xref: /linux/fs/namei.c (revision 37cb8e1f8e10c6e9bd2a1b95cdda0620a21b0551)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/namei.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * Some corrections by tytso.
10  */
11 
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13  * lookup logic.
14  */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16  */
17 
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/fsnotify.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/ima.h>
29 #include <linux/syscalls.h>
30 #include <linux/mount.h>
31 #include <linux/audit.h>
32 #include <linux/capability.h>
33 #include <linux/file.h>
34 #include <linux/fcntl.h>
35 #include <linux/device_cgroup.h>
36 #include <linux/fs_struct.h>
37 #include <linux/posix_acl.h>
38 #include <linux/hash.h>
39 #include <linux/bitops.h>
40 #include <linux/init_task.h>
41 #include <linux/uaccess.h>
42 
43 #include "internal.h"
44 #include "mount.h"
45 
46 /* [Feb-1997 T. Schoebel-Theuer]
47  * Fundamental changes in the pathname lookup mechanisms (namei)
48  * were necessary because of omirr.  The reason is that omirr needs
49  * to know the _real_ pathname, not the user-supplied one, in case
50  * of symlinks (and also when transname replacements occur).
51  *
52  * The new code replaces the old recursive symlink resolution with
53  * an iterative one (in case of non-nested symlink chains).  It does
54  * this with calls to <fs>_follow_link().
55  * As a side effect, dir_namei(), _namei() and follow_link() are now
56  * replaced with a single function lookup_dentry() that can handle all
57  * the special cases of the former code.
58  *
59  * With the new dcache, the pathname is stored at each inode, at least as
60  * long as the refcount of the inode is positive.  As a side effect, the
61  * size of the dcache depends on the inode cache and thus is dynamic.
62  *
63  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
64  * resolution to correspond with current state of the code.
65  *
66  * Note that the symlink resolution is not *completely* iterative.
67  * There is still a significant amount of tail- and mid- recursion in
68  * the algorithm.  Also, note that <fs>_readlink() is not used in
69  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
70  * may return different results than <fs>_follow_link().  Many virtual
71  * filesystems (including /proc) exhibit this behavior.
72  */
73 
74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
75  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
76  * and the name already exists in form of a symlink, try to create the new
77  * name indicated by the symlink. The old code always complained that the
78  * name already exists, due to not following the symlink even if its target
79  * is nonexistent.  The new semantics affects also mknod() and link() when
80  * the name is a symlink pointing to a non-existent name.
81  *
82  * I don't know which semantics is the right one, since I have no access
83  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
84  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
85  * "old" one. Personally, I think the new semantics is much more logical.
86  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
87  * file does succeed in both HP-UX and SunOs, but not in Solaris
88  * and in the old Linux semantics.
89  */
90 
91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
92  * semantics.  See the comments in "open_namei" and "do_link" below.
93  *
94  * [10-Sep-98 Alan Modra] Another symlink change.
95  */
96 
97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
98  *	inside the path - always follow.
99  *	in the last component in creation/removal/renaming - never follow.
100  *	if LOOKUP_FOLLOW passed - follow.
101  *	if the pathname has trailing slashes - follow.
102  *	otherwise - don't follow.
103  * (applied in that order).
104  *
105  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
106  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
107  * During the 2.4 we need to fix the userland stuff depending on it -
108  * hopefully we will be able to get rid of that wart in 2.5. So far only
109  * XEmacs seems to be relying on it...
110  */
111 /*
112  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
113  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
114  * any extra contention...
115  */
116 
117 /* In order to reduce some races, while at the same time doing additional
118  * checking and hopefully speeding things up, we copy filenames to the
119  * kernel data space before using them..
120  *
121  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
122  * PATH_MAX includes the nul terminator --RR.
123  */
124 
125 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
126 
127 struct filename *
128 getname_flags(const char __user *filename, int flags, int *empty)
129 {
130 	struct filename *result;
131 	char *kname;
132 	int len;
133 
134 	result = audit_reusename(filename);
135 	if (result)
136 		return result;
137 
138 	result = __getname();
139 	if (unlikely(!result))
140 		return ERR_PTR(-ENOMEM);
141 
142 	/*
143 	 * First, try to embed the struct filename inside the names_cache
144 	 * allocation
145 	 */
146 	kname = (char *)result->iname;
147 	result->name = kname;
148 
149 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
150 	if (unlikely(len < 0)) {
151 		__putname(result);
152 		return ERR_PTR(len);
153 	}
154 
155 	/*
156 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
157 	 * separate struct filename so we can dedicate the entire
158 	 * names_cache allocation for the pathname, and re-do the copy from
159 	 * userland.
160 	 */
161 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
162 		const size_t size = offsetof(struct filename, iname[1]);
163 		kname = (char *)result;
164 
165 		/*
166 		 * size is chosen that way we to guarantee that
167 		 * result->iname[0] is within the same object and that
168 		 * kname can't be equal to result->iname, no matter what.
169 		 */
170 		result = kzalloc(size, GFP_KERNEL);
171 		if (unlikely(!result)) {
172 			__putname(kname);
173 			return ERR_PTR(-ENOMEM);
174 		}
175 		result->name = kname;
176 		len = strncpy_from_user(kname, filename, PATH_MAX);
177 		if (unlikely(len < 0)) {
178 			__putname(kname);
179 			kfree(result);
180 			return ERR_PTR(len);
181 		}
182 		if (unlikely(len == PATH_MAX)) {
183 			__putname(kname);
184 			kfree(result);
185 			return ERR_PTR(-ENAMETOOLONG);
186 		}
187 	}
188 
189 	result->refcnt = 1;
190 	/* The empty path is special. */
191 	if (unlikely(!len)) {
192 		if (empty)
193 			*empty = 1;
194 		if (!(flags & LOOKUP_EMPTY)) {
195 			putname(result);
196 			return ERR_PTR(-ENOENT);
197 		}
198 	}
199 
200 	result->uptr = filename;
201 	result->aname = NULL;
202 	audit_getname(result);
203 	return result;
204 }
205 
206 struct filename *
207 getname(const char __user * filename)
208 {
209 	return getname_flags(filename, 0, NULL);
210 }
211 
212 struct filename *
213 getname_kernel(const char * filename)
214 {
215 	struct filename *result;
216 	int len = strlen(filename) + 1;
217 
218 	result = __getname();
219 	if (unlikely(!result))
220 		return ERR_PTR(-ENOMEM);
221 
222 	if (len <= EMBEDDED_NAME_MAX) {
223 		result->name = (char *)result->iname;
224 	} else if (len <= PATH_MAX) {
225 		struct filename *tmp;
226 
227 		tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
228 		if (unlikely(!tmp)) {
229 			__putname(result);
230 			return ERR_PTR(-ENOMEM);
231 		}
232 		tmp->name = (char *)result;
233 		result = tmp;
234 	} else {
235 		__putname(result);
236 		return ERR_PTR(-ENAMETOOLONG);
237 	}
238 	memcpy((char *)result->name, filename, len);
239 	result->uptr = NULL;
240 	result->aname = NULL;
241 	result->refcnt = 1;
242 	audit_getname(result);
243 
244 	return result;
245 }
246 
247 void putname(struct filename *name)
248 {
249 	BUG_ON(name->refcnt <= 0);
250 
251 	if (--name->refcnt > 0)
252 		return;
253 
254 	if (name->name != name->iname) {
255 		__putname(name->name);
256 		kfree(name);
257 	} else
258 		__putname(name);
259 }
260 
261 static int check_acl(struct inode *inode, int mask)
262 {
263 #ifdef CONFIG_FS_POSIX_ACL
264 	struct posix_acl *acl;
265 
266 	if (mask & MAY_NOT_BLOCK) {
267 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
268 	        if (!acl)
269 	                return -EAGAIN;
270 		/* no ->get_acl() calls in RCU mode... */
271 		if (is_uncached_acl(acl))
272 			return -ECHILD;
273 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
274 	}
275 
276 	acl = get_acl(inode, ACL_TYPE_ACCESS);
277 	if (IS_ERR(acl))
278 		return PTR_ERR(acl);
279 	if (acl) {
280 	        int error = posix_acl_permission(inode, acl, mask);
281 	        posix_acl_release(acl);
282 	        return error;
283 	}
284 #endif
285 
286 	return -EAGAIN;
287 }
288 
289 /*
290  * This does the basic permission checking
291  */
292 static int acl_permission_check(struct inode *inode, int mask)
293 {
294 	unsigned int mode = inode->i_mode;
295 
296 	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
297 		mode >>= 6;
298 	else {
299 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
300 			int error = check_acl(inode, mask);
301 			if (error != -EAGAIN)
302 				return error;
303 		}
304 
305 		if (in_group_p(inode->i_gid))
306 			mode >>= 3;
307 	}
308 
309 	/*
310 	 * If the DACs are ok we don't need any capability check.
311 	 */
312 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
313 		return 0;
314 	return -EACCES;
315 }
316 
317 /**
318  * generic_permission -  check for access rights on a Posix-like filesystem
319  * @inode:	inode to check access rights for
320  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
321  *
322  * Used to check for read/write/execute permissions on a file.
323  * We use "fsuid" for this, letting us set arbitrary permissions
324  * for filesystem access without changing the "normal" uids which
325  * are used for other things.
326  *
327  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
328  * request cannot be satisfied (eg. requires blocking or too much complexity).
329  * It would then be called again in ref-walk mode.
330  */
331 int generic_permission(struct inode *inode, int mask)
332 {
333 	int ret;
334 
335 	/*
336 	 * Do the basic permission checks.
337 	 */
338 	ret = acl_permission_check(inode, mask);
339 	if (ret != -EACCES)
340 		return ret;
341 
342 	if (S_ISDIR(inode->i_mode)) {
343 		/* DACs are overridable for directories */
344 		if (!(mask & MAY_WRITE))
345 			if (capable_wrt_inode_uidgid(inode,
346 						     CAP_DAC_READ_SEARCH))
347 				return 0;
348 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
349 			return 0;
350 		return -EACCES;
351 	}
352 
353 	/*
354 	 * Searching includes executable on directories, else just read.
355 	 */
356 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
357 	if (mask == MAY_READ)
358 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
359 			return 0;
360 	/*
361 	 * Read/write DACs are always overridable.
362 	 * Executable DACs are overridable when there is
363 	 * at least one exec bit set.
364 	 */
365 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
366 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
367 			return 0;
368 
369 	return -EACCES;
370 }
371 EXPORT_SYMBOL(generic_permission);
372 
373 /*
374  * We _really_ want to just do "generic_permission()" without
375  * even looking at the inode->i_op values. So we keep a cache
376  * flag in inode->i_opflags, that says "this has not special
377  * permission function, use the fast case".
378  */
379 static inline int do_inode_permission(struct inode *inode, int mask)
380 {
381 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
382 		if (likely(inode->i_op->permission))
383 			return inode->i_op->permission(inode, mask);
384 
385 		/* This gets set once for the inode lifetime */
386 		spin_lock(&inode->i_lock);
387 		inode->i_opflags |= IOP_FASTPERM;
388 		spin_unlock(&inode->i_lock);
389 	}
390 	return generic_permission(inode, mask);
391 }
392 
393 /**
394  * __inode_permission - Check for access rights to a given inode
395  * @inode: Inode to check permission on
396  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
397  *
398  * Check for read/write/execute permissions on an inode.
399  *
400  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
401  *
402  * This does not check for a read-only file system.  You probably want
403  * inode_permission().
404  */
405 int __inode_permission(struct inode *inode, int mask)
406 {
407 	int retval;
408 
409 	if (unlikely(mask & MAY_WRITE)) {
410 		/*
411 		 * Nobody gets write access to an immutable file.
412 		 */
413 		if (IS_IMMUTABLE(inode))
414 			return -EPERM;
415 
416 		/*
417 		 * Updating mtime will likely cause i_uid and i_gid to be
418 		 * written back improperly if their true value is unknown
419 		 * to the vfs.
420 		 */
421 		if (HAS_UNMAPPED_ID(inode))
422 			return -EACCES;
423 	}
424 
425 	retval = do_inode_permission(inode, mask);
426 	if (retval)
427 		return retval;
428 
429 	retval = devcgroup_inode_permission(inode, mask);
430 	if (retval)
431 		return retval;
432 
433 	return security_inode_permission(inode, mask);
434 }
435 EXPORT_SYMBOL(__inode_permission);
436 
437 /**
438  * sb_permission - Check superblock-level permissions
439  * @sb: Superblock of inode to check permission on
440  * @inode: Inode to check permission on
441  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
442  *
443  * Separate out file-system wide checks from inode-specific permission checks.
444  */
445 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
446 {
447 	if (unlikely(mask & MAY_WRITE)) {
448 		umode_t mode = inode->i_mode;
449 
450 		/* Nobody gets write access to a read-only fs. */
451 		if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
452 			return -EROFS;
453 	}
454 	return 0;
455 }
456 
457 /**
458  * inode_permission - Check for access rights to a given inode
459  * @inode: Inode to check permission on
460  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
461  *
462  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
463  * this, letting us set arbitrary permissions for filesystem access without
464  * changing the "normal" UIDs which are used for other things.
465  *
466  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
467  */
468 int inode_permission(struct inode *inode, int mask)
469 {
470 	int retval;
471 
472 	retval = sb_permission(inode->i_sb, inode, mask);
473 	if (retval)
474 		return retval;
475 	return __inode_permission(inode, mask);
476 }
477 EXPORT_SYMBOL(inode_permission);
478 
479 /**
480  * path_get - get a reference to a path
481  * @path: path to get the reference to
482  *
483  * Given a path increment the reference count to the dentry and the vfsmount.
484  */
485 void path_get(const struct path *path)
486 {
487 	mntget(path->mnt);
488 	dget(path->dentry);
489 }
490 EXPORT_SYMBOL(path_get);
491 
492 /**
493  * path_put - put a reference to a path
494  * @path: path to put the reference to
495  *
496  * Given a path decrement the reference count to the dentry and the vfsmount.
497  */
498 void path_put(const struct path *path)
499 {
500 	dput(path->dentry);
501 	mntput(path->mnt);
502 }
503 EXPORT_SYMBOL(path_put);
504 
505 #define EMBEDDED_LEVELS 2
506 struct nameidata {
507 	struct path	path;
508 	struct qstr	last;
509 	struct path	root;
510 	struct inode	*inode; /* path.dentry.d_inode */
511 	unsigned int	flags;
512 	unsigned	seq, m_seq;
513 	int		last_type;
514 	unsigned	depth;
515 	int		total_link_count;
516 	struct saved {
517 		struct path link;
518 		struct delayed_call done;
519 		const char *name;
520 		unsigned seq;
521 	} *stack, internal[EMBEDDED_LEVELS];
522 	struct filename	*name;
523 	struct nameidata *saved;
524 	struct inode	*link_inode;
525 	unsigned	root_seq;
526 	int		dfd;
527 } __randomize_layout;
528 
529 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
530 {
531 	struct nameidata *old = current->nameidata;
532 	p->stack = p->internal;
533 	p->dfd = dfd;
534 	p->name = name;
535 	p->total_link_count = old ? old->total_link_count : 0;
536 	p->saved = old;
537 	current->nameidata = p;
538 }
539 
540 static void restore_nameidata(void)
541 {
542 	struct nameidata *now = current->nameidata, *old = now->saved;
543 
544 	current->nameidata = old;
545 	if (old)
546 		old->total_link_count = now->total_link_count;
547 	if (now->stack != now->internal)
548 		kfree(now->stack);
549 }
550 
551 static int __nd_alloc_stack(struct nameidata *nd)
552 {
553 	struct saved *p;
554 
555 	if (nd->flags & LOOKUP_RCU) {
556 		p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
557 				  GFP_ATOMIC);
558 		if (unlikely(!p))
559 			return -ECHILD;
560 	} else {
561 		p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
562 				  GFP_KERNEL);
563 		if (unlikely(!p))
564 			return -ENOMEM;
565 	}
566 	memcpy(p, nd->internal, sizeof(nd->internal));
567 	nd->stack = p;
568 	return 0;
569 }
570 
571 /**
572  * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
573  * @path: nameidate to verify
574  *
575  * Rename can sometimes move a file or directory outside of a bind
576  * mount, path_connected allows those cases to be detected.
577  */
578 static bool path_connected(const struct path *path)
579 {
580 	struct vfsmount *mnt = path->mnt;
581 
582 	/* Only bind mounts can have disconnected paths */
583 	if (mnt->mnt_root == mnt->mnt_sb->s_root)
584 		return true;
585 
586 	return is_subdir(path->dentry, mnt->mnt_root);
587 }
588 
589 static inline int nd_alloc_stack(struct nameidata *nd)
590 {
591 	if (likely(nd->depth != EMBEDDED_LEVELS))
592 		return 0;
593 	if (likely(nd->stack != nd->internal))
594 		return 0;
595 	return __nd_alloc_stack(nd);
596 }
597 
598 static void drop_links(struct nameidata *nd)
599 {
600 	int i = nd->depth;
601 	while (i--) {
602 		struct saved *last = nd->stack + i;
603 		do_delayed_call(&last->done);
604 		clear_delayed_call(&last->done);
605 	}
606 }
607 
608 static void terminate_walk(struct nameidata *nd)
609 {
610 	drop_links(nd);
611 	if (!(nd->flags & LOOKUP_RCU)) {
612 		int i;
613 		path_put(&nd->path);
614 		for (i = 0; i < nd->depth; i++)
615 			path_put(&nd->stack[i].link);
616 		if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
617 			path_put(&nd->root);
618 			nd->root.mnt = NULL;
619 		}
620 	} else {
621 		nd->flags &= ~LOOKUP_RCU;
622 		if (!(nd->flags & LOOKUP_ROOT))
623 			nd->root.mnt = NULL;
624 		rcu_read_unlock();
625 	}
626 	nd->depth = 0;
627 }
628 
629 /* path_put is needed afterwards regardless of success or failure */
630 static bool legitimize_path(struct nameidata *nd,
631 			    struct path *path, unsigned seq)
632 {
633 	int res = __legitimize_mnt(path->mnt, nd->m_seq);
634 	if (unlikely(res)) {
635 		if (res > 0)
636 			path->mnt = NULL;
637 		path->dentry = NULL;
638 		return false;
639 	}
640 	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
641 		path->dentry = NULL;
642 		return false;
643 	}
644 	return !read_seqcount_retry(&path->dentry->d_seq, seq);
645 }
646 
647 static bool legitimize_links(struct nameidata *nd)
648 {
649 	int i;
650 	for (i = 0; i < nd->depth; i++) {
651 		struct saved *last = nd->stack + i;
652 		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
653 			drop_links(nd);
654 			nd->depth = i + 1;
655 			return false;
656 		}
657 	}
658 	return true;
659 }
660 
661 /*
662  * Path walking has 2 modes, rcu-walk and ref-walk (see
663  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
664  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
665  * normal reference counts on dentries and vfsmounts to transition to ref-walk
666  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
667  * got stuck, so ref-walk may continue from there. If this is not successful
668  * (eg. a seqcount has changed), then failure is returned and it's up to caller
669  * to restart the path walk from the beginning in ref-walk mode.
670  */
671 
672 /**
673  * unlazy_walk - try to switch to ref-walk mode.
