1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/fs.h> 21 #include <linux/namei.h> 22 #include <linux/quotaops.h> 23 #include <linux/pagemap.h> 24 #include <linux/fsnotify.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/ima.h> 28 #include <linux/syscalls.h> 29 #include <linux/mount.h> 30 #include <linux/audit.h> 31 #include <linux/capability.h> 32 #include <linux/file.h> 33 #include <linux/fcntl.h> 34 #include <linux/device_cgroup.h> 35 #include <linux/fs_struct.h> 36 #include <asm/uaccess.h> 37 38 #define ACC_MODE(x) ("\000\004\002\006"[(x)&O_ACCMODE]) 39 40 /* [Feb-1997 T. Schoebel-Theuer] 41 * Fundamental changes in the pathname lookup mechanisms (namei) 42 * were necessary because of omirr. The reason is that omirr needs 43 * to know the _real_ pathname, not the user-supplied one, in case 44 * of symlinks (and also when transname replacements occur). 45 * 46 * The new code replaces the old recursive symlink resolution with 47 * an iterative one (in case of non-nested symlink chains). It does 48 * this with calls to <fs>_follow_link(). 49 * As a side effect, dir_namei(), _namei() and follow_link() are now 50 * replaced with a single function lookup_dentry() that can handle all 51 * the special cases of the former code. 52 * 53 * With the new dcache, the pathname is stored at each inode, at least as 54 * long as the refcount of the inode is positive. As a side effect, the 55 * size of the dcache depends on the inode cache and thus is dynamic. 56 * 57 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 58 * resolution to correspond with current state of the code. 59 * 60 * Note that the symlink resolution is not *completely* iterative. 61 * There is still a significant amount of tail- and mid- recursion in 62 * the algorithm. Also, note that <fs>_readlink() is not used in 63 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 64 * may return different results than <fs>_follow_link(). Many virtual 65 * filesystems (including /proc) exhibit this behavior. 66 */ 67 68 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 69 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 70 * and the name already exists in form of a symlink, try to create the new 71 * name indicated by the symlink. The old code always complained that the 72 * name already exists, due to not following the symlink even if its target 73 * is nonexistent. The new semantics affects also mknod() and link() when 74 * the name is a symlink pointing to a non-existant name. 75 * 76 * I don't know which semantics is the right one, since I have no access 77 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 78 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 79 * "old" one. Personally, I think the new semantics is much more logical. 80 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 81 * file does succeed in both HP-UX and SunOs, but not in Solaris 82 * and in the old Linux semantics. 83 */ 84 85 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 86 * semantics. See the comments in "open_namei" and "do_link" below. 87 * 88 * [10-Sep-98 Alan Modra] Another symlink change. 89 */ 90 91 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 92 * inside the path - always follow. 93 * in the last component in creation/removal/renaming - never follow. 94 * if LOOKUP_FOLLOW passed - follow. 95 * if the pathname has trailing slashes - follow. 96 * otherwise - don't follow. 97 * (applied in that order). 98 * 99 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 100 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 101 * During the 2.4 we need to fix the userland stuff depending on it - 102 * hopefully we will be able to get rid of that wart in 2.5. So far only 103 * XEmacs seems to be relying on it... 104 */ 105 /* 106 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 107 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 108 * any extra contention... 109 */ 110 111 static int __link_path_walk(const char *name, struct nameidata *nd); 112 113 /* In order to reduce some races, while at the same time doing additional 114 * checking and hopefully speeding things up, we copy filenames to the 115 * kernel data space before using them.. 116 * 117 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 118 * PATH_MAX includes the nul terminator --RR. 119 */ 120 static int do_getname(const char __user *filename, char *page) 121 { 122 int retval; 123 unsigned long len = PATH_MAX; 124 125 if (!segment_eq(get_fs(), KERNEL_DS)) { 126 if ((unsigned long) filename >= TASK_SIZE) 127 return -EFAULT; 128 if (TASK_SIZE - (unsigned long) filename < PATH_MAX) 129 len = TASK_SIZE - (unsigned long) filename; 130 } 131 132 retval = strncpy_from_user(page, filename, len); 133 if (retval > 0) { 134 if (retval < len) 135 return 0; 136 return -ENAMETOOLONG; 137 } else if (!retval) 138 retval = -ENOENT; 139 return retval; 140 } 141 142 char * getname(const char __user * filename) 143 { 144 char *tmp, *result; 145 146 result = ERR_PTR(-ENOMEM); 147 tmp = __getname(); 148 if (tmp) { 149 int retval = do_getname(filename, tmp); 150 151 result = tmp; 152 if (retval < 0) { 153 __putname(tmp); 154 result = ERR_PTR(retval); 155 } 156 } 157 audit_getname(result); 158 return result; 159 } 160 161 #ifdef CONFIG_AUDITSYSCALL 162 void putname(const char *name) 163 { 164 if (unlikely(!audit_dummy_context())) 165 audit_putname(name); 166 else 167 __putname(name); 168 } 169 EXPORT_SYMBOL(putname); 170 #endif 171 172 /* 173 * This does basic POSIX ACL permission checking 174 */ 175 static int acl_permission_check(struct inode *inode, int mask, 176 int (*check_acl)(struct inode *inode, int mask)) 177 { 178 umode_t mode = inode->i_mode; 179 180 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 181 182 if (current_fsuid() == inode->i_uid) 183 mode >>= 6; 184 else { 185 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) { 186 int error = check_acl(inode, mask); 187 if (error != -EAGAIN) 188 return error; 189 } 190 191 if (in_group_p(inode->i_gid)) 192 mode >>= 3; 193 } 194 195 /* 196 * If the DACs are ok we don't need any capability check. 197 */ 198 if ((mask & ~mode) == 0) 199 return 0; 200 return -EACCES; 201 } 202 203 /** 204 * generic_permission - check for access rights on a Posix-like filesystem 205 * @inode: inode to check access rights for 206 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 207 * @check_acl: optional callback to check for Posix ACLs 208 * 209 * Used to check for read/write/execute permissions on a file. 210 * We use "fsuid" for this, letting us set arbitrary permissions 211 * for filesystem access without changing the "normal" uids which 212 * are used for other things.. 213 */ 214 int generic_permission(struct inode *inode, int mask, 215 int (*check_acl)(struct inode *inode, int mask)) 216 { 217 int ret; 218 219 /* 220 * Do the basic POSIX ACL permission checks. 221 */ 222 ret = acl_permission_check(inode, mask, check_acl); 223 if (ret != -EACCES) 224 return ret; 225 226 /* 227 * Read/write DACs are always overridable. 228 * Executable DACs are overridable if at least one exec bit is set. 229 */ 230 if (!(mask & MAY_EXEC) || execute_ok(inode)) 231 if (capable(CAP_DAC_OVERRIDE)) 232 return 0; 233 234 /* 235 * Searching includes executable on directories, else just read. 236 */ 237 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE))) 238 if (capable(CAP_DAC_READ_SEARCH)) 239 return 0; 240 241 return -EACCES; 242 } 243 244 /** 245 * inode_permission - check for access rights to a given inode 246 * @inode: inode to check permission on 247 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 248 * 249 * Used to check for read/write/execute permissions on an inode. 250 * We use "fsuid" for this, letting us set arbitrary permissions 251 * for filesystem access without changing the "normal" uids which 252 * are used for other things. 253 */ 254 int inode_permission(struct inode *inode, int mask) 255 { 256 int retval; 257 258 if (mask & MAY_WRITE) { 259 umode_t mode = inode->i_mode; 260 261 /* 262 * Nobody gets write access to a read-only fs. 263 */ 264 if (IS_RDONLY(inode) && 265 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 266 return -EROFS; 267 268 /* 269 * Nobody gets write access to an immutable file. 270 */ 271 if (IS_IMMUTABLE(inode)) 272 return -EACCES; 273 } 274 275 if (inode->i_op->permission) 276 retval = inode->i_op->permission(inode, mask); 277 else 278 retval = generic_permission(inode, mask, inode->i_op->check_acl); 279 280 if (retval) 281 return retval; 282 283 retval = devcgroup_inode_permission(inode, mask); 284 if (retval) 285 return retval; 286 287 return security_inode_permission(inode, 288 mask & (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND)); 289 } 290 291 /** 292 * file_permission - check for additional access rights to a given file 293 * @file: file to check access rights for 294 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 295 * 296 * Used to check for read/write/execute permissions on an already opened 297 * file. 298 * 299 * Note: 300 * Do not use this function in new code. All access checks should 301 * be done using inode_permission(). 302 */ 303 int file_permission(struct file *file, int mask) 304 { 305 return inode_permission(file->f_path.dentry->d_inode, mask); 306 } 307 308 /* 309 * get_write_access() gets write permission for a file. 310 * put_write_access() releases this write permission. 311 * This is used for regular files. 312 * We cannot support write (and maybe mmap read-write shared) accesses and 313 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode 314 * can have the following values: 315 * 0: no writers, no VM_DENYWRITE mappings 316 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist 317 * > 0: (i_writecount) users are writing to the file. 318 * 319 * Normally we operate on that counter with atomic_{inc,dec} and it's safe 320 * except for the cases where we don't hold i_writecount yet. Then we need to 321 * use {get,deny}_write_access() - these functions check the sign and refuse 322 * to do the change if sign is wrong. Exclusion between them is provided by 323 * the inode->i_lock spinlock. 