xref: /linux/fs/namei.c (revision 2dbc0838bcf24ca59cabc3130cf3b1d6809cdcd4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/namei.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * Some corrections by tytso.
10  */
11 
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13  * lookup logic.
14  */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16  */
17 
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/fsnotify.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/ima.h>
29 #include <linux/syscalls.h>
30 #include <linux/mount.h>
31 #include <linux/audit.h>
32 #include <linux/capability.h>
33 #include <linux/file.h>
34 #include <linux/fcntl.h>
35 #include <linux/device_cgroup.h>
36 #include <linux/fs_struct.h>
37 #include <linux/posix_acl.h>
38 #include <linux/hash.h>
39 #include <linux/bitops.h>
40 #include <linux/init_task.h>
41 #include <linux/uaccess.h>
42 
43 #include "internal.h"
44 #include "mount.h"
45 
46 /* [Feb-1997 T. Schoebel-Theuer]
47  * Fundamental changes in the pathname lookup mechanisms (namei)
48  * were necessary because of omirr.  The reason is that omirr needs
49  * to know the _real_ pathname, not the user-supplied one, in case
50  * of symlinks (and also when transname replacements occur).
51  *
52  * The new code replaces the old recursive symlink resolution with
53  * an iterative one (in case of non-nested symlink chains).  It does
54  * this with calls to <fs>_follow_link().
55  * As a side effect, dir_namei(), _namei() and follow_link() are now
56  * replaced with a single function lookup_dentry() that can handle all
57  * the special cases of the former code.
58  *
59  * With the new dcache, the pathname is stored at each inode, at least as
60  * long as the refcount of the inode is positive.  As a side effect, the
61  * size of the dcache depends on the inode cache and thus is dynamic.
62  *
63  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
64  * resolution to correspond with current state of the code.
65  *
66  * Note that the symlink resolution is not *completely* iterative.
67  * There is still a significant amount of tail- and mid- recursion in
68  * the algorithm.  Also, note that <fs>_readlink() is not used in
69  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
70  * may return different results than <fs>_follow_link().  Many virtual
71  * filesystems (including /proc) exhibit this behavior.
72  */
73 
74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
75  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
76  * and the name already exists in form of a symlink, try to create the new
77  * name indicated by the symlink. The old code always complained that the
78  * name already exists, due to not following the symlink even if its target
79  * is nonexistent.  The new semantics affects also mknod() and link() when
80  * the name is a symlink pointing to a non-existent name.
81  *
82  * I don't know which semantics is the right one, since I have no access
83  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
84  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
85  * "old" one. Personally, I think the new semantics is much more logical.
86  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
87  * file does succeed in both HP-UX and SunOs, but not in Solaris
88  * and in the old Linux semantics.
89  */
90 
91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
92  * semantics.  See the comments in "open_namei" and "do_link" below.
93  *
94  * [10-Sep-98 Alan Modra] Another symlink change.
95  */
96 
97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
98  *	inside the path - always follow.
99  *	in the last component in creation/removal/renaming - never follow.
100  *	if LOOKUP_FOLLOW passed - follow.
101  *	if the pathname has trailing slashes - follow.
102  *	otherwise - don't follow.
103  * (applied in that order).
104  *
105  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
106  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
107  * During the 2.4 we need to fix the userland stuff depending on it -
108  * hopefully we will be able to get rid of that wart in 2.5. So far only
109  * XEmacs seems to be relying on it...
110  */
111 /*
112  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
113  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
114  * any extra contention...
115  */
116 
117 /* In order to reduce some races, while at the same time doing additional
118  * checking and hopefully speeding things up, we copy filenames to the
119  * kernel data space before using them..
120  *
121  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
122  * PATH_MAX includes the nul terminator --RR.
123  */
124 
125 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
126 
127 struct filename *
128 getname_flags(const char __user *filename, int flags, int *empty)
129 {
130 	struct filename *result;
131 	char *kname;
132 	int len;
133 
134 	result = audit_reusename(filename);
135 	if (result)
136 		return result;
137 
138 	result = __getname();
139 	if (unlikely(!result))
140 		return ERR_PTR(-ENOMEM);
141 
142 	/*
143 	 * First, try to embed the struct filename inside the names_cache
144 	 * allocation
145 	 */
146 	kname = (char *)result->iname;
147 	result->name = kname;
148 
149 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
150 	if (unlikely(len < 0)) {
151 		__putname(result);
152 		return ERR_PTR(len);
153 	}
154 
155 	/*
156 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
157 	 * separate struct filename so we can dedicate the entire
158 	 * names_cache allocation for the pathname, and re-do the copy from
159 	 * userland.
160 	 */
161 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
162 		const size_t size = offsetof(struct filename, iname[1]);
163 		kname = (char *)result;
164 
165 		/*
166 		 * size is chosen that way we to guarantee that
167 		 * result->iname[0] is within the same object and that
168 		 * kname can't be equal to result->iname, no matter what.
169 		 */
170 		result = kzalloc(size, GFP_KERNEL);
171 		if (unlikely(!result)) {
172 			__putname(kname);
173 			return ERR_PTR(-ENOMEM);
174 		}
175 		result->name = kname;
176 		len = strncpy_from_user(kname, filename, PATH_MAX);
177 		if (unlikely(len < 0)) {
178 			__putname(kname);
179 			kfree(result);
180 			return ERR_PTR(len);
181 		}
182 		if (unlikely(len == PATH_MAX)) {
183 			__putname(kname);
184 			kfree(result);
185 			return ERR_PTR(-ENAMETOOLONG);
186 		}
187 	}
188 
189 	result->refcnt = 1;
190 	/* The empty path is special. */
191 	if (unlikely(!len)) {
192 		if (empty)
193 			*empty = 1;
194 		if (!(flags & LOOKUP_EMPTY)) {
195 			putname(result);
196 			return ERR_PTR(-ENOENT);
197 		}
198 	}
199 
200 	result->uptr = filename;
201 	result->aname = NULL;
202 	audit_getname(result);
203 	return result;
204 }
205 
206 struct filename *
207 getname(const char __user * filename)
208 {
209 	return getname_flags(filename, 0, NULL);
210 }
211 
212 struct filename *
213 getname_kernel(const char * filename)
214 {
215 	struct filename *result;
216 	int len = strlen(filename) + 1;
217 
218 	result = __getname();
219 	if (unlikely(!result))
220 		return ERR_PTR(-ENOMEM);
221 
222 	if (len <= EMBEDDED_NAME_MAX) {
223 		result->name = (char *)result->iname;
224 	} else if (len <= PATH_MAX) {
225 		const size_t size = offsetof(struct filename, iname[1]);
226 		struct filename *tmp;
227 
228 		tmp = kmalloc(size, GFP_KERNEL);
229 		if (unlikely(!tmp)) {
230 			__putname(result);
231 			return ERR_PTR(-ENOMEM);
232 		}
233 		tmp->name = (char *)result;
234 		result = tmp;
235 	} else {
236 		__putname(result);
237 		return ERR_PTR(-ENAMETOOLONG);
238 	}
239 	memcpy((char *)result->name, filename, len);
240 	result->uptr = NULL;
241 	result->aname = NULL;
242 	result->refcnt = 1;
243 	audit_getname(result);
244 
245 	return result;
246 }
247 
248 void putname(struct filename *name)
249 {
250 	BUG_ON(name->refcnt <= 0);
251 
252 	if (--name->refcnt > 0)
253 		return;
254 
255 	if (name->name != name->iname) {
256 		__putname(name->name);
257 		kfree(name);
258 	} else
259 		__putname(name);
260 }
261 
262 static int check_acl(struct inode *inode, int mask)
263 {
264 #ifdef CONFIG_FS_POSIX_ACL
265 	struct posix_acl *acl;
266 
267 	if (mask & MAY_NOT_BLOCK) {
268 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
269 	        if (!acl)
270 	                return -EAGAIN;
271 		/* no ->get_acl() calls in RCU mode... */
272 		if (is_uncached_acl(acl))
273 			return -ECHILD;
274 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
275 	}
276 
277 	acl = get_acl(inode, ACL_TYPE_ACCESS);
278 	if (IS_ERR(acl))
279 		return PTR_ERR(acl);
280 	if (acl) {
281 	        int error = posix_acl_permission(inode, acl, mask);
282 	        posix_acl_release(acl);
283 	        return error;
284 	}
285 #endif
286 
287 	return -EAGAIN;
288 }
289 
290 /*
291  * This does the basic permission checking
292  */
293 static int acl_permission_check(struct inode *inode, int mask)
294 {
295 	unsigned int mode = inode->i_mode;
296 
297 	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
298 		mode >>= 6;
299 	else {
300 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
301 			int error = check_acl(inode, mask);
302 			if (error != -EAGAIN)
303 				return error;
304 		}
305 
306 		if (in_group_p(inode->i_gid))
307 			mode >>= 3;
308 	}
309 
310 	/*
311 	 * If the DACs are ok we don't need any capability check.
312 	 */
313 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
314 		return 0;
315 	return -EACCES;
316 }
317 
318 /**
319  * generic_permission -  check for access rights on a Posix-like filesystem
320  * @inode:	inode to check access rights for
321  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
322  *
323  * Used to check for read/write/execute permissions on a file.
324  * We use "fsuid" for this, letting us set arbitrary permissions
325  * for filesystem access without changing the "normal" uids which
326  * are used for other things.
327  *
328  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
329  * request cannot be satisfied (eg. requires blocking or too much complexity).
330  * It would then be called again in ref-walk mode.
331  */
332 int generic_permission(struct inode *inode, int mask)
333 {
334 	int ret;
335 
336 	/*
337 	 * Do the basic permission checks.
338 	 */
339 	ret = acl_permission_check(inode, mask);
340 	if (ret != -EACCES)
341 		return ret;
342 
343 	if (S_ISDIR(inode->i_mode)) {
344 		/* DACs are overridable for directories */
345 		if (!(mask & MAY_WRITE))
346 			if (capable_wrt_inode_uidgid(inode,
347 						     CAP_DAC_READ_SEARCH))
348 				return 0;
349 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
350 			return 0;
351 		return -EACCES;
352 	}
353 
354 	/*
355 	 * Searching includes executable on directories, else just read.
356 	 */
357 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
358 	if (mask == MAY_READ)
359 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
360 			return 0;
361 	/*
362 	 * Read/write DACs are always overridable.
363 	 * Executable DACs are overridable when there is
364 	 * at least one exec bit set.
365 	 */
366 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
367 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
368 			return 0;
369 
370 	return -EACCES;
371 }
372 EXPORT_SYMBOL(generic_permission);
373 
374 /*
375  * We _really_ want to just do "generic_permission()" without
376  * even looking at the inode->i_op values. So we keep a cache
377  * flag in inode->i_opflags, that says "this has not special
378  * permission function, use the fast case".
379  */
380 static inline int do_inode_permission(struct inode *inode, int mask)
381 {
382 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
383 		if (likely(inode->i_op->permission))
384 			return inode->i_op->permission(inode, mask);
385 
386 		/* This gets set once for the inode lifetime */
387 		spin_lock(&inode->i_lock);
388 		inode->i_opflags |= IOP_FASTPERM;
389 		spin_unlock(&inode->i_lock);
390 	}
391 	return generic_permission(inode, mask);
392 }
393 
394 /**
395  * sb_permission - Check superblock-level permissions
396  * @sb: Superblock of inode to check permission on
397  * @inode: Inode to check permission on
398  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
399  *
400  * Separate out file-system wide checks from inode-specific permission checks.
401  */
402 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
403 {
404 	if (unlikely(mask & MAY_WRITE)) {
405 		umode_t mode = inode->i_mode;
406 
407 		/* Nobody gets write access to a read-only fs. */
408 		if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
409 			return -EROFS;
410 	}
411 	return 0;
412 }
413 
414 /**
415  * inode_permission - Check for access rights to a given inode
416  * @inode: Inode to check permission on
417  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
418  *
419  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
420  * this, letting us set arbitrary permissions for filesystem access without
421  * changing the "normal" UIDs which are used for other things.
422  *
423  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
424  */
425 int inode_permission(struct inode *inode, int mask)
426 {
427 	int retval;
428 
429 	retval = sb_permission(inode->i_sb, inode, mask);
430 	if (retval)
431 		return retval;
432 
433 	if (unlikely(mask & MAY_WRITE)) {
434 		/*
435 		 * Nobody gets write access to an immutable file.
436 		 */
437 		if (IS_IMMUTABLE(inode))
438 			return -EPERM;
439 
440 		/*
441 		 * Updating mtime will likely cause i_uid and i_gid to be
442 		 * written back improperly if their true value is unknown
443 		 * to the vfs.
444 		 */
445 		if (HAS_UNMAPPED_ID(inode))
446 			return -EACCES;
447 	}
448 
449 	retval = do_inode_permission(inode, mask);
450 	if (retval)
451 		return retval;
452 
453 	retval = devcgroup_inode_permission(inode, mask);
454 	if (retval)
455 		return retval;
456 
457 	return security_inode_permission(inode, mask);
458 }
459 EXPORT_SYMBOL(inode_permission);
460 
461 /**
462  * path_get - get a reference to a path
463  * @path: path to get the reference to
464  *
465  * Given a path increment the reference count to the dentry and the vfsmount.
466  */
467 void path_get(const struct path *path)
468 {
469 	mntget(path->mnt);
470 	dget(path->dentry);
471 }
472 EXPORT_SYMBOL(path_get);
473 
474 /**
475  * path_put - put a reference to a path
476  * @path: path to put the reference to
477  *
478  * Given a path decrement the reference count to the dentry and the vfsmount.
479  */
480 void path_put(const struct path *path)
481 {
482 	dput(path->dentry);
483 	mntput(path->mnt);
484 }
485 EXPORT_SYMBOL(path_put);
486 
487 #define EMBEDDED_LEVELS 2
488 struct nameidata {
489 	struct path	path;
490 	struct qstr	last;
491 	struct path	root;
492 	struct inode	*inode; /* path.dentry.d_inode */
493 	unsigned int	flags;
494 	unsigned	seq, m_seq;
495 	int		last_type;
496 	unsigned	depth;
497 	int		total_link_count;
498 	struct saved {
499 		struct path link;
500 		struct delayed_call done;
501 		const char *name;
502 		unsigned seq;
503 	} *stack, internal[EMBEDDED_LEVELS];
504 	struct filename	*name;
505 	struct nameidata *saved;
506 	struct inode	*link_inode;
507 	unsigned	root_seq;
508 	int		dfd;
509 } __randomize_layout;
510 
511 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
512 {
513 	struct nameidata *old = current->nameidata;
514 	p->stack = p->internal;
515 	p->dfd = dfd;
516 	p->name = name;
517 	p->total_link_count = old ? old->total_link_count : 0;
518 	p->saved = old;
519 	current->nameidata = p;
520 }
521 
522 static void restore_nameidata(void)
523 {
524 	struct nameidata *now = current->nameidata, *old = now->saved;
525 
526 	current->nameidata = old;
527 	if (old)
528 		old->total_link_count = now->total_link_count;
529 	if (now->stack != now->internal)
530 		kfree(now->stack);
531 }
532 
533 static int __nd_alloc_stack(struct nameidata *nd)
534 {
535 	struct saved *p;
536 
537 	if (nd->flags & LOOKUP_RCU) {
538 		p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
539 				  GFP_ATOMIC);
540 		if (unlikely(!p))
541 			return -ECHILD;
542 	} else {
543 		p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
544 				  GFP_KERNEL);
545 		if (unlikely(!p))
546 			return -ENOMEM;
547 	}
548 	memcpy(p, nd->internal, sizeof(nd->internal));
549 	nd->stack = p;
550 	return 0;
551 }
552 
553 /**
554  * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
555  * @path: nameidate to verify
556  *
557  * Rename can sometimes move a file or directory outside of a bind
558  * mount, path_connected allows those cases to be detected.
559  */
560 static bool path_connected(const struct path *path)
561 {
562 	struct vfsmount *mnt = path->mnt;
563 	struct super_block *sb = mnt->mnt_sb;
564 
565 	/* Bind mounts and multi-root filesystems can have disconnected paths */
566 	if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root))
567 		return true;
568 
569 	return is_subdir(path->dentry, mnt->mnt_root);
570 }
571 
572 static inline int nd_alloc_stack(struct nameidata *nd)
573 {
574 	if (likely(nd->depth != EMBEDDED_LEVELS))
575 		return 0;
576 	if (likely(nd->stack != nd->internal))
577 		return 0;
578 	return __nd_alloc_stack(nd);
579 }
580 
581 static void drop_links(struct nameidata *nd)
582 {
583 	int i = nd->depth;
584 	while (i--) {
585 		struct saved *last = nd->stack + i;
586 		do_delayed_call(&last->done);
587 		clear_delayed_call(&last->done);
588 	}
589 }
590 
591 static void terminate_walk(struct nameidata *nd)
592 {
593 	drop_links(nd);
594 	if (!(nd->flags & LOOKUP_RCU)) {
595 		int i;
596 		path_put(&nd->path);
597 		for (i = 0; i < nd->depth; i++)
598 			path_put(&nd->stack[i].link);
599 		if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
600 			path_put(&nd->root);
601 			nd->root.mnt = NULL;
602 		}
603 	} else {
604 		nd->flags &= ~LOOKUP_RCU;
605 		if (!(nd->flags & LOOKUP_ROOT))
606 			nd->root.mnt = NULL;
607 		rcu_read_unlock();
608 	}
609 	nd->depth = 0;
610 }
611 
612 /* path_put is needed afterwards regardless of success or failure */
613 static bool legitimize_path(struct nameidata *nd,
614 			    struct path *path, unsigned seq)
615 {
616 	int res = __legitimize_mnt(path->mnt, nd->m_seq);
617 	if (unlikely(res)) {
618 		if (res > 0)
619 			path->mnt = NULL;
620 		path->dentry = NULL;
621 		return false;
622 	}
623 	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
624 		path->dentry = NULL;
625 		return false;
626 	}
627 	return !read_seqcount_retry(&path->dentry->d_seq, seq);
628 }
629 
630 static bool legitimize_links(struct nameidata *nd)
631 {
632 	int i;
633 	for (i = 0; i < nd->depth; i++) {
634 		struct saved *last = nd->stack + i;
635 		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
636 			drop_links(nd);
637 			nd->depth = i + 1;
638 			return false;
639 		}
640 	}
641 	return true;
642 }
643 
644 /*
645  * Path walking has 2 modes, rcu-walk and ref-walk (see
646  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
647  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
648  * normal reference counts on dentries and vfsmounts to transition to ref-walk
649  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
650  * got stuck, so ref-walk may continue from there. If this is not successful
651  * (eg. a seqcount has changed), then failure is returned and it's up to caller
652  * to restart the path walk from the beginning in ref-walk mode.
653  */
654 
655 /**
656  * unlazy_walk - try to switch to ref-walk mode.
657  * @nd: nameidata pathwalk data
658  * Returns: 0 on success, -ECHILD on failure
659  *
660  * unlazy_walk attempts to legitimize the current nd->path and nd->root
661  * for ref-walk mode.
662  * Must be called from rcu-walk context.
663  * Nothing should touch nameidata between unlazy_walk() failure and
664  * terminate_walk().
