1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/namei.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * Some corrections by tytso. 10 */ 11 12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 13 * lookup logic. 14 */ 15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 16 */ 17 18 #include <linux/init.h> 19 #include <linux/export.h> 20 #include <linux/kernel.h> 21 #include <linux/slab.h> 22 #include <linux/fs.h> 23 #include <linux/namei.h> 24 #include <linux/pagemap.h> 25 #include <linux/fsnotify.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/ima.h> 29 #include <linux/syscalls.h> 30 #include <linux/mount.h> 31 #include <linux/audit.h> 32 #include <linux/capability.h> 33 #include <linux/file.h> 34 #include <linux/fcntl.h> 35 #include <linux/device_cgroup.h> 36 #include <linux/fs_struct.h> 37 #include <linux/posix_acl.h> 38 #include <linux/hash.h> 39 #include <linux/bitops.h> 40 #include <linux/init_task.h> 41 #include <linux/uaccess.h> 42 43 #include "internal.h" 44 #include "mount.h" 45 46 /* [Feb-1997 T. Schoebel-Theuer] 47 * Fundamental changes in the pathname lookup mechanisms (namei) 48 * were necessary because of omirr. The reason is that omirr needs 49 * to know the _real_ pathname, not the user-supplied one, in case 50 * of symlinks (and also when transname replacements occur). 51 * 52 * The new code replaces the old recursive symlink resolution with 53 * an iterative one (in case of non-nested symlink chains). It does 54 * this with calls to <fs>_follow_link(). 55 * As a side effect, dir_namei(), _namei() and follow_link() are now 56 * replaced with a single function lookup_dentry() that can handle all 57 * the special cases of the former code. 58 * 59 * With the new dcache, the pathname is stored at each inode, at least as 60 * long as the refcount of the inode is positive. As a side effect, the 61 * size of the dcache depends on the inode cache and thus is dynamic. 62 * 63 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 64 * resolution to correspond with current state of the code. 65 * 66 * Note that the symlink resolution is not *completely* iterative. 67 * There is still a significant amount of tail- and mid- recursion in 68 * the algorithm. Also, note that <fs>_readlink() is not used in 69 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 70 * may return different results than <fs>_follow_link(). Many virtual 71 * filesystems (including /proc) exhibit this behavior. 72 */ 73 74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 75 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 76 * and the name already exists in form of a symlink, try to create the new 77 * name indicated by the symlink. The old code always complained that the 78 * name already exists, due to not following the symlink even if its target 79 * is nonexistent. The new semantics affects also mknod() and link() when 80 * the name is a symlink pointing to a non-existent name. 81 * 82 * I don't know which semantics is the right one, since I have no access 83 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 84 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 85 * "old" one. Personally, I think the new semantics is much more logical. 86 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 87 * file does succeed in both HP-UX and SunOs, but not in Solaris 88 * and in the old Linux semantics. 89 */ 90 91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 92 * semantics. See the comments in "open_namei" and "do_link" below. 93 * 94 * [10-Sep-98 Alan Modra] Another symlink change. 95 */ 96 97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 98 * inside the path - always follow. 99 * in the last component in creation/removal/renaming - never follow. 100 * if LOOKUP_FOLLOW passed - follow. 101 * if the pathname has trailing slashes - follow. 102 * otherwise - don't follow. 103 * (applied in that order). 104 * 105 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 106 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 107 * During the 2.4 we need to fix the userland stuff depending on it - 108 * hopefully we will be able to get rid of that wart in 2.5. So far only 109 * XEmacs seems to be relying on it... 110 */ 111 /* 112 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 113 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 114 * any extra contention... 115 */ 116 117 /* In order to reduce some races, while at the same time doing additional 118 * checking and hopefully speeding things up, we copy filenames to the 119 * kernel data space before using them.. 120 * 121 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 122 * PATH_MAX includes the nul terminator --RR. 123 */ 124 125 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) 126 127 struct filename * 128 getname_flags(const char __user *filename, int flags, int *empty) 129 { 130 struct filename *result; 131 char *kname; 132 int len; 133 134 result = audit_reusename(filename); 135 if (result) 136 return result; 137 138 result = __getname(); 139 if (unlikely(!result)) 140 return ERR_PTR(-ENOMEM); 141 142 /* 143 * First, try to embed the struct filename inside the names_cache 144 * allocation 145 */ 146 kname = (char *)result->iname; 147 result->name = kname; 148 149 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); 150 if (unlikely(len < 0)) { 151 __putname(result); 152 return ERR_PTR(len); 153 } 154 155 /* 156 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 157 * separate struct filename so we can dedicate the entire 158 * names_cache allocation for the pathname, and re-do the copy from 159 * userland. 160 */ 161 if (unlikely(len == EMBEDDED_NAME_MAX)) { 162 const size_t size = offsetof(struct filename, iname[1]); 163 kname = (char *)result; 164 165 /* 166 * size is chosen that way we to guarantee that 167 * result->iname[0] is within the same object and that 168 * kname can't be equal to result->iname, no matter what. 169 */ 170 result = kzalloc(size, GFP_KERNEL); 171 if (unlikely(!result)) { 172 __putname(kname); 173 return ERR_PTR(-ENOMEM); 174 } 175 result->name = kname; 176 len = strncpy_from_user(kname, filename, PATH_MAX); 177 if (unlikely(len < 0)) { 178 __putname(kname); 179 kfree(result); 180 return ERR_PTR(len); 181 } 182 if (unlikely(len == PATH_MAX)) { 183 __putname(kname); 184 kfree(result); 185 return ERR_PTR(-ENAMETOOLONG); 186 } 187 } 188 189 result->refcnt = 1; 190 /* The empty path is special. */ 191 if (unlikely(!len)) { 192 if (empty) 193 *empty = 1; 194 if (!(flags & LOOKUP_EMPTY)) { 195 putname(result); 196 return ERR_PTR(-ENOENT); 197 } 198 } 199 200 result->uptr = filename; 201 result->aname = NULL; 202 audit_getname(result); 203 return result; 204 } 205 206 struct filename * 207 getname(const char __user * filename) 208 { 209 return getname_flags(filename, 0, NULL); 210 } 211 212 struct filename * 213 getname_kernel(const char * filename) 214 { 215 struct filename *result; 216 int len = strlen(filename) + 1; 217 218 result = __getname(); 219 if (unlikely(!result)) 220 return ERR_PTR(-ENOMEM); 221 222 if (len <= EMBEDDED_NAME_MAX) { 223 result->name = (char *)result->iname; 224 } else if (len <= PATH_MAX) { 225 const size_t size = offsetof(struct filename, iname[1]); 226 struct filename *tmp; 227 228 tmp = kmalloc(size, GFP_KERNEL); 229 if (unlikely(!tmp)) { 230 __putname(result); 231 return ERR_PTR(-ENOMEM); 232 } 233 tmp->name = (char *)result; 234 result = tmp; 235 } else { 236 __putname(result); 237 return ERR_PTR(-ENAMETOOLONG); 238 } 239 memcpy((char *)result->name, filename, len); 240 result->uptr = NULL; 241 result->aname = NULL; 242 result->refcnt = 1; 243 audit_getname(result); 244 245 return result; 246 } 247 248 void putname(struct filename *name) 249 { 250 BUG_ON(name->refcnt <= 0); 251 252 if (--name->refcnt > 0) 253 return; 254 255 if (name->name != name->iname) { 256 __putname(name->name); 257 kfree(name); 258 } else 259 __putname(name); 260 } 261 262 static int check_acl(struct inode *inode, int mask) 263 { 264 #ifdef CONFIG_FS_POSIX_ACL 265 struct posix_acl *acl; 266 267 if (mask & MAY_NOT_BLOCK) { 268 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 269 if (!acl) 270 return -EAGAIN; 271 /* no ->get_acl() calls in RCU mode... */ 272 if (is_uncached_acl(acl)) 273 return -ECHILD; 274 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK); 275 } 276 277 acl = get_acl(inode, ACL_TYPE_ACCESS); 278 if (IS_ERR(acl)) 279 return PTR_ERR(acl); 280 if (acl) { 281 int error = posix_acl_permission(inode, acl, mask); 282 posix_acl_release(acl); 283 return error; 284 } 285 #endif 286 287 return -EAGAIN; 288 } 289 290 /* 291 * This does the basic permission checking 292 */ 293 static int acl_permission_check(struct inode *inode, int mask) 294 { 295 unsigned int mode = inode->i_mode; 296 297 if (likely(uid_eq(current_fsuid(), inode->i_uid))) 298 mode >>= 6; 299 else { 300 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 301 int error = check_acl(inode, mask); 302 if (error != -EAGAIN) 303 return error; 304 } 305 306 if (in_group_p(inode->i_gid)) 307 mode >>= 3; 308 } 309 310 /* 311 * If the DACs are ok we don't need any capability check. 312 */ 313 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 314 return 0; 315 return -EACCES; 316 } 317 318 /** 319 * generic_permission - check for access rights on a Posix-like filesystem 320 * @inode: inode to check access rights for 321 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...) 322 * 323 * Used to check for read/write/execute permissions on a file. 324 * We use "fsuid" for this, letting us set arbitrary permissions 325 * for filesystem access without changing the "normal" uids which 326 * are used for other things. 327 * 328 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 329 * request cannot be satisfied (eg. requires blocking or too much complexity). 330 * It would then be called again in ref-walk mode. 331 */ 332 int generic_permission(struct inode *inode, int mask) 333 { 334 int ret; 335 336 /* 337 * Do the basic permission checks. 338 */ 339 ret = acl_permission_check(inode, mask); 340 if (ret != -EACCES) 341 return ret; 342 343 if (S_ISDIR(inode->i_mode)) { 344 /* DACs are overridable for directories */ 345 if (!(mask & MAY_WRITE)) 346 if (capable_wrt_inode_uidgid(inode, 347 CAP_DAC_READ_SEARCH)) 348 return 0; 349 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 350 return 0; 351 return -EACCES; 352 } 353 354 /* 355 * Searching includes executable on directories, else just read. 356 */ 357 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 358 if (mask == MAY_READ) 359 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH)) 360 return 0; 361 /* 362 * Read/write DACs are always overridable. 363 * Executable DACs are overridable when there is 364 * at least one exec bit set. 365 */ 366 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 367 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 368 return 0; 369 370 return -EACCES; 371 } 372 EXPORT_SYMBOL(generic_permission); 373 374 /* 375 * We _really_ want to just do "generic_permission()" without 376 * even looking at the inode->i_op values. So we keep a cache 377 * flag in inode->i_opflags, that says "this has not special 378 * permission function, use the fast case". 379 */ 380 static inline int do_inode_permission(struct inode *inode, int mask) 381 { 382 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 383 if (likely(inode->i_op->permission)) 384 return inode->i_op->permission(inode, mask); 385 386 /* This gets set once for the inode lifetime */ 387 spin_lock(&inode->i_lock); 388 inode->i_opflags |= IOP_FASTPERM; 389 spin_unlock(&inode->i_lock); 390 } 391 return generic_permission(inode, mask); 392 } 393 394 /** 395 * sb_permission - Check superblock-level permissions 396 * @sb: Superblock of inode to check permission on 397 * @inode: Inode to check permission on 398 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 399 * 400 * Separate out file-system wide checks from inode-specific permission checks. 401 */ 402 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 403 { 404 if (unlikely(mask & MAY_WRITE)) { 405 umode_t mode = inode->i_mode; 406 407 /* Nobody gets write access to a read-only fs. */ 408 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 409 return -EROFS; 410 } 411 return 0; 412 } 413 414 /** 415 * inode_permission - Check for access rights to a given inode 416 * @inode: Inode to check permission on 417 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 418 * 419 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 420 * this, letting us set arbitrary permissions for filesystem access without 421 * changing the "normal" UIDs which are used for other things. 422 * 423 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 424 */ 425 int inode_permission(struct inode *inode, int mask) 426 { 427 int retval; 428 429 retval = sb_permission(inode->i_sb, inode, mask); 430 if (retval) 431 return retval; 432 433 if (unlikely(mask & MAY_WRITE)) { 434 /* 435 * Nobody gets write access to an immutable file. 436 */ 437 if (IS_IMMUTABLE(inode)) 438 return -EPERM; 439 440 /* 441 * Updating mtime will likely cause i_uid and i_gid to be 442 * written back improperly if their true value is unknown 443 * to the vfs. 444 */ 445 if (HAS_UNMAPPED_ID(inode)) 446 return -EACCES; 447 } 448 449 retval = do_inode_permission(inode, mask); 450 if (retval) 451 return retval; 452 453 retval = devcgroup_inode_permission(inode, mask); 454 if (retval) 455 return retval; 456 457 return security_inode_permission(inode, mask); 458 } 459 EXPORT_SYMBOL(inode_permission); 460 461 /** 462 * path_get - get a reference to a path 463 * @path: path to get the reference to 464 * 465 * Given a path increment the reference count to the dentry and the vfsmount. 466 */ 467 void path_get(const struct path *path) 468 { 469 mntget(path->mnt); 470 dget(path->dentry); 471 } 472 EXPORT_SYMBOL(path_get); 473 474 /** 475 * path_put - put a reference to a path 476 * @path: path to put the reference to 477 * 478 * Given a path decrement the reference count to the dentry and the vfsmount. 479 */ 480 void path_put(const struct path *path) 481 { 482 dput(path->dentry); 483 mntput(path->mnt); 484 } 485 EXPORT_SYMBOL(path_put); 486 487 #define EMBEDDED_LEVELS 2 488 struct nameidata { 489 struct path path; 490 struct qstr last; 491 struct path root; 492 struct inode *inode; /* path.dentry.d_inode */ 493 unsigned int flags; 494 unsigned seq, m_seq; 495 int last_type; 496 unsigned depth; 497 int total_link_count; 498 struct saved { 499 struct path link; 500 struct delayed_call done; 501 const char *name; 502 unsigned seq; 503 } *stack, internal[EMBEDDED_LEVELS]; 504 struct filename *name; 505 struct nameidata *saved; 506 struct inode *link_inode; 507 unsigned root_seq; 508 int dfd; 509 } __randomize_layout; 510 511 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name) 512 { 513 struct nameidata *old = current->nameidata; 514 p->stack = p->internal; 515 p->dfd = dfd; 516 p->name = name; 517 p->total_link_count = old ? old->total_link_count : 0; 518 p->saved = old; 519 current->nameidata = p; 520 } 521 522 static void restore_nameidata(void) 523 { 524 struct nameidata *now = current->nameidata, *old = now->saved; 525 526 current->nameidata = old; 527 if (old) 528 old->total_link_count = now->total_link_count; 529 if (now->stack != now->internal) 530 kfree(now->stack); 531 } 532 533 static int __nd_alloc_stack(struct nameidata *nd) 534 { 535 struct saved *p; 536 537 if (nd->flags & LOOKUP_RCU) { 538 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved), 539 GFP_ATOMIC); 540 if (unlikely(!p)) 541 return -ECHILD; 542 } else { 543 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved), 544 GFP_KERNEL); 545 if (unlikely(!p)) 546 return -ENOMEM; 547 } 548 memcpy(p, nd->internal, sizeof(nd->internal)); 549 nd->stack = p; 550 return 0; 551 } 552 553 /** 554 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root 555 * @path: nameidate to verify 556 * 557 * Rename can sometimes move a file or directory outside of a bind 558 * mount, path_connected allows those cases to be detected. 559 */ 560 static bool path_connected(const struct path *path) 561 { 562 struct vfsmount *mnt = path->mnt; 563 struct super_block *sb = mnt->mnt_sb; 564 565 /* Bind mounts and multi-root filesystems can have disconnected paths */ 566 if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root)) 567 return true; 568 569 return is_subdir(path->dentry, mnt->mnt_root); 570 } 571 572 static inline int nd_alloc_stack(struct nameidata *nd) 573 { 574 if (likely(nd->depth != EMBEDDED_LEVELS)) 575 return 0; 576 if (likely(nd->stack != nd->internal)) 577 return 0; 578 return __nd_alloc_stack(nd); 579 } 580 581 static void drop_links(struct nameidata *nd) 582 { 583 int i = nd->depth; 584 while (i--) { 585 struct saved *last = nd->stack + i; 586 do_delayed_call(&last->done); 587 clear_delayed_call(&last->done); 588 } 589 } 590 591 static void terminate_walk(struct nameidata *nd) 592 { 593 drop_links(nd); 594 if (!