324 */ 325 326 int get_write_access(struct inode * inode) 327 { 328 spin_lock(&inode->i_lock); 329 if (atomic_read(&inode->i_writecount) < 0) { 330 spin_unlock(&inode->i_lock); 331 return -ETXTBSY; 332 } 333 atomic_inc(&inode->i_writecount); 334 spin_unlock(&inode->i_lock); 335 336 return 0; 337 } 338 339 int deny_write_access(struct file * file) 340 { 341 struct inode *inode = file->f_path.dentry->d_inode; 342 343 spin_lock(&inode->i_lock); 344 if (atomic_read(&inode->i_writecount) > 0) { 345 spin_unlock(&inode->i_lock); 346 return -ETXTBSY; 347 } 348 atomic_dec(&inode->i_writecount); 349 spin_unlock(&inode->i_lock); 350 351 return 0; 352 } 353 354 /** 355 * path_get - get a reference to a path 356 * @path: path to get the reference to 357 * 358 * Given a path increment the reference count to the dentry and the vfsmount. 359 */ 360 void path_get(struct path *path) 361 { 362 mntget(path->mnt); 363 dget(path->dentry); 364 } 365 EXPORT_SYMBOL(path_get); 366 367 /** 368 * path_put - put a reference to a path 369 * @path: path to put the reference to 370 * 371 * Given a path decrement the reference count to the dentry and the vfsmount. 372 */ 373 void path_put(struct path *path) 374 { 375 dput(path->dentry); 376 mntput(path->mnt); 377 } 378 EXPORT_SYMBOL(path_put); 379 380 /** 381 * release_open_intent - free up open intent resources 382 * @nd: pointer to nameidata 383 */ 384 void release_open_intent(struct nameidata *nd) 385 { 386 if (nd->intent.open.file->f_path.dentry == NULL) 387 put_filp(nd->intent.open.file); 388 else 389 fput(nd->intent.open.file); 390 } 391 392 static inline struct dentry * 393 do_revalidate(struct dentry *dentry, struct nameidata *nd) 394 { 395 int status = dentry->d_op->d_revalidate(dentry, nd); 396 if (unlikely(status <= 0)) { 397 /* 398 * The dentry failed validation. 399 * If d_revalidate returned 0 attempt to invalidate 400 * the dentry otherwise d_revalidate is asking us 401 * to return a fail status. 402 */ 403 if (!status) { 404 if (!d_invalidate(dentry)) { 405 dput(dentry); 406 dentry = NULL; 407 } 408 } else { 409 dput(dentry); 410 dentry = ERR_PTR(status); 411 } 412 } 413 return dentry; 414 } 415 416 /* 417 * Internal lookup() using the new generic dcache. 418 * SMP-safe 419 */ 420 static struct dentry * cached_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd) 421 { 422 struct dentry * dentry = __d_lookup(parent, name); 423 424 /* lockess __d_lookup may fail due to concurrent d_move() 425 * in some unrelated directory, so try with d_lookup 426 */ 427 if (!dentry) 428 dentry = d_lookup(parent, name); 429 430 if (dentry && dentry->d_op && dentry->d_op->d_revalidate) 431 dentry = do_revalidate(dentry, nd); 432 433 return dentry; 434 } 435 436 /* 437 * Short-cut version of permission(), for calling by 438 * path_walk(), when dcache lock is held. Combines parts 439 * of permission() and generic_permission(), and tests ONLY for 440 * MAY_EXEC permission. 441 * 442 * If appropriate, check DAC only. If not appropriate, or 443 * short-cut DAC fails, then call permission() to do more 444 * complete permission check. 445 */ 446 static int exec_permission_lite(struct inode *inode) 447 { 448 int ret; 449 450 if (inode->i_op->permission) { 451 ret = inode->i_op->permission(inode, MAY_EXEC); 452 if (!ret) 453 goto ok; 454 return ret; 455 } 456 ret = acl_permission_check(inode, MAY_EXEC, inode->i_op->check_acl); 457 if (!ret) 458 goto ok; 459 460 if (capable(CAP_DAC_OVERRIDE) || capable(CAP_DAC_READ_SEARCH)) 461 goto ok; 462 463 return ret; 464 ok: 465 return security_inode_permission(inode, MAY_EXEC); 466 } 467 468 /* 469 * This is called when everything else fails, and we actually have 470 * to go to the low-level filesystem to find out what we should do.. 471 * 472 * We get the directory semaphore, and after getting that we also 473 * make sure that nobody added the entry to the dcache in the meantime.. 474 * SMP-safe 475 */ 476 static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd) 477 { 478 struct dentry * result; 479 struct inode *dir = parent->d_inode; 480 481 mutex_lock(&dir->i_mutex); 482 /* 483 * First re-do the cached lookup just in case it was created 484 * while we waited for the directory semaphore.. 485 * 486 * FIXME! This could use version numbering or similar to 487 * avoid unnecessary cache lookups. 488 * 489 * The "dcache_lock" is purely to protect the RCU list walker 490 * from concurrent renames at this point (we mustn't get false 491 * negatives from the RCU list walk here, unlike the optimistic 492 * fast walk). 493 * 494 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup 495 */ 496 result = d_lookup(parent, name); 497 if (!result) { 498 struct dentry *dentry; 499 500 /* Don't create child dentry for a dead directory. */ 501 result = ERR_PTR(-ENOENT); 502 if (IS_DEADDIR(dir)) 503 goto out_unlock; 504 505 dentry = d_alloc(parent, name); 506 result = ERR_PTR(-ENOMEM); 507 if (dentry) { 508 result = dir->i_op->lookup(dir, dentry, nd); 509 if (result) 510 dput(dentry); 511 else 512 result = dentry; 513 } 514 out_unlock: 515 mutex_unlock(&dir->i_mutex); 516 return result; 517 } 518 519 /* 520 * Uhhuh! Nasty case: the cache was re-populated while 521 * we waited on the semaphore. Need to revalidate. 522 */ 523 mutex_unlock(&dir->i_mutex); 524 if (result->d_op && result->d_op->d_revalidate) { 525 result = do_revalidate(result, nd); 526 if (!result) 527 result = ERR_PTR(-ENOENT); 528 } 529 return result; 530 } 531 532 /* 533 * Wrapper to retry pathname resolution whenever the underlying 534 * file system returns an ESTALE. 535 * 536 * Retry the whole path once, forcing real lookup requests 537 * instead of relying on the dcache. 538 */ 539 static __always_inline int link_path_walk(const char *name, struct nameidata *nd) 540 { 541 struct path save = nd->path; 542 int result; 543 544 /* make sure the stuff we saved doesn't go away */ 545 path_get(&save); 546 547 result = __link_path_walk(name, nd); 548 if (result == -ESTALE) { 549 /* nd->path had been dropped */ 550 nd->path = save; 551 path_get(&nd->path); 552 nd->flags |= LOOKUP_REVAL; 553 result = __link_path_walk(name, nd); 554 } 555 556 path_put(&save); 557 558 return result; 559 } 560 561 static __always_inline void set_root(struct nameidata *nd) 562 { 563 if (!nd->root.mnt) { 564 struct fs_struct *fs = current->fs; 565 read_lock(&fs->lock); 566 nd->root = fs->root; 567 path_get(&nd->root); 568 read_unlock(&fs->lock); 569 } 570 } 571 572 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link) 573 { 574 int res = 0; 575 char *name; 576 if (IS_ERR(link)) 577 goto fail; 578 579 if (*link == '/') { 580 set_root(nd); 581 path_put(&nd->path); 582 nd->path = nd->root; 583 path_get(&nd->root); 584 } 585 586 res = link_path_walk(link, nd); 587 if (nd->depth || res || nd->last_type!=LAST_NORM) 588 return res; 589 /* 590 * If it is an iterative symlinks resolution in open_namei() we 591 * have to copy the last component. And all that crap because of 592 * bloody create() on broken symlinks. Furrfu... 593 */ 594 name = __getname(); 595 if (unlikely(!name)) { 596 path_put(&nd->path); 597 return -ENOMEM; 598 } 599 strcpy(name, nd->last.name); 600 nd->last.name = name; 601 return 0; 602 fail: 603 path_put(&nd->path); 604 return PTR_ERR(link); 605 } 606 607 static void path_put_conditional(struct path *path, struct nameidata *nd) 608 { 609 dput(path->dentry); 610 if (path->mnt != nd->path.mnt) 611 mntput(path->mnt); 612 } 613 614 static inline void path_to_nameidata(struct path *path, struct nameidata *nd) 615 { 616 dput(nd->path.dentry); 617 if (nd->path.mnt != path->mnt) 618 mntput(nd->path.mnt); 619 nd->path.mnt = path->mnt; 620 nd->path.dentry = path->dentry; 621 } 622 623 static __always_inline int __do_follow_link(struct path *path, struct nameidata *nd) 624 { 625 int error; 626 void *cookie; 627 struct dentry *dentry = path->dentry; 628 629 touch_atime(path->mnt, dentry); 630 nd_set_link(nd, NULL); 631 632 if (path->mnt != nd->path.mnt) { 633 path_to_nameidata(path, nd); 634 dget(dentry); 635 } 636 mntget(path->mnt); 637 cookie = dentry->d_inode->i_op->follow_link(dentry, nd); 638 error = PTR_ERR(cookie); 639 if (!IS_ERR(cookie)) { 640 char *s = nd_get_link(nd); 641 error = 0; 642 if (s) 643 error = __vfs_follow_link(nd, s); 644 if (dentry->d_inode->i_op->put_link) 645 dentry->d_inode->i_op->put_link(dentry, nd, cookie); 646 } 647 path_put(path); 648 649 return error; 650 } 651 652 /* 653 * This limits recursive symlink follows to 8, while 654 * limiting consecutive symlinks to 40. 655 * 656 * Without that kind of total limit, nasty chains of consecutive 657 * symlinks can cause almost arbitrarily long lookups. 