665  */
666 static int unlazy_walk(struct nameidata *nd)
667 {
668 	struct dentry *parent = nd->path.dentry;
669 
670 	BUG_ON(!(nd->flags & LOOKUP_RCU));
671 
672 	nd->flags &= ~LOOKUP_RCU;
673 	if (unlikely(!legitimize_links(nd)))
674 		goto out2;
675 	if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
676 		goto out1;
677 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
678 		if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq)))
679 			goto out;
680 	}
681 	rcu_read_unlock();
682 	BUG_ON(nd->inode != parent->d_inode);
683 	return 0;
684 
685 out2:
686 	nd->path.mnt = NULL;
687 	nd->path.dentry = NULL;
688 out1:
689 	if (!(nd->flags & LOOKUP_ROOT))
690 		nd->root.mnt = NULL;
691 out:
692 	rcu_read_unlock();
693 	return -ECHILD;
694 }
695 
696 /**
697  * unlazy_child - try to switch to ref-walk mode.
698  * @nd: nameidata pathwalk data
699  * @dentry: child of nd->path.dentry
700  * @seq: seq number to check dentry against
701  * Returns: 0 on success, -ECHILD on failure
702  *
703  * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
704  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
705  * @nd.  Must be called from rcu-walk context.
706  * Nothing should touch nameidata between unlazy_child() failure and
707  * terminate_walk().
708  */
709 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
710 {
711 	BUG_ON(!(nd->flags & LOOKUP_RCU));
712 
713 	nd->flags &= ~LOOKUP_RCU;
714 	if (unlikely(!legitimize_links(nd)))
715 		goto out2;
716 	if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
717 		goto out2;
718 	if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
719 		goto out1;
720 
721 	/*
722 	 * We need to move both the parent and the dentry from the RCU domain
723 	 * to be properly refcounted. And the sequence number in the dentry
724 	 * validates *both* dentry counters, since we checked the sequence
725 	 * number of the parent after we got the child sequence number. So we
726 	 * know the parent must still be valid if the child sequence number is
727 	 */
728 	if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
729 		goto out;
730 	if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) {
731 		rcu_read_unlock();
732 		dput(dentry);
733 		goto drop_root_mnt;
734 	}
735 	/*
736 	 * Sequence counts matched. Now make sure that the root is
737 	 * still valid and get it if required.
738 	 */
739 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
740 		if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
741 			rcu_read_unlock();
742 			dput(dentry);
743 			return -ECHILD;
744 		}
745 	}
746 
747 	rcu_read_unlock();
748 	return 0;
749 
750 out2:
751 	nd->path.mnt = NULL;
752 out1:
753 	nd->path.dentry = NULL;
754 out:
755 	rcu_read_unlock();
756 drop_root_mnt:
757 	if (!(nd->flags & LOOKUP_ROOT))
758 		nd->root.mnt = NULL;
759 	return -ECHILD;
760 }
761 
762 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
763 {
764 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
765 		return dentry->d_op->d_revalidate(dentry, flags);
766 	else
767 		return 1;
768 }
769 
770 /**
771  * complete_walk - successful completion of path walk
772  * @nd:  pointer nameidata
773  *
774  * If we had been in RCU mode, drop out of it and legitimize nd->path.
775  * Revalidate the final result, unless we'd already done that during
776  * the path walk or the filesystem doesn't ask for it.  Return 0 on
777  * success, -error on failure.  In case of failure caller does not
778  * need to drop nd->path.
779  */
780 static int complete_walk(struct nameidata *nd)
781 {
782 	struct dentry *dentry = nd->path.dentry;
783 	int status;
784 
785 	if (nd->flags & LOOKUP_RCU) {
786 		if (!(nd->flags & LOOKUP_ROOT))
787 			nd->root.mnt = NULL;
788 		if (unlikely(unlazy_walk(nd)))
789 			return -ECHILD;
790 	}
791 
792 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
793 		return 0;
794 
795 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
796 		return 0;
797 
798 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
799 	if (status > 0)
800 		return 0;
801 
802 	if (!status)
803 		status = -ESTALE;
804 
805 	return status;
806 }
807 
808 static void set_root(struct nameidata *nd)
809 {
810 	struct fs_struct *fs = current->fs;
811 
812 	if (nd->flags & LOOKUP_RCU) {
813 		unsigned seq;
814 
815 		do {
816 			seq = read_seqcount_begin(&fs->seq);
817 			nd->root = fs->root;
818 			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
819 		} while (read_seqcount_retry(&fs->seq, seq));
820 	} else {
821 		get_fs_root(fs, &nd->root);
822 	}
823 }
824 
825 static void path_put_conditional(struct path *path, struct nameidata *nd)
826 {
827 	dput(path->dentry);
828 	if (path->mnt != nd->path.mnt)
829 		mntput(path->mnt);
830 }
831 
832 static inline void path_to_nameidata(const struct path *path,
833 					struct nameidata *nd)
834 {
835 	if (!(nd->flags & LOOKUP_RCU)) {
836 		dput(nd->path.dentry);
837 		if (nd->path.mnt != path->mnt)
838 			mntput(nd->path.mnt);
839 	}
840 	nd->path.mnt = path->mnt;
841 	nd->path.dentry = path->dentry;
842 }
843 
844 static int nd_jump_root(struct nameidata *nd)
845 {
846 	if (nd->flags & LOOKUP_RCU) {
847 		struct dentry *d;
848 		nd->path = nd->root;
849 		d = nd->path.dentry;
850 		nd->inode = d->d_inode;
851 		nd->seq = nd->root_seq;
852 		if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
853 			return -ECHILD;
854 	} else {
855 		path_put(&nd->path);
856 		nd->path = nd->root;
857 		path_get(&nd->path);
858 		nd->inode = nd->path.dentry->d_inode;
859 	}
860 	nd->flags |= LOOKUP_JUMPED;
861 	return 0;
862 }
863 
864 /*
865  * Helper to directly jump to a known parsed path from ->get_link,
866  * caller must have taken a reference to path beforehand.
867  */
868 void nd_jump_link(struct path *path)
869 {
870 	struct nameidata *nd = current->nameidata;
871 	path_put(&nd->path);
872 
873 	nd->path = *path;
874 	nd->inode = nd->path.dentry->d_inode;
875 	nd->flags |= LOOKUP_JUMPED;
876 }
877 
878 static inline void put_link(struct nameidata *nd)
879 {
880 	struct saved *last = nd->stack + --nd->depth;
881 	do_delayed_call(&last->done);
882 	if (!(nd->flags & LOOKUP_RCU))
883 		path_put(&last->link);
884 }
885 
886 int sysctl_protected_symlinks __read_mostly = 0;
887 int sysctl_protected_hardlinks __read_mostly = 0;
888 int sysctl_protected_fifos __read_mostly;
889 int sysctl_protected_regular __read_mostly;
890 
891 /**
892  * may_follow_link - Check symlink following for unsafe situations
893  * @nd: nameidata pathwalk data
894  *
895  * In the case of the sysctl_protected_symlinks sysctl being enabled,
896  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
897  * in a sticky world-writable directory. This is to protect privileged
898  * processes from failing races against path names that may change out
899  * from under them by way of other users creating malicious symlinks.
900  * It will permit symlinks to be followed only when outside a sticky
901  * world-writable directory, or when the uid of the symlink and follower
902  * match, or when the directory owner matches the symlink's owner.
903  *
904  * Returns 0 if following the symlink is allowed, -ve on error.
905  */
906 static inline int may_follow_link(struct nameidata *nd)
907 {
908 	const struct inode *inode;
909 	const struct inode *parent;
910 	kuid_t puid;
911 
912 	if (!sysctl_protected_symlinks)
913 		return 0;
914 
915 	/* Allowed if owner and follower match. */
916 	inode = nd->link_inode;
917 	if (uid_eq(current_cred()->fsuid, inode->i_uid))
918 		return 0;
919 
920 	/* Allowed if parent directory not sticky and world-writable. */
921 	parent = nd->inode;
922 	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
923 		return 0;
924 
925 	/* Allowed if parent directory and link owner match. */
926 	puid = parent->i_uid;
927 	if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
928 		return 0;
929 
930 	if (nd->flags & LOOKUP_RCU)
931 		return -ECHILD;
932 
933 	audit_inode(nd->name, nd->stack[0].link.dentry, 0);
934 	audit_log_link_denied("follow_link");
935 	return -EACCES;
936 }
937 
938 /**
939  * safe_hardlink_source - Check for safe hardlink conditions
940  * @inode: the source inode to hardlink from
941  *
942  * Return false if at least one of the following conditions:
943  *    - inode is not a regular file
944  *    - inode is setuid
945  *    - inode is setgid and group-exec
946  *    - access failure for read and write
947  *
948  * Otherwise returns true.
949  */
950 static bool safe_hardlink_source(struct inode *inode)
951 {
952 	umode_t mode = inode->i_mode;
953 
954 	/* Special files should not get pinned to the filesystem. */
955 	if (!S_ISREG(mode))
956 		return false;
957 
958 	/* Setuid files should not get pinned to the filesystem. */
959 	if (mode & S_ISUID)
960 		return false;
961 
962 	/* Executable setgid files should not get pinned to the filesystem. */
963 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
964 		return false;
965 
966 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
967 	if (inode_permission(inode, MAY_READ | MAY_WRITE))
968 		return false;
969 
970 	return true;
971 }
972 
973 /**
974  * may_linkat - Check permissions for creating a hardlink
975  * @link: the source to hardlink from
976  *
977  * Block hardlink when all of:
978  *  - sysctl_protected_hardlinks enabled
979  *  - fsuid does not match inode
980  *  - hardlink source is unsafe (see safe_hardlink_source() above)
981  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
982  *
983  * Returns 0 if successful, -ve on error.
984  */
985 static int may_linkat(struct path *link)
986 {
987 	struct inode *inode = link->dentry->d_inode;
988 
989 	/* Inode writeback is not safe when the uid or gid are invalid. */
990 	if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
991 		return -EOVERFLOW;
992 
993 	if (!sysctl_protected_hardlinks)
994 		return 0;
995 
996 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
997 	 * otherwise, it must be a safe source.
998 	 */
999 	if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
1000 		return 0;
1001 
1002 	audit_log_link_denied("linkat");
1003 	return -EPERM;
1004 }
1005 
1006 /**
1007  * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1008  *			  should be allowed, or not, on files that already
1009  *			  exist.
1010  * @dir: the sticky parent directory
1011  * @inode: the inode of the file to open
1012  *
1013  * Block an O_CREAT open of a FIFO (or a regular file) when:
1014  *   - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1015  *   - the file already exists
1016  *   - we are in a sticky directory
1017  *   - we don't own the file
1018  *   - the owner of the directory doesn't own the file
1019  *   - the directory is world writable
1020  * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1021  * the directory doesn't have to be world writable: being group writable will
1022  * be enough.
1023  *
1024  * Returns 0 if the open is allowed, -ve on error.
1025  */
1026 static int may_create_in_sticky(struct dentry * const dir,
1027 				struct inode * const inode)
1028 {
1029 	if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1030 	    (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1031 	    likely(!(dir->d_inode->i_mode & S_ISVTX)) ||
1032 	    uid_eq(inode->i_uid, dir->d_inode->i_uid) ||
1033 	    uid_eq(current_fsuid(), inode->i_uid))
1034 		return 0;
1035 
1036 	if (likely(dir->d_inode->i_mode & 0002) ||
1037 	    (dir->d_inode->i_mode & 0020 &&
1038 	     ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1039 	      (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1040 		return -EACCES;
1041 	}
1042 	return 0;
1043 }
1044 
1045 static __always_inline
1046 const char *get_link(struct nameidata *nd)
1047 {
1048 	struct saved *last = nd->stack + nd->depth - 1;
1049 	struct dentry *dentry = last->link.dentry;
1050 	struct inode *inode = nd->link_inode;
1051 	int error;
1052 	const char *res;
1053 
1054 	if (!(nd->flags & LOOKUP_RCU)) {
1055 		touch_atime(&last->link);
1056 		cond_resched();
1057 	} else if (atime_needs_update(&last->link, inode)) {
1058 		if (unlikely(unlazy_walk(nd)))
1059 			return ERR_PTR(-ECHILD);
1060 		touch_atime(&last->link);
1061 	}
1062 
1063 	error = security_inode_follow_link(dentry, inode,
1064 					   nd->flags & LOOKUP_RCU);
1065 	if (unlikely(error))
1066 		return ERR_PTR(error);
1067 
1068 	nd->last_type = LAST_BIND;
1069 	res = READ_ONCE(inode->i_link);
1070 	if (!res) {
1071 		const char * (*get)(struct dentry *, struct inode *,
1072 				struct delayed_call *);
1073 		get = inode->i_op->get_link;
1074 		if (nd->flags & LOOKUP_RCU) {
1075 			res = get(NULL, inode, &last->done);
1076 			if (res == ERR_PTR(-ECHILD)) {
1077 				if (unlikely(unlazy_walk(nd)))
1078 					return ERR_PTR(-ECHILD);
1079 				res = get(dentry, inode, &last->done);
1080 			}
1081 		} else {
1082 			res = get(dentry, inode, &last->done);
1083 		}
1084 		if (IS_ERR_OR_NULL(res))
1085 			return res;
1086 	}
1087 	if (*res == '/') {
1088 		if (!nd->root.mnt)
1089 			set_root(nd);
1090 		if (unlikely(nd_jump_root(nd)))
1091 			return ERR_PTR(-ECHILD);
1092 		while (unlikely(*++res == '/'))
1093 			;
1094 	}
1095 	if (!*res)
1096 		res = NULL;
1097 	return res;
1098 }
1099 
1100 /*
1101  * follow_up - Find the mountpoint of path's vfsmount
1102  *
1103  * Given a path, find the mountpoint of its source file system.
1104  * Replace @path with the path of the mountpoint in the parent mount.
1105  * Up is towards /.
1106  *
1107  * Return 1 if we went up a level and 0 if we were already at the
1108  * root.
1109  */
1110 int follow_up(struct path *path)
1111 {
1112 	struct mount *mnt = real_mount(path->mnt);
1113 	struct mount *parent;
1114 	struct dentry *mountpoint;
1115 
1116 	read_seqlock_excl(&mount_lock);
1117 	parent = mnt->mnt_parent;
1118 	if (parent == mnt) {
1119 		read_sequnlock_excl(&mount_lock);
1120 		return 0;
1121 	}
1122 	mntget(&parent->mnt);
1123 	mountpoint = dget(mnt->mnt_mountpoint);
1124 	read_sequnlock_excl(&mount_lock);
1125 	dput(path->dentry);
1126 	path->dentry = mountpoint;
1127 	mntput(path->mnt);
1128 	path->mnt = &parent->mnt;
1129 	return 1;
1130 }
1131 EXPORT_SYMBOL(follow_up);
1132 
1133 /*
1134  * Perform an automount
1135  * - return -EISDIR to tell follow_managed() to stop and return the path we
1136  *   were called with.
1137  */
1138 static int follow_automount(struct path *path, struct nameidata *nd,
1139 			    bool *need_mntput)
1140 {
1141 	struct vfsmount *mnt;
1142 	int err;
1143 
1144 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1145 		return -EREMOTE;
1146 
1147 	/* We don't want to mount if someone's just doing a stat -
1148 	 * unless they're stat'ing a directory and appended a '/' to
1149 	 * the name.
1150 	 *
1151 	 * We do, however, want to mount if someone wants to open or
1152 	 * create a file of any type under the mountpoint, wants to
1153 	 * traverse through the mountpoint or wants to open the
1154 	 * mounted directory.  Also, autofs may mark negative dentries
1155 	 * as being automount points.  These will need the attentions
1156 	 * of the daemon to instantiate them before they can be used.
1157 	 */
1158 	if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1159 			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1160 	    path->dentry->d_inode)
1161 		return -EISDIR;
1162 
1163 	nd->total_link_count++;
1164 	if (nd->total_link_count >= 40)
1165 		return -ELOOP;
1166 
1167 	mnt = path->dentry->d_op->d_automount(path);
1168 	if (IS_ERR(mnt)) {
1169 		/*
1170 		 * The filesystem is allowed to return -EISDIR here to indicate
1171 		 * it doesn't want to automount.  For instance, autofs would do
1172 		 * this so that its userspace daemon can mount on this dentry.
1173 		 *
1174 		 * However, we can only permit this if it's a terminal point in
1175 		 * the path being looked up; if it wasn't then the remainder of
1176 		 * the path is inaccessible and we should say so.
1177 		 */
1178 		if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1179 			return -EREMOTE;
1180 		return PTR_ERR(mnt);
1181 	}
1182 
1183 	if (!mnt) /* mount collision */
1184 		return 0;
1185 
1186 	if (!*need_mntput) {
1187 		/* lock_mount() may release path->mnt on error */
1188 		mntget(path->mnt);
1189 		*need_mntput = true;
1190 	}
1191 	err = finish_automount(mnt, path);
1192 
1193 	switch (err) {
1194 	case -EBUSY:
1195 		/* Someone else made a mount here whilst we were busy */
1196 		return 0;
1197 	case 0:
1198 		path_put(path);
1199 		path->mnt = mnt;
1200 		path->dentry = dget(mnt->mnt_root);
1201 		return 0;
1202 	default:
1203 		return err;
1204 	}
1205 
1206 }
1207 
1208 /*
1209  * Handle a dentry that is managed in some way.
1210  * - Flagged for transit management (autofs)
1211  * - Flagged as mountpoint
1212  * - Flagged as automount point
1213  *
1214  * This may only be called in refwalk mode.
1215  *
1216  * Serialization is taken care of in namespace.c
1217  */
1218 static int follow_managed(struct path *path, struct nameidata *nd)
1219 {
1220 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1221 	unsigned managed;
1222 	bool need_mntput = false;
1223 	int ret = 0;
1224 
1225 	/* Given that we're not holding a lock here, we retain the value in a
1226 	 * local variable for each dentry as we look at it so that we don't see
1227 	 * the components of that value change under us */
1228 	while (managed = READ_ONCE(path->dentry->d_flags),
1229 	       managed &= DCACHE_MANAGED_DENTRY,
1230 	       unlikely(managed != 0)) {
1231 		/* Allow the filesystem to manage the transit without i_mutex
1232 		 * being held. */
1233 		if (managed & DCACHE_MANAGE_TRANSIT) {
1234 			BUG_ON(!path->dentry->d_op);
1235 			BUG_ON(!path->dentry->d_op->d_manage);
1236 			ret = path->dentry->d_op->d_manage(path, false);
1237 			if (ret < 0)
1238 				break;
1239 		}
1240 
1241 		/* Transit to a mounted filesystem. */
1242 		if (managed & DCACHE_MOUNTED) {
1243 			struct vfsmount *mounted = lookup_mnt(path);
1244 			if (mounted) {
1245 				dput(path->dentry);
1246 				if (need_mntput)
1247 					mntput(path->mnt);
1248 				path->mnt = mounted;
1249 				path->dentry = dget(mounted->mnt_root);
1250 				need_mntput = true;
1251 				continue;
1252 			}
1253 
1254 			/* Something is mounted on this dentry in another
1255 			 * namespace and/or whatever was mounted there in this
1256 			 * namespace got unmounted before lookup_mnt() could
1257 			 * get it */
1258 		}
1259 
1260 		/* Handle an automount point */
1261 		if (managed & DCACHE_NEED_AUTOMOUNT) {
1262 			ret = follow_automount(path, nd, &need_mntput);
1263 			if (ret < 0)
1264 				break;
1265 			continue;
1266 		}
1267 
1268 		/* We didn't change the current path point */
1269 		break;
1270 	}
1271 
1272 	if (need_mntput && path->mnt == mnt)
1273 		mntput(path->mnt);
1274 	if (ret == -EISDIR || !ret)
1275 		ret = 1;
1276 	if (need_mntput)
1277 		nd->flags |= LOOKUP_JUMPED;
1278 	if (unlikely(ret < 0))
1279 		path_put_conditional(path, nd);
1280 	return ret;
1281 }
1282 
1283 int follow_down_one(struct path *path)
1284 {
1285 	struct vfsmount *mounted;
1286 
1287 	mounted = lookup_mnt(path);
1288 	if (mounted) {
1289 		dput(path->dentry);
1290 		mntput(path->mnt);
1291 		path->mnt = mounted;
1292 		path->dentry = dget(mounted->mnt_root);
1293 		return 1;
1294 	}
1295 	return 0;
1296 }
1297 EXPORT_SYMBOL(follow_down_one);
1298 
1299 static inline int managed_dentry_rcu(const struct path *path)
1300 {
1301 	return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1302 		path->dentry->d_op->d_manage(path, true) : 0;
1303 }
1304 
1305 /*
1306  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1307  * we meet a managed dentry that would need blocking.
