mknod(mode); 3750 if (error) 3751 return error; 3752 retry: 3753 dentry = user_path_create(dfd, filename, &path, lookup_flags); 3754 if (IS_ERR(dentry)) 3755 return PTR_ERR(dentry); 3756 3757 if (!IS_POSIXACL(path.dentry->d_inode)) 3758 mode &= ~current_umask(); 3759 error = security_path_mknod(&path, dentry, mode, dev); 3760 if (error) 3761 goto out; 3762 switch (mode & S_IFMT) { 3763 case 0: case S_IFREG: 3764 error = vfs_create(path.dentry->d_inode,dentry,mode,true); 3765 if (!error) 3766 ima_post_path_mknod(dentry); 3767 break; 3768 case S_IFCHR: case S_IFBLK: 3769 error = vfs_mknod(path.dentry->d_inode,dentry,mode, 3770 new_decode_dev(dev)); 3771 break; 3772 case S_IFIFO: case S_IFSOCK: 3773 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0); 3774 break; 3775 } 3776 out: 3777 done_path_create(&path, dentry); 3778 if (retry_estale(error, lookup_flags)) { 3779 lookup_flags |= LOOKUP_REVAL; 3780 goto retry; 3781 } 3782 return error; 3783 } 3784 3785 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3786 { 3787 return sys_mknodat(AT_FDCWD, filename, mode, dev); 3788 } 3789 3790 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 3791 { 3792 int error = may_create(dir, dentry); 3793 unsigned max_links = dir->i_sb->s_max_links; 3794 3795 if (error) 3796 return error; 3797 3798 if (!dir->i_op->mkdir) 3799 return -EPERM; 3800 3801 mode &= (S_IRWXUGO|S_ISVTX); 3802 error = security_inode_mkdir(dir, dentry, mode); 3803 if (error) 3804 return error; 3805 3806 if (max_links && dir->i_nlink >= max_links) 3807 return -EMLINK; 3808 3809 error = dir->i_op->mkdir(dir, dentry, mode); 3810 if (!error) 3811 fsnotify_mkdir(dir, dentry); 3812 return error; 3813 } 3814 EXPORT_SYMBOL(vfs_mkdir); 3815 3816 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 3817 { 3818 struct dentry *dentry; 3819 struct path path; 3820 int error; 3821 unsigned int lookup_flags = LOOKUP_DIRECTORY; 3822 3823 retry: 3824 dentry = user_path_create(dfd, pathname, &path, lookup_flags); 3825 if (IS_ERR(dentry)) 3826 return PTR_ERR(dentry); 3827 3828 if (!IS_POSIXACL(path.dentry->d_inode)) 3829 mode &= ~current_umask(); 3830 error = security_path_mkdir(&path, dentry, mode); 3831 if (!error) 3832 error = vfs_mkdir(path.dentry->d_inode, dentry, mode); 3833 done_path_create(&path, dentry); 3834 if (retry_estale(error, lookup_flags)) { 3835 lookup_flags |= LOOKUP_REVAL; 3836 goto retry; 3837 } 3838 return error; 3839 } 3840 3841 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 3842 { 3843 return sys_mkdirat(AT_FDCWD, pathname, mode); 3844 } 3845 3846 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 3847 { 3848 int error = may_delete(dir, dentry, 1); 3849 3850 if (error) 3851 return error; 3852 3853 if (!dir->i_op->rmdir) 3854 return -EPERM; 3855 3856 dget(dentry); 3857 inode_lock(dentry->d_inode); 3858 3859 error = -EBUSY; 3860 if (is_local_mountpoint(dentry)) 3861 goto out; 3862 3863 error = security_inode_rmdir(dir, dentry); 3864 if (error) 3865 goto out; 3866 3867 shrink_dcache_parent(dentry); 3868 error = dir->i_op->rmdir(dir, dentry); 3869 if (error) 3870 goto out; 3871 3872 dentry->d_inode->i_flags |= S_DEAD; 3873 dont_mount(dentry); 3874 detach_mounts(dentry); 3875 3876 out: 3877 inode_unlock(dentry->d_inode); 3878 dput(dentry); 3879 if (!error) 3880 d_delete(dentry); 3881 return error; 3882 } 3883 EXPORT_SYMBOL(vfs_rmdir); 3884 3885 static long do_rmdir(int dfd, const char __user *pathname) 3886 { 3887 int error = 0; 3888 struct filename *name; 3889 struct dentry *dentry; 3890 struct path path; 3891 struct qstr last; 3892 int type; 3893 unsigned int lookup_flags = 0; 3894 retry: 3895 name = filename_parentat(dfd, getname(pathname), lookup_flags, 3896 &path, &last, &type); 3897 if (IS_ERR(name)) 3898 return PTR_ERR(name); 3899 3900 switch (type) { 3901 case LAST_DOTDOT: 3902 error = -ENOTEMPTY; 3903 goto exit1; 3904 case LAST_DOT: 