1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/namei.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * Some corrections by tytso. 10 */ 11 12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 13 * lookup logic. 14 */ 15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 16 */ 17 18 #include <linux/init.h> 19 #include <linux/export.h> 20 #include <linux/slab.h> 21 #include <linux/wordpart.h> 22 #include <linux/fs.h> 23 #include <linux/filelock.h> 24 #include <linux/namei.h> 25 #include <linux/pagemap.h> 26 #include <linux/sched/mm.h> 27 #include <linux/fsnotify.h> 28 #include <linux/personality.h> 29 #include <linux/security.h> 30 #include <linux/syscalls.h> 31 #include <linux/mount.h> 32 #include <linux/audit.h> 33 #include <linux/capability.h> 34 #include <linux/file.h> 35 #include <linux/fcntl.h> 36 #include <linux/device_cgroup.h> 37 #include <linux/fs_struct.h> 38 #include <linux/posix_acl.h> 39 #include <linux/hash.h> 40 #include <linux/bitops.h> 41 #include <linux/init_task.h> 42 #include <linux/uaccess.h> 43 44 #include "internal.h" 45 #include "mount.h" 46 47 /* [Feb-1997 T. Schoebel-Theuer] 48 * Fundamental changes in the pathname lookup mechanisms (namei) 49 * were necessary because of omirr. The reason is that omirr needs 50 * to know the _real_ pathname, not the user-supplied one, in case 51 * of symlinks (and also when transname replacements occur). 52 * 53 * The new code replaces the old recursive symlink resolution with 54 * an iterative one (in case of non-nested symlink chains). It does 55 * this with calls to <fs>_follow_link(). 56 * As a side effect, dir_namei(), _namei() and follow_link() are now 57 * replaced with a single function lookup_dentry() that can handle all 58 * the special cases of the former code. 59 * 60 * With the new dcache, the pathname is stored at each inode, at least as 61 * long as the refcount of the inode is positive. As a side effect, the 62 * size of the dcache depends on the inode cache and thus is dynamic. 63 * 64 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 65 * resolution to correspond with current state of the code. 66 * 67 * Note that the symlink resolution is not *completely* iterative. 68 * There is still a significant amount of tail- and mid- recursion in 69 * the algorithm. Also, note that <fs>_readlink() is not used in 70 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 71 * may return different results than <fs>_follow_link(). Many virtual 72 * filesystems (including /proc) exhibit this behavior. 73 */ 74 75 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 76 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 77 * and the name already exists in form of a symlink, try to create the new 78 * name indicated by the symlink. The old code always complained that the 79 * name already exists, due to not following the symlink even if its target 80 * is nonexistent. The new semantics affects also mknod() and link() when 81 * the name is a symlink pointing to a non-existent name. 82 * 83 * I don't know which semantics is the right one, since I have no access 84 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 85 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 86 * "old" one. Personally, I think the new semantics is much more logical. 87 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 88 * file does succeed in both HP-UX and SunOs, but not in Solaris 89 * and in the old Linux semantics. 90 */ 91 92 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 93 * semantics. See the comments in "open_namei" and "do_link" below. 94 * 95 * [10-Sep-98 Alan Modra] Another symlink change. 96 */ 97 98 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 99 * inside the path - always follow. 100 * in the last component in creation/removal/renaming - never follow. 101 * if LOOKUP_FOLLOW passed - follow. 102 * if the pathname has trailing slashes - follow. 103 * otherwise - don't follow. 104 * (applied in that order). 105 * 106 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 107 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 108 * During the 2.4 we need to fix the userland stuff depending on it - 109 * hopefully we will be able to get rid of that wart in 2.5. So far only 110 * XEmacs seems to be relying on it... 111 */ 112 /* 113 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 114 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 115 * any extra contention... 116 */ 117 118 /* In order to reduce some races, while at the same time doing additional 119 * checking and hopefully speeding things up, we copy filenames to the 120 * kernel data space before using them.. 121 * 122 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 123 * PATH_MAX includes the nul terminator --RR. 124 */ 125 126 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) 127 128 struct filename * 129 getname_flags(const char __user *filename, int flags) 130 { 131 struct filename *result; 132 char *kname; 133 int len; 134 135 result = audit_reusename(filename); 136 if (result) 137 return result; 138 139 result = __getname(); 140 if (unlikely(!result)) 141 return ERR_PTR(-ENOMEM); 142 143 /* 144 * First, try to embed the struct filename inside the names_cache 145 * allocation 146 */ 147 kname = (char *)result->iname; 148 result->name = kname; 149 150 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); 151 /* 152 * Handle both empty path and copy failure in one go. 153 */ 154 if (unlikely(len <= 0)) { 155 if (unlikely(len < 0)) { 156 __putname(result); 157 return ERR_PTR(len); 158 } 159 160 /* The empty path is special. */ 161 if (!(flags & LOOKUP_EMPTY)) { 162 __putname(result); 163 return ERR_PTR(-ENOENT); 164 } 165 } 166 167 /* 168 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 169 * separate struct filename so we can dedicate the entire 170 * names_cache allocation for the pathname, and re-do the copy from 171 * userland. 172 */ 173 if (unlikely(len == EMBEDDED_NAME_MAX)) { 174 const size_t size = offsetof(struct filename, iname[1]); 175 kname = (char *)result; 176 177 /* 178 * size is chosen that way we to guarantee that 179 * result->iname[0] is within the same object and that 180 * kname can't be equal to result->iname, no matter what. 181 */ 182 result = kzalloc(size, GFP_KERNEL); 183 if (unlikely(!result)) { 184 __putname(kname); 185 return ERR_PTR(-ENOMEM); 186 } 187 result->name = kname; 188 len = strncpy_from_user(kname, filename, PATH_MAX); 189 if (unlikely(len < 0)) { 190 __putname(kname); 191 kfree(result); 192 return ERR_PTR(len); 193 } 194 /* The empty path is special. */ 195 if (unlikely(!len) && !(flags & LOOKUP_EMPTY)) { 196 __putname(kname); 197 kfree(result); 198 return ERR_PTR(-ENOENT); 199 } 200 if (unlikely(len == PATH_MAX)) { 201 __putname(kname); 202 kfree(result); 203 return ERR_PTR(-ENAMETOOLONG); 204 } 205 } 206 207 atomic_set(&result->refcnt, 1); 208 result->uptr = filename; 209 result->aname = NULL; 210 audit_getname(result); 211 return result; 212 } 213 214 struct filename * 215 getname_uflags(const char __user *filename, int uflags) 216 { 217 int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 218 219 return getname_flags(filename, flags); 220 } 221 222 struct filename * 223 getname(const char __user * filename) 224 { 225 return getname_flags(filename, 0); 226 } 227 228 struct filename * 229 getname_kernel(const char * filename) 230 { 231 struct filename *result; 232 int len = strlen(filename) + 1; 233 234 result = __getname(); 235 if (unlikely(!result)) 236 return ERR_PTR(-ENOMEM); 237 238 if (len <= EMBEDDED_NAME_MAX) { 239 result->name = (char *)result->iname; 240 } else if (len <= PATH_MAX) { 241 const size_t size = offsetof(struct filename, iname[1]); 242 struct filename *tmp; 243 244 tmp = kmalloc(size, GFP_KERNEL); 245 if (unlikely(!tmp)) { 246 __putname(result); 247 return ERR_PTR(-ENOMEM); 248 } 249 tmp->name = (char *)result; 250 result = tmp; 251 } else { 252 __putname(result); 253 return ERR_PTR(-ENAMETOOLONG); 254 } 255 memcpy((char *)result->name, filename, len); 256 result->uptr = NULL; 257 result->aname = NULL; 258 atomic_set(&result->refcnt, 1); 259 audit_getname(result); 260 261 return result; 262 } 263 EXPORT_SYMBOL(getname_kernel); 264 265 void putname(struct filename *name) 266 { 267 if (IS_ERR(name)) 268 return; 269 270 if (WARN_ON_ONCE(!atomic_read(&name->refcnt))) 271 return; 272 273 if (!atomic_dec_and_test(&name->refcnt)) 274 return; 275 276 if (name->name != name->iname) { 277 __putname(name->name); 278 kfree(name); 279 } else 280 __putname(name); 281 } 282 EXPORT_SYMBOL(putname); 283 284 /** 285 * check_acl - perform ACL permission checking 286 * @idmap: idmap of the mount the inode was found from 287 * @inode: inode to check permissions on 288 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 289 * 290 * This function performs the ACL permission checking. Since this function 291 * retrieve POSIX acls it needs to know whether it is called from a blocking or 292 * non-blocking context and thus cares about the MAY_NOT_BLOCK bit. 293 * 294 * If the inode has been found through an idmapped mount the idmap of 295 * the vfsmount must be passed through @idmap. This function will then take 296 * care to map the inode according to @idmap before checking permissions. 297 * On non-idmapped mounts or if permission checking is to be performed on the 298 * raw inode simply pass @nop_mnt_idmap. 299 */ 300 static int check_acl(struct mnt_idmap *idmap, 301 struct inode *inode, int mask) 302 { 303 #ifdef CONFIG_FS_POSIX_ACL 304 struct posix_acl *acl; 305 306 if (mask & MAY_NOT_BLOCK) { 307 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 308 if (!acl) 309 return -EAGAIN; 310 /* no ->get_inode_acl() calls in RCU mode... */ 311 if (is_uncached_acl(acl)) 312 return -ECHILD; 313 return posix_acl_permission(idmap, inode, acl, mask); 314 } 315 316 acl = get_inode_acl(inode, ACL_TYPE_ACCESS); 317 if (IS_ERR(acl)) 318 return PTR_ERR(acl); 319 if (acl) { 320 int error = posix_acl_permission(idmap, inode, acl, mask); 321 posix_acl_release(acl); 322 return error; 323 } 324 #endif 325 326 return -EAGAIN; 327 } 328 329 /** 330 * acl_permission_check - perform basic UNIX permission checking 331 * @idmap: idmap of the mount the inode was found from 332 * @inode: inode to check permissions on 333 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 334 * 335 * This function performs the basic UNIX permission checking. Since this 336 * function may retrieve POSIX acls it needs to know whether it is called from a 337 * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit. 338 * 339 * If the inode has been found through an idmapped mount the idmap of 340 * the vfsmount must be passed through @idmap. This function will then take 341 * care to map the inode according to @idmap before checking permissions. 342 * On non-idmapped mounts or if permission checking is to be performed on the 343 * raw inode simply pass @nop_mnt_idmap. 344 */ 345 static int acl_permission_check(struct mnt_idmap *idmap, 346 struct inode *inode, int mask) 347 { 348 unsigned int mode = inode->i_mode; 349 vfsuid_t vfsuid; 350 351 /* Are we the owner? If so, ACL's don't matter */ 352 vfsuid = i_uid_into_vfsuid(idmap, inode); 353 if (likely(vfsuid_eq_kuid(vfsuid, current_fsuid()))) { 354 mask &= 7; 355 mode >>= 6; 356 return (mask & ~mode) ? -EACCES : 0; 357 } 358 359 /* Do we have ACL's? */ 360 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 361 int error = check_acl(idmap, inode, mask); 362 if (error != -EAGAIN) 363 return error; 364 } 365 366 /* Only RWX matters for group/other mode bits */ 367 mask &= 7; 368 369 /* 370 * Are the group permissions different from 371 * the other permissions in the bits we care 372 * about? Need to check group ownership if so. 373 */ 374 if (mask & (mode ^ (mode >> 3))) { 375 vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode); 376 if (vfsgid_in_group_p(vfsgid)) 377 mode >>= 3; 378 } 379 380 /* Bits in 'mode' clear that we require? */ 381 return (mask & ~mode) ? -EACCES : 0; 382 } 383 384 /** 385 * generic_permission - check for access rights on a Posix-like filesystem 386 * @idmap: idmap of the mount the inode was found from 387 * @inode: inode to check access rights for 388 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, 389 * %MAY_NOT_BLOCK ...) 390 * 391 * Used to check for read/write/execute permissions on a file. 392 * We use "fsuid" for this, letting us set arbitrary permissions 393 * for filesystem access without changing the "normal" uids which 394 * are used for other things. 395 * 396 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 397 * request cannot be satisfied (eg. requires blocking or too much complexity). 398 * It would then be called again in ref-walk mode. 399 * 400 * If the inode has been found through an idmapped mount the idmap of 401 * the vfsmount must be passed through @idmap. This function will then take 402 * care to map the inode according to @idmap before checking permissions. 403 * On non-idmapped mounts or if permission checking is to be performed on the 404 * raw inode simply pass @nop_mnt_idmap. 405 */ 406 int generic_permission(struct mnt_idmap *idmap, struct inode *inode, 407 int mask) 408 { 409 int ret; 410 411 /* 412 * Do the basic permission checks. 413 */ 414 ret = acl_permission_check(idmap, inode, mask); 415 if (ret != -EACCES) 416 return ret; 417 418 if (S_ISDIR(inode->i_mode)) { 419 /* DACs are overridable for directories */ 420 if (!(mask & MAY_WRITE)) 421 if (capable_wrt_inode_uidgid(idmap, inode, 422 CAP_DAC_READ_SEARCH)) 423 return 0; 424 if (capable_wrt_inode_uidgid(idmap, inode, 425 CAP_DAC_OVERRIDE)) 426 return 0; 427 return -EACCES; 428 } 429 430 /* 431 * Searching includes executable on directories, else just read. 432 */ 433 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 434 if (mask == MAY_READ) 435 if (capable_wrt_inode_uidgid(idmap, inode, 436 CAP_DAC_READ_SEARCH)) 437 return 0; 438 /* 439 * Read/write DACs are always overridable. 440 * Executable DACs are overridable when there is 441 * at least one exec bit set. 442 */ 443 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 444 if (capable_wrt_inode_uidgid(idmap, inode, 445 CAP_DAC_OVERRIDE)) 446 return 0; 447 448 return -EACCES; 449 } 450 EXPORT_SYMBOL(generic_permission); 451 452 /** 453 * do_inode_permission - UNIX permission checking 454 * @idmap: idmap of the mount the inode was found from 455 * @inode: inode to check permissions on 456 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 457 * 458 * We _really_ want to just do "generic_permission()" without 459 * even looking at the inode->i_op values. So we keep a cache 460 * flag in inode->i_opflags, that says "this has not special 461 * permission function, use the fast case". 462 */ 463 static inline int do_inode_permission(struct mnt_idmap *idmap, 464 struct inode *inode, int mask) 465 { 466 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 467 if (likely(inode->i_op->permission)) 468 return inode->i_op->permission(idmap, inode, mask); 469 470 /* This gets set once for the inode lifetime */ 471 spin_lock(&inode->i_lock); 472 inode->i_opflags |= IOP_FASTPERM; 473 spin_unlock(&inode->i_lock); 474 } 475 return generic_permission(idmap, inode, mask); 476 } 477 478 /** 479 * sb_permission - Check superblock-level permissions 480 * @sb: Superblock of inode to check permission on 481 * @inode: Inode to check permission on 482 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 483 * 484 * Separate out file-system wide checks from inode-specific permission checks. 485 */ 486 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 487 { 488 if (unlikely(mask & MAY_WRITE)) { 489 umode_t mode = inode->i_mode; 490 491 /* Nobody gets write access to a read-only fs. */ 492 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 493 return -EROFS; 494 } 495 return 0; 496 } 497 498 /** 499 * inode_permission - Check for access rights to a given inode 500 * @idmap: idmap of the mount the inode was found from 501 * @inode: Inode to check permission on 502 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 503 * 504 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 505 * this, letting us set arbitrary permissions for filesystem access without 506 * changing the "normal" UIDs which are used for other things. 507 * 508 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 509 */ 510 int inode_permission(struct mnt_idmap *idmap, 511 struct inode *inode, int mask) 512 { 513 int retval; 514 515 retval = sb_permission(inode->i_sb, inode, mask); 516 if (retval) 517 return retval; 518 519 if (unlikely(mask & MAY_WRITE)) { 520 /* 521 * Nobody gets write access to an immutable file. 522 */ 523 if (IS_IMMUTABLE(inode)) 524 return -EPERM; 525 526 /* 527 * Updating mtime will likely cause i_uid and i_gid to be 528 * written back improperly if their true value is unknown 529 * to the vfs. 530 */ 531 if (HAS_UNMAPPED_ID(idmap, inode)) 532 return -EACCES; 533 } 534 535 retval = do_inode_permission(idmap, inode, mask); 536 if (retval) 537 return retval; 538 539 retval = devcgroup_inode_permission(inode, mask); 540 if (retval) 541 return retval; 542 543 return security_inode_permission(inode, mask); 544 } 545 EXPORT_SYMBOL(inode_permission); 546 547 /** 548 * path_get - get a reference to a path 549 * @path: path to get the reference to 550 * 551 * Given a path increment the reference count to the dentry and the vfsmount. 552 */ 553 void path_get(const struct path *path) 554 { 555 mntget(path->mnt); 556 dget(path->dentry); 557 } 558 EXPORT_SYMBOL(path_get); 559 560 /** 561 * path_put - put a reference to a path 562 * @path: path to put the reference to 563 * 564 * Given a path decrement the reference count to the dentry and the vfsmount. 565 */ 566 void path_put(const struct path *path) 567 { 568 dput(path->dentry); 569 mntput(path->mnt); 570 } 571 EXPORT_SYMBOL(path_put); 572 573 #define EMBEDDED_LEVELS 2 574 struct nameidata { 575 struct path path; 576 struct qstr last; 577 struct path root; 578 struct inode *inode; /* path.dentry.d_inode */ 579 unsigned int flags, state; 580 unsigned seq, next_seq, m_seq, r_seq; 581 int last_type; 582 unsigned depth; 583 int total_link_count; 584 struct saved { 585 struct path link; 586 struct delayed_call done; 587 const char *name; 588 unsigned seq; 589 } *stack, internal[EMBEDDED_LEVELS]; 590 struct filename *name; 591 struct nameidata *saved; 592 unsigned root_seq; 593 int dfd; 594 vfsuid_t dir_vfsuid; 595 umode_t dir_mode; 596 } __randomize_layout; 597 598 #define ND_ROOT_PRESET 1 599 #define ND_ROOT_GRABBED 2 600 #define ND_JUMPED 4 601 602 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name) 603 { 604 struct nameidata *old = current->nameidata; 605 p->stack = p->internal; 606 p->depth = 0; 607 p->dfd = dfd; 608 p->name = name; 609 p->path.mnt = NULL; 610 p->path.dentry = NULL; 611 p->total_link_count = old ? old->total_link_count : 0; 612 p->saved = old; 613 current->nameidata = p; 614 } 615 616 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name, 617 const struct path *root) 618 { 619 __set_nameidata(p, dfd, name); 620 p->state = 0; 621 if (unlikely(root)) { 622 p->state = ND_ROOT_PRESET; 623 p->root = *root; 624 } 625 } 626 627 static void restore_nameidata(void) 628 { 629 struct nameidata *now = current->nameidata, *old = now->saved; 630 631 current->nameidata = old; 632 if (old) 633 old->total_link_count = now->total_link_count; 634 if (now->stack != now->internal) 635 kfree(now->stack); 636 } 637 638 static bool nd_alloc_stack(struct nameidata *nd) 639 { 640 struct saved *p; 641 642 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved), 643 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL); 644 if (unlikely(!p)) 645 return false; 646 memcpy(p, nd->internal, sizeof(nd->internal)); 647 nd->stack = p; 648 return true; 649 } 650 651 /** 652 * path_connected - Verify that a dentry is below mnt.mnt_root 653 * @mnt: The mountpoint to check. 654 * @dentry: The dentry to check. 655 * 656 * Rename can sometimes move a file or directory outside of a bind 657 * mount, path_connected allows those cases to be detected. 