1308  */
1309 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1310 			       struct inode **inode, unsigned *seqp)
1311 {
1312 	for (;;) {
1313 		struct mount *mounted;
1314 		/*
1315 		 * Don't forget we might have a non-mountpoint managed dentry
1316 		 * that wants to block transit.
1317 		 */
1318 		switch (managed_dentry_rcu(path)) {
1319 		case -ECHILD:
1320 		default:
1321 			return false;
1322 		case -EISDIR:
1323 			return true;
1324 		case 0:
1325 			break;
1326 		}
1327 
1328 		if (!d_mountpoint(path->dentry))
1329 			return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1330 
1331 		mounted = __lookup_mnt(path->mnt, path->dentry);
1332 		if (!mounted)
1333 			break;
1334 		path->mnt = &mounted->mnt;
1335 		path->dentry = mounted->mnt.mnt_root;
1336 		nd->flags |= LOOKUP_JUMPED;
1337 		*seqp = read_seqcount_begin(&path->dentry->d_seq);
1338 		/*
1339 		 * Update the inode too. We don't need to re-check the
1340 		 * dentry sequence number here after this d_inode read,
1341 		 * because a mount-point is always pinned.
1342 		 */
1343 		*inode = path->dentry->d_inode;
1344 	}
1345 	return !read_seqretry(&mount_lock, nd->m_seq) &&
1346 		!(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1347 }
1348 
1349 static int follow_dotdot_rcu(struct nameidata *nd)
1350 {
1351 	struct inode *inode = nd->inode;
1352 
1353 	while (1) {
1354 		if (path_equal(&nd->path, &nd->root))
1355 			break;
1356 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1357 			struct dentry *old = nd->path.dentry;
1358 			struct dentry *parent = old->d_parent;
1359 			unsigned seq;
1360 
1361 			inode = parent->d_inode;
1362 			seq = read_seqcount_begin(&parent->d_seq);
1363 			if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1364 				return -ECHILD;
1365 			nd->path.dentry = parent;
1366 			nd->seq = seq;
1367 			if (unlikely(!path_connected(&nd->path)))
1368 				return -ENOENT;
1369 			break;
1370 		} else {
1371 			struct mount *mnt = real_mount(nd->path.mnt);
1372 			struct mount *mparent = mnt->mnt_parent;
1373 			struct dentry *mountpoint = mnt->mnt_mountpoint;
1374 			struct inode *inode2 = mountpoint->d_inode;
1375 			unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1376 			if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1377 				return -ECHILD;
1378 			if (&mparent->mnt == nd->path.mnt)
1379 				break;
1380 			/* we know that mountpoint was pinned */
1381 			nd->path.dentry = mountpoint;
1382 			nd->path.mnt = &mparent->mnt;
1383 			inode = inode2;
1384 			nd->seq = seq;
1385 		}
1386 	}
1387 	while (unlikely(d_mountpoint(nd->path.dentry))) {
1388 		struct mount *mounted;
1389 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1390 		if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1391 			return -ECHILD;
1392 		if (!mounted)
1393 			break;
1394 		nd->path.mnt = &mounted->mnt;
1395 		nd->path.dentry = mounted->mnt.mnt_root;
1396 		inode = nd->path.dentry->d_inode;
1397 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1398 	}
1399 	nd->inode = inode;
1400 	return 0;
1401 }
1402 
1403 /*
1404  * Follow down to the covering mount currently visible to userspace.  At each
1405  * point, the filesystem owning that dentry may be queried as to whether the
1406  * caller is permitted to proceed or not.
1407  */
1408 int follow_down(struct path *path)
1409 {
1410 	unsigned managed;
1411 	int ret;
1412 
1413 	while (managed = READ_ONCE(path->dentry->d_flags),
1414 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1415 		/* Allow the filesystem to manage the transit without i_mutex
1416 		 * being held.
1417 		 *
1418 		 * We indicate to the filesystem if someone is trying to mount
1419 		 * something here.  This gives autofs the chance to deny anyone
1420 		 * other than its daemon the right to mount on its
1421 		 * superstructure.
1422 		 *
1423 		 * The filesystem may sleep at this point.
1424 		 */
1425 		if (managed & DCACHE_MANAGE_TRANSIT) {
1426 			BUG_ON(!path->dentry->d_op);
1427 			BUG_ON(!path->dentry->d_op->d_manage);
1428 			ret = path->dentry->d_op->d_manage(path, false);
1429 			if (ret < 0)
1430 				return ret == -EISDIR ? 0 : ret;
1431 		}
1432 
1433 		/* Transit to a mounted filesystem. */
1434 		if (managed & DCACHE_MOUNTED) {
1435 			struct vfsmount *mounted = lookup_mnt(path);
1436 			if (!mounted)
1437 				break;
1438 			dput(path->dentry);
1439 			mntput(path->mnt);
1440 			path->mnt = mounted;
1441 			path->dentry = dget(mounted->mnt_root);
1442 			continue;
1443 		}
1444 
1445 		/* Don't handle automount points here */
1446 		break;
1447 	}
1448 	return 0;
1449 }
1450 EXPORT_SYMBOL(follow_down);
1451 
1452 /*
1453  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1454  */
1455 static void follow_mount(struct path *path)
1456 {
1457 	while (d_mountpoint(path->dentry)) {
1458 		struct vfsmount *mounted = lookup_mnt(path);
1459 		if (!mounted)
1460 			break;
1461 		dput(path->dentry);
1462 		mntput(path->mnt);
1463 		path->mnt = mounted;
1464 		path->dentry = dget(mounted->mnt_root);
1465 	}
1466 }
1467 
1468 static int path_parent_directory(struct path *path)
1469 {
1470 	struct dentry *old = path->dentry;
1471 	/* rare case of legitimate dget_parent()... */
1472 	path->dentry = dget_parent(path->dentry);
1473 	dput(old);
1474 	if (unlikely(!path_connected(path)))
1475 		return -ENOENT;
1476 	return 0;
1477 }
1478 
1479 static int follow_dotdot(struct nameidata *nd)
1480 {
1481 	while(1) {
1482 		if (path_equal(&nd->path, &nd->root))
1483 			break;
1484 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1485 			int ret = path_parent_directory(&nd->path);
1486 			if (ret)
1487 				return ret;
1488 			break;
1489 		}
1490 		if (!follow_up(&nd->path))
1491 			break;
1492 	}
1493 	follow_mount(&nd->path);
1494 	nd->inode = nd->path.dentry->d_inode;
1495 	return 0;
1496 }
1497 
1498 /*
1499  * This looks up the name in dcache and possibly revalidates the found dentry.
1500  * NULL is returned if the dentry does not exist in the cache.
1501  */
1502 static struct dentry *lookup_dcache(const struct qstr *name,
1503 				    struct dentry *dir,
1504 				    unsigned int flags)
1505 {
1506 	struct dentry *dentry = d_lookup(dir, name);
1507 	if (dentry) {
1508 		int error = d_revalidate(dentry, flags);
1509 		if (unlikely(error <= 0)) {
1510 			if (!error)
1511 				d_invalidate(dentry);
1512 			dput(dentry);
1513 			return ERR_PTR(error);
1514 		}
1515 	}
1516 	return dentry;
1517 }
1518 
1519 /*
1520  * Parent directory has inode locked exclusive.  This is one
1521  * and only case when ->lookup() gets called on non in-lookup
1522  * dentries - as the matter of fact, this only gets called
1523  * when directory is guaranteed to have no in-lookup children
1524  * at all.
1525  */
1526 static struct dentry *__lookup_hash(const struct qstr *name,
1527 		struct dentry *base, unsigned int flags)
1528 {
1529 	struct dentry *dentry = lookup_dcache(name, base, flags);
1530 	struct dentry *old;
1531 	struct inode *dir = base->d_inode;
1532 
1533 	if (dentry)
1534 		return dentry;
1535 
1536 	/* Don't create child dentry for a dead directory. */
1537 	if (unlikely(IS_DEADDIR(dir)))
1538 		return ERR_PTR(-ENOENT);
1539 
1540 	dentry = d_alloc(base, name);
1541 	if (unlikely(!dentry))
1542 		return ERR_PTR(-ENOMEM);
1543 
1544 	old = dir->i_op->lookup(dir, dentry, flags);
1545 	if (unlikely(old)) {
1546 		dput(dentry);
1547 		dentry = old;
1548 	}
1549 	return dentry;
1550 }
1551 
1552 static int lookup_fast(struct nameidata *nd,
1553 		       struct path *path, struct inode **inode,
1554 		       unsigned *seqp)
1555 {
1556 	struct vfsmount *mnt = nd->path.mnt;
1557 	struct dentry *dentry, *parent = nd->path.dentry;
1558 	int status = 1;
1559 	int err;
1560 
1561 	/*
1562 	 * Rename seqlock is not required here because in the off chance
1563 	 * of a false negative due to a concurrent rename, the caller is
1564 	 * going to fall back to non-racy lookup.
1565 	 */
1566 	if (nd->flags & LOOKUP_RCU) {
1567 		unsigned seq;
1568 		bool negative;
1569 		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1570 		if (unlikely(!dentry)) {
1571 			if (unlazy_walk(nd))
1572 				return -ECHILD;
1573 			return 0;
1574 		}
1575 
1576 		/*
1577 		 * This sequence count validates that the inode matches
1578 		 * the dentry name information from lookup.
1579 		 */
1580 		*inode = d_backing_inode(dentry);
1581 		negative = d_is_negative(dentry);
1582 		if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1583 			return -ECHILD;
1584 
1585 		/*
1586 		 * This sequence count validates that the parent had no
1587 		 * changes while we did the lookup of the dentry above.
1588 		 *
1589 		 * The memory barrier in read_seqcount_begin of child is
1590 		 *  enough, we can use __read_seqcount_retry here.
1591 		 */
1592 		if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1593 			return -ECHILD;
1594 
1595 		*seqp = seq;
1596 		status = d_revalidate(dentry, nd->flags);
1597 		if (likely(status > 0)) {
1598 			/*
1599 			 * Note: do negative dentry check after revalidation in
1600 			 * case that drops it.
1601 			 */
1602 			if (unlikely(negative))
1603 				return -ENOENT;
1604 			path->mnt = mnt;
1605 			path->dentry = dentry;
1606 			if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1607 				return 1;
1608 		}
1609 		if (unlazy_child(nd, dentry, seq))
1610 			return -ECHILD;
1611 		if (unlikely(status == -ECHILD))
1612 			/* we'd been told to redo it in non-rcu mode */
1613 			status = d_revalidate(dentry, nd->flags);
1614 	} else {
1615 		dentry = __d_lookup(parent, &nd->last);
1616 		if (unlikely(!dentry))
1617 			return 0;
1618 		status = d_revalidate(dentry, nd->flags);
1619 	}
1620 	if (unlikely(status <= 0)) {
1621 		if (!status)
1622 			d_invalidate(dentry);
1623 		dput(dentry);
1624 		return status;
1625 	}
1626 	if (unlikely(d_is_negative(dentry))) {
1627 		dput(dentry);
1628 		return -ENOENT;
1629 	}
1630 
1631 	path->mnt = mnt;
1632 	path->dentry = dentry;
1633 	err = follow_managed(path, nd);
1634 	if (likely(err > 0))
1635 		*inode = d_backing_inode(path->dentry);
1636 	return err;
1637 }
1638 
1639 /* Fast lookup failed, do it the slow way */
1640 static struct dentry *__lookup_slow(const struct qstr *name,
1641 				    struct dentry *dir,
1642 				    unsigned int flags)
1643 {
1644 	struct dentry *dentry, *old;
1645 	struct inode *inode = dir->d_inode;
1646 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1647 
1648 	/* Don't go there if it's already dead */
1649 	if (unlikely(IS_DEADDIR(inode)))
1650 		return ERR_PTR(-ENOENT);
1651 again:
1652 	dentry = d_alloc_parallel(dir, name, &wq);
1653 	if (IS_ERR(dentry))
1654 		return dentry;
1655 	if (unlikely(!d_in_lookup(dentry))) {
1656 		if (!(flags & LOOKUP_NO_REVAL)) {
1657 			int error = d_revalidate(dentry, flags);
1658 			if (unlikely(error <= 0)) {
1659 				if (!error) {
1660 					d_invalidate(dentry);
1661 					dput(dentry);
1662 					goto again;
1663 				}
1664 				dput(dentry);
1665 				dentry = ERR_PTR(error);
1666 			}
1667 		}
1668 	} else {
1669 		old = inode->i_op->lookup(inode, dentry, flags);
1670 		d_lookup_done(dentry);
1671 		if (unlikely(old)) {
1672 			dput(dentry);
1673 			dentry = old;
1674 		}
1675 	}
1676 	return dentry;
1677 }
1678 
1679 static struct dentry *lookup_slow(const struct qstr *name,
1680 				  struct dentry *dir,
1681 				  unsigned int flags)
1682 {
1683 	struct inode *inode = dir->d_inode;
1684 	struct dentry *res;
1685 	inode_lock_shared(inode);
1686 	res = __lookup_slow(name, dir, flags);
1687 	inode_unlock_shared(inode);
1688 	return res;
1689 }
1690 
1691 static inline int may_lookup(struct nameidata *nd)
1692 {
1693 	if (nd->flags & LOOKUP_RCU) {
1694 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1695 		if (err != -ECHILD)
1696 			return err;
1697 		if (unlazy_walk(nd))
1698 			return -ECHILD;
1699 	}
1700 	return inode_permission(nd->inode, MAY_EXEC);
1701 }
1702 
1703 static inline int handle_dots(struct nameidata *nd, int type)
1704 {
1705 	if (type == LAST_DOTDOT) {
1706 		if (!nd->root.mnt)
1707 			set_root(nd);
1708 		if (nd->flags & LOOKUP_RCU) {
1709 			return follow_dotdot_rcu(nd);
1710 		} else
1711 			return follow_dotdot(nd);
1712 	}
1713 	return 0;
1714 }
1715 
1716 static int pick_link(struct nameidata *nd, struct path *link,
1717 		     struct inode *inode, unsigned seq)
1718 {
1719 	int error;
1720 	struct saved *last;
1721 	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1722 		path_to_nameidata(link, nd);
1723 		return -ELOOP;
1724 	}
1725 	if (!(nd->flags & LOOKUP_RCU)) {
1726 		if (link->mnt == nd->path.mnt)
1727 			mntget(link->mnt);
1728 	}
1729 	error = nd_alloc_stack(nd);
1730 	if (unlikely(error)) {
1731 		if (error == -ECHILD) {
1732 			if (unlikely(!legitimize_path(nd, link, seq))) {
1733 				drop_links(nd);
1734 				nd->depth = 0;
1735 				nd->flags &= ~LOOKUP_RCU;
1736 				nd->path.mnt = NULL;
1737 				nd->path.dentry = NULL;
1738 				if (!(nd->flags & LOOKUP_ROOT))
1739 					nd->root.mnt = NULL;
1740 				rcu_read_unlock();
1741 			} else if (likely(unlazy_walk(nd)) == 0)
1742 				error = nd_alloc_stack(nd);
1743 		}
1744 		if (error) {
1745 			path_put(link);
1746 			return error;
1747 		}
1748 	}
1749 
1750 	last = nd->stack + nd->depth++;
1751 	last->link = *link;
1752 	clear_delayed_call(&last->done);
1753 	nd->link_inode = inode;
1754 	last->seq = seq;
1755 	return 1;
1756 }
1757 
1758 enum {WALK_FOLLOW = 1, WALK_MORE = 2};
1759 
1760 /*
1761  * Do we need to follow links? We _really_ want to be able
1762  * to do this check without having to look at inode->i_op,
1763  * so we keep a cache of "no, this doesn't need follow_link"
1764  * for the common case.
1765  */
1766 static inline int step_into(struct nameidata *nd, struct path *path,
1767 			    int flags, struct inode *inode, unsigned seq)
1768 {
1769 	if (!(flags & WALK_MORE) && nd->depth)
1770 		put_link(nd);
1771 	if (likely(!d_is_symlink(path->dentry)) ||
1772 	   !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) {
1773 		/* not a symlink or should not follow */
1774 		path_to_nameidata(path, nd);
1775 		nd->inode = inode;
1776 		nd->seq = seq;
1777 		return 0;
1778 	}
1779 	/* make sure that d_is_symlink above matches inode */
1780 	if (nd->flags & LOOKUP_RCU) {
1781 		if (read_seqcount_retry(&path->dentry->d_seq, seq))
1782 			return -ECHILD;
1783 	}
1784 	return pick_link(nd, path, inode, seq);
1785 }
1786 
1787 static int walk_component(struct nameidata *nd, int flags)
1788 {
1789 	struct path path;
1790 	struct inode *inode;
1791 	unsigned seq;
1792 	int err;
1793 	/*
1794 	 * "." and ".." are special - ".." especially so because it has
1795 	 * to be able to know about the current root directory and
1796 	 * parent relationships.
1797 	 */
1798 	if (unlikely(nd->last_type != LAST_NORM)) {
1799 		err = handle_dots(nd, nd->last_type);
1800 		if (!(flags & WALK_MORE) && nd->depth)
1801 			put_link(nd);
1802 		return err;
1803 	}
1804 	err = lookup_fast(nd, &path, &inode, &seq);
1805 	if (unlikely(err <= 0)) {
1806 		if (err < 0)
1807 			return err;
1808 		path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1809 					  nd->flags);
1810 		if (IS_ERR(path.dentry))
1811 			return PTR_ERR(path.dentry);
1812 
1813 		path.mnt = nd->path.mnt;
1814 		err = follow_managed(&path, nd);
1815 		if (unlikely(err < 0))
1816 			return err;
1817 
1818 		if (unlikely(d_is_negative(path.dentry))) {
1819 			path_to_nameidata(&path, nd);
1820 			return -ENOENT;
1821 		}
1822 
1823 		seq = 0;	/* we are already out of RCU mode */
1824 		inode = d_backing_inode(path.dentry);
1825 	}
1826 
1827 	return step_into(nd, &path, flags, inode, seq);
1828 }
1829 
1830 /*
1831  * We can do the critical dentry name comparison and hashing
1832  * operations one word at a time, but we are limited to:
1833  *
1834  * - Architectures with fast unaligned word accesses. We could
1835  *   do a "get_unaligned()" if this helps and is sufficiently
1836  *   fast.
1837  *
1838  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1839  *   do not trap on the (extremely unlikely) case of a page
1840  *   crossing operation.