674  * @nd: nameidata pathwalk data
675  * Returns: 0 on success, -ECHILD on failure
676  *
677  * unlazy_walk attempts to legitimize the current nd->path and nd->root
678  * for ref-walk mode.
679  * Must be called from rcu-walk context.
680  * Nothing should touch nameidata between unlazy_walk() failure and
681  * terminate_walk().
682  */
683 static int unlazy_walk(struct nameidata *nd)
684 {
685 	struct dentry *parent = nd->path.dentry;
686 
687 	BUG_ON(!(nd->flags & LOOKUP_RCU));
688 
689 	nd->flags &= ~LOOKUP_RCU;
690 	if (unlikely(!legitimize_links(nd)))
691 		goto out2;
692 	if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
693 		goto out1;
694 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
695 		if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq)))
696 			goto out;
697 	}
698 	rcu_read_unlock();
699 	BUG_ON(nd->inode != parent->d_inode);
700 	return 0;
701 
702 out2:
703 	nd->path.mnt = NULL;
704 	nd->path.dentry = NULL;
705 out1:
706 	if (!(nd->flags & LOOKUP_ROOT))
707 		nd->root.mnt = NULL;
708 out:
709 	rcu_read_unlock();
710 	return -ECHILD;
711 }
712 
713 /**
714  * unlazy_child - try to switch to ref-walk mode.
715  * @nd: nameidata pathwalk data
716  * @dentry: child of nd->path.dentry
717  * @seq: seq number to check dentry against
718  * Returns: 0 on success, -ECHILD on failure
719  *
720  * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
721  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
722  * @nd.  Must be called from rcu-walk context.
723  * Nothing should touch nameidata between unlazy_child() failure and
724  * terminate_walk().
725  */
726 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
727 {
728 	BUG_ON(!(nd->flags & LOOKUP_RCU));
729 
730 	nd->flags &= ~LOOKUP_RCU;
731 	if (unlikely(!legitimize_links(nd)))
732 		goto out2;
733 	if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
734 		goto out2;
735 	if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
736 		goto out1;
737 
738 	/*
739 	 * We need to move both the parent and the dentry from the RCU domain
740 	 * to be properly refcounted. And the sequence number in the dentry
741 	 * validates *both* dentry counters, since we checked the sequence
742 	 * number of the parent after we got the child sequence number. So we
743 	 * know the parent must still be valid if the child sequence number is
744 	 */
745 	if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
746 		goto out;
747 	if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) {
748 		rcu_read_unlock();
749 		dput(dentry);
750 		goto drop_root_mnt;
751 	}
752 	/*
753 	 * Sequence counts matched. Now make sure that the root is
754 	 * still valid and get it if required.
755 	 */
756 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
757 		if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
758 			rcu_read_unlock();
759 			dput(dentry);
760 			return -ECHILD;
761 		}
762 	}
763 
764 	rcu_read_unlock();
765 	return 0;
766 
767 out2:
768 	nd->path.mnt = NULL;
769 out1:
770 	nd->path.dentry = NULL;
771 out:
772 	rcu_read_unlock();
773 drop_root_mnt:
774 	if (!(nd->flags & LOOKUP_ROOT))
775 		nd->root.mnt = NULL;
776 	return -ECHILD;
777 }
778 
779 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
780 {
781 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
782 		return dentry->d_op->d_revalidate(dentry, flags);
783 	else
784 		return 1;
785 }
786 
787 /**
788  * complete_walk - successful completion of path walk
789  * @nd:  pointer nameidata
790  *
791  * If we had been in RCU mode, drop out of it and legitimize nd->path.
792  * Revalidate the final result, unless we'd already done that during
793  * the path walk or the filesystem doesn't ask for it.  Return 0 on
794  * success, -error on failure.  In case of failure caller does not
795  * need to drop nd->path.
796  */
797 static int complete_walk(struct nameidata *nd)
798 {
799 	struct dentry *dentry = nd->path.dentry;
800 	int status;
801 
802 	if (nd->flags & LOOKUP_RCU) {
803 		if (!(nd->flags & LOOKUP_ROOT))
804 			nd->root.mnt = NULL;
805 		if (unlikely(unlazy_walk(nd)))
806 			return -ECHILD;
807 	}
808 
809 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
810 		return 0;
811 
812 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
813 		return 0;
814 
815 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
816 	if (status > 0)
817 		return 0;
818 
819 	if (!status)
820 		status = -ESTALE;
821 
822 	return status;
823 }
824 
825 static void set_root(struct nameidata *nd)
826 {
827 	struct fs_struct *fs = current->fs;
828 
829 	if (nd->flags & LOOKUP_RCU) {
830 		unsigned seq;
831 
832 		do {
833 			seq = read_seqcount_begin(&fs->seq);
834 			nd->root = fs->root;
835 			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
836 		} while (read_seqcount_retry(&fs->seq, seq));
837 	} else {
838 		get_fs_root(fs, &nd->root);
839 	}
840 }
841 
842 static void path_put_conditional(struct path *path, struct nameidata *nd)
843 {
844 	dput(path->dentry);
845 	if (path->mnt != nd->path.mnt)
846 		mntput(path->mnt);
847 }
848 
849 static inline void path_to_nameidata(const struct path *path,
850 					struct nameidata *nd)
851 {
852 	if (!(nd->flags & LOOKUP_RCU)) {
853 		dput(nd->path.dentry);
854 		if (nd->path.mnt != path->mnt)
855 			mntput(nd->path.mnt);
856 	}
857 	nd->path.mnt = path->mnt;
858 	nd->path.dentry = path->dentry;
859 }
860 
861 static int nd_jump_root(struct nameidata *nd)
862 {
863 	if (nd->flags & LOOKUP_RCU) {
864 		struct dentry *d;
865 		nd->path = nd->root;
866 		d = nd->path.dentry;
867 		nd->inode = d->d_inode;
868 		nd->seq = nd->root_seq;
869 		if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
870 			return -ECHILD;
871 	} else {
872 		path_put(&nd->path);
873 		nd->path = nd->root;
874 		path_get(&nd->path);
875 		nd->inode = nd->path.dentry->d_inode;
876 	}
877 	nd->flags |= LOOKUP_JUMPED;
878 	return 0;
879 }
880 
881 /*
882  * Helper to directly jump to a known parsed path from ->get_link,
883  * caller must have taken a reference to path beforehand.
884  */
885 void nd_jump_link(struct path *path)
886 {
887 	struct nameidata *nd = current->nameidata;
888 	path_put(&nd->path);
889 
890 	nd->path = *path;
891 	nd->inode = nd->path.dentry->d_inode;
892 	nd->flags |= LOOKUP_JUMPED;
893 }
894 
895 static inline void put_link(struct nameidata *nd)
896 {
897 	struct saved *last = nd->stack + --nd->depth;
898 	do_delayed_call(&last->done);
899 	if (!(nd->flags & LOOKUP_RCU))
900 		path_put(&last->link);
901 }
902 
903 int sysctl_protected_symlinks __read_mostly = 0;
904 int sysctl_protected_hardlinks __read_mostly = 0;
905 
906 /**
907  * may_follow_link - Check symlink following for unsafe situations
908  * @nd: nameidata pathwalk data
909  *
910  * In the case of the sysctl_protected_symlinks sysctl being enabled,
911  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
912  * in a sticky world-writable directory. This is to protect privileged
913  * processes from failing races against path names that may change out
914  * from under them by way of other users creating malicious symlinks.
915  * It will permit symlinks to be followed only when outside a sticky
916  * world-writable directory, or when the uid of the symlink and follower
917  * match, or when the directory owner matches the symlink's owner.
918  *
919  * Returns 0 if following the symlink is allowed, -ve on error.
920  */
921 static inline int may_follow_link(struct nameidata *nd)
922 {
923 	const struct inode *inode;
924 	const struct inode *parent;
925 	kuid_t puid;
926 
927 	if (!sysctl_protected_symlinks)
928 		return 0;
929 
930 	/* Allowed if owner and follower match. */
931 	inode = nd->link_inode;
932 	if (uid_eq(current_cred()->fsuid, inode->i_uid))
933 		return 0;
934 
935 	/* Allowed if parent directory not sticky and world-writable. */
936 	parent = nd->inode;
937 	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
938 		return 0;
939 
940 	/* Allowed if parent directory and link owner match. */
941 	puid = parent->i_uid;
942 	if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
943 		return 0;
944 
945 	if (nd->flags & LOOKUP_RCU)
946 		return -ECHILD;
947 
948 	audit_log_link_denied("follow_link", &nd->stack[0].link);
949 	return -EACCES;
950 }
951 
952 /**
953  * safe_hardlink_source - Check for safe hardlink conditions
954  * @inode: the source inode to hardlink from
955  *
956  * Return false if at least one of the following conditions:
957  *    - inode is not a regular file
958  *    - inode is setuid
959  *    - inode is setgid and group-exec
960  *    - access failure for read and write
961  *
962  * Otherwise returns true.
963  */
964 static bool safe_hardlink_source(struct inode *inode)
965 {
966 	umode_t mode = inode->i_mode;
967 
968 	/* Special files should not get pinned to the filesystem. */
969 	if (!S_ISREG(mode))
970 		return false;
971 
972 	/* Setuid files should not get pinned to the filesystem. */
973 	if (mode & S_ISUID)
974 		return false;
975 
976 	/* Executable setgid files should not get pinned to the filesystem. */
977 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
978 		return false;
979 
980 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
981 	if (inode_permission(inode, MAY_READ | MAY_WRITE))
982 		return false;
983 
984 	return true;
985 }
986 
987 /**
988  * may_linkat - Check permissions for creating a hardlink
989  * @link: the source to hardlink from
990  *
991  * Block hardlink when all of:
992  *  - sysctl_protected_hardlinks enabled
993  *  - fsuid does not match inode
994  *  - hardlink source is unsafe (see safe_hardlink_source() above)
995  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
996  *
997  * Returns 0 if successful, -ve on error.
998  */
999 static int may_linkat(struct path *link)
1000 {
1001 	struct inode *inode;
1002 
1003 	if (!sysctl_protected_hardlinks)
1004 		return 0;
1005 
1006 	inode = link->dentry->d_inode;
1007 
1008 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1009 	 * otherwise, it must be a safe source.
1010 	 */
1011 	if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
1012 		return 0;
1013 
1014 	audit_log_link_denied("linkat", link);
1015 	return -EPERM;
1016 }
1017 
1018 static __always_inline
1019 const char *get_link(struct nameidata *nd)
1020 {
1021 	struct saved *last = nd->stack + nd->depth - 1;
1022 	struct dentry *dentry = last->link.dentry;
1023 	struct inode *inode = nd->link_inode;
1024 	int error;
1025 	const char *res;
1026 
1027 	if (!(nd->flags & LOOKUP_RCU)) {
1028 		touch_atime(&last->link);
1029 		cond_resched();
1030 	} else if (atime_needs_update_rcu(&last->link, inode)) {
1031 		if (unlikely(unlazy_walk(nd)))
1032 			return ERR_PTR(-ECHILD);
1033 		touch_atime(&last->link);
1034 	}
1035 
1036 	error = security_inode_follow_link(dentry, inode,
1037 					   nd->flags & LOOKUP_RCU);
1038 	if (unlikely(error))
1039 		return ERR_PTR(error);
1040 
1041 	nd->last_type = LAST_BIND;
1042 	res = inode->i_link;
1043 	if (!res) {
1044 		const char * (*get)(struct dentry *, struct inode *,
1045 				struct delayed_call *);
1046 		get = inode->i_op->get_link;
1047 		if (nd->flags & LOOKUP_RCU) {
1048 			res = get(NULL, inode, &last->done);
1049 			if (res == ERR_PTR(-ECHILD)) {
1050 				if (unlikely(unlazy_walk(nd)))
1051 					return ERR_PTR(-ECHILD);
1052 				res = get(dentry, inode, &last->done);
1053 			}
1054 		} else {
1055 			res = get(dentry, inode, &last->done);
1056 		}
1057 		if (IS_ERR_OR_NULL(res))
1058 			return res;
1059 	}
1060 	if (*res == '/') {
1061 		if (!nd->root.mnt)
1062 			set_root(nd);
1063 		if (unlikely(nd_jump_root(nd)))
1064 			return ERR_PTR(-ECHILD);
1065 		while (unlikely(*++res == '/'))
1066 			;
1067 	}
1068 	if (!*res)
1069 		res = NULL;
1070 	return res;
1071 }
1072 
1073 /*
1074  * follow_up - Find the mountpoint of path's vfsmount
1075  *
1076  * Given a path, find the mountpoint of its source file system.
1077  * Replace @path with the path of the mountpoint in the parent mount.
1078  * Up is towards /.
1079  *
1080  * Return 1 if we went up a level and 0 if we were already at the
1081  * root.
1082  */
1083 int follow_up(struct path *path)
1084 {
1085 	struct mount *mnt = real_mount(path->mnt);
1086 	struct mount *parent;
1087 	struct dentry *mountpoint;
1088 
1089 	read_seqlock_excl(&mount_lock);
1090 	parent = mnt->mnt_parent;
1091 	if (parent == mnt) {
1092 		read_sequnlock_excl(&mount_lock);
1093 		return 0;
1094 	}
1095 	mntget(&parent->mnt);
1096 	mountpoint = dget(mnt->mnt_mountpoint);
1097 	read_sequnlock_excl(&mount_lock);
1098 	dput(path->dentry);
1099 	path->dentry = mountpoint;
1100 	mntput(path->mnt);
1101 	path->mnt = &parent->mnt;
1102 	return 1;
1103 }
1104 EXPORT_SYMBOL(follow_up);
1105 
1106 /*
1107  * Perform an automount
1108  * - return -EISDIR to tell follow_managed() to stop and return the path we
1109  *   were called with.
1110  */
1111 static int follow_automount(struct path *path, struct nameidata *nd,
1112 			    bool *need_mntput)
1113 {
1114 	struct vfsmount *mnt;
1115 	int err;
1116 
1117 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1118 		return -EREMOTE;
1119 
1120 	/* We don't want to mount if someone's just doing a stat -
1121 	 * unless they're stat'ing a directory and appended a '/' to
1122 	 * the name.
1123 	 *
1124 	 * We do, however, want to mount if someone wants to open or
1125 	 * create a file of any type under the mountpoint, wants to
1126 	 * traverse through the mountpoint or wants to open the
1127 	 * mounted directory.  Also, autofs may mark negative dentries
1128 	 * as being automount points.  These will need the attentions
1129 	 * of the daemon to instantiate them before they can be used.
1130 	 */
1131 	if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1132 			   LOOKUP_OPEN | LOOKUP_CREATE |
1133 			   LOOKUP_AUTOMOUNT))) {
1134 		/* Positive dentry that isn't meant to trigger an
1135 		 * automount, EISDIR will allow it to be used,
1136 		 * otherwise there's no mount here "now" so return
1137 		 * ENOENT.
1138 		 */
1139 		if (path->dentry->d_inode)
1140 			return -EISDIR;
1141 		else
1142 			return -ENOENT;
1143 	}
1144 
1145 	if (path->dentry->d_sb->s_user_ns != &init_user_ns)
1146 		return -EACCES;
1147 
1148 	nd->total_link_count++;
1149 	if (nd->total_link_count >= 40)
1150 		return -ELOOP;
1151 
1152 	mnt = path->dentry->d_op->d_automount(path);
1153 	if (IS_ERR(mnt)) {
1154 		/*
1155 		 * The filesystem is allowed to return -EISDIR here to indicate
1156 		 * it doesn't want to automount.  For instance, autofs would do
1157 		 * this so that its userspace daemon can mount on this dentry.
1158 		 *
1159 		 * However, we can only permit this if it's a terminal point in
1160 		 * the path being looked up; if it wasn't then the remainder of
1161 		 * the path is inaccessible and we should say so.
1162 		 */
1163 		if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1164 			return -EREMOTE;
1165 		return PTR_ERR(mnt);
1166 	}
1167 
1168 	if (!mnt) /* mount collision */
1169 		return 0;
1170 
1171 	if (!*need_mntput) {
1172 		/* lock_mount() may release path->mnt on error */
1173 		mntget(path->mnt);
1174 		*need_mntput = true;
1175 	}
1176 	err = finish_automount(mnt, path);
1177 
1178 	switch (err) {
1179 	case -EBUSY:
1180 		/* Someone else made a mount here whilst we were busy */
1181 		return 0;
1182 	case 0:
1183 		path_put(path);
1184 		path->mnt = mnt;
1185 		path->dentry = dget(mnt->mnt_root);
1186 		return 0;
1187 	default:
1188 		return err;
1189 	}
1190 
1191 }
1192 
1193 /*
1194  * Handle a dentry that is managed in some way.
1195  * - Flagged for transit management (autofs)
1196  * - Flagged as mountpoint
1197  * - Flagged as automount point
1198  *
1199  * This may only be called in refwalk mode.
1200  *
1201  * Serialization is taken care of in namespace.c
1202  */
1203 static int follow_managed(struct path *path, struct nameidata *nd)
1204 {
1205 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1206 	unsigned managed;
1207 	bool need_mntput = false;
1208 	int ret = 0;
1209 
1210 	/* Given that we're not holding a lock here, we retain the value in a
1211 	 * local variable for each dentry as we look at it so that we don't see
1212 	 * the components of that value change under us */
1213 	while (managed = READ_ONCE(path->dentry->d_flags),
1214 	       managed &= DCACHE_MANAGED_DENTRY,
1215 	       unlikely(managed != 0)) {
1216 		/* Allow the filesystem to manage the transit without i_mutex
1217 		 * being held. */
1218 		if (managed & DCACHE_MANAGE_TRANSIT) {
1219 			BUG_ON(!path->dentry->d_op);
1220 			BUG_ON(!path->dentry->d_op->d_manage);
1221 			ret = path->dentry->d_op->d_manage(path, false);
1222 			if (ret < 0)
1223 				break;
1224 		}
1225 
1226 		/* Transit to a mounted filesystem. */
1227 		if (managed & DCACHE_MOUNTED) {
1228 			struct vfsmount *mounted = lookup_mnt(path);
1229 			if (mounted) {
1230 				dput(path->dentry);
1231 				if (need_mntput)
1232 					mntput(path->mnt);
1233 				path->mnt = mounted;
1234 				path->dentry = dget(mounted->mnt_root);
1235 				need_mntput = true;
1236 				continue;
1237 			}
1238 
1239 			/* Something is mounted on this dentry in another
1240 			 * namespace and/or whatever was mounted there in this
1241 			 * namespace got unmounted before lookup_mnt() could
1242 			 * get it */
1243 		}
1244 
1245 		/* Handle an automount point */
1246 		if (managed & DCACHE_NEED_AUTOMOUNT) {
1247 			ret = follow_automount(path, nd, &need_mntput);
1248 			if (ret < 0)
1249 				break;
1250 			continue;
1251 		}
1252 
1253 		/* We didn't change the current path point */
1254 		break;
1255 	}
1256 
1257 	if (need_mntput && path->mnt == mnt)
1258 		mntput(path->mnt);
1259 	if (ret == -EISDIR || !ret)
1260 		ret = 1;
1261 	if (need_mntput)
1262 		nd->flags |= LOOKUP_JUMPED;
1263 	if (unlikely(ret < 0))
1264 		path_put_conditional(path, nd);
1265 	return ret;
1266 }
1267 
1268 int follow_down_one(struct path *path)
1269 {
1270 	struct vfsmount *mounted;
1271 
1272 	mounted = lookup_mnt(path);
1273 	if (mounted) {
1274 		dput(path->dentry);
1275 		mntput(path->mnt);
1276 		path->mnt = mounted;
1277 		path->dentry = dget(mounted->mnt_root);
1278 		return 1;
1279 	}
1280 	return 0;
1281 }
1282 EXPORT_SYMBOL(follow_down_one);
1283 
1284 static inline int managed_dentry_rcu(const struct path *path)
1285 {
1286 	return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1287 		path->dentry->d_op->d_manage(path, true) : 0;
1288 }
1289 
1290 /*
1291  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1292  * we meet a managed dentry that would need blocking.