(nd->flags & LOOKUP_RCU)) { 595 int i; 596 path_put(&nd->path); 597 for (i = 0; i < nd->depth; i++) 598 path_put(&nd->stack[i].link); 599 if (nd->flags & LOOKUP_ROOT_GRABBED) { 600 path_put(&nd->root); 601 nd->flags &= ~LOOKUP_ROOT_GRABBED; 602 } 603 } else { 604 nd->flags &= ~LOOKUP_RCU; 605 rcu_read_unlock(); 606 } 607 nd->depth = 0; 608 } 609 610 /* path_put is needed afterwards regardless of success or failure */ 611 static bool legitimize_path(struct nameidata *nd, 612 struct path *path, unsigned seq) 613 { 614 int res = __legitimize_mnt(path->mnt, nd->m_seq); 615 if (unlikely(res)) { 616 if (res > 0) 617 path->mnt = NULL; 618 path->dentry = NULL; 619 return false; 620 } 621 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) { 622 path->dentry = NULL; 623 return false; 624 } 625 return !read_seqcount_retry(&path->dentry->d_seq, seq); 626 } 627 628 static bool legitimize_links(struct nameidata *nd) 629 { 630 int i; 631 for (i = 0; i < nd->depth; i++) { 632 struct saved *last = nd->stack + i; 633 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) { 634 drop_links(nd); 635 nd->depth = i + 1; 636 return false; 637 } 638 } 639 return true; 640 } 641 642 static bool legitimize_root(struct nameidata *nd) 643 { 644 if (!nd->root.mnt || (nd->flags & LOOKUP_ROOT)) 645 return true; 646 nd->flags |= LOOKUP_ROOT_GRABBED; 647 return legitimize_path(nd, &nd->root, nd->root_seq); 648 } 649 650 /* 651 * Path walking has 2 modes, rcu-walk and ref-walk (see 652 * Documentation/filesystems/path-lookup.txt). In situations when we can't 653 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 654 * normal reference counts on dentries and vfsmounts to transition to ref-walk 655 * mode. Refcounts are grabbed at the last known good point before rcu-walk 656 * got stuck, so ref-walk may continue from there. If this is not successful 657 * (eg. a seqcount has changed), then failure is returned and it's up to caller 658 * to restart the path walk from the beginning in ref-walk mode. 659 */ 660 661 /** 662 * unlazy_walk - try to switch to ref-walk mode. 663 * @nd: nameidata pathwalk data 664 * Returns: 0 on success, -ECHILD on failure 665 * 666 * unlazy_walk attempts to legitimize the current nd->path and nd->root 667 * for ref-walk mode. 668 * Must be called from rcu-walk context. 669 * Nothing should touch nameidata between unlazy_walk() failure and 670 * terminate_walk(). 671 */ 672 static int unlazy_walk(struct nameidata *nd) 673 { 674 struct dentry *parent = nd->path.dentry; 675 676 BUG_ON(!(nd->flags & LOOKUP_RCU)); 677 678 nd->flags &= ~LOOKUP_RCU; 679 if (unlikely(!legitimize_links(nd))) 680 goto out1; 681 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq))) 682 goto out; 683 if (unlikely(!legitimize_root(nd))) 684 goto out; 685 rcu_read_unlock(); 686 BUG_ON(nd->inode != parent->d_inode); 687 return 0; 688 689 out1: 690 nd->path.mnt = NULL; 691 nd->path.dentry = NULL; 692 out: 693 rcu_read_unlock(); 694 return -ECHILD; 695 } 696 697 /** 698 * unlazy_child - try to switch to ref-walk mode. 699 * @nd: nameidata pathwalk data 700 * @dentry: child of nd->path.dentry 701 * @seq: seq number to check dentry against 702 * Returns: 0 on success, -ECHILD on failure 703 * 704 * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry 705 * for ref-walk mode. @dentry must be a path found by a do_lookup call on 706 * @nd. Must be called from rcu-walk context. 707 * Nothing should touch nameidata between unlazy_child() failure and 708 * terminate_walk(). 709 */ 710 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq) 711 { 712 BUG_ON(!(nd->flags & LOOKUP_RCU)); 713 714 nd->flags &= ~LOOKUP_RCU; 715 if (unlikely(!legitimize_links(nd))) 716 goto out2; 717 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq))) 718 goto out2; 719 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref))) 720 goto out1; 721 722 /* 723 * We need to move both the parent and the dentry from the RCU domain 724 * to be properly refcounted. And the sequence number in the dentry 725 * validates *both* dentry counters, since we checked the sequence 726 * number of the parent after we got the child sequence number. So we 727 * know the parent must still be valid if the child sequence number is 728 */ 729 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) 730 goto out; 731 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) 732 goto out_dput; 733 /* 734 * Sequence counts matched. Now make sure that the root is 735 * still valid and get it if required. 736 */ 737 if (unlikely(!legitimize_root(nd))) 738 goto out_dput; 739 rcu_read_unlock(); 740 return 0; 741 742 out2: 743 nd->path.mnt = NULL; 744 out1: 745 nd->path.dentry = NULL; 746 out: 747 rcu_read_unlock(); 748 return -ECHILD; 749 out_dput: 750 rcu_read_unlock(); 751 dput(dentry); 752 return -ECHILD; 753 } 754 755 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 756 { 757 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) 758 return dentry->d_op->d_revalidate(dentry, flags); 759 else 760 return 1; 761 } 762 763 /** 764 * complete_walk - successful completion of path walk 765 * @nd: pointer nameidata 766 * 767 * If we had been in RCU mode, drop out of it and legitimize nd->path. 768 * Revalidate the final result, unless we'd already done that during 769 * the path walk or the filesystem doesn't ask for it. Return 0 on 770 * success, -error on failure. In case of failure caller does not 771 * need to drop nd->path. 772 */ 773 static int complete_walk(struct nameidata *nd) 774 { 775 struct dentry *dentry = nd->path.dentry; 776 int status; 777 778 if (nd->flags & LOOKUP_RCU) { 779 if (!(nd->flags & LOOKUP_ROOT)) 780 nd->root.mnt = NULL; 781 if (unlikely(unlazy_walk(nd))) 782 return -ECHILD; 783 } 784 785 if (likely(!(nd->flags & LOOKUP_JUMPED))) 786 return 0; 787 788 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 789 return 0; 790 791 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 792 if (status > 0) 793 return 0; 794 795 if (!status) 796 status = -ESTALE; 797 798 return status; 799 } 800 801 static void set_root(struct nameidata *nd) 802 { 803 struct fs_struct *fs = current->fs; 804 805 if (nd->flags & LOOKUP_RCU) { 806 unsigned seq; 807 808 do { 809 seq = read_seqcount_begin(&fs->seq); 810 nd->root = fs->root; 811 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 812 } while (read_seqcount_retry(&fs->seq, seq)); 813 } else { 814 get_fs_root(fs, &nd->root); 815 nd->flags |= LOOKUP_ROOT_GRABBED; 816 } 817 } 818 819 static void path_put_conditional(struct path *path, struct nameidata *nd) 820 { 821 dput(path->dentry); 822 if (path->mnt != nd->path.mnt) 823 mntput(path->mnt); 824 } 825 826 static inline void path_to_nameidata(const struct path *path, 827 struct nameidata *nd) 828 { 829 if (!(nd->flags & LOOKUP_RCU)) { 830 dput(nd->path.dentry); 831 if (nd->path.mnt != path->mnt) 832 mntput(nd->path.mnt); 833 } 834 nd->path.mnt = path->mnt; 835 nd->path.dentry = path->dentry; 836 } 837 838 static int nd_jump_root(struct nameidata *nd) 839 { 840 if (nd->flags & LOOKUP_RCU) { 841 struct dentry *d; 842 nd->path = nd->root; 843 d = nd->path.dentry; 844 nd->inode = d->d_inode; 845 nd->seq = nd->root_seq; 846 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq))) 847 return -ECHILD; 848 } else { 849 path_put(&nd->path); 850 nd->path = nd->root; 851 path_get(&nd->path); 852 nd->inode = nd->path.dentry->d_inode; 853 } 854 nd->flags |= LOOKUP_JUMPED; 855 return 0; 856 } 857 858 /* 859 * Helper to directly jump to a known parsed path from ->get_link, 860 * caller must have taken a reference to path beforehand. 861 */ 862 void nd_jump_link(struct path *path) 863 { 864 struct nameidata *nd = current->nameidata; 865 path_put(&nd->path); 866 867 nd->path = *path; 868 nd->inode = nd->path.dentry->d_inode; 869 nd->flags |= LOOKUP_JUMPED; 870 } 871 872 static inline void put_link(struct nameidata *nd) 873 { 874 struct saved *last = nd->stack + --nd->depth; 875 do_delayed_call(&last->done); 876 if (!(nd->flags & LOOKUP_RCU)) 877 path_put(&last->link); 878 } 879 880 int sysctl_protected_symlinks __read_mostly = 0; 881 int sysctl_protected_hardlinks __read_mostly = 0; 882 int sysctl_protected_fifos __read_mostly; 883 int sysctl_protected_regular __read_mostly; 884 885 /** 886 * may_follow_link - Check symlink following for unsafe situations 887 * @nd: nameidata pathwalk data 888 * 889 * In the case of the sysctl_protected_symlinks sysctl being enabled, 890 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 891 * in a sticky world-writable directory. This is to protect privileged 892 * processes from failing races against path names that may change out 893 * from under them by way of other users creating malicious symlinks. 894 * It will permit symlinks to be followed only when outside a sticky 895 * world-writable directory, or when the uid of the symlink and follower 896 * match, or when the directory owner matches the symlink's owner. 897 * 898 * Returns 0 if following the symlink is allowed, -ve on error. 899 */ 900 static inline int may_follow_link(struct nameidata *nd) 901 { 902 const struct inode *inode; 903 const struct inode *parent; 904 kuid_t puid; 905 906 if (!sysctl_protected_symlinks) 907 return 0; 908 909 /* Allowed if owner and follower match. */ 910 inode = nd->link_inode; 911 if (uid_eq(current_cred()->fsuid, inode->i_uid)) 912 return 0; 913 914 /* Allowed if parent directory not sticky and world-writable. */ 915 parent = nd->inode; 916 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 917 return 0; 918 919 /* Allowed if parent directory and link owner match. */ 920 puid = parent->i_uid; 921 if (uid_valid(puid) && uid_eq(puid, inode->i_uid)) 922 return 0; 923 924 if (nd->flags & LOOKUP_RCU) 925 return -ECHILD; 926 927 audit_inode(nd->name, nd->stack[0].link.dentry, 0); 928 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link"); 929 return -EACCES; 930 } 931 932 /** 933 * safe_hardlink_source - Check for safe hardlink conditions 934 * @inode: the source inode to hardlink from 935 * 936 * Return false if at least one of the following conditions: 937 * - inode is not a regular file 938 * - inode is setuid 939 * - inode is setgid and group-exec 940 * - access failure for read and write 941 * 942 * Otherwise returns true. 943 */ 944 static bool safe_hardlink_source(struct inode *inode) 945 { 946 umode_t mode = inode->i_mode; 947 948 /* Special files should not get pinned to the filesystem. */ 949 if (!S_ISREG(mode)) 950 return false; 951 952 /* Setuid files should not get pinned to the filesystem. */ 953 if (mode & S_ISUID) 954 return false; 955 956 /* Executable setgid files should not get pinned to the filesystem. */ 957 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 958 return false; 959 960 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 961 if (inode_permission(inode, MAY_READ | MAY_WRITE)) 962 return false; 963 964 return true; 965 } 966 967 /** 968 * may_linkat - Check permissions for creating a hardlink 969 * @link: the source to hardlink from 970 * 971 * Block hardlink when all of: 972 * - sysctl_protected_hardlinks enabled 973 * - fsuid does not match inode 974 * - hardlink source is unsafe (see safe_hardlink_source() above) 975 * - not CAP_FOWNER in a namespace with the inode owner uid mapped 976 * 977 * Returns 0 if successful, -ve on error. 978 */ 979 static int may_linkat(struct path *link) 980 { 981 struct inode *inode = link->dentry->d_inode; 982 983 /* Inode writeback is not safe when the uid or gid are invalid. */ 984 if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid)) 985 return -EOVERFLOW; 986 987 if (!sysctl_protected_hardlinks) 988 return 0; 989 990 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 991 * otherwise, it must be a safe source. 992 */ 993 if (safe_hardlink_source(inode) || inode_owner_or_capable(inode)) 994 return 0; 995 996 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat"); 997 return -EPERM; 998 } 999 1000 /** 1001 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory 1002 * should be allowed, or not, on files that already 1003 * exist. 1004 * @dir: the sticky parent directory 1005 * @inode: the inode of the file to open 1006 * 1007 * Block an O_CREAT open of a FIFO (or a regular file) when: 1008 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled 1009 * - the file already exists 1010 * - we are in a sticky directory 1011 * - we don't own the file 1012 * - the owner of the directory doesn't own the file 1013 * - the directory is world writable 1014 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2 1015 * the directory doesn't have to be world writable: being group writable will 1016 * be enough. 1017 * 1018 * Returns 0 if the open is allowed, -ve on error. 1019 */ 1020 static int may_create_in_sticky(struct dentry * const dir, 1021 struct inode * const inode) 1022 { 1023 if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) || 1024 (!sysctl_protected_regular && S_ISREG(inode->i_mode)) || 1025 likely(!(dir->d_inode->i_mode & S_ISVTX)) || 1026 uid_eq(inode->i_uid, dir->d_inode->i_uid) || 1027 uid_eq(current_fsuid(), inode->i_uid)) 1028 return 0; 1029 1030 if (likely(dir->d_inode->i_mode & 0002) || 1031 (dir->d_inode->i_mode & 0020 && 1032 ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) || 1033 (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) { 1034 const char *operation = S_ISFIFO(inode->i_mode) ? 1035 "sticky_create_fifo" : 1036 "sticky_create_regular"; 1037 audit_log_path_denied(AUDIT_ANOM_CREAT, operation); 1038 return -EACCES; 1039 } 1040 return 0; 1041 } 1042 1043 static __always_inline 1044 const char *get_link(struct nameidata *nd) 1045 { 1046 struct saved *last = nd->stack + nd->depth - 1; 1047 struct dentry *dentry = last->link.dentry; 1048 struct inode *inode = nd->link_inode; 1049 int error; 1050 const char *res; 1051 1052 if (!(nd->flags & LOOKUP_RCU)) { 1053 touch_atime(&last->link); 1054 cond_resched(); 1055 } else if (atime_needs_update(&last->link, inode)) { 1056 if (unlikely(unlazy_walk(nd))) 1057 return ERR_PTR(-ECHILD); 1058 touch_atime(&last->link); 1059 } 1060 1061 error = security_inode_follow_link(dentry, inode, 1062 nd->flags & LOOKUP_RCU); 1063 if (unlikely(error)) 1064 return ERR_PTR(error); 1065 1066 nd->last_type = LAST_BIND; 1067 res = READ_ONCE(inode->i_link); 1068 if (!res) { 1069 const char * (*get)(struct dentry *, struct inode *, 1070 struct delayed_call *); 1071 get = inode->i_op->get_link; 1072 if (nd->flags & LOOKUP_RCU) { 1073 res = get(NULL, inode, &last->done); 1074 if (res == ERR_PTR(-ECHILD)) { 1075 if (unlikely(unlazy_walk(nd))) 1076 return ERR_PTR(-ECHILD); 1077 res = get(dentry, inode, &last->done); 1078 } 1079 } else { 1080 res = get(dentry, inode, &last->done); 1081 } 1082 if (IS_ERR_OR_NULL(res)) 1083 return res; 1084 } 1085 if (*res == '/') { 1086 if (!nd->root.mnt) 1087 set_root(nd); 1088 if (unlikely(nd_jump_root(nd))) 1089 return ERR_PTR(-ECHILD); 1090 while (unlikely(*++res == '/')) 1091 ; 1092 } 1093 if (!*res) 1094 res = NULL; 1095 return res; 1096 } 1097 1098 /* 1099 * follow_up - Find the mountpoint of path's vfsmount 1100 * 1101 * Given a path, find the mountpoint of its source file system. 1102 * Replace @path with the path of the mountpoint in the parent mount. 1103 * Up is towards /. 1104 * 1105 * Return 1 if we went up a level and 0 if we were already at the 1106 * root. 1107 */ 1108 int follow_up(struct path *path) 1109 { 1110 struct mount *mnt = real_mount(path->mnt); 1111 struct mount *parent; 1112 struct dentry *mountpoint; 1113 1114 read_seqlock_excl(&mount_lock); 1115 parent = mnt->mnt_parent; 1116 if (parent == mnt) { 1117 read_sequnlock_excl(&mount_lock); 1118 return 0; 1119 } 1120 mntget(&parent->mnt); 1121 mountpoint = dget(mnt->mnt_mountpoint); 1122 read_sequnlock_excl(&mount_lock); 1123 dput(path->dentry); 1124 path->dentry = mountpoint; 1125 mntput(path->mnt); 1126 path->mnt = &parent->mnt; 1127 return 1; 1128 } 1129 EXPORT_SYMBOL(follow_up); 1130 1131 /* 1132 * Perform an automount 1133 * - return -EISDIR to tell follow_managed() to stop and return the path we 1134 * were called with. 1135 */ 1136 static int follow_automount(struct path *path, struct nameidata *nd, 1137 bool *need_mntput) 1138 { 1139 struct vfsmount *mnt; 1140 int err; 1141 1142 if (!path->dentry->d_op || !path->dentry->d_op->d_automount) 1143 return -EREMOTE; 1144 1145 /* We don't want to mount if someone's just doing a stat - 1146 * unless they're stat'ing a directory and appended a '/' to 1147 * the name. 1148 * 1149 * We do, however, want to mount if someone wants to open or 1150 * create a file of any type under the mountpoint, wants to 1151 * traverse through the mountpoint or wants to open the 1152 * mounted directory. Also, autofs may mark negative dentries 1153 * as being automount points. These will need the attentions 1154 * of the daemon to instantiate them before they can be used. 1155 */ 1156 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 1157 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 1158 path->dentry->d_inode) 1159 return -EISDIR; 1160 1161 nd->total_link_count++; 1162 if (nd->total_link_count >= 40) 1163 return -ELOOP; 1164 1165 mnt = path->dentry->d_op->d_automount(path); 1166 if (IS_ERR(mnt)) { 1167 /* 1168 * The filesystem is allowed to return -EISDIR here to indicate 1169 * it doesn't want to automount. For instance, autofs would do 1170 * this so that its userspace daemon can mount on this dentry. 1171 * 1172 * However, we can only permit this if it's a terminal point in 1173 * the path being looked up; if it wasn't then the remainder of 1174 * the path is inaccessible and we should say so. 1175 */ 1176 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT)) 1177 return -EREMOTE; 1178 return PTR_ERR(mnt); 1179 } 1180 1181 if (!mnt) /* mount collision */ 1182 return 0; 1183 1184 if (!