1841  *
1842  * - Furthermore, we need an efficient 64-bit compile for the
1843  *   64-bit case in order to generate the "number of bytes in
1844  *   the final mask". Again, that could be replaced with a
1845  *   efficient population count instruction or similar.
1846  */
1847 #ifdef CONFIG_DCACHE_WORD_ACCESS
1848 
1849 #include <asm/word-at-a-time.h>
1850 
1851 #ifdef HASH_MIX
1852 
1853 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1854 
1855 #elif defined(CONFIG_64BIT)
1856 /*
1857  * Register pressure in the mixing function is an issue, particularly
1858  * on 32-bit x86, but almost any function requires one state value and
1859  * one temporary.  Instead, use a function designed for two state values
1860  * and no temporaries.
1861  *
1862  * This function cannot create a collision in only two iterations, so
1863  * we have two iterations to achieve avalanche.  In those two iterations,
1864  * we have six layers of mixing, which is enough to spread one bit's
1865  * influence out to 2^6 = 64 state bits.
1866  *
1867  * Rotate constants are scored by considering either 64 one-bit input
1868  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1869  * probability of that delta causing a change to each of the 128 output
1870  * bits, using a sample of random initial states.
1871  *
1872  * The Shannon entropy of the computed probabilities is then summed
1873  * to produce a score.  Ideally, any input change has a 50% chance of
1874  * toggling any given output bit.
1875  *
1876  * Mixing scores (in bits) for (12,45):
1877  * Input delta: 1-bit      2-bit
1878  * 1 round:     713.3    42542.6
1879  * 2 rounds:   2753.7   140389.8
1880  * 3 rounds:   5954.1   233458.2
1881  * 4 rounds:   7862.6   256672.2
1882  * Perfect:    8192     258048
1883  *            (64*128) (64*63/2 * 128)
1884  */
1885 #define HASH_MIX(x, y, a)	\
1886 	(	x ^= (a),	\
1887 	y ^= x,	x = rol64(x,12),\
1888 	x += y,	y = rol64(y,45),\
1889 	y *= 9			)
1890 
1891 /*
1892  * Fold two longs into one 32-bit hash value.  This must be fast, but
1893  * latency isn't quite as critical, as there is a fair bit of additional
1894  * work done before the hash value is used.
1895  */
1896 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1897 {
1898 	y ^= x * GOLDEN_RATIO_64;
1899 	y *= GOLDEN_RATIO_64;
1900 	return y >> 32;
1901 }
1902 
1903 #else	/* 32-bit case */
1904 
1905 /*
1906  * Mixing scores (in bits) for (7,20):
1907  * Input delta: 1-bit      2-bit
1908  * 1 round:     330.3     9201.6
1909  * 2 rounds:   1246.4    25475.4
1910  * 3 rounds:   1907.1    31295.1
1911  * 4 rounds:   2042.3    31718.6
1912  * Perfect:    2048      31744
1913  *            (32*64)   (32*31/2 * 64)
1914  */
1915 #define HASH_MIX(x, y, a)	\
1916 	(	x ^= (a),	\
1917 	y ^= x,	x = rol32(x, 7),\
1918 	x += y,	y = rol32(y,20),\
1919 	y *= 9			)
1920 
1921 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1922 {
1923 	/* Use arch-optimized multiply if one exists */
1924 	return __hash_32(y ^ __hash_32(x));
1925 }
1926 
1927 #endif
1928 
1929 /*
1930  * Return the hash of a string of known length.  This is carfully
1931  * designed to match hash_name(), which is the more critical function.
1932  * In particular, we must end by hashing a final word containing 0..7
1933  * payload bytes, to match the way that hash_name() iterates until it
1934  * finds the delimiter after the name.
1935  */
1936 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1937 {
1938 	unsigned long a, x = 0, y = (unsigned long)salt;
1939 
1940 	for (;;) {
1941 		if (!len)
1942 			goto done;
1943 		a = load_unaligned_zeropad(name);
1944 		if (len < sizeof(unsigned long))
1945 			break;
1946 		HASH_MIX(x, y, a);
1947 		name += sizeof(unsigned long);
1948 		len -= sizeof(unsigned long);
1949 	}
1950 	x ^= a & bytemask_from_count(len);
1951 done:
1952 	return fold_hash(x, y);
1953 }
1954 EXPORT_SYMBOL(full_name_hash);
1955 
1956 /* Return the "hash_len" (hash and length) of a null-terminated string */
1957 u64 hashlen_string(const void *salt, const char *name)
1958 {
1959 	unsigned long a = 0, x = 0, y = (unsigned long)salt;
1960 	unsigned long adata, mask, len;
1961 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1962 
1963 	len = 0;
1964 	goto inside;
1965 
1966 	do {
1967 		HASH_MIX(x, y, a);
1968 		len += sizeof(unsigned long);
1969 inside:
1970 		a = load_unaligned_zeropad(name+len);
1971 	} while (!has_zero(a, &adata, &constants));
1972 
1973 	adata = prep_zero_mask(a, adata, &constants);
1974 	mask = create_zero_mask(adata);
1975 	x ^= a & zero_bytemask(mask);
1976 
1977 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1978 }
1979 EXPORT_SYMBOL(hashlen_string);
1980 
1981 /*
1982  * Calculate the length and hash of the path component, and
1983  * return the "hash_len" as the result.
1984  */
1985 static inline u64 hash_name(const void *salt, const char *name)
1986 {
1987 	unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
1988 	unsigned long adata, bdata, mask, len;
1989 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1990 
1991 	len = 0;
1992 	goto inside;
1993 
1994 	do {
1995 		HASH_MIX(x, y, a);
1996 		len += sizeof(unsigned long);
1997 inside:
1998 		a = load_unaligned_zeropad(name+len);
1999 		b = a ^ REPEAT_BYTE('/');
2000 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2001 
2002 	adata = prep_zero_mask(a, adata, &constants);
2003 	bdata = prep_zero_mask(b, bdata, &constants);
2004 	mask = create_zero_mask(adata | bdata);
2005 	x ^= a & zero_bytemask(mask);
2006 
2007 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2008 }
2009 
2010 #else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2011 
2012 /* Return the hash of a string of known length */
2013 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2014 {
2015 	unsigned long hash = init_name_hash(salt);
2016 	while (len--)
2017 		hash = partial_name_hash((unsigned char)*name++, hash);
2018 	return end_name_hash(hash);
2019 }
2020 EXPORT_SYMBOL(full_name_hash);
2021 
2022 /* Return the "hash_len" (hash and length) of a null-terminated string */
2023 u64 hashlen_string(const void *salt, const char *name)
2024 {
2025 	unsigned long hash = init_name_hash(salt);
2026 	unsigned long len = 0, c;
2027 
2028 	c = (unsigned char)*name;
2029 	while (c) {
2030 		len++;
2031 		hash = partial_name_hash(c, hash);
2032 		c = (unsigned char)name[len];
2033 	}
2034 	return hashlen_create(end_name_hash(hash), len);
2035 }
2036 EXPORT_SYMBOL(hashlen_string);
2037 
2038 /*
2039  * We know there's a real path component here of at least
2040  * one character.
2041  */
2042 static inline u64 hash_name(const void *salt, const char *name)
2043 {
2044 	unsigned long hash = init_name_hash(salt);
2045 	unsigned long len = 0, c;
2046 
2047 	c = (unsigned char)*name;
2048 	do {
2049 		len++;
2050 		hash = partial_name_hash(c, hash);
2051 		c = (unsigned char)name[len];
2052 	} while (c && c != '/');
2053 	return hashlen_create(end_name_hash(hash), len);
2054 }
2055 
2056 #endif
2057 
2058 /*
2059  * Name resolution.
2060  * This is the basic name resolution function, turning a pathname into
2061  * the final dentry. We expect 'base' to be positive and a directory.
2062  *
2063  * Returns 0 and nd will have valid dentry and mnt on success.
2064  * Returns error and drops reference to input namei data on failure.
2065  */
2066 static int link_path_walk(const char *name, struct nameidata *nd)
2067 {
2068 	int err;
2069 
2070 	if (IS_ERR(name))
2071 		return PTR_ERR(name);
2072 	while (*name=='/')
2073 		name++;
2074 	if (!*name)
2075 		return 0;
2076 
2077 	/* At this point we know we have a real path component. */
2078 	for(;;) {
2079 		u64 hash_len;
2080 		int type;
2081 
2082 		err = may_lookup(nd);
2083 		if (err)
2084 			return err;
2085 
2086 		hash_len = hash_name(nd->path.dentry, name);
2087 
2088 		type = LAST_NORM;
2089 		if (name[0] == '.') switch (hashlen_len(hash_len)) {
2090 			case 2:
2091 				if (name[1] == '.') {
2092 					type = LAST_DOTDOT;
2093 					nd->flags |= LOOKUP_JUMPED;
2094 				}
2095 				break;
2096 			case 1:
2097 				type = LAST_DOT;
2098 		}
2099 		if (likely(type == LAST_NORM)) {
2100 			struct dentry *parent = nd->path.dentry;
2101 			nd->flags &= ~LOOKUP_JUMPED;
2102 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2103 				struct qstr this = { { .hash_len = hash_len }, .name = name };
2104 				err = parent->d_op->d_hash(parent, &this);
2105 				if (err < 0)
2106 					return err;
2107 				hash_len = this.hash_len;
2108 				name = this.name;
2109 			}
2110 		}
2111 
2112 		nd->last.hash_len = hash_len;
2113 		nd->last.name = name;
2114 		nd->last_type = type;
2115 
2116 		name += hashlen_len(hash_len);
2117 		if (!*name)
2118 			goto OK;
2119 		/*
2120 		 * If it wasn't NUL, we know it was '/'. Skip that
2121 		 * slash, and continue until no more slashes.
2122 		 */
2123 		do {
2124 			name++;
2125 		} while (unlikely(*name == '/'));
2126 		if (unlikely(!*name)) {
2127 OK:
2128 			/* pathname body, done */
2129 			if (!nd->depth)
2130 				return 0;
2131 			name = nd->stack[nd->depth - 1].name;
2132 			/* trailing symlink, done */
2133 			if (!name)
2134 				return 0;
2135 			/* last component of nested symlink */
2136 			err = walk_component(nd, WALK_FOLLOW);
2137 		} else {
2138 			/* not the last component */
2139 			err = walk_component(nd, WALK_FOLLOW | WALK_MORE);
2140 		}
2141 		if (err < 0)
2142 			return err;
2143 
2144 		if (err) {
2145 			const char *s = get_link(nd);
2146 
2147 			if (IS_ERR(s))
2148 				return PTR_ERR(s);
2149 			err = 0;
2150 			if (unlikely(!s)) {
2151 				/* jumped */
2152 				put_link(nd);
2153 			} else {
2154 				nd->stack[nd->depth - 1].name = name;
2155 				name = s;
2156 				continue;
2157 			}
2158 		}
2159 		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2160 			if (nd->flags & LOOKUP_RCU) {
2161 				if (unlazy_walk(nd))
2162 					return -ECHILD;
2163 			}
2164 			return -ENOTDIR;
2165 		}
2166 	}
2167 }
2168 
2169 /* must be paired with terminate_walk() */
2170 static const char *path_init(struct nameidata *nd, unsigned flags)
2171 {
2172 	const char *s = nd->name->name;
2173 
2174 	if (!*s)
2175 		flags &= ~LOOKUP_RCU;
2176 	if (flags & LOOKUP_RCU)
2177 		rcu_read_lock();
2178 
2179 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
2180 	nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2181 	nd->depth = 0;
2182 	if (flags & LOOKUP_ROOT) {
2183 		struct dentry *root = nd->root.dentry;
2184 		struct inode *inode = root->d_inode;
2185 		if (*s && unlikely(!d_can_lookup(root)))
2186 			return ERR_PTR(-ENOTDIR);
2187 		nd->path = nd->root;
2188 		nd->inode = inode;
2189 		if (flags & LOOKUP_RCU) {
2190 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2191 			nd->root_seq = nd->seq;
2192 			nd->m_seq = read_seqbegin(&mount_lock);
2193 		} else {
2194 			path_get(&nd->path);
2195 		}
2196 		return s;
2197 	}
2198 
2199 	nd->root.mnt = NULL;
2200 	nd->path.mnt = NULL;
2201 	nd->path.dentry = NULL;
2202 
2203 	nd->m_seq = read_seqbegin(&mount_lock);
2204 	if (*s == '/') {
2205 		set_root(nd);
2206 		if (likely(!nd_jump_root(nd)))
2207 			return s;
2208 		return ERR_PTR(-ECHILD);
2209 	} else if (nd->dfd == AT_FDCWD) {
2210 		if (flags & LOOKUP_RCU) {
2211 			struct fs_struct *fs = current->fs;
2212 			unsigned seq;
2213 
2214 			do {
2215 				seq = read_seqcount_begin(&fs->seq);
2216 				nd->path = fs->pwd;
2217 				nd->inode = nd->path.dentry->d_inode;
2218 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2219 			} while (read_seqcount_retry(&fs->seq, seq));
2220 		} else {
2221 			get_fs_pwd(current->fs, &nd->path);
2222 			nd->inode = nd->path.dentry->d_inode;
2223 		}
2224 		return s;
2225 	} else {
2226 		/* Caller must check execute permissions on the starting path component */
2227 		struct fd f = fdget_raw(nd->dfd);
2228 		struct dentry *dentry;
2229 
2230 		if (!f.file)
2231 			return ERR_PTR(-EBADF);
2232 
2233 		dentry = f.file->f_path.dentry;
2234 
2235 		if (*s && unlikely(!d_can_lookup(dentry))) {
2236 			fdput(f);
2237 			return ERR_PTR(-ENOTDIR);
2238 		}
2239 
2240 		nd->path = f.file->f_path;
2241 		if (flags & LOOKUP_RCU) {
2242 			nd->inode = nd->path.dentry->d_inode;
2243 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2244 		} else {
2245 			path_get(&nd->path);
2246 			nd->inode = nd->path.dentry->d_inode;
2247 		}
2248 		fdput(f);
2249 		return s;
2250 	}
2251 }
2252 
2253 static const char *trailing_symlink(struct nameidata *nd)
2254 {
2255 	const char *s;
2256 	int error = may_follow_link(nd);
2257 	if (unlikely(error))
2258 		return ERR_PTR(error);
2259 	nd->flags |= LOOKUP_PARENT;
2260 	nd->stack[0].name = NULL;
2261 	s = get_link(nd);
2262 	return s ? s : "";
2263 }
2264 
2265 static inline int lookup_last(struct nameidata *nd)
2266 {
2267 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2268 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2269 
2270 	nd->flags &= ~LOOKUP_PARENT;
2271 	return walk_component(nd, 0);
2272 }
2273 
2274 static int handle_lookup_down(struct nameidata *nd)
2275 {
2276 	struct path path = nd->path;
2277 	struct inode *inode = nd->inode;
2278 	unsigned seq = nd->seq;
2279 	int err;
2280 
2281 	if (nd->flags & LOOKUP_RCU) {
2282 		/*
2283 		 * don't bother with unlazy_walk on failure - we are
2284 		 * at the very beginning of walk, so we lose nothing
2285 		 * if we simply redo everything in non-RCU mode
2286 		 */
2287 		if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq)))
2288 			return -ECHILD;
2289 	} else {
2290 		dget(path.dentry);
2291 		err = follow_managed(&path, nd);
2292 		if (unlikely(err < 0))
2293 			return err;
2294 		inode = d_backing_inode(path.dentry);
2295 		seq = 0;
2296 	}
2297 	path_to_nameidata(&path, nd);
2298 	nd->inode = inode;
2299 	nd->seq = seq;
2300 	return 0;
2301 }
2302 
2303 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2304 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2305 {
2306 	const char *s = path_init(nd, flags);
2307 	int err;
2308 
2309 	if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2310 		err = handle_lookup_down(nd);
2311 		if (unlikely(err < 0))
2312 			s = ERR_PTR(err);
2313 	}
2314 
2315 	while (!(err = link_path_walk(s, nd))
2316 		&& ((err = lookup_last(nd)) > 0)) {
2317 		s = trailing_symlink(nd);
2318 	}
2319 	if (!err)
2320 		err = complete_walk(nd);
2321 
2322 	if (!err && nd->flags & LOOKUP_DIRECTORY)
2323 		if (!d_can_lookup(nd->path.dentry))
2324 			err = -ENOTDIR;
2325 	if (!err) {
2326 		*path = nd->path;
2327 		nd->path.mnt = NULL;
2328 		nd->path.dentry = NULL;
2329 	}
2330 	terminate_walk(nd);
2331 	return err;
2332 }
2333 
2334 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2335 		    struct path *path, struct path *root)
2336 {
2337 	int retval;
2338 	struct nameidata nd;
2339 	if (IS_ERR(name))
2340 		return PTR_ERR(name);
2341 	if (unlikely(root)) {
2342 		nd.root = *root;
2343 		flags |= LOOKUP_ROOT;
2344 	}
2345 	set_nameidata(&nd, dfd, name);
2346 	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2347 	if (unlikely(retval == -ECHILD))
2348 		retval = path_lookupat(&nd, flags, path);
2349 	if (unlikely(retval == -ESTALE))
2350 		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2351 
2352 	if (likely(!retval))
2353 		audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2354 	restore_nameidata();
2355 	putname(name);
2356 	return retval;
2357 }
2358 
2359 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2360 static int path_parentat(struct nameidata *nd, unsigned flags,
2361 				struct path *parent)
2362 {
2363 	const char *s = path_init(nd, flags);
2364 	int err = link_path_walk(s, nd);
2365 	if (!err)
2366 		err = complete_walk(nd);
2367 	if (!err) {
2368 		*parent = nd->path;
2369 		nd->path.mnt = NULL;
2370 		nd->path.dentry = NULL;
2371 	}
2372 	terminate_walk(nd);
2373 	return err;
2374 }
2375 
2376 static struct filename *filename_parentat(int dfd, struct filename *name,
2377 				unsigned int flags, struct path *parent,
2378 				struct qstr *last, int *type)
2379 {
2380 	int retval;
2381 	struct nameidata nd;
2382 
2383 	if (IS_ERR(name))
2384 		return name;
2385 	set_nameidata(&nd, dfd, name);
2386 	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2387 	if (unlikely(retval == -ECHILD))
2388 		retval = path_parentat(&nd, flags, parent);
2389 	if (unlikely(retval == -ESTALE))
2390 		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2391 	if (likely(!retval)) {
2392 		*last = nd.last;
2393 		*type = nd.last_type;
2394 		audit_inode(name, parent->dentry, LOOKUP_PARENT);
2395 	} else {
2396 		putname(name);
2397 		name = ERR_PTR(retval);
2398 	}
2399 	restore_nameidata();
2400 	return name;
2401 }
2402 
2403 /* does lookup, returns the object with parent locked */
2404 struct dentry *kern_path_locked(const char *name, struct path *path)
2405 {
2406 	struct filename *filename;
2407 	struct dentry *d;
2408 	struct qstr last;
2409 	int type;
2410 
2411 	filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2412 				    &last, &type);
2413 	if (IS_ERR(filename))
2414 		return ERR_CAST(filename);
2415 	if (unlikely(type != LAST_NORM)) {
2416 		path_put(path);
2417 		putname(filename);
2418 		return ERR_PTR(-EINVAL);
2419 	}
2420 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2421 	d = __lookup_hash(&last, path->dentry, 0);
2422 	if (IS_ERR(d)) {
2423 		inode_unlock(path->dentry->d_inode);
2424 		path_put(path);
2425 	}
2426 	putname(filename);
2427 	return d;
2428 }
2429 
2430 int kern_path(const char *name, unsigned int flags, struct path *path)
2431 {
2432 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2433 			       flags, path, NULL);
2434 }
2435 EXPORT_SYMBOL(kern_path);
2436 
2437 /**
2438  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2439  * @dentry:  pointer to dentry of the base directory
2440  * @mnt: pointer to vfs mount of the base directory
2441  * @name: pointer to file name
2442  * @flags: lookup flags
2443  * @path: pointer to struct path to fill
2444  */
2445 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2446 		    const char *name, unsigned int flags,
2447 		    struct path *path)
2448 {
2449 	struct path root = {.mnt = mnt, .dentry = dentry};
2450 	/* the first argument of filename_lookup() is ignored with root */
2451 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2452 			       flags , path, &root);
2453 }
2454 EXPORT_SYMBOL(vfs_path_lookup);
2455 
2456 static int lookup_one_len_common(const char *name, struct dentry *base,
2457 				 int len, struct qstr *this)
2458 {
2459 	this->name = name;
2460 	this->len = len;
2461 	this->hash = full_name_hash(base, name, len);
2462 	if (!len)
2463 		return -EACCES;
2464 
2465 	if (unlikely(name[0] == '.')) {
2466 		if (len < 2 || (len == 2 && name[1] == '.'))