658 */ 659 static inline int do_follow_link(struct path *path, struct nameidata *nd) 660 { 661 int err = -ELOOP; 662 if (current->link_count >= MAX_NESTED_LINKS) 663 goto loop; 664 if (current->total_link_count >= 40) 665 goto loop; 666 BUG_ON(nd->depth >= MAX_NESTED_LINKS); 667 cond_resched(); 668 err = security_inode_follow_link(path->dentry, nd); 669 if (err) 670 goto loop; 671 current->link_count++; 672 current->total_link_count++; 673 nd->depth++; 674 err = __do_follow_link(path, nd); 675 current->link_count--; 676 nd->depth--; 677 return err; 678 loop: 679 path_put_conditional(path, nd); 680 path_put(&nd->path); 681 return err; 682 } 683 684 int follow_up(struct path *path) 685 { 686 struct vfsmount *parent; 687 struct dentry *mountpoint; 688 spin_lock(&vfsmount_lock); 689 parent = path->mnt->mnt_parent; 690 if (parent == path->mnt) { 691 spin_unlock(&vfsmount_lock); 692 return 0; 693 } 694 mntget(parent); 695 mountpoint = dget(path->mnt->mnt_mountpoint); 696 spin_unlock(&vfsmount_lock); 697 dput(path->dentry); 698 path->dentry = mountpoint; 699 mntput(path->mnt); 700 path->mnt = parent; 701 return 1; 702 } 703 704 /* no need for dcache_lock, as serialization is taken care in 705 * namespace.c 706 */ 707 static int __follow_mount(struct path *path) 708 { 709 int res = 0; 710 while (d_mountpoint(path->dentry)) { 711 struct vfsmount *mounted = lookup_mnt(path); 712 if (!mounted) 713 break; 714 dput(path->dentry); 715 if (res) 716 mntput(path->mnt); 717 path->mnt = mounted; 718 path->dentry = dget(mounted->mnt_root); 719 res = 1; 720 } 721 return res; 722 } 723 724 static void follow_mount(struct path *path) 725 { 726 while (d_mountpoint(path->dentry)) { 727 struct vfsmount *mounted = lookup_mnt(path); 728 if (!mounted) 729 break; 730 dput(path->dentry); 731 mntput(path->mnt); 732 path->mnt = mounted; 733 path->dentry = dget(mounted->mnt_root); 734 } 735 } 736 737 /* no need for dcache_lock, as serialization is taken care in 738 * namespace.c 739 */ 740 int follow_down(struct path *path) 741 { 742 struct vfsmount *mounted; 743 744 mounted = lookup_mnt(path); 745 if (mounted) { 746 dput(path->dentry); 747 mntput(path->mnt); 748 path->mnt = mounted; 749 path->dentry = dget(mounted->mnt_root); 750 return 1; 751 } 752 return 0; 753 } 754 755 static __always_inline void follow_dotdot(struct nameidata *nd) 756 { 757 set_root(nd); 758 759 while(1) { 760 struct vfsmount *parent; 761 struct dentry *old = nd->path.dentry; 762 763 if (nd->path.dentry == nd->root.dentry && 764 nd->path.mnt == nd->root.mnt) { 765 break; 766 } 767 spin_lock(&dcache_lock); 768 if (nd->path.dentry != nd->path.mnt->mnt_root) { 769 nd->path.dentry = dget(nd->path.dentry->d_parent); 770 spin_unlock(&dcache_lock); 771 dput(old); 772 break; 773 } 774 spin_unlock(&dcache_lock); 775 spin_lock(&vfsmount_lock); 776 parent = nd->path.mnt->mnt_parent; 777 if (parent == nd->path.mnt) { 778 spin_unlock(&vfsmount_lock); 779 break; 780 } 781 mntget(parent); 782 nd->path.dentry = dget(nd->path.mnt->mnt_mountpoint); 783 spin_unlock(&vfsmount_lock); 784 dput(old); 785 mntput(nd->path.mnt); 786 nd->path.mnt = parent; 787 } 788 follow_mount(&nd->path); 789 } 790 791 /* 792 * It's more convoluted than I'd like it to be, but... it's still fairly 793 * small and for now I'd prefer to have fast path as straight as possible. 794 * It _is_ time-critical. 795 */ 796 static int do_lookup(struct nameidata *nd, struct qstr *name, 797 struct path *path) 798 { 799 struct vfsmount *mnt = nd->path.mnt; 800 struct dentry *dentry = __d_lookup(nd->path.dentry, name); 801 802 if (!dentry) 803 goto need_lookup; 804 if (dentry->d_op && dentry->d_op->d_revalidate) 805 goto need_revalidate; 806 done: 807 path->mnt = mnt; 808 path->dentry = dentry; 809 __follow_mount(path); 810 return 0; 811 812 need_lookup: 813 dentry = real_lookup(nd->path.dentry, name, nd); 814 if (IS_ERR(dentry)) 815 goto fail; 816 goto done; 817 818 need_revalidate: 819 dentry = do_revalidate(dentry, nd); 820 if (!dentry) 821 goto need_lookup; 822 if (IS_ERR(dentry)) 823 goto fail; 824 goto done; 825 826 fail: 827 return PTR_ERR(dentry); 828 } 829 830 /* 831 * Name resolution. 832 * This is the basic name resolution function, turning a pathname into 833 * the final dentry. We expect 'base' to be positive and a directory. 834 * 835 * Returns 0 and nd will have valid dentry and mnt on success. 836 * Returns error and drops reference to input namei data on failure. 837 */ 838 static int __link_path_walk(const char *name, struct nameidata *nd) 839 { 840 struct path next; 841 struct inode *inode; 842 int err; 843 unsigned int lookup_flags = nd->flags; 844 845 while (*name=='/') 846 name++; 847 if (!*name) 848 goto return_reval; 849 850 inode = nd->path.dentry->d_inode; 851 if (nd->depth) 852 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE); 853 854 /* At this point we know we have a real path component. */ 855 for(;;) { 856 unsigned long hash; 857 struct qstr this; 858 unsigned int c; 859 860 nd->flags |= LOOKUP_CONTINUE; 861 err = exec_permission_lite(inode); 862 if (err) 863 break; 864 865 this.name = name; 866 c = *(const unsigned char *)name; 867 868 hash = init_name_hash(); 869 do { 870 name++; 871 hash = partial_name_hash(c, hash); 872 c = *(const unsigned char *)name; 873 } while (c && (c != '/')); 874 this.len = name - (const char *) this.name; 875 this.hash = end_name_hash(hash); 876 877 /* remove trailing slashes? */ 878 if (!c) 879 goto last_component; 880 while (*++name == '/'); 881 if (!*name) 882 goto last_with_slashes; 883 884 /* 885 * "." and ".." are special - ".." especially so because it has 886 * to be able to know about the current root directory and 887 * parent relationships. 888 */ 889 if (this.name[0] == '.') switch (this.len) { 890 default: 891 break; 892 case 2: 893 if (this.name[1] != '.') 894 break; 895 follow_dotdot(nd); 896 inode = nd->path.dentry->d_inode; 897 /* fallthrough */ 898 case 1: 899 continue; 900 } 901 /* 902 * See if the low-level filesystem might want 903 * to use its own hash.. 904 */ 905 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) { 906 err = nd->path.dentry->d_op->d_hash(nd->path.dentry, 907 &this); 908 if (err < 0) 909 break; 910 } 911 /* This does the actual lookups.. */ 912 err = do_lookup(nd, &this, &next); 913 if (err) 914 break; 915 916 err = -ENOENT; 917 inode = next.dentry->d_inode; 918 if (!inode) 919 goto out_dput; 920 921 if (inode->i_op->follow_link) { 922 err = do_follow_link(&next, nd); 923 if (err) 924 goto return_err; 925 err = -ENOENT; 926 inode = nd->path.dentry->d_inode; 927 if (!inode) 928 break; 929 } else 930 path_to_nameidata(&next, nd); 931 err = -ENOTDIR; 932 if (!inode->i_op->lookup) 933 break; 934 continue; 935 /* here ends the main loop */ 936 937 last_with_slashes: 938 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 939 last_component: 940 /* Clear LOOKUP_CONTINUE iff it was previously unset */ 941 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE; 942 if (lookup_flags & LOOKUP_PARENT) 943 goto lookup_parent; 944 if (this.name[0] == '.') switch (this.len) { 945 default: 946 break; 947 case 2: 948 if (this.name[1] != '.') 949 break; 950 follow_dotdot(nd); 951 inode = nd->path.dentry->d_inode; 952 /* fallthrough */ 953 case 1: 954 goto return_reval; 955 } 956 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) { 957 err = nd->path.dentry->d_op->d_hash(nd->path.dentry, 958 &this); 959 if (err < 0) 960 break; 961 } 962 err = do_lookup(nd, &this, &next); 963 if (err) 964 break; 965 inode = next.dentry->d_inode; 966 if ((lookup_flags & LOOKUP_FOLLOW) 967 && inode && inode->i_op->follow_link) { 968 err = do_follow_link(&next, nd); 969 if (err) 970 goto return_err; 971 inode = nd->path.dentry->d_inode; 972 } else 973 path_to_nameidata(&next, nd); 974 err = -ENOENT; 975 if (!inode) 976 break; 977 if (lookup_flags & LOOKUP_DIRECTORY) { 978 err = -ENOTDIR; 979 if (!inode->i_op->lookup) 980 break; 981 } 982 goto return_base; 983 lookup_parent: 984 nd->last = this; 985 nd->last_type = LAST_NORM; 986 if (this.name[0] != '.') 987 goto return_base; 988 if (this.len == 1) 989 nd->last_type = LAST_DOT; 990 else if (this.len == 2 && this.name[1] == '.') 991 nd->last_type = LAST_DOTDOT; 992 else 993 goto return_base; 994 return_reval: 995 /* 996 * We bypassed the ordinary revalidation routines. 997 * We may need to check the cached dentry for staleness. 998 */ 999 if (nd->path.dentry && nd->path.dentry->d_sb && 1000 (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) { 1001 err = -ESTALE; 1002 /* Note: we do not d_invalidate() */ 1003 if (!nd->path.dentry->d_op->d_revalidate( 1004 nd->path.dentry, nd)) 1005 break; 1006 } 1007 return_base: 1008 return 0; 1009 out_dput: 1010 path_put_conditional(&next, nd); 1011 break; 1012 } 1013 path_put(&nd->path); 1014 return_err: 1015 return err; 1016 } 1017 1018 static int path_walk(const char *name, struct nameidata *nd) 1019 { 1020 current->total_link_count = 0; 1021 return link_path_walk(name, nd); 1022 } 1023 1024 static int path_init(int dfd, const char *name, unsigned int flags, struct nameidata *nd) 1025 { 1026 int retval = 0; 1027 int fput_needed; 1028 struct file *file; 1029 1030 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 1031 nd->flags = flags; 1032 nd->depth = 0; 1033 nd->root.mnt = NULL; 1034 1035 if (*name=='/') { 1036 set_root(nd); 1037 nd->path = nd->root; 1038 path_get(&nd->root); 1039 } else if (dfd == AT_FDCWD) { 1040 struct fs_struct *fs = current->fs; 1041 read_lock(&fs->lock); 1042 nd->path = fs->pwd; 1043 path_get(&fs->pwd); 1044 read_unlock(&fs->lock); 1045 } else { 1046 struct dentry *dentry; 1047 1048 file = fget_light(dfd, &fput_needed); 1049 retval = -EBADF; 1050 if (!file) 1051 goto out_fail; 1052 1053 dentry = file->f_path.dentry; 1054 1055 retval = -ENOTDIR; 1056 if (!S_ISDIR(dentry->d_inode->i_mode)) 1057 goto fput_fail; 1058 1059 retval = file_permission(file, MAY_EXEC); 1060 if (retval) 1061 goto fput_fail; 1062 1063 nd->path = file->f_path; 1064 path_get(&file->f_path); 1065 1066 fput_light(file, fput_needed); 1067 } 1068 return 0; 1069 1070 fput_fail: 1071 fput_light(file, fput_needed); 1072 out_fail: 1073 return retval; 1074 } 1075 1076 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 1077 static int do_path_lookup(int dfd, const char *name, 1078 unsigned int flags, struct nameidata *nd) 1079 { 1080 int retval = path_init(dfd, name, flags, nd); 1081 if (!retval) 1082 retval = path_walk(name, nd); 1083 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry && 1084 nd->path.dentry->d_inode)) 1085 audit_inode(name, nd->path.dentry); 1086 if (nd->root.mnt) { 1087 path_put(&nd->root); 1088 nd->root.mnt = NULL; 1089 } 1090 return retval; 1091 } 1092 1093 int path_lookup(const char *name, unsigned int flags, 1094 struct nameidata *nd) 1095 { 1096 return do_path_lookup(AT_FDCWD, name, flags, nd); 1097 } 1098 1099 int kern_path(const char *name, unsigned int flags, struct path *path) 1100 { 1101 struct nameidata nd; 1102 int res = do_path_lookup(AT_FDCWD, name, flags, &nd); 1103 if (!res) 1104 *path = nd.path; 1105 return res; 1106 } 1107 1108 /** 1109 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 1110 * @dentry: pointer to dentry of the base directory 1111 * @mnt: pointer to vfs mount of the base directory 1112 * @name: pointer to file name 1113 * @flags: lookup flags 1114 * @nd: pointer to nameidata 1115 */ 1116 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 1117 const char *name, unsigned int flags, 1118 struct nameidata *nd) 1119 { 1120 int retval; 1121 1122 /* same as do_path_lookup */ 1123 nd->last_type = LAST_ROOT; 1124 nd->flags = flags; 1125 nd->depth = 0; 1126 1127 nd->path.dentry = dentry; 1128 nd->path.mnt = mnt; 1129 path_get(&nd->path); 1130 nd->root = nd->path; 1131 path_get(&nd->root); 1132 1133 retval = path_walk(name, nd); 1134 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry && 1135 nd->path.dentry->d_inode)) 1136 audit_inode(name, nd->path.dentry); 1137 1138 path_put(&nd->root); 1139 nd->root.mnt = NULL; 1140 1141 return retval; 1142 } 1143 1144 /** 1145 * path_lookup_open - lookup a file path with open intent 1146 * @dfd: the directory to use as base, or AT_FDCWD 1147 * @name: pointer to file name 1148 * @lookup_flags: lookup intent flags 1149 * @nd: pointer to nameidata 1150 * @open_flags: open intent flags 1151 */ 1152 static int path_lookup_open(int dfd, const char *name, 1153 unsigned int lookup_flags, struct nameidata *nd, int open_flags) 1154 { 1155 struct file *filp = get_empty_filp(); 1156 int err; 1157 1158 if (filp == NULL) 1159 return -ENFILE; 1160 nd->intent.open.file = filp; 1161 nd->intent.open.flags = open_flags; 1162 nd->intent.open.create_mode = 0; 1163 err = do_path_lookup(dfd, name, lookup_flags|LOOKUP_OPEN, nd); 1164 if (IS_ERR(nd->intent.open.file)) { 1165 if (err == 0) { 1166 err = PTR_ERR(nd->intent.open.file); 1167 path_put(&nd->path); 1168 } 1169 } else if (err != 0) 1170 release_open_intent(nd); 1171 return err; 1172 } 1173 1174 static struct dentry *__lookup_hash(struct qstr *name, 1175 struct dentry *base, struct nameidata *nd) 1176 { 1177 struct dentry *dentry; 1178 struct inode *inode; 1179 int err; 1180 1181 inode = base->d_inode; 1182 1183 /* 1184 * See if the low-level filesystem might want 1185 * to use its own hash.. 1186 */ 1187 if (base->d_op && base->d_op->d_hash) { 1188 err = base->d_op->d_hash(base, name); 1189 dentry = ERR_PTR(err); 1190 if (err < 0) 1191 goto out; 1192 } 1193 1194 dentry = cached_lookup(base, name, nd); 1195 if (!dentry) { 1196 struct dentry *new; 1197 1198 /* Don't create child dentry for a dead directory. */ 1199 dentry = ERR_PTR(-ENOENT); 1200 if (IS_DEADDIR(inode)) 1201 goto out; 1202 1203 new = d_alloc(base, name); 1204 dentry = ERR_PTR(-ENOMEM); 1205 if (!new) 1206 goto out; 1207 dentry = inode->i_op->lookup(inode, new, nd); 1208 if (!dentry) 1209 dentry = new; 1210 else 1211 dput(new); 1212 } 1213 out: 1214 return dentry; 1215 } 1216 1217 /* 1218 * Restricted form of lookup. Doesn't follow links, single-component only, 1219 * needs parent already locked. Doesn't follow mounts. 1220 * SMP-safe. 1221 */ 1222 static struct dentry *lookup_hash(struct nameidata *nd) 1223 { 1224 int err; 1225 1226 err = inode_permission(nd->path.dentry->d_inode, MAY_EXEC); 1227 if (err) 1228 return ERR_PTR(err); 1229 return __lookup_hash(&nd->last, nd->path.dentry, nd); 1230 } 1231 1232 static int __lookup_one_len(const char *name, struct qstr *this, 1233 struct dentry *base, int len) 1234 { 1235 unsigned long hash; 1236 unsigned int c; 1237 1238 this->name = name; 1239 this->len = len; 1240 if (!len) 1241 return -EACCES; 1242 1243 hash = init_name_hash(); 1244 while (len--) { 1245 c = *(const unsigned char *)name++; 1246 if (c == '/' || c == '\0') 1247 return -EACCES; 1248 hash = partial_name_hash(c, hash); 1249 } 1250 this->hash = end_name_hash(hash); 1251 return 0; 1252 } 1253 1254 /** 1255 * lookup_one_len - filesystem helper to lookup single pathname component 1256 * @name: pathname component to lookup 1257 * @base: base directory to lookup from 1258 * @len: maximum length @len should be interpreted to 1259 * 1260 * Note that this routine is purely a helper for filesystem usage and should 1261 * not be called by generic code. Also note that by using this function the 1262 * nameidata argument is passed to the filesystem methods and a filesystem 1263 * using this helper needs to be prepared for that. 1264 */ 1265 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 1266 { 1267 int err; 1268 struct qstr this; 1269 1270 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex)); 1271 1272 err = __lookup_one_len(name, &this, base, len); 1273 if (err) 1274 return ERR_PTR(err); 1275 1276 err = inode_permission(base->d_inode, MAY_EXEC); 1277 if (err) 1278 return ERR_PTR(err); 1279 return __lookup_hash(&this, base, NULL); 1280 } 1281 1282 int user_path_at(int dfd, const char __user *name, unsigned flags, 1283 struct path *path) 1284 { 1285 struct nameidata nd; 1286 char *tmp = getname(name); 1287 int err = PTR_ERR(tmp); 1288 if (!IS_ERR(tmp)) { 1289 1290 BUG_ON(flags & LOOKUP_PARENT); 1291 1292 err = do_path_lookup(dfd, tmp, flags, &nd); 1293 putname(tmp); 1294 if (!err) 1295 *path = nd.path; 1296 } 1297 return err; 1298 } 1299 1300 static int user_path_parent(int dfd, const char __user *path, 1301 struct nameidata *nd, char **name) 1302 { 1303 char *s = getname(path); 1304 int error; 1305 1306 if (IS_ERR(s)) 1307 return PTR_ERR(s); 1308 1309 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd); 1310 if (error) 1311 putname(s); 1312 else 1313 *name = s; 1314 1315 return error; 1316 } 1317 1318 /* 1319 * It's inline, so penalty for filesystems that don't use sticky bit is 1320 * minimal. 1321 */ 1322 static inline int check_sticky(struct inode *dir, struct inode *inode) 1323 { 1324 uid_t fsuid = current_fsuid(); 1325 1326 if (!(dir->i_mode & S_ISVTX)) 1327 return 0; 1328 if (inode->i_uid == fsuid) 1329 return 0; 1330 if (dir->i_uid == fsuid) 1331 return 0; 1332 return !capable(CAP_FOWNER); 1333 } 1334 1335 /* 1336 * Check whether we can remove a link victim from directory dir, check 1337 * whether the type of victim is right. 1338 * 1. We can't do it if dir is read-only (done in permission()) 1339 * 2. We should have write and exec permissions on dir 1340 * 3. We can't remove anything from append-only dir 1341 * 4. We can't do anything with immutable dir (done in permission()) 1342 * 5. If the sticky bit on dir is set we should either 1343 * a. be owner of dir, or 1344 * b. be owner of victim, or 1345 * c. have CAP_FOWNER capability 1346 * 6. If the victim is append-only or immutable we can't do antyhing with 1347 * links pointing to it. 1348 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 1349 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 1350 * 9. We can't remove a root or mountpoint. 1351 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 1352 * nfs_async_unlink(). 1353 */ 1354 static int may_delete(struct inode *dir,struct dentry *victim,int isdir) 1355 { 1356 int error; 1357 1358 if (!victim->d_inode) 1359 return -ENOENT; 1360 1361 BUG_ON(victim->d_parent->d_inode != dir); 1362 audit_inode_child(victim->d_name.name, victim, dir); 1363 1364 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 1365 if (error) 1366 return error; 1367 if (IS_APPEND(dir)) 1368 return -EPERM; 1369 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)|| 1370 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode)) 1371 return -EPERM; 1372 if (isdir) { 1373 if (!S_ISDIR(victim->d_inode->i_mode)) 1374 return -ENOTDIR; 1375 if (IS_ROOT(victim)) 1376 return -EBUSY; 1377 } else if (S_ISDIR(victim->d_inode->i_mode)) 1378 return -EISDIR; 1379 if (IS_DEADDIR(dir)) 1380 return -ENOENT; 1381 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 1382 return -EBUSY; 1383 return 0; 1384 } 1385 1386 /* Check whether we can create an object with dentry child in directory 1387 * dir. 1388 * 1. We can't do it if child already exists (open has special treatment for 1389 * this case, but since we are inlined it's OK) 1390 * 2. We can't do it if dir is read-only (done in permission()) 1391 * 3. We should have write and exec permissions on dir 1392 * 4. We can't do it if dir is immutable (done in permission()) 1393 */ 1394 static inline int may_create(struct inode *dir, struct dentry *child) 1395 { 1396 if (child->d_inode) 1397 return -EEXIST; 1398 if (IS_DEADDIR(dir)) 1399 return -ENOENT; 1400 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 1401 } 1402 1403 /* 1404 * O_DIRECTORY translates into forcing a directory lookup. 1405 */ 1406 static inline int lookup_flags(unsigned int f) 1407 { 1408 unsigned long retval = LOOKUP_FOLLOW; 1409 1410 if (f & O_NOFOLLOW) 1411 retval &= ~LOOKUP_FOLLOW; 1412 1413 if (f & O_DIRECTORY) 1414 retval |= LOOKUP_DIRECTORY; 1415 1416 return retval; 1417 } 1418 1419 /* 1420 * p1 and p2 should be directories on the same fs. 1421 */ 1422 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 1423 { 1424 struct dentry *p; 1425 1426 if (p1 == p2) { 1427 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1428 return NULL; 1429 } 1430 1431 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 1432 1433 p = d_ancestor(p2, p1); 1434 if (p) { 1435 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT); 1436 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD); 1437 return p; 1438 } 1439 1440 p = d_ancestor(p1, p2); 1441 if (p) { 1442 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1443 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 1444 return p; 1445 } 1446 1447 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1448 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 1449 return NULL; 1450 } 1451 1452 void unlock_rename(struct dentry *p1, struct dentry *p2) 1453 { 1454 mutex_unlock(&p1->d_inode->i_mutex); 1455 if (p1 != p2) { 1456 mutex_unlock(&p2->d_inode->i_mutex); 1457 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 1458 } 1459 } 1460 1461 int vfs_create(struct inode *dir, struct dentry *dentry, int mode, 1462 struct nameidata *nd) 1463 { 1464 int error = may_create(dir, dentry); 1465 1466 if (error) 1467 return error; 1468 1469 if (!dir->i_op->create) 1470 return -EACCES; /* shouldn't it be ENOSYS? */ 1471 mode &= S_IALLUGO; 1472 mode |= S_IFREG; 1473 error = security_inode_create(dir, dentry, mode); 1474 if (error) 1475 return error; 1476 vfs_dq_init(dir); 1477 error = dir->i_op->create(dir, dentry, mode, nd); 1478 if (!error) 1479 fsnotify_create(dir, dentry); 1480 return error; 1481 } 1482 1483 int may_open(struct path *path, int acc_mode, int flag) 1484 { 1485 struct dentry *dentry = path->dentry; 1486 struct inode *inode = dentry->d_inode; 1487 int error; 1488 1489 if (!inode) 1490 return -ENOENT; 1491 1492 switch (inode->i_mode & S_IFMT) { 1493 case S_IFLNK: 1494 return -ELOOP; 1495 case S_IFDIR: 1496 if (acc_mode & MAY_WRITE) 1497 return -EISDIR; 1498 break; 1499 case S_IFBLK: 1500 case S_IFCHR: 1501 if (path->mnt->mnt_flags & MNT_NODEV) 1502 return -EACCES; 1503 /*FALLTHRU*/ 1504 case S_IFIFO: 1505 case S_IFSOCK: 1506 flag &= ~O_TRUNC; 1507 break; 1508 } 1509 1510 error = inode_permission(inode, acc_mode); 1511 if (error) 1512 return error; 1513 1514 error = ima_path_check(path, acc_mode ? 