3905 error = -EINVAL; 3906 goto exit1; 3907 case LAST_ROOT: 3908 error = -EBUSY; 3909 goto exit1; 3910 } 3911 3912 error = mnt_want_write(path.mnt); 3913 if (error) 3914 goto exit1; 3915 3916 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 3917 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 3918 error = PTR_ERR(dentry); 3919 if (IS_ERR(dentry)) 3920 goto exit2; 3921 if (!dentry->d_inode) { 3922 error = -ENOENT; 3923 goto exit3; 3924 } 3925 error = security_path_rmdir(&path, dentry); 3926 if (error) 3927 goto exit3; 3928 error = vfs_rmdir(path.dentry->d_inode, dentry); 3929 exit3: 3930 dput(dentry); 3931 exit2: 3932 inode_unlock(path.dentry->d_inode); 3933 mnt_drop_write(path.mnt); 3934 exit1: 3935 path_put(&path); 3936 putname(name); 3937 if (retry_estale(error, lookup_flags)) { 3938 lookup_flags |= LOOKUP_REVAL; 3939 goto retry; 3940 } 3941 return error; 3942 } 3943 3944 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 3945 { 3946 return do_rmdir(AT_FDCWD, pathname); 3947 } 3948 3949 /** 3950 * vfs_unlink - unlink a filesystem object 3951 * @dir: parent directory 3952 * @dentry: victim 3953 * @delegated_inode: returns victim inode, if the inode is delegated. 3954 * 3955 * The caller must hold dir->i_mutex. 3956 * 3957 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 3958 * return a reference to the inode in delegated_inode. The caller 3959 * should then break the delegation on that inode and retry. Because 3960 * breaking a delegation may take a long time, the caller should drop 3961 * dir->i_mutex before doing so. 3962 * 3963 * Alternatively, a caller may pass NULL for delegated_inode. This may 3964 * be appropriate for callers that expect the underlying filesystem not 3965 * to be NFS exported. 3966 */ 3967 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode) 3968 { 3969 struct inode *target = dentry->d_inode; 3970 int error = may_delete(dir, dentry, 0); 3971 3972 if (error) 3973 return error; 3974 3975 if (!dir->i_op->unlink) 3976 return -EPERM; 3977 3978 inode_lock(target); 3979 if (is_local_mountpoint(dentry)) 3980 error = -EBUSY; 3981 else { 3982 error = security_inode_unlink(dir, dentry); 3983 if (!error) { 3984 error = try_break_deleg(target, delegated_inode); 3985 if (error) 3986 goto out; 3987 error = dir->i_op->unlink(dir, dentry); 3988 if (!error) { 3989 dont_mount(dentry); 3990 detach_mounts(dentry); 3991 } 3992 } 3993 } 3994 out: 3995 inode_unlock(target); 3996 3997 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 3998 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 3999 fsnotify_link_count(target); 4000 d_delete(dentry); 4001 } 4002 4003 return error; 4004 } 4005 EXPORT_SYMBOL(vfs_unlink); 4006 4007 /* 4008 * Make sure that the actual truncation of the file will occur outside its 4009 * directory's i_mutex. Truncate can take a long time if there is a lot of 4010 * writeout happening, and we don't want to prevent access to the directory 4011 * while waiting on the I/O. 4012 */ 4013 static long do_unlinkat(int dfd, const char __user *pathname) 4014 { 4015 int error; 4016 struct filename *name; 4017 struct dentry *dentry; 4018 struct path path; 4019 struct qstr last; 4020 int type; 4021 struct inode *inode = NULL; 4022 struct inode *delegated_inode = NULL; 4023 unsigned int lookup_flags = 0; 4024 retry: 4025 name = filename_parentat(dfd, getname(pathname), lookup_flags, 4026 &path, &last, &type); 4027 if (IS_ERR(name)) 4028 return PTR_ERR(name); 4029 4030 error = -EISDIR; 4031 if (type != LAST_NORM) 4032 goto exit1; 4033 4034 error = mnt_want_write(path.mnt); 4035 if (error) 4036 goto exit1; 4037 retry_deleg: 4038 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4039 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 4040 error = PTR_ERR(dentry); 4041 if (!IS_ERR(dentry)) { 4042 /* Why not before? Because we want correct error value */ 4043 if (last.name[last.len]) 4044 goto slashes; 4045 inode = dentry->d_inode; 4046 if (d_is_negative(dentry)) 4047 goto slashes; 4048 ihold(inode); 4049 error = security_path_unlink(&path, dentry); 4050 if (error) 4051 goto exit2; 4052 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode); 4053 exit2: 4054 dput(dentry); 4055 } 4056 inode_unlock(path.dentry->d_inode); 4057 if (inode) 4058 iput(inode); /* truncate the inode here */ 4059 inode = NULL; 4060 if (delegated_inode) { 4061 error = break_deleg_wait(&delegated_inode); 4062 if (!error) 4063 goto retry_deleg; 4064 } 4065 mnt_drop_write(path.mnt); 4066 exit1: 4067 path_put(&path); 4068 putname(name); 4069 if (retry_estale(error, lookup_flags)) { 4070 lookup_flags |= LOOKUP_REVAL; 4071 inode = NULL; 4072 goto retry; 4073 } 4074 return error; 4075 4076 slashes: 4077 if (d_is_negative(dentry)) 4078 error = -ENOENT; 4079 else if (d_is_dir(dentry)) 4080 error = -EISDIR; 4081 else 4082 error = -ENOTDIR; 4083 goto exit2; 4084 } 4085 4086 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 4087 { 4088 if ((flag & ~AT_REMOVEDIR) != 0) 4089 return -EINVAL; 4090 4091 if (flag & AT_REMOVEDIR) 4092 return do_rmdir(dfd, pathname); 4093 4094 return do_unlinkat(dfd, pathname); 4095 } 4096 4097 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 4098 { 4099 return do_unlinkat(AT_FDCWD, pathname); 4100 } 4101 4102 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 4103 { 4104 int error = may_create(dir, dentry); 4105 4106 if (error) 4107 return error; 4108 4109 if (!dir->i_op->symlink) 4110 return -EPERM; 4111 4112 error = security_inode_symlink(dir, dentry, oldname); 4113 if (error) 4114 return error; 4115 4116 error = dir->i_op->symlink(dir, dentry, oldname); 4117 if (!error) 4118 fsnotify_create(dir, dentry); 4119 return error; 4120 } 4121 EXPORT_SYMBOL(vfs_symlink); 4122 4123 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 4124 int, newdfd, const char __user *, newname) 4125 { 4126 int error; 4127 struct filename *from; 4128 struct dentry *dentry; 4129 struct path path; 4130 unsigned int lookup_flags = 0; 4131 4132 from = getname(oldname); 4133 if (IS_ERR(from)) 4134 return PTR_ERR(from); 4135 retry: 4136 dentry = user_path_create(newdfd, newname, &path, lookup_flags); 4137 error = PTR_ERR(dentry); 4138 if (IS_ERR(dentry)) 4139 goto out_putname; 4140 4141 error = security_path_symlink(&path, dentry, from->name); 4142 if (!error) 4143 error = vfs_symlink(path.dentry->d_inode, dentry, from->name); 4144 done_path_create(&path, dentry); 4145 if (retry_estale(error, lookup_flags)) { 4146 lookup_flags |= LOOKUP_REVAL; 4147 goto retry; 4148 } 4149 out_putname: 4150 putname(from); 4151 return error; 4152 } 4153 4154 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 4155 { 4156 return sys_symlinkat(oldname, AT_FDCWD, newname); 4157 } 4158 4159 /** 4160 * vfs_link - create a new link 4161 * @old_dentry: object to be linked 4162 * @dir: new parent 4163 * @new_dentry: where to create the new link 4164 * @delegated_inode: returns inode needing a delegation break 4165 * 4166 * The caller must hold dir->i_mutex 4167 * 4168 * If vfs_link discovers a delegation on the to-be-linked file in need 4169 * of breaking, it will return -EWOULDBLOCK and return a reference to the 4170 * inode in delegated_inode. The caller should then break the delegation 4171 * and retry. Because breaking a delegation may take a long time, the 4172 * caller should drop the i_mutex before doing so. 4173 * 4174 * Alternatively, a caller may pass NULL for delegated_inode. This may 4175 * be appropriate for callers that expect the underlying filesystem not 4176 * to be NFS exported. 4177 */ 4178 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode) 4179 { 4180 struct inode *inode = old_dentry->d_inode; 4181 unsigned max_links = dir->i_sb->s_max_links; 4182 int error; 4183 4184 if (!inode) 4185 return -ENOENT; 4186 4187 error = may_create(dir, new_dentry); 4188 if (error) 4189 return error; 4190 4191 if (dir->i_sb != inode->i_sb) 4192 return -EXDEV; 4193 4194 /* 4195 * A link to an append-only or immutable file cannot be created. 