xref: /linux/fs/namei.c (revision 2c97b5ae83dca56718774e7b4bf9640f05d11867)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/namei.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * Some corrections by tytso.
10  */
11 
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13  * lookup logic.
14  */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16  */
17 
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/fsnotify.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/ima.h>
29 #include <linux/syscalls.h>
30 #include <linux/mount.h>
31 #include <linux/audit.h>
32 #include <linux/capability.h>
33 #include <linux/file.h>
34 #include <linux/fcntl.h>
35 #include <linux/device_cgroup.h>
36 #include <linux/fs_struct.h>
37 #include <linux/posix_acl.h>
38 #include <linux/hash.h>
39 #include <linux/bitops.h>
40 #include <linux/init_task.h>
41 #include <linux/uaccess.h>
42 
43 #include "internal.h"
44 #include "mount.h"
45 
46 /* [Feb-1997 T. Schoebel-Theuer]
47  * Fundamental changes in the pathname lookup mechanisms (namei)
48  * were necessary because of omirr.  The reason is that omirr needs
49  * to know the _real_ pathname, not the user-supplied one, in case
50  * of symlinks (and also when transname replacements occur).
51  *
52  * The new code replaces the old recursive symlink resolution with
53  * an iterative one (in case of non-nested symlink chains).  It does
54  * this with calls to <fs>_follow_link().
55  * As a side effect, dir_namei(), _namei() and follow_link() are now
56  * replaced with a single function lookup_dentry() that can handle all
57  * the special cases of the former code.
58  *
59  * With the new dcache, the pathname is stored at each inode, at least as
60  * long as the refcount of the inode is positive.  As a side effect, the
61  * size of the dcache depends on the inode cache and thus is dynamic.
62  *
63  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
64  * resolution to correspond with current state of the code.
65  *
66  * Note that the symlink resolution is not *completely* iterative.
67  * There is still a significant amount of tail- and mid- recursion in
68  * the algorithm.  Also, note that <fs>_readlink() is not used in
69  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
70  * may return different results than <fs>_follow_link().  Many virtual
71  * filesystems (including /proc) exhibit this behavior.
72  */
73 
74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
75  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
76  * and the name already exists in form of a symlink, try to create the new
77  * name indicated by the symlink. The old code always complained that the
78  * name already exists, due to not following the symlink even if its target
79  * is nonexistent.  The new semantics affects also mknod() and link() when
80  * the name is a symlink pointing to a non-existent name.
81  *
82  * I don't know which semantics is the right one, since I have no access
83  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
84  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
85  * "old" one. Personally, I think the new semantics is much more logical.
86  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
87  * file does succeed in both HP-UX and SunOs, but not in Solaris
88  * and in the old Linux semantics.
89  */
90 
91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
92  * semantics.  See the comments in "open_namei" and "do_link" below.
93  *
94  * [10-Sep-98 Alan Modra] Another symlink change.
95  */
96 
97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
98  *	inside the path - always follow.
99  *	in the last component in creation/removal/renaming - never follow.
100  *	if LOOKUP_FOLLOW passed - follow.
101  *	if the pathname has trailing slashes - follow.
102  *	otherwise - don't follow.
103  * (applied in that order).
104  *
105  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
106  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
107  * During the 2.4 we need to fix the userland stuff depending on it -
108  * hopefully we will be able to get rid of that wart in 2.5. So far only
109  * XEmacs seems to be relying on it...
110  */
111 /*
112  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
113  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
114  * any extra contention...
115  */
116 
117 /* In order to reduce some races, while at the same time doing additional
118  * checking and hopefully speeding things up, we copy filenames to the
119  * kernel data space before using them..
120  *
121  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
122  * PATH_MAX includes the nul terminator --RR.
123  */
124 
125 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
126 
127 struct filename *
128 getname_flags(const char __user *filename, int flags, int *empty)
129 {
130 	struct filename *result;
131 	char *kname;
132 	int len;
133 
134 	result = audit_reusename(filename);
135 	if (result)
136 		return result;
137 
138 	result = __getname();
139 	if (unlikely(!result))
140 		return ERR_PTR(-ENOMEM);
141 
142 	/*
143 	 * First, try to embed the struct filename inside the names_cache
144 	 * allocation
145 	 */
146 	kname = (char *)result->iname;
147 	result->name = kname;
148 
149 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
150 	if (unlikely(len < 0)) {
151 		__putname(result);
152 		return ERR_PTR(len);
153 	}
154 
155 	/*
156 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
157 	 * separate struct filename so we can dedicate the entire
158 	 * names_cache allocation for the pathname, and re-do the copy from
159 	 * userland.
160 	 */
161 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
162 		const size_t size = offsetof(struct filename, iname[1]);
163 		kname = (char *)result;
164 
165 		/*
166 		 * size is chosen that way we to guarantee that
167 		 * result->iname[0] is within the same object and that
168 		 * kname can't be equal to result->iname, no matter what.
169 		 */
170 		result = kzalloc(size, GFP_KERNEL);
171 		if (unlikely(!result)) {
172 			__putname(kname);
173 			return ERR_PTR(-ENOMEM);
174 		}
175 		result->name = kname;
176 		len = strncpy_from_user(kname, filename, PATH_MAX);
177 		if (unlikely(len < 0)) {
178 			__putname(kname);
179 			kfree(result);
180 			return ERR_PTR(len);
181 		}
182 		if (unlikely(len == PATH_MAX)) {
183 			__putname(kname);
184 			kfree(result);
185 			return ERR_PTR(-ENAMETOOLONG);
186 		}
187 	}
188 
189 	result->refcnt = 1;
190 	/* The empty path is special. */
191 	if (unlikely(!len)) {
192 		if (empty)
193 			*empty = 1;
194 		if (!(flags & LOOKUP_EMPTY)) {
195 			putname(result);
196 			return ERR_PTR(-ENOENT);
197 		}
198 	}
199 
200 	result->uptr = filename;
201 	result->aname = NULL;
202 	audit_getname(result);
203 	return result;
204 }
205 
206 struct filename *
207 getname(const char __user * filename)
208 {
209 	return getname_flags(filename, 0, NULL);
210 }
211 
212 struct filename *
213 getname_kernel(const char * filename)
214 {
215 	struct filename *result;
216 	int len = strlen(filename) + 1;
217 
218 	result = __getname();
219 	if (unlikely(!result))
220 		return ERR_PTR(-ENOMEM);
221 
222 	if (len <= EMBEDDED_NAME_MAX) {
223 		result->name = (char *)result->iname;
224 	} else if (len <= PATH_MAX) {
225 		const size_t size = offsetof(struct filename, iname[1]);
226 		struct filename *tmp;
227 
228 		tmp = kmalloc(size, GFP_KERNEL);
229 		if (unlikely(!tmp)) {
230 			__putname(result);
231 			return ERR_PTR(-ENOMEM);
232 		}
233 		tmp->name = (char *)result;
234 		result = tmp;
235 	} else {
236 		__putname(result);
237 		return ERR_PTR(-ENAMETOOLONG);
238 	}
239 	memcpy((char *)result->name, filename, len);
240 	result->uptr = NULL;
241 	result->aname = NULL;
242 	result->refcnt = 1;
243 	audit_getname(result);
244 
245 	return result;
246 }
247 
248 void putname(struct filename *name)
249 {
250 	BUG_ON(name->refcnt <= 0);
251 
252 	if (--name->refcnt > 0)
253 		return;
254 
255 	if (name->name != name->iname) {
256 		__putname(name->name);
257 		kfree(name);
258 	} else
259 		__putname(name);
260 }
261 
262 static int check_acl(struct inode *inode, int mask)
263 {
264 #ifdef CONFIG_FS_POSIX_ACL
265 	struct posix_acl *acl;
266 
267 	if (mask & MAY_NOT_BLOCK) {
268 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
269 	        if (!acl)
270 	                return -EAGAIN;
271 		/* no ->get_acl() calls in RCU mode... */
272 		if (is_uncached_acl(acl))
273 			return -ECHILD;
274 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
275 	}
276 
277 	acl = get_acl(inode, ACL_TYPE_ACCESS);
278 	if (IS_ERR(acl))
279 		return PTR_ERR(acl);
280 	if (acl) {
281 	        int error = posix_acl_permission(inode, acl, mask);
282 	        posix_acl_release(acl);
283 	        return error;
284 	}
285 #endif
286 
287 	return -EAGAIN;
288 }
289 
290 /*
291  * This does the basic permission checking
292  */
293 static int acl_permission_check(struct inode *inode, int mask)
294 {
295 	unsigned int mode = inode->i_mode;
296 
297 	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
298 		mode >>= 6;
299 	else {
300 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
301 			int error = check_acl(inode, mask);
302 			if (error != -EAGAIN)
303 				return error;
304 		}
305 
306 		if (in_group_p(inode->i_gid))
307 			mode >>= 3;
308 	}
309 
310 	/*
311 	 * If the DACs are ok we don't need any capability check.
312 	 */
313 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
314 		return 0;
315 	return -EACCES;
316 }
317 
318 /**
319  * generic_permission -  check for access rights on a Posix-like filesystem
320  * @inode:	inode to check access rights for
321  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
322  *
323  * Used to check for read/write/execute permissions on a file.
324  * We use "fsuid" for this, letting us set arbitrary permissions
325  * for filesystem access without changing the "normal" uids which
326  * are used for other things.
327  *
328  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
329  * request cannot be satisfied (eg. requires blocking or too much complexity).
330  * It would then be called again in ref-walk mode.
331  */
332 int generic_permission(struct inode *inode, int mask)
333 {
334 	int ret;
335 
336 	/*
337 	 * Do the basic permission checks.
338 	 */
339 	ret = acl_permission_check(inode, mask);
340 	if (ret != -EACCES)
341 		return ret;
342 
343 	if (S_ISDIR(inode->i_mode)) {
344 		/* DACs are overridable for directories */
345 		if (!(mask & MAY_WRITE))
346 			if (capable_wrt_inode_uidgid(inode,
347 						     CAP_DAC_READ_SEARCH))
348 				return 0;
349 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
350 			return 0;
351 		return -EACCES;
352 	}
353 
354 	/*
355 	 * Searching includes executable on directories, else just read.
356 	 */
357 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
358 	if (mask == MAY_READ)
359 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
360 			return 0;
361 	/*
362 	 * Read/write DACs are always overridable.
363 	 * Executable DACs are overridable when there is
364 	 * at least one exec bit set.
365 	 */
366 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
367 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
368 			return 0;
369 
370 	return -EACCES;
371 }
372 EXPORT_SYMBOL(generic_permission);
373 
374 /*
375  * We _really_ want to just do "generic_permission()" without
376  * even looking at the inode->i_op values. So we keep a cache
377  * flag in inode->i_opflags, that says "this has not special
378  * permission function, use the fast case".
379  */
380 static inline int do_inode_permission(struct inode *inode, int mask)
381 {
382 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
383 		if (likely(inode->i_op->permission))
384 			return inode->i_op->permission(inode, mask);
385 
386 		/* This gets set once for the inode lifetime */
387 		spin_lock(&inode->i_lock);
388 		inode->i_opflags |= IOP_FASTPERM;
389 		spin_unlock(&inode->i_lock);
390 	}
391 	return generic_permission(inode, mask);
392 }
393 
394 /**
395  * sb_permission - Check superblock-level permissions
396  * @sb: Superblock of inode to check permission on
397  * @inode: Inode to check permission on
398  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
399  *
400  * Separate out file-system wide checks from inode-specific permission checks.
401  */
402 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
403 {
404 	if (unlikely(mask & MAY_WRITE)) {
405 		umode_t mode = inode->i_mode;
406 
407 		/* Nobody gets write access to a read-only fs. */
408 		if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
409 			return -EROFS;
410 	}
411 	return 0;
412 }
413 
414 /**
415  * inode_permission - Check for access rights to a given inode
416  * @inode: Inode to check permission on
417  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
418  *
419  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
420  * this, letting us set arbitrary permissions for filesystem access without
421  * changing the "normal" UIDs which are used for other things.
422  *
423  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
424  */
425 int inode_permission(struct inode *inode, int mask)
426 {
427 	int retval;
428 
429 	retval = sb_permission(inode->i_sb, inode, mask);
430 	if (retval)
431 		return retval;
432 
433 	if (unlikely(mask & MAY_WRITE)) {
434 		/*
435 		 * Nobody gets write access to an immutable file.
436 		 */
437 		if (IS_IMMUTABLE(inode))
438 			return -EPERM;
439 
440 		/*
441 		 * Updating mtime will likely cause i_uid and i_gid to be
442 		 * written back improperly if their true value is unknown
443 		 * to the vfs.
444 		 */
445 		if (HAS_UNMAPPED_ID(inode))
446 			return -EACCES;
447 	}
448 
449 	retval = do_inode_permission(inode, mask);
450 	if (retval)
451 		return retval;
452 
453 	retval = devcgroup_inode_permission(inode, mask);
454 	if (retval)
455 		return retval;
456 
457 	return security_inode_permission(inode, mask);
458 }
459 EXPORT_SYMBOL(inode_permission);
460 
461 /**
462  * path_get - get a reference to a path
463  * @path: path to get the reference to
464  *
465  * Given a path increment the reference count to the dentry and the vfsmount.
466  */
467 void path_get(const struct path *path)
468 {
469 	mntget(path->mnt);
470 	dget(path->dentry);
471 }
472 EXPORT_SYMBOL(path_get);
473 
474 /**
475  * path_put - put a reference to a path
476  * @path: path to put the reference to
477  *
478  * Given a path decrement the reference count to the dentry and the vfsmount.
479  */
480 void path_put(const struct path *path)
481 {
482 	dput(path->dentry);
483 	mntput(path->mnt);
484 }
485 EXPORT_SYMBOL(path_put);
486 
487 #define EMBEDDED_LEVELS 2
488 struct nameidata {
489 	struct path	path;
490 	struct qstr	last;
491 	struct path	root;
492 	struct inode	*inode; /* path.dentry.d_inode */
493 	unsigned int	flags;
494 	unsigned	seq, m_seq;
495 	int		last_type;
496 	unsigned	depth;
497 	int		total_link_count;
498 	struct saved {
499 		struct path link;
500 		struct delayed_call done;
501 		const char *name;
502 		unsigned seq;
503 	} *stack, internal[EMBEDDED_LEVELS];
504 	struct filename	*name;
505 	struct nameidata *saved;
506 	struct inode	*link_inode;
507 	unsigned	root_seq;
508 	int		dfd;
509 } __randomize_layout;
510 
511 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
512 {
513 	struct nameidata *old = current->nameidata;
514 	p->stack = p->internal;
515 	p->dfd = dfd;
516 	p->name = name;
517 	p->total_link_count = old ? old->total_link_count : 0;
518 	p->saved = old;
519 	current->nameidata = p;
520 }
521 
522 static void restore_nameidata(void)
523 {
524 	struct nameidata *now = current->nameidata, *old = now->saved;
525 
526 	current->nameidata = old;
527 	if (old)
528 		old->total_link_count = now->total_link_count;
529 	if (now->stack != now->internal)
530 		kfree(now->stack);
531 }
532 
533 static int __nd_alloc_stack(struct nameidata *nd)
534 {
535 	struct saved *p;
536 
537 	if (nd->flags & LOOKUP_RCU) {
538 		p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
539 				  GFP_ATOMIC);
540 		if (unlikely(!p))
541 			return -ECHILD;
542 	} else {
543 		p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
544 				  GFP_KERNEL);
545 		if (unlikely(!p))
546 			return -ENOMEM;
547 	}
548 	memcpy(p, nd->internal, sizeof(nd->internal));
549 	nd->stack = p;
550 	return 0;
551 }
552 
553 /**
554  * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
555  * @path: nameidate to verify
556  *
557  * Rename can sometimes move a file or directory outside of a bind
558  * mount, path_connected allows those cases to be detected.
559  */
560 static bool path_connected(const struct path *path)
561 {
562 	struct vfsmount *mnt = path->mnt;
563 	struct super_block *sb = mnt->mnt_sb;
564 
565 	/* Bind mounts and multi-root filesystems can have disconnected paths */
566 	if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root))
567 		return true;
568 
569 	return is_subdir(path->dentry, mnt->mnt_root);
570 }
571 
572 static inline int nd_alloc_stack(struct nameidata *nd)
573 {
574 	if (likely(nd->depth != EMBEDDED_LEVELS))
575 		return 0;
576 	if (likely(nd->stack != nd->internal))
577 		return 0;
578 	return __nd_alloc_stack(nd);
579 }
580 
581 static void drop_links(struct nameidata *nd)
582 {
583 	int i = nd->depth;
584 	while (i--) {
585 		struct saved *last = nd->stack + i;
586 		do_delayed_call(&last->done);
587 		clear_delayed_call(&last->done);
588 	}
589 }
590 
591 static void terminate_walk(struct nameidata *nd)
592 {
593 	drop_links(nd);
594 	if (!(nd->flags & LOOKUP_RCU)) {
595 		int i;
596 		path_put(&nd->path);
597 		for (i = 0; i < nd->depth; i++)
598 			path_put(&nd->stack[i].link);
599 		if (nd->flags & LOOKUP_ROOT_GRABBED) {
600 			path_put(&nd->root);
601 			nd->flags &= ~LOOKUP_ROOT_GRABBED;
602 		}
603 	} else {
604 		nd->flags &= ~LOOKUP_RCU;
605 		rcu_read_unlock();
606 	}
607 	nd->depth = 0;
608 }
609 
610 /* path_put is needed afterwards regardless of success or failure */
611 static bool legitimize_path(struct nameidata *nd,
612 			    struct path *path, unsigned seq)
613 {
614 	int res = __legitimize_mnt(path->mnt, nd->m_seq);
615 	if (unlikely(res)) {
616 		if (res > 0)
617 			path->mnt = NULL;
618 		path->dentry = NULL;
619 		return false;
620 	}
621 	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
622 		path->dentry = NULL;
623 		return false;
624 	}
625 	return !read_seqcount_retry(&path->dentry->d_seq, seq);
626 }
627 
628 static bool legitimize_links(struct nameidata *nd)
629 {
630 	int i;
631 	for (i = 0; i < nd->depth; i++) {
632 		struct saved *last = nd->stack + i;
633 		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
634 			drop_links(nd);
635 			nd->depth = i + 1;
636 			return false;
637 		}
638 	}
639 	return true;
640 }
641 
642 static bool legitimize_root(struct nameidata *nd)
643 {
644 	if (!nd->root.mnt || (nd->flags & LOOKUP_ROOT))
645 		return true;
646 	nd->flags |= LOOKUP_ROOT_GRABBED;
647 	return legitimize_path(nd, &nd->root, nd->root_seq);
648 }
649 
650 /*
651  * Path walking has 2 modes, rcu-walk and ref-walk (see
652  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
653  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
654  * normal reference counts on dentries and vfsmounts to transition to ref-walk
655  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
656  * got stuck, so ref-walk may continue from there. If this is not successful
657  * (eg. a seqcount has changed), then failure is returned and it's up to caller
658  * to restart the path walk from the beginning in ref-walk mode.
659  */
660 
661 /**
662  * unlazy_walk - try to switch to ref-walk mode.
663  * @nd: nameidata pathwalk data
664  * Returns: 0 on success, -ECHILD on failure
665  *
666  * unlazy_walk attempts to legitimize the current nd->path and nd->root
667  * for ref-walk mode.
668  * Must be called from rcu-walk context.
669  * Nothing should touch nameidata between unlazy_walk() failure and
670  * terminate_walk().