1515 acc_mode & (MAY_READ | MAY_WRITE | MAY_EXEC) : 1516 ACC_MODE(flag) & (MAY_READ | MAY_WRITE), 1517 IMA_COUNT_UPDATE); 1518 1519 if (error) 1520 return error; 1521 /* 1522 * An append-only file must be opened in append mode for writing. 1523 */ 1524 if (IS_APPEND(inode)) { 1525 error = -EPERM; 1526 if ((flag & FMODE_WRITE) && !(flag & O_APPEND)) 1527 goto err_out; 1528 if (flag & O_TRUNC) 1529 goto err_out; 1530 } 1531 1532 /* O_NOATIME can only be set by the owner or superuser */ 1533 if (flag & O_NOATIME) 1534 if (!is_owner_or_cap(inode)) { 1535 error = -EPERM; 1536 goto err_out; 1537 } 1538 1539 /* 1540 * Ensure there are no outstanding leases on the file. 1541 */ 1542 error = break_lease(inode, flag); 1543 if (error) 1544 goto err_out; 1545 1546 if (flag & O_TRUNC) { 1547 error = get_write_access(inode); 1548 if (error) 1549 goto err_out; 1550 1551 /* 1552 * Refuse to truncate files with mandatory locks held on them. 1553 */ 1554 error = locks_verify_locked(inode); 1555 if (!error) 1556 error = security_path_truncate(path, 0, 1557 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN); 1558 if (!error) { 1559 vfs_dq_init(inode); 1560 1561 error = do_truncate(dentry, 0, 1562 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 1563 NULL); 1564 } 1565 put_write_access(inode); 1566 if (error) 1567 goto err_out; 1568 } else 1569 if (flag & FMODE_WRITE) 1570 vfs_dq_init(inode); 1571 1572 return 0; 1573 err_out: 1574 ima_counts_put(path, acc_mode ? 1575 acc_mode & (MAY_READ | MAY_WRITE | MAY_EXEC) : 1576 ACC_MODE(flag) & (MAY_READ | MAY_WRITE)); 1577 return error; 1578 } 1579 1580 /* 1581 * Be careful about ever adding any more callers of this 1582 * function. Its flags must be in the namei format, not 1583 * what get passed to sys_open(). 1584 */ 1585 static int __open_namei_create(struct nameidata *nd, struct path *path, 1586 int flag, int mode) 1587 { 1588 int error; 1589 struct dentry *dir = nd->path.dentry; 1590 1591 if (!IS_POSIXACL(dir->d_inode)) 1592 mode &= ~current_umask(); 1593 error = security_path_mknod(&nd->path, path->dentry, mode, 0); 1594 if (error) 1595 goto out_unlock; 1596 error = vfs_create(dir->d_inode, path->dentry, mode, nd); 1597 out_unlock: 1598 mutex_unlock(&dir->d_inode->i_mutex); 1599 dput(nd->path.dentry); 1600 nd->path.dentry = path->dentry; 1601 if (error) 1602 return error; 1603 /* Don't check for write permission, don't truncate */ 1604 return may_open(&nd->path, 0, flag & ~O_TRUNC); 1605 } 1606 1607 /* 1608 * Note that while the flag value (low two bits) for sys_open means: 1609 * 00 - read-only 1610 * 01 - write-only 1611 * 10 - read-write 1612 * 11 - special 1613 * it is changed into 1614 * 00 - no permissions needed 1615 * 01 - read-permission 1616 * 10 - write-permission 1617 * 11 - read-write 1618 * for the internal routines (ie open_namei()/follow_link() etc) 1619 * This is more logical, and also allows the 00 "no perm needed" 1620 * to be used for symlinks (where the permissions are checked 1621 * later). 1622 * 1623 */ 1624 static inline int open_to_namei_flags(int flag) 1625 { 1626 if ((flag+1) & O_ACCMODE) 1627 flag++; 1628 return flag; 1629 } 1630 1631 static int open_will_write_to_fs(int flag, struct inode *inode) 1632 { 1633 /* 1634 * We'll never write to the fs underlying 1635 * a device file. 1636 */ 1637 if (special_file(inode->i_mode)) 1638 return 0; 1639 return (flag & O_TRUNC); 1640 } 1641 1642 /* 1643 * Note that the low bits of the passed in "open_flag" 1644 * are not the same as in the local variable "flag". See 1645 * open_to_namei_flags() for more details. 1646 */ 1647 struct file *do_filp_open(int dfd, const char *pathname, 1648 int open_flag, int mode, int acc_mode) 1649 { 1650 struct file *filp; 1651 struct nameidata nd; 1652 int error; 1653 struct path path; 1654 struct dentry *dir; 1655 int count = 0; 1656 int will_write; 1657 int flag = open_to_namei_flags(open_flag); 1658 1659 /* 1660 * O_SYNC is implemented as __O_SYNC|O_DSYNC. As many places only 1661 * check for O_DSYNC if the need any syncing at all we enforce it's 1662 * always set instead of having to deal with possibly weird behaviour 1663 * for malicious applications setting only __O_SYNC. 1664 */ 1665 if (open_flag & __O_SYNC) 1666 open_flag |= O_DSYNC; 1667 1668 if (!acc_mode) 1669 acc_mode = MAY_OPEN | ACC_MODE(flag); 1670 1671 /* O_TRUNC implies we need access checks for write permissions */ 1672 if (flag & O_TRUNC) 1673 acc_mode |= MAY_WRITE; 1674 1675 /* Allow the LSM permission hook to distinguish append 1676 access from general write access. */ 1677 if (flag & O_APPEND) 1678 acc_mode |= MAY_APPEND; 1679 1680 /* 1681 * The simplest case - just a plain lookup. 1682 */ 1683 if (!(flag & O_CREAT)) { 1684 error = path_lookup_open(dfd, pathname, lookup_flags(flag), 1685 &nd, flag); 1686 if (error) 1687 return ERR_PTR(error); 1688 goto ok; 1689 } 1690 1691 /* 1692 * Create - we need to know the parent. 1693 */ 1694 error = path_init(dfd, pathname, LOOKUP_PARENT, &nd); 1695 if (error) 1696 return ERR_PTR(error); 1697 error = path_walk(pathname, &nd); 1698 if (error) { 1699 if (nd.root.mnt) 1700 path_put(&nd.root); 1701 return ERR_PTR(error); 1702 } 1703 if (unlikely(!audit_dummy_context())) 1704 audit_inode(pathname, nd.path.dentry); 1705 1706 /* 1707 * We have the parent and last component. First of all, check 1708 * that we are not asked to creat(2) an obvious directory - that 1709 * will not do. 1710 */ 1711 error = -EISDIR; 1712 if (nd.last_type != LAST_NORM || nd.last.name[nd.last.len]) 1713 goto exit_parent; 1714 1715 error = -ENFILE; 1716 filp = get_empty_filp(); 1717 if (filp == NULL) 1718 goto exit_parent; 1719 nd.intent.open.file = filp; 1720 nd.intent.open.flags = flag; 1721 nd.intent.open.create_mode = mode; 1722 dir = nd.path.dentry; 1723 nd.flags &= ~LOOKUP_PARENT; 1724 nd.flags |= LOOKUP_CREATE | LOOKUP_OPEN; 1725 if (flag & O_EXCL) 1726 nd.flags |= LOOKUP_EXCL; 1727 mutex_lock(&dir->d_inode->i_mutex); 1728 path.dentry = lookup_hash(&nd); 1729 path.mnt = nd.path.mnt; 1730 1731 do_last: 1732 error = PTR_ERR(path.dentry); 1733 if (IS_ERR(path.dentry)) { 1734 mutex_unlock(&dir->d_inode->i_mutex); 1735 goto exit; 1736 } 1737 1738 if (IS_ERR(nd.intent.open.file)) { 1739 error = PTR_ERR(nd.intent.open.file); 1740 goto exit_mutex_unlock; 1741 } 1742 1743 /* Negative dentry, just create the file */ 1744 if (!path.dentry->d_inode) { 1745 /* 1746 * This write is needed to ensure that a 1747 * ro->rw transition does not occur between 1748 * the time when the file is created and when 1749 * a permanent write count is taken through 1750 * the 'struct file' in nameidata_to_filp(). 1751 */ 1752 error = mnt_want_write(nd.path.mnt); 1753 if (error) 1754 goto exit_mutex_unlock; 1755 error = __open_namei_create(&nd, &path, flag, mode); 1756 if (error) { 1757 mnt_drop_write(nd.path.mnt); 1758 goto exit; 1759 } 1760 filp = nameidata_to_filp(&nd, open_flag); 1761 if (IS_ERR(filp)) 1762 ima_counts_put(&nd.path, 1763 acc_mode & (MAY_READ | MAY_WRITE | 1764 MAY_EXEC)); 1765 mnt_drop_write(nd.path.mnt); 1766 if (nd.root.mnt) 1767 path_put(&nd.root); 1768 return filp; 1769 } 1770 1771 /* 1772 * It already exists. 1773 */ 1774 mutex_unlock(&dir->d_inode->i_mutex); 1775 audit_inode(pathname, path.dentry); 1776 1777 error = -EEXIST; 1778 if (flag & O_EXCL) 1779 goto exit_dput; 1780 1781 if (__follow_mount(&path)) { 1782 error = -ELOOP; 1783 if (flag & O_NOFOLLOW) 1784 goto exit_dput; 1785 } 1786 1787 error = -ENOENT; 1788 if (!path.dentry->d_inode) 1789 goto exit_dput; 1790 if (path.dentry->d_inode->i_op->follow_link) 1791 goto do_link; 1792 1793 path_to_nameidata(&path, &nd); 1794 error = -EISDIR; 1795 if (path.dentry->d_inode && S_ISDIR(path.dentry->d_inode->i_mode)) 1796 goto exit; 1797 ok: 1798 /* 1799 * Consider: 1800 * 1. may_open() truncates a file 1801 * 2. a rw->ro mount transition occurs 1802 * 3. nameidata_to_filp() fails due to 1803 * the ro mount. 1804 * That would be inconsistent, and should 1805 * be avoided. Taking this mnt write here 1806 * ensures that (2) can not occur. 1807 */ 1808 will_write = open_will_write_to_fs(flag, nd.path.dentry->d_inode); 1809 if (will_write) { 1810 error = mnt_want_write(nd.path.mnt); 1811 if (error) 1812 goto exit; 1813 } 1814 error = may_open(&nd.path, acc_mode, flag); 1815 if (error) { 1816 if (will_write) 1817 mnt_drop_write(nd.path.mnt); 1818 goto exit; 1819 } 1820 filp = nameidata_to_filp(&nd, open_flag); 1821 if (IS_ERR(filp)) 1822 ima_counts_put(&nd.path, 1823 acc_mode & (MAY_READ | MAY_WRITE | MAY_EXEC)); 1824 /* 1825 * It is now safe to drop the mnt write 1826 * because the filp has had a write taken 1827 * on its behalf. 1828 */ 1829 if (will_write) 1830 mnt_drop_write(nd.path.mnt); 1831 if (nd.root.mnt) 1832 path_put(&nd.root); 1833 return filp; 1834 1835 exit_mutex_unlock: 1836 mutex_unlock(&dir->d_inode->i_mutex); 1837 exit_dput: 1838 path_put_conditional(&path, &nd); 1839 exit: 1840 if (!IS_ERR(nd.intent.open.file)) 1841 release_open_intent(&nd); 1842 exit_parent: 1843 if (nd.root.mnt) 1844 path_put(&nd.root); 1845 path_put(&nd.path); 1846 return ERR_PTR(error); 1847 1848 do_link: 1849 error = -ELOOP; 1850 if (flag & O_NOFOLLOW) 1851 goto exit_dput; 1852 /* 1853 * This is subtle. Instead of calling do_follow_link() we do the 1854 * thing by hands. The reason is that this way we have zero link_count 1855 * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT. 1856 * After that we have the parent and last component, i.e. 1857 * we are in the same situation as after the first path_walk(). 