4196 */ 4197 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4198 return -EPERM; 4199 /* 4200 * Updating the link count will likely cause i_uid and i_gid to 4201 * be writen back improperly if their true value is unknown to 4202 * the vfs. 4203 */ 4204 if (HAS_UNMAPPED_ID(inode)) 4205 return -EPERM; 4206 if (!dir->i_op->link) 4207 return -EPERM; 4208 if (S_ISDIR(inode->i_mode)) 4209 return -EPERM; 4210 4211 error = security_inode_link(old_dentry, dir, new_dentry); 4212 if (error) 4213 return error; 4214 4215 inode_lock(inode); 4216 /* Make sure we don't allow creating hardlink to an unlinked file */ 4217 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 4218 error = -ENOENT; 4219 else if (max_links && inode->i_nlink >= max_links) 4220 error = -EMLINK; 4221 else { 4222 error = try_break_deleg(inode, delegated_inode); 4223 if (!error) 4224 error = dir->i_op->link(old_dentry, dir, new_dentry); 4225 } 4226 4227 if (!error && (inode->i_state & I_LINKABLE)) { 4228 spin_lock(&inode->i_lock); 4229 inode->i_state &= ~I_LINKABLE; 4230 spin_unlock(&inode->i_lock); 4231 } 4232 inode_unlock(inode); 4233 if (!error) 4234 fsnotify_link(dir, inode, new_dentry); 4235 return error; 4236 } 4237 EXPORT_SYMBOL(vfs_link); 4238 4239 /* 4240 * Hardlinks are often used in delicate situations. We avoid 4241 * security-related surprises by not following symlinks on the 4242 * newname. --KAB 4243 * 4244 * We don't follow them on the oldname either to be compatible 4245 * with linux 2.0, and to avoid hard-linking to directories 4246 * and other special files. --ADM 4247 */ 4248 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 4249 int, newdfd, const char __user *, newname, int, flags) 4250 { 4251 struct dentry *new_dentry; 4252 struct path old_path, new_path; 4253 struct inode *delegated_inode = NULL; 4254 int how = 0; 4255 int error; 4256 4257 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 4258 return -EINVAL; 4259 /* 4260 * To use null names we require CAP_DAC_READ_SEARCH 4261 * This ensures that not everyone will be able to create 4262 * handlink using the passed filedescriptor. 4263 */ 4264 if (flags & AT_EMPTY_PATH) { 4265 if (!capable(CAP_DAC_READ_SEARCH)) 4266 return -ENOENT; 4267 how = LOOKUP_EMPTY; 4268 } 4269 4270 if (flags & AT_SYMLINK_FOLLOW) 4271 how |= LOOKUP_FOLLOW; 4272 retry: 4273 error = user_path_at(olddfd, oldname, how, &old_path); 4274 if (error) 4275 return error; 4276 4277 new_dentry = user_path_create(newdfd, newname, &new_path, 4278 (how & LOOKUP_REVAL)); 4279 error = PTR_ERR(new_dentry); 4280 if (IS_ERR(new_dentry)) 4281 goto out; 4282 4283 error = -EXDEV; 4284 if (old_path.mnt != new_path.mnt) 4285 goto out_dput; 4286 error = may_linkat(&old_path); 4287 if (unlikely(error)) 4288 goto out_dput; 4289 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4290 if (error) 4291 goto out_dput; 4292 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode); 4293 out_dput: 4294 done_path_create(&new_path, new_dentry); 4295 if (delegated_inode) { 4296 error = break_deleg_wait(&delegated_inode); 4297 if (!error) { 4298 path_put(&old_path); 4299 goto retry; 4300 } 4301 } 4302 if (retry_estale(error, how)) { 4303 path_put(&old_path); 4304 how |= LOOKUP_REVAL; 4305 goto retry; 4306 } 4307 out: 4308 path_put(&old_path); 4309 4310 return error; 4311 } 4312 4313 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4314 { 4315 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4316 } 4317 4318 /** 4319 * vfs_rename - rename a filesystem object 4320 * @old_dir: parent of source 4321 * @old_dentry: source 4322 * @new_dir: parent of destination 4323 * @new_dentry: destination 4324 * @delegated_inode: returns an inode needing a delegation break 4325 * @flags: rename flags 4326 * 4327 * The caller must hold multiple mutexes--see lock_rename()). 