xref: /linux/fs/namei.c (revision 26b0d14106954ae46d2f4f7eec3481828a210f7d)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <asm/uaccess.h>
38 
39 #include "internal.h"
40 #include "mount.h"
41 
42 /* [Feb-1997 T. Schoebel-Theuer]
43  * Fundamental changes in the pathname lookup mechanisms (namei)
44  * were necessary because of omirr.  The reason is that omirr needs
45  * to know the _real_ pathname, not the user-supplied one, in case
46  * of symlinks (and also when transname replacements occur).
47  *
48  * The new code replaces the old recursive symlink resolution with
49  * an iterative one (in case of non-nested symlink chains).  It does
50  * this with calls to <fs>_follow_link().
51  * As a side effect, dir_namei(), _namei() and follow_link() are now
52  * replaced with a single function lookup_dentry() that can handle all
53  * the special cases of the former code.
54  *
55  * With the new dcache, the pathname is stored at each inode, at least as
56  * long as the refcount of the inode is positive.  As a side effect, the
57  * size of the dcache depends on the inode cache and thus is dynamic.
58  *
59  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
60  * resolution to correspond with current state of the code.
61  *
62  * Note that the symlink resolution is not *completely* iterative.
63  * There is still a significant amount of tail- and mid- recursion in
64  * the algorithm.  Also, note that <fs>_readlink() is not used in
65  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
66  * may return different results than <fs>_follow_link().  Many virtual
67  * filesystems (including /proc) exhibit this behavior.
68  */
69 
70 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
71  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
72  * and the name already exists in form of a symlink, try to create the new
73  * name indicated by the symlink. The old code always complained that the
74  * name already exists, due to not following the symlink even if its target
75  * is nonexistent.  The new semantics affects also mknod() and link() when
76  * the name is a symlink pointing to a non-existent name.
77  *
78  * I don't know which semantics is the right one, since I have no access
79  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
80  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
81  * "old" one. Personally, I think the new semantics is much more logical.
82  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
83  * file does succeed in both HP-UX and SunOs, but not in Solaris
84  * and in the old Linux semantics.
85  */
86 
87 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
88  * semantics.  See the comments in "open_namei" and "do_link" below.
89  *
90  * [10-Sep-98 Alan Modra] Another symlink change.
91  */
92 
93 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
94  *	inside the path - always follow.
95  *	in the last component in creation/removal/renaming - never follow.
96  *	if LOOKUP_FOLLOW passed - follow.
97  *	if the pathname has trailing slashes - follow.
98  *	otherwise - don't follow.
99  * (applied in that order).
100  *
101  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
102  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
103  * During the 2.4 we need to fix the userland stuff depending on it -
104  * hopefully we will be able to get rid of that wart in 2.5. So far only
105  * XEmacs seems to be relying on it...
106  */
107 /*
108  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
109  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
110  * any extra contention...
111  */
112 
113 /* In order to reduce some races, while at the same time doing additional
114  * checking and hopefully speeding things up, we copy filenames to the
115  * kernel data space before using them..
116  *
117  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118  * PATH_MAX includes the nul terminator --RR.
119  */
120 static char *getname_flags(const char __user *filename, int flags, int *empty)
121 {
122 	char *result = __getname(), *err;
123 	int len;
124 
125 	if (unlikely(!result))
126 		return ERR_PTR(-ENOMEM);
127 
128 	len = strncpy_from_user(result, filename, PATH_MAX);
129 	err = ERR_PTR(len);
130 	if (unlikely(len < 0))
131 		goto error;
132 
133 	/* The empty path is special. */
134 	if (unlikely(!len)) {
135 		if (empty)
136 			*empty = 1;
137 		err = ERR_PTR(-ENOENT);
138 		if (!(flags & LOOKUP_EMPTY))
139 			goto error;
140 	}
141 
142 	err = ERR_PTR(-ENAMETOOLONG);
143 	if (likely(len < PATH_MAX)) {
144 		audit_getname(result);
145 		return result;
146 	}
147 
148 error:
149 	__putname(result);
150 	return err;
151 }
152 
153 char *getname(const char __user * filename)
154 {
155 	return getname_flags(filename, 0, NULL);
156 }
157 
158 #ifdef CONFIG_AUDITSYSCALL
159 void putname(const char *name)
160 {
161 	if (unlikely(!audit_dummy_context()))
162 		audit_putname(name);
163 	else
164 		__putname(name);
165 }
166 EXPORT_SYMBOL(putname);
167 #endif
168 
169 static int check_acl(struct inode *inode, int mask)
170 {
171 #ifdef CONFIG_FS_POSIX_ACL
172 	struct posix_acl *acl;
173 
174 	if (mask & MAY_NOT_BLOCK) {
175 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
176 	        if (!acl)
177 	                return -EAGAIN;
178 		/* no ->get_acl() calls in RCU mode... */
179 		if (acl == ACL_NOT_CACHED)
180 			return -ECHILD;
181 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
182 	}
183 
184 	acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
185 
186 	/*
187 	 * A filesystem can force a ACL callback by just never filling the
188 	 * ACL cache. But normally you'd fill the cache either at inode
189 	 * instantiation time, or on the first ->get_acl call.
190 	 *
191 	 * If the filesystem doesn't have a get_acl() function at all, we'll
192 	 * just create the negative cache entry.
193 	 */
194 	if (acl == ACL_NOT_CACHED) {
195 	        if (inode->i_op->get_acl) {
196 			acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
197 			if (IS_ERR(acl))
198 				return PTR_ERR(acl);
199 		} else {
200 		        set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
201 		        return -EAGAIN;
202 		}
203 	}
204 
205 	if (acl) {
206 	        int error = posix_acl_permission(inode, acl, mask);
207 	        posix_acl_release(acl);
208 	        return error;
209 	}
210 #endif
211 
212 	return -EAGAIN;
213 }
214 
215 /*
216  * This does the basic permission checking
217  */
218 static int acl_permission_check(struct inode *inode, int mask)
219 {
220 	unsigned int mode = inode->i_mode;
221 
222 	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
223 		mode >>= 6;
224 	else {
225 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
226 			int error = check_acl(inode, mask);
227 			if (error != -EAGAIN)
228 				return error;
229 		}
230 
231 		if (in_group_p(inode->i_gid))
232 			mode >>= 3;
233 	}
234 
235 	/*
236 	 * If the DACs are ok we don't need any capability check.
237 	 */
238 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
239 		return 0;
240 	return -EACCES;
241 }
242 
243 /**
244  * generic_permission -  check for access rights on a Posix-like filesystem
245  * @inode:	inode to check access rights for
246  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
247  *
248  * Used to check for read/write/execute permissions on a file.
249  * We use "fsuid" for this, letting us set arbitrary permissions
250  * for filesystem access without changing the "normal" uids which
251  * are used for other things.
252  *
253  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
254  * request cannot be satisfied (eg. requires blocking or too much complexity).
255  * It would then be called again in ref-walk mode.
256  */
257 int generic_permission(struct inode *inode, int mask)
258 {
259 	int ret;
260 
261 	/*
262 	 * Do the basic permission checks.
263 	 */
264 	ret = acl_permission_check(inode, mask);
265 	if (ret != -EACCES)
266 		return ret;
267 
268 	if (S_ISDIR(inode->i_mode)) {
269 		/* DACs are overridable for directories */
270 		if (inode_capable(inode, CAP_DAC_OVERRIDE))
271 			return 0;
272 		if (!(mask & MAY_WRITE))
273 			if (inode_capable(inode, CAP_DAC_READ_SEARCH))
274 				return 0;
275 		return -EACCES;
276 	}
277 	/*
278 	 * Read/write DACs are always overridable.
279 	 * Executable DACs are overridable when there is
280 	 * at least one exec bit set.
281 	 */
282 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
283 		if (inode_capable(inode, CAP_DAC_OVERRIDE))
284 			return 0;
285 
286 	/*
287 	 * Searching includes executable on directories, else just read.
288 	 */
289 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
290 	if (mask == MAY_READ)
291 		if (inode_capable(inode, CAP_DAC_READ_SEARCH))
292 			return 0;
293 
294 	return -EACCES;
295 }
296 
297 /*
298  * We _really_ want to just do "generic_permission()" without
299  * even looking at the inode->i_op values. So we keep a cache
300  * flag in inode->i_opflags, that says "this has not special
301  * permission function, use the fast case".
302  */
303 static inline int do_inode_permission(struct inode *inode, int mask)
304 {
305 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
306 		if (likely(inode->i_op->permission))
307 			return inode->i_op->permission(inode, mask);
308 
309 		/* This gets set once for the inode lifetime */
310 		spin_lock(&inode->i_lock);
311 		inode->i_opflags |= IOP_FASTPERM;
312 		spin_unlock(&inode->i_lock);
313 	}
314 	return generic_permission(inode, mask);
315 }
316 
317 /**
318  * inode_permission  -  check for access rights to a given inode
319  * @inode:	inode to check permission on
320  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
321  *
322  * Used to check for read/write/execute permissions on an inode.
323  * We use "fsuid" for this, letting us set arbitrary permissions
324  * for filesystem access without changing the "normal" uids which
325  * are used for other things.
326  *
327  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
328  */
329 int inode_permission(struct inode *inode, int mask)
330 {
331 	int retval;
332 
333 	if (unlikely(mask & MAY_WRITE)) {
334 		umode_t mode = inode->i_mode;
335 
336 		/*
337 		 * Nobody gets write access to a read-only fs.
338 		 */
339 		if (IS_RDONLY(inode) &&
340 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
341 			return -EROFS;
342 
343 		/*
344 		 * Nobody gets write access to an immutable file.
345 		 */
346 		if (IS_IMMUTABLE(inode))
347 			return -EACCES;
348 	}
349 
350 	retval = do_inode_permission(inode, mask);
351 	if (retval)
352 		return retval;
353 
354 	retval = devcgroup_inode_permission(inode, mask);
355 	if (retval)
356 		return retval;
357 
358 	return security_inode_permission(inode, mask);
359 }
360 
361 /**
362  * path_get - get a reference to a path
363  * @path: path to get the reference to
364  *
365  * Given a path increment the reference count to the dentry and the vfsmount.
366  */
367 void path_get(struct path *path)
368 {
369 	mntget(path->mnt);
370 	dget(path->dentry);
371 }
372 EXPORT_SYMBOL(path_get);
373 
374 /**
375  * path_put - put a reference to a path
376  * @path: path to put the reference to
377  *
378  * Given a path decrement the reference count to the dentry and the vfsmount.
379  */
380 void path_put(struct path *path)
381 {
382 	dput(path->dentry);
383 	mntput(path->mnt);
384 }
385 EXPORT_SYMBOL(path_put);
386 
387 /*
388  * Path walking has 2 modes, rcu-walk and ref-walk (see
389  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
390  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
391  * normal reference counts on dentries and vfsmounts to transition to rcu-walk
392  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
393  * got stuck, so ref-walk may continue from there. If this is not successful
394  * (eg. a seqcount has changed), then failure is returned and it's up to caller
395  * to restart the path walk from the beginning in ref-walk mode.
396  */
397 
398 /**
399  * unlazy_walk - try to switch to ref-walk mode.
400  * @nd: nameidata pathwalk data
401  * @dentry: child of nd->path.dentry or NULL
402  * Returns: 0 on success, -ECHILD on failure
403  *
404  * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
405  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
406  * @nd or NULL.  Must be called from rcu-walk context.
407  */
408 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
409 {
410 	struct fs_struct *fs = current->fs;
411 	struct dentry *parent = nd->path.dentry;
412 	int want_root = 0;
413 
414 	BUG_ON(!(nd->flags & LOOKUP_RCU));
415 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
416 		want_root = 1;
417 		spin_lock(&fs->lock);
418 		if (nd->root.mnt != fs->root.mnt ||
419 				nd->root.dentry != fs->root.dentry)
420 			goto err_root;
421 	}
422 	spin_lock(&parent->d_lock);
423 	if (!dentry) {
424 		if (!__d_rcu_to_refcount(parent, nd->seq))
425 			goto err_parent;
426 		BUG_ON(nd->inode != parent->d_inode);
427 	} else {
428 		if (dentry->d_parent != parent)
429 			goto err_parent;
430 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
431 		if (!__d_rcu_to_refcount(dentry, nd->seq))
432 			goto err_child;
433 		/*
434 		 * If the sequence check on the child dentry passed, then
435 		 * the child has not been removed from its parent. This
436 		 * means the parent dentry must be valid and able to take
437 		 * a reference at this point.
438 		 */
439 		BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
440 		BUG_ON(!parent->d_count);
441 		parent->d_count++;
442 		spin_unlock(&dentry->d_lock);
443 	}
444 	spin_unlock(&parent->d_lock);
445 	if (want_root) {
446 		path_get(&nd->root);
447 		spin_unlock(&fs->lock);
448 	}
449 	mntget(nd->path.mnt);
450 
451 	rcu_read_unlock();
452 	br_read_unlock(&vfsmount_lock);
453 	nd->flags &= ~LOOKUP_RCU;
454 	return 0;
455 
456 err_child:
457 	spin_unlock(&dentry->d_lock);
458 err_parent:
459 	spin_unlock(&parent->d_lock);
460 err_root:
461 	if (want_root)
462 		spin_unlock(&fs->lock);
463 	return -ECHILD;
464 }
465 
466 /**
467  * release_open_intent - free up open intent resources
468  * @nd: pointer to nameidata
469  */
470 void release_open_intent(struct nameidata *nd)
471 {
472 	struct file *file = nd->intent.open.file;
473 
474 	if (file && !IS_ERR(file)) {
475 		if (file->f_path.dentry == NULL)
476 			put_filp(file);
477 		else
478 			fput(file);
479 	}
480 }
481 
482 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd)
483 {
484 	return dentry->d_op->d_revalidate(dentry, nd);
485 }
486 
487 /**
488  * complete_walk - successful completion of path walk
489  * @nd:  pointer nameidata
490  *
491  * If we had been in RCU mode, drop out of it and legitimize nd->path.