*need_mntput) { 1185 /* lock_mount() may release path->mnt on error */ 1186 mntget(path->mnt); 1187 *need_mntput = true; 1188 } 1189 err = finish_automount(mnt, path); 1190 1191 switch (err) { 1192 case -EBUSY: 1193 /* Someone else made a mount here whilst we were busy */ 1194 return 0; 1195 case 0: 1196 path_put(path); 1197 path->mnt = mnt; 1198 path->dentry = dget(mnt->mnt_root); 1199 return 0; 1200 default: 1201 return err; 1202 } 1203 1204 } 1205 1206 /* 1207 * Handle a dentry that is managed in some way. 1208 * - Flagged for transit management (autofs) 1209 * - Flagged as mountpoint 1210 * - Flagged as automount point 1211 * 1212 * This may only be called in refwalk mode. 1213 * 1214 * Serialization is taken care of in namespace.c 1215 */ 1216 static int follow_managed(struct path *path, struct nameidata *nd) 1217 { 1218 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */ 1219 unsigned managed; 1220 bool need_mntput = false; 1221 int ret = 0; 1222 1223 /* Given that we're not holding a lock here, we retain the value in a 1224 * local variable for each dentry as we look at it so that we don't see 1225 * the components of that value change under us */ 1226 while (managed = READ_ONCE(path->dentry->d_flags), 1227 managed &= DCACHE_MANAGED_DENTRY, 1228 unlikely(managed != 0)) { 1229 /* Allow the filesystem to manage the transit without i_mutex 1230 * being held. */ 1231 if (managed & DCACHE_MANAGE_TRANSIT) { 1232 BUG_ON(!path->dentry->d_op); 1233 BUG_ON(!path->dentry->d_op->d_manage); 1234 ret = path->dentry->d_op->d_manage(path, false); 1235 if (ret < 0) 1236 break; 1237 } 1238 1239 /* Transit to a mounted filesystem. */ 1240 if (managed & DCACHE_MOUNTED) { 1241 struct vfsmount *mounted = lookup_mnt(path); 1242 if (mounted) { 1243 dput(path->dentry); 1244 if (need_mntput) 1245 mntput(path->mnt); 1246 path->mnt = mounted; 1247 path->dentry = dget(mounted->mnt_root); 1248 need_mntput = true; 1249 continue; 1250 } 1251 1252 /* Something is mounted on this dentry in another 1253 * namespace and/or whatever was mounted there in this 1254 * namespace got unmounted before lookup_mnt() could 1255 * get it */ 1256 } 1257 1258 /* Handle an automount point */ 1259 if (managed & DCACHE_NEED_AUTOMOUNT) { 1260 ret = follow_automount(path, nd, &need_mntput); 1261 if (ret < 0) 1262 break; 1263 continue; 1264 } 1265 1266 /* We didn't change the current path point */ 1267 break; 1268 } 1269 1270 if (need_mntput && path->mnt == mnt) 1271 mntput(path->mnt); 1272 if (ret == -EISDIR || !ret) 1273 ret = 1; 1274 if (need_mntput) 1275 nd->flags |= LOOKUP_JUMPED; 1276 if (unlikely(ret < 0)) 1277 path_put_conditional(path, nd); 1278 return ret; 1279 } 1280 1281 int follow_down_one(struct path *path) 1282 { 1283 struct vfsmount *mounted; 1284 1285 mounted = lookup_mnt(path); 1286 if (mounted) { 1287 dput(path->dentry); 1288 mntput(path->mnt); 1289 path->mnt = mounted; 1290 path->dentry = dget(mounted->mnt_root); 1291 return 1; 1292 } 1293 return 0; 1294 } 1295 EXPORT_SYMBOL(follow_down_one); 1296 1297 static inline int managed_dentry_rcu(const struct path *path) 1298 { 1299 return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ? 1300 path->dentry->d_op->d_manage(path, true) : 0; 1301 } 1302 1303 /* 1304 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1305 * we meet a managed dentry that would need blocking. 1306 */ 1307 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1308 struct inode **inode, unsigned *seqp) 1309 { 1310 for (;;) { 1311 struct mount *mounted; 1312 /* 1313 * Don't forget we might have a non-mountpoint managed dentry 1314 * that wants to block transit. 1315 */ 1316 switch (managed_dentry_rcu(path)) { 1317 case -ECHILD: 1318 default: 1319 return false; 1320 case -EISDIR: 1321 return true; 1322 case 0: 1323 break; 1324 } 1325 1326 if (!d_mountpoint(path->dentry)) 1327 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1328 1329 mounted = __lookup_mnt(path->mnt, path->dentry); 1330 if (!mounted) 1331 break; 1332 path->mnt = &mounted->mnt; 1333 path->dentry = mounted->mnt.mnt_root; 1334 nd->flags |= LOOKUP_JUMPED; 1335 *seqp = read_seqcount_begin(&path->dentry->d_seq); 1336 /* 1337 * Update the inode too. We don't need to re-check the 1338 * dentry sequence number here after this d_inode read, 1339 * because a mount-point is always pinned. 1340 */ 1341 *inode = path->dentry->d_inode; 1342 } 1343 return !read_seqretry(&mount_lock, nd->m_seq) && 1344 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1345 } 1346 1347 static int follow_dotdot_rcu(struct nameidata *nd) 1348 { 1349 struct inode *inode = nd->inode; 1350 1351 while (1) { 1352 if (path_equal(&nd->path, &nd->root)) 1353 break; 1354 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1355 struct dentry *old = nd->path.dentry; 1356 struct dentry *parent = old->d_parent; 1357 unsigned seq; 1358 1359 inode = parent->d_inode; 1360 seq = read_seqcount_begin(&parent->d_seq); 1361 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq))) 1362 return -ECHILD; 1363 nd->path.dentry = parent; 1364 nd->seq = seq; 1365 if (unlikely(!path_connected(&nd->path))) 1366 return -ENOENT; 1367 break; 1368 } else { 1369 struct mount *mnt = real_mount(nd->path.mnt); 1370 struct mount *mparent = mnt->mnt_parent; 1371 struct dentry *mountpoint = mnt->mnt_mountpoint; 1372 struct inode *inode2 = mountpoint->d_inode; 1373 unsigned seq = read_seqcount_begin(&mountpoint->d_seq); 1374 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1375 return -ECHILD; 1376 if (&mparent->mnt == nd->path.mnt) 1377 break; 1378 /* we know that mountpoint was pinned */ 1379 nd->path.dentry = mountpoint; 1380 nd->path.mnt = &mparent->mnt; 1381 inode = inode2; 1382 nd->seq = seq; 1383 } 1384 } 1385 while (unlikely(d_mountpoint(nd->path.dentry))) { 1386 struct mount *mounted; 1387 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry); 1388 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1389 return -ECHILD; 1390 if (!mounted) 1391 break; 1392 nd->path.mnt = &mounted->mnt; 1393 nd->path.dentry = mounted->mnt.mnt_root; 1394 inode = nd->path.dentry->d_inode; 1395 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1396 } 1397 nd->inode = inode; 1398 return 0; 1399 } 1400 1401 /* 1402 * Follow down to the covering mount currently visible to userspace. At each 1403 * point, the filesystem owning that dentry may be queried as to whether the 1404 * caller is permitted to proceed or not. 1405 */ 1406 int follow_down(struct path *path) 1407 { 1408 unsigned managed; 1409 int ret; 1410 1411 while (managed = READ_ONCE(path->dentry->d_flags), 1412 unlikely(managed & DCACHE_MANAGED_DENTRY)) { 1413 /* Allow the filesystem to manage the transit without i_mutex 1414 * being held. 1415 * 1416 * We indicate to the filesystem if someone is trying to mount 1417 * something here. This gives autofs the chance to deny anyone 1418 * other than its daemon the right to mount on its 1419 * superstructure. 1420 * 1421 * The filesystem may sleep at this point. 1422 */ 1423 if (managed & DCACHE_MANAGE_TRANSIT) { 1424 BUG_ON(!path->dentry->d_op); 1425 BUG_ON(!path->dentry->d_op->d_manage); 1426 ret = path->dentry->d_op->d_manage(path, false); 1427 if (ret < 0) 1428 return ret == -EISDIR ? 0 : ret; 1429 } 1430 1431 /* Transit to a mounted filesystem. */ 1432 if (managed & DCACHE_MOUNTED) { 1433 struct vfsmount *mounted = lookup_mnt(path); 1434 if (!mounted) 1435 break; 1436 dput(path->dentry); 1437 mntput(path->mnt); 1438 path->mnt = mounted; 1439 path->dentry = dget(mounted->mnt_root); 1440 continue; 1441 } 1442 1443 /* Don't handle automount points here */ 1444 break; 1445 } 1446 return 0; 1447 } 1448 EXPORT_SYMBOL(follow_down); 1449 1450 /* 1451 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() 1452 */ 1453 static void follow_mount(struct path *path) 1454 { 1455 while (d_mountpoint(path->dentry)) { 1456 struct vfsmount *mounted = lookup_mnt(path); 1457 if (!mounted) 1458 break; 1459 dput(path->dentry); 1460 mntput(path->mnt); 1461 path->mnt = mounted; 1462 path->dentry = dget(mounted->mnt_root); 1463 } 1464 } 1465 1466 static int path_parent_directory(struct path *path) 1467 { 1468 struct dentry *old = path->dentry; 1469 /* rare case of legitimate dget_parent()... */ 1470 path->dentry = dget_parent(path->dentry); 1471 dput(old); 1472 if (unlikely(!path_connected(path))) 1473 return -ENOENT; 1474 return 0; 1475 } 1476 1477 static int follow_dotdot(struct nameidata *nd) 1478 { 1479 while(1) { 1480 if (path_equal(&nd->path, &nd->root)) 1481 break; 1482 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1483 int ret = path_parent_directory(&nd->path); 1484 if (ret) 1485 return ret; 1486 break; 1487 } 1488 if (!follow_up(&nd->path)) 1489 break; 1490 } 1491 follow_mount(&nd->path); 1492 nd->inode = nd->path.dentry->d_inode; 1493 return 0; 1494 } 1495 1496 /* 1497 * This looks up the name in dcache and possibly revalidates the found dentry. 1498 * NULL is returned if the dentry does not exist in the cache. 1499 */ 1500 static struct dentry *lookup_dcache(const struct qstr *name, 1501 struct dentry *dir, 1502 unsigned int flags) 1503 { 1504 struct dentry *dentry = d_lookup(dir, name); 1505 if (dentry) { 1506 int error = d_revalidate(dentry, flags); 1507 if (unlikely(error <= 0)) { 1508 if (!error) 1509 d_invalidate(dentry); 1510 dput(dentry); 1511 return ERR_PTR(error); 1512 } 1513 } 1514 return dentry; 1515 } 1516 1517 /* 1518 * Parent directory has inode locked exclusive. This is one 1519 * and only case when ->lookup() gets called on non in-lookup 1520 * dentries - as the matter of fact, this only gets called 1521 * when directory is guaranteed to have no in-lookup children 1522 * at all. 1523 */ 1524 static struct dentry *__lookup_hash(const struct qstr *name, 1525 struct dentry *base, unsigned int flags) 1526 { 1527 struct dentry *dentry = lookup_dcache(name, base, flags); 1528 struct dentry *old; 1529 struct inode *dir = base->d_inode; 1530 1531 if (dentry) 1532 return dentry; 1533 1534 /* Don't create child dentry for a dead directory. */ 1535 if (unlikely(IS_DEADDIR(dir))) 1536 return ERR_PTR(-ENOENT); 1537 1538 dentry = d_alloc(base, name); 1539 if (unlikely(!dentry)) 1540 return ERR_PTR(-ENOMEM); 1541 1542 old = dir->i_op->lookup(dir, dentry, flags); 1543 if (unlikely(old)) { 1544 dput(dentry); 1545 dentry = old; 1546 } 1547 return dentry; 1548 } 1549 1550 static int lookup_fast(struct nameidata *nd, 1551 struct path *path, struct inode **inode, 1552 unsigned *seqp) 1553 { 1554 struct vfsmount *mnt = nd->path.mnt; 1555 struct dentry *dentry, *parent = nd->path.dentry; 1556 int status = 1; 1557 int err; 1558 1559 /* 1560 * Rename seqlock is not required here because in the off chance 1561 * of a false negative due to a concurrent rename, the caller is 1562 * going to fall back to non-racy lookup. 1563 */ 1564 if (nd->flags & LOOKUP_RCU) { 1565 unsigned seq; 1566 bool negative; 1567 dentry = __d_lookup_rcu(parent, &nd->last, &seq); 1568 if (unlikely(!dentry)) { 1569 if (unlazy_walk(nd)) 1570 return -ECHILD; 1571 return 0; 1572 } 1573 1574 /* 1575 * This sequence count validates that the inode matches 1576 * the dentry name information from lookup. 1577 */ 1578 *inode = d_backing_inode(dentry); 1579 negative = d_is_negative(dentry); 1580 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) 1581 return -ECHILD; 1582 1583 /* 1584 * This sequence count validates that the parent had no 1585 * changes while we did the lookup of the dentry above. 1586 * 1587 * The memory barrier in read_seqcount_begin of child is 1588 * enough, we can use __read_seqcount_retry here. 1589 */ 1590 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq))) 1591 return -ECHILD; 1592 1593 *seqp = seq; 1594 status = d_revalidate(dentry, nd->flags); 1595 if (likely(status > 0)) { 1596 /* 1597 * Note: do negative dentry check after revalidation in 1598 * case that drops it. 1599 */ 1600 if (unlikely(negative)) 1601 return -ENOENT; 1602 path->mnt = mnt; 1603 path->dentry = dentry; 1604 if (likely(__follow_mount_rcu(nd, path, inode, seqp))) 1605 return 1; 1606 } 1607 if (unlazy_child(nd, dentry, seq)) 1608 return -ECHILD; 1609 if (unlikely(status == -ECHILD)) 1610 /* we'd been told to redo it in non-rcu mode */ 1611 status = d_revalidate(dentry, nd->flags); 1612 } else { 1613 dentry = __d_lookup(parent, &nd->last); 1614 if (unlikely(!dentry)) 1615 return 0; 1616 status = d_revalidate(dentry, nd->flags); 1617 } 1618 if (unlikely(status <= 0)) { 1619 if (!status) 1620 d_invalidate(dentry); 1621 dput(dentry); 1622 return status; 1623 } 1624 if (unlikely(d_is_negative(dentry))) { 1625 dput(dentry); 1626 return -ENOENT; 1627 } 1628 1629 path->mnt = mnt; 1630 path->dentry = dentry; 1631 err = follow_managed(path, nd); 1632 if (likely(err > 0)) 1633 *inode = d_backing_inode(path->dentry); 1634 return err; 1635 } 1636 1637 /* Fast lookup failed, do it the slow way */ 1638 static struct dentry *__lookup_slow(const struct qstr *name, 1639 struct dentry *dir, 1640 unsigned int flags) 1641 { 1642 struct dentry *dentry, *old; 1643 struct inode *inode = dir->d_inode; 1644 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1645 1646 /* Don't go there if it's already dead */ 1647 if (unlikely(IS_DEADDIR(inode))) 1648 return ERR_PTR(-ENOENT); 1649 again: 1650 dentry = d_alloc_parallel(dir, name, &wq); 1651 if (IS_ERR(dentry)) 1652 return dentry; 1653 if (unlikely(!d_in_lookup(dentry))) { 1654 if (!(flags & LOOKUP_NO_REVAL)) { 1655 int error = d_revalidate(dentry, flags); 1656 if (unlikely(error <= 0)) { 1657 if (!error) { 1658 d_invalidate(dentry); 1659 dput(dentry); 1660 goto again; 1661 } 1662 dput(dentry); 1663 dentry = ERR_PTR(error); 1664 } 1665 } 1666 } else { 1667 old = inode->i_op->lookup(inode, dentry, flags); 1668 d_lookup_done(dentry); 1669 if (unlikely(old)) { 1670 dput(dentry); 1671 dentry = old; 1672 } 1673 } 1674 return dentry; 1675 } 1676 1677 static struct dentry *lookup_slow(const struct qstr *name, 1678 struct dentry *dir, 1679 unsigned int flags) 1680 { 1681 struct inode *inode = dir->d_inode; 1682 struct dentry *res; 1683 inode_lock_shared(inode); 1684 res = __lookup_slow(name, dir, flags); 1685 inode_unlock_shared(inode); 1686 return res; 1687 } 1688 1689 static inline int may_lookup(struct nameidata *nd) 1690 { 1691 if (nd->flags & LOOKUP_RCU) { 1692 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1693 if (err != -ECHILD) 1694 return err; 1695 if (unlazy_walk(nd)) 1696 return -ECHILD; 1697 } 1698 return inode_permission(nd->inode, MAY_EXEC); 1699 } 1700 1701 static inline int handle_dots(struct nameidata *nd, int type) 1702 { 1703 if (type == LAST_DOTDOT) { 1704 if (!nd->root.mnt) 1705 set_root(nd); 1706 if (nd->flags & LOOKUP_RCU) { 1707 return follow_dotdot_rcu(nd); 1708 } else 1709 return follow_dotdot(nd); 1710 } 1711 return 0; 1712 } 1713 1714 static int pick_link(struct nameidata *nd, struct path *link, 1715 struct inode *inode, unsigned seq) 1716 { 1717 int error; 1718 struct saved *last; 1719 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) { 1720 path_to_nameidata(link, nd); 1721 return -ELOOP; 1722 } 1723 if (!(nd->flags & LOOKUP_RCU)) { 1724 if (link->mnt == nd->path.mnt) 1725 mntget(link->mnt); 1726 } 1727 error = nd_alloc_stack(nd); 1728 if (unlikely(error)) { 1729 if (error == -ECHILD) { 1730 if (unlikely(!legitimize_path(nd, link, seq))) { 1731 drop_links(nd); 1732 nd->depth = 0; 1733 nd->flags &= ~LOOKUP_RCU; 1734 nd->path.mnt = NULL; 1735 nd->path.dentry = NULL; 1736 rcu_read_unlock(); 1737 } else if (likely(unlazy_walk(nd)) == 0) 1738 error = nd_alloc_stack(nd); 1739 } 1740 if (error) { 1741 path_put(link); 1742 return error; 1743 } 1744 } 1745 1746 last = nd->stack + nd->depth++; 1747 last->link = *link; 1748 clear_delayed_call(&last->done); 1749 nd->link_inode = inode; 1750 last->seq = seq; 1751 return 1; 1752 } 1753 1754 enum {WALK_FOLLOW = 1, WALK_MORE = 2}; 1755 1756 /* 1757 * Do we need to follow links? We _really_ want to be able 1758 * to do this check without having to look at inode->i_op, 1759 * so we keep a cache of "no, this doesn't need follow_link" 1760 * for the common case. 1761 */ 1762 static inline int step_into(struct nameidata *nd, struct path *path, 1763 int flags, struct inode *inode, unsigned seq) 1764 { 1765 if (!(flags & WALK_MORE) && nd->depth) 1766 put_link(nd); 1767 if (likely(!d_is_symlink(path->dentry)) || 1768 !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) { 1769 /* not a symlink or should not follow */ 1770 path_to_nameidata(path, nd); 1771 nd->inode = inode; 1772 nd->seq = seq; 1773 return 0; 1774 } 1775 /* make sure that d_is_symlink above matches inode */ 1776 if (nd->flags & LOOKUP_RCU) { 1777 if (read_seqcount_retry(&path->dentry->d_seq, seq)) 1778 return -ECHILD; 1779 } 1780 return pick_link(nd, path, inode, seq); 1781 } 1782 1783 static int walk_component(struct nameidata *nd, int flags) 1784 { 1785 struct path path; 1786 struct inode *inode; 1787 unsigned seq; 1788 int err; 1789 /* 1790 * "." and ".." are special - ".." especially so because it has 1791 * to be able to know about the current root directory and 1792 * parent relationships. 1793 */ 1794 if (unlikely(nd->last_type != LAST_NORM)) { 1795 err = handle_dots(nd, nd->last_type); 1796 if (!