671  */
672 static int unlazy_walk(struct nameidata *nd)
673 {
674 	struct dentry *parent = nd->path.dentry;
675 
676 	BUG_ON(!(nd->flags & LOOKUP_RCU));
677 
678 	nd->flags &= ~LOOKUP_RCU;
679 	if (unlikely(!legitimize_links(nd)))
680 		goto out1;
681 	if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
682 		goto out;
683 	if (unlikely(!legitimize_root(nd)))
684 		goto out;
685 	rcu_read_unlock();
686 	BUG_ON(nd->inode != parent->d_inode);
687 	return 0;
688 
689 out1:
690 	nd->path.mnt = NULL;
691 	nd->path.dentry = NULL;
692 out:
693 	rcu_read_unlock();
694 	return -ECHILD;
695 }
696 
697 /**
698  * unlazy_child - try to switch to ref-walk mode.
699  * @nd: nameidata pathwalk data
700  * @dentry: child of nd->path.dentry
701  * @seq: seq number to check dentry against
702  * Returns: 0 on success, -ECHILD on failure
703  *
704  * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
705  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
706  * @nd.  Must be called from rcu-walk context.
707  * Nothing should touch nameidata between unlazy_child() failure and
708  * terminate_walk().
709  */
710 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
711 {
712 	BUG_ON(!(nd->flags & LOOKUP_RCU));
713 
714 	nd->flags &= ~LOOKUP_RCU;
715 	if (unlikely(!legitimize_links(nd)))
716 		goto out2;
717 	if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
718 		goto out2;
719 	if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
720 		goto out1;
721 
722 	/*
723 	 * We need to move both the parent and the dentry from the RCU domain
724 	 * to be properly refcounted. And the sequence number in the dentry
725 	 * validates *both* dentry counters, since we checked the sequence
726 	 * number of the parent after we got the child sequence number. So we
727 	 * know the parent must still be valid if the child sequence number is
728 	 */
729 	if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
730 		goto out;
731 	if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
732 		goto out_dput;
733 	/*
734 	 * Sequence counts matched. Now make sure that the root is
735 	 * still valid and get it if required.
736 	 */
737 	if (unlikely(!legitimize_root(nd)))
738 		goto out_dput;
739 	rcu_read_unlock();
740 	return 0;
741 
742 out2:
743 	nd->path.mnt = NULL;
744 out1:
745 	nd->path.dentry = NULL;
746 out:
747 	rcu_read_unlock();
748 	return -ECHILD;
749 out_dput:
750 	rcu_read_unlock();
751 	dput(dentry);
752 	return -ECHILD;
753 }
754 
755 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
756 {
757 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
758 		return dentry->d_op->d_revalidate(dentry, flags);
759 	else
760 		return 1;
761 }
762 
763 /**
764  * complete_walk - successful completion of path walk
765  * @nd:  pointer nameidata
766  *
767  * If we had been in RCU mode, drop out of it and legitimize nd->path.
768  * Revalidate the final result, unless we'd already done that during
769  * the path walk or the filesystem doesn't ask for it.  Return 0 on
770  * success, -error on failure.  In case of failure caller does not
771  * need to drop nd->path.
772  */
773 static int complete_walk(struct nameidata *nd)
774 {
775 	struct dentry *dentry = nd->path.dentry;
776 	int status;
777 
778 	if (nd->flags & LOOKUP_RCU) {
779 		if (!(nd->flags & LOOKUP_ROOT))
780 			nd->root.mnt = NULL;
781 		if (unlikely(unlazy_walk(nd)))
782 			return -ECHILD;
783 	}
784 
785 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
786 		return 0;
787 
788 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
789 		return 0;
790 
791 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
792 	if (status > 0)
793 		return 0;
794 
795 	if (!status)
796 		status = -ESTALE;
797 
798 	return status;
799 }
800 
801 static void set_root(struct nameidata *nd)
802 {
803 	struct fs_struct *fs = current->fs;
804 
805 	if (nd->flags & LOOKUP_RCU) {
806 		unsigned seq;
807 
808 		do {
809 			seq = read_seqcount_begin(&fs->seq);
810 			nd->root = fs->root;
811 			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
812 		} while (read_seqcount_retry(&fs->seq, seq));
813 	} else {
814 		get_fs_root(fs, &nd->root);
815 		nd->flags |= LOOKUP_ROOT_GRABBED;
816 	}
817 }
818 
819 static void path_put_conditional(struct path *path, struct nameidata *nd)
820 {
821 	dput(path->dentry);
822 	if (path->mnt != nd->path.mnt)
823 		mntput(path->mnt);
824 }
825 
826 static inline void path_to_nameidata(const struct path *path,
827 					struct nameidata *nd)
828 {
829 	if (!(nd->flags & LOOKUP_RCU)) {
830 		dput(nd->path.dentry);
831 		if (nd->path.mnt != path->mnt)
832 			mntput(nd->path.mnt);
833 	}
834 	nd->path.mnt = path->mnt;
835 	nd->path.dentry = path->dentry;
836 }
837 
838 static int nd_jump_root(struct nameidata *nd)
839 {
840 	if (nd->flags & LOOKUP_RCU) {
841 		struct dentry *d;
842 		nd->path = nd->root;
843 		d = nd->path.dentry;
844 		nd->inode = d->d_inode;
845 		nd->seq = nd->root_seq;
846 		if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
847 			return -ECHILD;
848 	} else {
849 		path_put(&nd->path);
850 		nd->path = nd->root;
851 		path_get(&nd->path);
852 		nd->inode = nd->path.dentry->d_inode;
853 	}
854 	nd->flags |= LOOKUP_JUMPED;
855 	return 0;
856 }
857 
858 /*
859  * Helper to directly jump to a known parsed path from ->get_link,
860  * caller must have taken a reference to path beforehand.
861  */
862 void nd_jump_link(struct path *path)
863 {
864 	struct nameidata *nd = current->nameidata;
865 	path_put(&nd->path);
866 
867 	nd->path = *path;
868 	nd->inode = nd->path.dentry->d_inode;
869 	nd->flags |= LOOKUP_JUMPED;
870 }
871 
872 static inline void put_link(struct nameidata *nd)
873 {
874 	struct saved *last = nd->stack + --nd->depth;
875 	do_delayed_call(&last->done);
876 	if (!(nd->flags & LOOKUP_RCU))
877 		path_put(&last->link);
878 }
879 
880 int sysctl_protected_symlinks __read_mostly = 0;
881 int sysctl_protected_hardlinks __read_mostly = 0;
882 int sysctl_protected_fifos __read_mostly;
883 int sysctl_protected_regular __read_mostly;
884 
885 /**
886  * may_follow_link - Check symlink following for unsafe situations
887  * @nd: nameidata pathwalk data
888  *
889  * In the case of the sysctl_protected_symlinks sysctl being enabled,
890  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
891  * in a sticky world-writable directory. This is to protect privileged
892  * processes from failing races against path names that may change out
893  * from under them by way of other users creating malicious symlinks.
894  * It will permit symlinks to be followed only when outside a sticky
895  * world-writable directory, or when the uid of the symlink and follower
896  * match, or when the directory owner matches the symlink's owner.
897  *
898  * Returns 0 if following the symlink is allowed, -ve on error.
899  */
900 static inline int may_follow_link(struct nameidata *nd)
901 {
902 	const struct inode *inode;
903 	const struct inode *parent;
904 	kuid_t puid;
905 
906 	if (!sysctl_protected_symlinks)
907 		return 0;
908 
909 	/* Allowed if owner and follower match. */
910 	inode = nd->link_inode;
911 	if (uid_eq(current_cred()->fsuid, inode->i_uid))
912 		return 0;
913 
914 	/* Allowed if parent directory not sticky and world-writable. */
915 	parent = nd->inode;
916 	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
917 		return 0;
918 
919 	/* Allowed if parent directory and link owner match. */
920 	puid = parent->i_uid;
921 	if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
922 		return 0;
923 
924 	if (nd->flags & LOOKUP_RCU)
925 		return -ECHILD;
926 
927 	audit_inode(nd->name, nd->stack[0].link.dentry, 0);
928 	audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
929 	return -EACCES;
930 }
931 
932 /**
933  * safe_hardlink_source - Check for safe hardlink conditions
934  * @inode: the source inode to hardlink from
935  *
936  * Return false if at least one of the following conditions:
937  *    - inode is not a regular file
938  *    - inode is setuid
939  *    - inode is setgid and group-exec
940  *    - access failure for read and write
941  *
942  * Otherwise returns true.
943  */
944 static bool safe_hardlink_source(struct inode *inode)
945 {
946 	umode_t mode = inode->i_mode;
947 
948 	/* Special files should not get pinned to the filesystem. */
949 	if (!S_ISREG(mode))
950 		return false;
951 
952 	/* Setuid files should not get pinned to the filesystem. */
953 	if (mode & S_ISUID)
954 		return false;
955 
956 	/* Executable setgid files should not get pinned to the filesystem. */
957 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
958 		return false;
959 
960 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
961 	if (inode_permission(inode, MAY_READ | MAY_WRITE))
962 		return false;
963 
964 	return true;
965 }
966 
967 /**
968  * may_linkat - Check permissions for creating a hardlink
969  * @link: the source to hardlink from
970  *
971  * Block hardlink when all of:
972  *  - sysctl_protected_hardlinks enabled
973  *  - fsuid does not match inode
974  *  - hardlink source is unsafe (see safe_hardlink_source() above)
975  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
976  *
977  * Returns 0 if successful, -ve on error.
978  */
979 static int may_linkat(struct path *link)
980 {
981 	struct inode *inode = link->dentry->d_inode;
982 
983 	/* Inode writeback is not safe when the uid or gid are invalid. */
984 	if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
985 		return -EOVERFLOW;
986 
987 	if (!sysctl_protected_hardlinks)
988 		return 0;
989 
990 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
991 	 * otherwise, it must be a safe source.
992 	 */
993 	if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
994 		return 0;
995 
996 	audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
997 	return -EPERM;
998 }
999 
1000 /**
1001  * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1002  *			  should be allowed, or not, on files that already
1003  *			  exist.
1004  * @dir: the sticky parent directory
1005  * @inode: the inode of the file to open
1006  *
1007  * Block an O_CREAT open of a FIFO (or a regular file) when:
1008  *   - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1009  *   - the file already exists
1010  *   - we are in a sticky directory
1011  *   - we don't own the file
1012  *   - the owner of the directory doesn't own the file
1013  *   - the directory is world writable
1014  * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1015  * the directory doesn't have to be world writable: being group writable will
1016  * be enough.
1017  *
1018  * Returns 0 if the open is allowed, -ve on error.
1019  */
1020 static int may_create_in_sticky(struct dentry * const dir,
1021 				struct inode * const inode)
1022 {
1023 	if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1024 	    (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1025 	    likely(!(dir->d_inode->i_mode & S_ISVTX)) ||
1026 	    uid_eq(inode->i_uid, dir->d_inode->i_uid) ||
1027 	    uid_eq(current_fsuid(), inode->i_uid))
1028 		return 0;
1029 
1030 	if (likely(dir->d_inode->i_mode & 0002) ||
1031 	    (dir->d_inode->i_mode & 0020 &&
1032 	     ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1033 	      (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1034 		const char *operation = S_ISFIFO(inode->i_mode) ?
1035 					"sticky_create_fifo" :
1036 					"sticky_create_regular";
1037 		audit_log_path_denied(AUDIT_ANOM_CREAT, operation);
1038 		return -EACCES;
1039 	}
1040 	return 0;
1041 }
1042 
1043 static __always_inline
1044 const char *get_link(struct nameidata *nd)
1045 {
1046 	struct saved *last = nd->stack + nd->depth - 1;
1047 	struct dentry *dentry = last->link.dentry;
1048 	struct inode *inode = nd->link_inode;
1049 	int error;
1050 	const char *res;
1051 
1052 	if (!(nd->flags & LOOKUP_RCU)) {
1053 		touch_atime(&last->link);
1054 		cond_resched();
1055 	} else if (atime_needs_update(&last->link, inode)) {
1056 		if (unlikely(unlazy_walk(nd)))
1057 			return ERR_PTR(-ECHILD);
1058 		touch_atime(&last->link);
1059 	}
1060 
1061 	error = security_inode_follow_link(dentry, inode,
1062 					   nd->flags & LOOKUP_RCU);
1063 	if (unlikely(error))
1064 		return ERR_PTR(error);
1065 
1066 	nd->last_type = LAST_BIND;
1067 	res = READ_ONCE(inode->i_link);
1068 	if (!res) {
1069 		const char * (*get)(struct dentry *, struct inode *,
1070 				struct delayed_call *);
1071 		get = inode->i_op->get_link;
1072 		if (nd->flags & LOOKUP_RCU) {
1073 			res = get(NULL, inode, &last->done);
1074 			if (res == ERR_PTR(-ECHILD)) {
1075 				if (unlikely(unlazy_walk(nd)))
1076 					return ERR_PTR(-ECHILD);
1077 				res = get(dentry, inode, &last->done);
1078 			}
1079 		} else {
1080 			res = get(dentry, inode, &last->done);
1081 		}
1082 		if (IS_ERR_OR_NULL(res))
1083 			return res;
1084 	}
1085 	if (*res == '/') {
1086 		if (!nd->root.mnt)
1087 			set_root(nd);
1088 		if (unlikely(nd_jump_root(nd)))
1089 			return ERR_PTR(-ECHILD);
1090 		while (unlikely(*++res == '/'))
1091 			;
1092 	}
1093 	if (!*res)
1094 		res = NULL;
1095 	return res;
1096 }
1097 
1098 /*
1099  * follow_up - Find the mountpoint of path's vfsmount
1100  *
1101  * Given a path, find the mountpoint of its source file system.
1102  * Replace @path with the path of the mountpoint in the parent mount.
1103  * Up is towards /.
1104  *
1105  * Return 1 if we went up a level and 0 if we were already at the
1106  * root.
1107  */
1108 int follow_up(struct path *path)
1109 {
1110 	struct mount *mnt = real_mount(path->mnt);
1111 	struct mount *parent;
1112 	struct dentry *mountpoint;
1113 
1114 	read_seqlock_excl(&mount_lock);
1115 	parent = mnt->mnt_parent;
1116 	if (parent == mnt) {
1117 		read_sequnlock_excl(&mount_lock);
1118 		return 0;
1119 	}
1120 	mntget(&parent->mnt);
1121 	mountpoint = dget(mnt->mnt_mountpoint);
1122 	read_sequnlock_excl(&mount_lock);
1123 	dput(path->dentry);
1124 	path->dentry = mountpoint;
1125 	mntput(path->mnt);
1126 	path->mnt = &parent->mnt;
1127 	return 1;
1128 }
1129 EXPORT_SYMBOL(follow_up);
1130 
1131 /*
1132  * Perform an automount
1133  * - return -EISDIR to tell follow_managed() to stop and return the path we
1134  *   were called with.
1135  */
1136 static int follow_automount(struct path *path, struct nameidata *nd,
1137 			    bool *need_mntput)
1138 {
1139 	struct vfsmount *mnt;
1140 	int err;
1141 
1142 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1143 		return -EREMOTE;
1144 
1145 	/* We don't want to mount if someone's just doing a stat -
1146 	 * unless they're stat'ing a directory and appended a '/' to
1147 	 * the name.
1148 	 *
1149 	 * We do, however, want to mount if someone wants to open or
1150 	 * create a file of any type under the mountpoint, wants to
1151 	 * traverse through the mountpoint or wants to open the
1152 	 * mounted directory.  Also, autofs may mark negative dentries
1153 	 * as being automount points.  These will need the attentions
1154 	 * of the daemon to instantiate them before they can be used.
1155 	 */
1156 	if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1157 			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1158 	    path->dentry->d_inode)
1159 		return -EISDIR;
1160 
1161 	nd->total_link_count++;
1162 	if (nd->total_link_count >= 40)
1163 		return -ELOOP;
1164 
1165 	mnt = path->dentry->d_op->d_automount(path);
1166 	if (IS_ERR(mnt)) {
1167 		/*
1168 		 * The filesystem is allowed to return -EISDIR here to indicate
1169 		 * it doesn't want to automount.  For instance, autofs would do
1170 		 * this so that its userspace daemon can mount on this dentry.
1171 		 *
1172 		 * However, we can only permit this if it's a terminal point in
1173 		 * the path being looked up; if it wasn't then the remainder of
1174 		 * the path is inaccessible and we should say so.
1175 		 */
1176 		if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1177 			return -EREMOTE;
1178 		return PTR_ERR(mnt);
1179 	}
1180 
1181 	if (!mnt) /* mount collision */
1182 		return 0;
1183 
1184 	if (!*need_mntput) {
1185 		/* lock_mount() may release path->mnt on error */
1186 		mntget(path->mnt);
1187 		*need_mntput = true;
1188 	}
1189 	err = finish_automount(mnt, path);
1190 
1191 	switch (err) {
1192 	case -EBUSY:
1193 		/* Someone else made a mount here whilst we were busy */
1194 		return 0;
1195 	case 0:
1196 		path_put(path);
1197 		path->mnt = mnt;
1198 		path->dentry = dget(mnt->mnt_root);
1199 		return 0;
1200 	default:
1201 		return err;
1202 	}
1203 
1204 }
1205 
1206 /*
1207  * Handle a dentry that is managed in some way.
1208  * - Flagged for transit management (autofs)
1209  * - Flagged as mountpoint
1210  * - Flagged as automount point
1211  *
1212  * This may only be called in refwalk mode.
1213  *
1214  * Serialization is taken care of in namespace.c
1215  */
1216 static int follow_managed(struct path *path, struct nameidata *nd)
1217 {
1218 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1219 	unsigned managed;
1220 	bool need_mntput = false;
1221 	int ret = 0;
1222 
1223 	/* Given that we're not holding a lock here, we retain the value in a
1224 	 * local variable for each dentry as we look at it so that we don't see
1225 	 * the components of that value change under us */
1226 	while (managed = READ_ONCE(path->dentry->d_flags),
1227 	       managed &= DCACHE_MANAGED_DENTRY,
1228 	       unlikely(managed != 0)) {
1229 		/* Allow the filesystem to manage the transit without i_mutex
1230 		 * being held. */
1231 		if (managed & DCACHE_MANAGE_TRANSIT) {
1232 			BUG_ON(!path->dentry->d_op);
1233 			BUG_ON(!path->dentry->d_op->d_manage);
1234 			ret = path->dentry->d_op->d_manage(path, false);
1235 			if (ret < 0)
1236 				break;
1237 		}
1238 
1239 		/* Transit to a mounted filesystem. */
1240 		if (managed & DCACHE_MOUNTED) {
1241 			struct vfsmount *mounted = lookup_mnt(path);
1242 			if (mounted) {
1243 				dput(path->dentry);
1244 				if (need_mntput)
1245 					mntput(path->mnt);
1246 				path->mnt = mounted;
1247 				path->dentry = dget(mounted->mnt_root);
1248 				need_mntput = true;
1249 				continue;
1250 			}
1251 
1252 			/* Something is mounted on this dentry in another
1253 			 * namespace and/or whatever was mounted there in this
1254 			 * namespace got unmounted before lookup_mnt() could
1255 			 * get it */
1256 		}
1257 
1258 		/* Handle an automount point */
1259 		if (managed & DCACHE_NEED_AUTOMOUNT) {
1260 			ret = follow_automount(path, nd, &need_mntput);
1261 			if (ret < 0)
1262 				break;
1263 			continue;
1264 		}
1265 
1266 		/* We didn't change the current path point */
1267 		break;
1268 	}
1269 
1270 	if (need_mntput && path->mnt == mnt)
1271 		mntput(path->mnt);
1272 	if (ret == -EISDIR || !ret)
1273 		ret = 1;
1274 	if (need_mntput)
1275 		nd->flags |= LOOKUP_JUMPED;
1276 	if (unlikely(ret < 0))
1277 		path_put_conditional(path, nd);
1278 	return ret;
1279 }
1280 
1281 int follow_down_one(struct path *path)
1282 {
1283 	struct vfsmount *mounted;
1284 
1285 	mounted = lookup_mnt(path);
1286 	if (mounted) {
1287 		dput(path->dentry);
1288 		mntput(path->mnt);
1289 		path->mnt = mounted;
1290 		path->dentry = dget(mounted->mnt_root);
1291 		return 1;
1292 	}
1293 	return 0;
1294 }
1295 EXPORT_SYMBOL(follow_down_one);
1296 
1297 static inline int managed_dentry_rcu(const struct path *path)
1298 {
1299 	return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1300 		path->dentry->d_op->d_manage(path, true) : 0;
1301 }
1302 
1303 /*
1304  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1305  * we meet a managed dentry that would need blocking.