4328 * 4329 * If vfs_rename discovers a delegation in need of breaking at either 4330 * the source or destination, it will return -EWOULDBLOCK and return a 4331 * reference to the inode in delegated_inode. The caller should then 4332 * break the delegation and retry. Because breaking a delegation may 4333 * take a long time, the caller should drop all locks before doing 4334 * so. 4335 * 4336 * Alternatively, a caller may pass NULL for delegated_inode. This may 4337 * be appropriate for callers that expect the underlying filesystem not 4338 * to be NFS exported. 4339 * 4340 * The worst of all namespace operations - renaming directory. "Perverted" 4341 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4342 * Problems: 4343 * 4344 * a) we can get into loop creation. 4345 * b) race potential - two innocent renames can create a loop together. 4346 * That's where 4.4 screws up. Current fix: serialization on 4347 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4348 * story. 4349 * c) we have to lock _four_ objects - parents and victim (if it exists), 4350 * and source (if it is not a directory). 4351 * And that - after we got ->i_mutex on parents (until then we don't know 4352 * whether the target exists). Solution: try to be smart with locking 4353 * order for inodes. We rely on the fact that tree topology may change 4354 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4355 * move will be locked. Thus we can rank directories by the tree 4356 * (ancestors first) and rank all non-directories after them. 4357 * That works since everybody except rename does "lock parent, lookup, 4358 * lock child" and rename is under ->s_vfs_rename_mutex. 4359 * HOWEVER, it relies on the assumption that any object with ->lookup() 4360 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4361 * we'd better make sure that there's no link(2) for them. 4362 * d) conversion from fhandle to dentry may come in the wrong moment - when 4363 * we are removing the target. Solution: we will have to grab ->i_mutex 4364 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4365 * ->i_mutex on parents, which works but leads to some truly excessive 4366 * locking]. 4367 */ 4368 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 4369 struct inode *new_dir, struct dentry *new_dentry, 4370 struct inode **delegated_inode, unsigned int flags) 4371 { 4372 int error; 4373 bool is_dir = d_is_dir(old_dentry); 4374 struct inode *source = old_dentry->d_inode; 4375 struct inode *target = new_dentry->d_inode; 4376 bool new_is_dir = false; 4377 unsigned max_links = new_dir->i_sb->s_max_links; 4378 struct name_snapshot old_name; 4379 4380 if (source == target) 4381 return 0; 4382 4383 error = may_delete(old_dir, old_dentry, is_dir); 4384 if (error) 4385 return error; 4386 4387 if (!target) { 4388 error = may_create(new_dir, new_dentry); 4389 } else { 4390 new_is_dir = d_is_dir(new_dentry); 4391 4392 if (!(flags & RENAME_EXCHANGE)) 4393 error = may_delete(new_dir, new_dentry, is_dir); 4394 else 4395 error = may_delete(new_dir, new_dentry, new_is_dir); 4396 } 4397 if (error) 4398 return error; 4399 4400 if (!old_dir->i_op->rename) 4401 return -EPERM; 4402 4403 /* 4404 * If we are going to change the parent - check write permissions, 4405 * we'll need to flip '..'. 