1858 * Well, almost - if the last component is normal we get its copy 1859 * stored in nd->last.name and we will have to putname() it when we 1860 * are done. Procfs-like symlinks just set LAST_BIND. 1861 */ 1862 nd.flags |= LOOKUP_PARENT; 1863 error = security_inode_follow_link(path.dentry, &nd); 1864 if (error) 1865 goto exit_dput; 1866 error = __do_follow_link(&path, &nd); 1867 if (error) { 1868 /* Does someone understand code flow here? Or it is only 1869 * me so stupid? Anathema to whoever designed this non-sense 1870 * with "intent.open". 1871 */ 1872 release_open_intent(&nd); 1873 if (nd.root.mnt) 1874 path_put(&nd.root); 1875 return ERR_PTR(error); 1876 } 1877 nd.flags &= ~LOOKUP_PARENT; 1878 if (nd.last_type == LAST_BIND) 1879 goto ok; 1880 error = -EISDIR; 1881 if (nd.last_type != LAST_NORM) 1882 goto exit; 1883 if (nd.last.name[nd.last.len]) { 1884 __putname(nd.last.name); 1885 goto exit; 1886 } 1887 error = -ELOOP; 1888 if (count++==32) { 1889 __putname(nd.last.name); 1890 goto exit; 1891 } 1892 dir = nd.path.dentry; 1893 mutex_lock(&dir->d_inode->i_mutex); 1894 path.dentry = lookup_hash(&nd); 1895 path.mnt = nd.path.mnt; 1896 __putname(nd.last.name); 1897 goto do_last; 1898 } 1899 1900 /** 1901 * filp_open - open file and return file pointer 1902 * 1903 * @filename: path to open 1904 * @flags: open flags as per the open(2) second argument 1905 * @mode: mode for the new file if O_CREAT is set, else ignored 1906 * 1907 * This is the helper to open a file from kernelspace if you really 1908 * have to. But in generally you should not do this, so please move 1909 * along, nothing to see here.. 1910 */ 1911 struct file *filp_open(const char *filename, int flags, int mode) 1912 { 1913 return do_filp_open(AT_FDCWD, filename, flags, mode, 0); 1914 } 1915 EXPORT_SYMBOL(filp_open); 1916 1917 /** 1918 * lookup_create - lookup a dentry, creating it if it doesn't exist 1919 * @nd: nameidata info 1920 * @is_dir: directory flag 1921 * 1922 * Simple function to lookup and return a dentry and create it 1923 * if it doesn't exist. Is SMP-safe. 1924 * 1925 * Returns with nd->path.dentry->d_inode->i_mutex locked. 1926 */ 1927 struct dentry *lookup_create(struct nameidata *nd, int is_dir) 1928 { 1929 struct dentry *dentry = ERR_PTR(-EEXIST); 1930 1931 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 1932 /* 1933 * Yucky last component or no last component at all? 1934 * (foo/., foo/.., /////) 1935 */ 1936 if (nd->last_type != LAST_NORM) 1937 goto fail; 1938 nd->flags &= ~LOOKUP_PARENT; 1939 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL; 1940 nd->intent.open.flags = O_EXCL; 1941 1942 /* 1943 * Do the final lookup. 1944 */ 1945 dentry = lookup_hash(nd); 1946 if (IS_ERR(dentry)) 1947 goto fail; 1948 1949 if (dentry->d_inode) 1950 goto eexist; 1951 /* 1952 * Special case - lookup gave negative, but... we had foo/bar/ 1953 * From the vfs_mknod() POV we just have a negative dentry - 1954 * all is fine. Let's be bastards - you had / on the end, you've 1955 * been asking for (non-existent) directory. -ENOENT for you. 1956 */ 1957 if (unlikely(!is_dir && nd->last.name[nd->last.len])) { 1958 dput(dentry); 1959 dentry = ERR_PTR(-ENOENT); 1960 } 1961 return dentry; 1962 eexist: 1963 dput(dentry); 1964 dentry = ERR_PTR(-EEXIST); 1965 fail: 1966 return dentry; 1967 } 1968 EXPORT_SYMBOL_GPL(lookup_create); 1969 1970 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 1971 { 1972 int error = may_create(dir, dentry); 1973 1974 if (error) 1975 return error; 1976 1977 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 1978 return -EPERM; 1979 1980 if (!dir->i_op->mknod) 1981 return -EPERM; 1982 1983 error = devcgroup_inode_mknod(mode, dev); 1984 if (error) 1985 return error; 1986 1987 error = security_inode_mknod(dir, dentry, mode, dev); 1988 if (error) 1989 return error; 1990 1991 vfs_dq_init(dir); 1992 error = dir->i_op->mknod(dir, dentry, mode, dev); 1993 if (!error) 1994 fsnotify_create(dir, dentry); 1995 return error; 1996 } 1997 1998 static int may_mknod(mode_t mode) 1999 { 2000 switch (mode & S_IFMT) { 2001 case S_IFREG: 2002 case S_IFCHR: 2003 case S_IFBLK: 2004 case S_IFIFO: 2005 case S_IFSOCK: 2006 case 0: /* zero mode translates to S_IFREG */ 2007 return 0; 2008 case S_IFDIR: 2009 return -EPERM; 2010 default: 2011 return -EINVAL; 2012 } 2013 } 2014 2015 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode, 2016 unsigned, dev) 2017 { 2018 int error; 2019 char *tmp; 2020 struct dentry *dentry; 2021 struct nameidata nd; 2022 2023 if (S_ISDIR(mode)) 2024 return -EPERM; 2025 2026 error = user_path_parent(dfd, filename, &nd, &tmp); 2027 if (error) 2028 return error; 2029 2030 dentry = lookup_create(&nd, 0); 2031 if (IS_ERR(dentry)) { 2032 error = PTR_ERR(dentry); 2033 goto out_unlock; 2034 } 2035 if (!IS_POSIXACL(nd.path.dentry->d_inode)) 2036 mode &= ~current_umask(); 2037 error = may_mknod(mode); 2038 if (error) 2039 goto out_dput; 2040 error = mnt_want_write(nd.path.mnt); 2041 if (error) 2042 goto out_dput; 2043 error = security_path_mknod(&nd.path, dentry, mode, dev); 2044 if (error) 2045 goto out_drop_write; 2046 switch (mode & S_IFMT) { 2047 case 0: case S_IFREG: 2048 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd); 2049 break; 2050 case S_IFCHR: case S_IFBLK: 2051 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode, 2052 new_decode_dev(dev)); 2053 break; 2054 case S_IFIFO: case S_IFSOCK: 2055 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0); 2056 break; 2057 } 2058 out_drop_write: 2059 mnt_drop_write(nd.path.mnt); 2060 out_dput: 2061 dput(dentry); 2062 out_unlock: 2063 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2064 path_put(&nd.path); 2065 putname(tmp); 2066 2067 return error; 2068 } 2069 2070 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev) 2071 { 2072 return sys_mknodat(AT_FDCWD, filename, mode, dev); 2073 } 2074 2075 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 2076 { 2077 int error = may_create(dir, dentry); 2078 2079 if (error) 2080 return error; 2081 2082 if (!dir->i_op->mkdir) 2083 return -EPERM; 2084 2085 mode &= (S_IRWXUGO|S_ISVTX); 2086 error = security_inode_mkdir(dir, dentry, mode); 2087 if (error) 2088 return error; 2089 2090 vfs_dq_init(dir); 2091 error = dir->i_op->mkdir(dir, dentry, mode); 2092 if (!error) 2093 fsnotify_mkdir(dir, dentry); 2094 return error; 2095 } 2096 2097 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode) 2098 { 2099 int error = 0; 2100 char * tmp; 2101 struct dentry *dentry; 2102 struct nameidata nd; 2103 2104 error = user_path_parent(dfd, pathname, &nd, &tmp); 2105 if (error) 2106 goto out_err; 2107 2108 dentry = lookup_create(&nd, 1); 2109 error = PTR_ERR(dentry); 2110 if (IS_ERR(dentry)) 2111 goto out_unlock; 2112 2113 if (!IS_POSIXACL(nd.path.dentry->d_inode)) 2114 mode &= ~current_umask(); 2115 error = mnt_want_write(nd.path.mnt); 2116 if (error) 2117 goto out_dput; 2118 error = security_path_mkdir(&nd.path, dentry, mode); 2119 if (error) 2120 goto out_drop_write; 2121 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode); 2122 out_drop_write: 2123 mnt_drop_write(nd.path.mnt); 2124 out_dput: 2125 dput(dentry); 2126 out_unlock: 2127 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2128 path_put(&nd.path); 2129 putname(tmp); 2130 out_err: 2131 return error; 2132 } 2133 2134 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode) 2135 { 2136 return sys_mkdirat(AT_FDCWD, pathname, mode); 2137 } 2138 2139 /* 2140 * We try to drop the dentry early: we should have 2141 * a usage count of 2 if we're the only user of this 2142 * dentry, and if that is true (possibly after pruning 2143 * the dcache), then we drop the dentry now. 2144 * 2145 * A low-level filesystem can, if it choses, legally 2146 * do a 2147 * 2148 * if (!d_unhashed(dentry)) 2149 * return -EBUSY; 2150 * 2151 * if it cannot handle the case of removing a directory 2152 * that is still in use by something else.. 2153 */ 2154 void dentry_unhash(struct dentry *dentry) 2155 { 2156 dget(dentry); 2157 shrink_dcache_parent(dentry); 2158 spin_lock(&dcache_lock); 2159 spin_lock(&dentry->d_lock); 2160 if (atomic_read(&dentry->d_count) == 2) 2161 __d_drop(dentry); 2162 spin_unlock(&dentry->d_lock); 2163 spin_unlock(&dcache_lock); 2164 } 2165 2166 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 2167 { 2168 int error = may_delete(dir, dentry, 1); 2169 2170 if (error) 2171 return error; 2172 2173 if (!dir->i_op->rmdir) 2174 return -EPERM; 2175 2176 vfs_dq_init(dir); 2177 2178 mutex_lock(&dentry->d_inode->i_mutex); 2179 dentry_unhash(dentry); 2180 if (d_mountpoint(dentry)) 2181 error = -EBUSY; 2182 else { 2183 error = security_inode_rmdir(dir, dentry); 2184 if (!error) { 2185 error = dir->i_op->rmdir(dir, dentry); 2186 if (!error) 2187 dentry->d_inode->i_flags |= S_DEAD; 2188 } 2189 } 2190 mutex_unlock(&dentry->d_inode->i_mutex); 2191 if (!error) { 2192 d_delete(dentry); 2193 } 2194 dput(dentry); 2195 2196 return error; 2197 } 2198 2199 static long do_rmdir(int dfd, const char __user *pathname) 2200 { 2201 int error = 0; 2202 char * name; 2203 struct dentry *dentry; 2204 struct nameidata nd; 2205 2206 error = user_path_parent(dfd, pathname, &nd, &name); 2207 if (error) 2208 return error; 2209 2210 switch(nd.last_type) { 2211 case LAST_DOTDOT: 2212 error = -ENOTEMPTY; 2213 goto exit1; 2214 case LAST_DOT: 2215 error = -EINVAL; 2216 goto exit1; 2217 case LAST_ROOT: 2218 error = -EBUSY; 2219 goto exit1; 2220 } 2221 2222 nd.flags &= ~LOOKUP_PARENT; 2223 2224 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2225 dentry = lookup_hash(&nd); 2226 error = PTR_ERR(dentry); 2227 if (IS_ERR(dentry)) 2228 goto