1306  */
1307 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1308 			       struct inode **inode, unsigned *seqp)
1309 {
1310 	for (;;) {
1311 		struct mount *mounted;
1312 		/*
1313 		 * Don't forget we might have a non-mountpoint managed dentry
1314 		 * that wants to block transit.
1315 		 */
1316 		switch (managed_dentry_rcu(path)) {
1317 		case -ECHILD:
1318 		default:
1319 			return false;
1320 		case -EISDIR:
1321 			return true;
1322 		case 0:
1323 			break;
1324 		}
1325 
1326 		if (!d_mountpoint(path->dentry))
1327 			return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1328 
1329 		mounted = __lookup_mnt(path->mnt, path->dentry);
1330 		if (!mounted)
1331 			break;
1332 		path->mnt = &mounted->mnt;
1333 		path->dentry = mounted->mnt.mnt_root;
1334 		nd->flags |= LOOKUP_JUMPED;
1335 		*seqp = read_seqcount_begin(&path->dentry->d_seq);
1336 		/*
1337 		 * Update the inode too. We don't need to re-check the
1338 		 * dentry sequence number here after this d_inode read,
1339 		 * because a mount-point is always pinned.
1340 		 */
1341 		*inode = path->dentry->d_inode;
1342 	}
1343 	return !read_seqretry(&mount_lock, nd->m_seq) &&
1344 		!(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1345 }
1346 
1347 static int follow_dotdot_rcu(struct nameidata *nd)
1348 {
1349 	struct inode *inode = nd->inode;
1350 
1351 	while (1) {
1352 		if (path_equal(&nd->path, &nd->root))
1353 			break;
1354 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1355 			struct dentry *old = nd->path.dentry;
1356 			struct dentry *parent = old->d_parent;
1357 			unsigned seq;
1358 
1359 			inode = parent->d_inode;
1360 			seq = read_seqcount_begin(&parent->d_seq);
1361 			if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1362 				return -ECHILD;
1363 			nd->path.dentry = parent;
1364 			nd->seq = seq;
1365 			if (unlikely(!path_connected(&nd->path)))
1366 				return -ENOENT;
1367 			break;
1368 		} else {
1369 			struct mount *mnt = real_mount(nd->path.mnt);
1370 			struct mount *mparent = mnt->mnt_parent;
1371 			struct dentry *mountpoint = mnt->mnt_mountpoint;
1372 			struct inode *inode2 = mountpoint->d_inode;
1373 			unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1374 			if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1375 				return -ECHILD;
1376 			if (&mparent->mnt == nd->path.mnt)
1377 				break;
1378 			/* we know that mountpoint was pinned */
1379 			nd->path.dentry = mountpoint;
1380 			nd->path.mnt = &mparent->mnt;
1381 			inode = inode2;
1382 			nd->seq = seq;
1383 		}
1384 	}
1385 	while (unlikely(d_mountpoint(nd->path.dentry))) {
1386 		struct mount *mounted;
1387 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1388 		if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1389 			return -ECHILD;
1390 		if (!mounted)
1391 			break;
1392 		nd->path.mnt = &mounted->mnt;
1393 		nd->path.dentry = mounted->mnt.mnt_root;
1394 		inode = nd->path.dentry->d_inode;
1395 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1396 	}
1397 	nd->inode = inode;
1398 	return 0;
1399 }
1400 
1401 /*
1402  * Follow down to the covering mount currently visible to userspace.  At each
1403  * point, the filesystem owning that dentry may be queried as to whether the
1404  * caller is permitted to proceed or not.
1405  */
1406 int follow_down(struct path *path)
1407 {
1408 	unsigned managed;
1409 	int ret;
1410 
1411 	while (managed = READ_ONCE(path->dentry->d_flags),
1412 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1413 		/* Allow the filesystem to manage the transit without i_mutex
1414 		 * being held.
1415 		 *
1416 		 * We indicate to the filesystem if someone is trying to mount
1417 		 * something here.  This gives autofs the chance to deny anyone
1418 		 * other than its daemon the right to mount on its
1419 		 * superstructure.
1420 		 *
1421 		 * The filesystem may sleep at this point.
1422 		 */
1423 		if (managed & DCACHE_MANAGE_TRANSIT) {
1424 			BUG_ON(!path->dentry->d_op);
1425 			BUG_ON(!path->dentry->d_op->d_manage);
1426 			ret = path->dentry->d_op->d_manage(path, false);
1427 			if (ret < 0)
1428 				return ret == -EISDIR ? 0 : ret;
1429 		}
1430 
1431 		/* Transit to a mounted filesystem. */
1432 		if (managed & DCACHE_MOUNTED) {
1433 			struct vfsmount *mounted = lookup_mnt(path);
1434 			if (!mounted)
1435 				break;
1436 			dput(path->dentry);
1437 			mntput(path->mnt);
1438 			path->mnt = mounted;
1439 			path->dentry = dget(mounted->mnt_root);
1440 			continue;
1441 		}
1442 
1443 		/* Don't handle automount points here */
1444 		break;
1445 	}
1446 	return 0;
1447 }
1448 EXPORT_SYMBOL(follow_down);
1449 
1450 /*
1451  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1452  */
1453 static void follow_mount(struct path *path)
1454 {
1455 	while (d_mountpoint(path->dentry)) {
1456 		struct vfsmount *mounted = lookup_mnt(path);
1457 		if (!mounted)
1458 			break;
1459 		dput(path->dentry);
1460 		mntput(path->mnt);
1461 		path->mnt = mounted;
1462 		path->dentry = dget(mounted->mnt_root);
1463 	}
1464 }
1465 
1466 static int path_parent_directory(struct path *path)
1467 {
1468 	struct dentry *old = path->dentry;
1469 	/* rare case of legitimate dget_parent()... */
1470 	path->dentry = dget_parent(path->dentry);
1471 	dput(old);
1472 	if (unlikely(!path_connected(path)))
1473 		return -ENOENT;
1474 	return 0;
1475 }
1476 
1477 static int follow_dotdot(struct nameidata *nd)
1478 {
1479 	while(1) {
1480 		if (path_equal(&nd->path, &nd->root))
1481 			break;
1482 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1483 			int ret = path_parent_directory(&nd->path);
1484 			if (ret)
1485 				return ret;
1486 			break;
1487 		}
1488 		if (!follow_up(&nd->path))
1489 			break;
1490 	}
1491 	follow_mount(&nd->path);
1492 	nd->inode = nd->path.dentry->d_inode;
1493 	return 0;
1494 }
1495 
1496 /*
1497  * This looks up the name in dcache and possibly revalidates the found dentry.
1498  * NULL is returned if the dentry does not exist in the cache.
1499  */
1500 static struct dentry *lookup_dcache(const struct qstr *name,
1501 				    struct dentry *dir,
1502 				    unsigned int flags)
1503 {
1504 	struct dentry *dentry = d_lookup(dir, name);
1505 	if (dentry) {
1506 		int error = d_revalidate(dentry, flags);
1507 		if (unlikely(error <= 0)) {
1508 			if (!error)
1509 				d_invalidate(dentry);
1510 			dput(dentry);
1511 			return ERR_PTR(error);
1512 		}
1513 	}
1514 	return dentry;
1515 }
1516 
1517 /*
1518  * Parent directory has inode locked exclusive.  This is one
1519  * and only case when ->lookup() gets called on non in-lookup
1520  * dentries - as the matter of fact, this only gets called
1521  * when directory is guaranteed to have no in-lookup children
1522  * at all.
1523  */
1524 static struct dentry *__lookup_hash(const struct qstr *name,
1525 		struct dentry *base, unsigned int flags)
1526 {
1527 	struct dentry *dentry = lookup_dcache(name, base, flags);
1528 	struct dentry *old;
1529 	struct inode *dir = base->d_inode;
1530 
1531 	if (dentry)
1532 		return dentry;
1533 
1534 	/* Don't create child dentry for a dead directory. */
1535 	if (unlikely(IS_DEADDIR(dir)))
1536 		return ERR_PTR(-ENOENT);
1537 
1538 	dentry = d_alloc(base, name);
1539 	if (unlikely(!dentry))
1540 		return ERR_PTR(-ENOMEM);
1541 
1542 	old = dir->i_op->lookup(dir, dentry, flags);
1543 	if (unlikely(old)) {
1544 		dput(dentry);
1545 		dentry = old;
1546 	}
1547 	return dentry;
1548 }
1549 
1550 static int lookup_fast(struct nameidata *nd,
1551 		       struct path *path, struct inode **inode,
1552 		       unsigned *seqp)
1553 {
1554 	struct vfsmount *mnt = nd->path.mnt;
1555 	struct dentry *dentry, *parent = nd->path.dentry;
1556 	int status = 1;
1557 	int err;
1558 
1559 	/*
1560 	 * Rename seqlock is not required here because in the off chance
1561 	 * of a false negative due to a concurrent rename, the caller is
1562 	 * going to fall back to non-racy lookup.
1563 	 */
1564 	if (nd->flags & LOOKUP_RCU) {
1565 		unsigned seq;
1566 		bool negative;
1567 		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1568 		if (unlikely(!dentry)) {
1569 			if (unlazy_walk(nd))
1570 				return -ECHILD;
1571 			return 0;
1572 		}
1573 
1574 		/*
1575 		 * This sequence count validates that the inode matches
1576 		 * the dentry name information from lookup.
1577 		 */
1578 		*inode = d_backing_inode(dentry);
1579 		negative = d_is_negative(dentry);
1580 		if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1581 			return -ECHILD;
1582 
1583 		/*
1584 		 * This sequence count validates that the parent had no
1585 		 * changes while we did the lookup of the dentry above.
1586 		 *
1587 		 * The memory barrier in read_seqcount_begin of child is
1588 		 *  enough, we can use __read_seqcount_retry here.
1589 		 */
1590 		if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1591 			return -ECHILD;
1592 
1593 		*seqp = seq;
1594 		status = d_revalidate(dentry, nd->flags);
1595 		if (likely(status > 0)) {
1596 			/*
1597 			 * Note: do negative dentry check after revalidation in
1598 			 * case that drops it.
1599 			 */
1600 			if (unlikely(negative))
1601 				return -ENOENT;
1602 			path->mnt = mnt;
1603 			path->dentry = dentry;
1604 			if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1605 				return 1;
1606 		}
1607 		if (unlazy_child(nd, dentry, seq))
1608 			return -ECHILD;
1609 		if (unlikely(status == -ECHILD))
1610 			/* we'd been told to redo it in non-rcu mode */
1611 			status = d_revalidate(dentry, nd->flags);
1612 	} else {
1613 		dentry = __d_lookup(parent, &nd->last);
1614 		if (unlikely(!dentry))
1615 			return 0;
1616 		status = d_revalidate(dentry, nd->flags);
1617 	}
1618 	if (unlikely(status <= 0)) {
1619 		if (!status)
1620 			d_invalidate(dentry);
1621 		dput(dentry);
1622 		return status;
1623 	}
1624 	if (unlikely(d_is_negative(dentry))) {
1625 		dput(dentry);
1626 		return -ENOENT;
1627 	}
1628 
1629 	path->mnt = mnt;
1630 	path->dentry = dentry;
1631 	err = follow_managed(path, nd);
1632 	if (likely(err > 0))
1633 		*inode = d_backing_inode(path->dentry);
1634 	return err;
1635 }
1636 
1637 /* Fast lookup failed, do it the slow way */
1638 static struct dentry *__lookup_slow(const struct qstr *name,
1639 				    struct dentry *dir,
1640 				    unsigned int flags)
1641 {
1642 	struct dentry *dentry, *old;
1643 	struct inode *inode = dir->d_inode;
1644 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1645 
1646 	/* Don't go there if it's already dead */
1647 	if (unlikely(IS_DEADDIR(inode)))
1648 		return ERR_PTR(-ENOENT);
1649 again:
1650 	dentry = d_alloc_parallel(dir, name, &wq);
1651 	if (IS_ERR(dentry))
1652 		return dentry;
1653 	if (unlikely(!d_in_lookup(dentry))) {
1654 		if (!(flags & LOOKUP_NO_REVAL)) {
1655 			int error = d_revalidate(dentry, flags);
1656 			if (unlikely(error <= 0)) {
1657 				if (!error) {
1658 					d_invalidate(dentry);
1659 					dput(dentry);
1660 					goto again;
1661 				}
1662 				dput(dentry);
1663 				dentry = ERR_PTR(error);
1664 			}
1665 		}
1666 	} else {
1667 		old = inode->i_op->lookup(inode, dentry, flags);
1668 		d_lookup_done(dentry);
1669 		if (unlikely(old)) {
1670 			dput(dentry);
1671 			dentry = old;
1672 		}
1673 	}
1674 	return dentry;
1675 }
1676 
1677 static struct dentry *lookup_slow(const struct qstr *name,
1678 				  struct dentry *dir,
1679 				  unsigned int flags)
1680 {
1681 	struct inode *inode = dir->d_inode;
1682 	struct dentry *res;
1683 	inode_lock_shared(inode);
1684 	res = __lookup_slow(name, dir, flags);
1685 	inode_unlock_shared(inode);
1686 	return res;
1687 }
1688 
1689 static inline int may_lookup(struct nameidata *nd)
1690 {
1691 	if (nd->flags & LOOKUP_RCU) {
1692 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1693 		if (err != -ECHILD)
1694 			return err;
1695 		if (unlazy_walk(nd))
1696 			return -ECHILD;
1697 	}
1698 	return inode_permission(nd->inode, MAY_EXEC);
1699 }
1700 
1701 static inline int handle_dots(struct nameidata *nd, int type)
1702 {
1703 	if (type == LAST_DOTDOT) {
1704 		if (!nd->root.mnt)
1705 			set_root(nd);
1706 		if (nd->flags & LOOKUP_RCU) {
1707 			return follow_dotdot_rcu(nd);
1708 		} else
1709 			return follow_dotdot(nd);
1710 	}
1711 	return 0;
1712 }
1713 
1714 static int pick_link(struct nameidata *nd, struct path *link,
1715 		     struct inode *inode, unsigned seq)
1716 {
1717 	int error;
1718 	struct saved *last;
1719 	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1720 		path_to_nameidata(link, nd);
1721 		return -ELOOP;
1722 	}
1723 	if (!(nd->flags & LOOKUP_RCU)) {
1724 		if (link->mnt == nd->path.mnt)
1725 			mntget(link->mnt);
1726 	}
1727 	error = nd_alloc_stack(nd);
1728 	if (unlikely(error)) {
1729 		if (error == -ECHILD) {
1730 			if (unlikely(!legitimize_path(nd, link, seq))) {
1731 				drop_links(nd);
1732 				nd->depth = 0;
1733 				nd->flags &= ~LOOKUP_RCU;
1734 				nd->path.mnt = NULL;
1735 				nd->path.dentry = NULL;
1736 				rcu_read_unlock();
1737 			} else if (likely(unlazy_walk(nd)) == 0)
1738 				error = nd_alloc_stack(nd);
1739 		}
1740 		if (error) {
1741 			path_put(link);
1742 			return error;
1743 		}
1744 	}
1745 
1746 	last = nd->stack + nd->depth++;
1747 	last->link = *link;
1748 	clear_delayed_call(&last->done);
1749 	nd->link_inode = inode;
1750 	last->seq = seq;
1751 	return 1;
1752 }
1753 
1754 enum {WALK_FOLLOW = 1, WALK_MORE = 2};
1755 
1756 /*
1757  * Do we need to follow links? We _really_ want to be able
1758  * to do this check without having to look at inode->i_op,
1759  * so we keep a cache of "no, this doesn't need follow_link"
1760  * for the common case.
1761  */
1762 static inline int step_into(struct nameidata *nd, struct path *path,
1763 			    int flags, struct inode *inode, unsigned seq)
1764 {
1765 	if (!(flags & WALK_MORE) && nd->depth)
1766 		put_link(nd);
1767 	if (likely(!d_is_symlink(path->dentry)) ||
1768 	   !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) {
1769 		/* not a symlink or should not follow */
1770 		path_to_nameidata(path, nd);
1771 		nd->inode = inode;
1772 		nd->seq = seq;
1773 		return 0;
1774 	}
1775 	/* make sure that d_is_symlink above matches inode */
1776 	if (nd->flags & LOOKUP_RCU) {
1777 		if (read_seqcount_retry(&path->dentry->d_seq, seq))
1778 			return -ECHILD;
1779 	}
1780 	return pick_link(nd, path, inode, seq);
1781 }
1782 
1783 static int walk_component(struct nameidata *nd, int flags)
1784 {
1785 	struct path path;
1786 	struct inode *inode;
1787 	unsigned seq;
1788 	int err;
1789 	/*
1790 	 * "." and ".." are special - ".." especially so because it has
1791 	 * to be able to know about the current root directory and
1792 	 * parent relationships.
1793 	 */
1794 	if (unlikely(nd->last_type != LAST_NORM)) {
1795 		err = handle_dots(nd, nd->last_type);
1796 		if (!(flags & WALK_MORE) && nd->depth)
1797 			put_link(nd);
1798 		return err;
1799 	}
1800 	err = lookup_fast(nd, &path, &inode, &seq);
1801 	if (unlikely(err <= 0)) {
1802 		if (err < 0)
1803 			return err;
1804 		path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1805 					  nd->flags);
1806 		if (IS_ERR(path.dentry))
1807 			return PTR_ERR(path.dentry);
1808 
1809 		path.mnt = nd->path.mnt;
1810 		err = follow_managed(&path, nd);
1811 		if (unlikely(err < 0))
1812 			return err;
1813 
1814 		if (unlikely(d_is_negative(path.dentry))) {
1815 			path_to_nameidata(&path, nd);
1816 			return -ENOENT;
1817 		}
1818 
1819 		seq = 0;	/* we are already out of RCU mode */
1820 		inode = d_backing_inode(path.dentry);
1821 	}
1822 
1823 	return step_into(nd, &path, flags, inode, seq);
1824 }
1825 
1826 /*
1827  * We can do the critical dentry name comparison and hashing
1828  * operations one word at a time, but we are limited to:
1829  *
1830  * - Architectures with fast unaligned word accesses. We could
1831  *   do a "get_unaligned()" if this helps and is sufficiently
1832  *   fast.
1833  *
1834  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1835  *   do not trap on the (extremely unlikely) case of a page
1836  *   crossing operation.