658 */ 659 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry) 660 { 661 struct super_block *sb = mnt->mnt_sb; 662 663 /* Bind mounts can have disconnected paths */ 664 if (mnt->mnt_root == sb->s_root) 665 return true; 666 667 return is_subdir(dentry, mnt->mnt_root); 668 } 669 670 static void drop_links(struct nameidata *nd) 671 { 672 int i = nd->depth; 673 while (i--) { 674 struct saved *last = nd->stack + i; 675 do_delayed_call(&last->done); 676 clear_delayed_call(&last->done); 677 } 678 } 679 680 static void leave_rcu(struct nameidata *nd) 681 { 682 nd->flags &= ~LOOKUP_RCU; 683 nd->seq = nd->next_seq = 0; 684 rcu_read_unlock(); 685 } 686 687 static void terminate_walk(struct nameidata *nd) 688 { 689 drop_links(nd); 690 if (!(nd->flags & LOOKUP_RCU)) { 691 int i; 692 path_put(&nd->path); 693 for (i = 0; i < nd->depth; i++) 694 path_put(&nd->stack[i].link); 695 if (nd->state & ND_ROOT_GRABBED) { 696 path_put(&nd->root); 697 nd->state &= ~ND_ROOT_GRABBED; 698 } 699 } else { 700 leave_rcu(nd); 701 } 702 nd->depth = 0; 703 nd->path.mnt = NULL; 704 nd->path.dentry = NULL; 705 } 706 707 /* path_put is needed afterwards regardless of success or failure */ 708 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq) 709 { 710 int res = __legitimize_mnt(path->mnt, mseq); 711 if (unlikely(res)) { 712 if (res > 0) 713 path->mnt = NULL; 714 path->dentry = NULL; 715 return false; 716 } 717 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) { 718 path->dentry = NULL; 719 return false; 720 } 721 return !read_seqcount_retry(&path->dentry->d_seq, seq); 722 } 723 724 static inline bool legitimize_path(struct nameidata *nd, 725 struct path *path, unsigned seq) 726 { 727 return __legitimize_path(path, seq, nd->m_seq); 728 } 729 730 static bool legitimize_links(struct nameidata *nd) 731 { 732 int i; 733 if (unlikely(nd->flags & LOOKUP_CACHED)) { 734 drop_links(nd); 735 nd->depth = 0; 736 return false; 737 } 738 for (i = 0; i < nd->depth; i++) { 739 struct saved *last = nd->stack + i; 740 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) { 741 drop_links(nd); 742 nd->depth = i + 1; 743 return false; 744 } 745 } 746 return true; 747 } 748 749 static bool legitimize_root(struct nameidata *nd) 750 { 751 /* Nothing to do if nd->root is zero or is managed by the VFS user. */ 752 if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET)) 753 return true; 754 nd->state |= ND_ROOT_GRABBED; 755 return legitimize_path(nd, &nd->root, nd->root_seq); 756 } 757 758 /* 759 * Path walking has 2 modes, rcu-walk and ref-walk (see 760 * Documentation/filesystems/path-lookup.txt). In situations when we can't 761 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 762 * normal reference counts on dentries and vfsmounts to transition to ref-walk 763 * mode. Refcounts are grabbed at the last known good point before rcu-walk 764 * got stuck, so ref-walk may continue from there. If this is not successful 765 * (eg. a seqcount has changed), then failure is returned and it's up to caller 766 * to restart the path walk from the beginning in ref-walk mode. 767 */ 768 769 /** 770 * try_to_unlazy - try to switch to ref-walk mode. 771 * @nd: nameidata pathwalk data 772 * Returns: true on success, false on failure 773 * 774 * try_to_unlazy attempts to legitimize the current nd->path and nd->root 775 * for ref-walk mode. 776 * Must be called from rcu-walk context. 777 * Nothing should touch nameidata between try_to_unlazy() failure and 778 * terminate_walk(). 779 */ 780 static bool try_to_unlazy(struct nameidata *nd) 781 { 782 struct dentry *parent = nd->path.dentry; 783 784 BUG_ON(!(nd->flags & LOOKUP_RCU)); 785 786 if (unlikely(!legitimize_links(nd))) 787 goto out1; 788 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq))) 789 goto out; 790 if (unlikely(!legitimize_root(nd))) 791 goto out; 792 leave_rcu(nd); 793 BUG_ON(nd->inode != parent->d_inode); 794 return true; 795 796 out1: 797 nd->path.mnt = NULL; 798 nd->path.dentry = NULL; 799 out: 800 leave_rcu(nd); 801 return false; 802 } 803 804 /** 805 * try_to_unlazy_next - try to switch to ref-walk mode. 806 * @nd: nameidata pathwalk data 807 * @dentry: next dentry to step into 808 * Returns: true on success, false on failure 809 * 810 * Similar to try_to_unlazy(), but here we have the next dentry already 811 * picked by rcu-walk and want to legitimize that in addition to the current 812 * nd->path and nd->root for ref-walk mode. Must be called from rcu-walk context. 813 * Nothing should touch nameidata between try_to_unlazy_next() failure and 814 * terminate_walk(). 815 */ 816 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry) 817 { 818 int res; 819 BUG_ON(!(nd->flags & LOOKUP_RCU)); 820 821 if (unlikely(!legitimize_links(nd))) 822 goto out2; 823 res = __legitimize_mnt(nd->path.mnt, nd->m_seq); 824 if (unlikely(res)) { 825 if (res > 0) 826 goto out2; 827 goto out1; 828 } 829 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref))) 830 goto out1; 831 832 /* 833 * We need to move both the parent and the dentry from the RCU domain 834 * to be properly refcounted. And the sequence number in the dentry 835 * validates *both* dentry counters, since we checked the sequence 836 * number of the parent after we got the child sequence number. So we 837 * know the parent must still be valid if the child sequence number is 838 */ 839 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) 840 goto out; 841 if (read_seqcount_retry(&dentry->d_seq, nd->next_seq)) 842 goto out_dput; 843 /* 844 * Sequence counts matched. Now make sure that the root is 845 * still valid and get it if required. 846 */ 847 if (unlikely(!legitimize_root(nd))) 848 goto out_dput; 849 leave_rcu(nd); 850 return true; 851 852 out2: 853 nd->path.mnt = NULL; 854 out1: 855 nd->path.dentry = NULL; 856 out: 857 leave_rcu(nd); 858 return false; 859 out_dput: 860 leave_rcu(nd); 861 dput(dentry); 862 return false; 863 } 864 865 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 866 { 867 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) 868 return dentry->d_op->d_revalidate(dentry, flags); 869 else 870 return 1; 871 } 872 873 /** 874 * complete_walk - successful completion of path walk 875 * @nd: pointer nameidata 876 * 877 * If we had been in RCU mode, drop out of it and legitimize nd->path. 878 * Revalidate the final result, unless we'd already done that during 879 * the path walk or the filesystem doesn't ask for it. Return 0 on 880 * success, -error on failure. In case of failure caller does not 881 * need to drop nd->path. 882 */ 883 static int complete_walk(struct nameidata *nd) 884 { 885 struct dentry *dentry = nd->path.dentry; 886 int status; 887 888 if (nd->flags & LOOKUP_RCU) { 889 /* 890 * We don't want to zero nd->root for scoped-lookups or 891 * externally-managed nd->root. 892 */ 893 if (!(nd->state & ND_ROOT_PRESET)) 894 if (!(nd->flags & LOOKUP_IS_SCOPED)) 895 nd->root.mnt = NULL; 896 nd->flags &= ~LOOKUP_CACHED; 897 if (!try_to_unlazy(nd)) 898 return -ECHILD; 899 } 900 901 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { 902 /* 903 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't 904 * ever step outside the root during lookup" and should already 905 * be guaranteed by the rest of namei, we want to avoid a namei 906 * BUG resulting in userspace being given a path that was not 907 * scoped within the root at some point during the lookup. 908 * 909 * So, do a final sanity-check to make sure that in the 910 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED) 911 * we won't silently return an fd completely outside of the 912 * requested root to userspace. 913 * 914 * Userspace could move the path outside the root after this 915 * check, but as discussed elsewhere this is not a concern (the 916 * resolved file was inside the root at some point). 917 */ 918 if (!path_is_under(&nd->path, &nd->root)) 919 return -EXDEV; 920 } 921 922 if (likely(!(nd->state & ND_JUMPED))) 923 return 0; 924 925 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 926 return 0; 927 928 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 929 if (status > 0) 930 return 0; 931 932 if (!status) 933 status = -ESTALE; 934 935 return status; 936 } 937 938 static int set_root(struct nameidata *nd) 939 { 940 struct fs_struct *fs = current->fs; 941 942 /* 943 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we 944 * still have to ensure it doesn't happen because it will cause a breakout 945 * from the dirfd. 946 */ 947 if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED)) 948 return -ENOTRECOVERABLE; 949 950 if (nd->flags & LOOKUP_RCU) { 951 unsigned seq; 952 953 do { 954 seq = read_seqcount_begin(&fs->seq); 955 nd->root = fs->root; 956 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 957 } while (read_seqcount_retry(&fs->seq, seq)); 958 } else { 959 get_fs_root(fs, &nd->root); 960 nd->state |= ND_ROOT_GRABBED; 961 } 962 return 0; 963 } 964 965 static int nd_jump_root(struct nameidata *nd) 966 { 967 if (unlikely(nd->flags & LOOKUP_BENEATH)) 968 return -EXDEV; 969 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { 970 /* Absolute path arguments to path_init() are allowed. */ 971 if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt) 972 return -EXDEV; 973 } 974 if (!nd->root.mnt) { 975 int error = set_root(nd); 976 if (error) 977 return error; 978 } 979 if (nd->flags & LOOKUP_RCU) { 980 struct dentry *d; 981 nd->path = nd->root; 982 d = nd->path.dentry; 983 nd->inode = d->d_inode; 984 nd->seq = nd->root_seq; 985 if (read_seqcount_retry(&d->d_seq, nd->seq)) 986 return -ECHILD; 987 } else { 988 path_put(&nd->path); 989 nd->path = nd->root; 990 path_get(&nd->path); 991 nd->inode = nd->path.dentry->d_inode; 992 } 993 nd->state |= ND_JUMPED; 994 return 0; 995 } 996 997 /* 998 * Helper to directly jump to a known parsed path from ->get_link, 999 * caller must have taken a reference to path beforehand. 1000 */ 1001 int nd_jump_link(const struct path *path) 1002 { 1003 int error = -ELOOP; 1004 struct nameidata *nd = current->nameidata; 1005 1006 if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS)) 1007 goto err; 1008 1009 error = -EXDEV; 1010 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { 1011 if (nd->path.mnt != path->mnt) 1012 goto err; 1013 } 1014 /* Not currently safe for scoped-lookups. */ 1015 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) 1016 goto err; 1017 1018 path_put(&nd->path); 1019 nd->path = *path; 1020 nd->inode = nd->path.dentry->d_inode; 1021 nd->state |= ND_JUMPED; 1022 return 0; 1023 1024 err: 1025 path_put(path); 1026 return error; 1027 } 1028 1029 static inline void put_link(struct nameidata *nd) 1030 { 1031 struct saved *last = nd->stack + --nd->depth; 1032 do_delayed_call(&last->done); 1033 if (!(nd->flags & LOOKUP_RCU)) 1034 path_put(&last->link); 1035 } 1036 1037 static int sysctl_protected_symlinks __read_mostly; 1038 static int sysctl_protected_hardlinks __read_mostly; 1039 static int sysctl_protected_fifos __read_mostly; 1040 static int sysctl_protected_regular __read_mostly; 1041 1042 #ifdef CONFIG_SYSCTL 1043 static struct ctl_table namei_sysctls[] = { 1044 { 1045 .procname = "protected_symlinks", 1046 .data = &sysctl_protected_symlinks, 1047 .maxlen = sizeof(int), 1048 .mode = 0644, 1049 .proc_handler = proc_dointvec_minmax, 1050 .extra1 = SYSCTL_ZERO, 1051 .extra2 = SYSCTL_ONE, 1052 }, 1053 { 1054 .procname = "protected_hardlinks", 1055 .data = &sysctl_protected_hardlinks, 1056 .maxlen = sizeof(int), 1057 .mode = 0644, 1058 .proc_handler = proc_dointvec_minmax, 1059 .extra1 = SYSCTL_ZERO, 1060 .extra2 = SYSCTL_ONE, 1061 }, 1062 { 1063 .procname = "protected_fifos", 1064 .data = &sysctl_protected_fifos, 1065 .maxlen = sizeof(int), 1066 .mode = 0644, 1067 .proc_handler = proc_dointvec_minmax, 1068 .extra1 = SYSCTL_ZERO, 1069 .extra2 = SYSCTL_TWO, 1070 }, 1071 { 1072 .procname = "protected_regular", 1073 .data = &sysctl_protected_regular, 1074 .maxlen = sizeof(int), 1075 .mode = 0644, 1076 .proc_handler = proc_dointvec_minmax, 1077 .extra1 = SYSCTL_ZERO, 1078 .extra2 = SYSCTL_TWO, 1079 }, 1080 }; 1081 1082 static int __init init_fs_namei_sysctls(void) 1083 { 1084 register_sysctl_init("fs", namei_sysctls); 1085 return 0; 1086 } 1087 fs_initcall(init_fs_namei_sysctls); 1088 1089 #endif /* CONFIG_SYSCTL */ 1090 1091 /** 1092 * may_follow_link - Check symlink following for unsafe situations 1093 * @nd: nameidata pathwalk data 1094 * @inode: Used for idmapping. 1095 * 1096 * In the case of the sysctl_protected_symlinks sysctl being enabled, 1097 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 1098 * in a sticky world-writable directory. This is to protect privileged 1099 * processes from failing races against path names that may change out 1100 * from under them by way of other users creating malicious symlinks. 1101 * It will permit symlinks to be followed only when outside a sticky 1102 * world-writable directory, or when the uid of the symlink and follower 1103 * match, or when the directory owner matches the symlink's owner. 1104 * 1105 * Returns 0 if following the symlink is allowed, -ve on error. 1106 */ 1107 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode) 1108 { 1109 struct mnt_idmap *idmap; 1110 vfsuid_t vfsuid; 1111 1112 if (!sysctl_protected_symlinks) 1113 return 0; 1114 1115 idmap = mnt_idmap(nd->path.mnt); 1116 vfsuid = i_uid_into_vfsuid(idmap, inode); 1117 /* Allowed if owner and follower match. */ 1118 if (vfsuid_eq_kuid(vfsuid, current_fsuid())) 1119 return 0; 1120 1121 /* Allowed if parent directory not sticky and world-writable. */ 1122 if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 1123 return 0; 1124 1125 /* Allowed if parent directory and link owner match. */ 1126 if (vfsuid_valid(nd->dir_vfsuid) && vfsuid_eq(nd->dir_vfsuid, vfsuid)) 1127 return 0; 1128 1129 if (nd->flags & LOOKUP_RCU) 1130 return -ECHILD; 1131 1132 audit_inode(nd->name, nd->stack[0].link.dentry, 0); 1133 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link"); 1134 return -EACCES; 1135 } 1136 1137 /** 1138 * safe_hardlink_source - Check for safe hardlink conditions 1139 * @idmap: idmap of the mount the inode was found from 1140 * @inode: the source inode to hardlink from 1141 * 1142 * Return false if at least one of the following conditions: 1143 * - inode is not a regular file 1144 * - inode is setuid 1145 * - inode is setgid and group-exec 1146 * - access failure for read and write 1147 * 1148 * Otherwise returns true. 1149 */ 1150 static bool safe_hardlink_source(struct mnt_idmap *idmap, 1151 struct inode *inode) 1152 { 1153 umode_t mode = inode->i_mode; 1154 1155 /* Special files should not get pinned to the filesystem. */ 1156 if (!S_ISREG(mode)) 1157 return false; 1158 1159 /* Setuid files should not get pinned to the filesystem. */ 1160 if (mode & S_ISUID) 1161 return false; 1162 1163 /* Executable setgid files should not get pinned to the filesystem. */ 1164 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 1165 return false; 1166 1167 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 1168 if (inode_permission(idmap, inode, MAY_READ | MAY_WRITE)) 1169 return false; 1170 1171 return true; 1172 } 1173 1174 /** 1175 * may_linkat - Check permissions for creating a hardlink 1176 * @idmap: idmap of the mount the inode was found from 1177 * @link: the source to hardlink from 1178 * 1179 * Block hardlink when all of: 1180 * - sysctl_protected_hardlinks enabled 1181 * - fsuid does not match inode 1182 * - hardlink source is unsafe (see safe_hardlink_source() above) 1183 * - not CAP_FOWNER in a namespace with the inode owner uid mapped 1184 * 1185 * If the inode has been found through an idmapped mount the idmap of 1186 * the vfsmount must be passed through @idmap. This function will then take 1187 * care to map the inode according to @idmap before checking permissions. 1188 * On non-idmapped mounts or if permission checking is to be performed on the 1189 * raw inode simply pass @nop_mnt_idmap. 1190 * 1191 * Returns 0 if successful, -ve on error. 1192 */ 1193 int may_linkat(struct mnt_idmap *idmap, const struct path *link) 1194 { 1195 struct inode *inode = link->dentry->d_inode; 1196 1197 /* Inode writeback is not safe when the uid or gid are invalid. */ 1198 if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) || 1199 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode))) 1200 return -EOVERFLOW; 1201 1202 if (!sysctl_protected_hardlinks) 1203 return 0; 1204 1205 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 1206 * otherwise, it must be a safe source. 1207 */ 1208 if (safe_hardlink_source(idmap, inode) || 1209 inode_owner_or_capable(idmap, inode)) 1210 return 0; 1211 1212 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat"); 1213 return -EPERM; 1214 } 1215 1216 /** 1217 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory 1218 * should be allowed, or not, on files that already 1219 * exist. 1220 * @idmap: idmap of the mount the inode was found from 1221 * @nd: nameidata pathwalk data 1222 * @inode: the inode of the file to open 1223 * 1224 * Block an O_CREAT open of a FIFO (or a regular file) when: 1225 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled 1226 * - the file already exists 1227 * - we are in a sticky directory 1228 * - we don't own the file 1229 * - the owner of the directory doesn't own the file 1230 * - the directory is world writable 1231 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2 1232 * the directory doesn't have to be world writable: being group writable will 1233 * be enough. 1234 * 1235 * If the inode has been found through an idmapped mount the idmap of 1236 * the vfsmount must be passed through @idmap. This function will then take 1237 * care to map the inode according to @idmap before checking permissions. 1238 * On non-idmapped mounts or if permission checking is to be performed on the 1239 * raw inode simply pass @nop_mnt_idmap. 1240 * 1241 * Returns 0 if the open is allowed, -ve on error. 1242 */ 1243 static int may_create_in_sticky(struct mnt_idmap *idmap, struct nameidata *nd, 1244 struct inode *const inode) 1245 { 1246 umode_t dir_mode = nd->dir_mode; 1247 vfsuid_t dir_vfsuid = nd->dir_vfsuid, i_vfsuid; 1248 1249 if (likely(!(dir_mode & S_ISVTX))) 1250 return 0; 1251 1252 if (S_ISREG(inode->i_mode) && !sysctl_protected_regular) 1253 return 0; 1254 1255 if (S_ISFIFO(inode->i_mode) && !sysctl_protected_fifos) 1256 return 0; 1257 1258 i_vfsuid = i_uid_into_vfsuid(idmap, inode); 1259 1260 if (vfsuid_eq(i_vfsuid, dir_vfsuid)) 1261 return 0; 1262 1263 if (vfsuid_eq_kuid(i_vfsuid, current_fsuid())) 1264 return 0; 1265 1266 if (likely(dir_mode & 0002)) { 1267 audit_log_path_denied(AUDIT_ANOM_CREAT, "sticky_create"); 1268 return -EACCES; 1269 } 1270 1271 if (dir_mode & 0020) { 1272 if (sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) { 1273 audit_log_path_denied(AUDIT_ANOM_CREAT, 1274 "sticky_create_fifo"); 1275 return -EACCES; 1276 } 1277 1278 if (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode)) { 1279 audit_log_path_denied(AUDIT_ANOM_CREAT, 1280 "sticky_create_regular"); 1281 return -EACCES; 1282 } 1283 } 1284 1285 return 0; 1286 } 1287 1288 /* 1289 * follow_up - Find the mountpoint of path's vfsmount 1290 * 1291 * Given a path, find the mountpoint of its source file system. 1292 * Replace @path with the path of the mountpoint in the parent mount. 1293 * Up is towards /. 