(flags & WALK_MORE) && nd->depth) 1797 put_link(nd); 1798 return err; 1799 } 1800 err = lookup_fast(nd, &path, &inode, &seq); 1801 if (unlikely(err <= 0)) { 1802 if (err < 0) 1803 return err; 1804 path.dentry = lookup_slow(&nd->last, nd->path.dentry, 1805 nd->flags); 1806 if (IS_ERR(path.dentry)) 1807 return PTR_ERR(path.dentry); 1808 1809 path.mnt = nd->path.mnt; 1810 err = follow_managed(&path, nd); 1811 if (unlikely(err < 0)) 1812 return err; 1813 1814 if (unlikely(d_is_negative(path.dentry))) { 1815 path_to_nameidata(&path, nd); 1816 return -ENOENT; 1817 } 1818 1819 seq = 0; /* we are already out of RCU mode */ 1820 inode = d_backing_inode(path.dentry); 1821 } 1822 1823 return step_into(nd, &path, flags, inode, seq); 1824 } 1825 1826 /* 1827 * We can do the critical dentry name comparison and hashing 1828 * operations one word at a time, but we are limited to: 1829 * 1830 * - Architectures with fast unaligned word accesses. We could 1831 * do a "get_unaligned()" if this helps and is sufficiently 1832 * fast. 1833 * 1834 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 1835 * do not trap on the (extremely unlikely) case of a page 1836 * crossing operation. 1837 * 1838 * - Furthermore, we need an efficient 64-bit compile for the 1839 * 64-bit case in order to generate the "number of bytes in 1840 * the final mask". Again, that could be replaced with a 1841 * efficient population count instruction or similar. 1842 */ 1843 #ifdef CONFIG_DCACHE_WORD_ACCESS 1844 1845 #include <asm/word-at-a-time.h> 1846 1847 #ifdef HASH_MIX 1848 1849 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */ 1850 1851 #elif defined(CONFIG_64BIT) 1852 /* 1853 * Register pressure in the mixing function is an issue, particularly 1854 * on 32-bit x86, but almost any function requires one state value and 1855 * one temporary. Instead, use a function designed for two state values 1856 * and no temporaries. 1857 * 1858 * This function cannot create a collision in only two iterations, so 1859 * we have two iterations to achieve avalanche. In those two iterations, 1860 * we have six layers of mixing, which is enough to spread one bit's 1861 * influence out to 2^6 = 64 state bits. 1862 * 1863 * Rotate constants are scored by considering either 64 one-bit input 1864 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the 1865 * probability of that delta causing a change to each of the 128 output 1866 * bits, using a sample of random initial states. 1867 * 1868 * The Shannon entropy of the computed probabilities is then summed 1869 * to produce a score. Ideally, any input change has a 50% chance of 1870 * toggling any given output bit. 1871 * 1872 * Mixing scores (in bits) for (12,45): 1873 * Input delta: 1-bit 2-bit 1874 * 1 round: 713.3 42542.6 1875 * 2 rounds: 2753.7 140389.8 1876 * 3 rounds: 5954.1 233458.2 1877 * 4 rounds: 7862.6 256672.2 1878 * Perfect: 8192 258048 1879 * (64*128) (64*63/2 * 128) 1880 */ 1881 #define HASH_MIX(x, y, a) \ 1882 ( x ^= (a), \ 1883 y ^= x, x = rol64(x,12),\ 1884 x += y, y = rol64(y,45),\ 1885 y *= 9 ) 1886 1887 /* 1888 * Fold two longs into one 32-bit hash value. This must be fast, but 1889 * latency isn't quite as critical, as there is a fair bit of additional 1890 * work done before the hash value is used. 1891 */ 1892 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 1893 { 1894 y ^= x * GOLDEN_RATIO_64; 1895 y *= GOLDEN_RATIO_64; 1896 return y >> 32; 1897 } 1898 1899 #else /* 32-bit case */ 1900 1901 /* 1902 * Mixing scores (in bits) for (7,20): 1903 * Input delta: 1-bit 2-bit 1904 * 1 round: 330.3 9201.6 1905 * 2 rounds: 1246.4 25475.4 1906 * 3 rounds: 1907.1 31295.1 1907 * 4 rounds: 2042.3 31718.6 1908 * Perfect: 2048 31744 1909 * (32*64) (32*31/2 * 64) 1910 */ 1911 #define HASH_MIX(x, y, a) \ 1912 ( x ^= (a), \ 1913 y ^= x, x = rol32(x, 7),\ 1914 x += y, y = rol32(y,20),\ 1915 y *= 9 ) 1916 1917 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 1918 { 1919 /* Use arch-optimized multiply if one exists */ 1920 return __hash_32(y ^ __hash_32(x)); 1921 } 1922 1923 #endif 1924 1925 /* 1926 * Return the hash of a string of known length. This is carfully 1927 * designed to match hash_name(), which is the more critical function. 1928 * In particular, we must end by hashing a final word containing 0..7 1929 * payload bytes, to match the way that hash_name() iterates until it 1930 * finds the delimiter after the name. 1931 */ 1932 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 1933 { 1934 unsigned long a, x = 0, y = (unsigned long)salt; 1935 1936 for (;;) { 1937 if (!len) 1938 goto done; 1939 a = load_unaligned_zeropad(name); 1940 if (len < sizeof(unsigned long)) 1941 break; 1942 HASH_MIX(x, y, a); 1943 name += sizeof(unsigned long); 1944 len -= sizeof(unsigned long); 1945 } 1946 x ^= a & bytemask_from_count(len); 1947 done: 1948 return fold_hash(x, y); 1949 } 1950 EXPORT_SYMBOL(full_name_hash); 1951 1952 /* Return the "hash_len" (hash and length) of a null-terminated string */ 1953 u64 hashlen_string(const void *salt, const char *name) 1954 { 1955 unsigned long a = 0, x = 0, y = (unsigned long)salt; 1956 unsigned long adata, mask, len; 1957 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1958 1959 len = 0; 1960 goto inside; 1961 1962 do { 1963 HASH_MIX(x, y, a); 1964 len += sizeof(unsigned long); 1965 inside: 1966 a = load_unaligned_zeropad(name+len); 1967 } while (!has_zero(a, &adata, &constants)); 1968 1969 adata = prep_zero_mask(a, adata, &constants); 1970 mask = create_zero_mask(adata); 1971 x ^= a & zero_bytemask(mask); 1972 1973 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 1974 } 1975 EXPORT_SYMBOL(hashlen_string); 1976 1977 /* 1978 * Calculate the length and hash of the path component, and 1979 * return the "hash_len" as the result. 1980 */ 1981 static inline u64 hash_name(const void *salt, const char *name) 1982 { 1983 unsigned long a = 0, b, x = 0, y = (unsigned long)salt; 1984 unsigned long adata, bdata, mask, len; 1985 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1986 1987 len = 0; 1988 goto inside; 1989 1990 do { 1991 HASH_MIX(x, y, a); 1992 len += sizeof(unsigned long); 1993 inside: 1994 a = load_unaligned_zeropad(name+len); 1995 b = a ^ REPEAT_BYTE('/'); 1996 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 1997 1998 adata = prep_zero_mask(a, adata, &constants); 1999 bdata = prep_zero_mask(b, bdata, &constants); 2000 mask = create_zero_mask(adata | bdata); 2001 x ^= a & zero_bytemask(mask); 2002 2003 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 2004 } 2005 2006 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */ 2007 2008 /* Return the hash of a string of known length */ 2009 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2010 { 2011 unsigned long hash = init_name_hash(salt); 2012 while (len--) 2013 hash = partial_name_hash((unsigned char)*name++, hash); 2014 return end_name_hash(hash); 2015 } 2016 EXPORT_SYMBOL(full_name_hash); 2017 2018 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2019 u64 hashlen_string(const void *salt, const char *name) 2020 { 2021 unsigned long hash = init_name_hash(salt); 2022 unsigned long len = 0, c; 2023 2024 c = (unsigned char)*name; 2025 while (c) { 2026 len++; 2027 hash = partial_name_hash(c, hash); 2028 c = (unsigned char)name[len]; 2029 } 2030 return hashlen_create(end_name_hash(hash), len); 2031 } 2032 EXPORT_SYMBOL(hashlen_string); 2033 2034 /* 2035 * We know there's a real path component here of at least 2036 * one character. 2037 */ 2038 static inline u64 hash_name(const void *salt, const char *name) 2039 { 2040 unsigned long hash = init_name_hash(salt); 2041 unsigned long len = 0, c; 2042 2043 c = (unsigned char)*name; 2044 do { 2045 len++; 2046 hash = partial_name_hash(c, hash); 2047 c = (unsigned char)name[len]; 2048 } while (c && c != '/'); 2049 return hashlen_create(end_name_hash(hash), len); 2050 } 2051 2052 #endif 2053 2054 /* 2055 * Name resolution. 2056 * This is the basic name resolution function, turning a pathname into 2057 * the final dentry. We expect 'base' to be positive and a directory. 2058 * 2059 * Returns 0 and nd will have valid dentry and mnt on success. 2060 * Returns error and drops reference to input namei data on failure. 2061 */ 2062 static int link_path_walk(const char *name, struct nameidata *nd) 2063 { 2064 int err; 2065 2066 if (IS_ERR(name)) 2067 return PTR_ERR(name); 2068 while (*name=='/') 2069 name++; 2070 if (!*name) 2071 return 0; 2072 2073 /* At this point we know we have a real path component. */ 2074 for(;;) { 2075 u64 hash_len; 2076 int type; 2077 2078 err = may_lookup(nd); 2079 if (err) 2080 return err; 2081 2082 hash_len = hash_name(nd->path.dentry, name); 2083 2084 type = LAST_NORM; 2085 if (name[0] == '.') switch (hashlen_len(hash_len)) { 2086 case 2: 2087 if (name[1] == '.') { 2088 type = LAST_DOTDOT; 2089 nd->flags |= LOOKUP_JUMPED; 2090 } 2091 break; 2092 case 1: 2093 type = LAST_DOT; 2094 } 2095 if (likely(type == LAST_NORM)) { 2096 struct dentry *parent = nd->path.dentry; 2097 nd->flags &= ~LOOKUP_JUMPED; 2098 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 2099 struct qstr this = { { .hash_len = hash_len }, .name = name }; 2100 err = parent->d_op->d_hash(parent, &this); 2101 if (err < 0) 2102 return err; 2103 hash_len = this.hash_len; 2104 name = this.name; 2105 } 2106 } 2107 2108 nd->last.hash_len = hash_len; 2109 nd->last.name = name; 2110 nd->last_type = type; 2111 2112 name += hashlen_len(hash_len); 2113 if (!*name) 2114 goto OK; 2115 /* 2116 * If it wasn't NUL, we know it was '/'. Skip that 2117 * slash, and continue until no more slashes. 2118 */ 2119 do { 2120 name++; 2121 } while (unlikely(*name == '/')); 2122 if (unlikely(!*name)) { 2123 OK: 2124 /* pathname body, done */ 2125 if (!nd->depth) 2126 return 0; 2127 name = nd->stack[nd->depth - 1].name; 2128 /* trailing symlink, done */ 2129 if (!name) 2130 return 0; 2131 /* last component of nested symlink */ 2132 err = walk_component(nd, WALK_FOLLOW); 2133 } else { 2134 /* not the last component */ 2135 err = walk_component(nd, WALK_FOLLOW | WALK_MORE); 2136 } 2137 if (err < 0) 2138 return err; 2139 2140 if (err) { 2141 const char *s = get_link(nd); 2142 2143 if (IS_ERR(s)) 2144 return PTR_ERR(s); 2145 err = 0; 2146 if (unlikely(!s)) { 2147 /* jumped */ 2148 put_link(nd); 2149 } else { 2150 nd->stack[nd->depth - 1].name = name; 2151 name = s; 2152 continue; 2153 } 2154 } 2155 if (unlikely(!d_can_lookup(nd->path.dentry))) { 2156 if (nd->flags & LOOKUP_RCU) { 2157 if (unlazy_walk(nd)) 2158 return -ECHILD; 2159 } 2160 return -ENOTDIR; 2161 } 2162 } 2163 } 2164 2165 /* must be paired with terminate_walk() */ 2166 static const char *path_init(struct nameidata *nd, unsigned flags) 2167 { 2168 const char *s = nd->name->name; 2169 2170 if (!*s) 2171 flags &= ~LOOKUP_RCU; 2172 if (flags & LOOKUP_RCU) 2173 rcu_read_lock(); 2174 2175 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 2176 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT; 2177 nd->depth = 0; 2178 if (flags & LOOKUP_ROOT) { 2179 struct dentry *root = nd->root.dentry; 2180 struct inode *inode = root->d_inode; 2181 if (*s && unlikely(!d_can_lookup(root))) 2182 return ERR_PTR(-ENOTDIR); 2183 nd->path = nd->root; 2184 nd->inode = inode; 2185 if (flags & LOOKUP_RCU) { 2186 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2187 nd->root_seq = nd->seq; 2188 nd->m_seq = read_seqbegin(&mount_lock); 2189 } else { 2190 path_get(&nd->path); 2191 } 2192 return s; 2193 } 2194 2195 nd->root.mnt = NULL; 2196 nd->path.mnt = NULL; 2197 nd->path.dentry = NULL; 2198 2199 nd->m_seq = read_seqbegin(&mount_lock); 2200 if (*s == '/') { 2201 set_root(nd); 2202 if (likely(!nd_jump_root(nd))) 2203 return s; 2204 return ERR_PTR(-ECHILD); 2205 } else if (nd->dfd == AT_FDCWD) { 2206 if (flags & LOOKUP_RCU) { 2207 struct fs_struct *fs = current->fs; 2208 unsigned seq; 2209 2210 do { 2211 seq = read_seqcount_begin(&fs->seq); 2212 nd->path = fs->pwd; 2213 nd->inode = nd->path.dentry->d_inode; 2214 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2215 } while (read_seqcount_retry(&fs->seq, seq)); 2216 } else { 2217 get_fs_pwd(current->fs, &nd->path); 2218 nd->inode = nd->path.dentry->d_inode; 2219 } 2220 return s; 2221 } else { 2222 /* Caller must check execute permissions on the starting path component */ 2223 struct fd f = fdget_raw(nd->dfd); 2224 struct dentry *dentry; 2225 2226 if (!f.file) 2227 return ERR_PTR(-EBADF); 2228 2229 dentry = f.file->f_path.dentry; 2230 2231 if (*s && unlikely(!d_can_lookup(dentry))) { 2232 fdput(f); 2233 return ERR_PTR(-ENOTDIR); 2234 } 2235 2236 nd->path = f.file->f_path; 2237 if (flags & LOOKUP_RCU) { 2238 nd->inode = nd->path.dentry->d_inode; 2239 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2240 } else { 2241 path_get(&nd->path); 2242 nd->inode = nd->path.dentry->d_inode; 2243 } 2244 fdput(f); 2245 return s; 2246 } 2247 } 2248 2249 static const char *trailing_symlink(struct nameidata *nd) 2250 { 2251 const char *s; 2252 int error = may_follow_link(nd); 2253 if (unlikely(error)) 2254 return ERR_PTR(error); 2255 nd->flags |= LOOKUP_PARENT; 2256 nd->stack[0].name = NULL; 2257 s = get_link(nd); 2258 return s ? s : ""; 2259 } 2260 2261 static inline int lookup_last(struct nameidata *nd) 2262 { 2263 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 2264 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2265 2266 nd->flags &= ~LOOKUP_PARENT; 2267 return walk_component(nd, 0); 2268 } 2269 2270 static int handle_lookup_down(struct nameidata *nd) 2271 { 2272 struct path path = nd->path; 2273 struct inode *inode = nd->inode; 2274 unsigned seq = nd->seq; 2275 int err; 2276 2277 if (nd->flags & LOOKUP_RCU) { 2278 /* 2279 * don't bother with unlazy_walk on failure - we are 2280 * at the very beginning of walk, so we lose nothing 2281 * if we simply redo everything in non-RCU mode 2282 */ 2283 if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq))) 2284 return -ECHILD; 2285 } else { 2286 dget(path.dentry); 2287 err = follow_managed(&path, nd); 2288 if (unlikely(err < 0)) 2289 return err; 2290 inode = d_backing_inode(path.dentry); 2291 seq = 0; 2292 } 2293 path_to_nameidata(&path, nd); 2294 nd->inode = inode; 2295 nd->seq = seq; 2296 return 0; 2297 } 2298 2299 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2300 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path) 2301 { 2302 const char *s = path_init(nd, flags); 2303 int err; 2304 2305 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) { 2306 err = handle_lookup_down(nd); 2307 if (unlikely(err < 0)) 2308 s = ERR_PTR(err); 2309 } 2310 2311 while (!(err = link_path_walk(s, nd)) 2312 && ((err = lookup_last(nd)) > 0)) { 2313 s = trailing_symlink(nd); 2314 } 2315 if (!err) 2316 err = complete_walk(nd); 2317 2318 if (!err && nd->flags & LOOKUP_DIRECTORY) 2319 if (!d_can_lookup(nd->path.dentry)) 2320 err = -ENOTDIR; 2321 if (!err) { 2322 *path = nd->path; 2323 nd->path.mnt = NULL; 2324 nd->path.dentry = NULL; 2325 } 2326 terminate_walk(nd); 2327 return err; 2328 } 2329 2330 int filename_lookup(int dfd, struct filename *name, unsigned flags, 2331 struct path *path, struct path *root) 2332 { 2333 int retval; 2334 struct nameidata nd; 2335 if (IS_ERR(name)) 2336 return PTR_ERR(name); 2337 if (unlikely(root)) { 2338 nd.root = *root; 2339 flags |= LOOKUP_ROOT; 2340 } 2341 set_nameidata(&nd, dfd, name); 2342 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path); 2343 if (unlikely(retval == -ECHILD)) 2344 retval = path_lookupat(&nd, flags, path); 2345 if (unlikely(retval == -ESTALE)) 2346 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path); 2347 2348 if (likely(!retval)) 2349 audit_inode(name, path->dentry, 0); 2350 restore_nameidata(); 2351 putname(name); 2352 return retval; 2353 } 2354 2355 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2356 static int path_parentat(struct nameidata *nd, unsigned flags, 2357 struct path *parent) 2358 { 2359 const char *s = path_init(nd, flags); 2360 int err = link_path_walk(s, nd); 2361 if (!err) 2362 err = complete_walk(nd); 2363 if (!err) { 2364 *parent = nd->path; 2365 nd->path.mnt = NULL; 2366 nd->path.dentry = NULL; 2367 } 2368 terminate_walk(nd); 2369 return err; 2370 } 2371 2372 static struct filename *filename_parentat(int dfd, struct filename *name, 2373 unsigned int flags, struct path *parent, 2374 struct qstr *last, int *type) 2375 { 2376 int retval; 2377 struct nameidata nd; 2378 2379 if (IS_ERR(name)) 2380 return name; 2381 set_nameidata(&nd, dfd, name); 2382 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent); 2383 if (unlikely(retval == -ECHILD)) 2384 retval = path_parentat(&nd, flags, parent); 2385 if (unlikely(retval == -ESTALE)) 2386 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent); 2387 if (likely(!retval)) { 2388 *last = nd.last; 2389 *type = nd.last_type; 2390 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT); 2391 } else { 2392 putname(name); 2393 name = ERR_PTR(retval); 2394 } 2395 restore_nameidata(); 2396 return name; 2397 } 2398 2399 /* does lookup, returns the object with parent locked */ 2400 struct dentry *kern_path_locked(const char *name, struct path *path) 2401 { 2402 struct filename *filename; 2403 struct dentry *d; 2404 struct qstr last; 2405 int type; 2406 2407 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path, 2408 &last, &type); 2409 if (IS_ERR(filename)) 2410 return ERR_CAST(filename); 2411 if (unlikely(type != LAST_NORM)) { 2412 path_put(path); 2413 putname(filename); 2414 return ERR_PTR(-EINVAL); 2415 } 2416 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 2417 d = __lookup_hash(&last, path->dentry, 0); 2418 if (IS_ERR(d)) { 2419 inode_unlock(path->dentry->d_inode); 2420 path_put(path); 2421 } 2422 putname(filename); 2423 return d; 2424 } 2425 2426 int kern_path(const char *name, unsigned int flags, struct path *path) 2427 { 2428 return filename_lookup(AT_FDCWD, getname_kernel(name), 2429 flags, path, NULL); 2430 } 2431 EXPORT_SYMBOL(kern_path); 2432 2433 /** 2434 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2435 * @dentry: pointer to dentry of the base directory 2436 * @mnt: pointer to vfs mount of the base directory 2437 * @name: pointer to file name 2438 * @flags: lookup flags 2439 * @path: pointer to struct path to fill 2440 */ 2441 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2442 const char *name, unsigned int flags, 2443 struct path *path) 2444 { 2445 struct path root = {.mnt = mnt, .dentry = dentry}; 2446 /* the first argument of filename_lookup() is ignored with root */ 2447 return filename_lookup(AT_FDCWD, getname_kernel(name), 2448 flags , path, &root); 2449 } 2450 EXPORT_SYMBOL(vfs_path_lookup); 2451 2452 static int lookup_one_len_common(const char *name, struct dentry *base, 2453 int len, struct qstr *this) 2454 { 2455 this->name = name; 2456 this->len = len; 2457 this->hash = full_name_hash(base, name, len); 2458 if (!len) 2459 return -EACCES; 2460 2461 if (unlikely(name[0] == '.')) { 2462 if (len < 2 || (len == 2 && name[1] == '.')) 