1837  *
1838  * - Furthermore, we need an efficient 64-bit compile for the
1839  *   64-bit case in order to generate the "number of bytes in
1840  *   the final mask". Again, that could be replaced with a
1841  *   efficient population count instruction or similar.
1842  */
1843 #ifdef CONFIG_DCACHE_WORD_ACCESS
1844 
1845 #include <asm/word-at-a-time.h>
1846 
1847 #ifdef HASH_MIX
1848 
1849 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1850 
1851 #elif defined(CONFIG_64BIT)
1852 /*
1853  * Register pressure in the mixing function is an issue, particularly
1854  * on 32-bit x86, but almost any function requires one state value and
1855  * one temporary.  Instead, use a function designed for two state values
1856  * and no temporaries.
1857  *
1858  * This function cannot create a collision in only two iterations, so
1859  * we have two iterations to achieve avalanche.  In those two iterations,
1860  * we have six layers of mixing, which is enough to spread one bit's
1861  * influence out to 2^6 = 64 state bits.
1862  *
1863  * Rotate constants are scored by considering either 64 one-bit input
1864  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1865  * probability of that delta causing a change to each of the 128 output
1866  * bits, using a sample of random initial states.
1867  *
1868  * The Shannon entropy of the computed probabilities is then summed
1869  * to produce a score.  Ideally, any input change has a 50% chance of
1870  * toggling any given output bit.
1871  *
1872  * Mixing scores (in bits) for (12,45):
1873  * Input delta: 1-bit      2-bit
1874  * 1 round:     713.3    42542.6
1875  * 2 rounds:   2753.7   140389.8
1876  * 3 rounds:   5954.1   233458.2
1877  * 4 rounds:   7862.6   256672.2
1878  * Perfect:    8192     258048
1879  *            (64*128) (64*63/2 * 128)
1880  */
1881 #define HASH_MIX(x, y, a)	\
1882 	(	x ^= (a),	\
1883 	y ^= x,	x = rol64(x,12),\
1884 	x += y,	y = rol64(y,45),\
1885 	y *= 9			)
1886 
1887 /*
1888  * Fold two longs into one 32-bit hash value.  This must be fast, but
1889  * latency isn't quite as critical, as there is a fair bit of additional
1890  * work done before the hash value is used.
1891  */
1892 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1893 {
1894 	y ^= x * GOLDEN_RATIO_64;
1895 	y *= GOLDEN_RATIO_64;
1896 	return y >> 32;
1897 }
1898 
1899 #else	/* 32-bit case */
1900 
1901 /*
1902  * Mixing scores (in bits) for (7,20):
1903  * Input delta: 1-bit      2-bit
1904  * 1 round:     330.3     9201.6
1905  * 2 rounds:   1246.4    25475.4
1906  * 3 rounds:   1907.1    31295.1
1907  * 4 rounds:   2042.3    31718.6
1908  * Perfect:    2048      31744
1909  *            (32*64)   (32*31/2 * 64)
1910  */
1911 #define HASH_MIX(x, y, a)	\
1912 	(	x ^= (a),	\
1913 	y ^= x,	x = rol32(x, 7),\
1914 	x += y,	y = rol32(y,20),\
1915 	y *= 9			)
1916 
1917 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1918 {
1919 	/* Use arch-optimized multiply if one exists */
1920 	return __hash_32(y ^ __hash_32(x));
1921 }
1922 
1923 #endif
1924 
1925 /*
1926  * Return the hash of a string of known length.  This is carfully
1927  * designed to match hash_name(), which is the more critical function.
1928  * In particular, we must end by hashing a final word containing 0..7
1929  * payload bytes, to match the way that hash_name() iterates until it
1930  * finds the delimiter after the name.
1931  */
1932 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1933 {
1934 	unsigned long a, x = 0, y = (unsigned long)salt;
1935 
1936 	for (;;) {
1937 		if (!len)
1938 			goto done;
1939 		a = load_unaligned_zeropad(name);
1940 		if (len < sizeof(unsigned long))
1941 			break;
1942 		HASH_MIX(x, y, a);
1943 		name += sizeof(unsigned long);
1944 		len -= sizeof(unsigned long);
1945 	}
1946 	x ^= a & bytemask_from_count(len);
1947 done:
1948 	return fold_hash(x, y);
1949 }
1950 EXPORT_SYMBOL(full_name_hash);
1951 
1952 /* Return the "hash_len" (hash and length) of a null-terminated string */
1953 u64 hashlen_string(const void *salt, const char *name)
1954 {
1955 	unsigned long a = 0, x = 0, y = (unsigned long)salt;
1956 	unsigned long adata, mask, len;
1957 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1958 
1959 	len = 0;
1960 	goto inside;
1961 
1962 	do {
1963 		HASH_MIX(x, y, a);
1964 		len += sizeof(unsigned long);
1965 inside:
1966 		a = load_unaligned_zeropad(name+len);
1967 	} while (!has_zero(a, &adata, &constants));
1968 
1969 	adata = prep_zero_mask(a, adata, &constants);
1970 	mask = create_zero_mask(adata);
1971 	x ^= a & zero_bytemask(mask);
1972 
1973 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1974 }
1975 EXPORT_SYMBOL(hashlen_string);
1976 
1977 /*
1978  * Calculate the length and hash of the path component, and
1979  * return the "hash_len" as the result.
1980  */
1981 static inline u64 hash_name(const void *salt, const char *name)
1982 {
1983 	unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
1984 	unsigned long adata, bdata, mask, len;
1985 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1986 
1987 	len = 0;
1988 	goto inside;
1989 
1990 	do {
1991 		HASH_MIX(x, y, a);
1992 		len += sizeof(unsigned long);
1993 inside:
1994 		a = load_unaligned_zeropad(name+len);
1995 		b = a ^ REPEAT_BYTE('/');
1996 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1997 
1998 	adata = prep_zero_mask(a, adata, &constants);
1999 	bdata = prep_zero_mask(b, bdata, &constants);
2000 	mask = create_zero_mask(adata | bdata);
2001 	x ^= a & zero_bytemask(mask);
2002 
2003 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2004 }
2005 
2006 #else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2007 
2008 /* Return the hash of a string of known length */
2009 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2010 {
2011 	unsigned long hash = init_name_hash(salt);
2012 	while (len--)
2013 		hash = partial_name_hash((unsigned char)*name++, hash);
2014 	return end_name_hash(hash);
2015 }
2016 EXPORT_SYMBOL(full_name_hash);
2017 
2018 /* Return the "hash_len" (hash and length) of a null-terminated string */
2019 u64 hashlen_string(const void *salt, const char *name)
2020 {
2021 	unsigned long hash = init_name_hash(salt);
2022 	unsigned long len = 0, c;
2023 
2024 	c = (unsigned char)*name;
2025 	while (c) {
2026 		len++;
2027 		hash = partial_name_hash(c, hash);
2028 		c = (unsigned char)name[len];
2029 	}
2030 	return hashlen_create(end_name_hash(hash), len);
2031 }
2032 EXPORT_SYMBOL(hashlen_string);
2033 
2034 /*
2035  * We know there's a real path component here of at least
2036  * one character.
2037  */
2038 static inline u64 hash_name(const void *salt, const char *name)
2039 {
2040 	unsigned long hash = init_name_hash(salt);
2041 	unsigned long len = 0, c;
2042 
2043 	c = (unsigned char)*name;
2044 	do {
2045 		len++;
2046 		hash = partial_name_hash(c, hash);
2047 		c = (unsigned char)name[len];
2048 	} while (c && c != '/');
2049 	return hashlen_create(end_name_hash(hash), len);
2050 }
2051 
2052 #endif
2053 
2054 /*
2055  * Name resolution.
2056  * This is the basic name resolution function, turning a pathname into
2057  * the final dentry. We expect 'base' to be positive and a directory.
2058  *
2059  * Returns 0 and nd will have valid dentry and mnt on success.
2060  * Returns error and drops reference to input namei data on failure.
2061  */
2062 static int link_path_walk(const char *name, struct nameidata *nd)
2063 {
2064 	int err;
2065 
2066 	if (IS_ERR(name))
2067 		return PTR_ERR(name);
2068 	while (*name=='/')
2069 		name++;
2070 	if (!*name)
2071 		return 0;
2072 
2073 	/* At this point we know we have a real path component. */
2074 	for(;;) {
2075 		u64 hash_len;
2076 		int type;
2077 
2078 		err = may_lookup(nd);
2079 		if (err)
2080 			return err;
2081 
2082 		hash_len = hash_name(nd->path.dentry, name);
2083 
2084 		type = LAST_NORM;
2085 		if (name[0] == '.') switch (hashlen_len(hash_len)) {
2086 			case 2:
2087 				if (name[1] == '.') {
2088 					type = LAST_DOTDOT;
2089 					nd->flags |= LOOKUP_JUMPED;
2090 				}
2091 				break;
2092 			case 1:
2093 				type = LAST_DOT;
2094 		}
2095 		if (likely(type == LAST_NORM)) {
2096 			struct dentry *parent = nd->path.dentry;
2097 			nd->flags &= ~LOOKUP_JUMPED;
2098 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2099 				struct qstr this = { { .hash_len = hash_len }, .name = name };
2100 				err = parent->d_op->d_hash(parent, &this);
2101 				if (err < 0)
2102 					return err;
2103 				hash_len = this.hash_len;
2104 				name = this.name;
2105 			}
2106 		}
2107 
2108 		nd->last.hash_len = hash_len;
2109 		nd->last.name = name;
2110 		nd->last_type = type;
2111 
2112 		name += hashlen_len(hash_len);
2113 		if (!*name)
2114 			goto OK;
2115 		/*
2116 		 * If it wasn't NUL, we know it was '/'. Skip that
2117 		 * slash, and continue until no more slashes.
2118 		 */
2119 		do {
2120 			name++;
2121 		} while (unlikely(*name == '/'));
2122 		if (unlikely(!*name)) {
2123 OK:
2124 			/* pathname body, done */
2125 			if (!nd->depth)
2126 				return 0;
2127 			name = nd->stack[nd->depth - 1].name;
2128 			/* trailing symlink, done */
2129 			if (!name)
2130 				return 0;
2131 			/* last component of nested symlink */
2132 			err = walk_component(nd, WALK_FOLLOW);
2133 		} else {
2134 			/* not the last component */
2135 			err = walk_component(nd, WALK_FOLLOW | WALK_MORE);
2136 		}
2137 		if (err < 0)
2138 			return err;
2139 
2140 		if (err) {
2141 			const char *s = get_link(nd);
2142 
2143 			if (IS_ERR(s))
2144 				return PTR_ERR(s);
2145 			err = 0;
2146 			if (unlikely(!s)) {
2147 				/* jumped */
2148 				put_link(nd);
2149 			} else {
2150 				nd->stack[nd->depth - 1].name = name;
2151 				name = s;
2152 				continue;
2153 			}
2154 		}
2155 		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2156 			if (nd->flags & LOOKUP_RCU) {
2157 				if (unlazy_walk(nd))
2158 					return -ECHILD;
2159 			}
2160 			return -ENOTDIR;
2161 		}
2162 	}
2163 }
2164 
2165 /* must be paired with terminate_walk() */
2166 static const char *path_init(struct nameidata *nd, unsigned flags)
2167 {
2168 	const char *s = nd->name->name;
2169 
2170 	if (!*s)
2171 		flags &= ~LOOKUP_RCU;
2172 	if (flags & LOOKUP_RCU)
2173 		rcu_read_lock();
2174 
2175 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
2176 	nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2177 	nd->depth = 0;
2178 	if (flags & LOOKUP_ROOT) {
2179 		struct dentry *root = nd->root.dentry;
2180 		struct inode *inode = root->d_inode;
2181 		if (*s && unlikely(!d_can_lookup(root)))
2182 			return ERR_PTR(-ENOTDIR);
2183 		nd->path = nd->root;
2184 		nd->inode = inode;
2185 		if (flags & LOOKUP_RCU) {
2186 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2187 			nd->root_seq = nd->seq;
2188 			nd->m_seq = read_seqbegin(&mount_lock);
2189 		} else {
2190 			path_get(&nd->path);
2191 		}
2192 		return s;
2193 	}
2194 
2195 	nd->root.mnt = NULL;
2196 	nd->path.mnt = NULL;
2197 	nd->path.dentry = NULL;
2198 
2199 	nd->m_seq = read_seqbegin(&mount_lock);
2200 	if (*s == '/') {
2201 		set_root(nd);
2202 		if (likely(!nd_jump_root(nd)))
2203 			return s;
2204 		return ERR_PTR(-ECHILD);
2205 	} else if (nd->dfd == AT_FDCWD) {
2206 		if (flags & LOOKUP_RCU) {
2207 			struct fs_struct *fs = current->fs;
2208 			unsigned seq;
2209 
2210 			do {
2211 				seq = read_seqcount_begin(&fs->seq);
2212 				nd->path = fs->pwd;
2213 				nd->inode = nd->path.dentry->d_inode;
2214 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2215 			} while (read_seqcount_retry(&fs->seq, seq));
2216 		} else {
2217 			get_fs_pwd(current->fs, &nd->path);
2218 			nd->inode = nd->path.dentry->d_inode;
2219 		}
2220 		return s;
2221 	} else {
2222 		/* Caller must check execute permissions on the starting path component */
2223 		struct fd f = fdget_raw(nd->dfd);
2224 		struct dentry *dentry;
2225 
2226 		if (!f.file)
2227 			return ERR_PTR(-EBADF);
2228 
2229 		dentry = f.file->f_path.dentry;
2230 
2231 		if (*s && unlikely(!d_can_lookup(dentry))) {
2232 			fdput(f);
2233 			return ERR_PTR(-ENOTDIR);
2234 		}
2235 
2236 		nd->path = f.file->f_path;
2237 		if (flags & LOOKUP_RCU) {
2238 			nd->inode = nd->path.dentry->d_inode;
2239 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2240 		} else {
2241 			path_get(&nd->path);
2242 			nd->inode = nd->path.dentry->d_inode;
2243 		}
2244 		fdput(f);
2245 		return s;
2246 	}
2247 }
2248 
2249 static const char *trailing_symlink(struct nameidata *nd)
2250 {
2251 	const char *s;
2252 	int error = may_follow_link(nd);
2253 	if (unlikely(error))
2254 		return ERR_PTR(error);
2255 	nd->flags |= LOOKUP_PARENT;
2256 	nd->stack[0].name = NULL;
2257 	s = get_link(nd);
2258 	return s ? s : "";
2259 }
2260 
2261 static inline int lookup_last(struct nameidata *nd)
2262 {
2263 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2264 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2265 
2266 	nd->flags &= ~LOOKUP_PARENT;
2267 	return walk_component(nd, 0);
2268 }
2269 
2270 static int handle_lookup_down(struct nameidata *nd)
2271 {
2272 	struct path path = nd->path;
2273 	struct inode *inode = nd->inode;
2274 	unsigned seq = nd->seq;
2275 	int err;
2276 
2277 	if (nd->flags & LOOKUP_RCU) {
2278 		/*
2279 		 * don't bother with unlazy_walk on failure - we are
2280 		 * at the very beginning of walk, so we lose nothing
2281 		 * if we simply redo everything in non-RCU mode
2282 		 */
2283 		if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq)))
2284 			return -ECHILD;
2285 	} else {
2286 		dget(path.dentry);
2287 		err = follow_managed(&path, nd);
2288 		if (unlikely(err < 0))
2289 			return err;
2290 		inode = d_backing_inode(path.dentry);
2291 		seq = 0;
2292 	}
2293 	path_to_nameidata(&path, nd);
2294 	nd->inode = inode;
2295 	nd->seq = seq;
2296 	return 0;
2297 }
2298 
2299 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2300 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2301 {
2302 	const char *s = path_init(nd, flags);
2303 	int err;
2304 
2305 	if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2306 		err = handle_lookup_down(nd);
2307 		if (unlikely(err < 0))
2308 			s = ERR_PTR(err);
2309 	}
2310 
2311 	while (!(err = link_path_walk(s, nd))
2312 		&& ((err = lookup_last(nd)) > 0)) {
2313 		s = trailing_symlink(nd);
2314 	}
2315 	if (!err)
2316 		err = complete_walk(nd);
2317 
2318 	if (!err && nd->flags & LOOKUP_DIRECTORY)
2319 		if (!d_can_lookup(nd->path.dentry))
2320 			err = -ENOTDIR;
2321 	if (!err) {
2322 		*path = nd->path;
2323 		nd->path.mnt = NULL;
2324 		nd->path.dentry = NULL;
2325 	}
2326 	terminate_walk(nd);
2327 	return err;
2328 }
2329 
2330 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2331 		    struct path *path, struct path *root)
2332 {
2333 	int retval;
2334 	struct nameidata nd;
2335 	if (IS_ERR(name))
2336 		return PTR_ERR(name);
2337 	if (unlikely(root)) {
2338 		nd.root = *root;
2339 		flags |= LOOKUP_ROOT;
2340 	}
2341 	set_nameidata(&nd, dfd, name);
2342 	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2343 	if (unlikely(retval == -ECHILD))
2344 		retval = path_lookupat(&nd, flags, path);
2345 	if (unlikely(retval == -ESTALE))
2346 		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2347 
2348 	if (likely(!retval))
2349 		audit_inode(name, path->dentry, 0);
2350 	restore_nameidata();
2351 	putname(name);
2352 	return retval;
2353 }
2354 
2355 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2356 static int path_parentat(struct nameidata *nd, unsigned flags,
2357 				struct path *parent)
2358 {
2359 	const char *s = path_init(nd, flags);
2360 	int err = link_path_walk(s, nd);
2361 	if (!err)
2362 		err = complete_walk(nd);
2363 	if (!err) {
2364 		*parent = nd->path;
2365 		nd->path.mnt = NULL;
2366 		nd->path.dentry = NULL;
2367 	}
2368 	terminate_walk(nd);
2369 	return err;
2370 }
2371 
2372 static struct filename *filename_parentat(int dfd, struct filename *name,
2373 				unsigned int flags, struct path *parent,
2374 				struct qstr *last, int *type)
2375 {
2376 	int retval;
2377 	struct nameidata nd;
2378 
2379 	if (IS_ERR(name))
2380 		return name;
2381 	set_nameidata(&nd, dfd, name);
2382 	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2383 	if (unlikely(retval == -ECHILD))
2384 		retval = path_parentat(&nd, flags, parent);
2385 	if (unlikely(retval == -ESTALE))
2386 		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2387 	if (likely(!retval)) {
2388 		*last = nd.last;
2389 		*type = nd.last_type;
2390 		audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2391 	} else {
2392 		putname(name);
2393 		name = ERR_PTR(retval);
2394 	}
2395 	restore_nameidata();
2396 	return name;
2397 }
2398 
2399 /* does lookup, returns the object with parent locked */
2400 struct dentry *kern_path_locked(const char *name, struct path *path)
2401 {
2402 	struct filename *filename;
2403 	struct dentry *d;
2404 	struct qstr last;
2405 	int type;
2406 
2407 	filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2408 				    &last, &type);
2409 	if (IS_ERR(filename))
2410 		return ERR_CAST(filename);
2411 	if (unlikely(type != LAST_NORM)) {
2412 		path_put(path);
2413 		putname(filename);
2414 		return ERR_PTR(-EINVAL);
2415 	}
2416 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2417 	d = __lookup_hash(&last, path->dentry, 0);
2418 	if (IS_ERR(d)) {
2419 		inode_unlock(path->dentry->d_inode);
2420 		path_put(path);
2421 	}
2422 	putname(filename);
2423 	return d;
2424 }
2425 
2426 int kern_path(const char *name, unsigned int flags, struct path *path)
2427 {
2428 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2429 			       flags, path, NULL);
2430 }
2431 EXPORT_SYMBOL(kern_path);
2432 
2433 /**
2434  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2435  * @dentry:  pointer to dentry of the base directory
2436  * @mnt: pointer to vfs mount of the base directory
2437  * @name: pointer to file name
2438  * @flags: lookup flags
2439  * @path: pointer to struct path to fill
2440  */
2441 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2442 		    const char *name, unsigned int flags,
2443 		    struct path *path)
2444 {
2445 	struct path root = {.mnt = mnt, .dentry = dentry};
2446 	/* the first argument of filename_lookup() is ignored with root */
2447 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2448 			       flags , path, &root);
2449 }
2450 EXPORT_SYMBOL(vfs_path_lookup);
2451 
2452 static int lookup_one_len_common(const char *name, struct dentry *base,
2453 				 int len, struct qstr *this)
2454 {
2455 	this->name = name;
2456 	this->len = len;
2457 	this->hash = full_name_hash(base, name, len);
2458 	if (!len)
2459 		return -EACCES;
2460 
2461 	if (unlikely(name[0] == '.')) {
2462 		if (len < 2 || (len == 2 && name[1] == '.'))