2467 			return -EACCES;
2468 	}
2469 
2470 	while (len--) {
2471 		unsigned int c = *(const unsigned char *)name++;
2472 		if (c == '/' || c == '\0')
2473 			return -EACCES;
2474 	}
2475 	/*
2476 	 * See if the low-level filesystem might want
2477 	 * to use its own hash..
2478 	 */
2479 	if (base->d_flags & DCACHE_OP_HASH) {
2480 		int err = base->d_op->d_hash(base, this);
2481 		if (err < 0)
2482 			return err;
2483 	}
2484 
2485 	return inode_permission(base->d_inode, MAY_EXEC);
2486 }
2487 
2488 /**
2489  * try_lookup_one_len - filesystem helper to lookup single pathname component
2490  * @name:	pathname component to lookup
2491  * @base:	base directory to lookup from
2492  * @len:	maximum length @len should be interpreted to
2493  *
2494  * Look up a dentry by name in the dcache, returning NULL if it does not
2495  * currently exist.  The function does not try to create a dentry.
2496  *
2497  * Note that this routine is purely a helper for filesystem usage and should
2498  * not be called by generic code.
2499  *
2500  * The caller must hold base->i_mutex.
2501  */
2502 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2503 {
2504 	struct qstr this;
2505 	int err;
2506 
2507 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2508 
2509 	err = lookup_one_len_common(name, base, len, &this);
2510 	if (err)
2511 		return ERR_PTR(err);
2512 
2513 	return lookup_dcache(&this, base, 0);
2514 }
2515 EXPORT_SYMBOL(try_lookup_one_len);
2516 
2517 /**
2518  * lookup_one_len - filesystem helper to lookup single pathname component
2519  * @name:	pathname component to lookup
2520  * @base:	base directory to lookup from
2521  * @len:	maximum length @len should be interpreted to
2522  *
2523  * Note that this routine is purely a helper for filesystem usage and should
2524  * not be called by generic code.
2525  *
2526  * The caller must hold base->i_mutex.
2527  */
2528 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2529 {
2530 	struct dentry *dentry;
2531 	struct qstr this;
2532 	int err;
2533 
2534 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2535 
2536 	err = lookup_one_len_common(name, base, len, &this);
2537 	if (err)
2538 		return ERR_PTR(err);
2539 
2540 	dentry = lookup_dcache(&this, base, 0);
2541 	return dentry ? dentry : __lookup_slow(&this, base, 0);
2542 }
2543 EXPORT_SYMBOL(lookup_one_len);
2544 
2545 /**
2546  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2547  * @name:	pathname component to lookup
2548  * @base:	base directory to lookup from
2549  * @len:	maximum length @len should be interpreted to
2550  *
2551  * Note that this routine is purely a helper for filesystem usage and should
2552  * not be called by generic code.
2553  *
2554  * Unlike lookup_one_len, it should be called without the parent
2555  * i_mutex held, and will take the i_mutex itself if necessary.
2556  */
2557 struct dentry *lookup_one_len_unlocked(const char *name,
2558 				       struct dentry *base, int len)
2559 {
2560 	struct qstr this;
2561 	int err;
2562 	struct dentry *ret;
2563 
2564 	err = lookup_one_len_common(name, base, len, &this);
2565 	if (err)
2566 		return ERR_PTR(err);
2567 
2568 	ret = lookup_dcache(&this, base, 0);
2569 	if (!ret)
2570 		ret = lookup_slow(&this, base, 0);
2571 	return ret;
2572 }
2573 EXPORT_SYMBOL(lookup_one_len_unlocked);
2574 
2575 #ifdef CONFIG_UNIX98_PTYS
2576 int path_pts(struct path *path)
2577 {
2578 	/* Find something mounted on "pts" in the same directory as
2579 	 * the input path.
2580 	 */
2581 	struct dentry *child, *parent;
2582 	struct qstr this;
2583 	int ret;
2584 
2585 	ret = path_parent_directory(path);
2586 	if (ret)
2587 		return ret;
2588 
2589 	parent = path->dentry;
2590 	this.name = "pts";
2591 	this.len = 3;
2592 	child = d_hash_and_lookup(parent, &this);
2593 	if (!child)
2594 		return -ENOENT;
2595 
2596 	path->dentry = child;
2597 	dput(parent);
2598 	follow_mount(path);
2599 	return 0;
2600 }
2601 #endif
2602 
2603 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2604 		 struct path *path, int *empty)
2605 {
2606 	return filename_lookup(dfd, getname_flags(name, flags, empty),
2607 			       flags, path, NULL);
2608 }
2609 EXPORT_SYMBOL(user_path_at_empty);
2610 
2611 /**
2612  * mountpoint_last - look up last component for umount
2613  * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2614  *
2615  * This is a special lookup_last function just for umount. In this case, we
2616  * need to resolve the path without doing any revalidation.
2617  *
2618  * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2619  * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2620  * in almost all cases, this lookup will be served out of the dcache. The only
2621  * cases where it won't are if nd->last refers to a symlink or the path is
2622  * bogus and it doesn't exist.
2623  *
2624  * Returns:
2625  * -error: if there was an error during lookup. This includes -ENOENT if the
2626  *         lookup found a negative dentry.
2627  *
2628  * 0:      if we successfully resolved nd->last and found it to not to be a
2629  *         symlink that needs to be followed.
2630  *
2631  * 1:      if we successfully resolved nd->last and found it to be a symlink
2632  *         that needs to be followed.
2633  */
2634 static int
2635 mountpoint_last(struct nameidata *nd)
2636 {
2637 	int error = 0;
2638 	struct dentry *dir = nd->path.dentry;
2639 	struct path path;
2640 
2641 	/* If we're in rcuwalk, drop out of it to handle last component */
2642 	if (nd->flags & LOOKUP_RCU) {
2643 		if (unlazy_walk(nd))
2644 			return -ECHILD;
2645 	}
2646 
2647 	nd->flags &= ~LOOKUP_PARENT;
2648 
2649 	if (unlikely(nd->last_type != LAST_NORM)) {
2650 		error = handle_dots(nd, nd->last_type);
2651 		if (error)
2652 			return error;
2653 		path.dentry = dget(nd->path.dentry);
2654 	} else {
2655 		path.dentry = d_lookup(dir, &nd->last);
2656 		if (!path.dentry) {
2657 			/*
2658 			 * No cached dentry. Mounted dentries are pinned in the
2659 			 * cache, so that means that this dentry is probably
2660 			 * a symlink or the path doesn't actually point
2661 			 * to a mounted dentry.
2662 			 */
2663 			path.dentry = lookup_slow(&nd->last, dir,
2664 					     nd->flags | LOOKUP_NO_REVAL);
2665 			if (IS_ERR(path.dentry))
2666 				return PTR_ERR(path.dentry);
2667 		}
2668 	}
2669 	if (d_is_negative(path.dentry)) {
2670 		dput(path.dentry);
2671 		return -ENOENT;
2672 	}
2673 	path.mnt = nd->path.mnt;
2674 	return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0);
2675 }
2676 
2677 /**
2678  * path_mountpoint - look up a path to be umounted
2679  * @nd:		lookup context
2680  * @flags:	lookup flags
2681  * @path:	pointer to container for result
2682  *
2683  * Look up the given name, but don't attempt to revalidate the last component.
2684  * Returns 0 and "path" will be valid on success; Returns error otherwise.
2685  */
2686 static int
2687 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2688 {
2689 	const char *s = path_init(nd, flags);
2690 	int err;
2691 
2692 	while (!(err = link_path_walk(s, nd)) &&
2693 		(err = mountpoint_last(nd)) > 0) {
2694 		s = trailing_symlink(nd);
2695 	}
2696 	if (!err) {
2697 		*path = nd->path;
2698 		nd->path.mnt = NULL;
2699 		nd->path.dentry = NULL;
2700 		follow_mount(path);
2701 	}
2702 	terminate_walk(nd);
2703 	return err;
2704 }
2705 
2706 static int
2707 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2708 			unsigned int flags)
2709 {
2710 	struct nameidata nd;
2711 	int error;
2712 	if (IS_ERR(name))
2713 		return PTR_ERR(name);
2714 	set_nameidata(&nd, dfd, name);
2715 	error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2716 	if (unlikely(error == -ECHILD))
2717 		error = path_mountpoint(&nd, flags, path);
2718 	if (unlikely(error == -ESTALE))
2719 		error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2720 	if (likely(!error))
2721 		audit_inode(name, path->dentry, flags & LOOKUP_NO_EVAL);
2722 	restore_nameidata();
2723 	putname(name);
2724 	return error;
2725 }
2726 
2727 /**
2728  * user_path_mountpoint_at - lookup a path from userland in order to umount it
2729  * @dfd:	directory file descriptor
2730  * @name:	pathname from userland
2731  * @flags:	lookup flags
2732  * @path:	pointer to container to hold result
2733  *
2734  * A umount is a special case for path walking. We're not actually interested
2735  * in the inode in this situation, and ESTALE errors can be a problem. We
2736  * simply want track down the dentry and vfsmount attached at the mountpoint
2737  * and avoid revalidating the last component.
2738  *
2739  * Returns 0 and populates "path" on success.
2740  */
2741 int
2742 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2743 			struct path *path)
2744 {
2745 	return filename_mountpoint(dfd, getname(name), path, flags);
2746 }
2747 
2748 int
2749 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2750 			unsigned int flags)
2751 {
2752 	return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2753 }
2754 EXPORT_SYMBOL(kern_path_mountpoint);
2755 
2756 int __check_sticky(struct inode *dir, struct inode *inode)
2757 {
2758 	kuid_t fsuid = current_fsuid();
2759 
2760 	if (uid_eq(inode->i_uid, fsuid))
2761 		return 0;
2762 	if (uid_eq(dir->i_uid, fsuid))
2763 		return 0;
2764 	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2765 }
2766 EXPORT_SYMBOL(__check_sticky);
2767 
2768 /*
2769  *	Check whether we can remove a link victim from directory dir, check
2770  *  whether the type of victim is right.
2771  *  1. We can't do it if dir is read-only (done in permission())
2772  *  2. We should have write and exec permissions on dir
2773  *  3. We can't remove anything from append-only dir
2774  *  4. We can't do anything with immutable dir (done in permission())
2775  *  5. If the sticky bit on dir is set we should either
2776  *	a. be owner of dir, or
2777  *	b. be owner of victim, or
2778  *	c. have CAP_FOWNER capability
2779  *  6. If the victim is append-only or immutable we can't do antyhing with
2780  *     links pointing to it.
2781  *  7. If the victim has an unknown uid or gid we can't change the inode.
2782  *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2783  *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2784  * 10. We can't remove a root or mountpoint.
2785  * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2786  *     nfs_async_unlink().
2787  */
2788 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2789 {
2790 	struct inode *inode = d_backing_inode(victim);
2791 	int error;
2792 
2793 	if (d_is_negative(victim))
2794 		return -ENOENT;
2795 	BUG_ON(!inode);
2796 
2797 	BUG_ON(victim->d_parent->d_inode != dir);
2798 
2799 	/* Inode writeback is not safe when the uid or gid are invalid. */
2800 	if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
2801 		return -EOVERFLOW;
2802 
2803 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2804 
2805 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2806 	if (error)
2807 		return error;
2808 	if (IS_APPEND(dir))
2809 		return -EPERM;
2810 
2811 	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2812 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2813 		return -EPERM;
2814 	if (isdir) {
2815 		if (!d_is_dir(victim))
2816 			return -ENOTDIR;
2817 		if (IS_ROOT(victim))
2818 			return -EBUSY;
2819 	} else if (d_is_dir(victim))
2820 		return -EISDIR;
2821 	if (IS_DEADDIR(dir))
2822 		return -ENOENT;
2823 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2824 		return -EBUSY;
2825 	return 0;
2826 }
2827 
2828 /*	Check whether we can create an object with dentry child in directory
2829  *  dir.
2830  *  1. We can't do it if child already exists (open has special treatment for
2831  *     this case, but since we are inlined it's OK)
2832  *  2. We can't do it if dir is read-only (done in permission())
2833  *  3. We can't do it if the fs can't represent the fsuid or fsgid.
2834  *  4. We should have write and exec permissions on dir
2835  *  5. We can't do it if dir is immutable (done in permission())
2836  */
2837 static inline int may_create(struct inode *dir, struct dentry *child)
2838 {
2839 	struct user_namespace *s_user_ns;
2840 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2841 	if (child->d_inode)
2842 		return -EEXIST;
2843 	if (IS_DEADDIR(dir))
2844 		return -ENOENT;
2845 	s_user_ns = dir->i_sb->s_user_ns;
2846 	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2847 	    !kgid_has_mapping(s_user_ns, current_fsgid()))
2848 		return -EOVERFLOW;
2849 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2850 }
2851 
2852 /*
2853  * p1 and p2 should be directories on the same fs.
2854  */
2855 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2856 {
2857 	struct dentry *p;
2858 
2859 	if (p1 == p2) {
2860 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2861 		return NULL;
2862 	}
2863 
2864 	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2865 
2866 	p = d_ancestor(p2, p1);
2867 	if (p) {
2868 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2869 		inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2870 		return p;
2871 	}
2872 
2873 	p = d_ancestor(p1, p2);
2874 	if (p) {
2875 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2876 		inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2877 		return p;
2878 	}
2879 
2880 	inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2881 	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2882 	return NULL;
2883 }
2884 EXPORT_SYMBOL(lock_rename);
2885 
2886 void unlock_rename(struct dentry *p1, struct dentry *p2)
2887 {
2888 	inode_unlock(p1->d_inode);
2889 	if (p1 != p2) {
2890 		inode_unlock(p2->d_inode);
2891 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2892 	}
2893 }
2894 EXPORT_SYMBOL(unlock_rename);
2895 
2896 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2897 		bool want_excl)
2898 {
2899 	int error = may_create(dir, dentry);
2900 	if (error)
2901 		return error;
2902 
2903 	if (!dir->i_op->create)
2904 		return -EACCES;	/* shouldn't it be ENOSYS? */
2905 	mode &= S_IALLUGO;
2906 	mode |= S_IFREG;
2907 	error = security_inode_create(dir, dentry, mode);
2908 	if (error)
2909 		return error;
2910 	error = dir->i_op->create(dir, dentry, mode, want_excl);
2911 	if (!error)
2912 		fsnotify_create(dir, dentry);
2913 	return error;
2914 }
2915 EXPORT_SYMBOL(vfs_create);
2916 
2917 int vfs_mkobj(struct dentry *dentry, umode_t mode,
2918 		int (*f)(struct dentry *, umode_t, void *),
2919 		void *arg)
2920 {
2921 	struct inode *dir = dentry->d_parent->d_inode;
2922 	int error = may_create(dir, dentry);
2923 	if (error)
2924 		return error;
2925 
2926 	mode &= S_IALLUGO;
2927 	mode |= S_IFREG;
2928 	error = security_inode_create(dir, dentry, mode);
2929 	if (error)
2930 		return error;
2931 	error = f(dentry, mode, arg);
2932 	if (!error)
2933 		fsnotify_create(dir, dentry);
2934 	return error;
2935 }
2936 EXPORT_SYMBOL(vfs_mkobj);
2937 
2938 bool may_open_dev(const struct path *path)
2939 {
2940 	return !(path->mnt->mnt_flags & MNT_NODEV) &&
2941 		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2942 }
2943 
2944 static int may_open(const struct path *path, int acc_mode, int flag)
2945 {
2946 	struct dentry *dentry = path->dentry;
2947 	struct inode *inode = dentry->d_inode;
2948 	int error;
2949 
2950 	if (!inode)
2951 		return -ENOENT;
2952 
2953 	switch (inode->i_mode & S_IFMT) {
2954 	case S_IFLNK:
2955 		return -ELOOP;
2956 	case S_IFDIR:
2957 		if (acc_mode & MAY_WRITE)
2958 			return -EISDIR;
2959 		break;
2960 	case S_IFBLK:
2961 	case S_IFCHR:
2962 		if (!may_open_dev(path))
2963 			return -EACCES;
2964 		/*FALLTHRU*/
2965 	case S_IFIFO:
2966 	case S_IFSOCK:
2967 		flag &= ~O_TRUNC;
2968 		break;
2969 	}
2970 
2971 	error = inode_permission(inode, MAY_OPEN | acc_mode);
2972 	if (error)
2973 		return error;
2974 
2975 	/*
2976 	 * An append-only file must be opened in append mode for writing.
2977 	 */
2978 	if (IS_APPEND(inode)) {
2979 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2980 			return -EPERM;
2981 		if (flag & O_TRUNC)
2982 			return -EPERM;
2983 	}
2984 
2985 	/* O_NOATIME can only be set by the owner or superuser */
2986 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2987 		return -EPERM;
2988 
2989 	return 0;
2990 }
2991 
2992 static int handle_truncate(struct file *filp)
2993 {
2994 	const struct path *path = &filp->f_path;
2995 	struct inode *inode = path->dentry->d_inode;
2996 	int error = get_write_access(inode);
2997 	if (error)
2998 		return error;
2999 	/*
3000 	 * Refuse to truncate files with mandatory locks held on them.
3001 	 */
3002 	error = locks_verify_locked(filp);
3003 	if (!error)
3004 		error = security_path_truncate(path);
3005 	if (!error) {
3006 		error = do_truncate(path->dentry, 0,
3007 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3008 				    filp);
3009 	}
3010 	put_write_access(inode);
3011 	return error;
3012 }
3013 
3014 static inline int open_to_namei_flags(int flag)
3015 {
3016 	if ((flag & O_ACCMODE) == 3)
3017 		flag--;
3018 	return flag;
3019 }
3020 
3021 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
3022 {
3023 	struct user_namespace *s_user_ns;
3024 	int error = security_path_mknod(dir, dentry, mode, 0);
3025 	if (error)
3026 		return error;
3027 
3028 	s_user_ns = dir->dentry->d_sb->s_user_ns;
3029 	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
3030 	    !kgid_has_mapping(s_user_ns, current_fsgid()))
3031 		return -EOVERFLOW;
3032 
3033 	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
3034 	if (error)
3035 		return error;
3036 
3037 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
3038 }
3039 
3040 /*
3041  * Attempt to atomically look up, create and open a file from a negative
3042  * dentry.
