xref: /linux/fs/namei.c (revision 2d6ffcca623a9a16df6cdfbe8250b7a5904a5f5e)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/quotaops.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <asm/namei.h>
35 #include <asm/uaccess.h>
36 
37 #define ACC_MODE(x) ("\000\004\002\006"[(x)&O_ACCMODE])
38 
39 /* [Feb-1997 T. Schoebel-Theuer]
40  * Fundamental changes in the pathname lookup mechanisms (namei)
41  * were necessary because of omirr.  The reason is that omirr needs
42  * to know the _real_ pathname, not the user-supplied one, in case
43  * of symlinks (and also when transname replacements occur).
44  *
45  * The new code replaces the old recursive symlink resolution with
46  * an iterative one (in case of non-nested symlink chains).  It does
47  * this with calls to <fs>_follow_link().
48  * As a side effect, dir_namei(), _namei() and follow_link() are now
49  * replaced with a single function lookup_dentry() that can handle all
50  * the special cases of the former code.
51  *
52  * With the new dcache, the pathname is stored at each inode, at least as
53  * long as the refcount of the inode is positive.  As a side effect, the
54  * size of the dcache depends on the inode cache and thus is dynamic.
55  *
56  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
57  * resolution to correspond with current state of the code.
58  *
59  * Note that the symlink resolution is not *completely* iterative.
60  * There is still a significant amount of tail- and mid- recursion in
61  * the algorithm.  Also, note that <fs>_readlink() is not used in
62  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
63  * may return different results than <fs>_follow_link().  Many virtual
64  * filesystems (including /proc) exhibit this behavior.
65  */
66 
67 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
68  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
69  * and the name already exists in form of a symlink, try to create the new
70  * name indicated by the symlink. The old code always complained that the
71  * name already exists, due to not following the symlink even if its target
72  * is nonexistent.  The new semantics affects also mknod() and link() when
73  * the name is a symlink pointing to a non-existant name.
74  *
75  * I don't know which semantics is the right one, since I have no access
76  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
77  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
78  * "old" one. Personally, I think the new semantics is much more logical.
79  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
80  * file does succeed in both HP-UX and SunOs, but not in Solaris
81  * and in the old Linux semantics.
82  */
83 
84 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
85  * semantics.  See the comments in "open_namei" and "do_link" below.
86  *
87  * [10-Sep-98 Alan Modra] Another symlink change.
88  */
89 
90 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
91  *	inside the path - always follow.
92  *	in the last component in creation/removal/renaming - never follow.
93  *	if LOOKUP_FOLLOW passed - follow.
94  *	if the pathname has trailing slashes - follow.
95  *	otherwise - don't follow.
96  * (applied in that order).
97  *
98  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
99  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
100  * During the 2.4 we need to fix the userland stuff depending on it -
101  * hopefully we will be able to get rid of that wart in 2.5. So far only
102  * XEmacs seems to be relying on it...
103  */
104 /*
105  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
106  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
107  * any extra contention...
108  */
109 
110 static int __link_path_walk(const char *name, struct nameidata *nd);
111 
112 /* In order to reduce some races, while at the same time doing additional
113  * checking and hopefully speeding things up, we copy filenames to the
114  * kernel data space before using them..
115  *
116  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
117  * PATH_MAX includes the nul terminator --RR.
118  */
119 static int do_getname(const char __user *filename, char *page)
120 {
121 	int retval;
122 	unsigned long len = PATH_MAX;
123 
124 	if (!segment_eq(get_fs(), KERNEL_DS)) {
125 		if ((unsigned long) filename >= TASK_SIZE)
126 			return -EFAULT;
127 		if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
128 			len = TASK_SIZE - (unsigned long) filename;
129 	}
130 
131 	retval = strncpy_from_user(page, filename, len);
132 	if (retval > 0) {
133 		if (retval < len)
134 			return 0;
135 		return -ENAMETOOLONG;
136 	} else if (!retval)
137 		retval = -ENOENT;
138 	return retval;
139 }
140 
141 char * getname(const char __user * filename)
142 {
143 	char *tmp, *result;
144 
145 	result = ERR_PTR(-ENOMEM);
146 	tmp = __getname();
147 	if (tmp)  {
148 		int retval = do_getname(filename, tmp);
149 
150 		result = tmp;
151 		if (retval < 0) {
152 			__putname(tmp);
153 			result = ERR_PTR(retval);
154 		}
155 	}
156 	audit_getname(result);
157 	return result;
158 }
159 
160 #ifdef CONFIG_AUDITSYSCALL
161 void putname(const char *name)
162 {
163 	if (unlikely(!audit_dummy_context()))
164 		audit_putname(name);
165 	else
166 		__putname(name);
167 }
168 EXPORT_SYMBOL(putname);
169 #endif
170 
171 
172 /**
173  * generic_permission  -  check for access rights on a Posix-like filesystem
174  * @inode:	inode to check access rights for
175  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
176  * @check_acl:	optional callback to check for Posix ACLs
177  *
178  * Used to check for read/write/execute permissions on a file.
179  * We use "fsuid" for this, letting us set arbitrary permissions
180  * for filesystem access without changing the "normal" uids which
181  * are used for other things..
182  */
183 int generic_permission(struct inode *inode, int mask,
184 		int (*check_acl)(struct inode *inode, int mask))
185 {
186 	umode_t			mode = inode->i_mode;
187 
188 	if (current->fsuid == inode->i_uid)
189 		mode >>= 6;
190 	else {
191 		if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
192 			int error = check_acl(inode, mask);
193 			if (error == -EACCES)
194 				goto check_capabilities;
195 			else if (error != -EAGAIN)
196 				return error;
197 		}
198 
199 		if (in_group_p(inode->i_gid))
200 			mode >>= 3;
201 	}
202 
203 	/*
204 	 * If the DACs are ok we don't need any capability check.
205 	 */
206 	if (((mode & mask & (MAY_READ|MAY_WRITE|MAY_EXEC)) == mask))
207 		return 0;
208 
209  check_capabilities:
210 	/*
211 	 * Read/write DACs are always overridable.
212 	 * Executable DACs are overridable if at least one exec bit is set.
213 	 */
214 	if (!(mask & MAY_EXEC) ||
215 	    (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
216 		if (capable(CAP_DAC_OVERRIDE))
217 			return 0;
218 
219 	/*
220 	 * Searching includes executable on directories, else just read.
221 	 */
222 	if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
223 		if (capable(CAP_DAC_READ_SEARCH))
224 			return 0;
225 
226 	return -EACCES;
227 }
228 
229 int permission(struct inode *inode, int mask, struct nameidata *nd)
230 {
231 	int retval, submask;
232 	struct vfsmount *mnt = NULL;
233 
234 	if (nd)
235 		mnt = nd->path.mnt;
236 
237 	if (mask & MAY_WRITE) {
238 		umode_t mode = inode->i_mode;
239 
240 		/*
241 		 * Nobody gets write access to a read-only fs.
242 		 */
243 		if (IS_RDONLY(inode) &&
244 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
245 			return -EROFS;
246 
247 		/*
248 		 * Nobody gets write access to an immutable file.
249 		 */
250 		if (IS_IMMUTABLE(inode))
251 			return -EACCES;
252 	}
253 
254 	if ((mask & MAY_EXEC) && S_ISREG(inode->i_mode)) {
255 		/*
256 		 * MAY_EXEC on regular files is denied if the fs is mounted
257 		 * with the "noexec" flag.
258 		 */
259 		if (mnt && (mnt->mnt_flags & MNT_NOEXEC))
260 			return -EACCES;
261 	}
262 
263 	/* Ordinary permission routines do not understand MAY_APPEND. */
264 	submask = mask & ~MAY_APPEND;
265 	if (inode->i_op && inode->i_op->permission) {
266 		retval = inode->i_op->permission(inode, submask, nd);
267 		if (!retval) {
268 			/*
269 			 * Exec permission on a regular file is denied if none
270 			 * of the execute bits are set.
271 			 *
272 			 * This check should be done by the ->permission()
273 			 * method.
274 			 */
275 			if ((mask & MAY_EXEC) && S_ISREG(inode->i_mode) &&
276 			    !(inode->i_mode & S_IXUGO))
277 				return -EACCES;
278 		}
279 	} else {
280 		retval = generic_permission(inode, submask, NULL);
281 	}
282 	if (retval)
283 		return retval;
284 
285 	retval = devcgroup_inode_permission(inode, mask);
286 	if (retval)
287 		return retval;
288 
289 	return security_inode_permission(inode, mask, nd);
290 }
291 
292 /**
293  * vfs_permission  -  check for access rights to a given path
294  * @nd:		lookup result that describes the path
295  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
296  *
297  * Used to check for read/write/execute permissions on a path.
298  * We use "fsuid" for this, letting us set arbitrary permissions
299  * for filesystem access without changing the "normal" uids which
300  * are used for other things.
301  */
302 int vfs_permission(struct nameidata *nd, int mask)
303 {
304 	return permission(nd->path.dentry->d_inode, mask, nd);
305 }
306 
307 /**
308  * file_permission  -  check for additional access rights to a given file
309  * @file:	file to check access rights for
310  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
311  *
312  * Used to check for read/write/execute permissions on an already opened
313  * file.
314  *
315  * Note:
316  *	Do not use this function in new code.  All access checks should
317  *	be done using vfs_permission().
318  */
319 int file_permission(struct file *file, int mask)
320 {
321 	return permission(file->f_path.dentry->d_inode, mask, NULL);
322 }
323 
324 /*
325  * get_write_access() gets write permission for a file.
326  * put_write_access() releases this write permission.
327  * This is used for regular files.
328  * We cannot support write (and maybe mmap read-write shared) accesses and
329  * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
330  * can have the following values:
331  * 0: no writers, no VM_DENYWRITE mappings
332  * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
333  * > 0: (i_writecount) users are writing to the file.
334  *
335  * Normally we operate on that counter with atomic_{inc,dec} and it's safe
336  * except for the cases where we don't hold i_writecount yet. Then we need to
337  * use {get,deny}_write_access() - these functions check the sign and refuse
338  * to do the change if sign is wrong. Exclusion between them is provided by
339  * the inode->i_lock spinlock.
340  */
341 
342 int get_write_access(struct inode * inode)
343 {
344 	spin_lock(&inode->i_lock);
345 	if (atomic_read(&inode->i_writecount) < 0) {
346 		spin_unlock(&inode->i_lock);
347 		return -ETXTBSY;
348 	}
349 	atomic_inc(&inode->i_writecount);
350 	spin_unlock(&inode->i_lock);
351 
352 	return 0;
353 }
354 
355 int deny_write_access(struct file * file)
356 {
357 	struct inode *inode = file->f_path.dentry->d_inode;
358 
359 	spin_lock(&inode->i_lock);
360 	if (atomic_read(&inode->i_writecount) > 0) {
361 		spin_unlock(&inode->i_lock);
362 		return -ETXTBSY;
363 	}
364 	atomic_dec(&inode->i_writecount);
365 	spin_unlock(&inode->i_lock);
366 
367 	return 0;
368 }
369 
370 /**
371  * path_get - get a reference to a path
372  * @path: path to get the reference to
373  *
374  * Given a path increment the reference count to the dentry and the vfsmount.
375  */
376 void path_get(struct path *path)
377 {
378 	mntget(path->mnt);
379 	dget(path->dentry);
380 }
381 EXPORT_SYMBOL(path_get);
382 
383 /**
384  * path_put - put a reference to a path
385  * @path: path to put the reference to
386  *
387  * Given a path decrement the reference count to the dentry and the vfsmount.
388  */
389 void path_put(struct path *path)
390 {
391 	dput(path->dentry);
392 	mntput(path->mnt);
393 }
394 EXPORT_SYMBOL(path_put);
395 
396 /**
397  * release_open_intent - free up open intent resources
398  * @nd: pointer to nameidata
399  */
400 void release_open_intent(struct nameidata *nd)
401 {
402 	if (nd->intent.open.file->f_path.dentry == NULL)
403 		put_filp(nd->intent.open.file);
404 	else
405 		fput(nd->intent.open.file);
406 }
407 
408 static inline struct dentry *
409 do_revalidate(struct dentry *dentry, struct nameidata *nd)
410 {
411 	int status = dentry->d_op->d_revalidate(dentry, nd);
412 	if (unlikely(status <= 0)) {
413 		/*
414 		 * The dentry failed validation.