2463 			return -EACCES;
2464 	}
2465 
2466 	while (len--) {
2467 		unsigned int c = *(const unsigned char *)name++;
2468 		if (c == '/' || c == '\0')
2469 			return -EACCES;
2470 	}
2471 	/*
2472 	 * See if the low-level filesystem might want
2473 	 * to use its own hash..
2474 	 */
2475 	if (base->d_flags & DCACHE_OP_HASH) {
2476 		int err = base->d_op->d_hash(base, this);
2477 		if (err < 0)
2478 			return err;
2479 	}
2480 
2481 	return inode_permission(base->d_inode, MAY_EXEC);
2482 }
2483 
2484 /**
2485  * try_lookup_one_len - filesystem helper to lookup single pathname component
2486  * @name:	pathname component to lookup
2487  * @base:	base directory to lookup from
2488  * @len:	maximum length @len should be interpreted to
2489  *
2490  * Look up a dentry by name in the dcache, returning NULL if it does not
2491  * currently exist.  The function does not try to create a dentry.
2492  *
2493  * Note that this routine is purely a helper for filesystem usage and should
2494  * not be called by generic code.
2495  *
2496  * The caller must hold base->i_mutex.
2497  */
2498 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2499 {
2500 	struct qstr this;
2501 	int err;
2502 
2503 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2504 
2505 	err = lookup_one_len_common(name, base, len, &this);
2506 	if (err)
2507 		return ERR_PTR(err);
2508 
2509 	return lookup_dcache(&this, base, 0);
2510 }
2511 EXPORT_SYMBOL(try_lookup_one_len);
2512 
2513 /**
2514  * lookup_one_len - filesystem helper to lookup single pathname component
2515  * @name:	pathname component to lookup
2516  * @base:	base directory to lookup from
2517  * @len:	maximum length @len should be interpreted to
2518  *
2519  * Note that this routine is purely a helper for filesystem usage and should
2520  * not be called by generic code.
2521  *
2522  * The caller must hold base->i_mutex.
2523  */
2524 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2525 {
2526 	struct dentry *dentry;
2527 	struct qstr this;
2528 	int err;
2529 
2530 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2531 
2532 	err = lookup_one_len_common(name, base, len, &this);
2533 	if (err)
2534 		return ERR_PTR(err);
2535 
2536 	dentry = lookup_dcache(&this, base, 0);
2537 	return dentry ? dentry : __lookup_slow(&this, base, 0);
2538 }
2539 EXPORT_SYMBOL(lookup_one_len);
2540 
2541 /**
2542  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2543  * @name:	pathname component to lookup
2544  * @base:	base directory to lookup from
2545  * @len:	maximum length @len should be interpreted to
2546  *
2547  * Note that this routine is purely a helper for filesystem usage and should
2548  * not be called by generic code.
2549  *
2550  * Unlike lookup_one_len, it should be called without the parent
2551  * i_mutex held, and will take the i_mutex itself if necessary.
2552  */
2553 struct dentry *lookup_one_len_unlocked(const char *name,
2554 				       struct dentry *base, int len)
2555 {
2556 	struct qstr this;
2557 	int err;
2558 	struct dentry *ret;
2559 
2560 	err = lookup_one_len_common(name, base, len, &this);
2561 	if (err)
2562 		return ERR_PTR(err);
2563 
2564 	ret = lookup_dcache(&this, base, 0);
2565 	if (!ret)
2566 		ret = lookup_slow(&this, base, 0);
2567 	return ret;
2568 }
2569 EXPORT_SYMBOL(lookup_one_len_unlocked);
2570 
2571 #ifdef CONFIG_UNIX98_PTYS
2572 int path_pts(struct path *path)
2573 {
2574 	/* Find something mounted on "pts" in the same directory as
2575 	 * the input path.
2576 	 */
2577 	struct dentry *child, *parent;
2578 	struct qstr this;
2579 	int ret;
2580 
2581 	ret = path_parent_directory(path);
2582 	if (ret)
2583 		return ret;
2584 
2585 	parent = path->dentry;
2586 	this.name = "pts";
2587 	this.len = 3;
2588 	child = d_hash_and_lookup(parent, &this);
2589 	if (!child)
2590 		return -ENOENT;
2591 
2592 	path->dentry = child;
2593 	dput(parent);
2594 	follow_mount(path);
2595 	return 0;
2596 }
2597 #endif
2598 
2599 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2600 		 struct path *path, int *empty)
2601 {
2602 	return filename_lookup(dfd, getname_flags(name, flags, empty),
2603 			       flags, path, NULL);
2604 }
2605 EXPORT_SYMBOL(user_path_at_empty);
2606 
2607 /**
2608  * mountpoint_last - look up last component for umount
2609  * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2610  *
2611  * This is a special lookup_last function just for umount. In this case, we
2612  * need to resolve the path without doing any revalidation.
2613  *
2614  * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2615  * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2616  * in almost all cases, this lookup will be served out of the dcache. The only
2617  * cases where it won't are if nd->last refers to a symlink or the path is
2618  * bogus and it doesn't exist.
2619  *
2620  * Returns:
2621  * -error: if there was an error during lookup. This includes -ENOENT if the
2622  *         lookup found a negative dentry.
2623  *
2624  * 0:      if we successfully resolved nd->last and found it to not to be a
2625  *         symlink that needs to be followed.
2626  *
2627  * 1:      if we successfully resolved nd->last and found it to be a symlink
2628  *         that needs to be followed.
2629  */
2630 static int
2631 mountpoint_last(struct nameidata *nd)
2632 {
2633 	int error = 0;
2634 	struct dentry *dir = nd->path.dentry;
2635 	struct path path;
2636 
2637 	/* If we're in rcuwalk, drop out of it to handle last component */
2638 	if (nd->flags & LOOKUP_RCU) {
2639 		if (unlazy_walk(nd))
2640 			return -ECHILD;
2641 	}
2642 
2643 	nd->flags &= ~LOOKUP_PARENT;
2644 
2645 	if (unlikely(nd->last_type != LAST_NORM)) {
2646 		error = handle_dots(nd, nd->last_type);
2647 		if (error)
2648 			return error;
2649 		path.dentry = dget(nd->path.dentry);
2650 	} else {
2651 		path.dentry = d_lookup(dir, &nd->last);
2652 		if (!path.dentry) {
2653 			/*
2654 			 * No cached dentry. Mounted dentries are pinned in the
2655 			 * cache, so that means that this dentry is probably
2656 			 * a symlink or the path doesn't actually point
2657 			 * to a mounted dentry.
2658 			 */
2659 			path.dentry = lookup_slow(&nd->last, dir,
2660 					     nd->flags | LOOKUP_NO_REVAL);
2661 			if (IS_ERR(path.dentry))
2662 				return PTR_ERR(path.dentry);
2663 		}
2664 	}
2665 	if (d_is_negative(path.dentry)) {
2666 		dput(path.dentry);
2667 		return -ENOENT;
2668 	}
2669 	path.mnt = nd->path.mnt;
2670 	return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0);
2671 }
2672 
2673 /**
2674  * path_mountpoint - look up a path to be umounted
2675  * @nd:		lookup context
2676  * @flags:	lookup flags
2677  * @path:	pointer to container for result
2678  *
2679  * Look up the given name, but don't attempt to revalidate the last component.
2680  * Returns 0 and "path" will be valid on success; Returns error otherwise.
2681  */
2682 static int
2683 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2684 {
2685 	const char *s = path_init(nd, flags);
2686 	int err;
2687 
2688 	while (!(err = link_path_walk(s, nd)) &&
2689 		(err = mountpoint_last(nd)) > 0) {
2690 		s = trailing_symlink(nd);
2691 	}
2692 	if (!err) {
2693 		*path = nd->path;
2694 		nd->path.mnt = NULL;
2695 		nd->path.dentry = NULL;
2696 		follow_mount(path);
2697 	}
2698 	terminate_walk(nd);
2699 	return err;
2700 }
2701 
2702 static int
2703 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2704 			unsigned int flags)
2705 {
2706 	struct nameidata nd;
2707 	int error;
2708 	if (IS_ERR(name))
2709 		return PTR_ERR(name);
2710 	set_nameidata(&nd, dfd, name);
2711 	error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2712 	if (unlikely(error == -ECHILD))
2713 		error = path_mountpoint(&nd, flags, path);
2714 	if (unlikely(error == -ESTALE))
2715 		error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2716 	if (likely(!error))
2717 		audit_inode(name, path->dentry, AUDIT_INODE_NOEVAL);
2718 	restore_nameidata();
2719 	putname(name);
2720 	return error;
2721 }
2722 
2723 /**
2724  * user_path_mountpoint_at - lookup a path from userland in order to umount it
2725  * @dfd:	directory file descriptor
2726  * @name:	pathname from userland
2727  * @flags:	lookup flags
2728  * @path:	pointer to container to hold result
2729  *
2730  * A umount is a special case for path walking. We're not actually interested
2731  * in the inode in this situation, and ESTALE errors can be a problem. We
2732  * simply want track down the dentry and vfsmount attached at the mountpoint
2733  * and avoid revalidating the last component.
2734  *
2735  * Returns 0 and populates "path" on success.
2736  */
2737 int
2738 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2739 			struct path *path)
2740 {
2741 	return filename_mountpoint(dfd, getname(name), path, flags);
2742 }
2743 
2744 int
2745 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2746 			unsigned int flags)
2747 {
2748 	return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2749 }
2750 EXPORT_SYMBOL(kern_path_mountpoint);
2751 
2752 int __check_sticky(struct inode *dir, struct inode *inode)
2753 {
2754 	kuid_t fsuid = current_fsuid();
2755 
2756 	if (uid_eq(inode->i_uid, fsuid))
2757 		return 0;
2758 	if (uid_eq(dir->i_uid, fsuid))
2759 		return 0;
2760 	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2761 }
2762 EXPORT_SYMBOL(__check_sticky);
2763 
2764 /*
2765  *	Check whether we can remove a link victim from directory dir, check
2766  *  whether the type of victim is right.
2767  *  1. We can't do it if dir is read-only (done in permission())
2768  *  2. We should have write and exec permissions on dir
2769  *  3. We can't remove anything from append-only dir
2770  *  4. We can't do anything with immutable dir (done in permission())
2771  *  5. If the sticky bit on dir is set we should either
2772  *	a. be owner of dir, or
2773  *	b. be owner of victim, or
2774  *	c. have CAP_FOWNER capability
2775  *  6. If the victim is append-only or immutable we can't do antyhing with
2776  *     links pointing to it.
2777  *  7. If the victim has an unknown uid or gid we can't change the inode.
2778  *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2779  *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2780  * 10. We can't remove a root or mountpoint.
2781  * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2782  *     nfs_async_unlink().
2783  */
2784 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2785 {
2786 	struct inode *inode = d_backing_inode(victim);
2787 	int error;
2788 
2789 	if (d_is_negative(victim))
2790 		return -ENOENT;
2791 	BUG_ON(!inode);
2792 
2793 	BUG_ON(victim->d_parent->d_inode != dir);
2794 
2795 	/* Inode writeback is not safe when the uid or gid are invalid. */
2796 	if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
2797 		return -EOVERFLOW;
2798 
2799 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2800 
2801 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2802 	if (error)
2803 		return error;
2804 	if (IS_APPEND(dir))
2805 		return -EPERM;
2806 
2807 	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2808 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2809 		return -EPERM;
2810 	if (isdir) {
2811 		if (!d_is_dir(victim))
2812 			return -ENOTDIR;
2813 		if (IS_ROOT(victim))
2814 			return -EBUSY;
2815 	} else if (d_is_dir(victim))
2816 		return -EISDIR;
2817 	if (IS_DEADDIR(dir))
2818 		return -ENOENT;
2819 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2820 		return -EBUSY;
2821 	return 0;
2822 }
2823 
2824 /*	Check whether we can create an object with dentry child in directory
2825  *  dir.
2826  *  1. We can't do it if child already exists (open has special treatment for
2827  *     this case, but since we are inlined it's OK)
2828  *  2. We can't do it if dir is read-only (done in permission())
2829  *  3. We can't do it if the fs can't represent the fsuid or fsgid.
2830  *  4. We should have write and exec permissions on dir
2831  *  5. We can't do it if dir is immutable (done in permission())
2832  */
2833 static inline int may_create(struct inode *dir, struct dentry *child)
2834 {
2835 	struct user_namespace *s_user_ns;
2836 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2837 	if (child->d_inode)
2838 		return -EEXIST;
2839 	if (IS_DEADDIR(dir))
2840 		return -ENOENT;
2841 	s_user_ns = dir->i_sb->s_user_ns;
2842 	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2843 	    !kgid_has_mapping(s_user_ns, current_fsgid()))
2844 		return -EOVERFLOW;
2845 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2846 }
2847 
2848 /*
2849  * p1 and p2 should be directories on the same fs.
2850  */
2851 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2852 {
2853 	struct dentry *p;
2854 
2855 	if (p1 == p2) {
2856 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2857 		return NULL;
2858 	}
2859 
2860 	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2861 
2862 	p = d_ancestor(p2, p1);
2863 	if (p) {
2864 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2865 		inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2866 		return p;
2867 	}
2868 
2869 	p = d_ancestor(p1, p2);
2870 	if (p) {
2871 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2872 		inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2873 		return p;
2874 	}
2875 
2876 	inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2877 	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2878 	return NULL;
2879 }
2880 EXPORT_SYMBOL(lock_rename);
2881 
2882 void unlock_rename(struct dentry *p1, struct dentry *p2)
2883 {
2884 	inode_unlock(p1->d_inode);
2885 	if (p1 != p2) {
2886 		inode_unlock(p2->d_inode);
2887 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2888 	}
2889 }
2890 EXPORT_SYMBOL(unlock_rename);
2891 
2892 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2893 		bool want_excl)
2894 {
2895 	int error = may_create(dir, dentry);
2896 	if (error)
2897 		return error;
2898 
2899 	if (!dir->i_op->create)
2900 		return -EACCES;	/* shouldn't it be ENOSYS? */
2901 	mode &= S_IALLUGO;
2902 	mode |= S_IFREG;
2903 	error = security_inode_create(dir, dentry, mode);
2904 	if (error)
2905 		return error;
2906 	error = dir->i_op->create(dir, dentry, mode, want_excl);
2907 	if (!error)
2908 		fsnotify_create(dir, dentry);
2909 	return error;
2910 }
2911 EXPORT_SYMBOL(vfs_create);
2912 
2913 int vfs_mkobj(struct dentry *dentry, umode_t mode,
2914 		int (*f)(struct dentry *, umode_t, void *),
2915 		void *arg)
2916 {
2917 	struct inode *dir = dentry->d_parent->d_inode;
2918 	int error = may_create(dir, dentry);
2919 	if (error)
2920 		return error;
2921 
2922 	mode &= S_IALLUGO;
2923 	mode |= S_IFREG;
2924 	error = security_inode_create(dir, dentry, mode);
2925 	if (error)
2926 		return error;
2927 	error = f(dentry, mode, arg);
2928 	if (!error)
2929 		fsnotify_create(dir, dentry);
2930 	return error;
2931 }
2932 EXPORT_SYMBOL(vfs_mkobj);
2933 
2934 bool may_open_dev(const struct path *path)
2935 {
2936 	return !(path->mnt->mnt_flags & MNT_NODEV) &&
2937 		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2938 }
2939 
2940 static int may_open(const struct path *path, int acc_mode, int flag)
2941 {
2942 	struct dentry *dentry = path->dentry;
2943 	struct inode *inode = dentry->d_inode;
2944 	int error;
2945 
2946 	if (!inode)
2947 		return -ENOENT;
2948 
2949 	switch (inode->i_mode & S_IFMT) {
2950 	case S_IFLNK:
2951 		return -ELOOP;
2952 	case S_IFDIR:
2953 		if (acc_mode & MAY_WRITE)
2954 			return -EISDIR;
2955 		break;
2956 	case S_IFBLK:
2957 	case S_IFCHR:
2958 		if (!may_open_dev(path))
2959 			return -EACCES;
2960 		/*FALLTHRU*/
2961 	case S_IFIFO:
2962 	case S_IFSOCK:
2963 		flag &= ~O_TRUNC;
2964 		break;
2965 	}
2966 
2967 	error = inode_permission(inode, MAY_OPEN | acc_mode);
2968 	if (error)
2969 		return error;
2970 
2971 	/*
2972 	 * An append-only file must be opened in append mode for writing.
2973 	 */
2974 	if (IS_APPEND(inode)) {
2975 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2976 			return -EPERM;
2977 		if (flag & O_TRUNC)
2978 			return -EPERM;
2979 	}
2980 
2981 	/* O_NOATIME can only be set by the owner or superuser */
2982 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2983 		return -EPERM;
2984 
2985 	return 0;
2986 }
2987 
2988 static int handle_truncate(struct file *filp)
2989 {
2990 	const struct path *path = &filp->f_path;
2991 	struct inode *inode = path->dentry->d_inode;
2992 	int error = get_write_access(inode);
2993 	if (error)
2994 		return error;
2995 	/*
2996 	 * Refuse to truncate files with mandatory locks held on them.
2997 	 */
2998 	error = locks_verify_locked(filp);
2999 	if (!error)
3000 		error = security_path_truncate(path);
3001 	if (!error) {
3002 		error = do_truncate(path->dentry, 0,
3003 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3004 				    filp);
3005 	}
3006 	put_write_access(inode);
3007 	return error;
3008 }
3009 
3010 static inline int open_to_namei_flags(int flag)
3011 {
3012 	if ((flag & O_ACCMODE) == 3)
3013 		flag--;
3014 	return flag;
3015 }
3016 
3017 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
3018 {
3019 	struct user_namespace *s_user_ns;
3020 	int error = security_path_mknod(dir, dentry, mode, 0);
3021 	if (error)
3022 		return error;
3023 
3024 	s_user_ns = dir->dentry->d_sb->s_user_ns;
3025 	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
3026 	    !kgid_has_mapping(s_user_ns, current_fsgid()))
3027 		return -EOVERFLOW;
3028 
3029 	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
3030 	if (error)
3031 		return error;
3032 
3033 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
3034 }
3035 
3036 /*
3037  * Attempt to atomically look up, create and open a file from a negative
3038  * dentry.