1293  */
1294 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1295 			       struct inode **inode, unsigned *seqp)
1296 {
1297 	for (;;) {
1298 		struct mount *mounted;
1299 		/*
1300 		 * Don't forget we might have a non-mountpoint managed dentry
1301 		 * that wants to block transit.
1302 		 */
1303 		switch (managed_dentry_rcu(path)) {
1304 		case -ECHILD:
1305 		default:
1306 			return false;
1307 		case -EISDIR:
1308 			return true;
1309 		case 0:
1310 			break;
1311 		}
1312 
1313 		if (!d_mountpoint(path->dentry))
1314 			return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1315 
1316 		mounted = __lookup_mnt(path->mnt, path->dentry);
1317 		if (!mounted)
1318 			break;
1319 		path->mnt = &mounted->mnt;
1320 		path->dentry = mounted->mnt.mnt_root;
1321 		nd->flags |= LOOKUP_JUMPED;
1322 		*seqp = read_seqcount_begin(&path->dentry->d_seq);
1323 		/*
1324 		 * Update the inode too. We don't need to re-check the
1325 		 * dentry sequence number here after this d_inode read,
1326 		 * because a mount-point is always pinned.
1327 		 */
1328 		*inode = path->dentry->d_inode;
1329 	}
1330 	return !read_seqretry(&mount_lock, nd->m_seq) &&
1331 		!(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1332 }
1333 
1334 static int follow_dotdot_rcu(struct nameidata *nd)
1335 {
1336 	struct inode *inode = nd->inode;
1337 
1338 	while (1) {
1339 		if (path_equal(&nd->path, &nd->root))
1340 			break;
1341 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1342 			struct dentry *old = nd->path.dentry;
1343 			struct dentry *parent = old->d_parent;
1344 			unsigned seq;
1345 
1346 			inode = parent->d_inode;
1347 			seq = read_seqcount_begin(&parent->d_seq);
1348 			if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1349 				return -ECHILD;
1350 			nd->path.dentry = parent;
1351 			nd->seq = seq;
1352 			if (unlikely(!path_connected(&nd->path)))
1353 				return -ENOENT;
1354 			break;
1355 		} else {
1356 			struct mount *mnt = real_mount(nd->path.mnt);
1357 			struct mount *mparent = mnt->mnt_parent;
1358 			struct dentry *mountpoint = mnt->mnt_mountpoint;
1359 			struct inode *inode2 = mountpoint->d_inode;
1360 			unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1361 			if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1362 				return -ECHILD;
1363 			if (&mparent->mnt == nd->path.mnt)
1364 				break;
1365 			/* we know that mountpoint was pinned */
1366 			nd->path.dentry = mountpoint;
1367 			nd->path.mnt = &mparent->mnt;
1368 			inode = inode2;
1369 			nd->seq = seq;
1370 		}
1371 	}
1372 	while (unlikely(d_mountpoint(nd->path.dentry))) {
1373 		struct mount *mounted;
1374 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1375 		if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1376 			return -ECHILD;
1377 		if (!mounted)
1378 			break;
1379 		nd->path.mnt = &mounted->mnt;
1380 		nd->path.dentry = mounted->mnt.mnt_root;
1381 		inode = nd->path.dentry->d_inode;
1382 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1383 	}
1384 	nd->inode = inode;
1385 	return 0;
1386 }
1387 
1388 /*
1389  * Follow down to the covering mount currently visible to userspace.  At each
1390  * point, the filesystem owning that dentry may be queried as to whether the
1391  * caller is permitted to proceed or not.
1392  */
1393 int follow_down(struct path *path)
1394 {
1395 	unsigned managed;
1396 	int ret;
1397 
1398 	while (managed = READ_ONCE(path->dentry->d_flags),
1399 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1400 		/* Allow the filesystem to manage the transit without i_mutex
1401 		 * being held.
1402 		 *
1403 		 * We indicate to the filesystem if someone is trying to mount
1404 		 * something here.  This gives autofs the chance to deny anyone
1405 		 * other than its daemon the right to mount on its
1406 		 * superstructure.
1407 		 *
1408 		 * The filesystem may sleep at this point.
1409 		 */
1410 		if (managed & DCACHE_MANAGE_TRANSIT) {
1411 			BUG_ON(!path->dentry->d_op);
1412 			BUG_ON(!path->dentry->d_op->d_manage);
1413 			ret = path->dentry->d_op->d_manage(path, false);
1414 			if (ret < 0)
1415 				return ret == -EISDIR ? 0 : ret;
1416 		}
1417 
1418 		/* Transit to a mounted filesystem. */
1419 		if (managed & DCACHE_MOUNTED) {
1420 			struct vfsmount *mounted = lookup_mnt(path);
1421 			if (!mounted)
1422 				break;
1423 			dput(path->dentry);
1424 			mntput(path->mnt);
1425 			path->mnt = mounted;
1426 			path->dentry = dget(mounted->mnt_root);
1427 			continue;
1428 		}
1429 
1430 		/* Don't handle automount points here */
1431 		break;
1432 	}
1433 	return 0;
1434 }
1435 EXPORT_SYMBOL(follow_down);
1436 
1437 /*
1438  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1439  */
1440 static void follow_mount(struct path *path)
1441 {
1442 	while (d_mountpoint(path->dentry)) {
1443 		struct vfsmount *mounted = lookup_mnt(path);
1444 		if (!mounted)
1445 			break;
1446 		dput(path->dentry);
1447 		mntput(path->mnt);
1448 		path->mnt = mounted;
1449 		path->dentry = dget(mounted->mnt_root);
1450 	}
1451 }
1452 
1453 static int path_parent_directory(struct path *path)
1454 {
1455 	struct dentry *old = path->dentry;
1456 	/* rare case of legitimate dget_parent()... */
1457 	path->dentry = dget_parent(path->dentry);
1458 	dput(old);
1459 	if (unlikely(!path_connected(path)))
1460 		return -ENOENT;
1461 	return 0;
1462 }
1463 
1464 static int follow_dotdot(struct nameidata *nd)
1465 {
1466 	while(1) {
1467 		if (nd->path.dentry == nd->root.dentry &&
1468 		    nd->path.mnt == nd->root.mnt) {
1469 			break;
1470 		}
1471 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1472 			int ret = path_parent_directory(&nd->path);
1473 			if (ret)
1474 				return ret;
1475 			break;
1476 		}
1477 		if (!follow_up(&nd->path))
1478 			break;
1479 	}
1480 	follow_mount(&nd->path);
1481 	nd->inode = nd->path.dentry->d_inode;
1482 	return 0;
1483 }
1484 
1485 /*
1486  * This looks up the name in dcache and possibly revalidates the found dentry.
1487  * NULL is returned if the dentry does not exist in the cache.
1488  */
1489 static struct dentry *lookup_dcache(const struct qstr *name,
1490 				    struct dentry *dir,
1491 				    unsigned int flags)
1492 {
1493 	struct dentry *dentry = d_lookup(dir, name);
1494 	if (dentry) {
1495 		int error = d_revalidate(dentry, flags);
1496 		if (unlikely(error <= 0)) {
1497 			if (!error)
1498 				d_invalidate(dentry);
1499 			dput(dentry);
1500 			return ERR_PTR(error);
1501 		}
1502 	}
1503 	return dentry;
1504 }
1505 
1506 /*
1507  * Call i_op->lookup on the dentry.  The dentry must be negative and
1508  * unhashed.
1509  *
1510  * dir->d_inode->i_mutex must be held
1511  */
1512 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1513 				  unsigned int flags)
1514 {
1515 	struct dentry *old;
1516 
1517 	/* Don't create child dentry for a dead directory. */
1518 	if (unlikely(IS_DEADDIR(dir))) {
1519 		dput(dentry);
1520 		return ERR_PTR(-ENOENT);
1521 	}
1522 
1523 	old = dir->i_op->lookup(dir, dentry, flags);
1524 	if (unlikely(old)) {
1525 		dput(dentry);
1526 		dentry = old;
1527 	}
1528 	return dentry;
1529 }
1530 
1531 static struct dentry *__lookup_hash(const struct qstr *name,
1532 		struct dentry *base, unsigned int flags)
1533 {
1534 	struct dentry *dentry = lookup_dcache(name, base, flags);
1535 
1536 	if (dentry)
1537 		return dentry;
1538 
1539 	dentry = d_alloc(base, name);
1540 	if (unlikely(!dentry))
1541 		return ERR_PTR(-ENOMEM);
1542 
1543 	return lookup_real(base->d_inode, dentry, flags);
1544 }
1545 
1546 static int lookup_fast(struct nameidata *nd,
1547 		       struct path *path, struct inode **inode,
1548 		       unsigned *seqp)
1549 {
1550 	struct vfsmount *mnt = nd->path.mnt;
1551 	struct dentry *dentry, *parent = nd->path.dentry;
1552 	int status = 1;
1553 	int err;
1554 
1555 	/*
1556 	 * Rename seqlock is not required here because in the off chance
1557 	 * of a false negative due to a concurrent rename, the caller is
1558 	 * going to fall back to non-racy lookup.
1559 	 */
1560 	if (nd->flags & LOOKUP_RCU) {
1561 		unsigned seq;
1562 		bool negative;
1563 		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1564 		if (unlikely(!dentry)) {
1565 			if (unlazy_walk(nd))
1566 				return -ECHILD;
1567 			return 0;
1568 		}
1569 
1570 		/*
1571 		 * This sequence count validates that the inode matches
1572 		 * the dentry name information from lookup.
1573 		 */
1574 		*inode = d_backing_inode(dentry);
1575 		negative = d_is_negative(dentry);
1576 		if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1577 			return -ECHILD;
1578 
1579 		/*
1580 		 * This sequence count validates that the parent had no
1581 		 * changes while we did the lookup of the dentry above.
1582 		 *
1583 		 * The memory barrier in read_seqcount_begin of child is
1584 		 *  enough, we can use __read_seqcount_retry here.
1585 		 */
1586 		if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1587 			return -ECHILD;
1588 
1589 		*seqp = seq;
1590 		status = d_revalidate(dentry, nd->flags);
1591 		if (likely(status > 0)) {
1592 			/*
1593 			 * Note: do negative dentry check after revalidation in
1594 			 * case that drops it.
1595 			 */
1596 			if (unlikely(negative))
1597 				return -ENOENT;
1598 			path->mnt = mnt;
1599 			path->dentry = dentry;
1600 			if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1601 				return 1;
1602 		}
1603 		if (unlazy_child(nd, dentry, seq))
1604 			return -ECHILD;
1605 		if (unlikely(status == -ECHILD))
1606 			/* we'd been told to redo it in non-rcu mode */
1607 			status = d_revalidate(dentry, nd->flags);
1608 	} else {
1609 		dentry = __d_lookup(parent, &nd->last);
1610 		if (unlikely(!dentry))
1611 			return 0;
1612 		status = d_revalidate(dentry, nd->flags);
1613 	}
1614 	if (unlikely(status <= 0)) {
1615 		if (!status)
1616 			d_invalidate(dentry);
1617 		dput(dentry);
1618 		return status;
1619 	}
1620 	if (unlikely(d_is_negative(dentry))) {
1621 		dput(dentry);
1622 		return -ENOENT;
1623 	}
1624 
1625 	path->mnt = mnt;
1626 	path->dentry = dentry;
1627 	err = follow_managed(path, nd);
1628 	if (likely(err > 0))
1629 		*inode = d_backing_inode(path->dentry);
1630 	return err;
1631 }
1632 
1633 /* Fast lookup failed, do it the slow way */
1634 static struct dentry *lookup_slow(const struct qstr *name,
1635 				  struct dentry *dir,
1636 				  unsigned int flags)
1637 {
1638 	struct dentry *dentry = ERR_PTR(-ENOENT), *old;
1639 	struct inode *inode = dir->d_inode;
1640 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1641 
1642 	inode_lock_shared(inode);
1643 	/* Don't go there if it's already dead */
1644 	if (unlikely(IS_DEADDIR(inode)))
1645 		goto out;
1646 again:
1647 	dentry = d_alloc_parallel(dir, name, &wq);
1648 	if (IS_ERR(dentry))
1649 		goto out;
1650 	if (unlikely(!d_in_lookup(dentry))) {
1651 		if (!(flags & LOOKUP_NO_REVAL)) {
1652 			int error = d_revalidate(dentry, flags);
1653 			if (unlikely(error <= 0)) {
1654 				if (!error) {
1655 					d_invalidate(dentry);
1656 					dput(dentry);
1657 					goto again;
1658 				}
1659 				dput(dentry);
1660 				dentry = ERR_PTR(error);
1661 			}
1662 		}
1663 	} else {
1664 		old = inode->i_op->lookup(inode, dentry, flags);
1665 		d_lookup_done(dentry);
1666 		if (unlikely(old)) {
1667 			dput(dentry);
1668 			dentry = old;
1669 		}
1670 	}
1671 out:
1672 	inode_unlock_shared(inode);
1673 	return dentry;
1674 }
1675 
1676 static inline int may_lookup(struct nameidata *nd)
1677 {
1678 	if (nd->flags & LOOKUP_RCU) {
1679 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1680 		if (err != -ECHILD)
1681 			return err;
1682 		if (unlazy_walk(nd))
1683 			return -ECHILD;
1684 	}
1685 	return inode_permission(nd->inode, MAY_EXEC);
1686 }
1687 
1688 static inline int handle_dots(struct nameidata *nd, int type)
1689 {
1690 	if (type == LAST_DOTDOT) {
1691 		if (!nd->root.mnt)
1692 			set_root(nd);
1693 		if (nd->flags & LOOKUP_RCU) {
1694 			return follow_dotdot_rcu(nd);
1695 		} else
1696 			return follow_dotdot(nd);
1697 	}
1698 	return 0;
1699 }
1700 
1701 static int pick_link(struct nameidata *nd, struct path *link,
1702 		     struct inode *inode, unsigned seq)
1703 {
1704 	int error;
1705 	struct saved *last;
1706 	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1707 		path_to_nameidata(link, nd);
1708 		return -ELOOP;
1709 	}
1710 	if (!(nd->flags & LOOKUP_RCU)) {
1711 		if (link->mnt == nd->path.mnt)
1712 			mntget(link->mnt);
1713 	}
1714 	error = nd_alloc_stack(nd);
1715 	if (unlikely(error)) {
1716 		if (error == -ECHILD) {
1717 			if (unlikely(!legitimize_path(nd, link, seq))) {
1718 				drop_links(nd);
1719 				nd->depth = 0;
1720 				nd->flags &= ~LOOKUP_RCU;
1721 				nd->path.mnt = NULL;
1722 				nd->path.dentry = NULL;
1723 				if (!(nd->flags & LOOKUP_ROOT))
1724 					nd->root.mnt = NULL;
1725 				rcu_read_unlock();
1726 			} else if (likely(unlazy_walk(nd)) == 0)
1727 				error = nd_alloc_stack(nd);
1728 		}
1729 		if (error) {
1730 			path_put(link);
1731 			return error;
1732 		}
1733 	}
1734 
1735 	last = nd->stack + nd->depth++;
1736 	last->link = *link;
1737 	clear_delayed_call(&last->done);
1738 	nd->link_inode = inode;
1739 	last->seq = seq;
1740 	return 1;
1741 }
1742 
1743 enum {WALK_FOLLOW = 1, WALK_MORE = 2};
1744 
1745 /*
1746  * Do we need to follow links? We _really_ want to be able
1747  * to do this check without having to look at inode->i_op,
1748  * so we keep a cache of "no, this doesn't need follow_link"
1749  * for the common case.
1750  */
1751 static inline int step_into(struct nameidata *nd, struct path *path,
1752 			    int flags, struct inode *inode, unsigned seq)
1753 {
1754 	if (!(flags & WALK_MORE) && nd->depth)
1755 		put_link(nd);
1756 	if (likely(!d_is_symlink(path->dentry)) ||
1757 	   !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) {
1758 		/* not a symlink or should not follow */
1759 		path_to_nameidata(path, nd);
1760 		nd->inode = inode;
1761 		nd->seq = seq;
1762 		return 0;
1763 	}
1764 	/* make sure that d_is_symlink above matches inode */
1765 	if (nd->flags & LOOKUP_RCU) {
1766 		if (read_seqcount_retry(&path->dentry->d_seq, seq))
1767 			return -ECHILD;
1768 	}
1769 	return pick_link(nd, path, inode, seq);
1770 }
1771 
1772 static int walk_component(struct nameidata *nd, int flags)
1773 {
1774 	struct path path;
1775 	struct inode *inode;
1776 	unsigned seq;
1777 	int err;
1778 	/*
1779 	 * "." and ".." are special - ".." especially so because it has
1780 	 * to be able to know about the current root directory and
1781 	 * parent relationships.
1782 	 */
1783 	if (unlikely(nd->last_type != LAST_NORM)) {
1784 		err = handle_dots(nd, nd->last_type);
1785 		if (!(flags & WALK_MORE) && nd->depth)
1786 			put_link(nd);
1787 		return err;
1788 	}
1789 	err = lookup_fast(nd, &path, &inode, &seq);
1790 	if (unlikely(err <= 0)) {
1791 		if (err < 0)
1792 			return err;
1793 		path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1794 					  nd->flags);
1795 		if (IS_ERR(path.dentry))
1796 			return PTR_ERR(path.dentry);
1797 
1798 		path.mnt = nd->path.mnt;
1799 		err = follow_managed(&path, nd);
1800 		if (unlikely(err < 0))
1801 			return err;
1802 
1803 		if (unlikely(d_is_negative(path.dentry))) {
1804 			path_to_nameidata(&path, nd);
1805 			return -ENOENT;
1806 		}
1807 
1808 		seq = 0;	/* we are already out of RCU mode */
1809 		inode = d_backing_inode(path.dentry);
1810 	}
1811 
1812 	return step_into(nd, &path, flags, inode, seq);
1813 }
1814 
1815 /*
1816  * We can do the critical dentry name comparison and hashing
1817  * operations one word at a time, but we are limited to:
1818  *
1819  * - Architectures with fast unaligned word accesses. We could
1820  *   do a "get_unaligned()" if this helps and is sufficiently
1821  *   fast.
1822  *
1823  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1824  *   do not trap on the (extremely unlikely) case of a page
1825  *   crossing operation.
1826  *
1827  * - Furthermore, we need an efficient 64-bit compile for the
1828  *   64-bit case in order to generate the "number of bytes in
1829  *   the final mask". Again, that could be replaced with a
1830  *   efficient population count instruction or similar.