492  * Revalidate the final result, unless we'd already done that during
493  * the path walk or the filesystem doesn't ask for it.  Return 0 on
494  * success, -error on failure.  In case of failure caller does not
495  * need to drop nd->path.
496  */
497 static int complete_walk(struct nameidata *nd)
498 {
499 	struct dentry *dentry = nd->path.dentry;
500 	int status;
501 
502 	if (nd->flags & LOOKUP_RCU) {
503 		nd->flags &= ~LOOKUP_RCU;
504 		if (!(nd->flags & LOOKUP_ROOT))
505 			nd->root.mnt = NULL;
506 		spin_lock(&dentry->d_lock);
507 		if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
508 			spin_unlock(&dentry->d_lock);
509 			rcu_read_unlock();
510 			br_read_unlock(&vfsmount_lock);
511 			return -ECHILD;
512 		}
513 		BUG_ON(nd->inode != dentry->d_inode);
514 		spin_unlock(&dentry->d_lock);
515 		mntget(nd->path.mnt);
516 		rcu_read_unlock();
517 		br_read_unlock(&vfsmount_lock);
518 	}
519 
520 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
521 		return 0;
522 
523 	if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
524 		return 0;
525 
526 	if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
527 		return 0;
528 
529 	/* Note: we do not d_invalidate() */
530 	status = d_revalidate(dentry, nd);
531 	if (status > 0)
532 		return 0;
533 
534 	if (!status)
535 		status = -ESTALE;
536 
537 	path_put(&nd->path);
538 	return status;
539 }
540 
541 static __always_inline void set_root(struct nameidata *nd)
542 {
543 	if (!nd->root.mnt)
544 		get_fs_root(current->fs, &nd->root);
545 }
546 
547 static int link_path_walk(const char *, struct nameidata *);
548 
549 static __always_inline void set_root_rcu(struct nameidata *nd)
550 {
551 	if (!nd->root.mnt) {
552 		struct fs_struct *fs = current->fs;
553 		unsigned seq;
554 
555 		do {
556 			seq = read_seqcount_begin(&fs->seq);
557 			nd->root = fs->root;
558 			nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
559 		} while (read_seqcount_retry(&fs->seq, seq));
560 	}
561 }
562 
563 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
564 {
565 	int ret;
566 
567 	if (IS_ERR(link))
568 		goto fail;
569 
570 	if (*link == '/') {
571 		set_root(nd);
572 		path_put(&nd->path);
573 		nd->path = nd->root;
574 		path_get(&nd->root);
575 		nd->flags |= LOOKUP_JUMPED;
576 	}
577 	nd->inode = nd->path.dentry->d_inode;
578 
579 	ret = link_path_walk(link, nd);
580 	return ret;
581 fail:
582 	path_put(&nd->path);
583 	return PTR_ERR(link);
584 }
585 
586 static void path_put_conditional(struct path *path, struct nameidata *nd)
587 {
588 	dput(path->dentry);
589 	if (path->mnt != nd->path.mnt)
590 		mntput(path->mnt);
591 }
592 
593 static inline void path_to_nameidata(const struct path *path,
594 					struct nameidata *nd)
595 {
596 	if (!(nd->flags & LOOKUP_RCU)) {
597 		dput(nd->path.dentry);
598 		if (nd->path.mnt != path->mnt)
599 			mntput(nd->path.mnt);
600 	}
601 	nd->path.mnt = path->mnt;
602 	nd->path.dentry = path->dentry;
603 }
604 
605 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
606 {
607 	struct inode *inode = link->dentry->d_inode;
608 	if (!IS_ERR(cookie) && inode->i_op->put_link)
609 		inode->i_op->put_link(link->dentry, nd, cookie);
610 	path_put(link);
611 }
612 
613 static __always_inline int
614 follow_link(struct path *link, struct nameidata *nd, void **p)
615 {
616 	int error;
617 	struct dentry *dentry = link->dentry;
618 
619 	BUG_ON(nd->flags & LOOKUP_RCU);
620 
621 	if (link->mnt == nd->path.mnt)
622 		mntget(link->mnt);
623 
624 	if (unlikely(current->total_link_count >= 40)) {
625 		*p = ERR_PTR(-ELOOP); /* no ->put_link(), please */
626 		path_put(&nd->path);
627 		return -ELOOP;
628 	}
629 	cond_resched();
630 	current->total_link_count++;
631 
632 	touch_atime(link);
633 	nd_set_link(nd, NULL);
634 
635 	error = security_inode_follow_link(link->dentry, nd);
636 	if (error) {
637 		*p = ERR_PTR(error); /* no ->put_link(), please */
638 		path_put(&nd->path);
639 		return error;
640 	}
641 
642 	nd->last_type = LAST_BIND;
643 	*p = dentry->d_inode->i_op->follow_link(dentry, nd);
644 	error = PTR_ERR(*p);
645 	if (!IS_ERR(*p)) {
646 		char *s = nd_get_link(nd);
647 		error = 0;
648 		if (s)
649 			error = __vfs_follow_link(nd, s);
650 		else if (nd->last_type == LAST_BIND) {
651 			nd->flags |= LOOKUP_JUMPED;
652 			nd->inode = nd->path.dentry->d_inode;
653 			if (nd->inode->i_op->follow_link) {
654 				/* stepped on a _really_ weird one */
655 				path_put(&nd->path);
656 				error = -ELOOP;
657 			}
658 		}
659 	}
660 	return error;
661 }
662 
663 static int follow_up_rcu(struct path *path)
664 {
665 	struct mount *mnt = real_mount(path->mnt);
666 	struct mount *parent;
667 	struct dentry *mountpoint;
668 
669 	parent = mnt->mnt_parent;
670 	if (&parent->mnt == path->mnt)
671 		return 0;
672 	mountpoint = mnt->mnt_mountpoint;
673 	path->dentry = mountpoint;
674 	path->mnt = &parent->mnt;
675 	return 1;
676 }
677 
678 int follow_up(struct path *path)
679 {
680 	struct mount *mnt = real_mount(path->mnt);
681 	struct mount *parent;
682 	struct dentry *mountpoint;
683 
684 	br_read_lock(&vfsmount_lock);
685 	parent = mnt->mnt_parent;
686 	if (&parent->mnt == path->mnt) {
687 		br_read_unlock(&vfsmount_lock);
688 		return 0;
689 	}
690 	mntget(&parent->mnt);
691 	mountpoint = dget(mnt->mnt_mountpoint);
692 	br_read_unlock(&vfsmount_lock);
693 	dput(path->dentry);
694 	path->dentry = mountpoint;
695 	mntput(path->mnt);
696 	path->mnt = &parent->mnt;
697 	return 1;
698 }
699 
700 /*
701  * Perform an automount
702  * - return -EISDIR to tell follow_managed() to stop and return the path we
703  *   were called with.
704  */
705 static int follow_automount(struct path *path, unsigned flags,
706 			    bool *need_mntput)
707 {
708 	struct vfsmount *mnt;
709 	int err;
710 
711 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
712 		return -EREMOTE;
713 
714 	/* We don't want to mount if someone's just doing a stat -
715 	 * unless they're stat'ing a directory and appended a '/' to
716 	 * the name.
717 	 *
718 	 * We do, however, want to mount if someone wants to open or
719 	 * create a file of any type under the mountpoint, wants to
720 	 * traverse through the mountpoint or wants to open the
721 	 * mounted directory.  Also, autofs may mark negative dentries
722 	 * as being automount points.  These will need the attentions
723 	 * of the daemon to instantiate them before they can be used.
724 	 */
725 	if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
726 		     LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
727 	    path->dentry->d_inode)
728 		return -EISDIR;
729 
730 	current->total_link_count++;
731 	if (current->total_link_count >= 40)
732 		return -ELOOP;
733 
734 	mnt = path->dentry->d_op->d_automount(path);
735 	if (IS_ERR(mnt)) {
736 		/*
737 		 * The filesystem is allowed to return -EISDIR here to indicate
738 		 * it doesn't want to automount.  For instance, autofs would do
739 		 * this so that its userspace daemon can mount on this dentry.
740 		 *
741 		 * However, we can only permit this if it's a terminal point in
742 		 * the path being looked up; if it wasn't then the remainder of
743 		 * the path is inaccessible and we should say so.
744 		 */
745 		if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
746 			return -EREMOTE;
747 		return PTR_ERR(mnt);
748 	}
749 
750 	if (!mnt) /* mount collision */
751 		return 0;
752 
753 	if (!*need_mntput) {
754 		/* lock_mount() may release path->mnt on error */
755 		mntget(path->mnt);
756 		*need_mntput = true;
757 	}
758 	err = finish_automount(mnt, path);
759 
760 	switch (err) {
761 	case -EBUSY:
762 		/* Someone else made a mount here whilst we were busy */
763 		return 0;
764 	case 0:
765 		path_put(path);
766 		path->mnt = mnt;
767 		path->dentry = dget(mnt->mnt_root);
768 		return 0;
769 	default:
770 		return err;
771 	}
772 
773 }
774 
775 /*
776  * Handle a dentry that is managed in some way.
777  * - Flagged for transit management (autofs)
778  * - Flagged as mountpoint
779  * - Flagged as automount point
780  *
781  * This may only be called in refwalk mode.
782  *
783  * Serialization is taken care of in namespace.c
784  */
785 static int follow_managed(struct path *path, unsigned flags)
786 {
787 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
788 	unsigned managed;
789 	bool need_mntput = false;
790 	int ret = 0;
791 
792 	/* Given that we're not holding a lock here, we retain the value in a
793 	 * local variable for each dentry as we look at it so that we don't see
794 	 * the components of that value change under us */
795 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
796 	       managed &= DCACHE_MANAGED_DENTRY,
797 	       unlikely(managed != 0)) {
798 		/* Allow the filesystem to manage the transit without i_mutex
799 		 * being held. */
800 		if (managed & DCACHE_MANAGE_TRANSIT) {
801 			BUG_ON(!path->dentry->d_op);
802 			BUG_ON(!path->dentry->d_op->d_manage);
803 			ret = path->dentry->d_op->d_manage(path->dentry, false);
804 			if (ret < 0)
805 				break;
806 		}
807 
808 		/* Transit to a mounted filesystem. */
809 		if (managed & DCACHE_MOUNTED) {
810 			struct vfsmount *mounted = lookup_mnt(path);
811 			if (mounted) {
812 				dput(path->dentry);
813 				if (need_mntput)
814 					mntput(path->mnt);
815 				path->mnt = mounted;
816 				path->dentry = dget(mounted->mnt_root);
817 				need_mntput = true;
818 				continue;
819 			}
820 
821 			/* Something is mounted on this dentry in another
822 			 * namespace and/or whatever was mounted there in this
823 			 * namespace got unmounted before we managed to get the
824 			 * vfsmount_lock */
825 		}
826 
827 		/* Handle an automount point */
828 		if (managed & DCACHE_NEED_AUTOMOUNT) {
829 			ret = follow_automount(path, flags, &need_mntput);
830 			if (ret < 0)
831 				break;
832 			continue;
833 		}
834 
835 		/* We didn't change the current path point */
836 		break;
837 	}
838 
839 	if (need_mntput && path->mnt == mnt)
840 		mntput(path->mnt);
841 	if (ret == -EISDIR)
842 		ret = 0;
843 	return ret < 0 ? ret : need_mntput;
844 }
845 
846 int follow_down_one(struct path *path)
847 {
848 	struct vfsmount *mounted;
849 
850 	mounted = lookup_mnt(path);
851 	if (mounted) {
852 		dput(path->dentry);
853 		mntput(path->mnt);
854 		path->mnt = mounted;
855 		path->dentry = dget(mounted->mnt_root);
856 		return 1;
857 	}
858 	return 0;
859 }
860 
861 static inline bool managed_dentry_might_block(struct dentry *dentry)
862 {
863 	return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
864 		dentry->d_op->d_manage(dentry, true) < 0);
865 }
866 
867 /*
868  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
869  * we meet a managed dentry that would need blocking.
870  */
871 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
872 			       struct inode **inode)
873 {
874 	for (;;) {
875 		struct mount *mounted;
876 		/*
877 		 * Don't forget we might have a non-mountpoint managed dentry
878 		 * that wants to block transit.
879 		 */
880 		if (unlikely(managed_dentry_might_block(path->dentry)))
881 			return false;
882 
883 		if (!d_mountpoint(path->dentry))
884 			break;
885 
886 		mounted = __lookup_mnt(path->mnt, path->dentry, 1);
887 		if (!mounted)
888 			break;
889 		path->mnt = &mounted->mnt;
890 		path->dentry = mounted->mnt.mnt_root;
891 		nd->flags |= LOOKUP_JUMPED;
892 		nd->seq = read_seqcount_begin(&path->dentry->d_seq);
893 		/*
894 		 * Update the inode too. We don't need to re-check the
895 		 * dentry sequence number here after this d_inode read,
896 		 * because a mount-point is always pinned.
897 		 */
898 		*inode = path->dentry->d_inode;
899 	}
900 	return true;
901 }
902 
903 static void follow_mount_rcu(struct nameidata *nd)
904 {
905 	while (d_mountpoint(nd->path.dentry)) {
906 		struct mount *mounted;
907 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
908 		if (!mounted)
909 			break;
910 		nd->path.mnt = &mounted->mnt;
911 		nd->path.dentry = mounted->mnt.mnt_root;
912 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
913 	}
914 }
915 
916 static int follow_dotdot_rcu(struct nameidata *nd)
917 {
918 	set_root_rcu(nd);
919 
920 	while (1) {
921 		if (nd->path.dentry == nd->root.dentry &&
922 		    nd->path.mnt == nd->root.mnt) {
923 			break;
924 		}
925 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
926 			struct dentry *old = nd->path.dentry;
927 			struct dentry *parent = old->d_parent;
928 			unsigned seq;
929 
930 			seq = read_seqcount_begin(&parent->d_seq);
931 			if (read_seqcount_retry(&old->d_seq, nd->seq))
932 				goto failed;
933 			nd->path.dentry = parent;
934 			nd->seq = seq;
935 			break;
936 		}
937 		if (!follow_up_rcu(&nd->path))
938 			break;
939 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
940 	}
941 	follow_mount_rcu(nd);
942 	nd->inode = nd->path.dentry->d_inode;
943 	return 0;
944 
945 failed:
946 	nd->flags &= ~LOOKUP_RCU;
947 	if (!(nd->flags & LOOKUP_ROOT))
948 		nd->root.mnt = NULL;
949 	rcu_read_unlock();
950 	br_read_unlock(&vfsmount_lock);
951 	return -ECHILD;
952 }
953 
954 /*
955  * Follow down to the covering mount currently visible to userspace.  At each
956  * point, the filesystem owning that dentry may be queried as to whether the
957  * caller is permitted to proceed or not.