2463 return -EACCES; 2464 } 2465 2466 while (len--) { 2467 unsigned int c = *(const unsigned char *)name++; 2468 if (c == '/' || c == '\0') 2469 return -EACCES; 2470 } 2471 /* 2472 * See if the low-level filesystem might want 2473 * to use its own hash.. 2474 */ 2475 if (base->d_flags & DCACHE_OP_HASH) { 2476 int err = base->d_op->d_hash(base, this); 2477 if (err < 0) 2478 return err; 2479 } 2480 2481 return inode_permission(base->d_inode, MAY_EXEC); 2482 } 2483 2484 /** 2485 * try_lookup_one_len - filesystem helper to lookup single pathname component 2486 * @name: pathname component to lookup 2487 * @base: base directory to lookup from 2488 * @len: maximum length @len should be interpreted to 2489 * 2490 * Look up a dentry by name in the dcache, returning NULL if it does not 2491 * currently exist. The function does not try to create a dentry. 2492 * 2493 * Note that this routine is purely a helper for filesystem usage and should 2494 * not be called by generic code. 2495 * 2496 * The caller must hold base->i_mutex. 2497 */ 2498 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len) 2499 { 2500 struct qstr this; 2501 int err; 2502 2503 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2504 2505 err = lookup_one_len_common(name, base, len, &this); 2506 if (err) 2507 return ERR_PTR(err); 2508 2509 return lookup_dcache(&this, base, 0); 2510 } 2511 EXPORT_SYMBOL(try_lookup_one_len); 2512 2513 /** 2514 * lookup_one_len - filesystem helper to lookup single pathname component 2515 * @name: pathname component to lookup 2516 * @base: base directory to lookup from 2517 * @len: maximum length @len should be interpreted to 2518 * 2519 * Note that this routine is purely a helper for filesystem usage and should 2520 * not be called by generic code. 2521 * 2522 * The caller must hold base->i_mutex. 2523 */ 2524 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2525 { 2526 struct dentry *dentry; 2527 struct qstr this; 2528 int err; 2529 2530 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2531 2532 err = lookup_one_len_common(name, base, len, &this); 2533 if (err) 2534 return ERR_PTR(err); 2535 2536 dentry = lookup_dcache(&this, base, 0); 2537 return dentry ? dentry : __lookup_slow(&this, base, 0); 2538 } 2539 EXPORT_SYMBOL(lookup_one_len); 2540 2541 /** 2542 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component 2543 * @name: pathname component to lookup 2544 * @base: base directory to lookup from 2545 * @len: maximum length @len should be interpreted to 2546 * 2547 * Note that this routine is purely a helper for filesystem usage and should 2548 * not be called by generic code. 2549 * 2550 * Unlike lookup_one_len, it should be called without the parent 2551 * i_mutex held, and will take the i_mutex itself if necessary. 2552 */ 2553 struct dentry *lookup_one_len_unlocked(const char *name, 2554 struct dentry *base, int len) 2555 { 2556 struct qstr this; 2557 int err; 2558 struct dentry *ret; 2559 2560 err = lookup_one_len_common(name, base, len, &this); 2561 if (err) 2562 return ERR_PTR(err); 2563 2564 ret = lookup_dcache(&this, base, 0); 2565 if (!ret) 2566 ret = lookup_slow(&this, base, 0); 2567 return ret; 2568 } 2569 EXPORT_SYMBOL(lookup_one_len_unlocked); 2570 2571 #ifdef CONFIG_UNIX98_PTYS 2572 int path_pts(struct path *path) 2573 { 2574 /* Find something mounted on "pts" in the same directory as 2575 * the input path. 2576 */ 2577 struct dentry *child, *parent; 2578 struct qstr this; 2579 int ret; 2580 2581 ret = path_parent_directory(path); 2582 if (ret) 2583 return ret; 2584 2585 parent = path->dentry; 2586 this.name = "pts"; 2587 this.len = 3; 2588 child = d_hash_and_lookup(parent, &this); 2589 if (!child) 2590 return -ENOENT; 2591 2592 path->dentry = child; 2593 dput(parent); 2594 follow_mount(path); 2595 return 0; 2596 } 2597 #endif 2598 2599 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2600 struct path *path, int *empty) 2601 { 2602 return filename_lookup(dfd, getname_flags(name, flags, empty), 2603 flags, path, NULL); 2604 } 2605 EXPORT_SYMBOL(user_path_at_empty); 2606 2607 /** 2608 * mountpoint_last - look up last component for umount 2609 * @nd: pathwalk nameidata - currently pointing at parent directory of "last" 2610 * 2611 * This is a special lookup_last function just for umount. In this case, we 2612 * need to resolve the path without doing any revalidation. 2613 * 2614 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since 2615 * mountpoints are always pinned in the dcache, their ancestors are too. Thus, 2616 * in almost all cases, this lookup will be served out of the dcache. The only 2617 * cases where it won't are if nd->last refers to a symlink or the path is 2618 * bogus and it doesn't exist. 2619 * 2620 * Returns: 2621 * -error: if there was an error during lookup. This includes -ENOENT if the 2622 * lookup found a negative dentry. 2623 * 2624 * 0: if we successfully resolved nd->last and found it to not to be a 2625 * symlink that needs to be followed. 2626 * 2627 * 1: if we successfully resolved nd->last and found it to be a symlink 2628 * that needs to be followed. 2629 */ 2630 static int 2631 mountpoint_last(struct nameidata *nd) 2632 { 2633 int error = 0; 2634 struct dentry *dir = nd->path.dentry; 2635 struct path path; 2636 2637 /* If we're in rcuwalk, drop out of it to handle last component */ 2638 if (nd->flags & LOOKUP_RCU) { 2639 if (unlazy_walk(nd)) 2640 return -ECHILD; 2641 } 2642 2643 nd->flags &= ~LOOKUP_PARENT; 2644 2645 if (unlikely(nd->last_type != LAST_NORM)) { 2646 error = handle_dots(nd, nd->last_type); 2647 if (error) 2648 return error; 2649 path.dentry = dget(nd->path.dentry); 2650 } else { 2651 path.dentry = d_lookup(dir, &nd->last); 2652 if (!path.dentry) { 2653 /* 2654 * No cached dentry. Mounted dentries are pinned in the 2655 * cache, so that means that this dentry is probably 2656 * a symlink or the path doesn't actually point 2657 * to a mounted dentry. 2658 */ 2659 path.dentry = lookup_slow(&nd->last, dir, 2660 nd->flags | LOOKUP_NO_REVAL); 2661 if (IS_ERR(path.dentry)) 2662 return PTR_ERR(path.dentry); 2663 } 2664 } 2665 if (d_is_negative(path.dentry)) { 2666 dput(path.dentry); 2667 return -ENOENT; 2668 } 2669 path.mnt = nd->path.mnt; 2670 return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0); 2671 } 2672 2673 /** 2674 * path_mountpoint - look up a path to be umounted 2675 * @nd: lookup context 2676 * @flags: lookup flags 2677 * @path: pointer to container for result 2678 * 2679 * Look up the given name, but don't attempt to revalidate the last component. 2680 * Returns 0 and "path" will be valid on success; Returns error otherwise. 2681 */ 2682 static int 2683 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path) 2684 { 2685 const char *s = path_init(nd, flags); 2686 int err; 2687 2688 while (!(err = link_path_walk(s, nd)) && 2689 (err = mountpoint_last(nd)) > 0) { 2690 s = trailing_symlink(nd); 2691 } 2692 if (!err) { 2693 *path = nd->path; 2694 nd->path.mnt = NULL; 2695 nd->path.dentry = NULL; 2696 follow_mount(path); 2697 } 2698 terminate_walk(nd); 2699 return err; 2700 } 2701 2702 static int 2703 filename_mountpoint(int dfd, struct filename *name, struct path *path, 2704 unsigned int flags) 2705 { 2706 struct nameidata nd; 2707 int error; 2708 if (IS_ERR(name)) 2709 return PTR_ERR(name); 2710 set_nameidata(&nd, dfd, name); 2711 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path); 2712 if (unlikely(error == -ECHILD)) 2713 error = path_mountpoint(&nd, flags, path); 2714 if (unlikely(error == -ESTALE)) 2715 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path); 2716 if (likely(!error)) 2717 audit_inode(name, path->dentry, AUDIT_INODE_NOEVAL); 2718 restore_nameidata(); 2719 putname(name); 2720 return error; 2721 } 2722 2723 /** 2724 * user_path_mountpoint_at - lookup a path from userland in order to umount it 2725 * @dfd: directory file descriptor 2726 * @name: pathname from userland 2727 * @flags: lookup flags 2728 * @path: pointer to container to hold result 2729 * 2730 * A umount is a special case for path walking. We're not actually interested 2731 * in the inode in this situation, and ESTALE errors can be a problem. We 2732 * simply want track down the dentry and vfsmount attached at the mountpoint 2733 * and avoid revalidating the last component. 2734 * 2735 * Returns 0 and populates "path" on success. 2736 */ 2737 int 2738 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags, 2739 struct path *path) 2740 { 2741 return filename_mountpoint(dfd, getname(name), path, flags); 2742 } 2743 2744 int 2745 kern_path_mountpoint(int dfd, const char *name, struct path *path, 2746 unsigned int flags) 2747 { 2748 return filename_mountpoint(dfd, getname_kernel(name), path, flags); 2749 } 2750 EXPORT_SYMBOL(kern_path_mountpoint); 2751 2752 int __check_sticky(struct inode *dir, struct inode *inode) 2753 { 2754 kuid_t fsuid = current_fsuid(); 2755 2756 if (uid_eq(inode->i_uid, fsuid)) 2757 return 0; 2758 if (uid_eq(dir->i_uid, fsuid)) 2759 return 0; 2760 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER); 2761 } 2762 EXPORT_SYMBOL(__check_sticky); 2763 2764 /* 2765 * Check whether we can remove a link victim from directory dir, check 2766 * whether the type of victim is right. 2767 * 1. We can't do it if dir is read-only (done in permission()) 2768 * 2. We should have write and exec permissions on dir 2769 * 3. We can't remove anything from append-only dir 2770 * 4. We can't do anything with immutable dir (done in permission()) 2771 * 5. If the sticky bit on dir is set we should either 2772 * a. be owner of dir, or 2773 * b. be owner of victim, or 2774 * c. have CAP_FOWNER capability 2775 * 6. If the victim is append-only or immutable we can't do antyhing with 2776 * links pointing to it. 2777 * 7. If the victim has an unknown uid or gid we can't change the inode. 2778 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2779 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2780 * 10. We can't remove a root or mountpoint. 2781 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by 2782 * nfs_async_unlink(). 2783 */ 2784 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir) 2785 { 2786 struct inode *inode = d_backing_inode(victim); 2787 int error; 2788 2789 if (d_is_negative(victim)) 2790 return -ENOENT; 2791 BUG_ON(!inode); 2792 2793 BUG_ON(victim->d_parent->d_inode != dir); 2794 2795 /* Inode writeback is not safe when the uid or gid are invalid. */ 2796 if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid)) 2797 return -EOVERFLOW; 2798 2799 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2800 2801 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 2802 if (error) 2803 return error; 2804 if (IS_APPEND(dir)) 2805 return -EPERM; 2806 2807 if (check_sticky(dir, inode) || IS_APPEND(inode) || 2808 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode)) 2809 return -EPERM; 2810 if (isdir) { 2811 if (!d_is_dir(victim)) 2812 return -ENOTDIR; 2813 if (IS_ROOT(victim)) 2814 return -EBUSY; 2815 } else if (d_is_dir(victim)) 2816 return -EISDIR; 2817 if (IS_DEADDIR(dir)) 2818 return -ENOENT; 2819 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2820 return -EBUSY; 2821 return 0; 2822 } 2823 2824 /* Check whether we can create an object with dentry child in directory 2825 * dir. 2826 * 1. We can't do it if child already exists (open has special treatment for 2827 * this case, but since we are inlined it's OK) 2828 * 2. We can't do it if dir is read-only (done in permission()) 2829 * 3. We can't do it if the fs can't represent the fsuid or fsgid. 2830 * 4. We should have write and exec permissions on dir 2831 * 5. We can't do it if dir is immutable (done in permission()) 2832 */ 2833 static inline int may_create(struct inode *dir, struct dentry *child) 2834 { 2835 struct user_namespace *s_user_ns; 2836 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 2837 if (child->d_inode) 2838 return -EEXIST; 2839 if (IS_DEADDIR(dir)) 2840 return -ENOENT; 2841 s_user_ns = dir->i_sb->s_user_ns; 2842 if (!kuid_has_mapping(s_user_ns, current_fsuid()) || 2843 !kgid_has_mapping(s_user_ns, current_fsgid())) 2844 return -EOVERFLOW; 2845 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 2846 } 2847 2848 /* 2849 * p1 and p2 should be directories on the same fs. 2850 */ 2851 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2852 { 2853 struct dentry *p; 2854 2855 if (p1 == p2) { 2856 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2857 return NULL; 2858 } 2859 2860 mutex_lock(&p1->d_sb->s_vfs_rename_mutex); 2861 2862 p = d_ancestor(p2, p1); 2863 if (p) { 2864 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 2865 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD); 2866 return p; 2867 } 2868 2869 p = d_ancestor(p1, p2); 2870 if (p) { 2871 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2872 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD); 2873 return p; 2874 } 2875 2876 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2877 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 2878 return NULL; 2879 } 2880 EXPORT_SYMBOL(lock_rename); 2881 2882 void unlock_rename(struct dentry *p1, struct dentry *p2) 2883 { 2884 inode_unlock(p1->d_inode); 2885 if (p1 != p2) { 2886 inode_unlock(p2->d_inode); 2887 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 2888 } 2889 } 2890 EXPORT_SYMBOL(unlock_rename); 2891 2892 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2893 bool want_excl) 2894 { 2895 int error = may_create(dir, dentry); 2896 if (error) 2897 return error; 2898 2899 if (!dir->i_op->create) 2900 return -EACCES; /* shouldn't it be ENOSYS? */ 2901 mode &= S_IALLUGO; 2902 mode |= S_IFREG; 2903 error = security_inode_create(dir, dentry, mode); 2904 if (error) 2905 return error; 2906 error = dir->i_op->create(dir, dentry, mode, want_excl); 2907 if (!error) 2908 fsnotify_create(dir, dentry); 2909 return error; 2910 } 2911 EXPORT_SYMBOL(vfs_create); 2912 2913 int vfs_mkobj(struct dentry *dentry, umode_t mode, 2914 int (*f)(struct dentry *, umode_t, void *), 2915 void *arg) 2916 { 2917 struct inode *dir = dentry->d_parent->d_inode; 2918 int error = may_create(dir, dentry); 2919 if (error) 2920 return error; 2921 2922 mode &= S_IALLUGO; 2923 mode |= S_IFREG; 2924 error = security_inode_create(dir, dentry, mode); 2925 if (error) 2926 return error; 2927 error = f(dentry, mode, arg); 2928 if (!error) 2929 fsnotify_create(dir, dentry); 2930 return error; 2931 } 2932 EXPORT_SYMBOL(vfs_mkobj); 2933 2934 bool may_open_dev(const struct path *path) 2935 { 2936 return !(path->mnt->mnt_flags & MNT_NODEV) && 2937 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV); 2938 } 2939 2940 static int may_open(const struct path *path, int acc_mode, int flag) 2941 { 2942 struct dentry *dentry = path->dentry; 2943 struct inode *inode = dentry->d_inode; 2944 int error; 2945 2946 if (!inode) 2947 return -ENOENT; 2948 2949 switch (inode->i_mode & S_IFMT) { 2950 case S_IFLNK: 2951 return -ELOOP; 2952 case S_IFDIR: 2953 if (acc_mode & MAY_WRITE) 2954 return -EISDIR; 2955 break; 2956 case S_IFBLK: 2957 case S_IFCHR: 2958 if (!may_open_dev(path)) 2959 return -EACCES; 2960 /*FALLTHRU*/ 2961 case S_IFIFO: 2962 case S_IFSOCK: 2963 flag &= ~O_TRUNC; 2964 break; 2965 } 2966 2967 error = inode_permission(inode, MAY_OPEN | acc_mode); 2968 if (error) 2969 return error; 2970 2971 /* 2972 * An append-only file must be opened in append mode for writing. 