3039  *
3040  * Returns 0 if successful.  The file will have been created and attached to
3041  * @file by the filesystem calling finish_open().
3042  *
3043  * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3044  * be set.  The caller will need to perform the open themselves.  @path will
3045  * have been updated to point to the new dentry.  This may be negative.
3046  *
3047  * Returns an error code otherwise.
3048  */
3049 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
3050 			struct path *path, struct file *file,
3051 			const struct open_flags *op,
3052 			int open_flag, umode_t mode)
3053 {
3054 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3055 	struct inode *dir =  nd->path.dentry->d_inode;
3056 	int error;
3057 
3058 	if (!(~open_flag & (O_EXCL | O_CREAT)))	/* both O_EXCL and O_CREAT */
3059 		open_flag &= ~O_TRUNC;
3060 
3061 	if (nd->flags & LOOKUP_DIRECTORY)
3062 		open_flag |= O_DIRECTORY;
3063 
3064 	file->f_path.dentry = DENTRY_NOT_SET;
3065 	file->f_path.mnt = nd->path.mnt;
3066 	error = dir->i_op->atomic_open(dir, dentry, file,
3067 				       open_to_namei_flags(open_flag), mode);
3068 	d_lookup_done(dentry);
3069 	if (!error) {
3070 		if (file->f_mode & FMODE_OPENED) {
3071 			/*
3072 			 * We didn't have the inode before the open, so check open
3073 			 * permission here.
3074 			 */
3075 			int acc_mode = op->acc_mode;
3076 			if (file->f_mode & FMODE_CREATED) {
3077 				WARN_ON(!(open_flag & O_CREAT));
3078 				fsnotify_create(dir, dentry);
3079 				acc_mode = 0;
3080 			}
3081 			error = may_open(&file->f_path, acc_mode, open_flag);
3082 			if (WARN_ON(error > 0))
3083 				error = -EINVAL;
3084 		} else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3085 			error = -EIO;
3086 		} else {
3087 			if (file->f_path.dentry) {
3088 				dput(dentry);
3089 				dentry = file->f_path.dentry;
3090 			}
3091 			if (file->f_mode & FMODE_CREATED)
3092 				fsnotify_create(dir, dentry);
3093 			if (unlikely(d_is_negative(dentry))) {
3094 				error = -ENOENT;
3095 			} else {
3096 				path->dentry = dentry;
3097 				path->mnt = nd->path.mnt;
3098 				return 0;
3099 			}
3100 		}
3101 	}
3102 	dput(dentry);
3103 	return error;
3104 }
3105 
3106 /*
3107  * Look up and maybe create and open the last component.
3108  *
3109  * Must be called with parent locked (exclusive in O_CREAT case).
3110  *
3111  * Returns 0 on success, that is, if
3112  *  the file was successfully atomically created (if necessary) and opened, or
3113  *  the file was not completely opened at this time, though lookups and
3114  *  creations were performed.
3115  * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3116  * In the latter case dentry returned in @path might be negative if O_CREAT
3117  * hadn't been specified.
3118  *
3119  * An error code is returned on failure.
3120  */
3121 static int lookup_open(struct nameidata *nd, struct path *path,
3122 			struct file *file,
3123 			const struct open_flags *op,
3124 			bool got_write)
3125 {
3126 	struct dentry *dir = nd->path.dentry;
3127 	struct inode *dir_inode = dir->d_inode;
3128 	int open_flag = op->open_flag;
3129 	struct dentry *dentry;
3130 	int error, create_error = 0;
3131 	umode_t mode = op->mode;
3132 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3133 
3134 	if (unlikely(IS_DEADDIR(dir_inode)))
3135 		return -ENOENT;
3136 
3137 	file->f_mode &= ~FMODE_CREATED;
3138 	dentry = d_lookup(dir, &nd->last);
3139 	for (;;) {
3140 		if (!dentry) {
3141 			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3142 			if (IS_ERR(dentry))
3143 				return PTR_ERR(dentry);
3144 		}
3145 		if (d_in_lookup(dentry))
3146 			break;
3147 
3148 		error = d_revalidate(dentry, nd->flags);
3149 		if (likely(error > 0))
3150 			break;
3151 		if (error)
3152 			goto out_dput;
3153 		d_invalidate(dentry);
3154 		dput(dentry);
3155 		dentry = NULL;
3156 	}
3157 	if (dentry->d_inode) {
3158 		/* Cached positive dentry: will open in f_op->open */
3159 		goto out_no_open;
3160 	}
3161 
3162 	/*
3163 	 * Checking write permission is tricky, bacuse we don't know if we are
3164 	 * going to actually need it: O_CREAT opens should work as long as the
3165 	 * file exists.  But checking existence breaks atomicity.  The trick is
3166 	 * to check access and if not granted clear O_CREAT from the flags.
3167 	 *
3168 	 * Another problem is returing the "right" error value (e.g. for an
3169 	 * O_EXCL open we want to return EEXIST not EROFS).
3170 	 */
3171 	if (open_flag & O_CREAT) {
3172 		if (!IS_POSIXACL(dir->d_inode))
3173 			mode &= ~current_umask();
3174 		if (unlikely(!got_write)) {
3175 			create_error = -EROFS;
3176 			open_flag &= ~O_CREAT;
3177 			if (open_flag & (O_EXCL | O_TRUNC))
3178 				goto no_open;
3179 			/* No side effects, safe to clear O_CREAT */
3180 		} else {
3181 			create_error = may_o_create(&nd->path, dentry, mode);
3182 			if (create_error) {
3183 				open_flag &= ~O_CREAT;
3184 				if (open_flag & O_EXCL)
3185 					goto no_open;
3186 			}
3187 		}
3188 	} else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3189 		   unlikely(!got_write)) {
3190 		/*
3191 		 * No O_CREATE -> atomicity not a requirement -> fall
3192 		 * back to lookup + open
3193 		 */
3194 		goto no_open;
3195 	}
3196 
3197 	if (dir_inode->i_op->atomic_open) {
3198 		error = atomic_open(nd, dentry, path, file, op, open_flag,
3199 				    mode);
3200 		if (unlikely(error == -ENOENT) && create_error)
3201 			error = create_error;
3202 		return error;
3203 	}
3204 
3205 no_open:
3206 	if (d_in_lookup(dentry)) {
3207 		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3208 							     nd->flags);
3209 		d_lookup_done(dentry);
3210 		if (unlikely(res)) {
3211 			if (IS_ERR(res)) {
3212 				error = PTR_ERR(res);
3213 				goto out_dput;
3214 			}
3215 			dput(dentry);
3216 			dentry = res;
3217 		}
3218 	}
3219 
3220 	/* Negative dentry, just create the file */
3221 	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3222 		file->f_mode |= FMODE_CREATED;
3223 		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3224 		if (!dir_inode->i_op->create) {
3225 			error = -EACCES;
3226 			goto out_dput;
3227 		}
3228 		error = dir_inode->i_op->create(dir_inode, dentry, mode,
3229 						open_flag & O_EXCL);
3230 		if (error)
3231 			goto out_dput;
3232 		fsnotify_create(dir_inode, dentry);
3233 	}
3234 	if (unlikely(create_error) && !dentry->d_inode) {
3235 		error = create_error;
3236 		goto out_dput;
3237 	}
3238 out_no_open:
3239 	path->dentry = dentry;
3240 	path->mnt = nd->path.mnt;
3241 	return 0;
3242 
3243 out_dput:
3244 	dput(dentry);
3245 	return error;
3246 }
3247 
3248 /*
3249  * Handle the last step of open()
3250  */
3251 static int do_last(struct nameidata *nd,
3252 		   struct file *file, const struct open_flags *op)
3253 {
3254 	struct dentry *dir = nd->path.dentry;
3255 	int open_flag = op->open_flag;
3256 	bool will_truncate = (open_flag & O_TRUNC) != 0;
3257 	bool got_write = false;
3258 	int acc_mode = op->acc_mode;
3259 	unsigned seq;
3260 	struct inode *inode;
3261 	struct path path;
3262 	int error;
3263 
3264 	nd->flags &= ~LOOKUP_PARENT;
3265 	nd->flags |= op->intent;
3266 
3267 	if (nd->last_type != LAST_NORM) {
3268 		error = handle_dots(nd, nd->last_type);
3269 		if (unlikely(error))
3270 			return error;
3271 		goto finish_open;
3272 	}
3273 
3274 	if (!(open_flag & O_CREAT)) {
3275 		if (nd->last.name[nd->last.len])
3276 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3277 		/* we _can_ be in RCU mode here */
3278 		error = lookup_fast(nd, &path, &inode, &seq);
3279 		if (likely(error > 0))
3280 			goto finish_lookup;
3281 
3282 		if (error < 0)
3283 			return error;
3284 
3285 		BUG_ON(nd->inode != dir->d_inode);
3286 		BUG_ON(nd->flags & LOOKUP_RCU);
3287 	} else {
3288 		/* create side of things */
3289 		/*
3290 		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3291 		 * has been cleared when we got to the last component we are
3292 		 * about to look up
3293 		 */
3294 		error = complete_walk(nd);
3295 		if (error)
3296 			return error;
3297 
3298 		audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3299 		/* trailing slashes? */
3300 		if (unlikely(nd->last.name[nd->last.len]))
3301 			return -EISDIR;
3302 	}
3303 
3304 	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3305 		error = mnt_want_write(nd->path.mnt);
3306 		if (!error)
3307 			got_write = true;
3308 		/*
3309 		 * do _not_ fail yet - we might not need that or fail with
3310 		 * a different error; let lookup_open() decide; we'll be
3311 		 * dropping this one anyway.
3312 		 */
3313 	}
3314 	if (open_flag & O_CREAT)
3315 		inode_lock(dir->d_inode);
3316 	else
3317 		inode_lock_shared(dir->d_inode);
3318 	error = lookup_open(nd, &path, file, op, got_write);
3319 	if (open_flag & O_CREAT)
3320 		inode_unlock(dir->d_inode);
3321 	else
3322 		inode_unlock_shared(dir->d_inode);
3323 
3324 	if (error)
3325 		goto out;
3326 
3327 	if (file->f_mode & FMODE_OPENED) {
3328 		if ((file->f_mode & FMODE_CREATED) ||
3329 		    !S_ISREG(file_inode(file)->i_mode))
3330 			will_truncate = false;
3331 
3332 		audit_inode(nd->name, file->f_path.dentry, 0);
3333 		goto opened;
3334 	}
3335 
3336 	if (file->f_mode & FMODE_CREATED) {
3337 		/* Don't check for write permission, don't truncate */
3338 		open_flag &= ~O_TRUNC;
3339 		will_truncate = false;
3340 		acc_mode = 0;
3341 		path_to_nameidata(&path, nd);
3342 		goto finish_open_created;
3343 	}
3344 
3345 	/*
3346 	 * If atomic_open() acquired write access it is dropped now due to
3347 	 * possible mount and symlink following (this might be optimized away if
3348 	 * necessary...)
3349 	 */
3350 	if (got_write) {
3351 		mnt_drop_write(nd->path.mnt);
3352 		got_write = false;
3353 	}
3354 
3355 	error = follow_managed(&path, nd);
3356 	if (unlikely(error < 0))
3357 		return error;
3358 
3359 	if (unlikely(d_is_negative(path.dentry))) {
3360 		path_to_nameidata(&path, nd);
3361 		return -ENOENT;
3362 	}
3363 
3364 	/*
3365 	 * create/update audit record if it already exists.
3366 	 */
3367 	audit_inode(nd->name, path.dentry, 0);
3368 
3369 	if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3370 		path_to_nameidata(&path, nd);
3371 		return -EEXIST;
3372 	}
3373 
3374 	seq = 0;	/* out of RCU mode, so the value doesn't matter */
3375 	inode = d_backing_inode(path.dentry);
3376 finish_lookup:
3377 	error = step_into(nd, &path, 0, inode, seq);
3378 	if (unlikely(error))
3379 		return error;
3380 finish_open:
3381 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3382 	error = complete_walk(nd);
3383 	if (error)
3384 		return error;
3385 	audit_inode(nd->name, nd->path.dentry, 0);
3386 	if (open_flag & O_CREAT) {
3387 		error = -EISDIR;
3388 		if (d_is_dir(nd->path.dentry))
3389 			goto out;
3390 		error = may_create_in_sticky(dir,
3391 					     d_backing_inode(nd->path.dentry));
3392 		if (unlikely(error))
3393 			goto out;
3394 	}
3395 	error = -ENOTDIR;
3396 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3397 		goto out;
3398 	if (!d_is_reg(nd->path.dentry))
3399 		will_truncate = false;
3400 
3401 	if (will_truncate) {
3402 		error = mnt_want_write(nd->path.mnt);
3403 		if (error)
3404 			goto out;
3405 		got_write = true;
3406 	}
3407 finish_open_created:
3408 	error = may_open(&nd->path, acc_mode, open_flag);
3409 	if (error)
3410 		goto out;
3411 	BUG_ON(file->f_mode & FMODE_OPENED); /* once it's opened, it's opened */
3412 	error = vfs_open(&nd->path, file);
3413 	if (error)
3414 		goto out;
3415 opened:
3416 	error = ima_file_check(file, op->acc_mode);
3417 	if (!error && will_truncate)
3418 		error = handle_truncate(file);
3419 out:
3420 	if (unlikely(error > 0)) {
3421 		WARN_ON(1);
3422 		error = -EINVAL;
3423 	}
3424 	if (got_write)
3425 		mnt_drop_write(nd->path.mnt);
3426 	return error;
3427 }
3428 
3429 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3430 {
3431 	struct dentry *child = NULL;
3432 	struct inode *dir = dentry->d_inode;
3433 	struct inode *inode;
3434 	int error;
3435 
3436 	/* we want directory to be writable */
3437 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3438 	if (error)
3439 		goto out_err;
3440 	error = -EOPNOTSUPP;
3441 	if (!dir->i_op->tmpfile)
3442 		goto out_err;
3443 	error = -ENOMEM;
3444 	child = d_alloc(dentry, &slash_name);
3445 	if (unlikely(!child))
3446 		goto out_err;
3447 	error = dir->i_op->tmpfile(dir, child, mode);
3448 	if (error)
3449 		goto out_err;
3450 	error = -ENOENT;
3451 	inode = child->d_inode;
3452 	if (unlikely(!inode))
3453 		goto out_err;
3454 	if (!(open_flag & O_EXCL)) {
3455 		spin_lock(&inode->i_lock);
3456 		inode->i_state |= I_LINKABLE;
3457 		spin_unlock(&inode->i_lock);
3458 	}
3459 	ima_post_create_tmpfile(inode);
3460 	return child;
3461 
3462 out_err:
3463 	dput(child);
3464 	return ERR_PTR(error);
3465 }
3466 EXPORT_SYMBOL(vfs_tmpfile);
3467 
3468 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3469 		const struct open_flags *op,
3470 		struct file *file)
3471 {
3472 	struct dentry *child;
3473 	struct path path;
3474 	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3475 	if (unlikely(error))
3476 		return error;
3477 	error = mnt_want_write(path.mnt);
3478 	if (unlikely(error))
3479 		goto out;
3480 	child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3481 	error = PTR_ERR(child);
3482 	if (IS_ERR(child))
3483 		goto out2;
3484 	dput(path.dentry);
3485 	path.dentry = child;
3486 	audit_inode(nd->name, child, 0);
3487 	/* Don't check for other permissions, the inode was just created */
3488 	error = may_open(&path, 0, op->open_flag);
3489 	if (error)
3490 		goto out2;
3491 	file->f_path.mnt = path.mnt;
3492 	error = finish_open(file, child, NULL);
3493 out2:
3494 	mnt_drop_write(path.mnt);
3495 out:
3496 	path_put(&path);
3497 	return error;
3498 }
3499 
3500 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3501 {
3502 	struct path path;
3503 	int error = path_lookupat(nd, flags, &path);
3504 	if (!error) {
3505 		audit_inode(nd->name, path.dentry, 0);
3506 		error = vfs_open(&path, file);
3507 		path_put(&path);
3508 	}
3509 	return error;
3510 }
3511 
3512 static struct file *path_openat(struct nameidata *nd,
3513 			const struct open_flags *op, unsigned flags)
3514 {
3515 	struct file *file;
3516 	int error;
3517 
3518 	file = alloc_empty_file(op->open_flag, current_cred());
3519 	if (IS_ERR(file))
3520 		return file;
3521 
3522 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3523 		error = do_tmpfile(nd, flags, op, file);
3524 	} else if (unlikely(file->f_flags & O_PATH)) {
3525 		error = do_o_path(nd, flags, file);
3526 	} else {
3527 		const char *s = path_init(nd, flags);
3528 		while (!(error = link_path_walk(s, nd)) &&
3529 			(error = do_last(nd, file, op)) > 0) {
3530 			nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3531 			s = trailing_symlink(nd);
3532 		}
3533 		terminate_walk(nd);
3534 	}
3535 	if (likely(!error)) {
3536 		if (likely(file->f_mode & FMODE_OPENED))
3537 			return file;
3538 		WARN_ON(1);
3539 		error = -EINVAL;
3540 	}
3541 	fput(file);
3542 	if (error == -EOPENSTALE) {
3543 		if (flags & LOOKUP_RCU)
3544 			error = -ECHILD;
3545 		else
3546 			error = -ESTALE;
3547 	}
3548 	return ERR_PTR(error);
3549 }
3550 
3551 struct file *do_filp_open(int dfd, struct filename *pathname,
3552 		const struct open_flags *op)
3553 {
3554 	struct nameidata nd;
3555 	int flags = op->lookup_flags;
3556 	struct file *filp;
3557 
3558 	set_nameidata(&nd, dfd, pathname);
3559 	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3560 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3561 		filp = path_openat(&nd, op, flags);
3562 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3563 		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3564 	restore_nameidata();
3565 	return filp;
3566 }
3567 
3568 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3569 		const char *name, const struct open_flags *op)
3570 {
3571 	struct nameidata nd;
3572 	struct file *file;
3573 	struct filename *filename;
3574 	int flags = op->lookup_flags | LOOKUP_ROOT;
3575 
3576 	nd.root.mnt = mnt;
3577 	nd.root.dentry = dentry;
3578 
3579 	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3580 		return ERR_PTR(-ELOOP);
3581 
3582 	filename = getname_kernel(name);
3583 	if (IS_ERR(filename))
3584 		return ERR_CAST(filename);
3585 
3586 	set_nameidata(&nd, -1, filename);
3587 	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3588 	if (unlikely(file == ERR_PTR(-ECHILD)))
3589 		file = path_openat(&nd, op, flags);
3590 	if (unlikely(file == ERR_PTR(-ESTALE)))
3591 		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3592 	restore_nameidata();
3593 	putname(filename);
3594 	return file;
3595 }
3596 
3597 static struct dentry *filename_create(int dfd, struct filename *name,
3598 				struct path *path, unsigned int lookup_flags)
3599 {
3600 	struct dentry *dentry = ERR_PTR(-EEXIST);
3601 	struct qstr last;
3602 	int type;
3603 	int err2;
3604 	int error;
3605 	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3606 
3607 	/*
3608 	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3609 	 * other flags passed in are ignored!
3610 	 */
3611 	lookup_flags &= LOOKUP_REVAL;
3612 
3613 	name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3614 	if (IS_ERR(name))
3615 		return ERR_CAST(name);
3616 
3617 	/*
3618 	 * Yucky last component or no last component at all?