1831  */
1832 #ifdef CONFIG_DCACHE_WORD_ACCESS
1833 
1834 #include <asm/word-at-a-time.h>
1835 
1836 #ifdef HASH_MIX
1837 
1838 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1839 
1840 #elif defined(CONFIG_64BIT)
1841 /*
1842  * Register pressure in the mixing function is an issue, particularly
1843  * on 32-bit x86, but almost any function requires one state value and
1844  * one temporary.  Instead, use a function designed for two state values
1845  * and no temporaries.
1846  *
1847  * This function cannot create a collision in only two iterations, so
1848  * we have two iterations to achieve avalanche.  In those two iterations,
1849  * we have six layers of mixing, which is enough to spread one bit's
1850  * influence out to 2^6 = 64 state bits.
1851  *
1852  * Rotate constants are scored by considering either 64 one-bit input
1853  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1854  * probability of that delta causing a change to each of the 128 output
1855  * bits, using a sample of random initial states.
1856  *
1857  * The Shannon entropy of the computed probabilities is then summed
1858  * to produce a score.  Ideally, any input change has a 50% chance of
1859  * toggling any given output bit.
1860  *
1861  * Mixing scores (in bits) for (12,45):
1862  * Input delta: 1-bit      2-bit
1863  * 1 round:     713.3    42542.6
1864  * 2 rounds:   2753.7   140389.8
1865  * 3 rounds:   5954.1   233458.2
1866  * 4 rounds:   7862.6   256672.2
1867  * Perfect:    8192     258048
1868  *            (64*128) (64*63/2 * 128)
1869  */
1870 #define HASH_MIX(x, y, a)	\
1871 	(	x ^= (a),	\
1872 	y ^= x,	x = rol64(x,12),\
1873 	x += y,	y = rol64(y,45),\
1874 	y *= 9			)
1875 
1876 /*
1877  * Fold two longs into one 32-bit hash value.  This must be fast, but
1878  * latency isn't quite as critical, as there is a fair bit of additional
1879  * work done before the hash value is used.
1880  */
1881 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1882 {
1883 	y ^= x * GOLDEN_RATIO_64;
1884 	y *= GOLDEN_RATIO_64;
1885 	return y >> 32;
1886 }
1887 
1888 #else	/* 32-bit case */
1889 
1890 /*
1891  * Mixing scores (in bits) for (7,20):
1892  * Input delta: 1-bit      2-bit
1893  * 1 round:     330.3     9201.6
1894  * 2 rounds:   1246.4    25475.4
1895  * 3 rounds:   1907.1    31295.1
1896  * 4 rounds:   2042.3    31718.6
1897  * Perfect:    2048      31744
1898  *            (32*64)   (32*31/2 * 64)
1899  */
1900 #define HASH_MIX(x, y, a)	\
1901 	(	x ^= (a),	\
1902 	y ^= x,	x = rol32(x, 7),\
1903 	x += y,	y = rol32(y,20),\
1904 	y *= 9			)
1905 
1906 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1907 {
1908 	/* Use arch-optimized multiply if one exists */
1909 	return __hash_32(y ^ __hash_32(x));
1910 }
1911 
1912 #endif
1913 
1914 /*
1915  * Return the hash of a string of known length.  This is carfully
1916  * designed to match hash_name(), which is the more critical function.
1917  * In particular, we must end by hashing a final word containing 0..7
1918  * payload bytes, to match the way that hash_name() iterates until it
1919  * finds the delimiter after the name.
1920  */
1921 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1922 {
1923 	unsigned long a, x = 0, y = (unsigned long)salt;
1924 
1925 	for (;;) {
1926 		if (!len)
1927 			goto done;
1928 		a = load_unaligned_zeropad(name);
1929 		if (len < sizeof(unsigned long))
1930 			break;
1931 		HASH_MIX(x, y, a);
1932 		name += sizeof(unsigned long);
1933 		len -= sizeof(unsigned long);
1934 	}
1935 	x ^= a & bytemask_from_count(len);
1936 done:
1937 	return fold_hash(x, y);
1938 }
1939 EXPORT_SYMBOL(full_name_hash);
1940 
1941 /* Return the "hash_len" (hash and length) of a null-terminated string */
1942 u64 hashlen_string(const void *salt, const char *name)
1943 {
1944 	unsigned long a = 0, x = 0, y = (unsigned long)salt;
1945 	unsigned long adata, mask, len;
1946 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1947 
1948 	len = 0;
1949 	goto inside;
1950 
1951 	do {
1952 		HASH_MIX(x, y, a);
1953 		len += sizeof(unsigned long);
1954 inside:
1955 		a = load_unaligned_zeropad(name+len);
1956 	} while (!has_zero(a, &adata, &constants));
1957 
1958 	adata = prep_zero_mask(a, adata, &constants);
1959 	mask = create_zero_mask(adata);
1960 	x ^= a & zero_bytemask(mask);
1961 
1962 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1963 }
1964 EXPORT_SYMBOL(hashlen_string);
1965 
1966 /*
1967  * Calculate the length and hash of the path component, and
1968  * return the "hash_len" as the result.
1969  */
1970 static inline u64 hash_name(const void *salt, const char *name)
1971 {
1972 	unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
1973 	unsigned long adata, bdata, mask, len;
1974 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1975 
1976 	len = 0;
1977 	goto inside;
1978 
1979 	do {
1980 		HASH_MIX(x, y, a);
1981 		len += sizeof(unsigned long);
1982 inside:
1983 		a = load_unaligned_zeropad(name+len);
1984 		b = a ^ REPEAT_BYTE('/');
1985 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1986 
1987 	adata = prep_zero_mask(a, adata, &constants);
1988 	bdata = prep_zero_mask(b, bdata, &constants);
1989 	mask = create_zero_mask(adata | bdata);
1990 	x ^= a & zero_bytemask(mask);
1991 
1992 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1993 }
1994 
1995 #else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
1996 
1997 /* Return the hash of a string of known length */
1998 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1999 {
2000 	unsigned long hash = init_name_hash(salt);
2001 	while (len--)
2002 		hash = partial_name_hash((unsigned char)*name++, hash);
2003 	return end_name_hash(hash);
2004 }
2005 EXPORT_SYMBOL(full_name_hash);
2006 
2007 /* Return the "hash_len" (hash and length) of a null-terminated string */
2008 u64 hashlen_string(const void *salt, const char *name)
2009 {
2010 	unsigned long hash = init_name_hash(salt);
2011 	unsigned long len = 0, c;
2012 
2013 	c = (unsigned char)*name;
2014 	while (c) {
2015 		len++;
2016 		hash = partial_name_hash(c, hash);
2017 		c = (unsigned char)name[len];
2018 	}
2019 	return hashlen_create(end_name_hash(hash), len);
2020 }
2021 EXPORT_SYMBOL(hashlen_string);
2022 
2023 /*
2024  * We know there's a real path component here of at least
2025  * one character.
2026  */
2027 static inline u64 hash_name(const void *salt, const char *name)
2028 {
2029 	unsigned long hash = init_name_hash(salt);
2030 	unsigned long len = 0, c;
2031 
2032 	c = (unsigned char)*name;
2033 	do {
2034 		len++;
2035 		hash = partial_name_hash(c, hash);
2036 		c = (unsigned char)name[len];
2037 	} while (c && c != '/');
2038 	return hashlen_create(end_name_hash(hash), len);
2039 }
2040 
2041 #endif
2042 
2043 /*
2044  * Name resolution.
2045  * This is the basic name resolution function, turning a pathname into
2046  * the final dentry. We expect 'base' to be positive and a directory.
2047  *
2048  * Returns 0 and nd will have valid dentry and mnt on success.
2049  * Returns error and drops reference to input namei data on failure.
2050  */
2051 static int link_path_walk(const char *name, struct nameidata *nd)
2052 {
2053 	int err;
2054 
2055 	while (*name=='/')
2056 		name++;
2057 	if (!*name)
2058 		return 0;
2059 
2060 	/* At this point we know we have a real path component. */
2061 	for(;;) {
2062 		u64 hash_len;
2063 		int type;
2064 
2065 		err = may_lookup(nd);
2066 		if (err)
2067 			return err;
2068 
2069 		hash_len = hash_name(nd->path.dentry, name);
2070 
2071 		type = LAST_NORM;
2072 		if (name[0] == '.') switch (hashlen_len(hash_len)) {
2073 			case 2:
2074 				if (name[1] == '.') {
2075 					type = LAST_DOTDOT;
2076 					nd->flags |= LOOKUP_JUMPED;
2077 				}
2078 				break;
2079 			case 1:
2080 				type = LAST_DOT;
2081 		}
2082 		if (likely(type == LAST_NORM)) {
2083 			struct dentry *parent = nd->path.dentry;
2084 			nd->flags &= ~LOOKUP_JUMPED;
2085 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2086 				struct qstr this = { { .hash_len = hash_len }, .name = name };
2087 				err = parent->d_op->d_hash(parent, &this);
2088 				if (err < 0)
2089 					return err;
2090 				hash_len = this.hash_len;
2091 				name = this.name;
2092 			}
2093 		}
2094 
2095 		nd->last.hash_len = hash_len;
2096 		nd->last.name = name;
2097 		nd->last_type = type;
2098 
2099 		name += hashlen_len(hash_len);
2100 		if (!*name)
2101 			goto OK;
2102 		/*
2103 		 * If it wasn't NUL, we know it was '/'. Skip that
2104 		 * slash, and continue until no more slashes.
2105 		 */
2106 		do {
2107 			name++;
2108 		} while (unlikely(*name == '/'));
2109 		if (unlikely(!*name)) {
2110 OK:
2111 			/* pathname body, done */
2112 			if (!nd->depth)
2113 				return 0;
2114 			name = nd->stack[nd->depth - 1].name;
2115 			/* trailing symlink, done */
2116 			if (!name)
2117 				return 0;
2118 			/* last component of nested symlink */
2119 			err = walk_component(nd, WALK_FOLLOW);
2120 		} else {
2121 			/* not the last component */
2122 			err = walk_component(nd, WALK_FOLLOW | WALK_MORE);
2123 		}
2124 		if (err < 0)
2125 			return err;
2126 
2127 		if (err) {
2128 			const char *s = get_link(nd);
2129 
2130 			if (IS_ERR(s))
2131 				return PTR_ERR(s);
2132 			err = 0;
2133 			if (unlikely(!s)) {
2134 				/* jumped */
2135 				put_link(nd);
2136 			} else {
2137 				nd->stack[nd->depth - 1].name = name;
2138 				name = s;
2139 				continue;
2140 			}
2141 		}
2142 		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2143 			if (nd->flags & LOOKUP_RCU) {
2144 				if (unlazy_walk(nd))
2145 					return -ECHILD;
2146 			}
2147 			return -ENOTDIR;
2148 		}
2149 	}
2150 }
2151 
2152 static const char *path_init(struct nameidata *nd, unsigned flags)
2153 {
2154 	const char *s = nd->name->name;
2155 
2156 	if (!*s)
2157 		flags &= ~LOOKUP_RCU;
2158 
2159 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
2160 	nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2161 	nd->depth = 0;
2162 	if (flags & LOOKUP_ROOT) {
2163 		struct dentry *root = nd->root.dentry;
2164 		struct inode *inode = root->d_inode;
2165 		if (*s && unlikely(!d_can_lookup(root)))
2166 			return ERR_PTR(-ENOTDIR);
2167 		nd->path = nd->root;
2168 		nd->inode = inode;
2169 		if (flags & LOOKUP_RCU) {
2170 			rcu_read_lock();
2171 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2172 			nd->root_seq = nd->seq;
2173 			nd->m_seq = read_seqbegin(&mount_lock);
2174 		} else {
2175 			path_get(&nd->path);
2176 		}
2177 		return s;
2178 	}
2179 
2180 	nd->root.mnt = NULL;
2181 	nd->path.mnt = NULL;
2182 	nd->path.dentry = NULL;
2183 
2184 	nd->m_seq = read_seqbegin(&mount_lock);
2185 	if (*s == '/') {
2186 		if (flags & LOOKUP_RCU)
2187 			rcu_read_lock();
2188 		set_root(nd);
2189 		if (likely(!nd_jump_root(nd)))
2190 			return s;
2191 		nd->root.mnt = NULL;
2192 		rcu_read_unlock();
2193 		return ERR_PTR(-ECHILD);
2194 	} else if (nd->dfd == AT_FDCWD) {
2195 		if (flags & LOOKUP_RCU) {
2196 			struct fs_struct *fs = current->fs;
2197 			unsigned seq;
2198 
2199 			rcu_read_lock();
2200 
2201 			do {
2202 				seq = read_seqcount_begin(&fs->seq);
2203 				nd->path = fs->pwd;
2204 				nd->inode = nd->path.dentry->d_inode;
2205 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2206 			} while (read_seqcount_retry(&fs->seq, seq));
2207 		} else {
2208 			get_fs_pwd(current->fs, &nd->path);
2209 			nd->inode = nd->path.dentry->d_inode;
2210 		}
2211 		return s;
2212 	} else {
2213 		/* Caller must check execute permissions on the starting path component */
2214 		struct fd f = fdget_raw(nd->dfd);
2215 		struct dentry *dentry;
2216 
2217 		if (!f.file)
2218 			return ERR_PTR(-EBADF);
2219 
2220 		dentry = f.file->f_path.dentry;
2221 
2222 		if (*s) {
2223 			if (!d_can_lookup(dentry)) {
2224 				fdput(f);
2225 				return ERR_PTR(-ENOTDIR);
2226 			}
2227 		}
2228 
2229 		nd->path = f.file->f_path;
2230 		if (flags & LOOKUP_RCU) {
2231 			rcu_read_lock();
2232 			nd->inode = nd->path.dentry->d_inode;
2233 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2234 		} else {
2235 			path_get(&nd->path);
2236 			nd->inode = nd->path.dentry->d_inode;
2237 		}
2238 		fdput(f);
2239 		return s;
2240 	}
2241 }
2242 
2243 static const char *trailing_symlink(struct nameidata *nd)
2244 {
2245 	const char *s;
2246 	int error = may_follow_link(nd);
2247 	if (unlikely(error))
2248 		return ERR_PTR(error);
2249 	nd->flags |= LOOKUP_PARENT;
2250 	nd->stack[0].name = NULL;
2251 	s = get_link(nd);
2252 	return s ? s : "";
2253 }
2254 
2255 static inline int lookup_last(struct nameidata *nd)
2256 {
2257 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2258 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2259 
2260 	nd->flags &= ~LOOKUP_PARENT;
2261 	return walk_component(nd, 0);
2262 }
2263 
2264 static int handle_lookup_down(struct nameidata *nd)
2265 {
2266 	struct path path = nd->path;
2267 	struct inode *inode = nd->inode;
2268 	unsigned seq = nd->seq;
2269 	int err;
2270 
2271 	if (nd->flags & LOOKUP_RCU) {
2272 		/*
2273 		 * don't bother with unlazy_walk on failure - we are
2274 		 * at the very beginning of walk, so we lose nothing
2275 		 * if we simply redo everything in non-RCU mode
2276 		 */
2277 		if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq)))
2278 			return -ECHILD;
2279 	} else {
2280 		dget(path.dentry);
2281 		err = follow_managed(&path, nd);
2282 		if (unlikely(err < 0))
2283 			return err;
2284 		inode = d_backing_inode(path.dentry);
2285 		seq = 0;
2286 	}
2287 	path_to_nameidata(&path, nd);
2288 	nd->inode = inode;
2289 	nd->seq = seq;
2290 	return 0;
2291 }
2292 
2293 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2294 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2295 {
2296 	const char *s = path_init(nd, flags);
2297 	int err;
2298 
2299 	if (IS_ERR(s))
2300 		return PTR_ERR(s);
2301 
2302 	if (unlikely(flags & LOOKUP_DOWN)) {
2303 		err = handle_lookup_down(nd);
2304 		if (unlikely(err < 0)) {
2305 			terminate_walk(nd);
2306 			return err;
2307 		}
2308 	}
2309 
2310 	while (!(err = link_path_walk(s, nd))
2311 		&& ((err = lookup_last(nd)) > 0)) {
2312 		s = trailing_symlink(nd);
2313 		if (IS_ERR(s)) {
2314 			err = PTR_ERR(s);
2315 			break;
2316 		}
2317 	}
2318 	if (!err)
2319 		err = complete_walk(nd);
2320 
2321 	if (!err && nd->flags & LOOKUP_DIRECTORY)
2322 		if (!d_can_lookup(nd->path.dentry))
2323 			err = -ENOTDIR;
2324 	if (!err) {
2325 		*path = nd->path;
2326 		nd->path.mnt = NULL;
2327 		nd->path.dentry = NULL;
2328 	}
2329 	terminate_walk(nd);
2330 	return err;
2331 }
2332 
2333 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2334 			   struct path *path, struct path *root)
2335 {
2336 	int retval;
2337 	struct nameidata nd;
2338 	if (IS_ERR(name))
2339 		return PTR_ERR(name);
2340 	if (unlikely(root)) {
2341 		nd.root = *root;
2342 		flags |= LOOKUP_ROOT;
2343 	}
2344 	set_nameidata(&nd, dfd, name);
2345 	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2346 	if (unlikely(retval == -ECHILD))
2347 		retval = path_lookupat(&nd, flags, path);
2348 	if (unlikely(retval == -ESTALE))
2349 		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2350 
2351 	if (likely(!retval))
2352 		audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2353 	restore_nameidata();
2354 	putname(name);
2355 	return retval;
2356 }
2357 
2358 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2359 static int path_parentat(struct nameidata *nd, unsigned flags,
2360 				struct path *parent)
2361 {
2362 	const char *s = path_init(nd, flags);
2363 	int err;
2364 	if (IS_ERR(s))
2365 		return PTR_ERR(s);
2366 	err = link_path_walk(s, nd);
2367 	if (!err)
2368 		err = complete_walk(nd);
2369 	if (!err) {
2370 		*parent = nd->path;
2371 		nd->path.mnt = NULL;
2372 		nd->path.dentry = NULL;
2373 	}
2374 	terminate_walk(nd);
2375 	return err;
2376 }
2377 
2378 static struct filename *filename_parentat(int dfd, struct filename *name,
2379 				unsigned int flags, struct path *parent,
2380 				struct qstr *last, int *type)
2381 {
2382 	int retval;
2383 	struct nameidata nd;
2384 
2385 	if (IS_ERR(name))
2386 		return name;
2387 	set_nameidata(&nd, dfd, name);
2388 	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2389 	if (unlikely(retval == -ECHILD))
2390 		retval = path_parentat(&nd, flags, parent);
2391 	if (unlikely(retval == -ESTALE))
2392 		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2393 	if (likely(!retval)) {
2394 		*last = nd.last;
2395 		*type = nd.last_type;
2396 		audit_inode(name, parent->dentry, LOOKUP_PARENT);
2397 	} else {
2398 		putname(name);
2399 		name = ERR_PTR(retval);
2400 	}
2401 	restore_nameidata();
2402 	return name;
2403 }
2404 
2405 /* does lookup, returns the object with parent locked */
2406 struct dentry *kern_path_locked(const char *name, struct path *path)
2407 {
2408 	struct filename *filename;
2409 	struct dentry *d;
2410 	struct qstr last;
2411 	int type;
2412 
2413 	filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2414 				    &last, &type);
2415 	if (IS_ERR(filename))
2416 		return ERR_CAST(filename);
2417 	if (unlikely(type != LAST_NORM)) {
2418 		path_put(path);
2419 		putname(filename);
2420 		return ERR_PTR(-EINVAL);
2421 	}
2422 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2423 	d = __lookup_hash(&last, path->dentry, 0);
2424 	if (IS_ERR(d)) {
2425 		inode_unlock(path->dentry->d_inode);
2426 		path_put(path);
2427 	}
2428 	putname(filename);
2429 	return d;
2430 }
2431 
2432 int kern_path(const char *name, unsigned int flags, struct path *path)
2433 {
2434 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2435 			       flags, path, NULL);
2436 }
2437 EXPORT_SYMBOL(kern_path);
2438 
2439 /**
2440  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2441  * @dentry:  pointer to dentry of the base directory
2442  * @mnt: pointer to vfs mount of the base directory
2443  * @name: pointer to file name
2444  * @flags: lookup flags
2445  * @path: pointer to struct path to fill
2446  */
2447 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2448 		    const char *name, unsigned int flags,
2449 		    struct path *path)
2450 {
2451 	struct path root = {.mnt = mnt, .dentry = dentry};
2452 	/* the first argument of filename_lookup() is ignored with root */
2453 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2454 			       flags , path, &root);
2455 }
2456 EXPORT_SYMBOL(vfs_path_lookup);
2457 
2458 /**
2459  * lookup_one_len - filesystem helper to lookup single pathname component
2460  * @name:	pathname component to lookup
2461  * @base:	base directory to lookup from
2462  * @len:	maximum length @len should be interpreted to
2463  *
2464  * Note that this routine is purely a helper for filesystem usage and should
2465  * not be called by generic code.