1294 * 1295 * Return 1 if we went up a level and 0 if we were already at the 1296 * root. 1297 */ 1298 int follow_up(struct path *path) 1299 { 1300 struct mount *mnt = real_mount(path->mnt); 1301 struct mount *parent; 1302 struct dentry *mountpoint; 1303 1304 read_seqlock_excl(&mount_lock); 1305 parent = mnt->mnt_parent; 1306 if (parent == mnt) { 1307 read_sequnlock_excl(&mount_lock); 1308 return 0; 1309 } 1310 mntget(&parent->mnt); 1311 mountpoint = dget(mnt->mnt_mountpoint); 1312 read_sequnlock_excl(&mount_lock); 1313 dput(path->dentry); 1314 path->dentry = mountpoint; 1315 mntput(path->mnt); 1316 path->mnt = &parent->mnt; 1317 return 1; 1318 } 1319 EXPORT_SYMBOL(follow_up); 1320 1321 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root, 1322 struct path *path, unsigned *seqp) 1323 { 1324 while (mnt_has_parent(m)) { 1325 struct dentry *mountpoint = m->mnt_mountpoint; 1326 1327 m = m->mnt_parent; 1328 if (unlikely(root->dentry == mountpoint && 1329 root->mnt == &m->mnt)) 1330 break; 1331 if (mountpoint != m->mnt.mnt_root) { 1332 path->mnt = &m->mnt; 1333 path->dentry = mountpoint; 1334 *seqp = read_seqcount_begin(&mountpoint->d_seq); 1335 return true; 1336 } 1337 } 1338 return false; 1339 } 1340 1341 static bool choose_mountpoint(struct mount *m, const struct path *root, 1342 struct path *path) 1343 { 1344 bool found; 1345 1346 rcu_read_lock(); 1347 while (1) { 1348 unsigned seq, mseq = read_seqbegin(&mount_lock); 1349 1350 found = choose_mountpoint_rcu(m, root, path, &seq); 1351 if (unlikely(!found)) { 1352 if (!read_seqretry(&mount_lock, mseq)) 1353 break; 1354 } else { 1355 if (likely(__legitimize_path(path, seq, mseq))) 1356 break; 1357 rcu_read_unlock(); 1358 path_put(path); 1359 rcu_read_lock(); 1360 } 1361 } 1362 rcu_read_unlock(); 1363 return found; 1364 } 1365 1366 /* 1367 * Perform an automount 1368 * - return -EISDIR to tell follow_managed() to stop and return the path we 1369 * were called with. 1370 */ 1371 static int follow_automount(struct path *path, int *count, unsigned lookup_flags) 1372 { 1373 struct dentry *dentry = path->dentry; 1374 1375 /* We don't want to mount if someone's just doing a stat - 1376 * unless they're stat'ing a directory and appended a '/' to 1377 * the name. 1378 * 1379 * We do, however, want to mount if someone wants to open or 1380 * create a file of any type under the mountpoint, wants to 1381 * traverse through the mountpoint or wants to open the 1382 * mounted directory. Also, autofs may mark negative dentries 1383 * as being automount points. These will need the attentions 1384 * of the daemon to instantiate them before they can be used. 1385 */ 1386 if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 1387 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 1388 dentry->d_inode) 1389 return -EISDIR; 1390 1391 if (count && (*count)++ >= MAXSYMLINKS) 1392 return -ELOOP; 1393 1394 return finish_automount(dentry->d_op->d_automount(path), path); 1395 } 1396 1397 /* 1398 * mount traversal - out-of-line part. One note on ->d_flags accesses - 1399 * dentries are pinned but not locked here, so negative dentry can go 1400 * positive right under us. Use of smp_load_acquire() provides a barrier 1401 * sufficient for ->d_inode and ->d_flags consistency. 1402 */ 1403 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped, 1404 int *count, unsigned lookup_flags) 1405 { 1406 struct vfsmount *mnt = path->mnt; 1407 bool need_mntput = false; 1408 int ret = 0; 1409 1410 while (flags & DCACHE_MANAGED_DENTRY) { 1411 /* Allow the filesystem to manage the transit without i_mutex 1412 * being held. */ 1413 if (flags & DCACHE_MANAGE_TRANSIT) { 1414 ret = path->dentry->d_op->d_manage(path, false); 1415 flags = smp_load_acquire(&path->dentry->d_flags); 1416 if (ret < 0) 1417 break; 1418 } 1419 1420 if (flags & DCACHE_MOUNTED) { // something's mounted on it.. 1421 struct vfsmount *mounted = lookup_mnt(path); 1422 if (mounted) { // ... in our namespace 1423 dput(path->dentry); 1424 if (need_mntput) 1425 mntput(path->mnt); 1426 path->mnt = mounted; 1427 path->dentry = dget(mounted->mnt_root); 1428 // here we know it's positive 1429 flags = path->dentry->d_flags; 1430 need_mntput = true; 1431 continue; 1432 } 1433 } 1434 1435 if (!(flags & DCACHE_NEED_AUTOMOUNT)) 1436 break; 1437 1438 // uncovered automount point 1439 ret = follow_automount(path, count, lookup_flags); 1440 flags = smp_load_acquire(&path->dentry->d_flags); 1441 if (ret < 0) 1442 break; 1443 } 1444 1445 if (ret == -EISDIR) 1446 ret = 0; 1447 // possible if you race with several mount --move 1448 if (need_mntput && path->mnt == mnt) 1449 mntput(path->mnt); 1450 if (!ret && unlikely(d_flags_negative(flags))) 1451 ret = -ENOENT; 1452 *jumped = need_mntput; 1453 return ret; 1454 } 1455 1456 static inline int traverse_mounts(struct path *path, bool *jumped, 1457 int *count, unsigned lookup_flags) 1458 { 1459 unsigned flags = smp_load_acquire(&path->dentry->d_flags); 1460 1461 /* fastpath */ 1462 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) { 1463 *jumped = false; 1464 if (unlikely(d_flags_negative(flags))) 1465 return -ENOENT; 1466 return 0; 1467 } 1468 return __traverse_mounts(path, flags, jumped, count, lookup_flags); 1469 } 1470 1471 int follow_down_one(struct path *path) 1472 { 1473 struct vfsmount *mounted; 1474 1475 mounted = lookup_mnt(path); 1476 if (mounted) { 1477 dput(path->dentry); 1478 mntput(path->mnt); 1479 path->mnt = mounted; 1480 path->dentry = dget(mounted->mnt_root); 1481 return 1; 1482 } 1483 return 0; 1484 } 1485 EXPORT_SYMBOL(follow_down_one); 1486 1487 /* 1488 * Follow down to the covering mount currently visible to userspace. At each 1489 * point, the filesystem owning that dentry may be queried as to whether the 1490 * caller is permitted to proceed or not. 1491 */ 1492 int follow_down(struct path *path, unsigned int flags) 1493 { 1494 struct vfsmount *mnt = path->mnt; 1495 bool jumped; 1496 int ret = traverse_mounts(path, &jumped, NULL, flags); 1497 1498 if (path->mnt != mnt) 1499 mntput(mnt); 1500 return ret; 1501 } 1502 EXPORT_SYMBOL(follow_down); 1503 1504 /* 1505 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1506 * we meet a managed dentry that would need blocking. 1507 */ 1508 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path) 1509 { 1510 struct dentry *dentry = path->dentry; 1511 unsigned int flags = dentry->d_flags; 1512 1513 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) 1514 return true; 1515 1516 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1517 return false; 1518 1519 for (;;) { 1520 /* 1521 * Don't forget we might have a non-mountpoint managed dentry 1522 * that wants to block transit. 1523 */ 1524 if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) { 1525 int res = dentry->d_op->d_manage(path, true); 1526 if (res) 1527 return res == -EISDIR; 1528 flags = dentry->d_flags; 1529 } 1530 1531 if (flags & DCACHE_MOUNTED) { 1532 struct mount *mounted = __lookup_mnt(path->mnt, dentry); 1533 if (mounted) { 1534 path->mnt = &mounted->mnt; 1535 dentry = path->dentry = mounted->mnt.mnt_root; 1536 nd->state |= ND_JUMPED; 1537 nd->next_seq = read_seqcount_begin(&dentry->d_seq); 1538 flags = dentry->d_flags; 1539 // makes sure that non-RCU pathwalk could reach 1540 // this state. 1541 if (read_seqretry(&mount_lock, nd->m_seq)) 1542 return false; 1543 continue; 1544 } 1545 if (read_seqretry(&mount_lock, nd->m_seq)) 1546 return false; 1547 } 1548 return !(flags & DCACHE_NEED_AUTOMOUNT); 1549 } 1550 } 1551 1552 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry, 1553 struct path *path) 1554 { 1555 bool jumped; 1556 int ret; 1557 1558 path->mnt = nd->path.mnt; 1559 path->dentry = dentry; 1560 if (nd->flags & LOOKUP_RCU) { 1561 unsigned int seq = nd->next_seq; 1562 if (likely(__follow_mount_rcu(nd, path))) 1563 return 0; 1564 // *path and nd->next_seq might've been clobbered 1565 path->mnt = nd->path.mnt; 1566 path->dentry = dentry; 1567 nd->next_seq = seq; 1568 if (!try_to_unlazy_next(nd, dentry)) 1569 return -ECHILD; 1570 } 1571 ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags); 1572 if (jumped) { 1573 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1574 ret = -EXDEV; 1575 else 1576 nd->state |= ND_JUMPED; 1577 } 1578 if (unlikely(ret)) { 1579 dput(path->dentry); 1580 if (path->mnt != nd->path.mnt) 1581 mntput(path->mnt); 1582 } 1583 return ret; 1584 } 1585 1586 /* 1587 * This looks up the name in dcache and possibly revalidates the found dentry. 1588 * NULL is returned if the dentry does not exist in the cache. 1589 */ 1590 static struct dentry *lookup_dcache(const struct qstr *name, 1591 struct dentry *dir, 1592 unsigned int flags) 1593 { 1594 struct dentry *dentry = d_lookup(dir, name); 1595 if (dentry) { 1596 int error = d_revalidate(dentry, flags); 1597 if (unlikely(error <= 0)) { 1598 if (!error) 1599 d_invalidate(dentry); 1600 dput(dentry); 1601 return ERR_PTR(error); 1602 } 1603 } 1604 return dentry; 1605 } 1606 1607 /* 1608 * Parent directory has inode locked exclusive. This is one 1609 * and only case when ->lookup() gets called on non in-lookup 1610 * dentries - as the matter of fact, this only gets called 1611 * when directory is guaranteed to have no in-lookup children 1612 * at all. 1613 */ 1614 struct dentry *lookup_one_qstr_excl(const struct qstr *name, 1615 struct dentry *base, 1616 unsigned int flags) 1617 { 1618 struct dentry *dentry = lookup_dcache(name, base, flags); 1619 struct dentry *old; 1620 struct inode *dir = base->d_inode; 1621 1622 if (dentry) 1623 return dentry; 1624 1625 /* Don't create child dentry for a dead directory. */ 1626 if (unlikely(IS_DEADDIR(dir))) 1627 return ERR_PTR(-ENOENT); 1628 1629 dentry = d_alloc(base, name); 1630 if (unlikely(!dentry)) 1631 return ERR_PTR(-ENOMEM); 1632 1633 old = dir->i_op->lookup(dir, dentry, flags); 1634 if (unlikely(old)) { 1635 dput(dentry); 1636 dentry = old; 1637 } 1638 return dentry; 1639 } 1640 EXPORT_SYMBOL(lookup_one_qstr_excl); 1641 1642 static struct dentry *lookup_fast(struct nameidata *nd) 1643 { 1644 struct dentry *dentry, *parent = nd->path.dentry; 1645 int status = 1; 1646 1647 /* 1648 * Rename seqlock is not required here because in the off chance 1649 * of a false negative due to a concurrent rename, the caller is 1650 * going to fall back to non-racy lookup. 1651 */ 1652 if (nd->flags & LOOKUP_RCU) { 1653 dentry = __d_lookup_rcu(parent, &nd->last, &nd->next_seq); 1654 if (unlikely(!dentry)) { 1655 if (!try_to_unlazy(nd)) 1656 return ERR_PTR(-ECHILD); 1657 return NULL; 1658 } 1659 1660 /* 1661 * This sequence count validates that the parent had no 1662 * changes while we did the lookup of the dentry above. 1663 */ 1664 if (read_seqcount_retry(&parent->d_seq, nd->seq)) 1665 return ERR_PTR(-ECHILD); 1666 1667 status = d_revalidate(dentry, nd->flags); 1668 if (likely(status > 0)) 1669 return dentry; 1670 if (!try_to_unlazy_next(nd, dentry)) 1671 return ERR_PTR(-ECHILD); 1672 if (status == -ECHILD) 1673 /* we'd been told to redo it in non-rcu mode */ 1674 status = d_revalidate(dentry, nd->flags); 1675 } else { 1676 dentry = __d_lookup(parent, &nd->last); 1677 if (unlikely(!dentry)) 1678 return NULL; 1679 status = d_revalidate(dentry, nd->flags); 1680 } 1681 if (unlikely(status <= 0)) { 1682 if (!status) 1683 d_invalidate(dentry); 1684 dput(dentry); 1685 return ERR_PTR(status); 1686 } 1687 return dentry; 1688 } 1689 1690 /* Fast lookup failed, do it the slow way */ 1691 static struct dentry *__lookup_slow(const struct qstr *name, 1692 struct dentry *dir, 1693 unsigned int flags) 1694 { 1695 struct dentry *dentry, *old; 1696 struct inode *inode = dir->d_inode; 1697 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1698 1699 /* Don't go there if it's already dead */ 1700 if (unlikely(IS_DEADDIR(inode))) 1701 return ERR_PTR(-ENOENT); 1702 again: 1703 dentry = d_alloc_parallel(dir, name, &wq); 1704 if (IS_ERR(dentry)) 1705 return dentry; 1706 if (unlikely(!d_in_lookup(dentry))) { 1707 int error = d_revalidate(dentry, flags); 1708 if (unlikely(error <= 0)) { 1709 if (!error) { 1710 d_invalidate(dentry); 1711 dput(dentry); 1712 goto again; 1713 } 1714 dput(dentry); 1715 dentry = ERR_PTR(error); 1716 } 1717 } else { 1718 old = inode->i_op->lookup(inode, dentry, flags); 1719 d_lookup_done(dentry); 1720 if (unlikely(old)) { 1721 dput(dentry); 1722 dentry = old; 1723 } 1724 } 1725 return dentry; 1726 } 1727 1728 static struct dentry *lookup_slow(const struct qstr *name, 1729 struct dentry *dir, 1730 unsigned int flags) 1731 { 1732 struct inode *inode = dir->d_inode; 1733 struct dentry *res; 1734 inode_lock_shared(inode); 1735 res = __lookup_slow(name, dir, flags); 1736 inode_unlock_shared(inode); 1737 return res; 1738 } 1739 1740 static inline int may_lookup(struct mnt_idmap *idmap, 1741 struct nameidata *restrict nd) 1742 { 1743 int err, mask; 1744 1745 mask = nd->flags & LOOKUP_RCU ? MAY_NOT_BLOCK : 0; 1746 err = inode_permission(idmap, nd->inode, mask | MAY_EXEC); 1747 if (likely(!err)) 1748 return 0; 1749 1750 // If we failed, and we weren't in LOOKUP_RCU, it's final 1751 if (!(nd->flags & LOOKUP_RCU)) 1752 return err; 1753 1754 // Drop out of RCU mode to make sure it wasn't transient 1755 if (!try_to_unlazy(nd)) 1756 return -ECHILD; // redo it all non-lazy 1757 1758 if (err != -ECHILD) // hard error 1759 return err; 1760 1761 return inode_permission(idmap, nd->inode, MAY_EXEC); 1762 } 1763 1764 static int reserve_stack(struct nameidata *nd, struct path *link) 1765 { 1766 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) 1767 return -ELOOP; 1768 1769 if (likely(nd->depth != EMBEDDED_LEVELS)) 1770 return 0; 1771 if (likely(nd->stack != nd->internal)) 1772 return 0; 1773 if (likely(nd_alloc_stack(nd))) 1774 return 0; 1775 1776 if (nd->flags & LOOKUP_RCU) { 1777 // we need to grab link before we do unlazy. And we can't skip 1778 // unlazy even if we fail to grab the link - cleanup needs it 1779 bool grabbed_link = legitimize_path(nd, link, nd->next_seq); 1780 1781 if (!try_to_unlazy(nd) || !grabbed_link) 1782 return -ECHILD; 1783 1784 if (nd_alloc_stack(nd)) 1785 return 0; 1786 } 1787 return -ENOMEM; 1788 } 1789 1790 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4}; 1791 1792 static const char *pick_link(struct nameidata *nd, struct path *link, 1793 struct inode *inode, int flags) 1794 { 1795 struct saved *last; 1796 const char *res; 1797 int error = reserve_stack(nd, link); 1798 1799 if (unlikely(error)) { 1800 if (!(nd->flags & LOOKUP_RCU)) 1801 path_put(link); 1802 return ERR_PTR(error); 1803 } 1804 last = nd->stack + nd->depth++; 1805 last->link = *link; 1806 clear_delayed_call(&last->done); 1807 last->seq = nd->next_seq; 1808 1809 if (flags & WALK_TRAILING) { 1810 error = may_follow_link(nd, inode); 1811 if (unlikely(error)) 1812 return ERR_PTR(error); 1813 } 1814 1815 if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) || 1816 unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW)) 1817 return ERR_PTR(-ELOOP); 1818 1819 if (!(nd->flags & LOOKUP_RCU)) { 1820 touch_atime(&last->link); 1821 cond_resched(); 1822 } else if (atime_needs_update(&last->link, inode)) { 1823 if (!try_to_unlazy(nd)) 1824 return ERR_PTR(-ECHILD); 1825 touch_atime(&last->link); 1826 } 1827 1828 error = security_inode_follow_link(link->dentry, inode, 1829 nd->flags & LOOKUP_RCU); 1830 if (unlikely(error)) 1831 return ERR_PTR(error); 1832 1833 res = READ_ONCE(inode->i_link); 1834 if (!res) { 1835 const char * (*get)(struct dentry *, struct inode *, 1836 struct delayed_call *); 1837 get = inode->i_op->get_link; 1838 if (nd->flags & LOOKUP_RCU) { 1839 res = get(NULL, inode, &last->done); 1840 if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd)) 1841 res = get(link->dentry, inode, &last->done); 1842 } else { 1843 res = get(link->dentry, inode, &last->done); 1844 } 1845 if (!res) 1846 goto all_done; 1847 if (IS_ERR(res)) 1848 return res; 1849 } 1850 if (*res == '/') { 1851 error = nd_jump_root(nd); 1852 if (unlikely(error)) 1853 return ERR_PTR(error); 1854 while (unlikely(*++res == '/')) 1855 ; 1856 } 1857 if (*res) 1858 return res; 1859 all_done: // pure jump 1860 put_link(nd); 1861 return NULL; 1862 } 1863 1864 /* 1865 * Do we need to follow links? We _really_ want to be able 1866 * to do this check without having to look at inode->i_op, 1867 * so we keep a cache of "no, this doesn't need follow_link" 1868 * for the common case. 1869 * 1870 * NOTE: dentry must be what nd->next_seq had been sampled from. 1871 */ 1872 static const char *step_into(struct nameidata *nd, int flags, 1873 struct dentry *dentry) 1874 { 1875 struct path path; 1876 struct inode *inode; 1877 int err = handle_mounts(nd, dentry, &path); 1878 1879 if (err < 0) 1880 return ERR_PTR(err); 1881 inode = path.dentry->d_inode; 1882 if (likely(!d_is_symlink(path.dentry)) || 1883 ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) || 1884 (flags & WALK_NOFOLLOW)) { 1885 /* not a symlink or should not follow */ 1886 if (nd->flags & LOOKUP_RCU) { 1887 if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq)) 1888 return ERR_PTR(-ECHILD); 1889 if (unlikely(!inode)) 1890 return ERR_PTR(-ENOENT); 1891 } else { 1892 dput(nd->path.dentry); 1893 if (nd->path.mnt != path.mnt) 1894 mntput(nd->path.mnt); 1895 } 1896 nd->path = path; 1897 nd->inode = inode; 1898 nd->seq = nd->next_seq; 1899 return NULL; 1900 } 1901 if (nd->flags & LOOKUP_RCU) { 1902 /* make sure that d_is_symlink above matches inode */ 1903 if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq)) 1904 return ERR_PTR(-ECHILD); 1905 } else { 1906 if (path.mnt == nd->path.mnt) 1907 mntget(path.mnt); 1908 } 1909 return pick_link(nd, &path, inode, flags); 1910 } 1911 1912 static struct dentry *follow_dotdot_rcu(struct nameidata *nd) 1913 { 1914 struct dentry *parent, *old; 1915 1916 if (path_equal(&nd->path, &nd->root)) 1917 goto in_root; 1918 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { 1919 struct path path; 1920 unsigned seq; 1921 if (!choose_mountpoint_rcu(real_mount(nd->path.mnt), 1922 &nd->root, &path, &seq)) 1923 goto in_root; 1924 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1925 return ERR_PTR(-ECHILD); 1926 nd->path = path; 1927 nd->inode = path.dentry->d_inode; 1928 nd->seq = seq; 1929 // makes sure that non-RCU pathwalk could reach this state 1930 if (read_seqretry(&mount_lock, nd->m_seq)) 1931 return ERR_PTR(-ECHILD); 1932 /* we know that mountpoint was pinned */ 1933 } 1934 old = nd->path.dentry; 1935 parent = old->d_parent; 1936 nd->next_seq = read_seqcount_begin(&parent->d_seq); 1937 // makes sure that non-RCU pathwalk could reach this state 1938 if (read_seqcount_retry(&old->d_seq, nd->seq)) 1939 return ERR_PTR(-ECHILD); 1940 if (unlikely(!path_connected(nd->path.mnt, parent))) 1941 return ERR_PTR(-ECHILD); 1942 return parent; 1943 in_root: 1944 if (read_seqretry(&mount_lock, nd->m_seq)) 1945 return ERR_PTR(-ECHILD); 1946 if (unlikely(nd->flags & LOOKUP_BENEATH)) 1947 return ERR_PTR(-ECHILD); 1948 nd->next_seq = nd->seq; 1949 return nd->path.dentry; 1950 } 1951 1952 static struct dentry *follow_dotdot(struct nameidata *nd) 1953 { 1954 struct dentry *parent; 1955 1956 if (path_equal(&nd->path, &nd->root)) 1957 goto in_root; 1958 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { 1959 struct path path; 1960 1961 if (!choose_mountpoint(real_mount(nd->path.mnt), 1962 &nd->root, &path)) 1963 goto in_root; 1964 path_put(&nd->path); 1965 nd->path = path; 1966 nd->inode = path.dentry->d_inode; 1967 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1968 return ERR_PTR(-EXDEV); 1969 } 1970 /* rare case of legitimate dget_parent()... */ 1971 parent = dget_parent(nd->path.dentry); 1972 if (unlikely(!path_connected(nd->path.mnt, parent))) { 1973 dput(parent); 1974 return ERR_PTR(-ENOENT); 1975 } 1976 return parent; 1977 1978 in_root: 1979 if (unlikely(nd->flags & LOOKUP_BENEATH)) 1980 return ERR_PTR(-EXDEV); 1981 return dget(nd->path.dentry); 1982 } 1983 1984 static const char *handle_dots(struct nameidata *nd, int type) 1985 { 1986 if (type == LAST_DOTDOT) { 1987 const char *error = NULL; 1988 struct dentry *parent; 1989 1990 if (!nd->root.mnt) { 1991 error = ERR_PTR(set_root(nd)); 1992 if (error) 1993 return error; 1994 } 1995 if (nd->flags & LOOKUP_RCU) 1996 parent = follow_dotdot_rcu(nd); 1997 else 1998 parent = follow_dotdot(nd); 1999 if (IS_ERR(parent)) 2000 return ERR_CAST(parent); 2001 error = step_into(nd, WALK_NOFOLLOW, parent); 2002 if (unlikely(error)) 2003 return error; 2004 2005 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { 2006 /* 2007 * If there was a racing rename or mount along our 2008 * path, then we can't be sure that ".." hasn't jumped 2009 * above nd->root (and so userspace should retry or use 2010 * some fallback). 