415 		 * If d_revalidate returned 0 attempt to invalidate
416 		 * the dentry otherwise d_revalidate is asking us
417 		 * to return a fail status.
418 		 */
419 		if (!status) {
420 			if (!d_invalidate(dentry)) {
421 				dput(dentry);
422 				dentry = NULL;
423 			}
424 		} else {
425 			dput(dentry);
426 			dentry = ERR_PTR(status);
427 		}
428 	}
429 	return dentry;
430 }
431 
432 /*
433  * Internal lookup() using the new generic dcache.
434  * SMP-safe
435  */
436 static struct dentry * cached_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
437 {
438 	struct dentry * dentry = __d_lookup(parent, name);
439 
440 	/* lockess __d_lookup may fail due to concurrent d_move()
441 	 * in some unrelated directory, so try with d_lookup
442 	 */
443 	if (!dentry)
444 		dentry = d_lookup(parent, name);
445 
446 	if (dentry && dentry->d_op && dentry->d_op->d_revalidate)
447 		dentry = do_revalidate(dentry, nd);
448 
449 	return dentry;
450 }
451 
452 /*
453  * Short-cut version of permission(), for calling by
454  * path_walk(), when dcache lock is held.  Combines parts
455  * of permission() and generic_permission(), and tests ONLY for
456  * MAY_EXEC permission.
457  *
458  * If appropriate, check DAC only.  If not appropriate, or
459  * short-cut DAC fails, then call permission() to do more
460  * complete permission check.
461  */
462 static int exec_permission_lite(struct inode *inode,
463 				       struct nameidata *nd)
464 {
465 	umode_t	mode = inode->i_mode;
466 
467 	if (inode->i_op && inode->i_op->permission)
468 		return -EAGAIN;
469 
470 	if (current->fsuid == inode->i_uid)
471 		mode >>= 6;
472 	else if (in_group_p(inode->i_gid))
473 		mode >>= 3;
474 
475 	if (mode & MAY_EXEC)
476 		goto ok;
477 
478 	if ((inode->i_mode & S_IXUGO) && capable(CAP_DAC_OVERRIDE))
479 		goto ok;
480 
481 	if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_OVERRIDE))
482 		goto ok;
483 
484 	if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_READ_SEARCH))
485 		goto ok;
486 
487 	return -EACCES;
488 ok:
489 	return security_inode_permission(inode, MAY_EXEC, nd);
490 }
491 
492 /*
493  * This is called when everything else fails, and we actually have
494  * to go to the low-level filesystem to find out what we should do..
495  *
496  * We get the directory semaphore, and after getting that we also
497  * make sure that nobody added the entry to the dcache in the meantime..
498  * SMP-safe
499  */
500 static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
501 {
502 	struct dentry * result;
503 	struct inode *dir = parent->d_inode;
504 
505 	mutex_lock(&dir->i_mutex);
506 	/*
507 	 * First re-do the cached lookup just in case it was created
508 	 * while we waited for the directory semaphore..
509 	 *
510 	 * FIXME! This could use version numbering or similar to
511 	 * avoid unnecessary cache lookups.
512 	 *
513 	 * The "dcache_lock" is purely to protect the RCU list walker
514 	 * from concurrent renames at this point (we mustn't get false
515 	 * negatives from the RCU list walk here, unlike the optimistic
516 	 * fast walk).
517 	 *
518 	 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup
519 	 */
520 	result = d_lookup(parent, name);
521 	if (!result) {
522 		struct dentry * dentry = d_alloc(parent, name);
523 		result = ERR_PTR(-ENOMEM);
524 		if (dentry) {
525 			result = dir->i_op->lookup(dir, dentry, nd);
526 			if (result)
527 				dput(dentry);
528 			else
529 				result = dentry;
530 		}
531 		mutex_unlock(&dir->i_mutex);
532 		return result;
533 	}
534 
535 	/*
536 	 * Uhhuh! Nasty case: the cache was re-populated while
537 	 * we waited on the semaphore. Need to revalidate.
538 	 */
539 	mutex_unlock(&dir->i_mutex);
540 	if (result->d_op && result->d_op->d_revalidate) {
541 		result = do_revalidate(result, nd);
542 		if (!result)
543 			result = ERR_PTR(-ENOENT);
544 	}
545 	return result;
546 }
547 
548 static int __emul_lookup_dentry(const char *, struct nameidata *);
549 
550 /* SMP-safe */
551 static __always_inline int
552 walk_init_root(const char *name, struct nameidata *nd)
553 {
554 	struct fs_struct *fs = current->fs;
555 
556 	read_lock(&fs->lock);
557 	if (fs->altroot.dentry && !(nd->flags & LOOKUP_NOALT)) {
558 		nd->path = fs->altroot;
559 		path_get(&fs->altroot);
560 		read_unlock(&fs->lock);
561 		if (__emul_lookup_dentry(name,nd))
562 			return 0;
563 		read_lock(&fs->lock);
564 	}
565 	nd->path = fs->root;
566 	path_get(&fs->root);
567 	read_unlock(&fs->lock);
568 	return 1;
569 }
570 
571 /*
572  * Wrapper to retry pathname resolution whenever the underlying
573  * file system returns an ESTALE.
574  *
575  * Retry the whole path once, forcing real lookup requests
576  * instead of relying on the dcache.
577  */
578 static __always_inline int link_path_walk(const char *name, struct nameidata *nd)
579 {
580 	struct path save = nd->path;
581 	int result;
582 
583 	/* make sure the stuff we saved doesn't go away */
584 	path_get(&save);
585 
586 	result = __link_path_walk(name, nd);
587 	if (result == -ESTALE) {
588 		/* nd->path had been dropped */
589 		nd->path = save;
590 		path_get(&nd->path);
591 		nd->flags |= LOOKUP_REVAL;
592 		result = __link_path_walk(name, nd);
593 	}
594 
595 	path_put(&save);
596 
597 	return result;
598 }
599 
600 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
601 {
602 	int res = 0;
603 	char *name;
604 	if (IS_ERR(link))
605 		goto fail;
606 
607 	if (*link == '/') {
608 		path_put(&nd->path);
609 		if (!walk_init_root(link, nd))
610 			/* weird __emul_prefix() stuff did it */
611 			goto out;
612 	}
613 	res = link_path_walk(link, nd);
614 out:
615 	if (nd->depth || res || nd->last_type!=LAST_NORM)
616 		return res;
617 	/*
618 	 * If it is an iterative symlinks resolution in open_namei() we
619 	 * have to copy the last component. And all that crap because of
620 	 * bloody create() on broken symlinks. Furrfu...
621 	 */
622 	name = __getname();
623 	if (unlikely(!name)) {
624 		path_put(&nd->path);
625 		return -ENOMEM;
626 	}
627 	strcpy(name, nd->last.name);
628 	nd->last.name = name;
629 	return 0;
630 fail:
631 	path_put(&nd->path);
632 	return PTR_ERR(link);
633 }
634 
635 static void path_put_conditional(struct path *path, struct nameidata *nd)
636 {
637 	dput(path->dentry);
638 	if (path->mnt != nd->path.mnt)
639 		mntput(path->mnt);
640 }
641 
642 static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
643 {
644 	dput(nd->path.dentry);
645 	if (nd->path.mnt != path->mnt)
646 		mntput(nd->path.mnt);
647 	nd->path.mnt = path->mnt;
648 	nd->path.dentry = path->dentry;
649 }
650 
651 static __always_inline int __do_follow_link(struct path *path, struct nameidata *nd)
652 {
653 	int error;
654 	void *cookie;
655 	struct dentry *dentry = path->dentry;
656 
657 	touch_atime(path->mnt, dentry);
658 	nd_set_link(nd, NULL);
659 
660 	if (path->mnt != nd->path.mnt) {
661 		path_to_nameidata(path, nd);
662 		dget(dentry);
663 	}
664 	mntget(path->mnt);
665 	cookie = dentry->d_inode->i_op->follow_link(dentry, nd);
666 	error = PTR_ERR(cookie);
667 	if (!IS_ERR(cookie)) {
668 		char *s = nd_get_link(nd);
669 		error = 0;
670 		if (s)
671 			error = __vfs_follow_link(nd, s);
672 		if (dentry->d_inode->i_op->put_link)
673 			dentry->d_inode->i_op->put_link(dentry, nd, cookie);
674 	}
675 	path_put(path);
676 
677 	return error;
678 }
679 
680 /*
681  * This limits recursive symlink follows to 8, while
682  * limiting consecutive symlinks to 40.
683  *
684  * Without that kind of total limit, nasty chains of consecutive
685  * symlinks can cause almost arbitrarily long lookups.
686  */
687 static inline int do_follow_link(struct path *path, struct nameidata *nd)
688 {
689 	int err = -ELOOP;
690 	if (current->link_count >= MAX_NESTED_LINKS)
691 		goto loop;
692 	if (current->total_link_count >= 40)
693 		goto loop;
694 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
695 	cond_resched();
696 	err = security_inode_follow_link(path->dentry, nd);
697 	if (err)
698 		goto loop;
699 	current->link_count++;
700 	current->total_link_count++;
701 	nd->depth++;
702 	err = __do_follow_link(path, nd);
703 	current->link_count--;
704 	nd->depth--;
705 	return err;
706 loop:
707 	path_put_conditional(path, nd);
708 	path_put(&nd->path);
709 	return err;
710 }
711 
712 int follow_up(struct vfsmount **mnt, struct dentry **dentry)
713 {
714 	struct vfsmount *parent;
715 	struct dentry *mountpoint;
716 	spin_lock(&vfsmount_lock);
717 	parent=(*mnt)->mnt_parent;
718 	if (parent == *mnt) {
719 		spin_unlock(&vfsmount_lock);
720 		return 0;
721 	}
722 	mntget(parent);
723 	mountpoint=dget((*mnt)->mnt_mountpoint);
724 	spin_unlock(&vfsmount_lock);
725 	dput(*dentry);
726 	*dentry = mountpoint;
727 	mntput(*mnt);
728 	*mnt = parent;
729 	return 1;
730 }
731 
732 /* no need for dcache_lock, as serialization is taken care in
733  * namespace.c
734  */
735 static int __follow_mount(struct path *path)
736 {
737 	int res = 0;
738 	while (d_mountpoint(path->dentry)) {
739 		struct vfsmount *mounted = lookup_mnt(path->mnt, path->dentry);
740 		if (!mounted)
741 			break;
742 		dput(path->dentry);
743 		if (res)
744 			mntput(path->mnt);
745 		path->mnt = mounted;
746 		path->dentry = dget(mounted->mnt_root);
747 		res = 1;
748 	}
749 	return res;
750 }
751 
752 static void follow_mount(struct vfsmount **mnt, struct dentry **dentry)
753 {
754 	while (d_mountpoint(*dentry)) {
755 		struct vfsmount *mounted = lookup_mnt(*mnt, *dentry);
756 		if (!mounted)
757 			break;
758 		dput(*dentry);
759 		mntput(*mnt);
760 		*mnt = mounted;
761 		*dentry = dget(mounted->mnt_root);
762 	}
763 }
764 
765 /* no need for dcache_lock, as serialization is taken care in
766  * namespace.c
767  */
768 int follow_down(struct vfsmount **mnt, struct dentry **dentry)
769 {
770 	struct vfsmount *mounted;
771 
772 	mounted = lookup_mnt(*mnt, *dentry);
773 	if (mounted) {
774 		dput(*dentry);
775 		mntput(*mnt);
776 		*mnt = mounted;
777 		*dentry = dget(mounted->mnt_root);
778 		return 1;
779 	}
780 	return 0;
781 }
782 
783 static __always_inline void follow_dotdot(struct nameidata *nd)
784 {
785 	struct fs_struct *fs = current->fs;
786 
787 	while(1) {
788 		struct vfsmount *parent;
789 		struct dentry *old = nd->path.dentry;
790 
791                 read_lock(&fs->lock);
792 		if (nd->path.dentry == fs->root.dentry &&
793 		    nd->path.mnt == fs->root.mnt) {
794                         read_unlock(&fs->lock);
795 			break;
796 		}
797                 read_unlock(&fs->lock);
798 		spin_lock(&dcache_lock);
799 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
800 			nd->path.dentry = dget(nd->path.dentry->d_parent);
801 			spin_unlock(&dcache_lock);
802 			dput(old);
803 			break;
804 		}
805 		spin_unlock(&dcache_lock);
806 		spin_lock(&vfsmount_lock);
807 		parent = nd->path.mnt->mnt_parent;
808 		if (parent == nd->path.mnt) {
809 			spin_unlock(&vfsmount_lock);
810 			break;
811 		}
812 		mntget(parent);
813 		nd->path.dentry = dget(nd->path.mnt->mnt_mountpoint);
814 		spin_unlock(&vfsmount_lock);
815 		dput(old);
816 		mntput(nd->path.mnt);
817 		nd->path.mnt = parent;
818 	}
819 	follow_mount(&nd->path.mnt, &nd->path.dentry);
820 }
821 
822 /*
823  *  It's more convoluted than I'd like it to be, but... it's still fairly
824  *  small and for now I'd prefer to have fast path as straight as possible.