3619 	 * (foo/., foo/.., /////)
3620 	 */
3621 	if (unlikely(type != LAST_NORM))
3622 		goto out;
3623 
3624 	/* don't fail immediately if it's r/o, at least try to report other errors */
3625 	err2 = mnt_want_write(path->mnt);
3626 	/*
3627 	 * Do the final lookup.
3628 	 */
3629 	lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3630 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3631 	dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3632 	if (IS_ERR(dentry))
3633 		goto unlock;
3634 
3635 	error = -EEXIST;
3636 	if (d_is_positive(dentry))
3637 		goto fail;
3638 
3639 	/*
3640 	 * Special case - lookup gave negative, but... we had foo/bar/
3641 	 * From the vfs_mknod() POV we just have a negative dentry -
3642 	 * all is fine. Let's be bastards - you had / on the end, you've
3643 	 * been asking for (non-existent) directory. -ENOENT for you.
3644 	 */
3645 	if (unlikely(!is_dir && last.name[last.len])) {
3646 		error = -ENOENT;
3647 		goto fail;
3648 	}
3649 	if (unlikely(err2)) {
3650 		error = err2;
3651 		goto fail;
3652 	}
3653 	putname(name);
3654 	return dentry;
3655 fail:
3656 	dput(dentry);
3657 	dentry = ERR_PTR(error);
3658 unlock:
3659 	inode_unlock(path->dentry->d_inode);
3660 	if (!err2)
3661 		mnt_drop_write(path->mnt);
3662 out:
3663 	path_put(path);
3664 	putname(name);
3665 	return dentry;
3666 }
3667 
3668 struct dentry *kern_path_create(int dfd, const char *pathname,
3669 				struct path *path, unsigned int lookup_flags)
3670 {
3671 	return filename_create(dfd, getname_kernel(pathname),
3672 				path, lookup_flags);
3673 }
3674 EXPORT_SYMBOL(kern_path_create);
3675 
3676 void done_path_create(struct path *path, struct dentry *dentry)
3677 {
3678 	dput(dentry);
3679 	inode_unlock(path->dentry->d_inode);
3680 	mnt_drop_write(path->mnt);
3681 	path_put(path);
3682 }
3683 EXPORT_SYMBOL(done_path_create);
3684 
3685 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3686 				struct path *path, unsigned int lookup_flags)
3687 {
3688 	return filename_create(dfd, getname(pathname), path, lookup_flags);
3689 }
3690 EXPORT_SYMBOL(user_path_create);
3691 
3692 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3693 {
3694 	int error = may_create(dir, dentry);
3695 
3696 	if (error)
3697 		return error;
3698 
3699 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3700 		return -EPERM;
3701 
3702 	if (!dir->i_op->mknod)
3703 		return -EPERM;
3704 
3705 	error = devcgroup_inode_mknod(mode, dev);
3706 	if (error)
3707 		return error;
3708 
3709 	error = security_inode_mknod(dir, dentry, mode, dev);
3710 	if (error)
3711 		return error;
3712 
3713 	error = dir->i_op->mknod(dir, dentry, mode, dev);
3714 	if (!error)
3715 		fsnotify_create(dir, dentry);
3716 	return error;
3717 }
3718 EXPORT_SYMBOL(vfs_mknod);
3719 
3720 static int may_mknod(umode_t mode)
3721 {
3722 	switch (mode & S_IFMT) {
3723 	case S_IFREG:
3724 	case S_IFCHR:
3725 	case S_IFBLK:
3726 	case S_IFIFO:
3727 	case S_IFSOCK:
3728 	case 0: /* zero mode translates to S_IFREG */
3729 		return 0;
3730 	case S_IFDIR:
3731 		return -EPERM;
3732 	default:
3733 		return -EINVAL;
3734 	}
3735 }
3736 
3737 long do_mknodat(int dfd, const char __user *filename, umode_t mode,
3738 		unsigned int dev)
3739 {
3740 	struct dentry *dentry;
3741 	struct path path;
3742 	int error;
3743 	unsigned int lookup_flags = 0;
3744 
3745 	error = may_mknod(mode);
3746 	if (error)
3747 		return error;
3748 retry:
3749 	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3750 	if (IS_ERR(dentry))
3751 		return PTR_ERR(dentry);
3752 
3753 	if (!IS_POSIXACL(path.dentry->d_inode))
3754 		mode &= ~current_umask();
3755 	error = security_path_mknod(&path, dentry, mode, dev);
3756 	if (error)
3757 		goto out;
3758 	switch (mode & S_IFMT) {
3759 		case 0: case S_IFREG:
3760 			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3761 			if (!error)
3762 				ima_post_path_mknod(dentry);
3763 			break;
3764 		case S_IFCHR: case S_IFBLK:
3765 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3766 					new_decode_dev(dev));
3767 			break;
3768 		case S_IFIFO: case S_IFSOCK:
3769 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3770 			break;
3771 	}
3772 out:
3773 	done_path_create(&path, dentry);
3774 	if (retry_estale(error, lookup_flags)) {
3775 		lookup_flags |= LOOKUP_REVAL;
3776 		goto retry;
3777 	}
3778 	return error;
3779 }
3780 
3781 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3782 		unsigned int, dev)
3783 {
3784 	return do_mknodat(dfd, filename, mode, dev);
3785 }
3786 
3787 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3788 {
3789 	return do_mknodat(AT_FDCWD, filename, mode, dev);
3790 }
3791 
3792 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3793 {
3794 	int error = may_create(dir, dentry);
3795 	unsigned max_links = dir->i_sb->s_max_links;
3796 
3797 	if (error)
3798 		return error;
3799 
3800 	if (!dir->i_op->mkdir)
3801 		return -EPERM;
3802 
3803 	mode &= (S_IRWXUGO|S_ISVTX);
3804 	error = security_inode_mkdir(dir, dentry, mode);
3805 	if (error)
3806 		return error;
3807 
3808 	if (max_links && dir->i_nlink >= max_links)
3809 		return -EMLINK;
3810 
3811 	error = dir->i_op->mkdir(dir, dentry, mode);
3812 	if (!error)
3813 		fsnotify_mkdir(dir, dentry);
3814 	return error;
3815 }
3816 EXPORT_SYMBOL(vfs_mkdir);
3817 
3818 long do_mkdirat(int dfd, const char __user *pathname, umode_t mode)
3819 {
3820 	struct dentry *dentry;
3821 	struct path path;
3822 	int error;
3823 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3824 
3825 retry:
3826 	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3827 	if (IS_ERR(dentry))
3828 		return PTR_ERR(dentry);
3829 
3830 	if (!IS_POSIXACL(path.dentry->d_inode))
3831 		mode &= ~current_umask();
3832 	error = security_path_mkdir(&path, dentry, mode);
3833 	if (!error)
3834 		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3835 	done_path_create(&path, dentry);
3836 	if (retry_estale(error, lookup_flags)) {
3837 		lookup_flags |= LOOKUP_REVAL;
3838 		goto retry;
3839 	}
3840 	return error;
3841 }
3842 
3843 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3844 {
3845 	return do_mkdirat(dfd, pathname, mode);
3846 }
3847 
3848 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3849 {
3850 	return do_mkdirat(AT_FDCWD, pathname, mode);
3851 }
3852 
3853 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3854 {
3855 	int error = may_delete(dir, dentry, 1);
3856 
3857 	if (error)
3858 		return error;
3859 
3860 	if (!dir->i_op->rmdir)
3861 		return -EPERM;
3862 
3863 	dget(dentry);
3864 	inode_lock(dentry->d_inode);
3865 
3866 	error = -EBUSY;
3867 	if (is_local_mountpoint(dentry))
3868 		goto out;
3869 
3870 	error = security_inode_rmdir(dir, dentry);
3871 	if (error)
3872 		goto out;
3873 
3874 	error = dir->i_op->rmdir(dir, dentry);
3875 	if (error)
3876 		goto out;
3877 
3878 	shrink_dcache_parent(dentry);
3879 	dentry->d_inode->i_flags |= S_DEAD;
3880 	dont_mount(dentry);
3881 	detach_mounts(dentry);
3882 	fsnotify_rmdir(dir, dentry);
3883 
3884 out:
3885 	inode_unlock(dentry->d_inode);
3886 	dput(dentry);
3887 	if (!error)
3888 		d_delete(dentry);
3889 	return error;
3890 }
3891 EXPORT_SYMBOL(vfs_rmdir);
3892 
3893 long do_rmdir(int dfd, const char __user *pathname)
3894 {
3895 	int error = 0;
3896 	struct filename *name;
3897 	struct dentry *dentry;
3898 	struct path path;
3899 	struct qstr last;
3900 	int type;
3901 	unsigned int lookup_flags = 0;
3902 retry:
3903 	name = filename_parentat(dfd, getname(pathname), lookup_flags,
3904 				&path, &last, &type);
3905 	if (IS_ERR(name))
3906 		return PTR_ERR(name);
3907 
3908 	switch (type) {
3909 	case LAST_DOTDOT:
3910 		error = -ENOTEMPTY;
3911 		goto exit1;
3912 	case LAST_DOT:
3913 		error = -EINVAL;
3914 		goto exit1;
3915 	case LAST_ROOT:
3916 		error = -EBUSY;
3917 		goto exit1;
3918 	}
3919 
3920 	error = mnt_want_write(path.mnt);
3921 	if (error)
3922 		goto exit1;
3923 
3924 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3925 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3926 	error = PTR_ERR(dentry);
3927 	if (IS_ERR(dentry))
3928 		goto exit2;
3929 	if (!dentry->d_inode) {
3930 		error = -ENOENT;
3931 		goto exit3;
3932 	}
3933 	error = security_path_rmdir(&path, dentry);
3934 	if (error)
3935 		goto exit3;
3936 	error = vfs_rmdir(path.dentry->d_inode, dentry);
3937 exit3:
3938 	dput(dentry);
3939 exit2:
3940 	inode_unlock(path.dentry->d_inode);
3941 	mnt_drop_write(path.mnt);
3942 exit1:
3943 	path_put(&path);
3944 	putname(name);
3945 	if (retry_estale(error, lookup_flags)) {
3946 		lookup_flags |= LOOKUP_REVAL;
3947 		goto retry;
3948 	}
3949 	return error;
3950 }
3951 
3952 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3953 {
3954 	return do_rmdir(AT_FDCWD, pathname);
3955 }
3956 
3957 /**
3958  * vfs_unlink - unlink a filesystem object
3959  * @dir:	parent directory
3960  * @dentry:	victim
3961  * @delegated_inode: returns victim inode, if the inode is delegated.
3962  *
3963  * The caller must hold dir->i_mutex.
3964  *
3965  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3966  * return a reference to the inode in delegated_inode.  The caller
3967  * should then break the delegation on that inode and retry.  Because
3968  * breaking a delegation may take a long time, the caller should drop
3969  * dir->i_mutex before doing so.
3970  *
3971  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3972  * be appropriate for callers that expect the underlying filesystem not
3973  * to be NFS exported.
3974  */
3975 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3976 {
3977 	struct inode *target = dentry->d_inode;
3978 	int error = may_delete(dir, dentry, 0);
3979 
3980 	if (error)
3981 		return error;
3982 
3983 	if (!dir->i_op->unlink)
3984 		return -EPERM;
3985 
3986 	inode_lock(target);
3987 	if (is_local_mountpoint(dentry))
3988 		error = -EBUSY;
3989 	else {
3990 		error = security_inode_unlink(dir, dentry);
3991 		if (!error) {
3992 			error = try_break_deleg(target, delegated_inode);
3993 			if (error)
3994 				goto out;
3995 			error = dir->i_op->unlink(dir, dentry);
3996 			if (!error) {
3997 				dont_mount(dentry);
3998 				detach_mounts(dentry);
3999 				fsnotify_unlink(dir, dentry);
4000 			}
4001 		}
4002 	}
4003 out:
4004 	inode_unlock(target);
4005 
4006 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
4007 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
4008 		fsnotify_link_count(target);
4009 		d_delete(dentry);
4010 	}
4011 
4012 	return error;
4013 }
4014 EXPORT_SYMBOL(vfs_unlink);
4015 
4016 /*
4017  * Make sure that the actual truncation of the file will occur outside its
4018  * directory's i_mutex.  Truncate can take a long time if there is a lot of
4019  * writeout happening, and we don't want to prevent access to the directory
4020  * while waiting on the I/O.
4021  */
4022 long do_unlinkat(int dfd, struct filename *name)
4023 {
4024 	int error;
4025 	struct dentry *dentry;
4026 	struct path path;
4027 	struct qstr last;
4028 	int type;
4029 	struct inode *inode = NULL;
4030 	struct inode *delegated_inode = NULL;
4031 	unsigned int lookup_flags = 0;
4032 retry:
4033 	name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4034 	if (IS_ERR(name))
4035 		return PTR_ERR(name);
4036 
4037 	error = -EISDIR;
4038 	if (type != LAST_NORM)
4039 		goto exit1;
4040 
4041 	error = mnt_want_write(path.mnt);
4042 	if (error)
4043 		goto exit1;
4044 retry_deleg:
4045 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4046 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4047 	error = PTR_ERR(dentry);
4048 	if (!IS_ERR(dentry)) {
4049 		/* Why not before? Because we want correct error value */
4050 		if (last.name[last.len])
4051 			goto slashes;
4052 		inode = dentry->d_inode;
4053 		if (d_is_negative(dentry))
4054 			goto slashes;
4055 		ihold(inode);
4056 		error = security_path_unlink(&path, dentry);
4057 		if (error)
4058 			goto exit2;
4059 		error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4060 exit2:
4061 		dput(dentry);
4062 	}
4063 	inode_unlock(path.dentry->d_inode);
4064 	if (inode)
4065 		iput(inode);	/* truncate the inode here */
4066 	inode = NULL;
4067 	if (delegated_inode) {
4068 		error = break_deleg_wait(&delegated_inode);
4069 		if (!error)
4070 			goto retry_deleg;
4071 	}
4072 	mnt_drop_write(path.mnt);
4073 exit1:
4074 	path_put(&path);
4075 	if (retry_estale(error, lookup_flags)) {
4076 		lookup_flags |= LOOKUP_REVAL;
4077 		inode = NULL;
4078 		goto retry;
4079 	}
4080 	putname(name);
4081 	return error;
4082 
4083 slashes:
4084 	if (d_is_negative(dentry))
4085 		error = -ENOENT;
4086 	else if (d_is_dir(dentry))
4087 		error = -EISDIR;
4088 	else
4089 		error = -ENOTDIR;
4090 	goto exit2;
4091 }
4092 
4093 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4094 {
4095 	if ((flag & ~AT_REMOVEDIR) != 0)
4096 		return -EINVAL;
4097 
4098 	if (flag & AT_REMOVEDIR)
4099 		return do_rmdir(dfd, pathname);
4100 
4101 	return do_unlinkat(dfd, getname(pathname));
4102 }
4103 
4104 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4105 {
4106 	return do_unlinkat(AT_FDCWD, getname(pathname));
4107 }
4108 
4109 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4110 {
4111 	int error = may_create(dir, dentry);
4112 
4113 	if (error)
4114 		return error;
4115 
4116 	if (!dir->i_op->symlink)
4117 		return -EPERM;
4118 
4119 	error = security_inode_symlink(dir, dentry, oldname);
4120 	if (error)
4121 		return error;
4122 
4123 	error = dir->i_op->symlink(dir, dentry, oldname);
4124 	if (!error)
4125 		fsnotify_create(dir, dentry);
4126 	return error;
4127 }
4128 EXPORT_SYMBOL(vfs_symlink);
4129 
4130 long do_symlinkat(const char __user *oldname, int newdfd,
4131 		  const char __user *newname)
4132 {
4133 	int error;
4134 	struct filename *from;
4135 	struct dentry *dentry;
4136 	struct path path;
4137 	unsigned int lookup_flags = 0;
4138 
4139 	from = getname(oldname);
4140 	if (IS_ERR(from))
4141 		return PTR_ERR(from);
4142 retry:
4143 	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4144 	error = PTR_ERR(dentry);
4145 	if (IS_ERR(dentry))
4146 		goto out_putname;
4147 
4148 	error = security_path_symlink(&path, dentry, from->name);
4149 	if (!error)
4150 		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4151 	done_path_create(&path, dentry);
4152 	if (retry_estale(error, lookup_flags)) {
4153 		lookup_flags |= LOOKUP_REVAL;
4154 		goto retry;
4155 	}
4156 out_putname:
4157 	putname(from);
4158 	return error;
4159 }
4160 
4161 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4162 		int, newdfd, const char __user *, newname)
4163 {
4164 	return do_symlinkat(oldname, newdfd, newname);
4165 }
4166 
4167 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4168 {
4169 	return do_symlinkat(oldname, AT_FDCWD, newname);
4170 }
4171 
4172 /**
4173  * vfs_link - create a new link
4174  * @old_dentry:	object to be linked
4175  * @dir:	new parent
4176  * @new_dentry:	where to create the new link
4177  * @delegated_inode: returns inode needing a delegation break
4178  *
4179  * The caller must hold dir->i_mutex
4180  *
4181  * If vfs_link discovers a delegation on the to-be-linked file in need
4182  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4183  * inode in delegated_inode.  The caller should then break the delegation
4184  * and retry.  Because breaking a delegation may take a long time, the
4185  * caller should drop the i_mutex before doing so.
4186  *
4187  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4188  * be appropriate for callers that expect the underlying filesystem not
4189  * to be NFS exported.
4190  */
4191 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4192 {
4193 	struct inode *inode = old_dentry->d_inode;
4194 	unsigned max_links = dir->i_sb->s_max_links;
4195 	int error;
4196 
4197 	if (!inode)
4198 		return -ENOENT;
4199 
4200 	error = may_create(dir, new_dentry);
4201 	if (error)
4202 		return error;
4203 
4204 	if (dir->i_sb != inode->i_sb)
4205 		return -EXDEV;
4206 
4207 	/*
4208 	 * A link to an append-only or immutable file cannot be created.
4209 	 */
4210 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4211 		return -EPERM;
4212 	/*
4213 	 * Updating the link count will likely cause i_uid and i_gid to
4214 	 * be writen back improperly if their true value is unknown to
4215 	 * the vfs.
4216 	 */
4217 	if (HAS_UNMAPPED_ID(inode))
4218 		return -EPERM;
4219 	if (!dir->i_op->link)
4220 		return -EPERM;
4221 	if (S_ISDIR(inode->i_mode))
4222 		return -EPERM;
4223 
4224 	error = security_inode_link(old_dentry, dir, new_dentry);
4225 	if (error)
4226 		return error;
4227 
4228 	inode_lock(inode);
4229 	/* Make sure we don't allow creating hardlink to an unlinked file */
4230 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4231 		error =  -ENOENT;
4232 	else if (max_links && inode->i_nlink >= max_links)
4233 		error = -EMLINK;
4234 	else {
4235 		error = try_break_deleg(inode, delegated_inode);
4236 		if (!error)
4237 			error = dir->i_op->link(old_dentry, dir, new_dentry);
4238 	}
4239 
4240 	if (!error && (inode->i_state & I_LINKABLE)) {
4241 		spin_lock(&inode->i_lock);
4242 		inode->i_state &= ~I_LINKABLE;
4243 		spin_unlock(&inode->i_lock);
4244 	}
4245 	inode_unlock(inode);
4246 	if (!error)
4247 		fsnotify_link(dir, inode, new_dentry);
4248 	return error;
4249 }
4250 EXPORT_SYMBOL(vfs_link);
4251 
4252 /*
4253  * Hardlinks are often used in delicate situations.  We avoid
4254  * security-related surprises by not following symlinks on the
4255  * newname.  --KAB
4256  *
4257  * We don't follow them on the oldname either to be compatible
4258  * with linux 2.0, and to avoid hard-linking to directories
4259  * and other special files.  --ADM
4260  */
4261 int do_linkat(int olddfd, const char __user *oldname, int newdfd,
4262 	      const char __user *newname, int flags)
4263 {
4264 	struct dentry *new_dentry;
4265 	struct path old_path, new_path;
4266 	struct inode *delegated_inode = NULL;
4267 	int how = 0;
4268 	int error;
4269 
4270 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4271 		return -EINVAL;
4272 	/*
4273 	 * To use null names we require CAP_DAC_READ_SEARCH
4274 	 * This ensures that not everyone will be able to create
4275 	 * handlink using the passed filedescriptor.