958  */
959 int follow_down(struct path *path)
960 {
961 	unsigned managed;
962 	int ret;
963 
964 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
965 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
966 		/* Allow the filesystem to manage the transit without i_mutex
967 		 * being held.
968 		 *
969 		 * We indicate to the filesystem if someone is trying to mount
970 		 * something here.  This gives autofs the chance to deny anyone
971 		 * other than its daemon the right to mount on its
972 		 * superstructure.
973 		 *
974 		 * The filesystem may sleep at this point.
975 		 */
976 		if (managed & DCACHE_MANAGE_TRANSIT) {
977 			BUG_ON(!path->dentry->d_op);
978 			BUG_ON(!path->dentry->d_op->d_manage);
979 			ret = path->dentry->d_op->d_manage(
980 				path->dentry, false);
981 			if (ret < 0)
982 				return ret == -EISDIR ? 0 : ret;
983 		}
984 
985 		/* Transit to a mounted filesystem. */
986 		if (managed & DCACHE_MOUNTED) {
987 			struct vfsmount *mounted = lookup_mnt(path);
988 			if (!mounted)
989 				break;
990 			dput(path->dentry);
991 			mntput(path->mnt);
992 			path->mnt = mounted;
993 			path->dentry = dget(mounted->mnt_root);
994 			continue;
995 		}
996 
997 		/* Don't handle automount points here */
998 		break;
999 	}
1000 	return 0;
1001 }
1002 
1003 /*
1004  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1005  */
1006 static void follow_mount(struct path *path)
1007 {
1008 	while (d_mountpoint(path->dentry)) {
1009 		struct vfsmount *mounted = lookup_mnt(path);
1010 		if (!mounted)
1011 			break;
1012 		dput(path->dentry);
1013 		mntput(path->mnt);
1014 		path->mnt = mounted;
1015 		path->dentry = dget(mounted->mnt_root);
1016 	}
1017 }
1018 
1019 static void follow_dotdot(struct nameidata *nd)
1020 {
1021 	set_root(nd);
1022 
1023 	while(1) {
1024 		struct dentry *old = nd->path.dentry;
1025 
1026 		if (nd->path.dentry == nd->root.dentry &&
1027 		    nd->path.mnt == nd->root.mnt) {
1028 			break;
1029 		}
1030 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1031 			/* rare case of legitimate dget_parent()... */
1032 			nd->path.dentry = dget_parent(nd->path.dentry);
1033 			dput(old);
1034 			break;
1035 		}
1036 		if (!follow_up(&nd->path))
1037 			break;
1038 	}
1039 	follow_mount(&nd->path);
1040 	nd->inode = nd->path.dentry->d_inode;
1041 }
1042 
1043 /*
1044  * This looks up the name in dcache, possibly revalidates the old dentry and
1045  * allocates a new one if not found or not valid.  In the need_lookup argument
1046  * returns whether i_op->lookup is necessary.
1047  *
1048  * dir->d_inode->i_mutex must be held
1049  */
1050 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1051 				    struct nameidata *nd, bool *need_lookup)
1052 {
1053 	struct dentry *dentry;
1054 	int error;
1055 
1056 	*need_lookup = false;
1057 	dentry = d_lookup(dir, name);
1058 	if (dentry) {
1059 		if (d_need_lookup(dentry)) {
1060 			*need_lookup = true;
1061 		} else if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1062 			error = d_revalidate(dentry, nd);
1063 			if (unlikely(error <= 0)) {
1064 				if (error < 0) {
1065 					dput(dentry);
1066 					return ERR_PTR(error);
1067 				} else if (!d_invalidate(dentry)) {
1068 					dput(dentry);
1069 					dentry = NULL;
1070 				}
1071 			}
1072 		}
1073 	}
1074 
1075 	if (!dentry) {
1076 		dentry = d_alloc(dir, name);
1077 		if (unlikely(!dentry))
1078 			return ERR_PTR(-ENOMEM);
1079 
1080 		*need_lookup = true;
1081 	}
1082 	return dentry;
1083 }
1084 
1085 /*
1086  * Call i_op->lookup on the dentry.  The dentry must be negative but may be
1087  * hashed if it was pouplated with DCACHE_NEED_LOOKUP.
1088  *
1089  * dir->d_inode->i_mutex must be held
1090  */
1091 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1092 				  struct nameidata *nd)
1093 {
1094 	struct dentry *old;
1095 
1096 	/* Don't create child dentry for a dead directory. */
1097 	if (unlikely(IS_DEADDIR(dir))) {
1098 		dput(dentry);
1099 		return ERR_PTR(-ENOENT);
1100 	}
1101 
1102 	old = dir->i_op->lookup(dir, dentry, nd);
1103 	if (unlikely(old)) {
1104 		dput(dentry);
1105 		dentry = old;
1106 	}
1107 	return dentry;
1108 }
1109 
1110 static struct dentry *__lookup_hash(struct qstr *name,
1111 		struct dentry *base, struct nameidata *nd)
1112 {
1113 	bool need_lookup;
1114 	struct dentry *dentry;
1115 
1116 	dentry = lookup_dcache(name, base, nd, &need_lookup);
1117 	if (!need_lookup)
1118 		return dentry;
1119 
1120 	return lookup_real(base->d_inode, dentry, nd);
1121 }
1122 
1123 /*
1124  *  It's more convoluted than I'd like it to be, but... it's still fairly
1125  *  small and for now I'd prefer to have fast path as straight as possible.
1126  *  It _is_ time-critical.
1127  */
1128 static int lookup_fast(struct nameidata *nd, struct qstr *name,
1129 		       struct path *path, struct inode **inode)
1130 {
1131 	struct vfsmount *mnt = nd->path.mnt;
1132 	struct dentry *dentry, *parent = nd->path.dentry;
1133 	int need_reval = 1;
1134 	int status = 1;
1135 	int err;
1136 
1137 	/*
1138 	 * Rename seqlock is not required here because in the off chance
1139 	 * of a false negative due to a concurrent rename, we're going to
1140 	 * do the non-racy lookup, below.
1141 	 */
1142 	if (nd->flags & LOOKUP_RCU) {
1143 		unsigned seq;
1144 		dentry = __d_lookup_rcu(parent, name, &seq, nd->inode);
1145 		if (!dentry)
1146 			goto unlazy;
1147 
1148 		/*
1149 		 * This sequence count validates that the inode matches
1150 		 * the dentry name information from lookup.
1151 		 */
1152 		*inode = dentry->d_inode;
1153 		if (read_seqcount_retry(&dentry->d_seq, seq))
1154 			return -ECHILD;
1155 
1156 		/*
1157 		 * This sequence count validates that the parent had no
1158 		 * changes while we did the lookup of the dentry above.
1159 		 *
1160 		 * The memory barrier in read_seqcount_begin of child is
1161 		 *  enough, we can use __read_seqcount_retry here.
1162 		 */
1163 		if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1164 			return -ECHILD;
1165 		nd->seq = seq;
1166 
1167 		if (unlikely(d_need_lookup(dentry)))
1168 			goto unlazy;
1169 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1170 			status = d_revalidate(dentry, nd);
1171 			if (unlikely(status <= 0)) {
1172 				if (status != -ECHILD)
1173 					need_reval = 0;
1174 				goto unlazy;
1175 			}
1176 		}
1177 		path->mnt = mnt;
1178 		path->dentry = dentry;
1179 		if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1180 			goto unlazy;
1181 		if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1182 			goto unlazy;
1183 		return 0;
1184 unlazy:
1185 		if (unlazy_walk(nd, dentry))
1186 			return -ECHILD;
1187 	} else {
1188 		dentry = __d_lookup(parent, name);
1189 	}
1190 
1191 	if (unlikely(!dentry))
1192 		goto need_lookup;
1193 
1194 	if (unlikely(d_need_lookup(dentry))) {
1195 		dput(dentry);
1196 		goto need_lookup;
1197 	}
1198 
1199 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1200 		status = d_revalidate(dentry, nd);
1201 	if (unlikely(status <= 0)) {
1202 		if (status < 0) {
1203 			dput(dentry);
1204 			return status;
1205 		}
1206 		if (!d_invalidate(dentry)) {
1207 			dput(dentry);
1208 			goto need_lookup;
1209 		}
1210 	}
1211 
1212 	path->mnt = mnt;
1213 	path->dentry = dentry;
1214 	err = follow_managed(path, nd->flags);
1215 	if (unlikely(err < 0)) {
1216 		path_put_conditional(path, nd);
1217 		return err;
1218 	}
1219 	if (err)
1220 		nd->flags |= LOOKUP_JUMPED;
1221 	*inode = path->dentry->d_inode;
1222 	return 0;
1223 
1224 need_lookup:
1225 	return 1;
1226 }
1227 
1228 /* Fast lookup failed, do it the slow way */
1229 static int lookup_slow(struct nameidata *nd, struct qstr *name,
1230 		       struct path *path)
1231 {
1232 	struct dentry *dentry, *parent;
1233 	int err;
1234 
1235 	parent = nd->path.dentry;
1236 	BUG_ON(nd->inode != parent->d_inode);
1237 
1238 	mutex_lock(&parent->d_inode->i_mutex);
1239 	dentry = __lookup_hash(name, parent, nd);
1240 	mutex_unlock(&parent->d_inode->i_mutex);
1241 	if (IS_ERR(dentry))
1242 		return PTR_ERR(dentry);
1243 	path->mnt = nd->path.mnt;
1244 	path->dentry = dentry;
1245 	err = follow_managed(path, nd->flags);
1246 	if (unlikely(err < 0)) {
1247 		path_put_conditional(path, nd);
1248 		return err;
1249 	}
1250 	if (err)
1251 		nd->flags |= LOOKUP_JUMPED;
1252 	return 0;
1253 }
1254 
1255 static inline int may_lookup(struct nameidata *nd)
1256 {
1257 	if (nd->flags & LOOKUP_RCU) {
1258 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1259 		if (err != -ECHILD)
1260 			return err;
1261 		if (unlazy_walk(nd, NULL))
1262 			return -ECHILD;
1263 	}
1264 	return inode_permission(nd->inode, MAY_EXEC);
1265 }
1266 
1267 static inline int handle_dots(struct nameidata *nd, int type)
1268 {
1269 	if (type == LAST_DOTDOT) {
1270 		if (nd->flags & LOOKUP_RCU) {
1271 			if (follow_dotdot_rcu(nd))
1272 				return -ECHILD;
1273 		} else
1274 			follow_dotdot(nd);
1275 	}
1276 	return 0;
1277 }
1278 
1279 static void terminate_walk(struct nameidata *nd)
1280 {
1281 	if (!(nd->flags & LOOKUP_RCU)) {
1282 		path_put(&nd->path);
1283 	} else {
1284 		nd->flags &= ~LOOKUP_RCU;
1285 		if (!(nd->flags & LOOKUP_ROOT))
1286 			nd->root.mnt = NULL;
1287 		rcu_read_unlock();
1288 		br_read_unlock(&vfsmount_lock);
1289 	}
1290 }
1291 
1292 /*
1293  * Do we need to follow links? We _really_ want to be able
1294  * to do this check without having to look at inode->i_op,
1295  * so we keep a cache of "no, this doesn't need follow_link"
1296  * for the common case.
1297  */
1298 static inline int should_follow_link(struct inode *inode, int follow)
1299 {
1300 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1301 		if (likely(inode->i_op->follow_link))
1302 			return follow;
1303 
1304 		/* This gets set once for the inode lifetime */
1305 		spin_lock(&inode->i_lock);
1306 		inode->i_opflags |= IOP_NOFOLLOW;
1307 		spin_unlock(&inode->i_lock);
1308 	}
1309 	return 0;
1310 }
1311 
1312 static inline int walk_component(struct nameidata *nd, struct path *path,
1313 		struct qstr *name, int type, int follow)
1314 {
1315 	struct inode *inode;
1316 	int err;
1317 	/*
1318 	 * "." and ".." are special - ".." especially so because it has
1319 	 * to be able to know about the current root directory and
1320 	 * parent relationships.
1321 	 */
1322 	if (unlikely(type != LAST_NORM))
1323 		return handle_dots(nd, type);
1324 	err = lookup_fast(nd, name, path, &inode);
1325 	if (unlikely(err)) {
1326 		if (err < 0)
1327 			goto out_err;
1328 
1329 		err = lookup_slow(nd, name, path);
1330 		if (err < 0)
1331 			goto out_err;
1332 
1333 		inode = path->dentry->d_inode;
1334 	}
1335 	err = -ENOENT;
1336 	if (!inode)
1337 		goto out_path_put;
1338 
1339 	if (should_follow_link(inode, follow)) {
1340 		if (nd->flags & LOOKUP_RCU) {
1341 			if (unlikely(unlazy_walk(nd, path->dentry))) {
1342 				err = -ECHILD;
1343 				goto out_err;
1344 			}
1345 		}
1346 		BUG_ON(inode != path->dentry->d_inode);
1347 		return 1;
1348 	}
1349 	path_to_nameidata(path, nd);
1350 	nd->inode = inode;
1351 	return 0;
1352 
1353 out_path_put:
1354 	path_to_nameidata(path, nd);
1355 out_err:
1356 	terminate_walk(nd);
1357 	return err;
1358 }
1359 
1360 /*
1361  * This limits recursive symlink follows to 8, while
1362  * limiting consecutive symlinks to 40.