3043  *
3044  * Returns 0 if successful.  The file will have been created and attached to
3045  * @file by the filesystem calling finish_open().
3046  *
3047  * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3048  * be set.  The caller will need to perform the open themselves.  @path will
3049  * have been updated to point to the new dentry.  This may be negative.
3050  *
3051  * Returns an error code otherwise.
3052  */
3053 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
3054 			struct path *path, struct file *file,
3055 			const struct open_flags *op,
3056 			int open_flag, umode_t mode)
3057 {
3058 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3059 	struct inode *dir =  nd->path.dentry->d_inode;
3060 	int error;
3061 
3062 	if (!(~open_flag & (O_EXCL | O_CREAT)))	/* both O_EXCL and O_CREAT */
3063 		open_flag &= ~O_TRUNC;
3064 
3065 	if (nd->flags & LOOKUP_DIRECTORY)
3066 		open_flag |= O_DIRECTORY;
3067 
3068 	file->f_path.dentry = DENTRY_NOT_SET;
3069 	file->f_path.mnt = nd->path.mnt;
3070 	error = dir->i_op->atomic_open(dir, dentry, file,
3071 				       open_to_namei_flags(open_flag), mode);
3072 	d_lookup_done(dentry);
3073 	if (!error) {
3074 		if (file->f_mode & FMODE_OPENED) {
3075 			/*
3076 			 * We didn't have the inode before the open, so check open
3077 			 * permission here.
3078 			 */
3079 			int acc_mode = op->acc_mode;
3080 			if (file->f_mode & FMODE_CREATED) {
3081 				WARN_ON(!(open_flag & O_CREAT));
3082 				fsnotify_create(dir, dentry);
3083 				acc_mode = 0;
3084 			}
3085 			error = may_open(&file->f_path, acc_mode, open_flag);
3086 			if (WARN_ON(error > 0))
3087 				error = -EINVAL;
3088 		} else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3089 			error = -EIO;
3090 		} else {
3091 			if (file->f_path.dentry) {
3092 				dput(dentry);
3093 				dentry = file->f_path.dentry;
3094 			}
3095 			if (file->f_mode & FMODE_CREATED)
3096 				fsnotify_create(dir, dentry);
3097 			if (unlikely(d_is_negative(dentry))) {
3098 				error = -ENOENT;
3099 			} else {
3100 				path->dentry = dentry;
3101 				path->mnt = nd->path.mnt;
3102 				return 0;
3103 			}
3104 		}
3105 	}
3106 	dput(dentry);
3107 	return error;
3108 }
3109 
3110 /*
3111  * Look up and maybe create and open the last component.
3112  *
3113  * Must be called with parent locked (exclusive in O_CREAT case).
3114  *
3115  * Returns 0 on success, that is, if
3116  *  the file was successfully atomically created (if necessary) and opened, or
3117  *  the file was not completely opened at this time, though lookups and
3118  *  creations were performed.
3119  * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3120  * In the latter case dentry returned in @path might be negative if O_CREAT
3121  * hadn't been specified.
3122  *
3123  * An error code is returned on failure.
3124  */
3125 static int lookup_open(struct nameidata *nd, struct path *path,
3126 			struct file *file,
3127 			const struct open_flags *op,
3128 			bool got_write)
3129 {
3130 	struct dentry *dir = nd->path.dentry;
3131 	struct inode *dir_inode = dir->d_inode;
3132 	int open_flag = op->open_flag;
3133 	struct dentry *dentry;
3134 	int error, create_error = 0;
3135 	umode_t mode = op->mode;
3136 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3137 
3138 	if (unlikely(IS_DEADDIR(dir_inode)))
3139 		return -ENOENT;
3140 
3141 	file->f_mode &= ~FMODE_CREATED;
3142 	dentry = d_lookup(dir, &nd->last);
3143 	for (;;) {
3144 		if (!dentry) {
3145 			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3146 			if (IS_ERR(dentry))
3147 				return PTR_ERR(dentry);
3148 		}
3149 		if (d_in_lookup(dentry))
3150 			break;
3151 
3152 		error = d_revalidate(dentry, nd->flags);
3153 		if (likely(error > 0))
3154 			break;
3155 		if (error)
3156 			goto out_dput;
3157 		d_invalidate(dentry);
3158 		dput(dentry);
3159 		dentry = NULL;
3160 	}
3161 	if (dentry->d_inode) {
3162 		/* Cached positive dentry: will open in f_op->open */
3163 		goto out_no_open;
3164 	}
3165 
3166 	/*
3167 	 * Checking write permission is tricky, bacuse we don't know if we are
3168 	 * going to actually need it: O_CREAT opens should work as long as the
3169 	 * file exists.  But checking existence breaks atomicity.  The trick is
3170 	 * to check access and if not granted clear O_CREAT from the flags.
3171 	 *
3172 	 * Another problem is returing the "right" error value (e.g. for an
3173 	 * O_EXCL open we want to return EEXIST not EROFS).
3174 	 */
3175 	if (open_flag & O_CREAT) {
3176 		if (!IS_POSIXACL(dir->d_inode))
3177 			mode &= ~current_umask();
3178 		if (unlikely(!got_write)) {
3179 			create_error = -EROFS;
3180 			open_flag &= ~O_CREAT;
3181 			if (open_flag & (O_EXCL | O_TRUNC))
3182 				goto no_open;
3183 			/* No side effects, safe to clear O_CREAT */
3184 		} else {
3185 			create_error = may_o_create(&nd->path, dentry, mode);
3186 			if (create_error) {
3187 				open_flag &= ~O_CREAT;
3188 				if (open_flag & O_EXCL)
3189 					goto no_open;
3190 			}
3191 		}
3192 	} else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3193 		   unlikely(!got_write)) {
3194 		/*
3195 		 * No O_CREATE -> atomicity not a requirement -> fall
3196 		 * back to lookup + open
3197 		 */
3198 		goto no_open;
3199 	}
3200 
3201 	if (dir_inode->i_op->atomic_open) {
3202 		error = atomic_open(nd, dentry, path, file, op, open_flag,
3203 				    mode);
3204 		if (unlikely(error == -ENOENT) && create_error)
3205 			error = create_error;
3206 		return error;
3207 	}
3208 
3209 no_open:
3210 	if (d_in_lookup(dentry)) {
3211 		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3212 							     nd->flags);
3213 		d_lookup_done(dentry);
3214 		if (unlikely(res)) {
3215 			if (IS_ERR(res)) {
3216 				error = PTR_ERR(res);
3217 				goto out_dput;
3218 			}
3219 			dput(dentry);
3220 			dentry = res;
3221 		}
3222 	}
3223 
3224 	/* Negative dentry, just create the file */
3225 	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3226 		file->f_mode |= FMODE_CREATED;
3227 		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3228 		if (!dir_inode->i_op->create) {
3229 			error = -EACCES;
3230 			goto out_dput;
3231 		}
3232 		error = dir_inode->i_op->create(dir_inode, dentry, mode,
3233 						open_flag & O_EXCL);
3234 		if (error)
3235 			goto out_dput;
3236 		fsnotify_create(dir_inode, dentry);
3237 	}
3238 	if (unlikely(create_error) && !dentry->d_inode) {
3239 		error = create_error;
3240 		goto out_dput;
3241 	}
3242 out_no_open:
3243 	path->dentry = dentry;
3244 	path->mnt = nd->path.mnt;
3245 	return 0;
3246 
3247 out_dput:
3248 	dput(dentry);
3249 	return error;
3250 }
3251 
3252 /*
3253  * Handle the last step of open()
3254  */
3255 static int do_last(struct nameidata *nd,
3256 		   struct file *file, const struct open_flags *op)
3257 {
3258 	struct dentry *dir = nd->path.dentry;
3259 	int open_flag = op->open_flag;
3260 	bool will_truncate = (open_flag & O_TRUNC) != 0;
3261 	bool got_write = false;
3262 	int acc_mode = op->acc_mode;
3263 	unsigned seq;
3264 	struct inode *inode;
3265 	struct path path;
3266 	int error;
3267 
3268 	nd->flags &= ~LOOKUP_PARENT;
3269 	nd->flags |= op->intent;
3270 
3271 	if (nd->last_type != LAST_NORM) {
3272 		error = handle_dots(nd, nd->last_type);
3273 		if (unlikely(error))
3274 			return error;
3275 		goto finish_open;
3276 	}
3277 
3278 	if (!(open_flag & O_CREAT)) {
3279 		if (nd->last.name[nd->last.len])
3280 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3281 		/* we _can_ be in RCU mode here */
3282 		error = lookup_fast(nd, &path, &inode, &seq);
3283 		if (likely(error > 0))
3284 			goto finish_lookup;
3285 
3286 		if (error < 0)
3287 			return error;
3288 
3289 		BUG_ON(nd->inode != dir->d_inode);
3290 		BUG_ON(nd->flags & LOOKUP_RCU);
3291 	} else {
3292 		/* create side of things */
3293 		/*
3294 		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3295 		 * has been cleared when we got to the last component we are
3296 		 * about to look up
3297 		 */
3298 		error = complete_walk(nd);
3299 		if (error)
3300 			return error;
3301 
3302 		audit_inode(nd->name, dir, LOOKUP_PARENT);
3303 		/* trailing slashes? */
3304 		if (unlikely(nd->last.name[nd->last.len]))
3305 			return -EISDIR;
3306 	}
3307 
3308 	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3309 		error = mnt_want_write(nd->path.mnt);
3310 		if (!error)
3311 			got_write = true;
3312 		/*
3313 		 * do _not_ fail yet - we might not need that or fail with
3314 		 * a different error; let lookup_open() decide; we'll be
3315 		 * dropping this one anyway.
3316 		 */
3317 	}
3318 	if (open_flag & O_CREAT)
3319 		inode_lock(dir->d_inode);
3320 	else
3321 		inode_lock_shared(dir->d_inode);
3322 	error = lookup_open(nd, &path, file, op, got_write);
3323 	if (open_flag & O_CREAT)
3324 		inode_unlock(dir->d_inode);
3325 	else
3326 		inode_unlock_shared(dir->d_inode);
3327 
3328 	if (error)
3329 		goto out;
3330 
3331 	if (file->f_mode & FMODE_OPENED) {
3332 		if ((file->f_mode & FMODE_CREATED) ||
3333 		    !S_ISREG(file_inode(file)->i_mode))
3334 			will_truncate = false;
3335 
3336 		audit_inode(nd->name, file->f_path.dentry, 0);
3337 		goto opened;
3338 	}
3339 
3340 	if (file->f_mode & FMODE_CREATED) {
3341 		/* Don't check for write permission, don't truncate */
3342 		open_flag &= ~O_TRUNC;
3343 		will_truncate = false;
3344 		acc_mode = 0;
3345 		path_to_nameidata(&path, nd);
3346 		goto finish_open_created;
3347 	}
3348 
3349 	/*
3350 	 * If atomic_open() acquired write access it is dropped now due to
3351 	 * possible mount and symlink following (this might be optimized away if
3352 	 * necessary...)
3353 	 */
3354 	if (got_write) {
3355 		mnt_drop_write(nd->path.mnt);
3356 		got_write = false;
3357 	}
3358 
3359 	error = follow_managed(&path, nd);
3360 	if (unlikely(error < 0))
3361 		return error;
3362 
3363 	if (unlikely(d_is_negative(path.dentry))) {
3364 		path_to_nameidata(&path, nd);
3365 		return -ENOENT;
3366 	}
3367 
3368 	/*
3369 	 * create/update audit record if it already exists.
3370 	 */
3371 	audit_inode(nd->name, path.dentry, 0);
3372 
3373 	if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3374 		path_to_nameidata(&path, nd);
3375 		return -EEXIST;
3376 	}
3377 
3378 	seq = 0;	/* out of RCU mode, so the value doesn't matter */
3379 	inode = d_backing_inode(path.dentry);
3380 finish_lookup:
3381 	error = step_into(nd, &path, 0, inode, seq);
3382 	if (unlikely(error))
3383 		return error;
3384 finish_open:
3385 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3386 	error = complete_walk(nd);
3387 	if (error)
3388 		return error;
3389 	audit_inode(nd->name, nd->path.dentry, 0);
3390 	if (open_flag & O_CREAT) {
3391 		error = -EISDIR;
3392 		if (d_is_dir(nd->path.dentry))
3393 			goto out;
3394 		error = may_create_in_sticky(dir,
3395 					     d_backing_inode(nd->path.dentry));
3396 		if (unlikely(error))
3397 			goto out;
3398 	}
3399 	error = -ENOTDIR;
3400 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3401 		goto out;
3402 	if (!d_is_reg(nd->path.dentry))
3403 		will_truncate = false;
3404 
3405 	if (will_truncate) {
3406 		error = mnt_want_write(nd->path.mnt);
3407 		if (error)
3408 			goto out;
3409 		got_write = true;
3410 	}
3411 finish_open_created:
3412 	error = may_open(&nd->path, acc_mode, open_flag);
3413 	if (error)
3414 		goto out;
3415 	BUG_ON(file->f_mode & FMODE_OPENED); /* once it's opened, it's opened */
3416 	error = vfs_open(&nd->path, file);
3417 	if (error)
3418 		goto out;
3419 opened:
3420 	error = ima_file_check(file, op->acc_mode);
3421 	if (!error && will_truncate)
3422 		error = handle_truncate(file);
3423 out:
3424 	if (unlikely(error > 0)) {
3425 		WARN_ON(1);
3426 		error = -EINVAL;
3427 	}
3428 	if (got_write)
3429 		mnt_drop_write(nd->path.mnt);
3430 	return error;
3431 }
3432 
3433 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3434 {
3435 	struct dentry *child = NULL;
3436 	struct inode *dir = dentry->d_inode;
3437 	struct inode *inode;
3438 	int error;
3439 
3440 	/* we want directory to be writable */
3441 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3442 	if (error)
3443 		goto out_err;
3444 	error = -EOPNOTSUPP;
3445 	if (!dir->i_op->tmpfile)
3446 		goto out_err;
3447 	error = -ENOMEM;
3448 	child = d_alloc(dentry, &slash_name);
3449 	if (unlikely(!child))
3450 		goto out_err;
3451 	error = dir->i_op->tmpfile(dir, child, mode);
3452 	if (error)
3453 		goto out_err;
3454 	error = -ENOENT;
3455 	inode = child->d_inode;
3456 	if (unlikely(!inode))
3457 		goto out_err;
3458 	if (!(open_flag & O_EXCL)) {
3459 		spin_lock(&inode->i_lock);
3460 		inode->i_state |= I_LINKABLE;
3461 		spin_unlock(&inode->i_lock);
3462 	}
3463 	ima_post_create_tmpfile(inode);
3464 	return child;
3465 
3466 out_err:
3467 	dput(child);
3468 	return ERR_PTR(error);
3469 }
3470 EXPORT_SYMBOL(vfs_tmpfile);
3471 
3472 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3473 		const struct open_flags *op,
3474 		struct file *file)
3475 {
3476 	struct dentry *child;
3477 	struct path path;
3478 	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3479 	if (unlikely(error))
3480 		return error;
3481 	error = mnt_want_write(path.mnt);
3482 	if (unlikely(error))
3483 		goto out;
3484 	child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3485 	error = PTR_ERR(child);
3486 	if (IS_ERR(child))
3487 		goto out2;
3488 	dput(path.dentry);
3489 	path.dentry = child;
3490 	audit_inode(nd->name, child, 0);
3491 	/* Don't check for other permissions, the inode was just created */
3492 	error = may_open(&path, 0, op->open_flag);
3493 	if (error)
3494 		goto out2;
3495 	file->f_path.mnt = path.mnt;
3496 	error = finish_open(file, child, NULL);
3497 out2:
3498 	mnt_drop_write(path.mnt);
3499 out:
3500 	path_put(&path);
3501 	return error;
3502 }
3503 
3504 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3505 {
3506 	struct path path;
3507 	int error = path_lookupat(nd, flags, &path);
3508 	if (!error) {
3509 		audit_inode(nd->name, path.dentry, 0);
3510 		error = vfs_open(&path, file);
3511 		path_put(&path);
3512 	}
3513 	return error;
3514 }
3515 
3516 static struct file *path_openat(struct nameidata *nd,
3517 			const struct open_flags *op, unsigned flags)
3518 {
3519 	struct file *file;
3520 	int error;
3521 
3522 	file = alloc_empty_file(op->open_flag, current_cred());
3523 	if (IS_ERR(file))
3524 		return file;
3525 
3526 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3527 		error = do_tmpfile(nd, flags, op, file);
3528 	} else if (unlikely(file->f_flags & O_PATH)) {
3529 		error = do_o_path(nd, flags, file);
3530 	} else {
3531 		const char *s = path_init(nd, flags);
3532 		while (!(error = link_path_walk(s, nd)) &&
3533 			(error = do_last(nd, file, op)) > 0) {
3534 			nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3535 			s = trailing_symlink(nd);
3536 		}
3537 		terminate_walk(nd);
3538 	}
3539 	if (likely(!error)) {
3540 		if (likely(file->f_mode & FMODE_OPENED))
3541 			return file;
3542 		WARN_ON(1);
3543 		error = -EINVAL;
3544 	}
3545 	fput(file);
3546 	if (error == -EOPENSTALE) {
3547 		if (flags & LOOKUP_RCU)
3548 			error = -ECHILD;
3549 		else
3550 			error = -ESTALE;
3551 	}
3552 	return ERR_PTR(error);
3553 }
3554 
3555 struct file *do_filp_open(int dfd, struct filename *pathname,
3556 		const struct open_flags *op)
3557 {
3558 	struct nameidata nd;
3559 	int flags = op->lookup_flags;
3560 	struct file *filp;
3561 
3562 	set_nameidata(&nd, dfd, pathname);
3563 	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3564 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3565 		filp = path_openat(&nd, op, flags);
3566 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3567 		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3568 	restore_nameidata();
3569 	return filp;
3570 }
3571 
3572 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3573 		const char *name, const struct open_flags *op)
3574 {
3575 	struct nameidata nd;
3576 	struct file *file;
3577 	struct filename *filename;
3578 	int flags = op->lookup_flags | LOOKUP_ROOT;
3579 
3580 	nd.root.mnt = mnt;
3581 	nd.root.dentry = dentry;
3582 
3583 	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3584 		return ERR_PTR(-ELOOP);
3585 
3586 	filename = getname_kernel(name);
3587 	if (IS_ERR(filename))
3588 		return ERR_CAST(filename);
3589 
3590 	set_nameidata(&nd, -1, filename);
3591 	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3592 	if (unlikely(file == ERR_PTR(-ECHILD)))
3593 		file = path_openat(&nd, op, flags);
3594 	if (unlikely(file == ERR_PTR(-ESTALE)))
3595 		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3596 	restore_nameidata();
3597 	putname(filename);
3598 	return file;
3599 }
3600 
3601 static struct dentry *filename_create(int dfd, struct filename *name,
3602 				struct path *path, unsigned int lookup_flags)
3603 {
3604 	struct dentry *dentry = ERR_PTR(-EEXIST);
3605 	struct qstr last;
3606 	int type;
3607 	int err2;
3608 	int error;
3609 	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3610 
3611 	/*
3612 	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3613 	 * other flags passed in are ignored!
3614 	 */
3615 	lookup_flags &= LOOKUP_REVAL;
3616 
3617 	name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3618 	if (IS_ERR(name))
3619 		return ERR_CAST(name);
3620 
3621 	/*
3622 	 * Yucky last component or no last component at all?