4406 */ 4407 if (new_dir != old_dir) { 4408 if (is_dir) { 4409 error = inode_permission(source, MAY_WRITE); 4410 if (error) 4411 return error; 4412 } 4413 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4414 error = inode_permission(target, MAY_WRITE); 4415 if (error) 4416 return error; 4417 } 4418 } 4419 4420 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 4421 flags); 4422 if (error) 4423 return error; 4424 4425 take_dentry_name_snapshot(&old_name, old_dentry); 4426 dget(new_dentry); 4427 if (!is_dir || (flags & RENAME_EXCHANGE)) 4428 lock_two_nondirectories(source, target); 4429 else if (target) 4430 inode_lock(target); 4431 4432 error = -EBUSY; 4433 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 4434 goto out; 4435 4436 if (max_links && new_dir != old_dir) { 4437 error = -EMLINK; 4438 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 4439 goto out; 4440 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 4441 old_dir->i_nlink >= max_links) 4442 goto out; 4443 } 4444 if (is_dir && !(flags & RENAME_EXCHANGE) && target) 4445 shrink_dcache_parent(new_dentry); 4446 if (!is_dir) { 4447 error = try_break_deleg(source, delegated_inode); 4448 if (error) 4449 goto out; 4450 } 4451 if (target && !new_is_dir) { 4452 error = try_break_deleg(target, delegated_inode); 4453 if (error) 4454 goto out; 4455 } 4456 error = old_dir->i_op->rename(old_dir, old_dentry, 4457 new_dir, new_dentry, flags); 4458 if (error) 4459 goto out; 4460 4461 if (!(flags & RENAME_EXCHANGE) && target) { 4462 if (is_dir) 4463 target->i_flags |= S_DEAD; 4464 dont_mount(new_dentry); 4465 detach_mounts(new_dentry); 4466 } 4467 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 4468 if (!(flags & RENAME_EXCHANGE)) 4469 d_move(old_dentry, new_dentry); 4470 else 4471 d_exchange(old_dentry, new_dentry); 4472 } 4473 out: 4474 if (!is_dir || (flags & RENAME_EXCHANGE)) 4475 unlock_two_nondirectories(source, target); 4476 else if (target) 4477 inode_unlock(target); 4478 dput(new_dentry); 4479 if (!error) { 4480 fsnotify_move(old_dir, new_dir, old_name.name, is_dir, 4481 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 4482 if (flags & RENAME_EXCHANGE) { 4483 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name, 4484 new_is_dir, NULL, new_dentry); 4485 } 4486 } 4487 release_dentry_name_snapshot(&old_name); 4488 4489 return error; 4490 } 4491 EXPORT_SYMBOL(vfs_rename); 4492 4493 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 4494 int, newdfd, const char __user *, newname, unsigned int, flags) 4495 { 4496 struct dentry *old_dentry, *new_dentry; 4497 struct dentry *trap; 4498 struct path old_path, new_path; 4499 struct qstr old_last, new_last; 4500 int old_type, new_type; 4501 struct inode *delegated_inode = NULL; 4502 struct filename *from; 4503 struct filename *to; 4504 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET; 4505 bool should_retry = false; 4506 int error; 4507 4508 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4509 return -EINVAL; 4510 4511 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 4512 (flags & RENAME_EXCHANGE)) 4513 return -EINVAL; 4514 4515 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD)) 4516 return -EPERM; 4517 4518 if (flags & RENAME_EXCHANGE) 4519 target_flags = 0; 4520 4521 retry: 4522 from = filename_parentat(olddfd, getname(oldname), lookup_flags, 4523 &old_path, &old_last, &old_type); 4524 if (IS_ERR(from)) { 4525 error = PTR_ERR(from); 4526 goto exit; 4527 } 4528 4529 to = filename_parentat(newdfd, getname(newname), lookup_flags, 4530 &new_path, &new_last, &new_type); 4531 if (IS_ERR(to)) { 4532 error = PTR_ERR(to); 4533 goto exit1; 4534 } 4535 4536 error = -EXDEV; 4537 if (old_path.mnt != new_path.mnt) 4538 goto exit2; 4539 4540 error = -EBUSY; 4541 if (old_type != LAST_NORM) 4542 goto exit2; 4543 4544 if (flags & RENAME_NOREPLACE) 4545 error = -EEXIST; 4546 if (new_type != LAST_NORM) 4547 goto exit2; 4548 4549 error = mnt_want_write(old_path.mnt); 4550 if (error) 4551 goto exit2; 4552 4553 retry_deleg: 4554 trap = lock_rename(new_path.dentry, old_path.dentry); 4555 4556 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags); 4557 error = PTR_ERR(old_dentry); 4558 if (IS_ERR(old_dentry)) 4559 goto exit3; 4560 /* source must exist */ 4561 error = -ENOENT; 4562 if (d_is_negative(old_dentry)) 