2011 */ 2012 smp_rmb(); 2013 if (__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq)) 2014 return ERR_PTR(-EAGAIN); 2015 if (__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq)) 2016 return ERR_PTR(-EAGAIN); 2017 } 2018 } 2019 return NULL; 2020 } 2021 2022 static const char *walk_component(struct nameidata *nd, int flags) 2023 { 2024 struct dentry *dentry; 2025 /* 2026 * "." and ".." are special - ".." especially so because it has 2027 * to be able to know about the current root directory and 2028 * parent relationships. 2029 */ 2030 if (unlikely(nd->last_type != LAST_NORM)) { 2031 if (!(flags & WALK_MORE) && nd->depth) 2032 put_link(nd); 2033 return handle_dots(nd, nd->last_type); 2034 } 2035 dentry = lookup_fast(nd); 2036 if (IS_ERR(dentry)) 2037 return ERR_CAST(dentry); 2038 if (unlikely(!dentry)) { 2039 dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags); 2040 if (IS_ERR(dentry)) 2041 return ERR_CAST(dentry); 2042 } 2043 if (!(flags & WALK_MORE) && nd->depth) 2044 put_link(nd); 2045 return step_into(nd, flags, dentry); 2046 } 2047 2048 /* 2049 * We can do the critical dentry name comparison and hashing 2050 * operations one word at a time, but we are limited to: 2051 * 2052 * - Architectures with fast unaligned word accesses. We could 2053 * do a "get_unaligned()" if this helps and is sufficiently 2054 * fast. 2055 * 2056 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 2057 * do not trap on the (extremely unlikely) case of a page 2058 * crossing operation. 2059 * 2060 * - Furthermore, we need an efficient 64-bit compile for the 2061 * 64-bit case in order to generate the "number of bytes in 2062 * the final mask". Again, that could be replaced with a 2063 * efficient population count instruction or similar. 2064 */ 2065 #ifdef CONFIG_DCACHE_WORD_ACCESS 2066 2067 #include <asm/word-at-a-time.h> 2068 2069 #ifdef HASH_MIX 2070 2071 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */ 2072 2073 #elif defined(CONFIG_64BIT) 2074 /* 2075 * Register pressure in the mixing function is an issue, particularly 2076 * on 32-bit x86, but almost any function requires one state value and 2077 * one temporary. Instead, use a function designed for two state values 2078 * and no temporaries. 2079 * 2080 * This function cannot create a collision in only two iterations, so 2081 * we have two iterations to achieve avalanche. In those two iterations, 2082 * we have six layers of mixing, which is enough to spread one bit's 2083 * influence out to 2^6 = 64 state bits. 2084 * 2085 * Rotate constants are scored by considering either 64 one-bit input 2086 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the 2087 * probability of that delta causing a change to each of the 128 output 2088 * bits, using a sample of random initial states. 2089 * 2090 * The Shannon entropy of the computed probabilities is then summed 2091 * to produce a score. Ideally, any input change has a 50% chance of 2092 * toggling any given output bit. 2093 * 2094 * Mixing scores (in bits) for (12,45): 2095 * Input delta: 1-bit 2-bit 2096 * 1 round: 713.3 42542.6 2097 * 2 rounds: 2753.7 140389.8 2098 * 3 rounds: 5954.1 233458.2 2099 * 4 rounds: 7862.6 256672.2 2100 * Perfect: 8192 258048 2101 * (64*128) (64*63/2 * 128) 2102 */ 2103 #define HASH_MIX(x, y, a) \ 2104 ( x ^= (a), \ 2105 y ^= x, x = rol64(x,12),\ 2106 x += y, y = rol64(y,45),\ 2107 y *= 9 ) 2108 2109 /* 2110 * Fold two longs into one 32-bit hash value. This must be fast, but 2111 * latency isn't quite as critical, as there is a fair bit of additional 2112 * work done before the hash value is used. 2113 */ 2114 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 2115 { 2116 y ^= x * GOLDEN_RATIO_64; 2117 y *= GOLDEN_RATIO_64; 2118 return y >> 32; 2119 } 2120 2121 #else /* 32-bit case */ 2122 2123 /* 2124 * Mixing scores (in bits) for (7,20): 2125 * Input delta: 1-bit 2-bit 2126 * 1 round: 330.3 9201.6 2127 * 2 rounds: 1246.4 25475.4 2128 * 3 rounds: 1907.1 31295.1 2129 * 4 rounds: 2042.3 31718.6 2130 * Perfect: 2048 31744 2131 * (32*64) (32*31/2 * 64) 2132 */ 2133 #define HASH_MIX(x, y, a) \ 2134 ( x ^= (a), \ 2135 y ^= x, x = rol32(x, 7),\ 2136 x += y, y = rol32(y,20),\ 2137 y *= 9 ) 2138 2139 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 2140 { 2141 /* Use arch-optimized multiply if one exists */ 2142 return __hash_32(y ^ __hash_32(x)); 2143 } 2144 2145 #endif 2146 2147 /* 2148 * Return the hash of a string of known length. This is carfully 2149 * designed to match hash_name(), which is the more critical function. 2150 * In particular, we must end by hashing a final word containing 0..7 2151 * payload bytes, to match the way that hash_name() iterates until it 2152 * finds the delimiter after the name. 2153 */ 2154 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2155 { 2156 unsigned long a, x = 0, y = (unsigned long)salt; 2157 2158 for (;;) { 2159 if (!len) 2160 goto done; 2161 a = load_unaligned_zeropad(name); 2162 if (len < sizeof(unsigned long)) 2163 break; 2164 HASH_MIX(x, y, a); 2165 name += sizeof(unsigned long); 2166 len -= sizeof(unsigned long); 2167 } 2168 x ^= a & bytemask_from_count(len); 2169 done: 2170 return fold_hash(x, y); 2171 } 2172 EXPORT_SYMBOL(full_name_hash); 2173 2174 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2175 u64 hashlen_string(const void *salt, const char *name) 2176 { 2177 unsigned long a = 0, x = 0, y = (unsigned long)salt; 2178 unsigned long adata, mask, len; 2179 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 2180 2181 len = 0; 2182 goto inside; 2183 2184 do { 2185 HASH_MIX(x, y, a); 2186 len += sizeof(unsigned long); 2187 inside: 2188 a = load_unaligned_zeropad(name+len); 2189 } while (!has_zero(a, &adata, &constants)); 2190 2191 adata = prep_zero_mask(a, adata, &constants); 2192 mask = create_zero_mask(adata); 2193 x ^= a & zero_bytemask(mask); 2194 2195 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 2196 } 2197 EXPORT_SYMBOL(hashlen_string); 2198 2199 /* 2200 * Calculate the length and hash of the path component, and 2201 * return the length as the result. 2202 */ 2203 static inline const char *hash_name(struct nameidata *nd, 2204 const char *name, 2205 unsigned long *lastword) 2206 { 2207 unsigned long a, b, x, y = (unsigned long)nd->path.dentry; 2208 unsigned long adata, bdata, mask, len; 2209 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 2210 2211 /* 2212 * The first iteration is special, because it can result in 2213 * '.' and '..' and has no mixing other than the final fold. 2214 */ 2215 a = load_unaligned_zeropad(name); 2216 b = a ^ REPEAT_BYTE('/'); 2217 if (has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)) { 2218 adata = prep_zero_mask(a, adata, &constants); 2219 bdata = prep_zero_mask(b, bdata, &constants); 2220 mask = create_zero_mask(adata | bdata); 2221 a &= zero_bytemask(mask); 2222 *lastword = a; 2223 len = find_zero(mask); 2224 nd->last.hash = fold_hash(a, y); 2225 nd->last.len = len; 2226 return name + len; 2227 } 2228 2229 len = 0; 2230 x = 0; 2231 do { 2232 HASH_MIX(x, y, a); 2233 len += sizeof(unsigned long); 2234 a = load_unaligned_zeropad(name+len); 2235 b = a ^ REPEAT_BYTE('/'); 2236 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 2237 2238 adata = prep_zero_mask(a, adata, &constants); 2239 bdata = prep_zero_mask(b, bdata, &constants); 2240 mask = create_zero_mask(adata | bdata); 2241 a &= zero_bytemask(mask); 2242 x ^= a; 2243 len += find_zero(mask); 2244 *lastword = 0; // Multi-word components cannot be DOT or DOTDOT 2245 2246 nd->last.hash = fold_hash(x, y); 2247 nd->last.len = len; 2248 return name + len; 2249 } 2250 2251 /* 2252 * Note that the 'last' word is always zero-masked, but 2253 * was loaded as a possibly big-endian word. 2254 */ 2255 #ifdef __BIG_ENDIAN 2256 #define LAST_WORD_IS_DOT (0x2eul << (BITS_PER_LONG-8)) 2257 #define LAST_WORD_IS_DOTDOT (0x2e2eul << (BITS_PER_LONG-16)) 2258 #endif 2259 2260 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */ 2261 2262 /* Return the hash of a string of known length */ 2263 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2264 { 2265 unsigned long hash = init_name_hash(salt); 2266 while (len--) 2267 hash = partial_name_hash((unsigned char)*name++, hash); 2268 return end_name_hash(hash); 2269 } 2270 EXPORT_SYMBOL(full_name_hash); 2271 2272 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2273 u64 hashlen_string(const void *salt, const char *name) 2274 { 2275 unsigned long hash = init_name_hash(salt); 2276 unsigned long len = 0, c; 2277 2278 c = (unsigned char)*name; 2279 while (c) { 2280 len++; 2281 hash = partial_name_hash(c, hash); 2282 c = (unsigned char)name[len]; 2283 } 2284 return hashlen_create(end_name_hash(hash), len); 2285 } 2286 EXPORT_SYMBOL(hashlen_string); 2287 2288 /* 2289 * We know there's a real path component here of at least 2290 * one character. 2291 */ 2292 static inline const char *hash_name(struct nameidata *nd, const char *name, unsigned long *lastword) 2293 { 2294 unsigned long hash = init_name_hash(nd->path.dentry); 2295 unsigned long len = 0, c, last = 0; 2296 2297 c = (unsigned char)*name; 2298 do { 2299 last = (last << 8) + c; 2300 len++; 2301 hash = partial_name_hash(c, hash); 2302 c = (unsigned char)name[len]; 2303 } while (c && c != '/'); 2304 2305 // This is reliable for DOT or DOTDOT, since the component 2306 // cannot contain NUL characters - top bits being zero means 2307 // we cannot have had any other pathnames. 2308 *lastword = last; 2309 nd->last.hash = end_name_hash(hash); 2310 nd->last.len = len; 2311 return name + len; 2312 } 2313 2314 #endif 2315 2316 #ifndef LAST_WORD_IS_DOT 2317 #define LAST_WORD_IS_DOT 0x2e 2318 #define LAST_WORD_IS_DOTDOT 0x2e2e 2319 #endif 2320 2321 /* 2322 * Name resolution. 2323 * This is the basic name resolution function, turning a pathname into 2324 * the final dentry. We expect 'base' to be positive and a directory. 2325 * 2326 * Returns 0 and nd will have valid dentry and mnt on success. 2327 * Returns error and drops reference to input namei data on failure. 2328 */ 2329 static int link_path_walk(const char *name, struct nameidata *nd) 2330 { 2331 int depth = 0; // depth <= nd->depth 2332 int err; 2333 2334 nd->last_type = LAST_ROOT; 2335 nd->flags |= LOOKUP_PARENT; 2336 if (IS_ERR(name)) 2337 return PTR_ERR(name); 2338 while (*name=='/') 2339 name++; 2340 if (!*name) { 2341 nd->dir_mode = 0; // short-circuit the 'hardening' idiocy 2342 return 0; 2343 } 2344 2345 /* At this point we know we have a real path component. */ 2346 for(;;) { 2347 struct mnt_idmap *idmap; 2348 const char *link; 2349 unsigned long lastword; 2350 2351 idmap = mnt_idmap(nd->path.mnt); 2352 err = may_lookup(idmap, nd); 2353 if (err) 2354 return err; 2355 2356 nd->last.name = name; 2357 name = hash_name(nd, name, &lastword); 2358 2359 switch(lastword) { 2360 case LAST_WORD_IS_DOTDOT: 2361 nd->last_type = LAST_DOTDOT; 2362 nd->state |= ND_JUMPED; 2363 break; 2364 2365 case LAST_WORD_IS_DOT: 2366 nd->last_type = LAST_DOT; 2367 break; 2368 2369 default: 2370 nd->last_type = LAST_NORM; 2371 nd->state &= ~ND_JUMPED; 2372 2373 struct dentry *parent = nd->path.dentry; 2374 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 2375 err = parent->d_op->d_hash(parent, &nd->last); 2376 if (err < 0) 2377 return err; 2378 } 2379 } 2380 2381 if (!*name) 2382 goto OK; 2383 /* 2384 * If it wasn't NUL, we know it was '/'. Skip that 2385 * slash, and continue until no more slashes. 2386 */ 2387 do { 2388 name++; 2389 } while (unlikely(*name == '/')); 2390 if (unlikely(!*name)) { 2391 OK: 2392 /* pathname or trailing symlink, done */ 2393 if (!depth) { 2394 nd->dir_vfsuid = i_uid_into_vfsuid(idmap, nd->inode); 2395 nd->dir_mode = nd->inode->i_mode; 2396 nd->flags &= ~LOOKUP_PARENT; 2397 return 0; 2398 } 2399 /* last component of nested symlink */ 2400 name = nd->stack[--depth].name; 2401 link = walk_component(nd, 0); 2402 } else { 2403 /* not the last component */ 2404 link = walk_component(nd, WALK_MORE); 2405 } 2406 if (unlikely(link)) { 2407 if (IS_ERR(link)) 2408 return PTR_ERR(link); 2409 /* a symlink to follow */ 2410 nd->stack[depth++].name = name; 2411 name = link; 2412 continue; 2413 } 2414 if (unlikely(!d_can_lookup(nd->path.dentry))) { 2415 if (nd->flags & LOOKUP_RCU) { 2416 if (!try_to_unlazy(nd)) 2417 return -ECHILD; 2418 } 2419 return -ENOTDIR; 2420 } 2421 } 2422 } 2423 2424 /* must be paired with terminate_walk() */ 2425 static const char *path_init(struct nameidata *nd, unsigned flags) 2426 { 2427 int error; 2428 const char *s = nd->name->name; 2429 2430 /* LOOKUP_CACHED requires RCU, ask caller to retry */ 2431 if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED) 2432 return ERR_PTR(-EAGAIN); 2433 2434 if (!*s) 2435 flags &= ~LOOKUP_RCU; 2436 if (flags & LOOKUP_RCU) 2437 rcu_read_lock(); 2438 else 2439 nd->seq = nd->next_seq = 0; 2440 2441 nd->flags = flags; 2442 nd->state |= ND_JUMPED; 2443 2444 nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount); 2445 nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount); 2446 smp_rmb(); 2447 2448 if (nd->state & ND_ROOT_PRESET) { 2449 struct dentry *root = nd->root.dentry; 2450 struct inode *inode = root->d_inode; 2451 if (*s && unlikely(!d_can_lookup(root))) 2452 return ERR_PTR(-ENOTDIR); 2453 nd->path = nd->root; 2454 nd->inode = inode; 2455 if (flags & LOOKUP_RCU) { 2456 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2457 nd->root_seq = nd->seq; 2458 } else { 2459 path_get(&nd->path); 2460 } 2461 return s; 2462 } 2463 2464 nd->root.mnt = NULL; 2465 2466 /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */ 2467 if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) { 2468 error = nd_jump_root(nd); 2469 if (unlikely(error)) 2470 return ERR_PTR(error); 2471 return s; 2472 } 2473 2474 /* Relative pathname -- get the starting-point it is relative to. */ 2475 if (nd->dfd == AT_FDCWD) { 2476 if (flags & LOOKUP_RCU) { 2477 struct fs_struct *fs = current->fs; 2478 unsigned seq; 2479 2480 do { 2481 seq = read_seqcount_begin(&fs->seq); 2482 nd->path = fs->pwd; 2483 nd->inode = nd->path.dentry->d_inode; 2484 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2485 } while (read_seqcount_retry(&fs->seq, seq)); 2486 } else { 2487 get_fs_pwd(current->fs, &nd->path); 2488 nd->inode = nd->path.dentry->d_inode; 2489 } 2490 } else { 2491 /* Caller must check execute permissions on the starting path component */ 2492 struct fd f = fdget_raw(nd->dfd); 2493 struct dentry *dentry; 2494 2495 if (!f.file) 2496 return ERR_PTR(-EBADF); 2497 2498 if (flags & LOOKUP_LINKAT_EMPTY) { 2499 if (f.file->f_cred != current_cred() && 2500 !ns_capable(f.file->f_cred->user_ns, CAP_DAC_READ_SEARCH)) { 2501 fdput(f); 2502 return ERR_PTR(-ENOENT); 2503 } 2504 } 2505 2506 dentry = f.file->f_path.dentry; 2507 2508 if (*s && unlikely(!d_can_lookup(dentry))) { 2509 fdput(f); 2510 return ERR_PTR(-ENOTDIR); 2511 } 2512 2513 nd->path = f.file->f_path; 2514 if (flags & LOOKUP_RCU) { 2515 nd->inode = nd->path.dentry->d_inode; 2516 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2517 } else { 2518 path_get(&nd->path); 2519 nd->inode = nd->path.dentry->d_inode; 2520 } 2521 fdput(f); 2522 } 2523 2524 /* For scoped-lookups we need to set the root to the dirfd as well. */ 2525 if (flags & LOOKUP_IS_SCOPED) { 2526 nd->root = nd->path; 2527 if (flags & LOOKUP_RCU) { 2528 nd->root_seq = nd->seq; 2529 } else { 2530 path_get(&nd->root); 2531 nd->state |= ND_ROOT_GRABBED; 2532 } 2533 } 2534 return s; 2535 } 2536 2537 static inline const char *lookup_last(struct nameidata *nd) 2538 { 2539 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 2540 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2541 2542 return walk_component(nd, WALK_TRAILING); 2543 } 2544 2545 static int handle_lookup_down(struct nameidata *nd) 2546 { 2547 if (!(nd->flags & LOOKUP_RCU)) 2548 dget(nd->path.dentry); 2549 nd->next_seq = nd->seq; 2550 return PTR_ERR(step_into(nd, WALK_NOFOLLOW, nd->path.dentry)); 2551 } 2552 2553 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */ 2554 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path) 2555 { 2556 const char *s = path_init(nd, flags); 2557 int err; 2558 2559 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) { 2560 err = handle_lookup_down(nd); 2561 if (unlikely(err < 0)) 2562 s = ERR_PTR(err); 2563 } 2564 2565 while (!(err = link_path_walk(s, nd)) && 2566 (s = lookup_last(nd)) != NULL) 2567 ; 2568 if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) { 2569 err = handle_lookup_down(nd); 2570 nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please... 2571 } 2572 if (!err) 2573 err = complete_walk(nd); 2574 2575 if (!err && nd->flags & LOOKUP_DIRECTORY) 2576 if (!d_can_lookup(nd->path.dentry)) 2577 err = -ENOTDIR; 2578 if (!err) { 2579 *path = nd->path; 2580 nd->path.mnt = NULL; 2581 nd->path.dentry = NULL; 2582 } 2583 terminate_walk(nd); 2584 return err; 2585 } 2586 2587 int filename_lookup(int dfd, struct filename *name, unsigned flags, 2588 struct path *path, struct path *root) 2589 { 2590 int retval; 2591 struct nameidata nd; 2592 if (IS_ERR(name)) 2593 return PTR_ERR(name); 2594 set_nameidata(&nd, dfd, name, root); 2595 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path); 2596 if (unlikely(retval == -ECHILD)) 2597 retval = path_lookupat(&nd, flags, path); 2598 if (unlikely(retval == -ESTALE)) 2599 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path); 2600 2601 if (likely(!retval)) 2602 audit_inode(name, path->dentry, 2603 flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0); 2604 restore_nameidata(); 2605 return retval; 2606 } 2607 2608 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */ 2609 static int path_parentat(struct nameidata *nd, unsigned flags, 2610 struct path *parent) 2611 { 2612 const char *s = path_init(nd, flags); 2613 int err = link_path_walk(s, nd); 2614 if (!err) 2615 err = complete_walk(nd); 2616 if (!err) { 2617 *parent = nd->path; 2618 nd->path.mnt = NULL; 2619 nd->path.dentry = NULL; 2620 } 2621 terminate_walk(nd); 2622 return err; 2623 } 2624 2625 /* Note: this does not consume "name" */ 2626 static int __filename_parentat(int dfd, struct filename *name, 2627 unsigned int flags, struct path *parent, 2628 struct qstr *last, int *type, 2629 const struct path *root) 2630 { 2631 int retval; 2632 struct nameidata nd; 2633 2634 if (IS_ERR(name)) 2635 return PTR_ERR(name); 2636 set_nameidata(&nd, dfd, name, root); 2637 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent); 2638 if (unlikely(retval == -ECHILD)) 2639 retval = path_parentat(&nd, flags, parent); 2640 if (unlikely(retval == -ESTALE)) 2641 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent); 2642 if (likely(!retval)) { 2643 *last = nd.last; 2644 *type = nd.last_type; 2645 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT); 2646 } 2647 restore_nameidata(); 2648 return retval; 2649 } 2650 2651 static int filename_parentat(int dfd, struct filename *name, 2652 unsigned int flags, struct path *parent, 2653 struct qstr *last, int *type) 2654 { 2655 return __filename_parentat(dfd, name, flags, parent, last, type, NULL); 2656 } 2657 2658 /* does lookup, returns the object with parent locked */ 2659 static struct dentry *__kern_path_locked(int dfd, struct filename *name, struct path *path) 2660 { 2661 struct dentry *d; 2662 struct qstr last; 2663 int type, error; 2664 2665 error = filename_parentat(dfd, name, 0, path, &last, &type); 2666 if (error) 2667 return ERR_PTR(error); 2668 if (unlikely(type != LAST_NORM)) { 2669 path_put(path); 2670 return ERR_PTR(-EINVAL); 2671 } 2672 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 2673 d = lookup_one_qstr_excl(&last, path->dentry, 0); 2674 if (IS_ERR(d)) { 2675 inode_unlock(path->dentry->d_inode); 2676 path_put(path); 2677 } 2678 return d; 2679 } 2680 2681 struct dentry *kern_path_locked(const char *name, struct path *path) 2682 { 2683 struct filename *filename = getname_kernel(name); 2684 struct dentry *res = __kern_path_locked(AT_FDCWD, filename, path); 2685 2686 putname(filename); 2687 return res; 2688 } 2689 2690 struct dentry *user_path_locked_at(int dfd, const char __user *name, struct path *path) 2691 { 2692 struct filename *filename = getname(name); 2693 struct dentry *res = __kern_path_locked(dfd, filename, path); 2694 2695 putname(filename); 2696 return res; 2697 } 2698 EXPORT_SYMBOL(user_path_locked_at); 2699 2700 int kern_path(const char *name, unsigned int flags, struct path *path) 2701 { 2702 struct filename *filename = getname_kernel(name); 2703 int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL); 2704 2705 putname(filename); 2706 return ret; 2707 2708 } 2709 EXPORT_SYMBOL(kern_path); 2710 2711 /** 2712 * vfs_path_parent_lookup - lookup a parent path relative to a dentry-vfsmount pair 2713 * @filename: filename structure 2714 * @flags: lookup flags 2715 * @parent: pointer to struct path to fill 2716 * @last: last component 2717 * @type: type of the last component 2718 * @root: pointer to struct path of the base directory 2719 */ 2720 int vfs_path_parent_lookup(struct filename *filename, unsigned int flags, 2721 struct path *parent, struct qstr *last, int *type, 2722 const struct path *root) 2723 { 2724 return __filename_parentat(AT_FDCWD, filename, flags, parent, last, 2725 type, root); 2726 } 2727 EXPORT_SYMBOL(vfs_path_parent_lookup); 2728 2729 /** 2730 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2731 * @dentry: pointer to dentry of the base directory 2732 * @mnt: pointer to vfs mount of the base directory 2733 * @name: pointer to file name 2734 * @flags: lookup flags 2735 * @path: pointer to struct path to fill 2736 */ 2737 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2738 const char *name, unsigned int flags, 2739 struct path *path) 2740 { 2741 struct filename *filename; 2742 struct path root = {.mnt = mnt, .dentry = dentry}; 2743 int ret; 2744 2745 filename = getname_kernel(name); 2746 /* the first argument of filename_lookup() is ignored with root */ 2747 ret = filename_lookup(AT_FDCWD, filename, flags, path, &root); 2748 putname(filename); 2749 return ret; 2750 } 2751 EXPORT_SYMBOL(vfs_path_lookup); 2752 2753 static int lookup_one_common(struct mnt_idmap *idmap, 2754 const char *name, struct dentry *base, int len, 2755 struct qstr *this) 2756 { 2757 this->name = name; 2758 this->len = len; 2759 this->hash = full_name_hash(base, name, len); 2760 if (!len) 2761 return -EACCES; 2762 2763 if (is_dot_dotdot(name, len)) 2764 return -EACCES; 2765 2766 while (len--) { 2767 unsigned int c = *(const unsigned char *)name++; 2768 if (c == '/' || c == '\0') 2769 return -EACCES; 2770 } 2771 /* 2772 * See if the low-level filesystem might want 2773 * to use its own hash.. 2774 */ 2775 if (base->d_flags & DCACHE_OP_HASH) { 2776 int err = base->d_op->d_hash(base, this); 2777 if (err < 0) 2778 return err; 2779 } 2780 2781 return inode_permission(idmap, base->d_inode, MAY_EXEC); 2782 } 2783 2784 /** 2785 * try_lookup_one_len - filesystem helper to lookup single pathname component 2786 * @name: pathname component to lookup 2787 * @base: base directory to lookup from 2788 * @len: maximum length @len should be interpreted to 2789 * 2790 * Look up a dentry by name in the dcache, returning NULL if it does not 2791 * currently exist. The function does not try to create a dentry. 2792 * 2793 * Note that this routine is purely a helper for filesystem usage and should 2794 * not be called by generic code. 2795 * 2796 * The caller must hold base->i_mutex. 2797 */ 2798 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len) 2799 { 2800 struct qstr this; 2801 int err; 2802 2803 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2804 2805 err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this); 2806 if (err) 2807 return ERR_PTR(err); 2808 2809 return lookup_dcache(&this, base, 0); 2810 } 2811 EXPORT_SYMBOL(try_lookup_one_len); 2812 2813 /** 2814 * lookup_one_len - filesystem helper to lookup single pathname component 2815 * @name: pathname component to lookup 2816 * @base: base directory to lookup from 2817 * @len: maximum length @len should be interpreted to 2818 * 2819 * Note that this routine is purely a helper for filesystem usage and should 2820 * not be called by generic code. 2821 * 2822 * The caller must hold base->i_mutex. 2823 */ 2824 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2825 { 2826 struct dentry *dentry; 2827 struct qstr this; 2828 int err; 2829 2830 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2831 2832 err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this); 2833 if (err) 2834 return ERR_PTR(err); 2835 2836 dentry = lookup_dcache(&this, base, 0); 2837 return dentry ? dentry : __lookup_slow(&this, base, 0); 2838 } 2839 EXPORT_SYMBOL(lookup_one_len); 2840 2841 /** 2842 * lookup_one - filesystem helper to lookup single pathname component 2843 * @idmap: idmap of the mount the lookup is performed from 2844 * @name: pathname component to lookup 2845 * @base: base directory to lookup from 2846 * @len: maximum length @len should be interpreted to 2847 * 2848 * Note that this routine is purely a helper for filesystem usage and should 2849 * not be called by generic code. 2850 * 2851 * The caller must hold base->i_mutex. 2852 */ 2853 struct dentry *lookup_one(struct mnt_idmap *idmap, const char *name, 2854 struct dentry *base, int len) 2855 { 2856 struct dentry *dentry; 2857 struct qstr this; 2858 int err; 2859 2860 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2861 2862 err = lookup_one_common(idmap, name, base, len, &this); 2863 if (err) 2864 return ERR_PTR(err); 2865 2866 dentry = lookup_dcache(&this, base, 0); 2867 return dentry ? dentry : __lookup_slow(&this, base, 0); 2868 } 2869 EXPORT_SYMBOL(lookup_one); 2870 2871 /** 2872 * lookup_one_unlocked - filesystem helper to lookup single pathname component 2873 * @idmap: idmap of the mount the lookup is performed from 2874 * @name: pathname component to lookup 2875 * @base: base directory to lookup from 2876 * @len: maximum length @len should be interpreted to 2877 * 2878 * Note that this routine is purely a helper for filesystem usage and should 2879 * not be called by generic code. 2880 * 2881 * Unlike lookup_one_len, it should be called without the parent 2882 * i_mutex held, and will take the i_mutex itself if necessary. 2883 */ 2884 struct dentry *lookup_one_unlocked(struct mnt_idmap *idmap, 2885 const char *name, struct dentry *base, 2886 int len) 2887 { 2888 struct qstr this; 2889 int err; 2890 struct dentry *ret; 2891 2892 err = lookup_one_common(idmap, name, base, len, &this); 2893 if (err) 2894 return ERR_PTR(err); 2895 2896 ret = lookup_dcache(&this, base, 0); 2897 if (!ret) 2898 ret = lookup_slow(&this, base, 0); 2899 return ret; 2900 } 2901 EXPORT_SYMBOL(lookup_one_unlocked); 2902 2903 /** 2904 * lookup_one_positive_unlocked - filesystem helper to lookup single 2905 * pathname component 2906 * @idmap: idmap of the mount the lookup is performed from 2907 * @name: pathname component to lookup 2908 * @base: base directory to lookup from 2909 * @len: maximum length @len should be interpreted to 2910 * 2911 * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns 2912 * known positive or ERR_PTR(). This is what most of the users want. 2913 * 2914 * Note that pinned negative with unlocked parent _can_ become positive at any 2915 * time, so callers of lookup_one_unlocked() need to be very careful; pinned 2916 * positives have >d_inode stable, so this one avoids such problems. 2917 * 2918 * Note that this routine is purely a helper for filesystem usage and should 2919 * not be called by generic code. 2920 * 2921 * The helper should be called without i_mutex held. 2922 */ 2923 struct dentry *lookup_one_positive_unlocked(struct mnt_idmap *idmap, 2924 const char *name, 2925 struct dentry *base, int len) 2926 { 2927 struct dentry *ret = lookup_one_unlocked(idmap, name, base, len); 2928 2929 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) { 2930 dput(ret); 2931 ret = ERR_PTR(-ENOENT); 2932 } 2933 return ret; 2934 } 2935 EXPORT_SYMBOL(lookup_one_positive_unlocked); 2936 2937 /** 2938 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component 2939 * @name: pathname component to lookup 2940 * @base: base directory to lookup from 2941 * @len: maximum length @len should be interpreted to 2942 * 2943 * Note that this routine is purely a helper for filesystem usage and should 2944 * not be called by generic code. 2945 * 2946 * Unlike lookup_one_len, it should be called without the parent 2947 * i_mutex held, and will take the i_mutex itself if necessary. 2948 */ 2949 struct dentry *lookup_one_len_unlocked(const char *name, 2950 struct dentry *base, int len) 2951 { 2952 return lookup_one_unlocked(&nop_mnt_idmap, name, base, len); 2953 } 2954 EXPORT_SYMBOL(lookup_one_len_unlocked); 2955 2956 /* 2957 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT) 2958 * on negatives. Returns known positive or ERR_PTR(); that's what 2959 * most of the users want. Note that pinned negative with unlocked parent 2960 * _can_ become positive at any time, so callers of lookup_one_len_unlocked() 2961 * need to be very careful; pinned positives have ->d_inode stable, so 2962 * this one avoids such problems. 2963 */ 2964 struct dentry *lookup_positive_unlocked(const char *name, 2965 struct dentry *base, int len) 2966 { 2967 return lookup_one_positive_unlocked(&nop_mnt_idmap, name, base, len); 2968 } 2969 EXPORT_SYMBOL(lookup_positive_unlocked); 2970 2971 #ifdef CONFIG_UNIX98_PTYS 2972 int path_pts(struct path *path) 2973 { 2974 /* Find something mounted on "pts" in the same directory as 2975 * the input path. 2976 */ 2977 struct dentry *parent = dget_parent(path->dentry); 2978 struct dentry *child; 2979 struct qstr this = QSTR_INIT("pts", 3); 2980 2981 if (unlikely(!path_connected(path->mnt, parent))) { 2982 dput(parent); 2983 return -ENOENT; 2984 } 2985 dput(path->dentry); 2986 path->dentry = parent; 2987 child = d_hash_and_lookup(parent, &this); 2988 if (IS_ERR_OR_NULL(child)) 2989 return -ENOENT; 2990 2991 path->dentry = child; 2992 dput(parent); 2993 follow_down(path, 0); 2994 return 0; 2995 } 2996 #endif 2997 2998 int user_path_at(int dfd, const char __user *name, unsigned flags, 2999 struct path *path) 3000 { 3001 struct filename *filename = getname_flags(name, flags); 3002 int ret = filename_lookup(dfd, filename, flags, path, NULL); 3003 3004 putname(filename); 3005 return ret; 3006 } 3007 EXPORT_SYMBOL(user_path_at); 3008 3009 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir, 3010 struct inode *inode) 3011 { 3012 kuid_t fsuid = current_fsuid(); 3013 3014 if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), fsuid)) 3015 return 0; 3016 if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, dir), fsuid)) 3017 return 0; 3018 return !capable_wrt_inode_uidgid(idmap, inode, CAP_FOWNER); 3019 } 3020 EXPORT_SYMBOL(__check_sticky); 3021 3022 /* 3023 * Check whether we can remove a link victim from directory dir, check 3024 * whether the type of victim is right. 3025 * 1. We can't do it if dir is read-only (done in permission()) 3026 * 2. We should have write and exec permissions on dir 3027 * 3. We can't remove anything from append-only dir 3028 * 4. We can't do anything with immutable dir (done in permission()) 3029 * 5. If the sticky bit on dir is set we should either 3030 * a. be owner of dir, or 3031 * b. be owner of victim, or 3032 * c. have CAP_FOWNER capability 3033 * 6. If the victim is append-only or immutable we can't do antyhing with 3034 * links pointing to it. 3035 * 7. If the victim has an unknown uid or gid we can't change the inode. 3036 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR. 3037 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR. 3038 * 10. We can't remove a root or mountpoint. 3039 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by 3040 * nfs_async_unlink(). 3041 */ 3042 static int may_delete(struct mnt_idmap *idmap, struct inode *dir, 3043 struct dentry *victim, bool isdir) 3044 { 3045 struct inode *inode = d_backing_inode(victim); 3046 int error; 3047 3048 if (d_is_negative(victim)) 3049 return -ENOENT; 3050 BUG_ON(!inode); 3051 3052 BUG_ON(victim->d_parent->d_inode != dir); 3053 3054 /* Inode writeback is not safe when the uid or gid are invalid. */ 3055 if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) || 3056 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode))) 3057 return -EOVERFLOW; 3058 3059 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 3060 3061 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 3062 if (error) 3063 return error; 3064 if (IS_APPEND(dir)) 3065 return -EPERM; 3066 3067 if (check_sticky(idmap, dir, inode) || IS_APPEND(inode) || 3068 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || 3069 HAS_UNMAPPED_ID(idmap, inode)) 3070 return -EPERM; 3071 if (isdir) { 3072 if (!d_is_dir(victim)) 3073 return -ENOTDIR; 3074 if (IS_ROOT(victim)) 3075 return -EBUSY; 3076 } else if (d_is_dir(victim)) 3077 return -EISDIR; 3078 if (IS_DEADDIR(dir)) 3079 return -ENOENT; 3080 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 3081 return -EBUSY; 3082 return 0; 3083 } 3084 3085 /* Check whether we can create an object with dentry child in directory 3086 * dir. 3087 * 1. We can't do it if child already exists (open has special treatment for 3088 * this case, but since we are inlined it's OK) 3089 * 2. We can't do it if dir is read-only (done in permission()) 3090 * 3. We can't do it if the fs can't represent the fsuid or fsgid. 3091 * 4. We should have write and exec permissions on dir 3092 * 5. We can't do it if dir is immutable (done in permission()) 3093 */ 3094 static inline int may_create(struct mnt_idmap *idmap, 3095 struct inode *dir, struct dentry *child) 3096 { 3097 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 3098 if (child->d_inode) 3099 return -EEXIST; 3100 if (IS_DEADDIR(dir)) 3101 return -ENOENT; 3102 if (!fsuidgid_has_mapping(dir->i_sb, idmap)) 3103 return -EOVERFLOW; 3104 3105 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 3106 } 3107 3108 // p1 != p2, both are on the same filesystem, ->s_vfs_rename_mutex is held 3109 static struct dentry *lock_two_directories(struct dentry *p1, struct dentry *p2) 3110 { 3111 struct dentry *p = p1, *q = p2, *r; 3112 3113 while ((r = p->d_parent) != p2 && r != p) 3114 p = r; 3115 if (r == p2) { 3116 // p is a child of p2 and an ancestor of p1 or p1 itself 3117 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 3118 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT2); 3119 return p; 3120 } 3121 // p is the root of connected component that contains p1 3122 // p2 does not occur on the path from p to p1 3123 while ((r = q->d_parent) != p1 && r != p && r != q) 3124 q = r; 3125 if (r == p1) { 3126 // q is a child of p1 and an ancestor of p2 or p2 itself 3127 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 3128 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 3129 return q; 3130 } else if (likely(r == p)) { 3131 // both p2 and p1 are descendents of p 3132 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 3133 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 3134 return NULL; 3135 } else { // no common ancestor at the time we'd been called 3136 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 3137 return ERR_PTR(-EXDEV); 3138 } 3139 } 3140 3141 /* 3142 * p1 and p2 should be directories on the same fs. 3143 */ 3144 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 3145 { 3146 if (p1 == p2) { 3147 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 3148 return NULL; 3149 } 3150 3151 mutex_lock(&p1->d_sb->s_vfs_rename_mutex); 3152 return lock_two_directories(p1, p2); 3153 } 3154 EXPORT_SYMBOL(lock_rename); 3155 3156 /* 3157 * c1 and p2 should be on the same fs. 3158 */ 3159 struct dentry *lock_rename_child(struct dentry *c1, struct dentry *p2) 3160 { 3161 if (READ_ONCE(c1->d_parent) == p2) { 3162 /* 3163 * hopefully won't need to touch ->s_vfs_rename_mutex at all. 3164 */ 3165 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 3166 /* 3167 * now that p2 is locked, nobody can move in or out of it, 3168 * so the test below is safe. 3169 */ 3170 if (likely(c1->d_parent == p2)) 3171 return NULL; 3172 3173 /* 3174 * c1 got moved out of p2 while we'd been taking locks; 3175 * unlock and fall back to slow case. 3176 */ 3177 inode_unlock(p2->d_inode); 3178 } 3179 3180 mutex_lock(&c1->d_sb->s_vfs_rename_mutex); 3181 /* 3182 * nobody can move out of any directories on this fs. 3183 */ 3184 if (likely(c1->d_parent != p2)) 3185 return lock_two_directories(c1->d_parent, p2); 3186 3187 /* 3188 * c1 got moved into p2 while we were taking locks; 3189 * we need p2 locked and ->s_vfs_rename_mutex unlocked, 3190 * for consistency with lock_rename(). 3191 */ 3192 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 3193 mutex_unlock(&c1->d_sb->s_vfs_rename_mutex); 3194 return NULL; 3195 } 3196 EXPORT_SYMBOL(lock_rename_child); 3197 3198 void unlock_rename(struct dentry *p1, struct dentry *p2) 3199 { 3200 inode_unlock(p1->d_inode); 3201 if (p1 != p2) { 3202 inode_unlock(p2->d_inode); 3203 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 3204 } 3205 } 3206 EXPORT_SYMBOL(unlock_rename); 3207 3208 /** 3209 * vfs_prepare_mode - prepare the mode to be used for a new inode 3210 * @idmap: idmap of the mount the inode was found from 3211 * @dir: parent directory of the new inode 3212 * @mode: mode of the new inode 3213 * @mask_perms: allowed permission by the vfs 3214 * @type: type of file to be created 3215 * 3216 * This helper consolidates and enforces vfs restrictions on the @mode of a new 3217 * object to be created. 3218 * 3219 * Umask stripping depends on whether the filesystem supports POSIX ACLs (see 3220 * the kernel documentation for mode_strip_umask()). Moving umask stripping 3221 * after setgid stripping allows the same ordering for both non-POSIX ACL and 3222 * POSIX ACL supporting filesystems. 3223 * 3224 * Note that it's currently valid for @type to be 0 if a directory is created. 3225 * Filesystems raise that flag individually and we need to check whether each 3226 * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a 3227 * non-zero type. 3228 * 3229 * Returns: mode to be passed to the filesystem 3230 */ 3231 static inline umode_t vfs_prepare_mode(struct mnt_idmap *idmap, 3232 const struct inode *dir, umode_t mode, 3233 umode_t mask_perms, umode_t type) 3234 { 3235 mode = mode_strip_sgid(idmap, dir, mode); 3236 mode = mode_strip_umask(dir, mode); 3237 3238 /* 3239 * Apply the vfs mandated allowed permission mask and set the type of 3240 * file to be created before we call into the filesystem. 3241 */ 3242 mode &= (mask_perms & ~S_IFMT); 3243 mode |= (type & S_IFMT); 3244 3245 return mode; 3246 } 3247 3248 /** 3249 * vfs_create - create new file 3250 * @idmap: idmap of the mount the inode was found from 3251 * @dir: inode of the parent directory 3252 * @dentry: dentry of the child file 3253 * @mode: mode of the child file 3254 * @want_excl: whether the file must not yet exist 3255 * 3256 * Create a new file. 3257 * 3258 * If the inode has been found through an idmapped mount the idmap of 3259 * the vfsmount must be passed through @idmap. This function will then take 3260 * care to map the inode according to @idmap before checking permissions. 3261 * On non-idmapped mounts or if permission checking is to be performed on the 3262 * raw inode simply pass @nop_mnt_idmap. 3263 */ 3264 int vfs_create(struct mnt_idmap *idmap, struct inode *dir, 3265 struct dentry *dentry, umode_t mode, bool want_excl) 3266 { 3267 int error; 3268 3269 error = may_create(idmap, dir, dentry); 3270 if (error) 3271 return error; 3272 3273 if (!dir->i_op->create) 3274 return -EACCES; /* shouldn't it be ENOSYS? */ 3275 3276 mode = vfs_prepare_mode(idmap, dir, mode, S_IALLUGO, S_IFREG); 3277 error = security_inode_create(dir, dentry, mode); 3278 if (error) 3279 return error; 3280 error = dir->i_op->create(idmap, dir, dentry, mode, want_excl); 3281 if (!error) 3282 fsnotify_create(dir, dentry); 3283 return error; 3284 } 3285 EXPORT_SYMBOL(vfs_create); 3286 3287 int vfs_mkobj(struct dentry *dentry, umode_t mode, 3288 int (*f)(struct dentry *, umode_t, void *), 3289 void *arg) 3290 { 3291 struct inode *dir = dentry->d_parent->d_inode; 3292 int error = may_create(&nop_mnt_idmap, dir, dentry); 3293 if (error) 3294 return error; 3295 3296 mode &= S_IALLUGO; 3297 mode |= S_IFREG; 3298 error = security_inode_create(dir, dentry, mode); 3299 if (error) 3300 return error; 3301 error = f(dentry, mode, arg); 3302 if (!error) 3303 fsnotify_create(dir, dentry); 3304 return error; 3305 } 3306 EXPORT_SYMBOL(vfs_mkobj); 3307 3308 bool may_open_dev(const struct path *path) 3309 { 3310 return !