3623 	 * (foo/., foo/.., /////)
3624 	 */
3625 	if (unlikely(type != LAST_NORM))
3626 		goto out;
3627 
3628 	/* don't fail immediately if it's r/o, at least try to report other errors */
3629 	err2 = mnt_want_write(path->mnt);
3630 	/*
3631 	 * Do the final lookup.
3632 	 */
3633 	lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3634 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3635 	dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3636 	if (IS_ERR(dentry))
3637 		goto unlock;
3638 
3639 	error = -EEXIST;
3640 	if (d_is_positive(dentry))
3641 		goto fail;
3642 
3643 	/*
3644 	 * Special case - lookup gave negative, but... we had foo/bar/
3645 	 * From the vfs_mknod() POV we just have a negative dentry -
3646 	 * all is fine. Let's be bastards - you had / on the end, you've
3647 	 * been asking for (non-existent) directory. -ENOENT for you.
3648 	 */
3649 	if (unlikely(!is_dir && last.name[last.len])) {
3650 		error = -ENOENT;
3651 		goto fail;
3652 	}
3653 	if (unlikely(err2)) {
3654 		error = err2;
3655 		goto fail;
3656 	}
3657 	putname(name);
3658 	return dentry;
3659 fail:
3660 	dput(dentry);
3661 	dentry = ERR_PTR(error);
3662 unlock:
3663 	inode_unlock(path->dentry->d_inode);
3664 	if (!err2)
3665 		mnt_drop_write(path->mnt);
3666 out:
3667 	path_put(path);
3668 	putname(name);
3669 	return dentry;
3670 }
3671 
3672 struct dentry *kern_path_create(int dfd, const char *pathname,
3673 				struct path *path, unsigned int lookup_flags)
3674 {
3675 	return filename_create(dfd, getname_kernel(pathname),
3676 				path, lookup_flags);
3677 }
3678 EXPORT_SYMBOL(kern_path_create);
3679 
3680 void done_path_create(struct path *path, struct dentry *dentry)
3681 {
3682 	dput(dentry);
3683 	inode_unlock(path->dentry->d_inode);
3684 	mnt_drop_write(path->mnt);
3685 	path_put(path);
3686 }
3687 EXPORT_SYMBOL(done_path_create);
3688 
3689 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3690 				struct path *path, unsigned int lookup_flags)
3691 {
3692 	return filename_create(dfd, getname(pathname), path, lookup_flags);
3693 }
3694 EXPORT_SYMBOL(user_path_create);
3695 
3696 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3697 {
3698 	int error = may_create(dir, dentry);
3699 
3700 	if (error)
3701 		return error;
3702 
3703 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3704 		return -EPERM;
3705 
3706 	if (!dir->i_op->mknod)
3707 		return -EPERM;
3708 
3709 	error = devcgroup_inode_mknod(mode, dev);
3710 	if (error)
3711 		return error;
3712 
3713 	error = security_inode_mknod(dir, dentry, mode, dev);
3714 	if (error)
3715 		return error;
3716 
3717 	error = dir->i_op->mknod(dir, dentry, mode, dev);
3718 	if (!error)
3719 		fsnotify_create(dir, dentry);
3720 	return error;
3721 }
3722 EXPORT_SYMBOL(vfs_mknod);
3723 
3724 static int may_mknod(umode_t mode)
3725 {
3726 	switch (mode & S_IFMT) {
3727 	case S_IFREG:
3728 	case S_IFCHR:
3729 	case S_IFBLK:
3730 	case S_IFIFO:
3731 	case S_IFSOCK:
3732 	case 0: /* zero mode translates to S_IFREG */
3733 		return 0;
3734 	case S_IFDIR:
3735 		return -EPERM;
3736 	default:
3737 		return -EINVAL;
3738 	}
3739 }
3740 
3741 long do_mknodat(int dfd, const char __user *filename, umode_t mode,
3742 		unsigned int dev)
3743 {
3744 	struct dentry *dentry;
3745 	struct path path;
3746 	int error;
3747 	unsigned int lookup_flags = 0;
3748 
3749 	error = may_mknod(mode);
3750 	if (error)
3751 		return error;
3752 retry:
3753 	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3754 	if (IS_ERR(dentry))
3755 		return PTR_ERR(dentry);
3756 
3757 	if (!IS_POSIXACL(path.dentry->d_inode))
3758 		mode &= ~current_umask();
3759 	error = security_path_mknod(&path, dentry, mode, dev);
3760 	if (error)
3761 		goto out;
3762 	switch (mode & S_IFMT) {
3763 		case 0: case S_IFREG:
3764 			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3765 			if (!error)
3766 				ima_post_path_mknod(dentry);
3767 			break;
3768 		case S_IFCHR: case S_IFBLK:
3769 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3770 					new_decode_dev(dev));
3771 			break;
3772 		case S_IFIFO: case S_IFSOCK:
3773 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3774 			break;
3775 	}
3776 out:
3777 	done_path_create(&path, dentry);
3778 	if (retry_estale(error, lookup_flags)) {
3779 		lookup_flags |= LOOKUP_REVAL;
3780 		goto retry;
3781 	}
3782 	return error;
3783 }
3784 
3785 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3786 		unsigned int, dev)
3787 {
3788 	return do_mknodat(dfd, filename, mode, dev);
3789 }
3790 
3791 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3792 {
3793 	return do_mknodat(AT_FDCWD, filename, mode, dev);
3794 }
3795 
3796 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3797 {
3798 	int error = may_create(dir, dentry);
3799 	unsigned max_links = dir->i_sb->s_max_links;
3800 
3801 	if (error)
3802 		return error;
3803 
3804 	if (!dir->i_op->mkdir)
3805 		return -EPERM;
3806 
3807 	mode &= (S_IRWXUGO|S_ISVTX);
3808 	error = security_inode_mkdir(dir, dentry, mode);
3809 	if (error)
3810 		return error;
3811 
3812 	if (max_links && dir->i_nlink >= max_links)
3813 		return -EMLINK;
3814 
3815 	error = dir->i_op->mkdir(dir, dentry, mode);
3816 	if (!error)
3817 		fsnotify_mkdir(dir, dentry);
3818 	return error;
3819 }
3820 EXPORT_SYMBOL(vfs_mkdir);
3821 
3822 long do_mkdirat(int dfd, const char __user *pathname, umode_t mode)
3823 {
3824 	struct dentry *dentry;
3825 	struct path path;
3826 	int error;
3827 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3828 
3829 retry:
3830 	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3831 	if (IS_ERR(dentry))
3832 		return PTR_ERR(dentry);
3833 
3834 	if (!IS_POSIXACL(path.dentry->d_inode))
3835 		mode &= ~current_umask();
3836 	error = security_path_mkdir(&path, dentry, mode);
3837 	if (!error)
3838 		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3839 	done_path_create(&path, dentry);
3840 	if (retry_estale(error, lookup_flags)) {
3841 		lookup_flags |= LOOKUP_REVAL;
3842 		goto retry;
3843 	}
3844 	return error;
3845 }
3846 
3847 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3848 {
3849 	return do_mkdirat(dfd, pathname, mode);
3850 }
3851 
3852 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3853 {
3854 	return do_mkdirat(AT_FDCWD, pathname, mode);
3855 }
3856 
3857 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3858 {
3859 	int error = may_delete(dir, dentry, 1);
3860 
3861 	if (error)
3862 		return error;
3863 
3864 	if (!dir->i_op->rmdir)
3865 		return -EPERM;
3866 
3867 	dget(dentry);
3868 	inode_lock(dentry->d_inode);
3869 
3870 	error = -EBUSY;
3871 	if (is_local_mountpoint(dentry))
3872 		goto out;
3873 
3874 	error = security_inode_rmdir(dir, dentry);
3875 	if (error)
3876 		goto out;
3877 
3878 	error = dir->i_op->rmdir(dir, dentry);
3879 	if (error)
3880 		goto out;
3881 
3882 	shrink_dcache_parent(dentry);
3883 	dentry->d_inode->i_flags |= S_DEAD;
3884 	dont_mount(dentry);
3885 	detach_mounts(dentry);
3886 	fsnotify_rmdir(dir, dentry);
3887 
3888 out:
3889 	inode_unlock(dentry->d_inode);
3890 	dput(dentry);
3891 	if (!error)
3892 		d_delete(dentry);
3893 	return error;
3894 }
3895 EXPORT_SYMBOL(vfs_rmdir);
3896 
3897 long do_rmdir(int dfd, const char __user *pathname)
3898 {
3899 	int error = 0;
3900 	struct filename *name;
3901 	struct dentry *dentry;
3902 	struct path path;
3903 	struct qstr last;
3904 	int type;
3905 	unsigned int lookup_flags = 0;
3906 retry:
3907 	name = filename_parentat(dfd, getname(pathname), lookup_flags,
3908 				&path, &last, &type);
3909 	if (IS_ERR(name))
3910 		return PTR_ERR(name);
3911 
3912 	switch (type) {
3913 	case LAST_DOTDOT:
3914 		error = -ENOTEMPTY;
3915 		goto exit1;
3916 	case LAST_DOT:
3917 		error = -EINVAL;
3918 		goto exit1;
3919 	case LAST_ROOT:
3920 		error = -EBUSY;
3921 		goto exit1;
3922 	}
3923 
3924 	error = mnt_want_write(path.mnt);
3925 	if (error)
3926 		goto exit1;
3927 
3928 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3929 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3930 	error = PTR_ERR(dentry);
3931 	if (IS_ERR(dentry))
3932 		goto exit2;
3933 	if (!dentry->d_inode) {
3934 		error = -ENOENT;
3935 		goto exit3;
3936 	}
3937 	error = security_path_rmdir(&path, dentry);
3938 	if (error)
3939 		goto exit3;
3940 	error = vfs_rmdir(path.dentry->d_inode, dentry);
3941 exit3:
3942 	dput(dentry);
3943 exit2:
3944 	inode_unlock(path.dentry->d_inode);
3945 	mnt_drop_write(path.mnt);
3946 exit1:
3947 	path_put(&path);
3948 	putname(name);
3949 	if (retry_estale(error, lookup_flags)) {
3950 		lookup_flags |= LOOKUP_REVAL;
3951 		goto retry;
3952 	}
3953 	return error;
3954 }
3955 
3956 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3957 {
3958 	return do_rmdir(AT_FDCWD, pathname);
3959 }
3960 
3961 /**
3962  * vfs_unlink - unlink a filesystem object
3963  * @dir:	parent directory
3964  * @dentry:	victim
3965  * @delegated_inode: returns victim inode, if the inode is delegated.
3966  *
3967  * The caller must hold dir->i_mutex.
3968  *
3969  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3970  * return a reference to the inode in delegated_inode.  The caller
3971  * should then break the delegation on that inode and retry.  Because
3972  * breaking a delegation may take a long time, the caller should drop
3973  * dir->i_mutex before doing so.
3974  *
3975  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3976  * be appropriate for callers that expect the underlying filesystem not
3977  * to be NFS exported.
3978  */
3979 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3980 {
3981 	struct inode *target = dentry->d_inode;
3982 	int error = may_delete(dir, dentry, 0);
3983 
3984 	if (error)
3985 		return error;
3986 
3987 	if (!dir->i_op->unlink)
3988 		return -EPERM;
3989 
3990 	inode_lock(target);
3991 	if (is_local_mountpoint(dentry))
3992 		error = -EBUSY;
3993 	else {
3994 		error = security_inode_unlink(dir, dentry);
3995 		if (!error) {
3996 			error = try_break_deleg(target, delegated_inode);
3997 			if (error)
3998 				goto out;
3999 			error = dir->i_op->unlink(dir, dentry);
4000 			if (!error) {
4001 				dont_mount(dentry);
4002 				detach_mounts(dentry);
4003 				fsnotify_unlink(dir, dentry);
4004 			}
4005 		}
4006 	}
4007 out:
4008 	inode_unlock(target);
4009 
4010 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
4011 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
4012 		fsnotify_link_count(target);
4013 		d_delete(dentry);
4014 	}
4015 
4016 	return error;
4017 }
4018 EXPORT_SYMBOL(vfs_unlink);
4019 
4020 /*
4021  * Make sure that the actual truncation of the file will occur outside its
4022  * directory's i_mutex.  Truncate can take a long time if there is a lot of
4023  * writeout happening, and we don't want to prevent access to the directory
4024  * while waiting on the I/O.
4025  */
4026 long do_unlinkat(int dfd, struct filename *name)
4027 {
4028 	int error;
4029 	struct dentry *dentry;
4030 	struct path path;
4031 	struct qstr last;
4032 	int type;
4033 	struct inode *inode = NULL;
4034 	struct inode *delegated_inode = NULL;
4035 	unsigned int lookup_flags = 0;
4036 retry:
4037 	name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4038 	if (IS_ERR(name))
4039 		return PTR_ERR(name);
4040 
4041 	error = -EISDIR;
4042 	if (type != LAST_NORM)
4043 		goto exit1;
4044 
4045 	error = mnt_want_write(path.mnt);
4046 	if (error)
4047 		goto exit1;
4048 retry_deleg:
4049 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4050 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4051 	error = PTR_ERR(dentry);
4052 	if (!IS_ERR(dentry)) {
4053 		/* Why not before? Because we want correct error value */
4054 		if (last.name[last.len])
4055 			goto slashes;
4056 		inode = dentry->d_inode;
4057 		if (d_is_negative(dentry))
4058 			goto slashes;
4059 		ihold(inode);
4060 		error = security_path_unlink(&path, dentry);
4061 		if (error)
4062 			goto exit2;
4063 		error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4064 exit2:
4065 		dput(dentry);
4066 	}
4067 	inode_unlock(path.dentry->d_inode);
4068 	if (inode)
4069 		iput(inode);	/* truncate the inode here */
4070 	inode = NULL;
4071 	if (delegated_inode) {
4072 		error = break_deleg_wait(&delegated_inode);
4073 		if (!error)
4074 			goto retry_deleg;
4075 	}
4076 	mnt_drop_write(path.mnt);
4077 exit1:
4078 	path_put(&path);
4079 	if (retry_estale(error, lookup_flags)) {
4080 		lookup_flags |= LOOKUP_REVAL;
4081 		inode = NULL;
4082 		goto retry;
4083 	}
4084 	putname(name);
4085 	return error;
4086 
4087 slashes:
4088 	if (d_is_negative(dentry))
4089 		error = -ENOENT;
4090 	else if (d_is_dir(dentry))
4091 		error = -EISDIR;
4092 	else
4093 		error = -ENOTDIR;
4094 	goto exit2;
4095 }
4096 
4097 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4098 {
4099 	if ((flag & ~AT_REMOVEDIR) != 0)
4100 		return -EINVAL;
4101 
4102 	if (flag & AT_REMOVEDIR)
4103 		return do_rmdir(dfd, pathname);
4104 
4105 	return do_unlinkat(dfd, getname(pathname));
4106 }
4107 
4108 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4109 {
4110 	return do_unlinkat(AT_FDCWD, getname(pathname));
4111 }
4112 
4113 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4114 {
4115 	int error = may_create(dir, dentry);
4116 
4117 	if (error)
4118 		return error;
4119 
4120 	if (!dir->i_op->symlink)
4121 		return -EPERM;
4122 
4123 	error = security_inode_symlink(dir, dentry, oldname);
4124 	if (error)
4125 		return error;
4126 
4127 	error = dir->i_op->symlink(dir, dentry, oldname);
4128 	if (!error)
4129 		fsnotify_create(dir, dentry);
4130 	return error;
4131 }
4132 EXPORT_SYMBOL(vfs_symlink);
4133 
4134 long do_symlinkat(const char __user *oldname, int newdfd,
4135 		  const char __user *newname)
4136 {
4137 	int error;
4138 	struct filename *from;
4139 	struct dentry *dentry;
4140 	struct path path;
4141 	unsigned int lookup_flags = 0;
4142 
4143 	from = getname(oldname);
4144 	if (IS_ERR(from))
4145 		return PTR_ERR(from);
4146 retry:
4147 	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4148 	error = PTR_ERR(dentry);
4149 	if (IS_ERR(dentry))
4150 		goto out_putname;
4151 
4152 	error = security_path_symlink(&path, dentry, from->name);
4153 	if (!error)
4154 		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4155 	done_path_create(&path, dentry);
4156 	if (retry_estale(error, lookup_flags)) {
4157 		lookup_flags |= LOOKUP_REVAL;
4158 		goto retry;
4159 	}
4160 out_putname:
4161 	putname(from);
4162 	return error;
4163 }
4164 
4165 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4166 		int, newdfd, const char __user *, newname)
4167 {
4168 	return do_symlinkat(oldname, newdfd, newname);
4169 }
4170 
4171 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4172 {
4173 	return do_symlinkat(oldname, AT_FDCWD, newname);
4174 }
4175 
4176 /**
4177  * vfs_link - create a new link
4178  * @old_dentry:	object to be linked
4179  * @dir:	new parent
4180  * @new_dentry:	where to create the new link
4181  * @delegated_inode: returns inode needing a delegation break
4182  *
4183  * The caller must hold dir->i_mutex
4184  *
4185  * If vfs_link discovers a delegation on the to-be-linked file in need
4186  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4187  * inode in delegated_inode.  The caller should then break the delegation
4188  * and retry.  Because breaking a delegation may take a long time, the
4189  * caller should drop the i_mutex before doing so.
4190  *
4191  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4192  * be appropriate for callers that expect the underlying filesystem not
4193  * to be NFS exported.
4194  */
4195 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4196 {
4197 	struct inode *inode = old_dentry->d_inode;
4198 	unsigned max_links = dir->i_sb->s_max_links;
4199 	int error;
4200 
4201 	if (!inode)
4202 		return -ENOENT;
4203 
4204 	error = may_create(dir, new_dentry);
4205 	if (error)
4206 		return error;
4207 
4208 	if (dir->i_sb != inode->i_sb)
4209 		return -EXDEV;
4210 
4211 	/*
4212 	 * A link to an append-only or immutable file cannot be created.
4213 	 */
4214 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4215 		return -EPERM;
4216 	/*
4217 	 * Updating the link count will likely cause i_uid and i_gid to
4218 	 * be writen back improperly if their true value is unknown to
4219 	 * the vfs.
4220 	 */
4221 	if (HAS_UNMAPPED_ID(inode))
4222 		return -EPERM;
4223 	if (!dir->i_op->link)
4224 		return -EPERM;
4225 	if (S_ISDIR(inode->i_mode))
4226 		return -EPERM;
4227 
4228 	error = security_inode_link(old_dentry, dir, new_dentry);
4229 	if (error)
4230 		return error;
4231 
4232 	inode_lock(inode);
4233 	/* Make sure we don't allow creating hardlink to an unlinked file */
4234 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4235 		error =  -ENOENT;
4236 	else if (max_links && inode->i_nlink >= max_links)
4237 		error = -EMLINK;
4238 	else {
4239 		error = try_break_deleg(inode, delegated_inode);
4240 		if (!error)
4241 			error = dir->i_op->link(old_dentry, dir, new_dentry);
4242 	}
4243 
4244 	if (!error && (inode->i_state & I_LINKABLE)) {
4245 		spin_lock(&inode->i_lock);
4246 		inode->i_state &= ~I_LINKABLE;
4247 		spin_unlock(&inode->i_lock);
4248 	}
4249 	inode_unlock(inode);
4250 	if (!error)
4251 		fsnotify_link(dir, inode, new_dentry);
4252 	return error;
4253 }
4254 EXPORT_SYMBOL(vfs_link);
4255 
4256 /*
4257  * Hardlinks are often used in delicate situations.  We avoid
4258  * security-related surprises by not following symlinks on the
4259  * newname.  --KAB
4260  *
4261  * We don't follow them on the oldname either to be compatible
4262  * with linux 2.0, and to avoid hard-linking to directories
4263  * and other special files.  --ADM
4264  */
4265 int do_linkat(int olddfd, const char __user *oldname, int newdfd,
4266 	      const char __user *newname, int flags)
4267 {
4268 	struct dentry *new_dentry;
4269 	struct path old_path, new_path;
4270 	struct inode *delegated_inode = NULL;
4271 	int how = 0;
4272 	int error;
4273 
4274 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4275 		return -EINVAL;
4276 	/*
4277 	 * To use null names we require CAP_DAC_READ_SEARCH
4278 	 * This ensures that not everyone will be able to create
4279 	 * handlink using the passed filedescriptor.