825  *  It _is_ time-critical.
826  */
827 static int do_lookup(struct nameidata *nd, struct qstr *name,
828 		     struct path *path)
829 {
830 	struct vfsmount *mnt = nd->path.mnt;
831 	struct dentry *dentry = __d_lookup(nd->path.dentry, name);
832 
833 	if (!dentry)
834 		goto need_lookup;
835 	if (dentry->d_op && dentry->d_op->d_revalidate)
836 		goto need_revalidate;
837 done:
838 	path->mnt = mnt;
839 	path->dentry = dentry;
840 	__follow_mount(path);
841 	return 0;
842 
843 need_lookup:
844 	dentry = real_lookup(nd->path.dentry, name, nd);
845 	if (IS_ERR(dentry))
846 		goto fail;
847 	goto done;
848 
849 need_revalidate:
850 	dentry = do_revalidate(dentry, nd);
851 	if (!dentry)
852 		goto need_lookup;
853 	if (IS_ERR(dentry))
854 		goto fail;
855 	goto done;
856 
857 fail:
858 	return PTR_ERR(dentry);
859 }
860 
861 /*
862  * Name resolution.
863  * This is the basic name resolution function, turning a pathname into
864  * the final dentry. We expect 'base' to be positive and a directory.
865  *
866  * Returns 0 and nd will have valid dentry and mnt on success.
867  * Returns error and drops reference to input namei data on failure.
868  */
869 static int __link_path_walk(const char *name, struct nameidata *nd)
870 {
871 	struct path next;
872 	struct inode *inode;
873 	int err;
874 	unsigned int lookup_flags = nd->flags;
875 
876 	while (*name=='/')
877 		name++;
878 	if (!*name)
879 		goto return_reval;
880 
881 	inode = nd->path.dentry->d_inode;
882 	if (nd->depth)
883 		lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
884 
885 	/* At this point we know we have a real path component. */
886 	for(;;) {
887 		unsigned long hash;
888 		struct qstr this;
889 		unsigned int c;
890 
891 		nd->flags |= LOOKUP_CONTINUE;
892 		err = exec_permission_lite(inode, nd);
893 		if (err == -EAGAIN)
894 			err = vfs_permission(nd, MAY_EXEC);
895  		if (err)
896 			break;
897 
898 		this.name = name;
899 		c = *(const unsigned char *)name;
900 
901 		hash = init_name_hash();
902 		do {
903 			name++;
904 			hash = partial_name_hash(c, hash);
905 			c = *(const unsigned char *)name;
906 		} while (c && (c != '/'));
907 		this.len = name - (const char *) this.name;
908 		this.hash = end_name_hash(hash);
909 
910 		/* remove trailing slashes? */
911 		if (!c)
912 			goto last_component;
913 		while (*++name == '/');
914 		if (!*name)
915 			goto last_with_slashes;
916 
917 		/*
918 		 * "." and ".." are special - ".." especially so because it has
919 		 * to be able to know about the current root directory and
920 		 * parent relationships.
921 		 */
922 		if (this.name[0] == '.') switch (this.len) {
923 			default:
924 				break;
925 			case 2:
926 				if (this.name[1] != '.')
927 					break;
928 				follow_dotdot(nd);
929 				inode = nd->path.dentry->d_inode;
930 				/* fallthrough */
931 			case 1:
932 				continue;
933 		}
934 		/*
935 		 * See if the low-level filesystem might want
936 		 * to use its own hash..
937 		 */
938 		if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
939 			err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
940 							    &this);
941 			if (err < 0)
942 				break;
943 		}
944 		/* This does the actual lookups.. */
945 		err = do_lookup(nd, &this, &next);
946 		if (err)
947 			break;
948 
949 		err = -ENOENT;
950 		inode = next.dentry->d_inode;
951 		if (!inode)
952 			goto out_dput;
953 		err = -ENOTDIR;
954 		if (!inode->i_op)
955 			goto out_dput;
956 
957 		if (inode->i_op->follow_link) {
958 			err = do_follow_link(&next, nd);
959 			if (err)
960 				goto return_err;
961 			err = -ENOENT;
962 			inode = nd->path.dentry->d_inode;
963 			if (!inode)
964 				break;
965 			err = -ENOTDIR;
966 			if (!inode->i_op)
967 				break;
968 		} else
969 			path_to_nameidata(&next, nd);
970 		err = -ENOTDIR;
971 		if (!inode->i_op->lookup)
972 			break;
973 		continue;
974 		/* here ends the main loop */
975 
976 last_with_slashes:
977 		lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
978 last_component:
979 		/* Clear LOOKUP_CONTINUE iff it was previously unset */
980 		nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
981 		if (lookup_flags & LOOKUP_PARENT)
982 			goto lookup_parent;
983 		if (this.name[0] == '.') switch (this.len) {
984 			default:
985 				break;
986 			case 2:
987 				if (this.name[1] != '.')
988 					break;
989 				follow_dotdot(nd);
990 				inode = nd->path.dentry->d_inode;
991 				/* fallthrough */
992 			case 1:
993 				goto return_reval;
994 		}
995 		if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
996 			err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
997 							    &this);
998 			if (err < 0)
999 				break;
1000 		}
1001 		err = do_lookup(nd, &this, &next);
1002 		if (err)
1003 			break;
1004 		inode = next.dentry->d_inode;
1005 		if ((lookup_flags & LOOKUP_FOLLOW)
1006 		    && inode && inode->i_op && inode->i_op->follow_link) {
1007 			err = do_follow_link(&next, nd);
1008 			if (err)
1009 				goto return_err;
1010 			inode = nd->path.dentry->d_inode;
1011 		} else
1012 			path_to_nameidata(&next, nd);
1013 		err = -ENOENT;
1014 		if (!inode)
1015 			break;
1016 		if (lookup_flags & LOOKUP_DIRECTORY) {
1017 			err = -ENOTDIR;
1018 			if (!inode->i_op || !inode->i_op->lookup)
1019 				break;
1020 		}
1021 		goto return_base;
1022 lookup_parent:
1023 		nd->last = this;
1024 		nd->last_type = LAST_NORM;
1025 		if (this.name[0] != '.')
1026 			goto return_base;
1027 		if (this.len == 1)
1028 			nd->last_type = LAST_DOT;
1029 		else if (this.len == 2 && this.name[1] == '.')
1030 			nd->last_type = LAST_DOTDOT;
1031 		else
1032 			goto return_base;
1033 return_reval:
1034 		/*
1035 		 * We bypassed the ordinary revalidation routines.
1036 		 * We may need to check the cached dentry for staleness.
1037 		 */
1038 		if (nd->path.dentry && nd->path.dentry->d_sb &&
1039 		    (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
1040 			err = -ESTALE;
1041 			/* Note: we do not d_invalidate() */
1042 			if (!nd->path.dentry->d_op->d_revalidate(
1043 					nd->path.dentry, nd))
1044 				break;
1045 		}
1046 return_base:
1047 		return 0;
1048 out_dput:
1049 		path_put_conditional(&next, nd);
1050 		break;
1051 	}
1052 	path_put(&nd->path);
1053 return_err:
1054 	return err;
1055 }
1056 
1057 static int path_walk(const char *name, struct nameidata *nd)
1058 {
1059 	current->total_link_count = 0;
1060 	return link_path_walk(name, nd);
1061 }
1062 
1063 /*
1064  * SMP-safe: Returns 1 and nd will have valid dentry and mnt, if
1065  * everything is done. Returns 0 and drops input nd, if lookup failed;
1066  */
1067 static int __emul_lookup_dentry(const char *name, struct nameidata *nd)
1068 {
1069 	if (path_walk(name, nd))
1070 		return 0;		/* something went wrong... */
1071 
1072 	if (!nd->path.dentry->d_inode ||
1073 	    S_ISDIR(nd->path.dentry->d_inode->i_mode)) {
1074 		struct path old_path = nd->path;
1075 		struct qstr last = nd->last;
1076 		int last_type = nd->last_type;
1077 		struct fs_struct *fs = current->fs;
1078 
1079 		/*
1080 		 * NAME was not found in alternate root or it's a directory.