exit2; 2229 error = mnt_want_write(nd.path.mnt); 2230 if (error) 2231 goto exit3; 2232 error = security_path_rmdir(&nd.path, dentry); 2233 if (error) 2234 goto exit4; 2235 error = vfs_rmdir(nd.path.dentry->d_inode, dentry); 2236 exit4: 2237 mnt_drop_write(nd.path.mnt); 2238 exit3: 2239 dput(dentry); 2240 exit2: 2241 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2242 exit1: 2243 path_put(&nd.path); 2244 putname(name); 2245 return error; 2246 } 2247 2248 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 2249 { 2250 return do_rmdir(AT_FDCWD, pathname); 2251 } 2252 2253 int vfs_unlink(struct inode *dir, struct dentry *dentry) 2254 { 2255 int error = may_delete(dir, dentry, 0); 2256 2257 if (error) 2258 return error; 2259 2260 if (!dir->i_op->unlink) 2261 return -EPERM; 2262 2263 vfs_dq_init(dir); 2264 2265 mutex_lock(&dentry->d_inode->i_mutex); 2266 if (d_mountpoint(dentry)) 2267 error = -EBUSY; 2268 else { 2269 error = security_inode_unlink(dir, dentry); 2270 if (!error) 2271 error = dir->i_op->unlink(dir, dentry); 2272 } 2273 mutex_unlock(&dentry->d_inode->i_mutex); 2274 2275 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 2276 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 2277 fsnotify_link_count(dentry->d_inode); 2278 d_delete(dentry); 2279 } 2280 2281 return error; 2282 } 2283 2284 /* 2285 * Make sure that the actual truncation of the file will occur outside its 2286 * directory's i_mutex. Truncate can take a long time if there is a lot of 2287 * writeout happening, and we don't want to prevent access to the directory 2288 * while waiting on the I/O. 2289 */ 2290 static long do_unlinkat(int dfd, const char __user *pathname) 2291 { 2292 int error; 2293 char *name; 2294 struct dentry *dentry; 2295 struct nameidata nd; 2296 struct inode *inode = NULL; 2297 2298 error = user_path_parent(dfd, pathname, &nd, &name); 2299 if (error) 2300 return error; 2301 2302 error = -EISDIR; 2303 if (nd.last_type != LAST_NORM) 2304 goto exit1; 2305 2306 nd.flags &= ~LOOKUP_PARENT; 2307 2308 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2309 dentry = lookup_hash(&nd); 2310 error = PTR_ERR(dentry); 2311 if (!IS_ERR(dentry)) { 2312 /* Why not before? Because we want correct error value */ 2313 if (nd.last.name[nd.last.len]) 2314 goto slashes; 2315 inode = dentry->d_inode; 2316 if (inode) 2317 atomic_inc(&inode->i_count); 2318 error = mnt_want_write(nd.path.mnt); 2319 if (error) 2320 goto exit2; 2321 error = security_path_unlink(&nd.path, dentry); 2322 if (error) 2323 goto exit3; 2324 error = vfs_unlink(nd.path.dentry->d_inode, dentry); 2325 exit3: 2326 mnt_drop_write(nd.path.mnt); 2327 exit2: 2328 dput(dentry); 2329 } 2330 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2331 if (inode) 2332 iput(inode); /* truncate the inode here */ 2333 exit1: 2334 path_put(&nd.path); 2335 putname(name); 2336 return error; 2337 2338 slashes: 2339 error = !dentry->d_inode ? -ENOENT : 2340 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR; 2341 goto exit2; 2342 } 2343 2344 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 2345 { 2346 if ((flag & ~AT_REMOVEDIR) != 0) 2347 return -EINVAL; 2348 2349 if (flag & AT_REMOVEDIR) 2350 return do_rmdir(dfd, pathname); 2351 2352 return do_unlinkat(dfd, pathname); 2353 } 2354 2355 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 2356 { 2357 return do_unlinkat(AT_FDCWD, pathname); 2358 } 2359 2360 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 2361 { 2362 int error = may_create(dir, dentry); 2363 2364 if (error) 2365 return error; 2366 2367 if (!dir->i_op->symlink) 2368 return -EPERM; 2369 2370 error = security_inode_symlink(dir, dentry, oldname); 2371 if (error) 2372 return error; 2373 2374 vfs_dq_init(dir); 2375 error = dir->i_op->symlink(dir, dentry, oldname); 2376 if (!error) 2377 fsnotify_create(dir, dentry); 2378 return error; 2379 } 2380 2381 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 2382 int, newdfd, const char __user *, newname) 2383 { 2384 int error; 2385 char *from; 2386 char *to; 2387 struct dentry *dentry; 2388 struct nameidata nd; 2389 2390 from = getname(oldname); 2391 if (IS_ERR(from)) 2392 return PTR_ERR(from); 2393 2394 error = user_path_parent(newdfd, newname, &nd, &to); 2395 if (error) 2396 goto out_putname; 2397 2398 dentry = lookup_create(&nd, 0); 2399 error = PTR_ERR(dentry); 2400 if (IS_ERR(dentry)) 2401 goto out_unlock; 2402 2403 error = mnt_want_write(nd.path.mnt); 2404 if (error) 2405 goto out_dput; 2406 error = security_path_symlink(&nd.path, dentry, from); 2407 if (error) 2408 goto out_drop_write; 2409 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from); 2410 out_drop_write: 2411 mnt_drop_write(nd.path.mnt); 2412 out_dput: 2413 dput(dentry); 2414 out_unlock: 2415 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2416 path_put(&nd.path); 2417 putname(to); 2418 out_putname: 2419 putname(from); 2420 return error; 2421 } 2422 2423 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 2424 { 2425 return sys_symlinkat(oldname, AT_FDCWD, newname); 2426 } 2427 2428 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2429 { 2430 struct inode *inode = old_dentry->d_inode; 2431 int error; 2432 2433 if (!inode) 2434 return -ENOENT; 2435 2436 error = may_create(dir, new_dentry); 2437 if (error) 2438 return error; 2439 2440 if (dir->i_sb != inode->i_sb) 2441 return -EXDEV; 2442 2443 /* 2444 * A link to an append-only or immutable file cannot be created. 2445 */ 2446 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 2447 return -EPERM; 2448 if (!dir->i_op->link) 2449 return -EPERM; 2450 if (S_ISDIR(inode->i_mode)) 2451 return -EPERM; 2452 2453 error = security_inode_link(old_dentry, dir, new_dentry); 2454 if (error) 2455 return error; 2456 2457 mutex_lock(&inode->i_mutex); 2458 vfs_dq_init(dir); 2459 error = dir->i_op->link(old_dentry, dir, new_dentry); 2460 mutex_unlock(&inode->i_mutex); 2461 if (!error) 2462 fsnotify_link(dir, inode, new_dentry); 2463 return error; 2464 } 2465 2466 /* 2467 * Hardlinks are often used in delicate situations. We avoid 2468 * security-related surprises by not following symlinks on the 2469 * newname. --KAB 2470 * 2471 * We don't follow them on the oldname either to be compatible 2472 * with linux 2.0, and to avoid hard-linking to directories 2473 * and other special files. --ADM 2474 */ 2475 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 2476 int, newdfd, const char __user *, newname, int, flags) 2477 { 2478 struct dentry *new_dentry; 2479 struct nameidata nd; 2480 struct path old_path; 2481 int error; 2482 char *to; 2483 2484 if ((flags & ~AT_SYMLINK_FOLLOW) != 0) 2485 return -EINVAL; 2486 2487 error = user_path_at(olddfd, oldname, 2488 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0, 2489 &old_path); 2490 if (error) 2491 return error; 2492 2493 error = user_path_parent(newdfd, newname, &nd, &to); 2494 if (error) 2495 goto out; 2496 error = -EXDEV; 2497 if (old_path.mnt != nd.path.mnt) 2498 goto out_release; 2499 new_dentry = lookup_create(&nd, 0); 2500 error = PTR_ERR(new_dentry); 2501 if (IS_ERR(new_dentry)) 2502 goto out_unlock; 2503 error = mnt_want_write(nd.path.mnt); 2504 if (error) 2505 goto out_dput; 2506 error = security_path_link(old_path.dentry, &nd.path, new_dentry); 2507 if (error) 2508 goto out_drop_write; 2509 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry); 2510 out_drop_write: 2511 mnt_drop_write(nd.path.mnt); 2512 out_dput: 2513 dput(new_dentry); 2514 out_unlock: 2515 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2516 out_release: 2517 path_put(&nd.path); 2518 putname(to); 2519 out: 2520 path_put(&old_path); 2521 2522 return error; 2523 } 2524 2525 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 2526 { 2527 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 2528 } 2529 2530 /* 2531 * The worst of all namespace operations - renaming directory. "Perverted" 2532 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 2533 * Problems: 2534 * a) we can get into loop creation. Check is done in is_subdir(). 2535 * b) race potential - two innocent renames can create a loop together. 2536 * That's where 4.4 screws up. Current fix: serialization on 2537 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 2538 * story. 2539 * c) we have to lock _three_ objects - parents and victim (if it exists). 2540 * And that - after we got ->i_mutex on parents (until then we don't know 2541 * whether the target exists). Solution: try to be smart with locking 2542 * order for inodes. We rely on the fact that tree topology may change 2543 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 2544 * move will be locked. Thus we can rank directories by the tree 2545 * (ancestors first) and rank all non-directories after them. 2546 * That works since everybody except rename does "lock parent, lookup, 2547 * lock child" and rename is under ->s_vfs_rename_mutex. 2548 * HOWEVER, it relies on the assumption that any object with ->lookup() 2549 * has no more than 1 dentry. If "hybrid" objects will ever appear, 2550 * we'd better make sure that there's no link(2) for them. 2551 * d) some filesystems don't support opened-but-unlinked directories, 2552 * either because of layout or because they are not ready to deal with 2553 * all cases correctly. The latter will be fixed (taking this sort of 2554 * stuff into VFS), but the former is not going away. Solution: the same 2555 * trick as in rmdir(). 2556 * e) conversion from fhandle to dentry may come in the wrong moment - when 2557 * we are removing the target. Solution: we will have to grab ->i_mutex 2558 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 2559 * ->i_mutex on parents, which works but leads to some truely excessive 2560 * locking]. 2561 */ 2562 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry, 2563 struct inode *new_dir, struct dentry *new_dentry) 2564 { 2565 int error = 0; 2566 struct inode *target; 2567 2568 /* 2569 * If we are going to change the parent - check write permissions, 2570 * we'll need to flip '..'. 