2973 */ 2974 if (IS_APPEND(inode)) { 2975 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2976 return -EPERM; 2977 if (flag & O_TRUNC) 2978 return -EPERM; 2979 } 2980 2981 /* O_NOATIME can only be set by the owner or superuser */ 2982 if (flag & O_NOATIME && !inode_owner_or_capable(inode)) 2983 return -EPERM; 2984 2985 return 0; 2986 } 2987 2988 static int handle_truncate(struct file *filp) 2989 { 2990 const struct path *path = &filp->f_path; 2991 struct inode *inode = path->dentry->d_inode; 2992 int error = get_write_access(inode); 2993 if (error) 2994 return error; 2995 /* 2996 * Refuse to truncate files with mandatory locks held on them. 2997 */ 2998 error = locks_verify_locked(filp); 2999 if (!error) 3000 error = security_path_truncate(path); 3001 if (!error) { 3002 error = do_truncate(path->dentry, 0, 3003 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 3004 filp); 3005 } 3006 put_write_access(inode); 3007 return error; 3008 } 3009 3010 static inline int open_to_namei_flags(int flag) 3011 { 3012 if ((flag & O_ACCMODE) == 3) 3013 flag--; 3014 return flag; 3015 } 3016 3017 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode) 3018 { 3019 struct user_namespace *s_user_ns; 3020 int error = security_path_mknod(dir, dentry, mode, 0); 3021 if (error) 3022 return error; 3023 3024 s_user_ns = dir->dentry->d_sb->s_user_ns; 3025 if (!kuid_has_mapping(s_user_ns, current_fsuid()) || 3026 !kgid_has_mapping(s_user_ns, current_fsgid())) 3027 return -EOVERFLOW; 3028 3029 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC); 3030 if (error) 3031 return error; 3032 3033 return security_inode_create(dir->dentry->d_inode, dentry, mode); 3034 } 3035 3036 /* 3037 * Attempt to atomically look up, create and open a file from a negative 3038 * dentry. 3039 * 3040 * Returns 0 if successful. The file will have been created and attached to 3041 * @file by the filesystem calling finish_open(). 3042 * 3043 * If the file was looked up only or didn't need creating, FMODE_OPENED won't 3044 * be set. The caller will need to perform the open themselves. @path will 3045 * have been updated to point to the new dentry. This may be negative. 3046 * 3047 * Returns an error code otherwise. 3048 */ 3049 static int atomic_open(struct nameidata *nd, struct dentry *dentry, 3050 struct path *path, struct file *file, 3051 const struct open_flags *op, 3052 int open_flag, umode_t mode) 3053 { 3054 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 3055 struct inode *dir = nd->path.dentry->d_inode; 3056 int error; 3057 3058 if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */ 3059 open_flag &= ~O_TRUNC; 3060 3061 if (nd->flags & LOOKUP_DIRECTORY) 3062 open_flag |= O_DIRECTORY; 3063 3064 file->f_path.dentry = DENTRY_NOT_SET; 3065 file->f_path.mnt = nd->path.mnt; 3066 error = dir->i_op->atomic_open(dir, dentry, file, 3067 open_to_namei_flags(open_flag), mode); 3068 d_lookup_done(dentry); 3069 if (!error) { 3070 if (file->f_mode & FMODE_OPENED) { 3071 /* 3072 * We didn't have the inode before the open, so check open 3073 * permission here. 3074 */ 3075 int acc_mode = op->acc_mode; 3076 if (file->f_mode & FMODE_CREATED) { 3077 WARN_ON(!(open_flag & O_CREAT)); 3078 fsnotify_create(dir, dentry); 3079 acc_mode = 0; 3080 } 3081 error = may_open(&file->f_path, acc_mode, open_flag); 3082 if (WARN_ON(error > 0)) 3083 error = -EINVAL; 3084 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 3085 error = -EIO; 3086 } else { 3087 if (file->f_path.dentry) { 3088 dput(dentry); 3089 dentry = file->f_path.dentry; 3090 } 3091 if (file->f_mode & FMODE_CREATED) 3092 fsnotify_create(dir, dentry); 3093 if (unlikely(d_is_negative(dentry))) { 3094 error = -ENOENT; 3095 } else { 3096 path->dentry = dentry; 3097 path->mnt = nd->path.mnt; 3098 return 0; 3099 } 3100 } 3101 } 3102 dput(dentry); 3103 return error; 3104 } 3105 3106 /* 3107 * Look up and maybe create and open the last component. 3108 * 3109 * Must be called with parent locked (exclusive in O_CREAT case). 3110 * 3111 * Returns 0 on success, that is, if 3112 * the file was successfully atomically created (if necessary) and opened, or 3113 * the file was not completely opened at this time, though lookups and 3114 * creations were performed. 3115 * These case are distinguished by presence of FMODE_OPENED on file->f_mode. 3116 * In the latter case dentry returned in @path might be negative if O_CREAT 3117 * hadn't been specified. 3118 * 3119 * An error code is returned on failure. 3120 */ 3121 static int lookup_open(struct nameidata *nd, struct path *path, 3122 struct file *file, 3123 const struct open_flags *op, 3124 bool got_write) 3125 { 3126 struct dentry *dir = nd->path.dentry; 3127 struct inode *dir_inode = dir->d_inode; 3128 int open_flag = op->open_flag; 3129 struct dentry *dentry; 3130 int error, create_error = 0; 3131 umode_t mode = op->mode; 3132 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 3133 3134 if (unlikely(IS_DEADDIR(dir_inode))) 3135 return -ENOENT; 3136 3137 file->f_mode &= ~FMODE_CREATED; 3138 dentry = d_lookup(dir, &nd->last); 3139 for (;;) { 3140 if (!dentry) { 3141 dentry = d_alloc_parallel(dir, &nd->last, &wq); 3142 if (IS_ERR(dentry)) 3143 return PTR_ERR(dentry); 3144 } 3145 if (d_in_lookup(dentry)) 3146 break; 3147 3148 error = d_revalidate(dentry, nd->flags); 3149 if (likely(error > 0)) 3150 break; 3151 if (error) 3152 goto out_dput; 3153 d_invalidate(dentry); 3154 dput(dentry); 3155 dentry = NULL; 3156 } 3157 if (dentry->d_inode) { 3158 /* Cached positive dentry: will open in f_op->open */ 3159 goto out_no_open; 3160 } 3161 3162 /* 3163 * Checking write permission is tricky, bacuse we don't know if we are 3164 * going to actually need it: O_CREAT opens should work as long as the 3165 * file exists. But checking existence breaks atomicity. The trick is 3166 * to check access and if not granted clear O_CREAT from the flags. 3167 * 3168 * Another problem is returing the "right" error value (e.g. for an 3169 * O_EXCL open we want to return EEXIST not EROFS). 3170 */ 3171 if (open_flag & O_CREAT) { 3172 if (!IS_POSIXACL(dir->d_inode)) 3173 mode &= ~current_umask(); 3174 if (unlikely(!got_write)) { 3175 create_error = -EROFS; 3176 open_flag &= ~O_CREAT; 3177 if (open_flag & (O_EXCL | O_TRUNC)) 3178 goto no_open; 3179 /* No side effects, safe to clear O_CREAT */ 3180 } else { 3181 create_error = may_o_create(&nd->path, dentry, mode); 3182 if (create_error) { 3183 open_flag &= ~O_CREAT; 3184 if (open_flag & O_EXCL) 3185 goto no_open; 3186 } 3187 } 3188 } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) && 3189 unlikely(!got_write)) { 3190 /* 3191 * No O_CREATE -> atomicity not a requirement -> fall 3192 * back to lookup + open 3193 */ 3194 goto no_open; 3195 } 3196 3197 if (dir_inode->i_op->atomic_open) { 3198 error = atomic_open(nd, dentry, path, file, op, open_flag, 3199 mode); 3200 if (unlikely(error == -ENOENT) && create_error) 3201 error = create_error; 3202 return error; 3203 } 3204 3205 no_open: 3206 if (d_in_lookup(dentry)) { 3207 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry, 3208 nd->flags); 3209 d_lookup_done(dentry); 3210 if (unlikely(res)) { 3211 if (IS_ERR(res)) { 3212 error = PTR_ERR(res); 3213 goto out_dput; 3214 } 3215 dput(dentry); 3216 dentry = res; 3217 } 3218 } 3219 3220 /* Negative dentry, just create the file */ 3221 if (!dentry->d_inode && (open_flag & O_CREAT)) { 3222 file->f_mode |= FMODE_CREATED; 3223 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE); 3224 if (!dir_inode->i_op->create) { 3225 error = -EACCES; 3226 goto out_dput; 3227 } 3228 error = dir_inode->i_op->create(dir_inode, dentry, mode, 3229 open_flag & O_EXCL); 3230 if (error) 3231 goto out_dput; 3232 fsnotify_create(dir_inode, dentry); 3233 } 3234 if (unlikely(create_error) && !dentry->d_inode) { 3235 error = create_error; 3236 goto out_dput; 3237 } 3238 out_no_open: 3239 path->dentry = dentry; 3240 path->mnt = nd->path.mnt; 3241 return 0; 3242 3243 out_dput: 3244 dput(dentry); 3245 return error; 3246 } 3247 3248 /* 3249 * Handle the last step of open() 3250 */ 3251 static int do_last(struct nameidata *nd, 3252 struct file *file, const struct open_flags *op) 3253 { 3254 struct dentry *dir = nd->path.dentry; 3255 int open_flag = op->open_flag; 3256 bool will_truncate = (open_flag & O_TRUNC) != 0; 3257 bool got_write = false; 3258 int acc_mode = op->acc_mode; 3259 unsigned seq; 3260 struct inode *inode; 3261 struct path path; 3262 int error; 3263 3264 nd->flags &= ~LOOKUP_PARENT; 3265 nd->flags |= op->intent; 3266 3267 if (nd->last_type != LAST_NORM) { 3268 error = handle_dots(nd, nd->last_type); 3269 if (unlikely(error)) 3270 return error; 3271 goto finish_open; 3272 } 3273 3274 if (!(open_flag & O_CREAT)) { 3275 if (nd->last.name[nd->last.len]) 3276 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 3277 /* we _can_ be in RCU mode here */ 3278 error = lookup_fast(nd, &path, &inode, &seq); 3279 if (likely(error > 0)) 3280 goto finish_lookup; 3281 3282 if (error < 0) 3283 return error; 3284 3285 BUG_ON(nd->inode != dir->d_inode); 3286 BUG_ON(nd->flags & LOOKUP_RCU); 3287 } else { 3288 /* create side of things */ 3289 /* 3290 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED 3291 * has been cleared when we got to the last component we are 3292 * about to look up 3293 */ 3294 error = complete_walk(nd); 3295 if (error) 3296 return error; 3297 3298 audit_inode(nd->name, dir, AUDIT_INODE_PARENT); 3299 /* trailing slashes? */ 3300 if (unlikely(nd->last.name[nd->last.len])) 3301 return -EISDIR; 3302 } 3303 3304 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 3305 error = mnt_want_write(nd->path.mnt); 3306 if (!error) 3307 got_write = true; 3308 /* 3309 * do _not_ fail yet - we might not need that or fail with 3310 * a different error; let lookup_open() decide; we'll be 3311 * dropping this one anyway. 3312 */ 3313 } 3314 if (open_flag & O_CREAT) 3315 inode_lock(dir->d_inode); 3316 else 3317 inode_lock_shared(dir->d_inode); 3318 error = lookup_open(nd, &path, file, op, got_write); 3319 if (open_flag & O_CREAT) 3320 inode_unlock(dir->d_inode); 3321 else 3322 inode_unlock_shared(dir->d_inode); 3323 3324 if (error) 3325 goto out; 3326 3327 if (file->f_mode & FMODE_OPENED) { 3328 if ((file->f_mode & FMODE_CREATED) || 3329 !S_ISREG(file_inode(file)->i_mode)) 3330 will_truncate = false; 3331 3332 audit_inode(nd->name, file->f_path.dentry, 0); 3333 goto opened; 3334 } 3335 3336 if (file->f_mode & FMODE_CREATED) { 3337 /* Don't check for write permission, don't truncate */ 3338 open_flag &= ~O_TRUNC; 3339 will_truncate = false; 3340 acc_mode = 0; 3341 path_to_nameidata(&path, nd); 3342 goto finish_open_created; 3343 } 3344 3345 /* 3346 * If atomic_open() acquired write access it is dropped now due to 3347 * possible mount and symlink following (this might be optimized away if 3348 * necessary...) 3349 */ 3350 if (got_write) { 3351 mnt_drop_write(nd->path.mnt); 3352 got_write = false; 3353 } 3354 3355 error = follow_managed(&path, nd); 3356 if (unlikely(error < 0)) 3357 return error; 3358 3359 if (unlikely(d_is_negative(path.dentry))) { 3360 path_to_nameidata(&path, nd); 3361 return -ENOENT; 3362 } 3363 3364 /* 3365 * create/update audit record if it already exists. 3366 */ 3367 audit_inode(nd->name, path.dentry, 0); 3368 3369 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) { 3370 path_to_nameidata(&path, nd); 3371 return -EEXIST; 3372 } 3373 3374 seq = 0; /* out of RCU mode, so the value doesn't matter */ 3375 inode = d_backing_inode(path.dentry); 3376 finish_lookup: 3377 error = step_into(nd, &path, 0, inode, seq); 3378 if (unlikely(error)) 3379 return error; 3380 finish_open: 3381 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */ 3382 error = complete_walk(nd); 3383 if (error) 3384 return error; 3385 audit_inode(nd->name, nd->path.dentry, 0); 3386 if (open_flag & O_CREAT) { 3387 error = -EISDIR; 3388 if (d_is_dir(nd->path.dentry)) 3389 goto out; 3390 error = may_create_in_sticky(dir, 3391 d_backing_inode(nd->path.dentry)); 3392 if (unlikely(error)) 3393 goto out; 3394 } 3395 error = -ENOTDIR; 3396 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3397 goto out; 3398 if (!d_is_reg(nd->path.dentry)) 3399 will_truncate = false; 3400 3401 if (will_truncate) { 3402 error = mnt_want_write(nd->path.mnt); 3403 if (error) 3404 goto out; 3405 got_write = true; 3406 } 3407 finish_open_created: 3408 error = may_open(&nd->path, acc_mode, open_flag); 3409 if (error) 3410 goto out; 3411 BUG_ON(file->f_mode & FMODE_OPENED); /* once it's opened, it's opened */ 3412 error = vfs_open(&nd->path, file); 3413 if (error) 3414 goto out; 3415 opened: 3416 error = ima_file_check(file, op->acc_mode); 3417 if (!error && will_truncate) 3418 error = handle_truncate(file); 3419 out: 3420 if (unlikely(error > 0)) { 3421 WARN_ON(1); 3422 error = -EINVAL; 3423 } 3424 if (got_write) 3425 mnt_drop_write(nd->path.mnt); 3426 return error; 3427 } 3428 3429 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag) 3430 { 3431 struct dentry *child = NULL; 3432 struct inode *dir = dentry->d_inode; 3433 struct inode *inode; 3434 int error; 3435 3436 /* we want directory to be writable */ 3437 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 3438 if (error) 3439 goto out_err; 3440 error = -EOPNOTSUPP; 3441 if (!dir->i_op->tmpfile) 3442 goto out_err; 3443 error = -ENOMEM; 3444 child = d_alloc(dentry, &slash_name); 3445 if (unlikely(!child)) 3446 goto out_err; 3447 error = dir->i_op->tmpfile(dir, child, mode); 3448 if (error) 3449 goto out_err; 3450 error = -ENOENT; 3451 inode = child->d_inode; 3452 if (unlikely(!inode)) 3453 goto out_err; 3454 if (!(open_flag & O_EXCL)) { 3455 spin_lock(&inode->i_lock); 3456 inode->i_state |= I_LINKABLE; 3457 spin_unlock(&inode->i_lock); 3458 } 3459 ima_post_create_tmpfile(inode); 3460 return child; 3461 3462 out_err: 3463 dput(child); 3464 return ERR_PTR(error); 3465 } 3466 EXPORT_SYMBOL(vfs_tmpfile); 3467 3468 static int do_tmpfile(struct nameidata *nd, unsigned flags, 3469 const struct open_flags *op, 3470 struct file *file) 3471 { 3472 struct dentry *child; 3473 struct path path; 3474 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path); 3475 if (unlikely(error)) 3476 return error; 3477 error = mnt_want_write(path.mnt); 3478 if (unlikely(error)) 3479 goto out; 3480 child = vfs_tmpfile(path.dentry, op->mode, op->open_flag); 3481 error = PTR_ERR(child); 3482 if (IS_ERR(child)) 3483 goto out2; 3484 dput(path.dentry); 3485 path.dentry = child; 3486 audit_inode(nd->name, child, 0); 3487 /* Don't check for other permissions, the inode was just created */ 3488 error = may_open(&path, 0, op->open_flag); 3489 if (error) 3490 goto out2; 3491 file->f_path.mnt = path.mnt; 3492 error = finish_open(file, child, NULL); 3493 out2: 3494 mnt_drop_write(path.mnt); 3495 out: 3496 path_put(&path); 3497 return error; 3498 } 3499 3500 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file) 3501 { 3502 struct path path; 3503 int error = path_lookupat(nd, flags, &path); 3504 if (!error) { 3505 audit_inode(nd->name, path.dentry, 0); 3506 error = vfs_open(&path, file); 3507 path_put(&path); 3508 } 3509 return error; 3510 } 3511 3512 static struct file *path_openat(struct nameidata *nd, 3513 const struct open_flags *op, unsigned flags) 3514 { 3515 struct file *file; 3516 int error; 3517 3518 file = alloc_empty_file(op->open_flag, current_cred()); 3519 if (IS_ERR(file)) 3520 return file; 3521 3522 if (unlikely(file->f_flags & __O_TMPFILE)) { 3523 error = do_tmpfile(nd, flags, op, file); 3524 } else if (unlikely(file->f_flags & O_PATH)) { 3525 error = do_o_path(nd, flags, file); 3526 } else { 3527 const char *s = path_init(nd, flags); 3528 while (!(error = link_path_walk(s, nd)) && 3529 (error = do_last(nd, file, op)) > 0) { 3530 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3531 s = trailing_symlink(nd); 3532 } 3533 terminate_walk(nd); 3534 } 3535 if (likely(!error)) { 3536 if (likely(file->f_mode & FMODE_OPENED)) 3537 return file; 3538 WARN_ON(1); 3539 error = -EINVAL; 3540 } 3541 fput(file); 3542 if (error == -EOPENSTALE) { 3543 if (flags & LOOKUP_RCU) 3544 error = -ECHILD; 3545 else 3546 error = -ESTALE; 3547 } 3548 return ERR_PTR(error); 3549 } 3550 3551 struct file *do_filp_open(int dfd, struct filename *pathname, 3552 const struct open_flags *op) 3553 { 3554 struct nameidata nd; 3555 int flags = op->lookup_flags; 3556 struct file *filp; 3557 3558 set_nameidata(&nd, dfd, pathname); 3559 filp = path_openat(&nd, op, flags | LOOKUP_RCU); 3560 if (unlikely(filp == ERR_PTR(-ECHILD))) 3561 filp = path_openat(&nd, op, flags); 3562 if (unlikely(filp == ERR_PTR(-ESTALE))) 3563 filp = path_openat(&nd, op, flags | LOOKUP_REVAL); 3564 restore_nameidata(); 3565 return filp; 3566 } 3567 3568 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 3569 const char *name, const struct open_flags *op) 3570 { 3571 struct nameidata nd; 3572 struct file *file; 3573 struct filename *filename; 3574 int flags = op->lookup_flags | LOOKUP_ROOT; 3575 3576 nd.root.mnt = mnt; 3577 nd.root.dentry = dentry; 3578 3579 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN) 3580 return ERR_PTR(-ELOOP); 3581 3582 filename = getname_kernel(name); 3583 if (IS_ERR(filename)) 3584 return ERR_CAST(filename); 3585 3586 set_nameidata(&nd, -1, filename); 3587 file = path_openat(&nd, op, flags | LOOKUP_RCU); 3588 if (unlikely(file == ERR_PTR(-ECHILD))) 3589 file = path_openat(&nd, op, flags); 3590 if (unlikely(file == ERR_PTR(-ESTALE))) 3591 file = path_openat(&nd, op, flags | LOOKUP_REVAL); 3592 restore_nameidata(); 3593 putname(filename); 3594 return file; 3595 } 3596 3597 static struct dentry *filename_create(int dfd, struct filename *name, 3598 struct path *path, unsigned int lookup_flags) 3599 { 3600 struct dentry *dentry = ERR_PTR(-EEXIST); 3601 struct qstr last; 3602 int type; 3603 int err2; 3604 int error; 3605 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY); 3606 3607 /* 3608 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any 3609 * other flags passed in are ignored! 