(path->mnt->mnt_flags & MNT_NODEV) && 3311 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV); 3312 } 3313 3314 static int may_open(struct mnt_idmap *idmap, const struct path *path, 3315 int acc_mode, int flag) 3316 { 3317 struct dentry *dentry = path->dentry; 3318 struct inode *inode = dentry->d_inode; 3319 int error; 3320 3321 if (!inode) 3322 return -ENOENT; 3323 3324 switch (inode->i_mode & S_IFMT) { 3325 case S_IFLNK: 3326 return -ELOOP; 3327 case S_IFDIR: 3328 if (acc_mode & MAY_WRITE) 3329 return -EISDIR; 3330 if (acc_mode & MAY_EXEC) 3331 return -EACCES; 3332 break; 3333 case S_IFBLK: 3334 case S_IFCHR: 3335 if (!may_open_dev(path)) 3336 return -EACCES; 3337 fallthrough; 3338 case S_IFIFO: 3339 case S_IFSOCK: 3340 if (acc_mode & MAY_EXEC) 3341 return -EACCES; 3342 flag &= ~O_TRUNC; 3343 break; 3344 case S_IFREG: 3345 if ((acc_mode & MAY_EXEC) && path_noexec(path)) 3346 return -EACCES; 3347 break; 3348 } 3349 3350 error = inode_permission(idmap, inode, MAY_OPEN | acc_mode); 3351 if (error) 3352 return error; 3353 3354 /* 3355 * An append-only file must be opened in append mode for writing. 3356 */ 3357 if (IS_APPEND(inode)) { 3358 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 3359 return -EPERM; 3360 if (flag & O_TRUNC) 3361 return -EPERM; 3362 } 3363 3364 /* O_NOATIME can only be set by the owner or superuser */ 3365 if (flag & O_NOATIME && !inode_owner_or_capable(idmap, inode)) 3366 return -EPERM; 3367 3368 return 0; 3369 } 3370 3371 static int handle_truncate(struct mnt_idmap *idmap, struct file *filp) 3372 { 3373 const struct path *path = &filp->f_path; 3374 struct inode *inode = path->dentry->d_inode; 3375 int error = get_write_access(inode); 3376 if (error) 3377 return error; 3378 3379 error = security_file_truncate(filp); 3380 if (!error) { 3381 error = do_truncate(idmap, path->dentry, 0, 3382 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 3383 filp); 3384 } 3385 put_write_access(inode); 3386 return error; 3387 } 3388 3389 static inline int open_to_namei_flags(int flag) 3390 { 3391 if ((flag & O_ACCMODE) == 3) 3392 flag--; 3393 return flag; 3394 } 3395 3396 static int may_o_create(struct mnt_idmap *idmap, 3397 const struct path *dir, struct dentry *dentry, 3398 umode_t mode) 3399 { 3400 int error = security_path_mknod(dir, dentry, mode, 0); 3401 if (error) 3402 return error; 3403 3404 if (!fsuidgid_has_mapping(dir->dentry->d_sb, idmap)) 3405 return -EOVERFLOW; 3406 3407 error = inode_permission(idmap, dir->dentry->d_inode, 3408 MAY_WRITE | MAY_EXEC); 3409 if (error) 3410 return error; 3411 3412 return security_inode_create(dir->dentry->d_inode, dentry, mode); 3413 } 3414 3415 /* 3416 * Attempt to atomically look up, create and open a file from a negative 3417 * dentry. 3418 * 3419 * Returns 0 if successful. The file will have been created and attached to 3420 * @file by the filesystem calling finish_open(). 3421 * 3422 * If the file was looked up only or didn't need creating, FMODE_OPENED won't 3423 * be set. The caller will need to perform the open themselves. @path will 3424 * have been updated to point to the new dentry. This may be negative. 3425 * 3426 * Returns an error code otherwise. 3427 */ 3428 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry, 3429 struct file *file, 3430 int open_flag, umode_t mode) 3431 { 3432 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 3433 struct inode *dir = nd->path.dentry->d_inode; 3434 int error; 3435 3436 if (nd->flags & LOOKUP_DIRECTORY) 3437 open_flag |= O_DIRECTORY; 3438 3439 file->f_path.dentry = DENTRY_NOT_SET; 3440 file->f_path.mnt = nd->path.mnt; 3441 error = dir->i_op->atomic_open(dir, dentry, file, 3442 open_to_namei_flags(open_flag), mode); 3443 d_lookup_done(dentry); 3444 if (!error) { 3445 if (file->f_mode & FMODE_OPENED) { 3446 if (unlikely(dentry != file->f_path.dentry)) { 3447 dput(dentry); 3448 dentry = dget(file->f_path.dentry); 3449 } 3450 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 3451 error = -EIO; 3452 } else { 3453 if (file->f_path.dentry) { 3454 dput(dentry); 3455 dentry = file->f_path.dentry; 3456 } 3457 if (unlikely(d_is_negative(dentry))) 3458 error = -ENOENT; 3459 } 3460 } 3461 if (error) { 3462 dput(dentry); 3463 dentry = ERR_PTR(error); 3464 } 3465 return dentry; 3466 } 3467 3468 /* 3469 * Look up and maybe create and open the last component. 3470 * 3471 * Must be called with parent locked (exclusive in O_CREAT case). 3472 * 3473 * Returns 0 on success, that is, if 3474 * the file was successfully atomically created (if necessary) and opened, or 3475 * the file was not completely opened at this time, though lookups and 3476 * creations were performed. 3477 * These case are distinguished by presence of FMODE_OPENED on file->f_mode. 3478 * In the latter case dentry returned in @path might be negative if O_CREAT 3479 * hadn't been specified. 3480 * 3481 * An error code is returned on failure. 3482 */ 3483 static struct dentry *lookup_open(struct nameidata *nd, struct file *file, 3484 const struct open_flags *op, 3485 bool got_write) 3486 { 3487 struct mnt_idmap *idmap; 3488 struct dentry *dir = nd->path.dentry; 3489 struct inode *dir_inode = dir->d_inode; 3490 int open_flag = op->open_flag; 3491 struct dentry *dentry; 3492 int error, create_error = 0; 3493 umode_t mode = op->mode; 3494 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 3495 3496 if (unlikely(IS_DEADDIR(dir_inode))) 3497 return ERR_PTR(-ENOENT); 3498 3499 file->f_mode &= ~FMODE_CREATED; 3500 dentry = d_lookup(dir, &nd->last); 3501 for (;;) { 3502 if (!dentry) { 3503 dentry = d_alloc_parallel(dir, &nd->last, &wq); 3504 if (IS_ERR(dentry)) 3505 return dentry; 3506 } 3507 if (d_in_lookup(dentry)) 3508 break; 3509 3510 error = d_revalidate(dentry, nd->flags); 3511 if (likely(error > 0)) 3512 break; 3513 if (error) 3514 goto out_dput; 3515 d_invalidate(dentry); 3516 dput(dentry); 3517 dentry = NULL; 3518 } 3519 if (dentry->d_inode) { 3520 /* Cached positive dentry: will open in f_op->open */ 3521 return dentry; 3522 } 3523 3524 /* 3525 * Checking write permission is tricky, bacuse we don't know if we are 3526 * going to actually need it: O_CREAT opens should work as long as the 3527 * file exists. But checking existence breaks atomicity. The trick is 3528 * to check access and if not granted clear O_CREAT from the flags. 3529 * 3530 * Another problem is returing the "right" error value (e.g. for an 3531 * O_EXCL open we want to return EEXIST not EROFS). 3532 */ 3533 if (unlikely(!got_write)) 3534 open_flag &= ~O_TRUNC; 3535 idmap = mnt_idmap(nd->path.mnt); 3536 if (open_flag & O_CREAT) { 3537 if (open_flag & O_EXCL) 3538 open_flag &= ~O_TRUNC; 3539 mode = vfs_prepare_mode(idmap, dir->d_inode, mode, mode, mode); 3540 if (likely(got_write)) 3541 create_error = may_o_create(idmap, &nd->path, 3542 dentry, mode); 3543 else 3544 create_error = -EROFS; 3545 } 3546 if (create_error) 3547 open_flag &= ~O_CREAT; 3548 if (dir_inode->i_op->atomic_open) { 3549 dentry = atomic_open(nd, dentry, file, open_flag, mode); 3550 if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT)) 3551 dentry = ERR_PTR(create_error); 3552 return dentry; 3553 } 3554 3555 if (d_in_lookup(dentry)) { 3556 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry, 3557 nd->flags); 3558 d_lookup_done(dentry); 3559 if (unlikely(res)) { 3560 if (IS_ERR(res)) { 3561 error = PTR_ERR(res); 3562 goto out_dput; 3563 } 3564 dput(dentry); 3565 dentry = res; 3566 } 3567 } 3568 3569 /* Negative dentry, just create the file */ 3570 if (!dentry->d_inode && (open_flag & O_CREAT)) { 3571 file->f_mode |= FMODE_CREATED; 3572 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE); 3573 if (!dir_inode->i_op->create) { 3574 error = -EACCES; 3575 goto out_dput; 3576 } 3577 3578 error = dir_inode->i_op->create(idmap, dir_inode, dentry, 3579 mode, open_flag & O_EXCL); 3580 if (error) 3581 goto out_dput; 3582 } 3583 if (unlikely(create_error) && !dentry->d_inode) { 3584 error = create_error; 3585 goto out_dput; 3586 } 3587 return dentry; 3588 3589 out_dput: 3590 dput(dentry); 3591 return ERR_PTR(error); 3592 } 3593 3594 static const char *open_last_lookups(struct nameidata *nd, 3595 struct file *file, const struct open_flags *op) 3596 { 3597 struct dentry *dir = nd->path.dentry; 3598 int open_flag = op->open_flag; 3599 bool got_write = false; 3600 struct dentry *dentry; 3601 const char *res; 3602 3603 nd->flags |= op->intent; 3604 3605 if (nd->last_type != LAST_NORM) { 3606 if (nd->depth) 3607 put_link(nd); 3608 return handle_dots(nd, nd->last_type); 3609 } 3610 3611 if (!(open_flag & O_CREAT)) { 3612 if (nd->last.name[nd->last.len]) 3613 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 3614 /* we _can_ be in RCU mode here */ 3615 dentry = lookup_fast(nd); 3616 if (IS_ERR(dentry)) 3617 return ERR_CAST(dentry); 3618 if (likely(dentry)) 3619 goto finish_lookup; 3620 3621 if (WARN_ON_ONCE(nd->flags & LOOKUP_RCU)) 3622 return ERR_PTR(-ECHILD); 3623 } else { 3624 /* create side of things */ 3625 if (nd->flags & LOOKUP_RCU) { 3626 if (!try_to_unlazy(nd)) 3627 return ERR_PTR(-ECHILD); 3628 } 3629 audit_inode(nd->name, dir, AUDIT_INODE_PARENT); 3630 /* trailing slashes? */ 3631 if (unlikely(nd->last.name[nd->last.len])) 3632 return ERR_PTR(-EISDIR); 3633 } 3634 3635 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 3636 got_write = !mnt_want_write(nd->path.mnt); 3637 /* 3638 * do _not_ fail yet - we might not need that or fail with 3639 * a different error; let lookup_open() decide; we'll be 3640 * dropping this one anyway. 3641 */ 3642 } 3643 if (open_flag & O_CREAT) 3644 inode_lock(dir->d_inode); 3645 else 3646 inode_lock_shared(dir->d_inode); 3647 dentry = lookup_open(nd, file, op, got_write); 3648 if (!IS_ERR(dentry)) { 3649 if (file->f_mode & FMODE_CREATED) 3650 fsnotify_create(dir->d_inode, dentry); 3651 if (file->f_mode & FMODE_OPENED) 3652 fsnotify_open(file); 3653 } 3654 if (open_flag & O_CREAT) 3655 inode_unlock(dir->d_inode); 3656 else 3657 inode_unlock_shared(dir->d_inode); 3658 3659 if (got_write) 3660 mnt_drop_write(nd->path.mnt); 3661 3662 if (IS_ERR(dentry)) 3663 return ERR_CAST(dentry); 3664 3665 if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) { 3666 dput(nd->path.dentry); 3667 nd->path.dentry = dentry; 3668 return NULL; 3669 } 3670 3671 finish_lookup: 3672 if (nd->depth) 3673 put_link(nd); 3674 res = step_into(nd, WALK_TRAILING, dentry); 3675 if (unlikely(res)) 3676 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3677 return res; 3678 } 3679 3680 /* 3681 * Handle the last step of open() 3682 */ 3683 static int do_open(struct nameidata *nd, 3684 struct file *file, const struct open_flags *op) 3685 { 3686 struct mnt_idmap *idmap; 3687 int open_flag = op->open_flag; 3688 bool do_truncate; 3689 int acc_mode; 3690 int error; 3691 3692 if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) { 3693 error = complete_walk(nd); 3694 if (error) 3695 return error; 3696 } 3697 if (!(file->f_mode & FMODE_CREATED)) 3698 audit_inode(nd->name, nd->path.dentry, 0); 3699 idmap = mnt_idmap(nd->path.mnt); 3700 if (open_flag & O_CREAT) { 3701 if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED)) 3702 return -EEXIST; 3703 if (d_is_dir(nd->path.dentry)) 3704 return -EISDIR; 3705 error = may_create_in_sticky(idmap, nd, 3706 d_backing_inode(nd->path.dentry)); 3707 if (unlikely(error)) 3708 return error; 3709 } 3710 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3711 return -ENOTDIR; 3712 3713 do_truncate = false; 3714 acc_mode = op->acc_mode; 3715 if (file->f_mode & FMODE_CREATED) { 3716 /* Don't check for write permission, don't truncate */ 3717 open_flag &= ~O_TRUNC; 3718 acc_mode = 0; 3719 } else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) { 3720 error = mnt_want_write(nd->path.mnt); 3721 if (error) 3722 return error; 3723 do_truncate = true; 3724 } 3725 error = may_open(idmap, &nd->path, acc_mode, open_flag); 3726 if (!error && !(file->f_mode & FMODE_OPENED)) 3727 error = vfs_open(&nd->path, file); 3728 if (!error) 3729 error = security_file_post_open(file, op->acc_mode); 3730 if (!error && do_truncate) 3731 error = handle_truncate(idmap, file); 3732 if (unlikely(error > 0)) { 3733 WARN_ON(1); 3734 error = -EINVAL; 3735 } 3736 if (do_truncate) 3737 mnt_drop_write(nd->path.mnt); 3738 return error; 3739 } 3740 3741 /** 3742 * vfs_tmpfile - create tmpfile 3743 * @idmap: idmap of the mount the inode was found from 3744 * @parentpath: pointer to the path of the base directory 3745 * @file: file descriptor of the new tmpfile 3746 * @mode: mode of the new tmpfile 3747 * 3748 * Create a temporary file. 3749 * 3750 * If the inode has been found through an idmapped mount the idmap of 3751 * the vfsmount must be passed through @idmap. This function will then take 3752 * care to map the inode according to @idmap before checking permissions. 3753 * On non-idmapped mounts or if permission checking is to be performed on the 3754 * raw inode simply pass @nop_mnt_idmap. 3755 */ 3756 int vfs_tmpfile(struct mnt_idmap *idmap, 3757 const struct path *parentpath, 3758 struct file *file, umode_t mode) 3759 { 3760 struct dentry *child; 3761 struct inode *dir = d_inode(parentpath->dentry); 3762 struct inode *inode; 3763 int error; 3764 int open_flag = file->f_flags; 3765 3766 /* we want directory to be writable */ 3767 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 3768 if (error) 3769 return error; 3770 if (!dir->i_op->tmpfile) 3771 return -EOPNOTSUPP; 3772 child = d_alloc(parentpath->dentry, &slash_name); 3773 if (unlikely(!child)) 3774 return -ENOMEM; 3775 file->f_path.mnt = parentpath->mnt; 3776 file->f_path.dentry = child; 3777 mode = vfs_prepare_mode(idmap, dir, mode, mode, mode); 3778 error = dir->i_op->tmpfile(idmap, dir, file, mode); 3779 dput(child); 3780 if (file->f_mode & FMODE_OPENED) 3781 fsnotify_open(file); 3782 if (error) 3783 return error; 3784 /* Don't check for other permissions, the inode was just created */ 3785 error = may_open(idmap, &file->f_path, 0, file->f_flags); 3786 if (error) 3787 return error; 3788 inode = file_inode(file); 3789 if (!(open_flag & O_EXCL)) { 3790 spin_lock(&inode->i_lock); 3791 inode->i_state |= I_LINKABLE; 3792 spin_unlock(&inode->i_lock); 3793 } 3794 security_inode_post_create_tmpfile(idmap, inode); 3795 return 0; 3796 } 3797 3798 /** 3799 * kernel_tmpfile_open - open a tmpfile for kernel internal use 3800 * @idmap: idmap of the mount the inode was found from 3801 * @parentpath: path of the base directory 3802 * @mode: mode of the new tmpfile 3803 * @open_flag: flags 3804 * @cred: credentials for open 3805 * 3806 * Create and open a temporary file. The file is not accounted in nr_files, 3807 * hence this is only for kernel internal use, and must not be installed into 3808 * file tables or such. 3809 */ 3810 struct file *kernel_tmpfile_open(struct mnt_idmap *idmap, 3811 const struct path *parentpath, 3812 umode_t mode, int open_flag, 3813 const struct cred *cred) 3814 { 3815 struct file *file; 3816 int error; 3817 3818 file = alloc_empty_file_noaccount(open_flag, cred); 3819 if (IS_ERR(file)) 3820 return file; 3821 3822 error = vfs_tmpfile(idmap, parentpath, file, mode); 3823 if (error) { 3824 fput(file); 3825 file = ERR_PTR(error); 3826 } 3827 return file; 3828 } 3829 EXPORT_SYMBOL(kernel_tmpfile_open); 3830 3831 static int do_tmpfile(struct nameidata *nd, unsigned flags, 3832 const struct open_flags *op, 3833 struct file *file) 3834 { 3835 struct path path; 3836 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path); 3837 3838 if (unlikely(error)) 3839 return error; 3840 error = mnt_want_write(path.mnt); 3841 if (unlikely(error)) 3842 goto out; 3843 error = vfs_tmpfile(mnt_idmap(path.mnt), &path, file, op->mode); 3844 if (error) 3845 goto out2; 3846 audit_inode(nd->name, file->f_path.dentry, 0); 3847 out2: 3848 mnt_drop_write(path.mnt); 3849 out: 3850 path_put(&path); 3851 return error; 3852 } 3853 3854 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file) 3855 { 3856 struct path path; 3857 int error = path_lookupat(nd, flags, &path); 3858 if (!error) { 3859 audit_inode(nd->name, path.dentry, 0); 3860 error = vfs_open(&path, file); 3861 path_put(&path); 3862 } 3863 return error; 3864 } 3865 3866 static struct file *path_openat(struct nameidata *nd, 3867 const struct open_flags *op, unsigned flags) 3868 { 3869 struct file *file; 3870 int error; 3871 3872 file = alloc_empty_file(op->open_flag, current_cred()); 3873 if (IS_ERR(file)) 3874 return file; 3875 3876 if (unlikely(file->f_flags & __O_TMPFILE)) { 3877 error = do_tmpfile(nd, flags, op, file); 3878 } else if (unlikely(file->f_flags & O_PATH)) { 3879 error = do_o_path(nd, flags, file); 3880 } else { 3881 const char *s = path_init(nd, flags); 3882 while (!(error = link_path_walk(s, nd)) && 3883 (s = open_last_lookups(nd, file, op)) != NULL) 3884 ; 3885 if (!error) 3886 error = do_open(nd, file, op); 3887 terminate_walk(nd); 3888 } 3889 if (likely(!error)) { 3890 if (likely(file->f_mode & FMODE_OPENED)) 3891 return file; 3892 WARN_ON(1); 3893 error = -EINVAL; 3894 } 3895 fput(file); 3896 if (error == -EOPENSTALE) { 3897 if (flags & LOOKUP_RCU) 3898 error = -ECHILD; 3899 else 3900 error = -ESTALE; 3901 } 3902 return ERR_PTR(error); 3903 } 3904 3905 struct file *do_filp_open(int dfd, struct filename *pathname, 3906 const struct open_flags *op) 3907 { 3908 struct nameidata nd; 3909 int flags = op->lookup_flags; 3910 struct file *filp; 3911 3912 set_nameidata(&nd, dfd, pathname, NULL); 3913 filp = path_openat(&nd, op, flags | LOOKUP_RCU); 3914 if (unlikely(filp == ERR_PTR(-ECHILD))) 3915 filp = path_openat(&nd, op, flags); 3916 if (unlikely(filp == ERR_PTR(-ESTALE))) 3917 filp = path_openat(&nd, op, flags | LOOKUP_REVAL); 3918 restore_nameidata(); 3919 return filp; 3920 } 3921 3922 struct file *do_file_open_root(const struct path *root, 3923 const char *name, const struct open_flags *op) 3924 { 3925 struct nameidata nd; 3926 struct file *file; 3927 struct filename *filename; 3928 int flags = op->lookup_flags; 3929 3930 if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN) 3931 return ERR_PTR(-ELOOP); 3932 3933 filename = getname_kernel(name); 3934 if (IS_ERR(filename)) 3935 return ERR_CAST(filename); 3936 3937 set_nameidata(&nd, -1, filename, root); 3938 file = path_openat(&nd, op, flags | LOOKUP_RCU); 3939 if (unlikely(file == ERR_PTR(-ECHILD))) 3940 file = path_openat(&nd, op, flags); 3941 if (unlikely(file == ERR_PTR(-ESTALE))) 3942 file = path_openat(&nd, op, flags | LOOKUP_REVAL); 3943 restore_nameidata(); 3944 putname(filename); 3945 return file; 3946 } 3947 3948 static struct dentry *filename_create(int dfd, struct filename *name, 3949 struct path *path, unsigned int lookup_flags) 3950 { 3951 struct dentry *dentry = ERR_PTR(-EEXIST); 3952 struct qstr last; 3953 bool want_dir = lookup_flags & LOOKUP_DIRECTORY; 3954 unsigned int reval_flag = lookup_flags & LOOKUP_REVAL; 3955 unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL; 3956 int type; 3957 int err2; 3958 int error; 3959 3960 error = filename_parentat(dfd, name, reval_flag, path, &last, &type); 3961 if (error) 3962 return ERR_PTR(error); 3963 3964 /* 3965 * Yucky last component or no last component at all? 3966 * (foo/., foo/.., /////) 3967 */ 3968 if (unlikely(type != LAST_NORM)) 3969 goto out; 3970 3971 /* don't fail immediately if it's r/o, at least try to report other errors */ 3972 err2 = mnt_want_write(path->mnt); 3973 /* 3974 * Do the final lookup. Suppress 'create' if there is a trailing 3975 * '/', and a directory wasn't requested. 