1363  *
1364  * Without that kind of total limit, nasty chains of consecutive
1365  * symlinks can cause almost arbitrarily long lookups.
1366  */
1367 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1368 {
1369 	int res;
1370 
1371 	if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1372 		path_put_conditional(path, nd);
1373 		path_put(&nd->path);
1374 		return -ELOOP;
1375 	}
1376 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1377 
1378 	nd->depth++;
1379 	current->link_count++;
1380 
1381 	do {
1382 		struct path link = *path;
1383 		void *cookie;
1384 
1385 		res = follow_link(&link, nd, &cookie);
1386 		if (!res)
1387 			res = walk_component(nd, path, &nd->last,
1388 					     nd->last_type, LOOKUP_FOLLOW);
1389 		put_link(nd, &link, cookie);
1390 	} while (res > 0);
1391 
1392 	current->link_count--;
1393 	nd->depth--;
1394 	return res;
1395 }
1396 
1397 /*
1398  * We really don't want to look at inode->i_op->lookup
1399  * when we don't have to. So we keep a cache bit in
1400  * the inode ->i_opflags field that says "yes, we can
1401  * do lookup on this inode".
1402  */
1403 static inline int can_lookup(struct inode *inode)
1404 {
1405 	if (likely(inode->i_opflags & IOP_LOOKUP))
1406 		return 1;
1407 	if (likely(!inode->i_op->lookup))
1408 		return 0;
1409 
1410 	/* We do this once for the lifetime of the inode */
1411 	spin_lock(&inode->i_lock);
1412 	inode->i_opflags |= IOP_LOOKUP;
1413 	spin_unlock(&inode->i_lock);
1414 	return 1;
1415 }
1416 
1417 /*
1418  * We can do the critical dentry name comparison and hashing
1419  * operations one word at a time, but we are limited to:
1420  *
1421  * - Architectures with fast unaligned word accesses. We could
1422  *   do a "get_unaligned()" if this helps and is sufficiently
1423  *   fast.
1424  *
1425  * - Little-endian machines (so that we can generate the mask
1426  *   of low bytes efficiently). Again, we *could* do a byte
1427  *   swapping load on big-endian architectures if that is not
1428  *   expensive enough to make the optimization worthless.
1429  *
1430  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1431  *   do not trap on the (extremely unlikely) case of a page
1432  *   crossing operation.
1433  *
1434  * - Furthermore, we need an efficient 64-bit compile for the
1435  *   64-bit case in order to generate the "number of bytes in
1436  *   the final mask". Again, that could be replaced with a
1437  *   efficient population count instruction or similar.
1438  */
1439 #ifdef CONFIG_DCACHE_WORD_ACCESS
1440 
1441 #include <asm/word-at-a-time.h>
1442 
1443 #ifdef CONFIG_64BIT
1444 
1445 static inline unsigned int fold_hash(unsigned long hash)
1446 {
1447 	hash += hash >> (8*sizeof(int));
1448 	return hash;
1449 }
1450 
1451 #else	/* 32-bit case */
1452 
1453 #define fold_hash(x) (x)
1454 
1455 #endif
1456 
1457 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1458 {
1459 	unsigned long a, mask;
1460 	unsigned long hash = 0;
1461 
1462 	for (;;) {
1463 		a = load_unaligned_zeropad(name);
1464 		if (len < sizeof(unsigned long))
1465 			break;
1466 		hash += a;
1467 		hash *= 9;
1468 		name += sizeof(unsigned long);
1469 		len -= sizeof(unsigned long);
1470 		if (!len)
1471 			goto done;
1472 	}
1473 	mask = ~(~0ul << len*8);
1474 	hash += mask & a;
1475 done:
1476 	return fold_hash(hash);
1477 }
1478 EXPORT_SYMBOL(full_name_hash);
1479 
1480 /*
1481  * Calculate the length and hash of the path component, and
1482  * return the length of the component;
1483  */
1484 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1485 {
1486 	unsigned long a, b, adata, bdata, mask, hash, len;
1487 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1488 
1489 	hash = a = 0;
1490 	len = -sizeof(unsigned long);
1491 	do {
1492 		hash = (hash + a) * 9;
1493 		len += sizeof(unsigned long);
1494 		a = load_unaligned_zeropad(name+len);
1495 		b = a ^ REPEAT_BYTE('/');
1496 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1497 
1498 	adata = prep_zero_mask(a, adata, &constants);
1499 	bdata = prep_zero_mask(b, bdata, &constants);
1500 
1501 	mask = create_zero_mask(adata | bdata);
1502 
1503 	hash += a & zero_bytemask(mask);
1504 	*hashp = fold_hash(hash);
1505 
1506 	return len + find_zero(mask);
1507 }
1508 
1509 #else
1510 
1511 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1512 {
1513 	unsigned long hash = init_name_hash();
1514 	while (len--)
1515 		hash = partial_name_hash(*name++, hash);
1516 	return end_name_hash(hash);
1517 }
1518 EXPORT_SYMBOL(full_name_hash);
1519 
1520 /*
1521  * We know there's a real path component here of at least
1522  * one character.
1523  */
1524 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1525 {
1526 	unsigned long hash = init_name_hash();
1527 	unsigned long len = 0, c;
1528 
1529 	c = (unsigned char)*name;
1530 	do {
1531 		len++;
1532 		hash = partial_name_hash(c, hash);
1533 		c = (unsigned char)name[len];
1534 	} while (c && c != '/');
1535 	*hashp = end_name_hash(hash);
1536 	return len;
1537 }
1538 
1539 #endif
1540 
1541 /*
1542  * Name resolution.
1543  * This is the basic name resolution function, turning a pathname into
1544  * the final dentry. We expect 'base' to be positive and a directory.
1545  *
1546  * Returns 0 and nd will have valid dentry and mnt on success.
1547  * Returns error and drops reference to input namei data on failure.
1548  */
1549 static int link_path_walk(const char *name, struct nameidata *nd)
1550 {
1551 	struct path next;
1552 	int err;
1553 
1554 	while (*name=='/')
1555 		name++;
1556 	if (!*name)
1557 		return 0;
1558 
1559 	/* At this point we know we have a real path component. */
1560 	for(;;) {
1561 		struct qstr this;
1562 		long len;
1563 		int type;
1564 
1565 		err = may_lookup(nd);
1566  		if (err)
1567 			break;
1568 
1569 		len = hash_name(name, &this.hash);
1570 		this.name = name;
1571 		this.len = len;
1572 
1573 		type = LAST_NORM;
1574 		if (name[0] == '.') switch (len) {
1575 			case 2:
1576 				if (name[1] == '.') {
1577 					type = LAST_DOTDOT;
1578 					nd->flags |= LOOKUP_JUMPED;
1579 				}
1580 				break;
1581 			case 1:
1582 				type = LAST_DOT;
1583 		}
1584 		if (likely(type == LAST_NORM)) {
1585 			struct dentry *parent = nd->path.dentry;
1586 			nd->flags &= ~LOOKUP_JUMPED;
1587 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1588 				err = parent->d_op->d_hash(parent, nd->inode,
1589 							   &this);
1590 				if (err < 0)
1591 					break;
1592 			}
1593 		}
1594 
1595 		if (!name[len])
1596 			goto last_component;
1597 		/*
1598 		 * If it wasn't NUL, we know it was '/'. Skip that
1599 		 * slash, and continue until no more slashes.
1600 		 */
1601 		do {
1602 			len++;
1603 		} while (unlikely(name[len] == '/'));
1604 		if (!name[len])
1605 			goto last_component;
1606 		name += len;
1607 
1608 		err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1609 		if (err < 0)
1610 			return err;
1611 
1612 		if (err) {
1613 			err = nested_symlink(&next, nd);
1614 			if (err)
1615 				return err;
1616 		}
1617 		if (can_lookup(nd->inode))
1618 			continue;
1619 		err = -ENOTDIR;
1620 		break;
1621 		/* here ends the main loop */
1622 
1623 last_component:
1624 		nd->last = this;
1625 		nd->last_type = type;
1626 		return 0;
1627 	}
1628 	terminate_walk(nd);
1629 	return err;
1630 }
1631 
1632 static int path_init(int dfd, const char *name, unsigned int flags,
1633 		     struct nameidata *nd, struct file **fp)
1634 {
1635 	int retval = 0;
1636 	int fput_needed;
1637 	struct file *file;
1638 
1639 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1640 	nd->flags = flags | LOOKUP_JUMPED;
1641 	nd->depth = 0;
1642 	if (flags & LOOKUP_ROOT) {
1643 		struct inode *inode = nd->root.dentry->d_inode;
1644 		if (*name) {
1645 			if (!inode->i_op->lookup)
1646 				return -ENOTDIR;
1647 			retval = inode_permission(inode, MAY_EXEC);
1648 			if (retval)
1649 				return retval;
1650 		}
1651 		nd->path = nd->root;
1652 		nd->inode = inode;
1653 		if (flags & LOOKUP_RCU) {
1654 			br_read_lock(&vfsmount_lock);
1655 			rcu_read_lock();
1656 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1657 		} else {
1658 			path_get(&nd->path);
1659 		}
1660 		return 0;
1661 	}
1662 
1663 	nd->root.mnt = NULL;
1664 
1665 	if (*name=='/') {
1666 		if (flags & LOOKUP_RCU) {
1667 			br_read_lock(&vfsmount_lock);
1668 			rcu_read_lock();
1669 			set_root_rcu(nd);
1670 		} else {
1671 			set_root(nd);
1672 			path_get(&nd->root);
1673 		}
1674 		nd->path = nd->root;
1675 	} else if (dfd == AT_FDCWD) {
1676 		if (flags & LOOKUP_RCU) {
1677 			struct fs_struct *fs = current->fs;
1678 			unsigned seq;
1679 
1680 			br_read_lock(&vfsmount_lock);
1681 			rcu_read_lock();
1682 
1683 			do {
1684 				seq = read_seqcount_begin(&fs->seq);
1685 				nd->path = fs->pwd;
1686 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1687 			} while (read_seqcount_retry(&fs->seq, seq));
1688 		} else {
1689 			get_fs_pwd(current->fs, &nd->path);
1690 		}
1691 	} else {
1692 		struct dentry *dentry;
1693 
1694 		file = fget_raw_light(dfd, &fput_needed);
1695 		retval = -EBADF;
1696 		if (!file)
1697 			goto out_fail;
1698 
1699 		dentry = file->f_path.dentry;
1700 
1701 		if (*name) {
1702 			retval = -ENOTDIR;
1703 			if (!S_ISDIR(dentry->d_inode->i_mode))
1704 				goto fput_fail;
1705 
1706 			retval = inode_permission(dentry->d_inode, MAY_EXEC);
1707 			if (retval)
1708 				goto fput_fail;
1709 		}
1710 
1711 		nd->path = file->f_path;
1712 		if (flags & LOOKUP_RCU) {
1713 			if (fput_needed)
1714 				*fp = file;
1715 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1716 			br_read_lock(&vfsmount_lock);
1717 			rcu_read_lock();
1718 		} else {
1719 			path_get(&file->f_path);
1720 			fput_light(file, fput_needed);
1721 		}
1722 	}
1723 
1724 	nd->inode = nd->path.dentry->d_inode;
1725 	return 0;
1726 
1727 fput_fail:
1728 	fput_light(file, fput_needed);
1729 out_fail:
1730 	return retval;
1731 }
1732 
1733 static inline int lookup_last(struct nameidata *nd, struct path *path)
1734 {
1735 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1736 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1737 
1738 	nd->flags &= ~LOOKUP_PARENT;
1739 	return walk_component(nd, path, &nd->last, nd->last_type,
1740 					nd->flags & LOOKUP_FOLLOW);
1741 }
1742 
1743 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1744 static int path_lookupat(int dfd, const char *name,
1745 				unsigned int flags, struct nameidata *nd)
1746 {
1747 	struct file *base = NULL;
1748 	struct path path;
1749 	int err;
1750 
1751 	/*
1752 	 * Path walking is largely split up into 2 different synchronisation
1753 	 * schemes, rcu-walk and ref-walk (explained in
1754 	 * Documentation/filesystems/path-lookup.txt). These share much of the
1755 	 * path walk code, but some things particularly setup, cleanup, and
1756 	 * following mounts are sufficiently divergent that functions are
1757 	 * duplicated. Typically there is a function foo(), and its RCU
1758 	 * analogue, foo_rcu().
1759 	 *
1760 	 * -ECHILD is the error number of choice (just to avoid clashes) that
1761 	 * is returned if some aspect of an rcu-walk fails. Such an error must
1762 	 * be handled by restarting a traditional ref-walk (which will always
1763 	 * be able to complete).