1081 		 * Try to find it in the normal root:
1082 		 */
1083 		nd->last_type = LAST_ROOT;
1084 		read_lock(&fs->lock);
1085 		nd->path = fs->root;
1086 		path_get(&fs->root);
1087 		read_unlock(&fs->lock);
1088 		if (path_walk(name, nd) == 0) {
1089 			if (nd->path.dentry->d_inode) {
1090 				path_put(&old_path);
1091 				return 1;
1092 			}
1093 			path_put(&nd->path);
1094 		}
1095 		nd->path = old_path;
1096 		nd->last = last;
1097 		nd->last_type = last_type;
1098 	}
1099 	return 1;
1100 }
1101 
1102 void set_fs_altroot(void)
1103 {
1104 	char *emul = __emul_prefix();
1105 	struct nameidata nd;
1106 	struct path path = {}, old_path;
1107 	int err;
1108 	struct fs_struct *fs = current->fs;
1109 
1110 	if (!emul)
1111 		goto set_it;
1112 	err = path_lookup(emul, LOOKUP_FOLLOW|LOOKUP_DIRECTORY|LOOKUP_NOALT, &nd);
1113 	if (!err)
1114 		path = nd.path;
1115 set_it:
1116 	write_lock(&fs->lock);
1117 	old_path = fs->altroot;
1118 	fs->altroot = path;
1119 	write_unlock(&fs->lock);
1120 	if (old_path.dentry)
1121 		path_put(&old_path);
1122 }
1123 
1124 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1125 static int do_path_lookup(int dfd, const char *name,
1126 				unsigned int flags, struct nameidata *nd)
1127 {
1128 	int retval = 0;
1129 	int fput_needed;
1130 	struct file *file;
1131 	struct fs_struct *fs = current->fs;
1132 
1133 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1134 	nd->flags = flags;
1135 	nd->depth = 0;
1136 
1137 	if (*name=='/') {
1138 		read_lock(&fs->lock);
1139 		if (fs->altroot.dentry && !(nd->flags & LOOKUP_NOALT)) {
1140 			nd->path = fs->altroot;
1141 			path_get(&fs->altroot);
1142 			read_unlock(&fs->lock);
1143 			if (__emul_lookup_dentry(name,nd))
1144 				goto out; /* found in altroot */
1145 			read_lock(&fs->lock);
1146 		}
1147 		nd->path = fs->root;
1148 		path_get(&fs->root);
1149 		read_unlock(&fs->lock);
1150 	} else if (dfd == AT_FDCWD) {
1151 		read_lock(&fs->lock);
1152 		nd->path = fs->pwd;
1153 		path_get(&fs->pwd);
1154 		read_unlock(&fs->lock);
1155 	} else {
1156 		struct dentry *dentry;
1157 
1158 		file = fget_light(dfd, &fput_needed);
1159 		retval = -EBADF;
1160 		if (!file)
1161 			goto out_fail;
1162 
1163 		dentry = file->f_path.dentry;
1164 
1165 		retval = -ENOTDIR;
1166 		if (!S_ISDIR(dentry->d_inode->i_mode))
1167 			goto fput_fail;
1168 
1169 		retval = file_permission(file, MAY_EXEC);
1170 		if (retval)
1171 			goto fput_fail;
1172 
1173 		nd->path = file->f_path;
1174 		path_get(&file->f_path);
1175 
1176 		fput_light(file, fput_needed);
1177 	}
1178 
1179 	retval = path_walk(name, nd);
1180 out:
1181 	if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1182 				nd->path.dentry->d_inode))
1183 		audit_inode(name, nd->path.dentry);
1184 out_fail:
1185 	return retval;
1186 
1187 fput_fail:
1188 	fput_light(file, fput_needed);
1189 	goto out_fail;
1190 }
1191 
1192 int path_lookup(const char *name, unsigned int flags,
1193 			struct nameidata *nd)
1194 {
1195 	return do_path_lookup(AT_FDCWD, name, flags, nd);
1196 }
1197 
1198 /**
1199  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1200  * @dentry:  pointer to dentry of the base directory
1201  * @mnt: pointer to vfs mount of the base directory
1202  * @name: pointer to file name
1203  * @flags: lookup flags
1204  * @nd: pointer to nameidata
1205  */
1206 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1207 		    const char *name, unsigned int flags,
1208 		    struct nameidata *nd)
1209 {
1210 	int retval;
1211 
1212 	/* same as do_path_lookup */
1213 	nd->last_type = LAST_ROOT;
1214 	nd->flags = flags;
1215 	nd->depth = 0;
1216 
1217 	nd->path.dentry = dentry;
1218 	nd->path.mnt = mnt;
1219 	path_get(&nd->path);
1220 
1221 	retval = path_walk(name, nd);
1222 	if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1223 				nd->path.dentry->d_inode))
1224 		audit_inode(name, nd->path.dentry);
1225 
1226 	return retval;
1227 
1228 }
1229 
1230 static int __path_lookup_intent_open(int dfd, const char *name,
1231 		unsigned int lookup_flags, struct nameidata *nd,
1232 		int open_flags, int create_mode)
1233 {
1234 	struct file *filp = get_empty_filp();
1235 	int err;
1236 
1237 	if (filp == NULL)
1238 		return -ENFILE;
1239 	nd->intent.open.file = filp;
1240 	nd->intent.open.flags = open_flags;
1241 	nd->intent.open.create_mode = create_mode;
1242 	err = do_path_lookup(dfd, name, lookup_flags|LOOKUP_OPEN, nd);
1243 	if (IS_ERR(nd->intent.open.file)) {
1244 		if (err == 0) {
1245 			err = PTR_ERR(nd->intent.open.file);
1246 			path_put(&nd->path);
1247 		}
1248 	} else if (err != 0)
1249 		release_open_intent(nd);
1250 	return err;
1251 }
1252 
1253 /**
1254  * path_lookup_open - lookup a file path with open intent
1255  * @dfd: the directory to use as base, or AT_FDCWD
1256  * @name: pointer to file name
1257  * @lookup_flags: lookup intent flags
1258  * @nd: pointer to nameidata
1259  * @open_flags: open intent flags
1260  */
1261 int path_lookup_open(int dfd, const char *name, unsigned int lookup_flags,
1262 		struct nameidata *nd, int open_flags)
1263 {
1264 	return __path_lookup_intent_open(dfd, name, lookup_flags, nd,
1265 			open_flags, 0);
1266 }
1267 
1268 /**
1269  * path_lookup_create - lookup a file path with open + create intent
1270  * @dfd: the directory to use as base, or AT_FDCWD
1271  * @name: pointer to file name
1272  * @lookup_flags: lookup intent flags
1273  * @nd: pointer to nameidata
1274  * @open_flags: open intent flags
1275  * @create_mode: create intent flags
1276  */
1277 static int path_lookup_create(int dfd, const char *name,
1278 			      unsigned int lookup_flags, struct nameidata *nd,
1279 			      int open_flags, int create_mode)
1280 {
1281 	return __path_lookup_intent_open(dfd, name, lookup_flags|LOOKUP_CREATE,
1282 			nd, open_flags, create_mode);
1283 }
1284 
1285 int __user_path_lookup_open(const char __user *name, unsigned int lookup_flags,
1286 		struct nameidata *nd, int open_flags)
1287 {
1288 	char *tmp = getname(name);
1289 	int err = PTR_ERR(tmp);
1290 
1291 	if (!IS_ERR(tmp)) {
1292 		err = __path_lookup_intent_open(AT_FDCWD, tmp, lookup_flags, nd, open_flags, 0);
1293 		putname(tmp);
1294 	}
1295 	return err;
1296 }
1297 
1298 static struct dentry *__lookup_hash(struct qstr *name,
1299 		struct dentry *base, struct nameidata *nd)
1300 {
1301 	struct dentry *dentry;
1302 	struct inode *inode;
1303 	int err;
1304 
1305 	inode = base->d_inode;
1306 
1307 	/*
1308 	 * See if the low-level filesystem might want
1309 	 * to use its own hash..
1310 	 */
1311 	if (base->d_op && base->d_op->d_hash) {
1312 		err = base->d_op->d_hash(base, name);
1313 		dentry = ERR_PTR(err);
1314 		if (err < 0)
1315 			goto out;
1316 	}
1317 
1318 	dentry = cached_lookup(base, name, nd);
1319 	if (!dentry) {
1320 		struct dentry *new = d_alloc(base, name);
1321 		dentry = ERR_PTR(-ENOMEM);
1322 		if (!new)
1323 			goto out;
1324 		dentry = inode->i_op->lookup(inode, new, nd);
1325 		if (!dentry)
1326 			dentry = new;
1327 		else
1328 			dput(new);
1329 	}
1330 out:
1331 	return dentry;
1332 }
1333 
1334 /*
1335  * Restricted form of lookup. Doesn't follow links, single-component only,
1336  * needs parent already locked. Doesn't follow mounts.
1337  * SMP-safe.
1338  */
1339 static struct dentry *lookup_hash(struct nameidata *nd)
1340 {
1341 	int err;
1342 
1343 	err = permission(nd->path.dentry->d_inode, MAY_EXEC, nd);
1344 	if (err)
1345 		return ERR_PTR(err);
1346 	return __lookup_hash(&nd->last, nd->path.dentry, nd);
1347 }
1348 
1349 static int __lookup_one_len(const char *name, struct qstr *this,
1350 		struct dentry *base, int len)
1351 {
1352 	unsigned long hash;
1353 	unsigned int c;
1354 
1355 	this->name = name;
1356 	this->len = len;
1357 	if (!len)
1358 		return -EACCES;
1359 
1360 	hash = init_name_hash();
1361 	while (len--) {
1362 		c = *(const unsigned char *)name++;
1363 		if (c == '/' || c == '\0')
1364 			return -EACCES;
1365 		hash = partial_name_hash(c, hash);
1366 	}
1367 	this->hash = end_name_hash(hash);
1368 	return 0;
1369 }
1370 
1371 /**
1372  * lookup_one_len - filesystem helper to lookup single pathname component
1373  * @name:	pathname component to lookup
1374  * @base:	base directory to lookup from
1375  * @len:	maximum length @len should be interpreted to
1376  *
1377  * Note that this routine is purely a helper for filesystem usage and should
1378  * not be called by generic code.  Also note that by using this function the
1379  * nameidata argument is passed to the filesystem methods and a filesystem
1380  * using this helper needs to be prepared for that.
1381  */
1382 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1383 {
1384 	int err;
1385 	struct qstr this;
1386 
1387 	err = __lookup_one_len(name, &this, base, len);
1388 	if (err)
1389 		return ERR_PTR(err);
1390 
1391 	err = permission(base->d_inode, MAY_EXEC, NULL);
1392 	if (err)
1393 		return ERR_PTR(err);
1394 	return __lookup_hash(&this, base, NULL);
1395 }
1396 
1397 /**
1398  * lookup_one_noperm - bad hack for sysfs
1399  * @name:	pathname component to lookup
1400  * @base:	base directory to lookup from
1401  *
1402  * This is a variant of lookup_one_len that doesn't perform any permission
1403  * checks.   It's a horrible hack to work around the braindead sysfs
1404  * architecture and should not be used anywhere else.
1405  *
1406  * DON'T USE THIS FUNCTION EVER, thanks.
1407  */
1408 struct dentry *lookup_one_noperm(const char *name, struct dentry *base)
1409 {
1410 	int err;
1411 	struct qstr this;
1412 
1413 	err = __lookup_one_len(name, &this, base, strlen(name));
1414 	if (err)
1415 		return ERR_PTR(err);
1416 	return __lookup_hash(&this, base, NULL);
1417 }
1418 
1419 int __user_walk_fd(int dfd, const char __user *name, unsigned flags,
1420 			    struct nameidata *nd)
1421 {
1422 	char *tmp = getname(name);
1423 	int err = PTR_ERR(tmp);
1424 
1425 	if (!IS_ERR(tmp)) {
1426 		err = do_path_lookup(dfd, tmp, flags, nd);
1427 		putname(tmp);
1428 	}
1429 	return err;
1430 }
1431 
1432 int __user_walk(const char __user *name, unsigned flags, struct nameidata *nd)
1433 {
1434 	return __user_walk_fd(AT_FDCWD, name, flags, nd);
1435 }
1436 
1437 /*
1438  * It's inline, so penalty for filesystems that don't use sticky bit is
1439  * minimal.
1440  */
1441 static inline int check_sticky(struct inode *dir, struct inode *inode)
1442 {
1443 	if (!(dir->i_mode & S_ISVTX))
1444 		return 0;
1445 	if (inode->i_uid == current->fsuid)
1446 		return 0;
1447 	if (dir->i_uid == current->fsuid)
1448 		return 0;
1449 	return !capable(CAP_FOWNER);
1450 }
1451 
1452 /*
1453  *	Check whether we can remove a link victim from directory dir, check
1454  *  whether the type of victim is right.
1455  *  1. We can't do it if dir is read-only (done in permission())
1456  *  2. We should have write and exec permissions on dir
1457  *  3. We can't remove anything from append-only dir
1458  *  4. We can't do anything with immutable dir (done in permission())
1459  *  5. If the sticky bit on dir is set we should either
1460  *	a. be owner of dir, or
1461  *	b. be owner of victim, or
1462  *	c. have CAP_FOWNER capability
1463  *  6. If the victim is append-only or immutable we can't do antyhing with
1464  *     links pointing to it.
1465  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1466  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1467  *  9. We can't remove a root or mountpoint.
1468  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1469  *     nfs_async_unlink().
1470  */
1471 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1472 {
1473 	int error;
1474 
1475 	if (!victim->d_inode)
1476 		return -ENOENT;
1477 
1478 	BUG_ON(victim->d_parent->d_inode != dir);
1479 	audit_inode_child(victim->d_name.name, victim, dir);
1480 
1481 	error = permission(dir,MAY_WRITE | MAY_EXEC, NULL);
1482 	if (error)
1483 		return error;
1484 	if (IS_APPEND(dir))
1485 		return -EPERM;
1486 	if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1487 	    IS_IMMUTABLE(victim->d_inode))
1488 		return -EPERM;
1489 	if (isdir) {
1490 		if (!S_ISDIR(victim->d_inode->i_mode))
1491 			return -ENOTDIR;
1492 		if (IS_ROOT(victim))
1493 			return -EBUSY;
1494 	} else if (S_ISDIR(victim->d_inode->i_mode))
1495 		return -EISDIR;
1496 	if (IS_DEADDIR(dir))
1497 		return -ENOENT;
1498 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1499 		return -EBUSY;
1500 	return 0;
1501 }
1502 
1503 /*	Check whether we can create an object with dentry child in directory
1504  *  dir.
1505  *  1. We can't do it if child already exists (open has special treatment for
1506  *     this case, but since we are inlined it's OK)
1507  *  2. We can't do it if dir is read-only (done in permission())
1508  *  3. We should have write and exec permissions on dir
1509  *  4. We can't do it if dir is immutable (done in permission())
1510  */
1511 static inline int may_create(struct inode *dir, struct dentry *child,
1512 			     struct nameidata *nd)
1513 {
1514 	if (child->d_inode)
1515 		return -EEXIST;
1516 	if (IS_DEADDIR(dir))
1517 		return -ENOENT;
1518 	return permission(dir,MAY_WRITE | MAY_EXEC, nd);
1519 }
1520 
1521 /*
1522  * O_DIRECTORY translates into forcing a directory lookup.