4563 goto exit4; 4564 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags); 4565 error = PTR_ERR(new_dentry); 4566 if (IS_ERR(new_dentry)) 4567 goto exit4; 4568 error = -EEXIST; 4569 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 4570 goto exit5; 4571 if (flags & RENAME_EXCHANGE) { 4572 error = -ENOENT; 4573 if (d_is_negative(new_dentry)) 4574 goto exit5; 4575 4576 if (!d_is_dir(new_dentry)) { 4577 error = -ENOTDIR; 4578 if (new_last.name[new_last.len]) 4579 goto exit5; 4580 } 4581 } 4582 /* unless the source is a directory trailing slashes give -ENOTDIR */ 4583 if (!d_is_dir(old_dentry)) { 4584 error = -ENOTDIR; 4585 if (old_last.name[old_last.len]) 4586 goto exit5; 4587 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len]) 4588 goto exit5; 4589 } 4590 /* source should not be ancestor of target */ 4591 error = -EINVAL; 4592 if (old_dentry == trap) 4593 goto exit5; 4594 /* target should not be an ancestor of source */ 4595 if (!(flags & RENAME_EXCHANGE)) 4596 error = -ENOTEMPTY; 4597 if (new_dentry == trap) 4598 goto exit5; 4599 4600 error = security_path_rename(&old_path, old_dentry, 4601 &new_path, new_dentry, flags); 4602 if (error) 4603 goto exit5; 4604 error = vfs_rename(old_path.dentry->d_inode, old_dentry, 4605 new_path.dentry->d_inode, new_dentry, 4606 &delegated_inode, flags); 4607 exit5: 4608 dput(new_dentry); 4609 exit4: 4610 dput(old_dentry); 4611 exit3: 4612 unlock_rename(new_path.dentry, old_path.dentry); 4613 if (delegated_inode) { 4614 error = break_deleg_wait(&delegated_inode); 4615 if (!error) 4616 goto retry_deleg; 4617 } 4618 mnt_drop_write(old_path.mnt); 4619 exit2: 4620 if (retry_estale(error, lookup_flags)) 4621 should_retry = true; 4622 path_put(&new_path); 4623 putname(to); 4624 exit1: 4625 path_put(&old_path); 4626 putname(from); 4627 if (should_retry) { 4628 should_retry = false; 4629 lookup_flags |= LOOKUP_REVAL; 4630 goto retry; 4631 } 4632 exit: 4633 return error; 4634 } 4635 4636 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 4637 int, newdfd, const char __user *, newname) 4638 { 4639 return sys_renameat2(olddfd, oldname, newdfd, newname, 0); 4640 } 4641 4642 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 4643 { 4644 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4645 } 4646 4647 int vfs_whiteout(struct inode *dir, struct dentry *dentry) 4648 { 4649 int error = may_create(dir, dentry); 4650 if (error) 4651 return error; 4652 4653 if (!dir->i_op->mknod) 4654 return -EPERM; 4655 4656 return dir->i_op->mknod(dir, dentry, 4657 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 4658 } 4659 EXPORT_SYMBOL(vfs_whiteout); 4660 4661 int readlink_copy(char __user *buffer, int buflen, const char *link) 4662 { 4663 int len = PTR_ERR(link); 4664 if (IS_ERR(link)) 4665 goto out; 4666 4667 len = strlen(link); 4668 if (len > (unsigned) buflen) 4669 len = buflen; 4670 if (copy_to_user(buffer, link, len)) 4671 len = -EFAULT; 4672 out: 4673 return len; 4674 } 4675 4676 /* 4677 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 4678 * have ->get_link() not calling nd_jump_link(). Using (or not using) it 4679 * for any given inode is up to filesystem. 4680 */ 4681 static int generic_readlink(struct dentry *dentry, char __user *buffer, 4682 int buflen) 4683 { 4684 DEFINE_DELAYED_CALL(done); 4685 struct inode *inode = d_inode(dentry); 4686 const char *link = inode->i_link; 4687 int res; 4688 4689 if (!link) { 4690 link = inode->i_op->get_link(dentry, inode, &done); 4691 if (IS_ERR(link)) 4692 return PTR_ERR(link); 4693 } 4694 res = readlink_copy(buffer, buflen, link); 4695 do_delayed_call(&done); 4696 return res; 4697 } 4698 4699 /** 4700 * vfs_readlink - copy symlink body into userspace buffer 4701 * @dentry: dentry on which to get symbolic link 4702 * @buffer: user memory pointer 4703 * @buflen: size of buffer 4704 * 4705 * Does not touch atime. That's up to