2466  *
2467  * The caller must hold base->i_mutex.
2468  */
2469 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2470 {
2471 	struct qstr this;
2472 	unsigned int c;
2473 	int err;
2474 
2475 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2476 
2477 	this.name = name;
2478 	this.len = len;
2479 	this.hash = full_name_hash(base, name, len);
2480 	if (!len)
2481 		return ERR_PTR(-EACCES);
2482 
2483 	if (unlikely(name[0] == '.')) {
2484 		if (len < 2 || (len == 2 && name[1] == '.'))
2485 			return ERR_PTR(-EACCES);
2486 	}
2487 
2488 	while (len--) {
2489 		c = *(const unsigned char *)name++;
2490 		if (c == '/' || c == '\0')
2491 			return ERR_PTR(-EACCES);
2492 	}
2493 	/*
2494 	 * See if the low-level filesystem might want
2495 	 * to use its own hash..
2496 	 */
2497 	if (base->d_flags & DCACHE_OP_HASH) {
2498 		int err = base->d_op->d_hash(base, &this);
2499 		if (err < 0)
2500 			return ERR_PTR(err);
2501 	}
2502 
2503 	err = inode_permission(base->d_inode, MAY_EXEC);
2504 	if (err)
2505 		return ERR_PTR(err);
2506 
2507 	return __lookup_hash(&this, base, 0);
2508 }
2509 EXPORT_SYMBOL(lookup_one_len);
2510 
2511 /**
2512  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2513  * @name:	pathname component to lookup
2514  * @base:	base directory to lookup from
2515  * @len:	maximum length @len should be interpreted to
2516  *
2517  * Note that this routine is purely a helper for filesystem usage and should
2518  * not be called by generic code.
2519  *
2520  * Unlike lookup_one_len, it should be called without the parent
2521  * i_mutex held, and will take the i_mutex itself if necessary.
2522  */
2523 struct dentry *lookup_one_len_unlocked(const char *name,
2524 				       struct dentry *base, int len)
2525 {
2526 	struct qstr this;
2527 	unsigned int c;
2528 	int err;
2529 	struct dentry *ret;
2530 
2531 	this.name = name;
2532 	this.len = len;
2533 	this.hash = full_name_hash(base, name, len);
2534 	if (!len)
2535 		return ERR_PTR(-EACCES);
2536 
2537 	if (unlikely(name[0] == '.')) {
2538 		if (len < 2 || (len == 2 && name[1] == '.'))
2539 			return ERR_PTR(-EACCES);
2540 	}
2541 
2542 	while (len--) {
2543 		c = *(const unsigned char *)name++;
2544 		if (c == '/' || c == '\0')
2545 			return ERR_PTR(-EACCES);
2546 	}
2547 	/*
2548 	 * See if the low-level filesystem might want
2549 	 * to use its own hash..
2550 	 */
2551 	if (base->d_flags & DCACHE_OP_HASH) {
2552 		int err = base->d_op->d_hash(base, &this);
2553 		if (err < 0)
2554 			return ERR_PTR(err);
2555 	}
2556 
2557 	err = inode_permission(base->d_inode, MAY_EXEC);
2558 	if (err)
2559 		return ERR_PTR(err);
2560 
2561 	ret = lookup_dcache(&this, base, 0);
2562 	if (!ret)
2563 		ret = lookup_slow(&this, base, 0);
2564 	return ret;
2565 }
2566 EXPORT_SYMBOL(lookup_one_len_unlocked);
2567 
2568 #ifdef CONFIG_UNIX98_PTYS
2569 int path_pts(struct path *path)
2570 {
2571 	/* Find something mounted on "pts" in the same directory as
2572 	 * the input path.
2573 	 */
2574 	struct dentry *child, *parent;
2575 	struct qstr this;
2576 	int ret;
2577 
2578 	ret = path_parent_directory(path);
2579 	if (ret)
2580 		return ret;
2581 
2582 	parent = path->dentry;
2583 	this.name = "pts";
2584 	this.len = 3;
2585 	child = d_hash_and_lookup(parent, &this);
2586 	if (!child)
2587 		return -ENOENT;
2588 
2589 	path->dentry = child;
2590 	dput(parent);
2591 	follow_mount(path);
2592 	return 0;
2593 }
2594 #endif
2595 
2596 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2597 		 struct path *path, int *empty)
2598 {
2599 	return filename_lookup(dfd, getname_flags(name, flags, empty),
2600 			       flags, path, NULL);
2601 }
2602 EXPORT_SYMBOL(user_path_at_empty);
2603 
2604 /**
2605  * mountpoint_last - look up last component for umount
2606  * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2607  *
2608  * This is a special lookup_last function just for umount. In this case, we
2609  * need to resolve the path without doing any revalidation.
2610  *
2611  * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2612  * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2613  * in almost all cases, this lookup will be served out of the dcache. The only
2614  * cases where it won't are if nd->last refers to a symlink or the path is
2615  * bogus and it doesn't exist.
2616  *
2617  * Returns:
2618  * -error: if there was an error during lookup. This includes -ENOENT if the
2619  *         lookup found a negative dentry.
2620  *
2621  * 0:      if we successfully resolved nd->last and found it to not to be a
2622  *         symlink that needs to be followed.
2623  *
2624  * 1:      if we successfully resolved nd->last and found it to be a symlink
2625  *         that needs to be followed.
2626  */
2627 static int
2628 mountpoint_last(struct nameidata *nd)
2629 {
2630 	int error = 0;
2631 	struct dentry *dir = nd->path.dentry;
2632 	struct path path;
2633 
2634 	/* If we're in rcuwalk, drop out of it to handle last component */
2635 	if (nd->flags & LOOKUP_RCU) {
2636 		if (unlazy_walk(nd))
2637 			return -ECHILD;
2638 	}
2639 
2640 	nd->flags &= ~LOOKUP_PARENT;
2641 
2642 	if (unlikely(nd->last_type != LAST_NORM)) {
2643 		error = handle_dots(nd, nd->last_type);
2644 		if (error)
2645 			return error;
2646 		path.dentry = dget(nd->path.dentry);
2647 	} else {
2648 		path.dentry = d_lookup(dir, &nd->last);
2649 		if (!path.dentry) {
2650 			/*
2651 			 * No cached dentry. Mounted dentries are pinned in the
2652 			 * cache, so that means that this dentry is probably
2653 			 * a symlink or the path doesn't actually point
2654 			 * to a mounted dentry.
2655 			 */
2656 			path.dentry = lookup_slow(&nd->last, dir,
2657 					     nd->flags | LOOKUP_NO_REVAL);
2658 			if (IS_ERR(path.dentry))
2659 				return PTR_ERR(path.dentry);
2660 		}
2661 	}
2662 	if (d_is_negative(path.dentry)) {
2663 		dput(path.dentry);
2664 		return -ENOENT;
2665 	}
2666 	path.mnt = nd->path.mnt;
2667 	return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0);
2668 }
2669 
2670 /**
2671  * path_mountpoint - look up a path to be umounted
2672  * @nd:		lookup context
2673  * @flags:	lookup flags
2674  * @path:	pointer to container for result
2675  *
2676  * Look up the given name, but don't attempt to revalidate the last component.
2677  * Returns 0 and "path" will be valid on success; Returns error otherwise.
2678  */
2679 static int
2680 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2681 {
2682 	const char *s = path_init(nd, flags);
2683 	int err;
2684 	if (IS_ERR(s))
2685 		return PTR_ERR(s);
2686 	while (!(err = link_path_walk(s, nd)) &&
2687 		(err = mountpoint_last(nd)) > 0) {
2688 		s = trailing_symlink(nd);
2689 		if (IS_ERR(s)) {
2690 			err = PTR_ERR(s);
2691 			break;
2692 		}
2693 	}
2694 	if (!err) {
2695 		*path = nd->path;
2696 		nd->path.mnt = NULL;
2697 		nd->path.dentry = NULL;
2698 		follow_mount(path);
2699 	}
2700 	terminate_walk(nd);
2701 	return err;
2702 }
2703 
2704 static int
2705 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2706 			unsigned int flags)
2707 {
2708 	struct nameidata nd;
2709 	int error;
2710 	if (IS_ERR(name))
2711 		return PTR_ERR(name);
2712 	set_nameidata(&nd, dfd, name);
2713 	error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2714 	if (unlikely(error == -ECHILD))
2715 		error = path_mountpoint(&nd, flags, path);
2716 	if (unlikely(error == -ESTALE))
2717 		error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2718 	if (likely(!error))
2719 		audit_inode(name, path->dentry, 0);
2720 	restore_nameidata();
2721 	putname(name);
2722 	return error;
2723 }
2724 
2725 /**
2726  * user_path_mountpoint_at - lookup a path from userland in order to umount it
2727  * @dfd:	directory file descriptor
2728  * @name:	pathname from userland
2729  * @flags:	lookup flags
2730  * @path:	pointer to container to hold result
2731  *
2732  * A umount is a special case for path walking. We're not actually interested
2733  * in the inode in this situation, and ESTALE errors can be a problem. We
2734  * simply want track down the dentry and vfsmount attached at the mountpoint
2735  * and avoid revalidating the last component.
2736  *
2737  * Returns 0 and populates "path" on success.
2738  */
2739 int
2740 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2741 			struct path *path)
2742 {
2743 	return filename_mountpoint(dfd, getname(name), path, flags);
2744 }
2745 
2746 int
2747 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2748 			unsigned int flags)
2749 {
2750 	return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2751 }
2752 EXPORT_SYMBOL(kern_path_mountpoint);
2753 
2754 int __check_sticky(struct inode *dir, struct inode *inode)
2755 {
2756 	kuid_t fsuid = current_fsuid();
2757 
2758 	if (uid_eq(inode->i_uid, fsuid))
2759 		return 0;
2760 	if (uid_eq(dir->i_uid, fsuid))
2761 		return 0;
2762 	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2763 }
2764 EXPORT_SYMBOL(__check_sticky);
2765 
2766 /*
2767  *	Check whether we can remove a link victim from directory dir, check
2768  *  whether the type of victim is right.
2769  *  1. We can't do it if dir is read-only (done in permission())
2770  *  2. We should have write and exec permissions on dir
2771  *  3. We can't remove anything from append-only dir
2772  *  4. We can't do anything with immutable dir (done in permission())
2773  *  5. If the sticky bit on dir is set we should either
2774  *	a. be owner of dir, or
2775  *	b. be owner of victim, or
2776  *	c. have CAP_FOWNER capability
2777  *  6. If the victim is append-only or immutable we can't do antyhing with
2778  *     links pointing to it.
2779  *  7. If the victim has an unknown uid or gid we can't change the inode.
2780  *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2781  *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2782  * 10. We can't remove a root or mountpoint.
2783  * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2784  *     nfs_async_unlink().
2785  */
2786 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2787 {
2788 	struct inode *inode = d_backing_inode(victim);
2789 	int error;
2790 
2791 	if (d_is_negative(victim))
2792 		return -ENOENT;
2793 	BUG_ON(!inode);
2794 
2795 	BUG_ON(victim->d_parent->d_inode != dir);
2796 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2797 
2798 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2799 	if (error)
2800 		return error;
2801 	if (IS_APPEND(dir))
2802 		return -EPERM;
2803 
2804 	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2805 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2806 		return -EPERM;
2807 	if (isdir) {
2808 		if (!d_is_dir(victim))
2809 			return -ENOTDIR;
2810 		if (IS_ROOT(victim))
2811 			return -EBUSY;
2812 	} else if (d_is_dir(victim))
2813 		return -EISDIR;
2814 	if (IS_DEADDIR(dir))
2815 		return -ENOENT;
2816 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2817 		return -EBUSY;
2818 	return 0;
2819 }
2820 
2821 /*	Check whether we can create an object with dentry child in directory
2822  *  dir.
2823  *  1. We can't do it if child already exists (open has special treatment for
2824  *     this case, but since we are inlined it's OK)
2825  *  2. We can't do it if dir is read-only (done in permission())
2826  *  3. We can't do it if the fs can't represent the fsuid or fsgid.
2827  *  4. We should have write and exec permissions on dir
2828  *  5. We can't do it if dir is immutable (done in permission())
2829  */
2830 static inline int may_create(struct inode *dir, struct dentry *child)
2831 {
2832 	struct user_namespace *s_user_ns;
2833 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2834 	if (child->d_inode)
2835 		return -EEXIST;
2836 	if (IS_DEADDIR(dir))
2837 		return -ENOENT;
2838 	s_user_ns = dir->i_sb->s_user_ns;
2839 	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2840 	    !kgid_has_mapping(s_user_ns, current_fsgid()))
2841 		return -EOVERFLOW;
2842 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2843 }
2844 
2845 /*
2846  * p1 and p2 should be directories on the same fs.
2847  */
2848 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2849 {
2850 	struct dentry *p;
2851 
2852 	if (p1 == p2) {
2853 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2854 		return NULL;
2855 	}
2856 
2857 	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2858 
2859 	p = d_ancestor(p2, p1);
2860 	if (p) {
2861 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2862 		inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2863 		return p;
2864 	}
2865 
2866 	p = d_ancestor(p1, p2);
2867 	if (p) {
2868 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2869 		inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2870 		return p;
2871 	}
2872 
2873 	inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2874 	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2875 	return NULL;
2876 }
2877 EXPORT_SYMBOL(lock_rename);
2878 
2879 void unlock_rename(struct dentry *p1, struct dentry *p2)
2880 {
2881 	inode_unlock(p1->d_inode);
2882 	if (p1 != p2) {
2883 		inode_unlock(p2->d_inode);
2884 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2885 	}
2886 }
2887 EXPORT_SYMBOL(unlock_rename);
2888 
2889 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2890 		bool want_excl)
2891 {
2892 	int error = may_create(dir, dentry);
2893 	if (error)
2894 		return error;
2895 
2896 	if (!dir->i_op->create)
2897 		return -EACCES;	/* shouldn't it be ENOSYS? */
2898 	mode &= S_IALLUGO;
2899 	mode |= S_IFREG;
2900 	error = security_inode_create(dir, dentry, mode);
2901 	if (error)
2902 		return error;
2903 	error = dir->i_op->create(dir, dentry, mode, want_excl);
2904 	if (!error)
2905 		fsnotify_create(dir, dentry);
2906 	return error;
2907 }
2908 EXPORT_SYMBOL(vfs_create);
2909 
2910 bool may_open_dev(const struct path *path)
2911 {
2912 	return !(path->mnt->mnt_flags & MNT_NODEV) &&
2913 		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2914 }
2915 
2916 static int may_open(const struct path *path, int acc_mode, int flag)
2917 {
2918 	struct dentry *dentry = path->dentry;
2919 	struct inode *inode = dentry->d_inode;
2920 	int error;
2921 
2922 	if (!inode)
2923 		return -ENOENT;
2924 
2925 	switch (inode->i_mode & S_IFMT) {
2926 	case S_IFLNK:
2927 		return -ELOOP;
2928 	case S_IFDIR:
2929 		if (acc_mode & MAY_WRITE)
2930 			return -EISDIR;
2931 		break;
2932 	case S_IFBLK:
2933 	case S_IFCHR:
2934 		if (!may_open_dev(path))
2935 			return -EACCES;
2936 		/*FALLTHRU*/
2937 	case S_IFIFO:
2938 	case S_IFSOCK:
2939 		flag &= ~O_TRUNC;
2940 		break;
2941 	}
2942 
2943 	error = inode_permission(inode, MAY_OPEN | acc_mode);
2944 	if (error)
2945 		return error;
2946 
2947 	/*
2948 	 * An append-only file must be opened in append mode for writing.
2949 	 */
2950 	if (IS_APPEND(inode)) {
2951 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2952 			return -EPERM;
2953 		if (flag & O_TRUNC)
2954 			return -EPERM;
2955 	}
2956 
2957 	/* O_NOATIME can only be set by the owner or superuser */
2958 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2959 		return -EPERM;
2960 
2961 	return 0;
2962 }
2963 
2964 static int handle_truncate(struct file *filp)
2965 {
2966 	const struct path *path = &filp->f_path;
2967 	struct inode *inode = path->dentry->d_inode;
2968 	int error = get_write_access(inode);
2969 	if (error)
2970 		return error;
2971 	/*
2972 	 * Refuse to truncate files with mandatory locks held on them.
2973 	 */
2974 	error = locks_verify_locked(filp);
2975 	if (!error)
2976 		error = security_path_truncate(path);
2977 	if (!error) {
2978 		error = do_truncate(path->dentry, 0,
2979 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2980 				    filp);
2981 	}
2982 	put_write_access(inode);
2983 	return error;
2984 }
2985 
2986 static inline int open_to_namei_flags(int flag)
2987 {
2988 	if ((flag & O_ACCMODE) == 3)
2989 		flag--;
2990 	return flag;
2991 }
2992 
2993 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
2994 {
2995 	struct user_namespace *s_user_ns;
2996 	int error = security_path_mknod(dir, dentry, mode, 0);
2997 	if (error)
2998 		return error;
2999 
3000 	s_user_ns = dir->dentry->d_sb->s_user_ns;
3001 	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
3002 	    !kgid_has_mapping(s_user_ns, current_fsgid()))
3003 		return -EOVERFLOW;
3004 
3005 	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
3006 	if (error)
3007 		return error;
3008 
3009 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
3010 }
3011 
3012 /*
3013  * Attempt to atomically look up, create and open a file from a negative
3014  * dentry.
3015  *
3016  * Returns 0 if successful.  The file will have been created and attached to
3017  * @file by the filesystem calling finish_open().
3018  *
3019  * Returns 1 if the file was looked up only or didn't need creating.  The
3020  * caller will need to perform the open themselves.  @path will have been
3021  * updated to point to the new dentry.  This may be negative.
3022  *
3023  * Returns an error code otherwise.