3610 */ 3611 lookup_flags &= LOOKUP_REVAL; 3612 3613 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type); 3614 if (IS_ERR(name)) 3615 return ERR_CAST(name); 3616 3617 /* 3618 * Yucky last component or no last component at all? 3619 * (foo/., foo/.., /////) 3620 */ 3621 if (unlikely(type != LAST_NORM)) 3622 goto out; 3623 3624 /* don't fail immediately if it's r/o, at least try to report other errors */ 3625 err2 = mnt_want_write(path->mnt); 3626 /* 3627 * Do the final lookup. 3628 */ 3629 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL; 3630 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 3631 dentry = __lookup_hash(&last, path->dentry, lookup_flags); 3632 if (IS_ERR(dentry)) 3633 goto unlock; 3634 3635 error = -EEXIST; 3636 if (d_is_positive(dentry)) 3637 goto fail; 3638 3639 /* 3640 * Special case - lookup gave negative, but... we had foo/bar/ 3641 * From the vfs_mknod() POV we just have a negative dentry - 3642 * all is fine. Let's be bastards - you had / on the end, you've 3643 * been asking for (non-existent) directory. -ENOENT for you. 3644 */ 3645 if (unlikely(!is_dir && last.name[last.len])) { 3646 error = -ENOENT; 3647 goto fail; 3648 } 3649 if (unlikely(err2)) { 3650 error = err2; 3651 goto fail; 3652 } 3653 putname(name); 3654 return dentry; 3655 fail: 3656 dput(dentry); 3657 dentry = ERR_PTR(error); 3658 unlock: 3659 inode_unlock(path->dentry->d_inode); 3660 if (!err2) 3661 mnt_drop_write(path->mnt); 3662 out: 3663 path_put(path); 3664 putname(name); 3665 return dentry; 3666 } 3667 3668 struct dentry *kern_path_create(int dfd, const char *pathname, 3669 struct path *path, unsigned int lookup_flags) 3670 { 3671 return filename_create(dfd, getname_kernel(pathname), 3672 path, lookup_flags); 3673 } 3674 EXPORT_SYMBOL(kern_path_create); 3675 3676 void done_path_create(struct path *path, struct dentry *dentry) 3677 { 3678 dput(dentry); 3679 inode_unlock(path->dentry->d_inode); 3680 mnt_drop_write(path->mnt); 3681 path_put(path); 3682 } 3683 EXPORT_SYMBOL(done_path_create); 3684 3685 inline struct dentry *user_path_create(int dfd, const char __user *pathname, 3686 struct path *path, unsigned int lookup_flags) 3687 { 3688 return filename_create(dfd, getname(pathname), path, lookup_flags); 3689 } 3690 EXPORT_SYMBOL(user_path_create); 3691 3692 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 3693 { 3694 int error = may_create(dir, dentry); 3695 3696 if (error) 3697 return error; 3698 3699 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 3700 return -EPERM; 3701 3702 if (!dir->i_op->mknod) 3703 return -EPERM; 3704 3705 error = devcgroup_inode_mknod(mode, dev); 3706 if (error) 3707 return error; 3708 3709 error = security_inode_mknod(dir, dentry, mode, dev); 3710 if (error) 3711 return error; 3712 3713 error = dir->i_op->mknod(dir, dentry, mode, dev); 3714 if (!error) 3715 fsnotify_create(dir, dentry); 3716 return error; 3717 } 3718 EXPORT_SYMBOL(vfs_mknod); 3719 3720 static int may_mknod(umode_t mode) 3721 { 3722 switch (mode & S_IFMT) { 3723 case S_IFREG: 3724 case S_IFCHR: 3725 case S_IFBLK: 3726 case S_IFIFO: 3727 case S_IFSOCK: 3728 case 0: /* zero mode translates to S_IFREG */ 3729 return 0; 3730 case S_IFDIR: 3731 return -EPERM; 3732 default: 3733 return -EINVAL; 3734 } 3735 } 3736 3737 long do_mknodat(int dfd, const char __user *filename, umode_t mode, 3738 unsigned int dev) 3739 { 3740 struct dentry *dentry; 3741 struct path path; 3742 int error; 3743 unsigned int lookup_flags = 0; 3744 3745 error = may_mknod(mode); 3746 if (error) 3747 return error; 3748 retry: 3749 dentry = user_path_create(dfd, filename, &path, lookup_flags); 3750 if (IS_ERR(dentry)) 3751 return PTR_ERR(dentry); 3752 3753 if (!IS_POSIXACL(path.dentry->d_inode)) 3754 mode &= ~current_umask(); 3755 error = security_path_mknod(&path, dentry, mode, dev); 3756 if (error) 3757 goto out; 3758 switch (mode & S_IFMT) { 3759 case 0: case S_IFREG: 3760 error = vfs_create(path.dentry->d_inode,dentry,mode,true); 3761 if (!error) 3762 ima_post_path_mknod(dentry); 3763 break; 3764 case S_IFCHR: case S_IFBLK: 3765 error = vfs_mknod(path.dentry->d_inode,dentry,mode, 3766 new_decode_dev(dev)); 3767 break; 3768 case S_IFIFO: case S_IFSOCK: 3769 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0); 3770 break; 3771 } 3772 out: 3773 done_path_create(&path, dentry); 3774 if (retry_estale(error, lookup_flags)) { 3775 lookup_flags |= LOOKUP_REVAL; 3776 goto retry; 3777 } 3778 return error; 3779 } 3780 3781 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3782 unsigned int, dev) 3783 { 3784 return do_mknodat(dfd, filename, mode, dev); 3785 } 3786 3787 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3788 { 3789 return do_mknodat(AT_FDCWD, filename, mode, dev); 3790 } 3791 3792 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 3793 { 3794 int error = may_create(dir, dentry); 3795 unsigned max_links = dir->i_sb->s_max_links; 3796 3797 if (error) 3798 return error; 3799 3800 if (!dir->i_op->mkdir) 3801 return -EPERM; 3802 3803 mode &= (S_IRWXUGO|S_ISVTX); 3804 error = security_inode_mkdir(dir, dentry, mode); 3805 if (error) 3806 return error; 3807 3808 if (max_links && dir->i_nlink >= max_links) 3809 return -EMLINK; 3810 3811 error = dir->i_op->mkdir(dir, dentry, mode); 3812 if (!error) 3813 fsnotify_mkdir(dir, dentry); 3814 return error; 3815 } 3816 EXPORT_SYMBOL(vfs_mkdir); 3817 3818 long do_mkdirat(int dfd, const char __user *pathname, umode_t mode) 3819 { 3820 struct dentry *dentry; 3821 struct path path; 3822 int error; 3823 unsigned int lookup_flags = LOOKUP_DIRECTORY; 3824 3825 retry: 3826 dentry = user_path_create(dfd, pathname, &path, lookup_flags); 3827 if (IS_ERR(dentry)) 3828 return PTR_ERR(dentry); 3829 3830 if (!IS_POSIXACL(path.dentry->d_inode)) 3831 mode &= ~current_umask(); 3832 error = security_path_mkdir(&path, dentry, mode); 3833 if (!error) 3834 error = vfs_mkdir(path.dentry->d_inode, dentry, mode); 3835 done_path_create(&path, dentry); 3836 if (retry_estale(error, lookup_flags)) { 3837 lookup_flags |= LOOKUP_REVAL; 3838 goto retry; 3839 } 3840 return error; 3841 } 3842 3843 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 3844 { 3845 return do_mkdirat(dfd, pathname, mode); 3846 } 3847 3848 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 3849 { 3850 return do_mkdirat(AT_FDCWD, pathname, mode); 3851 } 3852 3853 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 3854 { 3855 int error = may_delete(dir, dentry, 1); 3856 3857 if (error) 3858 return error; 3859 3860 if (!dir->i_op->rmdir) 3861 return -EPERM; 3862 3863 dget(dentry); 3864 inode_lock(dentry->d_inode); 3865 3866 error = -EBUSY; 3867 if (is_local_mountpoint(dentry)) 3868 goto out; 3869 3870 error = security_inode_rmdir(dir, dentry); 3871 if (error) 3872 goto out; 3873 3874 error = dir->i_op->rmdir(dir, dentry); 3875 if (error) 3876 goto out; 3877 3878 shrink_dcache_parent(dentry); 3879 dentry->d_inode->i_flags |= S_DEAD; 3880 dont_mount(dentry); 3881 detach_mounts(dentry); 3882 fsnotify_rmdir(dir, dentry); 3883 3884 out: 3885 inode_unlock(dentry->d_inode); 3886 dput(dentry); 3887 if (!error) 3888 d_delete(dentry); 3889 return error; 3890 } 3891 EXPORT_SYMBOL(vfs_rmdir); 3892 3893 long do_rmdir(int dfd, const char __user *pathname) 3894 { 3895 int error = 0; 3896 struct filename *name; 3897 struct dentry *dentry; 3898 struct path path; 3899 struct qstr last; 3900 int type; 3901 unsigned int lookup_flags = 0; 3902 retry: 3903 name = filename_parentat(dfd, getname(pathname), lookup_flags, 3904 &path, &last, &type); 3905 if (IS_ERR(name)) 3906 return PTR_ERR(name); 3907 3908 switch (type) { 3909 case LAST_DOTDOT: 3910 error = -ENOTEMPTY; 3911 goto exit1; 3912 case LAST_DOT: 3913 error = -EINVAL; 3914 goto exit1; 3915 case LAST_ROOT: 3916 error = -EBUSY; 3917 goto exit1; 3918 } 3919 3920 error = mnt_want_write(path.mnt); 3921 if (error) 3922 goto exit1; 3923 3924 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 3925 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 3926 error = PTR_ERR(dentry); 3927 if (IS_ERR(dentry)) 3928 goto exit2; 3929 if (!dentry->d_inode) { 3930 error = -ENOENT; 3931 goto exit3; 3932 } 3933 error = security_path_rmdir(&path, dentry); 3934 if (error) 3935 goto exit3; 3936 error = vfs_rmdir(path.dentry->d_inode, dentry); 3937 exit3: 3938 dput(dentry); 3939 exit2: 3940 inode_unlock(path.dentry->d_inode); 3941 mnt_drop_write(path.mnt); 3942 exit1: 3943 path_put(&path); 3944 putname(name); 3945 if (retry_estale(error, lookup_flags)) { 3946 lookup_flags |= LOOKUP_REVAL; 3947 goto retry; 3948 } 3949 return error; 3950 } 3951 3952 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 3953 { 3954 return do_rmdir(AT_FDCWD, pathname); 3955 } 3956 3957 /** 3958 * vfs_unlink - unlink a filesystem object 3959 * @dir: parent directory 3960 * @dentry: victim 3961 * @delegated_inode: returns victim inode, if the inode is delegated. 3962 * 3963 * The caller must hold dir->i_mutex. 3964 * 3965 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 3966 * return a reference to the inode in delegated_inode. The caller 3967 * should then break the delegation on that inode and retry. Because 3968 * breaking a delegation may take a long time, the caller should drop 3969 * dir->i_mutex before doing so. 3970 * 3971 * Alternatively, a caller may pass NULL for delegated_inode. This may 3972 * be appropriate for callers that expect the underlying filesystem not 3973 * to be NFS exported. 3974 */ 3975 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode) 3976 { 3977 struct inode *target = dentry->d_inode; 3978 int error = may_delete(dir, dentry, 0); 3979 3980 if (error) 3981 return error; 3982 3983 if (!dir->i_op->unlink) 3984 return -EPERM; 3985 3986 inode_lock(target); 3987 if (is_local_mountpoint(dentry)) 3988 error = -EBUSY; 3989 else { 3990 error = security_inode_unlink(dir, dentry); 3991 if (!error) { 3992 error = try_break_deleg(target, delegated_inode); 3993 if (error) 3994 goto out; 3995 error = dir->i_op->unlink(dir, dentry); 3996 if (!error) { 3997 dont_mount(dentry); 3998 detach_mounts(dentry); 3999 fsnotify_unlink(dir, dentry); 4000 } 4001 } 4002 } 4003 out: 4004 inode_unlock(target); 4005 4006 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 4007 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 4008 fsnotify_link_count(target); 4009 d_delete(dentry); 4010 } 4011 4012 return error; 4013 } 4014 EXPORT_SYMBOL(vfs_unlink); 4015 4016 /* 4017 * Make sure that the actual truncation of the file will occur outside its 4018 * directory's i_mutex. Truncate can take a long time if there is a lot of 4019 * writeout happening, and we don't want to prevent access to the directory 4020 * while waiting on the I/O. 4021 */ 4022 long do_unlinkat(int dfd, struct filename *name) 4023 { 4024 int error; 4025 struct dentry *dentry; 4026 struct path path; 4027 struct qstr last; 4028 int type; 4029 struct inode *inode = NULL; 4030 struct inode *delegated_inode = NULL; 4031 unsigned int lookup_flags = 0; 4032 retry: 4033 name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 4034 if (IS_ERR(name)) 4035 return PTR_ERR(name); 4036 4037 error = -EISDIR; 4038 if (type != LAST_NORM) 4039 goto exit1; 4040 4041 error = mnt_want_write(path.mnt); 4042 if (error) 4043 goto exit1; 4044 retry_deleg: 4045 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4046 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 4047 error = PTR_ERR(dentry); 4048 if (!IS_ERR(dentry)) { 4049 /* Why not before? Because we want correct error value */ 4050 if (last.name[last.len]) 4051 goto slashes; 4052 inode = dentry->d_inode; 4053 if (d_is_negative(dentry)) 4054 goto slashes; 4055 ihold(inode); 4056 error = security_path_unlink(&path, dentry); 4057 if (error) 4058 goto exit2; 4059 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode); 4060 exit2: 4061 dput(dentry); 4062 } 4063 inode_unlock(path.dentry->d_inode); 4064 if (inode) 4065 iput(inode); /* truncate the inode here */ 4066 inode = NULL; 4067 if (delegated_inode) { 4068 error = break_deleg_wait(&delegated_inode); 4069 if (!error) 4070 goto retry_deleg; 4071 } 4072 mnt_drop_write(path.mnt); 4073 exit1: 4074 path_put(&path); 4075 if (retry_estale(error, lookup_flags)) { 4076 lookup_flags |= LOOKUP_REVAL; 4077 inode = NULL; 4078 goto retry; 4079 } 4080 putname(name); 4081 return error; 4082 4083 slashes: 4084 if (d_is_negative(dentry)) 4085 error = -ENOENT; 4086 else if (d_is_dir(dentry)) 4087 error = -EISDIR; 4088 else 4089 error = -ENOTDIR; 4090 goto exit2; 4091 } 4092 4093 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 4094 { 4095 if ((flag & ~AT_REMOVEDIR) != 0) 4096 return -EINVAL; 4097 4098 if (flag & AT_REMOVEDIR) 4099 return do_rmdir(dfd, pathname); 4100 4101 return do_unlinkat(dfd, getname(pathname)); 4102 } 4103 4104 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 4105 { 4106 return do_unlinkat(AT_FDCWD, getname(pathname)); 4107 } 4108 4109 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 4110 { 4111 int error = may_create(dir, dentry); 4112 4113 if (error) 4114 return error; 4115 4116 if (!dir->i_op->symlink) 4117 return -EPERM; 4118 4119 error = security_inode_symlink(dir, dentry, oldname); 4120 if (error) 4121 return error; 4122 4123 error = dir->i_op->symlink(dir, dentry, oldname); 4124 if (!error) 4125 fsnotify_create(dir, dentry); 4126 return error; 4127 } 4128 EXPORT_SYMBOL(vfs_symlink); 4129 4130 long do_symlinkat(const char __user *oldname, int newdfd, 4131 const char __user *newname) 4132 { 4133 int error; 4134 struct filename *from; 4135 struct dentry *dentry; 4136 struct path path; 4137 unsigned int lookup_flags = 0; 4138 4139 from = getname(oldname); 4140 if (IS_ERR(from)) 4141 return PTR_ERR(from); 4142 retry: 4143 dentry = user_path_create(newdfd, newname, &path, lookup_flags); 4144 error = PTR_ERR(dentry); 4145 if (IS_ERR(dentry)) 4146 goto out_putname; 4147 4148 error = security_path_symlink(&path, dentry, from->name); 4149 if (!error) 4150 error = vfs_symlink(path.dentry->d_inode, dentry, from->name); 4151 done_path_create(&path, dentry); 4152 if (retry_estale(error, lookup_flags)) { 4153 lookup_flags |= LOOKUP_REVAL; 4154 goto retry; 4155 } 4156 out_putname: 4157 putname(from); 4158 return error; 4159 } 4160 4161 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 4162 int, newdfd, const char __user *, newname) 4163 { 4164 return do_symlinkat(oldname, newdfd, newname); 4165 } 4166 4167 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 4168 { 4169 return do_symlinkat(oldname, AT_FDCWD, newname); 4170 } 4171 4172 /** 4173 * vfs_link - create a new link 4174 * @old_dentry: object to be linked 4175 * @dir: new parent 4176 * @new_dentry: where to create the new link 4177 * @delegated_inode: returns inode needing a delegation break 4178 * 4179 * The caller must hold dir->i_mutex 4180 * 4181 * If vfs_link discovers a delegation on the to-be-linked file in need 4182 * of breaking, it will return -EWOULDBLOCK and return a reference to the 4183 * inode in delegated_inode. The caller should then break the delegation 4184 * and retry. Because breaking a delegation may take a long time, the 4185 * caller should drop the i_mutex before doing so. 4186 * 4187 * Alternatively, a caller may pass NULL for delegated_inode. This may 4188 * be appropriate for callers that expect the underlying filesystem not 4189 * to be NFS exported. 4190 */ 4191 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode) 4192 { 4193 struct inode *inode = old_dentry->d_inode; 4194 unsigned max_links = dir->i_sb->s_max_links; 4195 int error; 4196 4197 if (!inode) 4198 return -ENOENT; 4199 4200 error = may_create(dir, new_dentry); 4201 if (error) 4202 return error; 4203 4204 if (dir->i_sb != inode->i_sb) 4205 return -EXDEV; 4206 4207 /* 4208 * A link to an append-only or immutable file cannot be created. 4209 */ 4210 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4211 return -EPERM; 4212 /* 4213 * Updating the link count will likely cause i_uid and i_gid to 4214 * be writen back improperly if their true value is unknown to 4215 * the vfs. 4216 */ 4217 if (HAS_UNMAPPED_ID(inode)) 4218 return -EPERM; 4219 if (!dir->i_op->link) 4220 return -EPERM; 4221 if (S_ISDIR(inode->i_mode)) 4222 return -EPERM; 4223 4224 error = security_inode_link(old_dentry, dir, new_dentry); 4225 if (error) 4226 return error; 4227 4228 inode_lock(inode); 4229 /* Make sure we don't allow creating hardlink to an unlinked file */ 4230 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 4231 error = -ENOENT; 4232 else if (max_links && inode->i_nlink >= max_links) 4233 error = -EMLINK; 4234 else { 4235 error = try_break_deleg(inode, delegated_inode); 4236 if (!error) 4237 error = dir->i_op->link(old_dentry, dir, new_dentry); 4238 } 4239 4240 if (!error && (inode->i_state & I_LINKABLE)) { 4241 spin_lock(&inode->i_lock); 4242 inode->i_state &= ~I_LINKABLE; 4243 spin_unlock(&inode->i_lock); 4244 } 4245 inode_unlock(inode); 4246 if (!error) 4247 fsnotify_link(dir, inode, new_dentry); 4248 return error; 4249 } 4250 EXPORT_SYMBOL(vfs_link); 4251 4252 /* 4253 * Hardlinks are often used in delicate situations. We avoid 4254 * security-related surprises by not following symlinks on the 4255 * newname. --KAB 4256 * 4257 * We don't follow them on the oldname either to be compatible 4258 * with linux 2.0, and to avoid hard-linking to directories 4259 * and other special files. --ADM 4260 */ 4261 int do_linkat(int olddfd, const char __user *oldname, int newdfd, 4262 const char __user *newname, int flags) 4263 { 4264 struct dentry *new_dentry; 4265 struct path old_path, new_path; 4266 struct inode *delegated_inode = NULL; 4267 int how = 0; 4268 int error; 4269 4270 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 4271 return -EINVAL; 4272 /* 4273 * To use null names we require CAP_DAC_READ_SEARCH 4274 * This ensures that not everyone will be able to create 4275 * handlink using the passed filedescriptor. 