1523  */
1524 static inline int lookup_flags(unsigned int f)
1525 {
1526 	unsigned long retval = LOOKUP_FOLLOW;
1527 
1528 	if (f & O_NOFOLLOW)
1529 		retval &= ~LOOKUP_FOLLOW;
1530 
1531 	if (f & O_DIRECTORY)
1532 		retval |= LOOKUP_DIRECTORY;
1533 
1534 	return retval;
1535 }
1536 
1537 /*
1538  * p1 and p2 should be directories on the same fs.
1539  */
1540 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1541 {
1542 	struct dentry *p;
1543 
1544 	if (p1 == p2) {
1545 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1546 		return NULL;
1547 	}
1548 
1549 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1550 
1551 	for (p = p1; p->d_parent != p; p = p->d_parent) {
1552 		if (p->d_parent == p2) {
1553 			mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1554 			mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1555 			return p;
1556 		}
1557 	}
1558 
1559 	for (p = p2; p->d_parent != p; p = p->d_parent) {
1560 		if (p->d_parent == p1) {
1561 			mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1562 			mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1563 			return p;
1564 		}
1565 	}
1566 
1567 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1568 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1569 	return NULL;
1570 }
1571 
1572 void unlock_rename(struct dentry *p1, struct dentry *p2)
1573 {
1574 	mutex_unlock(&p1->d_inode->i_mutex);
1575 	if (p1 != p2) {
1576 		mutex_unlock(&p2->d_inode->i_mutex);
1577 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1578 	}
1579 }
1580 
1581 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1582 		struct nameidata *nd)
1583 {
1584 	int error = may_create(dir, dentry, nd);
1585 
1586 	if (error)
1587 		return error;
1588 
1589 	if (!dir->i_op || !dir->i_op->create)
1590 		return -EACCES;	/* shouldn't it be ENOSYS? */
1591 	mode &= S_IALLUGO;
1592 	mode |= S_IFREG;
1593 	error = security_inode_create(dir, dentry, mode);
1594 	if (error)
1595 		return error;
1596 	DQUOT_INIT(dir);
1597 	error = dir->i_op->create(dir, dentry, mode, nd);
1598 	if (!error)
1599 		fsnotify_create(dir, dentry);
1600 	return error;
1601 }
1602 
1603 int may_open(struct nameidata *nd, int acc_mode, int flag)
1604 {
1605 	struct dentry *dentry = nd->path.dentry;
1606 	struct inode *inode = dentry->d_inode;
1607 	int error;
1608 
1609 	if (!inode)
1610 		return -ENOENT;
1611 
1612 	if (S_ISLNK(inode->i_mode))
1613 		return -ELOOP;
1614 
1615 	if (S_ISDIR(inode->i_mode) && (acc_mode & MAY_WRITE))
1616 		return -EISDIR;
1617 
1618 	/*
1619 	 * FIFO's, sockets and device files are special: they don't
1620 	 * actually live on the filesystem itself, and as such you
1621 	 * can write to them even if the filesystem is read-only.
1622 	 */
1623 	if (S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
1624 	    	flag &= ~O_TRUNC;
1625 	} else if (S_ISBLK(inode->i_mode) || S_ISCHR(inode->i_mode)) {
1626 		if (nd->path.mnt->mnt_flags & MNT_NODEV)
1627 			return -EACCES;
1628 
1629 		flag &= ~O_TRUNC;
1630 	}
1631 
1632 	error = vfs_permission(nd, acc_mode);
1633 	if (error)
1634 		return error;
1635 	/*
1636 	 * An append-only file must be opened in append mode for writing.
1637 	 */
1638 	if (IS_APPEND(inode)) {
1639 		if  ((flag & FMODE_WRITE) && !(flag & O_APPEND))
1640 			return -EPERM;
1641 		if (flag & O_TRUNC)
1642 			return -EPERM;
1643 	}
1644 
1645 	/* O_NOATIME can only be set by the owner or superuser */
1646 	if (flag & O_NOATIME)
1647 		if (!is_owner_or_cap(inode))
1648 			return -EPERM;
1649 
1650 	/*
1651 	 * Ensure there are no outstanding leases on the file.
1652 	 */
1653 	error = break_lease(inode, flag);
1654 	if (error)
1655 		return error;
1656 
1657 	if (flag & O_TRUNC) {
1658 		error = get_write_access(inode);
1659 		if (error)
1660 			return error;
1661 
1662 		/*
1663 		 * Refuse to truncate files with mandatory locks held on them.
1664 		 */
1665 		error = locks_verify_locked(inode);
1666 		if (!error) {
1667 			DQUOT_INIT(inode);
1668 
1669 			error = do_truncate(dentry, 0,
1670 					    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
1671 					    NULL);
1672 		}
1673 		put_write_access(inode);
1674 		if (error)
1675 			return error;
1676 	} else
1677 		if (flag & FMODE_WRITE)
1678 			DQUOT_INIT(inode);
1679 
1680 	return 0;
1681 }
1682 
1683 /*
1684  * Be careful about ever adding any more callers of this
1685  * function.  Its flags must be in the namei format, not
1686  * what get passed to sys_open().
1687  */
1688 static int __open_namei_create(struct nameidata *nd, struct path *path,
1689 				int flag, int mode)
1690 {
1691 	int error;
1692 	struct dentry *dir = nd->path.dentry;
1693 
1694 	if (!IS_POSIXACL(dir->d_inode))
1695 		mode &= ~current->fs->umask;
1696 	error = vfs_create(dir->d_inode, path->dentry, mode, nd);
1697 	mutex_unlock(&dir->d_inode->i_mutex);
1698 	dput(nd->path.dentry);
1699 	nd->path.dentry = path->dentry;
1700 	if (error)
1701 		return error;
1702 	/* Don't check for write permission, don't truncate */
1703 	return may_open(nd, 0, flag & ~O_TRUNC);
1704 }
1705 
1706 /*
1707  * Note that while the flag value (low two bits) for sys_open means:
1708  *	00 - read-only
1709  *	01 - write-only
1710  *	10 - read-write
1711  *	11 - special
1712  * it is changed into
1713  *	00 - no permissions needed
1714  *	01 - read-permission
1715  *	10 - write-permission
1716  *	11 - read-write
1717  * for the internal routines (ie open_namei()/follow_link() etc)
1718  * This is more logical, and also allows the 00 "no perm needed"
1719  * to be used for symlinks (where the permissions are checked
1720  * later).
1721  *
1722 */
1723 static inline int open_to_namei_flags(int flag)
1724 {
1725 	if ((flag+1) & O_ACCMODE)
1726 		flag++;
1727 	return flag;
1728 }
1729 
1730 static int open_will_write_to_fs(int flag, struct inode *inode)
1731 {
1732 	/*
1733 	 * We'll never write to the fs underlying
1734 	 * a device file.
1735 	 */
1736 	if (special_file(inode->i_mode))
1737 		return 0;
1738 	return (flag & O_TRUNC);
1739 }
1740 
1741 /*
1742  * Note that the low bits of the passed in "open_flag"
1743  * are not the same as in the local variable "flag". See
1744  * open_to_namei_flags() for more details.
1745  */
1746 struct file *do_filp_open(int dfd, const char *pathname,
1747 		int open_flag, int mode)
1748 {
1749 	struct file *filp;
1750 	struct nameidata nd;
1751 	int acc_mode, error;
1752 	struct path path;
1753 	struct dentry *dir;
1754 	int count = 0;
1755 	int will_write;
1756 	int flag = open_to_namei_flags(open_flag);
1757 
1758 	acc_mode = ACC_MODE(flag);
1759 
1760 	/* O_TRUNC implies we need access checks for write permissions */
1761 	if (flag & O_TRUNC)
1762 		acc_mode |= MAY_WRITE;
1763 
1764 	/* Allow the LSM permission hook to distinguish append
1765 	   access from general write access. */
1766 	if (flag & O_APPEND)
1767 		acc_mode |= MAY_APPEND;
1768 
1769 	/*
1770 	 * The simplest case - just a plain lookup.
1771 	 */
1772 	if (!(flag & O_CREAT)) {
1773 		error = path_lookup_open(dfd, pathname, lookup_flags(flag),
1774 					 &nd, flag);
1775 		if (error)
1776 			return ERR_PTR(error);
1777 		goto ok;
1778 	}
1779 
1780 	/*
1781 	 * Create - we need to know the parent.
1782 	 */
1783 	error = path_lookup_create(dfd, pathname, LOOKUP_PARENT,
1784 				   &nd, flag, mode);
1785 	if (error)
1786 		return ERR_PTR(error);
1787 
1788 	/*
1789 	 * We have the parent and last component. First of all, check
1790 	 * that we are not asked to creat(2) an obvious directory - that
1791 	 * will not do.
1792 	 */
1793 	error = -EISDIR;
1794 	if (nd.last_type != LAST_NORM || nd.last.name[nd.last.len])
1795 		goto exit;
1796 
1797 	dir = nd.path.dentry;
1798 	nd.flags &= ~LOOKUP_PARENT;
1799 	mutex_lock(&dir->d_inode->i_mutex);
1800 	path.dentry = lookup_hash(&nd);
1801 	path.mnt = nd.path.mnt;
1802 
1803 do_last:
1804 	error = PTR_ERR(path.dentry);
1805 	if (IS_ERR(path.dentry)) {
1806 		mutex_unlock(&dir->d_inode->i_mutex);
1807 		goto exit;
1808 	}
1809 
1810 	if (IS_ERR(nd.intent.open.file)) {
1811 		error = PTR_ERR(nd.intent.open.file);
1812 		goto exit_mutex_unlock;
1813 	}
1814 
1815 	/* Negative dentry, just create the file */
1816 	if (!path.dentry->d_inode) {
1817 		/*
1818 		 * This write is needed to ensure that a
1819 		 * ro->rw transition does not occur between
1820 		 * the time when the file is created and when
1821 		 * a permanent write count is taken through
1822 		 * the 'struct file' in nameidata_to_filp().
1823 		 */
1824 		error = mnt_want_write(nd.path.mnt);
1825 		if (error)
1826 			goto exit_mutex_unlock;
1827 		error = __open_namei_create(&nd, &path, flag, mode);
1828 		if (error) {
1829 			mnt_drop_write(nd.path.mnt);
1830 			goto exit;
1831 		}
1832 		filp = nameidata_to_filp(&nd, open_flag);
1833 		mnt_drop_write(nd.path.mnt);
1834 		return filp;
1835 	}
1836 
1837 	/*
1838 	 * It already exists.
1839 	 */
1840 	mutex_unlock(&dir->d_inode->i_mutex);
1841 	audit_inode(pathname, path.dentry);
1842 
1843 	error = -EEXIST;
1844 	if (flag & O_EXCL)
1845 		goto exit_dput;
1846 
1847 	if (__follow_mount(&path)) {
1848 		error = -ELOOP;
1849 		if (flag & O_NOFOLLOW)
1850 			goto exit_dput;
1851 	}
1852 
1853 	error = -ENOENT;
1854 	if (!path.dentry->d_inode)
1855 		goto exit_dput;
1856 	if (path.dentry->d_inode->i_op && path.dentry->d_inode->i_op->follow_link)
1857 		goto do_link;
1858 
1859 	path_to_nameidata(&path, &nd);
1860 	error = -EISDIR;
1861 	if (path.dentry->d_inode && S_ISDIR(path.dentry->d_inode->i_mode))
1862 		goto exit;
1863 ok:
1864 	/*
1865 	 * Consider:
1866 	 * 1. may_open() truncates a file
1867 	 * 2. a rw->ro mount transition occurs
1868 	 * 3. nameidata_to_filp() fails due to
1869 	 *    the ro mount.
1870 	 * That would be inconsistent, and should
1871 	 * be avoided. Taking this mnt write here
1872 	 * ensures that (2) can not occur.
1873 	 */
1874 	will_write = open_will_write_to_fs(flag, nd.path.dentry->d_inode);
1875 	if (will_write) {
1876 		error = mnt_want_write(nd.path.mnt);
1877 		if (error)
1878 			goto exit;
1879 	}
1880 	error = may_open(&nd, acc_mode, flag);
1881 	if (error) {
1882 		if (will_write)
1883 			mnt_drop_write(nd.path.mnt);
1884 		goto exit;
1885 	}
1886 	filp = nameidata_to_filp(&nd, open_flag);
1887 	/*
1888 	 * It is now safe to drop the mnt write
1889 	 * because the filp has had a write taken
1890 	 * on its behalf.