1764 	 */
1765 	err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1766 
1767 	if (unlikely(err))
1768 		return err;
1769 
1770 	current->total_link_count = 0;
1771 	err = link_path_walk(name, nd);
1772 
1773 	if (!err && !(flags & LOOKUP_PARENT)) {
1774 		err = lookup_last(nd, &path);
1775 		while (err > 0) {
1776 			void *cookie;
1777 			struct path link = path;
1778 			nd->flags |= LOOKUP_PARENT;
1779 			err = follow_link(&link, nd, &cookie);
1780 			if (!err)
1781 				err = lookup_last(nd, &path);
1782 			put_link(nd, &link, cookie);
1783 		}
1784 	}
1785 
1786 	if (!err)
1787 		err = complete_walk(nd);
1788 
1789 	if (!err && nd->flags & LOOKUP_DIRECTORY) {
1790 		if (!nd->inode->i_op->lookup) {
1791 			path_put(&nd->path);
1792 			err = -ENOTDIR;
1793 		}
1794 	}
1795 
1796 	if (base)
1797 		fput(base);
1798 
1799 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1800 		path_put(&nd->root);
1801 		nd->root.mnt = NULL;
1802 	}
1803 	return err;
1804 }
1805 
1806 static int do_path_lookup(int dfd, const char *name,
1807 				unsigned int flags, struct nameidata *nd)
1808 {
1809 	int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
1810 	if (unlikely(retval == -ECHILD))
1811 		retval = path_lookupat(dfd, name, flags, nd);
1812 	if (unlikely(retval == -ESTALE))
1813 		retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1814 
1815 	if (likely(!retval)) {
1816 		if (unlikely(!audit_dummy_context())) {
1817 			if (nd->path.dentry && nd->inode)
1818 				audit_inode(name, nd->path.dentry);
1819 		}
1820 	}
1821 	return retval;
1822 }
1823 
1824 int kern_path_parent(const char *name, struct nameidata *nd)
1825 {
1826 	return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd);
1827 }
1828 
1829 int kern_path(const char *name, unsigned int flags, struct path *path)
1830 {
1831 	struct nameidata nd;
1832 	int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1833 	if (!res)
1834 		*path = nd.path;
1835 	return res;
1836 }
1837 
1838 /**
1839  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1840  * @dentry:  pointer to dentry of the base directory
1841  * @mnt: pointer to vfs mount of the base directory
1842  * @name: pointer to file name
1843  * @flags: lookup flags
1844  * @path: pointer to struct path to fill
1845  */
1846 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1847 		    const char *name, unsigned int flags,
1848 		    struct path *path)
1849 {
1850 	struct nameidata nd;
1851 	int err;
1852 	nd.root.dentry = dentry;
1853 	nd.root.mnt = mnt;
1854 	BUG_ON(flags & LOOKUP_PARENT);
1855 	/* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
1856 	err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
1857 	if (!err)
1858 		*path = nd.path;
1859 	return err;
1860 }
1861 
1862 /*
1863  * Restricted form of lookup. Doesn't follow links, single-component only,
1864  * needs parent already locked. Doesn't follow mounts.
1865  * SMP-safe.
1866  */
1867 static struct dentry *lookup_hash(struct nameidata *nd)
1868 {
1869 	return __lookup_hash(&nd->last, nd->path.dentry, nd);
1870 }
1871 
1872 /**
1873  * lookup_one_len - filesystem helper to lookup single pathname component
1874  * @name:	pathname component to lookup
1875  * @base:	base directory to lookup from
1876  * @len:	maximum length @len should be interpreted to
1877  *
1878  * Note that this routine is purely a helper for filesystem usage and should
1879  * not be called by generic code.  Also note that by using this function the
1880  * nameidata argument is passed to the filesystem methods and a filesystem
1881  * using this helper needs to be prepared for that.
1882  */
1883 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1884 {
1885 	struct qstr this;
1886 	unsigned int c;
1887 	int err;
1888 
1889 	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1890 
1891 	this.name = name;
1892 	this.len = len;
1893 	this.hash = full_name_hash(name, len);
1894 	if (!len)
1895 		return ERR_PTR(-EACCES);
1896 
1897 	while (len--) {
1898 		c = *(const unsigned char *)name++;
1899 		if (c == '/' || c == '\0')
1900 			return ERR_PTR(-EACCES);
1901 	}
1902 	/*
1903 	 * See if the low-level filesystem might want
1904 	 * to use its own hash..
1905 	 */
1906 	if (base->d_flags & DCACHE_OP_HASH) {
1907 		int err = base->d_op->d_hash(base, base->d_inode, &this);
1908 		if (err < 0)
1909 			return ERR_PTR(err);
1910 	}
1911 
1912 	err = inode_permission(base->d_inode, MAY_EXEC);
1913 	if (err)
1914 		return ERR_PTR(err);
1915 
1916 	return __lookup_hash(&this, base, NULL);
1917 }
1918 
1919 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
1920 		 struct path *path, int *empty)
1921 {
1922 	struct nameidata nd;
1923 	char *tmp = getname_flags(name, flags, empty);
1924 	int err = PTR_ERR(tmp);
1925 	if (!IS_ERR(tmp)) {
1926 
1927 		BUG_ON(flags & LOOKUP_PARENT);
1928 
1929 		err = do_path_lookup(dfd, tmp, flags, &nd);
1930 		putname(tmp);
1931 		if (!err)
1932 			*path = nd.path;
1933 	}
1934 	return err;
1935 }
1936 
1937 int user_path_at(int dfd, const char __user *name, unsigned flags,
1938 		 struct path *path)
1939 {
1940 	return user_path_at_empty(dfd, name, flags, path, NULL);
1941 }
1942 
1943 static int user_path_parent(int dfd, const char __user *path,
1944 			struct nameidata *nd, char **name)
1945 {
1946 	char *s = getname(path);
1947 	int error;
1948 
1949 	if (IS_ERR(s))
1950 		return PTR_ERR(s);
1951 
1952 	error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1953 	if (error)
1954 		putname(s);
1955 	else
1956 		*name = s;
1957 
1958 	return error;
1959 }
1960 
1961 /*
1962  * It's inline, so penalty for filesystems that don't use sticky bit is
1963  * minimal.
1964  */
1965 static inline int check_sticky(struct inode *dir, struct inode *inode)
1966 {
1967 	kuid_t fsuid = current_fsuid();
1968 
1969 	if (!(dir->i_mode & S_ISVTX))
1970 		return 0;
1971 	if (uid_eq(inode->i_uid, fsuid))
1972 		return 0;
1973 	if (uid_eq(dir->i_uid, fsuid))
1974 		return 0;
1975 	return !inode_capable(inode, CAP_FOWNER);
1976 }
1977 
1978 /*
1979  *	Check whether we can remove a link victim from directory dir, check
1980  *  whether the type of victim is right.
1981  *  1. We can't do it if dir is read-only (done in permission())
1982  *  2. We should have write and exec permissions on dir
1983  *  3. We can't remove anything from append-only dir
1984  *  4. We can't do anything with immutable dir (done in permission())
1985  *  5. If the sticky bit on dir is set we should either
1986  *	a. be owner of dir, or
1987  *	b. be owner of victim, or
1988  *	c. have CAP_FOWNER capability
1989  *  6. If the victim is append-only or immutable we can't do antyhing with
1990  *     links pointing to it.
1991  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1992  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1993  *  9. We can't remove a root or mountpoint.
1994  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1995  *     nfs_async_unlink().
1996  */
1997 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1998 {
1999 	int error;
2000 
2001 	if (!victim->d_inode)
2002 		return -ENOENT;
2003 
2004 	BUG_ON(victim->d_parent->d_inode != dir);
2005 	audit_inode_child(victim, dir);
2006 
2007 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2008 	if (error)
2009 		return error;
2010 	if (IS_APPEND(dir))
2011 		return -EPERM;
2012 	if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
2013 	    IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
2014 		return -EPERM;
2015 	if (isdir) {
2016 		if (!S_ISDIR(victim->d_inode->i_mode))
2017 			return -ENOTDIR;
2018 		if (IS_ROOT(victim))
2019 			return -EBUSY;
2020 	} else if (S_ISDIR(victim->d_inode->i_mode))
2021 		return -EISDIR;
2022 	if (IS_DEADDIR(dir))
2023 		return -ENOENT;
2024 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2025 		return -EBUSY;
2026 	return 0;
2027 }
2028 
2029 /*	Check whether we can create an object with dentry child in directory
2030  *  dir.
2031  *  1. We can't do it if child already exists (open has special treatment for
2032  *     this case, but since we are inlined it's OK)
2033  *  2. We can't do it if dir is read-only (done in permission())
2034  *  3. We should have write and exec permissions on dir
2035  *  4. We can't do it if dir is immutable (done in permission())
2036  */
2037 static inline int may_create(struct inode *dir, struct dentry *child)
2038 {
2039 	if (child->d_inode)
2040 		return -EEXIST;
2041 	if (IS_DEADDIR(dir))
2042 		return -ENOENT;
2043 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2044 }
2045 
2046 /*
2047  * p1 and p2 should be directories on the same fs.
2048  */
2049 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2050 {
2051 	struct dentry *p;
2052 
2053 	if (p1 == p2) {
2054 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2055 		return NULL;
2056 	}
2057 
2058 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2059 
2060 	p = d_ancestor(p2, p1);
2061 	if (p) {
2062 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2063 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2064 		return p;
2065 	}
2066 
2067 	p = d_ancestor(p1, p2);
2068 	if (p) {
2069 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2070 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2071 		return p;
2072 	}
2073 
2074 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2075 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2076 	return NULL;
2077 }
2078 
2079 void unlock_rename(struct dentry *p1, struct dentry *p2)
2080 {
2081 	mutex_unlock(&p1->d_inode->i_mutex);
2082 	if (p1 != p2) {
2083 		mutex_unlock(&p2->d_inode->i_mutex);
2084 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2085 	}
2086 }
2087 
2088 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2089 		struct nameidata *nd)
2090 {
2091 	int error = may_create(dir, dentry);
2092 
2093 	if (error)
2094 		return error;
2095 
2096 	if (!dir->i_op->create)
2097 		return -EACCES;	/* shouldn't it be ENOSYS? */
2098 	mode &= S_IALLUGO;
2099 	mode |= S_IFREG;
2100 	error = security_inode_create(dir, dentry, mode);
2101 	if (error)
2102 		return error;
2103 	error = dir->i_op->create(dir, dentry, mode, nd);
2104 	if (!error)
2105 		fsnotify_create(dir, dentry);
2106 	return error;
2107 }
2108 
2109 static int may_open(struct path *path, int acc_mode, int flag)
2110 {
2111 	struct dentry *dentry = path->dentry;
2112 	struct inode *inode = dentry->d_inode;
2113 	int error;
2114 
2115 	/* O_PATH? */
2116 	if (!acc_mode)
2117 		return 0;
2118 
2119 	if (!inode)
2120 		return -ENOENT;
2121 
2122 	switch (inode->i_mode & S_IFMT) {
2123 	case S_IFLNK:
2124 		return -ELOOP;
2125 	case S_IFDIR:
2126 		if (acc_mode & MAY_WRITE)
2127 			return -EISDIR;
2128 		break;
2129 	case S_IFBLK:
2130 	case S_IFCHR:
2131 		if (path->mnt->mnt_flags & MNT_NODEV)
2132 			return -EACCES;
2133 		/*FALLTHRU*/
2134 	case S_IFIFO:
2135 	case S_IFSOCK:
2136 		flag &= ~O_TRUNC;
2137 		break;
2138 	}
2139 
2140 	error = inode_permission(inode, acc_mode);
2141 	if (error)
2142 		return error;
2143 
2144 	/*
2145 	 * An append-only file must be opened in append mode for writing.
2146 	 */
2147 	if (IS_APPEND(inode)) {
2148 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2149 			return -EPERM;
2150 		if (flag & O_TRUNC)
2151 			return -EPERM;
2152 	}
2153 
2154 	/* O_NOATIME can only be set by the owner or superuser */
2155 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2156 		return -EPERM;
2157 
2158 	return 0;
2159 }
2160 
2161 static int handle_truncate(struct file *filp)
2162 {
2163 	struct path *path = &filp->f_path;
2164 	struct inode *inode = path->dentry->d_inode;
2165 	int error = get_write_access(inode);
2166 	if (error)
2167 		return error;
2168 	/*
2169 	 * Refuse to truncate files with mandatory locks held on them.
2170 	 */
2171 	error = locks_verify_locked(inode);
2172 	if (!error)
2173 		error = security_path_truncate(path);
2174 	if (!error) {
2175 		error = do_truncate(path->dentry, 0,
2176 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2177 				    filp);
2178 	}
2179 	put_write_access(inode);
2180 	return error;
2181 }
2182 
2183 static inline int open_to_namei_flags(int flag)
2184 {
2185 	if ((flag & O_ACCMODE) == 3)
2186 		flag--;
2187 	return flag;
2188 }
2189 
2190 /*
2191  * Handle the last step of open()
2192  */
2193 static struct file *do_last(struct nameidata *nd, struct path *path,
2194 			    const struct open_flags *op, const char *pathname)
2195 {
2196 	struct dentry *dir = nd->path.dentry;
2197 	struct dentry *dentry;
2198 	int open_flag = op->open_flag;
2199 	int will_truncate = open_flag & O_TRUNC;
2200 	int want_write = 0;
2201 	int acc_mode = op->acc_mode;
2202 	struct file *filp;
2203 	struct inode *inode;
2204 	int symlink_ok = 0;
2205 	struct path save_parent = { .dentry = NULL, .mnt = NULL };
2206 	bool retried = false;
2207 	int error;
2208 
2209 	nd->flags &= ~LOOKUP_PARENT;
2210 	nd->flags |= op->intent;
2211 
2212 	switch (nd->last_type) {
2213 	case LAST_DOTDOT:
2214 	case LAST_DOT:
2215 		error = handle_dots(nd, nd->last_type);
2216 		if (error)
2217 			return ERR_PTR(error);
2218 		/* fallthrough */
2219 	case LAST_ROOT:
2220 		error = complete_walk(nd);
2221 		if (error)
2222 			return ERR_PTR(error);
2223 		audit_inode(pathname, nd->path.dentry);
2224 		if (open_flag & O_CREAT) {
2225 			error = -EISDIR;
2226 			goto exit;
2227 		}
2228 		goto ok;
2229 	case LAST_BIND:
2230 		error = complete_walk(nd);
2231 		if (error)
2232 			return ERR_PTR(error);
2233 		audit_inode(pathname, dir);
2234 		goto ok;
2235 	}
2236 
2237 	if (!(open_flag & O_CREAT)) {
2238 		if (nd->last.name[nd->last.len])
2239 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2240 		if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2241 			symlink_ok = 1;
2242 		/* we _can_ be in RCU mode here */
2243 		error = lookup_fast(nd, &nd->last, path, &inode);
2244 		if (unlikely(error)) {
2245 			if (error < 0)
2246 				goto exit;
2247 
2248 			error = lookup_slow(nd, &nd->last, path);
2249 			if (error < 0)
2250 				goto exit;
2251 
2252 			inode = path->dentry->d_inode;
2253 		}
2254 		goto finish_lookup;
2255 	}
2256 
2257 	/* create side of things */
2258 	/*
2259 	 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED has been
2260 	 * cleared when we got to the last component we are about to look up
2261 	 */
2262 	error = complete_walk(nd);
2263 	if (error)
2264 		return ERR_PTR(error);
2265 
2266 	audit_inode(pathname, dir);
2267 	error = -EISDIR;
2268 	/* trailing slashes? */
2269 	if (nd->last.name[nd->last.len])
2270 		goto exit;
2271 
2272 retry_lookup:
2273 	mutex_lock(&dir->d_inode->i_mutex);
2274 
2275 	dentry = lookup_hash(nd);
2276 	error = PTR_ERR(dentry);
2277 	if (IS_ERR(dentry)) {
2278 		mutex_unlock(&dir->d_inode->i_mutex);
2279 		goto exit;
2280 	}
2281 
2282 	path->dentry = dentry;
2283 	path->mnt = nd->path.mnt;
2284 
2285 	/* Negative dentry, just create the file */
2286 	if (!dentry->d_inode) {
2287 		umode_t mode = op->mode;
2288 		if (!IS_POSIXACL(dir->d_inode))
2289 			mode &= ~current_umask();
2290 		/*
2291 		 * This write is needed to ensure that a
2292 		 * rw->ro transition does not occur between
2293 		 * the time when the file is created and when
2294 		 * a permanent write count is taken through
2295 		 * the 'struct file' in nameidata_to_filp().