3024  */
3025 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
3026 			struct path *path, struct file *file,
3027 			const struct open_flags *op,
3028 			int open_flag, umode_t mode,
3029 			int *opened)
3030 {
3031 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3032 	struct inode *dir =  nd->path.dentry->d_inode;
3033 	int error;
3034 
3035 	if (!(~open_flag & (O_EXCL | O_CREAT)))	/* both O_EXCL and O_CREAT */
3036 		open_flag &= ~O_TRUNC;
3037 
3038 	if (nd->flags & LOOKUP_DIRECTORY)
3039 		open_flag |= O_DIRECTORY;
3040 
3041 	file->f_path.dentry = DENTRY_NOT_SET;
3042 	file->f_path.mnt = nd->path.mnt;
3043 	error = dir->i_op->atomic_open(dir, dentry, file,
3044 				       open_to_namei_flags(open_flag),
3045 				       mode, opened);
3046 	d_lookup_done(dentry);
3047 	if (!error) {
3048 		/*
3049 		 * We didn't have the inode before the open, so check open
3050 		 * permission here.
3051 		 */
3052 		int acc_mode = op->acc_mode;
3053 		if (*opened & FILE_CREATED) {
3054 			WARN_ON(!(open_flag & O_CREAT));
3055 			fsnotify_create(dir, dentry);
3056 			acc_mode = 0;
3057 		}
3058 		error = may_open(&file->f_path, acc_mode, open_flag);
3059 		if (WARN_ON(error > 0))
3060 			error = -EINVAL;
3061 	} else if (error > 0) {
3062 		if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3063 			error = -EIO;
3064 		} else {
3065 			if (file->f_path.dentry) {
3066 				dput(dentry);
3067 				dentry = file->f_path.dentry;
3068 			}
3069 			if (*opened & FILE_CREATED)
3070 				fsnotify_create(dir, dentry);
3071 			if (unlikely(d_is_negative(dentry))) {
3072 				error = -ENOENT;
3073 			} else {
3074 				path->dentry = dentry;
3075 				path->mnt = nd->path.mnt;
3076 				return 1;
3077 			}
3078 		}
3079 	}
3080 	dput(dentry);
3081 	return error;
3082 }
3083 
3084 /*
3085  * Look up and maybe create and open the last component.
3086  *
3087  * Must be called with i_mutex held on parent.
3088  *
3089  * Returns 0 if the file was successfully atomically created (if necessary) and
3090  * opened.  In this case the file will be returned attached to @file.
3091  *
3092  * Returns 1 if the file was not completely opened at this time, though lookups
3093  * and creations will have been performed and the dentry returned in @path will
3094  * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
3095  * specified then a negative dentry may be returned.
3096  *
3097  * An error code is returned otherwise.
3098  *
3099  * FILE_CREATE will be set in @*opened if the dentry was created and will be
3100  * cleared otherwise prior to returning.
3101  */
3102 static int lookup_open(struct nameidata *nd, struct path *path,
3103 			struct file *file,
3104 			const struct open_flags *op,
3105 			bool got_write, int *opened)
3106 {
3107 	struct dentry *dir = nd->path.dentry;
3108 	struct inode *dir_inode = dir->d_inode;
3109 	int open_flag = op->open_flag;
3110 	struct dentry *dentry;
3111 	int error, create_error = 0;
3112 	umode_t mode = op->mode;
3113 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3114 
3115 	if (unlikely(IS_DEADDIR(dir_inode)))
3116 		return -ENOENT;
3117 
3118 	*opened &= ~FILE_CREATED;
3119 	dentry = d_lookup(dir, &nd->last);
3120 	for (;;) {
3121 		if (!dentry) {
3122 			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3123 			if (IS_ERR(dentry))
3124 				return PTR_ERR(dentry);
3125 		}
3126 		if (d_in_lookup(dentry))
3127 			break;
3128 
3129 		error = d_revalidate(dentry, nd->flags);
3130 		if (likely(error > 0))
3131 			break;
3132 		if (error)
3133 			goto out_dput;
3134 		d_invalidate(dentry);
3135 		dput(dentry);
3136 		dentry = NULL;
3137 	}
3138 	if (dentry->d_inode) {
3139 		/* Cached positive dentry: will open in f_op->open */
3140 		goto out_no_open;
3141 	}
3142 
3143 	/*
3144 	 * Checking write permission is tricky, bacuse we don't know if we are
3145 	 * going to actually need it: O_CREAT opens should work as long as the
3146 	 * file exists.  But checking existence breaks atomicity.  The trick is
3147 	 * to check access and if not granted clear O_CREAT from the flags.
3148 	 *
3149 	 * Another problem is returing the "right" error value (e.g. for an
3150 	 * O_EXCL open we want to return EEXIST not EROFS).
3151 	 */
3152 	if (open_flag & O_CREAT) {
3153 		if (!IS_POSIXACL(dir->d_inode))
3154 			mode &= ~current_umask();
3155 		if (unlikely(!got_write)) {
3156 			create_error = -EROFS;
3157 			open_flag &= ~O_CREAT;
3158 			if (open_flag & (O_EXCL | O_TRUNC))
3159 				goto no_open;
3160 			/* No side effects, safe to clear O_CREAT */
3161 		} else {
3162 			create_error = may_o_create(&nd->path, dentry, mode);
3163 			if (create_error) {
3164 				open_flag &= ~O_CREAT;
3165 				if (open_flag & O_EXCL)
3166 					goto no_open;
3167 			}
3168 		}
3169 	} else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3170 		   unlikely(!got_write)) {
3171 		/*
3172 		 * No O_CREATE -> atomicity not a requirement -> fall
3173 		 * back to lookup + open
3174 		 */
3175 		goto no_open;
3176 	}
3177 
3178 	if (dir_inode->i_op->atomic_open) {
3179 		error = atomic_open(nd, dentry, path, file, op, open_flag,
3180 				    mode, opened);
3181 		if (unlikely(error == -ENOENT) && create_error)
3182 			error = create_error;
3183 		return error;
3184 	}
3185 
3186 no_open:
3187 	if (d_in_lookup(dentry)) {
3188 		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3189 							     nd->flags);
3190 		d_lookup_done(dentry);
3191 		if (unlikely(res)) {
3192 			if (IS_ERR(res)) {
3193 				error = PTR_ERR(res);
3194 				goto out_dput;
3195 			}
3196 			dput(dentry);
3197 			dentry = res;
3198 		}
3199 	}
3200 
3201 	/* Negative dentry, just create the file */
3202 	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3203 		*opened |= FILE_CREATED;
3204 		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3205 		if (!dir_inode->i_op->create) {
3206 			error = -EACCES;
3207 			goto out_dput;
3208 		}
3209 		error = dir_inode->i_op->create(dir_inode, dentry, mode,
3210 						open_flag & O_EXCL);
3211 		if (error)
3212 			goto out_dput;
3213 		fsnotify_create(dir_inode, dentry);
3214 	}
3215 	if (unlikely(create_error) && !dentry->d_inode) {
3216 		error = create_error;
3217 		goto out_dput;
3218 	}
3219 out_no_open:
3220 	path->dentry = dentry;
3221 	path->mnt = nd->path.mnt;
3222 	return 1;
3223 
3224 out_dput:
3225 	dput(dentry);
3226 	return error;
3227 }
3228 
3229 /*
3230  * Handle the last step of open()
3231  */
3232 static int do_last(struct nameidata *nd,
3233 		   struct file *file, const struct open_flags *op,
3234 		   int *opened)
3235 {
3236 	struct dentry *dir = nd->path.dentry;
3237 	int open_flag = op->open_flag;
3238 	bool will_truncate = (open_flag & O_TRUNC) != 0;
3239 	bool got_write = false;
3240 	int acc_mode = op->acc_mode;
3241 	unsigned seq;
3242 	struct inode *inode;
3243 	struct path path;
3244 	int error;
3245 
3246 	nd->flags &= ~LOOKUP_PARENT;
3247 	nd->flags |= op->intent;
3248 
3249 	if (nd->last_type != LAST_NORM) {
3250 		error = handle_dots(nd, nd->last_type);
3251 		if (unlikely(error))
3252 			return error;
3253 		goto finish_open;
3254 	}
3255 
3256 	if (!(open_flag & O_CREAT)) {
3257 		if (nd->last.name[nd->last.len])
3258 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3259 		/* we _can_ be in RCU mode here */
3260 		error = lookup_fast(nd, &path, &inode, &seq);
3261 		if (likely(error > 0))
3262 			goto finish_lookup;
3263 
3264 		if (error < 0)
3265 			return error;
3266 
3267 		BUG_ON(nd->inode != dir->d_inode);
3268 		BUG_ON(nd->flags & LOOKUP_RCU);
3269 	} else {
3270 		/* create side of things */
3271 		/*
3272 		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3273 		 * has been cleared when we got to the last component we are
3274 		 * about to look up
3275 		 */
3276 		error = complete_walk(nd);
3277 		if (error)
3278 			return error;
3279 
3280 		audit_inode(nd->name, dir, LOOKUP_PARENT);
3281 		/* trailing slashes? */
3282 		if (unlikely(nd->last.name[nd->last.len]))
3283 			return -EISDIR;
3284 	}
3285 
3286 	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3287 		error = mnt_want_write(nd->path.mnt);
3288 		if (!error)
3289 			got_write = true;
3290 		/*
3291 		 * do _not_ fail yet - we might not need that or fail with
3292 		 * a different error; let lookup_open() decide; we'll be
3293 		 * dropping this one anyway.
3294 		 */
3295 	}
3296 	if (open_flag & O_CREAT)
3297 		inode_lock(dir->d_inode);
3298 	else
3299 		inode_lock_shared(dir->d_inode);
3300 	error = lookup_open(nd, &path, file, op, got_write, opened);
3301 	if (open_flag & O_CREAT)
3302 		inode_unlock(dir->d_inode);
3303 	else
3304 		inode_unlock_shared(dir->d_inode);
3305 
3306 	if (error <= 0) {
3307 		if (error)
3308 			goto out;
3309 
3310 		if ((*opened & FILE_CREATED) ||
3311 		    !S_ISREG(file_inode(file)->i_mode))
3312 			will_truncate = false;
3313 
3314 		audit_inode(nd->name, file->f_path.dentry, 0);
3315 		goto opened;
3316 	}
3317 
3318 	if (*opened & FILE_CREATED) {
3319 		/* Don't check for write permission, don't truncate */
3320 		open_flag &= ~O_TRUNC;
3321 		will_truncate = false;
3322 		acc_mode = 0;
3323 		path_to_nameidata(&path, nd);
3324 		goto finish_open_created;
3325 	}
3326 
3327 	/*
3328 	 * If atomic_open() acquired write access it is dropped now due to
3329 	 * possible mount and symlink following (this might be optimized away if
3330 	 * necessary...)
3331 	 */
3332 	if (got_write) {
3333 		mnt_drop_write(nd->path.mnt);
3334 		got_write = false;
3335 	}
3336 
3337 	error = follow_managed(&path, nd);
3338 	if (unlikely(error < 0))
3339 		return error;
3340 
3341 	if (unlikely(d_is_negative(path.dentry))) {
3342 		path_to_nameidata(&path, nd);
3343 		return -ENOENT;
3344 	}
3345 
3346 	/*
3347 	 * create/update audit record if it already exists.
3348 	 */
3349 	audit_inode(nd->name, path.dentry, 0);
3350 
3351 	if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3352 		path_to_nameidata(&path, nd);
3353 		return -EEXIST;
3354 	}
3355 
3356 	seq = 0;	/* out of RCU mode, so the value doesn't matter */
3357 	inode = d_backing_inode(path.dentry);
3358 finish_lookup:
3359 	error = step_into(nd, &path, 0, inode, seq);
3360 	if (unlikely(error))
3361 		return error;
3362 finish_open:
3363 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3364 	error = complete_walk(nd);
3365 	if (error)
3366 		return error;
3367 	audit_inode(nd->name, nd->path.dentry, 0);
3368 	error = -EISDIR;
3369 	if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3370 		goto out;
3371 	error = -ENOTDIR;
3372 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3373 		goto out;
3374 	if (!d_is_reg(nd->path.dentry))
3375 		will_truncate = false;
3376 
3377 	if (will_truncate) {
3378 		error = mnt_want_write(nd->path.mnt);
3379 		if (error)
3380 			goto out;
3381 		got_write = true;
3382 	}
3383 finish_open_created:
3384 	error = may_open(&nd->path, acc_mode, open_flag);
3385 	if (error)
3386 		goto out;
3387 	BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3388 	error = vfs_open(&nd->path, file, current_cred());
3389 	if (error)
3390 		goto out;
3391 	*opened |= FILE_OPENED;
3392 opened:
3393 	error = open_check_o_direct(file);
3394 	if (!error)
3395 		error = ima_file_check(file, op->acc_mode, *opened);
3396 	if (!error && will_truncate)
3397 		error = handle_truncate(file);
3398 out:
3399 	if (unlikely(error) && (*opened & FILE_OPENED))
3400 		fput(file);
3401 	if (unlikely(error > 0)) {
3402 		WARN_ON(1);
3403 		error = -EINVAL;
3404 	}
3405 	if (got_write)
3406 		mnt_drop_write(nd->path.mnt);
3407 	return error;
3408 }
3409 
3410 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3411 {
3412 	struct dentry *child = NULL;
3413 	struct inode *dir = dentry->d_inode;
3414 	struct inode *inode;
3415 	int error;
3416 
3417 	/* we want directory to be writable */
3418 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3419 	if (error)
3420 		goto out_err;
3421 	error = -EOPNOTSUPP;
3422 	if (!dir->i_op->tmpfile)
3423 		goto out_err;
3424 	error = -ENOMEM;
3425 	child = d_alloc(dentry, &slash_name);
3426 	if (unlikely(!child))
3427 		goto out_err;
3428 	error = dir->i_op->tmpfile(dir, child, mode);
3429 	if (error)
3430 		goto out_err;
3431 	error = -ENOENT;
3432 	inode = child->d_inode;
3433 	if (unlikely(!inode))
3434 		goto out_err;
3435 	if (!(open_flag & O_EXCL)) {
3436 		spin_lock(&inode->i_lock);
3437 		inode->i_state |= I_LINKABLE;
3438 		spin_unlock(&inode->i_lock);
3439 	}
3440 	return child;
3441 
3442 out_err:
3443 	dput(child);
3444 	return ERR_PTR(error);
3445 }
3446 EXPORT_SYMBOL(vfs_tmpfile);
3447 
3448 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3449 		const struct open_flags *op,
3450 		struct file *file, int *opened)
3451 {
3452 	struct dentry *child;
3453 	struct path path;
3454 	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3455 	if (unlikely(error))
3456 		return error;
3457 	error = mnt_want_write(path.mnt);
3458 	if (unlikely(error))
3459 		goto out;
3460 	child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3461 	error = PTR_ERR(child);
3462 	if (unlikely(IS_ERR(child)))
3463 		goto out2;
3464 	dput(path.dentry);
3465 	path.dentry = child;
3466 	audit_inode(nd->name, child, 0);
3467 	/* Don't check for other permissions, the inode was just created */
3468 	error = may_open(&path, 0, op->open_flag);
3469 	if (error)
3470 		goto out2;
3471 	file->f_path.mnt = path.mnt;
3472 	error = finish_open(file, child, NULL, opened);
3473 	if (error)
3474 		goto out2;
3475 	error = open_check_o_direct(file);
3476 	if (error)
3477 		fput(file);
3478 out2:
3479 	mnt_drop_write(path.mnt);
3480 out:
3481 	path_put(&path);
3482 	return error;
3483 }
3484 
3485 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3486 {
3487 	struct path path;
3488 	int error = path_lookupat(nd, flags, &path);
3489 	if (!error) {
3490 		audit_inode(nd->name, path.dentry, 0);
3491 		error = vfs_open(&path, file, current_cred());
3492 		path_put(&path);
3493 	}
3494 	return error;
3495 }
3496 
3497 static struct file *path_openat(struct nameidata *nd,
3498 			const struct open_flags *op, unsigned flags)
3499 {
3500 	const char *s;
3501 	struct file *file;
3502 	int opened = 0;
3503 	int error;
3504 
3505 	file = get_empty_filp();
3506 	if (IS_ERR(file))
3507 		return file;
3508 
3509 	file->f_flags = op->open_flag;
3510 
3511 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3512 		error = do_tmpfile(nd, flags, op, file, &opened);
3513 		goto out2;
3514 	}
3515 
3516 	if (unlikely(file->f_flags & O_PATH)) {
3517 		error = do_o_path(nd, flags, file);
3518 		if (!error)
3519 			opened |= FILE_OPENED;
3520 		goto out2;
3521 	}
3522 
3523 	s = path_init(nd, flags);
3524 	if (IS_ERR(s)) {
3525 		put_filp(file);
3526 		return ERR_CAST(s);
3527 	}
3528 	while (!(error = link_path_walk(s, nd)) &&
3529 		(error = do_last(nd, file, op, &opened)) > 0) {
3530 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3531 		s = trailing_symlink(nd);
3532 		if (IS_ERR(s)) {
3533 			error = PTR_ERR(s);
3534 			break;
3535 		}
3536 	}
3537 	terminate_walk(nd);
3538 out2:
3539 	if (!(opened & FILE_OPENED)) {
3540 		BUG_ON(!error);
3541 		put_filp(file);
3542 	}
3543 	if (unlikely(error)) {
3544 		if (error == -EOPENSTALE) {
3545 			if (flags & LOOKUP_RCU)
3546 				error = -ECHILD;
3547 			else
3548 				error = -ESTALE;
3549 		}
3550 		file = ERR_PTR(error);
3551 	}
3552 	return file;
3553 }
3554 
3555 struct file *do_filp_open(int dfd, struct filename *pathname,
3556 		const struct open_flags *op)
3557 {
3558 	struct nameidata nd;
3559 	int flags = op->lookup_flags;
3560 	struct file *filp;
3561 
3562 	set_nameidata(&nd, dfd, pathname);
3563 	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3564 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3565 		filp = path_openat(&nd, op, flags);
3566 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3567 		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3568 	restore_nameidata();
3569 	return filp;
3570 }
3571 
3572 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3573 		const char *name, const struct open_flags *op)
3574 {
3575 	struct nameidata nd;
3576 	struct file *file;
3577 	struct filename *filename;
3578 	int flags = op->lookup_flags | LOOKUP_ROOT;
3579 
3580 	nd.root.mnt = mnt;
3581 	nd.root.dentry = dentry;
3582 
3583 	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3584 		return ERR_PTR(-ELOOP);
3585 
3586 	filename = getname_kernel(name);
3587 	if (IS_ERR(filename))
3588 		return ERR_CAST(filename);
3589 
3590 	set_nameidata(&nd, -1, filename);
3591 	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3592 	if (unlikely(file == ERR_PTR(-ECHILD)))
3593 		file = path_openat(&nd, op, flags);
3594 	if (unlikely(file == ERR_PTR(-ESTALE)))
3595 		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3596 	restore_nameidata();
3597 	putname(filename);
3598 	return file;
3599 }
3600 
3601 static struct dentry *filename_create(int dfd, struct filename *name,
3602 				struct path *path, unsigned int lookup_flags)
3603 {
3604 	struct dentry *dentry = ERR_PTR(-EEXIST);
3605 	struct qstr last;
3606 	int type;
3607 	int err2;
3608 	int error;
3609 	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3610 
3611 	/*
3612 	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3613 	 * other flags passed in are ignored!