1891 	 */
1892 	if (will_write)
1893 		mnt_drop_write(nd.path.mnt);
1894 	return filp;
1895 
1896 exit_mutex_unlock:
1897 	mutex_unlock(&dir->d_inode->i_mutex);
1898 exit_dput:
1899 	path_put_conditional(&path, &nd);
1900 exit:
1901 	if (!IS_ERR(nd.intent.open.file))
1902 		release_open_intent(&nd);
1903 	path_put(&nd.path);
1904 	return ERR_PTR(error);
1905 
1906 do_link:
1907 	error = -ELOOP;
1908 	if (flag & O_NOFOLLOW)
1909 		goto exit_dput;
1910 	/*
1911 	 * This is subtle. Instead of calling do_follow_link() we do the
1912 	 * thing by hands. The reason is that this way we have zero link_count
1913 	 * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT.
1914 	 * After that we have the parent and last component, i.e.
1915 	 * we are in the same situation as after the first path_walk().
1916 	 * Well, almost - if the last component is normal we get its copy
1917 	 * stored in nd->last.name and we will have to putname() it when we
1918 	 * are done. Procfs-like symlinks just set LAST_BIND.
1919 	 */
1920 	nd.flags |= LOOKUP_PARENT;
1921 	error = security_inode_follow_link(path.dentry, &nd);
1922 	if (error)
1923 		goto exit_dput;
1924 	error = __do_follow_link(&path, &nd);
1925 	if (error) {
1926 		/* Does someone understand code flow here? Or it is only
1927 		 * me so stupid? Anathema to whoever designed this non-sense
1928 		 * with "intent.open".
1929 		 */
1930 		release_open_intent(&nd);
1931 		return ERR_PTR(error);
1932 	}
1933 	nd.flags &= ~LOOKUP_PARENT;
1934 	if (nd.last_type == LAST_BIND)
1935 		goto ok;
1936 	error = -EISDIR;
1937 	if (nd.last_type != LAST_NORM)
1938 		goto exit;
1939 	if (nd.last.name[nd.last.len]) {
1940 		__putname(nd.last.name);
1941 		goto exit;
1942 	}
1943 	error = -ELOOP;
1944 	if (count++==32) {
1945 		__putname(nd.last.name);
1946 		goto exit;
1947 	}
1948 	dir = nd.path.dentry;
1949 	mutex_lock(&dir->d_inode->i_mutex);
1950 	path.dentry = lookup_hash(&nd);
1951 	path.mnt = nd.path.mnt;
1952 	__putname(nd.last.name);
1953 	goto do_last;
1954 }
1955 
1956 /**
1957  * filp_open - open file and return file pointer
1958  *
1959  * @filename:	path to open
1960  * @flags:	open flags as per the open(2) second argument
1961  * @mode:	mode for the new file if O_CREAT is set, else ignored
1962  *
1963  * This is the helper to open a file from kernelspace if you really
1964  * have to.  But in generally you should not do this, so please move
1965  * along, nothing to see here..
1966  */
1967 struct file *filp_open(const char *filename, int flags, int mode)
1968 {
1969 	return do_filp_open(AT_FDCWD, filename, flags, mode);
1970 }
1971 EXPORT_SYMBOL(filp_open);
1972 
1973 /**
1974  * lookup_create - lookup a dentry, creating it if it doesn't exist
1975  * @nd: nameidata info
1976  * @is_dir: directory flag
1977  *
1978  * Simple function to lookup and return a dentry and create it
1979  * if it doesn't exist.  Is SMP-safe.
1980  *
1981  * Returns with nd->path.dentry->d_inode->i_mutex locked.
1982  */
1983 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1984 {
1985 	struct dentry *dentry = ERR_PTR(-EEXIST);
1986 
1987 	mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1988 	/*
1989 	 * Yucky last component or no last component at all?
1990 	 * (foo/., foo/.., /////)
1991 	 */
1992 	if (nd->last_type != LAST_NORM)
1993 		goto fail;
1994 	nd->flags &= ~LOOKUP_PARENT;
1995 	nd->flags |= LOOKUP_CREATE;
1996 	nd->intent.open.flags = O_EXCL;
1997 
1998 	/*
1999 	 * Do the final lookup.
2000 	 */
2001 	dentry = lookup_hash(nd);
2002 	if (IS_ERR(dentry))
2003 		goto fail;
2004 
2005 	if (dentry->d_inode)
2006 		goto eexist;
2007 	/*
2008 	 * Special case - lookup gave negative, but... we had foo/bar/
2009 	 * From the vfs_mknod() POV we just have a negative dentry -
2010 	 * all is fine. Let's be bastards - you had / on the end, you've
2011 	 * been asking for (non-existent) directory. -ENOENT for you.
2012 	 */
2013 	if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
2014 		dput(dentry);
2015 		dentry = ERR_PTR(-ENOENT);
2016 	}
2017 	return dentry;
2018 eexist:
2019 	dput(dentry);
2020 	dentry = ERR_PTR(-EEXIST);
2021 fail:
2022 	return dentry;
2023 }
2024 EXPORT_SYMBOL_GPL(lookup_create);
2025 
2026 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2027 {
2028 	int error = may_create(dir, dentry, NULL);
2029 
2030 	if (error)
2031 		return error;
2032 
2033 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
2034 		return -EPERM;
2035 
2036 	if (!dir->i_op || !dir->i_op->mknod)
2037 		return -EPERM;
2038 
2039 	error = devcgroup_inode_mknod(mode, dev);
2040 	if (error)
2041 		return error;
2042 
2043 	error = security_inode_mknod(dir, dentry, mode, dev);
2044 	if (error)
2045 		return error;
2046 
2047 	DQUOT_INIT(dir);
2048 	error = dir->i_op->mknod(dir, dentry, mode, dev);
2049 	if (!error)
2050 		fsnotify_create(dir, dentry);
2051 	return error;
2052 }
2053 
2054 static int may_mknod(mode_t mode)
2055 {
2056 	switch (mode & S_IFMT) {
2057 	case S_IFREG:
2058 	case S_IFCHR:
2059 	case S_IFBLK:
2060 	case S_IFIFO:
2061 	case S_IFSOCK:
2062 	case 0: /* zero mode translates to S_IFREG */
2063 		return 0;
2064 	case S_IFDIR:
2065 		return -EPERM;
2066 	default:
2067 		return -EINVAL;
2068 	}
2069 }
2070 
2071 asmlinkage long sys_mknodat(int dfd, const char __user *filename, int mode,
2072 				unsigned dev)
2073 {
2074 	int error = 0;
2075 	char * tmp;
2076 	struct dentry * dentry;
2077 	struct nameidata nd;
2078 
2079 	if (S_ISDIR(mode))
2080 		return -EPERM;
2081 	tmp = getname(filename);
2082 	if (IS_ERR(tmp))
2083 		return PTR_ERR(tmp);
2084 
2085 	error = do_path_lookup(dfd, tmp, LOOKUP_PARENT, &nd);
2086 	if (error)
2087 		goto out;
2088 	dentry = lookup_create(&nd, 0);
2089 	if (IS_ERR(dentry)) {
2090 		error = PTR_ERR(dentry);
2091 		goto out_unlock;
2092 	}
2093 	if (!IS_POSIXACL(nd.path.dentry->d_inode))
2094 		mode &= ~current->fs->umask;
2095 	error = may_mknod(mode);
2096 	if (error)
2097 		goto out_dput;
2098 	error = mnt_want_write(nd.path.mnt);
2099 	if (error)
2100 		goto out_dput;
2101 	switch (mode & S_IFMT) {
2102 		case 0: case S_IFREG:
2103 			error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2104 			break;
2105 		case S_IFCHR: case S_IFBLK:
2106 			error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2107 					new_decode_dev(dev));
2108 			break;
2109 		case S_IFIFO: case S_IFSOCK:
2110 			error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2111 			break;
2112 	}
2113 	mnt_drop_write(nd.path.mnt);
2114 out_dput:
2115 	dput(dentry);
2116 out_unlock:
2117 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2118 	path_put(&nd.path);
2119 out:
2120 	putname(tmp);
2121 
2122 	return error;
2123 }
2124 
2125 asmlinkage long sys_mknod(const char __user *filename, int mode, unsigned dev)
2126 {
2127 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
2128 }
2129 
2130 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2131 {
2132 	int error = may_create(dir, dentry, NULL);
2133 
2134 	if (error)
2135 		return error;
2136 
2137 	if (!dir->i_op || !dir->i_op->mkdir)
2138 		return -EPERM;
2139 
2140 	mode &= (S_IRWXUGO|S_ISVTX);
2141 	error = security_inode_mkdir(dir, dentry, mode);
2142 	if (error)
2143 		return error;
2144 
2145 	DQUOT_INIT(dir);
2146 	error = dir->i_op->mkdir(dir, dentry, mode);
2147 	if (!error)
2148 		fsnotify_mkdir(dir, dentry);
2149 	return error;
2150 }
2151 
2152 asmlinkage long sys_mkdirat(int dfd, const char __user *pathname, int mode)
2153 {
2154 	int error = 0;
2155 	char * tmp;
2156 	struct dentry *dentry;
2157 	struct nameidata nd;
2158 
2159 	tmp = getname(pathname);
2160 	error = PTR_ERR(tmp);
2161 	if (IS_ERR(tmp))
2162 		goto out_err;
2163 
2164 	error = do_path_lookup(dfd, tmp, LOOKUP_PARENT, &nd);
2165 	if (error)
2166 		goto out;
2167 	dentry = lookup_create(&nd, 1);
2168 	error = PTR_ERR(dentry);
2169 	if (IS_ERR(dentry))
2170 		goto out_unlock;
2171 
2172 	if (!IS_POSIXACL(nd.path.dentry->d_inode))
2173 		mode &= ~current->fs->umask;
2174 	error = mnt_want_write(nd.path.mnt);
2175 	if (error)
2176 		goto out_dput;
2177 	error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2178 	mnt_drop_write(nd.path.mnt);
2179 out_dput:
2180 	dput(dentry);
2181 out_unlock:
2182 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2183 	path_put(&nd.path);
2184 out:
2185 	putname(tmp);
2186 out_err:
2187 	return error;
2188 }
2189 
2190 asmlinkage long sys_mkdir(const char __user *pathname, int mode)
2191 {
2192 	return sys_mkdirat(AT_FDCWD, pathname, mode);
2193 }
2194 
2195 /*
2196  * We try to drop the dentry early: we should have
2197  * a usage count of 2 if we're the only user of this
2198  * dentry, and if that is true (possibly after pruning
2199  * the dcache), then we drop the dentry now.
2200  *
2201  * A low-level filesystem can, if it choses, legally
2202  * do a
2203  *
2204  *	if (!d_unhashed(dentry))
2205  *		return -EBUSY;
2206  *
2207  * if it cannot handle the case of removing a directory
2208  * that is still in use by something else..