the caller if necessary 4706 * 4707 * Does not call security hook. 4708 */ 4709 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4710 { 4711 struct inode *inode = d_inode(dentry); 4712 4713 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) { 4714 if (unlikely(inode->i_op->readlink)) 4715 return inode->i_op->readlink(dentry, buffer, buflen); 4716 4717 if (!d_is_symlink(dentry)) 4718 return -EINVAL; 4719 4720 spin_lock(&inode->i_lock); 4721 inode->i_opflags |= IOP_DEFAULT_READLINK; 4722 spin_unlock(&inode->i_lock); 4723 } 4724 4725 return generic_readlink(dentry, buffer, buflen); 4726 } 4727 EXPORT_SYMBOL(vfs_readlink); 4728 4729 /** 4730 * vfs_get_link - get symlink body 4731 * @dentry: dentry on which to get symbolic link 4732 * @done: caller needs to free returned data with this 4733 * 4734 * Calls security hook and i_op->get_link() on the supplied inode. 4735 * 4736 * It does not touch atime. That's up to the caller if necessary. 4737 * 4738 * Does not work on "special" symlinks like /proc/$$/fd/N 4739 */ 4740 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done) 4741 { 4742 const char *res = ERR_PTR(-EINVAL); 4743 struct inode *inode = d_inode(dentry); 4744 4745 if (d_is_symlink(dentry)) { 4746 res = ERR_PTR(security_inode_readlink(dentry)); 4747 if (!res) 4748 res = inode->i_op->get_link(dentry, inode, done); 4749 } 4750 return res; 4751 } 4752 EXPORT_SYMBOL(vfs_get_link); 4753 4754 /* get the link contents into pagecache */ 4755 const char *page_get_link(struct dentry *dentry, struct inode *inode, 4756 struct delayed_call *callback) 4757 { 4758 char *kaddr; 4759 struct page *page; 4760 struct address_space *mapping = inode->i_mapping; 4761 4762 if (!dentry) { 4763 page = find_get_page(mapping, 0); 4764 if (!page) 4765 return ERR_PTR(-ECHILD); 4766 if (!PageUptodate(page)) { 4767 put_page(page); 4768 return ERR_PTR(-ECHILD); 4769 } 4770 } else { 4771 page = read_mapping_page(mapping, 0, NULL); 4772 if (IS_ERR(page)) 4773 return (char*)page; 4774 } 4775 set_delayed_call(callback, page_put_link, page); 4776 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM); 4777 kaddr = page_address(page); 4778 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1); 4779 return kaddr; 4780 } 4781 4782 EXPORT_SYMBOL(page_get_link); 4783 4784 void page_put_link(void *arg) 4785 { 4786 put_page(arg); 4787 } 4788 EXPORT_SYMBOL(page_put_link); 4789 4790 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4791 { 4792 DEFINE_DELAYED_CALL(done); 4793 int res = readlink_copy(buffer, buflen, 4794 page_get_link(dentry, d_inode(dentry), 4795 &done)); 4796 do_delayed_call(&done); 4797 return res; 4798 } 4799 EXPORT_SYMBOL(page_readlink); 4800 4801 /* 4802 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 4803 */ 4804 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 4805 { 4806 struct address_space *mapping = inode->i_mapping; 4807 struct page *page; 4808 void *fsdata; 4809 int err; 4810 unsigned int flags = 0; 4811 if (nofs) 4812 flags |= AOP_FLAG_NOFS; 4813 4814 retry: 4815 err = pagecache_write_begin(NULL, mapping, 0, len-1, 4816 flags, &page, &fsdata); 4817 if (err) 4818 goto fail; 4819 4820 memcpy(page_address(page), symname, len-1); 4821 4822 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 4823 page, fsdata); 4824 if (err < 0) 4825 goto fail; 4826 if (err < len-1) 4827 goto retry; 4828 4829 mark_inode_dirty(inode); 4830 return 0; 4831 fail: 4832 return err; 4833 } 4834 EXPORT_SYMBOL(__page_symlink); 4835 4836 int page_symlink(struct inode *inode, const char *symname, int len) 4837 { 4838 return __page_symlink(inode, symname, len, 4839 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS)); 4840 } 4841 EXPORT_SYMBOL(page_symlink); 4842 4843 const struct inode_operations page_symlink_inode_operations = { 4844 .get_link = page_get_link, 4845 }; 4846 EXPORT_SYMBOL(page_symlink_inode_operations); 4847