2296 		 */
2297 		error = mnt_want_write(nd->path.mnt);
2298 		if (error)
2299 			goto exit_mutex_unlock;
2300 		want_write = 1;
2301 		/* Don't check for write permission, don't truncate */
2302 		open_flag &= ~O_TRUNC;
2303 		will_truncate = 0;
2304 		acc_mode = MAY_OPEN;
2305 		error = security_path_mknod(&nd->path, dentry, mode, 0);
2306 		if (error)
2307 			goto exit_mutex_unlock;
2308 		error = vfs_create(dir->d_inode, dentry, mode, nd);
2309 		if (error)
2310 			goto exit_mutex_unlock;
2311 		mutex_unlock(&dir->d_inode->i_mutex);
2312 		dput(nd->path.dentry);
2313 		nd->path.dentry = dentry;
2314 		goto common;
2315 	}
2316 
2317 	/*
2318 	 * It already exists.
2319 	 */
2320 	mutex_unlock(&dir->d_inode->i_mutex);
2321 	audit_inode(pathname, path->dentry);
2322 
2323 	error = -EEXIST;
2324 	if (open_flag & O_EXCL)
2325 		goto exit_dput;
2326 
2327 	error = follow_managed(path, nd->flags);
2328 	if (error < 0)
2329 		goto exit_dput;
2330 
2331 	if (error)
2332 		nd->flags |= LOOKUP_JUMPED;
2333 
2334 	BUG_ON(nd->flags & LOOKUP_RCU);
2335 	inode = path->dentry->d_inode;
2336 finish_lookup:
2337 	/* we _can_ be in RCU mode here */
2338 	error = -ENOENT;
2339 	if (!inode) {
2340 		path_to_nameidata(path, nd);
2341 		goto exit;
2342 	}
2343 
2344 	if (should_follow_link(inode, !symlink_ok)) {
2345 		if (nd->flags & LOOKUP_RCU) {
2346 			if (unlikely(unlazy_walk(nd, path->dentry))) {
2347 				error = -ECHILD;
2348 				goto exit;
2349 			}
2350 		}
2351 		BUG_ON(inode != path->dentry->d_inode);
2352 		return NULL;
2353 	}
2354 
2355 	if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
2356 		path_to_nameidata(path, nd);
2357 	} else {
2358 		save_parent.dentry = nd->path.dentry;
2359 		save_parent.mnt = mntget(path->mnt);
2360 		nd->path.dentry = path->dentry;
2361 
2362 	}
2363 	nd->inode = inode;
2364 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
2365 	error = complete_walk(nd);
2366 	if (error) {
2367 		path_put(&save_parent);
2368 		return ERR_PTR(error);
2369 	}
2370 	error = -EISDIR;
2371 	if ((open_flag & O_CREAT) && S_ISDIR(nd->inode->i_mode))
2372 		goto exit;
2373 	error = -ENOTDIR;
2374 	if ((nd->flags & LOOKUP_DIRECTORY) && !nd->inode->i_op->lookup)
2375 		goto exit;
2376 	audit_inode(pathname, nd->path.dentry);
2377 ok:
2378 	if (!S_ISREG(nd->inode->i_mode))
2379 		will_truncate = 0;
2380 
2381 	if (will_truncate) {
2382 		error = mnt_want_write(nd->path.mnt);
2383 		if (error)
2384 			goto exit;
2385 		want_write = 1;
2386 	}
2387 common:
2388 	error = may_open(&nd->path, acc_mode, open_flag);
2389 	if (error)
2390 		goto exit;
2391 	filp = nameidata_to_filp(nd);
2392 	if (filp == ERR_PTR(-EOPENSTALE) && save_parent.dentry && !retried) {
2393 		BUG_ON(save_parent.dentry != dir);
2394 		path_put(&nd->path);
2395 		nd->path = save_parent;
2396 		nd->inode = dir->d_inode;
2397 		save_parent.mnt = NULL;
2398 		save_parent.dentry = NULL;
2399 		if (want_write) {
2400 			mnt_drop_write(nd->path.mnt);
2401 			want_write = 0;
2402 		}
2403 		retried = true;
2404 		goto retry_lookup;
2405 	}
2406 	if (!IS_ERR(filp)) {
2407 		error = ima_file_check(filp, op->acc_mode);
2408 		if (error) {
2409 			fput(filp);
2410 			filp = ERR_PTR(error);
2411 		}
2412 	}
2413 	if (!IS_ERR(filp)) {
2414 		if (will_truncate) {
2415 			error = handle_truncate(filp);
2416 			if (error) {
2417 				fput(filp);
2418 				filp = ERR_PTR(error);
2419 			}
2420 		}
2421 	}
2422 out:
2423 	if (want_write)
2424 		mnt_drop_write(nd->path.mnt);
2425 	path_put(&save_parent);
2426 	terminate_walk(nd);
2427 	return filp;
2428 
2429 exit_mutex_unlock:
2430 	mutex_unlock(&dir->d_inode->i_mutex);
2431 exit_dput:
2432 	path_put_conditional(path, nd);
2433 exit:
2434 	filp = ERR_PTR(error);
2435 	goto out;
2436 }
2437 
2438 static struct file *path_openat(int dfd, const char *pathname,
2439 		struct nameidata *nd, const struct open_flags *op, int flags)
2440 {
2441 	struct file *base = NULL;
2442 	struct file *filp;
2443 	struct path path;
2444 	int error;
2445 
2446 	filp = get_empty_filp();
2447 	if (!filp)
2448 		return ERR_PTR(-ENFILE);
2449 
2450 	filp->f_flags = op->open_flag;
2451 	nd->intent.open.file = filp;
2452 	nd->intent.open.flags = open_to_namei_flags(op->open_flag);
2453 	nd->intent.open.create_mode = op->mode;
2454 
2455 	error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base);
2456 	if (unlikely(error))
2457 		goto out_filp;
2458 
2459 	current->total_link_count = 0;
2460 	error = link_path_walk(pathname, nd);
2461 	if (unlikely(error))
2462 		goto out_filp;
2463 
2464 	filp = do_last(nd, &path, op, pathname);
2465 	while (unlikely(!filp)) { /* trailing symlink */
2466 		struct path link = path;
2467 		void *cookie;
2468 		if (!(nd->flags & LOOKUP_FOLLOW)) {
2469 			path_put_conditional(&path, nd);
2470 			path_put(&nd->path);
2471 			filp = ERR_PTR(-ELOOP);
2472 			break;
2473 		}
2474 		nd->flags |= LOOKUP_PARENT;
2475 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2476 		error = follow_link(&link, nd, &cookie);
2477 		if (unlikely(error))
2478 			filp = ERR_PTR(error);
2479 		else
2480 			filp = do_last(nd, &path, op, pathname);
2481 		put_link(nd, &link, cookie);
2482 	}
2483 out:
2484 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2485 		path_put(&nd->root);
2486 	if (base)
2487 		fput(base);
2488 	release_open_intent(nd);
2489 	if (filp == ERR_PTR(-EOPENSTALE)) {
2490 		if (flags & LOOKUP_RCU)
2491 			filp = ERR_PTR(-ECHILD);
2492 		else
2493 			filp = ERR_PTR(-ESTALE);
2494 	}
2495 	return filp;
2496 
2497 out_filp:
2498 	filp = ERR_PTR(error);
2499 	goto out;
2500 }
2501 
2502 struct file *do_filp_open(int dfd, const char *pathname,
2503 		const struct open_flags *op, int flags)
2504 {
2505 	struct nameidata nd;
2506 	struct file *filp;
2507 
2508 	filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2509 	if (unlikely(filp == ERR_PTR(-ECHILD)))
2510 		filp = path_openat(dfd, pathname, &nd, op, flags);
2511 	if (unlikely(filp == ERR_PTR(-ESTALE)))
2512 		filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
2513 	return filp;
2514 }
2515 
2516 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
2517 		const char *name, const struct open_flags *op, int flags)
2518 {
2519 	struct nameidata nd;
2520 	struct file *file;
2521 
2522 	nd.root.mnt = mnt;
2523 	nd.root.dentry = dentry;
2524 
2525 	flags |= LOOKUP_ROOT;
2526 
2527 	if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
2528 		return ERR_PTR(-ELOOP);
2529 
2530 	file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU);
2531 	if (unlikely(file == ERR_PTR(-ECHILD)))
2532 		file = path_openat(-1, name, &nd, op, flags);
2533 	if (unlikely(file == ERR_PTR(-ESTALE)))
2534 		file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL);
2535 	return file;
2536 }
2537 
2538 struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, int is_dir)
2539 {
2540 	struct dentry *dentry = ERR_PTR(-EEXIST);
2541 	struct nameidata nd;
2542 	int error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
2543 	if (error)
2544 		return ERR_PTR(error);
2545 
2546 	/*
2547 	 * Yucky last component or no last component at all?
2548 	 * (foo/., foo/.., /////)
2549 	 */
2550 	if (nd.last_type != LAST_NORM)
2551 		goto out;
2552 	nd.flags &= ~LOOKUP_PARENT;
2553 	nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2554 	nd.intent.open.flags = O_EXCL;
2555 
2556 	/*
2557 	 * Do the final lookup.
2558 	 */
2559 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2560 	dentry = lookup_hash(&nd);
2561 	if (IS_ERR(dentry))
2562 		goto fail;
2563 
2564 	if (dentry->d_inode)
2565 		goto eexist;
2566 	/*
2567 	 * Special case - lookup gave negative, but... we had foo/bar/
2568 	 * From the vfs_mknod() POV we just have a negative dentry -
2569 	 * all is fine. Let's be bastards - you had / on the end, you've
2570 	 * been asking for (non-existent) directory. -ENOENT for you.
2571 	 */
2572 	if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
2573 		dput(dentry);
2574 		dentry = ERR_PTR(-ENOENT);
2575 		goto fail;
2576 	}
2577 	*path = nd.path;
2578 	return dentry;
2579 eexist:
2580 	dput(dentry);
2581 	dentry = ERR_PTR(-EEXIST);
2582 fail:
2583 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2584 out:
2585 	path_put(&nd.path);
2586 	return dentry;
2587 }
2588 EXPORT_SYMBOL(kern_path_create);
2589 
2590 struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, int is_dir)
2591 {
2592 	char *tmp = getname(pathname);
2593 	struct dentry *res;
2594 	if (IS_ERR(tmp))
2595 		return ERR_CAST(tmp);
2596 	res = kern_path_create(dfd, tmp, path, is_dir);
2597 	putname(tmp);
2598 	return res;
2599 }
2600 EXPORT_SYMBOL(user_path_create);
2601 
2602 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2603 {
2604 	int error = may_create(dir, dentry);
2605 
2606 	if (error)
2607 		return error;
2608 
2609 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
2610 		return -EPERM;
2611 
2612 	if (!dir->i_op->mknod)
2613 		return -EPERM;
2614 
2615 	error = devcgroup_inode_mknod(mode, dev);
2616 	if (error)
2617 		return error;
2618 
2619 	error = security_inode_mknod(dir, dentry, mode, dev);
2620 	if (error)
2621 		return error;
2622 
2623 	error = dir->i_op->mknod(dir, dentry, mode, dev);
2624 	if (!error)
2625 		fsnotify_create(dir, dentry);
2626 	return error;
2627 }
2628 
2629 static int may_mknod(umode_t mode)
2630 {
2631 	switch (mode & S_IFMT) {
2632 	case S_IFREG:
2633 	case S_IFCHR:
2634 	case S_IFBLK:
2635 	case S_IFIFO:
2636 	case S_IFSOCK:
2637 	case 0: /* zero mode translates to S_IFREG */
2638 		return 0;
2639 	case S_IFDIR:
2640 		return -EPERM;
2641 	default:
2642 		return -EINVAL;
2643 	}
2644 }
2645 
2646 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
2647 		unsigned, dev)
2648 {
2649 	struct dentry *dentry;
2650 	struct path path;
2651 	int error;
2652 
2653 	if (S_ISDIR(mode))
2654 		return -EPERM;
2655 
2656 	dentry = user_path_create(dfd, filename, &path, 0);
2657 	if (IS_ERR(dentry))
2658 		return PTR_ERR(dentry);
2659 
2660 	if (!IS_POSIXACL(path.dentry->d_inode))
2661 		mode &= ~current_umask();
2662 	error = may_mknod(mode);
2663 	if (error)
2664 		goto out_dput;
2665 	error = mnt_want_write(path.mnt);
2666 	if (error)
2667 		goto out_dput;
2668 	error = security_path_mknod(&path, dentry, mode, dev);
2669 	if (error)
2670 		goto out_drop_write;
2671 	switch (mode & S_IFMT) {
2672 		case 0: case S_IFREG:
2673 			error = vfs_create(path.dentry->d_inode,dentry,mode,NULL);
2674 			break;
2675 		case S_IFCHR: case S_IFBLK:
2676 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
2677 					new_decode_dev(dev));
2678 			break;
2679 		case S_IFIFO: case S_IFSOCK:
2680 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
2681 			break;
2682 	}
2683 out_drop_write:
2684 	mnt_drop_write(path.mnt);
2685 out_dput:
2686 	dput(dentry);
2687 	mutex_unlock(&path.dentry->d_inode->i_mutex);
2688 	path_put(&path);
2689 
2690 	return error;
2691 }
2692 
2693 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
2694 {
2695 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
2696 }
2697 
2698 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2699 {
2700 	int error = may_create(dir, dentry);
2701 	unsigned max_links = dir->i_sb->s_max_links;
2702 
2703 	if (error)
2704 		return error;
2705 
2706 	if (!dir->i_op->mkdir)
2707 		return -EPERM;
2708 
2709 	mode &= (S_IRWXUGO|S_ISVTX);
2710 	error = security_inode_mkdir(dir, dentry, mode);
2711 	if (error)
2712 		return error;
2713 
2714 	if (max_links && dir->i_nlink >= max_links)
2715 		return -EMLINK;
2716 
2717 	error = dir->i_op->mkdir(dir, dentry, mode);
2718 	if (!error)
2719 		fsnotify_mkdir(dir, dentry);
2720 	return error;
2721 }
2722 
2723 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
2724 {
2725 	struct dentry *dentry;
2726 	struct path path;
2727 	int error;
2728 
2729 	dentry = user_path_create(dfd, pathname, &path, 1);
2730 	if (IS_ERR(dentry))
2731 		return PTR_ERR(dentry);
2732 
2733 	if (!IS_POSIXACL(path.dentry->d_inode))
2734 		mode &= ~current_umask();
2735 	error = mnt_want_write(path.mnt);
2736 	if (error)
2737 		goto out_dput;
2738 	error = security_path_mkdir(&path, dentry, mode);
2739 	if (error)
2740 		goto out_drop_write;
2741 	error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
2742 out_drop_write:
2743 	mnt_drop_write(path.mnt);
2744 out_dput:
2745 	dput(dentry);
2746 	mutex_unlock(&path.dentry->d_inode->i_mutex);
2747 	path_put(&path);
2748 	return error;
2749 }
2750 
2751 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
2752 {
2753 	return sys_mkdirat(AT_FDCWD, pathname, mode);
2754 }
2755 
2756 /*
2757  * The dentry_unhash() helper will try to drop the dentry early: we
2758  * should have a usage count of 1 if we're the only user of this
2759  * dentry, and if that is true (possibly after pruning the dcache),
2760  * then we drop the dentry now.