3976 */ 3977 if (last.name[last.len] && !want_dir) 3978 create_flags = 0; 3979 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 3980 dentry = lookup_one_qstr_excl(&last, path->dentry, 3981 reval_flag | create_flags); 3982 if (IS_ERR(dentry)) 3983 goto unlock; 3984 3985 error = -EEXIST; 3986 if (d_is_positive(dentry)) 3987 goto fail; 3988 3989 /* 3990 * Special case - lookup gave negative, but... we had foo/bar/ 3991 * From the vfs_mknod() POV we just have a negative dentry - 3992 * all is fine. Let's be bastards - you had / on the end, you've 3993 * been asking for (non-existent) directory. -ENOENT for you. 3994 */ 3995 if (unlikely(!create_flags)) { 3996 error = -ENOENT; 3997 goto fail; 3998 } 3999 if (unlikely(err2)) { 4000 error = err2; 4001 goto fail; 4002 } 4003 return dentry; 4004 fail: 4005 dput(dentry); 4006 dentry = ERR_PTR(error); 4007 unlock: 4008 inode_unlock(path->dentry->d_inode); 4009 if (!err2) 4010 mnt_drop_write(path->mnt); 4011 out: 4012 path_put(path); 4013 return dentry; 4014 } 4015 4016 struct dentry *kern_path_create(int dfd, const char *pathname, 4017 struct path *path, unsigned int lookup_flags) 4018 { 4019 struct filename *filename = getname_kernel(pathname); 4020 struct dentry *res = filename_create(dfd, filename, path, lookup_flags); 4021 4022 putname(filename); 4023 return res; 4024 } 4025 EXPORT_SYMBOL(kern_path_create); 4026 4027 void done_path_create(struct path *path, struct dentry *dentry) 4028 { 4029 dput(dentry); 4030 inode_unlock(path->dentry->d_inode); 4031 mnt_drop_write(path->mnt); 4032 path_put(path); 4033 } 4034 EXPORT_SYMBOL(done_path_create); 4035 4036 inline struct dentry *user_path_create(int dfd, const char __user *pathname, 4037 struct path *path, unsigned int lookup_flags) 4038 { 4039 struct filename *filename = getname(pathname); 4040 struct dentry *res = filename_create(dfd, filename, path, lookup_flags); 4041 4042 putname(filename); 4043 return res; 4044 } 4045 EXPORT_SYMBOL(user_path_create); 4046 4047 /** 4048 * vfs_mknod - create device node or file 4049 * @idmap: idmap of the mount the inode was found from 4050 * @dir: inode of the parent directory 4051 * @dentry: dentry of the child device node 4052 * @mode: mode of the child device node 4053 * @dev: device number of device to create 4054 * 4055 * Create a device node or file. 4056 * 4057 * If the inode has been found through an idmapped mount the idmap of 4058 * the vfsmount must be passed through @idmap. This function will then take 4059 * care to map the inode according to @idmap before checking permissions. 4060 * On non-idmapped mounts or if permission checking is to be performed on the 4061 * raw inode simply pass @nop_mnt_idmap. 4062 */ 4063 int vfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 4064 struct dentry *dentry, umode_t mode, dev_t dev) 4065 { 4066 bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV; 4067 int error = may_create(idmap, dir, dentry); 4068 4069 if (error) 4070 return error; 4071 4072 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout && 4073 !capable(CAP_MKNOD)) 4074 return -EPERM; 4075 4076 if (!dir->i_op->mknod) 4077 return -EPERM; 4078 4079 mode = vfs_prepare_mode(idmap, dir, mode, mode, mode); 4080 error = devcgroup_inode_mknod(mode, dev); 4081 if (error) 4082 return error; 4083 4084 error = security_inode_mknod(dir, dentry, mode, dev); 4085 if (error) 4086 return error; 4087 4088 error = dir->i_op->mknod(idmap, dir, dentry, mode, dev); 4089 if (!error) 4090 fsnotify_create(dir, dentry); 4091 return error; 4092 } 4093 EXPORT_SYMBOL(vfs_mknod); 4094 4095 static int may_mknod(umode_t mode) 4096 { 4097 switch (mode & S_IFMT) { 4098 case S_IFREG: 4099 case S_IFCHR: 4100 case S_IFBLK: 4101 case S_IFIFO: 4102 case S_IFSOCK: 4103 case 0: /* zero mode translates to S_IFREG */ 4104 return 0; 4105 case S_IFDIR: 4106 return -EPERM; 4107 default: 4108 return -EINVAL; 4109 } 4110 } 4111 4112 static int do_mknodat(int dfd, struct filename *name, umode_t mode, 4113 unsigned int dev) 4114 { 4115 struct mnt_idmap *idmap; 4116 struct dentry *dentry; 4117 struct path path; 4118 int error; 4119 unsigned int lookup_flags = 0; 4120 4121 error = may_mknod(mode); 4122 if (error) 4123 goto out1; 4124 retry: 4125 dentry = filename_create(dfd, name, &path, lookup_flags); 4126 error = PTR_ERR(dentry); 4127 if (IS_ERR(dentry)) 4128 goto out1; 4129 4130 error = security_path_mknod(&path, dentry, 4131 mode_strip_umask(path.dentry->d_inode, mode), dev); 4132 if (error) 4133 goto out2; 4134 4135 idmap = mnt_idmap(path.mnt); 4136 switch (mode & S_IFMT) { 4137 case 0: case S_IFREG: 4138 error = vfs_create(idmap, path.dentry->d_inode, 4139 dentry, mode, true); 4140 if (!error) 4141 security_path_post_mknod(idmap, dentry); 4142 break; 4143 case S_IFCHR: case S_IFBLK: 4144 error = vfs_mknod(idmap, path.dentry->d_inode, 4145 dentry, mode, new_decode_dev(dev)); 4146 break; 4147 case S_IFIFO: case S_IFSOCK: 4148 error = vfs_mknod(idmap, path.dentry->d_inode, 4149 dentry, mode, 0); 4150 break; 4151 } 4152 out2: 4153 done_path_create(&path, dentry); 4154 if (retry_estale(error, lookup_flags)) { 4155 lookup_flags |= LOOKUP_REVAL; 4156 goto retry; 4157 } 4158 out1: 4159 putname(name); 4160 return error; 4161 } 4162 4163 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 4164 unsigned int, dev) 4165 { 4166 return do_mknodat(dfd, getname(filename), mode, dev); 4167 } 4168 4169 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 4170 { 4171 return do_mknodat(AT_FDCWD, getname(filename), mode, dev); 4172 } 4173 4174 /** 4175 * vfs_mkdir - create directory 4176 * @idmap: idmap of the mount the inode was found from 4177 * @dir: inode of the parent directory 4178 * @dentry: dentry of the child directory 4179 * @mode: mode of the child directory 4180 * 4181 * Create a directory. 4182 * 4183 * If the inode has been found through an idmapped mount the idmap of 4184 * the vfsmount must be passed through @idmap. This function will then take 4185 * care to map the inode according to @idmap before checking permissions. 4186 * On non-idmapped mounts or if permission checking is to be performed on the 4187 * raw inode simply pass @nop_mnt_idmap. 4188 */ 4189 int vfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 4190 struct dentry *dentry, umode_t mode) 4191 { 4192 int error; 4193 unsigned max_links = dir->i_sb->s_max_links; 4194 4195 error = may_create(idmap, dir, dentry); 4196 if (error) 4197 return error; 4198 4199 if (!dir->i_op->mkdir) 4200 return -EPERM; 4201 4202 mode = vfs_prepare_mode(idmap, dir, mode, S_IRWXUGO | S_ISVTX, 0); 4203 error = security_inode_mkdir(dir, dentry, mode); 4204 if (error) 4205 return error; 4206 4207 if (max_links && dir->i_nlink >= max_links) 4208 return -EMLINK; 4209 4210 error = dir->i_op->mkdir(idmap, dir, dentry, mode); 4211 if (!error) 4212 fsnotify_mkdir(dir, dentry); 4213 return error; 4214 } 4215 EXPORT_SYMBOL(vfs_mkdir); 4216 4217 int do_mkdirat(int dfd, struct filename *name, umode_t mode) 4218 { 4219 struct dentry *dentry; 4220 struct path path; 4221 int error; 4222 unsigned int lookup_flags = LOOKUP_DIRECTORY; 4223 4224 retry: 4225 dentry = filename_create(dfd, name, &path, lookup_flags); 4226 error = PTR_ERR(dentry); 4227 if (IS_ERR(dentry)) 4228 goto out_putname; 4229 4230 error = security_path_mkdir(&path, dentry, 4231 mode_strip_umask(path.dentry->d_inode, mode)); 4232 if (!error) { 4233 error = vfs_mkdir(mnt_idmap(path.mnt), path.dentry->d_inode, 4234 dentry, mode); 4235 } 4236 done_path_create(&path, dentry); 4237 if (retry_estale(error, lookup_flags)) { 4238 lookup_flags |= LOOKUP_REVAL; 4239 goto retry; 4240 } 4241 out_putname: 4242 putname(name); 4243 return error; 4244 } 4245 4246 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 4247 { 4248 return do_mkdirat(dfd, getname(pathname), mode); 4249 } 4250 4251 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 4252 { 4253 return do_mkdirat(AT_FDCWD, getname(pathname), mode); 4254 } 4255 4256 /** 4257 * vfs_rmdir - remove directory 4258 * @idmap: idmap of the mount the inode was found from 4259 * @dir: inode of the parent directory 4260 * @dentry: dentry of the child directory 4261 * 4262 * Remove a directory. 4263 * 4264 * If the inode has been found through an idmapped mount the idmap of 4265 * the vfsmount must be passed through @idmap. This function will then take 4266 * care to map the inode according to @idmap before checking permissions. 4267 * On non-idmapped mounts or if permission checking is to be performed on the 4268 * raw inode simply pass @nop_mnt_idmap. 4269 */ 4270 int vfs_rmdir(struct mnt_idmap *idmap, struct inode *dir, 4271 struct dentry *dentry) 4272 { 4273 int error = may_delete(idmap, dir, dentry, 1); 4274 4275 if (error) 4276 return error; 4277 4278 if (!dir->i_op->rmdir) 4279 return -EPERM; 4280 4281 dget(dentry); 4282 inode_lock(dentry->d_inode); 4283 4284 error = -EBUSY; 4285 if (is_local_mountpoint(dentry) || 4286 (dentry->d_inode->i_flags & S_KERNEL_FILE)) 4287 goto out; 4288 4289 error = security_inode_rmdir(dir, dentry); 4290 if (error) 4291 goto out; 4292 4293 error = dir->i_op->rmdir(dir, dentry); 4294 if (error) 4295 goto out; 4296 4297 shrink_dcache_parent(dentry); 4298 dentry->d_inode->i_flags |= S_DEAD; 4299 dont_mount(dentry); 4300 detach_mounts(dentry); 4301 4302 out: 4303 inode_unlock(dentry->d_inode); 4304 dput(dentry); 4305 if (!error) 4306 d_delete_notify(dir, dentry); 4307 return error; 4308 } 4309 EXPORT_SYMBOL(vfs_rmdir); 4310 4311 int do_rmdir(int dfd, struct filename *name) 4312 { 4313 int error; 4314 struct dentry *dentry; 4315 struct path path; 4316 struct qstr last; 4317 int type; 4318 unsigned int lookup_flags = 0; 4319 retry: 4320 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 4321 if (error) 4322 goto exit1; 4323 4324 switch (type) { 4325 case LAST_DOTDOT: 4326 error = -ENOTEMPTY; 4327 goto exit2; 4328 case LAST_DOT: 4329 error = -EINVAL; 4330 goto exit2; 4331 case LAST_ROOT: 4332 error = -EBUSY; 4333 goto exit2; 4334 } 4335 4336 error = mnt_want_write(path.mnt); 4337 if (error) 4338 goto exit2; 4339 4340 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4341 dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags); 4342 error = PTR_ERR(dentry); 4343 if (IS_ERR(dentry)) 4344 goto exit3; 4345 if (!dentry->d_inode) { 4346 error = -ENOENT; 4347 goto exit4; 4348 } 4349 error = security_path_rmdir(&path, dentry); 4350 if (error) 4351 goto exit4; 4352 error = vfs_rmdir(mnt_idmap(path.mnt), path.dentry->d_inode, dentry); 4353 exit4: 4354 dput(dentry); 4355 exit3: 4356 inode_unlock(path.dentry->d_inode); 4357 mnt_drop_write(path.mnt); 4358 exit2: 4359 path_put(&path); 4360 if (retry_estale(error, lookup_flags)) { 4361 lookup_flags |= LOOKUP_REVAL; 4362 goto retry; 4363 } 4364 exit1: 4365 putname(name); 4366 return error; 4367 } 4368 4369 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 4370 { 4371 return do_rmdir(AT_FDCWD, getname(pathname)); 4372 } 4373 4374 /** 4375 * vfs_unlink - unlink a filesystem object 4376 * @idmap: idmap of the mount the inode was found from 4377 * @dir: parent directory 4378 * @dentry: victim 4379 * @delegated_inode: returns victim inode, if the inode is delegated. 4380 * 4381 * The caller must hold dir->i_mutex. 4382 * 4383 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 4384 * return a reference to the inode in delegated_inode. The caller 4385 * should then break the delegation on that inode and retry. Because 4386 * breaking a delegation may take a long time, the caller should drop 4387 * dir->i_mutex before doing so. 4388 * 4389 * Alternatively, a caller may pass NULL for delegated_inode. This may 4390 * be appropriate for callers that expect the underlying filesystem not 4391 * to be NFS exported. 4392 * 4393 * If the inode has been found through an idmapped mount the idmap of 4394 * the vfsmount must be passed through @idmap. This function will then take 4395 * care to map the inode according to @idmap before checking permissions. 4396 * On non-idmapped mounts or if permission checking is to be performed on the 4397 * raw inode simply pass @nop_mnt_idmap. 4398 */ 4399 int vfs_unlink(struct mnt_idmap *idmap, struct inode *dir, 4400 struct dentry *dentry, struct inode **delegated_inode) 4401 { 4402 struct inode *target = dentry->d_inode; 4403 int error = may_delete(idmap, dir, dentry, 0); 4404 4405 if (error) 4406 return error; 4407 4408 if (!dir->i_op->unlink) 4409 return -EPERM; 4410 4411 inode_lock(target); 4412 if (IS_SWAPFILE(target)) 4413 error = -EPERM; 4414 else if (is_local_mountpoint(dentry)) 4415 error = -EBUSY; 4416 else { 4417 error = security_inode_unlink(dir, dentry); 4418 if (!error) { 4419 error = try_break_deleg(target, delegated_inode); 4420 if (error) 4421 goto out; 4422 error = dir->i_op->unlink(dir, dentry); 4423 if (!error) { 4424 dont_mount(dentry); 4425 detach_mounts(dentry); 4426 } 4427 } 4428 } 4429 out: 4430 inode_unlock(target); 4431 4432 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 4433 if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) { 4434 fsnotify_unlink(dir, dentry); 4435 } else if (!error) { 4436 fsnotify_link_count(target); 4437 d_delete_notify(dir, dentry); 4438 } 4439 4440 return error; 4441 } 4442 EXPORT_SYMBOL(vfs_unlink); 4443 4444 /* 4445 * Make sure that the actual truncation of the file will occur outside its 4446 * directory's i_mutex. Truncate can take a long time if there is a lot of 4447 * writeout happening, and we don't want to prevent access to the directory 4448 * while waiting on the I/O. 4449 */ 4450 int do_unlinkat(int dfd, struct filename *name) 4451 { 4452 int error; 4453 struct dentry *dentry; 4454 struct path path; 4455 struct qstr last; 4456 int type; 4457 struct inode *inode = NULL; 4458 struct inode *delegated_inode = NULL; 4459 unsigned int lookup_flags = 0; 4460 retry: 4461 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 4462 if (error) 4463 goto exit1; 4464 4465 error = -EISDIR; 4466 if (type != LAST_NORM) 4467 goto exit2; 4468 4469 error = mnt_want_write(path.mnt); 4470 if (error) 4471 goto exit2; 4472 retry_deleg: 4473 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4474 dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags); 4475 error = PTR_ERR(dentry); 4476 if (!IS_ERR(dentry)) { 4477 4478 /* Why not before? Because we want correct error value */ 4479 if (last.name[last.len] || d_is_negative(dentry)) 4480 goto slashes; 4481 inode = dentry->d_inode; 4482 ihold(inode); 4483 error = security_path_unlink(&path, dentry); 4484 if (error) 4485 goto exit3; 4486 error = vfs_unlink(mnt_idmap(path.mnt), path.dentry->d_inode, 4487 dentry, &delegated_inode); 4488 exit3: 4489 dput(dentry); 4490 } 4491 inode_unlock(path.dentry->d_inode); 4492 if (inode) 4493 iput(inode); /* truncate the inode here */ 4494 inode = NULL; 4495 if (delegated_inode) { 4496 error = break_deleg_wait(&delegated_inode); 4497 if (!error) 4498 goto retry_deleg; 4499 } 4500 mnt_drop_write(path.mnt); 4501 exit2: 4502 path_put(&path); 4503 if (retry_estale(error, lookup_flags)) { 4504 lookup_flags |= LOOKUP_REVAL; 4505 inode = NULL; 4506 goto retry; 4507 } 4508 exit1: 4509 putname(name); 4510 return error; 4511 4512 slashes: 4513 if (d_is_negative(dentry)) 4514 error = -ENOENT; 4515 else if (d_is_dir(dentry)) 4516 error = -EISDIR; 4517 else 4518 error = -ENOTDIR; 4519 goto exit3; 4520 } 4521 4522 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 4523 { 4524 if ((flag & ~AT_REMOVEDIR) != 0) 4525 return -EINVAL; 4526 4527 if (flag & AT_REMOVEDIR) 4528 return do_rmdir(dfd, getname(pathname)); 4529 return do_unlinkat(dfd, getname(pathname)); 4530 } 4531 4532 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 4533 { 4534 return do_unlinkat(AT_FDCWD, getname(pathname)); 4535 } 4536 4537 /** 4538 * vfs_symlink - create symlink 4539 * @idmap: idmap of the mount the inode was found from 4540 * @dir: inode of the parent directory 4541 * @dentry: dentry of the child symlink file 4542 * @oldname: name of the file to link to 4543 * 4544 * Create a symlink. 4545 * 4546 * If the inode has been found through an idmapped mount the idmap of 4547 * the vfsmount must be passed through @idmap. This function will then take 4548 * care to map the inode according to @idmap before checking permissions. 4549 * On non-idmapped mounts or if permission checking is to be performed on the 4550 * raw inode simply pass @nop_mnt_idmap. 4551 */ 4552 int vfs_symlink(struct mnt_idmap *idmap, struct inode *dir, 4553 struct dentry *dentry, const char *oldname) 4554 { 4555 int error; 4556 4557 error = may_create(idmap, dir, dentry); 4558 if (error) 4559 return error; 4560 4561 if (!dir->i_op->symlink) 4562 return -EPERM; 4563 4564 error = security_inode_symlink(dir, dentry, oldname); 4565 if (error) 4566 return error; 4567 4568 error = dir->i_op->symlink(idmap, dir, dentry, oldname); 4569 if (!error) 4570 fsnotify_create(dir, dentry); 4571 return error; 4572 } 4573 EXPORT_SYMBOL(vfs_symlink); 4574 4575 int do_symlinkat(struct filename *from, int newdfd, struct filename *to) 4576 { 4577 int error; 4578 struct dentry *dentry; 4579 struct path path; 4580 unsigned int lookup_flags = 0; 4581 4582 if (IS_ERR(from)) { 4583 error = PTR_ERR(from); 4584 goto out_putnames; 4585 } 4586 retry: 4587 dentry = filename_create(newdfd, to, &path, lookup_flags); 4588 error = PTR_ERR(dentry); 4589 if (IS_ERR(dentry)) 4590 goto out_putnames; 4591 4592 error = security_path_symlink(&path, dentry, from->name); 4593 if (!error) 4594 error = vfs_symlink(mnt_idmap(path.mnt), path.dentry->d_inode, 4595 dentry, from->name); 4596 done_path_create(&path, dentry); 4597 if (retry_estale(error, lookup_flags)) { 4598 lookup_flags |= LOOKUP_REVAL; 4599 goto retry; 4600 } 4601 out_putnames: 4602 putname(to); 4603 putname(from); 4604 return error; 4605 } 4606 4607 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 4608 int, newdfd, const char __user *, newname) 4609 { 4610 return do_symlinkat(getname(oldname), newdfd, getname(newname)); 4611 } 4612 4613 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 4614 { 4615 return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname)); 4616 } 4617 4618 /** 4619 * vfs_link - create a new link 4620 * @old_dentry: object to be linked 4621 * @idmap: idmap of the mount 4622 * @dir: new parent 4623 * @new_dentry: where to create the new link 4624 * @delegated_inode: returns inode needing a delegation break 4625 * 4626 * The caller must hold dir->i_mutex 4627 * 4628 * If vfs_link discovers a delegation on the to-be-linked file in need 4629 * of breaking, it will return -EWOULDBLOCK and return a reference to the 4630 * inode in delegated_inode. The caller should then break the delegation 4631 * and retry. Because breaking a delegation may take a long time, the 4632 * caller should drop the i_mutex before doing so. 4633 * 4634 * Alternatively, a caller may pass NULL for delegated_inode. This may 4635 * be appropriate for callers that expect the underlying filesystem not 4636 * to be NFS exported. 4637 * 4638 * If the inode has been found through an idmapped mount the idmap of 4639 * the vfsmount must be passed through @idmap. This function will then take 4640 * care to map the inode according to @idmap before checking permissions. 4641 * On non-idmapped mounts or if permission checking is to be performed on the 4642 * raw inode simply pass @nop_mnt_idmap. 4643 */ 4644 int vfs_link(struct dentry *old_dentry, struct mnt_idmap *idmap, 4645 struct inode *dir, struct dentry *new_dentry, 4646 struct inode **delegated_inode) 4647 { 4648 struct inode *inode = old_dentry->d_inode; 4649 unsigned max_links = dir->i_sb->s_max_links; 4650 int error; 4651 4652 if (!inode) 4653 return -ENOENT; 4654 4655 error = may_create(idmap, dir, new_dentry); 4656 if (error) 4657 return error; 4658 4659 if (dir->i_sb != inode->i_sb) 4660 return -EXDEV; 4661 4662 /* 4663 * A link to an append-only or immutable file cannot be created. 