3614 	 */
3615 	lookup_flags &= LOOKUP_REVAL;
3616 
3617 	name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3618 	if (IS_ERR(name))
3619 		return ERR_CAST(name);
3620 
3621 	/*
3622 	 * Yucky last component or no last component at all?
3623 	 * (foo/., foo/.., /////)
3624 	 */
3625 	if (unlikely(type != LAST_NORM))
3626 		goto out;
3627 
3628 	/* don't fail immediately if it's r/o, at least try to report other errors */
3629 	err2 = mnt_want_write(path->mnt);
3630 	/*
3631 	 * Do the final lookup.
3632 	 */
3633 	lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3634 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3635 	dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3636 	if (IS_ERR(dentry))
3637 		goto unlock;
3638 
3639 	error = -EEXIST;
3640 	if (d_is_positive(dentry))
3641 		goto fail;
3642 
3643 	/*
3644 	 * Special case - lookup gave negative, but... we had foo/bar/
3645 	 * From the vfs_mknod() POV we just have a negative dentry -
3646 	 * all is fine. Let's be bastards - you had / on the end, you've
3647 	 * been asking for (non-existent) directory. -ENOENT for you.
3648 	 */
3649 	if (unlikely(!is_dir && last.name[last.len])) {
3650 		error = -ENOENT;
3651 		goto fail;
3652 	}
3653 	if (unlikely(err2)) {
3654 		error = err2;
3655 		goto fail;
3656 	}
3657 	putname(name);
3658 	return dentry;
3659 fail:
3660 	dput(dentry);
3661 	dentry = ERR_PTR(error);
3662 unlock:
3663 	inode_unlock(path->dentry->d_inode);
3664 	if (!err2)
3665 		mnt_drop_write(path->mnt);
3666 out:
3667 	path_put(path);
3668 	putname(name);
3669 	return dentry;
3670 }
3671 
3672 struct dentry *kern_path_create(int dfd, const char *pathname,
3673 				struct path *path, unsigned int lookup_flags)
3674 {
3675 	return filename_create(dfd, getname_kernel(pathname),
3676 				path, lookup_flags);
3677 }
3678 EXPORT_SYMBOL(kern_path_create);
3679 
3680 void done_path_create(struct path *path, struct dentry *dentry)
3681 {
3682 	dput(dentry);
3683 	inode_unlock(path->dentry->d_inode);
3684 	mnt_drop_write(path->mnt);
3685 	path_put(path);
3686 }
3687 EXPORT_SYMBOL(done_path_create);
3688 
3689 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3690 				struct path *path, unsigned int lookup_flags)
3691 {
3692 	return filename_create(dfd, getname(pathname), path, lookup_flags);
3693 }
3694 EXPORT_SYMBOL(user_path_create);
3695 
3696 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3697 {
3698 	int error = may_create(dir, dentry);
3699 
3700 	if (error)
3701 		return error;
3702 
3703 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3704 		return -EPERM;
3705 
3706 	if (!dir->i_op->mknod)
3707 		return -EPERM;
3708 
3709 	error = devcgroup_inode_mknod(mode, dev);
3710 	if (error)
3711 		return error;
3712 
3713 	error = security_inode_mknod(dir, dentry, mode, dev);
3714 	if (error)
3715 		return error;
3716 
3717 	error = dir->i_op->mknod(dir, dentry, mode, dev);
3718 	if (!error)
3719 		fsnotify_create(dir, dentry);
3720 	return error;
3721 }
3722 EXPORT_SYMBOL(vfs_mknod);
3723 
3724 static int may_mknod(umode_t mode)
3725 {
3726 	switch (mode & S_IFMT) {
3727 	case S_IFREG:
3728 	case S_IFCHR:
3729 	case S_IFBLK:
3730 	case S_IFIFO:
3731 	case S_IFSOCK:
3732 	case 0: /* zero mode translates to S_IFREG */
3733 		return 0;
3734 	case S_IFDIR:
3735 		return -EPERM;
3736 	default:
3737 		return -EINVAL;
3738 	}
3739 }
3740 
3741 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3742 		unsigned, dev)
3743 {
3744 	struct dentry *dentry;
3745 	struct path path;
3746 	int error;
3747 	unsigned int lookup_flags = 0;
3748 
3749 	error = may_mknod(mode);
3750 	if (error)
3751 		return error;
3752 retry:
3753 	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3754 	if (IS_ERR(dentry))
3755 		return PTR_ERR(dentry);
3756 
3757 	if (!IS_POSIXACL(path.dentry->d_inode))
3758 		mode &= ~current_umask();
3759 	error = security_path_mknod(&path, dentry, mode, dev);
3760 	if (error)
3761 		goto out;
3762 	switch (mode & S_IFMT) {
3763 		case 0: case S_IFREG:
3764 			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3765 			if (!error)
3766 				ima_post_path_mknod(dentry);
3767 			break;
3768 		case S_IFCHR: case S_IFBLK:
3769 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3770 					new_decode_dev(dev));
3771 			break;
3772 		case S_IFIFO: case S_IFSOCK:
3773 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3774 			break;
3775 	}
3776 out:
3777 	done_path_create(&path, dentry);
3778 	if (retry_estale(error, lookup_flags)) {
3779 		lookup_flags |= LOOKUP_REVAL;
3780 		goto retry;
3781 	}
3782 	return error;
3783 }
3784 
3785 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3786 {
3787 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
3788 }
3789 
3790 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3791 {
3792 	int error = may_create(dir, dentry);
3793 	unsigned max_links = dir->i_sb->s_max_links;
3794 
3795 	if (error)
3796 		return error;
3797 
3798 	if (!dir->i_op->mkdir)
3799 		return -EPERM;
3800 
3801 	mode &= (S_IRWXUGO|S_ISVTX);
3802 	error = security_inode_mkdir(dir, dentry, mode);
3803 	if (error)
3804 		return error;
3805 
3806 	if (max_links && dir->i_nlink >= max_links)
3807 		return -EMLINK;
3808 
3809 	error = dir->i_op->mkdir(dir, dentry, mode);
3810 	if (!error)
3811 		fsnotify_mkdir(dir, dentry);
3812 	return error;
3813 }
3814 EXPORT_SYMBOL(vfs_mkdir);
3815 
3816 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3817 {
3818 	struct dentry *dentry;
3819 	struct path path;
3820 	int error;
3821 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3822 
3823 retry:
3824 	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3825 	if (IS_ERR(dentry))
3826 		return PTR_ERR(dentry);
3827 
3828 	if (!IS_POSIXACL(path.dentry->d_inode))
3829 		mode &= ~current_umask();
3830 	error = security_path_mkdir(&path, dentry, mode);
3831 	if (!error)
3832 		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3833 	done_path_create(&path, dentry);
3834 	if (retry_estale(error, lookup_flags)) {
3835 		lookup_flags |= LOOKUP_REVAL;
3836 		goto retry;
3837 	}
3838 	return error;
3839 }
3840 
3841 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3842 {
3843 	return sys_mkdirat(AT_FDCWD, pathname, mode);
3844 }
3845 
3846 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3847 {
3848 	int error = may_delete(dir, dentry, 1);
3849 
3850 	if (error)
3851 		return error;
3852 
3853 	if (!dir->i_op->rmdir)
3854 		return -EPERM;
3855 
3856 	dget(dentry);
3857 	inode_lock(dentry->d_inode);
3858 
3859 	error = -EBUSY;
3860 	if (is_local_mountpoint(dentry))
3861 		goto out;
3862 
3863 	error = security_inode_rmdir(dir, dentry);
3864 	if (error)
3865 		goto out;
3866 
3867 	shrink_dcache_parent(dentry);
3868 	error = dir->i_op->rmdir(dir, dentry);
3869 	if (error)
3870 		goto out;
3871 
3872 	dentry->d_inode->i_flags |= S_DEAD;
3873 	dont_mount(dentry);
3874 	detach_mounts(dentry);
3875 
3876 out:
3877 	inode_unlock(dentry->d_inode);
3878 	dput(dentry);
3879 	if (!error)
3880 		d_delete(dentry);
3881 	return error;
3882 }
3883 EXPORT_SYMBOL(vfs_rmdir);
3884 
3885 static long do_rmdir(int dfd, const char __user *pathname)
3886 {
3887 	int error = 0;
3888 	struct filename *name;
3889 	struct dentry *dentry;
3890 	struct path path;
3891 	struct qstr last;
3892 	int type;
3893 	unsigned int lookup_flags = 0;
3894 retry:
3895 	name = filename_parentat(dfd, getname(pathname), lookup_flags,
3896 				&path, &last, &type);
3897 	if (IS_ERR(name))
3898 		return PTR_ERR(name);
3899 
3900 	switch (type) {
3901 	case LAST_DOTDOT:
3902 		error = -ENOTEMPTY;
3903 		goto exit1;
3904 	case LAST_DOT:
3905 		error = -EINVAL;
3906 		goto exit1;
3907 	case LAST_ROOT:
3908 		error = -EBUSY;
3909 		goto exit1;
3910 	}
3911 
3912 	error = mnt_want_write(path.mnt);
3913 	if (error)
3914 		goto exit1;
3915 
3916 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3917 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3918 	error = PTR_ERR(dentry);
3919 	if (IS_ERR(dentry))
3920 		goto exit2;
3921 	if (!dentry->d_inode) {
3922 		error = -ENOENT;
3923 		goto exit3;
3924 	}
3925 	error = security_path_rmdir(&path, dentry);
3926 	if (error)
3927 		goto exit3;
3928 	error = vfs_rmdir(path.dentry->d_inode, dentry);
3929 exit3:
3930 	dput(dentry);
3931 exit2:
3932 	inode_unlock(path.dentry->d_inode);
3933 	mnt_drop_write(path.mnt);
3934 exit1:
3935 	path_put(&path);
3936 	putname(name);
3937 	if (retry_estale(error, lookup_flags)) {
3938 		lookup_flags |= LOOKUP_REVAL;
3939 		goto retry;
3940 	}
3941 	return error;
3942 }
3943 
3944 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3945 {
3946 	return do_rmdir(AT_FDCWD, pathname);
3947 }
3948 
3949 /**
3950  * vfs_unlink - unlink a filesystem object
3951  * @dir:	parent directory
3952  * @dentry:	victim
3953  * @delegated_inode: returns victim inode, if the inode is delegated.
3954  *
3955  * The caller must hold dir->i_mutex.
3956  *
3957  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3958  * return a reference to the inode in delegated_inode.  The caller
3959  * should then break the delegation on that inode and retry.  Because
3960  * breaking a delegation may take a long time, the caller should drop
3961  * dir->i_mutex before doing so.
3962  *
3963  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3964  * be appropriate for callers that expect the underlying filesystem not
3965  * to be NFS exported.
3966  */
3967 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3968 {
3969 	struct inode *target = dentry->d_inode;
3970 	int error = may_delete(dir, dentry, 0);
3971 
3972 	if (error)
3973 		return error;
3974 
3975 	if (!dir->i_op->unlink)
3976 		return -EPERM;
3977 
3978 	inode_lock(target);
3979 	if (is_local_mountpoint(dentry))
3980 		error = -EBUSY;
3981 	else {
3982 		error = security_inode_unlink(dir, dentry);
3983 		if (!error) {
3984 			error = try_break_deleg(target, delegated_inode);
3985 			if (error)
3986 				goto out;
3987 			error = dir->i_op->unlink(dir, dentry);
3988 			if (!error) {
3989 				dont_mount(dentry);
3990 				detach_mounts(dentry);
3991 			}
3992 		}
3993 	}
3994 out:
3995 	inode_unlock(target);
3996 
3997 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
3998 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3999 		fsnotify_link_count(target);
4000 		d_delete(dentry);
4001 	}
4002 
4003 	return error;
4004 }
4005 EXPORT_SYMBOL(vfs_unlink);
4006 
4007 /*
4008  * Make sure that the actual truncation of the file will occur outside its
4009  * directory's i_mutex.  Truncate can take a long time if there is a lot of
4010  * writeout happening, and we don't want to prevent access to the directory
4011  * while waiting on the I/O.
4012  */
4013 static long do_unlinkat(int dfd, const char __user *pathname)
4014 {
4015 	int error;
4016 	struct filename *name;
4017 	struct dentry *dentry;
4018 	struct path path;
4019 	struct qstr last;
4020 	int type;
4021 	struct inode *inode = NULL;
4022 	struct inode *delegated_inode = NULL;
4023 	unsigned int lookup_flags = 0;
4024 retry:
4025 	name = filename_parentat(dfd, getname(pathname), lookup_flags,
4026 				&path, &last, &type);
4027 	if (IS_ERR(name))
4028 		return PTR_ERR(name);
4029 
4030 	error = -EISDIR;
4031 	if (type != LAST_NORM)
4032 		goto exit1;
4033 
4034 	error = mnt_want_write(path.mnt);
4035 	if (error)
4036 		goto exit1;
4037 retry_deleg:
4038 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4039 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4040 	error = PTR_ERR(dentry);
4041 	if (!IS_ERR(dentry)) {
4042 		/* Why not before? Because we want correct error value */
4043 		if (last.name[last.len])
4044 			goto slashes;
4045 		inode = dentry->d_inode;
4046 		if (d_is_negative(dentry))
4047 			goto slashes;
4048 		ihold(inode);
4049 		error = security_path_unlink(&path, dentry);
4050 		if (error)
4051 			goto exit2;
4052 		error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4053 exit2:
4054 		dput(dentry);
4055 	}
4056 	inode_unlock(path.dentry->d_inode);
4057 	if (inode)
4058 		iput(inode);	/* truncate the inode here */
4059 	inode = NULL;
4060 	if (delegated_inode) {
4061 		error = break_deleg_wait(&delegated_inode);
4062 		if (!error)
4063 			goto retry_deleg;
4064 	}
4065 	mnt_drop_write(path.mnt);
4066 exit1:
4067 	path_put(&path);
4068 	putname(name);
4069 	if (retry_estale(error, lookup_flags)) {
4070 		lookup_flags |= LOOKUP_REVAL;
4071 		inode = NULL;
4072 		goto retry;
4073 	}
4074 	return error;
4075 
4076 slashes:
4077 	if (d_is_negative(dentry))
4078 		error = -ENOENT;
4079 	else if (d_is_dir(dentry))
4080 		error = -EISDIR;
4081 	else
4082 		error = -ENOTDIR;
4083 	goto exit2;
4084 }
4085 
4086 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4087 {
4088 	if ((flag & ~AT_REMOVEDIR) != 0)
4089 		return -EINVAL;
4090 
4091 	if (flag & AT_REMOVEDIR)
4092 		return do_rmdir(dfd, pathname);
4093 
4094 	return do_unlinkat(dfd, pathname);
4095 }
4096 
4097 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4098 {
4099 	return do_unlinkat(AT_FDCWD, pathname);
4100 }
4101 
4102 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4103 {
4104 	int error = may_create(dir, dentry);
4105 
4106 	if (error)
4107 		return error;
4108 
4109 	if (!dir->i_op->symlink)
4110 		return -EPERM;
4111 
4112 	error = security_inode_symlink(dir, dentry, oldname);
4113 	if (error)
4114 		return error;
4115 
4116 	error = dir->i_op->symlink(dir, dentry, oldname);
4117 	if (!error)
4118 		fsnotify_create(dir, dentry);
4119 	return error;
4120 }
4121 EXPORT_SYMBOL(vfs_symlink);
4122 
4123 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4124 		int, newdfd, const char __user *, newname)
4125 {
4126 	int error;
4127 	struct filename *from;
4128 	struct dentry *dentry;
4129 	struct path path;
4130 	unsigned int lookup_flags = 0;
4131 
4132 	from = getname(oldname);
4133 	if (IS_ERR(from))
4134 		return PTR_ERR(from);
4135 retry:
4136 	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4137 	error = PTR_ERR(dentry);
4138 	if (IS_ERR(dentry))
4139 		goto out_putname;
4140 
4141 	error = security_path_symlink(&path, dentry, from->name);
4142 	if (!error)
4143 		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4144 	done_path_create(&path, dentry);
4145 	if (retry_estale(error, lookup_flags)) {
4146 		lookup_flags |= LOOKUP_REVAL;
4147 		goto retry;
4148 	}
4149 out_putname:
4150 	putname(from);
4151 	return error;
4152 }
4153 
4154 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4155 {
4156 	return sys_symlinkat(oldname, AT_FDCWD, newname);
4157 }
4158 
4159 /**
4160  * vfs_link - create a new link
4161  * @old_dentry:	object to be linked
4162  * @dir:	new parent
4163  * @new_dentry:	where to create the new link
4164  * @delegated_inode: returns inode needing a delegation break
4165  *
4166  * The caller must hold dir->i_mutex
4167  *
4168  * If vfs_link discovers a delegation on the to-be-linked file in need
4169  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4170  * inode in delegated_inode.  The caller should then break the delegation
4171  * and retry.  Because breaking a delegation may take a long time, the
4172  * caller should drop the i_mutex before doing so.
4173  *
4174  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4175  * be appropriate for callers that expect the underlying filesystem not
4176  * to be NFS exported.
4177  */
4178 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4179 {
4180 	struct inode *inode = old_dentry->d_inode;
4181 	unsigned max_links = dir->i_sb->s_max_links;
4182 	int error;
4183 
4184 	if (!inode)
4185 		return -ENOENT;
4186 
4187 	error = may_create(dir, new_dentry);
4188 	if (error)
4189 		return error;
4190 
4191 	if (dir->i_sb != inode->i_sb)
4192 		return -EXDEV;
4193 
4194 	/*
4195 	 * A link to an append-only or immutable file cannot be created.
4196 	 */
4197 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4198 		return -EPERM;
4199 	/*
4200 	 * Updating the link count will likely cause i_uid and i_gid to
4201 	 * be writen back improperly if their true value is unknown to
4202 	 * the vfs.
4203 	 */
4204 	if (HAS_UNMAPPED_ID(inode))
4205 		return -EPERM;
4206 	if (!dir->i_op->link)
4207 		return -EPERM;
4208 	if (S_ISDIR(inode->i_mode))
4209 		return -EPERM;
4210 
4211 	error = security_inode_link(old_dentry, dir, new_dentry);
4212 	if (error)
4213 		return error;
4214 
4215 	inode_lock(inode);
4216 	/* Make sure we don't allow creating hardlink to an unlinked file */
4217 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4218 		error =  -ENOENT;
4219 	else if (max_links && inode->i_nlink >= max_links)
4220 		error = -EMLINK;
4221 	else {
4222 		error = try_break_deleg(inode, delegated_inode);
4223 		if (!error)
4224 			error = dir->i_op->link(old_dentry, dir, new_dentry);
4225 	}
4226 
4227 	if (!error && (inode->i_state & I_LINKABLE)) {
4228 		spin_lock(&inode->i_lock);
4229 		inode->i_state &= ~I_LINKABLE;
4230 		spin_unlock(&inode->i_lock);
4231 	}
4232 	inode_unlock(inode);
4233 	if (!error)
4234 		fsnotify_link(dir, inode, new_dentry);
4235 	return error;
4236 }
4237 EXPORT_SYMBOL(vfs_link);
4238 
4239 /*
4240  * Hardlinks are often used in delicate situations.  We avoid
4241  * security-related surprises by not following symlinks on the
4242  * newname.  --KAB
4243  *
4244  * We don't follow them on the oldname either to be compatible
4245  * with linux 2.0, and to avoid hard-linking to directories
4246  * and other special files.  --ADM
4247  */
4248 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4249 		int, newdfd, const char __user *, newname, int, flags)
4250 {
4251 	struct dentry *new_dentry;
4252 	struct path old_path, new_path;
4253 	struct inode *delegated_inode = NULL;
4254 	int how = 0;
4255 	int error;
4256 
4257 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4258 		return -EINVAL;
4259 	/*
4260 	 * To use null names we require CAP_DAC_READ_SEARCH
4261 	 * This ensures that not everyone will be able to create
4262 	 * handlink using the passed filedescriptor.