2761  *
2762  * A low-level filesystem can, if it choses, legally
2763  * do a
2764  *
2765  *	if (!d_unhashed(dentry))
2766  *		return -EBUSY;
2767  *
2768  * if it cannot handle the case of removing a directory
2769  * that is still in use by something else..
2770  */
2771 void dentry_unhash(struct dentry *dentry)
2772 {
2773 	shrink_dcache_parent(dentry);
2774 	spin_lock(&dentry->d_lock);
2775 	if (dentry->d_count == 1)
2776 		__d_drop(dentry);
2777 	spin_unlock(&dentry->d_lock);
2778 }
2779 
2780 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2781 {
2782 	int error = may_delete(dir, dentry, 1);
2783 
2784 	if (error)
2785 		return error;
2786 
2787 	if (!dir->i_op->rmdir)
2788 		return -EPERM;
2789 
2790 	dget(dentry);
2791 	mutex_lock(&dentry->d_inode->i_mutex);
2792 
2793 	error = -EBUSY;
2794 	if (d_mountpoint(dentry))
2795 		goto out;
2796 
2797 	error = security_inode_rmdir(dir, dentry);
2798 	if (error)
2799 		goto out;
2800 
2801 	shrink_dcache_parent(dentry);
2802 	error = dir->i_op->rmdir(dir, dentry);
2803 	if (error)
2804 		goto out;
2805 
2806 	dentry->d_inode->i_flags |= S_DEAD;
2807 	dont_mount(dentry);
2808 
2809 out:
2810 	mutex_unlock(&dentry->d_inode->i_mutex);
2811 	dput(dentry);
2812 	if (!error)
2813 		d_delete(dentry);
2814 	return error;
2815 }
2816 
2817 static long do_rmdir(int dfd, const char __user *pathname)
2818 {
2819 	int error = 0;
2820 	char * name;
2821 	struct dentry *dentry;
2822 	struct nameidata nd;
2823 
2824 	error = user_path_parent(dfd, pathname, &nd, &name);
2825 	if (error)
2826 		return error;
2827 
2828 	switch(nd.last_type) {
2829 	case LAST_DOTDOT:
2830 		error = -ENOTEMPTY;
2831 		goto exit1;
2832 	case LAST_DOT:
2833 		error = -EINVAL;
2834 		goto exit1;
2835 	case LAST_ROOT:
2836 		error = -EBUSY;
2837 		goto exit1;
2838 	}
2839 
2840 	nd.flags &= ~LOOKUP_PARENT;
2841 
2842 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2843 	dentry = lookup_hash(&nd);
2844 	error = PTR_ERR(dentry);
2845 	if (IS_ERR(dentry))
2846 		goto exit2;
2847 	if (!dentry->d_inode) {
2848 		error = -ENOENT;
2849 		goto exit3;
2850 	}
2851 	error = mnt_want_write(nd.path.mnt);
2852 	if (error)
2853 		goto exit3;
2854 	error = security_path_rmdir(&nd.path, dentry);
2855 	if (error)
2856 		goto exit4;
2857 	error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2858 exit4:
2859 	mnt_drop_write(nd.path.mnt);
2860 exit3:
2861 	dput(dentry);
2862 exit2:
2863 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2864 exit1:
2865 	path_put(&nd.path);
2866 	putname(name);
2867 	return error;
2868 }
2869 
2870 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2871 {
2872 	return do_rmdir(AT_FDCWD, pathname);
2873 }
2874 
2875 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2876 {
2877 	int error = may_delete(dir, dentry, 0);
2878 
2879 	if (error)
2880 		return error;
2881 
2882 	if (!dir->i_op->unlink)
2883 		return -EPERM;
2884 
2885 	mutex_lock(&dentry->d_inode->i_mutex);
2886 	if (d_mountpoint(dentry))
2887 		error = -EBUSY;
2888 	else {
2889 		error = security_inode_unlink(dir, dentry);
2890 		if (!error) {
2891 			error = dir->i_op->unlink(dir, dentry);
2892 			if (!error)
2893 				dont_mount(dentry);
2894 		}
2895 	}
2896 	mutex_unlock(&dentry->d_inode->i_mutex);
2897 
2898 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
2899 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2900 		fsnotify_link_count(dentry->d_inode);
2901 		d_delete(dentry);
2902 	}
2903 
2904 	return error;
2905 }
2906 
2907 /*
2908  * Make sure that the actual truncation of the file will occur outside its
2909  * directory's i_mutex.  Truncate can take a long time if there is a lot of
2910  * writeout happening, and we don't want to prevent access to the directory
2911  * while waiting on the I/O.
2912  */
2913 static long do_unlinkat(int dfd, const char __user *pathname)
2914 {
2915 	int error;
2916 	char *name;
2917 	struct dentry *dentry;
2918 	struct nameidata nd;
2919 	struct inode *inode = NULL;
2920 
2921 	error = user_path_parent(dfd, pathname, &nd, &name);
2922 	if (error)
2923 		return error;
2924 
2925 	error = -EISDIR;
2926 	if (nd.last_type != LAST_NORM)
2927 		goto exit1;
2928 
2929 	nd.flags &= ~LOOKUP_PARENT;
2930 
2931 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2932 	dentry = lookup_hash(&nd);
2933 	error = PTR_ERR(dentry);
2934 	if (!IS_ERR(dentry)) {
2935 		/* Why not before? Because we want correct error value */
2936 		if (nd.last.name[nd.last.len])
2937 			goto slashes;
2938 		inode = dentry->d_inode;
2939 		if (!inode)
2940 			goto slashes;
2941 		ihold(inode);
2942 		error = mnt_want_write(nd.path.mnt);
2943 		if (error)
2944 			goto exit2;
2945 		error = security_path_unlink(&nd.path, dentry);
2946 		if (error)
2947 			goto exit3;
2948 		error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2949 exit3:
2950 		mnt_drop_write(nd.path.mnt);
2951 	exit2:
2952 		dput(dentry);
2953 	}
2954 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2955 	if (inode)
2956 		iput(inode);	/* truncate the inode here */
2957 exit1:
2958 	path_put(&nd.path);
2959 	putname(name);
2960 	return error;
2961 
2962 slashes:
2963 	error = !dentry->d_inode ? -ENOENT :
2964 		S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2965 	goto exit2;
2966 }
2967 
2968 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2969 {
2970 	if ((flag & ~AT_REMOVEDIR) != 0)
2971 		return -EINVAL;
2972 
2973 	if (flag & AT_REMOVEDIR)
2974 		return do_rmdir(dfd, pathname);
2975 
2976 	return do_unlinkat(dfd, pathname);
2977 }
2978 
2979 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2980 {
2981 	return do_unlinkat(AT_FDCWD, pathname);
2982 }
2983 
2984 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2985 {
2986 	int error = may_create(dir, dentry);
2987 
2988 	if (error)
2989 		return error;
2990 
2991 	if (!dir->i_op->symlink)
2992 		return -EPERM;
2993 
2994 	error = security_inode_symlink(dir, dentry, oldname);
2995 	if (error)
2996 		return error;
2997 
2998 	error = dir->i_op->symlink(dir, dentry, oldname);
2999 	if (!error)
3000 		fsnotify_create(dir, dentry);
3001 	return error;
3002 }
3003 
3004 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3005 		int, newdfd, const char __user *, newname)
3006 {
3007 	int error;
3008 	char *from;
3009 	struct dentry *dentry;
3010 	struct path path;
3011 
3012 	from = getname(oldname);
3013 	if (IS_ERR(from))
3014 		return PTR_ERR(from);
3015 
3016 	dentry = user_path_create(newdfd, newname, &path, 0);
3017 	error = PTR_ERR(dentry);
3018 	if (IS_ERR(dentry))
3019 		goto out_putname;
3020 
3021 	error = mnt_want_write(path.mnt);
3022 	if (error)
3023 		goto out_dput;
3024 	error = security_path_symlink(&path, dentry, from);
3025 	if (error)
3026 		goto out_drop_write;
3027 	error = vfs_symlink(path.dentry->d_inode, dentry, from);
3028 out_drop_write:
3029 	mnt_drop_write(path.mnt);
3030 out_dput:
3031 	dput(dentry);
3032 	mutex_unlock(&path.dentry->d_inode->i_mutex);
3033 	path_put(&path);
3034 out_putname:
3035 	putname(from);
3036 	return error;
3037 }
3038 
3039 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3040 {
3041 	return sys_symlinkat(oldname, AT_FDCWD, newname);
3042 }
3043 
3044 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3045 {
3046 	struct inode *inode = old_dentry->d_inode;
3047 	unsigned max_links = dir->i_sb->s_max_links;
3048 	int error;
3049 
3050 	if (!inode)
3051 		return -ENOENT;
3052 
3053 	error = may_create(dir, new_dentry);
3054 	if (error)
3055 		return error;
3056 
3057 	if (dir->i_sb != inode->i_sb)
3058 		return -EXDEV;
3059 
3060 	/*
3061 	 * A link to an append-only or immutable file cannot be created.
3062 	 */
3063 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3064 		return -EPERM;
3065 	if (!dir->i_op->link)
3066 		return -EPERM;
3067 	if (S_ISDIR(inode->i_mode))
3068 		return -EPERM;
3069 
3070 	error = security_inode_link(old_dentry, dir, new_dentry);
3071 	if (error)
3072 		return error;
3073 
3074 	mutex_lock(&inode->i_mutex);
3075 	/* Make sure we don't allow creating hardlink to an unlinked file */
3076 	if (inode->i_nlink == 0)
3077 		error =  -ENOENT;
3078 	else if (max_links && inode->i_nlink >= max_links)
3079 		error = -EMLINK;
3080 	else
3081 		error = dir->i_op->link(old_dentry, dir, new_dentry);
3082 	mutex_unlock(&inode->i_mutex);
3083 	if (!error)
3084 		fsnotify_link(dir, inode, new_dentry);
3085 	return error;
3086 }
3087 
3088 /*
3089  * Hardlinks are often used in delicate situations.  We avoid
3090  * security-related surprises by not following symlinks on the
3091  * newname.  --KAB
3092  *
3093  * We don't follow them on the oldname either to be compatible
3094  * with linux 2.0, and to avoid hard-linking to directories
3095  * and other special files.  --ADM
3096  */
3097 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3098 		int, newdfd, const char __user *, newname, int, flags)
3099 {
3100 	struct dentry *new_dentry;
3101 	struct path old_path, new_path;
3102 	int how = 0;
3103 	int error;
3104 
3105 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3106 		return -EINVAL;
3107 	/*
3108 	 * To use null names we require CAP_DAC_READ_SEARCH
3109 	 * This ensures that not everyone will be able to create
3110 	 * handlink using the passed filedescriptor.