4276 	 */
4277 	if (flags & AT_EMPTY_PATH) {
4278 		if (!capable(CAP_DAC_READ_SEARCH))
4279 			return -ENOENT;
4280 		how = LOOKUP_EMPTY;
4281 	}
4282 
4283 	if (flags & AT_SYMLINK_FOLLOW)
4284 		how |= LOOKUP_FOLLOW;
4285 retry:
4286 	error = user_path_at(olddfd, oldname, how, &old_path);
4287 	if (error)
4288 		return error;
4289 
4290 	new_dentry = user_path_create(newdfd, newname, &new_path,
4291 					(how & LOOKUP_REVAL));
4292 	error = PTR_ERR(new_dentry);
4293 	if (IS_ERR(new_dentry))
4294 		goto out;
4295 
4296 	error = -EXDEV;
4297 	if (old_path.mnt != new_path.mnt)
4298 		goto out_dput;
4299 	error = may_linkat(&old_path);
4300 	if (unlikely(error))
4301 		goto out_dput;
4302 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4303 	if (error)
4304 		goto out_dput;
4305 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4306 out_dput:
4307 	done_path_create(&new_path, new_dentry);
4308 	if (delegated_inode) {
4309 		error = break_deleg_wait(&delegated_inode);
4310 		if (!error) {
4311 			path_put(&old_path);
4312 			goto retry;
4313 		}
4314 	}
4315 	if (retry_estale(error, how)) {
4316 		path_put(&old_path);
4317 		how |= LOOKUP_REVAL;
4318 		goto retry;
4319 	}
4320 out:
4321 	path_put(&old_path);
4322 
4323 	return error;
4324 }
4325 
4326 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4327 		int, newdfd, const char __user *, newname, int, flags)
4328 {
4329 	return do_linkat(olddfd, oldname, newdfd, newname, flags);
4330 }
4331 
4332 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4333 {
4334 	return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4335 }
4336 
4337 /**
4338  * vfs_rename - rename a filesystem object
4339  * @old_dir:	parent of source
4340  * @old_dentry:	source
4341  * @new_dir:	parent of destination
4342  * @new_dentry:	destination
4343  * @delegated_inode: returns an inode needing a delegation break
4344  * @flags:	rename flags
4345  *
4346  * The caller must hold multiple mutexes--see lock_rename()).
4347  *
4348  * If vfs_rename discovers a delegation in need of breaking at either
4349  * the source or destination, it will return -EWOULDBLOCK and return a
4350  * reference to the inode in delegated_inode.  The caller should then
4351  * break the delegation and retry.  Because breaking a delegation may
4352  * take a long time, the caller should drop all locks before doing
4353  * so.
4354  *
4355  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4356  * be appropriate for callers that expect the underlying filesystem not
4357  * to be NFS exported.
4358  *
4359  * The worst of all namespace operations - renaming directory. "Perverted"
4360  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4361  * Problems:
4362  *
4363  *	a) we can get into loop creation.
4364  *	b) race potential - two innocent renames can create a loop together.
4365  *	   That's where 4.4 screws up. Current fix: serialization on
4366  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4367  *	   story.
4368  *	c) we have to lock _four_ objects - parents and victim (if it exists),
4369  *	   and source (if it is not a directory).
4370  *	   And that - after we got ->i_mutex on parents (until then we don't know
4371  *	   whether the target exists).  Solution: try to be smart with locking
4372  *	   order for inodes.  We rely on the fact that tree topology may change
4373  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4374  *	   move will be locked.  Thus we can rank directories by the tree
4375  *	   (ancestors first) and rank all non-directories after them.
4376  *	   That works since everybody except rename does "lock parent, lookup,
4377  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4378  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4379  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4380  *	   we'd better make sure that there's no link(2) for them.
4381  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4382  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4383  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4384  *	   ->i_mutex on parents, which works but leads to some truly excessive
4385  *	   locking].
4386  */
4387 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4388 	       struct inode *new_dir, struct dentry *new_dentry,
4389 	       struct inode **delegated_inode, unsigned int flags)
4390 {
4391 	int error;
4392 	bool is_dir = d_is_dir(old_dentry);
4393 	struct inode *source = old_dentry->d_inode;
4394 	struct inode *target = new_dentry->d_inode;
4395 	bool new_is_dir = false;
4396 	unsigned max_links = new_dir->i_sb->s_max_links;
4397 	struct name_snapshot old_name;
4398 
4399 	if (source == target)
4400 		return 0;
4401 
4402 	error = may_delete(old_dir, old_dentry, is_dir);
4403 	if (error)
4404 		return error;
4405 
4406 	if (!target) {
4407 		error = may_create(new_dir, new_dentry);
4408 	} else {
4409 		new_is_dir = d_is_dir(new_dentry);
4410 
4411 		if (!(flags & RENAME_EXCHANGE))
4412 			error = may_delete(new_dir, new_dentry, is_dir);
4413 		else
4414 			error = may_delete(new_dir, new_dentry, new_is_dir);
4415 	}
4416 	if (error)
4417 		return error;
4418 
4419 	if (!old_dir->i_op->rename)
4420 		return -EPERM;
4421 
4422 	/*
4423 	 * If we are going to change the parent - check write permissions,
4424 	 * we'll need to flip '..'.
4425 	 */
4426 	if (new_dir != old_dir) {
4427 		if (is_dir) {
4428 			error = inode_permission(source, MAY_WRITE);
4429 			if (error)
4430 				return error;
4431 		}
4432 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4433 			error = inode_permission(target, MAY_WRITE);
4434 			if (error)
4435 				return error;
4436 		}
4437 	}
4438 
4439 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4440 				      flags);
4441 	if (error)
4442 		return error;
4443 
4444 	take_dentry_name_snapshot(&old_name, old_dentry);
4445 	dget(new_dentry);
4446 	if (!is_dir || (flags & RENAME_EXCHANGE))
4447 		lock_two_nondirectories(source, target);
4448 	else if (target)
4449 		inode_lock(target);
4450 
4451 	error = -EBUSY;
4452 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4453 		goto out;
4454 
4455 	if (max_links && new_dir != old_dir) {
4456 		error = -EMLINK;
4457 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4458 			goto out;
4459 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4460 		    old_dir->i_nlink >= max_links)
4461 			goto out;
4462 	}
4463 	if (!is_dir) {
4464 		error = try_break_deleg(source, delegated_inode);
4465 		if (error)
4466 			goto out;
4467 	}
4468 	if (target && !new_is_dir) {
4469 		error = try_break_deleg(target, delegated_inode);
4470 		if (error)
4471 			goto out;
4472 	}
4473 	error = old_dir->i_op->rename(old_dir, old_dentry,
4474 				       new_dir, new_dentry, flags);
4475 	if (error)
4476 		goto out;
4477 
4478 	if (!(flags & RENAME_EXCHANGE) && target) {
4479 		if (is_dir) {
4480 			shrink_dcache_parent(new_dentry);
4481 			target->i_flags |= S_DEAD;
4482 		}
4483 		dont_mount(new_dentry);
4484 		detach_mounts(new_dentry);
4485 	}
4486 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4487 		if (!(flags & RENAME_EXCHANGE))
4488 			d_move(old_dentry, new_dentry);
4489 		else
4490 			d_exchange(old_dentry, new_dentry);
4491 	}
4492 out:
4493 	if (!is_dir || (flags & RENAME_EXCHANGE))
4494 		unlock_two_nondirectories(source, target);
4495 	else if (target)
4496 		inode_unlock(target);
4497 	dput(new_dentry);
4498 	if (!error) {
4499 		fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4500 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4501 		if (flags & RENAME_EXCHANGE) {
4502 			fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4503 				      new_is_dir, NULL, new_dentry);
4504 		}
4505 	}
4506 	release_dentry_name_snapshot(&old_name);
4507 
4508 	return error;
4509 }
4510 EXPORT_SYMBOL(vfs_rename);
4511 
4512 static int do_renameat2(int olddfd, const char __user *oldname, int newdfd,
4513 			const char __user *newname, unsigned int flags)
4514 {
4515 	struct dentry *old_dentry, *new_dentry;
4516 	struct dentry *trap;
4517 	struct path old_path, new_path;
4518 	struct qstr old_last, new_last;
4519 	int old_type, new_type;
4520 	struct inode *delegated_inode = NULL;
4521 	struct filename *from;
4522 	struct filename *to;
4523 	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4524 	bool should_retry = false;
4525 	int error;
4526 
4527 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4528 		return -EINVAL;
4529 
4530 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4531 	    (flags & RENAME_EXCHANGE))
4532 		return -EINVAL;
4533 
4534 	if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4535 		return -EPERM;
4536 
4537 	if (flags & RENAME_EXCHANGE)
4538 		target_flags = 0;
4539 
4540 retry:
4541 	from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4542 				&old_path, &old_last, &old_type);
4543 	if (IS_ERR(from)) {
4544 		error = PTR_ERR(from);
4545 		goto exit;
4546 	}
4547 
4548 	to = filename_parentat(newdfd, getname(newname), lookup_flags,
4549 				&new_path, &new_last, &new_type);
4550 	if (IS_ERR(to)) {
4551 		error = PTR_ERR(to);
4552 		goto exit1;
4553 	}
4554 
4555 	error = -EXDEV;
4556 	if (old_path.mnt != new_path.mnt)
4557 		goto exit2;
4558 
4559 	error = -EBUSY;
4560 	if (old_type != LAST_NORM)
4561 		goto exit2;
4562 
4563 	if (flags & RENAME_NOREPLACE)
4564 		error = -EEXIST;
4565 	if (new_type != LAST_NORM)
4566 		goto exit2;
4567 
4568 	error = mnt_want_write(old_path.mnt);
4569 	if (error)
4570 		goto exit2;
4571 
4572 retry_deleg:
4573 	trap = lock_rename(new_path.dentry, old_path.dentry);
4574 
4575 	old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4576 	error = PTR_ERR(old_dentry);
4577 	if (IS_ERR(old_dentry))
4578 		goto exit3;
4579 	/* source must exist */
4580 	error = -ENOENT;
4581 	if (d_is_negative(old_dentry))
4582 		goto exit4;
4583 	new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4584 	error = PTR_ERR(new_dentry);
4585 	if (IS_ERR(new_dentry))
4586 		goto exit4;
4587 	error = -EEXIST;
4588 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4589 		goto exit5;
4590 	if (flags & RENAME_EXCHANGE) {
4591 		error = -ENOENT;
4592 		if (d_is_negative(new_dentry))
4593 			goto exit5;
4594 
4595 		if (!d_is_dir(new_dentry)) {
4596 			error = -ENOTDIR;
4597 			if (new_last.name[new_last.len])
4598 				goto exit5;
4599 		}
4600 	}
4601 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4602 	if (!d_is_dir(old_dentry)) {
4603 		error = -ENOTDIR;
4604 		if (old_last.name[old_last.len])
4605 			goto exit5;
4606 		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4607 			goto exit5;
4608 	}
4609 	/* source should not be ancestor of target */
4610 	error = -EINVAL;
4611 	if (old_dentry == trap)
4612 		goto exit5;
4613 	/* target should not be an ancestor of source */
4614 	if (!(flags & RENAME_EXCHANGE))
4615 		error = -ENOTEMPTY;
4616 	if (new_dentry == trap)
4617 		goto exit5;
4618 
4619 	error = security_path_rename(&old_path, old_dentry,
4620 				     &new_path, new_dentry, flags);
4621 	if (error)
4622 		goto exit5;
4623 	error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4624 			   new_path.dentry->d_inode, new_dentry,
4625 			   &delegated_inode, flags);
4626 exit5:
4627 	dput(new_dentry);
4628 exit4:
4629 	dput(old_dentry);
4630 exit3:
4631 	unlock_rename(new_path.dentry, old_path.dentry);
4632 	if (delegated_inode) {
4633 		error = break_deleg_wait(&delegated_inode);
4634 		if (!error)
4635 			goto retry_deleg;
4636 	}
4637 	mnt_drop_write(old_path.mnt);
4638 exit2:
4639 	if (retry_estale(error, lookup_flags))
4640 		should_retry = true;
4641 	path_put(&new_path);
4642 	putname(to);
4643 exit1:
4644 	path_put(&old_path);
4645 	putname(from);
4646 	if (should_retry) {
4647 		should_retry = false;
4648 		lookup_flags |= LOOKUP_REVAL;
4649 		goto retry;
4650 	}
4651 exit:
4652 	return error;
4653 }
4654 
4655 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4656 		int, newdfd, const char __user *, newname, unsigned int, flags)
4657 {
4658 	return do_renameat2(olddfd, oldname, newdfd, newname, flags);
4659 }
4660 
4661 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4662 		int, newdfd, const char __user *, newname)
4663 {
4664 	return do_renameat2(olddfd, oldname, newdfd, newname, 0);
4665 }
4666 
4667 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4668 {
4669 	return do_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4670 }
4671 
4672 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4673 {
4674 	int error = may_create(dir, dentry);
4675 	if (error)
4676 		return error;
4677 
4678 	if (!dir->i_op->mknod)
4679 		return -EPERM;
4680 
4681 	return dir->i_op->mknod(dir, dentry,
4682 				S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4683 }
4684 EXPORT_SYMBOL(vfs_whiteout);
4685 
4686 int readlink_copy(char __user *buffer, int buflen, const char *link)
4687 {
4688 	int len = PTR_ERR(link);
4689 	if (IS_ERR(link))
4690 		goto out;
4691 
4692 	len = strlen(link);
4693 	if (len > (unsigned) buflen)
4694 		len = buflen;
4695 	if (copy_to_user(buffer, link, len))
4696 		len = -EFAULT;
4697 out:
4698 	return len;
4699 }
4700 
4701 /**
4702  * vfs_readlink - copy symlink body into userspace buffer
4703  * @dentry: dentry on which to get symbolic link
4704  * @buffer: user memory pointer
4705  * @buflen: size of buffer
4706  *
4707  * Does not touch atime.  That's up to the caller if necessary
4708  *
4709  * Does not call security hook.
4710  */
4711 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4712 {
4713 	struct inode *inode = d_inode(dentry);
4714 	DEFINE_DELAYED_CALL(done);
4715 	const char *link;
4716 	int res;
4717 
4718 	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4719 		if (unlikely(inode->i_op->readlink))
4720 			return inode->i_op->readlink(dentry, buffer, buflen);
4721 
4722 		if (!d_is_symlink(dentry))
4723 			return -EINVAL;
4724 
4725 		spin_lock(&inode->i_lock);
4726 		inode->i_opflags |= IOP_DEFAULT_READLINK;
4727 		spin_unlock(&inode->i_lock);
4728 	}
4729 
4730 	link = READ_ONCE(inode->i_link);
4731 	if (!link) {
4732 		link = inode->i_op->get_link(dentry, inode, &done);
4733 		if (IS_ERR(link))
4734 			return PTR_ERR(link);
4735 	}
4736 	res = readlink_copy(buffer, buflen, link);
4737 	do_delayed_call(&done);
4738 	return res;
4739 }
4740 EXPORT_SYMBOL(vfs_readlink);
4741 
4742 /**
4743  * vfs_get_link - get symlink body
4744  * @dentry: dentry on which to get symbolic link
4745  * @done: caller needs to free returned data with this
4746  *
4747  * Calls security hook and i_op->get_link() on the supplied inode.
4748  *
4749  * It does not touch atime.  That's up to the caller if necessary.
4750  *
4751  * Does not work on "special" symlinks like /proc/$$/fd/N
4752  */
4753 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4754 {
4755 	const char *res = ERR_PTR(-EINVAL);
4756 	struct inode *inode = d_inode(dentry);
4757 
4758 	if (d_is_symlink(dentry)) {
4759 		res = ERR_PTR(security_inode_readlink(dentry));
4760 		if (!res)
4761 			res = inode->i_op->get_link(dentry, inode, done);
4762 	}
4763 	return res;
4764 }
4765 EXPORT_SYMBOL(vfs_get_link);
4766 
4767 /* get the link contents into pagecache */
4768 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4769 			  struct delayed_call *callback)
4770 {
4771 	char *kaddr;
4772 	struct page *page;
4773 	struct address_space *mapping = inode->i_mapping;
4774 
4775 	if (!dentry) {
4776 		page = find_get_page(mapping, 0);
4777 		if (!page)
4778 			return ERR_PTR(-ECHILD);
4779 		if (!PageUptodate(page)) {
4780 			put_page(page);
4781 			return ERR_PTR(-ECHILD);
4782 		}
4783 	} else {
4784 		page = read_mapping_page(mapping, 0, NULL);
4785 		if (IS_ERR(page))
4786 			return (char*)page;
4787 	}
4788 	set_delayed_call(callback, page_put_link, page);
4789 	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4790 	kaddr = page_address(page);
4791 	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4792 	return kaddr;
4793 }
4794 
4795 EXPORT_SYMBOL(page_get_link);
4796 
4797 void page_put_link(void *arg)
4798 {
4799 	put_page(arg);
4800 }
4801 EXPORT_SYMBOL(page_put_link);
4802 
4803 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4804 {
4805 	DEFINE_DELAYED_CALL(done);
4806 	int res = readlink_copy(buffer, buflen,
4807 				page_get_link(dentry, d_inode(dentry),
4808 					      &done));
4809 	do_delayed_call(&done);
4810 	return res;
4811 }
4812 EXPORT_SYMBOL(page_readlink);
4813 
4814 /*
4815  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4816  */
4817 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4818 {
4819 	struct address_space *mapping = inode->i_mapping;
4820 	struct page *page;
4821 	void *fsdata;
4822 	int err;
4823 	unsigned int flags = 0;
4824 	if (nofs)
4825 		flags |= AOP_FLAG_NOFS;
4826 
4827 retry:
4828 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4829 				flags, &page, &fsdata);
4830 	if (err)
4831 		goto fail;
4832 
4833 	memcpy(page_address(page), symname, len-1);
4834 
4835 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4836 							page, fsdata);
4837 	if (err < 0)
4838 		goto fail;
4839 	if (err < len-1)
4840 		goto retry;
4841 
4842 	mark_inode_dirty(inode);
4843 	return 0;
4844 fail:
4845 	return err;
4846 }
4847 EXPORT_SYMBOL(__page_symlink);
4848 
4849 int page_symlink(struct inode *inode, const char *symname, int len)
4850 {
4851 	return __page_symlink(inode, symname, len,
4852 			!mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4853 }
4854 EXPORT_SYMBOL(page_symlink);
4855 
4856 const struct inode_operations page_symlink_inode_operations = {
4857 	.get_link	= page_get_link,
4858 };
4859 EXPORT_SYMBOL(page_symlink_inode_operations);
4860