4263 	 */
4264 	if (flags & AT_EMPTY_PATH) {
4265 		if (!capable(CAP_DAC_READ_SEARCH))
4266 			return -ENOENT;
4267 		how = LOOKUP_EMPTY;
4268 	}
4269 
4270 	if (flags & AT_SYMLINK_FOLLOW)
4271 		how |= LOOKUP_FOLLOW;
4272 retry:
4273 	error = user_path_at(olddfd, oldname, how, &old_path);
4274 	if (error)
4275 		return error;
4276 
4277 	new_dentry = user_path_create(newdfd, newname, &new_path,
4278 					(how & LOOKUP_REVAL));
4279 	error = PTR_ERR(new_dentry);
4280 	if (IS_ERR(new_dentry))
4281 		goto out;
4282 
4283 	error = -EXDEV;
4284 	if (old_path.mnt != new_path.mnt)
4285 		goto out_dput;
4286 	error = may_linkat(&old_path);
4287 	if (unlikely(error))
4288 		goto out_dput;
4289 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4290 	if (error)
4291 		goto out_dput;
4292 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4293 out_dput:
4294 	done_path_create(&new_path, new_dentry);
4295 	if (delegated_inode) {
4296 		error = break_deleg_wait(&delegated_inode);
4297 		if (!error) {
4298 			path_put(&old_path);
4299 			goto retry;
4300 		}
4301 	}
4302 	if (retry_estale(error, how)) {
4303 		path_put(&old_path);
4304 		how |= LOOKUP_REVAL;
4305 		goto retry;
4306 	}
4307 out:
4308 	path_put(&old_path);
4309 
4310 	return error;
4311 }
4312 
4313 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4314 {
4315 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4316 }
4317 
4318 /**
4319  * vfs_rename - rename a filesystem object
4320  * @old_dir:	parent of source
4321  * @old_dentry:	source
4322  * @new_dir:	parent of destination
4323  * @new_dentry:	destination
4324  * @delegated_inode: returns an inode needing a delegation break
4325  * @flags:	rename flags
4326  *
4327  * The caller must hold multiple mutexes--see lock_rename()).
4328  *
4329  * If vfs_rename discovers a delegation in need of breaking at either
4330  * the source or destination, it will return -EWOULDBLOCK and return a
4331  * reference to the inode in delegated_inode.  The caller should then
4332  * break the delegation and retry.  Because breaking a delegation may
4333  * take a long time, the caller should drop all locks before doing
4334  * so.
4335  *
4336  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4337  * be appropriate for callers that expect the underlying filesystem not
4338  * to be NFS exported.
4339  *
4340  * The worst of all namespace operations - renaming directory. "Perverted"
4341  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4342  * Problems:
4343  *
4344  *	a) we can get into loop creation.
4345  *	b) race potential - two innocent renames can create a loop together.
4346  *	   That's where 4.4 screws up. Current fix: serialization on
4347  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4348  *	   story.
4349  *	c) we have to lock _four_ objects - parents and victim (if it exists),
4350  *	   and source (if it is not a directory).
4351  *	   And that - after we got ->i_mutex on parents (until then we don't know
4352  *	   whether the target exists).  Solution: try to be smart with locking
4353  *	   order for inodes.  We rely on the fact that tree topology may change
4354  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4355  *	   move will be locked.  Thus we can rank directories by the tree
4356  *	   (ancestors first) and rank all non-directories after them.
4357  *	   That works since everybody except rename does "lock parent, lookup,
4358  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4359  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4360  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4361  *	   we'd better make sure that there's no link(2) for them.
4362  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4363  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4364  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4365  *	   ->i_mutex on parents, which works but leads to some truly excessive
4366  *	   locking].
4367  */
4368 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4369 	       struct inode *new_dir, struct dentry *new_dentry,
4370 	       struct inode **delegated_inode, unsigned int flags)
4371 {
4372 	int error;
4373 	bool is_dir = d_is_dir(old_dentry);
4374 	struct inode *source = old_dentry->d_inode;
4375 	struct inode *target = new_dentry->d_inode;
4376 	bool new_is_dir = false;
4377 	unsigned max_links = new_dir->i_sb->s_max_links;
4378 	struct name_snapshot old_name;
4379 
4380 	if (source == target)
4381 		return 0;
4382 
4383 	error = may_delete(old_dir, old_dentry, is_dir);
4384 	if (error)
4385 		return error;
4386 
4387 	if (!target) {
4388 		error = may_create(new_dir, new_dentry);
4389 	} else {
4390 		new_is_dir = d_is_dir(new_dentry);
4391 
4392 		if (!(flags & RENAME_EXCHANGE))
4393 			error = may_delete(new_dir, new_dentry, is_dir);
4394 		else
4395 			error = may_delete(new_dir, new_dentry, new_is_dir);
4396 	}
4397 	if (error)
4398 		return error;
4399 
4400 	if (!old_dir->i_op->rename)
4401 		return -EPERM;
4402 
4403 	/*
4404 	 * If we are going to change the parent - check write permissions,
4405 	 * we'll need to flip '..'.
4406 	 */
4407 	if (new_dir != old_dir) {
4408 		if (is_dir) {
4409 			error = inode_permission(source, MAY_WRITE);
4410 			if (error)
4411 				return error;
4412 		}
4413 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4414 			error = inode_permission(target, MAY_WRITE);
4415 			if (error)
4416 				return error;
4417 		}
4418 	}
4419 
4420 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4421 				      flags);
4422 	if (error)
4423 		return error;
4424 
4425 	take_dentry_name_snapshot(&old_name, old_dentry);
4426 	dget(new_dentry);
4427 	if (!is_dir || (flags & RENAME_EXCHANGE))
4428 		lock_two_nondirectories(source, target);
4429 	else if (target)
4430 		inode_lock(target);
4431 
4432 	error = -EBUSY;
4433 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4434 		goto out;
4435 
4436 	if (max_links && new_dir != old_dir) {
4437 		error = -EMLINK;
4438 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4439 			goto out;
4440 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4441 		    old_dir->i_nlink >= max_links)
4442 			goto out;
4443 	}
4444 	if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4445 		shrink_dcache_parent(new_dentry);
4446 	if (!is_dir) {
4447 		error = try_break_deleg(source, delegated_inode);
4448 		if (error)
4449 			goto out;
4450 	}
4451 	if (target && !new_is_dir) {
4452 		error = try_break_deleg(target, delegated_inode);
4453 		if (error)
4454 			goto out;
4455 	}
4456 	error = old_dir->i_op->rename(old_dir, old_dentry,
4457 				       new_dir, new_dentry, flags);
4458 	if (error)
4459 		goto out;
4460 
4461 	if (!(flags & RENAME_EXCHANGE) && target) {
4462 		if (is_dir)
4463 			target->i_flags |= S_DEAD;
4464 		dont_mount(new_dentry);
4465 		detach_mounts(new_dentry);
4466 	}
4467 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4468 		if (!(flags & RENAME_EXCHANGE))
4469 			d_move(old_dentry, new_dentry);
4470 		else
4471 			d_exchange(old_dentry, new_dentry);
4472 	}
4473 out:
4474 	if (!is_dir || (flags & RENAME_EXCHANGE))
4475 		unlock_two_nondirectories(source, target);
4476 	else if (target)
4477 		inode_unlock(target);
4478 	dput(new_dentry);
4479 	if (!error) {
4480 		fsnotify_move(old_dir, new_dir, old_name.name, is_dir,
4481 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4482 		if (flags & RENAME_EXCHANGE) {
4483 			fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4484 				      new_is_dir, NULL, new_dentry);
4485 		}
4486 	}
4487 	release_dentry_name_snapshot(&old_name);
4488 
4489 	return error;
4490 }
4491 EXPORT_SYMBOL(vfs_rename);
4492 
4493 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4494 		int, newdfd, const char __user *, newname, unsigned int, flags)
4495 {
4496 	struct dentry *old_dentry, *new_dentry;
4497 	struct dentry *trap;
4498 	struct path old_path, new_path;
4499 	struct qstr old_last, new_last;
4500 	int old_type, new_type;
4501 	struct inode *delegated_inode = NULL;
4502 	struct filename *from;
4503 	struct filename *to;
4504 	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4505 	bool should_retry = false;
4506 	int error;
4507 
4508 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4509 		return -EINVAL;
4510 
4511 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4512 	    (flags & RENAME_EXCHANGE))
4513 		return -EINVAL;
4514 
4515 	if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4516 		return -EPERM;
4517 
4518 	if (flags & RENAME_EXCHANGE)
4519 		target_flags = 0;
4520 
4521 retry:
4522 	from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4523 				&old_path, &old_last, &old_type);
4524 	if (IS_ERR(from)) {
4525 		error = PTR_ERR(from);
4526 		goto exit;
4527 	}
4528 
4529 	to = filename_parentat(newdfd, getname(newname), lookup_flags,
4530 				&new_path, &new_last, &new_type);
4531 	if (IS_ERR(to)) {
4532 		error = PTR_ERR(to);
4533 		goto exit1;
4534 	}
4535 
4536 	error = -EXDEV;
4537 	if (old_path.mnt != new_path.mnt)
4538 		goto exit2;
4539 
4540 	error = -EBUSY;
4541 	if (old_type != LAST_NORM)
4542 		goto exit2;
4543 
4544 	if (flags & RENAME_NOREPLACE)
4545 		error = -EEXIST;
4546 	if (new_type != LAST_NORM)
4547 		goto exit2;
4548 
4549 	error = mnt_want_write(old_path.mnt);
4550 	if (error)
4551 		goto exit2;
4552 
4553 retry_deleg:
4554 	trap = lock_rename(new_path.dentry, old_path.dentry);
4555 
4556 	old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4557 	error = PTR_ERR(old_dentry);
4558 	if (IS_ERR(old_dentry))
4559 		goto exit3;
4560 	/* source must exist */
4561 	error = -ENOENT;
4562 	if (d_is_negative(old_dentry))
4563 		goto exit4;
4564 	new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4565 	error = PTR_ERR(new_dentry);
4566 	if (IS_ERR(new_dentry))
4567 		goto exit4;
4568 	error = -EEXIST;
4569 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4570 		goto exit5;
4571 	if (flags & RENAME_EXCHANGE) {
4572 		error = -ENOENT;
4573 		if (d_is_negative(new_dentry))
4574 			goto exit5;
4575 
4576 		if (!d_is_dir(new_dentry)) {
4577 			error = -ENOTDIR;
4578 			if (new_last.name[new_last.len])
4579 				goto exit5;
4580 		}
4581 	}
4582 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4583 	if (!d_is_dir(old_dentry)) {
4584 		error = -ENOTDIR;
4585 		if (old_last.name[old_last.len])
4586 			goto exit5;
4587 		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4588 			goto exit5;
4589 	}
4590 	/* source should not be ancestor of target */
4591 	error = -EINVAL;
4592 	if (old_dentry == trap)
4593 		goto exit5;
4594 	/* target should not be an ancestor of source */
4595 	if (!(flags & RENAME_EXCHANGE))
4596 		error = -ENOTEMPTY;
4597 	if (new_dentry == trap)
4598 		goto exit5;
4599 
4600 	error = security_path_rename(&old_path, old_dentry,
4601 				     &new_path, new_dentry, flags);
4602 	if (error)
4603 		goto exit5;
4604 	error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4605 			   new_path.dentry->d_inode, new_dentry,
4606 			   &delegated_inode, flags);
4607 exit5:
4608 	dput(new_dentry);
4609 exit4:
4610 	dput(old_dentry);
4611 exit3:
4612 	unlock_rename(new_path.dentry, old_path.dentry);
4613 	if (delegated_inode) {
4614 		error = break_deleg_wait(&delegated_inode);
4615 		if (!error)
4616 			goto retry_deleg;
4617 	}
4618 	mnt_drop_write(old_path.mnt);
4619 exit2:
4620 	if (retry_estale(error, lookup_flags))
4621 		should_retry = true;
4622 	path_put(&new_path);
4623 	putname(to);
4624 exit1:
4625 	path_put(&old_path);
4626 	putname(from);
4627 	if (should_retry) {
4628 		should_retry = false;
4629 		lookup_flags |= LOOKUP_REVAL;
4630 		goto retry;
4631 	}
4632 exit:
4633 	return error;
4634 }
4635 
4636 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4637 		int, newdfd, const char __user *, newname)
4638 {
4639 	return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4640 }
4641 
4642 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4643 {
4644 	return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4645 }
4646 
4647 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4648 {
4649 	int error = may_create(dir, dentry);
4650 	if (error)
4651 		return error;
4652 
4653 	if (!dir->i_op->mknod)
4654 		return -EPERM;
4655 
4656 	return dir->i_op->mknod(dir, dentry,
4657 				S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4658 }
4659 EXPORT_SYMBOL(vfs_whiteout);
4660 
4661 int readlink_copy(char __user *buffer, int buflen, const char *link)
4662 {
4663 	int len = PTR_ERR(link);
4664 	if (IS_ERR(link))
4665 		goto out;
4666 
4667 	len = strlen(link);
4668 	if (len > (unsigned) buflen)
4669 		len = buflen;
4670 	if (copy_to_user(buffer, link, len))
4671 		len = -EFAULT;
4672 out:
4673 	return len;
4674 }
4675 
4676 /*
4677  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
4678  * have ->get_link() not calling nd_jump_link().  Using (or not using) it
4679  * for any given inode is up to filesystem.
4680  */
4681 static int generic_readlink(struct dentry *dentry, char __user *buffer,
4682 			    int buflen)
4683 {
4684 	DEFINE_DELAYED_CALL(done);
4685 	struct inode *inode = d_inode(dentry);
4686 	const char *link = inode->i_link;
4687 	int res;
4688 
4689 	if (!link) {
4690 		link = inode->i_op->get_link(dentry, inode, &done);
4691 		if (IS_ERR(link))
4692 			return PTR_ERR(link);
4693 	}
4694 	res = readlink_copy(buffer, buflen, link);
4695 	do_delayed_call(&done);
4696 	return res;
4697 }
4698 
4699 /**
4700  * vfs_readlink - copy symlink body into userspace buffer
4701  * @dentry: dentry on which to get symbolic link
4702  * @buffer: user memory pointer
4703  * @buflen: size of buffer
4704  *
4705  * Does not touch atime.  That's up to the caller if necessary
4706  *
4707  * Does not call security hook.
4708  */
4709 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4710 {
4711 	struct inode *inode = d_inode(dentry);
4712 
4713 	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4714 		if (unlikely(inode->i_op->readlink))
4715 			return inode->i_op->readlink(dentry, buffer, buflen);
4716 
4717 		if (!d_is_symlink(dentry))
4718 			return -EINVAL;
4719 
4720 		spin_lock(&inode->i_lock);
4721 		inode->i_opflags |= IOP_DEFAULT_READLINK;
4722 		spin_unlock(&inode->i_lock);
4723 	}
4724 
4725 	return generic_readlink(dentry, buffer, buflen);
4726 }
4727 EXPORT_SYMBOL(vfs_readlink);
4728 
4729 /**
4730  * vfs_get_link - get symlink body
4731  * @dentry: dentry on which to get symbolic link
4732  * @done: caller needs to free returned data with this
4733  *
4734  * Calls security hook and i_op->get_link() on the supplied inode.
4735  *
4736  * It does not touch atime.  That's up to the caller if necessary.
4737  *
4738  * Does not work on "special" symlinks like /proc/$$/fd/N
4739  */
4740 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4741 {
4742 	const char *res = ERR_PTR(-EINVAL);
4743 	struct inode *inode = d_inode(dentry);
4744 
4745 	if (d_is_symlink(dentry)) {
4746 		res = ERR_PTR(security_inode_readlink(dentry));
4747 		if (!res)
4748 			res = inode->i_op->get_link(dentry, inode, done);
4749 	}
4750 	return res;
4751 }
4752 EXPORT_SYMBOL(vfs_get_link);
4753 
4754 /* get the link contents into pagecache */
4755 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4756 			  struct delayed_call *callback)
4757 {
4758 	char *kaddr;
4759 	struct page *page;
4760 	struct address_space *mapping = inode->i_mapping;
4761 
4762 	if (!dentry) {
4763 		page = find_get_page(mapping, 0);
4764 		if (!page)
4765 			return ERR_PTR(-ECHILD);
4766 		if (!PageUptodate(page)) {
4767 			put_page(page);
4768 			return ERR_PTR(-ECHILD);
4769 		}
4770 	} else {
4771 		page = read_mapping_page(mapping, 0, NULL);
4772 		if (IS_ERR(page))
4773 			return (char*)page;
4774 	}
4775 	set_delayed_call(callback, page_put_link, page);
4776 	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4777 	kaddr = page_address(page);
4778 	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4779 	return kaddr;
4780 }
4781 
4782 EXPORT_SYMBOL(page_get_link);
4783 
4784 void page_put_link(void *arg)
4785 {
4786 	put_page(arg);
4787 }
4788 EXPORT_SYMBOL(page_put_link);
4789 
4790 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4791 {
4792 	DEFINE_DELAYED_CALL(done);
4793 	int res = readlink_copy(buffer, buflen,
4794 				page_get_link(dentry, d_inode(dentry),
4795 					      &done));
4796 	do_delayed_call(&done);
4797 	return res;
4798 }
4799 EXPORT_SYMBOL(page_readlink);
4800 
4801 /*
4802  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4803  */
4804 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4805 {
4806 	struct address_space *mapping = inode->i_mapping;
4807 	struct page *page;
4808 	void *fsdata;
4809 	int err;
4810 	unsigned int flags = 0;
4811 	if (nofs)
4812 		flags |= AOP_FLAG_NOFS;
4813 
4814 retry:
4815 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4816 				flags, &page, &fsdata);
4817 	if (err)
4818 		goto fail;
4819 
4820 	memcpy(page_address(page), symname, len-1);
4821 
4822 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4823 							page, fsdata);
4824 	if (err < 0)
4825 		goto fail;
4826 	if (err < len-1)
4827 		goto retry;
4828 
4829 	mark_inode_dirty(inode);
4830 	return 0;
4831 fail:
4832 	return err;
4833 }
4834 EXPORT_SYMBOL(__page_symlink);
4835 
4836 int page_symlink(struct inode *inode, const char *symname, int len)
4837 {
4838 	return __page_symlink(inode, symname, len,
4839 			!mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4840 }
4841 EXPORT_SYMBOL(page_symlink);
4842 
4843 const struct inode_operations page_symlink_inode_operations = {
4844 	.get_link	= page_get_link,
4845 };
4846 EXPORT_SYMBOL(page_symlink_inode_operations);
4847