3111 	 */
3112 	if (flags & AT_EMPTY_PATH) {
3113 		if (!capable(CAP_DAC_READ_SEARCH))
3114 			return -ENOENT;
3115 		how = LOOKUP_EMPTY;
3116 	}
3117 
3118 	if (flags & AT_SYMLINK_FOLLOW)
3119 		how |= LOOKUP_FOLLOW;
3120 
3121 	error = user_path_at(olddfd, oldname, how, &old_path);
3122 	if (error)
3123 		return error;
3124 
3125 	new_dentry = user_path_create(newdfd, newname, &new_path, 0);
3126 	error = PTR_ERR(new_dentry);
3127 	if (IS_ERR(new_dentry))
3128 		goto out;
3129 
3130 	error = -EXDEV;
3131 	if (old_path.mnt != new_path.mnt)
3132 		goto out_dput;
3133 	error = mnt_want_write(new_path.mnt);
3134 	if (error)
3135 		goto out_dput;
3136 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
3137 	if (error)
3138 		goto out_drop_write;
3139 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
3140 out_drop_write:
3141 	mnt_drop_write(new_path.mnt);
3142 out_dput:
3143 	dput(new_dentry);
3144 	mutex_unlock(&new_path.dentry->d_inode->i_mutex);
3145 	path_put(&new_path);
3146 out:
3147 	path_put(&old_path);
3148 
3149 	return error;
3150 }
3151 
3152 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3153 {
3154 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3155 }
3156 
3157 /*
3158  * The worst of all namespace operations - renaming directory. "Perverted"
3159  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3160  * Problems:
3161  *	a) we can get into loop creation. Check is done in is_subdir().
3162  *	b) race potential - two innocent renames can create a loop together.
3163  *	   That's where 4.4 screws up. Current fix: serialization on
3164  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3165  *	   story.
3166  *	c) we have to lock _three_ objects - parents and victim (if it exists).
3167  *	   And that - after we got ->i_mutex on parents (until then we don't know
3168  *	   whether the target exists).  Solution: try to be smart with locking
3169  *	   order for inodes.  We rely on the fact that tree topology may change
3170  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
3171  *	   move will be locked.  Thus we can rank directories by the tree
3172  *	   (ancestors first) and rank all non-directories after them.
3173  *	   That works since everybody except rename does "lock parent, lookup,
3174  *	   lock child" and rename is under ->s_vfs_rename_mutex.
3175  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
3176  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
3177  *	   we'd better make sure that there's no link(2) for them.
3178  *	d) conversion from fhandle to dentry may come in the wrong moment - when
3179  *	   we are removing the target. Solution: we will have to grab ->i_mutex
3180  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3181  *	   ->i_mutex on parents, which works but leads to some truly excessive
3182  *	   locking].
3183  */
3184 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3185 			  struct inode *new_dir, struct dentry *new_dentry)
3186 {
3187 	int error = 0;
3188 	struct inode *target = new_dentry->d_inode;
3189 	unsigned max_links = new_dir->i_sb->s_max_links;
3190 
3191 	/*
3192 	 * If we are going to change the parent - check write permissions,
3193 	 * we'll need to flip '..'.
3194 	 */
3195 	if (new_dir != old_dir) {
3196 		error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3197 		if (error)
3198 			return error;
3199 	}
3200 
3201 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3202 	if (error)
3203 		return error;
3204 
3205 	dget(new_dentry);
3206 	if (target)
3207 		mutex_lock(&target->i_mutex);
3208 
3209 	error = -EBUSY;
3210 	if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3211 		goto out;
3212 
3213 	error = -EMLINK;
3214 	if (max_links && !target && new_dir != old_dir &&
3215 	    new_dir->i_nlink >= max_links)
3216 		goto out;
3217 
3218 	if (target)
3219 		shrink_dcache_parent(new_dentry);
3220 	error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3221 	if (error)
3222 		goto out;
3223 
3224 	if (target) {
3225 		target->i_flags |= S_DEAD;
3226 		dont_mount(new_dentry);
3227 	}
3228 out:
3229 	if (target)
3230 		mutex_unlock(&target->i_mutex);
3231 	dput(new_dentry);
3232 	if (!error)
3233 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3234 			d_move(old_dentry,new_dentry);
3235 	return error;
3236 }
3237 
3238 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3239 			    struct inode *new_dir, struct dentry *new_dentry)
3240 {
3241 	struct inode *target = new_dentry->d_inode;
3242 	int error;
3243 
3244 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3245 	if (error)
3246 		return error;
3247 
3248 	dget(new_dentry);
3249 	if (target)
3250 		mutex_lock(&target->i_mutex);
3251 
3252 	error = -EBUSY;
3253 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3254 		goto out;
3255 
3256 	error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3257 	if (error)
3258 		goto out;
3259 
3260 	if (target)
3261 		dont_mount(new_dentry);
3262 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3263 		d_move(old_dentry, new_dentry);
3264 out:
3265 	if (target)
3266 		mutex_unlock(&target->i_mutex);
3267 	dput(new_dentry);
3268 	return error;
3269 }
3270 
3271 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3272 	       struct inode *new_dir, struct dentry *new_dentry)
3273 {
3274 	int error;
3275 	int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3276 	const unsigned char *old_name;
3277 
3278 	if (old_dentry->d_inode == new_dentry->d_inode)
3279  		return 0;
3280 
3281 	error = may_delete(old_dir, old_dentry, is_dir);
3282 	if (error)
3283 		return error;
3284 
3285 	if (!new_dentry->d_inode)
3286 		error = may_create(new_dir, new_dentry);
3287 	else
3288 		error = may_delete(new_dir, new_dentry, is_dir);
3289 	if (error)
3290 		return error;
3291 
3292 	if (!old_dir->i_op->rename)
3293 		return -EPERM;
3294 
3295 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3296 
3297 	if (is_dir)
3298 		error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3299 	else
3300 		error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3301 	if (!error)
3302 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
3303 			      new_dentry->d_inode, old_dentry);
3304 	fsnotify_oldname_free(old_name);
3305 
3306 	return error;
3307 }
3308 
3309 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3310 		int, newdfd, const char __user *, newname)
3311 {
3312 	struct dentry *old_dir, *new_dir;
3313 	struct dentry *old_dentry, *new_dentry;
3314 	struct dentry *trap;
3315 	struct nameidata oldnd, newnd;
3316 	char *from;
3317 	char *to;
3318 	int error;
3319 
3320 	error = user_path_parent(olddfd, oldname, &oldnd, &from);
3321 	if (error)
3322 		goto exit;
3323 
3324 	error = user_path_parent(newdfd, newname, &newnd, &to);
3325 	if (error)
3326 		goto exit1;
3327 
3328 	error = -EXDEV;
3329 	if (oldnd.path.mnt != newnd.path.mnt)
3330 		goto exit2;
3331 
3332 	old_dir = oldnd.path.dentry;
3333 	error = -EBUSY;
3334 	if (oldnd.last_type != LAST_NORM)
3335 		goto exit2;
3336 
3337 	new_dir = newnd.path.dentry;
3338 	if (newnd.last_type != LAST_NORM)
3339 		goto exit2;
3340 
3341 	oldnd.flags &= ~LOOKUP_PARENT;
3342 	newnd.flags &= ~LOOKUP_PARENT;
3343 	newnd.flags |= LOOKUP_RENAME_TARGET;
3344 
3345 	trap = lock_rename(new_dir, old_dir);
3346 
3347 	old_dentry = lookup_hash(&oldnd);
3348 	error = PTR_ERR(old_dentry);
3349 	if (IS_ERR(old_dentry))
3350 		goto exit3;
3351 	/* source must exist */
3352 	error = -ENOENT;
3353 	if (!old_dentry->d_inode)
3354 		goto exit4;
3355 	/* unless the source is a directory trailing slashes give -ENOTDIR */
3356 	if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3357 		error = -ENOTDIR;
3358 		if (oldnd.last.name[oldnd.last.len])
3359 			goto exit4;
3360 		if (newnd.last.name[newnd.last.len])
3361 			goto exit4;
3362 	}
3363 	/* source should not be ancestor of target */
3364 	error = -EINVAL;
3365 	if (old_dentry == trap)
3366 		goto exit4;
3367 	new_dentry = lookup_hash(&newnd);
3368 	error = PTR_ERR(new_dentry);
3369 	if (IS_ERR(new_dentry))
3370 		goto exit4;
3371 	/* target should not be an ancestor of source */
3372 	error = -ENOTEMPTY;
3373 	if (new_dentry == trap)
3374 		goto exit5;
3375 
3376 	error = mnt_want_write(oldnd.path.mnt);
3377 	if (error)
3378 		goto exit5;
3379 	error = security_path_rename(&oldnd.path, old_dentry,
3380 				     &newnd.path, new_dentry);
3381 	if (error)
3382 		goto exit6;
3383 	error = vfs_rename(old_dir->d_inode, old_dentry,
3384 				   new_dir->d_inode, new_dentry);
3385 exit6:
3386 	mnt_drop_write(oldnd.path.mnt);
3387 exit5:
3388 	dput(new_dentry);
3389 exit4:
3390 	dput(old_dentry);
3391 exit3:
3392 	unlock_rename(new_dir, old_dir);
3393 exit2:
3394 	path_put(&newnd.path);
3395 	putname(to);
3396 exit1:
3397 	path_put(&oldnd.path);
3398 	putname(from);
3399 exit:
3400 	return error;
3401 }
3402 
3403 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3404 {
3405 	return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3406 }
3407 
3408 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3409 {
3410 	int len;
3411 
3412 	len = PTR_ERR(link);
3413 	if (IS_ERR(link))
3414 		goto out;
3415 
3416 	len = strlen(link);
3417 	if (len > (unsigned) buflen)
3418 		len = buflen;
3419 	if (copy_to_user(buffer, link, len))
3420 		len = -EFAULT;
3421 out:
3422 	return len;
3423 }
3424 
3425 /*
3426  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
3427  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
3428  * using) it for any given inode is up to filesystem.
3429  */
3430 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3431 {
3432 	struct nameidata nd;
3433 	void *cookie;
3434 	int res;
3435 
3436 	nd.depth = 0;
3437 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3438 	if (IS_ERR(cookie))
3439 		return PTR_ERR(cookie);
3440 
3441 	res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3442 	if (dentry->d_inode->i_op->put_link)
3443 		dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3444 	return res;
3445 }
3446 
3447 int vfs_follow_link(struct nameidata *nd, const char *link)
3448 {
3449 	return __vfs_follow_link(nd, link);
3450 }
3451 
3452 /* get the link contents into pagecache */
3453 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3454 {
3455 	char *kaddr;
3456 	struct page *page;
3457 	struct address_space *mapping = dentry->d_inode->i_mapping;
3458 	page = read_mapping_page(mapping, 0, NULL);
3459 	if (IS_ERR(page))
3460 		return (char*)page;
3461 	*ppage = page;
3462 	kaddr = kmap(page);
3463 	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3464 	return kaddr;
3465 }
3466 
3467 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3468 {
3469 	struct page *page = NULL;
3470 	char *s = page_getlink(dentry, &page);
3471 	int res = vfs_readlink(dentry,buffer,buflen,s);
3472 	if (page) {
3473 		kunmap(page);
3474 		page_cache_release(page);
3475 	}
3476 	return res;
3477 }
3478 
3479 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3480 {
3481 	struct page *page = NULL;
3482 	nd_set_link(nd, page_getlink(dentry, &page));
3483 	return page;
3484 }
3485 
3486 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3487 {
3488 	struct page *page = cookie;
3489 
3490 	if (page) {
3491 		kunmap(page);
3492 		page_cache_release(page);
3493 	}
3494 }
3495 
3496 /*
3497  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3498  */
3499 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3500 {
3501 	struct address_space *mapping = inode->i_mapping;
3502 	struct page *page;
3503 	void *fsdata;
3504 	int err;
3505 	char *kaddr;
3506 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3507 	if (nofs)
3508 		flags |= AOP_FLAG_NOFS;
3509 
3510 retry:
3511 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
3512 				flags, &page, &fsdata);
3513 	if (err)
3514 		goto fail;
3515 
3516 	kaddr = kmap_atomic(page);
3517 	memcpy(kaddr, symname, len-1);
3518 	kunmap_atomic(kaddr);
3519 
3520 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3521 							page, fsdata);
3522 	if (err < 0)
3523 		goto fail;
3524 	if (err < len-1)
3525 		goto retry;
3526 
3527 	mark_inode_dirty(inode);
3528 	return 0;
3529 fail:
3530 	return err;
3531 }
3532 
3533 int page_symlink(struct inode *inode, const char *symname, int len)
3534 {
3535 	return __page_symlink(inode, symname, len,
3536 			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3537 }
3538 
3539 const struct inode_operations page_symlink_inode_operations = {
3540 	.readlink	= generic_readlink,
3541 	.follow_link	= page_follow_link_light,
3542 	.put_link	= page_put_link,
3543 };
3544 
3545 EXPORT_SYMBOL(user_path_at);
3546 EXPORT_SYMBOL(follow_down_one);
3547 EXPORT_SYMBOL(follow_down);
3548 EXPORT_SYMBOL(follow_up);
3549 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3550 EXPORT_SYMBOL(getname);
3551 EXPORT_SYMBOL(lock_rename);
3552 EXPORT_SYMBOL(lookup_one_len);
3553 EXPORT_SYMBOL(page_follow_link_light);
3554 EXPORT_SYMBOL(page_put_link);
3555 EXPORT_SYMBOL(page_readlink);
3556 EXPORT_SYMBOL(__page_symlink);
3557 EXPORT_SYMBOL(page_symlink);
3558 EXPORT_SYMBOL(page_symlink_inode_operations);
3559 EXPORT_SYMBOL(kern_path);
3560 EXPORT_SYMBOL(vfs_path_lookup);
3561 EXPORT_SYMBOL(inode_permission);
3562 EXPORT_SYMBOL(unlock_rename);
3563 EXPORT_SYMBOL(vfs_create);
3564 EXPORT_SYMBOL(vfs_follow_link);
3565 EXPORT_SYMBOL(vfs_link);
3566 EXPORT_SYMBOL(vfs_mkdir);
3567 EXPORT_SYMBOL(vfs_mknod);
3568 EXPORT_SYMBOL(generic_permission);
3569 EXPORT_SYMBOL(vfs_readlink);
3570 EXPORT_SYMBOL(vfs_rename);
3571 EXPORT_SYMBOL(vfs_rmdir);
3572 EXPORT_SYMBOL(vfs_symlink);
3573 EXPORT_SYMBOL(vfs_unlink);
3574 EXPORT_SYMBOL(dentry_unhash);
3575 EXPORT_SYMBOL(generic_readlink);
3576