4280 	 */
4281 	if (flags & AT_EMPTY_PATH) {
4282 		if (!capable(CAP_DAC_READ_SEARCH))
4283 			return -ENOENT;
4284 		how = LOOKUP_EMPTY;
4285 	}
4286 
4287 	if (flags & AT_SYMLINK_FOLLOW)
4288 		how |= LOOKUP_FOLLOW;
4289 retry:
4290 	error = user_path_at(olddfd, oldname, how, &old_path);
4291 	if (error)
4292 		return error;
4293 
4294 	new_dentry = user_path_create(newdfd, newname, &new_path,
4295 					(how & LOOKUP_REVAL));
4296 	error = PTR_ERR(new_dentry);
4297 	if (IS_ERR(new_dentry))
4298 		goto out;
4299 
4300 	error = -EXDEV;
4301 	if (old_path.mnt != new_path.mnt)
4302 		goto out_dput;
4303 	error = may_linkat(&old_path);
4304 	if (unlikely(error))
4305 		goto out_dput;
4306 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4307 	if (error)
4308 		goto out_dput;
4309 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4310 out_dput:
4311 	done_path_create(&new_path, new_dentry);
4312 	if (delegated_inode) {
4313 		error = break_deleg_wait(&delegated_inode);
4314 		if (!error) {
4315 			path_put(&old_path);
4316 			goto retry;
4317 		}
4318 	}
4319 	if (retry_estale(error, how)) {
4320 		path_put(&old_path);
4321 		how |= LOOKUP_REVAL;
4322 		goto retry;
4323 	}
4324 out:
4325 	path_put(&old_path);
4326 
4327 	return error;
4328 }
4329 
4330 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4331 		int, newdfd, const char __user *, newname, int, flags)
4332 {
4333 	return do_linkat(olddfd, oldname, newdfd, newname, flags);
4334 }
4335 
4336 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4337 {
4338 	return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4339 }
4340 
4341 /**
4342  * vfs_rename - rename a filesystem object
4343  * @old_dir:	parent of source
4344  * @old_dentry:	source
4345  * @new_dir:	parent of destination
4346  * @new_dentry:	destination
4347  * @delegated_inode: returns an inode needing a delegation break
4348  * @flags:	rename flags
4349  *
4350  * The caller must hold multiple mutexes--see lock_rename()).
4351  *
4352  * If vfs_rename discovers a delegation in need of breaking at either
4353  * the source or destination, it will return -EWOULDBLOCK and return a
4354  * reference to the inode in delegated_inode.  The caller should then
4355  * break the delegation and retry.  Because breaking a delegation may
4356  * take a long time, the caller should drop all locks before doing
4357  * so.
4358  *
4359  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4360  * be appropriate for callers that expect the underlying filesystem not
4361  * to be NFS exported.
4362  *
4363  * The worst of all namespace operations - renaming directory. "Perverted"
4364  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4365  * Problems:
4366  *
4367  *	a) we can get into loop creation.
4368  *	b) race potential - two innocent renames can create a loop together.
4369  *	   That's where 4.4 screws up. Current fix: serialization on
4370  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4371  *	   story.
4372  *	c) we have to lock _four_ objects - parents and victim (if it exists),
4373  *	   and source (if it is not a directory).
4374  *	   And that - after we got ->i_mutex on parents (until then we don't know
4375  *	   whether the target exists).  Solution: try to be smart with locking
4376  *	   order for inodes.  We rely on the fact that tree topology may change
4377  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4378  *	   move will be locked.  Thus we can rank directories by the tree
4379  *	   (ancestors first) and rank all non-directories after them.
4380  *	   That works since everybody except rename does "lock parent, lookup,
4381  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4382  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4383  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4384  *	   we'd better make sure that there's no link(2) for them.
4385  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4386  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4387  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4388  *	   ->i_mutex on parents, which works but leads to some truly excessive
4389  *	   locking].
4390  */
4391 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4392 	       struct inode *new_dir, struct dentry *new_dentry,
4393 	       struct inode **delegated_inode, unsigned int flags)
4394 {
4395 	int error;
4396 	bool is_dir = d_is_dir(old_dentry);
4397 	struct inode *source = old_dentry->d_inode;
4398 	struct inode *target = new_dentry->d_inode;
4399 	bool new_is_dir = false;
4400 	unsigned max_links = new_dir->i_sb->s_max_links;
4401 	struct name_snapshot old_name;
4402 
4403 	if (source == target)
4404 		return 0;
4405 
4406 	error = may_delete(old_dir, old_dentry, is_dir);
4407 	if (error)
4408 		return error;
4409 
4410 	if (!target) {
4411 		error = may_create(new_dir, new_dentry);
4412 	} else {
4413 		new_is_dir = d_is_dir(new_dentry);
4414 
4415 		if (!(flags & RENAME_EXCHANGE))
4416 			error = may_delete(new_dir, new_dentry, is_dir);
4417 		else
4418 			error = may_delete(new_dir, new_dentry, new_is_dir);
4419 	}
4420 	if (error)
4421 		return error;
4422 
4423 	if (!old_dir->i_op->rename)
4424 		return -EPERM;
4425 
4426 	/*
4427 	 * If we are going to change the parent - check write permissions,
4428 	 * we'll need to flip '..'.
4429 	 */
4430 	if (new_dir != old_dir) {
4431 		if (is_dir) {
4432 			error = inode_permission(source, MAY_WRITE);
4433 			if (error)
4434 				return error;
4435 		}
4436 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4437 			error = inode_permission(target, MAY_WRITE);
4438 			if (error)
4439 				return error;
4440 		}
4441 	}
4442 
4443 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4444 				      flags);
4445 	if (error)
4446 		return error;
4447 
4448 	take_dentry_name_snapshot(&old_name, old_dentry);
4449 	dget(new_dentry);
4450 	if (!is_dir || (flags & RENAME_EXCHANGE))
4451 		lock_two_nondirectories(source, target);
4452 	else if (target)
4453 		inode_lock(target);
4454 
4455 	error = -EBUSY;
4456 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4457 		goto out;
4458 
4459 	if (max_links && new_dir != old_dir) {
4460 		error = -EMLINK;
4461 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4462 			goto out;
4463 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4464 		    old_dir->i_nlink >= max_links)
4465 			goto out;
4466 	}
4467 	if (!is_dir) {
4468 		error = try_break_deleg(source, delegated_inode);
4469 		if (error)
4470 			goto out;
4471 	}
4472 	if (target && !new_is_dir) {
4473 		error = try_break_deleg(target, delegated_inode);
4474 		if (error)
4475 			goto out;
4476 	}
4477 	error = old_dir->i_op->rename(old_dir, old_dentry,
4478 				       new_dir, new_dentry, flags);
4479 	if (error)
4480 		goto out;
4481 
4482 	if (!(flags & RENAME_EXCHANGE) && target) {
4483 		if (is_dir) {
4484 			shrink_dcache_parent(new_dentry);
4485 			target->i_flags |= S_DEAD;
4486 		}
4487 		dont_mount(new_dentry);
4488 		detach_mounts(new_dentry);
4489 	}
4490 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4491 		if (!(flags & RENAME_EXCHANGE))
4492 			d_move(old_dentry, new_dentry);
4493 		else
4494 			d_exchange(old_dentry, new_dentry);
4495 	}
4496 out:
4497 	if (!is_dir || (flags & RENAME_EXCHANGE))
4498 		unlock_two_nondirectories(source, target);
4499 	else if (target)
4500 		inode_unlock(target);
4501 	dput(new_dentry);
4502 	if (!error) {
4503 		fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4504 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4505 		if (flags & RENAME_EXCHANGE) {
4506 			fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4507 				      new_is_dir, NULL, new_dentry);
4508 		}
4509 	}
4510 	release_dentry_name_snapshot(&old_name);
4511 
4512 	return error;
4513 }
4514 EXPORT_SYMBOL(vfs_rename);
4515 
4516 static int do_renameat2(int olddfd, const char __user *oldname, int newdfd,
4517 			const char __user *newname, unsigned int flags)
4518 {
4519 	struct dentry *old_dentry, *new_dentry;
4520 	struct dentry *trap;
4521 	struct path old_path, new_path;
4522 	struct qstr old_last, new_last;
4523 	int old_type, new_type;
4524 	struct inode *delegated_inode = NULL;
4525 	struct filename *from;
4526 	struct filename *to;
4527 	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4528 	bool should_retry = false;
4529 	int error;
4530 
4531 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4532 		return -EINVAL;
4533 
4534 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4535 	    (flags & RENAME_EXCHANGE))
4536 		return -EINVAL;
4537 
4538 	if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4539 		return -EPERM;
4540 
4541 	if (flags & RENAME_EXCHANGE)
4542 		target_flags = 0;
4543 
4544 retry:
4545 	from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4546 				&old_path, &old_last, &old_type);
4547 	if (IS_ERR(from)) {
4548 		error = PTR_ERR(from);
4549 		goto exit;
4550 	}
4551 
4552 	to = filename_parentat(newdfd, getname(newname), lookup_flags,
4553 				&new_path, &new_last, &new_type);
4554 	if (IS_ERR(to)) {
4555 		error = PTR_ERR(to);
4556 		goto exit1;
4557 	}
4558 
4559 	error = -EXDEV;
4560 	if (old_path.mnt != new_path.mnt)
4561 		goto exit2;
4562 
4563 	error = -EBUSY;
4564 	if (old_type != LAST_NORM)
4565 		goto exit2;
4566 
4567 	if (flags & RENAME_NOREPLACE)
4568 		error = -EEXIST;
4569 	if (new_type != LAST_NORM)
4570 		goto exit2;
4571 
4572 	error = mnt_want_write(old_path.mnt);
4573 	if (error)
4574 		goto exit2;
4575 
4576 retry_deleg:
4577 	trap = lock_rename(new_path.dentry, old_path.dentry);
4578 
4579 	old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4580 	error = PTR_ERR(old_dentry);
4581 	if (IS_ERR(old_dentry))
4582 		goto exit3;
4583 	/* source must exist */
4584 	error = -ENOENT;
4585 	if (d_is_negative(old_dentry))
4586 		goto exit4;
4587 	new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4588 	error = PTR_ERR(new_dentry);
4589 	if (IS_ERR(new_dentry))
4590 		goto exit4;
4591 	error = -EEXIST;
4592 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4593 		goto exit5;
4594 	if (flags & RENAME_EXCHANGE) {
4595 		error = -ENOENT;
4596 		if (d_is_negative(new_dentry))
4597 			goto exit5;
4598 
4599 		if (!d_is_dir(new_dentry)) {
4600 			error = -ENOTDIR;
4601 			if (new_last.name[new_last.len])
4602 				goto exit5;
4603 		}
4604 	}
4605 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4606 	if (!d_is_dir(old_dentry)) {
4607 		error = -ENOTDIR;
4608 		if (old_last.name[old_last.len])
4609 			goto exit5;
4610 		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4611 			goto exit5;
4612 	}
4613 	/* source should not be ancestor of target */
4614 	error = -EINVAL;
4615 	if (old_dentry == trap)
4616 		goto exit5;
4617 	/* target should not be an ancestor of source */
4618 	if (!(flags & RENAME_EXCHANGE))
4619 		error = -ENOTEMPTY;
4620 	if (new_dentry == trap)
4621 		goto exit5;
4622 
4623 	error = security_path_rename(&old_path, old_dentry,
4624 				     &new_path, new_dentry, flags);
4625 	if (error)
4626 		goto exit5;
4627 	error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4628 			   new_path.dentry->d_inode, new_dentry,
4629 			   &delegated_inode, flags);
4630 exit5:
4631 	dput(new_dentry);
4632 exit4:
4633 	dput(old_dentry);
4634 exit3:
4635 	unlock_rename(new_path.dentry, old_path.dentry);
4636 	if (delegated_inode) {
4637 		error = break_deleg_wait(&delegated_inode);
4638 		if (!error)
4639 			goto retry_deleg;
4640 	}
4641 	mnt_drop_write(old_path.mnt);
4642 exit2:
4643 	if (retry_estale(error, lookup_flags))
4644 		should_retry = true;
4645 	path_put(&new_path);
4646 	putname(to);
4647 exit1:
4648 	path_put(&old_path);
4649 	putname(from);
4650 	if (should_retry) {
4651 		should_retry = false;
4652 		lookup_flags |= LOOKUP_REVAL;
4653 		goto retry;
4654 	}
4655 exit:
4656 	return error;
4657 }
4658 
4659 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4660 		int, newdfd, const char __user *, newname, unsigned int, flags)
4661 {
4662 	return do_renameat2(olddfd, oldname, newdfd, newname, flags);
4663 }
4664 
4665 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4666 		int, newdfd, const char __user *, newname)
4667 {
4668 	return do_renameat2(olddfd, oldname, newdfd, newname, 0);
4669 }
4670 
4671 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4672 {
4673 	return do_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4674 }
4675 
4676 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4677 {
4678 	int error = may_create(dir, dentry);
4679 	if (error)
4680 		return error;
4681 
4682 	if (!dir->i_op->mknod)
4683 		return -EPERM;
4684 
4685 	return dir->i_op->mknod(dir, dentry,
4686 				S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4687 }
4688 EXPORT_SYMBOL(vfs_whiteout);
4689 
4690 int readlink_copy(char __user *buffer, int buflen, const char *link)
4691 {
4692 	int len = PTR_ERR(link);
4693 	if (IS_ERR(link))
4694 		goto out;
4695 
4696 	len = strlen(link);
4697 	if (len > (unsigned) buflen)
4698 		len = buflen;
4699 	if (copy_to_user(buffer, link, len))
4700 		len = -EFAULT;
4701 out:
4702 	return len;
4703 }
4704 
4705 /**
4706  * vfs_readlink - copy symlink body into userspace buffer
4707  * @dentry: dentry on which to get symbolic link
4708  * @buffer: user memory pointer
4709  * @buflen: size of buffer
4710  *
4711  * Does not touch atime.  That's up to the caller if necessary
4712  *
4713  * Does not call security hook.
4714  */
4715 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4716 {
4717 	struct inode *inode = d_inode(dentry);
4718 	DEFINE_DELAYED_CALL(done);
4719 	const char *link;
4720 	int res;
4721 
4722 	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4723 		if (unlikely(inode->i_op->readlink))
4724 			return inode->i_op->readlink(dentry, buffer, buflen);
4725 
4726 		if (!d_is_symlink(dentry))
4727 			return -EINVAL;
4728 
4729 		spin_lock(&inode->i_lock);
4730 		inode->i_opflags |= IOP_DEFAULT_READLINK;
4731 		spin_unlock(&inode->i_lock);
4732 	}
4733 
4734 	link = READ_ONCE(inode->i_link);
4735 	if (!link) {
4736 		link = inode->i_op->get_link(dentry, inode, &done);
4737 		if (IS_ERR(link))
4738 			return PTR_ERR(link);
4739 	}
4740 	res = readlink_copy(buffer, buflen, link);
4741 	do_delayed_call(&done);
4742 	return res;
4743 }
4744 EXPORT_SYMBOL(vfs_readlink);
4745 
4746 /**
4747  * vfs_get_link - get symlink body
4748  * @dentry: dentry on which to get symbolic link
4749  * @done: caller needs to free returned data with this
4750  *
4751  * Calls security hook and i_op->get_link() on the supplied inode.
4752  *
4753  * It does not touch atime.  That's up to the caller if necessary.
4754  *
4755  * Does not work on "special" symlinks like /proc/$$/fd/N
4756  */
4757 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4758 {
4759 	const char *res = ERR_PTR(-EINVAL);
4760 	struct inode *inode = d_inode(dentry);
4761 
4762 	if (d_is_symlink(dentry)) {
4763 		res = ERR_PTR(security_inode_readlink(dentry));
4764 		if (!res)
4765 			res = inode->i_op->get_link(dentry, inode, done);
4766 	}
4767 	return res;
4768 }
4769 EXPORT_SYMBOL(vfs_get_link);
4770 
4771 /* get the link contents into pagecache */
4772 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4773 			  struct delayed_call *callback)
4774 {
4775 	char *kaddr;
4776 	struct page *page;
4777 	struct address_space *mapping = inode->i_mapping;
4778 
4779 	if (!dentry) {
4780 		page = find_get_page(mapping, 0);
4781 		if (!page)
4782 			return ERR_PTR(-ECHILD);
4783 		if (!PageUptodate(page)) {
4784 			put_page(page);
4785 			return ERR_PTR(-ECHILD);
4786 		}
4787 	} else {
4788 		page = read_mapping_page(mapping, 0, NULL);
4789 		if (IS_ERR(page))
4790 			return (char*)page;
4791 	}
4792 	set_delayed_call(callback, page_put_link, page);
4793 	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4794 	kaddr = page_address(page);
4795 	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4796 	return kaddr;
4797 }
4798 
4799 EXPORT_SYMBOL(page_get_link);
4800 
4801 void page_put_link(void *arg)
4802 {
4803 	put_page(arg);
4804 }
4805 EXPORT_SYMBOL(page_put_link);
4806 
4807 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4808 {
4809 	DEFINE_DELAYED_CALL(done);
4810 	int res = readlink_copy(buffer, buflen,
4811 				page_get_link(dentry, d_inode(dentry),
4812 					      &done));
4813 	do_delayed_call(&done);
4814 	return res;
4815 }
4816 EXPORT_SYMBOL(page_readlink);
4817 
4818 /*
4819  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4820  */
4821 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4822 {
4823 	struct address_space *mapping = inode->i_mapping;
4824 	struct page *page;
4825 	void *fsdata;
4826 	int err;
4827 	unsigned int flags = 0;
4828 	if (nofs)
4829 		flags |= AOP_FLAG_NOFS;
4830 
4831 retry:
4832 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4833 				flags, &page, &fsdata);
4834 	if (err)
4835 		goto fail;
4836 
4837 	memcpy(page_address(page), symname, len-1);
4838 
4839 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4840 							page, fsdata);
4841 	if (err < 0)
4842 		goto fail;
4843 	if (err < len-1)
4844 		goto retry;
4845 
4846 	mark_inode_dirty(inode);
4847 	return 0;
4848 fail:
4849 	return err;
4850 }
4851 EXPORT_SYMBOL(__page_symlink);
4852 
4853 int page_symlink(struct inode *inode, const char *symname, int len)
4854 {
4855 	return __page_symlink(inode, symname, len,
4856 			!mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4857 }
4858 EXPORT_SYMBOL(page_symlink);
4859 
4860 const struct inode_operations page_symlink_inode_operations = {
4861 	.get_link	= page_get_link,
4862 };
4863 EXPORT_SYMBOL(page_symlink_inode_operations);
4864