2209  */
2210 void dentry_unhash(struct dentry *dentry)
2211 {
2212 	dget(dentry);
2213 	shrink_dcache_parent(dentry);
2214 	spin_lock(&dcache_lock);
2215 	spin_lock(&dentry->d_lock);
2216 	if (atomic_read(&dentry->d_count) == 2)
2217 		__d_drop(dentry);
2218 	spin_unlock(&dentry->d_lock);
2219 	spin_unlock(&dcache_lock);
2220 }
2221 
2222 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2223 {
2224 	int error = may_delete(dir, dentry, 1);
2225 
2226 	if (error)
2227 		return error;
2228 
2229 	if (!dir->i_op || !dir->i_op->rmdir)
2230 		return -EPERM;
2231 
2232 	DQUOT_INIT(dir);
2233 
2234 	mutex_lock(&dentry->d_inode->i_mutex);
2235 	dentry_unhash(dentry);
2236 	if (d_mountpoint(dentry))
2237 		error = -EBUSY;
2238 	else {
2239 		error = security_inode_rmdir(dir, dentry);
2240 		if (!error) {
2241 			error = dir->i_op->rmdir(dir, dentry);
2242 			if (!error)
2243 				dentry->d_inode->i_flags |= S_DEAD;
2244 		}
2245 	}
2246 	mutex_unlock(&dentry->d_inode->i_mutex);
2247 	if (!error) {
2248 		d_delete(dentry);
2249 	}
2250 	dput(dentry);
2251 
2252 	return error;
2253 }
2254 
2255 static long do_rmdir(int dfd, const char __user *pathname)
2256 {
2257 	int error = 0;
2258 	char * name;
2259 	struct dentry *dentry;
2260 	struct nameidata nd;
2261 
2262 	name = getname(pathname);
2263 	if(IS_ERR(name))
2264 		return PTR_ERR(name);
2265 
2266 	error = do_path_lookup(dfd, name, LOOKUP_PARENT, &nd);
2267 	if (error)
2268 		goto exit;
2269 
2270 	switch(nd.last_type) {
2271 		case LAST_DOTDOT:
2272 			error = -ENOTEMPTY;
2273 			goto exit1;
2274 		case LAST_DOT:
2275 			error = -EINVAL;
2276 			goto exit1;
2277 		case LAST_ROOT:
2278 			error = -EBUSY;
2279 			goto exit1;
2280 	}
2281 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2282 	dentry = lookup_hash(&nd);
2283 	error = PTR_ERR(dentry);
2284 	if (IS_ERR(dentry))
2285 		goto exit2;
2286 	error = mnt_want_write(nd.path.mnt);
2287 	if (error)
2288 		goto exit3;
2289 	error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2290 	mnt_drop_write(nd.path.mnt);
2291 exit3:
2292 	dput(dentry);
2293 exit2:
2294 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2295 exit1:
2296 	path_put(&nd.path);
2297 exit:
2298 	putname(name);
2299 	return error;
2300 }
2301 
2302 asmlinkage long sys_rmdir(const char __user *pathname)
2303 {
2304 	return do_rmdir(AT_FDCWD, pathname);
2305 }
2306 
2307 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2308 {
2309 	int error = may_delete(dir, dentry, 0);
2310 
2311 	if (error)
2312 		return error;
2313 
2314 	if (!dir->i_op || !dir->i_op->unlink)
2315 		return -EPERM;
2316 
2317 	DQUOT_INIT(dir);
2318 
2319 	mutex_lock(&dentry->d_inode->i_mutex);
2320 	if (d_mountpoint(dentry))
2321 		error = -EBUSY;
2322 	else {
2323 		error = security_inode_unlink(dir, dentry);
2324 		if (!error)
2325 			error = dir->i_op->unlink(dir, dentry);
2326 	}
2327 	mutex_unlock(&dentry->d_inode->i_mutex);
2328 
2329 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
2330 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2331 		fsnotify_link_count(dentry->d_inode);
2332 		d_delete(dentry);
2333 	}
2334 
2335 	return error;
2336 }
2337 
2338 /*
2339  * Make sure that the actual truncation of the file will occur outside its
2340  * directory's i_mutex.  Truncate can take a long time if there is a lot of
2341  * writeout happening, and we don't want to prevent access to the directory
2342  * while waiting on the I/O.
2343  */
2344 static long do_unlinkat(int dfd, const char __user *pathname)
2345 {
2346 	int error = 0;
2347 	char * name;
2348 	struct dentry *dentry;
2349 	struct nameidata nd;
2350 	struct inode *inode = NULL;
2351 
2352 	name = getname(pathname);
2353 	if(IS_ERR(name))
2354 		return PTR_ERR(name);
2355 
2356 	error = do_path_lookup(dfd, name, LOOKUP_PARENT, &nd);
2357 	if (error)
2358 		goto exit;
2359 	error = -EISDIR;
2360 	if (nd.last_type != LAST_NORM)
2361 		goto exit1;
2362 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2363 	dentry = lookup_hash(&nd);
2364 	error = PTR_ERR(dentry);
2365 	if (!IS_ERR(dentry)) {
2366 		/* Why not before? Because we want correct error value */
2367 		if (nd.last.name[nd.last.len])
2368 			goto slashes;
2369 		inode = dentry->d_inode;
2370 		if (inode)
2371 			atomic_inc(&inode->i_count);
2372 		error = mnt_want_write(nd.path.mnt);
2373 		if (error)
2374 			goto exit2;
2375 		error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2376 		mnt_drop_write(nd.path.mnt);
2377 	exit2:
2378 		dput(dentry);
2379 	}
2380 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2381 	if (inode)
2382 		iput(inode);	/* truncate the inode here */
2383 exit1:
2384 	path_put(&nd.path);
2385 exit:
2386 	putname(name);
2387 	return error;
2388 
2389 slashes:
2390 	error = !dentry->d_inode ? -ENOENT :
2391 		S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2392 	goto exit2;
2393 }
2394 
2395 asmlinkage long sys_unlinkat(int dfd, const char __user *pathname, int flag)
2396 {
2397 	if ((flag & ~AT_REMOVEDIR) != 0)
2398 		return -EINVAL;
2399 
2400 	if (flag & AT_REMOVEDIR)
2401 		return do_rmdir(dfd, pathname);
2402 
2403 	return do_unlinkat(dfd, pathname);
2404 }
2405 
2406 asmlinkage long sys_unlink(const char __user *pathname)
2407 {
2408 	return do_unlinkat(AT_FDCWD, pathname);
2409 }
2410 
2411 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname, int mode)
2412 {
2413 	int error = may_create(dir, dentry, NULL);
2414 
2415 	if (error)
2416 		return error;
2417 
2418 	if (!dir->i_op || !dir->i_op->symlink)
2419 		return -EPERM;
2420 
2421 	error = security_inode_symlink(dir, dentry, oldname);
2422 	if (error)
2423 		return error;
2424 
2425 	DQUOT_INIT(dir);
2426 	error = dir->i_op->symlink(dir, dentry, oldname);
2427 	if (!error)
2428 		fsnotify_create(dir, dentry);
2429 	return error;
2430 }
2431 
2432 asmlinkage long sys_symlinkat(const char __user *oldname,
2433 			      int newdfd, const char __user *newname)
2434 {
2435 	int error = 0;
2436 	char * from;
2437 	char * to;
2438 	struct dentry *dentry;
2439 	struct nameidata nd;
2440 
2441 	from = getname(oldname);
2442 	if(IS_ERR(from))
2443 		return PTR_ERR(from);
2444 	to = getname(newname);
2445 	error = PTR_ERR(to);
2446 	if (IS_ERR(to))
2447 		goto out_putname;
2448 
2449 	error = do_path_lookup(newdfd, to, LOOKUP_PARENT, &nd);
2450 	if (error)
2451 		goto out;
2452 	dentry = lookup_create(&nd, 0);
2453 	error = PTR_ERR(dentry);
2454 	if (IS_ERR(dentry))
2455 		goto out_unlock;
2456 
2457 	error = mnt_want_write(nd.path.mnt);
2458 	if (error)
2459 		goto out_dput;
2460 	error = vfs_symlink(nd.path.dentry->d_inode, dentry, from, S_IALLUGO);
2461 	mnt_drop_write(nd.path.mnt);
2462 out_dput:
2463 	dput(dentry);
2464 out_unlock:
2465 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2466 	path_put(&nd.path);
2467 out:
2468 	putname(to);
2469 out_putname:
2470 	putname(from);
2471 	return error;
2472 }
2473 
2474 asmlinkage long sys_symlink(const char __user *oldname, const char __user *newname)
2475 {
2476 	return sys_symlinkat(oldname, AT_FDCWD, newname);
2477 }
2478 
2479 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2480 {
2481 	struct inode *inode = old_dentry->d_inode;
2482 	int error;
2483 
2484 	if (!inode)
2485 		return -ENOENT;
2486 
2487 	error = may_create(dir, new_dentry, NULL);
2488 	if (error)
2489 		return error;
2490 
2491 	if (dir->i_sb != inode->i_sb)
2492 		return -EXDEV;
2493 
2494 	/*
2495 	 * A link to an append-only or immutable file cannot be created.
2496 	 */
2497 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2498 		return -EPERM;
2499 	if (!dir->i_op || !dir->i_op->link)
2500 		return -EPERM;
2501 	if (S_ISDIR(old_dentry->d_inode->i_mode))
2502 		return -EPERM;
2503 
2504 	error = security_inode_link(old_dentry, dir, new_dentry);
2505 	if (error)
2506 		return error;
2507 
2508 	mutex_lock(&old_dentry->d_inode->i_mutex);
2509 	DQUOT_INIT(dir);
2510 	error = dir->i_op->link(old_dentry, dir, new_dentry);
2511 	mutex_unlock(&old_dentry->d_inode->i_mutex);
2512 	if (!error)
2513 		fsnotify_link(dir, old_dentry->d_inode, new_dentry);
2514 	return error;
2515 }
2516 
2517 /*
2518  * Hardlinks are often used in delicate situations.  We avoid
2519  * security-related surprises by not following symlinks on the
2520  * newname.  --KAB
2521  *
2522  * We don't follow them on the oldname either to be compatible
2523  * with linux 2.0, and to avoid hard-linking to directories
2524  * and other special files.  --ADM
2525  */
2526 asmlinkage long sys_linkat(int olddfd, const char __user *oldname,
2527 			   int newdfd, const char __user *newname,
2528 			   int flags)
2529 {
2530 	struct dentry *new_dentry;
2531 	struct nameidata nd, old_nd;
2532 	int error;
2533 	char * to;
2534 
2535 	if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2536 		return -EINVAL;
2537 
2538 	to = getname(newname);
2539 	if (IS_ERR(to))
2540 		return PTR_ERR(to);
2541 
2542 	error = __user_walk_fd(olddfd, oldname,
2543 			       flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2544 			       &old_nd);
2545 	if (error)
2546 		goto exit;
2547 	error = do_path_lookup(newdfd, to, LOOKUP_PARENT, &nd);
2548 	if (error)
2549 		goto out;
2550 	error = -EXDEV;
2551 	if (old_nd.path.mnt != nd.path.mnt)
2552 		goto out_release;
2553 	new_dentry = lookup_create(&nd, 0);
2554 	error = PTR_ERR(new_dentry);
2555 	if (IS_ERR(new_dentry))
2556 		goto out_unlock;
2557 	error = mnt_want_write(nd.path.mnt);
2558 	if (error)
2559 		goto out_dput;
2560 	error = vfs_link(old_nd.path.dentry, nd.path.dentry->d_inode, new_dentry);
2561 	mnt_drop_write(nd.path.mnt);
2562 out_dput:
2563 	dput(new_dentry);
2564 out_unlock:
2565 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2566 out_release:
2567 	path_put(&nd.path);
2568 out:
2569 	path_put(&old_nd.path);
2570 exit:
2571 	putname(to);
2572 
2573 	return error;
2574 }
2575 
2576 asmlinkage long sys_link(const char __user *oldname, const char __user *newname)
2577 {
2578 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2579 }
2580 
2581 /*
2582  * The worst of all namespace operations - renaming directory. "Perverted"
2583  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2584  * Problems:
2585  *	a) we can get into loop creation. Check is done in is_subdir().
2586  *	b) race potential - two innocent renames can create a loop together.
2587  *	   That's where 4.4 screws up. Current fix: serialization on
2588  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2589  *	   story.
2590  *	c) we have to lock _three_ objects - parents and victim (if it exists).
2591  *	   And that - after we got ->i_mutex on parents (until then we don't know
2592  *	   whether the target exists).  Solution: try to be smart with locking
2593  *	   order for inodes.  We rely on the fact that tree topology may change
2594  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
2595  *	   move will be locked.  Thus we can rank directories by the tree
2596  *	   (ancestors first) and rank all non-directories after them.
2597  *	   That works since everybody except rename does "lock parent, lookup,
2598  *	   lock child" and rename is under ->s_vfs_rename_mutex.
2599  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
2600  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
2601  *	   we'd better make sure that there's no link(2) for them.
2602  *	d) some filesystems don't support opened-but-unlinked directories,
2603  *	   either because of layout or because they are not ready to deal with
2604  *	   all cases correctly. The latter will be fixed (taking this sort of
2605  *	   stuff into VFS), but the former is not going away. Solution: the same
2606  *	   trick as in rmdir().
2607  *	e) conversion from fhandle to dentry may come in the wrong moment - when
2608  *	   we are removing the target. Solution: we will have to grab ->i_mutex
2609  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2610  *	   ->i_mutex on parents, which works but leads to some truely excessive
2611  *	   locking].