4664 */ 4665 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4666 return -EPERM; 4667 /* 4668 * Updating the link count will likely cause i_uid and i_gid to 4669 * be writen back improperly if their true value is unknown to 4670 * the vfs. 4671 */ 4672 if (HAS_UNMAPPED_ID(idmap, inode)) 4673 return -EPERM; 4674 if (!dir->i_op->link) 4675 return -EPERM; 4676 if (S_ISDIR(inode->i_mode)) 4677 return -EPERM; 4678 4679 error = security_inode_link(old_dentry, dir, new_dentry); 4680 if (error) 4681 return error; 4682 4683 inode_lock(inode); 4684 /* Make sure we don't allow creating hardlink to an unlinked file */ 4685 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 4686 error = -ENOENT; 4687 else if (max_links && inode->i_nlink >= max_links) 4688 error = -EMLINK; 4689 else { 4690 error = try_break_deleg(inode, delegated_inode); 4691 if (!error) 4692 error = dir->i_op->link(old_dentry, dir, new_dentry); 4693 } 4694 4695 if (!error && (inode->i_state & I_LINKABLE)) { 4696 spin_lock(&inode->i_lock); 4697 inode->i_state &= ~I_LINKABLE; 4698 spin_unlock(&inode->i_lock); 4699 } 4700 inode_unlock(inode); 4701 if (!error) 4702 fsnotify_link(dir, inode, new_dentry); 4703 return error; 4704 } 4705 EXPORT_SYMBOL(vfs_link); 4706 4707 /* 4708 * Hardlinks are often used in delicate situations. We avoid 4709 * security-related surprises by not following symlinks on the 4710 * newname. --KAB 4711 * 4712 * We don't follow them on the oldname either to be compatible 4713 * with linux 2.0, and to avoid hard-linking to directories 4714 * and other special files. --ADM 4715 */ 4716 int do_linkat(int olddfd, struct filename *old, int newdfd, 4717 struct filename *new, int flags) 4718 { 4719 struct mnt_idmap *idmap; 4720 struct dentry *new_dentry; 4721 struct path old_path, new_path; 4722 struct inode *delegated_inode = NULL; 4723 int how = 0; 4724 int error; 4725 4726 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) { 4727 error = -EINVAL; 4728 goto out_putnames; 4729 } 4730 /* 4731 * To use null names we require CAP_DAC_READ_SEARCH or 4732 * that the open-time creds of the dfd matches current. 4733 * This ensures that not everyone will be able to create 4734 * a hardlink using the passed file descriptor. 4735 */ 4736 if (flags & AT_EMPTY_PATH) 4737 how |= LOOKUP_LINKAT_EMPTY; 4738 4739 if (flags & AT_SYMLINK_FOLLOW) 4740 how |= LOOKUP_FOLLOW; 4741 retry: 4742 error = filename_lookup(olddfd, old, how, &old_path, NULL); 4743 if (error) 4744 goto out_putnames; 4745 4746 new_dentry = filename_create(newdfd, new, &new_path, 4747 (how & LOOKUP_REVAL)); 4748 error = PTR_ERR(new_dentry); 4749 if (IS_ERR(new_dentry)) 4750 goto out_putpath; 4751 4752 error = -EXDEV; 4753 if (old_path.mnt != new_path.mnt) 4754 goto out_dput; 4755 idmap = mnt_idmap(new_path.mnt); 4756 error = may_linkat(idmap, &old_path); 4757 if (unlikely(error)) 4758 goto out_dput; 4759 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4760 if (error) 4761 goto out_dput; 4762 error = vfs_link(old_path.dentry, idmap, new_path.dentry->d_inode, 4763 new_dentry, &delegated_inode); 4764 out_dput: 4765 done_path_create(&new_path, new_dentry); 4766 if (delegated_inode) { 4767 error = break_deleg_wait(&delegated_inode); 4768 if (!error) { 4769 path_put(&old_path); 4770 goto retry; 4771 } 4772 } 4773 if (retry_estale(error, how)) { 4774 path_put(&old_path); 4775 how |= LOOKUP_REVAL; 4776 goto retry; 4777 } 4778 out_putpath: 4779 path_put(&old_path); 4780 out_putnames: 4781 putname(old); 4782 putname(new); 4783 4784 return error; 4785 } 4786 4787 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 4788 int, newdfd, const char __user *, newname, int, flags) 4789 { 4790 return do_linkat(olddfd, getname_uflags(oldname, flags), 4791 newdfd, getname(newname), flags); 4792 } 4793 4794 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4795 { 4796 return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0); 4797 } 4798 4799 /** 4800 * vfs_rename - rename a filesystem object 4801 * @rd: pointer to &struct renamedata info 4802 * 4803 * The caller must hold multiple mutexes--see lock_rename()). 4804 * 4805 * If vfs_rename discovers a delegation in need of breaking at either 4806 * the source or destination, it will return -EWOULDBLOCK and return a 4807 * reference to the inode in delegated_inode. The caller should then 4808 * break the delegation and retry. Because breaking a delegation may 4809 * take a long time, the caller should drop all locks before doing 4810 * so. 4811 * 4812 * Alternatively, a caller may pass NULL for delegated_inode. This may 4813 * be appropriate for callers that expect the underlying filesystem not 4814 * to be NFS exported. 4815 * 4816 * The worst of all namespace operations - renaming directory. "Perverted" 4817 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4818 * Problems: 4819 * 4820 * a) we can get into loop creation. 4821 * b) race potential - two innocent renames can create a loop together. 4822 * That's where 4.4BSD screws up. Current fix: serialization on 4823 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4824 * story. 4825 * c) we may have to lock up to _four_ objects - parents and victim (if it exists), 4826 * and source (if it's a non-directory or a subdirectory that moves to 4827 * different parent). 4828 * And that - after we got ->i_mutex on parents (until then we don't know 4829 * whether the target exists). Solution: try to be smart with locking 4830 * order for inodes. We rely on the fact that tree topology may change 4831 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4832 * move will be locked. Thus we can rank directories by the tree 4833 * (ancestors first) and rank all non-directories after them. 4834 * That works since everybody except rename does "lock parent, lookup, 4835 * lock child" and rename is under ->s_vfs_rename_mutex. 4836 * HOWEVER, it relies on the assumption that any object with ->lookup() 4837 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4838 * we'd better make sure that there's no link(2) for them. 4839 * d) conversion from fhandle to dentry may come in the wrong moment - when 4840 * we are removing the target. Solution: we will have to grab ->i_mutex 4841 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4842 * ->i_mutex on parents, which works but leads to some truly excessive 4843 * locking]. 4844 */ 4845 int vfs_rename(struct renamedata *rd) 4846 { 4847 int error; 4848 struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir; 4849 struct dentry *old_dentry = rd->old_dentry; 4850 struct dentry *new_dentry = rd->new_dentry; 4851 struct inode **delegated_inode = rd->delegated_inode; 4852 unsigned int flags = rd->flags; 4853 bool is_dir = d_is_dir(old_dentry); 4854 struct inode *source = old_dentry->d_inode; 4855 struct inode *target = new_dentry->d_inode; 4856 bool new_is_dir = false; 4857 unsigned max_links = new_dir->i_sb->s_max_links; 4858 struct name_snapshot old_name; 4859 bool lock_old_subdir, lock_new_subdir; 4860 4861 if (source == target) 4862 return 0; 4863 4864 error = may_delete(rd->old_mnt_idmap, old_dir, old_dentry, is_dir); 4865 if (error) 4866 return error; 4867 4868 if (!target) { 4869 error = may_create(rd->new_mnt_idmap, new_dir, new_dentry); 4870 } else { 4871 new_is_dir = d_is_dir(new_dentry); 4872 4873 if (!(flags & RENAME_EXCHANGE)) 4874 error = may_delete(rd->new_mnt_idmap, new_dir, 4875 new_dentry, is_dir); 4876 else 4877 error = may_delete(rd->new_mnt_idmap, new_dir, 4878 new_dentry, new_is_dir); 4879 } 4880 if (error) 4881 return error; 4882 4883 if (!old_dir->i_op->rename) 4884 return -EPERM; 4885 4886 /* 4887 * If we are going to change the parent - check write permissions, 4888 * we'll need to flip '..'. 4889 */ 4890 if (new_dir != old_dir) { 4891 if (is_dir) { 4892 error = inode_permission(rd->old_mnt_idmap, source, 4893 MAY_WRITE); 4894 if (error) 4895 return error; 4896 } 4897 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4898 error = inode_permission(rd->new_mnt_idmap, target, 4899 MAY_WRITE); 4900 if (error) 4901 return error; 4902 } 4903 } 4904 4905 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 4906 flags); 4907 if (error) 4908 return error; 4909 4910 take_dentry_name_snapshot(&old_name, old_dentry); 4911 dget(new_dentry); 4912 /* 4913 * Lock children. 4914 * The source subdirectory needs to be locked on cross-directory 4915 * rename or cross-directory exchange since its parent changes. 4916 * The target subdirectory needs to be locked on cross-directory 4917 * exchange due to parent change and on any rename due to becoming 4918 * a victim. 4919 * Non-directories need locking in all cases (for NFS reasons); 4920 * they get locked after any subdirectories (in inode address order). 4921 * 4922 * NOTE: WE ONLY LOCK UNRELATED DIRECTORIES IN CROSS-DIRECTORY CASE. 4923 * NEVER, EVER DO THAT WITHOUT ->s_vfs_rename_mutex. 4924 */ 4925 lock_old_subdir = new_dir != old_dir; 4926 lock_new_subdir = new_dir != old_dir || !(flags & RENAME_EXCHANGE); 4927 if (is_dir) { 4928 if (lock_old_subdir) 4929 inode_lock_nested(source, I_MUTEX_CHILD); 4930 if (target && (!new_is_dir || lock_new_subdir)) 4931 inode_lock(target); 4932 } else if (new_is_dir) { 4933 if (lock_new_subdir) 4934 inode_lock_nested(target, I_MUTEX_CHILD); 4935 inode_lock(source); 4936 } else { 4937 lock_two_nondirectories(source, target); 4938 } 4939 4940 error = -EPERM; 4941 if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target))) 4942 goto out; 4943 4944 error = -EBUSY; 4945 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 4946 goto out; 4947 4948 if (max_links && new_dir != old_dir) { 4949 error = -EMLINK; 4950 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 4951 goto out; 4952 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 4953 old_dir->i_nlink >= max_links) 4954 goto out; 4955 } 4956 if (!is_dir) { 4957 error = try_break_deleg(source, delegated_inode); 4958 if (error) 4959 goto out; 4960 } 4961 if (target && !new_is_dir) { 4962 error = try_break_deleg(target, delegated_inode); 4963 if (error) 4964 goto out; 4965 } 4966 error = old_dir->i_op->rename(rd->new_mnt_idmap, old_dir, old_dentry, 4967 new_dir, new_dentry, flags); 4968 if (error) 4969 goto out; 4970 4971 if (!(flags & RENAME_EXCHANGE) && target) { 4972 if (is_dir) { 4973 shrink_dcache_parent(new_dentry); 4974 target->i_flags |= S_DEAD; 4975 } 4976 dont_mount(new_dentry); 4977 detach_mounts(new_dentry); 4978 } 4979 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 4980 if (!(flags & RENAME_EXCHANGE)) 4981 d_move(old_dentry, new_dentry); 4982 else 4983 d_exchange(old_dentry, new_dentry); 4984 } 4985 out: 4986 if (!is_dir || lock_old_subdir) 4987 inode_unlock(source); 4988 if (target && (!new_is_dir || lock_new_subdir)) 4989 inode_unlock(target); 4990 dput(new_dentry); 4991 if (!error) { 4992 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir, 4993 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 4994 if (flags & RENAME_EXCHANGE) { 4995 fsnotify_move(new_dir, old_dir, &old_dentry->d_name, 4996 new_is_dir, NULL, new_dentry); 4997 } 4998 } 4999 release_dentry_name_snapshot(&old_name); 5000 5001 return error; 5002 } 5003 EXPORT_SYMBOL(vfs_rename); 5004 5005 int do_renameat2(int olddfd, struct filename *from, int newdfd, 5006 struct filename *to, unsigned int flags) 5007 { 5008 struct renamedata rd; 5009 struct dentry *old_dentry, *new_dentry; 5010 struct dentry *trap; 5011 struct path old_path, new_path; 5012 struct qstr old_last, new_last; 5013 int old_type, new_type; 5014 struct inode *delegated_inode = NULL; 5015 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET; 5016 bool should_retry = false; 5017 int error = -EINVAL; 5018 5019 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 5020 goto put_names; 5021 5022 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 5023 (flags & RENAME_EXCHANGE)) 5024 goto put_names; 5025 5026 if (flags & RENAME_EXCHANGE) 5027 target_flags = 0; 5028 5029 retry: 5030 error = filename_parentat(olddfd, from, lookup_flags, &old_path, 5031 &old_last, &old_type); 5032 if (error) 5033 goto put_names; 5034 5035 error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last, 5036 &new_type); 5037 if (error) 5038 goto exit1; 5039 5040 error = -EXDEV; 5041 if (old_path.mnt != new_path.mnt) 5042 goto exit2; 5043 5044 error = -EBUSY; 5045 if (old_type != LAST_NORM) 5046 goto exit2; 5047 5048 if (flags & RENAME_NOREPLACE) 5049 error = -EEXIST; 5050 if (new_type != LAST_NORM) 5051 goto exit2; 5052 5053 error = mnt_want_write(old_path.mnt); 5054 if (error) 5055 goto exit2; 5056 5057 retry_deleg: 5058 trap = lock_rename(new_path.dentry, old_path.dentry); 5059 if (IS_ERR(trap)) { 5060 error = PTR_ERR(trap); 5061 goto exit_lock_rename; 5062 } 5063 5064 old_dentry = lookup_one_qstr_excl(&old_last, old_path.dentry, 5065 lookup_flags); 5066 error = PTR_ERR(old_dentry); 5067 if (IS_ERR(old_dentry)) 5068 goto exit3; 5069 /* source must exist */ 5070 error = -ENOENT; 5071 if (d_is_negative(old_dentry)) 5072 goto exit4; 5073 new_dentry = lookup_one_qstr_excl(&new_last, new_path.dentry, 5074 lookup_flags | target_flags); 5075 error = PTR_ERR(new_dentry); 5076 if (IS_ERR(new_dentry)) 5077 goto exit4; 5078 error = -EEXIST; 5079 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 5080 goto exit5; 5081 if (flags & RENAME_EXCHANGE) { 5082 error = -ENOENT; 5083 if (d_is_negative(new_dentry)) 5084 goto exit5; 5085 5086 if (!d_is_dir(new_dentry)) { 5087 error = -ENOTDIR; 5088 if (new_last.name[new_last.len]) 5089 goto exit5; 5090 } 5091 } 5092 /* unless the source is a directory trailing slashes give -ENOTDIR */ 5093 if (!d_is_dir(old_dentry)) { 5094 error = -ENOTDIR; 5095 if (old_last.name[old_last.len]) 5096 goto exit5; 5097 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len]) 5098 goto exit5; 5099 } 5100 /* source should not be ancestor of target */ 5101 error = -EINVAL; 5102 if (old_dentry == trap) 5103 goto exit5; 5104 /* target should not be an ancestor of source */ 5105 if (!(flags & RENAME_EXCHANGE)) 5106 error = -ENOTEMPTY; 5107 if (new_dentry == trap) 5108 goto exit5; 5109 5110 error = security_path_rename(&old_path, old_dentry, 5111 &new_path, new_dentry, flags); 5112 if (error) 5113 goto exit5; 5114 5115 rd.old_dir = old_path.dentry->d_inode; 5116 rd.old_dentry = old_dentry; 5117 rd.old_mnt_idmap = mnt_idmap(old_path.mnt); 5118 rd.new_dir = new_path.dentry->d_inode; 5119 rd.new_dentry = new_dentry; 5120 rd.new_mnt_idmap = mnt_idmap(new_path.mnt); 5121 rd.delegated_inode = &delegated_inode; 5122 rd.flags = flags; 5123 error = vfs_rename(&rd); 5124 exit5: 5125 dput(new_dentry); 5126 exit4: 5127 dput(old_dentry); 5128 exit3: 5129 unlock_rename(new_path.dentry, old_path.dentry); 5130 exit_lock_rename: 5131 if (delegated_inode) { 5132 error = break_deleg_wait(&delegated_inode); 5133 if (!error) 5134 goto retry_deleg; 5135 } 5136 mnt_drop_write(old_path.mnt); 5137 exit2: 5138 if (retry_estale(error, lookup_flags)) 5139 should_retry = true; 5140 path_put(&new_path); 5141 exit1: 5142 path_put(&old_path); 5143 if (should_retry) { 5144 should_retry = false; 5145 lookup_flags |= LOOKUP_REVAL; 5146 goto retry; 5147 } 5148 put_names: 5149 putname(from); 5150 putname(to); 5151 return error; 5152 } 5153 5154 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 5155 int, newdfd, const char __user *, newname, unsigned int, flags) 5156 { 5157 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname), 5158 flags); 5159 } 5160 5161 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 5162 int, newdfd, const char __user *, newname) 5163 { 5164 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname), 5165 0); 5166 } 5167 5168 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 5169 { 5170 return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD, 5171 getname(newname), 0); 5172 } 5173 5174 int readlink_copy(char __user *buffer, int buflen, const char *link) 5175 { 5176 int len = PTR_ERR(link); 5177 if (IS_ERR(link)) 5178 goto out; 5179 5180 len = strlen(link); 5181 if (len > (unsigned) buflen) 5182 len = buflen; 5183 if (copy_to_user(buffer, link, len)) 5184 len = -EFAULT; 5185 out: 5186 return len; 5187 } 5188 5189 /** 5190 * vfs_readlink - copy symlink body into userspace buffer 5191 * @dentry: dentry on which to get symbolic link 5192 * @buffer: user memory pointer 5193 * @buflen: size of buffer 5194 * 5195 * Does not touch atime. That's up to the caller if necessary 5196 * 5197 * Does not call security hook. 5198 */ 5199 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen) 5200 { 5201 struct inode *inode = d_inode(dentry); 5202 DEFINE_DELAYED_CALL(done); 5203 const char *link; 5204 int res; 5205 5206 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) { 5207 if (unlikely(inode->i_op->readlink)) 5208 return inode->i_op->readlink(dentry, buffer, buflen); 5209 5210 if (!d_is_symlink(dentry)) 5211 return -EINVAL; 5212 5213 spin_lock(&inode->i_lock); 5214 inode->i_opflags |= IOP_DEFAULT_READLINK; 5215 spin_unlock(&inode->i_lock); 5216 } 5217 5218 link = READ_ONCE(inode->i_link); 5219 if (!link) { 5220 link = inode->i_op->get_link(dentry, inode, &done); 5221 if (IS_ERR(link)) 5222 return PTR_ERR(link); 5223 } 5224 res = readlink_copy(buffer, buflen, link); 5225 do_delayed_call(&done); 5226 return res; 5227 } 5228 EXPORT_SYMBOL(vfs_readlink); 5229 5230 /** 5231 * vfs_get_link - get symlink body 5232 * @dentry: dentry on which to get symbolic link 5233 * @done: caller needs to free returned data with this 5234 * 5235 * Calls security hook and i_op->get_link() on the supplied inode. 5236 * 5237 * It does not touch atime. That's up to the caller if necessary. 5238 * 5239 * Does not work on "special" symlinks like /proc/$$/fd/N 5240 */ 5241 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done) 5242 { 5243 const char *res = ERR_PTR(-EINVAL); 5244 struct inode *inode = d_inode(dentry); 5245 5246 if (d_is_symlink(dentry)) { 5247 res = ERR_PTR(security_inode_readlink(dentry)); 5248 if (!res) 5249 res = inode->i_op->get_link(dentry, inode, done); 5250 } 5251 return res; 5252 } 5253 EXPORT_SYMBOL(vfs_get_link); 5254 5255 /* get the link contents into pagecache */ 5256 const char *page_get_link(struct dentry *dentry, struct inode *inode, 5257 struct delayed_call *callback) 5258 { 5259 char *kaddr; 5260 struct page *page; 5261 struct address_space *mapping = inode->i_mapping; 5262 5263 if (!dentry) { 5264 page = find_get_page(mapping, 0); 5265 if (!page) 5266 return ERR_PTR(-ECHILD); 5267 if (!PageUptodate(page)) { 5268 put_page(page); 5269 return ERR_PTR(-ECHILD); 5270 } 5271 } else { 5272 page = read_mapping_page(mapping, 0, NULL); 5273 if (IS_ERR(page)) 5274 return (char*)page; 5275 } 5276 set_delayed_call(callback, page_put_link, page); 5277 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM); 5278 kaddr = page_address(page); 5279 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1); 5280 return kaddr; 5281 } 5282 5283 EXPORT_SYMBOL(page_get_link); 5284 5285 void page_put_link(void *arg) 5286 { 5287 put_page(arg); 5288 } 5289 EXPORT_SYMBOL(page_put_link); 5290 5291 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 5292 { 5293 DEFINE_DELAYED_CALL(done); 5294 int res = readlink_copy(buffer, buflen, 5295 page_get_link(dentry, d_inode(dentry), 5296 &done)); 5297 do_delayed_call(&done); 5298 return res; 5299 } 5300 EXPORT_SYMBOL(page_readlink); 5301 5302 int page_symlink(struct inode *inode, const char *symname, int len) 5303 { 5304 struct address_space *mapping = inode->i_mapping; 5305 const struct address_space_operations *aops = mapping->a_ops; 5306 bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS); 5307 struct page *page; 5308 void *fsdata = NULL; 5309 int err; 5310 unsigned int flags; 5311 5312 retry: 5313 if (nofs) 5314 flags = memalloc_nofs_save(); 5315 err = aops->write_begin(NULL, mapping, 0, len-1, &page, &fsdata); 5316 if (nofs) 5317 memalloc_nofs_restore(flags); 5318 if (err) 5319 goto fail; 5320 5321 memcpy(page_address(page), symname, len-1); 5322 5323 err = aops->write_end(NULL, mapping, 0, len-1, len-1, 5324 page, fsdata); 5325 if (err < 0) 5326 goto fail; 5327 if (err < len-1) 5328 goto retry; 5329 5330 mark_inode_dirty(inode); 5331 return 0; 5332 fail: 5333 return err; 5334 } 5335 EXPORT_SYMBOL(page_symlink); 5336 5337 const struct inode_operations page_symlink_inode_operations = { 5338 .get_link = page_get_link, 5339 }; 5340 EXPORT_SYMBOL(page_symlink_inode_operations); 5341