2571 */ 2572 if (new_dir != old_dir) { 2573 error = inode_permission(old_dentry->d_inode, MAY_WRITE); 2574 if (error) 2575 return error; 2576 } 2577 2578 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 2579 if (error) 2580 return error; 2581 2582 target = new_dentry->d_inode; 2583 if (target) { 2584 mutex_lock(&target->i_mutex); 2585 dentry_unhash(new_dentry); 2586 } 2587 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) 2588 error = -EBUSY; 2589 else 2590 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 2591 if (target) { 2592 if (!error) 2593 target->i_flags |= S_DEAD; 2594 mutex_unlock(&target->i_mutex); 2595 if (d_unhashed(new_dentry)) 2596 d_rehash(new_dentry); 2597 dput(new_dentry); 2598 } 2599 if (!error) 2600 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 2601 d_move(old_dentry,new_dentry); 2602 return error; 2603 } 2604 2605 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry, 2606 struct inode *new_dir, struct dentry *new_dentry) 2607 { 2608 struct inode *target; 2609 int error; 2610 2611 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 2612 if (error) 2613 return error; 2614 2615 dget(new_dentry); 2616 target = new_dentry->d_inode; 2617 if (target) 2618 mutex_lock(&target->i_mutex); 2619 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) 2620 error = -EBUSY; 2621 else 2622 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 2623 if (!error) { 2624 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 2625 d_move(old_dentry, new_dentry); 2626 } 2627 if (target) 2628 mutex_unlock(&target->i_mutex); 2629 dput(new_dentry); 2630 return error; 2631 } 2632 2633 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 2634 struct inode *new_dir, struct dentry *new_dentry) 2635 { 2636 int error; 2637 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode); 2638 const char *old_name; 2639 2640 if (old_dentry->d_inode == new_dentry->d_inode) 2641 return 0; 2642 2643 error = may_delete(old_dir, old_dentry, is_dir); 2644 if (error) 2645 return error; 2646 2647 if (!new_dentry->d_inode) 2648 error = may_create(new_dir, new_dentry); 2649 else 2650 error = may_delete(new_dir, new_dentry, is_dir); 2651 if (error) 2652 return error; 2653 2654 if (!old_dir->i_op->rename) 2655 return -EPERM; 2656 2657 vfs_dq_init(old_dir); 2658 vfs_dq_init(new_dir); 2659 2660 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 2661 2662 if (is_dir) 2663 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry); 2664 else 2665 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry); 2666 if (!error) { 2667 const char *new_name = old_dentry->d_name.name; 2668 fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir, 2669 new_dentry->d_inode, old_dentry); 2670 } 2671 fsnotify_oldname_free(old_name); 2672 2673 return error; 2674 } 2675 2676 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 2677 int, newdfd, const char __user *, newname) 2678 { 2679 struct dentry *old_dir, *new_dir; 2680 struct dentry *old_dentry, *new_dentry; 2681 struct dentry *trap; 2682 struct nameidata oldnd, newnd; 2683 char *from; 2684 char *to; 2685 int error; 2686 2687 error = user_path_parent(olddfd, oldname, &oldnd, &from); 2688 if (error) 2689 goto exit; 2690 2691 error = user_path_parent(newdfd, newname, &newnd, &to); 2692 if (error) 2693 goto exit1; 2694 2695 error = -EXDEV; 2696 if (oldnd.path.mnt != newnd.path.mnt) 2697 goto exit2; 2698 2699 old_dir = oldnd.path.dentry; 2700 error = -EBUSY; 2701 if (oldnd.last_type != LAST_NORM) 2702 goto exit2; 2703 2704 new_dir = newnd.path.dentry; 2705 if (newnd.last_type != LAST_NORM) 2706 goto exit2; 2707 2708 oldnd.flags &= ~LOOKUP_PARENT; 2709 newnd.flags &= ~LOOKUP_PARENT; 2710 newnd.flags |= LOOKUP_RENAME_TARGET; 2711 2712 trap = lock_rename(new_dir, old_dir); 2713 2714 old_dentry = lookup_hash(&oldnd); 2715 error = PTR_ERR(old_dentry); 2716 if (IS_ERR(old_dentry)) 2717 goto exit3; 2718 /* source must exist */ 2719 error = -ENOENT; 2720 if (!old_dentry->d_inode) 2721 goto exit4; 2722 /* unless the source is a directory trailing slashes give -ENOTDIR */ 2723 if (!S_ISDIR(old_dentry->d_inode->i_mode)) { 2724 error = -ENOTDIR; 2725 if (oldnd.last.name[oldnd.last.len]) 2726 goto exit4; 2727 if (newnd.last.name[newnd.last.len]) 2728 goto exit4; 2729 } 2730 /* source should not be ancestor of target */ 2731 error = -EINVAL; 2732 if (old_dentry == trap) 2733 goto exit4; 2734 new_dentry = lookup_hash(&newnd); 2735 error = PTR_ERR(new_dentry); 2736 if (IS_ERR(new_dentry)) 2737 goto exit4; 2738 /* target should not be an ancestor of source */ 2739 error = -ENOTEMPTY; 2740 if (new_dentry == trap) 2741 goto exit5; 2742 2743 error = mnt_want_write(oldnd.path.mnt); 2744 if (error) 2745 goto exit5; 2746 error = security_path_rename(&oldnd.path, old_dentry, 2747 &newnd.path, new_dentry); 2748 if (error) 2749 goto exit6; 2750 error = vfs_rename(old_dir->d_inode, old_dentry, 2751 new_dir->d_inode, new_dentry); 2752 exit6: 2753 mnt_drop_write(oldnd.path.mnt); 2754 exit5: 2755 dput(new_dentry); 2756 exit4: 2757 dput(old_dentry); 2758 exit3: 2759 unlock_rename(new_dir, old_dir); 2760 exit2: 2761 path_put(&newnd.path); 2762 putname(to); 2763 exit1: 2764 path_put(&oldnd.path); 2765 putname(from); 2766 exit: 2767 return error; 2768 } 2769 2770 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 2771 { 2772 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname); 2773 } 2774 2775 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link) 2776 { 2777 int len; 2778 2779 len = PTR_ERR(link); 2780 if (IS_ERR(link)) 2781 goto out; 2782 2783 len = strlen(link); 2784 if (len > (unsigned) buflen) 2785 len = buflen; 2786 if (copy_to_user(buffer, link, len)) 2787 len = -EFAULT; 2788 out: 2789 return len; 2790 } 2791 2792 /* 2793 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 2794 * have ->follow_link() touching nd only in nd_set_link(). Using (or not 2795 * using) it for any given inode is up to filesystem. 2796 */ 2797 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) 2798 { 2799 struct nameidata nd; 2800 void *cookie; 2801 int res; 2802 2803 nd.depth = 0; 2804 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd); 2805 if (IS_ERR(cookie)) 2806 return PTR_ERR(cookie); 2807 2808 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd)); 2809 if (dentry->d_inode->i_op->put_link) 2810 dentry->d_inode->i_op->put_link(dentry, &nd, cookie); 2811 return res; 2812 } 2813 2814 int vfs_follow_link(struct nameidata *nd, const char *link) 2815 { 2816 return __vfs_follow_link(nd, link); 2817 } 2818 2819 /* get the link contents into pagecache */ 2820 static char *page_getlink(struct dentry * dentry, struct page **ppage) 2821 { 2822 char *kaddr; 2823 struct page *page; 2824 struct address_space *mapping = dentry->d_inode->i_mapping; 2825 page = read_mapping_page(mapping, 0, NULL); 2826 if (IS_ERR(page)) 2827 return (char*)page; 2828 *ppage = page; 2829 kaddr = kmap(page); 2830 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1); 2831 return kaddr; 2832 } 2833 2834 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 2835 { 2836 struct page *page = NULL; 2837 char *s = page_getlink(dentry, &page); 2838 int res = vfs_readlink(dentry,buffer,buflen,s); 2839 if (page) { 2840 kunmap(page); 2841 page_cache_release(page); 2842 } 2843 return res; 2844 } 2845 2846 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd) 2847 { 2848 struct page *page = NULL; 2849 nd_set_link(nd, page_getlink(dentry, &page)); 2850 return page; 2851 } 2852 2853 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 2854 { 2855 struct page *page = cookie; 2856 2857 if (page) { 2858 kunmap(page); 2859 page_cache_release(page); 2860 } 2861 } 2862 2863 /* 2864 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 2865 */ 2866 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 2867 { 2868 struct address_space *mapping = inode->i_mapping; 2869 struct page *page; 2870 void *fsdata; 2871 int err; 2872 char *kaddr; 2873 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE; 2874 if (nofs) 2875 flags |= AOP_FLAG_NOFS; 2876 2877 retry: 2878 err = pagecache_write_begin(NULL, mapping, 0, len-1, 2879 flags, &page, &fsdata); 2880 if (err) 2881 goto fail; 2882 2883 kaddr = kmap_atomic(page, KM_USER0); 2884 memcpy(kaddr, symname, len-1); 2885 kunmap_atomic(kaddr, KM_USER0); 2886 2887 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 2888 page, fsdata); 2889 if (err < 0) 2890 goto fail; 2891 if (err < len-1) 2892 goto retry; 2893 2894 mark_inode_dirty(inode); 2895 return 0; 2896 fail: 2897 return err; 2898 } 2899 2900 int page_symlink(struct inode *inode, const char *symname, int len) 2901 { 2902 return __page_symlink(inode, symname, len, 2903 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS)); 2904 } 2905 2906 const struct inode_operations page_symlink_inode_operations = { 2907 .readlink = generic_readlink, 2908 .follow_link = page_follow_link_light, 2909 .put_link = page_put_link, 2910 }; 2911 2912 EXPORT_SYMBOL(user_path_at); 2913 EXPORT_SYMBOL(follow_down); 2914 EXPORT_SYMBOL(follow_up); 2915 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */ 2916 EXPORT_SYMBOL(getname); 2917 EXPORT_SYMBOL(lock_rename); 2918 EXPORT_SYMBOL(lookup_one_len); 2919 EXPORT_SYMBOL(page_follow_link_light); 2920 EXPORT_SYMBOL(page_put_link); 2921 EXPORT_SYMBOL(page_readlink); 2922 EXPORT_SYMBOL(__page_symlink); 2923 EXPORT_SYMBOL(page_symlink); 2924 EXPORT_SYMBOL(page_symlink_inode_operations); 2925 EXPORT_SYMBOL(path_lookup); 2926 EXPORT_SYMBOL(kern_path); 2927 EXPORT_SYMBOL(vfs_path_lookup); 2928 EXPORT_SYMBOL(inode_permission); 2929 EXPORT_SYMBOL(file_permission); 2930 EXPORT_SYMBOL(unlock_rename); 2931 EXPORT_SYMBOL(vfs_create); 2932 EXPORT_SYMBOL(vfs_follow_link); 2933 EXPORT_SYMBOL(vfs_link); 2934 EXPORT_SYMBOL(vfs_mkdir); 2935 EXPORT_SYMBOL(vfs_mknod); 2936 EXPORT_SYMBOL(generic_permission); 2937 EXPORT_SYMBOL(vfs_readlink); 2938 EXPORT_SYMBOL(vfs_rename); 2939 EXPORT_SYMBOL(vfs_rmdir); 2940 EXPORT_SYMBOL(vfs_symlink); 2941 EXPORT_SYMBOL(vfs_unlink); 2942 EXPORT_SYMBOL(dentry_unhash); 2943 EXPORT_SYMBOL(generic_readlink); 2944