4276 */ 4277 if (flags & AT_EMPTY_PATH) { 4278 if (!capable(CAP_DAC_READ_SEARCH)) 4279 return -ENOENT; 4280 how = LOOKUP_EMPTY; 4281 } 4282 4283 if (flags & AT_SYMLINK_FOLLOW) 4284 how |= LOOKUP_FOLLOW; 4285 retry: 4286 error = user_path_at(olddfd, oldname, how, &old_path); 4287 if (error) 4288 return error; 4289 4290 new_dentry = user_path_create(newdfd, newname, &new_path, 4291 (how & LOOKUP_REVAL)); 4292 error = PTR_ERR(new_dentry); 4293 if (IS_ERR(new_dentry)) 4294 goto out; 4295 4296 error = -EXDEV; 4297 if (old_path.mnt != new_path.mnt) 4298 goto out_dput; 4299 error = may_linkat(&old_path); 4300 if (unlikely(error)) 4301 goto out_dput; 4302 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4303 if (error) 4304 goto out_dput; 4305 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode); 4306 out_dput: 4307 done_path_create(&new_path, new_dentry); 4308 if (delegated_inode) { 4309 error = break_deleg_wait(&delegated_inode); 4310 if (!error) { 4311 path_put(&old_path); 4312 goto retry; 4313 } 4314 } 4315 if (retry_estale(error, how)) { 4316 path_put(&old_path); 4317 how |= LOOKUP_REVAL; 4318 goto retry; 4319 } 4320 out: 4321 path_put(&old_path); 4322 4323 return error; 4324 } 4325 4326 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 4327 int, newdfd, const char __user *, newname, int, flags) 4328 { 4329 return do_linkat(olddfd, oldname, newdfd, newname, flags); 4330 } 4331 4332 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4333 { 4334 return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4335 } 4336 4337 /** 4338 * vfs_rename - rename a filesystem object 4339 * @old_dir: parent of source 4340 * @old_dentry: source 4341 * @new_dir: parent of destination 4342 * @new_dentry: destination 4343 * @delegated_inode: returns an inode needing a delegation break 4344 * @flags: rename flags 4345 * 4346 * The caller must hold multiple mutexes--see lock_rename()). 4347 * 4348 * If vfs_rename discovers a delegation in need of breaking at either 4349 * the source or destination, it will return -EWOULDBLOCK and return a 4350 * reference to the inode in delegated_inode. The caller should then 4351 * break the delegation and retry. Because breaking a delegation may 4352 * take a long time, the caller should drop all locks before doing 4353 * so. 4354 * 4355 * Alternatively, a caller may pass NULL for delegated_inode. This may 4356 * be appropriate for callers that expect the underlying filesystem not 4357 * to be NFS exported. 4358 * 4359 * The worst of all namespace operations - renaming directory. "Perverted" 4360 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4361 * Problems: 4362 * 4363 * a) we can get into loop creation. 4364 * b) race potential - two innocent renames can create a loop together. 4365 * That's where 4.4 screws up. Current fix: serialization on 4366 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4367 * story. 4368 * c) we have to lock _four_ objects - parents and victim (if it exists), 4369 * and source (if it is not a directory). 4370 * And that - after we got ->i_mutex on parents (until then we don't know 4371 * whether the target exists). Solution: try to be smart with locking 4372 * order for inodes. We rely on the fact that tree topology may change 4373 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4374 * move will be locked. Thus we can rank directories by the tree 4375 * (ancestors first) and rank all non-directories after them. 4376 * That works since everybody except rename does "lock parent, lookup, 4377 * lock child" and rename is under ->s_vfs_rename_mutex. 4378 * HOWEVER, it relies on the assumption that any object with ->lookup() 4379 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4380 * we'd better make sure that there's no link(2) for them. 4381 * d) conversion from fhandle to dentry may come in the wrong moment - when 4382 * we are removing the target. Solution: we will have to grab ->i_mutex 4383 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4384 * ->i_mutex on parents, which works but leads to some truly excessive 4385 * locking]. 4386 */ 4387 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 4388 struct inode *new_dir, struct dentry *new_dentry, 4389 struct inode **delegated_inode, unsigned int flags) 4390 { 4391 int error; 4392 bool is_dir = d_is_dir(old_dentry); 4393 struct inode *source = old_dentry->d_inode; 4394 struct inode *target = new_dentry->d_inode; 4395 bool new_is_dir = false; 4396 unsigned max_links = new_dir->i_sb->s_max_links; 4397 struct name_snapshot old_name; 4398 4399 if (source == target) 4400 return 0; 4401 4402 error = may_delete(old_dir, old_dentry, is_dir); 4403 if (error) 4404 return error; 4405 4406 if (!target) { 4407 error = may_create(new_dir, new_dentry); 4408 } else { 4409 new_is_dir = d_is_dir(new_dentry); 4410 4411 if (!(flags & RENAME_EXCHANGE)) 4412 error = may_delete(new_dir, new_dentry, is_dir); 4413 else 4414 error = may_delete(new_dir, new_dentry, new_is_dir); 4415 } 4416 if (error) 4417 return error; 4418 4419 if (!old_dir->i_op->rename) 4420 return -EPERM; 4421 4422 /* 4423 * If we are going to change the parent - check write permissions, 4424 * we'll need to flip '..'. 4425 */ 4426 if (new_dir != old_dir) { 4427 if (is_dir) { 4428 error = inode_permission(source, MAY_WRITE); 4429 if (error) 4430 return error; 4431 } 4432 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4433 error = inode_permission(target, MAY_WRITE); 4434 if (error) 4435 return error; 4436 } 4437 } 4438 4439 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 4440 flags); 4441 if (error) 4442 return error; 4443 4444 take_dentry_name_snapshot(&old_name, old_dentry); 4445 dget(new_dentry); 4446 if (!is_dir || (flags & RENAME_EXCHANGE)) 4447 lock_two_nondirectories(source, target); 4448 else if (target) 4449 inode_lock(target); 4450 4451 error = -EBUSY; 4452 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 4453 goto out; 4454 4455 if (max_links && new_dir != old_dir) { 4456 error = -EMLINK; 4457 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 4458 goto out; 4459 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 4460 old_dir->i_nlink >= max_links) 4461 goto out; 4462 } 4463 if (!is_dir) { 4464 error = try_break_deleg(source, delegated_inode); 4465 if (error) 4466 goto out; 4467 } 4468 if (target && !new_is_dir) { 4469 error = try_break_deleg(target, delegated_inode); 4470 if (error) 4471 goto out; 4472 } 4473 error = old_dir->i_op->rename(old_dir, old_dentry, 4474 new_dir, new_dentry, flags); 4475 if (error) 4476 goto out; 4477 4478 if (!(flags & RENAME_EXCHANGE) && target) { 4479 if (is_dir) { 4480 shrink_dcache_parent(new_dentry); 4481 target->i_flags |= S_DEAD; 4482 } 4483 dont_mount(new_dentry); 4484 detach_mounts(new_dentry); 4485 } 4486 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 4487 if (!(flags & RENAME_EXCHANGE)) 4488 d_move(old_dentry, new_dentry); 4489 else 4490 d_exchange(old_dentry, new_dentry); 4491 } 4492 out: 4493 if (!is_dir || (flags & RENAME_EXCHANGE)) 4494 unlock_two_nondirectories(source, target); 4495 else if (target) 4496 inode_unlock(target); 4497 dput(new_dentry); 4498 if (!error) { 4499 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir, 4500 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 4501 if (flags & RENAME_EXCHANGE) { 4502 fsnotify_move(new_dir, old_dir, &old_dentry->d_name, 4503 new_is_dir, NULL, new_dentry); 4504 } 4505 } 4506 release_dentry_name_snapshot(&old_name); 4507 4508 return error; 4509 } 4510 EXPORT_SYMBOL(vfs_rename); 4511 4512 static int do_renameat2(int olddfd, const char __user *oldname, int newdfd, 4513 const char __user *newname, unsigned int flags) 4514 { 4515 struct dentry *old_dentry, *new_dentry; 4516 struct dentry *trap; 4517 struct path old_path, new_path; 4518 struct qstr old_last, new_last; 4519 int old_type, new_type; 4520 struct inode *delegated_inode = NULL; 4521 struct filename *from; 4522 struct filename *to; 4523 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET; 4524 bool should_retry = false; 4525 int error; 4526 4527 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4528 return -EINVAL; 4529 4530 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 4531 (flags & RENAME_EXCHANGE)) 4532 return -EINVAL; 4533 4534 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD)) 4535 return -EPERM; 4536 4537 if (flags & RENAME_EXCHANGE) 4538 target_flags = 0; 4539 4540 retry: 4541 from = filename_parentat(olddfd, getname(oldname), lookup_flags, 4542 &old_path, &old_last, &old_type); 4543 if (IS_ERR(from)) { 4544 error = PTR_ERR(from); 4545 goto exit; 4546 } 4547 4548 to = filename_parentat(newdfd, getname(newname), lookup_flags, 4549 &new_path, &new_last, &new_type); 4550 if (IS_ERR(to)) { 4551 error = PTR_ERR(to); 4552 goto exit1; 4553 } 4554 4555 error = -EXDEV; 4556 if (old_path.mnt != new_path.mnt) 4557 goto exit2; 4558 4559 error = -EBUSY; 4560 if (old_type != LAST_NORM) 4561 goto exit2; 4562 4563 if (flags & RENAME_NOREPLACE) 4564 error = -EEXIST; 4565 if (new_type != LAST_NORM) 4566 goto exit2; 4567 4568 error = mnt_want_write(old_path.mnt); 4569 if (error) 4570 goto exit2; 4571 4572 retry_deleg: 4573 trap = lock_rename(new_path.dentry, old_path.dentry); 4574 4575 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags); 4576 error = PTR_ERR(old_dentry); 4577 if (IS_ERR(old_dentry)) 4578 goto exit3; 4579 /* source must exist */ 4580 error = -ENOENT; 4581 if (d_is_negative(old_dentry)) 4582 goto exit4; 4583 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags); 4584 error = PTR_ERR(new_dentry); 4585 if (IS_ERR(new_dentry)) 4586 goto exit4; 4587 error = -EEXIST; 4588 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 4589 goto exit5; 4590 if (flags & RENAME_EXCHANGE) { 4591 error = -ENOENT; 4592 if (d_is_negative(new_dentry)) 4593 goto exit5; 4594 4595 if (!d_is_dir(new_dentry)) { 4596 error = -ENOTDIR; 4597 if (new_last.name[new_last.len]) 4598 goto exit5; 4599 } 4600 } 4601 /* unless the source is a directory trailing slashes give -ENOTDIR */ 4602 if (!d_is_dir(old_dentry)) { 4603 error = -ENOTDIR; 4604 if (old_last.name[old_last.len]) 4605 goto exit5; 4606 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len]) 4607 goto exit5; 4608 } 4609 /* source should not be ancestor of target */ 4610 error = -EINVAL; 4611 if (old_dentry == trap) 4612 goto exit5; 4613 /* target should not be an ancestor of source */ 4614 if (!(flags & RENAME_EXCHANGE)) 4615 error = -ENOTEMPTY; 4616 if (new_dentry == trap) 4617 goto exit5; 4618 4619 error = security_path_rename(&old_path, old_dentry, 4620 &new_path, new_dentry, flags); 4621 if (error) 4622 goto exit5; 4623 error = vfs_rename(old_path.dentry->d_inode, old_dentry, 4624 new_path.dentry->d_inode, new_dentry, 4625 &delegated_inode, flags); 4626 exit5: 4627 dput(new_dentry); 4628 exit4: 4629 dput(old_dentry); 4630 exit3: 4631 unlock_rename(new_path.dentry, old_path.dentry); 4632 if (delegated_inode) { 4633 error = break_deleg_wait(&delegated_inode); 4634 if (!error) 4635 goto retry_deleg; 4636 } 4637 mnt_drop_write(old_path.mnt); 4638 exit2: 4639 if (retry_estale(error, lookup_flags)) 4640 should_retry = true; 4641 path_put(&new_path); 4642 putname(to); 4643 exit1: 4644 path_put(&old_path); 4645 putname(from); 4646 if (should_retry) { 4647 should_retry = false; 4648 lookup_flags |= LOOKUP_REVAL; 4649 goto retry; 4650 } 4651 exit: 4652 return error; 4653 } 4654 4655 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 4656 int, newdfd, const char __user *, newname, unsigned int, flags) 4657 { 4658 return do_renameat2(olddfd, oldname, newdfd, newname, flags); 4659 } 4660 4661 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 4662 int, newdfd, const char __user *, newname) 4663 { 4664 return do_renameat2(olddfd, oldname, newdfd, newname, 0); 4665 } 4666 4667 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 4668 { 4669 return do_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4670 } 4671 4672 int vfs_whiteout(struct inode *dir, struct dentry *dentry) 4673 { 4674 int error = may_create(dir, dentry); 4675 if (error) 4676 return error; 4677 4678 if (!dir->i_op->mknod) 4679 return -EPERM; 4680 4681 return dir->i_op->mknod(dir, dentry, 4682 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 4683 } 4684 EXPORT_SYMBOL(vfs_whiteout); 4685 4686 int readlink_copy(char __user *buffer, int buflen, const char *link) 4687 { 4688 int len = PTR_ERR(link); 4689 if (IS_ERR(link)) 4690 goto out; 4691 4692 len = strlen(link); 4693 if (len > (unsigned) buflen) 4694 len = buflen; 4695 if (copy_to_user(buffer, link, len)) 4696 len = -EFAULT; 4697 out: 4698 return len; 4699 } 4700 4701 /** 4702 * vfs_readlink - copy symlink body into userspace buffer 4703 * @dentry: dentry on which to get symbolic link 4704 * @buffer: user memory pointer 4705 * @buflen: size of buffer 4706 * 4707 * Does not touch atime. That's up to the caller if necessary 4708 * 4709 * Does not call security hook. 4710 */ 4711 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4712 { 4713 struct inode *inode = d_inode(dentry); 4714 DEFINE_DELAYED_CALL(done); 4715 const char *link; 4716 int res; 4717 4718 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) { 4719 if (unlikely(inode->i_op->readlink)) 4720 return inode->i_op->readlink(dentry, buffer, buflen); 4721 4722 if (!d_is_symlink(dentry)) 4723 return -EINVAL; 4724 4725 spin_lock(&inode->i_lock); 4726 inode->i_opflags |= IOP_DEFAULT_READLINK; 4727 spin_unlock(&inode->i_lock); 4728 } 4729 4730 link = READ_ONCE(inode->i_link); 4731 if (!link) { 4732 link = inode->i_op->get_link(dentry, inode, &done); 4733 if (IS_ERR(link)) 4734 return PTR_ERR(link); 4735 } 4736 res = readlink_copy(buffer, buflen, link); 4737 do_delayed_call(&done); 4738 return res; 4739 } 4740 EXPORT_SYMBOL(vfs_readlink); 4741 4742 /** 4743 * vfs_get_link - get symlink body 4744 * @dentry: dentry on which to get symbolic link 4745 * @done: caller needs to free returned data with this 4746 * 4747 * Calls security hook and i_op->get_link() on the supplied inode. 4748 * 4749 * It does not touch atime. That's up to the caller if necessary. 4750 * 4751 * Does not work on "special" symlinks like /proc/$$/fd/N 4752 */ 4753 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done) 4754 { 4755 const char *res = ERR_PTR(-EINVAL); 4756 struct inode *inode = d_inode(dentry); 4757 4758 if (d_is_symlink(dentry)) { 4759 res = ERR_PTR(security_inode_readlink(dentry)); 4760 if (!res) 4761 res = inode->i_op->get_link(dentry, inode, done); 4762 } 4763 return res; 4764 } 4765 EXPORT_SYMBOL(vfs_get_link); 4766 4767 /* get the link contents into pagecache */ 4768 const char *page_get_link(struct dentry *dentry, struct inode *inode, 4769 struct delayed_call *callback) 4770 { 4771 char *kaddr; 4772 struct page *page; 4773 struct address_space *mapping = inode->i_mapping; 4774 4775 if (!dentry) { 4776 page = find_get_page(mapping, 0); 4777 if (!page) 4778 return ERR_PTR(-ECHILD); 4779 if (!PageUptodate(page)) { 4780 put_page(page); 4781 return ERR_PTR(-ECHILD); 4782 } 4783 } else { 4784 page = read_mapping_page(mapping, 0, NULL); 4785 if (IS_ERR(page)) 4786 return (char*)page; 4787 } 4788 set_delayed_call(callback, page_put_link, page); 4789 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM); 4790 kaddr = page_address(page); 4791 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1); 4792 return kaddr; 4793 } 4794 4795 EXPORT_SYMBOL(page_get_link); 4796 4797 void page_put_link(void *arg) 4798 { 4799 put_page(arg); 4800 } 4801 EXPORT_SYMBOL(page_put_link); 4802 4803 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4804 { 4805 DEFINE_DELAYED_CALL(done); 4806 int res = readlink_copy(buffer, buflen, 4807 page_get_link(dentry, d_inode(dentry), 4808 &done)); 4809 do_delayed_call(&done); 4810 return res; 4811 } 4812 EXPORT_SYMBOL(page_readlink); 4813 4814 /* 4815 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 4816 */ 4817 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 4818 { 4819 struct address_space *mapping = inode->i_mapping; 4820 struct page *page; 4821 void *fsdata; 4822 int err; 4823 unsigned int flags = 0; 4824 if (nofs) 4825 flags |= AOP_FLAG_NOFS; 4826 4827 retry: 4828 err = pagecache_write_begin(NULL, mapping, 0, len-1, 4829 flags, &page, &fsdata); 4830 if (err) 4831 goto fail; 4832 4833 memcpy(page_address(page), symname, len-1); 4834 4835 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 4836 page, fsdata); 4837 if (err < 0) 4838 goto fail; 4839 if (err < len-1) 4840 goto retry; 4841 4842 mark_inode_dirty(inode); 4843 return 0; 4844 fail: 4845 return err; 4846 } 4847 EXPORT_SYMBOL(__page_symlink); 4848 4849 int page_symlink(struct inode *inode, const char *symname, int len) 4850 { 4851 return __page_symlink(inode, symname, len, 4852 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS)); 4853 } 4854 EXPORT_SYMBOL(page_symlink); 4855 4856 const struct inode_operations page_symlink_inode_operations = { 4857 .get_link = page_get_link, 4858 }; 4859 EXPORT_SYMBOL(page_symlink_inode_operations); 4860