2612  */
2613 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2614 			  struct inode *new_dir, struct dentry *new_dentry)
2615 {
2616 	int error = 0;
2617 	struct inode *target;
2618 
2619 	/*
2620 	 * If we are going to change the parent - check write permissions,
2621 	 * we'll need to flip '..'.
2622 	 */
2623 	if (new_dir != old_dir) {
2624 		error = permission(old_dentry->d_inode, MAY_WRITE, NULL);
2625 		if (error)
2626 			return error;
2627 	}
2628 
2629 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2630 	if (error)
2631 		return error;
2632 
2633 	target = new_dentry->d_inode;
2634 	if (target) {
2635 		mutex_lock(&target->i_mutex);
2636 		dentry_unhash(new_dentry);
2637 	}
2638 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2639 		error = -EBUSY;
2640 	else
2641 		error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2642 	if (target) {
2643 		if (!error)
2644 			target->i_flags |= S_DEAD;
2645 		mutex_unlock(&target->i_mutex);
2646 		if (d_unhashed(new_dentry))
2647 			d_rehash(new_dentry);
2648 		dput(new_dentry);
2649 	}
2650 	if (!error)
2651 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2652 			d_move(old_dentry,new_dentry);
2653 	return error;
2654 }
2655 
2656 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2657 			    struct inode *new_dir, struct dentry *new_dentry)
2658 {
2659 	struct inode *target;
2660 	int error;
2661 
2662 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2663 	if (error)
2664 		return error;
2665 
2666 	dget(new_dentry);
2667 	target = new_dentry->d_inode;
2668 	if (target)
2669 		mutex_lock(&target->i_mutex);
2670 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2671 		error = -EBUSY;
2672 	else
2673 		error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2674 	if (!error) {
2675 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2676 			d_move(old_dentry, new_dentry);
2677 	}
2678 	if (target)
2679 		mutex_unlock(&target->i_mutex);
2680 	dput(new_dentry);
2681 	return error;
2682 }
2683 
2684 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2685 	       struct inode *new_dir, struct dentry *new_dentry)
2686 {
2687 	int error;
2688 	int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2689 	const char *old_name;
2690 
2691 	if (old_dentry->d_inode == new_dentry->d_inode)
2692  		return 0;
2693 
2694 	error = may_delete(old_dir, old_dentry, is_dir);
2695 	if (error)
2696 		return error;
2697 
2698 	if (!new_dentry->d_inode)
2699 		error = may_create(new_dir, new_dentry, NULL);
2700 	else
2701 		error = may_delete(new_dir, new_dentry, is_dir);
2702 	if (error)
2703 		return error;
2704 
2705 	if (!old_dir->i_op || !old_dir->i_op->rename)
2706 		return -EPERM;
2707 
2708 	DQUOT_INIT(old_dir);
2709 	DQUOT_INIT(new_dir);
2710 
2711 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2712 
2713 	if (is_dir)
2714 		error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2715 	else
2716 		error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2717 	if (!error) {
2718 		const char *new_name = old_dentry->d_name.name;
2719 		fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir,
2720 			      new_dentry->d_inode, old_dentry);
2721 	}
2722 	fsnotify_oldname_free(old_name);
2723 
2724 	return error;
2725 }
2726 
2727 static int do_rename(int olddfd, const char *oldname,
2728 			int newdfd, const char *newname)
2729 {
2730 	int error = 0;
2731 	struct dentry * old_dir, * new_dir;
2732 	struct dentry * old_dentry, *new_dentry;
2733 	struct dentry * trap;
2734 	struct nameidata oldnd, newnd;
2735 
2736 	error = do_path_lookup(olddfd, oldname, LOOKUP_PARENT, &oldnd);
2737 	if (error)
2738 		goto exit;
2739 
2740 	error = do_path_lookup(newdfd, newname, LOOKUP_PARENT, &newnd);
2741 	if (error)
2742 		goto exit1;
2743 
2744 	error = -EXDEV;
2745 	if (oldnd.path.mnt != newnd.path.mnt)
2746 		goto exit2;
2747 
2748 	old_dir = oldnd.path.dentry;
2749 	error = -EBUSY;
2750 	if (oldnd.last_type != LAST_NORM)
2751 		goto exit2;
2752 
2753 	new_dir = newnd.path.dentry;
2754 	if (newnd.last_type != LAST_NORM)
2755 		goto exit2;
2756 
2757 	trap = lock_rename(new_dir, old_dir);
2758 
2759 	old_dentry = lookup_hash(&oldnd);
2760 	error = PTR_ERR(old_dentry);
2761 	if (IS_ERR(old_dentry))
2762 		goto exit3;
2763 	/* source must exist */
2764 	error = -ENOENT;
2765 	if (!old_dentry->d_inode)
2766 		goto exit4;
2767 	/* unless the source is a directory trailing slashes give -ENOTDIR */
2768 	if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2769 		error = -ENOTDIR;
2770 		if (oldnd.last.name[oldnd.last.len])
2771 			goto exit4;
2772 		if (newnd.last.name[newnd.last.len])
2773 			goto exit4;
2774 	}
2775 	/* source should not be ancestor of target */
2776 	error = -EINVAL;
2777 	if (old_dentry == trap)
2778 		goto exit4;
2779 	new_dentry = lookup_hash(&newnd);
2780 	error = PTR_ERR(new_dentry);
2781 	if (IS_ERR(new_dentry))
2782 		goto exit4;
2783 	/* target should not be an ancestor of source */
2784 	error = -ENOTEMPTY;
2785 	if (new_dentry == trap)
2786 		goto exit5;
2787 
2788 	error = mnt_want_write(oldnd.path.mnt);
2789 	if (error)
2790 		goto exit5;
2791 	error = vfs_rename(old_dir->d_inode, old_dentry,
2792 				   new_dir->d_inode, new_dentry);
2793 	mnt_drop_write(oldnd.path.mnt);
2794 exit5:
2795 	dput(new_dentry);
2796 exit4:
2797 	dput(old_dentry);
2798 exit3:
2799 	unlock_rename(new_dir, old_dir);
2800 exit2:
2801 	path_put(&newnd.path);
2802 exit1:
2803 	path_put(&oldnd.path);
2804 exit:
2805 	return error;
2806 }
2807 
2808 asmlinkage long sys_renameat(int olddfd, const char __user *oldname,
2809 			     int newdfd, const char __user *newname)
2810 {
2811 	int error;
2812 	char * from;
2813 	char * to;
2814 
2815 	from = getname(oldname);
2816 	if(IS_ERR(from))
2817 		return PTR_ERR(from);
2818 	to = getname(newname);
2819 	error = PTR_ERR(to);
2820 	if (!IS_ERR(to)) {
2821 		error = do_rename(olddfd, from, newdfd, to);
2822 		putname(to);
2823 	}
2824 	putname(from);
2825 	return error;
2826 }
2827 
2828 asmlinkage long sys_rename(const char __user *oldname, const char __user *newname)
2829 {
2830 	return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2831 }
2832 
2833 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2834 {
2835 	int len;
2836 
2837 	len = PTR_ERR(link);
2838 	if (IS_ERR(link))
2839 		goto out;
2840 
2841 	len = strlen(link);
2842 	if (len > (unsigned) buflen)
2843 		len = buflen;
2844 	if (copy_to_user(buffer, link, len))
2845 		len = -EFAULT;
2846 out:
2847 	return len;
2848 }
2849 
2850 /*
2851  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
2852  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
2853  * using) it for any given inode is up to filesystem.
2854  */
2855 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2856 {
2857 	struct nameidata nd;
2858 	void *cookie;
2859 	int res;
2860 
2861 	nd.depth = 0;
2862 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2863 	if (IS_ERR(cookie))
2864 		return PTR_ERR(cookie);
2865 
2866 	res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2867 	if (dentry->d_inode->i_op->put_link)
2868 		dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2869 	return res;
2870 }
2871 
2872 int vfs_follow_link(struct nameidata *nd, const char *link)
2873 {
2874 	return __vfs_follow_link(nd, link);
2875 }
2876 
2877 /* get the link contents into pagecache */
2878 static char *page_getlink(struct dentry * dentry, struct page **ppage)
2879 {
2880 	struct page * page;
2881 	struct address_space *mapping = dentry->d_inode->i_mapping;
2882 	page = read_mapping_page(mapping, 0, NULL);
2883 	if (IS_ERR(page))
2884 		return (char*)page;
2885 	*ppage = page;
2886 	return kmap(page);
2887 }
2888 
2889 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2890 {
2891 	struct page *page = NULL;
2892 	char *s = page_getlink(dentry, &page);
2893 	int res = vfs_readlink(dentry,buffer,buflen,s);
2894 	if (page) {
2895 		kunmap(page);
2896 		page_cache_release(page);
2897 	}
2898 	return res;
2899 }
2900 
2901 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2902 {
2903 	struct page *page = NULL;
2904 	nd_set_link(nd, page_getlink(dentry, &page));
2905 	return page;
2906 }
2907 
2908 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2909 {
2910 	struct page *page = cookie;
2911 
2912 	if (page) {
2913 		kunmap(page);
2914 		page_cache_release(page);
2915 	}
2916 }
2917 
2918 int __page_symlink(struct inode *inode, const char *symname, int len,
2919 		gfp_t gfp_mask)
2920 {
2921 	struct address_space *mapping = inode->i_mapping;
2922 	struct page *page;
2923 	void *fsdata;
2924 	int err;
2925 	char *kaddr;
2926 
2927 retry:
2928 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
2929 				AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2930 	if (err)
2931 		goto fail;
2932 
2933 	kaddr = kmap_atomic(page, KM_USER0);
2934 	memcpy(kaddr, symname, len-1);
2935 	kunmap_atomic(kaddr, KM_USER0);
2936 
2937 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
2938 							page, fsdata);
2939 	if (err < 0)
2940 		goto fail;
2941 	if (err < len-1)
2942 		goto retry;
2943 
2944 	mark_inode_dirty(inode);
2945 	return 0;
2946 fail:
2947 	return err;
2948 }
2949 
2950 int page_symlink(struct inode *inode, const char *symname, int len)
2951 {
2952 	return __page_symlink(inode, symname, len,
2953 			mapping_gfp_mask(inode->i_mapping));
2954 }
2955 
2956 const struct inode_operations page_symlink_inode_operations = {
2957 	.readlink	= generic_readlink,
2958 	.follow_link	= page_follow_link_light,
2959 	.put_link	= page_put_link,
2960 };
2961 
2962 EXPORT_SYMBOL(__user_walk);
2963 EXPORT_SYMBOL(__user_walk_fd);
2964 EXPORT_SYMBOL(follow_down);
2965 EXPORT_SYMBOL(follow_up);
2966 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2967 EXPORT_SYMBOL(getname);
2968 EXPORT_SYMBOL(lock_rename);
2969 EXPORT_SYMBOL(lookup_one_len);
2970 EXPORT_SYMBOL(page_follow_link_light);
2971 EXPORT_SYMBOL(page_put_link);
2972 EXPORT_SYMBOL(page_readlink);
2973 EXPORT_SYMBOL(__page_symlink);
2974 EXPORT_SYMBOL(page_symlink);
2975 EXPORT_SYMBOL(page_symlink_inode_operations);
2976 EXPORT_SYMBOL(path_lookup);
2977 EXPORT_SYMBOL(vfs_path_lookup);
2978 EXPORT_SYMBOL(permission);
2979 EXPORT_SYMBOL(vfs_permission);
2980 EXPORT_SYMBOL(file_permission);
2981 EXPORT_SYMBOL(unlock_rename);
2982 EXPORT_SYMBOL(vfs_create);
2983 EXPORT_SYMBOL(vfs_follow_link);
2984 EXPORT_SYMBOL(vfs_link);
2985 EXPORT_SYMBOL(vfs_mkdir);
2986 EXPORT_SYMBOL(vfs_mknod);
2987 EXPORT_SYMBOL(generic_permission);
2988 EXPORT_SYMBOL(vfs_readlink);
2989 EXPORT_SYMBOL(vfs_rename);
2990 EXPORT_SYMBOL(vfs_rmdir);
2991 EXPORT_SYMBOL(vfs_symlink);
2992 EXPORT_SYMBOL(vfs_unlink);
2993 EXPORT_SYMBOL(dentry_unhash);
2994 EXPORT_SYMBOL(generic_readlink);
2995